Eccentric connectivity index of identity graph of cyclic group and finite commutative ring with unity

A Abdussakir1,*, L A Puspitasari2, W H Irawan3 and E Alisah2

1Department of Mathematics Education, Graduate Program, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Raya Ir. Soekarno 34 Dadaprejo, Kota Batu 65233, Indonesia
2Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia
3Department of Mathematics Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia

*sakir@mat.uin-malang.ac.id

Abstract. Research on graph associated with a finite algebraic structure has attracted many attentions. On the other hand, eccentric connectivity index is an interesting topic and many studies have been reported. For simple connected graph G, let $e(v)$ denoted the eccentricity of vertex v and $\deg(v)$ denoted the degree of vertex v in G. Eccentric connectivity index of G is defined as the sum of all $e(v)\deg(v)$, for any v in G. We focus the study on determining eccentricity connectivity index of identity graph of cyclic group and finite commutative ring with unity. We present the exact formula for eccentricity connectivity index of identity graph of these two algebraic structures.

1. Introduction
A topological index of a finite and simple graph, sometimes called a graph-theoretic index or molecular structure descriptor, is a numerical quantity which invariant under isomorphism of graphs [1-4]. Topological index has a wide application in network science, bioinformatics, and chemistry [1]. Topological index of a finite simple graph can be classified into degree-based index such as Zagreb index [5] and Randic index [6], distance-based index such as Wiener index [7] and Harary index [8], spectrum-based index such incidence energy [9] and graphs energies [10-18], and eccentricity-based index such as eccentric connectivity index [19], eccentric distance sum index [20-24], and adjacent eccentric distance sum index [1,25]. Eccentric connectivity index (ECI) has been used as means for modelling molecules structures [19,26-31] and studied extensively for various graphs [3,32-37].

On the other hand, the graph obtained from an algebraic structure also received the great attention from researchers. The examples of a graph from an algebraic structure also received the great attention from researchers. The examples of a graph from an algebraic structure with one binary operation or a group are Cayley graph [38], conjugate graph [39,40], commuting graph [41,42], non-commuting graph [43,44], subgroup graph [45], inverse graphs [46], non-centralizer graph [47], and identity graph [48]. The examples of a graph from an algebraic structure with two binary operations are zero divisor graph [49-51], annihilator graph [52], annihilator ideal graph [53], co-maximal ideal graph [54], and identity or unit graph [48].
In this study, we focus on determining the exact formula of eccentric connectivity index of the identity graph of cyclic group and commutative ring with unity both of finite order.

2. Literature review
Let graph $G = (V(G), E(G))$ be connected of order $|V(G)| = p$. Let $\text{deg}(u)$ and $e(u)$ denoted degree and eccentricity of a vertex u in graph G, respectively. The total eccentricity of G is defined [1,55] as

$$
\xi(G) = \sum_{v \in V(G)} e(v).
$$

In 1997, Sharma, Goswami, and Madan [56] defined a new graph invariant which they called the eccentric connectivity index (ECI) as

$$
\xi^c(G) = \sum_{v \in V(G)} e(v) \text{deg}(v).
$$

For finite group $(H, *)$, let e_H denoted the identity element of H. Kandasamy and Smarandache [48] defined identity graph $I(H)$ of H as a simple graph with $V(I(H)) = H$ and $h_1h_2 \in E(I(H))$ if and only if $h_1 * h_2 = e_H$. By a convention, the identity element e_H is adjacent to any vertices in $I(H)$. Let $(R, +, \cdot)$ be a finite commutative ring, 0_R be identity element under addition, and 1_R be identity element under multiplication and $1_R \neq 0_R$. An element x in R and $x \neq 0_R$ is called zero divisor if there exists an element y in R and $y \neq 0_R$ such that $x \cdot y = 0_R$ [57]. An element u in R and $u \neq 0_R$ is called unit if there exists an element v in R and $v \neq 0_R$ such that $u \cdot v = 1_R$ [58]. In other words, a unit is an element that has an inverse under multiplication in R. If any non-zero element of R is unit then R is called a field [57]. Identity graph or unit graph $I(R)$ of R is a simple graph with all units of R as its vertices and $xy \in E(I(R))$ if and only if $x \cdot y = 1_R$. The unity 1_R is assumed to be adjacent to any vertices in $I(R)$ [48].

3. Method
In order to find the eccentric connectivity index formula of the identity graph of the cyclic group G and the commutative ring Z_p where p is prime, we have done the following steps.

- Drawing the identity graph of the cyclic group G for $|G| = 1, 2, 3, 4, 5, 6$ and the commutative ring Z_p for $p = 3, 5, 7, 11, 13, 17$.
- Determining the total eccentricity and eccentric connectivity index of each graph in step 1).
- Determining the pattern of total eccentricity and eccentric connectivity index and formulating conjectures
- Stating the conjectures as theorems together with their formal proof.

4. Results and discussion
The primary objective of this paper is to determine the ECI of the identity graph of a finite cyclic group $G = \langle x \rangle$ and a finite commutative ring with unity Z_p where p is prime. The total eccentricity of these graphs is also computed. The following are results of our study.

Theorem 3.1 For even positive integer n, let G be a cyclic group of order n. Then,

(a) $\xi(I(G)) = 2$ and $\xi^c(I(G)) = 2$ if $n = 2$.

(b) $\xi(I(G)) = 2n - 1$ and $\xi^c(I(G)) = 5n - 7$ if $n > 2$.

Proof. Let $G = \langle x \rangle$.

(a) For $n = 2$, we have $I(G)$ is a complete graph of order 2. So, $e(1) = e(x) = 1$ and $\text{deg}(1) = \text{deg}(x) = 1$. Hence, $\xi(I(G)) = 2$ and $\xi^c(I(G)) = 2$.

(b) For $n > 2$, we have $x^i x^{n-i} = e_G$, $i = 1, 2, 3, ..., n/2$. So, x^i and x^{n-i} are adjacent in $I(G)$, but $x^{n/2}$ is not adjacent to itself. By convention for identity graph, vertex 1 is adjacent to other
vertices in $I(G)$. Identity graph $I(G)$ can be seen in Figure 1. We obtain $\text{deg}(1) = n - 1$, $\text{deg}(x^{n/2}) = 1$ and $\text{deg}(x^j) = 2$ for $j \neq n/2$. We also obtain $e(1) = 1$ and $e(x^j) = 2$ for $j = 1, 2, 3, \ldots, n - 1$. Hence
\[
\xi(I(G)) = \sum_{v \in V(I(G))} e(v) = 1 + (n - 1)2 = 2n - 1
\]
and
\[
\xi^c(I(G)) = \sum_{v \in V(I(G))} e(v)\text{deg}(v) = 1(n - 1) + 2 + (n - 2)4 = 5n - 7. \tag{3}
\]

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{cyclic_group_identity_graph}
\caption{Identity graph of cyclic group G of order $n > 2$.}
\end{figure}

Theorem 3.2 For odd positive integer n, let G be a cyclic group of order n. Then,
(a) $\xi(I(G)) = 0$ and $\xi^c(I(G)) = 0$ if $n = 1$.
(b) $\xi(I(G)) = 3$ and $\xi^c(I(G)) = 6$ if $n = 3$.
(c) $\xi(I(G)) = 2n - 1$ and $\xi^c(I(G)) = 2(n - 1) + 4$ if $n > 3$.

Proof. Let $G = \langle x \rangle$.
(a) For $n = 1$, we have $I(G)$ is a trivial graph. Then $e(1) = 0$ and $\text{deg}(1) = 0$. Hence, $\xi(I(G)) = 0$ and $\xi^c(I(G)) = 0$.
(b) For $n = 3$, we obtain $I(G)$ is a complete graph of order 3. So, $\text{deg}(v) = 2$ and $e(v) = 1$ for all vertex v in $I(G)$. Hence, $\xi(I(G)) = 3$ and $\xi^c(I(G)) = 6$.
(c) For $n > 3$, we have $x^i x^{n-i} = e_G$, $i = 1, 2, 3, \ldots, (n-1)/2$. So, x^i and x^{n-i} are adjacent in $I(G)$. Identity graph $I(G)$ can be seen in Figure 2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{cyclic_group_identity_graph_odd_order}
\caption{Identity graph of cyclic group G of order $n > 3$.}
\end{figure}

We obtain $\text{deg}(1) = n - 1$ and $\text{deg}(x^j) = 2$ for $j = 1, 2, 3, \ldots, n - 1$. We also obtain $e(1) = 1$ and $e(x^j) = 2$ for $j = 1, 2, 3, \ldots, n - 1$. Hence
\[
\xi(I(G)) = \sum_{v \in V(I(G))} e(v) = 1 + (n - 1)2 = 2n - 1
\]
and
\[
\xi^c(I(G)) = \sum_{v \in V(I(G))} e(v)\text{deg}(v) = 1(n - 1) + (n - 1)4 = 5(n - 1). \tag{3}
\]
Theorem 3.3 For any prime number p, let Z_p be a ring of integer modulo p under addition and multiplication. Then,

(a) $\xi(I(Z_p)) = 0$ and $\xi^c(I(Z_p)) = 0$ if $p = 2$.

(b) $\xi(I(Z_p)) = 2$ and $\xi^c(I(Z_p)) = 2$ if $p = 3$.

(c) $\xi(I(Z_p)) = 2p - 3$ and $\xi^c(I(G)) = 5p - 12$ if $p > 3$.

Proof. Since p is prime, then Z_p is a field. So, all non-zero elements of Z_p are units.

(a) If $p = 2$ then $I(Z_p)$ is a trivial graph. The proof is obvious.

(b) If $p = 3$ then $I(Z_p)$ is a path graph of order 2. The desired proof is also obvious.

(c) Let $p > 3$, then $I(Z_p)$ is a simple graph of order $p - 1$, that is $V(I(Z_p)) = \{1, 2, 3, \ldots, p - 1\}$. Graph $I(Z_p)$ can be seen in Figure 3.

![Figure 3. Identity graph of Z_p.](image)

Then, we have $deg(1) = p - 2$, $deg(p - 1) = 1$ and $deg(v) = 2$ for $v \neq 1$ or $v \neq p - 1$. We also obtain $e(1) = 1$ and $e(v) = 2$ for $v \neq 1$. Hence

$$\xi(I(Z_p)) = \sum_{v \in V(I(Z_p))} e(v) = 1 + (p - 2)2 = 2p - 3$$

and

$$\xi^c(I(Z_p)) = \sum_{v \in V(I(Z_p))} e(v)deg(v) = 1(p - 2) + 2 + (p - 3)4 = 5p - 12. \square$$

5. Conclusion
The exact formula of eccentric connectivity index of the identity graph of a cyclic group of order n and a commutative ring with unity of order p where p is prime has been calculated in this paper. Further research on the eccentric connectivity index of a graph associated with other algebraic structures still needs to be done.

References
[1] Qu H and Cao S. 2015. On the adjacent eccentric distance sum index of graphs. *PLoS One* 1–12.
[2] Eskender B and Vumar E. 2013. Eccentric connectivity index and eccentric distance sum of some graph operations. *Tranaction Comb.* 2 103–11.
[3] Nacaroglu Y and Maden AD. 2018. On the eccentric connectivity index of unicyclic graphs. *Iran. J. Math. Chem.* 9 47–56.
[4] Ramane HS, Manjalapur VV and Gutman I. 2017. General sum-connectivity index, general product-connectivity index, general Zagreb index and coindices of line graph of subdivision graphs. *AKCE Int. J. Graphs Comb.* 14 92–100.
[5] Idrees N, Saif MJ, Rauf A and Mustafa S. 2017. First and second Zagreb eccentricity indices of thorny graphs. *Symmetry (Basel).* 9 1–9.
[6] Li X and Shi Y. 2008. A survey on the Randic index. *MATCH Commun. Math. Comput. Chem* 59 127–56.
[7] Rodríguez JA. 2005. On the Wiener index and the eccentric distance sum of hypergraphs. MATCH Commun. Math. Comput. Chem. 54 209–20.
[8] Xu K and Das KC. 2011. On Harary index of graphs. Discret. Appl. Math. 159 1631–40.
[9] Jooyandeh M, Kiani D and Mirzakakh M. 2009. Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62 561–72.
[10] Gutman I. 2001. The energy of a graph: old and new results. In: Algebraic Combinatorics and Applications. Berlin, Heidelberg: Springer; 196–211.
[11] Indulal G, Gutman I and Vijayakumar A. 2008. On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60 461–72.
[12] Gutman I, Furtula B and Bozkurt B. 2014. On Randic energy. Linear Algebra Appl. 442 50–7.
[13] Adiga C, Sampathkumar E, Sriraj MA and Shrikanth AS. 2013. Color energy of a graph. Proc. Jangjeon Math. Soc. 16 335–51.
[14] Adiga C and Smitha M. 2009. On maximum degree energy of a graph. Int. J. Contemp. Math. Sci. 4 385–96.
[15] Shi L and Wang H. 2013. The Laplacian incidence energy of graphs. Linear Algebra Appl. 439 4056–62.
[16] Gutman I and Wagner S. 2012. The matching energy of a graph. Discret. Appl. Math. 160 2177–87.
[17] Abdussakir. 2017. Detour energy of complement of subgroup graph of dihedral group. Zero-Journ Sains, Mat. dan Terap. 1 41–8.
[18] Abdussakir, Muzakir and Marzuki CC. 2018. Detour spectrum and detour energy of conjugate graph complement of dihedral group. J. Phys. Conf. Ser. 1028 1–5.
[19] Ilic A and Gutman I. 2011. Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem. 65 731–744.
[20] Gupta S, Singh M and Madan AK. 2002. Eccentric distance sum: A novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl. 275 386–401.
[21] Songhori M. 2012. A note on eccentric distance sum. J. Math. Nanosci. 2 37–41.
[22] Azari M and Iranmanesh A. 2013. Computing the eccentric-distance sum for graph operations. Discret. Appl. Math. 164 2827–40.
[23] Bielak H and Broniszewska K. 2017. Eccentric distance sum index for some classes of connected graphs. Ann. Univ. Mariae Curie-Skłodowska Lublin-Polonia. LXXI 25–32.
[24] Balasubramanian K, Balachandran S, Balachandar SR and Venkatesh SG. 2017. Computing eccentric distance sum of dendrimers and nanotubes. Int. J. Pharm. Technol. 9 28728–38.
[25] Sardana S and Madan AK. 2003. Relationship of Wiener’s index and adjacent eccentric distance sum index with nitroxide free radicals and their precursors as modifiers against oxidative damage. J. Mol. Struct. THEOCHEM 624 53–9.
[26] Songhori M. 2012. Eccentric connectivity index of fullerene graphs. J. Math. NanoSci. 2 21–7.
[27] Ashrafi AR, Saheli M and Ghorbani M. 2011. The eccentric connectivity index of nanotubes and nanotori. J. Comput. Appl. Math. 235 4561–6.
[28] Ashrafi AR, Došlic T and Saheli M. 2011. The eccentric connectivity index of TUC4C8 (R) nanotubes. MATCH Commun. Math. Comput. Chem. 65 221–30.
[29] Saheli M, Saati H and Ashrafi AR. 2010. The eccentric connectivity index of one pentagonal carbon nanocones. Optoelectron. Adv. Mater. Rapid Commun. 4 896–7.
[30] Sardana S and Madan AK. 2002. Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor. J. Mol. Model. 8 258–65.
[31] Kumar V, Sardana S and Madan AK. 2004. Predicting anti-HIV activity of 2, 3-diaryl-1, 3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index. J. Mol. Model. 10 399–407.
[32] Mogharrab M. 2010. Eccentric connectivity index of bridge graphs. Optoelectron. Adv. Mater. Commun. 4 1866–7.
[33] Došlic T and Saheli M. 2014. Eccentric connectivity index of composite graphs. Util. Math. 95
3–22.

[34] Morgan MJ, Mukwembi S and Swart HC. 2011. On the eccentric connectivity index of a graph. Discrete Math. 311 1229–34.

[35] De N. 2012. On eccentric connectivity index and polynomial of thorn graph. Appl. Math. 3 931.

[36] Došlić T, Saheli M and Vukičević D. 2010. Eccentric connectivity index: extremal graphs and values. Iran. J. Math. Chem. 1 45–56.

[37] Došlic T, Graovac A and Ori O. 2011. Eccentric connectivity index of hexagonal belts and chains. MATCH Commun. Math. Comput. Chem. 65 745–52.

[38] Heydemann M-C. 1997. Cayley graphs and interconnection networks. In: Graph Symmetry. Dordrecht: Springer; 167–224.

[39] Erfanian A and Tolue B. 2012. Conjugate graphs of finite groups. Discret. Math. Algorithms Appl. 04 1–8.

[40] Abdussakir and Khasanah R. 2018. Spektrum signless-Laplace dan spektrum detour graf konjugasi dari grup dihedral. J. Kubik. III 45–51.

[41] Chelvam TT, Selvakumar K and Raja S. 2011. Commuting graphs on dihedral group main results. J. Math. Comput. Sci. 2 402–6.

[42] Abdussakir, Elvierayani RR and Nafisah M. 2017. On the spectra of commuting and non-commuting graph on dihedral group. Cauchy-Jurnal Mat. Murni dan Apl. 4 176–82.

[43] Raza Z and Faizi S. 2013. Non-commuting graph of a finitely presented group. Sci. Int. (Lahore) 25 883–5.

[44] Abdussakir, Putri DCA and Fadhillah ZR. 2018. Full automorphism group of commuting and non-commuting graph of dihedral and symmetric groups. J. Phys. Conf. Ser. 1028 1–6.

[45] Anderson F, Fasteen J and LaGrange JD. 2012. Subgroup graph of a group. Arab J Math. 2012 17–27.

[46] Alfuraidan MR and Zakariya YF. 2017. Inverse graphs associated with finite groups. Electron. J. Graph Theory Appl. 5 142–54.

[47] Tolue B. 2015. The non-centralizer graph of a finite group. Math. Rep. Buchar. 17 3.

[48] Kandasamy WBV and Smarandache F. 2009. Groups as graphs. Judetul Olt, Romania: Editura CuArt.

[49] Akbari S and Mohammadian A. 2007. On zero-divisor graphs of finite rings. J. Algebr. 314 168–84.

[50] Anderson DF and Livingston PS. 1999. The zero-divisor graph of a commutative ring. J. Algebr. 217 434–47.

[51] Redmond SP. 2003. The zero-divisor graph of a non-commutative ring. Internat. J. Commut. Rings. 1 203–11.

[52] Badawi A. 2014. On the annihilator graph of a commutative ring. Commun. Algebr. 42 108–21.

[53] Alibemani A, Bakhtyari M, Nikandish R and Nikmehr MJ. 2015. The annihilator ideal graph of a commutative ring. J. Korean Math. Soc. 52 417–29.

[54] Ye M and Wu T. 2012. Co-maximal ideal graphs of commutative rings. J. Algebr. its Appl. 11 1250114.

[55] Hua H, Zhang S and Xu K. 2012. Further results on the eccentric distance sum. Discret. Appl. Math. 160 170–80.

[56] Sharma V, Goswami R and Madan AK. 1997. Eccentric connectivity index: a novel highly discriminating topological descriptor for structure–property and structure–activity studies. J. Chem. Inf. Comput. Sci. 37 273–82.

[57] Dummit DS and Foote RM. Abstract Algebra. Englewood Cliffs, NJ: Prentice Hall, Inc.

[58] Gilbert WJ and Nicholson WK. 2004. Modern algebra with applications. 2nd ed. New Jersey: John Wiley & Sons, Inc.