The Minimal Sum of Squares Over Partitions with a Nonnegative Rank

Sela Fried

Abstract. Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n with a nonnegative rank. Denoting the sequence of the minima by $(m_n)_{n \in \mathbb{N}}$, we prove that $m_n = \Theta\left(n^{4/3}\right)$. Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.

1. Introduction

Recently, Defant and Propp [2] defined the degree of noninvertibility of a function $f: X \to Y$ between two finite nonempty sets X and Y by

$$\deg(f) = \frac{1}{|X|} \sum_{x \in X} |f^{-1}(f(x))|,$$

as a measure of how far f is from being injective. For example, if f is k-to-1 for $1 \leq k \leq |X|$, then $\deg(f) = k$. In particular, if f is injective (resp., constant), then $\deg(f) = 1$ (resp., $\deg(f) = |X|$). Interested mainly in endofunctions (also called dynamical systems within the field of dynamical algebraic combinatorics), that is, functions $f: X \to X$, they then computed the degrees of noninvertibility of several specific functions and studied, from an extremal point of view, the connection between the degrees of noninvertibility of functions and those of their iterates. They concluded their work with the following question: Let $k \in \mathbb{N}$ and for $f: X \to X$ denote $f^k = f \circ \cdots \circ f$. Does the limit

Sela Fried is a postdoctoral fellow in the Department of Computer Science at the Ben-Gurion University of the Negev and a teaching fellow in the Department of Computer Science at the Israel Academic College in Ramat Gan.
\[
\lim_{n \to \infty} \max_{|X| = n} \frac{\deg(f^k)}{\deg(f)^{2-1/2^{k-1}}} \frac{1}{n^{1-1/2^{k-1}}}
\] (1)

exist? If so, what is its value? They remarked that even answering the question for \(k = 2\) would be interesting and stated that it follows from their results that, if the limit exists, then it lies in the interval between \(3^{-3/2} \approx 0.19245\) and 1.

Our attempts to answer their question in the case \(k = 2\) have led us to a combinatorial optimization problem that seems not to have been addressed before, namely, the problem of finding the minimal sum of squares over partitions with a nonnegative rank (the rank of a partition is the result of subtracting the number of parts in the partition from the largest part). In this work, we address this problem and, consequently, improve the lower bound of the interval \([3^{-3/2}, 1]\) by a factor of 2.

We begin by stating our main results. The definitions of the terms that we use and the proofs of all the statements are given in Sect. 3.

2. Main Results

Let \(X\) be a set of size \(n \in \mathbb{N}\) to be used throughout this work. We denote by \(\mathbb{N}_0\) the set of all nonnegative integers. Taking \(k = 2\) in (1), we wish to obtain a lower bound for

\[
\max_{f: X \to X} \frac{\deg(f^2)}{\deg(f)^3/2} \frac{1}{n^{1/2}}.
\] (2)

Our approach is based on the fact that the functions with the largest possible degree of noninvertibility, namely \(n\), are the constant functions. Thus, we wish to solve the following combinatorial optimization problem:

\[
\text{minimize } \deg(f)
\]

where \(f: X \to X\) is such that \(f^2\) is constant.

The notion of the degree of noninvertibility of a function \(f: X \to X\) is directly related to the sum of squares over a certain partition of \(n\) via the observation that

\[
\deg(f) = \frac{1}{n} \sum_{x \in X} |f^{-1}(x)|^2
\]

(cf. [2, p. 2]). Indeed, if \(X = \{1, \ldots, n\}\), then \(|f^{-1}(1)|, \ldots, |f^{-1}(n)|\) yield, upon reordering and omitting zeros, an integer partition of \(n\) that we denote by \(\text{Partition}(f)\). Conversely, it is clear that every partition \(\lambda\) of \(n\) induces a function \(f: X \to X\), such that \(\text{Partition}(f) = \lambda\) (notice that such a function is, in general, not unique).

It turns out (cf. Lemma 3.2) that if \(f: X \to X\) is such that \(f^2\) is constant, then \(\text{Partition}(f)\) has a nonnegative rank (cf. Definition 3.1). Denoting the set of all partitions of \(n\) by \(\mathcal{P}(n)\) and the Euclidean norm of a vector \(x\) by \(\|x\|_2\), we may rewrite problem (3) equivalently as
The Minimal Sum of Squares Over Partitions

Figure 1. The Young diagram of one of the two minimizers of (4), for $n = 100$. Here, in the notation of Theorem 2.2, $x = 17, r = 3$, and $a = 5$

minimize $||\lambda||_2^2$ \hspace{1cm} (4)

where $\lambda \in \mathcal{P}(n)$ is such that $\text{rank}(\lambda) \geq 0$.

Remark 2.1. Notice that, in general, a minimizer of (4) is not unique. For example, both $(5, 3, 3, 3, 3)$ and $(6, 3, 2, 2, 2, 2)$ minimize (4) for $n = 17$.

Our first main result is the observation that, for $n \neq 2$, the partitions of n that minimize (4) must have a certain structure, namely, their largest part λ_1 is equal to their number of parts (i.e., their rank is 0) and $n - \lambda_1$ is divided as evenly as possible among the remaining $\lambda_1 - 1$ parts (see Fig. 1 for a visualization):

Theorem 2.2. For $n \geq 2$, problem (4) is equivalent to the following problem:

minimize $x^2 + r(a+1)^2 + (x-1-r)a^2$ \hspace{1cm} (5)

such that $x \in \{2, \ldots, n\}$,

\begin{align*}
n - x &= a(x-1) + r \text{ where } a \in \mathbb{N}_0 \text{ and } 0 \leq r < x - 1 \text{ and } \\
x &\geq \begin{cases}
a, & r = 0; \\
a + 1, & \text{otherwise.}
\end{cases}
\end{align*}

Let m_n denote the minimum value of (5). Then

$$(m_n)_{n \in \mathbb{N}} = 1, 4, 5, 8, 11, 14, 17, 22, 25, \ldots$$

See Table 1 for the first 210 values of this sequence, which is registered as A353044 in the On-Line Encyclopedia of Integer Sequences (OEIS) [4]. Lemmas 3.8 and 3.9, respectively, show that $(m_n)_{n \in \mathbb{N}}$ is strictly increasing and that its elements have alternating parity. We also define a sequence $(t_n)_{n \in \mathbb{N}}$, such that if $n \in \mathbb{N}$, then t_n is any $x \in \{2, \ldots, n\}$ that minimizes (5), for this n. For example, for $n = 17$, we have $m_{17} = 61$ and we may define $t_{17} = 5$ or $t_{17} = 6$. While we do not have an exact formula for $(m_n)_{n \in \mathbb{N}}$, we obtain lower and upper bounds by applying continuous relaxation:
n	m_n										
1	1	36	174	71	449	106	782	141	1161	176	1576
2	4	37	181	72	458	107	793	142	1174	177	1589
3	5	38	188	73	467	108	802	143	1185	178	1602
4	8	39	195	74	476	109	811	144	1196	179	1615
5	11	40	202	75	485	110	822	145	1207	180	1628
6	14	41	209	76	494	111	833	146	1218	181	1641
7	17	42	216	77	503	112	844	147	1229	182	1654
8	22	43	223	78	512	113	855	148	1240	183	1665
9	25	44	230	79	521	114	866	149	1253	184	1678
10	28	45	237	80	530	115	875	150	1266	185	1691
11	33	46	244	81	539	116	886	151	1277	186	1704
12	38	47	253	82	548	117	897	152	1288	187	1717
13	41	48	260	83	557	118	908	153	1299	188	1730
14	46	49	267	84	566	119	919	154	1310	189	1743
15	51	50	274	85	575	120	930	155	1321	190	1756
Table 1. continued

n	m_n										
16	56	51	281	86	586	121	941	156	1334	191	1769
17	61	52	290	87	595	122	952	157	1347	192	1782
18	66	53	299	88	604	123	963	158	1360	193	1795
19	71	54	306	89	613	124	974	159	1371	194	1808
20	76	55	313	90	622	125	985	160	1382	195	1821
21	81	56	320	91	631	126	996	161	1393	196	1834
22	88	57	329	92	642	127	1007	162	1404	197	1847
23	93	58	338	93	653	128	1018	163	1417	198	1860
24	98	59	347	94	662	129	1029	164	1430	199	1873
25	103	60	354	95	671	130	1040	165	1443	200	1886
26	110	61	361	96	680	131	1051	166	1456	201	1899
27	117	62	370	97	689	132	1062	167	1467	202	1912
28	122	63	379	98	700	133	1073	168	1478	203	1925
29	127	64	388	99	711	134	1084	169	1489	204	1938
30	134	65	397	100	722	135	1095	170	1502	205	1951
31	141	66	404	101	731	136	1106	171	1515	206	1964
32	148	67	413	102	740	137	1117	172	1528	207	1977
33	153	68	422	103	749	138	1128	173	1541	208	1990
34	160	69	431	104	760	139	1139	174	1554	209	2003
35	167	70	440	105	771	140	1150	175	1565	210	2016
Theorem 2.3. We have $m_n = \Theta(n^{4/3})$. More precisely
\[
\frac{n^{4/3}}{4} \leq m_n \leq (2^{-2/3} + 2^{1/3})n^{4/3},
\]
for $n \geq 28$.

Theorem 2.3 allows us to improve by a factor of 2 the lower bound given by Defant and Propp [2, p. 17]:

Corollary 2.4. We have
\[
\liminf_{n \to \infty} \max_{f: X \to X} \frac{\deg(f^2)}{\deg(f)^{3/2}} \frac{1}{n^{1/2}} \geq 2 \cdot 3^{-3/2}.
\]
In particular, taking $k = 2$, the limit in (1), if it exists, is bounded from below by $2 \cdot 3^{-3/2}$.

We proceed by showing that t_n must lie in a certain interval.

Theorem 2.5. Suppose that $n \geq 6$. There exists a function $u_n: (1, \infty) \to \mathbb{R}$, such that if $x_0^{(n)}$ is the global minimum of u_n and $x_1^{(n)} < x_2^{(n)}$ are the two real positive roots of the cubic polynomial
\[
x^3 + \left(-2n - u_n\left(\left\lfloor x_0^{(n)} \right\rfloor\right)\right)x + n^2 + u_n\left(\left\lfloor x_0^{(n)} \right\rfloor\right),
\]
then $t_n \in \left\{\left\lfloor x_1^{(n)} \right\rfloor, \ldots, \left\lceil x_2^{(n)} \right\rfloor\right\}$.

Figure 2. A visualization of t_6, \ldots, t_{5000} with the corresponding bounds of Theorem 2.5 (whenever there were several possibilities for t_n, we have chosen the smallest)
Example 2.6. In the notation of Theorem 2.5, taking \(n = 1000 \), we have \(\lceil x_1^{(1000)} \rceil = 78 \), \(\lfloor x_2^{(1000)} \rfloor = 82 \) and \(t_{1000} = 78 \) is the unique minimizer of (5). See Fig. 2 for a visualization of Theorem 2.5.

Finally, we establish the asymptotic behaviour of the sequence \((t_n)_{n \in \mathbb{N}}\):

Theorem 2.7. We have \(t_n = \Theta\left(n^{2/3}\right) \).

Remark 2.8. It should be emphasized that our approach does not, in general, provide the true maximum of (2). For example, let \(n = 8 \) and assume that \(X = \{1, \ldots, 8\} \). Consider the function \(h: X \to X \) given by

\[
h(i) = \begin{cases}
1, & i \in \{1, 2, 3\}; \\
2, & i \in \{4, 5\}; \\
3, & i \in \{6, 7\}; \\
4, & i = 8.
\end{cases}
\]

Then, \(h^2: X \to X \) is given by

\[
h^2(i) = \begin{cases}
1, & i \in \{1, \ldots, 7\}; \\
2, & i = 8.
\end{cases}
\]

It follows that:

\[
\frac{\deg(h^2)}{\deg(h)^{3/2}} = \frac{\frac{50}{8}}{\left(\frac{18}{8}\right)^{3/2}} = \frac{50}{27} \approx 1.85185.
\]

In contrast, our approach provides the partition \((3, 3, 2)\) that corresponds to a function \(f: X \to X \), such that

\[
\frac{\deg(f^2)}{\deg(f)^{3/2}} = \frac{8}{\left(\frac{22}{8}\right)^{3/2}} \approx 1.75424.
\]

3. Definitions and Proofs

We begin with the definition of the rank of a partition a notion introduced by Dyson [3] (see also A064174 in the OEIS). The reader is referred to [1] for the general theory of partitions.

Definition 3.1. Let \(\lambda \in \mathcal{P}(n) \). The rank of \(\lambda \), denoted by \(\text{rank}(\lambda) \), is the result of subtracting the number of parts in \(\lambda \) from \(\lambda \)'s largest part.

Functions \(f: X \to X \), such that \(f^2 \) is constant, are characterized by induced partitions of \(n \) with a nonnegative rank:

Lemma 3.2. Let \(f: X \to X \) be a function, such that \(f^2 \) is constant. Then, \(\text{rank}\left(\text{Partition}(f)\right) \geq 0 \). Conversely, for every \(\lambda \in \mathcal{P}(n) \) with \(\text{rank}(\lambda) \geq 0 \), there is a function \(f: X \to X \), such that \(f^2 \) is constant and \(\text{Partition}(f) = \lambda \).
Proof. Assume that f^2 is constant. Then, there is $y \in X$, such that $f(f(x)) = y$ for every $x \in X$. Thus, $f(x) \in f^{-1}(y)$ for every $x \in X$. Notice that the number of parts of $\text{Partition}(f)$ is equal to $|\text{Im}(f)|$. Now

$$|\text{Im}(f)| \leq |f^{-1}(y)| \leq \max_{x \in X} \{|f^{-1}(x)|\}.$$

It follows that $\text{rank}(\text{Partition}(f)) \geq 0$.

Conversely, suppose $X = \{1, \ldots, n\}$ and let $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{P}(n)$, such that $\text{rank}(\lambda) \geq 0$. We define $f : X \to X$ as follows: for $1 \leq i \leq n$, let

$$f(i) = \begin{cases} 1, & 1 \leq i \leq \lambda_1; \\ k, & \sum_{j=1}^{k-1} \lambda_j < i \leq \sum_{j=1}^{k} \lambda_j \text{ where } 2 \leq k \leq r. \end{cases}$$

Since $\lambda_1 \geq r$, we have that $2, \ldots, r \in f^{-1}(1)$. It follows that $f(f(i)) = 1$ for every $i \in X$, i.e., f^2 is constant. Furthermore, $\text{Partition}(f) = \lambda$.

The proof of Theorem 2.2 relies on the following two lemmas. For the second, we shall need the notion of a balanced partition. We could not find any mention of this notion other than in A047993 in the OEIS.

Definition 3.3. A partition whose rank is zero is called a balanced partition.

Lemma 3.4. Let $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{P}(n)$, such that $\lambda_j > \lambda_k + 1$ for some $1 \leq j < k \leq r$. Let $\lambda' \in \mathcal{P}(n)$ correspond to the parts $\lambda_1, \ldots, \lambda_j - 1, \ldots, \lambda_k + 1, \ldots, \lambda_r$ (possibly after reordering). Then, $||\lambda||^2 > ||\lambda'||^2$.

Proof. It suffices to prove that

$$\lambda_j^2 + \lambda_k^2 > (\lambda_j - 1)^2 + (\lambda_k + 1)^2,$$

which is easily seen to be equivalent to $\lambda_j > \lambda_k + 1$.

Lemma 3.5. If $n \neq 2$, then the minimum value of (4) is obtained at a balanced partition.

Proof. Consider first the cases $n = 1, 3, 4$: If $n = 1$, then there is only one partition (1) which is balanced. If $n = 3$, then there are only two partitions with a nonnegative rank, namely (3) and (2,1), of which the latter, that is balanced, has the smallest sum of squares. Similarly, if $n = 4$, then there are only three partitions with a nonnegative rank, namely (4), (3,1), and (2,2), of which the latter, that is balanced, has the smallest sum of squares.

Assume now that $n \geq 5$ and let $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{P}(n)$, such that $\text{rank}(\lambda) > 0$. We shall construct a partition $\lambda' \in \mathcal{P}(n)$, such that $||\lambda||^2 > ||\lambda'||^2$ and $0 \leq \text{rank}(\lambda') < \text{rank}(\lambda)$. To this end, let $k = \max\{1 \leq i \leq r \mid \lambda_i > 1\}$. We distinguish between two cases:

1. $k > 1$. We have

$$||\lambda||^2 = \sum_{1 \leq i \leq r, i \neq k} \lambda_i^2 + (\lambda_k - 1 + 1)^2 = \sum_{1 \leq i \leq r, i \neq k} \lambda_i^2 + (\lambda_k - 1)^2 + 2\lambda_k - 1$$
The Minimal Sum of Squares Over Partitions... 789

\[\sum_{1 \leq i \leq r, i \neq k} \lambda_i^2 + (\lambda_k - 1)^2 + 1 = ||\lambda'||_2^2, \]

where \(\lambda' = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k - 1, \lambda_{k+1}, \ldots, \lambda_r, 1) \). Since \(\lambda_1 \geq r + 1 \), we have \(\text{rank}(\lambda') \geq 0 \). Furthermore, \(\text{rank}(\lambda') < \text{rank}(\lambda) \).

2. \(k = 1 \). In this case, \(\lambda = (n - r + 1, 1, \ldots, 1) \). First, assume that \(r \geq 3 \).

It is easy to see that
\[(n - r + 1)^2 + r - 1 > (n - r)^2 + 4 + r - 2 \iff n - r > 1. \]
Now, by assumption, \(n - r + 1 > r \). Thus, \(n - r > r - 1 \geq 2 \) and we take \(\lambda' = (n - r, 2, 1, \ldots, 1) \).

Assume now that \(r = 2 \). Then, \(\lambda = (n - 1, 1) \) and it is easy to see that
\[(n - 1)^2 + 1 > (n - 2)^2 + 2 \iff n \geq 3. \]

Thus, we take \(\lambda' = (n - 2, 1, 1) \).

Finally, assume that \(r = 1 \). Then, \(\lambda = (n) \) and we have
\[n^2 > (n - 1)^2 + 1 \iff n \geq 2. \]

Then, we take \(\lambda' = (n - 1, 1) \).

In each of these cases, \(||\lambda||_2^2 > ||\lambda'||_2^2 \) and \(0 \leq \text{rank}(\lambda') < \text{rank}(\lambda) \).

\[\Box \]

Proof of Theorem 2.2. The assertion follows immediately from the combination of Lemma 3.4 together with Lemma 3.5.

Example 3.6. Let \(\lambda = (5, 3, 2, 1) \in P(11) \). Then, \(||\lambda||_2^2 = 39 \). Applying Lemma 3.5 on \(\lambda \), we obtain the balanced partition \(\lambda' = (5, 3, 1, 1, 1) \in P(11) \) with \(||\lambda'||_2^2 = 37 \). Applying Lemma 3.4 on \(\lambda' \), we obtain the partition \(\lambda'' = (5, 2, 2, 1, 1) \in P(11) \) with \(||\lambda''||_2^2 = 35 \). The partition \(\lambda'' \) is one of the partitions satisfying the constraints in the optimization problem of Theorem 2.2.

In our work, we shall make extensive use of two functions \(l_n, u_n : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R} \), given by
\[l_n(x) = x^2 + \frac{(n - x)^2}{x - 1} \quad \text{and} \quad u_n(x) = x^2 + \frac{(n - x)^2}{x - 1} + \frac{x - 1}{4}. \]

The bounds in the following lemma are visualized in Fig. 3 for \(n = 100 \).

Lemma 3.7. Let \(2 \leq x, n \in \mathbb{N} \). Then
\[l_n(x) \leq x^2 + r(a + 1)^2 + (x - 1 - r)a^2 \leq u_n(x), \quad (6) \]
where \(a \in \mathbb{N}_0 \) and \(0 \leq r < x - 1 \) are such that \(n - x = a(x - 1) + r \).
Theorem 2.3. The function $u_n(x)$ is continuous in $(1, \infty)$ and

$$\lim_{x \to 1^+} u_n(x) = \lim_{x \to \infty} u_n(x) = \infty.$$

Furthermore

$$u'_n(x) = \frac{8x^3 - 11x^2 - 2x + 8n - 4n^2 + 1}{4(x-1)^2}. $$
Since the discriminant of the numerator of \(u_n'(x) \) is negative for \(n \geq 3 \), the equation \(u_n'(x) = 0 \) has a unique real solution \(x_0^{(n)} \), given by \(x_0^{(n)} = \frac{11 + C_n + 169/C_n}{24} \), where

\[
C_n = \sqrt[3]{3456n^2 - 6912n + 1259} - \sqrt[3]{(3456n^2 - 6912n + 1259)^2 - 169^3}.
\]

It follows that, restricted to \((1, \infty)\), the function \(u_n(x) \) obtains its global minimum at \(x_0^{(n)} \). Now, for every \(0 \leq y \leq z \in \mathbb{R} \), such that \(z \neq 0 \), we have

\[
\frac{y^2}{2z} \leq z - \sqrt{z^2 - y^2} \leq \frac{y^2}{z}.
\]

Thus, \(C_n \leq 1 \) for \(n \geq 28 \) and therefore

\[
x_0^{(n)} = \frac{11 + C_n + 169/C_n}{24} \\
\leq \frac{1}{2} + \frac{169}{24} \sqrt{\frac{2(3456n^2 - 6912n + 1259)}{169^3}} \\
\leq \frac{1}{2} + 2^{-1/3}n^{2/3}
\]

(notice, for later use, that \(\lim_{n \to \infty} \frac{x_0^{(n)}}{n^{2/3}} = 2^{-1/3} \)). Since \(u_n(x) \) is increasing in \([x_0^{(n)}, \infty)\), we have

\[
u_n \left(\left\lfloor x_0^{(n)} \right\rfloor \right) \leq u_n \left(x_0^{(n)} + 1 \right) \\
\leq u_n \left(\frac{3}{2} + 2^{-1/3}n^{2/3} \right) \\
= \left(\frac{3}{2} + 2^{-1/3}n^{2/3} \right)^2 + \left(n - \left(\frac{3}{2} + 2^{-1/3}n^{2/3} \right) \right)^2 + \frac{1}{4} + 2^{-1/3}n^{2/3} \\
\leq \left(2^{-2/3} + 2^{1/3} \right) n^{4/3},
\]

where the last inequality holds for \(n \geq 5 \). Now, it follows from Lemma 3.7 that \(m_n \leq u_n \left(\left\lfloor x_0^{(n)} \right\rfloor \right) \), which concludes the proof of the upper bound.

To prove the lower bound, we notice that, for \(n \geq 3 \) and restricted to \((1, \infty)\), the function \(l_n(x) \) obtains its global minimum at \(y_0^{(n)} \), given by \(y_0^{(n)} = \frac{D_n + 1 + 1/D_n}{2} \), where

\[
D_n = \sqrt[3]{2n^2 - 4n + 1} - \sqrt{(2n^2 - 4n + 1)^2 - 1}.
\]

We have

\[
l_n \left(y_0^{(n)} \right) = \left(y_0^{(n)} \right)^2 + \left(y_0^{(n)} - n \right)^2 \\
\geq \frac{1}{4D_n^2}
\]
Figure 4. We have \(\left\lceil x_{100}^{(100)} \right\rceil = 17 \) and \(\left\lfloor x_{200}^{(100)} \right\rfloor = 18 \). Thus, \(t_{100} \in \{17, 18\} \)

\[
\geq \frac{3}{4} \sqrt{(2n^2 - 4n + 1)^2}
\geq \frac{n^{4/3}}{4},
\]

where the last inequality holds for \(n \geq 4 \). By Lemma 3.7, \(m_n \geq l_n \left(y_0^{(n)} \right) \). \(\square \)

Proof of Corollary 2.4. Let \(f_n : X \to X \) be a function, such that \(f_n^2 \) is constant and \(\| \text{Partition}(f_n) \|_2^2 = m_n \). Notice that \(\text{deg}(f_n) = \frac{m_n}{n} \). By Theorem 2.3, if \(n \geq 28 \), then \(m_n \leq (2^{-2/3} + 2^{1/3})n^{4/3} \). It follows that:

\[
\max_{f : X \to X} \frac{\text{deg}(f^2)}{\text{deg}(f)^{3/2}} \frac{1}{n^{1/2}} \geq \frac{\text{deg}(f_n^2)}{\text{deg}(f_n)^{3/2}} \frac{1}{n^{1/2}} \geq \frac{n}{((2^{-2/3} + 2^{1/3})n^{1/3})^{3/2}} \frac{1}{n^{1/2}} = 2 \cdot 3^{-3/2}.
\]

\(\square \)

Proof of Theorem 2.5. Let \(x_0^{(n)} \) and \(y_0^{(n)} \) be the points, calculated in the proof of Theorem 2.3, at which \(u_n \) and \(l_n \), respectively, obtain their global minimum, when restricted to \((1, \infty)\). We wish to solve the equation

\[
l_n(x) = u_n \left(\left\lfloor x_0^{(n)} \right\rfloor \right)
\]

(8)
(see Fig. 4 for a visualization for \(n = 100 \)). The function \(l_n(x) \) is continuous in \((1, \infty)\) and

\[
\lim_{x \to 1^+} l_n(x) = \lim_{x \to \infty} l_n(x) = \infty.
\]

Since \(l_n\left(y_0^{(n)}\right) < u_n\left(x_0^{(n)}\right) \leq u_n\left(\left[x_0^{(n)} \right]\right) \), by the mean value theorem, Eq. (8) has at least two real solutions in \((1, \infty)\). Similarly, \(l_n(x) \) is continuous in \((-\infty, 1)\) and

\[
\lim_{x \to 1^-} l_n(x) = -\infty, \quad \lim_{x \to -\infty} l_n(x) = \infty.
\]

Thus, Eq. (8) has at least one real solution in \((-\infty, 1)\) and, since solving it is equivalent to finding the roots of the cubic polynomial

\[
x^3 + \left(-2n - u_n\left(\left[x_0^{(n)} \right]\right) \right) x + n^2 + u_n\left(\left[x_0^{(n)} \right]\right),
\]

we conclude that Eq. (8) has exactly two real solutions \(1 < x_1^{(n)} < x_2^{(n)} \). Necessarily, \(x_1^{(n)} < \left[x_0^{(n)} \right] \) and \(y_0^{(n)} < x_2^{(n)} \). It follows that \(t_n \in \left\{ \left[x_1^{(n)} \right], \ldots, \left[x_2^{(n)} \right] \right\} \).

Proof of Theorem 2.7. Let \(x_0^{(n)}, x_1^{(n)} \) and \(x_2^{(n)} \) be as in Theorem 2.5 and consider the cubic polynomial

\[
x^3 + \left(-2n - u_n\left(\left[x_0^{(n)} \right]\right) \right) x + n^2 + u_n\left(\left[x_0^{(n)} \right]\right). \tag{9}
\]

Since \(x_0^{(n)}, t_n \in \left\{ \left[x_1^{(n)} \right], \ldots, \left[x_2^{(n)} \right] \right\} \) and \(x_0^{(n)} = \Theta(n^{2/3}) \), it suffices to show that \(x_2^{(n)} - x_1^{(n)} = o(n^{2/3}) \). To this end, denote \(p_n = -2n - u_n\left(\left[x_0^{(n)} \right]\right) \) and \(q_n = n^2 + u_n\left(\left[x_0^{(n)} \right]\right) \). We have seen in the proof of Theorem 2.5 that the cubic polynomial in (9) has three distinct real roots. This means that its discriminant \(-4p_n^3 + 27q_n^2\) is positive, or equivalently, that \(\frac{p_n^3}{27} + \frac{q_n^2}{4} < 0 \). By Cardano’s formula (e.g., [5, p. 128]), the three roots of (9) are given by

\[
x_1^{(n)}, x_2^{(n)}, x_3^{(n)} = \sqrt[3]{-\frac{q_n}{2} + \sqrt{\frac{p_n^3}{27} + \frac{q_n^2}{4}}} + \sqrt[3]{-\frac{q_n}{2} - \sqrt{\frac{p_n^3}{27} + \frac{q_n^2}{4}}}. \tag{10}
\]

We are interested in the two positive roots, \(x_1^{(n)} \) and \(x_2^{(n)} \), of the cubic and shall now explain how they may be obtained from (10) (doing so, we follow closely [5, Example 3.106]): Under the first cubic root, we have a complex number that we rewrite as follows (see Fig. 5)

\[
-\frac{q_n}{2} + \sqrt{\frac{p_n^3}{27} + \frac{q_n^2}{4}} = r_n(\cos(\pi - \theta_n) + i \sin(\pi - \theta_n)), \tag{11}
\]

where \(r_n > 0 \) and \(\theta_n = \arctan \left(\frac{2\sqrt{\frac{p_n^3}{27} + \frac{q_n^2}{4}}}{q_n}\right) \).
Under the second cubic root, we have the number’s complex conjugate. Adding the two cubic roots, we obtain double their real parts. Applying De Moivre’s formula on the right-hand side of (11) gives the arguments $\frac{\pi - \theta_n}{3}, \frac{\pi - \theta_n}{3}$ and $-\frac{\pi + \theta}{3}$. Thus

$$x_1^{(n)} = 2r_n^{1/3} \cos\left(\frac{\pi + \theta_n}{3}\right) \quad \text{and} \quad x_2^{(n)} = 2r_n^{1/3} \cos\left(\frac{\pi - \theta_n}{3}\right).$$

In the appendix, we show that $\frac{p_{3n}^3}{27} + \frac{q_{2n}^2}{4} = o\left(n^4\right)$. Since $u_n\left(\lfloor x_0^{(n)} \rfloor\right) = \Theta\left(n^{4/3}\right)$, we have $q_n = \Theta\left(n^2\right)$. It follows that $r_n = \Theta\left(n^2\right)$ and $\lim_{n \to \infty} \theta_n = 0$. Applying the trigonometric identity

$$\cos \alpha - \cos \beta = 2 \sin \left(\frac{\beta + \alpha}{2}\right) \sin \left(\frac{\beta - \alpha}{2}\right)$$

that holds for every $\alpha, \beta \in \mathbb{R}$, we see that

$$\lim_{n \to \infty} \frac{x_2^{(n)} - x_1^{(n)}}{n^{2/3}} = 2 \lim_{n \to \infty} \left(\frac{r_n}{n^2}\right)^{1/3} \sin\left(\frac{\pi}{3}\right) \sin\left(\frac{\theta_n}{3}\right) = 0.$$

Although not used in this work, the following two properties of the sequence $(m_n)_{n \in \mathbb{N}}$ seem noteworthy.

Lemma 3.8. The sequence $(m_n)_{n \in \mathbb{N}}$ is strictly increasing.

Proof. Assume that $m_{n+1} \leq m_n$ for some $n \in \mathbb{N}$ and let $\lambda = (\lambda_1, \ldots, \lambda_r) \in \mathcal{P}(n + 1)$, such that $||\lambda||_2^2 = m_{n+1}$. Then, $\lambda' = (\lambda_1, \ldots, \lambda_{r-1}, \lambda_r - 1) \in \mathcal{P}(n)$ (omitting the last part, if necessary), such that $\text{rank}(\lambda') \geq 0$. Now

$$||\lambda'||_2^2 < ||\lambda||_2^2 = m_{n+1} \leq m_n,$$

contradicting the minimality of m_n. \qed
Lemma 3.9. Let $\lambda = (\lambda_1, \ldots, \lambda_r) \in P(n)$. Then, n and $||\lambda||_2^2$ have the same parity. In particular, n and m_n have the same parity.

Proof. We have

$$||\lambda||_2^2 \equiv \# \text{ odd parts in } \lambda \pmod{2}$$

$$\equiv \begin{cases} 0, & \text{if } n \text{ is even;} \\ 1, & \text{if } n \text{ is odd,} \end{cases} \pmod{2}.$$

\[\square\]

Acknowledgements

We thank the anonymous referees for their careful reading of the manuscript and for their suggestions that helped us improve this work significantly. In particular, the proof of Lemma 3.9 was shown to us by the second referee as a simpler alternative to our original proof.

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of Interest We state that there is no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Appendix

Denote $z_n = \left\lfloor x_0^{(n)} \right\rfloor$ and $X_i = \frac{1}{(z_n - 1)^i}$, for $i = 1, 2, 3$. We have

$$\frac{p_n^3}{27} + \frac{q_n^2}{4} = -\frac{n^6}{27}X_3 + \frac{2n^5z_n}{9}X_3 - \frac{2n^5}{9}X_2$$

$$-\frac{5n^4z_n}{9}X_3 - \frac{n^4z_n}{9}X_2 + \frac{31n^4z_n}{36}X_2 + \frac{n^4}{4}$$

$$+ \frac{5n^4}{18}X_2 + \frac{n^4}{18}X_1 + \frac{20n^3z_n^3}{27}X_3$$

$$+ \frac{4n^3z_n^3}{9}X_2 - \frac{11n^3z_n^2}{9}X_2 - \frac{4n^3z_n^2}{9}X_1$$
Recall that $\lim_{n \to \infty} \frac{z_n}{n^{2/3}} = 2^{-1/3}$ (this was stated in the proof of Theorem 2.3). Thus, the expansion of $\frac{z_n}{n^{2/3}} + \frac{q^2}{4n}$ contains terms of order n^4 (the boxed terms). Nevertheless, the overall order is $< n^4$, as the following calculation shows:
References

[1] G. E. Andrews, *The Theory of Partitions*, Cambridge Univ. Press, 1984.

[2] C. Defant and J. Propp, Quantifying noninvertibility in discrete dynamical systems, *Electron. J. Combin.* 27 (2020), Article P3.51.

[3] F. J. Dyson, Some guesses in the theory of partitions, *Eureka (Cambridge)* 8 (1944), 10–15.

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, OEIS Foundation Inc., https://oeis.org.

[5] E. B. Vinberg, *A Course in Algebra*, Amer. Math. Soc. Press, 2003.

Sela Fried
Ben-Gurion University of the Negev
Be’er Sheva
Israel
e-mail: friedelsea@gmail.com

Communicated by Sylvie Corteel
Received: 4 May 2022.
Accepted: 24 November 2022.