Characterization of the complete mitochondrial genome of Dioszegia changbaiensis (Tremellales: Bulleribasidiaceae) with phylogenetic implications

Maoling Tana and Qiangfeng Wangb

aSchool of Food and Biological Engineering, Chengdu University, Chengdu, PR China; bBiotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, PR China

\section*{ABSTRACT}
In this study, the complete mitochondrial genome of Dioszegia changbaiensis we sequenced and assembled by the next-generation sequencing. The complete mitochondrial genome of Dioszegia changbaiensis contained 22 protein-coding genes (PCG), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. The total length of the Dioszegia changbaiensis mitochondrial genome is 34,853 bp, and the GC content of the mitochondrial genome is 41.88%. Phylogenetic analysis based on a combined mitochondrial gene dataset indicated that the mitochondrial genome of Dioszegia changbaiensis exhibited a close relationship with that of Hannaella oryzae.

The genus Dioszegia was described by Zsolt (1957). Since then, dozens of species have been described in the genus (Bai et al. 2002; Connell et al. 2010; Trochine et al. 2017). Species from the genus Dioszegia are distributed in a variety of ecological environments, such as on leaf surfaces, in plant roots and also in soil (Wang et al. 2003; Wang et al. 2008; Takashima et al. 2011). Dioszegia species was once moved to the genus Cryptococcus according to morphology (Takashima et al. 2011). With the progress of molecular techniques, the genus Dioszegia was separated from other genera as an independent genus (Takashima et al. 2001). Mitochondrial genomes have been widely used in the phylogeny of Basidiomycete species (Li, He, et al. 2020; Wang, Song, et al. 2020). The mitochondrial genome of D. changbaiensis reported here will promote the understanding of taxonomy and genetics of the Dioszegia genus.

The specimen (Dioszegia changbaiensis) was collected from Sichuan, China (102.53°E; 31.25°N), and was stored in Culture Collection Center of Chengdu University (No. Dsp_na07). We sequenced and \textit{de novo} assembled the complete mitochondrial genome of Dioszegia changbaiensis according to previous described methods (Li, Liao, et al. 2018; Li, Wang, et al. 2018; Wang, Jia, et al. 2020). Briefly, the total genomic DNA of Dioszegia changbaiensis was extracted using a Fungal DNA Kit (D3390-00, Omega Bio-Tek, Norcross, GA). And then we purified the genomic DNA using a Gel Extraction Kit (Omega Bio-Tek, Norcross, GA). The purified DNA was stored in Chengdu University (No. DNA_Dsp_na07). We constructed sequencing libraries of Dioszegia changbaiensis using a NEBNextTM UltraTM II DNA Library Prep Kit (NEB, Beijing, China). We conducted whole genomic sequencing (WGS) of Dioszegia changbaiensis using the Illumina HiSeq 2500 Platform (Illumina, SanDiego, CA). The mitochondrial genome of Dioszegia changbaiensis was \textit{de novo} assembled using SPAdes version 3.9.0 (Bankevich et al. 2012; Li, Ren, et al. 2020). The obtained mitochondrial genome of Dioszegia changbaiensis was annotated according to previous described methods (Li, Chen, et al. 2018; Li, Wang, et al. 2018; Wang, Jia, et al. 2020; Ye et al. 2020).

The complete mitochondrial genome of Dioszegia changbaiensis is 34,853 bp in length. The base compositions of the Dioszegia changbaiensis mitochondrial genome were as follows: A (28.49%), T (29.63%), G (20.27%), and C (21.61%). The complete mitochondrial genome of Dioszegia changbaiensis contains 22 protein-coding genes (PCGs), two ribosomal RNA genes (\textit{rns} and \textit{rnl}), and 22 transfer RNA (\textit{tRNA}) genes. To investigate the phylogenetic status of the mitogenome of Dioszegia changbaiensis in Basidiomycota, we constructed a phylogenetic tree for 18 Basidiomycete species. Rhizopogon salebrosus from the Boletales order was set as outgroup (Li, Ren, et al. 2019a). The phylogenetic tree was constructed using the Bayesian analysis (BI) method based on the combined 14 core PCGs according to previous described methods (Li et al. 2019a, 2019b; Li, Yang, et al. 2020). As shown in the phylogenetic tree (Figure 1), the mitochondrial genome of...
Dioszegia changbaiensis exhibited a close relationship with that of Hannaella oryzae (MH732752).

Disclosure statement
The authors have declared that no competing interests exist.

Funding
The study was supported by the Science and Technology support program of Sichuan [2019YFH0116].

Data availability statement
This mitogenome of Dioszegia changbaiensis was submitted to GenBank under the accession number of MT755637 (https://www.ncbi.nlm.nih.gov/nuccore/MT755637).

References
Bai FY, Takashima M, Jia JH, Nakase T. 2002. Dioszegia zsoltii sp. nov., a new ballistoconidium-forming yeast species with two varieties. J Gen Appl Microbiol. 48(1):17–23.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.
Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca A. 2010. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol. 60(Pt 6):1466–1472.
Li Q, Chen C, Xiong C, Jin X, Chen Z, Huang W. 2018. Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two Pleurotus species. Appl Microbiol Biotechnol. 102(14):6143–6153.
Li Q, He X, Ren Y, Xiong C, Jin X, Peng L, Huang W. 2020. Comparative mitogenome analysis reveals mitochondrial genome differentiation in ectomycorrhizal and asymbiotic Amanita species. Front Microbiol. 11: 1382.
Li Q, Liao M, Yang M, Xiong C, Jin X, Chen Z, Huang W. 2018. Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus Cantharellus and phylogeny of Agaricomycetes. Int J Biol Macromol. 118:756–769.
Li Q, Ren Y, Shi X, Peng L, Zhao J, Song Y, Zhao G. 2019a. Comparative mitochondrial genome analysis of two ectomycorrhizal fungi (Rhizopogon) reveals dynamic changes of intron and phylogenetic relationships of the subphylum agaricomycotina. Int J Mol Sci. 20(20): 5167.
Li Q, Ren Y, Xiang D, Shi X, Zhao J, Peng L, Zhao G. 2020. Comparative mitogenome analysis of two ectomycorrhizal fungi (Paxillus) reveals gene rearrangement, intron dynamics, and phylogeny of basidiomycetes. IMA Fungus. 11:12.
Li Q, Wang Q, Chen C, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. 2018. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol. 119:792–802.
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. 2019a. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol. 121:249–260.
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. 2019b. Characterization and comparison of the mitochondrial genomes from two Lyophyllum fungal species and insights into phylogeny of Agaricomycetes. Int J Biol Macromol. 121:364–372.
Li Q, Xiang D, Wan Y, Wu Q, Wu X, Ma C, Song Y, Zhao G, Huang W. 2019. The complete mitochondrial genomes of five important medicinal Ganoderma species: features, evolution, and phylogeny, Int J Biol Macromol. 139:397–408.
Li Q, Yang L, Xiang D, Wan Y, Wu Q, Huang W, Zhao G. 2020. The complete mitochondrial genomes of two model ectomycorrhizal fungi
(Laccaria): features, intron dynamics and phylogenetic implications. Int J Biol Macromol. 145:974–984.

Takashima M, Deak T, Nakase T. 2001. Emendation of Dioszegia with redescription of Dioszegia hungarica and two new combinations, Dioszegia aurantiaca and Dioszegia crocea. J Gen Appl Microbiol. 47(2):75–84.

Takashima M, Van BH, An KD, Ohkuma M. 2011. Dioszegia rishiriensis sp. nov., a novel yeast species from soil collected on Rishiri Island, Hokkaido, Japan. Int J Syst Evol Microbiol. 61(Pt 7):1736–1739.

Trochine A, Turchetti B, Vaz ABM, Brandao L, Rosa LH, Buzzini P, Rosa C, Libkind D. 2017. Description of Dioszegia patagonica sp. nov., a novel carotenogenic yeast isolated from cold environments. Int J Syst Evol Microbiol. 67(11):4332–4339.

Wang QM, Bai FY, Zhao JH, Jia JH. 2003. Dioszegia changbaiensis sp. nov., a basidiomycetous yeast species isolated from northeast China. J Gen Appl Microbiol. 49(5):295–299.

Wang QM, Jia JH, Bai FY. 2008. Diversity of basidiomycetous phylloplane yeasts belonging to the genus Dioszegia (Tremellales) and description of Dioszegia athyri sp. nov., Dioszegia butyracea sp. nov. and Dioszegia xingshanensis sp. nov. Antonie Van Leeuwenhoek. 93(4):391–399.

Wang X, Jia LH, Wang MD, Yang H, Chen MY, Li X, Liu HY, Li Q, Liu N. 2020. The complete mitochondrial genome of medicinal fungus Taiwanofungus camphoratus reveals gene rearrangements and intron dynamics of Polyporales. Sci Rep. 10(1):16500.

Wang X, Song A, Wang F, Chen M, Li X, Li Q, Liu N. 2020. The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes. Int J Biol Macromol. 162:209–219.

Ye J, Cheng J, Ren Y, Liao W, Li Q. 2020. The first mitochondrial genome for geastrales (Sphaerobolus stellatus) reveals intron dynamics and large-scale gene rearrangements of basidiomycota. Front Microbiol. 11:1970.

Zsolt J. 1957. Egy új élesztő: dioszegia hungarica nov. gen. et sp. Bot Kozl. 47:63–66.