Onset of lupus like syndrome in patients with spondyloarthritis treated with anti-TNF-α

Eduardo Puertas-Abreu, Elaudi Rodríguez Polanco, Miriam Azocar, Luis Antonio Mundarain, Concepción Morelia Nuñez-Sotelo, Rafael Montaño, Freddy Herrera Vivas, Zair Tovar Noguera, Francisco Marín, Omar Bellorin, José Gregorio Rivas, Eduardo Toro, Eugenia Benzaquen, Mayra Rauseo and Luis Arturo Gutiérrez González

Abstract

Background: The anti-TNFα therapy has been since its approval by the FDA, along with nonsteroidal antiinflammatory drugs (NSAIDs), one of the most important therapies for control of spondyloarthritis (SpA). The onset of Lupus Like Syndrome (LLS) has been described in patients with rheumatoid arthritis (RA) treated with anti-TNFα therapy but there is little literature on the occurrence of this entity in patients with SpA.

Methods: We studied 57 patients with SpA who received more than 1 year of anti-TNFα therapy (infliximab, adalimumab or etanercept). Patients were analyzed for the development of LLS, in addition to measuring ANA levels ≥ 1:160 and Anti-dsDNA (measured by IIF).

Results: In total, 7.01% of patients treated with anti-TNFα had titers of ANA ≥ 1:160, whereas 3.5% of patients had serum levels of dsDNA. However, only one patient (1.75%; n = 1) experienced clinical symptoms of LLS; this was a female patient with a history of psoriatic arthritis.

Conclusions: The presence of LLS secondary to anti-TNFα therapy in patients with SpA is observed less frequently compared with patients with RA. LLS was only detected in a patient with a history of psoriasis since youth, who developed psoriatic arthritis after 27 years of age and had received anti-TNFα therapy for > 2 years. This may be because LLS is an entity clearly associated with innate immunity, with little central role of B and T cells.

Keywords: Antinuclear antibodies, Lupus-like syndrome, Anti-TNFα therapy, Anti-dsDNA, Psoriasis

Introduction

Lupus Like Syndrome (LLS) is an autoimmune disease characterized by the appearance of at least one serological marker and one non serological marker of systemic lupus erythematosus (SLE) (according to ACR criteria) in patients who previously had not; the syndrome is commonly associated with use of drugs such as procainamide and hydralazine, [1-3] although other causes exist, for example, in the context of a paraneoplastic syndrome (malignant neoplasms) [4-6]. After approval by the FDA of anti-TNFα therapy in RA and rheumatic diseases to such as spondyloarthritis, the emergence of this syndrome has been described under the name of lupus-like syndrome [7-10] and other ones under the name DILE (drug-induced lupus erythematosus), but classification criteria are not yet well defined and, worse still, there are few published data on its occurrence in spondyloarthritis [8,9].

The mechanism by which the therapy against tumor necrosis factor anti-TNFα induces LLS is not yet well understood [10]. One hypothesis states that the binding of anti-TNF drugs to the cell surface containing TNF induces apoptosis of cells, causing the release of nucleosomal autoantigens and induction of anti-dsDNA [11-16]. A second hypothesis is that suppression of T-h1 cells by anti-TNF therapy will generate an exuberant T-h2 response, leading to overproduction of auto-antibodies [5,17]. A third hypothesis suggests that using an immunosuppressant as anti-TNF associated with disease-modifying drugs (DMARD), patients are more
prone to bacterial infections, stimulating polyclonal B cell activation and therefore the production of auto-antibodies [18–21].

The anti-TNFα therapy is one of the most important therapies, along with nonsteroidal antiinflammatory drugs (NSAIDs), for control of spondyloarthritis (SpA), but still is not classified as disease-modifying drugs (since it does not alter the disease), but it is classified as DC-ART (disease controlling antirheumatic therapy).

The onset of LLS in patients with rheumatoid arthritis (RA) using anti-TNF therapy has been described, but there is little literature on the occurrence of this entity in patients with SpA [22–25].

Patients and methods
This is a multicenter, retrospective study that enrolled 57 patients from our rheumatology specialized clinic. The ethics committee of hospital Universitario de Caracas approved the study in accordance with the Declaration of Helsinki.

Where all medical histories of patients with spondyloarthritis were reviewed according to the ASAS classification and the modified New York criteria; our patients had received more than 1 year of anti-TNFα biologic therapy: infliximab, adalimumab and etanercept. We recorded the duration of the disease, the activity measured using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), time receiving anti-TNF therapy, and use of other immunosuppressive therapies.

LLS was defined in patients who showed all the following conditions: 1. A temporal relationship between clinical signs/symptoms and anti-TNFα treatment; 2. At least, one serological test positive for SLE (according to ACR), anti-nuclear antibodies (ANA), anti-dsDNA, or anti-cardiolipin (ACA); and 3. At least one ACR criteria: arthritis, serositis, hematological disorder, malar erythema.

Moderate SLL was defined in patients who had arthralgia and/or mialgia that subsided with the use of analgesic or nonsteroidal antiinflammatory drugs (NSAIDs) and did not cause the suspension of anti-TNFα therapy.

Severe SLL was defined in patients with arthritis and/or mialgia that did not yield with the use of NSAIDs, as well as in patients that during the course of biological therapy showed: polyserositis, glomerulonephritis, leukopenia, thrombocytopenia, thrombotic disease, hypocomplementemia, fever of unknown origin (FUO) neuropsychiatric.

Measurement of ANA was performed by indirect immunofluorescence (IFI) using HEp-2 cells, and was considered positive when titers of ANA exceeded 1:160 (as measured by HEp-2), and for measurement of anti-dsDNA Crithidia luciliae was used.

Patients with ankylosing spondylitis, psoriatic arthritis, enteropathic arthropathy, undifferentiated spondyloarthritis and reactive arthritis (excluded patients with uveitis associated with HLAB27 and juvenile idiopathic arthritis associated with enthesisitis) who had received anti-TNFα therapy (infliximab, adalimumab or etanercept) for over 1 year were analyzed for the development of LLS, in addition to measuring the values of ANA ≥ 1:160 (measured by HEp-2) and anti-dsDNA (measured by IFI).

Characteristics	N = 57 (% or range)
Male/Female (%)	39/18 (68.4/31.6)
Mean Age (range)	41.2 (23-66)
Type of Spondyloarthritis (%)	
Ankylosing Spondylitis	8 (14)
Reactive arthritis	16 (28)
Undifferentiated Spondyloarthritis	22 (38.6)
Psoriatic arthritis	7 (12.3)
Enteropathic arthritis	4 (7.1)
Patients treated with IFX (%)	28 (49.1)
Patients treated with ADA (%)	19 (33.3)
Patients treated with ETP (%)	10 (17.6)
Mean duration of therapy with IFX in months (range)	18 (1-78)
Mean duration of therapy with ADA in months (range)	13 (1-88)
Mean duration of therapy with ETP in months (range)	7 (1-38)
ANA positive (%)	4 (7.01)
Anti dsDNA (%)	2 (3.5)
Moderate lupus-like symptoms (%)	0
Severe lupus-like symptoms (%)	1

Statistical analysis
Statistical parameters were described by appropriate central trend and dispersion measures. Values of ANA ≥ 1:160 versus < 1:160 and anti-dsDNA present versus absent, were dichotimized. A descriptive analysis for sex, age, and type of disease was made using mean and range. A multivariate logistic regression analysis was used to assess binary variables: treatment with infliximab, another immunosuppressant treatment. The statistical significance of differences in frequency of variable “signs and symptoms of LLS” was determined by Fisher’s exact test and p values were considered significant when < 0.05 (Svejgaard and Ryder, 1994).

Results
There was not a high prevalence of LLS in patients with spondyloarthritis treated with anti TNFα therapy. In total, 7.01% of patients treated anti TNF had titers of...
ANA ≥ 1:160, whereas 3.5% of patients had serum levels of dsDNA. However, only one patient (1.75% n = 1) experienced clinical symptoms of LLS; this was a female patient with a history of psoriatic arthritis of 5 years of evolution, diagnosed with severe psoriasis since the age of 23 years. Besides that the patient was 50 years old and had received anti TNF therapy for over 2 years, she presented annular polycyclic lesions (Figure 1) on the anterior aspect of the arm (subacute cutaneous lupus) with polyserositis (Figure 2), which improved with anti TNF therapy discontinuation and low potency corticosteroid. This patient had ANA > 1:320, presence of anti-dsDNA by IIF and high titers by ELISA (≥ 25 IU/L).

The rest of the patients presenting ANA (+) and anti-dsDNA (+) did not develop SLL, two of them were diagnosed with enteropathic arthritis and one patient with psoriatic arthritis. There was no positivity for ANA in patients with ankylosing spondylitis, reactive arthritis or undifferentiated spondyloarthritis.

Discussion

The presence of LLS secondary to anti-TNFα therapy in patients with SpA appears to be less frequently observed compared with patients with RA, probably because in the pathogenesis of SpA large numbers of circulating autoantibodies have not been found, may be due to the fact that LLS is an entity associated purely to innate immunity with little central role of B and T cells. In this study signs and symptoms associated with LLS were observed only in one patient with psoriatic arthritis, with severe and long-standing disease, emphasizing that according to medical literature in psoriatic arthritis and psoriasis anti-CCP antibodies have been detected only in 5-12.5% of the population [25].

As for the production of autoantibodies, a fourth hypothesis is now considered as the most solid and has to do with the system of clearance and presentation of apoptotic material by the adhesion molecule CD44. This molecule is involved in phagocytosis of apoptotic neutrophils; TNFα overregulates the cell expression of CD44, which, at start of the biologic therapy with anti-TNFα, a reduction in clearance occurs; [26,27] however, LLS is still a rare disease and there are reviews where risk factors for its development such as ANA presence before treatment, appearance of anti-nucleosome antibody, the antibody isotype and, of course, the genetic polymorphism of anti-TNFα, are considered [28-30].

Disclosure

E. Puertas-Abreu, None; E. Rodríguez Polanco, None; M. Azocar, None; L.A. Mundarain, None; C. Nuñez-Sotelo, None; R. Montaño, None; F. Herrera Vivas, None; Z. Tovar Noguera, None; F. Marín, None; O. Bellorin, None; J. Rivas, None; E. Toro, None; E. Benzaquen, None; M. Rauseo, None; LA Gutiérrez González, None.
Author details
1. Hospital Central de Cumaná “Dr. Antonio Patricio de Alcalá”, Final Av. Bolívar, Ciudad Cumaná 6101, Estado Sucre, Venezuela. 2. Hospital IASVS “Dr. Rafael Calles-Sierra”, Av. Táchira con Av. Inter communal Lagoyven, Ciudad Punto Fijo Código Postal 4102, Edo. Falcón, Estado Falcón, Venezuela. 3. Hospital Central de Maturín “Dr. Manuel Núñez y Tovar”, Avenida Bicentenario, Ciudad Maturín 6201, Estado Monagas, País, Venezuela. 4. Hospital Central de Ciudad Bolívar “Dr. Ruyz y Páez”, 8001 Estado Bolívar, País, Venezuela. 5. Hospital Central de Barquisimeto “Dr. Antonio María Pineda”, Av. Dr. José Maria Vargas, Ciudad Barquisimeto 3001, Edo. Lara, Venezuela. 6. Hospital Central de Carúpano “Dr. Santos Aníbal Domínguez”, Avenida Circunvalación oeste, Ciudad Carupano 6150, Edo. Sucre, Venezuela. 7. Hospital Universitario de Caracas. HUC-UCL, Urb. Los Chaguaramos, Ciudad Universitaria, Caracas 1020, DC, Venezuela. 8. Hospital de la Isla de Margarita “Dr. Luis Ortega”, Av. 4 de Mayo, Ciudad Porlamar, Nueva Esparta 6301, Venezuela. 9. Centro Nacional de Enfermedades Reumáticas (CNER), Hospital Universitario de Caracas, Urbanización Los Chaguaramos, Ciudad universitaria UCV, Caracas 1020, Venezuela.

Authors’ contributions
Participated in the recruitment: EP;ER;MA;LM;CN;RM;ZT;FM;OB, JR;ET.

Received: 4 October 2011 Accepted: 15 February 2012
Published: 15 February 2012

References
1. Aringer M, Smolen JS: The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Res Ther 2008, 10(1):202, Epub 2008 Jan 23.
2. De Rycke L, Baeten D, Knuthof E, Van den Bosch F, Veyts EM, De Keyser F: The effect of TNF-alpha blockade on the antinuclear antibody profile in patients with chronic arthritis: biological and clinical implications. Lupus 2005, 14(12):931-937.
3. Mongey AB, Hess EV: Drug insight: autoimmune effects of medications: what’s new? Nat Clin Pract Rheumatol 2008, 4(3):136-144.
4. Via CS, Shustov A, Rus V, et al: In vivo neutralization of TNF-alpha promotes humoral autoimmunity by preventing the induction of CTL. J Immunol 2001, 157(6):6821-6826.
5. Spillane AP, Xia Y, Sneekes PJ: Drug-induced lupus erythematosus in a patient treated with adalimumab. J Am Acad Dermatol 2007, 56(5 Suppl): S14-S16.
6. Kochlarski L, Mongey AB: Is the development of drug-related lupus a contraindication for switching from one TNF alpha inhibitor to another? Lupus 2008, 18:169-171.
7. Havel J, Aboutaleb S, Doughty L, et al: Development of systemic lupus erythematosus in a patient with rheumatoid arthritis following treatment conversion of infliximab to adalimumab. J Drugs Dermatol 2008, 7:796-798.
8. Jonsdottir T, Forslid J, van Vollenhoven A, et al: In vivo neutralization of TNF-alpha by: Sontheimer RD, Provost TT. Philadelphia: Lippincott Williams & Wilkins 2004:15-64.
9. Charles PJ, Smeenk RJ, De Jong J, et al: Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 2000, 43:2383-2390.
10. Vermeire S, Noman M, Van Assche G, et al: Autoimmunity associated with anti-tumor necrosis factor treatment in Crohn’s disease: a prospective cohort study. Gastroenterology 2003, 125:32-39.
11. Eriksson C, Engstram S, Sundqvist K, et al: Autoantibody formation in patients with rheumatoid arthritis treated with anti-TNF. Ann Rheum Dis 2005, 64:403-407.
12. Ferraccioli GF, Assaloni R, Pein A: Drug-induced systemic lupus erythematosus and TNF-alpha blockers. Lancet 2002, 360:645.
13. Costa MF, Said NR, Zimmermann B: Drug-induced lupus due to antitumor necrosis factor alpha agents. Semin Arthritis Rheum 2008, 37:381-387.
14. Atzeni F, Turiel M, Capsoni F, Dona A, Memon P, Sarzi-Puttini P: Autoimmunity and anti-TNF-a agents. Ann NY Acad Sci 2005, 1051:559-569.
15. De Brandt M: Lessons for lupus from tumour necrosis factor blockade. Lupus 2006, 15(11):762-767.
16. Caramaschi P, Basii D, Colombatti M, et al: Anti-TNFalpha therapy in rheumatoid arthritis and autoimmunity. Rheumatol Int 2006, 26(3):209-214, Epub 2004 Dec 31.
17. Ferraro-Peyret C, Coury F, Tebbg JB, Bienvenu J, Fabien N: Infliximab therapy in rheumatoid arthritis and ankylosing spondylitis-induced specific antinuclear and antiphospholipid autoantibodies without autoimmune clinical manifestations: a two-year prospective study. Arthritis Res Ther 2004, 6(6):R535-R543, Epub 2004 Sep 23.
18. Poullhon J, Bergon E, Leblé C, et al: A follow-up study in 28 patients treated with infliximab for severe recalcitrant psoriasis: evidence for efficacy and high incidence of biological autoimmunity. Br J Dermatol 2007, 156(2):329-336.
19. Callen JP: Complications and adverse reactions in the use of newer biologic agents. Semin Cutan Med Surg 2007, 26(1):5-14.
20. Schenfield N: A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab. J Dermatolog Treat 2004, 15(5):280-294.
21. Lebwohl M, Bagel J, Gelfand JM, et al: From the Medical Board of the National Psoriasis Foundation: monitoring and vaccinations in patients treated with biologics for psoriasis. J Am Acad Dermatol 2008, 58(1):94-105, Epub 2007 Nov 5.
22. Ramos-Casals M, Brito-Zerón P, Muñoz S, et al: Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore) 2007, 86(4):242-251.
23. Sarzi-Puttini P, Atzeni F, Capsoni F, Lubrano E, Doria A: Drug-induced lupus erythematosus (published retraction appears in Autoimmunity). 2008;41(3):241, Autoimmunity 2005, 38(7):507-518.
24. De Brandt M, Sibilia J, Le Loet X, et al: Club Rhumatismes et Inflammation: systemic lupus erythematosus induced by anti-tumour necrosis factor alpha therapy: a French national survey. Arthritis Res Ther 2005, 7(3):R545-R551, Epub 2005 Mar 1.
25. Vasso S: Drug-induced lupus: an update. Lupus 2006, 15(11):757-761.
26. Benucci M, Li Gobbi F, Fossi F, Manfredi M, Del Rosso A: Drug-induced lupus after treatment with infliximab in rheumatoid arthritis. J Clin Rheumatol 2005, 11(1):47-49.
27. Hochberg MC: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997, 40(9):1725.
28. Colombel JF, Loftus EV Jr, Tremaine WJ, et al: The safety profile of infliximab in patients with Crohn’s disease: the Mayo Clinic experience in 500 patients. Gastroenterology 2004, 126(1):19-31.
29. Sontheimer RD, Provost TT, Costner ML, Sontheimer RD, Provost TT: Lupus erythematosus. In Cutaneous Manifestations of Rheumatic Diseases. Edited by: Sontheimer RD, Provost TT. Philadelphia: Lippincott Williams & Wilkins 2004:15-64.
30. Page AV, Liles WC: Tumor necrosis factor-α inhibitor-induced lupus-like syndrome presenting as fever of unknown origin in a liver transplant recipient: case report and concise review of the literature. Transplant Proc 2008, 40(5):1768-1770.

Cite this article as: Puertas-Abreu, et al: Onset of lupus like syndrome in patients with spondyloarthropathies treated with anti-TNF-α. International Archives of Medicine 2012 5:7.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit