Prevalence of Antibodies to SARS-CoV-2 in Irish Hospital Healthcare Workers

Niamh Allen (1), Una Ni Riain (2), Niall Conlon (1), Annamaria Ferenczi (3), Antonio Isidro Carrion Martin (4), Lisa Domegan (3), Cathal Walsh (3) (5) (6), Lorraine Doherty (3), Cliona O'Farrelly (7), Eibhlín Higgins (8), Colm Kerr (1), Jonathan McGrath (1), PRECISE Study Steering Group (9), Catherine Fleming* (8), Colm Bergin* (1).

Authors affiliations

1. Department of GU Medicine and Infectious Diseases (GUIDE), St. James’s Hospital, Dublin 2.
2. Department of Microbiology, University Hospital Galway 3. Health Protection Surveillance Centre (HPSC), Dublin 4. Department of Public Health, University of Murcia, Spain 5. Health Research Institute and MACSI, University of Limerick, 6. MISA and NCPE, St James’s Hospital, Dublin 7. School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin 8. Department of Infectious Diseases, University Hospital Galway.

* supervising authors contributed equally

9. PRECISE Study (Prevalence of COVID-19 in Irish Healthcare Workers) Steering Group Members and Affiliations:

Dr. Lorraine Doherty, National Clinical Director for Health Protection, HSE-Health Protection Surveillance Centre (HPSC), Dublin, Ireland, and Chair of Steering Group, Dr. Niamh Allen, Consultant Physician in Infectious Diseases and Principal Investigator for PRECISE study, Professor Colm Bergin, Consultant Physician in Infectious Diseases and Site Lead for PRECISE study, St.James’ Hospital Dublin, Ireland, Dr. Niall Conlon, Consultant Immunologist, St. James's Hospital, Dublin, Ireland, Dr Lisa Domegan, Surveillance Scientist, HSE-HPSC, Ireland, Dr. Catherine Fleming, Consultant in Infectious Disease and Site Lead for PRECISE study, Galway University Hospital, Galway, Ireland, Dr Margaret Fitzgerald, National Public Health Lead. National Social Inclusion Office, Dublin, Ireland, Dr Cillian de Gascun, Director, UCD National Virus Reference Laboratory, University College Dublin, Dublin, Ireland, Joan Gallagher, Programme Manager, Office of the National Clinical Director for Health Protection, HSE HPSC, Dublin, Ireland, Dr. Derval Igoe, Specialist in Public Health Medicine, HSE HPSC, Dublin, 1, Ireland, Prof. Mary Keogan, Consultant Immunologist Beaumont Hospital & Clinical Lead, National Clinical Programme for Pathology, HSE, Ireland, Dr. Noireen Noonan, Consultant in Occupation Medicine, St. James's Hospital, Dublin, Ireland., Professor Cliona O'Farrelly, Chair in Comparative Immunology, Trinity College Dublin, Ireland, Dr. Una Ni Rian, Consultant Microbiologist, Galway University Hospital, Galway, Ireland, Dr. Breda Smyth, Department of Public Health, HSE West, Ireland.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author:

Niamh Allen, Department of GU Medicine and Infectious Diseases, GUIDE, St. James’s Hospital, Dublin, Ireland. nallen@stjames.ie or allen.niamh@gmail.com, +353872595490

Alternative corresponding authors:

Colm Bergin, cbergin@stjames.ie, Catherine Fleming catherine.fleming@hse.ie
Summary

Hospital healthcare workers (HCW) are at increased risk of contracting COVID-19 infection. We aimed to determine the seroprevalence of SARS-CoV-2 antibodies in HCW in Ireland. Two tertiary referral hospitals in Irish cities with diverging community incidence and seroprevalence were identified; COVID-19 had been diagnosed in 10.2% and 1.8% of staff respectively by the time of the study (October 2020). All staff of both hospitals (N=9038) were invited to participate in an online questionnaire and blood sampling for SARS-CoV-2 antibody testing. Frequencies and percentages for positive SARS-CoV-2 antibody were calculated and adjusted relative risks (aRR) for participant characteristics were calculated using multivariable regression analysis. 5,788 HCW participated (64% response rate). Seroprevalence of antibodies to SARS-CoV-2 was 15% and 4.1% in Hospital 1 and 2, respectively. Thirty-nine percent of infections were previously undiagnosed. Risk for seropositivity was higher for healthcare assistants (aRR: 2.0, 95%CI:1.4–3.0), nurses (aRR: 1.6, 95%CI: 1.1–2.2), daily exposure to patients with COVID-19 (aRR: 1.6, 95%CI: 1.2–2.1), age 18-29 years (aRR: 1.4, 95%CI: 1.1-1.9), living with other HCW (aRR: 1.3, 95%CI: 1.1–1.5), Asian background (aRR: 1.3, 95%CI: 1.0-1.6), and male sex (aRR: 1.2, 95%CI 1.0-1.4). The HCW seroprevalence was six times higher than community seroprevalence. Risk was higher for those with close patient contact. The proportion of undiagnosed infections call for robust infection control guidance, easy access to testing and consideration of screening in asymptomatic HCW. With emerging evidence of reduction in transmission from vaccinated individuals, the authors strongly endorse rapid vaccination of all HCW.
Main Body

Background

Healthcare workers, and those they live with, are at increased risk of contracting COVID-19 viral infection (1) (2) (3). Raised antibody levels to SARS-CoV2 are an excellent indicator of COVID-19 infection (4). To date there are no published literature on the seroprevalence of antibodies to SARS-CoV-2 infection in Irish Healthcare workers (HCW), but it is known from surveillance data that a high proportion of the COVID-19 cases notified were HCW (5). Understanding the transmission and potential immunity dynamics of SARS-CoV-2 in hospitals in Ireland is key to controlling this pandemic at national and hospital level and adds valuable information to the growing evidence base on the transmission patterns of COVID-19 among HCW.

Hospital 1 is a tertiary referral hospital in the south inner city of Dublin, the capital city of Ireland (population 1.2 million) and has almost 4,700 employees and just over 1000 beds. From March-May 2020 (first wave of the pandemic in Ireland, (6)) 9.6% of the staff of Hospital 1 tested positive for SARS-CoV-2 infection via polymerase chain reaction (PCR), and by the start of October (the start of the second wave of the pandemic in Ireland, (6)) 10.2% of staff had tested positive by PCR. Hospital 2 is a comparable tertiary referral hospital with almost 4400 employees and over 500 beds, located in Galway, in the West of Ireland (population 80,000); 1.8% of its HCW had a PCR-confirmed infection at some stage during the time-period from March-May 2020 and this remained at 1.8% until the start of October 2020. Hospital 1 is one of the largest acute hospitals in Dublin city; hospital 2 is the main acute hospital serving the city of Galway. Both hospitals received patients with COVID-19 infection throughout the first wave of the pandemic in Ireland, and breakdown by
ward and specialty is similar. The community incidence of COVID-19 infection in County Galway was significantly lower than in County Dublin during this time period, which covered the first wave of the pandemic in Ireland and the start of the second wave (6). The community seroprevalence was also significantly lower in the West of Ireland as compared with the greater Dublin area; community seroprevalence was 3.1% for Hospital 1 and 0.6% for Hospital 2 in June 2020 (7) (8).

The purpose of the study was to determine the prevalence of anti-SARS-CoV-2 antibodies in HCW in these two hospitals with diverging community and healthcare rates of infection to improve understanding of HCW risk factors (demographic, living arrangements and work-related risks) for SARS-CoV-2 infection and to inform risk reduction activities and help health services to prepare for further waves of the pandemic. The study will be repeated in April 2021 to assess changes in overall seroprevalence, changes in individual serostatus over time, and antibody response to COVID-19 vaccination.

Methods

Study Design

This is a cross-sectional study of the seroprevalence of circulating antibodies to SARS-CoV-2, carried out from 14th-23rd October 2020. All staff members of both hospitals were invited to participate in an online self-administered consent process and online questionnaire, followed by blood sampling for SARS-CoV-2 antibody testing. Electronic consent and patient reported outcomes were captured using Castor; an eClinical platform that enables decentralized clinical trials (9). Technical support and walk-in phlebotomy clinics were provided for participants who had difficulty with the online consent process. Information
collected in the questionnaire included demographic information, contact details, place and type of work, level of contact with patients, previous COVID-19 symptoms and testing, history of close contact with a confirmed case of COVID-19 and living arrangements. Blood samples were processed anonymously. All samples were tested on two testing platforms; the Abbott Architect SARS-CoV-2 immunoglobulin (Ig)G assay and the Roche Elecsys anti-SARS-CoV-2 immunoassay (10) (11) (12). Samples with an index result in the Abbott manufacturers suggested positive and grayzone underwent additional testing in the National Virus Reference Laboratory (NVRL) using the Wantai SARS-CoV-2 AB ELISA distributed by Fortress Diagnostics (13). A positive result on any of the three assays was considered a positive result. Results were discussed in person with any participant who requested this.

Statistical analysis

Frequencies and percentages were calculated for sociodemographic, epidemiological, and clinical characteristics, including antibody results. Characteristics of those with a positive SARS-CoV-2 antibody result were compared to those with undetectable antibody, using the chi-square test. Univariate logistic regression was used to calculate relative risks along with their 95% confidence intervals to assess the association between SARS-CoV-2 antibody result and characteristics of the study participants. Multivariable regression analysis was conducted to control for negative and positive confounding and to calculate adjusted relative risks (aRR). No explicit finite population correction or reweighting was carried out. All analyses were conducted in Stata 16 (StataCorp. 2019. College Station, TX: LLC) and R 4.0.3 (R Core Team, 2020, www.R-project.org/).

Results

Participation rates and demographics
All staff working in both hospitals (9,038 people) were invited to participate in the study. In Hospital 1 and Hospital 2, 65% (3042/4692) and 63% (2745/4395) of staff participated in both questionnaire and blood sample, respectively.

The socio-demographic characteristics of participants were similar in both hospitals. Seventy-seven percent were female, with a median age of 39.5 years (IQR 30.4-48.9); 5.1% of participants were >60 years of age. Regarding ethnicity, 77% of participants were white Irish, 10% Asian (13% in Hospital 1 and 7% in Hospital 2), 9.5% other white background (majority born in Poland, USA, UK), 2% African or any other black background. Ninety-one percent of participants live with others, and 31% live with other HCW. The majority (36%) of participants were nursing staff, 19% were allied health care staff, 17% medical/dental staff, 13% administration staff, 7.5% general support staff, 5% healthcare assistants (HCA) and 2% other HCW, broadly reflecting the HCW breakdown of the hospital staff (Table 1a).

Participation rates among staff groupings were also similar in both hospitals; nurses and HCA were slightly under-represented at 59% and 39% uptake respectively. In all other groups participation rates were above 60%.

Previous testing and COVID-19 related characteristics of the participants

Hospital 1 staff had a higher percentage of previously confirmed COVID-19 infection; 9.6% of participants reported having tested positive at some stage by PCR compared to 2.7% of participants in Hospital 2 (Table 1b). Table 1b highlights the COVID-19-related characteristics of the participants by hospital.

Seroprevalence of antibodies to SARS-CoV-2

In Hospital 1 the overall seroprevalence of antibodies to SARS-COV-2 was 15% (464/3042). Regarding the level of patient contact, the seroprevalence was 21% (108/510) in participants...
reporting daily contact with patients with known or suspected COVID-19 infection (we defined this as the high-risk group), 17% (269/1611) in those who reported daily contact with patients without known or suspected COVID-19 infection (intermediate-risk group) and 9.5% (87/918) in those who reported little or no patient contact (low-risk group). In Hospital 2 the overall seroprevalence of antibodies to SARS-COV-2 was 4.1% (112/2745); 7.1% (28/392) in the high-risk group, 4.6% (75/1634) in the intermediate-risk group and 1.3% (9/717) in the low-risk group.

When looking at seroprevalence by role, the combined data for both hospitals showed the highest seroprevalence in HCAs, with 18% of those participating in the study having detectable antibodies. This was followed by nurses at 13% and medical/dental staff at 10%. The group with the lowest seroprevalence were the administration staff at 6%. Figure 1 shows the proportion of each staff group with detectable antibodies by hospital.

SARS-CoV-2 antibody and previous diagnosis and symptoms

Ninety-five percent (350/367) of those who had previously confirmed infection by PCR had detectable antibodies. In total 227/576 (39%) of those with positive antibodies had not previously been diagnosed with COVID-19 infection; this represented 3.9% of all participants. While 63% (142/227) of these participants with a previously undiagnosed infection reported having had symptoms at some stage, it is impossible to know if these symptoms coincided with the time of undiagnosed infection. Sixteen percent (90/576) of those with detectable antibodies had experienced no symptoms consistent with COVID-19.

Risk factors for antibody positivity to SARS-CoV-2
Tables 2a and 2b show the prevalence of SARS-CoV-2 IgG antibodies by participant characteristics for both hospitals combined. (For the prevalence of SARS-CoV-2 IgG antibodies by participant characteristics for the individual hospitals see Tables A-D, annex).

On multivariable analysis of the combined hospital data the adjusted relative risk of detectable antibody was higher for the following characteristics: working in Hospital 1 (aRR 3.7, 95% CI 3.0-4.5, p<.001), working as a HCA (aRR 2.0, 95% CI 1.4 – 3.0, p 0.001), working as a nurse (aRR 1.6, 95% CI 1.1 – 2.2, p 0.007), daily exposure to patients with confirmed or suspected COVID-19 infection (aRR 1.6, 95% CI 1.2-2.1, p 0.002), daily contact with patients not known or suspected to have COVID-19 infection (aRR 1.4, 95% CI 1.1-1.8, p 0.008), age 18-29 years (aRR 1.4, 95% CI 1.1-1.9, p 0.006), living with others (aRR 1.5, 95% CI 1.0-2.1, p 0.048), living with other HCW (aRR 1.3, 95% CI 1.1 – 1.5, p 0.007), being of Asian background (aRR 1.3, 95% CI 1.0-1.6, p 0.028) and male sex (aRR 1.2, 95% CI 1.0-1.4, p = 0.046) (Table 3). (For multivariable analysis by hospital see Table A and Table F, annex).

Discussion

Overall seroprevalence

The seroprevalence between Hospital 1 and Hospital 2 differed by four-fold, reflecting the difference in incidence and seroprevalence in the community in the two locations; the seroprevalence in both locations was six times the community seroprevalence (7) (8). A Swedish study found HCW seroprevalence to be three times higher than the community seroprevalence during the first wave of the pandemic (14). A Greek study found HCW seroprevalence to be between 10-22 times higher than the general population (15); his was attributed in part to insufficient use/availability of PPE in the hospital setting. Infection prevention and control (IPC) measures were the same in Hospital 1 and in Hospital 2 (based
on national guidelines) and there have been no issues with PPE availability in either of the hospitals involved in our study at any stage thus far during the pandemic. In both hospitals staff were re-deployed to improve the hospital’s capacity to deal with the outbreak, however staff were not deployed to areas that would have been outside of their scope of practice, and all staff had training on the correct use of PPE. The seroprevalence in Hospital 1 was similar to that found in a recent unpublished study in another hospital in the same city (16), suggesting that one of the main risks for infection in HCW is the community incidence; a higher community incidence means that HCW are more likely to be exposed by the nature of their work which involves direct contact with other people, both patients and other HCW. While this risk disproportionately affected those with closer patient contact, the risk to HCW was higher than in the community, even for those who reported little or no patient contact.

The seroprevalence in both hospitals fell within the wide range (1-45%) previously described in other studies (17) (18) (19) (20) (21) (15), and fell either side of the European estimate of 8.5% from the meta-analysis published in November 2020 (22).

Previous symptoms and testing

Five percent of participants with a previous PCR-confirmed COVID-19 infection did not have detectable antibodies. The manufacturers’ reported test sensitivity is >95% for each assay used (11) (12) (13), so while some of these may be false negative results, it is also possible that these participants did not mount an antibody response following infection with COVID-19, or that they had antibody levels below the limits of detection of the test. We feel that a false positive PCR result is less likely, but also possible.

In both hospitals, the seroprevalence was higher than the known PCR-confirmed diagnoses of COVID-19 infection of the same timeframe (15% vs 10% in Hospital 1, and 4.1% vs 1.8% in Hospital 2), and was also higher than the self-reported previous confirmed diagnoses (15% vs
9.6% in Hospital 1, 4.1% vs 2.7% in Hospital 2). Sixteen percent of participants with positive antibodies reported never having experienced symptoms that were consistent with infection with COVID-19. Thirty-nine percent of infections in our study were undiagnosed, even though both hospitals had onsite PCR testing available to HCW with symptoms or close contact with a confirmed case of COVID-19 from mid-March 2020. It is likely that these undiagnosed HCW were working during the infectious period, with potential for onwards transmission to patients and other staff members if proper use of PPE and other infection prevention and control (IPC) measures were not strictly adhered to. This highlights the importance of early detection and reinforces the importance of clear messaging to HCW about not working when symptomatic. It also highlights the necessity for universal adherence to standard infection control precautions at all times, compliance with transmission-based precautions and appropriate use of PPE including face masks in the hospital setting, irrespective of symptoms (23). This finding also supports the recommendation for screening of asymptomatic staff when a patient case of hospital-acquired infection, or hospital outbreak of infection with COVID-19 occurs (24). Mass serial screening of asymptomatic HCWs should be considered. This intervention has been shown to be effective in certain settings (25,26). However, the frequency of testing that would be required to have a significant impact on transmission of infection from HCW has not been established, and other studies have found the impact of this intervention to be uncertain and the logistical challenges it poses to the health service are significant (27) (28) (29).

Risk factors for antibody positivity

The main risk factors identified to be significantly associated with SARS-CoV-2 antibody positivity were working in Hospital 1, being a HCA, being a nurse, performing roles associated with close patient contact (especially those working directly with COVID-19
patients), living with others, living with other HCW, being of Asian ethnicity, being aged 18-29 years and being male. Similar risk factors have also been identified in other studies, including the meta-analysis of European studies (22) (30) (31). Those of Asian background had a higher risk than those of white Irish background. This was a significant finding on MVA, with other factors including exposure accounted for. It is possible that there are other social factors relating to ethnicity that were not evaluated in our study and that are contributing to this risk. Studies conducted in other countries have also found Black individuals to be at a higher risk, and many studies have found higher risk in combined BAME (Black, Asian and Minority Ethnic) groups. Black individuals in our study did have a higher overall seroprevalence at 19%, and a higher relative risk of antibody positivity, however this finding was not statistically significant on multivariate analysis, possible due to smaller number of Black participants compared to Asian participants Other studies have highlighted close patient contact as a risk factor for disease acquisition (32), including specifically the role of nurse or HCA (15) (31). We found daily contact with patients with COVID-19 infection to carry a higher relative risk of antibody positivity with comparison to daily contact with patients without COVID-19 infection. Studies have differed on this result; a German study showed a higher seroprevalence among the intermediate risk group with comparison to the high-risk group, potentially due to less scrupulous adherence to infection control precautions including use of PPE on non-COVID wards (17). A Spanish study found no significant correlation between role or direct patient contact and antibody positivity, though community incidence was higher in their setting (18).

Having a household contact is known to be a significant risk factor for disease acquisition (33). In our study, living with others (and especially living with other HCW) was significantly associated with antibody positivity, which supports the theory that a proportion of the HCW contracting COVID-19 are doing so in their home environment. Other studies
have found some correlation between size of household and antibody positivity (18) but to the best of our knowledge ours is the first study to find a statistically significant correlation between living with other HCW and being antibody positive.

Limitations

Our study has several limitations. Firstly, information on COVID-19 symptoms and test results were self-reported and thus could be biased. Secondly, although the uptake rate of 64% overall is good for an opt-in study, there may be a selection bias; it is possible that those who chose not to take part did so due to busier workload, for example, those working on a COVID-19 ward, and therefore with a higher risk of COVID-19 infection. One of the main reasons for overall good recruitment was the incentive of each participant receiving their individual result. This too may introduce a selection bias; those who already know that they have had COVID-19 infection may have been less interested in participating, as well as those who may have already had private antibody testing done elsewhere, which could lead to an under-estimate in the true seroprevalence. Conversely, those who had a previously confirmed infection by PCR may have had more interest in participating to see if they had gained antibodies (and potential immunity). Thirdly, although the communication strategy was an important part of the recruitment process, the study took part during our second wave of the pandemic, and therefore also relied heavily on engagement with IT platforms (email, messenger groups, hospital intranet) and less on face-to-face announcements. The online consent process, questionnaire, and blood test booking system risks exclusion of those who are less literate in information technology (IT). This was identified as a potential limitation from the start, and attempts were made to mitigate this selection bias. Multilanguage information and plain English were used, and groups identified as potentially at risk of exclusion on this basis were targeted directly for inclusion in the study, with small-group
sessions to aid consent and questionnaire completion and walk-in clinics for phlebotomy. In the fourth instance, in testing on two different platforms, we chose to prioritise sensitivity over specificity. However, the rate of discordant results was low, and unlikely to have had a significant effect on the results; there were only 21 samples with a positive result on the Abbott Architect assay that did not have a positive result on either the Roche Elecsys assay or the Wantai ELISA. In the fifth instance, this population was surveyed in October, at the start of the second wave of the pandemic in Ireland. A proportion of the HCW workforce in Ireland is transient, and the staff included in the study may not have worked in the same hospital during the first wave of the pandemic. However, over 90% of participants in each hospital reported that had been working in the same hospital during the first wave of the pandemic. And finally, even though the sample size was large, some covariate partners were small and thus rendered further analysis lacking in statistical power and precision (e.g. interactions terms or further stratified analysis).

Conclusion and Recommendations

The overall seroprevalence of antibodies to SARS-CoV-2 was 15% in Hospital 1 and 4.1% in Hospital 2, reflecting the difference in community incidence and seroprevalence in each area, and suggesting that the main risk factor for acquisition of COVID-19 infection in HCW is the local community incidence. The HCW seroprevalence was six times the community seroprevalence in each area. Specific risk factors for antibody positivity included being a HCA or nurse, daily contact with patients (especially those known or suspected to have COVID-19 infection), age 18-29 years, living with others, in particular living with other HCW, being of Asian background, and being male. The degree of previously undiagnosed and asymptomatic infections highlights the need for ongoing universal adherence to infection control guidance including the use of appropriate PPE in the hospital setting, as well as the
importance of early case detection. It is essential that HCW have easy access to testing, even with mild or no symptoms. As the national COVID-19 vaccination programme is rolled out, we expect that access to testing for HCW will still be critical. Screening of asymptomatic HCW in the setting of hospital-acquired patient infection or outbreaks is important and regular screening of asymptomatic HCW needs to be considered depending on local epidemiology.

This study is a unique comparison between two hospitals in areas of differing community incidence, in which IPC measures were the same. It is the first study, to the best of our knowledge, to specifically delineate the relationship between living with other HCW and risk of antibody positivity. This study is paramount in improving understanding of transmission dynamics and HCW risk factors (demographic, workplace- and household-related) in hospitals in Ireland. The high proportion of undiagnosed infections underscores the importance of all interventions to reduce infection in the hospital setting. This bundle should include robust infection control guidance and adherence to that guidance, with scrupulous attention to standard and transmission-based precautions including the use of appropriate PPE in the hospital setting, easy access to testing for HCW and prompt outbreak investigation. This study will be crucial in informing the vaccination strategy and roll-out of HCW in Ireland. Emerging evidence of reduced transmission of infection by vaccine recipients (34) endorses prompt vaccination of all HCW.

Acknowledgements

We would like to acknowledge the National Public Health Emergency Team (NPHET) who recommended that this study take place, the study steering group who planned the study and critically evaluated this manuscript. the study team who coordinated the running of the study
in each hospital, the hospital management at both sites for their support for the study, and the staff of both hospitals who participated. We would especially like to acknowledge the phlebotomy departments in each hospital for facilitating the sampling of almost 6000 participants, the microbiology, virology and biochemistry laboratories in each hospital for processing the samples on two different assays, the National Virus Reference Laboratory of Ireland for additional testing and the human resources department for their help with denominator data.

Funding

This work was supported by the Irish Health Service Executive COVID-19 budget.

Conflict of Interest

None of the authors have any conflicts of interest to declare.

Ethical Approval

Ethical approval was obtained from the National Research Ethics Committee for COVID-19 in Ireland.

Data Availability Statement

This dataset is not available to the public for ethical reasons of data protection as certain individuals may be identifiable from the data.
References

1. Shah ASV, Wood R, Gribben C, Caldwell D, Bishop J, Weir A, et al. Risk of hospital admission with coronavirus disease 2019 in healthcare workers and their households: nationwide linkage cohort study. British Medical Journal. 2020 Oct 28;m3582.

2. Karlsson U, Fraenkel C-J. Covid-19: risks to healthcare workers and their families. British Medical Journal. 2020 Oct 28;m3944.

3. Richterman A, Meyerowitz EA, Cevik M. Hospital-Acquired SARS-CoV-2 Infection: Lessons for Public Health. Journal of the American Medical Association. 2020 Dec 1;324(21):2155.

4. Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. British Medical Journal. 2020 Sep 8;m3325.

5. HPSC COVID-19 in Healthcare Workers [Internet]. HPSC COVID-19 in Healthcare Workers. 2021. Available from: https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/surveillance/covid-19casestinhealthcareworkers/

6. HPSC Covid Cases in Ireland [Internet]. [cited 2021 Jan 13]. Available from: https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/casesinireland/epidemiologyofcovid-19inireland/COVID19%20Daily%20infographic.pdf

7. Preliminary report of the results of the Study to Investigate COVID-19 Infection in People Living in Ireland (SCOPI): A national seroprevalence study, June-July 2020 [Internet]. Available from: https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/scopi/SCOPI%20report%20preliminary%20result%20final%20version.pdf

8. HPSC Surveillance for COVID-19 [Internet]. HPSC. 2021 [cited 2021 Jan 6]. Available from: https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/surveillance/

9. Castor EDC. (2021). Castor Electronic Data Capture. [online] Available at: https://castoredc.com. [Internet]. 2021. Available from: https://www.castoredc.com/

10. SARS-CoV-2 IgG Architect - Instructions for Use, FDA [Internet]. [cited 2020 Dec 14]. Available from: https://www.fda.gov/media/137383/download

11. ARCHITECT System SARS-CoV-2 IgG/IgM e- Assay CD-ROM - WW (excluding US) List number 6514-03. Information update 07th October 2021.

12. Elecsys® Anti-SARS-CoV-2 Immunoassay for the qualitative detection of antibodies (incl. IgG) against SARS-CoV-2 [Internet]. [cited 2020 Dec 14]. Available from: https://diagnostics.roche.com/global/en/products/params/elecsys-anti-sars-cov-2.html

13. WANTAI SARS-CoV-2 Ab ELISA - FDA [Internet]. Available from: https://www.fda.gov/media/140929/download

14. Rudberg A-S, Havervall S, Månberg A, Jernbom Falk A, Aguiler K, Nig H, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nature Communications. 2020 Oct 8;11(1):5064.

15. Psichogiou M, Karabinis A, Pavlopoulou ID, Basoulis D, Petsios K, Roussos S, et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. PLoS One. 2020;15(12):e0243025.

16. Nearly one-fifth of Tallaght hospital staff found to have coronavirus antibodies. [cited 2020 Dec 12]; Available from: https://www.thejournal.ie/tallaght-hospital-staff-antibody-study-5245379-Oct2020/

17. Korth J, Wilde B, Dolff S, Anastasiou OE, Krawczyk A, Jahn M, et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. Journal of Clinical Virology. 2020 Jul;128:104437.

18. Garcia-Basteiro AL, Moncunill G, Tortajada M, Vidal M, Guinovart C, Jiménez A, et al. Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital. Nature Communications. 2020 Dec;11(1):3500.
19. Jespersen S, Mikkelsen S, Greve T, Kaspersen KA, Tolstrup M, Boldsen JK, et al. SARS-CoV-2 seroprevalence survey among 17,971 healthcare and administrative personnel at hospitals, pre-hospital services, and specialist practitioners in the Central Denmark Region. Clinical Infectious Diseases. 2020 Oct 3; 20. Steensels D, Oris E, Coninx L, Nuyens D, Delforge M-L, Vermeersch P, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. Journal of the American Medical Association. 2020 Jul 14;324(2):195. 21. Houlihan C, Vora N, Byrne T, Lever D, Heaney J, Moore DA, et al. SARS-CoV-2 virus and antibodies in front-line Health Care Workers in an acute hospital in London: preliminary results from a longitudinal study [Internet]. Infectious Diseases (except HIV/AIDS); 2020 Jun [cited 2020 Jul 24]. Available from: http://medrxiv.org/lookup/doi/10.1101/2020.06.08.20120584 22. Galanis P, Vraka I, Fragogkou D, Bilali A, Kaitelidou D. Seroprevalence of SARS-CoV-2 antibodies and associated factors in health care workers: a systematic review and meta-analysis. Journal of Hospital Infection. 2020 Nov 16; 23. HPSC Infection Prevention and Control Precautions for COVID-19 [Internet]. [cited 2021 Jan 12]. Available from: https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/guidance/infectionpreventionandcontrol/guidance/ 24. Brown CS, Clare K, Chand M, Andrews J, Auckland C, Beshir S, et al. Snapshot PCR surveillance for SARS-CoV-2 in hospital staff in England. Journal of Infection. 2020 Sep;81(3):427–34. 25. Rivett L, Sridhar S, Sparkes D, Routledge M, Jones NK, Forrest S, et al. Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission. eLife. 2020 May 11;e58728. 26. Treibel TA, Manisty C, Andiapen M, Pade C, Jensen M, Fontana M, et al. Asymptomatic health-care worker screening during the COVID-19 pandemic –Authors’ reply. The Lancet. 2020 Oct;396(10260):1394–5. 28. Chow A, Hun HL, Kyaw WM, Lee LT, Ang B. Asymptomatic health-care worker screening during the COVID-19 pandemic. The Lancet. 2020 Oct;396(10260):1393–4. 29. Aldridge RW, Lewer D, Katikireddi SV, Mathur R, Pathak N, Burns R, et al. Black, Asian and Minority Ethnic groups in England are at increased risk of death from COVID-19: indirect standardisation of NHS mortality data. Wellcome Open Res. 2020;5:88. 30. Martin CA, Patel P, Goss C, Jenkins DE, Price A, Barton L, et al. Demographic and occupational determinants of anti-SARS-CoV-2 IgG seropositivity in hospital staff. Journal of Public Health (Oxf). 2020 Nov 16; 31. Lai X, Wang M, Qin C, Tan L, Ruan L, Chen D, et al. Coronavirus Disease 2019 (COVID-2019) Infection Among Health Care Workers and Implications for Prevention Measures in a Tertiary Hospital in Wuhan, China. Journal of the American Medical Association Network Open. 2020 May 21;3(5):e209666–e209666. 32. Kumar N, Bhartiya S, Desai S, Murthi A, Beldar A, Singh T. Seroprevalence of Antibodies Against SARS-CoV-2 Among Health Care Workers in Mumbai, India. Asia Pacific Journal of Public Health. 2020 Nov 26;1010539520977307. 34. Voysey, Merryn and Costa Clemens, Sue Ann and Madhi. Single Dose Administration, And The Influence Of The Timing Of The Booster Dose On Immunogenicity and Efficacy Of ChAdOx1 nCoV-19 (AZD1222) Vaccine. Available from: https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0950268821000984
Tables

Table 1a. Participant characteristics by hospital and total number of participants

Participant characteristics	Hospital 1 (N=3,042)	Hospital 2 (N=2,745)	P-value*	Total (n=5,788)
Age groups				
18-29	728 (24%)	632 (23%)	0.717	1,350 (23%)
30-39	831 (27%)	785 (29%)		1,617 (28%)
40-49	793 (26%)	722 (26%)		1,515 (26%)
50-59	532 (18%)	468 (17%)		1,001 (17%)
Over 60	158 (5.2%)	146 (5.3%)		304 (5.3%)
Sex				
Female	2,326 (77%)	2,152 (78%)	0.117	4,478 (77%)
Male	716 (24%)	592 (22%)		1,308 (23%)
Missing	- 1 (0.04%)	1 (0.02%)		
Ethnicity				
Irish	2,262 (74%)	2,182 (80%)		4,444 (77%)
Any other white background	267 (8.8%)	284 (10%)	<0.001	551 (10%)
Any Asian background			<0.001	
Any African or black background	65 (2.1%)	48 (1.8%)	0.177	113 (2.0%)
Other	55 (1.8%)	46 (1.7%)		101 (1.8%)
Missing	- 1 (0.04%)	1 (0.02%)		
Country of Ireland	2,182 (72%)	2,091 (76%)		4,273 (74%)

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Country of birth*	United Kingdom	152	5.0	192	7.0	344	5.9
	India	201	6.6	98	3.6	299	5.2
	Philippines	166	5.5	25	0.9	191	3.3
	Poland	24	0.8	48	1.8	72	1.2
	USA	22	0.7	38	1.4	60	1.0
	Other	295	9.7	253	9.2	548	9.5

Education	Primary	27	0.9	2	0.1	<0.001	29	0.5
	Secondary	420	14	264	10	684	12	12
	Third level	1,300	43	1,245	45	2,545	44	44
	Post-graduate	1,295	43	1,232	45	2,527	44	44
	Missing	-	-	2	0.1	2	0.03	0.03

Role	Admin	454	15	349	13	<0.001	803	14
	Medical/ dental	460	15	522	19	982	17	17
	Nursing/ midwifery	1045	34	1,019	37	2064	36	36
	Allied health	616	20	475	17	1012	19	19
	General support	255	8.4	179	6.5	434	7.5	7.5
	Health care assistant	157	5.2	129	4.7	286	4.9	4.9
	Other	55	1.8	72	2.6	127	2.2	2.2

Lives with	Alone	256	8.4	223	8.1	0.020	479	8.3
	With others	2,768	91.0	2,518	91.7	5,286	91.3	91.3
	Missing	18	0.6	4	0.2	22	0.4	0.4
Lives with HCW	Hospital 1 (N=3,042)	Hospital 2 (N=2,745)	P-value*	Total (N=5,788)				
----------------	----------------------	----------------------	----------	-----------------				
Yes	928	839	1,767	31				
No	2,060	1,859	3,919	68				
Missing	54	47	101	1.8				

* Calculated using the Chi-Square test

Table 1b. COVID-19 related characteristics by hospital and total number of participants
Setting of close contact	Missing	10	0.3	2	0.1	12	0.2
Contact at work	1,039	88	456	88	0.916	1,495	88
Contact outside of work	146	12	63	12	0.1	209	12

Daily contact with COVID-19 patients	Missing	10	0.3	2	0.1	12	0.2
Contact with COVID-19 patients	510	17	392	14	<0.001	902	16
Contact with patients without COVID-19	1,611	53	1,634	60	3,245	56	
No patient contact	918	30	717	26	1,635	28	
Missing	3	0.1	2	0.1	5	0.1	

Previous COVID-19 symptoms	Missing	10	0.3	2	0.1	12	0.2
No symptoms	1,359	45	1,517	55	<0.001	2,876	50
Had symptoms	1,683	55	1,228	45	2,911	50	

Severity	Missing	10	0.3	2	0.1	12	0.2
No symptoms	1,359	45	1,517	55	<0.001	2,876	50
Only minor symptoms	1,214	40	945	34	2,159	37	
Significant symptoms	442	15	259	9.4	701	12	
Hospitalised	27	0.9	24	0.9	51	0.9	

Previous COVID-19 PCR test	Missing	10	0.3	2	0.1	12	0.2
Yes	1,685	55	1,093	40	<0.001	2,778	48
No	1,353	45	1,650	60	3,003	52	
Missing	4	0.1	2	0.1	6	0.1	

Previous positive COVID-19 PCR test	Missing	10	0.3	2	0.1	12	0.2
Yes	292	9.6	75	2.7	<0.001	367	6.3
No	2,746	90.3	2,668	97.2	5,414	93.6	
Missing	4	0.1	2	0.1	6	0.1	
Participant characteristics	Total	N	n	% (95% CI)	P-value*		
-----------------------------	--------	-------	------	------------	----------		
Age groups (years)							
18-29	1,350	177	13	(11 – 15)	<0.001		
30-39	1,617	168	10	(8.9 - 12)			
40-49	1,515	124	8.2	(6.9 – 9.7)			
50-59	1,001	77	7.7	(6.1 – 9.5)			
Over 60	304	30	9.9	(6.8 – 14)			
Sex	Female	Male					
--------------	--------	------	--------	-------			
	4,478	1,308	9.4 (8.6 – 10)	0.013			

Ethnicity				
Irish	4,444	384	8.6 (7.8 – 9.5)	<0.001
Any other white background	551	62	11 (8.7 – 14.2)	
African and any other black	113	16	14 (8.3 – 22)	
background				
Asian background	577	107	19 (16 - 22)	
Other	101	7	6.9 (2.6 - 15)	

Country of birth*					
Ireland	4,273	373	8.7 (7.9 – 9.6)		
United Kingdom	344	32	9.3 (6.5 - 13)		
India	299	54	18 (14 - 31)		
Philippines	191	47	25 (19 - 31)	<0.001	
Poland	72	10	14 (6.9 -24)		
USA	60	3	5.0 (1.0 - 14)		
Other	548	57	10 (8.0 - 13)		
Education	Primary	29	4	14 (3.9 - 32)	
-----------------	---------	----	---	---------------	
	Secondary	684	61	8.9 (6.9 - 11)	0.055
	Third level	2,545	283	11 (9.9 - 12)	
	Post-graduate	2,527	228	9.0 (7.9 - 10)	
Role	Admin	803	48	6.0 (4.4 – 7.9)	
	Medical/dental	982	102	10 (8.6 - 13)	
	Nursing/ midwifery	2,064	263	13 (11 -14)	
	Allied health	1,091	73	6.7 (5.3 -8.3)	<0.001
	General support	434	33	7.6 (5.3 - 11)	
	Health care assistant	286	50	18 (13 - 22)	
	Other	127	7	5.5 (2.2 - 11)	
Lives with	Alone	479	28	5.9 (3.9 – 8.3)	
	With others	5,286	546	10 (9.5 - 11)	0.007
	Missing	22	2	9.1 (1.1 - 29)	
Lives with HCW	Yes	1,767	234	13 (12 - 15)	<0.001
Table 2b. Prevalence of SARS-CoV-2 antibodies by COVID-19 related characteristics, both hospitals

Participant characteristics	Total	SARS-CoV-2 IgG detected	P-value*	
	N	n	% (95% CI)	
Contact of a COVID-19 case				
Yes	1,704	325	19 (17 - 21)	<0.001
No	249	249	6.1 (5.4 -6.9)	

* Calculated using the Chi-Square test
| Setting of close contact | Contact at work | 1,495 | 269 | 18 (16 - 20) | <0.002 |
|-------------------------|-----------------|-------|-----|-------------|--------|
| | Contact outside of work | 209 | 56 | 27 (21 - 33) |
| Workplace exposure | Daily contact with COVID-19 patients | 902 | 136 | 15 (13 - 18) |
| | Daily contact with patients without COVID | 3,245 | 344 | 11 (9.6 - 12) | <0.001 |
| Previous COVID-19 like symptoms | No symptoms | 2,876 | 92 | 3.2 (2.6 - 3.9) | <0.001 |
| | Had symptoms | 2,911 | 484 | 17 (15 - 18) |
| Previous COVID-19 PCR test | Yes | 2,778 | 474 | 17 (16 - 19) | <0.001 |
| Previous positive COVID-19 PCR test | No | 3,003 | 102 | 3.4 (2.8 – 4.1) |
|-------------------------------------|------|-------|-------|----------------|
| Yes | 367 | 350 | 95.4 (92.7 – 97.3) | <0.001 |
| No | 5,414| 226 | 4.2 (3.7 – 4.7) | |

* Calculated using the Chi-Square test
Table 3. Association between risk factors and the presence of SARS-CoV-2 antibodies, both hospitals

Participant characteristics	Unadjusted relative risk (95% CI)	P-value	Adjusted relative risk (95% CI)	P-value
Hospital				
Hospital 2	Ref.			
Hospital 1	3.7 (3.1 – 4.6)	<0.001	3.7 (3.0 - 4.5)	<0.001
Age groups (years)				
18-29	1.7 (1.3 – 2.2)	<0.001	1.4 (1.1 – 1.9)	0.006
30-39	1.4 (1.1 - 1.8)	0.022	1.2 (0.9 – 1.5)	0.217
40-49	1.1 (0.8 - 1.4)	0.656	1.0 (0.8 – 1.3)	0.978
50-59	Ref.			
Over 60	1.3 (0.9 – 1.9)	0.224	1.4 (0.9 – 2.0)	0.112
Sex				
Female	Ref.			
Male	1.3 (1.1 – 1.5)	0.012	1.2 (1.0 – 1.4)	0.046
Ethnicity				
Irish	Ref.			
Any other white background	1.3 (1.0 – 1.7)	0.041	1.3 (1.0 - 1.6)	0.068
African and other black	1.6 (1.0 – 2.7)	0.037	1.3 (0.8 – 2.0)	0.299
background				
Asian background	2.2 (1.8 – 2.6)	<0.001	1.3 (1.0 – 1.6)	0.028
Other	0.8 (0.4 - 1.7)	0.549	0.6 (0.2 – 1.3)	0.177
Country of birth				
Ireland	Ref.			
India	2.1 (1.6 – 2.7)	<0.001		
Philippines	2.8 (2.2 – 3.7)	<0.001		
United Kingdom	1.1 (0.8 – 1.5)	0.717		
Poland	1.6 (0.9 – 2.9)	0.119		
USA	0.6 (0.2 - 1.7)	0.324		

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
	Education	Role	Lives with	Workplace exposure to COVID-19 patients
	Other	Admin	Alone	No patient contact
	1.2 (0.9 – 1.6)	Ref.	1.8 (1.2 – 2.6)	Did not enter
	0.193			Daily contact with patients
		Doctor\Dental		without COVID-19
		1.7 (1.3 - 2.4)		1.8 (1.5 – 2.3)
		0.001		<0.001
		Nursing	2.1 (1.6 – 2.9)	1.6 (1.1 – 2.2)
		0.001		0.007
		HCA	2.9 (2.0 – 4.2)	2.0 (1.4 – 3.0)
		0.001		0.001
		General support	1.3 (0.8 - 2.0)	0.270
				0.9 (0.6 – 1.4)
		0.687		
		Allied HCW	1.1 (0.8 – 1.6)	0.531
				0.9 (0.6 – 1.3)
		0.635		
		Other	0.9 (0.4 – 2.0)	0.837
				1.0 (0.5 – 2.1)
		0.941		
				Daily contact with COVID-19 patients
				2.6 (2.0 – 3.3)
				<0.001
				1.6 (1.2 – 2.1)
				0.002
Previous COVID-19 like symptoms	No	Ref.	Did not enter	
---------------------------------	----	------	--------------	
Yes	5.2 (4.2 – 6.5)	<0.001		

Calculated for close contacts of COVID-19 cases only (n=1,704)
Figure 1: Proportion of staff group with detectable antibodies to SARS-CoV-2, both hospitals, October 2020*

*finite population correction applied to confidence intervals