Comparative Genomics Using Microarrays Reveals Divergence and Loss of Virulence-Associated Genes in Host-Specific Strains of the Insect Pathogen *Metarhizium anisopliae*\(^V\)†

Sibao Wang, Andreas Leclerque, Monica Pava-Ripoll, Weiguo Fang, and Raymond J. St. Leger\(^*\)

Department of Entomology, University of Maryland, College Park, Maryland 20742

Received 20 February 2009/Accepted 14 April 2009

Many strains of *Metarhizium anisopliae* have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist *Metarhizium* genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophages. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

\(^*\) Corresponding author. Mailing address: Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454. Phone: (301) 405-5402. Fax: (301) 314-9290. E-mail: stleger@umd.edu.

\(^†\) Supplemental material for this article may be found at http://ec.asm.org/.

\(^V\) Published ahead of print on 24 April 2009.
different pathogenic strategies to be understood from a broad perspective.

Patterns of gene duplication, divergence, and deletion can be specifically determined by heterologous hybridization of total genomic DNA to microarrays (11, 20, 27). Heterologous hybridization has provided a fast and powerful tool facilitating the merging of functional genomics with physiology, ecology, and evolution (7, 31, 38) in species of yeast (22, 27), fish (9, 24), mammals (23, 25), and plants (1, 15). We have already verified that an array of Ma2575 ESTs can be used for heterologous hybridization with cDNAs. Thus, Ma2575 arrays were used to probe the causes of sectorization (production of nonsporulating cultures) in two commercial strains of *M. anisopliae* var. *anisopliae*. Probes from both strains cross-reacted strongly with the arrays, although with different expression profiles (46). We also used Ma2575 arrays to identify hundreds of genes differentially regulated by Ma324 in response to host or nonhost cuticles (45). Although only 8% of paralogous Ma2575 genes have greater than 80% identity, we expected cross-hybridization would potentially overestimate the overlap in genes expressed by different strains. However, individual genes within gene families were distinguished, revealing processes unique to Ma324 (45). In this study we exploit the fact that heterologous cDNA can provide information on physiological processes to allow us to gain a mechanistic perspective on the different life-styles that exist in insect-fungus interactions.

MATERIALS AND METHODS

Fungal strains and growth conditions. This study employed six strains of *M. anisopliae* that represent the range of phylogenetic variation and evolutionary distance within the species and that differ in host ranges and in responses to chemical and physical stimuli (40). All fungal strains were obtained from the U.S. Department of Agriculture Entomopathogenic Fungus Collection in Ithaca, NY. The three generalist strains are *all M. anisopliae* var. *anisopliae*. Strain numbers are Ma2575, Ma549, and Ma820. Besides their original hosts, they can at least infect caterpillars (*Manduca sexta*) and crickets (*Acheta domestica*) in the lab and usually more insects, for example, Ma2575 was isolated from the pecan weevil and also infests locusts (10). Generalist strains can germinate in many nutrients and produce appressoria against a hard hydrophobic surface (plastic petri dish) in yeast extract medium (40). The three specialized strains infect only a few species. They show little or no germination in yeast extract or glucose medium, e.g., *M. anisopliae* var. *acridum* Ma324 (specific for acridids), *M. anisopliae* var. *majus* Ma297 (specific for scarab beetles), and *M. anisopliae* var. *anisopliae* Ma443 (specific for Gryllids) (40). Fungal strains were routinely grown at 27°C on potato dextrose agar. For preparation of genomic DNA, fungal spores were cultured in Sabouraud dextrose broth at 27°C.

Genomic DNA preparation and construction of microarray. Fungal mycelia from 48-h Sabouraud dextrose broth cultures were collected by filtration and washed with sterile distilled water three times. The high-molecular-mass total genomic DNA of each strain was prepared as previously described (47). The construction of the cDNA microarrays used in this study has been previously described (46). This array harvests PCR-amplified fragments from the unique cDNA clones from *M. anisopliae* var. *anisopliae* Ma2575 and a few genes from *M. anisopliae* var. *acridum* Ma324 absent from the libraries of Ma2575. In total, 1,748 amplified clones were printed in triplicates on the slides. Additional background control was provided by 8 randomly distributed spots of 3 g of total genomic DNA was fragmented by restriction endonuclease digestion with RsaI and MseI (New England Biolabs). The digested genomic DNAs were concentrated with Microcon YM-30 filters (Millipore) and genomic DNAs were labeled with green Cy3 dUTP-tagged or red Cy5 dUTP-tagged nucleotides as described previously (27).

Three microarray slides were used per comparison (cDNAs were replicated in triplicate on each slide). Each strain’s DNA was cohybridized with Ma2575 DNA in dye-swapping replicate experiments and the relative hybridization efficiencies (fluorescence ratios) of their DNA for Ma2575 genes were compared. We used standard microarray hybridization conditions for this work (46) that provides a stringency at which 90% matching over 60 bases should suffice to form a stable hybrid (48).

CGH data analysis. The intensity of the spots on the cDNA slides was calculated using the Spotfinder version 2.2.4 program from the Microarray software suite TM4 from JCVI (http://www.tm4.org/spotfinder.html) and applying local background subtraction for each spot. The spotted microarray data preprocess- ing platform Ginkgo was used for comparative genome hybridization (CGH) analysis (http://plgrc.jcvi.org/index.php/bioinformatics/ginkgo.html). Intensity-dependent variation was normalized using the histogram mode centering algorithm with means and standard deviations as parameters. A dye consistency check was performed after normalization to eliminate systematic errors. This flip-dye analysis used a standard deviation criterion of threefold to filter spots with inconsistent values. Consolidation of the triplicate intensity values of channels A and B (1,756 unigenes, with channel A referring to the reference Ma2575) was also performed using the in-slide replicate algorithm of this platform.

Southern blot analysis. Genomic DNA samples (10 μg) were digested overnight at 37°C using 100 units of EcoRI, EcoRV, BamHI, BglII, or XbaI (New England Biolabs). Using standard protocols, digested samples were electrophoresed in 0.8% Tris-acetate-EDTA–agarose gels and blotted onto Hybond N+ membrane. According to probe was immunologically detected by anti-DIG antibody conjugated with alkaline phosphatase (Roche), according to the manufacturer’s instructions.

Microarray data accession number. The microarray data obtained in this study have been deposited in the NCBI Gene Expression Omnibus database under accession number GSE18486.

RESULTS

CGH. Fragmented genomic DNA from six *M. anisopliae* strains (Ma297, Ma324, Ma443, Ma549, Ma820, and Ma2575) was cohybridized with DNA from strain Ma2575 to microarrays of Ma2575 ESTs. The resulting hybridization patterns were used to organize the strains into a hierarchical tree that placed *M. anisopliae* var. *acridum* strain Ma324 into a relative outgroup position (Fig. 1). This is consistent with phylogenies of *Metaherbizum* spp. (12). Normalized average intensity ratios were used as the main parameter to compare the hybridization with three replicate slides.

To investigate the relationship between the strength of hybridization of homologous gene pairs and their degree of nucleotide identity, we used 30 corresponding cDNA sequences from *M. anisopliae* strains Ma324 and Ma2575 identified by
Freimoser et al. (17) to plot the percent nucleotide identity against log₂ ratios calculated from cohybridization data (Fig. 2). The percentage of nucleotide sequence identity ranged from 87.7% to 99.5%. Linear regression analysis was employed to predict the best-fit line, demonstrating a moderately good correlation ($r^2 = 0.66; P < 0.0001$) between nucleotide sequence identity and the log₂ ratio. It is likely that the correlation was not closer to 1, because hybridization is also influenced by the GC/AT ratio and the distribution of highly conserved regions in sequences (48).

Categorization of conserved and divergent genes. Greater than 90% of all the arrayed genes showed decreasing efficiency of hybridization with increasing distance of the two strains as determined by the normalized intensity ratio averages (Table 1). However, individual genes evolve at different rates. Using the cohybridization of strains Ma324 and Ma2575 as a point of reference, we arbitrarily divided genes into three groups according to their normalized intensity ratios. The high-similarity group 1, with I_B/I_A ratios of ≥0.5, corresponds to ≥95% nucleotide sequence similarity; the moderate-similarity group 2 with I_B/I_A ratios of 0.25 to 0.5 corresponds to 60 to 95% similarity; the group 3 sequences with I_B/I_A ratios of <0.25 possess low homologies or are absent in Ma324.

Previously, ESTs of *M. anisopliae* were subdivided into broad functional categories (17). Functional categories where >90% of the genes fall into group 1, i.e., have high nucleotide identity, include amino acid metabolism, nucleotide metabolism, cell cycle/division and growth, N, P, and S metabolism, translation and posttranslational modification, regulatory function, DNA replication, recombination and repair, energy metabolism, transcription, and RNA processing and degradation. Thus, as expected, major life processes are highly conserved, presumably due to purifying selection.

A total of 118 (6.7%) of Ma2575 genes were predicted to be highly divergent or absent ($I_B/I_A < 0.25$) in Ma324, indicative of functional differences (Table 2; Fig. 3). The absence of homologous sequences in strain Ma324 was confirmed by Southern hybridization analysis with probes comprising the complete *M. anisopliae* strain Ma2575 open reading frame (ORF) of 26 genes (Fig. 4, 5, and 6). The genes were chosen as a representative sampling of transposable elements, cell metabolism, stress response and defense, cell structure, and signaling functions. In every case, the Southern blotting data validated the results from microarrays.

Thirty-five out of 237 Ma2575 orphan sequences (i.e., with no homologs in databases) only hybridized to Ma2575 DNA. Low-stringency Southern hybridization confirmed the absence of CN808668 in the genome of Ma324 (Fig. 5E). Several other sequences with homologs in phylogenetically distant organisms but none in published fungal genomes hybridized only to Ma2575 DNA, e.g., EST CN809303, which is similar (E = 2 × 10⁻⁷) to a bacterium (*Rubrobacter xylanophilus*) short chain dehydrogenase/reductase. Its absence in Ma324 and Ma443 was confirmed by Southern analysis (Fig. 5A). However, se-

Table 1. Normalized average I_B/I_A ratios for the different strain combinations*.

Cohybridization	Avg in-slide I_B/I_A ratio
Ma2575 vs Ma2575	0.94
Ma280 vs Ma2575	0.69
Ma549 vs Ma2575	0.72
Ma443 vs Ma2575	0.62
Ma297 vs Ma2575	0.55
Ma324 vs Ma2575	0.41

* I_A (from channel A) refers to the signal for the reference strain, *Metarhizium anisopliae* var. *anisopliae* Ma2575, and I_B is the normalized signal value of the indicated test strain (Ma820, Ma549, Ma443, Ma297, or Ma324).

Table 2. Functional categories of *M. anisopliae* var. *anisopliae* Ma2575 genes predicted to be of low nucleotide sequence similarity or absent in *M. anisopliae* var. *acridum* Ma324.

Functional category	No. of genes	% of total
Hypothetical proteins or orphans	55	46.61
Cell metabolism	19	16.10
Lipid metabolism	7	5.93
Carbohydrate metabolism	7	5.93
Amino acid metabolism	3	2.54
Nucleotide metabolism	2	1.69
Cell structure and function	13	11.02
Cell wall protein	7	5.93
Transport proteins	3	2.54
Signaling	3	2.54
Transposable elements	10	8.47
Stress response and defense	10	8.47
Stress response	4	3.39
Detoxification	3	2.54
Secondary metabolites	3	2.54
RNA metabolism	4	3.39
Protein metabolism	4	3.39
Ribosomal proteins	1	0.85
Proteolysis	2	1.69
Protein modification/targeting	1	0.85
Energy metabolism	3	2.54
Total	118	100.00

![Graph](image)

FIG. 2. Standard curve used to determine the relationship between nucleotide sequence similarity for genes of *Metarhizium anisopliae* strains Ma2575 and Ma324 and normalized fluorescence ratios. Sequences for 30 *M. anisopliae* genes of known similarity were included (17). The means of the log₂ ratio values for each gene were plotted against the percent similarity.
quences from Ma2575 that are highly conserved in other fungal species could also show rapid evolution and loss in *Metarhizium* genomes. Thus, the strain Ma2575 EST AJ273858, which is similar (4/11003 10/11002 42) to the ankyrin repeat protein (stress response protein) of *Aspergillus fumigatus*, was highly divergent in most strains. Low-stringency Southern hybridization confirmed the absence of this sequence in Ma443 and Ma324 (Fig. 5B).

Ten genes encoding proteins involve in the stress response and defense were found to hybridize poorly with *M. anisopliae* var. *acridum* Ma324 genomic DNA. Four of these had high similarity to genes encoding proteins involved in the stress response. Aside from the ankyrin repeat protein (AJ273858), these included CN809313, similar (6/11003 10/11002 14) to an ABC transporter of *Emericella nidulans*, which is involved in contact-dependent secretion, virulence, and resistance to antifungal compounds (43), CN808854, similar (8/11003 10/121) to an *Aspergillus fumigatus* flavin-binding monooxygenase-like protein, and CN808382, similar (1/11003 49) to the short chain dehydrogenase CN809303 (involved in carbohydrate metabolism) (Fig. 5). Except for CN809303, the Ma2575 genes were very similar to sequences in *A. fumigatus* (Table 3). The EST AJ274133, which encodes an esterase STE1 that increases virulence when expressed in *Beauveria bassiana* (34), was also absent in Ma324 (Fig. 5A).

Other poorly conserved genes in Ma324 (e.g., those with IB/IA ratios of <0.25) have previously been associated with *M. anisopliae* Ma2575 virulence. These include a set of functionally coordinated genes comprising four nonribosomal peptide synthases and a polyketide synthase (CN808619) likely involved in toxin generation (17, 45), which were divergent or missing in Ma443 and Ma324 as confirmed by Southern blot analysis. We confirmed that the absence of these sequences was a characteristic of *M. anisopliae* var. *acridum* by including genomic DNA from *M. anisopliae* var. *acridum* strain 3612 in the Southern blot assays (Fig. 4). The cytochrome P450 (CN809217) was very similar (E = 6 × 10⁻⁶⁸) to an enzyme involved in secondary metabolite biosynthesis in *Fusarium sporotrichioides* (6). Other key divergent or missing genes in specialists included a chymotrypsin (AJ273081) produced by *Saccharomyces cerevisiae*. Of the others, three were involved in detoxification, including AJ273280, which is similar (1 × 10⁻¹⁴) to an ABC transporter of *Emericella nidulans*, which is involved in contact-dependent secretion, virulence, and resistance to antifungal compounds (43), and two others that were confirmed to be absent in Ma324 and Ma443 genomic DNA (Fig. 5).

Nineteen genes encoding proteins involved in lipid, carbohydrate, and amino acid metabolism were also divergent. Southern analysis confirmed that both Ma324 and Ma443 lacked genes encoding extracellular 3-ketosteroid 1-dehydrogenase (CN809570), squalene-hopene cyclase (CN808855), and cytochrome P450 monoxygenase (CN808662), all of which are involved in lipid metabolism, and carbohydrate glycosyl hydrolase (CN808813) and short chain dehydrogenase CN809303 (involved in carbohydrate metabolism) (Fig. 5A). The latter two were confirmed to be absent in Ma324 and Ma443 genomic DNA (Fig. 5).
Ma2575 during penetration of host cuticle (36) and absent from published fungal genomes (21). Southern blot analysis confirmed its absence in both Ma443 and Ma324 (Fig. 5D), suggesting that this gene is highly expendable and multiple lineages have independently lost it. An aflatoxin biosynthesis ketoreductase (CN808727) involved in the biosynthesis of aflatoxins by \textit{Aspergillus parasiticus} (44) was absent in Ma324 (Fig. 5). EST AJ273858, a Ma2575 homolog (7.9/10 of yeast aminopeptidase yscIII, had diverged beyond hybridization in Ma443 but was present in Ma324. The yeast enzyme is a vacuolar \textit{Y}-aminopeptidase with a viable null mutant that cannot hydrolyze Lys-Ala (19).

A Ma2575 hydrophobin (AJ274156) involved in cell wall structure and nonspecific adhesion to hydrophobic cuticle surfaces (40) showed only 38.9% sequence identity to its counterpart in Ma324 (BQ143508) according to CLUSTAL W alignment analysis. Several other cell wall proteins were also highly divergent, including glycosphatidylinositol-anchored cell wall beta-1,3-endoglucanase (AJ273279), which is important for cell wall stability (32), mixed-linked glucanase precursor MLG1 (CN808527), cell wall synthesis protein (CN808518), cell wall protein (CN808796), putative endochitinase CHI2 (CN808888), and an extensin-like protein (CN808213).

Ten of the transposable elements in Ma2575, including Restless-like transposase (AJ274202), polyprotein (AJ272783 and AJ274240), transposases (AJ274329, AJ272685, AJ273458, CN808708, and CN808808), reverse transcriptase (CN809546), and Gag-like polyprotein (AJ274338), either lack homologs in the other strains or they are highly divergent (Fig. 6). All were absent in Ma324. However, a transposase (CN808708) and Gag-like polyprotein (AJ274338) that each hybridized to four bands with Ma2575 DNA were highly redundant in Ma443 (Fig. 6A). These findings are in agreement with the array data and suggest that these sequences had multiplied in the Ma443 genome.

Thirty Ma324 sequences were also arrayed with the Ma2575 sequences and employed in dye swap experiments. These sequences included CN808542, similar (1 × 10^{-33}) to an endoglucanase B from \textit{Aspergillus kawachi}, and
The central strategy of this work was to examine pathogen genome evolution and host range usage by confining the comparisons within a single species while exploring adaptive radiation within this species as far as possible. *M. anisopliae* is a particularly good model system for studying evolutionary processes because it consists of strains that in terms of developmental processes are almost indistinguishable from each other but that differ dramatically in host range and possibly saprophytic competence. Given that specialization has occurred many times in *M. anisopliae*, this organism provides an unusual opportunity to study a species containing a large number of independently evolved models of adaptation and response. These comparisons provide a novel perspective on the evolution and strategies of highly specialized fungi. As a radiating species, its natural molecular variation offers the chance of finding processes of both adaptive change and phylogenetic differentiation still in operation, even in intermediate states.

We used PCR-amplified cDNA, as their longer sequences are better than short oligonucleotides for heterologous gene expression studies. The Ma2575 sequences we arrayed are full length, or nearly so, and most are 600 to 800 bp long. For genes encoding secreted products (hydrophobins, subtilisins, chitinases, etc.), nucleotide identities between orthologs in Ma324 and Ma2575 range from 93% to 98%, with the most closely matching sequences at functional domains (3, 17, 37). The findings presented in this study reinforced these data, showing that ~6.7% of Ma2575 genes were absent or highly divergent in Ma324. We may have underestimated the level of functionally divergent genes in different lineages, because our ability to detect divergence or inactivation of genes relies on sequence divergence or deletion of the locus preventing hybridization with the probe on the microarray. However, mitigating this consideration is that a small amount of sequence divergence may change hybridization intensity. Also, for genes facilitating an opportunistic life-style, we are confident that the arrays included loci required for living in multiple habitats. That is because the libraries were created from a strain with a broad host range and the arrayed genes included those expressed when the organism lives saprophytically (46). It is likely, given the reduced diet breadth of specialized lineages (40), that these genes will be represented in any strains undergoing degradation. Thus, our experiments have a high probability of providing a picture of the features characterizing specialized and generalized fungal pathogen populations.

The evidence for divergence of genes in Ma324 suggests a potential role for specific gene loss in the emergence of some of the differences between strains in diet breadth and host range. Although Ma324 is the most divergent strain from Ma2575, other specialists also show reduced diet breadth and loss of toxins (41). Degenerative changes occur in bacteria that are obligate pathogens because some genes are no longer needed or possibly because specialization reduces effective population size, which increases fixation of deleterious mutations (28). However, gene loss has also been proposed as an important force driving the evolution of recently evolved novel lineages (29).

The most obvious categories of genes expected to undergo degradation or deletion in a specialized pathogen will be those
TABLE 3. *M. anisopliae* var. *anisopliae* Ma2575 genes predicted to be of low similarity (subgroup 3) in the genome of *M. anisopliae* var. *acridum* Ma324 based on CGH analysis

Category and gene identifier	Putative or known function	Best match	Closest relationship	E-value
Transposable elements				
CN808708	Transposase	AAB63315	Botryotinia fuckeliana	7.0E-146
AJ274338	Gag-like polyprotein	CA96388	Fusarium poae	6.0E-07
AJ274202	Restless-like transposase	AAK16925	Nectria haematococca	200E-13
AJ272685	Transposase	AAV28708	Fusarium oxysporum	5.0E-13
AJ273458	Transposase	AAV28708	Fusarium oxysporum	2.0E-09
CN809546	Reverse transcriptase	ABC24970	Monascus pilosus	4.0E-34
AJ272783	Polyprotein	CAB91877	Phaeosphaeria nodorum	5.0E-165
AJ273429	Transposase	AAV28708	Fusarium oxysporum	6.0E-33
AJ274240	Polyprotein	CAB91877	Phaeosphaeria nodorum	1.0E-22
CN808808	Transposase-like protein	BAA32244	Fusarium oxysporum	7.0E-39
Stress response and defense				
Stress response				
AJ273858	Ankyrin repeat protein	EDP48589	Aspergillus fumigatus	4.0E-42
CN809313	Ice nucleation protein	AAQ14297	Gibberella acuminata	4.0E-78
CN808429	Integral membrane protein, Mpv17/PMP22 family	XP_748225	Aspergillus fumigatus	3.0E-49
CN808677	Cell wall integrity and stress response component 4; Wsc4p	XP_011835	Saccharomyces cerevisiae	2.0E-10
Detoxification				
CN808854	Flavin-binding monoxygenase-like protein	XP747888	Aspergillus fumigatus	8.0E-121
CN808382	Pyridine nucleotide-disulfide oxidoreductase	XP001272526	Aspergillus clavatuse	1.0E-161
AJ273280	ABC transporter	AAF29805	Emericella nidulans	1.0E-14
Secondary metabolites				
CN809217	Cytochrome P450	AAK33073	Fusarium sporotrichioides	3.0E-138
CN808619	Polyketide synthase	AAR90254	Botryotinia fuckeliana	1.0E-66
CN808727	Aflatoxin biosynthesis ketoreductase NOR-1	Q00278	Aspergillus parasiticus	1.0E-24
Cell structure and function				
Cell wall protein	Related to mixed-linked glucanase precursor MLG1	CAV8654	Neurospora crassa	1.0E-37
CN808796	Cell wall protein	BAD01559	Aspergillus kawachii	8.0E-13
CN808518	Cell wall synthesis protein	BAC82484	Penicillium chrysogenum	1.0E-57
CN808888	Putative endochitinase CHI2	CAC07216	Metarhizium anisopliae	1.0E-137
AJ273279	GPI-anchored cell wall beta-1,3-endoglucanase EglC	XP00139526	Pyrenophora tritici-repentis	3.0E-70
CN808213	Extensin-like; with SH3 Src homology domain	NP594444	Schizosaccharomyces pombe	1.0E-15
AJ274156	Hydrophobin-like protein ssgA precursor	AAA33418	Metarhizium anisopliae	3.0E-50
Transport proteins				
CN809357	Transporter, putative	CAE47906	Aspergillus fumigatus	2.0E-32
CN808929	Related to NCE102 protein, nonclassical export membrane protein	CAD37009	Neurospora crassa	9.0E-25
CN808769	Adaptn-car-binding coat-associated protein	DAA01434	Mus musculus	5.0E-16
Signaling				
AJ273356	Putative mitogen-activated protein kinase kinase 2	CAC07966	Leishmania mexicana	2.0E-17
AJ273657	SRPK1-like kinase	NP_013943	Saccharomyces cerevisiae	7.0E-12
CN808754	Serine kinase SRPK2	AAC05299	Homo sapiens	4.0E-21
Cell metabolism				
Lipid metabolism				
AJ274133	Esterase; STE1	CAB63910	Metarhizium anisopliae	3.9E-99
CN808855	Squalene-hopene cyclase	XP751356	Aspergillus fumigatus	1.0E-74
CN808662	Cytochrome P450 monoxygenase	AAF26280	Aspergillus parasiticus	8.0E-09
CN808333	Putative P450 monoxygenase	AAO73449	Fusarium sporotrichioides	1.0E-173
CN809570	Putative 3-ketosteroid-delta-1-dehydrogenase	NP_822771	Streptomyces avermitilis	3.0E-15
CN809534	Phosphatidylinositol phospholipase	CAB92911	Candida albicans	8.0E-23
CN808853	Lanoster synthase-related protein	XP_326612	Fusarium oxysporum	2.0E-22

Continued on following page
Category and gene identifier	Putative or known function	Best match	Closest relationship	E-value
Carbohydrate metabolism				
CN808775	Homocitrate synthase, mitochondrial precursor	Q12726	Yarrowia lipolytica	2.0E-76
CN808813	Glycosyl hydrolase	XP001273136	Aspergillus clavatus	1.0E-70
CN809153	Probable homoaconitase precursor	CAD71225	Neurospora crassa	3.0E-84
CN809303	Short chain dehydrogenase/reductase family protein-like	BAD09200	Orzyza sativa	2.0E-09
CN809316	n-Alkane-inducible cytochrome P450 gene (ALK1) essential for n-decane assimilation	BAA31433	Yarrowia lipolytica	2.0E-22
CN808940	CGI-49 protein, saccharopine dehydrogenase	AAD34044	Homo sapiens	1.0E-15
CN808435	Glucosidase	AAO34674	Gibberella zeae	7.0E-17
Amino acid metabolism				
AJ274200	Proline oxidase	CAC18796	Emericella nidulans	2.0E-42
CN808802	Glycine/ D-amino acid oxidases	ZP_00096788	Novosphingobium aromaticivorans	4.0E-14
CN808928	Glutamine synthetase (glutamate-ammonia ligase)	EAA69962	Gibberella zeae PH-1	1.0E-119
Nucleotide metabolism				
CN809258	Similar to rRNA intron-encoded homing endonuclease	XP_372959	Homo sapiens	1.0E-17
CN808663	Adenine phosphoribosyltransferase	AAA68956	Mastomys hildebrantii	4.0E-06
Energy metabolism				
CN808777	Putative oxidoreductase	AAL58884	Aspergillus nidulans	4.0E-32
CN809440	Cytochrome p450 (E-class), putative	CAF32039	Aspergillus fumigatus	5.0E-07
A1274160	Probable short chain dehydrogenase	AAG05038	Pseudomonas aeruginosa	1.0E-13
Protein metabolism				
Ribosomal protein				
CN809545	40S ribosomal protein S0	Q01291	Neurospora crassa	1.0E-110
Proteolysis				
AJ273081	Chymotrypsin	CAB44651	Metarhizium anisopliae	2.0E-51
CN809169	Glutathione S-transferase I	NP_588298	Schizosaccharomyces pombe	2.0E-42
Protein modification/				
targeting				
CN809424	Transferase family protein	XP_001266554	Neosartorya fischeri	2.0E-39
RNA metabolism				
CN809525	Probable transcription factor	T37601	Schizosaccharomyces pombe	7.0E-09
CN809374	Flavocytochrome b558 (NADPH oxidase gp91phox)	BAA95154	Tursiops truncatus	1.0E-07
CN808682	TPR (transcriptional repressor)-containing protein Mgq1	AAK58576	Ustilago maydis	1.0E-107
CN809621	Antisilencing protein, causes depression of silent loci when overexpressed; Asf1p	NP_012420	Saccharomyces cerevisiae	4.0E-42
Hypothetical proteins or				
orphans				
CN808665	Hypothetical protein FG02705	EAA67953	Gibberella zeae PH-1	5.0E-17
CN808811	Hypothetical protein FG02893	EAA72393	Gibberella zeae PH-1	2.0E-64
CN808833	Hypothetical protein MG04736	EAA50977	Magnaporthe grisea	6.0E-53
CN809268	Hypothetical protein FG10959	EAA74243	Gibberella zeae PH-1	2.0E-07
CN809246	Hypothetical protein FG11155	EAA75365	Gibberella zeae PH-1	1.0E-19
CN809389	Predicted protein	EAA51141	Magnaporthe grisea	3.0E-72
AJ274045	Hypothetical protein FG06966	EAA76426	Gibberella zeae PH-1	1.0E-43
CN809166	Hypothetical protein MG03337	EAA51742	Magnaporthe grisea	2.0E-22
CN808764	Hypothetical protein FG09539	EAA76655	Gibberella zeae PH-1	9.0E-12
CN808135	Hypothetical protein MG09337.4	EAA51320	Magnaporthe grisea	2.0E-58
AJ273482	Predicted protein	EAA68277	Gibberella zeae PH-1	4.0E-16
AJ272778	Hypothetical protein AN2582.2	EAA64687	Aspergillus nidulans	5.0E-22
CN809260	Hypothetical protein	XP84749	Gibberella zeae	2.0E-11
CN808381	Hypothetical protein MG06755.4	EAA55098	Magnaporthe grisea	6.0E-16

Continued on following page
required primarily to live in alternative hosts or as a saprophyte. One of the most intensely studied virulence attributes of *M. anisopliae* is the ability to secrete destruxins encoded by peptidyl synthases (33). The selective divergence or loss of toxin-encoding genes in the specialists suggests they confer considerable selectable functions for Ma2575 but either provide no benefits to Ma324 or are detrimental. It is probably significant that specialist strains kill their host slowly (8). Presumably, strains that are not specifically adapted to subvert/avoid/overcome the immune response of a particular insect are best served by achieving a rapid kill with toxins, whereas an adapted strain may optimize utilization of host nutrients and production of infectious propagules by growing within the living host. Production and transmission of propagules only occurs after host death, so if hosts are in the growing phase during infection, the reduced virulence resulting from loss of toxins may also allow for increased reproduction per host by allowing the pathogen to exploit the extra host tissue generated by the additional host growth (14). Consistent with this, genetic engineering to increase the speed of kill by *M. anisopliae* resulted in reduced sporulation on cadavers (30). Active toxins may therefore have placed a specific pathogen at a selective disadvantage that could drive inactivation of the gene. Loss-of-function mutations are presumably a one-way street and will be deleterious to a specialized strain if it returns to its ancestral habitat. It could also constrain opportunistic host switching.

From the likely function of genes that have been degraded (or silenced), we can assess their conceivable effects on host specialization, virulence, and/or expendability for virulence. However, for a given gene, this is only a hypothesis and needs separate experimental support. A direct approach is through examination of genotype-phenotype correlations. Consistent with our array results, Ma2575 has several peptide synthases and produces destruxins A, B, and E, while strain Ma297 only produces destruxin A (2). Likewise, destruxins do not play a role in the pathogenesis of Ma324 (35). Specificity, or lack of it, has always been an issue with *M. anisopliae* (26). Instances where generalist strains are closely related to specialists suggest that host range can be substantially altered in a short period of evolutionary time (40). It is possible therefore that

TABLE 3—Continued

Category and gene identifier	Putative or known function	Best match	Closest relationship	E-value
CN809340	Hypothetical protein FG02946	EAA71001	Gibberella zeae PH-1	3.0E-29
CN809111	Putative membrane protein	CAB65565	Streptomyces coelicolor	1.0E-09
CN808278	Hypothetical protein FG00492	EAA68724	Gibberella zeae PH-1	4.0E-12
CN808208	Hypothetical protein FG09877	EAA70103	Gibberella zeae PH-1	3.0E-07
CN809490	Hypothetical protein AN9016.2	EAA64348	Aspergillus nidulans	2.0E-73
CN809544	Hypothetical protein AN3935.2	EAA59244	Aspergillus nidulans	4.0E-09
CN809615	Orphan			
AJ274328	Orphan			
CN808763	Orphan			
CN808668	Orphan			
CN808749	Orphan			
CN808778	Orphan			
CN808897	Orphan			
CN808997	Orphan			
CN809648	Orphan			
CN809229	Orphan			
AJ272938	Orphan			
CN808540	Orphan			
CN808973	Orphan			
CN809674	Orphan			
CN809028	Orphan			
CN808529	Orphan			
AJ273884	Orphan			
CN809072	Orphan			
CN809454	Orphan			
CN809898	Orphan			
CN808807	Orphan			
CN809563	Orphan			
CN809452	Orphan			
CN808412	Orphan			
CN808880	Orphan			
CN809004	Orphan			
AJ273764	Orphan			
AJ272837	Orphan			
AJ272822	Orphan			
AJ274006	Orphan			
AJ273965	Orphan			
CN809633	Orphan			
CN808693	Orphan			
CN809144	Orphan			
AJ273455	Orphan			

* Gene identifiers refer to the accession number of the EST in the NCBI database.
some imported specialized biocontrol agents may have the potential to switch hosts in response to selection pressures in new habitats. What we lack is a means to predict when such evolution is, and is not, expected. An understanding of genetic changes that have enabled evolution of major host range changes in the past could help predict future evolutionary changes. For example, genomic degradation could reasonably be expected to reduce specialists future adaptive options. Confirmation of gene loss would therefore impact risk assessment issues.

This study throws light on the “mysterious abundance” of orphans in genomes (39). Only 35 out of 237 (15%) arrayed “Metarhizium-specific sequences” were in the highly divergent group 3. This suggests that 85% arose de novo in a common ancestor of Ma2575 and Ma324, presumably after it had already diverged from other pyrenomycetous fungi, given that those other fungi lack the sequences. Heterologous probes from different strains showed reduced signal strength for the same 35 orphans as Ma324 probes, suggesting that these have lost sequence similarities because of rapid evolution in Ma2575. They are unlikely to be pseudogenes, as they were identified from cDNAs, confirming active expression of mRNA (45).

Several Ma2575 retrotransposon genes were not detected in other strains, indicating that since their divergence Ma2575 may have acquired different mobile genetic elements. Conversely, there was an expansion in the number of a subset of insertion elements in Ma443 that hybridized to respective sequences from Ma2575. This has obvious implications for strain stability that are of importance when considering the commercial development of a strain and the possibility of alterations in virulence and host range.

This study shows that comparing multiple strains will provide an excellent framework for the analysis of pathogenesis and host specificity. Genetic variation is a powerful tool to study adaptation, and we expect future studies to address a number of basic yet poorly understood questions that span much of molecular evolution, including the following: what roles do changes in gene complement or expression profiles play in generating intraspecific differences? How do these differences correlate with metabolic and biosynthetic adaptations to specific hosts? What are the relative rates of different kinds of mutations and do these vary between strains? What are the mechanisms by which novel pathogens emerge with either wide or narrow host ranges? Are the same genes involved in the evolution and maintenance of specialization in different strains? What variables drive the functional divergence of gene variants between strains, e.g., does gene novelty correlate with life-style or lineage?

ACKNOWLEDGMENT

This work was supported by NSF grant MCB-0542904.

REFERENCES

1. Alta, R., Z. Fei, P. Payton, Y. Liu, S. L. Moore, P. Debbie, J. Cohn, M. D’Ascanzio, J. S. Gordon, J. K. C. Rose, G. Martin, S. D. Tankely, M. Bouzayan, M. M. Jahn, and J. Giovanni. 2004. ESTs, CDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J. 39:677–714.

2. Amiri-Besheli, B., B. Khambay, S. Cameron, M. L. Deadman, and T. M. Butt. 2008. Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol. Res. 104:447–452.

3. Bagga, S., S. E. Screen, and R. J. St. Leger. 2004. Reconstructing the diversification of subbasins in the pathogenic fungus Metarhizium anisopliae, Gene 324:159–169.

4. Bidochka, M. J., R. J. St. Leger, and D. W. Roberts. 1994. Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD).Curr. Genet. 25:107–113.

5. Bidochka, M. J., R. J. St. Leger, and D. W. Roberts. 1997. Mechanisms of entomopathogenic Deuteromycete infections in grasshoppers and locusts: an overview. Mem. Entomol. Soc. Can. 173:213–232.

6. Brown, D. W., S. P. McCormick, N. J. Alexander, R. H. Proctor, and A. E. Desjardins. 2001. A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet. Biol. 32:123–135.

7. Buckley, R. A. 2007. Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J. Exp. Biol. 209:1602–1606.

8. Charalay, A. K. 2003. Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv. Bot. Res. 40:241–321.

9. Cossins, A. R., and D. L. Crawford. 2005. Fish as models for environmental genomics. Nat. Rev. Genet. 6:324–332.

10. Dillon, R. J., and A. K Charnley. 1992. The fate of fungal spores in the insect gut, p. 129–150. In G. T. Cole and H. C. Hoch (ed.), The fungal spore and disease initiation in plants and animals. Plenum Press, New York, NY.

11. Dong, Y., J. D. Glasner, F. R. Blattner, and E. W. Triplett. 2001. Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Kuhniaea pseudomazae, 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl. Environ. Microbiology. 67:1911–1921.

12. Driver, F., R. J. Milner, and J. W. H. Trueman. 2000. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol. Res. 104:134–150.

13. Duda, T. F. J., and S. R. Palumbi. 1999. Developmental shifts and species selection in gastropods. Proc. Natl. Acad. Sci. USA 96:10272–10277.

14. Ewald, P. W. 1983. Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst. 14:465–485.

15. Fan, C., M. D. Vibransoviky, Y. Chen, and M. Y. Long. 2007. A microarray based genomic hybridization method for identification of new genes in plants: case analyses of Arabidopsis and Oryza. J. Integr. Plant Biol. 49:915–926.

16. Fargues, J. 1984. Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity, p. 90–110. In D.W. Roberts and J. R. Aist (ed.), Infection processes of fungi. The Rockefeller Foundation, New York, NY.

17. Freimoser, F. M., S. Screen, S. Bagga, G. Hu, and R. J. St. Leger. 2003. EST analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247.

18. Freimoser, F. M., G. Hu, and R. J. St. Leger. 2005. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–377.

19. Gaeuer, G., A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. Andre, A. P. Arkin, A. Astromoff, M. El-Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschschafer, K. D. Enlian, P. Flaherty, F. Fourny, D. J. Gardiner, M. Gerstein, D. L. Ginzinger, G. M. Godwin, J. H. Herrmann, S. Hempel, Z. Herman, D. F. Jaramillo, D. K. E. Kelly, S. L. Kelly, P. Kotter, D. LaBonte, D. C. Lamb, N. Lan, H. Liang, H. Liao, L. Ciu, L. Luo, M. Lussier, R. Mao, P. Menard, S. L. Ort, J. L. Revuelta, C. J. Roberts, M. Rose, Ross-Macdonald, R. Scherens, G. Schimmack, B. Shaffer, D. D. Shoemaker, S. Sookhai-Mahadeo, R. K. Storms, J. N. Strathern, G. Vallet, V. Volckaert, C. Y. Wang, T. R. Wang, J. Wu, Y. Shokkat, Y. Yang, G. Yan, E. Youngman, K. Yu, H. Bussey, J. J. Boeke, M. Snyder, P. Philippsen, R. W. Davis, and M. Johnston. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391.

20. Gresham, D., M. J. Dunham, and D. Botstein. 2008. Comparing whole genomes using DNA microarrays. Nat. Rev. Genet. 9:291–302.

21. Hu, G., and R. J. St. Leger. 2004. Reconstructing the diversification of serine proteases in fungi. J. Evol. Biol. 17:1204–1214.

22. Iwahashi, H., E. Kitagawa, Y. Suzuki, Y. Ueda, Y. Ishizawa, Y. Nobumasa, Y. Kuboki, H. Hosoda, and Y. Iwahashi. 2007. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and oligo DNA microarray. BMC Genomics 8:95. doi:10.1186/1471-2164-8-95.

23. Ji, W., W. Zhou, K. Gregg, N. Yu, S. Davis, and S. Davis. 2004. A method for cross-species gene expression analysis with high density oligonucleotide arrays. Nucleic Acids Res. 32:e39. doi:10.1093/nar/gnh034.

24. Kassahn, K. S. 2008. Microarrays for comparative and ecological genomics: beyond single-species applications of array technologies. J. Fish Biol. 72:1073–1084.

25. Kilner, W. A., R. T. Sullivan, B. H. Carlson, and J. W. Thomas. 2005. Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates. Genome Res. 15:166–173.
26. Michalakis, Y., and F. Renaud. 2005. Fungal allies enlisted. Nature 435:891–893.
27. Moran, G., C. Stokes, S. Thewes, B. Hube, D. C. Coleman, and D. Sullivan. 2004. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150:3363–3382.
28. Moran, N. A. 2003. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Opin. Microbiol. 6:512–518.
29. Olson, M. V. 1999. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64:18–23.
30. Pava-Ripoll, M., F. J. Posada, B. Momen, C. Wang, and R. J. St. Leger. 2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J. Invertebr. Pathol. 99:220–226.
31. Renn, S. C. P., N. Aubin-Horth, and H. A. Hofmann. 2004. Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 5:42. doi:10.1186/1471-2164-5-42.
32. Riquelme, M., C. G. Reynaga-Pena, G. Gierz, and S. Bartnicki-Garcia. 1998. What determines growth direction in fungal hyphae? Fungal Genet. Biol. 24:101–109.
33. Roberts, D. W., and R. J. St. Leger. 2004. Metarhizium spp. Cosmopolitan insect-pathogenic fungi: mycological aspects. Adv. Appl. Microbiol. 54:1–70.
34. Rodriguez, C. M. L., and B. C. E. Gongora. 2005. Transformation of Beauveria bassiana Bb9205 with pr1A, pr1J and ste1 genes of Metarhizium anisopliae and evaluation of the pathogenicity on the coffee berry borer. Rev. Colomb. Entomol. 31:51–58.
35. Samuels, R. I., A. K. Charnley, and S. E. Reynolds. 1988. The role of destruxins in the pathogenicity of 3 strains of Metarhizium anisopliae for the tobacco hornworm, Manduca sexta. Mycropathologia 104:51–58.
36. Screen, S. T., and R. J. St. Leger. 2000. Cloning, expression and substrate specificity of a fungal chymotrypsin: evidence for lateral transfer from an actinomycete bacterium. J. Biol. Chem. 275:6689–6694.
37. Screen, S. E., G. Hu, and R. J. St. Leger. 2001. Transformants of Metarhizium anisopliae var. anisopliae overexpressing chitinase from Metarhizium anisopliae var. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J. Invertebr. Pathol. 78:260–266.
38. Shiu, S. H., and J. O. Borevitz. 2008. The next generation of microarray research: applications in evolutionary and ecological genomics. Heredity 100:141–149.
39. Stiew, N., and D. Fischer. 2004. Structural biology sheds light on the puzzle of genomic orphans. J. Mol. Biol. 342:369–373.
40. St. Leger, R. J., B. May, L. Allee, D. C. Frank, D. W. Roberts, and R. C. Staples. 1992. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 60:89–101.
41. St. Leger, R. J., D. W. Roberts, and R. C. Staples. 1992. Molecular cloning and regulatory analysis of the cuticle-degrading protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur. J. Biochem. 204:991–1001.
42. St. Leger, R. J., M. J. Bidochka, and D. W. Roberts. 1994. Germination triggers of Metarhizium anisopliae. Microbiology 140:1651–1660.
43. Theiss, S., M. Kretschmar, T. Nitcherlein, H. Hof, N. Agabian, J. Hacker, and G. A. Kohler. 2002. Functional analysis of a vacuolar ABC transporter in wild-type Candida albicans reveals its involvement in virulence. Mol. Microbiol. 43:571–584.
44. Trail, F., P. K. Chang, J. Cary, and J. E. Linz. 1994. Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl. Environ. Microbiol. 60:4078–4085.
45. Wang, C., and R. J. St. Leger. 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. J. Invertebr. Pathol. 60:61–74.
46. Wang, C., G. Hu, and R. J. St. Leger. 2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet. Biol. 42:704–718.
47. Wang, S., S. Miao, W. Zhao, B. Huang, M. Fan, Z. Li, and Y. Huang. 2005. Genetic diversity and population structure among strains of the entomopathogenic fungus Beauveria bassiana, as revealed by inter-simple sequence repeats (ISSR). Mycol. Res. 109:1364–1372.
48. Xu, W., S. Bok, A. Decker, S. M. Paquette, R. Feyereisen, and D. W. Galbraith. 2001. Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272:61–74.