Long-Term Exposure to Ultrafine Particles and Particulate Matter Constituents and the Risk of Amyotrophic Lateral Sclerosis

Zhebin Yu,1,2 Susan Peters,1 Loes van Boxmeer,3 George S. Downward,4,4 Gerard Hoek,1 Marianthi-Anna Kioumourtzoglou,5 Marc G. Weisskopf,6,7 Johnni Hansen,8 Leonard H. van den Berg,3,9 and Roel C.H. Vermeulen1,4,*

1Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
2Department of Epidemiology and Health Statistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
3Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, Utrecht, Netherlands
4Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, Netherlands
5Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
6Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
7Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
8Danish Cancer Society Research Center, Copenhagen, Denmark

https://doi.org/10.1289/EHP9131

Introduction

The etiology of amyotrophic lateral sclerosis (ALS) remains unknown but is considered to be an interplay of environmental exposures and genetic predisposition (van Es et al. 2017). Few epidemiological studies have examined the association between ambient air pollution and ALS. We previously reported an increased risk of developing ALS for long-term exposure to traffic-related air pollution in a Dutch case–control study (917 cases and 2,662 controls) (Seelen et al. 2017). Increased knowledge about the possible associations between particulate matter (PM) and its constituents and ALS will provide additional insight into the potential pathophysiology of ALS. We aimed to extend on our previous analyses by including 2,081 more cases and controls and by extending the exposure assessment to a broader range of air pollutants [ultrafine particles (PM ≤0.1 μm in aerodynamic diameter or UFPs), PM elemental components, and oxidative potentials (OPs)].

Methods

Present analyses were based on ALS patients and controls enrolled in the Prospective ALS in the Netherlands (PAN) study (Huisman et al. 2011) from 1 January 2006 to 31 December 2018. All patients with a diagnosis of possible, probable, or definite ALS according to the revised El Escorial criteria (Brooks et al. 2000) were included. Population-based controls selected from the registers of the patients’ general practitioners were frequency matched by sex and age (±5 y). Information including sex, date of birth, education level, body mass index, smoking, alcohol consumption, residential history, and area-level socioeconomic status (SES) was collected. Annual concentrations of air pollution constituents were estimated at the geocoded residential addresses of each participant based on land-use regression (LUR) models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Exposomics projects (Beelen et al. 2013; de Hoogh et al. 2013; Eeftens et al. 2012; van Nuen et al. 2017) (see supporting information at https://github.com/kevininef/Airpollution-ALS). We averaged the air pollutant concentrations from 1992 to the date of onset for cases or recruitment for controls as the main exposure.

Unconditional logistic regression models were used to estimate the association between exposure to air pollution and ALS in single-pollutant models. Two-pollutant models were performed for each air pollutant by additionally adjusting for the other pollutants one by one. All analyses were performed within R software (version 3.6.1; R Development Core Team). Supporting information is available at https://github.com/kevininef/Airpollution-ALS. The PAN study was approved by the institutional review board of the University Medical Center Utrecht.

Results and Discussion

A total of 1,636 patients with ALS and 4,024 controls were included (see supporting information at https://github.com/kevininef/Airpollution-ALS), covering all of the Netherlands. We observed increased odds ratios (ORs) for ALS in association with most air pollutants, with the strongest associations for PM≤2.5 μm absorbance [OR = 1.19 (95% confidence interval (CI): 1.10, 1.28)], nitrogen dioxide [NO2] [OR = 1.25 (95% CI: 1.15, 1.34)], and nitrogen oxides [NOx] [OR = 1.14 (95% CI: 1.07, 1.22)] (Table 1). For UFPs, an elevated OR of 1.11 (95% CI: 1.05, 1.16) was observed. For particle elements, road traffic non-tailpipe emissions of copper (Cu), iron (Fe), nickel (Ni), sulfur (S), silicon (Si), and vanadium (V) were associated with significantly higher ORs for ALS in both PM2.5 and PM10 fractions. Marginal effects for all air pollutants are presented in the supporting information at https://github.com/kevininef/Airpollution-ALS.

In two-pollutant models adjusted for PM mass, the associations of most air pollutant elements with ALS remained positive, whereas the association of PM mass became null (Figure 1). In two-pollutant models corrected for NO2, the associations of most air pollutants were reduced toward the null, except for Si in the PM10 Si fraction (PM10Si), whereas the estimated positive association for NO2 remained, indicating independent associations between NO2, PM10Si, and the risk of ALS. Sensitivity analyses showed the associations of NO2 and PM10Si with ALS were robust (see supporting information at https://github.com/kevininef/Airpollution-ALS).

With an extended sample [nearly twice the size of the previous analyses by Seelen et al. (2017)], we here confirm the positive associations for NO2 (see supporting information at https://github.com/kevininef/Airpollution-ALS). Moreover, restricting the analysis to the participants who were recruited after the previous publication showed consistent associations for air pollution and ALS, speaking...
Overall, we found that long-term exposures to NO2 and PM10Si were independently associated with ALS in a large population-based case–control study. These associations hint toward the potential health relevance of both tailpipe and non-tailpipe emissions of motorized traffic contributing to ALS risk.

Acknowledgments

S.P., L.v.B., L.v.d.B., and R.V. contributed to the study concept and design and participated in data collection and processing. S.P., G.D., G.H., M.-A.K., M.G.W., J.H., and R.V. contributed to the analyses plan. Z.Y. performed the statistical analyses. S.P., G.D., G.H., M.-A.K., M.G.W., J.H., and R.V. contributed to the analyses and design and participated in data collection and processing. S.P., G.D., G.H., M.-A.K., M.G.W., J.H., L.v.d.B., and R.V. revised the manuscript for intellectual content. L.v.d.B. obtained the funding for the case–control study.

This case–control study was funded by the ALS Foundation Netherlands; Prinses Beatrix Spierfonds; the European Community’s Health Seventh Framework Programme (grant agreements 259867 and 211250); Netherlands Organisation for Health Research and Development (ZonMW) under the frame of E-Rare-2, the European Research Area Network on Rare Diseases; EU Joint Programme Neurodegenerative Disease Research project [Sampling and biomarker OPTimization and Harmonization In ALS and other motor neuron diseases (SOPHIA) and Survival, Trigger and Risk, Epigenetic, eNvironmental and Genetic Targets for motor neuron Health (STRENGTH) projects]; and the ZonMW Vici scheme to L. v.d.B. Z.Y. was supported by a scholarship from the Chinese Scholarship Council. M.-A.K. was supported by the National Institutes of Health/National Institute of Environmental Health Science (R21 ES028472 and R01 ES028805).

Table 1. Association between long-term exposure to air pollution and ALS in single-pollutant models.

Exposure (IQR)	Average exposure level	OR (95% CI)	p Value	
	Case (N=1,636)	Control (N=4,024)		
PM10 (2.0)	32.8 ± 2.2	32.6 ± 2.2	1.10 (1.04, 1.16)	0.001
PM2.5 (1.5)	21.9 ± 1.5	21.8 ± 1.5	1.05 (0.92, 1.10)	0.153
PM10 SO2 (0.9)	11.0 ± 1.0	10.9 ± 1.0	1.06 (1.00, 1.12)	<0.001
PM2.5 absorbance (0.3)	1.49 ± 0.24	1.46 ± 0.24	1.19 (1.10, 1.28)	<0.001
NO2 (7.4)	27.1 ± 6.0	26.3 ± 5.6	1.25 (1.15, 1.34)	<0.001
NO2 (10.7)	46.2 ± 9.5	45.2 ± 9.5	1.14 (1.07, 1.22)	<0.001
PM10 Si (1.24)	9,450 ± 1,520	9,280 ± 1,370	1.11 (1.05, 1.16)	<0.001
PM2.5 Cu (1.1)	3.28 ± 0.95	3.17 ± 0.88	1.18 (1.10, 1.27)	<0.001
PM10 Cu (3.6)	12.7 ± 3.65	12.5 ± 3.4	1.08 (1.02, 1.15)	0.019
PM2.5 Fe (27.1)	82.1 ± 23.7	78.9 ± 21.8	1.22 (1.13, 1.31)	<0.001
PM10 Fe (125.0)	383 ± 119	368 ± 10	1.16 (1.09, 1.24)	<0.001
PM2.5 K (13.3)	114 ± 9.26	114 ± 9.44	0.98 (0.90, 1.07)	0.764
PM10 K (17.3)	204 ± 15.8	203 ± 15.0	1.09 (1.02, 1.17)	0.008
PM2.5 Ni (1.0)	1.96 ± 0.70	1.91 ± 0.67	1.15 (1.05, 1.25)	0.004
PM10 Ni (1.1)	2.34 ± 0.81	2.28 ± 0.76	1.17 (1.07, 1.28)	0.001
PM2.5 S (63.8)	888 ± 52.2	885 ± 51.2	1.10 (1.02, 1.18)	0.021
PM10 S (47.3)	1.010 ± 44.2	1.010 ± 42.4	1.08 (1.01, 1.15)	0.034
PM10SI (12.2)	82.4 ± 11.8	81.5 ± 11.1	1.12 (1.05, 1.19)	0.003
PM10Si (80.7)	368 ± 87.4	356 ± 72.3	1.18 (1.11, 1.25)	<0.001
PM2.5 V (1.5)	3.04 ± 1.12	2.96 ± 1.07	1.15 (1.05, 1.25)	0.004
PM10 V (1.6)	3.86 ± 1.26	3.77 ± 1.19	1.14 (1.05, 1.23)	0.004
PM2.5 Zn (18.8)	25.8 ± 12.9	26.1 ± 13.1	0.96 (0.88, 1.04)	0.315
PM10 Zn (25.8)	35.3 ± 17.9	35.4 ± 18.2	0.99 (0.91, 1.08)	0.857
OP ESR (171.9)	901 ± 133	898 ± 128	1.14 (1.06, 1.23)	0.032
OP DTT (0.2)	0.81 ± 0.16	0.81 ± 0.16	1.01 (0.93, 1.09)	0.343

Note: ALS, amyotrophic lateral sclerosis; CI, confidence interval; Cu, copper; Fe, iron; IQR, interquartile range; K, potassium; Ni, nickel; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5 absorbance, PM ≤2.5 μm absorbance; PM10Si, particulate matter with aerodynamic diameter between 2.5 μm and 10 μm; OP DTT, oxidative potential metric with dithiothreitol; OP ESR, oxidative potential metric with electron spin resonance; OR, odds ratio; S, sulfur; SES, socioeconomic status; Si, silicon; UFPs, ultrafine particles; V, vanadium; Zn, zinc.

*Units are g/m3 for PM10, PM2.5, PM10Si, NO2 and NOx; 10−5/m for PM2.5 absorbance; particle numbers/cm3 for UFPs; ng/m3 for all PM elemental constituents; atomic units /m3 for OP ESR; and mol DTT/min per meter cubed for OP DTT.

*Results were adjusted for sex, age (age in y at diagnosis for cases and at recruitment for controls), education level, body mass index, smoking status, alcohol consumption, and area SES using unconditional logistic regression models; ORs are presented as per IQR increment.

*p-Values corrected for multiple testing using Benjamin and Hochberg method (Benjamini and Hochberg 1995) are presented.

to the robustness of the associations (see supporting information at https://github.com/kevininef/Airpollution-ALS). We also broadened our previously published analyses to a wider range of air pollutants and found that the association between long-term air pollution exposure and ALS, as previously hypothesized (Seelen et al. 2017), is mainly driven by local traffic-related constituents. NO2 primarily comes from tailpipe emissions and predictors in the SI LUR models were also traffic variables. The NO2 concentrations were already below the current World Health Organization air quality guidelines (40 μg/m3), suggesting potential benefits of tightening the guidelines and regulatory limits of NO2 (World Health Organisation Fact Sheet 2018).

A potential limitation might be that we used the disease onset date for cases in calculating the exposure period, subsequently resulting in a slightly different etiological time window for cases than controls. However, we regressed the average concentrations for controls from 1992 to 1 y prior to the recruitment date (see supporting information at https://github.com/kevininef/Airpollution-ALS) and generated essentially the same exposure values.

Using the air pollution models developed in 2010 for PM elements and in 2014 for UFPs to predict historical exposure might also be a concern, but this is supported by previous studies that reported that the spatial contrasts in measured and modeled annual average levels were stable over time (Eeftens et al. 2011; Downward et al. 2018).

Sensitivity analysis of the present study using concentrations without back-extrapolation rendered essentially similar results (see supporting information at https://github.com/kevininef/Airpollution-ALS). Possible residual confounding cannot be excluded given that data regarding medical comorbidities, for example, were not included in the present analysis.
Figure 1. Two-pollutant model with the main effects of PM mass, absorbance, NO₂, NOₓ, UFPs, PM OP, and PM elemental compositions. The x-axis represents the estimate of certain air pollution constituents, the y-axis represents the pollutants adjusted in the two-pollutant models. All results were adjusted for sex, age, education level, body mass index, smoking status, alcohol consumption, and area SES using unconditional logistic regression models. The PM₁₀ model adjusted for PM₂.₅ and PMcoarse is difficult to interpret because PM₁₀ is the sum of these two. The models including both NO₂ and NOₓ are also difficult to interpret because NO₂ is included in NOₓ. Red dots stand for single-pollutant models; blue triangles stand for two-pollutant models. Numeric data of this figure are presented in supporting information at https://github.com/kevininef/Airpollution-ALS. Note: Cu, copper; Fe, iron; K, potassium; Ni, nickel; NO₂, nitrogen dioxide; NOₓ, nitrogen oxides; OP DTT, oxidative potential metric with dithiothreitol; OP ESR, oxidative potential metric with electron spin resonance; PM, particulate matter; PM₂.₅, particulate matter with aerodynamic diameter ≤2.₅ µm; PM₁₀, particulate matter with aerodynamic diameter ≤10 µm; PM₂.₅ absorbance, PM ≤2.₅ µm absorbance; PMcoarse, Particulate matter with aerodynamic diameter between 2.₅ and 10 µm; PM OP, particulate matter oxidative potential; S, sulfur; SES, socioeconomic status; Si, silicon; UFPs, ultrafine particles; V, vanadium; Zn, zinc.

Supporting information can be found at the GitHub online repository at https://github.com/kevininef/Airpollution-ALS.

References
Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. 2013. Development of NO₂ and NOₓ land use regression models for estimating air pollution exposure in 36 study areas in Europe—the ESCAPE project. Atmos Environ 72:10–23, https://doi.org/10.1016/j.atmosenv.2013.01.037.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. 2000. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(3):293–299, PMID: 1146847, https://doi.org/10.1080/1466820030079536.

de Hoogh K, Wang M, Adam M, Badaloni C, Beelen R, Birk M, et al. 2013. Development of land use regression models for particle composition in twenty study areas in Europe. Environ Sci Technol 47(11):5778–5786, PMID: 23861082, https://doi.org/10.1021/es400156e.

Downward GS, van Nunen EJHM, Kerkhoffs J, Vineis P, Bruneckre F, Boer JMA, et al. 2018. Long-term exposure to ultrafine particles and incidence of cardiovascular and cerebrovascular disease in a prospective study of a Dutch cohort. Environ Health Perspect 126(12):127007, PMID: 30566375, https://doi.org/10.1289/EHP3047.

Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. 2011. Stability of measured and modelled spatial contrasts in NO₂ over time. Occup Environ Med 68(10):675–678, PMID: 21622837, https://doi.org/10.1136/oem.2010.081133.

Huisman MHB, de Jong SW, van Doormaal PTC, Weinreich SS, Schelhaas HJ, van der Kooi AJ, et al. 2011. Population based epidemiology of amyotrophic lateral sclerosis using capture–recapture methodology. J Neurol Neurosurg Psychiatry 82(10):1165–1170, PMID: 21622837, https://doi.org/10.1136/jnnp.2011.244939.
Seelen M, Toro Campos RA, Veldink JH, Visser AE, Hoek G, Brunekreef B, et al. 2017. Long-term air pollution exposure and amyotrophic lateral sclerosis in Netherlands: a population-based case–control study. Environ Health Perspect 125(9):97023, PMID: 29989551, https://doi.org/10.1289/EHP1115.

van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. 2017. Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098, PMID: 28552366, https://doi.org/10.1016/S0140-6736(17)31287-4.

van Nuen E, Vermeulen R, Tsai M-Y, Probst-Hensch N, Ieichen A, Davey M, et al. 2017. Land use regression models for ultrafine particles in six European areas. Environ Sci Technol 51(6):3336–3345, PMID: 28244744, https://doi.org/10.1021/acs.est.6b05920.

World Health Organisation Fact Sheet. 2018. Ambient (outdoor) air pollution. Published in 2018. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health [accessed 30 August 2021].