Đakrông virus, a novel mobatvirus (Hantaviridae) harbored by the Stoliczka’s Asian trident bat (Aselliscus stoliczkanus) in Vietnam

Satoru Arai1,2, Keita Aoki1,2, Nguyễn Trường Sơn3,4, Vương Tân tú3,4, Fuka Kikuchi1,2, Gohta Kinoshita5, Dai Fukui6, Hoàng Trung Thành7, Se Hun Gu8, Yasuhiro Yoshikawa9, Keiko Tanaka-Taya3, Shigeru Morikawa10, Richard Yanagihara8 & Kazunori Oishi1

The recent discovery of genetically distinct shrew- and mole-borne viruses belonging to the newly defined family Hantaviridae (order Bunyavirales) has spurred an extended search for hantaviruses in RNAlater®-preserved lung tissues from 215 bats (order Chiroptera) representing five families (Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae), collected in Vietnam during 2012 to 2014. A newly identified hantavirus, designated Đakrông virus (DKGV), was detected in one of two Stoliczka’s Asian trident bats (Aselliscus stoliczkanus), from Đakrông Nature Reserve in Quảng Trị Province. Using maximum-likelihood and Bayesian methods, phylogenetic trees based on the full-length S, M and L segments showed that DKGV occupied a basal position with other mobatviruses, suggesting that primordial hantaviruses may have been hosted by ancestral bats.

The long-standing consensus that hantaviruses are harbored exclusively by rodents has been disrupted by the discovery of distinct lineages of hantaviruses in shrews and moles of multiple species (order Eulipotyphla, families Soricidae and Talpidae) in Asia, Europe, Africa and North America1,2. Not surprisingly, bats (order Chiroptera, suborders Yangochiroptera and Yinpterochiroptera), by virtue of their phylogenetic relatedness to shrews and moles and other placental mammals within the superorder Laurasiatheria3,4, have also been shown to harbor hantaviruses1,2. Subsequently, based on phylogenetic analysis of the full-length S- and M-genomic segments, members of the genus Hantavirus (formerly family Bunyaviridae) have been reclassified into four newly defined genera (Loanvirus, Mobatvirus, Orthohantavirus and Thottimvirus) within a new virus family, designated Hantaviridae5,6.

All rodent-borne hantaviruses, as well as nearly all newfound hantaviruses hosted by shrews and moles, belong to the genus Orthohantavirus6. By contrast, bat-borne hantaviruses have been assigned to the Loanvirus and Mobatvirus genera. To date, bat-borne loanviruses include Mouyassué virus (MOYV) in the banana pipistrelle (Neoromicia nanus) from Côte d’Ivoire7 and in the cape serotine (Neoromicia capensis) from Ethiopia8, Magboi virus (MGBV) in the hairy slit-faced bat (Nycteris hispida) from Sierra Leone9, Huángpí virus (HUPV) in the Japanese house bat (Pipistrellus abramus) from China10, Lóngquán virus (LQUV) in the Chinese horseshoe bat (Rhinolophus sinicus), Formosan lesser horseshoe bat (Rhinolophus monoceros) and intermediate horseshoe bat (Rhinolophus affinis) from China10, and Brno virus (BRNV) in the common noctule (Nyctalus noctula) from the Czech Republic11.
Mobatviruses include Xuân Sơn virus (XSV) in the Pomona roundleaf bat (Hipposideros pomona) from Vietnam\(^{12,13}\), Läibin virus (LAIV) in the black-bearded tomb bat (Taphozous melanopogon) from China\(^{14}\), Makokou virus (MAKV) in the Noack's roundleaf bat (Hipposideros ruber) from Gabon\(^{15}\), and Quezon virus (QZNV) in the Geoffroy's rousette (Rousettus amplexicaudatus) from the Philippines\(^{16}\). QZNV is the only hantavirus reported hitherto in a frugivorous bat species (family Pteropodidae).

Several orthohantaviruses hosted by murid and cricetid rodents cause either hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia\(^{17-19}\) or hantavirus cardiopulmonary syndrome (HCPS) in the Americas\(^{20,21}\). HFRS varies in clinical severity from mild to life threatening, with mortality ranging from <1% to ≥15%\(^{22,23}\), whereas HCPS is generally severe, and despite intensive care treatment, mortality rates are 25% or higher\(^{24,25}\).

Humans are typically infected with rodent-borne orthohantaviruses by the respiratory route via inhalation of aerosolized excretions or secretions\(^{26,27}\). Transmission of hantaviruses from person-to-person has been reported between DKGV and LAIV (73.0%) (Table 2).

The pathogenicity of the newfound shrew-, mole- and bat-borne hantaviruses is unknown. That is, despite a report of IgG antibodies against recombinant nucleocapsid proteins of shrew-borne hantaviruses in humans from Côte d’Ivoire and Gabon\(^{31}\), there is no definitive proof that any of the recently reported orthohantaviruses, thottimiruviruses, loanviruses and mobatviruses, harbored by shrews, moles and bats, cause clinically identifiable diseases or syndromes in humans\(^{32}\).

This multi-institutional study represents an extended search for novel bat-borne loanviruses and mobatviruses to better understand their geographic distribution and host diversification. Our data indicate that a newly identified mobatvirus in the Stoliczka's Asian trident bat (Aselliscus stoliczkanus) is genetically distinct and phylogenetically related to other bat-borne mobatviruses, suggesting that primordial hantaviruses may have been hosted by ancestral bats.

Results

Hantavirus detection. Repeated attempts to detect hantavirus RNA were successful in only one of the 215 lung specimens (Supplemental Table 1), despite using PCR protocols that led to the discovery of other bat-borne hantaviruses. Sequence analysis of the full-length S-, M- and L-genomic segments showed a novel hantavirus, designated Dakrông virus (DKGV), in one of two Stoliczka's Asian trident bats (Fig. 1A), captured in Đakrông Nature Reserve (16.6091N, 106.8778E) in Quang Tri Province (Fig. 1B), in August 2013.

Sequence analysis. The overall genomic organization of DKGV was similar to that of other hantaviruses. A nucleocapsid (N) protein of 427 amino acids was encoded by the 1,746-nucleotide S segment, beginning at position 58, and with a 405-nucleotide 3’-noncoding region (NCR). The hypothetical NSs open reading frame was not found.

A glycoprotein complex (GPC) of 1,127 amino acids was encoded by the 3,622-nucleotide M segment, starting at position 21, and with a 218-nucleotide 3’-NCR. Two potential N-linked glycosylation sites were found in the Gn at amino acid positions 344 and 396 and one in the Gc at position 924. Another possible site was present at amino acid position 133 of the Gn. For comparison, the amino acid positions of N-linked glycosylation sites of other representative hantaviruses are summarized in Table 1. Also, the highly conserved WAASA amino-acid motif was found at amino acid positions 641–645. The full-length Gn/Gc amino acid sequence similarity was highest between DKGV and LAIV (73.0%) (Table 2).

Analysis of the 6,535-nucleotide L segment, which encoded a 2,145-amino acid RNA-dependent RNA polymerase (RdRP), showed the highly conserved A, B, C, D and E motifs. The functional constraints on the RdRP were evidenced by the overall high nucleotide and amino acid sequence similarity of 60% or more in the L segment between DKGV and other hantaviruses (Table 2).

Comparison of the full-length S, M and L segments indicated amino acid sequence similarities ranging from 45.6% (BRNV GPC) to 81.2% (LAIV RdRP) between DKGV and representative bat-borne hantaviruses (Table 2), and showed that DKGV differed at the amino acid level by 30% or more from nearly all rodent- and shrew-borne orthohantaviruses.

Nucleocapsid and glycoprotein secondary structures. Secondary structure analysis of the N and Gn/Gc proteins indicated similarities and differences between DKGV and representative rodent-, shrew-, mole- and bat-borne hantaviruses (Figs 2 and 3).

The DKGV N protein secondary structure, comprising 53.16% α-helices, 10.07% β-sheets and 35.13% random coils, resembled that of other hantavirus N proteins. A two-domain, primarily α-helical structure joined by a central β-pleated sheet, was observed. Although the N-terminal domain length was nearly the same, structural changes were evident in the central β-pleated sheet and adjoining C-terminal α-helical domain, according to the phylogenetic relationships of the N proteins.

That is, the N protein comprised two α-helical domains and a central β-pleated sheet (Fig. 2) irrespective of the low amino acid sequence similarity among the orthohantaviruses and thottimiruviruses. However, the central β-pleated sheet motif and RNA-binding region (amino acid positions 175 to 217) of DKGV differed from that of other hantaviruses, which resembled that of murid rodent-borne orthohantaviruses (Fig. 2).

The DKGV glycoprotein secondary structure, comprising 38.82% α-helices, 40.20% β-sheets and 55.99% random coils, resembled that of other hantavirus glycoproteins (Fig. 3). Also, the four transmembrane helices of the DKGV glycoprotein resembled that of other hantaviruses (Fig. 4), and the putative fusion loop (WGCNPVD) and zinc finger domain (CVVCTRESCSTEEKLKHNEHClQGSCPYCMRDLHSPSQAHLTEHLYKTC) were observed at residues 760–766 and 542–588, respectively.
Hantavirus phylogeny. DKGV was distinct from other hantaviruses in phylogenetic trees, based on S-, M- and L-segment sequences using the Markov chain Monte Carlo (MCMC) Bayesian methods (Fig. 5). In all analyses, DKGV and LAIV shared a common ancestry. The basal position of mobatviruses and loanviruses in phylogenetic trees suggested that primordial hantaviruses may have been hosted by ancestral bats (Fig. 5).

Host phylogeny. Taxonomic classification of the bats was confirmed by PCR amplification and sequencing of the cytochrome b (Cyt b) and cytochrome c oxidase I (COI) genes. Morphologically indistinguishable Aselliscus stoliczkanus and Aselliscus dongbacana were identified by Cyt b (KU161558–KU161575 and MG524933–MG524935) and COI (LC406430–LC406448) gene sequence analysis. Phylogenetic analysis of bats belonging to the suborders Yinpterochiroptera and Yangochiroptera resembled that of DKGV and other bat-borne hantaviruses (Fig. 6).

Co-phylogeny of hantavirus and host. Segregation of hantaviruses according to the subfamily of their reservoir hosts was demonstrated by co-phylogeny mapping, using consensus trees based on the Gn/Gc glycoprotein and RdRP protein amino acid sequences (Fig. 7). The phylogenetic positions of DKGV and other
mobatviruses (XSV and MAKV) mirrored the phylogenetic relationships of their Hipposideridae hosts. By contrast, the phylogenetic positions of LAIV from *Taphozous melanopogon*, QZNV from *Rousettus amplexicaudatus* and LQUV from *Rhinolophus affinis* were mismatched between virus and host species tanglegram.

Discussion

The Stoliczka’s Asian trident bat, one of three species in the genus *Aselliscus*, is found throughout Southeast Asia. The Dong Bac’s trident bat (*Aselliscus dongbacana*), a closely related species, overlaps in body size, distribution, echolocation and habitat\(^1\). However, we failed to detect hantavirus RNA in this latter species. As in previous studies, in which only one or two individual bats were found to be infected\(^7,12,13,16\), hantavirus RNA was detected in a single Stoliczka’s Asian trident bat. Technical issues (such as primer mismatches, suboptimal cycling conditions, limited tissues and degraded RNA), as well as the restricted transmission and/or immune-mediated clearance of hantavirus infection in bats, are possible contributing factors.

By virtue of the N protein and Gc glycoprotein sequence divergence between DKGV and other hantaviruses, as well as the unique host species, DKGV likely represents a new hantavirus species. A three-dimensional, bi-lobed protein architecture for RNA binding was suggested by the DKGV N protein secondary structure and that of other bat-borne hantaviruses and mobatviruses. The fusion loop and zinc finger domain of the glycoprotein suggested that DKGV and other bat-borne loanvirus and mobatviruses have similar mechanisms of protein modification with

Reservoir host	Virus and strain	Gn	Gc				
Bat	DKGV VN2913B72	133\#	344	396	924		
	XSV VN1982B4	143	230	345	397	540	925
	LAIV BT20	133	344	396	539, 606	924	
	LQUV Ra-25	134	349\#	441	544, 569, 608\#	883, 929	
	BRNV 7/2012/CZE	96	137\#	313, 352\#	444	931, 1053	
	QZNV MT1720/1657	133	300	399	564	928	
Murid rodent	DOBV/BGDV Greece	134	235	347	399	518, 562	928
	HTNV 76-118	134	235	347	399	609	928
	SANGV SA14	134	235	347	399	518, 562, 566	928
	SEOV HR80-39	132	323	345	397	560	926
	SOOV SOO-1	134	235	347	399	609	928
Cricetid rodent	PUUV Sokamo	142	357	409	898, 937		
	MUV 11-1	136	351	403	892, 931		
	PHV PH-1	139	353	405	527	933	
	TULV M5302v	140	355\#	407	583	935	
	SNV NMH10	138	351	403	931		
	ANDV Chile9717869	138	350	402	524	930	
Crocidurine shrew	BOWV VN1512	23	142	355	407	526, 701	936, 1060\#
	JJUV 10-11	142	355	407	936, 1058		
	MJNI CV05-11	133	288	387	915, 1078		
	TPMV VRC66412	134	289	388	505, 585	916	
Soricine shrew	ASIV Drahany	138	351	403	566	932	
	ARTV MukawaAH301	138	351	403	932		
	CBNV CBN-3	138	351	403	932		
	YKSV Si-210	138	351	403	566	932	
Mole	RKPV MSB57412	135	349	401	577	890, 929	
	OXBV Ng1453	138	353	405	524, 617, 623	934	
	ASAV N10	138	352	404	933		
	NVAV Te34	101	133	344	396	539	924

Table 1. Potential N-linked glycosylation sites in the Gn and Gc glycoproteins of DKGV strain VN2913B72 and representative bat-, rodent-, shrew- and mole-borne hantaviruses. Dakrông virus (DKGV) VN2913B72, Xuan Son virus (XSV) VN1982B4, Lãibín virus (LAIV) BT20, Longquán virus (LQUV) Ra-25, Brno virus (BRNV) 7/2012/CZE and Quezon virus (QZNV) MT1720/1657 were detected in bats, Dobrava-Belgrade virus (DOBV/BGDV) Greece, Hantaan virus (HTNV) 76-118, Sangassou virus (SANGV) SA14, Seoul virus (SEOV) HR80-39 and Soochong virus (SOOV) SOO-1 in murid rodents, Puumala virus (PUUV) Sokamo, Muvju virus (MUV) 11-1, Prospect Hill virus (PHV) PH-1, Tula virus (TULV) M5302v, Sin Nombre virus (SNV) NMH10 and Andes virus (ANDV) Chile717869 in cricetid rodents, Bowé virus (BOWV) VN1512, Jeju virus (JJUV) 10-11, Imjin virus (MJNI) CV05-11 and Thottapalayam virus (TPMV) VRC66412 in crocidurine shrews, Asikkala virus (ASIV) Drahany, Artybash virus (ARTV) MukawaAH301, Cao Bằng virus (CBNV) CBN-3 and Yákeshi virus (YKSV) Si-210 in soricine shrews and Rockport virus (RKPV) MSB57412, Oxbow virus (OXBV) Ng1453, Asama virus (ASAV) N10 and Nova virus (NVAV) Te34 in moles.
rodent-borne orthohantaviruses. On the other hand, the envelope GPC is implicated in virus attachment and cell entry. Further insights for receptor and receptor binding sites of hantaviruses harbored by shrews, moles and bats will contribute to a deeper understanding about their host specificities.

Recently, far greater genetic diversity than those in rodents have been detected in orthohantaviruses harbored by shrews, moles of multiple species, belonging to five subfamilies (Soricinae, Crocidurinae, Myosoricinae, Talpinae and Scalopinae) within the order Eulipotyphla, in Europe, Asia, Africa and/or North America. Similarly, hantavirus RNA has been detected in tissues of several bat species belonging to the families Emballonuridae, Nycteridae and Vespertilionidae (suborder Yanochiroptera) and the families Rhinolophidae, Hipposideridae and Pteropodidae (suborder Yinpterochiroptera). It is unclear to what extent spillover or host switching is responsible for the overall low prevalence of hantavirus infection in only 14 bat species to date, and the inability to detect hantavirus RNA in nearly 100 other bat species analyzed to date.

Reservoir host	Virus and strain	S segment	M segment	L segment
Bat				
XSV VN1982B4	69.9% 76.5%	66.9% 69.3%	71.3% 79.4%	
LAIV BT20	70.3% 76.8%	69.2% 73.0%	73.4% 81.2%	
LQUV Ra-25	62.0% 59.6%	55.4% 45.9%	69.8% 72.2%	
HUPV Pa-1	64.0% 63.1%	—	68.8% 79.0%	
BRNV 7/2012/CZE	57.2% 56.7%	54.0% 45.3%	65.6% 86.1%	
QZNV MT1720/1657	55.9% 64.6%	58.4% 53.3%	66.3% 69.4%	
Murid rodent				
DOBV/BRGvdY Greece	57.2% 53.2%	53.7% 45.9%	64.6% 65.4%	
HTNV 76-118	57.0% 52.5%	53.7% 43.6%	64.6% 65.3%	
SANGY SA14	58.0% 52.2%	53.8% 46.6%	64.3% 65.0%	
SEOV HR80-39	56.3% 51.1%	53.7% 43.4%	64.9% 65.4%	
SOOV SOO-1	57.5% 53.9%	53.5% 43.9%	65.0% 65.0%	
Cricetid rodent				
PUUV Sotkamo	58.0% 53.2%	54.2% 46.0%	64.8% 65.1%	
TULV M5302v	59.1% 51.8%	54.8% 46.4%	64.0% 64.8%	
PHV PH-1	59.1% 53.2%	54.9% 47.2%	62.9% 65.1%	
SNV NMH10	56.9% 50.4%	54.7% 48.2%	63.2% 64.7%	
ANDV Chile717869	57.1% 52.7%	54.6% 47.0%	63.9% 64.9%	
Soricine shrew				
CBNV CBN-3	57.4% 53.0%	54.5% 44.9%	64.3% 65.6%	
ARVV MSB734418	53.3% 44.0%	—	65.4% 65.2%	
JMSV MSB144475	55.3% 50.2%	58.1% 50.6%	64.2% 65.9%	
ARTV MukawaAH301	56.2% 50.9%	54.1% 44.8%	63.7% 64.8%	
SWSV mp70	55.8% 51.4%	60.5% 56.6%	62.5% 62.4%	
KKMV MSB148794	56.0% 51.2%	53.5% 44.0%	63.9% 64.9%	
QHSV YN05 2845	56.7% 50.5%	56.6% 48.3%	71.4% 75.2%	
YKSV Si-210	56.4% 50.0%	53.9% 44.9%	63.2% 65.1%	
TGNV Tan826	55.1% 47.6%	—	67.5% 67.2%	
AZGV KBM15	57.9% 54.6%	55.1% 44.5%	63.5% 65.2%	
Crocidurine shrew				
JJUV SH42	56.4% 49.8%	54.1% 45.1%	63.7% 63.7%	
BOWV VNI1512	56.7% 49.9%	55.1% 43.6%	62.3% 63.8%	
MINN C05-11	53.6% 45.8%	51.2% 40.0%	63.3% 64.9%	
TPMV VRC66412	54.4% 44.9%	51.4% 42.1%	63.6% 64.8%	
MYOSORICINE shrew				
ULUV FMNH158302	55.7% 49.1%	54.2% 42.6%	63.1% 64.5%	
KMJMV FMNH74124	55.4% 48.7%	54.9% 45.4%	63.3% 64.1%	
Mole				
RKPV MSB57412	57.7% 53.2%	55.7% 46.0%	63.7% 64.4%	
OXJV Ng1453	56.0% 51.1%	53.6% 44.2%	63.1% 64.4%	
ASAV N10	57.4% 51.3%	53.8% 45.3%	64.1% 64.6%	
NVAV Te34	60.7% 57.0%	60.7% 56.4%	65.5% 67.0%	

Table 2. Nucleotide (nt) and amino acid (aa) sequence similarities of the coding regions of the full-length S, M and L segments of DKGV strain VN2913B72 and representative bat-, rodent-, shrew- and mole-borne hantaviruses. Huangpi virus (HUPV) was detected in a bat species, Ash River virus (ARRV), Azagory virus (AZGV), Jemez Springs virus (JMSV), Kenkeme virus (KKMV), Qian Hu Shan virus (QHSV), Seewis virus (SWSV) and Tanganya virus (TGNV) were detected in soricine shrews, and Kilimanjaro virus (KMJV) and Uluguru virus (ULUV) were detected in myosoricine shrews. The other abbreviations of virus names are the same as in Table 1. Three bat-borne hantaviruses from Africa, Makokou virus (MAKV), Magboi virus (MGBV) and Mouyassué virus (MOYV), are not included because only relatively short regions of the L segment were available for analysis. Hyphens indicate no available sequence data.
Previously, the overall congruence between gene phylogenies of rodent-borne orthohantaviruses and their hosts led to the conjecture that orthohantaviruses had co-evolved with their reservoir hosts. However, recent studies, based on co-phylogenetic reconciliation and estimation of evolutionary rates and divergence times, conclude that local host-specific adaptation and preferential host switching account for the phylogenetic similarities between hantaviruses and their mammalian hosts. Although our co-phylogenetic analysis also indicates that bat-borne loaoviruses and mobatviruses and their host species have not co-diverged, the availability of whole genome sequences for only four of the 10 bat-borne hantaviruses presented a significant limitation. Thus, future efforts must focus on obtaining full-length genomes of newfound hantaviruses, particularly those harbored by bats in southeast Asia and Africa, to gain additional insights into the phylogeography and evolutionary origins of viruses in the family Hantaviridae.

Figure 2. Comparison of consensus secondary structures of entire nucleocapsid (N) proteins of DKGV VN2913B72 (large top panel) and other representative hantaviruses (smaller panels), predicted using several methods at the NPS@ structure server. N protein structures are shown for bat-borne mobatviruses (DKGV VN2913B72, LAIV BT20 and XSV VN1982B4), rodent borne orthohantaviruses (HTNV 76-118, SEOV HR80-39, SOOV SOO-1, DOBV/BGDV Greece, PUUV Sokamo, MUJV 11-1, PHV PH-1, SNV NMH10 and ANDV Chile9719869) and shrew-borne thottimviruses (TPMV VRC66412 and MJNV CI05-11), shrew-borne orthohantaviruses (JJUV SH42, BOWV VN1512, ASIV Drahany, ARTV MukawaAH301, CBNV CBN-3 and YKSV Si-210), and mole-borne orthohantaviruses (RKPV MSB57412, OXBV Ng1453 and ASAV N10) and mole-borne mobatvirus (NVAV MSB95703). Blue bars represent α-helices, red bars β-strands, and purple indicate random coil and unclassified structures, respectively. Abbreviations: ANDV, Andes virus; ARTV, Artybash virus; ASAV, Asama virus; ASIV, Asikkala virus; BOWV, Bowé virus; CBNV, Cao Bàng virus; DKGV, Dakrông virus; DOBV/BGDV, Dobrava-Belgrade virus; HTNV, Hantaan virus; JJUV, Jeju virus; LAIV, Láibīn virus; MJNV, Imjin virus; MUJV, Muju virus; NVAV, Nova virus; OXBV, Oxbow virus; PHV, Prospect Hill virus; PUUV, Puumala virus; RKPV, Rockport virus; SEOV, Seoul virus; SNV, Sin Nombre virus; SOOV, Soochong virus; TPMV, Thottapalayam virus; XSV, Xuân Sơn virus; YKSV, Yákèshi virus.
Materials and Methods

Ethics statement. Field procedures and protocols for trapping, euthanasia and tissue processing, conforming to the guidelines of the American Society of Mammalogists, were approved by the Ministry of Agriculture and Rural Development in Vietnam. Moreover, permission for this study was obtained from the Vietnam Administration of Forest, before collecting bat specimens (permission numbers: 1492/TCLN-BTTN; 701/TCLN-BTTN; 389/TCLN-BTTN; 767/TCLN-BTTN). Also, the Institutional Animal Care and Use Committee, of the National Institute of Infectious Diseases, reviewed and approved the field protocols and experimental procedures (permission number: 112152).

Trapping. Mist nets and harp traps were used to trap bats, during December 2012 to June 2014, in Xuân Lien Nature Reserve (19.8736N, 105.2156E) in Thanh Hóa Province; Vĩnh Cửu Nature Reserve, recently renamed Đồng Nai Culture and Nature Reserve (11.3808N, 107.0622E), in Đồng Nai Province; Khau Ca Nature Reserve (22.3532N, 105.4197E) in Tuyên Quang Province; and near Hoàng Liên National Park (22.8381N, 105.1161E) in Lào Cai Province. Live-caught bats were euthanized and lung tissues were preserved in RNAlater® (Qiagen) until testing by RT-PCR.

Figure 3. Comparison of consensus secondary structures of entire envelope glycoproteins (G) of DKGV VN2913B72 (large top panel) and other representative hantaviruses (smaller panels), predicted at the NPS@structure server. G protein structures are shown for bat-borne mobatviruses (DKGV VN2913B72, LAIV BT20 and XSV VN1982B4), bat-borne loamviruses (LQUV Ra-25 and BRNV 7/2012/CZE), rodent borne orthohantaviruses (HTNV 76-118, SEOV HR80-39, DOBV/BGDV Greece, PUUV Sotkamo, PHV PH-1, SNV NMH10 and ANDV Chile 9717869), shrew-borne orthohantaviruses (ARTV Mukawa AH301, JJUV 10-11 and YKSV Si-210), shrew-borne thottimvirus (TPMV VRC66412), mole-borne orthohantaviruses (RKPV MSB57412, OXBV Ng1453, ASAV N10) and mole-borne mobatvirus (NVAV Te34). Blue bars represent α-helices, red bars β-strands, and purple indicate random coil and unclassified structures, respectively. Abbreviations: BRNV, Brno virus; LQUV, Longquan virus; other abbreviations of virus names, as in Fig. 2 legend.
RNA extraction. Using the MagDEA RNA 100 Kit (Precision System Science, Matsudo, Japan)\(^3^9\), total RNA was extracted from lung tissues of 215 bats, representing 15 genera and 46 species in five families (Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae) (Supplemental Table 1). RNA was reverse transcribed to cDNA was synthesized using the PrimeScript II 1st strand cDNA Synthesis Kit (Takara bio, Otsu, Japan) and an oligonucleotide primer (OSM55F, 5′–TAGTAGTAGACTCC–3′) designed from conserved 5′–end of the S, M and L segments of hantaviruses\(^3^9\).

RT-PCR and sequencing. Oligonucleotide primers previously used to detect hantaviruses\(^1^2,13,16,39–43\) were employed to amplify S, M and L segments (Supplemental Table 2). First-round PCR was performed in 20-μL reaction mixtures, containing 250μM dNTP, 2.5 mM MgCl₂, 1 U of Takara LA Taq polymerase Host Start version (Takara Bio) and 0.25μM of each primer\(^1^6\). Second-round PCR was performed in 20-μL reaction mixtures, containing 200μM dNTP, 2.5 mM MgCl₂, 1 U of AmpliTaq Gold polymerase (Life Technologies, Foster City, CA, USA) and 0.25μM of each primer\(^1^6\). Initial denaturation at 95 °C for 1 min for first PCR or at 95 °C for 10 min for second PCR were followed by two cycles each of denaturation at 95 °C for 20 s, two-degree step-down annealing from 46 °C to 38 °C for 40 s, and elongation at 68 °C for 1 min, then 30 cycles of denaturation at 94 °C for 20 s, annealing at 42 °C for 40 s, and elongation at 68 °C for 1 min, in a Veriti thermal cycler (Life Technologies)\(^7,12,13,16,39\). PCR products, treated with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s instruction, were sequenced directly using an ABI 3730xl DNA Analyzer (Life Technologies)\(^1^6\).
Figure 5. Phylogenetic trees, based on 1,284-, 3,384- and 6,438-nucleotide regions of the S-, M- and L-genomic segments, respectively, of Đakrông virus (DKGV VN2913B72) (S: MG663534, M: MG663535 and L: MG663536) from Stoliczka's Asian trident bat, generated by the Bayesian Markov chain Monte Carlo estimation method, under the GTR + I + Γ model of evolution. The phylogenetic position of DKGV is shown in relation to other chiropteran- and mole-borne mobatviruses, including Lábīn virus (LAIV BT20, S: KM102247; M: KM102248; L: KM102249) from Taphozous melanopogon, Xuân Sơn virus (XSV VN1982B4, S: KC688335; M: KM195715; L: KC688336) from Hipposideros pomona, Quezon virus (QZNV MT1720/1657, S: KU950713; M: KU950714; L: KU950715) from Rousettus amplexicaudatus, and Nova virus (NV AV Te34, S: KR072621; M: KR072622; L: KR072623) from Talpa europaea. Loanviruses including Brno virus (BRNV 7/2012/CZE, S: KX845678; M: KX845679; L: KX845680) from Nyctalus noctula, Lóngquán virus (LQUV Ra-25, S: JX465415; M: JX465397; L: JX465381) from Rhinolophus affinis, and Huángpí virus (HUPV Pa-1, S: JX473273; L: JX465369) from Pipistrellus abramus were shown. Also shown are shrew-borne orthohantaviruses including Ash River virus (ARRV MSB734418, S: EF650086; L: EF651996) from Sorex cinereus, Artybash virus (ARTV MukawaAH301, S: KF974360; M: KF974359; L: KF974361) from Sorex caecutiens, Azagny virus (AZGV KBM15, S: JF276227; M: JF276228; L: JF276229) from Crocidura obscurior, Boginia virus (BOGV 2074, M: JX990966; L: JX990965), Bowé virus (BOWV VN1512, S: KC631782; M: KC631783; L: KC631784) from Crocidura douceti, Cao Bằng virus (CBNV CBN-3, S: EF653424; M: EF653425; L: EF653426) from Anourosorex squamipes, Jeju virus (JJUV SH42, S: HQ663932; M: HQ663933; L: HQ663934) from Sorex araneus, Thottapalayam virus (TPMV VRC66412, S: AY526097; L: EU001330) from Suncus murinus, Imjin virus (MJNV Cl05-11, S: EF641804; M: EF641805) from Crocidura lasiura, and Kilimanjaro virus (KMJV FMNH174214, S: JX193698; L: JX193700) from Sorex araneus. Other taxa include rodent borne orthohantaviruses, Andes virus (ANDV Chile9717869, S: AF291702; M: AF291703; L: AF291704), Sin Nombre virus (SNV NMH10, S: NC_005216; M: NC_005217; L: NC_005218), Dobrava-Belgrade virus (DOBV/BGDV HR6/2002, S: NC_005219; M: NC_005220; L: NC_005221), and Tula virus (TULV M5302v, S: NC_005222; M: NC_005223; L: NC_005224). Scale bars indicate nucleotide substitutions per site. Bat-borne hantaviruses are shown in green lettering (DKGV VN2913B72 shown in bold), shrew-borne hantaviruses in blue, mole-borne hantaviruses in purple and rodent borne hantaviruses in black.
Secondary structure analysis. Full-length amino acid sequences were submitted to NPS@ structure server to predict secondary structures of the N protein and Gn/Gc glycoproteins. Glycosylation and trans-membrane sites were predicted at the NetNlyc 1.0 and Predictprotein and TMHMM version 2.0, respectively. The program COILS was used to scan the N protein for expected coiled-coil regions.

Phylogenetic analysis. Maximum likelihood and Bayesian methods, implemented in RAxML Blackbox webserver and MrBayes 3.1, under the best-fit GTR + I + Γ model of evolution and jModelTest version 2.1.6, were used to generate phylogenetic trees. Two replicate Bayesian Metropolis–Hastings MCMC runs, each consisting of six chains of 10 million generations each sampled every 100 generations with a burn-in of 25,000 (25%) and bootstrap value (>70%, right of slash) based on 1000 bootstrap replicates. Scale bars indicate nucleotide substitutions per site. Letterings for taxa are shown in green for bats, blue for shrews, purple for moles, black for rodents and red for *Elephantulus*. The GenBank accession number for the Cyt b sequence for *Aselliscus stoliczkanus* is KU161570.
Host identification. Total DNA was extracted from lung tissues, using MagDEA DNA 200 Kit (Precision System Science), and PCR amplification of the 1,140-nucleotide Cyt b gene and 1,545-nucleotide COI gene.52,53 was performed with newly designed primer sets: Cy-14724F (5'–GACYTARRCATGAAAAACAYCCTGTT–3')/Cy-15909R (5'–CYCTGTSYTTRATTTACAGTYYAA–3') and KOD multi enzyme (Toyobo, Osaka, Japan), and MammMt-5533F (5'–CYCTGTSYTTRATTTACAGTYYAA–3')/MammMt-7159R (5'–GGRGTTTCRWWCCTYCCTYTCTT–3') and Phusion enzyme (New England Biolabs, Ipswitch, MA, USA), respectively. Initial denaturation at 95 °C for 2 min was followed by two cycles each of denaturation at 95 °C for 15 s, two-degree step-down annealing from 60 °C to 50 °C for 30 s, and elongation at 68 °C for 1 min 30 s, then 30 cycles of denaturation at 95 °C for 15 s, annealing at 55 °C for 30 s, and elongation at 68 °C for 1 min 30 s, in a Veriti thermal cycler.15 PCR products were purified by Mobispin S-400 (Molecular Biotechnology, Lotzzestrasse, Germany) and were sequenced directly.

GenBank accession numbers. MG663534, MG663535 and MG663536 for Dakrông virus; MG524933–MG524935 and LC406452–LC406456 for cytochrome b and LC406430–LC406448 for cytochrome c oxidase I of Aselliscus stoliczkanus and Aselliscus dongbacana.

References
1. Yanagihara, R., Gu, S. H., Arai, S., Kang, H. J. & Song, J.-W. Hantaviruses: rediscovery and new beginnings. Virus Res 187, 6–14, https://doi.org/10.1016/j.virusres.2013.12.038 (2014).
2. Yanagihara, R., Gu, S. H. & Song, J.-W. Expanded host diversity and global distribution of hantaviruses: implications for identifying and investigating previously unrecognized hantviral diseases. In Global Virology I – Identifying and Investigating Viral Diseases (eds Shapshak, P., Sinnott, J. T., Somboonwit, C. & Kuhn, J. I.), 161–198 (Springer New York, 2013).
3. Mouchaty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae within eutheria based on analysis of complete mitochondrial sequences. Mol Biol Evol 17, 60–67, https://doi.org/10.1093/oxfordjournals.molev.a026238 (2000).
4. Bennett, S. N., Gu, S. H., Kang, H. J., Arai, S. & Yanagihara, R. Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol 22, 473–482, https://doi.org/10.1016/j.tim.2014.04.008 (2014).
5. Adams, M. J. et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch Virol 162, 2505–2538, https://doi.org/10.1007/s00705-017-3358-5 (2017).
6. Maes, P. et al. Taxonomy of the order Bunyavirales: second update 2018. Arch Virol Jan 20, https://doi.org/10.1007/s00705-018-04127-3 (2019).
7. Sumbacy, L. et al. Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote d'Ivoire. Virol J 9, 34, https://doi.org/10.1186/1743-423X-9-34 (2012).
8. Štefáková, J., Bryjová, A., Brýja, J., Lavrenchenko, L. A. & Gouy de Bellocq, J. Hantavirus strains in East Africa related to Western African hantaviruses. Vector Borne Zoonotic Dis 17, 278–280, https://doi.org/10.1089/vbz.2016.2022 (2017).
9. Weiss, S. et al. Hantavirus in bat, Sierra Leone. Emerg Infect Dis 18, 159–161, https://doi.org/10.3201/eid1801.111026 (2012).
10. Guo, W. P. et al. Phylogeny and origins of hantaviruses harbored by bats, mice, and rodents. PLoS Pathog 9, e1003159, https://doi.org/10.1371/journal.ppat.1003159 (2013).
11. Straková, P. et al. Novel hantavirus identified in European bat species Nyctalus noctula. Infect Genet Evol 48, 127–130, https://doi.org/10.1016/j.meegid.2016.02.025 (2017).
12. Arai, S. et al. Novel bat-borne hantavirus. Emerg Infect Dis 19, 1159–1161, https://doi.org/10.3201/eid1907.121549 (2013).

Figure 7. Tanglegram comparing the phylogenies of hantaviruses and their chiroptera, eulipotyphla, and rodent hosts. The host tree on the left was based on cytochrome b (Cyt b) gene sequences, while the hantavirus tree on the right was based on the amino acid sequences of glycoprotein (A) and RNA-dependent RNA polymerase (B), respectively. Letterings for taxa are shown in green for bats, blue for shrews, purple for moles, black for rodents and red for Elephantulus in the each left panel. Bat-borne hantaviruses are shown in green lettering (DKGV VN2913B72 shown in bold), shrew-borne hantaviruses in blue, mole-borne hantaviruses in purple and rodent hantaviruses in black in the each right panel. The host species and viruses relationship (Cyt b and each segment sequence accession number) were listed in Supplemental Table 3.
Acknowledgements
We thank Hitoshi Suzuki, Shinichiro Kawada, Satoshi D. Ohdachi and Kimiyuki Tsuchiya for supporting field investigations and for valuable advice. This work was supported in part by a grant-in-aid Research on Emerging and Re-emerging Infectious Diseases, Health Labour Sciences Research Grant in Japan (H25-Shinko-Ippan-008), grants-in-aid on Research Program on Emerging and Re-emerging Infectious Diseases, Japan Agency for Medical Research and Development (AMED) JP15fk0108005, JP16fk0108117, JP17fk0108217, JP18fk0108017 and JP19fk0108597, grant-in-aid from the Japan Society for the Promotion of Science 24305045 (Scientific Research grant B), grant-in-aid on NAFOSTED (106-NN.05-2016.14), and VAST-JSPS (QTJP01.02/18-20).

Author Contributions
S.A., S.H.G., R.Y. and K.O. conceived and designed the experiments; S.A., N.T.S., V.T.T., D.F. and H.T.T. conducted the trapping and field collections; S.A., K.A. and F.K. performed the experiments; S.A., G.K. and R.Y. analyzed the data; N.T.S., V.T.T. and H.T.T analyzed the host morphology; S.A., Y.Y., K.T., S.M., R.Y. and K.O. contributed reagents, materials and analysis tools. S.A., N.T.S., V.T.T., S.M. and R.Y. prepared the figures and manuscript. All authors reviewed and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-46697-5.

Competing Interests: The authors declare no competing interests.