Integration of Computational Intelligence And Knowledge Engineering For Design Optimization of Connecting Rod Dies

Shyamsundar D. Hivarale & Dilip R. Pangavhane
Tata Consult. Service Limited, Pune, India, Director, Prestige Inst. of Engg. & Sci., Indore (MP) India
E-mail : h.shyamsundar@gmail.com, drpangavhane@yahoo.co.in

Abstract - This paper demonstrates a cumulative use of computational intelligence and knowledge engineering to build a process automation tool for closed die forging process. A principle of soft computing has been used to develop computational intelligence with the help of Visual Basic (VB) codes. Mathematical and rule based algorithms has been developed from a relative correlation exercise between Empirical, Statistical, CAE and Experimental test analysis approaches. These algorithms have been used as knowledge base to interact with an inference engine of developed computational intelligence system. This paper also summarizes a case study to validate and review the developed process automation tool in need to get a virtual prototype die model with the prediction of forging process variables and parameters for connecting rod. This will leads to develop an automated, robust, quick, quality, accurate & decision making tool for society in order to achieve the power/cost/time/skill effectiveness even if operated by an unskilled user. This work will be worth full for forging industrial applications in estimating forging load.

Index Terms—Computational intelligence, knowledge engineering, Expert System, Design and Optimization of connecting rod die.

I. INTRODUCTION

After several investigation studies it has been proven that forged products are highly reliable and possess superior mechanical properties. Forging is one of the main processes used to manufacture metal components for a broad range of applications. So the increasing worldwide interest in the production of forging products leads the researchers to study on forging technology [2].

Material wasted due to the flash accounts approximately 33% of the volume of original work piece in conventional hot forging of connecting rods. It has been proved that in order to achieve the optimized topological shape parameters the forging must be performed in a closed cavity, which finally leads to cost optimization of forged parts. Also adequate metal flow without any defect, appropriately filling of the die, no overloading of dies can be achieved by controlled volume distribution of preform in fleshless forging. So the need of process automation comes into existence to optimize the forging process, saving raw materials and energy. For the design of connecting rod and its die we have to take an assistance of some high end CAD/CAM packages like Unigraphics (NX-3) [3]-[5].

For the computer numerical simulation and optimization study we have to take an assistance of commercially available high end CAE tool like three dimensional version of DEFORM (ERC/NSM), DEFORM-3D. This thermo-mechanically coupled computer aided tool has extensively used in cold, warm and hot-forging research which obeys an elastic-plastic material law. And finally the whole man machine interaction process has being monitored by a computer controlled expert system which has been developed by visual basic language codes.

II. KNOWLEDGE ENGINEERING

Knowledge engineering is the development of knowledge base through the process of mechanism of knowledge acquisition by adapting a suitable scientific methodology.

A. Knowledge Acquisition

It has been achieved by implementing the scientific data, basic principles, related theories in the optimistic way of sequences and coded format that can be used in an automated application. Submit your manuscript electronically for review. Process of extracting the knowledge through human expertise from existing
proven Theories, Methodologies, Thumb rules, Laws, Corollaries, Technical Literature, Standard Engineering Procedures, Established Engineering Equations, Experimental Data, Codes of Practice and Expert’s opinions. In another way, knowledge acquisition module processes the data entered by the expert and transforms it into a data presentation understood by the system of Computer.

B. Scientific Methodology

Here we have developed a knowledge base based on mathematical modeling techniques from Statistical, Empirical and Simulation analysis approach for the design and cost optimization of forging die for flash less forging.

C. Statistical and Empirical Analysis Approach

In this approach detailed process methodology for the determination of unknowns i.e. process parameters, variables and material properties for the flash less forging is described. Also a structured mathematical modeling has been developed by implementing the scientific data, basic principles, related theories in the optimistic way of sequences.

The overall design of forging process requires the prediction or estimation of:

- Shape complexity and volume of the forging.
- Number of configurations of perform or blockers.
- The flash dimensions in the dies & the additional flash volume required in the stock of perform & finishing operation.
- Forging load, energy & centre of the loading for each forging operation.

Shape Difficulty Factor

It can be calculated as:

A Longitudinal Shape factor (\(\alpha\)) is defined as [6]:

\[
\alpha = \frac{X_f}{X_c}
\]

With \(X_f = \frac{P_f}{F}\)

\(X_c = \frac{P_c}{F_c}\)

Where

- \(P = \) Parameter of the axial cross section of the forging.
- \(F = \) Surface area of the axial cross section of the forging (surface that include the entire axis of symmetry).
- \(P_c = \) Perimeter of the axial cross section of the cylinder which circumscribes the forging.
- \(F_c = \) Surface area of axial cross section of cylinder which circumscribes forging.

Since the circumscribe cylinder has the maximum diameter and the maximum height of the forging, the factor represents a comparison of the shape of the forging shape with that of the cylinder.

On round forging, bosses and rim placed farther away from the centre are increasingly more difficult to forge. Therefore a “lateral shape factor”, \(\beta\) is defined as:

\[
\beta = \frac{2R_g}{R_c}
\]

Where

- \(R_g = \) Radial distance from the symmetry axis to the centre of gravity of half of the cross section.
- \(R_c = \) Maximum radius of forged piece which is equal to the radius of the circumscribing cylinder.
A “shape difficulty factor” (S), incorporating both the longitudinal and the lateral factor is defined as

\[S = \alpha \beta \] (3)

- Flash Thickness and Weight

The most exhaustive study on flash design in steel forging appears to be that of Teterin and Ternovskij. They conducted a statistical study on more than 1500 round steel forging of various weights and established an empirical formula for flash thickness \(t \), based on forging weight \(Q \), using English units, inch for \(t \) and pound for \(Q \). Their formula is [6]:

\[t = \frac{-0.09 + 2\sqrt{Q/2.2} - 0.010}{25.4} \] (4)

Further statistical analysis based on experimental studies resulted in the following expression for the ratio of flash width \(w \) to flash thickness \(t \):

\[\frac{w}{t} = -0.02 + 0.038 S \frac{D_o}{t} + \frac{4.93}{Q} \] (5)

Where,

\[w = \text{flash land width in die in inch} \]
\[D_o = \text{Diameter of the initial round stock in inch} \]
\[Q = \text{forging weight without flash loss in pounds} \]
\[S = \text{dimensionless shape difficulty factor.} \]

The above results obtained by Teterin and Tarnovskij, agree well with those results obtained from above equation given in English units.

\[t = \frac{1.13 + 0.89 \sqrt{Q/2.2} - 0.017 Q/2.2}{25.4} \] (6)

And

\[\frac{w}{t} = 1.25 \exp[-1.09 (Q/2.2)] + 3 \] (7)

In most of the practical cases when a shape difficulty factor is difficult to calculate, the equation 1.3 and 1.4 are quite satisfactory for predicting flash dimensions.

- Flash Weight

Teterin and Tarnovskij also conducted statistical studies on round forging in order to develop formulas for estimating the flash losses. A dimensionless parameter \(\gamma \) is defined as [6]:

\[\gamma = \frac{H_s}{(h_0 + h_A)} \] (8)

Where

\[H_s = \text{Final height of the forging.} \]
\[h_0 = \text{Minimum distance between flat surfaces upon which stock was resting when Dies closed. Refer Fig. 2.} \]
\[h_A = \text{Distance between internal and external parting line.} \]

The flash weight is given by:

\[Q_f = \frac{([K1+K2]/100) Q}{\eta} \]

“Fig. 2 Top & side view of connecting rod die showing dimensions used in calculations of flash weight”

Where

\[Q_f = \text{Weight of flash} \]
\[Q = \text{Net weight of forging (without flash)} \]
\[K_1 = 0.54 + 15.44 (Q/2.2)^{-0.2} (1 + 0.00757 \eta) \]
\[K_2 = 0.7026 (1 + 0.01969 \eta) \frac{w}{t} \]

The ratio \(w/t \) is obtained from equation (7). The parameter \(\eta \) is a dimensionless expression for shape that incorporate the shape difficulty factor, \(S \), the shape change parameter, \(\gamma \) and the dimension of the stack \(D_0 \) and the final forging dimension \(D_1 \) thus [7]:

\[\eta = S (D_0 / D)^2 \gamma^2 \] (10)

Where, \(S \) is obtained from equation (3) \(\gamma \) is obtained from equation (4)

- Preform Design Considerations

“Prototype of final forged component having slightly larger dimensions than that of finished product.”
It assists achievements of:

- Adequate metal distribution
- Defect free metal flow
- Complete die filling

Where,

\(RF \) = Blend radius of final forging at the parting line
\(BF \) = Overall width of final forging
\(HF \) = Height of final forging
\(HP \) = Height of preform
\(DF \) = Overall rib height

Table: Preform Dimensions Recommended by Various Companies

Dimensions of finished forging	Dimensions of preform
Al alloys	
Titanium alloys	
Steel & its alloys	
Web thickness \((t_w)\)	\(t_w \approx (1 \text{ to } 1.5) t_e \)
	\(t_w \approx (1.5 \text{ to } 2.2) t_e \)
	\(t_w \approx (3 \text{ to } 4) t_e \)
Fillet radii \((R_f)\)	\(R_f \approx (1 \text{ to } 2) R_b \)
	\(R_f \approx (3 \text{ to } 4) R_b \)
Corner radii \((R_c)\)	\(R_c \approx (1 \text{ to } 2) R_e \)
	\(R_c \approx (3 \text{ to } 4) R_e \)
Draft angle \((a)\)	\(a = a_0 \)
	\(a_0 = 0 \)
Width of Rib \((W_r)\)	\(W_r = W_f - 1/32 \)
	\(W_r = W_f - (1/36 - 1/18) \)
	\(W_r = W_f - (1/36 - 1/14) \)
Blend radii of the preform at the parting line \(R_p = R_e + C \)	
Overall width of preform \(B_p \)	\(B_p = B_f \cdot (0.008 \text{ to } 0.6) \)
The additional preform height is determined by \(X = 0.25 (B_p - H_p) \) or \(X = 0.6 \cdot (0.3 + D_f) \)	

Diagrams

Fig. 4 Preform dimensions recommended by forging industries

- Pressure and Load in closed die forging

 The Fig. 5 shows experimental graphical correlation of role of average height of forging in determining the forging or normal load acting on forged steel connecting rod die.

Fig. 5 Average height of forging

Based on this sensitivity study Schey has developed an empirical formula for calculating forging \(P_a \):

\[
P_a = C_1 \cdot h_a \cdot A
\]

(11)

\[
h_a = \frac{Q}{A_1 \cdot P_a}
\]

(12)

\[
P_1 = A_1 \cdot P_a
\]

(13)

\[
P_a = 1422 \left(\frac{14 + \frac{618}{25.4h_a}}{25.4h_a} \right)
\]

(14)

\[
P_a = 1422 \left(\frac{37 + \frac{781}{24.5h_a}}{24.5h_a} \right)
\]

(15)
Where,

- σ_a = Average flow stress at a given forging temp.
- A = C/S area of the forging at parting line
- C_1 = Constant depends on complexity of forged part
- h_a = Average height
- P_a = represents average forging press.
- P_t = maximum total forging load.
- Q = total forging weight

FLOW STRESS ANALYSIS

The Fig. 6 shows the design variables used in determining the flow stresses at various sections of connecting rod die based on research data review.

\[
\sigma_{y1} = \frac{2\tau}{t} b + \frac{2}{\sqrt{3}} \sigma \quad \ldots \ldots \quad (16)
\]

\[
\sigma_{y2} = \frac{k_2}{k_1} \ln \left[\frac{t}{h} \right] + \sigma_{y1} \quad \ldots \ldots \quad (17)
\]

\[
\sigma_{yn} = \frac{2\tau}{t} l_2 + \sigma_{y2} \quad \ldots \ldots \quad (18)
\]

l_1, l_2, h, w, t, a = Geometrical parameters

$K1, K2$ = constants

f = frictional stress

σ = shear stress

τ = shear stress

Forging Load

Based on this sensitivity study Schey has developed an empirical formula for calculating forging load P:

\[
P = 4 \times \left(1 - [0.001 \times D_1] \right) \times \left[1.2 + \left(\frac{20}{D_1} \right)^2 \right] \times \left[1 + 0.1 \left(\frac{L}{B} \right) \right] \times \frac{A_x x 10^7}{1080}
\]

(19)

Load Edger

\[
B = \frac{A}{L}
\]

Load Finisher

Load require for forging component in finisher die is approximately $(2/3)$ of load require for forging component in blocker die.

\[
P_{\text{Finisher}} = \left(\frac{2}{3} \right) \times P_{\text{Blocker}}
\]

(20)

III. COMPUTATIONAL INTELLIGENCE

The following steps shows the use of computational intelligence in building a expert system to design a connecting rod die for forging process in need to achieve or predict optimum process variable parameters.

A. Component Review (2D Drawing):

In this process user has to review the 2D drawing of component being forged received from customer to analyze and predict process for 3D modeling technique (see Fig. 7).

B. 3D CAD Modeling:

This process involves conversion of received 2D drawing sheet into a live 3D CAD model using a high end 3D modeling too like UNIGRAPHICS NX-2. It is useful to design & create virtual die blocks model by subtracting the geometry of component being forged with forging allowances from standard available metal die cubes about parting line (see Figure 9).
C. Geometry or Profile Recognition for component being forged:

A high CAD package UGNX-2 can easily recognize the required topological parametric values of extreme peripheries of component being forged [8]. This can be done automatically by a developed coded auto control program. The outcome of this program generates a datasheet (See Appendix-I-II).

D. User Interface:

User has to give the required inputs manually to the inference engine iFORGE. These required inputs are values generated by datasheet in last step (See Appendix-III-V).

E. Inference Engine:

The developed inference engine has being driven by an intelligent agent i.e. the codes of Visual Basic Language. It calculates optimum values of all forging process variable parameters for the geometry being forged (See Fig. 8) [1].

![Fig. 8 Mechanism of Inference Engine](image)

G. CAE Analysis (Finite Element Analysis Method):

The performance of forging dies have been checked through CAE simulations in order to predict the optimum values for required forging load, die stress, limits of deformation, initial preform temperature, die life against number of forging cycles and frictional forces at die preform interfaces (See Figure 10).

![Fig. 10 Structural, thermal, & mould flow analysis of connecting rod die](image)

H. Feedback Loop:

If there is a remarkable deviation seen between CAE and iFORGE results, then user has to go for trial and error method by varying shape difficulty factor and which is also less time consuming.

IV. RESULTS AND DISCUSSION

Following table shows the variation of design variables with the different analysis approaches (i.e. Analytical, FEA). Following table shows that these values show good conformity with both the analysis approaches taken under considerations.

Design Variables	Test Methods	(%) Error	
	Analytical	FEA	
Flash Land Width (b) (mm)	8.926	8.121	5.1
Flash Thickness (t) (mm)	2.968	2.426	14.5
Ratio (b/t)	3.16	3.34	10.2
Flash Weight (Wflash) (kg)	1.43	1.2	8
Cut Weight (Wall) (kg)	4.23	4.34	3

Table – 1 : Validation of FEA with Analytical method
V. CONCLUSION

Thus in this study structural topology optimization of forged steel connecting rod die has been achieved with the help of computational intelligence and knowledge engineering. The developed process automation tool can able to predict the forging process variable parameters with precision and accuracy. The developed tool is linked with the commercially available high end CAD/CAM/CAE packages. Also in order to predict the forging load and die stress values combination of Statistical, Empirical and Simulation analysis approaches have been used and verified by FEM. After the identification of geometry, the design rules have been stored in the knowledge base in such a way that every industry (designer) can define and add its own values. The developed inference engine uses Visual Basic programming codes to interact with the developed knowledge base and user interface. It has been proved and validated by comparing the output results with both experimental and Finite Element Analysis methodologies. The experimental and Finite Element results show good conformity. The advantage of developed tool is that no tooling has to be built and the number of experimental tryouts can be significantly reduced. The future scope of this dissertation may lead on to develop an Expert System with the help of Artificial Intelligence to reduce the total design cycle time.

VI. ACKNOWLEDGEMENT

The authors would like to thank all the employees involved in this particular task of Shivsai Enterprises (Tool Room) Pune, Maharashtra, India for their excellent technical support to carry out this work.

VII. REFERENCES

[1] Necip Fazil Yilmaz and Omer Eyercioglu, “Knowledge based reverse engineering tool for near net shape axisymmetric forging die design,” ISSN 1392 - 1207. MECHANIKA, Nr.5 (73), 2008.

[2] J.-L. Chenot and E. Massoni, “Finite element modeling and control of new metal forming processes,” 2006.

[3] H. Grass, C. Krempaszky, and E. Werner, “The 3-D FEM simulation of hot forming processes for the production of a connecting rod,” 2005.

[4] B. Kecelja, J. Kopaćbj, Z. Kampujb, K. Kuzmana, “Specialty of HSC in manufacturing of forging dies,” 2004.
[5] Forging die design handbook, "Forging die design methods and potential for manufacturing," 2003.

[6] Taylan Altan and Akgerman, “Analysis of the closed die forging process," 2002.

[7] Victor Vazquez, Taylan Altan, “Die design for flash less forging of complex parts," 2000.

[8] J.H. LIOUI and D.Y. JANG, "Forging parameter optimization considering stress distributions in products through fem analysis and robust design methodology," 1997.

[9] Teruie Takematsu, Victor Vazquez, Brett Painterb, and Taylan Altan, “Investigation of metal flow and perform optimization in flash less forging of a connecting rod,” 1996.

[10] Hyunkee Kim, Kevin Sweeney, and Taylan Altan, “Application of computer aided simulation to investigate metal flow in selected forging operations,” 1994.

[11] Hyunkee Kim, Kevin Sweeney, and Taylan Altan, “Application of computer aided simulation to investigate metal flow in selected forging operations,” 1994.

DATA SHEET SHOWING VALUES OF FINITE ELEMENT ANALYSIS OF CONNECTIN ROD DIE USING SIMULATION TOOL DEFORM F3 ver. 6.0.

Information listing	created by: Administrator	Date: 4/16/2006	Current work part: /cgl/d/D150_D1300/D1278/FIN REV_B/D1278_FIN_B_pr	Node name: DEFORM F3 ver. 6.0

Data Sheet showing values of Geometrical Parameters of CONNECTIN ROD DIE USING CAD TOOL UNIGRAPHICS NX-2.

Detailed Mass Properties

Analysis calculated using accuracy of 0.9999000000
Information Units in Area
Mass
Center of mass
Bolex, Yolaba, Zekir

Moments of Inertia (Work)	1078.27951611, 8.46995909231, 8.89666553106
Moments of Inertia (Centroidal)	1078.27951611, 8.46995909231, 8.89666553106

First Moments	Mass, Myrc, Mirc	2.42.414598293, -0.392927999, 0.0453174
Center of mass	111.97154256, 0.131530722, 0.061873938 mm	

Products of Inertia (Work)	254.954646828, 172.316262456, 172.316262456
Products of Inertia (Centroidal)	254.954646828, 172.316262456, 172.316262456

Radii of Gyration (work)	254.954646828, 172.316262456, 172.316262456
Radii of Gyration (spacial)	254.954646828, 172.316262456, 172.316262456

Detailed Design Properties inputs

Detailed Design Properties outputs	Process	0.196
Die-temperature type	Hot	150-250
Object shape complexity	0.196	
Mesh	38707, 906368, 906368	
Top Dio Geometry	Poly 27330, Points 15379	
Top Dio Geometry	Poly 27330, Points 15379	
Moments of Inertia (Centroidal)	254.954646828, 172.316262456, 172.316262456	
Load prediction	254.954646828, 172.316262456, 172.316262456	
Defomation ratio	2.316262456	
Maximum principal stress	150.216851 MPa	
Flow stress effective	0.061873938	
Flash design properties	0.061873938	
Load thickness	8.121728544	
Thick	2.12623232	
Weight	1.1285432 K	
Average flow stress	103.72257141 MPa	
Error estimates	9.1285432 K	

APENDIX (01)

DATA SHEET SHOWING VALUES OF FINITE ELEMENT ANALYSIS OF CONNECTIN ROD DIE USING SIMULATION TOOL DEFORM F3 ver. 6.0.

Information listing	created by: Administrator	Date: 4/16/2006	Current work part: /cgl/d/D150_D1300/D1278/FIN REV_B/D1278_FIN_B_pr	Node name: DEFORM F3 ver. 6.0

Data Sheet showing values of Geometrical Parameters of CONNECTIN ROD DIE USING CAD TOOL UNIGRAPHICS NX-2.

Analysis calculated using accuracy of 0.9999000000
Information Units in Area
Mass
Center of mass
Bolex, Yolaba, Zekir

Moments of Inertia (Work)	1078.27951611, 8.46995909231, 8.89666553106
Moments of Inertia (Centroidal)	1078.27951611, 8.46995909231, 8.89666553106

First Moments	Mass, Myrc, Mirc	2.42.414598293, -0.392927999, 0.0453174
Center of mass	111.97154256, 0.131530722, 0.061873938 mm	

Products of Inertia (Work)	254.954646828, 172.316262456, 172.316262456
Products of Inertia (Centroidal)	254.954646828, 172.316262456, 172.316262456

Radii of Gyration (work)	254.954646828, 172.316262456, 172.316262456
Radii of Gyration (spacial)	254.954646828, 172.316262456, 172.316262456

Detailed Design Properties inputs	Process	0.196
Die-temperature type	Hot	150-250
Object shape complexity	0.196	
Mesh	38707, 906368, 906368	
Top Dio Geometry	Poly 27330, Points 15379	
Top Dio Geometry	Poly 27330, Points 15379	
Moments of Inertia (Centroidal)	254.954646828, 172.316262456, 172.316262456	
Load prediction	254.954646828, 172.316262456, 172.316262456	
Defomation ratio	2.316262456	
Maximum principal stress	150.216851 MPa	
Flow stress effective	0.061873938	
Flash design properties	0.061873938	
Load thickness	8.121728544	
Thick	2.12623232	
Weight	1.1285432 K	
Average flow stress	103.72257141 MPa	
Error estimates	9.1285432 K	