END-TO-END MUSIC SOURCE SEPARATION: IS IT POSSIBLE IN THE WAVEFORM DOMAIN?

Francesc Lluís* Jordi Pons* Xavier Serra

Music Technology Group, Universitat Pompeu Fabra, Barcelona.

ABSTRACT

Most of the currently successful source separation techniques use the magnitude spectrogram as input, and are therefore by default omitting part of the signal: the phase. In order to avoid omitting potentially useful information, we study the viability of using end-to-end models for music source separation. By operating directly over the waveform, these models take into account all the information available in the raw audio signal, including the phase. Our results show that waveform-based models can outperform a recent spectrogram-based deep learning model. Namely, a novel Wavenet-based model we propose and Wave-U-Net can outperform DeepConvSep, a spectrogram-based deep learning model. This suggests that end-to-end learning has a great potential for the problem of music source separation.

Index Terms— source separation, end-to-end learning

1. INTRODUCTION

When two or more sounds co-exist, they interfere with each other resulting in a novel mixture signal where sounds are superposed (and, sometimes, masked). The source separation task tackles the inverse problem of recovering each individual sound source contribution from an observed mixture signal.

With the recent advances of deep learning, source separation techniques have improved substantially [1]. Interestingly, though, nearly all successful deep learning algorithms use the magnitude spectrogram as input [1, 5, 28] – and are therefore, by default, omitting part of the signal: the phase. Omitting the potentially useful information of the phase entails the risk of finding a sub-optimal solution. In this work, we aim to take full advantage of the acoustic modeling capabilities of deep learning to investigate whether it is possible to approach the problem of music source separation directly in an end-to-end learning fashion. Consequently, our investigation is centered on studying how to separate music sources (e.g., singing voice, bass or drums) directly from the raw music mixture. Is music source separation possible in the waveform domain?

During the last two decades, matrix decomposition methods have dominated the field of audio source separation. Several algorithms have been proposed throughout the years, with independent component analysis (ICA) [7], sparse coding [8], or non-negative matrix factorization (NMF) [9] being the most used ones. Given that magnitude or power spectrogram representations are always non-negative, imposing a non-negative constraint (like in NMF) is particularly useful when analyzing these spectrograms – but less appropriate for processing waveforms, which range from -1 to 1. For that reason, methods like ICA and sparse coding have historically been used to process waveforms [2, 3, 4]. Waveform representations preserve all the information available in the raw signal. However, given the unpredictable behavior of the phase in real-life sounds, it is rare to find identical waveforms produced by the same sound source. As a result of this variability, a single basis cannot represent a sound source and therefore, one requires i) a large amount of bases, or ii) shift-invariant bases to obtain accurate decompositions [3, 10]. Although several matrix decomposition methods have been used for decomposing waveform-based mixtures [2, 3, 4], these have never worked as well as spectrogram-based ones.

Due to the above mentioned difficulties, the phase of complex time-frequency representations is commonly discarded – assuming that magnitude spectrograms already carry meaningful information about the sound sources to be separated. Phase related problems disappear when sounds are just represented as magnitude or power spectrograms, since different realizations of the same sound are almost identical in this time-frequency plane. This allows to easily overcome the variability problem we found when operating with waveforms.

Most matrix decomposition methods rely on a signal model assuming that sources add linearly in the time domain [10]. However, the addition of signals in the time and frequency domains is not equivalent if phases are discarded. Only in expectation: \[E\{|X(k)|^2\} = |Y_1(k)|^2 + |Y_2(k)|^2, \]
where \(X(k) = DFT\{x(t)\} \). This means that we can approximate the time-domain summation in the power spectral domain. For that reason, many approaches utilize power spectrograms as inputs. Although magnitude spectrograms work well in practice [11], there is no similar theoretical justification for such an inconsistency with the signal model.

Finally, note that these methods operating on spectrograms need to synthesize the estimated source spectrograms back to the waveform domain. To this end, even though some approaches try to estimate the phase [12, 13], the main practice is to use the original noisy phase of the mixture for the synthesis [14]. Even modern spectrogram-based deep learning models rely on the phase of the mixture for the waveforms’ reconstruction [5, 14].

As seen, many issues still exist around the idea of discarding the phase: are we missing crucial information when discarding the phase? When using the phase of the mixture for the reconstruction, are we introducing artifacts that are limiting our model’s performance? Or, since magnitude spectro-
grams (differently from power spectrograms) are not additive, which is the affect of relying on an incorrect signal model? Our goal is to address these historical challenges via bypassing the problem. We do not want to rely on any time-frequency transform – instead, we aim to directly approach the problem in the waveform domain. However, waveforms are high-dimensional and very variable. Thus, is music source separation possible in the waveform domain? Recent literature shows that deep learning models operating on raw audio waveforms can achieve satisfactory results for several audio-based tasks [16, 17, 18]. And, among those, some are starting to address the problem of music source separation directly in the waveform domain [6, 19, 20, 21, 22].

As seen, the idea of approaching the music source separation task directly in the waveform domain has not been widely explored throughout the years, possibly due to the complexity of dealing with waveforms (which are unintuitive and high-dimensional). Consequently, during the last decades, music source separation in the waveform domain has been considered almost unattainable. To the best of our knowledge, only few non-deep learning [2, 3, 4] and deep learning [6, 19, 20, 21, 22] articles investigated this idea. Our work aims to keep adding knowledge on top of this rather scarce literature, to convince the reader that music source separation is possible in the waveform domain. To this end, in section 2 we first introduce a new end-to-end learning model: a Wavenet for music source separation. Later, we present two recent deep learning models that we set as baselines for our study: DeepConvSep [5] and Wave-U-Net [6]. In sections 3 & 4 we evaluate the above mentioned models, to conclude in section 5 that performing music source separation in the waveform domain is not just possible, but it is a promising research direction.

2. End-to-End Source Separation Models

We aim to discuss the feasibility of end-to-end learning models for monaural music source separation. To this end, we experiment with a new Wavenet-based model for music source separation. We compare it against two recent models: DeepConvSep [5], a spectrogram-based deep learning model for multi-instrument separation; and Wave-U-Net [6], a waveform-based model trained end-to-end for singing voice separation[2]. We will compare the performance of these models perceptually and via assessing their BSS Eval scores [23].

To allow a fair comparison, all discussed models are trained with MUSDB data down-sampled at 16kHz[3].

2.1. A Wavenet-based model for source separation

We utilize an adaptation of Wavenet [25] that turns the original causal Wavenet (that is generative and slow), into a non-causal model (that is discriminative and parallelizable). This idea was originally proposed by Rethage et al. [26] for speech denoising, and we adapt it for monaural music source separation. Fig. 1 shows an overall depiction of the model, where we can observe that every layer has residual and skip connections. Before anything else, the waveform is linearly projected to k channels by a 3×1 CNN-layer to comply with the feature map dimensions of each residual layer. Then, this projection is processed with several layers conformed by a dilated CNN passing through a tanh non-linearity controlled by a sigmoidal gate, see Fig. 1 (Left). The dilation factor in each layer increases in the range of $1, 2, \ldots, 256, 512$. This ten layer pattern is repeated N times (N stacks). Later, two CNN layers (with k filters, as well) adapt the resulting feature map dimensions to be the same as the residual and skip connections. A ReLU is applied after summing all skip connections and the final two 3×1 CNNs are not dilated – they have 2048 & 256 filters, respectively, and are separated by a ReLU. The output layer linearly projects this feature map into as many channels as sources we aim to separate by using 1×1 filters. That is, for multi-instrument source separation our model has 3 outputs, and for singing voice separation it has 1 single output. The remaining sources are computed via subtracting the estimated sources from the mixture, see Fig. 1 (Right). The main difference between the original Wavenet and the non-causal adaptation we use, is that some samples from the future can be used to predict the present one. As a result of removing the autoregressive causal nature of the original Wavenet, this fully convolutional model is now able to predict a target field instead of one sample at a time – due to this parallelization, it

[2] At the time of writing, DeepConvSep & Wave-U-Net are the best performing publicly available models for monaural music source separation.

[3] Note that DeepConvSep was trained by the original authors with DSD100 data [24] at 44.1kHz. MUSDB is mostly conformed by DSD100.
is possible to run the model in real-time on a GPU [26]. Another major difference with the original Wavenet is the output: we directly regress the waveform sources instead of sampling from a softmax output [26]. We minimize the mean absolute error (MAE) regression loss during training. ADAM optimizer is used with a learning rate of 0.001. We set the batch size to 10, and the model is trained until the validation error does not decrease for 16 epochs. The model with the lowest validation loss is selected. The code is accessible online.

2.2. DeepConvSep: a spectrogram-based model

DeepConvSep [5] is a state-of-the-art spectrogram-based model that is openly available [4]. Following the common practice: mixture signals, pre-processed as magnitude spectrograms, are fed to the model to estimate time-frequency soft masks for each source [1][4][28]. These masks are then applied to the magnitude spectrogram of the mixture to estimate the magnitude spectrograms of the separated sources. Finally, these estimates, along with the phase of the mixture, are used to obtain the waveform signals corresponding to the separated sources. DeepConvSep’s architecture is based on a convolutional encoder-decoder. The encoder is conformed by a first CNN layer with 50 vertical filters aiming to capture timbral representations, a second CNN layer with 30 horizontal filters modeling temporal cues, and a dense layer with 128 units acting as a bottleneck. The decoder contains two de-convolutional layers which up-sample the bottleneck feature maps up to have the same input size, which correspond to the estimated masks. The model learns in a supervised fashion via minimizing the mean squared error (MSE), together with several dissimilarity loss terms [5][14]. We utilize the original model released by the authors, as it is, which was trained with audio at 44kHz. To allow a fair comparison among models, we downsample its predictions to 16kHz (what does not largely affect its performance, see Table 2).

2.3. Wave-U-Net: a waveform-based model

Wave-U-Net [6] is a state-of-the-art waveform-based model that is openly available [6]. Wave-U-Net is a time-domain adaptation of the U-Net architecture for image segmentation [27]. It also consists in an encoder-decoder architecture. The encoder (12 layers) successively down-samples the feature maps, and the decoder (12 additional layers) up-samples the feature maps up to have the required output-length. A fundamental aspect of U-net architectures is that each decoder layer can access to the feature maps computed by the encoder (at the same level of hierarchy). To put an example: the penultimate layer, a decoder layer, can access the second layer’s feature maps, an encoder layer, since they are concatenated. As a result of allowing the decoder to make use of the encoder feature maps, the output of the model is more detailed. These details come from the encoder-decoder connections, that convey the structure of the input to the output. In order to allow a proper comparison among models, we re-train Wave-U-Net (following the best setup reported by the original authors: M3 [6]) with MUSDB data at 16kHz, to fit the same train conditions as the Wavenet-based model. We minimize the MSE loss during training. ADAM optimizer is used with a learning rate of 0.0001, and a batch size of 10. The model is trained until the validation error does not improve for 16 epochs. We select the model with the lowest validation loss.

3. MULTI-INSTRUMENT SOURCE SEPARATION

The goal of this experiment is two-fold: i) compare the proposed Wavenet-based model with DeepConvSep for the task of monaural multi-instrument source separation; and ii) study several Wavenet hyper-parameter choices – listed below: Wavenet: wider or deeper? Provided that the GPU’s memory is limited, this experiment explores the trade-off between how many filters each Wavenet layer has (the GPU’s memory mostly stores learnable parameters with a wider Wavenet) and the receptive field length of the network (the GPU’s memory mostly stores feature maps with a deeper Wavenet having a larger receptive field). Table 1 describes the setups we study.

Which cost? For our basic model we consider a single-term loss: \(L_{\text{MAE}} = \sum_{j \in J} | \hat{y}_j - y_j | \), where \(\hat{y}_j \) is the predicted source. However, previous work successfully reduced interferences from other sources (SIR) via adding a dissimilarity loss term [5][14]: \(L_d = \sum_{j \in J} \sum_{i \in J} | \hat{y}_j - y_{i\neq j} | \), with the resulting cost being: \(L_{\text{total}} = L_{\text{MAE}} - \alpha \cdot L_d \). Small \(\alpha \)’s tend to perform well, and in our experiments we set \(\alpha = 0.05 \).

Perceptive tests were conducted with 15 participants to get subjective feedback. Five songs were randomly chosen from ‘1’ to ‘1’10’ to compose the perceptual test set [4]. Participants were asked to “give an overall quality score, taking into consideration both: sound quality of the target source and interferences from other sources” for each of the estimated sources. The original mixture and the clean target source were presented as references. Participants provided a score between 1–5, with 1 being described as “very intrusive interferences from other sources and degraded audio”, and 5 being “unnoticeable interferences from other sources and not degraded audio”. Mean Opinion Score (MOS) is obtained by averaging the scores from all participants.

Table 2 shows the results of our experiments. Wide (but less deep) architectures fail at solving the task, only models having more than 3 stacks are able to perform competently. Two reasons may exist for that: wide models (having > 10M parameters) overfit the training set, and/or the small receptive field of wide models is not enough to solve the task. Further, we observe that the dissimilarity loss term \(L_d \) does not help improving the results. Consequently, we choose the best performing model (4 stacks) for the perceptual test. Table 3 presents the results of the perceptual test, showing that

[1]https://github.com/francesclluis/source-separation-wavenet/
[2]https://github.com/MTG/DeepConvSep/
[3]https://github.com/f90/Wave-U-Net
[4]Listen to them: jordipons.me/apps/end-to-end-music-source-separation/
and several Wavenet hyper-parameter choices. Besides running a connection, skip connection, and dilated convolutional block, k silence. To study the contribution of this parameter, the training our model using a higher proportion of the data producing continuous vocals. For that reason, we study Data-sampling strategies? Our model had difficulties in this setup, we extend our study with an extra experiment:

Table 1. Description of the models we study. Wavenet-based k filters stand for the number of CNN filters in each residual connection, skip connection, and dilated convolutional block.

Wavenet-based	k filters	# params	receptive field	target field
N stacks / layers	512	≈ 25.7M	128 ms	100 ms
1 stack / 10	256	≈ 13.6M	256 ms	100 ms
2 stacks / 20	128	≈ 6.3M	384 ms	100 ms
3 stacks / 30	64	≈ 3.3M	512 ms	100 ms
4 stacks / 40	32	≈ 2.2M	639 ms	100 ms

| DeepConvSep | - | ≈ 314K | 290 ms | 290 ms |
| Wave-U-Net | - | ≈ 10.2M | 9.21 s | 1.02 s |

Table 2. Multi-instrument source separation median scores.

Wavenet-based	Vocals	Drums	Bass	Other					
N stacks / layers	SDR	SIR	SAR	SDR	SIR	SAR	SDR	SIR	SAR
1 stack	0.35	4.94	3.48	1.24	7.98	3.36	2.28	5.84	3.68
2 stacks	0.07	4.48	3.49	-0.09	6.87	2.88	2.23	5.66	6.37
3 stacks	3.46	11.26	5.18	4.39	13.37	5.08	2.37	4.65	8.04
4 stacks	3.35	11.25	5.24	4.31	13.23	5.00	3.67	4.49	8.39
5 stacks	2.84	9.56	5.20	4.60	12.66	6.08	3.05	11.13	4.50

Table 3. Multi-instrument source separation perceptual scores.

MOS	Vocals	Drums	Bass
Wavenet-based	2.4 ± 0.9	2.9 ± 1.1	2.4 ± 1.0
DeepConvSep 16kHz	2.3 ± 0.9	2.5 ± 0.7	1.8 ± 0.8

4. SINGING VOICE SOURCE SEPARATION

The goal of this experiment is two-fold: i) compare the proposed Wavenet-based model with Wave-U-Net for the task of monaural singing voice source separation; and ii) study several Wavenet hyper-parameter choices. Besides running Wavenet: wider or deeper? and Which cost? experiments for this setup, we extend our study with an extra experiment: Data-sampling strategies? Our model had difficulties in producing continuous vocals. For that reason, we study training our model using a higher proportion of the data containing singing voice (instead of vocal streams having silence). To study the contribution of this parameter, the percentage of forced fragments containing singing voice is set to [0, 50, 75, 100] – with 0% meaning that segments are randomly selected, and 100% meaning that our sampling strategy ensures that all examples contain singing voice.

Table 4. Singing voice source separation median scores.

MOS	Vocals	Accompaniment				
Wavenet-based	SDR	SIR	SAR	SDR	SIR	SAR
DeepConvSep 16kHz	2.76	10.11	4.78	9.73	12.73	13.77
2 stacks	3.05	11.13	4.50	10.13	13.82	12.93
3 stacks	3.62	12.33	4.96	10.41	13.97	13.53
4 stacks	3.67	12.14	5.24	10.64	14.43	13.22
5 stacks	3.02	12.44	4.44	10.42	13.89	13.30
DeepConvSep 16kHz	7.58	11.76	5.74	10.90	14.26	15.84
4 stacks+L_d+25%	3.98	12.20	5.19	10.75	14.21	13.70
4 stacks+L_d+50%	4.49	13.52	6.17	11.39	16.37	13.49
4 stacks+L_d+75%	3.93	12.93	5.40	11.14	16.18	13.37
4 stacks+L_d+100%	2.36	6.25	5.88	10.44	16.73	12.15

Table 5. Singing voice source separation perceptual scores.

5. CONCLUSION

Throughout the years, end-to-end music source separation has been considered a hard research problem. Possibly because waveforms are variable and high-dimensional, the research community focused on processing spectrograms instead of waveforms. However, with the recent advances of deep learning, music source separation starts to be possible in the waveform domain. Although end-to-end source separation methods have only started to be explored, the encouraging results we report denote the potential of this research direction – that might, e.g., allow to bypass the inherent phase problems associated with spectrogram-based methods. To further show the viability of this research direction, we have proposed a novel end-to-end source separation model, the Wavenet for music source separation, that performs comparably to Wave-U-Net.
6. REFERENCES

[1] Fabian-Robert Stöter, Antoine Liutkus, and Nobutaka Ito, “The 2018 signal separation evaluation campaign,” arXiv:1804.06267, 2018.

[2] Shlomo Dubnov, “Extracting sound objects by independent subspace analysis,” in AES Conference, 2002.

[3] Thomas Blumensath and M Davies, “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,” in ICASSP, 2004.

[4] Gil-Jin Jang and Te-Won Lee, “A maximum likelihood approach to single-channel source separation,” Journal of Machine Learning Research, vol. 4, no. Dec, pp. 1365–1392, 2003.

[5] Pritish Chandna, Marius Miron, Jordi Janer, and Emilia Gómez, “Monaural audio source separation using deep convolutional neural networks,” in International Conference on Latent Variable Analysis and Signal Separation, 2017.

[6] Daniel Stoller, Sebastian Ewert, and Simon Dixon, “Wave-u-net: A multi-scale neural network for end-to-end audio source separation,” ISMIR, 2018.

[7] Aapo Hyvärinen and Erkki Oja, “Independent component analysis: algorithms and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[8] Bruno A Olshausen and David J Field, “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision Research, vol. 37, no. 23, pp. 3311–3325, 1997.

[9] Daniel D Lee and H Sebastian Seung, “Algorithms for non-negative matrix factorization,” in NIPS, 2001.

[10] Tuomas Virtanen, “Unsupervised learning methods for source separation in monaural music signals,” in Signal Processing Methods for Music Transcription, pp. 267–296. Springer, 2006.

[11] Axel Roebel, Jordi Pons, Marco Liuni, and Mathieu Lagrange, “On automatic drum transcription using non-negative matrix deconvolution and itakura saito divergence,” in ICASSP, 2015.

[12] Mohit Dubey, Garrett Kenyon, Nils Carlson, and Austin Thresher, “Does phase matter for monaural source separation?,” arXiv:1711.00913, 2017.

[13] Nathanaël Perraudin, Peter Balazs, and Peter L Ørnersgaard, “A fast griffin-lim algorithm,” in WASPAA. IEEE, 2013, pp. 1–4.

[14] Po-Sen Huang, Minjie Kim, Mark Hasegawa-Johnson, and Paris Smaragdis, “Singing-voice separation from monaural recordings using deep recurrent neural networks,” in ISMIR, 2014, pp. 477–482.

[15] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, et al., “Natural tts synthesis by conditioning wavenet on mel spectrogram predictions,” arXiv:1712.05884, 2017.

[16] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C Cob, Florian Stimberg, et al., “Parallel wavenet: Fast high-fidelity speech synthesis,” arXiv:1711.10433, 2017.

[17] Jordi Pons and Xavier Serra, “Randomly weighted cnns for (music) audio classification,” arXiv:1805.00237, 2018.

[18] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M Schmidt, Andreas F Ehmann, and Xavier Serra, “End-to-end learning for music audio tagging at scale,” ISMIR, 2018.

[19] Shrikkant Venkataramani, Jonah Casebeer, and Paris Smaragdis, “End-to-end source separation with adaptive front-ends,” arXiv:1705.02514, 2017.

[20] Shrikkant Venkataramani and Paris Smaragdis, “End-to-end networks for supervised single-channel speech separation,” arXiv:1810.02568, 2018.

[21] Yi Luo and Nima Mesgarani, “Tasnet: time-domain audio separation network for real-time, single-channel speech separation,” arXiv:1711.00541, 2017.

[22] Emad M Grais, Dominic Ward, and Mark D Plumbley, “Raw multi-channel audio source separation using multi-resolution convolutional auto-encoders,” arXiv:1803.00702, 2018.

[23] Cédric Févotte, Rémi Gribonval, and Emmanuel Vincent, “Bss_eval toolbox user guide–revision 2.0,” 2005.

[24] Antoine Liutkus, Fabian-Robert Stöter, Zafar Rafii, Daichi Kitamura, Bertrand Rivet, Nobutaka Ito, Nobutaka Ono, and Julie Fontcave, “The 2016 signal separation evaluation campaign,” in International Conference on Latent Variable Analysis and Signal Separation, 2017.

[25] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv:1609.03499, 2016.

[26] Dario Rethage, Jordi Pons, and Xavier Serra, “A wavenet for speech denoising,” arXiv:1706.07162, 2017.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International conference on medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[28] Andreas Jansson, Eric Humphrey, Nicola Montecchiallo, Rachel Bittner, Aparna Kumar, and Tillman Weyde, “Singing voice separation with deep u-net convolutional networks,” ISMIR, 2017.