Lost in translation: data integration tools meet the Semantic Web
(experiences from the Ondex project)

Andrea Splendiani, Chris J Rawlings, Shao-Chih Kuo
Biomathematics and Bioinformatics Dept.
Rothamsted Research
Harpenden,
United Kingdom

Robert Stevens
School of Computing Science
University of Manchester
Manchester,
United Kingdom

Phillip Lord
School of Computing Science
Newcastle University
Newcastle upon Tyne,
United Kingdom

Abstract—More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information. We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platforms.

Index Terms—Semantic Web; Data Integration; Bioinformatics;

I. INTRODUCTION

In this paper we describe a simple methodology used to examine a graph based data resource so that it can be transformed to a representation suitable for the Semantic Web. Such simple methodologies are needed if Semantic Web technologies are to be used as widely as possible. The web has been a revolutionary technology to exchange and integrate information represented in natural language that has enabled the development of new means of communication and interaction. Now the web is evolving into a platform that also supports the integration and exchange of machine processable information. This platform has the potential to enable radical new approaches in the way we make sense of information. It has been the object of active research, from the Semantic Web [1] to its more recent development as Linked Data [2].

An increasing number of resources are now available on the Semantic Web, either exporting their information in standard languages such as the Resource Description Framework (RDF [3]), or directly providing information servers that respond to standard query protocols (SPARQL [4]). In addition, a number of key players are committing to either publish their information on the Semantic Web, or to support some related forms of structured knowledge publication and consumption via the web, including national governments (UK [5], US [7]) and leading enterprises (Facebook [8], Google [9], Yahoo [10]).

The availability of these information resources is complemented by the increasing number of tools and web systems that natively support the creation of information that is ported to a Semantic Web framework. We cite as examples, tools such CouchDB (couchdb.apache.org) and Neo4j (neo4jorg), web resources such as Freebase (freebase.com). Refer to NoSQL [11] for further details.

Now that ‘a’ de-facto Semantic Web is a reality, it is time to consider how it can be exploited and which software tools are needed to reap benefits from it. As the Semantic Web (as well as the traditional web), are founded on a graph-based representation of information, tools and methods for the analysis, manipulation and visualization of graphs are first candidates for this purpose, and we are witnessing the first examples in this direction, such as Gremlin (gremlin.tinkerprop.com) or RelFinder [12]. Most of these tools, however, have been developed following assumptions that do not necessarily apply to a web based representation of information and both their information engineering approach, and their usage need to be adapted for the Semantic Web context. This is particularly true for several tools which have been developed in the domain of Life Sciences for the analysis of biological networks [6], some of which (e.g.:Ondex [13], Cytoscape [15]) are inherently domain independent. It should be noted that the Life Sciences present a number of information related issues that makes the Semantic Web an ideal solution, and computational biologists and bioinformaticians have been among the most enthusiastic adopters of these technologies [14]. The size of the user
community and potential impact of the Semantic Web in the Life Sciences makes it a most attractive domain to deploy Semantic Web graph-based analysis and visualization tools (cfr. RDFScape [16]).

When considering software which could be made available for users of the Semantic Web, we wish to ask how we can evaluate if the usage of such tools is inconsistent with the principles of representation in the Semantic Web and what are the main aspects of the information engineering in these applications that may need to be adapted to ameliorate any conflicts?

To answer these questions, we have focused on the Ondex data integration platform. Ondex is a data integration and analysis platform that has been developed, starting in 2005, for research in systems biology and the Life Sciences in general, but which is inherently domain independent. Its information engineering design is based on a graph data structure and on the use of ontologies to characterize the graph entities. Among other graph based tools developed in the Life Sciences, Ondex is unique for the precise semantic characterization of information and for its focus on graph-based data integration. Furthermore, the information design of Ondex resembles that of RDF data in the Semantic Web, and a number of issues that users of Ondex deal with are essentially the same issues posed by information in a Semantic Web context (e.g., linking with provenance or evidence attached to the entities).

We have developed a simple methodology to analyze the correspondence between the intended semantics of these graph-based tools, and the semantics resulting from their usage on web-data. This method was designed with a view to adapting Ondex to work within the Semantic Web and to learn lessons that would inform users and developers of other network analysis systems that are similar to Ondex in their intended usage. From the application of this methodology to Ondex, and learning by the experience of its usage in the last 5 years, we have highlighted a set of issues that are likely to be found in other network analysis systems when these are ported to the Semantic Web. To our knowledge this is the first time that a systematic assessment of the semantic mismatch between the data model and usage of pre-existing graph-based analysis tools and those of the Semantic Web is attempted.

A. The Ondex data structure, Life Sciences, and the Semantic Web

Life Sciences data is characterized by its complexity, its high interrelatedness, its heterogeneity, and by a multitude of naming and identity issues [17], [18], [19]. Graph based models are a natural fit, as they are in many disciplines, to deal with these problems. From metabolic pathways to ecosystems to anatomies, graphs are a convenient means to capture these relationships. Data in many forms can be represented as a graph and the schema-less approach adopted in RDF and other such representations affords a means of integrating data through connections that can be as strong or weak as the applications require.

Ondex has taken this approach by providing a graph based model, a collection of parsers that transform various bioinformatics resources into its graph representation and plugin modules to perform further data reduction and analysis. The graph model of Ondex uses nodes to represent concepts and edges to represent relationships between them. Both concepts and entities can be characterized via a type (that can be organized in an simple ontology), via an arbitrary set of attributes, and via a set of predefined attributes which support the representation of identifiers, information provenance, evidence and context.

Thus Ondex’s data model has an intuitive correspondence to that used by RDF, and its parsers are de facto equivalent to mappers from the original resources to RDF.

There are, however, aspects of the Ondex representation, and its usage, that make its use on the Semantic Web not as simple as it might be. For instance its development has led to inconsistencies in the interpretation of how the Ondex parsers transform the data into the graph, one notable example being different interpretation of provenance information.

Our goals, therefore, are two-fold: First to develop a normative Ondex data model and map its transformation to RDF; and second to be able to describe a normative model against which the builders of Ondex parser can model their transformations. Both objectives are relevant to adaptation of other network based analysis tools to the Semantic Web.

II. Semantic Analysis

We have developed a simple methodology to examine the semantics of a graph based data integration and analysis tool, and to guide the transformation of its representation and usage as to be suitable for the Semantic Web. In this methodology, we first list all elements that make up the data structure of the system, and for each of these elements, we execute a set of steps, which result in a document, for each element, which describes in natural language: the intended semantics of the element, its actual semantics in current practice, a definition, recommendations for best practices and recommendations for future developments. The documents are then circulated among stakeholders for comments and iterative refinements of the proposal. We illustrate the steps that compose this methodology using its application on Ondex as an example, and in particular focusing on the CV data element.

A. Methodology

1) Listing data structure elements: We first list the elements that make up the data structure of the system. In the case of Ondex, these are Concept, Relation, ConceptClass, RelationType, Generalized Data Set, CV (Controlled Vocabulary), Accession (identifier), EvidenceType, Context (an extensive explanation of the Ondex data types can be found in the detail of our analysis, available at [20]). In the remainder of this example we will focus on CV.

2) Definition of the intended semantics: We first elaborate a concise, informal definition of the intended semantics of a data structure (e.g.: CV). This definition is based on the
answers to two questions: “what is a CV?” and “when do you use a CV?” Answers to these question are derived from the official documentation and from interviews with interested parties (developers and core users). We enrich this definition with a few examples of values that are assigned to this data structure. The application of this step results, in our example, in:

- **Definition**: Describes the bioinformatics origin of Concept or accessions of Concepts (It is intended to represent provenance information);
- **Examples**: UNIGENE, GO, unknown, AFFYMETRIX, BROAD, NWB (these are all examples of which are assigned to CV).

3) **Observation of the actual usage**: We then analyze the actual usage of the data structure element, with the help of a domain expert, to find patterns in the attribution of values to the data structure, values that are inconsistent with its intended usage, and degenerate usages. We compile a set of observations for each of the patterns, inconsistencies or degenerate usages that are found.

In the case of Ondex, and for other platform that present a plugin architecture, the inspection of the code of plugins provides an easy way to perform such analysis. Some of the observations found for CV are:

- **CV** is often in association with an identifier (**Accession** in the Ondex data structure) to characterize its scope. This happens both in parsers that extract information from ontologies such as the Gene Ontology (e.g.: **CV**=GO) or some databases such as the the Unigene DNA sequence database (e.g: **CV**=Unigene) and plugins that perform mapping operations.
- Sometimes when **CV** is associated to a **Concept**, it is assigned values that refer to the database from which the information was extracted, rather than to the domain of identifiers for the concepts in the database. This is for instance the case for the parser for the ATRegNet database of plant transcription factors. (e.g: **CV**=“ATRegNet”).
- **CV** is sometimes assigned values that indicate the format from which some information was extracted, such as in Network Workbench (NWB) format (e.g. **CV**=“NWB”).
- **CV** is assigned an arbitrary identifier in plugins that need to distinguish between different graphs.

4) **Analysis of the actual usage and normative definition**: Following the observations in the previous step, we elaborate a second concise definition for the semantics of the data element, on which we base the development of recommendations in the following steps. This definition also traces the relations between the data structure analyzed and elements of RDF that it more closely represents. In the case of CV:

- When used in association with an identifier, **CV** has the meaning of a namespace, and characterizes the scope of the identifier.
- When used with a **Concept**, **CV** has the meaning of provenance.

5) **Recommendation for best practice**: We elaborate a set of best practices, that are intended to restrict the possible usage of the data structure to keep it coherent between users and with a Semantic Web representation. Best practices are designed to not require any change in the code base, and take into account the observations previously derived. In our example:

- **Usage of CV** in association to an **Accession**: When used as a namespace, **CV** should be assigned values that correspond unambiguously to the resources that provide a definition for the identifier. A pair (**CV**, **accession**) should be semantically equivalent to a URI.
- In particular the following usage should be avoided: **CV** that are not specific enough, for instance that correspond to a family of ontologies (e.g. OBO) rather then a single ontology, to which identifiers are specific (e.g.; GO), **CV** that correspond to a technology used to generate data (e.g.: Affymetrix) or to the institute providing the data (e.g.: Broad).
- **Usage of CV** in association with a **Concept**: When **CV** is used to represent information about provenance, it is intended to indicate the last source that asserted this information. In the case of information originating from a database, **CV** is intended as the most specific authority that is responsible for the validity of the data (this is often the last data source from which this concept is derived).
- Any other usage of **CV** is discouraged.

6) **Recommendation for future development**: We then present recommendations for future evolutions of the data structure, that would help in enforcing the best practices and would enable further integration with RDF:

- **CV** should be split into two distinct elements, corresponding to the meaning of “Namespace” and “Provenance”.
- Values for the “Namespace” element should be associated with one or more effective namespaces that may be used to generate common URIs for the concept.

7) **Request for comments**: Finally, all the specifications produced for the data structure element are circulated to interested parties for feedback, which can lead to new observations and further refinement.

*** III. RESULTS

The analysis that we have conducted on the Ondex data structure definition and usage highlights a series of issues that are not limited to this platform, as they relate to typical assumptions behind the usage of simple network based analysis platforms, and their incongruence with a Semantic Web based representation of information. We list here the most relevant issues we have found, with a brief discussion of the risk they pose to make a consistent usage of network based analysis tools on Semantic Web knowledge bases.
A. Scope of information

In Ondex, a Concept (the equivalent of a resource in RDF) has an identifier that is an integer generated when a graph is imported into the system. A similar behavior can be found in Cytoscape. Both Ondex and Cytoscape support the annotation of a Concept (or node in the Cytoscape terminology) with identifiers, that can then be used to derive identities between Concepts in different graphs (or in different versions of the same graph). This is typical of a procedural, document based, data integration strategy where the ‘document’ provides an implicit scope for the validity of the information that it represents.

In a web based context, it is important to explicitly define the scope of validity of identifiers of resources and of the information relative to these resources. This is because in a distributed web environment, it is not possible to import all the information before being able to ‘name’ and ‘access’ the entities included.

In the Semantic Web framework, URIs act as identifiers with a global scope that allow direct access to the relative information. It is also important to explicitly define the context of validity of information, as the implicit context provided by a document has a limited validity in a web framework, where information can easily be filtered and recombined.

B. Information basis

When using a graph based data integration and analysis platform, it is a tempting practice to use the graph for all information, without making a distinction between the different basis for particular types of information. For instance it is common practice in an Ondex plugin to represent, in the same graph, information that is based on ‘knowledge external to the system’, information that is based on the results of an analysis of the graph (e.g.: measures of betweenness and centrality of nodes) and sometimes information that is based on the specific instance of the platform (e.g.: graph coordinates for a given layout). This happens despite Ondex providing support for typing concepts and relations via a simple ontology definition. Other platforms are, in general, even more vulnerable to this ‘congestion’ of the graph. This usage of the graph data structure is acceptable in a procedural framework, where there is a starting point that holds only ‘knowledge external to the system’, that is replicated in the system and never altered in its original representation, and where information later added to the graph have the implicit scope of the task that is being carried out. In a web based framework, however, it is necessary to distinguish information that persists beyond the specific task carried out, information that is dependent on a specific subset of information (i.e.: it is invalidated when this subset is altered) and information that is not shared, but specific to a given instance of execution of a tool.

C. Cardinalities of relations

Most network-based analysis tools, including Ondex, apply to the network a data modeling approach that is typical of object oriented (or framework based) systems and that is not consistent with a web based representation of information. This is particularly evident in the case of relations. A tool like Ondex (or Cytoscape) will expect that, if for a given concept the same property is asserted twice, with two different values, the second value for this property will override the first. This is in contrast with a web based representation of information where there is no limit on the number of values that a property can be assigned for a given resource.

D. Objectification of entities

Another inconsistency that arises when an ‘object oriented’ paradigm is applied to Semantic Web resources derive from the fact that, when entities are represented via objects, there is an additional entity (the object) that has its own identifiers (the pointer). This can have subtle consequences, in particular for the implementation of graph manipulation plugins. For instance, a plugin can refer to the ‘first’ or in general to the ‘n-th’ property asserted on a concept, simply by retaining its pointer, and it can base its computations on this ordering. There is not an equivalent of the ‘first’ or ‘n-th’ property asserted, in the Semantic Web framework.

E. Datatypes

While some platform such as Cytoscape limit datatypes to a limited set of basic types (strings, integers, booleans), platforms like Ondex allow datatypes of arbitrary complexity (in practice, they allow serializations of Java objects). This can limit interoperability of systems for two reasons. First, other systems may not be able to reconstruct an arbitrary Java object. Second, and more importantly, data types are semantically opaque: complex datatypes provide information without an explicit characterization of its meaning.

F. Over-specification

Finally, we have observed that much imprecision stems from an over-specification of the data-structure. In order to cope with characteristics as ‘provenance’ and ‘evidence’ of information, often the data structure require information, which cannot be guaranteed to be meaningful for the heterogeneous nature of data on the web. For instance Ondex requires information on provenance and evidence for all concepts and relations, where provenance is intended to characterize the source of data (see discussion on CV in the previous section) and evidence its validity. Clear definitions for provenance and evidence apply to only a subset of the information that can be represented in Ondex. For instance, what is the evidence of an ontology term ? Or what is the provenance of a value that is the result of a numerical analysis ? Furthermore, users may simply not know the original data sources in the detail that is necessary to assign correct evidence and provenance information. The result is a set of uninformative entries, ranging from the generic “imported from microarray-database” to the ambiguous “unknown”.

IV. CONCLUSIONS

We have developed a simple, practical methodology to assess how the documented semantics of a data integration tool differs from its actual usage and, more specifically, where the semantic definition of the data structures of these tools is underspecified to cope with distributed information on the web. While this simple method has been devised to support the integration of Semantic Web functionalities in Ondex, it describes a general approach that can be of help to the adaptation of a variety of similar network based analysis tools to operate on the Semantic Web.

Ondex exhibits problems of systems that have grown in an ad hoc manner that have under-specified semantics and roles for their data models. The result are graphs that themselves have barriers to integration. Our simple, practical approach to normalising the project’s understanding of its own data-model will have obvious benefits within Ondex. As a preliminary result, it has enabled us to define a mapping between a subset of the Ondex data-model and that of the Semantic Web. Within the Ondex experience is a simple message that just creating a graph does not mean integration; a common integration pattern must be used. Otherwise, we have integration of format that is still difficult to use.

Learning from the Ondex experience, we have identified problems that are common to similar tools. We hope that this experience will help to improve the information design of the next generation of data integration, analysis and visualization platforms that will help in fulfilling the promises of the Semantic Web.

ACKNOWLEDGMENT

The authors gratefully acknowledge the UK Biotechnology and Biological Sciences Research Council (BBSRC) for funding this work under the Systems Approach to Biological Research (SABR) initiative (Grants: AS and CJR, BB/F006039/1; RS, BB/F006012/1; PL, BB/F006063/1). SCK was funded by a SABR project studentship. Rothamsted Research is in receipt of grant in aid from the BBSRC.

REFERENCES

[1] T. Berners-Lee et al., The Semantic Web. Scientific American, May 2001
[2] C. Bizer et al., Linked Data - The Story So Far, to be published in the International Journal on Semantic Web and Information Systems, Special Issue on Linked Data
[3] F. Manola and Eric Miller, RDF Primer, World Wide Web Consortium (W3C) recommendation, February 2004, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
[4] E. Prud'hommeaux and Andy Seaborne, SPARQL Query Language for RDF, World Wide Web Consortium (W3C) recommendation, January 2008, http://www.w3.org/TR/rdf-sparql-query/
[5] HM Government, data.gov.uk, http://data.gov.uk/sparql
[6] G.A. Pavlopoulos et al., A survey for visualization tools for biological networks analysis, BioData Mining, vol. 1, 2008, p. 12, doi:10.1186/1756-0381-1-12
[7] United States Government, data.gov, http://www.data.gov/semantic/index
[8] Open Graph protocol, Facebook, http://developers.facebook.com/docs/opengraph
[9] Ben Adida, Google Announces Support For RDFA, RDFa Blog, http:// rdfa.info/2009/05/12/google-announces-support-for-rdfa/ydn/posts/2008/05/rdfa_and_rdfa
[10] Peter Mika, RDF and the Monkey, Yahoo Developer Network Blog, http://developer.yahoo.com/blogs/
[11] S. Edlich, No-SQL movement Blog, http://nosql-database.org
[12] P. Helm et al., Interactive Relationship Discovery via the Semantic Web, Proceedings of the 7th Extended Semantic Web Conference (ESWC2010), LNCS 6088, Springer, pp. 303317
[13] K. Koheler et al., Graph-based analysis and visualization of experimental results with, Bioinformatics, vol. 22, 2006, pp. 13831390, doi:10.1093/bioinformatics/btl081
[14] E. Neumann, A Life Science Semantic Web: Are We There Yet?, Sci. STKE, May 2005, vol. 2005, p. pe22, doi:10.1126/stke.2832005pe22
[15] P. Shannon et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Research, vol. 13, Nov. 2003, pp. 2498-504, doi:10.1101/gr.1239303
[16] A. Splendiani, RDFscape: Semantic Web meets Systems Biology, BMC Bioinformatics, Apr. 2008, vol 9, Supp 4, p. S6, doi:10.1186/1471-2105-9-S4-S6
[17] C. Goble and R. Stevens, The State of the Nation in Data Integration, Journal of biomedical Informatics, vol. 41, 2008, pp. 687-693, doi:10.1016/j.jbi.2008.01.008
[18] P. Karp, A Strategy for Database Interoperation, Journal of Computational Biology, vol. 2, 1995, pp. 573-586
[19] S.B. Davidson et al., Challenges in Integrating Biological Data Sources, Journal of Computational Biology, vol. 2, 1995, pp. 557-572
[20] A. Splendiani et al., Ondex Semantics Specifications, http://ondex.svn.sourceforge.net/viewvc/ondex/trunk/doc/semantics/