On Universal Point Sets for Planar Graphs

Jean Cardinal¹,∗ Michael Hoffmann²,† Vincent Kusters²,†

¹Département d’Informatique, Université Libre de Bruxelles, jcardin@ulb.ac.be
²Institute of Theoretical Computer Science, ETH Zürich, {hoffmann,kustersv}@inf.ethz.ch

Abstract

A set P of points in \mathbb{R}^2 is n-universal, if every planar graph on n vertices admits a plane straight-line embedding on P. Answering a question by Kobourov, we show that there is no n-universal point set of size n, for any $n \geq 15$.

Introduction

We consider plane, straight-line embeddings of graphs in \mathbb{R}^2. In those embeddings, every vertex is represented by a point, every edge is represented by a line segment connecting its endpoints, and no two edges intersect except at a common endpoint.

An n-universal (or short universal) point set for planar graphs can accommodate every planar graph on n vertices. A longstanding open problem is to give precise bounds on the minimum number of points in an n-universal point set. The currently known asymptotic bounds are apart by a linear factor: On one hand, it is known that every planar graph can be embedded on a grid of size $n - 1 \times n - 1$ [5, 10]. On the lower bound side, it was shown by Kurowski [8] that at least $1.235n$ points are necessary, improving earlier bounds of $1.206n$ [4] and $n + \sqrt{n}$ [5].

The following, somewhat simpler question was asked ten years ago by Kobourov [6]: what is the largest value of n for which a universal point set of size n exists? We prove the following.

Theorem 1 There is no n-universal point set of size n, for any $n \geq 15$.

According to the Open Problem Project page [6], Kobourov proved there exist 14-universal point sets of size 14. Hence our bound is tight, and the answer to the above question is $n = 14$. Like all existing lower bound arguments, our proof is based on counting planar 3-trees (also called stacked triangulations sometimes), which we combine with a known lower bound on the rectilinear crossing number [1 9].

Proof

A planar 3-tree is a triangulation obtained by iteratively splitting a triangular face into three new triangles with a degree-3 vertex, starting from a single triangle.

For every integer $n \geq 4$, we define a family \mathcal{T}_n of labeled planar 3-trees on $[n] := \{1, 2, \ldots, n\}$ as follows: (i) \mathcal{T}_1 contains only the complete graph, (ii) \mathcal{T}_n contains every graph that can be constructed by making a new vertex n adjacent to the three vertices of one of the $2n - 4$ facial triangles of some $T \in \mathcal{T}_{n-1}$.

Lemma 2 For $n \geq 5$, we have $|\mathcal{T}_n| = 4 \times 6 \times \ldots \times (2n - 6)$.
Theorem 3 ([1] [9]) Given a set \(P \subset \mathbb{R}^2 \) of \(n \geq 4 \) points in general position, more than \(\frac{3}{8} \binom{n}{4} \) 4-tuples of \(P \) are in convex position.

Lemma 4 Less than \(\frac{3}{8} n! \) graphs from \(\mathcal{T}_n \) can be embedded on any set of \(n \geq 4 \) points in \(\mathbb{R}^2 \).

Proof. Let \(P \subset \mathbb{R}^2 \) be a set of \(n \) points and denote by \(\mathcal{F}_n \subseteq \mathcal{T}_n \) the set of trees that admit a planar straight-line embedding onto \(P \). Consider a labeled planar 3-tree \(T \in \mathcal{F}_n \) and let \(\phi : |n| \to P \) denote a planar straight-line embedding of \(T \). In this way we can associate to each tree \(T \in \mathcal{F}_n \) a permutation \(\phi_T = \phi(1), \ldots, \phi(n) \) of the points in \(P \).

Consider now a permutation \(\pi = p_1, p_2, \ldots, p_n \) of the points in \(P \). With \(\pi \) we can associate a unique tree \(T_\pi \in \mathcal{F}_n \) as follows: The first three points form a triangle \(p_1 p_2 p_3 \); each subsequent point \(p_i \), for \(4 \leq i \leq n \), is located in a unique face of the triangulation constructed so far, and so \(p_i \) is inserted as a degree three vertex, connected to the three vertices of \(f \). If at some point during the construction the point \(p_i \) together with the vertices from \(f \) forms a convex quadrilateral, we cannot connect \(p_i \) to all vertices of \(f \) without crossing an edge of \(f \). In such a case, the permutation \(\pi \) does not have an associated graph in \(\mathcal{F}_n \). Otherwise, the above construction yields a plane drawing of some labeled planar 3-tree \(T_\pi \in \mathcal{F}_n \).

Combining the two arguments, we obtain a bijective mapping between \(\mathcal{F}_n \) and some subset \(\Pi \) of the symmetric group \(S_n \). It follows that \(|\mathcal{F}_n| = |\Pi| \leq |S_n| = n! \).

Next we can quantify the difference between \(|\Pi| \) and \(|S_n| \) using Theorem 3. Note that the general position assumption is no restriction: In case of collinearities, a slight perturbation of the point set yields a new point set that still admits all planar straight-line drawings of the original point set. Consider a permutation \(\pi = p_1, \ldots, p_n \) such that \(p_1, p_2, p_3, p_4 \) form a convex quadrilateral. For any tree in \(\mathcal{F}_n \), these first four vertices must form a complete graph \(K_4 \), but there is no way obtain a plane straight line drawing of \(K_4 \) on four points in convex position. It follows that \(\pi \in S_n \setminus \Pi \). We know from Theorem 3 that more than a fraction of \(3/8 \) of the 4-tuples of \(P \) are in convex position and therefore \(|\Pi| < \frac{5}{8} n! \). \(\square \)

Proof of Theorem 1 Using Lemma 2 one can check that \(|T_{15}| > \frac{1}{2} 15! \) (the values are 980'995'276'800 and 817'296'480'000, respectively). Since the latter by Lemma 4 is an upper bound on the number of graphs of \(\mathcal{T}_n \) that we can embed, not all graphs of \(\mathcal{T}_n \) have an embedding. Hence not every planar 3-tree on 15 vertices can be embedded on any given set of 15 points. \(\square \)

The number of non-isomorphic planar 3-trees on \(n \) vertices was computed by Beineke and Pippert [2], and appears as sequence A027610 on Sloane’s Encyclopedia of Integer Sequences. For \(n = 15 \), this number is 321’776. Hence we can also phrase our result in the language of simultaneous embeddings [3]. For a collection \(\mathcal{G} = \{G_1, \ldots, G_k\} \) of planar graphs on \(n \) vertices, a simultaneous embedding without mapping for \(\mathcal{G} \) is a collection of planar straight line embeddings \(\phi_i : G_i \to P \) onto the same set \(P \subset \mathbb{R}^2 \) of \(n \) points.

Corollary 5 There is a collection of 321’776 planar graphs that do not admit a simultaneous (plane straight-line) embedding without mapping.

Denote by \(\sigma \) the maximum natural number such that every collection of \(\sigma \) planar graphs on the same number of vertices admit a simultaneous embedding without mapping. We have shown that \(\sigma < 321’776 \) and from Fáry-Wagner’s Theorem [7] [11] we know that \(\sigma \geq 1 \). To our knowledge these are the best bounds currently known. It is a very interesting and probably challenging open problem to determine the exact value of \(\sigma \).

References

[1] Bernardo M. Ábrego and Silvia Fernández-Merchant. A lower bound for the rectilinear crossing number. *Graphs and Combinatorics*, 21(3):293–300, 2005.

[2] Lowell W. Beineke and Raymond E. Pippert. Enumerating dissectible polyhedra by their automorphism groups. *Canad. J. Math.*, 26:50–67, 1974.
[3] Peter Brass, Eowyn Cenek, Cristian A. Duncan, Alon Efrat, Cesim Erten, Dan P. Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S.B. Mitchell. On simultaneous planar graph embeddings. *Comput. Geom. Theory Appl.*, 36(2):117–130, 2007.

[4] Marek Chrobak and Howard J. Karloff. A lower bound on the size of universal sets for planar graphs. *SIGACT News*, 20(4):83–86, 1989.

[5] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. *Combinatorica*, 10(1):41–51, 1990.

[6] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O'Rourke. The Open Problems Project, Problem #45. http://maven.smith.edu/~orourke/TOPP/P45.html.

[7] István Fáry. On straight lines representation of planar graphs. *Acta Sci. Math. Szeged*, 11:229–233, 1948.

[8] Maciej Kurowski. A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. *Information Processing Letters*, 92(2):95–98, 2004.

[9] László Lovász, Katalin Vesztergombi, Uli Wagner, and Emo Welzl. Convex quadrilaterals and k-sets. In János Pach, editor, *Towards a Theory of Geometric Graphs*, volume 324 of *Contemporary Mathematics*, pages 139–148. American Mathematical Society, Providence, RI, 2004.

[10] Walter Schnyder. Embedding planar graphs on the grid. In *Proc. 1st ACM-SIAM Sympos. Discrete Algorithms*, pages 138–148, 1990.

[11] Klaus Wagner. Bemerkungen zum Vierfarbenproblem. *Jahresbericht der Deutschen Mathematiker-Vereinigung*, 46:26–32, 1936.