Supplementary Materials for

Microscale mechanochemical characterization of drying oil films by in situ correlative Brillouin and Raman spectroscopy

Martina Alunni Cardinali et al.

Corresponding author: Francesca Rosi, francesca.rosi@cnr.it; Lucia Comez, comez@iom.cnr.it

Sci. Adv. 8, eabo4221 (2022)
DOI: 10.1126/sciadv.abo4221

This PDF file includes:

Supplementary Text
Figs. S1 to S5
References
Supplementary Text

Data Elaboration

Brillouin Data

A typical BLS spectrum, arising from the scattering of photons by acoustic phonons, consists of Stokes and anti-Stokes peaks, which are Doppler shifted in frequency from the elastic peak. The doublets were analyzed according to a well-established procedure \((14, 52)\), where each contribution \(I_B\) to the intensity of the total scattered light has been modelled using a damped harmonic oscillator (DHO) lineshape, Eq. S1:

\[
I_B(\omega) = R(\omega) \otimes I_0 \frac{r_B \omega B}{\pi (\omega - \omega_B)^2 + \omega_B^2}.
\]

\(R(\omega)\) is the instrumental resolution function, the symbol \(\otimes\) represents the convolution operator, \(I_0\) is an amplitude factor depending on the scattering cross-section, and \(\nu_B = \omega_B / 2\) and \(\Gamma_B / 2\) are the frequency shift and the full width at half-maximum (FWHM) of the Brillouin peaks, respectively. In particular, \(\omega_B\) and \(\Gamma_B\) are directly related to the longitudinal sound velocity, \(c_L = \omega_B / \nu\), and to the acoustic absorption, \(\alpha = \Gamma_B / 2c_L\), of the elastic wave propagating inside the medium; \(q\) is the exchanged wave number related to the wavenumber of the incident light \(k_i\), the scattering angle \(\theta\), and the refractive index \(n\) of the medium, through the relation \(q = 2nk_i\sin(\theta/2)\).

Possible multiple scattering contributions were considered using the method described in Ref. \((52)\). Furthermore, the finite back-scattering collection angle induces a distribution of exchanged wave number \((q)\), which also contributes to the broadening of the Brillouin peak. The \(\Gamma_B\) calculation was therefore corrected by considering that the numerical aperture of the lens used (NA=0.42), corresponding to a minimum scattering angle \(\theta_{min} = 155.2^\circ\), causes a widening in \(\Gamma_B\), which can be approximated to about 2.3% of the frequency position of the peak itself.

The adiabatic (zero-frequency) longitudinal modulus, \(M_0\), is related to the sound velocity through the relation: \(M_0 = \rho c_L^2\), where \(\rho\) is the density of the sample. For a system subject to relaxing phenomena, a complex frequency-dependent modulus has to be used: \(M'(\omega) = M(\omega) + i M''(\omega)\), with the real and imaginary part given by Eqs. S2, S3:

\[
\text{Eq. S2} \quad M'(\omega) = \rho c_L^2(\omega)\]

\[
\text{Eq. S3} \quad M''(\omega) = \frac{2\rho}{\omega} \alpha(\omega)c_L^2(\omega).
\]

Within the GHz frequency range, these two quantities can be derived in a unique way from Brillouin measurements. The imaginary part \(M''(\omega)\), is a measure of the energy dissipation of the sound waves within the medium, while the real part represents its dispersive behaviour. A decrease of \(M'(\omega)\), for example as a function of temperature, is simply indicating that the material is becoming softer; \(M_0\) can be considered as the zero-frequency limit of the real part. All these physical quantities are called “apparent” because of their frequency-dependency \((13, 52)\).

Refractive Index (n) and Density (\(\rho\))

In order to derive \(q\), \(M'(\omega_B)\) and \(M''(\omega_B)\), we need to know the refractive index and the mass density of the sample. The calculations were made considering the values of \(n(t^0)=1.48\) \((53-55)\) and \(n(t^*)_1=1.51\) at the initial time of the reaction and at the time when the Brillouin shift no longer showed noticeable changes, respectively, corresponding to an \(n\)-variation during desiccation of about 2%, in agreement with other polymerization experiments \((56)\). We based on a linear behaviour of \(n(t)\) between \(t^0\) and \(t^*\) then followed by a constant trend for the remaining time \((57)\). To have more safety margin on our data, considering that we also made calculations using \(n(t^*)_2=1.54\), and \(n(t^*)_3=1.57\), as suggested in Refs \((55, 58-59)\), which can be referred to as the maximum variation of \(n\) in our experiment. The \(p\) values were obtained through the Clausius-Mossotti law Eq. S4:

\[
\text{Eq. S4} \quad \frac{4}{3} \pi p \rho \rho = \frac{4}{3} \pi p \rho \rho
\]

where \(\rho\) is the effective optical polarizability, calculated from the values of \(n\) and \(\rho\) at \(t^0\) and considered almost constant during the reaction (Fig. S2).

To give an idea of how much different refractive index estimates affect the calculation of the longitudinal elastic modulus, Figure S3 shows the results for \(M'(\omega_B)\) as a function of the annealing time: we found that the different \(n\) values at \(t^*\) provide similar values for the physical quantities, reaching a maximum difference of 2%.

Raman Data

This technique has been widely used to classify oils of different origins and applications (food, environmental, biomaterials, and cultural heritage among others \((23, 24)\), a typical Raman spectrum of the pure linseed oil is reported in Figure S4 together with its main peak assignments \((60-61)\).

In our analysis, each Raman spectrum was baseline corrected and normalized to \(\text{CH}_2\) signal at 1440 cm\(^{-1}\) before other analysis. Three different peaks of the Raman spectrum were chosen as markers of linseed oil polymerization...
progression, namely the i) stretching and the ii) bending modes of (=C-H)\textsubscript{cis} vibration at 3014 and 1265 cm-1, respectively, and iii) the stretching band of (C=C)\textsubscript{cis} at 1660 cm-1. i) The (=C-H)\textsubscript{cis} vibration is part of a system of bands between 2800-3150 cm-1 (Figure S4), composed of several peaks originating from stretching of CH\textsubscript{2} and CH\textsubscript{3} bonds, which make it difficult to isolate the contribution of the solely (=C-H)\textsubscript{cis} vibration. Therefore, the peak intensity estimation was performed using a three-component multiple Lorentzian fit (the behaviour of this band with polymerization time is shown in the main paper where it is also directly compared with the variation of the BLS peak shift (Fig. 2A). ii) In a similar way, to follow the diminishing of the bending mode of (=C-H)\textsubscript{cis} vibration at 1265 cm-1 we recurred to a two-component multiple Lorentzian fit including the in-phase methylene twist at 1305 cm-1 which instead increases with the polymerization time (61). The spectral closeness as well as the opposite behaviour of the two bands is probably the reason for the larger dispersion observed in the diminishing of the 1265 cm-1 band (Fig. S5).
Fig. S1. Micro-Raman and FT-IR spectra of the ZnO-oil model during polymerization

Micro-Raman (upper) and FT-IR (lower) spectra recorded on the same ZnO-oil paint applied on a glass slide (Raman) and KBr pellet (FT-IR). Arrows indicate the bands assigned to the (≡C-H)\textsubscript{cis} stretching.
Fig. S2. Refractive index and mass density for linseed oil
Refractive index (left) and mass density (right) for the linseed oil as a function of the annealing time, determined as described in the text.
Fig. S3. Variation of the real part of the longitudinal modulus \([M'(\omega_B)]\) versus annealing time

\(M'(\omega_B)\) calculated from Eq. 2 by using the different \(n(t^*)\) values reached at the end of the polymerization process.
Fig. S4. Micro-Raman spectrum and band assignments of fresh linseed oil
Micro-Raman spectrum recorded on a fresh oil sample with the main spectral bands whose assignment is reported in the table.
Fig. S5. Multimodal Micro BLS-Raman of linseed oil polymerization

Correlative Brillouin and Raman investigation of oil polymerization: BLS frequency shift (red filled circle) and intensity of the $\delta(=\text{C–H})_{\text{cis}}$ @ 1265 cm$^{-1}$ (black filled circle);
REFERENCES AND NOTES

1. L. de Viguerie, L. de Viguerie, G. Ducouret, F. Lequeux, T. Moutard-Martin, P. Walter, Historical evolution of oil painting media: A rheological study. *C. R. Phys.* **10**, 612–621 (2009).

2. M. Lazzari, O. Chiantore, Drying and oxidative degradation of linseed oil. *Polym. Degrad. Stab.* **65**, 303–313 (1999).

3. S. Pizzimenti, L. Bernazzani, M. R. Tinè, V. Treil, C. Duce, I. Bonaduce, Oxidation and cross-linking in the curing of air-drying artists’ oil paints. *ACS Appl. Polym. Mater.* **3**, 1912–1922 (2021).

4. R. S. Morrell, H. R. Wood, *The Chemistry of Drying Oils* (E. Benn Ltd., ed. 1, 1925).

5. H. Wexler, Polymerization of drying oils. *Chem. Rev.* **64**, 591–611 (1964).

6. J. Honziček, Curing of air-drying paints: A critical review. *Ind. Eng. Chem. Res.* **58**, 12485–12505 (2019).

7. I. Bonaduce, C. Duce, A. Lluveras-Tenorio, J. Lee, B. Ormsby, A. Burnstock, K. J. van den Berg, Conservation issues of modern oil paintings: A molecular model on paint curing. *Acc. Chem. Res.* **52**, 3397–3406 (2019).

8. J. van der Weerd, A. van Loon, J. J. Boon, FTIR studies of the effects of pigments on the aging of oil. *Stud. Conserv.* **50**, 3–22 (2005).

9. S. Keck, Mechanical alteration of the paint film. *Stud. Conserv.* **14**, 9–30 (1969).

10. T. J. S. Learner, P. Smithen, J. W. Krueger, M. R. Schilling, *Modern Paints Uncovered: Proceedings from the Modern Paints Uncovered Symposium* (Getty Publications, 2007).

11. L. Fuster-López, F. C. Izzo, M. Piovesan, D. J. Yusá-Marco, L. Sperni, E. Zendri, Study of the chemical composition and the mechanical behaviour of 20th century commercial artists’ oil paints containing manganese-based pigments. *Microchem. J.* **124**, 962–973 (2016).
12. F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, D. Fioretto, High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. Phys. Rev. X. 7, 031015 (2017).

13. L. Comez, D. Fioretto, F. Scarponi, G. Monaco, Density fluctuations in the intermediate glass-former glycerol: A brillouin light scattering study. J. Chem. Phys. 119, 6032–6043 (2003).

14. L. Comez, C. Masciovecchio, G. Monaco, D. Fioretto, Progress in liquid and glass physics by brillouin scattering spectroscopy. Solid State Phys. 63, 1–77 (2012).

15. C. E. Bottani, D. Fioretto, Brillouin scattering of phonons in complex materials. Adv. Phys. X 3, 1467281 (2018).

16. F. Palombo, D. Fioretto, Brillouin light scattering: Applications in biomedical sciences. Chem. Rev. 119, 7833–7847 (2019).

17. K. P. Menard, N. R. Menard, Ed., Dynamic Mechanical Analysis (CRC Press, 2020).

18. G. de Polo, M. Walton, K. Keune, K. R. Shull, After the paint has dried: A review of testing techniques for studying the mechanical properties of artists’ paint. Herit. Sci. 9, 68 (2021).

19. M. Bailey, M. Alunni-Cardinali, N. Correa, S. Caponi, T. Holsgrove, H. Barr, N. Stone, C. P. Winlove, D. Fioretto, F. Palombo, Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics. Sci. Adv. 6, eabc1937 (2020).

20. S. Caponi, A. Passeri, G. Capponi, D. Fioretto, M. Vassalli, M. Mattarelli, Non-contact elastography methods in mechanobiology: A point of view. Eur. Biophys. J. 51, 99–104 (2022).

21. M. A. Cardinali, D. Dallari, M. Govoni, C. Stagni, F. Marmi, M. Tschon, S. Brogini, D. Fioretto, A. Morresi, Brillouin micro-spectroscopy of subchondral, trabecular bone and articular cartilage of the human femoral head. Biomed. Opt. Express 10, 2606–2611 (2019).
22. N. Correa, M. Alunni Cardinali, M. Bailey, D. Fioretto, P. D. A. Pudney, F. Palombo, Brillouin microscopy for the evaluation of hair micromechanics and effect of bleaching. *J. Biophotonics* **14**, e202000483 (2021).

23. D. Bersani, C. Conti, P. Matousek, F. Pozzi, P. Vandenabeele, Methodological evolutions of Raman spectroscopy in art and archaeology. *Anal. Methods* **8**, 8395–8409 (2016).

24. M. C. Caggiani, P. Colomban, Raman microspectroscopy for Cultural Heritage studies, in *Chemical Analysis in Cultural Heritage*, L. Sabbatini, I. D. van der Werf, Eds (De Gruyter, 2020), pp. 151–180.

25. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, F. Palombo, Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. *J. Innov. Opt. Health Sci.* **10**, 1742001 (2017).

26. R. Mercatelli, S. Mattana, L. Capozzoli, F. Ratto, F. Rossi, R. Pini, D. Fioretto, F. S. Pavone, S. Caponi, R. Cicchi, Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. *Commun. Biol.* **2**, 117 (2019).

27. M. A. Cardinali, M. Govoni, D. Dallari, S. Caponi, D. Fioretto, A. Morresi, Mechano-chemistry of human femoral diaphysis revealed by correlative Brillouin-Raman microspectroscopy. *Sci. Rep.* **10**, 17341 (2020).

28. M. Alunni Cardinali, A. Morresi, D. Fioretto, L. Vivarelli, D. Dallari, M. Govoni, Brillouin and Raman micro-spectroscopy: A tool for micro-mechanical and structural characterization of cortical and trabecular bone tissues. *Materials* **14**, 6869 (2021).

29. S. Caponi, S. Mattana, M. Mattarelli, M. Alunni Cardinali, L. Urbanelli, K. Sagini, C. Emiliani, D. Fioretto, Correlative Brillouin and Raman spectroscopy data acquired on single cells. *Data Brief* **29**, 105223 (2020).

30. S. Mattana, M. Alunni Cardinali, S. Caponi, P. D. Casagrande, L. Corte, L. Roscini, G. Cardinali, D. Fioretto, High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. *Biophys. Chem.* **229**, 123–129 (2017).
31. K. L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C. M. Roland, Dispersion of the structural relaxation and the vitrification of liquids, in *Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics Part B* (JWS, 2006), pp. 497–593.

32. Y. Orlova, R. E. Harmon, L. J. Broadbelt, P. D. Iedema, Review of the kinetics and simulations of linseed oil autoxidation. *Prog. Org. Coat.* **151**, 106041 (2021).

33. B. Muik, B. Lendl, A. Molina-Díaz, M. J. Ayora-Cañada, Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. *Chem. Phys. Lipids* **134**, 173–182 (2005).

34. H. Sadeghi-Jorabchi, R. H. Wilson, P. S. Belton, J. D. Edwards-Webb, D. T. Coxon, Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. *Spectrochim. Acta Part A* **47**, 1449–1458 (1991).

35. V. Baeten, P. Hourant, M. T. Morales, R. Aparicio, Oil and fat classification by FT-raman spectroscopy. *J. Agric. Food Chem.* **46**, 2638–2646 (1998).

36. Z. O. Oyman, W. Ming, R. van der Linde, Oxidation of drying oils containing non-conjugated and conjugated double bonds catalyzed by a cobalt catalyst. *Prog. Org. Coat.* **54**, 198–204 (2005).

37. H. Kuhn, Zinc white, in *Artists’ Pigments: A Handbook of Their History and Characteristics*, R. L. Feller, A. Roy, Eds. (Cambridge Univ. Press, 1986), pp. 169–186.

38. C. S. Tumosa, M. F. Mecklenburg, The influence of lead ions on the drying of oils. *Stud. Conserv.* **50**, 39–47 (2005).

39. L. F. Sturdy, M. S. Wright, A. Yee, F. Casadio, K. T. Faber, K. R. Shull, Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. *Polymer* **191**, 122222 (2020).

40. F. Gabrieli, F. Rosi, A. Vichi, L. Cartechini, L. P. Buemi, S. G. Kazarian, C. Miliani, Revealing the nature and distribution of metal carboxylates in Jackson Pollock’s alchemy (1947) by micro-attenuated total reflection FT-IR spectroscopic imaging. *Anal. Chem.* **89**, 1283–1289 (2017).
41. C. Clementi, F. Rosi, A. Romani, R. Vivani, B. G. Brunetti, C. Miliani, Photoluminescence properties of zinc oxide in paints: A study of the effect of self-absorption and passivation. Appl. Spectrosc. 10, 1233–1241 (2012).

42. J. J. Hermans, K. Keune, A. van Loon, R. W. Corkery, P. D. Iedema, Ionomer-like structure in mature oil paint binding media. RSC Adv. 6, 93363–93369 (2016).

43. F. Rosi, C. Grazia, R. Fontana, F. Gabrieli, L. Pensabene Buemi, E. Pampaloni, A. Romani, C. Stringari, C. Miliani, Disclosing Jackson Pollock’s palette in Alchemy (1947) by non-invasive spectroscopies. Herit. Sci. 4, 18 (2016).

44. R. J. H. Clark, Q. Wang, A. Correi, Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J. Archaeol. Sci. 34, 1787–1793 (2007).

45. R. J. Jiménez Riobóo, C. Serrano-Selva, M. Fernández-García, M. L. Cerrada, A. Kubacka, M. Fernández-García, A. de Andrés, Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. JOL 128, 851–854 (2008).

46. F. Modugno, F. Di Gianvincenzo, I. Degano, I. D. van der Werf, I. Bonaduce, K. J. van den Berg, On the influence of relative humidity on the oxidation and hydrolysis of fresh and aged oil paints. Sci. Rep. 9, 5533 (2019).

47. L. Fuster-López, F. C. Izzo, V. Damato, D. J. Yusà-Maro, E. Zendri, An insight into the mechanical properties of selected commercial oil and alkyd paint films containing cobalt blue. J. Cult. Herit. 35, 225–234 (2019).

48. A. Artesani, Zinc oxide instability in drying oil paint. Mater. Chem. Phys. 255, 123640 (2020).

49. L. Baij, J. J. Hermans, K. Keune, P. Iedema, Time-dependent ATR-FTIR spectroscopic studies on fatty acid diffusion and the formation of metal soaps in oil paint model systems. Angew. Chem. Int. Ed. Engl. 57, 7351–7354 (2018).
50. L. Baij, J. Hermans, B. Ormsby, P. Noble, P. Iedema, K. Keune, A review of solvent action on oil paint. *Herit. Sci.* **8**, 43 (2020).

51. M. F. Mecklenburg, C. S. Tumosa, Traditional oil paints: The effects of long-term chemical and mechanical properties on restoration efforts. *MRS Bull.* **26**, 51–54 (2001).

52. S. Corezzi, L. Comez, M. Zanatta, A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles. *J. Mol. Liq.* **266**, 460–466 (2018).

53. R. J. Gettens, G. L. Stout, *Painting Materials: A Short Encyclopaedia* (Courier Corporation, Dover Publications, 1966).

54. Ö. K. Güler, F. S. Güner, A. T. Erciyes, Some empirical equations for oxopolymerization of linseed oil. *Prog. Org. Coat.* **51**, 365–371 (2004)

55. A. P. Laurie, The refractive index of a solid film of linseed oil: Rise in refractive index with age, in *Proceedings of the Royal Society of London*, (CLIX, 1937), pp. 123–133.

56. D. Fioretto, S. Corezzi, S. Caponi, F. Scarponi, G. Monaco, A. Fontana, L. Palmieri, Cauchy relation in relaxing liquids. *J. Chem. Phys.* **128**, 214502 (2008).

57. G. Monaco, D. Fioretto, L. Comez, G. Ruocco, Glass transition and density fluctuations in the fragile glass former orthoterphenyl. *Phys. Rev. E Stat. Nonlin Soft Matter Phys.* **63**, 061502 (2001).

58. R. S. Berns, E. R. de la Rie, The effect of the refractive index of a varnish on the appearance of oil paintings. *Stud. Conserv.* **48**, 251–262 (2003).

59. R. L. Feller, Factors affecting the appearance of picture varnish. *Science* **125**, 1143–1144 (1957).

60. P. Vandenabeele, B. Wehling, L. Moens, H. Edwards, M. De Reu, G. Van Hooydonk, Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. *Anal. Chim. Acta* **407**, 261–274 (2000).
61. M. Gomez, D. Reggio, M. Lazzari, Linseed oil as a model system for surface enhanced Raman spectroscopy detection of degradation products in artworks. *J. Raman Spectrosc.* **50**, 242–249 (2019).