Supplementary information:

Protein-phosphatase NtPP2C2b and MAP-kinase NtMPK4 act in concert to modulate nicotine biosynthesis

Xiaoyu Liu¹,², Sanjay Kumar Singh², Yongliang Liu², Bingwu Wang³, Jinsheng Wang¹
Sitakanta Pattanaik² and Ling Yuan²

¹College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
²Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
³Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
Fig. S1 Phylogenetic analysis of tobacco and Arabidopsis protein phosphatase type 2C (PP2C). The PP2Cs from *Arabidopsis thaliana* and *Nicotiana tabacum* (tobacco) were used for analysis. MEGA6.0 was used to construct the phylogenetic tree with the bootstrap values set as 1000 replicates. The evolutionary history was inferred using the neighbor-joining method. Tobacco PP2Cs are indicated by *blue* while *Arabidopsis* ones are by *red* dots. Group B clade is highlighted with light-red color.
Fig. S2 Amino acid sequence alignment of tobacco, Arabidopsis and alfalfa PP2Cs. Alignment of tobacco (NtPP2C2a and NtPP2C2b), Arabidopsis (AtAP2C1, AtAP2C2 and AtAP2C3) and alfalfa (*Medicago sativa*; MsMP2C) PP2Cs was performed with the CLUSTALO program using the default settings. Identical amino acid residues in the alignment are highlighted in black. The location of the conserved kinase interaction motif (KIM) is indicated by rectangle (red). Residues putatively involved in the phosphate and metal ion binding are indicated by blue and red dots, respectively.
Fig. S3 Relative expression of *NtPP2C2b* in tobacco roots treated with ABA, ACC, auxin and SA. Relative expression of *NtPP2C2b* was measured using RT-qPCR. Tobacco *EF1α* (A) or α-tubulin (B) was used as an internal control. Expression of three tobacco transcription factor genes (*ERF6, NtJAZ* and *NtWRKY*) in leaves of control (CN) and manually topped (MT) tobacco. Tobacco *EF1α* (C) or α-tubulin (D) was used as an internal control. Data represent means±SD of three biological samples. Statistical significance was calculated using the Student’s *t*-test: *, P <0.05 ABA, abscisic acid; ACC, 1-aminocyclopropane-1-carboxylic acid; SA, salicylic acid.E. *NtPP2C2a* does not interact with MPK4 in yeast cells. *NtPP2C2b* fused to GAL4 DNA binding domain and *NtMPK4* fused to GAL4 activation domain were transformed into yeast cell AH109. Protein-protein interaction was tested by the growth of the cells on triple (-his-leu-trp) selection medium.

1. AD-NtMPK4 + BD-NtPP2C2a
2. AD (empty vector) + BD-NtPP2C2a
Fig. S4 Molecular analysis of hairy roots and transgenic tobacco plants. Gene-specific primers were used to amplify various fragments in the T-DNA from the empty vector (EV) and *NtPP2C2b*-overexpressing (OE) hairy root lines (OE-1 and OE-2) (A), *NtPP2C2b*-overexpressing tobacco plants (EV, OX-1 and OX-2) (C), and *NtMPK4*-overexpressing hairy root lines (LINE1 and LINE2) (E). Relative expression of *NtPP2C2b* in EV and *NtPP2C2b*-overexpressing hairy roots (OE1 and OE2) (B), and transgenic tobacco plants (OX1 and OX2) (D). Relative expression of *NtMPK4* in control and DEX-treated *NtMPK4*-overexpressing hairy roots (Line1 and Line2) (F).
Relative expression was measured using RT-qPCR. Tobacco \textit{EF1}\textalpha was used as an internal control. Statistical significance was calculated using the Student’s \textit{t-test}: **, P <0.01. \textit{rolB}, protein-tyrosine phosphatase; \textit{rolC} cytokinin-beta-glucosidase; \textit{virC}, virulence protein; \textit{NPTII}, neomycin phosphotransferase \textit{II}; \textit{EF1}, elongation factor \textit{1}\textalpha. CN, control; DEX, dexamethasone.
Fig. S5 Phylogenetic analysis of MPKs from tobacco and Arabidopsis. The unrooted phylogenetic tree showing the relationship of MAPK genes from tobacco and Arabidopsis. Tobacco and Arabidopsis MPKs are divided into four groups (A-D). Group A-C contains the TEY motif and group D contains TDY motif in the activation loop. The branch of genes with MEY motif is highlighted with red color. The branch node of tobacco and Arabidopsis genes are indicated by blue and purple, respectively.
Fig. S6 Amino acid sequence alignment of Arabidopsis and tobacco MPK4 and MPK6. Alignment of MPK4 (A) and MPK6 (B) of tobacco (Nt) and Arabidopsis (At) was performed with the CLUSTALO program using the default settings. Identical amino acid residues in the alignment are highlighted in black.
Fig. S7 Expression, protein-protein interaction, and molecular analysis of *NtMPK6* overexpressing hairy roots. A. Relative expression of *NtMPK6* in control (CN) and JA-treated roots. Relative expression was measured using RT-qPCR. B. *NtMPK6* interacts with *NtPP2C2b* in yeast cells. *NtPP2C2b* fused to GAL4 DNA binding domain and *NtMPK6* fused to GAL4 activation domain were transformed into yeast cell AH109. Protein-protein interaction was detected by the growth of the cells on triple (-his-leu-trp) selection medium. 1. BD-*NtPP2C2b* + AD-*NtMPK6*; 2. BD-*NtPP2C2b* + AD (empty vector). C. Relative expression of *NtMPK6* in empty vector (EV) and transgenic hairy roots overexpressing *NtMPK6* (OE1 and OE2). D. Relative
expression of $PM{T}$ and $Q{PT}$ in EV and transgenic hairy roots overexpressing $NtMPK6$ (OE1 and OE2). Relative expression was measured using RT-qPCR. Tobacco $EF1\alpha$ was used as an internal control. Data represent means±SD of three biological samples. Statistical significance was calculated using the Student’s t-test: **, $P < 0.01$
Supplement Table 1. Primers used in this study

Gene name	Forward primer (5’ - 3’)	Reverse primer (5’ - 3’)
NtPP2C2b	gatcATGCCTTGTGCAATAGCATTAC	tctagaTTATGGAACAAATGTGAGAGTGA
NtMPK4	gatcATGGAAGCAATATCGCTGAGCAG	tctagaTCAGTGAGATGCTGAGATTTA
NtMPK6	gatcATGGATGGTTCTGGTCAGCAG	tctagaTCATATGGCTGATACAGGATAG
NtERF221	gatcATGAATCCCGCTAATGCAACC	tctagaTTATGGAACAAATGTGAGAGTGA
NtPP2C2b	AATCACCTCCTATGCGCTGTTG	CCAATCGGAATCGTGA
NtMPK4	TGCCAGTCTTGGATTTCTCC	AGCTCCAGGAGATGAATGG
NtMPK6	ATCCAGGTTTTATCTGAGGAGCA	AGTGGCAATCAACAGGAGATT
NtMYC2	TGCGATGAAGTCAATGCAACC	ATGCTGCTGCTTCTTCTT
NtERF221	GTTTGGCAGCTCCTCCTCA	TCGAGCTGGAATCCTT
NtPMT	ATGGCACTTTCTGAATGCAACC	TCGAGCTGGAATCCTT
NtQPT	TTGATCAAATGGGAGGGAATTTG	AGTGGCAATCAACAGGAGATT
NtBBL	GATGACGCTGTTAGAGCCG	ATCTCAGTAGAGGATG
NtJAZ	GATGGAATCTCCCACCAAGCAAAT	ATCTCAGTAGAGGATG
NtMATE	TTGTGGCAGTTGAATGCAACC	ATCTCAGTAGAGGATG
NtEF	ACCACTGTGTTTTGGAAGCC	ATCTCAGTAGAGGATG
NtEF	GATGATCGTCTTGGTTCAAATG	ATCTCAGTAGAGGATG
rolB	CTTATGACAAACTCATAGATAAAAAGGT	TCGAATCTATCCAACCTCAT
rolC	CAACCTGTGTTCTTGTGTAAC	AAACAGTGAACACTGC
virC	TTTTGCTCTGTCAGGAGGAGTGGCC	GCTTGCGCAACCAATTTGCAGAT
ntPII	ATGGGGATGGAACAGATGGA	TCGAAGGAACCCTCAAG
hpt	ATGAAAAAGCCTGACCTCACCGCGA	TCGAAGGAACCCTCAAG