One- and Two-Neutron Halos in Effective Field Theory

Bijaya Acharya

Work done in collaboration with
Daniel R Phillips
Chen Ji
Philipp Hagen
Hans-Werner Hammer
Outline

- Neutron Halos
 - Overview, motivation
 - Some experimental results

- EFT For One-Neutron Halos
 - Analysis of experimental data on Carbon-19

- EFT For Two-Neutron Halos
 - Implications of a measurement of the Carbon-22 matter radius
 - Coulomb dissociation of Carbon-22
Signature

- Low separation energy for one or more neutrons, core tightly bound
- Large cross section for transfer and break-up reactions, large matter radius
- Enhanced charge radius and dipole moment

http://www.nupecc.org/

Alan Stonebraker for APS Physics
Motivation

- Nuclear reactions of astrophysical significance
- Nuclear structure away from the line of stability
- “Universality” – connection to other systems with large scattering length (nucleons, cold atoms near Fesbach resonance...)

Signature

- Low separation energy for one or more neutrons, core tightly bound
- Large cross section for transfer and break-up reactions, large matter radius
- Enhanced charge radius and dipole moment

http://www.nupecc.org/

Alan Stonebraker for APS Physics
Matter radii of nuclei deduced by Glauber model calculations from reaction cross section data.
Matter radii of nuclei deduced by Glauber model calculations from reaction cross section data.

Momentum distribution of ^{18}C from neutron removal of ^{19}C.
Matter radii of nuclei deduced by Glauber model calculations from reaction cross section data.

Momentum distribution of 18C from neutron removal of 19C.

19C break-up on Pb. Curves are calculated using Woods-Saxon wavefunction at $S_n = 0.53$ MeV.
• Direct reaction. Eikonal or semiclassical approximation.

• Perturbation theory to first order. Higher orders small.
 Typel and Baur (2001, 2008)

• Virtual photons \rightarrow real photons
 \[\sigma = \sum_{\pi L} \int \frac{d\omega}{\omega} N_{\pi L}(\omega) \sigma_{\gamma \pi L}(\omega) \]

• Dipole excitation, e.g. higher multipoles smaller by factor of 10^5 for ^{11}Li.
 Bertulani (2009)

\[\frac{d\sigma}{dE} = \frac{16\pi^3}{9} \alpha N_{E_1}(B + E) \frac{dB(E_1)}{e^2 dE} \]
Outline

• Neutron Halos
 ➢ Overview, motivation
 ➢ Some experimental results

• EFT For One-Neutron Halos
 ➢ Analysis of experimental data on Carbon-19

• EFT For Two-Neutron Halos
 ➢ Implications of a measurement of the Carbon-22 matter radius
 ➢ Coulomb dissociation of Carbon-22
Halo EFT

Bertulani, Hammer and van Kolck (2002)
Bedaque, Hammer and van Kolck (2003)

- Degrees of freedom: halo neutron and the core.

- Symmetries: invariance under Galilean transformation, translation, rotation...

- Exploit separation of scales: $\sqrt{mB} \sim M_\text{lo} << M_\text{hi} \sim R^{-1}$.

- Systematic expansion in M_lo/M_hi.

- Short distance physics (at scale M_hi and beyond) of the core unresolved, but its impact on low energy observables taken care of by renormalization.
Halo EFT

Bertulani, Hammer and van Kolck (2002)
Bedaque, Hammer and van Kolck (2003)

- Degrees of freedom: halo neutron and the core.

- Symmetries: invariance under Galilean transformation, translation, rotation...

- Exploit separation of scales: $\sqrt{(mB)} - M_{lo} \ll M_{hi} \sim R^{-1}$.

- Systematic expansion in M_{lo}/M_{hi}.

- Short distance physics (at scale M_{hi} and beyond) of the core unresolved, but its impact on low energy observables taken care of by renormalization.

19C: $J^\pi = 1/2^+$, $B = 0.58$ MeV

18C: $R = 2.7$ fm†, $J^\pi = 0^+$, $E^* = 1.62$ MeV

$M_{lo}/M_{hi} \sim 0.5$

NNDC, BNL
†Simple estimate based 1.2 $A^{1/3}$ law

1/3
\[\mathcal{L} = \mathcal{N}^\dagger \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \mathcal{N} + c^\dagger \left(i\partial_0 + \frac{\nabla^2}{2M} \right) c \\
+ d^\dagger \left[\eta \left(i\partial_0 + \frac{\nabla^2}{2(M+m)} \right) - \Delta \right] d - g \left[d^\dagger \mathcal{N} c + c^\dagger \mathcal{N}^\dagger d \right] \]

Kaplan, Savage and Wise (1998); Gegelia (1998); van Kolck (1998); Birse, McGovern and Richardson (1998)
\[\mathcal{L} = N^\dagger \left(i\partial_0 + \frac{\nabla^2}{2m} \right) N + c^\dagger \left(i\partial_0 + \frac{\nabla^2}{2M} \right) c \\
+ d^\dagger \left[\eta \left(i\partial_0 + \frac{\nabla^2}{2(M+m)} \right) - \Delta \right] d - g \left[d^\dagger N c + c^\dagger N^\dagger d \right] \]

Kaplan, Savage and Wise (1998); Gegelia (1998); van Kolck (1998); Birse, McGovern and Richardson (1998)

\[T = -\frac{2\pi}{\mu} \frac{1}{-\frac{1}{a} + \frac{1}{2} r_0 k^2 - ik} \]
\[\mathcal{L} = N^\dagger \left(i\partial_0 + \frac{\nabla^2}{2m} \right) N + c^\dagger \left(i\partial_0 + \frac{\nabla^2}{2M} \right) c \\
+ d^\dagger \left[\eta \left(i\partial_0 + \frac{\nabla^2}{2(M+m)} \right) - \Delta \right] d - g \left[d^\dagger N c + c^\dagger N^\dagger d \right] \]

Kaplan, Savage and Wise (1998); Gegelia (1998); van Kolck (1998); Birse, McGovern and Richardson (1998)

\[T = -\frac{2\pi}{\mu} \frac{1}{-\frac{1}{a} + \frac{1}{2} r_0 k^2 - ik} \]

\[a = \left(\frac{2\pi}{\mu g^2} \Delta + \kappa \right)^{-1} \]

\[r_0 = -\eta \frac{2\pi}{\mu^2 g^2} \]
\[\mathcal{L} = N^\dagger \left(i\partial_0 + \frac{\nabla^2}{2m} \right) N + c^\dagger \left(i\partial_0 + \frac{\nabla^2}{2M} \right) c \\
+ d^\dagger \left[\eta \left(i\partial_0 + \frac{\nabla^2}{2(M+m)} \right) - \Delta \right] d - g \left[d^\dagger N c + c^\dagger N^\dagger d \right] \]

Kaplan, Savage and Wise (1998); Gegelia (1998); van Kolck (1998); Birse, McGovern and Richardson (1998)

Assume naturalness: shape parameter, \(P \), enters at N3LO. Stay at N2LO.
Term	Order
$\left(\frac{M_{lo}}{M_{hi}}\right)^{-1}$	LO
$\left(\frac{M_{lo}}{M_{hi}}\right)^{2}$	N3LO
$\left(\frac{M_{lo}}{M_{hi}}\right)^{4}$	N5LO

cf. Beane and Savage (2001); Hammer and Phillips (2011); Rupak and Higa (2011); Rupak, Fernando and Vaghani (2012) for similar analysis and calculations with other nuclei
Extracting Effective Range Parameters

\[
\frac{dB(E1)}{e^2 dE} = \frac{12}{\pi^2} \frac{\mu^3}{M^2} Z^2 \frac{\gamma_0}{1 - r_0 \gamma_0} \frac{p^3}{(\gamma_0^2 + p^2)^4},
\]

cf. Bertulani and Baur (1988) for LO result

\[
\frac{1}{a} + \frac{1}{2} r_0 \gamma_0^2 - \gamma_0 = 0; \quad ANC = \sqrt{\frac{2 \gamma_0}{1 - r_0 \gamma_0}}
\]
Extracting Effective Range Parameters

\[
\frac{dB(E1)}{e^2dE} = \frac{12 \mu^3 Z^2 \gamma_0 p^3}{\pi^2 M^2 (1 - r_0 \gamma_0)(\gamma_0^2 + p^2)^4},
\]

cf. Bertulani and Baur (1988) for LO result

\[
\frac{1}{a} + \frac{1}{2}r_0 \gamma_0^2 - \gamma_0 = 0; \quad \text{ANC} = \sqrt{\frac{2\gamma_0}{1 - r_0 \gamma_0}}
\]

Data: Nakamura et al, RIKEN (1999, 2003); Calculation: Acharya and Phillips (2013)

\[a = (7.75 \pm 0.35(\text{stat.}) \pm 0.3(\text{EFT})) \text{ fm} ; \quad r_0 = (2.6^{+0.6}_{-0.9}(\text{stat.}) \pm 0.1(\text{EFT})) \text{ fm}\]

\[B = (575 \pm 55(\text{stat.}) \pm 20(\text{EFT})) \text{ keV}\]
Prediction: Momentum Distribution

- Width sensitive to B; ANC only affects height.
- Data with normalization unavailable for high Z target. Nuclear break-up background too strong for low Z ones.
- Uncertainty in absolute energy scale \rightarrow also fit position \rightarrow width is the only prediction.

Data: Bazin et al, NSCL (1998); Calculation: Acharya and Phillips (2013)
Outline

- Neutron Halos
 - Overview, motivation
 - Some experimental results

- EFT For One-Neutron Halos
 - Analysis of experimental data on Carbon-19

- EFT For Two-Neutron Halos
 - Implications of a measurement of the Carbon-22 matter radius
 - Coulomb dissociation of Carbon-22
At LO, dressed two-body propagators are renormalized by using two-body scattering lengths as input.

Three-body contact interaction enters at LO.

Bedaque, Hammer and van Kolck (1998)
\[\Psi(\vec{p}, \vec{q}) = + 2 \times \]

\[\mathcal{F}(k^2) = \int d^3p \int d^3q \, \Psi(\vec{p}, \vec{q}) \, \Psi(\vec{p} - \vec{k}, \vec{q}) = 1 - \frac{1}{6} k^2 \langle r^2 \rangle + \ldots \]

Canham and Hammer (2008)
\[\Psi(\vec{p}, \vec{q}) = + 2 \times \]

\[\mathcal{F}(k^2) = \int d^3 p \int d^3 q \Psi(\vec{p}, \vec{q}) \Psi(\vec{p} - \vec{k}, \vec{q}) = 1 - \frac{1}{6} k^2 \langle r^2 \rangle + \ldots \]

Canham and Hammer (2008)
The Point Core Limit

\[mB \langle r_0^2 \rangle \equiv f \left(\frac{E_{nn}}{B}, \frac{E_{nc}}{B}; A \right); \quad B = S_{2n} \]
The Point Core Limit

\[m B \langle r_0^2 \rangle \equiv f \left(\frac{E_{nn}}{B}, \frac{E_{nc}}{B}; A \right); \quad B = S_{2n} \]
Observation of a Large Reaction Cross Section in the Drip-Line Nucleus 22C

K. Tanaka,1 T. Yamaguchi,2 T. Suzuki,2 T. Ohtsubo,3 M. Fukuda,4 D. Nishimura,4 M. Takechi,4,1 K. Ogata,5 A. Ozawa,6
Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ^{22}C

K. Tanaka, T. Yamaguchi, T. Suzuki, T. Ohtsubo, M. Fukuda, D. Nishimura, M. Takechi, K. Ogata, A. Ozawa

	^{20}C	^{21}C	^{22}C
Spin and Parity	0^+	$1/2^+$	0^+
Binding/Virtual Energy	$S_n = 2.9 \text{ MeV}$	$E_{nc} = \text{?}$	$S_{2n} = 0.42(94) \text{ MeV}$
	NNDC, BNL (2013)		Horiuchi and Suzuki (2006)
RMS matter radius	$2.97(5) \text{ fm}$	$-$	$5.4(9) \text{ fm}$
	Ozawa et al (2001)		Tanaka et al, RIKEN (2010)
Spin and Parity

20C bound	21C unbound	22C bound
0^+	1/2^+	0^+

Binding/Virtual Energy

	20C	21C	22C	
S_n = 2.9 MeV	NNDC, BNL (2013)	E_{nc} = ?	S_2n = 0.42(94) MeV	Horiuchi and Suzuki (2006)
S_2n = -0.14(46) MeV			Gaudefroy et al (2012)	
RMS matter radius	2.97(5) fm	-	5.4(9) fm	
Ozawa et al (2001)			Tanaka et al, RIKEN (2010)	

- $\sqrt{(mS_{2n}[^{22}\text{C}])} \sim M_{lo}$, $\sqrt{(mS_{n}[^{20}\text{C}])}$, $(\sqrt{<r^2[^{20}\text{C}]>})^{-1} \sim M_{hi}$
- E_{nc} unknown \rightarrow treat as free parameter; $\sqrt{(mE_{nc})}$ as M_{lo}.
- $B = S_{2n}[^{22}\text{C}]$ not well constrained by experiments \rightarrow Treat as free parameter.
• 1-σ experimental error bar $\rightarrow B < 100$ keV

• Excited Efimov states not possible unless $E_{\text{nc}} < 1$ keV.

• $|a_{\text{nc}}| < 2.8$ fm. Mosby et al (2013)

cf. Hagen, Hagen, Platter and Hammer for study of Efimov states in Ca isotopic chain using Halo EFT, coupled cluster theory and interactions from Chiral EFT.
Coulomb dissociation of Carbon-22

cf. Ershov et al (2012) for a non-EFT calculation (hyperspherical harmonic model)
Hagen, Platter and Hammer (2013) for charge form factor calculation

\[
\hat{d} = 2eZrY_1^0(\hat{r})/(A + 2)
\]

\[
\mathcal{M}_{PWIA} = \langle pq; lm\lambda\mu | \hat{d} | \Psi_{in} \rangle
\]
Coulomb dissociation of Carbon-22

cf. Ershov et al (2012) for a non-EFT calculation (hyperspherical harmonic model)
Hagen, Platter and Hammer (2013) for charge form factor calculation

\[\hat{d} = 2eZrY_1^0(\hat{r})/(A + 2) \]
\[\mathcal{M}_{PWIA} = \langle pq; lm\lambda\mu | \hat{d} | \Psi_{in} \rangle \]
Final State Interactions

- $|l - \lambda| \leq 1 \leq l + \lambda$ in the final state.

- $l = 1$ suppressed. But $l = 0, \lambda = 1$ enters at LO.

- Final state wavefunction has to be constructed with all S-wave two-body interactions included.
Final State Interactions

- \(|l - \lambda| \leq 1 \leq l + \lambda\) in the final state.

- \(l = 1\) suppressed. But \(l = 0, \lambda = 1\) enters at LO.

- Final state wavefunction has to be constructed with all S-wave two-body interactions included.

\[
|\Phi\rangle \rightarrow |\Phi\rangle + \hat{G}_0 \sum_{i=n,c} \hat{t}_i (|\Phi\rangle + |F_i\rangle),
\]

\[
|F_i\rangle = \hat{G}_0 \sum_{j \neq i} \hat{t}_j (|\Phi\rangle + |F_j\rangle)
\]
Final State Interactions

- $|l - \lambda| \leq 1 \leq l + \lambda$ in the final state.

- $l = 1$ suppressed. But $l = 0, \lambda = 1$ enters at LO.

- Final state wavefunction has to be constructed with all S-wave two-body interactions included.

$$|\Phi\rangle \rightarrow |\Phi\rangle + \hat{G}_0 \sum_{i=n,c} \hat{t}_i (|\Phi\rangle + |F_i\rangle),$$

$$|F_i\rangle = \hat{G}_0 \sum_{j \neq i} \hat{t}_j (|\Phi\rangle + |F_j\rangle)$$
We applied Halo EFT to study Coulomb dissociation of 19C and determined the S_n and the ANC of the 18C – n system with high accuracy. S_n agrees with momentum distribution data; ANC remains to be tested.

1-σ experimental error on the matter radius of 22C puts an upper bound of about 100 keV on its S_{2n}.

Absence of low lying virtual states in 21C rules out Efimov states in 22C.

Forthcoming data on Coulomb dissociation of 22C is expected to provide better estimates of the 22C two-neutron separation energy and the 21C virtual state energy.
Backups
\[H' = \int d^3 r_1 d^3 r_2 \frac{\rho_1^{ch}(r_1 - R_1)\rho_2^{ch}(r_2 - R_2)}{|r_1 - r_2|} = \frac{Z_1 Z_2 e^2}{R(t)} \]

\[
\frac{d\sigma_C}{dE_\gamma} (E_\gamma) = \frac{1}{E_\gamma} \sum_{\pi L} N_{\pi L} (E_\gamma) \sigma_{\gamma \pi L} (E_\gamma)
\]

\[
N_{E1}(\omega, R) = 2 \frac{Z_1^2 \alpha^2}{\pi \beta^2} \left(\xi K_0(\xi) K_1(\xi) - \frac{\beta^2}{2} \xi^2 \left((K_1(\xi))^2 - (K_0(\xi))^2 \right) \right)
\]

\[
\frac{d\sigma}{dQ d^3 p/(2\pi)^3} = 24\pi^2 \frac{Z_1^2 \alpha^2}{\gamma^2 \beta^2} \omega^2 Z_{eff}^{(1)} \langle r \rangle_{01}^2
\]

\[
\sum_{M_1 M_2} i^{M_1 - M_2} \chi_{M_1}(Q) \chi_{M_2}^*(Q) G_{E1M_1} (1/\beta) G_{E1M_2}^*(1/\beta) Y_1^{M_1}(\hat{p}) Y_1^{M_2}*(\hat{p}),
\]

\[
B(E1) = \frac{3}{4\pi} \left(\frac{Ze}{A} \right)^2 \langle r_1^2 + r_2^2 + 2r_1 \cdot r_2 \rangle = \frac{3}{\pi} \left(\frac{Ze}{A} \right)^2 \langle r_{c,2n}^2 \rangle,
\]
The kernel of the Faddeev equations involves integrals of the form,
\[
\frac{1}{2} \int_{-1}^{1} dx \, P_n(x) \frac{1}{E - \frac{q^2}{a} - \frac{q'^2}{b} - qq'\frac{x}{c} + i\epsilon} = \frac{c}{qq'} \, Q_n \left(\frac{c}{qq'} \left[E - \frac{q^2}{a} - \frac{q'^2}{b} \right] + i\epsilon \right) \\
= (-1)^{n+1} \frac{c}{qq'} \, Q_n \left(\frac{c}{qq'} \left[-E + \frac{q^2}{a} + \frac{q'^2}{b} \right] - i\epsilon \right),
\]
where \(q \) is the external variable and \(q't \) is the integration variable.

For \(n = 0 \),
\[
Q_0(x \pm i\epsilon) = \begin{cases}
\frac{1}{2} \log \frac{|x + 1|}{|x - 1|}, & |x| > 1 \\
\frac{1}{2} \log \frac{|x + 1|}{|x - 1|} \pm \frac{i\pi}{2}, & |x| < 1,
\end{cases}
\]
and for \(n = 1 \),
\[
Q_1(z) = \frac{1}{2} \int_{-1}^{1} dx \, \frac{x}{z - x} = -1 + \frac{z}{2} \int_{-1}^{1} dx \, \frac{1}{z - x} = -1 + zQ_0(z)
\]
\[
\Rightarrow Q_1(x \pm i\epsilon) = \begin{cases}
-1 + \frac{x}{2} \log \frac{|x + 1|}{|x - 1|}, & |x| > 1 \\
-1 + \frac{x}{2} \log \frac{|x + 1|}{|x - 1|} \pm \frac{i\pi}{2} x, & |x| < 1.
\end{cases}
\]
\[F_n(q;0010) = \sqrt{\pi} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{1}(q, K_n \hat{q}'), q; E) t_n(E; K_n) Y_1^0(\hat{K}_n) \]

\[+ \int_{0}^{\infty} \frac{dq' q'^2}{2\pi^2} \frac{1}{2} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{1}(q, q'), q; E) t_n(E; q') F_n(q'; 0010) \]

\[+ \sqrt{\pi} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{0}(q, K \hat{q}'), q; E) t_c(E; K) Y_1^0(\hat{K}) \]

\[+ \int_{0}^{\infty} \frac{dq' q'^2}{2\pi^2} \frac{1}{2} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{0}(q, q'), q; E) t_c(E; q') F_c(q'; 0010), \]

and

\[F_c(q;0010) = 2\sqrt{\pi} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{2}(q, K_n \hat{q}'), q; E) t_n(E, K_n) Y_1^0(\hat{K}_n) \]

\[+ \int_{0}^{\infty} \frac{dq' q'^2}{2\pi^2} \int_{-1}^{1} d(\hat{q}, \hat{q}') P_1(\hat{q}, \hat{q}') G_0^n(\pi_{2}(q, q'), q; E) t_n(E; q') F_n(q'; 0010). \]