Synthetic post-translational modifications of elongation factor P using the ligase EpmA

Miriam Pfaf1, Pavel Kielkowski2, Ralph Krafczyk1, Wolfram Volkwein1, Stephan A. Sieber2, Jürgen Lassak1 and Kirsten Jung1

1 Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
2 Organic Chemistry II, Technical University of Munich, Garching, Germany

Keywords
amber suppression; aminoacyl-tRNA synthetase; IF-5A; unnatural amino acids; β-amino acid

Correspondence
K. Jung, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, Martinsried, Munich 82152, Germany
Tel: +49(0)89/2180 74500
E-mail: jung@lmu.de
Website: http://www.mikrobiologie.biologie.uni-muenchen.de/

(Received 25 January 2020, revised 24 March 2020, accepted 23 April 2020)
doi:10.1111/febs.15346

Introduction

In all domains of life, aminoacyl-tRNA synthetases (aaRSs) play an essential role in protein synthesis, as they catalyze the esterification of amino acids to the 3′-terminal hydroxyl group of tRNA [1]. Efficient and specific charging of tRNA is a prerequisite for the faithful translation of the genetic code. The reaction takes place in two steps. First, the amino acid is activated with ATP to form an aminoacyl-AMP. Then, the activated amino acid is transferred to the 3′-OH end of its cognate tRNA.

Despite this conserved reaction scheme, aaRSs can be divided into two subclasses based on their catalytic domains [2]. Class I aaRSs utilize an enzymatically active Rossmann fold module that is typical for many nucleotide-binding proteins [3]. Members of this group are predominantly selective for hydrophobic amino acids. In contrast, the catalytic core of class II aaRS features an unusual α-β fold and is related to the biotin ligase BirA [4,5]. In this case, an invariant arginine is important for charging of tRNA [6] with predominantly small and/or polar amino acids.

Among the various amino acid substrates utilized by aaRSs, lysine stands out because members of both classes can recognize it [7–10]. Class II lysyl-tRNA synthetases (LysRSs) are typical for eukaryotes, Crenarchaeota, and the vast majority of bacteria, while...
class I LysRSs are restricted to Euryarchaeota, Spirochetes, and *Rickettsia* [2]. In addition to their well-studied canonical function, LysRSs have been found to perform other, noncanonical functions [11]. In eukaryotes, these include, but are not limited to, essential roles in HIV replication, cytokine-like signaling, and transport of proteins to the cell membrane [11]. Strikingly, even in bacteria, the role of LysRSs is not necessarily restricted to tRNA loading. For example, *Escherichia coli* encodes two class II LysRS variants, LysS and LysU. The first is constitutively expressed, while the second is induced by heat stress [12] and carries out moonlighting functions, namely the synthesis of the dinucleotide alarmone diadenosine tetraphosphate [13], and capping of mRNA [14].

A third bacterial LysRS homolog termed EpmA (also known as YjeA, PoxA, or GenX) deviates in structure and function from the archetypal class II LysRS. Whereas the entire catalytic domain is present, members of the EpmA subfamily lack the OB-fold (oligonucleotide binding) anticodon binding domain [15–17]. Accordingly, EpmA is unable to bind and charge tRNA. Instead, it modifies a single protein — the translation elongation factor P (EF-P). EF-P alleviates ribosome pausing at polyproline (XPX) motifs by assisting in facilitating peptide-bond formation [18–22]. This translation factor is a molecular tRNA mimic [23], consisting of three β-barrel domains arranged in an L-shape structure. A positively charged residue (in *E. coli* lysine 34), which protrudes toward the peptidyltransferase center of the ribosome, is crucial for EF-P function [24]. Notably, this residue is the structural equivalent of the CCA end of the tRNA and target of the ligation reaction mediated by EpmA. Like the tRNA charging reaction of aaRSs, the first step in the post-translational modification (PTM) of EF-P is an ATP-dependent condensation to form enzyme-bound aminoacyl-adenylate (aa-AMP) (Fig. 1) [25]. However, the cognate donor substrate of EpmA is not (S)-α-lysine (1-lysine), but the nonproteinogenic amino acid (R)-β-lysine [26]. The second step involves the transfer of the (R)-β-lysyl moiety to the ε-amino group of lysine 34 (K34) of the protein acceptor and the simultaneous release of AMP from the catalytic pocket. We note here that other bacterial species modify EF-P in different ways, for example, 5-aminopentanoylation is used by *Bacillus subtilis* [27,28] and α-rhamnosylation is found in pseudomonads [17,29]. Like β-lysylation in *E. coli*, these PTMs improve EF-P functionality and reveal the high degree of chemical flexibility. It is therefore plausible that EF-P might also be amenable to activation by other noncanonical modifications.

It is known that recognition of donor substrates by tRNA synthetases in general, and more specifically by EpmA, is error prone [25,30,31]. Initially, the following compounds were reported to serve as substrates for EpmA: (S)-α-lysine, 5-hydroxy-(S)-α-lysine, diamonopimelic acid (DAP), and thialysine ((S)-(2-aminoethyl)-l-cysteine) [25]. At the time of that study, EpmA was not known to be a protein ligase, and its (mis)charging capability was analyzed in the absence of EF-P. In addition, substrate selection was based on the assumption that the α-amino acid l-lysine is the enzyme’s cognate donor substrate. In a more recent report, the noncanonical substrate spectrum was further extended by methyl-(S)-α-lysine and ethyl-(S)-α-lysine but also (S)-β-lysine [26]. In this present study, we reinvestigated substrate recognition using 10 lysine analogs and discovered four novel compounds that could be adenylylated by EpmA and transferred to the protein acceptor EF-P. Thus, we were able to generate completely novel PTM of EF-P, which have allowed us to gain further insights into the function of this elongation factor.

Results

EpmA and its variant EpmA_A298G aminoacylate various noncanonical substrates

Our study builds on the investigations by Ambrogelly *et al.* and Roy *et al.*, which focused on substrate promiscuity of EpmA [25,26]. We set out to learn more about the role of the modification in the EF-P-mediated rescue of polyproline-stalled ribosomes by exploring the range of substrates to modify this translation factor. To do so, we chose the 10 lysine derivatives depicted in Fig. 2A [32]. The spectrum of substances tested encompasses not only known noncanonical donors, such as (S)-α-lysine, 5-hydroxy-(S)-α-lysine, and (S)-β-lysine, but also novel compounds [25,26]. In addition to the enantiomeric form of (S)-α-lysine [(R)-α-lysine], we included (S)-α- and (R)-β-ornithine, whose main chains are one carbon shorter than those of their lysine counterparts. By testing the enantiopure substrates of 3-aminohexanoic acid, [(R)-3-AC and (S)-3-AC], as well as 6-aminohexanoic acid (6-AC), we also assessed if lack of the β- or ε-amino group hinders EF-P ligation or alters its functionality.

The substrate specificity of EpmA can be redirected from (R)-β-lysine to (S)-α-lysine by a single amino acid replacement [26], namely substitution of the alanine present at position 298 in the wild-type enzyme by a glycine residue (Fig. 1). This relieves the steric...
hindrance between the methyl group of A298 and the α-amino group of amino acids. Hence, the alanine-to-glycine replacement creates space for (S)-α-lysine, as demonstrated by the lower K_m of the EpmA variant A298G (~300 μM), which is more than one order of magnitude less than that of the wild-type enzyme (>5 mM) [26]. This significant difference motivated us to include the EpmA_A298G in our analysis.

Fig. 1. Post-translational modification of EF-P by EpmABC with a focus on the catalytic pockets of EpmA and its variant EpmA_A298G. (S)-α-lysine (green) is first converted into (R)-β-lysine (blue) by the aminomutase EpmB [44]. This donor substrate is then activated by ATP hydrolysis, forming (R)-β-lysyl-AMP. This step, as well as the attachment of (R)-β-lysine to K34 of EF-P, is catalyzed by the ligase EpmA to yield modified EF-P (EF-Pβlys). In the catalytic pocket of EpmA, residue 298 (highlighted) predetermines the structure of the entering substrate. This explains why replacement of the wild-type alanine at position 298 by glycine (A298G) results in the use of (S)-α-lysine in preference to (R)-β-lysine as the substrate for activation. EF-Pβlys is further hydroxylated at K34 by EpmC, but this is of minor importance for the protein’s function [22,46].

Fig. 2. [32P]AMP formation assay monitors in vitro activation of (R)-β-lysine and related compounds by EpmA. (A) Overview of the lysine derivatives tested in this study. The natural EpmA substrate (R)-β-lysine is framed in blue, while (S)-α-lysine, the high-affinity substrate for EpmA_A298G, is framed in green. Constitutional and spatial alterations of the cognate EpmA substrate are highlighted. (B) [32P]AMP formation assay. A representative autoradiograph and time course of ATP hydrolysis in the presence of 1, 10 or 100 mM (R)-β-lysine and 1 μM EpmA is shown. Such plots were used to determine the linear segment of the reaction. Consequently, K_m values were determined at 15-min reaction time (dashed line). The error bars indicate the standard error of the technical duplicates. (C, D) Binding affinities (K_m values) of (C) EpmA and (D) EpmA_A298G for various lysine analogs. Low K_m values were determined using the 0–2.5 mM substrate range (framed). Higher K_m values were determined using the 0–100 mM substrate range. Error bars indicate SEM. Curves were fitted according to the Michaelis–Menten equation (GRAPHPAD PRISM) to determine K_m values.
Synthetic modification of EF-P

M. Pfab et al.
Promiscuity was initially tested by utilizing the pre-transfer editing capability of aaRSs, which allows the enzyme to cleave (mis)activated aminoacyl-adenylates, thus releasing AMP [33,34]. Notably, this happens even in the absence of the acceptor substrate, enabling us to study EpmA activity without adding EF-P [35,36]. Kinetic parameters were determined using thin-layer chromatography in combination with radio-labeled [α-32P]ATP, which allows for monitoring and quantification of AMP release via autoradiography. First, the AMP production was monitored over time.

Figure 2B depicts the results of a representative time course experiment. Irrespective of the concentration of the donor substrate, accumulation followed a linear course over the first 20 min. Consequently, the reaction kinetics for both EpmA and EpmA_A298G were determined at the 15-min time point. Then, the initial velocities for several substrate concentrations were measured (based on the 15-min time points), and the kinetic parameters \(k_m \) and \(k_{cat} \) were determined. The resulting curves were fitted according to the Michaelis–Menten equation (Fig. 2C,D, Table 1 [37]). In agreement with earlier studies [26] of EpmA, the resulting curves were fitted according to the Michaelis–Menten equation (Fig. 2C,D, Table 1 [37]). In agreement with earlier studies [26] of EpmA, (R)-β-lysine and (S)-α-lysine were activated by EpmA as well as EpmA_A298G, with the latter exhibiting the expected switch in affinity. Note that our \(k_m \) values match those previously reported, with one exception – the \(k_m \) determined for (R)-β-lysine here was almost two orders of magnitude higher for EpmA_A298G than reported in Ref. [26]. In line with previous work was activation of 5-hydroxy-(S)-α-lysine [25].

Of the newly tested substrates (Fig. 2A), (R)-3-AC and 6-AC, as well as (R)-α-lysine and (S)-α-ornithine, were adenylated. Whereas \(k_m \) values could be ascertained for the latter three (Table 1), this was not possible for (R)-3-AC. Here, we observed substrate inhibition effects that led to a reduction of AMP formation at concentrations above ~10 mM (Fig. S1). It is possible that high substrate concentrations outcompete AMP with the acceptor substrate. This might result in lower AMP concentrations. In this regard, EpmA_A298G was superior in adenylating (R)-α-lysine and 5-hydroxy-(S)-α-lysine. In addition, only this substitution variant could charge (S)-α-ornithine, whereas only EpmA activated 6-AC.

EpmA/EpmA_A298G-mediated EF-P ligation with noncanonical substrates generates novel post-translational protein modifications

Having successfully shown substrate promiscuity in the condensation reaction with AMP, we asked whether ligation of the activated lysine derivatives to K34 of EF-P is possible. We set up an in vitro assay to post-translationally modify EF-P with (S)-α-ornithine, (R)/(S)-α-lysine, 5-hydroxy-(S)-α-lysine, (R)/(S)-β-lysine, (R)-3-AC, and 6-AC. Successful ligation was visualized by immunodetection of isoelectrically focused EF-P [38]. If a PTM affects the net charge of the acceptor protein, its isoelectric point is altered. Indeed, EF-P was successfully modified in vitro (Fig. 3A). Electrophoretic separation from unmodified EF-P in a pH gradient was seen for all tested substrates, except for 3-AC and 6-AC, which are not expected to change the pI value of the acceptor. Whereas (S)-β-lysine-modified EF-P ran exactly at the same height as the variant bearing (R)-β-lysine, those EF-Ps bearing (S)/(R)-α-lysine ran slightly lower in the gradient. This is due to the fact that α-amino acids in general show a lower pK\(_{a}\) value than β-amino acids (e.g., pK\(_{a}\)[-α-ala\(-\text{mine}\)] = 9.87 [39], pK\(_{a}\)[-β-ala\(-\text{mine}\)] = 10.24 [40]. The pI value for EF-P modified with 5-hydroxy-(S)-α-lysine

Substrate	(R)-α-lysine	(S)-α-lysine	(S)-α-ornithine	5-hydroxy-(S)-α-lysine	(R)-β-lysine	6-AC
K\(_m\) (mM)						
EpmA	20.5 (±9.3)	5.2 (±1.3)	n. r.	36.1 (±6.4)	0.23 (±0.07)	1.8 (±0.8)
EpmA_A298G	7.2 (±2.0)	0.065 (±0.032)	10.8 (±4.1)	6.8 (±1.7)	10.8 (±4.0)	n. r.
K\(_{cat}\) (s\(^{-1}\))						
EpmA	2039 (±308)	1851 (±116)	n. r.	3416 (±242)	1812 (±128)	2069 (±163)
EpmA_A298G	1830 (±147)	2234 (±192)	2167 (±269)	2651 (±187)	2834 (±314)	n. r.

Colours correspond to Fig. 2: Low K\(_m\) substrates are framed in blue (EpmA) or green (EpmA_A298G).
differs only slightly from that of unmodified EF-P. Here, the pI-elevating effects of the ω- and ε-amino groups are counteracted by the reducing effect of the hydroxyl group.

For all substrates tested, the modification status of EF-P was also confirmed by top-down mass spectrometric analyses (Fig. 3, Fig. S2). These tests also verified the attachments of 3-AC and 6-AC to EF-P K34, which could not be detected by isoelectric focusing (IEF).

These data demonstrate that EpmA and its variant EpmA_A298G are capable of transferring activated noncanonical donor substrates onto a protein acceptor, and thus enable the \textit{in vitro} generation of novel PTMs.

In parallel, we asked if EpmA_A298G is able to modify EF-P in an \textit{E. coli} epmB background \textit{in vivo} (Fig. 1). Lack of the lysine aminomutase EpmB prevents the formation of (R)-β-lysine \cite{41}, thus precluding activation of EF-P by this substrate \cite{42–44}. We overexpressed either \textit{epmA} or \textit{epmA}_A298G from an arabinose-inducible promoter in this strain in order to force modification of EF-P with noncanonical substrates. We then purified the protein and subjected it to IEF and immunodetection. Strikingly, overexpression of both EpmA and EpmA_A298G resulted in synthetically modified EF-P (Fig. 4A). The migration height was the same as that of the EF-P isolated from wild-type cells, indicating the attachment of a compound with a similar effect on the protein’s pI to that of (R)-β-lysine. Notably, only in the case of EpmA_A298G was the EF-P population shifted fully toward the modified state, whereas with wild-type EpmA 36% of EF-P remained unmodified. We therefore hypothesized that (S)-α-lysine was the attached substrate. This is a plausible assumption, insofar as the intracellular concentration of (S)-α-lysine can reach up to 0.4 mM \cite{45}, which is saturating for enzyme EpmA_A298G, but below the \(K_m\) of EpmA (Table 1). Indeed, subsequent analysis by mass spectrometry

![Figure 3](image_url)
revealed a shift of 129.2 Da at K34 (Fig. 4B), as expected for lysylation. Notably, natural E. coli EF-P is not only lysylated but also hydroxylated at the C4 atom of K34 by an enzyme termed EpmC (Fig. 1) [22,46,47]. Accordingly, we also looked for a modification corresponding to 146 Da, but were unable to find it. This agrees with the previous finding that EpmC recognizes EF-P exclusively in its lysylated form [47]. Hence, the lack of hydroxylation of (S)-α-lysylated EF-P implies that EpmC has a strong preference for the β-form of the amino acid. As the acceptor substrate spectrum of the hydroxylase remains elusive, our data provide an unexpected hint as to its specificity.

Noncanonically modified EF-P variants yield new mechanistic insights into ribosome rescue with (R)-β-lysine

We were particularly curious to know whether the novel PTMs can support EF-P-mediated rescue of polyproline-stalled ribosomes. Therefore, an in vitro transcription/translation system reconstituted from purified components (PURExpress; New England Biolabs, Ipswich, MA, USA) was set up [18]. As readout for translation efficiency, we used NanoLuc luciferase (NLuc; Promega, Fitchburg, MA, USA) [48]. NLuc is a small protein (19.1 kDa) that converts furimazine into furimamide and thereby emits light. The enzyme itself lacks polyproline stretches. Accordingly, we extended the nluc open reading frame by introducing a short sequence coding for RPPP (PPP-NLuc) at the 5′ end, which causes a translational arrest that can be alleviated by modified EF-P (Fig. 5A) [18]. The relative efficiency of ribosome rescue can be assayed based on the level of light emitted by NLuc over time (Fig. S3) [19]. In line with earlier studies, in vitro translation with the polyproline-containing luciferase variant was boosted by a factor of about five when (R)-β-lysylated EF-P was present. Having shown that the system works robustly, we assessed the functionality of EF-Ps bearing the synthetic modifications (Fig. 5B). Moreover, we decided to test the acetylated EF-P variant, because the equivalent lysine ε-amino group in B. subtilis EF-P is acetylated in vivo when the modification system is missing [49]. Acetylated EF-P was generated by using the amber suppression system [50]. To this end, we introduced the amber stop codon into efp at position 34 (Am34). Supplementation of the medium with 5 mM acetyl-lysine allowed the production of EF-PAcK in an E. coli strain that contained the tRNA synthetase/tRNA pair AcKRS/pytCUA and thereby allowed suppression of Am34 (Fig. S4) [50,51]. As all noncanonically modified EF-Ps produced significantly less light than the (R)-β-lysylated protein, we conclude that both amino groups in their native

Fig. 4. Overproduction of EpmA_A298G allows for modification of EF-P in an epmB deletion mutant. (A) IEF gel of purified native EF-P from wild-type cells and the Escherichia coli BW25113 ΔepmB mutant after overexpression of epmA and epmA_A298G, respectively. Modified EF-P was separated from unmodified EF-P on the basis of their pI values and detected by western blotting using anti-EF-P E. coli antibody and quantified by gray density analysis. Shown is the result of a single experiment. (B) Endogenous EF-P was isolated from the EpmA_A298G-overproducing strain and subjected to enzymatic digestion and MS analysis. The fragmentation spectrum of the EF-P peptide containing the critical K34 reveals that this residue is modified with lysine. The MS spectra were searched for all other tested modifications without positive result, confirming that lysylation is indeed the endogenously occurring modification of the EF-P in E. coli ΔepmB.
configuration are crucial for EF-P-mediated ribosome rescue. Notably however, bioluminescence output with the (R)-α-lysylated and the 5-hydroxy-(S)-α-lysylated EF-P was even lower than that seen with the unmodified protein, which might indicate an inhibitory effect.

Finally, we tested the functionality of (S)-α-lysylated EF-P in vivo. For this purpose, we used an already established test system based on a PPP-LacZ hybrid (Fig. 5C). Accordingly, β-galactosidase activity is high in wild-type cells but low in strains lacking a functional EF-P (E. coli ΔepmA and ΔepmB). As expected, complementation of the mutants with the corresponding genes in trans restored the wild-type phenotype (Fig. 5D). By contrast, the overproduction of neither EpmA nor EpmA_A298G in E. coli ΔepmB led to an increase in β-galactosidase activity, indicating nonfunctional EF-P. Thus, the attached (S)-α-lysine moiety cannot substitute (R)-β-lysine in order to functionalize EF-P. This result is consistent with our in vitro data (Fig. 5B), where (S)-α-lysylated EF-P did not alleviate ribosome stalling of the PPP-NLue construct.

Discussion

The generation of EF-Ps with synthetic PTMs provides new insights into the rescue of polyproline-mediated ribosome pausing. In 2017, Huter et al. [24] presented the cryo-EM structure of EF-P bound to the ribosome, demonstrating how (R)-β-lysine might stabilize the P-site tRNA (Fig. 6A). Specifically, hydrogen bonds can be formed between the e-amino group of the β-lysyl moiety and the conserved nucleotide A2439 of the 23S rRNA and would therefore be reminiscent to what was found for hypusine of eIF5A and A2808 [52,53]. Our biochemical analysis now complements these structure-based assumptions and demonstrates the importance of the (R)-β-lysyl moiety for the functionality of EF-P. Neither a lack of the ε-amino group (in the case of 6-AC) nor loss of the ε-amino group (in the case of 3-AC) is tolerated (Fig. S5A,B). Similarly, shortening of the carbon chain as in (R)-β-ornithine weakens hydrogen bonding with
the tRNAPro CCA end (Fig. S5C). In an α-lysylated EF-P (Fig. 6C,D), irrespective of its precise stereoconfiguration, the distance to A2808 increases to more than 5 Å and is therefore too large to permit the establishment of the stabilizing interaction. Even with (S)-β-lysyl-lysine, this connection is lost (Fig. 6B). However, in that configuration the β-amino group could still make contact with an A76 phosphate oxygen, which in turn might have a mildly stimulatory effect on Pro-Pro peptide bond formation. This idea is corroborated by the partial compensation of a depmB growth defect upon the external addition of (S)-β-lysine [23]. Taken together, the comprehensive biochemical dataset presented here explains the selective pressure in favor of (R)-β-lysyl-lysine for the activation of EF-P.

Our new molecular insights into how (R)-β-lysylated EF-P mediates ribosome rescue are one notable aspect of our study. The other concerns EpmA substrate promiscuity and how it might be exploited as novel tool for protein engineering. The generation of polypeptides containing noncanonical amino acids is a central pillar of efforts to generate new functionalities. In this regard, synthetic biology predominately relies on the very elegant system developed by Schultz and Yarus [54]. Their method is based on an orthologous tRNA/ tRNA synthetase pair with which the amber stop signal is turned into a sense codon to enable the translational incorporation of noncanonical amino acids [55]. To date, engineering of the synthetase by directed evolution or the utilization of natural substrate promiscuity allows researchers to site specifically incorporate more than 150 different substrates [56]. With this study, we demonstrate an alternative way to extend the spectrum of synthetic PTMs. Based on the promiscuity of EpmA, we have demonstrated site-directed ligation of (S)-α-ornithine, (R)/(S)-α-lysine, 5-hydroxy-(S)-α-lysine, (R)/(S)-β-lysine, 3-AC, and 6-AC to the ε-amino group of lysine K34 of EF-P. While this approach allows one to carry out alternative PTMs of EF-P, the specificity of both EpmA and EpmA_A298G for this protein acceptor currently limits the application of the lysyl-tRNA synthetase paralog as a more general molecular tool. Consequently, the next step will focus on engineering of EpmA to modify other proteins. Notably, only 25% of all bacteria rely on β-lysylation of EF-P, whereas other EF-Ps (e.g., in Pseudomonas) are activated by arginine rhamnosylation with EarP. The latter enzyme is phylogenetically unrelated to EpmA and thus favored strong co-evolution of the corresponding EF-P at the sequence level, while the structure has remained highly conserved [17]. Although the EF-Ps of P. putida and E. coli share only 26% sequence identity, we have recently shown that cross-modification and even activation by EarP is possible with only few amino acid replacements in EF-P [57]. Conversely, future studies will clarify whether EpmA can recognize the P. putida EF-P. If it were possible to narrow down acceptor substrate specificity to a short sequon, EpmA-mediated ligation could serve as a useful extension to our

![Fig. 6. Model of altered EF-P-tRNA and EF-P-ribosome (23S rRNA) interactions attributable to synthetic PTMs. Models were generated using UCSF Chimera [68]. (A) Interaction of (R)-β-lysyl-lysine with the CCA end of the P-site tRNA and 23S rRNA as determined by cryo-EM [24]. Putative interactions of (B) (S)-β-lysyl-lysine, (C) (R)-α-lysyl-lysine, and (D) (S)-α-lysyl-lysine with the CCA end of the P-site tRNA and 23S rRNA. For clarity, only the phosphate backbone of the 23S rRNA is shown.](image-url)
molecular toolbox for protein engineering with non-canonical amino acids.

Materials and methods

General

Escherichia coli cells were routinely grown aerobically in lysogeny broth [LB; 1% (w/v) NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract, pH 7.0] at 37 °C. Antibiotics were used in the following concentrations: 100 μg·mL⁻¹ ampicillin sodium salt, 50 μg·mL⁻¹ kanamycin sulfate, 30 μg·mL⁻¹ chloramphenicol, 15 μg·mL⁻¹ tetracycline hydrochloride. Growth curves were recorded using the Spark 20M multimode microplate reader (Tecan, Männedorf, Switzerland) at 37 °C. Optical density at 600 nm was measured every 15 min.

ATP disodium salt, deoxyribonuclease I from bovine pancreas (DNase), (R)-3-aminohexanoic acid hydrochloride, (R)-3-aminohexanoic acid hydrochloride, (S)-α-ornithine hydrochloride, 6-aminohexanoic acid, and 2,6-diaminopimelic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). (R)-α-lysine hydrochloride and (RS)-5-hydroxy-(S)-α-lysine were purchased from Fluka (Buchs, Switzerland). (S)-α-lysine hydrochloride was purchased from Roth (Karlsruhe, Germany). (3R)-3,5-diaminopentanoic acid dihydrochloride ((R)-β-ornithine) was provided by AKos GmbH (Steinen, Germany). (R)-β-lysine was synthesized by Carbolution Chemicals (Saarbrücken, Germany), and (S)-β-lysine was purchased from PepTech Corporation (Burlington, VT, USA). All lysine derivatives were dissolved in ddH₂O.

Cloning

The resistance cassette present in *E. coli* BW25113 Δ*epmB* CmR was removed by FLP/FLPe expression with the Quick & Easy *E. coli* Gene Deletion Kit (Gene Bridges, Heidelberg, Germany) in accordance with the manufacturer’s instructions, yielding *E. coli* BW25113 Δ*epmB* CmR³.

Synthetic ribosome binding sites were designed using RBS Calculator (https://salislab.net/software/, De Novo DNA). To create pBAD33_sRBS_His⁶_ epmA, epmA_Eco was amplified from pBAD33_epmA under standard PCR conditions using P1/2 (Table S1) as primers and cloned into pBAD33. To introduce the amino acid substitution A298G, the resulting plasmid was used as template, and the primer pairs P3/4 and P5/6, respectively, were used to generate the upstream and downstream fragments. pBAD24-epf_Eco served as the template for introduction of the amber mutation TAG. The resulting plasmid pBAD24_sRBS_ epf(Eco) K34TAG_HisR was constructed by overlap extension PCR using P3/7 and P6/8. To construct pBAD33_His⁶_epmB, the corresponding fragment was amplified from pBAD24_His⁶_epmB using P3/P6, digested at restriction sites NsiI and XbaI, and ligated with pBAD33.

Protein overproduction

Unmodified N terminally His⁶-tagged EF-P was overproduced in *E. coli* BW25113 Δ*epmA* harboring the pBAD33_ epf_His⁶ plasmid. Furthermore, *E. coli* BW25113 was transformed with pBAD33_ epf_His⁶_ epmA and its corresponding variant were overproduced in *E. coli* LMG194 cells that harbored pBAD33_sRBS_His⁶_ epmA or pBAD33_sRBS_His⁶_ epmA_A298G. C. terminus His⁶-tagged EF-P with acetyl-lysine instead of lysine at position 34 was overexpressed from pBAD24_sRBS_ epf(Eco) K34TAG_HisR in *E. coli* LMG194 which contained the additional plasmid pACycDuet_AcKRST described by Volkwein *et al.* [50]. This allowed for amber suppression with the acetyl-lysine-tRNA synthetase (AcKRS). LB medium was supplemented with 5 mM N⁵-acetyl-L-lysine and 1 mM nicotinamide to prevent deacetylation by CobB [58].

During exponential growth, 0.2% (w/v) (+)-arabinose was added to induce gene expression from pBAD vectors, and 1 mM IPTG served to induce gene expression of the pACycDuet-based system. Cells were grown overnight at 18 °C and harvested by centrifugation on the next day. The resulting pellet was resuspended in HEPES buffer [50 mM HEPES, 100 mM NaCl, 50 mM KCl, 10 mM MgCl₂, 5% (w/v) glycerol, pH 7.0] and incubated with DNase for 30 min. Cells were then lysed using a continuous-flow cabinet from Constant Systems Ltd. (Daventry, UK) at 1.35 kbar. The resulting lysates were clarified by centrifugation at 4 °C at 234 998 g for 1.5 h. The His⁶-tagged proteins were purified using Ni-NTA beads (Qiagen, Hilden, Germany) according to the manufacturer’s instructions, using 20 mM imidazole for washing and 400 mM imidazole for elution. In the final step, the purified protein was dialyzed overnight against HEPES buffer to remove imidazole from the eluate.

Assay for the formation of [³²P]AMP

Hydrolysis of ATP by EpmA in the presence of various concentrations of lysine derivatives was monitored in HEPES buffer in a total volume of 10 μL.

For time course experiments, 1, 10, or 100 mM (R)-β-lysine, 5 mM DTT, and 3 mM [³²P]ATP (20 Ci·mol⁻¹; PerkinElmer, Waltham, MA, USA) were incubated at 37 °C (time point 0 min) and the reaction was started by the addition of purified EpmA (to 1 μM). Aliquots were taken at 2, 5, 10, 15, 20, 30, 45, and 60 min and quenched with four volumes of 200 mM sodium acetate (pH 5.0). Then, duplicates of 1 μL samples of the mixture were analyzed by thin-layer chromatography on PEI cellulose plates (Merck Millipore, Burlington, VT, USA, prewashed with...
water), which were developed in 0.1 m ammonium acetate and 5% (w/v) acetic acid. [α-32P]ATP and [32P]AMP were visualized and quantified by phosphor imaging. Gray densities of the [32P]AMP spots were compared to the gray density of a known amount of [α-32P]ATP using imageJ [59]. For [Kₘ] determination, the concentration of the lysine derivative was varied from 0 to 100 mM for low-affinity substrates and from 0 to 2.5 mM for high-affinity substrates. Reaction mixtures contained 5 mM DTT, 3 mM [α-32P]ATP (20 Ci mol⁻¹; PerkinElmer), were incubated at 37 °C and initiated by adding either EpmA or EpmA_A298G (to 1 mM). After 15 min, the reaction was quenched and processed as described above. [Kₘ] values were estimated using nonlinear fitting [least-squares (ordinary) fit] of the Michaelis-Menten equation, which was performed with graphpad prism (version 5.03 for Windows; GraphPad Software, La Jolla, CA, USA, www.graphpad.com). The [kₐ] values were determined with the same method.

In vitro EF-P modification

For in vitro modification reaction, 25 μM unmodified N terminally His₆-tagged EF-P, 2 mM ATP, 5 μM N terminally His₆-tagged EpmA or EpmA_A298G, respectively, and 10 mM lysine derivative were mixed in a total volume of 10 μL (HEPES buffer, pH 7.0) and incubated overnight at room temperature. On the next day, samples were either mixed with 2× IEF buffer (SERVA, Heidelberg, Germany) and stored at 4 °C prior to IEF analysis or stored at −20 °C for mass spectrometric analysis of intact proteins.

Isoelectric focusing and western blotting

For IEF analysis, 0.5 μg of protein per lane was loaded onto a native vertical IEF gel with a pH gradient range of 4–7 (SERVAGel) containing approx. 3% (w/v) SERVA-LYT. Prior to loading, samples were mixed with 2× IEF sample buffer (SERVA) and wells were rinsed with SERVA IEF cathode buffer. Focusing was conducted at 4 °C for 1 h at 50 V and 1 h at 300 V, and finally, bands were sharpened for 40 min at 500 V.

For western blotting, proteins were transferred onto a nitrocellulose membrane (Whatman, Maidstone, UK) using the Bio-Rad Trans-Blot Turbo Transfer System and incubated with 0.1 μg/mL anti-EF-P_Eco (Eurogentec, Lüttich, Belgium) as the primary antibody. The latter was targeted by 0.2 μg·mL⁻¹ anti-rabbit phosphatase-conjugated secondary antibody (Rockland, Gilbertsville, PA, USA), and the resulting complexes were visualized using development solution [50 mM sodium carbonate buffer, pH 9.5, 0.01% (w/v) p-nitroblue tetrazolium chloride, and 0.045% (w/v) 5-bromo-4-chloro-3-indolyl-phosphate]. Where necessary, gray densities were quantified using imageJ [59].

Mass spectrometry of intact proteins

Samples were desalted and measured using a MassPREP On-Line Desalting Cartridge (Waters, Milford, CT, USA) on an UltiMate 3000 HPLC system (Dionex, Sunnyvale, CA, USA) coupled to a Finnigan LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with electrospray ionization (spray voltage 4.0 kV, tube lens 110 V, capillary voltage 48 V, sheath gas 60 arb, auxiliary gas 10 arb, sweep gas 0.2 arb). XCALIBUR XTRACT Software (Thermo Fisher Scientific) and UNIDEC were used for data analysis and deconvolution [60].

Sample preparation for MS-based proteomics to identify putative PTMs at the peptide level

Prior to enzymatic digestion, 1-μg aliquots of purified protein were diluted with 200 μL of ABC buffer (25 mM ammonium bicarbonate), reduced in the presence of 1 mM DTT (0.2 μL of 1 mM stock in ddH₂O) for 45 min at 25 °C, alkylated in 5.5 mM iodoacetamide (IAA, 2 μL of 550 mM stock in ddH₂O) for 30 min at 25 °C, and quenched with 4 mM DTT (0.8 μL of 1 mM stock) for 30 min at 25 °C. Following supplementation with 2 μL of 1 mM CaCl₂, 1 μL of chymotrypsin (0.5 μg·μL⁻¹) was added, and the mixture was incubated for 16 h at 25 °C. Samples were acidified to pH 2–3 with 1% (v/v) formic acid (FA) and desalted using SepPak C18 cartridges (50 mg; Waters) with a vacuum manifold. The cartridges were washed with acetonitrile (ACN, 2 × 1 mL) and equilibrated with 0.5% (v/v) FA (3 × 1 mL) prior to loading the samples. After washing with 0.5% (v/v) FA (3 × 1 mL), peptides were eluted with 80% (v/v) ACN containing 0.5% FA (2 × 0.25 mL) and freeze-dried using a SpeedVac centrifuge. Samples were prepared for MS analysis by dissolving them in 30 μL of 1% (v/v) FA and passing the solution through 0.22 μm PVDF filters (Merck Millipore).

MS measurement and analysis of putatively modified peptides

MS analysis was performed on a Q Exactive Plus instrument coupled to an UltiMate 3000 Nano-HPLC via an electrospray easy source (all obtained from Thermo Fisher Scientific). Samples were loaded onto a 2-cm PepMap RSLC C18 trap column (particles 3 μm, 100 Å, inner diameter 75 μm; Thermo Fisher Scientific) with 0.1% trifluoroacetic acid, and peptides were separated on a 50-cm PepMap RSLC C18 column (particles 2 μm, 100 Å, inner diameter 75 μm; Thermo Fisher Scientific) at a constant temperature of 50 °C. The gradient 5–32% ACN in 0.1% FA was run over a period of 152 min (7 min 5%, 105 min to 22%, 10 min to 32%, followed by 10 min to 90%, then a 10 min wash at 90%, and a 10 min equilibration at 5%) at a flow rate of 300 nL·min⁻¹. Survey scans (m/z 300–1500) were acquired in the orbitrap with a resolution of
70 000 at m/z 200, and the maximum injection time was set to 80 ms (target value 3e6). Data-dependent HCD fragmentation scans of the 12 most intense ions in the survey scans were acquired in the orbitrap at a resolution of 17 500, using a maximum injection time of 50 ms and minimum and maximum AGC targets of 5e3 and 5e4, respectively. The isolation window was set to 1.6 m/z. Unassigned and singly charged ions were excluded from the measurement, and the dynamic exclusion of peptides was enabled for 60 s. The lock mass ion 445.12002 from ambient air was used for real-time mass calibration of the Q Exactive Plus. Data were acquired using Xcalibur software version 3.1sp3 (Thermo Fisher Scientific).

The raw MS files were analyzed using MaxQuant software (version 1.5.3.8) (https://www.maxquant.org). MS/MS-based peptide identification was carried out using the Andromeda search engine with the fasta file containing the protein sequences of the target organism (see Supplemental Information). Search parameters were set as follows: peptide and protein FDR, 1%; enzyme, trypsin; minimal number of amino acids required for peptide identification, 7; variable modifications on lysine with the compositions C6H12N2O (MW = 128.09), C6H11NO (MW = 113.084), and C7H12NO3 (MW = 172.08), respectively.

β-galactosidase activity assay

Escherichia coli BW25113 and the deletion mutants BW25113 ΔepmA and BW25113 ΔepmB were transformed with the plasmid p3LC-TL30-3P-CCG [18]. Complementation of the deletion mutants as well as cross-complementation was performed using plasmids pBAD33_sRBS_His6_epmA, pBAD33_sRBS_His6_epmA_A298G, or pBAD33_His6_epmB, respectively. Cotransformants were grown in LB medium under inducing conditions overnight and harvested by centrifugation. Pellets were resuspended in sodium phosphate buffer, and β-galactosidase measurements were performed as previously described [62]. Values are given in Miller Units (MU), which were calculated according to Miller [63].

Native purification

Escherichia coli BW25113 cells co-transformed with the plasmids p3LC-TL30-3P-CCG and pBAD33, or E. coli BW25113 ΔepmB co-transformed with the plasmids p3LC-TL30-3P-CCG and pBAD33_sRBS_His6_epmA or pBAD33_sRBS_His6_epmA_A298G were grown to the exponential growth phase in 1 L of LB medium at 37 °C. Expression of epmA was induced by adding 0.2% (w/v) L-arabinose, and cells were grown at 18 °C overnight. The cells were then harvested, and the pellet was resuspended in 20 mm triethanolamine (pH 7.5). After 30 min of incubation with DNase and phenylmethylsulfonyl fluoride, cells were disrupted in a continuous-flow cabinet from Constant Systems Ltd. at 1.35 kbar. The resulting lysates were clarified by centrifugation at 4 °C for 25 min at 30 000 g for 1.5 h. Anion-exchange chromatography was performed on an AKTA pure chromatography system (GE Healthcare, Chicago, IL, USA) equipped with the fraction collector F9-C and the Mono Q 10/100 GL column. Proteins were washed successively (at 25 °C), stained with Coomassie Blue. The bands were excised and subjected to IEF, and the gel was reduced by adding 100 μL of 10 mM DTT in ABC buffer for 5 min, 100 μL ACN for 5 min, 100 μL ABC buffer for 5 min, 100 μL ACN for 15 min, and a further 100-μL aliquot of ACN for 10 min, and dried for 15 min in a SpeedVac. The proteins were washed with 50 mM ammonium bicarbonate (ABC buffer) for 5 min, 100 μL ACN for 10 min, 100 μL ABC buffer for 5 min, 100 μL ACN for 15 min, and a further 100-μL aliquot of ACN for 10 min, and dried for 15 min in a SpeedVac. The proteins were reduced by adding 100 μL of 10 mM DTT in ABC buffer to each gel piece, and incubating for 50 min at 45 °C, alkylated, digested with chymotrypsin, and subjected to MS analysis essentially as described above [61].

In-gel protein digestion

EF-P modified in vitro by EpmA_A298G with (S)-x-ornitine as substrate was subjected to IEF, and the gel was stained with Coomassie Blue. The bands were excised and washed successively (at 25 °C and 550 r.p.m.) with 100 μL H2O for 15 min, 200 μL ACN : ABC buffer 1 : 1 (ABC buffer: 50 mM ammonium bicarbonate) for 15 min, 100 μL ACN for 10 min, 100 μL ABC buffer for 5 min, 100 μL ACN for 15 min, and a further 100-μL aliquot of ACN for 10 min, and dried for 15 min in a SpeedVac. The proteins were reduced by adding 100 μL of 10 mM DTT in ABC buffer to each gel piece, and incubating for 50 min at 45 °C, alkylated, digested with chymotrypsin, and subjected to MS analysis essentially as described above [61].

In vitro transcription/translation assay

The PUREExpress In Vitro Protein Synthesis Kit (New England Biolabs) was used according to the manufacturer’s instructions, but reactions were supplemented with unmodified EF-P, in vitro modified EF-P, EF-Pphys (as positive control) or in vitro modified EF-P (described above), and a plasmid coding for the EF-P-dependent RPPP-\textit{nluc}. Luminescence was measured over time.

For a 12.5-μL reaction mixture, 5 μL of PUREExpress solution A and 3.75 μL of solution B, 0.25 μL of Murine RNase inhibitor (New England Biolabs), 5 μM EF-P, and 1 ng pET16b_ProProPro_nluc are incubated under agitation (300 r.p.m.) at 37 °C. At various time points, a 1-μL aliquot was quenched with 1 μL of 50 mg mL-1 kanamycin and stored on ice. Afterward, 2 μL of Nano-Glo Luciferase Assay Reagent (Promega) and 18 μL ddH\textsubscript{2}O were added to induce luminescence development, which was detected by the Infinite F500 microplate reader (Tecan). At least three independent replicates were analyzed, and the statistical significance of the result was determined by two-tailed t-test using GraphPad Prism.
eluted using a salt gradient from 0 to 1 m KCl. The fraction with the highest EF-P concentration was determined by SDS/PAGE followed by western blotting and detection with anti-EF-P. Western blotting. Size-exclusion chromatography was performed in HEPES buffer on a Superdex 200 Increase 10/300 GL (GE Healthcare) column. Samples were assayed for their EF-P modification status by IEF on gels followed by western blotting, or by MS analysis.

Acknowledgements

We thank Ingrid Weidl for excellent technical assistance. This work was financially supported by the Deutsche Forschungsgemeinschaft (GRK2062) to KJ and JL and project JU270/17-1 (KJ).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

MP, JL, and KJ designed research. MP, PK, RK, and WV performed experiments. MP, PK, and SAS analyzed data. MP, RK, JL, and KJ wrote the paper.

References

1 Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56, 125–158.
2 Wolf YI, Aravind L, Grishin NV & Koonin EV (1999) Evolution of aminoacyl-tRNA synthases – analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9, 689–710.
3 Sugiyama I, Nureki O, Ugaji-Yoshikawa Y, Kuwabara S, Shimada A, Tateno M, Lorber B, Gihe R, Moras D, Yokoyama S et al. (2000) The 2.0 Å crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Structure 8, 197–208.
4 Artymiuk PJ, Rice DW, Poirette AR & Willet P (1994) A tale of two synthetases. Nat Struct Biol 1, 758–760.
5 Smith TF & Hartman H (2015) The evolution of class II aminoacyl-tRNA synthetases and the first code. FEBS Lett 589, 3499–3507.
6 Lu Y & Hill KA (1994) The invariant arginine in motif 2 of Escherichia coli alanyl-tRNA synthetase is important for catalysis but not for substrate binding. J Biol Chem 269, 12137–12141.
7 Siatecka M, Rozek M, Barciszewski J & Miranda M (1998) Modular evolution of the Glx-tRNA synthetase family – rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur J Biochem 256, 80–87.
8 Ibba M, Bono JL, Rosa PA & Soll D (1997) Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci USA 94, 14383–14388.
9 Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woece CR & Soll D (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278, 1119–1122.
10 Koonin EV & Aravind L. (1998) Genomics: reevaluation of translation machinery evolution. Curr Biol 8, R266–R269.
11 Motzik A, Nechushtan H, Foo SY & Razin E (2013) Non-canonical roles of lysyl-tRNA synthetase in health and disease. Trends Mol Med 19, 726–731.
12 Clark RL & Neidhardt FC (1990) Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J Bacteriol 172, 3237–3243.
13 Despotovic D, Brandis A, Savidor A, Levin Y, Fumagalli L & Tawfik DS (2017) Diadenosine tetraphosphate (Ap4A) – an E. coli alarmone or a damage metabolite? FEBS J 284, 2194–2215.
14 Luciano DJ, Levenson-Palmer R & Belasco JG (2019) Stresses that raise Np4A levels induce protective nucleoside tetraphosphate capping of bacterial RNA. Mol Cell 75, 957–966.e8.
15 Kong L, Fromant M, Blanquet S & Plateau P (1991) Evidence for a new Escherichia coli protein resembling a lysyl-tRNA synthetase. Gene 108, 163–164.
16 Bailly M & de Crécy-Lagard V (2010) Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol Direct 5, 3.
17 Lassak J, Keilhauer EC, Furst M, Wuichet K, Godeke J, Starosta AL, Chen J-M, Sogaard-Andersen L, Rohr J, Wilson DN et al. (2015) Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat Chem Biol 11, 266–270.
18 Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN & Jung K (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85.
19 Peil L, Starosta AL, Lassak J, Atkinson GC, Virumae K, Spitzer M, Tenson T, Jung K, Remme J & Wilson DN (2013) Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc Natl Acad Sci USA 110, 15265–15270.
20 Starosta AL, Lassak J, Peil L, Atkinson GC, Virumae K, Tenson T, Remme J, Jung K & Wilson DN (2014) Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res 42, 10711–10719.
21 Lassak J, Wilson DN & Jung K (2016) Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol 99, 219–235.

22 Doerfel LK, Wohlgemuth I, Kothe C, Peske F, URLaub H & Rodnina MV (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88.

23 Gilreath MS, Roy H, Bullwinkle TJ, Katz A, Navarre WW & Ibba M (2011) β-Lysine discrimination by lsynyl-tRNA synthetase. FEBS Lett 585, 3284–3288.

24 Huter P, Arenz S, Bock LV, Graf M, Frister JO, Heuer A, Peil L, Starosta AL, Wohlgemuth I, Peske F et al. (2017) Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol Cell 68, 515–527.e6.

25 Ambrogelly A, O'Donoghue P, Söll D & Moses S (2010) A bacterial ortholog of class II lsynyl-tRNA synthetase activates lysine. FEBS Lett 584, 3055–3060.

26 Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW & Ibba M (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat Chem Biol 7, 667–669.

27 Rajkovic A, Hummels KR, Witzky A, Erickson S, Gafken PR, Whitelegge JP, Faull KF, Kearns DB & Ibba M (2016) Translation control of swarming proficiency in Bacillus subtilis by S-aminopentanoylated elongation factor P. J Biol Chem 291, 10976–10985.

28 Hummels KR, Witzky A, Rajkovic A, Tollerson R, Jones LA, Ibba M & Kearns DB (2017) Carbonyl reduction by YmII in Bacillus subtilis prevents accumulation of an inhibitory EF-P modification state. Mol Microbiol 106, 236–251.

29 Rajkovic A, Erickson S, Witzky A, Branson OE, Seo J, Gafken PR, Frietas MA, Whitelegge JP, Faull KF, Navarre W et al. (2015) Cyclic rhamnosylated elongation factor P establishes antibiotic resistance in Pseudomonas aeruginosa. MBio 6, e00823.

30 Schimmel P & Schmidt E (1995) Making connections: RNA-dependent amino acid recognition. Trends Biochem Sci 20, 1–2.

31 Jakubowski H (1999) Misacylation of tRNAlys with noncognate amino acids by lsynyl-tRNA synthetase. Biochemistry 38, 8088–8093.

32 Starosta AL, Lassak J, Jung K & Wilson DN (2014) The bacterial translation stress response. FEMS Microbiol Rev 38, 1172–1201.

33 Splan KE, Musier-Forsyth K, Boniecki MT & Martinis SA (2008) In vitro assays for the determination of aminocacyl-tRNA synthetase editing activity. Methods 44, 119–128.

34 Baldwin AN & Berg P (1966) Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem 241, 839–845.

35 Hati S, Ziervogel B, Sternjohn J, Wong F-C, Nagan MC, Rosen AE, Siliciano PG, Chihade JW & Musier-Forsyth K (2006) Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminocacylation active site in "selective release" of noncognate amino acids. J Biol Chem 281, 27862–27872.

36 Guth E, Farris M, Bovee M & Franklyn CS (2009) Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. J Biol Chem 284, 20753–20762.

37 Michaelis L, Menten ML, Johnson KA & Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50, 8264–8269.

38 An G, Glick BR, Friesen JD & Ganoza MC (1980) Identification and quantitation of elongation factor EF-P in Escherichia coli cell-free extracts. Can J Biochem 58, 1312–1314.

39 Beyer H & Walter W (1991) Lehrbuch der Organischen Chemie, 22nd edn. S. Hirzel Verlag, Stuttgart.

40 Haynes WM (2017) CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 97th edn. CRC Press, Boca Raton, FL; London; New York, NY.

41 Behshad E, Ruzicka FJ, Mansoorabadi SO, Chen D, Reed GH & Frey PA (2006) Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Biochemistry 45, 12639–12646.

42 Navarre WW, Zou SB, Roy H, Xie JL, Savechenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba M et al. (2010) PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 39, 209–221.

43 Yanagisawa T, Sumida T, Ishii R, Takemoto C & Yokoyama S (2010) A paralog of lsynyl-tRNA synthetase aminocacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17, 1136–1143.

44 Park J-H, Johansson HE, Aoki H, Huang BX, Kim H-Y, Ganoza MC & Park MH (2012) Post-translational modification by β-lysyl is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 287, 2579–2590.

45 Bennett BD, Kimball EH, Gao M, Osterhout R, van Dien SJ & Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5, 593–599.

46 Peil L, Starosta AL, Virumae K, Atkinson GC, Tenson T, Remme J & Wilson DN (2012) Lys34 of translation elongation factor EP is hydroxylated by YfC. Nat Chem Biol 8, 695–697.

47 Starosta AL, Lassak J, Peil L, Atkinson GC, Woolstenhulme CJ, Virumae K, Buskirk A, Tenson T,
Remme J, Jung K et al. (2014) A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P. Cell Rep 9, 476–483.

48 England CG, Ehlerding EB & Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27, 1175–1187.

49 Witzky A, Hummels KR, Tollerson R, Rajkovic A, Jones LA, Kears DB & Ibbia M (2018) EF-P posttranslational modification has variable impact on polyproline translation in Bacillus subtilis. mBio 9, e00306-18.

50 Volkwein W, Maier C, Krafczyk R, Jung K & Lassak J (2017) A versatile toolbox for the control of protein levels using Nε-acetyl-L-lysine dependent amber suppression. ACS Synth Biol 6, 1892–1902.

51 Umehara T, Kim J, Lee S, Guo L-T, Soll D & Park H-S (2012) N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett 586, 729–733.

52 Schmidt C, Becker T, Heuer A, Braunger K, Shanmuganathan V, Pech M, Berninghausen O, Wilson DN & Beckmann R (2016) Structure of the hypusylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res 44, 1944–1951.

53 Melnikov S, Maillot J, Shin B-S, Rigger L, Yusupova G, Micura R, Dever TE & Yusupov M (2016) Crystal structure of hypusine-containing translation factor eIF5A bound to a rotated eukaryotic ribosome. J Mol Biol 428, 3570–3576.

54 Schultz DW & Yarus M (1990) A simple and sensitive deconvolution of mass and ion mobility spectra: from GKA, Benesch JLP & Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87, 4370–4376.

55 Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York, NY.

56 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL & Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008.

57 Platt R, Drescher C, Park SK & Phillips GJ (2000) Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43, 12–23.

58 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem 25, 1605–1612.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. (R)-3-AC exhibits a concentration-dependent substrate inhibition in vitro.

Fig. S2. Mass spectrometric analyses of in vitro modified EF-Ps.

Fig. S3. Transcription/translation efficiency in presence of successfully in vitro modified EF-P.

Fig. S4. Production of acetylated EF-P using amber suppression.

Fig. S5. Models of altered EF-P-tRNA and EF-P-ribosome (23S rRNA) interactions induced by synthetic post-translational modifications.

Table S1. Strains, plasmids and oligonucleotide sequences.