The Korean Journal of Helicobacter and Upper Gastrointestinal Research
Vol. 11, No. 2, 82-89, September 2011

Gastrointestinal Stromal Tumor

Yun Ji Kim, Sung Soo Kim
Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, Korea

Gastrointestinal stromal tumor (GIST) is a relatively rare disease accounted for less than 1% of gastrointestinal tumors. In the past, surgery is the only reliable therapy for the locoregional GISTs. But with the development of the specific target agents such as imatinib or sunitinib, advanced metastatic GIST can be cured now. GISTs are incidentally found by endoscopic ultrasound or laparoscopic surgery for the abdominal mass and positive immunostain for KIT with characteristic histopathology is mandatory for the diagnosis. Mutational analyses for KIT and PDGFRA is helpful in the diagnosis and treatment of GISTs. Because most GISTs are potentially malignant and surgery itself has high recurrence rate, it should be treated at an early stage and chemotherapy should be considered aggressively. The tumor size, mitotic index, and the involved organs are important prognostic factors. In this paper, the pathogenesis of histopathology, clinical diagnosis and treatment of GISTs were reviewed. (Korean J Helicobacter Upper Gastrointest Res 2011;11:82-89)

Key Words: Gastrointestinal stromal tumor; c-kit; Platelet-derived growth factor alpha; Mutation

서 론

위장관 기질 종양(gastrointestinal stromal tumor, GIST)은 위장관의 근육층에 위치하는 interstitial cell of Cajal (ICC)의 전구줄기세포(progenitor stem cell)로부터 기원한다. GIST는 간엽세포 기원의 소화기관 종양 중에서 가장 흔하며, 위장관 점막하 종양의 50%를 차지한다.1 근종으로 진단되었던 대부분의 점막하 종양이 조직 및 유전자 검사를 통해 GIST로 새로이 분류되고 있기 때문에 GIST의 빈도는 증가하고 있다.2,3 GIST는 대부분 타이로신 키나제 수용체(tyrosine kinase receptor)인 KIT (CD117)을 발현하며, 약 80%의 GIST에서 KIT 유전자 돌연변이가 관찰되고, 10%의 GIST는 PDGFRA (platelet-derived growth factor receptor-alpha) 유전자 돌연변이가 관찰된다.4-6 GIST 발생기전은 KIT나 PDGFRA의 돌연변이 때문이며, 이로 인해 하부 신호전달 체계를 활성화 시켜서 세포의 증식을 조장하고 사멸을 감소시켜 비정상적인 성장과 종양의 형성을 일으킨다.

2002년 이전까지는 국소적인 GIST의 경우에 한해 수술적 절제만이 치료 방법이었지만, 현재는 KIT과 PDGFRA 억제제인 imatinib mesylate가 국소적으로 절제가 불가능한 경우나 전이된 GIST에서 표준 치료로 사용되고 있다.7 또 다른 약제로 Sunitinib malate는 imatinib에 반응을 보이지 않거나 부작용이 있는 경우에 이차 치료로 사용되고 있다.

본론에서는 GIST 진단에 필요한 조직학적 소견, KIT 및 PDGFRA 돌연변이, 임상 진단 및 치료, 그리고 예후 측정자에 대해 간략히 기술하였다.
김윤지, 김성수 : 위장관 기질종양 83

Fig. 1. Histologic types of GIST. S: spindle cell type, E: epithelioid type, M: mixed type.

Table 1. Immunohistochemical Schema for the Differential Diagnosis of Spindle Cell Tumors of the GI Tract

	KIT (CD117)	CD34	SMA	Desmin	S-100
GIST	++ (60 ~ 70%)	+ (30 ~ 40%)	Very rare	+ (5%)	
Smooth muscle tumor	-	+ (10 ~ 15%)	+	Rare	
Schwannoma	-	+ (Antoni B)	-	-	+
Fibromatosis	Disputed	Rare	+	Rare	-

본론

1. GIST의 병리학적 및 면역조직화학적 소견

GIST의 본질과 병원학적 발병기전이 밝혀지면서 이 질환의 병리학적 진단도 많이 발전하였다. 대부분의 GIST는 KIT를 발현하며, 위장관내 KIT를 발현하는 Cajal세포의 전구세포에서 기원한다. KIT는 리간드와 결합하면 활성화하여 MAP kinase, STAT, RAS, JAK2 및 PI3 kinase를 활성화하여 세포의 증식, 분화, 그리고 부착 등을 유발한다. GIST의 80%에서 KIT 돌연변이가 관찰되기 때문에, 유사분열지수가 5/50 HPF 이하이며, 크기가 2 cm 이하일 경우 GIST의 가능성은 크고, 유사분열지수 10/50 HPF 이상이고 종양의 크기가 10 cm 이상이면 악성 GIST를 의심해야 한다. 위에 발생한 GIST는 다른 장기의 질환보다 예후가 좋다. 그러나 종양의 크기가 작고 유사분열지수가 낮다고 해서 악성화 가능성이 없는 것은 아니다.1,1,11

위 저부의 미세 GIST는 일반적인 GIST에 비해 젊은 나이에 발견되며, Cajal세포의 비후가 관찰되며, KIT 돌연변이가 있고, 엑손화 가능성이 매우 적다.3

2. KIT와 PDGFRA 돌연변이

1998년도에 c-KIT 유전자와의 세포 내 프로그램에 특정 돌연변이가 발견되었다.12 이 돌연변이는 가능성이(“gain-of-function”)이므로, 신호 작용이 오지 않도록 활성화되어 세포 증식과 악성화가 발생한다. GIST의 80%에서 KIT의 유전자 변이가 있으며, 특히 엑손 11 (65%)의 결손, 주변, 과오돌연변이(misense mutation)가 혼합하고, 엑손 9 (10 ~ 15%), 그리고 드롭게 엑손 13 혹은 17 (1~2%)의 변이도 관찰된다.1,10,11 c-KIT의 돌연변이가 관찰되지 않는 GIST의 약 10% 화자에
서는 PDGFRA의 돌연변이가 관찰되나 이들 두 유전자의 돌연변이가 100%의 GIST 모두에서 나타나지는 않기 때문에 이들 유전자와의 알려지지 않은 다른 관련 유전자의 돌연변이가 있음을 것으로 추정하고 있다 (Fig. 2).

3. 임상 양상

정확한 발병율은 모르지만 이탈리아의 자료를 보면 연간 약 1,000명의 새로운 GIST 환자가 발생한다고 한다. 기존에 근종(leiomyoma) 등이 GIST로 새로이 분류되고 있기 때문에 GIST의 발병률은 점차 증가할 것으로 보인다. GIST는 대부분 60대 이후에 발생하지만, von Recklinghausen’s neurofibromatosis 혹은 Carney’s triad 등의 특정 질환에서는 젊은 나이에서도 발생할 수 있다. 특히 Carney’s triad에서 발병한 GIST는 대부분 위의 전정부와 체부에 발생하며, 상발성 GIST는 비해 예후가 좋다. 가족성 GIST는 양상체계 이상 유전하며, KIT 혹은 PDGFRA의 돌연변이 혹은 결손이 관찰되며, 다발성으로 평균 46세에 발병한다.

대부분의 GIST는 무증상이며 수술후, 위장관 내시경 검사 시, 혹은 부검시에 우연히 발견된다. 크기가 큰 경우 소화불량이 나타날 수 있으며, 절막 표면에 궤양이 발생하여 출혈을 보일 수 있다. 또한 위 유문부 혈착이 나타날 수 있고, 위벽 외부로 자랄 때 복부에 종괴가 만져질 수 있다. GIST는 하부 식도에서 항문까지 모든 소화관에서 발생할 수 있다.

Fig. 2. Mutation of KIT or PDGFRA.
김윤지, 김성수: 위장관 기질종양

수 있지만 위(60%)에서 가장 흔하게 나타나고, 다음으로 소장(30%), 심장(5%) 그리고 대상장혈관(5%) 순으로 발견된다. 또한 Cajal세포가 분포하는 근막막, 장간막, 방광, 닭 darm, 후복강 및 해장에서도 발생한다. GIST는 간과복막에 전이하며, 헐리산과 혈 전이 매우 드물다.

내시경 검사에서 GIST는 점막하 종양으로 보이며, 점막으로 돌려보면 다소 백혀지고 위벽에 고정되어 있으며, 크기가 적은 경우는 점막이 검자를 의해 벌어지면서 움직일 수 있다. 그러나 크기가 큰 GIST는 점막도 고정되며, 크기가 큰 GIST는 점막도 고정되어 있으며, 크기가 큰 GIST는 점막도 고정되어 있으며, 궤양이 발견될 수 있다. 궤양이 보이면 조직 생검이 진단에 도움이 된다. 내시경초음파 검사는 GIST의 진단에 매우 중요하다. 초음파 내시경에서 GIST는 극히 일부분에서 점막근층 또는 점막하층에서 발견되나 대부분 고유근층에서 유래하며, 종괴를 형성하는 근결합의 저에코성 병변으로 나타난다. 모든 GIST는 작은 크기의 병변에서도 악성화 가능성을 갖고 있어 초음파 내시경 소견만으로는 악성화 여부를 판단할 수 없으며, 크기가 4 cm 이상으로 크거나, 불규칙한 경계, 점막내 고예코변형, 납성 변화, 불균질 예코, 점막 개방, 리프결바, 안정화를 시사하는 소견이며, 3 cm 미만으로 근결합의 애로 형태 및 명확한 경계를 보이는 경우 악성화의 가능성이 높다고 알려져 있다. 21,22 감별 진단으로는 평활근종이 고유근층에 존재하는 경우 GIST와 유사한 형태를 보이며, 두 질환의 초음파 내시경 소견이 거의 유사하여 정확한 진단이 불가능하나 GIST의 변이도 현재까지 많이 발견되면서 구근층에서 기원한 저예코의 점막병변을 기저층으로 진단하는 것이 정확도가 높다고 알려져 있다. 초음파를 이용한 GIST의 진단 정확도는 약 40%로 낮으며, 정확한 진단 및 악성화 여부의 관별은 조직검사를 통해 이루어질 수 있다. 그러나 병변이 고유근층에 존재하므로 동상적인 조직검사를 통해서는 진단에 필요한 조직을 채취하기가 불가능하다. 한 곳을 직접해서 조직검사를 받으려는 "bite on bite" 방법을 이용하거나, strip biopsy와 같은 방법으로 병변을 밀고 있는 점막과 점막하층을 제거한 후 조직검사를 시행하는 방법 등이 있으나, 크 yal등의 혈전증이 발생할 수 있고, 진단 정확도가 낮고, 악성화 여부를 알리는 어려운 경우가 많다. 초음과 내시경 체질 흉은 검사는 22개이지의 세척을 이용하여 세척한 후 이를 슬라이드에 도달하여 분석 후 알코올에 고정한다. 일반적인 임상적으로는 정확한 진단에 어려움이 있다. 또한 체질 혹은으로 종괴물 세포를 얻은 후 역량화환액으로 진단의 정확도를 높일 수 있다. 23 크기가 2.3 cm 이상의 GIST가 의심되는 병변에서는 19개이지의 trucut needle을 이용한 조직검사를 시행할 수 있다. 이는 조직의 일부를 구조로 유지하는 상태로 채취할 수 있으므로 보다 정확한 진단을 가능하게 하며, 세침 홍반과 함께 시행하는 경우 진단율을 높일 수 있는 것으로 알려져 있다. 24 특히 GIST의 경우 체질 홍반만으로는 악성화 여부를 예측하기 어려우나, 충분한 조직을 채취하는 경우 민간조직화학 염색을 통해 향후 악성화 위험도를 예측하는데 유용한 정보를 얻을 수 있다.23,24 그러나 trucut 조직 검사의 경우에는 병변이 needle에 밀려있는 경우가 많고, 병변이 전정부에 위치하여 내시경 선단이 구부러지는 경우에는 실제적으로 needle이 통과하지 않거나, 의도적으로 하면 성공이 어렵다는 단점이 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있는 합병증이 발생할 수 있고, 진단 정확도가 낮고, 악성화 여부를 알리는 어려운 경우가 많다. 초음과 내시경 체질 흉은 검사는 22개이지의 세척기를 이용하여 세척한 후 이를 슬라이드에 도달하여 분석 후 알코올에 고정한다. 일반적인 임상적으로는 정확한 진단에 어려움이 있다. 또한 체질 혹은으로 종괴물 세포를 얻은 후 역량화환액으로 진단의 정확도를 높일 수 있다. 23 크기가 2.3 cm 이상의 GIST가 의심되는 병변에서는 19개이지의 trucut needle을 이용한 조직검사를 시행할 수 있다. 이는 조직의 일부를 구조로 유지하는 상태로 채취할 수 있으므로 보다 정확한 진단을 가능하게 하며, 세침 홍반과 함께 시행하는 경우 진단율을 높일 수 있는 것으로 알려져 있다. 24 특히 GIST의 경우 체질 홍반만으로는 악성화 여부를 예측하기 어렵고, 충분한 조직을 채취하는 경우 민간조직화학 염색을 통해 향후 악성화 위험도를 예측하는데 유용한 정보를 얻을 수 있다.23,24 그러나 trucut 조직검사의 경우에는 병변이 needle에 밀려있는 경우가 많고, 병변이 전정부에 위치하여 내시경 선단이 구부러지는 경우에는 실제적으로 needle이 통과하지 않거나, 의도적으로 하면 성공이 어렵다는 단점이 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있는 합병증이 발생할 수 있고, 진단 정확도가 낮고, 악성화 여부를 알리는 어려운 경우가 많다. 초음과 내시경 체질 흉은 검사는 22개이지의 세척기를 이용하여 세척한 후 이를 슬라이드에 도달하여 분석 후 알코올에 고정한다. 일반적인 임상적으로는 정확한 진단에 어려움이 있다. 또한 체질 혹은으로 종괴물 세포를 얻은 후 역량화환액으로 진단의 정확도를 높일 수 있다. 23 크기가 2.3 cm 이상의 GIST가 의심되는 병변에서는 19개이지의 trucut needle을 이용한 조직검사를 시행할 수 있다. 이는 조직의 일부를 구조로 유지하는 상태로 채취할 수 있으므로 보다 정확한 진단을 가능하게 하며, 세침 홍반과 함께 시행하는 경우 진단율을 높일 수 있는 것으로 알려져 있다. 24 특히 GIST의 경우 체질 홍반만으로는 악성화 여부를 예측하기 어렵고, 충분한 조직을 채취하는 경우 민간조직화학 염색을 통해 향후 악성화 위험도를 예측하는데 유용한 정보를 얻을 수 있다.23,24 그러나 trucut 조직검사의 경우에는 병변이 needle에 밀려있는 경우가 많고, 병변이 전정부에 위치하여 내시경 선단이 구부러지는 경우에는 실제적으로 needle이 통과하지 않거나, 의도적으로 하면 성공이 어렵다는 단점이 있다. 또한 trucut 조직검사를 이용해도 세포 분열 지수를 확인할 수 있을 정도의 충분한 조직을 구조로 유지한 조직이 없거나, 여러차례 사용이 어려운 경우가 많다. 그러나 이와 같은 단점에도 불구하고, 세침 흉은 또는 조직 검사는 GIST의 향후 치료 방향을 결정하는데 유용한 방법이 될 수 있다는 점을 부인할 수 없다. 내시경초음파 소견은 종괴가 위벽의 근층에서 발견되며, 군행한 예코를 보인다. 그러나 큰 GIST의 경우 예코가 군행하지 않고, 저예코의 피부 부위

Fig. 3. Endoscopic and endoscopic ultrasonic feature of gastric GIST. (A) huge submucosal tumor seen on the fundus. (B) on endoscopic ultrasound, homogeneous hypoechoic mass (arrows) seen on muscle layer of the gastric wall.
Table 2. Prognostic Factors of GIST

Risk category	Tumor size (cm)	Mitotic index (per 50 HPFs)	Primary tumor site
Very low risk	<2.0	≤5	Any
Low risk	2.1~5.0	≤5	Gastric
Intermediate risk	2.1~5.0	>5	Any
	5.1~10	6~10	Gastric
High risk	Any	Any	Tumor rupture
	>10	Any	Any
	Any	>10	Any
	Any	>5	Any
	2.1~5.0	≥5	Non-gastric
	5.1~10	≤5	Non-gastric

GIST, gastrointestinal stromal tumor.
아니고)KIT에én 11 결손(deletion)의경우는 점토면변이 보
다 더 악성화와 관련이 있다.4,5,12 그리고, 위와 소장의 GIST
에서 동종결합(homozygous)KIT에én 11 점토면변이는 거의
항상 악성임을 보인다.13 위의 GIST에서 KIT에én 13 점
토면변이는 심한 임상 양상을 나타낸다.

KIT과 PDGFR의 점토면변이 여부는 국소적으로 진행되
었거나 전이된 GIST의 치료에 imatinib의 반응을 예측하
는데 도움이 된다. KIT에én 11 점토면변이 있는 경우 KIT
에én 9 점토면변이 또는 혹은 KIT 또는 PDGFR 점토면변이가
없는 경우보다 imatinib치료에 가장 효과적이다.4 따라서
KIT에én 11 점토면변이 있으면 KIT에én 9 점토면변이가
있는 경우보다 예후가 좋다.3

점체가 불가능하거나 진행된 경우에 2-3의 활동도(performance
status)와 호중구 증가, KIT에én 9 점토면변, 아형성
유전자형, 그리고 낮은 헤모글로빈 등은 나쁜 예후 인자이
다.46 이전 전이가 있지만 한 전이가 없는 경우, 낮은 헤모글
로빈치와 낮은 백혈구 수는 GIST에서 imatinib에 대한 3개
월 이내 초기 반응이 좋지 않은 것으로 예측할 수 있다.37,38

6. GIST의 치료

KIT의 치료는 크게 수술과 imatinib이다. 국소 발병인 경
우, 크기에 상관없이 수술로 치료하며, 크기가 2 cm 이하인
경우 수술을 하지 않고 크기변화를 관찰한다. 수술은 점토
변 병변을 절제하며, 수술 중 조각의 파열로 인해 복장내
파조의 가능성이 있기 때문에 주의한다. 최근 복장내 수술
이 발달해 있어 수술적 절제 후 40~90%에서 수술적 제한
되며 병변을 제거할 수 있다.47 DeMatteo의 연구에 의하면 국소
GIST가 전척한 진행
한 경우에 5년 생존율이 54%였고, 폐 절제율은 66개였으
다.48 최근에 전척 절제를 한 127명의 국소성 GIST의 경우에는
수술 후 5년 생존율이 63%였으며 다큐멘터리에서 암
크기가 10 cm 이상, 유사분열지수가 5/50HPF 이상, 그리고
소장의 GIST인 경우가 독립적인 재발의 위험성의 증가와
관련이 있을음을 보고하였다.35

치료에 있어 가장 귀중이 되는 것은 수술 치료이며, GIST
가 흔히 점착성으로 유발되므로 원칙 진단의 소
견이 없고 단일 종괴로 존재하는 경우에는 내시경 치료의
대상이 될 수 있다. GIST의 치료에 있어서 내시경 점막검체
의 역할은 제한적이다. 병변이 주로 근처에서 자라나기 때문
에 수술시 점막의 위험이 많고, 점막을 피하려면 병변을
점막이 존재하는 것을 시도해 볼 수 있다. 울타리
등을 이용한 전통적인 내시경 점막 절제술, 병변을 덮고 있
는 정상 점막 및 점막의 조직을 상파 부분 strip biopsy 등의
방법을 이용하여 제거하여 최대한 병변을 노출시킨 후 윤
가리 등을 이용하여 제거하는 unroofing 방법도 이용되고
있다. 최근에는 점막하 수술이 방법의 이론을 통해 중앙
을 주의 조직과 박리하는 방법이 유용하다. 먼저 병변
주위를 절개한 후 여러 종류의 경계도를 이용하여 병변과
주위 조직 사이를 박리하는 방법을 이용한다. 절개면을 관
찰하면서 수술하기 때문에 치료의 방법에 비해 중앙 점막의
가능성이 낮은 방법이나, 수술 후 손상이 많고, 주위 근육
결제가 불균형한 경우 절제가 어려울 수 있으며, 헌혈
의 위험성이 높다는 점을 유의하여야 한다. GIST의 내시경
치료에 대해서는 아직 정립된 연구결과는 없으며 내시경
로 저항을 가진 경우에 대해 내시경 점막하 박리기
점을 제거한 예가 보고되어 있다.49

전이된 진행성 GIST의 경우 2001년부터 사용된 imatinib
가 2004년부터 사용된 sunitinib으로 치료한다.40 Imatinib의
초기율량은 400 mg으로 시작하며, 음성은 보이지 않거나,
KIT에én 9의 점토면변이가 있는 환자의 경우 800 mg으로 증
양한다.41 치료기간에 있어서는 명확하지 않지만 지속적으
로 두약한다.42 Imatinib은 수술 후 보조 치료에도 효과적이다.
43 Imatinib의 치료 반응은 9 혹은 PDGFR의 점토
변이가 있는 GIST보다는 11의 점토면변이가 효과
과가 좋다.44,45 치료 중 KIT 혹은 PDGFR의 세로운 점토변
이가 발생하거나, 다른 유전자 비활성화 방식으로 인해 치료
도중 imatinib에 대한 내성이 발생할 수 있다.18 진행성 GIST
에서 imatinib 치료 도중에는 효과가 좋지만 약을 끊은 경우
바로 재발하고 약을 지속적으로 사용하는 경우 특히 9의
점토면변이가 있는 경우, 그리고 처음부터 KIT와
PDGFR의 점토면변이가 없었던 경우는 imatinib 치료에 반
응이 없거나 초기 반응을 보이더라도 6개월 이상 지속적으
로 사용하는 경우 내성이 생길 수 있다.45 Sunitinib malate는
KIT, PDGFR, VEGFR 등을 억제하는 약제로서 imatinib에
내성을 보이는 환자에서 2006년 이후 FDA에서 공인된 치
료제이다. 특히 9의 점토면변이를 가진 GIST의 경우
초기 치료가 인정된다.46 Sunitinib은 고효율, 심한감,
당상신기능 저하중 등의 부작용을 보일 수 있다. NCCN과 ESMO
는 고유량의 imatinib 치료에 효과가 없거나, 심각한 부작용
이 있는 경우에 sunitinib을 2차 치료제로 사용하도록 권장
하고 있다.47,48

결
론

GIST는 위장관 중앙의 1% 이내를 차지 하는 비교적 드문
종괴에 대한 복강경 절제술 후 우연히 발견되는 경우가 많으며 항암치료를 고려해야 한다. 수술 후 재발이 많기 때문에 적극적으로 추적 관찰되어야 한다. 크기에 따라 치료 방식이 달라질 수 있는데, 수술이 필요할 경우 전체 수술을, 부분 수술이 필요할 경우 내시경 절제술이 가능하다.

기관화학적 특성과 함께 치료방법을 결정해야한다. 종양의 복강경 절제술 후 치료에 있어, 치료가 필요하다. KIT가 내시경 초음파 검사 혹은 복부 초음파를 통해 발견되는 경우가 많다. 진단은 조직병리와 면역화학염색으로 이루어지며, KIT와 PDGFRα의 돌연변이 분석이 진단 및 치료에 도움이 된다. GIST는 암성으로 진행할 가능성이 있기 때문에 초기에 치료해야 하며 수술 후 재발이 많기 때문에 적극적으로 항암치료를 고려해야 한다. 이후 예측인자를 보면 종양의 크기와 유사분열지수, 방병 장기가 중요한 요소이다.

참 고 문헌

1. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002;33:459-465.
2. Jooensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumour. Hum Pathol 2008;39:1411-1419.
3. Kawanowa K, Sakuma Y, Sakurai S, et al. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol 2006;37:1527-1535.
4. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006;130:1466-1478.
5. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 2004;22:3813-3825.
6. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumour. J Clin Oncol 2003;21:4342-4349.
7. U.S. Food and Drug Administration: FDA approves Gleevec to prevent recurrence of rare gastrointestinal cancer. http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm129210.htm; 2008.
8. Rubin BP, Heinrich MC, Corless CL. Gastrointestinal stromal tumors: incidence, molecular biology, and correlation of features with nonaggressive and aggressive clinical behaviors. Am J Surg Pathol 2002;26:705-714.
9. Palazzo L, Landi B, Cellier C, Cuillerier E, Roseau G, Barbier JP. Endosonographic features predictive of benign and malignant gastrointestinal stromal cell tumours. Gut 2000;46:88-92.
10. Ando N, Goto H, Nawa Y, et al. The diagnosis of GI stromal tumors with EUS-guided fine needle aspiration with immunohistochemical analysis. Gastrointest Endosc 2002;55:37-43.
11. Wittmann J, Kocjan G, Sgouros SN, Deheragoda M, Pereira SP. Endoscopic ultrasound-guided tissue sampling with combined fine needle aspiration and trucut needle biopsy: a prospective study. Cytopathology 2006;17:27-33.
12. Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westmark B, Heldin CH. Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J 1991;10:4121-4128.
13. Takazawa Y, Sakurai S, Sakuma Y, et al. Gastrointestinal stromal tumors of neurofibromatosis type I (von Recklinghausen’s disease). Am J Surg Pathol 2005;29:755-763.
14. Yantiss RK, Rosenberg AE, Sarran L, Besner P, Antonescu CR. Multiple gastrointestinal stromal tumors in type I neurofibromatosis: a pathologic and molecular study. Mod Pathol 2005;18:475-484.
15. Diment J, Tamborini E, Casali P, Gronchi A, Carney JA, Colecchia M. Carney triad: case report and molecular analysis of gastric tumor. Hum Pathol 2005;36:112-116.
16. Daum O, Vanecek T, Sima R, Michal M. Gastrointestinal stromal tumor: update. Klin Onkol 2006;19:203-211.
17. Palazzo L, Landi B, Cellier C, Cuillerier E, Roseau G, Barbier JP. Endosonographic features predictive of benign and malignant gastrointestinal stromal cell tumours. Gut 2000;46:88-92.
review of the literature. Eur J Cancer Prev 2009;18:106-116.
28. Sawaki A, Mizuno N, Takahashi K, et al. Long-term follow up of
patients with small gastrointestinal stromal tumors in the stom-
ach using endoscopic ultrasonography-guided fine-needle aspira-
tion biopsy. Digest Endosc 2006;18:40-44.
29. Lee SJ, Kim JO, Eun SH, et al. The endoscopic ultrasonographic
survey of benign mesenchymal tumor in upper gastrointestinal
tract. Korean J Gastrointest Endosc 2007;35:140-145.
30. Dematteo RP, Gold JS, Saran L, et al. Tumor mitotic rate, si-
ze, and location independently predict recurrence after resection of pri-
mary gastrointestinal stromal tumor (GIST). Cancer 2008;112:608-615.
31. Lasota J, Stachura J, Miettinen M. GISTs with PDGFRA exon 14
mutations represent subset of clinically favorable gastric tumors
with epithelioid morphology. Lab Invest 2006;86:94-100.
32. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tu-
mors of the stomach: a clinicopathologic, immunohistochemical, and
molecular genetic study of 1765 cases with long-term follow-up.
Am J Surg Pathol 2005;29:52-68.
33. Lasota J, vel Dobos AJ, Wasag B, et al. Presence of homozygous
KIT exon 11 mutations is strongly associated with malignant clin-
ic behavior in gastrointestinal stromal tumors. Lab Invest 2007;
87:1029-1041.
34. Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized,
intergroup trial assessing imatinib mesylate at two dose levels in
patients with unresectable or metastatic gastrointestinal stromal tu-
mors expressing the kit receptor tyrosine kinase. S0033. J Clin
Oncol 2008;26:626-632.
35. Van Glabbeke M, Verweij J, Casali PG, et al. Initial and late re-
sistance to imatinib in advanced gastrointestinal stromal tumors are
predicted by different prognostic factors: a European Organisation
for Research and Treatment of Cancer-Italian Sarcoma Group-
Australasian Gastrointestinal Trials Group study. J Clin Oncol
2005;23:5795-5804.
36. Otani Y, Furukawa T, Yoshida M, et al. Operative indications for
relatively small (2-5 cm) gastrointestinal stromal tumor of the
stomach based on analysis of 60 operated cases. Surgery 2006;
139:484-492.
37. Rossi CR, Mocellin S, Mencarelli R, et al. Gastrointestinal stromal
tumors: from a surgical to a molecular approach. Int J Cancer
2003;107:171-176.
38. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM,
Brennan MF. Two hundred gastrointestinal stromal tumors: recur-
rence patterns and prognostic factors for survival. Ann Surg
2000;231:51-58.
39. DeMatteo R, Owzar K, Antonescu C, et al. Efficacy of adjuvant
imatinib mesylate following complete resection of localized, pri-
mary gastrointestinal stromal tumor (GIST) at high risk of re-
currence: the U.S. Intergroup phase II trial ACOSOG Z9000;
Orlando. Florida: American Society of Clinical Oncology Gastroi-
testinal Cancer Symposium, 2008, abstract 8.
40. Cho YJ, Lee KM, Jung KM, et al. Treatment of 3 cases of GIST
with high aggressive behavior. Korean J Gastrointest Endosc
2011;42:98-104.
41. Desai J, Maki R, Heinrich MC, et al. Activity and tolerability of
the multitargeted tyrosine kinase inhibitor SU11248 in patients
(pts) with metastatic gastrointestinal stromal tumor (GIST) re-
fractory to imatinib mesylate. In: Program and Abstracts of the
American Society of Clinical Oncology 2004 Gastrointestinal
Cancer Symposium: Current Status and Future Directions for
Prevention and Management; 2224 January 2004;San Francisco,
California; 2004. Abstract 7.
42. Patel S, Zalberg JR. Optimizing the dose of imatinib for treat-
ment of gastrointestinal stromal tumours: lessons from the phase 3 trials.
Eur J Cancer 2008;44:501-509.
43. Le Cesne A, Perol D, Ray-Coquard I, et al. Interruption of imati
nib (IM) in GIST patients with advanced disease: updated results of
the prospective French Sarcoma Group randomized phase III trial
on survival and quality of life. J Clin Oncol 2005;23(16 Suppl):
9031.
44. Heinrich MC, Shoemaker JS, Corless CL, et al. Correlation of tar-
get kinase genotype with clinical activity of imatinib mesylate
(IM) in patients with metastatic GI stromal tumors (GISTs) ex-
pressing KIT (KIT+). J Clin Oncol 2005;23(16 Suppl):7.
45. Corless CL, Schroder A, Griffith D, et al. PDGFRA mutations
in gastrointestinal stromal tumors: frequency, spectrum and in vitro
sensitivity to imatinib. J Clin Oncol 2005;23:5357-5364.
46. Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of
imatinib resistance in gastrointestinal stromal tumors. J Clin
Oncol 2006;24:4764-4774.
47. Maki RG, Fletcher JA, Heinrich MC, et al. Results from a con-
tinuation trial of SU11248 in patients (pts) with imatinib
(IM)-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol
2005;23(16 Suppl):9011.
48. NCCN Clinical Practice Guidelines in Oncology, Soft tissue
sarcoma. www.nccn.org; 2009.
49. Casali PG, Jost L, Reichardt P, Schlemmer M, Blay JY; ESMO
Guidelines Working Group. Gastrointestinal stromal tumours:
ESMO clinical recommendations for diagnosis, treatment and fol-
low-up. Ann Oncol 2009;20(Suppl 4):64-67.