C. Jayaram

Some remarks on Dedekind lattices

Received: 18 July 2012 / Accepted: 27 November 2012 / Published online: 15 December 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract In this paper, we prove that a principally generated C-lattice L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements.

Mathematics Subject Classification 06F10 · 06F05 · 13A15

1 Introduction

By a C-lattice L we mean a not necessarily modular complete multiplicative lattice \((a(\vee x_i) = \vee ax_i)\) generated under joins by a multiplicatively closed subset \(C\) of compact elements, with least element 0 and compact greatest element 1, operating as the multiplicative identity. In any C-lattice multiplication defines a quotient operation by \(a: b = \vee \{x \in L \mid xb \leq a\}\). Obviously C-lattices arise as abstractions of ideal systems, in particular when considering rings with identity. There the principal ideals form a generating set of compact “elements” whereas the finitely generated ideals form the set of all compact elements.

The theory of C-lattices was initiated by Dilworth in his fundamental and ground breaking paper [6] based on the notion of a principal element \(e\). Recall that an element \(e \in L\) is said to be principal if it satisfies:

\[
(MP) \quad a \land be = ((a : e) \land b)e \\
(JP) \quad (ae \lor b) : e = (b : e) \lor a
\]

In case that \((MP)\) is satisfied, \(e\) is called “meet principal”; in case that \((JP)\) is satisfied, \(e\) is called “join principal”. If \(e\) satisfies \((MP)\) only for \(b = 1\), that is \(a \land e = (a : e)e\) for all \(a \in L\), then \(e\) is called “weak meet principal”. Finite products of meet (join) principal elements are again meet (join) principal [6, Lemmas 3.3 and 3.4]. Moreover in [2, Theorem 1.3], it is shown that principal elements are always compact. For more information on principal elements, the reader is referred to [5].

Throughout this paper \(L\) denotes a principally generated C-lattice. For the definitions of prime element, maximal element, minimal prime element, and primary element, the reader is referred to [1, 7]. An element \(a \in L\) is called a nonzero divisor if \((0 : a) = 0\) and \(a\) is called invertible if \(a\) is a principal nonzero divisor. An element \(a \in L\) is called regular if it contains an invertible element and \(a\) is called nilpotent if \(a^n = 0\) for

C. Jayaram (✉)
University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
E-mail: jayaram.chillumu@cavehill.uwi.edu
some positive integer n. If 0 is the only nilpotent element, then L is called reduced. For any $a, b \in L$, we say a and b are comaximal, if $a \lor b = 1$.

L-lattices can be localized. For any prime element p of L, L_p denotes the localization of L at $F = \{x \in C \mid x \not\in p\}$. For details on L-lattices and their localization theory, the reader is referred to [7, 12].

L is called a Prüfer lattice, if every compact element is principal. L is called a WI-lattice if and only if L is a reduced lattice, then L is a WI-lattice, if every invertible element is a finite meet of primes $\forall a \in L$ is principal and $(0 : (0 : a)) \lor (0 : a) = 1$. Note that by definition, $(0 : (0 : a)) = (0 : a) = 0$.

Prüfer lattices have been studied in [2, 10]. A reduced lattice L is called quasi-regular, if for any compact element x, there is a compact element y such that $(0 : (0 : x)) = (0 : y)$. Quasi-regular lattices have been studied in [3]. Note that by [8, Theorem 4], L is a WI-lattice if and only if L is a quasi-regular lattice whose compact elements are principal. A reduced lattice L is called a Dedekind lattice if every element not contained in any minimal prime is "weak meet principal". For various characterizations of WI-lattices and Dedekind lattices, the reader is referred to [8, 9, 11].

It is well known that L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite product of prime elements [11, Theorems 2.6 and 3.12]. In this paper we prove that L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements. For general background and terminology, the reader may consult [1, 2].

2 Nonminimal prime elements in WI-lattices

In this section we study nonminimal prime elements in WI-lattices in which every invertible element is a finite meet of powers of prime elements. Using these results, we establish that L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements.

We now prove some useful lemmas. It is well known that if L is a reduced lattice, then L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements. For various characterizations of WI-lattices and their localization theory, the reader is referred to [7, 12].

Lemma 2.1 Let L be a WI-lattice. Then every nonminimal prime element of L is the join of invertible elements.

Proof Let p be a nonminimal prime element of L. As L is quasi-regular, by [3, Theorem 2], there exists a compact element $x \leq p$ such that $(0 : x) = 0$. As L is a WI-lattice, x is principal, so x is invertible, and hence p is regular. Let $p_r = \lor\{y \in L \mid y \leq p \text{ and } y \text{ is invertible}\}$. Clearly, $p_r \leq p$. Suppose $p_r < p$. Choose any principal element $a \leq p$ such that $a \not\in p_r$. As L is a WI-lattice, it follows that $x \lor a$ is invertible, so $x \lor a \leq p_r$, a contradiction. Therefore $p = p_r$ and hence every nonminimal prime element of L is the join of invertible elements. This completes the proof of the lemma.

Lemma 2.2 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Let m be a nonidempotent, nonminimal prime element of L. Then

(i) m is minimal over an invertible element of L.

(ii) m_m is invertible in L_m.

Proof (i) Since $m \neq m^2$, by Lemma 2.1, there exists an invertible element $a \leq m$ such that $a \not\leq m^2$. Choose any principal element $y \leq m$. As L is a WI-lattice, $a \lor y^2$ is invertible, so by hypothesis, $a \lor y^2 = \land_{i=1}^{\alpha_i} p_i^{\alpha_i}$, where p_i’s are prime elements of L. As $a \not\leq m^2$, it follows that $\alpha_i = 1$ for all $p_i \leq m$. Again $(a \lor y^2)m = \land\{(p_i)m \mid p_i \leq m\} = (a \lor y)_m$, so by Nakayama’s lemma (see [1, Theorem 1.1] or [2, Theorem 1.4]), $y_m \leq a_m$ and hence $m_m = a_m$. Therefore m is minimal over an invertible element a of L.

(ii) Again since $m_m = a_m$ and $(0 : a) = 0$, it follows that $(0_m : m_m) = (0_m : a_m) = (0 : a)_m = 0_m$, so m_m is invertible in L_m.

Lemma 2.3 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Let p be a nonminimal prime which is minimal over an invertible element $y \in L$. Then p^n is p-primary for all positive integers n.

Proof Let n be a positive integer and let $r, s \in L$ be principal elements such that $rs \leq p^n$ and $s \not\leq p$. Since y^n is invertible, by hypothesis, $r \lor y^n = \land_{i=1}^{\alpha_i} p_i^{\alpha_i}$, where p_i’s are prime elements of L. Since p is minimal over $r \lor y^n$, it follows that $(r \lor y^n)_p = (rs \lor y^n)_p = (p_j^{\alpha_j})_p$ where $p = p_j$ for some $j \in \{1, 2, \ldots, m\}$. But $(p_j^{\alpha_j})_p \leq (p^n)_p$ since $rs \lor y^n \leq p^n$, so $\alpha_j \geq n$, therefore $p^{\alpha_j} \leq p^n$ and hence $r \leq p^n$. This shows that p^n is p-primary for all positive integers n. This completes the proof of the lemma.
Lemma 2.4 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Let p be a nonidempotent, nonminimal prime element of L. Then

(i) $\{p^n\}_{n=1}^{\infty}$ is the set of all p-primary elements of L.
(ii) $p^\omega = \bigwedge_{n=1}^{\infty} p^n$ is a prime element of L.
(iii) If $q < p$ is a prime element of L, then $q \leq p^\omega$.

Proof (i) Note that by Lemmas 2.2 and 2.3, $p^n \neq p^{n+1}$ for all positive integers n and p^n is p-primary for all positive integers n. Suppose q is p-primary. Then by [4, Lemma 3.2 (d)], $q = (p^n)p = p^\omega$, so (i) holds.

(ii) Since p_p is invertible in L_p, by [4, Lemma 3.2 (c)], $p^{(\omega)} = \bigwedge_{n=1}^{\infty} (p^n)_p$ (ω is the meet in L_p) is a prime element of L_p. It can be easily verified that p^ω is a prime element of L.

(iii) Follows from [4, Lemma 3.2 (c)].

\square

Lemma 2.5 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Then every invertible element is a finite meet of primary elements.

Proof The proof of the lemma follows from Lemma 2.4 and [3, Lemma 8].

Definition 2.6 A regular prime element p of L is said to be a minimal regular prime if for any prime $q < p$, q is a nonregular prime element of L.

Lemma 2.7 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. If p is a nonidempotent, nonminimal prime element of L, then p is a minimal regular prime element of L.

Proof Let p be a nonidempotent, nonminimal prime element of L and let $q < p$ be a prime element of L. Assume that q is a regular prime element of L. Suppose $b \leq q$ and $(0 : b) = 0$ for some principal element $b \in L$. Choose an invertible element $a \leq p$ such that p is minimal over a. Since ab is invertible, by Lemma 2.5, ab is a finite meet of primary elements of L. Let $ab = \bigwedge_{i=1}^{n} q_i$ be a normal primary decomposition of L. Let $q_i \leq p$ for $i = 1, 2, \ldots, k$ and $q_j \not\leq p$ for $j = k + 1, \ldots, n$. Then $(ab)_p = \bigwedge_{i=1}^{n} (q_i)_p$. By Lemma 2.4, we can assume that $\sqrt{q_i} \leq p^\omega$ for $i = 1, 2, \ldots, k$. Then $a \not\leq \sqrt{q_i}$ for $i = 1, 2, \ldots, k$, so $b \not\leq \bigwedge_{i=1}^{n} q_i$ and hence $a_pb_p = b_p$. Therefore, by Nakayama’s lemma, $b_p = 0_p$, a contradiction since $(0 : b) = 0$. This shows that p is a minimal regular prime element of L. This completes the proof of the lemma.

\square

Lemma 2.8 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Suppose p is a prime minimal over an invertible element y of L. Then $p \not= p^2$.

Proof If $p = p^2$, then by hypothesis, $p_p = y_p$, so by Nakayama’s lemma $p_p = 0_p$, hence $y_p = 0_p$, a contradiction, since $(0 : y) = 0$. This shows that $p \not= p^2$.

\square

Lemma 2.9 Let L be a WI-lattice in which every invertible element is a finite meet of powers of prime elements. If p is an idempotent prime, then p is a minimal prime element of L.

Proof Suppose p is an idempotent prime element of L. Assume that p is nonminimal. Then there exists an invertible element $x \leq p$. By hypothesis, x has only finitely many minimal primes, say p_1, p_2, \ldots, p_n. By Lemma 2.8, $p \not\leq p_i$ for all i. As L is a WI-lattice, there exists a principal element $y \leq p$ such that $y \not\leq p_i$ for all i. Let $q \leq p$ be a prime minimal over $x \vee y$. If $q = q^2$, then by hypothesis, $(x \vee y)_q = q_q$, so by Nakayama’s lemma $q_q = 0_q$ and therefore q is minimal, so by [3, Lemma 8], $x \not\leq q$, a contradiction. Therefore $q \neq q^2$ and nonminimal. By hypothesis and Lemma 2.7, q is a minimal regular prime. Again since $x \leq q$, it follows that $p_i < q$ for some i. This contradicts the fact that q is a minimal regular prime. Therefore p is a minimal prime element of L.

\square

Theorem 2.10 L is a Dedekind lattice if and only if L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements.

Proof If L is a Dedekind lattice, then by [11, Theorem 2.6 (viii) and Theorem 3.12], L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements. Conversely, assume that L is a WI-lattice in which every invertible element is a finite meet of powers of prime elements. We claim that every invertible element is a finite product of maximal prime elements. Let $a \in L$ be an invertible element and let $a = \bigwedge_{i=1}^{n} p_i^{m_i}$, where p_i’s are distinct prime elements of L. Note that by [3, Theorem 2], p_i’s are nonminimal
prime elements of L. Again by Lemmas 2.7 and 2.9, each p_i is maximal and so they are pairwise comaximal. Consequently, a is a finite product of maximal prime elements. Now the result follows from [11, Theorems 2.6 (viii) and 3.12]. This completes the proof of the theorem. □

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Alarcon, F.; Anderson, D.D.; Jayaram, C.: Some results on abstract commutative ideal theory. Periodica Mathematica Hungarica 30, 1–26 (1995)
2. Anderson, D.D.: Abstract commutative ideal theory without chain condition. Algebra Universalis 6, 131–145 (1976)
3. Anderson, D.D.; Jayaram, C.; Phiri, P.A.: Baer lattices. Acta. Sci. Math. (Szeged) 59, 61–74 (1994)
4. Anderson, D.D.; Jayaram, C.: Principal element lattices. Czechoslov. Math. J. 46, 99–109 (1996)
5. Anderson, D.D.; Johnson, E.W.: Dilworth’s principal elements. Algebra Universalis 36, 392–404 (1996)
6. Dilworth, R.P.: Abstract commutative ideal theory. Pac. J. Math. 12, 481–498 (1962)
7. Jayaram, C.; Johnson, E.W.: s-Prime elements in multiplicative lattices. Periodica Mathematica Hungarica 31, 201–208 (1995)
8. Jayaram, C.; Johnson, E.W.: Dedekind lattices. Acta. Sci. Math. (Szeged) 63, 367–378 (1997)
9. Jayaram, C.: ℓ-prime elements in multiplicative lattices. Algebra Universalis 48, 117–127 (2002)
10. Jayaram, C.: Primary elements in Prüfer lattices. Czechoslov. Math. J. 52(127), 585–593 (2002)
11. Jayaram, C.: Regular elements in multiplicative lattices. Algebra Universalis 59, 73–84 (2008)
12. Johnson, J.A.; Sherette, G.R.: Structural properties of a new class of CM-lattices. Can. J. Math. XXXVIII, 552–562 (1986)