Serum bile acids in term and preterm neonates
A case–control study determining reference values and the influence of early-onset sepsis
Evelyn Zöhrer, MSc, Bernhard Resch, MD, Hubert Scharnagl, PhD, Axel Schlagenhauf, PhD,
Günter Fauler, PhD, Tatjana Stojakovic, MD, Nora Hofer, MD, Uwe Lang, MD,
Jörg Jahnel, MD,∗

Abstract
Serum bile acids (BA) reference values are lacking for neonates. Therefore, this study aimed to determine serum BA reference values in term and preterm neonates. Furthermore, as serum BA concentrations are well-known to rise in septic adults, BA values were determined in early-onset neonatal sepsis (EOS), a common and serious disease in neonates.

Using high-performance liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS), we profiled serum BA in 236 infants, including healthy term neonates (n=84), premature infants (n=101), and both term infants (n=35) and preterm infants (n=16) with EOS. We examined the impact of prematurity and EOS on BA concentrations.

The median reference values of serum BA were 8.0μmol/L, interquartile range (IQR): 4.6 to 12.9, in healthy term neonates and 10.1μmol/L, IQR: 5.7 to 15.7, in preterm neonates. Neonates with EOS had significantly lower median BA values, term (4.7μmol/L, IQR: 2.7–7.6; P<0.01) as well as preterm (6.4μmol/L, IQR: 3.5–8.4; P<0.01). Furthermore, primary and conjugated BA were most abundant in all groups. Taurine-conjugated BA were predominant in all neonates; glycine-conjugated BA were significantly lower in term neonates with EOS than in controls (P<0.05). Multivariate regression analysis results obtained for BA and inflammatory parameters revealed that BA are an independent factor associated with EOS.

This is the first study to determine standard value ranges of serum BA in neonates using HPLC-HRMS. In contrast to adults with sepsis, neonates suffering from EOS exhibit significantly lower BA values than do controls of the same gestational age. These data suggest BA as a supplementary parameter within a panel of biomarkers for EOS in the future.

Abbreviations: ALT = alanine transaminase, AST = aspartate transaminase, BA = bile acids, CA = cholic acid, CDCA = chenodeoxycholic acid, CRP = C-reactive protein, CYPIA1 = cholesterol-7-alpha-hydroxylase, DCA = deoxycholic acid, EOS = early-onset neonatal sepsis, G = glycine, HPLC-HRMS = high-performance liquid chromatography–high-resolution mass spectrometry, IL-6 = interleukin 6, LCA = lithocholic acid, PCT = procalcitonin, T = taurine, UDCA = ursodeoxycholic acid.

Keywords: bile acids, early-onset neonatal sepsis, prematurity

1. Introduction
Total bile acids (BA) in serum include several BA, principally cholic acid (CA) and chenodeoxycholic acid (CDCA), the primary BA, which are synthesized in the liver from cholesterol. Following conjugation with the amino acids taurine (T) or glycine (G), BA are transported into the intestine via the bile ducts. In the terminal ileum, BA are actively reabsorbed, returning to the liver via the portal circulation. Thus, BA mostly remain in an enterohepatic circulation (EHC). Only 5% of primary BA reach the colon, where bacteria convert them to secondary BA, forming deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA). Most secondary BA are also reabsorbed, reach the liver, and enter the EHC. A small fraction of circulating BA spills over into the systematic circulation. This small spillover of BA can be quantitated and characterized in serum samples by methods featuring high-performance liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS) within hours. The results of such studies permit insight into the role of BA in neonatal physiology and pathology, an area increasingly of clinical interest. Although peripheral serum BA reference values exist for adults, children, and adolescents, exact data for neonates using modern measuring methods have not been published.

Early-onset neonatal sepsis (EOS) is a severe illness with a mortality rate ranging from 2% to 3% in term neonates to 20% to 30% in preterm neonates. The signs and symptoms of EOS are nonspecific, including fever or hypothermia, respiratory distress, and lethargy. Levels of various cytokines, either pro- or anti-inflammatory, have been tested as laboratory biomarkers of EOS. However, no reliable sensitive inflammatory biomarker has been found yet in ongoing research to improve timely diagnosis of EOS. Interestingly, sepsis in adults leads to
alterations of serum BA levels due to sepsis-induced cholestasis.[11] Therefore, serum BA concentrations (“BA levels”) are used in adults as biomarkers for disturbed EHC secondary to intestinal, hepatic, or infectious disorders.[12–16] Until now, it is unclear if sepsis in neonates such as EOS also leads to changes in serum BA.

We sought to determine reference values of serum BA levels prospectively in healthy term and preterm neonates of varying gestational ages using HPLC-HRMS. Furthermore, we investigated BA changes in term and preterm neonates suffering from EOS.

2. Patients and methods

2.1. Study design and patient characteristics

We prospectively studied neonates without disturbed EHC at the Department of Pediatrics and Adolescent Medicine from March 2013 until May 2015. The clinical study was approved by the Medical University of Graz ethics committee (24–549 ex 11/12 and 26–215 ex 13/14). Parental consent was obtained for each subject. All neonates (term or preterm) born at the Medical University of Graz ages 1 to 3 days were included. Neonates of <37 weeks’ GA were considered preterm. Exclusion criteria comprised elevated serum transaminase activity levels, primary hepatic diseases, asphyxia, or death within 1 month after birth. In controls, EOS was excluded. The layout of the study groups is displayed in Fig. 1.

2.2. Early-onset neonatal sepsis

In EOS studies, only neonates with proven EOS were included. Diagnosis was confirmed by successful culture of microorganisms from blood, cerebrospinal fluid, or tracheal aspirate. In cases of clinically suspected sepsis, C-reactive protein (CRP) concentrations were above 5 mg/L during the first 72 h of life. Concentrations of CRP in serum, of procalcitonin (PCT) and interleukin 6 (IL-6) in cord blood, and of bilirubin, alanine transaminase (ALT), aspartate transaminase (AST), and gamma-glutamyl transpeptidase (GGTP) in serum were measured by standard laboratory methods.

2.3. Sample collection

Obtaining blood solely to define reference values of serum BA in neonates is ethically moot. Hence, blood sampling in healthy term neonates was performed during routine screening for phenylketonuria. Fasting blood sample collection in neonates is difficult, since neonates are fed at least every 4 h. However, feeding status was identified retrospectively when possible (Table 1). Patients not fed within 2 h before blood sampling were considered “fasted.” In the EOS group, blood samples were collected within 24 h after first clinical signs of EOS and before first antibiotic administration. All serum samples were stored at −80°C until batch analysis.

2.4. Bile acids analysis

Unconjugated and T- and G-conjugated BA were determined using HPLC-HRMS, including CA, CDCA, LCA, DCA, and UDCA and their conjugates TCA, TCDCA, TLCA, TDC, TUDCA, GCA, GCDCA, GLCA, GDCA, and GUDCA. Before tandem mass spectrometry analysis (Q Exactive MS/MS; Thermo Fisher Scientific, Waltham, MA) serum was mixed with acetonitrile and target analytes were separated by HPLC on a reversed phase (C18) column using a methanol/water gradient and d4 deuterated internal standards for quantification.

2.5. Statistical analysis

Patient characteristics and biochemical variables are presented as median and interquartile range (IQR). Nonparametric tests (Mann–Whitney U test) were performed when data were not normal-distributed. Correlations between BA and liver parameters were assessed using Spearman correlation analysis. Multivariate regression analysis was used on combined results for BA and inflammation parameters to identify variables independently associated with EOS. All statistical tests were 2-tailed and P values of <0.05 were considered statistically significant. The SPSS Statistics Package 23.0.0 (IBM SPSS, Armonk, NY) was used for all analyses.

3. Results

3.1. Reference values of serum bile acids depend on feeding status

Reference values for serum BA in healthy term neonates were defined in a group of 84 participants (Fig. 1). The median BA levels were 8.0 μmol/L (IQR: 4.6–12.9; Table 1). Influence of

Table 1

| Reference BA concentrations (μmol/L) in healthy term neonates (FT controls; ≥37 weeks gestational age), healthy preterm neonates (PT), PT neonates with early-onset sepsis (EOS), and FT neonates with EOS; all neonates age 1 to 3 days. |
|---|---|---|---|---|
n	Feeding	Median	IQR	
FT controls	84	47/37	8.0	4.6–12.9
PT controls	47	27/20	7.8	5.0–13.0
FT controls (fed)	30	13/17	10.1	6.2–15.5
FT controls (fasting)	17	13/4	5.8	4.3–7.9
PT controls	101	47/54	10.1	5.7–15.7
EOS FT	35	14/21	4.7	2.7–7.6
EOS PT	16	3/13	6.4	3.5–8.4

Total BA (μmol/L) levels are given as median and interquartile range (IQR) in μmol/L.

Subgroups totaling 47 healthy term neonates with defined feeding status (some known to be fasting >24 h).

Reference values of serum BA in healthy term neonates were used as a reference group (Fig. 1). All f/m Median IQR

Table 1

Serum BA concentrations (μmol/L) in healthy term neonates (FT controls; ≥37 weeks gestational age), healthy preterm neonates (PT), PT neonates with early-onset sepsis (EOS), and FT neonates with EOS; all neonates age 1 to 3 days.

| Reference BA concentrations (μmol/L) in healthy term neonates (FT controls; ≥37 weeks gestational age), healthy preterm neonates (PT), PT neonates with early-onset sepsis (EOS), and FT neonates with EOS; all neonates age 1 to 3 days. |
|---|---|---|---|---|
n	Feeding	Median	IQR	
FT controls	84	47/37	8.0	4.6–12.9
PT controls	47	27/20	7.8	5.0–13.0
FT controls (fed)	30	13/17	10.1	6.2–15.5
FT controls (fasting)	17	13/4	5.8	4.3–7.9
PT controls	101	47/54	10.1	5.7–15.7
EOS FT	35	14/21	4.7	2.7–7.6
EOS PT	16	3/13	6.4	3.5–8.4

Total BA (μmol/L) levels are given as median and interquartile range (IQR) in μmol/L.

Subgroups totaling 47 healthy term neonates with defined feeding status (some known to be fasting >24 h).
fasting condition was determined in 47 healthy term neonates (median BA levels 7.8 μmol/L; IQR: 5.0–13.0); in 37 cases the feeding status was unclear. Interestingly, BA values differed significantly between the 2 feeding statuses: Levels were significantly higher in the fed group (n = 30; 10.1 μmol/L; IQR: 6.2–15.5) than in the fasting group (n = 17; 5.8 μmol/L; IQR: 4.3–7.9; P < 0.01; Fig. 2A).

3.2. Reference values of serum bile acids levels are similar in term and preterm neonates

In a second step, we determined if prematurity influences BA levels. Reference values for serum BA in healthy preterm neonates were defined in a group of 101 participants and compared to those in healthy term neonates. Feeding status in all preterm neonates was defined as “fed” since they were fed regularly. Bile acids levels in preterm neonates were similar to fed term controls (10.1 μmol/L; IQR: 5.7–15.7 vs 10.1 μmol/L; IQR: 6.2–15.5, respectively).

3.3. Serum bile acids levels are significantly decreased in term neonates with early-onset neonatal sepsis

Furthermore, we aimed to study alterations of BA levels in septic neonates, since BA levels are elevated in septic adults. Thirty-five term neonates with EOS presented with inflammation marker concentrations above normal ranges, including CRP at 12.6 mg/L (IQR: 8.3–29.7), PCT at 0.5 ng/mL (IQR: 0.3–6.8), and IL-6 at 204 pg/mL (IQR: 117–1000). Median levels of total serum bilirubin—a marker of cholestasis—were within the normal range at 4.5 μmol/L but 20% were above the reference range (IQR: 1.9–8.9). Serum activities of ALT, AST, and GGTP were within the normal range at 17.5 U/L (IQR: 11.3–34.8), 60.0 U/L (IQR: 44.0–69.0), and 99.0 U/L (IQR: 77.5–95.3), respectively. All laboratory parameters and reference ranges are listed in Table 2. Interestingly, serum BA levels were significantly lower in term neonates with EOS than in term controls (4.7 μmol/L; IQR: 2.7–7.6 vs 8.0 μmol/L; IQR: 4.6–12.9, P < 0.01; Fig. 2B).

3.4. Serum bile acids levels are lower in preterm neonates with early-onset neonatal sepsis than in healthy preterm neonates

We investigated if and to which extent EOS in combination with prematurity affects BA levels. Bile acids levels were determined in 16 preterm neonates with diagnosed EOS (Table 1). These neonates presented with elevated concentrations of CRP at 18.8 mg/L (IQR: 6.4–95.3), PCT at 0.3 ng/mL (IQR: 0.2–22.2), and IL-6 at 44 pg/mL (IQR: 9–1400) as well as elevated concentrations of bilirubin at 9.4 mg/dL (IQR: 7.9–10.0) (Table 2). Liver and biliary enzymes ALT, AST, and GGTP were within the reference range at 16.0 U/L (IQR: 4.0–18.5), 18.0 U/L (IQR: 16.5–30.5), and 70.0 U/L (IQR: 44.0–105.0), respectively. Interestingly, BA levels in preterm neonates with EOS were

Table 2

Laboratory Parameter	FT EOS (n = 35)	PT EOS (n = 16)
CRP, mg/L	12.6 (6.3–29.7)	18.8 (86.4–95.3)
PCT, ng/mL	0.5 (0.3–6.8)	0.3 (0.2–22.2)
IL-6, pg/mL	204 (117–1000)	44 (0–1400)
Bilirubin, μmol/L	4.5 (1.9–8.9)	9.4 (7.9–10.0)
ALT, U/L	17.5 (11.3–34.8)	16.0 (4.0–18.5)
AST, U/L	60.0 (44.0–69.0)	18.0 (16.5–30.5)
GGTP, U/L	99.0 (77.5–95.3)	70.0 (44.0–105.0)

CRP (normal range: <0.05 mg/mL), PCT (normal range: <0.22 ng/mL), IL-6 (normal range: <5.3 mg/dL), ALT (normal range: <67 U/L), AST (normal range: <77 U/L), and GGTP (normal range: <216 U/L) values are given as median and interquartile range.

ALT = alanine transaminase, AST = aspartate transaminase, CRP = C-reactive protein, GGTP = gamma-glutamyl transpeptidase, IL-6 = interleukin 6, PCT = procalcitonin.

*Normal ranges at 4.5 mg/dL for bilirubin, 29.7 mg/dL for CRP, 67 U/L for ALT, 67 U/L for AST, 216 U/L for GGTP.
significantly lower than in preterm controls (6.4 μmol/L [IQR: 3.5–8.4] vs 10.1 μmol/L [IQR: 5.7–15.7]; P < 0.01; Fig. 2B).

3.5. Serum bile acids levels are independently associated with early-onset neonatal sepsis

No correlation was found between BA and liver parameters ALT (r = −0.22; P = 0.40), AST (r = −0.11; P = 0.68), and GGTP (r = −0.27; P = 0.29). Moreover, multivariate regression analysis of BA, CRP, PCT, IL-6, and bilirubin revealed that serum BA levels are an independent factor associated with EOS (r = 0.85, P = 0.11); BA are not to be predicted by CRP (P = 0.14), PCT (P = 0.56), IL-6 (P = 0.34), and bilirubin (P = 0.18).

3.6. Early-onset neonatal sepsis influences bile acids levels but not bile acids composition

The primary conjugated BA TCA, TCDCA, GCA, and GCDCA were the most abundant BA, and T-conjugates predominated over G-conjugates in all 4 groups (Fig. 3). Secondary and unconjugated BA levels did not exceed 0.1 μmol/L. Bile acids profiles of EOS patients and controls were similar in the term and preterm groups. However, low BA levels in term neonates with EOS were due to a significant decrease in G-conjugated BA (P < 0.05). Differences in both T- and G-conjugates between healthy and EOS preterm neonates were not significant. Only minor differences in BA profiles were observed in healthy term neonates between fed and fasting conditions; unconjugated BA were slightly higher in fed status than in fasting (9% vs 3%, respectively).

4. Discussion

In this study, we measured reference serum BA values (BA levels) in healthy term and preterm neonates within 72 h after birth using highly sensitive HPLC-HRMS to determine if prematurity affects BA levels in neonates. In addition, we sought to investigate whether EOS affects BA levels in term and preterm neonates. Finally, we compared BA composition between selected groups. We found that BA levels were significantly lower in both term and preterm neonates with EOS than in healthy age-matched controls. We also found significant differences in G-conjugates between BA profiles of term neonates with EOS and healthy term neonates, but not between BA profiles of preterm neonates with EOS and healthy preterm neonates.

We initially found that serum BA levels are higher in healthy term neonates than in healthy adults (0.28–6.50 μmol/L). High levels of serum BA in neonates have been reported previously by Polkowska et al measured by enzymatic-colorimetric test, with peak values of 22.2 ± 5.1 μmol/L at the age of 1 month, and Niijima et al, who measured serum BA levels between the ages of 0 and 4 weeks (11.0 ± 8.7 μmol/L) by HPLC. In our study, serum BA levels were measured using HPLC-HRMS, a state-of-the-art method that has numerous advantages, including substantially higher sensitivity, selectivity, and reproducibility resulting in better comparison between laboratories, and higher validity of our
standard values. We also showed that in healthy term neonates postprandial BA levels were significantly higher than fasting levels (>2 h fasting). This accords with the work of LaRusso et al.\(^6\) in adults, who found peak levels of BA and conjugates 90 min after a meal. Suchy et al.\(^6\) reported high BA levels in term neonates; they postulated that frequent food intake induces de novo BA synthesis and stimulates enterohepatic BA circulation.

Secondly, we found that BA levels do not differ between those born at term and those born preterm. (Since preterm neonates are fed regularly their levels were compared to BA levels of fed term neonates.) During this study we also investigated the influence of GA on BA levels. We observed a trend of higher BA levels in preterm neonates born before 29 weeks; however, this trend did not achieve statistical significance due to a relatively wide range and small group sizes (data not shown). In summary, BA levels are similar in neonates born term and preterm, but are higher than reference values in adults.\(^6\) Despite a lower BA synthesis rate and a decreased BA pool size, serum BA levels were reported to be increased in healthy term and preterm neonates, and may reach values as high as found in adults with clinical cholestasis.\(^2\) The elevated serum BA levels during this period are termed physiological cholestasis and are ascribed to poor hepatic extraction of bile salts from the portal circulation. An improvement in the hepatic uptake of BA occurs over the first years of life and corresponds to a decrease in the peripheral serum BA levels during childhood.\(^7\)

Thirdly, we found that BA levels in term and preterm neonates suffering from EOS were significantly lower than in age-matched controls. Given that the liver plays a major role in host defense against bacterial infection and sepsis this might be caused by impaired hepatic BA synthesis, conjugation, or secretion.\(^2\) Interestingly, liver and biliary parameters were within the normal range in all patients with EOS and no correlation was observed between BA and liver parameters arguing against liver damage as underlying cause for lower BA levels. Furthermore, when evaluated in multivariate regression analysis with other inflammation parameters, serum BA levels were identified as an independent factor associated with EOS which emphasizes the role of serum BA measurements in this patient group. Also of interest is that our study results are not in agreement with the behavior of BA levels in septic adults; these increase (sepsis-induced cholestasis).\(^3\) BA levels in our patients were measured early in sepsis and did not reach levels in septic adults which may be measured only when sepsis is advanced, with frank icterus among 50% of our patients. The third potential cause for lower BA levels is liver dysfunction, however, hepatic BA transporters might handle G-conjugates differently from T-conjugates, altering relative proportions of the 2 in nonportal serum.

Our findings support the concept that BA levels and profiles vary among neonates, infants, children, and adults. They suggest that significantly decreased serum BA levels and shifts in BA profiles mark EOS. Since they are an independent factor associated with EOS, serum BA levels could be considered as a supplementary parameter within a panel of biomarkers for EOS in both term and preterm neonates in the future. This possibility awaits clarification by further studies.

Acknowledgments

The excellent technical assistance of Maria Schäffer is gratefully acknowledged. The authors thank A.S. Knisely for helpful comments on the manuscript and Heidrun Hargassner for assistance.

References

1. Montagnani M, Aldini R, Roda A, et al. New insights in the physiology and molecular basis of the intestinal bile acid absorption. Ital J Gastroenterol Hepatol 1998;4:435–40.
2. Chang JY. Bile acids: regulation of synthesis. J Lipid Res 2009;10:1955–66.
3. Galatola G, Jazrawi RP, Bridges C, et al. Direct measurement of first-pass ileal clearance of a bile acid in humans. Gastroenterology 1991;4:1100–5.
4. Javitt NB. Cholestasis in infancy. Status report and conceptual approach. Gastroenterology 1976;6:1172–81.
5. Sondheimer JM, Bryan H, Andrews W, et al. Cholestatic tendencies in premature infants on and off parental nutrition. Pediatrics 1978;6:984–9.
6. Tagliacozzi D, Moszi AF, Casetta B, et al. Quantitative analysis of bile acids in human plasma by liquid chromatography-electrospray tandem mass spectrometry: a simple and rapid one-step method. Clin Chem Lab Med 2003;12:1633–41.
7. Jahnel J, Zohrer E, Schramil H, et al. Reference ranges of serum bile acids in children and adolescents. Clin Chem Lab Med 2015;53:1807–13.
8. Stoll BJ, Hansen NI, Sanchez PJ, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011;15;5:817–26.
9. Phares CR, Lynfield R, Farley MM, et al. Epidemiology of invasive group B Streptococcal disease in the United States, 1999–2005. JAMA 2008;17:2055–65.
10. Goldstein B, Girou B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;1:2–8.
11. Kosters A, Karpen SJ. The role of inflammation in cholestasis: clinical and basic aspects. Semin Liver Dis 2010;2:186–94.
Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013;5:949–55.

Xie G, Zhong W, Li H, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J 2013;9:3583–93.

Tanaka N, Matsubara T, Krausz KW, et al. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 2012;1:118–29.

Lucangioli SE, Castano G, Contin MD, et al. Lithocholic acid as a biomarker of intrahepatic cholestasis of pregnancy during ursodeoxycholic acid treatment. Ann Clin Biochem 2009;1:44–9.

Ye L, Liu S, Wang M, et al. High-performance liquid chromatography-tandem mass spectrometry for the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy. J Chromatogr B Analyt Technol Biomed Life Sci 2007;1:10–7.

Półkowska G, Półkowski W, Kudłacka A, et al. Range of serum bile acid concentrations in neonates, infants, older children, and in adults. Med Sci Monit 2001;7:268–70.

Niijima S. Studies on the conjugating activity of bile acids in children. Pediatr Res 1985;3:302–7.

LaRusso NF, Korman MG, Hoffman NE, et al. Dynamics of the enterohepatic circulation of bile acids. Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N Engl J Med 1974;14:689–92.

Suchy FJ, Baillie WF, Heubi JE, et al. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 1981;80:1037–41.

Dhainaut JF, Marin N, Mignon A, et al. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med 2001;7:542–7.

Dikopoulos N, Weidenbach H, Adler G, et al. Lipopolysaccharide represses cholesterol 7-alpha hydroxylase and induces binding activity to the bile acid response element II. Eur J Clin Invest 2003;1:58–64.

Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999;5:543–53.

Laffitte BA, Kast HR, Nguyen CM, et al. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 2000;14:10638–47.

Barbara L, Lazzari R, Roda A, et al. Serum bile acids in newborns and children. Pediatr Res 1980;11:1222–5.

Groer MW, Luciano AA, Dishaw LJ, et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2014;2:38.

Chesney RW, Helms RA, Christensen M, et al. An updated view of the value of taurine in infant nutrition. Adv Pediatr 1998;45:179–200.