The ecological and economic values of a 50 years old secondary forest in East Kalimantan, Indonesia

KARMINI1,∗, KARYATI1,∗∗, KUSNO YULI WIDIATI2

1Faculty of Agriculture, Universitas Mulawarman. Jl. Pasir Balengkong, Kampus Gunung Kelua, Samarinda 75123, East Kalimantan, Indonesia. Tel.: +62-541-749161, Fax.: +62-541-738341, *email:karmini@faperta.unmul.ac.id
2Faculty of Forestry, Universitas Mulawarman. Jl. Penajam, Kampus Gunung Kelua, Samarinda 75123, East Kalimantan, Indonesia. Tel.: +62-541-735089, 749068, Fax.: +62-541-735379, **email:karyati@fahutan.unmul.ac.id

ABSTRACT. Karmini, Karyati, Widiaty KY. 2021. The ecological and economic values of a 50 years old secondary forest in East Kalimantan, Indonesia. Biodiversitas 22: 4597-4607. Secondary forests in the tropics are often ignored since they are assumed to have low ecological functions while on the other hand the economic values have been reduced. This study aimed to analyze the ecological and economic values of a 50-year-old secondary forest in East Kalimantan that experienced several land-use changes. The ecological aspects analyzed were stand structure, floristic composition, and species diversity. Economic aspects include log prices, logging costs, profit margins, and stumpage values. A vegetation survey of woody trees with a diameter at breast height of more than 5 cm was carried out on ten plots measuring 20 m × 20 m each. A total of 437 trees belonging to 38 species, 30 genera, and 19 families were recorded with Moraceae and Euphorbiaceae were the most dominant families with Family Important Value (FIV) of 86.79. The three most dominant species were Macaranga motleyana (IVi of 50.95), Artocarpus elasticus (IVi of 34.41), and Symlocos fasciculata (IVi of 31.46). The trees in the study plot have a diversity index of 1.33, dominance index of 0.07, evenness index of 0.37, and species richness of 6.09. The average logging cost, log price, lumber price, profit margin, and stumpage value at secondary forest were USD69.43 m⁻³, USD44.63 m⁻³, USD100.03 m⁻³, USD10.30 m⁻³, and USD28.73 ha⁻¹, respectively. The 50 years old secondary forests in East Kalimantan have biodiversity, especially trees that have economic value, therefore their existence needs to be preserved and their use is carried out by maintaining and increasing biodiversity.

KEYWORDS: Abandoned land, diversity, fallow land, secondary forest, stumpage value

INTRODUCTION

Tropical forest management at a local level requires site-specific information about the region (Manyanda et al. 2021). It is needed information about the transformation process that occurs in the region. This information is important because according to Borges et al. (2021), historical variation of land use will affect the differences in biodiversity and biomass in urban forests and rural forests in the tropics. Furthermore, Naime et al. (2020) explained during the natural regeneration process in tropical secondary forests, there is a change in the magnitude of the trade-off and provision of ecosystem services. Other information that needed to be known relates to biophysical and social-economic variables. Biophysical and social variables are the basis for consideration in understanding the structure and biodiversity of tropical secondary forests (McClellan et al. 2018).

The result of Chen et al. (2020) study showed although tree size and regeneration in the secondary forest are smaller than in the primary forest, woody plant species, species richness, and proportion of young bamboo are generally higher (Chen et al. 2020). Secondary forest is undergoing succession to form tree canopy and palm species composition through the successful growth of seedlings, saplings, and young trees from mature forest species (Norden et al. 2009). Tree diversity of abandoned land increased after 20 years, but remained 22% lower than natural forest (Nath et al. 2021). In another study, sixty percent of the total basal area and volume were contributed by fast-growing species dominant in secondary forests. In this secondary forest, trees aged 5, 10, and 20 years were categorized as an intermediate diversity, low dominance, and high evenness (Karyati et al. 2018).

Light competition and species characteristics greatly affect tree growth and survival which determine to stand architecture (Khamyong et al. 2018). The surrounding environment affects the plant community at the edge of the forest which typically has a low basal area, tree density, large-diameter trees, and AGB. The distribution of tree species is uniform, but not evenly distributed (Jana and Jusoh 2021). The valuation of tropical forests potential could be done with integration between some indicators of ecosystem services (such as provision, regulating, supporting, and cultural services) and the concept of total economic value (such as use-value, indirect use-value, and no-use value) (Matthew et al. 2019). A study found that the total economic value of forest ecosystem services is estimated at RM 13 billion (Nitanan et al. 2020). While the average value of stump on abandoned land after shifting cultivation and after traditional plantations are USD 83.05 ha⁻¹ and USD 51.56 ha⁻¹ respectively (Karmini et al. 2020a, Karmini et al. 2020b).

Many studies report the ecological aspects (Karyati et
al. 2013, 2018; Chen et al. 2020; Matsuo et al. 2021) and
the economic aspects (Naime et al. 2020; Nitanan et al. 2020) of secondary forests separately. Several studies that
simultaneously combine the ecological and economic
aspects of several secondary forest types with different
land-use histories have been reported (Matthew et al. 2019;
Karmini et al. 2020a, 2020b). However, similar studies in
50-year-old secondary forest with several different land-use
histories are rarely reported. The purpose of this study was
to analyze the ecological and economic aspects of a 50-
year secondary forest in East Kalimantan that experienced
different land-use changes.

MATERIALS AND METHODS

Study site

The study was conducted at a secondary forest aged 50
years old in Air Putih area, Samarinda Ulu Sub-district,
Samarinda City, East Kalimantan Province, Indonesia. The
research plot is located on the side of the Samarinda road to
Kutai Kartanegara District at the coordinate point
117°6'29.7641"E; 0°26'56.5901"S (Figure 1 and 2). Based
on interviews with the landowners, the history of land use
of the studied site was forest clearing for shifting
cultivation in 1969. The shifting cultivation activity was
stopped due to a forest fire in 1983 which burned all the
vegetation in the research plot. The next land use is the
cultivation of rubber and local fruits. The land was then left
until the research took place, although it was known that
there was considerable coal potential in the location.

Procedures

The study was carried out from March to July 2021.
Vegetation survey was conducted at ten plots, each
measuring 20 m × 20 m. The measurements of diameter at
breast height (DBH) and total tree height, and identification
of tree species were performed to all woody trees with
DBH>5 cm in the study plot.

Data analysis

Ecological analysis

The individual basal area (BA) and volume (V) were
measured by using the following formula (Husch et al. 1982):

Individuals BA = π × (DBH/2)^2. 10^-4 [1]
Individuals V = ¼ π × DBH^2. 10^-4 × H × f [2]

Where: DBH is the diameter at breast height (cm), ‘H’
is tree height (m), and ‘f’ is form factor.

Figure 1. Map of study site in Air Putih area, Samarinda Ulu Sub-
district, Samarinda City, East Kalimantan Province, Indonesia

Figure 2. Vegetation condition of a 50 years old secondary forest in East Kalimantan, Indonesia
The importance value index (IVi) was analyzed to determine the dominant species of community within the studied plots (Fachrul 2007):

\[
IV_i = RF + Rd + RD
\]

Where: RF is relative frequency, Rd is relative density, and RD is relative dominance.

The four diversity indices were used to describe the species diversity of standing trees in the studied plots. These diversity indices were Shannon-Wiener’s diversity index \((H') \), Simpson’s dominance index \((D) \), Pielou’s evenness index \((J) \), and Margalef’s richness index \((R) \) (Odum 2005):

\[
H' = -\sum \frac{n_i}{N} \ln \left(\frac{n_i}{N} \right)
\]

\[
D_i = \sum \left(\frac{n_i}{N} \right)^2
\]

\[
J = \frac{H'}{\ln S}
\]

\[
R = \frac{(S - 1)}{\ln n}
\]

Where: \(n_i \): number of individuals of the \(i \)-th species, \(N \): total number of all the individuals in a unit area, and \(S \): number of species in each plot.

Economic analysis

The estimation of the price of logs was carried out in several stages. The tree diameter data that has been collected will be analyzed and continued with the calculation of the number of logs produced from the felled trees. The cost of felling trees was USD69.43 m\(^3\) at the study location at the time of the research. The data in Table 1 shows the number of logs that can be obtained from trees with a diameter of up to 75 cm and above. Based on the diameter class and the number of logs, it can be seen the equivalent merchantable height.

The reduction factor in the price of logs was determined based on the Diameter at Breast Height (DBH) size class and the data can be seen in Table 2. The high number of trees with DBH size class \(<15\) cm on study location was the background of Karmini et al. (2020b) determine the assumption that the price reduction factor for logs with a DBH size class \(<15\) cm is 0.60.

This study also set a profit ratio of 30% and profit margin was determined by the formula according to Dahalan (2011) as follows:

\[
PM_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} \left(P_{ij} \times PR \right) / (1 + PR)
\]

Table 1. Merchantable tree heights in the studied site of secondary forest

Diameter class (cm)	Number of logs (5 m long)	Equivalent merchantable height (m)
\(<15\)	0.5	2.5\(^a\)
15-30	1	5
+30-60	2	10
+60-75	3	15
75 up	4	20

Note: Forestry Department of Peninsular Malaysia (FDPM) (1997) as cited by Dahalan (2011); Karmini et al. (2020a); *Karmini et al. (2020b)

Table 2. Reduction factor of logs price based on DBH class

DBH size class (cm)	Reduction factor
\(<15\)	0.60\(^a\)
15-29	0.45
30-44	0.30
45-49	0.15
50-54	0.025
> 55	0.00

Note: Karmini et al. (2020a); *Karmini et al. (2020b)

Where:

\(PM_{ij} \): profit margin;

\(P_{ij} \): logs price for each species at sawmill based on diameter class;

\(PR \): profit ratio;

\(i \): an index for each species \((i = 1, 2, 3, 4,, n)\);

\(j \): an index for diameter class \((i = 1, 2, 3, 4,, n)\).

The exchange rate was USD1.00 equal to IDR14,403.70 at 22 August 2021. The following formula is used to evaluated stumpage values:

\[
S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} V_{ij} \left(P_{ij} + C + PM \right)
\]

Where:

\(S_{ij} \): stumpage value for each species and diameter class (USD ha\(^{-1}\));

\(V_{ij} \): volume of timber for each species and diameter class (m\(^3\));

\(P_{ij} \): logs price for each species at sawmill based on diameter class (USD m\(^3\));

\(C \): average logging cost (USD ha\(^{-1}\));

\(PM_{ij} \): profit margin (USD m\(^3\));

\(i \): an index for each species \((i = 1, 2, 3, 4,, n)\);

\(j \): an index for diameter class \((i = 1, 2, 3, 4,, n)\).

RESULTS AND DISCUSSION

Ecological characteristics of 50-years secondary forest

Diameter at breast height (DBH) and height distributions

The diameter distribution is in the form of an inverted J curve with a high number of individuals in the low diameter class and a low number of individuals in the high
diameter class. A similar pattern of diameter distribution in various types of tropical secondary forest was also found in many studies (e.g., Feldpausch et al. 2007; Alvarez-Yépez et al. 2008; Karmini et al. 2020a, 2020b). Eighty percent of the diameters of the trees belong to the DBH class of 5.0-15.0 cm (350 trees), followed by the DBH class of 15.1-25.0 cm (63 trees or 14%), DBH class of 25.1-35.0 cm (19 trees or 4%), and DBH class >35.0 cm (5 trees or 1%) (Figure 3).

Based on the height class, the trees belonged to class 0-5.0 m (108 trees or 25%), class 5.1-10.0 m (203 trees or 46%), and class 10.1-15.0 m (110 trees or 25%). A very small portion of higher trees with a total of 11 and 5 trees was included in the 15.1-20.0 m (3%) and >20.0 m (1%) as shown in Figure 4. The distribution of height class shows a slightly skewed toward positive pattern (Ohtsuka 2002). As early successional pioneer species began to disappear and long-lived pioneer species emerged (Norden et al. 2009), it was shown that intermediate-aged secondary forest between 30 and 50 years had lower structural complexity based on tree height and average stem diameter (Otuoma et al. 2014). The light-demanding pioneer species have also disappeared in 20-year-old secondary forests (Karyati et al. 2018). During the succession process there was a rapid increase in height and the stand size increased rapidly where the tree canopy was taller, thicker, and the canopy larger (Matsuo et al. 2021). Most late-successional species growing in old secondary forests can grow long enough to allow them to reach tree heights and average trunk DBH equal to or greater than trees in mature plantations (Otuoma et al. 2014).

Species richness, density, basal area, and volume

The vegetation survey of woody trees with a DBH of more than 5 cm in the 50 years secondary forest recorded 437 trees, 38 species, 30 genera, and 19 families. Table 3 presents the species, density, basal area, and volume of species in the study plot. The trees had DBH ranging from 5.1 to 56.3 cm with an average DBH of 11.5 cm. Meanwhile, the tree height ranged between 2.0 and 25.0 m with an average height of 8.50 m. The total basal area (BA) and volume of trees in the 50 years secondary forest were 15.36 m² ha⁻¹ and 122 m³ ha⁻¹, respectively. The smaller total BA (9.75 and 9.44 m² ha⁻¹) and volume (91.97 and 76.86 m³ ha⁻¹) were reported in abandoned land after shifting cultivation and traditional garden (Karyati et al. 2020a, 2020b). The three dominant species in terms of total BA and volume were Artocarpus elasticus (total BA=3.28 m² ha⁻¹ and volume=35.68 m³ ha⁻¹), Mangifera motleyana (total BA=2.88 m² ha⁻¹ and volume=19.77 m³ ha⁻¹), and Symlocos fuscasculate (total BA=1.85 m² ha⁻¹ and volume=12.25 m³ ha⁻¹). These three tree species contributed more than 50% of the total basal area and volume. The other four species of Vernonia arborea, Ficus septica, Talipariti simile, and Durio sp. had a total volume of more than 3%.

The studied plots were dominated by fast-growing species such as Artocarpus dadah, Artocarpus tamaran, Artocarpus elasticus, Macaranga gigantea, Artocarpus heterophyllus, Macaranga motleyana, Macaranga sp., dan Macaranga tanarius. In other studies, similar common fast growing species were also found, including Macaranga spp and Artocarpus spp. in 5 and 10 years old abandoned lands (Karyati et al. 2018), abandoned land after shifting cultivation (Karmini et al. 2020a), and abandoned land after traditional garden (Karmini et al. 2020b) as well as seedlings and saplings in 3, 5, 10, and 20 years of fallow lands (Karyati et al. 2013). Hevea brasiliensis and Ceiba pentandra are remnants of plantation crops grown at this location. Meanwhile, Durio sp. is a native plant of Kalimantan.

The three families of 19 families with the high basal area and volume at the study site were Moraceae, Euphorbiaceae, and Symplocaceae as shown in Table 4. The total basal area and volume of woody trees belonging to the three families is more than 70%. Other families that are also quite dominant are Malvaceae, Asteraceae, Fabaceae, and Phyllanthaceae. Total tree species belonging to Moraceae, Euphorbiaceae, and Symplocaceae were 7, 8, and 1 respectively. This shows the trees in these families play an important role in plant structure and composition at the study site. Three tree species belonged to Malvaceae and Phyllanthaceae. Meanwhile, Cannabaceae and Fabaceae had two tree species. The other 12 families are only consisting of 1 tree species. Another study found the family consisting of the highest number of species in secondary forest of uneven age is Moraceae, followed by Apocynaceae, Euphorbiaceae, Fabaceae, Rubiaceae, Sapindaceae, and Sterculiaceae (Aghimien et al. 2016).

![Figure 3](image-url) Distributions of diameter at breast height (DBH) of tree species in 0.4 ha of 50 years old secondary forest

![Figure 4](image-url) Distributions of height of tree species in 0.4 ha of 50 years old secondary forest
Table 3. Species richness, density, basal area, and volume of species (DBH of ≥ 5 cm) in the study plot

Species	N	Average of DBH (cm)	Average of height (m)	BA (m² ha⁻¹)	Volume (m³ ha⁻¹)
				Total %	Total %
Artocarpus elastica	27	21.9	13.2	3.28	21.33
Macaranga motleyana	105	11.2	9.3	2.88	18.76
Symlocos fasciculata	51	11.3	6.7	1.85	12.04
Vernonia arborea	8	21.0	13.4	0.83	5.40
Ficus septica	29	11.6	7.5	0.93	6.03
Taliparite simile	10	12.2	9.1	0.48	3.11
Durio sp.	1	38.2	25.0	0.29	1.86
Archidendron pauciflorum	10	15.2	9.2	0.52	3.37
Bridelia stipularis	18	11.1	8.7	0.48	3.13
Derris caudatilimba	16	10.3	9.0	0.41	2.70
Macaranga gigantea	9	14.1	8.9	0.41	2.66
Artocarpus tamaran	6	11.0	7.6	0.22	1.43
Ficus uncinata	34	7.1	7.0	0.37	2.38
Nephelem lappaceum	2	18.8	12.5	0.16	1.06
Ecclinusa ramiflora	8	11.1	11.5	0.20	1.31
Glochidion obscurum	1	27.0	15.5	0.14	0.94
Macaranga tanarius	12	8.5	7.6	0.20	1.31
Hevea brasiliensis	11	9.9	8.9	0.22	1.44
Artocarpus dadah	14	10.0	6.9	0.28	1.85
Rhodannia sp.	6	12.3	9.7	0.19	1.22
Vitex pinnata	14	8.7	6.1	0.23	1.48
Homalanthus populneus	8	7.9	6.8	0.12	0.76
Aleurites moluccanus	3	10.9	8.7	0.08	0.55
Macaranga sp.	1	19.1	9.5	0.07	0.47
Artocarpus heterophyllus	5	9.7	4.6	0.10	0.65
Mallotus paniculatus	4	8.8	8.3	0.06	0.41
Nauclea xanthoxylon	2	13.2	5.5	0.07	0.45
Litslea firma	1	12.7	11.0	0.03	0.21
Melicope luna-ankenda	3	8.2	8.0	0.04	0.27
Garcinia intermediia	2	8.6	9.0	0.03	0.19
Ficus aurata	3	7.7	5.3	0.04	0.25
Raucaerae sp.	3	7.1	7.0	0.03	0.20
Ceiba pentandra	7	6.3	2.9	0.06	0.36
Cratoxylum arborescens	1	10.8	6.0	0.02	0.15
Gironniera celidiodiofa	1	8.3	10.0	0.01	0.09
Alstonia scholaris	1	8.6	6.0	0.01	0.09
Dillenia excelsa	1	6.4	5.0	0.01	0.05
Trema orientalis	1	5.1	3.5	0.01	0.03
Total	437.0	461.8	330.3	15.36	100.00
Average	11.5	12.2	8.7	0.40	3.21
Minimum	1.0	5.1	2.9	0.01	0.01
Maximum	103.0	38.2	25.0	3.28	35.68

Note: N: number of individuals (trees), DBH: diameter at breast height, BA: basal area

Importance value index (IVi)

Most of the dominant tree species in terms of basal area and volume are also dominant species based on the importance value index (IVi). The IVi of tree in the studied site is shown in Table 5. The five most dominant species in terms of IVi were Macaranga motleyana (IVi of 50.95), followed by Artocarpus elastica (IVi of 34.41), Symlocos fasciculata (IVi of 31.46), Ficus septica (IVi of 20.43), and Ficus uncinala (IVi of 15.33). The other three species of Derris caudatilimba (IVi of 12.40), Bridelia stipularis (IVi of 10.70), and Archidendron pauciflorum (IVi of 9.97) were also dominant in this site. Seven of 38 species recorded had an IVi of more than 10.00, 9 species had an IVi of 5.00-10.00 and the other 22 species have an IVi of less than 5.00.

Moraceae and Euphorbiaceae had the family important value (FIV) of 86.79 (Table 6). Tree species including Moraceae are Artocarpus dadah, Artocarpus elastica, Artocarpus heterophyllus, Artocarpus tamaran, Ficus aurata, Ficus septica, and Ficus uncinala. Meanwhile Euphorbiaceae consists of Aleurites moluccanus, Hevea brasiliensis, Homalanthus populneus, Macaranga gigantea, Macaranga motleyana, Macaranga sp., Macaranga tanarius, and Mallotus paniculatus. Similar results of prior studies also report that Moraceae and Euphorbiaceae are the important and dominant families in tropical lands (Danquah et al. 2011; Karjati et al. 2018; Karmini et al. 2020a; Karmini et al. 2020b). The floristic difference between forest fringes and the core of the forest is low tree diversity and distribution. The forest fringe plant community is dominated by Dipeterocarpaceae and Euphorbiaceae (Jana and Jusoh 2021).
Table 4. Family, density, basal area, and volume of family (DBH of ≥ 5 cm) in the study plot

Family	N	Average of DBH (cm)	Average of height (m)	BA (m² ha⁻¹)	Volume (m³ ha⁻¹)
Moraceae	118	12.3	8.4	5.21	33.93
Euphorbiaceae	151	10.9	9.0	4.05	26.37
Symlocaceae	51	11.3	6.7	1.85	12.04
Malvaceae	18	11.3	7.6	0.82	5.34
Asteraceae	8	21.0	13.4	0.83	5.40
Fabaceae	26	12.2	9.1	0.93	6.07
Phyllanthaceae	22	11.3	8.7	0.66	4.27
Sapindaceae	2	18.8	12.5	0.16	1.08
Sapotaceae	8	11.1	11.5	0.20	1.31
Myrtaceae	12	12.3	9.7	0.19	1.22
Lamiaceae	14	8.7	6.1	0.23	1.48
Rubiaceae	2	13.2	5.5	0.07	0.45
Lauraceae	1	12.7	11.0	0.03	0.21
Rutaceae	3	8.2	8.0	0.04	0.27
Clusiaceae	2	8.6	9.0	0.03	0.19
Cannabaceae	2	6.7	6.8	0.02	0.12
Hypericaceae	1	10.8	6.0	0.02	0.15
Apocynaceae	1	8.6	6.0	0.01	0.09
Dilleniaceae	8	6.4	6.9	0.04	0.05
Total	437.0	216.2	159.8	15.36	122.07
Average	23.0	11.4	8.4	0.03	6.42
Minimum	1.0	6.4	5.0	0.01	0.03
Maximum	151.0	21.0	13.4	0.19	6.76

Note: N: number of individuals (trees), DBH: diameter at breast height, BA: basal area.

Table 5. Importance value index (IVI) of trees (DBH of > 5 cm) in 0.4 hectare of the study plot

Species	Family	RF (%)	Rd (%)	RD (%)	IVI (%)
Macaranga motleyana	Euphorbiaceae	8.62	23.57	18.76	50.95
Artocarpus elasticus	Moraceae	6.90	6.18	21.33	34.41
Symlocos fasciculata	Symlocaceae	7.76	11.67	12.04	31.46
Ficus septica	Moraceae	7.76	6.64	6.03	20.43
Ficus uncinata	Moraceae	5.17	7.78	2.38	15.33
Derris caudatilinba	Fabaceae	6.03	3.66	2.70	12.40
Bridelia stipularis	Phyllanthaceae	3.45	4.12	3.13	10.70
Archidendron pauciflorum	Fabaceae	4.31	2.29	3.37	9.97
Vernonia arborea	Astereae	1.72	1.83	5.40	8.95
Macaranga gigantea	Euphorbiaceae	3.45	2.06	2.66	8.17
Vitis pinnata	Lamiaceae	3.45	3.20	1.48	8.13
Talipariti simile	Malvaceae	2.59	2.29	3.11	7.98
Macaranga tanarius	Euphorbiaceae	3.45	2.75	1.31	7.51
Artocarpus dadah	Moraceae	1.72	3.20	1.85	6.77
Homalanthus populneus	Euphorbiaceae	3.45	1.83	0.76	6.04
Hevea brasiliensis	Euphorbiaceae	1.72	2.52	1.44	5.67
Eclpinus ramiflora	Sapindaceae	1.72	1.83	1.31	4.87
Artocarpus tamaran	Moraceae	1.72	1.37	1.43	4.53
Rhodannia sp.	Myrtaceae	1.72	1.37	1.22	4.31
Mallotus paniculatus	Euphorbiaceae	2.59	0.92	0.41	3.91
Melicope lawa-ankanda	Rutaceae	2.59	0.69	0.27	3.54
Nephelium lappeceum	Sapindaceae	1.72	0.46	1.06	3.13
Aleurites moluccanus	Euphorbiaceae	1.72	0.69	0.55	2.96
Durio sp.	Malvaceae	0.86	0.23	1.86	2.96
Ceiba pentandra	Malvaceae	0.86	1.60	0.36	2.83
Ficus aurata	Moraceae	1.72	0.69	0.25	2.66
Artocarpus heterophyllus	Moraceae	0.86	1.14	0.65	2.60
Baccoura sp.	Phyllanthaceae	1.72	0.69	0.20	2.61
Glochidion obscurum	Phyllanthaceae	0.86	0.23	0.94	2.03
Nauclea xanthoxylon	Rubiaceae	0.86	0.46	0.45	1.77
Macaranga sp.	Euphorbiaceae	0.86	0.23	0.47	1.56
Garcinia intermedia	Clusiaceae	0.86	0.46	0.19	1.51
Litsea firma	Lauraceae	0.86	0.23	0.21	1.30
Cratoxylum arborescens	Hypericaceae	0.86	0.23	0.15	1.24
Alstonia scholaris	Apocynaceae	0.86	0.23	0.09	1.19
Gironnierea celitidijola	Cannabaceae	0.86	0.23	0.09	1.18
Dillenia excelsa	Dilleniaceae	0.86	0.23	0.05	1.14
Terebra orientalis	Cannabaceae	0.86	0.23	0.03	1.12
Total	100.00	100.00	100.00	100.00	300.00

Note: RF: relative frequency, Rd: relative density, RD: relative dominance, IVI: importance value index.
Species richness indicates the number of species in an area, while evenness is a relative measure of the abundance of different species that make up the wealth of an area (Supriatna 2018). The results showed that high diversity (H'), evenness (J'), and richness (R) tended to cause low dominance (D_s). Similar results were reported for the tree diversity index with DBH > 5 cm in plots with 5, 10, 20 years abandoned land (Karmini et al. 2018), abandoned land after shifting cultivation (Karmini et al. 2020a), and abandoned land after traditional gardening (Karmini et al. 2020b). In addition, due to the poor status of soil fertility in an area, a period of 50 years of abandoned land is not sufficient for lands to restore their vegetation conditions such as natural forests (Washi et al. 2011). This is supported with the Brearley et al. (2004) study in Central Kalimantan Province, Indonesia that found Shannon-Wiener diversity index (H') at an old secondary forest and primary forest were 3.40 and 4.17, respectively, that meant species diversity indices at an old secondary forest was lower than at primary forest.

The economic value of 50 years secondary forest

Logging costs

In this study, the logging costs were the same for all tree species, i.e. USD69.43 m3 (Table 8). The total logging costs of 38 species in this study location were USD3,526.20 ha$^{-1}$ or USD2,638.21 m3 with an average of USD92.79 ha$^{-1}$ and USD69.43 m3 for each species. The total logging costs in this study were higher than that of other previous studies (Karmini et al. 2020a; Karmini et al. 2020b). According to Karyati et al. (2021), the factors that influence logging costs include topography, tree dominance and species, density, tree diameter, log volume, felling productivity, loggers’ experience, work, and remuneration systems, management competence, and other factors.

Prices of logs and lumber

The results of this study (Table 9) show that the total logs price of 38 species was USD1,696.03 m3 with an average of USD44.63 m3 species$^{-1}$. Meanwhile, the total lumber price of 38 tree species studied was USD3,801.11 m3 with an average of USD100.03 m3 species$^{-1}$. The lumber price of 10 tree species differed from one another while the lumber price of 28 other tree species was the same in the study location. A total of 13 tree species has the same logs price, which was USD20.83 m3. There were three tree species (Vernonia arborea, Macaranga sp., and Glochidion obscurnum) which had a log price of USD28.64 m3. The total logs and lumber prices in this study was lower than the results of other previous studies (Karmini et al. 2020a, Karmini et al. 2020b). According to Karyati et al. (2021), the factors that determine the difference and the price of logs and lumber include tree species, tree diameter, wood quality, total tree individuals, harvesting cycle, supply, demand, use, price competition, substitute products, and other factors.

Table 6. Family Importance Value (FIV) of trees (DBH of > 5 cm) in 0.4 hectare of the study plot

Species	RF	Rd	RD	FIV
Moraceae	25.86	27.00	33.93	86.79
Euphorbiaceae	23.86	34.35	26.37	86.79
Symlocaceae	7.76	11.67	12.04	31.46
Fabaceae	10.34	5.95	6.07	22.36
Phyllanthaceae	6.03	5.03	4.27	15.34
Malvaceae	4.31	4.12	5.34	13.77
Asteraceae	1.72	1.83	5.40	8.95
Lamiaceae	3.45	3.20	1.48	8.13
Sapotaceae	1.72	1.83	3.11	4.87
Myrtaceae	1.72	1.37	1.22	4.31
Rutaceae	2.59	0.69	0.27	3.54
Sapindaceae	1.72	0.46	1.06	3.25
Cannabaceae	1.72	0.46	0.12	2.30
Rubiaceae	0.86	0.46	0.45	1.77
Clusiaceae	0.86	0.46	0.19	1.51
Lauraceae	0.86	0.23	0.21	1.30
Hypericaceae	0.86	0.23	0.15	1.24
Apocynaceae	0.86	0.23	0.09	1.19
Dilleniaceae	0.86	0.23	0.05	1.14
Total	100.00	100.00	100.00	300.00

Note: RF: relative frequency, Rd: relative density, RD: relative dominance, FIV: family importance value

Table 7. Diversity indices of trees with DBH of ≥ 5 cm in the study plot

Diversity indices	Value
Shannon-Wiener diversity index (H')	1.33
Simpson dominance index (D_s)	0.07
Pielou evenness index (J')	0.84
Margalef species richness (R)	6.09

Note: The values were calculated according to the 10 subplots sized 20 m × 20 m each

Species diversity

The result of the analysis indicates that the secondary forest studied had an intermediate diversity index in terms of trees (DBH>5 cm) with H' 1.33 (Table 7). That is, the number of trees that grow in the research location is quite a lot. A high-growing species diversity represents a very complex community (Brower et al. 1990). The dominance index (D_s) of 0.07 in the study area included in the low criteria, indicates no dominant species in the area. The diversity index and dominance index are determined by the number of individuals of a species and the total number of individuals in an area. The 'high' evenness index category $(J$ value $0.84)$ indicated that the trees growing in the plot were evenly distributed. The evenness of plant species is determined by the diversity of species and the number of species in the area. The species richness index of 6.09 indicates that many tree species grow in this research location. Plant species richness is calculated based on the number of species in an area (Krebs 2001), the number of individuals of a species, and the density of existing plants.
Log costs of trees

Table 8. Logging costs of trees in 0.4 ha of 50 years old secondary forest in East Kalimantan, Indonesia

Species	Family	Log costs USD m³	USD ha⁻¹
Artocarpus elasticus	Moraceae	69.43	1,102.30
Symlocos fasciculata	Symplocaceae	69.43	498.68
Macaranga motleyana	Euphorbiaceae	69.43	434.37
Vernonia araborea	Asteraceae	69.43	283.25
Ficus septica	Moraceae	69.43	163.43
Talipariti simile	Malvaceae	69.43	152.20
Archidendron paniciflorum	Fabaceae	69.43	105.46
Durio sp.	Malvaceae	69.43	129.18
Macaranga gigantea	Euphorbiaceae	69.43	83.85
Bridelia stipularis	Phyllanthaceae	69.43	75.97
Derris caudatilimba	Fabaceae	69.43	68.82
Artocarpus tamaran	Moraceae	69.43	42.98
Ficus uncinita	Moraceae	69.43	41.25
Neplathomus lappaceum	Sapindaceae	69.43	34.24
Glochidion obscurnus	Phyllanthaceae	69.43	32.41
Artocarpus daah	Moraceae	69.43	31.96
Hevea brasiliensis	Euphorbiaceae	69.43	30.78
Macaranga tanarius	Euphorbiaceae	69.43	30.53
Rhodamnia sp.	Myrtaceae	69.43	26.43
Vitex pinnata	Lamiaceae	69.43	25.59
Ecclisina ramiflora	Sapotaceae	69.43	22.69
Homalanthus populneus	Euphorbiaceae	69.43	19.30
Aleurites moluccanus	Euphorbiaceae	69.43	16.31
Macaranga sp.	Euphorbiaceae	69.43	16.15
Artocarpus heterophyllus	Moraceae	69.43	11.32
Nauclea xanthoxylon	Rubiaceae	69.43	7.78
Mallotus paniculatus	Euphorbiaceae	69.43	7.09
Ceiba pentandra	Malvaceae	69.43	6.26
Melicope luna-ankenda	Rutaceae	69.43	4.66
Ficus aurata	Moraceae	69.43	4.33
Litsea firma	Lauraceae	69.43	3.59
Bucacera sp.	Phyllanthaceae	69.43	3.50
Garcinia intermedia	Clusiaceae	69.43	3.29
Alstonia scholaris	Apocynaceae	69.43	1.63
Cratoxylum arborescens	Hypericaceae	69.43	1.63
Gironniera celtidifolia	Cannabaceae	69.43	1.52
Dillenia excelsa	Dilleniaceae	69.43	0.90
Trema orientalis	Cannabaceae	69.43	0.57
		2,638.21	3,526.20
		69.43	92.79

Profit margin

The profit margin in this study was assumed based on the profits obtained from the sale of timber. The data in Table 10 shows the profit margins from the sale of lumber obtained from 38 tree species. The total profit margin from the lumber sale of 38 tree species was USD391.39 m⁻³ or USD978.48 ha⁻¹ with an average of USD10.30 m⁻³ or USD25.75 ha⁻¹ species⁻¹. The highest profit margin was obtained from the trade-in lumber of the Alstonia scholaris species. According to Karyati et al. (2021), the profit margin obtained from the trade-in logs and lumber is influenced by several factors, including the number of requests, the number of sales, the price of logs and lumber, tree diameter, production costs, pricing strategies, business management, and other factors.

Stumpage value

Economic assessment of the land can be done by assessing the stumpage growing on the land. The results of this study showed that the total stumpage value (consisting of 38 species) at the study site was USD1,091.76 ha⁻¹. The average stumpage value was USD287.3 ha⁻¹ species⁻¹. Figure 5 shows the stumpage value of each species at the study site. The stumpage value in this study was lower than the results of previous studies (Karmini et al. 2020a, Karmini et al. 2020b). The stumpage value is determined by the volume of timber for each species, the diameter of logs, the price of each species’ logs at the sawmill, and the profit margin. Timber price is the dominant factor that determines the stumpage value. The more tree species that have a high selling value found on land, the higher the stumpage value. The results of this study can show that the stumpage at the study site has a very significant economic value.
Table 10. Profit margin assumed from the sale of timber from 0.4 ha of 50 years old secondary forest in East Kalimantan, Indonesia

Species	Family	Profit margin	
		USD m3	USD ha3
Alstonia scholaris	Apocynaceae	76.90	192.76
Dario sp.	Malvaceae	47.66	119.16
Cratoxylum arborescens	Hypericaceae	22.43	56.08
Artocarpus heterophylla	Moraceae	19.23	48.06
Artocarpus elasticus	Moraceae	18.32	45.79
Archidendron pauciflorum	Fabaceae	15.22	38.05
Vitex pinnata	Lamiatiae	14.74	36.85
Nephelium lappaceum	Sapindaceae	13.70	34.25
Raucaurea sp.	Phyllanthaceae	11.54	28.84
Hevea brasiliensis	Euphorbiaceae	6.63	16.57
Vernonia arborea	Asteraceae	6.61	16.52
Macaranga sp.	Euphorbiaceae	6.61	16.52
Glochidion obscurum	Phyllanthaceae	6.61	16.52
Macaranga gigantea	Euphorbiaceae	5.81	14.52
Aleursites moluccanus	Euphorbiaceae	5.41	13.52
Talipariti simile	Malvaceae	5.35	13.37
Symplocos fasciculata	Symplocaceae	5.34	13.34
Bridelia stipularis	Phyllanthaceae	5.21	13.02
Ficus septicus	Moraceae	5.18	12.95
Derreis caudatilimba	Fabaceae	5.14	12.86
Rhodamnia sp	Myrtaceae	5.11	12.77
Artocarpus tamarian	Moraceae	5.11	12.77
Macaranga motleyana	Euphorbiaceae	5.09	12.72
Homalanthus populeus	Euphorbiaceae	5.03	12.58
Macaranga tanarius	Euphorbiaceae	4.96	12.39
Ceiba pentandra	Malvaceae	4.81	12.02
Ficus aurata	Moraceae	4.81	12.02
Trema orientalis	Cannabaceae	4.81	12.02
Ficus unicinata	Moraceae	4.81	12.02
Artocarpus dadah	Moraceae	4.81	12.02
Dillenia excelsa	Dilleniaceae	4.81	12.02
Nauclea xanthoxylen	Rubiaceae	4.81	12.02
Ecclinusis ramiflora	Sapotaceae	4.81	12.02
Melicope lanu-ankenda	Rutaceae	4.81	12.02
Malloitus paniculatus	Euphorbiaceae	4.81	12.02
Garinicia intermediad	Clusiaceae	4.81	12.02
Gironniera celtidifolia	Cannabaceae	4.81	12.02
Litsea firma	Lauraceae	4.81	12.02

East Kalimantan has a lot of 50 years old secondary forests that is rich in biodiversity. The 50 years old secondary forests in East Kalimantan have ecological and economic characteristics. As many as 14% of trees in the 50 years old secondary forests have diameters at breast height between 15.1-25.0 cm and most trees (40%) in there have height in class 5.1-10.0 m. The 50 years old secondary forest has approximately 437 trees, 38 species, 50 genera, and 19 families with the total basal area and volume are around 15.36 m2 ha$^{-1}$ dan 122.07 m3 ha$^{-1}$ The most dominant families are Moraceae and Euphorbiaceae with an important value (FIV) of 86.79 and the three most dominant species were Macaranga motleyana (IVI of 50.95), Artocarpus elasticus (IVI of 34.41), and Symplocos fasciculata (IVI of 31.46). The trees in the 50 years old secondary forest have a diversity index of 1.33, the dominance index of 0.07, eveness index of 0.37, and species richness of 6.09. The economic values of 50 years old secondary forest could be seen from total and average values of logging costs (USD2,638.21 m3 and USD69.43 m3), logs price (USD1,696.03 m3 and USD44.63 m3), lumber price (USD3,801.11 m3 and USD100.03 m3), profit margin (391.39 m3 and 10.30 m3), stumpage value (usd1,091.76 ha$^{-1}$ and usd28.73 ha$^{-1}$ species$^{-1}$). Because of its ecological and economic values, 50 years old secondary forest must be preserved so that its ecological and economic values will continue to increase. The use of 50 years old secondary forest can be done with give attention to maintain and increase biodiversity.

ACKNOWLEDGEMENTS

The authors express their gratitude and highest appreciation to Ministry of Education, Culture, Research and Technology for Hibah Penelitian Dasar Unggulan Perguruan Tinggi Contract No.: 036/SP2H/LT/DRPM/2021 for funding this research. We thank the family of Mr. Nanang Helmi, who owns the land for the permission to carry out this research and fellow students for the assistance during the field work.

REFERENCES

Aghmien EV, Osho JS, Hauer S, Deni B, Ade-Oni VD, Oboto FO. 2016. Growth and yield models for uneven-aged secondary forest in ITA, Ibadan, Nigeria. Forest Res 5 (2): 1-13. DOI: 10.4172/2168-9776.1000173

Álvarez-Yépez JC, Martínez-Yrízar A, Bürquez A, Lindquist C. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in Northwestern Mexico. For Ecol Manag 256: 355-366. DOI:10.1016/j.foreco.2004.02.049

Borges ER, Dexter KG, Pyles MV, Bueno ML, dos Santos RM, Fontes MAL, Carvalho FA. 2021. The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecol Indic 129: 1-10. DOI: 10.1016/j.ecolind.2021.107915

Brealey FQ, Pradjadinata S, Kidd PS, Proctor J, Suriyantata. 2004. Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. For Ecol Manag 195 (3): 385-397. DOI: 10.1016/j.foreco.2004.02.048

Breuer JE, Zar JH, Von Ende CN. 1990. Field and Laboratory Methods for General Ecology, 3rd Ed. Wm. C. Brown Publishers, USA.

Chen X, Wang X, Li J, Kang D. 2020. Species diversity of primary and secondary forests in Wanglang Nature Reserve. Global Ecol Conserv 22: 1-7. DOI: 10.1016/j.gecco.2020.e01022

Dalahan MP. 2011. Species Composition, Stand Structure, Biomass and Economic Valuation of 2-ha Plots of Dipterocarp Forest of Different Geological Formation in Langkawi Island. Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Dangquah JA, Appiah M, Ari P. 2011. Comparison of post-fire planted and natural dry semi deciduous forest communities in Ghana. Afr J Agric Res 6 (23): 5266-5277. DOI: 10.5897/AJAR11.82

Fachrul MF. 2007. Bioecology Sampling Method. Bina Aksara, Jakarta. [Indonesian]

Husch B, Miller CL, Beers TW. 1982. Forest Mensuration. John Wiley and Sons Publishing, New York.

Jana CL, Jusoh I. 2021. Structure and tree species composition of forest fringe of a forest fragment in an oil palm plantation at Suai, Sarawak, Malaysian Borneo. Biodiversitas 22 (7): 3013-3019. DOI: 10.13057/biodiv/d220755
Figure 5. Stumpage value of trees in 0.4 ha of 50 years old secondary forest in East Kalimantan

Karmini, Karyati, Widiati KY. 2020a. The role of tropical abandoned land relative to ecological and economic aspects. For Soc 4 (1): 181-194. DOI: 10.24259/fs.v4i1.8939

Karmini, Karyati, Widiati KY. 2020b. The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia. Biodiversitas 21(11): 5550-5558. DOI: 10.13057/biodiv/d211164

Karyati, Ipor IB, Jusoh I, Wasli ME, Seman IA. 2013. Composition and diversity of plant seedlings and saplings at early secondary succession of fallow lands in Sabal, Sarawak. Acta Biol Malay 2 (3): 85-94. DOI: 10.7593/abm/2.3.85

Karyati, Ipor IB, Jusoh I, Wasli ME. 2018. Tree stand floristic dynamics in secondary forests of different ages in Sarawak, Malaysia. Biodiversitas 19 (3): 767-773. DOI: 10.13057/biodiv/d190302

Karyati, Karyati, Karmini. 2021. Ecological and Economic Aspects of Abandoned Land in East Kalimantan. Mulawarman University Press, Samarinda. [Indonesian]

Khamyong N, Wangpakapattanawong P, Chatruangsri S, Inta A, Tiamsawat P. 2018. Tree species composition and height-diameter allometry of three forest types in Northern Thailand. CMU J Nat Sci 17 (4): 289-306. DOI: 10.12982/CMUJNS.2018.0021

Krebs CJ. 2001. Ecology, 5th Ed. Addison Wesley Longman Inc, USA.

Manyanda BJ, Nzunda EF, Magasha WA, Malimbiwe RI. 2021. Effects of drivers and their variations on the number of stems and aboveground carbon removals in miombo woodlands of mainland Tanzania. Carbon Balance Manag 16 (16): 1-15. DOI: 10.1186/s13021-021-00180-9

Matsuo T, Martinez-Ramos M, Bongers F, van der Sande MT, Poorter L. 2021. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J Ecol 100: 1-14. DOI: 10.1111/1365-2745.13680

Matthew NK, Shuib A, Ramachandran S, Afandi SHM. 2019. Total economic value of ecosystem services in Malaysia: A review. J Sustain Sci Manag 14 (5): 148-163.

McClellan M, Montgomery R, Nelson K, Becknell J. 2018. Comparing forest structure and biodiversity on private and public land: Secondary tropical dry forests in Costa Rica. Biotropica 50 (3): 510-519. DOI: 10.1111/btp.12536

Naime J, Mora F, Sánchez-Martínez M, Arefoa F, Balvanera P. 2020. Economic valuation of ecosystem services from secondary tropical forests: Trade-offs and implications for policy making. For Ecol Manag 473: 1-10. DOI: 10.1016/j.foreco.2020.118294

Nath PC, Nath AJ, Reang D, Lal R, Das AK. 2021. Tree diversity, soil organic carbon lability and ecosystem carbon storage under a fallow age chronosequence in North East India. Environ Sustain Indic 10: 1-9. DOI: 10.1016/j.indic.2021.100122

Nitanan KM, Shuib A, Sridar R, Kunjuraman Y, Zaiton S, Herman MAS. 2020. The total economic value of forest ecosystem services in the tropical forests of Malaysia. Int For Rev 22 (4): 485-503. DOI: 10.1505/14655482083125551

Norden N, Chazdon RL, Chao A, Jiang Y, Vilchez-Alvarado B. 2009. Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12 (5): 385-394. DOI: 10.1111/j.1461-0248.2009.01292.x
Odum PE. 2005. Fundamentals of Ecology, 5th Ed. Thomson Brooks/Cole, Belmont CA.

Ohtsuka T. 2002. Early stages of secondary succession on abandoned cropland in North-East Borneo Island. Ecol Res 14: 281-290. DOI: 10.1046/j.1440-1703.1999.143304.x

Otuoma J, Ouma G, Okeyo D, Anyango B. 2014. Species composition and stand structure of secondary and plantation forests in a Kenya rainforest. J Hortic For 6 (4): 38-49. DOI: 10.5897/JHF2014.0343

Supriatna J. 2018. Biodiversity Indexes: Value and Evaluation Purposes. The 4th International Workshop on UI GreenMetric World University Rankings (IWGM 2018). E3S Web of Conferences. 48: 01001. DOI: 10.1051/e3sconf/20184801001

Wasli ME, Tanaka S, Kendawang JJ, Abdu A, Lat J, Morooka Y, Long SM, Sakurai K. 2011. Soils and vegetation condition of natural forests and secondary fallow forests within Batang Ai National Park Boundary, Sarawak, Malaysia. Kuroshio Sci 5 (1): 67-76.