Inorganic arrangement crystal beryllium, lithium, selenium and silicon.

Ricardo Gobato*
Secretaria de Estado da Educação do Paraná (SEED/PR),
Av. Maringá, 290, Jardim Dom Bosco,
Londrina/PR, 86060-000, Brasil

Alekssander Gobato
Faculdade Pitágoras Londrina,
Rua Edwy Taques de Araújo, 1100,
Gleba Palhano, Londrina/PR, 86047-500, Brasil

Desire Francine Gobato Fedrigo
Panoramic Residence, Rua Luísa, 388s, ap. 05,
Vila Portuguesa, Tangará da Serra/MT, 78300-000, Brasil

*Corresponding author: ricardogobato@seed.pr.gov.br

August 4, 2015

Keywords: Beryllium, Inorganic crystals, Lithium, Molecular Geometry, Selenium, Silicon

Abstract

The use of inorganic crystals technology has been widely date. Since quartz crystals for watches in the nineteenth century, and common way radio in the early twentieth century, to computer chips with new semiconductor materials. Chemical elements such as beryllium, lithium, selenium and silicon, are widely used in technology. The development of new crystals arising from that arrangement can bring technological advances in several areas of knowledge. The likely difficulty of finding such crystals in nature or synthesized, suggest an advanced study of the subject. A study using computer programs with ab initio method was applied. As a result of the likely molecular structure of the arrangement of a crystal was obtained.
1 Introduction

Within many electronics resonates a crystal that determines a precise rhythm functioning. The clocks, timers, computers, communications equipment and many other tiny devices quartz crystals vibrate accurately ensuring that your circuits work completely orderly and synchronized way. It is difficult to predict what would be electronics today without the presence of these elements. [1]

The use of inorganic crystals technology has been widely date. Since the quartz crystal to the common radio receivers to computer chips with new semiconductor materials. The chemical elements such as Be, Li, Se and Si [2, 3] are widely applied in technology. The use of inorganic crystals new technology has been widely studied. The development of new compounds arising from this arrangement can bring technological advances in several areas of knowledge. The likely difficulty of finding such crystals in nature or synthesized, suggest an advanced study of the subject. A preliminary literature search did not indicate any compounds of said arrangement of these chemical elements. This fact our study can lead to getting new crystals to be used in the materials industry. A study using computer programs with ab initio have been applied. As a result of the likely molecular structure of the arrangement of a crystal was obtained.

1.1 Crystal

A crystal or crystalline solid is a solid material whose constituents, such as atoms, molecules or ions, are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. [4, 5]

A crystal oscillator is an electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a very precise frequency. This frequency is commonly used to keep track of time (as in quartz wristwatches), to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators, but other piezoelectric materials including polycrystalline ceramics are used in similar circuits. [6]

Quartz crystals are manufactured for frequencies from a few tens of kilohertz to hundreds of megahertz. More than two billion crystals are manufactured annually. Most are used for consumer devices such as wristwatches, clocks, radios, computers, and cellphones. Quartz crystals are also found inside test and measurement equipment, such as counters, signal generators, and oscilloscopes. [6]
1.2 History

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880. Paul Langevin first investigated quartz resonators for use in sonar during World War I. The first crystal-controlled oscillator, using a crystal of Rochelle salt, was built in 1917 and patented [7] in 1918 by Alexander M. Nicholson at Bell Telephone Laboratories, although his priority was disputed by Walter Guyton Cady [8]. Cady built the first quartz crystal oscillator in 1921 [9]. Other early innovators in quartz crystal oscillators include G. W. Pierce and Louis Essen.

Electronic-grade quartz crystal is single-crystal silica that is free from all visible defects and has piezoelectric properties that permit its use in electronic circuits for accurate frequency control, timing, and filtration. These uses generate practically all the demand for electronic-grade quartz crystal. A smaller amount of optical-grade quartz crystal is used as windows and lenses in specialized devices including some lasers. [10]

1.3 Crystal: Electrical model

A quartz crystal can be modeled as an electrical network with a low-impedance (series) and a high-impedance (parallel) resonance points spaced closely together. Mathematically (using the Laplace transform), the impedance of this network can be written as:

\[
Z(s) = \frac{1}{\frac{1}{sC_1} + sL_1 + R_1} \left/ \frac{1}{sC_o} \right.
\]

\[
Z(s) = \frac{s^2 + sR_1L_1 + \omega_s^2}{(sC_1)\left[s^2 + \frac{sR_1L_1}{C_1} + \omega_s^2 \right]}
\]

\[
\omega_s = \frac{1}{\sqrt{L_1 + C_1}}
\]

\[
\omega_s = \sqrt{\frac{C_1 + C_o}{L_1C_1C_o}} = \omega_s = \sqrt{1 + \frac{C_1}{C_o} \approx \omega_s = 1 + \frac{C_1}{2C_o} \quad (C_o \gg C_1)}
\]

where \(s \) is the complex frequency \((s = j\omega) \), \(\omega_s \) is the series resonant angular frequency, and \(\omega_p \) is the parallel resonant angular frequency.

Adding capacitance across a crystal will cause the (parallel) resonance frequency to decrease. Adding inductance across a crystal will cause the (parallel) resonance frequency to increase. These effects can be used to adjust the frequency at which a crystal oscillates. Crystal manufacturers normally cut and trim their crystals to have a specified resonance frequency with a known “load” capacitance added to the crystal. [5, 6, 11, 12, 13, 14]
2 Ab Initio Methods

Among the various computational methods that simulate or model material, highlight those that do not use any empirical information (this is, one that comes from experimental measurements) on the studied system: from the positions of atoms and interactions between them, these methods are able to solve the quantum problem of interacting atoms and provide the description of the electronic and nuclear system material. Because of this, they are called first principles methods, or ab initio methods. The first such method was the method of Hartree-Fock (HF), still used today day for simulating molecules, clusters of atoms and other quantum systems smaller. In the 70s of the last century it was created methods based on Density Functional Theory (DFT) [15], in order to calculate the microscopic properties of solids: LAPW (Linearized Augmented Plane Wave), LMTO (Linear Muffin Tin Orbital) based methods in pseudopotentials. Used virtually through computer codes, their applications were limited at first to study the simplified and idealized systems. Due to the rapid development of computers in recent decades, these methods have reached such a degree of power efficiency be used to simulate real systems, found in nature or produced in laboratories. Today, they are capable of treating crystals with defects, surfaces, interfaces, etc. biological molecules and to investigate phenomena such as semiconducting, magnetic, superconducing, hyperfine interactions, optical transitions, electronic correlations, etc. [16, 17]

Ab Initio Calculations A rigorous variational calculation on a system involves the following steps:

1. Write down the hamiltonian operator \hat{H} for the system.
2. Select some mathematical functional form as the trial wavefunction. This form should have variable parameters.
3. Minimize

$$E = \frac{\int \psi^* \hat{H} \psi d\tau}{\int \psi^* \psi d\tau}$$

with respect to variations in the parameters. The simple and extended Huckel methods are not rigorous variational calculations. Although they both make use of the secular determinant technique from linear variation theory, no hamiltonian operators are ever written out explicitly and the integrations in H_{ij} are not performed. These are semiempirical methods because they combine the theoretical form with parameters fitted from experimental data.

The term ab initio (from the beginning) is used to describe calculations in which no use is made of experimental data. In an ab initio variational method, all three steps listed above are explicitly performed. In this chapter we describe a certain kind of ab initio calculation called the self-consistent field (SCF) method. This is one of the most commonly encountered types of ab initio calculation for atoms or molecules. We also describe a few popular methods for proceeding beyond the SCF level of approximation.

The SCF method and extensions to it are mathematically and physically con-
siderably more complicated than the one-electron methods already discussed. Thus, one normally does not perform such calculations with pencil and paper, but rather with complicated computer programs. Therefore, in this chapter we are not concerned with how one does such calculations because, in most cases, they are done by acquiring a program written by a group of specialists. Rather we are concerned with a description of the mathematical and physical underpinnings of the method. Because the method is simultaneously complicated and rigorously defined, a special jargon has developed. Terms like “Hartree-Fock”, or “correlation energy” have specific meanings and are pervasive in the literature.

3 The Molecular Hamiltonian

In practice, one usually does not use the complete hamiltonian for an isolated molecular system. The complete hamiltonian includes nuclear and electronic kinetic energy operators, electrostatic interactions between all charged particles, and interactions between all magnetic moments due to spin and orbital motions of nuclei and electrons. Also an accounting for the fact that a moving particle experiences a change in mass due to relativistic effects is included in the complete hamiltonian. The resulting hamiltonian is much too complicated to work with. Usually, relativistic mass effects are ignored, the Born-Oppenheimer approximation is made (to remove nuclear kinetic energy operators), and all magnetic interactions are ignored (except in special cases where we are interested in spin coupling). The resulting hamiltonian for the electronic energy is, in atomic units,

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{n} \nabla_{i}^{2} + \sum_{\mu=1}^{N} \sum_{i=1}^{n} \frac{Z_{\mu}}{r_{\mu i}} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{r_{ij}} \quad (6)$$

where i and j are indices for the n electrons and μ is an index for the N nuclei. The nuclear repulsion energy V_{nn} is

$$V_{nn} = \sum_{\mu=1}^{N-1} \sum_{\upsilon=\mu+1}^{N} \frac{Z_{\mu}Z_{\upsilon}}{r_{\mu \upsilon}} \quad (7)$$

In choosing this hamiltonian, we are in effect electing to seek an energy of an idealized nonexistent systema nonrelativistic system with clamped nuclei and no magnetic moments. If we wish to make a very accurate comparison of our computed results with experimentally measured energies, it is necessary to modify either the experimental or the theoretical numbers to compensate for the omissions in \hat{H}. [17]
Figure 1: Representation of the molecular structure of SiSeBeLi$_2$ seed, obtained through computer via Ab Initio calculation method based functional 6.31G, obtained using computer programs HyperChem 7.5 Evaluation [18] and GaussView Version 5 [19].

4 Basic sets

Most of the time spent solving the Roothan-Hall equations numerically is devoted to computing the integrals in the Fock and overlap matrices. Typically so-called Slater-type orbitals (STOs) are used in the basis functions ϕ_{ν}, which are inspired by the form of the solutions for the hydrogen atom to first order in the Laguerre polynomials:

$$R_n(r) = 2\zeta^{n+\frac{1}{2}}(2n)!^{-\frac{1}{2}}r^{n-1}e^{\frac{1}{2}\zeta r}$$ \hspace{1cm} (8)

Unfortunately this functional form for the orbitals, while physically inspired, results in computational challenges. What makes the use of STOs challenging is that the integrals involving orbitals sitting on different nuclei can be very difficult to compute.

A simple solution has been to approximate STOs with Gaussian functions instead so-called Gaussian type orbitals (GTOs). That is, one uses multiple Gaussians to approximate the form of the STOs. The advantage of Gaussians is that the product of two Gaussians centered at two different locations is another Gaussian (and can computed analytically) such that the orbital integrals can be computed very fast.

A special notation describes the basis sets used in common ab initio calculations.
STO-3G a minimal basis set in which three Gaussians are used to represent each Slater-type orbital. Useful for quickly computing molecular geometries, but not very accurate.

3-21G three Gaussians are used for the core orbitals. For the valence electrons, a split basis set is employed where two Gaussians are used for a contracted part of the wavefunction and one for the diffuse part. This is important for atoms like oxygen and fluorine where the minimal basis sets don’t allow for the valence orbitals to expand or contract in response to the molecular environment.

6-31G the same as above but with six Gaussians for the core orbitals; more accurate.

6-31G* the same as above but allowing polarization (i.e., distortion) of non-hydrogen orbitals to accommodate asymmetry. This basis set might be considered a standard high accuracy calculation, although it is expensive.

Often, one wants to find an optimal molecular geometry for a molecule. This involves searching nuclear configurations for the one with lowest energy, and thus requires a complete electronic structure determination upon each change of nuclear coordinates. Typically fast, approximate basis sets like STO-3G are first used in this geometry optimization. Then, when the geometry is near the energy minimum, more accurate and expensive basis sets like 6-31G* are employed to refine the calculations. [17, 20]

5 Chemical properties of the compounds of beryllium, lithium, selenium and silicon

5.1 Beryllium

Beryllium is a chemical element with symbol Be and atomic number 4. It is created through stellar nucleosynthesis and is a relatively rare element in the universe. It is a divalent element which occurs naturally only in combination with other elements in minerals. Notable gemstones which contain beryllium include beryl (aquamarine, emerald) and chrysoberyl. As a free element it is a steel-gray, strong, lightweight and brittle alkaline earth metal. [21]

Beryllium improves many physical properties when added as an alloying element to aluminium, copper (notably the alloy beryllium copper), iron and nickel [22]. Tools made of beryllium copper alloys are strong and hard and do not create sparks when they strike a steel surface. In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium metal a desirable aerospace material for aircraft components, missiles, spacecraft, and satellites [22]. Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and components of particle physics experiments [22]. The high thermal conductivities of beryllium and beryllium oxide have led to their use in thermal management applications.
The commercial use of beryllium requires the use of appropriate dust control equipment and industrial controls at all times because of the toxicity of inhaled beryllium-containing dusts that can cause a chronic life-threatening allergic disease in some people called berylliosis. [23]

5.2 Lithium

Lithium (from Greek: λιθος lithos, “stone”) is a chemical element with symbol Li and atomic number 3. It is a soft, silver-white metal belonging to the alkali metal group of chemical elements. Under standard conditions it is the lightest metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable. For this reason, it is typically stored in mineral oil. When cut open, it exhibits a metallic luster, but contact with moist air corrodes the surface quickly to a dull silvery gray, then black tarnish. Because of its high reactivity, lithium never occurs freely in nature, and instead, only appears in compounds, which are usually ionic. Lithium occurs in a number of pegmatitic minerals, but due to its solubility as an ion, is present in ocean water and is commonly obtained from brines and clays. On a commercial scale, lithium is isolated electrolytically from a mixture of lithium chloride and potassium chloride. [24]

The nuclei of lithium verge on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the solar system than 25 of the first 32 chemical elements even though the nuclei are very light in atomic weight [25]. For related reasons, lithium has important links to nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully man-made nuclear reaction, and lithium-6 deuteride serves as a fusion fuel in staged thermonuclear weapons. [26]

Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, lithium grease lubricants, flux additives for iron, steel and aluminium production, lithium batteries and lithium-ion batteries. These uses consume more than three quarters of lithium production.

Trace amounts of lithium are present in all organisms. The element serves no apparent vital biological function, since animals and plants survive in good health without it. Non-vital functions have not been ruled out. The lithium ion Li$^+$ administered as any of several lithium salts has proved to be useful as a mood-stabilizing drug in the treatment of bipolar disorder, due to neurological effects of the ion in the human body. [24]

5.3 Selenium

Selenium is a chemical element with symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between those of its periodic table column-adjacent chalcogen elements sulfur and tellurium. It rarely occurs in its elemental state in nature, or as pure ore compounds. Selenium (Greek σελήνη selene meaning “Moon”) was discovered in 1817 by Jöns Jacob
Berzelius, who noted the similarity of the new element to the previously known tellurium (named for the Earth). [27]

Selenium is found impurely in metal sulfide ores, copper where it partially replaces the sulfur. Commercially, selenium is produced as a byproduct in the refining of these ores, most often during production. Minerals that are pure selenide or selenate compounds are known, but are rare. The chief commercial uses for selenium today are in glassmaking and in pigments. Selenium is a semiconductor and is used in photocells. Uses in electronics, once important, have been mostly supplanted by silicon semiconductor devices. Selenium continues to be used in a few types of DC power surge protectors and one type of fluorescent quantum dot. [27]

Selenium salts are toxic in large amounts, but trace amounts are necessary for cellular function in many organisms, including all animals, and is an ingredient in many multi-vitamins and other dietary supplements, including infant formula. Selenium is a component of the antioxidant enzymes glutathione peroxidase and thioredoxin reductase (which indirectly reduce certain oxidized molecules in animals and some plants). It is also found in three deiodinase enzymes, which convert one thyroid hormone to another. Selenium requirements in plants differ by species, with some plants requiring relatively large amounts, and others apparently requiring none. [28]

5.4 Silicon

Silicon is a chemical element with symbol Si and atomic number 14. It is a tetravalent metalloid, more reactive than germanium, the metalloid directly below it in the table. Controversy about silicon’s character dates to its discovery; it was first prepared and characterized in pure form in 1823. In 1808, it was given the name silicium (from Latin: *silex*, hard stone or flint), with an *-ium* word-ending to suggest a metal, a name which the element retains in several non-English languages. However, its final English name, first suggested in 1817, reflects the more physically similar elements carbon and boron. [29]

Silicon is the eighth most common element in the universe by mass, but very rarely occurs as the pure free element in nature. It is most widely distributed in dusts, sands, planetoids, and planets as various forms of silicon dioxide (silica) or silicates. Over 90% of the Earth’s crust is composed of silicate minerals, making silicon the second most abundant element in the Earth’s crust (about 28% by mass) after oxygen. [30]

Most silicon is used commercially without being separated, and indeed often with little processing of compounds from nature. These include direct industrial building-use of clays, silica sand and stone. Silicate goes into Portland cement for mortar and stucco, and when combined with silica sand and gravel, to make concrete. Silicates are also in whiteware ceramics such as porcelain, and in traditional quartz-based soda-lime glass and many other specialty glasses. More modern silicon compounds such as silicon carbide form abrasives and high-strength ceramics. Silicon is the basis of the widely used synthetic polymers called silicones. [29]
Elemental silicon also has a large impact on the modern world economy. Although most free silicon is used in the steel refining, aluminium-casting, and fine chemical industries (often to make fumed silica), the relatively small portion of very highly purified silicon that is used in semiconductor electronics (<10%) is perhaps even more critical. Because of wide use of silicon in integrated circuits, the basis of most computers, a great deal of modern technology depends on it. [29]

Silicon is an essential element in biology, although only tiny traces of it appear to be required by animals [31]. However, various sea sponges as well as microorganisms like diatoms and radiolaria secrete skeletal structures made of silica. Silica is often deposited in plant tissues, such as in the bark and wood of Chrysobalanaceae and the silica cells and silicified trichomes of Cannabis sativa, horsetails and many grasses. [32]

6 Molecular parameters of the atoms of the molecule SiSeBeLi₂.

Table 1. Data SiSeBeLi₂ seed molecule

Chemical formula	SiSeBeLi₂
Atomic weight	129.94 g/mol
Crystal system	triclinic
Density	215.757 g/cm³
Type of formula	NOPQ2
Wyckoff sequence	a5
Table 2. Molecular parameters of the atoms of the molecule SiSeBeLi$_2$.

Atom	NA	NB	NC	Bond °	Angle °	Dihedral °	X(Å)	Y(Å)	Z(Å)		
Si		0	0	-0.3790000	-1.0800000	1.7070000					
Se	1			3.0272777	-0.6710000	0.6810000	-0.7380000				
Be	2	1		1.8506712	40.6512698	-1.6610000	-0.5390000	0.2400000			
Li	1	3	2	2.4351417	69.0527075	53.4172985	-0.6240000	1.3410000	1.6140000		
Li	3	2	1	2.4492640	68.7308859	-58.1835086	0.4120000	-1.5420000	-0.5940000		
7 Discussions

The Figure 1 represents the molecular structure of SiSeBeLi$_2$ seed, obtained through computer via Ab Initio calculation method based functional 6.31G [17, 20], obtained using computer programs HyperChem 7.5 Evaluation [18] and GaussView Version 5 software [19]. The Figure 2 represents of the crystalline structure obtained with SiSeBeLi$_2$ seed in likely arrangement, obtained using the GaussView Version 5 software [19]. The Figure 2 represents of the crystalline structure obtained with SiSeBeLi$_2$ seed in likely arrangement. The Figures 3, 4 and 5 represents of the molecular structure of the crystal likely Be$_{18}$Li$_{40}$Se$_{16}$Si$_{12}$. The Figures 6 and 7 represents of the molecular structure of the crystal likely Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$.

8 Conclusions

As a result of the likely molecular structure of the arrangement of a crystal was obtained. The techniques of micro-crushing and conoscopic [33] analysis can lead to evidence and obtaining such crystals.

References

[1] Newton C. Braga. Como funciona o cristal na eletrônica (art423). Instituto Newton C. Braga, July 2015.
[2] R. E. Newnham. Properties of materials. Anisotropy, Symmetry, Structure. New York, 2005.
[3] A. J. Hall C. D. Gribble. A Practical Introduction to Optical Mineralogy. 1985.
[4] Crystal. Wikipedia, the free encyclopedia, July 2015.
[5] Robert J. Matthys. Crystal Oscillator Circuits. Malabar, Florida 32950, 1992.
[6] Crystal oscillator. Wikipedia, the free encyclopedia, July 2015.
[7] Alexander M. Nicholson. Generating and transmitting electric currents.
[8] Virgil E. Bottom. A history of the quartz crystal industry in the usa. Proc. 35th Frequency Control Symp. IEEE., 1981.
[9] Warren Marrison. The evolution of the quartz crystal clock. Bell System Technical Journal (AT&T), (27):510588, 1948.
[10] Gordon T. Austin. Quartz crystal. minerals.usgs.gov.
[11] John R. Vig. *Quartz Crystal - Resonators and Oscillators*. U.S. Army Communications-Electronics Command, Attn: AMSEL-RD-C2-PT, Fort Monmouth, NJ 07703, USA, January 2000.

[12] Texas Instruments. An-1939 crystal based oscillator design with the lmk04000 family. *Texas Instruments Incorporated, Application Report*, April 2013.

[13] Steven Bible. Crystal oscillator basics and crystal selection for rfpic tm and picmicro devices. *Microchip Technology Inc.*, (AN826):DS00826A, 2002.

[14] Digital Electronics Autumn. *Digital Electronics Autumn, Crystal Oscillators*. 4.1-4b7 edition, 2014.

[15] R. G. Parr and W. Yang. *Density Functional Theory*. 1989.

[16] Milan Lalic. Métodos de primeiros princípios. Universidade Federal de Sergipe, July 2015.

[17] John P. Lowe and Kirk A. Peterson. *Quantum Chemistry*. Elsevier Inc., third edition edition, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA; 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA; 84 Theobalds Road, London WC1X 8RR, UK. 2006.

[18] Hyperchem.7.5 Evaluation. Computational chemistry, 2003.

[19] Todd Keith Roy Dennington and John Millam. Gaussview, version 5, 2009.

[20] M. S. Shell. Ab initio and electronic structure methods, che210d, October 2009.

[21] Beryllium. Wikipedia, the free encyclopedia, July 2015.

[22] Concise encyclopedia chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter, 1994.

[23] Ralph Puchta. A brighter beryllium. *Nature Chemistry*, 3 (5): 416(5):416, 2011.

[24] Lithium. Wikipedia, the free encyclopedia, July 2015.

[25] Katharina Lodders. Solar system abundances and condensation temperatures of the elements. *The Astrophysical Journal (The American Astronomical Society)*, 591(2):12201247., July 10 2003. Bibcode:2003ApJ...591.1220L.

[26] Federation of American Scientists. Nuclear weapon design. fas.org, 10 1998.

[27] Selenium. Wikipedia, the free encyclopedia, July 2015.

[28] George Ruyle. Poisonous plants on arizona rangelands. *The University of Arizona*, 05 2009.
[29] Silicon. Wikipedia, the free encyclopedia, July 2015.

[30] R. Nave. Abundances of the elements in the earth’s crust. Georgia State University.

[31] Forrest H. Nielsen. Ultratrace elements in nutrition. *Annual Review of Nutrition*, (4):2141, 1984.

[32] Elizabeth G. Cutter. *Plant Anatomy. Part 1 Cells and Tissues*. ISBN 0 7131 2639 6. 2nd ed. edition, 1978.

[33] A. Zanardo T. M. B. Galembeck A. J. R. Nardy, F. B. Machado. Mineralogia Óptica de cristais transparentes. parte prática. Unesp: Cultura Acadêmica, 2010.

[34] J. A. Chisholm P. R. Edgington P. McCabe E.Pidcock L. Rodriguez-Monge R. Taylor J. van de Streek C. F. Macrae, I. J. Bruno and P. A. Wood. Mercury csd 2.0 - new features for the visualization and investigation of crystal structures. *J. Appl. Cryst*, 41:466–470, 2008.

[35] David C Lonie Tim Vandermeersch Eva Zurek Marcus D Hanwell, Donald E Curtis and Geoffrey R Hutchison. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. *Journal of Cheminformatics*, (4):17, 2012.

9 Figures and PDB files

9.1 .pdb file of Figure 1

SiSeBeLi₂

HEADER CSD ENTRY SiSeBeLi₂ SEED
AUTHOR GENERATED BY OPEN BABEL 2.3.2 [34] SiSeBeLi₂ CRYST1
1.0000 1.0000 1.0000 90.00 90.00 90.00
SCALE1 1.000000 0.000000 0.000000 0.000000
SCALE2 0.000000 1.000000 0.000000 0.000000
SCALE3 0.000000 0.000000 1.000000 0.000000
HETATM 1 Si UNK 1 -0.451 -1.255 1.850 1.00 0.00 Si
HETATM 2 Se UNK 2 -0.695 0.755 -0.890 1.00 0.00 Se
HETATM 3 Be UNK 3 -1.719 -0.555 0.321 1.00 0.00 Be
HETATM 4 Li UNK 4 -0.561 1.384 1.567 1.00 0.00 Li
HETATM 5 Li UNK 5 0.503 -1.470 -0.620 1.00 0.00 Li
CONECT 1 2 3
CONECT 2 1 3 4 5
CONECT 3 1 2
CONECT 4 2
CONECT 5 2
MASTER 0 0 0 0 0 0 3 5 0 5 0
END
Figure 2: Representation of the crystalline structure obtained with SiSeBeLi$_2$ seed in likely arrangement, obtained using the GaussView Version 5 software [19].
Figure 3: Representation of the molecular structure of the crystal likely $\text{Si}_2\text{Se}_3\text{Be}_3\text{Li}_6$ obtained using the *Mercury - Crystal Structure Visualisation* [34] software, with SiSeBeLi$_2$ seed in likely arrangement.
Figure 4: Representation of the molecular structure of the crystal likely \(\text{Be}_{18}\text{Li}_{40}\text{Se}_{16}\text{Si}_{12} \) obtained using the *Mercury - Crystal Structure Visualisation* [34] software, with \(\text{Si}_{2}\text{Se}_{3}\text{Be}_{3}\text{Li}_{6} \) seed in likely arrangement, with Molecular weight: 2,040.245 g/mol, Chemical formula: \(\text{Be}_{18}\text{Li}_{40}\text{Se}_{16}\text{Si}_{12} \); Number of Atoms: 86; Number of Bonds: 275 and Number of Residues: 5.
Figure 5: Representation of the molecular structure of the crystal likely Be$_{18}$Li$_{40}$Se$_{16}$Si$_{12}$ obtained using the Avogadro: An advanced semantic chemical editor, visualization, and analysis platform [35].
Figure 6: Representation of the molecular structure of the crystal likely Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$ obtained using the *Mercury - Crystal Structure Visualisation* software [34], with Molecular weight 3,045.266 g/mol; Chemical formula: Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$; Number of Atoms: 97; Number of Bonds: 291 and Number of Residues: 5.
Figure 7: Representation of the molecular structure of the crystal likely Be\textsubscript{18}HLi\textsubscript{36}Se\textsubscript{28}Si\textsubscript{15} obtained using the Avogadro: An advanced semantic chemical editor, visualization, and analysis platform software [35].

9.2 .pdb file of Figures 4 and 5

Be\textsubscript{18}Li\textsubscript{40}Se\textsubscript{16}Si\textsubscript{12}

HEADER CSD ENTRY Be\textsubscript{18}HLi\textsubscript{40}Se\textsubscript{16}Si\textsubscript{12}
AUTHOR GENERATED BY OPEN BABEL 2.3.2 [34] Be\textsubscript{18}Li\textsubscript{40}Se\textsubscript{16}Si\textsubscript{12}
CRYS1 4.243 4.243 40.000 90.00 90.00 60.00 P1 1
HETATM 1 LI LIG 1 -2.848 4.788 -4.380 1.00 0.00 Li
HETATM 2 LI LIG 1 -4.969 1.113 -4.380 1.00 0.00 Li
HETATM 3 LI LIG 1 -4.969 3.563 -2.648 1.00 0.00 Li
HETATM 4 LI LIG 1 -1.375 3.393 -3.816 1.00 0.00 Li
HETATM 5 SE LIG 1 -1.025 4.148 -3.943 1.00 0.00 Se
HETATM 6 LI LIG 1 1.395 4.788 -4.380 1.00 0.00 Li
HETATM 7 LI LIG 1 -3.497 -0.281 -3.816 1.00 0.00 Li
HETATM 8 SI LIG 1 -1.553 3.432 -3.381 1.00 0.00 Si2-
HETATM 9 SE LIG 1 -3.147 0.474 -3.943 1.00 0.00 Se
HETATM 10 BE LIG 1 -2.944 2.415 -4.592 1.00 0.00 Be
HETATM 11 LI LIG 1 -3.497 2.168 -2.084 1.00 0.00 Li
HETATM 12 LI LIG 1 -0.726 1.113 -4.380 1.00 0.00 Li
HETATM 13 SE LIG 1 -3.147 2.923 -2.211 1.00 0.00 Se
HETATM 14 BE LIG 1 -2.944 4.865 -2.860 1.00 0.00 Be
HETATM 15 LI LIG 1 -3.497 4.618 -0.352 1.00 0.00 Li
HETATM 16 LI LIG 1 -0.726 3.563 -2.648 1.00 0.00 Li
HETATM 17 SI LIG 1 -3.674 -0.242 -3.381 1.00 0.00 Si2-
HETATM 18 LI LIG 1 -2.848 -2.561 -4.380 1.00 0.00 Li
HETATM 19 SI LIG 1 -3.674 2.207 -1.649 1.00 0.00 Si2-
HETATM 20 LI LIG 1 -2.848 -0.111 -2.648 1.00 0.00 Li
HETATM 21 LI LIG 1 -2.848 2.338 -0.916 1.00 0.00 Li
HETATM 22 LI LIG 1 -4.969 -3.786 -2.648 1.00 0.00 Li
HETATM 23 LI LIG 1 -4.969 -1.336 -0.916 1.00 0.00 Li
HETATM 24 LI LIG 1 2.867 3.393 -3.816 1.00 0.00 Li
HETATM 25 SE LIG 1 3.217 4.148 -3.943 1.00 0.00 Se
HETATM 26 LI LIG 1 0.746 -0.281 -3.816 1.00 0.00 Li
HETATM 27 SI LIG 1 2.690 3.432 -3.381 1.00 0.00 Si2-
HETATM 28 SE LIG 1 1.096 0.474 -3.943 1.00 0.00 Se
HETATM 29 BE LIG 1 1.298 2.415 -4.592 1.00 0.00 Be
HETATM 30 LI LIG 1 0.746 2.168 -2.084 1.00 0.00 Li
HETATM 31 LI LIG 1 3.516 1.113 -4.380 1.00 0.00 Li
HETATM 32 SI LIG 1 2.690 3.432 -3.381 1.00 0.00 Si2-
HETATM 33 BE LIG 1 1.298 4.865 -2.860 1.00 0.00 Be
HETATM 34 SI LIG 1 0.569 4.618 -0.352 1.00 0.00 Li
HETATM 35 SI LIG 1 3.516 3.563 -2.648 1.00 0.00 Li
HETATM 36 SI LIG 1 -1.375 -3.956 -3.816 1.00 0.00 Li
HETATM 37 SI LIG 1 0.569 -0.242 -3.381 1.00 0.00 Si2-
HETATM 38 SE LIG 1 -1.025 -3.201 -3.943 1.00 0.00 Se
HETATM 39 BE LIG 1 -0.823 -1.259 -4.592 1.00 0.00 Be
HETATM 40 LI LIG 1 -1.375 -1.506 -2.084 1.00 0.00 Li
HETATM 41 LI LIG 1 1.395 2.338 -0.916 1.00 0.00 Li
HETATM 42 SI LIG 1 0.569 2.207 -1.649 1.00 0.00 Si2-
HETATM 43 SE LIG 1 -1.025 -0.751 -2.211 1.00 0.00 Se
HETATM 44 BE LIG 1 -0.823 1.190 -2.860 1.00 0.00 Be
HETATM 45 LI LIG 1 -1.375 0.943 -0.352 1.00 0.00 Li
HETATM 46 SI LIG 1 1.395 -0.111 -2.648 1.00 0.00 Li
HETATM 47 SE LIG 1 -1.025 1.698 -0.479 1.00 0.00 Se
HETATM 48 BE LIG 1 -0.823 3.640 -1.128 1.00 0.00 Be
HETATM 49 LI LIG 1 1.395 2.338 -0.916 1.00 0.00 Li
HETATM 50 SI LIG 1 -1.553 -3.917 -3.381 1.00 0.00 Si2-
HETATM 51 BE LIG 1 -2.944 -4.933 -4.592 1.00 0.00 Be
HETATM 52 SI LIG 1 -1.553 -1.467 -1.649 1.00 0.00 Si2-
HETATM 53 SE LIG 1 -3.147 -4.425 -2.211 1.00 0.00 Se
HETATM 54 BE LIG 1 -2.944 -2.484 -2.860 1.00 0.00 Be
HETATM 55 LI LIG 1 -3.497 -2.731 -0.352 1.00 0.00 Li
HETATM 56 SI LIG 1 -0.726 -3.786 -2.648 1.00 0.00 Li
HETATM 57 SE LIG 1 -3.147 -1.976 -0.479 1.00 0.00 Se
HETATM 58 BE LIG 1 -2.944 -0.034 -1.128 1.00 0.00 Be
HETATM 59 LI LIG 1 -0.726 -1.336 -0.916 1.00 0.00 Li
HETATM 60 SI LIG 1 4.989 -0.281 -3.816 1.00 0.00 Li
HETATM 61 LI LIG 1 4.989 2.168 -2.084 1.00 0.00 Li
HETATM 62 SI LIG 1 4.989 4.618 -0.352 1.00 0.00 Li
HETATM 63 LI LIG 1 2.867 -3.956 -3.816 1.00 0.00 Li
HETATM 64 SI LIG 1 4.811 -0.242 -3.381 1.00 0.00 Si2-
HETATM 65 SE LIG 1 3.217 -3.201 -3.943 1.00 0.00 Se
HETATM 66 BE LIG 1 3.420 -1.259 -4.592 1.00 0.00 Be
HETATM 67 LI LIG 1 2.867 -1.506 -2.084 1.00 0.00 Li
HETATM 68 SI LIG 1 4.811 2.207 -1.649 1.00 0.00 Si2-
HETATM 69 SE LIG 1 3.217 -0.751 -2.211 1.00 0.00 Se
HETATM 70 BE LIG 1 3.420 1.190 -2.860 1.00 0.00 Be
HETATM 71 LI LIG 1 2.867 0.943 -0.352 1.00 0.00 Li
HETATM 72 SE LIG 1 3.217 1.698 -0.479 1.00 0.00 Se
HETATM 73 BE LIG 1 3.420 3.640 -1.128 1.00 0.00 Be
HETATM 74 SI LIG 1 2.690 -3.917 -3.381 1.00 0.00 Si2-
HETATM 75 BE LIG 1 1.298 -4.933 -4.592 1.00 0.00 Be
HETATM 76 SI LIG 1 2.690 -1.467 -1.649 1.00 0.00 Si2-
HETATM 77 SE LIG 1 1.096 -4.425 -2.211 1.00 0.00 Se
HETATM 78 BE LIG 1 1.298 -2.484 -2.860 1.00 0.00 Be
HETATM 79 LI LIG 1 0.746 -2.731 -0.352 1.00 0.00 Li
HETATM 80 LI LIG 1 3.516 -3.786 -2.648 1.00 0.00 Li
HETATM 81 SE LIG 1 1.096 -1.976 -0.479 1.00 0.00 Se
HETATM 82 BE LIG 1 1.298 -0.034 -1.128 1.00 0.00 Be
HETATM 83 LI LIG 1 3.516 -1.336 -0.916 1.00 0.00 Li
HETATM 84 BE LIG 1 -0.823 -3.709 -1.128 1.00 0.00 Be
HETATM 85 LI LIG 1 4.989 -2.731 -0.352 1.00 0.00 Li
HETATM 86 BE LIG 1 3.420 -3.709 -1.128 1.00 0.00 Be
CONECT 1 10 14 4 5
CONECT 1 8
CONECT 2 7 17 9 10
CONECT 2
CONECT 3 11 19 13 14
CONECT 3
CONECT 4 1 10 13 14
CONECT 4 12 44 5 16
CONECT 4
CONECT 5 1 4 14 8
CONECT 5 16
CONECT 6 29 33 24 25
CONECT 6 27
CONECT 7 2 18 54 20
CONECT 7 9
CONECT 8 1 5 10 13
CONECT 8 14 44 16 48
CONECT 8
CONECT 9 2 7 17 20
CONECT 9 10
CONECT 10 1 2 4 8
CONECT 10 9 13
CONECT 11 3 20 58 21
CONECT 11 13
CONECT 12 4 39 44 26
CONECT 12 37 28 29
CONECT 13 3 4 8 10
EONCCT 13 11 19 21 14
EONCCT 13
EONCCT 14 1 3 4 5
EONCCT 14 8 13
EONCCT 15 21
EONCCT 16 4 5 8 44
CONECT 16 48 30 42 32
CONECT 16 33
CONECT 17 2 9 54 20
CONECT 17 58
CONECT 18 7 51 54 36
CONECT 18 38 50 39
CONECT 19 3 13 58 21
CONECT 19
CONECT 20 7 9 11 17
CONECT 20 54 58 43 40
CONECT 20 52 44
CONECT 21 11 13 15 19
CONECT 21 58 45 47 48
CONECT 21
CONECT 22 53 54
CONECT 23 55 57 58
CONECT 24 6 29 32 33
CONECT 24 31 70 25 35
CONECT 24
CONECT 25 6 24 33 27
CONECT 25 35
CONECT 26 12 39 43 44
CONECT 26 41 78 46 28
CONECT 26
CONECT 27 6 25 29 32
CONECT 27 33 70 35 73
CONECT 27
CONECT 28 12 26 44 37
CONECT 28 46 29
CONECT 29 6 12 24 27
CONECT 29 28 32
CONECT 30 16 44 47 48
CONECT 30 46 82 49 32
CONECT 30
CONECT 31 24 60 64 66
CONECT 31 70
CONECT 32 16 24 27 29
CONECT 32 30 48 42 49
CONECT 32 33
CONECT 33 6 16 24 25
CONECT 33 27 32
CONECT 34 48 49
CONECT 35 24 25 27 70
CONECT 35 61 68 73
CONECT 36 18 51 53 54
CONECT 36 38 56
CONECT 37 12 28 39 43
CONECT 37 44 78 46 82
CONECT 37
CONECT 38 18 36 54 50
CONECT 38 56 39
CONECT 39 12 18 26 37
CONECT 39 38 43
CONECT 40 20 54 57 58
CONECT 40 56 84 43 59
CONECT 40
CONECT 41 26 75 78 63
CONECT 41 65 74 66
CONECT 42 16 32 44 47
CONECT 42 48 82 49
CONECT 43 20 26 37 39
CONECT 43 40 58 52 59
CONECT 43 44
CONECT 44 4 8 12 16
CONECT 44 20 26 28 30
CONECT 44 37 42 43 47
CONECT 44
CONECT 45 21 58 59 47
CONECT 45
CONECT 46 26 28 30 37
CONECT 46 78 82 69 67
CONECT 46 76 70
CONECT 47 21 30 42 44
CONECT 47 45 48
CONECT 48 8 16 21 30
CONECT 48 32 34 42 47
CONECT 48
CONECT 49 30 32 34 42
CONECT 49 82 71 72 73
CONECT 49
CONECT 50 18 38 51 53
CONECT 50 54 56 84
CONECT 51 18 36 50 53
CONECT 51
CONECT 52 20 43 54 57
CONECT 52 58 84 59
CONECT 53 22 36 50 51
CONECT 53 54
CONECT 54 7 17 18 20
CONECT 54 22 36 38 40
CONECT 54 50 52 53 57
CONECT 54
CONECT 55 23 57
CONECT 56 36 38 40 50
CONECT 56 84 77 78
CONECT 57 23 40 52 54
CONECT 57 55 58
CONECT 58 11 17 19 20
CONECT 58 21 23 40 43
CONECT 58 45 52 57
CONECT 59 40 43 45 52
CONECT 59 84 79 81 82
CONECT 59
CONECT 60 31 66 69 70
CONECT 60
CONECT 61 35 70 72 73
CONECT 61
CONECT 62 73
CONECT 63 41 75 77 78
CONECT 63 65 80
CONECT 64 31 66 69 70
CONECT 64
CONECT 65 41 63 78 74
CONECT 65 80 66
CONECT 66 31 41 60 64
CONECT 66 65 69
CONECT 67 46 78 81 82
CONECT 67 80 86 69 83
CONECT 67
CONECT 68 35 70 72 73
CONECT 68
CONECT 69 46 60 64 66
CONECT 69 67 82 76 83
CONECT 69 70
CONECT 70 24 27 31 35
CONECT 70 46 60 61 64
CONECT 70 68 69 72
CONECT 71 49 82 83 72
CONECT 71
CONECT 72 49 61 68 70
9.3 .pdb file of Figures 6 and 7

Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$

HEADER CSD ENTRY Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$

AUTHOR GENERATED BY OPEN BABEL 2.3.2 [34] Be$_{18}$HLi$_{36}$Se$_{28}$Si$_{15}$

HETATM 1 SI LIG 1 2.150 0.026 -4.990 1.00 0.00 Si2-
HETATM 2 SE LIG 1 4.890 -1.881 -4.309 1.00 0.00 Se
HETATM 3 LI LIG 1 2.433 -2.383 -3.908 1.00 0.00 Li
HETATM 4 LI LIG 1 1.890 -1.881 -4.309 1.00 0.00 Li
HETATM 5 SI LIG 1 -0.850 0.026 -4.990 1.00 0.00 Si2-
HETATM 6 SE LIG 1 1.890 -1.881 -4.309 1.00 0.00 Se
HETATM 7 LI LIG 1 -0.567 -2.383 -3.908 1.00 0.00 Li
HETATM 8 LI LIG 1 1.620 0.645 -4.232 1.00 0.00 Li
HETATM	X	Y	Z	Temp	Occup
9	-3.850	0.026	-4.990	1.00	0.00
10	-1.110	-1.881	-4.309	1.00	0.00
11	-3.567	-2.383	-3.908	1.00	0.00
12	-1.380	0.645	-4.232	1.00	0.00
13	-4.110	-1.881	-4.309	1.00	0.00
14	-4.380	0.645	-4.232	1.00	0.00
15	2.150	-2.657	-3.648	1.00	0.00
16	4.890	-4.564	-2.967	1.00	0.00
17	3.679	-3.850	-4.469	1.00	0.00
18	4.620	-2.038	-2.891	1.00	0.00
19	-0.850	-2.657	-3.648	1.00	0.00
20	1.890	-4.564	-2.967	1.00	0.00
21	0.679	-3.850	-4.469	1.00	0.00
22	1.620	-2.038	-2.891	1.00	0.00
23	-3.850	-2.657	-3.648	1.00	0.00
24	-1.110	-4.564	-2.967	1.00	0.00
25	2.321	-3.850	-4.469	1.00	0.00
26	1.380	-2.038	-2.891	1.00	0.00
27	-4.110	-4.564	-2.967	1.00	0.00
28	-4.380	-2.038	-2.891	1.00	0.00
29	4.620	-4.721	-1.549	1.00	0.00
30	1.620	-4.721	-1.549	1.00	0.00
31	-1.380	-4.721	-1.549	1.00	0.00
32	-4.380	-4.721	-1.549	1.00	0.00
33	4.890	4.828	-4.309	1.00	0.00
34	2.433	4.325	-3.908	1.00	0.00
35	1.890	4.828	-4.309	1.00	0.00
36	-0.567	4.325	-3.908	1.00	0.00
37	1.890	4.828	-4.309	1.00	0.00
38	-3.567	4.325	-3.908	1.00	0.00
39	-4.110	4.828	-4.309	1.00	0.00
40	2.150	4.051	-3.648	1.00	0.00
41	4.890	2.144	-2.967	1.00	0.00
42	3.679	2.858	-4.469	1.00	0.00
43	2.433	1.642	-2.566	1.00	0.00
44	4.620	4.670	-2.891	1.00	0.00
45	-0.850	4.051	-3.648	1.00	0.00
46	1.890	2.144	-2.967	1.00	0.00
47	0.679	2.858	-4.469	1.00	0.00
48	-0.567	1.642	-2.566	1.00	0.00
49	1.620	4.670	-2.891	1.00	0.00
50	3.850	4.051	-3.648	1.00	0.00
51	-1.110	2.144	-2.967	1.00	0.00
52	2.321	2.858	-4.469	1.00	0.00
53	-3.567	1.642	-2.566	1.00	0.00
54	1.380	4.670	-2.891	1.00	0.00
CONECT 26 78 80
CONECT 27 11 23 25 32
CONECT 27
CONECT 28 11 13 23 84
CONECT 28 70 72 82
CONECT 29 16 75 76
CONECT 30 20 79 80
CONECT 31 24 84 83
CONECT 32 27 86
CONECT 33 42 44
CONECT 34 46 35 47 49
CONECT 34 42 44 89
CONECT 35 34 40 47 49
CONECT 35
CONECT 36 52 51 37 54
CONECT 36 47 49 91
CONECT 37 36 52 45 54
CONECT 37
CONECT 38 55 39 52 56
CONECT 38 93 54
CONECT 39 38 50 56
CONECT 40 35 46 47 49
CONECT 40 91 42 89
CONECT 41 4 59 61 42
CONECT 41
CONECT 42 4 33 34 40
CONECT 42 41 46
CONECT 43 8 64 63 46
CONECT 43 66 59 61 95
CONECT 43
CONECT 44 33 34 89
CONECT 45 37 52 93 51
CONECT 45 54 47 91
CONECT 46 8 34 40 42
CONECT 46 43 64 57 66
CONECT 46 47
CONECT 47 8 34 35 36
CONECT 47 40 45 46 51
CONECT 47
CONECT 48 12 69 68 51
CONECT 48 71 64 66 96
CONECT 48
CONECT 49 34 35 36 40
CONECT 49 91 89
CONECT 50 39 55 52 56
CONECT 50 93
CONECT 51 12 36 45 47
CONECT 51 48 69 52 62
CONECT 51 71
CONECT 52 12 36 37 38
CONECT 52 45 50 51 55
CONECT 52
CONECT 53 14 69 72 55
CONECT 53 73 97 71
CONECT 54 36 37 38 45
CONECT 54 93 91
CONECT 55 14 38 50 52
CONECT 55 53 67 73
CONECT 56 38 39 50 93
CONECT 56
CONECT 57 8 46 64 63
CONECT 57 66 96 59 95
CONECT 57
CONECT 58 18 76 59 77
CONECT 58
CONECT 59 1 4 8 18
CONECT 59 41 43 57 58
CONECT 59 63
CONECT 60 22 79 80 63
CONECT 60 81 76 77
CONECT 61 41 43 95 88
CONECT 61 89
CONECT 62 12 51 69 97
CONECT 62 68 71 64 96
CONECT 62
CONECT 63 22 43 57 59
CONECT 63 60 80 64 74
CONECT 63 81
CONECT 64 1 5 8 12
CONECT 64 22 43 46 48
CONECT 64 57 62 63 68
CONECT 64
CONECT 65 26 84 83 68
CONECT 65 85 80 81
CONECT 66 43 46 48 57
CONECT 66 96 90 91 95
CONECT 66
CONECT 67 14 55 69 72
CONECT 67 73 97
CONECT 68 26 48 62 64
CONECT 68 65 84 69 78
CONECT 68 85
CONECT 69 5 9 12 14
CONECT 69 26 48 51 53
CONECT 69 62 67 68 72
CONECT 69
CONECT 70 28 84 86 72
CONECT 70 87 85
CONECT 71 48 51 53 62
CONECT 71 97 93 92 96
CONECT 71
CONECT 72 28 53 67 69
CONECT 72 70 82 87
CONECT 73 53 55 67 97
CONECT 73 94
CONECT 74 22 63 79 80
CONECT 74 81 76
CONECT 75 29 76
CONECT 76 3 15 18 22
CONECT 76 29 58 60 74
CONECT 76 75 79
CONECT 77 58 60 95
CONECT 78 26 68 84 83
CONECT 78 85 80
CONECT 79 30 60 74 76
CONECT 79 80
CONECT 80 7 15 19 22
CONECT 80 26 30 60 63
CONECT 80 65 74 78 79
CONECT 80 83
CONECT 81 60 63 65 74
CONECT 81 96
CONECT 82 28 72 84 86
CONECT 82 87
CONECT 83 31 65 78 80
CONECT 83 84
CONECT 84 11 19 23 26
CONECT 84 28 31 65 68
CONECT 84 70 78 82 83
CONECT 84 86
CONECT 85 65 68 70 78
CONECT 85 97
CONECT 86 32 70 82 84
CONECT 86
CONECT 87 70 72 82
CONECT 88 61 95 89
CONECT 89 34 40 44 49
CONECT 89 61 88 90
CONECT 90 66 89 96 91
CONECT 90
CONECT 91 36 40 45 49
CONECT 91 54 66 90 92
CONECT 91
CONECT 92 71 91 97 93
CONECT 92
CONECT 93 38 45 50 54
CONECT 93 56 71 92 94
CONECT 93
CONECT 94 73 93
CONECT 95 43 57 61 66
CONECT 95 77 88
CONECT 96 48 57 62 66
CONECT 96 71 81 90
CONECT 97 53 62 67 71
CONECT 97 73 85 92
MASTER 0 0 0 0 0 0 0 0 97 0 97 0
END