Method selection for demand forecasting: Application in a private hospital

Ayse Goksu Ozudogru(a) **Ali Gorener**(b)*

(a) Graduate School of Social Sciences, Istanbul Commerce University, 34445, Istanbul, Turkey

(b) Faculty of Management, Istanbul Commerce University, 34445, Istanbul, Turkey

ABSTRACT

On the basis of a productive and peaceful society, the physical and mental health of individuals constituting society lies. The threat for health resulting from the deterioration of environmental conditions, genetic inheritance, etc. leads individuals to receive health care services and thus direct them to hospitals. Hospitals in the service sector are enterprises where there is very intense interaction with customers which is difficult to manage. Competition among the institutions involved in this field, to transfer the best service to our customers with cost-efficient confronts us as a necessity. One of the most important points in providing suitable planning during making a purchase. Particularly in institutions such as hospitals where the purchase of medical supplies is a major cost item, a good demand forecast should be made for the control of inventory costs. In this study, with data taken from a hospital in Istanbul, a demand forecast application was conducted with the actual demand data for the last five years of basic medical materials used. Different forecasting methods were applied to the available data, and it was intended to determine the most appropriate forecasting method.

ARTICLE INFO

Article history:

Submitted: June, 2016

Re-edited: December, 2020

Keywords: Forecasting, Method Selection, Hospital, Competition

JEL Classification: C53

Introduction

Health services to be effective and efficient are very important for people to maintain prosperity in their lives. The presence of health services fictionalized with a lean approach where waste is reduced, service areas are satisfied is also a great contribution to the development of societies. With the impact of global competition, especially in hospitals located in the central area of health services; employee management, implementation of improvement activities in the supply and installation planning has become an imperative condition (Bendavid and Boeck, 2011).

Hospitals are places which are showing the importance given to health in the country. Therefore, in order for the hospitals in Turkey to operate effectively and efficiently, it is important to provide quality health care (Tasliyan and Gök, 2012). In the health field, materials and equipment are of great importance to offer various services to consumers quickly. While the lack of equipment when needed is causing serious problems, material stocked in large quantities also adversely affect the costs.

Demand forecast is carried out to estimate raw materials, the product or customer demand for a future period of time. The growing popularity of the concept of supply chain, has enabled supply chain members to conduct study on this issue. In this way, the benefits are pronounced particularly for the reduction of inventory levels (Murphy and Klemeyer, 2016). Demand forecasting is very important as business decisions based largely on projections. Decisions regarding which markets will be entered, which products will be produced, how the purchase will be made, how much stock will be achieved and how many staff will be employed need forecasting (Ersoy and Ersoy, 2011). The success of demand forecasting plays an important role in the meeting the demands of targeted cost estimates, to obtain the intended profit and resulting satisfaction of the stakeholders who benefit from the system (Yaman, 2011).

Forecasts can be classified as short, medium and long term. Short-term forecast cover a period of less than six months. It is available for purchasing decisions, job scheduling, labor levels and production levels. Medium term forecasts, which cover the period from six

* Corresponding author. ORCID ID: 0000-0001-6000-5143

© 2020 by the authors. Hosting by SSBFNET. Peer review under responsibility of Center for Strategic Studies in Business and Finance.

https://doi.org/10.20525/ijdsa.v1i1.1426
months to two years serve for labor, material and inventory planning purposes. The forecasts for over two years or more are long-term. It is intended to provide data on issues such as expansion of facilities, planning of new products, and availability of capital funds and is usually carried out by senior management (Yenersoy, 2011; Yüksel, 2013).

The purpose of this study is the choice of method to use in a private hospital medical services in Istanbul to be used to determine the demand for some of the materials for the next year. As historical data is found on a monthly basis, it is deemed appropriate to make forecasts within the same period using time series. Different methods were compared under various error criteria used, and the most appropriate method was selected. With the study conducted, it was intended to shed light on the company’s stock plans, to contribute to the literature on buying supplies in hospitals where small number of studies are relatively made.

Literature Review

Theoretical and Conceptual Framework

Various studies exist in the literature available for demand forecasting. Rahman and Hazim (1993) carried out a work on forecasting the temperature of the four states in the United States with a model based on regression applied to categorized data. Tanrtanır (1995), in a demand forecasting study for a furniture factory, has forecasted the value of 1993 by applying the method of regression to the amount of sales in 1990-1992. Akbay, Aktas and Koç in their study (1999) have studied the effects of socio-economic variables that affect consumption of concentrated fruit juice consumption. In research, the data obtained from surveys of household consumption to specify the juices are used. Gavcar, Sen and Aytekin (1999) in their demand forecasting study, made the demand forecast of eight different types of paper among paper and paperboard types used in Turkey. Patır and Yıldız (2003) forecasted the amount of sales of industrial enterprises in 2002 by using Monte Carlo simulation application. Soysal and Ömürşönen (2010) in their study on tourism industry on the demand forecasts have carried out a forecast for the first six months of 2008 by using data on the number of domestic and foreign tourists who come to the facilities with operation certificates between 2000-2007. While making their forecast, they compared the performance of Moving Average, Simple Exponential Smoothing and Holt-Winters method. Sabar and Batukan (2013), made demand forecasting using time series method in textile paint finishing enterprises. While researchers are forecasting demand, they have used exponential smoothing method and Winters model. Solak (2013) in his study used the Box-Jenkins method to estimate the demand for oil in the transport sector and Turkey's total oil demand. In the study he used 42 years of data covering the years 1970 to 2011 and has made forecast for 2012-2020 period. Çuhadar (2014) conducted a study to forecast the external tourism demand in Mugla province. In this study, he used the number of tourists, the number of overnights, tourism revenues, hotel occupancy rate and visitors expenses as the extent of demand. Exponential smoothing and Box-Jenkins method were applied using the data specified. Smith and Agrawal (2015) aims to demonstrate that it may be possible to create technology forecasting models through the use of patent groups. The techniques used are Holt-Winters Exponential Smoothing and ARIMA.

Forecasting Methods

When the scope of the literature of demand forecasting studied, it is possible to see numerical and non-numerical methods.

Delphi Method: It is a method that can be used when there is no data to develop statistical models of the past. Delphi method can be used in the long-term forecast of product demand and new product sales forecasts (Yüksel, 2013). In this method, first the individual opinions of experts are collected and these views are transferred into experts n a certain order and it is required to reconsider the ideas in the previous round. This decision-making system continues until a compromise is maintained (Okoli and Pawlowski, 2004; Viehland, 2007).

Market Research: Hypotheses are tested by using data collected through a survey, the interest of customers for a product or services are determined with a systematic approach (Yüksel, 2013).

Life Cycle Model: Product life cycle model is a planning tool developed with the aim to forecast market life of a good or a service. It is used to find solutions to marketing problems of the product that will encounter throughout life and to determine the appropriate marketing strategy. In addition, while making demand forecast, they are able to forecast by looking at the product life cycle of other similar products (Karafakioğlu, 2012).

Expert Opinions: Forecasts made by the determination of experts and senior managers opinions.

Time Series: Time series; is a series of observations obtained in regular intervals for a certain period (day, week, month, year, etc.) (Özcan, 2009). Number series revealed by the arrangement of observation results with acquisition depending on time is called a time series. Annual import and export values, monthly sales of a company, weekly or daily cash receipts in a company, the price of the exchange, etc. can be expressed as a time series (Turan and Gürüş, 2008; Bozkurt, 2013). There are many methods used in the analysis of time series. Some of those can be expressed as; simple average, moving average methods, exponential smoothing, Holt-Winters method.

Regression: Regression is a method that enables to describe the relationship between at least two variables by an equation. If relationships between variables can be expressed by equation, unknown variable values can be estimated with the help of a known variable values (Çil, 2013).
Econometric Models: Econometric models provide opportunities to forecast by solving multiple regression equations about a wide range of economic activities (Yüksel, 2013).

Simulation: is a method that can be used to generate estimates for the future by means of random numbers considering the probability values of the results obtained in the past.

Determination of the Appropriate Forecasting Methods

Forecasting methods to be used can vary according to the length of the period to be forecasted, the desired degree of accuracy, and the budget allocated. After analysis of the data sets by forecasting methods, it is important to assess the scope of error criteria. Error criteria, enables us to interpret the relationship between the forecasted values and the actual behavior of the time series. Error criteria mostly used in demand forecasting; are mean error, mean absolute error, mean square error and error percentage values. Mean error (ME), represents how far the forecasts are below or above the demands as average. If positive errors in some periods are put out with negative error of other period and ME gets a small value or approaches zero. This result is a natural development resulting from normal distribution of error and defines that the forecast is neutral / impartial. In mean absolute error (MAE), whether the magnitude of the error is negative and positive is not taken into account. Average is the difference between average absolute error forecast and actual values. With the value of mean absolute percentage error (MAPE), the absolute error, is not taken into account per period but as a percentage of the actual value. If squaring is preferred as a way positive (+) or negative (-) errors not to influence each other, the error range is defined in large numbers. As the averages of the squared error (MSE) are taken by squared errors the value of errors grow and big errors are punished in a sense. In the evaluation phase of MSE value, lower estimation method is chosen as the most appropriate method for the data set (Barlow, 2005; Ersoy and Ersoy 2011; Yenersoy, 2011).

Application

Today, the health sector in addition having a large share of the economy has become an important service industry in Turkey. Modern health systems are forced to cope with increasing demand (Blume et al., 2015). It is a fact that the numbers of enterprises in our country in health sector do not meet the rapid population growth. Lower ratio of the number of health facilities, the lack of the number of doctors and nurses in hospitals, lack of materials and equipment to meet the needs of consumers require the upgrading of the adoption of corrective measures in the health sector and service quality (Tutar and Kılınç, 2007).

Hospitals, which are one of the cornerstones of the health sector, are important units in which hundreds of patients are treated in a day. The availability of materials used in these units for treatment should be handled carefully. Problems occur due to possession of surplus stocks based costs as well as problems that may arise in the absence of these materials should be considered. The hospital that is used for its data is a hospital with 2600 beds. This hospital has four operating rooms and four intensive care units. Intensive care units are; surgical intensive care units, general intensive care, coronary care, intensive care newborn. Purchasing department of the hospital is divided into three parts as general purchasing, medical purchase and medical drug (pharmacy) purchase. Medical equipment purchase is a section which purchases all medical materials with approximately twenty-five suppliers. Varieties of forecasting methods were applied for purchase data of four different medical materials commonly used in the hospital for five years (monthly). Three and five-month moving average basis, single exponential smoothing method, Holt’s linear method, the term multiplicative Holt-Winters method, additive-term Holt-Winters method and regression methods were applied and comparisons were made. To compare methods, Mean Absolute Error, Mean Absolute Percentage Error and Average Squared Errors were used for error criteria values determination. Only Medical Gloves analyses were presented under study. In Table 1, the amount of demand in 2010-2014 of gloves is shown.

Table 1: Glove Demand Amounts Between years of 2010-2014 (pcs)

	2010	2011	2012	2013	2014
January	31055	32040	32545	33540	33540
February	31522	32510	32560	32560	32560
March	31525	31520	33560	31540	31540
April	32055	31530	32565	32540	34566
May	32544	32520	31560	31550	34560
June	32550	31526	31860	32560	32560
July	35580	32035	33050	32056	33560
August	33320	33520	33565	33540	34560
September	32560	32052	34560	34550	35560
October	32560	32052	31560	31450	32540
November	32560	32560	32560	32560	35520
December	31560	32540	32560	34520	35460

Source: Authors' own work
Most demanding sections for gloves in hospital are laboratory, patient rooms, intensive care, emergency services and general biochemistry unit. Maximum demand for gloves was realized in 2014. 406526 pcs of gloves have been requested during the twelve months in 2014. In the year 2010, 389391 pcs, in the year 2011 386405 pcs, in the year 2012 392505 pcs, and total demand realized in the year 2013 was 392966.

Forecasting with Moving Average Methods

By taking into account the amount of specified demand for gloves, it was made moving average estimate primarily for 3-months and 5-months. Tables 2 and 3 shows only the last year of 5 years data. Calculations were made considering 3-months and 5-months moving months average values and the revealed forecast values, forecast errors and error criteria were stated.

![Time Series Plot of Eldiven](image)

Figure 1: Demand for Gloves for 60 months

Table 2: Forecasting Results with 3-Months Moving Average for Gloves

Months	Demand	Moving Average(MOV3)	Forecast	Error
January	33540	33540	32843	697
February	32560	33540	33540	-980
March	31540	32547	33540	-2000
April	34566	32889	32547	2019
May	34560	33555	32889	1671
June	32560	33895	33555	-995
July	33560	33560	33895	-335
August	34560	33560	33560	1000
September	35560	34560	33560	2000
October	32540	34220	34560	-2020
November	35520	34540	34220	1300
December	35460	34507	34540	920

MAPE	3
MAE	940
MSE	1347325

Source: Authors' own work
Table 3: Forecasting Results with 5-Months Moving Average for Gloves

Months	Demand	Moving Average (MOV5)	Forecast	Forecast Error
January	33540	33324	33324	216
February	32560	32926	33324	-764
March	31540	32944	32926	-1386
April	34566	33345	32944	1622
May	34560	33353	33345	1215
June	32560	33157	33353	-793
July	33560	33357	33157	403
August	34560	33961	33357	1203
September	3560	34160	33961	1599
October	35520	34348	33756	-1620
November	35460	34728	34348	1112

MAPE: 3
MAE: 870
MSE: 1210377

Source: Authors' own work

Forecasting with Exponential Smoothing Method

In the second stage, the forecasting was made with exponential smoothing method which was frequently encountered in the literature. Exponential smoothing methods, required correction factors are chosen as 0.2, 0.5 and 0.8. Information in the literature have been used to determine these values. The results created by using 0.2 value are expressed in Table 4. The values for all results are presented in Table 9 and 10 together.

Forecasting with Holt’s Linear Method

Holt’s linear method is a method that can be used when the average and growth rate of time series change. There may be increased or decreased trend in demand. Exponential smoothing is made in order to create a new basic level to determine the trend in the first stage.

Table 5: Forecast Results with Holt’s Linear Method

Months	Demand	Exponential Smoothing	Basic Level	Trend	Forecast Demand	Forecast Error
January	33540	33650	33650	60	33831	-291
February	32560	32995	32995	19	33710	-1150
March	31540	32097	32097	-33	33014	-1747
April	34560	33620	33620	55	32064	2502
May	34560	34226	34226	87	33676	884
June	32560	33223	33223	25	34313	-1753
July	33560	33442	33442	36	33247	313
August	34560	34151	34151	74	33478	1082
September	35560	35055	35055	121	34225	1335
October	32540	33537	33537	28	35177	-2637
November	35520	34781	34781	97	33564	1956
December	35460	35240	35240	118	34878	582

MAPE: 3
MAE: 915
MSE: 1385483

Source: Authors' own work

Equation that will be used to determine the basic trend is as follows (Bulut, 2006; Benli and Yildiz, 2014):

\[
L_t = \alpha Y_t + (1-\alpha)(L_{t-1} + T_{t-1})
\]

\[
F_{t+n} = L_t + nT_t
\]

\[
T_t = \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1}
\]
\(L_t \): Expected level of the period \(t \)
\(\alpha \): The smoothing factor of the level
\(Y_t \): Actual value in the period
\(T_t \): Trend in period \(t \)
\(\beta \): The smoothing factor of the trend
\(n \): The number of periods to be foreseen

The method was applied by using the specified equities. The results are summarized in Table 5 above.

Forecasting with Holt-Winters methods

Holt-Winters exponential smoothing methods, consider trend and seasonality which can be found in the series and each component of the series will be forecasted by using separate equations (Sen and Kaba, 2009). The most commonly used methods for seasonal time series; the additive Holt-Winters method for additive seasonality and multiplicative Holt-Winters method recommended for multiplicative seasonality (Irmak et al., 2012). Holt-Winters exponential smoothing methods are based on three equal. The first is to determine the level of \(t \) period, second to determine the trend, and the third is used to determine the seasonal component. The equations for the multiplicative method can be expressed as follows (Çuhadar, 2014):

\[
L_t = a \left(\frac{Y_t}{S_{t-s}} \right) + (1 - a) \left(L_{t-1} + b_{t-1} \right)
\]
\[
b_t = \beta \left(L_t - L_{t-1} \right) + (1 - \beta) b_{t-1}
\]
\[
S_t = \gamma \left(\frac{Y_t}{L_t} \right) + (1 - \gamma) S_{t-1}
\]
\[
F_{t+m} = L_t + b_t m + S_{t-s+m}
\]

\(L_t \): the overall level of the series in period \(t \)
\(Y_t \): Observation value
\(S_t \): seasonal component
\(b_t \): Trend component
\(\alpha \): Level correction constant
\(\beta \): Trend correction constant
\(\gamma \): Season correction constant
\(F_{t+m} \): Forecast value for future period \(m \)

In Holt-Winters’ multiplicative exponential smoothing method size of the seasonal fluctuation varies according to the length of the series and is fixed in the additive method. Equations of additive exponential smoothing method are formulated as follows (Çuhadar, 2014):

\[
L_t = a \left(Y_t - S_{t-s} \right) + (1 - a) \left(L_{t-1} + b_{t-1} \right)
\]
\[
b_t = \beta \left(L_t - L_{t-1} \right) + (1 - \beta) b_{t-1}
\]
\[
S_t = \gamma \left(Y_t - L_t \right) + (1 - \gamma) S_{t-1}
\]
\[
F_{t+m} = L_t + b_t m + S_{t-s+m}
\]

By using equations, both methods were applied to data sets separately. In determining the parameters, in light of the data in the literature, statistical software package was utilized.

Table 6: Multiplicative Holt-Winters Method Results for Gloves

Months	Demand	Exponential Smoothing	Basic Level	Trend	Season Index	Demand Forecast	Forecast Error
January	33540	32805	33070	83	1	32861	679
February	32560	32787	33091	70	1	32869	-309
March	31540	32418	32968	32	1	32487	-947
April	34566	32684	33372	106	1	32715	1851
May	34560	32897	33795	169	1	33002	1558
June	32560	33272	33786	134	1	33439	-879
July	33560	34207	33765	103	1	34342	-782
August	34560	34709	33818	93	1	34815	-255
September	35560	34874	34026	116	1	34970	590
October	32540	33175	33988	85	1	33288	-748
November	35520	34097	34340	138	1	34183	1337
December	35460	34787	34584	160	1	34927	533
MAPE	2						
Table 7: Holt-Winters Additive Method Results for Gloves

Months	Demand	Exponential Smoothing	Basic Level	Trend	Season Index	Demand Forecast	Forecast Error
January	33540	32880	33094	87	64,08	32943	597
February	32560	32852	33105	71	-302,65	32938	-378
March	31540	32477	32974	31	-788,91	32549	-1009
April	34566	32729	33367	103	43,69	32760	1806
May	34560	32929	33776	164	-192,99	33033	1527
June	32560	33291	33761	129	-628,11	33455	-895
July	33560	34184	33739	99	302,54	34313	-753
August	34560	34650	33800	91	880,62	34748	-188
September	35560	34810	34023	117	1115,5	34901	659
October	32540	33169	33991	88	-973,13	33286	-746
November	35520	34043	34356	143	274,78	34131	1389
December	35460	34713	34620	167	453,48	34856	604

Source: Authors’ own work

Table 8: Simple Linear Regression Results for Gloves

Months	Demand	Demand Forecast	Forecast Error
January	33540	33370	170
February	32560	33401	-841
March	31540	33432	-1892
April	34566	33463	1103
May	34560	33494	1066
June	32560	33525	-965
July	33560	33556	4
August	34560	33587	973
September	35560	33618	1942
October	32540	33649	-1109
November	35520	33680	1840
December	35460	33711	1749

Source: Authors’ own work

Forecasting with Linear Regression

In regression method, for finding coefficients, observations regarding dependent and independent variables are needed. A linear regression equation between two variables can be expressed as follows (Serper, 2010: Altaş, 2013):

\[
Y = \beta_0 + \beta_1 X + \epsilon \\
\hat{Y} = a + bX + \epsilon_i
\]

Y: Dependent variable
X: Independent variable
\(\hat{Y}\): Forecast value
\(\beta_0, \beta_1, a, b\): Parameters of the regression equation
\(\epsilon, \epsilon_i\): Error term, Forecaster of error term

Table 8: Simple Linear Regression Results for Gloves

Months	Demand	Demand Forecast	Forecast Error
January	33540	33370	170
February	32560	33401	-841
March	31540	33432	-1892
April	34566	33463	1103
May	34560	33494	1066
June	32560	33525	-965
July	33560	33556	4
August	34560	33587	973
September	35560	33618	1942
October	32540	33649	-1109
November	35520	33680	1840
December	35460	33711	1749

Source: Authors’ own work
In this study, amount of demand of most frequently used four different medical supplies (gloves, syringes, angioket, plaster) will be no interruption of the manufacturing or service process resulting from lack of stock and the cost advantage by providing this service are in a serious race in terms of the quality of service with the businesses operating in the same market sector. Ensuring efficient and effective way of health services is a key indicator of countries’ level of development. The health sector, being a very important area for human life as well as it is a business with an ever-increasing share in the service sector. Ensuring efficient and effective way of health services is a key indicator of countries’ level of development. The companies providing this service are in a serious race in terms of the quality of service with the businesses operating in the same market because of increased competition. In providing quality services, offered opportunities will naturally affect costs. In terms of page limits in this article and the process is similar to the first phase in maintaining the desired level of costs is a well-planned procurement processes.

Demand forecasting has a great importance for businesses in terms of planning supply. If organizations cab foresee how much material they need at a later stage, how much staff will be needed, to what extent device investments must be made, they can provide significant advantages in terms of production planning and supply chain management. The major advantage is that there will be no interruption of the manufacturing or service process resulting from lack of stock and the cost advantage by disappearance of more than a certain amount of stock holding requirements.

In this study, amount of demand of most frequently used four different medical supplies (gloves, syringes, angioket, plaster) in a hospital in Istanbul between 2009-2014 were examined and the method to be used in forecasting demands for the future was made with 60-month data.

When we look at error values obtained for demand forecast of gloves, it is seen that the lowest value is provided by Holt-Winters Additive Method. The resulting findings state that the forecasts in the next year with additive Holt-Winters method will show fewer errors. All calculations that were performed for gloves, were performed for other three medical supplies, error values for the forecasting methods were identified, the most suitable method for each data set was determined. In terms of page limits in this article and the process is similar therefore they are not included in this section.

Table 9: Demand Realized for Gloves and Values obtained by Forecasting Methods

Months	January	February	March	April	May	June	July	August	September	October	November	December
Methods												
Linear Reg.	33370	33401	33432	33463	33494	33525	33556	33587	33618	33649	33680	33711
Additive Holt-Winters	32943	32938	32549	32760	33033	33455	34313	34748	34901	33286	34131	34856
Multiplicative Holt-Winters	32861	32869	32487	32715	33002	33419	34342	34815	34970	33288	34183	34927
Holt’s L. M.	33831	33710	33014	32064	33676	34313	33247	34782	34225	35177	33564	34878
Exp. Sm. (0,8)	34106	33653	32779	31788	34010	34450	32938	33436	34335	35315	33095	35035
Exp. Sm. (0,5)	33544	33542	33051	32296	33431	33995	33278	33419	33999	34775	33657	34589
Exp. Sm. (0,2)	33011	33115	33006	32716	33081	33373	33213	33281	33533	33933	33658	34026
MOV5	33324	33324	32926	32944	33345	33353	33157	33557	33961	34160	33756	34348
MOV3	32843	33540	33540	32547	32889	33555	33895	33560	33560	34560	34220	34540
Demand	33540	32560	31540	34566	34560	32560	33560	34560	35560	32540	35520	35460

Source: Authors' own work

Forecast results obtained by the Forecasting methods of the glove over the past 12 months are shown in Table. Calculations were made with 60-month data.

Table 10: Error Criteria Values

Forecasting Methods	MAPE	MAE	MSE
3-Month Moving Average	3	940	1347325
3-Month Moving Average	3	870	1210377
Single Exponential Smoothing (α =0,2)	2	826	1142513
Single Exponential Smoothing (α =0,5)	3	873	1257104
Single Exponential Smoothing (α =0,8)	3	951	1496826
Holt’s Linear Method	3	915	1385483
Holt-Winters Multiplicative	2	783	924887
Holt-Winters Additive	2	783	923660
Linear Regression	2	806	39019378

Source: Authors' own work

Conclusion

The health sector, being a very important area for human life as well as it is a business with an ever-increasing share in the service sector. Ensuring efficient and effective way of health services is a key indicator of countries’ level of development. The companies providing this service are in a serious race in terms of the quality of service with the businesses operating in the same market because of increased competition. In providing quality services, offered opportunities will naturally affect costs. The first phase in maintaining the desired level of costs is a well-planned procurement processes.

Demand forecasting has a great importance for businesses in terms of planning supply. If organizations cab foresee how much material they need at a later stage, how much staff will be needed, to what extent device investments must be made, they can provide significant advantages in terms of production planning and supply chain management. The major advantage is that there will be no interruption of the manufacturing or service process resulting from lack of stock and the cost advantage by disappearance of more than a certain amount of stock holding requirements.

In this study, amount of demand of most frequently used four different medical supplies (gloves, syringes, angioket, plaster) in a hospital in Istanbul between 2009-2014 were examined and the method to be used in forecasting demands for the future was made with 60-month data. All calculations that were performed for gloves, were performed for other three medical supplies, error values for the forecasting methods were identified, the most suitable method for each data set was determined.
determined. The process and results for the materials, except gloves, could not be transferred because of page constraints. Different forecasting methods were compared and methods forming minimum errors have been identified under data sets. In light of the findings, the hospital’s purchasing department has the opportunity to quickly update their planning. As it was demanded to make a forecast with spreadsheets in the current office programs, methods such as simulation, artificial neural networks, support vector machines which may require additional programs; were not used in this study. In subsequent studies, the error values can be analyzed by using different forecasting methods in the literature. Also as there are many forecasting methods, by considering criteria such as ease of application, etc; multi-criteria models can be created in selection of a forecasting method.

Acknowledgement

Initial version of this paper has been published in IJDSA Draft issue in 2016. Article has been re-edited and published in IJDSA

References

Abraham, B., & Ledolter, J. (2005). Statistical Methods for Forecasting. Wiley & Sons, Second Edition, DOI: 10.1002/9780470316610.ch1

Armstrong, J. S., & Collopy, F. (1992). Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons, International Journal of Forecasting, 8, 1, 69-80, https://doi.org/10.1016/169-2070(92)00088-W

Acar, Z., & Köseoğlu, A. M. (2014). Lojistik Yaklaşımlı Tedarik Zinciri Yönetimi, Ankara: Nobel Akademik Yayıncılık, ISBN: 978-605-133-953-5

Akbay, A. Ö., Akta, E., & Koç, A. (1999). Analysis of Concentrated Fruit Juice Demand Using The Tobit Model, Turkish Journal of Agriculture and Forestry, 3, 5, 493-499

Altan, D. (2013), İstatistiksel Analiz, İstanbul: Beta Yayınları

Barlow, J.F. (2005), Excel Models for Business and Operations Management, Second Edition, John Wiley & Sons Inc., ISBN : 978-0-470-01635-0

Bendavid, Y. & Boeck, H. (2011). Using RFID to Improve Hospital Supply Chain Management for High Value and Consignment Items. Procedia Computer Science, 5, 849-856, https://doi.org/10.1016/j.procs.2011.07.117

Blume, L. H. K., Van Weert, N.J.H.W., & Delnoij, D.M.J., (2015). How to manage external demands in hospitals—the case of atrium MC. Healthcare, 3, 3, 157-159, https://doi.org/10.1016/j.hjdsi.2015.03.003

Bozkurt, H. Y. (2013), Zaman Sertleri Analizi, Bursa: Ekin Yayınevi

Bulut, Ş. (2006), Orta Ölçekli Bir işletme hakkında Tahmin Yöntemlerinin Uygulanması. Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Yüksek Lisans Tezi, Kırıkkale.

Çil, B. (2013), İstatistik, Ankara: Detay Yayıncılık

Çuhadar, M. (2014), Muğla İiline Yönelik Dış Turizm Talebinin Modellenmesi ve 2012-2013 Yılları İçin Tahminlenmesi, Uluslararası İktisadi ve İdari İncelemeler Dergisi, 12, 1-22

Ersoy, M. S., & Ersoy, A. (2011), Yönetim ve İşlemler Yönetimi, Ankara: İmaj Yayınevi, 2011, ISBN : 9758752669

Gavcar, E., Şen, S., & Aytekin, A. (1999), Prediction Forecasting of the Papers used in Turkey. Turkish Journal of Agriculture and Forestry, 3, 2, 203-211

Göktaş, Ö. (2005), Teorik ve Uygulamalı Zaman Sertleri Analizi. İstanbul: Beşir Kitabevi, ISBN : 9758406395

Holt, C. C. (2004), Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages, International Journal of Forecasting, 20, 5, 2010, https://doi.org/10.1016/j.ijforecast.2003.09.015

Irmak, S., Köksal, C. D., & Asilkan, Ö. (2012), Hastanelerin Gelecekteki Hasta Yöntemleri ile Tahmin Edilmesi, Uluslararası Alanya Alanyalı İşletme Fakültesi Dergisi, 4, 1, 101-114

Karafakioğlu, M. (2012), Pazarlama İkilemleri, İstanbul: Türkmen Kitabevi, ISBN : 9786054259953

Mangan, J., Lalwoni, C., & Butcher, T. (2008), Global Logistics and Supply Chain Management, England: John Wiley and Sons, ISBN : 978-1-119-99884-6

Murph, P. R. Jr, Knemeyer, A.M. (2016), Contemporary Logistics, Pearson Pub. (Turkish translate: Funda Yercan, Şerife Demiroğlu, Nobel Yayın Dağıtım, 2016), ISBN : 978-605-320-292-9

Nebol, E., Uslu, T., & Uzel E. (2014), Tedarik Zinciri ve Lojistik Yönetimi, İstanbul: Beta Yayınları, ISBN: 9786053330554

Okoli, C., & Pawlowski, S. D. (2004). The delphi method as a research tool: An example, design considerations and applications, Information & Management, 42, 15-29, https://doi.org/10.1016/j.im.2003.11.002

Özcan, Y. A., (2009), Quantitative methods in health care management : techniques and applications, Wiley Publishing. Second Edition, ISBN: 978-0-470-43462-8

Patr, S., & Yıldız, S. (2003), Talep Tahmininde Carlo Simülasyonu'nun Uygulanması. Erzurum: Ekev Akademi Dergisi, 17, 327-336

Rahman S., & Hazim, O.C., (1993), A Generalized Knowledge-Based Short-Term Load-Forecasting Technique, IEEE Transactions on Power Systems, 8, 2, 508-514, https://doi.org/10.1109/59.260833

Sabur, E. C., & Batuk, E. (2013), Demand Forecasting Withhof Using Time Series Models In Textile Dyeing-Finishing Mills, Tekstil ve Konfeksiyon Dergisi, 23, 2, 143-151

Serper, Ö. (2010), Uygulamalı İstatistik. Bursa: Ezgi Kitabevi

21
Solak, A. O. (2013), "Türkiye'nin Toplam Petrol Talebi ve Ulaştırma Sektörü Petrol Talebinin Araştırma Modeli İle Tahmin Edilmesi", Sılaşman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18, 3, 131-142

Soysal, M. & Ömergünülşen, M. (2010), “Türk Turizm Sektöründe Talep Tahmini Üzerine Bir Uygulama”, Anatolia Turizm Araştırmaları Dergisi, 21, 1, 128-136

Smith, M., & Agrawal, R. (2015), A comparison of time series model forecasting methods on patent groups, CEUR Workshop Proceedings 2015, 167-173

Şen, A. B., & Kabaa, G. (2009), Öncü Göstergeler Kullanımının Tahminin Doğruluğuna Etkisi: Türk Otomotiv Pazarı Üzerine Bir Araştırmı, Marmara Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 27, 2, 397-411

Tanrıce, E. (1995), Bir Mobilya Fabrikasında Talebin Tahmini, İstanbul Üniversitesi Orman Fakültesi Dergisi, 45, 1, 45-62

Taşlıyan, M., & Gök, S. (2012), Kamu ve Özel Hastanelerde Hasta Memnuniyeti: Kahramanmaraş'ta Bir Alan Çalışması, Kahramanmaraş Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2, 1, 69-94

Tengiloğlu, D., İşık, O., & Akbolut, M. (2009), Sağlık İşletmeleri Yönetimi, Ankara: Nobel Yayıncılık

Tengiloğlu, D. & Yiğit, V. (2013), Sağlık İşletmelerinde Tedarik Zinciri ve Malzeme Yönetimi, Ankara: Nobel Yayıncılık

Turanlı, M., & Gürüş, S. (2008), İşletmelerde Uygulamalı İstatistik, Alfa Yayımları

Yenersoy, G. (2011), Üretim Planlama Kontrol, İstanbul: Papatya Yayıncılık

Yüksel, H. (2013), Üretim ve İşlemler Yönetimi: Temel Kavramlar, Ankara: Nobel Yayıncılık

Publisher’s Note: SSBFNET stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee SSBFNET. Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

SSBFNET is licensed under a Creative Commons Attribution 4.0 International License.