Proceedings of CKM 2012, the 7th International Workshop on the CKM Unitarity Triangle, University of Cincinnati, USA, 28 September - 2 October 2012

Leptonic D_s decays at B-factories

Anže Zupanc
Karlsruher Institut für Technologie
Institut für Experimentelle Kernphysik
76131 Karlsruhe, Germany

We review recent measurements of leptonic D_s-meson decays performed by Belle and BaBar collaborations. Described measurements enable experimental extraction of the D_s-meson decay constant which can be compared with lattice QCD calculations.

1 Introduction

The leptonic decays of mesons provide access to experimentally clean measurements of the meson decay constants or the relevant Cabibbo-Kobayashi-Maskawa matrix elements. In the Standard Model (SM) the branching fraction for a leptonic decay of a charged pseudoscalar meson, such as D_s^+, is given by \[1, 2\]:

\[
\mathcal{B}(D_s^+ \to \ell^+ \nu_\ell) = \frac{\tau_{D_s} M_{D_s}}{8\pi} f_{D_s}^2 G_F^2 |V_{cs}|^2 m_\ell^2 \left(1 - \frac{m_\ell^2}{M_{D_s}^2}\right)^2 ,
\]

where M_{D_s} is the D_s mass, τ_{D_s} is its lifetime, m_ℓ is the lepton mass, V_{cs} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element between the D_s constituent quarks c and s, and G_F is the Fermi coupling constant. The parameter f_{D_s} is the decay constant, and is related to the wave-function overlap of the quark and anti-quark. The magnitude of the relevant CKM matrix element, $|V_{cs}|$, can be obtained from the very well measured $|V_{ud}| = 0.97425(22)$ and $|V_{cb}| = 0.04$ from an average of exclusive and inclusive semileptonic B decay results as discussed in Ref. \[3\] by using the following relation, $|V_{cs}| = |V_{ud}| - \frac{1}{2}|V_{cb}|^2$. Measurements of leptonic branching fraction of a pseudoscalar meson thus provide a clean probe of the decay constant which can than be compared with precise lattice QCD calculations \[3\].

\[\text{1Speaker on behalf of the Belle Collaboration}\]
2 Absolute branching fraction measurement

The methods of absolute branching fraction measurement of $D_s^- \to \ell^- \nu_\ell$ decays used recently by Belle [4] and before by the BaBar [5] are similar. Both collaborations study $e^+e^- \to \ell\bar{\ell}$ events which contain D_s^- mesons produced through the following reactions:

$$e^+e^- \to \ell\bar{\ell} \to D_{\text{tag}} K X_{\text{frag}} D_s^{*-}, \quad D_s^- \to D_s^* \gamma.$$ \hfill (2)

In these events one of the two charm quarks hadronizes into a D_s^* meson while the other quark hadronizes into a charm hadron denoted as D_{tag} (tagging charm hadron). The above events are reconstructed fully in two steps: in the first step D_s mesons are reconstructed inclusively while in the second step $D_s \to \ell\nu_\ell$ decays are reconstructed within the inclusive sample. The tagging charm hadron is reconstructed as D^0, D^+, Λ^+_c in 18 (15) hadronic decay modes by Belle (BaBar). In addition D^{*+} or D^{*0} are reconstructed in order to clean up the event. The strangeness of the event is conserved by requiring additional kaon, denoted as K, which can be either K^+ or K^0_S. Since B-factories collected data at energies well above $D_s^*(s)D_s^*\gamma$ threshold additional particles can be produced in the process of hadronization. These particles are denoted as X_{frag} and can be: even number of kaons and or any number of pions or photons. Both Belle and BaBar reconstruct X_{frag} modes with up to three pions in order to keep background at reasonable level. D_s^- mesons are required to be produced in a $D_s^{*-} \to D_s^- \gamma$ decays which provide powerful kinematic constraint (D_s^* mass, or mass difference between D_s^* and D_s) that improves the resolution of the missing mass (defined below) and suppresses the combinatorial background.

In the first step of the measurement no requirements are placed on the daughters of the signal D_s^- meson in order to obtain a fully inclusive sample of D_s^- events which is used for normalization in the calculation of the branching fractions. The number of inclusively reconstructed D_s mesons is extracted from the distribution of events in the missing mass, $M_{\text{miss}}(D_{\text{tag}} K X_{\text{frag}} \gamma)$, recoiling against the $D_{\text{tag}} K X_{\text{frag}} \gamma$ system:

$$M_{\text{miss}}(D_{\text{tag}} K X_{\text{frag}} \gamma) = \sqrt{p_{\text{miss}}(D_{\text{tag}} K X_{\text{frag}} \gamma)^2}, \quad (3)$$

where p_{miss} is the missing momentum in the event:

$$p_{\text{miss}}(D_{\text{tag}} K X_{\text{frag}} \gamma) = p_{e^+} + p_{e^-} - p_{D_{\text{tag}}} - p_K - p_{X_{\text{frag}}} - p_\gamma. \quad (4)$$

Here, p_{e^+} and p_{e^-} are the momenta of the colliding positron and electron beams, respectively, and the $p_{D_{\text{tag}}}, p_K, p_{X_{\text{frag}}}$, and p_γ are the measured momenta of the reconstructed D_{tag}, kaon, fragmentation system and the photon from $D_s^* \to D_s \gamma$ decay, respectively. Correctly reconstructed events given in the Eq. 2 produce a peak

\hfill \footnote{In events where Λ_c^+ is reconstructed as tagging charm hadron additional \bar{p} is reconstructed in order to conserve the total baryon number.
in the $M_{\text{miss}}(D_{\text{tag}}K_{\text{frag}}\gamma) = m_r(DKX\gamma)$ at nominal D_s meson mass as shown in Fig. 1. Belle finds 94400 ± 1900 correctly reconstructed inclusive D_s candidates in a data sample corresponding to 913 fb$^{-1}$, while BaBar finds 108900 ± 2400 events3 containing D_s meson in a data sample corresponding to 521 fb$^{-1}$.

In the second step Belle and BaBar search for the purely leptonic $D_s^+ \to \mu^+\nu_\mu$ and $D_s^+ \to \tau^+\nu_\tau$ decays within the inclusive D_s^+ sample by requiring that there be exactly one additional charged track identified as an electron, muon or charged pion present in the rest of the event. In case of $D_s^+ \to \tau^+\nu_\tau$ decays the electron, muon or charged pion track identifies the subsequent τ^+ decay to $e^+\nu_e\bar{\nu}_e$, $\mu^+\nu_\mu\bar{\nu}_\mu$ or $\pi^+\nu_\pi$.

The $D_s^+ \to \mu^+\nu_\mu$ decays are identified as a peak at zero in the missing mass squared distribution, $M_{\text{miss}}^2(D_{\text{tag}}K_{\text{frag}}\gamma\mu) = p_{\text{miss}}^2(D_{\text{tag}}K_{\text{frag}}\gamma\mu)$ shown in Fig. 2.

Due to multiple neutrinos in the final state the $D_s \to \tau\nu_\tau$ decays don’t peak in the M_{miss}^2 distribution. Instead, Belle and BaBar use extra neutral energy in the calorimeter4, E_{ECL}, to extract the signal yields of $D_s \to \tau\nu_\tau$ decays. These are expected to peak towards zero in E_{ECL}, while the backgrounds extend over a wide range as shown in Fig. 3 for $D_s \to \tau\nu_\tau$ candidates when τ lepton is reconstructed in its leptonic decay to a muon.

Table 1 summarizes the signal yields and measured absolute branching fractions of leptonic D_s-meson decays at Belle and BaBar. The latter are found to be consistent within uncertainties.

3 Note that Belle quotes number of correctly reconstructed candidates while BaBar number of events. It is subtle but important difference that reader should be aware of.

4 The $E_{\text{ECL}} (E_{\text{extra}})$ at Belle (BaBar) is defined as a sum over all energy deposits in the calorimeter with individual energy greater than 50 (30) MeV and which are not associated to the tracks or neutrals used in inclusive reconstruction of D_s candidates nor the $D_s \to \tau\nu_\tau$ decays.
3 Extraction of f_{D_s} and Conclusions

The value of f_{D_s} is determined from measured branching fractions of leptonic D_s decays by inverting Eq. [1]. The external inputs needed in the extraction of f_{D_s} are all very precisely measured and do not introduce additional uncertainties except the D_s lifetime, τ_{D_s}, which introduces an 0.70% relative uncertainty on f_{D_s}.

An error-weighted average\footnote{Average of the decay constants extracted from measured $B(D_s^+ \to \mu^+\nu_\mu)$ and $B(D_s^+ \to \tau^+\nu_\tau)$.} of D_s-meson decay constant, f_{D_s}, are found by Belle and BaBar to be

$$f_{D_s}^{\text{Belle}} = (255.0 \pm 4.2(\text{stat.}) \pm 4.7(\text{syst.}) \pm 1.8(\tau_{D_s})) \text{ MeV} \quad (5)$$
$$f_{D_s}^{\text{BaBar}} = (258.6 \pm 6.4(\text{stat.}) \pm 7.3(\text{syst.}) \pm 1.8(\tau_{D_s})) \text{ MeV.} \quad (6)$$
Table 1: Signal yields and measured branching fractions for $D_s^+ \to \ell^+ \nu_\ell$ decays by Belle and BaBar. The first uncertainty is statistical and the second is systematic. Results from Belle are preliminary.

Preliminary results from Belle represent the most precise measurement of f_{D_s} up to date at single experiment.

Averaging measurements of f_{D_s} from B-factories with the one performed by CLEO-c experiment [7], $f_{D_s}^{\text{CLEO-c}} = (259.0 \pm 6.2(\text{stat.}) \pm 2.4(\text{syst.}) \pm 1.8(\tau_{D_s}))$ MeV, gives an experimental world average,

$$f_{D_s}^{\text{WA}} = (257.2 \pm 4.5) \text{ MeV},$$

which is found to be within 2σ consistent with currently most precise lattice QCD calculation from HPQCD collaboration [8, 3], $f_{D_s}^{\text{HPQCD}} = (246.0 \pm 3.6) \text{ MeV}$.

References

[1] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010).
[2] J. L. Rosner and S. Stone, arXiv:1201.2401 [hep-ex].
[3] H. Na, arXiv:1301.4515 [hep-lat].
[4] A. Zupanc [Belle Collaboration], arXiv:1212.3942 [hep-ex].
[5] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 82, 091103 (2010) [arXiv:1008.4080].
[6] M. Artuso, E. Barberio and S. Stone, PMC Physics A, 3:3 (2009) [arXiv:0902.3743].
[7] P. Naik et al. [CLEO Collaboration], Phys. Rev. D 80, 112004 (2009) [arXiv:0910.3602] [hep-ex]].
[8] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 86, 054510 (2012) [arXiv:1206.4936 [hep-lat]].