A parsimonious approach for recognizing SARS-CoV-2 and host interactions

Bhaskar Ganguly

Department of Clinical Research, Research and Development Division, Ayurvet Limited, Baddi, Himachal Pradesh, India

Correspondence
Bhaskar Ganguly, Department of Clinical Research, Research and Development Division, Ayurvet Limited, Baddi, Himachal Pradesh - 173205, India.
Email: vetbhaskar@gmail.com

Abstract
Effective countermeasures against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demand a better understanding of the pathogen-host interactions. However, such information about the targets, responses, and effects in the host due to the virus is limited, especially so in the case of newly emerged pathogens. The peptide domains that form the interfaces of host and pathogen interacting proteins being evolutionarily conserved, it may be hypothesized that such interactions can be inferred from the similarities in the nucleotide sequences between the host and the pathogen. This communication reports the results of a study based on a parsimonious approach for the identification of the host-virus interactions, where sequence complementarity between the human and SARS-CoV-2 genomes was used to predict several interactions between the host and SARS-CoV-2 at different levels of biological organization. In particular, the findings are suggestive of a direct effect of SARS-CoV-2 on cardiac health. The existing literature on host responses to SARS-CoV-2 and other viruses attest to many of these predicted interactions, supporting the utility of the proposed approach for the identification of host interactions with other novel pathogens.

KEYWORDS
COVID-19, host, interaction, parsimony, pathology, SARS-CoV-2

1 | INTRODUCTION
Following the first report from the city of Wuhan in the Hubei province of China in December 2019, a novel coronavirus-induced disease, coronavirus disease 2019 (COVID-19), has spread rapidly, triggering a global pandemic. COVID-19 is caused by a hitherto unknown beta-coronavirus which has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its high sequence similarity with SARS-CoV. Besides the pneumonia-like manifestations, such as cough, fever, and acute respiratory failure, evidence of the attack to multiple organs, such as digestive, cardiovascular, urinary, and reproductive systems have been reported. Still, information on most aspects of this virus, including its interactions with the host, is limited.

Knowledge of the complete repertoire of host cell molecules that a pathogen can interact with can be extremely helpful in understanding the pathobiology of the disease but is distinctly lacking for newly emerged pathogens. The peptide domains forming the interfaces of host-pathogen interactions are evolutionarily conserved and parsimonious comparison of host and pathogen genomes can uncover hitherto unknown interaction networks. Beyond the protein-protein interactions, complementary RNA–RNA interactions between the host and the pathogen that may result in altered expression of certain host genes can also be identified, but not distinguished from the former, by parsimonious associations. This communication reports the results of a study based on a parsimonious, sequence complementarity-based approach for the identification of the human and SARS-CoV-2 interactions.
2 | METHODS

All complete genome sequences of SARS-CoV-2 available as of March 25, 2020 at the Virus Pathogen Database and Analysis Resource (VIPR) were added to the workbench and aligned using MUSCLE with Unclust function at default settings. After completion of the multiple sequence alignment (MSA), the consensus sequence was generated using VIPR workbench analysis tools and gaps were removed. BioEdit was used for visualization of the MSA and calculation of its entropy.

The consensus genome sequence of SARS-CoV-2 was used to query the human RefSeq Gene, genomic plus transcript (G+T), and PDB nucleotide databases, respectively, by blastn at default settings. Irrespective of their expect values, all nonredundant hits from the blastn outputs were selected for further analysis; the hits from the human RefSeq Gene and transcript datasets were used to query STRING database for network reconstruction and enrichment.

3 | RESULTS AND DISCUSSION

It was hypothesized that if a viral gene abc, coding for a protein ABC, was similar in sequence to a host gene xyz, coding for protein XYZ, then the viral protein ABC could possibly interact with some of the proteins in the host that the protein XYZ interacted with and thereby, compromise the functions and pathways served by XYZ. Otherwise, the sequence similarity between abc and xyz could also possibly result in a gene silencing event in the host. Therefore, a consensus sequence of SARS-CoV-2 was derived and its local similarity to the human genome was investigated.

As of 25 March 2020, 110 complete genomes of SARS-CoV-2 were available at VIPR. The entropy of the MSA (Supplementary File 1) of these 110 genomes is shown in Figure 1A. Overall low entropy for the MSA implies that the findings based on the consensus sequence can be generalized for all other sequences. The blastn search against the human RefSeq Gene database yielded 69 hits, and that against the G+T database yielded 93 hits, respectively. In all, 73 nonredundant hits were identified from the human RefSeq Gene and transcript databases (Supplementary File 2).

Network reconstruction (Figure 1B) and enrichment (Figure 1C,D; Table 1) of the 73 hits, performed with STRING, identified the prominent interactions of the pathogen with the host at the bioprocess, molecular function, and pathway levels. Thirty of the 73 hits were found not to interact with each other. The proteins (ADA2, ADD1, HDAC9, JUP, MRC1, PPP4R2, and SIN3A), their paralogs (GNB1, KCNA4, KRT14, KRT17, MYO18A, NLRP12, PSMA6, SLC25A43, TLN2, and TTBK2), or regulatory subunits thereof (CACNA1A), coded by 18 of these 73 genes have been shown to be expressed differentially during SARS-CoV-2 infection. Intriguingly, sequence complementarity of any segment of the consensus viral genome was not seen withace2 or tmprss2. A blastn query of the RefSeq genes of the family Coronaviridae with human ace2 reference sequence at default settings showed sequence complementarity within orf6 of SARS-related bat Coronavirus but neither with any sequence of SARS-CoV-2 nor with any spike protein of the viral family (data not shown). However, at the molecular function level, an interaction between the host and the virus, involving PDZ domain binding (GO:0030165), was inferred; previously, the PDZ-binding motif of the SARS envelope protein has been established as a determinant of viral pathogenesis.

Sequence similarity with dentin sialophosphoprotein (dssp) gene as well as the involvement of enamel mineralization (GO:0070166) could be also inferred, hinting at the possibility of developmental defects in dentition and tooth decay in COVID-19 patients. The canine distemper virus, a member of Paramyxoviridae, is also known to interfere with enamel mineralization in its host, resulting in poor dentition in animals that suffer from the disease while their adult teeth are forming.

The involvement of two pathways viz. arrhythmogenic right ventricular cardiomyopathy (ARVC) (hsa05412) and glutamatergic synapse (hsa04724) was also identified (Table 1). The enrichment of ARVC at the pathway level and of regulation of heart rate (GO:0002027), regulation of cardiac muscle contraction (GO:0055117), regulation of heart rate by cardiac conduction (GO:0086091), regulation of atrial cardiac muscle cell membrane repolarization (GO:0060372), and cardiac muscle cell action potential (GO:0086001) at the bioprocess level is highly suggestive of a direct cardiomyopathic effect of SARS-CoV-2; myocardial injury associated with in-hospital mortality has already been reported in confirmed and suspected COVID-19 patients. Xiong et al. have also reported the enrichment of ARVC-related transcriptional responses in COVID19 patients. It is important to note that cardiac comorbidities have been a major risk factor for COVID19-related deaths and that the penetrance of ARVC-related mutations is very high in the populations of the Mediterranean basin, especially Italy, where the highest death rates due to this disease have been experienced.

The involvement of glutamatergic synapse (hsa04724) at the pathway level was predicted with much lower confidence than the ARVC pathway. However, some other viruses, including the neurotropic and neuroinvasive human coronaviruses, the HCoV strain OC43, for example, are already known to elicit glutamatergic excitotoxicity. Based on this finding, N-methyl-D-aspartate receptor antagonists such as memantine may be tested in the management of COVID-19 patients should they show specific signs of excitotoxicity. Interestingly, our analysis was also able to identify the sequence similarity between viral NSPs and hostntng1, previously reported by Lehrer and Rheinstein. Given the interactions of hostntng1 with ctn5 and cdh13 (Figure 1B), the competitions arising from this sequence similarity between the virus and ntn1 may account for the sensory disturbances, such as hyposmia/anomia and dysgeusia observed in COVID-19 patients. Clustering analysis of SARS-CoV-2, SARS, and MERS virus genes with human genes based on the codon usage and molecular features also associated the human genes with diseases of the nervous and cardiovascular systems.
FIGURE 1 (A) Entropy of multiple sequence alignment (MSA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes. One hundred and ten complete genomes of SARS-CoV-2 available at VIPR were selected and aligned with MUSCLE. The MSA was visualized in BioEdit and an entropy (Hx) plot was generated. (B) Interaction network of the host molecules showing parsimonious association with the consensus SARS-CoV-2 genome. STRING was used for network reconstruction and gene enrichment of the 73 nonredundant blastn hits. Thirty of the 73 hits did not interact with each other. (C) Gene ontologies (GO) of molecular functions in the host associated with SARS-CoV-2 infection. (D) GO of biological processes in the host associated with SARS-CoV-2 infection. The numbers of genes assigned to a particular molecular function by STRING, that is, observed gene counts have been depicted; for details of GO identifiers, please refer to Table 1. VIPR, Virus Pathogen Database and Analysis Resource
TABLE 1 Gene ontologies and molecular pathways enriched in the host associated with SARS-CoV-2 infection

Term ID	Term description	False discovery rate	Matching proteins in network
GO:0005515	protein binding	0.02	ADD1, BLM, BRE, CACNA1D, CDH13, CDH2, CECR1, DMD, DOCK4, DST, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GN1, GRIK2, GRM7, HCN1, HDAC9, HERC1, HPS2E, IKZF5, JUP, KCNQ1, KRT17, MCF2, MYO18A, NTNG1, OCRL, PARK2, PICALM, PPP4R2, PSMA6, PTMA, RALGAPA1, SIN3A, SLC12A6, TLN2, TNN13K, TYR
GO:0005200	structural constituent of cytoskeleton	0.0481	DMD, KRT14, KRT17, TLN2
GO:0005488	binding	0.0481	ADD1, ARSB, BA21A, BA22B, BLM, BRE, CACNA1D, CDH13, CDH2, CECR1, DLD, DMD, DOCK4, DSP, DST, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GN1, GRIK2, GRM7, HCN1, HDAC9, HERC1, HPS2E, IKZF5, JUP, KCNQ1, KRT14, KRT17, MCF2, MRC1, MYLK4, MYO18A, NLRP12, NTNG1, NUBPL, OCRL, PARK2, PAX5, PICALM, PPI5K2, PPP4R2, PSMA6, PTMA, RALGAPA1, SIN3A, SLC12A6, SULF1, TLN2, TNN13K, TOX, TTBK1, TYR, ZNF654
GO:0022839	ion gated channel activity	0.0481	CACNA1D, ENSG00000196689, GLRA1, GRIK2, HCN1, KCNQ1, SLC12A6
GO:0004065	arylsulfatase activity	0.0482	ARSB, SULF1
GO:0005216	ion channel activity	0.0482	CACNA1D, ENSG00000196689, GLRA1, GRIK2, HCN1, KCNQ1, SLC12A6
GO:0015079	potassium ion transmembrane transporter activity	0.0481	GRIK2, HCN1, KCNQ1, SLC12A6
GO:0005261	cation channel activity	0.0482	CACNA1D, ENSG00000196689, GLRA1, GRIK2, HCN1, KCNQ1, SLC12A6
GO:0005267	potassium channel activity	0.0482	GRIK2, HCN1, KCNQ1
GO:0015276	ligand-gated ion channel activity	0.0482	ENSG00000196689, GLRA1, GRIK2, HCN1
GO:0019899	enzyme binding	0.0482	CDH2, DMD, DOCK4, EGR2, FOXO1, GHR, GN1, GRIK2, HCN1, HDAC9, HERC1, JUP, KCNQ1, MCF2, OCRL, PARK2, PICALM, SLC12A6
GO:0019901	protein kinase binding	0.0482	CDH2, DOCK4, GHR, HDAC9, JUP, KCNQ1, PARK2, SLC12A6
GO:0019903	protein phosphatase binding	0.0482	CDH2, FOXO1, JUP, KCNQ1
GO:0003613	activating transcription factor binding	0.0482	EGR2, PTMA, SIN3A
GO:0043167	ion binding	0.0482	ARSB, BA21A, BA22B, BLM, CACNA1D, CDH13, CDH2, CECR1, DLD, DMD, DSP, DST, EGR2, ENSG00000196689, GLRA1, GRM7, HCN1, HDAC9, HPS2E, IKZF5, JUP, KCNQ1, KRT14, KRT17, MCF2, MYO18A, NLRP12, NTNG1, NUBPL, OCRL, PARK2, PICALM, PPI5K2, PSMA6, SULF1, TNN13K, TOX, TTBK1, TYR, ZNF654
GO:005294	alpha-catenin binding	0.0482	CDH2, JUP
GO:0046873	metal ion transmembrane transporter activity	0.0482	CACNA1D, ENSG00000196689, GLRA1, HCN1, KCNQ1, SLC12A6
GO:0098632	cell-cell adhesion mediator activity	0.0482	JUP, NTNG1

Biological process

Term ID	Term description	False discovery rate	Matching proteins in network
GO:0071417	cellular response to organonitrogen compound	0.00056	BLM, ENSG00000196689, FOXO1, GHR, GLRA1, GN1, HCN1, HDAC9, JUP, KCNQ1, PARK2, SIN3A
GO:0010243	response to organonitrogen compound	0.00077	BLM, CDH13, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GN1, HCN1, HDAC9, JUP, KCNQ1, PARK2, SIN3A, TYR

(Continues)
Biological process	GO:0016043 cellular component organization	0.0011 ADD1, ARSB, BAZ1A, BAZ2B, BLM, BRE, CDH13, CDH2, DMD, DSPP, DST, EGR2, ENSG00000196689, GLRA1, GNB1, HCN1, HDAC9, HERC1, HPSE2, IKZF5, IMMP2L, JUP, KCNA4, KRT14, KRT17, MYO18A, NTNG1, NUBPL, OCRL, PARK2, PICALM, PKHD1, PTMA, SIN3A, SULF1, TNL2, TRIP11, UQCC1	
GO:0032501 multicellular organismal process	0.0012 ADD1, ARSB, CACNA1D, CDH13, CDH2, CECR1, CNTN5, DLD, DMD, DOCK4, DSPP, EGR2, ENSG00000196689, FOXO1, GLRA1, GNB1, GRIK2, GRM7, HCN1, HDAC9, HERC1, IMMP2L, JUP, KCNA4, KRT14, KRT17, LMF1, MCF2, NTNG1, OCRL, PARK2, PAX5, PICALM, PKHD1, SIN3A, SLC12A6, SULF1, TNNI3K, TOX, TRIP11, TTBK1, TYR, WDR72		
GO:00035690 cellular response to drug	0.0012 BLM, ENSG00000196689, FOXO1, GLRA1, GNB1, JUP, KCNQ1, PARK2, SIN3A		
GO:0042391 regulation of membrane potential	0.0012 CACNA1D, DLD, DMD, ENSG00000196689, GLRA1, GRIK2, HCN1, JUP, KCNQ1, PARK2		
GO:0022607 cellular component assembly	0.0016 ADD1, BLM, CDH13, CDH2, DMD, ENSG00000196689, GLRA1, GNB1, HCN1, IKZF5, IMMP2L, JUP, KCNA4, KRT14, NUBPL, OCRL, PARK2, PICALM, PKHD1, TNL2, TRIP11, UQCC1		
GO:0051239 regulation of multicellular organismal process	0.0025 ADD1, ARSB, CACNA1D, CDH2, DMD, DOCK4, DSPP, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, HDAC9, JUP, KCNQ1, KRT17, MCF2, NLRP12, PARK2, PICALM, SIN3A, SULF1, TNNI3K, TOX, TTBB1		
GO:0071870 cellular response to catecholamine stimulus	0.0025 GNB1, KCNQ1, PARK2, SIN3A		
GO:0007275 multicellular organism development	0.0029 ADD1, ARSB, CDH13, CDH2, CECR1, DLD, DMD, DSPP, EGR2, FOXO1, GNB1, HCN1, HDAC9, HERC1, IMMP2L, JUP, KCNQ1, KRT14, KRT17, MCF2, NTNG1, OCRL, PARK2, PAX5, PICALM, PKHD1, SIN3A, SLC12A6, SULF1, TOX, TRIP11, TTBB1, TYR, WDR72		
GO:0048731 system development	0.0032 ADD1, ARSB, CDH13, CDH2, DMD, DSPP, EGR2, FOXO1, GNB1, HCN1, HDAC9, HERC1, IMMP2L, JUP, KCNQ1, KRT14, KRT17, MCF2, NTNG1, PARK2, PAX5, PICALM, PKHD1, SIN3A, SLC12A6, SULF1, TOX, TRIP11, TTBB1, TYR, WDR72		
GO:0086065 cell communication involved in cardiac conduction	0.0032 CACNA1D, JUP, KCNQ1, TNNI3K		
GO:1901701 cellular response to oxygen-containing compound	0.0032 BLM, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, HCN1, HDAC9, JUP, KCNQ1, MRC1, PARK2, SIN3A		
GO:0002027 regulation of heart rate	0.0038 CACNA1D, DMD, JUP, KCNQ1, TNNI3K		
GO:0048856 anatomical structure development	0.0038 ADD1, ARSB, CDH13, CDH2, CECR1, DLD, DMD, DSPP, EGR2, FOXO1, GNB1, HCN1, HDAC9, HERC1, IMMP2L, JUP, KCNQ1, KRT14, KRT17, MCF2, NTNG1, PARK2, PAX5, PICALM, PKHD1, SIN3A, SLC12A6, SULF1, TOX, TRIP11, TTBB1, TYR, WDR72		
GO:0001508 action potential	0.0052 CACNA1D, DMD, GLRA1, GRIK2, KCNQ1		
GO:0035637 multicellular organismal signaling	0.0064 CACNA1D, GRIK2, JUP, KCNQ1, TNNI3K		
GO:0048513 animal organ development	0.0077 ADD1, CDH2, DMD, DSPP, EGR2, FOXO1, GNB1, HCN1, HDAC9, HERC1, IMMP2L, JUP, KCNQ1, KRT14, KRT17, MCF2, NTNG1, NUBPL, OCRL, PARK2, PAX5, PICALM, PKHD1, SIN3A, SULF1, TOX, TRIP11, TTBB1, TYR, WDR72		
GO:0003008 system process	0.0081 CACNA1D, CNTN5, DMD, DOCK4, EGR2, ENSG00000196689, GLRA1, GNB1, GRIK2, GRM7, HERC1, IMMP2L, KCNQ1, PARK2, PICALM, SULF1, TNNI3K, TOX, TTBB1, TYR		
GO:0034330 cell junction organization	0.0089 CDH13, CDH2, DST, JUP, KRT14, TNL2		
GO:0071407	cellular response to organic cyclic compound	0.009	BLM, ENSG00000196689, FOXO1, GNB1, HCN1, JUP, KCNQ1, PARK2, SIN3A
GO:0044057	regulation of system process	0.0099	CACNA1D, DMD, DOCK4, ENSG00000196689, FOXO1, GLRA1, JUP, KCNQ1, TNN13K
GO:0048518	positive regulation of biological process	0.0118	ADD1, ARSB, BLM, BRE, CACNA1D, CDH13, CDH2, CLEC16A, DMD, DOCK4, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GRIK2, HDAC9, HPSE2, JUP, KCNQ1, KRT17, MCF2, MYO18A, NLRP12, PARK2, PAX5, PICALM, PKHD1, PSMA6, SIN3A, SULF1, TOX, TRIP11, TTBK1, UQCC1
GO:0019725	cellular homeostasis	0.013	ADD1, DLD, DMD, ENSG00000196689, FOXO1, GNB1, GRIK2, PARK2, PICALM, PKHD1, SIN3A
GO:0050877	nervous system process	0.0136	CACNA1D, CNTN5, EGR2, ENSG00000196689, GLRA1, GNB1, GRIK2, GRM7, HERC1, KCNQ1, PARK2, PICALM, TTBK1, TYR
GO:0055117	regulation of cardiac muscle contraction	0.0136	DMD, JUP, KCNQ1, TNN13K
GO:0090257	regulation of muscle system process	0.0136	DMD, DOCK4, FOXO1, JUP, KCNQ1, TNN13K
GO:1901700	response to oxygen-containing compound	0.0136	BLM, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, HCN1, HDAC9, JUP, KCNQ1, MRC1, PARK2, PICALM, PKHD1, SIN3A, SULF1, TOX, TRIP11, TTBK1, UQCC1
GO:006996	organelle organization	0.0147	ADD1, ARSB, BAZ1A, BAZ2B, BLM, BRE, DMD, DDT, HDAC9, IMMP2L, JUP, KRT14, KRT17, MYO18A, NUBPL, OCR1, PARK2, PICALM, PKHD1, PTMA, SIN3A, TLN2, TRIP11, UQCC1
GO:0006996	positive regulation of cellular process	0.0165	ADD1, ARSB, BLM, BRE, CDH13, CDH2, CLEC16A, DMD, DOCK4, EGR2, ENSG00000196689, FOXO1, GHR, GRIK2, HDAC9, HPSE2, JUP, KCNQ1, KRT17, MCF2, MYO18A, NLRP12, PARK2, PAX5, PICALM, PKHD1, SIN3A, SULF1, TOX, TRIP11, TTBK1, UQCC1
GO:1903522	regulation of blood circulation	0.0192	CACNA1D, DMD, DOCK4, JUP, KCNQ1, TNN13K
GO:00097306	cellular response to alcohol	0.0175	BLM, GLRA1, GNB1, JUP
GO:0006936	muscle contraction	0.0181	CACNA1D, DMD, ENSG00000196689, GLRA1, KCNQ1, SULF1
GO:0006937	regulation of muscle contraction	0.0181	DMD, DOCK4, JUP, KCNQ1, TNN13K
GO:0014070	response to organic cyclic compound	0.0192	BLM, ENSG00000196689, FOXO1, GHR, GNB1, HCN1, JUP, KCNQ1, PARK2, SIN3A, TYR
GO:1903522	regulation of blood circulation	0.0192	CACNA1D, DMD, DOCK4, JUP, KCNQ1, TNN13K
GO:0009719	response to endogenous stimulus	0.0198	BLM, CDH13, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, HCN1, HDAC9, JUP, KCNQ1, PARK2, SIN3A
GO:0050794	regulation of cellular process	0.0198	ADD1, ARSB, BAZ1A, BAZ2B, BLM, BRE, CACNA1D, CDH13, CDH2, CECR1, CLEC16A, DLD, DMD, DOCK4, DSPP, DDT, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, GRIK2, GRM7, HDAC9, HERC1, HPSE2, IKZF5, JUP, KCNQ1, KRT17, LMF1, MCF2, MRC1, MYLK4, MYO18A, NLRP12, OCR1, PARK2, PAX5, PICALM, PKHD1, PPP4R2, PSMA6, RALGAPA1, SIN3A, SULF1, TNN13K, TOX, TRIP11, TTBK1, UQCC1, ZNF654
GO:0050954	sensory perception of mechanical stimulus	0.0198	CACNA1D, CNTN5, ENSG00000196689, GRM7, KCNQ1
GO:0086091	regulation of heart rate by cardiac conduction	0.0207	CACNA1D, JUP, KCNQ1
GO:0042493	response to drug	0.0212	BLM, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, HDAC9, JUP, KCNQ1, PARK2, SIN3A
GO:0050789	regulation of biological process	0.0212	ADD1, ARSB, BAZ1A, BAZ2B, BLM, BRE, CACNA1D, CDH13, CDH2, CECR1, CLEC16A, DLD, DMD, DOCK4, DSPP, DDT, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, GRIK2, GRM7, HDAC9, HERC1, HPSE2, IKZF5, JUP, KCN4,
Biological process	p-values
GO:0060372 regulation of atrial cardiac muscle cell membrane repolarization	0.0212
KCNQ1, KRT17, LMF1, MCF2, MRC1, MYLK4, MYO18A, NLRP12, OCR, PARK2, PAX5, PICALM, PKHD1, PPP4R2, PSMA6, RALGAPA1, SIN3A, SULF1, TNNI3K, TOX, TRIP11, TTBK1, UQCC1, ZNF654	
GO:0071805 potassium ion transmembrane transport	0.0212
GRIK2, HCN1, KCNA4, KCNQ1, SLC12A6	
GO:0045104 intermediate filament cytoskeleton organization	0.0249
DST, KRT14, KRT17	
GO:0065009 regulation of molecular function	0.0249
ADD1, BLM, CACNA1D, CECR1, DMD, DOCK4, ENSG00000196689, GHR, GRM7, HERC1, JUP, KCNQ1, LMF1, MCF2, NLRP12, OCR, PARK2, PICALM, PKHD1, PPP4R2, PSMA6, RALGAPA1, SIN3A, SULF1	
GO:0032879 regulation of localization	0.0254
ARSB, CACNA1D, CDH13, CDH2, DMD, DOCK4, ENSG00000196689, GRM7, HCN1, HDAC9, JUP, KCNA4, KCNQ1, MYO18A, NLRP12, PARK2, PICALM, PKHD1, SIN3A, SULF1	
GO:0051259 protein complex oligomerization	0.0254
BLM, ENSG00000196689, GLRA1, GNB1, HCN1, IKZF5, JUP, KCNA4	
GO:0071241 cellular response to inorganic substance	0.0265
ADD1, BLM, FOXO1, GLRA1, PARK2	
GO:0060080 inhibitory postsynaptic potential	0.0276
GLRA1, GRIK2	
GO:0007268 chemical synaptic transmission	0.0282
ENSG00000196689, GLRA1, GRIK2, GRM7, PARK2, SLC12A6, SV2B	
GO:0086001 cardiac muscle cell action potential	0.0283
CACNA1D, DMD, KCNQ1	
GO:0007016 cytoskeletal anchoring at plasma membrane	0.0296
JUP, TLN2	
GO:0007610 behavior	0.0301
EGR2, ENSG00000196689, GLRA1, GRIK2, PARK2, PAX5, PICALM, TTBK1	
GO:0070166 enamel mineralization	0.0334
FOXO1, WDR72	
GO:0065007 biological regulation	0.0371
ADD1, ARSB, BAZ1A, BAZ2B, BLM, BRE, CACNA1D, CDH13, CDH2, CECR1, CLEC16A, DLD, DMD, DOCK4, DSPPP, DST, EGR2, ENSG00000196689, FOXO1, GHR, GLRA1, GNB1, GRIK2, GRM7, HCN1, HDAC9, HERC1, HPSE2, IKZF5, JUP, KCNA4, KCNQ1, KRT17, LMF1, MCF2, MRC1, MYLK4, MYO18A, NLRP12, OCR, PARK2, PAX5, PICALM, PKHD1, PPP4R2, PSMA6, RALGAPA1, SIN3A, SULF1, TTBK1, UQCC1	
GO:0031581 hemidesmosome assembly	0.0374
DST, KRT14	
GO:0060453 regulation of gastric acid secretion	0.0374
ENSG00000196689, KCNQ1	
GO:0065003 protein-containing complex assembly	0.0374
BLM, DMD, ENSG00000196689, GLRA1, GNB1, HCN1, IKZF5, IMMP2L, JUP, KCNA4, NUBPL, PARK2, PICALM, UQCC1	
GO:0098660 inorganic ion transmembrane transport	0.0374
CACNA1D, ENSG00000196689, GLRA1, GRIK2, HCN1, KCNA4, KCNQ1, PICALM, SLC12A6	
GO:0006928 movement of cell or subcellular component	0.0392
ARSB, CACNA1D, CDH13, CDH2, DMD, DOCK4, DST, EGR2, JUP, KCNQ1, MYO18A, NLRP12, PARK2, PICALM, TRIP11	
GO:0051291 protein heterooligomerization	0.0403
GLRA1, GNB1, IKZF5, JUP	
GO:0086069 bundle of His cell to Purkinje myocyte communication	0.0403
JUP, TNNI3K	
Finally, the blastn search against the PDB nucleotide database yielded 6 redundant hits (Supplementary File 2), all showing complementarity over a 16 base-long stretch, in the immediate proximity of an RGD domain-coding sequence and within the receptor binding domain-coding sequence, of the viral spike glycoprotein gene and the human 18S rRNA. The occurrence of an 18S rRNA-complementary sequence juxtaposed with an integrin-binding domain-coding sequence within the receptor-binding domain of SARS-CoV-2 may have strategic implications in the successful arrest of host translational machinery and virulence that is worthy of further investigations.

In conclusion, a computational, sequence complementarity-based parsimonious approach was used to identify different types of host-virus interactions. Existing literature on SARS-CoV-2 and related viruses is in support of many of these predicted interactions whereas further studies are warranted for attesting some of the other predicted interactions. It is believed that such studies will help in the development of new antiviral and disease management strategies.

CONFLICT OF INTERESTS
The author declares that there are no conflict of interests.

DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
Bhaskar Ganguly http://orcid.org/0000-0002-4224-1887

REFERENCES
1. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020; 29. https://doi.org/10.1056/NEJMoa2001316
2. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12(2):pii:E135. https://doi.org/10.3390/v12020135
3. Chai X, Hu L, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv (2020). https://doi.org/10.1101/2020.02.03.931766
4. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCoV infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020;30:927806. https://doi.org/10.1101/2020.01
5. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. The single cell RNA seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019 nCoV infection. Front Med. 2020;14:185-192. https://doi.org/10.1007/s11684-020-0754-0
6. Ma L, Xie W, Li D, et al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv 2020. https://doi.org/10.1101/2020.03.21.20037267
7. Patro R, Kingsford C. Predicting protein interactions via parsimonious network history inference. Bioinformatics. 2013;29:i237-i246.
8. Mumtaz PT, Bhat SA, Ahmad SM, et al. LncRNAs and immunity: watchdogs for host pathogen interactions. Biol Proced Online. 2017;19(1):1-2.
9. Pickett B, Greer D, Zhang Y, et al. Virus pathogen database and analysis resource (ViPR): a comprehensive bioinformatics database and analysis resource for the coronavirus research community. Viruses. 2012;4(11):3209-3226.
10. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797.
11. Hall T, Biosciences I, Carlsbad C. BioEdit: an important software for molecular biology. GERF Bull Biosci. 2011;2(1):60-61.
12. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(suppl_2):W3-W8.
13. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447-D452.
14. Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. SRN. 2020:3549993.
15. Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLOS Pathog. 2014;10(8):e1004320.
16. Dubielzig RR. The effect of canine distemper virus on the ameloblastic layer of the developing tooth. Vet Pathol. 1979;16(2):268-270.
17. Zhang F, Yang D, Li J, et al. Myocardial injury is associated with in-hospital mortality of confirmed or suspected COVID-19 in Wuhan China: a single center retrospective cohort study. medRxiv. 2020.
18. Onder G, Rezza G, Brusaferto S Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020.
19. Elmaghawry M, Alhashemi M, Zorzi A, Yacoub MH. A global perspective of arrhythmogenic right ventricular cardiomyopathy. Global Cardiology Science and Practice. 2013;2012(2):26.
20. Brison E, Jacomy H, Desforges M, Talbot PJ. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol. 2014;88(3):1548-1563.
21. Lehrer S, Rheinstein PH. Human gene sequences in SARS-CoV-2 and other viruses. In Vivo. 2020;34(3 suppl):1633-1636.
22. Maldonado L, Kamenetzky L Molecular features similarities between SARS-CoV-2, SARS, MERS and key human genes could favour the viral infections and trigger collateral effects. bioRxiv. 2020.
23. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 2020;177:104759.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.