Survival Analysis in Patients with Dengue Hemorrhagic Fever (DHF) Using Cox Proportional Hazard Regression
Luluk Handayani, Mohamat Fatekurohman, Dian Anggraeni
Mathematics Depart. University of Jember, Indonesia

Abstract—Indonesia is a tropical country that has two seasons: the rainy season and dry season. In the rainy season frequent flooding or puddles of water that could become mosquito breeding and the spread of various diseases, one of which is the dengue fever. Dengue Hemorrhagic Fever (DHF) is the cause of public health problems with a very rapid deployment and can lead to death within a short time. This causes dengue become one of the attractions to be investigated further. This study discusses the survival analysis and the factors that affect the healing rate of dengue patients using Cox proportional hazard regression based on data from the medical records of hospitalized dengue patients at the Jember Klinik Hospital. The results showed that the factors of age, gender, hemoglobin, trombonist, and hematocrit affect the healing rate of DHF patients.

Keywords—survival analysis; DHF; cox proportional hazard.

I. INTRODUCTION
Indonesia is a tropical country that has two seasons, namely the rainy season and the dry season. In the rainy season, for various reasons, there are floods or puddles that can become a mosquito breeding and spread various diseases, one of which is dengue fever disease. Dengue Haemorrhagic Fever (DHF) is an acute febrile illness caused by dengue virus that enters the bloodstream through the bite of Aedes Aegypti mosquito (Wikipedia, 2012), which spreads very quickly and can result in death in a short time. Dengue Hemorrhagic Fever (DHF) is one of the diseases that almost always cause public health problems and the number is always there, even tended to increase. It is known that since the first DBD appeared in Indonesia, precisely in Surabaya in 1968, it quickly spread to other areas so that in 1980 all provinces in Indonesia have been infected with DHF (Darmowandowo, 2006). Indonesia is the country with the highest incidence of DHF in Southeast Asia since 1968-2009 (WHO, 2009). This causes DBD to be one of the interesting objects to be studied and studied further, for example, to know the length of time to survive the DHF patients to recover. The application of statistical methods that can be used to analyze the case is survival analysis.

Survival analysis is a statistical analysis that is specifically used to analyze data or cases related to the time or length of time until a particular event occurs. This survival analysis is usually used in the health field (Kleinbaum and Klein, 2012). Observational data for survival analysis are survival data, ie observation data about the time period from the beginning of observation until the occurrence of an event, the event could be death, healing or other symptoms (Lee, 1992).

According to Collett (1994), survival data do not meet the statistical standard procedure requirements used in data analysis, since survival data is usually not symmetrically distributed. The histogram model of survival time in a group of individuals will tend to be skewed to the right, so it is possible that survival data is not only normally distributed. There are several other distributions that are commonly used in survival analysis, ie, exponential distributions, Weibull distributions and lognormal distributions. The distribution used in a survival analysis can be determined from the estimation of the survival data distribution with some statistical test methods, such as Anderson Darling test and Chi-Squared test. While some of the models known in this analysis include binary logistic regression, Bayesian Mixture Survival model, Random Survival Forests (RSF), Multivariate Adaptive Regression Splines and Cox Proportional Hazard regression.

Several previous studies have been conducted on DHF cases using survival analysis, such as Nisa (2012) about survival analysis with Multivariate Adaptive Regression Splines approach in DHF case in the district.

II. LITERATURE REVIEW
A. Survival Analysis
The survival analysis or survival analysis is a time-related data analysis, from the beginning to the occurrence of a specific event (Collett, 2003). Duration
from the beginning of the observation (time origin) until
the occurrence of a special event (end point or failure
event) is called the time of survival. The particular event
(failure event) may be a failure, death, relapse or
recovery from an illness, a response from an experiment,
or another event chosen according to the researcher's
interest. The survival analysis has a special
characteristic, namely the distribution of data in the
form of long life time (skewed) right because the value
will always be positive and the data is censored (Lee,
1992).

1. SurvivalTime
Survival time can be defined as the time from the
beginning of observation to the occurrence of events,
can be in days, months, and years. Such events may be
the development of a disease, the response to treatment,
the recurrence of an illness, death or other event chosen
in accordance with the interests of the researcher.
Therefore, the time of survival can be the time of
recovery from the disease, the time from start of
treatment to the occurrence of response and time to
death (Lee and Wang, 2003). In determining survival
time, there are three factors that are needed (Le, 1997):
a. Time of origin (time origin or starting point)
b. End events / end time (ending event of interest)
c. Time scale as the measurement scale for the passage
of time.

2. CensoredData
The difference between survival analysis and other
statistical analysis is the presence of censored data.
Censored data is recorded data when there is
information about individual survival times, but does
not know the exact time of survival (Kleinbaum &
Klein, 2012). Censorship is one of the steps that must be
taken to overcome the incompleteness of an observation
data. The data is said to be censored if the data can not
be observed completely because the research subject is
lost or resigned or until the end of the research the
subject has not experienced a certain incident, while the
data can be observed completely until the end of
research called unencensored data (Lee & Wang, 2003).
The causes of censored data are:
 a. Loss to follow up, occurs when objects move, dies or
 refuses to participate. Drop out, occurs when the
treatment is stopped
 b. for some reason. Termination of study, occurs when the
 study period ends intermediate object observed has
 not reached the failure event.

 The 3 (three) types of sensors used in survival
analysis (Collet, 1994) are as follows:
a. Right Sensor Sensors that occur when a failure event
 has not occurred until the end of the study.
b. Left Sensor Sensors that occur when a failure event
 occurs before the research begins.
c. Interval Sensor Sensors that if termination in data
 collection and event failure occur between these time
 intervals.

3. Survival Function and Hazard Function
The function of survival and hazard function is a
fundamental function in survival analysis. In theory, the
survival function can be described with a smooth curve
and has the following characteristics (Kleinbaum &
Klein, 2012):
 1. Not increase, curve tends to decrease when t increases
 2. For \(t = 0 \), \(S(t) = S(0) = 1 \) is the beginning of the
 study, since no object has an event, the probability of
 survival time 0 is 1
 3. For \(t = \infty \), \(S(t) = S(\infty) = 0 \) theoretically, if the
 period of study increases without limit then none
 survives so that the survival curve approaches

\[
\begin{align*}
S(t) &= P(T \geq t) = 1 - P(T < t) = 1 - F(t) \\
S(\infty) &= 0
\end{align*}
\]

Fig.2.2: Survival Function Curve (Kleinbaum & Klein, 2005)

The survival function is essential in survival analysis,
since there is a survival probability for various t values
that is important information from survival data. The
survival function is used to represent the individual
probability of surviving from the initial time to some
time. The survival function, \(S(t) \), is defined as the
probability that an individual survives greater than t
\(t \) time (Le, 1997), thus:
\[
S(t) = P(T \geq t) = 1 - F(t) \quad (2.1)
\]
with \(F(t) \) is the Cumulative Distribution Function (CDF)
of the data distribution.

In contrast to survival functions that focus on non-
ocurrence of events, hazard functions focus on the
occurrence of events. Therefore, hazard function can be
viewed as the information giver that is opposite to the
survival function. Similar to the survival survival curve,
the hazard function curve also has characteristics,
namely (Kleinbaum and Klein, 2012):
 1. Always nonnegative, ie equal to or greater than zero
 2. Has no upper limit
 3. In addition the hazard function is also used for
 reasons:
 4. Giving an overview of the failurerate
 5. Identify the specific model shape
6. Creating a mathematical model for survival analysis is usually written in the form of a hazard function

The hazard function \(h(t) \) is the probability of a person failing after a given time unit, which is the opposite of the survival function \(S(t) \). The hazard formula can be interpreted as the probability of occurrence at a time interval between \(t \) and \(t + \Delta t \) where the survival time \(T \) is greater than or equal to \(t \).

\[
 h(t) = \lim_{\Delta t \to 0} \frac{P(t \leq T \leq t + \Delta t | T \geq t)}{\Delta t} \tag{2.2}
\]

\[
 h(t) = \lim_{\Delta t \to 0} \frac{P(\text{an individual age dies at an interval up to } t + \Delta t)}{\Delta t} \tag{2.3}
\]

\[
 h(t) = dt = P(t \leq T \leq t + \Delta t | T \geq t) \tag{2.4}
\]

In other words, the hazard function \(h(t) \) estimates the proportion of deaths of individuals or individuals experiencing an event in time \(t \) (Kleinbaum and Klein, 2012). When the hazard function is always constant, it will get a constant-risk model (exponential). The following is the functional relationship between cumulative hazard function, \(H(t) \), and survival function, \(S(t) \) (Le, 1997) are:

\[
 H(t) = -\ln S(t) \tag{2.5}
\]

B. Kaplan Meier

The purpose of survival analysis is to estimate and interpret survival function. In this research, the method used is Kaplan-Meier method. Kaplan-Meier method is a technical type of survival analysis that is often used. This product is often referred to as product limit method, the method is not made a certain interval and the effect is calculated exactly when it happens. The length of each subject's observations is composed of the shortest to the longest, with the censored records included or calculated, this is considered to be proportional to numerical measurements. This research is nonparametric statistical research with censored data, so use Kaplan-Meier's method is the best.

Actually, a life-table method is the same as Kaplan-Meier, but in the life-table object is classified based on certain characteristics which each character is arranged with interval by considering the chance of effect during the interval period is constant so that the data obtained will be more general. While the Kaplan-Meier method is analyzed according to their original time. This results in a definite proportion of survival because it uses precise time survival in order to obtain more accurate data. In addition, Kaplan-Meier is a method used when no model is feasible for survival data (Sari, 2011).

Log Rank Test

The log rank test is a significance test for comparing survival functions between the two groups. This test is a nonparametric statistic test and is suitable to be used when data is not symmetrical ie data tilted to the right.

In addition, the Log Rank test is widely used in clinical trials to look at the efficiency of a new treatment compared to the old treatment when measured is the time until an event occurs. To calculate the log rank there are several stages, namely:

- a. Count the number of risky subjects in each group at the time of failure (\(n_{ij} \)).
- b. Calculates the number of subjects who experienced events in each group at the time of failure (\(m_{ij} \)).
- c. Calculates the number of subjects who experienced the expected event for each group at the time of failure (\(e_{ij} \)).

\[
 e_{ij} = \frac{n_{ij}}{n_{ij} + n_{2j}} \times (m_{1j} + m_{2j}) \tag{2.6}
\]

d. Calculating The Log Rank

\[
 x^2 = \frac{(O_i - E_i)^2}{\text{var}(O_i - E_i)} \tag{2.7}
\]

With:

\[
 (O_i - E_i) = \sum (m_{ij} - e_{ij}), i = 1, 2, \ldots \tag{2.8}
\]

C. Cox Regression (Cox Proportional Hazard Regression)

The function of survival and hazard function is an analysis used to see the difference of 2 or more groups. However, if there are covariates variables that want to be controlled or if using some explanatory variables in explaining the relationship between survival time then cox regression is used. Thus cox regression can be used to create a model that describes the relationship between time of survival as a dependent variable with a set of independent variables. This independent variable can be either continuous or categorical.

Cox proportional hazard is the model used in survival analysis which is a semiparametric model. Cox proportional hazard regression is used when the observed outcome is the length of time of an event. Initially this modeling was used in the branch of statistics, especially biostatistik, which is used to analyze the death or life expectancy of a person. But over the development of the modeling era is widely used in various fields, including academic, medical, social, science, engineering, agriculture and so on (Sari, 2011).

When investigating a case in medicine for example the case of a patient with a particular disease, a relationship between the patient's survival time and the clinical characteristics of the patient's medical data is required. By denoting the average hazard function \(h(t) \) (t) can be determined hazard \(h(t) \) of a given patient, by:
The cox model formula is the multiplication of two magnitudes, the baseline hazard function and the exponential form for the linear summation of \(\beta X_i \), ie the sum of the independent variables \(X \) (Kleinbaum and Klein, 2012). The Baseline hazard function is the hazard rate when it is an unknown function because the distribution of survival time (\(T \)) is unknown. This function is time-dependent only and does not contain \(X \). This exponential quantity depends only on \(X \) called time independent covariate. This is because \(X \) does not depend on time, so \(X \) is called an independent time covariate. However, when \(X \) is time dependent, a different method is needed to model the hazard.

In the general regression model hazard function \(h \) depends on \(t \) and dependent covariates \(X_1, X_2, ... , X_n(t) \). And on a simple proportional hazard cox model, with the covariates \(X_1, X_2, ... , X_n \)is independent of \(t \) the hazard function is as follows:

\[
h(t, v_1, ..., v_m, \beta_1, \beta_2, ..., \beta_m) = h_0(t) \exp(\beta_1 X_1 + \beta_2 X_2 + \beta_m X_m)
\]

(2.10)

\[
h(t) = h_0(t) \exp(\beta_1 X_1 + \beta_2 X_2 + \beta_m X_m)
\]

(2.11)

The most specific of these formulas is the proportional hazard assumption of baseline hazard is a function of \(t \) but does not involve the variable \(X \). Unlike the exponential form involving variable \(X \) but does not involve \(t \). \(X \) is said to be time independent (independent of time). The assumption on the proportional hazard cox model is the hazard ratio that compares the two categories of independent variables is constant at all times or is independent of time. If this assumption is not met or time dependent (\(X \) depends on time) then the model used is extended cox model. Another important characteristic of the cox model is that the baseline hazard, \(h_0(t) \), is an unspecified function. This is what makes cox proportional hazard a parametric model.

The cox proportional hazard model is a well-known model for survival analysis. According to Kleinbaum and Klein (2012) the causes of this model are well known and widely used include:

1. The cox model is a non-parametric model.
2. Can estimate hazard ratio without the need to know \(h_0(t) \) or baseline hazard function.
3. Can estimate \(h_0(t) \), \(h(t,X) \) and survival function. Although, \(h_0(t) \) is not specific.
4. Is a robust model so that the results of the model cox almost the same with the parametric models results.
5. The safe model is chosen when in doubt to determine its parametric model, so there is no fear about the choice of the wrong parametric model.
6. Better than the logistics model when it comes to timing survival and censornship.

The purpose of cox regression:

1. Estimate the hazard ratio
2. Testing the hypothesis
3. Looking at the confidence interval of the hazard ratio

The assumption in the Cox Proportional Hazard model is that the hazard ratio comparing the two categories of predictors is constant at all times or is independent of time. In general, there are three approaches to assessing proportional hazard assumptions, namely:

1. With the graph approach

You do this by plotting the Log Minus Log (LML) plot of the survival function. In this plot for each strata must be parallel / parallel. This method can only be used for categorical variables. For continuous variables should be converted into categorical (2 or 3 groups). If each strata of the tested variable is parallel, then the assumption is satisfied. If it is not parallel then the proportional assumption is not met.

2. Using time dependent variable in extended cox model

The trick is to make the interaction between independent variables with survival time then see the significance value. The proportional assumption is met when the value

3. Using goodness of fittest.

The trick is to look at the value of \(p \) (Chi-square). If the value then the proportional assumption is met.

These three ways have advantages and disadvantages, for that a researcher should use at least two ways to test the proportional assumptions.

Candidate variable included in the interaction test is the independent variable that influences the survival time (\(p \geq 0.25 \)). Next test the interaction between independent variables by using likelihood ratio test. If the value included in the model. Cox (Cox Proportional Hazard) regression model is:

\[
h(t) = h_0(t) \exp(\beta_1 X_1 + \beta_2 X_2 + \beta_m X_m)
\]

(2.12)

If the assumption is not met then the model used cox regression is recommended with time dependent covariate or extended cox model and can also use cox stratification model.

D. Dengue Hemorrhagic Fever (DHF)

Dengue Hemorrhagic Fever (DHF), a medical language called Dengue Hemorrhagic Fever (DHF), is a disease caused by dengue virus that is transmitted through the bite of Aedes Aegypti and Aedes Albopictus mosquitoes, which causes disruption of the capillary blood vessels and the blood clotting system, resulting in bleeding. The disease is found in many tropical regions
such as Southeast Asia, India, Brazil, America, including all over Indonesia, except in places more than 1,000 meters above sea level.

Incubation period for 3 - 15 days since someone attacked by dengue virus, furthermore patient will show various signs and symptoms of dengue as follows:
1. High fever suddenly 2-7 days (38 - 40 degreesCelsius).
2. On examination tourniquet test, it appears there larva (pupura) bleeding.
3. The presence of bleeding in the inner eye (conjunctiva), nosebleeds (epitaxis), defecation with the feces (mucous) mucus mixed with blood (melena), and others.
4. Enlarged liver (hepatomegaly).
5. Blood pressure decreases causing shock.
6. On the laboratory examination (blood) day 3 - 7 there was a decrease in platelet count below 150,000/mm³ (thrombocytopenia), an increase in hematocrit value above 20% of the normal value (hemoconcentration).
7. Occurrence of some accompanying clinical symptoms such as nausea, vomiting, decreased appetite (anorexia), abdominal pain, diarrhea, chills, seizures and headaches.
8. Experiencing bleeding on the nose (nosebleeds) and gums.
9. Fever felt by the sufferer causing complaints of sore / pain in the joints.
10. The appearance of red spots on the skin due to rupture of blood vessels.

III. METHODOLOGY

A. Research Data

Data used in this research is secondary data in the form of patient data of Dengue Hemorrhagic Fever (DHF) at Jember Clinic Hospital in September until December 2016 obtained from medical record data at Jember Clinic Hospital as many as 100 patients

B. Research Variables

In this study the variables used are response variables and predictor variables, with the description as follows:
1. Variable Response

 Response variable in this research is survival time, that is time needed by patient to survive from time of early patient of DHF patient in hospital (start point) until patient stated recover (failure/end point). The response variable in this study is denoted by the letter T with time units in days.

2. Predictor Variables

 Predictive variables in this study are data predicted to affect the survival time of DHF patients obtained from medical record data at Jember Clinic Hospital, namely:

 a. Age \((X_1) \)

 The age variable is the age of DHF patients at the beginning of admission to hospitalization at Jember Clinic Hospital.

 b. Gender \((X_2) \)

 The gender variable is the sex of DHF patients who are hospitalized in Jember Clinic Hospital, which is classified into two categories:

 1 = Male
 2 = Female

 c. Hemoglobin\((X_3) \)

 Hemoglobin variable that is hemoglobin level of DHF patients during undergoing hospitalization at Jember Clinic Hospital.

 d. Platelet/Platelets\((X_4) \)

 Platelet variable is the number of thrombocyte of DHF patients during undergoing inpatient at Jember Clinic Hospital, which is divided into two categories, namely:

 1 = below normal (<150,000 / mm3)
 2 = normal (150,000 - 400,000 / mm3)

 e. Hematocrit\((X_5) \)

 Hematocrit variable that is the percentage of hematocrit of DHF patients during undergoing inpatient at Jember Clinic Hospital.

C. Research Steps

The steps taken in this research are as follows:

1. Conducting a descriptive statistical analysis to determine the characteristics of DHF patients.
2. Make a Kaplan Meier Curve and perform a Log-Rank test on a categorical independent variable (predictor).
3. Conduct analysis of factors that affect the healing rate of DHF patients.

IV. RESULTS AND DISCUSSION

Descriptive Statistics Analysis

The following is the result of descriptive statistical analysis on the characteristics of DHF patients during undergoing inpatient at Jember Clinic Hospital as many as 100 patients.

a. Survival Time, Age, Hemoglobin, Platelets and Hematocrit

 Descriptive statistical analysis of DHF patients in RSP Jember Clinic for survival time, age, hemoglobin, platelets and hematocrit are presented in Table 4.1. Especially for hemoglobin, thrombocyte and hematocrit are divided into two, namely at the time of admission and during the last medical record of each DHF patient.
The average platelet count of DHF patients was 131,520/mm³, so the average patient’s platelet level was normal. As for hematocrit, the average hematocrit level of patients is normal that is 39.28%. Thus, from Table 4.1 it can be seen that during the last medical record, hemoglobin, thrombocyte and hematocrit levels of DHF patients were normal.

Gender

b. Data of in-patient DHF in Jember Clinic Hospital from September to December of 2016 were 100 patients, obtained from medical record of Jember Clinic Hospital, consist of 58 male patients and 42 female patients.

Kaplan Meier Analysis and Log-Rank Test

The characteristics of survival time of DHF patients at Jember Clinic Hospital during inpatient care can be shown with Kaplan Meier’s survival curve. Kaplan Meier’s survival curve is a curve describing the probability of surviving DHF patients. In this study, the event studied was the recovery of dengue patients (patients had clinical improvement). Thus the Kaplan Meier curve explains the probability of the patient not recovering (not undergoing clinical improvement).

Based on the duration of hospitalization of DHF patients obtained from medical record data of Jember Clinic Hospital, Kaplan Meier survival curve was obtained as in Figure 4.1.

Table 4.1 Descriptive Statistics Analysis Time Survival, Age, Hemoglobin, Platelets and Hematocrit

Variable	Min	Max	Mean	Std.err	Median	Q1	Q3
Survival Time	1	9	3,003	1.3333	3.000	2.0	4.0
Age	1	99	31.95	1.9999	32.00	26.0	38.0
Hemoglobin	10.040	18.10	15.530	0.40000	15.300	13.00	17.50
Platelets	35.200	50.400	43.020	0.80000	42.000	35.00	49.00

Fig.4.1: Kaplan Meier Survival Curve Based Survival Time

Figure 4.1 informs visually that the longer DHF patients undergo inpatient (t), the probability of a DHF patient not recovering (not undergoing clinical improvement) until the time t is less close to zero, meaning the longer the patient is hospitalized (the longer Get medical treatment) then the greater the probability of patients to recover (clinical improvement). Description of probability of healing DHF patients can be see in Table 4.2.

Table 4.2: Probability of DHF Patients

Time (t)	n.risk	n.even	Survival	Std.err	Lower	Upper
1	100	1	0.9900	0.00995	0.9707	1.0000
2	98	12	0.8688	0.03392	0.8048	0.938
3	85	19	0.6746	0.04728	0.5880	0.774
In Table 4.2, time indicates days, n.risk indicates the number of patients diagnosed with DHF, n.event shows the number of dengue fever patients and survival indicates the probability of patients not recovering. Further explained about the characteristics of DHF patients in Jember Klinik Hospital based on sex which is suspected to affect Kaplan Meier survival curve, as in Figure 4.2.

Figure 4.2: Kaplan Meier Survival Curve By Gender

Figure 4.2 shows a dotted line (black) more dominating above a straight line (red) indicating that the probability of not recovering female patients is greater than that of male patients, meaning that the survival time of the male gender is better than patients with female gender.

The next step is to do a log-rank test to find out the differences between the survival probability curves in Figure 4.2. From the log-rank test results obtained p-value value of 0.604. When compared with chi-square of 0.3 with degrees of freedom 1, it shows that the probability of survival of DBD patients of either male or female sex does not differ significant.

Factors Affecting the Healing Rate of DHF Patients

To know what factors influence the rate of healing of DHF patients, then modeling between response variables (survival time) and predictor variables used. Modeling with all predictor variables is shown in Table 4.3.

Table 4.3: Parameter Significance Test

Variable	Parameter Estimates	z	P-value
age	0.0256	3.546	0.00039
trombosit	0.000054	3.648	0.00026
hematokrit	0.00444	0.935	0.3496

Table 4.3 shows that the smallest AIC value is 877.0109 when doing cox proportional hazard regression without gender, hemoglobin and hematocrit variables. So the best model is obtained by doing regression cox proportional hazard using age and trombosit variables. The best model can be seen in Table 4.5.

Table 4.4 The value of Akaike's Information Criterion (AIC)

Variabel	AI	C
All Independent Variable	882.1166	
Age, Gender and Hematokrit	891.0849	
Gender, Trombosit and Hematokrit	888.4697	
Age, Hemoglobin and Trombosit	878.9539	
Age and Trombosit	877.0109	

Table 4.5 Estimation of Cox Regression Parameters in the Best Model

Variable	Parameter Estimates	z	P-value
age	0.0256	3.546	0.00039
trombosit	0.000054	3.648	0.00026
hematokrit	0.00444	0.935	0.3496

V. CONCLUSION

Descriptive statistical analysis showed that from 100 DHF patients admitted to RSP Jember Klinik, the average clinical condition improved within 3 days, with 53 patients belonging to productive age group (15-59 years) and 58 male sexually transmitted Men. At the time of admission was 83 patients whose platelet count was below normal (less than 150,000 / mm3). While during the last medical record there was a decrease in the number of patients with under-normal platelets to 64 patients. The mean hemoglobin and thrombocyte levels of DHF patients at baseline were 13.55 g / dL and 41.02% respectively, while during the last medical record the mean hemoglobin and platelet counts were 12.94 grams / dL and 39.28%. While the factors that significantly influence the rate of improvement of clinical condition of DHF patients are age and platelets.

www.jaers.com
Suggestions that can be given from the results of this study, for the medical team is expected to control the factors that affect the rate of improvement of the clinical condition of DHF patients. While for further research, it is suggested to add factors that theoretically can influence the rate of improvement of clinical condition of DHF patients and can develop survival analysis in other fields, such as in industry or education.

REFERENCES

[1] Collett, D. (2003). Modelling Survival Data in Medical Research. 2nd edition. Chapman and Hall/CRC, London.

[2] Darmowandowo, W. (2006). Continuing Education. Divisi Tropik & Infeksi Bagian Ilmu Kesehatan Anak FK Unair RSU Dr. Soetomo, Surabaya.

[3] Gandasoebrata, R. (2009). Penuntun Laboratorium Klinik. Dian Rakyat, Jakarta.

[4] Kleinbaum, D.G. & Klein, M. (2012). Survival Analysis: A Self-Learning Text. Springer, London.

[5] Le, C.T. (1997). Applied Survival Analysis. John Wiley and Sons Inc, New York.

[6] Mufidah, A.S. (2016). Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull. *Jurnal Sains dan Seni ITS*, 5(2), p. 2337-3520.

[7] Nisa’, S.F. (2012). Analisis Survival Dengan Pendekatan Multivariate Adaptive Regression Splines Pada Kasus Demam Berdarah Dengue (DBD). *Jurnal Sains dan Seni ITS*, 1(1), p.318-323.

[8] Sari, N. (2011). Aplikasi Regresi Cox Proportional Hazard Pada Analisis Kesintasan Dan Identifikasi Faktor Resiko. Skripsi. Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatra Utara, Medan.

[9] Omurlu, I.K., Ture, M. & Tokatli, F. (2009). The Comparisons of Random Survival Forest and Cox Regression analysis with Simulation and an Application Related to Breast Cancer. *Journal International of Expert Systems with Applications*, 36, p. 8582-8588.

[10] WHO. (2009). Dengue, Guidelines For Diagnosis, Treatment, Prevention, and Control. Special Programme for Research and Training in Tropical Disease (TDR), France.