Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Lung cancer patients are at heightened risk for developing COVID-19 infection as well as complications due to multiple risk factors such as underlying malignancy, anti-cancer treatment induced immunosuppression, additional comorbidities and history of smoking. Recent literatures have reported a significant proportion of lung cancer patients coinfected with COVID-19. Chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, oseltamivir, remdesivir, favipiravir, and umifenovir represent the major repurposed drugs used as potential experimental agents for COVID-19 whereas azithromycin, dexamethasone, tocilizumab, sarilumab, famotidine and ceftriaxone are some of the supporting agents that are under investigation for COVID-19 management. The rationale of this review is to identify potential drug-drug interactions (DDIs) occurring in lung cancer patients receiving lung cancer medications and repurposed COVID-19 drugs using Micromedex and additional literatures. This review has identified several potential DDIs that could occur with the concomitant treatments of COVID-19 repurposed drugs and lung cancer medications. This information may be utilized by the healthcare professionals for screening and identifying potential DDIs with adverse outcomes, based on their severity and documentation levels and consequently design prophylactic and management strategies for their prevention. Identification, reporting and management of DDIs and dissemination of related information should be a major consideration in the delivery of lung cancer care during this ongoing COVID-19 pandemic for better patient outcomes and updating guidelines for safer prescribing practices in this coinfected condition.

Key Words: Drug-drug interactions, COVID-19, Lung cancer, QT prolongation, Tyrosine kinase inhibitors, Chemotherapy.
Lung cancer treatment includes long term chemotherapy cycles and drug treatments which upon co-administration with repurposed COVID-19 drugs and other supporting agents used for COVID-19 management could increase the risk for DDIs. DDIs possess significant detrimental effects on patient safety, health economics, and treatment outcomes particularly in patients on polypharmacy (9–13). A large number of current drugs used in the market for a long period are being tried globally as experimental targets and as supportive care therapies for COVID-19 management since repurposing old drugs offers the advantage of not needing to go through the rigorous procedures of developing a new chemical entity and further drug approval process. However, the results of different trials/studies conducted in different countries have yielded conflicting reports on safety and efficacy issues at various stages and in a different population (14–20). Chloroquine, hydroxychloroquine (HCQ), lopinavir/ritonavir, ribavirin, oseltamivir, remdesivir, favipiravir, and umifenovir are the major COVID-19 repurposed drugs whereas azithromycin, dexamethasone, tocilizumab, sarilumab, famotidine and ceftriaxone are some of the supporting agents that are currently employed as potential experimental targets for COVID-19 treatment (21–27).

There is only sparse information available regarding COVID-19 treatment outcomes in lung cancer patients. Recently, Jacobo R et al. reported 17 cases of lung cancer with COVID-19 infection among 45 cancer patients (37.7%). Among these 17 patients, 8 (47.1%), 2 (11.7%), 1 (5.9%), and 1 (5.9%) patient received hydroxychloroquine + azithromycin, lopinavir/ritonavir + hydroxychloroquine, lopinavir/ritonavir + hydroxychloroquine + azithromycin, and hydroxychloroquine treatments, respectively. The treatment with hydroxychloroquine and azithromycin combination was found to improve the outcome of lung cancer patients with COVID-19, with only 1 death being reported for this treatment (OR 0.04, CI 0.01–0.57, p = 0.018) (28). Luo J et al. reported that 62% and 25% of the lung cancer patients coinfected with COVID-19 (n = 102) were hospitalised and died respectively. Among the hospitalized patients, hydroxychloroquine treatment (73%, n = 35/48) was not associated with improved COVID-19 outcomes (OR for ICU/intubation/DNI 1.39, 95% CI 0.37–4.56, p = 0.7, and OR death 1.03, 95% CI 0.26–3.55, p = 0.99) (29). Considering the risk factors and reported incidence/prevalence pattern, a larger population of lung cancer patients could be anticipated to be infected with COVID-19 infection in the coming days. Therefore, assessment of potential DDIs occurring with the lung cancer medications with the repurposed COVID-19 drugs can provide preliminary knowledge for screening, identification, and management of DDIs in this coinfected condition. In this scenario, we assessed the potential DDIs between the repurposed COVID-19 drugs and lung cancer pharmacotherapies using the drug interaction checker of IBM Micromedex®.

Methods

We conducted a search for potential DDIs between lung cancer medications and repurposed COVID-19 drugs using the drug interaction checker of IBM Micromedex® (30). Drugs used in the treatment of lung cancer were compiled from the National Comprehensive Cancer Network (NCCN) Guidelines® and Food and Drug Administration (FDA) approved lung cancer drugs (31–33). The repurposed COVID-19 drugs and supporting agents were compiled from several guidelines and literature search till October 21st 2020 (34–39). The interaction tool in Micromedex provides instant access to DDIs. COVID-19 repurposed drugs and lung cancer medications were selected from the search field and added to the ‘drugs to check’ in the interaction tool. Information on DDIs was manually extracted using Micromedex. Micromedex classifies the severity of DDIs as contraindicated, major, moderate, minor, and unknown. Additionally, Micromedex provides description of all DDIs and clinical management information for certain cases. A total of 61 potential DDIs along with their severity was identified from Micromedex. Additionally, relevant literatures were extracted from PubMed and Google Scholar for gathering information on the mechanism of interaction, clinical consequences, monitoring parameters, and precautions for the DDIs found from the drug interaction checker of Micromedex. We excluded non-scientific commentaries from our review. Only English literatures were included in the review. No DDI data were available for ribavirin, oseltamivir, remdesivir, tocilizumab, sarilumab, and ceftriaxone with lung cancer medications using the Micromedex interaction tool. Favipiravir and umifenovir were not found in the search list of Micromedex interaction tool till 21st October 2020. The severity grading of DDIs (Figure 1) was based solely on the results of the drug interaction checker of Micromedex. Micromedex provides a more reliable database for the severity grading of DDIs (40).

Mechanism of Drug Interactions of Repurposed COVID-19 Drugs with Lung Cancer Pharmacotherapies

Pharmacodynamic Interactions

Pharmacodynamic interactions occur when both drugs affect similar molecular targets or the same physiologic pathways leads to altered efficacy and toxicity. It can be additive, synergistic, or antagonistic (41).

QT Prolongation

As chloroquine, hydroxychloroquine, lopinavir, ritonavir, azithromycin, and famotidine are associated with QT prolongation, sweeping usage of these drugs along with insufficient consideration for concomitant use of other QT
prolonging agents could result in an increased frequency of cardiovascular adverse events (42–46). Further, there is a high prevalence of COVID-19 infection among patients with underlying cardiovascular diseases and COVID-19 infection can also provoke myocardial injury (47). Chloroquine and HCQ are both 4-aminoquinoline agents historically used for malaria (48). Recently these drugs have gained significant attention for their exploratory investigation for COVID-19 treatment (44,49–52). Chloroquine and HCQ are known to cause cardiotoxicity and QT prolongation (42,53–56). Lopinavir/ritonavir are human immunodeficiency virus (HIV) protease inhibitors that are under clinical investigation for COVID-19 infection. Evidences have demonstrated their activity against COVID-19 via inhibition of 3-chymotrypsin-like protease (17,21,57,58). Lopinavir/ritonavir are also associated with

Drug	Contraindication	Moderate DDIs	Major DDIs	DDIs not found
Aftinib				
Alecithin				
Atezolizumab				
Bevacizumab				
Brevatinib				
Cabozantinib				
Camptatinib				
Carboplatin				
Certitinib				
Cislatin				
Crizotinib				
Cyclophosphamide				
Dabrafenib				
Daconitinib				
Docetaxel				
Docorubicin				
Darvalumab				
Entrectinib				
Erlotinib				
Etoposide				
Evorolimus				
Gefitinib				
Gemcitabine				
Ipilimumab				
Irinotecan				
Larotrectinib				
Lorlatinib				
Lorbinostatin				
Mechlorethamine				
Methotrexate				
Nectumumab				
Nivolumab				
Osimertinib				
Paclitaxel				
Pembrolizumab				
Pemetrexed				
Prazetinib				
Ramucirumab				
Seberastinib				
Temozolomide				
Topotecan				
Tramecinib				
Vandecanib				
Vemurafenib				
Vinblastine				
Vincristine				
Vindesine				

* LPV/RTV, Lopinavir/ritonavir

Figure 1. Drug-drug interactions severity chart.
a potential for causing QT prolongation (57,59). The addition of azithromycin to hydroxychloroquine resulted in superior viral clearance compared to hydroxychloroquine alone in COVID-19 patients (60). However, azithromycin exposure has been reported to cause ventricular arrhythmia, torsades de pointes and sudden cardiac arrest and the FDA has added the related warning information to the package inserts (46,61). Therefore, a careful electrocardiogram (ECG) assessment is advised during azithromycin usage for identifying any signs of QT prolongation (21,46).

Concomitant use of azithromycin with hydroxychloroquine can cause a greater change in the QTc prolongation than HCQ alone (44). Reports of favipiravir induced QT prolongation are conflicting (62,63). In vitro reports showed that remdesivir weakly inhibited hERG channel (IC50 value for the inhibitory effect was 28.9 μM), suggesting a potential for probable QT prolongation (64). Famotidine, a histamine-2 receptor antagonist, has been recently considered to be a potential repurposed COVID-19 drug as it has been reported to decrease the composite outcome of death intubation in COVID-19 patients (27). Studies have reported that famotidine administration was associated with prolonged QT interval (65,66).

Multikinase inhibitors (MKIs) such as tyrosine kinase inhibitors (TKIs) are commonly used in the management of lung malignancy, particularly in non-small cell lung cancer (NSCLC) (41). QT prolongation is one of the major known adverse effects of TKIs (67). Approximately 4% of patients receiving TKIs are associated with QT prolongation (68). QT prolongation is one of the most serious toxicities associated with crizotinib and ceritinib, that are FDA approved for ALK (anaplastic lymphoma kinase) positive NSCLC patients (67,69,70). 4% of patients receiving osimertinib, an approved drug for EGFR (epidermal growth factor receptor) T790M mutated NSCLC patients developed QT prolongation (68,71,72). Dabrafenib, which is an approved BRAF (B-Raf proto-oncogene) inhibitor along with entrectinib, an inhibitor of the tyrosine kinasas ALK, TRKA/B/C (tropomyosin receptor kinase) and ROS1 (c-ros oncogene1) were reported to cause QT prolongation (73,74). Vandetanib, vemurafenib and selprecitinib were also reported to cause QT prolongation as one of the major adverse effects (75–77). Co-administration with COVID-19 repurposed drugs with these lung cancer medications can lead to additive effects on QT interval prolongation which may further increase the risk of cardiac arrhythmias and torsades de pointes (78). Careful monitoring, dosage adjustment, withhold/withdrawal of drugs, and/or avoidance of drugs may be required if concomitant medications with the risk of QT prolongation are taken by patients (49,79). Therefore, optimal medication surveillance and regular ECG to monitoring for QT interval prolongation is advised in COVID-19 patients undergoing chemotherapy for lung cancer.

Pharmacokinetic Interactions

Pharmacokinetic interactions occur when one drug influences other drug’s absorption, metabolism, distribution, and elimination. Cytochrome P450 (CYP) and its isoenzymes are responsible for most of the drug metabolism and pharmacokinetic DDIs due to altered plasma concentrations (41).

Drug Absorption

Gastrointestinal pH is the most important factor affecting the solubility and exposure of drugs particularly of TKIs such as erlotinib, gefitinib, and selpercatinib. Concomitant administration of histamine H2-receptor antagonists like famotidine may increase stomach pH that can reduce TKI solubility, absorption, and bioavailability. Therefore, the potential for such interactions is clinically important, and apt drug administration time interval management is required (77,80–82).

Drug Metabolism

Chloroquine and hydroxychloroquine are metabolized into active metabolites in the liver through the N-desethylation pathway mediated by CYP2D6, CYP3A4, CYP3A5, and CYP2C8 enzymes (83–87). Lopinavir undergoes metabolism by CYP3A4 enzymes in both the intestine and the liver and acts as a substrate for P-glycoprotein (P-gp) transporter (88,89). Lopinavir/ritonavir is a strong CYP3A inhibitor and hence can increase the exposure of brigatinib (90). A 50% dose reduction of brigatinib is suggested if concomitant use with strong CYP3A inhibitors is unavoidable (90). Similarly, concomitant use of lopinavir/ritonavir with lung cancer medications like crizotinib and dabrafenib can also increase the plasma concentration of the latter and consequently lead to adverse reactions (73,91). Ritonavir is a very potent inhibitor of CYP3A4 enzyme and hence can increase the plasma concentration of lung cancer medications like ceritinib, everolimus, docetaxel, doxorubicin, entrectinib, and erlotinib that are majorly metabolized by CYP3A4 (41,92–100). Ritonavir may increase lorlatinib and paclitaxel plasma levels due to inhibition of CYP3A-mediated metabolism (101,102). Azithromycin has been shown to be a weak CYP3A4 substrate with no significant ability to induce nor inhibit CYP3A4 activity or organic anion transporting polypeptide (OATP1B1) activity (103–105).

Dexamethasone is a widely used first-line agent for the prevention and management of chemotherapy induced nausea and vomiting (106). Dexamethasone is a potent steroid and also an inducer of CYP3A4 (107,108). Therefore, concomitant use with ceritinib (a strong CYP3A inhibitor) should be avoided and close monitoring of side effects is recommended (41). Larotrectinib, cabozantinib, irinotecan,
cyclophosphamide, topotecan, and lurbinectedin are metabolized primarily via CYP3A4. Therefore, caution is required when these drugs are used concomitantly with lopinavir or ritonavir and monitor for possible changes in the efficacy or toxicity profile (109,110). Vincristine and vinblastine are CYP3A4 and P-gp substrates. The plasma concentrations of vincristine and vinblastine are likely to be increased when concomitantly administered with protease inhibitors (109,111).

Remdesivir is a novel adenosine analogue therapeutically used for RNA based viruses including the Ebola virus (EBOV) and the Coronaviridae family viruses (24). Remdesivir is an inhibitor of CYP3A4, multidrug resistance-associated protein 4 (MRP4), bile acid export pump (BSEP), OATP1B1, OATP1B3, and sodium-taurocholate cotransporter protein (NTCP) in vitro (64). The plasma concentrations of remdesivir may increase with the concomitant use of strong CYP enzyme or P-gp inducers (112). Favipiravir is a purine nucleic acid analogue which undergoes ribosylation and phosphorylation into an active triphosphate (T-705RTP) intracellularly (113). T-705RTP interferes with the viral replication process by inhibiting the RNA-dependent RNA polymerase (114). T-705RTP interacts with the viral replication process by inhibiting the RNA-dependent RNA polymerase (114).

Drug Interactions of Repurposed Drugs for COVID-19 with Lung Cancer Supportive Care Pharmacotherapies

In addition to lung cancer medications, several drugs are given as supportive care for lung cancer patients (121). Supportive care drugs are usually used for the treatment of side effects, tumor symptoms, and concomitant diseases. A significant proportion of the patients assumed three or more different drugs in addition to chemotherapy in advanced stages of NSCLC (121). Therefore, we have overviewed potential drug interactions caused by repurposed COVID-19 drugs and some of the major supportive care drugs recommended by NCCN guidelines using the drug interaction checker of IBM Micromedex®. Cancer supportive care drugs were compiled from NCCN recommendations of drugs for adult cancer pain, haemopoietic growth factors, cancer, and chemotherapy induced anemia, distress management, cancer related fatigue, cancer associated venous thromboembolic disease, emesis, immunotherapy related toxicities, and palliative care (122). Methadone is an opioid drug used for cancer pain which is associated with QT prolongation (123). Similarly, antiemesis drugs such as olanzapine, dolasetron, granisetron, ondansetron, and prochlorperazine are also associated with QT prolongation (124–127). Antipsychotic drugs used in cancer palliative care such as haloperidol,quetiapine, and risperidone may cause prolonged QT interval, serious cardiovascular side effects, and can leads to torsades de pointes and death (124). Other supportive care drugs such as donepezil, octreotide, and metronidazole are also reported to cause QT prolongation (128–130). Therefore, concomitant use of these supportive care drugs with chloroquine, hydroxychloroquine, lopinavir, ritonavir, azithromycin, and famotidine could result in a potential interaction and an increased frequency of cardiovascular adverse events. Commonly used drugs for cancer pain such as codeine, fentanyl, lidocaine, oxycodone, hydrocodone, and tramadol are majorly metabolized by CYP3A4 (131). CYP3A4 has been considered as a significant enzyme for the metabolism of other supportive care drugs such as midazolam, naloxegol, quetiapine, and zolpidem (132–135). Therefore, concomitant use of these drugs with strong CYP3A inhibitors such as lopinavir and ritonavir may increase the exposure and risk of adverse effects. Administration of ritonavir along with oral prednisolone may increase systemic corticosteroid exposure and may result in the development of Cushing syndrome (136). Concomitant use of morphine and ritonavir may increase the exposure of morphine and increase the risk of adverse effects (131). Therefore, it is important to...
recognize potential drug interactions between cancer supportive care drugs and repurposed COVID-19 drugs.

Conclusion
There is a high potential for the occurrence of major DDIs associated with the concomitant use of COVID-19 repurposed treatments with lung cancer medications, with QT prolongation being the most commonly identified DDI. This review is intended to provide an alert for clinicians and pharmacists for developing holistic scientifically interrogative strategies for screening, identification, reporting, and management of potential DDIs in lung cancer patients coinfect with COVID-19 infection. Currently, there is limited data available regarding the DDI profile of certain lung cancer medications with repurposed drugs for COVID-19. Hence, further scientific reports from clinical trials and observational studies are required to provide more concrete data on prevalence, risk factors, severity assessments and clinical management strategies of DDIs between lung cancer medications and repurposed drugs for COVID-19 during this pandemic.

Acknowledgment
Gayathri Baburaj would like to acknowledge DST-INSPIRE Fellowship, Department of Science and Technology, Government of India, New Delhi, India [DST/INSPIRE Fellowship/2018/IF180737] and Levin Thomas is thankful to Dr. TMA Pai PhD Scholarship from Manipal Academy of Higher Education, Manipal, India.

Conflicts of Interest
The authors declare no conflict of interest.

Supplementary Data
Supplementary data related to this article can be found at https://doi.org/10.1016/j.arcmed.2020.11.006.

References
1. Kamboj M, Sepkowitz KA. Nosocomial infections in patients with cancer. Lancet Oncol 2009;10:589–597.
2. Longbottom ER, Torrance HD, Owen HC, et al. Features of postoperative immune suppression are reversible with interferon gamma and independent of interleukin-6 pathways. Ann Surg 2016;264: 370–377.
3. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020;21: 335–337.
4. Passaro A, Peters S, Mok TS, et al. Testing for COVID-19 in lung cancer patients. Ann Oncol 2020;31:832–834.
5. Berlin I, Thomas D, Le Faou A-L, et al. COVID-19 and smoking. Nicotine Tob Res, 2020.; https://doi.org/10.1093/ntr/ntaa059.
6. Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020;31:894–901.
7. Yu J, Ouyang W, Chua ML, et al. SARS-CoV-2 transmission in cancer patients of a tertiary hospital in Wuhan. medRxiv. 2020. https://doi.org/10.1101/2020.02.22.20025320. Accessed October 3, 2020.
8. Miyashita H, Mikami T, Chopra N, et al. Do Patients with Cancer Have a Poorer Prognosis of COVID-19? An Experience in New York City. Ann Oncol 2020;31:1088–1089.
9. Mirosević Skvirec N, Macolli Sarić V, Maculo I, et al. Adverse drug reactions caused by drug-drug interactions reported to Croatian Agency for Medicinal Products and Medical Devices: a retrospective observational study. Croat Med J 2011;52:604–614.
10. Khandeparkar A, Ratabori PV. A study of harmful drug—drug interactions due to polypharmacy in hospitalized patients in Goa Medical College. Perspect Clin Res 2017;8:180–186.
11. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279:1200–1205.
12. Al-Arif M, Abu-Hashem H, Al-Meziny M, et al. Emergency department visits and admissions due to drug related problems at Riyadh military hospital (RMH), Saudi Arabia. Saudi Pharm J 2014;22:17–25.
13. Taylor R Jr, V Pergolizzi Jr, Puenpatom RA, et al. Economic implications of potential drug—drug interactions in chronic pain patients. Expert Rev Pharmacoecon Outcomes Res 2013;13:725–734.
14. Magro G. COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Virus Res 2020;286:198070.
15. Kou L, Dai L, Zhang X, et al. Hydroxychloroquine and chloroquine: a potential and controversial treatment for COVID-19. Arch Pharm Res 2020;43:765–772.
16. Huang M, Tang T, Pang P, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol 2020;38:379
17. Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Lancet Infect Dis 2020;20:112527.
18. Sanders JM, Monogue ML, Jodkowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020;323:1824–1836.
19. Kalil AC. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA 2020;323:1897–1898.
20. Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int J Antimicrob Agents 2020;56:106114.
21. Liang C, Tian L, Liu Y, et al. A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir. Eur J Med Chem 2020;2020;115:1617.
22. Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020;38:379–381.
23. Zhai P, Ding Y, Wu X, et al. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020;56:106114.
24. Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization of Treatment for COVID-19. ACS Cent Sci 2020;6:e20025320.
25. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020;2:e474–e484.
26. Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020;92:818–819.
27. Mather JF, Seip RL, McKay RG. Impact of Famotidine Use on Clinical Outcomes of Hospitalized Patients With COVID-19. Am J Gastroenterol 2020;115:1617–1623.
DDIs of COVID-19 Drugs with Lung Cancer Medications

28. Jacobo R, Panga C, Serrano-Montero G, et al. Covid-19 and lung cancer: A greater fatality rate? Lung Cancer 2020;146:19–22.
29. Luo J, Rizvi H, Preeshagul IR, et al. COVID-19 in patients with lung cancer. Ann Oncol 2020;31:1386–1396.
30. IBM Micromedex®, IBM Watson Health products Corporation. 2020. https://www.micromedexsolutions.com/ Accessed October 3, 2020.
31. National Comprehensive Cancer Network. Non-small cell lung cancer (version 8.2020-September 15, 2020). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed October 3, 2020.
32. National Cancer Institute. Drugs Approved for Lung Cancer. https://www.cancer.gov/about-cancer/treatment/drugs/lung. Accessed October 5, 2020.
33. National Comprehensive Cancer Network. Small cell lung cancer network. 2012. https://www.nccn.org/professionals/physician_gls/pdf/sccl.pdf. Accessed October 3, 2020.
34. National Institute of Health (NIH). COVID-19 treatment guidelines 2020. https://www.nih.gov/coronavirus. Accessed October 3, 2020.
35. National Institute for Health and Care Excellence (NICE). COVID-19 diagnostic tests for coronavirus disease 2019 (COVID-19) 2020. https://www.nice.org.uk/guidance/ng163. Accessed October 3, 2020.
36. Hussaarts KG, Veerman GM, Jansman FG, et al. Clinically relevant drug interactions detected by two databases. PLoS One 2019;14.
37. National COVID-19 clinical evidence taskforce: living guidelines. Australia. 2020. https://covid19evidence.net.au/. Accessed October 3, 2020.
38. Khan S, Gionfriddo MR, Cortes-Penfield N, et al. The trade-off dilemma in pharmacotherapy of COVID-19: systematic review, meta-analysis, and implications. Expert Opin Pharmacother 2020;4:1–29.
39. National institute for health and care excellence (NICE). COVID-19 rapid guidelines. United Kingdom. 2020. https://www.nice.org.uk/guidance/ng163. Accessed October 3, 2020.
40. Suryakorn B, Chaimarunyodporn S, et al. Comparison of potential drug-drug interactions with metabolic syndrome medications detected by two databases. PLoS One 2019;14.
41. Hussaarts KG, Veerman GM, Jansman FG, et al. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 2019;11:175883951881347.
42. Bustos MD, Gay F, Diquest B, et al. The pharmacokinetics and electrocardiographic effects of chloroquine in healthy subjects. Trop Med Parasitol 1994;45:83–86.
43. Khoobragade SB, Gupta P, Gurav P, et al. Assessment of proarrhythmic activity of chloroquine in vivo and ex vivo rabbit models. J Pharmaco Pharmacother 2013;4:116–124.
44. Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:21834.
45. Anson BD, Weaver JG, Ackerman MJ, et al. Blockade of HERG channels by HIV protease inhibitors. Lancet 2005;365:682–686.
46. Choi Y, Lim H-S, Chung D, et al. Risk evaluation of Azithromycin-induced QT prolongation in real-world practice. BioMed Res Int 2018;2018:1574806.
47. Yang J, Zheng Y, Guo X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020;94:91–95.
48. Verbaanderd C, Maes H, Schaff MB, et al. Repurposing Drugs in Oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Eancermedicainscience 2017;11:781.
49. Jafari A, Dadkhahfar S, Perseh S. Considerations for interactions of drugs used for the treatment of COVID-19 with anti-Cancer treatments. Crit Rev Oncol Hematol 2020;102:298.
50. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 2009;625:220–233.
51. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–271.
52. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;ciaa27.
53. Lewis J, Gregorian T, Portillo I, et al. Drug interactions with antimarial medications in older travelers: a clinical guide. J Travel Med 2020;27:taa089.
54. Chen C-Y, Wang F-L, Lin C-C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol (Phila) 2006;44:173–175.
55. Morgan ND, Patel SV, Dvorkina O. Suspected hydroxychloroquine-associated QT-interval prolongation in a patient with systemic lupus erythematosus. J Clin Rheumatol 2013;19:286–288.
56. Stas P, Fae D, Noyens P. Conduction disorder and QT prolongation associated with chloroquine use: a case report. Int J Cardiol 2008;127:680–682.
57. Giudicessi JR, Noseworthy PA, Friedman PA, et al. Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clin Proc 2020;95:1213–1221.
58. Chen F, Chan K, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004;31:69–75.
59. Soliman EZ, Lundgren JD, Roediger MP, et al. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations. AIDS 2011;25:367.
60. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020;59:499.
61. Basch E, Poluza E, Koci A, et al. Macrolides and torsadogenic risk: emerging issues from the FDA pharmacovigilance database. J Pharmacovigilance 2013;1:104.
62. Chinello P, Petrosillo N, Pittalis S, et al. QTc interval prolongation during favipiravir therapy in an Ebola virus-infected patient. PLoS Negl Trop Dis 2017;11:e0006034.
63. Kumagai Y, Murakawa Y, Yasunuma T, et al. Lack of effect of favipiravir, a novel antiviral agent, on QT interval in healthy Japanese adults. Int J Clin Pharmacol Ther 2015;53:866–874.
64. European Medicines Agency. Summary on compassionate use Remdesivir Gilead. 2020. https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf. Accessed June 18, 2020.
65. Lee KW, Kayser SR, Hongo RH, et al. Favipiravir, a novel antiviral agent, on QT interval in healthy Japanese adults. Int J Antimicrob Agents, 2020;59:499.
66. Yun J, Hwangbo E, Lee J, et al. Analysis of an ECG record database reveals QT interval prolongation potential of favipiravir in a large Korean population. Cardiovasc Toxicol 2015;15:197–202.
67. Raedler LA. Zykadia (Ceritinib) approved for patients with crizotinib-resistant ALK-positive non—small cell lung cancer. Am Health Drug Benefits 2015;8:163–166.
68. Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum—pemetrexed in EGFR T790M—positive lung cancer. N Engl J Med 2017;376:629–640.
69. Kazandjian D, Blumenthal GM, Chen H-Y, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist 2014;19:e5.

70. Leprieur EG, Fallet V, Cadranel J, et al. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patient selection and perspectives. Lung Cancer (Auckl) 2016;7:83–90.

71. Sullivan I, Planchard D. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience. Ther Adv Respir Dis 2016;10:549–565.

72. Schiefer M, Hendriks LE, Dinh T, et al. Current perspective: osimertinib-induced QT prolongation: new drugs with new side effects need careful patient monitoring. Eur J Cancer 2018;51:92–98.

73. Nebot N, Arkeau HT, Infante JR, et al. Evaluation of the effect of dabrafenib and metabolites on QTc interval in patients with BRAF V600e-mutant tumours. Br J Clin Pharmacol 2018;84:764–775.

74. Drilon A, Siena S, Ou S-H, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTTRK-1). Cancer Discov 2017;7:400–409.

75. Grande E, Kreissl MC, Filetii S, et al. Vandetanib in advanced medullary thyroid cancer: review of adverse event management strategies. Adv Ther 2013;30:945–966.

76. Uhara H, Kiyohara Y, Tsuda A, et al. Characteristics of adverse drug reactions in a vemurafenib early post-marketing phase vigilance study in Japan. Clin Transl Oncol 2018;20:169–175.

77. Highlights of prescribing information. RETEVOMOTM (selpercatinib) capsules, for oral use Initial U.S. Approval. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213246s000lbl.pdf. Accessed October 5, 2020.

78. Hunt K, Hughes CA, Hills-Nieminen C. Protease inhibitor–associated qT interval prolongation. Ann Pharmacother 2011;45:1544–1550.

79. Roden DM, Harrington RA, Poppas A, et al. Considerations for drug interactions on QTc in exploratory COVID-19 (coronavirus disease 2019) treatment. Circulation 2020;141:e906–e907.

80. Xu ZY, Li JL. Comparative review of drug-drug interactions with epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Onco Targets Ther 2019;9:235–241.

81. Uhara H, Kiyohara Y, Tsuda A, et al. Characteristics of adverse drug reactions in a vemurafenib early post-marketing phase vigilance study in Japan. Clin Transl Oncol 2018;20:169–175.

82. Highlights of prescribing information. RETEVOMOTM (selpercatinib) capsules, for oral use Initial U.S. Approval. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213246s000lbl.pdf. Accessed October 5, 2020.

83. Lim H-S, Im J-S, Cho J-Y, et al. Pharmacokinetics of hydroxychloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 2003;31:748–754.

84. Schrezenmeier E, Dugas J, Schulte K, et al. Clarithromycin and clarithromycin-A: studies using testosterone as a substrate. J Clin Pharmacol 2013;53:1468–1475.

85. Sim K-A, Park J-Y, Lee J-S, et al. Cytochrome P450 2C8 and CY- P3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 2003;26:631–637.

86. Projean D, Baune B, Farinotti R, et al. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 2003;31:748–754.

87. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Clin Pharmacokinet 1996;31:257–274.

88. ter Heine R, Van Waterschoot RA, Keizer RJ, et al. An integrated pharmacokinetic model for the influence of CYP3A4 expression on the in vivo disposition of lopinavir and its modulation by ritonavir. J Pharm Sci 2011;100:2508–25015.

89. Van Waterschoot R, Ter Heine R, Wagenaar E, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRPI (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol 2010;160:1224–1233.

90. Tugnait M, Gupta N, Hanley MJ, et al. Effects of Strong CYP2C8 or CYP3A Inhibition and CYP3A Induction on the Pharmacokinetics of Brigatinib, an Oral Anaplastic Lymphoma Kinase Inhibitor, in Healthy Volunteers. Clin Pharmacol Drug Dev 2019;9:214–223.

91. Teo YL, Ho HK, Chan A. Metabolism-related pharmacokinetic drug–drug interactions with tyrosine kinase inhibitors: current understanding, challenges and recommendations. Br J Clin Pharmacol 2015;79:241–253.

92. Pasin VP, Pereira AR, Carvalho KA, et al. New drugs, new challenges to dermatologists: mucocutaneous ulcers secondary to everolimus. An Bras Dermatol 2015;90:S165–S167.

93. Kwo PY, Badshah MB. New hepatitis C virus therapies: drug classes and metabolism, drug interactions relevant in the transplant settings, drug options in compensated cirrhosis, and drug options in end-stage renal disease. Curr Opin Organ Transplant 2015;20:235–241.

94. Loulouge P, Mir O, Allali J, et al. Possible pharmacokinetic interaction involving ritonavir and docetaxel in a patient with Kaposi’s sarcoma. AIDS 2008;22:1237–1239.

95. Mir O, Desser-Diano B, Louet AL, et al. Severe toxicity related to a pharmacokinetic interaction between docetaxel and ritonavir in HIV-infected patients. Br J Clin Pharmacol 2010;69:99–101.

96. Rudek MA, Chang CY, Steadman K, et al. Combination antiretroviral therapy (cART) component ritonavir significantly alters docetaxel exposure. Cancer Chemother Pharmacol 2014;73:729–736.

97. Berretta M, Caraglia M, Martellotto F, et al. Drug–drug interactions based on pharmacogenetic profile by highly active antiretroviral therapy and antiretroviral chemotherapy in cancer patients with HIV infection. Front Pharmacol 2016;7:71.

98. Kim TH, Shin S, Yoo SD, et al. Effects of phytochemical P-Glycoprotein protein modulators on the pharmacokinetics and tissue distribution of doxorubicin in mice. Molecules 2018;23:349.

99. Zhao D, Chen J, Chu M, et al. Pharmacokinetic-Based Drug—Drug Interactions with Anaplastic Lymphoma Kinase Inhibitors: A Review. Drug Des Devel Ther 2020;14:1663–1681.

100. Pillai VC, Venkataramanan R, Parise RA, et al. Ritonavir and efavirenz significantly alter the metabolism of erlotinib—an observation in primary cultures of human hepatocytes that is relevant to HIV patients with cancer. Drug Metab Dispos 2013;41:1843–1851.

101. Li W, Sparidans RW, Wang Y, et al. Oral coadministration of elacritar and ritonavir enhances brain accumulation and oral availability of the novel ALK/ROS1 inhibitor lorlatinib. Eur J Pharm Biopharm 2019;136:120–130.

102. Hendriks JJ, Lagas JS, Rosing H, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 2007;35:776–786.

103. Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 2007;35:776–786.

104. Hendriks JJ, Lagas JS, Rosing H, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 2007;35:776–786.
the human cytochrome P450A3 substrate. Eur J Clin Pharmacol 2006;62:203–208.

106. Marinella MA. Routine antiemetic prophylaxis with dexamethasone during COVID-19: Should oncologists reconsider? J Oncol Pharm Pract, 2020; 1078155220931921.

107. Pascuzzi JM, Drocourt L, Gerbal-Chaloin S, et al. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes: sequential role of glucocorticoid receptor and progesterone X receptor. Eur J Biochem 2001;268:6346–6358.

108. McCune JS, Hawke RL, LeCluyse EL, et al. In vivo and in vitro induction of human cytochrome P450A3A by dexamethasone. Clin Pharmacol Ther 2000;68:356–366.

109. Lopinavir; Ritonavir (All Populations Monograph). Clinical Pharmacology powered by ClinicalKey. https://www.elsevier.com/__data/assets/pdf_file/0010/990730/Lopinavir,-Ritonavir-Drug-Monograph_3.17.2020.pdf. Accessed October 3, 2020.

110. Highlights of prescribing information. ZEPZELCATM (lurbinectin) for injection, for intravenous use Initial U.S. Approval. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213702s000lbl.pdf. Accessed October 3, 2020.

111. Huang RS, Murry DJ, Foster DR. Role of xenobiotic efflux transporters in resistance to vincristine. Biomed Pharmacother 2006;62:203–208.

112. Yang K. What do we know about remdesivir drug interactions? Clin Pharm Res 2019;42:1101–1110.

113. Isbister GK, Brown AL, Gill A, et al. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol 2017;83:2274–2282.

114. Stollberger C, Huber JO, Finsterer J. Antipsychotic drugs and QT prolongation. Int Clin Psychopharmacol 2005;20:243–251.

115. Sampson MR, Cao KY, Gish PL, et al. Dosing Recommendations for Quetiapine When Coadministered With HIV Protease Inhibitors. J Pain Res 2017;10:1225–1239.

116. Michot JM, Albiges L, Chaput N, et al. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol 2020;31:961–964.

117. Zhang X, Song K, Tong F, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv 2020;4:1307–1310.

118. First patient outside U.S. treated in global Kevzara® (sarilumab) clinical trial program for patients with severe COVID-19. https://investor.regeneron.com/index.php/news-releases/news-release-detail?/first-patient-outside-us-treated-global-kevzara-sarilumab, Accessed October 3, 2020.

119. Kim S, Östör A, Nisar MK. interleukin-6 and cytochrome P450, reason for concern? Rheumatol Int 2012;32:2601–2604.

120. Wind S, Giessmann T, Jungnik A, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin Drug Invest 2014;34:173–182.

121. Di Maio M, Perrone F, Gallo C, et al. Supportive care in patients with advanced non-small-cell lung cancer. Br J Cancer 2003;89:1013–1021.