Response of Potato to Nitrogen and Phosphorus Fertilizer at Wag-Lasta Areas of Eastern Amhara, Ethiopia

Workat Sebnie (workat85@gmail.com)
Sekota Dry-Land Agricultural Research Center
https://orcid.org/0000-0002-4622-542X

Tilahun Esubalew
Sekota Dry-Land Agricultural Research Center

Merse Mengesha
Sekota Dry-Land Agricultural Research Center

Research

Keywords: fertilizers, Marketable yield, unmarketable yield, Total yield, Woleh and Kechi abeba

DOI: https://doi.org/10.21203/rs.3.rs-38983/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Production and productivity of potato in Ethiopia is far below the world average due to soil fertility and other complicated problems. From the production constraints nutrient depletion due to soil erosion is a serious problem. Annually, nitrogen 122 kg ha\(^{-1}\) P 13 kg ha\(^{-1}\) and K 82 kg ha\(^{-1}\) was estimated to deplete from Ethiopia (Haileslassie et al., 2005). The essential nutrients like, nitrogen and phosphorus are the most important influential nutrient for production of potato but they are deficient in most Ethiopian soils and thus application of these nutrients could significantly increase crop yields. In this context an experiment was conducted at Sekota and Lasta Lalibela districts (Woleh and Kechin Abeba irrigation command areas) of eastern Amhara to investigate the effects of nitrogen and phosphorus fertilizers for yield and yield component of potato under irrigation condition.

Methods: Four rates of nitrogen (0, 46, 92 and 138 Kg N kg ha\(^{-1}\)) and four rates of phosphorus (0, 23, 46, and 69 Kg P\(_2\)O\(_5\) kg ha\(^{-1}\)) were combined in factorial arrangement and laid out in randomized complete block design with three replications.

Results: the result of the study revealed that nitrogen and phosphorus had significant effect on plant height, marketable, and total yield of potato. But phosphorus did not show a significant effect on plant height and unmarketable yield at Sekota district of Woleh irrigation command area. Highest yield 45.55 t ha\(^{-1}\) was obtained from in combined application of 138 N and 23 P\(_2\)O\(_5\) in Lalibela and 17.12 t ha\(^{-1}\) was obtained from in combined application of 138 N and 46 P\(_2\)O\(_5\) from Sekota districts of Woleh irrigation command area.

Conclusion: application of nitrogen and phosphorous fertilizer in the study area was more efficient in terms of tuber yield in Lalibela (Kechin Abeba) than Woleh. Cost benefit analysis indicated that application of 46 N kg ha\(^{-1}\) and 23 P\(_2\)O\(_5\) kg ha\(^{-1}\) is required for optimum production of potato in Woleh and application of 138 kg ha\(^{-1}\) N combined with 23 kg ha\(^{-1}\) P2O5 is found to be the appropriate rates for optimum productivity of Potato at Lalibela under irrigation conditions and the same agro-ecology.

Background

Potato (*Solanum tuberosum* L.) is one of the most important agricultural crops in the world. In volume of production, it ranks fourth in the world after maize, rice and wheat, with an estimated production area of 18.9 million hectares (Naz et al., 2011). Its yield in sub-Sahara Africa is below 10 t ha\(^{-1}\) while the attainable yields with good crop management are well above 30 t ha\(^{-1}\). In Ethiopia its productivity is very low there are many complicated reasons for this low actual yield of potato tubers (Haverkort et al., 2012). Factors like soil fertility problem, lack of good quality seed, unbalanced mineral nutrition and inadequate application of fertilizers, pests and disease, irregularity of water supply and traditional irrigation schemes and schedules are the main reason for low productivity of potato in Ethiopia (Emana and Nigussie, 2011). In addition to this continuous cropping without replacing the removal nutrient from crop biomass and another organic source is a major problem of nutrient depletion in Ethiopia. Plants require a variety of elements for growth and development of which N and P are the most important of the essential nutrients to plants because they are required in large quantities. The deficiency of these elements is manifested in the detrimental effects on the growth and development of the plants (Tisdale et al., 1995). Fertilizer usage plays a major role in the universal need to
increase food production to meet the demands of the growing world population. Fertilizer application resulted in marked crop yield increases, which for most crops was more than hundred percent (Mengel and Kirkby, 1996). Applications of nitrogen and phosphorus fertilizer have shown that good yield response for different crops including potato in the country. Research conducted by Friew et al., (2016) shows that combined application nitrogen and phosphorus fertilizer had increases the yield of potato by 12.26 t ha$^{-1}$ as compared to control (0 N, 0 P). Similarly Wubengeda et al.,(2016) reported that increasing rate of the two (N and P) nutrient increases the yield and yield components of potato. Desalegn et al., (2016) also, reported that increasing rate of nitrogen and phosphorus increase the tuber yield by 361 and 358% compared with control. Generally, the above mentioned study shows that appropriate agronomic practices including fertilizer recommendation play signicant role in potato production. However, in the study areas farmers utilized inorganic and organic fertilizers with blanket recommendation to increase the potato production. But, site specific recommendation is very vital to produce much more economic production of potato for smallholder farmers. Moreover, there was no appropriate fertilizer rate recommendation for potato in the study area. Therefore, the experiment was conducted with the objective of determining the optimum rates of nitrogen and phosphorus fertilizers for potato production at Wag-Lasta areas of Amhara Region Ethiopia.

Material And Methods

Description of study area

The experiment was conducted in 2017 and 2018 irrigation season at two sites; Sekota district (Woleh) and Lasta district Kechin Abeba. The sites are located (11° 57’ 31.14” and 12° 31’44.57”latitude, 39° 04’01.07” and 39° 02’55.6” longitude and altitude of 2120 m and 2101 meter above sea level), respectively. Specifically Woleh irrigation command area irrigates an area of 137.25 ha and Kechin Abeba irrigation command area irrigates 75 ha irrigable land. The topographical feature of the area is characterized by mountainous, plateaus, and hills. Soil erosion is a common problem in the study area and due to this problem the soil fertility status is below the threshold level. Mixed agriculture is a common farming system in the study area. The major crops cultivate in the districts are cereals such as teff (Eragrostis tef), Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L), and sorghum (Sorghum bicolor) and horticultural crops such as Mango (Manifera indica L), pepper (Capsicum species), Tomato (Solanum lycopersicum L.), Garlic (Allium sativa), and onion (Allium cepa L.).

Experimental treatments, design and procedures

The experiment was conducted in 2015 and 2017 irrigation season at Woleh and Kechin Abeba irrigation command areas. Four levels of nitrogen (0, 46, 92, 138 kg ha$^{-1}$) and four levels of Phosphorus (0, 23, 46, 69 kg ha$^{-1}$) were arranged in a factorial combination, giving a total of 16 treatments set in a Randomized Complete Block Design (RCBD) with three replications. The entire rate of P$_2$O$_5$ and the half rate of the N fertilizers were applied at the time of planting. The remaining half of N was applied 45 days after planting. Urea (46% N) and Triple Super Phosphate (46% P$_2$O$_5$) were used as fertilizer sources for N and P, respectively. Medium size and well-sprouted potato tubers were planted at a spacing of 75 cm between rows and 30 cm between plants. The total plot size was 3 mx3m (9 m2), spacing between plots and replications were 0.5 and 1 m, respectively.
Cultural practices like cultivation, weeding and ridging were practiced as per recommendation. Watering was done within 5 days interval based on the recommendation. Gera potato variety was used for the study.

Data Collection and analysis

Plant height (cm), marketable tuber yields (ton), unmarketable tuber yield (ton) and total tuber yield (ton) were collected from the middle rows of the experimental plots. Data was subjected to analysis of variance using proc GLM (general linear model) procedure of SAS 9.0 software (SAS 2004). Treatments means were compared with LSD at 5% significance level. To determine the nutrient content of the soil before planting, composite soil samples were collected from 0–20 cm depth using the Edelman auger from the experimental sites. Samples were air-dried and ground to pass through a 2-mm sieve to get the fine earth fraction (< 2 mm separates). Particle size distribution (sand, silt, and clay separates) were determined by the hydrometer method as outlined by Bouyoucos (1965). Soil pH was determined from the filtered suspension of 1:2.5 soils to water ratio using a glass electrode attached to a digital pH meter. Organic carbon of the soils was determined following the wet digestion method as described by Walkley and Black (1934). Total nitrogen was determined by the micro-Kjeldahal digestion, distillation and titration method (Bremner and Mulvaney, 1982). The available phosphorus was determined by the standard Olsen method (Olsen et al., 1954).

Partial budget analysis

The partial budget analysis was carried out for every treatment based on CIMMYT (1998) to indicate the economic superiority of alternative treatments over the control treatment. The varying costs (fertilizer and labor) were estimated based on the existing rate of fertilizer purchase and daily labor cost. The average yield was adjusted downward by 10% from the exact yield to reflect the difference between the experimental yield and yield of farmers. MRR (%) was calculated as changes in net benefit divided by changes in cost.

Result And Discussion

Pre planting soil property of the study sites

Sites	pH	EC	OC %	TN %	Aval.Ppm	Particle size distribution			
						Sand%	Silt%	Clay%	Textural class
Woleh	7.6	0.13	0.43	0.04	15.45	32.66	33.65	33.69	Clay loam
Kechin Abeba	7.3	0.12	0.55	0.02	18.04	30	30	40	Clay loam

Soil laboratory analysis

At Woleh, soil pH, EC and total nitrogen were numerically higher than at Kechin Abeba, but Organic carbon and available phosphorus were lower at Woleh. The sites had textural class of clay loam. The soil pH value of the surface soil at Woleh and Kechin Abeba was 7.3 and 7.6 respectively. According Landon, (1991) soil pH rating classified as neutral and slightly alkaline. Similarly, the electrical conductivity of the study sites soil was free
from salt (Landon 1991). The organic carbon and total nitrogen content were rated at low categories. According to Olson (1951) the available phosphorous was high in both sites. This might be the area had a long history on agriculture without replacing the complete removal of cover crop and burning crop residue as fuel are the main cause for nutrient loses.

Table 2
ANOVA for the effect of N and P fertilizers on the plant height, marketable yield, unmarketable yield and total yield of potato 2017 at Kechin Abeba

Source of variation	DF	Mean square values			
		Plant Height	Marketable yield	Unmarketable yield	Total yield
N	3	638.44*	418.95*	5.60*	451.10*
P	3	5.56ns	67.91*	0.27ns	65.04*
N*P	9	45.77*	69.57*	0.82ns	71.06
Error	32	15.56	4.50	1.20	4.72

Table 3
ANOVA for the effect of N and P fertilizers on the plant height, marketable yield, unmarketable yield and total yield of potato 2015

Source of variation	DF	Mean square values			
		Plant Height	Marketable yield	Unmarketable yield	Total yield
N	3	518.94*	101.55*	4.14*	138.09*
P	3	92.15*	11.94*	1.11ns	12.04*
N*P	9	44.91*	12.75*	0.89ns	12.57*
Error	32	19.38	2.50	0.57	3.81

Table 4
Combined ANOVA for the effect of N and P fertilizers on the plant height, marketable yield, unmarketable yield and total yield of potato at Woleh

Source of variation	DF	Mean square values			
		Plant Height	Marketable yield	Unmarketable yield	Total yield
N	3	193.65*	159.35*	5.79*	233.68*
P	3	35.86ns	17.02*	2.76*	30.54*
N*P	9	51.45ns	221.53*	1.33*	9.44*
Error	57	34.54	3.32	0.35	3.44

Plant height
Both the main and interaction effect of nitrogen and phosphorus fertilizer application affect marketable yield and total yield significantly in 2015 and 2017 at Kechin Abeba whereas the plant height and unmarketable yield were significantly affected by nitrogen application (Table 2 & 3). Highest plant height 72.58 cm was record from application of 138 N kg ha\(^{-1}\) in 2017 irrigation season whereas highest plant height 54.85 and 51.90 cm was record from by application of 92 N and 69 P\(_2\)O\(_5\) kg ha\(^{-1}\) in year 2015. In all parameters, the 2017 cropping season exceeded the 2015 production year. This is probably due to variation in irrigation water availability in the year between 2015 and 2017. There was shortage of irrigation water in 2015 irrigation season in the command area. Increasing rate of nitrogen and phosphorus fertilizer in irrigation season of 2015 increases plant height by 14.81 and 4.97 cm whereas, in irrigation season of 2017 application of nitrogen alone at rate of 138 kg ha\(^{-1}\) increases plant height by 16.14 over the control treatment. The current study in line with Zelalem et al., (2009) who reported that nitrogen and phosphorus at rate of 207 and 60 kg ha\(^{-1}\) increases plant height by 24 cm and 10.5 cm respectively. Similarly Israel et al., (2012), Alemayehu et al., (2015) and Fayera, (2017) and have found that increasing application of nitrogen and phosphorus significantly increased plant height.

In Woleh the main effect of nitrogen fertilization was significantly influenced the plant height of potato but, their interaction exhibited a non-significant effect on the stated parameter (Table 4). The highest plant height (49.82 cm) was obtained from fertilizer rates 138 N kg ha\(^{-1}\) at Woleh while lowest plant height (43.15) was obtained from control (Table 4). Application of phosphorous fertilizer didn’t show significant effect on the plant height at Woleh during the study (Table 4).

This might be the fact of that nitrogen plays a most important role in various physiological processes. The current study in lined with Sanjana et al., (2014) who reported that increasing rate of nitrogen up to 375 kg ha\(^{-1}\) increases the plant height of potato. Study conducted in eastern Ethiopia to ascertain effect of nitrogen and planting density on yield and yield components of potato shows that increasing rate of nitrogen from 0 to 165 kg ha\(^{-1}\) increases the plant height of potato.
Table 5

N level kg ha\(^{-1}\)	Plant height cm (at Kechin Abeba)	Plant height cm (at Woleh)			
	2016	2018	2016	2018	Combined
0	40.05	55.86	46.63	39.66	43.15
46	46.67	61.94	48.89	41.95	45.42
92	54.85	68.14	51.13	43.65	47.39
138	52.35	72.58	53.13	46.50	49.82
LSD (0.05)	3.24*	3.28*	3.18*	5.69*	3.39*

P\(_2\)O\(_5\) level kg ha\(^{-1}\)					

0	46.93	65.34	49.28	42.07	45.67
23	49.45	63.75	50.36	40.44	45.40
46	45.65	64.66	50.64	45.59	48.11
69	51.90	64.81	49.50	43.66	46.58
LSD (0.05)	3.24*	3.28\(\text{ns}\)	ns	ns	ns
CV	9.08	6.10	7.43	15.95	12.65

Marketable yield

Both the main and interaction effect of nitrogen and phosphorus fertilizer application were affect the marketable yield significantly at Kechin Abeba and Woleh. Increasing rate of nitrogen and phosphorus significantly increases the marketable yield of potato in both sites. In Kechin Abeba marketable yield was increase with increasing rate of nitrogen and phosphorus. Highest marketable yield (45.55 t ha\(^{-1}\)) was recorded from 138 kg ha\(^{-1}\) nitrogen in combined with phosphorus at rate of 23 kg ha\(^{-1}\) in 2017 and 19.57 t ha\(^{-1}\) was record from 138 nitrogen in combined with phosphorus at rate of 23 kg ha\(^{-1}\) in 2015 (Table 5) whereas the lowest marketable yield (17.71 t ha\(^{-1}\)) and (8.1 t ha\(^{-1}\)) was recorded from treatment (0, 69 NP) in 2017 and 2015 respectively. The marketable yield of potato gained in the year of 2017 irrigation season was exceeded the irrigation season of 2015. This is probably due to irrigation water availability in the year between 2015 and 2017. There was irrigation water scarcity in the year of 2015. In case of Woleh Highest marketable yield (17. 12 t ha\(^{-1}\)) was recorded from 138 kg ha\(^{-1}\) nitrogen in combined with phosphorus at rate of 46 kg ha\(^{-1}\) whereas the lowest marketable yield (8.16 t ha\(^{-1}\)) was recorded from zero treatment (0, 0 NP kg ha\(^{-1}\)). There was tuber yield reduction in Woleh and Kechin Abeba in 2015 by half as compared to tuber yield gained in 2017 Kechin Abeba. This was attributed to the fact that water is the most important limiting factor for potato production and it’s possible to increase production levels by well-scheduled irrigation programs throughout the growing season (Liu et al., 2006). Similarly, (Demile, 2012) observed that 4.09 t ha\(^{-1}\) (64%) and 39% tuber yield reduction were recorded from application of 25%, and 50% (deficit) of the total crop water requirement at all stages, respectively.
However, marketable yield was increase by 24.95 t ha$^{-1}$ and 8.96 t ha$^{-1}$ over control treatment at Kechin Abeba and Woleh respectively. This might be the fact that nitrogen is part of the chlorophyll molecule, which gives plants their green color and is involved in creating food for the plant through photosynthesis and phosphorus is involved in the metabolic processes responsible for transferring energy from one point to another in the plant. It's also critical in root development and flowering. The current study is in agreement with previous study Zelalem et al., (2009), Israel et al., (2012), Gebremariam, (2014), and Alemayehu et al.,(2015), who reported that increasing rate of nitrogen increases marketable tuber yield significantly. Similarly Desalegn et al., (2016) observed increment of potato marketable yield with increasing of NP fertilizer in southern Ethiopia.

Table 6
Effect of nitrogen and phosphorus on tuber marketable yield of potato ton/ha at Kechin Abeba 2015 and 2017

	2015	2017						
P$_{2}$O$_{5}$ kg ha$^{-1}$	P$_{2}$O$_{5}$ kg ha$^{-1}$							
N kg ha$^{-1}$	0	23	46	69	0	23	46	69
0	11.26	11.66	11.87	8.10	20.60	21.89	23.66	17.71
46	16.76	17.91	17.56	12.96	23.82	28.53	29.92	27.24
92	15.01	15.68	19.23	14.29	26.54	19.67	29.23	33.52
138	14.95	19.57	17.02	16.77	14.95	45.55	37.70	29.35
LSD$_{(0.05)}$	2.63*	3.53**						
CV	10.52	7.58						

Table 7
Combined analysis of potato marketable yield t ha$^{-1}$ at Woleh

	2015			
P$_{2}$O$_{5}$ kg ha$^{-1}$				
N kg ha$^{-1}$	0	23	46	69
0	8.16	11.00	10.77	11.76
46	13.66	13.49	13.61	
92	12.04	15.23	14.58	14.15
138	15.99	16.99	17.12	16.76
LSD$_{(0.05)}$	3.15*			
CV	14.55			

Unmarketable and total yield of potato
Both the main and interaction effect of nitrogen and phosphorus fertilizer application were affect unmarketable and total yield of potato significantly at Woleh but, at Kechin Abeba only application of nitrogen was affect significantly an unmarketable and total yield of potato (Table 2, 3, and 5). The highest unmarketable yield (2.88 \& 4.06 t ha$^{-1}$) was recorded at rate of 92 kg ha$^{-1}$ N in the year of 2015 and 2017 respectively at Kechin Abeba (Table 8). Phosphorus fertilizer application was not significantly affects the total yield of potato in the year of 2017 but, in the year of 2015 the highest yield was recorded at application rate of 23 kg ha$^{-1}$ P$_2$O$_5$. The highest total yield (25.39 and 38.82 t ha$^{-1}$) was recorded at rate of 138 kg ha$^{-1}$ N. In case of Woleh the highest total yield (19.39 t ha$^{-1}$ & 16.84 t ha$^{-1}$) was obtained from application of 138 kg ha$^{-1}$ N and 46 kg ha$^{-1}$ P$_2$O$_5$ and the lowest (11.80 & 14.21 t ha$^{-1}$) were obtained from unfertilized treatment. Similarly highest unmarketable yield was obtained from application of N 138 and P$_2$O$_5$ 46 kg ha$^{-1}$ (Table 8).

N level kg ha$^{-1}$	Kechin Abeba Unmarketable yield t ha$^{-1}$	2015	2017	2015	2017	Combined	Woleh Unmarketable yield t ha$^{-1}$	2015	2017	Combined
0	1.45	2.87	12.18	23.88	1.32	1.65	1.48	12.76	10.84	11.80
46	2.14	2.47	18.44	30.29	2.41	1.96	2.18	18.83	12.45	15.64
92	2.88	4.06	20.94	31.68	2.34	1.89	2.11	18.04	14.66	16.35
138	2.31	3.36	25.39	38.82	3.19	2.17	2.68	20.60	18.18	19.39
LSD (0.05)	0.58*	0.91*	1.01*	1.80*	0.41*	0.39*	0.34*	1.11*	1.41*	1.07*

P$_2$O$_5$ level kg/ha	Kechin Abeba Total yield t ha$^{-1}$	2015	2017	2015	2017	Combined	Woleh Total yield t ha$^{-1}$	2015	2017	Combined
0	2.37	3.14	16.87	34.53	19.45	1.71	1.83	15.52	12.90	14.21
23	2.40	3.23	18.61	30.85	20.83	1.91	2.00	18.99	13.51	16.25
46	1.75	3.38	17.23	29.31	33.88	1.83	2.61	18.69	15.00	16.84
69	2.26	3.02	16.24	29.98	18.38	2.22	2.03	17.03	14.71	15.87
LSD (0.05)	0.58*	Ns	1.01*	2.54*	4.13*	0.39*	0.34*	1.11*	1.41*	1.07*
CV	34.51	34.35	11.33	6.96	20.82	24.87	28.08	7.41	12.10	11.75

Partial budget analysis

The application of nitrogen at rate of 138 kg ha$^{-1}$ with 23 kg ha$^{-1}$ phosphorus had highest marketable yield (45.55 t ha$^{-1}$) and net benefit (164597) in Woleh irrigation command area (Table 9). The MRR is 1606.90% was
gained, this implies that for each Birr that invested in the new technology, the producer can receive to recover the one Birr invested plus an additional return of 16.06 Ethiopian birr.

Table 9
partial budget analysis at Woleh

N	P2O5	Unadjusted yield	Adjusted	Gross benefit	Costs that varies	Net benefit	MRR%
0	0	9.86	8.874	97614	0	97614	
0	23	11	9.9	108900	580	108320	1845.86
46	0	11.66	10.494	115434	1008	114426	1426.64
0	46	10.77	9.693	106623	1160	105463	D
46	23	13.49	12.141	133551	1588	131963	3023.62
0	69	11.76	10.584	116424	1740	114684	D
92	0	12.04	10.836	119196	2016	117180	D
46	46	14.28	12.852	141372	2168	139204	1248.45
92	23	15.23	13.707	150777	2596	148181	2097.43
46	69	13.61	12.249	134739	2748	131991	D
138	0	15.99	14.391	158301	3024	155277	1657.94
92	46	14.58	13.122	144342	3176	141166	D
138	23	16.99	15.291	168201	3604	164597	1606.90
92	69	14.15	12.735	140085	3756	136329	D
138	46	17.12	15.408	169488	4184	165304	121.90
138	69	16.76	15.084	165924	4764	161160	D

Conclusion And Recommendation

Current investigation showed that both nitrogen and phosphorus rates had high significant effect on tuber yield of potato. This study confirmed that nitrogen and phosphorus rates and their interaction have sound and promising impact on marketable and total tuber yield of potato. However, the cost benefits analysis indicated that application of 138 kg N ha\(^{-1}\) and 23 kg ha\(^{-1}\) P\(_2\)O\(_5\) had a yield advantage of 86.64% or 7.13 t ha\(^{-1}\) over the control treatment at Woleh irrigation command area. Similarly, at Kechin Abeba application of 138 kg ha\(^{-1}\) nitrogen fertilizer and 23 t ha\(^{-1}\) phosphorus fertilizers resulted in the highest yield (45.55 t ha\(^{-1}\)) of potato tuber which exceeds by 121.11% or 24.95 t ha\(^{-1}\) from the control. Hence application of nitrogen 138 and 23 P\(_2\)O\(_5\) kg ha\(^{-1}\) is the optimum rates for potato in Woleh and Kechin Abeba irrigation command areas. Therefore, application of 138 kg N and 23 kg P ha\(^{-1}\) is the appropriate rate for optimum productivity of Potato for Woleh and Kechin Abeba under irrigation and the same agro ecologies.
Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Data Availability
The data used to support the findings of this study can be accessed from the corresponding author upon request.

Funding
This study received no external funding

Contributions
WS and MM conceptualized this study, WS and TE collect necessary data, analyzed, interpreted the data, and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The Amhara Agricultural Research Institute (ARARI) is gratefully acknowledged for financing this research. We deeply appreciate and acknowledge the staff of soil and water management research directorate researchers for their assistance in implementing the field work.

References
1. Alemayehu, T. G., Nigussie, D. & Tamado, T. 2015. Response of Potato (Solanum tuberosum L.) Yield and Yield Components to Nitrogen Fertilizer and Planting Density at Haramaya, Eastern Ethiopia. Journal of Plant Sciences, 3, 320-328.
2. Bremner J. M. and Mulvaney C. 1982. Nitrogen Total Methods of soil analysis. Part 2. Chemical and microbiological properties, 595-624.
3. Bouyoucos, G.J., 1962. Hydrometer method improvement for making particle size analysis of soils. Agron.J., 54: 179-186.
4. CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). 1988. from agronomic data to farmers recommendations. Economic training manual, CIMMYT, Mexico, pp 84.
5. Demlie Gebresillassie 2012 Evaluation of deficit irrigation for potato production at Sekota, Wag Himra, Wondim Bu (ed) Proceedings of the 4th Annual Regional Conference on Completed Research Activities, 4-7 November, 2009. Amhara Regional Agricultural Research Institute. Bahir Dar, Ethiopia.

6. Desalegn, R., Wakene, T., Dawit, M. & Tolessa, T. 2016. Effects of Nitrogen and Phosphorus Fertilizer Levels on Yield and Yield Components of Irish Potato (Solanum tuberosum) at Bule Hora District, Eastern Guji Zone, Southern Ethiopia. *International Journal of Agricultural Economics*, 1, 71-77.

7. Emena B, & Nigussie M. (2011). Potato value chain analysis and development in Ethiopia. Addis Abeba, Ethiopia.

8. Fayera, W. N. 2017. Yield and yield components of potato (Solanum tuberosum L.) as influenced by planting density and rate of nitrogen application at Holeta, West Oromia region of Ethiopia. *African Journal of Agricultural Research*, 12, 2242-2254.

9. Firew, G., Nigussie, D., & Wassu, M. (2016). Response of potato (Solanum Tuberosum L.) to the application of mineral nitrogen and phosphorus fertilizers under irrigation in Dire Dawa, Eastern Ethiopia. *Journal Of Natural Sciences Research*, 6, 19-37.

10. Gebremariam, F. 2014. *Response of Potato (Solanum Tuberosum L.) to Nitrogen and Phosphorus Application Under Irrigation in Dire Dawa, Eastern Ethiopia*. MSc, HARAMAYA UNIVERSITY.

11. Haileselassie A, Priess JA, Veldkamp E, Teketay D, Lesschen JP. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. *Agric Ecosyst Environ.* 2005;108:1–16.

12. Haverkort, A., Van Koesveld, M., Schepers, H., Wijnands, J., Wustman, R., & Zhang, X. X. (2012). Potato prospects for Ethiopia: On the road to value addition. *Ppo Agv*

13. Israel, Z., Ali, M. & Solomon, T. 2012. Effect of Different Rates of Nitrogen and Phosphorus on Yield and Yield Components of Potato (Solanum tuberosum L.) at Masha District, Southwestern Ethiopia. *International Journal of Soil Science*, 7, 146-156.

14. Liu, F., Shahanzari, A., Andersen, M.A., Jacobsen, S.-E., Jensen, C.R., 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. *Scientia Hortic.* Amsterdam 109, 113–117.

15. Mengel, K. and E.A. Kirkby, 1996. Principles of Plant Nutrition. Panimo Publ. Corp., New Delhi. (6).

16. Naz, F., Ali, A., Iqbal, Z., Akhtar, N., Asghar, S. and Ahmad, B., 2011. Effect of different levels of NPK fertilizers on the proximate composition of potato crop at Abbottabad. *Sarhad Journal of Agriculture*, 27(3), pp.353-356.

17. Olsen, S.R., C.V.Cole, F.S.Wanatabe and L.A.Dean, 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular, 939:pp: 1-19.

18. Sanjana Banjare, Gaurav Sharma and S. K. Verma 2016 Potato Crop Growth and Yield Response to Different Levels of Nitrogen under Chhattisgarh Plains Agro-climatic Zone Indian Journal of Science and Technology, Vol 7(10), 1504–1508

19. SAS (Statistical Analysis System Institute), 2004. SAS statistical guide for personal computers, version 9.0. SAS Institute.

20. Tisdale, S.L., W.J. Nelson, J.D. Beaton and L. Havlin, 1995. Soil fertility and fertilizer. pp. 249-291. In: Soil Fertility and Fertilizers, 5th Edition. MacMillan Publ. Com., New York. (5).
21. Walkley A. and Black I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37, 29-38.

22. Wubengeda, A., Kassu, T., Tilahun, H., Yonase, D., & Dawit, H. (2016). Determining of optimal irrigation regimes and Np fertilizer rate for potato (Solanum Tuberosum L.) at Kulumiwa, Arsi Zone, Ethiopia. Academia Journal Of Agricultural Research, 4, 326–332.

23. Zelalem, A., And, T. T. & Nigussie, D. 2009. Response of potato (Solanum tuberosum L.) to different rates of nitrogen and phosphorus fertilization on vertisols at Debre Berhan, in the central highlands of Ethiopia. African Journal of Plant Science, 3, 016-024.

Figures

Figure 1

description of the study area