Selection of Reference Genes for the Normalization of RT-qPCR Data in Gene Expression Studies in Insects: A Systematic Review

Jing Lü, Chunxiao Yang, Youjun Zhang and Huipeng Pan

1 Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China, 2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China, 3 Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China

Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying expression levels of targeted genes during various biological processes in numerous areas of clinical and biological research. Selection of appropriate reference genes for RT-qPCR normalization is an elementary prerequisite for reliable measurements of gene expression levels. Here, by analyzing datasets published between 2008 and 2017, we summarized the current trends in reference gene selection for insect gene expression studies that employed the most widely used SYBR Green method for RT-qPCR normalization. We curated 90 representative papers, mainly published in 2013–2017, in which a total of 78 insect species were investigated in 100 experiments. Furthermore, top five journals, top 10 frequently used reference genes, and top 10 experimental factors have been determined. The relationships between the numbers of the reference genes, experimental factors, analysis tools on the one hand and publication date (year) on the other hand was investigated by linear regression. We found that the more recently the paper was published, the more experimental factors it tended to explore, and more analysis tools it used. However, linear regression analysis did not reveal a significant correlation between the number of reference genes and the study publication date. Taken together, this meta-analysis will be of great help to researchers that plan gene expression studies in insects, especially the non-model ones, as it provides a summary of appropriate reference genes for expression studies, considers the optimal number of reference genes, and reviews the average number of experimental factors and analysis tools per study.

Keywords: RT-qPCR, reference genes, SYBR green method, experimental factors, analysis tools

INTRODUCTION

Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a premier molecular biology tool and a powerful method for quantification of gene expression levels in real-time (Vandesompele et al., 2002). Although RT-qPCR is one of the most efficient, reliable, and reproducible techniques to quantify gene expression, multiple factors, including the quality and integrity of RNA samples, efficiency of cDNA synthesis, and PCR efficiency, can significantly influence signal normalization (Bustin et al., 2005; Strube et al., 2008). RT-qPCR generally involves...
normalization of expression levels of multiple genes to the expression levels of a suite of stable reference genes. Even though reference gene transcript levels should ideally be stable across a range of different conditions, previous studies have shown that expression of many commonly used reference genes differs dramatically under different treatment conditions (Kalushkov and Hodek, 2004; Bustin et al., 2013). It is clear that the expression level of many reference genes is condition-specific and accordingly, there is no universal gene that can be used for internal control for all application scenarios, strongly indicating the necessity of conducting custom reference gene selection for RT-qPCR analyses on a case-by-case basis, even for the same species.

Over the last 10 years, RT-qPCR has been increasingly used in genome/transcriptome expression studies in insect species. Furthermore, considerable advancements have been made for identification and validation of appropriate reference genes across various biotic and abiotic experimental conditions in many insect species (Table 1). In RT-qPCR experiments, SYBR Green and TaqMan probes have been the two most frequently used methodologies, with the SYBR Green method being utilized much more frequently. Here, we have summarized only the studies that used the SYBR Green method. It is well known that characterization of reference genes is an onerous task requiring well-designed molecular experiments followed by elaborate computational analyses (Andersen et al., 2004; Pfaffl et al., 2004). Therefore, a comprehensive summary of published sets of experimentally validated reference genes in conjunction with the description of relevant experimental conditions and analysis tools would be timely (Sang et al., 2017).

In order to fill this gap and provide molecular biologists with informative guidance on selecting the reference genes to customize their RT-qPCR experiments, this present review summarizes the current trends in reference gene selection for RT-qPCR normalization in gene expression studies performed on insects between 2008 and 2017 (Table 1). Specifically, the insect species, reference genes, experimental conditions, analysis tools, and publication year have been summarized. Furthermore, the relationships between the numbers of the reference genes, experimental factors, analysis tools, and publication date (year) were investigated by linear regression. We hoped that our meta-analysis would be of great help for researchers that plan gene expression studies in insects, especially the non-model ones, as it provides a summary of appropriate reference genes for expression studies, considers the optimal number of reference genes, and reviews average numbers of experimental factors and analysis tools per study.

NUMBER OF RELEVANT STUDIES IN INSECTS THAT UTILIZED EXPRESSION LEVELS OF REFERENCE GENES FOR NORMALIZATION OF RT-QPCR DATA

The relevant publications that analyzed reference gene expression in insects in 2008–2017 are summarized in Table 1. All data were extracted from databases such as https://www.ncbi.nlm.nih.gov/pubmed, https://scholar.google.com/, https://link.springer.com/, http://onlinelibrary.wiley.com/, and https://www.sciencedirect.com/ using the following search terms: (“internal control genes” OR “reference genes” OR “housekeeping genes”) AND (“qPCR” OR “quantitative PCR” OR “qRT-PCR” OR “RT-qPCR”) occurring in the Title/Abstract. Additionally, we also curated relevant papers that came to our attention independently but were not uncovered by the above search algorithm. We found and curated 90 representative papers published in 36 journals. The top five journals by the number of published studies on gene expression in insects were PLoS One (26/90), Scientific Reports (9/90), Journal of Economic Entomology (6/90), Journal of Insect Science (5/90), and BMC Research Notes (4/90; Table 1). These papers were mainly published between 2013 and 2017 with an average of 14 papers published over the last 5 years (Figure 1A). We can clearly see that open access journals provide the main platform for publications on this topic.

NUMBER OF INSECT SPECIES THAT WERE ANALYZED FOR EXPRESSION OF REFERENCE GENES

The 90 reviewed papers reported results of gene expression studies in 78 insect species in 100 separate experiments (Table 1). These insects were from 10 insect orders (Figure 1B). They predominantly belonged to the following four insect orders: Hemiptera (25 insect species), Lepidoptera (16 insect species), Coleoptera (12 insect species), and Diptera (13 insect species; Figure 1B). Some insects, such as Bemisia tabaci (Li et al., 2013; Su et al., 2013; Collins et al., 2014; Liang et al., 2014; Dai et al., 2017; Lü et al., 2017) and Helicoverpa armigera (Chandra et al., 2014; Shakeel et al., 2015; Zhang et al., 2015), which cause serious damage to crops, were investigated extensively and frequently. There were six and three papers, respectively, for the above-mentioned species that analyzed expression levels of reference genes and were published during the last 5 years.

DISTRIBUTION OF THE NUMBER OF REFERENCE GENES PER STUDY

In the 90 papers, 3–21 reference genes were investigated per single study (Figure 2). In the majority of studies, the expression level of 5–10 reference genes was determined (Figure 2A). The breakdown of the papers that analyzed expression of multiple reference genes was as follows: five genes (10%), six genes (16%), seven genes (14%), eight genes (15%), nine genes (14%), and ten genes (10%). Recently, in some studies, more than 10 candidate reference genes were analyzed to provide more choices for expression level comparisons and normalization (Table 1). However, linear regression analysis did not reveal a significant correlation between the number of reference genes used in the study and its publication date (year; Figure 2B).
TABLE 1 | Summary of the reference gene studies in insects from 2008 to 2017.

Insect species	Reference genes*	Experimental conditions	Analysis tools	References
COLEOPTERA				
Leptinotarsa decemlineata	Actin1, Actin2, ARF1, ARF4, TATA1, TATA2, RPL4, RPL8, EF1A	Developmental stage, tissue, insecticide	geNorm, Normfinder, BestKeeper	Shi et al., 2013
Diabrotica virgifera virgifera	Actin, EF1A, RPS9, GAPDH, β-tubulin	Developmental stage, tissue, dsRNA exposure, Bt toxin exposure	geNorm, Normfinder, BestKeeper, ΔCt method	Rodrigues et al., 2013
Hippodamia convergens	28S, 18S, Actin, EF1A, GAPDH, OypA, V-ATPase A	Developmental stage, tissue, sex, temperature, photoperiod, dsRNA exposure	geNorm, Normfinder, BestKeeper, ΔCt method	Pan et al., 2015b
Coccinella septempunctata	28S, 18S, 16S, NADH, EF1A, Actin, α-tubulin, ArgK	Developmental stage, tissue, sex, temperature, photoperiod, dsRNA exposure	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Yang et al., 2015c
Coleomegilla maculata	28S, 18S, 16S, 12S, Actin, EF1A, GAPDH, ArgK, V-ATPase A, RPS24, HSP70, HSP90, α-tubulin, NADH, RPS18, RPL4	Developmental stage, tissue, dsRNA exposure	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Yang et al., 2016
Tribolium castaneum	Actin, RPS3, RPS6, RPS18, RPS13, E-cadherin, Syntaxin1, Syntaxin6	Fungal infection	geNorm, Normfinder	Lord et al., 2010
Galeruca daurica	Actin, GAPDH, GST, RPL32, SDHA, TATA, α-tubulin, β-tubulin, HSP70, CYP6	Developmental stage, tissue, sex, temperature, diapause, and non-diapause adults	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Tan et al., 2017
Agrius planipennis	Actin, β-tubulin, GAPDH, RPL7, EF1A, UBQ	Developmental stage, tissue	geNorm, Normfinder, BestKeeper	Rajarapu et al., 2012
Mylabris cichorii	RPL22, RPL13, RPS27, Actin, β-tubulin, UBC, UBE2C, UBE3A, EF1A, TATA	Sex	geNorm, Normfinder	Wang Y. et al., 2014
Colaphellus bowringi	GAPDH, RPL32, RPL19, EF1A, TATA, TATA1, Actin1, Actin2, α-tubulin, α-tubulin 1, β-tubulin	Developmental stage, sex, population, photoperiod	geNorm, Normfinder, BestKeeper, RefFinder	Tan et al., 2015
Cryptolestes ferrugineus	SDHA, Cyclo A, γ-tubulin, α-tubulin, EF1A, GAPDH, RPL3, RPS13, Actin	Developmental stage, population	geNorm, Normfinder, BestKeeper, ΔCt method	Tang et al., 2017
Anoplophora glabripennis	SDFS, UBQ, Tubulin, RPL32, GAPDH, EF1A	Developmental stage, tissue	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Rodrigues et al., 2017
LEPIDOPTERA				
Danaus plexippus	28S, 18S, EF1A, GAPDH, NADH, CytoA, V-ATPase A, RPS5, RPL32	Developmental stage, tissue, sex, temperature, photoperiod, dsRNA exposure	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Pan et al., 2015a
Chilo suppressalis	18S, Actin, α-tubulin, EF1A, Histone 3, RPS11, NADH, UbI, HSP60, Actin A3, Actin A1, GAPDH, G3PDH, EF2, RPL32	Developmental stage, tissue	geNorm, Normfinder, stability index, ΔCt analysis	Xu et al., 2017

(Continued)
Insect species	Reference genes*	Experimental conditions	Analysis tools	References
Spodoptera littoralis	EF1A, GAPDH, RPS3, RPL10, Actin, β-FTZ-F1, UCCR, ArgK	Developmental stage, tissue, population, temperature, insecticide, diet, starvation	geNorm, Normfinder, BestKeeper, ΔCt method	Lu et al., 2013
Spodoptera exigua	Actin1, Actin2, EF1A, EF2, GAPDH, RPL10, RPL17, SOD, α-tubulin, 18S	Developmental stage, tissue, sex	geNorm, Normfinder, BestKeeper	Zhu et al., 2014
Helicoverpa armigera	18S, 28S, Actin1, Actin2, α-tubulin, β-tubulin, GAPDH, EF1A, RPL13, RPL27, RPL32, β-tubulin, TATA, RPS15, HSP90, GAPDH, RPL28, ArgK, GST, Actin	Developmental stage, tissue, virus, insecticide, temperature	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Zhang et al., 2015
Sesamia inferens	18S, EF1A, GAPDH, RPS13, RPS20, tubulin, Actin	Developmental stage, tissue, sex, temperature	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Sun et al., 2015
Plutella xylostella	18S, Actin, GAPDH, RPL32, RPS13, EF1A, RPS20, RPS23	Development stage, tissue, population, temperature, photoperiod, insecticide, mechanical injury	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Fu et al., 2013
Bombyx mori	Actin A3, Actin A1, GAPDH, G3PDH, Actin	Developmental stage, tissue	geNorm, Normfinder, BestKeeper, ΔCt method	Teng et al., 2012
Cryptophlebia pellastica	Actin1, Actin3, GAPDH, TIF-4A	Virus, temperature	ΔCt method	Guo et al., 2016
Cydia pomonella	Actin, EF1A, α-tubulin, ArgK, CO1, Enolase	Tissue	geNorm, Normfinder, BestKeeper	Ridgeway and Timm, 2015
Thaumatotibia leucotreta	Actin, EF1A, α-tubulin, ArgK, CO1, Enolase	Tissue, temperature, virus	geNorm, Normfinder, BestKeeper	Ridgeway and Timm, 2015
Gynaephora	18S, 28S, Actin1, Actin2, ArgK, Cyclo A, EF1A, GAPDH, RPL10, RPL27, RPL28, RPS15, RPS13, RPS2, Tropomycin Q, β-tubulin, α-tubulin	Population	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Zhang et al., 2017
Bicyclus anynana	Actin, EF1A, FK506, GAPDH, RPL40, V-ATPase H, RPS8, RPS18, TATA, elf2, G6PDH	Developmental stage, tissue, sex, diet	geNorm, Normfinder	Arun et al., 2015
Thitarodes armoricanus	18S, Actin, β-tubulin, GAPDH, G6PDH, EF2, EF4A, RPL13	Developmental stage, tissue, temperature, fungal infection, diet	geNorm, Normfinder, BestKeeper	Liu et al., 2016
Heliconius numata	Actin, Annexin, EF1A, FK506BP, PolyABP, UBQ, RPL3, RPS3A, Tubulin	Developmental stage	geNorm, Normfinder, BestKeeper	Piron Prunier et al., 2016
Insect species	Reference genes*	Experimental conditions	Analysis tools	References
---------------	------------------	-------------------------	---------------	------------
Musca domestica	18S, Actin, EF1A, RPS18, GAPDH	Developmental stage, mechanical injury, bacterial challenge	geNorm, Normfinder, BestKeeper	Zhong et al., 2013
HEMIPTERA				
Bemisia tabaci	HSP90, HSP20, HSP70, HSP90, V-ATPase A, RPL29, EF1A, SDHA, Actin, PPIA, GAPDH, Myosin L, NADH, γ-tubulin	Biotype, virus	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method, RefFinder	Lü et al., 2017
	18S, Actin, HSP90, HSP70, HSP90, γ-tubulin, RPL29, SDHA, Flavoprotein, GAPDH, EF1A, PPIA, NADH, Myosin L, V-ATPase A	Developmental stage, tissue, virus, biotype, photoperiod, temperature, insecticide	Li et al., 2013	
	Actin, GAPDH, GST, RPL32, SDHA, TATA, UBO, a-tubulin	Insecticide	Li et al., 2013	
	18S, GST, Actin, GAPDH, β-tubulin, a-tubulin, RPL13, EF1A	Developmental stage, organ, insecticide, bacterial challenge	Li et al., 2013	
	Actin, EF1A, GAPDH, RPL13, a-tubulin, Cyclophilin1	Temperature	Li et al., 2013	
Acyrthosiphon pisum	18S, 28S, 16S, Actin, EF1A, TATA, RPL12, β-tubulin, NADH, v-ATPase A, SDHβ	Developmental stage, temperature	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method, RefFinder	Yang C. et al., 2014
Lipaphis erysimi	16S, SDHβ, Actin, EF1A, RPL13, RPS18, RPL27, RFL29, β-tubulin, GAPDH, ArgK	Developmental stage, temperature, starvation, diet, glucosinolate	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method	Koramulta et al., 2016
Aphis gossypii	SDIV, EF1A, Helicase, GAPDH, RPS9, TATA, UBO	Developmental stage, tissue, host plant	geNorm, Normfinder, BestKeeper	Bansal et al., 2012
Aphis craccivora	18S, 12S, EF1A, RPL11, V-ATPase D, RPL14, RPS8, RPS23, NADH, HSP70	Developmental stage, temperature	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method	Yang et al., 2015b
Aphidius gossypii	18S, 28S, Actin, GAPDH, EF1A, RFL7, α-tubulin, TATA	Developmental stage, population, temperature, diet	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method	Ma et al., 2016
Myzus persicae	18S, Actin, RPL27, RFL7, β-tubulin, GAPDH, Acetylcholinesterase, EF1A, RPL32	Developmental stage, tissue, host plant, wing dimorphism, photoperiod, temperature, insecticide	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method	Kang et al., 2017
Rhopalosiphum padi	18S, EF1A, Actin, GAPDH	Wing dimorphism, virus	geNorm, Normfinder, BestKeeper	Wu et al., 2014
Megoura viciae	RPL3, NADH, SDHA, RPS9, TATA, Actin, β-tubulin, UBO	Developmental stage	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method, RefFinder	Cristiano et al., 2016
Toxoptera citricida	18S, Actin, EF1A, GAPDH, α-tubulin, β-tubulin, RNAP II	Developmental stage, wing dimorphism, temperature, starvation, UV irradiation	geNorm, Normfinder, BestKeeper, ΔC\textsubscript{T} method	Shang et al., 2015
Diuraphis noxia	Actin, RPL27, RPL9, RPL5, EF1A	Host plant	geNorm, Normfinder, BestKeeper	Sirha and Smith, 2014
Insect species	Reference genes*	Experimental conditions	Analysis tools	References
---------------------	--	--	---	-----------------------------
Diaphorina citri	EF1A, Actin, α-tubulin, GAPDH, RPL7, RPL17	Developmental stage, host plant	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Bassan et al., 2017
Toxoptera citricida	18S, EF1A, α-tubulin, β-tubulin, Actin, GAPDH, RNAS II	Developmental stage, wing dimorphism, temperature, starvation, UV irradiation	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Shang et al., 2015
Rhodnius prolixus	Actin, α-tubulin, GAPDH, GST, G6PDH, SDHA, SP, EF1A	Developmental stage, aging, nutrition	geNorm, Normfinder	Omondi et al., 2015
Rhodnius prolixus	18S, GAPDH, Actin, α-tubulin, RPL26	Tissue, diet, virus	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Paim et al., 2012
Niptaparia lugens	18S, Actin 1, Muscle actin, RPS11, RPS15, α-tubulin, EF1A, ArgK	Developmental stage, tissue, population, temperature, insecticide, diet, starvation	geNorm, Normfinder, BestKeeper, ΔCt method	Yuan et al., 2014
Sogatella furcifera	18S, Actin, α-tubulin, β-tubulin, EF1A, ETIF1	Host plant, population	geNorm, Normfinder, BestKeeper, ΔCt method	Wang W. X. et al., 2014
Eucelis variegatus	18S, Actin, ATP synthase β, GAPDH, Tropomysin	Phytoplasma infection	geNorm, Normfinder, BestKeeper, ΔCt method	Galetto et al., 2013
Macrosteles	18S, Actin, ATP synthase β, GAPDH, Tropomysin	Phytoplasma infection	geNorm, Normfinder, BestKeeper, ΔCt method	Galetto et al., 2013
Eucerus pela	Actin1, Actin2, α-tubulin, β-tubulin1, β-tubulin2, SDH1, SDH2, SDH3, RNAS II, RPL5-1, RPL5-2, RPL15, UBQ1, UBQ2, Myosin, Astacin	Developmental stage, tissue, temperature	geNorm, Normfinder, RefFinder	Yu et al., 2016
Bactericera cockerellii	Actin, EF1A, Ferritin, GAPDH, RPL5, RPS18	Developmental stage, Lso haploptoe B infection	geNorm, Normfinder, BestKeeper, ΔCt method	Ibanez and Tamborindeguy, 2016
Cimex lectularius	α-tubulin, β-tubulin, RPL18, Actin, EF1A, GAPDH, SYN, UBQ	Developmental stage, tissue, insecticide	geNorm, Normfinder, BestKeeper, ΔCt method	Mamidala et al., 2011
Delphacodes kuscheli	Actin, α-tubulin, GAPDH, EF1A, RPS18, UBQ	Virus	geNorm, Normfinder, BestKeeper, ΔCt method	Moroniche et al., 2011
Phenacoccus solenopsis	Actin, RPL32, β-tubulin, α-tubulin, GAPDH, SDHA	Developmental stage, host plant, temperature, population	geNorm, Normfinder, BestKeeper, ΔCt method	Ara et al., 2017
Halimorpha halys	RPS26, EF1A, UBQ, FAU, ARF, Actin, GUS, TATA, TIF6, RPL9	Developmental stage, tissue, dsRNA exposure, starvation	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Bansal et al., 2016
DIPTERA				
Lucilia cuprina	18S, 28S, Actin, GST1, AChI, Per55, aE7, Pka, β-tubulin, GAPDH, RPLUO	Developmental stage	geNorm, Normfinder	Bagnall and Kotze, 2010
Lucilia sericata	18S, 28S, Actin, β-tubulin, RPS2, RPLP0, EF1A, Pka, GAPDH, GST1	Native and immune-challenged larvae, tissue	geNorm, Normfinder	Baumann et al., 2015
Liriomyza trifolii	18S, Actin, ArgK, EF1A, GAPDH, Héteone 3, RPL32, α-tubulin, CAD	Developmental stage, temperature, sex	geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder	Chang et al., 2017
Insect species	Reference genes*	Experimental conditions	Analysis tools	References
---------------	------------------	-------------------------	----------------	------------
Drosophila melanogaster	18S, Actin, EF1A, Mnf, RPL32, RPL32, α-tubulin, GAPDH, α-tubulin, RPL32, RPL13, EF1A, SDHA, GST1, Cyp1, Tyrosine-3-monoxygenase, exba, Actin, Su(Tpl), Fat, CG13220, Robl, Rap21, HMBS, RNAP II, Nv2, Elav, Appl	Mechanical injury, temperature, diet	geNorm, Normfinder, BestKeeper	Ponton et al., 2011
Drosophila suzukii	Actin, GAPDH, RPL18, RPL32, ArgK, EF1β, NADH, HSP22, α-tubulin, TATA	Imaginal disk	geNorm, Normfinder	Matta et al., 2011
Bactrocera dorsalis	18S, Actin1, Actin2, Actin5, GAPDH, G6PDH, α-tubulin, β-tubulin, EF1A	Tissue	geNorm, Normfinder	Matta et al., 2011
Anastrepha obliqua	Actin, β-tubulin, GAPDH, RPL18, RPS17, Syntaxin, Troponin C	Developmental stage	geNorm, Normfinder, BestKeeper, RefFinder	Nakamura et al., 2016
Bactrocera (Tetradacus) Minax	18S, 28S, GAPDH, α-tubulin, β-tubulin, Actin, G6PDH, RPL32, EF1A, EF1β	Developmental stage, temperature, γ-irradiation	geNorm, Normfinder, RefFinder	Lü et al., 2014
Bradyia odoriphaga	Actin, EF1A, UBO, RPS5, α-tubulin, GAPDH, RPS18, RPL18, SDHA, RPL28, RPS13, RPS15	Developmental stage, temperature, insecticide, photoperiod, diet, population	geNorm, RefFinder	Shi et al., 2016
Aedes aegypti	Actin, EF1A, α-tubulin, RPL8, RPL32, RPS17, GAPDH	Developmental stage	geNorm, BestKeeper, NormFinder	Dzaki et al., 2017
Chrysomya megacephala	Actin, RPL8, GAPDH, EF1A, α-tubulin, β-tubulin, TATA, 18S, RPS7	Developmental stage, tissue, drug, heavy metal, diet	RefFinder	Wang et al., 2015
Ceratitis capitata	RPL19, TATA, Ultrabithorax, GAPDH, α-tubulin, β-tubulin, 14-3-3elta, RNA polymerase II, Actin3	Developmental stage, tissue, body part	geNorm, Normfinder, BestKeeper, RefFinder	Sagri et al., 2017
Bactrocera oleae	RPL19, TATA, Ultrabithorax, GAPDH, α-tubulin, β-tubulin, 14-3-3elta, RNA polymerase II, Actin3	Developmental stage, tissue, body part	geNorm, Normfinder, BestKeeper, RefFinder	Sagri et al., 2017
HYMENOPTERA				
Solenopsis invicta	RPL18, EF1β, Actin, GAPDH, TATA	Developmental stage, tissue, caste	geNorm, Normfinder, BestKeeper, RefFinder	Cheng et al., 2013
Apis mellifera	Actin, GAPDH, α-tubulin, RPS19, GST1, RPL32, UBO, RPL13, HMBS, SDHA, TATA	Bacterial challenge	geNorm, Normfinder, BestKeeper	Scharlaken et al., 2008
	GAPDH, RPL32, EF1A			
	RPL19, RPL27, RPL10, RPL12, RPS18, GAPDH, EF1A, Pontin, Proteasome, NAPF, U2af38, Pros54, DCAF13, ROSM1, NADH	Development time	geNorm, Normfinder, BestKeeper	Reim et al., 2013
Bombus terrestris	ERF1A, PPIA, RPL23, TATA, polyubiquitin	Virus	geNorm, Normfinder	Niu et al., 2014

(Continued)
Insect species	Reference genes*	Experimental conditions	Analysis tools	References
ArgK, EF1A, PLA2, α-tubulin, GAPDH, Actin, RPL13,	Tissue	geNorm, Normfinder	Hornáková et al., 2010	
Lysiphlebia japonica 18S, Actin, β-tubulin, RPL18, ArgK, EF1A, TATA, PR11, RPL27, RPS18, DMT, PPI	Developmental stage, tissue, sex, diet	geNorm, Normfinder, BestKeeper	Gao et al., 2017	
THYSANOPTERA	28S, 18S, Actin, α-tubulin, EF1A, V-ATPase A, NADH, HSP60, HSP70, HSP90, RPL32	Virus	geNorm, Normfinder, BestKeeper, ΔC_T method, RefFinder	Yang et al., 2015a
18S, Actin, α-tubulin, RPL13	Developmental stage, tissue, temperature	geNorm, Normfinder, BestKeeper, RefFinder	Zheng et al., 2014	
ORTHOPTERA	18S, GAPDH, Actin, RPL32, EF1A, Annexin IX	Solitarious and gregarious phase, isolated or crowded condition, short-term crowding	geNorm, Normfinder	Onapuis et al., 2011
CHORTOCITES TERMINIFERA 18S, GAPDH, Actin, α-tubulin, RPL32, CGG3220	Developmental stage	geNorm, Normfinder	Van Hei et al., 2009	
Schistocerca gregaria 18S, Actin, Chitinase2, EF1A, RPL32, > tubulin, RPL32, SDHA, GAPDH, Histone	Developmental stage, tissue, insecticide, temperature, starvation	geNorm, Normfinder, BestKeeper, ΔC_T method	Yang Q. et al., 2014	
PSOCOPTERA	Ctenocephalides felis 18S, 28S, Actin, Muscle actin, EF1A, GAPDHH,	Developmental stage, sex, diet, insecticide	geNorm, Normfinder, BestKeeper	Montosh et al., 2016
Lepisma saccharina 18S, Actin1, Actin2, α-tubulin, GAPDH	Developmental stage, insecticide	geNorm, Normfinder	Jiang et al., 2010	

*ADP-ribosylation factor (ARF), β-actin (Actin), elongation factor 1 α (EF1A), glyceroldehyde-3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PDH), arginine kinase (ArgK), cyclophilins A (CypA), vacuolar-type H⁺-ATPase subunit A (V-ATPase A), 16S ribosomal RNA (16S), 12S ribosomal RNA (12S), 28S ribosomal RNA (28S), 18S ribosomal RNA (18S), ribosomal protein S (RPS), ribosomal protein L (RPL), ribosomal protein P2 (RPP2), heat shock protein (HSP), NADH dehydrogenase subunit 2 (NADH), sucinate dehydrogenase complex subunit A (SDHA), peptidylprolyl isomerase A (PPIA), myosin light chain (Myosin L), glutathione S-transferase (GST), succinate dehydrogenase flavoprotein subunit (SDSF), ubiquitin-conjugating protein (UBQ), RNA polymerase II large subunit (RNAP II), superoxide dismutase (SOD), cAMP-dependent protein kinase A (PKA), acidic ribosomal phosphoprotein PO (RPLPO), acetylcholinesterase (AchO), pentophenin-55 (Per55), alpha esterase 7 (αE7), ADP-ribosylation factor (ARF), porphobilogen deaminase (HMBS), cytochrome oxidase subunit 1 (CO1), cytochrome P450 (CYP6), embryonic lethal abnormal vision (Eve), major intrinsic protein (MIP), ubiquinol-cytochrome c reductase (UCCR), dimethyladenosine transferase (DMT), peptidylprolyl isomerase (PPI, FK 506 binding protein (FK506), translation initiation factor eIF2, α-actin (Actin), actin-2, Rhodanase, heat shock protein (HSP), nuclear matrix protein (NMP), ubiquitin-conjugating enzyme (UBC), RNA polymerase II small subunit (RPS), nuclear matrix protein (NMP), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conjugating enzyme (UbC2), ubiquitin ligase (UBL), ubiquitin-conjugating enzyme (UBC), histone deacetylase (HDAC), ubiquitin-E1 conjugating enzyme (UbcE1), ubiquitin-E2 conj
TOP 10 REFERENCE GENES

In the set of curated 90 papers, the expression level of reference genes was determined for 841 times. The number of experiments that utilized top 10 most frequently used reference genes, including Actin, RPL, Tubulin, GAPDH, RPS, 18S, EF1A, TATA, HSP, and SDHA, are shown in Figure 3. Actin, which encodes a major structural protein, is expressed at various levels in many cell types. It is considered the ideal reference gene for RT-qPCR analysis and has been investigated most frequently (Figure 3). For example, previous studies have shown that the expression of Actin was the most stable among other reference genes across different developmental stages of many insects, including Apis mellifera, Schistocerca gregaria, Drosophila melanogaster, Plutella xylostella, Chilo suppressalis, Chortoicetes terminifera, Liriomyza trifolii, and Diuraphis noxia (Scharlaken et al., 2008; Van Hiel et al., 2009; Chapuis et al., 2011; Ponton et al., 2011; Teng et al., 2012; Sinha and Smith, 2014; Chang et al., 2017).

Nonetheless, the expression of Actin was less stable in several insects, including those of the species, Coleomegilla maculata, Coccinella septempunctata, and Hippodamia convergens of the family Coccinellidae (Pan et al., 2015b; Yang et al., 2015c, 2016).

Ribosomal protein (RP), a principal component of ribosomes, is among the most highly conserved proteins across all life forms. The fraction of studies in which the expression level of RPL and RPS family genes was used as reference was 18.55%. Together, these genes were the most widely selected reference genes for expression studies in insects during the past 10 years. In most of these studies, RP-encoding genes were stable reference genes. For example, RPS24 and RPS18 were stable reference genes across different developmental stages and sex treatments of C. maculata (Yang et al., 2016); RPS13 and RPS23 were stable reference genes across different developmental stages of P. xylostella (Fu et al., 2013); whereas RPL11, RPS8, and RPL14 were the three most stable reference genes across different developmental stages and under different temperature conditions of Aphis craccivora (Yang et al., 2015b). However, under some conditions, expression levels of RP-encoding genes may be unstable. For example, RPS20 was the least stable gene in P. xylostella strains that were collected in different fields, grown under different temperatures, exposed to different photoperiods, or presented different insecticide susceptibility (Fu et al., 2013).

Tubulin (α-tubulin, β-tubulin, and γ-tubulin), which encodes cytoskeletal structure proteins, was ranked as the third most widely investigated reference gene (Figure 3). In many studies, the stability of Tubulin was variable under different treatments for the same species. For example, α-tubulin exhibits a stable expression in different tissues and sexes of C. maculata, whereas its expression was unstable across different developmental stages and following dsRNA treatments (Yang et al., 2015c).

GAPDH is another commonly used reference gene, ranked as the fourth most widely utilized reference gene (Figure 3). Occasionally, the stability of GAPDH expression was variable under different treatments within the same species. For example, GAPDH expression was not affected by tissue type, sex, photoperiod, or dsRNA treatment in H. convergens, but it varied across different developmental stages and at different temperatures (Pan et al., 2015b). GAPDH was a stable reference gene whose expression was not appreciably altered under different temperatures or by mechanical injury in different strains of P. xylostella; however, its expression was unstable across different developmental stages and was affected by photoperiod (Fu et al., 2013).

18S ribosomal RNA, a part of the ribosomal RNA, was ranked as the sixth most widely investigated reference gene (Figure 3). It was stably expressed throughout the vast majority of biotic and abiotic conditions in most studies that employed its expression level as reference (Table 1). However, it is generally acknowledged that the use of rRNA for normalization of RT-qPCR signals is problematic as rRNA forms a significant part of the total RNA pool (>80%), whereas mRNA accounts for a mere 3–5%, so the subtle changes in target gene expression levels may be potentially masked. With this in mind, it is much better to use the mRNA species of the ribosomal machinery, such as RPL and RPS genes, instead of rRNA.

FIGURE 1 | Cumulative numbers of relevant publications (A) and distribution of insect species belonging to different taxonomic orders (B) in relevant gene expression studies performed in 2008–2017 that utilized expression levels of reference genes to normalize RT-qPCR data.
Altogether, the expression level of EF1A, TATA, HSP, and SDHA genes was used as a reference in 11.42% of the experiments. These four genes transiently exhibited variable expression under different treatments in different insect species. For example, EF1A was the least stable reference gene in A. craccivora across different developmental stages and at different temperatures (Yang et al., 2015b). In contrast, EF1A was one of the best reference genes in H. convergens with its expression level being unaffected by three biological factors (developmental stage, tissue type, and sex) and three abiotic conditions (temperature, photoperiod, and dietary RNAi; Pan et al., 2015b).

DISTRIBUTION OF THE NUMBERS OF EXPERIMENTAL FACTORS STUDIED

In the 90 papers, changes in the reference gene expression level were investigated under the influence of one to seven experimental factors. Most of these studies analyzed the influence of one (10%), two (16%), or three (14%) experimental factors (Figure 4A). The relationship between the number of experimental factors and study publication date (year) was investigated by linear regression. We found that the more recently the paper was published, the more experimental factors it tended to explore (Figure 4B).

TOP 10 EXPERIMENTAL FACTORS

A total of 39 experimental factors were investigated in these 90 papers, with the top 10 experimental factors (in the descending order) being developmental stage, tissue, temperature, insecticide, diet, population, virus, sex, photoperiod, and starvation (Figure 5).

RNA interference (RNAi) is a conserved mechanism whereby messenger RNA transcripts are targeted by small interfering RNAs in a sequence-specific manner, leading to downregulation of gene expression. During the past 20 years, RNAi has been widely used as a tool to investigate functions of insect genes (Zotti et al., 2018), whereas RT-qPCR is the method of choice to study gene expression in terms of its sensitivity and specificity. The genes that play important roles during insect metamorphosis and affect different tissues can serve as target genes for manipulations that kill the insect or retard its growth. This is why gene
expression profiles are widely assessed at different developmental stages and in different tissues. The effect of these two factors on gene expression was investigated frequently with the use of reference gene expression levels in 22.86 and 17.50% of studies, respectively (Figure 5).

Insects are ectothermic organisms, and the body temperature of most insects is affected by changes in ambient temperature, ultimately influencing their growth, and development. Temperature was ranked as the third most widely investigated factor at 11.79% (Figure 5). We found that the numbers/kinds of reference genes under different temperatures varied in different insects. For instance, GAPDH, and EF1A were the best stable gene combinations in Spodoptera litura (Lu et al., 2013), while RPS15, β-tubulin, and EF1A were the most stable reference genes in Nilaparvata lugens (Yuan et al., 2014).

Many insects, including the 78 insect species summarized in this study have developed resistance to insecticides. Insecticide resistance presents as a major challenge for pest control. The molecular mechanisms underlying insecticide resistance are under intense scrutiny; RT-qPCR is an important technology for investigating the gene functions involved in insecticide resistance. Insecticides ranked as the fourth most widely investigated factor at 5.00% (Figure 5). We found that different reference genes were used in different insects to study the effect of various insecticide treatments. RPS15 and RPL32 were stably expressed reference genes in insecticide treatment experiments in H. armigera (Zhang et al., 2015); while RPS11, EF1A, and β-tubulin were the best choice in the insecticide-stressed N. lugens (Yuan et al., 2014). Different classes of insecticides have warranted different sets of reference genes to normalize target gene expression in B. tabaci (Liang et al., 2014).

Diet was ranked as the fifth most widely investigated factor at 4.29% (Figure 5). Different gene combinations were required for different diet conditions. For examples, RPL10 and GAPDH were the most stable reference genes in S. litura that were reared on different diets (Lu et al., 2013); whereas, Actin, RPS18, and RPS15 were the most stable reference genes among different diets in Bradysia odoriphaga (Shi et al., 2016), Actin and 18S were the best reference gene combination for feeding assay experiments with Aphis gossypii (Ma et al., 2016). In addition, in viral infection experiments, different reference gene combinations were recommended for different insects. For example, GAPDH, RPL27, and β-tubulin was the best reference gene combination for nuclear polyhedrosis virus infection (Zhang et al., 2015), HSP90 and RPL29 were the most stable reference genes in P. xylostella (Fu et al., 2013). The combination of Actin and EF1A was very useful for experiments involving A. gossypii (Ma et al., 2016). In addition, in viral infection experiments, different reference gene combinations were recommended for different insects.
DISTRIBUTION OF THE NUMBER OF ANALYSIS TOOLS

In the 90 papers, one to five analysis tools were used to evaluate gene expression stability, with one tool (4%) and three tools (34%) being the least and most frequently used variants in these studies, respectively (Figure 6A). Linear regression analysis showed that the more recently the paper was published, the more analysis tools it used (Figure 6B).

CONCLUSIONS

Our review clearly suggests that no reference gene is universally stably expressed because variable expression levels even for the most popular reference genes have been observed under different circumstances in the same insect species or under the same experimental condition among different insects. In order to obtain reliable experimental data for the target gene, it is necessary to perform internal reference gene screening under specific experimental conditions. Given that the best internal reference genes in different species under different conditions often have large differences in expression, it may result in a multi-fold difference of target gene expression, or even false conclusion, if used improperly. For instance, the expression of V-ATPase A in the gut ranged from 7.7- to 22.4-fold higher than that in the carcass of C. septempunctata when normalized to the most- and least-stable sets of reference genes, respectively (Yang et al., 2016). Furthermore, the relative hsp83 expression was noticeably variable when a less stable reference gene was used for RT-qPCR normalization in different tissues and developmental stages of S. inferens, whereas hsp83 was uniformly expressed when stable reference genes were used for normalization (Sun et al., 2015). Therefore, better accuracy in gene expression analysis can promote the investigation of gene function. We strongly recommend that prior to each RT-qPCR experiment, the reference gene expression stability must be validated. Furthermore, multiple reference genes should be used to achieve the best results. This review should help researchers select the best reference genes and optimize their experiments to examine gene expression levels in insects, especially the non-model ones, in terms of the number of reference genes chosen, experimental factors manipulated, and the analysis tools used.

AUTHOR CONTRIBUTIONS

HP and YZ conceived the topic of the review. HP, CY, and JL performed literature review analyzed the data. HP and CY wrote the manuscript.
FUNDING
This work was supported by the National Key R&D Program of China (grant No. 2017YFD0200900), project supported by GDUPS (2017), a start-up fund from the South China Agricultural University. The granting agencies have no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES
An, X. K., Hou, M. L., and Liu, Y. D. (2016). Reference gene selection and evaluation for gene expression studies using qRT-PCR in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J. Econ. Entomol. 109, 879–886. doi: 10.1093/jee/tov333

Andersen, C. L., Jensen, J. L., and Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496

Arun, A., Baumlé, V., Amelot, G., and Nieberding, C. M. (2015). Selection and validation of candidate reference genes for qRT-PCR analysis at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 7:43618. doi: 10.1038/srep43618

Bansal, R., Mamidala, P., Mian, M. A., Mittapalli, O., and Michel, A. P. (2012). Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). J. Econ. Entomol. 105, 1432–1438. doi: 10.1603/EC1209

Bansal, R., Mittapalli, P., Chen, Y., Mamidala, P., Zhao, C., and Michel, A. (2016). Quantitative RT-PCR gene validation and RNA interference in the brown marmorated stink bug. PLoS ONE 11:e0152730. doi: 10.1371/journal.pone.0152730

Bassan, M. M., Angelotti-Mendonça, J., Alves, G. R., Yamamoto, P. T., and Mourão Filho, F. D. A. (A). (2017). Selection of reference genes for expression studies in Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 110, 2623–2629. doi: 10.1093/jee/tox253

Baumann, A., Lehmann, R., Beckert, A., Vilcinskas, A., and Franta, Z. (2017). Selection and evaluation of reference genes for quantitative real-time PCR normalization in cotton bollworm, Helicoverpa armigera. Mol. Biol. 48, 813–822. doi: 10.1134/S1066516314060156

Chang, Y. W., Chen, J. Y., Lu, M. X., Gao, Y., Tian, Z. H., Gong, W. R., et al. (2017). Selection and validation of candidate reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae). PLoS ONE 12:e0181682. doi: 10.1371/journal.pone.0181682

Chapuis, M., Tohidiesfahani, D., Dodgson, T., Blondin, L., Ponton, F., Cullen, D., et al. (2011). Assessment and validation of a suite of reverse transcription–quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. BMC Mol. Biol. 12, 1–11. doi: 10.1186/1471-2199-12-7

Cheng, D., Zhang, Z., He, X., and Liang, G. (2013). Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8:e57718. doi: 10.1371/journal.pone.0057718

Collins, C., Patel, M. V., Colvin, J., Bailey, D., Seal, S., and Wolfné, M. (2014). Identification and evaluation of suitable reference genes for gene expression studies in the whitefly Bemisia tabaci (Asia I) by reverse transcription quantitative real-time PCR. J. Insect Sci. 14:63. doi: 10.1673/031.04.63

Cristiano, G., Grossi, G., Scala, A., Fantí, P., Zhou, J. J., Bufo, S. A., et al. (2016). Validation of reference genes for qRT-PCR analysis in Megoura viciae (Hemiptera: Aphididae). B. Insectol. 69, 229–238.

Dai, T. M., Lü, Z. C., Liu, W. X., and Fan, F. H. (2017). Selection and validation of reference genes for qRT-PCR analysis during biological invasions: the thermal adaptability of Bemisia tabaci MED. PLoS ONE 12:e0173821. doi: 10.1371/journal.pone.0173821

Dzaki, N., Ramli, K. N., Azlan, A., Ishak, I. H., and Azam, G. (2017). Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 7:43618. doi: 10.1038/srep43618

Fu, W., Xie, W., Zhang, Z., Wang, S., Wu, Q., Liu, Y., et al. (2013). Exploring valid reference genes for quantitative real-time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Biol. Sci. 9:792. doi: 10.7150/ijbs.5862

Galetto, L., Bosco, D., and Marzachi, C. (2013). Selection of reference genes from two leafflower species challenged by phytoplasma infection, for gene expression studies by RT-qPCR. BMC Res. Notes 6:409. doi: 10.1186/1756-0500-6-409

Gao, X. K., Zhang, S., Luo, J. Y., Wang, C. Y., Lü, L. M., Zhang, L. J., et al. (2017). Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphididae) using RT-qPCR. Gene 637, 211–218. doi: 10.1016/j.gene.2017.09.057

Guo, H., Jiang, L., and Xia, Q. (2016). Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori. Mol. Genet. Genomics 291:999. doi: 10.1007/s00438-015-1125-4

Hornaková, D., Matousková, P., Kindl, J., Valterová, I., and Pichová, I. (2010). Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bembix terrestris and Bembix lucorum of different ages. Anal. Biochem. 397, 118–120. doi: 10.1016/j.ab.2009.09.019

Ibanez, F., and Tamborindeguy, C. (2016). Selection of reference genes for expression analysis in the potato psyllid, Bactericera cockerelli. Insect Mol. Biol. 25, 227–238. doi: 10.1111/immb.12219

Jiang, H. B., Liu, Y. H., Tang, P. A., Zhou, A. W., and Wang, J. J. (2010). Validation of endogenous reference genes for insecticide-induced and developmental expression profiling of Liposcelis bostrychophila (Psocoptera: Liposcelididae). Mol. Biol. Rep. 37:1019. doi: 10.1007/s11033-009-9803-0

Kalushkov, P., and Hodek, I. (2004). The effects of thirteen species of aphids on some life history parameters of the ladybird Coccinella septempunctata. Biol. Control 49, 21–32. doi: 10.1023/B:BICO.0000009385.90333b4

Kang, Z. W., Liu, F. H., Tian, H. G., Zhang, M., Guo, S. S., and Liu, T. X. (2017). Evaluation of the reference genes for expression analysis using quantitative real-time polymerase chain reaction in the green peach aphid, Myzus persicae. Insect Sci. 24, 222–234. doi: 10.1111/1744-7917.12310
Shi, C., Yang, F., Zhu, X., Du, E., Yang, Y., Wang, S., et al. (2016).
Shi, X. Q., Guo, W. C., Wan, P. J., Zhou, L. T., Ren, X. L., Ahmat, T., et al. (2014). Selection of reference genes for expression analysis in Diuraphis noxia (Hemiptera: Aphididae) fed on resistant and susceptible wheat plants.
Sun, M., Lu, M. X., Tang, X. T., and Du, Y. Z. (2015). Exploring valid reference genes for expression analysis using qRT-PCR in the blister beetle Mylabris cichorii. J. Insect Sci. 14:94. doi: 10.1093/jis/11034.

Shang, F., Wei, D. Z., Wang, J., Liu, W., Ma, W. H., Lei, C. L., et al. (2015). Reference gene validation for quantitative real-time PCR in the blister beetle Mylabris cichorii. J. Insect Sci. 14:94. doi: 10.1093/jis/11034.

Shang, F., Wei, D. Z., Wang, J., Liu, W., Ma, W. H., Lei, C. L., et al. (2015). Reference gene validation for quantitative real-time PCR in the blister beetle Mylabris cichorii. J. Insect Sci. 14:94. doi: 10.1093/jis/11034.

Xu, J., Lu, M. X., Cui, Y. D., and Du, Y. Z. (2017). Selection and evaluation of reference genes for expression analysis using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 110, 683–691. doi: 10.1093/jee/tow297.

Yang, C., Pan, H., Liu, Y., and Zhou, X. (2015b). Temperature and development impacts on housekeeping gene expression in cowpea aphid, Aphis craccivora (Hemiptera: Aphididae). PLoS ONE 10:e0130593. doi: 10.1371/journal.pone.0130593.

Yang, C., Preisser, E. L., Zhang, H., Liu, Y., Dai, L., Pan, H., et al. (2016). Selection of reference genes for RT-qPCR analysis in Coccinella septempunctata to assess un-intended effects of RNAi transgenic plants. Front. Plant Sci. 7:e53006. doi:10.3389/fpls.2016.01672.

Yang, Q., Li, Z., Cao, J., Zhang, S., Zhang, H., Wu, X., et al. (2014). Selection and assessment of reference genes for quantitative PCR normalization in migratory locust, Locusta migratoria, (Orthoptera: Acrididae). PLoS ONE 9:e98164. doi: 10.1371/journal.pone.0098164.

Yang, C., Pan, H., Yuan, L., and Zhou, X. (2018). Reference gene selection for RT-qPCR analysis in Harmonia axyridis, a global invasive lady beetle. Sci. Rep. 8:2689. doi: 10.1038/s41598-018-20612-w.

Yu, S. H., Pu, Y., Sun, T., Qi, Q., Wang, X. Q., Xu, D. L., et al. (2016). Identification and evaluation of reference genes in the Chinese white wax scale insect Eriococcus pecta. Springerplus 5, 1–8. doi:10.1186/s40064-016-2548-z.

Yuan, M., Lu, Y., Zhu, X., Wan, H., Shakeel, M., Zhan, S., et al. (2014). Selection and evaluation of potential reference genes for gene expression analysis in the brown plant hopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PLoS ONE 9:e86503. doi: 10.1371/journal.pone.0086503.

Zhai, Y., Lin, Q., Zhou, X., Zhang, X., Liu, T., and Yu, Y. (2014). Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE 9:e106800. doi:10.1371/journal.pone.0106800.

Zhang, L., Zhang, Q. L., Wang, X. T., Yang, X. Z., Li, X. P., and Yuan, M. L. (2017). Selection of reference genes for qRT-PCR and expression analysis of high-altitude-related genes in grassland caterpillars (Lepidoptera: Erebidae: Gynaeothorax) along an altitude gradient. Ecol. Evol. 7, 9054–9065. doi: 10.1002/ece3.4341.

Zhang, S., An, S., Li, Z., Wu, F., Yang, Q., Liu, Y., et al. (2015). Identification and validation of reference genes for normalization of gene expression analysis data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034-1. doi: 10.1186/gb-2002-3-7-research0034.
using qRT-PCR in *Helicoverpa armigera* (Lepidoptera: Noctuidae). *Gene* 555, 393–402. doi: 10.1016/j.gene.2014.11.038

Zheng, Y. T., Li, H. B., Lu, M. X., and Du, Y. Z. (2014). Evaluation and validation of reference genes for qRT-PCR normalization in *Frankliniella occidentalis* (Thysanoptera: Thripidae). *PLoS ONE* 9:e111369. doi: 10.1371/journal.pone.0111369

Zhong, M., Wang, X., Wen, J., Cai, J., Wu, C., and Aly, S. M. (2013). Selection of reference genes for quantitative gene expression studies in the house fly (*Musca domestica* L.) using reverse transcription quantitative real-time PCR. *Acta Bioch. Bioph. Sin.* 45:1069. doi: 10.1093/abbs/gmt111

Zhu, X., Yuan, M., Shakeel, M., Zhang, Y., Wang, S., Wang, X., et al. (2014). Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm *Spodoptera exigua* (Hübner) (Lepidoptera: Noctuidae). *PLoS ONE* 9:e84730. doi: 10.1371/journal.pone.0084730

Zotti, M., Dos Santos, E. A., Cagliari, D., Christiaens, O., Taning, C. N. T., and Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. *Pest Manag. Sci.* 74, 1239–1250. doi: 10.1002/ps.4813

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Lü, Yang, Zhang and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.