A procedure to quantify the feed intake response of growing pigs to perturbations

Hieu Nguyen Ba, Jaap van Milgen, Masoomeh Taghipoor
August 05th 2019

Contents

Step 1: Treatment of Missing Data 2
 1.1. Special cases of missing data ... 2
 1.2. Estimation of Missing Data ... 6

Step 2: Target trajectory curve of CFI (target CFI) 12
 2.1. Function of the target CFI ... 13
 2.2. Estimate parameters of target CFI 14

Step 3: Detection of perturbations 30
 3.1. Set conditions for B-spline functions 31
 3.2. Detect deviations between observed CFI and target CFI 32
 3.3. Examine data from the first week 33
 3.3. Determine the duration of each deviation 35
 3.4. Consider the most important deviations as perturbations 37

Step 4: Modelling the response of the pig to a perturbation 41
 4.1. If the target CFI is defined by a linear function 42
 4.2. If the target CFI is defined by a quadratic function 43
 4.3. If the target CFI is defined by a quadratic-linear function 44
 4.4. Plot the results ... 45

Note:

• Authors of this document are currently employed by French National Institute for Agricultural Research (INRA) at PEGASE and MosAR units.

• The project receives fundings from European Union’s H2020 project Feed-a-Gene under grant agreement no. 633531, INRA meta-programme Adaptation of Agriculture and Forests to Climate Change INRA-ACCAF and from the French Digital Agricultural Convergence Lab #DigitAg.

• This R-script supports the article - the same title published in Animal - in describing the process of a data analysis procedure and modelling to detect and characterize the response of an individual pig to a perturbation.

• The process includes 1 step of missing data treatment and 3 steps of data analysis and modelling.
Step 1: Treatment of Missing Data

1.1. Special cases of missing data

Before detecting and estimating missing data we have to consider some special cases of missing data:

- **Case 1:** if there is missing data in the beginning of observations and number of days needed before missing data is not enough for estimation, the data from the beginning until missing data is removed from the dataset, e.g. if the dataset starts at day 80 and the first missing day is at day 82 so all these data are removed from the dataset (the dataset then starts at day 83)

- **Case 2:** if there are several series of missing data and the number of available data between two missing series is not enough for estimation (e.g. there are missing data at days 104, 105, 107 and 108) they are merged with each other and are considered as one missing series
• Case 3: if there is missing data in the end and number of days needed after missing data is not enough for estimation the data from the missing data onward is removed from the dataset, e.g. if the dataset ends at day 188 and the last missing days are at days 185 and 186, all these tree data are removed from the dataset (the dataset then ends at day 184)

a. Detect positions of missing data

```r
# Expected number of rows
Exp.row <- max(Age.plot) - min(Age.plot) + 1

# Observed number of rows
obs.row <- as.numeric(length(Age.plot))

# Number of missing days
NumMissRow <- Exp.row - obs.row

# To locate the missing rows
# If age of row_(n+1) - row_n > 1 then n is a missing row
A1 <- Age.plot[1:length(Age.plot)-1] #
A2 <- Age.plot[2:length(Age.plot)]
A3 <- A2 - A1

# Days before missing series
MissRow <- as.data.frame(JRP_new[A3!=1,])
Missdays <- MissRow$Age.plot

# Extract A3 values different to 1
A4 <- A3[A3!=1]
if (length(A4) == 0){
  paste( "There are 0 missing data detected in the pig", i)
} else {
  paste( "There are", length(A4), "missing position(s) detected from the pig", i)
}
```

[1] "There are 0 missing data detected in the pig 1"

b. List of ages associated with missing rows

```r
# An empty list that will gather all missing rows for a given pig
MissAgeT <- list()

# This dataframe will be used to compare with JRP_new_Initial if needed
JRPNew_Final <- JRP_new

# Missing ages in the dataframe
if (length(A4)>0){
  for (ii in 1:length(A4)){
    MissAgeT[[ii]] <- seq(Missdays[ii]+1,Missdays[ii]+A4[ii]-1,1)
  }
}
```
if(length(A4) == 0){
 "No missing data"
} else{
 paste("Age (days) of missing data:", MissAgeT)
}

[1] "No missing data"

A **while loop** is created to automatically treat each special case of missing data

```r
#Empty lists
b1l = list()  #days before missing rows
b2l = list()  #days after missing rows
Xl = list()   #list of ages before and after missing rows
Yl = list()   #list of CFI before and after missing rows
tal = c()     #the vector of first missing rows
dl = list()  #list of coefficients for delta

#information of linear model
Par_initl = list()  #Initial parameters for each set of missing rows
resl = list()       #function optim to estimate parameters
pred_valuesl = list()
deltal = c()
P.dfil = list()     #parameters of the linear function of DFI
FI.missl = list()
Corr.datal=list()
Res.RSS =list()

ki=1  #first value to start while loop

while(ki< length(MissAgeT)+1 ){

    k=ki
    MissAge = MissAgeT[[k]]  #Missing rows at position k

    #----------------------------------------------------
    # Extract age and CFI before and after missing data
    # for the interpolation via linear regression
    #----------------------------------------------------

    L = as.numeric(length(MissAge))

    #number of data before = length(missing rows) + 1
    b1l[[k]] <- seq(MissAge[1]-(length(MissAge) + 1), MissAge[1] - 1, 1)

    #number of data after missing age
    b2l[[k]] <- seq(MissAge[length(MissAge)]+1,
                    MissAge[length(MissAge)]+
                    (length(MissAge)+1), 1)

    #number of missing rows to be replaced at the end
```
MissAge2 = MissAge

#--
Special cases
#--

#1. When number of data before missing row is not enough for estimation
#E.g., 88, 89,..., 92, 93
#we remove all the rows until missing data (Age now starts at day 92)
if(b1l[[k]][1] < Age.plot[1]){
 JRP_new <- JRP_new[!JRP_new$Age.plot %in% seq(Age.plot[1],
 MissAge2[length(MissAge2)],
 by=1),]
 MissAgeT[[1]] <- NULL
 MissAge = MissAgeT[[k]]
 MissAge2 = MissAge
 ki = 0
}

#2. when there are not enough given rows between two series of missing rows
#E.g., 108, 109, 110, 112, 114, 115, 116
#we merge these two missing rows with the rows between
when number of missing row in a serie > 1
if(ki == 0){
}else{
 if(length(MissAgeT)>1 && k < length(MissAgeT)){
 for(ii in 1:(length(MissAgeT)-1)){
 if(k + ii <= length(MissAgeT)){
 if(MissAgeT[[k+ii]][1] - MissAge[length(MissAge)] <= length(MissAge)+1){
 (MissAge = c(MissAge, seq(MissAge[length(MissAge)]+1,
 MissAgeT[[k+ii]][1]-1,1),
 MissAgeT[[k+ii]]))&
 (b2l[[k]] <- seq(MissAge[length(MissAge)]+1,
 MissAge[length(MissAge)] + (length(MissAge)+1),
 1)) &
 (b1l[[k]] <- seq(MissAge[1]-(length(MissAge)+1), MissAge[1]-1, 1)) &
 (ki=k+ii) &
 (MissAge2 = MissAge)
 }
 }
 }
 }
}

if(ki == 0){
}
else{
 if(b1l[[k]][1] < Age.plot[1]){
 JRP_new <- JRP_new[!JRP_new$Age.plot %in% seq(Age.plot[1],
 MissAge2[length(MissAge2)],
 by=1),]
 }
}
#3. When number of data after missing row is not enough for estimation
E.g., 179, 180,..., 183, 184 we remove all the rows
from missing data (Age is now just until day 180)
if (b2l[[k]][length(b2l[[k]])] > Age.plot[length(Age.plot)])){
 JRP_new <- JRP_new[!JRP_new$Age.plot %in%
 seq(MissAge2[[1]],
 Age.plot[length(Age.plot)],
 by=1),]
 MissAgeT[[length(MissAgeT)]] <- NULL
}

#--
Re-calculate CFI after filtrating process
#--
#Age vector
Age.plot = JRP_new$Age.plot[, JRP_new$Age.plot %in% MissAge2]

#DFI vector
DFI.plot = JRP_new$DFI.plot[JRP_new$Age.plot %in% Age.plot]

#CFI
CFI.plot = cumsum(DFI.plot)

#--
New dataset which contains Age, DFI and CFI
#--
JRP_new <- as.data.frame(cbind(Age.plot, DFI.plot, CFI.plot))

ki = ki+1 #next series of missing rows
}

1.2. Estimation of Missing Data

#Expected number of rows
Exp.row <- max(JRP_new$Age.plot) - min(JRP_new$Age.plot)+1

#observed number of rows
obs.row <- as.numeric(length(JRP_new$Age.plot))

#number of missing days
NumMissRow <- Exp.row - obs.row

#To locate the missing rows
#if age of row_(n+1) - row_n > 1 then miss row
A1 <- Age.plot[1: length(JRP_new$Age.plot)-1] #
A2 <- Age.plot[2:length(JRP_new$Age.plot)]
A3 <- A2 - A1

#Day before missing series of data
MissRow <- as.data.frame(JRP_new[A3!=1,])
Missdays <- MissRow$Age.plot

Extract A3 values different to 1
A4 <- A3[A3!=1]

List of ages associated with missing rows

#An emptylist that will gather all missing rows for a given pig
MissAgeT <- list()

#This dataframe will be used to compare with JRP_new_Initial if needed
JRP_new_Final <- JRP_new

Missing ages in the dataframe
if (length(A4)>0){
 for (ii in 1:length(A4)){
 MissAgeT[[ii]] <- seq(Missdays[ii]+1,Missdays[ii]+A4[ii]-1,1)
 }
}

if(length(A4) == 0){
 "No missing data"
} else{
 paste("Age (days) of missing data: ", MissAgeT)
}

[1] "No missing data"

#ESTIMATING MISSING DATA
#---
#Empty lists
b1l = list() #days before missing rows
b2l = list() #days after missing rows

Xl = list() #list of ages before and after missing rows
Yl = list() #list of CFI before and after missing rows
tal = c() #the vector of first missing rows
dl = list() #list of coefficients for delta

#information of linear model
Par_initl = list() #Initial parameters for each set of missing rows
resl = list() #function optim to estimate parameters
pred_valuesl = list()
deltal = c()
P.dfil = list() #parameters of the linear function of DFI
FI.missl = list()
Corr.datal= list()
Res.RSS =list()
ki=1 # first value to start while loop

while(ki< length(MissAgeT)+1){

 k=ki
 MissAge = MissAgeT[[k]] # Missing rows at position k

 #--
 # Extract age and CFI before and after missing data
 # for the interpolation of linear regression
 #--

 L = as.numeric(length(MissAge))
 # number of data before = length(missing rows)+1
 b1l[[k]] <- seq(MissAge[1]-(length(MissAge)+1), MissAge[1]-1, 1)
 # number of data after missing age
 b2l[[k]] <- seq(MissAge[length(MissAge)]+1, MissAge[length(MissAge)]+
 (length(MissAge)+1), 1)

 # number of missing rows to be replaced at the end
 MissAge2 = MissAge

 b1 = b1l[[k]] # Ages before missing row(s)
 b2 = b2l[[k]] # Ages after missing row(s)

 # rows associated with these ages b1, b2
 B1 <- JRPNew$Age.plot %in% b1,
 B2 <- JRPNew$Age.plot %in% b2,

 # CFI associated with these ages b1, b2
 CFI_b <- B1$CFI.plot
 CFI_a <- B2$CFI.plot

 # DFI associated with these ages b1, b2
 DFI_b <- B1$DFI.plot
 DFI_a <- B2$DFI.plot

 #--
 # Regression
 #--

 # Put all values of age together
 Xl[[k]] <- c(b1,b2)
 Yl[[k]] <- c(CFI_b,CFI_a)

 tal[k] <- MissAge[length(MissAge)] # from this point delta is valid

 X = Xl[[k]]
 Y = Yl[[k]]
 ta = tal[k]
dl[[k]] <- as.numeric(X>ta)
d = dl[[k]] #on/off condition which activates function after missing rows

Quadratic function of estimating missing CFI values
pred_fn = function(P){
a0=P[1];
a1=P[2];
a2=P[3];
b0=P[4];
return (a2*X^2 + a1*X + a0*(1-d)+b0*d);
}

2 days before and after for calculation of initial values
X2 = b1[length(b1)-1] #X[2]
X3 = b1[length(b1)] #X[3]
X4 = b2[1] #X[4]
X5 = b2[2] #X[5]

Y2 = CFI_b[length(CFI_b)-1] #Y[2]
Y3 = CFI_b[length(CFI_b)] #Y[3]
Y4 = CFI_a[1] #Y[4]
Y5 = CFI_a[2] #Y[5]

Reparametrize parameters of quadratic function to
parameters from 2 days before and after missing rows
a2_init = (-Y3*X5+Y3*Y4+X2+Y4+X2+Y5-X5-Y3+Y4-X5+X3+Y4+X3)/
 (X2+X5+2-X2+X4-2-X2^2+X5+X2^2+X4-X+X5+2+X3+X4^2+X3^2+X5-X3^2+X4);

a1_init = (-X5^2+Y3+X5+2+Y2-Y5+X2^2+Y5+X3^2+Y4+X2+2-X4-Y2-Y4+X3^2+X4^2+Y3)/
 ((X5-X4)(X5+X2-X5+X3-X2^2+X3^2+X4+X2-X4-X3));

a0_init = (-X5^2+Y3+X2+X5^2+Y2+X3+Y3+X3^2+X5^2+Y4+X4^2+X3-Y3+X2^2+X4-X2+X3^2+Y4+
 X3+X4^2+X3+X4^2+Y2+X3^2+X4)/
 (X2+X5^2+X2+X4^2-X2^2+X5+X2^2+X4-X+X5-Y5+2+X3+X4^2+X3^2+X5-X3^2+X4);

b0_init = (-Y4*X2+X5^2+Y4+X3+X5^2+X5^2+Y2+X4-
 X5^2+Y3+X4^2+X2^2+X5-Y4+X3^2+X5-
 X4^2+Y2*X5+X4^2+Y3+X5+X5^2+X2^2+X4+X3^2+X5^2+Y5+X3+X4^2+Y5+X3^2+X4)/
 (X2+X5^2+X2+X4^2-X2^2+X5+X2^2+X4-X+X5+2+X3+X4^2+X3^2+X5-X3^2+X4);

initial values
Par_initl[[k]] <- c(a0_init, a1_init, a2_init, b0_init)
Par_init = Par_initl[[k]]

Using optim function to minimize Residual Sum of Squares
obj <- function(P){
output <- (Y - pred_fn(P));
obj.func <- t(output)**output; # Residual sum of squares
return(obj.func);
}

resl[[k]] <- optim (Par_init, obj); #function optim to estimate parameters
res = resl[[k]]
pred_valuesl[[k]] = pred_fn(res$par)
pred_values= pred_valuesl[[k]]

#parameters values
a0=res$par[1];
a1=res$par[2];
a2=res$par[3];
b0=res$par[4];
deltal[k] = a0 - b0
delta = deltal[k]

#--
Attribution of data to missing age
#--

#Function of DFI
DFI_pred <- function(age,P.dfi){
 return (2*P.dfi[2]*age + P.dfi[1]);
};

#parameters of the linear function of DFI
P.dfil[[k]] <- c(a1,a2)
P.dfi = P.dfil[[k]]

#sum of estimated DFI for missing days
CFI_miss <- sum(DFI_pred(MissAge2, P.dfi))

FI.miss = c()
for (kj in 1:length(MissAge2)){
 FI.miss[kj] <- DFI_pred(MissAge2[kj],P.dfi)*delta /CFI_miss
 FI.missl[[k]] = FI.miss
}

#Put estimation of DFI in right places (attributed rows)
t1 <- as.numeric(which(JRP_new$Age.plot %in% c(MissAge2-1)))
probs <- rep(TRUE, length(DFI.plot[!c(JRP_new$Age.plot %in% MissAge2)]))
ind <- t1[1] + MissAge2/(sum(MissAge2)*.05)
val.FI <- c(DFI.plot[!c(JRP_new$Age.plot %in% MissAge2)], FI.miss)
val.age <- c(Age.plot[!c(JRP_new$Age.plot %in% MissAge2)],MissAge2)

id <- c(seq_along(probs), ind)
Corr.DFI <- val.FI[order(id)]
Corr.Age <- val.age[order(id)]
Recalculate CFI based on new DFI

```r
Corr.CFI = c()
Corr.CFI[1] = Corr.DFI[1]

for(j in 2:length(Corr.Age)){
  Corr.CFI[j] <- Corr.CFI[j-1] + Corr.DFI[j]
}

# New dataframe containing estimated missing data
Corr.datal[[k]] <- as.data.frame(cbind(Corr.Age, Corr.DFI, Corr.CFI))
Corr.data = Corr.datal[[k]]
colnames(Corr.data) = c("Age.plot", "DFI.plot", "CFI.plot")

# RSS and delta
Res.RSS[[k]] <- as.data.frame(c(res$value, delta), row.names = c("RSS", "Delta"))
```

We replace new data set in the initial data set and we restart
the processus while the condition for k1 is respected

```r
JRP_new = Corr.data
DFI.plot = JRP_new$DFI.plot
Age.plot = JRP_new$Age.plot
CFI.plot = JRP_new$CFI.plot
```

PLOT GRAPHS WITH TREATMENT OF MISSING DATA

```r
# Vector contains estimated missing data
X1 <- c(b1, MissAge2, b2)
Y1 <- JRP_new$CFI.plot[JRP_new$Age.plot %in% X1] # CFI data

# Initial Age around missing row
Age.ini <- JRP_new_initial$Age.plot[JRP_new_initial$Age.plot >= b1[1] & JRP_new_initial$Age.plot <= b2[length(b2)]]

# Initial DFI values
Z <- JRP_new_initial$DFI.plot[JRP_new_initial$Age.plot %in% Age.ini]

# Estimated DFI values
Z1 <- JRP_new$DFI.plot[JRP_new$Age.plot %in% X1]

# To indicate the location of missing rows in the title of graphs
A <- c()
for(i in 1:length(MissAge2)){
  A <- paste(A, MissAge2[i])
}

# PLOT
```
par(mar=c(4,4.5,4,4.5))
plot(X1, Y1,
 main = paste("Pig ID:" , ID[idc],
 "\nMissing rows:" , A, sep = ""),
 ylab = "Cumulative feed intake (kg)",
 xlab = "Age (days)",
 type = "o", lwd = 2, cex.main = 1.7,
 pch = 1, cex.lab = 1.3, cex.axis = 1.2 , cex = 2, col = 'blue')
points(X, Y,
 lwd = 2, cex = 2, type = "o")
legend("topleft",c("real data", "estimated data"),
 pch = c(1,1), col = c("black", "blue"), bty = "n", cex = 1)

ki = ki+1 #next series of missing rows

} #end of WHILE loop

1.2.2. Remove the last day from dataset because the pig may be fasted one day before slaughtering

JRP_new = JRP_new[c(1:length(JRP_new$Age.plot)-1),]

• New dataset after estimating missing data

ANIMAL_ID = rep(ID[i], dim(JRP_new)[1])
JRP_new_Final <- cbind(ANIMAL_ID,JRP_new)
No.NA.Data <- JRP_new_Final
rm(list=ls()[! ls() %in% c("No.NA.Data")])

Step 2: Target trajectory curve of CFI (target CFI)

#====================
DATA PREPARATION
#====================

#Load needed functions
source("Functions.R")

#Order number of Animal_ID
ID = unique(as.factor(No.NA.Data$ANIMAL_ID))

Data = No.NA.Data[No.NA.Data$ANIMAL_ID == ID,]

x <- as.numeric(Data$Age.plot)
Y <- as.numeric(Data$CFI.plot)
Z <- as.numeric(Data$DFI.plot)
Data.xy <- as.data.frame(cbind(x,Y))
2.1. Function of the target CFI

A quadratic-linear function (QLM) is chosen as the principal function to describe the target CFI:

When $X < X_s$:

$$Y = a + bX + cX^2$$

When $X \geq X_s$:

$$Y = (a + bX_s + cX_s^2) + (b + 2cX_s) \cdot (X - X_s)$$

Note: in the article, X is called t and Y is $\text{Target-CFI}(t)$

The model is reparametrized to:

- Age at which CFI is equal 0 (X_0)
- The day where quadratic segment changes to linear segment (X_s)
- Estimated DFI and CFI at age X_s (DFI_s)
- Estimated DFI age X_s (CFI_s)

```r
# Initial parameters for the quadratic-linear function
X0.0 = x[1]
Xlast = x[length(x)]

# Provide a grid contains many initial values for Xs
# and choose the set of values with smallest Residual Sum of Square
Xs.1 = round(seq(X0.0 + 1, Xlast - 1, len = 30), digits = 0)
X0.1 = rep(X0.0, length(Xs.1))
DFIs.1 <- c()
CFIs.1 <- c()
for(A in 1:length(Xs.1)){
  DFIs2 = Data[Data$Age.plot == Xs.1[A],]$DFI.plot
  CFIs2 = Data[Data$Age.plot == Xs.1[A],]$CFI.plot
  DFIs.1 <- c(DFIs.1, DFIs2)
  CFIs.1 <- c(CFIs.1, CFIs2)
}

st1 = data.frame(cbind(X0.1,
                        Xs.1,
                        DFIs.1,
                        CFIs.1))
names(st1) <- c("X0", "Xs", "DFIs", "CFIs")

# Choose the best initial values by using optimization in NLS2
st2 = nls2(Y ~ nls.func.2(X0, Xs, DFIs, CFIs),
            Data.xy,
            start = st1,
            # weights = weight,
            # trace = T,
```
algorithm = "brute-force")
par_init <- coef(st2)
par_init

X0 Xs DFIs CFIs
68.000 155.000 2.813 216.573

Based on the optimized initial parameters the function of target CFI can be chosen as:

- **Quadratic function (QM)**: if the Xs (chosen by the grid) is too close to either the first or last observation
- **Linear function (LM)**: if the slope of the function’s derivative (slope of DFI curve) is negative
- **Quadratic-linear function (QLM)**: none of these options above

#---
Adapt the function for each animal
#---
#Calculate Slope of DFI curve
c <- abcd.2(par_init)[3]

Determine the value of Xs
Xs.0 <- par_init[2]

if(c < 0){
 FuncType <- "LM"
} else if(c > 0 && Xs.0 >= ((Xlast - X0) * 0.2 + X0) #this condition was set because
) {
 FuncType <- "QLM"
} else {
 FuncType <- "QDR"
}

if(FuncType == "LM"){
 ABC <- "linear"
} else if(FuncType == "QDR"){
 ABC <- "quadratic"
} else{
 ABC <- "quadratic-linear"
}

print(paste("A ", ABC,
" function will be applied to estimate the target CFI", sep = "))

[1] "A quadratic-linear function will be applied to estimate the target CFI"

2.2. Estimate parameters of target CFI

a. If a linear function is chosen

Parameters a and b are reparametrized to:
- **X0**: the estimated age at which value of CFI is equal to 0 (or t0 in the article)
- **Ylast**: the estimated CFI value at the last observation (or CFI_last in the article)

```r
if(FuncType == "LM"){
  # Remove unnecessary data
  rm(list=ls()[ls() %in% c("ID", "Data", "FuncType", "x", "Y", "Z", "Data.xy")])

  # Load needed functions
  source("Functions.R")

  xlast <- x[length(x)]  # last day of observation
  # Provide initial parameters for the linear function
  x0.0 = x[1]
  ylast.0 = Y[length(x)]

  # Vector containing 2 initial parameters
  par_init <- c(x0.0, ylast.0)

  # Create empty lists to store data after loop
  par = list()
  AC.res = list()
  AC.pvalue = c()
  data2 = list()
  param <- data.frame(rbind(par_init))
  par.abcd = data.frame(rbind(abcd.0(as.vector(par_init)))))
  param.2 <- data.frame(X0=double(), Ylast=double(), a=double(), b=double(), stringsAsFactors=FALSE)

  j = 2
  AC.pvalue = 0
  AC.pvalue[1] = AC.pvalue
  datapointsleft = as.numeric(dim(Data)[1])
  dpl = datapointsleft  # vector of all datapoints left at each step

  # Start the filtration procedure by using Non Linear Regression
  while (AC_pvalue <= 0.05 & datapointsleft >= 20){
    weight = 1/Y^2  # Weighing data
    nls.CFI <- nlsLM(Y ~ nls.func.0(X0, ylast),
                     Data.xy,
                     control = list(tol = 1e-2, printEval = TRUE, maxiter = 50),
                     start = list(X0 = par_init[1],
                                  ylast = par_init[2]),
                     trace = T, weights = weight)
```
RESULTS analysis GOODNESS of fit

estimate params
par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.0(as.vector(coef(nls.CFI))) # calculation of a, and b
par[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])

residuals
res1 = nlsResiduals(nls.CFI)
res2 = nlsResiduals(nls.CFI)$resid
res = res2[,2]
AC.res = test.nlsResiduals(res1)
AC.pvalue[j] = AC.res$p.value

Check for negative residuals---

Add filtration step order to data
Step <- rep(j - 1, length(x))
create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.0(par[[j]],x)[[1]], res, Step))
names(Data.new) <- c("Age",
"Observed_DFI",
"Observed_CFI",
"Predicted_CFI",
"Residual",
"Step")

Remove negative residuals
Data.pos <- Data.new[!Data.new$Residual<0,]

restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j+1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x,Y))
dpl = c(dpl, datapointsleft)
}

Create a table to store estimated parameters
ANIMAL_ID = rep(ID, dim(param.2)[1])
XLAST = rep(xlast, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,
 param.2,
 XLAST,
 AC.pvalue[2:length(AC.pvalue)],
dpl[1:length(dpl)-1],
 rep(FuncType, dim(param.2)[1])
)

colnames(param.2) = c("ANIMAL_ID",}
"X0", "Ylast", "a", "b", "Xlast", "P.runs.test", "DPL", "FuncType"
)

#Add information of slope of DFI
Slope <- rep(0, dim(param.2)[1])
param.2$Slope <- Slope

Give the ID back to the animal
ANIMAL_ID = rep(ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID, Data.new)
Data.remain = Data.new[,c(1:4)]
}
} else{

b. If a quadratic function is chosen

- Xlast is an observation indicates the estimated age at the end of the growing period

Parameters a and b are reparametrized to:

- X0: the estimated age at which value of CFI is equal to 0 (or t0 in the article)
- y2: the estimated CFI at the midpoint (or CFI_mid-point in the article)
- ylast: the estimated CFI value at the last observation (or CFI_last in the article)

if(FuncType == "QDR"){

 #Remove unecessary data
 rm(list=ls()[]%in% c("ID", "Data", "FuncType", "x", "Y", "Z", "Data.xy"))

 # Load needed functions
 source("Functions.R")

 xlast <- x[length(x)] #last day of observation
 #Initial parameteres for the quadratic function
 x0.0 = x[1]
 y2.0 = Y[floor(length(x)/2)]
 ylast.0 = Y[length(x)]

 #Vector contains 3 initial parameters
 par_init <- c(x0.0, y2.0, ylast.0)

 x2 = (xlast - x[1])/2+x[1] # day at midpoint of the dataset
Create empty lists to store data after loop

```r
par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
data3 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.1(as.vector(par_init))))
param.2 <- data.frame(X0=double(),
                     Y2=double(),
                     Ylast=double(),
a=double(),
b=double(),
c=double(),
stringsAsFactors=FALSE)
j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft  # vector of all datapointsleft at each step
```

Start the filtration procedure by using Non Linear Regression

```r
while (AC_pvalue<=0.05 & datapointsleft >= 20){
weight = 1/Y^2  # weighing data
nls.CFI <- nlsLM(Y ~ nls.func.1(X0, y2, ylast),
                 Data.xy,
                 control = list(tol = 1e-2, printEval = TRUE, maxiter = 50),
                 start = list(X0 = par_init[1], y2 = par_init[2],
                         ylast = par_init[3]),
                 trace = F,
                 weights = weight)

#--------RESULTS analysis GOODNESS of fit
# estimate params
par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.1(as.vector(coef(nls.CFI) )) # calculation of a, b and c
param[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])

# Calculation of days associated with Y1 and Y2
x2[j] = (xlast - coef(nls.CFI)[1]/2+coef(nls.CFI)[1]

# residuals
res1 = nlsResiduals(nls.CFI)
res2= nlsResiduals(nls.CFI)$res1
res = res2[,2]
```
AC.res = test.nlsResiduals(res1)
AC.pvalue[j] = AC.res$p.value

#----------Check for negative residuals----------

#Add filtration step order to data
Step <- rep(j - 1, length(x))
#create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.1(par[[j]],x)[[1]], res, Step))
names(Data.new) <- c("Age",
 "Observed_DFI",
 "Observed_CFI",
 "Predicted_CFI",
 "Residual",
 "Step")

#remove negative res
Data.pos <- Data.new[!Data.new$Residual<0,]

#restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j+1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x,Y))
dpl = c(dpl, datapointsleft)
}

#Create a table to store estimated parameters
ANIMAL_ID = rep(ID, dim(param.2)[1])
XLAST = rep(xlast, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,
 param.2,
 x2[2:length(x2)],
 XLAST,
 AC.pvalue[2:length(AC.pvalue)],
 dpl[1:length(dpl)-1],
 rep(FuncType, dim(param.2)[1])
)
colnames(param.2) = c("ANIMAL_ID",
 "X0",
 "Y2",
 "Ylast",
 "a",
 "b",
 "c",
 "X2",
 "Xlast",
 "P.runs.test",
 "DPL",
"FuncType"
)

Add information of the slope of DFI
Slope <- c()
for(ii in 1:dim(param.2)[1]){
 if(param.2[ii,]$c < 0){
 Slope.1 <- -1
 } else {
 Slope.1 <- 1
 }

 Slope <- c(Slope, Slope.1)
}

param.2$Slope <- Slope

Give the ID back to the animal
#--
ANIMAL_ID = rep(ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID, Data.new)

Data.remain = Data.new[,c(1:4)]
}

else{
}

c. If a quadratic-linear function is chosen

if(FuncType == "QLM"){

Remove unnecessary data
rm(list=ls()[! ls() %in%
 c("ID", "Data", "FuncType", "x", "Y", "Z",
 "Data.xy", "X0.0", "Xlast", "par_init", "st1", "TTC.param")])

Load needed functions
source("Functions.R")

Create empty lists to store data after loop
par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
data3 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.2(as.vector(par_init))))
param.2 <- data.frame(X0=double(),

 Xs=double(),
 DFIs=double(),
 CFIs=double(),
 a=double(),
 b=double(),
 c=double(),
 stringsAsFactors=FALSE)

j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft #vector of all datapointsleft at each step

#---
Start the filtration procedure by using Non Linear Regression
#---

while ((AC_pvalue <= 0.05) || datapointsleft >= 20) {

 weight = 1/Y^2 #weighing data
 st2 = nls2(Y - nls.func.2(X0, Xs, DFIs, CFIs),
 Data.xy,
 start = st1,
 weights = weight,
 trace = F,
 algorithm = "brute-force")
 par_init <- coef(st2)

 nls.CFI <- nlsLM(Y - nls.func.2(X0, Xs, DFIs, CFIs),
 Data.xy,
 control = list(tol = 1e-2, printEval = TRUE, maxiter = 1024),
 start = list(X0 = par_init[1], Xs = par_init[2],
 DFIs = par_init[3], CFIs = par_init[4]),
 weights = weight,
 algorithm = "port",
 lower = c(-100000, X0.0+1, -100000, -100000),
 upper = c(100000, Xlast-1, 100000, 100000),
 trace = F)

 #--------RESULTS analysis GOODNESS of fit
 #estimate params
 par[[j]] = coef(nls.CFI)
 par.abcd[j,] = abcd.2(as.vector(coef(nls.CFI))) #calculation of a, b and c
 param[j,] = par[[j]]
 param.2[j-1,] = cbind(param[j,], par.abcd[j,])

 #residuals
 res1 = nlsResiduals(nls.CFI)
 res2= nlsResiduals(nls.CFI)$resid
 res = res2[,2]
 AC.res = test.nlsResiduals(res1)
 AC.pvalue[j] = AC.res$p.value
}

21
#---------Check for negative residuals----------

Add filtration step order to data
Step <- rep(j - 1, length(x))

Create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.2(par[[j]], x)[[1]], res, Step))
names(Data.new) <- c("Age",
"Observed_DFI",
"Observed_CFI",
"Predicted_CFI",
"Residual",
"Step")

Remove negative res
Data.pos <- Data.new[!Data.new$Residual < 0,]

Restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j + 1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x, Y))
dpl = c(dpl, datapointsleft)

Create again the grid
X0.0 <- x[1]
Xlast <- x[length(x)]

if(par_init[2] - 15 <= X0.0){
 Xs.1 = round(seq(X0.0 + 5, Xlast - 5, len = 30), digits = 0)
} else if(par_init[2] + 5 >= Xlast){
 Xs.1 = round(seq(par_init[2] - 10, par_init[2] - 1, len = 6), digits = 0)
} else{
 Xs.1 = round(seq(par_init[2] - 5, par_init[2] + 5, len = 6), digits = 0)
}

DFIs.1 <- c()
CFIs.1 <- c()
for(A in 1:length(Xs.1)){
 DFIs2 = Data[Data$Age.plot == Xs.1[A],]$DFI.plot
 CFIs2 = Data[Data$Age.plot == Xs.1[A],]$CFI.plot
 DFIs.1 <- c(DFIs.1, DFIs2)
 CFIs.1 <- c(CFIs.1, CFIs2)
}
st1 = data.frame(cbind(X0.1, Xs.1, DFIs.1, CFIs.1))

if(X0.0 <= par_init[2] && Xlast >= par_init[2]){# Add filtration step order to data
 st1 <- rbind(st1, par_init)
}
names(st1) <- c("X0","Xs", "DFIs","CFIs")
}

#Create a table to store estimated parameters
ANIMAL_ID = rep(ID, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,
param.2,
XLAST = rep(Data$Age.plot[length(Data$Age.plot)], dim(param.2)[1]),
AC.pvalue[2:length(AC.pvalue)],
dpl[1:length(dpl)-1],
rep(FuncType, dim(param.2)[1])
)
colnames(param.2)= c("ANIMAL_ID",
"X0",
"Xs",
"DFIs",
"CFIs",
"a",
"b",
"c",
"Xlast",
"P.runs.test",
"DPL",
"FuncType"
)

#Add information of the slope of DFI
Slope <- c()
for(ii in 1:dim(param.2)[1]){
 if(param.2[ii,]$c < 0){
 Slope.1 <- -1
 } else {
 Slope.1 <- 1
 }

 Slope <- c(Slope, Slope.1)
}

param.2$Slope <- Slope

#Give the ID back to the animal
ANIMAL_ID = rep(ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID , Data.new)

Data.remain = Data.new[,c(1:4)]

Results of the filtration process
Note:

- Each row corresponds to each filtration step (to eliminate data with negative residuals).
- Xlast: The last day of age.
- P.runs.test: The P-value of auto-correlation test (runs test).
- DPL: The data points left in each step.
- Slope: slope of DFI function (positive when it = 1 and negative when = -1)

TTC.param <- param.2[[dim(param.2)[1]]]
TTC.param

ANIMAL_ID X0 Xs DFIs CFIs a b
c Xlast P.runs.test DPL FuncType Slope
4 0.003388383 195 5.127604e-05 37 QLM 1

After the estimation, if the quadratic-linear function was chosen to estimate the target CFI, it may be replaced by:

1. A **quadratic function** if estimated Xs is still too close to either the first or the last observation
2. A **linear function** if the slope of DFI curve is still negative

A quadratic function is replaced the quadratic-linear function
A linear function is replaced the quadratic-linear function

Also, after the estimation, if a Quadratic function is chosen to represent the target CFI and the slope of DFI curve is negative, a Linear function is used to represent the target CFI

TTC.param <- param.2[[dim(param.2)[1]]]

if(TTC.param$FuncType == "QDR" && TTC.param$Slope == -1){
 # A linear function is replaced the quadratic-linear function
 # Remove unecessary data
 rm(list=ls() %in% c("DON_NA.0", "DON_NA", "No.NA.Data", "ID","i", "idc","Data", "TTC.param", "ITC.param.pos2", "ITC.param.pos1", "ITC.param.neg", "Data.remain"))

 # Load needed functions
 source("Functions.R")

 ####### Create data frame of x (Age) and y (CFI) #######
x <- as.numeric(Data$Age.plot)
Y <- as.numeric(Data$CFI.plot)
Z <- as.numeric(Data$DFI.plot)
Data.xy <- as.data.frame(cbind(x,Y))

xlast <- x[length(x)] # last day of observation
Initial parameters for parameter estimation
x0.0 = x[1]

24
ylast.0 = Y[length(x)]

Vector contains 2 initial parameters
par_init <- c(x0.0, ylast.0)

#--
Create empty lists to store data after loop
#--

par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.0(as.vector(par_init))))
param.2 <- data.frame(X0=double(), Ylast=double(), a=double(), b=double(), stringsAsFactors=FALSE)

j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft #vector of all datapointsleft at each step

#--
while (AC_pvalue<=0.05 & datapointsleft >= 20){
weight = 1/Y^2 #weighing data
nls.CFI <- nlsLM(Y ~ nls.func.0(X0, ylast), Data.xy,
control = list(tol = 1e-2, printEval = TRUE, maxiter = 50),
start = list(X0 = par_init[1], ylast = par_init[2]),
trace = F,
weights = weight)
#
#--------RESULTS analysis GOODNESS of fit
estimate params
par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.0(as.vector(coef(nls.CFI))) #calculation of a, b, c and d
param[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])
#
residuals
res1 = nlsResiduals(nls.CFI) #residuals
res2= nlsResiduals(nls.CFI)$res1
res = res2[,2]
AC.res = test.nlsResiduals(res1)
#--
AC.pvalue[j] = AC.res$p.value

#-------------Check for negative residuals-------------

Add filtration step order to data
Step <- rep(j - 1, length(x))
Create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.0(par[[j]], x)[[1]], res, Step))
names(Data.new) <- c("Age", "Observed_DFI", "Observed_CFI", "Predicted_CFI", "Residual", "Step")

Remove negative res
Data.pos <- Data.new[!Data.new$Residual<0,]

Restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j + 1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x, Y))
dpl = c(dpl, datapointsleft); dpl

ANIMAL_ID = rep(i, dim(param.2)[1])
XLAST = rep(xlast, dim(param.2)[1])
FuncType <- "LM"
param.2 = cbind(ANIMAL_ID, param.2, XLAST, AC.pvalue[2:length(AC.pvalue)], dpl[1:length(dpl)-1], rep(FuncType, dim(param.2)[1])

colnames(param.2)= c("ANIMAL_ID", "X0", "Ylast", "a", "b", "Xlast", "P.runs.test", "DPL", "FuncType"

Add one column about the slope of DFI to the function
Slope <- rep(0, dim(param.2)[1])

param.2$Slope <- Slope

#---
Give Animal ID for each animal and save them to dataframes in the loop

```r
ANIMAL_ID = rep(i, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID, Data.new)

Data.remain1 = Data.new[,c(1:4)]
} else{
}
```

NULL

```r
TTC.param <- param.2[dim(param.2)[1],]; TTC.param
```

ANIMAL_ID X0 Xs DFIs CFIs a b
4 1 67.29436 161.7723 2.85089 239.1013 -133.4189 1.754597
c

Xlast P.runs.test DPL FuncType Slope
4 0.003388383 195 5.127604e-05 37 QLM 1

Plot the target CFI:

```r
# Load needed functions
source("Functions.R")
#Extract Age, DFI and CFI
Age = Data$Age.plot
CFI = Data$CFI.plot
DFI = Data$DFI.plot

#Choose the right function for each animal
FuncType <- TTC.param$FuncType
Slope <- TTC.param$Slope

if(FuncType == "LM"){
  param.i <- as.numeric(TTC.param[,c(4:5)])
  ITC <- pred.abcd.0(param.i, Age)[[1]]
  ITD <- rep(param.i[2], length(Age))
} else if(FuncType == "QDR"){
  param.i <- as.numeric(TTC.param[,c(5:7)])
  ITC <- pred.abcd.1(param.i, Age)[[1]]
  ITD <- pred.abcd.1(param.i, Age)[[2]]
} else{
  param.i <- as.numeric(TTC.param[,c(6:8)])
  Xs <- TTC.param$Xs
  ITC <- pred.abcd.2(param.i, Age)[[1]]
  ITD <- pred.abcd.2(param.i, Age)[[2]]
}
```

#Plot
CFI data preparation

```r
cf1 <- Data %>% select(Age.plot, CFI.plot)
cf1 <- cf1 %>% mutate(Points = rep("Observed_CFI", length(Age)))
cf2 <- data.frame(cbind(Data$Age.plot, ITC)); names(cf2) <- c("Age.plot", "CFI.plot")
cf2 <- cf2 %>% mutate(Points = rep("Target_CFI", length(Age)))
cf <- rbind(cf1, cf2)

AA1 <- Data.remain %>% select(Age, Observed_CFI) %>%
    mutate(Points = rep("Target_CFI", length(Age)))
names(AA1) <- c("Age.plot", "CFI.plot", "Points")
AA <- rbind(cf1, AA1)

# To export figure in the same working directory as this R-script:
# activate the row below and function dev.off() in the end
# tiff(file = paste(Data$ANIMAL_ID,".Target_CFI",.png,sep=""),
# width = 5000, height = 3000, units = "px", res=600)
cols <- c("Target_CFI" = "blue", "Observed_CFI" = "white")
ggplot(data = AA, aes(x = Age.plot, y = CFI.plot)) +
    geom_point(aes(fill = Points), color = "black", shape = 21, size = 3.5, stroke = 0.7) +
    geom_line(data = cf2, aes(x = Age.plot, y = CFI.plot), color = "blue", size = 1.7) +
    scale_fill_manual(values = cols) +
    xlab("Age, d") +
    ylab("Cumulative Feed Intake, kg") +
    scale_y_continuous(breaks=seq(0, 300, 40)) +
    scale_x_continuous(breaks=seq(60, 240, 20)) +
    ggtitle(paste("Target CFI","Pig ID: ", ID, ", FuncType: ", FuncType)) +
    theme(plot.title = element_text(hjust = .5)) +
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.background = element_blank(),
          axis.line = element_line(colour = "black") +
          theme(axis.text=element_text(size=12),
                axis.title=element_text(size=14,face="bold"))
```

28
dev.off()

DFI data preparation
df1 <- Data %>% select(Age.plot, DFI.plot)
df1 <- df1 %>% mutate(Points = rep("Observed_DFI", length(Age)))
df2 <- data.frame(cbind(Data$Age.plot, ITD)); names(df2) <- c("Age.plot", "DFI.plot")
df2 <- df2 %>% mutate(Points = rep("Target_DFI", length(Age)))
df <- rbind(df1, df2)

BB1 <- Data.remain %>% select(Age, Observed_DFI) %>% mutate(Points = rep("Target_DFI", length(Age)))
names(BB1) <- c("Age.plot", "DFI.plot", "Points")
BB <- rbind(df1, BB1)

To export figure in the same working directory as this R-script:
activate the row below and function dev.off() in the end
tiff(file = paste(Data$ANIMAL_ID, ".", "Target_DFI", ".png", sep=""),
width = 5000, height = 3000, units = "px", res=600)
cols <- c("Target_DFI" = "blue", "Observed_DFI" = "white")
ggplot(data = BB, aes(x = Age.plot, y = DFI.plot)) +
geom_point(aes(fill = Points), color = "black", shape = 21, size = 4, stroke = 0.7) +
geom_line(data = df2, aes(x = Age.plot, y = DFI.plot), color = "blue", size = 2) +
scale_fill_manual(values = cols) +
xlab("Age, d") +
ylab("Daily Feed Intake, kg/d") +
scale_y_continuous(breaks=seq(0, 8, 1)) +
scale_x_continuous(breaks=seq(60, 240, 20)) +
```
# dev.off()

Step 3: Detection of perturbations

Calculate the difference between observed CFI and target CFI. The differences between CFI and Target CFI are presented as percentage (%)

```r
Calculate the differences between observed and target CFI
res <- CFI - ITC
Represent differences in percentage
percent <- res/ITC*100
```
3.1. Set conditions for B-spline functions

Factors which determine the smoothness of B-spline function are chosen by visualization:

- B-spline is a set of polynomial functions which joined end-to-end with each other at interval boundaries called knots.
- The order of these polynomials (one larger than the degree of polynomials) was given the value of 6 (therefore the degree of polynomial is 5).
- The curvature of the function (also is the second derivative of the function) which determines the shape of the curve was given the value of 4.
- Lambda - smoothing parameter (derivative penalty) which controls the smoothness of the curve by penalizing the curvature was given the value of 0.01.

```r
Fit a B-spline to the differences between CFI and Target CFI (%)
#number of basis functions = order + number of interior knots
#Roughness penalty
lambda = 1e-2
pen_what = 4 # ensure the smoothness of 2nd derivative
norderT = 6 # because we need the 4th derivative to be continue
nby = 1 # which knots? = 1: all points, =2: every 2 points...
rangeval=c(min(Age),max(Age))

#start the process
create the time step based on nby
idx = c(seq(1,length(Age), by=nby), length(Age)) # in case the last value is taken twice

Create B-Spline basis of order order T with n knots
basisobj <- create.bspline.basis(rangeval , norder=norderT , breaks=Age[idx])
fdPar <- fdPar(basisobj, pen_what, lambda)

Choose a value of time interval and generate a series of values from the first to the last Age with the chosen time interval
E.g. if time interval is equal to 0.1, the series are 80.1, 80.2,...

#evaluation days for CFI and spline functions :
#time interval can be changed by = 0.1, 0.01,...
dexima.i <- .1 # interval number
divide growing period by a smaller time step
eval_day <- seq(min(Age), max(Age),by=dexima.i)

Fit B-spline function for differences between observed and target CFI

difCFI.fd <- smooth.basis(Age, percent, fdPar)
Smooth.difCFI <- difCFI.fd$fd
```

# Results of SPLINE
# Evaluation of B-spline for the difference between observed and target CFI
val.CFI <- eval.fd(eval_day, Smooth.difCFI) # Spline function
vel.CFI <- eval.fd(eval_day, Smooth.difCFI, 1) # 1st derivative of Spline function
acc.CFI <- eval.fd(eval_day, Smooth.difCFI, 2) # 2nd derivative of Spline function

# Call new names for val.CFI and vel.CFI
dif.CFI <- val.CFI # Spline function of difference between observed and target CFI
dif.DCFI <- vel.CFI # 1st derivative of Spline function (slope)

# Make data frame called "dif" only contains time, values of spline function, # of its slope and difference between CFI and its target CFI
dif = as.data.frame(cbind(eval_day, dif.CFI, dif.DCFI))
names(dif) <- c("eval_day", "dif.CFI", "dif.DCFI")

3.2. Detect deviations between observed CFI and target CFI

This step uses results obtained from B-spline functions to calculate:

- Start of each perturbation
- Time where CFI rejoins the target CFI
- Magnitude of each perturbation (the day and percentage where CFI deviates the most from target CFI)

# Detect changes in the sign of 1st derivative
# Criteria for a normal range from which everything below is considered as deviations
crit1 = 0
# so whenever observed CFI decreases from target CFI we consider as deviations

daysbeltonormalrange
no.pert.age.val = eval_day[which(dif.CFI >= crit1)]
# Determine when data is in normal range
dif$CFIzero = rep(1, length(eval_day))
dif$CFIzero[eval_day %in% no.pert.age.val] = 0

# Sign of 1st derivative of B-Spline function
# Create a vector for sign of 1st derivative called "sign.vel"
dif$sign.vel = rep(0, length(eval_day))
# When sign of 1st derivative is positive (sign.vel = 1)
dif$sign.vel[which(dif.DCFI > 0)] = 1
# When sign of 1st derivative is negative (sign.vel = -1)
dif$sign.vel[which(dif.DCFI < 0)] = -1

#Calculate the variation in signs of the slope between the day before and the day after.
#EX: if the slope changes from negative to positive from the day before to the day after.
#To do that: Create one data frame from "dif" in which the first row is removed
#And calculate the differences in slopes with "dif"
#---------------------------------------------------------------

#Duplicate the last row so the new data frame will have equal length with "dif"
lastrow <- cbind(Age[length(Age)] + dexima.i, dif[dim(dif)[1]][,-1])
names(lastrow) <- c("eval_day", "dif.CFI", "dif.DCFI", "CFIzero", "sign.vel")

#Create the new data frame, remove first row and duplicate the last row
difp1 = rbind(dif[-1,], lastrow)
#---------------------------------------------------------------

#Determine the days in which the deviation of CFI from target CFI are maximum and minimum
#---------------------------------------------------------------
difp1$maxmin = dif$sign.vel - difp1$sign.vel
#When the 1st derivative changes from negative to positive:
#sign = -1 - 1 = -2 -> maxmin = -2 is min
#When the 1st derivative changes from positive to negative:
#sign = 1 - (-1) = 2 -> therefore maxmin = +2 is max
#---------------------------------------------------------------

# Determine the days in which CFI curves start
# to deviate from and come back to normal range
#---------------------------------------------------------------
difp1$end.p = dif$CFIzero - difp1$CFIzero
#CFIzero = 0 when CFI is equal TTC, otherwise = 1
#Value of end.p is equal to 1: come back inside the normal range
#Value of end.p is equal to -1: go out of the normal range

3.3. Examining data from the first week

We do not take into consideration data in the first week of pig.
However, deviations that started during the first week and for which the selection criteria of duration and magnitude continue to hold during the second week are considered to be the result of a perturbation.

#Criteria to remove the first period of mixing group effect on pigs
crit2 = 7 #we remove 1st week

#Find the end of the first perturbation
normal.day <- difp1 %>% filter(end.p == 1); normal.day <- normal.day$eval_day
#Find the beginning of the first perturbation
pertub.day <- difp1 %>% filter(end.p == -1); pertub.day <- pertub.day$eval_day

#After remove the first growing period (7 days)
#if the 1st deviation has its magnitude larger than 5%
#We consider it as a perturbation, thus, we
#include all data from first period to the data again

if(normal.day[1] - difp1$eval_day[1] < crit2 &
    normal.day[1] < pertub.day[1] &
    pertub.day[1] < difp1$eval_day[1] + crit2){
    crit2 = 0
} else if(normal.day[1] - difp1$eval_day[1] < crit2 &
    normal.day[1] > pertub.day[1] &
    pertub.day[2] > difp1$eval_day[1] + crit2){
    crit2 = 7
} else if(normal.day[1] - difp1$eval_day[1] < crit2 &
    normal.day[1] > pertub.day[1] &
    pertub.day[2] < difp1$eval_day[1] + crit2){
    crit2 = 0
} else{
    normal.day1 <- ifelse(normal.day[1] > difp1$eval_day[1] + crit2,
                          normal.day[1],
                          normal.day[2])
}

#Test if after removing the first week,
#magnitude of deviation is still larger than 5%;
#we keep 1st week, otherwise we remove 1st week

test.data <- filter(difp1,
    eval_day %in% seq(difp1$eval_day[1] + crit2,
                       normal.day1,
                       by = 0.1))

dif.CFI1 <- test.data %>%
  group_by(dif.CFI) %>%
  summarise(count = n()) %>%
  arrange(desc(count)) %>%
  top_n(2)

as.numeric(dif.CFI1$dif.CFI)
crit2 = ifelse(dif.CFI1$dif.CFI[1] <= -5 &&
               (normal.day1 - (difp1$eval_day[1] + crit2)) >= 5,
               0, 7)
}

## Selecting by count

#Define the days in which observed CFI is deviated from the target CFI
#deviated ages (which have CFI values < normal range)

dev.age = difp1[difp1$dif.CFI < crit1 & difp1$eval_day > eval_day[1] + crit2,]$eval_day
#data frame contains all information of the perturbed days
dev.df <- difp1[difp1$eval_day %in% dev.age,]
#Check if crit2 = 0, we have to include the first week to perturbation

```r
crit2
```

## [1] 7

### 3.3. Determine the duration of each deviation

```r
Extract min, max and start and end points of the deviations

days when deviations have maximum values
max = dev.df$eval_day[which(dev.df$maxmin == -2)]

values of max
dif.max = dif$CFI[dif$eval_day%in%max]

days when deviations have minimum values
min = dev.df$eval_day[which(dev.df$maxmin == 2)]

values of min
dif.min = dif$CFI[dif$eval_day%in%min]

start days of deviations
start.raw <- dev.df$eval_day[which(dev.df$end.p == -1)]
if(sum(start.raw) == 0){
 start = dev.df$eval_day[1]
} else{
 if(start.raw[1] == dev.age[1]){
 start = start.raw
 } else{
 start = c(dev.age[1], start.raw)
 }
}

values of start
dif.start = dif$CFI[dif$eval_day%in%start]

end days of deviations
end = difp1[difp1$end.p == 1 & difp1$eval_day > eval_day[1] + crit2]$eval_day

values of end
dif.end = dif$CFI[dif$eval_day%in%end]

Create an empty table.i which has the length equal to the number of "start" and "end"
per = number of deviation
table.i <- data.frame(per=1:max(length(end),
length(dif.end),
length(start),
length(dif.start)))

Fill in the vectors of days and values of start and end points to table
```

```r
table.i$start <- c(start, rep(NA, nrow(table.i)-length(start)))
```
table.i$dif.start <- c(dif.start, rep(NA, nrow(table.i)-length(dif.start)))
table.i$end <- c(end, rep(NA, nrow(table.i)-length(end)))
table.i$dif.end <- c(dif.end, rep(NA, nrow(table.i)-length(dif.end)))

# Modify the table for start and the end days if there is NA in table
#---------------------------------------------------------------

#Create a table.dev only contains start and end points (without values)
dev.table <- cbind()

#If CFI value is lower than target CFI in the first day of dataset, we
#involve the first day of age in the data as the start day of the deviation

for (ii in 1:length(table.i$per)){
#in case pig starts perturbed before scale of dataset
#and does not recover to normal range; i.e. i = 1
#
    if(length(table.i$per) == 1 & sum(is.na(table.i$start)) == 0 &
        sum(is.na(table.i$end)) > 0){
        dev.table <- cbind(table.i$start,Age[length(Age)])
    } else if(start[1] > end[1] & sum(is.na(table.i$start)) == 0) {
        #
        #set 1st day of age as start day of 1st deviation
        #and last day of age as end day of last deviation
        dev.table <- cbind(c(Age[1],
                          table.i$start),
                          c(table.i$end, Age[length(Age)]))
    }

    #case number of end days is larger than no of start days
    #eg. i = 8, lambda = 0.01
    } else if(start[1] > end[1] & sum(is.na(table.i$start)) > 0){
        #Remove last day of start
        #and add 1st day of age as start day of 1st deviation
        dev.table <- cbind(c(Age[1],
                          table.i$start[-length(table.i$start)]),
                          c(table.i$end))
    } else if (start[1] < end[1] & sum(is.na(table.i$end)) > 0){ # i = 45
        #change last end day by last day of age
        dev.table <- cbind(table.i$start,
                          c(table.i$end[-length(table.i$end)],
                            Age[length(Age)]))
    }

    #Normal case
    #
} else{
    dev.table <- cbind(table.i$start, table.i$end)#
}
}

dev.table <- as.data.frame(dev.table)
colnames(dev.table) <- c("Start", "End")

# Add values of start and end days to table
value.start <- dif$CFI[dif$eval_day %in% dev.table$Start]
value.end <- dif$CFI[dif$eval_day %in% dev.table$End]
dev.table <- cbind(dev.table[1], value.start, dev.table[2], value.end)

# Calculate the duration of each deviation
dev.table$Devia.days <- dev.table$End - dev.table$Start

## Start value.start End value.end Devia.days
## 1 75.1 -3.75646023 89.0 0.041011907 13.9
## 2 95.5 -0.01346570 168.1 0.003384033 72.6
## 3 175.6 -0.01912935 195.0 -1.887161916 19.4

3.4. Consider the most important deviations as perturbations

# min number of days for a pert
crit3 = 5
# create a table which includes all information of perturbations
pertub.table <- data.frame()
for(ii in 1:dim(dev.table)[1]){
  if(dev.table$Devia.days[ii] < crit3){
    next
  }
  pertub.table <- rbind(pertub.table, dev.table[ii,])
}

# Give a name to each perturbation
Per <- c()
Per1<- factor()
for(ii in 1:dim(pertub.table)[1]){
  Per1 <- paste("P", ii, sep = "")
  Per <- c(Per, Per1)
}
pertub.table <- cbind(as.factor(Per), pertub.table)
names(pertub.table) <- c("Per", "Start", "value.start", "End", "value.end", "Devia.days")

# Check the magnitude of each deviation
# if it decreases less than 5% from the TTC, we do not consider it as a perturbation
A <- data.frame()
for(ii in 1:dim(pertub.table)[1]){
  A1 <- dif %>%
```r
filter(eval_day %in% as.character(seq(pertub.table$Start[ii],
pertub.table$End[ii],
by = dexima.i)))) %>%

select(eval_day, dif.CFI) %>%
arrange(dif.CFI)
A1 <- A1[1,]
A <- rbind(A, A1)
}
names(A) <- c("Min.Day", "Min.perc")
pertub.table <- cbind(pertub.table, A)

Remove the deviations which have their duration less than 5 days from the table
pertub.table <- pertub.table %>% filter(Min.perc <= -5)

#-----------------------------
Provide each perturbation with a label
#-----------------------------

if(dim(pertub.table)[1] == 0){
difp1$ppert <- NA
dev.df$ppert <- NA
} else{
 for(ii in 1:dim(pertub.table)[1]){
pert.int = as.character(seq(pertub.table$Start[ii],
pertub.table$End[ii],
by=dexima.i))
difp1$ppert[as.character(difp1$eval_day) %in% pert.int] <- paste("P", ii, sep = "")
 }

Include label for dataset only contains deviations "dev.df"
for(ii in 1:dim(pertub.table)[1]){
pert.int = as.character(seq(pertub.table$Start[ii],
pertub.table$End[ii],
by=dexima.i))

dev.df$ppert[as.character(dev.df$eval_day) %in% pert.int] <- paste("P", ii, sep = "")
 }
}

Detected perturbation:

cpertub.table

Per Start value.start End value.end Devia.days Min.Day Min.perc
1 P2 95.5 -0.0134657 168.1 0.003384033 72.6 114.7 -9.274392

Note:

- **Start**: Age the perturbation started (days)
- **End**: Age the observed CFI rejoined the target CFI (days)
- **Devia.days**: Duration of perturbation (days)
```
- **Min.Day**: Age when perturbation ended (days)
- **Min.perc**: Magnitude of the perturbation (in %) at day Min.Day

Plot the difference between observed and target CFI

```r
Arrange Dataset
B <- dev.df[!is.na(dev.df$ppert),]
C <- difp1 %>% filter(eval_day %in% pertub.table$End)
BC <- rbind(B, C)
BC <- arrange(BC, eval_day)

To plot discreted perturbations:
BC1 <- BC %>% filter(ppert == "P1")
BC2 <- BC %>% filter(ppert == "P2")
BC3 <- BC %>% filter(ppert == "P3")
BC4 <- BC %>% filter(ppert == "P4")

Prepare data for points
Start of each deviation
BC.start <- pertub.table[,c(2,3)]
names(BC.start) <- c("eval_day","dif.CFI")
BC.start <- BC.start %>% mutate(Points = rep("1Dev_Start", length(eval_day)))

End of each deviation
BC.end <- pertub.table[,c(4,5)]
names(BC.end) <- c("eval_day","dif.CFI")
BC.end <- BC.end %>% mutate(Points = rep("3Dev_End", length(eval_day)))

Magnitude of each perturbation
BC.mag <- pertub.table[,c(7,8)]
names(BC.mag) <- c("eval_day","dif.CFI")
BC.mag <- BC.mag %>% mutate(Points = rep("2Dev_Mag", length(eval_day)))

All points together
BC.points <- rbind(BC.start, BC.end, BC.mag)

AA <- 1

ggplot(data = BC, aes(x = eval_day, y = dif.CFI)) +
geom_vline(xintercept=eval_day[1] + 7, linetype="dotted", color = "black", size = 0.5) +
geom_hline(yintercept=0, linetype="dashed", color = "blue", size = AA) +
geom_line(data = BC1, aes(x = eval_day, y = dif.CFI), col = "black", size = AA) +
geom_line(data = BC2, aes(x = eval_day, y = dif.CFI), col = "black", size = AA) +
geom_line(data = BC3, aes(x = eval_day, y = dif.CFI), col = "black", size = AA) +
geom_line(data = BC4, aes(x = eval_day, y = dif.CFI), col = "black", size = AA) +
geom_point(data = BC.points, aes(color = Points, shape = Points), size = 4) +
scale_color_manual(values = cols, labels = c("Start of a deviation",
"Magnitude of a deviation",
"End of a deviation")) +
scale_shape_manual(values = shapes, labels = c("Start of a deviation",
"Magnitude of a deviation")
```

39
```r
xlab("Age, days") +
ylab("Difference between actual and target CFI, %") +
scale_y_continuous(breaks=seq(-20, 0, 5)) +
scale_x_continuous(breaks=seq(60, 240, 20)) +
ggtitle(paste("Pig", ID)) +
theme(plot.title = element_text(hjust = .5)) +
theme(panel.grid.major = element_blank(),
 panel.grid.minor = element_blank(),
 panel.background = element_blank(),
 axis.line = element_line(colour = "black")) +
theme(axis.text=element_text(size=12),
 axis.title=element_text(size=14,face="bold")) +
theme(legend.text=element_text(size=12))
```

# dev.off()

```
#==
#Save results for next steps
#==
res.data <- as.data.frame(cbind(Age, res, percent))
res.data <- cbind(rep(ID, length(res)), res.data)
names(res.data) <- c("ANIMAL_ID", "Age", "res", "percent")
```
Step 4: Modelling the response of the pig to a perturbation

Our model contains 4 parameters to quantify the impact of a perturbation on the pig:

- **tbeg1**: the start age of perturbing factor (\(t_{\text{start}}\) in the article)
- **tstop1**: the end age of perturbing factor (\(t_{\text{stop}}\) in the article)
- **p1**: Percentage of DFI left under the period of perturbation (%). It is opposite to \(k_1\) in the article:
  \[ k_1 = 1 - p_1 \]
- **max.compFI1**: the capacity of the animal to adapt to the perturbation through resistant and compensatory feed intake (\(k_2\) in the article)

```r
#Remove unecessary data
rm(list=ls()[ls() %in% c("Data", "dev.df", "difp1", "param.2", "pertub.table", "res.data")])
#Load needed functions
source("Functions.R")
options(digits=3)

DATA PREPARATION

Order number of Animal_ID
ID = unique(as.factor(Data$ANIMAL_ID))

Extract Age, DFI and CFI
Age = Data$Age.plot
DFI.obs = Data$DFI.plot
CFI.obs = Data$CFI.plot

Difference between observed and target CFI (kg)
res <- res.data$res

Information of TTC function
TTC.param <- param.2[dim(param.2)[1],]
FuncType <- TTC.param$FuncType
Slope <- TTC.param$Slope

Magnitude of the perturbation
magnitude = res.data %>% filter(Age >= pertub.table$Start & Age <= pertub.table$End)
magnitude = magnitude %>% filter(res == min(magnitude$res))
```

Extract suitable function for target CFI
4.1. If the target CFI is defined by a linear function

```r
if(FuncType == "LM"){

initial values of parameters

because we modified negative impact of perturbation as (1-p1)
the smaller p1 is the more severe impact is
max.compFI1 = 2
a = TTC.param$a
b = TTC.param$b

tyinit <- c(CumFI = ITC[1]) # state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

run the optimization

Data.xy = Data

```
times = Data.xy$Age.plot
ODE.CFI.obj.0(par.init, Data.xy)

#Estimate parameters by Optim and the best initial parameters
optim.res = optim(par.init, ODE.CFI.obj.0, hessian = TRUE)

P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])

ODE.CFI.obj.0(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times, ODE.CFI.optim.0, P.optim)

} else{

4.2. If the target CFI is defined by a quadratic function

if(FuncType == "QDR"){

##-----------------------------
## initial values and times
##-----------------------------
tbeg1 = pertub.table$Start
tstop1 = magnitude$Age
p1 = 0.3
#because we modified negative impact of perturbation as (1-p1)
#the smaller p1 is the more severe impact is
max.compFI1 = 6
a = TTC.param$a
b = TTC.param$b
c = TTC.param$c

yinit <- c(CumFI = ITC[1]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

# ============== Estimation of parameters ================== ==================

##-----------------------------
## parameters
##-----------------------------
par.init = c( p1, max.compFI1, tbeg1, tstop1)

### run the optimization with NLS2
Data.xy = Data
times = Data.xy$Age.plot
ODE.CFI.obj.1(par.init, Data.xy)

#Estimate parameters by Optim and the best initial parameters

---
optim.res = optim(par.init, ODE.CFI.obj.1, hessian = TRUE)

P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])
ODE.CFI.obj.1(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times.ode, ODE.CFI.optim.1, P.optim)

} else{}

4.3. If the target CFI is defined by a quadratic-linear function

if(FuncType == "QLM"ially{

    #---------------------------
    # initial values and times
    #---------------------------
    tbeg1 = pertub.table$Start
tstop1 = magnitude$Age
p1 = 0.3
# because we modified negative impact of perturbation as (1-p1)
# the smaller p1 is the more severe impact is
max.compFI1 = 7
a = TTC.param$a
b = TTC.param$b
c = TTC.param$c
Xs = TTC.param$Xs

yinit <- c(CumFI = ITC[1]) # state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

# ============== Estimation of parameters ================== ==================

    #---------------------------
    # parameters
    #---------------------------
    par.init = c( p1, max.compFI1, tbeg1, tstop1)

    #---------------------------
    # run the optimization with NLS2
    #---------------------------

    Data.xy = Data
times = Data.xy$Age.plot
ODE.CFI.obj.2(par.init, Data.xy)

    #Estimate parameters by Optim and the best initial parameters
    optim.res = optim(par.init, ODE.CFI.obj.2, hessian = TRUE)

    P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])
ODE.CFI.obj.2(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times.ode, ODE.CFI.optim.2, P.optim)
} else{

Estimated parameters of the model

k1 <- -(1 - P.optim[1]) * 100
k2 <- P.optim[2]
t_start <- P.optim[3]
t_stop <- P.optim[4]

Per.para <- c(round(t_start, digits = 0),
               round(t_stop, digits = 0),
               round(k1, digits = 1),
               round(k2, digits = 2))

names(Per.para) <- c("t_start", "t_stop", "k1", "k2")

Per.para
## t_start  t_stop  k1    k2
## 97.00  129.00 -35.60  2.81

4.4. Plot the results

##-----------------------------
# Prepare for plotting
##-----------------------------

# Re-calculate the target CFI and DFI according to the time step
if(FuncType == "LM"){
    ITC <- pred.abcd.0(param.i, times.ode)[[1]]
    ITD <- rep(pred.abcd.0(param.i, times.ode)[[2]], length(times.ode))
} else if(FuncType == "QDR"){
    ITC <- pred.abcd.1(param.i, times.ode)[[1]]
    ITD <- pred.abcd.1(param.i, times.ode)[[2]]
} else{
    ITC <- pred.abcd.2(param.i, times.ode)[[1]]
    ITD <- pred.abcd.2(param.i, times.ode)[[2]]
}

p1 = P.optim[1]
max.compFI1 = P.optim[2]
tbeg1 = P.optim[3]
tstop1 = P.optim[4]

Time = times.ode
onoff = ifelse(Time > P.optim[3] & Time < P.optim[4], 1, 0)

# Compensatory feed intake
CompFI = (1-yout[,2]/ITC)*max.compFI1

# Simulation of DFI
DFI.sim = (onoff*(p1-1) + CompFI + 1)*ITD

# Ratio of DFI
Ratio.DFI = DFI.sim/ITD

## -----------------------------
## plot the results
## -----------------------------

# Compensatory feed intake and perturbation effect
AF1 <- data.frame(cbind(Time, CompFI*100))
names(AF1) <- c("Age.plot", "Percent")
AF1 <- AF1 %>% mutate(Curve = rep("Resilience", length(Time)))

AF2 <- data.frame(cbind(Time, (0- onoff*(1-p1))*100))
names(AF2) <- c("Age.plot", "Percent")
AF2 <- AF2 %>% mutate(Curve = rep("Resistance", length(Time)))
AF <- rbind(AF1, AF2)

tiff(file = paste(Data$ANIMAL_ID,".","Ratio",".png",sep=""),
width = 5500, height = 3000, units = "px", res=600)
cols.CFI <- c("Resilience" = "green", "Resistance" = "purple")
ggplot(data = AF, aes(x = Age.plot, y = Percent)) +
geom_hline(yintercept=0, linetype="dashed", color = "blue", size = 1) +
geom_line(aes(color = Curve), size = 2) +
scale_color_manual(values = cols.CFI) +
theme(plot.title = element_text(hjust = .5)) +
theme(legend.position = "none") +
theme(axis.text = element_text(size=12),
axis.title=element_text(size=14,face="bold"))
Mechanisms of changes in DFI of the pig due to a perturbation
Modelling CFI response of the pig 1 to a perturbation

Curve
- Simu_CFI
- Target_CFI

# dev.off()

#DFI data preparation
df1 <- data.frame(cbind(Time, ITD))
names(df1) <- c("Age.plot", "DFI.plot")
df1 <- df1 %>% mutate(Curve = rep("Target_DFI", length(Time)))

df2 <- data.frame(cbind(Time, DFI.sim))
names(df2) <- c("Age.plot", "DFI.plot")
df2 <- df2 %>% mutate(Curve = rep("Simu_DFI", length(Time)))

df <- rbind(df1, df2)

df3 <- Data %>% select(Age.plot, DFI.plot)

#tiff(file = paste(Data$ANIMAL_ID, ".", "Simu_DFI", ".png", sep=""),
# width = 5000, height = 3000, units = "px", res=600)

cols.DFI <- c("Target_DFI" = "blue", "Simu_DFI" = "red")
typs.DFI <- c("Target_DFI" = "solid", "Simu_DFI" = "solid")
size.DFI <- c("Target_DFI" = 1.2, "Simu_DFI" = 2)

ggplot(data = df, aes(x = Age.plot, y = DFI.plot)) +
geom_point(data = df3, aes(x = Age, y = DFI.obs),
           color = "black",
           shape = 21,
           size = 3.5,
           stroke = 1) +
geom_line(aes(color = Curve, linetype = Curve, size = Curve)) +
scale_color_manual(values = cols.DFI) +
scale_linetype_manual(values = typs.DFI) +
scale_size_manual(values = size.DFI) +

# geom_vline(xintercept=tbeg1, linetype="dashed",
# color = "black") +
# geom_vline(xintercept=tstop1, linetype="dashed",
# color = "black") +
xlab("Age, days ") +
ylab("Daily Feed Intake, kg/ day") +
scale_y_continuous(breaks=seq(0, 8, 1)) +
scale_x_continuous(breaks=seq(60, 240, 20)) +
ggtitle(paste("Modelling DFI response of", 
"the pig", ID, "to a perturbation")) +
theme(plot.title = element_text(hjust = .5)) +
theme(panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.background = element_blank(),
      axis.line = element_line(colour = "black")) +
theme(axis.text=element_text(size=12),
      axis.title=element_text(size=14,face="bold"))
Modelling DFI response of the pig 1 to a perturbation

# dev.off()