Morphological Variation of *Malayopython reticulatus* (Schneider, 1801) from Several Population in Indonesia

Luhur Septiadi ¹, M. Fathoni ², Berry Fakhry Hanifa ¹, Amir Hamidy ³

¹ Department of Biology, State Islamic University of Maulana Malik Ibrahim, Malang 65145, Indonesia
² Department of Biology, Faculty Mathematics and Natural Sciences, Brawijaya University, Malang 65145, Indonesia
³ Laboratory of Herpetology, Zoology Division, Research Center for Biology, Indonesian Institute of Sciences, Cibinong 16912, Indonesia

Article history:
Submission April 2019
Revised August 2019
Accepted August 2019

Corresponding author:
E-mail: luhur.septiadi@gmail.com

ABSTRACT

Reticulated python (*Malayopython reticulatus*) is a widely distributed snake covering throughout Southeast Asia and almost all of Indonesia archipelago and divided into several subspecies based on morphological variation and its locality. Morphological variation data of *M. reticulatus* from Indonesia population has never been done thoroughly. This study aims to determine the morphological variations based on 21 meristic and 3 morphometric characters from several populations in Indonesia. The data was collected from the Museum Zoologicum Bogoriense (MZB) Cibinong, Indonesia and other additional collections that are carried out from June to July 2018 and then analyzed by Principal Component Analysis (PCA) to determine the population grouping. The result showed a high variation on the scale range of anterior prefrontal, posterior prefrontal, frontal, parietal, preocular, postocular, loreal, temporal, upper labial, lower labial, and dorsal scales. Ventral and subcaudal scales in male and female specimens show high variation in the total scale count, the ratio comparison of tl: SVL measurement, indicated the sexual dimorphism. Prefrontal (anterior-posterior) and frontal scales show high variation and difficult to distinguish between each locality at the subspecies level and suggest it to be intra-specific variation. There is no significant grouping were found between populations from data on morphological variations.

Keywords: Malayopython reticulatus, morphological variation, intra-specific variation, Indonesia

Introduction

Reticulated python (*Malayopython reticulatus*, Schneider, 1801) is a large constrictor snake of Pythonidae family that’s widely distributed throughout Southeast Asia and almost all of Indonesia archipelago [1]. The widespread of this species give rises to morphological and genetic variations given by many factors such as population isolation, geographical barrier, evolutionary process and also the influence of the environment and its habitat. The variation is then used as a comparing reference (diagnostic character) for distinguishing a species [2]. Morphological variations are observed based on phentenetic characters including color patterns, specific characteristics of species, patterns, and body size ratios, and meristical characters such as scale ranges [3]. These variations are further analyzed, to determine the existence of significant differences between species or sub-species.

M. reticulatus is divided into 3 subspecies based on its locality, namely *M. reticulatus reticulatus* (Greater Sunda), *M. reticulatus saputrai* (Selayar Island), and *M. reticulatus jampeanus* (Tanahjampea Island). Two subspecies recently recognized (*M. reticulatus saputrai* and *M. reticulatus jampeanus*) by having a few specific morphological variations that only subspecies posses-
characters of *M. reticulatus* eral problems, to wit: 1) the tendency of other logical characters of *M. reticulatus*. Thus, examini
sively categorizes it as geographical or prefrontal scales, yet are still confused to
from several population in Indonesia is needed. Therefore, we present an overview of morpho-
from certain locality [4]. These differences are based on the shape of the anterior-posterior
prefrontal meristic and morphometric
were observed by meristic and morphometric
were obtained from the collection of the Museum Zoologicum Bogoriense (MZB) that are observed during July-
September 2018 and few additional specimens that are collected on July - August 2013 and April - May 2014 (Table 1). Morphological variations were observed by meristic and morphometric

Material and Methods

Specimens observation

All of 38 specimens of *M. reticulatus* from several populations in Indonesia were obtained from the collection of the Museum Zoologicum Bogoriense (MZB) that are observed during July-

Table 1. *M. reticulatus* specimens observed from several populations in Indonesia, collection of Museum Zoologicum Bogoriense (MZB) LIPI and several additional specimens

No.	ID. Number	Population	Locality
1.	MZB. Ophi. 5287	Sumatera	Dalas, Southern Lampung
2.	MZB. Ophi. 201		F. Krakatau Island, Lampung
3.	MZB. Ophi. 4680		F. Krakatau Island, Lampung
4.	MZB. Ophi. 2412		Saraya, Southeast Aceh
5.	MZB. Ophi. 1692		Tiwi River, Kota Tua, Riau
6.	MZB. Ophi. 2192		Bengkalis, Riau
7.	MZB. Ophi. 2936	Jawa	Pangandaran, West Java
8.	MZB. Ophi. 197		Cikopo, West Java
9.	MZB. Ophi. 4681		Cikopo, West Java
10.	MZB. Ophi. 5286		Malang, East Java
11.	MZB. Ophi. 2152	Kalimantan	Hilir Village, Southern Barito, Central Kalimantan
12.	MZB. Ophi. 1906		Pontianak, West Kalimantan
13.	MZB. Ophi. 1457		Banjarmasin, South Kalimantan
14.	MZB. Ophi. 5884		Lumbis River, Nunukan, North Kalimantan
15.	MZB. Ophi. 3020		TNKM Kragan, Nunukan, East Kalimantan
16.	MZB. Ophi. 3121		Marang, Sangkulirang, East Kalimantan
17.	MZB. Ophi. 5785	NTB	Kawiwinda Toi, Sumbawa Island
18.	MZB. Ophi. 5589		Saunulu, Central Maluku
19.	MZB. Ophi. 1951		Saunulu, Central Maluku
20.	MZB. Ophi. 4481	Maluku	North Halmahera, North Maluku
21.	MZB. Ophi. 4482		North Halmahera, North Maluku
22.	MZB. Ophi. 194		West Seram Island, Maluku
23.	MZB. Ophi. 200		Timor Island, Maluku
24.	MZB. Ophi. 1558		Anca Danau Lindu, Central Sulawesi
25.	MZB. Ophi. 3221		Dampala River, Morowali, Central Sulawesi
26.	MZB. Ophi. 2895		Goa Keramat, Tawaeti, Donggala, Central Sulawesi
27.	MZB. Ophi. 1762		Tomodo, Lindu Valley, Central Sulawesi
28.	MZB. Ophi. 2297		Marowo, Tojo Una-Una, Central Sulawesi
29.	MZB. Ophi. 1657		Jompi, Raha, Muna Island, Southeast Sulawesi
30.	MZB. Ophi. 4682		Jompi, Raha, Muna Island, Southeast Sulawesi
31.	MZB. Ophi. 2041	Sulawesi	Latimojong Mountain, Luwu, South Sulawesi
32.	MZB. Ophi. 3436		Selayar Island, Southern Sulawesi Archipelago
33.	MZB. Ophi. 3223		Tanahjampea Island, Southern Sulawesi Archipelago
34.	MZB. Ophi. 3437		Kalaotoa Island, Southern Sulawesi Archipelago
35.	S.Voucher. 020		Karompa Island, Southern Sulawesi Archipelago
36.	S.Voucher. 021		Kalaotoa Island, Southern Sulawesi Archipelago
37.	S.Voucher. 022		Kalaotoa Island, Southern Sulawesi Archipelago
38.	S.Voucher. 023		Madu Island, Southern Sulawesi Archipelago
Measurement of meristic, morphometric characters, and analysis

Morphometric characters are observed by 3 characters, as follows: a total of length (ToL), tail length (tl), and snout-vent length (SVL). Then, 21 meristic characters observed by scales counting, as follows: rostral (r), internasal (i), anterior prefrontal (apf), posterior prefrontal (ppf), frontal (f), supraocular (so), parietal (p), interparietal (ip), preocular (pro), postocular (psp), loreal (l), temporal (t), upper labial (la), upper labial contacting orbit (lao), lower labial (la'), anterior upper thermal pits (tp), posterior lower thermal pits (tp'), mental (m), dorsal midbody scales (d), ventral (v), and subcaudal (sc) (Figure 1), the characters used are according to Auliya [4] with standard measurement and scale counting following Lilywhite & Wray [5]. Male and female specimens were differenti-
Table 2. Measurement of meristic characters and morphometric ratios of *M. reticulatus* (♂=14, ♀=24).

Characters	Sumatera (♂=1)	Sumatera (♀=5)	Jawa (♂=3)	Jawa (♀=3)	Kalimantan (♂=2)	Kalimantan (♀=4)	NTB (♂=1)	NTB (♀=4)	Maluku (♂=2)	Maluku (♀=5)	Sulawesi (♂=10)	Sulawesi (♀=5)
r	1	1	1	1	1	1	1	1	1	1	1	1
i	2	2	2	2	2	2	2	2	2	2	2	2
apf	2	2	2	2	2	2	2	2	2	2	2	2
pff	7	6	10	9	5	8	7	8	7	6	1	4
f	1	1	2	1	2	1	1	2	1	1	1	2
so	2	1	2	2	2	2	2	2	2	2	2	2
p	2	2	3	2	2	2	2	2	2	2	2	2
ip	1	2	3	5	2	1	2	4	2	3	1	3
pro	2	2	2	2	2	2	2	2	2	2	2	2
pso	2	4	3	3	5	3	4	3	4	3	2	2
t	4	5	6	8	4	3	6	8	6	5	5	4
La	14	13	13	14	14	13	12	14	13	13	13	13
Lao	7	7	7	7	7	7	7	7	7	7	8	6
la'	22	21	23	21	22	22	22	21	22	22	19	24
Tp	5	5	6	5	5	5	5	5	5	5	4	6
tp'	6	5	6	5	6	5	5	5	5	5	5	5
m	1	1	1	1	1	1	1	1	1	1	1	1
d	66	67	76	66	66	73	74	63	72	69	67	77
v	319	310	320	319	301	312	316	314	324	320	300	294
Sc	89	87	100	94	87	93	89	95	87	96	84	91
tl:Tol	0.17:1	0.14:1	0.14:1	0.12:1	0.14:1	0.14:1	0.13:1	0.14:1	0.14:1	0.14:1	0.12:1	0.13:1
SVL:Tol	0.83:1	0.86:1	0.86:1	0.88:1	0.86:1	0.87:1	0.86:1	0.86:1	0.86:1	0.86:1	0.86:1	0.87:1
tl:SVL	0.20:1	0.16:1	0.16:1	0.14:1	0.16:1	0.15:1	0.16:1	0.16:1	0.16:1	0.13:1	0.15:1	0.14:1

Results and Discussion

Morphological characters of M. reticulatus from several population

The analysis showed the high variation on the scale range of anterior prefrontal, posterior prefrontal, frontal, parietal, preocular, postocular, loreal, temporal, upper labial, lower labial, and dorsal, ventral and subcaudal scales (Table 2). The obtained meristic character shows the intraspecific variations of the total number of scales that vary between specimens from several populations. The varying number of scales might be correlated to habitat use and environmental conditions that cause adaptation. This adaptation is done to prevent excess water loss in the body. A large number of scales might indicate habitats with high humidity, whereas fewer scales might indicate a drier habitat [6]. Reduction of dorsal scales might also be affected by the development of the cutaneous muscle system and cost-cutaneous muscles located below the skin as a result of the evolution of rectilinear locomotion [7].

Meristic characters do not show the sexual dimorphism based on the number of ventral and subcaudal scales due to the high variation. Male specimens have a range of 84-96 on subcaudal scales, and a range of 284-343 on ventral scales. Whereas in the female specimens, the total range is 83-100 on subcaudal scales and the total range is 294-341 on ventral scales. The measurement of the morphometric ratio tail length (tl): snout-vent length (SVL) from each population shows that the average ratio of tail length of the male specimens is longer than the average ratio of tail length of female specimens (Table 2). According to Kerfoot [7], ventral scales attach to the cost-cutaneous.
muscle system that connected to the ribs and vertebrae, so the number of ventral scales reflects the number of vertebrae of the specimens. Individuals with a large number of vertebrae have a possibility to grow longer than individuals who have fewer vertebrae, affecting the number of existing scales.

Differences in the shape and number of frontal scales were also found with the presence of a single, divided, anterior-posteriorly notch, and anteriorly notch frontal scales (Figure 2). It was stated that this variation is due to geographical variations expressed in the form of divided or single scales, different from one region to another [8, 9]. Kluge [10] states that there are several morphological characters that are different from some of the specimens studied in Kalimantan (Borneo) with a variation of almost dividing from posterior, anterior, or both, as well as singles and divided scales. Underwood and Stimson, also Mark Auliya et al. [11, 4] state that the formation of the frontal scales is a type of intraspecific variation. These findings strongly support the existence of intraspecific variations in frontal scales in the population studied, and cannot be categorized as geographic variations based on frontal scales of reticulated python.

The diagnostic characters of M. reticulatus sbp. problems

Prefrontal scales show inconsistencies in a variation of *M. reticulatus* specimens in each population (Table 3). Mark et al. [4], states that there were specific variations in the row of prefrontal scales in each *M. reticulatus* sbp. The species of *M. reticulatus reticulatus* has 2 rows of posterior prefrontal scales with slightly short anterior prefrontal scales, the species of *M. reticulatus jampeanus* has only 1 row of prefrontal posterior scales, with elongated anterior prefrontal scales. Whereas *M. reticulatus saputrai* has 2 rows of posterior prefrontal scales, and slightly enlarged anterior prefrontal scales. Direct observations showed specimens from Sulawesi has 1-row of fragmented posterior prefrontal scales and anterior prefrontal scales on varying size (ID. Number: MZB.Ophi. 1762, MZB.Ophi. 2297, MZB.Ophi. 1558, MZB.Ophi. 3221) resembles *M. reticulatus jampeanus*. Specimens from Maluku also showed the presence of 1 row posterior prefrontal scales with elongated anterior prefrontal scales (ID. Number: MZB.Ophi. 1951, MZB.Ophi.4481, MZB.Ophi. 4482). However, the specimen observed from Tanahjampea, Kalaaota, Karompa,
and Madu Island (ID. Number: MZB. Ophi. 3223, MZB. Ophi. 3437, S.Voucher.020, S.Voucher.021, S.Voucher.022, S.Voucher.023) shows the tendency of 1 row posterior prefrontal scales with elongated anterior prefrontal scales, resembling the diagnostic character of the *M. reticulatus jampeanus*. In accordance Hanifa et al. [12], which suggest that the Karompa, Kalaotoa, and Madu islands were acting as stepping stones on the dispersal patterns of this species, though

Table 3. Comparison of dorsal, ventral, prefrontal scales to few literature of *M. reticulatus*

Population	Mid-Dorsal Scale	Ventral Scales	Prefrontal Scales	Resemblance	Source
(Sunda land)					
M. r. reticulatus	68-78	304-325	2 rows ppf, apf small	-	[4]
(Selayar)					
M. r. jampeanus	64-68	290-301	1 row of ppf, apf slightly longer than Sunda retic	-	[4]
(TanahJampea)	77-81	330-334	2 rows of ppf, apf very long	-	[4]
M. reticulatus	69-79	297-330	Varied	Sulawesi Population	[13]
M. reticulatus	71-75	300-322	-	Java Population	[1]
Sumatera (n=6)	65-76	310-319	Varied	to *M. r. reticulatus*	This study
Kalimantan (n=6)	63-74	312-320	2 rows of ppf	to *M. r. reticulatus*	This study
Jawa (n=4)	61-77	301-320	2 rows of ppf	to *M. r. reticulatus*	This study
Sulawesi (n=13)	66-90	294-343	Varied	-	This study
Maluku (n=6)	67-78	284-333	Varied	to Sulawesi Population	This study
NTB (n=1)	69	314	2 rows of ppf	to *M. r. reticulatus*	This study

Figure 3. Two-dimensional Scatter plot of 38 *M. reticulatus* specimens from several population (Sumatra: Brown, Java: Yellow, Kalimantan: Green, NTB: Red, Sulawesi: Blue, and Maluku: Turquoise)
share similarities to the M. reticulatus jampeanus based on morphological and molecular data.

However, these variations are still difficult to distinguish morphologically based on their locality (reticulatus: Greater Sunda-land; saputrai: Selayar; jampeanus: Tanahjampea), given the high morphological variations in these specimens, although phylogenetically have proven to be distinct subspecies [4]. This underlines that the diagnostic character of subspecies based on morphological differences in the prefrontal scales of M. reticulatus is still ambiguous and needs deep observation in other characters such as anatomical and morphological features. Specifically, a measurement of prefrontal scales (Anterior-Posterior) are suggested in the future analysis to distinguish this species.

Population grouping of M. reticulatus from Indonesia

Scatter plots show an overlap in each observed population. The population of Sulawesi has a wide plot width, due to the strong number of Ventral and Dorsal mid characters, where the number of Ventral Scales in the Sulawesi Population and some specimens from Sumatra and Kalimantan have a higher range than other populations.

Based on the analysis, there is no significant differences were found between populations from data on morphometric variations and prominent signs of character variation among the islands. Characters that are owned by a population are still owned by other populations. Geographic isolation has not made any morphological variations that can be used as distinguishing characters. This possible in regards to the varied landscape, habitats, and ecosystems in Indonesia, making it difficult to select a new adaptive character.

Conclusion

The analysis showed the highly variation on the scale range of anterior prefrontal, posterior prefrontal, frontal, parietal, preocular, postocular, loreal, temporal, upper labial, lower labial, and dorsal scales. Ventral and subcaudal scales in male and female specimens showed highly variation in the scale count, but ratio comparison of t:SVL length indicated the sexual dimorphism. Anterior-posterior prefrontal and frontal scales show high variation and are difficult to distinguish between each locality at the subspecies level and suggest it to be intra-specific variation. There is no significant grouping were found between populations from data on morphological variations.

Acknowledgment

We would like to thank Irvan Sidik from Laboratory of Herpetology, Zoology Division, Research Center for Biology, Indonesian Institute of Sciences LIPI, who have been very helpful in discussing and criticizing our research idea. We are also very grateful to Herpetology LIPI Internship team 2018 from various which is Pakuan University, Brawijaya University, also State Islamic University of Maulana Malik Ibrahim Malang, who’ve helped in the process of documenting the specimens. We would also thank to Maliki Herpetology Society Study Club which provides a place to study and discuss. This study partially supported by The Mohamed bin Zayed Species Conservation Fund, project number 13057088 and IDEA WILD in providing equipment in documenting specimens so the illustration process is supported.

References

1. De Lang R (2017) The Snakes of Java, Bali and Surrounding Islands. Ohio, Chimaira Edition.
2. Whitaker RJ, Fernández-Palacios JM (2007) Island biogeography: Ecology, evolution, and conservation. Oxford, Oxford University Press.
3. Goin CJ, Goin OB, Zug GR (1978) Introduction to herpetology, 3rd Edition. San Francisco, Freeman WH and Company.
4. Aualiya M, Mausfeld P, Schmitz A, Böhme W (2002) Review of Reticulated Python (Python reticulatus Schneider, 1801) with the description of new subspecies from Indonesia. Naturwissenschaften 89 (5): 201 – 213. doi: 10.1007/s00114-002-0320-4.
5. Lillywhite HB, Wray K (2008) Dictionary of herpetology. Florida, Krieger Publishing.
6. Calssbeek R, Knouf JH, Smith TB (2006) Variation in scale number is consistent with ecologically based natural selection acting within and between lizard species. Evolutionary Ecology 20 (4): 377 – 394. doi: 10.1007/s10682-006-0007-y.
7. Kerfoot WC (1970) The Effect of functional changes upon the variability of lizard and snake body scale numbers. Copeia 1970 (2): 252 – 260. doi: 10.2307/1441647.
8. Boulenger GA (1895) Catalogue of snakes in the British Museum (Natural History). London, British Museum (Natural History). pp 80 – 85. doi: 10.5962/bhl.title.8316.
9. Kopstein F (1926) Reptilien von den Molukken und den benachbarten Inseln. Zoologische Mededelingen 9 (5): 71 – 112.
10. Kluge AG (1993) *Aspidites* and the phylogeny of pythonine snakes. Sydney, Australia: Australian Museum. Pp 77.

11. Underwood G, Stimson AF (1990) A Classification of pythons (Serpentes, Pythoninae). Journal of Zoology 221 (4): 565 – 603. doi: 10.1111/j.1469-7998.1990.tb04019.x.

12. Hanifa BF, Nugraha AP, Nanda IF, Daryono BS (2016, June). Phylogenetic analysis of *Malayopython reticulatus* (Schneider, 1801) from Southern Sulawesi based on morphological and molecular character. In Proceeding of the 4th International Conference on Biological Science: 18–19 September 2015, Yogyakarta. Edited by Setyobudi RH, Nuringtyas TR, Adinurani PG. AIP Publishing. doi: 10.1063/1.4953482.

13. Rooij ND (1915) The reptiles of the Indo-Australian archipelago (Vol. 1). Leiden, Brill Archive. Pp 20-22.