We present exact results for two complementary measures of spatial structure generated by 1D spin systems with finite-range interactions. The first, excess entropy, measures the apparent spatial memory stored in configurations. The second, statistical complexity, measures the amount of memory needed to optimally predict the chain of spin values. These statistics capture distinct properties and are different from existing thermodynamic quantities.

Thermodynamic entropy, a measure of disorder, is a familiar quantity that is well-understood in almost all statistical mechanical contexts. It’s notable, though, that complementary and similarly general measures of structure and pattern are largely missing from current theory and are certainly less well-developed. To date, “structure” has been handled on a case by case basis, order parameters and structure functions, for example, are typically invented to capture the significant features in a specific phenomenon. There is no generally accepted approach to answering relatively simple questions, such as, How much temporal memory is used by a process to produce a given level of disorder?

In the following we adapt two measures of structure, the excess entropy E and the statistical complexity C_μ, to analyze the spatial configurations generated by simple spin systems. These measures of structure are not problem-specific—they may be applied to any statistical mechanical system. We give exact results for E and C_μ as a function of temperature, external field, and coupling strength for one-dimensional finite-range systems. Our results show that E and C_μ are different from measures of disorder, such as thermodynamic entropy and temperature; rather E and C_μ quantify significant aspects of information storage and computation embedded in spatial configurations.

In our analysis we introduce purely information theoretic coordinates—a plot of E and C_μ vs. spatial entropy density h_μ—known as the complexity-entropy diagram. The benefit of this view is that it is explicitly independent of system parameters and so allows very different systems to be compared directly in terms of their intrinsic information processing. In past work the complexity-entropy diagram was analyzed for a class of processes in which the set of allowed configurations changed as a function of a system control parameter $[1]$. For the systems considered here, the variation in E and C_μ is driven instead by the “thermalization” of the configuration distribution.

Consider a one-dimensional chain of spin variables $s = \ldots s_{-2} s_{-1} s_0 s_1 \ldots$ where s_i range over a finite set \mathcal{A}. Divide the chain into two semi-infinite halves by choosing a site i as the dividing point. Denote the left half by $s_i \equiv s_{i-3} s_{i-2} s_{i-1} s_i$ and the right half by $s_i \equiv s_{i+1} s_{i+2} s_{i+3} \ldots$. Let $\Pr (s_i)$ denote the probability that the i^{th} variable takes on the particular value s_i and $\Pr(s_i, s_{i+1}, \ldots, s_{i+L})$ the joint probability over blocks of L consecutive spins. Assuming spatial translation symmetry, $\Pr(s_i, \ldots, s_{i+L}) = \Pr(s_1, \ldots, s_L)$.

Given such a distribution one measures the average uncertainty of observing a given L-spin block s^L by the Shannon entropy $[2]$

$$H(L) \equiv - \sum_{s_1 \in \mathcal{A}} \ldots \sum_{s_L \in \mathcal{A}} \Pr (s_1, \ldots, s_L) \log_2 \Pr (s_1, \ldots, s_L) . \quad (1) $$

The spatial density of Shannon entropy of the spin configurations is defined by $h_\mu \equiv \lim_{L \to \infty} L^{-1} H(L)$. h_μ measures the irreducible randomness in the spatial configurations. For physical systems it is, up to a multiplicative constant, equivalent to thermodynamic entropy density. It is also equivalent to the average of the configurations’ Kolmogorov-Chaitin complexity. As such, h_μ measures the average length (per spin) of the minimal universal Turing machine program required to produce a typical configuration $[3]$.

The entropy density is a property of the system as a whole; only in special cases will the isolated-spin uncertainty $H(1)$ be equal to h_μ. It is natural to ask, therefore, how random the chain of spins appears when finite-length spin blocks are considered. This is given by $h_\mu(L) \equiv H(L) - H(L - 1)$, the incremental increase in uncertainty in going from $(L - 1)$-blocks to L-blocks. $h_\mu(L)$ overestimates the entropy density h_μ by an amount $h_\mu(L) - h_\mu$ that indicates how much more random the finite L blocks appear than the infinite configuration $\uparrow s$. In other words, this excess randomness tells us how much additional information must be gained about the configurations in order to reveal the actual per-spin uncertainty.
The equivalence classes induced by this relation are called causal states if, as measured by the probability distribution of subsequent spins conditioned on having seen a particular left half, the induced equivalence classes are subsets of the space of all allowed configurations. We say that two configurations at different lattice sites are equivalent if and only if they give rise to an identical conditional distribution of right-half configurations. Formally, we define the relation \sim by

$$\tilde{s}_i \sim \tilde{s}_j \iff \Pr(\tilde{s} \mid \tilde{s}_i) = \Pr(\tilde{s} \mid \tilde{s}_j) \quad \forall \tilde{s}.$$ (3)

The equivalence classes induced by this relation are called causal states and denoted S_i. Two \tilde{s} belong to the same causal state if, as measured by the probability distribution of subsequent spins conditioned on having seen that particular left-half configuration, they give rise to exactly the same degree of certainty about the configurations that follow to the right.

Once the set $\{S_i\}$ of causal states has been identified, we can inductively obtain the probability $\Pr(S_i)$ of finding the chain in the S_i causal state by observing many configurations. Similarly, we can obtain transition probabilities T between states. The set $\{S_i\}$ together with the dynamic T constitute a model—referred to as an ϵ-machine—of the original infinite configurations.

To predict, as one scans from left to right, the successive spins in a configuration with an ϵ-machine, one must track in which causal state the process is. Thus, the informational size of the distribution over causal states gives the minimum amount of memory needed to optimally predict the right-half configurations. This quantity is the statistical complexity

$$C_\mu \equiv - \sum_{\{S_i\}} \Pr(S_i) \log_2 \Pr(S_i).$$ (4)

The excess entropy sets a lower bound on the statistical complexity: $E \leq C_\mu$. That is, the memory needed to perform optimal prediction of the right-half configurations cannot be lower than the mutual information between left and right halves themselves. This relationship reflects the fact that the set of causal states is not in one-to-one correspondence with L-block or even ∞-length configurations. In the most general setting, the causal states are a reconstruction of the hidden, effective states of the process.

Note that for both C_μ and E no memory is expended trying to account for the randomness or, in this case, for thermal fluctuations present in the system. Thus, these measures of structural complexity depart markedly from Kolmogorov-Chaitin complexity which demands a deterministic accounting for the value of every spin in a configuration. As noted above, the per-spin Kolmogorov-Chaitin complexity is h_μ. Finally, note that C_μ and E follow directly from the configuration distribution; their calculation doesn’t require knowledge of the Hamiltonian.

As is well known, the partition function for any one-dimensional, discrete spin system with finite range interactions can be expressed in terms of the transfer matrix V. Using V, we have calculated exact expressions for C_μ and E for such systems. In the following let u^R, u^L denote the normalized right (left) eigenvector corresponding to V’s largest eigenvalue λ.

The first step is to determine the causal states. Consider an Ising system with nearest neighbor (nn) interactions. The nn interactions and the fact that a configuration’s probability is determined by the temperature and its energy means that only the rightmost spin in the left half influences the probability distribution of the spins in the right half. Thus, the possible causal states are in a one-to-one correspondence with the different values of a single spin. (This indicates how this class of spin systems is a severely restricted subset of ϵ-machines.) This observation determines an upper bound for a spin 1/2 nn system: $C_\mu \leq \log_2 2 = 1$.

To complete the determination of the causal states we must verify that conditioning on different spin values leads to different distributions for \tilde{s}; otherwise they fall into the same equivalence class and there would be only one causal state. This distinction is given by eq. (5) which, in terms of the transfer matrix V, reads

$$(u^R_i)^{-1}V_{ij} \neq (u^R_j)^{-1}V_{jk} \quad \forall i \neq j.$$ (5)
If eq. 5 is satisfied, then
\[
C_\mu = -u_k^C u_k^R \log_2(u_k^C u_k^R) .
\] (6)
(In eq. 6 and the following, a summation over repeated indices is implied.) For a nn system, eq. 5 is equivalent to saying that \(C_\mu = H(1) \), the entropy associated with the value of one spin. By determining an expression for \(H(L) \), one sees that \(h_\mu \) is given by
\[
h_\mu = \log \lambda - \lambda^{-1}u_k^C V_{ki} \log[V_{ki}] ,
\] and that \(E \) is given by
\[
E = -\log \lambda + \frac{1}{\lambda}u_k^C V_{ki} \log[V_{ki}] - u_k^C u_k^R \log[u_k^R u_k^C] ,
\] (7)
Note that these results prove an explicit version of the inequality between \(E \) and \(C_\mu \) mentioned above; namely,
\[
C_\mu = E + h_\mu ,
\] again assuming that eq. 5 is satisfied.

Let us illustrate the content of eq. 5 by considering a special case, a spin 1/2 paramagnet (PM), where there are no couplings between spins. Since there are no correlations between spins, \(E \) vanishes. The probability distribution of the right-half configuration is independent of the left-half configuration. Thus, there is a single, unique distribution \(\Pr(\vec{s} | \vec{\tilde{s}}) \) and eq. 5 is not satisfied. The PM has only one causal state and so \(C_\mu = 0 \) for all temperatures. This example shows how the process of determining causal states ensures statistical complexity measures structure and not randomness.

FIG. 1. \(C_\mu \), \(E \), and \(h_\mu \) as a function of \(T \) for the nn spin 1/2 ferromagnet. \(B \) was held at 0.30 and \(J = 1 \).

Now consider the spin 1/2, nearest neighbor Ising system with Hamiltonian
\[
\mathcal{H} = -J \sum_i s_i s_{i+1} - B \sum_i s_i ,
\] (9)
where, as usual, \(J \) is a parameter determining the strength of coupling between spins, \(B \) represents an external field, and \(s_i \in \{+1, -1\} \).

For all temperatures except zero and infinity eq. 5 is satisfied and the causal states are in a one-to-one correspondence with the values of a single spin. At \(T = \infty \) the system is identical to a paramagnet and \(C_\mu \) and \(E \) both vanish. At \(T = 0 \) the system is frozen in its spatially periodic ground state; \(E = C_\mu = \log_2 P = 0 \), where \(P(= 1) \) is the period of the spatial pattern.

Using eqs. 5 and 8, fig. 1 plots \(C_\mu \) and \(E \) as a function of temperature \(T \). The coupling is ferromagnetic \((J = 1) \) and there is a non-zero external field \((B = 0.3) \). As expected, the entropy density is a monotonic increasing function of temperature. Somewhat less expectedly (cf. ref. 1), the statistical complexity also increases monotonically (until \(T = \infty \)). The excess entropy \(E \) vanishes gradually in the high and low temperature limits.

FIG. 2. The complexity-entropy diagram for a ferromagnet (FM), an anti-ferromagnet (AFM) and a paramagnet (PM): \(C_\mu \) and \(E \) plotted parametrically against \(h_\mu \). For a given \(J, B \) was held constant---\(B = 0.30 \) (FM) and \(B = 1.8 \) (AFM)---as \(T \) was varied. All systems have \(C_\mu = 0 \) when \(h_\mu = 1 \); this is denoted by the square token.

Figure 2 presents the complexity-entropy diagram for a ferromagnet (FM), an anti-ferromagnet (AFM), and a paramagnet (PM): \(C_\mu \) and \(E \) plotted parametrically as a function of \(h_\mu \). The diagram gives direct access to the information processing properties of the systems independent of control parameters (i.e. \(B, J \), and \(T \)).

For the ferromagnet, \(E \) is seen to have a maximum in a region between total randomness \((h_\mu = 1)\) and complete order \((h_\mu = 0)\). At low temperatures (and, hence, low \(h_\mu \)) most of the spins line up with the magnetic field. At high temperatures, thermal noise dominates and the configurations are quite random. In both regimes one half of a configuration contains very little information about the other half. For low \(h_\mu \), the spins are fixed and so there is no information to share; for high \(h_\mu \), there is much information at each site, but it is uncorrelated with all other sites. Thus, the excess entropy is small in these temperature regimes. In between the extremes, however, \(E \) has a unique maximum at the temperature where spin coupling strength balances the thermalization. The result is a maximum in the system’s spatial memory.

For an AFM, the high temperature behavior is similar; thermal fluctuations destroy all correlations and \(E \) vanishes. The low \(T \) behavior is different; the ground state of the AFM consists of alternating up and down spins. The spatial configurations thus store one bit of informa-
tion about whether the odd or even sites are up. As can be seen in fig. 2, \(E \rightarrow 1 \) as \(h_\mu \rightarrow 0 \).

For different couplings and field strengths a range of \(E \) vs. \(h_\mu \) relationships can be realized. \(E \) either shows a single maximum or decreases monotonically. It is always the case, though, that \(E \) is bounded from above by \(1 - h_\mu \), which follows immediately if \(C_\mu \) is set equal to its maximum value, 1, in eq. (3).

Given that \(C_\mu \) was introduced as a measure of structure, it is perhaps surprising that it behaves so differently from \(E \). As \(h_\mu \) increases, one might expect \(C_\mu \) to reach a maximum, as does \(E \), and then decrease as the increasing thermalization merges causal states that were distinct at lower temperatures. In fact, \(C_\mu \) increases monotonically with \(h_\mu \). To understand this, recall that the causal states are the same for all \(T \) between zero and infinity. For the nn spin 1/2 Ising model, the number of causal states remains fixed at two. What does change as \(T \) is varied are the causal state probabilities. For the FM, as the temperature rises the distribution \(\Pr(S_i) \) becomes more uniform, and \(C_\mu \) grows. This growth continues until \(T \) becomes infinite, since only there do the two causal states collapse into one, at which point \(C_\mu \) vanishes.

For the AFM the situation is a little different. At \(T = 0 \) there are two causal states corresponding to the two spatial phases of the alternating up-down pattern. The probability of these causal states is uniform; hence we see a low temperature statistical complexity of 1. At high (but finite) temperatures, the thermal fluctuations dominate; the anti-ferromagnetic order is lost, but the high (but finite) temperatures, the thermal fluctuations see a low temperature statistical complexity of 1. At probability of these causal states is uniform; hence we

0 there are two causal states corresponding to the two connectivity. As a result, \(C_\mu \) jumps to zero.) Between these extremes there is a region where the influence of the external field dominates, biasing the configurations. This is reflected in a bias in the causal state probabilities and \(C_\mu \) dips below 1 as seen in fig. 2.

The tendency for \(C_\mu \) to remain large for large values of \(h_\mu \) is due to a more general effect, which follows from eq. (3): \(C_\mu = E + h_\mu \). The memory needed to model a process depends not only on the internal memory of the process, as measured by \(E \), but also on its randomness, as measured by \(h_\mu \). It is important to note, however, that \(C_\mu \) is driven up by thermalization not because the model attempts to account for random spins in the configuration. Rather, \(C_\mu \) rises with \(h_\mu \) because \(\Pr(S_i) \) becomes more uniform as the temperature increases.

We have discussed three complementary statistics that as a whole capture the information processing capabilities embedded in spin systems. This framework has been applied previously to the symbolic dynamics of continuous-state dynamical systems \[1\]. The work presented here is the first exploration of thermal systems with these tools. In the dynamical systems studied, the statistical complexity varied as a function of \(h_\mu \) mainly due to changes in topological constraints on configurations. This led to changes in the number of causal states and in their connectivity. As a result, \(C_\mu \) has a unique maximum at some \(h_\mu < 1 \). (cf. Fig ??, ref. \[1\].) In sharp contrast, the thermal systems examined here have the same number of causal states for all temperatures except zero and infinity. For all \(T \neq 0 \) thermal fluctuations are present: all configurations are possible and the connectivity of the causal states remains the same. This contrast points out a possibly useful distinction between deterministic and stochastic systems—a distinction that is lost by comparing these two different types of process solely in terms of \(h_\mu \).

These features and other work to be reported indicate that \(E \) and \(C_\mu \) capture properties that are different from existing thermodynamic quantities. Comparing the PM, FM, and AFM in terms of specific heat, for example, doesn’t reveal the distinctions seen in fig. 2. This issue—along with analyses of 2D Ising systems, spin glasses, and recurrent neural networks—will be discussed elsewhere. For these higher dimensional systems, there are a number of ways to define \(E \) and \(C_\mu \). One approach is to consider infinite strips of spins as a single, infinite-dimensional spin. This method involves a natural extension of the techniques developed here, yet we feel this might not faithfully capture the higher dimensional structure present. Another approach is to adapt the cellular automata-theoretic formalism presented in ref. \[8\]. We shall examine both of these approaches in a future work.

We thank Richard T. Scaliettar for many helpful comments and suggestions. This work was supported at UC Berkeley by ONR grant N00014-95-1-0524 and AFOSR grant 91-0293 and at the Santa Fe Institute by NASA-Ames contract NCC2-840 and ONR grant N00014-95-1-0975.

1. J.P. Crutchfield and K. Young, Phys. Rev. Lett. 63, 105 (1989); J.P. Crutchfield, Physica D 75, 11 (1994).
2. T.M. Cover and J.A. Thomas. Elements of Information Theory (John Wiley & Sons, Inc., 1991).
3. M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications (Springer-Verlag, 1993).
4. J.P. Crutchfield and N.H. Packard, Physica D 7, 201 (1983); P. Szépfalusy and G. Györgyi, Phys. Rev. A 33, 2852 (1986); cf. “stored information”, R. Shaw, The Dripping Faucet as a Model Chaotic System (Aerial Press, 1984); cf. “effective measure complexity”, P. Grassberger, Int. J. Theo. Phys. 25, 907 (1986); K. Lindgren and M. Nordahl, Complex Systems 2, 409 (1988); and cf. “complexity”, W. Li, Complex Systems 5, 381 (1991).
5. J.P. Crutchfield and K. Young, in Complexity, Entropy and the Physics of Information, edited by W. H. Zurek, (Addison-Wesley, 1990) 223.
6. H.A. Kramers and G.H. Wannier, Phys. Rev. 145, 251 (1941); J.F. Dobson, J. Math. Phys. 10 1, 40 (1969).
7. For \(r \)th nn interactions, the causal states are the values of \(r \)-spin blocks. Although the dimensionality of \(V \) increases, our results remain unchanged. However, if \(V \) adds on the effects of \(m \) spins at a time, then our expression for \(h_\mu \) must be divided by \(m \). Details of our calculations will be presented elsewhere.
8. J.P. Crutchfield and J.E. Hanson. Physica D. In Press.