Nonlinear Bipartite Matching

Yael Berstein ∗ Shmuel Onn †

Abstract

We study the problem of optimizing nonlinear objective functions over bipartite matchings. While the problem is generally intractable, we provide several efficient algorithms for it, including a deterministic algorithm for maximizing convex objectives, approximative algorithms for norm minimization and maximization, and a randomized algorithm for optimizing arbitrary objectives.

1 Introduction

Let \(N := \{(i, j) : 1 \leq i, j \leq n\} \) be the set of edges of the complete bipartite graph \(K_{n,n} \). In this article we consider the following broad generalization of the standard linear bipartite matching problem.

Nonlinear Bipartite Matching. Given positive integers \(d, n \), integer weight functions \(w^1, \ldots, w^d \) on \(N \), and an arbitrary function \(f : \mathbb{R}^d \to \mathbb{R} \), find a perfect matching \(M \subset N \) maximizing (or minimizing) the objective function \(f(w^1(M), \ldots, w^d(M)) \) where \(w^k(M) := \sum \{w^k(i, j) : (i, j) \in M\} \).

Identifying perfect matchings in \(K_{n,n} \) with permutation matrices and weight functions with integer matrices in the usual way, the problem has the following nonlinear integer programming formulation:

\[
\max \{ f(w^1 x, \ldots, w^d x) : \sum_{i=1}^{n} x_{i,j} = 1, \sum_{j=1}^{n} x_{i,j} = 1, x \in \mathbb{N}^{n \times n} \}
\]

where \(w^k x := \sum_{i=1}^{n} \sum_{j=1}^{n} w^k_{i,j} x_{i,j} \) for \(k = 1, \ldots, d \), and where \(\mathbb{N} \) stands for the nonnegative integers.

The problem can be interpreted as *multiobjective* bipartite matching: given \(d \) different linear objective functions \(w^1, \ldots, w^d \), the goal is to maximize (or minimize) their “balancing” given by \(f(w^1 x, \ldots, w^d x) \). The standard linear bipartite matching problem is the special case of \(d = 1 \) and \(f \) the identity on \(\mathbb{R} \).

* Supported in part by a Technion Graduate School Fellowship.
† Supported in part by a grant from ISF - the Israel Science Foundation, by the Technion President Fund, and by the Jewish Communities of Germany Research Fund.
Beyond the intrinsic interest in studying the above natural nonlinear extension of the standard matching problem, it is interesting to consider it in connection with its various variants and relatives in the literature, including in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12] and references therein. These variants will be discussed in detail in Section 2. In particular, in [7], the problem of maximizing an objective function \(f(w_1(\cdot), \ldots, w_d(\cdot)) \) with \(f \) convex and \(d \) fixed was considered for combinatorial optimization families in general. It was shown, extending earlier results of [6, 8], that if the polyhedra underlying the problem have nice edge symmetry (few edge-directions) then the problem can be solved in strongly polynomial time. This resulted in polynomial time algorithms for maximizing a convex \(f \) for various problems including vector partitioning, matroids, and transportation problems with fixed number of suppliers. However, the Birkhoff polytope which underlies our bipartite matching problem has exponentially many edge-directions (Proposition 2.3, Section 2) and hence the methods of [6, 7, 8] fail.

Nonlinear bipartite matching is generally intractable, since already for fixed \(d = 1 \) (single weight function), the problem of minimizing a family of very simple convex univariate functions \(f_u : \mathbb{R} \rightarrow \mathbb{R} \) defined by \(f_u(y) := (y-u)^2 \) with \(u \) an integer parameter is NP-hard (Proposition 2.2 part 1, Section 2). Therefore, for the most part, the complexity of our results will depend on the unary size of the weights, that is, on \(\max |w_{i,j}^k| \). In particular, our algorithms will have polynomial complexity for binary weights, that is, with \(w_{i,j}^k \in \{0,1\} \) for all \(i,j,k \). In this case, letting \(E_k \) be the support of \(w^k \) for each \(k \), the problem becomes that of finding a perfect matching \(M \subset N \) maximizing (or minimizing) \(f(|M \cap E_1|, \ldots, |M \cap E_d|) \). The problem with binary weights is not easy either: the complexity with \(f \) an arbitrary function is unknown for any fixed \(d \geq 2 \); and for variable \(d \) it is again NP-hard for minimizing the convex multivariate extension of \(f_u \) above, i.e. the family of functions \(f_u : \mathbb{R}^d \rightarrow \mathbb{R} \) defined by \(f_u(y) := \sum_{k=1}^d (y_k - u_k)^2 \) and parameterized by \(u \in \mathbb{Z}^d \) (Proposition 2.2 part 2, Section 2).

Clearly, the complexity of the problem depends also on the presentation of the function \(f \): we will mostly assume that \(f \) is presented by a comparison oracle that, queried on \(y, z \in \mathbb{Z}^d \), asserts whether \(f(y) \leq f(z) \). This is a broad presentation that reveals little information on the function, making the problem harder to solve. In particular, if \(d \) is variable, then already for binary weights and maximizing a convex \(f \), an exponential number of oracle queries is needed (Proposition 2.2 part 3, Section 2).

In spite of these difficulties, we are able to provide the following efficient algorithms for the problem: in the statements below, oracle-time refers to the running time plus the number of oracle queries.

Our first theorem provides an efficient algorithm for maximizing convex functions.

Theorem 1.1 For any fixed \(d \), there is an algorithm that, given any positive integer \(n \), any integer weights \(w_1^1, \ldots, w_d^d \), and any convex function \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) presented by comparison oracle, solves the maximum nonlinear bipartite matching problem in oracle-time which is polynomial in \(n \) and \(\max |w_{i,j}^k| \).

A second theorem provides an efficient randomized algorithm for any function.
Theorem 1.2. For any fixed d, there is a randomized algorithm that, given any positive integer n, any integer weights w^1, \ldots, w^d, and any function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ presented by comparison oracle, solves the nonlinear bipartite matching problem in oracle-time which is polynomial in n and $\max|w^k_{i,j}|$.

We also consider the minimum and maximum nonlinear bipartite matching problems where the function f is the l_p norm $\| \cdot \|_p : \mathbb{R}^d \rightarrow \mathbb{R}$ given by $\|y\|_p = (\sum_{k=1}^{d}|y_k|^p)^{\frac{1}{p}}$ for $1 \leq p < \infty$ and $\|y\|_\infty = \max_{k=1}^{d}|y_k|$. For l_p norm minimization we give an algorithm which is polynomial in n and $\max|w^k_{i,j}|$ and determines a d-approximative solution for any p and a more accurate, \sqrt{d}-approximative solution, for the case of the Euclidean norm $p = 2$ (Theorem 4.1). For l_p norm maximization we give an algorithm which is polynomial even in the bit size of the weights $w^k_{i,j}$ and even if d is variable, and determines a $d^{\frac{1}{p}}$-approximative solution for any p (Theorem 4.2).

The article proceeds as follows. In Section 2 we discuss various variants and relatives of the problem, survey what is known in the literature about their complexity, and demonstrate the intractability of the problem under various conditions. In Section 3 we discuss convex maximization and prove Theorem 1.1. In Section 4 we discuss approximative norm minimization and maximization and prove Theorems 4.1 and 4.2. Finally, in Section 5 we discuss randomized optimization and prove Theorem 1.2.

2 Variants and Intractability

We now discuss various variants and relatives of nonlinear bipartite matching, survey what is known (and unknown) about their complexity, and demonstrate its intractability under various conditions.

First, consider the following related decision problem, asking for the existence of a perfect matching attaining specified values under each of the given weight (linear objective) functions w^1, \ldots, w^d.

Specified multiobjective bipartite matching. Given d, n, weight functions $w^1, \ldots, w^d : N \rightarrow \mathbb{Z}$, and integers u_1, \ldots, u_d, decide if there is a perfect matching $M \subset N$ satisfying $w^k(M) = u_k$ for all k.

Chandrasekaran et. al. considered the problem with a single objective w (fixed $d = 1$) and have shown that already this special case is NP-complete [1]. This raises the question about the complexity in terms of the unary size $\max|w^k_{i,j}|$ of the weights. Indeed, even the case of binary weights $w^k_{i,j} \in \{0, 1\}$ is not yet understood: for $d = 1$ it was posed as intriguing and mysterious by Papadimitriou and Yannakakis [9, 10], and the solutions obtained consequently (first by Karzanov [4] and recently in [12]) are rather sophisticated; for $d = 2$, the complexity is long open; and for variable d it is NP-complete.

The following proposition summarizes the known intractability facts about the specified multiobjective bipartite matching problem. We include the short proof for completeness of the exposition.
Proposition 2.1 The specified multiobjective bipartite matching problem is NP-complete already under the following restrictions: (1) fixed \(d = 1 \) (single weight function); (2) binary weights \(w^k_{i,j} \in \{0,1\} \).

Proof. (1) is from \cite{1} by reduction from subset sum: given integers \(a_0, a_1, \ldots, a_m \), define \(d := 1 \), \(n := 2m \), single weight \(w \in \mathbb{Z}^{n \times n} \) by \(w_{i,j} := a_i \) for \(1 \leq i, j \leq m \) and \(w_{i,j} := 0 \) otherwise, and \(u := a_0 \). Then there is a perfect matching \(M \) with \(w(M) = u \) if and only if there is an \(I \subseteq \{1, \ldots, m\} \) with \(a_0 = \sum_{i \in I} a_i \). (2) is by reduction from 3-dimensional matching: given binary \(n \times n \times n \) array \(x \), put \(d := n \), \(w^k_{i,j} := x_{i,j,k} \), and \(u_k := 1 \) for all \(i, j, k \). Then there is a perfect matching \(M \) with \(w^k(M) = u_k = 1 \) for all \(k \) if and only if there is a binary array \(y \leq x \) with \(\sum_{i,j} y_{i,j,k} = \sum_i y_{i,k} = \sum_j y_{i,j,k} = 1 \) for all \(i, j, k \). \(\Box \)

A further specialization of the case of binary weights \(w^k_{i,j} \in \{0,1\} \) arises when the \(w^k \) have pairwise disjoint supports. This can be formulated as the following particularly appealing “colorful” problem.

Colorful bipartite matching. Given any bipartite graph \(G \) with \(d \)-colored edge set \(E = \bigcup_{k=1}^{d} E_k \) and \(u_1, \ldots, u_d \), decide if there is a perfect matching \(M \subseteq E \) containing \(u_k \) edges of color \(k \) for \(k = 1, \ldots, d \). This problem is a special case of specified multiobjective bipartite matching with binary weights. To see this, note that we may assume \(G \) has the same number \(n \) of vertices on each side, making it a subgraph of \(K_{n,n} \) with \(E \subseteq N \), and \(\sum_{k=1}^{d} u_k = n \), else \(G \) has no colorful perfect matching; now, letting \(w^k \in \{0,1\}^{n \times n} \) be the indicator of \(E_k \) for all \(k \), we have that \(M \subseteq N \) is a perfect matching of \(K_{n,n} \) with \(w^k(M) = u_k \) for all \(k \) if and only if \(M \) is a perfect matching of \(G \) with \(|M \cap E_k| = u_k \) for all \(k \).

For \(d = 2 \) (two colors), this problem is sometimes referred to in the literature as the exact matching problem: for \(G = K_{n,n} \) it is polynomial time decidable \cite{2} \cite{12}; for arbitrary bipartite graph \(G \) there is a randomized algorithm \cite{5} but the deterministic complexity is a longstanding open problem.

Returning to nonlinear bipartite matching, the next proposition describes its intractability under various conditions. By saying that an optimization problem (rather than a decision problem) is NP-hard, we mean, as usual, that there can be no polynomial time algorithm for solving it unless P=NP.

Proposition 2.2 The following hold for the nonlinear bipartite matching problem with data \(d, n, \) weights \(w_1, \ldots, w_d \in \mathbb{Z}^{n \times n} \), and function \(f_u : \mathbb{R}^d \rightarrow \mathbb{R} \) presented explicitly or by a comparison oracle:

1. For fixed \(d = 1 \) (single weight function) and minimizing the simple convex function \(f_u : \mathbb{R} \rightarrow \mathbb{R} \) defined by \(f_u(y) := (y - u)^2 \) with \(u \) an integer input parameter, the problem is already NP-hard.

2. For binary weights \(w^k_{i,j} \in \{0,1\} \) and minimizing the convex function \(f_u : \mathbb{R}^d \rightarrow \mathbb{R} \) defined by \(f_u(y) := \sum_{k=1}^{d} (y_k - u_k)^2 \) with \(u = (u_1, \ldots, u_d) \) an integer vector, the problem is already NP-hard.
For binary weights $w^k_{i,j}$ and maximizing a convex f presented by comparison oracle, exponentially many oracle queries are needed and hence the problem is not solvable in polynomial oracle-time.

Proof.

1. Given weight w and integer u, there is a perfect matching M with $w(M) = u$ if and only if the minimum value $f_u(w(M)) = (w(M) - u)^2$ of a perfect matching M under f_u is 0. So even computing the optimal objective function value enables deciding the NP-complete problem (1) of Proposition 2.1

2. Analogously to the proof of part 1 above: given binary weights w^1, \ldots, w^d and vector $u = (u_1, \ldots, u_d)$, there is a perfect matching M with $w^k(M) = u_k$ for all k if and only if the minimum objective value $f_u(w^1(M), \ldots, w^d(M)) = \sum_{k=1}^{d}(w^k(M) - u_k)^2$ of a perfect matching M under f_u is 0. So even computing the optimal objective value enables deciding the NP-complete problem (2) of Proposition 2.1

3. Let $d = n^2$, define binary weights $w^{r,s} \in \mathbb{Z}^{n \times n}$ for $1 \leq r, s \leq n$, with $w^{r,s}_{i,j} := 1$ if $(i, j) = (r, s)$ and $w^{r,s}_{i,j} = 0$ otherwise, and let $f : \mathbb{R}^d \cong \mathbb{R}^{n \times n} \to \mathbb{R}$ be any function. Then for any matrix $x \in \mathbb{R}^{n \times n}$ we have $f(w^{1,1}x, \ldots, w^{n,n}x) = f(x_{1,1}, \ldots, x_{n,n}) = f(x)$.

Since the permutation matrices (which correspond to perfect matchings) are convexly independent, any assignment of values to the $n!$ permutation matrices can be extended to a convex function f on $\mathbb{R}^{n \times n}$. Thus, to find the permutation matrix maximizing f, the oracle presenting f must be queried on all $n!$ permutation matrices.

More generally, the nonlinear combinatorial optimization problem is the following: given positive integers d, n, a family \mathcal{F} of subsets of a ground set $\{1, \ldots, n\}$, integer weights w^1, \ldots, w^d on $\{1, \ldots, n\}$, and an arbitrary function $f : \mathbb{R}^d \to \mathbb{R}$, find $F \in \mathcal{F}$ maximizing (or minimizing) $f(w^1(F), \ldots, w^d(F))$.

In [7], the maximization problem with f convex and d fixed was studied. It was shown that if the number of edge-directions of the polytopes $P^F := \text{conv}\{1_F : F \in \mathcal{F}\}$ (where $1_F \in \{0,1\}^n$ denotes the indicator of F) is polynomial in n for a class of families presented by membership oracles then the problem over families \mathcal{F} in that class can be solved in strongly polynomial oracle-time. This unified and extended earlier results of [6, 8] and yielded polynomial time algorithms for convex maximization for various problems including vector partitioning, matroids, and transportation problems with fixed number of suppliers. However, for bipartite matching, which is the combinatorial optimization problem over the family $\mathcal{F} \subset 2^V$ of perfect matchings in $K_{n,n}$, the underlying polytope is the Birkhoff polytope

$$P^\mathcal{F} = \Pi^n := \{x \in \mathbb{R}^{n \times n}_+ : \sum_i x_{i,j} = 1, \sum_j x_{i,j} = 1\}$$

which, as we next show, has exponentially many edge-directions, making the methods of [6, 7, 8] fail.

Proposition 2.3 The Birkhoff polytope Π^n has precisely $\frac{1}{2} \sum_{k=2}^{n} \binom{n}{k}^2 k!(k-1)! \geq \frac{1}{n} \binom{n}{2}$ edge-directions.
Proof. Every edge-direction of Π^n is a nonzero minimal-support matrix $x \in \mathbb{R}^{n \times n}$ with zero row-sums and column-sums, and hence (up to scalar multiplication) is the matrix x_C of some circuit $C \subset N$ of $K_{n,n}$, having values ± 1 alternating along the edges of the circuit and 0 elsewhere (see e.g. [7]). We claim that each such circuit matrix x_C is an edge-direction. To see this, let $C = C^+ \cup C^-$ be the partition of alternating edges of C and let D be a matching in $K_{n,n}$ which perfectly matches all vertices not in C. Let x^+ and x^- be the permutation matrices which are the indicators of the perfect matchings $M^+ := C^+ \cup D$ and $M^- := C^- \cup D$ of $K_{n,n}$. Define a binary weight matrix w as the indicator of $C \cup D$. Then $wx^+ = wx^- = n$ whereas $wx < n$ for any other permutation matrix x. Thus, wx attains its maximum over Π^n precisely at the two vertices x^+ and x^- and hence $[x^+, x^-]$ is an edge and the difference $x_C = x^+ - x^-$ is an edge-direction. Now, for each $k \geq 2$, the number of $2k$-circuits of $K_{n,n}$ is known and easily seen to be $\frac{1}{2}(\binom{n}{k})^2 k!(k-1)!$ (see [7]) and hence the Proposition follows. □

Proposition 2.3 shows that, while the methods of [6, 7, 8] do apply for transportation problems with fixed number of suppliers, they fail for bipartite matching which is the simplest possible transportation problem - albeit, with variable numbers of suppliers and consumers - and do not lead to a polynomial time algorithm even for maximizing a convex function f with d fixed. This state of things, along with the easy solvability of the standard linear bipartite matching problem, make the nonlinear problem for bipartite matching particularly intriguing, and is part of our motivation in raising and studying it herein.

3 Deterministic Convex Maximization

In this section we discuss the maximum nonlinear bipartite matching problem for convex functions $f : \mathbb{R}^d \rightarrow \mathbb{R}$ presented by comparison oracles. We start with some definitions. Here we will be working with matrices rather than graphs and matchings, so the weights are now integer matrices $w_1, \ldots, w_d \in \mathbb{Z}^{n \times n}$, and the solutions are permutation matrices, which are well known to be precisely the vertices of the Birkhoff polytope of bistochastic matrices (with \mathbb{R}_+ the nonnegative reals),

$$\Pi^n = \{ x \in \mathbb{R}^{n \times n}_+: \sum_i x_{i,j} = 1, \sum_j x_{i,j} = 1 \} .$$

Given weights w_1, \ldots, w_d, define a projection $w : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^d$ mapping matrices x to vectors $w \cdot x$,

$$w \cdot x := (w_1^1x, \ldots, w_d^d x) = (\sum_{i,j} w_{i,j}^1 x_{i,j}, \ldots, \sum_{i,j} w_{i,j}^d x_{i,j}) .$$

Define the multiobjective polytope (corresponding to w_1, \ldots, w_d) to be the projection of Π^n under w,

$$\Pi^n_w := \{ w \cdot x = (w_1^1x, \ldots, w_d^d x) : x \in \Pi^n \} \subset \mathbb{R}^d .$$
Finally, define the fiber of any point \(y \in \mathbb{R}^d \) to be the polytope \(\Pi^n \cap w^{-1}(y) \) consisting of those matrices in the Birkhoff polytope that are projected by \(w \) onto \(y \). Thus, a point \(y \) is in \(\Pi^n_w \) if and only if its fiber is nonempty; the following lemma asserts that these equivalent conditions can be decided efficiently.

Lemma 3.1 There is a polynomial time algorithm that, given \(d, n, w^1, \ldots, w^d \), and integer \(y \in \mathbb{Z}^d \), either asserts \(y \not\in \Pi^n_w \) and \(\Pi^n \cap w^{-1}(y) = \emptyset \) or asserts \(y \in \Pi^n_w \) and returns a vertex \(x \) of \(\Pi^n \cap w^{-1}(y) \).

Proof. The fiber of any \(y = (y_1, \ldots, y_d) \) is the polytope given by the following inequality description,

\[
\Pi^n \cap w^{-1}(y) = \{ x \in \Pi^n : (w^1 x, \ldots, w^d x) = (y_1, \ldots, y_d) \} = \{ x \in \mathbb{R}_{+}^{n \times n} : \sum_{i} x_{i,j} = 1, \sum_{j} x_{i,j} = 1, w^k x = y_k \},
\]

so linear programming allows to efficiently compute a vertex of the fiber or assert that it is empty. \(\square \)

This lemma implies in turn that the multiobjective polytope \(\Pi^n_w \) can be constructed efficiently.

Lemma 3.2 For any fixed \(d \), there is an algorithm that, given \(n \) and \(w^1, \ldots, w^d \in \mathbb{Z}^{n \times n} \), computes the vertex set \(\text{vert}(\Pi^n_w) \) of the multiobjective polytope \(\Pi^n_w \) in time which is polynomial in \(n \) and \(\max |w^k_{i,j}| \).

Proof. Let \(u := \max |w^k_{i,j}| \). Then for any permutation matrix \(x \) and its projection \(y = w \cdot x \) we have \(|y_k| = |w^k x| \leq nu \) and therefore \(y \) lies in the grid \(\{0, \pm 1, \ldots, \pm nu\}^d \). Since each vertex \(y \) of \(\Pi^n_w \) is the projection \(y = w \cdot x \) of some vertex \(x \) of \(\Pi^n \), which is a permutation matrix, we have \(\text{vert}(\Pi^n_w) \subseteq \{0, \pm 1, \ldots, \pm nu\}^d \). For each of the \((2nu + 1)^d \) grid points \(y \in \{0, \pm 1, \ldots, \pm nu\}^d \), apply the algorithm of Lemma 3.1 to check if \(y \in \Pi^n_w \), and obtain \(Y := \{0, \pm 1, \ldots, \pm nu\}^d \cap \Pi^n_w \).

We then have that \(\text{vert}(\Pi^n_w) \subseteq Y \subseteq \Pi^n_w \) and therefore the multiobjective polytope \(\Pi^n_w \) is the convex hull of \(Y \). Since convex hulls can be computed in polynomial time for any fixed dimension \(d \), we can efficiently construct \(\Pi^n_w \), that is, determine all its vertices (and more generally all its faces). \(\square \)

Lemma 3.1 shows that for any \(y \in \mathbb{Z}^d \) it is possible to check efficiently if \(y \) is the projection \(y = w \cdot x \) of some bistochastic matrix \(x \in \Pi^n \), and to find such an \(x \) if one exists. We will need also to consider the integer analog of this problem: given \(y \in \mathbb{Z}^d \), is \(y \) the projection \(y = w \cdot x \) of some permutation matrix \(x \in \text{vert}(\Pi^n) \), and if it is, can we find one such \(x \) efficiently? but this problem is precisely the specified multiobjective bipartite matching problem: there is a permutation matrix \(x \) with \(y = w \cdot x \) if and only if there is a perfect matching \(M \) with \(w^k(M) = y_k \) for \(k = 1, \ldots, d \). Unfortunately, as explained in Section 2, the complexity of this problem is open even for fixed \(d = 2 \). The difficulty is that the fiber \(\Pi^n \cap w^{-1}(y) \) of \(y \) is not necessarily an integer polytope and it may have some fractional (bistochastic) matrices and some integer (permutation) matrices \(x \) as its vertices.

Fortunately, as the next lemma shows, the fibers of vertices of \(\Pi^n_w \) are better behaved.
Lemma 3.3 Let \(y \) be any vertex of the multiobjective polytope \(\Pi_w^n \). Then the fiber \(\Pi^n \cap w^{-1}(y) \) of \(y \) is a nonempty integer polytope all of whose vertices are permutation matrices. Thus, the polynomial time algorithm of Lemma 3.1 applied to \(y \in \text{vert}(\Pi_w^n) \) returns a permutation matrix \(x \) satisfying \(y = w \cdot x \).

\[\text{Proof.}\]
It is well known and easy to see that if \(Q \) is the image of a polytope \(P \) under an affine map \(a \), then the preimage \(P \cap a^{-1}(F) = \{ x \in P : a(x) \in F \} \) of any face \(F \) of \(Q \) is a face of \(P \). Thus, if \(y \) is a vertex of \(\Pi_w^n \) then its fiber \(\Pi^n \cap w^{-1}(y) \), which is the preimage under the map \(w \) of the face \(\{ y \} \) of \(\Pi_w^n \), is a face of \(\Pi_n \). Therefore, the vertices of the nonempty fiber of \(y \), one of which will be returned by the algorithm of Lemma 3.1, are precisely the vertices of \(\Pi^n \) which are contained in that fiber. \(\square \)

We can now prove our first theorem, providing an efficient algorithm for convex maximization.

Theorem 1.1 For any fixed \(d \), there is an algorithm that, given any positive integer \(n \), any integer weights \(w^1, \ldots, w^d \), and any convex function \(f : \mathbb{R}^d \to \mathbb{R} \) presented by comparison oracle, solves the maximum nonlinear bipartite matching problem in oracle-time which is polynomial in \(n \) and \(\max |w_{i,j}| \).

\[\text{Proof.}\]
Since \(f \) is convex on \(\mathbb{R}^d \) and \(f(w^1(\cdot), \ldots, w^d(\cdot)) \) is convex on \(\mathbb{R}^{n \times n} \), and the maximum of a convex function over a polytope is attained at a vertex of the polytope, we have the following equality,

\[
\max \{ f(w^1x, \ldots, w^dx) : x \in \text{vert}(\Pi^n) \} = \max \{ f(w^1x, \ldots, w^dx) : x \in \Pi^n \}
\]

\[
= \max \{ f(y) : y \in \Pi_w^n \} = \max \{ f(y) : y \in \text{vert}(\Pi_w^n) \}.
\]

Apply the algorithm of Lemma 3.2 and compute \(\text{vert}(\Pi_w^n) \). By repeatedly querying the comparison oracle of \(f \), identify a vertex \(y^* \in \text{vert}(\Pi_w^n) \) attaining maximum value \(f(y) \). Now apply the algorithm of Lemma 3.3 to \(y^* \) and, as guaranteed by Lemma 3.3, obtain a permutation matrix \(x^* \) in the fiber of \(y^* \), so that \(y^* = w \cdot x^* = (w^1x^*, \ldots, w^dx^*) \) and \(f(w^1x^*, \ldots, w^dx^*) = f(y^*) \). Since \(y^* \) attains the maximum on the right-hand side of the equation above, \(x^* \) attains the maximum on the left-hand side. Thus, the perfect matching of \(K_{n \times n} \) corresponding to the permutation matrix \(x^* \) is optimal. \(\square \)

The most time consuming part of the algorithm underlying Theorem 1.1 is the repeated use of linear programming for testing fibers of points in the grid \(\{0, \pm 1, \ldots, \pm nu\}^d \) to construct \(\text{vert}(\Pi_w^n) \).

There are various ways of improving the algorithm in practice, but they do not seem to improve the worst case complexity. We now describe such a variant of the algorithm which will usually be much faster since it will typically test the fibers of some but not all points in the grid.

A variant of the convex maximization algorithm.

1. Find the smallest grid containing \(\text{vert}(\Pi_w^n) \) by solving, for \(k = 1, \ldots, d \), the two linear programs

\[
s_k := \min \{ w^k x : \sum_i x_{i,j} = \sum_j x_{i,j} = 1, \ x \geq 0 \}, \ t_k := \max \{ w^k x : \sum_i x_{i,j} = \sum_j x_{i,j} = 1, \ x \geq 0 \};
\]
then \(\text{vert}(\Pi^n_w) \) is contained in the grid \(Z := \{ y \in \mathbb{Z}^d : s_k \leq y_k \leq t_k, \; k = 1, \ldots, d \} \).

2. By repeatedly querying the comparison oracle of \(f \), order the grid points by nonincreasing value under \(f \) and label them \(y^1, \ldots, y^{|Z|} \), so that \(Z = \{ y^1, \ldots, y^{|Z|} \} \) and \(f(y^1) \geq \cdots \geq f(y^{|Z|}) \).

3. Apply the algorithm of Lemma 3.3 to test the fiber of each \(y^i \) in order, until the first \(y^k \) for which the vertex \(x^* \) of its fiber \(\Pi^n_1 \cap w^{-1}(y^k) \) returned by the algorithm is a permutation matrix.

4. Output the perfect matching of \(K_{n,n} \) corresponding to the permutation matrix \(x^* \).

We claim that \(x^* \) is an optimal solution to the maximum convex bipartite matching problem. Indeed, note that \(f^* := \max\{ f(y) : y \in \Pi^n_w \} = \max\{ f(y) : y \in \text{vert}(\Pi^n_w) \} \) equals the optimal objective function value \(\max\{ f(w^1 x, \ldots, w^d x) : x \in \text{vert}(\Pi^n) \} \) (see proof of Theorem 1.1); let \(y^m \in \text{vert}(\Pi^n_w) \subseteq Z \) be a vertex achieving that maximum value \(f(y^m) = f^* \); by Lemma 3.3, the algorithm of Lemma 3.1 applied to \(y^m \in \text{vert}(\Pi^n_w) \) returns a permutation matrix and so \(k \leq m \); this implies \(f^* \geq f(y^k) \geq f(y^m) = f^* \) and hence \(f^* = f(y^k) = f(w^1 x^*, \ldots, w^d x^*) \); therefore \(x^* \) achieves the optimal objective function value.

We end this section with an example of a maximum convex bipartite matching problem, demonstrating all notions and algorithms discussed above, some of which will be also used in later sections.

Example 3.4 Consider the maximum convex bipartite matching problem with the following data:

\[
d = 2, \quad n = 4, \quad w^1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix}, \quad w^2 = \begin{pmatrix} 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \end{pmatrix}, \quad f(y) = y^2_1 + y^2_2.
\]

By solving the linear programs minimizing and maximizing \(w^k x \) over \(\Pi^4 \) for \(k = 1, 2 \) (step 1 of the algorithm above) we get \(s_1 = s_2 = 0, \; t_1 = 3, \; t_2 = 4 \), and so the smallest grid containing \(\text{vert}(\Pi^4_1) \) is \(Z := \{ y \in \mathbb{Z}^2 : 0 \leq y_1 \leq 3, \; 0 \leq y_2 \leq 4 \} \subseteq \{0, \pm 1, \ldots, \pm 4\}^2 \) which contains 20 points. Figure 1 below depicts this grid and indicates the objective function value \(f(y) = y^2_1 + y^2_2 \) of each grid point. Ordering the points by decreasing value under \(f \) (step 2 above) we get \(y^1 = (3, 4), \; y^2 = (2, 4), \ldots, \; y^{20} = (0, 0) \). Testing fibers of the \(y^i \) in order (step 3 above), the fiber of \(y^1 \) is found empty whereas the fiber of \(y^2 \) is nonempty and is the first for which the algorithm of Lemma 3.3 returns a permutation matrix

\[
x^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \end{pmatrix}.
\]
Thus, the corresponding matching $M^* := \{(1,1), (2,4), (3,3), (4,2)\}$ of $K_{4,4}$ is an optimal solution.

Figure 1 also shows the multiobjective polytope Π^4_w and its vertex set $\text{vert}(\Pi^4_w)$ computed by the algorithm of Lemma 3.2: blue circles are non-vertex grid points in Π^4_w and green diamonds are vertices of Π^4_w. The optimal point $y^2 = (2,4)$ which is found either by the algorithm above or by the algorithm of Theorem 1.1 is the vertex of Π^4_w attaining maximum value under f and is a red square. Of particular interest is the blue point $y = (1,2)$ whose fiber $\Pi^n \cap w^{-1}(y)$ is a non-integer polytope with 30 vertices (more than the 24 of the Birkhoff polytope upstairs!), all of which are fractional, such as

$$
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0.5 & 0.5 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0.5 & 0 & 0.5 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0.5 & 0 & 0.5 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0.25 & 0.25 & 0.5 \\
0.25 & 0.75 & 0 & 0 \\
0.25 & 0 & 0.75 & 0 \\
0.5 & 0 & 0 & 0.5
\end{bmatrix},
\begin{bmatrix}
0 & 0.2 & 0.4 & 0.4 \\
0 & 0.8 & 0 & 0.2 \\
0.4 & 0 & 0.6 & 0 \\
0.6 & 0 & 0 & 0.4
\end{bmatrix},
$$

indicating the difficulty of the specified multiobjective and colorful bipartite matching problems.

![Figure 1: Example 3.4 and the polytope Π^4_w](image)

4 Approximative Norm Optimization

Consider any discrete optimization problem with a finite set S of feasible solutions and nonnegative objective function $g : S \rightarrow \mathbb{R}_+$ to be minimized or maximized and let $s^* \in S$ be any optimal solution. Then an r-approximative solution is any feasible solution $s \in S$ satisfying $\frac{1}{r}g(s^*) \leq g(s) \leq rg(s^*)$.
In this section, building on the tools and results of Section 3, we provide approximative algorithms for the minimum and maximum nonlinear bipartite matching problems where the function f is the l_p norm $\| \cdot \|_p : \mathbb{R}^d \to \mathbb{R}$ given by $\|y\|_p = (\sum_{k=1}^{d} |y_k|^p)^{\frac{1}{p}}$ for $1 \leq p < \infty$ and $\|y\|_\infty = \max_{k=1}^{d} |y_k|$. To keep our results general and allow treatment of fractional and even nonrational p, we will still assume that f is presented by a comparison oracle. Of course, for the most common values $p = 1, 2, \infty$ such an oracle is realizable in time polynomial in the rest of the data; moreover, for any integer p, by computing and comparing the integer valued p-th power $\|y\|_p^p$ of the norm instead of the norm itself, such an oracle is realizable in time polynomial in the rest of the data and $\lceil \log p \rceil$.

4.1 Minimization

The following theorem provides an efficient approximative algorithm for minimizing the l_p norm.

Theorem 4.1 For any fixed d, there is an algorithm that, given any n, any $1 \leq p \leq \infty$, and any non-negative integer weights w^1, \ldots, w^d, determines a d-approximative solution to the minimum nonlinear bipartite matching problem with $f = \| \cdot \|_p$, in oracle-time which is polynomial in n and $\max w_{i,j}$. For $p = 2$ (Euclidean norm), the algorithm determines a more accurate, \sqrt{d}-approximative, solution.

Proof. The algorithm is the following: apply the algorithm of Lemma 3.2 and construct the vertex set $\text{vert}(\Pi^n)$ of the multiobjective polytope. Using the comparison oracle of f identify a vertex $\hat{y} \in \text{vert}(\Pi^n)$ attaining minimum value $\|y\|_p$. Now apply the algorithm of Lemma 3.1 to \hat{y} and, as guaranteed by Lemma 3.3, obtain a permutation matrix \hat{x} in the fiber of \hat{y}, so that $\hat{y} = w \cdot \hat{x}$. Output the perfect matching of $K_{n,n}$ corresponding to the permutation matrix \hat{x}.

We now show that this provides the claimed approximation. Let x^* be the permutation matrix corresponding to an optimal perfect matching and let $y^* := w \cdot x^*$ be its projection. Let y' be a point on the boundary of Π^n satisfying $y' \leq y^*$. By Carathéodory’s theorem (on the boundary) y' is a convex combination $y' = \sum_{i=1}^{r} \lambda_i y^i$ of some $r \leq d$ vertices of Π^n, and hence $\lambda_t = \max \lambda_i \geq \frac{1}{r} \geq \frac{1}{d}$ for some t.

Since the weights w^k are nonnegative we find that so are y^i and the y^i and hence we obtain

$$f(w^1 \hat{x}, \ldots, w^d \hat{x}) = \|\hat{y}\|_p \leq \|y^t\|_p \leq d \lambda_t \cdot \|y^t\|_p = d \cdot \|\lambda_t y^t\|_p$$

$$\leq d \cdot \left(\sum_{i=1}^{r} \lambda_i y^i \right) = d \cdot \|y^t\|_p \leq d \cdot \|y^*\|_p = d \cdot f(w^1 x^*, \ldots, w^d x^*) .$$

This proves that \hat{x} provides a d-approximative solution for any $1 \leq p \leq \infty$. Now consider the case of Euclidean norm $p = 2$. By Cauchy-Schwarz, $1 = (\sum_{i=1}^{r} 1 \lambda_i)^2 \leq \sum_{i=1}^{r} 1^2 \sum_{i=1}^{r} \lambda_i^2 = r \sum \lambda_i^2 \leq d \sum \lambda_i^2$.

11
Find s with $\|y^s\|_p = \min \|y^r\|_p$ and recall that the y^i are nonnegative. We then have the inequality
\[
 f^2(w^1 x^*, \ldots, w^d x^*) = \|\hat{y}\|_2^2 \leq \|y^s\|_2^2 \leq (d \sum_{i=1}^r \lambda_i^2) \cdot \|y^s\|_2^2 \leq d \sum_{i=1}^r \lambda_i^2 \cdot \|y^s\|_2^2
\]
which proves that in this case, as claimed, \hat{x} provides moreover a \sqrt{d}-approximative solution. \qed

4.2 Maximization

The following theorem provides an approximative algorithm for maximizing the l_p norm, that runs in time which is polynomial even in the bit size of the weights $w^k_{i,j}$ and even if d is variable.

Theorem 4.2 There is an algorithm that, given any d, any n, any $1 \leq p \leq \infty$, and any nonnegative integer weights w^1, \ldots, w^d, determines a $d^{1\over 2}$-approximative solution to the maximum nonlinear bipartite matching problem with $f = \| \cdot \|_p$, in oracle-time which is polynomial in d, n, and $\max[\log w^k_{i,j}]$.

Proof. The algorithm is the following: for $k = 1, \ldots, d$ solve the linear programming problem
\[
 \max \{ w^k x : \sum_i x_{i,j} = 1, \sum_j x_{i,j} = 1, x \geq 0 \},
\]
obtain an optimal vertex x^k of Π^n, and let $y^k := w \cdot x^k$ be its projection. Using the comparison oracle of f find r with $\|y^r\|_p = \max_{k=1}^d \|y^k\|_p$. Output the perfect matching of $K_{n,n}$ corresponding to x^r.

We now show that this provides the claimed approximation. Let s satisfy $\|y^s\|_\infty = \max_{k=1}^d \|y^k\|_\infty$. First, we claim that any $y \in \Pi^n$ satisfies $\|y\|_\infty \leq \|y^s\|_\infty$. To see this, choose any point $x \in \Pi^n \cap w^{-1}(y)$ in the fiber of y so that $y := w \cdot x$, let t satisfy $y_t = \|y\|_\infty = \max_{k=1}^d y_t$, and recall that the w^k and hence the y^k are all nonnegative. Then, as claimed, we get
\[
 \|y\|_\infty = y_t = w^t x \leq \max \{ w^t x : x \in \Pi^n \} = w^t x^t = y^t \leq \|y^t\|_\infty \leq \|y^s\|_\infty .
\]

Let x^* be an optimal permutation matrix and let $y^* := w \cdot x^*$ be its projection. Consider first the case $p = \infty$. Then $\|y^r\|_\infty = \max_{k=1}^d \|y^k\|_\infty = \|y^s\|_\infty$ and hence, by the claim just proved, we have
\[
 f(w^1 x^*, \ldots, w^d x^*) = \|y^r\|_\infty \leq \|y^s\|_\infty = \|y^r\|_\infty = f(w^1 x^*, \ldots, w^d x^*) \leq f(w^1 x^*, \ldots, w^d x^*) .
\]
Therefore equality holds all along and x^* provides an exact optimal solution, or in other words, a 1-approximative solution, agreeing with the statement of the theorem with $d_{\infty} = 1$ for $p = \infty$. Next, consider the case of any $1 \leq p < \infty$. Then we have the following inequality which completes the proof,

$$f^p(w^1 x^*, \ldots, w^d x^*) = \|y^s\|_p^p = \sum_{k=1}^{d} |y^s_k|^p \leq d \cdot \|y^s\|_{\infty}^p \leq d \cdot \|y^s\|_{\infty}^p$$

$$\leq d \cdot \sum_{k=1}^{d} |y^s_k|^p = d \cdot \|y^s\|_p^p$$

$$\leq d \cdot \|y^s\|_{\infty}^p = d \cdot f^p(w^1 x^*, \ldots, w^d x^*) \quad \square$$

5 Randomized Nonlinear Optimization

In this section we provide a randomized algorithm for nonlinear bipartite matching for any function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ presented by a comparison oracle. By this we mean an algorithm that has access to a random bit generator, and on any input outputs the optimal solution with probability at least half.

By adding to each $w^k_{i,j}$ a suitable positive integer v and replacing the function f by the function that maps each $y \in \mathbb{R}^d$ to $f(y_1 - nv, \ldots, y_d - nv)$ if necessary, we may and will assume without loss of generality throughout this section that the given weights are nonnegative, $w^1, \ldots, w^d \in \mathbb{N}^{n \times n}$.

Recall that $\text{vert}(\Pi^n)$ is the set of $n \times n$ permutation matrices and let $Y := \{w \cdot x : x \in \text{vert}(\Pi^n)\}$ be the set of all projections $y = w \cdot x = (w^1 x, \ldots, w^d x) \in \mathbb{N}^d$ of permutation matrices x.

In this section we will be working with polynomials with integer coefficients in the $n^2 + d$ variables $a_{i,j}, i, j = 1, \ldots, n$ and $b_k, k = 1, \ldots, d$. Define an $n \times n$ matrix A whose entries are monomials by

$$A_{i,j} := a_{i,j} \prod_{k=1}^{d} b_k^{w_{k,i,j}}, \quad i, j = 1, \ldots, n$$

For each matrix $x \in \mathbb{N}^{n \times n}$ and vector $y \in \mathbb{N}^n$, the corresponding monomial is

$$a^x b^y := \prod_{i=1}^{n} \prod_{j=1}^{n} a_{i,j}^{x_{i,j}} \prod_{k=1}^{d} b_k^{y_k}$$

For each permutation matrix x let $\text{sign}(x) = \pm$ denote the sign of the corresponding permutation. Finally, for each $y \in \mathbb{N}^d$ define the following polynomial in the variables $a = (a_{i,j})$ only, by

$$g_y(a) := \sum \{\text{sign}(x) a^x : x \in \text{vert}(\Pi^n), \; w \cdot x = y\}$$

We then have the following identity expanding the determinant of A in terms of the $g_y(a)$,

$$\det(A) = \sum_{x \in \text{vert}(\Pi^n)} \text{sign}(x) \prod_{i,j} A_{i,j}^{x_{i,j}} = \sum_{x \in \text{vert}(\Pi^n)} \text{sign}(x) a^x b^w = \sum_{y \in Y = w \cdot \text{vert}(\Pi^n)} g_y(a) b^y$$
Next we consider integer substitutions to the variables $a_{i,j}$. Under such substitutions, each $g_y(a)$ becomes an integer and $\det(A) = \sum_{y \in Y} g_y(a) b^y$ becomes a polynomial in the variables $b = (b_k)$ only. Given such a substitution, let $\hat{Y} := \{ y \in Y : g_y(a) \neq 0 \}$ be the support of $\det(A)$, that is, the set of exponents of monomial b^y appearing with nonzero coefficient in $\det(A)$.

The next proposition concerns substitutions of independent identical random variables uniformly distributed on the set of integers $\{1, 2, \ldots, s\}$, under which \hat{Y} becomes a random subset of Y.

Proposition 5.1 Suppose that independent identical random variables uniformly distributed on the set $\{1, 2, \ldots, s\}$ are substituted for the $a_{i,j}$ and let $\hat{Y} = \{ y \in Y : g_y(a) \neq 0 \}$ be the random support of $\det(A)$. Then, for every $y \in Y = \{ w \cdot x : x \in \text{vert}(\Pi^n) \}$, the probability that $y \notin \hat{Y}$ is at most $\frac{n}{s}$.

Proof. Consider any $y \in Y$ and consider $g_y(a)$ as a polynomial in the variables $a = (a_{i,j})$. Since $y = w \cdot x$ for some permutation matrix, there is at least one term $\text{sign}(x) a^x$ in $g_y(a)$. Since distinct permutation matrices x give distinct monomials a^x, no cancellations occur among the terms $\text{sign}(x) a^x$ in $g_y(a)$. Thus, $g_y(a)$ is a nonzero polynomial of degree n. The claim now follows from a lemma of Schwartz stating that the substitution of independent identical random variables uniformly distributed on $\{1, 2, \ldots, s\}$ into a nonzero multivariate polynomial of degree n is zero with probability at most $\frac{n}{s}$. \square

The next lemma shows that, given $a_{i,j}$, the support \hat{Y} of $\det(A)$ is polynomial time computable.

Lemma 5.2 For any fixed d, there is an algorithm that, given n, $w^1, \ldots, w^d \in \mathbb{N}^{n \times n}$, and substitutions $a_{i,j} \in \{1, 2, \ldots, s\}$, computes $\hat{Y} = \{ y \in Y : g_y(a) \neq 0 \}$ in time polynomial in n, $\max w_{i,j}^k$, and $[\log s]$.

Proof. For each y, let $g_y := g_y(a)$ be the fixed integer obtained by substituting the given integers $a_{i,j}$. Put $u = n \cdot \max w_{i,j}^k$ and $Z = \{0, 1, \ldots, u\}^d$. Then $\hat{Y} \subseteq Y \subseteq Z$ and hence $\det(A) = \sum_{y \in Z} g_y b^y$ is a polynomial in d variables $b = (b_k)$ involving at most $|Z| = (u+1)^d$ monomials. For $t = 1, 2, \ldots, (u+1)^d$ consider the substitution $b_k := t^{(u+1)^{k-1}}$, $k = 1, \ldots, d$. Let $A(t)$ be the integer matrix obtained from A by this substitution along with the substitution of the given $a_{i,j}$. Then each entry of $A(t)$ satisfies

$$A(t)_{i,j} = a_{i,j} \prod_{k=1}^{d} (t^{(u+1)^{k-1}})^{w_{i,j}^k} \leq s \prod_{k=1}^{d} ((u+1)^{d})^{(u+1)^{k-1}} \frac{u}{n} \leq s(u+1)^{d(u+1)^{d+1}}$$

and hence its bits size $1 + \log A(t)_{i,j} = O(d^{d+1} \log(su))$ is polynomially bounded in $n, \max w_{i,j}^k, [\log s]$. Therefore the integer number $\det(A(t))$ can be computed in polynomial time by Gaussian elimination. So we obtain the following system of $(u+1)^d$ equations in $(u+1)^d$ variables g_y, $y \in Z = \{0, 1, \ldots, u\}^d$,

$$\det(A) = \sum_{y \in Z} g_y \prod_{k=1}^{d} b_k^{y_k} = \sum_{y \in Z} t^{\sum_{k=1}^{d} y_k(u+1)^{k-1}} \cdot g_y, \quad t = 1, 2, \ldots, (u+1)^d.$$
As \(y = (y_1, \ldots, y_d) \) runs through \(Z \), the sum \(\sum_{k=1}^d y_k(u+1)^{k-1} \) attains precisely all \(|Z| = (u+1)^d\) distinct values 0, 1, \ldots, \((u+1)^d - 1\). This implies that, under the total order of the points \(y \) in \(Z \) by increasing value of \(\sum_{k=1}^d y_k(u+1)^{k-1} \), the vector of coefficients of the \(g_y \) in the equation corresponding to \(t \) is precisely the point \((t^0, t^1, \ldots, t^{(u+1)^d - 1})\) on the moment curve in \(\mathbb{R}^Z \cong \mathbb{R}^{(u+1)^d} \). Therefore, the equations are linearly independent and hence the system can be solved for the \(g_y = g_y(a) \) and the desired support \(\hat{Y} = \{ y \in Y : g_y(a) \neq 0 \} \) of \(\det(A) \) can indeed be computed in polynomial time. \(\square \)

We are now in position to prove Theorem 1.2. By a randomized algorithm that solves the nonlinear bipartite matching problem we mean an algorithm that has access to a random bit generator and on any input to the problem outputs a perfect matching which is optimal with probability at least a half. The running time of the algorithm includes a count of the number of random bits used. Note that by repeatedly applying such an algorithm several times and picking the best perfect matching, the probability of failure can be decreased at will; in particular, repeating it \(n \) times decreases the failure probability to as negligible a fraction as \(\frac{1}{2^n} \) while increasing the running time by a linear factor only.

Theorem 1.2 For any fixed \(d \), there is a randomized algorithm that, given any positive integer \(n \), any integer weights \(w^1, \ldots, w^d \), and any function \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) presented by comparison oracle, solves the nonlinear bipartite matching problem in oracle-time which is polynomial in \(n \) and \(\max |w^k_{i,j}| \).

Proof. As explained in the beginning of this section, we may and will assume that the \(w^k \) are non-negative. First we claim that, with probability at least \(1 - \frac{1}{2^n} \), we can compute the optimal objective function value of the nonlinear bipartite matching problem. To see this, note that the optimal value equals \(\max\{f(y) : y \in Y\} \) where \(Y = \{w \cdot x : x \in \text{vert}(P^n)\} \) as before, and let \(y^* \in Y \) be a point attaining \(f(y^*) = \max\{f(y) : y \in Y\} \). Now, using polynomially many random bits, draw independently and uniformly distributed integers from \(\{1, 2, \ldots, 2n^2\} \) and substitute them for the \(a_{i,j} \). Next compute \(\hat{Y} = \{ y \in Y : g_y(a) \neq 0 \} \) using the algorithm underlying Lemma 5.2 and determine \(\max\{f(y) : y \in \hat{Y}\} \). By Proposition 5.1 with probability at least \(1 - \frac{1}{2^n} \) we have \(y^* \in \hat{Y} \) in which event \(\max\{f(y) : y \in \hat{Y}\} = \max\{f(y) : y \in Y\} \) is indeed the optimal objective function value.

Next, suppose that \(M \subset N = \{(i,j) : 1 \leq i,j \leq n\} \) is any (not necessarily perfect) matching of \(K_{n,n} \). Then we can also compute, with probability at least \(1 - \frac{1}{2^m} \), the maximum objective function value among perfect matchings \(M \cup L \) containing \(M \). To see this, let \(m := n - |M| \) and consider the subgraph \(G \) of \(K_{n,n} \) induced by the vertices not matched under \(M \). Then \(G \) is isomorphic to \(K_{m,m} \) and we have a naturally induced nonlinear bipartite matching problem on \(G \), where the new weight functions \(\tilde{w}^k \) are simply the restrictions of the \(w^k \) to the edges of \(G \), and the new functional \(\hat{f} \) on \(\mathbb{R}^d \) is defined by \(\hat{f}(y_1, \ldots, y_d) := f(y_1 + w^1(M), \ldots, y_d + w^d(M)) \). Then the objective function value \(f(w^1(M \cup L), \ldots, w^d(M \cup L)) \) of any perfect matching \(M \cup L \) of \(K_{n,n} \) in the original problem equals the objective function value \(\hat{f}(\tilde{w}^1(L), \ldots, \tilde{w}^d(L)) \) of the perfect matching \(L \) of \(G \) in the induced
problem. Since \(\max \tilde{w}_{i,j}^k \leq \max w_{i,j}^k \) and \(m \leq n \) we can compute, with probability at least \(1 - \frac{1}{2n} \), in time polynomial in \(n \) and \(\max |w_{i,j}^k| \), the optimal objective function value of a perfect matching of \(G \) by the algorithm of the paragraph above applied to \(G \), where the randomized substitutions are taken from \(\{1, 2, \ldots, 2mn\} \) (and not from \(\{1, 2, \ldots, 2m^2\} \) which would give smaller probability of success). This value is the maximum objective function value among perfect matchings \(M \cup L \) containing \(M \).

We claim that the following procedure constructs a perfect matching \(M \) of \(K_{n,n} \) which is optimal with probability at least \(\frac{1}{2} \). Start with \(M := \emptyset \) and \(i := 1 \). While \(i \leq n \) iterate: for each edge \((i, j)\) such that \(j \) is not matched under \(M \), use the algorithm of the previous paragraph to obtain the maximum objective function value of a perfect matching of \(K_{n,n} \) containing \(M \cup \{(i, j)\} \); let \(j_i \) be the smallest \(j \) for which this value is maximal; update \(M := M \cup \{(i, j_i)\} \); increment \(i \) and repeat. Output \(M \).

To prove the claim, let \(M^* = \{(1, r_1), (2, r_2), \ldots, (n, r_n)\} \) be the lexicographically first optimal perfect matching of \(K_{n,n} \), that is, the one such that for any other optimal \(M' = \{(1, s_1), (2, s_2), \ldots, (n, s_n)\} \) there is an index \(1 \leq h < n \) such that \(r_i = s_i \) for all \(i < h \) and \(r_h < s_h \). For \(i = 1, \ldots, n \) let \(E_i \) be the random event that after the completion of iteration \(i \) of the above procedure we have \(M = \{(1, r_1), \ldots, (i, r_i)\} \). We prove by induction on \(i \) that \(\Pr(E_i) \geq (1 - \frac{1}{2n})^i \). For the basis note that \(E_1 \) is the event that the randomized algorithm used during the first iteration computes correctly the maximum objective function value of a perfect matching containing \(\{(1, r_1)\} \), having probability at least \(1 - \frac{1}{2n} \). For the inductive step note that \(\Pr(E_{i+1} | E_i) \) is the probability that, given that after iteration \(i \) we have \(M = \{(1, r_1), \ldots, (i, r_i)\} \), the randomized algorithm used during iteration \(i + 1 \) computes correctly the maximum objective function value of a perfect matching containing \(\{(1, r_1), \ldots, (i, r_i), (i + 1, r_{i+1})\} \), which is again at least \(1 - \frac{1}{2n} \); as \(E_{i+1} \subseteq E_i \), the induction follows by

\[
\Pr(E_{i+1}) = \Pr(E_{i+1} \cap E_i) = \Pr(E_{i+1} | E_i) \Pr(E_i) \geq (1 - \frac{1}{2n})(1 - \frac{1}{2n})^i = (1 - \frac{1}{2n})^{i+1}.
\]

Now, the probability that the perfect matching \(M \) output by the procedure above is optimal is no smaller than the probability that \(M \) equals the lexicographically first optimal perfect matching \(M^* \) which is precisely \(\Pr(E_n) \) and hence at least \((1 - \frac{1}{2n})^n \geq \frac{1}{2} \) as desired. This completes the proof. □

References

[1] Chandrasekaran, R., Kabadi, S.N., Murty, K.G.: Some NP-complete problems in linear programming. Oper. Res. Lett. 1 (1982) 101–104

[2] De Loera, J., Onn, S.: The complexity of three-way statistical tables. SIAM J. Comp. 33 (2004) 819–836
[3] Hwang, F.K., Onn, S., Rothblum, U.G.: A polynomial time algorithm for shaped partition problems. SIAM J. Optim. 10 (1999) 70–81

[4] Karzanov, A.V.: On the maximal matchings of a given weight in complete and complete bipartite graphs. Kibernetika 1 (1987) 7–11

[5] Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7 (1987) 105–113

[6] Onn, S.: Convex matroid optimization. SIAM J. Discr. Math. 17 (2003) 249–253

[7] Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Disc. Comp. Geom. 32 (2004) 549–566

[8] Onn, S., Schulman, L.J.: The vector partition problem for convex objective functions. Math. Oper. Res. 26 (2001) 583–590

[9] Papadimitriou, C.H.: Polytopes and complexity. In: Progress in Combinatorial Optimization (W.R. Pulleyblank ed.), Academic Press (1984) 295–305

[10] Papadimitriou, C.H., Yanakakis, M.: The complexity of restricted spanning tree problems. J. ACM 29 (1982) 285–309

[11] Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27 (1980) 701–717

[12] Yi, T., Murty, K.G., Spera, C.: Matchings in colored bipartite networks. Disc. App. Math. 121 (2002) 261–277

Yael Berstein

Technion - Israel Institute of Technology, 32000 Haifa, Israel
email: yaelber@tx.technion.ac.il

Shmuel Onn

Technion - Israel Institute of Technology, 32000 Haifa, Israel
email: onn@ie.technion.ac.il, http://ie.technion.ac.il/~onn