DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis

Antonella Agodi1,2*, Martina Barchitta1,2, Annalisa Quattrocchi1, Andrea Maugeri1, Manlio Vinciguerra3

1 Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy, 2 LaPoSS, Laboratory of Policies and Social Services, University of Catania, Catania, Italy, 3 University College London, Institute for Liver and Digestive Health, Royal Free Campus, London, United Kingdom

* agodia@unict.it

Abstract

Objective

The Death-Associated Protein Kinase 1 (DAPK1) gene has been frequently investigated in cervical cancer (CC). The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk.

Methods

A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs) and 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by histological type, method used to evaluate methylation and source of control samples.

Results

A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14–40.35). Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83–36.78). The association was also confirmed in all the subgroups analyses.

Conclusions

A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early
detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus.

Introduction

Cervical cancer (CC) is the second most common cancer in women worldwide [1, 2]. The identification and treatment of women with cervical intraepithelial neoplasia (CIN) or carcinoma in situ (CIS), the precursor lesions of invasive CC, represent an important component of the prevention of CC [3]. CC arises by distinct morphologic changes from normal epithelium and progresses to carcinoma through a series of well-defined pre-invasive lesions. Histologically, CC presents as either squamous cell carcinoma (SCC) or adenocarcinoma (AC) [4], with SCC predominating. Persistence of human papilloma virus (HPV) is the main etiologic factor in the development of CC and the precursor lesions [5, 6]. However, only a small fraction of HPV-infected CIN lesions progress to invasive cancer, thus, other host factors play a role in cervical carcinogenesis [2, 7].

Among the putative molecular alterations involved in the neoplastic process, aberrant methylation might be a crucial event in the oncogenesis [8]. A recent meta-analysis confirmed that global DNA methylation levels, in tissues of several cancers, were significantly lower in cancer patients than in healthy controls [9]. Approximately 60% of all human promoters are associated with CpG islands. In the genome of untransformed cells, ~90% of all promoters are unmethylated [10]. Conversely, in cancer, the methylation of CpG regions of gene promoter is associated with inappropriate transcriptional repression and gene inactivation. Significantly, many of the inactivated genes are tumor suppressor genes [11, 12] and the inhibition of these genes by methylation is implicated in cancer initiation, development, and progression [13]. Although it is difficult to establish whether such epigenetic alterations are causative or consequential of cancer, there is evidence that they can occur early in the neoplastic process [14]. Recently, the role of epigenetic mechanisms of gene inactivation has been examined in cervical oncogenesis [13, 15–19].

Among the involved genes, the Death-Associated Protein Kinase 1 (DAPK1) gene has been frequently investigated in CC. DAPK1 is a novel 160 kd calmodulin-dependent serine/threonine kinase operating as a positive mediator of apoptosis, while apoptosis links to the development, progression, and metastasis of human cancer [20]. The DAPK1 C-terminal serine-rich tail peptide, which is conserved in death-domain-containing proteins, plays a negative regulatory role in the inhibition of DAPK1, whereas the removal of this region enhances the killing activity [21]. Hypermethylation of DAPK1 has been frequently reported in various cancers types, including colon [22], head and neck [23], urinary bladder [24], lung [25–27], B cell lymphoma [28] and ovary [29]. In addition, it has been associated with the advanced stages of tumor development [30] and a poor prognosis in non-small cell lung carcinoma [31]. Since DAPK1 is a positive mediator of apoptosis, the silencing of DAPK1 disabled the DAPK-mediated apoptosis and might then prompt metastasis in the cancer cells [32]. Furthermore, cells lacking DAPK1 expression via promoter methylation became more invasive and metastatic [33].

In addition to the functional implications of gene inactivation in tumor development, genes that are frequently aberrantly methylated in specific tumours have been used as molecular targets for the detection of neoplastic cells in body fluids providing additional targets for non-invasive early diagnosis and for cancer monitoring [34–36]. Thus, developing a panel of
methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with HPV [34].

The aim of the present study was to carry out a systematic review and a meta-analysis in order to summarize the current published studies and to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk.

Methods

Search strategy and selection criteria

Firstly, a systematic literature search in the Medline database, using PubMed, was carried out for epidemiological studies, published before July 2014, investigating the association between gene promoter methylation and CC risk. Literature search was conducted independently by two Authors using the keywords “promoter methylation” and “cervical neoplasia”. The searches were limited to studies written in English; abstracts and unpublished studies were not included. Moreover, the reference lists from selected articles were checked to search for further relevant studies. The aim of the first selection was to identify studies that investigated the association between promoter methylation of any gene and CC risk; no studies were excluded a priori for weakness of design or data quality. Accordingly, articles were selected only if they satisfied the following criteria: i) case-control or cohort study designs, and ii) studies that assessed the association of gene promoter methylation and CC. Subsequently, since DAPK1 gene has been identified as the most common analyzed and studied gene, a meta-analysis of articles reporting the association between DAPK1 promoter methylation and CC risk was performed. Thus for inclusion in the quantitative analysis, studies had to meet the following criteria: i) studies that assessed the association between DAPK1 methylation and CC and ii) provided data about the frequency of DAPK1 methylation in cancer and in control groups. Furthermore, exclusion criteria were as follows: i) studies that did not use exfoliated cells, cervical biopsies or urines as samples and ii) in which control or cancer groups included individuals with various types of precancerous lesions. The preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed [37] (S1 and S2 Files).

Data extraction and quality assessment

Two of the Authors independently reviewed all the eligible studies and abstracted the following information in a standard format: first Author’s last name, year of publication, country where the study was performed, sample type, experimental methods to assess DAPK1 methylation and number of cases and controls subjects.

Statistical Analysis

All data were analyzed using the Review Manager 5.2 software provided by the Cochrane Collaboration (http://ims.cochrane.org/revman).

Forest plots were generated to illustrate the study-specific effect sizes along with a 95% CI. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate the ORs and 95% CIs in order to assess the association between DAPK1 promoter methylation and CC risk. Where a value of zero in the number of promoter methylation events caused problems with computation of the ORs for individual studies, the Review Manager 5.2 software provided to add a value of 0.5 to all cells of the related crosstab [38].

Heterogeneity across studies, was measured using the Q-test based on the χ^2 statistic, considering significant statistical heterogeneity as $p < 0.1$. As Cochran’s test only indicates the
presence of heterogeneity and not its magnitude, we also reported the I² statistic, which estimates the percentage of outcome variability that can be attributed to heterogeneity across studies. An I² value of 0% denotes no observed heterogeneity, whereas, 25% is “low”, 50% is “moderate” and 75% is “high” heterogeneity [39]. We also estimated the between-study variance using tau-squared (t) statistic [40].

Furthermore, subgroup analyses were conducted by histological type (SCC and AC), by assays used to evaluate DAPK1 promoter methylation (Methylation Specific PCR—MSP and real-time quantitative MSP—qMSP), and by control sample source (normal cervical tissues—NT and benign cervical tissues—BCT). A sensitivity analysis was performed to find relatively poor-quality studies by the omission of a single study at a time and to see whether a particular omission could affect the overall OR value and the heterogeneity across studies.

To determine the presence of publication bias, the symmetry of the funnel plots in which ORs were plotted against their corresponding standard errors were assessed.

Results

Search results and data characteristics

The detailed steps of the systematic review and meta-analysis process are given as a PRISMA flow chart (Fig 1). A total of 519 articles were retrieved from the database. After exclusion of studies that not met the inclusion criteria, DAPK1 resulted the most common analyzed gene.

![Flow diagram of study selection](https://doi.org/10.1371/journal.pone.0135078.g001)
Table 1. Studies included in the systematic review and in the meta-analysis.

Reference	Author	Year	Country	Method	Source of cancer sample	Source of control	Methylation Tumor	Methylation Control	Note
43	Banzai et al.	2014	Japan	MSP	Biopsy	NT	40/53	1/24	
41	Dong et al.	2001	Korea	MSP	Biopsy	BCT	27/53	0/24	
61	Feng et al.	2007	Senegal	qMSP	Urine	NT	31/63	1/16	
60	Feng et al. *	2005	Senegal	qMSP	Biopsy	50/91	3/140	Control group included ASCUS	
51	Flatey et al.	2009	UK	MSP	Scraping	NT	17/42	0/40	
59	Gustafson et al.*	2004	USA	qMSP	Biopsy	NA	NA	Case group included LSIL and HSIL	
52	Henken et al. *	2007	Netherlands	MS-MLPA	Biopsy	NA	NA	No control group	
50	Huang et al.	2011	Taiwan	MSP	Scraping	NT	13/26	3/15	
16	Iliopoulos et al.	2009	Greece	qMSP	Biopsy	NT	41/61	0/15	
13	Jeong et al.	2006	Korea	MSP	Biopsy	BCT	35/78	1/24	
58	Kahn et al. *	2008	USA	qMSP	Biopsy	NA	NA	No control group	
56	Kalantari et al.*	2014	USA	Sequencing	Biopsy	NA	NA	Inadequate data	
46	Kang et al.	2005	Korea	MSP	Biopsy	BCT	60/82	0/17	
48	Kang et al. *	2006	Korea	MSP	Biopsy	NA	NA	No control group	
49	Kim et al.	2010	Korea	MSP	Scraping	BCT	50/69	11/41	
44	Leung et al.	2008	China	MSP	Biopsy	AT	60/107	0/27	
62	Missaoui et al.	2011	Tunisia	MSP	Biopsy	BCT	10/14	0/8	
55	Narayan et al.	2003	USA	MSP	Biopsy	NT	37/82	0/8	
47	Niyazi et al.	2012	China	MSP	Biopsy	BCT	19/30	1/30	
3	Reesink-Peters et al.	2004	Netherlands	qMSP	Scraping	NT	35/48	2/41	
57	Shivapurkar et al.	2007	USA	qMSP	Biopsy	BCT	24/45	0/12	
36	Sun et al.	2012	China	MSP	Scraping	NT	11/14	157/336	
53	Wisman et al.	2006	Netherlands	qMSP	Scraping	BCT	13/28	0/19	
45	Yang et al.	2004	China	MSP	Biopsy	AT	51/85	0/100	
55	Yang et al.	2010	Netherlands	qMSP	Biopsy	BCT	31/60	5/20	
42	Yang et al. *	2006	China	MSP	Biopsy	NA	NA	No control group	
17	Zhao et al.	2008	China	MSP	Biopsy	BCT	34/52	0/20	
Total							639/1092	182/837	Studies included in meta-analysis

* studies excluded from meta-analysis

MSP: Methylation Specific PCR;
qMSP: quantitative real-time MSP;
NT: Normal cervical Tissue;
BCT: Benign Cervical Tissue;
AT: normal cervical tissues adjacent to the tumor;
ASCUS: Atypical Squamous Cells of Undetermined Significance;
LSIL: Low-grade Squamous Intraepithelial Lesion;
HSIL: High-grade Squamous Intraepithelial Lesion.

doi:10.1371/journal.pone.0135078.t001
Subsequently, one article was added through manual searching with reference list and thus 27 papers, published between 2001 and 2014, were included in the systematic review and summarized in Table 1. A total of 13 studies were from Asian countries (48%) [13, 17, 36, 41–50], 6 from European countries (22%) [3, 16, 51–54], 5 from USA (19%) [55–59] and 3 from Africa (11%) [60–62]. All studies evaluated DAPK1 promoter methylation in SCC and 12 studies (44.4%) also in AC. Regarding the method of promoter methylation evaluation, the “gold standard method”, used in most studies (67%), was MSP, followed by qMSP (26%), sequencing (3.5%) and Methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) (3.5%).

Meta-analysis

Of the 27 selected articles, 4 studies conducted without a control group, 2 studies which included precancerous lesions in control or in case groups and 1 study which reported inadequate data, were excluded from the meta-analysis. Thus, 20 studies (74%) evaluating DAPK1 promoter methylation both in tumor and in healthy control samples were included in the present meta-analysis. Overall, the studies reported results obtained from 1929 samples: 1092 from cancer patients and 837 from controls. Regarding the source of control samples, 10 studies evaluated DAPK1 promoter methylation in BCT from patients having gynaecological diseases such as uterine myoma, adenomyoma, and uterine prolapse, 8 studies in NT from healthy people and 2 studies in normal cervical tissues adjacent to the tumor.

DAPK1 promoter methylation was associated with an increased CC risk with a pooled OR of 19.97 (95% CI = 13.57–29.38) based on the fixed effects model. However, due to the significant heterogeneity ($I^2 = 49%$; $p = 0.007$), a pooled OR of 21.20 (95%CI = 11.14–40.35), based on the random effects model, was obtained (Fig 2). Subgroup analyses were performed by histological types, methods for methylation analysis and sources of control samples. The association between DAPK1 promoter methylation and CC was confirmed in each subgroup (S1 Table).

In addition, the sensitivity analysis found the study by Yang et al. (2010) [54], as the relatively poor-quality study. When this study [54] was omitted, the between study heterogeneity decreased to $I^2 = 39\%$ ($p = 0.04$), and the association between DAPK1 promoter methylation and CC risk increased (OR: 24.13; 95% CI = 15.83–36.78) (S1 Fig)

Subgroup analyses omitting the heterogeneous study [54] were performed. Subgroup analysis by histological types showed that the heterogeneity totally disappeared in AC subgroup ($I^2 = 0\%$; $p = 0.93$) and the association was confirmed both in SCC (OR = 33.84; 95% CI = 15.61–73.37; based on the random effects model) (Fig 3A) and AC (OR = 21.89; 95% CI = 8.64–55.48; based on the fixed effects model) (Fig 3B) subgroups. Furthermore, subgroup analysis based on assays methods used to evaluate DAPK1 promoter methylation was performed including the two common techniques, MSP and qMSP. The ORs were 23.45 (95% CI = 10.56–52.09), based on the random effects model, in MSP subgroup, and 34.25 (95% CI = 12.34–95.04), based on the fixed effects model, in qMSP subgroup, while the I^2 were 51% and 0%, respectively (Fig 4A and 4B). The subgroup analysis by source of control sample, and particularly between NT and BCT, reported that the ORs were 16.99 for NT (95% CI = 9.09–31.76) and 22.00 for BCT (95% CI = 11.95–40.51), respectively. Heterogeneity in NT and BCT subgroups were low with $I^2 = 48\%$ and $I^2 = 14\%$, respectively (Fig 5).

The funnel plot of the pooled analysis (Fig 6), which is quite symmetric, suggests no significant bias among the included studies, however the shapes of the subgroups analyses (S2, S3 and S4 Figs) indicate small to moderate asymmetry, therefore publication bias cannot be completely excluded as a factor of influence on the present meta-analysis.
Tumor suppressor genes belonging to different pathways, as cell adhesion, DNA repair, cell cycle checkpoint control and nuclear receptors, have been found to be hypermethylated in CIN and CC [41, 55, 60].

A previous review [63] summarized the results of 51 published studies on methylation analysis performed in cervical tissues and cells and proposed that the combination of DAPK1, CADMI, and RARB genes would appear the most promising methylated gene panel to obtain an appropriate performance for CC screening.

The recent meta-analysis by Xiong et al. [64], including 15 studies, suggested a strong association between DAPK1 promoter methylation and CC (pooled OR = 19.66; 95%CI = 8.72–44.31) indicating that DAPK1 promoter methylation may be a biomarker during cervical carcinogenesis.

Our study reports results of a more comprehensive meta-analysis and, taking into account that promoter methylation could be a tissue-specific event [65, 66], provides a subgroup analysis by histological tumor type. The present meta-analysis concerned 20 unique articles and, on a total of 1092 from cancer patients and 837 control samples, reports a significant pooled OR of 21.20. Because of the moderate heterogeneity between studies, a sensitivity analysis and subgroup analyses by histological tumor types, sources of control samples and assays used to
evaluate DAPK1 promoter methylation were performed. Interestingly, removing the most heterogeneous study [54], the association between DAPK1 promoter methylation and CC risk increased (OR: 24.13) and was confirmed in SCC and AC subgroups with a heterogeneity between study of $I^2 = 48\%$ and $I^2 = 0\%$, respectively.

The gold standard method of promoter methylation evaluation was MSP, in which PCR products are run on a gel, and the results are reported as methylated or unmethylated at the target DNA sequence. Consequently, this method does not allow the identification of partial

Table 3

Study or Subgroup	Cervical Cancer	Control	Total	Weight	Odds Ratio	Odds Ratio	
	Events	Total	Events	Total		M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 SCC							
Banzaï 2014	33	42	1	24	7.2%	94.33 [0.99, 712.12]	
Dong 2001	19	31	0	24	4.9%	78.44 [4.25, 1373.49]	
Jeong 2008	31	66	1	24	7.5%	20.37 [2.60, 169.78]	
Kang 2005	60	82	0	17	5.0%	94.11 [0.43, 1631.02]	
Kim 2010	50	69	11	41	13.2%	7.19 [3.01, 17.12]	
Leung 2008	55	87	0	27	5.1%	93.92 [0.54, 1591.89]	
Missoaal 2011	10	14	0	8	4.0%	39.67 [1.86, 844.72]	
Narayan 2003	36	77	0	8	4.9%	14.95 [0.63, 268.13]	
Niyazi 2012	19	30	1	30	7.2%	50.09 [0.97, 420.36]	
Reesink-Peters 2004	35	48	2	41	9.7%	52.50 [1.06, 249.11]	
Shivasparuk 2007	21	35	0	12	4.9%	37.07 [2.03, 676.47]	
Sun 2012	11	14	157	336	11.0%	4.18 [1.15, 15.25]	
Wismann 2008	11	20	0	19	4.0%	47.21 [2.51, 889.19]	
Yang 2004	42	61	0	100	5.1%	430.08 [25.85, 7422.93]	
Zhao 2008	32	40	0	20	4.0%	156.78 [0.50, 2684.04]	
Subtotal (95% CI)	**716**	**731**	**100.0%**	**33.84 [15.61, 73.37]**			
Total events	465	173					

Heterogeneity: Tau² = 0.98; Chi² = 27.04, df = 14 (P = 0.02); $I^2 = 48\%$
Test for overall effect: Z = 8.92 (P < 0.00001)

Table 4

Study or Subgroup	Cervical Cancer	Control	Total	Weight	Odds Ratio	Odds Ratio	
	Events	Total	Events	Total		M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.2 AC							
Banzaï 2014	7	11	1	24	8.9%	40.25 [2.04, 421.61]	
Dong 2001	8	22	0	24	11.8%	28.72 [1.54, 535.34]	
Jeong 2006	4	12	1	24	17.4%	11.50 [0.11, 118.71]	
Leung 2008	5	20	0	27	12.4%	19.52 [0.16, 377.06]	
Narayan 2003	1	5	0	8	11.7%	5.67 [0.19, 169.53]	
Shivasparuk 2007	3	10	0	12	12.2%	11.67 [0.53, 258.56]	
Wismann 2006	2	8	0	19	8.8%	15.00 [0.63, 354.79]	
Yang 2004	9	24	0	100	4.8%	123.19 [6.92, 2224.82]	
Zhao 2008	2	12	0	20	12.1%	9.76 [0.43, 222.43]	
Subtotal (95% CI)	**124**	**258**	**100.0%**	**21.89 [8.64, 55.48]**			
Total events	41	2					

Heterogeneity: Chi² = 3.04, df = 8 (P = 0.93); $I^2 = 0\%$
Test for overall effect: Z = 8.50 (P < 0.00001)

Figure 3

Subgroups analysis based on histological cancer type, omitting one heterogeneous study. (A) Squamous Cell Carcinoma (SCC) subgroup analysis, based on the random effects model. (B) Adenocarcinoma (AC) subgroup analysis, based on the fixed effects model.

doi:10.1371/journal.pone.0135078.g003
levels of methylation, a feature which is extremely relevant both biologically and clinically. Thus, qMSP has been developed in recent years to overcome this limitation of conventional MSP. In fact, qMSP is reported to be more specific and more sensitive than conventional MSP and allows for high-throughput analysis, making it more suitable as a screening tool [67–69].

In the present meta-analysis, considering these two detection methods, both subgroups reported a significant association between DAPK1 promoter methylation and CC. Although heterogeneity between studies stood moderately high in MSP subgroup (I² = 51%), the heterogeneity in qMSP subgroup decreased to I² = 0%.

Fig 4. Subgroup analysis based on assays methods used, omitting one heterogeneous study. (A) Methylation-Specific PCR (MSP) subgroup analysis, based on the random effects model. (B) Quantitative real-time MSP (qMSP) subgroup analysis, based on the fixed effects model.
doi:10.1371/journal.pone.0135078.g004
Finally, the subgroup analysis by source of control sample revealed a significant association in both subgroups; the heterogeneity in NT and BCT subgroups was moderately low (I² = 48% and I² = 14%, respectively).

The present study has some limitations. The number of studies included in the meta-analysis is modest (n = 20). Moreover, since all studies included had a case-control design, it is not possible to clarify if DAPK1 promoter methylation is an early cancer-causing aberration or an effect of carcinogenesis. Accordingly, the potential of DNA methylation measurements requires validation in retrospective studies, but ultimately in large prospective clinical studies [70].

In addition, although sensitivity analysis and subgroup analyses were performed, the pooled estimates should be interpreted with caution, due to the moderate heterogeneity across studies. Finally, the small to moderate asymmetry in the funnel plots, suggests that publication bias cannot be completely excluded.

The usefulness of DAPK1 tumour suppressor gene hypermethylation as an epigenetic marker is under intense investigation in many different cancers, including CC and its precursor lesions and the present meta-analysis provides scientific evidences to this debate, showing a significant strong association between DAPK1 promoter methylation and CC. This result was confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples.
Supporting Information

S1 Fig. Sensitivity analysis of 20 studies with the fixed effects model.
(TIF)

S2 Fig. Funnel plot of subgroups analysis based on histological cancer type, omitting one heterogeneous study [54]. SCC: Squamous Cell Carcinoma; AC: Adenocarcinoma.
(TIF)

S3 Fig. Funnel plot of subgroups analysis based on method, omitting one heterogeneous study [54]. MSP: Methylation-Specific PCR; qMSP: quantitative real-time MSP.
(TIF)

S4 Fig. Funnel plot of subgroups analysis based on source of control sample, omitting one heterogeneous study [54]. NT: Normal cervical Tissue; BCT: Benign cervical Tissue.
(TIF)

S1 File. PRISMA checklist.
(PDF)

S2 File. Meta-analysis on Genetic Association Studies Checklist.
(PDF)

S1 Table. Subgroups analyses based on histological cancer type, method and source of control sample. SCC: Squamous Cell Carcinoma; AC: Adenocarcinoma; MSP: Methylation-
Specific PCR; qMSP: quantitative real-time MSP; M+: the number of subjects/samples with methylation; M-: the number of subjects/samples with no methylation; NT: Normal cervical Tissue; BCT: Benign cervical Tissue.

(TIF)

Acknowledgments
The Authors wish to thank Bench Srl, University of Catania, for technical support.

Author Contributions
Conceived and designed the experiments: AA MB. Performed the experiments: MB AM. Analyzed the data: AQ AM. Contributed reagents/materials/analysis tools: AA MB AQ MV. Wrote the paper: AA MB AQ AM MV.

References
1. Flatley JE, Sargent A, Kitchener HC, Russell JM, Powers HJ. Tumour suppressor gene methylation and cervical cell folate concentration are determinants of high-risk human papillomavirus persistence: a nested case control study. BMC Cancer 2014; 14: 803. doi:10.1186/1471-2407-14-803 PMID: 25367268
2. Rositch AF, Koshiol J, Hudgens MG, Razzaghi H, Backes DM, Pimenta JM, et al. Patterns of persistent genital human papillomavirus infection among women worldwide: A literature review and meta-analysis. Int J Cancer 2013; 133: 1271–1285. doi: 10.1002/ijc.27828 PMID: 22961444
3. Reesink-Peters N, Wisman GBA, Jeronimo C, Tokumaru CY, Cohen Y, Dong SM, et al. Detecting cervical cancer by quantitative promoter hypermethylation assay on cervical scrapings: a feasibility study. Mol Cancer Res 2004; 2: 289–295. PMID: 15192122
4. Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 2001; 357: 1831–1836. PMID: 11919208
5. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55: 244–265. PMID: 11919208
6. Schillman M, Castle PE. Human papillomavirus: epidemiology and public health. Arch Pathol Lab Med 2002; 127: 930–934.
7. Robertson JH, Woodend B. Negative cytology preceding cervical cancer: causes and prevention. J Clin Pathol 1993; 46:700–702. PMID: 8408692
8. Tost J. DNA methylation: an introduction to the biology and the disease associated changes of a promising biomarker. Mol. Biotechnol 2010; 44: 71–81. doi: 10.1007/s12033-009-9216-2 PMID: 19842073
9. Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9(10): e109478. doi: 10.1371/journal.pone.0109478 PMID: 25275447
10. Rauch T, Pfeifer GP. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest. 2005; 85:1172–1180. PMID: 16025148
11. Li LC, Okino ST, Dahiya R. DNA methylation in prostate cancer. Biochim Biophys Acta 2004; 1704: 87–102. PMID: 15363862
12. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter methylation. N Engl J Med 2003; 349: 2042–2054. PMID: 14627790
13. Jeong DH, Youm MY, Kim YN, Lee KB, Sung MS, Yoon HK, et al. Promoter methylation of p16, DAPK, CDH1, and TIMP-3 genes in cervical cancer: correlation with clinicopathologic characteristics. Int J Gynecol Cancer 2006; 16: 1234–1240. PMID: 16803511
14. Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 2003; 190: 125–33. PMID: 12565166
15. Widschwendter A, Gattringer C, Ivarsson L, Fiegli H, Schneitter A, Ramoni A, et al. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 2004; 10: 3396–3400. PMID: 15161694
16. Iliopoulos D, Oikonomou P, Messinis I, Tsezou A. Correlation of promoter hypermethylation in hTERT, DAPK and MGMT genes with cervical oncogenesis progression. Oncol Rep 2009; 22: 199–204. PMID: 19513524
17. Zhao XL, Meng ZY, Qiao YH, Zhang HL. Promoter methylation of DAPK gene in cervical carcinoma. Chin J Cancer 2008; 27: 212–215.
18. Ki KD, Lee SK, Tong SY, Lee JM, Song DH, Chi SG. Role of 5'-CpG island hypermethylation of the FHT gene in cervical carcinoma. J Gynecol Oncol 2008; 19: 117–122. doi:10.3802/jgo.2008.19.2.117 PMID: 19471558
19. Lin Z, Gao M, Zhang X, Kim YS, Lee ES, Kim HK, et al. The hypermethylation and protein expression of p16 INK4A and DNA repair gene O6-methylguanine-DNA methyltransferase in various uterine cervical lesions. J Cancer Res Clin Oncol 2005; 131: 364–370. PMID:15785933
20. Raveh T, Kimchi A. DAP kinase a proapoptotic gene that functions as a tumor suppressor. Exp Cell Res 2001; 264: 185–192. PMID:11237533
21. Raveh T, Berissi H, Eisenstein M, Spivak T, Kimchi A. A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci USA 2000; 97: 1572–1577. PMID: 10677501
22. Kissil JL, Kimchi A. Death-associated proteins: from gene identification to the analysis of their apoptotic and tumour suppressive functions. Mol Med Today 1998; 4: 268–274. PMID: 9679246
23. Sanchez-Cespedes M, Esteller M, Wu L, Nawroz-Danish H, Yoo GH, Koch WM, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000; 60: 892–895. PMID:10706101
24. Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002; 8: 464–470. PMID:11839665
25. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999; 59: 67–70. PMID: 9892187
26. Kim DH, Nelson HH, Wiencke JK, Zheng S, Christiani DC, Wain JC, et al. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 2001; 61: 3419–3424. PMID:11309302
27. Wong TS, Chang HW, Tang KC, Wei WI, Kwong DL, Sham JS, et al. High frequency of promoter hypermethylation of the death-associated protein-kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res 2002; 8: 433–437. PMID: 11839660
28. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1993; 93: 4347–4353.
29. Collins Y, Dicioccio R, Keitz B, Lele S, Odunsi K. Methylation of death-associated protein kinase in ovarian carcinomas. Int J Gynecol Cancer 2006; 16: 195–199. PMID: 16515590
30. Kim DH, Nelson HH, Wiencke JK, Christiani DC, Wain JC, Mark EJ, et al. Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene 2001; 20: 1765–1770. PMID: 11313923
31. Tang X, Khuri FR, Lee JJ, Kemp BL, Liu D, Hong WK, et al. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst 2000; 92: 1511–1516. PMID: 10995806
32. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadaei E, Eisenbach L, et al. DAP kinase links the control of apoptosis to metastasis. Nature 1997; 390: 180–184. PMID: 9367156
33. Soria JC, Rodriguez M, Liu DD, Lee JJ, Hong WK, Mao K. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 2002; 62: 351–355. PMID: 11809677
34. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3: 253–266. PMID: 12671664
35. Cottrell SE, Laird PW. Sensitive detection of DNA methylation. Ann Y Acad Sci 2003; 983: 120–130. PMID: 12724217
36. Sun LL, Cao DY, Yang JX, Li H, Zhou XR, Song ZQ. Population-based case-control study on DAPK1, RAR-β2 and MGMT methylation in liquid-based cytology. Arch Gynecol Obstet 2012; 285: 1433–1339. doi: 10.1007/s00404-011-1249-6 PMID: 2216316
37. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010; 8: 336–341. doi: 10.1016/j.ijsu.2010.02.007 PMID: 20171303
38. Deeks JJ, Higgins JP. Statistical algorithms in Review Manager 5. Statistical Methods Group of The Cochrane Collaboration. 2010; 1–11.

39. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–1558. PMID: 12111919

40. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions Version 5.0.0 updated February 2008. The Cochrane Collaboration 2008.

41. Dong SM, Kim HS, Rha SH, Sidransky D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res 2001; 7: 1982–1986. PMID: 11448914

42. Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 2006; 6: 212. PMID: 16928264

43. Banzai C, Nishino K, Quan J, Yoshihara K, Sekine M, Yahata T, et al. Promoter methylation of DAPK1, FHIT, MGMT, and CDKN2A genes in cervical carcinoma. Int J Clin Oncol 2014; 19: 127–132. doi: 10.1007/s10147-013-0530-0 PMID: 23494221

44. Leung RC, Liu SS, Chan KY, Tam KF, Chan KL, Wong LC, et al. Promoter methylation of death-associated protein kinase and its role in radiation response in cervical cancer. Oncol Rep 2008; 19: 1339–1345. PMID: 18425396

45. Yang HJ, Liu VW, Wang Y, Chan KY, Tsang PC, Khoo US, et al. Detection of hypermethylated genes in tumor and plasma of cervical cancer patients. Gynecol Oncol 2004; 93: 435–440. PMID: 15099958

46. Kang S, Kim JW, Kang GH, Park NH, Song YS, Kang SB, et al. Polymorphism in folate- and methionine-metabolizing enzyme and aberrant CpG island hypermethylation in uterine cervical cancer. Gynecol Oncol 2005; 96: 173–180. PMID: 15589597

47. Niyazi M, Liu XW, Zhu KC. Death-associated protein kinase promoter (DAPK) hypermethylation in uterine cervical cancer and intraepithelial neoplasia in Uyghur nationality women. Zhonghua Zhong Liu Za Zhi 2012; 34: 31–34. PMID: 22490852

48. Kang S, Kim JW, Kang GH, Lee S, Park NH, Song YS, et al. Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer 2006; 118: 2168–2171. PMID: 16331610

49. Kim JH, Choi YD, Lee JS, Lee JM, Nah JM, Choi C. Assessment of DNA methylation for the detection of cervical neoplasia in liquid-based cytology specimens. Gynecol Oncol 2010; 116: 99–104. doi: 10.1016/j.ygyno.2009.09.032 PMID: 19836067

50. Huang LW, Pan HS, Lin YH, Seow KM, Chen HJ, Hwang JL. P16 methylation is an early event in cervical carcinogenesis. Int J Gynecol Cancer 2011; 21: 452–456. PMID: 21436993

51. Flatley JE, McNeir K, Balasubramani L, Tidy J, Stuart EL, Young TA, et al. Folate status and aberrant DNA methylation are associated with HPV infection and cervical pathogenesis. Cancer Epidemiol Biomarkers Prev 2009; 18:2782–2789. doi: 10.1158/1055-9965.EPI-09-0493 PMID: 19755648

52. Henken FE, Wilting SM, Overmeer RM, van Rietschoten JG, Nygren AO, Errami A, et al. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br J Cancer 2007; 97: 1457–1464. PMID: 17971771

53. Wisman GB, Nijhuis ER, Hoque MO, Reesink-Peters N, Koning AJ, Volders HH, et al. Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 2006; 119: 1908–1914. PMID: 16736496

54. Yang N, Nijhuis ER, Volders HH, Eijsink JJ, Rader JS, Villella J, et al. Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2003; 2: 24. PMID: 12773202

55. Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, et al. Frequent promoter methylation of CDKN2A, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2003; 2: 24. PMID: 12773202

56. Kalantar M, Osann K, Calleja-Macias IE, Kim S, Yan B, Jordan S, et al. Methylation of human papillomavirus 16, 18, 31, and 45 L2 and L1 genes and the cellular DAPK gene: Considerations for use as biomarkers of the progression of cervical neoplasia. Virology 2014; 454: 314–321. doi: 10.1016/j.virology.2013.10.032 PMID: 24314662

57. Shivapurkar N, Sherman ME, Stastry V, Echebiri C, Rader JS, Nayyar R, et al. Evaluation of candidate methylation markers to detect cervical neoplasia. Gynecol Oncol 2007; 107: 549–553. PMID: 17894941

58. Kahn SL, Ronnett BM, Gravitt PE, Gustafson KS. Quantitative methylation-specific PCR for the detection of aberrant DNA methylation in liquid-based Pap tests. Cancer 2008; 114: 57–64. doi: 10.1002/cncr.23258 PMID: 18181097
59. Gustafson KS, Furth EE, Heitjan DF, Fansler ZB, Clark DP. DNA methylation profiling of cervical squamous intraepithelial lesions using liquid-based cytology specimens: an approach that utilizes receiver-operating characteristic analysis. Cancer 2004; 102: 259–268. PMID: 15368319

60. Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 2005; 97: 273–282. PMID: 15359262

61. Feng Q, Hawes SE, Stern JE, Dem A, Sow PS, Dembele B, et al. Promoter hypermethylation of tumor suppressor genes in urine from patients with cervical neoplasia. Cancer Epidemiol Biomarkers Prev 2007; 16: 1178–1184. PMID: 17546882

62. Missaoui N, Hmissa S, Trabelsi A, Traore C, Mokni M, Dante R, et al. Promoter hypermethylation of CDH13, DAPK1 and TWIST1 genes in precancerous and cancerous lesions of the uterine cervix. Pathol Res Pract 2011; 207: 37–42. doi: 10.1016/j.jarpr.2010.11.001 PMID: 21129853

63. Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gynecol Oncol 2009; 112: 293–299. doi: 10.1016/j.ygyno.2008.10.012 PMID: 19054549

64. Xiong J, Li Y, Huang K, Lu M, Shi H, Ma L, et al. Association between DAPK1 Promoter Methylation and Cervical Cancer: A Meta-Analysis. PLoS ONE 2014; 9: e107272. doi: 10.1371/journal.pone.0107272 PMID: 25268905

65. Ikegami K, Ohgane J, Tanaka S, Yagi S, Shiota K. Interplay between DNA methylation, histone modification and chromatin remodelling in stem cells and during development. Int J Dev Biol 2009; 53: 203–214. doi: 10.1387/ijdb.082741ki PMID: 19412882

66. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41: 1350–1353. doi: 10.1038/ng.471 PMID: 19881528

67. Cottrell SE, Laird PW. Sensitive detection of DNA methylation. Ann N Y Acad Sci 2003; 983: 120–130. PMID: 12724217

68. Jerónimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 2001; 93: 1747–1752. PMID: 11717336

69. Fackler MJ, Malone K, Zhang Z, Schilling E, Garrett-Mayer E, Swift-Scanlan T, et al. Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res 2006; 12: 3306–3310. PMID: 16740751

70. Duffy MJ, Napieralski R, Martens JWM, Span PN, Syparatos F, Sweep FC, et al. Pathobiology group: methylated genes as new cancer biomarkers. Eur J Cancer 2009; 4: 335–346.