HEIGHT OF VARIETIES OVER FINITELY GENERATED FIELDS

JOSÉ IGNACIO BURGOS GIL, PATRICE PHILIPPON, AND MARTÍN SOMBRA

Abstract. We show that the height of a variety over a finitely generated field of characteristic zero can be written as an integral of local heights over the set of places of the field. This allows us to apply our previous work on toric varieties and extend our combinatorial formulae for the height to compute some arithmetic intersection numbers of non-toric arithmetic varieties over the rational numbers.

Introduction

In [Mor00, Mor01a], Moriwaki introduced a notion of height for cycles over a finitely generated extension of \mathbb{Q}. Using this definition, it was possible to extend several central results about cycles over a number field to cycles over a finitely generated extension of \mathbb{Q}. These results include Northcott’s theorem on the finiteness of cycles with bounded degree and height, the Manin-Mumford and the Bogomolov conjectures, Zhang’s theorem on successive algebraic minima, and the equidistribution properties of Galois orbits of points of small height [Mor00, Mor01a, Mor01b, YZ13].

This notion of height is defined as follows. Let B be an arithmetic variety, that is, a normal flat projective scheme over $\text{Spec} \mathbb{Z}$, of relative dimension b. Set $K = K(B)$ for its function field, which is a finitely generated extension of \mathbb{Q} of transcendence degree b. Let $\mathcal{H}_i, i = 1, \ldots, b$, be a family of nef Hermitian line bundles on B.

Let $\pi : X \to B$ be a dominant morphism of arithmetic varieties and denote by X the fibre of π over the generic point of B, which is a variety over K. Let Y be a prime cycle of X of dimension d. Let \mathcal{Y} be the closure of Y in X and $\mathcal{L}_j, j = 0, \ldots, d$, a family of semipositive Hermitian line bundles on X. Moriwaki defines the height of Y relative to this data as the arithmetic intersection number in the sense of Gillet-Soulé given by

$$h_{\pi^* \mathcal{H}_1, \ldots, \pi^* \mathcal{H}_b, \mathcal{L}_0, \ldots, \mathcal{L}_d}(Y),$$

(0.1)

see [Mor00, Mor01a] for details.

It is well known that this arithmetic intersection number can be written as a sum over the places of \mathbb{Q} of local heights of the fibre of \mathcal{Y} over the generic point of $\text{Spec} \mathbb{Z}$, see for instance [BPS14 § 1.5]. However, for points in a projective space and the canonical metric, Moriwaki showed that this arithmetic intersection number is also equal to an integral of local heights over a measured set of places of K [Mor00 Proposition 3.2.2].

Date: August 15, 2014.

2010 Mathematics Subject Classification. Primary 14G40; Secondary 11G50, 14M25.

Key words and phrases. Metrized line bundle, height of varieties, toric variety, Mahler measure.

Burgos Gil was partially supported by the MICINN research project MTM2010-17389. Philipp-pon was partially supported by the CNRS international project for scientific cooperation (PICS) “Géométrie diophantienne et calcul formel” and the ANR research project “Hautes, modularité, transcendance”. Sombra was partially supported by the MINECO research project MTM2012-38122-C03-02.
In this paper, we extend Moriwaki’s result to a cycle Y of arbitrary dimension and general semipositive metrics, to show that the height of Y is equal to an integral of local heights over this set of places of K (Theorem 2.4).

This allows us to apply our previous work on toric varieties in [BPS14] and extend our combinatorial formulae for the height to some arithmetic intersection numbers of non toric arithmetic varieties. More explicitly, let $X \to B$ be a dominant morphism of arithmetic varieties as above, and such that its generic fibre X is a toric variety over K of dimension n. For simplicity, suppose that $\mathcal{L}_0 = \cdots = \mathcal{L}_n = \mathcal{L}$. The semipositive Hermitian line bundle \mathcal{L} defines a polytope Δ in a linear space of dimension n and, for each place w of K, a concave function $\vartheta_w : \Delta \to \mathbb{R}$ called the w-adic “roof function”, see §3 for details and pointers to the literature. By [BPS14, Theorem 5.1.6], the w-adic local height of X is given by $(n+1)!$ times the integral over Δ of this concave function. Combining this with Theorem 2.4, we derive a formula for the corresponding arithmetic intersection number as an integral of the function $(w, x) \mapsto \vartheta_w(x)$ over the product of the polytope and the set of places of K (Corollary 3.1). Furthermore, we can define a global roof function $\vartheta : \Delta \to \mathbb{R}$ by integrating the local ones over the set of places of K. Then, in this case, the arithmetic intersection number (0.1) is also equal to $(n+1)!$ times the integral of ϑ over the polytope (Corollary 3.4).

As an application, we give in §4 an explicit formula for the case of translates of subtori of a projective space and canonical metrics (Corollary 4.2). The obtained integrals reduce, in some instances, to logarithmic Mahler measures of multivariate polynomials.

Acknowledgements. Part of this work was done while the authors met at the Universitat de Barcelona, the Instituto de Ciencias Matemáticas (Madrid) and the Institut de Mathématiques de Jussieu (Paris).

1. Fields with product formula from arithmetic varieties

In [Gab03, Example 11.22], Gubler observed that, for an arithmetic variety equipped with a family of nef Hermitian line bundles, one can endow its function field with a measured set of places satisfying the product formula. In this section, we explain the details of this construction and, as an example, we explicit it for the projective space and the universal line bundle equipped with the canonical metric. We refer to [BPS14, Chapter 1] and [BMPS12, §3] for the background for this section on metrized line bundles and their associated measures and heights.

Let B be an arithmetic variety, which means that B is a normal flat projective scheme over $\text{Spec}(\mathbb{Z})$. We denote by b the relative dimension of B and by $K = K(B)$ its function field, which is a finitely generated extension of \mathbb{Q} of transcendence degree b. For $i = 1, \ldots, b$, let $\mathcal{H}_i = (H_i, \| \cdot \|_i)$ be a Hermitian line bundle on B, that is, a line bundle \mathcal{H}_i on B equipped with a continuous metric on the complexification $\mathcal{H}_i, \mathbb{C}$ over $B(\mathbb{C})$, invariant under complex conjugation. We will furthermore assume that each \mathcal{H}_i is nef in the sense of [Mor00] § 2 or [BMPS12, Definition 3.18(3)]. This amounts to the conditions:

1. the metric $\| \cdot \|_i$ is semipositive, namely it is the uniform limit of a sequence of smooth semipositive metrics as in [Mai00, Definition 4.5.5] or [BPS14, Definition 1.4.1];
2. the height of every integral one-dimensional subscheme of B with respect to \mathcal{H}_i is nonnegative.

Let $B^{(1)}$ denote the set of hypersurfaces of B, that is, the integral subchemes of B of codimension 1. Let $\mathcal{V} \in B^{(1)}$. By [Zha95, Theorem 1.4(a)] or [Mor00, Proposition 2.3], the hypothesis that the \mathcal{H}_i’s are nef implies that the height of \mathcal{V}
with respect to these Hermitian line bundles, denoted by \(h_{\mathcal{H}_1, \ldots, \mathcal{H}_b}(\mathcal{V}) \), is nonnegative. Hence, we associate to \(\mathcal{V} \) the non-Archimedean absolute value on \(K \) given, for \(\gamma \in K \), by
\[
|\gamma|_\mathcal{V} = e^{-h_{\mathcal{H}_1, \ldots, \mathcal{H}_b}(\mathcal{V})\text{ord}_\mathcal{V}(\gamma)},
\]
where \(\text{ord}_\mathcal{V} \) denotes the discrete valuation associated to the local ring \(\mathcal{O}_{\mathcal{B}, \mathcal{V}} \). We denote by \(\mu_{\text{fin}} \) the counting measure of \(\mathcal{B}^{(1)} \).

We define the set of generic points of \(\mathcal{B}(C) \) as
\[
\mathcal{B}(C)^{\text{gen}} = \mathcal{B}(C) \setminus \bigcup_{\mathcal{V} \in \mathcal{B}^{(1)}} \mathcal{V}(C).
\]
By definition, a point \(p \in \mathcal{B}(C) \) belongs to \(\mathcal{B}(C)^{\text{gen}} \) if and only if, for all \(\gamma \in \mathbb{K}^\times \), this point does not lie in the analytification of the support of \(\text{div}(\gamma) \). Hence \(|\gamma|(p) \) is a well-defined positive real number, and we associate to \(p \) the Archimedean absolute value given, for \(\gamma \in \mathbb{K}^\times \), by
\[
|\gamma|_p = |\gamma(p)|. \tag{1.1}
\]
On \(\mathcal{B}(C) \), we consider the measure
\[
\mu_{\infty} = c_1(\mathcal{H}_1) \wedge \cdots \wedge c_1(\mathcal{H}_b)
\]
asociated to the family of semipositive Hermitian line bundles \(\mathcal{H}_i, i = 1, \ldots, b \), as in \cite{BPS14} Definition 1.4.2. By \cite{CT09} Corollaire 4.2, the measure of each hypersurface of \(\mathcal{B}(C) \) with respect to \(\mu_{\infty} \) is zero. Since the complement of \(\mathcal{B}(C)^{\text{gen}} \) is a countable union of hypersurfaces, it has measure zero. We will denote also by \(\mu_{\infty} \) the induced measure on \(\mathcal{B}(C)^{\text{gen}} \).

Put then
\[
(\mathcal{M}, \mu) = (\mathcal{B}^{(1)}, \mu_{\text{fin}}) \sqcup (\mathcal{B}(C)^{\text{gen}}, \mu_{\infty}). \tag{1.2}
\]
The set \(\mathcal{M} \) is in bijection with a set of absolute values. Moreover, all the non-Archimedean absolute values in this set are associated to a discrete valuation.

Example 1.1. Let \(\mathcal{B} = \mathbb{P}^b_z \) with projective coordinates \((x_0 : \cdots : x_b)\) and \(\mathcal{H}_i = \mathcal{O}(1)^{\text{can}}, i = 1, \ldots, b \), the universal line bundle on \(\mathbb{P}^b_z \) equipped with the canonical metric as in \cite{BPS14} Example 1.4.4. We have that \(\mathbb{K} = K(\mathcal{B}) \simeq \mathbb{Q}(z_1, \ldots, z_b) \), with \(z_i = x_i/x_0 \).

A hypersurface \(\mathcal{V} \) of \(\mathbb{P}^b_z \) corresponds to an irreducible homogeneous polynomial \(P_\mathcal{V} \in \mathbb{Z}[x_0, \ldots, x_b] \). The associated absolute value is given, for \(\gamma \in \mathbb{K}^\times \), by
\[
\log |\gamma|_\mathcal{V} = -\text{ord}_\mathcal{V}(\gamma) \, m(P_\mathcal{V}), \tag{1.3}
\]
where \(m(P_\mathcal{V}) \) is the logarithmic Mahler measure of \(P_\mathcal{V} \). The measure on \((\mathbb{P}^b_z)^{(1)} \) is the counting measure, as usual.

The absolute value associated to a point of \(\mathbb{P}^b_z(\mathcal{B})^{\text{gen}} \) is given by the Archimedean absolute value of the evaluation at this point as in (1.1). Consider the compact subtorus of \(\mathbb{P}^b_z(\mathcal{B}) \) given by
\[
\mathcal{S} = \{(1 : z_1 : \cdots : z_b) \in \mathbb{P}^b_z(\mathcal{B}) | |z_i| = 1 \text{ for all } i \} \simeq (S^1)^b
\]
In this case, the measure \(\mu_{\infty} \) is the restriction to \(\mathbb{P}^b_z(\mathcal{B})^{\text{gen}} \) of the current
\[
\frac{1}{(2\pi i)^b} \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_b}{z_b} \wedge \delta_z,
\]
namely, the Haar probability measure on \(\mathcal{S} \).

A function on a measured space is integrable (also called summable) if its integral is a well-defined real number.
Proposition 1.2. For each \(\gamma \in \mathbb{K}^\times \), the function \(\mathfrak{M} \to \mathbb{R} \) given by \(w \mapsto \log |\gamma|_w \) is \(\mu \)-integrable. Furthermore, the “product formula”

\[
\int_{\mathfrak{M}} \log |\gamma|_w \ d\mu(w) = 0 \tag{1.4}
\]

holds.

Proof. Given \(\gamma \in \mathbb{K}^\times \), the set of hypersurfaces \(\mathcal{V} \) such that \(|\gamma|_V \neq 1 \) is contained in the set of components of the support of \(\text{div}(\gamma) \), when \(\gamma \) is viewed as a rational function on \(\mathcal{B} \). Hence this set is finite, and so the function on \(\mathcal{B}^{(1)} \) given by \(\mathcal{V} \mapsto \log |\gamma|_V \) is \(\mu_{\text{fin}} \)-integrable. Moreover, by [CT09, Théorème 1.4], the function on \(\mathcal{B}(\mathbb{C})^{\text{gen}} \) given by \(p \mapsto \log |\gamma(p)| \) is \(\mu_\infty \)-integrable. Summing up, \(\log |\gamma|_w \) is \(\mu \)-integrable, which proves the first statement.

For the second one, let \(\mathcal{O} \) be the trivial metrized line bundle on \(\mathcal{B} \). Then

\[
\int_{\mathfrak{M}} \log |\gamma|_w \ d\mu(w) = \sum_{\mathcal{V} \in \mathcal{B}^{(1)}} -\text{ord}_\mathcal{V}(\gamma) \log h_{\mathcal{V}_1,\ldots,\mathcal{V}_s}(\mathcal{V}) + \int_{\mathcal{B}(\mathbb{C})} \log |\gamma(p)| \ d\mu_\infty(p)
\]

by the arithmetic Bézout formula, see for instance [BCS91 (3.2.2)] for the smooth case or [CT09, Théorème 1.4] for an adelic version in the general case. From the multilinearity of the height, it follows that \(h_{\mathcal{V}_1,\ldots,\mathcal{V}_s}(\mathcal{B}) = 0 \), which concludes the proof. \(\square \)

Definition 1.3. Given \(\gamma = (\gamma_0,\ldots,\gamma_n) \in \mathbb{K}^{n+1} \setminus \{0\} \), the size of \(\gamma \) with respect to \((\mathbb{K}, \mathfrak{M}, \mu) \) is defined as

\[
t_{\mathbb{K},\mathfrak{M},\mu}(\gamma) = \int_{\mathfrak{M}} \log \max(|\gamma_0|_w,\ldots,|\gamma_n|_w) \ d\mu(w). \tag{1.5}
\]

Example 1.4. Let \(\mathbb{K} \simeq \mathbb{Q}(z_1,\ldots,z_b) \) with the measured set of places \((\mathfrak{M}, \mu) \) as described in Example 1.1. Let \(\gamma \in \mathbb{K}^\times \) given in reduced representation as \(\gamma = \alpha/\beta \) with coprime \(\alpha, \beta \in \mathbb{Z}[z_1,\ldots,z_b] \). Using the product formula (1.3), the size of \(\gamma \) can be given in this case by

\[
t_{\mathbb{K},\mathfrak{M},\mu}(\gamma) = \int_{\mathfrak{M}} \log \max(|\alpha|_v,|\beta|_v) \ d\mu(v)
\]

Since \(\alpha \) and \(\beta \) are coprime, the contribution of the integral over the places of \((\mathbb{P}_b^1)^{(1)} \) is zero. Hence,

\[
t_{\mathbb{K},\mathfrak{M},\mu}(\gamma) = \frac{1}{(2\pi i)^b} \int_{(S^1)^b} \log \max(|\alpha(z)|,|\beta(z)|) \frac{dz_1}{z_1} \cdots \frac{dz_b}{z_b}. \tag{1.6}
\]

Using Jensen’s formula, this size can be alternatively written as the logarithmic Mahler measure of the polynomial

\[
P_\gamma = \alpha(z_1,\ldots,z_b)t_1 - \beta(z_1,\ldots,z_b) \in \mathbb{Z}[t_1,z_1,\ldots,z_b], \tag{1.7}
\]

where \(t_1 \) denotes an additional variable. The difference between this size and the logarithm of the maximum of the absolute values of the coefficients of \(\alpha \) and \(\beta \) can be bounded by the maximum of their degrees times a constant depending only on \(b \).

2. Relative arithmetic varieties

In this section we prove our main result (Theorem 2.4), showing that the height of a cycle over the finitely generated extension \(\mathbb{K} \) can be written as an integral of the local heights of this cycle over the measured set of places \((\mathfrak{M}, \mu) \).

Let \(\pi: \mathcal{X} \to \mathcal{B} \) be a dominant morphism of arithmetic varieties of relative dimension \(n \geq 0 \) and \(\mathcal{L} \) a Hermitian line bundle on \(\mathcal{X} \). We denote by \(X \) the fibre of \(\pi \) over the generic point of \(\mathcal{B} \). This is a variety over \(\mathbb{K} \) of dimension \(n \), and the line
bundle L induces a line bundle on X, denoted by L. There is a collection of metrics on the analytifications of L for each absolute value of \mathcal{M}, that we now describe.

For each $\mathcal{V} \in B^{11}$, the local ring $\mathcal{O}_{B,\mathcal{V}}$ is a discrete valuation ring with field of fractions \mathbb{K}. The scheme \mathcal{X} and the line bundle L induce a projective model over $\text{Spec}(\mathcal{O}_{B,\mathcal{V}})$, denoted $(\mathcal{X}_{\mathcal{V}}, L_{\mathcal{V}})$, of the pair (X, L). Following Zhang, the model $(\mathcal{X}_{\mathcal{V}}, L_{\mathcal{V}})$ induces a metric on the analytification $L_{\mathcal{V}}^{an}$ over $X_{\mathcal{V}}^{an}$, see [Zha05] or [BPS14] Definition 1.3.5 for details.

The map π also induces a map of complex analytic spaces $\mathcal{X}(\mathbb{C}) \to B(\mathbb{C})$, that we also denote by π. A point $p \in B(\mathbb{C})^{an}$ induces an Archimedean absolute value $| \cdot |_p$ on \mathbb{K} and the analytification of the variety X with respect to $| \cdot |_p$ can be identified with the fibre $\pi^{-1}(p) \subset \mathcal{X}(\mathbb{C})$, with its structure of real analytic space when the point p is real. The analytification of the line bundle L on X with respect to $| \cdot |_p$ can also be identified with the restriction of $L_{\mathcal{C}}$ to $\pi^{-1}(p)$. Then the metric on $L_{\mathcal{V}}^{an}$ is defined as the restriction of the metric on $L_{\mathcal{C}}$ to this fibre. We then denote

$$\overline{\mathcal{L}} = (L, (\| \cdot \|_w)_{w \in \mathcal{M}})$$

the obtained \mathcal{M}-metrized line bundle on X.

Let Y be a d-dimensional cycle on X and $\overline{\mathcal{L}}_i$, $i = 0, \ldots, d$, \mathcal{M}-metrized line bundles on X as in (2.1). We assume that each $\overline{\mathcal{L}}_i$ is constructed from a DSP Hermitian line bundle \mathcal{L}_i on X. Recall that a DSP Hermitian line bundle on X is the quotient of two semipositive ones as in [BPS14] Definition 1.4.1.

Given a collection of nonzero rational sections s_i of \mathcal{L}_i, $i = 0, \ldots, d$, intersecting properly on Y and $w \in \mathcal{M}$, we denote by

$$h_{(\mathcal{L}_i, (\| \cdot \|_{w_i})_{i \in \mathbb{Z}})}(Y; s_0, \ldots, s_d)$$

the local height of Y with respect to w-adic metrized line bundles $(\mathcal{L}_i, (\| \cdot \|_{w_i}))$, $i = 0, \ldots, d$, as defined in [BPS14] Definition 1.4.11. We will show in Theorem 2.3 below that the function $\mathcal{M} \to \mathbb{R}$ given, for $w \in \mathcal{M}$, by

$$w \mapsto h_{(\mathcal{L}_0, (\| \cdot \|_{w_0}), \ldots, (\mathcal{L}_d, (\| \cdot \|_{w_d}))}(Y; s_0, \ldots, s_d)$$

is μ-integrable.

Definition 2.1. With notation as above, the **global height** of Y with respect to the \mathcal{M}-metrized line bundles $\overline{\mathcal{L}}_i$, $i = 0, \ldots, d$, is defined as the integral of the function in (2.2), that is

$$h_{\overline{\mathcal{L}}_0 \ldots \overline{\mathcal{L}}_d}(Y) = \int_{\mathcal{M}} h_{(\mathcal{L}_0, (\| \cdot \|_{w_0}), \ldots, (\mathcal{L}_d, (\| \cdot \|_{w_d}))}(Y; s_0, \ldots, s_d) \, d\mu(w).$$

Thanks to the product formula, this notion does not depend on the choice of the sections s_i.

Example 2.2. Let \mathcal{B} be an arithmetic variety as above and $(\mathbb{K}, \mathcal{M}, \mu)$ the associated finitely generated field and measured set of places. Let

$$\mathcal{X} = P^d_{\mathcal{K}} \simeq \mathcal{B} \times P^d_{\mathbb{Q}}$$

and

$$\overline{\mathcal{L}} = \overline{\mathcal{X}} = \mathcal{L} = \mathcal{X} \text{ of } \mathbb{P}^d_{\mathbb{Q}}(1),$$

where $\overline{\mathcal{X}}$ denotes the projection $\mathcal{B} \times P^d_{\mathcal{K}} \to P^d_{\mathbb{Q}}$. Hence $X = P^d_{\mathcal{K}}$ and $\overline{\mathcal{L}} = \mathcal{L} \to \mathbb{P}^d_{\mathbb{Q}}(1)$. For a point $p = (\gamma_0 : \cdots : \gamma_n) \in X(K) = P^d_{\mathcal{K}}(K)$, we have

$$h_{\overline{\mathcal{L}}}(p) = t_{\mathbb{K}, \mathcal{M}, \mu}(\gamma),$$

where $t_{\mathbb{K}, \mathcal{M}, \mu}(\gamma)$ denotes the size of the vector $\gamma = (\gamma_0, \ldots, \gamma_n)$ as in [EM2]. This is the “naive height” in [Mor00] § 3.2.

The following projection formula for heights of schemes over Spec(\mathbb{Z}) generalizes [Mor00] Proposition 1.3(2)].
Proposition 2.3. Let $\pi: W \to V$ be a morphism between two finitely generated schemes over $\text{Spec}(\mathbb{Z})$ of relative dimensions $d + b - 1$ and $b - 1$, respectively, with $b, d \geq 0$. Let $\bar{\pi}_j$, $i = 1, \ldots, d$, and $\bar{\pi}_j$, $j = 1, \ldots, b$, be DSP Hermitian line bundles on W and V, respectively. Then

$$h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(V) = \deg_{\mathcal{L}_1, \ldots, \mathcal{L}_d}(W) h_{\pi^* \mathcal{L}_1, \ldots, \pi^* \mathcal{L}_d}(V),$$

where \mathcal{W}_i denotes the fibre of \mathcal{W} over the generic point η of V. In particular, if π is not dominant, then $h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(W) = 0$.

Proof. By linearity, we can reduce to the case when the \mathcal{L}_i's are ample and the metrics are semipositive. By continuity, we can also reduce to the case when the metrics in $\bar{\mathcal{L}}_j$ and $\bar{\mathcal{P}}_j$ are smooth for all i, j.

We proceed by induction on d. The case $d = 0$ is given by [Mor00 Proposition 1.3(2)] in the case when π is dominant and by [BPS14 Theorem 1.5.11(2)] in the general case. Let $d \geq 1$ and choose a nonzero rational section s_d of \mathcal{L}_d. Let $|| \cdot ||_d$ denote the metric of $\bar{\mathcal{L}}_d$. By the arithmetic Bézout formula,

$$h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(W) = h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(\text{div}(s_d)) \quad (2.4)$$

Since $\dim(V(\mathbb{C})) = d - 1$, we have that $\bigwedge_{i=1}^b c_1(\bar{\mathcal{L}}_i) = 0$. Hence, the measure in the integral in the right-hand side of (2.4) is zero, and so this integral is zero too. Decompose the divisor of s_d into its horizontal and vertical components over $\text{Spec}(\mathbb{Z})$ as

$$\text{div}(s_d) = \text{div}(s_d)_{\text{hor}} + \text{div}(s_d)_{\text{vert}}.$$

Write $\text{div}(s_d)_{\text{vert}} = \sum_{p \in \text{Spec}(\mathbb{Z})} Z_p$ as a finite sum of schemes over the primes. We have that $\deg_{\pi^* \mathcal{L}_1, \ldots, \pi^* \mathcal{L}_d}(Z_p) = 0$ because $\dim(\pi(\text{div}(s_d)_{\text{vert}})) \leq d - 1$. It follows that

$$h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(\text{div}(s_d)_{\text{vert}}) = \sum_{p \in \text{Spec}(\mathbb{Z})} \log(p) \deg_{\pi^* \mathcal{L}_1, \ldots, \pi^* \mathcal{L}_d}(Z_p) = 0.$$

By the inductive hypothesis,

$$h_{\pi^* \bar{\pi}_1, \ldots, \pi^* \bar{\pi}_d}(\text{div}(s_d)_{\text{hor}}) = \deg_{\mathcal{L}_1, \ldots, \mathcal{L}_d}(\text{div}(s_d)_{\text{hor}}) h_{\pi^* \mathcal{L}_1, \ldots, \pi^* \mathcal{L}_d}(V).$$

Since $\deg_{\mathcal{L}_1, \ldots, \mathcal{L}_d}(\text{div}(s_d)_{\text{hor}}) = \deg_{\mathcal{L}_1, \ldots, \mathcal{L}_d}(\mathcal{W}_i)$, we obtain the result. \qed

Theorem 2.4. Let \mathcal{B} be an arithmetic variety of relative dimension b and $\bar{\mathcal{P}}_i$, $i = 1, \ldots, b$, nef Hermitian line bundles on \mathcal{B}. Let $K = K(\mathcal{B})$ be the function field of \mathcal{B} and $\{\mathfrak{M}, \mu\}$ the associated measured set of places as in [12].

Let $\pi: \mathcal{X} \to \mathcal{B}$ be a dominant morphism of arithmetic varieties and \mathcal{X} the fibre of π over the generic point of \mathcal{B}. Let Y be a prime cycle of \mathcal{X} of dimension d and Y its closure in \mathcal{X}. Let $\bar{\mathcal{Y}}_j$, $j = 0, \ldots, d$, be DSP Hermitian line bundles on \mathcal{X} and $\bar{\mathcal{P}}_j$, $j = 0, \ldots, d$, the associated \mathfrak{M}-metrized line bundles as in [24]. Let s_0, \ldots, s_d be rational sections of $\mathcal{L}_0, \ldots, \mathcal{L}_d$ respectively, intersecting properly on Y. Then the function $\mathfrak{M} \to \mathbb{R}$, given by $w \mapsto h_{L_0, ||w||_0, \ldots, L_d, ||w||_d}(Y; s_0, \ldots, s_d)$

is μ-integrable. Moreover,

$$h_{L_0, \ldots, L_d}(Y) = h_{\pi^* \bar{\mathcal{L}}_1, \ldots, \pi^* \bar{\mathcal{L}}_d}(Y).$$

(2.5)
In other words, the integral of the function ρ coincides with the height of Y as defined in \(1.1\).

Proof. By linearity, we reduce to the case when the line bundles L_j are ample and their metrics are semipositive.

We proceed by induction on the dimension of Y. If $\dim(Y) = -1$, then $Y = \emptyset$ and so the local heights of Y are zero. Hence, these local heights are μ-integrable and, by Proposition 1.3, the equality in \(2.0\) is reduced to $0 = 0$.

We now assume that $\dim(Y) = d \geq 0$. In this case, the restriction $\pi|_{\mathcal{Y}}: \mathcal{Y} \to \mathcal{B}$ is dominant. Since the height does not change by normalization, by restricting objects to \mathcal{Y} and pulling back to its normalization, we may assume in the computations that follow that $d = n := \dim(X)$, $\mathcal{Y} = \mathcal{X}$ and $Y = X$.

Let s_0, \ldots, s_n be global sections of L_0, \ldots, L_n respectively, that meet properly on \mathcal{X}, and denote by $\rho: \mathfrak{M} \to \mathbb{R}$ the local height function in \(2.5\). We have to show that this function is μ-integrable and that

$$
\int_{\mathfrak{M}} \rho(w) \, d\mu(w) = h_{\pi^*\bar{\pi}_1, \ldots, \bar{\pi}_n, \bar{x}_0, \ldots, \bar{x}_n}(\mathcal{X}).
$$

For each $w \in \mathfrak{M}$, by the definition of local heights in \(1.14\) Definition 1.4.11], we can write $\rho_1(w) = \rho_1(w) - \rho_2(w)$ with

$$
\rho_1(w) = h_{(L_n, \|0\cdot w\|), \ldots, (L_{n-1}, \|0\cdot w\|)}(\text{div}(s_n); s_0, \ldots, s_{n-1}),
$$

$$
\rho_2(w) = \int_{\mathfrak{M}} \log ||s_n||_{w} \prod_{j=0}^{n-1} c_1(L_j, ||j\cdot w||).
$$

We decompose the cycle $\text{div}(s_n)$ as

$$
\text{div}(s_n) = \text{div}(s_n)_{\text{hor}/\mathcal{B}} + \text{div}(s_n)_{\text{vert}/\mathcal{B}},
$$

where $\text{div}(s_n)_{\text{hor}/\mathcal{B}}$ contains all the components that are dominant over \mathcal{B} and $\text{div}(s_n)_{\text{vert}/\mathcal{B}}$ contains the remaining ones. Clearly, $\text{div}(s_n)_{\text{hor}/\mathcal{B}}$ is the closure of $\text{div}(s_n) \cdot X$, and $\text{div}(s_n)_{\text{vert}/\mathcal{B}}$ contains all the components of $\text{div}(s_n)$ that do not meet X.

By the inductive hypothesis, the function $w \mapsto \rho_1(w)$ is μ-integrable and

$$
\int_{\mathfrak{M}} \rho_1(w) \, d\mu(w) = h_{\pi^*\bar{\pi}_1, \ldots, \bar{\pi}_n, \bar{x}_0, \ldots, \bar{x}_n}(\text{div}(s_n)_{\text{hor}/\mathcal{B}}).
$$

Let now $w = \mathcal{V} \in B^{(1)}$. The local ring $\mathcal{O}_{\mathcal{V}, \mathcal{V}}$ is a discrete valuation ring. The scheme \mathcal{X} and the line bundle L_1 induce models $\mathcal{X}_\mathcal{V}$ and $L_{1, \mathcal{V}}$ over Spec($\mathcal{O}_{\mathcal{V}, \mathcal{V}}$) of X and L_1. Each component of the special fibre of $X_\mathcal{V}$ is the localization $\mathcal{W}_\mathcal{V}$ of a hypersurface $\mathcal{W} \in \mathcal{X}^{(1)}$ with $\pi(\mathcal{W}) = \mathcal{V}$. Since the metric over w is an algebraic metric coming from a model, by \(1.3.6\) and Remark 1.4.14],

$$
\rho_2(\mathcal{V}) = - \sum_{\mathcal{W} \in \mathcal{X}^{(1)}} h_{\pi_1, \ldots, \pi_n}(\mathcal{V}) \text{ord}_{\mathcal{W}}(s_n) \deg_{\mathcal{L}_0, \ldots, \mathcal{L}_{n-1}}(\mathcal{W}_\mathcal{V}).
$$

Since the number of components of $\text{div}(s_n)$ is finite, we deduce from \(2.8\) that there is only a finite number of $w \in B^{(1)}$ with $\rho_2(\mathcal{V}) \neq 0$. Thus ρ_2 is integrable on $B^{(1)}$ with respect to the counting measure μ_{fin} as in \(1.2\). By Proposition 1.3,

$$
h_{\pi^*\bar{\pi}_1, \ldots, \bar{\pi}_n}(\text{div}(s_n)_{\text{hor}/\mathcal{B}}) = h_{\pi^*\bar{\pi}_1, \ldots, \bar{\pi}_n, \bar{x}_0, \ldots, \bar{x}_n}(\mathcal{V}).
$$

The same result implies that, if $\dim(\pi(\mathcal{W})) \leq b - 1$, then

$$
h_{\pi^*\bar{\pi}_1, \ldots, \bar{\pi}_n, \bar{x}_0, \ldots, \bar{x}_n}(\mathcal{W}) = 0.
$$
Since
\[
\text{div}(s_n)_{\text{vert}/B} = \sum_{\mathcal{W} \in \mathcal{X}^{(1)}} \text{ord}_W(s_n)W
\]
\[
= \sum_{V \in \mathcal{B}^{(1)}} \sum_{\mathcal{W} \in \mathcal{X}^{(1)}} \text{ord}_W(s_n)W + \sum_{W \in \mathcal{X}^{(1)}} \text{ord}_W(s_n)W,
\]
it follows from (2.8) that
\[
\int_{\mathcal{B}^{(1)}} \rho_2(w) \, d\mu_{\text{fin}}(w) = \sum_{V \in \mathcal{B}^{(1)}} \rho_2(V)
\]
\[
= - \sum_{V \in \mathcal{B}^{(1)}} \sum_{\mathcal{W} \in \mathcal{X}^{(1)}} \text{ord}_W(s_n) h_{\pi^* \mathcal{F}_1 \ldots, \ldots, \pi^* \mathcal{F}_b, 0, \ldots, 0}(W)
\]
\[
= - h_{\pi^* \mathcal{F}_1 \ldots, \ldots, \pi^* \mathcal{F}_b, 0, \ldots, 0}(\text{div}(s_n)_{\text{vert}/B}). \quad (2.9)
\]

We next consider the places associated to the points \(p \in \mathcal{B}(\mathbb{C})^{\text{gen}} \). In this case, by the definition of \(\rho_2 \), we have that
\[
\rho_2(p) = \int_{\pi^{-1}(p)} \log \|s_n\|_n \bigg(\bigwedge_{j=0}^{n-1} c_1(L_j) |_{\pi^{-1}(p)} \bigg),
\]
where \(\pi \) denotes the projection \(\mathcal{X} \to \mathcal{B} \) and \(\| \cdot \|_n \) denotes the metric in \(\mathcal{L}_n \). We have to show that \(\rho_2 \) is \(\mu_\infty \)-integrable with \(\mu_\infty = \bigwedge_{i=1}^b c_1(\mathcal{H}_i) \) and that
\[
\int_{\mathcal{B}(\mathbb{C})^{\text{gen}}} \rho_2(p) \, d\mu_{\infty}(p) = \int_{\mathcal{X}(\mathbb{C})} \log \|s_n\|_n \bigg(\bigwedge_{j=0}^{n-1} c_1(\mathcal{L}_j) \bigwedge \bigwedge_{i=1}^b c_1(\pi^* \mathcal{H}_i) \bigg). \quad (2.10)
\]

When the metrics on \(\mathcal{L}_j, j = 0, \ldots, n - 1 \), and \(\mathcal{H}_i, i = 1, \ldots, b \), are smooth and semipositive, the generalized Fubini's theorem in [Dem97, Chapter I, (2.15)], shows that \(\rho_2 \) is \(\mu_\infty \)-integrable and that the equality (2.10) holds.

We next assume that, for each \(j = 0, \ldots, n \), the metric on the line bundle \(L_j \) is smooth, but that the metric on \(\mathcal{H}_i, i = 1, \ldots, b \), is not necessarily smooth. By definition, there is a sequence of smooth semipositive metrics \(\| \cdot \|_{i,k} \) on \(\mathcal{H}_i \), that converge to \(\| \cdot \|_i \). We denote \(\mathcal{H}_{i,k} = (\mathcal{H}_i, \| \cdot \|_{i,k}) \) and we let \(\mu_{\infty,k} \) be the measure associated to the differential form
\[
c_1(\mathcal{H}_{1,k}) \wedge \cdots \wedge c_1(\mathcal{H}_{b,k}).
\]

By [CT09, Théorème 4.1], the measures \(\mu_{\infty,k} \) converge weakly to \(\mu_\infty \). By the same result, even if \(\log \|s_n\|_n \) is not bounded, the equality
\[
\lim_{k \to \infty} \int_{\mathcal{X}(\mathbb{C})} \log \|s_n\|_n \bigg(\bigwedge_{j=0}^{n-1} c_1(L_j) \bigwedge \bigwedge_{i=1}^b c_1(\pi^* \mathcal{H}_{i,k}) \bigg)
\]
\[
= \int_{\mathcal{X}(\mathbb{C})} \log \|s_n\|_n \bigg(\bigwedge_{j=0}^{n-1} c_1(L_j) \bigwedge \bigwedge_{i=1}^b c_1(\pi^* \mathcal{H}_i) \bigg) \quad (2.11)
\]
still holds. To prove (2.10) in this case, we need to show that
\[
\lim_{k \to \infty} \int_{\mathcal{B}(\mathbb{C})^{\text{gen}}} \rho_2(p) \, d\mu_{\infty,k}(p) = \int_{\mathcal{B}(\mathbb{C})^{\text{gen}}} \rho_2(p) \, d\mu_{\infty}(p).
\]
Since \(\rho_2 \) is not necessarily bounded nor it is of the form \(\log \|s\| \), we can not apply directly [CT09, Théorème 4.1]. The strategy now is to obtain suitable bounds for
the function \(\rho_2 \). To this end, we write

\[
\text{div}(s_n) = H + \pi^*B - E
\]

with \(H \) an effective Cartier divisor on \(X \) that only contains components that are horizontal over \(B \), \(B \) an effective Cartier divisor on \(B \), and \(E \) an effective Cartier divisor on \(X \). We choose sections \(s_H, s_B \) and \(s_E \) and metrics \(\| \cdot \|_H \), \(\| \cdot \|_B \) and \(\| \cdot \|_E \) on \(\mathcal{O}(H) \), \(\mathcal{O}(B) \) and \(\mathcal{O}(E) \) respectively, such that

\[
\log \|s_n\|_n = \log \|s_H\|_H + \pi^* \log \|s_B\|_B - \log \|s_E\|_E.
\]

We define the function \(\rho_H : B(C) \to \mathbb{R} \) as

\[
\rho_H(p) = \int_{\pi^{-1}(p)} \log \|s_H\|_H \bigwedge_{j=0}^{n-1} c_1(\mathcal{L}_j, \mathbb{C}|_{\pi^{-1}(p)}),
\]

and we define similarly the function \(\rho_E \). Since \(\text{div}(s_n) \) and \(E \) are effective, both \(\log \| s_n \|_n \) and \(\log \| s_E \|_E \) are bounded above. Since the metric on \(\mathcal{L}_j, \mathbb{C}, j = 0, \ldots, n-1 \) is semipositive, we can find a constant \(\kappa_1 \) such that

\[
\sup_p (\max(\rho_2(p), \rho_E(p))) \leq \kappa_1.
\]

Using [RG71, Theorem 5.2.2], we can construct a diagram of arithmetic varieties

\[
\begin{array}{ccc}
X' & \xrightarrow{\zeta} & X \\
\pi' \downarrow & & \downarrow \pi \\
B' & \xrightarrow{\theta} & B
\end{array}
\]

such that the horizontal arrows \(\zeta \) and \(\theta \) are birational and \(\pi' : X' \to X \) is flat, see [HO14, Lemma 4.4] for details. Hence, the fibres of the map \(\pi' : X'(C) \to X(C) \) have constant dimension. Applying [SG67, Theorem 4.9] to this map and the function \(\log \| s_{*H} \|_{*H} \), we deduce that the fibre integral \(\rho_{*H} \) can be extended to a continuous function on the whole \(B'(C) \). Thus \(\rho_{*H} = \theta^* \rho_H \) is bounded on \(B'(C) \) and, a fortiori, \(\rho_H \) is bounded on \(B(C) \). Therefore this latter function is \(\mu_\infty \)-integrable and, by weak convergence of measures,

\[
\lim_{k \to \infty} \int_{B(C)} \rho_H(p) \, d\mu_{\infty,k}(p) = \int_{B(C)} \rho_H(p) \, d\mu_\infty(p). \quad (2.12)
\]

We turn our attention to \(s_B \). We have

\[
\int_{\pi^{-1}(p)} \pi^* \log \| s_B \|_B \bigwedge_{j=0}^{n-1} c_1(\mathcal{L}_j, \mathbb{C}|_{\pi^{-1}(p)}) = \log \| s_B(p) \|_B \int_{\pi^{-1}(p)} \bigwedge_{j=0}^{n-1} c_1(\mathcal{L}_j, \mathbb{C}|_{\pi^{-1}(p)}),
\]

and so the integral on the right hand side is a constant \(\kappa_2 \) independent of \(p \). Indeed, it is the degree of \(X \) with respect to \(L_0, \ldots, L_{n-1} \). Again by [CT09, Théorème 4.1], \(\kappa_2 \log \| s_B \|_B \) is \(\mu_\infty \)-integrable and

\[
\lim_{k \to \infty} \int_{B(C)} \kappa_2 \log \| s_B(p) \|_B \, d\mu_{\infty,k}(p) = \int_{B(C)} \kappa_2 \log \| s_B(p) \|_B \, d\mu_\infty(p). \quad (2.13)
\]

Summing up, we have

\[
\rho_H + \kappa_2 \log \| s_B \|_B \leq \rho_2 \leq \kappa_1.
\]

Since both the upper and lower bound are \(\mu_\infty \)-integrable, we can apply [CT09, Lemme 6.3] to conclude that \(\rho_2 \) is \(\mu_\infty \)-integrable and, by (2.13) and (2.12), that

\[
\lim_{k \to \infty} \int_{B(C)} \rho_2(p) \, d\mu_{\infty,k}(p) = \int_{B(C)} \rho_2(p) \, d\mu_\infty(p).
\]
This last equality together with (2.11) and (2.10) for smooth metrics, imply that the equality (2.10) also holds when the metrics on \mathcal{H}_i are not necessarily smooth.

We now assume that the metrics on \mathcal{L}_j and \mathcal{H}_i are not necessarily smooth, and choose sequences of smooth semipositive metrics $\| \cdot \|_{j,k} \geq 0$ on \mathcal{L}_j that converge to $\| \cdot \|_j$. We write

$$
\rho_{2,k}(p) = \int_{\pi^{-1}(p)} \log \| s_n(p) \|_{n,k} \left(\sum_{j=0}^{n-1} c_1(\mathcal{L}_{j,k}) \right).
$$

Using standard techniques, it is easy to see that the sequence $(\rho_{2,k})_{k \geq 0}$ converges uniformly to ρ_2. Since the measure μ_{∞} has finite total mass and, by the previous case, the functions $\rho_{2,k}$ are μ_{∞}-integrable, we deduce that ρ_2 is μ_{∞}-integrable and that

$$
\lim_{k \to \infty} \int_{\mathcal{B}(\mathcal{C})} \rho_{2,k}(p) \, d\mu_{\infty}(p) = \int_{\mathcal{B}(\mathcal{C})} \rho_2(p) \, d\mu_{\infty}(p).
$$

Therefore, using (2.10) for the functions $\rho_{2,k}$ and (CT09, Théorème 4.1), we deduce that (2.10) also holds in the case when all the metrics are semipositive.

In consequence, we deduce that $\rho = \rho_1 - \rho_2$ is μ-integrable and, using (2.9), (2.10), the arithmetic Bézout theorem and the inductive hypothesis,

$$
\int_{\mathcal{M}} \rho(w) \, d\mu(w) = h_{\pi^*\overline{\mathcal{L}}_1,\ldots,\pi^*\overline{\mathcal{L}}_b,\ldots,\overline{\mathcal{L}}_n}(\text{div}(s_n)_{\text{hor}}/B) + h_{\pi^*\overline{\mathcal{L}}_1,\ldots,\pi^*\overline{\mathcal{L}}_b,\ldots,\overline{\mathcal{L}}_n}(\text{div}(s_n)_{\text{vert}}/B) - \int_{X(\mathcal{C})} \log \| s_n \|_n \left(\sum_{j=0}^{n-1} c_1(\mathcal{L}_j) \right) \wedge \left(\bigwedge_{i=1}^{b} c_1(\mathcal{L}_i) \right) = h_{\pi^*\overline{\mathcal{L}}_1,\ldots,\pi^*\overline{\mathcal{L}}_b,\ldots,\overline{\mathcal{L}}_n}(X),
$$

which concludes the proof.

Example 2.5. Let $\mathbb{K} \simeq \mathbb{Q}(z_1,\ldots,z_b)$ with the measured set of places (\mathcal{M}, μ) as in Examples 1.1 and 1.3. Let

$$
\mathcal{X} = \mathbb{P}^1_2 \times \mathbb{P}^1_2 \quad \text{and} \quad \overline{\mathcal{L}} = \pi^*\overline{\mathcal{L}}(1)^{\text{an}},
$$

where π denotes the projection $\mathbb{P}^1_2 \times \mathbb{P}^1_2 \rightarrow \mathbb{P}^1_2$, and let $\overline{\mathcal{L}} = \overline{\mathcal{L}}(1)^{\text{an}}$ denote the canonical \mathcal{M}-metrized line bundle structure on the universal line bundle of \mathbb{P}^1_2 as in Example 2.2.

Let $(1 : \gamma) \in \mathbb{P}^1_2(\mathbb{K})$ with $\gamma \in \mathbb{K}^\times$. The closure \mathcal{Y} of this point in \mathcal{X} is the hypersurface defined by the bihomogenization of the polynomial P_γ in (1.7). In this case, Theorem 2.3 together with (2.3) and (1.6) gives

$$
h_{\pi^*\overline{\mathcal{L}}_1,\ldots,\pi^*\overline{\mathcal{L}}_b,\overline{\mathcal{L}}}(\mathcal{Y}) = h_{\overline{\mathcal{L}}}(1 : \gamma) = t_{\mathcal{K},\mathcal{M},\mu}(\gamma) = m(P_\gamma),
$$

where $m(P_\gamma)$ denotes the logarithmic Mahler measure of P_γ.

3. Height of toric varieties over finitely generated fields

Using our previous work on toric varieties in [BPS14], we can give a “combinatorial” formula for the mixed height of a toric variety with respect to a family of \mathcal{M}-metrized line bundles. As a consequence of Theorem 2.3, this formula also expresses an arithmetic intersection number, in the sense of Gillet-Soulé, of a non toric arithmetic variety.

Let \mathcal{B} be an arithmetic variety of relative dimension b and $\overline{\mathcal{H}}_i = (\mathcal{H}_i, \| \cdot \|_i)$, $i = 1,\ldots,b$, a family of nef Hermitian line bundles on \mathcal{B}, as at the beginning of §1. Let $\mathcal{K} = K(\mathcal{B})$ and (\mathcal{M}, μ) the associated set of places of \mathcal{K} as in (1.2).
Let $T \simeq G_m^n$ be a split torus of dimension n over K. Let $N = \text{Hom}(G_m, T)$ be the lattice of cocharacters of T, $M = \text{Hom}(T, G_m) = N^\vee$ the lattice of characters, and set $N_\mathbb{R} = N \otimes \mathbb{R}$ and $M_\mathbb{R} = M \otimes \mathbb{R}$.

Let X be a proper toric variety over K with torus T, described by a complete fan Σ on $N_\mathbb{R}$. A toric divisor on X is a Cartier divisor invariant under the action of T. Such a divisor D defines a “virtual support function”, that is, a function $\Psi_D : N_\mathbb{R} \to \mathbb{R}$ whose restriction to each cone of the fan Σ is an element of M. The toric divisor D is nef if and only if Ψ_D is concave. One can also associate to D the polytope defined as

$$\Delta_D = \{ x \in M_\mathbb{R} \mid x \geq \Psi_D \}.$$

Now let

$$\pi : \mathcal{X} \to \mathcal{B}$$

be a dominant morphism of arithmetic varieties of relative dimension $n \geq 0$ and \mathcal{L} a Hermitian line bundle on \mathcal{X}. We assume that (X, L), the fibre of $(\mathcal{X}, \mathcal{L})$ over the generic point of \mathcal{B}, is a toric variety over K with a line bundle associated to a toric divisor D on X. We consider the associated \mathcal{M}-metrized line bundle \mathcal{L} on X as in (2.1).

For each place $w \in \mathcal{M}$, we associate to the torus T an analytic space T_w^\an and we denote by S_w^\an its compact subtorus. In the Archimedean case, it is isomorphic to $(S^1)^n$. In the non-Archimedean case, it is a compact analytic group, see [BPS14] § 4.2 for a description. Then, the \mathcal{M}-metrized line bundle $\mathcal{L} = \mathcal{O}(D)$ on X is toric if its w-adic metric $\| \cdot \|_w$ is invariant with respect to the action of S_w^\an for all w.

Let s be the toric section of L with $\text{div}(s) = D$. For each $w \in \mathcal{M}$, denote by $X_{0,w}^\an$, the analytification of the open principal subset $X_0 \subset X$. Then the function $X_{0,w}^\an \to \mathbb{R}$ given by $p \mapsto \log \| s(p) \|_w$ is invariant under the action of S_w^\an and induces a function $\psi_{T,w}^s : N_\mathbb{R} \to \mathbb{R}$ as in [BPS14] Definition 4.3.5. For shorthand, when \mathcal{L} and s are fixed, we will denote $\psi_{T,w}^s$ by ψ_w.

We now further assume that the line bundle \mathcal{L} is generated by global sections and that the Hermitian metric on \mathcal{L} is semipositive. Hence, the line bundle L is also generated by global sections and, for each $w \in \mathcal{M}$, the metric induced in L_w^\an by \mathcal{L} is semipositive. In this case, by [BPS14] Theorem 4.8.1, for each $w \in \mathcal{M}$, the function ψ_w is concave. We associate to this function the Legendre-Fenchel dual

$$\vartheta_{T,w}^s = \vartheta_w = \psi_w^*$$

as in [BPS14] Definition 5.1.4. This is a concave function on Δ_D, called the w-adic roof function of the pair (\mathcal{L}, s).

We denote by vol_M the measure on Δ_D given by the restriction of the Haar measure on $M_\mathbb{R}$ normalized so that the lattice M has covolume 1.

Corollary 3.1. With notation as above, the function

$$\mathcal{M} \longrightarrow \mathbb{R}, \quad w \mapsto \int_{\Delta_D} \vartheta_{T,s,w}^s(x) \, d\text{vol}_M(x)$$

is μ-integrable. Moreover,

$$h_{\vartheta_{T_1,...,T_n}}(X) = h_{\mathcal{L}}(X) = (n+1)! \int_{\mathcal{M}} \int_{\Delta_D} \vartheta_{T,s,w}^s(x) \, d\text{vol}_M(x) \, d\mu(w).$$

Proof. By [BPS14] Theorem 5.1.6], the quantity

$$(n+1)! \int_{\Delta_D} \vartheta_{T,s,w}^s(x) \, d\text{vol}_M(x)$$

is μ-integrable. Moreover,
Let notation be as above.

Theorem 3.2. Let notation be as above.

1. For each \(x \in \Delta_D \), the function
 \[\vartheta_{\bar{L},s,w}(x) \]
 is \(\mu \)-integrable.

2. The function
 \[\Delta_D \to \mathbb{R}, \quad x \mapsto \int_{\mathbb{R}} \vartheta_{w}(x) \, d\mu(w) \]
 is concave and continuous on \(\Delta_D \).

3. The function
 \[\mathfrak{M} \times \Delta_D \to \mathbb{R}, \quad (w,x) \mapsto \vartheta_{w}(x) \]
 is \((\mu \times \text{vol}_M) \)-integrable.

Proof. Let \(\sigma \in \Sigma^n \). The closure \(V(\sigma) \) of the orbit of \(X \) corresponding to \(\sigma \) is a point. By [BPS14 Proposition 4.8.9], for each \(w \in \mathfrak{M} \),
 \[\vartheta_{\bar{L},s,w,\epsilon}(0) = \vartheta_{\bar{L},s,w}(m_{\sigma}) = \vartheta_{w}(m_{\sigma}) \]
 where \(\epsilon \) denotes the inclusion \(V(\sigma) \hookrightarrow X \). By Corollary 3.1 the function \(w \mapsto \vartheta_{w}(m_{\sigma}) \) in \(\mu \)-integrable, and its integral coincides with the height of \(V(\sigma) \) with respect to \(\bar{L} \).

Since \(\vartheta_{w} \) is a concave function, for all \(x \in \Delta_D \),
 \[\min_{\sigma \in \Sigma^n} \vartheta_{w}(m_{\sigma}) = \min_{y \in \Delta_D} \vartheta_{w}(y) \leq \vartheta_{w}(x). \]

(3.3)

On the other hand, using again the concavity of \(\vartheta_{w} \),
 \[\vartheta_{w}(x) - \min_{y \in \Delta_D} \vartheta_{w}(y) \leq \max_{y \in \Delta_D} \vartheta_{w}(y) - \min_{y \in \Delta_D} \vartheta_{w}(y) \]
 \[\leq \frac{n+1}{\text{vol}_M(\Delta_D)} \int_{\Delta_D} \left(\vartheta_{w}(z) - \min_{y \in \Delta_D} \vartheta_{w}(y) \right) \, d\text{vol}_M(z) \]

(3.4)

It follows from (3.3) and (3.4) that, for all \(x \in \Delta_D \),
 \[\min_{\sigma \in \Sigma^n} \vartheta_{w}(m_{\sigma}) \leq \vartheta_{w}(x) \leq \frac{n+1}{\text{vol}_M(\Delta_D)} \int_{\Delta_D} \vartheta_{w}(z) \, d\text{vol}_M(z) - n \min_{\sigma \in \Sigma^n} \vartheta_{w}(m_{\sigma}). \]

By Corollary 3.1 and the fact that \(\Delta_D \) has finite measure, we have that both the upper and the lower bound are integrable with respect to the measure \(\mu \times \text{vol}_M \).

The statements (1) and (2) follow directly from these bounds, while the statement (3) follows from the same bounds and Lebesgue’s bounded convergence theorem [Fed69 Theorem 2.4.9].
Definition 3.3. With notations as above, the (global) roof function is the continuous concave function \(\vartheta_{\Delta} : \Delta_D \to \mathbb{R} \) given by
\[
\vartheta_{\Delta}(x) = \int_{\mathbb{R}^n} \vartheta_u(x) \, d\mu(w).
\]

Corollary 3.4. With the previous notations,
\[
h_{\pi_1, \ldots, \pi_i} \mathcal{L}(X) = h_{\pi_1, \ldots, \pi_i}(X) = (n+1)! \int_{\Delta_D} \vartheta_{\Delta}(x) \, d\mu_M(x)
\]
holds.

Proof. This follows from Corollary 3.1 and Theorem 3.2 together with Fubini’s theorem [Fed69, Theorem 2.6.2]. □

Remark 3.5. More generally, when we have a family \(\mathcal{L}_0, \ldots, \mathcal{L}_n \) of semipositive Hermitian line bundles on \(X \) such that the induced Hermitian line bundles \(\mathcal{L}_0, \ldots, \mathcal{L}_n \) on \(X \) are toric, we can express
\[
h_{\pi_1, \ldots, \pi_i} \mathcal{L}_0, \ldots, \mathcal{L}_n(X) = h_{\pi_1, \ldots, \pi_i}(X)
\]
in terms of mixed integrals, similarly as in [BPS14, Theorem 5.2.5].

4. Canonical height of translated of subtori over finitely generated fields

In this section, we particularize the formulae in § 3 to the case when \(X \) is the normalization of a translated of a subtori in the projective space.

As before, let \(B \) be an arithmetic variety of relative dimension \(b \) and \(\mathcal{H}_i = (\mathcal{H}_i, \| \cdot \|_i) \), \(i = 1, \ldots, b \), a family of nef Hermitian line bundles on \(B \). Let also \(K = K(B) \) and \((\mathcal{M}, \mu) \) the associated set of places of \(K \) as in [1.2].

Let \(r \geq 1 \) and consider the projective space \(\mathbb{P}^r_B \) over \(B \) and the universal line bundle \(\mathcal{O}_{\mathbb{P}^r_B}(1) \) on it. Since \(\mathbb{P}^r_B = \mathbb{P}^r_{\mathbb{Z}} \times \text{Spec}(\mathcal{O}) \), and the pull-back of \(\mathcal{O}_{\mathbb{P}^r_B}(1) \) under the first projection, we can pull-back the canonical metric on \(\mathcal{O}_{\mathbb{P}^r_B}(1) \) to obtain a metric on \(\mathcal{O}_{\mathbb{P}^r_B}(1) \), also called canonical. We denote by \(\mathcal{O}(1) = \mathcal{O}_{\mathbb{P}^r_B}(1) \) the obtained Hermitian line bundle.

Choose \(m_j \in \mathbb{Z}^n \) and \(f_j \in K^\times \), \(j = 0, \ldots, r \). For simplicity, we assume that \(m_0 = 0 \in \mathbb{Z}^n \) and that the collection of vectors \(m_j \) generates \(\mathbb{Z}^n \) as Abelian group. Consider the map
\[
\mathbb{G}_{m,K}^n \to \mathbb{P}^r_{\mathbb{K}} \mapsto (f_0 t^{m_0} : \ldots : f_r t^{m_r}),
\]
where \(f_j t^{m_j} \) denotes the monomial \(f_j t_{n_1}^{m_{1,j}} \ldots t_{n_2}^{m_{r,j}} \). We then denote by \(Y \) the closure in \(\mathbb{P}^r_{\mathbb{K}} \) of the image of this map.

The projective space \(\mathbb{P}^r_{\mathbb{K}} \) is the fibre of \(\mathbb{P}^r_B \) over the generic point of \(B \). We denote by \(\mathcal{Y} \) the closure of \(Y \) in \(\mathbb{P}^r_B \) and by \(\pi : \mathcal{Y} \to B \) the dominant map obtained by restricting the projection \(\mathbb{P}^r_B \to B \). In this setting, we want to give a formula for the arithmetic intersection number
\[
h_{\pi, \mathcal{Y}, \mathcal{M}}(\mathcal{Y}) = h_{\pi, \mathcal{Y}, \mathcal{M}}(\mathcal{Y}).
\]

The subvariety \(Y \) is not a toric variety over \(\mathbb{K} \) because it is not necessarily normal. Indeed, it is a “translated toric subvariety” of \(\mathbb{P}^r_B \) in the sense of [BPS14, Definition 3.2.6]. Let \(\mathcal{X} \) be the normalization of \(\mathcal{Y} \), and \(X \) the corresponding variety over \(\mathbb{K} \). Let \(\overline{\mathcal{X}} \) be the pull-back of \(\mathcal{O}(1) \) to \(\mathcal{X} \) and \(\overline{\mathcal{L}} \) the associated \(\mathcal{M} \)-metrized line bundle over \(X \) as in [21]. Therefore, \(X \) is a toric variety over \(\mathbb{K} \) with torus \(\mathcal{G}_{m,K}^n \) and the \(\mathcal{M} \)-metrized line bundle \(\overline{\mathcal{L}} \) is toric and semipositive.

In this case we can give an explicit description of the corresponding \(w \)-adic roof functions.
Proposition 4.1. With notation as above, let s be the toric section of L determined by the section z_0 of $\mathcal{O}(1)$. The polytope associated to the divisor $D = \text{div}(s)$ on X is given by

$$\Delta = \text{conv}(m_0, \ldots, m_r)$$

and, for $w \in \mathfrak{M}$, the w-adic roof function $\vartheta_w: \Delta \to \mathbb{R}$ is the function parameterizing the upper envelope of the extended polytope $\Delta_w \subset \mathbb{R}^n \times \mathbb{R}$ given by

$$\Delta_w = \begin{cases} \text{conv}(m_j, \log|f_j(p)|)_{j=0, \ldots, r}, & \text{if } w = \mathfrak{O}(B^{(1)}), \\ \text{conv}(m_j, -h_{L_\mathfrak{O}(1)}(V)\text{ord}_V(f_j))_{j=0, \ldots, r}, & \text{if } w = \mathfrak{O}(B^{(1)}). \end{cases}$$

Proof. This follows from [BPS14, Example 5.1.16].

Combining this result with Corollary 3.1, we obtain a formula for the arithmetic intersection number in (1.1), that we will particularize to concrete examples.

Corollary 4.2. With notation as above, set $\mathcal{B} = \mathbb{P}_k^b$ and $\overline{\mathcal{B}}_\mu = \overline{\mathcal{O}_\mathbb{P}(1)^{\text{can}}}$, $i = 1, \ldots, b$. Then $h_{\mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}}(\overline{\mathcal{B}}_\mu, \mathcal{O}_\mathbb{P}(1)^{\text{can}}(\mathcal{Y}))$ is equal to

$$(n + 1)! \left(\int (S')^b \left(\int_\Delta \vartheta_p(x) \text{dvol}(x) \right) \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_b}{z_b} + \sum_{V \in C} \int \vartheta_V(x) \text{dvol}(x) \right),$$

where $C \subset B^{(1)}$ is the set of irreducible components of the divisors $\text{div}(f_j)$, $j = 0, \ldots, r$, and vol denotes the Lebesgue measure on \mathbb{R}^n.

Proof. We have that $h_{\mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}}(\overline{\mathcal{B}}_\mu, \mathcal{O}_\mathbb{P}(1)^{\text{can}}(\mathcal{Y})) = h_{\mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}}(\overline{\mathcal{B}}_\mu, \mathcal{O}_\mathbb{P}(1)(\mathcal{X}))$ by the invariance of the height under normalization. The formula then follows from Corollary 3.1, Proposition 4.1, the description of the measured set of places (\mathfrak{M}, μ) of the field K in Example 1.1 together with the fact that, for $V \in B^{(1)} \setminus C$, the local roof function ϑ_V vanishes identically.

Example 4.3. Consider the case $n = 0$. Thus $m_\ell = 0$ for all ℓ and choose a collection $f_0, \ldots, f_r \in \mathbb{Z}[z_1, \ldots, z_n]$ of coprime polynomial with integer coefficients. Hence $\Delta = \{0\} \subset \mathbb{R}^b$ and, for $w \in \mathfrak{M}$, the local roof function is given by

$$\vartheta_w(0) = \begin{cases} \max \ell \log|f_\ell(p)| & \text{if } w = \mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}(\mathcal{O}_\mathbb{P}(1)), \\ -h(V) \min \text{ord}_V(f_\ell) & \text{if } w = \mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}(\mathcal{O}_\mathbb{P}(1)). \end{cases}$$

If \mathcal{V} is not the hyperplane at infinity of \mathbb{P}_k^b, then by the coprimality of the f_ℓ, we have $\min \text{ord}_V(f_\ell) = 0$ while, if \mathcal{V} is the hyperplane at infinity, $h(V) = 0$. Thus the finite contribution vanishes and, from Theorem 2.1 and Proposition 4.1, we deduce

$$h_{\mathfrak{p}^{\mathfrak{I}=\mathfrak{B}_1}}(\overline{\mathcal{B}}_\mu, \mathcal{O}_\mathbb{P}(1)) = \int (S')^b \max \ell \log|f_\ell(p)| \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_b}{z_b}.$$
Also, if \(w = p \in \mathbb{P}^n_{\mathbb{Z}}(\mathbb{C})^{\text{gen}} \), this function is the minimal concave function on \([0, r]\) whose values at the integers are given, for \(i = 0, \ldots, r \), by

\[
\vartheta_w(i) = \max_{0 \leq j \leq i \leq r} \left(\frac{\ell - i}{\ell - j} \log |f_j(p)|_w + \frac{i - j}{\ell - j} \log |f_r(p)|_w \right).
\]

In particular, \(\vartheta_w(0) = \log |f_0(p)|_w = 0 \) and \(\vartheta_w(r) = \log |f_r(p)|_w = 0 \). It follows that

\[
\int_0^r \vartheta_w(x) \, dx = \sum_{i=1}^{d-1} \max_{j \leq i \leq r, j \neq \ell} \left(\frac{\ell - i}{\ell - j} \log |f_j(p)| + \frac{i - j}{\ell - j} \log |f_\ell(p)| \right)
\]

From Corollary 122 and (4.2), we deduce that

\[
h_{\eta^* \tau_1 \ldots \tau_\ell} \mathcal{P}(\mathcal{Y}) = 2 \int_{(S^1)^b} \left(\sum_{i=1}^{d-1} \max_{j \leq i \leq r, j \neq \ell} \left(\frac{\ell - i}{\ell - j} \log |f_j(p)| + \frac{i - j}{\ell - j} \log |f_\ell(p)| \right) \right) \frac{dz_1}{z_1} \cdots \frac{dz_b}{z_b}.
\]

Hence, this arithmetic intersection number can be expressed in terms of integrals over the compact torus, of maxima of logarithms of absolute values of polynomials.

References

[BGS94] J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903–1027.

[BMPS12] J. I. Burgos Gil, A. Moriwaki, P. Philippon, and M. Sombra, Arithmetic positivity on toric varieties, e-print arXiv:1210.7692v1, 2012, to appear in J. Alg. Geom.

[BPS14] J. I. Burgos Gil, P. Philippon, and M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, vol. 360, Soc. Math. France, 2014.

[CT09] A. Chambert-Loir and A. Thuillier, Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier 59 (2009), 977–1014.

[Dem97] J.-P. Demailly, Complex analytic and differential geometry, downloadable from http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 1997.

[Fed69] H. Federer, Geometric measure theory, Grund. Math. Wiss., Band 153, Springer-Verlag, 1969.

[Gub03] W. Gubler, Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 711–760.

[Hol14] D. Holmes, Semialbelian prolongations of pointed abelian schemes, e-print arXiv: 1402.0647v1, 2014.

[Mai00] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France, vol. 80, Soc. Math. France, 2000.

[Mor00] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101–142.

[Mor01a] ———, The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field, J. Reine Angew. Math. 530 (2001), 33–54.

[Mor01b] ———, A generalization of conjectures of Bogomolov and Lang over finitely generated fields, Duke Math. J. 107 (2001), 85–102.

[RG71] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platsification” d’un module, Invent. Math. 13 (1971), 1–89.

[Sto67] W. Stoll, The continuity of the fiber integral, Math. Z. 95 (1967), 87–138.

[YZ13] X. Yuan and S.-W. Zhang, The arithmetic Hodge index theorem for adelic line bundles II: finitely generated fields, e-print arXiv: 1304.3539, 2013.

[Zha95] S.-W. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281–300.
