Proposal on Hybrid Risk Evaluation Method (HREM) for bidding decision in international infrastructure project

Takayuki ISAKA*, Wataru YONEDA** and Tsuyoshi KOGA**

*Hitachi, Ltd.
1-6-6, Marunouchi, Chiyoda-ku, Tokyo 110-8280, Japan
E-mail: takayukiryuta@gmail.com
**Department of Mechanical Engineering, Yamaguchi University
2-16-1 Tokiwadai Ube-shi, Yamaguchi 755-8611, JAPAN

Received: 20 January 2017; Revised: 17 July 2017; Accepted: 7 November 2017

Abstract
This paper describes a proposal on a new method that enables the appropriate and practical decision making in bidding before submitting a proposal to participate in the bidding for a large-scale international infrastructure project. Such a method has been demanded by potential bidders in order to overcome the recent trend that Japanese companies have given up in participating in such projects in spite of opportunities to extend their business in highly potential overseas market. For this, we have established a comprehensive evaluation method for risk assessment with reference to actual experiences of one of the leading Japanese consultants in establishing the basis of the proposed method, and conducted a post-evaluation to verify and validate the proposed method based on assumptions for the Suvarnabhumi Airport Rail Link (ARL) construction project in Thailand. Based on the assessment, we have obtained a positive result to ensure the effectiveness and the validity of the theory assumed as well as the proposed method, with suggestion for further improvement.

Keywords: Project management, Decision making, Massive infrastructure projects, Risk assessment, Check list method, Management of technology, Design knowledge management

1. Introduction

The Japanese Government has been keen on exporting the Japanese Technology in infrastructure as a package, which has been the core of the strategy for sustainable development of Japanese industries. One of the main components of the said package is the railway systems that comprise rolling stock, train control system, power supply system, automatic fare collection system, etc. for urban mass transits and high speed railways, which Japanese railway industries have spent years to accomplish safe, international competitive and highly reliable system. The Japanese high speed railway technology, well known as Shinkansen, has been successfully introduced in Taiwan and the mass transit systems by Japanese technologies have been widely adopted in various countries, which were financed by the Japanese ODA and with the management by Japanese consulting firms, e.g. Delhi Metro in India, Purple Line in Thailand, etc. These projects were bid through the International Competitive Bidding (ICB) and the contractors wishing to win the project have to participate in the bidding process. Although the projects were partly or entirely financed by the Japanese Government, there were some projects in which no Japanese firm has participated in the bidding due to high risks residing in the bidding process and in the contract conditions, e.g. non-familiarity with modern practice of project implementation (Niraula et al., 2008), unfair modification of FIDIC based conditions (Matsuba et al., 2011). Disputes at the court in case the arbitration on the claims by the contractor is not successful could bring about serious financial impacts on the business model of the contractor due to the increase of the project cost by the result of disputes (Onishi, et al., 2002). Upon these cases, the Overseas Construction Association of Japan (OCAIJ) has submitted a request to Japan International Cooperation Agency (JICA) to improve the bidding conditions in order to avoid high risks that prevent Japanese firms from bidding. In the recent international infrastructure projects, bidding documents can be considered as the major decisive factor in understanding the project viability at the time of the bidding since the bidding documents cover all
conditions to be applied during the bidding and the construction phase until the completion of the project. Contractors are able to make appropriate profit if the contract conditions are fair and clear. On the other hand, in case the contract conditions are unclear and/or one-sided to the employer, there are high risks that finally result in great loss to the contractor at the completion. Such loss causes negative impact to the company as a whole, and the magnitude of the impact is significant if the company’s scale is small to medium. In addition, if the project is largely delayed due to the reasons of the employer, the present value of the profit from the project decreases at the time of the project completion.

As the discount rates in the developing countries are relatively high, the present value of the project after the extension of the project period could be significantly lower than that originally expected. Delay in the project may also affect smooth implementation of other projects of the company due to longer engagement of staff in project (Ohtsu et al., 2012).

Unfortunately, it is the fact that there is no well-structured and proven evaluation method for risks in international infrastructure projects that enables the company management to make the right decision if they should go for the bidding or not. Therefore, companies have made go or no go decision based on the limited information available and their past experiences, which are often vague and uncertain. The accuracy of the decision could be high if the company has extensive experiences in the same client, same country and/or similar projects, whereas new comers have no sufficient information to understand what kind of risks they should consider, thus they can only rely on illogical decision with little available information.

To overcome the current situation of the risk evaluation, we have conducted a study to establish a new risk evaluation method that can be applied at the time of making decision for bidding in international infrastructure projects.

2. Related researches and detailed purpose of this research

Various studies have been carried out in the past to assess the risks in different kinds of projects. One of the methods effective to reduce the long-term project risk is the Discovery-Driven Planning (DDP), (McGrath and Macmillan, 2009). The DDP is to continuously update the planning during the project referring to the knowledge obtained through the project. Projects often start with status in 3 types, i.e. haste start-up without careful consideration, plan without flexibility, and start-up with the DDP. The first one highly contains the possibility of not achieving the planned target due to vague objective at the beginning. The second one may luckily lead to the planned target but also be likely not to achieve the target due to its inflexibility. Plans with the DDP assure the project to achieve the planned target by periodically modifying and adjusting the plan in the course of the project. The DDP consists of the Reverse Profit and Loss Calculation, by which components related to profit making and the level of their impact to the profit can be identified, and the milestone planning that enables the periodical adjustment of the plan at the right time (Fukuzawa and Ogawa, 2009).

However, although the DDP can be applicable to projects in which most of factors can be internally managed and controlled within the company, the effectiveness of the DDP is limited in construction projects that are directed and driven by the employer and the contract conditions prepared by the employer. Therefore, a new risk evaluation method suitable for construction projects having such restriction is highly desired.

Complicated process of obtaining building permits, unfair and unclear requests from the employer and lack of resources (material and equipment) are given as the major risk factors in international construction projects from the contractor’s point of view in the study of the reference (Ohtsu et al, 2002), and it is stated that adding the risk premium in the contract amount is one of the ways to mitigate such risks during the construction phase and to achieve certain level of profit. Notwithstanding the presence of such risks in most of the international infrastructure projects, there is no definite risk evaluation method that can be applied at the time of the bidding. In this Study, it is aimed to combine the qualitative risk evaluation method mainly for due consideration and assessment at the time of the bidding and the quantitative risk evaluation method for cost factors affecting the profitability that can be estimated during the construction phase, so that the risk evaluation covers various aspects and throughout the entire project before bidding. This method, which is designed to be conducted before submitting the bidding proposal, can be applied to prepare for risk control during the project as well as to consider risk financing to be included in the bidding proposal as well.

3. Needs in risk evaluation and research objective

Needs in more precise and effective risk evaluation to determine whether or not to participate in the international infrastructure projects have been recognized as comprehensively and structurally understanding the potential risks as
well as the impact of such risks to the profitability is essential for such determination. Potential risks cannot be simply quantitatively evaluated as the identifiable risks are of qualitative natures, although the evaluation of the project at the completion is mainly the profitability through the calculation of the project related components in cost. In this Study, a Hybrid Risk Evaluation Method (HREM) is proposed based on a theory that the risk evaluation by the combination of both qualitative and quantitative evaluation of risk factors (Isaka et al., 2015) (Isaka et al., 2016), where the qualitative evaluation is valid for speedy and effective screening of a massive volume of potential risk factors residing in projects and the quantitative evaluation can provide the result of the risk evaluation, reflecting the result of the qualitative evaluation, in numerical values for use in the process of decision-making by the company’s top management. Risk evaluation by the HREM at the time of participating in the bidding process can be achieved in the following manner:

![Diagram of HREM](image)

Fig. 1 A flowchart of proposing Hybrid Risk Evaluation Method (HREM) in bidding decision. Elements from start until first branch express a qualitative evaluation process of project risk using check list. Elements from first branch to second branch express a quantitative evaluation process based on sensitive analysis.

As indicated in Figure 1, the HREM enables easier and more accurate decision making in participating in the bidding or not by having 2 steps of understanding the potential risks in the project and estimating the expected project profitability. Accordingly, this HREM can be the effective tool for decision making at or before the start of the bidding process if the project is considered worth bidding and profit making to the company.

In the Study, a case study was carried out with the actual project implemented by the ICB and already completed, namely Suvarnabhumi Airport Rail Link (SARL) Project in Bangkok, Thailand, in which the author was deeply involved as the consultant to the employer. Reasonable assumptions were used to justify the effectiveness of the HREM in the post evaluation of the actual project.

4. Qualitative risk evaluation method
4.1 Proposition of check list method in HREM

Experiences as the consultant involved in the employers’ sides in various international infrastructure projects and the request of OCAJI to JICA are referred to in the case study carried out in this study. A check list was established as the major component of the qualitative evaluation, covering potential risk factors involved in the international infrastructure projects at each phase and attributable to various stakeholders, which are categorized into 3 levels by the stakeholders as Level 1, phases and natures of risk items as Level 2, and detailed risk factors as Level 2, where Level 2 is further broken down in Tables 3 – 5 by the attributes of the risks in each phase. Categorizing risk factors by stakeholder, type and detail elements makes it easier to clarify the relationship of risk factors and project stakeholders as well as to identify the time of the risk occurrence as indicated in Tables 1 to 5.
Table 1 Risk factors related to the country of the project

Level 1	Level 2	Level 3
Country	General	Economy / Financial conditions
		Approved budget for project
		Consistency with national plans and laws/regulations
		Force majeure
		Abnormal climate conditions
		Culture / customs / conventions / public safety and peace
		Legislation on safety and environment consideration
		Building permit
	During	Change of legislation during construction
	Construction	Political change, Coup De Tat, etc.

Table 2 Risk factors affected by the construction industry (market)

Level 1	Level 2	Level 3
Construction Industry	General	Market situation and change

Table 3 Risk factors driven by the project implementation agency

Level 1	Level 2	Level 3
Employer (Implementation Agency)	General	Capability of Implementation Agency
	Before Bidding	Coordination with financier(s)
		Recognition and acceptance by residents
		Coordination with third parties (electricity, water, etc.)
	Preparation by Employer	Realization of the project (land acquisition, etc.)
		Realization of the project (access to project sites)
		Realization of the project (obstructions in project site)
		Project financing
		Appropriateness of project contingency budget
	Project Implementation Plan and Scheme	Appropriateness of contract packaging
		Appropriateness of project budget
		Appropriateness of project / contract period
	Bidding Scheme / Bidding Conditions	Appropriateness of bidding period
		Bid bond
		Quality if Instruction to Bidders document
		Possibility of delay in bid evaluation
		Appropriateness of pre-qualification (PQ) requirements
		Bid evaluation method
		Appropriateness of bid evaluation criteria
	During Construction	Delay in land acquisition / resettlement
		Acceptance for additional cost for additional works
		Extension of time due to unforeseen impact / damage due to abnormal climate
		Delay due to works by third party

Table 4 Risk factors attributable to the employer’s consultants

Level 1	Level 2	Level 3
Employer / Before Planning	Planning	Quality of project planning
Consultant Bidding (Design Phase)

Consultant Bidding (Design Phase)	Design	Other Contract Package(s)
Cost Estimate	One-sided conditions in design requirement	Possibility of delay due to work progress of other contract package(s)
Contract type	Appropriateness of contract type (re-measurement, lump-sum, etc.)	Appropriateness of contract type (re-measurement, lump-sum, etc.)
Conditions of Contract	Appropriateness of authorities given to the Engineer	Appropriateness of authorities given to the Engineer
	One-sided conditions	One-sided conditions
	Conditions for project completion / handover	Conditions for project completion / handover
	Appropriateness of applicable laws and regulations	Appropriateness of applicable laws and regulations

During Bidding

Extension of Time and Additional Cost	During Bidding
Extension of time due to design change by the Employer	Extension of time due to design change by the Employer
Additional cost due to design change by the Employer	Additional cost due to design change by the Employer
Condition for extension of time due to design change	Condition for extension of time due to design change
Extension of time and additional cost due to third party requirement	Extension of time and additional cost due to third party requirement
Liquidated damage for delay	Liquidated damage for delay
Change of contract period depending on commencement of contract	Change of contract period depending on commencement of contract

Tender Documents and Drawings	During Bidding
One-sided conditions in design standards and codes	One-sided conditions in design standards and codes
Quality of General Specifications	Quality of General Specifications
Quality of design documents and drawings	Quality of design documents and drawings
Given conditions	Given conditions

During Construction

Quality Assurance	During Construction
Method of quality assurance and quality control	Method of quality assurance and quality control

Contract Language	During Construction
Contract language for correspondences and documents	Contract language for correspondences and documents

Arbitration	During Construction
Conditions for arbitration	Conditions for arbitration

Consultant	During Construction
Quality and experience of consultant for bid evaluation	Quality and experience of consultant for bid evaluation

Consultant	During Construction
Quality and experience of consultant for construction supervision	Quality and experience of consultant for construction supervision

Table 5 Risk factors initiated by the contractor

Level 1	Level 2	Level 3
Contractor	Corporate strategy	Consistency with corporate strategy
	Competitiveness	Competitiveness against competitors
	Understanding of country	Experience in and understanding of the project country
	Bidding team	Readiness for preparing bid proposal
	Capability	Capability of construction
		Implementation structure for construction
	Local Staff and Labors	Own local staff
	Working Capital	Capability of mobilization of local staff
	Sub-contractors	Availability and quality of sub-contractors
	Construction Materials	Increase of construction materials costs
	Delay in Construction	Delay in works caused by the Contractor
Building Permit Experience and knowledge in obtaining building permit

Based on listed risk factors, this paper proposes a risk scoring method qualitatively. In product development process, the FMEA (Failure Modes and Effects Analysis) method is often used to specify, score, and improve the risks inside the design and manufacturing phases (Wada 1996). From inspiration by the FMEA, this research proposes a risk scoring method using following four criteria:

1) Importance, which describes a financial impact of the risk factor to the project (in FMEA, similar concept with severity)
2) Criticality, which describes an impact of the criticality to the project implementation
3) Probability, which describes the occurrence frequency or possibility of the risk factor (in FMEA, similar concept with probability or occurrence)
4) Recognition, which describes a probability to realize before the factor occurs (in FMEA, similar concept with detection).

Level 1 category is subject to evaluation by setting corresponding values for its importance by the relative evaluation, whereas each detailed risk factor in Level 3 is subject to evaluation for 3 criteria, i.e. criticality, probability and recognition, in values ranging from 1 to 5, where 5 is the highest in risk. Scores of each criterion from 1 to 5 are based on the theory that can be applicable to risk evaluations in general. For example, the definition of each score for Recognition was determined as follows:

1: Fully recognizable and controllable prior to the occurrence of the event
2: Recognizable and controllable if certain study/research is carried out
3: May be recognizable but not fully controllable within the limited time before the end of bidding process
4: Difficult to recognize and control the event before the end of bidding process
5: Impossible to recognize and control the event before the end of bidding process

Then, the value of individual business risk of each risk factor is calculated by multiplying the input values of importance and 3 criteria. Multiplication method is applied to obtain the individual business risk value as each of the evaluation criteria is fully dependent and the impact of high value can more severely affect the individual business risk. An extract of the input result carried out for the SARL Project is shown in Table 6.

Here, individual business risk in Table 6 is calculated by following equation:

$$ b^i = s^i \times c^i \times p^i \times r^i $$

where

- s^i: scored importance of factor i
- c^i: scored criticality of factor i
- p^i: scored probability of factor i
- r^i: scored recognition of factor i
- b^i: calculated business risk of factor i

Table 6 Example of estimated quantitative factors (Suvarnabhumi Airport Rail Link Project)

Risk Factor	Importance s^i	Criticality c^i	Probability p^i	Recognition r^i	Individual business risk b^i
Country					
Approved budget for project	4	5	3	3	180
Force majeure	4	4	5	5	400
Abnormal climate conditions	2	2	4	3	128
Political change, Coup de Tat, etc.	2	2	4	3	128
Construction Industry					
Market situation and change	2	3	3	3	54
Employer / Implementation Agency					
Capability of Implementation Agency	4	4	4	3	192
Recognition and acceptance by residents	3	3	3	3	108

[DOI: 10.1299/jamdsm.2017jamdsm0063] © 2017 The Japan Society of Mechanical Engineers
4.2 Proposition of qualitative scoring method in HREM

Next, qualitative scoring is carried out by inputting values for each risk factor in the qualitative check list. In the proposed qualitative method, scoring of the evaluation results is made by the average probability, the distribution of the individual business risks and the sum of all individual business risks which become the overall project risk score.

Table 7 Average probability and threshold

Importance Level	Average Probability	Threshold
Level 5	2.00	2.00
Level 4	2.47	2.50
Level 3	2.70	3.00
Level 2	2.65	3.50
Level 1	3.00	4.00

The evaluation of the risk probability is done by setting a threshold value for each importance level, which is the allowable upper limit of the probability as it is not realistic if the average probability of the higher importance level is higher than that of the lower importance level, considering the less possibility of the occurrence of risks with higher importance. According to the result shown in Table 7, it is confirmed that each average probability is slightly less than the threshold values. Then, referring to the individual business risks composing factors in Tables 1 to 5, the overall project risk is determined in point (score) from 0 to 100. The formula to calculate the score of the overall project risk is made as 0 point for the sum of the highest individual business risks and 100 points for the sum of the lowest individual business risks. Assuming “M” as the sum of the possible highest individual business risks for the project where a number of potential risks are assumed, and “m” as that with possible lowest risks assumed, a formula to calculate the score of the overall project risk can be described as follows:

$$y = \frac{100}{M-m} x + \frac{100M}{M-m}$$ \hspace{1cm} (2)

where \(y\): Overall project risk score (point)
\(x\): Sum of individual business risks

Using the formula shown in (2) above, the sum of the individual business risks in score (point) can be calculated.
The minimum required score is set in advance in order to finally evaluate the project viability in such a way that the minimum required score is higher than the sum of the individual business risks when the average probability of each level is at the value of the threshold. If the minimum required score is set lower, the overall project risk score becomes always higher if the average probability is higher than the value of the threshold, meaning the evaluation based on the overall project risk score is meaningless. Therefore, the minimum required score is set to avoid such cases. By having the minimum required score, the evaluation of the average probability and the overall evaluation become valid and meaningful. The result of the overall project evaluation for the case study is shown below.

Table 8 Comparison of result of overall project evaluation and minimum required score

Overall Project Risk Score (0 – 100)	63
Minimum Required Score	65

From Table 8 above, it is observed that the overall project risk score, which is the sum of the individual business risk points, resulted in lower than the minimum required score. In addition to this evaluation, another assessment was carried out by categorizing the individual business risks into 3 groups of critical level by the extent of the points.

Table 9 Extent of individual business risk

Extent	Critical Level	Description
Individual Business Risk ≤ 340	Critical	The project has high potential of risk and the success in the project is assumed to be difficult without proper plans to reduce the risk.
Individual Business Risk ≤ 144	Attention	The risk in the project is moderate but an attention shall be paid to avoid the potential risk from arising.
Individual Business Risk < 144	Allowable	The project has little risk and the overall project risk is manageable and controllable.

As shown in Table 9 above, values at the border between attention item and allowable item and that between critical item and attention item are set at 144 and 340 respectively, which are calculated from the following formulas:

- Boundary between attention item and allowable item = average of importance value × 3 × 3 × 3
- Boundary between critical item and attention item = average of importance value × 4 × 4 × 4

Applying the above formula, the evaluation can be made objectively for different type of projects. The result of the classification of the extent of the individual business risk of each risk factor is as follows.

Table 10 Classification of extent of individual business risks (extract)

Risk Factor (Level 3)	Individual Biz. Risk	Extent	Critical Level
Force majeure	400	≥ 340	Critical
Capability of Implementation Agency	192	≥ 144	Attention
Appropriateness of project / contract period	192		
Approved budget for project	180		
Appropriateness of cost estimate and government project budget	180		
Abnormal climate conditions	128		
Political change, Coup de Tat, etc.	128		
Acceptance of additional cost required due to the Employer	120		
Recognition and acceptance by residents	108		
Delay in works due to incompleteness in design	108		
Experience in and understanding of the project country	84		
Escalation clause	72		
Availability and quality of sub-contractors	70		
Appropriateness of pre-qualification (PQ) requirements	64		
From Table 10, it is observed that the critical item in the project is considered as the force majeure and also that careful attention needs to be paid to the appropriateness of the project budget and the contract duration. This result can be justified by the fact that the project country has been politically unstable for a long period and that the project implementation agency has no experience in the implementation of similar projects in the past which could imply high possibility of deviation from the planned project budget and duration.

In summary of the result and assessment of the qualitative evaluation, we consider that the measures to avoid risks taken by the contractor of the case study project were insufficient at the time of bidding. Without proper measures against the force majeure, such as coup de tat, and plans to achieve better contract conditions during negotiation with the employer before signing the contract, the project is evaluated as not decent one and implementing the project involves high risks of low profit or loss.

5. Qualitative Risk Evaluation Method in Proposed HREM
5.1 Application of Proposed Evaluation Method

In this Study, a qualitative evaluation to estimate the expected profit from the project was made by the Reverse Profit and Loss Calculation. The Reverse Profit and Loss Calculation is to identify the components, or factors, affecting the overall profit of the project by the top down method instead of the normal calculation by the bottom up method in which costs of each detail component is summed up.

![Fig. 2 Influence diagram of international infrastructure project.](image_url)

Fig. 2 Influence diagram of international infrastructure project.

Relationships between factors which are related with each other is connected as a diagram. This diagram is created by interviewing a project manager of Suvarnabhumi Airport Rail Link (ARL) in Bangkok. A flowchart of proposing Hybrid Risk Evaluation Method (HREM) in bidding decision. Elements from start until first branch express a qualitative evaluation process of project risk using check list. Elements from first branch to second branch express a quantitative evaluation process based on sensitive analysis.

Each element as the input data is the quantitative factor that can be managed and controlled by the contractor and is related to the input data for the qualitative check list. On the other hand, the output data may be also managed and
controlled by the contractor but is variable affected by the input data. Qualitative elements are those that can be controlled by the contractor itself by improving its own capability, understanding the country’s situation, etc., whereas the external elements are the factors beyond control of the contractor, such as natural disaster, capability of the employer, etc. Risks of such external elements can be mitigated to some extent by taking proper measures against the potential risks that could actually occur. The Influence Diagram, as shown in Figure 2, needs to be prepared not only including variables affecting the project profit but also the qualitative elements and the external elements. It is important to include factors in the Influence Diagram that directly affect the project profit, but also those indirectly affecting the project profit which are the major components in the Influence Diagram. After preparing the Influence Diagram, a flow chart for the Reverse Profit and Loss Calculation is prepared with only variable elements in the Influence Diagram.

![Influence Diagram](image)

Fig. 3 Reverse-profit diagram of international infrastructure project (extracted).

Elements which organize an overall profit are connected with links via equations. This diagram is created by interviewing a project member of Suvarnabhumi Airport Rail Link (ARL) Construction Project in Bangkok.

Figure 3 only shows a part of the Influence Diagram prepared for the railway systems contract in the case study project. In typical railway construction projects, either a new line or an extension of the existing line, civil works contract(s) and railway systems contract(s) are bid and awarded separately, whereas the case study project, i.e. SARL Project, was uniquely implemented with one contract comprising the civil works and the railway systems. Although in one contract, the civil works and the railway systems are separately managed by each contractor for each portion with different type of contract conditions, thus the Reverse Profit and Loss Calculation was carried out separately for the civil works and the railway systems portions, which are also internally managed separately by 2 contractors comprising the consortium. With the Reverse Profit and Loss Calculation, a logic and relationships among each cost element comprising the project profit can be clarified. After the flowchart is prepared, the amount of each cost element is input into the Profit and Loss Assessment table to calculate the expected profit or loss of the overall project. An extract of the summary of
the profit and loss assessment in shown in Table 11.

Table 11 Summary of profit and loss assessment (extract)

Cost Element	Amount / Volume	Unit
Target Profitability = 3.7 %		
Target Profit Amount	1.52 billion-yen	
Contract Amount	42.54 billion-yen	
Total Expenses	41.02 billion-yen	
Bidding Cost	0.1 billion-yen	
Document Preparation Cost	6.65 billion-yen	
Equipment / Sub-system Procurement Cost	28.04 billion-yen	
Manufacturing Cost	19.64 billion-yen	
Material Cost	6.2 billion-yen	
Procurement Cost	8.4 billion-yen	
Transportation and Delivery Cost	0.49 billion-yen	
Installation Cost	4.7 billion-yen	
General Requirements Cost	1.04 billion-yen	

The amounts of each cost element were input based on the assumptions of the authors with best knowledge and experience, as they are confidential within the contractors. In order to achieve the target profitability, the amount of each cost element needs to be comprehensively adjusted among all elements. However, in reality, the actual cost required for each cost element varies depending on various factors, such as the company’s strategy, applied construction methods, actual work site conditions, construction market in the country and overseas, etc. Therefore, some cost elements need to be considered with certain level of range, extract of which are shown in Table 12:

Table 12 Summary of profit and loss assessment with range (extract)

Cost Element	Amount / Volume	Unit	Max.	Standard	Min.
Components Procurement Cost	10	billion-yen	20	10	5
Equipment Manufacturing Cost	1.29	billion-yen			
Material Transportation Cost	1.5	billion-yen	3.5	1.5	1
Sub-contracting Cost	4	billion-yen			
Assembly Cost	5	billion-yen	5.5	5	4.5
Inspection and Testing Cost	0.1	billion-yen			
Manufacturing Management Cost	6.4	billion-yen			
Manufacturing Labor Cost	5.4	billion-yen			
Labor Unit Cost	2	JPY/day	4	2	1
Number of Labors	3	thousand/day	4	3	2
Contract Period (excl. System Integration)	930	day			
Original Contract Period	900	day	1,000	900	800
Extended Period	30	day	1,000	30	0
Administration Cost	10	billion-yen	12	10	8

By having ranges for some cost elements, measures can be taken to adjust costs for each element during the construction phase in case of the occurrence of uncertain and unforeseen events. For example in the Study, the contract period was assumed to be extended by 1,000 days as the worst case, by 30 days as the standard case, and no extension (0 day) for the best case. The Profit and Loss Calculation was conducted by reflecting the result of risks in the qualitative check list.

Using the influence diagram, qualitative factors and quantitative factors are connected. The qualitative factors are
defined as the qualitative elements in the Influence Diagram (Fig. 2), and the constraint elements are calculated as the numerical result from it. For example, when the qualitative factor ‘economic conditions’ is ‘good’, the labor cost increases by 10%.

Figure 4 shows such relationship between the qualitative and quantitative factors. In Figure 4, a part of the elements related to works during the extended period, which is used in the calculation to be described later, is defined in the Influence Diagram. As an example shown in Figure 4, the expected extension period is calculated caused by the Coup de Tat after inputting the risk index for the Coup de Tat shown at the right in the figure. In the Study, the risk index is given from the qualitative check list. According to the qualitative check list, it can be recognized that the Coup de Tat is related to the Force Majeure. Probabilities of each risk factor and their values are essential and thus adopted in the quantitative calculation, whereas values of the recognition of each risk factor are not referred as those values are negligible. The risk index is calculated by the formula utilizing the values in the qualitative check list.

\[
R^k = \frac{\sum_{i=1}^{n} s^i c^i p^i}{\sum_{i=1}^{n} s^i c^i}
\]

where
- \(s^i \): scored importance of factor \(i \)
- \(c^i \): scored criticality of factor \(i \)
- \(p^i \): scored probability of factor \(i \)
- \(n \): number of input elements of factor \(k \) on influence diagram
- \(R^k \): calculated quantitative risk of factor \(k \)

According to the above formula (3), the risk index of the Coup de Tat is calculated as 5, which is the maximum value of the risk index. In this project, expected days of delay (extension) are prospected by the following formula:
\[
\begin{align*}
\text{(4)} \\
d &= R^k \times 7
\end{align*}
\]

where \(s_i \): scored importance of factor \(i \)
\(c_i \): scored criticality of factor \(i \)

In equation (4), the number 7 is a magic number which is estimated by considering the delay days in the past similar projects. It means that to construct the relationships between the qualitative and quantitative factors, it is necessary to collect practical data from the past experiences. These are not analytical processes, but quite implicit and actual processes. The equation (4) is only an example. Every relationship is different and it is difficult process to automate.

From the above formula, it is observed that the expected days of delay (extension) caused by the Coup de Tat would be 35 days. In this example, the risks residing in the project are assessed and evaluated by calculating the qualitative elements and the external elements identified in the Influence Diagram based on the values in the qualitative check list. Accordingly, it was confirmed that the overall project can be evaluated in a hybrid way by both qualitative evaluation and quantitative evaluation.

5.2 Evaluation result and discussions

Based on the output and the result of each calculation, a tornado chart was prepared as the sensitive analysis and the Monte Carlo simulation (Mooney 1997) (Hukushima and Nemoto 1996) was carried out based on the Influence Diagram, the Reverse Profit and Loss Calculation and the Profit and Loss Assessment table.

The Tornado Chart (Eschenbach 1992) shown in Figure 5 indicates the range of profitability with possible range in the horizontal axis and the cost elements in the vertical axis. A wider range, meaning longer bar in the chart, means a larger fluctuation in the potential profitability or the risk at the end. Therefore, those elements with the wide range have a larger impact in the success of the project and thus they should be carefully managed and controlled at the beginning. It can be said from the simulation result that the labor cost and the number of labors have a large impact on the profitability of the overall project. In fact, it can be assumed that the increase of the labor cost due to the change in the legislation during the construction period would have a significant impact on the profitability of the project, especially in the civil works portion. Therefore, the result in the Study is considered reasonable and justifiable on the validity of the evaluation method.

![Fig. 5](image)

A calculation result of impact analysis of element changes. The impacts on overall profitability by changing each element such as ‘Labor Unit Cost’ or ‘Number of Labors’ are shown in horizontal bar graph. The length of bar indicates how each element is going to affect the final profitability. Each element has conceivable range in this project.
The Monte Carlo simulation is a simulation to obtain the tendency by conducting millions of repeated calculations using random numbers, which are given from the progression to recognize the range of values as the actual values of random variables on the computer. The Monte Carlo simulation was carried out in order to understand the range of possible profitability of the case study project.

Figure 6 shows the distribution of the profitability in the horizontal axis and the number of occurrences in each value in the vertical axis. From the graph in Figure 6, it is observed as a result of the simulation that the average value is 1.56 and the standard deviation is 5.85. Based on these results, the confidence interval of the profitability is calculated by the interval estimation of the science of statistics.

Table 13 Interval estimation

Average (%)	Deviation	Confidence	Max. (%)	Min. (%)
1.56	5.85	0.68	7.41	- 4.29
		0.95	13.26	- 10.14

As show in Table 13, in case the confidence is 0.68, the confidence interval becomes 13.26% at the maximum and - 4.29% at the minimum, whereas the interval of those in case of 0.95 becomes 13.26% at the maximum and - 10.14 at the minimum. Accordingly, the average profitability from the simulation is calculated as 1.56%. As a result, the possibility of achieving the balance is calculated as approx. 64%, whereas that of achieving the target profitability is approx. 43%.

The expected profitability can be calculated from the result of the Monte Carlo simulation. By increasing the number of the distribution of the profitability in the Monte Carlo simulation, the average value of the distribution of the profitability and the accuracy of the expected profitability calculated by the number of occurrence can be improved and more practical.

Table 14 Expected project profit

Sum of ranges in Histgram	Times	Average of ranges in Histgram	Each Expected Profit margin
-37.28	1	-18.64	0.00
-36.50	0	-18.25	0.00
-35.72	0	-17.86	0.00
	0	-17.47	0.00
37.19	1	18.59	0.00
37.97	1	18.64	0.00
38.75	0	19.38	0.00
39.54	0	19.77	0.00
40.32	1	20.16	0.00

Simulation times	expected project profit margin
10000	1.57

Table 14 indicates that the expected profit for the project is 1.57%. The result from the interval estimation and that from the expected project profit both imply that the project is not highly profitable. In reality, it can be assumed that the contractor of the case study project could not achieve sufficient profit from the project. Therefore, the result from the case study is considered valid, practical and reliable to some extent. Although the success of the project is often determined by the actual profit made from the project, it is also important to note that the target profitability largely depends on the company’s scale, the objective and the financial status. For example, if the company’s main objective of the project is to have an experience in the project country rather than making a large profit from the project, the project is considered to be allowable and worthwhile even though the target profitability is relatively low. This can be strengthened if there are other stable projects or business activities in the company that can make up the low profit or a certain loss from the project. On the other hand, companies that have no such project or business activity should only
aim at projects in which medium to high profitability can be expected.

In summary for the result and the assessment of the quantitative evaluation for the case study project, it can be said that the expected profitability would highly likely become relatively low as only 1.5% unless proper measures to manage the labor unit costs and the number of labors. Therefore, the case study project was considered to be only doable by companies that have other projects and/or business activities that can assure making up the anticipated low profit or even a loss from the project. In other words, companies which have no such project and/or business activity shall avoid bidding the project.

6. Conclusion

In this Study, a Hybrid Risk Evaluation Method (HREM) was proposed as a tool for decision making on go or no go for international infrastructure projects based on the theory that the combination of the qualitative and quantitative approaches could improve the accuracy of the determination of risks residing in the project by the indication of the result in numerical value, and the assessment of the verification of the effectiveness of the HREM was carried out. A case study based on the actual project was conducted as the post evaluation applying the realistic assumptions on various data, and the result of the assessment showed that the project was not worthwhile and not profitable. Possible measures to mitigate the potential risks can be summarized as follows:

- In the qualitative evaluation, proper measures against force majeure, such as Coup de Tat, should have been considered, e.g. requesting the employer of the project at the time of the contract negotiation to include an appropriate compensation against the negative impacts due to the force majeure.
- In the quantitative evaluation, careful considerations should have been made against the possible increase in the labor unit costs and the number of labors, e.g. including contingency for potential increase of the labor costs in the price proposal.

Without proper measures for above mentioned issues, the project could have been considered as not the right project for profit making. It is quite difficult or impossible to properly and in detail evaluate potential risks of the project only by the consideration of project characteristics as the qualitative evaluation or the simple calculation of the profitability of the project by costs as the quantitative evaluation. A combination of the qualitative evaluation of the potential risks residing in the project that cannot be quantified and the quantitative evaluation of the cost factors attributable to the project profit enable the comprehensive and integrated evaluation of the overall project risks. To precisely and accurately carry out both qualitative and quantitative evaluations, it is essential and inevitable that the contractor’s staffs carrying out the evaluations deeply understand the project characteristics and the elements required to implement the project. Nevertheless, the result of the post evaluation of the actual project has more or less proved that the theory assumed as mentioned above was worth considering and taking into account in the decision making as the result obtained is assumed to be consistent with the actual situation of the contractor in the project.

We envisage that the next step of the Study is (1) to improve the validity of the criticality and the probability of risk
factors by clearer evaluation criteria, and (2) to carry out more case studies for the completed projects in order to increase the practicality and generality of the quantitative evaluation, particularly the cost factors and the quantification of the qualitative and external elements, so that the proposed HREM could be widely applied to various kinds of projects.

References

Eschenbach, T. G., Spiderplots versus Tornado Diagrams for Sensitivity Analysis, Interfaces, Vol. 22, No. 6 (1992), pp. 40-46.

Hidehiro F. and Yasushi O., Lecture on analysis of uncertainty (2009), First Press Inc. (in Japanese).

Hukushima, K. and Nemoto, K., Exchange Monte Carlo Method and Application to Spin Glass Simulations, Journal of the Physical Society of Japan, Vol. 65, No. 6 (1996), pp. 1604-1608.

Isaka, T., Yoneda, W, and Koga, T., Proposal on Hybrid Check List Method for Bidding Decision for International Infrastructure Project, Proceedings of the 25th conference on design and systems of Japan Society of Mechanical Engineers (2015), Paper No. 3105 (in Japanese).

Isaka, T., Yoneda, W, and Koga, T., Risk Evaluation Method using Scenario Planning for International Infrastructure Project, Proceedings of the 26th conference on design and systems of Japan Society of Mechanical Engineers (2016), Paper No. 3201 (in Japanese).

Matsuba Y., Ozawa K. and Yasutani S., A Study on Management of Contract Conditions of Yen Loan Projects in Philippines and Vietnam, Journal of JSCE (Construction Management), Vol.67, No.4 (2011), pp. I_263-I_272 (in Japanese).

McGrath, R.G. and Macmillan, I.C., Discovery-driven growth: a breakthrough process to reduce risk and seize opportunity (2009), Harvard business school press.

Mooney, C. Z., Monte Carlo Simulation (1997), SAGE Publications.

Niraula R., Goso T. and Kusanagi S., Establishing Construction Contract Administration Education/Training Program for Developing Countries, Journal of Construction Management, JSCE, Vo.15 (2010), pp.415-427.

Ohtsu, H. and Ohnishi, Y., Study on risk management for contractors in the construction projects in developing countries, Proceedings of the Japan Society of Civil Engineers, Vol. 707 (2002), pp. 207-218.

Ohtsu, H., Onoi, Y., Ohnishi, Y. and Takahashi, T., A Consideration Associated with the Risk Identification and Risk Response of Construction Projects Executed by ODA-LOAN, Journal of Construction Management, Vol. 15 (2008), pp. 415-427.

Onishi M., Omoto T. and Kobayashi K., Dispute Mechanisms in International Construction Contracts, Journal of JSCE No.714, Vol.56 (2002), pp. 191-204 (in Japanese).

Wada, H., A Proposal of Product Safety Analysis Method FMFEA, The journal of Reliability Engineering Association of Japan, Vol. 18, No. 2 (1996), pp. 168-173.