Spinal Cord Ischemia Secondary to Aortic DisSECTION: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities and Outcome

Hosna Elshony1*, Abdelrahman Idris2, Alaa Ahmed3, Murouj Almaghrabi3, Walaa Ahmed3 and Shouq Fallatah3

1Department of Neuropsychiatry, Faculty of Medicine, Menoufia University, Egypt
2Department of Neurology/Internal medicine, Security Forces Hospital, Makkah, Saudi Arabia
3Faculty of Medicine, UM Alquraa University, Makkah, Saudi Arabia

*Corresponding author: Hosna Saad Soliman Elshony, Department of Neuropsychiatry, Faculty of Medicine, Menoufia University, Egypt.

Received Date: May 07, 2021
Published Date: May 20, 2021

Abstract

Background: Aortic dissection (AD) is a serious condition, that causes transient or permanent neurological problems that include spinal cord ischemia, which occurs when AD extend into the descending aorta resulting in insufficient perfusion of segmental arteries that supplies the spinal cord.

Case Description: We report a 64-year-old Saudi male, hypertensive, dyslipidemic, presented with severe excruciating upper back pain along with asymmetrical paresthesia and weakness of both limbs, more in the left lower limb with loss of pinprick, temperature, and fine touch sensation on the lower left lower limb below the level of T5 with preserved proprioception and vibration on both lower limbs, with urine hesitancy. Computed tomography (CT) showed aortic dissection, Stanford type A and spinal MRI showed hyperintense owl’s eye sign at T5. The patient was diagnosed as anterior spinal artery syndrome secondary to an aortic dissection and referred for aortic surgical repair with good functional outcome.

Conclusion: In our review to cases of SCI due to AD we found that it is more common in males above 55 y, pain only found in 47.8% of patients, with anterior cord syndrome on top of the clinical presentations, whether permanent or transient, and HTN is most common risk factor. MRI spine could be normal in up to third of cases specially if done early with thoracic location predominance in positive cases. Surgical or endovascular repair especially for type A and complicated type be should be considered to avoid complications, CSF drainage is a very useful tool in reversing spinal cord ischemia in setting of AD specially if done early with favourable outcome. Only old age associated with increased risk of mortality. Early diagnosis and appropriate management is crucial for better outcome.

Keywords: Aortic dissection; Spinal cord ischemia; SCI

Abbreviations: AD: Aortic Dissection; HTN: Hypertension; MRI: Magnetic Resonance Imaging; CT: Computed Tomography; CSF: Cerebrospinal Fluid; SCI: Spinal Cord Infarction; ASAS: Anterior Spinal Artery Syndrome; ASCS: Anterior Spinal Cord Syndrome; COPD: Chronic Obstructive Pulmonary Disease; BSS: Brown-Sequard Syndrome; AADS: Aortic Artery Dissections; PSA: Posterior Spinal Artery; CSFD: Lumbar Cerebrospinal Fluid Drainage; TEVAR: Thoracic Endovascular Aortic Repair
Background

Spinal cord infarction (SCI) is a rare condition with few reliable estimates of its incidence. According to the previous studies, it accounts for 1.2% of all strokes [1] and 5-8 % of all myelopathies, [2] however Recent studies have shown that myelopathy related to ischemic diseases accounts for 14–18% of patients with transverse myelitis, suggesting the under diagnosis of SCI [3]. The age of onset ranges from the 1st decade to the 10th decade, with a median age between 50-70 years old [4]. SCI usually presents as anterior spinal artery syndrome (ASAS) or anterior spinal cord syndrome (ASCs) in up to 87.2% of the cases [5,6]. SCI in territory of posterior spinal artery is very rare and involves posterior columns of the spinal cord. It presents with paresthesias and abolition of deep sensation below the level of the infarct. Occlusion of a central sulcal artery rarely produces small lesions in half of the spinal cord. This can present as an incomplete Brown-Sequard syndrome. Total transverse SCI involves both anterior and posterior spinal artery territory and may be misdiagnosed as transverse myelitis [7]. In one larger study of ASCs, 33% of cases were attributed to atherosclerotic disease, 16% to aortic pathology, and 16% to degenerative spine disease [2]. Approximately 1% of patients presenting with acute Type A aortic dissection will have spinal cord stroke [8]. A case of thoracoabdominal aortic aneurysm, with or without associated dissection, is also associated with spinal cord ischemia [9]. Also a significant number of cases of spinal cord ischemia occur in the periprocedural setting with up to 45% of all reported cord infarctions are iatrogenic [10]. In this paper, we report a case of anterior spinal cord ischemia caused by aortic artery dissection with literature review for other similar cases, aiming to come out with certain criteria for patient at risk, common clinical presentations, imaging findings, different therapeutic modalities and outcome, hoping to help in improving the diagnostic and therapeutic yield of such rare yet devastating cases.

Case Presentation

We report a case of 64-year-old male known to be diabetic, hypertensive, dyslipidemic, and heavy smoker complicated with chronic obstructive pulmonary disease (COPD). In March 2020 he was presented to ER in our hospital with sudden severe progressive excruciating tearing interscapular back pain which was radiating over the thorax posteriorly and spreading into the sides down the spine of one day duration, it was continuous and progressively worsening. The pain was soon followed with weakness of both lower limbs, more on the left side. He was unable to walk, with loss of sensation in the left lower limb and hesitancy of micturition. There was no history of trauma, nor other cardiac nor neurological symptoms. On examination, he was fully conscious, oriented to time, place and person, with normal speech, memory, as well as cranial nerves. Regarding the upper limbs; motor, sensory examination and coordination were all normal including DTRs (Deep Tendon Reflexes). In the lower limbs; tone was normal, and power was 2 over 5 in the left lower limb and 4 over 5 on the right on MRS scale, DTRs including knee and ankle jerks were brisker on the left side than the right. Planter response was extensor on the left, and equivocal on the right side. Vibration and position sensation were normal in both lower limbs with no sacral hypohesthesia. However; pinprick, temperature and fine touch sensations were impaired in the whole left lower limb up to L1, and it was normal on the right side. Examination of the spine revealed no tenderness, deformities, nor bruises. On the second day, after 48h of symptom onset, patient showed partial improvement to grade 4/5 on left and 5/5 on right side but still sensory impairment was the same. His Blood Pressure (BP) at admission was 177/92 mmHg in both arms, pulses in the upper limbs and carotids were normal but impaired in both lower limbs (femoral and popliteal). Cardiac examination revealed normal heart sound with regular rate and rhythm without any murmurs or gallops in auscultation. Respiratory and abdominal examination were normal.

Regarding investigations, cardiac enzymes were done, including creatinine kinase (552 U/L) and troponin I (0.073 Ng/mL) and revealed an elevation, which is a suggestive of heart ischemic injury. ECG showed sinus rhythm / with diffuse deep T wave inversion in all leads. Additionally, lipid profile was elevated, in which total cholesterol was 244.7 mg/dl, cholesterol (HDL) was 58.10 mg/dl, cholesterol (LDL) was 163.3 mg/dl and triglycerides were 187.90 mg/dl. Routine CBC and chemistry were all normal. In addition, thyroid function profile, coagulation profile, Hemoglobin A1C, Prostate Specific Antigen (PSA), Autoimmune profile, electrolyte profile (Na+, K+, Cl-), and creatinine level were all done and revealed normal results.

A posterior-anterior and lateral chest X-ray revealed bilateral accentuated bronchovesicular markings and dilated unfolded aorta, unfolded knuckle with right side tracheal shift. Computed tomography (CT) of the brain was done and revealed normal findings. CT of thorax demonstrated an enlarged left ventricle with extensive intramural hematoma extends along the whole course of the Aorta down to its bifurcation (ascending, arch, and descending). This represents an atypical type of aortic dissection of type A Stanford classification. The intramural hematoma is seen of high attenuation in the pre-contrast phase with the total filling of the lumen at the post-contrast phase (Figure 1 and 2).

Figure 1: CT axial view without contrast shows dilated ascending and descending aorta, intramural thickening with wall calcification.
No obvious intimal flap, as well as, no evidence of contrast leak could be detected. The aortic arch measures about 4.3 cm with residual patent lumen = 2.2 cm. In addition, the descending thoracic aorta measures about 4x3.6 cm with residual patent lumen = 2.4 x 1.8 cm. An echocardiogram showed moderate to severe left ventricular systolic dysfunction (EF<30%), grade 1 diastolic dysfunction, multi walls motion abnormality, and mild dilatation in aortic root, and the rest of cardiac valves were normal. Magnetic resonance imaging (MRI) of the dorsal spine revealed a small focal linear area of the abnormal intra-medullary signal. It was noticed opposite to the T5 vertebral body, exhibiting bright signal in T2 weighted image and short tau inversion recovery (STIR), the iso-intense signal in T1 weighted image (Figure 3).

It mainly affects the ventral para-median aspects of the cord, with subtle cord expansion. It measures about 2 cm in maximum cranio-caudal length. No significant contrast enhancement could be detected (Figure 4).

MRI of the lumbar spine showed multiple degenerative features, L4 and L5 disc bulge and facet arthropathy, and L5 bilateral pars break. No evidence of cauda equina compression noticed. The neurological findings were consistent with acute asymmetric anterior cord syndrome, rather than Brown-Sequard syndrome (BSS) nor complete anterior cord syndrome. The following conditions were considered; spinal cord infarction, myelitis, sudden compression from secondary versus deposits, hematomyelia and

Figure 2: CT sagittal view with contrast shows filling defect consistent with thrombus extending from the ascending to descending aorta.

Figure 3: (A) MRI T2 sagittal view show small focal linear intra-medullary hypodensity at level of T5. (B) MRI T1 sagittal view show iso-intense spinal cord.

Figure 4: MRI sagittal view post-enhanced was unremarkable.
acute demyelination. The presence of significance and continuous interscapular back pain was in the present of normal strangle, suggestion of aortic dissection supports the diagnosis of acute vascular lesion of the spinal cord. During the hospital course, patient was on paracetamol and naproxen. In addition, he was managed with oral amlodipine and this resulted in reduction of BP. The patient referred to a cardiac surgeon where a Bentall surgery was performed for him. The composite graft replacement was done regarding ascending aorta, arch, and coronary artery. Post-surgery outcomes include; significant improvement of the pain, remarkable recovery, and no postoperative complications were detected. After the surgery patient undergone physiotherapy and started to walk independently 1 w after surgery.

Discussion

Transient or permanent neurological symptoms at onset of aortic dissection are often dramatic and may mask the underlying condition especially in pain-free dissection (5–15%). They are usually caused by either dissection/occlusion of one or more aortic side branches supplying brain, spinal cord or peripheral nerves or hypoperfusion. They usually appear at or shortly after the onset of dissection with rapid improvement resulting from transient arterial occlusion at the moment of propagation of the dissection [8,11]. Their frequency varies between 17 and 40%, including persistent or transient ischemic stroke (in 2.6 to 32%), ischemic neuropathy (in 4.2 to 24%) and less commonly spinal cord ischemia (in 1-8.9%), also hypoxic encephalopathy and syncope in some patients [10,12-16]. Spinal cord ischemia on the basis of aortic dissection is a rare syndrome and more common with distal aortic dissections. In a study by Sandhu et al., 2018, from 1999 to 2014, they managed 978 aortic artery dissections (AADs), comprising 482 with AD type A (88% DeBakey type I and 12% type II) and 496 with AD type B (96.4% type III and 3.6% abdominal). Neurologic symptoms were present in 178 (18.2%), of which 52 (29.2%) presented with SCI. Isolated SCI (paraplegia/paraparesis in the absence of other malperfusion symptoms) was present in 28 AADs (2.9%). All SCIs occurred in DeBakey type I or III ADs. Of these 52 patients, 10 were females, 42 males. Chest pain present in 40 patients, HTN in 22 patients, smoking in 16 patients, genetic syndrome in 5 patients. 24 patients undergone open surgery and 3 patients undergone endovascular surgery. 10 patients died partial recovery in 5 patients and complete recovery in 26 patients [17].

In our search to literature for cases of SCI caused by aortic dissection, we found another 66 cases fulfil our search criteria plus our case. Analysing data from those 67 cases, we tried to explore the patient criteria, common presentations, risk factors, radiological findings, therapeutic interventions and outcome in such cases (Table 1) [18-73].

Table 1: Summary of literature review for cases of spinal cord ischemia secondary to aortic dissection

N	Citation	Sex	Age	Bladder	Symmetrical/Asymmetrical	Sensory Level	Affected Artery	Stanford AD Type	Chest Pain	Outcome	Treatment	MRI Spine	Risk Factors
1	Waltimo et al., 1980 [18]	M	52	None	Symmetrical	No	N/A	A	No pain	Death	Conservative	N/A	HTN
2	Waltimo et al., 1980 [18]	M	52	None	Symmetrical	No	N/A	A	No pain	Death	Conservative	N/A	HTN
3	Waltimo et al., 1980 [18]	M	56	None	Symmetrical	No	N/A	A	No pain	Death	Conservative	N/A	HTN
4	Gerber et al., 1986 [19]	F	69	None	Symmetrical	No	T11 and T5	N/A	A	Death	None	HTN	
5	Gerber et al., 1986 [19]	M	78	None	Symmetrical	No	N/A	A	No	Plegic	None	N/A	HTN
6	Rosen et al., 1988 [20]	F	67	None	Symmetrical	No	N/A	A	No	Death	Conservative	N/A	None
Authors	Sex	Age	Symmetry	Type	Location	Lesion	CT	Outcome	Treatment	Risk Factors	Additional Notes		
----------------------	-----	-----	----------	-------------------------------	------------------	--------	----	---------	-----------	--------------	------------------		
Zull et al., 1988	M	67	None	Symmetrical	None	Anterior spinal	A	no	Death	None	None		
Zull et al., 1988	F	63	None	Symmetrical	None	Anterior spinal	A	yes	Death	None	None		
Tanaka et al., 1990	M	66	None	Symmetrical	Below T9	Anterior and posterior spinal	B	no	Walk	Conservative	N/A HTN		
Holloway et al., 1993	F	92	No	Symmetrical	None	Anterior spinal	A	no	Death	Conservative	N/A HTN		
Krishnamurthy et al.	M	80	No	Symmetrical	N/A	N/A A B Back and leg pain	Death	None	Conservative	N/A None	None		
Kellett et al., 1997	M	65	No	Symmetrical	No	N/A A B Chest pain	Walk	Conservative	N/A IHD MI	Emphysema, Angina, HTN, MVP, Smoking			
Beach et al., 1998	F	58	None	Asymmetrical	N/A	Left femoral	A	No	Walk	Open surgery	N/A HTN		
Lacerda et al., 1998	F	67	N/A	Symmetrical	N/A	N/A A B No	Death	Conservative	N/A N/A	Small lacunar stroke, HTN			
Donovan et al., 2000	F	77	No	Symmetrical	T6-S5	Adamkiewicz	A	No	Plegic	Conservative	N/A chronic arthritis		
Joo et al., 2000	F	63	No	Symmetrical	T12-S5	Adamkiewicz	N/A	no	Walk	Conservative	N/A HTN		
Inamaou et al., 2000	M	50	No	Symmetrical	L1-S5	Adamkiewicz	A	no	Plegic	Conservative	N/A HTN		
Killen et al., 2000	M	57	None	Asymmetrical	N/A	N/A A N/A	severe upper back pain	Walk	CSF drainage, intravenous naloxxone drip	N/A HTN, Brain stem stroke			
Syed & Fiad, 2002	M	32	No	Asymmetrical	Below knee	N/A A	Chest pain	Walk	Open surgery	N/A Non-Hodgkin's lymphoma			
Petal et al., 2002	F	65	Incontinence	Symmetrical	L2	N/A A	Back pain	Death	None	Conservative	N/A Smoking		
Ohmi et al., 2003	NA	NA	None	Symmetrical	T9-10	N/A A	Severe upper back pain	Plegic	Conservative	Atrophy at T9-10 NA			

Citation: Hosna Elshony, Abdelrahman Idris, Alaa Ahmed, Murouj Almaghrabi, Walaa Ahmed, Shouq Fallatah. Spinal Cord Ischemia Secondary to Aortic Dissection: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities and Outcome. Arch Neurol Neurosci. 10(2): 2021. ANN.MS.ID.000734. DOI: 10.33552/ANN.2021.10.000734.
Authors	Age	Sex	Symmetry	Classification	Spinal Level	Continuation	Treatment	Outcome	Other Factors	
Blacker et al., 2003	F	66	Yes	Complete ASAS	N/A	N/A	B	No	CSF drainage	
Ogun et al., 2004	M	46	Sphincter dysfunction	Symmetrical	T6 - S5	Anterior spinal	N/A	yes	Death	Conservative
Hsu et al., 2004	M	55	None	Symmetrical paraplegia	T10	Adamkiewicz	A	yes	Plegic	Conservative
Hsu et al., 2004	F	64	None	Symmetrical paraplegia	None	N/A	A	No	Walk	Open surgery
Hsu et al., 2004	M	67	None	Symmetrical paraplegia	T11	Adamkiewicz	A	No	Death	Open surgery
Chiang et al., 2005	F	74	None	Symmetrical	T8 - S5	Adamkiewicz	A	Yes	Walk	Open surgery
Fujisawa et al., 2006	N/A	N/A	N/A	Symmetrical	N/A	N/A	B	N/A	Walk	Conservative
Altuwaijri et al., 2006	F	51	No	Symmetrical	No	N/A	B	Chest pain	Walk	Open aortic fenestration
Aktas et al., 2008	M	54	None	Symmetrical	None	N/A	A	No	Walk	None
Aktas et al., 2008	M	54	None	Symmetrical	None	N/A	A	No	Walk	None
Holper et al., 2009	F	63	Yes	Anterior cord syndrome	N/A	N/A	B	Back pain	Plegic	CSF drain
Karacostas et al., 2010	M	46	Retention	Symmetrical	below T7	Anterior spinal	B	No	Death	None
TaHsieh et al., 2011	M	24	None	Asymmetrical right LL only	N/A	Right common iliac	B	Abdominal Pain	Walk	Conservative

Citation: Hosna Elshong, Abdelrahman Idris, Alaa Ahmed, Murouj Almaghrabi, Walaa Ahmed, Shouq Fallatah. Spinal Cord Ischemia Secondary to Aortic Dissection: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities and Outcome. Arch Neurol & Neurosci. 10(2): 2021. ANN.MS.ID.000734. DOI: 10.33552/ANN.2021.10.000734.
Authors	Year	Sex	Age	Symmetry	Area	Spinal Location	Spinal Location	Spinal Location	Spinal Location	Treatment	MR Findings		
Zeggeren et al., 2011	45	M	62	Retention	Symmetrical	T9-T12	Anterior spinal	B	No	Walk	Conservative		
Hayatsu et al., 2011	46	M	65	None	Symmetrical	T10	Adamkiewicz	B	Severe back pain	Walk	CSF drainage		
Sui et al., 2012	47	M	50	Retention	Symmetrical	N/A	Anterior and posterior spinal	A	No	Death	Conservative	long T2 signal at thoracic level	
Colak et al., 2012	48	M	51	None	Symmetrical	N	N/A	A	No	Walk	Open surgery		
Lynch et al., 2012	49	M	54	Incontinence	Symmetrical	T4-T7	Anterior spinal	B	Severe chest pain	Walk	CSF drainage	Abnormal hyperintense signal within the Anterior portion of the central grey matter from level T4 - T7 with associated mild cord swelling	HTN
Tsiodris et al., 2012	50	N/A	N/A	N/A	Symmetrical paraplegia	N/A	Adamkiewicz	A	No	N/A	N/A		
Hui et al., 2013	51	M	70	No	Symmetrical	No	Adamkiewicz	B	Chest, abdominal and back pain	Walk	Conservative	T2 hyper-intensity in central aspect of spinal cord extending from T11/12 to L1	Smoking
Rabadi et al., 2014	52	M	60	None	Symmetrical	T6	N/A	B	No pain	Death	None	Normal	
Ullery et al., 2015	53	F	64	None	Symmetrical	N/A	N/A	A	Yes	Walk	conservative	N/A	HTN, Dyslipidaemia, Aortic aneurysm repair 10y back
Fuliang et al., 2015	54	M	40	Yes	Cauda equine syndrome	N/A	Feeding arteries of cauda equina	B	LBP	Walk	Endovascular aortic repair		
Yu et al., 2015	55	M	56	None	Symmetrical	No	Infrarenal abdominal aorta and bilateral iliac	A	Severe back pain	Walk	Open surgery	N/A	None
Authors	Gender	Age	Symmetry	Location	Lesion	Clinical Symptom	Therapeutic Modality	Radiological Findings					
-----------------------	--------	-----	----------	----------	--------	------------------	----------------------	---					
Almenara et al., 2016	M	64	No	L1 - S5	N/A	No Plegic	Open surgery	Widening of the spinal canal and spinal cord with hyperintensity in the T2-weighted and FLAIR sequences, between T9 and T10 and the end of the conus medullaris, and abNormal diffusion restriction.					
Hdiij et al., 2016	M	70	Retention	Symmetrical	N/A	A No Death	None	None					
Hughes et al., 2016	F	56	None	Asymmetrical	below T10	Anterior spinal	Open surgery	N/A COPD, Smoking					
Martinez GG et al., 2016	M	72	None	Symmetrical	N/A	B Yes Death	None	N/A HTN, DM					
Prakash et al., 2017	F	45	Incontinence	Symmetrical	T10	A No Plegic	Open surgery	N/A Marfan syndrome					
Yildiz et al., 2017	M	74	None	Symmetrical	below T12, preserved deep sensation	N/A B Back pain	Death	Conservative					
Sekine et al., 2017	M	69	Yes	Brown sequard	T10	Anterior and the posterior spinal	Walk	Conservative					
Niclauss et al., 2017	MMM	M49	None	Symmetrical transient paraplegia	T10	N/A B sudden onset of chest and back pain	Walk	Repair	N/A No				
Cheng et al., 2018	F	53	No	Symmetrical	T8 - S5	Adamkiewicz	Yes Plegic	Open surgery	N/A Marfan syndrome, History of tuberculosis				
Atsuyuki et al., 2018	F	85	Retention	Symmetrical	T4 - S5	Sulcal artery	B No	Walk with use T-cane	Conservative				

Citation: Hosna Elshony, Abdelrahman Idris, Alaa Ahmed, Murouj Almaghrabi, Walaa Ahmed, Shouq Fallatah. Spinal Cord Ischemia Secondary to Aortic Dissection: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities and Outcome. Arch Neurol & Neurosci. 10(2): 2021. ANN.MS.ID.000734. DOI: 10.33552/ANN.2021.10.000734.
Authors	Year	Gender	Age	Symmetry	Extent	Peak Location	Vascular Impairment	Symptoms	Management	Radiological Findings	Outcome		
Atsuyuki et al., 2018	65	M	68	Retention	Symmetrical	L2 - S5	Adamkiewicz	B	No	Plegic	Conservative	T2 high signal intensity in the conus medullaris with restricted diffusion	None
Strohm et al., 2018	66	M	61	Yes	Bilateral lower extremity weakness	T4	Not identified	B	Severe chest pain	Walk	CSF drainage	Normal	HTN, HLD
Tsushima et al., 2019	67	M	57	None	Symmetrical	N/ A	N/ A	A	No	Death	None	T2 signal intensity and diffusion restriction predominantly involving the central gray matter of the spinal cord extending from T4 - T11 level,	None
Quintana et al., 2019	68	M	42	None	Symmetrical paraplegia	N/ A	Adamkiewicz	A	Yes	Walk	Open surgery	Normal	None
Memon et al., 2019	69	F	45	None	Bilateral lower extremity weakness	T11	N/ A	A	Severe back pain	Walk	repair	N/A	HTN, Smoking
Takeda et al., 2019	70	M	62	None	Asymmetrical	N/ A	Adamkiewicz	B	No pain	Walk	Repair	Normal	Smoking
Sabugueiro et al., 2019	71	F	56	Yes	Symmetrical [cada equina syndrome]	Saddle anaesthesia	N/ A	A	LBP	Death	None	Abnormal high signal detected within the distal cord and conus	None
Kim et al., 2020	72	M	62	None	Asymmetrical	N/ A	Left renal artery, left intercostal and left lumbar branches	B	Yes	Walk using a	Open surgery	Left asymmetric increased T2 signal intensity of the spinal cord from T11 - L2 level	HTN
Nahed et al., 2021	73	M	53	None	Symmetrical	T4	N/ A	A	No pain	Walk [transient]	Repair	Normal	None
Our case		M	64	Yes	Asymmetrical paraparesis and sensory	T5	N/ A	A	Severe back and chest pain	Walk	Open surgery	T5 hyperintense lesion,	HTN, DM, Asthmatic, Dyslipidaemia

N/A: not available, M: male, F: female, HTN: hypertension, DM: diabetes, COPD: chronic obstructive pulmonary disease, AF: atrial fibrillation, MI: myocardial infarction, CHF: congestive heart failure, T: thoracic, L: lumbar, S: sacral

Mean age and gender distribution in AD patients with neurological involvement do not differ from those without [11,14]. In our 67 collected cases, 21/63 (33.3%) were females and 42/63 (66.6%) were males, with 4 cases sex not available (Table 2).
So number of males doubles the number of females. As for age, it was ranged from 40 to 92 with 68.5% above 55y, with mean age 60 and only one case aged 24y (Table 2). This comes in agreement with mayo clinic who reported that male sex and age from (60-80 years old) consider being one of potential risks of aortic dissection [74]. Owing to the ischemic pathology, the onset of symptoms usually acute and this was the case in all sixty seven cases. Pain is the most common presenting symptom of aortic dissection and could be the sign that direct the physician attention to think about aortic dissection as etiology for a case of paraplegia, with 95 % of patients reported any pain, usually midline, in front and back of trunk depending on the location of dissection, localized to chest in 73 %, anterior > posterior (61 vs. 36 %), back in 53 % and abdomen in 30 % of patients, which may extend down the back to the hips and legs in cases where dissection process extends distally [112].

Remarkably, chest pain is not an obligatory symptom of aortic dissection, the frequency of pain-free dissections ranges between 5 and 15% [112,11,75,12] especially in patients with neurological sequelae [11,19,20,75-82]. In a study by Gaul et al., [11] only two thirds of patients with neurological symptoms at onset of dissection complained of pain, whereas most patients without neurological symptoms (94.4%) experienced initial pain. Approximately half of all patients who did not report pain showed neurological symptoms only [11] which make the diagnosis very challenging. In our review pain was present in 32/67 (47.8%) which is much less expected in usual cases of aortic dissection (95%). Most patients experienced severe chest pain (18 cases (34.4%)), extended to the back in 2 cases and localized to back only in another 11 (40.6%) cases (Table 3). The pain was usually severe, continuous, excruciating.
Affected artery	
N/A	35
Adamkiewicz	15
Anterior spinal	7
Anterior and posterior spinal	3
Femoral arteries	2
Iliac arteries	1
Sulcal arteries	1
Feeding arteries of cauda equine	1
Renal and iliac arteries	2
Stanford AD type	
N/A	4
A	32
B	31
Pain	
Yes	32 (47.8)
No	35 (52.2)
Pain location	N = 32
Chest	18
Back	11
Chest and back	2
Chest, back & abdomen	1
Duration	
Transient	7 (10.4)
Permanent	60 (89.6)
MRI findings	
N/A	43
Normal	8
Thoracic	10
Conus	2
Thoracic and conus	2
Thoraco-lumber	1
Thoraco-lumber and conus	1
Treatment	
N/A	1
No treatment	14
Conservative	25
CSF drainage	6
Endovascular	2
Open surgery	19
Clinical manifestations of SCI comprise complete spinal cord infarction as well as anterior spinal cord syndrome, Brown-Sequard syndrome, progressive myelopathy or transient spinal cord ischemia [83,84, 79,81]. Pure posterior spinal artery (PSA) infarction in SCI is relatively rare based on previous case studies. [85-87] In a recent study that comprised the largest series of PSA infarctions (133 patients with SCI), 15 (11%), patients had a spontaneous PSA infarction [88]. This figure suggests that the diagnosis of PSA infarction might be under recognized in SCI [86]. In our review, the presentation was anterior cord syndrome in 31/67 (46.2%) followed by pure motor in 26/67 (38.8%) then complete cord syndrome in 5/67 (7.4%), pure sensory in 2/60 (2.9%), Cauda equine syndrome in 2/67 (2.9%) and Brown-Sequard syndrome in 1/67 (1.49%). None of them had isolated posterior cord syndrome (Table 3).

The symptoms almost bilateral symmetrical since both halves of the anterior spinal cord are supplied vascularity from one anterior midline spinal cord. However the anterior spinal cord syndrome with unilateral symptomaticatology has rarely been reported; this may be due to occlusion of unilateral sulcal arteries or collateralization from one posterior spinal artery [89] as it could be the explanation to our case with asymmetrical incomplete paraparesis with loss of sensation on left LL till L1 and also in 10 other cases from the literature total 11/67 (16.49%), being strictly unilateral in only one case. As we mentioned before, the symptoms could be permanent or transient. Seven out of our sixty seven cases (10.4%) had transient symptoms with spontaneous recovery in 4 cases, and conditioned recovery after intervention in 3 cases (one after endovascular fenestration and two after CSF drainage).

If the location of the infraction involves the lateral horns within levels T1-L2 of the spinal cord it will cause autonomic dysfunction, including neurogenic bowel/ bladder which require bladder catheterization. [90, 91] Bladder symptoms in form of hesitancy, retention or incontinence, was found in 17/63 (26.9%) patients, with level between T3 and L1 (Table 3). The most common risk factor for aortic dissection is poorly controlled hypertension (65–75% risk with a history of hypertension [74]. Other risk factors include age, male sex, smoking, pre-existing aortic diseases or aortic valve disease, family history of aortic diseases, history of cardiac surgery, direct blunt trauma, and the use of intravenous drugs (such as cocaine or amphetaamines) [90-92]. In our review, hypertension was on the top of the vascular risk factors being present in 32/62 (51.6%) cases. Out of 62 patients, seven patient (11.29%) were smokers, 3 with DM, 2 with Marfan syndrome (3.2%), 2 had previous stroke, 2 had previous history of angina, 2 had coronary artery grafting, 2 with asthma, one with mitral valve prolapse (1.6%), one with emphysema, one with COPD, one with atrial fibrillation (AF), one with congestive heart failure (CHF), one hypothyroid and one with Non Hodgkins lymphoma (Table 2).

Diagnosis of spinal cord ischemia is done by taking a detailed history, performing physical examination, also neuroimaging studies. MRI of the spine is usually done to confirm the diagnosis, although, in the first 24 hours the results may appear negative. Hyper-intensity in the anterior horns in the T2-weighted image is the hallmark observation. ASAS findings indicate a thin “pencil-like” hyper-intense region that spreads vertically affecting several spinal levels in the sagittal view, two bright dots at each anterior horn on the axial view identified as “owl’s eyes, T1-weighted hypointensity at the injured area, spinal cord expansion at the injury site due to early signs of inflammation/edema (diffusion-weighted images that help distinguish between ischemia and inflammation), and signs of vertebral body infarction that are not always present are other results indicating a spinal cord infarction [93,94,89] In our review, out of the 24 cases undergone MRI spine, 8 cases was normal and the other 16 cases showed hyperintense T2 lesions in different location, one delayed MRI show cord atrophy, with the typical owl eye sign found only in 3 cases.

In a study by Hsu et al., 2019, comparing SCI in patient with to those without vessel dissection, it was found that in the vessel dissection group, patients frequently had lesions involving the upper cervical (C1–C4) and lower thoracic (T10–T12) vertebral body levels. In contrast, patients without vessel dissection more frequently had lesions distributed in the cervical regions (C5–T7) than in the thoraco-lumbar regions, with more posterior involvement. [92] In our review, Out of the 16 cases with positive MRI, the level was as high as T3 and as low as conus medullaris with no cases with cervical affection, being at thoracic level in 10/24 (41.6%) cases, Conus in 2/24 (8.3%) cases, thoracic and conus in 2/24 (8.3%) cases, thoracolumbar in 1/24 (4.16%) case and thoracic, lumbar and conus in 1/24 (4.16%) case (Table 3).

Spinal cord involvement in patients with aortic dissection could be secondary to obstruction of the intercostal and lumbar arteries, the Adamkiewicz artery (arteria radicularis magna), or the thoracic radicular arteries. Most frequently, the middle thoracic spinal cord, the watershed zone between the territories of the artery of Adamkiewicz, and the thoracic radicular artery are affected [83]. Among the 32 cases with well-defined occluded artery, 15/32

Outcome	1	34 (52.2)	11 (16.4)	21 (31.3)
N/A				
Walk				
Plegic				
Death				

N/A: not available, CSF: cerebrospinal fluid
(46.8%) had Adamkiewicz Artery occlusion, followed by 7/32 (2.18%) with anterior spinal artery, 3/32 (9.3%) with combined anterior and posterior spinal artery occlusion, 2/32 (6.25%) with left renal left renal and external iliac arteries occlusion, and another 2 cases with right brachiocephalic and right iliac arteries. Each of sulcal artery, right superficial femoral artery, left common femoral artery, right common iliac artery, lumbar spine’s spinal arteries, left renal, external iliac arteries, bilateral iliac arteries were found in one case and one more case with occlusion of feeding arteries to cauda equina (Table 3).

For confirmation of the diagnosis patients often require more than one non-invasive imaging study to characterise aortic dissection, with CT used in 61% of cases, echocardiography in 33%, aortography in 4%, and magnetic resonance imaging (MRI) in only 2% [74]. Imaging helps diagnosis and classification of the aortic dissection in order to decide best therapeutic plan. Two classifications are most commonly used for aortic dissection. The DeBakey system is classified into three types (types I, II, and III) according to the site of the first entry of dissection [95]. Type I has the first entry in the ascending aorta and propagates distally to the descending aorta. Type II has the first entry in the ascending aorta and does not propagate to the aortic arch. Type III has the first entry in the descending aorta and propagates distally above (type IIIa) or below (type IIIb) the diaphragm. The Stanford system is classified into two types (types A and B) based on involvement of the ascending aorta [96]. Type A includes dissection in the ascending aorta regardless of the site of first entry. Type B does not include dissection in the ascending aorta. The usual incidence of different types of aortic dissection in a previous study were 37 (71.2%) Stanford type-A and 15 (28.8%) type-B [97]. In our review, type of aortic dissection was identified in 63 cases; it was type A in 32/63 (50.7%) cases and type B in 31/63 (49.2%) cases with almost equal incidence (Table 3).

Regardless of whether acute aortic dissection is type A or B, medical therapy to control pain and hypertension is essential in all patients. Beta blockers have the desired effect of reducing blood pressure and heart rate to the normal range [98]. These medications also protect the myocardium against ischemia. Otherwise, vasodilators such as calcium channel blockers (nicardipine or diltiazem) or nitroglycerin are useful in reducing hypertension in an emergent situation. Multiple synergistic medications may be necessary for adequate hemodynamic control [99]. General guidelines stipulate a target systolic blood pressure of 100–120 mmHg (except in patients presenting with paraplegia, where a systolic range of 120–130 is generally employed) and a heart rate of 60–80 beats per minute [99,100].

In patients with type A aortic dissection, surgical treatment is the gold standard; mortality is 50% within the first 48 h if surgery is not performed [101]. However with type B aortic dissection, medical therapy including analgesia, antihypertensive drugs, and bed rest is performed. However, complicated type B aortic dissection, such as descending aortic rupture, uncontrolled pain, and malperfusion of the aortic branch or lower extremities, is an indication for urgent surgery [101]. More recently, thoracic endovascular aortic repair (TEVAR) has become an alternative technique to treat complicated type B aortic dissection [102]. Lumbar cerebrospinal fluid drainage (CSFD) helps prevent spinal cord injury for patients undergoing open or endoscopic thoracic or thoracoabdominal aortic aneurysm and thoracic endovascular aortic repair (TAA/TAAA/TEVAR) surgery [103,104]. When combined with augmentation of the systemic blood pressure, CSFD reduces the risk of spinal cord infarction (SCI) by increasing the afferent spinal cord blood supply and perfusion pressure by creating a low ambient pressure in the subarachnoid space that surrounds the spinal cord [105], with up to 80% reduction in the relative risk of postoperative deficits in cases of SCI [106-108]. Combinations of lumbar drain and intrathecal papaverine have also been successful in reducing the severity of neurological injury. Prompt detection of spinal cord ischemia by neurologic examination and imaging, combined with interventions that increase cord perfusion, is crucial in effectively treating or reversing acute paraplegia or paraparesis and may even reverse cases of delayed onset paraplegia [109].

In our review, 19 patients undergone open surgical repair (12 with type A and 4 with type B and 1 on unknown type of AD), with good recovery in 13/19 (68.4%), residual plegia in 4/19 (21%) patients and death in 2/19 (10.5%) patients. Only 2 patient undergone endovascular repair with AD type B with favorable outcome in both cases. Six patients undergone CSF drainage most of them AD type B, with marked instant recovery in 5/6 (83.3%) patients but only one left with marked residual due to delayed procedure. Twenty five patients received conservative medical treatment and 3 patients of unknown management and 12 patients received no treatment due to death (Table 4).

Table 4: Outcome of the patients in relation to socio-demographic criteria of the patients.

Parameters	The studied patients
	N = 67
	Walk N = 34
	Plegic N = 11
	Death N = 21
Age (years)	57.46±11.78
Mean ±SD	60.82±10.53
Range	24 – 85
	45 – 78
	46 – 92
P value	0.63²
	0.045²
	0.37³

Citation: Hosna Elshony, Abdelrahman Idris, Alaa Ahmed, Murouj Almaghrabi, Walaa Ahmed, Shouq Fallatah. Spinal Cord Ischemia Secondary to Aortic Dissection: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities and Outcome. Arch Neurol Neurosci. 10(2): 2021. ANN.MS.ID:000734. DOI: 10.33552/ANN.2021.11.000734.
The overall spinal cord infarction mortality rate is estimated to be between 9-23% [110,111]. Most deaths occurred early after the SCI. In a study by Robertson et al 2012, older age, severe neurologic impairment, and peripheral vascular disease were independently associated with increased mortality [10]. In our review death occur in 21/67 (31.3%) patients, 12/21 (57.14%) of defined dissection type were A and 8/21 (38%) were B, one of them died of sepsis, one of unidentified type of AD. Older age was the only significant risk factor for mortality (Table 4). The degree of functional motor and sensory dysfunction of survivors will vary. In a study by Robertson et al., 2012 on long-term outcome in 115 SCI patients, among survivors, 37 (42%) were using a wheelchair, 23 (26%) were using a gait aid (cane or walker), 29 (33%) walked unaided. The results from univariate analysis suggested that severe impairment on initial examination, absence of Babinski sign, presence of sensory level, longitudinally extensive MRI lesions, and MRI lesions with highest level in the thoracic region were associated with wheelchair and catheter use at final follow-up. Age, gender, and comorbidities were not associated with functional outcome. But when it was adjusted for time to last follow-up using multivariate logistic regression, severity of impairment was the only variable associated with requiring wheelchair [10]. In a study by Nedeltchev et al., 41% had regained full walking ability, 30% were able to walk with aids, 20% were wheelchair bound, and 9% had died. Severe initial impairment and female sex were independent predictors of unfavorable outcome [2]. In our review, outcome was good with almost complete recovery in 34/67 (50.7%), while 11/67 (20%) patients ended in wheel chair after prolonged rehabilitation Table 4 and 5.

Table 5: outcome of the cases in relation to clinical presentation, radiological findings and therapeutic modality.

Parameters	The studied patients	N = 67	P value				
	Walk N = 34	Plegic N = 11	Death N = 21				
Bladder							
N/A	2 (5.88)	0 (0.0)	1 (9.5)				
Yes	8 (23.52)	3 (27.3)	6 (23.8)				
No	24 (70.58)	8 (72.7)	14 (66.7)				
Symmetry	Symmetrical	Asymmetrical					
	25 (73.5)	9 (26.5)	10 (90.9)	1 (9.1)	20 (95.2)	1 (4.8)	
							0.09

1: Comparing Walk and plegic, 2: comparing walk and death, 3: comparing between plegic and death, SD: standard deviation, N/A: not available, HTN, hypertension, DM: diabetes mellitus
Affected artery	N/A	Anterior spinal	Adamkiewicz	Anterior and posterior spinal	Femoral arteries	Iliac arteries	Sulcal arteries	Feeding arteries of cauda equine	Renal and iliac arteries
N/A	19 (55.8)	4 (36.4)	12 (57.1)	2 (5.8)	6 (17.6)	2 (5.8)	1 (2.9)	1 (2.9)	1 (2.9)
Anterior spinal	2 (5.8)	0 (0.0)	5 (23.8)	0 (0.0)	5 (45.5)	0 (0.0)	1 (9.1)	0 (0.0)	0 (0.0)
Adamkiewicz	6 (17.6)	5 (45.5)	3 (14.3)	0 (0.0)	3 (14.3)	1 (4.8)	0 (0.0)	0 (0.0)	0 (0.0)
Anterior and posterior spinal	2 (5.8)	0 (0.0)	1 (4.8)	0 (0.0)	1 (4.8)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Femoral arteries	1 (2.9)	1 (9.1)	0 (0.0)	1 (2.9)	1 (2.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Iliac arteries	1 (2.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Sulcal arteries	1 (2.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Feeding arteries of cauda equine	1 (2.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Renal and iliac arteries	1 (2.9)	1 (9.1)	0 (0.0)	1 (2.9)	1 (2.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Stanford AD type	N/A	A	2 (5.8)	13 (38.2)	19 (53)	4 (36.4)	8 (38.1)		
N/A	2 (5.8)	1 (9.1)	1 (4.8)	13 (38.2)	19 (53)	4 (36.4)	8 (38.1)		
A	13 (38.2)	6 (54.5)	12 (57.1)	19 (53)	4 (36.4)	8 (38.1)			
B	19 (53)	4 (36.4)	8 (38.1)	19 (53)	4 (36.4)	8 (38.1)			
Duration	Transient	5 (14.7)	0 (0.0)	2 (9.5)	19 (90.5)				
Permanent	29 (85.3)	11 (100)	19 (90.5)	0.40					
Pain	Yes	19 (55.9)	5 (45.5)	8 (38.1)					
No	15 (44.1)	6 (54.5)	13 (61.9)	0.50					
Pain location	Chest	11 (57.89)	3 (60.0)	4 (50.0)					
Back	5 (26.3)	2 (40.0)	4 (50.0)	0.83					
Chest and back	2 (10.5)	0 (0.0)	0 (0.0)	0.83					
Chest, back & abdomen	1 (5.2)	0 (0.0)	0 (0.0)	0.83					
MRI findings	N/A	Normal	0 (0.0)	6 (17.6)	0 (0.0)	14 (66.7)			
N/A	21 (61.7)	7 (63.6)	14 (66.7)	0.34					
Normal	6 (17.6)	0 (0.0)	2 (9.5)	0.34					
Conus	0 (0.0)	1 (9.1)	1 (4.8)	0.34					
Thoracic	5 (14.7)	1 (9.1)	4 (19.0)	0.34					
Thoracic and conus	1 (2.9)	1 (9.1)	0 (0.0)	0.34					
Thoraco-lumbar	1 (2.9)	0 (0.0)	0 (0.0)	0.34					
Thoraco-lumbar and conus	0 (0.0)	1 (9.1)	0 (0.0)	0.34					
Treatment	No treatment	2 (5.8)	1 (9.1)	11 (52.4)	0.96				
Conservative	12 (35.3)	5 (45.5)	8 (38.1)	0.96					
CSF drainage	5 (14.7)	1 (9.1)	0 (0.0)	0.007					
Endovascular	2 (5.8)	0 (0.0)	0 (0.0)	0.13					
Open surgery	13 (38.2)	4 (36.3)	2 (9.5)	0.13					

N/A: not available, CSF: cerebrospinal fluid
demonstrate the outcome in relation to patient socio-demographic criteria, clinical presentation, radiological findings and therapeutic modality. Age was not indicator of bad prognosis in our cases but initial degree of disability and lack of early improvement were associated with bad motor outcome. Age, gender, and comorbidities were not associated with functional outcome but it was noticed that the 2 cases of Marfan syndrome ended up being plegic. There was no association between outcome and radiological findings or location of the lesion. Early diagnosis and appropriate treatment can improve the functional outcome with 2/2 (100%) of patients undergone endovascular surgery, 5/6 (83.3%) of patient undergone CSF drain and 13/19 (68.4%) undergone surgery versus 12/25 (48%) of patients received conservative treatment end up walking.

Conclusion
In our review to cases of SCI due to AD we found that it is more common in males above 55 y, pain only found in 47.8% of patients, with anterior cord syndrome on top of the clinical presentations, whether permanent or transient, and HTN is most common risk factor. MRI spine could be normal in up to third of cases specially if done early with thoracic location predominance in positive cases. Surgical or endovascular repair especially for type A and complicated type be should be considered to avoid complications, CSF drainage is a very useful tool in reversing spinal cord ischemia is setting of AD specially if done early with favourable outcome. Only old age associated with increased risk of mortality. Early diagnosis and appropriate management is crucial for better outcome.

Declarations:
- Ethics approval and consent to participate: The study was performed in accordance with the Declaration of Helsinki. Written informed consent to participate was obtained from the patient.
- Consent for publication: written consent to publish was obtained from study participants.
- Availability of data and material: the datasets used and analyzed during the current study are available from the corresponding author on reasonable request.
- Competing interests: “The authors declare that they have no competing interests”
- Funding: This work has not received any governmental or non-governmental funds.
- Authors’ contributions:
 - H. E.: literature search, data acquisition and analysis, manuscript preparation and editing.
 - I.: manuscript preparation, editing
 - A, M. A, W. A. S. F: literature research, manuscript preparation
 - All authors have read and approved the manuscript

Acknowledgement
None.

Conflict of Interest
No conflict of interest.

References
1. Qureshi AI, Afzal MR, Suri MFK (2017) A Population-Based Study of the Incidence of Acute Spinal Cord Infarction. J Vasc Interv Neurol 9(4): 44-48.
2. Nedeltchev K, Loher TJ, Stepper F, Arnold M, Schnoett G, et al. (2004) Long-term outcome of acute spinal cord ischemia syndrome. Stroke 35(2): 560-565.
3. Zaleski NL, Flanagan EP, Keegan BM (2018) Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses. Neurology 90: e96-e102.
4. Rubin MN, Rabinstein AA (2013) Vascular diseases of the spinal cord. Neurol Clin 31(1): 153-181.
5. Pikija S, Mutzenbach JS, Kunz AB, Nardone R, Leis S, et al. (2017) Delayed Hospital Presentation and Neuroimaging in Non-surgical Spinal Cord Infarction. Front Neurol 8: 143.
6. Schneider GS (2010) Anterior spinal cord syndrome after initiation of treatment with atenolol. J Emerg Med 38(5): e49-52.
7. O Benavente, HJ Barnett (2004) "Spinal cord ischemia," in Stroke: Pathophysiology, Diagnosis and Management. In: HJM Barnett, JP Mohr, BM Stein, FM Yatsu (Eds.), Churchill Livingstone, Philadelphia, Pa, USA, 4th edition, pp. 751-762.
8. Gaul C, Dietrich W, Erbguth F (2008) Neurological symptoms in aortic dissection: a challenge for neurologists. Cerebrovasc Dis 26(1): 1-8.
9. Lynch DR, Dawson TM, Raps EC, Galetta SL (1992) Risk factors for the neurologic complications associated with aortic aneurysms. Arch Neurol 49(3): 284-288.
10. Robertson CE, Brown RD, Wijdicks EF, Rabinstein AA (2012) Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 78(2): 114-121.
11. Chase TN, Rosman NP, Price DL (1968) The cerebral syndromes associated with dissecting aneurysms of the aorta: a clinicopathological study. Brain 9: 173-190.
12. Meszaros I, Morocz J, Szlavi J, Schmidt J, Tornoci L, et al. (2000) Epidemiology and clinicopathology of aortic dissection. Chest 117: 1271-1278.
13. Blanco M, Diez-Tejedor E, Larrea JL, Ramirez U (1999) Neurologic complications of type I aortic dissection. Acta Neurol Scand 99: 232–235.
14. Weisman AD, Adams RD (1944) Neurologic complications of dissecting aortic aneurysm. Brain 67: 69-92.
15. Álvarez Sabin J, Vázquez J, Sala A, Ortega A, Codina Puiggrós A (1989) Neurological manifestations of dissecting aortic aneurysms. Med Clin (Barc) 92: 447–449.
16. Fann JJ, Smith JA, Miller CD, Mitchell RS, Moore KA, et al. (1995) Surgical management of aortic dissection during a 30-year period. Circulation 92: 113-121.
17. Sandhu HK, Charlton-Ouw KM, Jeffress K, Leake S, Perlick A, et al. (2018) Risk of Mortality After Resolution of Spinal Malperfusion in Acute Dissection. Ann Thorac Surg 106: 473–481.
18. Wallimo O, Karil P (1980) Transient ischemic attack. Eur Neurol 19: 254-257.
19. Gerber O, Heyer EY, Vieux U (1986) Painless dissections of the aorta presenting as acute neurologic syndromes. Stroke 17: 644-647.
20. Rosen SA (1988) Painless aortic dissection presenting as spinal cord ischemia. Ann Emerg Med 17: 840-842.
21. Zull DN, Cyduka R (1988) Acute paraplegia: a presenting manifestation of acute dissection. Am J Med 84: 765-70.

22. Tanaka T, Uemura K, Sugiuira M, Ohishi H, Tomita M, et al. (1990) Transient paraplegia caused by acute aortic dissection—case report. Neurol Med Chir (Tokyo) 30: 54-58.

23. Holloway SF, Fayad PB, Kalb RG, Guarnercia JB, Waxman SG (1993) Painless aortic dissection presenting as a progressive myelopathy. J Neurol Sci 120(2): 141-4.

24. Krishnamurthy P, Chandrasekharan K, Rodriguez Vega JR, Grunewald K (1994) Acute thoracic aortic occlusion resulting from complex aortic dissection and presenting as paraplegia. J Thorac Imaging 9(2): 101-114.

25. Kellett MW, Young GR, Fletcher NA (1997) Paraparesis due to syphilitic aortic dissection. Neurology 48(6): 1221-23.

26. Beach C, D Manthey (1996) Painless acute aortic dissection presenting as left lower extremity numbness. Am J Emerg Med 16: 49-51.

27. Lacerda RC, Andrea PB, Machado Neto E, de Figueiredo CB, Teixeira AB, et al. (1998) Acute paraplegia. A rare complication of aortic dissection. Arq Bras Cardiol 70: 275-8.

28. Donovan EM, Seidel GK, Cohen A (2000) Painless aortic dissection presenting as high paraplegia: a case report. Arch Phys Med Rehabil 81(10): 1436-1438.

29. Joo JB, Cummings AJ (2000) Acute thoracoabdominal aortic dissection presenting as painless, transient paralysis of the lower extremities: a case report. J Emerg Med 19(4): 333-337.

30. Inamasu J, Hori S, Yokoyama M, Funahibi T, Aoki K, et al. (2000) Paraplegia caused by painless acute aortic dissection. Spinal Cord 38: 702-704.

31. Killen DA, Weinstein CL, Reed WA (2000) Reversal of spinal cord ischemia resulting from aortic dissection. The Journal of Thoracic and Cardiovascular Surgery: P1049-1052.

32. Syed MA, Fiad TM (2002) Transient paraplegia as a presenting feature of aortic dissection in a young man. Emerg Med J 19(2): 174-175.

33. Patel NM, Noel CR, Weiner BK (2002) Aortic dissection presenting as an acute cauda equina syndrome: a case report. J Bone Joint Surg Am 84(8): 1430-1432.

34. Ohmi M, Shibuya T, Kawamoto S, Shimizu M, Nakame T, Kurihara N (2003) Spinal cord ischemia complicated with acute aortic dissection and intramural hematoma; report of two cases. Kyobu Geka; 56: 473-478.

35. Blacker DJ, Wijdicks EF, Ramakrishna G (2003) Resolution of severe paraplegia due to aortic dissection after CSF drainage. Neurology 61: 142-143.

36. Ogun SA, Adefuwe B, Kolapo KB, Osalusi BS (2004) Anterior spinal artery syndrome complicating aortic dissection: a case report. East Afr Med J 81: 549-552.

37. Hsu YC, Lin CC (2004) Paraparesis as the major initial presentation of aortic dissection: report of 4 cases. Acta Neurol Taiwan 13(4): 192-197.

38. Chiang JK, Tsai KW, Lin CW, Shen TC, Hu SC, et al. (2005) Acute paraplegia as the presentation of aortic dissection - a case report. Tsu Chi Med J 17(5): 369-371.

39. Fujiwara Y, Morishita K, Fukuda J, Kawaharada H, Nacimo Y, et al. (2006) Treatment methods for spinal cord injury caused by acute type B aortic dissection. Asian Cardiovasc Thorac Ann 14(6): e106-107.

40. Altuwaijri M, Delis GT, Vrtiska T, Fulgham JR, Gloviczki P (2006) Aortic fenestration for chronic aortic dissection type B complicated by transient ischemic attacks of spinal cord. J Vasc Surg 44(1): 186-193.

41. Aktas C, Cinar O, Ay D, Gürses B, Hasmanoglu H (2006) Acute aortic dissection with painless paraplegia: report of 2 cases. Am J Emerg Med; 26(5): 631.e3-5.
63. Nicklaus L, Delay D, Segesser LK (2012) Recovery of paraplegia after type B dissection due to spinal collateral recruitment. J Vasc Surg 56(1): 205-207.

64. Cheng K, Perrenyey M, Sayeed R (2018) Anterior spinal artery syndrome from type A aortic dissection in a patient with Marfan syndrome due to a novel fibillin mutation. J R Coll Physicians Edinb 48: 120–123.

65. Kawahata A, Tomori M, Araya Y (2018) Spinal Cord Infarction with Aortic Dissection. Case Reports in Orthopedics.

66. Strohm TA, John S, Hussain MS (2018) Cerebrospinal fluid drainage and blood pressure elevation to treat acute spinal cord infarct. Surg Neurol Int 9: 195.

67. Tsushima T, Al-Kindi S, Patel T, Kalrha A (2019) Atypical complications of intramural hematoma: Paraplegia resulting from spinal cord infarction. Int J Cardiol Heart Vasc 22: 154–155.

68. Quintana M E, Gil-Gullén C, Rodriguez-González F (2019) Anterior spinal artery syndrome and aortic dissection. Cir Cir 67(4): 466–469.

69. Memon W, Aijaz Z, Memon R (2019) Paraplegia and acute aortic dissection: a diagnostic challenge for physicians in the emergency situation. BMJ Case Rep 12(7): e230561.

70. Takeda S, Tanaka Y, Sawada Y, Tabuchi A, Hirata H, et al. (2019) Repetitive transient paraplegia caused by painless acute aortic dissection. Acute Med Surg 6(2): 188–191.

71. Sabugueiro J, Olson S (2019) Type A Aortic dissection in a patient with suspected Cauda Equina Syndrome: a masquerader. BIR Annual Conference. Epister.

72. Kim H, Heo W, Song SW, Yoo KJ (2020) Case report: left monoplegia in acute type B aortic dissection. AME Case Rep 4: 16.

73. Nahed RA, Rizk W (2021) A transient spinal cord ischemia reveals a silent type A aortic dissection. J Neurol Stroke 11(1): 20–21.

74. Hagan PG, Nienaber CA, Isselbacher EM, Bruckman D, Karavite DJ, et al. (1996) The international registry of acute aortic dissection: new insights into an old disease. JAMA 273: 897-903.

75. Eagen T, Langer R, Neff F, Sander K, Conrad B, et al. (2005) Doppler sonographie mit Hinweis auf fulminante Aortendissektion bei initalem Medialinfarkt. Nervenarzt; 76:976–979.

76. Fessler AJ, Alberts MJ (2000) Stroke treatment with tissue plasminogen activator in the setting of aortic dissection. Neurology 54: 1010.

77. Flemming RD, Brown RD (1999) Acute cerebral infarction caused by aortic dissection: caution in the thrombolytic era. Stroke 30: 477–478.

78. Stanley I, Sharma VK, Tsivgoulis G, Lao AY, Alexandrov AV (2007) Painless aortic dissection with unusual extension into intracranial carotid arteries. Cerebrovasc Dis 24: 314–315.

79. Isharaki T, Fukumoto H, Nishimoto Y, Nishimoto M, Suzuki S, et al. (2002) Painless acute aortic dissection with left hemiparesis. Neurol 6(8): 1456–1464.

80. Lu Q, Feng J, Zhou J, Zhang M, Xu M, et al. (2012) Type-selective benefits of medications in treatment of acute aortic dissection. J Thorac Cardiovasc Surg 143(2): 247–248.

81. Takeda S, Tanaka Y, Sawada Y, Tabuchi A, Hirata H, et al. (2019) Repetitive transient paraplegia caused by painless acute aortic dissection. Acute Med Surg 6(2): 188–191.

82. Sabugueiro J, Olson S (2019) Type A Aortic dissection in a patient with suspected Cauda Equina Syndrome: a masquerader. BIR Annual Conference. Epister.

83. Kim H, Heo W, Song SW, Yoo KJ (2020) Case report: left monoplegia in acute type B aortic dissection. AME Case Rep 4: 16.

84. Flemming RD, Brown RD (1999) Acute cerebral infarction caused by aortic dissection: caution in the thrombolytic era. Stroke 30: 477–478.

85. Stanley I, Sharma VK, Tsivgoulis G, Lao AY, Alexandrov AV (2007) Painless aortic dissection with unusual extension into intracranial carotid arteries. Cerebrovasc Dis 24: 314–315.

86. Struhal W, Seifert-Held T, Lahmann H, Fazekas F, Grisold W (2011) Clinical core symptoms of posterior spinal artery ischemia. Eur Neurol 65(4): 183-186.

87. Zalewski NL, Rabenstein AA, Wijdicks EFM, Petty GW, Pittock SJ, et al. (2018) Spontaneous posterior spinal artery infarction: an underrecognized cause of acute myelopathy. Neurology 91(9): 414–417.

88. Novy J, Carruzco A, Maeder P, Bogousslavsky J (2006) Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 63(8): 1113-1120.

89. Weidauer S, Nichtein W, Lanfermann H, Zanella FE (2002) Spinal cord infarction: MR imaging and clinical features in 16 cases. Radiology 44(10): 851-857.

90. Foo D, Rossier AB (1983) Anterior spinal artery syndrome and its natural history. Paraplegia 21(1): 1-10.

91. Hsu JL, Cheng MY, Liao MF, Hsu HC, Weng YC, et al. (2019) The etiologies and prognosis associated with spinal cord infarction. Ann Clin Transl Neurol 6(8): 1456–1464.

92. Tsai TT, Nienaber CA, Eagle KA (2005) Acute aortic syndromes. Circulation 112: 3802–3813.

93. Vargas MI, Gariani J, Sztajzel R, Barnaure-Nachbar L, Delattre BM, et al. (2015) Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol 36(5): 825-830.

94. DeBakey ME, Henly WS, Cooley DA, Morris GC Jr, Crawford ES, et al. (1965) Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg 49: 130–149.

95. Daily P0, Trueblood HW, Stinson EB, Wuerfel RD, Shumway NE (1970) Management of acute aortic dissections. Ann Thorac Surg 10(3): 237-247.

96. Howard DPJ, Sideso E, Handa A, Bothwell PM (2014) Incidence, risk factors, outcome and projected future burden of acute aortic dissection. Ann Cardiothorac Surg 3(3): 278–284.

97. Nienaber CA, Powell JT (2012) Management of acute aortic syndromes. Eur Heart J 33: 26–35b.

98. Suzuki T, Isselbacher EM, Nienaber CA, Pyeritz RE, Eagle KA, et al. (2012) Type-selective benefits of medications in treatment of acute aortic dissection (from the International Registry of Acute Aortic Dissection [IRAD]). Am J Cardiol 119(1): 122-127.

99. Lu Q, Feng J, Zhou J, Zhiqing Zhao, Junmin Bao, et al. (2013) Endovascular repair of ascending aortic dissection: a novel treatment option for patients judged unfit for direct surgical repair. J Am Coll Cardiol 61: 1917–1924.

100. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, et al. (2014) The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J; 35: 2873–926.

101. Grabenwoger M, Alfonso F, Bachet J, Bonser R, Czerny M, et al. (2012) Thoracic endovascular aortic repair (TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 33: 1558–1563.

102. Cincà CS, Abouzahr L, Arena GO, Lagnà A, Devereaux P, et al. (2004) Cerebrospinal fluid drainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: A systematic review and meta-analysis. J Vasc Surg 40: 36–44.

103. Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE (2002) Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: Results of a randomized clinical trial. J Vasc Surg 35: 631–639.

104. Martirosyan NL, Kalani MY, Birchard WD, Bajaj AA, Gonzalez LF, Preul MC, et al. (2015) Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery 76: 461–469.
105. Svensson LG, Hess KR, D’Agostino RS, Entrup MH, Hreib K, Kimmel WA, et al. (1998) Reduction of neurologic injury after high-risk thoracoabdominal aortic operation. Ann Thorac Surg 66(1): 132-138.

106. Trabattoni P, Zoli S, Dainese L, Spirtio R, Bigioli P, Agrifoglio M (2009) Aortic dissection complicating intraaortic balloon pumping: percutaneous management of delayed spinal cord ischemia. Annals of Thoracic Surgery 88(6): 60–62.

107. Azizzadeh A, Huynh TTT, Miller CC, Safi HJ (2000) Reversal of twice-delayed neurologic deficits with cerebrospinal fluid drainage after thoracoabdominal aneurysm repair: a case report and plea for a national database collection. Journal of Vascular Surgery 31(3): 592-598.

108. Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, et al. (1991) J Vasc Surg. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta 13(1): 36-45; discussion 45-6.

109. Salvador de la Barrera S, Barca-Boya A, Montoto-Marqués A, Ferreiro-Velasco ME, Cidoncha-Dans M, et al. (2001) Spinal cord infarction: prognosis and recovery in a series of 36 patients. Spinal Cord 39(10): 520-525.

110. Masson C, Pruve JP, Meder JF, Cordonnier C, Toussé E, et al. (2004) Spinal cord infarction: clinical and magnetic resonance imaging findings and short-term outcome. J Neurol Neurosurg Psychiatry 75(10): 1431-1435.

111. Robertson CE, Brown RD, Wijdicks E, Rabinstein AA (2012) Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 78(2): 114-1121.

112. Spittell PC, Spittell JA Jr, Joyce JW, Tajik AJ, Edwards WD, et al. (1993) Clinical features and differential diagnosis of aortic dissection: experience with 236 cases (1980 through 1990). Mayo Clin Proc 68: 642-51.