Mutations in the B.1.1.7 SARS-CoV-2 spike protein reduce receptor-binding affinity and induce a flexible link to the fusion peptide

Eileen Socher¹,²*, Marcus Conrad³, Lukas Heger⁴, Friedrich Paulsen¹,⁵, Heinrich Sticht³,⁶, Friederike Zunke⁷, Philipp Arnold¹*

¹Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
²Institute for Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
³Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
⁴Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
⁵Sechenov University, Department of Operative Surgery and Topographic Anatomy, Moscow, Russia
⁶Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
⁷Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

Correspondence to: eileen.socher@fau.de or philipp.arnold@fau.de

Keywords: COVID-19, SARS-CoV-2, B.1.1.7, molecular dynamics simulation, ACE2, receptor binding

Abstract

The B.1.1.7 variant of the SARS-CoV-2 virus shows enhanced infectiousness over the wild type virus, leading to increasing patient numbers in affected areas. A number of single amino acid exchanges and deletions within the trimeric viral spike protein characterize this new SARS-CoV-2 variant. Crucial for viral entry into the host cell is the interaction of the spike protein with the cell surface receptor angiotensin-converting enzyme 2 (ACE2) as well as integration of the viral fusion peptide into the host membrane. Respective amino acid exchanges within the SARS-CoV-2 variant B.1.1.7 affect inter-monomeric contact sites within the spike protein (A570D and D614G) as well as the ACE2-receptor interface region (N501Y), which comprises the receptor-binding domain (RBD) of the viral spike protein. However, the molecular consequences of mutations within B.1.1.7 on spike protein dynamics and stability, the fusion peptide, and ACE2 binding are largely unknown. Here, molecular dynamics simulations comparing SARS-CoV-2 wild type with the B.1.1.7 variant revealed inter-trimeric contact rearrangements, altering the structural flexibility within the spike protein trimer. In addition to reduced flexibility in the N-terminal domain of the spike protein, we found increased...
flexibility in direct spatial proximity of the fusion peptide. This increase in flexibility is due to salt bridge rearrangements induced by the D614G mutation in B.1.1.7 found in pre- and post-cleavage state at the S2’ site. Our results also imply a reduced binding affinity for B.1.1.7 with ACE2, as the N501Y mutation restructures the RBD-ACE2 interface, significantly decreasing the linear interaction energy between the RBD and ACE2. Our results demonstrate how mutations found within B.1.1.7 enlarge the flexibility around the fusion peptide and change the RBD-ACE2 interface, which, in combination, might explain the higher infectivity of B.1.1.7. We anticipate our findings to be starting points for in depth biochemical and cell biological analyses of B.1.1.7, but also other highly contagious SARS-CoV-2 variants, as many of them likewise exhibit a combination of the D614G and N501Y mutation.

Introduction
The outbreak of the severe acute respiratory syndrome (SARS) caused by the SARS-like coronavirus SARS-CoV-2 has emerged to a global pandemic with daily increasing numbers of infections and deaths exceeding 2.5 million world-wide\(^1\) On top of the rapid, global spread of SARS-CoV-2, new and more contagious virus variants comprise an additional threat\(^2\)\(^-\)\(^5\) The novel SARS-CoV-2 variant B.1.1.7 first emerged in southeast England in November 2020 and is estimated to be 56% more transmissible\(^6\). This variant is characterized by a number of amino acid deletions and exchanges, with most of the protein-coding mutations found within the surface-anchored spike (S) protein of the virus: del69–70HV, del144Y, N501Y, A570D, D614G, P681H, T761I, S982A, D1118H (sFig1 a). The homotrimeric S protein facilitates viral entry into host cells by interaction of its receptor-binding domain (RBD) with the cell surface receptor angiotensin-converting enzyme 2 (ACE2)\(^2\)\(^-\)\(^9\). The S protein consist of a S1 subunit, harboring the receptor-binding domain, and a S2 subunit, that is essential for viral entry into the host cell after dissociation from S1 (Fig1 a, sFig1b). Separation of S1 and S2 subunit is mediated by host cell surface proteases at the S1/S2 and S2’ cleavage sites of the S protein\(^10\),\(^11\). Previous results suggest that dramatic structural changes of the S2 unit lead to the exposure of a fusion peptide that facilitates cell membrane fusion and virus entry\(^12\). For S protein priming, human serin protease TMPRSS2 cleavage within a multi-basic (furin) cleavage site between AAs685/686 (S1/S2 cleavage site) or AAs815/816 (S2’ cleavage site) has been proposed\(^9\),\(^13\) and a recent study even suggests blocking SARS-CoV-2 infection by utilizing a TMPRSS2 inhibitor\(^9\).

Cellular uptake as well as protein structure of the S protein of the SARS-CoV-2 virus have been studied extensively. Hence, cryo-electron microscopy and crystallographic analyses of the S protein trimer\(^14\),\(^15\), ACE-2-bound S protein\(^16\) as well as ACE-2-bound receptor-binding domain\(^17\) have shed light onto the structural mechanisms of viral entry. Until now this structural information is missing for globally emerging SARS-CoV-2 variants, exhibiting several mutations within the S protein and higher infectivity. We only have a vague understanding of the molecular reasons leading to enhanced contagion and cellular uptake of SARS-CoV-2 variants like the B.1.1.7 (British), but also the B.1.351 (South African) and P.1 (Brazilian/Japanese) variants. Interestingly, these three Variants of Concern (VOC) have the N501Y and D614G mutation in common\(^2\),\(^18\)

In the present study, we focus on the B.1.1.7 variant and utilize molecular dynamics (MD) simulations of S protein trimer to assess its dynamic behavior in terms of conformational stability as well as interaction of isolated viral RBD in complex with human ACE2 to calculate linear interaction energies for wild type and mutated (N501Y) RBD-ACE2 complexes. Our data
suggest increased flexibility around the fusion peptide induced by the D614G mutation and reduced binding affinity between RBD and ACE2 due to conformational reorganization of the RBD-ACE2 interface mediated by N501Y. Upon cleavage at the S2’ cleavage site (Arg815/Ser816), a conformational switch alters partial salt bridge formation between arginine 815 and negatively charged aspartate and glutamate residues in the vicinity to keep the new C-terminus in place via non-covalent bindings.

Results

Flexibility of the spike trimer

To compare flexibility between the SARS-CoV-2 wild type (wt) and B.1.1.7 variant, root-mean-square fluctuation (RMSF) values were calculated for the backbone atoms of all individual residues over 200 ns simulation time, averaged for all six calculated monomers (two runs with three subunits per trimer) and visualized as spheres of different diameter and color according to their average RMSF values (Fig1 b, sFig2 a,b). Highest RMSF values were calculated for the RBD with flexibility of up to 10 Å especially at the interface positions where interaction with ACE2 would occur upon receptor binding (sFig2 a,b,c). In the N-terminal domain (NTD) deletions of amino acids 69, 70 and 144 induce a reduced flexibility for amino acid residues arginine 78, leucine 249 and threonine 250 in the B.1.1.7 variant (sFig2 d, Tab. 1). These residues are all located at the surface of the spike protein and are most exposed to interact with other spike trimers at the viral surface (sFig2 b,e). The loop region C-terminal of the S2’ cleavage site and the fusion peptide showed increased flexibility in the B.1.1.7 variant when compared to wt (Fig1 c, sFig2 c). Flexibility increased from a maximum of 4 Å in wt to a maximum of about 7 Å in B.1.1.7. Residues 835-843 showed markedly increased RMSF values (Tab. 2). To understand this change in flexibility we analyzed the salt bridges formed by charged residues of this amino acid stretch.

D614G induces flexibility around the fusion peptide via salt bridge rearrangement

We found lysine 835 and lysine 854 as positively charged amino acid residues in the region of this increased flexibility. Analyzing the wild type structure during MD simulation revealed interchain salt bridge formation between lysine 835 from one chain and aspartate 568 from the neighboring chain and interchain salt bridge formation between lysine 854 and aspartate 614 (Fig2 a). We also identified interchain salt bridges between arginine 646 and glutamate 868 and aspartate 867 (Fig2 a) although to a lesser extent than the other two described charged residue pairs. To analyze the consistency of these identified salt bridges we measured the interatomic distance over all three trimer subunits for both simulation runs. Therefore, we defined distances between the carbon atoms of the carboxyl groups of aspartate or glutamate and the nitrogen of the NH$_3^+$ group in the side chain of lysine or the carbon atom in ζ-position (most distal carbon in side chain) in arginine under 4 Å (preferred distance for salt bridge formation), between 4-5 Å (important for arginine residues due to the usage of the carbon atom in ζ-position) and above 5 Å (for no salt bridge formation). The interchain salt bridge, which can only be present in wild type, formed by aspartate 614 and lysine 854, is in the preferred distance of under 4 Å in about 60% of the simulation time. This indicates a certain importance for this salt bridge for local stability. For the salt bridge formed by lysine 835 from one subunit and aspartate 568 from an adjacent subunit we found distances smaller 4 Å in over 40% of the time for the wt S protein (Fig2 a). Additionally, there was no interaction found between lysine 854 and aspartate 586, arguing for a stable conformation of this fusion peptide adjacent loop region in wild type as it is supported by two salt bridges. Analyzing the
same salt bridges in the B.1.1.7 variant reveals a different salt bridge pattern. As aspartate 614 is missing (D614G), lysine 854 is unmatched in this variant. We found that both lysine residues in this region, lysine 854 and lysine 835 form partial salt bridges with aspartate 568. However, even combined, both residues are only in the preferred distance of under 4 Å in about 20% of the time. To analyze the direct effect of the D614G mutation in this matter, we also calculated MD simulations of a wt variant with an inserted glycine for aspartate at position 614 (wt+D614G). Calculating the RMSF values also revealed an increase in flexibility in the region of lysine 854 (sFig3 a). Analyzing the distances between lysine residues 854 and 835 with aspartate 568 also revealed a partial interaction between lysine 854 and aspartate 568 as found in the B.1.1.7 variant (sFig3 b). However, the interaction between lysine 835 and aspartate 568 is as strong as in wt, indicating an additional destabilizing mechanism in the B.1.1.7 variant. The additional destabilization in B.1.1.7 could be explained by the A570D mutation (Fig2 a, orange box). The newly inserted aspartate engages with lysine 964 in about 20% of the time in a preferred salt bridge distance of under 4 Å and could thereby destabilize interactions of aspartate 568 (Fig2 a). For all three variants, wt, wt+D614G and B.1.1.7 partial interaction between arginine 646 with aspartate 867 or glutamate 868 was found (Fig2 a, sFig3 b). As these residues are in close proximity of arginine 815, that is part of the S2’ cleavage site, we also analyzed interactions of this residue with surrounding negatively charged residues (Fig2 c) and found interactions with aspartate 820 and to a minor extend with aspartate 867 in this pre-cleavage state (Fig2 d). To analyze the fate of arginine 815 upon cleavage by e.g. TMPRSS2, we performed in silico cleavage between arginine 815 and serine 816 and simulated wt and B.1.1.7. The RMSF values showed the known pattern of increased flexibility for B.1.1.7 (Fig2 d) and we also analyzed salt bridges (Fig2 e). In contrast to the pre-cleavage state, where arginine 815 is in contact with aspartate 820 this interaction is lost in the post-cleavage state and arginine 815 engages with glutamate 819 in wt and B.1.1.7. In wt an additional salt bridge forms in the post-cleavage state between arginine 815 and glutamate 868 the interaction with aspartate 867 remains similar (Fig2 f). In contrast, arginine 815 from B.1.1.7 engages mainly with aspartate 867 in the post-cleavage state and there is only a small interaction with glutamate 868 (Fig2 f). These salt bridge interactions indicating a non-covalent stabilization after proteolytic priming at the S2’ position that requires a certain conformational rearrangement in this area. We also re-analyzed the stabilizing salt bridges between aspartate 614 and lysine 854 and aspartate 568 and lysine 835 in wt (Fig2 g) and found almost no change as compared to pre-cleavage conditions (Fig2 a). For B.1.1.7 we found, that the small interaction between aspartate 568 and lysine 835 is completely lost in the post-cleavage state and only the small interaction between aspartate 568 and lysine 854 remains in B.1.1.7 (Fig2 g). Of note, we also identified that interactions between arginine 646 and aspartate 867 and glutamate 868 are different in wt and B.1.1.7. While there is a more even distribution of contact formation between arginine 646 and the two negatively charged residues in wt, there is a clear preference towards glutamate 868 in B.1.1.7 (Fig2 g). Taken together, we identified how the D614 mutation (in combination with the A570D mutation) induces a loss of conformational stability that increases flexibility in a pre- and post-cleavage state. We also identified changes in salt bridge engagement of arginine 815 between a pre-cleavage (continuous protein chain) and post-cleavage state (discontinuous protein chain), that then stabilizes the new C-terminus via salt bridge rearrangement. To analyze whether this increase in flexibility in B.1.1.7 is also propagated towards the RBD over the entire S protein or is a local phenomenon, we analyzed the RMSD values over the simulation time for the RBDs (sFig3 c-e). The RMSD values were low and very similar for the variants analyzed (wt, wt+D614G and
Thus we hypothesized that changes in RBD behavior are a direct effect of the N501Y mutation and further analyzed it.

N501Y replacement displaces glutamine 498 from the SARS-CoV-2 ACE2 interface

In order to analyze binding of the S protein to the ACE2 receptor we used the isolated receptor-binding domain (RBD) in complex with ACE2 (PDB ID code: 7KMB) as starting structure for molecular dynamics simulations. The only amino acid exchange localized into the RBD is the N501Y exchange that resides at the RBD-ACE2 interface (sFig1 a). Simulation for 500 ns revealed no marked differences in structural flexibility between wt and B.1.1.7, as it can be deduced from the RMSF values (sFig4 a,b). Compared to the MD simulation of the trimeric S protein without ACE2 (unbound state), the overall flexibility was very similar, but the bound RBD (RBD-ACE2 complex) showed markedly lower RMSF values in the region between RBD residue 475 and residue 520, where most of the RBD residues are located which closely interact with ACE2 (sFig4 c). To identify changes between wt and B.1.1.7 we analyzed contacts below 5 Å over time. For the B.1.1.7 variant we identified that glutamine 498 loses almost all contacts to ACE2 residues aspartate 38 and lysine 353, while the number of contacts is strongly reduced for tyrosine 41 (sFig5 a, Tab. 3). We also identified a markedly increased number of contacts for the newly inserted tyrosine at position 501 to lysine 353 in B.1.1.7 when compared to the wt asparagine residue (sFig5 a, individual runs shown in sFig6 and sFig7). Structural analysis revealed the expulsion of glutamine 498 from the RBD-ACE2 interface due to the bulkier tyrosine side chain in the B.1.1.7 variant (sFig5 b,c). We also noticed a change in side chain conformation for lysine 353 explaining the altered contact numbers (sFig5 b,c). We were now interested in individual binding energies and decomposed the RBD-ACE2 interface.

The N501Y mutation lowers electrostatic binding in B.1.1.7

To decompose the electrostatic linear interaction energy all residues within 4 Å of ACE2 were analyzed. We identified the main electrostatic interaction in the central part of the RBD-ACE2 interface for wt and B.1.1.7. The electrostatic interaction is comprised by interaction of glutamine 493, lysine 417 and glutamine 498 with ACE2 in the wt RBD (Fig3 a,b). Regarding the B.1.1.7 variant glutamine 493 and lysine 417 also contribute majorly to electrostatic interaction between RBD and ACE2. However, glutamine 498, which was displaced from the binding interface, does not contribute to electrostatic interaction as in wt (Fig3 a,b) as markedly reduced electrostatic interaction was calculated (Fig3 c, Tab. 4). Decomposition of electrostatic interaction on the individual residue level for ACE2 reveals that lysine 353 loses its interaction with the RBD in the B.1.1.7 variant (sFig8 a,b, Tab. 5). This fits to our data on contact formation as lysine 353 from ACE2 and glutamine 498 from the RBD lose all their contacts in the B.1.1.7 variant (sFig5 a). In total, we calculated an electrostatic interaction energy of -200 kcal/mol for wt and -165 kcal/mol in B.1.1.7. Computationally more demanding calculations of the binding energy using Molecular Mechanics Generalized Born Surface Area (MM/GBSA) also imply the previously observed reduced electrostatic binding affinity (data not shown). As tyrosine is a bulkier residue than asparagine at position 501, we were now interested in van der Waals contacts also at the level of the individual residues.

Tyrosine at position 501 increases van der Waals interaction locally in B.1.1.7

Decomposition of individual van der Waals linear interaction energies identifies the edges of the RBD-ACE2 interface as important regions. Van der Waals interactions are mainly facilitated
by phenylalanine 486, tyrosine 489 and tyrosine 505 in both wt and B.1.1.7 (Fig4 a,b). A major difference was calculated for mutated residue 501 accounting for an asparagine in wt and tyrosine in B.1.1.7 (Fig4 c, Tab. 6). Here we found an increased van der Waals interaction energy in B.1.1.7. Van der Waals interaction energies did not differ in total and were calculated to be around -90 kcal/mol for both wt and B.1.1.7. The van der Waals linear interaction energy was lowered for tyrosine 41 and glutamine 42 from ACE2 (sFig9 a,b, Tab. 7).

Discussion
We used molecular dynamics simulations on (i) S protein trimers and (ii) S protein RBD-ACE2 complexes to compare wt and B.1.1.7 variants. Understanding dynamic stability of the S protein is of vital importance to comprehend molecular mechanisms underlying viral entry into the host cell. In particular, this could help to assess superior infectivity of newly emerging viral variants. Although MD simulation data on wt S protein RBD-ACE2 interaction has been reported, data on dynamic changes induced by the N501Y variant found in B.1.1.7 (British), B.1.351 (South African) and P.1 (Brazilian, Japanese) is missing. These three variants also harbor the D614G mutation, which has previously been associated with higher infectivity and viral replication. For variants carrying this D614G mutation it was also suggested that more functional S protein is incorporated into the virion membrane. However, molecular mechanisms explaining the higher infectivity of the D614G mutation are still elusive. Our data derived from simulations of the entire S trimer and comparing wt with B.1.1.7, reveal a rearrangement of salt bridges caused by the loss of interaction between position 614 due to the D614G mutation and lysine 854 in B.1.1.7. This induced flexibility at residues C-terminal of the fusion peptide is enhanced in post-cleavage conformations as also salt bridges formed by aspartate 568 are majorly lost in B.1.1.7. Release of the fusion peptide might allow a faster insertion of the latter into the host cell membrane due to the increased flexibility of the adjacent linker. This might also happen after cleavage at the S2’ position by TMPRSS2 or allow faster entry into host cells after priming the S2’ position by furin during protein secretion, especially as enhanced proteolytic cleavage was proposed for D614G S proteins. Simulation also reveals structural stability of the post-cleavage state induced by salt bridge formation involving arginine 815 that would allow such priming during protein secretion without destabilizing the overall structural integrity. The newly formed salt bridge of aspartate 570 with lysine 964 does not compensate for the loss of aspartate 614 in terms of protein stability, but might rather weaken salt bridges formed by aspartate 568. Additionally, as aspartate 614 comes from the S1 region and lysine 854 from the S2 region of the S protein, dissociation of the S1 and S2 domain of the S protein, important for membrane fusion after entry of the fusion peptide into the host cell membrane, might be enhanced. Furthermore, we show that deletions in the NTD reduce flexibility in the outer region of the S trimer, potentially allowing more spike proteins at the virion host cell interface of B.1.1.7 and thus increasing the probability of viral uptake.

Binding to ACE2 via the receptor-binding domain of the viral S protein is the first step of cellular uptake and infection. Previous reports already highlighted the importance of residues lysine 417, tyrosine 449, glutamine 493 and glutamine 498 on the RBD of the S protein for interface formation with ACE2. At ACE2, residues aspartate 30, lysine 31 and lysine 353 were also identified as important interactors with the RBD of the S protein. We could confirm the importance of the above-mentioned residues for interface formation between RBD and ACE2 here. In addition, our data suggests that the insertion of the bulkier tyrosine at position 501, as found in B.1.1.7, B.1.351 and P.1 excludes glutamine 498 from the RBD-ACE2 interaction.
interface and alters the molecular architecture of the RBD-ACE2 interface of the S protein. We measured a reduced electrostatic affinity of glutamine 498 from the S protein to residues on ACE2. For tyrosine 501 from the S protein RBD we found an increased van der Waals interaction with lysine 353 (ACE2) in the N501Y variant. Similar RMSD values of the RBD for wt and B.1.1.7 suggest that amino acid deletions/exchanges in the NTD and fusion peptide adjacent loop region cause local changes and do not change the overall flexibility of the RBD. In conclusion, our data suggest a higher mobility of the fusion peptide after release and reduced electrostatic affinity of the S protein RBD to ACE2 in B.1.1.7. This combination could allow faster membrane fusion of the virion with the host cell membrane and could be explained by (i) faster insertion of the fusion peptide and (ii) faster dissociation of the S protein RBD-ACE2 complex due to reduced electrostatic affinity. Dissociation of the S protein components is important for efficient membrane fusion after insertion of the fusion peptide. Our data might serve as a basis for advanced biochemical and cell biological experiments to better understand the importance of individual amino acid exchanges for viral pathology.

Methods

Generation of the starting structures

To generate starting structures for wild type, wild type with the D614G mutation (wt+D614G) and B.1.1.7 SARS-CoV-2 we used the protein sequence annotated in UniProt (www.uniprot.org) with the identifier P0DTC2 (SARS-CoV-2; wild-type) and changed the sequence in accordance with the reported deletions (del69-70, del144) for the SARS-CoV-2 B.1.1.7 variant. Using Swiss-Model Expasy (www.swissmodel.expasy.org) we generated a model for the SARS-CoV-2 wild type, wild type with the D614G mutation and SARS-CoV-2 B.1.1.7 variant on the basis of the Cryo-EM solved structure of the triple ACE2 bound SARS-CoV-2 spike protein trimer (PDB ID: 7KMS) and used chain A as a template. After modeling, structures were transferred into UCSF Chimera and single amino acid exchanges were inserted into the B.1.1.7 structure using the *swapaa* command. These were N501Y, A570D, D614G, P681H, T716I, S982A and D1118H. Post-translational modifications (here sugars) were removed. Monomeric spike proteins of wt, wt+D614G and B.1.1.7 were then C3 symmetrized to generate trimeric spike protein complexes and used as starting structures for molecular dynamics (MD) simulations. Cleavage of wild type and the B.1.1.7 variant was structurally implemented in the PDB files used as starting structures by adding TER records (indicates end of a chain) between arginine 815 and serine 816 in all three chains of the trimer.

To investigate the interface between the RBD of the spike protein and ACE2, the respective wild type starting structure was obtained from the PDB database (PDB ID code: 7KMB). In order to generate also the starting structure for the MD simulations of the B.1.1.7 variant the N501Y amino acid exchange was introduced with Swiss-PdbViewer 4.1.0.

Molecular dynamics simulations

Molecular dynamics simulations were performed using version 20 of the Amber Molecular Dynamics software package (ambermd.org) and the ff14SB force field. With the Amber Tool LEaP, all systems were electrically neutralized with Na\(^+\) ions and solvated with TIP3P water molecules. The trimeric SARS CoV-2 spike protein was solvated in a cuboid water box with at least 15 Å distance from the borders to the solute, whereas the receptor-binding domain (RBD) complexed with ACE2 was solvated in a water box with the shape of a truncated octahedron and at least 25 Å distance from the borders to the solute.
The simulations followed a previously applied protocol. At first, a minimization was carried out in three subsequent steps to optimize the geometry of the starting structures. In the first step of the minimization, the water molecules were minimized, while all remaining atoms were restrained with a constant force of 10 kcal·mol⁻¹·Å⁻² to the initial positions. In the second step, additional relaxation of the sodium ions and the hydrogen atoms of the protein were allowed, while the remaining protein was restrained with 10 kcal·mol⁻¹·Å⁻². In the last step, no restraints were used, so that the whole protein, the ions, and the water molecules were minimized. All three minimization parts started with 2500 steps using the steepest descent algorithm, followed by 2500 steps of a conjugate gradient minimization. After the minimization, the systems were equilibrated in two successive steps. In the first step, the temperature was raised from 10 to 310 K within 0.1 ns and the protein was restrained with a constant force of 5 kcal·mol⁻¹·Å⁻². In the second step (0.4 ns length), only the Ca atoms of the protein were restrained with a constant force of 5 kcal·mol⁻¹·Å⁻². In both equilibration steps, the time step was 2 fs. Minimization and equilibration were carried out on CPUs, whereas the subsequent production runs were performed using pmemdCUDA on Nvidia A100 GPUs. In the following, 200 ns (trimeric spike protein) or 500 ns (RBD complexed with ACE2) long production runs were conducted without any restraints and at 310 K (regulated by a Berendsen thermostat). Furthermore, the constant pressure periodic boundary conditions were used with an average pressure of 1 bar and isotropic position scaling. For bonds involving hydrogen, the SHAKE algorithm was applied in the equilibration and production phase. In order to accelerate the production phase of the molecular dynamics (MD) simulations, hydrogen mass repartitioning (HMR) was used in combination with a time step of 4 fs. The MD simulations were performed two times for all forms of the trimeric spike protein and four times for both forms of the RBD in complex with ACE2.

Trajectory analysis (analysis of root-mean-square deviation of atomic positions (RMSD), root-mean-square fluctuations (RMSF), analysis of native contacts, measurement of interatomic distances, calculation of linear interaction energy (electrostatic and van der Waals interactions, used default cutoff of 12.0 Å) was carried out using the Amber tool cpptraj. Contacts were evaluated with an in-house Perl script parsing the trajectory using the prior named Amber tools and assigning contacts based on a distance criterion of ≤5 Å between any pair of atoms, as it was done previously.

Statistics and display
Statistical analyses were generated with GraphPad Prism (version 8.0.0 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com) and statistical tests were applied as indicated below the figure. Plots were generated in GraphPad and Gnuplot (version 4.6). All structure images were made with UCSF Chimera 1.15.

Acknowledgements
The authors gratefully acknowledge the compute resources and support provided by the Erlangen Regional Computing Center (RRZE) and by NHR@FAU.

Author contributions
E.S., F.Z., P.A. conceived the study; E.S. conducted the MD simulations; E.S., M.C., P.A. performed data analysis; E.S., M.C., L.H., P.A. generated visualization of the data; E.S., H.S.,
F.P., F.Z., P.A. contributed to the design of the study as well as discussion of the data; E. S., F.Z., P.A. wrote the initial draft; all authors reviewed the manuscript prior to submission.
Literature

1. https://covid19.who.int/. World Health Organization Coronavirus Dashboard
2. Galloway, S. E.; Paul, P.; MacCannell, D. R.; Johansson, M. A.; Brooks, J. T.; MacNeil, A.; Slayton, R. B.; Tong, S.; Silk, B. J.; Armstrong, G. L.; Biggerstaff, M.; Dugan, V. G., Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep 2021, 70 (3), 95-99.
3. Leung, K.; Shum, M. H.; Leung, G. M.; Lam, T. T.; Wu, J. T., Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 2021, 26 (1).
4. Korber, B.; Fischer, W. M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Afbelalter, W.; Hengartner, N.; Giorgi, E. E.; Bhattacharya, T.; Foley, B.; Hastie, K. M.; Parker, M. D.; Partridge, D. G.; Evans, C. M.; Freeman, T. M.; de Silva, T. I.; Sheffield, C.-G. G.; McDanal, C.; Perez, L. G.; Tang, H.; Moon-Walker, A.; Whelan, S. P.; LaBranche, C. C.; Saphire, E. O.; Montefiori, D. C., Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182 (4), 812-827 e19.
5. Zhang, L.; Jackson, C. B.; Mou, H.; Ojha, A.; Peng, H.; Quinlan, B. D.; Suthar, M. S.; Li, W.; Izard, T.; Rader, C.; Farzan, M.; Choe, H., SARS-CoV-2 spike protein D614G mutation increases virion spike density and infectivity. Nat Commun 2020, 11 (1), 6013.
6. Nicholas G. Davies, R. C. B., Christopher I. Jarvis, Adam J. Kucharski, James Munday, Carl A. B. Pearson, Timothy W. Russell, Damien C. Tully, Sam Abbott, Amy Gimm, William Waites, Kerry LM Wong, Kevin van Zandvoort, CMMID COVID-19 Working Group, Rosalind M. Eggo, Sebastian Funk, Mark Jit, Katherine E. Atkins, W. John Edmunds, Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England. medRxiv 2020.12.24.20248822; doi: https://doi.org/10.1101/2020.12.24.20248822 2020.
7. Li, F.; Li, W.; Farzan, M.; Harrison, S. C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005, 309 (5742), 1864-8.
8. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579 (7798), 270-273.
9. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A.; Muller, M. A.; Drosten, C.; Pohlmann, S., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181 (2), 271-280 e8.
10. Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F., Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020, 117 (21), 11727-11734.
11. Belouzard, S.; Chu, V. C.; Whittaker, G. R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009, 106 (14), 5871-6.
12. Ou, X.; Zheng, W.; Shan, Y.; Mu, Z.; Domínguez, S. R.; Holmes, K. V.; Qian, Z., Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. J Virol 2016, 90 (12), 5586-5600.
13. Hoffmann, M.; Kleine-Weber, H.; Pohlmann, S., A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell 2020, 78 (4), 779-784 e5.
14. Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C. L.; Abiona, O.; Graham, B. S.; McLellan, J. S.; Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv 2020.

15. Walls, A. C.; Park, Y. J.; Tortorici, M. A.; Wall, A.; McGuire, A. T.; Veesler, D., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 183 (6), 1735.

16. Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G. Y.; Katsamba, P. S.; Sampson, J. M.; Schon, A.; Bimela, J.; Boyington, J. C.; Nazzari, A.; Olia, A. S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I. T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R. A.; Ho, D. D.; Mascola, J. R.; Shapiro, L.; Kwong, P. D.; Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe 2020, 28 (6), 867-879 e5.

17. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581 (7807), 215-220.

18. CDC https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html#Concern. (accessed 2021-03-17).

19. Yang, J.; Petitjean, S. J. L.; Koehler, M.; Zhang, Q.; Dumitru, A. C.; Chen, W.; Derclaye, S.; Vincent, S. P.; Soumilion, P.; Alsteens, D., Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun 2020, 11 (1), 4541.

20. Ali, A.; Vijayan, R., Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Sci Rep 2020, 10 (1), 14214.

21. Hou, Y. J.; Chiba, S.; Halfmann, P.; Ehre, C.; Kuroda, M.; Dinnon, K. H., 3rd; Leist, S. R.; Schafer, A.; Nakajima, N.; Takahashi, K.; Lee, R. E.; Mascenik, T. M.; Edwards, C. E.; Tse, L. V.; Boucher, R. C.; Randell, S. H.; Suzuki, T.; Graalinski, L. E.; Kawaoka, Y.; Baric, R. S., SARS-CoV-2 D614G Variant Exhibits Enhanced Replication ex vivo and Earlier Transmission in vivo. bioRxiv 2020.

22. Kathy Leung, Y. P., Gabriel M Leung, Tommy T. Y. Lam, Joseph T. Wu, Empirical transmission advantage of the D614G mutant strain of SARS-CoV-2. medRxiv 2020.09.22.20199810; doi: https://doi.org/10.1101/2020.09.22.20199810, 2020.

23. Volz, E.; Hill, V.; McCrone, J. T.; Price, A.; Jorgensen, D.; O'Toole, A.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F. F.; Rey, S. M.; Nicholls, S. M.; Colquhoun, R. M.; da Silva Filipe, A.; Shepherd, J.; Pascal, D. J.; Shah, R.; Jesudason, N.; Li, K.; Jarrett, R.; Pacchiarini, N.; Bull, M.; Geidelberg, L.; Siveroni, I.; Consortium, C.-U.; Goodfellow, I.; Loman, N. J.; Pybus, O. G.; Robertson, D. L.; Thomson, E. C.; Rambaut, A.; Connor, T. R., Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021, 184 (1), 64-75 e11.

24. Plante, J. A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B. A.; Lokugamage, K. G.; Zhang, X.; Muruato, A. E.; Zou, J.; Fontes-Garfias, C. R.; Mirchandani, D.; Scharton, D.; Bilello, J. P.; Ku, Z.; An, Z.; Kalveram, F.; Freiberg, A. N.; Menachery, V. D.; Xie, X.; Plante, K. S.; Weaver, S. C.; Shi, P. Y., Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020.

25. Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010, 84 (24), 12658-64.

26. Gobeil, S. M.; Janowska, K.; McDowell, S.; Mansouri, K.; Parks, R.; Manne, K.; Stalls, V.; Kopp, M. F.; Henderson, R.; Edwards, R. J.; Haynes, B. F.; Acharya, P., D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Rep 2021, 34 (2), 108630.
27. Benton, D. J.; Wrobel, A. G.; Xu, P.; Roustan, C.; Martin, S. R.; Rosenthal, P. B.; Skehel, J. J.; Gamblin, S. J., Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. *Nature* 2020, 588 (7837), 327-330.

28. Starr, T. N.; Greaney, A. J.; Hilton, S. K.; Ellis, D.; Crawford, K. H. D.; Dingens, A. S.; Navarro, M. J.; Bowen, J. E.; Tortorici, M. A.; Walls, A. C.; King, N. P.; Veesler, D.; Bloom, J. D., Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. *Cell* 2020, 182 (5), 1295-1310 e20.

29. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* 2004, 25 (13), 1605-12.

30. Case, D. A.; Belfon, K.; Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; III, T. E. C.; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Harris, R.; Izadi, S.; S.A. Izmailov, K. K., A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, Y. Xiong, Y. Xue, D.M. York and P.A. Kollman AMBER 2020. *University of California, San Francisco* 2020.

31. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J Chem Theory Comput* 2015, 11 (8), 3696-713.

32. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. *J Chem Phys* 1983, 79 (2), 926-935.

33. Socher, E.; Sticht, H.; Horn, A. H. C., The conformational stability of nonfibrillar amyloid-beta peptide oligomers critically depends on the C-terminal peptide length. *ACS Chem Neurosci* 2014, 5 (3), 161-7.

34. Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C., Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. *J Chem Theory Comput* 2013, 9 (9), 3878-88.

35. Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C., Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. *J Chem Theory Comput* 2012, 8 (5), 1542-1555.

36. Le Grand, S.; Götz, A. W.; Walker, R. C., SPFP: Speed without compromise-A mixed precision model for GPU accelerated molecular dynamics simulations. *Comput Phys Commun* 2013, 184 (2), 374-380.

37. Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R., Molecular-Dynamics with Coupling to an External Bath. *J Chem Phys* 1984, 81 (8), 3684-3690.

38. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C., Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. *J Comput Phys* 1977, 23 (3), 327-341.

39. Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E., Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. *J Chem Theory Comput* 2015, 11 (4), 1864-74.

40. Roe, D. R.; Cheatham, T. E., 3rd, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. *J Chem Theory Comput* 2013, 9 (7), 3084-95.
41. Söldner, C. A.; Horn, A. H. C.; Sticht, H., Interaction of Glycolipids with the Macrophage Surface Receptor Mincle - a Systematic Molecular Dynamics Study. *Sci Rep* 2018, *8* (1), 5374.
Figure 1: Structural flexibility in the B.1.1.7 SARS-CoV-2 S protein. a) Schematic primary structure of the SARS-CoV-2 S protein indicating the site of amino acid deletions (red arrowheads) or single amino acid exchanges (blue arrowheads; NTD, N-terminal domain; RBD, receptor-binding domain; S1/S2, furin cleavage site at positions 685/686; S2’, furin/TMPRSS2 cleavage site at positions 815/816; FP, fusion peptide; TM, transmembrane domain and C-terminal end). b) S protein trimer as it would reside on the cell surface with one subunit colored for structural flexibility as calculated during simulation (root-mean-square fluctuations (RMSF), n = 6). NTD denotes the N-terminal domain, RBD the receptor-binding domain and the grey arrowhead the loop region between amino acids 835-843. c) Line plot of RMSF values for amino acid residues 800-900 reveals increased flexibility for residues 835 and 843 in B.1.1.7 (orange) when compared to wt (blue). The arrowhead denotes the same region as in b) and the asterisk indicates statistical differences for these amino acids (n = 6; two-way ANOVA; statistical significance assumed for *p<0.05; full statistic can be found in Tab. 2).
Figure 2: Salt bridge stability is altered upon D614 mutation in pre- and post-cleavage state.

a) Stability of a fusion peptide (aquamarine) adjacent loop region is mediated by salt bridge formation between aspartate 614 (Asp614) from one chain and lysine 854 (Lys854'; ' denotes residues from a neighboring chain) from the neighboring chain in wild type (wt; blue background). An additional salt bridge is formed by aspartate 568 (Asp568) and lysine 835 (Lys835') from the neighboring chain in wt. In B.1.1.7 (orange background) this interaction is weaker and the newly inserted aspartate at position 570 (A570D) forms an additional salt bridge with lysine 964 (Lys964'). In close proximity of arginine 815 (part of the S2’ cleavage site) ionic interaction was measured between arginine 646 (Arg646) and aspartate 867 (Asp867') and glutamate 868 (Glu868').

b) Structural representation of the wt pre-cleavage state (continuous polypeptide chain; similar in B.1.1.7) with negatively charged residues glutamate 819 (Glu819), aspartate 820 (Asp820), aspartate 867 (Asp867) and glutamate 868 (Glu868).
(Glu868) shown around arginine 815 (Arg815). c) Percentage of salt bridge formation over time for four negatively charged residues with arginine 815 in the pre-cleavage state. d) Average RMSF values plotted against the residue numbers for wt and B.1.1.7 after in silico proteolytic cleavage at the S2' site (aquamarine bar; FP = fusion peptide). e) Structural representation of the wt post-cleavage state (discontinuous polypeptide chain with a break between arginine 815 and serine 816; similar in B.1.1.7) with negatively charged residues glutamate 819 (Glu819), aspartate 820 (Asp820), aspartate 867 (Asp867) and glutamate 868 (Glu868) shown around arginine 815 (Arg815). f) Percentage of salt bridge formation over time for four different residue pairs in the post-cleavage state. g) Percentage of salt bridge formation over time for the stabilizing salt bridge pairs as analyzed in a).
Figure 3: Electrostatic affinity between the RBD and ACE2. a) Structural representation of the RBD (wild type, wt: blue; B.1.1.7: orange) in complex with ACE2 (grey). RBD residues with atoms within a maximum distance of 4 Å from ACE2 are shown as spheres with radii and colors according to their electrostatic linear interaction energy to ACE2. b) View on the interacting interface of the RBD with ACE2. Residue color and atom size represent their electrostatic linear interaction energy to ACE2. c) Quantification of electrostatic linear interaction energy for all residues within 4 Å distance of ACE2 (n = 4; two-way ANOVA; statistical significance assumed for *p<0.05; full list of results in Tab. 4).
Figure 4: Van der Waals linear interaction energy between the RBD and ACE2. a) Structural representation of the RBD (wild type, wt: blue; B.1.1.7: orange) in complex with ACE2. RBD residues with atoms within a maximum distance of 4 Å from ACE2 are shown as spheres with radii and colors according to their van der Waals linear interaction energy to ACE2. b) View on the interacting interface of the RBD with ACE2. Residue color and atom size represent the van der Waals linear interaction energy to ACE2. c) Quantification of van der Waals linear interaction energy for all RBD residues within 4 Å distance of ACE2 (n = 4; two-way ANOVA; statistical significance assumed for *p<0.05; full list of results in Tab. 6).
sFig1: a) Structural representation of the SARS-CoV-2 S protein on the viral surface with amino acid residues shown as spheres that are deleted (red) or mutated (blue) in the B.1.1.7 variant. b) Structural representation of the SARS-CoV-2 S protein on the viral surface with domains highlighted in color as in figure 1a (N-terminal domain, NTD in pink; receptor-binding domain, RBD in green; S1 region in khaki; S1/S2 and S2’ cleavage sites in yellow with amino acids as spheres; fusion peptide in cyan; S2 domain in red).
sFig2: a) Structural representation of the SARS-CoV-2 S protein in side view on the viral surface with residues shown as colored spheres for one subunit according to their RMSF value (grey arrowhead, flexible loop region in B.1.1.7). b) Top view of a). c) Line plot of RMSF values for calculated averages of six subunits of the wt (blue) and B.1.1.7 (orange) S protein. d) Line plot of RMSF values averaged over six subunits of the N-terminal domain from wt (blue) and B.1.1.7 (orange). Asterisks indicate positions of significant differences (n = 6; two-way ANOVA; significance assumed for p<0.05; full list in Tab. 1). e) Structural representation of the N-terminal domain colored according to RMSF values. Residues that differ significantly in RMSF values are represented as spheres. Additionally, His69 and Val70 are shown for wild type (wt) and are missing as del69,70 in B.1.1.7 (n = 6; two-way ANOVA; significance assumed for *p<0.05; full list in Tab. 1). NTD = N-terminal domain, RBD = receptor-binding domain, Lp = loop region around amino acids 836-844.
sFig3: a) Line plot of root-mean-square fluctuation (RMSF) values for amino acid residues 800 to 900. Averages were calculated for all three trimer subunits and both simulation runs of the wild type (wt, blue) and wt+D614G variant (green). b) Percentage of salt bridge formation over time for four different residue pairs. All residue pairs represent interchain interactions with residues from two different, but directly neighboring chains within the trimeric spike protein. c-e) Conformational stability was measured as root-mean-square deviation (RMSD) values over simulation time for the receptor-binding domain (RBD) of c) the wild type d) the B.1.1.7 variant and e) the wild type with the D614G mutation. One representative plot is shown for wild type spike protein and its variants.
sFig4: a) Structural flexibility of the receptor-binding domain-ACE2 (RBD-ACE2) complex. Residues are colored and shown as spheres of different size according to their individual RMSF values. RBD denotes the receptor-binding domain and ACE2 the angiotensin-converting enzyme 2. b) Line plot of RMSF values averaged over four molecular dynamics (MD) simulation runs for the RBD-ACE2 complex with wild type (wt) in blue and the B.1.1.7 variant in orange. c) Line plot of RMSF values from the RBD in the unbound state (from the S protein trimer MD simulations) and in the bound state to ACE2 (from the RBD-ACE2 complex MD simulations).
sFig5: Average number of contacts for residues from ACE2 and the receptor-binding domain (RBD). Residues were included when they came in closer proximity than 5 Å. Loss of contacts were calculated for glutamine 498 (Gln498) in B.1.1.7, and gain of contacts for the newly inserted tyrosine at position 501 (Tyr501) with lysine 353 (Lys353). Wild type (wt) is shown in blue and B.1.1.7 in orange (n = 4, two-way ANOVA; statistical significance was assumed for *p<0.05; full list of results in Tab. 3). b) Structure of the RBD-ACE2 interface with residues.
asparagine 501 (Asn501; wild type in blue) or tyrosine 501 (Tyr501; B.1.1.7 in orange),
glutamine 498 (Gln498) (all from RBD) and lysine 353 (green) from ACE2 shown in ball-and-
stick. Yellow residues represent the starting conformation and residues in cyan are
representative residue side chain conformations acquired during molecular dynamics
simulation.
sFig6: Individual intermolecular contact plots for all four molecular dynamics (MD) simulation runs of the wild type RBD-ACE2 complex. The number of contacts, calculated as the number of interresidue atom pairs that are within a maximum distance of 5 Å from each other, was plotted color-coded for intermolecular residue pairs over the simulation time. For instance, the residue pair Lys353-Asn501, with Lys353 expressed on ACE2 and Asn501 expressed on the RBD, has in all four MD simulations a calculated number of contacts between 40 and 60 over the whole simulation time. Residue pairs with asparagine 501 are highlighted in blue.
sFig7: Individual intermolecular contact plots for all four molecular dynamics (MD) simulation runs of the B.1.1.7 RBD-ACE2 complex. The number of contacts, calculated as the number of interresidue atom pairs that are within a maximum distance of 5 Å from each other, was plotted color-coded for intermolecular residue pairs over the simulation time. For instance, the residue pair Lys353-Tyr501, with Lys353 expressed on ACE2 and Tyr501 expressed on the mutated RBD, has in all four MD simulations a calculated number of contacts around 80 over the whole simulation time. Residue pairs with mutated tyrosine 501 are highlighted in orange.
sFig8: a) Electrostatic affinity shown on the RBD-ACE2 interface for ACE2 residues. Residues in closer contact than 4 Å are shown as spheres of different size and color according to their electrostatic affinity with the RBD. b) Quantification of the electrostatic linear interaction energy for all residues within a radius of 4 Å around the receptor-binding domain (n =4; two-way ANOVA; statistical significance was assumed for *p<0.05; full list of results in Tab. 5).
sFig9: a) Van der Waals linear interaction energy shown on the RBD-ACE2 interface for ACE2 residues. Residues in closer contact than 4 Å are shown as spheres of different size and color according to their van der Waals linear interaction energy with the RBD. b) Quantification of the van der Waals linear interaction energy for all residues within a radius of 4 Å around the receptor-binding domain (n = 4; two-way ANOVA; statistical significance was assumed for *p<0.05; full list of results in Tab. 7).
Tab.1: Statistical analysis of rmsf plots from wt and B.1.1.7 spike protein residues 26-300 (n =6; two-way ANOVA; significance assumed for *p<0.05).

Residue number	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
26	-0.8329	-2.402 to 0.7364	No	ns	>0.9999
27	-0.6505	-2.228 to 0.9103	No	ns	>0.9999
28	0.008633	-1.561 to 1.578	No	ns	>0.9999
29	0.07943	-1.491 to 1.640	No	ns	>0.9999
30	0.1215	-1.448 to 1.691	No	ns	>0.9999
31	0.1223	-1.449 to 1.699	No	ns	>0.9999
32	0.09778	-1.472 to 1.667	No	ns	>0.9999
33	0.1022	-1.467 to 1.671	No	ns	>0.9999
34	0.09572	-1.473 to 1.666	No	ns	>0.9999
35	0.1199	-1.449 to 1.649	No	ns	>0.9999
36	0.1115	-1.458 to 1.681	No	ns	>0.9999
37	0.1039	-1.466 to 1.673	No	ns	>0.9999
38	0.05173	-1.518 to 1.621	No	ns	>0.9999
39	0.01948	-1.550 to 1.558	No	ns	>0.9999
40	0.01925	-1.550 to 1.559	No	ns	>0.9999
41	0.01545	-1.554 to 1.558	No	ns	>0.9999
42	0.02265	-1.592 to 1.547	No	ns	>0.9999
43	0.001013	-1.586 to 1.570	No	ns	>0.9999
44	0.02318	-1.541 to 1.597	No	ns	>0.9999
45	0.07722	-1.492 to 1.647	No	ns	>0.9999
46	0.1215	-1.448 to 1.691	No	ns	>0.9999
47	0.1766	-1.393 to 1.746	No	ns	>0.9999
48	0.1380	-1.411 to 1.727	No	ns	>0.9999
49	0.1641	-1.405 to 1.733	No	ns	>0.9999
50	0.1397	-1.450 to 1.709	No	ns	>0.9999
51	0.1277	-1.447 to 1.692	No	ns	>0.9999
52	0.1026	-1.467 to 1.672	No	ns	>0.9999
53	0.08502	-1.483 to 1.655	No	ns	>0.9999
54	0.04920	-1.520 to 1.619	No	ns	>0.9999
55	0.05165	-1.518 to 1.621	No	ns	>0.9999
56	0.04797	-1.521 to 1.617	No	ns	>0.9999
57	0.06490	-1.504 to 1.634	No	ns	>0.9999
58	0.06837	-1.501 to 1.638	No	ns	>0.9999
59	0.05853	-1.511 to 1.628	No	ns	>0.9999
60	0.03623	-1.533 to 1.606	No	ns	>0.9999
61	0.05272	-1.517 to 1.622	No	ns	>0.9999
---	-------	------------	---	------	---
62	0.05685	-1.512 to 1.626	No	ns	>0.9999
63	0.1154	-1.454 to 1.685	No	ns	>0.9999
64	0.1579	-1.411 to 1.727	No	ns	>0.9999
65	0.1976	-1.372 to 1.767	No	ns	>0.9999
66	0.2034	-1.366 to 1.773	No	ns	>0.9999
67	0.364	-1.263 to 1.876	No	ns	>0.9999
68	0.5059	-1.063 to 2.075	No	ns	>0.9999
71	1.499	-0.07048 to 3.068	No	ns	0.0938
72	1.665	0.09940 to 3.232	No	ns	0.207
73	1.384	-0.1854 to 2.953	No	ns	0.2346
74	1.084	-0.4849 to 2.654	No	ns	0.9295
75	1.143	-0.4268 to 2.712	No	ns	0.838
76	1.106	-0.4634 to 2.675	No	ns	0.8381
77	1.355	-0.2140 to 2.925	No	ns	0.2878
78	1.853	0.1833 to 3.421	Yes	**	0.0029
79	1.558	-0.01083 to 3.128	No	ns	0.0552
80	1.443	-0.1268 to 3.012	No	ns	0.1493
81	1.040	-0.05285 to 2.610	No	ns	0.9721
82	0.9768	-0.5525 to 2.546	No	ns	0.9956
83	0.5730	-0.9963 to 2.142	No	ns	>0.9999
84	0.2178	-1.352 to 1.787	No	ns	>0.9999
85	0.0842	-1.471 to 1.668	No	ns	>0.9999
86	0.0745	-1.495 to 1.644	No	ns	>0.9999
87	0.07285	-1.496 to 1.642	No	ns	>0.9999
88	0.04062	-1.529 to 1.610	No	ns	>0.9999
89	0.04402	-1.525 to 1.613	No	ns	>0.9999
90	0.06403	-1.505 to 1.633	No	ns	>0.9999
91	0.1100	-1.450 to 1.600	No	ns	>0.9999
92	0.1667	-1.403 to 1.736	No	ns	>0.9999
93	0.2036	-1.366 to 1.773	No	ns	>0.9999
94	0.2328	-1.337 to 1.802	No	ns	>0.9999
95	0.2515	-1.318 to 1.821	No	ns	>0.9999
96	0.2559	-1.313 to 1.825	No	ns	>0.9999
97	0.05010	-1.479 to 1.659	No	ns	>0.9999
98	-0.04817	-1.617 to 1.521	No	ns	>0.9999
99	-0.04390	-1.613 to 1.525	No	ns	>0.9999
100	0.2482	-1.321 to 1.818	No	ns	>0.9999
101	0.2560	-1.273 to 1.665	No	ns	>0.9999
102	0.2943	-1.275 to 1.864	No	ns	>0.9999
103	0.2991	-1.270 to 1.668	No	ns	>0.9999
104	0.3596	-1.310 to 1.829	No	ns	>0.9999
105	0.2179	-1.351 to 1.787	No	ns	>0.9999
106	0.1703	-1.399 to 1.740	No	ns	>0.9999
107	0.1356	-1.434 to 1.705	No	ns	>0.9999
108	0.1081	-1.461 to 1.677	No	ns	>0.9999
109	0.08800	-1.471 to 1.667	No	ns	>0.9999
---	---	---	---	---	---
110	0.08167	-1.486 to 1.651	No	ns	>0.9999
111	0.1226	-1.447 to 1.692	No	ns	>0.9999
112	0.1433	-1.426 to 1.713	No	ns	>0.9999
113	0.1239	-1.445 to 1.690	No	ns	>0.9999
114	0.1017	-1.468 to 1.671	No	ns	>0.9999
115	0.06857	-1.471 to 1.666	No	ns	>0.9999
116	0.1169	-1.452 to 1.686	No	ns	>0.9999
117	0.1226	-1.437 to 1.702	No	ns	>0.9999
118	0.1560	-1.413 to 1.725	No	ns	>0.9999
119	0.1954	-1.374 to 1.765	No	ns	>0.9999
120	0.2262	-1.343 to 1.795	No	ns	>0.9999
121	0.2807	-1.289 to 1.650	No	ns	>0.9999
122	0.2631	-1.306 to 1.632	No	ns	>0.9999
123	0.2266	-1.343 to 1.796	No	ns	>0.9999
124	0.2003	-1.369 to 1.770	No	ns	>0.9999
125	0.3611	-1.188 to 1.956	No	ns	>0.9999
126	0.3791	-1.130 to 1.948	No	ns	>0.9999
127	0.3244	-1.245 to 1.694	No	ns	>0.9999
128	0.2923	-1.277 to 1.862	No	ns	>0.9999
129	0.2453	-1.324 to 1.815	No	ns	>0.9999
130	0.2128	-1.356 to 1.782	No	ns	>0.9999
131	0.1640	-1.364 to 1.754	No	ns	>0.9999
132	0.1594	-1.410 to 1.723	No	ns	>0.9999
133	0.1386	-1.431 to 1.708	No	ns	>0.9999
134	0.1484	-1.421 to 1.718	No	ns	>0.9999
135	0.1306	-1.439 to 1.700	No	ns	>0.9999
136	0.03127	-1.538 to 1.601	No	ns	>0.9999
137	0.1496	-1.420 to 1.719	No	ns	>0.9999
138	0.2176	-1.352 to 1.787	No	ns	>0.9999
139	0.2701	-1.259 to 1.639	No	ns	>0.9999
140	0.1339	-1.435 to 1.703	No	ns	>0.9999
141	0.09455	-1.475 to 1.664	No	ns	>0.9999
142	-0.02252	-1.552 to 1.547	No	ns	>0.9999
143	-0.1161	-1.685 to 1.453	No	ns	>0.9999
144	0.5314	-1.038 to 2.101	No	ns	>0.9999
145	0.8515	-0.717 to 2.421	No	ns	>0.9999
146	1.087	-0.482 to 2.657	No	ns	>0.9999
147	1.261	-0.2864 to 2.850	No	ns	>0.9999
148	0.4073	-1.162 to 1.577	No	ns	>0.9999
149	0.2902	-1.279 to 1.660	No	ns	>0.9999
150	0.2379	-1.331 to 1.807	No	ns	>0.9999
151	0.1059	-1.463 to 1.675	No	ns	>0.9999
152	0.04577	-1.524 to 1.615	No	ns	>0.9999
153	-0.1927	-1.762 to 1.377	No	ns	>0.9999
154	-0.1415	-1.711 to 1.428	No	ns	>0.9999
155	-0.1053	-1.675 to 1.464	No	ns	>0.9999
----	------	------------	---	---	
157	-0.1428	-1.712 to 1.427	No	ns	
158	0.2235	-1.347 to 1.792	No	ns	
159	0.4210	-1.148 to 1.990	No	ns	
160	0.2989	-1.070 to 1.668	No	ns	
161	0.3439	-1.225 to 1.913	No	ns	
162	0.4896	-1.080 to 2.059	No	ns	
163	0.4112	-1.158 to 1.980	No	ns	
164	0.1765	-1.393 to 1.746	No	ns	
165	0.02417	-1.546 to 1.593	No	ns	
166	0.01922	-1.550 to 1.589	No	ns	
167	0.1414	-1.428 to 1.711	No	ns	
168	0.1849	-1.384 to 1.754	No	ns	
169	0.1906	-1.379 to 1.760	No	ns	
170	0.2256	-1.343 to 1.796	No	ns	
171	0.3555	-1.314 to 1.825	No	ns	
172	0.2866	-1.283 to 1.856	No	ns	
173	0.2792	-1.291 to 1.848	No	ns	
174	0.2838	-1.286 to 1.853	No	ns	
175	0.3901	-1.179 to 1.959	No	ns	
176	0.5244	-1.045 to 2.094	No	ns	
177	0.5021	-1.067 to 2.071	No	ns	
178	0.2040	-1.365 to 1.773	No	ns	
179	0.1538	-1.417 to 1.722	No	ns	
180	0.27963	-1.493 to 1.646	No	ns	
181	0.1702	-1.449 to 1.669	No	ns	
182	0.06235	-1.632 to 1.507	No	ns	
183	-0.1550	-1.724 to 1.414	No	ns	
184	0.1200	-1.149 to 1.689	No	ns	
185	0.3601	-1.209 to 1.929	No	ns	
186	0.2735	-1.296 to 1.843	No	ns	
187	0.06557	-1.504 to 1.635	No	ns	
188	-0.006367	-1.576 to 1.563	No	ns	
189	0.1482	-1.421 to 1.717	No	ns	
190	0.1683	-1.401 to 1.738	No	ns	
191	0.2178	-1.351 to 1.787	No	ns	
192	0.3063	-1.363 to 1.776	No	ns	
193	0.1819	-1.387 to 1.751	No	ns	
194	0.1470	-1.422 to 1.716	No	ns	
195	0.1175	-1.452 to 1.687	No	ns	
196	0.08248	-1.487 to 1.652	No	ns	
197	0.05312	-1.516 to 1.622	No	ns	
198	0.02153	-1.591 to 1.548	No	ns	
199	-0.02647	-1.556 to 1.543	No	ns	
200	-0.05638	-1.626 to 1.513	No	ns	
201	0.01135	-1.358 to 1.381	No	ns	
202	0.02795	-1.541 to 1.597	No	ns	
---	--------	------------	---	-------	---
203	0.06480	-1.505 to 1.634	No	ns	>0.9999
204	0.08737	-1.482 to 1.657	No	ns	>0.9999
205	0.1054	-1.464 to 1.675	No	ns	>0.9999
206	0.1135	-1.438 to 1.701	No	ns	>0.9999
207	0.1754	-1.394 to 1.745	No	ns	>0.9999
208	0.2154	-1.354 to 1.788	No	ns	>0.9999
209	0.2319	-1.337 to 1.801	No	ns	>0.9999
210	0.2664	-1.303 to 1.836	No	ns	>0.9999
211	0.1726	-1.357 to 1.742	No	ns	>0.9999
212	0.2048	-1.363 to 1.775	No	ns	>0.9999
213	-0.00950	-1.578 to 1.560	No	ns	>0.9999
214	0.1831	-1.386 to 1.752	No	ns	>0.9999
215	0.1034	-1.466 to 1.673	No	ns	>0.9999
216	0.09808	-1.471 to 1.667	No	ns	>0.9999
217	0.1122	-1.457 to 1.681	No	ns	>0.9999
218	0.2728	-1.462 to 1.647	No	ns	>0.9999
219	0.04660	-1.533 to 1.616	No	ns	>0.9999
220	0.0433	-1.525 to 1.614	No	ns	>0.9999
221	0.06770	-1.502 to 1.637	No	ns	>0.9999
222	0.1077	-1.462 to 1.677	No	ns	>0.9999
223	0.1143	-1.455 to 1.684	No	ns	>0.9999
224	0.1089	-1.460 to 1.678	No	ns	>0.9999
225	0.07860	-1.491 to 1.648	No	ns	>0.9999
226	0.04960	-1.520 to 1.619	No	ns	>0.9999
227	0.03652	-1.533 to 1.606	No	ns	>0.9999
228	0.04048	-1.529 to 1.610	No	ns	>0.9999
229	0.04085	-1.528 to 1.610	No	ns	>0.9999
230	0.04428	-1.525 to 1.614	No	ns	>0.9999
231	0.04500	-1.524 to 1.614	No	ns	>0.9999
232	0.01142	-1.558 to 1.681	No	ns	>0.9999
233	-0.04212	-1.611 to 1.527	No	ns	>0.9999
234	-0.06218	-1.632 to 1.507	No	ns	>0.9999
235	-0.06130	-1.631 to 1.508	No	ns	>0.9999
236	0.03673	-1.533 to 1.606	No	ns	>0.9999
237	0.06193	-1.507 to 1.631	No	ns	>0.9999
238	0.08870	-1.461 to 1.658	No	ns	>0.9999
239	0.1230	-1.446 to 1.692	No	ns	>0.9999
240	0.1599	-1.409 to 1.729	No	ns	>0.9999
241	0.1866	-1.383 to 1.756	No	ns	>0.9999
242	0.2026	-1.367 to 1.772	No	ns	>0.9999
243	0.1846	-1.385 to 1.754	No	ns	>0.9999
244	0.1943	-1.375 to 1.764	No	ns	>0.9999
245	0.2541	-1.315 to 1.823	No	ns	>0.9999
246	0.3629	-1.206 to 1.232	No	ns	>0.9999
247	0.2525	-1.317 to 1.822	No	ns	>0.9999
248	0.8441	-0.725 to 2.413	No	ns	>0.9999
---	---	---	---	---	---
249	1,800	0.2307 to 3.359	Yes	**	0.0051
250	1,981	0.4121 to 3.551	Yes	***	0.0007
251	1,504	-0.06485 to 3.074	No	ns	0.0890
252	1,468	-0.1018 to 3.037	No	ns	0.1217
253	1,063	-0.5060 to 2.633	No	ns	0.9534
254	-0.1437	-1.713 to 1.426	No	ns	>0.9999
255	-0.2500	-1.815 to 1.319	No	ns	>0.9999
256	0.03272	-1.537 to 1.602	No	ns	>0.9999
257	-0.3874	-1.957 to 1.182	No	ns	>0.9999
258	-0.1291	-1.598 to 1.140	No	ns	>0.9999
259	-0.04410	-1.613 to 1.525	No	ns	>0.9999
260	0.5206	-1.049 to 2.090	No	ns	>0.9999
261	0.4462	-1.123 to 2.016	No	ns	>0.9999
262	0.2288	-1.340 to 1.798	No	ns	>0.9999
263	0.2676	-1.302 to 1.837	No	ns	>0.9999
264	0.2012	-1.468 to 1.670	No	ns	>0.9999
265	0.1265	-1.441 to 1.658	No	ns	>0.9999
266	0.1797	-1.390 to 1.749	No	ns	>0.9999
267	0.2085	-1.361 to 1.778	No	ns	>0.9999
268	0.1588	-1.411 to 1.728	No	ns	>0.9999
269	0.1300	-1.439 to 1.659	No	ns	>0.9999
270	0.09663	-1.474 to 1.666	No	ns	>0.9999
271	0.08532	-1.494 to 1.655	No	ns	>0.9999
272	0.05353	-1.516 to 1.673	No	ns	>0.9999
273	0.05000	-1.515 to 1.619	No	ns	>0.9999
274	0.06108	-1.508 to 1.630	No	ns	>0.9999
275	0.06670	-1.503 to 1.636	No	ns	>0.9999
276	0.07000	-1.496 to 1.639	No	ns	>0.9999
277	0.08763	-1.482 to 1.657	No	ns	>0.9999
278	0.09057	-1.479 to 1.660	No	ns	>0.9999
279	0.1078	-1.461 to 1.677	No	ns	>0.9999
280	0.1234	-1.446 to 1.693	No	ns	>0.9999
281	0.1413	-1.428 to 1.711	No	ns	>0.9999
282	0.1514	-1.418 to 1.711	No	ns	>0.9999
283	0.1191	-1.450 to 1.688	No	ns	>0.9999
284	0.07558	-1.494 to 1.615	No	ns	>0.9999
285	0.07423	-1.495 to 1.644	No	ns	>0.9999
286	0.07518	-1.494 to 1.644	No	ns	>0.9999
287	0.1054	-1.464 to 1.675	No	ns	>0.9999
288	0.1002	-1.468 to 1.670	No	ns	>0.9999
289	0.08875	-1.480 to 1.659	No	ns	>0.9999
290	0.07340	-1.496 to 1.648	No	ns	>0.9999
291	0.05165	-1.518 to 1.621	No	ns	>0.9999
292	0.04812	-1.527 to 1.611	No	ns	>0.9999
293	0.01307	-1.550 to 1.582	No	ns	>0.9999
294	0.004067	-1.565 to 1.573	No	ns	>0.9999
295	-0.01487	-1.584 to 1.554	No	ns	>0.9999
296	-0.02013	-1.589 to 1.549	No	ns	>0.9999
Tab. 2: Statistical analysis of rmsf plots from wt and B.1.1.7 spike protein residues 800-900 (n = 6; two-way ANOVA; significance assumed for *p<0.05).

Residue number	Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value		
800	-0.1280	-1.995 to 1.739	No	ns	>0.999		
801	-0.2166	-2.084 to 1.650	No	ns	>0.999		
802	-0.2180	-2.086 to 1.648	No	ns	>0.999		
803	-0.2493	-2.116 to 1.618	No	ns	>0.999		
804	-0.3089	-2.174 to 1.560	No	ns	>0.999		
805	-0.2610	-2.118 to 1.666	No	ns	>0.999		
806	-0.2261	-2.093 to 1.641	No	ns	>0.999		
807	-0.1018	-1.959 to 1.765	No	ns	>0.999		
808	0.05743	-1.799 to 1.934	No	ns	>0.999		
809	0.04395	-1.911 to 1.823	No	ns	>0.999		
810	-0.1864	-2.053 to 1.681	No	ns	>0.999		
811	-0.2875	-2.154 to 1.579	No	ns	>0.999		
812	-0.3187	-2.136 to 1.548	No	ns	>0.999		
813	-0.4475	-2.314 to 1.419	No	ns	>0.999		
814	-0.3771	-2.244 to 1.490	No	ns	>0.999		
815	-0.3110	-2.178 to 1.536	No	ns	>0.999		
816	-0.2772	-2.144 to 1.590	No	ns	>0.999		
817	-0.2562	-2.123 to 1.611	No	ns	>0.999		
818	-0.2571	-2.124 to 1.610	No	ns	>0.999		
819	-0.2522	-2.119 to 1.615	No	ns	>0.999		
820	-0.2137	-2.081 to 1.653	No	ns	>0.999		
821	-0.2046	-2.071 to 1.662	No	ns	>0.999		
822	-0.1648	-2.032 to 1.702	No	ns	>0.999		
823	-0.2029	-2.070 to 1.664	No	ns	>0.999		
824	-0.2830	-2.150 to 1.584	No	ns	>0.999		
825	-0.3213	-2.188 to 1.546	No	ns	>0.999		
826	-0.1972	-2.064 to 1.670	No	ns	>0.999		
827	-0.3541	-2.221 to 1.513	No	ns	>0.999		
828	-0.4083	-2.276 to 1.458	No	ns	>0.999		
829	-0.9103	-2.777 to 0.9567	No	ns	>0.999		
830	-1.089	-2.956 to 0.777	No	ns	0.9862		
831	-1.121	-3.079 to 0.8549	No	ns	0.9084		
832	-1.656	-5.522 to 0.2113	No	ns	0.1845		
833	-1.782	-5.649 to 0.00476	No	ns	0.0867		
----	-----	------------	---	---	-----	---	----
834	-1.768	3.635 to 0.09891	No	ns			834
835	-2.051	-3.918 to -0.1844	Yes	*	0.0137		
836	-2.291	-4.158 to -0.4240	Yes	**	0.0021		
837	-2.393	-4.760 to -0.5252	Yes	***	0.0009		
838	-2.537	-4.404 to -0.6704	Yes	***	0.0003		
839	-1.878	-3.745 to 0.01122	Yes	*	0.0464		
840	-2.151	-4.017 to -0.2836	Yes	**	0.0065		
841	-2.035	-3.902 to -0.1686	Yes	*	0.0154		
842	-2.393	-4.260 to -0.5254	Yes	***	0.0009		
843	-2.179	-4.046 to -0.3123	Yes	**	0.0052		
844	-1.754	-3.620 to 0.1133	No	ns	0.1036		
845	-1.753	-3.620 to 0.1140	No	ns	0.1040		
846	-1.470	-3.337 to 0.3967	No	ns	0.4579		
847	-1.228	-3.095 to 0.6381	No	ns	0.8905		
848	-1.048	-2.915 to 0.8192	No	ns	0.9942		
849	-0.9047	-2.862 to 0.8772	No	ns	0.9985		
850	-0.7876	-2.654 to 1.079	No	ns	>0.999		
851	-1.005	-2.577 to 0.8620	No	ns	0.9980		
852	-0.8561	-2.723 to 1.011	No	ns	>0.999		
853	-0.5983	-2.465 to 1.269	No	ns	>0.999		
854	-0.3093	-2.176 to 1.558	No	ns	>0.999		
855	-0.4725	-1.914 to 1.820	No	ns	>0.999		
856	-0.07502	-1.942 to 1.792	No	ns	>0.999		
857	-0.1309	-1.998 to 1.736	No	ns	>0.999		
858	-0.1545	-2.021 to 1.712	No	ns	>0.999		
859	-0.2139	-2.081 to 1.653	No	ns	>0.999		
860	-0.2246	-2.091 to 1.642	No	ns	>0.999		
861	-0.2097	-2.077 to 1.657	No	ns	>0.999		
862	-0.2524	-2.159 to 1.575	No	ns	>0.999		
863	-0.3368	-2.704 to 1.530	No	ns	>0.999		
864	-0.3380	-2.205 to 1.529	No	ns	>0.999		
865	-0.3322	-2.199 to 1.535	No	ns	>0.999		
866	-0.2914	-2.158 to 1.576	No	ns	>0.999		
867	-0.3157	-2.183 to 1.551	No	ns	>0.999		
868	-0.3822	-2.249 to 1.485	No	ns	>0.999		
869	-0.3861	-2.253 to 1.481	No	ns	>0.999		
870	-0.3807	-2.248 to 1.486	No	ns	>0.999		
871	-0.3803	-2.247 to 1.487	No	ns	>0.999		
872	-0.3900	-2.257 to 1.477	No	ns	>0.999		
873	-0.4014	-2.268 to 1.466	No	ns	>0.999		
874	-0.3739	-2.241 to 1.493	No	ns	>0.999		
875	-0.3471	-2.214 to 1.520	No	ns	>0.999		
876	-0.3396	-2.206 to 1.527	No	ns	>0.999		
877	-0.3380	-2.205 to 1.529	No	ns	>0.999		
----	-----	---------	---	-----	-----	-----	
878	-0.1264	-2.193 to 1.540	No	ns	>0.9999		
879	-0.1904	-2.157 to 1.576	No	ns	>0.9999		
880	-0.1508	-2.118 to 1.616	No	ns	>0.9999		
881	-0.2283	-2.095 to 1.639	No	ns	>0.9999		
882	-0.1984	-2.085 to 1.669	No	ns	>0.9999		
883	-0.1742	-2.041 to 1.693	No	ns	>0.9999		
884	-0.1985	-2.083 to 1.670	No	ns	>0.9999		
885	-0.08338	-1.950 to 1.784	No	ns	>0.9999		
886	-0.2021	-2.009 to 1.665	No	ns	>0.9999		
887	-0.1500	-2.217 to 1.517	No	ns	>0.9999		
888	-0.4662	-2.333 to 1.401	No	ns	>0.9999		
889	-0.5197	-2.387 to 1.347	No	ns	>0.9999		
890	-0.3981	-2.265 to 1.469	No	ns	>0.9999		
891	-0.3144	-2.181 to 1.552	No	ns	>0.9999		
892	-0.1745	-2.041 to 1.692	No	ns	>0.9999		
893	-0.1717	-2.039 to 1.695	No	ns	>0.9999		
894	-0.1517	-2.019 to 1.715	No	ns	>0.9999		
895	-0.3233	-1.999 to 1.735	No	ns	>0.9999		
896	-0.1209	-1.988 to 1.746	No	ns	>0.9999		
897	-0.1356	-2.002 to 1.731	No	ns	>0.9999		
898	-0.1097	-1.977 to 1.757	No	ns	>0.9999		
899	-0.09742	-1.964 to 1.769	No	ns	>0.9999		
Tab.3: Statistical analysis of contacts between residues from the receptor binding domain and ACE2 from wt and B.1.1.7 (n = 4; two-way ANOVA; significance assumed for *p<0.05).

Compare each cell mean with the other cell mean in that row			
Number of families	1		
Number of comparisons per family	39		
Alpha	0.05		
Sidak’s multiple comparisons test			
Mean Diff, 95.00% CI of diff, Significant, Summary, Adjusted P Value			
wt - B.1.1.7			
Gln24-Ala475	-3.966, -36.71 to 28.77, No, ns	>0.9999	
Gln24-Gly476	-6.900, -60.96 to 47.16, No	>0.9999	
Gln24-Phe486	-4.431, -56.36 to 48.10, No	>0.9999	
Gln24-Asn487	-3.633, -39.32 to 31.06, No	>0.9999	
Gln24-Tyr489	1.424, -27.42 to 30.27, No	>0.9999	
Thr27-Phe456	-27.09, -127.5 to 173.3, No	>0.9999	
Thr27-Tyr473	-1.580, -11.80 to 8.639, No	>0.9999	
Thr27-Ala475	-0.2872, -16.29 to 15.71, No	>0.9999	
Thr27-Tyr489	-0.2933, -39.37 to 36.78, No	>0.9999	
Asp30-Lys417	-2.107, -40.08 to 35.86, No	>0.9999	
Asp30-Leu455	1.832, -37.71 to 40.87, No	>0.9999	
Asp30-Phe456	-1.002, -4.475 to 0.8716, No	>0.9999	
Lys31-Leu455	3.215, -27.90 to 34.33, No	>0.9999	
Lys31-Phe456	-0.2198, -13.34 to 12.90, No	>0.9999	
Lys31-Tyr489	-1.140, -42.64 to 40.36, No	>0.9999	
Lys31-Phe490	0.2721, -34.14 to 34.63, No	>0.9999	
Lys31-Gln493	5.029, -20.40 to 30.46, No	>0.9999	
His34-Tyr453	7.590, -23.02 to 36.20, No	>0.9999	
His34-Leu455	-1.827, -86.36 to 82.71, No	>0.9999	
His34-Gln493	-4.108, -30.22 to 22.00, No	>0.9999	
His34-Tyr495	6.822, -47.09 to 60.73, No	>0.9999	
Glu35-Gln493	3.969, -13.29 to 21.27, No	>0.9999	
Glu37-Tyr505	6.696, -12.10 to 25.49, No	0.7336	
Asp38-Tyr449	20.14, 4.753 to 35.52, Yes, *	0.0201	
Asp38-Gln493	16.06, -8.407 to 40.52, No	>0.1612	
Tyr41-Gln498	14.73, 3.697 to 45.76, Yes, *	0.0260	
Tyr41-Thr500	3.704, -5.204 to 16.61, No	0.6381	
Tyr41-Asn/Tyr501	-1.194, -19.15 to 16.55, No	>0.9999	
Leu79-Val483	4.129, -27.98 to 36.24, No	>0.9999	
Leu79-Gly485	3.031, -22.75 to 28.81, No	>0.9999	
Leu79-Phe486	-1.775, -19.09 to 15.54, No	>0.9999	
Lys333-Gly496	15.10, 8.048 to 21.35, Yes, ***	0.0004	
Lys333-Phe497	15.54, 2.414 to 28.68, Yes, *	0.0307	
Lys333-Gln493	43.86, 41.70 to 46.03, Yes, ****	<0.0001	
Lys333-Asn/Tyr501	-31.08, -36.95 to -25.21, Yes, ****	<0.0001	
Lys333-Gly402	0.1488, -1.258 to 1.566, No	>0.9999	
Lys333-Tyr505	5.197, -14.64 to 25.03, No	ns	0.9954
Gly354-Tyr505	5.532, -31.56 to 42.61, No	ns	0.9988
Ala307-Tyr505	4.640, -44.51 to 53.80, No	No	>0.9999
Tab.4: Statistical analysis of electrostatic interaction energy of residues from the receptor binding domain comparing wt and B.1.1.7 (n = 4; two-way ANOVA; significance assumed for *p<0.05).

Electrostatic WT - Electrostatic UK	Mean Diff	95.00% CI of Diff	Significant?	Summary	Adjusted P Value
Lys417	2.002	-7.629 to 11.63	No	ns	>0.9999
Tyr449	-9.196	-18.83 to 0.4345	No	ns	0.0737
Tyr453	-0.6195	-10.45 to 8.211	No	ns	>0.9999
Leu455	-0.04517	-5.676 to 9.385	No	ns	>0.9999
Phe456	0.2792	-5.351 to 9.209	No	ns	>0.9999
Tyr473	0.2544	-5.376 to 9.885	No	ns	>0.9999
Ala475	0.6749	-6.955 to 10.31	No	ns	>0.9999
Gly476	0.7864	-8.844 to 10.42	No	ns	>0.9999
Phe486	0.01221	-5.618 to 9.543	No	ns	>0.9999
Asn487	0.3207	-5.310 to 9.951	No	ns	>0.9999
Tyr489	0.06032	-9.570 to 9.691	No	ns	>0.9999
Gln493	4.088	-5.543 to 13.71	No	ns	0.9775
Gly499	-8.194	-18.02 to 1.736	No	ns	0.1446
Gln501	-18.40	-28.03 to -8.771	Yes	****	<0.0001
Thr500	0.4097	-5.211 to 6.024	No	ns	>0.9999
Asn/Tyr501	-5.797	-16.43 to 3.833	No	ns	0.4389
Gly502	-2.077	-11.71 to 7.53	No	ns	>0.9999
Tyr505	-1.125	-10.76 to 8.501	No	nt	>0.9999
Tab. 5: Statistical analysis of electrostatic interaction energy of residues from ACE2 comparing wt and B.1.1.7 (n = 4; two-way ANOVA; significance assumed for *p<0.05).

Electrostatic WT - Electrostatic B.1.1.7	Mean Diff.	95.00% CI of Diff	Significant?	Summary	Adjusted P Value
Gin24	1.291	-8.87 to 11.45	No	ns	>0.9999
Thr27	0.08892	-10.08 to 10.25	No	ns	>0.9999
Phe28	0.09204	-10.08 to 10.25	No	ns	>0.9999
Asp30	4.740	-5.43 to 14.91	No	ns	0.9401
Lys31	0.3279	-9.84 to 10.50	No	ns	>0.9999
His34	-4.305	-14.47 to 5.864	No	ns	0.9740
Glu35	-1.158	-11.33 to 9.011	No	ns	>0.9999
Asp38	-8.984	-19.15 to 1.185	No	ns	0.1303
Tyr41	-1.174	-11.44 to 8.995	No	ns	>0.9999
Gin42	-1.510	-11.58 to 8.559	No	ns	>0.9999
Met82	0.008097	-10.16 to 10.18	No	ns	>0.9999
Tyr83	-0.6152	-10.78 to 9.554	No	ns	>0.9999
Asn320	0.7600	-9.40 to 10.93	No	ns	>0.9999
Lys353	-26.08	-38.25 to -17.51	Yes	****	<0.0001
Gly254	-0.5079	-10.68 to 9.561	No	ns	>0.9999
Asp355	-0.8822	-11.06 to 9.187	No	ns	>0.9999
Arg357	0.2924	-5.887 to 10.45	No	ns	>0.9999
Tab. 6: Statistical analysis of van der Waals interaction energy of residues from the receptor binding domain comparing wt and B.1.1.7 (n = 4; two-way ANOVA; significance assumed for \(*p<0.05 \)).

Residue	Mean Diff	95.0% CI of diff	Significant?	Summary	Adjusted P Value
Lys417	-0.1159	-0.6238 to 0.5920	No	ns	0.9996
Tyr449	-0.5646	-1.674 to 0.5452	No	ns	0.5767
Tyr453	-0.1531	-0.6207 to 0.3144	No	ns	0.9561
Leu455	-0.1551	-0.9608 to 0.6505	No	ns	0.9995
Phe456	0.2132	-0.3923 to 0.2126	No	ns	0.8694
Tyr473	0.1292	-0.5468 to 1.294	No	ns	>0.9999
Ala475	0.2620	-2.877 to 3.401	No	ns	>0.9999
Gly476	0.4182	-4.984 to 5.840	No	ns	>0.9999
Phe486	-0.04765	-0.6225 to 0.5272	No	ns	>0.9999
Asn487	0.1392	-0.6292 to 0.8076	No	ns	0.9978
Tyr489	-0.02650	-0.5177 to 0.8767	No	ns	>0.9999
Gln499	-0.2753	-1.040 to 0.4894	No	ns	0.8832
Gly496	-0.2742	-0.7783 to 0.2299	No	ns	0.4956
Gln498	-1.555	-2.501 to -0.6099	Yes	**	0.0039
Thr500	-0.1012	-0.8328 to 0.6305	No	ns	>0.9999
Asn/Tyr501	1.917	1.276 to 2.555	Yes	***	0.0001
Gly502	0.3328	-0.2838 to 0.5493	No	ns	0.7502
Tyr505	-0.6373	-3.586 to 2.311	No	ns	0.9867
Tab.7: Statistical analysis of electrostatic interaction energy of residues from ACE2 comparing wt and B.1.1.7 (n = 4; two-way ANOVA; significance assumed for *p<0.05).

Electrostatic WT - Electrostatic UK	Mean Diff	95.00% CI of diff	Significant?	Summary	Adjusted P Value
Gln24	-0.3199	-2.765 to 3.405	No	ns	>0.9999
Thr27	0.2025	-0.8693 to 1.274	No	ns	0.9924
Phe28	-0.0838	-1.123 to 0.8569	No	ns	>0.9999
Asp30	-0.1104	-0.4978 to 0.2770	No	ns	0.9745
Lys31	-0.0428	-1.378 to 1.192	No	ns	>0.9999
His34	-0.5685	-1.175 to 0.03814	No	ns	0.0651
Glu35	-0.5376	-1.109 to 0.05156	No	ns	0.0772
Asp38	-0.7532	-2.592 to 1.086	No	ns	0.6262
Tyr41	-1.162	-2.015 to -0.2884	Yes	*	0.0191
Gln42	-0.5193	-1.665 to -0.1739	Yes	*	0.0184
Met82	-0.1952	-1.267 to 0.8743	No	ns	0.9934
Tyr83	-0.07057	-0.8227 to 0.6816	No	ns	>0.9999
Asn320	0.1921	-0.4348 to 0.8196	No	ns	0.9457
Lys353	0.4709	-2.538 to 3.480	No	ns	0.9951
Gly354	0.007100	-0.6917 to 0.7071	No	ns	>0.9999
Asp355	0.1154	-0.3833 to 0.6140	No	ns	0.9726
Arg357	0.1624	-0.1969 to 0.5216	No	ns	0.6094