Effect of music interventions on anxiety during labor: a systematic review and meta-analysis of randomized controlled trials

Hsin-Hui Lin 1, Yu-Chen Chang 1, Hsiao-Hui Chou 1, Chih-Po Chang 1, Ming-Yuan Huang 2, Shu-Jung Liu 3, Chin-Han Tsai 4, Wei-Te Lei Corresp. 5, 6, Tzu-Lin Yeh Corresp. 7, 8

1 Department of Family Medicine, MacKay Memorial Hospital, Taipei, Taiwan
2 Department of Hospice and Palliative Care, MacKay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
3 Department of Medical Library, MacKay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
4 Department of gynecology and obstetrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
5 Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
6 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
7 Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
8 Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan

Corresponding Authors: Wei-Te Lei, Tzu-Lin Yeh
Email address: weite.lei@gmail.com, 5767@mmh.org.tw

Background. Anxiety is commonly experienced during the delivery process and has shown to have adverse effects on maternal and infant health outcomes. Music interventions tend to reduce the effects of anxiety in diversity populations, are low cost, are easily accessible, and have high acceptability. The aim of this review and meta-analysis was to assess the effectiveness of music interventions in reducing anxiety levels among women during labor.

Methods. Seven databases from inception to the end of December, 2018, without any language or time restriction including Embase, PubMed, the Cochrane Library, the Cumulative Index to Nursing and Allied Health, PsycINFO, Airiti Library, and PerioPath: Index to Taiwan Periodical Literature were searched using key terms related to pregnancy, anxiety, and music. Randomized controlled trials that assessed the effect of music during labor and measured anxiety levels as an outcome were included. Meta-analyses were conducted to assess anxiety reduction following a music intervention compared to that after placebo treatment.

Results. A total of 14 studies that investigated a total of 1,310 participants were included in this review. The meta-analyses indicated that those in the intervention group had a significant decrease in anxiety scores (standardized mean difference (SMD) = −2.40, 95% confidence interval [CI] = −3.29 to −1.52, p < 0.001; I² = 97.66%), heart rate (HR) (difference in means = −3.04 beats/min, 95% CI = −4.79 to −1.29 beats/min, p = 0.001; I² = 0.00%), systolic blood pressure (SBP) (difference in means = −3.71 mmHg, 95% CI = −7.07 to −0.35 mmHg, p = 0.031; I² = 58.47%), and diastolic blood pressure (DBP) (difference in means = −3.54 mmHg, 95% CI = −5.27 to −1.81 mmHg, p < 0.001; I² = 0.00%) as compared to the women in the control group.

Conclusions. Music interventions may decrease anxiety scores and physiological indexes related to anxiety (HR, SBP, and DBP). Music interventions may be a good non-pharmacological approach for decreasing anxiety levels during labor.
Effect of Music Interventions on Anxiety during Labor: A Systematic Review and Meta-analysis of Randomized Controlled Trials

Hsin-Hui Lin¹, Yu-Chen Chang¹, Hsiao-Hui Chou¹, Chih-Po Chang¹, Ming-Yuan Huang², Shu-Jung Liu³, Chin-Han Tsai⁴, Wei-Te Lei⁵,⁶ and Tzu-Lin Yeh⁷,⁸

¹ Department of Family Medicine, MacKay Memorial Hospital, Taipei, Taiwan
² Department of Hospice and Palliative Care, MacKay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
³ Department of Medical Library, MacKay Memorial Hospital, Tamsui Branch, New Taipei City, Taiwan
⁴ Department of gynecology and obstetrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
⁵ Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
⁶ Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
⁷ Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
⁸ Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan

Corresponding author 1:
Tzu-Lin Yeh⁷,⁸
The Department of Family Medicine, Hsinchu MacKay Memorial Hospital, Number 690, Section 2, Guangfu Road, Hsinchu 300, Taiwan
E-mail address: 5767@mmh.org.tw

Corresponding author 2:
Wei-Te Lei⁵,⁶
The Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Number 690, Section 2, Guangfu Road, Hsinchu 300, Taiwan
E-mail: weite.lei@gmail.com
Abstract

Background. Anxiety is commonly experienced during the delivery process and has shown to have adverse effects on maternal and infant health outcomes. Music interventions tend to reduce the effects of anxiety in diversity populations, are low cost, are easily accessible, and have high acceptability. The aim of this review and meta-analysis was to assess the effectiveness of music interventions in reducing anxiety levels among women during labor.

Methods. Seven databases from inception to the end of December, 2018, without any language or time restriction including Embase, PubMed, the Cochrane Library, the Cumulative Index to Nursing and Allied Health, PsycINFO, Airiti Library, and PerioPath: Index to Taiwan Periodical Literature were searched using key terms related to pregnancy, anxiety, and music. Randomized controlled trials that assessed the effect of music during labor and measured anxiety levels as an outcome were included. Meta-analyses were conducted to assess anxiety reduction following a music intervention compared to that after placebo treatment.

Results. A total of 14 studies that investigated a total of 1,310 participants were included in this review. The meta-analyses indicated that those in the intervention group had a significant decrease in anxiety scores (standardized mean difference (SMD) = −2.40, 95% confidence interval [CI] = −3.29 to −1.52, \(p < 0.001; I^2 = 97.66\%\)), heart rate (HR) (difference in means = −3.04 beats/min, 95% CI = −4.79 to −1.29 beats/min, \(p = 0.001; I^2 = 0.00\%\)), systolic blood pressure (SBP) (difference in means = −3.71 mmHg, 95% CI = −7.07 to −0.35 mmHg, \(p = 0.031; I^2 = 58.47\%\)), and diastolic blood pressure (DBP) (difference in means = −3.54 mmHg, 95% CI = −5.27 to −1.81 mmHg, \(p < 0.001; I^2 = 0.00\%\)) as compared to the women in the control group.

Conclusions. Music interventions may decrease anxiety scores and physiological indexes related to anxiety (HR, SBP, and DBP). Music interventions may be a good non-pharmacological approach for decreasing anxiety levels during labor.

Introduction

During pregnancy and labor, women experience psychological and physiological changes that generate stress (Cardwell 2013). With the progression of labor, women experience increasing anxiety during labor; which has a negative effect on the mother as well as the newborn baby (Zijlmans et al. 2017). The prevalence of anxiety among prenatal women is higher than in the general population (27% compared to 5%), and there was significantly higher complication rates in anxious women (Zhao M 1999). There might be more postpartum psychiatric symptoms, decreased sexual functioning, less willing for a next child, and poor mother–infant connection when mothers had more negative childbirth experiences during labor (Goodman 2004). In addition, high anxiety levels may also lead to negative outcomes in women undergoing cesarean section (CS), including higher analgesic consumption, elevated blood pressure (BP), elevated heart rate (HR), increased cortisol level, reduced immune response, slower wound healing, and higher infection risk (Gorkem et al. 2016; Hepp et al. 2016; Scott 2004).
Music is an ancient healing practice that can inspire the soul as well as improve immunity, forming a powerful therapy (Lane 1992). Listening to music reduces the catecholamine levels, thus improving physical health status, decreasing stress hormones, and stabilizing vital signs (Liu et al. 2010; Mok & Wong 2003). Moreover, music interventions have an effect in decreasing pain, anxiety, and analgesic consumption in previous studies (Ikonomidou et al. 2004; Siedliecki & Good 2006; Smolen et al. 2002). In medical care, music interventions may include music listening initiated by patients, music medicine (listening to prerecorded music offered by medical staff for symptom management), and music therapy (individualized music interventions including listening to live, or prerecorded music, playing instruments and composing music offered by a trained therapist) (Bradt et al. 2015).

Most relaxants and antidepressants cross the placental barrier and have negative effects on the fetus; therefore, establishing of alternative non-pharmaceutical interventions to reduce anxiety in pregnant women is important. A recent Cochrane Database Systematic Review has shown that music-based interventions may reduce anxiety during pregnancy (Corbijn van Willenswaard et al. 2017). However, the evidence regarding the efficacy of music interventions during labor on the reduction of anxiety is inconclusive. One study has shown that music intervention has a significant positive effect on anxiety and pain during the latent phase of labor (Liu et al. 2010). Another study has reported that music intervention during CS does not significantly change the anxiety score (Reza et al. 2007). One publication has revealed significantly lower anxiety and higher satisfaction level after music intervention during CS; however, there was no significant difference in any of the physiological indexes (Chang & Chen 2005). Therefore, we conducted this systematic review and meta-analysis to evaluate the effectiveness of music interventions in reducing the anxiety levels of women undergoing labor.

Materials & Methods

Search Strategy

The review protocol has been registered in the PROSPERO International Prospective Register of Systematic Reviews (registration number: CRD42018108267) and was written according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Liberati et al. 2009) (Table S1).

Seven databases were searched from inception to the end of December, 2018, without any language or time restriction including Embase, PubMed, the Cochrane Library, the Cumulative Index to Nursing and Allied Health (CINAHL), PsycINFO, Airiti Library, and PerioPath: Index to Taiwan Periodical Literature. A professional librarian reviewed the terms and organized them in the optimal manner to make the search strategy sensitive and specific. The search key terms were “labor,” “music,” “anxiety,” and “stress.” Keywords were combined using Boolean searches, and the search was performed using keywords, Boolean operators, and MeSH descriptors. The details of search strategy have been described in Table S2.

Selection of Studies

Two authors (HHL and MYH) screened the title and abstract of each study that met the inclusion criteria independently, and the controversies were resolved through discussions with the third
author (TLY). Two independent reviewers (HHL and TLY) assessed the eligibility of each
publication after the initial search. The inclusion criteria of selected randomized control trials
(RCT) were as follows: 1) studies on women who underwent vaginal or CS delivery, either
nulliparous or multiparous, of normal term, singleton gestation; 2) at least one treatment group
wherein music intervention was applied during the labor process; 3) inclusion of a placebo group
as control; and 4) reporting of anxiety status after the intervention. We excluded the following: 1)
studies on women with deafness (unless corrected with a hearing aid), high risk of pregnancy, or
severe psychiatric disorder; 2) duplicate publications; 3) crossover study designed trials; and 4)
studies with an effective intervention as control arm rather than a placebo.

Data Extraction
Two authors (HHL and WTL) independently extracted the data, and the inconsistencies were
resolved through discussion. The following information was collected (Table 1): first author’s
name, year of publication, country of publication, number of participants, age of participants,
number of participants in the intervention and control groups, details of the intervention (including
the music types, time, and duration), and clinical outcome measures (including the time of the
outcome in relation to the treatment). The primary outcome was the anxiety status, measured using
the recognized rating scales, including visual analog scale for anxiety (VAS-A), state-trait anxiety
inventory (STAI) and self-rating anxiety scale (SAS). VAS-A is a scale comprising a 10 cm line
on which the participant marks her current degree of anxiety, with the left end of the line being
labeled “no anxiety” and the right end being labelled “maximum anxiety”. The scale is scored by
measuring the distance of the mark from the left end. (Hornblow & Kidson 1976). The outcome
was measured after the delivery process. The secondary outcomes were physical signs, including
systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR).

Assessment of the Risk of Bias in the Included Studies
Three reviewers (YCC, HHC, and CPC) independently assessed the risk of bias using the Cochrane
Review risk of bias assessment tool. Conflicts were resolved through discussion. We assessed
sequence generation (selection bias), allocation sequence concealment (selection bias), blinding of
participants and personnel (performance bias), blinding of outcome assessment (detection bias),
incomplete outcome data (attrition bias), selective outcome reporting (reporting bias), and other
potential sources of bias (Table S3).

Statistical Analyses
Comprehensive meta-analysis software (version 3.0, Biostat, Englewood, NJ, USA) was used for
the analyses. There was significant (and expected) heterogeneity among the studies; therefore, a
random effects model was selected (Higgins & Thompson 2002). Pooled estimates were calculated
with 95% confidence intervals (CIs). Statistical heterogeneity was assessed using I^2 and Cochran’s
Q tests. A p value of <0.10 for the r^2 test of the Q statistic or an I^2 of >50% was considered
indicative of statistically significant heterogeneity (Higgins et al. 2003). A sensitivity analysis was
performed by repeating the analysis after sequential exclusion of one study at a time to observe
the effect on the overall results. Potential publication bias was evaluated by observing the
symmetry of the funnel plots and using Egger’s test (Egger et al. 1997). Furthermore, subgroup
analysis was performed to further analyze the effects of clinical variables as the possible origins
of heterogeneity, such as ways of delivery, and types of music. Finally, meta-regression analyses were performed only when the data could be assessed throughout more than five trials.

Results

Description of Studies and Quality Assessment

Database searches identified 1,460 studies, of which 299 were duplicates (Figure 1). Finally, 14 publications were included in our qualitative synthesis and critical review (Table 1) (Blackburn et al. 2011; Chang & Chen 2005; Choubasz et al. 2018; Gokyildiz Surucu et al. 2018; Hepp et al. 2018; Karkal et al. 2017; Kushner et al. 2012; Lee et al. 2004; Li & Dong 2012; Liu et al. 2010; Reza et al. 2007; Simavli et al. 2014a; Simavli et al. 2014b; Wan & Wen 2018). All these studies, except one from the US and one recently published study from Germany, were conducted in Asia; of these, six were performed in the Middle Asia. The sample sizes ranged from 50 to 304. The mean age of the participants ranged from 23.8 to 33.6 years. All the studies included women who were at low risk. Eight studies investigated pregnant women undergoing CS.

All the interventions involved listening to music. In most studies, sedative, relaxing, stable and regular rhythmic patterns were recommended or chosen as the music types. Specific musical pieces or songs (the Four Seasons by Vivaldi and lullaby by Mozart) were mentioned in one study. The use of traditional music, such as Turkish music (Acemasiran mode), Spanish style guitar, Israeli tunes, and Chinese religious music, were mentioned in six studies. Self-selected music under recommendation was used in most studies (nine studies; no clear information in two studies).

The time of the music intervention included the latent phase, active phase, and whole stages of labor in studies for participants undergoing normal spontaneous delivery (NSD) and before entering the operation room and during the operation for participants undergoing CS.

For participants undergoing NSD, the intervention duration varied from at least 30 minutes to 20-minutes break per 1–2 hours during all the labor stages and from 40 minutes before the surgery to the entire operation duration since entering operation room to the end of surgery for participants undergoing CS.

The VAS-A was used to assess the anxiety status in seven studies, STAI was used in four studies, and Zung’s SAS was used in two studies. Physiological indexes, such as SBP, DBP, RR, HR, and SpO\textsubscript{2} were recorded in six studies. HRV was tested in one study and cortisol level was used in two other studies. The timing of the outcome assessment varied from right after intervention to 24 hours after the intervention in the NSD group and 6 hours after the operation in the CS group.

A total of 1,310 participants were enrolled in these studies. Majority of the included studies had a low to moderate potential for bias, as demonstrated by our quality assessment using the Cochrane assessment tool (Table S3).

All the studies compared the intervention and control groups; however, one study incorporated a four-arm design, with two additional groups receiving acupressure intervention as well as
acupressure and music combined treatment (Wan & Wen 2018); one study used a three-arm
design, with one additional ear-plug group (Choubsaz et al. 2018).

Data Synthesis and Meta-Analyses

We focused on the effect of music intervention on the change in the anxiety status. Data
pertaining to anxiety evaluated using recognized rating scales including VAS-A, STAI, and SAS
and physiological indexes were extracted for further meta-analyses. Studies with different
outcome measurements, such as pain scores, depression scores, and satisfaction scores, were
excluded. VAS-A was measured in seven studies, STAI in four, SAS in two, and HR and BP in
six. However, data from some of the studies (Liu et al., Gokyildiz Surucu et al., and Kushnir et al.)
were not available because the outcomes were measured before delivery, rather than post-
delivery. Moreover, data from Choubsaz et al. was not usable due to uneven pre-test condition.
We also excluded Blackburn et al. due to insufficient data. Finally, nine studies were included
for anxiety level meta-analysis (Chang & Chen 2005; Gokyildiz Surucu et al. 2018; Hepp et al.
2018; Karkal et al. 2017; Li & Dong 2012; Reza et al. 2007; Simavli et al. 2014a; Simavli et al.
2014b; Wan & Wen 2018) and four studies (Chang & Chen 2005; Hepp et al. 2018; Lee et al.
2004; Simavli et al. 2014a) for BP and HR meta-analysis. Ultimately, 10 studies with a
combined study population of 1,080 participants were included in our meta-analysis.

Primary Outcome

In nine selected studies, the anxiety level of 519 participants in the music intervention group
decreased (SMD = −2.40, 95% CI = −3.29 to −1.52, p < 0.001; I² = 97.66%; Figure 2) as
compared to that in the 511 participants in the placebo group. Although there was publication
bias [t(8) = 4.41, P = 0.002], the results of the meta-analysis did not change (SMD = −4.12, 95%
CI = −5.93 to −2.31) after the trim and fill test (with three potentially missing studies to the left
of the mean). The significance remained unchanged after removing any of the studies. Among
these nine studies, five were on pregnant women undergoing NSD, and four were on those
scheduled for CS. A subgroup analysis, based on the methods of delivery, showed a significant
decrease in the anxiety score with music intervention in both, the NSD group (SMD = −4.69,
95% CI = −6.28 to −3.10, p < 0.001; I² = 96.63%) and CS group (SMD = −0.70, 95% CI =
−1.18 to −0.22, p = 0.004; I² = 89.69%; Figure 3). Another subgroup analysis by music types
showed significant differences if music types were chosen by the participants (SMD = −1.71,
95% CI = −2.59 to 0.82, p < 0.001; I² = 97.48%; Figure 4).

Secondary Outcome

Combining the results of four studies in relation to physiological indexes, the meta-analysis
indicated that those in the intervention group exhibited a significant decrease in the HR
(difference in means = −3.04 beats/min, 95% CI = −4.79 to −1.29 beats/min, p = 0.001; I² =
0.00%; Figure 5), SBP (difference in means = −3.71 mmHg, 95% CI = −7.07 to −0.35 mmHg, p
Subgroup analyses by methods of delivery showed that in the CS group, HR and DBP decreased significantly (HR: difference in means = −2.97 beats/min, 95% CI = −4.80 to −1.15 beats/min, p = 0.001; I² = 0.00%; Figure S1a and DBP: difference in means = −3.54 mmHg, 95% CI = −5.27 to −1.81 mmHg, p < 0.001; I² = 0.00%; Figure 7). However, the SBP did not decrease significantly (difference in means = −2.96 mmHg, 95% CI = −7.15 to 1.23 mmHg, p = 0.166; I² = 54.40%; Figure S1b).

Subgroup analyses by music types showed that if the music type was chosen by the participants, HR and DBP significantly decreased (HR: difference in means = −2.85 beats/min, 95% CI = −4.69 to −1.02 beats/min, p = 0.002; I² = 0.00%; Figure S1d and DBP: difference in means = −3.48 mmHg, 95% CI = −5.32 to −1.65 mmHg, p < 0.001; I² = 0.00%; Figure S1f). However, the SBP did not decrease significantly (difference in means = −3.09 mmHg, 95% CI = −7.17 to 0.99 mmHg, p = 0.137; I² = 65.03%; Figure S1e).

There was no publication bias [t(2) = 1.98, 0.94, and 0.20; p = 0.19, 0.44, and 0.86 for HR, SBP, and DBP, respectively]. However, after removing data from either of the studies, except one study (Hepp et al. 2018) that included the largest population, the change in SBP was not significantly different between the music intervention and placebo groups (Simvali, Gumus et al: difference in means = −2.96 mmHg, 95% CI = −7.15 to 1.23 mmHg, p = 0.166; Chang et al: difference in means = −3.62 mmHg, 95% CI = −7.66 to 0.41 mmHg, p = 0.078; and Lee et al: difference in means = −3.09 mmHg, 95% CI = −7.17 to 0.99 mmHg, p = 0.137). Moreover, the funnel plots were also assessed (Figure S2).

We performed a meta-regression analysis using age as the moderator in the single meta-regression to examine the heterogeneity of the present analysis. The result showed that the effect of music intervention on the anxiety level was not significantly confounded by age (slope = 0.029, p = 0.723; Figure 8).

Discussion

Our systematic review and meta-analysis support the beneficial effects of music intervention on anxiety during labor, in subjective and objective dimensions. We found that music intervention decreased anxiety score, HR, SBP, and DBP after the intervention (−2.40 SMD, 3.04 beats/min, 3.71 mmHg, and 3.54 mmHg, respectively).

The present meta-analysis comprehensively investigated the efficacy of music intervention on anxiety during labor. Majority of the recent meta-analyses focus on pain (Smith et al. 2018) or music intervention during pregnancy (Corbijn van Willenswaard et al. 2017). Other than pain, high anxiety levels also cause multiple negative effects, such as elevated BP, increased cortisol levels, elevated HR, slower wound healing, reduced immune response, increased infection risk (Scott 2004), and enhanced anesthesia induction difficulty (Ozalp et al. 2003). Furthermore, anxiety of being awake during operation has been shown to be the main reason for choosing general anesthesia (Shevde & Panagopoulos 1991). Higher risk and more adverse effects on the
mother and child during sedation have been well known; therefore, non-pharmaceutical
intervention for anxiety during labor is important. Our survey focused on studies designed to
evaluate the effect of music intervention during labor process on anxiety level evaluated after
childbirth.
Our results are consistent with the previous studies related to the effects of music intervention on
lower anxiety in participants during labor (Chuang et al. 2018). Nevertheless, the analysis of
anxiety level by Chuang et al. only involved one study that evaluated the anxiety level using
VAS-A and one study that used the Zung SAS on primiparous women expected to undergo NSD.
In our analysis, we pooled six studies that evaluated the anxiety level with VAS-A, two studies
with SAS, two studies with STAI, and included pregnant women prepared to deliver via either
NSD or CS. We used strict inclusion criteria (only RCTs in the meta-analysis) and recent studies
rather than the old ones. Chuang et al. did not execute subgroup analysis as per the method of
delivery. In the current study, music intervention successfully lowered the anxiety score in
women who delivered via NSD as well as those who underwent CS (Figure 3).
Reza et al. reported no significant decrease in the VAS-A score in CS participants (Reza et al.
2007); low level of preoperative anxiety in the study was considered a possible explanation
(Nilsson et al. 2001). Our meta-analysis results revealed a significant decrease in the anxiety
score, HR, and DBP after the music intervention in the CS group, but to lesser extent than in
NSD group (SMD of anxiety score in CS group = −0.70, SMD = −4.69 in NSD group; Figure 3),
which is consistent with a previous meta-analysis, according to which, music during planned CS
may improve the pulse rate and birth satisfaction score with small magnitude (Laopaiboon et al.
2009). Another study reported that participants undergoing surgery with local anesthesia who
listened to music during surgery had significantly lower HR, anxiety, and BP (Mok & Wong
2003).
Another possible reason for the ineffectiveness of the music intervention in the study by Reza et
al may be related to the type of music. Participants did not have the opportunity to preoperatively
choose the type of music and a culturally unfamiliar type of light music was used in their study.
Perioperative music intervention changed the neurohormonal and immune stress response,
especially if the participants selected the type of music by themselves in a study on participants
undergoing day surgery (Leardi et al. 2007). Aldridge et al. declared that the effects of music
were influenced by how much the subjects appreciated the type of music (Aldridge 1994).
Women were suggested to develop individual preferences for the use of music and
equipment (Gentz 2001). In our meta-analysis, significant decreases in the anxiety score, HR, and
DBP were found after the music intervention as compared to after placebo treatment, if the music
type was chosen by the participants (Figure 4), which is consistent with the findings of the
previous studies.
Several studies have evaluated the effect of music on the cardiovascular system (Koelsch &
Jancke 2015). The levels of BP and HR are reflected in terms of stress and anxiety other than
subjective parameters (Koelsch & Jancke 2015). The music intervention group showed
significantly lower HR and BP levels in our meta-analysis with low heterogeneity. The outcomes support the positive findings of subjective parameters.

The mechanism of music to affect physiological indicators of anxiety is based on the psychophysiological theory (O’Callaghan et al. 2007). Music may relieve anxiety by stimulating pleasure, distracting concentration, and providing a bridge for meditation (Browning 2000; Phumdoung & Good 2003). Music can activate the release of endorphins, which are the body’s painkillers, to lower the unpleasant feelings and emotions and also lower the sympathetic nervous system activity, HR, BP, respiratory rate, oxygen consumption, metabolic rate, skeletal muscle tension, sweat gland activity, blood epinephrine level, plasma prednisone level, number of natural killer cells, neurohormonal stress, and immune stress (Arslan S 2008). This may explain the changes in the physiological indicators observed in the intervention group in our study.

The effect of music intervention on the anxiety score was not significantly confounded by age when age was used as a moderator in the single meta-regression. Rubertsson et al. reported that women <25 years of age had a higher risk of anxiety symptoms during early pregnancy. Other risk factors of anxiety included the use of different languages, lower education level, unemployment, nicotine use before pregnancy, and a self-reported psychiatric history of either depression or anxiety before the current pregnancy (Rubertsson et al. 2014). The mean participant age in our study ranged from 23.8 to 33.6 years. A mean participant age < 25 years was only found in one study.

The strengths of our study included a relatively larger total study population than that in other reviews on similar topics and the lack of language restriction. Considering our results, there are great indications for clinical practice. Music is inexpensive, effective, safe, and easy to be used in daily clinical practice. Therefore, music interventions can be offered as a routine practice to women during labor.

There are certain limitations of this study. First, some subgroup analyses were not performed due to the lack of studies, such as those regarding music intervention time, and the time of outcome measurement. Second, the number of trials included was limited, making it difficult to execute more meaningful meta-regression analyses to examine the impact of variables that may affect the heterogeneity of the results. Third, the sample size of some included studies was small and did not provide details on the randomization processes. Fourth, the time of outcome measurement and music types in each study varied, thus potentially limiting the usability of some results. We attempted to select the result with a similar time of outcome measurement from each study; however, there remained high heterogeneity in the meta-analysis of the pooled anxiety scores after the intervention between the music intervention and the placebo groups, included in the subgroup analyses. The anxiety level changed largely during the active phase; therefore, when evaluating the treatment effects, the time of the assessment was important. Finally, the variation between these studies in terms of participant characteristics, intervention design, and time of outcome measurements should be considered. Further well-designed studies are needed to clarify
the influences of music types, time of music intervention, and time of outcome measurement on
the effect of music intervention.

Conclusions
Thus music interventions during labor significantly reduce the anxiety scores and physiological
indexes related to anxiety (HR, SBP, and DBP). Music interventions may be effective in
reducing the anxiety levels during labor. Application in clinical routine may be advisable.
Additional large RCTs focusing on the music types, time of music intervention, and time of
outcome measurement are required to validate these findings.

Acknowledgements
The authors would like to thank Enago (www.enago.tw), the editing brand of Crimson
Interactive Pvt., Ltd. for the English language review.

References
Aldridge D. 1994. Alzheimer's disease: rhythm, timing and music as therapy. Biomedicine and Pharmacotherapy 48:275-281.
Arslan S ÖN, Özyurt F. 2008. Effect of music on preoperative anxiety in men undergoing urogenital surgery. American Journal of Advanced Nursing 26:46–54.
Blackburn K, Scott P, Wilson C, Lanier K, Borges A, Curtis E, and Mertz HL. 2011. The effects of music therapy on women's anxiety before and during cesarean delivery. Reproductive Sciences 18:374A. 10.1177/193371912011183s067
Bradt J, Potvin N, Kesslick A, Shim M, Radl D, Schriver E, Gracely EJ, and Komarnicky-Kocher LT. 2015. The impact of music therapy versus music medicine on psychological outcomes and pain in cancer patients: a mixed methods study. Supportive Care in Cancer 23:1261-1271. 10.1007/s00520-014-2478-7
Browning CA. 2000. Using music during childbirth. Birth 27:272-276.
Cardwell MS. 2013. Stress: pregnancy considerations. Obstetrical and Gynecological Survey 68:119-129. 10.1097/OGX.0b013e31827f2481
Chang S-C, and Chen C-H. 2005. Effects of music therapy on women's physiologic measures, anxiety, and satisfaction during cesarean delivery. Research in Nursing and Health 28:453-461. 10.1002/nur.201020
Choubasz M, Rezavand N, Bayat A, Farhadi K, and Amirifard N. 2018. Comparison between the effect of ear plug and music in reducing anxiety in patients undergoing elective cesarean section under spinal anesthesia. Kuwait Medical Journal 50:37-42.
Chuang CH, Chen PC, Lee CS, Chen CH, Tu YK, and Wu SC. 2018. Music intervention for pain and anxiety management of the primiparous women during labour: A systematic review and meta-analysis. Journal of Advanced Nursing. 10.1111/jan.13871
Corbijn van Willenswaard K, Lynn F, McNeill J, McQueen K, Dennis CL, Lobel M, and Alderdice F. 2017. Music interventions to reduce stress and anxiety in pregnancy: a systematic review and meta-analysis. BMC Psychiatry 17:271. 10.1186/s12888-017-1432-x
Egger M, Davey Smith G, Schneider M, and Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629-634.
Gentz BA. 2001. Alternative therapies for the management of pain in labor and delivery. Clinical Obstetrics and Gynecology 44:704-732.
Gokyildiz Surucu S, Ozturk M, Avcibay Vurgec B, Alan S, and Akbas M. 2018. The effect of music on pain and anxiety of women during labour on first time pregnancy: A study from Turkey. Complementary Therapies in Clinical Practice 30:96-102. 10.1016/j.ctcp.2017.12.015
Goodman JH. 2004. Postpartum depression beyond the early postpartum period. Journal of Obstetric, Gynecologic, and Neonatal Nursing 33:410-420.
402 Gorkem U, Togrul C, Sahiner Y, Yazla E, and Gungor T. 2016. Preoperative anxiety may increase postcesarean
delivery pain and analgesic consumption. Minerva Anestesiologica 82:974-980.
403
404 Hepp P, Hagenbeck C, Burghardt B, Jaeger B, Wolf OT, Fehm T, Schaal NK, and Group M. 2016. Measuring the
course of anxiety in women giving birth by caesarean section: a prospective study. BMC Pregnancy and
Childbirth 16:113. 10.1186/s12884-016-0906-z
405
406 Hepp P, Hagenbeck C, Gilles J, Wolf OT, Goertz W, Janni W, Balan P, Fleisch M, Fehm T, and Schaal NK. 2018.
Effects of music intervention during caesarean delivery on anxiety and stress of the mother a controlled,
randomised study. BMC Pregnancy and Childbirth 18:435. 10.1186/s12884-018-2069-6
407
408 Higgins JP, and Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21:1539-1558.
10.1002/sim.1186
409
410 Higgins JP, Thompson SG, Deeks JJ, and Altman DG. 2003. Measuring inconsistency in meta-analyses. BMJ 327:557-
560. 10.1136/bmj.327.7414.557
411
412 Hornblow AR, and Kidson MA. 1976. The visual analogue scale for anxiety: a validation study. Australian and New
Zealand Journal of Psychiatry 10:339-341. 10.3109/00048677609159523
413
414 Ikonomidou E, Rehnstrom A, and Naesh O. 2004. Effect of music on vital signs and postoperative pain. International
Journal of Nursing Education 17:221-228. 10.1007/s12884-018-2069-6
415
416 Koelsch S, and Jancke L. 2015. Music and the heart. European Heart Journal 36:3043-3049. 10.1093/eurheartj/ehv430
417
418 Karkal E, Kharde S, and Dhumale H. 2017. Effectiveness of Music Therapy in Reducing Pain and Anxiety among
Primigravid Women during Active Phase of First Stage of Labor. International Journal of Nursing Education
9:57-60. 10.5958/0974-9357.2017.00036.8
419
420 Koelsch S, and Jancke L. 2015. Music and the heart. European Heart Journal 36:3043-3049. 10.1093/eurheartj/ehv430
421
422 Kushnir J, Friedman A, Ehrenfeld M, and Kushnir T. 2012. Coping with preoperative anxiety in cesarean section:
physiological, cognitive, and emotional effects of listening to favorite music. Birth (berkeley, calif). p 121-
423 127.
424
425 Lane D. 1992. Music therapy: a gift beyond measure. Oncology Nursing Forum 19:863-867.
426
427 Laopaiboon M, Lumbiganon P, Martin R, Vatanasapt P, and Somjaivong B. 2009. Music during caesarean section
under regional anaesthesia for improving maternal and infant outcomes. Cochrane Database of Systematic
Reviews:CD006914. 10.1002/14651858.CD006914.pub2
428
429 Leardi S, Pietroletti R, Angeloni G, Necozione S, Ranalletta G, and Del Gusto B. 2007. Randomized clinical trial
examining the effect of music therapy in stress response to day surgery. British Journal of Surgery 94:943-947.
430
431 10.1002/bjs.5914
432
433 Lee S, Lim J, Woo N, Lee Y, Choi Y, and Park H. 2004. The Effects of Music on Maternal Anxiety and the Evaluation
of Explicit and Implicit Memory during Cesarean Section. Korean Journal of Anesthesiology. p 81-83.
434
435 Li Y, and Dong Y. 2012. Preoperative music intervention for patients undergoing cesarean delivery. International
Journal of Gynaecology and Obstetrics. p 81-83.
436
437 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, and
Moher D. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that
evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. 10.1136/bmj.b2700
438
439 Liu Y, Chang M, and Chen C. 2010. Effects of music therapy on labour pain and anxiety in Taiwanese first-time
mothers. Journal of Clinical Nursing 19:1065-1072. 10.1111/j.1365-2702.2009.03028.x
440
441 Mok E, and Wong KY. 2003. Effects of music on patient anxiety. AORN Journal 77:396-397, 401-396, 409-310.
442
443 Nilsson U, Rawal N, Unestahl LE, Zetterberg C, and Unosson M. 2001. Improved recovery after music and
therapeutic suggestions during general anaesthesia: a double-blind randomised controlled trial. Acta
Anaesthesiologica Scandinavica 45:812-817.
444
445 O’Callaghan C, Sexton M, and Wheeler G. 2007. Music therapy as a non-pharmacological anxiolytic for paediatric
radiotherapy patients. Australasian Radiology 51:159-162. 10.1111/j.1440-1673.2007.01688.x
446
447 Ozalp G, Sarioglu R, Tuncel G, Aslan K, and Kadioğullari N. 2003. Preoperative emotional states in patients with
breast cancer and postoperative pain. Acta Anaesthesiologica Scandinavica 47:26-29.
448
449 Phumdoung S, and Good M. 2003. Music reduces sensation and distress of labor pain. Pain Management Nursing 4:54-
450 61.
451
452 Reza N, Ali S, Saeed K, Abul-Qasim A, and Reza T. 2007. The impact of music on postoperative pain and anxiety
following cesarean section. Middle East Journal of Anaesthesiology. p 573-586.
453
454 Rubertsson C, Hellstrom J, Cross M, and Sydsjo G. 2014. Anxiety in early pregnancy: prevalence and contributing
factors. Arch Womens Ment Health 17:221-228. 10.1007/s00737-013-0409-0
455
Scott A. 2004. Managing anxiety in ICU patients: the role of pre-operative information provision. *Nursing in Critical Care* 9:72-79.

Shevde K, and Panagopoulos G. 1991. A survey of 800 patients’ knowledge, attitudes, and concerns regarding anesthesia. *Anesthesia and Analgesia* 73:190-198.

Siedliecki SL, and Good M. 2006. Effect of music on power, pain, depression and disability. *Journal of Advanced Nursing* 54:553-562. 10.1111/j.1365-2648.2006.03860.x

Simavli S, Gumus I, Kaygusuz I, Yildirim M, Usluogullari B, and Kafali H. 2014a. Effect of music on labor pain relief, anxiety level and postpartum analgesic requirement: a randomized controlled clinical trial. *Gynecologic and Obstetric Investigation*. p 244-250.

Simavli S, Kaygusuz I, Gumus I, Usluogullari B, Yildirim M, and Kafali H. 2014b. Effect of music therapy during vaginal delivery on postpartum pain relief and mental health. *Journal of Affective Disorders* 156:194-199. 10.1016/j.jad.2013.12.027

Smith CA, Levett KM, Collins CT, Dahlen HG, Ee CC, and Suganuma M. 2018. Massage, reflexology and other manual methods for pain management in labour. *Cochrane Database of Systematic Reviews*: John Wiley & Sons, Ltd.

Smolen D, Topp R, and Singer L. 2002. The effect of self-selected music during colonoscopy on anxiety, heart rate, and blood pressure. *Applied Nursing Research* 15:126-136.

Wan Q, and Wen FY. 2018. Effects of acupressure and music therapy on reducing labor pain. *International Journal of Clinical and Experimental Medicine* 11:898-903.

Zhao M HX, Zhu C. 1999. Maternal anxiety and depression before and after childbirth. *Curr Adv Obstet Gynecol* 8:95–96.

Zijlmans MAC, Beijers R, Riksen-Walraven MJ, and de Weerth C. 2017. Maternal late pregnancy anxiety and stress is associated with children’s health: a longitudinal study. *Stress* 20:495-504. 10.1080/10253890.2017.1348497
Figure 1 (on next page)

Schematic illustration of the literature search and the study selection criteria. CINAH, the Cumulative Index to Nursing and Allied Health; NTLTD, the Net worked Digital Library of Theses and Dissertations.
Totally records by initial searching (n=1460)

Records screened (n = 1161)

Duplicates removed by endnote (n = 185)
Duplicates removed by hand (n = 114)
No fulltext available (n = 2)

Full-text articles excluded, with reasons
Case series (n=1)
Conference abstract (n=1)
Duplicated poster (n=1)
No controlled arm (n=1)
Integrative review (n=2)
Not randomly designed (n=5)

Studies included in qualitative synthesis (n = 14)

Studies included in quantitative synthesis (meta-analysis) (n = 10)

Full-text articles excluded, with reasons
Insufficient data of measurement report (n = 4)
Figure 2

Forest plot of pooled anxiety scores after the intervention between the music intervention group and the placebo group (Overall meta-analysis)
Figure 3

Forest plot of pooled anxiety scores after the intervention between the music intervention group and the placebo group (Subgroup analysis by methods of delivery).
Figure 4

Forest plot of pooled anxiety scores after the intervention between the music intervention group and the placebo group (Subgroup analysis by music types).
Figure 5

Forest plot of heart rate after the intervention between the music intervention group and the placebo group.

Study name	Statistics for each study	Difference in means and 95% CI	Relative weight
Simvali, Gumus 2014	-2.880	-5.306 -0.454 0.020	52.02
Chang 2005	-3.810	-9.838 2.218 0.215	8.43
Lee 2004	-5.000	-10.851 0.851 0.094	8.95
Hepp 2018	-2.540	-5.703 0.623 0.116	30.61
Figure 6

Forest plot of systolic blood pressure after the intervention between the music intervention group and the placebo group.

Study name	Statistics for each study	Difference in means and 95% CI	Relative weight		
Simvali, Gumus 2014	-5.540	-9.020	-2.060	0.002	30.43
Chang 2005	-4.660	-12.294	2.974	0.232	13.57
Lee 2004	-6.000	-11.072	-0.928	0.020	22.27
Hepp 2018	-0.160	-3.070	2.750	0.914	33.74

-8.00 -4.00 0.00 4.00 8.00
Favor intervention Favor placebo
Figure 7

Forest plot of diastolic blood pressure after the intervention between the music intervention group and the placebo group.

Study name	Statistics for each study	Difference in means and 95% CI	Relative weight
Simvali, Gmus 2014	-4.040, -6.452, -1.628, 0.001	-8.00 - 4.00 0.00 4.00 8.00	51.33
Chang 2005	-3.430, -9.710, 2.850, 0.284	-8.00 - 4.00 0.00 4.00 8.00	7.57
Lee 2004	-4.000, -9.149, 1.149, 0.128	-8.00 - 4.00 0.00 4.00 8.00	11.26
Hepp 2018	-2.540, -5.703, 0.623, 0.116	-8.00 - 4.00 0.00 4.00 8.00	29.84
Figure 8

Regression of anxiety scores on Age

Regression of standardized mean difference on Age
Table 1 (on next page)

Characteristics of randomized controlled trials investigating the effect of music intervention on anxiety during labor
Study	Country	Participants	Age (Mean ± SD)	I: C	Intervention	Outcome measures	findings
Choubsaz 2018	Iran	60 low-risk pregnant women, ASA class I and II undergoing elective CS	27.1 ± 4.94 vs. 26.6 ± 5.59	30:30	The “Motivation” piece, a sedative musical piece, was played through a headphone during the surgery.	STAI before and after OP.	Significant differences between STAI in music (21.83 ± 11.9 vs. 13 ± 8.02) and control groups (24.4 ± 11.89 vs. 16.6 ± 8.14) pre and post-test (p = 0.001).
Hepp 2018*	Germany	304 low-risk pregnant women undergoing primary CS	33.5 ± 5.4 vs. 33.7 ± 5.4	154:150	Slow tempo music from one (15 tracks) of four self-selected genres via loudspeakers started when entering the OR.	VAS-A, STAI, salivary cortisol and salivary alpha amylase at admission, skin suture, and 2 h after OP; HR, SBP and DBP at skin incision and 2 h after OP.	At skin suture, significantly lower STAI (p = 0.004) and VAS-A (p = 0.018); 2 h after OP, lower VAS-A (p = 0.018); salivary cortisol increased from admission to skin suture (p = 0.043); lower SBP (p = 0.002) and HR (p = 0.049) at skin incision.
Gokyildiz Surucu 2018*	Turkey	50 low-risk primigravid women	NR	25:25	Music was played in Acemasiran mode with earplugs for 3 h (20 min of listening with 10-min breaks) during the active phase.	STAI, faces anxiety scale 30 min after intervention, RR, HR, SBP, DBP, dilatation, effacement, fetal HR, period of contraction, frequency of contraction at the end of 1st, 3rd, 5th, 7th h of labor.	The women who listened to music during labor had lower anxiety levels, evaluated the labor as easier, had longer periods of contraction, and their labor progressed faster.
Wan 2018*	China	119 low-risk primigravid women, singleton, and expected to have NSD	25.57 ± 3.11 vs. 26.02 ± 2.90	60:59	Relaxing, soft and regular rhythmic music recommended to participants was played with a 20-min break for every 2 h during the active phase.	VAS-A (1, 4, 8, 16, 24 h after intervention).	VAS-A scores significantly different from those in the controls at all-time points (all p < 0.05).
Karkal 2017*	India	60 primigravid women who were in the active phase of labor	NR	30:30	Music was administered in the first stage of labor.	Zung’s SAS (pre-test and post-test).	The mean post-test score of anxiety between the experimental and control groups was 40.01 (p < 0.001).
Simavli, Gumus 2014*	Turkey	132 low-risk primigravid women, singleton, expected to have NSD	25.06 ± 4.33 vs. 25.09 ± 4.53	67:65	Self-selected music (relaxing, regular rhythmic patterns) were played all the time with 20-min break for every h via headphones since 2 cm cervical dilatation to first 2 h	VAS-A, SBP, DBP, HR (before music; latent phase, active phase, second stage and 2 h postpartum); analgesic requirement.	A significantly lower level of anxiety (p < 0.001), maternal hemodynamics and fetal HR (p < 0.01) in the interventional group at all stages of labor and analgesic requirement
Study	Country	Participants	Methods	Outcomes			
---------------	---------	--------------	---------	----------			
Simavli, Ikbal 2014*	Turkey	141 low-risk primigravid women, singleton, expected to have NSD	24.17 ± 3.22 vs. 23.39 ± 3.88 71:70	Self-selected music (relaxing, regular rhythmic) played all the time with a 20-min break for every 2 h since 2 cm cervical dilatation to the end of the 3rd stage. VAS-A (1, 4, 8, 16, 24 h postpartum), VAS-S (2, 12, 24 h postpartum) significantly lower postpartum anxiety at all-time intervals (1, 4, 8, 16, and 24 h, p = 0.001). Significantly lower satisfaction rate (p = 0.001).			
Kushnir 2012	Israel	60 low-risk pregnant women, undergoing an elective CS for medical reasons only	32.0 ± 3.97 vs. 32.13 ± 4.79 28:32	Patient-preferred music (light classical music or Israeli tunes) were played for 40 min, using a Discman with earphones, while lying on their beds before OP. 1. Mood states scale 2. Perceived threat of surgery scale 3. SBP, DBP, HR, RR (before and after 40 min of music listening) Significant increase in positive emotions and a significant decline in negative emotions and perceived threat of the situation. Significant reduction in SBP, increase in DBP and RR.			
Li 2012*	China	60 low-risk pregnant women, ASA class I and II, undergoing elective CS	NR 30:30	Self-chosen Chinese classical music was played for 30 min before OP and was continued after anesthesia. The Zung’s SAS, total power, LF, HF, and LF/HF ratio in HRV (at the preoperative visit and just before OP). The mean HRV was significantly less, the mean HF value was significantly increased, and the mean anxiety score was significantly decreased.			
Blackburn 2011	United States	50 low-risk pregnant women, undergoing an elective CS, singleton.	NR 25:25	Self-selected music provided through MP3 player with programmed genres of music administered for 30 minutes prior to and after their CS. STAI after intervention. The intervention of patient-selected music before and after CS will reduce the anxiety levels in the patients undergoing CS (p < 0.05).			
Liu 2010	Taiwan	60 low-risk primigravid women, singleton, expected to have NSD.	26.63 ± 4.02 vs. 27.60 ± 4.34 30:30	Self-chosen music (include classical, light, popular, crystal or Chinese religious music) was played at least 30 min during the latent phase and active phase. VAS-A, finger temperature (before and after 30 min of music listening during the latent and active phases). The experimental group had significantly lower pain, anxiety and a higher level of satisfaction regarding the CS. No significant differences were found.			
Reza 2007*	Iran	100 low-risk pregnant women, ASA class I, undergoing elective CS under general anesthesia	26 ± 5.19 vs. 25 ± 4.23 50:50	Intra-OP music (soft instrumental, including 15 segments of a Spanish style guitar not selected by the patients). VAS-A immediately in PACU and at 0.5, 1, 2, 4, and 6 h postoperatively There were no significant differences in terms of the post-OP anxiety in PACU and at 0.5, 1, 2 and 4 h post-OP.			
Chang 2005*	Taiwan	64 low-risk pregnant women, undergoing elective CS,	30.31 ± 4.16 vs. 32.31 ± 4.48 32:32	Self-selected music (Western classical, new age, or Chinese religious music.) administered for at VAS-A, SpO2, finger temperature, RR, HR, SBP, DBP prior to There were no significant differences in terms of the post-OP anxiety in PACU and at 0.5, 1, 2 and 4 h post-OP. Significantly lower anxiety level and a higher level of satisfaction regarding the CS. No significant differences were found.			
_singleton, received spinal or epidural anesthesia at least 30 min from the start of anesthesia until the end of OP. anesthesia, the end of maternal contact with the neonate, and after completion of the skin suture.

Lee 2004* Korea

50 low-risk pregnant women undergoing an elective CS

28.1 ± 7.0 vs. 29.7 ± 5.1

 Patients wore the headphones as soon as they entered the OR and listened to the music (the Four Seasons Vivaldi and other 5 songs (e.g., lullaby–Mozart) three times repeat).

Music significantly decreased SBP and HR at 1 min after intubation and 5 min after extubation, increased hit ratio of the implicit memory test, decreased cortisol at 30 min after intubation and 10 min after arriving in the recovery room.

*D studies included in meta-analysis. Abbreviations (in alphabetical order): ASA: American Society for Anesthesiology, C: control, CS: cesarean section, DBP: diastolic blood pressure, h: hour, HF: low-frequency power, HR: heart rate, HRV: heart rate variability, I: intervention, LF: low-frequency power, min: minute, NR: not reported, NSD: normal spontaneous delivery, OP: operation, OR: operation room, PACU: post-anesthesia care unit, RR: respiratory rate, SAS: self-rating anxiety scale, SBP: systolic blood pressure, SpO2: pulse hemoglobin oxygen saturation, STAI: State-Trait Anxiety Inventory, VAS: visual analog scale, VAS-A: VAS for anxiety, VAS-S: VAS for satisfaction.