Cosmological models and stability

Lars Andersson

Albert Einstein Institute
Potsdam

AE100 Prague, June 29, 2012
I would already have concluded my researches about world harmony, had not Tycho’s astronomy so shackled me that I nearly went out of my mind

Johannes Kepler
The perfect cosmological principle:

The universe is isotropic in space and time

The cosmological principle:

The universe is homogenous and isotropic

The standard model in cosmology:
- laws of general relativity
- cosmological principle
- observations

→ Universe is approximated by Friedmann model with positive cosmological constant Λ:

$$\Omega_m^0 \sim 0.3, \quad \Omega_\Lambda^0 \sim 0.7$$
Cosmological principles and the standard model

- The perfect cosmological principle:

 The universe is isotropic in space and time

- The cosmological principle:

 The universe is homogenous and isotropic

- The standard model in cosmology:
 - laws of general relativity
 - cosmological principle
 - observations
 - Universe is approximated by Friedmann model with positive cosmological constant Λ:

 \[\Omega_{m0} \sim 0.3, \quad \Omega_{\Lambda0} \sim 0.7 \]
Cosmological principles and the standard model

- The perfect cosmological principle:

 The universe is isotropic in space and time

- The cosmological principle:

 The universe is homogenous and isotropic

- The standard model in cosmology:
 - laws of general relativity
 - cosmological principle
 - observations
 - Universe is approximated by Friedmann model with positive cosmological constant Λ:

 $$\Omega_m \sim 0.3, \quad \Omega_{\Lambda} \sim 0.7$$
Cosmological principles and the standard model

- The perfect cosmological principle:

 The universe is isotropic in space and time

- The cosmological principle:

 The universe is homogenous and isotropic

- The standard model in cosmology:
 - laws of general relativity
 - cosmological principle
 - observations
 - Universe is approximated by Friedmann model with positive cosmological constant Λ:

 $\Omega_{m0} \sim 0.3, \quad \Omega_{\Lambda0} \sim 0.7$
Cosmological principles and the standard model
Cosmological models and inhomogeneity

- weaker cosmological principles:
 - statistical homogeneity
 - no special (matter bound) observer

Inhomogeneity in cosmological models
- fitting problem
- backreaction
- averaging
- “discrete” vs. “smooth” matter distribution
- effect of inhomogeneities on observations
Cosmological models and inhomogeneity

- weaker cosmological principles:
 - statistical homogeneity
 - no special (matter bound) observer

- Inhomogeneity in cosmological models
 - fitting problem
 - backreaction
 - averaging
 - “discrete” vs. “smooth” matter distribution
 - effect of inhomogeneities on observations
Mathematical problems
- (almost) EGS
- stability/instability
- asymptotics
 - at singularity (eg. BKL proposal – cosmic censorship)
 - in expanding direction:

What does an observer in the late universe see?
Cosmological models and inhomogeneity

Mathematical problems
- (almost) EGS
- stability/instability
- asymptotics
 - at singularity (e.g. BKL proposal – cosmic censorship)
 - in expanding direction:

What does an observer in the late universe see?
Cosmological models and inhomogeneity

Mathematical problems
- (almost) EGS
- stability/instability
- asymptotics
 - at singularity (eg. BKL proposal – cosmic censorship)
 - in expanding direction:

 What does an observer in the late universe see?
Asymptotics of cosmological models

We appear not to be in an asymptotic regime...

however we may study the mathematical problem...
Asymptotics of cosmological models

We appear not to be in an asymptotic regime...

however we may study the mathematical problem...
Asymptotics of cosmological models

Friedmann dust:

\[
\frac{H^2}{H_0^2} = \Omega_{0m} \left(\frac{a_0}{a} \right)^3 + \Omega_{0\Lambda} + \Omega_{0\kappa} \left(\frac{a_0}{a} \right)^2
\]

If \(\Lambda > 0 \), \(\Omega_{\Lambda} \) dominates as \(a \to \infty \)

Restrict to \(\Omega_{\Lambda} = 0 \):

- Einstein-de Sitter (matter dominated, \(\Omega_{\kappa} = 0 \)):
 - unstable within Friedmann models, slow volume growth
 - \(a \sim t^{2/3} \)

- Milne (empty universe, \(\Omega_{\kappa} = 1 \)):
 - stable within Friedmann models, rapid volume growth
 - \(a \sim t \)
Asymptotics of cosmological models

Friedmann dust:

\[\frac{H^2}{H_0^2} = \Omega_{0m} \left(\frac{a_0}{a} \right)^3 + \Omega_{0\Lambda} + \Omega_{0\kappa} \left(\frac{a_0}{a} \right)^2 \]

If \(\Lambda > 0 \), \(\Omega_\Lambda \) dominates as \(a \to \infty \). Restrict to \(\Omega_\Lambda = 0 \):

- \(\Omega_m = 0 \)
- \(\Omega_m = 1 \)

\[\kappa = -1 \quad \kappa = 0 \quad \kappa = 1 \]

- Einstein-de Sitter (matter dominated, \(\Omega_\kappa = 0 \)): unstable within Friedmann models, slow volume growth \(a \sim t^{2/3} \)
- Milne (empty universe, \(\Omega_\kappa = 1 \)): stable within Friedmann models, rapid volume growth \(a \sim t \)
Asymptotics of cosmological models

- Milne is the flat interior of the lightcone in Minkowski space

Cosmological time level

Line element $ds^2 = -dt^2 + t^2 g_{H^3}$

- Deformed Milne
Asymptotics of cosmological models

- Milne is the flat interior of the lightcone in Minkowski space

- Cosmological time level

- Line element $ds^2 = -dt^2 + t^2 g_{H^3}$

- Deformed Milne

Cosmological time level
Asymptotics of cosmological models

$\text{deformed region has slow volume growth}$

$\text{deformed Milne is flat and empty – but not homogenous and isotropic}$
Asymptotics of cosmological models

More general flat models, e.g. compact quotient of deformed Milne (Mess, 1990), (LA, 2002), (Barbot, 2005), (LA, Barbot, Beguin & Zeghib, 2012)

Neck region – slow volume growth

Hyperbolic region

- asymptotically, hyperbolic (thick) regions dominate
- “neck regions” (thin) become insignificant
Asymptotics of cosmological models

More general flat models, e.g. compact quotient of deformed Milne (Mess, 1990), (LA, 2002), (Barbot, 2005), (LA, Barbot, Beguin & Zeghib, 2012)

Neck region – slow volume growth

- asymptotically, hyperbolic (thick) regions dominate
- “neck regions” (thin) become insignificant
Einstein flow

The Lorentzian Einstein equations define a flow on the space of (scale free) geometries

- Consider vacuum spacetimes \((M, g_{ab})\)
 \[
 R_{ab} = 0
 \]
 with compact Cauchy surface \((M, g_{ij}, K_{ij})\)
- Use logarithmic constant mean curvature (Hubble) time
 \[
 T = -\ln(\tau/\tau_0)
 \]

- Consider the evolution of the scale free geometry \([g] = \tau^2 g\)
- The Lorentzian Einstein equations define a flow
 \[
 T \mapsto [g](T)
 \]
 on the space of Riemannian metrics
Einstein flow

The Lorentzian Einstein equations define a flow on the space of (scale free) geometries

- Consider vacuum spacetimes \((M, g_{ab})\)
 \[
 R_{ab} = 0
 \]

 with compact Cauchy surface \((M, g_{ij}, K_{ij})\)

- Use logarithmic constant mean curvature (Hubble) time
 \[
 T = - \ln(\tau / \tau_0)
 \]

- Consider the evolution of the scale free geometry \([g] = \tau^2 g\)
- The Lorentzian Einstein equations define a flow
 \[
 T \mapsto [g](T)
 \]

 on the space of Riemannian metrics
Einstein flow

- 2+1 dimensional case: Einstein equations corresponds to time dependent Hamiltonian system on Teichmüller space (LA, Moncrief & Tromba, 1997)
Einstein flow

General scenario (Fischer & Moncrief, 2000), (M. Anderson, 2001)

- Non-collapsing case – negative Yamabe type
- For $T \to \infty$, $(M, [g])$ decomposes decomposition into hyperbolic pieces and Seyfert fibered pieces \leftrightarrow (weak) geometrization
- Einstein flow in CMC time \leadsto thick/thin decomposition of M
- Thick (hyperbolic) pieces have full volume growth
- \Rightarrow in the far future, the hyperbolic pieces represent most of the volume of M
Einstein flow

General scenario (Fischer & Moncrief, 2000), (M. Anderson, 2001)

- Non-collapsing case – negative Yamabe type
- For $T \rightarrow \infty$, $(M, [g])$ decomposes decomposition into hyperbolic pieces and Seyfert fibered pieces \leftrightarrow (weak) geometrization
- Einstein flow in CMC time \leadsto thick/thin decomposition of M
- Thick (hyperbolic) pieces have full volume growth
- \Rightarrow in the far future, the hyperbolic pieces represent most of the volume of M
Nonlinear stability problem for cosmological models:

Prove that for Cauchy data close to Milne, the future Cauchy development is asymptotic to Milne

Vacuum case: (LA & Moncrief, 2004), (LA & Moncrief, 2011)

More general question:

For Cauchy data close to $\kappa \leq 0$ Friedmann, characterize the future Cauchy development
Nonlinear stability problem for cosmological models:

Prove that for Cauchy data close to Milne, the future Cauchy development is asymptotic to Milne

Vacuum case: (LA & Moncrief, 2004), (LA & Moncrief, 2011)

More general question:

For Cauchy data close to $\kappa \leq 0$ Friedmann, characterize the future Cauchy development
Nonlinear stability: Minkowski

- (Friedrich, 1986): nonlinear stability to the future of a hyperboloidal slice, regular I^+
- (Christodoulou & Klainerman, 1993; Klainerman & Nicolò, 2003): use null coordinates, Bel-Robinson energy. Get peeling if sufficiently regular at i_0
- (Lindblad & Rodnianski, 2005): use weak null condition, simple proof, matter can be added

conformal type: Minkowski diamond
Nonlinear stability: Dark Energy

future horizons, topology does not matter (but cf. (LA & Galloway, 2002))

Locality at I^+ ⇒ “small data” can be characterized locally in space

Results:

- (Friedrich, 1991), (M. Anderson & Chruściel, 2005) (Heinzle & Rendall, 2005): global stability
- (Starobinsky, 1983), (Rendall, 2006): expansions, Fuchsian
- (Ringström, 2007): “local” small data global existence (Einstein-Λ-scalar field)
Nonlinear stability: Dark Energy

future horizons, topology does not matter
(but cf. (LA & Galloway, 2002))

Locality at I^+ ⇒ “small data” can be characterized locally in space

Results:

- Einstein-Λ-irrotational fluid
 (Rodnianski & Speck, 2009)

- Einstein-Λ-Euler (Speck, 2011)

- Einstein-Λ-Vlasov
 (Ringström, 2012)

conformal type: finite cylinder
Nonlinear stability: Ordinary matter

- Example: Lorentz cone on compact hyperbolic: $ds^2 = -dt^2 + t^2 \gamma_{HH}$ ($\kappa = -1$ empty Friedmann)
- topology matters
- vacuum:
 - $U(1)$ (Choquet-Bruhat & Moncrief, 2001)
 - G_0 (LA & Moncrief, 2004), (LA & Moncrief, 2011)
- matter:
 - Einstein-Vlasov, Bianchi symmetry: (Rendall & Tod, 1999), (Heinzle & Uggla, 2006), (Nungesser, 2011)
 - 2+1 Einstein-Vlasov: (Fajman, 2012)
- test fluids on FLRW: (Speck, 2012)

conformal type:
infinite cylinder
Nonlinear stability: Ordinary matter

- Example: Lorentz cone on compact hyperbolic: $ds^2 = -dt^2 + t^2 \gamma_\mathbb{H}$
 ($\kappa = -1$ empty Friedmann)
- topology matters
- vacuum:
 $U(1)$ (Choquet-Bruhat & Moncrief, 2001)
 G_0 (LA & Moncrief, 2004), (LA & Moncrief, 2011)
- matter:
 Einstein-Vlasov, Bianchi symmetry: (Rendall & Tod, 1999), (Heinzle & Uggla, 2006), (Nungesser, 2011)
 2+1 Einstein-Vlasov: (Fajman, 2012)
- test fluids on FLRW: (Speck, 2012)

conformal type: infinite cylinder
Scale invariant variables

- \((M, \gamma)\) \(n\)-dimensional negative Einstein
- \(\text{Ric}_\gamma = -\frac{n-1}{n^2}\gamma;\quad ds^2 = -dt^2 + \frac{t^2}{n^2}\gamma\) Lorentz cone over \(\gamma\)
- Line element \(ds^2 = -\tilde{N}^2 dt^2 + \tilde{g}_{ij}(dx^i + \tilde{X}^i dt)(dx^j + \tilde{X}^j dt)\)
 (physical) vacuum data: \((M, \tilde{g}, \tilde{K}, \tilde{N}, \tilde{X})\)
- \(\tau = \tilde{g}^{ij}\tilde{K}_{ij}\) mean curvature (assume CMC time gauge)

Rescaled fields \((g, \Sigma, N, X)\) :

- \(g_{ij} = \tau^2\tilde{g}_{ij}\) \\
- \(\Sigma_{ij} = \tau(\tilde{K}_{ij} - \frac{\tau}{n}\tilde{g}_{ij})\) \\
- \(X^i = \tau\tilde{X}^i\) \\
- \(N = \tau^2\tilde{N}\)

Scale invariant time: \(T = -\log(-\tau)\)

At background: \((g_{ij}, \Sigma_{ij}, X^i, N) = (\gamma_{ij}, 0, 0, n)\)
(\(M, \gamma\)) \(n\)-dimensional negative Einstein

\[
\text{Ric}_\gamma = -\frac{n-1}{n^2}\gamma; \quad ds^2 = -dt^2 + \frac{t^2}{n^2}\gamma
\]

Lorentz cone over \(\gamma\)

Line element \(ds^2 = -\tilde{\gamma}dt^2 + \tilde{\gamma}_{ij}(dx^i + \tilde{X}^i dt)(dx^j + \tilde{X}^j dt)\)

(physical) vacuum data: \((M, \tilde{g}, \tilde{K}, \tilde{N}, \tilde{X})\)

\(\tau = \tilde{g}^{ij}\tilde{K}_{ij}\) mean curvature (assume CMC time gauge)

Rescaled fields \((g, \Sigma, N, \chi)\):

\[
\begin{align*}
g_{ij} &= \tau^2\tilde{g}_{ij}, \\
\Sigma_{ij} &= \tau(\tilde{K}_{ij} - \frac{\tau}{n}\tilde{g}_{ij}) \\
\chi^i &= \tau\tilde{X}^i \\
N &= \tau^2\tilde{N}
\end{align*}
\]

Scale invariant time: \(T = -\log(-\tau)\)

At background: \((g_{ij}, \Sigma_{ij}, \chi^i, N) = (\gamma_{ij}, 0, 0, n)\)
Stable Riemannian Einstein spaces

- Require \textit{stability} of \((M, \gamma)\):

\[\mathcal{L} \geq 0, \]

where \(\mathcal{L} h_{ac} = -\Delta h_{ac} - 2R_{abcd}h^{bd}\)

- Allow a nontrivial, integrable \textit{moduli space} of Riemannian Einstein structures

- Stability and integrability holds in all known cases for negative Einstein spaces

- \(n = 3\): Mostow rigidity \(\Rightarrow\) trivial moduli space

- \(n > 3\) The moduli space of Einstein structures corresponds to
 - center manifold for normalized Ricci flow
 - center manifold for Lorentzian Einstein flow
Stable Riemannian Einstein spaces

- Require *stability* of \((M, \gamma)\):
 \[
 \mathcal{L} \geq 0,
 \]
 where \(\mathcal{L}h_{ac} = -\Delta h_{ac} - 2R_{abcd}h^{bd}\)

- Allow a nontrivial, integrable *moduli space* of Riemannian Einstein structures

- Stability and integrability holds in all known cases for negative Einstein spaces

- \(n = 3\): Mostow rigidity \(\Rightarrow\) trivial moduli space

- \(n > 3\) The moduli space of Einstein structures corresponds to
 - center manifold for normalized Ricci flow
 - center manifold for Lorentzian Einstein flow
Linearized stability analysis

- Linearizing the rescaled Einstein equations around background data \((g, \Sigma, N, X) = (\gamma, 0, n, 0)\) gives

\[
\ddot{X} + (n - 1)\dot{X} + n^2 \lambda X = 0
\]

damped oscillator equation with characteristic roots

\[
-(n - 1) \pm \sqrt{(n - 1)^2 - 4n^2 \lambda^2}
\]

- Energy

\[
E = \frac{1}{2} \dot{X}^2 + \frac{n^2 \lambda}{2} X^2 + c_E X \dot{X}
\]

- Energy decay: \(\frac{d}{dt} E \leq \alpha E\)
Linearized stability analysis

- Linearizing the rescaled Einstein equations around background data \((g, \Sigma, N, X) = (\gamma, 0, n, 0)\) gives
 \[
 \ddot{X} + (n - 1)\dot{X} + n^2 \lambda X = 0
 \]
 damped oscillator equation with characteristic roots
 \[
 -(n - 1) \pm \sqrt{(n - 1)^2 - 4n^2\lambda} \over 2
 \]

- Energy
 \[
 E = \frac{1}{2} \dot{X}^2 + \frac{n^2\lambda}{2} X^2 + c_E X \dot{X}
 \]

- Energy decay:
 \[
 \frac{d}{dt} E \leq \alpha E
 \]
Linearized stability analysis

Let $\lambda_0 = \text{smallest non-zero eigenvalue of } \mathcal{L}$. Define

$$c_E = \begin{cases} \frac{n-1}{2} \frac{\lambda_0}{n-1} \\ \frac{2n^2 \lambda_0}{n-1} \end{cases} \quad \alpha_+ = \begin{cases} -\frac{n-1}{2} \frac{1}{(n-1)+\sqrt{(n-1)^2-4n^2 \lambda_0}} \\ -\frac{1}{2} \frac{1}{(n-1)+\sqrt{(n-1)^2-4n^2 \lambda_0}} \end{cases}$$

universal anomalous
Energies

Use linearized analysis as a guide to defining energies:

- Write energies modelled on damped harmonic oscillator energy, in terms of variables $g - \gamma, \Sigma$
- Energy decay for small data
- Scale invariant geometry converges to Einstein geometry in the moduli space:

 \Rightarrow Einstein spaces are attractors for the Einstein flow
Use linearized analysis as a guide to defining energies:

- write energies modelled on damped harmonic oscillator energy, in terms of variables $g - \gamma, \Sigma$
- energy decay for small data
- scale invariant geometry converges to Einstein geometry in the moduli space:

⇒ Einstein spaces are attractors for the Einstein flow
Use linearized analysis as a guide to defining energies:

- write energies modelled on damped harmonic oscillator energy, in terms of variables $g - \gamma, \Sigma$
- energy decay for small data
- scale invariant geometry converges to Einstein geometry in the moduli space:

\Rightarrow Einstein spaces are attractors for the Einstein flow
Use linearized analysis as a guide to defining energies:
- write energies modelled on damped harmonic oscillator energy, in terms of variables \(g - \gamma, \Sigma \)
- energy decay for small data
- scale invariant geometry converges to Einstein geometry in the moduli space:

\[\Rightarrow \text{Einstein spaces are attractors for the Einstein flow} \]
Theorem (LA & Moncrief, 2011)

Suppose \((M^n, \gamma^0)\) stable, integrable, \(\text{Ric}_{\gamma^0} = -\frac{n-1}{n^2} \gamma^0\) and let vacuum data \((\tilde{g}^0, \tilde{K}^0)\) be given.

Assume \(g^0 = \tau^2 \tilde{g}^0, \Sigma^0 = \tau (\tilde{K} - \frac{\tau}{n})\) are close to \((\gamma^0, 0)\),

Then, the maximal vacuum Cauchy development \((M, g)\) of \((M, \tilde{g}^0, \tilde{K}^0)\)

- has a global CMC foliation to the future,
- is future causally geodesically complete,
- \(g(T) \to \gamma_\infty \in \mathcal{N}_{\gamma^0}\), as \(T \to \infty\).
Theorem (LA & Moncrief, 2011)

Suppose \((M^n, \gamma^0)\) stable, integrable, \(\text{Ric}_{\gamma^0} = -\frac{n-1}{n^2} \gamma^0\) and let vacuum data \((\tilde{g}^0, \tilde{K}^0)\) be given.
Assume \(g^0 = \tau^2 \tilde{g}^0, \Sigma^0 = \tau(\tilde{K} - \frac{\tau}{n})\) are close to \((\gamma^0, 0)\),
Then, the maximal vacuum Cauchy development \((M, g)\) of \((M, \tilde{g}^0, \tilde{K}^0)\)

- has a global CMC foliation to the future,
- is future causally geodesically complete,
- \(g(T) \to \gamma_{\infty} \in \mathcal{N}_{\gamma^0}, \text{ as } T \to \infty\)
Generalized Kasner spacetimes

(LA & Heinzle, 2006)

Generalized Kasner spaces: $\mathbb{M} \cong \mathbb{R} \times M \times N$, with

- (M^m, g), (N^n, h), $D = d + 1 = m + n + 1$
- $\text{Ric}_g = -(m + n - 1)g$, $\text{Ric}_h = -(m + n - 1)h$
- Line element $ds^2 = -dt^2 + a^2(t)g + b^2(t)h$

- Introduce scale invariant variables

$p = -\dot{a}/a$, $q = -\dot{b}/b$, $P = p/H$, $Q = q/H$, $A = \frac{1}{aH}$, $B = \frac{1}{bH}$

- Einstein equations \Rightarrow autonomous system for (P, Q, A, B) with 2 constraints.
Generalized Kasner spacetimes

(LA & Heinzle, 2006)

Generalized Kasner spaces: $\mathcal{M} \cong \mathbb{R} \times M \times N$, with

- (M^m, g), (N^n, h), $D = d + 1 = m + n + 1$
 \[\text{Ric}_g = -(m + n - 1)g, \text{Ric}_h = -(m + n - 1)h \]
 line element $ds^2 = -dt^2 + a^2(t)g + b^2(t)h$

- introduce scale invariant variables
 \[p = -\dot{a}/a, q = -\dot{b}/b, \]
 \[P = p/H, Q = q/H, A = \frac{1}{aH}, B = \frac{1}{bH} \]

- Einstein equations \(\Rightarrow\) autonomous system for (P, Q, A, B) with 2 constraints.
Generalized Kasner spacetimes

Dynamical systems analysis shows the generic orbit is
- generalized Kasner ($a \sim t^p$, $b \sim t^q$) at singularity,
- Friedmann (\cong cone) in expanding direction
- Friedmann is stable node only if spacetime dimension $D \geq 11$

\[(F_1) \quad (F_2) \quad (F_A) \quad (F_B) \]

\[\begin{align*}
D < 10 & \quad D > 10
\end{align*} \]
Generalized Kasner spacetimes

Quiescent singularities:

(Demaret, Henneaux, & Spindel, 1985): condition for quiescent behavior at singularity in $D = d + 1$ dimensions:

$$1 + p_1 - p_d - p_{d-1} > 0 \quad (1)$$

where $p_a =$ generalized Kasner exponents at singularity.

Heuristic: Eq. (1) holds in vacuum only if $D \geq 11 \Rightarrow$

- generic vacuum, $D < 11$ spacetime has oscillatory singularity,
- generic vacuum, $D \geq 11$ spacetime has quiescent singularity

- generic $D = 4$ spacetime with scalar field has quiescent singularity (LA & Rendall, 2001), Fuchsian analysis

- generic $D \geq 11$ vacuum spacetime has quiescent singularity (Damour, Henneaux, Rendall, & Weaver, 2002), Fuchsian analysis
Generalized Kasner spacetimes

Quiescent singularities:

- (Demaret et al., 1985): condition for quiescent behavior at singularity in $D = d + 1$ dimensions:
 \[
 1 + p_1 - p_d - p_{d-1} > 0 \tag{1}
 \]

 where $p_a =$ generalized Kasner exponents at singularity.

- Heuristic: Eq. (1) holds in vacuum only if $D \geq 11 \Rightarrow$
 - generic vacuum, $D < 11$ spacetime has oscillatory singularity,
 - generic vacuum, $D \geq 11$ spacetime has quiescent singularity

- generic $D = 4$ spacetime with scalar field has quiescent singularity (LA & Rendall, 2001), Fuchsian analysis

- generic $D \geq 11$ vacuum spacetime has quiescent singularity (Damour et al., 2002), Fuchsian analysis
Global nonlinear stability in the real analytic category:

Theorem (LA, 2009)

Suppose M^m, N^n stable, integrable with $D = m + n + 1 \geq 11$. Then there is a full-parameter family of C^ω Cauchy data on $M \times N$, such that the maximal Cauchy development (M, g)

- has global CMC time function,
- has quiescent, crushing singularity,
- is future causally complete,
- is asymptotically Friedmann to the future,
- $g(T) \to \gamma^M_\infty + \gamma^N_\infty$, as $T \to \infty$.

This applies to a large variety of factors M, N, and can easily be generalized to multiple factors to give rich future asymptotics.
From α to ω

Global nonlinear stability in the real analytic category:

Theorem (LA, 2009)

Suppose M^m, N^n stable, integrable with $D = m + n + 1 \geq 11$. Then there is a full-parameter family of C^ω Cauchy data on $M \times N$, such that the maximal Cauchy development (M, g)

- has global CMC time function,
- has quiescent, crushing singularity,
- is future causally complete,
- is asymptotically Friedmann to the future,
- $g(T) \to \gamma^M_\infty + \gamma^N_\infty$, as $T \to \infty$.

This applies to a large variety of factors M, N, and can easily be generalized to multiple factors to give rich future asymptotics.
Concluding remarks/Open problems

- Future asymptotics of cosmological models well understood in highly symmetric cases: Friedmann, Bianchi, Gowdy, T^2, $U(1)$ – full 3+1 case mostly open

- Prove nonlinear stability of Milne for Einstein-Vlasov

- Characterize future evolution of inhomogenous Einstein-matter spacetimes close to Friedmann. Which cases are nonlinearly stable?

- Numerical studies of cosmological models in GR beyond LTB/spherical symmetry
Concluding remarks/Open problems

- Future asymptotics of cosmological models well understood in highly symmetric cases: Friedmann, Bianchi, Gowdy, T^2, $U(1)$ – full 3+1 case mostly open

- Prove nonlinear stability of Milne for Einstein-Vlasov

- Characterize future evolution of inhomogenous Einstein-matter spacetimes close to Friedmann. Which cases are nonlinearly stable?

- Numerical studies of cosmological models in GR beyond LTB/spherical symmetry
Concluding remarks/Open problems

- Future asymptotics of cosmological models well understood in highly symmetric cases: Friedmann, Bianchi, Gowdy, T^2, $U(1)$ – full 3+1 case mostly open
- Prove nonlinear stability of Milne for Einstein-Vlasov
- Characterize future evolution of inhomogenous Einstein-matter spacetimes close to Friedmann. Which cases are nonlinearly stable?
- Numerical studies of cosmological models in GR beyond LTB/spherical symmetry
Concluding remarks/Open problems

- Future asymptotics of cosmological models well understood in highly symmetric cases: Friedmann, Bianchi, Gowdy, T^2, $U(1)$ – full 3+1 case mostly open

- Prove nonlinear stability of Milne for Einstein-Vlasov

- Characterize future evolution of inhomogeneous Einstein-matter spacetimes close to Friedmann. Which cases are nonlinearly stable?

- Numerical studies of cosmological models in GR beyond LTB/spherical symmetry
Concluding remarks/Open problems

- Future asymptotics of cosmological models well understood in highly symmetric cases: Friedmann, Bianchi, Gowdy, T^2, $U(1)$ – full 3+1 case mostly open

- Prove nonlinear stability of Milne for Einstein-Vlasov

- Characterize future evolution of inhomogenous Einstein-matter spacetimes close to Friedmann. Which cases are nonlinearly stable?

- Numerical studies of cosmological models in GR beyond LTB/spherical symmetry

Thank You
Anderson, M. T. (2001). On long-time evolution in general relativity and geometrization of 3-manifolds. *Comm. Math. Phys.*, 222(3), 533–567.

Anderson, M. T., & Chruściel, P. T. (2005). Asymptotically simple solutions of the vacuum Einstein equations in even dimensions. *Comm. Math. Phys.*, 260(3), 557–577.

Andersson, L. (2002). Constant mean curvature foliations of flat space-times. *Comm. Anal. Geom.*, 10(5), 1125–1150.

Andersson, L. (2009). Stability of doubly warped product spacetimes. In V. Sidoravicius (Ed.), *New trends in mathematical physics* (p. 23-32). Dordrecht: Springer Netherlands.

Andersson, L., Barbot, T., Beguin, F., & Zeghib, A. (2012). Cosmological time versus CMC time. *Asian J. Math*, 16, 37-88.
References II

Andersson, L., & Galloway, G. J. (2002). dS/CFT and spacetime topology. *Adv. Theor. Math. Phys.*, 6(2), 307–327.

Andersson, L., & Heinzle, J. M. (2006). *Eternal acceleration from M-theory*. hep-th/0602102, to appear ATMP.

Andersson, L., & Moncrief, V. (2004). Future complete vacuum spacetimes. In *The Einstein equations and the large scale behavior of gravitational fields* (pp. 299–330). Basel: Birkhäuser.

Andersson, L., & Moncrief, V. (2011). Einstein spaces as attractors for the Einstein flow. *J. Differential Geom.*, 89(1), 1–47. Retrieved from http://projecteuclid.org/getRecord?id=euclid.jdg
References III

Andersson, L., Moncrief, V., & Tromba, A. J. (1997). On the global evolution problem in $2 + 1$ gravity. *J. Geom. Phys.*, 23(3-4), 191–205.

Andersson, L., & Rendall, A. D. (2001). Quiescent cosmological singularities. *Comm. Math. Phys.*, 218(3), 479–511.

Barbot, T. (2005). Globally hyperbolic flat space-times. *J. Geom. Phys.*, 53(2), 123–165. Retrieved from http://dx.doi.org/10.1016/j.geomphys.2004.05.002

doi: 10.1016/j.geomphys.2004.05.002

Choquet-Bruhat, Y., & Moncrief, V. (2001). Future global in time Einsteinian spacetimes with $U(1)$ isometry group. *Ann. Henri Poincaré*, 2(6), 1007–1064.

Christodoulou, D., & Klainerman, S. (1993). *The global nonlinear stability of the Minkowski space*. Princeton, NJ: Princeton University Press.
Damour, T., Henneaux, M., Rendall, A. D., & Weaver, M. (2002, February). Kasner-Like Behaviour for Subcritical Einstein-Matter Systems. NASA STI/Recon Technical Report N, 2, 87809.

Demaret, J., Henneaux, M., & Spindel, P. (1985). Nonoscillatory behaviour in vacuum Kaluza-Klein cosmologies. Phys. Lett. B, 164(1-3), 27–30.

Fajman, D. (2012).

Fischer, A. E., & Moncrief, V. (2000). Hamiltonian reduction of Einstein’s equations and the geometrization of three-manifolds. In International conference on differential equations, vol. 1, 2 (berlin, 1999) (pp. 279–282). River Edge, NJ: World Sci. Publishing.
References V

Friedrich, H. (1986). On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. *Comm. Math. Phys.*, 107(4), 587–609.

Friedrich, H. (1991). On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations. *J. Differential Geom.*, 34(2), 275–345.

Heinzle, J. M., & Rendall, A. D. (2005). *Power-law inflation in spacetimes without symmetry*. Retrieved from http://www.citebase.org/abstract?id=oai:arXiv.org.

Heinzle, J. M., & Uggla, C. (2006, May). Dynamics of the spatially homogeneous Bianchi type I Einstein Vlasov equations. *Classical and Quantum Gravity*, 23, 3463-3489. doi: 10.1088/0264-9381/23/10/016
Klainerman, S., & Nicolò, F. (2003). Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. *Classical and Quantum Gravity, 20*(14), 3215-3257.

Lindblad, H., & Rodnianski, I. (2005). Global existence for the einstein vacuum equations in wave coordinates. *Communications in Mathematical Physics, 256*, 43. Retrieved from http://www.citebase.org/abstract?id=oai:arXiv.org:

Mess, G. (1990). *Lorentz spacetimes of constant curvature* (Tech. Rep. No. IHES/M/90/28). Institute des Hautes Etudes Scientifiques.

Nungesser, E. (2011, September). Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry. *Journal of Physics Conference Series, 314*(1), 012097. doi:10.1088/1742-6596/314/1/012097
Rendall, A. D. (2006). Mathematical properties of cosmological models with accelerated expansion. In *Analytical and numerical approaches to mathematical relativity* (Vol. 692, pp. 141–155). Berlin: Springer.

Rendall, A. D., & Tod, K. P. (1999, June). Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric. *Classical and Quantum Gravity, 16*, 1705-1726. doi: 10.1088/0264-9381/16/6/305

Ringström, H. (2012). *On the topology and future stability of models of the universe - with an introduction to the Einstein-Vlasov system*. under preparation.

Rodnianski, I., & Speck, J. (2009, November). The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant. *ArXiv e-prints*.
Speck, J. (2011, February). The Nonlinear Future-Stability of the FLRW Family of Solutions to the Euler-Einstein System with a Positive Cosmological Constant. *ArXiv e-prints*.

Speck, J. (2012, January). The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State. *ArXiv e-prints*.

Starobinsky, A. A. (1983). Isotropization of arbitrary cosmological expansion given an effective cosmological constant. *JETP Lett.*, 37, 66-69.