Friction stir welding is an innovative welding process for similar and dissimilar joining of the materials effectively. FSW simply modified the grain structure and also improved the strength of the joints for any type of alloying elements. This experimental study planned to carry out the joining process for dissimilar materials such as aluminium alloys 5083 and 7068. Three different types of tools are involved to find the ultimate tensile strength and Vickers hardness. The tool types are straight cylindrical tool, taper cylindrical tool, and triangular tool. The process factors for this investigation are a rotational speed of 800, 1000, 1200, and 1400 rpm, welding speed of 30, 40, 50, and 60 mm/min, axial force of 3, 4, 5, and 6 kN, and plate thickness of 5, 6, 7, and 8 mm. The hardness value and the ultimate tensile strength were increased in the welding zone, which proves the effects of tool profiles are efficiently utilized.

1. Introduction

The aluminium alloy is one of the effective materials used worldwide in all field applications, and due to the excellent strength of the aluminium alloy, it is used for all structural work in the construction field [1]. The aluminium alloy is adaptable for all types of welding process and possesses good corrosion resistance in the marine environment. The aluminium alloys with reinforcement improve the wear properties in the sliding friction method. The friction stir welding method is used to weld a minimum-thickness plate without damaging the specimen, and the FSW process eliminates the bending of the work part after welding [2–4]. Different tool pin profiles are used to join the samples with extraordinary strength and good surface modification. The main advantage of the FSW is a nonconsumable tool is used since the cost of electrode for the welding process is avoided [5]. The tool rotational speed and welding speed are directly influenced in the welding strength of the components, and it reflects on the mechanical test. All sheets and plates are welded effectively; nowadays, the circular specimen is also welded through the FSW process in the pipe joint and solid round bar joint successfully [6]. The shoulder area of the tool pressing and levelling of the intermixing materials without
wastage during the welding process, based on the tool selection single pass ride and multipass ride, was used to obtain rigid welding. The tilt angle of the tool position gives uniform mixing and reduces the defects of the materials after welding, and the wear of the tool was avoided by selecting proper tool material for work and the suitable parameters [7–9]. The FSW process was introduced by Wayne Thomas at TWI Ltd. in 1991. The tool rotational speed changes the microstructure of the material by the way of utilizing stirring action. The lot of researchers used the FSW process effectively, and this investigation planned to conduct the dissimilar weld joint using the material of AA5083 and AA7068 successfully. The different parameters influenced are rotational speed, welding speed, axial force, and plate thickness [10].

2. Selection of Materials

Consideration of the application and material selection is one of the major roles in the investigation.

The dissimilar FSW joint material is selected on the basis of application and mechanical strength characters. The AA7068 aluminium alloy has provided the superior mechanical strength and corrosion resistance [11]. This AA7068 alloy is commonly applied for fuel pump manufacturing, rocker arm assembly fabrication, high-speed engine, valve body construction, and gears. AA7068 has provided maximum tensile strength and hardness, and this alloy is used in the fabrication of container and tipper truck bodies. The chemical composition of AA5083 and AA7068 is illustrated in Table 1.

2.1. Experimental Procedure. The FSW process considers the process factors, and all the factors and their values are presented in Table 2.

The friction stir welding process was carried out in the CNC vertical milling machine, and the specimens taken for this work were 100 * 50 * 4 mm for both plates [12]. The tool pin for the FSW was considered as a straight cylindrical shape, taper cylindrical, and triangular profile pin for each experimental trials, as shown in Figure 1 [13]. The tool material of the process was high-speed steel (HSS). The specimens are mounted on the table with the help of fixture, and the tool rotates and plunger the work material with selected parameters. The high penetration produced the uniform mixture and the permanent joints. After welding, the specimen was prepared as per the standard dimensions for conducting the tensile test, and the Universal Testing Machine was used to carry out the tensile test with 40 Ton capacity [14]. The all samples were tested effectively, the readings were noted, and the maximum tensile strength was identified. The microhardness of the specimens was tested in the Vickers hardness testing machine for each sample. The maximum hardness value of the sample was classified from other samples efficiently.

| Table 1: Chemical composition of AA7079 and AA8050. |
|---|-----------------|-----------------|
| Material | % of composition of AA5083 | % of composition of AA7068 |
| Cr | 0.2 | 0.050 |
| Cu | 0.10 | 2.5 |
| Fe | 0.3 | 0.14 |
| Mg | 4.5 | 2.9 |
| Mn | 0.5 | 0.1 |
| Si | 0.2 | 0.12 |
| Zn | 0.1 | 7.8 |
| Ti | 0.15 | 0.08 |
| Zr | — | 0.16 |
| Ni | — | 0.040 |
| Al | Remaining | Remaining |

| Table 2: Friction stir welding process and its value. |
|---|---------------|
| Notation | Factors | Level 1 | Level 2 | Level 3 | Level 4 |
| P | Rotational speed (rpm) | 800 | 1000 | 1200 | 1400 |
| Q | Welding speed (mm/min) | 30 | 40 | 50 | 60 |
| R | Axial force (kN) | 3 | 4 | 5 | 6 |
| S | Plate thickness (mm) | 5 | 6 | 7 | 8 |

3. Result and Discussion

The process factors of the investigation and the output value of tensile strength are presented in Table 3.

From Table 3, the maximum tensile strength was obtained as 290 MPa, and the factors of influence are a rotational speed of 1400 rpm, welding speed of 40 mm/min, axial force of 5 kN, and plate thickness of 5 mm [15]. The analysis of variance result is summarized in Table 3. From the ANOVA in the linear model, the rotational speed has high contribution such as 15.16%, and in the square model, plate thickness (mm) * plate thickness (mm) was contributed as 14.09%. In the 2-way interaction model, the welding speed (mm/min) * plate thickness (mm) was contributed as 33.24%. The rotational speed was the most influencing factor of this investigation, and the second factor of influence was welding speed, Table 4.

3.1. Regression Equation. UTS (MPa) = −826 + 1.008 Rotational speed (rpm) −2.26 Welding speed (mm/min) + 83.6 Axial force (kN) + 119.1 Plate thickness (mm).

- 0.000029 Rotational speed (rpm) * Rotational speed (rpm).
- 0.1094 Welding speed (mm/min) * Welding speed (mm/min) + 0.83 Axial force (kN) * Axial force (kN) + 3.83 Plate thickness (mm) * Plate thickness (mm).
- 0.00122 Rotational speed (rpm) * Welding speed (mm/min).
- 0.0767 Rotational speed (rpm) * Axial force (kN).
- 0.1039 Rotational speed (rpm) * Plate thickness (mm).
Table 3: FSW factors’ contribution and the output of tensile strength.

Exp. no.	Rotational speed (rpm)	Welding speed (mm/min)	Axial force (kN)	Plate thickness (mm)	Tensile strength (MPa)
1	800	30	3	5	210
2	800	40	4	6	250
3	800	50	5	7	180
4	800	60	6	8	160
5	1000	30	4	7	240
6	1000	40	3	8	270
7	1000	50	5	6	285
8	1000	60	5	6	245
9	1200	30	5	8	262
10	1200	40	6	7	190
11	1200	50	3	6	185
12	1200	60	4	5	240
13	1400	30	6	6	257
14	1400	40	5	5	292
15	1400	50	4	8	275
16	1400	60	3	7	212

Table 4: Analysis of variance result.

Source	DF	Seq SS	Contribution (%)	Adj SS	Adj MS	F value	P value
Model	13	23106.8	94.36	23106.8	1777.44	2.57	0.314
Linear	4	6937.3	28.33	9341.1	2335.27	3.38	0.241
Rotational speed (rpm)	1	3712.8	15.16	8831.8	8831.78	12.79	0.07
Welding speed (mm/min)	1	2132.1	8.71	173.6	173.55	0.25	0.666
Axial force (kN)	1	4.5	0.02	24	23.97	0.03	0.869
Plate thickness (mm)	1	1087.8	4.44	482.4	482.44	0.7	0.491
Square	4	7388.2	30.17	10407.1	2601.76	3.77	0.221
Rotational speed (rpm) * Rotational speed (rpm)	1	410.1	1.67	7691.4	7691.38	11.14	0.079
Welding speed (mm/min) * Welding speed (mm/min)	1	637.6	2.60	637.6	637.56	0.92	0.438
Axial force (kN) * Axial force (kN)	1	2889.1	11.80	6029.5	6029.52	8.73	0.098
Plate thickness (mm) * Plate thickness (mm)	1	3451.6	14.09	5363.3	5363.28	7.77	0.108
2-way interaction	5	8781.3	35.86	8781.3	1756.25	2.54	0.306
Rotational speed (rpm) * Welding speed (mm/min)	1	2.9	0.01	127.6	127.96	0.18	0.709
Rotational speed (rpm) * Axial force (kN)	1	192.2	0.79	56	5816.96	0.86	0.803
Rotational speed (rpm) * Plate thickness (mm)	1	435.8	1.78	435.8	1435.75	0.63	0.51
Welding speed (mm/min) * Axial force (kN)	1	10.2	0.04	7705	7705	11.16	0.079
Welding speed (mm/min) * Plate thickness (mm)	1	8140.2	33.24	8140.2	8140.17	11.79	0.075
Error	2	1381.2	5.64	1381.2	690.59		
Total	15	24487.9	100.00				

- 0.056 Welding speed (mm/min) * Axial force (kN).
- 1.356 Welding speed (mm/min) * Plate thickness (mm).
- 0.00 Axial force (kN) * Plate thickness (mm).

Table 5 presents the different tool profiles involved to produce the ultimate tensile strength effectively. Using a
Table 5: Summary of the different tool profiles with ultimate tensile strength.

S. no.	Tool profile	Rotational speed (rpm)	Ultimate tensile strength (MPa)
		30 mm/min - 3 kN	40 mm/min - 4 kN
1.	Cylindrical taper tool	800	235
2.		1000	246
3.		1200	267
4.		1400	192
5.	Triangular tool	800	234
6.		1000	247
7.		1200	286
8.		1400	210
9.	Straight cylindrical tool	800	246
10.		1000	256
11.		1200	275
12.		1400	210

Figure 2: (a) Rotational speed vs. ultimate tensile strength (cylindrical taper tool), (b) Rotational speed vs. ultimate tensile strength (triangular tool), and (c) Rotational speed vs. ultimate tensile strength (straight cylindrical tool).
Table 6: Summary of different tool profiles with microhardness.

S. no.	Tool profile	Rotational speed (rpm)	Microhardness (HV)			
		30 mm/min - 3 kN	40 mm/min - 4 kN	50 mm/min - 5 kN	60 mm/min - 6 kN	
1.						
2.	Cylindrical taper	800	45	50	48	46
3.		1000	62	66	68	58
4.		1200	75	70	72	66
5.		1400	56	52	42	50
6.	Triangular tool	800	55	48	55	52
7.		1000	68	60	75	66
8.		1200	86	75	68	78
9.		1400	62	65	54	54
10.	Straight cylindrical	800	46	50	52	48
11.		1000	64	66	68	60
12.		1200	82	80	74	72
		1400	58	48	52	50

Figure 3: (a) Rotational speed vs. hardness (cylindrical taper tool), (b) Rotational speed vs. hardness (triangular tool), and (c) Rotational speed vs. hardness (straight cylindrical tool).
cylindrical taper tool, the minimum tensile strength obtained was 180 MPa with the rotational speed of 1400 rpm, welding speed of 40 mm/min, and axial force of 4 kN. The maximum tensile strength attained was 267 MPa, involving a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN. Using a triangular tool, the maximum tensile strength was 286 MPa offered by the influence of a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN. Using a straight cylindrical tool, the maximum tensile strength of 275 MPa was attained as by the way of a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN. From this analysis, it can be seen that all the tools provided the maximum tensile strength with consideration of a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN.

3.2. Effects of Tool Profiles with Tool Speed in Ultimate Tensile Strength. Figures 2(a)–2(c) show the different rotational speeds versus ultimate tensile strengths by the influence of different tool pin profiles. From the entire graph, it can be seen that the increase of rotational speed increases the tensile strength, and the maximum tensile strength was obtained in the influence of 1200 rpm, a welding speed of 30 mm/min, and an axial force of 3 kN. With further increase of rotational speed, the tensile strength rapidly fell down; it proves the rotational speed effects in the tensile strength. The triangular tool was given the maximum tensile strength of 286 MPa.

3.3. Effects of Tool Profiles with Tool Speed in Microhardness. Table 6 presents the microhardness of the weld joint with the influence of different tool profiles. Using a cylindrical taper tool, the minimum and maximum microhardness were obtained as 42 HV and 75 HV. With the involvement of a triangular tool, the minimum and maximum microhardness were obtained as 48 HV and 86 HV. With the application of a straight cylindrical tool, the minimum and maximum microhardness were attained as 46 HV and 82 HV. The triangular tool was given the maximum microhardness value of 86 HV.

The rotational speed versus microhardness graph is illustrated in Figure 3(a), and the graph shows the minimum rotational speed provided the minimum hardness values. The increasing trends of rotational speed, welding speed, and the axial force provided the maximum hardness value. At a rotational speed of 1200 rpm, the maximum hardness was obtained, and with further increase of rotational speed from 1200 rpm tp 1400 rpm, the hardness value decreased constantly. The maximum hardness value obtained by using a cylindrical tool was 75 HV with the support of a welding speed of 30 mm/min and axial force of 3 kN.

Figure 3(b) visibly shows the maximum hardness obtained by using a triangular tool was 86 HV with the influence of a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN. As in Figure 3(c), the maximum hardness value acquired was 82 HV by using a straight cylindrical tool with the rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN.

4. Conclusions
The joining material of AA5083 and AA7068 aluminium alloy was joined by friction stir welding with different process variables. The maximum ultimate tensile strength and microhardness were successfully conducted, and the results are pointed out as follows:

From the ANOVA test, using a cylindrical taper tool, the maximum ultimate tensile strength was attained as 267 MPa. Using a triangular tool, the maximum ultimate tensile strength obtained was 286 MPa. Using a straight cylindrical tool, the maximum ultimate tensile strength of 275 MPa was attained. From this analysis, it can be seen that all the tools provided the maximum tensile strength with consideration of a rotational speed of 1200 rpm, welding speed of 30 mm/min, and axial force of 3 kN. With the increase of rotational speed from 1200 rpm to 1400 , the tensile strength rapidly decreased.

By using a cylindrical taper tool, the minimum and maximum microhardness were obtained as 42 HV and 75 HV. The implementation of a triangular tool provided the minimum and maximum microhardness of 48 HV and 86 HV. The application of a straight cylindrical tool provided the minimum and maximum microhardness of 46 HV and 82 HV. The triangular tool offered the maximum tensile strength and microhardness of the investigation.

In future, the present study will analyse the wear performance and corrosion behaviour of the dissimilar materials and it is also planned to conduct the fatigue test for failure analysis.

Data Availability
The data used to support the findings of this study are included in the article. Further data or information is available from the corresponding author upon request.

Conflicts of Interest
This study was performed as a part of the employment at Bule Hora University, Ethiopia.

Acknowledgments
The authors appreciate the support from Bule Hora University, Ethiopia. The authors thank Saveetha School of Engineering, Chennai, for the technical assistance to complete this experimental work.
References

[1] D. Venkateswarlu, P. Nageswara rao, M. M. Mahapatra, S. P. Harsha, and N. R. Mandal, “Processing and optimization of dissimilar friction stir welding of AA 2219 and AA 7039 alloys,” Journal of Materials Engineering and Performance, vol. 24, no. 12, pp. 4809–4824, 2015.

[2] M. Akbari, M. Aliha, S. Keshavarz, and A. Bonyadi, “Effect of tool parameters on mechanical properties, temperature, and force generation during FSW,” Proceedings of the Institution of Mechanical Engineers—Part L: Journal of Materials: Design and Applications, vol. 233, no. 6, pp. 1033–1043, 2019.

[3] T. Sathish, G. Muthu, M. D. Vijayakumar, V. Dhinakaran, and P. M. B. Ram, “Mechanical properties and microstructural analysis of friction stir processed AA6056–zirconium dioxide (ZrO2),” Materials Today: Proceedings, vol. 37, pp. 1804–1808, 2021.

[4] S. T. Amancio-Filho, S. Sheikhi, J. F. Dos Santos, and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4,” Journal of Materials Processing Technology, vol. 206, no. 1–3, pp. 132–142, 2008.

[5] P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, “Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding,” International Journal of Machine Tools and Manufacture, vol. 46, no. 6, pp. 588–594, 2006.

[6] A. F. Vieda Gaona and O. F. Mora Mora, “Efecto del tratamiento térmico de envejecido artificial en la rugosidad del aluminio 6061,” vol. 4, pp. 1–96, 2018.

[7] T. Sathish, N. Sabarirajan, and S. Karthick, Materials Today Proceedings, Elsevier Publisher, Amsterdam, Netherlands, 2019.

[8] M. Tamjidy, B. Baharudin, S. Paslar, K. Matori, S. Sulaiman, and F. Fadaeifard, “Multi-objective optimization of friction stir welding process parameters of AA6061-T6 and AA7075-T6 using a biogeography based optimization algorithm,” Materials, vol. 10, no. 5, p. 533, 2017.

[9] M. M. Hasan, M. Ishak, and M. R. M. Rejab, “Effect of pin tool flute radius on the material flow and tensile properties of dissimilar friction stir welded aluminum alloys,” The International Journal of Advanced Manufacturing Technology, vol. 98, no. 9, pp. 2747–2758, 2018.

[10] H. Darzi Naghibi, M. Shakeri, and M. Hosseinzadeh, “Neural network and genetic algorithm based modeling and optimization of tensile properties in FSW of AA 5052 to AISI 304 dissimilar joints,” Transactions of the Indian Institute of Metals, vol. 69, no. 4, pp. 891–900, 2016.

[11] G. Ghangas and S. Singhal, “Effect of tool pin profile and dimensions on mechanical properties and microstructure of friction stir welded armor alloy,” Materials Research Express, vol. 5, no. 6, Article ID 066555, 2018.

[12] M. Raturi, A. Garg, and A. Bhattacharya, “Joint strength and failure studies of dissimilar AA6061-AA7075 friction stir welds: effects of tool pin, process parameters and preheating,” Engineering Failure Analysis, vol. 96, pp. 570–588, 2019.

[13] T. Sathish, S. Rangarajan, A. Muthuram, and R. P. Kumar, “Analysis and modelling of dissimilar materials welding based on K-nearest neighbour predictor,” Materials Today: Proceedings, vol. 21, pp. 108–112, 2020.

[14] Z. Zhao, H. Liang, Y. Zhao, and K. Yan, “Effect of exchanging advancing and retreating side materials on mechanical properties and electrochemical corrosion resistance of dissimilar 6013-T4 and 7003 aluminum alloys FSW joints,” Journal of Materials Engineering and Performance, vol. 27, no. 4, pp. 1777–1783, 2018.

[15] U. Das and V. Toppo, “Effect of tool rotational speed on temperature and impact strength of friction stir welded joint of two dissimilar aluminum alloys,” Materials Today: Proceedings, vol. 5, no. 2, pp. 6170–6175, 2018.