On Magnetohydrodynamic Flow of Viscoelastic Nanofluids with Homogeneous–Heterogeneous Reactions

Metib Alghamdi
Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia; malgamdy@kku.edu.sa

Received: 5 December 2019; Accepted: 2 January 2020; Published: 9 January 2020

Abstract: This article explores magnetohydrodynamic stretched flow of viscoelastic nanofluids with heterogeneous–homogeneous reactions. Attention in modeling has been specially focused to constitutive relations of viscoelastic fluids. The heat and mass transport process is explored by thermophoresis and Brownian dispersion. Resulting nonlinear systems are computed for numerical solutions. Findings for temperature, concentration, concentration rate, skin-friction, local Nusselt and Sherwood numbers are analyzed for both second grade and elastico-viscous fluids.

Keywords: viscoelastic fluids; nanoparticles; magnetohydrodynamics; heterogeneous–homogeneous reactions; numerical solution

1. Introduction

It is now acknowledged that non-Newtonian fluids in industrial, physiological and technological processes are more significant than viscous fluids. Few examples of such fluids may include silicon oils, printer ink, mud, ice cream, egg yolk, blood at low shear rate, shampoo, gypsum paste, polymer solutions, nail polish, sand in water, ketchup etc. Rheological properties of such fluids are different and thus all these cannot be explained employing one constitutive relationship between shear rate and rate of strain. The modelled expressions for the non-Newtonian liquids are more tedious and of higher order than Navier–Stokes expressions for viscous fluids. Researchers in the field face challenges in modelling, analysis and computations from different quarters. Through different non-Newtonian fluids, the objective here is to explore second grade and elastico-viscous fluids [1–8].

Nanofluids are described by carbon nanotubes (CNTs) [9–11], Buongiorno [12] and Tiwari and Das [13] models. Therefore, the information is very significant about flows involving thermophoresis aspects. Impact of slip in flow of copper-water nanoliquid over an extendable surface is examined by Pandey and Kumar [14]. Flow of couple stress nanomaterial bound by an oscillatory stretchable surface is analyzed by Khan et al. [15]. Turkyilmazoglu [16] discussed free and circular jets in view of single phase nanomaterial. Few relevant investigations for nanoliquids can be seen in studies [17–45]. According to previous literature, it is found that magnetohydrodynamic stretched flow of viscoelastic nanofluids with heterogeneous–homogeneous reactions has not been reported yet. Attention in modeling has been specially focused on constitutive relations of viscoelastic fluids. Heat and mass transport process is explored by thermophoresis and Brownian dispersion. Adequate transformations are considered to dimensionless the governing system. Numerical solutions of the resulting system are obtained by employing the shooting method. Contributions of numerous sundary variables on flow fields are interpreted through plots and numerical data.
2. Problem Formulation

Two-dimensional (2D) steady magnetohydrodynamic flow of incompressible viscoelastic nanoliquids by a linear stretchable surface with heterogeneous–homogeneous reactions is analyzed. Second grade and elastico-viscous liquids are considered. Attention in modeling has been specially focused on constitutive relations of viscoelastic fluids. Heat and mass transport process is explored by thermophoresis and Brownian dispersion. Let \(u_w(x) = cx \) denotes wall velocity along \(x \)-axis (see Figure 1). Homogeneous-reaction for cubic catalysis is [37]:

\[
A + B \rightarrow 3B, \text{ rate } = k_c ab^2. \tag{1}
\]

At catalyst surface heterogeneous-reaction is [37]:

\[
A \rightarrow B, \text{ rate } = k_s a. \tag{2}
\]

Figure 1. Flow configuration.

In above relations rate constants are described by \(k_s \) and \(k_c \) and chemical species \(B \) and \(A \) have concentrations \(b \) and \(a \) separately. Relevant equations for 2D flow satisfy [5,7]:

\[
\text{div } \mathbf{V} = 0, \tag{3}
\]

\[
\rho \frac{d\mathbf{V}}{dt} = \text{div } \mathbf{\sigma} + \rho \mathbf{b}. \tag{4}
\]

Cauchy stress tensor of second-order fluid is

\[
\mathbf{\sigma} = -p\mathbf{I} + \mu \mathbf{A}_1 + \alpha_1 \mathbf{A}_2 + \alpha_2 \mathbf{A}_1^2, \tag{5}
\]

in which \(\mathbf{A}_1 \) and \(\mathbf{A}_2 \) stand for 1st and 2nd Rivlin-Ericksen tensors respectively i.e.,

\[
\mathbf{A}_1 = (\text{grad } \mathbf{V})^* + (\text{grad } \mathbf{V}), \tag{6}
\]

\[
\mathbf{A}_2 = \frac{d\mathbf{A}_1}{dt} + (\text{grad } \mathbf{V})^* \mathbf{A}_1 + \mathbf{A}_1 (\text{grad } \mathbf{V}), \tag{7}
\]
where a_1 and a_2 stand for material constants, b for body force, D_t for material derivative and p for pressure. Material moduli satisfy following relationships for second grade fluid:

$$a_1 \geq 0, \quad \mu \geq 0, \quad a_1 + a_2 = 0,$$

in which \ast stands for matrix transpose and velocity distribution \mathbf{V} is

$$\mathbf{V} = [u(x, y), v(x, y), 0].$$

The governing expressions for 2D stretching flow of viscoelastic nanofluids are \[5,7,37\]:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial y^2} - k_0 \left(u \frac{\partial^3 u}{\partial x \partial y^2} + v \frac{\partial^3 u}{\partial x^2 \partial y} \right) - \frac{\sigma B_k^2}{\rho} u,$$

$$\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\partial^2 T}{\partial y^2} + \frac{(\rho c)_f}{(\rho c)_p} \left(D_B \left(\frac{\partial^2 T}{\partial y^2} \right) + \frac{D_T}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 \right),$$

$$\frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_b \left(\frac{\partial^2 C}{\partial y^2} \right) + \frac{D_T}{T_{\infty}} \left(\frac{\partial^2 T}{\partial y^2} \right),$$

$$u \frac{\partial a}{\partial x} + v \frac{\partial a}{\partial y} = D_A \left(\frac{\partial^2 a}{\partial y^2} \right) - k_c a b^2,$$

$$u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y} = D_B \left(\frac{\partial^2 b}{\partial y^2} \right) + k_c a b^2,$$

$$u = u_w(x) = c x, \quad v = 0, \quad T = T_w, \quad C = C_w, \quad D_A \frac{\partial a}{\partial y} = k_c a, \quad D_b \frac{\partial b}{\partial y} = -k_c a \text{ at } y = 0,$$

$$u \to 0, \quad T \to T_{\infty}, \quad C \to C_{\infty}, \quad a \to a_0, \quad b \to 0 \text{ as } y \to \infty.$$
\[
\frac{\delta}{Sc_b} h'' + fh' + K rh^2 = 0,
\] (23)
\[
f = 0, f' = 1, \theta = 1, \phi = 1, r' = K_s r, \delta h' = -K_s r \text{ at } \zeta = 0,
\] (24)
\[
f' \to 0, \theta \to 0, \phi \to 0, r \to 1, h \to 0 \text{ as } \zeta \to \infty.
\] (25)

Here \(k^*_v \) stands for viscoelastic parameter, \(\delta \) for ratio of mass diffusion coefficients, \(N_l \) for thermophoresis parameter, \(K_s \) for homogeneous-reaction strength, \(M \) for magnetic parameter, \(Sc \) for Schmidt number, \(Sc_b \) for Schmidt number (for heterogeneous–homogeneous reactions), \(N_b \) for Brownian motion parameter, \(K_s \) for heterogeneous-reaction strength and \(Pr \) for Prandtl number. We set these definitions as

\[
\begin{align*}
 k^*_v &= -k_0 \left(\frac{\zeta}{\delta} \right),
 M^2 &= \frac{\sigma R^2}{k^0},
 Pr &= \frac{\nu}{\alpha},
 \delta &= \frac{D_B}{D_A},
 K &= \frac{k}{\nu \nu_0} ,
 K_s &= \frac{k}{\nu_0} \sqrt{\frac{3}{T}},
 Sc &= \frac{\nu}{D_A},
 Sc_b &= \frac{\nu}{D_A},
 N_b &= \frac{\rho c \nu_{D\nu}(C_{\text{w}}-C_{\infty})}{(\rho c)_T (T_{\infty}-T_{\infty})},
 N_l &= \frac{\rho c \nu_{D\nu}(T_{\infty}-T_{\infty})}{(\rho c)_T (T_{\infty}-T_{\infty})}.
\end{align*}
\] (26)

Considering that \(D_A = D_B \) we have \(\delta = 1 \) and thus

\[
r(\zeta) + h(\zeta) = 1.
\] (27)

Now Equations (22) and (23) give

\[
\frac{1}{Sc_b} r'' + fr' - K(1-r)^2 r = 0,
\] (28)

with boundary conditions

\[
r'(0) = K_s r'(0),
 r(\infty) \to 1.
\] (29)

Coefficient of skin friction and local Sherwood and Nusselt numbers are

\[
\begin{align*}
 \text{Re}^{1/2} C_f &= (1-3k^*_v) f''(0),
 \text{Re}^{-1/2} S h_x &= -\phi'(0),
 \text{Re}^{1/2} N u_x &= -\theta'(0),
\end{align*}
\] (30)

in which \(\text{Re}_x = u_w x / \nu \) denotes the local Reynolds number.

3. Solution Methodology

By considering suitable boundary conditions on the system of equations, a numerical solution is developed using NDSolve in Mathematica. Shooting method is used via NDSolve. This method is very helpful in case of small step-size featuring negligible error. As a consequence, both \(x \) and \(y \) varied uniformly by a step-size of 0.01 [40].

4. Graphical Results and Discussion

Effects of magnetic parameter \(M \), homogeneous-reaction strength \(K \), Schmidt number \(Sc \), Schmidt number (for heterogeneous–homogeneous reactions) \(Sc_b \), thermophoresis parameter \(N_l \), heterogeneous-reaction strength \(K_s \), Prandtl number \(Pr \) and Brownian motion parameter \(N_b \) on concentration \(\phi(\zeta) \), concentration rate \(r(\zeta) \) and temperature \(\theta(\zeta) \) for both second grade and elastico-viscous fluids are sketched in Figures 2–12.

Figure 2 depicts impact of magnetic parameter \(M \) on temperature \(\theta(\zeta) \). Here \(M \neq 0 \) is for hydromagnetic flow situation and \(M = 0 \) corresponds to hydrodynamic flow case. Temperature \(\theta(\zeta) \) is higher for hydromagnetic flow in comparison to hydrodynamic flow for both second grade and elastico-viscous fluids. Physically magnetic parameter depends upon Lorentz force. Lorentz force is an agent which resists the motion of fluid and therefore temperature \(\theta(\zeta) \) enhances.

Figure 3 displays variations in temperature \(\theta(\zeta) \) for increasing Prandtl number \(Pr \). Temperature \(\theta(\zeta) \) decays for larger \(Pr \) for both second grade and elastico-viscous fluids. Physically Prandtl number
involves thermal diffusivity. Larger Prandtl number corresponds to weaker thermal diffusivity which produces a decay in temperature $\theta (\zeta)$. Figure 4 depicts impact of Brownian motion parameter N_b on temperature $\theta (\zeta)$. Larger N_b produces an increment in temperature $\theta (\zeta)$ for both second grade and elastico-viscous fluids. Larger Brownian motion parameter N_b has stronger Brownian diffusivity and weaker viscous force which increased the temperature $\theta (\zeta)$.

Figure 5 shows that larger thermophoresis parameter N_t leads to higher temperature $\theta (\zeta)$ for both second grade and elastico-viscous fluids. Larger N_t causes strong thermophoresis force which tends to shift nanoparticles from hot to cold zone and therefore temperature $\theta (\zeta)$ increases.

Impact of magnetic parameter M on concentration $\phi (\zeta)$ is displayed in Figure 6 Concentration $\phi (\zeta)$ is upgraded for increasing estimations of M for both second grade and elastico-viscous fluids. Furthermore, the concentration $\phi (\zeta)$ shows similar trend for both second grade and elastico-viscous fluids. Figure 7 depicts that concentration $\phi (\zeta)$ is decreased for larger Schmidt number Sc for both second grade and elastico-viscous fluids. Schmidt number Sc has an inverse relation with Brownian diffusivity. Larger Schmidt number leads to weaker Brownian diffusivity which produces weaker concentration $\phi (\zeta)$.

Impact of Brownian motion N_b on concentration $\phi (\zeta)$ is shown in Figure 8 Bigger N_b produces a reduction in concentration $\phi (\zeta)$ for both second grade and elastico-viscous fluids. Physically Brownian force tries to push particles in opposite direction of concentration gradient and make nanofluid more homogeneous. Therefore, higher the Brownian force, lower the concentration gradient and more uniform concentration $\phi (\zeta)$.

Figure 9 displays that how thermophoresis N_t affects concentration $\phi (\zeta)$. Here concentration $\phi (\zeta)$ is upgraded for higher estimations of N_t for both second grade and elastico-viscous fluids. Furthermore, the concentration $\phi (\zeta)$ shows similar trend for both second grade and elastico-viscous fluids.

Table 1 displays skin-friction $-C_fRe^{1/2}$ subject to varying k_t^* and M. Here skin-friction has higher estimations for larger M for both second grade and elastico-viscous fluids. Table 2 depicts comparison for various estimations of k_t^* with homotopy analysis method (HAM). Table 2 presents a good agreement of numerical solution with existing homotopy analysis method (HAM) solution in a limiting sense. Table 3 depicts local Nusselt number $Nu_xRe^{-1/2}$ subject to varying k_t^*, N_b and N_t. Here larger N_b and N_t correspond to lower local Nusselt number for both second grade and elastico-viscous fluids. Table 4 shows local Sherwood number $Sh_xRe^{-1/2}$ subject to varying k_t^*, N_b and N_t. Here larger N_t produces lower local Sherwood number while opposite trend is noted via N_b for both second grade and elastico-viscous fluids.

Table 1. Skin-friction coefficient for various estimations of viscoelastic and magnetic parameters.

M	$k_t^* = 0.1$	$k_t^* = -0.1$
0.0	0.7379	1.2395
0.2	0.7525	1.2640
0.5	0.8250	1.3858
Figure 2. Variations of temperature for magnetic parameter when $N_b = 0.2, N_l = 0.1$ and $Sc = Pr = 1.0$.

Figure 3. Variations of temperature for Prandtl number when $N_b = 0.2, N_l = 0.1, Sc = 1.0$ and $M = 0.2$.

Figure 4. Variations of temperature for Brownian motion parameter when $N_l = 0.1, Sc = Pr = 1.0$ and $M = 0.2$.

$Pr = 0.6, 0.9, 1.2$

$M = 0.0, 0.6, 1.2$
Figure 5. Variations of temperature for thermophoresis parameter when $N_b = 0.2$, $Sc = Pr = 1.0$ and $M = 0.2$.

Figure 6. Variations of concentration for magnetic parameter when $N_b = 0.2$, $N_i = 0.1$ and $Sc = Pr = 1.0$.

Figure 7. Variations of concentration for Schmidt number when $N_b = 0.2$, $N_i = 0.1$, $Pr = 1.0$ and $M = 0.2$.
Variations of concentration rate for Schmidt number (for heterogeneous–homogeneous reactions) when $K = 0.2$, $K_0 = 0.5$ and $M = 0.2$.

Figure 8. Variations of concentration for Brownian motion parameter when $N_1 = 0.1$, $Sc = Pr = 1.0$ and $M = 0.2$.

Figure 9. Variations of concentration for thermophoresis parameter when $N_b = 0.2$, $Sc = Pr = 1.0$ and $M = 0.2$.

Figure 10. Variations of concentration rate for Schmidt number (for heterogeneous–homogeneous reactions) when $K = 0.2$, $K_0 = 0.5$ and $M = 0.2$.

Figure 11. Variations of concentration rate for homogeneous-reaction strength when \(Sc_b = 1.0, K_s = 0.5 \) and \(M = 0.2 \).

Figure 12. Variations of concentration rate for heterogeneous-reaction strength when \(K = 0.2, Sc_b = 1.0 \) and \(M = 0.2 \).

Table 2. Comparative data of skin-friction coefficient for various estimations of viscoelastic parameter when \(M = 0 \).

\(k^*_i \)	\(-C_fRe^{3/2}\)	Numerical	HAM [5]
0.0	1.0000	1.00000	
0.1	0.7379	0.73786	
0.2	0.4472	0.44721	
0.3	0.1195	0.11952	
Table 3. Local Nusselt number for various estimations of viscoelastic, Brownian motion and thermophoresis parameters when $Sc = Pr = 1.0$ and $M = 0.2$.

N_b	N_t	$Nu_x Re_x^{-1/2}$ for $k_1^* = 0.1$	$Nu_x Re_x^{-1/2}$ for $k_1^* = -0.1$
0.1	0.1	0.5232	0.5425
0.2	-	0.4970	0.5153
0.3	-	0.4716	0.4890
0.2	0.1	0.4970	0.5153
-	0.2	0.4827	0.5002
-	0.3	0.4689	0.4856

Table 4. Local Sherwood number for various estimations of viscoelastic, Brownian motion and thermophoresis parameters when $Sc = Pr = 1.0$ and $M = 0.2$.

N_b	N_t	$Sh_x Re_x^{-1/2}$ for $k_1^* = 0.1$	$Sh_x Re_x^{-1/2}$ for $k_1^* = -0.1$
0.1	0.1	0.2100	0.2300
0.2	-	0.3994	0.4203
0.3	-	0.4622	0.4834
0.2	0.1	0.3994	0.4203
-	0.2	0.2435	0.2647
-	0.3	0.0982	0.1205

5. Conclusions

Magnetohydrodynamic flow of viscoelastic nanofluids bound by a linear stretchable surface with heterogeneous–homogeneous reactions are analyzed. Both concentration $\phi (\zeta)$ and temperature $\theta (\zeta)$ are enhanced via higher M. Larger Brownian motion N_b displays opposite trend for concentration $\phi (\zeta)$ and temperature $\theta (\zeta)$. Larger thermophoresis number N_t produces higher concentration $\phi (\zeta)$ and temperature $\theta (\zeta)$. Temperature $\theta (\zeta)$ is reduced when Prandtl number enhances. Prandtl number is considered to control the rate of heat transfer in engineering and industrial processes. The suitable value of Prandtl number is very essential to control the rate of heat transfer in engineering and industrial processes. Larger homogeneous-reaction K depicts a reduction in concentration rate $r (\zeta)$. Larger heterogenous-reaction K_s and Schmidt number Sc_b lead to higher concentration rate $r (\zeta)$. Skin friction is enhanced for larger magnetic parameter M. Reverse trend of local Sherwood number is seen for N_t and N_b. Local Nusselt number is decreased for thermophoresis N_t and Brownian motion N_b parameters. Furthermore, the present analysis is reduced to Newtonian fluid flow case when $k_1^* = 0$.

Funding: This research was funded by the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia under grant number (R.G.P.2./26/40).

Acknowledgments: The author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant number (R.G.P.2./26/40).

Conflicts of Interest: The author declares no conflict of interest.
Nomenclature

Symbol	Description
u, v	velocity components
x, y	coordinate axes
A, B	chemical species
k_c, k_s	rate constants
μ	dynamic viscosity
ρ	density of base fluid
a, b	concentrations of chemical species
k_0	elastic parameter
ν	kinematic viscosity
σ	electrical conductivity
V	velocity distribution
B_0	magnetic field strength
o	Cauchy stress tensor
b	body force
a_1, a_2	material constants
$\frac{d}{dx}$	material derivative
A_1, A_2	first and second Rivlin-Ericksen tensors
D_A, D_B	mass diffusion coefficients
C	concentration
T_{∞}	ambient fluid temperature
C_∞	ambient fluid concentration
T_w	surface temperature
C_w	surface concentration
$(pc)_p$	effective heat capacity of nanoparticles
$(pc)_f$	heat capacity of fluid
a	thermal diffusivity
k	thermal conductivity
u_w	surface velocity
c	positive constant
D_B^*	Brownian diffusion coefficient
D_T	thermophoretic diffusion coefficient
ζ	similarity variable
f'	dimensionless velocity
θ	dimensionless temperature
ϕ	dimensionless concentration
r	dimensionless concentration rate
k_1^*	viscoelastic parameter
Sc	Schmidt number
K	homogeneous-reaction strength
Pr	Prandtl number
N_b	Brownian motion parameter
N_l	thermodiffusivity parameter
K_s	heterogeneous-reaction strength
Sc_b	Schmidt number
C_f	skin friction coefficient
Re_x	local Reynolds number
Nu_x	local Nusselt number
Sh_x	local Sherwood number

References

1. Ariel, P.D. On the flow of an elastico-viscous fluid near a rotating disk. *J. Comput. Appl. Math.* 2003, 154, 1–25. [CrossRef]

2. Tan, W.C.; Masuoka, T. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. *Int. J. Non Linear Mech.* 2005, 40, 515–522. [CrossRef]

3. Shadloo, M.S.; Kimiaeifar, A. Application of homotopy perturbation method to find an analytical solution for magnetohydrodynamic flows of viscoelastic fluids in converging/diverging channels. *J. Mech. Eng. Sci.* 2011, 225, 347–353. [CrossRef]

4. Hayat, T.; Hussain, Z.; Farooq, M.; Alsaedi, A. Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. *J. Mol. Liq.* 2016, 215, 749–755. [CrossRef]

5. Hayat, T.; Muhammad, T.; Alsaedi, A.; Mustafa, M. A comparative study for flow of viscoelastic fluids with Cattaneo-Christov heat flux. *PLoS ONE* 2016, 11, e0155185. [CrossRef]

6. Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. Model and comparative study for flow of viscoelastic nanofluids with Cattaneo-Christov double diffusion. *PLoS ONE* 2017, 12, e0168824. [CrossRef]

7. Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy-Forchheimer flow of viscoelastic nanofluids: A comparative study. *J. Mol. Liq.* 2017, 233, 278–287. [CrossRef]

8. Sheremet, M.; Pop, I. Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid. *Int. J. Numer. Methods Heat Fluid Flow* 2018, 28, 624–640. [CrossRef]

9. Esmaeilzadeh, H.; Su, J.; Charmchi, M.; Sun, H. Effect of hydrophobicity on the water flow in carbon nanotube-A molecular dynamic study. *Theor. Appl. Mech. Lett.* 2018, 8, 284–290. [CrossRef]

10. Chen, J.; Han, J. Comparative performance of carbon nanotubes and nanoclays as flame retardants for epoxy composites. *Results Phys.* 2019, 14, 102481. [CrossRef]
11. Hayat, T.; Haider, F.; Muhammad, T.; Ahmad, B. Darcy-Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous–heterogeneous reactions. *J. Therm. Anal. Calorim.* 2019, 137, 1939–1949. [CrossRef]

12. Buongiorno, J. Convective transport in nanofluids. *Heat Transf.* 2006, 128, 240–250. [CrossRef]

13. Tiwari, R.K.; Das, M.K. Heat transfer augmentatics in a two aided lid-driven differentially heated square cavity utilizing nanofluid. *Int. J. Heat Mass Transf.* 2007, 50, 2002–2018. [CrossRef]

14. Panday, A.K.; Kumar, M. Boundary layer flow and heat transfer analysis on Cu-water nanofluid flow over a stretching cylinder with slip. *Alex. Eng. J.* 2017, 56, 671–677. [CrossRef]

15. Khan, S.U.; Shahzad, S.A.; Rafi, A.; Ali, N. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects. *Results Phys.* 2018, 8, 1223–1231. [CrossRef]

16. Turkyilmazoglu, M. Free and circular jets cooled by single phase nanofluids. *Eur. J. Mech. B/Fluid* 2019, 76, 1–6. [CrossRef]

17. Mahian, O.; Mahmud, S.; Heris, S.Z. Analysis of entropy generation between co-rotating cylinders using nanofluids. *Energy* 2012, 44, 438–446. [CrossRef]

18. Goodarzi, M.; Safaei, M.R.; Vafai, K.; Ahmadi, G.; Dahari, M.; Kazi, S.N.; Jomhari, N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. *Int. J. Therm. Sci.* 2014, 75, 204–220. [CrossRef]

19. Hsiao, K.L. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. *Comput. Fluids* 2014, 104, 1–8. [CrossRef]

20. Turkyilmazoglu, M. A note on the correspondence between certain nanofluid flows and standard fluid flows. *ASME J. Heat Transf.* 2015, 137, 024501. [CrossRef]

21. Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D. MHD mixed convection in a vertical annulus filled with Al₂O₃–water nanofluid considering nanoparticle migration. *J. Magn. Magn. Mater.* 2015, 382, 296–306. [CrossRef]

22. Hayat, T.; Muhammad, T.; Alsaedi, A.; Alhuthali, M.S. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. *J. Magn. Magn. Mater.* 2015, 385, 222–229. [CrossRef]

23. Togun, H.; Ahmadi, G.; Abdurazzaq, T.; Shkarah, A.J.; Kazi, S.N.; Badarudin, A.; Safaei, M.R. Thermal performance of nanofluid in ducts with double forward-facing steps. *J. Taiwan Inst. Chem. Eng.* 2015, 47, 28–42. [CrossRef]

24. Nikkhah, Z.; Karimipour, A.; Safaei, M.R.; Tehrani, P.F.; Goodarzi, M.; Dahari, M.; Wongwises, S. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. *Int. Commun. Heat Mass Transf.* 2015, 68, 69–77. [CrossRef]

25. Sherremet, M.A.; Pop, I.; Roşca, N.C. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. *J. Taiwan Inst. Chem. Eng.* 2016, 61, 211–222. [CrossRef]

26. Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. *Int. J. Heat Mass Transf.* 2016, 100, 566–572. [CrossRef]

27. Karimipour, A.; Taghipour, A.; Malvandi, A. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. *J. Magn. Magn. Mater.* 2016, 419, 420–428. [CrossRef]

28. Hayat, T.; Hussain, Z.; Muhammad, T.; Alsaedi, A. Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. *J. Mol. Liq.* 2016, 221, 1121–1127. [CrossRef]

29. Hsiao, K.L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. *Appl. Therm. Eng.* 2016, 98, 850–861. [CrossRef]

30. Hsiao, K.L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. *Appl. Therm. Eng.* 2017, 112, 1281–1288. [CrossRef]

31. Muhammad, T.; Alsaedi, A.; Shehzad, S.A.; Hayat, T. A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. *Chin. Phys.* 2017, 55, 963–976. [CrossRef]
32. Hayat, T.; Sajjad, R.; Muhammad, T.; Alsaedi, A.; Ellahi, R. On MHD nonlinear stretching flow of Powell-Eyring nanomaterial. *Results Phys.* **2017**, *7*, 535–543. [CrossRef]

33. Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A. A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. *Results Phys.* **2017**, *7*, 2791–2797. [CrossRef]

34. Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. *Int. J. Therm. Sci.* **2017**, *111*, 274–288. [CrossRef]

35. Rana, P.; Dhanai, R.; Kumar, L. MHD slip flow and heat transfer of Al₂O₃-water nanofluid over a horizontal shrinking cylinder using Buongiorno’s model: Effect of nanolayer and nanoparticle diameter. *Adv. Powder Technol.* **2017**, *28*, 1727–1738. [CrossRef]

36. Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. An analytical solution for magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study. *Comp. Methods Appl. Mech. Eng.* **2017**, *315*, 467–477. [CrossRef]

37. Mahdy, A. Impacts of homogeneous–heterogeneous chemical reactions and inclined magnetic field on unsteady nanofluids flow. *AIP Adv.* **2018**, *8*, 115109. [CrossRef]

38. Muhammad, T.; Lu, D.C.; Mahanthesh, B.; Eid, M.R.; Ramzan, M.; Dar, A. Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes. *Commun. Theor. Phys.* **2018**, *70*, 361. [CrossRef]

39. Tian, X.; Li, B.; Hu, Z. Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate. *Int. J. Heat Mass Transf.* **2018**, *127*, 768–780. [CrossRef]

40. Asma, M.; Othman, W.A.M.; Muhammad, T.; Mallawi, F.; Wong, B.R. Numerical study for magnetohydrodynamic flow of nanofluid due to a rotating disk with binary chemical reaction and Arrhenius activation energy. *Symmetry* **2019**, *11*, 1282. [CrossRef]

41. Maleki, H.; Safaei, M.R.; Alrashed, A.A.; Kasaean, A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. *J. Therm. Anal. Calorim.* **2019**, *135*, 1655–1666. [CrossRef]

42. Saif, R.S.; Hayat, T.; Ellahi, R.; Muhammad, T.; Alsaedi, A. Darcy-Forchheimer flow of nanofluid due to a curved stretching surface. *Int. J. Numer. Methods Heat Fluid Flow* **2019**, *29*, 2–20. [CrossRef]

43. Riaz, A.; Alolaiyan, H.; Razaq, A. Convective heat transfer and magnetohydrodynamics across a peristaltic channel coated with nonlinear nanofluid. *Coatings* **2019**, *9*, 816. [CrossRef]

44. Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Muhammad, T.; Shashikumar, N.S. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. *Phys. Scr.* **2019**, *94*, 085214. [CrossRef]

45. Eid, M.R.; Mahny, K.L.; Dar, A.; Muhammad, T. Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species. *Phys. A Stat. Mech. Appl.* **2020**, *540*, 123063. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).