Functional Analysis of Multiple nifB Genes of Paenibacillus Strains in Synthesis of Mo-, Fe- and V-Nitrogenase

Qin Li
China Agricultural University

Haowei Zhang
China Agricultural University

Liqun Zhang
China Agricultural University

San-Feng Chen ( chensf@cau.edu.cn)
China Agricultural University https://orcid.org/0000-0003-2956-9025

Research

Keywords: Paenibacillus, nifB gene, Mo-nitrogenase, alternative nitrogenases

DOI: https://doi.org/10.21203/rs.3.rs-444251/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known.

Results: We have analyzed the genomes of the 116 diazotrophic Paenibacillus strains and found that some Paenibacillus strains have 2-4 nifB genes. Phylogeny analysis shows that all nifB genes in Paenibacillus fall into 4 subclasses: the nifB1 being the first gene within the compact nif gene cluster, the nifB2 being adjacent to anf or vnf genes, the other nifB3 and nifB4 being scattered on genomes. Transcriptional results demonstrate that nifB1 exhibits the greatest increase in expression under Mo-dependent conditions and nifB2 is even more induced under alternative fixation conditions. Functional analyses by complementation of the ΔnifB and ΔnifBHDK mutant of P. polymyxa WLY78 which has only one nifB gene and only Mo-nitrogenase showed that both nifB1 and nifB2 are active in synthesis of Mo-, Fe and V-nitrogenase. The nifB3 and nifB4 genes were not significantly expressed under N₂-fixing conditions and could not restore the nitrogenase activity of P. polymyxa ΔnifB mutant, suggesting that nifB3 and nifB4 genes were not involved in nitrogen fixation. In addition, reconstruction of anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) supported synthesis of Fe-nitrogenase and V-nitrogenase in P. polymyxa, respectively.

Conclusions: Our data and analysis reveal the contents and distribution of nifB genes in Paenibacillus. We demonstrated that the transcriptions of nifB being adjacent to nif or anf or vnf genes significantly expressed under N₂-fixation conditions and are active in synthesis of Mo-, Fe and V-nitrogenase. Our study also provides guidance for engineering nitrogen fixation genes into heterologous hosts for nitrogen fixation.

Background

Biological nitrogen fixation, a process unique to some bacteria and archaea (called diazotrophs), is catalyzed by nitrogenase and plays an important role in world agriculture [1]. There are three known nitrogenase designated as the Mo-nitrogenase, V-nitrogenase and Fe-nitrogenase that are encoded by nif, vnf, and anf, respectively [2]. Nitrogen fixation is mainly catalyzed by Mo-nitrogenase, which is found in all diazotrophs. In addition to Mo-nitrogenase, some possess either of alternative Fe-nitrogenase and V-nitrogenase, or both. Each nitrogenase contains two components, a catalytic protein and a reductase [3–5]. For Mo-nitrogenase, MoFe protein is the catalytic protein and Fe protein is the reductase. The MoFe protein is an α₂β₂ heterotetramer (encoded by nifD and nifK) that contains two metal clusters: FeMo-co, a [Mo-7Fe-9S-C-homocitrate] cluster which serves as the active site of N₂ binding and reduction and the P-cluster, a [8Fe-7S] cluster which shuttles electrons to FeMo-co. The Fe protein (encoded by nifH) is a
homodimer bridged by an intersubunit [4Fe-4S] cluster that serves as the obligate electron donor to the MoFe protein [6–8]. Like Mo-nitrogenase, alternative nitrogenases comprise an electron-delivery Fe protein (encoded by \textit{anfH} in Fe-nitrogenase and encoded by \textit{vnfH} in V-nitrogenase). The FeFe protein of Fe-nitrogenase encoded by \textit{anfDK} and the VFe protein of V-nitrogenase encoded by \textit{vnfDK} are homologous to the MoFe protein of Mo-nitrogenase. The alternative nitrogenases have either FeFe-co or FeV-co at the active site and also include an additional subunit (AnfG or VnfG) encoded by \textit{anfG} or \textit{vnfG} [9]. The FeFe-co is analogous to FeMo-co except for containing Fe in place of Mo [10], but FeV-co is a [V–7Fe–8S–C-homocitrate] cluster which replaces Mo with V and lacks one S compared to FeMo-co [11].

NifB has been demonstrated to be essential for the synthesis of all nitrogenases. NifB is a radical S-adenosyl methionine (SAM) enzyme that catalyzes the formation of NifB-co, a [8Fe-9S-C] cluster which is a common precursor for the syntheses of FeMo-co of Mo-nitrogenase, Fev-co of V-nitrogenase and FeFe-co of Fe-nitrogenase [12–14]. NifB-co is subsequently transferred to the scaffold protein NifEN, upon which mature cofactor is synthesized. The NifX protein is known to bind NifB-co and involved in NifB-co transfer [15].

The number, structure and properties of \textit{nifB} genes show some variation among different diazotrophs. \textit{Azotobacter vinelandii} and \textit{Rhodopseudomonas palustris} possess only one \textit{nifB} gene that is responsible for three types of nitrogenases and mutation of \textit{nifB} gene led to loss of all nitrogenases activities [16, 17]. \textit{Rhodobacter capsulatus} with Mo-nitrogenase and Fe-nitrogenase carries two \textit{nifB} genes that are located in two \textit{nif} gene clusters [18] and either one of the two \textit{nifB} genes was sufficient for nitrogen fixation via the Mo-dependent or Fe-dependent nitrogenase [19]. The cyanobacterium \textit{Anabaena variabilis} ATCC 29413 has two \textit{nifB} genes for synthesis of two Mo-nitrogenases, but \textit{nifB1} is specifically expressed in heterocysts and \textit{nifB2} is specifically expressed in vegetative cells [20]. On the basis of NifB domain architecture, the NifB proteins are divided into three subfamilies [21, 22]. The first NifB subfamily has an N-terminal SAM-radical domain linked to a C-terminal NifX-like domain. A major of NifB proteins from Bacteria domain (e.g. \textit{A. vinelandii} and \textit{Klebsiella oxytoca}) belong to the first NifB subfamily. The second NifB subfamily contains a stand-alone SAM-radical domain and is found in Bacteria and Archaea domains. The third NifB subfamily has three domains including a NifN-like domain, a SAM-radical domain and a C-terminal NifX-like domain and is found in \textit{Clostridium} species.

The \textit{Paenibacillus} genus of the Firmicutes phylum is a large one that currently comprises 254 validly named species (https://www.bacterio.net/paenibacillus.html), more than 20 of which have the nitrogen fixation ability [23]. Comparative genome sequence analysis of 15 diazotrophic \textit{Paenibacillus} strains have revealed that a compact \textit{nif} gene cluster comprising 9–10 genes (\textit{nifB nifH nifD nifK nifE nifN nifX (orf1) hesA nifV}) encoding Mo-nitrogenase is conserved in the \textit{N}$_2$-fixing \textit{Paenibacillus} genus [24]. The 9 genes (\textit{nifBHDKENXhesAnifV}) in \textit{Paenibacillus polymyxa} WLY78 are organized as an operon under control of a σ^{70} dependent promoter located in front of \textit{nifB} gene [25]. In addition to the \textit{nif} gene cluster, additional \textit{nif} genes or \textit{anf} or \textit{vnf} genes are found in some diazotrophic \textit{Paenibacillus} spp. For examples, \textit{P. sabinae} T27 has addition \textit{nif} genes, including \textit{nifB, nifH, nifE and nifN}. \textit{P. forsythia} T98 and \textit{P. sophorae} S27 have additional \textit{nif} and \textit{anfDHGK} genes, \textit{P. zanthoxyli} JH29 and \textit{P. durus} (previously called as \textit{P.
azotoxans) ATCC 35681 contain additional nif and vnfDHGKEN genes. Notably, more than one copy of nifB genes were found in some Paenibacillus species that carry additional nif genes or anf genes or vnf genes [24, 26]. However, functions of the multiple nifB genes are not known. In this study, we analyzed the distribution and phylogeny of the 138 putative NifB proteins from 116 diazotrophic Paenibacillus strains. All nifB genes in Paenibacillus fall into 4 subclasses: nifB1, nifB2, nifB3 and nifB4. We demonstrate that only nifB1 and nifB2 are functional in synthesis of Mo-, Fe- and V-nitrogenase. The nifB3 and nifB4 genes are not involved in nitrogen fixation. Our results define a minimal requirement of 8 and 10 genes for synthesis of the Fe- nitrogenase and V- nitrogenase in P. polymyxa, respectively, thus providing guidance for engineering nitrogenase into heterologous hosts in the absence of Mo.

Results

The nifB genes of Paenibacillus genus

Here, the nitrogen fixation genes in the genomes of the 116 diazotrophic Paenibacillus strains taken from the RefSeq database were comparatively analyzed (Additional file 1: Table S1). A compact nif gene cluster composed of 9–10 genes (nifBHDKENX(orf1)hesAnifV) was conserved in all of the diazotrophic strains, in agreement with the previous studies [24]. In addition to the compact nif gene cluster encoding Mo-nitrogenase, 9 strains had additional anfHDGK encoding Fe-nitrogenase and 3 strains had additional vnfHDGKEN encoding V-nitrogenase.

A total of 138 NifB putative sequences were found in the 116 diazotrophic Paenibacillus strains. According to the nifB position and sequence similarity, the nifB genes were divided into 4 classes. The nifB1 was designated as the one that is the first gene in the compact nif gene cluster comprising 9–10 genes (nifB nifH nifD nifK nifE nifN nifX(orf1) hesA nifV). The nifB2 was linked to additional copies of nifENXorf(fer) genes preceding anfHDGK or additional copies of nifENXorforf genes preceding vnfHDGKEN or orforf preceding vnfHDGKEN. The nifB3 and nifB4 were scattered at different locations with sequence divergence.

Of the 116 diazotrophic Paenibacillus strains, 105 strains had only one nifB and 11 strains had 2–4 nifB genes. P. polymyxa WLY78 was a representative that has only a nifB1 located in the compact nif gene cluster consisting of 9 genes (nifBHDKENXhesAnifV) encoding Mo-nitrogenase (Fig. 1 and Additional file 1: Table S1). P. sabinae T27 was a representative strain with three nifB genes (nifB1, nifB3 and nifB4), but contained only Mo-nitrogenase. For the strains with both Mo- and V-nitrogenases, P. zanthoxyli JH29 had nifB1, nifB2 and nifB3, but P. durus ATCC 35681 had nifB2, nifB3 and 2 copies of nifB1: one being located in the compact nif cluster and the other being linked to another nifH. For the strains with both Mo- and Fe-nitrogenases, P. forsythiae T98 had three nifB genes (nifB1, nifB2 and nifB3), whereas P. sophorae S27 had four nifB genes (nifB2, nifB3, and 2 copies of nifB1). The other 4 strains (P. borealis FSL H70744, Paenibacillus sp. FSL H7-0357, Paenibacillus sp. HW567 and P. camerounensis G4) with both Mo- and Fe-nitrogenases possessed only one nifB gene. Organization of the nifB genes and other nitrogen fixation genes from 17 representatives of Paenibacillus strains was shown in Fig. 1.
Phylogeny and Structure of *Paenibacillus* NifB proteins

Here, 138 putative NifB sequences from 116 diazotrophic *Paenibacillus* strains were used to construct a phylogenetic tree, with 11 NifB sequences from 10 diazotrophs (*A. vinelandii*, *K. oxytoca*, *Bradyrhizobium japonicum*, *Clostridium kluveri*, *Dehalobacter* sp., *Kyrpidia spormannii*, *Methanosarcina acetivorans*, *Methanococcus maripaludis*, *Frankia* sp. EAN1pec, *Nostoc* sp. PCC 7120) as control (Fig. 2 and Additional file 1: Table S1). The phylogenetic tree showed that all *Paenibacillus* putative NifB proteins form a large class which is separated from the NifB proteins from other diazotrophs. The data suggested that all *Paenibacillus* putative *nifB* genes had a common ancestor. The *Paenibacillus* putative NifB proteins were divided into 4 subclasses: NifB1, NifB2, NifB3 and NifB4, in agreement with the 4 *nifB* classes that were classified on basis of *nifB* sequence similarities and positions. Phylogeny analyses showed that the NifB1 protein was emerged firstly in the diazotrophic *Paenibacillus* species, and NifB2, NifB3 and NifB4 proteins may result from gene duplication.

Protein structure analysis showed that *Paenibacillus* NifB1, NifB2 and NifB4 proteins had the same structure composed of an N-terminal SAM-radical domain and a C-terminal NifX-like domain. Most NifB3 proteins possessed the two domains. But the NifB3 proteins from the 2 strains (*P. zanthoxyli* JH29 and *P. durus* DSM 1735) had only a SAM-radical domain. The *Paenibacillus* NifB1, NifB2, NifB3 and NifB4 proteins that possessed both domains were composed of 427–505 amino acids (Additional file 1: Table S1) and had similarity (> 57%) at amino acid levels. These proteins had a number of conserved motifs in the SAM-radical domain, including HPC motif, Cx₃Cx₂C motif, ExRP motif, AGPG motif, TxTxN motif and Cx₂CRxDAxG (Fig. 2). However, NifB3 proteins of *P. zanthoxyli* JH29 and *P. durus* DSM 1735 had only a SAM-radical domain that lacks the Cx₂CRxDAxG motif. Sequence alignment of 13 NifB proteins including NifB1, NifB2, NifB3 and NifB4 from 4 representatives of *Paenibacillus* strains (*P. polymyxa* WLY78, *P. sabinae* T27, *P. forsythia* T98 and *P. zanthoxyli* JH29) was shown in Additional file 2: Figure S1.

Transcription analysis of multiple *nifB* genes in medium containing only Mo or Fe or V

As described above, *P. sabinae* T27 with only Mo-nitrogenase had NifB1, NifB3 and NifB4, *P. zanthoxyli* JH29 with both Mo- and V-nitrogenases had NifB1, NifB2 and NifB3 and *P. forsythia* T98 with both Mo- and Fe-nitrogenases possessed NifB1, NifB2 and NifB3. Here, the three species *P. sabinae* T27, *P. forsythia* T98 and *P. zanthoxyli* JH29 were used to investigate the transcriptions of the multiple *nifB* genes under different conditions by RT-qPCR. *P. sabinae* T27 was cultivated in Mo-dependent nitrogen fixation conditions, while *P. forsythia* T98 and *P. zanthoxyli* JH29 were cultivated in Mo-dependent and Fe-dependent or V-dependent nitrogen fixation conditions, respectively, with non-nitrogen fixing conditions of N-rich (LD medium) cultures as negative controls (Fig. 3). For *P. sabinae* T27 under Mo-dependent condition, *nifB1* was significantly transcribed, but the other two genes *nifB3* and *nifB4* were nearly not expressed (Fig. 3a). For *P. forsythia* T98 under both Mo-dependent and Fe-dependent conditions, both *nifB1* and *nifB2* genes were transcribed, but *nifB3* was nearly not expressed. The transcript level of *nifB1* was much higher in Mo-dependent condition than in Fe-dependent condition, while the transcript level of *nifB2* was higher in Fe-dependent condition than in Mo-dependent condition (Fig. 3b). For *P. zanthoxyli*
JH29 under both Mo-dependent and V-dependent conditions, both \textit{nifB1} and \textit{nifB2} genes were transcribed, but \textit{nifB3} was nearly not detected. The transcript level of \textit{nifB1} was higher in Mo-dependent condition than in V-dependent condition, while the transcript level of \textit{nifB2} was higher in V-dependent condition than in Mo-dependent condition (Fig. 3c). These results indicated that the \textit{nifB1} and \textit{nifB2} may be selectively expressed according to metal availability.

\textbf{Functional analysis of multiple \textit{nifB} genes in synthesis of Mo-nitrogenase}

The \textit{nifB} deletion mutant (\(\Delta nifB\)) of \textit{P. polymyxa} WLY78 was here constructed by using recombination method as described in materials and methods. The \textit{P. polymyxa} \(\Delta nifB\) mutant nearly completely lost the nitrogenase activity and its \textit{nifB} gene carried in plasmid can restore the nitrogenase activity (Fig. 4). Thus, \textit{P. polymyxa} \(\Delta nifB\) mutant was used as a host for complementation to investigate the functionality of the multiple \textit{nifB} genes. Each \textit{nifB} gene from \textit{P. sabinae} T27, \textit{P. forsythia} T98 and \textit{P. zanthoxyli} JH29 was cloned into a low-copy plasmid pRN5101\[27, 28\], in which the expression of these \textit{nifB} genes were driven under the control of the \textit{nifB} promoter of \textit{P. polymyxa} (details are provided in materials and methods).

Among the 3 \textit{nifB} genes of \textit{P. sabinae} T27, only the \textit{nifB1} can effectively restore the nitrogenase activity of the \textit{P. polymyxa} \(\Delta nifB\) mutant, showing the same result with transcription data that only \textit{nifB1} gene was upregulated under nitrogen fixation condition. Both \textit{nifB1} and \textit{nifB2} from \textit{P. forsythia} T98 or \textit{P. zanthoxyli} JH29 can effectively restore nitrogenase activity of the \textit{P. polymyxa} \(\Delta nifB\) mutant, but the \textit{nifB3} from \textit{P. forsythia} T98 or \textit{P. zanthoxyli} JH29 can not restore activity, in agreement with the transcription data and suggesting that both \textit{nifB1} and \textit{nifB2} were functional in synthesis of Mo-nitrogenase.

\textbf{Functional analysis of \textit{nifB1} and \textit{nifB2} genes in synthesis of Fe- and V-nitrogenases}

In order to investigate whether the \textit{nifB1} and \textit{nifB2} from \textit{P. forsythia} T98 and \textit{P. zanthoxyli} JH29 were active in synthesis of Fe-nitrogenase and V-nitrogenases, the \(\Delta nifBHDK\) and \(\Delta nifBHDKEN\) mutants of \textit{P. polymyxa} WLY78 which lost the ability to synthesize Mo-nitrogenase were constructed. As shown in Fig. 5, the \textit{nifBHDK} and \textit{nifBHDKEN} of \textit{P. polymyxa} WLY78 carried in plasmid could restore the nitrogenase activity to 90% wild-type level in the complementary strain (\(\Delta nifBHDK/nifBHDK\)) and (\(\Delta nifBHDKEN/nifBHDKEN\)), suggesting that the mutants can be used as a host for complementation study of alternative nitrogenases.

Two new operons \textit{nifB1anfHDGK} and \textit{nifB2anfHDGK} of \textit{P. forsythia} T98 under the control of the \textit{P. polymyxa} WLY78 \textit{nifB} promoter were constructed (Fig. 5). Each of the reconstituted \textit{nifB1anfHDGK} and \textit{nifB2anfHDGK} operons of \textit{P. forsythia} T98 carried in the recombinant plasmids can enable \textit{P. polymyxa} \(\Delta nifBHDK\) mutant to have nitrogenase activity in medium containing Fe and lacking Mo. The data suggest that either \textit{nifB1} or \textit{nifB2} together with \textit{anfHDGK} of \textit{P. forsythia} can support synthesis of Fe-nitrogenase in the heterologous host \textit{P. polymyxa} which originally has only Mo-nitrogenase system. Furthermore, in order to investigate whether \textit{nifE} and \textit{nifN} genes (designed \textit{nifE2} and \textit{nifN2} genes) preceding \textit{anfHDGK} of \textit{P. forsythia} T98 were functional, another new operon \textit{nifB2E2N2anfHDGK} of \textit{P. forsythia} T98 was constructed (Fig. 5). Then, \textit{nifB2E2N2anfHDGK} and \textit{nifB2anfHDGK} carried in the
recombinant plasmids are individually used to complement ΔnifBHDKEN mutant of *P. polymyxa* WLY78. As shown in Fig. 5, either *nifB2E2N2anfHDGK* or *nifB2anfHDGK* can support ΔnifBHDKEN mutant of *P. polymyxa* WLY78 to have nitrogenase activity in medium containing Fe and lacking Mo. Like the *P. forsythia* T98 that was capable of diazotrophic growth, the reconstituted *nifB/anf*-complemented strains can grow in liquid media with dinitrogen as the sole nitrogen source (Fig. S2). The results indicated that that *nifEN* is not necessary for the biosynthesis and the reconstituted *anf* system composed of 8 genes (*nifBanfHDGK* of *P. forsythia* T98 and *nifXhesAnifV* of *P. polymyxa* WLY78) can support synthesis of Fe-nitrogenase to fix nitrogen.

Similarly, two new operons *nifB1vnfHDGK* and *nifB2vnfHDGK* of *P. zanthoxyli* JH29 under the control of the *nifB* promoter of *P. polymyxa* WLY78 were constructed (Fig. 5a). Each of the *nifB1vnfHDGK* and *nifB2vnfHDGK* operons of *P. zanthoxyli* JH29 carried in the recombinant plasmids can enable *P. polymyxa* ΔnifBHDK mutant to have nitrogenase activity in medium containing V and lacking Mo (Fig. 5b). The data suggest that either of *nifB1* or *nifB2* together with *vnfHDGK* of *P. zanthoxyli* JH29 can support synthesis of V-nitrogenase. Furthermore, a new operon comprising *nifB2* and *vnfHDGKEN* under the control of the *nifB* promoter of *P. polymyxa* WLY78 was constructed. The reconstituted operons *nifB2vnfHDGKEN* and *nifB2vnfHDGK* of *P. zanthoxyli* JH29 are individually used to complement ΔnifBHDKEN mutant of *P. polymyxa* WLY78. The operon *nifB2vnfHDGKEN* can effectively enable ΔnifBHDKEN mutant of *P. polymyxa* WLY78 to synthesize V-nitrogenase (Fig. 5). Our data demonstrate that the reconstituted *vnf* system with *vnfEN* exhibited higher nitrogenase activity compared to the reconstituted *vnf* system with *nifEN*. However, the *nifB2vnfHDGK* operon of *P. zanthoxyli* JH29 can not complement the ΔnifBHDKEN mutant of *P. polymyxa* WLY78, suggesting that the *vnfEN* or *nifEN* was required for the biosynthesis of VFe-co. The diazotrophic growth tests showed that all the reconstituted *nifB/vnf*-complemented strains excluding ΔnifBHDKEN/nifB2vnfHDGK strain grew as well as the *P. zanthoxyli* JH29 (Additional file 3: Figure S2). The results indicated that the reconstituted *vnf* system composed of 10 genes (*nifBvnfHDGK* of *P. zanthoxyli* JH29 and *nifENXhesAnifV* of *P. polymyxa* WLY78 or *nifBvnfHDGKEN* of *P. zanthoxyli* JH29 and *nifXhesAnifV* of *P. polymyxa* WLY78) can support synthesis of V-nitrogenase to fix nitrogen.

Discussion

Most of the diazotrophs carried a single copy of *nifB*. However, our results demonstrated that 2–4 *nifB* genes were distributed in *Paenibacillus* strains having additional *nif* genes or *anf* genes or *vnf* genes. The occurrence of multiple *nifB* copies appears to be specific to diazotrophic *Paenibacillus*. In addition, the presence of *nifB1* immediately upstream of the structural genes *nifHDK* and presence of *nifB2* close to the structural genes *anfHDGK* or *vnfHDGK* also seem to characterize the genus. Our analyses have revealed that all *nifB* genes in *Paenibacillus* fall into 4 subclasses and their encoded products have a N-terminal SAM-radical domain linked to a C-terminal NifX-like domain. However, the NifB3 proteins of *P. zanthoxyli* JH29 and *P. durus* DSM 1735 with V-nitrogenases are a SAM-radical protein linked to a NifX-like protein. To confirm the accuracy of the *nifB3* at DNA sequence level, a DNA fragment including both of the coding regions of a SAM-radical protein and a NifX-like protein was PCR amplified from *P.
zanthoxyli JH29 (Additional file 4: Figure S3). Sequence analysis have shown that the NifB3 protein of P. zanthoxyli JH29 is really a stand-alone SAM-radical protein that linked to a NifX-like protein. We deduce that the nifB3 gene of P. zanthoxyli JH29 or P. durus DSM 1735 is divided to two genes: one encoding a SAM-radical protein and the other encoding a NifX-like protein during evolution. The NifB proteins with only a SAM-radical domain are distributed in some bacteria and in most archaea [21]. However, a stand-alone SAM-radical domain in the NifB3 proteins of P. zanthoxyli JH29 and P. durus DSM 1735 lacks the C-terminal Cx2CRxDAxG motif that binds an Fe-S cluster necessary for NifB-co synthesis [29]. The NifB proteins with three domain architectures comprising a NifN-like domain, SAM-radical domain and a NifX domain are widely distributed in Clostridium genus [21]. However, the NifB proteins with three domain architectures are not found in Paenibacillus, although both Paenibacillus and Clostridium are genera of the Firmicutes phylum.

The canonical NifB protein contains a SAM-radical domain and a NifX-like domain. We have found that some N_{2}-fixing Paenibacillus strains possess NifX-like protein that shows high sequence similarity with the C-terminal domain of NifB but not with NifX protein family. These proteins with only a NifX-like domain are also found in other diazotrophs, but they were eliminated from their studies [21]. Here, the transcription and function of the nifX-like genes from P. sabinae T27, P. forsythia T98 and P. zanthoxyli JH29 are investigated. Generally, the nifX-like gene in Paenibacillus strains is linked together with nifH or other gene. In P. sabinae T27, the nifX-like gene is located within the operon nifHEN in the order of nifH nifX-like nifEN and is significantly transcribed under nitrogen-fixing conditions (Additional file 5: Figure S4a). This could be nifX-like and nifH are organized as one operon and the previous reports that the transcription of nifH genes was up-regulated under nitrogen fixation condition [26, 30]. However, the nifX-like gene is linked together with gldA gene in P. forsythia T98 and P. zanthoxyli JH29 and both nifX-like genes were nearly not expressed (Additional file 5: Figure S4b, c). Complementation experiments demonstrate that NifX-like proteins of P. sabinae T27, P. forsythia T98 and P. zanthoxyli JH29 could not resume the nitrogenase activity of P. polymyxa ΔnifB mutant (Additional file 5: Figure S4d), indicating that these NifX-like proteins can not substitute NifB. It was reported that NifX-like domain of NifB is not required for nitrogen fixation but may perform complementary functions that are beneficial for FeMo-co biosynthesis [21].

Complementation studies revealed that either NifB1 or NifB2 can support any type of nitrogenase activity. However, expression analysis showed that nifB1 exhibited the greatest increase in expression under Mo-dependent conditions and nifB2 is even more induced under alternative fixation conditions. This implies that that the nifB1 and nifB2 genes are specifically expressed under different metal conditions to support synthesis of Mo- and alternative nitrogenases in original host cell, respectively. As in Anabaena variabilis ATCC 29413, two nifB genes are specifically expressed in heterocysts or vegetative cells [20]. It is reported that P. sabinae T27, P. zanthoxyli JH29 and P. forsythia T98 exhibited high nitrogenase activities compared to P. polymyxa WLY78 [31]. Previous studies showed that 3 nifH genes of P. sabinae T27 are functional by complementing K. oxytoca ΔnifH mutant [32]. Our present work demonstrated that nifB2
restored the nitrogenase activity of *P. polymyxa* WLY78 Δ*nifB* mutant. Thus, the higher nitrogenase activity exhibited by these species may be due to their additional *nif* genes.

The *nifB3* and *nifB4* were not expressed under nitrogen fixing conditions, nor functionally complementing the most common and active *nifB1* copy, and in some cases, displaying sequence divergence in regions of the protein already described as critical for NifB activity. This suggested that these *nifB* genes may have lost its capability of fixing nitrogen. They could be related to pseudogenization. Taking into account that the product of *nifB3* and *nifB4* showed the sequence similarity and conservation to NifB1 and NifB2, their inactivation seems to be caused by mutations in their regulatory sequence, leading to prevent their expression.

Moreover, we extended the studies to reconstruct gene requirements for the alternative nitrogenase. Our current study has demonstrated that the reconstituted *anf* system composed of 8 genes (*nifBanfHDGK* and *nifXhesAnifV*) can support synthesis of Fe-nitrogenase to fix nitrogen in *P. polymyxa*. This is consistent with previous report that the *nifEN* is not required for the reconstruction Fe-nitrogenase in *Escherichia coli* [33]. In contrast, synthesis of V-nitrogenase is dependent on either *nifEN* or *vnfEN*. In *A. vinelandii*, NifEN can substitute for VnfEN in *vnfEN* mutants for the biosynthesis of VFe-co, but the VnfEN not NifEN is the preferred scaffold for FeV-co maturation [34, 35]. Our result also confirms that VnfEN is more effective in FeV-co biosynthesis than NifEN.

Many efforts have been directed at engineering diazotrophic eukaryotes, one of the main hurdles is achieving NifB activity. Recent studies have found that the expressed NifB from the methanogen *Methanocaldococcus infernus* in the yeast cell was in a soluble form, while the expressed NifB from *A. vinelandii* in the yeast cells formed aggregates [36, 37]. In addition, the minimal number of genes required for nitrogen fixation is also the crucial step toward this goal. The *Paenibacillus* strains has some interesting features for engineering of eukaryotic N\textsubscript{2} fixation, such as minimal *nif* gene cluster and additional *nif* and *anf* or *vnf* genes. Our study may provide guidance for screening *nif* genes to sort the best candidates to generate efficient nitrogenase. Given widespread findings of terrestrial Mo limitation [38], the minimal Fe- nitrogenase and V- nitrogenase systems described here have practical potentials in engineering nitrogen fixing plants.

Materials And Methods

Phylogenetic analysis

The 138 putative *nifB* gene sequences of the 116 N\textsubscript{2}-fixing *Paenibacillus* strains and 11 putative *nifB* gene sequences of 10 other diazotrophs (*Frankia* sp. EAN1pec, *Nostoc* sp. PCC7120, *Bradyrhizobium japonicum* USDA 6, *Kyptidia spormannii* CVV65, *Clostridium kluoveri* DSM 555, *Dehalobacter* sp. CF, *A. vinelandii* DJ, *K. oxytoca* KONIH1, *Methanococcus maripaludis* S2 and *Methanosarcina acetivorans* C2A) from the NCBI RefSeq database (last accessed July 2019) are shown in Table S1. Multiple alignment of
amino acid sequences was performed by ClustalW (version 2.1) [39]. A maximum-likelihood phylogenetic tree of *Paenibacillus* species was constructed using PhyML (version 3.0) software [40].

Plasmids, strains and growth conditions

Strains and plasmids used in this work are listed in (Additional file 6: Table S2). *Paenibacillus* strains were routinely grown in LD medium (per liter contains: 2.5 g NaCl, 5 g yeast and 10 g tryptone) at 30°C with shaking under aerobic condition. For nitrogen fixation, *Paenibacillus* strains were grown in nitrogen-limited medium (2 mM glutamate) under anaerobic condition. Nitrogen-limited medium used in this study contains 10.4 g/L of Na₂HPO₄, 3.4 g/L of KH₂PO₄, 26 mg/L of CaCl₂·2H₂O, 30 mg/L of MgSO₄, 0.3 mg/L of MnSO₄, 36 mg/L of ferric citrate, 7.6 mg Na₂MoO₄·2H₂O, 10 mg/L of p-aminobenzoic acid, 5 mg/L of biotin, and 2% (wt/vol) glucose, with 2 mM glutamate as the nitrogen source. *Escherichia coli* JM109 was used as routine cloning host. Thermo-sensitive vector pRN5101 [27, 28] was used for gene disruption and complementation experiment in *P. polymyxa* WLY78. When appropriate, antibiotics were added in the following concentrations: 100 µg/mL ampicillin and 5µg/mL erythromycin for maintenance of plasmids.

For diazotrophic growth, *Paenibacillus* strains and complementary strains were initially grown overnight in LD medium at 30°C. Cells were collected, washed, and resuspended in nitrogen-free medium (nitrogen-limited medium without glutamate) under N₂ atmosphere, with initial OD₆₀₀ of 0.3. After 48 h, OD₆₀₀ was detected.

Acetylene reduction assays for nitrogenase activity

Nitrogenase activity was measured by acetylene reduction assays as described previously (25) For Mo-nitrogenase activity, *P. polymyxa* WLY78 and their derivatives were individually grown overnight in 50 mL of liquid LD media for 16 h at 30°C with shaking at 200 rpm. The culture was collected by centrifugation, and the pellet was washed three times with sterilized water and then resuspended in a 26 mL sealed tube containing 4 mL of nitrogen-limited medium to a final OD₆₀₀ of 0.3 to 0.5. The headspace in the tube was then evacuated and replaced with argon gas. After C₂H₂ (10% of the headspace volume) was injected into the test tubes, the cultures were incubated at 30°C for 2–4 h and with shaking at 200 rpm. Then, 100 µL of gas was withdrawn through the rubber stopper with a gas tight syringe and manually injected into the gas chromatograph HP6890 to quantify ethylene production. The nitrogenase activity was expressed in nmol C₂H₄/mg protein/hr. To assess Fe-nitrogenase activity, Mo-starved *Paenibacillus* cells were grown in nitrogen-limited medium that was depleted of molybdenum by Schneider et al. (41). For V-nitrogenase activity, 30 µM Na₃VO₄ was added to the nitrogen-limited medium to take place of Na₂MoO₄. All treatments were in three replicates and all the experiments were repeated three or more than three times.

Transcription analysis

Transcription analyses of *nifB* genes were investigated by real-time quantitative PCR (RT-qPCR). *P. sabinae* T27 was grown in nitrogen-limited medium containing Mo (Na₂MoO₄), while *P. zanthoxyli* JH29 and *P. forsythia* T98 were grown in Mo-free nitrogen-limited media containing Fe and V, respectively. For negative controls, these bacteria were individually grown in LD medium which has excess nitrogen medium to inhibit nitrogen fixation. These *Paenibacillus* strains were grown at 30°C with shaking under
anaerobic condition. The bacterial cells were harvested after cultivation for 4 h cultivation. Total RNA was extracted with Trizol (Takara) according to the manufacturer's instructions. The integrity and size distribution of the RNA was verified by agarose gel electrophoresis, and the concentration was determined spectrophotometrically. Remove of genome DNA and synthesis of cDNA were performed using RT Prime Mix according to the manufacturer’s specifications (Takara Bio, Tokyo, Japan). Primers for nif genes and 16S rDNA used for RT-qPCR are listed in Additional file 7: Table S3. RT-qPCR was performed on Applied Biosystems 7500 Real-Time System and detected by the SYBR Green detection system with the following program: 95°C for 15 min, 1 cycle; 95°C for 10 s and 65°C for 30 s, 40 cycles. The relative expression level was calculated using the 2^{-ΔΔCT} method \[42\]. Each experiment was performed in triplicate.

Construction of the nifB, nifBHDK and nifBHDKEN deletion mutants

The nifB, nifBHDK and nifBHDKEN deletion mutants of *P. polymyxa* WLY78 were constructed by a homologous recombination method. The upstream (ca. 1 kb) and downstream (ca. 1.0 kb) fragments flanking the coding region of nifB or nifBHDK or nifBHDKEN were PCR amplified from the genomic DNA of *P. polymyxa* WLY78, respectively. The two fragments flanking coding region of nifB or nifBHDK or nifBHDKEN were then fused with BamH\ı digested pRN5101 vector using Gibson assembly master mix (New England Biolabs), generating the recombinant plasmids pRDnifB, pRDnifBHDK and pRDnifBHDKEN, respectively. Then, each of these recombinant plasmids was transformed into *P. polymyxa* WLY78 as described by Wang et al., \[43\]. Subsequently, marker-free deletion mutants (the double-crossover transformants) ΔnifB, ΔnifBHDK and ΔnifBHDKEN were selected from the initial Em\ı transformants after several rounds of nonselective growth at 39°C and then confirmed by PCR amplification and sequencing analysis. The primers used for the PCR amplifications were listed in Additional file 7: Table S3.

Construction of plasmids for complementation of the *P. polymyxa* ΔnifB mutant

Here, 9 nifB genes from *P. sabinae* T27, *P. forsythia* T98 and *P. zanthoxyli* JH29 were used to complement the *P. polymyxa* ΔnifB mutant. These nifB genes include nifB1, nifB3 and nifB4 of *P. sabinae* T27, nifB1, nifB2 and nifB3 of *P. forsythia* T98 and nifB1, nifB2 and nifB3 of *P. zanthoxyli* JH29. The coding region of each nifB gene from *P. sabinae* T27, *P. forsythia* T98 and *P. zanthoxyli* JH29 and a 310 bp promoter region of nifB in the *nifBHDKENXhesAnifV* operon of *P. polymyxa* WLY78 were PCR amplified. Then, The PCR products of the nifB coding region and the promoter region were fused together with vector pRN5101 using Gibson assembly master mix, yielding the recombinant plasmid. The recombinant plasmid was transformed to *P. polymyxa* WLY78 nifB mutant for complementation. The primers used in fusion were listed in Additional file 7: Table S3.

Construction of the recombinant plasmids for complementation of the *P. polymyxa* ΔnifBHDK or ΔnifBHDKEN mutant

For construction recombinant plasmids of alternative nitrogenases in *P. polymyxa*, the coding regions of the nifB1, nifB2, the anfHDGK and nifE2N2anfHDGK operon were amplified from the genome of *P.
forsythia T98, respectively. Also, a 310 bp promoter region of nifB in the nifBHDKENXhesAnifV operon of P. polymyxa WLY78 was PCR amplified. Then, the PCR amplified promoter, nifB1 or nifB2 and the anfHDGK or nifE2N2anfHDGK operon were in order linked to vector pRN5101 using Gibson assembly master mix, yielding the recombinant plasmid carrying the reconstituted nifB1anfHDGK operon or nifB2anfHDGK operon or nifB2E2N2anfHDGK operon. The expression of nifB1vnfHDGK or nifB2vnfHDGK or nifE2N2anfHDGK was under control of the P. polymyxa nifB promoter. Finally, these plasmids were individually transformed into ΔnifBHDK or ΔnifBHDKEN mutant of P. polymyxa WLY78.

Similarly, the nifB1, nifB2, vnfHDGK and vnfHDGKEN operon were amplified from the genome of P. zanthoxyli JH29, respectively. A 310 bp promoter region of nifB in the nifBHDKENXhesAnifV operon of P. polymyxa WLY78 was PCR amplified. Then, the three fragments including the promoter, nifB1 or nifB2 and vnfHDGK or vnfHDGKEN operon were in order fused together with vector pRN5101 using Gibson assembly master mix, yielding the recombinant plasmid carrying the reconstituted operon nifB1vnfHDGK or nifB2vnfHDGK or nifB2vnfHDGKEN. The expression of nifB1vnfHDGK or nifB2vnfHDGK or nifB2vnfHDGKEN was under control of the P. polymyxa nifB promoter. Finally, these plasmids were individually transformed into ΔnifBHDK mutant or ΔnifBHDKEN of P. polymyxa WLY78.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article and are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the National Natural Science Foundation of China (No. 32000048) and the National Key Research and Development Program of China (No. 2019YFA0904700).

Author Contributions
QL performed all experiments, and drafted the manuscript. HWZ participated in strain construction. LQZ assisted in the writing. SFC conceived the study, guided its coordination and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Dr. Sishuo Wang for his guidance in phylogenetic analysis and helpful discussion.

References

1. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics. 2012;13:162.

2. Ribbe MW, Hu YL, Hodgson KO, Hedman B. Biosynthesis of nitrogenase metalloclusters. Chem Rev. 2014;114:4063-4080.

3. Eady RR. Structure-function relationships of alternative nitrogenases. Chem Rev. 1996;96:3013-3030.

4. Rubio LM, Ludden PW. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol. 2008;62:93-111.

5. Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics. 2018;10:523-538.

6. Hu YL, Ribbe MW. Biosynthesis of the metalloclusters of molybdenum nitrogenase. Microbiol Mol Biol Rev. 2011;75:664-677.

7. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev. 2014;114:4041-4062.

8. Buren S, Jimenez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of nitrogenase cofactors. Chem Rev. 2020;120:4921-4968.

9. McRose DL, Zhang XN, Kraepiel AML, Morel FMM. Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Front Microbiol. 2017;8:267.

10. Harwood CS. Iron-only and vanadium nitrogenases: fail-safe enzymes or something more? Annu Rev Microbiol. 2020;74:247-266.

11. Sippel D, Einsle O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat Chem Biol. 2017;13:956-961.

12. Curatti L, Ludden PW, Rubio LM. NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A. 2006;103:5297-5301.

13. Wiig JA, Hu YL, Lee CC, Ribbe MW. Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science. 2012;337:1672-1675.

14. Fajardo AS, Legrand P, Paya-Tormo LA, Martin L, Pellicer Marti Nez MT, Echavarri-Erasun C, Vernede X, Rubio LM, Nicolet Y. Structural insights into the mechanism of the Radical SAM carbide synthase NifB, a key nitrogenase cofactor maturing enzyme. J Am Chem Soc. 2020;142:11006-11012.
15. Hernandez JA, Igarashi RY, Soboh B, Curatti L, Dean DR, Ludden PW, Rubio LM. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol Microbiol. 2007;63:177-192.

16. Drummond M, Walmsley J, Kennedy C. Expression from the nifB promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA transcriptional activators. J Bacteriol. 1996;178:788-792.

17. Oda Y, Samanta SK, Rey FE, Wu LY, Liu XD, Yan TF, Zhou JZ, Harwood CS. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol. 2005;187:7784-7794.

18. Demtroder L, Narberhaus F, Masepohl B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol. 2019;111:17-30.

19. Schuddekoepf K, Hennecke S, Liese U, Kutsche M, Klipp W. Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitrogenases in Rhodobacter capsulatus. Mol Microbiol. 1993;8: 673-684.

20. Vernon SA, Pratte BS, Thiel T. Role of the nifB1 and nifB2 promoters in cell-type-specific expression of two Mo nitrogenases in the Cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol. 2017;199: UNSP e00674.

21. Arragain S, Jimenez-Vicente E, Scandurra AA, Buret S, Rubio LM, Echavarri-Erasun C. Diversity and functional analysis of the FeMo-cofactor maturase NifB. Front Plant Sci. 2017;8:1947.

22. Boyd ES, Anbar AD, Miller S, Hamilton TL, Lavin M, Peters JW: A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology. 2011;9:221-232.

23. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15:203.

24. Xie JB, Du ZL, Bai LQ, Tian CF, Zhang YZ, Xie JY, Wang TS, Liu XM, Chen X, Cheng Q, Chen SF, Li JL. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. Plos Genet. 2014;10: e1004231.

25. Wang LY, Zhang LH, Liu ZZ, Zhao DH, Liu XM, Zhang B, Xie JB, Hong YY, Li PF, Chen SF, Dixon R, Li JL. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. Plos Genet. 2013;9: e1003865.

26. Li XX, Deng ZP, Liu ZZ, Yan YL, Wang TS, Xie JB, Lin M, Cheng Q, Chen SF. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes. BMC Genomics. 2014;15:723.

27. Villafane R, Bechhofer DH, Narayanan CS, and Dubnau D. Replication control genes of plasmid pE194. J. Bacteriol. 1987; 169: 4822–4829.

28. Zhang W, Ding Y, Yao L, Liu K, Du B. Construction of gene knock-out system for Paenibacillus polymyxa SC2. Acta Microbiologica Sinica. 2013;53:1258-1266.

29. Kang W, Rettberg LA, Stiebritz MT, Jasniewski AJ, Tanifuji K, Lee CC, Ribbe MW, Hu Y. X-ray crystallographic analysis of NifB with a full complement of clusters: structural insights into the
radical SAM-dependent carbide insertion during nitrogenase cofactor assembly. Angew Chem Int Edit. 2021; 60:2364-2370.

30. Li Q, He X, Liu P, Zhang H, Wang M, Chen S. Synthesis of nitrogenase by *Paenibacillus sabinae* T27 in presence of high levels of ammonia during anaerobic fermentation. Appl Microbiol Biot. 2021;105:2889-2899.

31. Ma YC, Xia ZQ, Liu XM, Chen SF. *Paenibacillus sabinae* sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol. 2007;57:6-11.

32. Hong YY, Ma YC, Wu LX, Maki M, Qin WS, Chen SF. Characterization and analysis of *nifH* genes from *Paenibacillus sabinae* T27. Microbiol Res. 2012;167:596-601.

33. Yang JG, Xie XQ, Wang X, Dixon R, Wang YP. Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in *Escherichia coli*. Proc Natl Acad Sci U S A. 2014;111: E3718-E3725.

34. Wolfinger ED, Bishop PE. Nucleotide sequence and mutational analysis of the *vnfENX* region of *Azotobacter vinelandii*. J Bacteriol. 1991;173:7565-7572.

35. Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW. Transcriptional profiling of nitrogen fixation in *Azotobacter vinelandii*. J Bacteriol. 2011;193:4477-4486.

36. Buren S, Jiang X, Lopez-Torrejon G, Echavarri-Erasun C, Rubio LM. Purification and in vitro activity of mitochondria targeted nitrogenase cofactor maturase NifB. Front Plant Sci. 2017;8:1567.

37. Buren S, Pratt K, Jiang X, Guo Y, Jimenez-Vicente E, Echavarri-Erasun C, Dean DR, Saaem I, Gordon DB, Voigt CA, Rubio LM. Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in *Saccharomyces cerevisiae*. Proc Natl Acad Sci U S A. 2019;116:25078-25086.

38. Darnajoux R, Magain N, Renaudin M, Lutzoni F, Bellenger JP, Zhang XN. Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proc Natl Acad Sci U S A. 2019;116:24682-24688.

39. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current Protoc Bioinformatics. 2002;Chapter 2:Unit 2.3.

40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307-321.

41. Schneider K, Muller A, Johannes KU, Diemann E, Kottmann J. Selective removal of molybdenum traces from growth media of N₂-fixing bacteria. Anal Biochem. 1991;193:292-298.

42. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^−ΔΔCT method. Methods. 2001;25:402-408.

43. Wang TS, Zhao XY, Shi HW, Sun L, Li YB, Li Q, Zhang HW, Chen SF, Li JL. Positive and negative regulation of transferred *nif* genes mediated by indigenous GlnR in Gram-positive *Paenibacillus polymyxa*. Plos Genet. 2018;14: e1007629.
Figure 1

Genetic organization of the nifB loci and other nif, anf, vnf genes in N2-fixing Paenibacillus strains. The compact nif gene cluster comprising contiguous 9-10 genes nifBHDKENX(ofr1)hesAnifV. The anf genes are marked with yellow color and the vnf genes are marked with apricot yellow. The nifB genes are shown
in magenta. The nifX-like genes whose predicted products show high sequence similarity with the C-terminal domain of NifB are shown in pink.

Figure 2

Maximum likelihood phylogenetic tree and architectures of NifB proteins from N2-fixing Paenibacillus strains. All the NifB1 proteins in N2-fixing Paenibacillus strains clustered together and were not shown. The SAM-radical is shown in red and the NifX-like domain in blue. Color dots represent conserved motifs in the NifB proteins. The NifB has only a stand-alone SAM-radical domain marked blue triangle.
Figure 3

Transcription profile of the multiple nifB genes from P. sabinae T27(a), P. forsythia T98(b) and P. zanthoxyli JH29(c). RT-qPCR analysis of the relative transcript levels of the nifB genes in these Paenibacillus species grown in Mo-dependent, Fe-dependent and V-dependent nitrogen fixation conditions, with non-nitrogen fixing conditions of N-rich (LD medium) cultures as negative controls. The data are the mean of three biological replicates.

Figure 4

The nitrogenase activities of the P. polymyxa ΔnifB mutant and its complementary strains in Mo-dependent nitrogen fixation conditions. The nitrogenase activity was measured by acetylene reduction
assay when bacterial cells were grown anaerobically in nitrogen limited medium containing Mo. Error bars indicate the SD observed from at least three independent experiments.

Figure 5

Schematic map and nitrogenase activity of the ΔnifBHDK and ΔnifBHDKEN mutants of *P. polymyxa* and the complementary strains carrying nifB1anfHDGK, nifB2anfBHDGK, nifB2E2N2anfBHDGK of *P. forsythia* T98, respectively and the complementary strains carrying nifB1vnfHDGK, nifB2vnfHDGK,
nifB2vnfHDGKEN of P. zanthoxyli JH29, respectively. a Schematic map of the P. polymyxa ΔnifBHDK and P. polymyxa ΔnifBHDKEN mutants and the complementary strains. b The nitrogenase activity of the P. polymyxa ΔnifBHDK and P. polymyxa ΔnifBHDKEN mutants and the complementary strains. Activity was measured by acetylene reduction assay. The complementary strains carrying nifB1anfHDGK, nifB2anfBHDGK and nifB2E2N2anfBHDGK were cultivated in Fe-dependent conditions. The complementary strains carrying nifB1vnfHDGK, nifB2vnfHDGK and nifB2vnfHDGKEN were cultivated in V-dependent conditions. Error bars indicate the SD observed from at least three independent experiments

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementaryinformation.pdf](#)