WATER INTAKE APPLET BASED ON HUMAN EXCREMENT

Nadine Swastika 1, Winda Hasuki 2, Sava Savero 3, Putri Gabriella Satya 4, Arli Aditya Parikesit 5(*)

12345Department of Bioinformatics, School of Life Sciences
Indonesia International Institute of Life Sciences
https://i3l.ac.id
nadine.melody@student.i3l.ac.id 1, winda.hasuki@student.i3l.ac.id 2, sava.savero@student.i3l.ac.id 3, putri.satya@student.i3l.ac.id 4, arli.parikesit@i3l.ac.id 5

(*) Corresponding author

Abstract
To function properly, the human body requires adequate hydration as 70% of the human body was being built up by water. It acts as a solvent for lots of biochemical reactions to keep our physiological function work optimally throughout the day. Dehydration could cause a disturbance in both the gastrointestinal and kidney systems of human beings, and it could be noticed in the color of both urine and feces. The objective of this paper is to present an idea on how to make a water intake app based on the color indicator of human excrement surveillance. It might be a solution to intensify people's ability to become self-conscious when drinking less water by surveying the excreted substance. The deployed method is to measure one indicator which is between urine and feces detector on how much water should the user drink by observing the color of both their urine and feces. However, both excrement indicators are needed to detect users' drinking amount. If one of these indicators shows a bad result, it could lead to water intoxication or hydration. The application has been successfully created using Python to give feedback for the user's water intake based on the condition of their excreted substance. The Water Intake application has successfully shown a clear indicator for dehydration. It could be inferred that this water intake software could detect the dehydration phenomenon with human excrement as the main indicator.

Keywords: Water Intake, Dehydration, Color, Human Excrement

INTRODUCTION
Without water, most living beings are only able to survive for several days. Water requirements came from food intake and beverages among healthy individuals. Sufficient water intake is essential for the homeostasis of fluid and electrolyte tests in our body (Jéquier & Constant, 2010). Thus, dehydration could pose serious health consequences as seen in...
the six-day war of 1967 that caused significant heat-stroke casualties of Egyptian soldiers (Grandjean, 2014). Healthy humans regulate daily water intake across their lifespan despite the changes within their biological development as well as exposure to a stressor on hydration status (Popkin, D’Anci, & Rosenberg, 2010). Things that are considered as daily water intake includes drinking water, water in food, and water in any beverages. Many factors contributed to differences in total body water which contributed to age, gender, activities, and daily routines, all accounted for each person’s body composition (Stookey, 2019). Total body water is distributed into different parts of intracellular and extracellular fluid components within the body, containing around 50% to 70% of total body water (Sawka, Cheuvront, & Carter, 2005).

Disturbance in water intake will also affect the human excretion of the body, regardless it’s in solid or fluid form. This could also affect the level of hydration which is also increased with the flow of urine and also solid excretion (Rose, Parker, Jefferson, Cartmell, & Rose, 2015). A study from Arnaud, 2003 based on elderly people concluded that hydration lowers the chance of getting constipated. Another review study by (Perrier et al., 2020), found that the lack of water intake may increase the chance of kidney stones occurring when urine forms crystals due to the lack of substances within the kidney to bladder area. All of these symptoms have a high chance of occurring due to dehydration, and low fluid intake or liquid deprivation in which water intake was only around 2,500 to 500 milliliters per day (Liska et al., 2019).

In the realm of computer science, the software that caters for both urine and feces detections are mainly limited to the large-scale system for biomarker detection, and specialized machine-learning-based system for specific disease diagnostics (Fujimoto et al., 1998; Shu, Liu, Xie, & Ren, 2017). In this regard, there are a lot of improvements and gaps to be a field in this studies, as there is a need for a more general diagnostics measure for human excrement. However, in the life sciences domain, extensive research has been conducted to establish diagnostics for the water dehydration marker in human excrement (Bičanić, Hladnik, Đaja, & Petanjek, 2019; Cheuvront, Muñoz, & Kenefick, 2016; Ghasemi, Khorvash, Ghorbani, & Elmamouz, 2014). Moreover, large-scale diagnostics with a machine learning approach have been established, albeit only for experts (Ford & McElvania, 2020; Fujimoto et al., 1998; Shu et al., 2017). It should be noted that impaired executive function and cognitive performance for dehydrated people could occur due to water imbalance level (Guo et al., 2020; Malisova, Bountziouka, Panagiotakos, Zampelas, & Kapsokelalou, 2013; Riebl & Davy, 2013; Stachenfeld, Leone, Mitchell, Freese, & Harkness, 2018). More advanced engineering efforts have been devised for detecting dehydration in toilet systems and water treatments as well (Park et al., 2020; Rose et al., 2015). So, the combination of both domains of computer and life sciences approaches should devise for an easy-to-use diagnostics measure for water intake diagnostics with human excrement as the marker.

An appropriate water intake of around 2.7 liters to 3.7 liters should do well in assisting our bodies to do daily activities during the day (Keneffick & Sawka, 2007). There are clinical indicators for determining water dehydration in humans, but more efforts towards automatization are necessary (Carmichael, 2011). There is several-water intake reminder software in the market, but without clear urine and feces indicators available (Everyone, 2020; Funn Media, 2020). The paper aims to present an idea of making a water intake app based on human excrement surveillance whether in liquid (pee form) or solid (stool form) with a color indicator. The novelty of our applet is the combination of both pee and stool color indicators with a user-friendly interface. The app could improve people’s ability to become more self-aware of their own body needs whether they lack water intake within the body or an adequate amount of water has finally been reached. This is done by observing the color of the urine or the hardness of the fecal substance.

RESEARCH METHODS

The applet was created with the Python programming language version 3.6, along with the kivy and kivymd frameworks development (Ivan, Nurdiansyah, & Parikesit, 2019). The interactive user interface deployment and visual matching form were exposed in the pseudo-code below (Bhat, Wijaya, & Parikesit, 2019), and the block sequences were deployed in sequences along with the detailed explanations (Block 1 – 16):

```python
main.py
Import kivy
Import kivymd

Block 1: The kivy python framework was deployed to enable the multi-touch user interface

create interface:
MenuScreen:
PeeLog:
plResult1:
plResult2:
plResult3:
plResult4:
```

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.
Block 2: This pseudocode depicts the creation of the menu of the urine colors and feces forms. It also shows the user setting of the applet.

```plaintext
<MenuScreen>:
  name: 'menu'
  create label:
    text: 'Welcome'
  create button:
    text: 'Pee Log'
    on_click:
      direct to 'peeLog'
  create button:
    text: 'Poo Log'
    on_click:
      direct to 'pooLog'
  create button:
    text: 'Settings'
    on_click:
      direct to 'setting'
</MenuScreen>
```

Block 3: This pseudocode explains the contents within the menu screen which consists of "Welcome" text, and four buttons which are between pee log, poo log, and settings.

```plaintext
<PeeLog>:
  name: 'peeLog'
  create label:
    text: 'Select the color of your urine!'
  create button:
    color: x
    on_click:
      direct to 'PeeResult1'
  create button:
    color: y
    on_click:
      direct to 'PeeResult1'
  create button:
    color: z
    on_click:
      direct to 'PeeResult1'
  create button:
    color: a
    on_click:
      direct to 'PeeResult2'
  create button:
    color: b
    on_click:
      direct to 'PeeResult3'
  create button:
    color: c
    on_click:
      direct to 'PeeResult4'
  on_click:
    direct to 'menu'
</PeeLog>
```

Block 4: When the Pee Log option is chosen on the menu page, users need to pick the color of their urine.

```plaintext
<PeeResult1>:
  name: 'PeeResult1'
  create label:
    text: 'You are hydrated.'
  create label:
    text: 'Keep up the good work!'
  create button:
    text: 'Back'
    on_click:
      direct to 'menu'
  create button:
    text: 'Submit'
    on_click:
      direct to 'menu'
  append current_time + ' - Pee = Hydrated \n' to history.log
</PeeResult1>
```

Block 5: This pseudocode shows the output of pee result 1. It will show a message that tells users are very well hydrated. The text result will then be put automatically into the history log.

```plaintext
<PeeResult2>:
  name: 'PeeResult2'
  create label:
    text: 'Healthy.'
  create label:
    text: 'But drink water soon~'
  create button:
    text: 'Back'
    on_click:
      direct to 'menu'
  create button:
    text: 'Submit'
    on_click:
      direct to 'menu'
  append current_time + ' - Pee = Acceptable \n' to history.log
</PeeResult2>
```

Block 6: This pseudocode shows the output of pee result 2. It will show a message that tells users are hydrated enough but should drink more water. The text result will then be put automatically into the history log.

```plaintext
<PeeResult3>:
  name: 'PeeResult3'
  create label:
    text: 'You seem to be dehydrated.'
  create label:
    text: 'Please drink more water!'
  create button:
    text: 'Back'
    on_click:
      direct to 'menu'
  create button:
    text: 'Submit'
    on_click:
      direct to 'menu'
  append current_time + ' - Pee = Dehydrated \n' to history.log
</PeeResult3>
```

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License
Block 7: This pseudocode shows the other two possible outputs, pee result 3 and 4. Pee result 3 will show a message that tells users that they are dehydrated, while pee result 4 will tell them that they are severely hydrated. The text result will then be put automatically into the history log.

```plaintext
<peeResult3>
name: 'PeeResult3'
create label:
text: 'Your stool is normal'
create label:
text: 'But if it persists, please consult a doctor'
create button:
text: 'Back'
on_click:
direct to 'menu'
create button:
text: 'Submit'
on_click:
direct to 'menu'
append current_time + ' - Pee = Severely dehydrated

Block 8: When the Poo Log option is chosen in the menu page, users need to pick the consistency of their feces.

```plaintext
<pooResult1>
name: 'PooResult1'
create label:
text: 'Your stool is normal'
create label:
text: 'Keep up the good work!'
The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.
The first button, Pee Input, would lead to a page where users can input the color of their urine. On the Pee input page, there are six buttons with different colors (Figure 2). From left to right, the first three buttons represent the ideal or healthy color; the fourth button represents the urine color of someone with mild dehydration; the fifth button represents the urine color of someone who is dehydrated; the sixth button represents the urine color of a severely dehydrated person. Based on the input, the user would be directed to a new page where they can see the implication of the color of their urine and a submit button that would save the user input when clicked. If the user selects one of the first three buttons, they would see a page with a message saying “You are hydrated” and “Keep up the good work” (Figure 3a). When the user chooses the fourth button, a message saying “Healthy! But drink water soon” would be seen (Figure 3b). The fifth button would lead to a page with a text saying “You seem to be dehydrated. Please drink more water!” (Figure 3c). The last button would show a page with the message: “Oh no! You are severely dehydrated. Please drink water and consult a doctor” (Figure 3d). In this part, it is important to remember that the users should have exposed their good and healthy depiction of their urine visually, especially the upper bright part in Figure 2. If they eventually stumble upon the darker visuals below, certain health disorders could be imminent (Liao & Churchill, 2001)
The second button of the menu page, Poo Input, would show the page where the user can input the condition of their stool. Poo Input works the same way as Pee Input. Seven buttons are representing different shapes and textures of stool (Figure 4). These options are based on the Bristol stool chart. Type 1, with separate and hard lumps, indicates severe constipation; type 2, lumpy and sausage-like, indicate mild constipation; types 3 and 4 indicate a normal stool; type 5, soft blobs with clear-cut edges, indicates lack of fiber; type 6 with mushy consistency indicates mild diarrhea; type 7, liquid consistency and no solid pieces indicate severe diarrhea. The buttons representing types 3 and 4 would lead to a page that says "Your stool is normal" and "keep up the good work" (Figure 5a). Button for type 5 would show a page with a text saying "You lack fiber" and "Try to eat some more fiber" (Figure 5b). Button for type 2 and 6 will lead to a page with the text: "Your stool is normal. However, if the problem persists please consult a doctor" (Figure 5c). Button for types 1 and 7 will lead to a page with a message saying "Your stool is abnormal. Please seek medical attention" (Figure 5d). Herewith, as seen in figure 4, the most favorable stool form will be numbers 3 and 4. The other forms are considered malformed due to dehydration (Chumpitazi et al., 2010).
As seen in the user interface depictions, this project can elicit good assistance to ensure sufficient water intake for users. The effect of the application on users' habits has been elicited accordingly, and it is shown that the users enjoy its easiness and user-friendliness. Moreover, it could be concluded that the efficacy of this applet could be considered acceptable to our user.

Our research has elicited a combination of computer and life sciences for developing water intake applets for the users' health annotations. The streamlined user interface has enabled users to optimize this applet for their needs. However, one feature that is currently absent is the unavailability of an expert system, especially the medical one (Kobrinskii, 2020). It is important to provide medical expert judgment to users, so doctors can obtain useful medical annotations before meeting the patient (Broom, 2005). Moreover, visually impaired people will have difficulty in recognizing their feces and urine. In this regard, a more advanced proposal to leverage the gadget's camera to recognize the color and pattern of human excrement with artificial intelligence-based tools could be devised (Fogel & Kvedar, 2018). Although this kind of instrument has been successfully elicited in cancer diagnostics, further application in this area could be doable (Bernard & Parikesit, 2020). In the end, the future of the water intake applet for human excrement will be entering the further application of machine learning and big data.

CONCLUSIONS AND SUGGESTIONS

Conclusion

This water intake based on human excrement app provides a digital response to the user about their excrement condition after receiving the user's input. It will be expected that the risk of possibly lacking water in the human's body resulting in dehydration can be prevented. By tracking the result in the app, the users could obtain fine-grained information on their water intake level based on the color of the feces and urine. Moreover, it could be inferred that the graphical user interface-based deployment of the applet has enabled users in curating their own excrement data. The main pitfall of inability to use big data and machine learning should be addressed in the next version of the water intake applet. It is expected that the further improvement of this applet will be the deployment of large-scale user experience data, in order to cater for the machine learning approach of a more complex water-intake related disorder.
Suggestion

The significance of using this water intake applet has been elicited to limited respondents. However, the annotation for the rare condition or symptoms in the stool and urine category such as blood presence should be catered in order to facilitate user to seek immediate medical attention. Therefore, the effect on users who use this application and its correlation to their deeply-impacted hydration status has not yet been determined.

ACKNOWLEDGEMENT

The authors would like to thank the Institute of Research and Community Empowerment of the Indonesia International Institute for Life Sciences (LPPM I3L) for their heartfelt support. Our thanks also goes to Andamar Pradipta. M.A. from the Community Language Center of I3L for his excellent proofreading of this manuscript.

REFERENCES

Archie, M. (2019). Creating a Cliché Library for Social Applications (Massachusetts Institute of Technology). Massachusetts Institute of Technology, Cambridge. Retrieved from https://dspace.mit.edu/handle/1721.1/123001.

Aversa, R., Petrescu, V., Apicella, A., & Petrescu, I. T. (2016). The basic elements of life’s. American Journal of Engineering and Applied Sciences, 9(4), 1189–1197. https://doi.org/10.3844/ajeassp.2016.1189.1197

Bernard, S., & Parikesit, A. A. (2020). Artificial Intelligence in Colonoscopy: Improving Medical Diagnostic of Colorectal Cancer. Frontiers in Health Informatics, 9(1), 33. https://doi.org/10.30699/fhi.v9i1.209

Bhat, N., Wijaya, E. B., & Parikesit, A. A. (2019). Use of the “DNAchecker” Algorithm for Improving Bioinformatics Research. Makara Journal of Technology, 23(2), 72. https://doi.org/10.7454/mjst.v23i2.3488

Bičanić, I., Hladnik, A., Džaja, D., & Petanjek, Z. (2019). The anatomy of orofacial innervation. Acta Clinica Croatica, 58(Supplement 1), 35–42. https://doi.org/10.20471/acc.2019.58.s1.05

Broom, A. (2005). Virtually healthy: the impact of internet use on disease experience and the doctor-patient relationship. Qualitative Health Research, 15(3), 325–345. https://doi.org/10.1177/1049732304272916

Carmichael, A. (2011). Initial treatment of dehydration for severe acute malnutrition.

Cheuvront, S. N., Muñoz, C. X., & Kefeni, R. W. (2016). The void in using urine concentration to assess population fluid intake adequacy or hydration status 1,2. The American Journal of Clinical Nutrition, 104(3), 553–556. https://doi.org/10.3945/ajcn.115.129858

Everyone. (2020). Water Reminder - Remind Drink Water. Hanoi: Smart Apps OGS Studio. Retrieved from https://play.google.com/store/apps/details?d=com.remind.drink.water.hourly&hl=en_US&gl=US

Fogel, A. L., & Kedar, J. C. (2018). Artificial intelligence powers digital medicine. Npj Digital Medicine, 1(5), 1–4. https://doi.org/10.1038/s41746-017-0012-2

Ford, B. A., & McElvania, E. (2020). Machine learning takes laboratory automation to the next level. Journal of Clinical Microbiology, 58(4), 1683–1702. https://doi.org/10.1128/JCM.00012-20

Fujimoto, T., Hashimoto, T., Sakaki, H., Higashi, Y., Tamura, T., & Tsuji, T. (1998). Automated handling system for excretion. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 4, 1973–1976. Hong Kong: IEEE. https://doi.org/10.1109/iecmb.1998.746989

Funn Media. (2020). WaterMinder - Water Tracker and Drink Reminder App. Cicero Ave: Funn Media. Retrieved from https://play.google.com/store/apps/details?id=com.funnmedia.waterminder

Ghasemi, E., Khorvash, M., Ghorbani, G. R., & Elmanouz, F. (2014). Effects of straw treatment and nitrogen supplementation on digestibility, intake and physiological responses of water intake as well as urine and faecal characteristics. Journal of Animal Physiology and Animal Nutrition, 98(1), 100–106. https://doi.org/10.1111/jpn.12052

Grandjean, A. (2014). Water Requirements, Impinging Factors, and Recommended Intakes. Geneva.

Guo, Q, Wang, B., Cao, S., Jia, C., Zhao, L., Zhang, Q … Duan, X. (2020). Patterns and sociodemographic determinants of water intake by children in China: results from the first national population-based survey. European Journal of Nutrition, 59(2), 529–538. https://doi.org/10.1007/s00394-019-01921-w

Ivan, J., Nurdiansyah, R., & Parikesit, A. A. (2019). Mathematical Problem Solving: One Way to
European Journal of Nutrition, pp. 1–14. Springer, https://doi.org/10.1007/s00394-020-02296-z

Popkin, B. M., D’Anci, K. E., & Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, Vol. 68, pp. 439–458. Blackwell Publishing Inc. https://doi.org/10.1111/j.1753-4887.2010.00304.x

Riebl, S. K., & Davy, B. M. (2013). The Hydration Equation. ACSM'S Health & Fitness Journal, 17(6), 21–28. https://doi.org/10.1249/FIT.0b013e3182a9570f

Rose, C., Parker, A., Jefferson, B., Cartmell, E., & Rose, © C. (2015). The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology, 45, 1827–1879. https://doi.org/10.1080/10643389.2014.100761

Sawka, M. N., Cheuvront, S. N., & Carter, R. (2005). Human Water Needs. Nutrition Reviews, 63(suppl_1), S30–S39. https://doi.org/10.1111/j.1753-4887.2005.tb00152.x

Shu, Z., Liu, G., Xie, Q., & Ren, Z. (2017). A method of urine detection based on front vision and image recognition. Proceedings - 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2016, 402–405. Datong: Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CISP-BMEI.2016.7852744

Stachenfeld, N. S., Leone, C. A., Mitchell, E. S., Freese, E., & Harkness, L. (2018). Water intake reverses dehydration associated impaired executive function in healthy young women. Physiology and Behavior, 185(1), 103–111. https://doi.org/10.1016/j.physbeh.2017.12.028

Stookey, J. D. (2019). Analysis of 2009-2012 Nutrition Health and Examination Survey (NHANES) Data to Estimate the Median Water Intake Associated with Meeting Hydration Criteria for Individuals Aged 12-80 Years in the US Population. https://doi.org/10.3390/nu11030657