Chemical properties, functionality, and morphology of taro flour modified by H$_2$O$_2$ oxidation and irradiation of UV light

R Ekafitri1, Y Pranoto2 and A Herminiati1

1 Research Center for Appropriate Technology-Indonesian Institute of Sciences, JL KS Tubun No.5 Subang 41213, West Java, Indonesia
2 Departement of Food and Science Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta, Indonesia 55281
E-mail: riantisyahryan@gmail.com

Abstract. Taro tuber is one type of traditional Indonesian tubers which is potential to be processed into flour. Modification of taro flour using H$_2$O$_2$ oxidation catalysed with UV irradiation can improve the quality of taro flour. This study aims to determine the chemical properties, functionality, and morphology of modified taro flour affected by concentration H$_2$O$_2$ and oxidation-UV irradiation time. The study used a completely randomized design with two factors, hydrogen peroxide concentration (3, 4, and 5 percent) and time of oxidation-UV irradiation (5, 15, 25, and 35 minutes). Taro flour was analysed in terms of carbonyl, carboxyl, and amylose content pasting properties (peak viscosity, final viscosity, and setback, viscosity), baking expansion, crystallinity, and granular morphology. The results show that the higher the hydrogen peroxide concentration and the longer the reaction time caused the increase in the carbonyl, carboxyl, and amylose contents, peak viscosity, final viscosity, and baking expansion. Meanwhile, it caused a decrease in setback viscosity, relative crystallinity, and damaged the morphological structure of flour granules. All these characteristics are recommended for bakery product production.

1. Introduction
Taro is one type of traditional Indonesian tubers. Taro tuber has the potential to be further processed into taro flour. Taro flour has a total starch of 58.5-63%, resistant starch of 33.5-51.4%, dietary fiber of 12.8-14.0%, and phenolic components of 1.2-4.17 g GA/L, as well as a fairly complete mineral content such as Cu, Fe, Zn, Mn, Mg, and K [1]. Starch in taro flour has disadvantages including high retrogradation tendency, low paste stability and resistance, and it contains oxalate which causes irritation to the tissue when consumed [2]. This limits the application of taro flour in the food industries. Therefore, an effort is needed to modify starch in taro flour, one of which is through the oxidation process.

One way for starch oxidation is by using hydrogen peroxide. Hydrogen peroxide is a widely used commercial oxidizer and does not cause harmful by products [3]. Several studies reveal that oxidation using hydrogen peroxide produces a degree of oxidation of less than 2.78% [4]. To increase functional groups in gelatinized starches, metal ions are often used together with hydrogen peroxide, such as Cu
and Fe. However, excessive use of catalysts can cause undesirable colors on starch, while consumers want bright starch and low metal content [4]. Therefore, the use of metals needs to be limited. Thus, it is essential to use a catalyst that does not cause residues, one of which is by ultraviolet (UV) irradiation.

Modification of starch/flour with hydrogen peroxide oxidation and UV irradiation can be affected by hydrogen peroxide concentration, reaction time, slurry concentration, UV intensity, acid addition, and temperature [5–9]. The higher the concentration of hydrogen peroxide and the longer the reaction, the level of oxidation will increase to a certain extent which is characterized by the formation of carbonyl and carboxyl groups [5,7,8,10]. Starch oxidation also affects molecular starch granules, crystalline patterns, morphology, physicochemical and pasting properties of starch, and results in increased baking expansion [3,5,8,11–13]. This oxidized flour is suitable for application in bakery product [14–16], so that, research and development on oxidized flour need to be done, especially for locals tuber flour to expand its utilization.

A recent modification of taro flour using hydrogen peroxide with and without UV irradiation has been done [14,17]. However, there is no study concerning the effect of UV light on the characteristics of taro flour oxidized with hydrogen peroxide in various hydrogen peroxide concentration and UV oxidation-irradiation reaction time treatments. Therefore, we analyzed the modification of taro flour with oxidation and irradiation to determine its effect on the chemical, functionality, and morphology of taro flour in various treatments of hydrogen peroxide concentration and reaction time.

2. Materials and Methods

2.1. Taro flour preparation
Taro flour was made from Bogor’s taro (Colocasia esculenta L.Schoot) tubers from the Bogor region, West Java. The tubers were peeled, cut, and washed to remove their sap. Furthermore, their size was reduced using a slicer. The sliced tubers then soaked in 10% NaCl solution to decrease the oxalate content that can cause itching and irritation of tissue when consumed. After five times of washing, the taro slices were immersed, sliced, and dried. The dried taro slices were then mashed and sieved to produce taro flour.

2.2. Preparation of taro flour for modification of oxidation-irradiation
The taro flour was oxidized using a UV catalyst tool. Taro flour and reverse osmosis water with a ratio of 1:5 were mixed with hydrogen peroxide oxidizer of the 3,4,5% dry weight of taro flour in a UV catalyst tank. The slurry stirred to prevent sedimentation. The slurry was then streamed to a UV irradiation tube for 5, 15, 25, and 30 minutes of irradiation. After the oxidation process and irradiation stopped, the slurries were centrifuged at 3500 g for 7 minutes and washed three times. Furthermore, the obtained flour cake was dried to get the taro flour with a water content of 10–13%.

2.3. Analysis
Chemical analyzes were carried out including amylose content [18], carbonyl content [19], carboxyl content [20], pasting analysis using Rapid Visco Analyzer Tec Master [21], analysis of baking property modified from the Demiate et al. (2000) method [20], crystalline structure with X-ray Diffraction (XRD) [22] with fitting data from tool readings were done using SAXIT software developed by the Synchotron Light Research Institute (SLRI) Thailand, and morphology of starch granules done using scanning electron micrograph (SEM Hitachi SU3500) with voltage acceleration of 5 and 10 kV at 3000 times magnification [23]

3. Results and Discussion

3.1. Carbonyl, carboxyl and amylose contents
The amount of carbonyl group formed is one indication of the oxidation rate that occurs [10]. Table 1 shows that there was an increase in the carbonyl and carboxyl content of modified taro flour compared
to native taro flour, which were significantly different (p<0.05). Increased carbonyl content occurred in the treatment of hydrogen peroxide with 3% and 4% concentrations with oxidation-irradiation time for 5-35 minutes and (0.0335-0.1121%) then the numbers decreased in the treatment of 5% hydrogen peroxide concentration at 25 and 35 minutes of the oxidation-irradiation time (0.0620 and 0.0466%).

Table 1. Carbonyl, carboxyl, and amylose contents of native and modified taro flour affected by H$_2$O$_2$ concentration and reaction time.

H$_2$O$_2$ Concentration (%)	Oxidation-irradiation time (minute)	*Carbonyl (%)	*Carboxyl (%)	Amylose (%)
Native flour	0.0400ab	0.0002a	13.26a	
	0.0335ab	0.0336a	15.06b	
	0.0720ef	0.0608de	15.13b	
	0.0988g	0.0626de	15.32bc	
	0.0985f	0.0697e	15.58bc	
	0.0291a	0.0494e	15.57bcd	
4	0.0685ef	0.0609de	15.57bcd	
	0.1083g	0.0642e	15.94cd	
	0.1121g	0.0690e	15.52bcd	
	0.0510ad	0.0625d	15.86d	
5	0.0786f	0.0834f	16.16d	
	0.0620de	0.0717e	16.05d	
	0.0466bc	0.0522cd	15.48bcd	

*the same superscript in the same column shows that the samples were not significantly different at 5% significance

The increase in carbonyl content is similar to oxidation in rice flour, sagoo and cassava starch [8]. The higher carbonyl content is related to the molecular fragmentation that occurs due to oxidation treatment. In the reaction pathway, the hydroxyl group in the starch molecule will first be oxidized to the carbonyl group then to the carboxyl group [9]. Decreased carbonyl content in taro flour resulting from oxidation can be caused by carbonyl groups formed during the oxidation process to turn into carboxyl groups [9][12].

Table 1 also shows the increase in carboxyl content of taro flour from oxidation-irradiation modification at hydrogen peroxide 3% and 4% with oxidation-irradiation time for 5-35 minutes and at a concentration of 5% at 5-15 minutes oxidation-irradiation (0.0336-0.0834%) then decreased at 25 and 35 minutes oxidation time (0.0717-0.0522%). The increase in carboxyl content in taro flour resulting from oxidation-irradiation can be caused by further oxidation of carbonyl to carboxyl and the decrease in carboxyl content that occurs can be caused by the occurrence of decarboxylation reactions [9].

The amylose content of native taro flour was 13.26% which increased to 15.06-16.16% and was significantly different (p<0.05) after being given oxidation and irradiation treatments. The higher the concentration of hydrogen peroxide and the longer the oxidation-irradiation time used, the higher the amylose content. This phenomenon is caused by the depolymerisation of starch molecules to produce carboxyl groups and amylose breakdown with high molecular weights into polymers with shorter molecular chains in greater numbers [24]. Oxidation would cleave starch molecules in addition to producing carboxyl groups. The cleavage of high molecular weight amylose molecules would yield some amylose that still could be detected in measurement. This phenomenon similar with oxidized starch prepared from corn, sagoo, and cocoyam starch [5,24,25].
Table 2. Pasting properties and baking expansion of native and modified taro flour effected by H$_2$O$_2$ concentration and reaction time.

Treatment	Pasting properties	Specific volume (g/ml)	Baking expansion (%)			
H$_2$O$_2$ concentration (%)	Oxidation-irradiation time (min)	Peak viscosity (cP)	Final viscosity (cP)	Setback viscosity (cP)		
native	-	4043.50a	3372.50a	1120.00b	2.91a	-
5	4497.00b	3490.67a	1098.67a	3.15a	8.23	
3	15	4893.00cd	3883.50bc	1213.00ab	3.67b	26.05
25	4975.00cde	3780.00b	1001.50ab	3.72b	27.81	
35	5217.50fgh	3931.00bc	881.50ab	3.73b	28.11	
5	4639.00b	3727.33b	1028.50ab	3.54b	21.64	
4	15	5058.00def	3876.22bc	1029.50ab	3.77b	29.51
25	5014.00cde	3740.50b	1104.33ab	3.81b	30.74	
35	5321.00gh	3962.67bc	1012.33ab	3.82b	31.28	
5	4872.33c	3811.00b	1056.67ab	3.58b	23.14	
15	5234.00fgh	4080.33cd	930.67ab	4.24c	45.78	
25	5383.00h	4217.00f	869.50ab	4.19c	43.87	
35	5144.33efg	3893.67bc	845.33a	4.02c	37.95	

*the same superscript in the same column shows that the samples were not significantly different at 5% significance

3.2. Pasting properties and baking expansion

The higher the hydrogen peroxide concentration and the longer the oxidation-irradiation time, the higher the peak viscosity (4497-5383.00 cP). The value was significantly different from the peak viscosity of native taro flour (p<0.05) and it was significantly different for each treatment (p<0.05). Similar trends were shown by the value of final viscosity. The final viscosity of taro flour from oxidation-irradiation modification ranged from 3490.67 to 4217.00 cP. The highest peak viscosity and final viscosity values of the taro flour were obtained in the treatment of 5% hydrogen peroxide concentration and 25 minutes oxidation-irradiation time (5383.00 and 4217.00 cP). The high peak viscosity is due to the presence of carbonyl and carboxyl groups that trigger swelling in the granules and also shows the presence of crosslinked starch [26]. These cross-links could stabilize the swollen granules and overcome the negative impacts of minor depolymerization [27].

The increase in viscosity when the starch paste is cooled is called setback viscosity. The setback viscosity of the taro flour was 1120 cP, which was higher than the setback viscosity reported by Kaushal et al., 2012 [21], which was 487 cP. This suggests that taro flour has a high retrogradation tendency. The oxidation-irradiation treatment decreased the value of the taro flour setback viscosity compared to native taro flour but these values were not significantly different (p>0.05), except at 5% hydrogen peroxide concentration treatment with 35 minutes oxidation-irradiation time, the lowest viscosity setback was 845.33 cP. Table 2 shows that the higher the concentration of hydrogen peroxide and the longer the oxidation-irradiation time, the lower the back viscosity. The decrease in retrogradation tendencies is caused by the presence of carbonyl and carboxyl groups in more bulky starch molecules than hydroxyl groups, which tends to keep the amylose chains separate so as to inhibit the retrograde process [28]. Less set back viscosity also suggesting that amylose could not form a strong gel network due to depolymerization of starch structure, resulting in a weakened granule organization [27].

Table 2 shows the specific volume and the baking expansion property of native taro flour and taro flour modified by oxidation-irradiation. Native taro flour has a specific volume of 2.91 ml/g which increased significantly in oxidation-irradiation treatment (p <0.05) to 3.15-4.24 ml/g. The higher the concentration of hydrogen peroxide and the longer the UV oxidation time, the higher the specific volume of the taro flour modified with oxidation-irradiation. The highest specific volume of the taro flour was
obtained in the 5% concentration treatment with 15 minutes oxidation-irradiation time, which was 4.24 ml/g or the baking expansion increased by 45.78% compared to the specific volume of native taro flour (2.91 ml/g). Oxidation with hydrogen peroxide with UV irradiation causes the oxidation process to be more effective and produces more carbonyl and carboxyl groups so that the starch binds more water and expands more during the baking process [12]. Increased starch hydration capacity contributes to the increased water-holding capacity in starch molecules; thus, affecting water evaporation and internal pressure during the baking process [5,8]. Meanwhile the increase in baking expansion is caused by the formation of the structure of the amorphous matrix by hydrogen bonds [13].

3.3. X-ray diffraction
Observation of crystallinity of taro flour using X-Ray Diffraction and observations under Scanning Electron Micrograph (SEM) was carried out on native taro flour and modified taro flour with oxidation-irradiation with the highest baking expansion (sample treated with 5% hydrogen peroxide and 15, 25, and 35 minutes oxidation-irradiation time).

![Diffractogram of native and modified taro flour](image)

Figure 1. Diffractogram of native and modified taro flour effected by H$_2$O$_2$ concentration and reaction time.

The taro flour diffraction curve (Figure 1.) shows that taro flour has a reflection of 2θ at 15°, 17°, 18°, and 23° so that it has a type A crystallinity and has a crystalline area of 40.7%. A high 2θ reflection at 15°, 17°, 18°, and 23° indicates a starch with type A crystallinity [29]. Taro flour with 5% hydrogen peroxide concentration and 15, 25, and 35 minutes reaction time display the same X-ray diffraction pattern with the pattern of native taro flour with strong peaks at 15, 17, 18, and 23° (2θ). This means that the oxidation modification process with hydrogen peroxide and UV irradiation does not change the crystallinity pattern of taro flour but slightly decreases the relative crystallinity. This is similar to the results of oxidation on corn starch [28]. The unchanging crystalline pattern of starch is caused by the oxidation process that does not enter the starch granules to change the crystal structure [4]. The decrease in the relative crystallinity of taro flour treated with hydrogen peroxide with 25 and 35 minutes oxidation-irradiation time to 39.8 dan 40.1% can be caused by the slight degradation of the crystalline structure on taro flour due to the increased degree of oxidation along with increasing oxidation time.
3.4. Granules morphology
Figure 2 shows that native taro flour starch granules have irregular polygonal shapes and appear to form together like clusters. The samples treated with UV oxidation have significant differences from the native taro flour granules. The treated taro flours appear to be fragmented into particles with a smaller size and they are more distributed (do not form clusters). This is similar to oxidized taro flour modified by hydrogen peroxide only [14]. In cassava starch [12] the oxidation process causes the granular external structure to be imperfect which can be seen from the surface of starch granules that becomes more coarse compared to the native starch. This does not occur in taro flour granules.

Figure 2. Taro flour granules on SEM observation.
(a. native taro flour ; b. 5% H\textsubscript{2}O\textsubscript{2}, 15 minutes; c. 5% H\textsubscript{2}O\textsubscript{2}, 25 minutes; d. 5% H\textsubscript{2}O\textsubscript{2}, 35 minutes)

4. Conclusions
The oxidation-irradiation process in taro flour produced taro flour with characteristics of: increased carbonyl (0.0335-0.1121%), carboxyl (0.0336-0.0834%), and amylose content increased to 15.06-16.16%. The higher hydrogen peroxide concentration and the longer reaction time resulted in an increased peak viscosity (4497-5383.00 cP), final viscosity (3490.67-4217.00 cP), baking expansion (8.23-45.78%), and decrease setback viscosity (1213.00-845.33 cP). Relative crystallinity decreases without changing the crystalline structure of starch, and it causes the granules that seemed fragmented into smaller and more distributed particles without damage the external structure of the granule.

Acknowledgment
The authors greatly thank those who have supported this research especially to the Indonesian Institute of Sciences, The Ministry of Research, Technology and Higher Education of the Republic of Indonesia and for funding this research and Research Centre for Appropriate Technology for providing the experimental facilities.

References
[1] Arici M, Yildirim R M, Ozulku G, Yasar B, Toker O S 2016 Physicochemical and nutritional properties of taro (Colocasia esculenta L. Schott) flour as affected by drying temperature and air velocity LWT - Food Sci. Technol. 74 434–40
[2] Bradbur J H, Nixon R W 1998 The Acridity of Raphides from the Edible Aroids J. Sci. Food Agric. 60 68–16
[3] Renato A, Dias G, Zavareze R, Cardoso M, Helbig E, Oliveira D, Francisco C 2011 Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite Carbohydr. Polym. 84 268–75
[4] Zhang Y, Wang X, Zhao G, Wang Y 2012 Preparation and properties of oxidized starch with high degree of oxidation Carbohydr. Polym. 87 2554–62
[5] Tethool E F, Jading A, Santoso B 2012 Characterization of Physicochemical and Baking Expansion Properties of Oxidized Sago Starch Using Hydrogen Peroxide and Sodium
Hypochlorite Catalyzed By UV Irradiation Food Sci. Qual. Manag. 6088 1–11

[6] Sausania A 2014 Oksidasi dan iradiasi tepung ubi kayu dengan hidrogen peroksida dan sinar UV-C menggunakan tumblers untuk meningkatkan baking expansion (Oxidation and irradiation of cassava flour with hydrogen peroxide and UV-C light using a tumbler to increase baking expansion) (Gadjah Mada University, Yogyakarta, Indonesia) [In Indonesia]

[7] Setya A 2015 Irradiasi Sinar UV-C pada Hancuran Singkong dalam Larutan Asam Laktat-Hidrogen Peroksida untuk Mendapatkan Tepung dengan Baking Expansion yang Meningkat (UV-C Light Irradiation of Cassava Crushed in Lactic Acid-Hydrogen Peroxide Solution to Obtain Flour with Increased Baking Expansion) J. Apl. Teknol. Pangan 4 17–21 [In Indonesia]

[8] Tethool E F 2012 Pengaruh konsentrasi hidrogen peroksida dan iradiasi ultraviolet terhadap sifat fisikokimia dan baking expansion pati sagu (Effect of hydrogen peroxide concentration and ultraviolet irradiation on physicochemical properties and baking expansion of sago starch) Prosiding Insinas 2012 pp 331–5 [In Indonesian]

[9] El-sheikh M A, Ramadan M A, El-shafie A 2010 Photo-oxidation of rice starch. Part I : Using hydrogen peroxide Carbohydr. Polym. 80 266–9

[10] Vanier N L, Lisie S, El M, Renato A, Dias G, Zavareze R 2017 Molecular structure , functionality and applications of oxidized starches : A review Food Chem. 221 1546–59

[11] Olayinka O O, Adebowale K O 2013 Physicochemical properties, morphological and X-ray pattern of chemically modified white sorghum starch J. Food Sci. Technol. 50 70–7

[12] Sangseethong K, Termvejsayanon N, Siroth K 2010 Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches Carbohydr. Polym. 82 446–53

[13] Mestres C, Lourdin D, Bertolini C, Mestres C, Lourdin D, Valle G Della 2017 Relationship between thermomechanical properties and baking expansion of sour cassava starch (Polvilho azedo) Relationship between thermomechanical properties and baking expansion of sour cassava starch (Polvilho azedo) J. Sci. Food Agric. 81 429–35

[14] Budiyati C S, Ariyanti D 2016 Taro Tube Flour Modification via Hydrogen Peroxide Oxidation Int. J. Sci. Eng. 7 137–42

[15] Al-dmoor H M 2013 Cake flour : functionality and Quality (Review) Eur. Sci. J. 9 166–80

[16] Ekafitri R, Pranoto Y, Herminiati A 2019 Baking quality, texture and sensory evaluation of gluten free cake made from modified taro flour Baking Quality, Texture and Sensory Evaluation of Gluten Free Cake Made from Modified Taro Flour Proceedings of the 5th International Symposium on Applied Chemistry 2019 vol 020001 pp 1–8

[17] Ekafitri R, Pranoto Y, Herminiati A, Rahman T 2018 Tepung talas bogor termodifikasi hasil oksidasi menggunakan hidrogen peroksida dan tanpa iradiasi sinar uv (Modified Bogor taro flour using hydrogen peroxide with and without uv light irradiation) J. Ris. Teknol. Ind. 12 86–98 [In Indonesia]

[18] Ferdiani Tri 2013 Karakter fisikokimia dan kadar pati resisten tapioka hasil perlakuan heat moisture treatment (HMT) menggunakan oven (Physicochemical characters and levels of tapioca resistant starch resulting from heat moisture treatment (HMT) using an oven) (Bogor Institute of Sciences) [In Indonesia]

[19] Renato A, Dias G, Zavareze R, Helbig E, Aline F, Moura D, Galarza C, Francisco C 2011 Oxidation of fermented cassava starch using hydrogen peroxide Carbohydr. Polym. 86 185–91

[20] Demiate I M, Dupuy N, Huvenne J P, Cereda M P, Wosiacki G 2000 Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy Carbohydr. Polym. 42 149–58

[21] Kaushal P, Kumar V, Sharma H K 2012 Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa), pigeonpea (Cajanus cajan) flour and their blends Food Sci. Technol. 48 59–68

[22] Klein B, Zanella V, Levien N, Zavareze R, Colussi R, Amaral J, Carlos L, Renato A, Dias G
2013 Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches *Carbohydr. Polym.* **98** 1578–84

[23] Huang T, Zhou D, Jin Z, Xu X, Chen H 2016 Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch *Food Hydrocoll.* **54** 202–10

[24] Kuakpetoon D, Wang Y 2008 Locations of hypochlorite oxidation in corn starches varying in amylose content *Carbohydr. Res.* **343** 90–100

[25] Olasupo A, Augustine A, Adekunle I, Abd A 2013 Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches *Food Chem.* **141** 1416–23

[26] Kuakpetoon D, Wang Y 2001 Characterization of Different Starches Oxidized by Research Paper *Starch/Stärke* **53** 211–8

[27] Kuakpetoon D, Wang Y 2006 Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content *Carbohydr. Res.* **341** 1896–915

[28] Liu J, Wang B, Lin L, Zhang J, Liu W, Xie J, Ding Y 2014 Food Hydrocolloids Functional, physicochemical properties and structure of cross-linked oxidized maize starch *Food Hydrocoll.* **36** 45–52

[29] Zhou Y, Meng S, Chen D, Zhu X, Yuan H 2014 Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch *Carbohydr. Polym.* **103** 81–6