Concurrent HIV viral blips during two episodes of multicentric Castleman disease in an adult on antiretroviral therapy: Implication for HIV persistence

Ilyse Darwish, Cecilia Costiniuk, Nadine Kronfli, David Haegert, Jean-Pierre Routy

Abstract

Human herpesvirus-8 (HHV8)-associated multicentric Castleman disease (HHV8-MCD) is a rare non-malignant lymphoproliferative disorder most commonly observed in PLWH. Herein, we describe an HIV-infected adult male from Cameroon with relapsing HHV8-MCD (HIV+MCD). The patient developed constitutional symptoms, diffuse lymphadenopathy, thrombocytopenia and autoimmune hemolytic anemia. Excisional lymph node biopsy findings were consistent with HHV8-MCD. He was successfully treated with corticosteroids and rituximab. One year later, he developed relapsing disease and was successfully treated again with rituximab. Interestingly, HIV viral load blips correlate with MCD flares, suggesting that low-level viremia is linked with T-cell clonal expansion and/or inflammation, rather than a lack of effective antiretroviral therapy. Rituximab either alone or in combination with chemotherapy for aggressive disease is the standard of care, with approximately 95% of treated patients achieving complete remission. Despite highly effective therapy, HIV+MCD often presents with a relapsing and remitting disease course and carries an increased risk for the development of HHV8-associated lymphoma.

Introduction

Castleman disease encompasses a group of rare disorders with heterogeneous clinical presentations, treatments and outcomes. There are two known histopathologic variants - the hyaline vascular and the plasmacytic subtypes – both of which can present as either unicentric or multicentric disease (UCD and MCD, respectively). MCD can be divided into (1) human herpesvirus-8 (HHV8)-associated MCD (HHV8-MCD), (2) idiopathic MCD (iMCD), and (3) polyneuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder, skin changes (POEMS)-associated MCD [1].

HHV8-MCD is increasingly common in persons living with HIV (PLWH) and is not associated with CD4 count or adherence to antiretroviral therapy (ART) [2,3]. This plasmacytic variant of MCD is linked to HHV8, in combination with cytokine dysregulation [4]. HHV8 replicates within lymph node plasmablasts and induces a cytokine storm mediated by transcription of several viral genes homologous to cellular genes involved in inflammatory pathways including a viral homolog of human IL-6 (vIL-6), which stimulate proliferation of germinal center cells [1].
with a maximum temperature of 39.4 degrees Celsius. Cardiac and treated with dexamethasone 20 mg intravenously and rituximab 375 mg/m² daily for five days followed by dexamethasone 20 mg intravenously and rituximab 375 mg/m² intravenously per week for four weeks. The patient responded well to treatment, with resolution of fever, adenopathy and HHV-8 peripheral blood PCR positivity. He is currently asymptomatic and in disease remission at his baseline functional status.

Discussion

HIV-associated HHV8-MCD (HIV+MCD) is a rare nonmalignant lymphoproliferative disorder with increased frequency among PLWH. Most cases are described among Caucasian individuals. One study found an increased incidence (per 10,000 patient years of follow-up) for non-Caucasian individuals. This could be related to higher HHV8 seroprevalence in these populations [3]. Clinical manifestations of HIV+MCD include fever and lymphadenopathy in nearly all patients. Splenomegaly, hepatomegaly, and respiratory symptoms/signs occur in most patients [6]. Presentation can range from mild to rapidly progressive disease leading to uncontrolled edema and anasarca. Laboratory features of disease include inflammatory or hemolytic anemia, leukocytosis, thrombocytosis or hypogammaglobulinemia, and hypoalbuminemia, driven by excessive IL-6 [6].

Rituximab remains the standard of care with approximately 95% of rituximab-treated patients achieving complete remission, when used alone or in combination with chemotherapy e.g. etoposide for aggressive disease [7,8]. Rituximab, an anti-CD20 monoclonal antibody, is effective through its anti-cytokine effect and its depletion of B-cells – the primary reservoirs for HHV-8 – similar to EBV [7]. Tocilizumab, a humanized monoclonal antibody against the interleukin-6 receptor, aimed at dampening the overwhelming inflammatory response / cytokine storm implicated in disease pathogenesis, has recently shown moderate efficacy against HHV-8 [9].

Fig. 1. Axillary lymph node biopsy. Medium power photomicrographs showing (A) hyaline vascular changes in a follicle with mantle cell hyperplasia and (B) HHV-8 positivity in mantle cells and in the periphery of the follicle.
Patients with MCD often experience relapsing and remitting disease which can progress to lymphoma. In a study of 46 HIV+MCD patients treated with rituximab, with a median time to follow up of 4.2 years, 8/46 (17%) patients had a first relapse, with a median time to relapse of two years. All recurrences were confirmed histologically. All were successfully re-treated with rituximab alone or rituximab with chemotherapy and in remission at the time of publication. The two and five-year progression-free survival rates for all patients were 85% and 61%, respectively [10]. Pria et al [7] followed 84 patients with HIV+MCD for a longer median follow-up time of seven years. Eighty out of eighty-four patients (95%) achieved a first remission with either rituximab or rituximab and etoposide. Eighteen out of eighty patients (21%) had biopsy-proven relapsing disease; four of these patients (22%) had concurrent HHV8-associated diffuse large B-cell lymphoma and one patient had concurrent primary effusion lymphoma, extracavity type. Five percent of patients experienced four relapses and 3.5% experienced five relapses [7].

Predicting relapse remains difficult. A detectable HHV8 viral load during remission has been associated with relapse [11]. HHV-8 viremia, age, adherence to ART, HIV viral load, lymphocyte subset counts, and the addition of etoposide chemotherapy for high risk patients, do not predict relapse [7].

HIV is characterized by immune dysregulation which in part persists despite ART [12]. Castleman disease is also thought to be a disorder of immune dysregulation with impaired B and T cell function and frequent development of autoimmune disorders [13]. Our patient developed AIHA heralding his presentation of MCD. Although we were unable to measure IL-6 levels, IL-6 induced hyperproduction can lead to lymphoproliferation and plasma cell differentiation. In addition, cooperation between HHV-8 and EBV, another gammaherpesvirus, can have synergistic effects on tumorigenesis of HHV-8 [14].

The temporal association between the two flares of MCD and HIV viral load blips is shown in Fig. 2. This suggests that these blips are linked to T-cell clonal expansion and inflammation rather than a lack of ART potency or adherence. CD8+T cell activation has been shown to increase with disease flares in three patients with IL-6 blockade refractory IMCD [15]. CD8 elevation in persons with well-controlled HIV infection on ART is associated with an increased risk of inflammatory non-AIDS-related clinical events independent of CD4 T-cell recovery [16]. The propensity to develop “blips” is also influenced by the site in the genome where HIV provirus is integrated, with proviruses integrated into non-coding or transcriptionally-repressed regions being less likely to reactivate. HIV proviruses integrated into DNA sites situated much further than accessible chromatin are also less likely to re-activate [17]. Further research is required to understand the role of T-cell clonal expansion and autoantibody production in the pathogenesis of HIV+MCD, in addition to the role of synergy between HHV8, HIV and other viral pathogens.

CRedit authorship contribution statement

Ilyse Darwish: Design, acquisition of data, analysis, interpretation, drafting article, revising article, final approval. Cecilia Costiniuk: Analysis/interpretation of data, drafting article, final approval. Nadine Kronfli: Acquisition of data, analysis and interpretation of data, revising article, final approval. David Haegert: Analysis/interpretation of data, figure generation, final review and approval. Jean-Pierre Routy: Conception and design, data acquisition, interpretation, critical revision, final approval.

Consent

Consent was provided by the patient to publish this case report.

Funding

This study was supported by the Fonds de la Recherche Québec-Santé (FRQ-S): Réseau SIDA/Maladies infectieuses et Thérapie cellulaire. There was no involvement of the funder in study design, collection, analysis, interpretation of data, report writing, nor decision to submit for publication.

Acknowledgements

The authors are grateful to the patient who agreed to participate in this case report. We thank Angie Massicotte and Josee Girouard for assistance. C.T.C. is supported by a career award from the Fonds de la Recherche Québec-Santé (FRQ-S). N.K. is supported by a career award from the Fonds de Recherche Québec – Santé (FRQ-S; Junior 1). J.P.R. is the holder of the Louis Lowenstein Chair in Hematology and Oncology, from McGill University.
Conflict of Interest Statement

ID – no conflicts of interest to declare. CC – no conflicts of interest to declare. NK has received research funding from Gilead Sciences, advisory fees from Gilead Sciences, ViV Healthcare, Merck and Abbvie, and speaker fees from Gilead Sciences and Merck. DH – no conflicts of interest to declare. JPR – no conflicts of interest to declare.

References

[1] Dispensieri A, Fajgenbaum DC. Overview of Castleman disease. Blood 2020;135(16):1353–64. https://doi.org/10.1182/blood.201900931
[2] Collins LS, Fowler A, Tong CY, de Ruiter A. Multicentric Castleman’s disease in HIV infection. Int J STD AIDS 2006;17:19–25. https://doi.org/10.1258/095646206775220456
[3] Powles T, Stebbing J, Bazeros A, Hatzimichael E, Mandalia S, Nelson M, Gazzard B, Bower M. The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol 2009;20(4):775–9. https://doi.org/10.1093/annonc/mdn697
[4] Fajgenbaum DC, Shilling D. Castleman disease pathogenesis. Hematol Oncol Clin N Am 2018;32(1):11–21. https://doi.org/10.1016/j.hoc.2017.09.002
[5] Casper C. The aetiology and management of Castleman disease at 50 years: translating pathophysiology to patient care. Br J Haematol 2005;129(1):3–17. https://doi.org/10.1111/j.1365-2141.2004.05311.x
[6] Bower M. How I treat HIV-associated multicentric Castleman disease. Blood 2010;116(22):4415–21. https://doi.org/10.1182/blood-2010-07-290213
[7] Pria AD, Pinato D, Roe J, Naresh K, Nelson M, Bower M. Relapse of HHV8-positive multicentric Castleman disease following rituximab-based therapy in HIV-positive patients. Blood 2017;129(15):2143–7. https://doi.org/10.1182/blood-2016-10-747477
[8] Bestawros A, Michel R, Séguin C, Routy JP. Multicentric Castleman’s disease treated with combination chemotherapy and rituximab in four HIV-positive men: a case series. Am J Hematol 2008;83(6):508–11. https://doi.org/10.1002/ajh.21598
[9] Ramaswami R, Lurain K, Peer CJ, Serquiña A, Wang V, Widell A, Goncalves P, Steinberg SM, Marshall V, George J, Figg WD, Whitby D, Ziegler-Bauer J, Uldrick TS, Yarchun R. Tocilizumab in patients with symptomatic Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood 2020;135(25):2316–9. https://doi.org/10.1182/blood.2019004602
[10] Bower M, Newsom-Davis T, Naresh K, Merchant S, Lee B, Gazzard B, Stebbing J, Nelson M. Clinical features and outcome in HIV-associated Multicentric Castleman’s Disease. J Clin Oncol 2011;29:2481–6. https://doi.org/10.1200/JCO.2010.34.1909
[11] Stebbing J, Adams C, Sanitt A, Mletzko S, Nelson M, Gazzard B, Newsom-Davis T, Bower M. Plasma HHV8 DNA predicts relapse in individuals with HIV-associated multicentric Castleman disease. Blood 2011;118(2):271–5. https://doi.org/10.1182/blood-2011-02-335620
[12] Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. HIV as a cause of immune activation and immunosenescence. Mediat Inflamm 2017;2017:1–16. https://doi.org/10.1155/2017/6825493
[13] Palestrro G, Turrini F, Pagano M, Chiusa L. Castleman’s disease. Adv Clin Pathol 1999;3(12):11–2.
[14] Dandachi D, Moron F. Effects of HIV on the tumor microenvironment. Adv Exp Med Biol 2020;1263:45–54. https://doi.org/10.1007/978-3-030-44518-8_4
[15] Fajgenbaum DC, Langan R-A, Japp AS, Partridge HL, Pierson SK, Singh A, et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade–refractory idiopathic multicentric Castleman disease. J Clin Invest 2019;129(10):4451–63. https://doi.org/10.1172/JCI126091
[16] Cao W, Mehrjui V, Kaufmann DE, Li T, Routy JP. Elevation and persistence of CD8 T-cells in HIV infection: the Achilles heel in the ART era. J Int AIDS Soc 2016;19(1):20697. https://doi.org/10.7448/IAS.19.1.20697
[17] Chomont N. Deep-sleeping HIV genomes under control. Nature 2020;585(7824):190–1. https://doi.org/10.1038/d41586-020-02438-7