On nonimbeddability of topologically trivial domains and Thin Hartogs figures of $P_2(\mathbb{C})$ into Stein spaces

Frédéric Sarkis

abstract. A question of Poletsky was to know if there exists a thin Hartogs figure such that any of its neighborhoods cannot be imbedded in Stein spaces. In [2], Chirka and Ivashkovitch gave such an example arising in an open complex manifold. In this paper, we answer to the question of the existence of such a figure in compact surfaces by giving an example arising in $P_2(\mathbb{C})$. By smoothing it, we obtain a smooth (non-analytic) disc with boundary $\overline{D} \subset P_2(\mathbb{C})$ having the same property. Consequently, this disc intersects all algebraic curves of $P_2(\mathbb{C})$. Moreover, as \overline{D} is topologically trivial, it has a neighborhood diffeomorphic to the unit ball of \mathbb{C}^2. This gives a negative answer to the following question of S. Ivashkovitch: Is the property for a domain B of $P_2(\mathbb{C})$ to be diffeomorphic to the unit ball of \mathbb{C}^2 a sufficient condition for the existence of non-constant holomorphic functions on it?

1 Introduction

The understanding of the relationship between the theory of holomorphic functions on two-dimensional complex manifolds and their differential topology has been a subject of main interest, specially in the case of domains of $P_2(\mathbb{C})$. In [8] (see also [9] for a review on related questions), Nemirovski proved that if an embedded two-sphere in $P_2(\mathbb{C})$ is not homologous to zero, then every holomorphic function in a neighborhood of this sphere is constant.

2000 Mathematics Subject Classification: Primary:32Q55,32d10 Secondary: 32Q40, 32v10, 32v30

Key words : Thin Hartogs figure, projective space, imbeddability, Stein, topology
In [10] [11], we proved that if M is a real hypersurface of $P_2(\mathbb{C})$ dividing it into two domains Ω_1 and Ω_2, then any holomorphic function defined in a neighborhood of at least one of this two domains is constant. Thus topology can be an obstruction to the existence of non-constant holomorphic functions. In this paper, we prove that topology is not the only obstruction. Indeed, answering a question of S. Ivashkovitch, we prove that there exists a domain of $P_2(\mathbb{C})$ diffeomorphic to the unit ball of \mathbb{C}^2 which admits no non-constant holomorphic function.

A related question is the study of the embedding of thin Hartogs figures in Stein manifolds. Let Δ be the unit disc of \mathbb{C}, S^1 be its boundary, $[0,1] \subset \mathbb{C}$ be a segment in the real line and X be a complex surface. We call thin Hartogs figure the embedding of the the set $W = \Delta \times \{0\} \cup S^1 \times [0,1] \subset \mathbb{C}^2$ by any continuous imbedding $f : W \to X$ which is holomorphic on $\Delta \times \{0\}$. A question of Poletsky was to know if a thin Hartogs figure has always a neighborhood imbeddable in a Stein space. In [2], Chirka and Ivashkovitch gave a counter-example arising in an open complex manifold. We begin by answering the question of the existence of such figures in compact manifolds by giving a counter-example arising in $P_2(\mathbb{C})$.

This two problems are related because a thin Hartogs figure being topologically equivalent to the unit disc, it has a neighborhood homeomorphic to the unit ball of \mathbb{C}^2. More, by smoothing the thin Hartogs figure we constructed in $P_2(\mathbb{C})$, we obtain a smooth and closed disc with boundary $\overline{D} \subset P_2(\mathbb{C})$ such that any holomorphic function defined on any of its open neighborhoods is constant. This disc admitting neighborhoods diffeomorphic to the unit ball of \mathbb{C}^2, we obtain a negative answer to Ivashkovitch’s question.

For any algebraic curve C, $P_2(\mathbb{C}) \setminus C$ is Stein and cannot contain \overline{D}. Thus, \overline{D} intersects all algebraic curves of $P_2(\mathbb{C})$. Real surfaces of $P_2(\mathbb{C})$ having this last property have been constructed by B. Fabre [3] then by Nemirovski [7]. Those examples are in some sense contrary to our’s because they admit Stein neighborhoods.

Finally, let B be an open neighborhood of \overline{D} diffeomorphic to the unit ball and with smooth boundary ∂B. Then, by combining our construction, the result of [8] and the Plemedj decomposition in $P_2(\mathbb{C})$, we prove that ∂B is an example of a smooth CR-hypersurface of $P_2(\mathbb{C})$, diffeomorphic to the unit sphere of \mathbb{C}^2 such that all continuous CR functions defined on ∂B and all holomorphic functions defined on any connected component of $P_2(\mathbb{C}) \setminus \partial B$ are constant.
2 Envelopes of holomorphy of open sets in projective space

The study of the envelopes of holomorphy has been treated by authors as Fujita \cite{4,5}, Takeuchi \cite{12}, Kiselman \cite{6} or Ueda \cite{13}. Let us recall some well known results.

Definition 1 Let X be a complex manifold. A domain over X is a connected complex manifold W equipped with a locally biholomorphic map $\pi : U \to X$. We say that a domain (U, π) contains another domain (V, Π) if there is a map $j : V \to U$ respecting the projections, $\pi \circ j = \Pi \circ j$. The envelope of holomorphy $(\tilde{U}, \tilde{\pi})$ of a domain (U, π) over X is the maximal domain over X containing (U, π) such that every holomorphic function in U extends holomorphically to \tilde{U}.

Let us consider the complex projective space $P_n(\mathbb{C})$ as the quotient of $\mathbb{C}^{n+1}\setminus\{0\}$ by the action of \mathbb{C}^*. Holomorphic functions in domains over $P_n(\mathbb{C})$ correspond to holomorphic functions over \mathbb{C}^{n+1} constant on the lines passing through the origin. The analytic continuation in \mathbb{C}^{n+1} preserves this property because it can be represented by the differential equation

$$\sum_{j=1}^{n+1} z_j \frac{\partial f}{\partial z_j} = 0.$$

Hence, envelopes over $P_n(\mathbb{C})$ correspond to envelopes over \mathbb{C}^{n+1}.

Proposition 1 Let U be a domain over $P_n(\mathbb{C})$, we have two cases, if the envelope over \mathbb{C}^{n+1} contains the origin, then all holomorphic functions on U are constant and the envelope over $P_n(\mathbb{C})$ is the entire space. Otherwise, the envelope over \mathbb{C}^{n+1} is a Stein manifold.

Proposition 2 The envelope of holomorphy of a domain over $P_n(\mathbb{C})$ is either a Stein manifold or coincides with the entire $P_n(\mathbb{C})$. Equivalently, the envelope is Stein if and only if there exists non-constant holomorphic functions on the domain.
3 Continuity principle

Let X be a complex manifold, an *analytic disc of X* is a continuous map $A : \Delta \to X$ which is holomorphic on Δ. The *boundary* ∂A of the analytic disc A is by definition the restriction of A to the unit circle $S^1 = \partial \Delta$. A family of discs $\{A_t\}_{t \in [0,1]}$ is called *continuous* if the map $\tilde{A} : [0,1] \times \Delta \to X$ defined by $\tilde{A}(t,w) = A_t(w)$ is continuous. Let us recall the following well known continuity principle (see [1]):

Proposition 3 (Behnke-Sommer) Let $\{A_t\}_{t \in [0,1]}$ be a continuous family of analytic discs of a complex manifold X. Let $U \subset X$ be an open set and $f : U \to \mathbb{C}$ be a holomorphic function. Suppose that U verifies the following:

1. $A_0 \subset U$.
2. For any $t \in [0,1]$, the boundary $\partial A_t \subset U$.

Then for any $t \in [0,1]$, there exists a neighborhood U_t of the disc A_t such that f extends holomorphically to U_t.

4 Construction of the thin Hartogs figure

For any point $z \in \mathbb{C}^3$, let L_z be the complex line passing through z and the origin, this line defines a point \tilde{L}_z in $P_2(\mathbb{C})$. Let $\Phi : \mathbb{C}^3 \setminus \{0\} \to P_2(\mathbb{C})$ be the map defined by $\Phi(z) = \tilde{L}_z$. If $\{A_t\}_{t \in [0,1]}$ is a smooth family of closed analytic discs properly imbedded in \mathbb{C}^3, such that $A_1(0) = 0$, then the smooth family of analytic discs $\{\Phi \circ A_t\}_{t \in [0,1]}$ is well defined.

Proposition 4 Let W be the thin Hartogs figure $\Delta \times \{0\} \cup S^1 \times [0,1] \subset \mathbb{C}^2$. Their exists two complex lines L_1 and L_2 of \mathbb{C}^3 and a continuous (even smooth) family $\{A_t\}_{t \in [0,1]}$ of closed analytic discs of \mathbb{C}^3 such that the family of analytic discs $\{\Phi \circ A_t\}_{t \in [0,1]}$ is

1. continuous and properly embedded in $P_2(\mathbb{C})$.
2. For $0 \leq t_1 < t_2 < 1$ the discs $\Phi \circ A_{t_1}$ and $\Phi \circ A_{t_2}$ intersects only at the points \tilde{L}_1 and \tilde{L}_2.
3. For any $t \in [0,1]$ the disc A_t is transversal to L_1 and to L_2.

6
4. The restriction of the map \(\Phi \circ A \) defined by \(\Phi \circ A(w, t) = \Phi \circ A_t(w) \) to \(\mathcal{W} \) is a continuous (even smooth) proper imbedding of \(\mathcal{W} \) into \(P_2(\mathbb{C}) \).

\((\Phi \circ A(\mathcal{W}) \) is a thin Hartogs figure of \(P_2(\mathbb{C}) \).

Proof. Let \(P(z_1, z_2, z_3) : \mathbb{C}^3 \to \mathbb{C} \) be a generic polynomial of degree 2 such that the complex hypersurface \(H = \{ P(z) = 0 \} \) is a smooth and generic quadric which contains the origin. Thus, \(H \) contains only two complex lines \(L_1 \) and \(L_2 \) passing through the origin. According to the Bezout theorem, for any point \(z \in (H \setminus (L_1 \cup L_2)) \), the line \(L_z \) intersects \(H \) only at the point \(z \) and at the origin. Then, the restriction of the map \(\Phi \) on the Zarisky open set \(H \setminus (L_1 \cup L_2) \) is open, one to one and holomorphic (it defines a biholomorphism on its image). Let \(F : \mathbb{C}^3 \to \mathbb{C} \) be a holomorphic submersion and note \(F_c \) the smooth hypersurface \(F_c = \{ F(z) = c \} \). Suppose \(F \) is chosen such that \(F_0 \) is transversal at the origin to \(L_1, L_2 \) and \(H \). Then \(F_0 \) intersects \(L_1 \) and \(L_2 \) only at the origin and intersects \(H \) on a smooth curve \(S_0 = H \cap F_0 \). Let us note, for any \(c \in \mathbb{C}, S_c = H \cap F_c \). Then their exists a small neighborhood \(V \) of the origin in \(\mathbb{C} \) such that \(\{ S_c \}_{c \in V} \) is a smooth family of complex curves of \(H \) transversal to the lines \(L_1 \) and \(L_2 \). If \(V \) is taken small enough, their exists \(\epsilon > 0 \) such that, for any \(c \in V \) the ball \(B(0, \epsilon) \subset \mathbb{C}^3 \) intersects \(S_c \) on an analytic disc \(B_c \). One can always choose the parametrization of the discs \(B_c \) and an imbedding \(\phi \) of the set \([0, 1] \) in \(V \) with \(\phi(1) = 0 \) such that the family of disc \(\{ A_t \}_{t \in [0, 1]} = \{ B_{\phi^{-1}(t)} \}_{t \in [0, 1]} \) is a smooth and properly imbedded family of analytic discs of \(\mathbb{C}^3 \) with \(A_1(0) = 0 \). By the transversality assumption (for \(V \) chosen small enough), this family of analytic discs verify the Lemma.

Remark. By exploding \(P_2(\mathbb{C}) \) at the points \(\tilde{L}_1 \) and \(\tilde{L}_2 \) (let us denote \(\tilde{P}_2(\mathbb{C}) \) this manifold) our construction gives an imbedding of the family \(\{ A_t \}_{t \in [0, 1]} \) in \(\tilde{P}_2(\mathbb{C}) \).

Theorem 1 Let \(\{ A_t \}_{t \in [0, 1]} \) be the smooth family of analytic disc constructed in the previous proposition and \(\mathcal{H} = \Phi \circ A(\mathcal{W}) \) the corresponding thin Hartogs figure of \(P_2(\mathbb{C}) \). Then any holomorphic function defined in a connected neighborhood of \(\mathcal{H} \) is constant. Thus no neighborhood of \(\mathcal{H} \) can be embedded in a Stein space.

Proof. Let \(U \) be an open and connected neighborhood of \(\mathcal{H} \) in \(P_2(\mathbb{C}) \) and \(f \) be a holomorphic function defined on \(U \). Let us note \(\widehat{U} \) and \(\widehat{f} \) the corresponding open set and holomorphic function of \(\mathbb{C}^3 \setminus \{ 0 \} \). Then, by construction, \(\widehat{U} \)
contains an open neighborhood of $A(W)$. According to the continuity principle, \hat{f} extends holomorphically in a neighborhood of the disc $A_1(\Delta)$. So the envelop of holomorphy of \hat{U} over \mathbb{C}^3 contains the origin and according to proposition 1, f has to be constant.

Let us note $\Delta(r) = \{ z \in \mathbb{C}; |z| \leq r \}$ with $r \in [0, 1]$, $S^1(r)$ its boundary and let us define

$$\overline{\mathcal{D}} = A_1(\Delta(1/2)) \cup_{t \in [0,1]} A_t(S^1(1/2 + 2^{1/t-1})).$$

Then $\overline{\mathcal{D}}$ is a smooth disc with boundary and as for the precedent proposition, any holomorphic function defined in any of its neighborhoods has to extend to a domain over \mathbb{C}^3 which contains the origin and so, has to be constant. Moreover, for any compact complex curve $C \subset P_2(\mathbb{C})$, the open set $P_2(\mathbb{C}) \setminus C$ is pseudoconvex and Stein. As there exists non-constant holomorphic functions in Stein manifolds, the disc $\overline{\mathcal{D}}$ is not included in $P_2(\mathbb{C}) \setminus C$. Thus \mathcal{D} intersects C. We have obtained:

Corollary 1. There exists a (non analytic) closed and smooth disc with boundary $\overline{\mathcal{D}} \subset P_2(\mathbb{C})$ such that any holomorphic function defined on its neighborhood is constant. Consequently, $\overline{\mathcal{D}}$ intersects any algebraic curves of $P_2(\mathbb{C})$.

The disc with boundary $\overline{\mathcal{D}}$ being smooth, it has an open neighborhood B diffeomorphic to the unit ball of \mathbb{C}^2.

Corollary 2. There exists a domain $B \subset P_2(\mathbb{C})$, diffeomorphic to the unit ball of \mathbb{C}^2 such that any holomorphic function defined on it is constant.

Moreover, ∂B is a smooth hypersurface dividing $P_2(\mathbb{C})$ into two domains B and $C_B = P_2(\mathbb{C}) \setminus \overline{\mathcal{D}}$. The domain B being topologically trivial, its complementary C_B has the same second homology group than $P_2(\mathbb{C})$, in particular, C_B contains a non contractible real 2-sphere. According to [8], all holomorphic functions defined on C_B are constant. It is well known (see [10] for an example of a proof) that the Plemedj decomposition of CR functions is available in $P_2(\mathbb{C})$. So any continuous CR function f defined on ∂B, can be decomposed as $f = f^+ - f^-$ with f^+ and f^- the boundary values (in the current sense) of holomorphic functions defined respectively on B and C_B. In our case, this two holomorphic functions have to be constant, so f is constant.
Corollary 3 The boundary ∂B of the previously constructed domain $B \subset P_2(\mathbb{C})$ is a smooth hypersurface dividing $P_2(\mathbb{C}) \setminus \partial B$ into two domains B and C_B which verify the following properties:

1. All holomorphic functions defined on B are constant.
2. All holomorphic functions defined on C_B are constant.
3. The CR hypersurface $\partial B \subset P_2(\mathbb{C})$ is diffeomorphic to the unit sphere S^3 of \mathbb{C}^2 and all continuous CR functions defined on ∂B are constant.

References

[1] Chabat B. Introduction à l’analyse complexe, Tome 2, Fonctions de plusieurs variables, Editions Mir, p. 215.

[2] Chirka E. and Ivashkovich S., On nonimbeddability of Hartogs figures into complex manifolds, Arxiv.math.CV/0404290, 16 April 2004.

[3] Fabre B. Sur l’intersection d’une surface de Riemann avec des hypersurfaces algébriques, C.R.Acad. Sci. Paris Sr I Math., 322 (1996), no. 4, 371-376.

[4] Fujita R., Domaines sans point critiques intérieur sur l’espace projectif complexe, J. Math. Soc. Japan, 15 (1963), no. 4, 443-473.

[5] Fujita R., Domaines sans point critiques intérieur sur l’espace produit, J. Math. Kyoto Univ., 4 (1965), no. 3, 493-514.

[6] Kiselman C.O., On entire functions of exponential type and indicators of analytic functions, Acta Math., 117 (1967), 1-35.

[7] Nemirovski S. Yu., Stein domains on algebraic varieties, Mat. Zametki 60 (1996), 295-298; English transl., Math. Notes 60 (1996), 218-221.

[8] Nemirovski S. Yu., Holomorphic functions and embedded real surfaces”, Mat. Zametki 63 (1998), 599-606; English transl., Math. Notes 63 (1998), 527-532.

[9] Nemirovski S. Yu., Complex analysis and differential topology on complex surfaces, Russian Math. Surveys 54 (1999), 729-752.
[10] Sarkis F., CR-meromorphic extension and the nonembeddability of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math., 10 (1999), no. 7, 897-915.

[11] Sarkis F., Hartogs-Bochner type theorem in projective space, Ark. Math., 41 (2003), no. 1, 151-163.

[12] Takeuchi A., Domaines pseudoconvexes infinis et la riemannienne dans un espace projectif, J. Math. Soc. Japan, 16 (1964), 159-181.

[13] Ueda T., Pseudoconvex domains over Grassmann manifolds, J. Math of Kyoto Univ, 20 (1980), 391-394.

e-mail: sarkis@math.univ-lille1.fr