Phytochemistry and Antioxidant Activities of *Rhus tripartitum* (Ucria) Grande Leaf and Fruit Phenolics, Essential Oils, and Fatty Acids

Inès Jallali¹, Yosr Zaouali³, Khaoula Mkadmini¹, Abderrazek Smaoui², Chedly Abdelly² and Riadh Ksouri¹

Abstract

Rhus tripartitum (Ucria) Grande leaves and fruits were investigated for their contents in phenolic compounds, essential oils, and fatty acids. Chemical composition and antioxidant potential of these secondary metabolites were investigated using chromatographic tools and different antioxidant tests. Results displayed high amounts of phenolic compounds in leaves, concomitant with important antioxidant potentialities, probably due to their richness in phenolic acids and flavonoids as identified by reverse phase high performance liquid chromatography (RP-HPLC). Amounts of essential oils were higher in leaves. Oxygenated sesquiterpenes are exclusively synthesized by the fruits, expressing better antioxidant activities.

Keywords

Rhus tripartitum, phenolics, essential oils, fatty acids, terpenoids, flavonoids, bioactivity, antioxidants

Received: December 10th, 2021; Accepted: March 1st, 2022.

Introduction

Different antioxidant formulations are being sold as diet supplements by nutraceutical and food companies in developed nations.¹ Enhancement of the diet with naturally occurring antioxidants is one of many proposed solutions to fight the deleterious effects of reactive oxygen species (ROS).²,³ Besides, the increasing consciousness about the toxic effects of synthetic antioxidants has driven the interest of consumers and industry towards the use of natural additives in food, pharmaceutical, and cosmetic products as a replacement for synthetic chemicals.¹ This upheaval involves a constant growing requirement of raw materials and new ingredients from natural sources.¹,² In this context, plants constitute the major source of diverse bioactive compounds.³ Underutilized plant species can fulfill this demand due to their richness in phenolics, vitamins, minerals, and other bioactive compounds, but they are not exploited on a large scale.⁴

Results and Discussion

Extract yields: Fraction yields varied significantly as a function of the studied organs (Table 1). In fact, yields registered in leaf extracts were more important than their similar in the fruits (2.6% vs 0.98% dry weight (DW)). This fact may be explained by the differences in the chemical composition of the 2 organs and the affinity of the solvent to the different classes of phenols. Ethyl acetate is a medium polarity solvent, usually used to extract phenols of low to medium weight, and it is essentially known for its affinity to flavonoids and some phenolic acids.⁶ The leaves constitute the place of photosynthesis hence the need for the presence of antioxidant molecules, such as flavonoids, to cope with the deleterious effects of reactive oxygen species generated during this process. On the other side, the lowest yields of the fruit extract may be explained by the richness of this organ with polar substances with high molecular weight such as tannins, carbohydrates, and glycosylated compounds, generally abundant in fruits as they ensure their color, energetic value, and sweetness.⁷
Table 1. Phenolic Compound Contents and Antioxidant Activities of Rhus tripartitum Leaf and Fruit Extracts (in Comparison With Positive Controls).

Samples	Leaf	Fruit	Positive controls
Extract yield (% DM)	2.6 ± 0.3	0.98 ± 0.1	BHT
TPC (mg GAE.g⁻¹ DW)	171 ± 0.9	39 ± 1.4	BHA
TFC (mg CE.g⁻¹ DW)	186 ± 8.4	42 ± 2.7	AsA
CTC (mg CE.g⁻¹ DW)	57 ± 3.8	14 ± 0.1	
TAA (mg GAE.g⁻¹ DW)	572 ± 35	64 ± 1	
DPPH test (IC₅₀:µg.mL⁻¹)	3.8 ± 0.13	18.8 ± 1.4	
FRAP (EC₅₀:µg.EC.mL⁻¹)	109 ± 4.4	310 ± 13.6	
BCBT (IC₃₀:µg.mL⁻¹)	150 ± 20	34 ± 4	

Means followed by the same letter in the row are not significantly different at P < .05 (means of 3 replicates).

Abbreviations: AsA: Ascorbic Acid; BHA: butylated hydroxyanisole; BHT: butylated hydroxytoluene; BCBT: β-carotene bleaching test; CTC: condensed tannins content; DPPH test: 2,2-diphenyl-1-picrylhydrazyl test; EC₅₀: effective concentration at which the absorbance was 0.5; FRAP test: ferric reducing antioxidant power; IC₅₀: inhibiting concentration of 50% of the synthetic radical DPPH; mg CE.g⁻¹ DW: milligram catechin equivalent per gram dry weight; mg GAE.g⁻¹ DW: milligram gallic acid equivalent per gram dry weight; TPC: total polyphenols content; TFC: total flavonoids content; TAA: total antioxidant activity.

Phenolic compound contents: Leaf phenolic amount is high (Table 1). Besides, estimation of the amounts of total flavonoids showed that these molecules are very abundant, especially in leaves. This result is perfectly in agreement with the point discussed above and dealing with the high affinity of the ethyl acetate to this class of phenolic compounds. Amounts of condensed tannin in fruits represent only a quarter of those found in leaves. This result is perfectly in agreement with the point discussed above and dealing with the high affinity of the ethyl acetate to this class of phenolic compounds.

Antioxidant activities of R tripartitum extracts: Total antioxidant activity (TAA) differed greatly among the studied organs of this species (Table 1). The total antioxidant activity of leaf extract is nine fold higher than that of fruit extract. Concerning the antiradical activity, leaf extracts expressed a very high capacity to quench the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, and so largely exceeded the antioxidant efficiency of the synthetic butylated hydroxytoluene (BHT) and ascorbic acid (AsA). Antiradical activity of the fruit extracts is high too, but not as much as that of the leaves.

RP-HPLC identification of R tripartitum leaf and fruit phenolic compounds: Seven phenolic compounds were identified in leaf extract (Table 2), with rutin and ellagic acid as major ones. Eight compounds were identified in the fruit extract. Apigenin and naringenin are dominant flavonoids in this organ. The fruit composition is enriched with a variety of flavonoids (eg rutin, myricetin, and isorhamnetin), besides the m-coumaric acid. The specific segregation of R tripartitum phenolics and related antioxidant properties is closely tied to the physiological specificity of the plant organ. The phenolic composition of R tripartitum leaves is basically constituted by phenolic acids and flavonoids (majorly represented by the rutin). As for the fruit, and apart from gallic and m-coumaric acids, the phenolic profile of this organ is exclusively belonging to the large group of flavonoids. These differences among organs’
chemical composition explain, partially, the disparity of the antioxidant activities between the studied extracts. Besides, Tili et al11 established the phenolic composition variability among localities and ripening stages in fruit methanol extracts. They found that flavone and betulinic acid are dominant phenolics in \textit{R tripartitum} fruit, regardless of the locality and maturation stage, which is completely different from the chemical composition that we found dominated by apigenin and naringenin, even for the fruits collected in the same stage (intermediate maturation stage). These differences may be explained by 2 hypotheses. The first one is resumed in intra-specific variability that may be due to specific edapho-climatic conditions among localities and/or genetic mutations. The second hypothesis is based on technical factors, mainly the extraction solvent and method. In fact, the principal objective of the solvent fractionation is to obtain a concentrated phenolic fraction using the extraction technique and of the right choice of solvent. For another side, it can be seen that there are 4 major and 25 minor compounds. However, those obtained from the fruits are a mixture of mono- and sesquiterpene hydrocarbons and, to a lesser extent, oxygenated sesquiterpenes (13.56%), which are exclusively produced by the fruits of this species, with viridiflorol as a major compound of this class. From another side, it can be seen that there are 4 major and common monoterpene hydrocarbons in both leaf and fruit essential oils is counterbalanced by the abundance of both sesquiterpene hydrocarbons and oxygenated sesquiterpenes in the fruit ones. This chemical composition seems to be a common trait in related species of this genus.13-15 The comparison of our chemical analyses to this provided by this study to Algerian ones allows us to deduce that Tunisian provenance presents different chemotypes from Algerian ones.12 The comparison of our chemical analyses to this study allows us to deduce that Tunisian provenance presents different chemotypes from Algerian ones.

Antioxidant activities of \textit{R tripartitum} essential oils: Apart from the iron-reducing capacity, where the differences between the 2 organs are not significant, the other tests used showed a variation of the antioxidant potential between the leaves and fruits of \textit{R tripartitum} (Table 4). The capacity of the essential
Table 3. Percentage and Classification of Volatile Compounds of Essential Oils Obtained from Leaves and Fruits of *Rhus tripartitum*.

Identified compounds	RI^A	RI^B	Identification^C	Leaves %	Fruits %
Monoterpene hydrocarbons					
1 α-Pinene	939	1032	RI, MS, Co GC	21.78 ± 1.45^a	6.7 ± 0.38^b
2 Camphene	951	1053	RI, MS	0.77 ± 0.07^a	-
3 Sabinene	976	1132	RI, MS, Co GC	0.21 ± 0.02^a	-
4 β-Pinene	980	1118	RI, MS, Co GC	3.89 ± 0.37^a	1.11 ± 0.06^b
5 β-Myrcene	993	1174	RI, MS	1.59 ± 0.15^a	1.04 ± 0.17^b
6 α-Phellandrene	1006	1206	RI, MS, Co GC	0.46 ± 0.04^a	-
7 (β)-3-Carene	1011	1160	RI, MS, Co GC	18.9 ± 2.05^a	17.34 ± 1.61^a
8 α-Terpine	1018	1183	RI, MS, Co GC	1.79 ± 0.14^a	0.78 ± 0.11^b
9 e-Cymene	1020	1187	RI, MS	2.09 ± 0.2^a	-
10 p-Cymene	1026	1280	RI, MS, Co GC	1.75 ± 0.19^a	-
11 α-Limonene	1031	1203	RI, MS, Co GC	7.23 ± 0.78^a	7.72 ± 1.21^a
12 γ-Pyronene	1338	-	RI, MS	0.33 ± 0.03^a	-
13 (E)-β-Ocimene	1050	1262	RI, MS	0.35 ± 0.04^a	-
14 γ-Terpine	1061	1255	RI, MS, Co GC	3.93 ± 0.32^a	0.8 ± 0.52^b
15 α-Terpinolene	1092	1290	RI, MS, Co GC	14.39 ± 1.86^a	11.71 ± 1.02^a
Total				77.72 ± 3.53^a	48.43 ± 3.75^b
Oxygenated Monoterpens					
16 Bornyl acetate	1295	1597	RI, MS, Co GC	0.39 ± 0.03^a	-
17 Terpinen-4-ol	1178	1611	RI, MS, Co GC	2.33 ± 0.02^a	-
18 β-Citronellol	1229	1772	RI, MS	1.38 ± 0.15^a	-
19 Thymol methyl ether	1235	1607	RI, MS	1.55 ± 0.07^a	-
20 Geraniol	1258	1857	RI, MS, Co GC	1.84 ± 0.57^a	-
21 Citronellyl formate	1275	-	RI, MS	0.68 ± 0.1^a	-
22 Geranyl formate	1298	1718	RI, MS	0.53 ± 0.11^a	-
Total				4 ± 0.27^b	6.76 ± 0.81^b
Sesquiterpene hydrocarbons					
23 β-Cubebene	1388	1547	RI, MS	2.83 ± 0.08^a	-
24 β-Caryophyllene	1418	1612	RI, MS, Co GC	0.71 ± 0.09^a	-
25 δ-Ma-liene	1422	1547	RI, MS	1.07 ± 0.1^a	-
26 Aromadendrene	1441	1628	RI, MS	4.49 ± 0.5^a	-
27 γ-Gurjunene	1473	1687	RI, MS	1.44 ± 0.18^a	-
28 Germacrene D	1489	1726	RI, MS	9.98 ± 1.51^a	-
29 Viridiflorene	1495	1695	RI, MS	2.22 ± 0.2^a	-
30 Bicyclogermacrone	1513	1756	RI, MS	2.94 ± 0.6^a	-
31 β-Bisabolene	1510	1741	RI, MS	1.11 ± 0.16^b	-
32 γ-Badinene	1512	1765	RI, MS	1.93 ± 0.16^a	-
33 δ-Guaiene	1515	-	RI, MS	30.66 ± 3.1^a	-
34 α-Bisabolene	1520	1746	RI, MS	16.99 ± 2.67^b	-
35 δ-Cadinene	1530	1773	RI, MS	13.56 ± 0.84^a	-
Total				1.77 ± 0.12^a	-
Oxygenated sesquiterpenes				1.1 ± 0.16^a	-
36 Palustrol	1570	1953	RI, MS	5.46 ± 0.55^a	-
37 Spathulenol	1586	2150	RI, MS, Co GC	2.39 ± 0.08^a	-
38 Viridiflorol	1590	2098	RI, MS, Co GC	1.41 ± 0.01^a	-
39 Eudesm-5-en-11-ol	1621	-	RI, MS	0.46 ± 0.01^a	-
40 ρ-Cadinol	1640	2170	RI, MS	1.13 ± 0.04^a	-
41 Isopatulinol	1652	2223	RI, MS	13.56 ± 0.84^a	-
42 β-Eudesmol	1653	2257	RI, MS, Co GC	0.91 ± 0.03^a	-
Total				0.43 ± 0.42^b	-
Total identified	0.91 ± 0.03^a	0.43 ± 0.42^b		99.62 ± 0.63^a	99.84 ± 0.15^b

RI^A and RI^B: Retention indices calculated using an apolar column (HP-5) and polar column (HP-INNOWax).^C: Retention indices relative to C8 to C40 n-alkanes on the (HP-INNOWax). Abbreviations: Co-GC, co-injection with authentic compound; RI: retention index; MS, mass spectrum. Values followed by the same lowercase letter in the rows did not share significant differences at 5% (Duncan test) (means of 3 replicates ± S).
the extraction of fatty acids of the best of our knowledge, this is the fashion wave invading the research world is the investigation of oxygen compounds. On the other hand, the prepotency of fruit oils over leaf ones is partitum arguing about the nutritional and industrial importance of fruits one. Oil contents are expressed as % dry weight basis.

Fatty acid composition of both organs (Table 5) is dominated by C18 fatty acids, represented by oleic, linoleic, and palmitic acids. The sum of these compounds gathered is in the range of 84.8% and 72.5% of leaf and fruit oils, respectively. Besides, good proportions of stearic acid were detected too. Previous study on R tripartitum fruit oils obtained at the intermediate maturation stage showed that they are dominated by higher percentages of palmitic acid and lower ones of oleic and linoleic acids when compared to our samples. These differences highlight the important effects of biotic and abiotic factors on the amounts and chemical composition of these molecules.

Table 4. Antioxidant Activities of Rhus tripartitum Leaf and Fruit Essential Oils.

	DPHH test	FRAP test	BCBT test
	(IC30_g mg.mL⁻¹)	(EC30_g mg.mL⁻¹)	(IC50_g mg.mL⁻¹)
Leaf	8.3 ± 0.11^a	1.8 ± 0.9^a	4.9 ± 0.9^a
Fruit	2.8 ± 0.03^c	1.65 ± 0.09^a	3.9 ± 0.4^a
Positive control	5.15 ± 0.64^b	1.55 ± 0.1^b	1.9 ± 0.6^b

Means followed by the same letter are not significantly different at P < 0.05 (means of three replicates).

Abbreviations: BCBT: β-carotene bleaching test; DPHH test: 2,2-diphenyl-1-picrylhydrazyl test; EC₃₀: effective concentration at which the absorbance was 0.5; FRAP test: ferric reducing antioxidant power; IC₅₀: inhibiting concentration of 50% of the synthetic radical DPHH.

Oils to act as antioxidant molecules thus expressed is higher than that determined in the essential oils extracted from aromatic plants. The biological activity of essential oils depends on the chemical composition and functional groups (alcohol, phenol, terpenes and ketones). Thus, the nature of the terpenic compounds and their proportions play a determining role in the antioxidant activity of the oils. This property seems to be attributed to oxygenated monoterpenes, especially phenols and aldehydes. These chemical classes are poorly represented in R tripartitum oils, which explain to some extent, their antioxidant potential. The antioxidant activity hence determined can be linked to their richness in monoterpane hydrocarbons, especially in α-pinene which acts as a scavenger of free radicals. On the other hand, the prepotency of fruit oils over leaf oils is closely related to its richness in mono- and sesquiterpene oxygen compounds.

Oil yield and fatty acid composition: Nowadays, the new fashion wave invading the research world is the investigation of new sources of seed oils from underexploited plants. To the best of our knowledge, this is the first work describing the extraction of fatty acids of R tripartitum leaves and the analysis of their chemical composition, in comparison with the fruits one. Oil contents are expressed as % dry weight basis (Table 5). Oil contents are almost fivefold higher in leaves than in the fruits. These results are of great importance when arguing about the nutritional and industrial importance of R tripartitum. However, Tili et al. found higher amounts in the fruits collected in the same maturation stage but from other locations. Fatty acid composition of both organs (Table 5) is dominated by C18 fatty acids, represented by oleic, linoleic, and palmitic acids. The sum of these compounds gathered is in the range of 84.8% and 72.5% of leaf and fruit oils, respectively. Besides, good proportions of stearic acid were detected too. Previous study on R tripartitum fruit oils obtained at the intermediate maturation stage showed that they are dominated by higher percentages of palmitic acid and lower ones of oleic and linoleic acids when compared to our samples. These differences highlight the important effects of biotic and abiotic factors on the amounts and chemical composition of these molecules.

A common objective of the scientists and nutritionists from all around the world is to find the balance between a secure intake, high quality, and nutritional value of natural products. Thus, the study of fatty acid profiles is a key tool in the determination of the comestible oil quality. Analysis of R tripartitum lipid composition indicated that saturated fatty acids (SFAs) part was statically the same in the studied organs, representing less than 1/5 of the identified fatty acids. However, R tripartitum leaves and fruits are characterized by the presence of high amounts of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFAs) (Table 5). Generally, the lipid storage composition represents high percentages of unsaturated fatty acids (UFAs), the most abundant of which are oleic and linoleic acids, in addition to a ratio of UFAs/SFAs exceeding 3 to ensure a longer shelf life and effective protection against lipid peroxidation and food spoilage. Proportions of UFAs are 80.95% and 78.48% in leaves and fruits, respectively, and so are four times higher than SFA levels, which are revealed by the ratios SFAs/UFAs equal to 4.5 and 4.00 in leaves and fruits, respectively (Table 5). These ratio values are higher than the usual recommended ones. The major MUFA found in these plant leaves and fruits is oleic acid. This fatty acid is widely recognized for its improving the immune system due to its anti-inflammatory

Table 5. Fatty Acid Composition (% of Total Fatty Acids), DBI, and oil Yield of Rhus tripartitum.

	Leaves	Fruits
C08:0 (Caprylic acid)	0.03 ± 0.01^a	-
C12:0 (Lauric acid)	0.04 ± 0.01^b	0.18 ± 0.02^a
C14:0 (Mircistic acid)	0.17 ± 0.04^b	0.44 ± 0.02^a
C16:0 (Palmitic acid)	13.02 ± 0.01^b	14.45 ± 0.24^a
C16:1 (Palmitoleic acid)	0.09 ± 0.0^a	0.023 ± 0.0^b
C16:2 (Hexadecadienoic acid)	0.12 ± 0.01	0.86 ± 0.12^a
C18:0 (Stearic acid)	5.30 ± 0.01^a	4.07 ± 1.63^a
C18:1 (Oleic acid)	43.51 ± 0.0^a	43.29 ± 2.22^a
C18:2n6 (Linoleic acid)	35.96 ± 0.2^a	25.15 ± 1.35
C18:3n3 (α-Linolenic acid)	0.86 ± 0.08^b	2.67 ± 0.6^a
C18:4n3 (Stearidonic acid)	-	0.35 ± 0.07^a
C20:0 (Arachidic acid)	0.36 ± 0.02^a	0.39 ± 0.03^a
C20:1 (Gadoleic acid)	0.29 ± 0.01^b	2.62 ± 0.54^a
C22:0 (Behenic acid)	0.12 ± 0.0^b	0.26 ± 0.02^a
C22:1 (Eruccic acid)	0.12 ± 0.08^b	1.68 ± 0.14^a
C22:5n3 (Clupanodonic acid)	-	0.74 ± 0.27^a
C22:6n3 (Docosahexaenoic acid)	-	0.87 ± 0.04^a
SFA	19.5 ± 0.06^a	19.78 ± 1.85^a
MUFA	44.01 ± 0.08^b	47.83 ± 1.9^a
PUFAs	36.94 ± 0.13^b	30.65 ± 2.37^b
UFA	80.95 ± 0.06^a	78.48 ± 3.27^a
UFA/SFA	4.25 ± 0.02^a	4.00 ± 0.61^a
DBI	1.18 ± 0.07^a	1.05 ± 0.07^b
Oil yield (%)	5.21 ± 0.12^a	1.07 ± 0.03^b

Values with different lowercase letters in the same row are significantly different at P < 0.05 (means of three replicates).

Abbreviations: DBI: double-bound index; MUFA: monounsaturated fatty acid; PUFAs: polyunsaturated fatty acid; SFA: saturated fatty acid; UFA: unsaturated fatty acid.
were measured as described by Sun et al. The amount of total condensed tannins are expressed as mg CE.\text{g}^{-1} \text{DW}, through the calibration curve of \((r^2 = 0.99) \). All samples were analyzed in 3 replications.

RP-HPLC identification of \(R \) \textit{tripartitum} **phenolic compounds**: The identification of \(R \) \textit{tripartitum} phenolic compounds was done using Agilent 1260 HPLC system consisting of a vacuum degasser, an autosampler, and a binary pump with a maximum pressure of 600 bar (Agilent technologies), equipped with a reversed-phase C18 analytical column of 4.6 \(\times \) 100 mm and 3.5\(\mu \)m particle size (Zorbax Eclipse XDB C18). The DAD detector was set to a scanning range of 200 to 400 nm. Column temperature was maintained at 25°C. The injected sample volume was 2 \(\mu \)L and the flow rate of mobile phase was 0.4 mL.min\(^{-1}\). Mobile phase B consisted of 0.1% formic acid Milli-Q water and mobile phase A was methanol. The elution program was as follows: 0 to 5 min: 90% to 80% B; 5 to 10 min: 80% to 70% B; 10 to 15 min: 70% to 50% B; 15 to 20 min: 50% to 30% B; 20 to 25 min: 30% to 10% B; 25 to 30 min: 10% to 50% B; 30 to 35 min: 50% to 90% B. Each sample was directly injected and chromatograms were monitored at 280 nm.

Essential oils isolation: Triplicate samples of 100 g of leaves and fruits were subjected to hydrodistillation in 1L of deionized water using a Clevenger apparatus for 4 and 6 h, respectively. Obtained oils were dried over anhydrous sodium sulphate and stored at +4°C until tested. Essential oil yields were expressed as percent of the plant material weight used.

Gas chromatography (GC) analysis: GC analysis was carried out using an Agilent 6890 gas chromatograph equipped with a flame ionization detector and split–splitless injector attached to HP-INNOWax polyethylene glycol capillary column (30m \(\times \) 0.25mm; 0.25\(\mu \)m film thickness). One micro-liter of the sample (dissolved in hexane as 1/50 v/v) was injected into the system. The compounds were identified by comparing their relative retention times with those of authentic compounds injected in the same conditions and by comparing their retention index (RI) calculated with C8 to C40 Alkanes Calibration Standard (40147-U, Supelco, Germany).

Gas chromatography/mass spectrometry (GC-MS) analysis of essential oils: Identification of the essential oils was performed using a Hewlett Packard HP5890 series II GC-MS equipped with an HP5MS column (30 m \(\times \) 0.25 mm). Helium was used as carrier gas at 1.2 mL.min\(^{-1}\). Each sample (1\(\mu \)L) was injected in the split mode (1:20), the program used was isothermal at 70°C, followed by 50 to 240°C at a rate of 5°C.min\(^{-1}\), then held at 240°C for 10 min. The mass spectrometer was an HP 5972. The total electronic impact mode at 70 eV was used. The components were identified by comparing their relative retention times and mass spectra with the data from the library of essential oils constituents, Wiley, MassFinder, and Adams GC-MS libraries and by comparing their RI calculated with C8 to C40 Alkanes Calibration Standard (40147-U, Supelco, Germany).

Fatty acid extraction: Oils were obtained according to ISO method 659:1998. Powder samples (30 g) were extracted with petroleum ether in a Soxhlet apparatus for 4 h. Extracts were concentrated using a rotary evaporator under reduced pressure.
at 50°C and then oils were dried with nitrogen before storing at −20°C. Analyses were performed in triplicate.

Preparation and GC-MS and GC-FID analysis of FAMEs: FAMEs were prepared as described by Megdiche-Ksouri et al. The identification of FAMEs was performed using an HP-5980 Series II instrument, equipped with HP-5MS capillary column (30m × 0.25mm; 0.25µm film thickness) and split/splitless injector (220°C). The oven temperature was held at 150°C, then programmed to increase 15°C.min⁻¹ until reaching 220°C, and detained isothermally at 220°C for 5 min. The carrier gas was helium used at an initial flow rate of 1 mL.min⁻¹. Split ratio was 20:1. Injection volume was equal to 2µL. The components were identified by comparing their relative retention times and mass spectra with the data from the library of fatty acids constituents: Wiley, MassFinder, and Adams GC-MS libraries. The quantification of fatty acid methyl esters, expressed as percentages, was obtained directly from GC-MS libraries. The quantification times and mass spectra with the data from the library of fatty acids constituents: Wiley, MassFinder, and Adams GC-MS libraries.

Split ratio was 20:1. Injection volume was equal to 2µL. The components were identified by comparing their relative retention times and mass spectra with the data from the library of fatty acids constituents: Wiley, MassFinder, and Adams GC-MS libraries.

FRAP assay: The iron (III) reducing capacity was assessed as described by Oyayiu. Results are expressed as Effective Concentration at which the absorbance was 0.5 (effective concentration at which the absorbance was 0.5 [EC50] in mg.mL⁻¹) obtained from linear regression analysis.

BCBT: The antioxidant activity of the extracts was evaluated in terms of β-carotene bleaching as described by Koleva et al. The results are expressed as IC₅₀ (µg.mL⁻¹) which is the Inhibiting Concentration of 50% of the β-carotene initially used.

Antioxidant Activities of R tripartitum Extracts and EOs

TAA: Experiments were conducted according to Koleva et al. The antioxidant capacity was expressed as mg GAE.g⁻¹ DW. The calibration curve range was 0 to 500 µg.mL⁻¹. All samples were analyzed in triplicate.

DPPH assay: DPPH quenching ability was measured according to Hanato et al. All samples were analyzed in triplicate. The results are expressed as IC₅₀ (µg.mL⁻¹) which is the Inhibiting Concentration of 50% of the synthetic radical.

FRAP assay: The iron (III) reductive capacity was assessed as described by Oyayiu. Results are expressed as Effective Concentration at which the absorbance was 0.5 (effective concentration at which the absorbance was 0.5 [EC₅₀] in mg.mL⁻¹) obtained from linear regression analysis.

BCBT: The antioxidant activity of the extracts was evaluated in terms of β-carotene bleaching as described by Koleva et al. The results are expressed as IC₅₀ (µg.mL⁻¹) which is the Inhibiting Concentration of 50% of the β-carotene initially used.

Statistical analysis

Means were statistically compared using the STATI-CF program. A one-way analysis of variance (ANOVA) and Newman–Keuls multiple range tests were carried out to test any significant difference between samples at P < .05. Values were the means of 3 replicates.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

Ethical approval is not applicable for this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (grant number LR10CBBC02).

ORCID iD

Inès Jallali https://orcid.org/0000-0003-2630-1728

Statement of Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Statement of Informed Consent

There are no human subjects in this article and informed consent is not applicable.

Trial Registration

Not applicable, because this article does not contain any clinical trials.

References

1. Chhikara N, Roshree Devi H, Jaglan S, Sharma P, Gupta P, Panghal A. Bioactive compounds, food applications and health benefits of *Parkia spinosa* (stinky beans): a review. *Agric Food Chem.* 2018;7(46):1-9. doi:10.1186/s40066-018-0197-x
2. Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly C, Ksouri R. Variability of antioxidant and antibacterial effects of essential oils and aceton extracts of two edible halophytes: *Crithmum maritimum* L. and *Inula cripitomida* L. *Food Chem.* February 2014;145:1031-1038. doi:10.1016/j.foodchem.2013.09.034
3. Jallali I, Waffo Téguo P, Smaoui A, Ménilion JM, Abdelly C, Ksouri R. Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte *Inula cripitomidae*. *Arab J Chem.* 2020;13(1):2680-2688. doi:10.1016/j.arabjc.2018.06.020
4. Altemi M, Lakhassasi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. *Plants (Basel)*. 2017;6(42). doi:10.3390/plants6040042
5. Makhlouf FZ, Squeo G, Barkat M, Trani A, Caponio F. Antioxidant activity, tocopherols and polyphenols of acorn flour obtained from *Quercus* species grown in Algeria. *Food Res Int.* December 2018;114:208-213. doi:10.1016/j.foodres.2018.08.010
6. Trabelsi N, Oueslati S, Falleh H, et al. Isolation of powerful antioxidant compounds from the medicinal halophyte *Limoniastrum guyonianum*. *Food Chem.* 2012;135(3):1419-1424. doi:10.1016/j.foodchem.2012.05.120
7. Naczka M, Shahidi F. Extraction and analysis of phenolics in food. *J Chromatogr A*. 2004;1054(1-2):95-111. doi:10.1016/j.chroma.2004.08.059
8. Chang J, Lu OJ, He G. Regulation of polyphenols accumulation by combined expression silencing key enzymes of phenylpropanoid pathway. *Acta Biochim Biophys Sin (Shanghai).* 2009;41(2):123-130. doi:10.1093/abbs/gmn014

9. Jallali I, Megdiche W, M’Hamdi B, et al. Changes in phenolic composition and antioxidant activities of the edible halophyte *Critidium maritimum* L. with physiological stage and extraction method. *Acta Physiol Plant.* 2012;34(4):1451-1459. doi:10.1007/s11738-012-0943-9

10. Neffati N, Aloui Z, Karoui H, Guizani I, Boussaid M, Zaouali Y. Chemical composition and antibacterial activity of medicinal plants collected from the Tunisian flora. *Nat Prod Res.* 2017;31(13):1583-1588. doi:10.1080/14786419.2017.1280490

11. Tlili N, Mejri H, Yahia Y, et al. Phytochemicals and antioxidant activities of *Rhus tripartita* (uria) fruits depending on locality and different stages of maturity. *Food Chem.* October 2014;160:98-103. doi:10.1016/j.foodchem.2014.03.030

12. Benlembarek K, Lograda T, Ramdani M, Figueredo G, Chalard P. Chemical composition and antibacterial activities of *Rhus tripartita* essential oils from Algeria. *Biodivers.* 2021;22(1):480-490. doi:10.13057/biodiv/d220158

13. Gundidza M, Gweru N, Mmbengwa V, Ramalivhana NJ, Magwa Z, Samie A. Phytoconstituents and biological activities of essential oil from *Rhus lancea* L. F. Afr J Biotechnol. 2008;7(16):2787-2789.

14. Srivastava S, Mallavarapu GR, Rai SK, et al. Composition of the essential oils of the leaves and flowers of *Rhus myrsinifera* hayne ex wight & Arn growing in the aravalli mountain range at New Delhi. *Flavour Fragr J.* 2006;21(2):228-229. doi:10.10016/fj/1561

15. Brunke EJ, Hammerschmidt FJ, Schmaus G, Akgül A. The essential oil of *Rhus oariaea* L. Fruits. *Flavour Fragr J.* 1999;8(4):209-214. doi:10.1002/ffj.2730080408

16. Hajaoui H, Trabelsi N, Nouni E, et al. Biological activities of the essential oils and methanol extract of *Rhus myrsinifera* hayne ex wight & Arn used in the Tunisian traditional medicine. *World J Microbiol Biotechnol.* 2009;25(12):2227-2238. doi:10.1007/s11274-009-0130-3

17. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F. Chemical composition of essential oils in *Zataria multiflora* boiss. From different parts of Iran and their radical scavenging and antimicrobial activity. *Food Chem Toxicol.* 2010;48(6):1562-1567. doi:10.1016/j.fct.2010.03.025

18. Bakalli F, Awerbeck S, Awerbeck D, Idaomar M. Biological effects of essential oils – A review. *Food Chem Toxicol.* 2008;46(2):446-475. doi:10.1016/j.fct.2007.09.106

19. Bourgou S, Pichette A, Lavoie S, Marzouk B, Legault J. Terpenoids isolated from Tunisian *Nigella sativa* L. Essential oil with antioxidant activity and the ability to inhibit nitric oxide production. *Flavour Fragr J.* 2012;27(1):69-74. doi:10.1002/fj.2085

20. Tlili N, Tiri M, Benlajnef H, et al. Variation in protein and oil content and fatty acid composition of *Rhus tripartitum* fruits collected at different maturity stages in different locations. *Ind Crop Prod.* August 2014;59:197-201. doi:10.1016/j.indcrop.2014.05.020

21. Albino Rydlewski A, Rodrigues de Morais D, Rotta EM, et al. Bioactive compounds, antioxidant capacity, and fatty acids in different parts of four unexplored fruits. *J Food Qual.* April 2017;8:1-9. doi:10.1155/2017/8401074

22. Bettaieb Rebej I, Bourgou S, Rahali FZ, Msaada K, Ksouri R, Marzouk B. Relation between salt tolerance and biochemical changes in cumin (*Cuminum cyminum* L.) seeds. *J Food Drug Anal.* 2017;25(2):391-402. doi:10.1016/j.jfda.2016.10.001

23. Alimi H, Mbarki S, Barka ZB, et al. Phytochemical, antioxidant and protective effect of *Rhus tripartitum* root bark extract against ethanol-induced ulcer in rats. *Gen Physiol Biophys.* 2013;32(1):115-127. doi:10.4149/gpb_2013003

24. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. *J Agric Food Chem.* 2002;50(10):3010-3014. doi:10.1021/jf0115589

25. Sun B, Richardo-da-Silvia JM, Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. *J Agric Food Chem.* 1998;46(10):4267-4274. doi:10.1021/jf980366j

26. Megdiche Ksouri W, Chaouachi F, M’souri W, Guizani I, Zaouali Y. Chemical composition and antibacterial activities of *Rhus tripartita* essential oil. *Z. Naturforsch.* 2008;63c:80-84. doi:10.1515/zna-2008-80-84

27. Tlili N, Tir M, Benlajnef H, et al. Variation in protein and oil content and fatty acid composition of *Rhus tripartitum* fruits collected at different maturity stages in different locations. *Ind Crop Prod.* August 2014;59:197-201. doi:10.1016/j.indcrop.2014.05.020

28. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new terpenoids from *Rhus tripartita*. *J Nat Prod.* 2010;73(1):71-76. doi:10.1021/np980414y

29. Oyaizu M. Studies on products of browning reaction. *Jpn J Nutr Diet.* 1993;51(6):561-575. doi:10.5897/JMPR.9000212

30. Koleva II, Teris AB, Jozef PH, Linssen AG, Lyuba NE. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. *Phytochem Anal.* 2002;13(1):8-17. doi:10.1002/pca.611

31. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new terpenoids from *Rhus tripartita*. *J Nat Prod.* 2010;73(1):71-76. doi:10.1021/np980414y

32. Oyaizu M. Studies on products of browning reaction. *Jpn J Nutr Diet.* 1993;51(6):561-575. doi:10.5897/JMPR.9000212

33. Koleva II, Teris AB, Jozef PH, Linssen AG, Lyuba NE. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. *Phytochem Anal.* 2002;13(1):8-17. doi:10.1002/pca.611

34. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. *Chem Pharm Bull (Tokyo).* 1988;36(6):2090-2097. doi:10.1248/cpb.36.2090

35. Oyaizu M. Studies on products of browning reaction. *Jpn J Nutr Diet.* 1993;51(6):561-575. doi:10.5897/JMPR.9000212

36. Koleva II, Teris AB, Jozef PH, Linssen AG, Lyuba NE. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. *Phytochem Anal.* 2002;13(1):8-17. doi:10.1002/pca.611

37. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. *Chem Pharm Bull (Tokyo).* 1988;36(6):2090-2097. doi:10.1248/cpb.36.2090

38. Oyaizu M. Studies on products of browning reaction. *Jpn J Nutr Diet.* 1993;51(6):561-575. doi:10.5897/JMPR.9000212

39. Oyaizu M. Studies on products of browning reaction. *Jpn J Nutr Diet.* 1993;51(6):561-575. doi:10.5897/JMPR.9000212