Phase diagram of a magnetic topological nodal semimetal:
Stable nodal line in an easy-plane ferromagnet

Yuya Ominato¹, Ai Yamakage², and Kentaro Nomura¹,³
Institute for Materials Research, Tohoku university, Sendai 980-8577, Japan
Department of Physics, Nagoya University, Nagoya 464-8602, Japan and
Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan
(Dated: April 30, 2019)

We study a topological phase diagram of a ferromagnetic topological nodal semimetal. We consider a lattice model for three dimensional topological insulators with ferromagnetic ordering. The exchange coupling between the magnetization and the electron spin leads to the nodal band structure. The topology of the nodal band structure depends on the direction of the magnetization and both the Weyl points and the nodal line emerge. We find that the nodal line structure is stable under an easy-plane magnetization in appropriate model parameters. In this case, the nodal line phase emerges as a phase boundary between two topologically distinct Weyl semimetal phases.

I. INTRODUCTION

Topological semimetals, such as Weyl semimetals [1–3] and nodal line semimetals [4–7], have the nodal band structure and they are characterized by topological invariants. Weyl semimetals have pairs of nodal points called Weyl points and Chern number characterizes the nodal structure. Nodal line semimetals have gap closing lines, where the conduction and valence bands stick together on one-dimensional lines in momentum space. Nodal lines are characterized by the Zak phase [8]. Weyl points are stable against perturbations, while stable nodal lines require additional symmetry. If spin-orbit coupling is negligible, the nodal line is protected by the composition of inversion and time-reversal symmetry [4, 5, 9] or crystalline symmetries such as the mirror-reflection symmetry [6, 7] and the glide-plane symmetry [10, 11]. Under these symmetry conditions, the Zak phase is Z_2 quantized. However, spin-orbit coupling gaps out the nodal line and leads to either topological insulator or Dirac semimetal phases [12]. There is only a few candidate materials, where the nodal lines are stable even in the presence of spin-orbit coupling [13–19].

At the present moment, there are many experimental observations of Weyl semimetals [20–25] and nodal line semimetals [26–30] including non-magnetic and magnetic materials. Most of them are non-magnetic and a few of them are magnetic. There have been many theoretical proposals for magnetic topological semimetals [1, 2, 18, 31–37]. In these systems, the nodal structures depend on the magnetic configuration, i.e. the topological properties of them are manipulated by the magnetization. As we mentioned above, the stable nodal lines require additional symmetry. In the case of β-V$_2$OPO$_4$ [35] and ferromagnetic rare-earth-monohalides [18], the nodal lines are protected by mirror-reflection symmetry perpendicular to the magnetization direction. When the magnetization is tilted, the nodal lines are gapped and the Weyl semimetal phase emerges.

In this work, we study the nodal band structure of a ferromagnetic nodal semimetal. The nodal structure is modulated by changing the magnetization direction. In our model, there are orbital-independent and dependent exchange coupling terms, which we call J_0 and J_3 terms, respectively. The topological phase diagram is significantly different in the situation that the J_0 term is dominant and the J_3 term is dominant. When the J_0 term is dominant, the topological phase diagram consists of two topologically distinct Weyl semimetal phases and the nodal line semimetal phase. The two Weyl semimetal phases are distinguished by a sign of the Chern number. Changing the magnetization direction from the south hemisphere to the north, the sign of the Chern number changes at the equator. When the magnetization is in the x-y plane, the system becomes the nodal line semimetal and the nodal line is stable. When the J_3 term is dominant, the nodal line semimetal phase emerges in the situation that the magnetization is pointing along z axis. Once the magnetization is tilted from z axis, the system becomes the Weyl semimetal phase.

The paper is organized as follows. In Secs. II and III, we introduce a model Hamiltonian and topological invariants. In Sec. IV, we numerically calculate the Chern number and the Zak phase. Symmetry and the stable nodal line for in-plane magnetization are discussed in Sec. V. Finally, we summarize our result in Sec. VI.

II. MODEL HAMILTONIAN

We consider a magnetically doped topological insulator. The model Hamiltonian is given as

$$H_k = H_0 + H_{ex},$$

where H_0 is a lattice model for three dimensional topological insulators on a cubic lattice [38, 39],

$$H_0 = \tau_x \sigma_x t \sin{k_y a} - \tau_x \sigma_y t \sin{k_z a} + \tau_y t \sin{k_z a} + m_k \tau_z,$$

where H_0 is a lattice model for three dimensional topological insulators on a cubic lattice [38, 39],
where a is a lattice constant, t is a hopping parameter, and m_k is a mass term,

$$m_k = m_0 + m_2 \sum_{\alpha=x,y,z} (1 - \cos k_\alpha a).$$

(3)

σ and τ are the Pauli matrices acting on the real spin and the pseudo spin (orbital) degrees of freedom. The exchange coupling between the magnetization and the electron spin is written as [40]

$$H_{\text{ex}} = J_0 \mathbf{M} \cdot \sigma + J_3 \tau_3 \mathbf{M} \cdot \sigma,$$

(4)

where J_0 and J_3 are exchange coupling constants and \mathbf{M} is a unit vector representing the direction of the magnetization,

$$\mathbf{M} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta),$$

(5)
as depicted in Fig. 1 (a). There are two kinds of exchange terms, which we call the J_0 and J_3 terms, respectively. The existence of the J_3 term originates from inequality of the exchange coupling constants between two orbitals considered here, i.e., p-orbitals of (Bi,Sb) and Te. In magnetic topological insulators, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$ [41–43], Cr atoms are substituted for Bi or Sb atoms. This leads to the inequality of exchange coupling between p-orbitals of (Bi,Sb) and Te. We assume that $J_0 \geq 0$ and $J_3 \geq 0$. This assumption does not change the essential results in the following sections.

III. TOPOLOGICAL INVARIANTS

In the present model, both the Weyl points and the nodal line emerge. The nodal structures are characterized by topological invariants. In the following, subscripts α, β, γ refer to x, y, z. The Weyl points are characterized by the Chern number defined as a function of k_α as

$$C(k_\alpha) = \frac{o.c.}{\pi} \int \frac{dk_\beta dk_\gamma}{2\pi} [\nabla_k \times \mathbf{A}_n(k)]_\alpha,$$

(6)

where k_β and k_γ are wave numbers perpendicular to k_α and the summation is over the occupied states. The Berry connection is defined as

$$\mathbf{A}_n(k) = -i \langle u_{n\alpha} | \nabla_k | u_{n\alpha} \rangle,$$

(7)

where $|u_{n\alpha}\rangle$ is an eigenstate of the Hamiltonian H_k. At a fixed k_α, the system is regarded as a two-dimensional insulator with an integer Chern number. When one sweeps k_α, the Chern number changes at the Weyl points because they behave as a monopole with positive or negative charge. One can assign monopole charge for each Weyl point by the change of the Chern number. The nodal line is characterized by the Zak phase defined as a function of k_α and k_β as

$$\theta_{\text{Zak}}(k_\alpha, k_\beta) = \frac{o.c.}{\pi} \int_{-\pi}^{\pi} [\mathbf{A}_n(k)]_\beta dk_\gamma,$$

(8)

where k_β, is the wave number perpendicular to k_α and k_γ, and the summation is over the occupied states. At fixed k_α and k_β, the system is regarded as a one-dimensional insulator. When the system has $(PT)^2 = +$ symmetry or mirror reflection symmetry, the Zak phase quantized as 0 or $\pi \text{ (mod } 2\pi)$ [4–7, 9].

IV. TOPOLOGICAL PHASE DIAGRAM

In this section, we characterize the topology of the nodal band structure. In the following calculation, we assume that the energy bands are half filled and we set $a = 1$, $t = 1$, $m_0 = -1/2$, and $m_2 = 1$ for the sake of simplicity. We numerically calculate Eqs. (6) and (8). Here, we set the magnetization on the x-z plane ($\phi = 0$) and the exchange coupling constants as $J_0 = 1$ and $J_3 = 0$. Figure 1 (b) shows the Chern number of the k_x-k_y plane as a function of k_z and θ. The Chern number becomes finite between the Weyl points and its sign is reversed at $\theta = \pi/2$. (c) Band structure at $\theta = \pi/4$ (Weyl), $\pi/2$ (nodal line), and $3\pi/4$ (Weyl). The Weyl points are depicted with its monopole charge and the nodal line is depicted by a solid line.
term as long as $J_0 > J_3$.

In the following, we focus on the nodal line at $\theta = \pi/2$. The magnetization is in the x-y plane. Figure 2 shows the nodal line in the Brillouin zone and the Zak phase as a function of k_y and k_z. In Fig. 2 (a), the nodal line resides on the k_y-k_z plane at $k_z = 0$ for $\phi = 0$. The Zak phase is calculated along a path perpendicular to the k_y-k_z plane. The Zak phase is quantized as 0 or π, due to the mirror-reflection symmetry with respect to the y-z plane. The Zak phase becomes π when the k_y and k_z are set in the area enclosed by the nodal line projected on the k_y-k_z plane. The nodal line shrinks by the orbital-dependent exchange coupling J_3 but the qualitative behavior remains unchanged as long as $J_0 > J_3$.

In Fig. 2 (b) and (c), the magnetization is tilted from the x axis but the nodal line is not gapped although the mirror-reflection symmetry is broken. The Zak phase is quantized and it becomes π in the area enclosed by the projected nodal line. This quantization ensures the nodal line structure of the energy bands. The nodal line almost resides on the plane perpendicular to the magnetization but slightly deviates from the perpendicular plane. Here, we show the nodal lines at $\phi = \pi/5$ and $2\pi/5$ as representative examples. The nodal line structure is retained for arbitrary angle ϕ.

Figure 3 shows nodal structure in $J_0 = 0$ and $J_3 = 1$. In this case, nodal structure emerges but the relation between the magnetization direction and the nodal structure is different from the case of $J_0 > J_3$. The nodal line appears on the k_x-k_y plane at $k_z = 0$ as shown in Fig. 3(a) when the magnetization is parallel to the z axis. The Zak phase is calculated along the path perpendicular to the k_x-k_y plane and quantized as 0 or π. The nodal line disappears and a pair of Weyl points arises once the magnetization is tilted from the z axis. Figure 3 (b) shows that the Weyl points in the Brillouin zone at $\phi = \pi/5$ and the Chern number of the k_y-k_z plane as a function of k_z and ϕ. The dotted line represents the nodal line at $\theta = 0$ and the Weyl points reside on the dotted line. The ϕ dependence of the Chern number shows that the Weyl points move along the dotted line with rotating the magnetization direction. The qualitative behavior is not changed for finite J_0 as long as $J_0 < J_3$.

The phase diagram of the nodal structure is summarized in Fig. 4. The left panels show the phase diagram as a function of θ and ϕ. Each point in the left panels is mapped on the unit sphere in (M_x, M_y, M_z) space as shown in the right panels. The qualitative behavior is different between two cases, $J_0 > J_3$ and $J_0 < J_3$. Figure 4 (a) shows the case of $J_0 > J_3$. There are two topologically distinct Weyl phases in $0 \leq \theta < \pi/2$ and $\pi/2 < \theta \leq \pi$. They are topologically distinguished by the sign of the monopole charge at each Weyl point and one cannot continuously deform the Weyl phase to the other. The nodal line emerges at the equator as a phase boundary between the two Weyl phases. Figure 4 (b) shows the case of $J_0 < J_3$. In this case, there is the single Weyl phase. Changing the magnetization direction, the Weyl points move in the momentum space and there is no sign reversal of the Weyl points. However, there are exceptional points at the south pole and the north pole. When the magnetization direction passes through these points, the signs of the monopole charges are swapped. These phase diagrams are main results in this work. We note that there are nodal structures far from the Fermi level. In this work, we focus on the nodal structure close to the Fermi level.

V. NODAL LINE FOR IN-PLANE MAGNETIZATION

In this section, we discuss the stability of the nodal line in $J_0 > J_3$ from the view point of symmetry. The crystalline symmetry of H_0 is compatible to D_{4h}. The generators are given as $C_4 = e^{-i\sigma_z \pi/4}$, $C_2(x) = -i\tau_x \sigma_z$, and $\sigma_h = -i\tau_z \sigma_z$. The Hamiltonian satisfies the following relations,

$$C_4 H_0(k_x, k_y, k_z) C_4^\dagger = H_0(k_y, -k_x, k_z),$$

$$C_2(x) H_0(k_x, k_y, k_z) C_2(x)^\dagger = H_0(k_x, -k_y, -k_z),$$

$$\sigma_h H_0(k_x, k_y, k_z) \sigma_h^\dagger = H_0(k_x, k_y, -k_z).$$

When the magnetization is in the x-y plane, the system has a magnetic reflection symmetry,

$$(\sigma_h T) H(k_x, k_y, k_z)(\sigma_h T)^{-1} = H(-k_x, -k_y, k_z),$$

which is equivalent to time reversal symmetry in the two dimensional system at a fixed k_z. In the presence of the magnetic reflection symmetry, the Berry curvature $\Omega_z(k) = \sum_{\sigma\pi} [\nabla_k \times A_\pi(k)] \cdot \hat{z}$ satisfies following relations,

$$\Omega_z(k_x, k_y, k_z) = -\Omega_z(-k_x, -k_y, k_z),$$

which leads to $C(k_z) = 0$.

In the present model, there are nodes on the k_z axis for arbitrary magnetization direction. On the k_z axis, the Hamiltonian is written as

$$H(0, 0, k_z) = m_{k_z} \tau_z + \tau_y \sin k_z + J_0 \sigma \cdot \hat{M} + J_3 \tau_z \sigma \cdot \hat{M},$$

and the Hamiltonian and the spin operator $\sigma \cdot \hat{M}$ commute

$$[H(0, 0, k_z), \sigma \cdot \hat{M}] = 0.$$

Therefore, the spin is a good quantum number and the Hamiltonian is written as

$$H_\sigma(k_z) = m_{k_z} \tau_z + \tau_y \sin k_z + \sigma (J_0 + J_3 \tau_z),$$

where $\sigma = \pm$. The energy bands are given as

$$\varepsilon_{\sigma \pm}(k_z) = \sigma J_0 \pm \sqrt{(m_{k_z} + \sigma J_3)^2 + \sin^2 k_z}.$$
becomes zero otherwise. The qualitative behavior does not change as long as the Zak phase is depicted. When the path of integration passes through the nodal line, the Zak phase is quantized as \(x \) in the \(z \) direction. The Chern number on the zone. (a) The Zak phase is quantized. (b) There is a pair of the Weyl points and they rotate by changing the magnetization direction. The Chern number on the \(k_y \) and \(k_z \) plane becomes finite between the Weyl points.

From this expression, one can show the existence of the nodes when the parameters satisfy \(J_0 > J_3 \) and \(J_0 > |m_0| \).

Using the above relations, we show the stability of the nodal line in the following. We start with the nodal line in the magnetization along the \(x \) axis. We consider the situation that the magnetization is tilted from the \(x \) axis and in the \(x-y \) plane. There are nodes on the \(k_z \) axis as we mentioned above. If these nodes are Weyl points with monopole charge, the Chern number \(C(k_z) \) becomes finite. However, this contradicts Eq. (13). Therefore, the nodal line is stable in the in-plane magnetization. We note that there are warping terms in the effective model of \(\text{Bi}_2\text{Te}_3 \), which is not included in our model Hamiltonian. The warping terms break the magnetic-reflection symmetry and make the nodal line gapped once the magnetization is tilted from the \(x \) axis even in the in-plane

FIG. 2: The nodal lines in the Brillouin zone and the Zak phase as a function of \(k_y \) and \(k_z \) at several azimuth angle \(\phi \) of the magnetization. Changing the magnetization direction, the nodal lines rotate and are not gapped as long as the magnetization is in the \(x-y \) plane. The gray plane represent the plane perpendicular to the magnetization. The path of integration for calculating the Zak phase is depicted. When the path of integration passes through the nodal line, the Zak phase is quantized as \(\pi \) and it becomes zero otherwise. The qualitative behavior does not change as long as \(J_0 > J_3 \).

FIG. 3: The nodal line and the Weyl points in the Brillouin zone. (a) The Zak phase is quantized. (b) There is a pair of the Weyl points and they rotate by changing the magnetization direction. The Chern number on the \(k_y \) and \(k_z \) plane becomes finite between the Weyl points.

FIG. 4: Topological phase diagram as a function of \(\theta \) and \(\phi \). Each point can be mapped on the sphere’s surface in the parameter space. \((M_x, M_y, M_z) \). (a) There are two topologically distinct Weyl semimetal phases in the southern and northern hemispheres. There is the nodal line semimetal phase on the phase boundary. (b) There is the single Weyl phase. The nodal line phases emerge at the south and north poles.
magnetization [44, 45].

The above property may be lost when anisotropy of the system becomes significant. The following exchange coupling is, for instance, possible under the D_{4h}-point group symmetry

$$\sigma_z \sin(3\phi) - \sigma_y \cos(3\phi),$$

which breaks the effective spin conservation law [Eq. (15)]. This shifts the nodes from the $k_x = k_y = 0$ axis or opens a gap on the nodal line, depending on details of the system.

VI. CONCLUSION

We have studied the topological phase diagram in the magnetic topological nodal semimetal. The topology of band structure can be modulated by changing the direction of the magnetization. The qualitative behavior is different in $J_0 > J_3$ and $J_0 < J_3$. In the former case $J_0 > J_3$, there are Weyl points on the k_z axis when the magnetization has an out of plane component (z-component). When the magnetization is in the x-y plane, on the other hand, the nodal line emerges. We found that the nodal line is not gapped as long as the magnetization is in the x-y plane. In the present system, there are two topologically distinct Weyl semimetal phases, which are distinguished by the sign of the monopole charge. The nodal line phase can be regarded as a gapless phase between the topologically distinct Weyl semimetal phases. The nodal line is stable as long as the magnetization is in the x-y plane. In the latter case $J_0 < J_3$, there is the single Weyl semimetal phase. However, the nodal line emerges when the magnetization is parallel to the z axis and the sign reversal of the monopole charge occurs.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Numbers JP15H05854, JP17K05485, and JP18H04224, and JST CREST Grant Number JPMJCR18T2.

[1] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
[2] A. Burkov and L. Balents, Physical review letters 107, 127205 (2011).
[3] N. Armitage, E. Mele, and A. Vishwanath, Reviews of Modern Physics 90, 015001 (2018).
[4] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Phys. Rev. Lett. 115, 036806 (2015).
[5] A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Journal of the Physical Society of Japan 85, 013708 (2016).
[6] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Phys. Rev. B 93, 205132 (2016).
[7] J. Zak, Physical review letters 62, 2747 (1989).
[8] H. Huang, K.-H. Jin, and F. Liu, Phys. Rev. B 96, 115106 (2017).
[9] D. Shao, T. Chen, Q. Gu, Z. Guo, P. Lu, J. Sun, L. Sheng, and D. Xing, Scientific Reports 8, 1467 (2018), ISSN 2045-2322.
[10] S. Kobayashi, Y. Yamakawa, A. Yamakage, T. Inohara, Y. Okamoto, and Y. Tanaka, Phys. Rev. B 95, 245208 (2017), URL https://link.aps.org/doi/10.1103/PhysRevB.95.245208.
[11] H.-S. Kim, Y. Chen, and H.-Y. Kee, Phys. Rev. B 91, 235103 (2015).
[12] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, et al., Nature communications 7, 10556 (2016).
[13] Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Phys. Rev. B 93, 085427 (2016), URL https://link.aps.org/doi/10.1103/PhysRevB.93.085427.
[14] Y. Du, X. Bo, D. Wang, E.-j. Kan, C.-G. Duan, S. Y. Savrasov, and X. Wan, Phys. Rev. B 96, 235152 (2017).
[15] Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Phys. Rev. B 95, 235104 (2017), URL https://link.aps.org/doi/10.1103/PhysRevB.95.235104.
[16] S. Nie, H. Weng, and F. B. Prinz, Phys. Rev. B 99, 035125 (2019).
[17] K. Funada, A. Yamakage, N. Yamashina, and H. Kageyama, Journal of the Physical Society of Japan 88, 044711 (2019), URL https://journals.jps.jp/doi/abs/10.7566/JPSJ.88.044711.
[18] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Science 349, 613 (2015).
[19] B. Lv, H. Weng, B. Fu, X. Wang, H. Miao, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, et al., Phys. Rev. X 5, 031013 (2015).
[20] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).
[21] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, et al., Science advances 2, e1501870 (2016).
[22] E. Liu, Y. Sun, N. Kumar, J. Muechler, A. Sun, L. Jiao, S.-Y. Yang, C. Liu, A. Liang, Q. Xu, et al., Nature Physics 14, 1125 (2018), ISSN 1745-2481.
[23] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nature Communications 9, 3681 (2018), ISSN 2041-1723.
[24] J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhr, S. Tran, C. N. Lau, J. Wei, et al., Phys. Rev. Lett. 117, 016602 (2016).
[25] D. Takane, Z. Wang, S. Souma, K. Nakayama, C. X. Trang, T. Sato, T. Takahashi, and Y. Ando, Phys. Rev. B 94, 121108 (2016).
[26] D. Takane, S. Souma, K. Nakayama, T. Nakamura,
H. Oinuma, K. Hori, K. Horiba, H. Kumigashira, N. Kimura, T. Takahashi, et al., Phys. Rev. B 98, 041105 (2018).
[29] M. M. Hosen, G. Dhakal, K. Dimitri, P. Maldonado, A. Aperis, F. Kabir, C. Sims, P. Riseborough, P. M. Oppeneer, D. Kaczerowski, et al., Scientific Reports 8, 13283 (2018), ISSN 2045-2322.
[30] D. Takane, K. Nakayama, S. Souma, T. Wada, Y. Okamoto, K. Takenaka, Y. Yamakawa, A. Yamakage, T. Mitsuhashi, K. Horiba, et al., npj Quantum Materials 3, 1 (2018).
[31] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).
[32] D. Kurebayashi and K. Nomura, Journal of the Physical Society of Japan 83, 063709 (2014).
[33] K. Ueda, J. Fujioka, B.-J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Physical review letters 115, 056402 (2015).
[34] H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. S. Parkin, and B. Yan, New Journal of Physics 19, 015008 (2017).
[35] Y. J. Jin, R. Wang, Z. J. Chen, J. Z. Zhao, Y. J. Zhao, and H. Xu, Phys. Rev. B 96, 201102 (2017).
[36] Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, Phys. Rev. B 97, 235416 (2018).
[37] Y. Ominato, A. Yamakage, and K. Nomura, Condensed Matter 3 (2018), ISSN 2410-3896, URL http://www.mdpi.com/2410-3896/3/4/43.
[38] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nature physics 5, 438 (2009).
[39] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Physical Review B 82, 045122 (2010).
[40] R. Wakatsuki, M. Ezawa, and N. Nagaosa, Scientific Reports 5, 13638 (2015).
[41] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Science 340, 167 (2013).
[42] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nature Physics 10, 731 (2014).
[43] X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, et al., Phys. Rev. Lett. 113, 137201 (2014).
[44] A. A. Burkov, Phys. Rev. Lett. 120, 016603 (2018).
[45] A. A. Burkov, Phys. Rev. B 97, 165104 (2018).