Successful Azathioprine Treatment with Metabolite Monitoring in a Pediatric Inflammatory Bowel Disease Patient Homozygous for TPMT*3C

Mi-Na Lee, Hye In Woo, Yoo Min Lee, Ben Kang, Jong-Won Kim, Yon Ho Choe, and Soo-Youn Lee

Departments of 1Laboratory Medicine and Genetics and 2Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Received: July 11, 2013
Revised: August 6, 2013
Accepted: August 13, 2013
Co-corresponding authors: Dr. Soo-Youn Lee, Department of Laboratory Medicine and Genetics, Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Korea. Tel: 82-2-3410-1834, Fax: 82-2-3410-2719 E-mail: suddenbz@skku.edu and Dr. Yon Ho Choe, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Korea. Tel: 82-2-3410-3527, Fax: 82-2-3410-0043 E-mail: yonho.choe@samsung.com

The authors have no financial conflicts of interest.

© Copyright: Yonsei University College of Medicine 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thiopurine S-methyltransferase (TPMT) methylates purine analogues, showing TPMT activity in inverse relation to concentrations of active metabolites such as 6-thioguanine nucleotide (6-TGN). With conventional dosing of thiopurines, patients with homozygous variant TPMT alleles consistently suffer from severe myelosuppression. Here, we report a patient with TPMT*3C/*3C who managed successfully with monitoring of thiopurine metabolites. The patient was an 18-year-old male diagnosed with Crohn’s disease. The standard dose of azathioprine (AZA) (1.8 mg/kg/day) with mesalazine (55.6 mg/kg/day) was prescribed. Two weeks after starting AZA treatment, the patient developed leukopenia. The DNA sequence analysis of TPMT identified a homozygous missense variation (NM_000367.2: c.719A>G; p.Tyr240Cys), TPMT*3C/*3C. He was treated with adjusted doses of azathioprine (0.1-0.2 mg/kg/day) and his metabolites were closely monitored. Leukopenia did not reoccur during the follow-up period of 24 months. To our knowledge, this is the first case of a patient homozygous for TPMT*3C successfully treated with azathioprine in Korea. While a TPMT genotyping test may be helpful to determine a safe starting dose, it may not completely prevent myelosuppression. Monitoring metabolites as well as routine laboratory tests can contribute to assessing drug metabolism and optimizing drug dosing with minimized drug-induced toxicity.

Key Words: Thiopurine methyltransferase, azathioprine, inflammatory bowel disease, metabolite levels

INTRODUCTION

Azathioprine (AZA) plays a pivotal role in the treatment of inflammatory bowel disease (IBD). AZA rapidly changes to 6-mercaptopurine (6-MP) and consequently turns into 6-thioguanine nucleotides (6-TGN) by hypoxanthine-guanine phosphoribosyltransferase to exercise its immunosuppressive action. Alternately, AZA is converted to inactive metabolites, 6-methylmercaptopurine (6-MMPN), by thiopurine S-methyltransferase (TPMT).
To date, about 30 allelic variants of TPMT with affecting protein stability or enzymatic activity have been identified. In Whites and Asians, TPMT*3A and TPMT*3C are the most important variants with low enzyme activity, respectively. TPMT*3A exhibits deficient activity, while TPMT*3C has moderate activity in vitro. In patients with deficient TPMT, 6-TGN is rapidly accumulated, causing potentially fatal myelotoxicity.

Adverse effects, including myelosuppression, are found in 9-34% of IBD patients. Consequently, AZA should be decreased or stopped in up to 30% of patients. Considering the chronic course of IBD, it is important to optimize AZA dosing before treatment failure. In cases with deficient TPMT, laboratory tests are applicable to measure thiopurine metabolites. These tests can confirm a TPMT phenotype and optimize personalized dosing to prevent myelosuppression. Here, we report the first case of a Korean IBD patient homozygous for TPMT*3C, successfully treated with AZA by monitoring metabolite levels.

CASE REPORT

An 18 year-old male was referred to our hospital for abdominal pain and loose stool. On physical examination, he had tenderness on the lower left quadrant of the abdomen. Routine laboratory tests, including complete blood cell counts (CBC) and liver function were all within normal limits except mild anemia and an elevated erythrocyte sediment rate of 82 mm/hr (reference interval, 0-22 mm/hr).

The patient was diagnosed with Crohn’s disease according to standard clinical, endoscopic, and histologic criteria. Oral treatment with AZA (1.8 mg/kg/day) and mesalazine (55.6 mg/kg/day) was started. Two weeks later, the absolute neutrophil count (ANC) and white blood cell count (WBC) decreased from 5140/μL to 1010/μL, and 6270/μL to 2810/μL, respectively. The AZA dosage was reduced from 1.8 to 0.9 mg/kg/day. Three weeks later, ANC and WBC continued to decline further to 190/μL and 1910/μL, respectively. The AZA was discontinued. After leukopenia was recovered, the patient was restarted on AZA (0.8 mg/kg/day) with the discontinuation of mesalazine. The patient’s daily dose of AZA was cautiously increased to 1.2 mg/kg while monitoring CBC levels.

Peripheral blood samples were taken from the patient for TPMT genotyping. After obtaining written informed consent, sequence analysis of all coding exons with their flanking intron regions of TPMT gene were performed, and we identified a homozygous variant (c.719A>G; p.Tyr240Cys), TPMT*3C/*3C.

Simultaneously, 6-TGN and 6-MMPN concentrations were measured by the Waters 2795 Alliance HPLC system and a Quatro Micro API tandem mass spectrometer (Waters, Manchester, UK). The thresholds indicating increased likelihood efficacy (6-TGN >235 pmole/8×10⁸ red blood cells, RBC), increased risk of leukopenia (6-TGN >450 pmole/8×10⁸ RBC), and increased risk for hepatotoxicity (6-MMPN >5700 pmole/8×10⁸ RBC) were suggested. The patient’s 6-TGN concentration (7206 pmole/8×10⁸ RBC) corresponded to a higher risk of leukopenia, although the daily dose had already been reduced from 1.2 mg/kg to 0.8 mg/kg because of neutropenia. The daily dosage was readily decreased to 0.2 mg/kg, and 6-TGN declined to therapeutic levels (437 pmole/8×10⁸ RBC). Daily AZA dose was reduced further to 0.1 mg/kg as 6-TGN concentration increased again to 745 pmole/8×10⁸ RBC (Fig. 1). 6-MMPN concentrations were detected at less than the limit of quantitation. The patient’s laboratory parameters, including CBC and liver function, were within normal limits during the follow-up period of 24 months.

DISCUSSION

The effect of extremely low or absent TPMT activity can be fatal due to severe myelosuppression. The most significant variants with low TPMT enzyme activity in Western and Asian countries are TPMT*3A and TPMT*3C. Compared with Whites, East Asians showed different allele frequencies of TPMT*3A (Whites vs. East Asians: 3.2-5.7% vs. 0.0%) and TPMT*3C (0.2-0.8% vs. 0.3-2.3%). Although TPMT*3C is a predominant variant in Asian populations, this is the first case of an IBD patient homozygous for TPMT*3C in Korea.

Myelosuppression in IBD patients treated with AZA/6-MP was reported as more common in Koreans (31.0-56.4%) than in Western countries (2.0-16.7%). The mechanism contributing to a higher incidence of leukopenia in Koreans remains unclear. According to some reports, TPMT polymorphisms affected myelotoxicity in only a small portion of patients, in which large numbers of patients with leukopenia also had wild type TPMT. As the TPMT genotype could not exclusively elucidate myelosuppression during AZA/6-MP therapy, one possible hy-
Thiopurine Monitoring in a Patient with TPMT*3C/*3C

Yonsei Med J http://www.eymj.org Volume 54 Number 6 November 2013

mg/kg). This suggests the importance of metabolite monitoring for individualized-dose adjustment. To determine a safe starting dose, evaluation of the TPMT genotype or phenotype (TPMT activity) prior to beginning AZA treatment is recommended. Slow metabolizers typically respond to much lower doses of medication. Patients treated with AZA require periodic monitoring of CBC and liver function to prevent AZA-induced toxicities. The monitoring of thiopurine metabolites may be helpful in assessing drug metabolism and optimizing drug dosing, as well as drug-interaction, dosing compliance, and intraindividual variability of TPMT activity during AZA treatment, which cannot be explained exclusively by the TPMT genotype. The onset of toxicity distinctively develops within one month. In cases with a TPMT variant, long-term thiopurine therapy is likely to fail because of significant toxicity or an inadequate response during treatment. In this report, our patient had experienced myelosuppression only two weeks after starting AZA therapy. Since dose adjustment based on TPMT genotype followed by metabolites monitoring was applied, the patient’s disease activity was successfully controlled without relapse of neutropenia.

In conclusion, this is the first reported case of an IBD patient homozygous for TPMT*3C in Korea. The patient received successful AZA treatment without recurrent leukopenia after dose optimization based on the presence of the TPMT genotype and metabolite monitoring. Our report sug-
gests that AZA dosage should be determined based on the presence of a TPMT genotype and with careful metabolite monitoring as this may provide safe and efficient dosing.

ACKNOWLEDGEMENTS

We thank the parents of the patient for their collaboration with respect to this report.

This work was supported by the Samsung Biomedical Research Institute grant, #SBRI GL1-B2-211-1.

REFERENCES

1. Appell ML, Berg J, Duley J, Evans WE, Kennedy MA, Lennard L, et al. Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics 2013;23:242-8.

2. Krynetski EY, Tai HL, Yates CR, Fessing MY, Loennechen T, Schuett JD, et al. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 1996;6:279-90.

3. Tai HL, Krynetski EY, Schuett EG, Yanishevsky Y, Evans WE. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 1997;94:6444-9.

4. Tai HL, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996;58:694-702.

5. Hindorf U, Lindqvist M, Hildebrand H, Fagerberg U, Almer S. Adverse events leading to modification of therapy in a large cohort of patients with inflammatory bowel disease. Aliment Pharmacol Ther 2006;24:331-42.

6. Dewit O, Starkel P, Roblin X. Thiopurine metabolism monitoring: implications in inflammatory bowel diseases. Eur J Clin Invest 2010;40:1037-47.

7. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 2013;93:324-5.

8. Dervieux T, Meyer G, Barham R, Matsutani M, Barry M, Boulieu R, et al. Liquid chromatography-tandem mass spectrometry analysis of erythrocyte thiopurine nucleotides and effect of thiopurine methyltransferase gene variants on these metabolites in patients receiving azathioprine/6-mercaptopurine therapy. Clin Chem 2005;51:2074-84.

9. Dubinskis MC, Lamothe S, Yang HY, Targin SR, Sinnett D, Theoret Y, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000;118:705-13.

10. Cuffari C, Dassopoulos T, Tumbough L, Thompson RE, Bayless TM. Thiopurine methyltransferase activity influences clinical response to azathioprine in inflammatory bowel disease. Clin Gastroenterol Hepatol 2004;2:410-7.

11. Kumagai K, Hiyaoka K, Ishioka S, Sato H, Yamanishi Y, McLeod HL, et al. Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese. Pharmacogenetics 2001;11:275-8.

12. Kim JH, Cheon JH, Kim WH. [The frequency and the course of the adverse effects of azathioprine/6-mercaptopurine treatment in patients with inflammatory bowel disease]. Korean J Gastroenterol 2008;51:291-7.

13. Kim JH, Cheon JH, Hong SS, Eun CS, Byeon JS, Hong SY, et al. Influences of thiopurine methyltransferase genotype and activity on thiopurine-induced leukopenia in Korean patients with inflammatory bowel disease: a retrospective cohort study. J Clin Gastroenterol 2010;44:e242-8.

14. Lee HJ, Yang SK, Kim KJ, Choe JW, Yoon SM, Ye BD, et al. The safety and efficacy of azathioprine and 6-mercaptopurine in the treatment of Korean patients with Crohn’s disease. Intest Res 2009;7:22-31.

15. Hindorf U, Lindqvist M, Peterson C, Söderkvist P, Ström M, Hjortswang H, et al. Thiopurine S-methyltransferase, inosine triphosphate phosphohydrolase genes in Japanese patients with inflammatory bowel disease. Int J Cancer 2003;104:141-3.

16. Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, et al. Inosine triphosphate pyrophosphatase and thiopurine S-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol 2006;4:44-9.

17. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000;118:1025-30.

18. Takatsu N, Matsui T, Murakami Y, Ishihara H, Hisabe T, Nagahama T, et al. Adverse reactions to azathioprine cannot be predicted by thiopurine S-methyltransferase genotype in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol 2009;24:1258-64.

19. Han H, Andoh A, Imaeda H, Kobori A, Bamba S, Tsujikawa T, et al. The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol 2010;25:1014-21.

20. Saito Y, Kojima S, Nakamura M, Kubota T, Yamane T, Fujise K, Tajiri H. Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment. J Gastroenterol 2009;44:197-203.

21. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985-9.

22. Kaskas BA, Louis E, Hindorf U, Deflandre J, Graepler F, et al. Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut 2003;52:140-2.

23. Grossman AB, Noble AJ, Marmula P, Baldassano RN. Increased dosing requirements for 6-mercaptopurine and azathioprine in inflammatory bowel disease patients six years and younger. Inflamm
25. Nielsen OH, Vainer B, Rask-Madsen J. Review article: the treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther 2001;15:1699-708.

26. Boonsrirat U, Angthum S, Vannaprasaht S, Kongpunvijit J, Hirankarn N, Tassaneeyakul W, et al. Azathioprine-induced fatal myelosuppression in systemic lupus erythematosus patient carrying TPMT*3C polymorphism. Lupus 2008;17:132-4.