How Forest Biodiversity rather than Desertification Can Endanger Some Vulture Species

O’Neal Campbell M*

Environmental Scientist, Lakehead University, Ontario, Canada

*Corresponding author: O’Neal Campbell M, Environmental Scientist, Lakehead University, Ontario, Canada, Tel: 2502203434; E-mail: ecol55@hotmail.com

Introduction

Vultures are currently recorded as icons of conservation, biodiversity and political ecology, due to the diclofenac epidemic in Asia; the urban invasion of North American cities by Black and Turkey Vultures; and the reintroduction of California Condors into the previous habitats [1-8]. Resultant actions, acknowledgements and plans for vulture conservation exist in Europe (mainly concerning the rare Griffon and Cinereous Vultures), Asia (mainly concerning the Gyps Grifflon Vultures), the Americas (mainly concerning the Andean Condor); and more widely on different types of vulture health problems [9-15]. A relevant question is: does higher ecosystem biodiversity contribute to increased vulture presence? As a partial answer to this complex question, vulture habitation in two biomes of maximum and minimum biodiversity; the forest and the desert is examined.

Forests and Deserts as Vulture Habitats

Biome biodiversity is fundamental to species presence; here a biome is a region of similar climatic conditions with associated communities of animals and plants (the World Wide Fund for Nature (WWF) recognises such 14 biomes) [16]. Three 'opposite' biomes (based on biodiversity) are Biomes 1 and 2 (Tropical and subtropical moist dry broadleaf forests) and Biome 13 (the deserts and xeric shrublands). A biodiversity based hypothesis assumes that vultures would be more common in highly biodiverse forest than in the sparse xeric shrublands and especially deserts. However, many vultures avoid forests; preferring Biomes 7, 8 and 10 (savannas, shrublands and grasslands, of the tropical/subtropical, temperate and mountain mountain regions respectively).

Excepting the three Cathartes species (Turkey, Greater Yellow-headed and Lesser-headed Vultures), all the other twenty species of New World and Old World vultures hunt by sight rather than smell. The sensory abilities of vultures is long debated [17-32]. Consequently, the non Cathartes species are rare in forests, unable to visually penetrate the canopy to trace carrion on the forest floor. Large animals are also generally rarer in forest than savanna. Hence, the "forested areas of Africa or Asia do not support scavenging birds, while neotropical forest is the center of distribution for the cathartid vultures" [33].

Cathartes vultures fly low just above the forest canopy, descending only when food is scented; Turkey Vultures have located hidden carrion easily [33]. “Black Vultures do not have a sense of smell, and my observations in other study areas have shown that they are not found in undisturbed forest and cannot locate food in forest conditions unless led there by Turkey Vultures” [33-36]. The Greater-Yellow-headed Vulture, often named the “forest vulture” to distinguish it from the Yellow-headed Vulture or “savanna vulture” forages in forests [37]. It has been recorded to locate 63% of provided carcasses in dense forest, while mammalian scavengers found only 5% [29].

The deserts, semi-deserts and xeric shrublands are at least as important as the forest for vultures, hence desertification may not necessarily destroy vulture populations. Desertification, the final stage of deforestation, is defined as land degradation from water, soil and biodiversity decline from drought or improper/inappropriate agriculture [38]. Vultures in deserts track cattle-herding and/or camel driving activities, or seasonal migration of ungulates. In the Saharan and Sahelian habitats of Africa, Egyptian, Hooded, White-backed, Rüppell’s Vulture, Lappet-faced and White-headed Vultures subsist on livestock, (camels, cattle, donkeys, and horses) and rarer gazelles, these migrating for grazing and seasonal rain [39]. All these vultures are rare or absent from the African forest [40]. In the New World, Turkey and Black Vultures frequent deserts and semi-deserts in California, Arizona, New Mexico, Nevada and “are probably the most abundant avian scavengers in semi-arid shrublands” of central Mexico [41] and northern Mexico [42].

Conclusions

Crucially, sparsely vegetated landcover must be assessed further for vulture habitation. Restorestation, the commonest form of biodiversity conservation, may actually endanger some vulture species without a sense of smell. The Cathartes Vultures must be distinguished from the rest in this regard. Vultures are a feeding clade that generally require open landcover, therefore making a possibly unique case for their inclusion in studies of biodiversity and endangered species.

References

1. DeVault TL, Reinhart BD, Brisbin IL, Rhodes OE (2005) Flight behavior of black and turkey vultures: implications for reducing bird–aircraft collisions. Journal of Wildlife Management 69: 592-599.
2. Blackwell BF, Wright SE (2006) Collisions of Red-tailed Hawks (Buteo jamaicensis), Turkey Vultures (Cathartes aura), and Black Vultures (Coragyps atratus) with aircraft: implications for bird strike reduction. Journal of Raptor Research 40: 76-80.
3. Hunt W, Parish C, Farry S, Lord T, Sieg R, et al., (2007) Movements of introduced California condors in Arizona in relation to lead exposure. California condors in the 21st century. Series in Ornithology No. 2: 79-96. Nuttall American Ornithologists’ Union and Nuttall Ornithological Club.
4. Mee A, Rideout B A, Hamber JA, Todd JN, Austin G, et al., (2007) Junk ingestion and nestling mortality in a reintroduced population of California Condors Gymnogyps californianus. Bird Conservation International 17: 1-13.
5. Woodford MH, Bowden CGR, Shah N (2008) Diclofenac in Asia and Africa – repeating the same mistake? Harmonisation and improvement
1. Austin W, Day K, Gatto A, Humphrey J, Parish C, et al. (2012) A Review
2. Moreno-Opo R, Arredondo A, Guif F (2010) Foraging range and diet of
3. Prakash V, Green RE, Pain DJ, Ranade SP, Saravanan S, et al. (2007)
4. Vogt W (1941) Food detection by vultures and condors. Auk 58:571.
5. Sorenson K, Burnett J, Mee A, Hall L (2007) Lead concentrations in the
6. Margalida A, Donazar JA, Carrete M, Sanchezzapatá JA (2010) Sanitary
7. Austin W, Day K, Gatto A, Humphrey J, Parish C, et al. (2012) A Review
8. Prakash V, Green RE, Pain DJ, Ranade SP, Saravanan S, et al. (2007)
9. Cade TJ (2007) Exposure of California Condors to lead from spent
10. Prakash V, Green RE, Pain DJ, Ranade SP, Saravanan S, et al. (2007)
11. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
12. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
13. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
14. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
15. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
16. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
17. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
18. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
19. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
20. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
21. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
22. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
23. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
24. Lieberman A, Rodriguez JV, Paez JME, Wiley J (1993) The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx, 27: 83-90.
25. Stager KE (1964) The role of olfaction in food location by the Turkey Vulture and other cathartids. Los Angeles County Museum Contributions in Science 81: 1-63.
26. Fischer AB (1969) Laboratory experiments on and open-country observations of the visual acuity and behavior of Old World vultures. Zoologische Jahrbücher Systematik 96: 81-132.
27. Bang BG (1972) The nasal organs of the Black and Turkey Vultures: a comparative study of the cathartid species Coragyps atratus atratus and Cathartes aura septentrionalis (with notes on Cathartes aura falconida, Pseudogyps bengalensis, and Neophron percnoperatus. Journal of Morphology 115: 153-184.
28. Graves GR (1992) Greater Yellow-headed Vulture (Cathartes melambrotus) locates food by olfaction. Journal of Raptor Research 26: 38-39.
29. Gomez LG, Houston DC, Cotton P, Tye A, Luis G, Houston DC, Cotton P, Tye A (1994) The role of greater yellow-headed vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 136: 193–196.
30. Smith HRR, DeGraaf M, Miller RS (2002) Exhumation of food by Turkey Vultures. Journal of Raptor Research 36: 144-145
31. Ristow D (2003) Can the sense of smell in the Turkey Vulture be put to any conservation use? International Hawkwatcher 7: 18-19.
32. Gilbert M, Chansocheat S (2006) Olfaction in accipitrivids. Vulture News 55: 6-7.
33. Houston DC (1986) Scavenging efficiency of Turkey Vultures in tropical forest. The Condor 88: 318-323.
34. Wallace MP, Temple SA (1987) Competitive interactions within and between species in a guild of avian scavengers. Auk 104: 290-295.
35. Houston DC (1988) Competition for food between Neotropical vultures in forest. Ibis 130: 402-417.
36. Buckley NJ (1996) Food finding and the influence of information, local enhancement, and communal roosting on foraging success of North American vultures. Auk 113: 473–488.
37. Robinson SK (1994) Habitat selection and foraging ecology of raptores in Amazonian Peru. Biotropica 26: 443–458.
38. Geist HJB (2005) The causes and progression of desertification. Ashgate Publishing Ltd, Farnham.
39. Wacher T, Newby J, Houdou I, Harouna A, Rabeil T (2013) Vulture observations in the Sahelian zones of Chad and Niger. Bull ABC 20: 186-199.
40. Campbell M (2009) Factors for the presence of avian scavengers in Accra and Kumasi, Ghana. Area 41: 341-349.
41. Dean WRJ, Yeaton RI, Milton, SJ (2006) Foraging sites of Turkey Vultures and Common Ravens Corvus corax in central Mexico. Vulture News 54: 30-33.
42. Hiraldo F, Delibes M, Donazar JA (1991) Comparison of diets of Turkey Vultures in three regions of northern Mexico. Journal of Field Ornithology 62: 319-324.