Inductive characterizations of hyperquadrics

Baohua Fu

Received: 21 November 2006 / Revised: 20 March 2007 / Published online: 20 July 2007
© Springer-Verlag 2007

Abstract We give two characterizations of hyperquadrics: one as non-degenerate smooth projective varieties swept out by large dimensional quadric subvarieties passing through a point; the other as LQEL-manifolds with large secant defects.

1 Introduction

We work over an algebraically closed field of characteristic zero. In [1], Ein proved that if X is an n-dimensional smooth projective variety containing an m-plane Π_0 whose normal bundle is trivial, with $m \geq n/2 + 1$, then there exists a smooth projective variety Y and a vector bundle E over Y such that $X \cong \mathbb{P}(E)$ and Π_0 is a fiber of $X \to Y$. The bound on m was improved to $m \geq n/2$ by Wiśniewski in [11]. Later on, Sato [10] studied projective smooth n-folds X swept out by m-dimensional linear subspaces, i.e. through every point of X, there passes through an m-dimensional linear subspace. If $m \geq n/2$, he proved that either X is a projective bundle as above or $m = n/2$. In the latter case, X is either a smooth hyperquadric or the Grassmanian variety parametrizing lines in \mathbb{P}^{m+1}.

A natural problem is to extend these results to the case where linear subspaces are replaced by quadric hypersurfaces. In this paper, we will consider a smooth projective non-degenerate variety $X \subseteq \mathbb{P}^N$ of dimension n, which is swept out by m-dimensional irreducible hyperquadrics passing through a point (for the precise definition see Sect. 3). Examples of such varieties include Severi varieties (see [12]), or more generally LQEL-manifolds of positive secant defect(see Sect. 2 below). As it
turns out, the number \(m \) is closely related to the secant defect of \(X \), which makes it hard to construct examples with big \(m \).

Our main theorem is to show (cf. Theorem 2) that if \(m > \lfloor n/2 \rfloor + 1 \), then \(N = n + 1 \) and \(X \) is itself a hyperquadric. This gives a substantial improvement to the Main Theorem 0.2 of [7], where the same claim is proved under the assumption that a general hyperquadric in the family is smooth and that \(m \geq 3n/5 + 1 \). Our proof here, based on ideas contained in [5] and [9], is much simpler and is completely different from that in [7]. However, we should point out that a more general result, without assuming the quadric subspaces pass all through a fixed point, is proven in [7].

The same idea of proof, combined with the Divisibility Theorem of [9], allows us to prove (cf. Corollary 3) that for an \(n \)-dimensional LQEL-manifold, either it is a hyperquadric or its secant defect is no bigger than \(n + 8/3 \). This improves Corollaries 0.11, 0.14 of [7]. It also gives positive support to the general believing that hyperquadrics are the only LQEL-manifolds with large secant defects.

2 Preliminaries

Let \(\delta = \delta(X) = 2n + 1 - \dim(SX) \) be the secant defect of a non-degenerate \(n \)-dimensional variety \(X \subset \mathbb{P}^N \), where

\[
SX = \bigcup_{x \neq y, x, y \in X} \langle x, y \rangle \subseteq \mathbb{P}^N
\]

is the secant variety of \(X \subset \mathbb{P}^N \).

Recall [4,7] that a smooth irreducible non-degenerate projective variety \(Z \subset \mathbb{P}^N \) is said to be conically connected (CC for short) if through two general points there passes an irreducible conic contained in \(Z \). Such varieties have been studied and classified in [4] and [5].

We begin with a simple but very useful remark, which is probably well known but we were not able to find a reference.

Lemma 1 Let \(X \subset \mathbb{P}^N \) be a smooth projective variety and let \(z \in X \) be a point. If there exists a family of smooth rational curves of degree \(d \) on \(X \) passing through \(z \) and covering \(X \), then through two general points \(x, y \in X \) there passes such a curve.

In particular, if \(d = 1 \), then \(X \subset \mathbb{P}^N \) is a linearly embedded \(\mathbb{P}^n \). If \(d = 2 \) and if \(X \subset \mathbb{P}^N \) is non-degenerate, then \(X \subset \mathbb{P}^N \) is conically connected.

Proof By Theorem II.3.11 [6], there exists finitely many closed subvarieties (depending on \(z \)) \(V_i \subsetneq X \), \(i = 1, \ldots, l \), such that for any nonconstant morphism \(f : \mathbb{P}^1 \to X \) with \(f(0) = z \), \(\deg(f_*((\mathbb{P}^1))) = d \) and with \(f((\mathbb{P}^1)) \nsubseteq \bigcup_{i=1}^l V_i \), we have \(f^*T_X \) is ample. Now take a general point \(x \in X \setminus \bigcup_{i=1}^l V_i \) and a smooth rational curve \(C \subset X \) of degree \(d \) passing through \(x \) and \(z \). The above result implies that \(f^*T_X = T_X|_C \) is ample and hence that \(N_{C|X} \) is ample. Thus there exists a unique irreducible component \(W_x \) of the Hilbert schemes of rational curves of degree \(d \) contained in \(X \) and passing through \(x \) containing \([C] \). Since \(N_{C|X} \) is ample, it is well known that deformations of \(C \) parametrized by \(W_x \) cover \(X \). Therefore given a general point \(y \in X \), we can find a smooth