Dark matter candidates: a ten-point test

Marco Taoso1,2, Gianfranco Bertone2 and Antonio Masiero1

1 INFN, Sezione di Padova, via Marzolo 8, Padova I-35131, Italy
2 Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris, France
E-mail: taoso@pd.infn.it, bertone@iap.fr and antonio.masiero@pd.infn.it

Received 25 January 2008
Accepted 28 February 2008
Published 25 March 2008

Online at stacks.iop.org/JCAP/2008/i=03/a=022
doi:10.1088/1475-7516/2008/03/022

Abstract. An extraordinarily rich zoo of non-baryonic dark matter candidates has been proposed over the last three decades. Here we present a ten-point test that a new particle has to pass in order to be considered a viable DM candidate. (I) Does it match the appropriate relic density? (II) Is it cold? (III) Is it neutral? (IV) Is it consistent with BBN? (V) Does it leave stellar evolution unchanged? (VI) Is it compatible with constraints on self-interactions? (VII) Is it consistent with direct DM searches? (VIII) Is it compatible with gamma-ray constraints? (IX) Is it compatible with other astrophysical bounds? (X) Can it be probed experimentally?

Keywords: dark matter, dark matter simulations, dark matter detectors
Introduction

To identify the nature of dark matter is one of the most important open problems in modern cosmology. Although alternative explanations have been proposed in terms of modified gravity, the discrepancies observed in astrophysical systems ranging from galactic to cosmological scales appear to be better understood in terms of a dark, yet undiscovered, matter component, roughly six times more abundant than ordinary baryons in the Universe (see [1, 2] for recent reviews).

The possible connection of this exciting problem with New Physics beyond the standard model has prompted the proliferation of dark matter candidates that are currently being searched for in an impressive array of accelerator, direct and indirect detection experiments. As our understanding of particle physics and astrophysics improves, we accumulate information that progressively reduces the allowed regions in the DM particles’ parameter space.

Here, we present a ten-point test that new particles have to pass in order to be considered good DM candidates. We will work under the assumption that a single DM species dominates the DM relic density, while contributions from other species are subdominant; it is straightforward to generalize the discussion to the case of multi-component DM. Furthermore, we will consider a standard ΛCDM cosmological model.
although we discuss the consequences of more general models, allowing for instance a
non-standard expansion history at the epoch of DM freeze-out.

Each of the following ten points, that represent necessary conditions for a particle
to be considered a good DM candidate, will be discussed in a dedicated section, where
we will review the literature on the subject and present the most recent results. In each
section we will discuss how robust the constraints are, especially for those that heavily
rely on astrophysical quantities such as the local DM density and velocity distribution,
or the extrapolation of DM profiles at the center of galactic halos, often affected by large
uncertainties.

A particle can be considered a good DM candidate only if a positive answer can be
give to all the following points.

(1) Does it match the appropriate relic density?
(2) Is it cold?
(3) Is it neutral?
(4) Is it consistent with BBN?
(5) Does it leave stellar evolution unchanged?
(6) Is it compatible with constraints on self-interactions?
(7) Is it consistent with direct DM searches?
(8) Is it compatible with gamma-ray constraints?
(9) Is it compatible with other astrophysical bounds?
(10) Can it be probed experimentally?

The distinction between gamma-ray constraints and other astrophysical bounds, in
points (8) and (9), is rather artificial, and it simply reflects the privileged role of photons
in astrophysics, since they propagate along straight lines (unlike charged particles), and
they can be detected with better sensitivity than, say, neutrinos. The fact of considering
gamma-ray photons is then due to the fact that the decay or annihilation of some of the
most common candidates falls in this energy range.

We also note that, strictly speaking, the last point is not really a necessary condition,
as DM particles could well be beyond the reach of current and upcoming technology.
However, measurable evidence is an essential step of the modern scientific method, and
a candidate that cannot be probed, at least indirectly, would never be accepted as the
solution to the DM puzzle.

1. Does it match the appropriate relic density?

The analysis of the cosmic microwave background (CMB) anisotropies is a powerful tool
to test cosmological models and to extract the corresponding cosmological parameters.
For instance, the angular position of the peaks in the power spectrum of temperature
anisotropies is a sensitive probe of the curvature of the Universe (see, e.g., [3, 4] for a
review and a more extended discussion). The power spectrum of CMB anisotropies is
fitted within the Standard Cosmological Model with a number of free parameters that
depends onto the priors.
The best fit of the three-years’ WMAP data, with a six-parameter flat \(\Lambda \)CDM model and a power-law spectrum of primordial fluctuations, gives \[5\]
\[
\Omega_b h^2 = 0.0223^{+0.0007}_{-0.0009} \quad \Omega_M h^2 = 0.127^{+0.007}_{-0.013}
\]
for the abundance of baryons and matter, respectively. The normalized abundance \(\Omega_i \) is defined as \(\Omega_i = \rho_i / \rho_c \), where \(\rho_c \) is the critical density and the scaled Hubble parameter \(h \) is defined as \(H_0 = 100 \, h \, \text{km s}^{-1} \, \text{Mpc}^{-1} \). A joint-likelihood analysis on a larger dataset including, besides WMAP3, also small-scale CMB experiments (BOOMERang, ACBAR, CBI and VSA), large-scale structures (SDSS, 2dFGRS) and SuperNova (HST/GOODS, SNLS) further strengthens the constraints to \[6\]
\[
\Omega_b h^2 = 0.0220^{+0.0006}_{-0.0008} \quad \Omega_M h^2 = 0.131^{+0.004}_{-0.010}.
\]
Note that the baryonic density is consistent with the determination from Big Bang nucleosynthesis \[7\]:
\[
0.017 < \Omega_b h^2 < 0.024 \text{ (95\% CL)}.
\]
For a new particle to be considered a good DM candidate, a production mechanism that reproduces the appropriate value of the relic density must exist. Moreover, to guarantee its stability, its lifetime must exceed the present age of the Universe. Taking in account the estimates of the Hubble Space Telescope Key Project \[8\] and in agreement with the result derived by WMAP, \(H_0 = 72 \pm 3 \) (statistical) \(\pm 7 \) (systematic) \(\text{km s}^{-1} \text{Mpc}^{-1} \), we require a lifetime \(\tau \gtrsim 4.3 \times 10^{17} \text{s} \).

In many proposed extensions of the standard model of particle physics, the stability of the DM particle is ensured by imposing a symmetry that forbids the decay of DM into Standard Model particles. For example, R-parity in supersymmetry models (SUSY) \[9,10\], K-parity in Universal Extra Dimensions Models (UED) \[11\] and T-parity in Little Higgs Models \[12\] prevent the lightest new particle in the respective theories from decay (see, for example, \[13\] for a detailed discussion on SUSY DM and \[14\] for a review on UED DM).

Thermal relics

Among the best DM candidates, there is a class of particles called WIMPs (for weakly interacting massive particles) that are thermal relics and naturally achieve the appropriate relic density.

The scenario goes as follows: the WIMP is in thermodynamic equilibrium with the plasma in the early Universe, and it decouples when its interaction rate drops below the expansion rate of the Universe. For a non-relativistic particle at decoupling, the number density over the entropy density remains frozen, i.e. the thermal relic freezes out. The evolution of the number density of a generic species \(\chi \) in the Universe, is described by the following Boltzmann equation:
\[
\dot{n}_{\text{eq}} + 3Hn = -\langle \sigma_{\text{ann}} v \rangle \left[n^2 - n_{\text{eq}}^2 \right].
\]
The second term in the l.h.s of the equation takes into account the dilution of the number density due to the expansion of the Universe. \(\langle \sigma_{\text{ann}} v \rangle \) is the thermal average of the annihilation cross section times velocity and it is parameterized with a non-relativistic expansion in powers of \(v^2 \) as \(\langle \sigma_{\text{ann}} v \rangle = a + b(v^2) + \mathcal{O}(v^4) \approx a + 6b/x \), with \(x \equiv m/T \).
n_{eq} is the equilibrium density of WIMPs in the plasma at temperature T and for a non-relativistic species is given by $n_{\text{eq}} = g \left(\frac{m_{\chi} T}{2 \pi} \right)^{3/2} e^{-\frac{m_{\chi}}{T}}$, where g denotes the number of degrees of freedom of χ and m_{χ} is the WIMP mass.

The Boltzmann equation can be solved by integrating it in two extreme regions, long before and long after the WIMP freeze-out (e.g. WIMP decoupling), and matching then the solutions. Skipping the calculation details, which can be reviewed, for example, in [15], the relic density today for a generic WIMP χ is [1]

$$\Omega_{\chi} h^2 \approx 1.07 \times 10^9 \text{ GeV}^{-1} \frac{x_f}{M_{\text{Pl}}} \frac{1}{\sqrt{g_{*f}} (a + 3b/x_f)} \approx 3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1} \langle \sigma_{\text{ann}} v \rangle,$$

where g_{*f} counts the relativistic degrees of freedom at the decoupling, M_{Pl} is the Planck mass and $x_f \equiv m_{\chi}/T_f$ with T_f the freeze-out temperature. The last term is an order-of-magnitude estimate and it shows that the relic abundance of a non-relativistic decoupled species strictly depends on the annihilation cross section at freeze-out [13]. Furthermore, it has to be noticed that the annihilation cross section, for a particle of given mass has a maximum, imposed by the partial wave unitarity of the S matrix, $\langle \sigma_{\text{ann}} v \rangle_{\text{max}} \sim 1/m_{\chi}^2$ [35,36]. Thus, with the use of equation (1), the requirement $\Omega_M h^2 \lesssim 1$ implies the following constraint on the mass of the DM particle, also called the ‘unitarity bound’ [35]:

$$m_{\text{DM}} \lesssim 340 \text{ TeV}.$$

Applying the more stringent constraint obtained by WMAP, the upper bound on m_{DM} becomes

$$m_{\text{DM}} \lesssim 120 \text{ TeV}.$$

However, this constraint was derived under the assumption that particles were in thermal equilibrium in the early Universe, thus it applies only to thermal relics and can be evaded by species which are non-thermally produced.

The standard computation of the thermal relic abundance discussed above presents three important exceptions, as has been shown, following previous ideas [16], by Griest and Seckel [17]. They take place for WIMPs lying near a mass threshold, for annihilations near to a pole in the cross section, or in the presence of coannihilations. The last effect occurs when a particle that shares a quantum number with the WIMP is nearly degenerate in mass with it. If the mass gap is low enough (roughly $\lesssim 10\%$) the coannihilation reactions, involving WIMP particles, can control the WIMP abundance and lower or enhance it.

Full relic density calculations, including all coannihilations, have been performed, for example, for the supersymmetric neutralino, for which numerical codes such as DarkSUSY [18] and micrOMEGAs [19] are publicly available. Coannihilations have a dramatic effect on the relic density and they can lower it by a factor of up to several hundreds (see, e.g., [20]).

Coannihilations are also important in UED models, where the relic density of the first excited state of the B, which may be the lightest Kaluza–Klein particle (LKP) and a viable DM candidate, may be enhanced or lowered depending on the coannihilation channel [21]–[23]. See figure 1.

Deviations from standard cosmology can substantially change the picture. For example, due to the presence of scalar fields, the Universe may undergo a period of much
higher expansion rate and the relic abundance of a WIMP may be increased by several orders of magnitude [24,25]. Furthermore, the production of entropy in the Universe after the WIMP decoupling may dilute its abundance, e.g. due to out-of-equilibrium decays of non-relativistic particles or to first-order phase transitions [26]–[29].

It is also possible that DM particles did not experience the thermal history depicted above, and that they have inherited the appropriate relic density through the decay of a more massive species that has earlier decoupled from the thermal bath. This is, for example, the case for super-weakly interacting massive particles (SWIMP), such as the LSP gravitino in SUSY and the first excitation of the graviton in UED, which are produced by late decays of the next to lightest particles (NLSP/NLKP) in the respective theories [30]–[33] and whose relic abundances are simply the rescaled thermal relic densities of the NLPs:

$$\Omega_{\text{SWIMP}} = \frac{m_{\text{SWIMP}}}{m_{\text{NLP}}} \Omega_{\text{NLP}}.$$

Other production mechanisms may actually be concomitant for such candidates, such as the production at reheating after the end of the inflationary era (see, e.g., [32,34]. See also below for a brief discussion of gravitino production).

Other production mechanisms

Very heavy DM candidates, such as the so-called wimpzillas, have been proposed, with masses as large as 10^{15} GeV, i.e. well above the unitarity limit (see, e.g., [37] for a review). For mechanisms that produce these supermassive particles with $\Omega_{\text{DM}} \sim 1$, departure from thermal equilibrium is automatic [37] and the challenge is not to overproduce them. Several mechanisms have been proposed: for instance, they could be created...
during reheating after inflation, with masses a factor of \(10^3\) larger than the reheating temperature [38], or during a pre-heating stage, with masses up to the grand unification scale \(10^{15}\) GeV [39] or even to the Planck scale [40], or again from bubble collisions if the inflation exit is realized by a first-order transition [41]. Another very interesting mechanism is of gravitational nature: wimpzillas may be created by amplification of quantum fluctuations in the transition between the inflationary regime and the matter (radiation) dominated one, due to the nonadiabatic expansion of spacetime [42,43]. This scenario can produce particles with masses of the order of the inflaton mass and do not require couplings of wimpzillas with inflaton or other particles.

These particles can be accommodated in existing theoretical frameworks. For instance, stable or metastable bound states called cryptons arise in M-theory, and other possibilities are contemplated in string theories [44]. Furthermore, messenger bosons in soft supersymmetry breaking models may be very massive and in the presence of accidental symmetries in the messengers’ sectors, might be stable [45]. Although wimpzillas have been invoked in top-down scenarios that seek to explain the origin of ultra-high energy cosmic rays [43,46,47], this interpretation is problematic today because it predicts a large photon component in the UEHCRs spectrum, in disagreement with the recent results of the Auger experiment [48].

Several production mechanisms can act together to produce a given species, and its relic abundance receives contributions from each of them. The calculation depends on the details of the particle physics and cosmological models adopted. In the case of axions, i.e. light pseudoscalar particles introduced to solve the Strong CP Problem, the production mechanisms in the early Universe are scattering in the hot thermal plasma and possibly radiation by topological defects like axion strings. Another relevant production mechanism is the so-called misalignment: the axion field rolls towards its minimum, near the QCD epoch, and it ends with coherent oscillations that produce a cold dark matter condensate. A lower bound on the axion mass can be inferred requiring that they do not overclose the Universe, but the uncertainties in the calculation of their production make the constraint rather weak (for recent reviews of axions see [49,50]).

As mentioned before, gravitinos can be copiously emitted by the decay of the NLP in SUSY but they can also be produced, during reheating, by inelastic \(2 \rightarrow 2\) scattering processes off particles in the thermal bath and in some scenarios they can act as cold dark matter candidates (e.g. [51]–[56]; see, e.g., [57,58] for more details and references on gravitino DM models). The efficiency of the production depends on the reheating temperature \(T_R\) so the bound on \(\Omega_{DM}\) translates into an upper limit on \(T_R\) [34,54,59]. In addition to thermal production and late decays of the NLSP, other non-thermal and inflation model-dependent contributions can arise and change the predictions considerably [60,61].

Sterile neutrinos, which arise naturally in theoretical frameworks [62–65] or in the phenomenological \(\nu\) MSM [66], have been proposed as a solution of the LSND anomaly [67], as explanation of the high pulsar velocities [68] and as dark matter candidates. Recently, the MiniBoone collaboration has reported its first results, excluding at 98% CL the two-neutrino appearance oscillation scheme obtained from LSND data [69]. The \((3 + 1)\) scheme, involving one sterile neutrino species, is excluded and also models with two or three sterile species are not viable because of the tension between appearance and disappearance data [70].
Sterile neutrinos may be produced in the early Universe from collision oscillation conversions of active thermal neutrinos. Their momentum distribution is significantly distorted with respect to a thermal spectrum due to the effects of quark–hadron transitions, the modification of the neutrino thermal potential caused by the presence of thermal leptons and the heating of the coupled species (see, e.g., [71] for precise computation of relic abundance). Moreover there has been proposed an enhanced resonant production, in the presence of a lepton asymmetry in the early Universe significantly higher than the baryonic one [72, 73].

2. Is it cold?

The evolution of perturbations in the Universe depends on the microscopic properties of DM particles. The standard picture, widely accepted, is that after equality, when the Universe becomes matter-dominated, the DM density perturbations begin to grow and drive the oscillations of the photon–baryonic fluid around the DM gravitational potential wells. Soon after recombination, baryons kinematically decouple from photons and remain trapped in DM potential wells. Their density perturbations then grow to form the structures that we observe today in the Universe (see [4, 15] for more details).

Hot dark matter

The imperfect coupling between baryons and photons at recombination leads to a damping of small-scale anisotropies, also known as Silk damping [74]. A collisionless species, moving in the Universe from higher to lower density regions, also tends to damp the fluctuations above its free-streaming scale. This a key property of hot dark matter, which consists of species which are relativistic at the time of structure formation and therefore lead to large damping scales [75].

The prototype of HDM are standard model neutrinos: they were thermally produced in the early Universe and they thermodynamically decoupled again relativistically at $T \sim 1$ MeV, leading to a relic abundance today that depends on the sum of the flavor masses, $m_\nu = \sum_{i=1}^{3} m_{\nu_i}$:

$$\Omega_\nu h^2 = \frac{m_\nu}{90 \text{ eV}}.$$ \hspace{1cm} (2)

Their free-streaming length is [15]

$$\lambda_{\text{FS}} \sim 20 \left(\frac{30 \text{ eV}}{m_\nu} \right) \text{Mpc}.$$

Hot DM models are today disfavored (see, e.g., [76] for a more complete discussion). For instance, the power spectrum of density perturbations should be suppressed beyond the free-streaming length of HDM particles, which for neutrino masses in the eV range corresponds roughly to the size of superclusters. Furthermore, HDM models predict a top-down hierarchy in the formation of structures, with small structures forming by fragmentation of larger ones, while observations show that galaxies are older than superclusters.

Small amounts of HDM can still be tolerated, provided that it is compatible with large-scale structure and CMB data. Assuming an adiabatic, scale-invariant and Gaussian
power spectrum of primordial fluctuations, WMAP data set an upper limit on the sum of light neutrino masses [5] (or equivalently, through equation (2), on Ω_ν)

$$\sum m_\nu < 2.11 \text{ eV} \ (95\% \text{ CL}).$$

The combination of data from WMAP, large-scale structure and small-scale CMB experiments further strengthens the constraint, but it also introduces potentially large systematic effects [77]–[80]. A significantly improved constraint can been obtained combining Ly-\(\alpha\) forest, CMB, SuperNovae and Galaxy clusters data [81,82]:

$$\sum m_\nu < 0.17 \text{ eV} \ (95\% \text{ CL}).$$

These limits can be applied to a generic hot dark matter candidate, e.g. to thermal axions [50,83,84] or to hot sterile neutrinos [85].

Cold dark matter

The standard theory of structure formation thus requires that dark matter is cold, i.e. it is made of particles that have become non-relativistic well before the matter domination era, and that can therefore clump on small scales. The prototype of cold DM candidates is the supersymmetric neutralino, whose free-streaming length is such that only fluctuations roughly below the Earth mass scale are suppressed [86,87]. CDM candidates can be heavy thermal relics, such as the aforementioned neutralino, but also light species, non-thermally produced, like axions (see section 1 for further comments and references).

\(N\)-body simulations of \(\Lambda\)CDM Universe are in agreement with a wide range of observations, such as the abundance of clusters at \(z \leq 1\) and the galaxy–galaxy correlation functions (see, e.g., [88] for a review of CDM), making it a successful and widely accepted cosmological model.

However, the emergence of some discrepancies has led some authors to question the CDM model and to propose alternative scenarios. For example, the number of satellite halos in Milky Way-sized galaxies, as predicted by simulations, exceeds the number of observed dwarf galaxies [89,90]. Furthermore, the rotation curves of low surface brightness (LSB) galaxies point to DM distributions with constant density cores rather than the cuspy profiles preferred by \(N\)-body simulations [91]–[94]. An additional problem arises when considering the angular momentum of dark matter halos: in simulations gas cools at early time into small mass halos, leading to massive low-angular momentum cores, in conflict with the observed exponential disks [95].

Several astrophysical processes have been invoked in order to solve these problems, such as major mergers and astrophysical feedback [96]. The low efficiency of gas cooling and star formation may decrease the number of satellites in Milky Way-sized galaxies [97]–[99] and tidal stripping may have dramatically reduced the size of these substructures or disrupted a fraction of them [101,102]. Furthermore, new ultra-faint dwarf galaxies have been recently detected, alleviating the discrepancy between CDM predictions and observations [100]. It has also been pointed out that the measurements of the LSB galaxies’ rotation curves may suffer from observational biases, for example due to the fact that DM halos are triaxials rather than spherically symmetric [103]. Moreover, small deviations of the primordial power spectrum from scale invariance, the presence of neutrinos [104] or astrophysical processes [105,106] can sensibly affect the halo profiles. Anyway, the
lack of convincing explanations of the problems discussed above leaves the door open to alternatives to the CDM scenario.

Warm dark matter

To alleviate these problems, dark matter candidates with a strong elastic scattering cross section (SIDM) [107] or large annihilation cross sections [108] have been proposed. It has also been suggested that dark matter is *warm*, i.e. made of particles with velocity dispersions between that of HDM and CDM particles. The larger free-streaming length of WDM, with respect to CDM, reduces the power at small scales, suppressing the formation of small structures [109,110]. For instance, a WDM particle with a mass of 1 keV and an abundance that matches the correct dark matter density has a free-streaming length of the order of galaxy scales $\lambda_{FS} \sim 0.3$ Mpc [111]. Measurements of the growth of structures in galaxy clusters and Ly-α forest can then be used to set a lower bound on the mass of the WDM particle. Gravitinos in gage-mediated supersymmetry breaking models might be warm DM candidates, if they decouple when the number of degrees of freedom was much larger than at the neutrino decoupling [112]. However, explicit computations show that such a light thermal gravitino cannot account for all the DM [111].

Another WDM candidate is the sterile neutrino, produced in the early Universe by oscillation conversion of thermal active neutrinos, with a momentum distribution significantly suppressed and distorted from a thermal spectrum [66,73,113]. Its free-streaming scale is given by (see, e.g., [27])

$$\lambda_{FS} \approx 840 \text{ kpc h}^{-1} \left(\frac{1 \text{ keV}}{m_s} \right) \left(\frac{\langle p/T \rangle}{3.15} \right),$$

where m_s is the mass state associated with the sterile flavor eigenstate. $\langle p/T \rangle$ is the mean momentum over temperature of the neutrino distribution and the ratio $\langle p/T \rangle / 3.15$ ranges from ≈ 1 for a thermal WDM particle to ≈ 0.9, for a non-thermal sterile neutrino distribution.

The suppression of the power spectrum by a thermal WDM of a given mass m_{WDM} is identical to that produced by sterile neutrinos of mass m_s derived by [111,114]

$$m_s = 4.43 \text{ keV} \left(\frac{m_{WDM}}{1 \text{ keV}} \right)^{4/3} \left(\frac{0.25(0.7)^2}{\Omega_{WDM}} \right)^{1/3}.$$

This one-to-one correspondence allows us to translate the bounds on sterile neutrinos to a generic thermal relic and vice versa.

A detailed analysis of the production of sterile neutrinos and of the evolution of their perturbations, as well as a comparison with the measured matter power spectrum, have been performed in [111], [115]–[118]. The resulting lower limits on the mass of the WDM particles strongly depend on the dataset used in the analysis. For example, in [115], a combination of the SDSS 3D power spectrum and SDSS Ly-α forest allowed us to constrain the sterile neutrino mass to

$$m_s \geq 1.7 \text{ keV (95\%CL)},$$

which translates in terms of a thermal WDM particle to

$$m_{WDM} \geq 0.50 \text{ keV}.$$
The inclusion of high resolution Ly-α data makes the constraint even stronger, even if it has been pointed out that they may suffer from large systematic uncertainties \cite{111, 115}.

More recently, very stringent bounds on the mass of WDM particles have been obtained by different groups \cite{117}:

\[m_s \geq 14 \text{ keV (95\% CL)} \left(m_{\text{WDM}} \geq 2.5 \text{ keV} \right) \]

and \cite{118}

\[m_s \geq 28 \text{ keV (2\sigma)} \left(m_{\text{WDM}} \geq 4 \text{ keV} \right). \]

The delay of the reionization of the Universe also sets a constraint on the WDM mass \cite{119}–\cite{121}. In the case of sterile neutrinos, the x-rays produced by their decays can modify the picture, enhancing the production of molecular hydrogen and releasing heat in gas clouds \cite{122}–\cite{124}.

3. Is it neutral?

Some extensions of the standard model of particle physics predict the existence of new, stable, electrically charged particles, such as the lightest messenger state in gage-mediated supersymmetry breaking models \cite{125} or even the LSP in the R-parity conserving minimal supersymmetric standard model (MSSM).

Massive charged particles, independent of the context in which they emerge, have been proposed as dark matter candidates by De Rújula et al and dubbed CHAMPs \cite{126}. Evaluating their thermal relic abundance, with simple assumptions on the annihilation cross sections, the authors found a viable mass range of \(\sim 1–1000 \text{ TeV} \). They also pointed out that a positively charged particle \(X^+ \) can capture an electron to form a bound state chemically similar to a heavy hydrogen atom. An \(X^- \) can instead bind to an \(\alpha^2 \) particle and an electron, resulting again in a heavy hydrogen-like atom, or alternatively it can capture a proton to produce a bound state called neutralCHAMP. The different behaviors of CHAMPs and neutralCHAMPs lead to different bounds on their abundance. Note also that De Rújula et al concluded that \(X^- \) would emerge from Big Bang Nucleosynthesis preferentially in the form of neutralCHAMPs \cite{126}.

Galactogenesis models provide constraints on the dark matter interactions, in particular of CHAMPs. The energy loss timescale in this case is, in fact, dominated by Coulomb scattering off electrons and protons, and it must be longer than the dynamical timescale for galaxy formation. In \cite{126}, the authors concluded that only CHAMPs heavier than 20 TeV are able to remain suspended in the halo, and to be therefore rare on Earth. This estimate disagrees with that obtained by Dimopoulos et al who found, for the same considerations, the limit \(M_X > 10^5 \text{ TeV} \) \cite{127}. The discrepancy is due to the different choice of the target of CHAMPs scattering in the computation of the energy loss rate, respectively protons and electrons for De Rújula et al and Dimopoulos et al.

It has also been proposed that shock accelerations in supernovae could eject CHAMPs from the disk and reinject them back into the halo or out of the galaxy. The latter possibility is energetically disfavored, while in the former case, it may lead to a dangerous heating of the disk \cite{127}.

One of the most stringent bounds on the CHAMPs abundance comes from searches of anomalous heavy water: CHAMPs, being chemically identical to heavy hydrogen, can be trapped in oceans and lakes in the form of HXO. If one assumes, as in \cite{126}, that
CHAMPs heavier than 20 TeV remain suspended in the galactic halo and they provide the galactic DM, taking an accumulation time of 3×10^9 yr, comparable with the age of oceans, the abundance of CHAMPs in sea water is predicted to be \[\left(\frac{n_X}{n_{\text{H}}} \right)_{\text{Earth}} \sim 3 \times 10^{-5} \left(\frac{\text{GeV}}{m_X} \right) \Omega_X h^2. \]

If instead CHAMPs are present in the galactic disk, taking into account the density and velocity of the interstellar gas, mostly hydrogen, the expected concentration is \[\left(\frac{n_X}{n_{\text{H}}} \right)_{\text{Earth}} \sim 6 \times 10^{-5} \left(\frac{\text{GeV}}{m_X} \right) \Omega_X h^2. \]

All the searches of anomalous hydrogen in sea water have failed so that the abundance of CHAMPs, for masses in the range 100–1000 GeV, is constrained to be \[\left(\frac{n_X}{n_{\text{H}}} \right)_{\text{Earth}} \sim 10^{-28} \text{–} 10^{-29}, \]

while it rises to \(\left(\frac{n_X}{n_{\text{H}}} \right) < 10^{-20} \) for \(M_X \sim 10 \text{ TeV} \) (see [129] for a compilation of upper bounds of heavy hydrogen from sea water searches). As a result, CHAMPs as DM candidates are ruled out in the mass range \(M_X \sim 10^{-4} \text{ GeV} \).

NeutralCHAMPs would preferentially bind on Earth to nuclei to form anomalous heavy isotopes. Null searches for these elements, covering a variety of nuclear species, constrain the NeutralCHAMPs abundance to be \(< 10^{-20} \text{–} 10^{-16} \) for \(M_X \sim 100–1000 \text{ GeV} \) [130] (for further details see [129] and references therein). The authors of [130] concluded that stable \(X^- \) dark matter in the mass range \(10^2–10^4 \text{ GeV} \) is thus to be considered unlikely.

CHAMPs are also constrained by balloon or satellites experiments for cosmic ray studies. Perl et al, taking in account data from different experiments [127, 132, 133], excluded CHAMPs as galactic dark matter in the mass range \(2.4 \times 10^3–5.6 \times 10^7 \text{ GeV} \) and neutralCHAMPs for \(10^8–10^7 \text{ GeV} \) [131]. The lower limit comes from the requirement that particles penetrate the solar wind and the energy deposition is above the experimental threshold. The upper bound is obtained comparing the maximum CHAMP flux at the top of the atmosphere allowed by the CR experiments with the local DM flux, which is typically assumed to be \(\phi \sim 10^7 (\text{GeV}/M_X) \text{ cm}^{-2} \text{ s}^{-1}. \)

In the atmosphere, a proton in a neutralCHAMP gets replaced very quickly by a \(^{14}\text{N} \) atom, and the exchange is followed by a MeV \(\gamma \)-ray emission from the excited \(^{14}\text{NX}^- \)–status. With the same argument explained above, the observational limits on \(\gamma \)-ray flux imply that neutralCHAMPs should be heavier than \(10^6 \text{ GeV} \) if they are to be the DM [127]. Further constraints on CHAMPs come from deep underground experiments. The responses of scintillators to monopoles and CHAMPs are expected to be similar, since they are both slowly moving, highly ionizing and penetrating. In [131], the authors applied the upper limit on monopole flux, obtained from the MACRO experiment, to the CHAMP case, excluding the mass range \(10^8–10^{20} \text{ GeV} \).

Further constraints come from stellar evolution: in particular, it has been shown that CHAMPs can disrupt a neutron star in a short timescale, falling into its center and producing a black hole. This argument excludes CHAMPs with masses \(10^2–10^6 \text{ GeV} \) [134]. In addition, the properties of diffuse interstellar clouds constrain the interactions of halo particles with atomic hydrogen: the rate of energy deposition...
due to collisions must be smaller than the cooling rate, for clouds in equilibrium. It results that CHAMPs with masses below 10^6 GeV are ruled out because, for these particles, the expected cross section with hydrogen is higher than the maximum allowed value [135].

The various constraints on CHAMPs that we have discussed are summarized in figure 2. Even if the bounds are not completely model-independent, the combination of them basically rules out CHAMPs as DM.

The above limits apply to particles with integer electric charge, but theoretical frameworks have been proposed where particles with fractionary electric charge exist, also known as milli-charged particles [136]–[141]. For example, adding a new unbroken $U(1)'$ gage group, the photon and paraphoton can mix, and particles charged under $U(1)'$ can have a small coupling with photons [136]. Moreover, realistic extensions of SM motivated by string theory exist that naturally implement this mechanism [138].

Constraints on the mass and charge of milli-charged particles come from a variety of observations, and in figure 3 we show the excluded regions in the parameter space (m_q, ϵ), with $\epsilon = q/e$, obtained by Davison et al [142].
Milli-charged particles can also affect CMB anisotropies, and for this reason WMAP data can severely constrain their cosmological abundance, at least in some regions of the milli-charged particle parameter space [143].

Furthermore, searches of neutrino magnetic moment with reactor experiments exclude dark matter particles with $q > 10^{-5}e$, for masses $m_q \lesssim 1$ keV [144].

The results of the PVLAS collaboration [145] have been tentatively interpreted in terms of milli-charged particles with masses $m_q \sim 0.1$ eV and fractional electric charge $\epsilon \sim 10^{-6}$ [138, 139, 147], but the experimental result was not confirmed after an upgrade of the PVLAS apparatus [146].

Light milli-charged particles may largely affect sub-eV cosmology. In particular, processes such as $\gamma\gamma \rightarrow q\bar{q}$ can distort the CMB energy spectrum, which has been measured with high sensitivity by FIRAS. A detailed analysis has been performed in [148] and the authors reported the conservative upper bound $\epsilon \lesssim 10^{-7}$, for $m \lesssim 1$ eV, excluding in this way also the light milli-charged particles proposed in [138, 139, 147].

In principle, DM particles could have a $SU(3)_c$ charge. For example, ‘colored’ candidates are naturally predicted in SUSY models if the LSP is a squark [149] or a gluino [150, 151], or in gage-mediated SUSY breaking models, where messengers can be colored and stable [152], or in mirror models [153]. These ‘heavy partons’, after the deconfinement temperature, $T \sim 180$ MeV, are surrounded by a QCD cloud and confined inside hadrons, forming a color-neutral bound state [154]. These particles can be actively searched for by underground experiments, indirect detection experiments or through the search of rare anomalous isotopes.

Since the proposal that DM might interact strongly with ordinary matter (SIMP), regardless of the nature of the interaction [126, 127, 155], many candidates have been put forward, but also many constraints on the scattering cross section off nuclei, $\sigma_{\chi N}$.

For example, the SIMPs interactions with baryons may disrupt the disks of spiral galaxies [155, 156]. Moreover, they may dissociate the light elements produced during Big Bang Nucleosynthesis, while SIMPs collisions with cosmic rays can produce an observable γ-ray flux [157]. The scattering of SIMPs off baryons also produces substantial distortion of CMB anisotropies and of the large-scale structure power spectrum [158]. The SIMPs abundance for the mass range $\sim 1-10^3$ GeV is also constrained by searches in terrestrial samples of gold and iron [159].

Atmospheric and satellite experiments, originally intended for other purposes, have been used to investigate high DM cross sections with baryonic matter. In particular, the results of the x-ray Quantum Calorimeter experiment (XQC) allow us to rule out a large portion of the SIMP parameter space (M_χ, $\sigma_{\chi N}$), as discussed in [160, 161] and (more recently and with substantial changes with respect to previous analyses) in [162].

Complementary constraints are obtained by underground experiments, which are sensitive to DM particles with small interactions. In fact, they are able to detect SIDM particles if their interactions with ordinary matter are high enough to trigger a nuclear recoil in the detector but at the same time low enough to allow the particles to penetrate the Earth’s crust to the detector [163]. Recently, Mack et al have analyzed the effect of SIMP annihilations on the Earth, showing that a substantial heating of the Earth’s core may occur if the capture rate is efficient [164]. This argument rules out the regions of the parameter space lying between astrophysical and underground detector constraints.
To summarize the constraints on the SIMP scenario, figure 4 shows the excluded areas in the SIMP parameter space. The bounds leave no room for SIMPs as dark matter candidates in a very large mass range. Since the neutron–neutron scattering cross section is of the order of $10^{-25} - 10^{-24}$ cm2 and the expected value for colored dark matter candidates is not far from this range (see, e.g., [165]), DM particles are thus unlikely to bring color charge.

However, these constraints can be evaded by very massive composite dark matter candidates. For example macroscopically large nuggets of ordinary light quarks and/or antiquarks, with masses in the range $m \sim 10^{20} - 10^{33}$ GeV, can behave as collisionless cold dark matter, without contradicting observations [166].

4. Is it consistent with BBN?

Big Bang Nucleosynthesis (BBN) is one of the most impressive successes of the Big Bang Cosmology (see [7, 167] for reviews). It predicts the abundances of light elements produced in the first 3 min after the Big Bang, in agreement with the observations over a range spanning nine orders of magnitude.

The model is based on a set of coupled Boltzmann equations relating the number densities of protons, neutrons and light elements through a network of nuclear chemical reactions. The weak interactions maintain the neutron–proton ratio at its equilibrium value until the freeze-out, which occurs at roughly 0.7 MeV. Later, nearly all neutrons are captured in the nuclei producing principally the most stable element 4He. Smaller amounts of 2H, 3H, and 7Li are synthesized but the production of heavier elements is suppressed by the large Coulomb barriers. Looking for astrophysical environments with low metallicity, it is possible to infer the primordial abundance of light elements in order to test the predictions of BBN.

In the framework of the Standard Model, BBN depends only on the baryon to photon ratio η, and observations of the abundance of different elements agree with predictions in...
the range $[7]
4.7 \leq \eta \times 10^{10} \leq 6.5$ (95% CL).

The agreement between predictions and measurements is a powerful success of the model and it is remarkable that the inferred abundance of baryons quoted above is also consistent with the estimate of CMB experiments like WMAP $[5]$. BBN also provides a test of physics beyond the Standard Model, and it also constrains deviations from standard cosmology. In fact, the primordial abundance of ^4He is proportional to the ratio n/p and its value is related to the freeze-out temperature of the weak interactions and it is therefore sensitive to the expansion rate at that time.

Since $H \propto g_*^{1/2}T^2$, an increase of the relativistic degrees of freedom g_* with respect to the SM value leads to a faster expansion rate, thus to an earlier freeze-out of the neutron to proton ratio and consequently to a higher ^4He abundance (and, in general, it also affects the abundance of the other light elements). At $T \sim 1$ MeV, the relativistic species in the standard model are photons, electrons and neutrinos so with N_ν neutrino family $g_* = 5.5 + \frac{7}{4}N_\nu$ and for $N_\nu = 3$ this gives $43/4$.

New relativistic particles can be accounted for through the introduction of an effective number of neutrinos:

$$\frac{7}{4}(N_\nu - 3) = \sum_{i=\text{extra b}} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i=\text{extra f}} g_i \left(\frac{T_i}{T}\right)^4,$$

where T_i parameterizes the energy density of the relativistic species and b (f) stands for bosons (fermions).

A likelihood analysis, taking η and N_ν as free parameters, and based on the abundance of ^4He and ^2H, constrains the effective number of neutrinos to be $[168]
1.8 < N_\nu < 4.5$ (95% CL).

Assuming the value of η inferred by CMB experiments, the limit is further strengthened to $[168]
2.2 < N_\nu < 4.4$ (95% CL).

These bounds on N_ν can be applied to new species affecting the expansion rate during nucleosynthesis, such as gravitons $[169]$, neutrinos with only right-handed interactions $[168]$ or milli-charged particles $[142]$. For a large class of supergravity models with a light gravitino, the requirement $N_\nu < 4$ rules out gravitino masses below 1 eV $[170]$. However, particles coupled to photons or to neutrinos during BBN, with masses in the MeV range, have a non-trivial impact on BBN, that cannot be accounted for with an equivalent number of light neutrinos $[171]$. For instance, it has been suggested that MeV dark matter, with masses in the range 4–10 MeV and coupled with the electromagnetic plasma, can lower the helium and deuterium abundances, contrary to what one naively expects, and it can therefore improve the agreement between the predicted and measured ^4He abundance $[172]$.

In addition, the predictions of BBN can be dangerously modified by the decays of particles during or after BBN. For example, radiative decays induce electromagnetic showers and the subsequent photon–photon processes can destroy the light elements. In the early stages of BBN, $t < 10^2$ s, hadronic decays may modify the interconversion of protons and neutrons, increasing the n/p ratio and consequently enhancing the ^4He and
Dark matter candidates: a ten-point test

2H abundance. The opposite effect occur for late hadronic decays, $t > 10^2$ s, when the energetic hadrons trigger the 4He dissociation.

Accurate calculations, with the use of BBN codes, restrict the primordial abundance of the decaying particle, depending on its lifetime, mass and hadronic branching ratio \cite{173}–\cite{177}. These results can be applied, for instance, to NLSP gravitinos: BBN requires an upper limit to the reheating temperature, which controls the primordial gravitino abundance, and in some cases the restrictions could lead to trouble for thermal leptogenesis and inflation models \cite{174,176}. The difficulties can be circumvented, for example, in the case of a heavy gravitino, which decays well before BBN \cite{178,179}.

Alternatively, the gravitino could be stable and play the role of dark matter. In this case, the NLSP particle is typically long-lived, because of the extremely weak interactions of the gravitino, and its late decays can affect BBN. Moreover, it has been pointed out that if the long-lived particles are charged, e.g. the stau, they can form bound states with light elements, potentially overproducing 6Li and 7Li \cite{180}–\cite{184}. However, these elements can also be destroyed, alleviating the severe bounds on the CHAMPs abundance during BBN.

A neutralino NLSP is excluded \cite{185}–\cite{187}, while sneutrino NLSP poorly affects BBN \cite{188}. A stop NLSP is viable in some regions of the parameter space \cite{189}.

We note that these BBN bounds can be circumvented if the NLSP abundance is diluted due to a significant entropy production \cite{190}.

5. Does it leave stellar evolution unchanged?

Stellar evolution provides a powerful tool to constrain particle physics, providing bounds that are often complementary to those arising from accelerator, direct and indirect dark matter searches.

If weakly interacting particles are light, they may be produced in the hot plasma in the interior of stars, and if they escape without further interactions they represent an energy loss channel for the star, possibly modifying the stellar evolution. Such particles may also be detected on the Earth, as was the case for neutrinos from SN 1987A, or they can be indirectly searched for through their decay products. Here we describe the most important observational consequences (see \cite{191,192} for extensive reviews).

Stars such as the Sun can be described as self-gravitating gas in hydrostatic equilibrium, such that the gas pressure equilibrates the gravitational force. A significant energy loss produces a contraction of the system and an increase of the burning rate of the stellar fuel, reducing the lifetime of the star and enhancing the neutrino flux. Moreover, exotic energy losses would modify the sound speed profile, which is accurately measured in the interior of the Sun by means of helioseismic measurements.

Globular clusters are alternative interesting probes of stellar evolution models because they are gravitationally bound systems of up to a million stars, formed at the same time, with the same chemical composition and differing only in their masses. The ignition of helium in red giant stars is sensitive to the temperature and density of the helium core, and any energy loss channel inevitably tends to delay it, resulting in more massive cores and producing observational consequences, such as an enhancement of star brightness. Therefore, observations of red giants in globular clusters allow us to derive an upper limit
Dark matter candidates: a ten-point test

on the energy loss rate of the helium plasma, ϵ, [191]:

$$\epsilon \lesssim 10 \text{ erg g}^{-1} \text{s}^{-1} \quad \text{at } T \approx 10^8 \text{K}, \quad \rho \approx 2 \times 10^5 \text{ g cm}^{-3},$$

where the values of temperature and density are appropriate for red giant cores. In horizontal branch stars, energy losses speed up the helium burning rate, decreasing their lifetimes, which can be measured by number counting in globular clusters. This argument provides another bound on ϵ [191]:

$$\epsilon \lesssim 10 \text{ erg g}^{-1} \text{s}^{-1} \quad \text{at } T \approx 0.7 \times 10^8 \text{K}, \quad \rho \approx 0.6 \times 10^4 \text{ g cm}^{-3}.$$

In addition, the cooling rate of white dwarfs, inferred by their luminosity functions, is in agreement with the predictions and therefore any new cooling channel has to be subdominant.

It is remarkable that the total number of neutrinos detected from SN 1987A, their energy and their time distribution is in agreement with expectations from the standard model which describes the core collapse of a star. Any further energy loss mechanism reduces the duration of the neutrino burst and can in principle spoil the success of the model, leading therefore to the following bound on ϵ [191]:

$$\epsilon \lesssim 10^{19} \text{ erg g}^{-1} \text{s}^{-1} \quad \text{at } T = 30 \text{MeV}, \quad \rho = 3 \times 10^{14} \text{ g cm}^{-3}.$$

All the arguments listed above provide upper limits to any additional energy loss rate and can be applied to constrain, for instance, the neutrino properties, the graviton emission in theories with extra dimensions, as well as models with right-handed neutrinos, sterile neutrinos, milli-charged particles, axions and other pseudoscalar particles. For instance, updated limits on axions from stars are reviewed in [193] and the implications of light dark matter or sterile neutrino dark matter on supernovae core collapse are discussed in [194,195]. More details and references for other particle physics scenarios can be found in [191,192].

As we have seen in section 3, the most restrictive bounds on the fractional charge of \simkeV milli-charged particles come from stellar physics, as was shown in figure 3.

The bounds discussed above apply to particles that are produced in the core of stars and that escape without losing energy, thanks to their weak interactions. However, if the particles interact strongly, they undergo multiple scattering, providing a mechanism for energy transport, in competition with photons, electrons or convection. This effect has been studied for keV-mass scalars produced in the Sun, horizontal branch stars and red giants, constraining the interactions of these particles [196,197].

Moreover, the energy transport channel, provided by WIMPs trapped in the Sun, may cool its interior and decrease the neutrino flux. This idea was proposed in the past as a solution of the solar neutrino problem and WIMPs with masses and cross sections suitable for this purpose ($m \sim 4$–10 GeV, $\sigma \sim 10^{-36}$ cm$^{-2}$) were called cosmions [198]–[200].

Stars in which the heat transport is dominated by core convection may be dramatically affected by WIMPs in the case of effective transport of energy. In fact, in this case, the convection is suppressed and the core is not replenished with nuclear fuel from outer regions, leading to a reduced stellar lifetime and a modification of its evolution [201,202]. As a consequence, main sequence stars would present an anomalous mass-to-luminosity relation and horizontal branch stars would develop thermal pulses [202]–[204]. However, taking into account the current limits on the WIMP–nucleon cross section inferred from direct searches, these effects seems to be hardly detectable for the Sun [205,206].
Dark matter annihilations may provide an important source of energy which, for stars orbiting in high dark matter density regions, can even be comparable or overwhelm that originated by nuclear reactions. This scenario has been investigated, in the case of main sequence stars, in [207] and more recently, by means of numerical simulations, in [208,209]. The most pronounced effects are on low mass stars and the authors in [208,209] have proposed that these ‘WIMP burners’ could be found in regions where recent star formation is inhibited, looking for populations of stars appearing oddly younger than higher mass ones. Although apparently young stars have been detected in the inner regions of Andromeda and of our own galaxy, it is difficult to interpret these observations in terms of WIMP burners. WIMP annihilations could also enhance the luminosity of white dwarfs and neutron stars, as has been observed in [210]–[212].

The effect of DM decays and annihilations on the formation of first structures have been investigated for light DM candidates [124,213]. Recently, it has been pointed out that even standard DM candidates, such as the neutralino, may substantially modify the evolution of Population III stars, which may even be supported by DM annihilations rather than nuclear reactions, during part of their evolution [214].

6. Is it compatible with constraints on self-interactions?

The collisionless and cold nature of dark matter has been questioned during the last decade, because of apparent discrepancies between the results of CDM simulations and observations. Two remarkable problems, as mentioned in section 2, are the conflict between the cuspy DM halos predicted by N-body simulations and the constant core profiles inferred by LSB and dwarfs [91,92] and the excess of substructures in the CDM halo with respect to the observed number of galaxy satellites [89,90].

Although astrophysical explanations exist for the observed discrepancies [97,98], [103]–[106], many attempts have been made to modify the properties of DM particles in order to reproduce the appropriate astrophysical phenomenology. A possible solution is that DM is warm rather than cold, as mentioned before. Alternatively, DM might be self-interacting (SIDM), as proposed by Spergel and Steinhardt, with large scattering cross section and small enough annihilation cross sections in order to be consistent with the bounds from indirect detection [107]. The net effect, under these assumptions, is that the central cusp reduces to an almost constant core. Moreover, subhalos can be destroyed by interactions with the surrounding halo particles, because they are excessively heated or because particles are scattered out of them [107,160]. Suitable SIDM candidates include Q-balls [107,215], a quark–gluino bound state [160,216] and scalar gage singlets coupled with Higgs field [217].

Semi-analytical calculations and N-body simulations have been developed to study the effect of SIDM interactions on halo structures, especially for what concerns the formation of flat cores. Different solutions are obtained, depending on the ratio between the mean free path of the dark matter particle ($\lambda_{\text{mfp}} \propto (\rho \sigma / m)^{-1}$, with n the number density and σ / m the scattering cross section per unit mass of the SIDM) and the virial radius of the halo. A cross section per unit mass in the range $\sigma / m \sim 0.5-5 \text{ cm}^2 \text{ g}^{-1}$ was found to correctly reproduce the observed profile of galaxies [218]–[221]. More recently, Ahn and Shapiro have found a much higher value, $\sigma / m \simeq 200 \text{ cm}^2 \text{ g}^{-1}$, as the best fit to LSB rotation curves [222].
Several constraints exist on SIDM interactions. For instance, Gnedin and Ostriker have shown that, for $0.3 \lesssim \sigma/m \lesssim 10^4 \text{ cm}^2 \text{ g}^{-1}$, galactic halos in clusters would evaporate on a timescale shorter than a Hubble time [223]. Following the suggestion of Furlanetto and Loeb [224], Natarajan et al compared the predicted truncation radii of SIDM halos with those of observed galactic halos in clusters, inferred by gravitational lensing, excluding $\sigma/m > 42 \text{ cm}^2 \text{ g}^{-1}$ [225].

An upper limit of $\sigma/m < 0.1 \text{ cm}^2 \text{ g}^{-1}$ has been obtained by Arabadjis et al comparing the results of simulations with the profile of the cluster MS 1358 + 62 [226]. Hennawi and Ostriker ruled out $\sigma/m \gg 0.02 \text{ cm}^2 \text{ g}^{-1}$, pointing out that the supermassive black holes at the center of galaxies would be more massive than observed [227]. The evidence of ellipticity in DM halos has been used to rule out $\sigma/m > 0.02 \text{ cm}^2 \text{ g}^{-1}$ because self-interactions tend to produce more spherical halos [228]. The limits reported above rule out the range of cross sections required to explain the mass profiles of galaxies, although the underlying simplifying assumptions and incomplete statistics suggest taking them with a grain of salt (see, e.g., [222,230]).

More robust results are obtained from the analysis of the 1E 0657-56 cluster of galaxies [229], which actually consists of a bullet-like gas subcluster, exiting the core of the main cluster at high velocity, $v \sim 4700 \text{ Km s}^{-1}$. The combination of optical and x-ray images with the weak lensing map shows that the centroid of the collisionless subcluster galaxies is ahead of the subcluster gas distribution and coincident with that of the dark matter clump. This cluster not only provides robust visual evidence for dark matter, but it also provides a probe of its collisionless nature.

The subcluster DM halo would be dragged by the main halo in the presence of DM self-interactions, leading to an offset between the galaxies centroid and the total mass peak inferred through weak lensing measurements. Moreover, the measured high merger velocity implies that eventual drag forces, due to DM collisions, are small. Finally, the mass to light ratio of the subcluster is in agreement with that observed in other clusters and in the main cluster, while SIDM would tend to scatter out the particles from the subcluster.

Markevitch et al found that the latter argument provides the most restrictive limit to the self-interaction cross section, $\sigma/m < 1 \text{ cm}^2 \text{ g}^{-1}$ [230]. Making use of more recent observations and more accurate N-body simulations, this bound has been slightly improved, $\sigma/m < 0.7 \text{ cm}^2 \text{ g}^{-1}$ [231]. Since this constraint assumes an identical mass-to-light ratio of cluster and subcluster before the merger, a more robust limit is inferred by the absence of an offset between galaxies and total mass peaks, which implies $\sigma/m < 1.25 \text{ cm}^2 \text{ g}^{-1}$ [231]. Almost the full range of cross sections needed to solve the discrepancies emerging in CDM models, $\sigma/m \sim 0.5–5 \text{ cm}^2 \text{ g}^{-1}$, is ruled out, thus disfavoring SIDM.

It has been suggested that the scattering cross section might be velocity-dependent, thus smaller on average in clusters than in galaxies (e.g. [220,223,227,232]). A possible functional form is

$$\sigma = \sigma_\ast \left(\frac{100 \text{ Km s}^{-1}}{v_{\text{rel}}}\right)^a.$$

In order to avoid a fast evaporation of the cluster or a core collapse, the parameters are restricted to be: $\sigma_\ast = 0.5–1 \text{ cm}^2 \text{ g}^{-1}$ and $a = 0.5–1$ [223,227], and simulations have
confirmed that, in this range, predictions match the observed flat cores [220]. However, observations of the LSB galaxy NGC 5963 seem to require an effective cross section per unit mass \(\sigma/m < 0.2 \, \text{cm}^2 \, \text{g}^{-1} \), in the low velocity regime \(\sim 150 \, \text{km} \, \text{s}^{-1} \), at odds with the quoted range [233].

In addition to the bounds presented above, which constrain the cross section per unit mass, additional limits come from the unitarity of the scattering matrix [35,36]. This argument provides upper bounds on the total cross section and inelastic cross section. In the low energy regime, taking into account the range of SIDM elastic cross sections needed to reproduce the observed halo profile, the constraint on the total cross section can be turned into an upper bound on the SIDM mass: \(m < 12 \, \text{GeV} \) [36]. Possible exceptions to unitarity bounds have been discussed in [35,36].

Self-annihilating DM has also been proposed to solve the cold dark matter cusp crisis [108] This scenario is, however, ruled out by the comparison of the neutrino flux from the galactic center with the measured rate of (atmospheric) neutrinos, i.e. the least detectable among the final states produced in DM annihilations [234]. For the mass range \(10^{-1} - 10^5 \, \text{GeV} \), \(\langle \sigma_{\text{ann}} v \rangle \) has to be less than roughly \(10^{-21} \, \text{cm}^3 \, \text{s}^{-1} \).

7. Is it consistent with direct DM searches?

Direct DM searches aim at detecting DM particles through the measurement of nuclear recoils produced by DM scattering. Despite the large DM flux expected at the Earth, \(\Phi \sim 10^5(100 \, \text{GeV}/m_{\text{DM}}) \, \text{cm}^{-2} \, \text{s}^{-1} \) assuming a local density of \(\rho_0 \sim 0.3 \, \text{GeV} \, \text{cm}^{-3} \) and mean velocity of \(\bar{v} \sim 220 \, \text{km} \, \text{s}^{-1} \), the weakness of WIMP interactions with nuclei makes direct detection challenging (see, e.g., [235] for a review of direct searches).

The coupling between a WIMP and a nucleon receives contributions from both scalar (spin-independent) and vector (spin-dependent) interactions. The cross section for spin-independent (SI) coupling with a nucleus (N) cross section is coherently enhanced with respect to the case of single nucleons:

\[
\sigma_{\text{SI}}^N \simeq A^2 (M_{\text{red}}(N, M_\chi)/M_{\text{red}}(p, N_\chi))^2 \sigma_{\text{SI}}^p,
\]

where \(A \) is the atomic number and \(M_{\text{red}} \) is the reduced mass of the system WIMP (\(\chi \))–nucleus (proton) [236].

Although heavy nuclei are used in current DM direct detection experiments, the results are often given in terms of the scattering cross section of protons in order to allow easy comparison between different experimental settings, involving different target materials. For spin-dependent (SD) couplings, there is no coherent enhancement, and the cross section is determined by unpaired neutrons or protons in the target nucleus. For this reason, SI interactions usually dominate the cross section in current experiments which exploit heavy nuclei. However, in the region of parameter space where scalar coupling is suppressed, spin-dependent couplings may represent the leading contribution to the direct detection event rate [237,238].

The signature of DM elastic scattering off nuclei are nuclear recoils, characterized by an exponential recoil spectrum with typical energies of \(\mathcal{O}(10) \, \text{keV} \) or less, for WIMP masses between 1 and 100 GeV (see for more details, e.g., [13]). In the case of inelastic scattering off nuclei or orbital electrons, the recoil is followed by a decay photon from the excited state [239,240]. However, the natural radioactivity background makes the
Detection of this signal very problematic. Current experiments exploit a variety of detection techniques, focusing on signals such as scintillation, phonons, ionization or a combination of them, as well as a variety of targets, e.g. NaI, Ge, Si and Xe.

In order to discriminate a DM signal against the natural background, some experiments have been searching for an annual modulation of the measured event rate [241]. In fact, the Earth’s rotation around the Sun is expected to produce a modulation of the relative velocity of DM particles given by

$$v_E = 220 \text{ km s}^{-1} \{1.05 + 0.07 \cos[2\pi(t - t_m)]\}/\text{1 year},$$

where t_m is approximately the beginning of June. The variation of the WIMP flux is actually small $\approx 7\%$, so that a large number of events has to be collected and therefore a large detector is needed.

In 1998, the DAMA collaboration obtained evidence for a modulation of the event rate, that was later confirmed with a confidence level of 6.3σ (see [242] for a recent discussion).

If interpreted in terms of an SI scattering of a WIMP off NaI, and further assuming an isothermal sphere DM halo, with a characteristic velocity of the Maxwell–Boltzmann distribution of $v_0 = 270 \text{ km s}^{-1}$, with a local DM density of $\rho = 0.3 \text{ GeV cm}^{-3}$, and with a slope $\rho \propto r^{-2}$, the DAMA result is compatible with the detection of a DM particle with a mass around 50 GeV and a WIMP–nucleon scattering cross section of the order of $10^{-41} - 10^{-42} \text{ cm}^2$.

Other experiments, such as CDMS and EDELWEISS, have explored the region of parameter space allowed by the DAMA modulation signal, finding null results [243,244]. The comparison between the DAMA annual modulation and the other mentioned experiments is, however, model-dependent. Taking into account astrophysical uncertainties, the DAMA-allowed region is sensibly increased, with masses extending up to $\sim 250 \text{ GeV}$ and a spin-independent WIMP–proton cross section down to 10^{-43} cm^2 [245–247]. Nevertheless, null searches of recent experiments make the most naive interpretation of the DAMA signal problematic [248–250].

It should be stressed, however, that the DAMA signal should not be dismissed without further investigation, especially in view of the fact that theoretical scenarios (despite being exotic) exist where an interpretation in terms of DM appears not to be in conflict with other existing experiments [267] (see also references therein).

The upper bounds on the WIMP spin-independent coupling inferred by several experiments are summarized in figure 5. The most stringent result (as of November 2007) was obtained by the XENON collaboration. The limits on SD cross section are far weaker and the best constraints, plotted in figure 6, come from CDMS [238], NAIAD [260], Super-Kamiokande [264] and KIMS [265]. A better sensitivity to spin-dependent couplings is expected for the COUPP experiment, a heavy liquid bubble chamber under development in the NuMi gallery at Fermilab [266].

In comparison, the theoretical predictions of neutralino elastic scattering off nucleons, for different SUSY scenarios, show that current direct searches have begun to explore a relevant portion of the parameter space, while improved sensitivities are needed to perform a complete scan [268,269].

Direct detection constraints exclude the left-handed sneutrino in the MSSM as the dominant dark matter component. However, the right-handed sneutrino, in extensions of the MSSM, is a viable dark matter candidate, compatible with direct searches [270,271].
Figure 5. Upper limits on the spin-independent WIMP–nucleon cross section versus WIMP mass. The blue dashed (points) line is the Ge (Si) CDMS bound [249]. The dark red, pink, green and dark blue curves are the experimental limits, respectively, from EDELWEISS [251], CRESST 2004 [252], ZEPLIN II (Jan. 2007) [253] and WARP [254]. The lowest red solid line shows the first results from XENON 10 [250]. The red shaded region is the parameter space favored by the DAMA experiment [246]. Supersymmetric models allow the filled regions colored: pink [255], green [256], dark red [257] and blue [258]. This figure has been obtained with the use of the interface at http://dendera.berkeley.edu/plotter/entryform.html.

8. Is it compatible with gamma-ray constraints?

Aside from direct and accelerator searches, one may search for DM through the detection of its annihilation products, such as photons, antimatter and neutrinos.

In particular, since the energy scale of the annihilation photons is set by the DM mass, and since some of the most studied DM candidates, such as the supersymmetric neutralino and the LKP in UED models, are expected to lie in mass in the GeV–TeV region, exotic gamma-ray sources are among the primary targets of indirect searches (see, e.g., [272] for a review about DM searches though gamma-ray astrophysics). Significant emissions at other wavelengths are, however, predicted in most cases, due to the interactions of the annihilation products with ambient photons or magnetic fields, making multi-wavelength searches possible. Emission at different energy scales has also been discussed in the context of other DM candidates, e.g. x-rays from the decay of sterile neutrinos (see section 9).

The gamma-ray flux from WIMP annihilations in a DM halo depends on the particle physics parameters as well as on cosmological quantities, such as the profile of DM halos. More precisely, the gamma-ray flux at the Earth (if the WIMP is not its own antiparticle, a factor of 1/2 must be added) is given by

$$\phi(\psi, E_\gamma) = \frac{\langle \sigma_{\text{ann}} v \rangle}{8\pi m^2_\chi} \frac{dN_\gamma}{dE} \times \int \text{l.o.s.} ds \, \rho^2(r(s, \psi)),$$

where $\langle \sigma_{\text{ann}} v \rangle$ is the annihilation cross section times velocity, dN_γ/dE is the photon flux, and $\rho(r(s, \psi))$ is the density profile.
Figure 6. Upper limits on spin-dependent WIMP cross section as a function of the WIMP mass, in the case of a pure neutron (proton) and proton (left) coupling. The blue solid (dashed) line is the Ge (Si) CDMS bound [238]. The blue dotted line is the CDMS limit with an alternative form factor [238]. The light red, cyan, magenta and red curves are the experimental limits, respectively, from EDELWEISS [263], PICASSO [261], NAIAD 2005 [260] and ZEPLIN I [262]. The dark green shaded region shows the parameter space favored by DAMA experiments [259]. Finally the green points represent the CRESST results [259], the black crosses stand for Super-Kamiokande [264] and the black circles for KIMS 2007 [265]. The figures have been obtained with the use of the interface at http://dendera.berkeley.edu/plotter/entryform.html.

where m_χ and $\langle \sigma_{\text{ann}}v \rangle$ are, respectively, the mass and the cross section annihilation times the relative velocity of the DM particle. From equation (1) in section 1 it follows that, to match the correct DM density, it is necessary for a cold thermal relic $\sigma_{\text{ann}}v \sim 10^{-26}$ cm3 s$^{-1}$, although this value is just indicative because, for instance, coannihilations can substantially modify the picture, plus the cross section in the non-relativistic limit may substantially differ from the one at decoupling (e.g. in the case of p-wave annihilations). dN_γ/dE is the photon spectrum from DM annihilations, which depends on the nature of the DM candidate. Finally, the last term in the equation is the integration along the line of sight of the dark matter density squared. The quadratic dependence on ρ, suggests that ideal targets of indirect searches are regions where the DM density is strongly enhanced, such as the galactic center (e.g. [273]–[279], [297]), halo substructures (e.g. [280]–[285]) and the core of external galaxies (e.g. [286]–[289]). Prospects for detecting gamma-rays have been discussed also for overdensities in DM halos called caustics (e.g. [290]–[294]). Much steeper profiles, called spikes, may form due to adiabatic growth of black holes, for example around the supermassive black hole at the galactic center (see, e.g., [295]–[297] for a discussion about the prospect for detecting DM annihilation gamma-rays in this scenario). Although in this case the spike is likely disrupted by astrophysical processes [295,298,299], a moderate enhancement, called a crest, may form again due to gravitational interactions with the observed stellar cusp [300].
More promising targets may be mini-spikes around intermediate massive black holes, since they are not affected by dynamical processes that tend to lower the density enhancement [301, 302].

Although conclusive evidence for dark matter annihilations has not been obtained so far, gamma-ray experiments have nonetheless provided a wide range of observations that can be used as upper bounds of gamma-ray fluxes from DM annihilations in order to constrain existing DM scenarios. In particular, observations in the soft gamma-ray energy band, between roughly 50 keV and 1 MeV, have been performed by the Osse experiments [308] and more recently by INTEGRAL in the range 20–8000 keV (see [309, 310]). All-sky observations have been performed by COMPTEL in the energy range 3–30 MeV [311] and EGRET from 30 MeV to over 30 GeV [312]. In figure 7 we show the spectrum of the inner galactic plane as measured by these experiments.

Current air Cherenkov telescopes such as CANGAROO [303], HESS [304], MAGIC [305] and VERITAS [306] are collecting data at higher energies and the GLAST satellite [307], which is scheduled for launch in 2008, will allow much deeper observation in the energy range 20 MeV–300 GeV.

As we have seen, there is no conclusive evidence of DM annihilations, but many claims of discovery, or hints of detection, have been put forward in recent years. For example, the gamma-ray source which has been detected by EGRET in the direction of the galactic center has been interpreted in terms of DM annihilations (as discussed, e.g., in [275, 276, 278, 279, 313]), although it was subsequently suggested that the source may be slightly offset with respect to the galactic center [314].

The HESS experiment has recently discovered a very high energy source spatially coincident with Sgr A*, the compact radio source at the galactic center, and the spectrum has been subsequently confirmed by the MAGIC collaboration. Even in this case, however,
the bulk of the signal can hardly be interpreted in terms of the annihilation of common DM candidates, since the shape of the energy spectrum is close to a perfect power law over two decades in energy, a circumstance that rather points towards ordinary astrophysical sources [273, 277].

Hints of a DM signal may hide in the extragalactic gamma-ray background (EGB) which is inferred from EGRET observations, after subtraction of the galactic component (see, e.g., [321]–[326]). The existence of a bump in the EGB spectrum at a few GeV [315, 316] has been tentatively interpreted in terms of DM annihilations [317]–[319]. However, this cannot be considered as evidence for DM, since the freedom in the DM (cosmological and particle physics) parameters allows enough freedom to explain almost any excess observed in the GeV–TeV range (see the discussion in [320]). In order to obtain conclusive answers, more robust evidence could be provided by the power spectrum of the EGB anisotropies as can be obtained, for example, by GLAST [327].

Another observation awaiting for a (not necessarily exotic) interpretation is the INTEGRAL detection of an intense 511 keV emission line, due to positron annihilations, towards the galactic center. Many astrophysical sources of positrons have been proposed, for example interactions of cosmic rays with the interstellar medium [328], pulsars [329], gamma-ray bursts [331], microquasars [332] or radioactive nuclei expelled by stars such as supernovae, Wolf–Rayet and red giants [330] (see [272, 309] and references therein). However, conventional astrophysical scenarios can hardly explain the size and morphology of the emitting region, which coincides roughly with the galactic bulge and which exhibits a fainter disk component [309, 310]. Other more exotic interpretations are again open, in particular the positron source may be provided by DM annihilations. DM candidates with masses close to the electroweak scale have been excluded because the concomitant photon emission would violate the gamma-ray bounds. However, this problem may be circumvented in models where the WIMP shares a quantum number with a species nearly degenerate in mass, with a splitting in the MeV range [333, 334].

It has been shown that a DM candidate in the MeV range may successfully explain the 511 keV line, while remaining compatible with other observational constraints [335, 336]. A list of alternative candidates include axinos [314], sterile neutrinos [337], cosmic strings [338], moduli [339], Q-balls [340] and scalars coupled to leptons with gravitational strength [337].

Upper limits on the WIMP mass, in order to be consistent with the EGRET and COMPTEL bounds, can be derived by comparing the gamma-ray emission from internal bremsstrahlung processes and in-flight annihilations with existing gamma-ray data [341]–[343], which set an upper limit on the mass of the DM particle of about 3–7 MeV (but see also [344]). This would be in conflict with the lower bound on the MeV DM particle mass (∼10 MeV) inferred by the cooling rate and neutrino emission of SN 1987A [194], unless the coupling of these particles with neutrinos is suppressed.

Anyway, all the dark matter interpretations of the 511 keV line are today disfavored by recent observations of the emission [345].

It is thus important to search for clear, smoking-gun signatures of DM. The first, and maybe foremost, would be the detection of mono-energetic gamma-ray lines produced, for example, by neutralino or LKP annihilations via loop diagrams with $\gamma\gamma$ or γZ as final states (see, e.g., [276, 321], [346]–[348]) or also in models with scalar dark matter [349, 350]. A number of alternative strategies have been proposed over the years; see, e.g., [351] for a recent review.
9. Is it compatible with other astrophysical bounds?

Neutrinos

Neutrinos can be produced in DM annihilations either directly or via the decay of other annihilation products, and may be detected with high energy neutrino telescopes which measure the Cherenkov light emitted by secondary muons propagating in water or ice.

The Sun and the Earth have been proposed as targets for indirect DM searches, since a large number of WIMPs could accumulate in their interior, releasing a large number of neutrinos. The neutrino flux depends on the capture rate of WIMPs in the Sun or in the Earth and thus on the elastic cross section of these particles.

The spin-dependent cross section is far less constrained than the spin-independent one (see section 6). Since in the Earth the abundance of nuclei with odd atomic numbers is very small, the capture rate is dominated by the strongly constrained spin-independent coupling, contrary to what happens in the Sun. The prospects for detecting neutrinos from the center of the Earth are therefore not particularly promising, at least for current and upcoming experiments [352]. The null searches of AMANDA have been used to derive an upper limit on neutrino flux from WIMP annihilations, for example in the framework of neutralino dark matter [353]. In the framework of MSSM, however, the most optimistic neutralino scenarios will be probed by kilometer-sized neutrino telescopes such as IceCube [354].

The prospects for detecting neutrinos from the annihilation of Kaluza–Klein dark matter in the Sun are more promising, because of its large axial coupling, and the annihilations of B^1 particles to neutrino and tau leptons pairs, respectively forbidden and subdominant in the case of neutralinos, dominate the neutrino spectrum, producing a large number of high energy neutrinos. The event rate in kilometer-scale detectors is expected to be between 0.5 and 10 events per year [355].

The galactic center (GC), a well studied site for gamma-ray DM searches, offers instead poor prospects for detecting dark matter annihilations though neutrinos. An upper limit on neutrino flux from the GC, in the case of neutralino dark matter, has been obtained by requiring that the associated gamma-ray emission would not exceed the flux measured by EGRET [356]. Unfortunately this bound is below the sensitivity of present and upcoming experiments, such as ANTARES, unless extreme scenarios are considered.

The prospects for detecting neutrinos from so-called mini-spikes around Intermediate-mass black holes (see the discussion in section 8) appear more promising. The strong enhancement of the DM density around these objects induces a substantial boost of the DM annihilation rate, leading to neutrino fluxes within the reach of ANTARES and IceCube [357].

A combination of data from different neutrino telescopes can already be used to set an upper bound on the total DM annihilation cross section in the non-relativistic limit, for WIMP masses between 100 MeV and 10^5 GeV, which is stronger than the unitarity bound [234].

Furthermore, neutrino experiments, as we have seen in section 7, can put strong limits on the spin-dependent WIMP–nucleon cross section, such as those provided by Super-Kamiokande under the assumption that the equilibrium between WIMP capture and self-annihilation is reached in the Sun [264].
Antimatter

Indirect searches of dark matter can be performed by looking at an exotic contribution in the spectra of positrons and antiprotons in cosmic-ray fluxes. These charged messengers, contrary to gamma-rays and neutrinos, do not provide information on the location of their source because of the interaction with the interstellar magnetic fields.

Positrons in cosmic rays mostly originate from the decay of charged pions and kaons produced in cosmic-ray interactions with interstellar gas. Analytic treatments and numerical codes have been developed to describe the propagation of cosmic rays, and to compute the amount of secondary cosmic rays, including positrons, produced by collisions of primary particles with the interstellar medium (see, e.g., [358] for a review about cosmic-ray propagation in the galaxy). The measurement of the positron fraction, i.e. the ratio of the positron flux over the sum of the positron and electron fluxes, provides an interesting tool to search for exotic positron sources in a region of a few kpc from us.

In 1994, the HEAT experiment has observed an excess of the positron fraction, with respect to standard propagation models, at energies beyond 7 GeV [359]. This result has been subsequently confirmed by further measurements obtained by HEAT [360] and recently by re-analysis of the AMS-01 data [361]. WIMP annihilations have been proposed to explain this enhancement, in particular in the framework of supersymmetry [362]–[369] and Kaluza–Klein dark matter [368,370]. The spectral shape of the positron excess can be well reproduced by LSP annihilation models but a very high annihilation rate is necessary to match the correct normalization, requiring therefore unnaturally large amounts of local dark matter substructures [367]. Instead, a modest boost factor is needed for Kaluza–Klein dark matter, due to their large annihilation rate to charged leptons, that leads to a larger number, and harder spectrum, of positrons [368,370].

The measurements of the positron fraction performed by several experiments, including AMS-01, CAPRICE and HEAT, are in agreement with each other but the large uncertainties, as shown in figure 8, do not allow us to draw definitive conclusions on the nature of the GeV excess. However, the situation may be clarified soon thanks to the larger positron statistics that will be obtained by the PAMELA satellite [371], which was launched in June 2006, and the AMS-02 experiment [372], which should be launched in the near future.

Dark matter annihilations in the galactic halo may produce antiprotons and the possible imprint on cosmic ray measurements, both at low and high energies, has been extensively studied [373]–[379]. However, the data collected by several experiments, in particular BESS, CAPRICE and BESS-Polar, agree with the calculations of the positron production by cosmic rays, showing no evidence for primary antiprotons [380] (figure 8 shows data from recent experiments and also theoretical calculations for pure secondary/primary antiproton production). Furthermore, these results cannot be easily translated into constraints on DM candidates, due to the large uncertainties on the antiproton flux induced by the propagation parameters [373,374]. Much more data will soon be available thanks to Bess-Polar, PAMELA and AMS-02, in particular at high energies, where the contribution from DM annihilations might be dominant for heavy enough WIMPs [379].
Dark matter candidates: a ten-point test

Figure 8. Left: positron fraction as a function of energy. Shown are the theoretical calculations for pure secondary production (solid and dashed lines) and for pure primary production from neutralino \((m_\chi = 336\text{ GeV})\) annihilations (dotted line). Red circles (squares) show a projection of the PAMELA measurements after three years of data taking with (without) a neutralino contribution. Right: energy spectrum of antiprotons. Shown are the theoretical prediction for secondary (solid and dashed lines) and primary production from neutralino \((m_\chi = 964\text{ GeV})\) annihilations (dotted line). From [371].

Despite the uncertainties in the propagation models, the study of antimatter fluxes can sometimes provide a useful diagnostic tool for specific DM scenarios. For instance, Bergström et al have investigated the DM annihilation model of [381], proposed to explain the EGRET excess of the diffuse galactic gamma-ray background, by computing the associated primary antiproton flux from WIMP annihilations. They were then able to rule out the scenario since the antiproton flux was found to grossly exceed the measured antiproton flux [382]. The model of [381] might still be made compatible with observations allowing for an anisotropic diffusion of cosmic rays [383].

Multi-wavelength approach and x-ray emission

More in general, a multi-messenger, multi-wavelength analysis provides more robust results than the simpler fit-the-bump approach. For example, when interpreting the origin of a gamma-ray source, one may study the associated synchrotron, bremsstrahlung and inverse Compton emission produced by electrons and positrons inevitably produced along with gamma-rays in DM annihilations. These signals can, in principle, extend over a wide range of wavelengths, all the way from radio to gamma-rays. The limited field of view of radio and x-ray experiments makes it easier to perform multi-wavelength studies of a restricted number of candidate sources, such as the galactic center [297,384,385], galaxy clusters [386,387] and dwarf galaxies [388,389]. Radio and x-ray observations are powerful techniques to search for WIMP annihilations and they can provide constraints even more restrictive than those inferred from gamma-rays [385,389].
X-ray observations provide useful constraints also on DM candidates other than WIMPs. For example, sterile neutrinos (see section 2) can decay into active neutrinos ν_α and photons with energies in the X band: $\nu_s \rightarrow \nu_\alpha + \gamma$, $E_\gamma = m_s/2$. Therefore, x-ray observations constrain the sterile neutrino mass m_s and their mixing angle with active neutrinos. Assuming then a production mechanism (see, e.g., [71]), these limits can be turned into an upper bound on the particle mass. The observation of the cosmic x-ray background requires $m_s < 8.9$ keV (95% CL) [390], but more stringent constraints are obtained from individual objects, such as galaxies or clusters of galaxies. For example the XMM-Newton observations of Virgo A impose $m < 10.6$ keV (95% CL) [391] and an analysis of the Virgo and Coma cluster data further restrict the bound to $m < 6.3$ keV (95% CL) [391, 392]. A significant improvement has been obtained from x-ray observations of the Andromeda galaxy: $m < 3.5$ keV (95% CL) [393]. These results, combined with the lower limit on the sterile neutrino mass inferred by measurements of small-scale clustering (see section 2), rule out sterile neutrinos in this scenario as the dominant dark matter component, constraining their fraction of the total dark matter amount to be $f_s \lesssim 0.7$ at the 2σ level [394].

However, sterile neutrinos remain viable for alternative production mechanisms, such as Higgs decays in models with an extended Higgs sector [395], or a resonant production in the presence of a very large lepton asymmetry in the Universe, $L \gg 10^{-10}$ [72, 73].

10. Can it be probed experimentally?

The last requirement for a particle to be a good DM candidate, is that such a particle can be probed experimentally, in the sense that it can be directly detected or that convincing evidence for it, or for the theoretical scenario it arises from, can be obtained with present or future experiments. The nature of this requirement is different from that of the nine other conditions discussed above, where we have essentially required that DM scenarios are not in conflict with existing experiments and observations. Here we add the requirement of ‘discoverability’, which reflects our prejudice on what can be considered a good theory in science.

10.1. Probing super-WIMPs

DM particles may interact far less than weakly, and they could evade all conventional dark matter searches. For example, the supersymmetric gravitino, which only couples gravitationally, has been proposed as a well-motivated dark matter candidate. The LKP graviton in UED, axions and axinos are other examples of super-weakly interacting massive particles (or super-WIMPs), i.e. dark matter candidates that can be extremely difficult or impossible to observe in direct and indirect dark matter searches because of their very suppressed interactions [30, 396, 397].

However, the next to lightest supersymmetric particle (NLSP) could be long-lived, for example the stau NLSP lifetime is of the order of 10^6 s, for gravitino masses of 10 GeV [398]. If the NLSP is a neutralino, this scenario may have an interesting collider signature, similar to the case of neutralino LSP, because the decays of the NLSP neutralino may occur outside the detector. In this case, the sparticle spectrum may allow the discrimination between gravitino and neutralino LSP through the analysis of selected decay channels [399] or spins [400], even if this program may be challenging for the LHC.
A stau NSLP scenario, as possibly realized in supergravity models \cite{399}, offers a more promising opportunity to uncover gravitino dark matter models in colliders. The charged NLSP particle would have distinctive time-of-flight and energy loss signatures that might enable us to reconstruct its mass with high accuracy, at a level of percent or even smaller \cite{399,401,402}. A stau would be produced at the end of every supersymmetric cascade and, being strongly ionizing, if it is sufficiently slow moving, it may be stopped inside the detector or in a surrounding water tank or calorimeter detector. In particular, it has been suggested that up to $\mathcal{O}(10^3)$ and $\mathcal{O}(10^4)$ charged NLSP can be trapped per year at the LHC and ILC, respectively, by placing a 10 kton trap around the detector \cite{398,402,403}.

Collecting a large number of stau, it would be possible to measure the stau lifetime and kinematically determine the gravitino mass from the dominant decay $\tilde{\tau} \rightarrow \tau + \tilde{g}$. The measurements of gravitino and stau masses would allow us to compute the stau lifetime predicted by the supergravity model and, if it matches the experimental value, one would have obtained strong evidence for supergravity and for gravitino LSP \cite{398,400,403}.

Detailed simulations have been performed to study the gravitino dark matter scenario at the LHC and ILC (e.g. \cite{399,401,404}). In particular, at the ILC, with an integrated luminosity of 200 fb$^{-1}$ at $\sqrt{s} = 420$ GeV, thousands of stau will be stopped within the hadron calorimeter, allowing a reconstruction of the gravitino mass with an accuracy of a few GeV and a determination of the Planck mass, for a test of supergravity predictions, at a level of 10\% \cite{404}.

As discussed in section 4, for NLSP and gravitino masses in the GeV range, BBN bounds severely constrain the case of neutralino and stau NLSP, while a sneutrino NLSP is perfectly viable. In the latter case, the NLSP decay is invisible, but the predicted small sneutrino–stau mass splitting may produce interesting collider signatures, with soft jets or leptons in the final states \cite{405}. Finally, models of gravitino DM with broken R-parity may also be searched for in accelerators \cite{406}–\cite{408}, but also through indirect detection \cite{409,410}.

Axinos

Axinos appear in supersymmetric models implementing the Peccei–Quinn mechanism for solving the strong CP problem and correspond to the fermionic superpartner of the axion. Their mass ranges between the eV and the GeV scale and they can be efficiently produced through thermal and non-thermal processes in the early Universe under the form of cold, warm or even hot dark matter (see, e.g., \cite{396}, \cite{411}–\cite{413} and references therein).

In particular, axino cold dark matter is achieved for masses $m \geq 100$ keV and for low reheating temperatures $T_R \leq 10^6$ GeV, in contrast with gravitino CDM that can allow for higher values of T_R, such as $T_R \sim 10^{10}$ GeV for $m_{\tilde{g}} \sim 1$ TeV.

Axino couplings are suppressed by the inverse of the Peccei–Quinn breaking scale, $f_a \geq 10^9$ GeV, and therefore these particles are extremely weakly interacting. As a consequence, similarly to the case of gravitino LSP, the lifetime of the NLSP can be long and the strong bounds from Big Bang Nucleosynthesis avoided \cite{413}.

The direct production of axinos at colliders is strongly suppressed but they can be profusely produced by the decays of the NLSP particles. As in the case of gravitinos, a large number of sleptons NLSP could be collected, in order to measure the NLSP lifetime...
and to reconstruct the axino mass and the Peccei–Quinn scale f_a (see \cite{412} and references therein).

However, the problem may arise of discriminating between axino and gravitino LSP models. For instance, a stau NLSP with a lifetime within the range $0.01 \text{ s} - 10 \text{ h}$ is predicted in both scenarios, while shorter or longer lifetimes are possible only with a gravitino LSP. To solve this ambiguity, one may consider the three-body decay $\tilde{\tau} \rightarrow \tau + \gamma + \tilde{g}/\tilde{a}$. For at least $O(10^4)$ observed stau decays, a clear distinction between the two models can be achieved through the angular distribution of the decay products and/or measuring its branching ratio \cite{402,414}.

Axion

Axions have been proposed as a viable CDM candidate and the suppression of their interactions by the Peccei–Quinn scale makes them very weakly interacting (see, e.g., \cite{49,50} and references therein for more information). Their relic abundance matches the dark matter cosmological density for masses around $10 \mu \text{eV}$ but significant deviations from this value can occur because of the large uncertainties in the production mechanisms.

One of the most prominent phenomenological properties is the two-photon interaction that allows axion–photon conversions in the presence of an electromagnetic field:

$$\mathcal{L}_{a\gamma} = g_{a\gamma} E \cdot B a.$$

Here, E and B are, respectively, the electric and magnetic fields, a is the axion field and $g_{a\gamma}$ is the coupling constant.

This coupling constant is linearly related to the mass of the axion and connected to measured properties of the pions and to details of the underlying particle physics model. However, in some cases this relation can be relaxed, postulating the existence of axion-like particles with unconnected masses and couplings. The Primakoff process that converts axions into photons is at the basis of most axion searches (see, e.g., \cite{50,415} for a discussion about axion searches).

For example, galactic dark matter axions could be resonantly converted into microwave photons in the magnetic field permeating a cavity. The signal would carry information on the mass as well as the axion distribution in the galactic halo. The ADMX experiment \cite{416} has already started to explore the region of parameter space favored for dark matter axions, while a larger portion will be probed by the upgraded version of the same project and upcoming microwave cavity experiments.

Complementary searches are dedicated to axions produced by photon conversion in the electromagnetic field of the Sun, probing regions of the parameter space where axions are unlikely to be the dominant component of dark matter.

Solar axions can be searched for with axion helioscopes, through the reconversion to x-rays in external magnetic fields. The strongest bound is obtained by the null searches of the CAST experiment $g_{a\gamma} < 8.8 \times 10^{-11} \text{ GeV}^{-1}$ for $m_a \lesssim 0.02 \text{ eV}$ \cite{417}.

In addition, one may look for the axion Primakoff conversion into photons in the intense Coulomb field of nuclei in a crystal lattice. However the inferred limits are less restrictive with respect to the previous strategy.

Axions could also affect the polarization of a laser beam propagating through a magnetic field. If the light is linearly polarized with a non-vanishing angle to the magnetic field direction, the polarization plane rotates because the polarization component parallel...
to the magnetic field is depleted by the photon–axion conversion processes whereas the perpendicular component is not. In addition to the rotation of the polarization plane (dichroism), an ellipticity is developed (birefringence) because of the different refractive indexes of the parallel and transverse polarization components. A positive signal of dichroism and birefringence was initially claimed by the PVLAS collaboration [145] and some models have been proposed to reconcile an axion-like interpretation with existing astrophysical bounds [139], [418]–[420]. However, recent observations, after an upgrade of the apparatus, appear to suggest that the signal was likely due to instrumental artifacts [146].

Axions can also be searched for with photon regeneration experiments, such as ALSP [421]. A laser beam propagates through a magnetic field where photons can be converted into axions. These particles, contrary to photons, can easily pass through an opaque barrier wall and they can be subsequently reconverted into photons by the use of a second magnetic field. Finally, gamma-ray experiments could be sensitive to axion-like particles because the photon–axion conversions in the galactic magnetic field or in the photon production sites could induce detectable signatures in the spectra and fluxes of high energy gamma-ray sources [422]–[425].

10.2. UED or SUSY?

Even if a detailed discussion is beyond the scope of this paper, we briefly mention the important role of electroweak measurements on constraining DM models. In fact, accelerator bounds can severely reduce the parameter space of particle physics models and even rule out dark matter candidates. As an example, a light left-handed sneutrino is excluded as a dominant dark matter candidate from the measurements of the invisible width of the Z gauge boson [426, 427].

The constraints from collider experiments are highly model-dependent and their impact has been extensively studied on selected models, for example for a large class of supersymmetric models [428]–[434], and for UED [435, 436] and little Higgs [437] theories.

We conclude this section with a comment on the discrimination between different DM scenarios. In fact, even in the case of the most well-studied DM candidates, i.e. the supersymmetric neutralino and the LKP in UED, the experimental signatures may not easily allow an unambiguous identification. As we have seen, neutralinos could be pair-produced at the LHC and escape the detector, leading to an imbalance of measured momentum. The discovery reach depends on the rate of such missing energy events, which is strongly related to the squarks and gluino masses. The discovery potential of the LHC and the ability to determine the SUSY parameters and masses for given supersymmetric models have been extensively studied [438]–[446] and for squarks and gluino lighter than 1 TeV the necessary integrated luminosity will be available at the LHC already in the first year of operation [438]. In figure 9 we show the reach of the LHC to TeV scale SUSY, for different channels.

An important role, in the discovery and understanding of SUSY, may be played by the planned positron–electron International Linear Collider (ILC) that should allow a more precise reconstruction of the supersymmetric parameters.

The interplay of the LHC and ILC might be crucial for dark matter studies, because it would allow us to measure the particle physics cross sections and sparticle masses
Figure 9. An example of the reach of the LHC to TeV-SUSY for different channels in the plane m_0 versus $m_{1/2}$ in the mSUGRA model. The channels taken into account are: zero leptons (0l), one lepton (1l), leptons with opposite charge (OS), leptons with same charge (SS), three leptons (3l), four or more leptons ($\geq 4l$), any number of leptons plus one photon (γ), at least two opposite sign leptons with the invariant mass within an optimized interval around the Z mass ($Z \to l^+l^-$) and the inclusive missing transverse energy channel. The solid lines are the 2 TeV mass contours for squark and gluinos. The red region is excluded by theoretical arguments and the magenta region is excluded experimentally. An integrated luminosity of 100 fb$^{-1}$ is assumed. From [439].

with enough accuracy to infer the neutralino relic density and to test whether the LSP really constitutes dark matter [447] (see also [448] for a broader discussion on the complementarity of LHC and ILC).

The prospects for discovery of Universal Extra Dimension at the LHC are also promising. The most abundantly produced states are those strongly interacting, i.e. the first level quarks and gluons, with very large production cross sections for masses in the range of a few hundred GeV [449]. The first excitation of the hypercharge gage boson, B^1, can be the LKP and, thanks to KK-parity conservation, a good dark matter candidate. Similarly to R-parity conserving SUSY, the first level KK states have to be pair-produced and they subsequently decay into SM particles and into B^1 LKP, with the latter escaping from the detector and leading to a missing energy signature. At the LHC, the signature with the largest rate is $E_T^{\text{miss}} + (N \geq 2)$ jets, but a more promising channel for UED discovery is that of multilepton final states, with the signature $4l + E_T^{\text{miss}}$. The LHC should then probe an inverse compactification radius of $R^{-1} \simeq 1.5$ TeV [450].

However, if a signal of new physics will be detected at the LHC, the problem will arise of discriminating between UED and SUSY [450]. In addition, also restricting to SUSY models, the LHC will leave degeneracies in the parameter space, as has been shown in [451, 452]. Some specific features may simplify the task [453]–[456], also for a discrimination between SUSY and little Higgs model [457].
Table 1. Test performance of selected DM candidates. The ✓ symbol is used when the candidates satisfy the corresponding requirement, and it is accompanied by a ! symbol, in the case that present and upcoming experiments will soon probe a significant portion of the candidate’s parameter space. If the requirement can be satisfied only in less natural, or non-standard scenarios, or in the case of tension with observational data, the symbol ∼ is used instead. Candidates with a ∼ symbol in the last column, where the final result is shown, should still be considered viable. If one of the requirements is not satisfied, then the symbol × is used, and since these requirements are necessary conditions, the presence of a single × is sufficient to rule out the particle as a viable DM candidate.

DM candidate	I	II	III	IV	V	VI	VII	VIII	IX	X	Result
SM Neutrinos	×	×	✓	✓	✓	✓	✓	✓	✓	×	
Sterile Neutrinos	∼	∼	✓	✓	✓	✓	✓	✓	✓	∼	
Neutralino	✓	✓	✓	✓	✓	✓	✓!	✓	✓!	✓	✓
Gravitino	✓	✓	✓	✓	✓	✓	✓	✓	✓	∼	
Gravitino (broken R-parity)	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	
Sneutrino $\tilde{\nu}_L$	∼	✓	✓	✓	✓	✓!	✓	✓	✓!	✓	✓
Sneutrino $\tilde{\nu}_R$	✓	✓	✓	✓	✓	✓!	✓	✓	✓	×	
Axino	✓	✓	✓	✓	✓	✓	✓	✓	✓	∼	
SUSY Q-balls	✓	✓	✓	✓	✓	✓	✓	✓	✓	∼	
B^1 UED	✓	✓	✓	✓	✓	✓	✓!	✓	✓!	✓	✓
First level graviton UED	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	×
Axion	✓	✓	✓	✓	✓	✓!	✓	✓	✓	∼	
Heavy photon (little Higgs)	✓	✓	✓	✓	✓	✓	✓!	✓	✓!	✓	✓
Inert Higgs model	✓	✓	✓	✓	✓	✓	✓!	✓	✓!	✓	✓
CHAMPs	✓	✓	×	✓	✓	×	✓	✓	✓!	✓	(∆)
Wimpzillas	✓	✓	✓	✓	✓	✓	✓!	✓	✓	∼	(∆)

a It is possible to reconcile a graviton LKP scenario with CMB and diffuse photon background measurements, if the minimal UED model is extended with right-handed neutrinos, [458].
b There are not yet studies on neutrino or antimatter signals potentially produced by this dark matter candidate.

For example, the spins of KK states are the same as their SM partners while in SUSY they differ by 1/2. The spin determination at the LHC will be an extremely difficult task, but a charge asymmetry in the lepton-jet invariant mass distributions from particular cascade decays could be used to discriminate UED and SUSY. In particular, quasi-degenerate mass spectra, such as those expected in UED, tend to wash out the spin correlations and therefore the prospect to exclude a UED pattern given a SUSY spectrum are much better than vice versa [454]–[456].

Another difference between the two models is the structure of the Higgs sector: in the minimal UED model the analogs of the heavy Higgs bosons in MSSM, H^0, A^0, H^\pm are absent. Even if the first level of Higgs boson has the same quantum numbers, it appears more similar to the higgsino, since it carries KK-parity. However, this is not a robust criterion of discrimination at the LHC because there are regions of the SUSY parameter
space where only the SM Higgs bosons can be detected, and therefore SUSY and UED could be confused [450].

A smoking-gun signature of UED models is instead provided by the detection of second-level particles. The γ^2 and Z^2 offer the best prospect for discovery and their resonances can be separately detected for $R^{-1} \leq 1$ TeV [454]. However, this is not a probe of UED because the resonance could be interpreted as an extra Z boson. A quasi-degenerate B^1-Z^1 double resonance is instead a more robust feature of UED, being an accidental mass degeneracy of extra-Z bosons unmotivated. However, this double peak structure would be very difficult to observe at the LHC (see [454] for more details).

In conclusion, it is likely that the LHC alone will leave the door open to several models. Anyway, the ILC, with $\sqrt{s} = 3$ TeV, will provide a more adequate tool to effectively distinguish UED and SUSY. In particular the angular distribution of the events and the threshold shape in the KK muons/smuons pair production are the most convincing evidence for UED/SUSY discrimination [453].

11. Conclusions

In conclusion, we have presented a set of requirements that a particle has to fulfill in order to be considered a viable DM candidate. The requirements are presented in the form of a ten-point test, and we have discussed each of them in a dedicated section that describes the nature of the requirement and guides the reader through the relevant literature.

The test performance of a small subset of DM candidates proposed over the years is shown in table 1. The ✓ symbol is used when the candidates satisfy the corresponding requirement, and it is accompanied by a ! symbol, in the case that present and upcoming experiments will soon probe a significant portion of the candidate’s parameter space. If the requirement can be satisfied only in less natural, or non-standard scenarios, or in the case of tension with observational data, the symbol ~ is used instead. Candidates with a ~ symbol in the last column, where the final result is shown, should still be considered viable. If one of the requirements is not satisfied, then the symbol × is used, and since these requirements are necessary conditions, the presence of a single × is sufficient to rule out the particle as a viable DM candidate.

Acknowledgments

We acknowledge partial support from the European Research Training Networks HTRN-CT-2006-035863 (UniverseNet) and MRNT-CT-2004-503369 (Quest For Unification), the Special Research Project PRIN 2006023491 (Fundamental Constituents of the Universe) of the Italian Ministry of University and Research (MiUR) and the INFN Special Project on Astroparticle Physics FA51. One of us (MT) would like to thank the International Doctorate on Astroparticle Physics (IDAPP) of the MiUR for partial support during his stay at the IAP in Paris and the IAP for hospitality.

References

[1] Bertone G, Hooper D and Silk J, 2005 Phys. Rep. 405 279 [SPIRES] [hep-ph/0404175]
[2] Bergstrom L, 2000 Rep. Prog. Phys. 63 793
[3] Scott D and Smoot G F (Particle Data Group), 2006 Preprint astro-ph/0601307
[4] Dodelson S, 2003 Modern Cosmology (London: Academic)
Bode P, Ostriker J P and Turok N, 2001 Astrophys. J. 560 636 [SPIRES]
El-Zant A, Schramm I and Hoffman Y, 2001 Astrophys. J. 560 636 [SPIRES]
Weinberg M D and Katz N, 2002 Astrophys. J. 580 627 [SPIRES]
Spergel D N and Steinhardt P J, 2000 Phys. Rev. Lett. 84 3760 [SPIRES]
Kaplinghat M, Knox L and Turner M S, 2000 Phys. Rev. Lett. 85 3335 [SPIRES]
Bode P, Ostriker J P and Turok N, 2001 Astrophys. J. 556 93 [SPIRES]
Sommer-Larsen J and Dolgov A, 2001 Astrophys. J. 551 608 [SPIRES] [astro-ph/9912166]
Viel M, Lesgourgues J, Haehnelt M G, Matarrese S and Riotto A, 2005 Phys. Rev. D 71 063534 [SPIRES] [astro-ph/0605706]
Baltz E A and Murayama H, 2003 J. High Energy Phys. JHEP05(2003)067 [SPIRES] [astro-ph/0108172]
Dodelson S and Widrow L M, 1994 Phys. Rev. Lett. 72 17 [SPIRES]
Colombi S, Dodelson S and Widrow L M, 1996 Astrophys. J. 458 1 [astro-ph/9505029]
Abazajian K, 2006 Phys. Rev. D 73 063513 [SPIRES] [astro-ph/0605706]
Viel M, Lesgourgues J, Haehnelt M G, Matarrese S and Riotto A, 2006 Phys. Rev. D 70 071301 [SPIRES]
Seljak U, Makarov A, McDonald P and Trac H, 2006 Phys. Rev. Lett. 97 191303 [SPIRES] [astro-ph/0602430]
Vi et M, Becker G D, Bolton J S, Haehnelt M G, Rauch M and Sargent W L W, 2007 Preprint 0709.0131 [astro-ph]
Barkana R, Haiman Z and Ostriker J P, 2001 Astrophys. J. 556 483 [SPIRES] [astro-ph/0103050]
Yoshida N, Sokasian A and Hernquist L and Springel V, 2003 Astrophys. J. 591 L1 [SPIRES]
Jedamzik K, Lemoine M and Mouttaka G, 2006 J. Cosmol. Astropart. Phys. JCAP07(2006)010 [SPIRES]
Biermann P L and Kusenko A, 2006 Phys. Rev. Lett. 96 091301 [SPIRES] [astro-ph/0601004]
Stasielak J, Biermann P L and Kusenko A, 2007 Astrophys. J. 654 290 [SPIRES] [astro-ph/0606435]
Ripamonti E, Mapelli M and F errara A, 2007 Mon. Not. R. Astron. Soc. 375 1399 [astro-ph/0606483]
Dimopoulos S, Giudice G F and Pomarol A, 1996 Phys. Lett. B 389 37 [SPIRES]
De Rujula A, Glashow S L and Sarid U, 1990 Nucl. Phys. B 333 173 [SPIRES]
Dimopoulos S, Eichler D, Esmailezadeh R and Starkman G D, 1990 Phys. Rev. D 41 2388 [SPIRES]
Kudo A and Yamaguchi M, 2001 Phys. Lett. B 516 151 [SPIRES]
Groom D E et al., Particle data group, 2001 Eur. Phys. J. C 15 1 [SPIRES]
Hambrick T et al., 1990 Phys. Rev. D 41 2074 [SPIRES]
Perl M L et al., 2001 Int. J. Mod. Phys. A 16 2137 [SPIRES] [hep-ex/0102033]
Barwick S W et al., 1990 Phys. Rev. Lett. 64 2859 [SPIRES]
Snowden-Ifft D P et al., 1990 Astrophys. J. 364 L25 [SPIRES]
Gould A et al., 1990 Phys. Lett. B 238 337 [SPIRES]
Chivukula R S et al., 1990 Phys. Rev. Lett. 65 957 [SPIRES]
Holdom B, 1986 Phys. Lett. B 206 95 [SPIRES]
Holdom B, 1991 Phys. Lett. B 259 329 [SPIRES]
Abel S A, Jaeckel J, Koeho V V and Ringwald A, 2006 Preprint hep-ph/0608248 [SPIRES]
Masso E and Redondo J, 2006 Phys. Rev. Lett. 97 151802 [SPIRES] [hep-ph/0606163]
Abel S A and Schofield B W, 2004 Nucl. Phys. B 685 150 [SPIRES] [hep-th/0311051]
Batell B and Gherghetta T, 2006 Phys. Rev. D 73 045016 [SPIRES] [hep-ph/0512356]
Davison S, Hannestad S and Raffelt G, 2000 J. High Energy Phys. JHEP05(2000)003 [SPIRES] [hep-ph/0001179]
Dubovsky S, Garbunov D and Rubtsov G, 2004 JETP Lett. 79 1 [hep-ph/0311189]
Gninenko S N, Krasnikov N V and Rubbia A, 2007 Phys. Rev. D 75 075014 [SPIRES] [hep-ph/0612203]
Zavattini E et al. (PVLAS Collaboration), 2007 Phys. Rev. Lett. 96 110406 [SPIRES] [astro-ph/0507107]
Zavattini E et al. (PVLAS Collaboration), 2007 Preprint 0706.3419 [hep-ex]
Gies H, Jaeckel J and Ringwald A, 2006 Phys. Rev. Lett. 97 140402 [SPIRES] [hep-ph/0607118]
Melchiorri A, Polosa A D and Strumia A, 2007 Preprint hep-ph/0703144 [hep-ph/0512356]
Sarid U and Thomas S D, 2000 Phys. Rev. Lett. 85 1178 [SPIRES] [hep-ph/9903349]
Farrar G, 1991 Phys. Lett. B 265 395 [SPIRES]
Ribi S and Tobe K, 1999 Nucl. Phys. B 539 3 [SPIRES]
Chacko Z, Dutta B, Mohapatra R N and Nandi S, 1997 Phys. Rev. D 56 5466 [SPIRES]
Berezhiani Z G and Mohapatra R N, 1995 Phys. Rev. D 52 6611 [SPIRES]
Kang J, Luty M A and Nasri S, 2006 Preprint hep-ph/0611322 [SPIRES]
Starkman G, Gould A, Esmailezadeh R and Dimopoulos S, 1990 Phys. Rev. D 41 3594 [SPIRES]
Dark matter candidates: a ten-point test

[205] Bottino A, Fiorentini G, Fornengo N, Ricci B, Scopel S and Villante F L, 2002 Phys. Rev. D 66 053005 [SPIRES] [hep-ph/0206211]
[206] Lopes I P, Bertone G and Silk J, 2002 Mon. Not. R. Astron. Soc. 337 1179 [astro-ph/0205066]
[207] Salati P and Silk J, 1989 Astrophys. J. 338 24 [SPIRES]
[208] Scott P, Edsjo J and Fairbairn M, 2007 Preprint 0711.0991 [astro-ph]
[209] Fairbairn M (CERN), Scott P and Edsjo J, 2007 Preprint 0710.3396 [astro-ph]
[210] Moskalenko I V and Wai L L, 2007 Astrophys. J. 659 L29 [SPIRES] [astro-ph/0702654]
[211] Moskalenko I V and Wai L L, 2007 AIP Conf. Proc. 921 508 [0704.1324] [astro-ph]
[212] Bertone G and Fairbairn M, 2007 Preprint 0709.1485 [astro-ph]
[213] Chen X L and Kamionkowski M, 2004 Phys. Rev. D 70 043502 [SPIRES] [astro-ph/0310473]
[214] Spolyar D, Freese K and Gondolo P, 2007 Preprint 0705.0521 [astro-ph]
[215] Kusenko A and Shaposhnikov M, 1998 Phys. Lett. B 418 46 [SPIRES]
[216] Farrar G R, 1984 Phys. Rev. Lett. 53 1029 [SPIRES]
[217] Bento M C, Bertolami O, Rosenfeld R and Teodoro L, 2000 Phys. Rev. D 62 014302 [SPIRES] [astro-ph/0003350]
[218] Yoshioka N, Springel V, White S D M and Tormen G, 2000 Astrophys. J. 544 L87D [SPIRES]
[219] Davé R, Spergel D N, Steinhardt P J and Wandelt B D, 2001 Astrophys. J. 547 574 [SPIRES]
[220] Colin P, Avila-Reese V, Valenzuela O and Firmani C, 2002 Astrophys. J. 581 777 [SPIRES]
[221] Ahn K and Shapiro P R, 2002 J. Korean Astron. Soc. 36 89 [astro-ph/0212575]
[222] Ahn K and Shapiro P R, 2005 Mon. Not. R. Astron. Soc. 363 1092 [astro-ph/0412169]
[223] Gnedin O Y and Ostriker J P, 2001 Astrophys. J. 561 61 [SPIRES]
[224] Furlanetto S R and Loeb A, 2002 Astrophys. J. 565 854 [SPIRES]
[225] Natarajan P, Loeb A, Khue J-P and Smail I, 2002 Astrophys. J. 580 L17 [SPIRES] [astro-ph/0207045]
[226] Arabadji S J S, Bautz M W and Garmire G P, 2002 Astrophys. J. 572 66 [SPIRES]
[227] Hennawi J F and Ostriker J P, 2002 Astrophys. J. 572 41 [SPIRES]
[228] Miralda-Escudé J, 2002 Astrophys. J. 564 60 [SPIRES]
[229] Tucker W H, Tananbaum H and Remillard R A, 1995 Astrophys. J. 444 532 [SPIRES]
[230] Markevitch M, Gonzales A H, Clowe D, Vikhlinin A, Forman W, Jones C, Murray S and Tucker W, 2004 Astrophys. J. 606 819 [SPIRES] [astro-ph/0309303]
[231] Randall S W, Markevitch M, Clowe D, Gonzales A H and Bradac M, 2007 Preprint 0704.0261 [astro-ph]
[232] Firmani C, D'Onghia E, Avila-Reese V, Chincarini G and Hernández X, 2001 Mon. Not. R. Astron. Soc. 315 L29
[233] Sánchez-Salcedo F J, 2005 Astrophys. J. 631 244 [SPIRES] [astro-ph/0506345]
[234] Beacom J F, Bell N F and Mack G D, 2006 Preprint astro-ph/0608090
[235] Munoz C, 2004 Int. J. Mod. Phys. A 19 3093 [SPIRES] [hep-ph/0309346]
[236] Kurylov A and Kamionkowski M, 2004 Phys. Rev. D 69 063503 [SPIRES]
[237] Bednarek O and Simkovic F, 2006 Phys. Part. Nucl. 37 S106 [hep-ph/0608097]
[238] Akerib D S et al, 2006 Phys. Rev. D 73 011102 [SPIRES]
[239] Ellis J, Flores R A and Lewin J D, 1988 Phys. Lett. B 212 375 [SPIRES]
[240] Starkman G D and Spergel D N, 1995 Phys. Rev. Lett. 74 2623 [SPIRES]
[241] Drukier A K, Freese K and Spergel D N, 1988 Phys. Rev. D 37 3388 [SPIRES]
[242] Bernabei R et al, 2006 AIP Conf. Proc. 878 91
[243] Benoit A et al, 2002 Phys. Lett. B 545 43 [astro-ph/0206271]
[244] Akerib D S et al, 2003 Phys. Rev. D 68 082002 [SPIRES] [hep-ex/0306001]
[245] Belli P, Bernabei R, Bottino A, Fornengo N, Proserpio D and Scopel S, 2000 Phys. Rev. D 61 023512 [SPIRES]
[246] Bernabei R et al, 2000 Phys. Lett. B 480 23 [SPIRES]
[247] Belli P, Cerulli R, Fornengo N and Scopel S, 2002 Phys. Rev. D 66 043503 [SPIRES] [hep-ph/0203242]
[248] Copi J C and Krauss L M, 2003 Phys. Rev. D 67 103507 [SPIRES] [astro-ph/0208010]
[249] Akerib D S et al, 2006 Phys. Rev. Lett. 96 011302 [SPIRES]
[250] Angle J et al (XENON Collaboration), 2007 Preprint 0706.0039 [astro-ph]
[251] Sanglard V et al, 2005 Phys. Rev. D 71 123002 [SPIRES] [astro-ph/0503265]
[252] Angleso G et al, 2005 Astropart. Phys. 23 325 [SPIRES]
[253] Akerib D G et al, 2007 Preprint astro-ph/0706286
[254] Baer H, Balazs C, Belyaev A and O’Farrill J, 2003 Preprint hep-ph/0305191
[255] Ruiz de Austri R, Trotta R and Roszkowski L, 2006 J. High Energy Phys. JHEP05(2006)002 [SPIRES] [hep-ph/0602028]
[256] Baltz E A and Gondolo P, 2004 J. High Energy Phys. JHEP10(2004)052 [SPIRES]
Dark matter candidates: a ten-point test

[258] Baltz E A and Gondolo P, 2003 Phys. Rev. D 67 063503 [SPIRES]
[259] Savage C, Gondolo P and Freese K, 2004 Phys. Rev. D 70 123513 [SPIRES] [astro-ph/0408346]
[260] Ahner G J et al [UKDMC], 2005 Phys. Lett. B 616 17 [SPIRES]
[261] Barnabe-Heider M et al, 2005 Phys. Lett. B 624 186 [SPIRES]
[262] Kudryavtsev V, 2004 IDM2004
[263] Saugland V et al, 2005 Phys. Lett. B 616 25 [SPIRES]
[264] Desai S et al, 2004 Phys. Rev. D 70 083523 [SPIRES]
[265] Lee H S et al, 2007 Preprint 0704.0423
[266] Bolte W J et al, 2006 J. Phys.: Conf. Ser. 39 126
[267] Bottino A, Donato F, Fornengo N and Scopel S, 2007 Preprint 0710.0553 [hep-ph]
[268] Ellis J, Olive K A, Santoso Y and Spanos V C, 2005 Phys. Rev. D 71 095007 [SPIRES]
[269] Bottino A, Donato F, Fornengo N and Scopel S, 2005 Phys. Rev. D 72 083521 [SPIRES] [hep-ph/0508270]
[270] Lee H-S, Ma et al and Nasri S, 2007 Phys. Rev. D 76 041302 [SPIRES] [hep-ph/0702223]
[271] Aina C and Fornengo N, 2007 J. High Energy Phys. JHEP11(2007)029 [SPIRES] [0709.4477] [hep-ph]
[272] Bertone G, 2007 Astrophys. Space Sci. 309 505 [astro-ph/0608706]
[273] Aharonian F et al (H.E.S.S Collaboration), 2006 Phys. Rev. Lett. 97 221102 [SPIRES]
[274] Aharonian F et al, 2006 Phys. Rev. Lett. 97 249901 [astro-ph/0610509] (erratum)
[275] Zaharijas G and Hooper D, 2006 Phys. Rev. D 73 103501 [SPIRES] [astro-ph/0603540]
[276] Berezhinskii V, Bottino A and Mignola G, 1994 Phys. Lett. B 325 136 [SPIRES] [hep-ph/9402215]
[277] Bergstrom L, Ullio P and Buckley J H, 1989 Astropart. Phys. 9 137 [SPIRES] [astro-ph/9712318]
[278] Profumo S, 2005 Phys. Rev. D 72 103521 [SPIRES] [astro-ph/0508628]
[279] Cesaroni R, Fucito F, Lionetto A, Moretti A and Ullio P, 2004 Astropart. Phys. 21 267 [SPIRES]
[280] Bouquet A, Salati P and Silk J, 1989 Phys. Rev. D 40 3168 [SPIRES]
[281] Silk J and Stebbins A, 1993 Astrophys. J. 411 439 [SPIRES]
[282] Bergstrom L, Edsjo J and Ullio P, 1998 Phys. Rev. D 58 083507 [SPIRES] [astro-ph/9804050]
[283] Calcaone-Roldan C and Moore B, 2000 Phys. Rev. D 62 123005 [SPIRES] [astro-ph/0010656]
[284] Aloisio R, Blasi P and Olinto A V, 2004 Astrophys. J. 601 47 [SPIRES] [astro-ph/0206036]
[285] Koushihapppas S M, Zentner A R and Walker T P, 2004 Phys. Rev. D 69 043501 [SPIRES]
[286] [astro-ph/0309464]
[287] Diemand J, Moore B and Stadel J, 2005 Nature 433 389 [SPIRES] [astro-ph/0501589]
[288] Baltz E A, Briot C, Salati P, Taillet R and Silk J, 2000 Phys. Rev. D 61 023514 [SPIRES]
[289] [astro-ph/9909112]
[290] Evans N W, Ferrer F and Sarkar S, 2004 Phys. Rev. D 69 123501 [SPIRES] [astro-ph/0311145]
[291] Tyler C, 2002 Phys. Rev. D 66 023509 [SPIRES] [astro-ph/0203242]
[292] Pieri L and Branchini E, 2004 Phys. Rev. D 69 043512 [SPIRES] [astro-ph/0307209]
[293] Hogan C J, 2001 Phys. Rev. D 64 063515 [SPIRES]
[294] Bergstrom L, Edsjo J and Gunnarsson C, 2001 Phys. Rev. D 63 083515 [SPIRES]
[295] Pieri L and Branchini E, 2005 J. Cosmol. Astropart. Phys. JCAP05(2005)007 [SPIRES]
[296] Mohayaee R and Shandarin S F, 2006 Mont. Not. R. Astron. Soc. 366 1217
[297] Natarajan A, 2007 Phys. Rev. D 75 123514 [SPIRES] [astro-ph/0703704]
[298] Bertone G and Merritt D, 2005 Phys. Rev. D 72 103502 [SPIRES] [astro-ph/0501555]
[299] Bertone G and Merritt D, 2005 Mod. Phys. Lett. A 20 1021 [SPIRES] [astro-ph/0504422]
[300] Bertone G, Sigl G and Silk J, 2002 Mon. Not. R. Astron. Soc. 337 98 [astro-ph/0203488]
[301] Merritt D, Milosavljevic M, Verde L and Jimenez R, 2002 Phys. Rev. Lett. 88 191301 [SPIRES]
[302] [astro-ph/0201376]
[303] Ullio P, Zhao H and Kamionkowski M, 2001 Phys. Rev. D 64 043504 [SPIRES] [astro-ph/0101481]
[304] Merritt D, Harfst S and Bertone G, 2007 Phys. Rev. D 75 043517 [SPIRES] [astro-ph/0610425]
[305] Bertone G, Zentner A R and Silk J, 2005 Phys. Rev. D 72 103517 [SPIRES] [astro-ph/0509565]
[306] Fornasa M, Taoso M and Bertone G, 2007 Preprint astro-ph/0703757
[307] http://icrhp9.icrr.u-tokyo.ac.jp/
[308] http://hegra1.mppmu.mpg.de/MAGICweb/
[309] Weidenspointner G et al, 2007 Preprint astro-ph/0702621
Dark matter candidates: a ten-point test

[403] Feng J L and Smith B T, 2005 Phys. Rev. D 71 015004 [SPIRES]
[404] Feng J L and Smith B T, 2005 Phys. Rev. D 71 015004 [SPIRES] [hep-ph/0409278] (erratum)
[405] Martyn H U, 2006 Eur. Phys. J. C 48 15 [hep-ph/0605257]
[406] Covi L and Kraml S, 2007 Preprint hep-ph/0703130
[407] Buchmuller W, Covi L, Hanaguchi K, Ibarra A and Yanagida T, 2007 Preprint hep-ph/0702184
[408] Hirsch M, Porod W and Restrepo D, 2005 J. High Energy Phys. JHEP03(2005)062 [hep-ph/0503059]
[409] Lola S, Osland P and Raklev A R, 2007 Preprint 0707.2510 [hep-ph]
[410] Ibarra A and Tran D, 2007 Preprint 0709.4593 [astro-ph]
[411] Bertone G, Buchmuller W, Covi L and Ibarra A, 2007 Preprint 0709.2299 [astro-ph]
[412] Covi L, Roszkowski L and Small M, 2002 J. High Energy Phys. JHEP07(2002)023 [hep-ph/0206119]
[413] Steffen F D, 2005 Preprint 0507003
[414] Covi L, Roszkowski L, Ruiz de Austri R and Small M, 2004 J. High Energy Phys. JHEP06(2004)003 [hep-ph/0402240]
[415] Brandenburg A, Covi L, Hanaguchi K, Roszkowski L and Steffen F D, 2005 Phys. Lett. B 617 99
[416] Battesti R et al, 2007 Preprint 0705.0615 [hep-ex]
[417] Asztalos S J et al, 2004 Phys. Rev. D 69 011101 [astro-ph/0310042]
[418] Andriamonje S (CAST Collaboration), 2007 J. Cosmol. Astropart. Phys. 010 [hep-ex/0702006]
[419] Masso E and Redondo J, 2005 J. Cosmol. Astropart. Phys. JCAP09(2005)015 [hep-ph/0504202]
[420] Mohapatra R N and Nasri S, 2007 Phys. Rev. Lett. 98 050402 [hep-ph/0610068]
[421] Jackel J, Masso E, Redondo J, Ringwald A and Takahashi F, 2007 Phys. Rev. D 75 013004 [hep-ph/0610203]
[422] Ehret K et al, 2007 Preprint hep-ex/0702023
[423] Mirizzi A, Raffelt G G and Serpico P D, 2007 Phys. Rev. D 76 023001 [0704.3044] [astro-ph]
[424] Hooper D and Serpico P D, 2007 Preprint 0706.3203 [hep-ph]
[425] De Angelis A, Roncadelli M and Mansutti O, 2007 Phys. Rev. D 76 121301 [0707.4312]
[426] De Angelis A, Mansutti O and Roncadelli M, 2007 Preprint 0707.2695 [astro-ph]
[427] Hagedorn J S, Kane G L and Raby S, 1984 Nucl. Phys. B 241 638
[428] Ibanez L E, 1984 Phys. Lett. B 137 160
[429] Ellis J R, Olive K A, Santos Y and Spanos V C, 2003 Phys. Lett. B 565 176 [hep-ph/0303043]
[430] Ellis J, Heinemeyer S, Olive K, Weber A M and Weiglein G, 2007 J. High Energy Phys. JHEP08(2007)083 [0706.0652] [hep-ph]
[431] Baer H and Balazs C, 2003 J. Cosmol. Astropart. Phys. JCAP05(2003)006 [hep-ph/0303114]
[432] Arnowitt R, Dutta B and Hu B, 2003 Preprint hep-ph/0310103
[433] Lahanas A B and Nanopoulos D V, 2003 Phys. Lett. B 565 55 [hep-ph/0303130]
[434] Ellis J R, Olive K A, Santos Y and Spanos V C, 2004 Phys. Rev. D 70 055005 [hep-ph/0405110]
[435] Ellis J R, Olive K A and Sandick P, 2006 Phys. Lett. B 642 389 [hep-ph/0607002]
[436] Gogoladze I and Macesanu C, 2006 Phys. Rev. D 74 093012 [hep-ph/0605207]
[437] Flacke T, Hooper D and March-Russell J, 2006 Phys. Rev. D 73 095002 [hep-ph/0503552]
[438] Flacke T, Hooper D and March-Russell J, 2006 Phys. Rev. D 74 019902 [SPIRES] (erratum)
[439] Csaki C, Hubisz J, Kribs G D, Meade P and Terning J, 2003 Phys. Rev. D 68 035009 [hep-ph/0303236]
[440] Tovey D R, 2002 Eur. Phys. J. Direct. C 4 N4
[441] Baer H, Balazs C, Belyaev A and Krupnovickas T, 2003 J. High Energy Phys. JHEP06(2003)054 [hep-ph/0304303]
[442] De Sanctis U et al (ATLAS Collaboration), 2006 Nuovo Cim. 121 761
[443] CMP TP 1994 Report CERN/LHCC/94-38
[444] Gjelesn B K, Miller D J and Osland P, 2004 J. High Energy Phys. JHEP12(2004)003 [hep-ph/0411030]
[445] Gjelesn B K, Miller D J and Osland P, 2005 J. High Energy Phys. JHEP06(2005)015 [hep-ph/0501033]
[446] Lester C G, Parker M A and White M J, 2006 J. High Energy Phys. JHEP01(2006)080 [hep-ph/0508143]
[447] Das S P, Datta A, Guchait M, Maity M and Mukherjee S, 2007 Preprint 0708.2048 [hep-ph]
[448] Baer H, Barger V, Shaughnessy G, Sunnyn H and Wang L T, 2007 Phys. Rev. D 75 095010
[449] Baltz E A, Battaglia M, Peskin M E and Wintansky T, 2006 Phys. Rev. D 74 103521 [hep-ph/0602187]
[450] Weiglein G et al, 2006 Phys. Rep. 426 47 [hep-ph/0410364]
[451] Macesanu C, McMullland C D and Nandi S, 2002 Phys. Rev. D 66 051500 [hep-ph/0201300]
[452] Cheng H C, Matchev K T and Schmaltz M, 2002 Phys. Rev. D 66 050606 [hep-ph/0205314]
[453] Arkani-Hamed N, Kane G L, Thaler J and Wang L T, 2006 J. High Energy Phys. JHEP08(2006)070 [hep-ph/0512190]
[454] Binetruy P, Kane G L, Nelson B D, Wang L T and Wang T T, 2004 Phys. Rev. D 70 095006 [hep-ph/0312248]
Dark matter candidates: a ten-point test

[453] Battaglia M, Datta A, De Roeck A, Kong K and Matchev K T, 2005 *J. High Energy Phys.* JHEP07(2005)033 [hep-ph/0507284]

[454] Datta A, Kong K and Matchev K T, 2005 *Phys. Rev. D* 72 096006 [SPIRES] [hep-ph/0509246]

Datta A, Kong K and Matchev K T, 2005 *Phys. Rev. D* 72 119901 (erratum)

[455] Smillie J M and Webber B R, 2005 *J. High Energy Phys.* JHEP10(2005)069 [SPIRES] [hep-ph/0507170]

[456] Alves A, Eboli O and Plehn T, 2006 *Phys. Rev. D* 74 095010 [SPIRES] [hep-ph/0605067]

[457] Datta A, Dey P, Gupta S K, Mukhopadhyaya B and Nyffeler A, 2007 *Preprint* 0708.1912 [hep-ph]

[458] Matsumoto S, Sato J, Senami M and Yamanaka M, 2007 *Phys. Lett. B* 647 466 [SPIRES] [hep-ph/0607331]