Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants

Woo-Suk Jung 1, Ill-Min Chung 1, Myeong Ha Hwang 2, Seung-Hyun Kim 1, Chang Yeon Yu 2 and Bimal Kumar Ghimire 1,*

1 Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; jungw@konkuk.ac.kr (W.-S.J.); imcim@konkuk.ac.kr (I.-M.C.); kshkim@konkuk.ac.kr (S.-H.K.)
2 Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; mwung.ha5471@daum.net (M.H.H.); cyyu@kangwon.ac.kr (C.Y.Y.)
* Correspondence: bimal.g12@yahoo.com

Abstract: Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.

Keywords: light emitting diodes; anthocyanins; antioxidant enzymes; organogenesis; phenolic acid; carotenoid; tocopherol

1. Introduction

Among the different environmental factors, light is the most important factor that affects plant gene expression, enzyme activity, growth, development, and nutritional composition [1–3]. Recent studies have reported the effects of light quality (spectral specificity) on phytochemical accumulation in plants [4–9]. Several studies on light-emitting diodes (LEDs) have reported improvement in the nutritional quality of plants grown under LED irradiation. For example, increased accumulation of primary secondary metabolites, starch, simple sugars, proteins, vitamin C, and phenolic compounds including anthocyanins has been observed in plants grown under LED irradiation [10–12]. Recently, LEDs have been increasingly applied in agro-farming and in vitro culture owing to their advantages over conventional light sources. For example, LEDs are more energy-efficient, have a longer life span, and exhibit higher spectral specificity than standard lamps (fluorescent [FL] lamps) [13]. Moreover, the application of monochromatic light is important in research centers [14]. FL light encompasses a wide range of wavelengths (350–750 nm) and is suitable
as a light source for several plant species; however, it has certain disadvantages, including higher electricity consumption, more heat emission, and greater variation in radiation wavelengths than LEDs [15]. Comparatively, LEDs demonstrate lower heat emission and higher energy conversion efficiency than other conventional artificial light sources [13,16]. Another desirable characteristic of LEDs over other light systems is that they can be positioned close to plants and controlled to emit specific wavelengths [13]. Thus, the beneficial aspects of LEDs over FL lamps have recently led to their wide application in the field of agriculture for post-harvest uses, preservation, disease resistance, and development of in vitro culture systems [17].

Light is a primary factor that affects plant development, physiology, and cellular differentiation [18]. Environmental factors, including light spectrum types, are important signaling components of plant physiology and metabolite synthesis [19,20]. Photoreceptors present in plants and matching spectral attributes are the main factors that regulate plant morphogenesis and metabolite synthesis [21]. The application of artificial light in different plant species has been investigated in several previous studies to determine its effects on the stimulation of plant metabolite production and photosynthesis [22]. LED irradiation has been found to be effective in stimulating plant metabolite production after harvest and during development [23]. Previous studies have demonstrated the effective use of LEDs in in vitro growth and organogenesis of plants, including banana [24], strawberry [25], chrysanthemum [26], and potato [27].

Plants perceive light through photoreceptors, such as red light-sensitive phytochromes, blue light-sensitive phototropins, and cryptochromes, which regulate several specific physiological responses, including organogenesis and metabolite synthesis [28,29]. The success of in vitro plant regeneration and metabolite synthesis relies greatly on the spectral quality of light and photon efficiency of the light source [21]. According to Samuoliene et al. [5], a considerable challenge associated with tissue culture is to provide high quality light of controlled intensities in sufficient quantity for plant development. Numerous studies have reported the successful application of LEDs in in vitro shoot organogenesis and plant growth. For example, significantly improved biomass yield, increased shoot regeneration, and improved adaptability and survival rate of regenerated plants have been reported [30–33]. Improved secondary metabolite accumulation and in vitro root growth have been reported by Xu et al. [34] in Cunninghamia lanceolata and Nadeem et al. [35] in Ocimum basilicum under LED irradiation. Plant growth, development, and metabolite production are strongly affected by the light spectrum of the LEDs. A previous study suggested that the blue light spectrum was involved in morphogenesis, phototropism, the leaf photosynthetic process, and stomatal opening [36]. Red LEDs emit a spectrum very close to the maximum absorbance for both chlorophyll and phytochromes. The effects of light spectra on plant physiology vary among species, thereby causing significant variation in biomass yield and plant production.

The present review highlights the variation in in vitro organogenesis and somatic embryogenesis among different plant species grown under LED irradiation. Additionally, this review elucidates the effects of LED irradiation on secondary metabolite accumulation and antioxidant properties of plants. Finally, the effects of LED irradiation on the expression of genes related to the production of phenolic acids, flavonoids, carotenoids, and chlorophyll have been discussed.

2. Results
2.1. Effects of LED Irradiation on Antioxidant Enzymes

Light is an important factor that affects several biochemical pathways in plants during their growth and development. Antioxidant compounds, such as phenolic acids, vitamins, anthocyanins, carotenoids, and α-tocopherol, are widely affected by the duration of light exposure and spectral wavelength of light sources [37–39]. Spectral quality affects the antioxidant enzyme activity and antioxidant properties of plants. Finally, the effects of LED irradiation on the expression of genes related to the production of phenolic acids, flavonoids, carotenoids, and chlorophyll have been discussed.
combination of red and blue light at a ratio of 1:1 enhanced the activity of antioxidant enzymes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), in *Carpesium triste* Maxim [42]. Increase in the activity of antioxidant enzymes, such as CAT, was found to be related to the delay in the onset of leaf senescence in *C. triste* [42], wheat [43], pea [44], and banana [45] (Table 1). Numerous previous studies have shown the differential responses of antioxidant enzymes in plants grown in vitro under different light conditions. For instance, callus cultures of *Cynoglossum officinale* grown under dark conditions showed increased CAT activity, whereas those grown under blue and white light conditions showed reduced CAT activity [46]. According to Causin et al. [43], blue light plays an important role in preventing cell senescence and decreasing cellular oxidative damage by enhancing CAT activity in wheat plants. In another study, blue light strongly activated catalase isozyme 1 (CAT-1) in rye plants [47]. CAT-1 is known to eliminate photorespiratory H$_2$O$_2$ [47], indicating its positive association with plant antioxidant defense mechanisms. Differential effects of LED irradiation on in vitro shoot organogenesis and antioxidant enzyme activities and variations in reactive oxygen species (ROS) levels have been reported in different plant species [48]. A significant decrease in SOD activity has been observed during the initial stage of organogenesis in *Curculigo orchioides* grown under combined red and blue LED irradiation [49]. The highest SOD activity was observed after two weeks of red LED irradiation. Moreover, Franck et al. [50] demonstrated a close association between shoot bud formation and enhanced SOD activity during in vitro organogenesis of *Prunus avium* and strawberries grown under blue LED irradiation. In similar studies, enhanced SOD and CAT activities were observed during adventitious shoot formation in *Gladiolus hybridus* [51] and *Albizia adorratissima* [52] grown under blue LED irradiation. It has been reported that CAT plays an important role in shoot organogenesis, and enhanced CAT activity is associated with increased adventitious shoot formation in plants [52]. High CAT activity during shoot initiation is associated with H$_2$O$_2$ dismutation [53]. Additionally, Causin et al. [43] observed increased CAT activity and reduced cell senescence in wheat plants exposed to blue light.

**Table 1.** Effect of light emitting diodes on secondary metabolites compositions and biological activity.

| Plant Species | Type of LED | Secondary Metabolites/Enzyme/Gene | Biological Activity | References |
|---------------|-------------|----------------------------------|---------------------|------------|
| *Lactuca sativa* var. crispa “Green Oak Leaf” | Blue LED | Carotenoid and chlorophylls | Bioactive compound production | Chen et al. [8] |
| *Lactuca sativa* L. cv. Butterhead | Red, Blue and Green (4:1:1) LED | LHCB, PsbA | Gene expression | Bian et al. [54] |
| *Perilla frutescens* var. crispa | Red LED | Rosmarinic acid, caffeic acid | Bioactive compound production, biomass increase | Nguyen and Oh [55] |
| *Lactuca sativa* L. cv. Banchu Red Fire | Blue LED | Polyphenol and carotenoid | Bioactive compound production, | Johkan et al. [56] |
| *Pisum sativum* L. | Blue LED | Chlorogenic acid | Antioxidation | Liu et al. [57] |
| *Lactuca sativa* L. var Lollo rosso | Red and Blue(1:5) LED | Chlorogenic acid | Bioactive compound production | Azad et al. [58] |
| *Abelmoschus esculentus* L. | Blue LED | PAL | Gene expression | Wilawan et al. [59] |
| *Brassica alboglabra* Bailey. cv. Lvbao | Red and Blue (2:1) LED | Amino acids | Bioactive compound production | Zhang et al. [56] |
| *Pachyrhizus erosus* L. | Blue LED | l-phenylalanine | Antioxidation | Chung et al. [4] |
| *Anoectochilus roxburghii* | Red and Blue(8:2) LED | PAL, CHS, CHI, and FLS, | Gene expression | Gam et al. [60] |
| *Brassica juncea* | Blue LED | 4-hydroxybenzoic acid | Bioactive compound production | Park et al. [61] |
| Plant Species                          | Type of LED | Secondary Metabolites/Enzyme/Gene                  | Biological Activity                                      | References         |
|----------------------------------------|-------------|--------------------------------------------------|----------------------------------------------------------|--------------------|
| Camellia sinensis (L.) O. Kuntze 'Zhonghuang 3' | Blue LED    | Anthocyanins, catechins, CRY2/3, SPA, HY5       | Bioactive compound production, gene expression           | Zheng et al. [62]  |
| Coriandrum sativum L.                  | Red, Blue and Far red (81.5:12.5:6) LED | Ascorbic acid | Biomass increase, Bioactive compound production | Nguyen et al. [55]  |
| Stevia rebaudiana                      | Red:Far red: Blue (5.6:1), LED | UGT85C2 | Gene expression | Yoneda et al. [63]  |
| Pervoskia atriplicifolia               | Blue LED    | 5-3-Carene | Bioactive compound production | Ghaffari et al. [64] |
| Momordica charantia                    | Red LED     | Charantin, AACT, MVD, IDI, FPS1, FPS2, CAS2 | Bioactive compound production, gene expression | Cuong et al. [65]  |
| Brassica napus sprouts                  | Blue LED    | Caffeic acid | Bioactive compound production | Park et al. [66]  |
| Lactuca sativa L.                      | Red and Blue (1:3) LED | Ascorbate, GMP, GME, GGP, GGLI | Bioactive compound production, gene expression | Zha et al. [67]  |
| Fagopyrum esculentum                   | Blue LED    | Rutin, orientin | Antioxidation | Nam et al. [68]  |
| Hypericum perforatum                   | Red LED     | Hypericin | Bioactive compound production | Sobhani Najafabadi et al. [69] |
| Orgya sativa cv. Dongjin               | Red LED     | PPO1 | Gene expression | Tran and Jung [70]  |
| Cordyceps militaris                    | Red and Blue (1:1) LED | Cordycepin | Bioactive compound production | Chiang et al. [71]  |
| Agastache rugosa                       | White LED   | Rosmarinic acid, C4H, TAT, CHI | Bioactive compound production | Hosseini et al. [73] |
| Ocimum basilicum purple varieties 'Ardestan' | Red LED | α-pinene | Bioactive compound production | Park et al. [72]  |
| Artemisia annua L.                     | Blue LED    | ADS, artemisinin | Bioactive compound production, gene expression | Lopes et al. [74]  |
| Lactuca sativa ‘Sunmang’               | Red, Blue and Far red (2:8:1.4) LED | Chlorogenic acid | Antioxidation | Lee et al. [75]  |
| Mesembryanthemum crystallinum L.       | Red and Blue (1:9) LED | Myo-inositol, pinitol | Bioactive compound production | Kim et al. [76]  |
| Polygonum tinctorium cv. senbon        | Blue LED    | IGS, BGL | Gene expression | Nakai et al. [77]  |
| Paecilomyces japonica                  | Red:Blue (3:7) LED | Cordycepin | Bioactive compound production | Ha et al. [78]  |
| Carpesium triste Maxim                 | Red and Blue (1:1) LED | CAT, POD, SOD and APX | Enzyme activity | Zhao et al. [42]  |
| Cnidium officinale                     | Blue and White LED | CAT | Enzyme activity | Adila et al. [46]  |
| Wheat                                  | Blue-light  | CAT | Enzyme activity | Causin et al. [43] |
| Rye                                    | Blue-light  | CAT | Enzyme activity | Schmidt et al. [47] |
| Prunus avium, Strawberry               | Blue-LED    | SOD | Enzyme activity | Franck et al. [50], Tian et al. [79] |
| Gladiolus hybridus                     | Blue LED    | SOD and CAT | Enzyme activity | Gupta Dutta and Datta [80], Rajeswari and Paliwal [52] |
| Albizia adoratissima                   | Blue LED    | SOD and CAT | Enzyme activity | Koga et al. [81]  |
| Barley                                 | Red-LED     | γ-tocopherol | Bioactive compound production | Kokaji et al. [82]  |
| Apple                                  | Yellow-LED  | Tocopherol | Bioactive compound production |                      |
| Plant Species               | Type of LED | Secondary Metabolites/Enzyme/Gene | Biological Activity                      | References                        |
|----------------------------|-------------|-----------------------------------|----------------------------------------|-----------------------------------|
| Basil                      | Red-LED     | α-tocopherol                       | Bioactive compound production          | Samuoliene et al. [53]            |
| Beet and parsley           | Blue-LED    | Tocopherol                         | Bioactive compound production          | Samuoliene et al. [83]            |
| Pea                        | Red-LED     | b-cryptoxanthin                    | Bioactive compound production          | Wu et al. [84]                    |
| Citrus fruit               | Red-LED     | b-cryptoxanthin                    | Bioactive compound production          | Ma et al. [85]                    |
| Tomato                     | Red-LED     | Lycopene                           | Bioactive compound production          | Liu et al. [86]                   |
| Buckwheat                  | White-LED   | Carotenoid                         | Bioactive compound production          | Tuan et al. [87]                  |
| Citrus                     | Blue-LED    | CitPSY, CitZDS, CitPDS, CitLCY    | Gene expression                        | Zhang et al. [88]                 |
| Broccoli                   | Short duration of Blue-LED | BC and VIO | Bioactive compound production          | Kopsell and Sams [89]             |
| Grape                      | Blue-LED    | Anthocyanin                        | Bioactive compound production          | Rodyoung et al. [90]              |
| Buckwheat                  | Blue-LED    | Anthocyanin                        | Bioactive compound production          | Thwe et al. [91]                  |
| Wheat sprout               | Blue-LED    | p-coumaric acid, epicatechin       | Bioactive compound production          | Cuong et al. [49],                |
| Lettuce                    | Red-LED     | Anthocyanin                        | Bioactive compound production          | Li and Kubota [92];               |
| Mustard                    | Red-LED     | Anthocyanin                        | Bioactive compound production          | Stutte et al. [93]                |
| Cabbage                    | Red-LED     | Anthocyanin                        | Bioactive compound production          | Brazaityte et al. [94]            |
| Apples                     | Red-LED     | Anthocyanin                        | Bioactive compound production          | Qian et al. [95]                  |
| Grape                      | Blue LED and Red LED | MYB transcription factor genes, V1MYBA1-2, V1MYBA2 and VvUFGT increased | Gene expression                      | Koes et al. [97]                  |
| Grape                      | Blue-LED    | V1MYBA1-2, V1MYBA2 and VvUFGT increased | Bioactive compound production | Rodyoung et al. [90]              |
| Basil                      | RED-LED     | TPC                                | Bioactive compound production          | Samuoliene et al. [53]            |
| Chinese kale sprouts       | Blue-LED    | TPC                                | Bioactive compound production          | Qian et al. [95]                  |
| Chinese cabbage and lettuce| Blue-LED and Red LED | TPC | Bioactive compound production          | Li et al. [98]                    |
| *Pachyrhizus erosus*       | RED-LED     | Malonyldaidzin, malonaldehyde, salicylic acid, p-hydrobenzoic acid, gentisic acid, p-coumaric acid, gallic acid, ferulic acid, hydroxycinnamic acid, p-coumaric acid, gentisic acid | Bioactive compound production | Chung et al. [4]                  |
| Wheat sprout               | Blue-LED    | TaPAL1,2, TaC4H, TaHCL, TaCHS and TaF3H genes (kaempferol, isoorientin and quercetin) | Bioactive compound production | Park et al. [99]                  |
| Wheat sprout               | Blue-LED    | TaPAL1,2, TaC4H, TaHCL, TaCHS and TaF3H genes (kaempferol, isoorientin and quercetin) | Gene expression | Cuong et al. [49]                  |
| *Cyclocarya paliurus*      | Blue-LED    | Phenylalanine ammonia lyase, PAL, 4-coumaroyl CoA-ligase, 4CL and chalcone synthase, CHS | Bioactive compound production | Liu et al. [100]                  |
2.2. Effects of LED Irradiation on In Vitro Organogenesis

LEDs have drawn considerable attention as suitable alternative light sources for the in vitro propagation, mass propagation, shoot regeneration, and root culture of various plant species. Due to technological advancement and flexibility of LED spectral wavelength, LEDs have been successfully applied for in vitro organogenesis of plant species (Table 2). Several studies have reported the effects of LED irradiation on the carbohydrate metabolism and micropropagation of plant species [101–103]. Many previous studies have demonstrated the varying in vitro shoot and root organogenesis-promoting effects of irradiation with LED combinations, depending on the various plant parts and species [104–106]. Blue and red LED irradiation was found to stimulate shoot organogenesis in potato [104] and vanilla [107] and enhance bulb organogenesis in Lilium [108]. Increased shoot regeneration was observed in A. distichum irradiated with combined red and blue LEDs [109]. Other studies demonstrated the stimulatory role of monochromatic blue or red LED irradiation in shoot organogenesis [1,110,111]. Increased shoot elongation was observed in Oncidium [112] and blueberries [113,114] irradiated with red LED. In a similar study, shoot elongation was increased in sugarcane irradiated with blue and red LED combinations [110].

In several studies, LED irradiation of in vitro plants increased their biomass. For example, irradiation with blue and red LED combinations resulted in enhanced biomass during the in vitro culture of Achillea millefolium [115], Densirubium [1], blueberries [114], sugarcane [110,116], and chrysanthemum [26]. In addition to biomass, chlorophyll content was increased in different plant species cultured under LED irradiation [24,42,117–119]. In similar studies, increased total carotenoid level was reported in shoot cultures irradiated with different LEDs [19–21]. Tu et al. [120] observed elevated expression of carotenoid biosynthesis-associated PSY, ZDS, CHXB, and ZEP genes. LED irradiation of various cultured plants also increased in vitro adventitious root induction. For example, the adventitious root-promoting effects of LED irradiation were observed in strawberries [122], chrysanthemum [123], chestnuts [124], Oncidium [113], and C. lanceolata [34]. The effects of spectral differences in light quality on somatic embryo formation have been reported in Peucedanum japonium [125], Coffea canephora [126], Pinus densiflora [127], Pinus taeda, and Pinus elliottii [128]. However, somatic embryo formation and germination were observed on irradiation with different combinations and quantities of LEDs. Jung et al. [129] observed an increase in the polyphenol content of rice seedlings grown in vitro under irradiation with different LED combinations.

In several instances, increased bioactive compound production observed in plant species grown in vitro could be maintained under irradiation with different LEDs [35,46,130–134]. Additionally, increased total phenol and total flavonoid contents were observed in different plants irradiated with different LEDs [1,35,42,119,135]. Recently, increased phytochemical levels have been recorded in important crops and medicinal plants. For example, ascorbic and dehydroascorbic acids were observed in Lycopersicon esculentum cv. ‘House Momotaro’ & ‘Mini Carol’ [136], and myrcene and limonene were observed in Lippia rotundifolia Cham maintained under blue LED irradiation [137]. Irradiation with red and blue LED combinations enhanced phytochemical levels in Bacopa monnieri L. [138] and Plectranthus amboinicus (Lour.) Spreng [139]. Increased antioxidant activity was significantly correlated with enhanced phytochemical concentration in LED-irradiated plants. Moreover, a substantial increase in antioxidant enzymatic activity was observed in plants grown in vitro under irradiation with various LEDs. For instance, Gupta and Sahoo [80] observed an increase in APX activity in C. orchioides cultured under red LED irradiation. Similarly, enhanced POD activity was observed in C. orchioides irradiated with blue LEDs [80]. Additionally, changes in the antioxidant enzyme activity and polyphenol concentration were observed in LED-irradiated plants cultured in vitro [106,140,141], indicating a close association between LED irradiation and plant phytochemical composition and antioxidant activities.
Table 2. Effect of light emitting diodes on in vitro plant propagation.

| Plant Species                  | Type of LED               | Metabolites/Enzyme/Gene                          | Biological Activity                          | References               |
|--------------------------------|---------------------------|-------------------------------------------------|----------------------------------------------|--------------------------|
| Lippia gracilis Schauer        | Blue-LED                  | Total chlorophyll, total carotenoid, carvacrol, E-caryophyllene (PAL, F5H) | Bioactive compound production                | Lazzarini et al. [117]   |
| Brachypodium distachyon (L.)   | Red:Blue:White LED        | Superoxide dismutase, Catalase                  | Gene expression, antioxidant enzyme expression | Mamedes-Rodrigues et al. [141] |
| Hyptis marrubioides Epling     | White and Blue-LED        | Rutin                                           | Bioactive compound production                | Pedrosio et al. [130]    |
| Cunninghamia lanceolata        | Red:Blue:Purple:Green (8:1:1:1) LED | Peroxidase, catalase                           | Root growing, antioxidant enzyme expression  | Xu et al. [34]           |
| Ocimum basilicum L.            | Red, Blue, White LED      | Total flavonoid, peonidin, cyaniding (Red LED), rosmarinic acid, eugenol (Blue LED), chicoric acid (White) | Bioactive compound production                | Nadeem et al. [35]       |
| Lycopersicon esculentum cv. ‘House Momotaro’ & ‘Mini Carol’ | Blue LED                  | Ascorbic acid, dehydroascorbic acid             | Antioxidation                                | Zushi et al. [136]       |
| Boehmeria nivea cv. ‘Zhongsizhu 1’ | Red and Orange LED       | Total chlorophyll (Red), malondialdehyde (+), superoxide dismutase, peroxidase (Orange) | Bioactive compound production, antioxidant enzyme expression | Rehman et al. [118]      |
| Scutellaria baicalensis Georgi | Red and Blue LED          | Triterpenoid saponin glycosides                 | Bioactive compound production                 | Watcharatanan et al. [138] |
| Cnidium officinale Makino      | Red and Blue (1:1) LED    | Total phenol, total flavonoid, ascorbate peroxidase | Bioactive compound production, antioxidant enzyme expression, gene expression | Adil et al. [46]         |
| Grapes                         | Blue LED                  | Chlorophyll                                     | Biomass increase, callus induction, bioactive compound production, antioxidantation | Saldarriaga et al. [119] |
| Canavalia ensiformis Edgew     | Red and Blue (1:3) LED    | Total phenol, total chlorophyll, total carotenoid | Bioactive compound production                | Kapoor et al. [135]      |
| Lepidium sativum L.            | White, Blue, Green LED    | Total phenol (White), p-coumaric acid (Blue), superoxide dismutase, peroxidase (Green) | Bioactive compound production, antioxidant enzyme expression | Ullah et al. [132]       |
| Solanum tuberosum cv. ‘Zhuanxinwu’ | Blue LED                  | Anthocyanin                                     | Bioactive compound production                | Xu et al. [142]          |
| Ajuga bracteosa                | Blue LED                  | Total phenol, total flavonoid                   | Bioactive compound production                | Rukh et al. [133]        |
| Vitis vinifera cv. “Manicure Finger” | Blue LED                  | Total chlorophyll, total carotenoid             | Bioactive compound production                | Li et al. [143]          |
| Lippia rotundifolia Cham        | Blue LED                  | Myrcene, limonene                               | Bioactive compound production                | De Hsie et al. [137]     |
### Table 2. Cont.

| Plant Species | Type of LED | Metabolites/Enzyme/Gene | Biological Activity | References |
|---------------|-------------|-------------------------|---------------------|------------|
| *Pfaffia glomerata* accessions (Ac22, Ac43) | Red and Blue (1:1) LED | Anthocyanin, 20-hydroxyecdysone, peroxidases, catalase | Bioactive compound production, antioxidant enzyme expression | Silva et al. [140] |
| *Lippia filifolia* Mart. & Schauer | Red, Blue LED | Malondialdehyde (-) | Bioactive compound production | Chaves et al. [134] |
| *Drosera burmannii* Vahl, *Drosera indica* L. | Blue LED | Plumbagin | Bioactive compound production | Boonsnongcheep et al. [144] |
| *Potato* | Red and Blue LED | - | Shoot elongation | Edesi et al. [104] |
| *Lilium* | Red and Blue LED | - | Shoot elongation | Lian et al. [108] |
| *Vanilla* | Red and Blue LED | - | Shoot organogenesis | Bello-Bello et al. [107] |
| *A. distichum* | Red and Blue LED | - | Shoot elongation | Strelkov et al. [109] |
| *K. glutinosa* | Red LED | - | Shoot elongation | Hahn et al. [22] |
| *Sugarcan* | Blue and Red LED | - | Shoot elongation | Silva et al. [139] |
| *A. milletolium* | Blue and Red LED | - | Enhanced biomass | Alvarenga et al. [115] |
| *Densirubium* | Blue and Red LED | - | Enhanced biomass | Lin et al. [1] |
| *Blue-berry* | Blue and Red LED | - | Enhanced biomass | Hung et al. [114] |
| *Crysanthemum* | Blue and Red LED | - | Enhanced biomass | Kim et al. [26] |
| *Sugarcan* | Blue and Red LED | - | Enhanced biomass | Maluta et al. [116] |
| *Castanea crenata* | Red-LED | - | Shoot elongation | Park and Kim et al. [145] |
| *Oncidium* | Red-LED | - | Shoot elongation | Chung et al. [113] |
| *Blue berry* | Red LED | - | Shoot elongation | Hung et al. [112,114] |
| *Banana* | Red-LED | - | Chlorophyll | Do Nascimento Vieira et al. [24] |
| *C. orchioides* | Red-LED, Blue-LED | APX, POX | Enzyme activity | Dutta G. and Sahoo [80] |

#### 2.3. Effects of LED Irradiation on Tocopherol Biosynthesis in Crops

Tocopherols, synthesized through the isoprenoid pathway, are associated with the antioxidant properties of green plants [146]. These phytochemicals play a key role in protecting the photosynthetic membranes and apparatus from high-intensity light stress [147]. A previous study showed direct interaction between photoreceptor activation and tocopherol content in plants [148]. A significant increase in \( \gamma \)-tocopherol content and the suppression of \( \alpha \)-tocopherol content were reported in barley irradiated with red LEDs [81]. Moreover, yellow LED irradiation effectively enhanced tocopherol accumulation in apples [82], demonstrating the species-dependent effects of LED irradiation. Similar results were reported in basil, whereas combined irradiation with blue and red LEDs, compared with only blue LED irradiation, enhanced \( \alpha \)-tocopherol content in parsley [53]. Koga et al. [81] proposed that the suppression of homogentisate phytyltransferase, an enzyme that regulates the total tocopherol content in plants, might lower the tocopherol concentration in blue LED-irradiated sprouts. Moreover, in another study, irradiation with blue LEDs at a lower dosage resulted in an increase in the total tocopherol content in beets [83]. Thus, it is possible that LED irradiation can interact with the enzymes involved in tocopherol biosynthesis pathways. However, in another study, irradiation with HPS lamps combined with red LEDs significantly enhanced \( \alpha \)-tocopherol accumulation in parsley extracts [83], indicating that red or blue LED irradiation is solely insufficient to regulate tocopherol biosynthesis in plants.

#### 2.4. Effects of LED Irradiation on Carotenoid Biosynthesis in Crops

Carotenoids, including \( \beta \)-carotene and lutein, are present in most green plants and green algae and are associated with light harvesting and the transfer of energy to the reaction center of photosystems [149,150]. They also deactivate ROS formed under extreme light stress to protect the photosynthetic apparatus [151]. Moreover, carotenoid consumption has been linked to several health benefits in humans, including heart disease and cancer pre-
vention, and it has been reported to be closely associated with ophthalmic health [152–155]. Many previous studies have reported the effects of both spectral quality and light intensity on carotenoid biosynthesis in plants. Among the different LEDs, red LED irradiation enhanced β-carotene accumulation in pea plants [84]. Other studies reported that red LED irradiation resulted in an increase in β-cryptoxanthin content in citrus fruits [156] and lycopene content in tomatoes [157]. The duration of LED irradiation affected total carotenoid content and carotenoid biosynthesis in the growing plants. Compared to combined red and blue LED irradiation, blue LED irradiation for a short duration significantly increased β-carotene and violoxanthin accumulation in broccoli microgreens [89]. In a similar study, BC levels in pea plants were increased after blue LED irradiation for a short duration [84]. However, β-carotene and lutein levels in buckwheat sprouts were decreased following blue LED irradiation, compared with white LED irradiation [120]. As shown in Table 1, the LED source markedly affected carotenoid accumulation and was significantly associated with gene expression during carotenoid biosynthesis in the plants. The variation in carotenoid content in the plants irradiated with LEDs could be attributed to the differential expression of genes associated with carotenoid synthesis. For instance, buckwheat sprouts grown under irradiation with different LEDs showed increased expression of FIPSY, FLICLYB, FICXHB, FICXHE, FLICYe, and FIZEP genes, which are associated with carotenoid biosynthesis, following white LED irradiation [120]. In a similar study, Zhang et al. [88] observed the upregulation of the expression of carotenoid biosynthesis-associated genes, such as CitPSY, CitZDS, CitPDS, and CitLCY, in citrus species, indicating a differential stimulatory role of LED irradiation in the regulatory mechanism of carotenoid biosynthesis in plants.

2.5. Effects of LED Irradiation on Flavonoid Biosynthesis in Crops

Flavonoids are widely distributed phytochemicals found in plants and are involved in multiple mechanisms, including protection against pathogens and ultraviolet (UV) radiation, flower coloration, and male fertility [158–160]. Additionally, these phytochemical compounds are involved in plant coloration, protection of leaf cells from photooxidative damage [161], stress response, and other physiological activities [162,163]. Light is an important abiotic factor that affects flavonoid accumulation and flavonoid biosynthesis-related gene expression in plant species [164]. Numerous previous studies have reported the key role of LEDs in flavonoid biosynthesis in plants. Blue LED irradiation increased anthocyanin concentration in grapes [90]. Upregulation of the expression of VIMYBA1-2, VIMYBA2, and VvUFGT genes, which are associated with anthocyanin biosynthesis, was also observed. Similarly, Thwe et al. [91] observed increased anthocyanin accumulation in buckwheat grown under blue LED irradiation and wide variation in FtPAL, FtANS, and FtDFR expression in buckwheat sprouts. In another study, a positive correlation between anthocyanin accumulation and flavonoid synthesis-related gene expression, including that of 4-coumaryl CoA-ligase (4CL) and phenylalanine ammonia synthase, was observed in Cyclocarya paliurus grown under blue LED irradiation [57]. Park et al. [72] reported an increase in the levels of rosmarinic acid, tiliacin, and expression of genes encoding phenylpropanoid biosynthesis-related enzymes, such as cinnamate 4-hydroxylase (C4H), chalcone isomerase (CHI), and RAS, in Acaulospora rugosa under white LED irradiation, compared with irradiation with other LEDs. Similarly, enhanced gallic acid and quercetin accumulation and decreased p-coumaric acid and epicatechin levels were observed in wheat sprouts grown under blue LED irradiation [49]. Irradiation with a combination of blue and red LEDs at a ratio of 1:4 resulted in an increased expression of genes encoding flavonoid synthesis-related enzymes, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), CHI, and flavonol synthase, in Aneostichus roxburghii, further resulting in increased flavonoid accumulation [60].

2.6. Effects of LED Irradiation on Anthocyanin Biosynthesis in Crops

Anthocyanins are soluble flavonoids that are widely distributed in plants and are associated with seed dispersal, pollination, stress resistance, and flower coloration. They
are widely used in the food industry for coloring purposes [165]. Additionally, these phytochemicals are known for their antioxidant properties, including protection of the photosynthetic apparatus and DNA from harmful radiation and cold stress, and they play key roles in drought resistance [166,167]. Previous studies have reported the effects of LED irradiation on anthocyanin accumulation in plants [58]. Irradiation with a red and far-red LED combination has been reported to increase total anthocyanin (TA) content in lettuce plants [92,93]. However, irradiation with a deep red LED alone reduced total anthocyanin content in mustard plants [94]. TA concentration was significantly increased in other vegetables, such as cabbage [95] and Chinese kale sprouts [168], following red LED irradiation. Moreover, irradiation with a combination of a red LED with HPS lamp resulted in higher TA accumulation in green vegetables than irradiation with red LEDs alone [169]. Green vegetables, such as lettuce and romaine baby leaves, have been reported to show higher TA content when grown under green LED irradiation than when grown under red LED irradiation [6,40]. Moreover, TA accumulation was higher in Camellia sinensis (L.) O. Kuntze ‘Zhonghuang 3’ grown under blue LED irradiation [62]. These results indicated that TA biosynthesis in plants depended on not only the light wavelength but also the plant species. Anthocyanin concentration was increased in apples grown under red LED irradiation [96]. According to this report, red LED irradiation upregulated the expression of MD-MYB10 and MdUFGT genes, which are related to anthocyanin biosynthesis [96]. Moreover, irradiation of grapes with both blue and red LEDs upregulated the expression of anthocyanin biosynthesis-related genes, such as MYB transcription factor genes [97]. In another study, the expression of anthocyanin synthesis-related genes, including VIMYBA1-2, VIMYBA2, and VvUFGT, was increased with the enhancement in anthocyanin accumulation in grape berries irradiated with blue LEDs [90].

2.7. Effects of LED Irradiation on Phenolic Acid Biosynthesis in Crops

Phenolic compounds are ubiquitous in most higher plants and are associated with plant defense systems against abiotic and biotic factors, including UV radiation, high temperature, excess light, pathogen attack, and wounding [170,171]. Phenolic compounds are formed via the shikimate pathway in plants. Phenylalanine, an intermediate compound formed in these pathways, is converted into phenolic compounds by PAL, which is widely regulated by light-responsive factors and ROS formed under excess light [142,172]. Some studies have reported the effects of LEDs on phenolic acid accumulation in plants. Among the different LEDs, irradiation with red LED was effective in increasing the total phenolic content (TPC) in basil [53]. A stimulatory effect of red LED irradiation on TPC in various vegetables, including radish, wheat, and lentil, was observed. Moreover, a positive effect of irradiation with red LEDs, combined with other LEDs on TPC in basil microgreens was observed. However, red LED irradiation exerted a negative effect on TPC in parsley microgreens [53]. In contrast, Qian et al. [95] and Brazaityte et al. [169] found that red LED irradiation did not affect TPC in Chinese kale sprouts and Brassica microgreens, respectively. A similar trend was also observed in lettuce leaves [40,173]. Blue LED irradiation resulted in an increase in TPC in growing Chinese kale sprouts [95]. Other studies have reported increased TPC in Chinese cabbage and lettuce irradiated with blue LEDs alone compared with those irradiated with red LEDs alone or a combination of red and blue LEDs [98], indicating that the effects of LEDs on TPC varied among plant species. Several studies have investigated the levels of phenolic compounds in plant species grown under LED irradiation [55,57,58,68,72,174,175]. Chung et al. [4] reported an increase in malonyldaidzin, malonyl genistin, salicylic acid, p-hydrobenzoic acid, and gentisic acid levels in Pachyrhizus erosus grown under red LED irradiation. An increased concentration of p-coumaric acid was observed in P. erosus grown under blue LED irradiation. The accumulation of phenolic compounds, such as p-coumaric, gallic, ferulic, and hydroxybenzoic acids, was increased in wheat sprouts irradiated with blue LEDs [99]. Several studies have shown an increase in antioxidant activity and phytochemical accumulation in plants irradiated with different LEDs [4,175,176].
Irradiation with blue LEDs triggered increased phenolic compound accumulation and phenolic compound biosynthesis-related gene expression [59,74,77]. Irradiation with red LEDs alone was also shown to enhance the concentrations of important phytochemicals in various plant species [65,69,70,73]. Additionally, irradiation with LED combinations at different ratios enhanced phytochemical contents in plant species [54,56,67,71,76,177–179]. The increase in phenolic compound content was positively correlated with the expression of *TaPA1*, *TAP2*, *TaC4H*, *TaCHI*, *TaCHS*, and *TaF3H* genes; these genes are involved in phenolic compound synthesis through the phenylpropanoid biosynthesis pathway [65]. The highest levels of select flavonoids (kaempferol, isoquercitrin, and quercetin) and enhanced relative expression of genes encoding key enzymes, such as PAL, 4CL, and CHS, were observed in *Cyclocarya paliurus* irradiated with blue LEDs [100].

3. Conclusions and Future Prospects

In this review, we aimed to provide updates on the innovative use of LEDs in improving nutritional quality of plants grown in vitro and in vivo. Moreover, in the present review, we summarized the expression patterns of various genes related to phytochemical biosynthesis in response to different LED spectral wavelengths. It is important to identify the appropriate light quality and intensity to increase the quantity and quality of important phytochemicals associated with nutrition and human health. It can be concluded from this overview of research that the flexibility of LED irradiation allows the enhancement of nutritional levels of vegetables and phytochemical contents of plant species. Moreover, irradiation with LED combinations at different ratios and combination of LEDs with normal light (FL) sources can enhance phytochemical content, biomass, and nutritional quality of vegetables and medicinal plants. However, detailed studies on the association between LEDs and their phytochemical accumulation-promoting effects as well as the underlying physiological and molecular mechanisms are required. We observed that different plant species respond differentially to various LED spectral wavelengths. Therefore, further research is required to understand the application of LEDs for the successful growth and mass propagation of plants.

Author Contributions: W.-S.J., B.K.G. and M.H.H. contributed by writing the manuscript. C.Y.Y., S.-H.K., and I.-M.C. contributed by editing the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a BK21 FOUR (Fostering Outstanding Universities for Research, grant no. 4220201013822, team: Crop Genetic Resources Research Team for Future Human Resources Development in Sustainable Premium Agricultural Industry, Konkuk University), the National Research Foundation of Korea, Republic of Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by funding from the KU research Professor program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm–like bodies of *Dendrobium officinale* in vitro. *Plant Cell Tissue Organ. Cult.* 2011, 105, 329–335. [CrossRef]
2. Azmi, N.S.; Ahmad, R.; Ibrahim, R. Fluorescent light (FL), red led and blue led spectrums effects on in vitro shoots multiplication. *J. Teknol.* 2016, 78, 93–97. [CrossRef]
3. Manivannan, A.; Soundararajan, P.; Park, Y.G.; Wei, H.; Kim, S.H.; Jeong, B.R. Blue and red light-emitting diodes improve the growth and physiology of in vitro grown carnations ‘Green Beauty’ and ‘Purple Beauty’. *Hortic. Environ. Biotechnol.* 2017, 58, 12–20. [CrossRef]
4. Chung, I.M.; Paudel, N.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. The Influence of Light Wavelength on Growth and Antioxidant Capacity in *Pachyrhizus erosus* (L.) Urban. *J. Plant Growth Regul.* 2020, 39, 296–312. [CrossRef]
12. Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Brassica microgreens. *Cent. Eur. J. Biol.* **2013**, *8*, 1241–1249. [CrossRef]

13. Samoulienië, G.; Brazaitytë, A.; Jankauskiienë, J.; Viršiëlë, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskienë, S.; Sakalauskaitë, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. *Cent. Eur. J. Biol.* **2013**, *8*, 1241–1249. [CrossRef]

14. Samoulienië, G.; Brazaitytë, A.; Sirtautas, R.; Viršiëlë, A.; Sakalauskienë, J.; Sakalauskienë, S.; Duchovskis, P. LED illumination affects bioactive compounds in romaine baby leaf lettuce. *J. Sci. Food Agric.* **2013**, *93*, 3286–3291. [CrossRef]

15. Rocha, P.S.G.; Oliveira, R.P.; Scivittaro, W.B.; Santos, U.L. Diodos emissores de luz e concentraçâo de compostos fenólicos em pepitas de mandioca cultivadas sob diferentes níveis de intensidade de luz. *Theor. Exp. Plant Physiol.* **2015**, *27*, 91–97. [CrossRef] [PubMed]

16. Chai, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse. *Sci. Hortic.* **2014**, *158*, 211–220. [CrossRef]

17. Gupta, S.D.; Jatothu, B. Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. *Plant Biotecnol. Rep.* **2013**, *7*, 211–220. [CrossRef]

18. Gupta, S.D.; Jatothu, B. Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. *Plant Biotecnol. Rep.* **2013**, *7*, 211–220. [CrossRef]

19. Gupta, S.D.; Agarwal, A. Influence of LED lighting on in vitro plant regeneration and associated cellular redox balance. In *Light Emitting Diodes in Agriculture*; Springer: Singapore, 2017; pp. 273–303.

20. Hahn, E.J.; Kozaï, T.; Paek, K.Y. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of *Rehmannia glutinosa* plantlets. *J. Plant and Cell Biotecnol.* **2000**, *43*, 247–250. [CrossRef]

21. Choi, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. *Sci. Hortic.* **2015**, *189*, 22–31. [CrossRef]

22. Seabrook, J.E. Light effects on the growth and morphogenesis of potato (*Solanum tuberosum*) in vitro: A review. *Am. J. Potato Res.* **2005**, *82*, 353–367. [CrossRef]

23. Do Nascimento Vieira, L.; de Freitas Fraga, H.P.; dos Anjos, K.G.; Puttkammer, C.C.; Scherer, R.F.; da Silva, D.A.; Guerra, M.P.; Dutra, J.G.; de Andradó, E.; Hahn, E.J.; Paek, K.Y. The effect of light quality and the growth and development of strawberry (*Fragaria vesca* L.) in vitro: A review. *Plant Cell Tissue Org. Cult.* **2010**, *103*, 155–163. [CrossRef]
33. Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Luna-Sánchez, I.J. Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. S. Afr. J. Bot. 2017, 109, 288–293. [CrossRef]
34. Xu, Y.; Liang, Y.; Yang, M. Effects of Composite LED Light on Root Growth and Antioxidant Capacity of Cunninghamia lanceolata Tissue Culture Seedlings. Sci. Rep. 2019, 9, 9766. [CrossRef]
35. Nadeem, M.; Abbasi, B.H.; Younas, M.; Ahmad, W.; Zahir, A.; Hano, C. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. J. Photochem. Photobiol. B 2019, 190, 172–178. [CrossRef]
36. Whitelam, G.; Halliday, K. Light and Plant Development; Blackwell Publishing: Oxford, UK, 2007.
37. Stagnari, F.; Di Mattia, C.; Galieni, A.; Santarelli, V.; D’Egidio, S.; Pagnani, G.; Pisante, M. Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Ind. Crop. Prod. 2018, 122, 277–289. [CrossRef]
38. Taulavuori, K.; Höyö, V.; Oksanen, J.; Taulavuori, E.; Julkonen-Tiitto, R. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 2016, 121, 145–150. [CrossRef]
39. Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morela, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [CrossRef]
40. Samuoliénė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [CrossRef] [PubMed]
41. Shohael, A.M.; Ali, M.B.; Yu, K.W.; Hahn, E.J.; Islam, R.; Paek, K.Y. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Elettreuococcus sentsicosus somatic embryos in bioreactor. Process. Biochem. 2006, 41, 1176–1185. [CrossRef]
42. Zhao, J.; Thi, L.T.; Park, Y.G.; Jeong, B.R. Light quality affects growth and physiology of Carpesium triste Maxim. Cultured in vitro. Agriculture 2020, 10, 258. [CrossRef]
43. Causin, H.F.; Jauregui, R.N.; Barneix, A.J. The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Sci. 2006, 171, 24–33. [CrossRef]
44. Pastori, G.M.; del Río, L.A. Natural senescence of pea leaves (an activated oxygen-mediated function for peroxisomes). Plant Physiol. 1997, 113, 411–418. [CrossRef] [PubMed]
45. Chen, J.; Li, F.; Li, Y.; Wang, Y.; Wang, C.; Yuan, D.; Jiang, Y. Exogenous procyanidin treatment delays senescence of harvested banana fruit by enhancing antioxidant responses and in vivo procyanidin content. Postharvest Biol. Tec. 2019, 158, 110999. [CrossRef]
46. Adil, M.; Ren, X.; Jeong, B.R. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cudiniun officinale Makino. J. Photochem. Photobiol. B Biol. 2019, 196, 111509. [CrossRef] [PubMed]
47. Schmidt, M.; Grief, J.; Feierabend, J. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen. Planta 2006, 223, 835–846. [CrossRef] [PubMed]
48. Gupta, S.D. Role of free radicals and antioxidants in in vitro morphogenesis. In Vitro. Cell. Dev. Biol. Plant 2010, 46, 240–252. [CrossRef]
49. Gupta, S.D. Role of free radicals and antioxidants in in vitro morphogenesis. In Reactive Oxygen Species and Antioxidants in Higher Plants; Dutta Gupta, S., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 229–247.
50. Cuong, D.M.; Ha, T.W.; Park, C.H.; Kim, N.S.; Yeo, H.J.; Chun, S.W.; Kim, C.; Park, S.U. Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout. Agronomy 2019, 9, 307. [CrossRef]
51. Franck, T.; Kevers, C.; Gaspar, T. Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. L. raised in vitro. Plant Growth Regul. 1995, 16, 253–256. [CrossRef]
52. Rajeswari, V.; Paliwal, K. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). Acta Physiol. Plant. 2008, 30, 825–832. [CrossRef]
53. Samuoliene, G.; Brazaityte, A.; Virile, A.; Jankauskiene, J.; Sakalauskiene, S.; Duchovskis, P. Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PLoS ONE 2016, 11, e0163405. [CrossRef]
54. Bhan, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240. [CrossRef]
55. Nguyen, T.K.L.; Oh, M. Physiological and biochemical responses of green and red perilla to LED-based light. J. Sci. Food Agric. 2021, 101, 240–252. [CrossRef]
56. Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HorticScience 2010, 45, 1809–1814. [CrossRef]
57. Liu, H.; Chen, Y.; Hu, T.; Zhang, S.; Zhang, Y.; Zhao, T.; Yu, H.; Kang, Y. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [CrossRef]
58. Azad, M.O.K.; Adnan, M.; Son, J.; Choi, D.H.; Park, C.H. Effect of Artificial LED on the Growth, Anthocyanin, Chlorophyll and Total Phenolic Content of Buckwheat Seedling. Biomed. J. Sci. Tech. Res. 2020, 13, 10274–10277.
59. Wilawan, N.; Ngamwongumlert, L.; Devahastin, S.; Chiewchan, N. Changes in enzyme activities and amino acids and their relations with phenolic compounds contents in okra treated by LED lights of different colors. Food Bioprocess. Technol. 2019, 12, 1945–1954. [CrossRef]
60. Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes. *Plants* 2020, 9, 1344. [CrossRef] [PubMed]

61. Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. *Horticulturae* 2020, 6, 77. [CrossRef]

62. Park, C.H.; Kim, N.S.; Park, J.S.; Lee, S.Y.; Lee, J.; Park, S.U. Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). *Foods* 2019, 8, 76. [CrossRef] [PubMed]

63. Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of ascorbate accumulation and metabolism in lettuce by the red: Blue ratio of continuous light using LEDs. *Front. Plant Sci.* 2020, 11, 704. [CrossRef]

64. Nam, T.G.; Kim, D.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. *Ind. Crops Prod.* 2019, 140, 111592. [CrossRef]

65. Cuong, D.M.; Jeon, J.; Morgan, A.M.; Kim, C.; Kim, J.K.; Lee, S.Y.; Park, S.U. Accumulation of charantin and expression of triterpenoid biosynthesis genes in bitter melon (Momordica charantia). *J. Agric. Food Chem.* 2017, 65, 7240–7249. [CrossRef] [PubMed]

66. Tran, L.H.; Jung, S. Effects of light-emitting diode irradiation on growth characteristics and regulation of porphyrin biosynthesis in litter melon (Momordica charantia). *J. Agric. Food Chem.* 2017, 65, 7240–7249. [CrossRef] [PubMed]

67. Chiang, S.; Liang, Z.; Wang, Y.; Liang, C. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in Agastache rugose. *Front. Plant Sci.* 2020, 11, 169–176. [CrossRef] [PubMed]

68. Nam, T.G.; Kim, D.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. *Ind. Crops Prod.* 2018, 27, 169–176. [CrossRef] [PubMed]

69. Sobhani Najafabadi, A.; Khanahmadi, M.; Ebrahimi, M.; Moradi, K.; Behroozi, P.; Noormohammadi, N. Effect of different quality light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. *Plant Signal. Behav.* 2019, 14, 1640561. [CrossRef] [PubMed]

70. Tran, L.H.; Jung, S. Effects of light-emitting diode irradiation on growth characteristics and regulation of porphyrin biosynthesis in rice seedlings. *Int. J. Mol. Sci.* 2017, 18, 641. [CrossRef]

71. Chiang, S.; Liang, Z.; Wang, Y.; Liang, C. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. *J. Food Compos. Anal.* 2017, 60, 51–56. [CrossRef]

72. Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugose. *Appl. Biol. Chem.* 2020, 63, 25. [CrossRef]

73. Hosseini, A.; Zare Mehrjerdi, M.; Aliniaieifard, S. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum) grown under different light spectra. *J. Essent. Oil Bearing Plants* 2018, 21, 913–923. [CrossRef]

74. Lopes, E.M.; Guimarães-Dias, F.; Gama, T.D.S.S.; Macedo, A.L.; Valverde, A.L.; de Moraes, M.C.; de Aguiar-Dias, A.C.A.; Bizzo, H.R.; Alves-Ferreira, M.; Tavares, E.S.; et al. Artemisia annua L. and photosresponse: From artemisinin accumulation, volatile profile and anatomical modifications to gene expression. *Plant Cell Rep.* 2020, 39, 101–117. [CrossRef]

75. Lee, M.J.; Son, K.H.; Oh, M.M. Increase in biomass and bioactive compound in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. *Hortic. Environ. Biotechnol.* 2016, 57, 139–147. [CrossRef]

76. Kim, Y.J.; Kim, H.M.; Kim, H.M.; Lee, H.R.; Jeong, B.R.; Lee, H.; Kim, H.; Hwang, S.J. Growth and phytochemicals of ice plant (Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production system. *J. Appl. Res. Med. Aromat. Plants* 2020, 20, 100267. [CrossRef]

77. Nakai, A.; Tanaka, A.; Yoshihara, H.; Murai, K.; Watanabe, T.; Miyawaki, K. Blue LED light promotes indican accumulation and flowering in indigo plant, Polygonum tinctorium. *Ind. Crops Prod.* 2020, 155, 112774. [CrossRef]

78. Ha, S.Y.; Jung, J.Y.; Yang, J.K. Effect of Light-Emitting Diodes on Cordycepin Production in Submerged Culture of Paeclomyces japonica. *J. Korean Wood Sci. Technol.* 2020, 48, 548–561.

79. Tian, M.; Gu, Q.; Zhu, M. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. *Plant Sci.* 2003, 165, 701–707. [CrossRef]

80. Dutta Gupta, S.; Sahoo, T.K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn. *Acta Physiol. Plant.* 2015, 37, 233. [CrossRef]

81. Koga, R.; Meng, T.; Nakamura, E.; Miura, C.; Irino, N.; Devkota, H.P.; Yahara, S.; Kondo, R. The effect of photoirradiation on the growth and ingredient composition of young garlic (Allium sativum L.). *Agric. Sci.* 2013, 4, 185–194.

82. Kokaji, D.; Hribar, J.; Cigić, B.; Zlatić, E.; Demšar, L.; Sinkovič, I.; Širel, H.; Bizjak, G.; Vidrih, R. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. *Food Technol. Biotechnol.* 2016, 54, 228–235.

83. Samuoliene, G.; Viršilė, A.; Brazaitytė, A.; Jankauskiene, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novic’ kovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. *Food Chem.* 2017, 228, 50–56. [CrossRef] [PubMed]

84. Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. *Food Chem.* 2007, 101, 1753–1758. [CrossRef]
88. Ma, G.; Zhang, L.; Kato, M.; Yamawaki, K.; Kiriwiwa, Y.; Yahata, M.; Ikoma, Y.; Matsumoto, H. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. *Postharvest Biol. Technol.* 2015, 99, 98–104. [CrossRef]

89. Liu, X.Y.; Guo, S.R.; Chang, T.T.; Xu, Z.G.; Takafumi, T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). *Afr. J. Biotechnol.* 2012, 11, 6169–6177.

90. Rodyoung, A.; Masuda, Y.; Tomiyama, H.; Saito, T.; Okawa, K.; Ohara, H.; Kondo, S. Molecular characterization and the light—dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (*Fagopyrum tataricum* Gaertn.). *Food Chem.* 2013, 141, 3803–3812. [CrossRef] [PubMed]

91. Thwe, A.A.; Kim, Y.B.; Li, X.; Seo, J.M.; Kim, S.J.; Chung, S.O.; Park, S.U. Effects of light-emitting diodes on expression of abiotic stress-related genes in *Fagopyrum tataricum* sprouts. *J. Agric. Food Chem.* 2014, 62, 4839–4845. [CrossRef] [PubMed]

92. Li, Q.; Kubota, C. Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light-emitting diodes. *J. Am. Soc. Hortic. Sci.* 2013, 138, 31–37. [CrossRef]

93. Kopsell, D.A.; Sams, C.E. Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light-emitting diodes. *J. Am. Soc. Hortic. Sci.* 2013, 138, 31–37. [CrossRef]

94. Lefsrud, M.G.; Kopsell, D.A.; Sams, C.E. Irradiance from distinct wave-length light-emitting diodes affect secondary metabolites of *Lilium* oriental hybrid ‘Pesaro’. *Acta Hortic.* 2016, 1123, 177–183. [CrossRef]

95. Qian, H.; Liu, T.; Deng, M.; Miao, H.; Cai, C.; Shen, W.; Wang, Q. Effects of light quality on main health-promoting compounds and antioxidant activity of Chinese kale sprouts. *Food Chem.* 2016, 196, 1232–1238. [CrossRef]

96. Lekkham, P.; Srilaong, V.; Pongprasert, N.; Kondo, S. Anthocyanin concentration and antioxidant activity in light-emitting diode *Anthocyanin concentration and antioxidant activity in light-emitting diode.* *Acta Hortic.* 2015, 103, 236–242. [CrossRef] [PubMed]

97. Brazaitytė, A.; Sakalauskiene, S.; Viršilė, A.; Jankauskiene, J.; Samuolienė, G.; Sirtautas, R.; Vaštakaitė, V.; Miliaukienė, J.; Duchovskis, P.; Novičkovas, A.; et al. The effect of short-term red lighting on *Brassica* microgreens grown indoors. *Acta Hortic.* 2016, 1123, 177–183. [CrossRef]

98. Ryu, S.Y.; Lee, J.G.; Cho, H.S.; Seong, E.S.; Kim, H.Y.; Yu, C.Y.; Kim, J.K. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (*Panax ginseng*). *Plant Omics* 2013, 6, 224–230.

99. Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. *Proc. Natl. Acad. Sci. U. S. A.* 2008, 105, 1477–1482. [CrossRef] [PubMed]

100. Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light quality affects flavonoid production and related gene expression in *Cyclocarya paliurus*. *J. Photochem. Photobiol. B.* 2018, 170, 66–73. [CrossRef]

101. Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light quality affects flavonoid production and related gene expression in *Cyclocarya paliurus*. *J. Photochem. Photobiol. B.* 2018, 170, 66–73. [CrossRef]

102. Kopsell, D.A.; Sams, C.E. Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light-emitting diodes. *J. Am. Soc. Hortic. Sci.* 2013, 138, 31–37. [CrossRef]

103. Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light quality affects flavonoid production and related gene expression in *Cyclocarya paliurus*. *J. Photochem. Photobiol. B.* 2018, 170, 66–73. [CrossRef] [PubMed]

104. Edesi, J.; Kotkas, K.; Pirtiliä, A.M.; Häggman, H. Does light spectral quality affect survival and regeneration of potato (*Solanum tuberosum* L.) shoot tips after cryopreservation? *Plant Cell Tissue Organ. Cult.* 2014, 119, 599–607. [CrossRef]

105. Hung, C.D.; Hong, C.H.; Jung, H.B.; Kim, S.K.; Van Ket, N.; Nam, M.W.; Choi, D.H.; Lee, H.I. Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. *Sci. Hort.* 2015, 194, 194–200. [CrossRef]

106. Al-Mayabi, A.M.W. Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (*Phoenix dactylifera* L.) cv. Alshakr. *Afr. J. Microbiol. Biotechnol.* 2016, 32, 160. [CrossRef] [PubMed]

107. Bello-Bello, J.J.; Martínez-Estrada, E.; Caamal-Velásquez, J.H.; Morales-Ramos, V. Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (*Vanilla planifolia* Andrews). *Afr. J. Biotechnol.* 2016, 15, 272–277.

108. Rodyoung, A.; Masuda, Y.; Tomiyama, H.; Saito, T.; Okawa, K.; Ohara, H.; Kondo, S. Effects of light-emitting diode irradiation at night on aobassic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. *Plant Growth Regul.* 2016, 79, 39–46. [CrossRef]

109. Thwe, A.A.; Kim, Y.B.; Li, X.; Seo, J.M.; Kim, S.J.; Suzuki, T.; Chung, S.O.; Park, S.U. Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in *Fagopyrum tataricum* sprouts. *J. Agric. Food Chem.* 2014, 62, 4839–4845. [CrossRef] [PubMed]

110. Park, S.Y.; Lee, J.G.; Cho, H.S.; Seong, E.S.; Kim, H.Y.; Yu, C.Y.; Kim, J.K. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (*Panax ginseng*). *Plant Omics* 2013, 6, 224–230.

111. Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light quality affects flavonoid production and related gene expression in *Cyclocarya paliurus*. *J. Photochem. Photobiol. B.* 2018, 170, 66–73. [CrossRef] [PubMed]

112. Park, S.Y.; Lee, J.G.; Cho, H.S.; Seong, E.S.; Kim, H.Y.; Yu, C.Y.; Kim, J.K. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (*Panax ginseng*). *Plant Omics* 2013, 6, 224–230.
111. Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. *HortScience* 2012, 47, 1490–1494. [CrossRef]

112. Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Dung, C.D.; Nam, M.W.; Choi, D.H.; Lee, H.I. In vitro proliferation and *ex vitro* rooting of microshoots of commercially important rabbiteye blueberry (*Vaccinium ashei* Reade) using spectral lights. *Sci. Hort.* 2016, 211, 248–254. [CrossRef]

113. Chung, J.P.; Huang, C.Y.; Dai, T.E. Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. *Sci. Hort.* 2010, 124, 511–516. [CrossRef]

114. Hung, C.D.; Hong, C.H.; Kim, S.K.; Lee, K.H.; Park, J.Y.; Nam, M.W.; Choi, D.H.; Lee, H.I. LED light for in vitro and *ex vitro* efficient growth of economically important highbush blueberry (*Vaccinium corymbosum* L.). *Acta Physiol. Plant* 2016, 38, 152. [CrossRef]

115. Alvarenga, I.C.A.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. In vitro culture of Achillea millefolium L.: Quality and intensity of light on growth and production of volatiles. *Plant Cell Tissue Organ Cult.* 2015, 122, 299–308. [CrossRef]

116. Maluta, F.A.; Bordignon, S.R.; Rossi, M.L.; Ambrosano, G.M.B.; Rodrigues, P.H.V. In vitro culture of sugarcane exposed to different light sources. *Pesqui Agropecu Bras.* 2013, 48, 1303–1307. [CrossRef]

117. Lazzarini, L.E.S.; Bertolucci, S.K.V.; Pacheco, F.V.; dos Santos, J.; Silva, S.T.; de Carvalho, A.A.; Pinto, J.E.B.P. Quality and intensity of light affect lippia gracilis schauer plant growth and volatile compounds in vitro. *Plant Cell Tissue Organ Cult.* 2018, 135, 367–379. [CrossRef]

118. Rehman, M.; Fahad, S.; Saleem, M.; Hafeez, M.; Rahman, M.; Liu, F.; Deng, G. Red light optimized physiological traits and enhanced the growth of ramie (*Boehmeria nivea* L.). *Photosynthetica* 2020, 58, 922–931. [CrossRef]

119. Saldarriaga, J.F.; Cruz, Y.; Lazzarini, L.E.S.; Bertolucci, S.K.V.; Pacheco, F.V.; dos Santos, J.; Silva, S.T.; de Carvalho, A.A.; Pinto, J.E.B.P. Quality and intensity of light on growth and production of volatiles. *Plant Cell Tissue Organ Cult.* 2015, 122, 299–308. [CrossRef]

120. Tuan, P.A.; Park, C.H.; Park, W.T.; Kim, Y.B.; Kim, Y.J.; Chung, S.O.; Kim, J.K.; Park, S.U. Expression levels of carotenoid biosynthetic genes and carotenoid production in the callus of *Scutellaria baicalensis* exposed to white, blue, and red light-emitting diodes. *Appl. Biol. Chem.* 2017, 60, 591–596. [CrossRef]

121. Miranda, N.A.; Xavier, A.; Otoni, W.C.; Gallo, R.; Gatti, K.C.; de Moura, L.C.; Souza, D.M.S.C.; Maggioni, J.H.; Santos, S.S.D.O. Quality and intensity of light in the in vitro development of microstumps of *Eucalyptus urophylla* in a photoautotrophic System. *For. Sci.* 2020, 66, 754–760. [CrossRef]

122. Kurilčik, A.; Miklušytė-Canova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. Responses of strawberry plantlets cultured in vitro under different LED lights and its correlations with antioxidant activities. *Pesqui Agropecu Bras.* 2020, 111505. [CrossRef] [PubMed]

123. Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). *Plant Cell Tissue Organ Cult.* 2003, 73, 43–52. [CrossRef]

124. Kim, Y.W.; Moon, H.K. Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (*Pinus densiflora*) using spectral lights. *Plant Cell Tissue Organ Cult.* 2010, 104, 303–309. [CrossRef]

125. Park, S.Y.; Yeung, E.C.; Paek, K.Y. Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes—LED on regeneration ability of *Phalaenopsis*. *Plant Cell Tissue Organ Cult.* 2005, 80, 161–167. [CrossRef]

126. Mai, N.T.; Binh, P.T.; Gam, D.T.; Khoi, P.H.; Hung, N.K.; Ngoc, P.B.; Ha, C.H.; Thanh Binh, H.T. Effects of light emitting diodes—LED on regeneration ability of *Coffea canephora* mediated via somatic embryogenesis. *J. Photochem. Photobiol. B Biol.* 2016, 38, 228–235. [CrossRef]

127. Chaves, I.; Byrdin, M.; Hoang, N.; van der Horst, T.J.; Batschauer, A.; Ahmad, M. The cryptochromes: Blue light photoreceptors in plants and animals. *Annu. Rev. Plant Biol.* 2011, 62, 335–364. [CrossRef]
135. Kapoor, S.; Raghuvanshi, R.; Bhardwaj, P.; Sood, H.; Saxena, S.; Chaurasia, O.P. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of *Rhodiola imbricata* edgew. *J. Photochem. Photobiol. B Biol.* 2018, 183, 238–265. [CrossRef]

136. Zushi, K.; Suehara, C.; Shirai, M. Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. *Sci. Hortic.* 2020, 274, 109673. [CrossRef]

137. De Hsie, B.S.; Bueno, A.I.S.; Bertolucci, S.K.V.; de Carvalho, A.A.; da Cunha, S.H.B.; Martins, E.R.; Pinto, J.E.B.P. Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of *Lippia rotundifolia* cham in vitro. *J. Photochem. Photobiol. B Biol.* 2019, 198, 111577. [CrossRef]

138. Watcharatanon, K.; Ingkaninan, K.; Putalun, W. Improved triterpenoid saponin glycosides accumulation in vitro culture of *Bacopa monnieri* (L.) wetts with precursor feeding and LED light exposure. *Industrial Crops Prod.* 2019, 134, 303–308. [CrossRef]

139. Silva, M.M.A.; de Oliveira, A.L.B.; Oliveira-Filho, R.A.; Camara, T.; Willadino, L.; Gouveia-Neto, A. The effect of spectral light quality on in vitro culture of sugarcane. *Acta Sci. Biol. Sci.* 2016, 38, 157–161. [CrossRef]

140. Silva, T.D.; Batista, D.S.; Fortini, E.A.; de Castro, K.M.; Felipe, S.H.S.; Fernandes, A.M.; de Jesus Sousa, R.M.; Chagas, K.; da Silva, J.V.; de Freitas Correia, L.N.; et al. Blue and red light affects morphogenesis and 20-hydroxyecdysone content of in vitro *Pfaffia glomerata* accessions. *J. Photochem. Photobiol. B Biol.* 2020, 203, 111761. [CrossRef] [PubMed]

141. Mamedes-Rodrigues, T.; Batista, D.; Napoleão, T.; Cruz, A.; Fortini, E.; Nogueira, F.; Romanel, E.; Otoni, W. Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in *Brachypodium distachyon*. *Plant Cell Tissue Organ Cult.* 2020, 33, 1–14. [CrossRef]

142. Xu, Z.; Rothstei, S.J. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in *Arabidopsis*. *Plant Signal. Behav.* 2018, 13, e1451708. [CrossRef] [PubMed]

143. Li, C.; Xu, Z.; Dong, R.; Chang, S.; Wang, L.; Khalil-Ur-Rehman, M.; Tao, J. An RNA-seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. *Front. Plant Sci.* 2017, 8, 78. [CrossRef] [PubMed]

144. Boonsongcheep, P.; Sae-foo, W.; Banpakoat, K.; Channarong, S.; Chitsaithan, S.; Uaufa, P.; Putha, W.; KerdSiri, K.; Putalun, W. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants *Drosera burmannii* and *Drosera indica*. *J. Photochem. Photob. B Biol.* 2019, 199, 111628. [CrossRef]

145. Park, S.Y.; Man-Jo Kim, M.J. Development of Zygotic Embryos and Seedlings is Affected by Radiation Spectral Compositions from Light Emitting Diode (LED) System in Chestnut (*Castanea crenata* S. et Z.). *J. Korean For. Soc.* 2010, 99, 750–754.

146. DellaPenna, D.; Fogson, B.J. Vitamin synthesis in plants: Tomatoes and carotenoids. *Annu. Rev. Plant Biol.* 2006, 57, 711–738. [CrossRef] [PubMed]

147. Lichtenthaler, H.K. Biosynthesis, accumulation and emission of carotenoids. *Photosynth. Res.* 2007, 92, 163–179. [CrossRef]

148. Stange, C.; Flores, C. Carotenoids and photosynthesis—Regulation of carotenoid biosynthesis by photoceptors. In *Advances in Photosynthesis—Fundamental Aspects*; Najafpour, M.M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 77–96.

149. Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. *Biochim. Biophys. Acta* 2012, 1817, 182–183. [CrossRef]

150. Telfer, A. What is β-carotene doing in the photosystem II reaction centre? *Phil. Trans. R. Soc. Lond. B* 2002, 357, 1431–1440. [CrossRef] [PubMed]

151. Fu, W.; Guðmundsson, Ö.; Paglia, G.; Herjólfsen, G.; Andrésson, Ö.S.; Palsson, B.Ø.; Brynjólfsson, S. Enhancement of carotenoid biosynthesis in the green microalga *Dunaliella salina* with light-emitting diodes and adaptive laboratory evolution. *Appl. Microbiol. Biotechnol.* 2013, 97, 2395–2403. [CrossRef]

152. Rafia, M.M.; Kanakasabai, S.; Reyesa, M.D.; Brightb, J.J. Lycopene modulates growth and survival associated genes in prostate cancer. *J. Nutr. Biochem.* 2013, 24, 1724–1734. [CrossRef]

153. Tong, C.; Peng, C.; Wang, L.; Zhang, L.; Yang, X.; Xu, P.; Li, J.; Delplancke, T.; Zhang, H.; Qi, H. Intravenous administration of lycopene, a tomato extract, protects against Myocardial Ischemia-Reperfusion Injury. *Nutrients* 2016, 8, 138. [CrossRef]

154. Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. *Mol. Nutr. Food Res.* 2017, 61, 1–25. [CrossRef]

155. Walk, A.M.; Khan, N.A.; Barnett, S.M.; Raine, L.B.; Kramer, A.F.; Cohen, N.J.; Moulton, C.J.; Renzi-Hammond, L.M.; Hammond, B.R.; Hillman, C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. *Int. J. Psychophysiol.* 2017, 118, 1–8. [CrossRef]

156. Ma, G.; Zhang, L.C.; Kato, M.; Yamawaki, K.; Asai, T.; Nishikawa, F.; Ikoma, Y.; Mat-sumoto, H.; Yamauchi, T.; Kamisako, T. Effect of electrostatic atomization on ascorbate metabolism in postharvest broccoli. *Postharvest Biol. Technol.* 2012, 74, 19–25. [CrossRef]

157. Xie, B.; Liu, H.; Song, S.; Sun, G.; Chen, R. Effects of light quality on the quality formation of tomato fruits. *Adv. Biol. Sci. Res.* 2016, 3, 11–15.

158. Mol, J.; Grotewald, E.; Koes, R. How genes paint flowers and seeds. *Trends Plant Sci.* 1998, 3, 212–217. [CrossRef]

159. Winkelm-Shirley, B. Biosynthesis of flavonoids and effects of stress. *Curr. Opin. Plant Biol.* 2002, 5, 218–223. [CrossRef]

160. Bradshaw, H.D.; Schemske, D.W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. *Nature* 2003, 426, 176–178. [CrossRef]
Molecules 2021, 26, 1477

161. Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dog wood. *Plant Physiol.* 2001, 127, 566–574. [CrossRef] [PubMed]

162. Stafford, H.A. Flavonoid evolution: An enzymic approach. *Plant Physiol.* 1991, 96, 680–685. [CrossRef]

163. Pollastri, S.; Tattini, M. Flavonol compounds for old roles. *Ann. Bot.* 2011, 108, 1225–1233. [CrossRef]

164. Huché-Thélier, L.; Crespel, J.; Le Gourrierec, P.; Morel, S.; Soulaiman Sakr, L.; Leduc, N. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. *Environ. Exp. Bot.* 2016, 121, 22–38. [CrossRef]

165. Manhita, A.C.; Teixeira, D.M.; Costa, C.T. Application of sample disruption methods in the extraction of anthocyanins from solid or semi-solid vegetable samples. *J. Chromatogr. A* 2006, 1129, 14–20. [CrossRef]

166. Gould, K.S. Nature’s swiss army knife: The diverse protective roles of anthocyanins in leaves. *J. Biomed. Biotechnol.* 2004, 314–320. [CrossRef] [PubMed]

167. Chalker-Scott, L. Environmental significance of anthocyanins in plant stress response. *Photochem. Photobiol.* 1999, 70, 1–9. [CrossRef]

168. Mizuno, T.; Amaki, W.; Watanabe, H. Effects of Monochromatic Light Irradiation by LED on the Growth and Anthocyanin Contents in Leaves of Cabbage Seedlings. *Acta Horticult.* 2011, 907, 179–184. [CrossRef]

169. Brazaitytė, A.; Jankauskiene, J.; Novickovas, A. The effects of supplementary short-term red LEDs lighting on nutritional quality of *Perilla frutescens* L. microgreens. *Rural Dev.* 2013, 6, 54–58.

170. Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. *Plant Cell* 1995, 7, 1085–1097. [CrossRef]

171. Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. *New Phytol.* 1994, 127, 617–633. [CrossRef]

172. Zhang, Z.Z.; Li, X.X.; Chu, Y.N.; Zhang, M.X.; Wen, Y.Q.; Duan, C.Q.; Pan, Q.H. Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. *Plant Physiol. Biochem.* 2012, 57, 74–83. [CrossRef]

173. Samuolienė, G.; Urbonavičiūtė, A.; Brazaitytė, A.; Šabajevienė, G.; Sakalauskaitė, J.; Duchovskis, P. The impact of LED illumination on antioxidant properties of sprouted seeds. *Centr. Eur. J. Biol.* 2011, 6, 68–74. [CrossRef]

174. Zhang, S.; Ma, J.; Zou, H.; Zhang, L.; Li, S.; Wang, Y. The combination of blue and red LED light improves growth and phenolic acid contents in *Salvia miltiorrhiza* bunge. *Ind. Crops Prod.* 2020, 158, 12959. [CrossRef]

175. Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. *Horticience* 2013, 48, 988–995. [CrossRef]

176. Chen, X.; Yang, Q.; Song, W.; Wang, L.; Guo, W.; Xue, X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. *Sci. Horticult.* 2017, 223, 44–52. [CrossRef]

177. Ha, S.; Jung, J.; Park, J.; Lee, D.; Choi, J.; Yang, J. Effect of light-emitting diodes on cordycepin production in submerged *Cordyceps militaris* cultures. *J. Mushroom* 2020, 18, 10–19.

178. Nguyen, D.T.; Kitayama, M.; Lu, N.; Takagaki, M. Improving secondary metabolite accumulation, mineral content, and growth of coriander (*Coriandrum sativum* L.) by regulating light quality in a plant factory. *J. Hortic. Sci. Biotechnol.* 2020, 95, 356–363. [CrossRef]

179. Pola, W.; Sugaya, S.; Photchanachai, S. Color development and phytochemical changes in mature green chili (*Capsicum annuum* L.) exposed to red and blue light-emitting diodes. *J. Agric. Food Chem.* 2020, 68, 59–66. [CrossRef] [PubMed]