Colon Cancer Prevention through Probiotics: An Overview

Korada Siva Kumar¹, Nagendra Sastry², Himabindu Polaki³ and Vijendra Mishra⁴**

¹Department of Basic and Applied Sciences and Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Haryana, India
²Department of Biochemistry/Bioinformatics, School of Life Sciences, Institute of Science, GITAM University, Vishakhapatnam, India

Abstract

Probiotics are live microorganisms which when administered in adequate amount confer a health benefit on the host. Beneficial aspects of probiotics include alleviation of lactose intolerance, control of diarrhoea, urogenital-infection, reduction in cholesterol level and relief from irritable bowel syndrome, antioxidant potential, and pathogen inhibition. These days research is focussing on probiotics usage in colon cancer prevention because of its positive outcomes. Scientific evidences indicate a strong association between diet, lifestyle, and changes in gut microflora composition which may initiate the onset of colon cancer. Probiotic usage in colon cancer prevention is a new direction of research and most of the studies related to colon cancer prevention are still unclear and affects are in observed form, so confirmation studies are needed in this respective area and also there is a need to standardize methodology. This review presents information about mechanism of different probiotic actions, factors contributing colon cancer risks and how probiotics are helpful in preventing colon cancer with supporting scientific based evidence and various experimental studies.

Keywords: Probiotics; Colon cancer; Colon cancer risk; Cancer prevention

Introduction

Trillions of bacteria inhabit human body and these organisms distributed at specific sites, form complex communities on the skin, mucosal surfaces, but the largest group is found in the colon (10³ microorganisms g⁻¹ gut content). Colonic resident micro flora contributes to about 95% of the cells within the body making the colon a very metabolically active organ. Scientific evidence support that the eukaryotic host has co-evolved with their symbiont in a mutualistic relationship for their nutritional benefits from each partner. Microbes in the gut exert a significant effect on host biochemistry such as oxidation-reduction potential of luminal contents, enzymatic activity of intestinal contents, host physiology, short chain fatty acid production in the lumen, host immunology and modification of host-synthesized molecules [1-5]. There is an established association between existing microbiota and intestinal function for maintaining of homeostasis, building of balanced immunity. Any microbial alterations may lead to increased chances of the disease by mean of immune function disturbances [6]. Genetic and environmental factors also disrupt the symbiotic interaction by altering the microbial composition, distribution and the metabolic activity which may result in dysbiosis, a contributing factor for the onset and progression of several chronic diseases including cancer. Intertindividual variations of microbiota of host are associated with each host genetics and environmental factors like diet, physical activity, stress, smoking, drugs, illness, and antibiotics [7-10]. However these organisms interact with the host at multiple levels to maintain its normal functions. Disruptions in this complex ecosystem crosstalk result in physiological changes associated with colorectal (colon+rectum) tumour genesis as well as cell proliferation, programmed cell death process and immune responses [11]. Evidences have showed that modulation of the host gut microbial environment by using probiotics, (Microbial cell preparations or components of microbial cells) through ingestion or administration is a protective approach for proper maintaining of healthy gut micro-biota and also reduce the development of colon cancer risk [11-14]. In 400 BC, Hippocrates mentioned the role of the human gut in disease through statement’s death sits in the bowel’ [15]. Again after approximately 2000 years later, Elie Metchnikoff, by observing longevity in Bulgarian peasants, extolled the virtues of consuming fermented dairy products. In 1907, he established scientific basis for the health benefit of lactic acid bacteria in his book “The Prolongation of life” printed in 1907. He declared that some of the bacterial organisms present within the bowel served as a source of ‘toxicans’, harmful substances that contributed to sickness and aging. He also suggested that “Intestinal microbial dependence on the food makes it attainable to adopt measures to modify the flora in our bodies and to exchange the harmful microbes by beneficial microbes”. Lactic acid fermented foods together with other cultured dairy products became the part of human diet for thousands of years and considered to have beneficial effects [16-17]. Probiotic term has undergone number of variations in its definitions; the present accepted definition for probiotic is given by Joint FAO/WHO working group 2002 [12] and it is the most accepted one. According to it probiotics are defined as “Live micro-organism which when administered in adequate amount confer a health benefit on the host”.

Recently at International Scientific Association for Probiotics and Prebiotics (ISAPP) [18] consensus meeting on the scope and appropriate use of the probiotic term definition was worded with grammatical correction. According to it probiotics are “Live micro-organism that, when administered in adequate amounts, confer a health benefit on the host”.

*Corresponding author: Vijendra Mishra, Department of Basic and Applied Sciences, National Institute Of Food Technology Entrepreneurship and Management (NIFTEM), Plot No. 97, Sector 56, HSIIDC Industrial Estate, Kundli, District Sonepat, Haryana-131028, India, Tel: 09034016639; E-mail: vijendramishra.niftem@gmail.com

Received January 05, 2015; Accepted February 23, 2015; Published February 25, 2015

Citation: Kumar KS, Sastry N, Polaki H, Mishra V (2015) Colon Cancer Prevention through Probiotics: An Overview. J Cancer Sci Ther 7: 081-092. doi:10.4172/1948-5956.1000329

Copyright: © 2015 Kumar KS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Delivery of probiotics is considered an important issue. Though it can be delivered in form of capsules, tablets; generally a food product is considered best delivery vehicle for a probiotic microorganism to reach the GI tract of the human body in a live and active form. Upon consumption of probiotics in a range of 10^6 to 10^11 cfu/day could be able to reduce the incidence as well as severity of some illnesses that associated with the intestine [19]. Probiotics like Lactobacilli and Bifidobacteria are considered as most successful probiotics having a long history of safe usage. In addition to this, these probiotics fall in the category of Generally Recognized as Safe (GRAS) because they are able to stay in the human body without causing harm [20]. Organisms from different genera like Lactobacilli, Bifidobacterium, Pedicoccus Leuconostoc, Enterococcus and yeast such as Saccharomyces boulardii are recognised as probiotics [21]. Beneficial effects of probiotics include alleviation of lactose intolerance [22], inhibition of intestinal pathogens [23], control of diarrhoea [24]. Other effects studied include reduction in cholesterol level [25], urogenital infections [26], relief of irritable bowel syndrome [27], improving mineral absorption [28], enhanced immune response [29], and anti-mutagenic and anti-carcinogenic activity [30]. The aim of this paper is to present information about risk factors of colon carcinogenesis, mechanism of different probiotic actions and how probiotics are helpful in preventing colon cancer with their supporting scientific based evidence and various experimental studies etc.

Factors Contributing Colon Cancer Risk: Response

Cancer has become a globe public health problem. Worldwide colon cancer strikes more than 1 million people annually and is responsible for death of more than 500,000 person [31]. According to World Health Organization (WHO), by 2030 there will be about 17 million deaths, 27 million new cases of cancer and 75 million people living with the disease. When compared to the other types of cancers, colon cancer is found to be the most common death cause [32,33]. Various factors that may increase colon cancer risks includes (Figure 1 and 2):

![Figure 1: Mechanism of different probiotic action](image-url)
Diet

Various studies show that diet contributes to 20%-42% in causing human cancers and for colon cancer it is about 50%-90% [34]. The very fact that 90%-95% cancers are due to lifestyle factors, environmental toxins, and infections and the rest 5% to 10% are due to genetics these factors provide a major chance for the prevention of colon carcinoma [35]. Pyrolysis products of cooked food can also initiate colon cancer [36]. Diets low in whole grain, vitamin D, fruits, vegetables, calcium, fibre and omega-3 fatty acids, and diet rich in red and processed meats, refined starches, sugar, and saturated and trans-fatty acids are closely related to an increased risk for colon cancer [37,38]. Interestingly intake of high fat favours the formation of bile acids (BA) into the duodenum and then activates bacterial 7-alpha-dehydroxylase to converts it into secondary bile acids. In several animal model studies it was observed that these bile acids, deoxycholic acid and lithocholic acids are able to promote colon carcinogenesis. Experimental studies also reported that addition of cholic acid to the rats diet, increased proliferation in colonic epithelial cells was observed [39,40]. Hence it has been hypothesized that there is a association between the diet and colon cancer, as diet has influence on composition and metabolism, creating relevant factors as a base of the disease [41].

Aging

Aging is additionally one of the factor connected with an increased risk of colon cancer [42]. Evidences exploring the results of aging on the faecal microflora have revealed that over 70 years there is a decrease in the count of Bifidobacteria and Lactobacillus and increases in clostridia occur [43,44]. The modifications that occurs among microflora are thought about the result of dietary and activity changes as a results of age [45,46]. These bacteriological changes have been reported to often coincide with an rise in gastroenterological infections [47] and gut cancers.

Genomic instability

Colon cancer development is a multistage process and it involves accumulation of mutations in certain tumour suppressor genes and proto-oncogenes leading to cancer initiation [48]. The fundamental process associated is genomic instability and is related to the gene rearrangement or loss of DNA fragments, aneuploidy and loss of heterozygosis [49]. In addition, inactivation of tumor suppressor genes like APC, DCC, DPC4 and p53, along with the activation of oncogenes, of which the family of RAS genes play an important role in the malignancy appearance [50]. Adenomatous Polyposis Coli (APC) is considered as a tumor suppressor protein and it acts as an antagonist to the Wnt signalling pathway. Usually this pathway plays a key role in elevating colonocyte proliferation and suppressing caspase mediated cell death process in both humans and rodent models of experimentally induced colon carcinoma. Any gene defects in APC will usually cause an autosomal dominant premalignant disease called as Familial Adenomatous Polyposis (FAP). It is usually involved in growth to malignancy and inhibits programmed cell death process in colonocytes and thereby causes the initiation of the colon carcinogenesis [51-53].

Obesity

Now- a-day obesity has been established as a colon cancer risk factor [54]. Evidence shows that there is a strong relation between increased body mass index (BMI) and deaths related to the cancer. It is found that almost 14% of cancer death in men and 16-20% of cancer deaths in women were found to be due to obesity [55]. In humans, body mass index is some how proportional to the leptin levels and are raised in obese individuals. Leptin is the product of the ob (obese) gene, play a key role in energy expenditure. Since obesity is known to increase the risk of certain cancers, much effort has been directed at elucidating the possible role of leptin in cancer development [56-59]. However there is very less evidence for involvement of leptin in colon cancer in a clear-cut manner [60]. Leptin was shown to work as a mitogen for intestinal...
epithelial cells and furthermore decreased apoptotic cell death in a cancer cell line [61]. It has been shown to induce invasion of collagen gel by cell lines derived from colonic adenomas [62]. Furthermore leptin was also shown to extend the growth and proliferation of a colon cancer cell line, as proved by BrdU incorporation and c-fos expression [63].

Diabetes

Currently investigations are going on the link between gut and type 2 diabetes. Animal based models have established a relation between altered microbial composition to the development of diabetes, obesity and insulin resistance in the host system by several mechanisms like altered fatty acid metabolism, harvesting more energy from the diet and adipose tissue and liver composition, modulation of gut peptide YY and glucagon-like peptide (GLP)-1 secretion, lipopolysaccharide toll-like receptor-4 axis activation and increased inflammation [64]. In some studies they showed that obesity is the strongest independent determinants of insulin resistance and hyperinsulinaemia [65-68]. As the blood insulin levels increases, the levels of insulin-like growth factor binding protein-1 get decreases and it leading to increased levels of free insulin-like growth factor 1 (IGF-1). IGF-1 acts as a pro-carcinogen, each by decreasing cell death and promoting cell growth [69,70] IGF-1 is understood to be involved in the development, progression, and colon cancer metastasis [71,72].

Atherosclerosis and colon cancer link

Latest research in obesity noted that adipose tissue is considered as an active endocrine organ and they produce different kinds of the bioactive molecules characterized as adipokines [73,74]. It is well evident that as the obesity (adiposity) level increases, there is impairment in the levels of anti-inflammatory/adipokines expression, especially adiponectin (Adiponectin is a peptide with 244 amino-acids, secreted from adipose tissue) thereby it lead to an increased levels of pro-inflammatory as well as atherogenic adipokines. These discussed pro-inflammatory/atherogenic adipokines include Resistin, tumor necrosis factor (TNF-α), Interleukin-6, Macrophage Chemoattractant Protein (MCP) -1 etc. Therefore the aforementioned adipokines can able to contribute the initiation and progression of atherosclerosis in a number of ways, such as regulating the endothelial cell function (which is to be considered as an initial onset event in atherosclerosis), vascular inflammation and formation of plaques [75,76]. In addition, in another study it is noted that hypoadiponectinemia is closely concerned with inflammatory atherosclerosis signifying that to maintain the usual vascular wall in non-inflammatory state sufficient levels of adiponectin is needed [77]. Low levels of adiponectin also play a role in causing obesity linked malignancies risks which include endometrial, prostate, breast and more specifically colon cancer [78]. Evidences based studies supporting that adiponectin can inhibit colon and rectum cancer through the activation of adenosine monophosphate-activated protein kinase followed by mammalian target of rapamycin (mTOR) pathway. Any deficiency in adiponectin can contribute inflammation induced colon cancer [79,80].

Gut microbiota contribution

Intestine is composed of over 1000 different bacterial species and the microbial population is heterogeneous in nature. The microbial density within large intestine is 12-fold beyond that in the small intestine. So there is an estimated 12-fold increase in cancer risk in the large intestine compared with the small intestine [81]. It has been revealed that microflora resident in colonic region are able to convert harmless compounds into metabolites that causes inflammation or tumourigenisis [82]. The microflora in intestinal region can contribute to carcinogenesis by producing enzymes like β-glucosidase, β-glucuronidase, nitroreductase and azoreductase [83]. The most common pathogens associated with the production of β-glucuronidase are E.coli and Clostridium perfringens [84]. These faecal enzymes may hydrolyse gluconolactone, a compound that is needed to detoxify foreign compounds and produces cancer causing glycolcones in intestinal lumen [85].

Role of Probiotics in Colon Cancer Prevention

Research has been conducted to explore the role of probiotics in colon cancer prevention. How gut microbiota influence the development of colon cancer, its sensitive but nature gut micro biome contributes colon cancer through initiation of inflammation [94,95]. Researchers suggested that the prevention of colon cancer might occur through intervention of symbiotics (prebiotic+probiotic) that allow certain substantial changes in the gut micro biota [96]. According to Roberfroid [97] prebiotics are defined as “These are the non-digestible food ingredient that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improves host health.”

But recent and well accepted definition for prebiotic was agreed at the 2010 Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) [98]. According to it prebiotics are defined as “A dietary prebiotic is a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health.”

Upon fermentation of these prebiotics by beneficial microorganisms under anaerobic conditions they produce Short Chain Fatty-acids (SCFA) like butyrate, acetate, propionate of varying quantities. At the end, it results in a decrease in pH and thereby preventing overgrowth of pathogenic bacteria, which are sensitive in nature and it was observed broadly on in vitro studies. These short chain fatty acids usually act as a source of carbon for colonocytes and they carry out important metabolic activities like modulation of bioactive food components, vitamin synthesis by intestinal microbiota. Its function shapes the host intestinal anatomy and also gut mucosal immune system [99-101]. Among these short-chain fatty acids, butyrate is found to play a defensive role in DNA oxidative damage induced by H2O2. It may also decrease the altered cell proliferation and induce programmed cell death process in altered cells [102-105]. Evidences have shown that four probiotic microorganisms Lactobacillus salivarius (L.salivarius) FP25, L. salivarius FP35, Pedicoccus pentosaceus FP3 and Enterococcus faecium FP51 exhibited anti proliferative properties. The proposed mechanism was given to the synergic induction by directly adhering to colon cancer cells and triggering bio production of butyric and propionic short chain fatty acids [106]. In one clinical trial, that underwent a 12 week double-blind placebo-controlled, randomized test with 37 colon cancer patients and 43 polypectomized patients, a symbiotic composition of (Lactobacillus rhamnosus GG, Bifidobacterium lactis Blb12+oligofructose enriched inulin) resulted in an increase of Lactobacilli & Bifidobacteria and decrease of C. perfringens in the gut microbiota. Further, the production of interferon (IFN) -γ was increased by peripheral blood mononuclear cells (PBMC) and reduced colorectal proliferation was observed in the cancer patients [107]. Animal and human studies showed that fructooligosaccharides (FOS) are able to act as good substrates for the bifidobacteria spp because of β-fructosidase activity and for E. coli and C. perfringens they act as bad substrates. FOS feeding is also associated with a rise in population of lactobacilli and bifidobacteria and decreases
the population of pathogens such as *C. parfrigens*. The reason behind is bifidobacteria can able to produce acetic acid and lactic acid will lead to decreases in intestinal pH, which restricts further the proliferation of pathogens and other putativeactive bacteria which are concerned with faecal enzyme like nitroreductase, decarboxylase etc in stools with a deep impact on the metabolism of carcinogenic substances like N-nitroso compounds, phenolic products of tyrosine and tryptophan and metabolites of biliary steroids etc. Hence FOS can able to enhance bifidobacteria and could act as a protective factor against colon cancer [108]. In another study rats associated with human feaces fed with active diet containing symbiotic mixture of dietary inulin (5%/w/w) and *Bifidobacterium longum*; and they observed 55% lower fecal β-glucuronidase activity and 30% lower ammonia concentrations, when compared to the control rats [109]. In addition, some strains of Lactobacillus especially *Lactobacillis casei strain shirota* were shown to have anti-tumor effect, upon administration of Lcs intrapleurally into tumor bearing mice. It has been noted that they induce the production of cytokines like TNF-α (tumour necrosis factor-α), IL-1β (Interleukin-1β) and Interferon γ (Interferon-α) thereby tumour growth was inhibited and increased the survival rate [110]. Colon tumorigenesis is a process that involves activating mutations in proto-oncogenes as well as inactivating mutation in tumour suppressor genes like p53, Adenomatous Polyposis Coli (APC) gene. These genetic events lead to changes in signal transduction pathways which are involved in regulation of various processes like apoptosis, cell proliferation and differentiation. Many cell communication pathways are also associated with colon tumorigenesis like APC, Beta-catenin protein [111]. Probiotic studies have clearly shown that microencapsulated *Lactobacillus acidophilus* preparation upon oral administration at a range of (10^5-10^7)Cu/ml daily reduces the tumor size, multiplicity and cancer progression in mice model. This study showed that probiotic could be able to modulate the gene expression of APC in colonocytes [112]. Recent studies explored that *L.casei* and *L. rhamnusos GG* cell-free supernatants (CFS) are able to inhibit colon cancer cell invasion by influencing levels of the tight junction protein zona occludens-1 (ZO-1) and matrix metalloproteinase-9 (MMP-9) activity in cultured metastatic human colorectal carcinoma cells [113].

Coloncic regions of humans contain very diverse mixture of bile, mucus, desquamated epithelial tissue cells, various microorganisms and their fermentation products, undigested or unabsorbed food and their respective metabolic products like metals, salts, toxins, mutagens, carcinogens, and dissolved gases. It is assumed that enteric membrane is consistently challenged with diet- and other oxidants and carcinogens that are derived from bacterial source. Chronic exposure of such difficult conditions might then cause uncontrolled free radicals generation, building redox imbalance, and DNA damage, which can affect intestinal metabolic physiological conditions and thereby contribute cancer as an endpoint [114]. As it is know that cancer can initiate from the epithelial cells that line the bowel. These cells divide rapidly with a high metabolic rate and it might be responsible for increased oxidation of DNA [115]. Another hopeful approaches of preventing colon cancer is by decreasing the levels of H2O2 (hydrogen peroxide) as generally it involved in the development of various aspects of tumours like tumour progression,enhanced proliferation when compared to normal ones and increased spreading of cancer cells in colonic region. These types of processes can be modulated by increasing the levels of activity of catalase enzyme producing bacteria. If an adequate number of catalase enzyme producing bacteria proliferate in colonic region, then might be a chance of decreasing the colon cancer risk by increasing its antioxidant capacity and thereby decreases H2O2 levels in colonic region. Through this manner, it is possible to minimize the cancer cell growth and spread in colon. *Lactococcus lactis* is the potential strain which is involved in controlling colon cancer of such activity and experimentally proven in DMH induced murine model [122]. Another aspect of colon carcinogenesis might be due to association of bacterial enzymes like nitroreductase, β-glucuronidase, which are involved in transformation of pro-carcinogens into carcinogen [123]. Results in the experimental studies (a rat model study) show that upon supplementation of probiotic *L. acidophilus*, along with meat diet, which contain 72% meat, it is observed that there is a nearly 50% decrease in activities for faecal enzymes like β-glucuronidase and nitroreductase. Another research on *L. acidophilus* strain, through an experimental animal model study, also demonstrated that consumption of such strain leads to a decrease in faecal enzymatic activities like nitroreductase, azoreductase, and β-glucuronidase [124,125].

According to (Gorbach 2000) the suppression of bacterial enzyme activities like urease, β-glucuronidase, nitroreductase, hydrolase and tryptic activity was noted upon *Lactobacillis GG* administration [126].

It is well known that foodborne genotoxic compounds such as mycotoxins and plant glycosides or genotoxins created during food processing such as heterocyclic amines and polycyclic aromatic hydrocarbons are capable of expressing risk within the gut [127]. Mycotoxins, as an example, are carcinogenic fungal metabolites that contaminate cereals meant for human consumption and feed for animal consumption. Dairy probiotics like Propionibacteriea were shown to remove mycotoxins from aqueous solutions in vitro [128,129]. Dairy propionibacteriea were also shown to bind cyanotoxins like microcystin-LR and heavy metals like lead and cadmium [130,131]. Therefore ingestion of such probiotic propionibacterium might reduce bioavailability and absorption of these carcinogenic compounds, thus reducing cancer risk. Metabolic degradation of AFB1 by viable *L.rhamnusos GG* has been excluded as a possible binding mechanism, since heat- and acid-killed *L.rhamnusos GG* remove AFB1 even more effectively than viable bacteria [132]. The binding of carcinogenic aflatoxin B1 by *L.rhamnusos GG* has been reported. It has been proposed that components will bound covalently to peptidoglycan of viable bacteria even more effectively than viable bacteria. The binding of carcinogenic aflatoxin B1 by *L.rhamnusos GG* has been reported. It has been proposed that components will bound covalently to peptidoglycan of viable bacteria even more effectively than viable bacteria. The binding of carcinogenic aflatoxin B1 by *L.rhamnusos GG* has been reported. It has been proposed that components will bound covalently to peptidoglycan of viable bacteria even more effectively than viable bacteria.
was decreased. Upon addition of *B. longum* to the rat diet and thereby providing anti-tumor activity [137,138].

Probiotics like *Bifidobacterium* B12 and *L. plantarum*, have shown significant role in the anti-genotoxicity effect. Experimental evidence indicates that these two probiotics show decreased faecal water associated genotoxicity towards HT-29 cells, thereby proposing that above mentioned probiotics may be to prevent the initial stages of colon cancer [139]. In the context to the discussion, probiotics like *Bifidobacterium* spp, *L. helveticus, L. bulgaricus* and *S. thermophilus* have undergone an assay recently with HT29 colon epithelium cancer cell line and it was noticed that they or certain compounds produced by them interact with colonic epithelial cells directly and thereby growth rate is decreased and differentiation is induced [140]. Some studies observed that upon oral administration of *Lactobacillus salivarius* UCC118 in a placebo-controlled study, incidence of mucosal inflammation and colon cancer activity was decreased in IL-10 knockout mice by changing intestinal microflora, thereby it also decreased coliforms, enterococcus and *Clostridium perfringens* levels in the probiotic fed group [141]. Another possible reason for the onset of gut cancer risk is exposure of diet containing heterocyclic amines. In vitro studies demonstrating that certain strains of LAB are able to decrease food-borne carcinogens like heterocyclic amines (formed during cooking of meat at high temperature and is closely related to onset of colorectal cancer by means of producing byproducts upon fermentation by gut microbiota and thereby it causes DNA damage). Heterocyclic amines are found to have the greatest binding capacity. The extent of binding is dependent on mutagen and bacterial strain used and the binding was mostly due to the cation exchange mechanism. In addition some literature evidence shows that certain lactobacilli can degrade food-borne carcinogens like dimethylnitrosamine and diphenylnitrosamines [82,142,143]. With reference to the food borne carcinogen, whole cells of bifidobacteria have also been found to bind with the mutagen-carcinogen 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, thus removing it via feces physically and subsequently reducing its absorption in intestinal lumen [144]. It has been noticed that supplementation of fermented milk with *L. acidophilus* is able to decrease the count of faecal putrefactive bacteria like coliforms and increase the count of beneficial microorganisms like lactobacilli in the intestine [145] (Figure 3 and Table 1).

Bottlenecks/Future Challenges in Study

Most of the positive outcomes given by the probiotic treatment are in observed form under experimental conditions. Future challenges are needed in the direction of standradising methodology to study effects. Long term safety studies of probiotics is also required. FAO/WHO jointly had proposed a guideline for recently identified/ less reported strain with no history of safe human use and strains that are not in the category of GRAS. For safety demonstration they have to undergo various in vitro and in vivo assessments and it also include toxicity studies like acute, sub-acute and chronic studies are also suggested for all newly identified strains which when taken in adequate amounts. To study dosage optimisation is required and also study the variability of effects in different category of persons such as aged groups, immunocompromised persons. For clinical studies

![Figure 3: Probiotics role in prevention of colon cancer.](image-url)
Study	Probiotic used for study	Conclusion	Ref
In vivo human studies			
Undertook 9 healthy volunteers and they undergo intervention with standard yoghurt or probiotic yoghurt and then they were incubated with HT-29 clone19A human colon tumor cells from their collected fecal water after dietary intervention. Then they underwent DNA damage studies in colon cells.	L.acidophilus 145 and B. longum 913	Probiotic yoghurt intervention decreased DNA damage in colon cells in comparison to standard yoghurt	146
Conducted on 38 male subjects who underwent double-blind, randomized, two period crossover, placebo controlled study and they supplemented probiotic bacteria on daily dose for 4 weeks then they evaluated levels of harmful carcinogenic bacterial enzymes.	L. rhamnosus LC705 and P. freudenreichii ssp. shermanii JS	Probiotic administration significantly decreases the β-glucosidase activity with increased counts of Propionibacteria.	147
Performed cross over placebo controlled study with 3 healthy subjects and each volunteer is supplemented with 100(g/day of LKM512 yogurt or placebo for 2 weeks. Then they evaluated for faecal mutagenicity.	L. acidophilus	Probiotic yoghurt consumption significantly reduces the faecal mutagenicity in all 7 healthy subjects when compared to the placebo treatment	148
Undertook 11 subjects for their study and as a part of their diet, they’re given with fried beef patties for 3 days daily twice. In phase 1 they provided with ordinary Lactococcus fermented milk and thereafter in phase 2 they supplemented fermented milk containing Lactobacillus acidophilus and they determined excretion of urinary and fecal mutagenic activity.	L. rhamnosus LC-705 and Propionibacterium freudenreichii JS and they evaluated aflatoxin B1 level in fecal samples.	Probiotic mixture successfully decreased the aflatoxin levels in faecal samples.	149
Underwent 3 week study of nine healthy volunteers and they supplemented with fermented dairy product before, during, after containing a probiotic mix of 4 cultures. Finally, they assessed for fecal concentration of azoreductase, nitroreductase, β-glucuronidase, which are involved in colon risk.	L. acidophilus, B. bifidum, Streptococcus (Lactococcus lactis, L. lactis subsp. Cremoris L. casei	After 3 weeks of fermented dairy product consumption, there is a decreased nitroreductase activity is noted. However no changes is observed in others during experiment	150
Underwent 398 subjects and they divided randomly into 4 groups, then administered with Lactobacillus casei, wheat bran, both or neither. At the end of 4 years they undergo a process of colonoscopy for the presence or absence of new colonic polyps.	L. rhamnosus LC705 P. freudenreichii JS	Among all treatments, probiotic treatment was found to significantly decreases atypical colonic polyps.	151
Undertook F344 male rats and divided into 4 groups, then supplemented with: Group 1: 20% water. Group 2: supplemented with 30% non-fermented skim milk. Group 3: supplemented with 30% Bifidobacterium animals DN-173010-FM. Group 4: supplemented with 30% Streptococcus thermophilus DN-001 158-FM. After that, during 1 week they were provided experimental diet followed by HAA (heterocyclic aromatic amines) consumption for 7-8 weeks and then they evaluated aberrant crypt assessment, measuring HAA metabolism by enzymatic dosages, fecal mutagenicity by using 3d test and colonic lesion damage by comet assay.	B.animals DN-173-010-FM. Streptococcus thermophilus DN-001 158-FM	Aberrant crypts incidence was decreased compared to control diet. Decreased HAA metabolism was noticed and reduced colonic DNA lesions, faecal mutagenicity was also noticed.	152
Undertook F344 male rats and they divided into 3 groups Group 1: Fed with low fiber and high fat diet. Group 2: Fed with low fiber and high fat diet + DMH (1, 2-dimethylthiazole dichloro) treated. Group 3: Fed with low fiber and high fat diet + DMH + probiotic (3 × 10⁹ cfu/1.3g). Then throughout the experiment they maintain the diet and then they analyzed for a count of aberrant crypt foci and antioxidant system.	Bacillus polyfermenticus	Upon probiotic treatment aberrant crypt foci number was significantly decreased when compared to DMH treated group and also exhibited a protective effect on colon carcinogenesis process and on antioxidative system	153
Undertook 20 mice and they randomly divided into 6 groups Group 1: (Negative control), Mice given normal physiological saline (0.9% NaCl). Group 2: Mice supplemented with the Lactobacillus rhamnosus IMC501. Group 3: (Positive control), Mice given with PhIP(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine)-a food mutagen-+ physiological saline. Group 4: Lactobacillus rhamnosus IMC501 + PhIP. Afterwards they underwent comet assay for to evaluate DNA damage in colon	L.rhamnosus IMC501	Lactobacillus rhamnosus IMC501 exhibit protective effect on PhIP-induced DNA damage in colon cells	154
Undertook 24 male Wistar rats for a 32 week study and divided them randomly into 5 groups. Group1: (control group) supplemented with buffalo milk(BM) Group2: (DMH control group) injected with DMH. Group3: Administered with BM + PXc (picroxacin) in DMH. Group4: Supplemented with probiotic dahi+DMH. Group5: Supplemented with probiotic dahi+PXc+DMH. Afterwards rats were sacrificed at 5,16 and 32 week and then evaluated for Thiobarbituric acid reactive substances (TBARS)+ glutathione-S-transferase activity.	L.acidophilus LaVK2, L.plantarum Lp9.	Probiotic Dahi that is administered individually or in combination with PXc to experimental rats possesses a potent protective effect against DMH-induced colorectal carcinogenesis by lowering the levels of TBARS, faecal β-glucuronidase and by enhancing the activity GST in liver and colorectal tissues	155

Citation: Kumar KS, Sastry N, Polaki H, Mishra V (2015) Colon Cancer Prevention through Probiotics: An Overview. J Cancer Sci Ther 7: 081-092. doi:10.4172/1948-5956.1000329
and invivo studies validated clinical outcome measures are required and the clinical effects,safety and data of one probiotic strain cannot be extrapolated to another probiotic strain even though it is a closely related strain.

Conclusion

Gut microbiota play a central role in maintaining the healthy bowel and any microbial imbalance may show upsetting effects on host system. Probiotics are the live beneficial microorganism and these microbes can set a healthy environment for gut system. Various mechanisms elucidate the preventive role of probiotics in colon cancer risks. All of above scientific evidences and various in vitro and in vivo based studies indicate that use of probiotics may prevent the risk of colon cancer. But most of the studies related to prevention of colon cancer by using probiotics are unclear, further confirmation studies are needed and the observed effects cannot be generalised. Future research needs in terms of the underlying mechanism of action involved in each of the observed effects.

Acknowledgements

Korada Siva Kumar, Himabindu Polaki,Vijendra Mishra are thankful to NIFTEM for providing necessary facilities.

References

1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326: 1694-1697.
2. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95: 6578-6583.
3. Moran NA, McCutcheon JP, Nakaboachi A (2009) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 155-190.
4. Mason P (2001) Prebiotics and probiotics. The Pharmaceutical Journal 266: 118-121.
5. Tannock GW (1997) Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol 15: 270-274.
6. Brown K, DeCoffee D, Molcan E, Gibson DL (2012) Diet-induced Dysbiosis of the intestinal Microbiota and the Effects on immunity and Disease. Nutrients 4: 1095-1119.
7. van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, et al. (2009) Chemotherapy Treatment in Pediatric Patients with Acute Myeloid Leukemia Receiving Antimicrobial Prophylaxis Leads to a Relative Increase of Colonization with Potentially Pathogenic Bacteria in the Gut. Clinical Infectious Diseases 49: 262-270.
8. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.
9. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178-184.
10. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, et al. (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77: 2367-2375.
11. Zhong L, Zhang X, Covasa M (2014) Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol 20: 7878-7886.
12. FAOWHO (2002) Guidelines for the evaluation of probiotics in Food; Report of a joint Food and Agriculture Organisation of the United Nations/World Health Organisation Working Group on Drafting guidelines for the evaluation of probiotics in food.London,Ontario,Canada.
13. Salminen S, Ouwehand A, Benno Y, Lee YK (1999) Probiotics: how are they defined. Trends in Food Science &Technology 10: 107-110.
14. Sivieri K, Bedani R, Cavallini DCU, Rossi EA (2013) Probiotics and Intestinal Microbiota: Implications in Colon Cancer Prevention. Lactic Acid Bacteria - R & B for Food, Health and Livestock Properties. Dr. J. Marcelino Kongo (Ed.), ISBN: 89-953-51-0955-6, InTech.
15. Krostitis G (1979) Omnia opera Hippokratis-Apanta touIppokratouV. (in Ancient Greek and Latin) (ed) 1979, University of Athens, Athens, Greece.
16. Marini F, Radin S, Tenchini P, Manganelli F, et al. (1989) [Reinterpretation of the hepatic abscess, a new dimension in abdominal digestive surgery], Chir Ital 41: 79-116.
17. Metchnikoff E (1908) Optimistic studies New York: Putman’s Sons, pp: 161-183.
18. Colin H, Francisco G, Gregor R, Glenn RG, Daniel JM, et al. (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506-514.
changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 46: 196-205.
44. Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51: 448-454.
45. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiota in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70: 6113-6122.
46. Bartosch, S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and Environmental Microbiology 70: 3575-3581.
47. Saunier K, Doré J (2002) Gastrointestinal tract and the elderly: functional foods, gut microbiota and healthy ageing. Dig Liver Dis 34 Suppl 2: S19-24.
48. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759-767.
49. Rabeneck L, Davila JA, El-Serag HB (2003) Is there a true “shift” to the right colon in the incidence of colorectal cancer? Am J Gastroenterol 98: 1400-1409.
50. Hope ME, Hold GL, Kain R, El-Omar EM (2005) Sporadic colorectal cancer--role of the commensal microbiota. FEMS Microbiol Lett 244: 1-7.
51. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17: 45-51.
52. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, et al. (2004) An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J Nutr 134: 3233-3238.
53. Smith K, Bui TD, Poulsom R, Kaklamannis L, Williams G, et al. (1999) Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 81: 496-502.
54. Zeng H, Lazarova DL (2012) Obesity-related colon cancer--dietary factors and their mechanisms of anticancer action. Clin Exp Pharmacol Physiol 39: 161-167.
55. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348: 1625-1638.
56. Sauter ER, Garafalo C, Hewett J, Hewett JE, Morelli C, et al. (2004) Leptin expression in breast nipple aspirate fluid (NAF) and serum is influenced by body mass index (BMI) but not by the presence of breast cancer. Horm Metab Res 36: 336-340.
57. Attele AS, Shi ZQ, Yuan CS (2002) Leptin, gut, and food intake. Biochem Pharmacol 63: 1579-1583.
58. Garafalo C, Surnacaz E (2006) Leptin and cancer. J Cell Physiol 207: 12-22.
59. Sulkowska M, Golaszewska J, Winczczew A, Koda M, Bialtaizak M, et al. (2006) Leptin--from regulation of fat metabolism to stimulation of breast cancer growth. Pathol Oncol Res 12: 69-72.
60. Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardeña G, Papapetropoulos A, et al. (1998) Biological action of leptin as an angiogenic factor. Science 281: 1683-1686.
61. Rouel-Benziadj P, Aparicio T, Guilmeau S, Pouzet C, Descatoire V, et al. (2004) Leptin counteracts sodium butyrate-induced apoptosis in human colon cancer HT-29 cells via NF-kappaB signaling. J Biol Chem 279: 16495-16502.
62. Attoub S, Noe V, Pirola L, Bruyneel E, Chastre E, et al. (2000) Leptin promotes invasiveness of kidney and colon epithelial cells via phosphoinositide 3-kinase-, rho-, and rac-dependent signaling pathways. FASEB J 14: 2329-2338.
63. Liu Z, Uesaka T, Watanabe H, Kato N (2001) High fat diet enhances colon cell proliferation and carcinogenesis in rats by elevating serum leptin. Int J Oncol 19: 1099-1104.
64. Cani PD, Bibiloni R, Krauß C, Waget A, Neyrinck AM, et al. (2008) Changes in gut microbiota control metabolic endotoxaemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57: 1470-1481.
65. Björntorp P (1991) Metabolic implications of body fat distribution. Diabetes Care 14: 1132-1143.
66. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, et al. (1982) Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54: 254-260.

67. Krotkiewski M, Björntorp P, Sjöström L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162.

68. Donahue RP, Abbott RD (1987) Central obesity and coronary heart disease in men. Lancet 1: 821-824.

69. Powell DR, Suwanichkul A, Cubbage ML, DePaolis LA, Snuggs MB, et al. (1991) Insulin inhibits transcription of the human gene for insulin-like growth factor-binding protein-1. J Biol Chem 266: 18868-18876.

70. LeRoith D, Baserga R, Helman L, Roberts CT Jr (1995) Insulin-like growth factors and cancer. Ann Intern Med 122: 54-59.

71. Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B (1997) The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta 1332: F105-126.

72. Singh P, Rubin R (1993) Insulin-like growth factors and binding proteins in colon cancer. Gastroenterology 105: 1215-1237.

73. MacDougald OA, Burant CF (2007) The rapidly expanding family of adipokines. J Appl Physiol 103: 1739-1750.

74. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, et al. (2008) Adiponectin receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta 1776: 527–536.

75. Zhang H, Cui J, Zhang C (2010) Emerging role of adipokines as mediators in atherosclerosis. World J Cardiol 2: 370-376.

76. Jardé T, Callebre-Chézet F, Goncalves-Mendes N, Michellany F, Buechler C, et al. (2009) Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies. Endocr Relat Cancer 16: 1197-1210.

77. Lago F, Dieguez C, Gómez-Reino J, Guallito O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. CytoKine Growth Factor Rev 19: 313-325.

78. Zhang H, Cui J, Zhang C (2010) Emerging role of adipokines as mediators in atherosclerosis. World J Cardiol 2: 370-376.

79. Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, et al. (2009) Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol 34: 339-344.

80. Saxena A, Chumanovich A, Fletcher E, Larsen B, Lattwein K, et al. (2012) Adiponectin deficiency: Role in chronic inflammation induced colon cancer. Biochimica et Biophysica Acta 1822: 527–536.

81. Rolfe RD1 (2000) The role of probiotic cultures in the control of gastrointestinal dysbiosis and colon carcinogenesis: could colon cancer be considered a microbiota-mediated disease? In: R. Fuller & G. Perdigón (Eds.), Probiotics 3 Immunomodulation by the gut flora and probiotics. 2000. 69-114.

82. Huycke MM, Gaskins HR (2004) Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 229: 586-597.

83. Huycke GM, Gaskins HR (2004) Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 229: 586-597.

84. Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, et al. (2009) Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol 34: 339-344.

85. Marchetti C, Migliorati G, Moraca R, Riccardi C, Nicoletti I, et al. (1997) Deoxycholic acid and SCFA-induced apoptosis in the human tumor cell-line HT-29 and possible mechanisms. Cancer Lett 114: 215–229.

86. Saxena A, Chumanovich A, Fletcher E, Larsen B, Lattwein K, et al. (2012) Adiponectin deficiency: Role in chronic inflammation induced colon cancer. Biochimica et Biophysica Acta 1822: 527–536.

87. Lago F, Dieguez C, Gómez-Reino J, Guallito O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. CytoKine Growth Factor Rev 19: 313-325.

88. Rolfe RD1 (2000) The role of probiotic cultures in the control of gastrointestinal dysbiosis and colon carcinogenesis: could colon cancer be considered a microbiota-mediated disease? In: R. Fuller & G. Perdigón (Eds.), Probiotics 3 Immunomodulation by the gut flora and probiotics. 2000. 69-114.

89. Rolfe RD1 (2000) The role of probiotic cultures in the control of gastrointestinal dysbiosis and colon carcinogenesis: could colon cancer be considered a microbiota-mediated disease? In: R. Fuller & G. Perdigón (Eds.), Probiotics 3 Immunomodulation by the gut flora and probiotics. 2000. 69-114.

90. Sanders ME, Huis in’t Veld J (1999) Bringing a probiotic-containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 293-315.

91. Takeda K, Suzuki T, Shimada SI, Shida K, Nanno M, et al. (2006) Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirotia. Clin Exp Immunol 146: 109-115.

92. Pessi T, Sütäs Y, Saxelin M, Kallionen H, Isolauri E (1999) Antiproliferative effects of homogenates derived from five strains of candidate probiotic bacteria. Appl Environ Microbiol 65: 4725-4728.

93. Saarela M, Lähteenvouri L, Crittenden R, Salminen S, Mattila-Sandholm T (2002) Gut bacteria and health foods—the European perspective. Int J Food Microbiol 76: 99-117.

94. Zhu Y, Michelle Luo T, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309: 119-127.

95. Chambers WM, Warren BF, Jewell DP, Mortensen NJ (2005) Cancer surveillance in ulcerative colitis. Br J Surg 92: 928-936.

96. Roberfroid M1 (2007) Probiotics: the concept revisited. J Nutr 137: (5S): 8305-75S.

97. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of probiotics. J Nutr 125: 1401-1412.

98. Glenn RG, Karen PS, Robert AR, Kieran MT, Arland H, et al. (2011) Dietary probiotics: current status and new definition. IFIS Functional Foods Bulletin 7: 1-19.

99. Wollowski I, Rechekemmer G, Pool-Zobel BL (2001) Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr 73: 4515-4555.
113. Urbanska AM, Bhathena J, Martoni C, Prakash S (2009) Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min+/+) mice. Dig Dis Sci 54: 264-273.

114. Escamilla J, Lane MA, Maitin V (2012) Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer 64: 871-878.

115. Guz J, Foksimski M, Siomek A, Gackowski D, Rozalski R, et al. (2008) The relationship between 8-oxo-7,8-dihydro-2-deoxyguanosine level and extent of cytokine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutation Research 640: 170–173.

116. Foksimski M, Rozalski R, Guz J, Ruszkowska B, Szutkowska P, et al. (2004) Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med 37: 1449-1454.

117. Amanatidou A, Bennik MH, Gorris LG, Sijm EJ (2001) Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen. Arch Microbiol 176: 79-88.

118. Bruno-Bárcena JM, Andrus JM, Libby SL, Klaenhammer TR, Hassan HM (2004) Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol 70: 4702-4710.

119. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, et al. (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72: 215-224.

120. Lee J, Hwang KT, Heo MS, Lee JH, Park KY (2005) Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. J Med Food 8: 299-304.

121. de Moreno de LeBlanc A, LeBlanc JG, Perdigón G, Miyoshi A, Langella P, et al. (2008) Oral administration of a catalase-producing Lactococcus lactis strain GG modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18: 833-841.

122. Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT (2004) Expression of a heterologous manganese superoxide dismutase gene elevated oxygen. Arch Microbiol 176: 79-88.

123. Goldin BR, Gorbach SL (1976) The relationship between diet and rat fecal mutagen excretion in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. J Natl Cancer Inst 57: 371-375.

124. Reddy BS (1998) Effect of dietary fiber and Lactobacillus casei administration for prevention of potentially carcinogenic activity of human colon cancer. J Med Microbiol 57: 100-105.

125. Goldin BR (1990) Intestinal microflora: metabolism of drugs and carcinogens. Ann Med 22: 43-48.

126. Goldin BR, Gorbach SL (1976) The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J Natl Cancer Inst 57: 371-375.

127. Goldin BR, Gorbach SL (1980) Effect of Lactobacillus acidophilus dietary supplements on 2,3-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J Natl Cancer Inst 64: 263-265.

128. Goldin BR (2000) Probiotics and gastrointestinal health. Am J Gastroenterol 95: 52-4.

129. Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95: 290-299.

130. El-Nezami HS, Chrevidats A, Aurilia S, Salminen S, Mykkänen H (2002) Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit Contam 19: 680-686.

131. Niderkorn V, Boudra H, Morgavi DP (2006) Binding of Fusarium mycotoxins by plants. A pilot study. Br J Nutr 91: 925-932.

132. Oberreuther-Moschner DL, Jahreis G, Rechkemmer G, Pool-Zobel BL (2004) The effect of Lactobacillus acidophilus acidophilus 145 and Bifidobacterium longum 913 on potentially carcinogenic bacterial activity in healthy adult subjects. Mutat Res 535: 730-733.

133. O’Malley L, Feeney M, O’Halloran S, Murphy L, Kiely B, et al. (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15: 1219-1225.

134. Morotomi M, Mutai M (1986) In vitro binding of potential mutagenic pyrolsates to intestinal bacteria. J Natl Cancer Inst 77: 195-201.

135. Rowland IR, Grasso P (1975) Degradation of N-nitrosamines by intestinal bacteria. Appl Microbiol 29: 7-12.

136. Zhang XB, Ohta Y (1993) Microorganisms in the gastrointestinal tract of the rat prevent absorption of the mutagen-carcinogen 3-amino-4-dimethyl-5H-pyrido(4,3-b)indole. Can J Microbiol 39: 841-845.

137. Ayebo AD, Angelo IA, Shahani KM (1980) Effect of ingesting Lactobacillus acidophilus milk upon faecal flora and enzyme activity in humans. Milch Wissenschaft 35: 730-733.

138. Otsuka A, Osato M, Tsujimura T, Sugimura T, Inoue M, et al. (2000) The influence of Lactobacillus rhamnosus GG on oxLDL and aortic expression of inflammatory factors in ApoE knockout mice. Jpn J Pharmacol 83: 130-137.

139. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S (2008) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46: 160-165.

140. El-Nezami HS, Mykkänen H, Kankaanpää P, Suomalainen T, Salminen S, et al. (2000) The ability of a mixture of Lactobacillus and Propionibacterium to inhibit the fecal recovery of aflatoxin in healthy Egyptian volunteers: A pilot clinical study. Br J Nutr 83: 41-45.

141. El-Nezami HS, Mykkänen H, Kankaanpää P, Suomalainen T, Salminen S, et al. (2000) The ability of a mixture of Lactobacillus and Propionibacterium to inhibit the fecal recovery of aflatoxin in healthy Egyptian volunteers: A pilot clinical study. Br J Nutr 83: 41-45.

142. Marteau P, Pochart P, Flurié B, Pelletier P, Santos L, et al. (1999) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am J Clin Nutr 59: 535-542.

143. Ishikawa H, Akedo I, Otani T, Suzuki T, Nakamura T, et al. (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116: 762-767.

144. Tavan E, Cayuela C, Antoine JM, Trugnan G, Chaugier C, et al. (2002) Effects of dietary products on heterocyclic aromatic amines-induced rat colon carcinogenesis. Carcinogenesis 23: 477-483.

145. Park E, Jeon GI, Park JS, Paik HD (2007) A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rats. Food Addit Contam 23: 569-574.
155. Luca Dominici, Milena Villarini, Francesca Trotta, Ermanno Federici, Giovanni Cencini, et al. (2014) Protective Effects of Probiotic Lactobacillus rhamnosus IMC501 in Mice Treated with PhIP. J Microbiol Biotechnol 24: 371-378.

156. Dheeraj M, Vinod KK, Renu S, Dilip S (2013) Anticarcinogenic Effect of Probiotic Dahi and Piroxicam on DMH-induced Colorectal Carcinogenesis in Wistar Rats. American Journals of Cancer Therapy and Pharmacology 1: 17.

157. Reyniers JA (1959) Germfree Vertebrates: Present Status. Annals of the New York Academy of Sciences 78 : 3.

158. Foster JW, Slonczewski JL (2009) Microbiology, An Evolving Science. W.W.Norton: 871.

159. Cole CB, Fuller R, Carter SM (1989) Effect of Probiotic Supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on P-glucosidase and P-glucuronidase Activity in the Lower Gut of Rats Associated with a Human Faecal Flora. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2: 223-225 (1989).

160. Djouzi Z, Andrieux C, Degivry MC, Bouley C, Szyllt O (1997) The association of yogurt starters with Lactobacillus casei DN 114.001 in fermented milk alters the composition and metabolism of intestinal microflora in germ-free rats and in human flora-associated rats. J Nutr 127: 2260-2266.

161. Possemiers S, Verthé K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbial Ecol 49: 495-507.

162. de Wiele TV, Boon N, Possemiers S, Jacobs H, Verstraete W (2004) Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbial Ecol 51: 143-153.

163. De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J Nutr 130: 2599-2606.

164. Massimo M, Iris P, Pieter Van Da, Tom Van Dw, Sam P (2012) An in vitro technology platform to assess host-microbiota interactions in the gastrointestinal tract. Dietary Fibres & Pre/Probiotics 23: 8-11.

165. De Boever P, Wouters R, Verschaeye L, Berckmans P, Schoeters G, et al. (2000) Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol 53: 709-714.

166. Kim JU, Kim Y, Han K, Sejong OH, Whang KY, et al. (2006) The function of cell bound and cell released Exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotech 16: 939–945.