Phonon switching and combined Fano-Rice effect in optical spectra of bilayer graphene

E. Cappelluti, L. Benfatto, and A.B. Kuzmenko

1Istituto dei Sistemi Complessi, sezione Sapienza, CNR, via dei Taurini 19, 00185 Roma, Italy
2Dipartimento di Fisica, Università “La Sapienza”, P.le A. Moro 2, 00185 Rome, Italy
3DPMC, Université de Genève, 1211 Genève, Switzerland

(Dated: July 26, 2010)

Recent infrared measurements of phonon peaks in gated bilayer graphene reveal two striking signatures of electron-phonon interaction: an asymmetric Fano lineshape and a giant variation of the peak intensity as a function of the applied gate voltage. In this Letter we provide a unified theoretical framework which accounts for both these effects and unveils the occurrence of a switching mechanism between the symmetric (E_u) and anti-symmetric (E_g) phonon mode as dominant channel in the optical response. A complete phase diagram of the optical phonon response is also presented, as a function of both the charge density and the bandgap.

Single and multi-layer graphenes are among the most promising systems for the development of carbon-based devices in electronics. Bilayer graphene is of particular interest because a controlled tunable gap in the electronic spectrum can be there induced by applying one (or more) external gate voltages [1, 2], as observed by transport [3] and optical measurements [4, 5]. The potential interest in application has triggered also an intense research on the vibrational properties, that can be used for instance in application has triggered also an intense research on the vibrational properties, that can be used for instance in

In this Letter we provide a unified microscopic framework that allows us to elucidate the relative role of the E_u and E_g phonon modes in bilayer graphene, with regards to the infrared activity and the Fano asymmetry of the observed phonon peaks. We present a complete phase diagram for the strength of the phonon modes and their Fano properties as functions of the chemical potential and Δ, showing that a switching mechanism between the dominance of the E_u or E_g mode can be controlled by the external gate voltage. Our work permits thus reconciling within a unique approach the phonon-peak features observed by different experimental groups [15, 16].

To compute the conductivity of bilayer graphene we work in the 4×4 basis of the atomic orbitals $\Psi_k = (a_{1k}^\dagger b_{1k}^\dagger a_{2k}^\dagger b_{2k}^\dagger)$, where a_{1k}^\dagger and b_{1k}^\dagger operators create an electron in the layer i and on the sublattice A or B, respectively. In this basis, the Hamiltonian for bilayer graphene near the K point reads [17]: $H_k = \{ i \hbar v_k \cdot I(\sigma) + (<\Delta/2>) \sigma_x (\hat{I}) + (\gamma/2)[\sigma_x (\overline{\sigma}_x) + \sigma_y (\overline{\sigma}_y)]\}$, where σ_i and \hat{I} are 2×2 Pauli matrices and the unit matrix respectively, and $A(B) \equiv A \otimes B$. Here v is the Fermi velocity for single-layer graphene and γ is the interlayer hopping. The electrostatic potential difference Δ induces a gap in the diagonalized bands $\epsilon_{k,n}$, labeled according to Fig. 1a. We set the electric field of the infrared radiation along the x-axis, so that the electric current reads $j = \sum_k \psi_k^\dagger \chi_{\nu} \psi_k$, where $\chi_{\nu} = - e v \hat{I}(\sigma_x)$. The two E_u and E_g in-plane optical phonons have degenerate longitudinal and transverse polarization at zero momentum $q = 0$ [17]. We can write the electron-phonon interaction for these modes as: $H_{ep} = \sum_{\nu} V_{\nu} \phi_{\nu}$, where ϕ_{ν} is the dimensionless lattice displacement for the $\nu = A,S$ branch at $q = 0$, $V_{\nu} = \sum_k \psi_k^\dagger \chi_{\nu} \psi_k$ is the corresponding electron-phonon scattering operator. For a choice of the longitudinal polarization along x, one finds $\hat{V}_{\Lambda} = i g \sigma_z (\overline{\sigma}_y)$ and

Single and multi-layer graphenes are among the most promising systems for the development of carbon-based devices in electronics. Bilayer graphene is of particular interest because a controlled tunable gap in the electronic spectrum can be there induced by applying one (or more) external gate voltages [1, 2], as observed by transport [3] and optical measurements [4, 5]. The potential interest in application has triggered also an intense research on the vibrational properties, that can be used for instance in

In this Letter we provide a unified microscopic framework that allows us to elucidate the relative role of the E_u and E_g phonon modes in bilayer graphene, with regards to the infrared activity and the Fano asymmetry of the observed phonon peaks. We present a complete phase diagram for the strength of the phonon modes and their Fano properties as functions of the chemical potential and Δ, showing that a switching mechanism between the dominance of the E_u or E_g mode can be controlled by the external gate voltage. Our work permits thus reconciling within a unique approach the phonon-peak features observed by different experimental groups [15, 16].

To compute the conductivity of bilayer graphene we work in the 4×4 basis of the atomic orbitals $\Psi_k = (a_{1k}^\dagger b_{1k}^\dagger a_{2k}^\dagger b_{2k}^\dagger)$, where a_{1k}^\dagger and b_{1k}^\dagger operators create an electron in the layer i and on the sublattice A or B, respectively. In this basis, the Hamiltonian for bilayer graphene near the K point reads [17]: $H_k = \{ i \hbar v_k \cdot I(\sigma) + (<\Delta/2>) \sigma_x (\hat{I}) + (\gamma/2)[\sigma_x (\overline{\sigma}_x) + \sigma_y (\overline{\sigma}_y)]\}$, where σ_i and \hat{I} are 2×2 Pauli matrices and the unit matrix respectively, and $A(B) \equiv A \otimes B$. Here v is the Fermi velocity for single-layer graphene and γ is the interlayer hopping. The electrostatic potential difference Δ induces a gap in the diagonalized bands $\epsilon_{k,n}$, labeled according to Fig. 1a. We set the electric field of the infrared radiation along the x-axis, so that the electric current reads $j = \sum_k \psi_k^\dagger \chi_{\nu} \psi_k$, where $\chi_{\nu} = - e v \hat{I}(\sigma_x)$. The two E_u and E_g in-plane optical phonons have degenerate longitudinal and transverse polarization at zero momentum $q = 0$ [17]. We can write the electron-phonon interaction for these modes as: $H_{ep} = \sum_{\nu} V_{\nu} \phi_{\nu}$, where ϕ_{ν} is the dimensionless lattice displacement for the $\nu = A,S$ branch at $q = 0$, $V_{\nu} = \sum_k \psi_k^\dagger \chi_{\nu} \psi_k$ is the corresponding electron-phonon scattering operator. For a choice of the longitudinal polarization along x, one finds $\hat{V}_{\Lambda} = i g \sigma_z (\overline{\sigma}_y)$ and

Δ
\[\hat{V}_S = ig \hat{I} (\hat{\sigma}_y) \] where \(g \) is the electron-phonon coupling.

Let us consider first the case of ungapped bilayer graphene (\(\Delta = 0 \)), where only the A mode is optically active. Since graphene is a non-polar system, the bare dipole induced by the rigid shift of the valence charges upon the A lattice distortion is extremely small \[17 \]. Nevertheless, an optical phonon response can be still mediated by the conduction charges in the presence of the electron-phonon interaction, as suggested by M.J. Rice in the context of organic and fullerene compounds \[18 \]. The total optical conductivity of the system is computed as \(\sigma(\omega) = -\chi_{jj}(\omega)/\omega \), where \(\chi_{jj}(\omega) = -(\langle j | j \rangle)_\omega \) is the current-current response function. In the presence of electron-phonon interaction, one can identify two classes of contributions in \(\chi_{jj}(\omega) \), namely \(\chi_{jj}^{el}(\omega) = \chi_{jj}^{el}(\omega) + \chi_{jj}^{ph}(\omega) \). The former, depicted in Fig. 1a, describes electronic excitations (see, for example, Ref. [19]), while the latter contains all the diagrams which can be split in two by cutting one phonon propagator (Fig. 1b) \[18 \]. We can write thus

\[\chi_{jj}^{ph}(\omega) = \chi_{jA}(\omega) D_{AA}(\omega) \chi_{A^f j}, \] (1)

where \(\chi_{jA}(\omega) = -(\langle j | V_A \rangle)_\omega \), \(\chi_{A^f j}(\omega) = -(\langle V_A^j | j \rangle)_\omega \) are the mixed current-phonon response functions, and \(D_{AA}(\omega) = -(\phi_A \phi_A^*)/\omega \approx [\omega + \omega_A + i \Gamma_A/2]^{-1} \) is the phonon propagator with frequency \(\omega_A \) and linewidth \(\Gamma_A \) renormalized by the phonon self-energy \(\chi_{jA}^{AA} \) (Fig. 1c). It should be emphasized that two different response functions, \(\chi_{jj}^{el} \) and \(\chi_{jA} \), enter in the above decomposition of \(\sigma(\omega) \). This distinction, that has been neglected in the original formulation \[18 \], is however crucial, because it implies that the allowed particle-hole excitations of the system will contribute in a different way to the electronic optical background, related to \(\chi_{jj}^{el} \), to the phonon renormalization, controlled by \(\chi_{jA}^{AA} \), or to the electron-phonon optical response, controlled by \(\chi_{jA} \).

Eq. (1) leads to the onset, in the real part of the optical conductivity \(\sigma'_{ep}(\omega) = -\text{Im} \chi_{jj}^{ep}(\omega)/\omega \), of a phonon peak at \(\omega_A \). Indeed, using the relation \(\chi_{A^f j}(\omega) = \chi_{jA}(\omega) \), and taking the real and imaginary part of each element in Eq. (1), we get

\[\sigma'_{ep}(\omega)|_{\omega=\omega_A} \approx \frac{2}{\omega_A \Gamma_A} \left[\frac{q_A^2 - 1 + 2q_A z}{q_A^2 (1 + z^2)} \right], \] (2)

where \(z = 2[\omega - \omega_A]/\Gamma_A \) and where

\[q_A = \frac{-\chi_{jA}(\omega_A)}{\chi_{jA}(\omega_A)}. \] (3)

Eq. (2) has exactly the same structure as the Fano formula \[20 \]. The derivation of Eqs. (2)-(3) shows not only that in bilayer graphene the Fano effect originates from a correct implementation of the charged-phonon Rice theory, but it provides a compelling procedure to evaluate on microscopic grounds the shape and the intensity of the phonon peak. For instance from Eqs. (2)-(3) we can identify the \(\omega \)-integrated peak area as \(W_A = \pi \chi_{jA}(\omega_A)^2 / \omega_A \), which coincides with \(W_A \) in the limit \(|q_A| \to \infty \), when Eq. (2) reduces to a conventional Lorentzian peak with weight \(W_A \). Note however that in the opposite case \(|q_A| \approx 1 \) one recovers from Eqs. (2)-(3) a completely negative Lorentzian peak, of intensity \(-\pi \chi_{jA}(\omega_A)^2 / \omega_A \), so that the definition of ‘intensity’ of the phonon peak can be ambiguous in the presence of the Fano effect. A more convenient quantity to parameterize the strength of the phonon peak is \(I_A = \pi \chi_{jA}(\omega_A)^2 / \omega_A = W_A (1 + 1/q_A^2) \), which is always positive and vanishes when the phonon peak is completely absent.

Eqs. (2)-(3) can be computed analytically by using the non-interacting electron Green’s functions. The quantity \(\chi_{jA} \) has the typical structure of a particle-hole Lindhard response function, with proper coherence factors \(C_{nm}^{AA} \), weighting the contributions of the various excitations between the \(n \) and \(m \) bands. In particular, using the explicit matrix expressions of the \(j \) and \(V_A \) operators, one gets

\[\chi_{jA}(\omega) = \chi_{jA}^{12}(\omega) + \chi_{jA}^{13}(\omega) - 2 \chi_{jA}^{14}(\omega) - \chi_{jA}^{34}(\omega), \] (4)

where \(\chi_{jA}^{nm}(\omega) = \chi_{jA}^{nm}(\omega) - \chi_{jA}^{mn}(\omega) \), and

\[\chi_{jA}^{nm}(\omega) = \chi_{jA}^{nm}(\omega) = \sum_k C_{nm}^{AA} \left[f(\epsilon_{k,m} - \mu) - f(\epsilon_{k,m} - \mu) \right] \epsilon_{k,m} - \epsilon_{k,m} + h\omega + i\eta. \] (5)

Here \(f(x) = 1/[\exp(x/T) + 1] \) is the Fermi function, \(C_{nm}^{AA} = (\text{gg} N_s N_v) \gamma / \sqrt{4\pi \hbar v r} \) for \(n, m \) as in Eq. (4) and zero otherwise, \(\mu \) is the chemical potential, \(N_s = N_v = 2 \) are the spin and valley degeneracies, and the \(\eta \) factor takes into account broadening effects due to impurities and inhomogeneities. In the clean limit, \(\eta \to 0 \), we obtain the analytical expressions valid for \(T = 0 \) and

![FIG. 2: (Color online) \(W_A, W'_A \) intensities of the \(E_u \) mode as a function of the charge concentration \(n \) for \(\Delta = 0 \) and \(\eta = 0.3 \) meV. Also shown are experimental data from Ref. [15] for the bare intensity \(W'_{\text{exp}} \) and the \(\omega \)-integrated one \(W_{\text{exp}} \).](image-url)
$|\mu| < \gamma$:

$$\chi_{jA}^{\mu}(\omega) = A \left\{ \ln \left[\frac{(1 + u)(1 - u + 2w)}{(1 - u)(1 + u + 2w)} \right] + \frac{4uw}{(1 - u^2)} \right\}$$

(6)

where $A = |e\gamma/4\pi \hbar v|$, $u = \hbar w/\gamma$ and $w = |\mu|/\gamma$. Similar analytical expressions can be obtained for $\mu > \gamma$.

To compute the optical conductivity [2] we evaluate the complex function $\chi_{jA}(\omega)$ at the phonon resonance $\omega_A \approx 0.2$ eV, using standard values for $\hbar v = 6.74$ eVÅ and $\gamma = 0.39$ eV. From the value $\lambda = 6.4$ eV Å$^{-1}$ [21] of the deformation potential we get $g = 0.27$ eV, corresponding to the dimensionless parameter $\lambda = (\sqrt{3}/\pi)g^2/(\hbar v/\alpha)^2 = 6 \times 10^{-3}$ [17], in agreement with the experimental estimates given in Refs. [13, 15]. The resulting spectral weight W_A as evaluated from Eq. (2) and Eqs. (4) - (6) is shown in Fig. 2 for $\eta = 0$ and $\eta = 30$ meV, along with the experimental data W_{\exp}, W_{\exp}' taken from Ref. [15]. Note that the only possible electron-hole excitations at the phonon energy $\omega_A (< \gamma)$, namely the 2-3 multiband transitions, are not allowed in Eq. (4). Thus in the clean limit $\chi_{jA}^{\mu}(\omega_A) \approx 0$, so that no Fano effect ($\eta_A = -\infty$) is found and $W_A = W_A$, while for $\eta \neq 0$ a small contribution to $\chi_{jA}^{\mu}(\omega_A)$ from the other interband transitions gives rise to a weak Fano asymmetry, and hence $W_A \leq W_A$, as shown in Fig. 2. Both the magnitude of W_A, which is proportional to the dimensionless coupling λ, and its doping dependence are in excellent agreement with W_{\exp}, pointing out that the E_u mode is the main responsible for the phonon infrared intensity reported in Ref. [15] at large n. On the other hand, even in the presence of a large η, the above calculations do not account for the negative integrated weight W_A'' observed around $n \approx 0$ (Fig. 2), which has been attributed in Ref. [16] to the onset of the E_g mode in the presence of a finite potential asymmetry Δ. These observations suggest thus that different phonon modes can be optically relevant in different regions of the phase space.

Our theoretical framework allows us to investigate the possibility of such phonon switching by taking into account explicitly the role of Δ. When $\Delta \neq 0$ two effects must be taken into account: (i) the phonon eigenmodes of the systems do not correspond any more to E_u and E_g, even though the new phonon eigenfrequencies ω_{\pm} follow closely the doping dependence of the ω_A of the uncoupled modes [22, 23]. As a consequence the phonon propagator D^{AA} can develop at large Δ a second peak with weaker intensity at approximately the frequency ω_S of the E_g mode. Note however that according to Eq. (1) the infrared activity of the D_{AA} phonon propagator is still ruled by the strength p_A. Since, as we shall see below, p_A vanishes for $n \rightarrow 0$ also when $\Delta \neq 0$, the appearance of the IR phonon structures at $n \approx 0$ cannot be accounted for by the mixing of the modes; (ii) in addition to the previous effect, the presence of a finite Δ leads also to a finite mixed response function $\chi_{jS}(\omega) = -<\psi_S|\omega > \neq 0$. Eq. (1) must be thus generalized as:

$$\chi_{jS}^{\eta'}(\omega) = \chi_{jA}^{\eta'}(\omega)D^{AA}(\omega)\chi_{A}^{\eta'}(\omega)$$

$$\chi_{jS}(\omega) = -<\chi_{jS}|\omega > D^{SS}(\omega)\chi_{S}^{\eta'}(\omega)$$

$$+ [\chi_{jA}(\omega)D^{AS}(\omega)\chi_{S}^{\eta'}(\omega) + h.c.]$$

(8)

where $\chi_{S}^{\eta'}(\omega) = \chi_{S}(\omega)$, and $D^{\nu \nu'}(\omega) = -<\phi_\nu|\phi_{\nu'}>\omega$ are the phonon propagators, calculated including the hybridized phonon self-energy χ_{S} for finite Δ [22, 23]. Eq. (8) shows how, due to the χ_{jS} response triggered by the finite Δ, a direct coupling channel to the symmetric E_g mode vibrations (the D_{SS} phonon propagator) appears in the optical spectroscopy. Similar expressions as Eqs. (4) - (5) can be derived for χ_{jS}, where however the coefficients $C^{nm}_{S:k}$, as well as $C^{nm}_{jA:k}$, have a more complex structure for $\Delta \neq 0$.

To elucidate the competition between the different optical channels in Eq. (8) we compute explicitly χ_{jA} and χ_{jS} for generic Δ and μ, giving a complete phase diagram that can be explored in double-gated samples. To parameterize the strengths of the relative channels we use the quantities $p_\nu = \pi|\chi_{j\nu}|^2/\omega_{\nu}$ for $\nu = A, S$ and $p_{AS} = \pi|\chi_{jA}\chi_{jS}|/\omega_{AS}$ for the mixed channel, where ω_{AS} is the average frequency of the two poles of the phonon propagators [22, 23]. For a direct comparison with experimental data, we set $T = 10$ K and $\eta = 30$ meV, which is halfway between $\eta = 18$ meV reported in Ref. [7] and $\eta = 40$ meV in Ref. [16]. The results for the phonon strengths and Fano factors are plotted as a color-map in the Δ-μ space in Fig. 5 and Fig. 6 where also the Δ-μ location of the available IR data [15, 16] are shown. Fig. 5a,b shows that the main parameter tuning the strength of the E_u mode is the charge doping whereas the E_g mode is active mainly around the neutrality point, with a strength that is tuned by the asymmetry gap Δ. The strength of the mixed optical structure [third line in Eq. (8)], shown in Fig. 5c, satisfies $p_{AS} \propto p_A, p_S$ in a large part of the phase diagram so that only the A and S channels [first two lines in Eq. (8)] are active. The relative intensity $R_{AS} = (p_A - p_S)/(p_A + p_S)$ is summarized in Fig. 6 where $R_{AS} \approx 1$ corresponds a dominant E_u mode, while $R_{AS} \approx -1$ gives a dominant E_g resonance. Note that the region $R_{AS} \approx 0$ where the two strengths of the optical structures have similar magnitude is quite narrow and difficult to resolve experimentally. In Fig. 3c,f we plot also the relative Fano factor q_ν for the A and S modes. As one can see, q_ν is essentially doping independent while q_ν shows a sizeable dependence as function of μ. These behaviors can be understood considering that the structure of Eq. (4) for χ_{jA} is still valid for $\Delta \neq 0$, so that the low-energy $2 - 3$ interband transitions are missing and the weak Fano asymmetry of the A mode is only due to a finite broadening due to η on the remaining transitions. On the contrary all the interband
Fig. 3g-h we show the optical conductivity and plot the spectra for $\mu = 0$, showing the evolution of the optical intensity and of the Fano asymmetry for increasing Δ. These features are related uniquely to the E_g S mode consistently with panels (a) and (b). On the contrary the spectra in Fig. 3i, evaluated at the doping levels and electrostatic potentials of Ref. 13, are expected to show a continuous switching between the A and S modes, depending on the values of μ and Δ. To investigate deeper this issue, we plot in Fig. 3j the theoretical spectral weights W^\prime_ν for both the E_u and E_g modes evaluated on the set of experimental data $\Delta-\mu$ of Refs. 13. The size of the symbols is proportional to the peak strength p_ν. The switch between the E_u phonon peak and the E_u one in the regime $n \in [-1 : 3] \times 10^{12}$ cm$^{-2}$ is evident and is reflected in a total spectral weight $W^\prime_\nu = W^\prime_A + W^\prime_S$ which becomes negative in such n-region, in good agreement with the experimental ω-integrated weight W^\prime_{exp}. A similar phonon switch is also evident from the analysis of the Fano asymmetry, reported in Fig. 3k. Also here one can distinguish the crossover between a constant q behavior at large n, which we can attribute to the E_u mode, and a drop of $|q|$ at small n in the region where the E_g mode becomes dominant. The experimental fit, done with a single mode Fano formula, presents a similar trend.

We stress that the switching between the E_u and E_g modes in the optical conductivity discussed here is not related to the possible appearance at large Δ of a double-peak structure in each of the D_{AA} or D_{SS} propagators 13, 14, 22, 23. Even though the two effects could be present simultaneously at large gap values, the optical data available so far are outside the region where the two peaks can be resolved.

In conclusion, in this paper we presented a complete theoretical description of the phonon resonance in bilayer graphene, that accounts for both the intensity and the Fano-asymmetry variations as functions of the density and the gap. We also showed that an optical switching from E_u to E_g can be induced in a controlled way, providing a full understanding of the experimental data.

The derived phase diagram for the optical properties offers a roadmap for the characterization of graphenic systems. For instance the measurement of the IR intensity of the phonon peak can provide a useful tool to determine the doping level in contact-free samples.

We thanks A.V. Balatsky, F. Bernardini, F. Mauri and P. Postorino for enlightening discussions. This work was supported by the Swiss National Science Foundation (SNSF) by the grant 200021-120347 and under MaNEP, and by Italian MIUR project PRIN 2007FW3MJX.

We refer the readers to the full text for the detailed derivations and discussions. The key points to note are:

- The comparison of the present results with the $\Delta-\mu$ location of the experimental available data provides an important route to check our theoretical predictions. In Fig. 3g-h we show the optical conductivity $\sigma_{ep}^\prime(\omega)$ using Eq. 8 for the μ, Δ values corresponding to the experimental data of Refs. 13, 10. The phonon propagators $D_{\nu'}$ are computed taking account the self-energy hybridization due to $\Delta \neq 0$ 22, 23, and convoluted with the experimental resolution of 10 cm$^{-1}$. 15. In Fig. 3g, we...
[3] J.B. Oostinga et al., Nat. Mat. 7, 151 (2008).
[4] Y. Zhang et al., Nature 459, 820 (2009).
[5] K.F. Mak et al., Phys. Rev. Lett. 102, 256405 (2009).
[6] A.B. Kuzmenko et al., Phys. Rev. B 79, 115411 (2009).
[7] A.B. Kuzmenko et al., Phys. Rev. B 80, 165406 (2009).
[8] C. Stampfer et al., Appl. Phys. Lett. 91, 241907 (2007).
[9] A.C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006).
[10] J. Yan et al., Phys. Rev. Lett. 98, 166802 (2007).
[11] S. Pisana et al., Nat. Mat. 6, 198 (2007).
[12] J. Yan et al., Phys. Rev. Lett. 101, 136804 (2008).
[13] L.M. Malard et al., Phys. Rev. Lett. 101, 257401 (2008).
[14] J. Yan et al., Phys. Rev. B 80, 241417(R) (2009).
[15] A.B. Kuzmenko et al., Phys. Rev. Lett. 103, 116804 (2009).
[16] T.-Ta Tang et al., Nature Nanotech. 5, 32 (2010).
[17] T. Ando, J. Phys. Soc. Japan 76, 104711 (2007).
[18] M.J. Rice, Phys. Rev. B 37, 36 (1976); M.J. Rice and H.-Y. Choi, Phys. Rev. B 45, 10173 (1992).
[19] E.J. Nicol and J.P. Carbotte, Phys. Rev. B 77, 155409 (2008).
[20] U. Fano, Phys. Rev. 124, 1866 (1961).
[21] A.H. Castro Neto and F. Guinea, Phys. Rev. B 75, 045404 (2007).
[22] T. Ando and M. Koshino, J. Phys. Soc. Jpn 78, 034709 (2009).
[23] P. Gava et al., Phys. Rev. B 80, 155422 (2009).