Thermally driven inhibition of superconducting vortex avalanches

Antonio Lara, 1 Farkhad G. Aliev, 1 Victor V. Moshchalkov, 2 and Yuri M. Galperin 3, 4

1 Dpto. Física de la Materia Condensada, INC and IFIMAC, Universidad Autónoma de Madrid. 28049 Madrid, Spain
2 INPAC-Katholieke Universiteit Leuven, Celestijnenlaan 200D, B3001, Leuven, Belgium
3 Department of Physics, University of Oslo, 0316 Oslo, Norway
4 A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg, Russia

Complex systems close to their critical state can exhibit abrupt transitions – avalanches – between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here we investigate microwave (mw) stimulation of avalanches in the so-called vortex matter of type II superconductors - a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the mw stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counter-intuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the mw excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.

PACS numbers: 74.25.Wx; 74.25.N-, 74.25.Ha

INTRODUCTION

Control over stability of vortex matter in type II superconducting films and materials is essential for broad range of current and future potential applications. Penetration of magnetic flux in form of vortex avalanches is the most harmful for the real devices ranging from microwave resonators, bolometers, superconducting quantum interference devices or superconducting tapes (see, e.g., [1]).

In general, an avalanche is an apparently unpredictable abrupt transition between two metastable states. Snow avalanches [2], sand avalanches and woodquakes [3] are some widely known examples of such events in natural systems. Avalanches in interacting networks of strongly nonlinear dynamical nodes are currently considered the main fundamental mechanisms describing biological information processing [4, 5].

The avalanches widely explored in physics and technology [6, 8], can interfere in the operation of many devices. An example is magnetic avalanches in superconducting resonators [1], implemented in a wide range of systems from quantum bits to devices for research in astrophysics. These avalanches manifest themselves as spontaneous penetrations of magnetic flux in the bulk of the superconductor [9, 11]. The number of applications based on superconductors increases, and with the important role these devices will play in technology [11], safe operation becomes crucially important.

According to the model based on thermomagnetic instabilities [12], an avalanche is triggered by a thermal fluctuation (hot spot), which facilitates more flux motion toward the hot place, with a subsequent heat release. Under quasi-equilibrium conditions, the avalanches can also be triggered by microwave pulses [13, 14] or AC signals at near resonant frequencies of superconducting cavities [1]. The situation is somewhat different with a broadband microwave (mw) field sweep, with avalanches triggered at different depinning frequencies due complicated local vortex pinning potentials [15].

It is a great challenge to control avalanche processes [16, 17]. In superconductors, the most common ways to control the fast flux instabilities were through nano-morphology [18] or optimization of the heat transfer through coating a superconducting film with a metal layer [19]. Here we propose a means of avalanche control using the intrinsic nonlinear mw response of the fundamental units forming the network, superconductor vortices. Such nonlinearity has been recently identified through microwave-stimulated superconductivity due to presence of vortices [20].

We report a new, completely unexpected effect: it turns out that application of microwaves at frequencies close to the vortex depinning frequencies inhibits avalanches. We attribute this effect to a nonlinear dependence of the core size of a dynamically driven vortex on its velocity. This effect allows one to engineer the avalanche behavior, at least to some extent.

EXPERIMENTAL DETAILS

We studied thin films of Pb with a thicknesses of 60 and 70 nm. This thicknesses are well below the critical value ensuring type II superconductivity [21]. In what follows we present data only from the 70 nm film, since the results observed in both samples are similar. Details in the samples growth have been reported before [20].
The measurements have been done in a variable temperature JANIS helium cryostat with a superconducting magnet to apply static magnetic fields. The microwave signal is supplied by a gold coplanar waveguide (CPW), Fig. 2a. The microwave signal is generated and detected by a network analyzer, that carries it to the CPW. More details about this system and the measurement procedure can be found in [20]. The presence of avalanches is detected as jumps in the normalized transmission parameter S_{21} (we denote this normalized complex quantity as $U = U' + iU''$, measured by the network analyzer $[1, 15]$).

In this work we focus on the dependence of the microwave power required to trigger avalanches as a function of T and H. The microwave frequency has been fixed either to values where the transmission parameter follows a flat tendency both in the superconducting and normal phases, or to specific values in which the superconducting phase exhibits a strong dip in the transmission, at the so-called vortex depinning frequencies f_{DP} [15] (figure 1). The temperature and magnetic field sweeps were presented close to the stripline, therefore the high frequency field exciting the sample is local. This suggests that the avalanches would most probably be generated near the stripline (light blue lines).

RESULTS

Figure 2 sketches the experiment. The superconducting film (blue), grown on top of a substrate (dark gray) is in contact with the microwave source (the coplanar waveguide, sketched in yellow). The latter generates a microwave magnetic field (red arrows), incident on the sample, whose parallel to the plane component is shown in the graph in Fig. 2b. Most of the mw is concentrated close to the stripline, therefore the high frequency field exciting the sample is local. This suggests that the avalanches would most probably be generated near the stripline (light blue lines).

Our previous study demonstrated the presence of a set of vortex depinning frequencies in type II superconducting films [15]. The present experiments aim on the study of these jumps as a function of applied microwave power, for a set of frequencies. The applied field is the remanent one after saturating at 1000 Oe and going back to zero field. In Fig. 2b, an example of these jumps is presented for a 70 nm thick Pb film. Depending on the direction of the power sweep (from the minimum to the maximum value, blue line, or viceversa, red) the jumps appear at different powers. This indicates that the release of an avalanche is influenced by the “history” of the previously released ones. However, at the lowest (or highest) microwave powers, $|S_{21}|$ is at the same value, indicating that the global superconducting state is equivalent after all these avalanche events. Thus, a “hysteretic” behavior in microwave power evidences the importance of thermal effects in avalanches. Additionally they show clearly the reproducibility of the power dependent transmission, so that the jumps in microwave permeability are fully controlled by the applied frequency and mw power. We have not observed substantial changes in the shape of power dependent permeability on the sweep rate varied between 1 and 10 dBm/s.

Our main findings are presented in Fig. 2a-d) where we compare a power and temperature sweep of the normalized transmission parameter at 20.2 GHz (a,c) and 7.5 GHz (b,d). One notices the previously mentioned (Fig. 2a) jumps as steps in the 2D color plot of microwave permeability evident in Fig. 2b. Moreover one clearly observes that for temperatures approaching T_c (7.2 K) this jump requires less mw power to occur. That is in
shows in more detail how the TDAIs vary (TDAI).

We shall further refer to this effect as thermally driven avalanche inhibition required to trigger the avalanches. The closer one approaches T, the expected tendency of decreasing critical power decreases avalanche monotonously inverts. The closer one approaches T, the expected tendency of decreasing critical power exceeds the depinning frequency. A careful examination of the power-temperature and power-field sweeps shows that each time the inversion of the normal tendency to the anomalous one happens, it takes place in a range of temperatures where there is a visible maximum in microwave losses U'' (see Fig. 4). The peak in

FIG. 3. Microwave stimulated avalanches in a 70 nm film at a freezing field of 10 Oe. Part a) shows U'' with expected avalanche behavior vs. temperature and power measured at f = 20.2 GHz. Part (b) shows U'' vs. microwave power and temperature at different microwave frequency of f = 7.5 GHz. Unexpected avalanche behavior vs. temperature, close to a depinning frequency is seen. Parts c) and d) are derivatives with respect to temperature of the parts a) and b). Color bars show U'' and its derivatives in arbitrary units.

agreement with the expected thermally driven avalanche behavior, since higher temperatures favor the entrance of magnetic flux and enhance the vortex mobility. The corresponding differential plot (derivative with respect to temperature) shown in Fig. 3 c) helps to observe both the main avalanche (splitting into several approaching Tc). All the avalanches observed outside the vicinities of the depinning frequencies show similar temperature dependences. The critical mw power for triggering an avalanche monotonously decreases while approaching Tc.

Figure 3c), shows the same measurements as Fig. 3a), but close to one of the vortex depinning frequencies, fDP = 7.5 GHz. One clearly observes an unexpected temperature dependence of the critical mw power. Approaching Tc, within some temperature range (around 6 K for the lowest powers, and around 5K for the strongest ones) the expected tendency of decreasing critical power inverts. The closer one approaches Tc, the more power is required to trigger the avalanches. We shall further refer to this effect as thermally driven avalanche inhibition (TDAI).

There is no simple relationship between the mw frequency and presence or absence of the TDAI. A careful examination of the power-temperature and power-field sweeps shows that each time the inversion of the normal tendency to the anomalous one happens, it takes place in a range of temperatures where there is a visible maximum in microwave losses U'' (see Fig. 4). The peak in mw losses close to the Tc is known to originate from the enhanced vortex mobility [20, 22].

Figure 4 shows in more detail how the TDAIs vary in the proximity of one of vortex depinning frequencies fDP. At f < fDP the TDAI effects occur close to Tc in the temperature range close to the peak in microwave losses U'' when the superconducting gap becomes partially filled by quasiparticles and the vortices are mobile. A further increase of the drive frequency near f = fDP shifts the range where the TDAI initiate ing its temper-}

ature. Moreover, as could be observed independently of specific depinning frequencies analyzed in Figs. 31] and 5 the higher the applied powers is (i.e., less external temperature is needed to create the same vortex mobility), the lower is the temperature at which the corre-

sponding inversion point in the temperature dependence of avalanches occurs. Figure 4 shows that the peak in the temperature dependence of U'' also moves towards lower temperatures as the mw frequency approaches and exceeds the depinning frequency.

At yet higher frequencies, f > fDP, the TDAI effects disappear (not shown), as the peak in U'' vanishes on the lower temperature side of the scale. The scenario repeats again approaching a different vortex depinning frequency. The zero slope point at lower temperatures of the peak in losses shown in Fig. 3) represents equal vortex mobi-

lity surface as a function of temperature, power and frequency close to particular vortex depinning frequency.

We have already mentioned that the TDAI may be expected to take place mainly close to the microwave
FIG. 5. a-d) Temperature dependence of microwave susceptibility close to one of the depinning frequencies at freezing field. Color bars show U'' in arbitrary units. Different avalanche branches are indicated in gray tones, extracted from a differential analysis. e) Temperature of the U'' peak vs. frequency near a depinning frequency, for $P = -20$ dBm. Error bars represent the temperature difference between the maximum and the base of the peak (see Figure 4). f) Dependence of the peak on temperature, power and frequency.

source (the CPW central conductor). A few avalanches could, however, be triggered far from the mw source. Those avalanches should then be subject to a reduced mw power and be thermally stimulated mainly so that their temperature dependence could not invert approaching the critical temperature or critical field (see Fig. 5 and further below).

Figure 4 presents a magnetic field driven analog of the TDAI effect, but now studied at a fixed temperature $T = 5$ K and different mw powers at some higher depinning frequency $f_{DP} = 9.225$ GHz. Figure 6 shows a differential plot (dU''/dH) helping to resolve more clearly the main avalanches marked with dots in a). In the field range where the peaks in U'' are observed close to the upper critical field (see Fig. 5), the avalanches show a change in tendency, requiring more power to be triggered at higher fields, where vortex mobility gets enhanced. Compared to temperature sweeps, field sweeps look more complex, with more avalanche branches present, and some of them suffering “jumps” in field as well. This should not be surprising, as changing the applied field changes the number of vortices present in the sample and enhances non-equilibrium, which stimulates the avalanche process.

Figure 6 shows how critical power needed to stimulate avalanches varies as a function of frequency close to some specific $f_{DP} = 9.225$ GHz. At a fixed temperature $(T/T_c = 0.7)$ and some small magnetic field $(H \approx 100$ Oe) the mw power needed to trigger avalanches reduces nearly symmetrically with frequency relative to the depinning frequency.

FIG. 6. a) Microwave losses U'' as a function of applied field and microwave power measured at $T = 0.7T_c$ ($T = 5$ K) near depinning frequency $f_{DP} = 9.225$ GHz. b) Cross sections of a) at different powers, highlighting the peaks in losses near the critical field. c) Differential plot (dU''/dH) of a). It allows to more clearly detect avalanches, marked with dots in a). d) Different frequency dependent avalanches close to the depinning frequency of a).

MODEL AND DISCUSSION

The experimentally observed unforeseen thermally induced enhanced stability of the vortex avalanches to the external microwave excitation could be understood as a consequence of a counter-intuitive dependence of the vortex core size on the mw power and frequency.

Larkin and Ovchinnikov (LO) were the first to point
out a strongly nonlinear dependence on the vortex core size on the vortex velocity \(f \). They predicted a re-
duction of the vortex core size as the vortex velocity approaches some critical value. As a consequence of the LO effect, the size of the core of a periodically driven vortex changes in time. In order to understand the experimen-
tal results we consider for simplicity three qualitatively different regimes. In the regimes a) with low or b) with high \(mw \) power (microwave magnetic field) but outside the vortex depinning regime, the LO effect manifests itself only in the regions of maximal velocity (i.e., close to displacement minima). On the other hand, in the regime c), which is close to a depinning frequency, the vortices become more mobile. As a result, the LO reduction of vortex core manifests itself during the whole displace-
ment cycle.

To elucidate the physics of the thermally inhibited avalanches in the driven vortex system, following the approach \cite{24}, we have simulated the relative changes in the vortex core size with both drive frequency and mi-
crowave power. Figure 7 explains the model describing a transition from thermally activated to thermally sup-
pressed vortex avalanches approaching a depinning fre-
dquency. Based on the simulation results, we conclude that for the driving frequencies below the depinning fre-
dquency and low \(mw \) power \(P \) local “normal” regions cre-
dated by the driven vortex do not overlap and are not sufficient to trigger the avalanche process (case a) re-
marked in yellow). Note that the depinning frequency \(f_{DP} \) plays the role of a critical value above which the core size shrinks under \(mw \) drive \cite{24}. Increasing the \(mw \) power, but still below the depinning frequency, enhances the absolute changes in the vortex core size (Fig. 7), in-
ducing the overlap between different extended core areas and triggering the avalanche close to some critical power \(P = P_c \) (case b) in simulations marked in red). Evidently, such process is thermally activated, as long as the vortex diameter strongly increases approaching critical temperature \(T_c \).

However, close to depinning frequencies and in the temperature region where vortices become depinned (i.e., at temperatures about \(T_{DP} \)), the LO effect reduces the vortex core ending up in only small variation in the vor-
tex core size during periodically driven motion (case c) Fig. 7). This reduces the probability of the overlap between normal regions and, therefore, the avalanche should be triggered at yet higher applied \(mw \) powers for the fixed temperature, exactly as we observe experimentally.

The proposed scenario suggests only the basic mechan-
ism behind the TDAI effect. Specific forms of the normal areas occupied by the \(mw \) driven vortex should depend on the pinning details and thermal energy re-
lexation rate outside the vortex core. However, once the percolation on the local level between the “hot spots” cre-
dated by the driven vortices is established, the avalanche could be triggered with high probability. Superconduct-
ing vortex avalanches are usually described by a thermo-
magnetic instability. In this model, the avalanches de-
velop as a result of the heat released due to flux motion leading to enhancement of the local vortex mobility and corre-
spondingly further heat release. This positive feed-
back balanced by heat dissipation towards the substrate results in ultrafast dendritic flux redistributions. Our work shows that (contrary to expectations) close to de-
inning frequencies the thermal bath energy may inhibit the avalanche processes due to a nonlinear dependence of the vortex core on the microwave field.

CONCLUSIONS

In Conclusion we have systematically studied the mi-
crowave driven superconducting vortex avalanches at dif-
ferent frequencies and intensities of \(mw \) radiation. Both the cases of weak and strong overlap of the vortex cores are investigated. The main finding is that magnetic avalanches in microwave driven superconducting vortex systems close to depinning frequencies can become more robust to external stimulus. This is in contrast with the usually observed thermal weakening of the avalanche pro-
cess. A simple model which considers shrinking in size of the microwave driven vortex qualitatively explains the main observations. The observed effects point out to-
wards potential robustness of superconducting devices to stimulated avalanche processes when external drive fre-
dquencies are tuned to vortex depinning frequencies.

ACKNOWLEDGMENTS

The authors gratefully acknowledge A. Awad and A. Silhanek for experimental help on the initial stages
and K. Ilin for discussions. This work has been supported in parts by Spanish MINECO (MAT2015-66000-P), and Comunidad de Madrid (NANOFRONTMAG-CM S2013/MIT-2850) and NANO-SC COST-Action MP-1201. V. V. M. acknowledges the Methusalem Funding of the Flemish Government.

* farkhad.aliev@uam.es

[1] G. Ghigo, F. Laviano, L. Gozzelino, R. Gerbaldi, E. Mezzetti, E. Monticone and C. Portesi, Evidence of rf-driven dendritic vortex avalanches in MgB$_2$ microwave resonators, Journal of Applied Physics 102, 113901 (2007).
[2] J. Qiu, Avalanche hotspot revealed, Nature 509, 142 (2014).
[3] T. Mkinen, A. Miksic, M. Ovaska, and Mikko J. Alava, Avalanches in Wood Compression, Phys. Rev. Lett. 115, 055501 (2015).
[4] R. Stoop and F. Gomez, Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State, Phys. Rev. Lett. 117, 38102 (2016).
[5] J. M. Beggs and D. Plenz, Neuronal Avalanches in Neocortical Circuits, The Journal of Neuroscience, 23 11167 (2003).
[6] M. Nada, M. Nakamura and H. Matsuzaki, 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching, Optics Express 22, 443 (2014).
[7] G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven and V. Zwiller, Avalanche amplification of a single exciton in a semiconductor nanowire, Nature Photonics, 6, 455 (2012).
[8] O. Jukimenko, C. M. Dion, M. Marklund and V. Bychkov, Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets, Phys. Rev. Lett., 113, 217206 (2014).
[9] S. Field, J. Witt, F. Nori and X. Ling, Superconducting Vortex Avalanches, Phys. Rev. Lett., 74 1206 (1995).
[10] T. H. Johansen, M. Baziljevich, D. V. Shantsev, P. E. Gaq, Y. M. Galperin, W. N. Kang, H. J. Kim, E. M. Choi, M.-S. Kim and S. I. Lee, Dendritic magnetic instability in superconducting MgB$_2$ films, Europhys. Lett., 59 599 (2002).
[11] Y. Wang, Fundamental Elements of Applied Superconductivity in Electrical Engineering (John Wiley & Sons, Inc, 2013).
[12] A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin and T. H. Johansen, Finger patterns produced by thermomagnetic instability in superconductors, Physical Review B 70, 224502 (2004).
[13] A.V. Bobyl, D. V. Shantsev, T. H. Johansen, W. N. Kang, H. J. Kim, E. M. Choi and S. I. Lee, Current-induced dendritic magnetic instability in superconducting MgB$_2$ films Applied Physics Letters 80, 4588 (2002).
[14] P. J. Cuadra-Solís, J. M. Hernández, A. García-Santiago, J. Tejada, J. Vanacken and V. V. Moshchalkov, Avalanche-like vortex penetration driven by pulsed microwave fields in an epitaxial LaSrCuO thin film, Journal of Applied Physics 114, 233902 (2013).
[15] A. A. Awad, F. G. Aliev, G. W. Atakltd, A. Silhanek, V. V. Moshchalkov, Y. M. Galperin and V. Vinokur, Flux avalanches triggered by microwave depinning of magnetic vortices in Pb superconducting films, Physical Review B 84, 224511 (2011).
[16] Y. C. Zohar, S. Yochelis, K. A. Dahmen, G. Jung and Y. Paltiel, Controlling avalanche criticality in 2D nano arrays, Scientific Reports, 3, 1845 (2013).
[17] G. Curcio, E. Mazzucchi, G. Della Marca, C. Vollono and P. M. Rossini, Electromagnetic fields and EEG spiking rate in patients with focal epilepsy, Clinical Neurophysiology, 126 659 (2015).
[18] V. V. Yurchenko, K. Ilin, J.M. Meckbach, M. Siegel, A. J. Qviller, Y. M. Galperin and T. H. Johansen, Thermomagnetic stability of superconducting films controlled by nano-morphology, Applied Physics Letters 102, 252601 (2013).
[19] E.M. Choi, V. V. Yurchenko, T. H. Johansen, H. S. Lee, J.Y. Lee, W. N. Kang and S.I. Lee, Suppression of dendritic flux jumps in MgB2 films coated with a gold rim, Supercond. Sci. Technol. 22 015011 (2009).
[20] A. Lara, F. G. Aliev, A. V. Silhanek and V. V. Moshchalkov, Microwave-stimulated superconductivity due to presence of vortices, Scientific Reports 5, 9187 (2015).
[21] G. J. Dolan and J. Silcox, Critical Thicknesses in Superconducting Thin Films, Phys. Rev. Lett. 30, 603 (1973).
[22] M. W. Coffey and J. R. Clem, Theory of rf magnetic permeability of isotropic type-II superconductors in a parallel field, Phys. Rev. B 45, 9872 (1992).
[23] A. I. Larkin and Y. N. Ovchinnikov, Nonlinear conductivity of superconductors in the mixed state, Sov. Phys. JETP. 41, 960 (1976).