TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers

Hanyang Li1,2, He Fang3, Li Chang4, Shuang Qiu5, Xiaojun Ren1, Lidong Cao3, Jinda Bian3, Zhenxiao Wang3, Yi Guo6, Jiayin Lv7, Zhihui Sun8, Tiejun Wang1* and Bingjin Li9*

1 Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China, 2 Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China, 3 Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China, 4 Department of Pathology, The Second Hospital of Jilin University, Changchun, China, 5 Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China, 6 Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China, 7 Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China, 8 Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China

Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.

Keywords: TC2N, tumor-associated antigens (TAAs), cancer, signal pathway, molecular mechanism, functional characterization, clinical feature

Abbreviations: TC2N, tandem C2 domains nuclear protein; TAAs, tumor-associated antigens; CDK5, cyclin-dependent kinase 5; P21(CDKN1A), cyclin dependent kinase inhibitor 1A; P53, tumor protein p53; BAX, a member of the B-cell lymphoma-2(BCL2) gene family; BCL1, B-cell lymphoma-1; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; MMP7, matrix metalloproteinase 7; MMP9, matrix metalloproteinase 9; ALK, anaplastic lymphoma kinase; ERB1, ErbB-3 binding protein 1; AKT, serine threonine kinase; GSK3β, glycogen synthase kinase-3β; PTEN, phosphatase and tensin homolog deleted on Chromosome 10; MMP2, matrix metalloproteinase 2; GALNT3, polypeptide N-acetylgalactosaminyltransferase 3; RBM47, RNA binding motif protein 47.
1 INTRODUCTION

Cancer is an important public health concern worldwide and continues to be of great interest to the scientific community. It is one of the leading causes of death, with approximately 14 million new cases and 8.2 million cancer-related deaths occurring in 2018 (1). This disease is considered the biggest barrier to improving life expectancy in countries in the 21st century (2). Annually, over 4 million new cancer patients and over 2 million cancer-related mortalities are reported in China. Despite the availability of multiple treatment modalities such as surgery, chemotherapy, radiation therapy, and targeted therapy, the 3- and 5-year cancer-specific survival rates remain poor (3–7). While overall cancer related mortalities have decreased (8), it is notable that the reduction in mortality is largely due to early detection and prevention rather than development of better treatment options (9–12).

Most cancers are asymptomatic in the early stages of development (13, 14) largely because of their ability to evade immune surveillance (15, 16). Immune evasion is thought to be driven by two major mechanisms. First, owing to altered antigen presentation or receptor library editing, the immune system is unable to detect tumor populations. Second, the initially effective immune response may become ineffective owing to the presence of an immunosuppressive tumor microenvironment (17–19). Therefore, it is important to explore mechanisms of cancer development to identify new markers for diagnosis and prognosis and to develop effective and novel treatment methods. Developments in both fronts will have substantial implications for improving survival rates of cancer patients.

Numerous studies have shown that certain genes, such as oncogenes and tumor suppressor genes, are risk factors for many types of cancer (20–24). When activated, oncogenes stimulate tumor growth whereas tumor suppressor genes prevent tumor growth and development. In mouse models, where oncogene expression is driven by tissue-specific promoters, tumors appear at high frequency but disappear when the inductive stimulus is turned off (25–27), suggesting that oncogenes are the Achilles’ heel of cancer (28). Tumor suppressor genes play a critical role in controlling the cell cycle assuring proper proliferation and differentiation (29). Therefore, identifying these genes is crucial because targeting them may prevent or treat different types of cancers.

The C2 domain was initially thought to be a protein structural domain of calcium-dependent protein kinase C (30–32). Further studies confirmed that the function of the C2 domain was not only calcium-dependent phospholipid binding, but also involved in cellular signal transduction and protein-protein interactions (33). Several proteins that contain a structural domain called the C2 domain have been linked to the regulation of tumorigenesis. For example, a C2 domain-containing protein, DOC2B, plays a tumor-suppressive role in cervical cancer by inhibiting cell proliferation, migration, and invasion (34). Conversely, another C2 domain-containing protein, myoerlin, plays a tumor-enhancing role by promoting metastasis in patients with triple-negative breast cancer (35). Gene encoding tandem C2 domains nuclear protein (TC2N)—a putative C2 domain-containing protein—has recently been shown to function both as an oncogene and a tumor suppressor gene (36–38). TC2N is located on human chromosome 14q32, belongs to the carboxyl-terminal type (C-type) tandem C2 protein family, and contains two C-terminal C2 domains (C2A and C2B) (39). TC2N is also an immune system gene similar to IFI27, CASS4, and SMARCD3 (40). Given its tumorigenesis properties and its association with the immune system, it has been proposed as a potential target for the detection and treatment of various cancers. In this review, we summarize recent progress in understanding the role and underlying mechanisms of TC2N in the occurrence and development of cancer, with a focus on lung cancer, breast cancer, and gastric cancer.

2 TC2N IN CANCERS

TC2N expression is upregulated in different types of cancers, including lung, breast, and gastric cancers. The relevant clinicopathological features and the molecular mechanisms of TC2N in these cancers are summarized in Table 1 and detailed in the rest of this section.

2.1 Lung Cancer

2.1.1 Functional Characteristics and Clinical Features of TC2N in Lung Cancer

TC2N is overexpressed in cancerous lung tissues and cell lines compared with that in normal lung tissues and a human bronchial epithelial cell line, respectively. Hao XL et al. (36) showed that upregulation of TC2N was significantly correlated with advanced TNM stage and high histological grade of disease. Additionally, high TC2N expression levels were associated with poor clinical outcomes and significantly short overall survival. Hence, TC2N expression has been proposed as an independent prognostic factor affecting patient survival. Mechanistically, overexpression of TC2N significantly inhibited apoptosis, promoted cell proliferation, and increased migration and invasion of tumor cells in vitro; in contrast, knockdown of TC2N promoted apoptosis and inhibited proliferation of lung cancer cells (41). Furthermore, knockdown of TC2N in tumor tissues resulted in an increase in apoptotic cells, supporting the hypothesis that TC2N overexpression promotes tumorigenesis and growth of lung cancer tumors in vivo.

In summary, TC2N is a potential novel oncogene in lung cancer, whose expression levels are correlated with cancer progression and patient survival. TC2N stimulates cell proliferation, migration, and invasion and reduces apoptosis of lung cancer cells in vitro and in vivo.

2.1.2 Signaling Pathways Influenced by TC2N in Lung Cancer

2.1.2.1 TC2N Inhibits p53 Signaling Pathway in Lung Cancer

Hao XL et al. (36) proposed that the regulation of cell proliferation, cell cycle, and apoptosis by TC2N is dependent on the p53 signaling pathway. TP53, which encodes p53, was initially classified as an oncogene due to its ability to transform cells (43–46). However, the identification of growth-inhibiting and temperature-sensitive mutants of p53 in sporadic cancer samples and familial cancers...
TABLE 1 | Functional characteristics and clinical features of TC2N in human cancers.

Cancer types	Expression	Role	Functional role	Related genes	Clinical features	References
Lung cancer	Upregulated	Oncogene	Promotes proliferation, migration, and invasion	CDK5, P53, P21, BAX, BCL1, IGF, NF-kB, MMP7, MMP9	Advanced TNM stage, high histological grade, and poor clinical prognosis	(36, 41)
Breast cancer	Upregulated	Anti-oncogene	Inhibits proliferative and colony-forming abilities	ALK, EBP1, P55x, AKT, Caspase-3, GSK3β, MYC, BAD, PTEN	Early clinical stage, small tumor size, low lymph node metastasis, high HER-2 positive rate, and good prognosis	(37)
Gastric cancer	Upregulated	Oncogene	Promotes proliferation, migration, and invasion	MMP2, MMP9, CATSPERB, GALNT3, RBM47	Advanced TNM stage, large tumor size, high histological grade, advanced distant metastasis, and poor prognosis	(38, 42)

TC2N, tandem C2 domains nuclear protein; CDK5, cyclin-dependent kinase 5; P21 [CDKN1A], cyclin dependent kinase inhibitor 1A; P53, tumor protein p53; BAX, a member of the B-cell lymphoma-2 (BCL2) gene family; BCL1, B-cell lymphoma-1; IGF, inhibitor of NF-kB; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; MMP7, matrix metalloproteinase 7; MMP9, matrix metalloproteinase 9; ALK, anaplastic lymphoma kinase; EBP1, ErbB-3 binding protein 1; AKT, serine threonine kinase; GSK3β, glycogen synthase kinase 3β; BAD, Bcl-2-associated death promoter; PTEN, phosphatase and tensin homolog deleted on chromosome 10; MMP2, matrix metalloproteinase 2; GALNT3, polypeptide N-acetylgalactosaminyltransferase 3; RBM47, RNA binding motif protein 47.

has shown that p53 is in fact a tumor suppressor protein (47–53). p53 functions as the major regulator of central signaling and cell fate decision pathways (54). It is a nuclear transcription factor composed of 393 amino acids with four major functional domains: a transcriptional, a DNA binding, a tetramerization, and a regulatory domain (55). It modifies the expression of multiple genes involved in a variety of biological processes, including cell cycle, apoptosis, senescence, differentiation, and DNA repair (56–66). Moreover, p53 has been associated with diverse biological processes, such as regeneration (67), metabolism (68, 69), interaction with viruses (70), prevention of liver pathologies (71, 72), forming a barrier to stem cell formation (73, 74), endocrinology circuits (75) and serving as the guardian of the tissue hierarchy (76). p53 activity is largely controlled by post-translational modifications, such as phosphorylation (77). CDK5 is a protein kinase that phosphorylates p53 at Ser-15, Ser-33 and Ser-46 (78, 79) and binding of CDK5 to p53 induces activation of the p53 signaling pathway (77). Overexpression of TC2N interferes with CDK5-p53 interaction in the nucleus and induces significant CDK5 degradation by increasing the ubiquitination of CDK5 (Figure 1). Therefore, an increase in TC2N levels suppresses CDK5-induced p53 phosphorylation and p53 pathway activation. The expression of other key players in the p53 signaling pathway, such as P21, BAX, and BCL-2, is also downregulated by TC2N (36). When cells experience stress or undergo uncontrolled division and proliferation, p53 is activated (56, 80). Under these conditions, p53 induces p21 expression, causing cell cycle arrest (81, 82). Furthermore, p53 triggers programmed cell death by triggering apoptosis-related genes, including bax, a pro-apoptotic member of the bcl-2 family, when a DNA damage cannot be repaired (83). Hence, reduction of the downstream players in the p53 pathway by TCN2 promotes proliferation and prevents apoptosis.

2.1.2.2 TC2N Promotes NF-kB Signaling Pathway in Lung Cancer

In addition to suppressing the p53 pathway, TCN2 was observed to affect another key signaling pathway in lung cancer cells (41). Over 30 years ago, Sen et al. (84) identified a protein that bound to a specific, conserved DNA sequence in the nucleus of activated B lymphocytes. The protein was named after the identified cell type and the gene it affected: nuclear factor binding near the k light-chain gene in B cells (NF-kB) (85). Since its discovery, NF-kB has been found to be involved in several key processes such as immune regulation, inflammation, cell survival, stress response, embryogenesis, differentiation, proliferation, and cell death (86–96) and it functions primarily by orchestrating the expression of many functionally diverse genes (85, 89, 93, 97, 98). Due to its extensive physiological effects, dysregulation of NF-kB can lead to severe consequences (99, 100), including cancer, neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and diabetes (85, 99–105).

Most lymphatic or solid tumors, including lung cancer, present with increased NF-kB levels (106). NF-kB in the nucleus is an indicator of active NF-kB signaling, and its levels correlate with the transcription of its target genes (107). Typically, NF-kB levels in the nucleus and its activity are regulated by inhibitor of NF-kB (IκB). IκB acts as a gatekeeper, limiting NF-kB migration into the nucleus by masking its nuclear localization domains (108, 109). Additionally, it prevents activation of NF-kB target genes by masking the DNA-binding domains of NF-kB (108), thereby leading to interruption of the NF-kB signaling pathway. Notably, overexpression of NF-kB—in both the nucleus and cytoplasm of lung cancer cells—correlated with increased expression level of TC2N in these cells (41). Hao XL et al. (41) proposed that this increase in NF-kB expression level is a direct consequence of TC2N overexpression in these cells (Figure 1). Overexpression of TC2N enhanced the phosphorylation of IκB but decreased the total IκB protein levels, leading to increased nuclear translocation of NF-kB and subsequent activation of the signaling pathway (41). Additionally, TC2N modulates this process through other downstream proteins in the pathway such as MMP7 and MMP9 (41).

2.2 Breast Cancer

2.2.1 Functional Characteristics and Clinical Features of TC2N in Breast Cancer

Similar to that in lung cancer tissues, the expression of TC2N was markedly upregulated in breast cancer tissues compared with that in adjacent non-cancerous tissues (37). However, unlike that in lung cancer, upregulated TC2N was associated with good
prognosis and overall survival. It positively correlated with the early clinical stage of disease, small tumor size, low lymph node metastasis, and high human epidermal growth factor receptor 2 (HER-2) positivity rate. Additionally, upregulated TC2N inhibited the proliferative and colony-forming abilities of breast cells both in vitro and in vivo. In summary, in contrast to its role in lung cancer cells, TC2N is a potential tumor suppressor in breast cancer.

2.2.2 Signaling Pathways Influenced by TC2N in Breast Cancer

2.2.2.1 TC2N Inhibits PI3K/AKT Signaling Pathway in Breast Cancer

To explain the tumor suppressive function of TC2N in breast cancer cells, Hao XL et al. (37) proposed that upregulation of TC2N represses the Phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) signaling pathway, which is typically constitutively active in some human cancers (110, 111). PI3K/AKT is a growth-regulating cellular pathway and it is well established that PI3K/AKT signaling enhances tumor cell survival, proliferation, and motility in different tumor types (112–119). PI3Ks form a family of kinases that are expressed in almost all mammalian cells and play essential roles in survival, migration, cell cycle progression, and cell growth (120). PI3K phosphorylates phosphatidylinositol to form inositol lipid, which functions as a second messenger in the human body (121). PI3Ks are a family of kinases that are expressed in almost all mammalian cells and play essential roles in survival, migration, cell cycle progression, and cell growth (120). PI3K phosphorylates phosphatidylinositol to form inositol lipid, which functions as a second messenger in the human body (121).

Anaplastic Lymphoma Kinase (ALK) is an activator of the PI3K/AKT signaling pathway, and it induces phosphorylation of the p55γ subunit of PI3K in cancer cells, rather than the usual p85 subunit that is phosphorylated (128, 129). It has been shown that the interaction between ALK and p55γ is crucial for ALK-induced p55γ phosphorylation (128) and subsequent activation of the PI3K/AKT signaling pathway. Another key regulatory step in the activation of PI3K/AKT signaling is phosphorylation of AKT by ErbB-3 binding protein 1 (EBP1). TC2N targets both these key steps to inhibit the PI3K/AKT signaling pathway.

TC2N forms a complex with ALK, which prevents the ALK-p55γ interaction and therefore inhibits downstream AKT phosphorylation and consequently the PI3K-AKT signaling pathway (Figure 2). Additionally, TC2N inhibits the interaction of EBP1 with AKT, which is necessary for

FIGURE 1 | Underlying molecular mechanisms of TC2N in p53 and NF-κB signaling pathways in lung cancer. TC2N, tandem C2 domain nuclear protein; CDK5, cyclin-dependent kinase 5; p53, tumor protein p53; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
phosphorylation of AKT (130, 131) and subsequent PI3K/AKT signaling. Upregulation of TC2N has also been shown to activate AKT inhibitors such as caspase-3 and block AKT inhibitors such as GSK3β, MYC, BAD, and PTEN.

2.3 Gastric Cancer
2.3.1 Functional Characteristics and Clinical Features of TC2N in Gastric Cancer
Similar to lung and breast cancer cells, TC2N is overexpressed in a variety of gastric cancer cell lines and tumor samples compared to normal cells and tissues (38, 42). High TC2N levels were significantly correlated with poorly differentiated histological classification, large tumor size, advanced TNM stage, and advanced distant metastasis. Furthermore, patients with high TC2N expression showed poorer prognosis regardless of TNM stage compared to patients with low TC2N expression. In vitro, TC2N knockdown significantly inhibited the proliferation of gastric cancer cells, while TC2N overexpression promoted the growth of these cells. Similar results were observed in vivo where downregulation of TC2N inhibited the migration and invasion of gastric cancer cells, whereas overexpression had the opposite effect. Thus, similar to lung cancer, TC2N potentially functions as an oncogene in gastric cancer.

2.3.2 Signaling Pathway of TC2N in Gastric Cancer
The mechanism of action of TC2N in gastric cancer remains unclear. Shen L et al. (42) suggested that TC2N might partially affect the migration and invasion ability of gastric cancer by regulating the expression levels of MMP2 and MMP9. MMP2 and MMP9 are known to be involved in cell invasion and tumor metastasis (132). TC2N expression also showed strong positive correlation with the expression of CATSPERB and other cancer related genes such as GALNT3 and RBM47 (38). However, the detailed molecular mechanism by which TC2N promotes gastric cancer progression needs further evaluation.

3 CONCLUSION AND FUTURE PERSPECTIVES
High-throughput gene expression profiling facilitates the simultaneous measurement of the expression levels of thousands of genes. A key application of gene expression profiling in cancer is to identify differences in gene expression patterns between tumor and control samples (133). Advances in technology and the declining costs of DNA sequencing have spurred global efforts to discover differentially expressed genes in various cancers. From one such effort, TC2N was found to be widely upregulated in several human cancers, including lung, breast, and gastric cancers. TC2N levels were correlated with multiple clinicopathological features and prognosis, such as TNM stage, histological grade, tumor size, overall survival, lymph node metastasis, and distant metastasis. In support of its involvement in tumorigenesis and tumor progression, in vitro and in vivo experiments have shown that TC2N affects proliferation, apoptosis, migration, invasion of tumor cells and
tumor growth in many cancers. The underlying molecular mechanisms of TC2N in several cancers have also been preliminarily explored and suggest that TC2N modulates several key signaling pathways that influence carcinogenesis and cancer progression, including p53, NF-κB, and PI3K/AKT signaling pathways.

Although TC2N is a potential therapeutic target, several questions remain to be addressed. First, the molecular mechanism of TC2N in different types of cancers is not completely understood. For example, while preliminary data suggest that in gastric cancer TC2N modulates the expression of several cancer related genes, the specific pathway affected by TC2N is unclear. Furthermore, while the function of TC2N in lung, breast and gastric cancer have been studied to some extent, its potential role in other cancers, such as cancers associated with the urinary and reproductive systems remain unexplored.

Second, while TC2N is upregulated in tumor tissues of some specific cancers, it is not known if TC2N is also upregulated in body fluids such as plasma and urine. The identification of diagnostic biomarkers is a promising avenue for early cancer diagnosis. If TC2N is detectable in plasma or urine, it may facilitate early detection and prognosis assessment using simple and non-invasive tests. Third, it is unknown if TC2N is a tumor-associated antigen and requires further evaluation. Fourth, TC2N is an immune system associated gene, but whether it can serve as a target in personalized immunotherapies remains to be seen. Therefore, more attention should be paid to the clinical value of TC2N in cancer diagnosis and treatment.

In summary, TC2N has been shown to have oncogenic or tumor-suppressive functions in different types of cancers, and could potentially serve as a cancer-specific molecular biomarker for early diagnosis, treatment, and prognosis assessment. While some progress has been made in the mechanistic analysis of TC2N, several questions remain unanswered. Future work needs to focus on understanding the precise molecular mechanism of TC2N in carcinogenesis and tumor progression to explore the potential clinical application of TC2N.

AUTHOR CONTRIBUTIONS

HL and TW contributed to the conception and design of the review. HL wrote the first draft of the manuscript. BL revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by National Key R&D Program of China (Grant #2018YFC1311600), Jilin Province Financial and Health Project (Research on the Differential Expression of Cyclic RNA in Cervical Cancer HeLa Cells and the Mechanism of Radiation Resistance under Radiation Induction); Jilin Provincial Department of Finance (Consortium of Medical Consortium for Diagnosis and Treatment of Difficult Women’s Tumors and Precision Radiotherapy Training Base Construction Project); Jilin Province Medical and Health Talent Special Project (2019SCZT010); National Key Clinical Specialty Capacity Building Project (Application of Non-coplanar 3D Printing and Intertissue Interpolation Technology in Improving the Diagnosis and Treatment Ability of Recurrent and Refractory Cervical Cancer).

REFERENCES

1. Galván Morales MA, Barrera Rodríguez R, Santiago Cruz JR, Teran LM. Overview of New Treatments With Immunotherapy for Breast Cancer and a Proposal of a Combination Therapy. Molecules (2020) 25(23):3686. doi: 10.3390/molecules25233686
2. Fitzgerald J, Higgins D, Mazo Vargas C, Watson W, Mooney C, Rahman A, et al. Future of Biomarker Evaluation in the Realm of Artificial Intelligence Algorithms: Application in Improved Therapeutic Stratification of Patients With Breast and Prostate Cancer. J Clin Pathol (2021) 74(7):429–34. doi: 10.1136/jclinpath-2020-207351
3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer Treatment and Survivorship Statistics, 2016. CA: Cancer J Clin (2015) 65(1):55–65. doi: 10.3322/caac.21349
4. Nakashima L. Evolution of Cancer Treatment and Evolving Challenges. Healthcare Manage Forum (2018) 31(1):26–8. doi: 10.1177/0840470417722568
5. Kim Y, Kim DH. CpG Island Hypermethylation as a Biomarker for the Early Detection of Lung Cancer. Methods Mol Biol (2015) 1238:141–71. doi: 10.1007/978-1-4939-1804-1_8
6. Koinis F, Kotsakis A, Georgoulas V. Small Cell Lung Cancer (SCLC): No Treatment Advances in Recent Years. Trans Lung Cancer Res (2016) 5 (1):39–50. doi: 10.3978/jissn.2218-6751.2016.01.03
7. Vijayvergia N, Shah PC, Denlinger CS. Surviviorship in Non-Small Cell Lung Cancer: Challenges Faced and Steps Forward. J Natl Compr Canc Netw (2015) 13(9):1151–61. doi: 10.6004/jnccn.2015.0140
8. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual Report to the Nation on the Status of Cancer, Part I: National Cancer Statistics. Cancer (2020) 126(10):2225–49. doi: 10.1002/cncr.32802
9. Chabner BA, Roberts TG Jr. Timeline: Chemotherapy and the War on Cancer. Nat Rev Cancer (2005) 5(1):65–72. doi: 10.1038/nrc1529
10. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al. The Case for Early Detection. Nat Rev Cancer (2003) 3(4):243–52. doi: 10.1038/nrc1041
11. Huff CA, Matsui W, Smith BD, Jones RJ. The Paradox of Response and Survival in Cancer Therapeutics. Blood (2006) 107(2):431–4. doi: 10.1182/blood-2005-06-2517
12. Buskwole A, David-West G, Clare CA. A Review of Cervical Cancer: Incidence and Disparities. J Natl Med Assoc (2020) 112(2):229–32. doi: 10.1016/j.jnma.2020.03.002
13. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human Papillomavirus Type Distribution in Invasive Cervical Cancer and High-Grade Cervical Lesions: A Meta-Analysis Update. Int J Cancer (2007) 121(3):621–32. doi: 10.1002/ijc.22527
14. Zheng X, Li X, Wang X. Extracellular Vesicle-Based Liquid Biopsy Holds Great Promise for the Management of Ovarian Cancer. Biochim Biophys Acta Rev Cancer (2020) 1874(1):188395. doi: 10.1016/j.bbcan.2020.188395
15. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity (2013) 39(1):74–88. doi: 10.1016/j.immuni.2013.06.014
16. Quigley DA, Kristensen V. Predicting Prognosis and Therapeutic Response From Interactions Between Lymphocytes and Tumor Cells. *Mol Oncol* (2010) 4(1):1-33. doi: 10.1016/j.molonc.2010.05.003

17. Menon H, Ramapriyan R, Cushman TR, Verma V, Kim HH, Schoenlehls JE, et al. Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment. *Front Immunol* (2019) 10:193. doi: 10.3389/fimmu.2019.00193

18. Durgin JS, Weiner DM, Wysocka M, Rook AH. The Immunopathogenesis and Immunotherapy of Cutaneous T Cell Lymphoma: Pathways and Targets for Immune Restoration and Tumor Eradication. *J Am Acad Dermatol* (2021) 84(3):587–95. doi: 10.1016/j.jaad.2020.12.027

19. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural Innate and Adaptive Immunity to Cancer. *Annu Rev Immunol* (2011) 29:235–71. doi: 10.1146/annurev-immunol-031210-101324

20. Vysotskaia V, Kasemini KE, Buchei L, Ready K, Price K, Johansen Taber K. Breast Cancer Risk Associated With Esophageal Cancer Risk in a Chinese Han Population: A Case-Control Study. *Breast Cancer* (2018) 25(3):216–33. doi: 10.1007/s13577-020-0297-7

21. Shareefi G, Turkistani AN, Alsassyah A, Kussahi A, Abdal Hadi M, Alkharsah KR. Pathway-affected Single Nucleotide Polymorphisms (SNPs) in *RPS6KA1* and MBIP Genes Are Associated With Breast Cancer Risk. *Asian Pac J Cancer Prev* (2021) 21(7):2163–8. doi: 10.31557/apjcp.2021.21.7.2163

22. Xiong Z, Wu J, Bai M, Niu F, Jin T. Variants in Multiple Genes Are Associated With Esophageal Cancer Risk in a Chinese Han Population: A Case-Control Study. *J Gene Med* (2020) 22(12):e2366. doi: 10.1002/jmg2.2366

23. Khan RT, Siddique A, Shahid N, Khokher S, Fatima W. Breast Cancer Risk Associated With *PALB2, ATM, CHEK2*, NBR1, BRIPI, RAD51C, and RAD51D Results on Patient Management and Adherence to Provider Recommendations. *Cancer* (2020) 126(3):549–58. doi: 10.1002/cncr.32572

24. Elek Z, Keszler G, Szabo Z, Kovač K, Keszler G, Szabo Z. The Role of C2 Domains in PKC Signaling. *Biochimie* (2000) 82(5):421–34. doi: 10.1016/S0300-9126(00)00254-5

25. Kabekkodu SP, Bhat S, Radhakrishnan R, Aithal A, Mascarenhas R, Pandey P, et al. The Achilles Heal of Cancer. *Cancer Cell* (2004) 6(6):577–85. doi: 10.1016/j.cccel.2004.06.014

26. Cho W, Stahelin RV. Membrane Binding and Subcellular Targeting of C2 Domains. *Biochim Biophys Acta* (2006) 1761(8):383–49. doi: 10.1016/j.bbalip.2006.06.014

27. Corbalan-Garcia S, Goycoolea A, Colmenero M, Irazoqui R, Sainz R, et al. Signaling Through C2 Domains: More Than One Lipid Target. *Biochim Biophys Acta* (2014) 1836(8):1536–47. doi: 10.1016/j.bbamem.2014.01.008

28. Cho W, Stahelin RV. Membrane Binding and Subcellular Targeting of C2 Domains. *Biochim Biophys Acta* (2006) 1761(8):383–49. doi: 10.1016/j.bbalip.2006.06.014

29. Blomme A, Costanza B, de Tulipio P, Thiry M, Van Simaegs G, Poutry S, et al. Myoferlin Regulates Cellular Lipid Metabolism and Promotes Metastases in Triple-Negative Breast Cancer. *Oncogene* (2017) 36(15):2116–30. doi: 10.1038/onc.2016.369

30. Hao XL, Han F, Zhang N, Chen HQ, Jiang X, Yin L, et al. TC2N, a Novel Oncogene, Accelerates Tumor Progression by Suppressing P53 Signaling Pathway in Lung Cancer. *Cell Death Differ* (2019) 26(7):1235–50. doi: 10.1038/s41418-018-0202-8

31. Li et al. TC2N: A Novel Tumor Gene.
56. Harris SL, Levine AJ. The P53 Pathway: Positive and Negative Feedback Loops. Oncogene (2005) 24(17):2899–908. doi: 10.1038/sj.onc.1208615
57. Holchaksky A, Rivlin N, Brosh R, Rotter V, Sarig R. P53 Is Balancing Development, Differentiation and De-Differentiation to Assure Cancer Prevention. Carcinogenesis (2010) 31(9):1501–8. doi: 10.1093/carcin/bgp101
58. Bieging KT, Mello SS, Attardi LD. Unravelling Mechanisms of P53-Mediated Tumour Suppression. Nat Rev Cancer (2014) 14(5):359–70. doi: 10.1038/nrc3711
59. Luo Q, Beaver JM, Liu Y, Zhang Z. Dynamics of P53: A Master Decider of Cell Fate. Genes (2017) 8(2):178. doi: 10.3390/genes8020066
60. Wynford-Thomas D. P53: Guardian of Cellular Senescence. J Pathol (1996) 180(2):118–21. doi: 10.1002/(sici)1096-9896(199610)180:2<118::aid-jpath673>3.0.co;2-p. doi: 10.1007/s10018-009-00893
61. Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM, et al. Interplay of P53 and DNA-Repair Protein XRCC4 in Tumorigenesis, Genomic Stability and Development. Nature (2000) 404(6789):897–900. doi: 10.1038/s35009138
62. Ryan KM. P53 and Autophagy in Cancer: Guardian of the Genome Meets Guardian of the Proteome. Eur J Cancer (Oxford Engl) (2010) 47(1):44–50. doi: 10.1016/j.ejca.2010.01.020
63. Wang SJ, Ou Y, Jiang L, Gu W. Ferroptosis: A Missing Puzzle Piece in the P53 Blueprint? Mol Cell Oncol (2016) 3(3):e1046581. doi: 10.1080/23723556.2015.1046581
64. Lane D, Levine AJ. P53 Research: The Past Thirty Years and the Next Thirty Years. Mol Cell Oncol (2016) 3(1):8. doi: 10.3390/cancers8020066
65. Koifman G, Aloni-Grinstein R, Rotter V. P53 Balances Between Tissue Homeostasis and Tissue Homeostasis. J Cell Physiol (2018) 237(2):118–22. doi: 10.1002/jcp.27423
66. Aloni-Grinstein R, Charni-Natan M, Solomon H, Rotter V. P53 and the Regulation of the P53 Transcriptional Activity. J Neurochem (2002) 81(2):307–13. doi: 10.1046/j.1471-4159.2002.00824.x
67. Lee JH, Kim HS, Lee SJ, Kim KT. Stabilization and Activation of P53 Induced by CdK5 Prolongs to Neuronal Cell Death. J Cell Sci (2007) 120(Pt 13):2259–71. doi: 10.1242/jcs.034684
68. Vogelein B, Lane D, Levine AJ. Surfing the P53 Network. Nature (2000) 408(6810):307–10. doi: 10.1038/sj.nature00427
69. Georgakilas AG, Martin OA, Bonner WM. P21: A Two-Faced Genome Guardian. Trends Mol Med (2017) 23(4):310–9. doi: 10.1016/j.molmed.2017.02.001
70. Faria MH, Patrocínio RM, Moraes Filho MO, Rabenhorst SH. Immunoeexpression of Tumor Suppressor Genes P53, P21 WAF1/CIP1 and P27 KIP1 in Human Astrocytic Tumors. Arq Neuro Psiquiatr (2007) 65(4b):1114–22. doi: 10.1590/s0004-282x2007000700004
71. Gottlieb TM, Oren M. P53 and Apoptosis. Semin Cancer Biol (1998) 8(5):359–68. doi: 10.1016/s0969-2126(98)80098-0
72. Sen R, Baltimore D. Multiple Nuclear Factors Interact With the Immunoglobulin Enhancer Sequences. Cell (1986) 46(5):705–16. doi: 10.1016/0092-8674(86)90346-6
73. Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-kB: A Blossoming of Relevance to Human Pathobiology. Cell (2017) 168(1-2):37–57. doi: 10.1016/j.cell.2016.12.012
74. Tong L, Tergaonkar V. Rho Protein GTPases and Their Interactions With NFkB Crossroads of Inflammation and Matrix Biology. Biochis Rep (2014) 34(3):283–95. doi: 10.1016/j.brisrep.20140201
75. Perkins ND. The Diverse and Complex Roles of NF-kB Subunits in Cancer. Nat Rev Cancer (2012) 12(2):121–32. doi: 10.1038/nrc3204
76. Irelan JT, Murphy TJ, DeJesus PD, Teo H, Xu D, Gomez-Ferreria MA, et al. A Role for IkappaB Kinase 2 in Bipolar Spindle Assembly. Proc Natl Acad Sci USA (2007) 104(13):4694–5. doi: 10.1073/pnas.0706493104
77. Beg AA, Baltimore D. An Essential Role for NF-kappaB in Preventing TNF-Alpha-Induced Cell Death. Science (New York NY) (1996) 274(5288):782–4. doi: 10.1126/science.274.5288.782
78. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-kappaB Activation Prevents Cell Death. Cell (1996) 87(3):565–76. doi: 10.1016/s0092-8674(00)81375-6
79. Yan Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-Alpha-Induced Apoptosis by NF-kappaB. Science (New York NY) (1996) 274(5288):787–9. doi: 10.1126/science.274.5288.787
80. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and Cancer Therapy-Induced Apoptosis: Potentiation by Inhibition of NF-kappaB. Science (New York NY) (1996) 274(5288):784–7. doi: 10.1126/science.274.5288.784
81. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and Cell-Cycle Regulation: The Cyclin Connection. Cytokine Growth Factor Rev (2001) 12(1):73–90. doi: 10.1016/s1387-3204(00)00018-6
82. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-alpha-Induced Apoptosis by NF-kappaB. J Immunol (1997) 159(10):5829–34. doi: 10.1088/01009-3674/019215-9
83. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-Alpha-Induced Apoptosis by NF-kappaB. Science (New York NY) (1996) 274(5288):793–8. doi: 10.1126/science.274.5288.793
84. Pasparkas M, Luedde T, Schmidt-Supprian M. Dissection of the NF-kappaB Signaling Cascade in Transgenic and Knockout Mice. Cell Death Differ (2006) 13(5):861–72. doi: 10.1038/sj.cdd.4401870
85. Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R. Genetic Approaches in Mice to Understand Rel/NF-kappaB and IkappaB Function: Transgenic and Knockouts. Oncogene (1998) 18(49):6885–95. doi: 10.1038/sj.onc.1203256
86. Grilli M, Chiu JJ, Lenardo MJ. NF-kappaB and Rel: Participants in a Multiform Transcriptional Regulatory System. Int Rev Cytol (1993) 143:13–62. doi: 10.1016/S0021-9247(08)58137-3
87. Barnes PJ, Karin M. Nuclear Factor-Kappab: A Pivotal Transcription Factor in Chronic Inflammatory Diseases. New Engl J Med (1997) 336(15):1066–71. doi: 10.1056/nejm19970410336100
88. Courtois G, Gilmore TD. Mutations in the NF-kappaB Signaling Pathway: Implications for Human Disease. Oncogene (2006) 25(51):6831–43. doi: 10.1038/sj.onc.1209939
89. Kadhim HS, Al-Jebouri TI, Tawfik MS. Possible Role of Nuclear Factor kappaB Detected by in Situ Hybridization in the Pathogenesis of Transitional
Cell Carcinoma of the Bladder. *Le J Med Libanais Lebanese Med J* (2006) 54 (4):196–9.

101. Taniguchi K, Karin M. NF-kB, Inflammation, Immunity and Cancer: Coming of Age. *Nat Rev Immunol* (2018) 18(5):309–24. doi: 10.1038/nri.2017.142

102. Hayden MS, Ghosh S. Proliferation, Survival and Metabolism: The Role of PI3K/AKT Signaling. *Nat Rev Immunol* (2009) 27:693–733. doi: 10.1146/annurev.immunol.021908.132641

103. Housey MN, Riley MF. The Role of NF-κB in Cancer: Implications for Therapeutic Targeting. *Cancer Cell* (2010) 17(4):309–20. doi: 10.1016/j.ccell.2010.08.013

104. DiDonato JA, Mercurio F, Karin M. NF-kB and the Link Between Inflammation and Cancer. *Immunol Rev* (2012) 246(1):379–400. doi: 10.1111/j.1600-065X.2012.01099.x

105. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The Emerging Mechanisms of Isoform-Specific PI3K Signalling. *Nat Cell Biol* (2010) 12(6):559–68. doi: 10.1038/ncb2140

106. Yu IS, cui W. Proliferation, Survival and Metabolism: The Role of PI3K/AKT/mTOR Signalling in Pluripotency and Cell Fate Determination. *Dev (Cambridge England)* (2016) 143(7):3050–60. doi: 10.1242/dev.137075

107. Chen G, Wang Z. Nuclear Factor-kappa B Signaling Promotes Apoptosis of Primary Effusion Lymphoma Cells. *Clin Cancer Res* (2005) 11(8):3102–8. doi: 10.1158/1078-0432.Ccr-04-1857

108. Yang L, Cao J, Xiao X, Xiao H, Zhang J, Wang L, et al. Inhibition of Phosphatidylinositol 3-kinase/AKT Signaling Promotes Apoptosis of Primary Effusion Lymphoma Cells. *Cancer Res* (2005) 65(11):4606–12. doi: 10.1158/0008-5472.CAN-04-3324

109. Yi S, Wei W, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation and Metastasis via Phosphorylation of ERK. *Cell Biol Int* (2010) 34(10):1015–22. doi: 10.1002/cbin.201002

110. Uddin S, Hussain AR, Al-Hussein KA, Manogaran PS, Wickrema A, Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Copyright © 2021 Li, Fang, Chang, Qiu, Ren, Cao, Bian, Wang, Guo, Lv, Sun, Wang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.