Incidence and Management of Thrombotic and Thromboembolic Complications Following the Superior Cavopulmonary Anastomosis Procedure: A Literature Review

Arnav Agarwal, BHSc¹,², Mohammed Firdouse, BHSc¹,², Nishaan Brar, BSc², Andy Yang, BSc³, Panos Lambiris, MSc⁴, Anthony K. Chan, MBBS, FRCP(C)¹, and Tapas Kumar Mondal, MD¹

Abstract
The objective of this literature review was to estimate the incidence of thrombosis and thromboembolism associated with the superior cavopulmonary anastomosis (SCPA) procedure and its variants and to examine current thromboprophylaxis regimens utilized. MEDLINE and EMBASE were searched from inception to August 2017 for all prospective and retrospective cohort studies explicitly reporting incidence of thrombosis, thromboembolism, or shunt occlusion in neonates, infants, and children undergoing 1 or more variants of the SCPA procedure. End points included thrombotic events and thromboembolic events (strokes and pulmonary embolisms) as primary outcomes, and overall mortality as a secondary outcome, at the last available follow-up time point. Of 1303 unique references identified, 13 cohort studies were deemed eligible. Reported incidence of thrombosis and thromboembolic events ranged from 0% to 28.0% and from 0% to 12.5%, respectively. Reported incidence of major bleeding events ranged from 0% to 2.9%. Reported overall mortality ranged from 2.5% to 50.5% across studies. Thromboprophylaxis protocols varied across institutions and studies, most commonly involving unfractionated heparin (UFH), warfarin, enoxaparin, acetylsalicylic acid (ASA), or combinations of ASA and warfarin, ASA and low-molecular-weight heparin (LMWH), UFH and LMWH, and UFH and ASA; several studies did not specify a protocol. Due to substantial variability in reported event rates, no clear correlation was identified between prophylaxis protocols and postoperative thrombotic complications. Despite guidance recommending postoperative UFH as standard practice, thromboprophylaxis protocols varied across institutions and studies. More robust trials evaluating different thromboprophylaxis regimens for the management of these patients are warranted.

Keywords
superior cavopulmonary anastomosis, bidirectional Glenn, hemi-Fontan, thrombosis, thromboembolism, prophylaxis, literature review

Background
The superior cavopulmonary anastomosis (SCPA) procedure represents the second step of the 3-staged palliative strategy for patients with single-ventricle physiology and involves redirecting deoxygenated blood directly from the superior vena cava (SVC) to the pulmonary artery (PA), bypassing the heart and effectively limiting ventricular workload exclusively to systemic circulation output.¹

Superior cavopulmonary anastomosis is typically achieved with 1 of 2 approaches: the bidirectional Glenn (BDG) and the hemi-Fontan. The classical BDG procedure consists of division of the SVC from the right atrium (RA), an incision made on the...
PA, and suturing of the SVC to the RA incision, creating an end-to-side SVC-PA anastomosis. In contrast, the hemi-Fontan procedure preserves the SVC-RA confluence, creating an anastomosis between the SVC-RA confluence and the central and branch PAs in an end-to-end fashion.

Thrombotic and thromboembolic complications represent important considerations in the postoperative management of these patients. While thrombotic complications have been noted to be infrequent postoperatively, many patients proceed to the Fontan procedure, suggesting there may be a role for thromboprophylaxis in the routine management of these patients to increase the likelihood of successful conversion. Recommendations from the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines for Antithrombotic Therapy and the Prevention of Thrombosis (9th ed) encourage the use of postoperative unfractionated heparin (UFH) for neonates and children (grade 2C). Summarized recent data regarding postoperative thromboprophylaxis protocols and risks of thrombosis, thromboembolism, and mortality remain limited. To the best of our knowledge, no randomized controlled trials comparing thromboprophylaxis strategies have been published.

The purpose of this literature review is (1) to estimate the risk of thrombosis and thromboembolism associated with the SCPA procedure and (b) to examine current thromboprophylaxis regimens utilized and their effectiveness in reducing thrombosis and thromboembolic risks. This is the third in a series of 3 literature reviews evaluating risk of thrombosis and thromboembolism postoperatively in patients with hypoplastic left heart syndrome. The review focuses specifically on neonates, infants, and children undergoing 1 or more variants of the SCPA procedure. Articles were considered eligible if they met the following criteria: (1) prospective or retrospective cohort study design or a systematic review of such studies, (2) involved a pediatric population undergoing either (or both) of the BDG or hemi-Fontan procedures, and (c) explicitly reporting of outcomes related to thrombotic or thromboembolic events. We excluded clinical trials, case reports and case series, narrative reviews, and other secondary study designs and studies that did not make explicit mention of the primary outcomes of interest in the abstract. Studies exclusively including patients with thrombotic events and thromboembolic events were excluded. Studies reporting outcomes for interventions subsequent to SCPA operation with no explicit reporting of outcomes related to SCPA were excluded.

Data Abstraction

We abstracted the following information from each eligible study: sample size; period of data collection; description of procedure; patient age, sex, weight, relevant comorbidities, or complications; prophylaxis type, dose, frequency and duration; and proportion of patients receiving prophylaxis; duration of follow-up (days); thrombotic events (primary outcome) reported or not reported, definition of outcome, number of patients with events, and number of patients evaluated; thromboembolic events (primary outcome) reported or not reported, definition of outcome, number of patients with events, and number of patients evaluated; and mortality (secondary outcome) incidence, number of deaths, and number of patients evaluated.

The Newcastle-Ottawa Scale (NOS) for cohort studies was considered for evaluation of risk of bias. However, given studies generally included a single cohort where SCPA was the exposure and baseline assessments for thrombosis and embolisms were not conducted, the NOS’ criteria related to nonexposed cohort selection, ascertainment of exposure, demonstration of outcomes of interest not being present at baseline, and cohort comparability were deemed not applicable. As such, formal judgments regarding risk of bias were not conducted.

Data Synthesis

Studies were stratified by type of prophylaxis provided and further by type of procedure. Data were presented as proportions for the outcomes of interest for each study independently and were synthesized qualitatively without a meta-analysis.

Results

Of all, 1303 unique references were identified between Ovid MEDLINE and EMBASE searches using our search strategy (Appendix A). Of these, 34 were considered potentially eligible.
following title and abstract review, and 13 fulfilled eligibility criteria and were included in our literature review following full-text review.7–19 No additional eligible studies were identified with a review of the reference lists of included studies from the search (Figure 1).

Study Characteristics

A total of 1136 patients (375 males, 237 females, 524 not reported) were included across the 13 eligible studies, 4 (30.8%) of which included over 100 patients. Eight (61.5%) studies included patients who underwent the BDG procedure; 9 (69.2%) studies included patients who underwent the hemi-Fontan procedure. The primary indication for operation for the majority of included patients was hypoplastic left heart syndrome. Six (46.2%) studies were conducted in the United States, 2 (15.4%) studies were conducted in each of Canada and Germany, and 1 (7.7%) study was conducted in each of Poland, Japan, and China (Table 1).

Among the 13 eligible studies, 5 (38.5%) studies10,11,14,16,17 reported on postoperative UFH, warfarin, low-molecular-weight heparin (LMWH), or acetylsalicylic acid (ASA) use alone; 4 (30.8%) studies8,12,13,15 reported on combination UFH and ASA; 1 (7.7%) study9 reported on combination ASA and warfarin; 1 (7.7%) study14 reported on combination ASA and LMWH; 2 (15.4%) studies12,16 reported on combination UFH and LMWH; and 4 (30.8%) studies8,12,14,19 reported on a no-thromboprophylaxis protocol postoperatively.

Of note, Bradley et al initially followed a no-thromboprophylaxis protocol, subsequently introducing an UFH-ASA protocol.8 Manlihot et al followed different prophylactic protocols based on patient-related and operative characteristics; individual thrombotic and thromboembolic event data were not reported for each prophylactic protocol; as such, study findings were summarized separately from other included studies.14 Two (15.4%) studies7,18 did not explicitly report a thromboprophylaxis regimen (Table 2).

Thromboprophylaxis Protocols and Postoperative Outcomes

Overall, incidence of thrombotic and thromboembolic events ranged from 0% to 28.0% and 0% to 12.5%, respectively. Three studies reported rates of major bleeding or bleeding requiring reination, ranging from 0% to 2.9%.10,17,20 Mortality rates ranged from 2.5% to 50.5%.
Author	Year	Country	Sample Size	Procedure	Recruitment	Age, Mean (SD), months	Male/Female	Weight, Mean (SD), kg	Cardiac Conditions and Comorbidities	
Douville et al	1991	United States	14	Hemi-Fontan	1989-1991	9 (6-69)b	–	–	–	
Bradley et al	1996	United States	85	BDG (n = 33), BDG with intra-atrial patch (n = 14),a hemi-Fontan (n = 38)a	1990-1995	4.8 (1.4)	56/29	5.6 (1.0)	–	
Chun et al	2004	United States	71	Hemi-Fontan	1988-2000	–	–	–	–	
Day et ala	2006	United States	177	BDG	1984-2004	17.3 (2.2)h,c	87/90	–	–	
Procelewksa et al11	2007	Poland	43	Hemi-Fontan	2003-2005	5.9 (3.1)	–	6.0 (1.5)	–	
Honjo et al15	2010	Canada	61	BDG/hemi-Fontand	1990-2007d	–	–	–		
Zampi et al16	2013	United States	244	Hemi-Fontan	1996-2007	5.1 (4.4)g	80/39	5.5 (1.2)	–	
Manlihot et al	2012	Canada	139	BDG	2003-2008	28 (13-44)d	88/51	–	–	
Hansen et al13	2011	Germany	119	Hemi-Fontan (n = 113), Bilateral BDG (n = 6)a	2009-2011	3.6 (2.0)g	22/10a	5.3 (1.0)	–	–
Zampi et al16	2013	United States	244	Hemi-Fontan	2006-2011	–	–	–	–	
Ando et al7	2014	Japan	40	BDG	2004-2011	Unilateral: 18.8 (11.8); bilateral: 11.1 (3.8)	–	–	–	
Ji et al18	2014	China	20	BDGd	2011-2012	50.4 (19.2)e	15/5	15.4 (3.7)	–	
Zahr et al19	2016	United States	91	Hemi-Fontan (n = 89), BDG (n = 2)	1958-1988	6.6 (2.5)	–	–	–	

Abbreviations: BDG, bidirectional Glenn; HLHS, hypoplastic left heart syndrome; LV, left ventricle; RV, right ventricle; PS, pulmonary stenosis, SV, single ventricle; SD, standard deviation; VSD, ventricular septal defect; TOF, Tetralogy of Fallot; TGA, transposition of great arteries.

aStudy authors confirmed accuracy of the extracted data and provided additional data where applicable.

bAge reported as median (range).

cAge reported as mean (standard error of the mean).

dFrom 1990 to 1999, 37 patients underwent conventional anastomosis with limited postoperative anticoagulation. From 1999 to 2007, 24 patients underwent a V-shaped anastomosis or hemi-Fontan with routine postoperative anticoagulation.

eAt time of angiography, not at time of surgery.
Table 2. Prophylaxis Strategies Across Included Studies.

Author	Year	Portion of Sample Receiving TPx	Prophylaxis Type	Prophylaxis Dose	Prophylaxis Duration
Douville et al	1991	-	Prior to PE events: none (n = 43)		-
Bradley et al	1996	49.4%a,b	Prior to PE events: heparin and ASA (n = 42)		-
Chun et al	2004	-	ASA and warfarin		-
Day et al	2006	-	Warfarin insurgency (2 episodes) had occurred and was only used in 42 patients.		-
Procelewksa et al	2007	100%	Initial heparin, followed by ASA	Heparin: 100 IU/kg/d; ASA: 3 mg/kg/d	Heparin: until central lines removed; ASA: lifelong
Honjo et al	2010	BDG: 0%; V-shaped/hemi-Fontan: 100%	BDG: None; V-shaped/hemi-Fontan: LMWH (85%) or ASA (15%)	Initial UFH (dose unspecified) LMWH: 1 mg/kg/d, ASA: (NR)	
Hansen et al	2011	-	Initial heparin, followed by ASA	Heparin: 100 IU/kg/d; ASA: 3 mg/kg/d	For patients with bilateral BDG shunts: up to Fontan procedure. For high-risk patients: within 3 months
Manlihot et al	2012	46%f	Different strategies: None, ASA only, or warfarin. For bilateral BDG shunts and high-risk cases:	Enoxaparin: 1.5 mg/kg/d for age <2 months, 1.0 mg/kg/d for noninfants; Other types: (NR)	
Hansen et al	2013	-	Initial heparin, followed by ASA	Heparin: 100 IU/kg/d; ASA: 3 mg/kg/d	
Zampi et al	2013	100%	ASA (n = 244), heparin (pts with known clot or low flow state), heparin bridged to enoxaparin (pts with femoral venous or arterial occlusion)	Heparin: until beginning of oral feeding	
Ando et al	2014	Unilateral: 96%, bilateral: 92%	Unilateral: heparin (n = 9), warfarin (n = 15), ASA (n = 26), Bilateral: heparin (n = 6), warfarin (n = 6), ASA (n = 12)	Heparin: 200-400 U/kg/d, ASA: 1 mg/kg/d, Warfarin: for INR of 1.5	
Ji et al	2014	-	None		-
Zahr et al	2016	0%	None		-

Abbreviations: ASA, acetylsalicylic acid; BDG, bidirectional Glenn; INR, international normalized ratio; LMWH, low-molecular-weight heparin; NR, not reported; PE, pulmonary embolism; TPx, thromboprophylaxis; UFN, unfractionated heparin.

*Study authors confirmed accuracy of the extracted data and provided additional data where applicable.

a Unclear if warfarin was used in this study.

b This prophylaxis was only instituted after 3 episodes of pulmonary artery thrombosis had occurred and was only used in 42 patients.

c This prophylaxis protocol (2 studies) was used in 42 patients. For high-risk patients: within 3 months.

d Study authors confirmed accuracy of the extracted data and provided additional data where applicable.

e This prophylaxis was only instituted after 3 episodes of pulmonary artery thrombosis had occurred and was only used in 42 patients.

f Prophylaxis was only instituted after 3 episodes of pulmonary artery thrombosis had occurred and was only used in 42 patients.

Incidence of thromboembolic events ranged from 0% to 1.2% for single-agent prophylaxis (2 studies), 4.2% for UFH-ASA (1 study), 0% for warfarin-ASA (1 study), 1.2% for UFH-LMWH (1 study), 0% for no prophylaxis (1 study), and 5.0% to 7.1% for no explicitly-reported thromboprophylaxis protocol (2 studies).

Incidence of thromboembolic events ranged from 0% to 2.9% for single-agent prophylaxis (4 studies), 10.11,14,17 0% to 12.5% for UFH-ASA (4 studies), 8,12,13,15 5.6% for warfarin-ASA (1 study), 9 4.2% for UFH-LMWH (1 study), 12 2.2% to 8.1% for no prophylaxis (3 studies), 8,12,19 and 7.1% for no explicitly-reported thromboprophylaxis protocol (1 study).

Reported mortality rates ranged from 2.5% to 7.9% for single-agent prophylaxis (3 studies), 10,14,17 3.1% to 12.5% for UFH-ASA (4 studies), 8,12,13,15 12.5% for UFH-LMWH (1 study), 12 7.9% to 50.5% for no prophylaxis (3 studies), 8,12,19 and 7.1% for no explicitly-reported thromboprophylaxis protocol (1 study).

Manlihot et al applied a protocol involving several thromboprophylaxis protocols: no prophylaxis (54.0%), ASA only (6.5%), ASA + enoxaparin (3.6%), enoxaparin only (34.5%), and warfarin only (1.4%). Overall rates of thrombotic, thromboembolic, and mortality events across prophylactic regimens following SCPA were 28.0%, 2.9%, and 9.0%, respectively (Table 3). The study reported a decreased risk of thrombotic
Table 3. Postoperative Thrombotic Complications, Thromboembolic Complications, and Mortality Across Included Studies.

Author	Year	Sample size	Procedure	Prophylaxis Details	Duration of Follow-Up, Mean, months	Thrombosis, n (%)	Strokes and Pulmonary Embolisms, n (%)	Major Bleeding, n (%)	Mortality, n (%)
Douville et al^{7,a}	1991	14	Hemi-Fontan^a	Prior to PE events: none (n = 43)^b; following PE events: heparin and ASA (n = 42)^b	23 (13)	1 (7.1%)	1 (7.1%)		1 (7.1%)
Bradley et al^{8,a}	1996	85	BDG (n = 33), BDG with intra-atrial patch (n = 14); hemi-Fontan (n = 38)	Prior to PE events: none (n = 43)^b; following PE events: heparin and ASA (n = 42)^b	23 (13)	1 (7.1%)	1 (7.1%)		1 (7.1%)
Chun et al⁹	2004	71	Hemi-Fontan	ASA and warfarin	–	0 (0%)	4 (5.6%)		–
Day et al^{10,a}	2006	177	BDG	Warfarin^c	–	–	5 (2.8%)	0 (0%)	14 (7.9%)
Procelewska et al¹¹	2007	43	Hemi-Fontan	ASA (2-5 mg/kg/d)	–	–	–		–
Honjo et al¹²	2010	61	BDG/hemi-Fontan^d	BDG: None^e; V-shaped/hemi-Fontan: Initial heparin, then LMWH (85%; 1 mg/kg/d) or ASA (15%)^g	17 (5-148)^{c,d}	5 (4.2%)^a	5 (4.2%)^a		12 (10.1%)^{a,e}
Hansen et al^{13,a}	2011	119	Hemi-Fontan (n = 113); bilateral BDG (n = 6)^h	Initial heparin: 100 IU/kg/dⁱ; long-term ASA: 3 mg/kg/dⁱ	17 (5-148)^{c,d}	5 (4.2%)^a	5 (4.2%)^a		12 (10.1%)^{a,e}
Manlhiot et al¹⁴	2012	139	BDG	Different strategies: none, ASA only, ASA + enoxaparin, enoxaparin only, or warfarin. For bilateral BDG shunts and high-risk cases: enoxaparin^e	39 (28.0%)^h	4 (2.9%)	4 (2.9%)	12 (8.6%)	–
Hansen et al^{15,a}	2013	32	Hemi-Fontan^a	Initial heparin: 100 IU/kg/dⁱ; long-term ASA: 3 mg/kg/dⁱ	–	–	4 (12.5%)	–	1 (3.1%)
Zampi et al^{16,a}	2013	244	Hemi-Fontan	ASA (n = 244), heparin (patients with known clot or low flow state). Heparin bridged to enoxaparin (patients with femoral venous or arterial occlusion)	10 (0.1-65)^c	3 (1.2%)^j	–	–	–

(continued)
Author	Year	Sample size	Procedure	Prophylaxis	Duration of Follow-Up, Mean, months	Thrombosis, n (%)	Strokes and Pulmonary Embolisms, n (%)	Major Bleeding, n (%)	Mortality, n (%)
Ando et al	2014	40 (27 unilateral, 13 bilateral)	BDG	Unilateral: heparin (n = 9), warfarin (n = 15), ASA (n = 26), Bilateral: heparin (n = 6), warfarin (n = 6), ASA (n = 12). Heparin: 200-400 U/kg/d, ASA: 1 mg/kg/d, warfarin: for INR of 1.5	Unilateral: 63 (24)*; bilateral: 59 (36)*	0 (0%)	0 (0%)	1 (2.5%)	Unilateral: 0 (0%); bilateral: 1 (7.7%)
Ji et al	2014	20	BDG	–	–	1 (5.0%)*	–	–	–
Zahr et al	2016	91	Hemi-Fontan (n = 89), BDG (n = 2)	None	–	0 (0%)	2 (2.2%)†	–	46 (50.5%)†

Abbreviations: ASA, acetylsalicylic acid; BDG, bidirectional Glenn; INR, international normalized ratio; LSVC, left superior vena cava; LMWH, low-molecular-weight heparin.

*Study authors confirmed accuracy of the extracted data and provided additional data where applicable.

†This prophylaxis was only instituted after 3 episodes of pulmonary artery thrombosis had occurred and was only used in 42 patients.

‡Median (range) reported.

§Postoperative hospital stay is reported, not overall duration of follow-up.

¶Early mortality was reported in 4 (3.4%) of 119; late mortality was reported in 8 (7.0%) of 115.

‖Angiograms occurred 6 to 12 months postsurgery.

¶Thrombosis in LSVC as well as the proximal part of left internal jugular vein and left subclavian vein.

°Duration of hospital stay was 9 (4-140) months.

Clinically significant thrombus identified requiring cardiac catheterization.

Only strokes explicitly reported. “Pulmonary complications” reported in this study, but not explicitly identified as pulmonary embolic events.

Seven early deaths and 39 late deaths were reported.
complications postoperatively with enoxaparin compared to no prophylaxis (hazard ratio [HR] = 0.2; P = .04). The study found that use of prophylaxis after postoperative day 7 was associated with a lower risk of thrombotic complications and that premature birth (HR = 2.6; 1.1-6.0; P = .03) and postoperative extracorporeal membrane oxygenation (HR = 12.5; 3.0-21.7; P < .001) were most associated with increased risk of thrombotic complications postoperatively.14

Discussion
Postoperative thrombotic and thromboembolic complications have been previously reported to be infrequent.4 However, it is evident from the findings of our literature review that notable variability exists in both reported incidences of thrombosis and thromboembolic events and thromboprophylactic protocols used, with some studies reporting relatively high incidences of such complications despite prophylaxis.

The American College of Chest Physicians Evidence-Based Clinical Practice Guidelines for Antithrombotic Therapy and the Prevention of Thrombosis (9th ed.) recommends that neonates and children undergoing the BDG or bilateral cavopulmonary shunt procedure should receive postoperative UFH therapy (grade 2C).4 Despite noting that thrombotic complications are infrequent, the guideline indicates that the completion of the Fontan procedure in many patients suggests a prophylaxis protocol may be beneficial to reduce subsequent risk of thromboembolic events.

Our findings suggest that thromboprophylaxis protocols vary across institutions and studies, among UFH and ASA, ASA and warfarin, ASA and LMWH, UFH and LMWH, single-agent UFH/warfarin/LMWH/ASA, or a no-thromboprophylaxis protocol postoperatively. While several studies reported on postoperative UFH use, they largely involved UFH as part of a protocol with other medications, and none reported outcome data specifically pertaining to UFH use alone.

In general, incidence of thrombotic and thromboembolic events ranged from 0% to 28.0% and 0% to 12.5% between studies, respectively. Mortality rates ranged from 2.5% to 50.5%. Due to the substantial variability in estimates with each postoperative thromboprophylaxis protocol and no robust studies supporting any single protocol, no clear relationship was identified between protocols and reduction in thrombosis and thromboembolic events.

It is important to recognize the potential risk of bleeding complications with thromboprophylaxis use. Several studies have demonstrated a relatively low overall incidence of these complications in pediatric patients.20-22 Only 3 included studies reported the incidence of major bleeding or bleeding requiring reintervention; all consistently reported low rates of such events.10,17,20

It is also important to recognize that all included studies recruited patients prior to the release of the American College of Chest Physicians’ guideline recommendations.4 As such, the penetration of these recommendations into clinical practice is challenging to assess based on our findings.

Our findings must be interpreted with several other limitations in mind. While the review is a comprehensive effort to evaluate the risk of thrombosis and thromboembolic complications and the postoperative thromboprophylaxis protocol used in this patient population, the lack of a meta-analysis limits the utility of our findings. Furthermore, while risk of bias wasn’t formally assessed, the retrospective nature, small sample sizes and poor reporting quality for outcomes of interest in the majority of studies limit the reliability of the review’s findings. The wide variability in study results further limits the generalizability of the findings. In addition, reported rates of thrombotic and thromboembolic complications may be underestimated, given that the majority of the studies included likely reported clinically relevant thrombotic complications. Lastly, several studies report pooled outcome data for patients with different thromboprophylactic protocols, preventing a clear assessment of which protocols were associated with the reported outcome events.

Conclusion
The incidence of thrombotic and thromboembolic complications following initial palliation for pediatric patients with single-ventricle physiology varies from 0% to 28.0% and 12.5%, respectively. They are accompanied by a relatively minor risk of bleeding events. While these thrombotic events have been reported infrequent and recent guidance suggests postoperative UFH as a standard prophylactic strategy, significant variance appears to exist in reported incidences of these complications as well as thromboprophylaxis protocols in use.

Our findings highlight the lack of a standardly used thromboprophylaxis protocol based on existing evidence despite existing guidelines. Randomized trials examining thromboprophylaxis protocols are warranted, alongside increased efforts to promote the adoption of a standard protocol for the postoperative management of these patients.

Appendix A
Database: Ovid MEDLINE(R) In-Process and Other Nonindexed Citations and Ovid MEDLINE(R) <1946 to Present>
Search strategy
1. BDG.tw. (217)
2. stage 2 palliation.af. (39)
3. stage two palliation.af. (1)
4. Hemi-Fontan.af. (105)
5. (superior cavopulmonary adj3 (shunt* or connection or anastomosis or conduit*)).af. (144)
6. (bidirectional cavopulmonary adj3 (shunt* or connection or anastomosis or conduit*)).af. (347)
7. Bidirectional Glenn*.af. (459)
8. exp Fontan procedure/ (2478)
9. hypoplastic left heart*.af. (2783)
10. exp hypoplastic left heart syndrome/ (1718)
11. hlhs.af. (638)
12. or/1-11 (5598)
13. exp Thromboembolism/ (45486)
14. exp Blood Coagulation/ (50338)
15. exp Anticoagulants/ (181827)
16. anticoagul*.af. (95306)
17. anti-coagul*.af. (1957)
18. thrombo*.af. (397787)
19. DVT.tw. (7095)
20. VTE.tw. (5918)
21. emboli*.af. (129683)
22. clot*.tw. (51274)
23. or/13-22 (662431)
24. 12 and 23 (490)
25. limit 24 to (“all infant (birth to 23 months)’ or ‘all child (0 to 18 years)”) (393)
26. limit 24 to ‘all adult (19 plus years)’ (122)
27. 24 not 26 (368)
28. 25 or 27 (450)*

Database: Embase <1974 to 2017 August 5>

Search strategy
1. BDG.tw. (333)
2. stage 2 palliation.af. (51)
3. stage two palliation.af. (4)
4. Hemi-Fontan.af. (135)
5. (superior cavopulmonary adj3 (shunt* or connection or anastomosis or conduit*)).af. (193)
6. (bidirectional cavopulmonary adj3 (shunt* or connection or anastomosis or conduit*)).af. (436)
7. Bidirectional Glenn*.af. (666)
8. exp Fontan procedure/(4497)
9. exp cavopulmonary connection/(1087)
10. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 (5946)
11. hypoplastic left heart*.af. (4625)
12. exp hypoplastic left heart syndrome/(3957)
13. hlhs.af. (1158)
14. 11 or 12 or 13 (4765)
15. su.fs. (1782651)
16. exp postoperative complication/(513243)
17. surg*.tw. (1863056)
18. exp surgery/(3654403)
19. 15 or 16 or 17 or 18 (4560420)
20. 14 and 19 (3473)
21. 10 or 20 (8491)
22. thrombo*.af. (735912)
23. exp thromboembolism/(370401)
24. exp anticoagulant agent/(520859)
25. anti-coagul*.af. (3716)
26. anticoagula*.af. (163467)
27. anticoagula*.af. (163467)
28. DVT.tw. (12299)
29. VTE.tw. (10826)
30. embo*.tw. (146334)
31. exp blood clotting/(183498)
32. clot*.tw. (68638)
33. or/22-32 (1270079)
34. 21 and 33 (1404)
35. limit 34 to (child <unspecified age> or preschool child <1 to 6 years> or school child <7 to 12 years>) (582)
36. limit 34 to adult <18 to 64 years> (350)
37. 34 not 36 (1054)
38. 35 or 37 (1200)
39. limit 38 to english language (1152)
40. limit 39 to (conference abstract or conference paper or conference proceeding or note or short survey or trade journal) (245)
41. 39 not 40 (907)
42. from 41 keep 1-907 (907)

Appendix B

Data Extraction Form

Field	Data
General study information	Author Year of publication
Study methods	Procedure of interest Description of procedure Sample size Recruitment period ([year]-[year])
Demographics	Age, mean (SD) Male, n (%) Female, n (%) Weight, mean (SD), kg Relevant comorbidities/associated complications

(continued)
Appendix B (continued)

Field	Data
Prophylaxis measures	
Main prophylactic medication type	
Proportion of sample receiving prophylaxis	
Other prophylaxis provided	
Description of which patients received prophylaxis	
Dose of prophylaxis	
Frequency of prophylaxis administration	
Duration of prophylaxis, days	
Duration of follow-up	Measure (mean/median/mode)
	Duration of primary outcome follow-up, days
Outcome: thrombotic events	
Definition of thrombotic events	
Incidence of thrombotic events	
Patients with thrombotic events, number (%) Sample assessed for outcome	
Outcome: thromboembolic events	Definition of thromboembolic events Incidence of thromboembolic events Patients with thromboembolic events, number (%) Sample assessed for outcome
Outcome: major bleeding events	Definition of major bleeding events Incidence of major bleeding events Patients with major bleeding events, number (%) Sample assessed for outcome
Outcome: mortality	Incidence of mortality events Patients with thrombotic events, number (%) Sample assessed for outcome

Abbreviation: SD, standard deviation.

*If more than 1 procedure of interest was reported in a study, data were extracted separately for each procedure of interest.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Glenn WW. Circulatory bypass of the right side of the heart—shunt between superior vena cava and distal right pulmonary artery—report of clinical application. *N Engl J Med.* 1958; 259(3):117-120.
2. Pridjian AK, Mendelsohn AM, Lupinetti FM, et al. Usefulness of the bidirectional Glenn procedure as staged reconstruction for the functional single ventricle. *Am J Cardiol.* 1993;71(11): 959-962.
3. Jacobs ML, Rychik J, Rome JJ, et al. Early reduction of the volume work of the single ventricle: the hemi-Fontan operation. *Ann Thorac Surg.* 1996;62(2):456-462.
4. Monagle P, Chan AKC, Goldenberg NA, et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest.* 2012;141(2 suppl):e737S-e801S.
5. Agarwal A, Firdouse M, Brar N, et al. Incidence and management of thrombotic and thromboembolic complications following the Norwood procedure: a systematic review. *Clin Appl Thromb Hemost.* 2016;23(6):911-921.
6. Firdouse M, Agarwal A, Chan AK, Mondal T. Thrombosis and thromboembolic complications in Fontan patients: a literature review. *Clin Appl Thromb Hemost.* 2014;20(5):484-492.
7. Douville EC, Sade RM, Fye DA. Hemi-Fontan operation in surgery for single ventricle: a preliminary report. *Ann Thorac Surg.* 1991;51(6):893-899.
8. Bradly SM, Mosca RS, Hennein HA, Crowley DC, Kulik TJ, Bove EL. Bidirectional superior cavopulmonary connection in young infants. *Circulation.* 1996;94(9 suppl):II5-II11.
9. Chan DS, Schamberger MS, Flaspohler T, et al. Incidence, outcome, and risk factors for stroke after the Fontan procedure. *Am J Cardiol.* 2004;93(1):117-119.
10. Day RW, Etheridge SP, Veasy LG, et al. Single ventricle palliation: greater risk of complications with the Fontan procedure than with the bidirectional Glenn procedure alone. *Int J Cardiol.* 2006;106(2):201-210.
11. Procelewska M, Kolcz J, Januszewska K, Mroczek T, Malec E. Coagulation abnormalities and liver function after hemi-Fontan and Fontan procedures—the importance of hemodynamics in the early postoperative period. *Eur J Cardiothorac Surg.* 2007;31(5):866-872.
12. Honjo O, Tran KCD, Hua Z, et al. Impact of evolving strategy on clinical outcomes and central pulmonary artery growth in patients with bilateral superior vena cava undergoing a bilateral bidirectional cavopulmonary shunt. *J Thorac Cardiovasc Surg.* 2010;140(3):522-528.
13. Hansen JH, Uebing A, Furck AK, et al. Risk factors for adverse outcome after superior cavopulmonary anastomosis for hypoplastic left heart syndrome. *Eur J Cardiothorac Surg.* 2011;40(1):e43-e49.
14. Manlihot C, Brandao LR, Kwok J, et al. Thrombotic complications and thromboprophylaxis across all three stages of single ventricle heart palliation. *J Pediatr.* 2012;161(3):513-519.
15. Hansen JH, Schlangen J, Armbrust S, Jung O, Scheewe J, Kramer HH. Monitoring of regional tissue oxygenation with near-infrared spectroscopy during the early postoperative course after superior cavopulmonary anastomosis. *Eur J Cardiothorac Surg.* 2013;43(2):e37-e43.
16. Zampi JD, Hirsch-Romano JC, Armstrong AK. Early cyanosis after stage II palliation for single ventricle physiology: etiologies and outcomes. *World J Pediatr Congenit Heart Surg.* 2013;4(4): 367-372.
17. Ando Y, Fukae K, Hirayama K, Oe M, Iwai T. Impact of bilateral superior venae cavae on outcome of staged Fontan procedure. *Ann Thorac Surg.* 2014;98(6):2187-2193.
18. Ji X, Zhao B, Cheng Z, et al. Low-dose prospectively electrocardiogram-gated axial dual-source CT angiography in patients with pulsatile bilateral bidirectional Glenn shunt: an
alternative noninvasive method for postoperative morphological estimation. *PLoS One*. 2014;9(4):e94425.

19. Zahr RA, Kirshbom PM, Kopf GS, et al. Half a century’s experience with the superior cavopulmonary (classic Glenn) shunt. *Ann Thorac Surg*. 2016;101:177-182.

20. Dix D, Andrew M, Marzinotto V, et al. The use of low molecular weight heparin in pediatric patients: a prospective cohort study. *J Pediatr*. 2000;136(4):439-445.

21. Manlhiot C, Brandao LR, Somji Z, et al. Long-term anticoagulation in Kawasaki disease: initial use of low molecular weight heparin is a viable option for patients with severe coronary artery abnormalities. *Pediatr Cardiol*. 2010;31(6):834-842.

22. Streif W, Andrew M, Marzinotto V, et al. Analysis of warfarin therapy in pediatric patients: a prospective cohort study of 319 patients. *Blood*. 1999;94(9):3007-3014.