Detection of Blastocystis in Stool Isolates Using Different Diagnostic Methods

Buthaina Darwish  
Damascus University

Ghalia Aboualchamat  
Damascus University

Samar Al Nahhas  (✉️ samar.nahhas@yahoo.com)  
Damascus University

Research Article

Keywords: Blastocystis, Symptoms, Stool, Sensitivity, Molecular Method, Culture, Syria

DOI: https://doi.org/10.21203/rs.3.rs-386319/v1

License: ☑️  🔐 This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

Background: *Blastocystis* is a parasite that inhabits human intestinalis. It is commonly identified in asymptomatic individuals, while its pathogenic role is underestimated. In Syria, studies on this parasite are very few, and it is not documented in the laboratory reports. The present study aimed to evaluate the sensitivity of three different diagnostic methods in the detection of *Blastocystis* among patients with no specific or clear symptoms.

Methods: Stool samples were collected from 70 patients suffering from various gastrointestinal symptoms. All samples were examined microscopically using iodine staining smears, and after *in vitro* cultivation at 37°C for 48-72 h using Jones' medium. Molecular detection of *Blastocystis* was determined by fragment amplification of the SSU rRNA gene using PCR.

Results: *Blastocystis* was identified in: 49 cases (70%) by direct microscopic examination, in 60 isolate (85.7%) by *in vitro* culture and in 64 (91.4%) of cases using molecular detection. Comparative analysis revealed that the sensitivity of microscopic detection for *Blastocystis* was 73.4% while it was 90.6% for *in vitro* culture and 95.9 - 96.7% using PCR detection method. *Blastocystis* was found alone in 32 (65.3%) of cases, while co-infection was detected in 17 (34.7%) samples.

Conclusions: Our findings highlighted the importance of considering *Blastocystis* in laboratory diagnosis. Molecular methods are recommended for screening clinical specimens for *Blastocystis* infection especially among individuals with no common particular symptoms. If not applicable, two different diagnostic techniques are required for accurate diagnose of this parasite.

1. Introduction

*Blastocystis* is a single-celled protozoan parasite that infects the lower gastrointestinal tract of humans and a wide range of animals [1, 2]. Poor hygiene practices, exposure to animals and consumption of contaminated food or water [3-6] could explain its high prevalence in developing countries (30–50%) compared with developed countries (1.5–10%) [7, 8].

*Blastocystis* pathogenicity is controversial; for many years, this parasite was considered with no clinical relevance due to its high prevalence in asymptomatic individuals [9]. However, several studies reported its presence in both asymptomatic and symptomatic patients [10-12]. No specific gastrointestinal symptoms are associated with the presence of this parasite; some individuals show abdominal pain, acute or chronic diarrhea, while others show flatulence, bloating, anorexia, and weight loss as well as urticarial lesions [13, 14]. Recently, an association has been reported with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) [15, 16].

*Blastocystis* has a highly polymorphic appearance, direct microscopic examination of fecal samples, is considered the traditional diagnostic method of human infection with this parasite [9, 17]. In Syria, *Blastocystis* epidemiology, diagnose, infection sources and the way of its transmission are not well
studied. Therefore, we aimed in this study to employ a comparative analysis between three different diagnostic methods, especially among patients with no specific or clear symptoms in order to shed light on this parasite and to show the importance of its both pathogenicity and diagnosing.

2. Materials And Methods

2.1 Clinical samples

Seventy patients, who presented to the clinics of internal medicine at three major hospitals in the city of Damascus (Al Assad University Hospital, Al-Mouwasat University Hospital and Kids Hospital), participated in this study. All patients signed informed consent and completed simple questionnaire including gender, age, presence of symptoms (i.e. abdominal pain, diarrhea, vomiting, fever, nausea, headache and discomfort) and environmental conditions, such as type of water supply and contact with household animals. Stool samples were collected into sterile containers, then each obtained sample was divided into three parts for use in microscopy, culture, and PCR assays. Samples were collected in the period between February and December 2020. This study has been approved by the ethical committee of Damascus University.

2.2 Macroscopic and Microscopic examination

Firstly, stool specimens were examined by naked eye to determine color and presence of blood or mucous. Then, Lugol's iodine stained smears were prepared from each stool sample to detect *Blastocystis* and other parasite forms using light microscopy at 40× and 100×. To avoid obscurity in microscopic diagnosis of the polymorphic *Blastocystis*, only the presence of vacuolar form in more than one field of stool smear was considered as positive.

2.3 Culture

Approximately 50-100 mg of stool samples were subjected to culture in Jones' medium (Liofilchem, Italy) supplemented with 10% horse serum and antibiotics (penicillin 100u/ml, streptomycin 100 μg/ml). Samples were incubated at 37°C in OSK incubator (OSK 9639b, Japan). The growth of *Blastocystis* and the distinct morphological and reproductive stages were confirmed by microscopic observation of culture at 48, and 72 h of incubation using Lugol's iodine staining and light microscopy at 400×.

2.4 Genomic DNA extraction and PCR amplification

Total genomic DNA was extracted from 200 to 250 mg of each stool sample, using QIAamp DNA stool mini kit (Qiagen, Valencia, CA) as described by Skhal *et al.* [18]. A pair of diagnostic primers [19] was used to amplify a 310 bp fragment of the *small subunit ribosomal RNA* gene (SSU-rRNA) in case the presence of *Blastocystis*.

The PCR reaction contained 12.5 μl One PCR™ master mix 2X (GeneDirex Inc, Taiwan ROC), 1 μl of each primer pairs, 10.5 μl nuclease-free water, and 4 μl of the extracted gDNA.
Each PCR experiment contained a negative control (4 µl of nuclease-free water) for contamination detection. PCR cycling conditions were as follows: initial denaturation at 94°C for 3 min, then 30 cycles of 94°C for 60 s, 58°C for 60 s and 72°C for 60 s. The final extension was at 72°C for 5 minutes. The PCR products were electrophoresed in 2% agarose gel stained with ethidium bromide (Sigma-Aldrich, USA) along with a 100 bp DNA ladder (GeneDirex Inc, Taiwan ROC) as a size standard. The final results were visualized under a UV transilluminator and photographed for documentation.

2.5 Statistical study

Diagnostic accuracy was calculated as: sensitivity, specificity, positive and negative predictive values.

3. Results

Our sample study consisted of 70 feces specimens. 28 were collected from males (age ranged 3-75 years, median age 30 years) and 42 were collected from females (aged ranged 5-76 years, median age 37 years). The major clinical symptom of patients was abdominal pain (40/70; 57%) while the minor one was skin rash (6/70; 8.6%) (Table 1).

The macroscopic examination results showed that 23 of the stool samples were noted to have watery appearance, whereas the remaining had normal consistency and color. Also, no pus, blood, and helminth were observed in the morphological evaluation of the specimens.

Out of the 70 samples, 49 samples (70%) were determined positive for the presence of *Blastocystis*, using direct microscopic examination with Lugol's staining. The vacuolated form of *Blastocystis* was the most common, in which cellular structures as the central vacuole, band of cytoplasm, nuclei and surface coat were clearly distinguishable (Fig 1: A).

Co-infection with one or more other parasites was detected in 34.7% (17/49) of isolates, (Fig 1: B; Table 2), while 65.3 % (32/49) showed the existence of only *Blastocystis* parasite.

Our *in vitro* cultured samples results showed the growth of *Blastocystis* in 60 (85.7%) stool isolates. The most detected forms of *Blastocystis* in culture media were the vacuolar and granular forms (Fig 1: C), while the cystic and amoeboid forms were present in a smaller proportion.

PCR amplification of the 310 bp fragment of the *SSU rRNA* gene was successfully obtained from 64/70 studied cases (91.4%) (Fig 2). Two samples only showed no amplification.

Comparative result analysis revealed that sensitivity and specificity identified by microscopy in comparison with PCR assay were 73.4% and 66.7%, respectively. However, the *in vitro* culture showed 90.6% sensitivity and 66.7% specificity when compared with PCR (Tables 3-4).

4. Discussion
Blastocystis is an enteric parasite found in animals and humans with a worldwide distribution [20, 21]. Many studies have emphasized the importance of its pathogenic role [22-24]. In Syria, Blastocystis is considered part of the intestinal flora; it is not yet recognized as a pathogen and it is not specified usually, in the results of any laboratory analysis of the fecal sample. Hence, we aimed to focus on the different diagnostic methods and its sensitivity and specificity in the accurate diagnosis of Blastocystis.

Our findings showed notable difference in the detection of Blastocystis in stool isolates using the three diagnostic methods. The presence of this parasite was recorded in 70% of samples by microscopy, in 85.7% by in vitro culture and in 91.4% by conventional PCR.

Laboratory diagnosis of Blastocystis can be challenging and the prevalence data can be influenced depending on the method of diagnosis, making choosing the accurate method an important task in diagnosing Blastocystis [25].

Blastocystis is highly polymorphic it has variation in size and shape [26, 27]. Our microscopic data showed that the vacuolar and granular forms were mostly detected using microscopic examination. This finding is in agreement with previous results since these forms are easily distinguished from other protozoa [28, 29]. On the contrary, other studies indicated the presence of vacuolar, granular, amoeboid and cyst forms of Blastocystis in the microscopic detection [30, 31]. Thus, relying on using microscopic examination only in diagnosis is controversial and many studies underestimated it [27, 32]. Additionally, the low microscopic sensitivity recorded in our study may be according to some researches due to the Lugol’s staining method which shows less sensitive than cultivation in Jones’ medium [17, 33].

On the other hand, our data showed that in vitro culture failed to detect the parasite in 6 positively proved cases by PCR. This results may be explained either because they were disintegrated prior to culturing or for some conditions that affected its growth and hence detection in culture [11, 34].

Despite its high cost, PCR is considered as a gold standard detection assay with no time consuming, in comparison with in vitro culture method that is time consuming, yet microscopy detection needs experience but with low cost. Our diagnosis results are consistent with previous studies that indicated that molecular assays and in vitro culture are superior over the direct microscopic examination in the detection of Blastocystis from human stool isolates [17, 35, 36]. However, some studies suggested that in vitro culture is superior to direct PCR assay [32, 37].

False-negative results using PCR were detected in two positively confirmed isolates by microscopy and culturing techniques. Even though, there is no clear explanation for such results, low concentration of DNA, the presence of PCR inhibitors in some specimens or degradation of parasite material during storage may be the cause [11, 38].

Remarkably, the majority of our samples (65.3%) showed the presence of Blastocystis alone, while co-infection with other intestinal parasites was detected in 34.7%. This finding strongly indicates the importance of considering Balastocystis in laboratory diagnosis. It also agrees with that our patients
showed enormously different symptoms, making it hard to associate *Blastocystis* presence with specific gastrointestinal symptoms and emphasize the importance of recognizing it as a pathogen agent.

5. Conclusions

This study is the first in Syria to highlight the importance of *Blastocystis* diagnosis. We strongly recommend considering this parasite in laboratory reports, diagnosis, and treatment especially when no coinfection is present. Additionally, molecular methods are an excellent tool for the accurate detection and identification of *Blastocystis* in stool samples. But if not feasible for a diagnostic laboratory, it is recommended to use at least two different diagnostic techniques; such as microscopy in parallel with *in vitro* culture in Jones' medium for accurate diagnose of this parasite.

Declarations

**Ethics approval and consent to participate**

This study has been approved by the ethical committee of Damascus University (date: 26/8/2019, number: 4031). Informed written consent was obtained from the patients or a member of their family in case of children. Confidentiality of the details of the participants was assured. All methods, used in this study, were carried out in accordance with relevant guidelines and regulations.

**Consent for publication**

Not applicable

**Availability of data and materials**

The datasets used in the current study are available from the corresponding author on reasonable request.

**Competing interests**

No conflict of interest is associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

**Funding**

This work was funded by Damascus University (1085/6)

**Authors' contributions**

Buthaina Darwish (MSc): sample collection, microscopic examination, culture, PCR assays, manuscript writing and editing
Ghalia Aboualchamat (PhD): experiment design, manuscript writing and editing.

Samar Al Nahhas (PhD): bibliography, experiment design, microscopic examination, manuscript writing and editing.

Acknowledgements

The authors gratefully acknowledge all the patients and their families for taking part in this study.

References

1. Clark CG, van der Giezen M, Alfellani MA, Stensvold CR. Recent developments in *Blastocystis* research. Advances in parasitology. 2013;82:1-32. Doi: 10.1016/B978-0-12-407706-5.00001-0.

2. Greige S, El Safadi D, Bécu N, Gantois N, Pereira B, Chabé M, Benamrouz-Vanneste S, Certad G, El Hage R, Chemaly M, Hamze M. Prevalence and subtype distribution of *Blastocystis* sp. isolates from poultry in Lebanon and evidence of zoonotic potential. Parasites & vectors. 2018;11(1):1-0.DOI: 10.1186/s13071-018-2975-5.

3. Li LH, Zhou XN, Du ZW, Wang XZ, Wang LB, Jiang JY, Yoshikawa H, Steinmann P, Utzinger J, Wu Z, Chen JX. Molecular epidemiology of human *Blastocystis* in a village in Yunnan province, China. Parasitology international. 2007;56(4):281-6. DOI: 10.1016/j.parint.2007.06.001.

4. Leelayoova S, Siripattanapipong S, Thathaisong U, Naaglor T, Taamasri P, Piyaraj P, Mungthin M. Drinking water: a possible source of *Blastocystis* spp. subtype 1 infection in schoolchildren of a rural community in central Thailand. The American journal of tropical medicine and hygiene. 2008;79(3):401-6.

5. Osman M, El Safadi D, Cian A, Benamrouz S, Nourrisson C, Poirier P, Pereira B, Razakandrainibe R, Pinon A, Lambert C, Wawrzyniak I. Correction: prevalence and risk factors for intestinal protozoan infections with *Cryptosporidium*, *Giardia*, *Blastocystis* and *Dientamoeba* among schoolchildren in Tripoli, Lebanon. PLoS neglected tropical diseases. 2016;10(4):e0004643.

6. Al Nahhas S, Aboualchamat G. Investigation of parasitic contamination of salad vegetables sold by street vendors in city markets in Damascus, Syria. Food Waterborne Parasitol. 2020; 21:e00090. Doi: 10.1016/j.fawpar.2020.e00090.

7. Bart A, Wentink-Bonnema EM, Gilis H, Verhaar N, Wassenaar CJ, van Vugt M, Goorhuis A, Van Gool T. Diagnosis and subtype analysis of *Blastocystis* sp. in 442 patients in a hospital setting in the Netherlands. BMC infectious diseases. 2013;13(1):1-6. Doi: 10.1186/1471-2334-13-389.

8. El Safadi D, Cian A, Nourrisson C, Pereira B, Morelle C, Bastien P, Bellanger AP, Botterel F, Candolfi E, Desoubeaux G, Lachaud L. Prevalence, risk factors for infection and subtype distribution of the intestinal parasite *Blastocystis* sp. from a large-scale multi-center study in France. BMC infectious diseases. 2016;16(1):1-1. Doi: 10.1186/s12879-016-1776-8.

9. Abda IB, Maatoug N, Romdhane RB, Bouhelmi N, Zallegua N, Aoun K, Viscogliosi E, Bouratbine A. Prevalence and subtype identification of *Blastocystis* sp. in healthy individuals in the Tunis area,
Tunisia. The American journal of tropical medicine and hygiene. 2017;96(1):202-4. Doi:10.4269/ajtmh.16-0506.

10. Tan KS. Blastocystis in humans and animals: new insights using modern methodologies. Veterinary parasitology. 2004;126(1-2):121-44. DOI: 10.1016/j.vetpar.2004.09.017

11. Eida AM, Eida MM. Identification of Blastocystishominis in patients with irritable bowel syndrome using microscopy and culture compared to PCR. Parasitol United J. 2008;1(2):87-92.

12. Moosavi A, Haghhighi A, Mojarad EN, Zayeri F, Alebouyeh M, Khazan H, Kazemi B, Zali MR. Genetic variability of Blastocystis sp. isolated from symptomatic and asymptomatic individuals in Iran. Parasitology research. 2012;111(6):2311-5. Doi:10.1007/s00436-012-3085-5.

13. Souppart L, Moussa H, Cian A, Sanciu G, Poirier P, El Alaoui H, Delbac F, Boorom K, Delhaes L, Del-Cas E, Viscogliosi E. Subtype analysis of Blastocystis isolates from symptomatic patients in Egypt. Parasitology research. 2010;106(2):505-11. DOI 10.1007/s00436-009-1693-5.

14. Lepczyńska M, Chen WC, Dzika E. Mysterious chronic urticaria caused by Blastocystis spp.? International journal of dermatology. 2016;55(3):259-66. DOI: 10.1111/ijd.13064.

15. Stensvold CR, Alfellani MA, Nørskov-Lauritsen S, Prip K, Victory EL, Maddox C, Nielsen HV, Clark CG. Subtype distribution of Blastocystis isolates from synanthropic and zoo animals and identification of a new subtype. International journal for parasitology. 2009;39(4):473-9.DOI: 10.1016/j.ijpara.2008.07.006.

16. Poirier P, Wawrzyniak I, Vivarès CP, Delbac F, El Alaoui H. New insights into Blastocystis spp.: a potential link with irritable bowel syndrome. PLoS Pathog. 2012;8(3):e1002545. Doi: 10.1371/journal.ppat.1002545.

17. Padukone S, Mandal J, Rajkumari N, Bhat BV, Swaminathan RP, Parija SC. Detection of Blastocystis in clinical stool specimens using three different methods and morphological examination in Jones’ medium. Tropical parasitology. 2018;8(1):33. Doi: 10.4103/tp.TP_4_18.

18. Skhal D, Aboualchamat G, Al Nahhas S. Giardia duodenalis in Damascus, Syria: Identification of Giardia genotypes in a sample of human fecal isolates using polymerase chain reaction and restriction fragment length polymorphism analyzing method. Acta tropica. 2016;154:1-5. DOI: 10.1016/j.actatropica.2015.10.008.

19. Stensvold R, Brillowska-Dabrowska A, Nielsen HV, Arendrup MC. Detection of Blastocystishominis in unpreserved stool specimens by using polymerase chain reaction. Journal of Parasitology. 2006;92(5):1081-7. Doi: 10.1645/GE-840R.1.

20. Menounos PG, Spanakos G, Tegos N, Vassalos CM, Papadopoulou C, Vakalis NC. Direct detection of Blastocystis sp. in human faecal samples and subtype assignment using single strand conformational polymorphism and sequencing. Molecular and cellular probes. 2008;22(1):24-9. DOI: 10.1016/j.mcp.2007.06.007.

21. Alfellani MA, Stensvold CR, Vidal-Lapedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta tropica. 2013;126(1):11-8. Doi:10.1016/j.actatropica.2012.12.011.
22. Stensvold CR, Clark CG. Current status of Blastocystis: a personal view. Parasitology international. 2016;65(6):763-71. Doi: 10.1016/j.parint.2016.05.015.

23. Skotarczak B. Genetic diversity and pathogenicity of Blastocystis. Ann Agric Environ Med. 2018;25(3):411-6. DoI: 10.26444/aaem/81315.

24. Popruk N, Prasongwattana S, Mahittikorn A, Palasuwan A, Popruk S, Palasuwan D. Prevalence and Subtype Distribution of Blastocystis Infection in Patients with Diabetes Mellitus in Thailand. International Journal of Environmental Research and Public Health. 2020;17(23):8877. Doi:10.3390/ijerph17238877.

25. Tamás SÜ, Kozoderović G, Potkonjak A, Simin S, Simin V, Lalošević V. Comparison of conventional and molecular diagnostic techniques for detection of Blastocystis sp. in pig faeces. Iranian journal of parasitology. 2018;13(4):594.

26. Stensvold CR, Suresh GK, Tan KS, Thompson RA, Traub RJ, Viscogliosi E, Yoshikawa H, Clark CG. Terminology for Blastocystis subtypes—a consensus. Trends in parasitology. 2007;23(3):93-6. DoI: 10.1016/j.pt.2007.01.004.

27. Tan KS. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clinical microbiology reviews. 2008;21(4):639-65. DoI: 10.1128/CMR.00022-08

28. Zhang X, Qiao JY, Zhou XJ, Yao FR, Wei ZC. Morphology and reproductive mode of Blastocystishominis in diarrhea and in vitro. Parasitology research. 2007;101(1):43-51. DoI: 10.1007/s00436-006-0439-x.

29. Vassalos CM, Spanakos G, Vassalou E, Papadopoulou C, Vakalis N. Differences in clinical significance and morphologic features of Blastocystis sp subtype 3. American journal of clinical pathology. 2010;133(2):251-8. DoI: 10.1309/AJCPDOWQSL6E8DMN.

30. Coyle CM, Varughese J, Weiss LM, Tanowitz HB. Blastocystis: to treat or not to treat…. Clinical infectious diseases. 2012;54(1):105-10. Doi: 10.1093/cid/cir810.

31. Elghareeb AS, Younis MS, El Fakahany AF, Nagaty IM, Nagib MM. Laboratory diagnosis of Blastocystis spp. in diarrheic patients. Tropical parasitology. 2015;5(1):36. DoI: 10.4103/2229-5070.149919

32. Termmathurapoj S, Leelayoova S, Aimpun P, Thathaisong U, Nimmanon T, Taamasri P, Munghthin M. The usefulness of short-term in vitro cultivation for the detection and molecular study of Blastocystishominis in stool specimens. Parasitology research. 2004;93(6):445-7. DoI: 10.1007/s00436-004-1157-x.

33. Dogruman-Al F, Kustimur S, Yoshikawa H, Tuncer C, Simsek Z, Tanyuksel M, Araz E, Boorum K. Blastocystis subtypes in irritable bowel syndrome and inflammatory bowel disease in Ankara, Turkey. Memórias do Instituto Oswaldo Cruz. 2009;104(5):724-7. Doi: 10.1590/s0074-02762009000500011.

34. Leelayoova S, Taamasri P, Rangsin R, Naaglor T, Thathaisong U, Munghthin M. In-vitro cultivation: a sensitive method for detecting Blastocystishominis. Annals of tropical medicine and parasitology. 2002;96(8):803-7. DoI: 10.1179/000349802125002275.
35. Rene BA, Stensvold CR, Badsberg JH, Nielsen HV. Subtype analysis of Blastocystis isolates from Blastocystis cyst excreting patients. The American journal of tropical medicine and hygiene. 2009;80(4):588-92.

36. Stensvold CR. Laboratory diagnosis of Blastocystis spp. Tropical parasitology. 2015;5(1):3. Doi: 10.4103/2229-5070.149885.

37. Santos HJ, Rivera WL. Comparison of direct fecal smear microscopy, culture, and polymerase chain reaction for the detection of Blastocystis sp. in human stool samples. Asian Pacific journal of tropical medicine. 2013;6(10):780-4. DoI: 10.1016/S1995-7645(13)60138-8.

38. Parkar U, Traub RJ, Kumar S, Munthin M, Vitali S, Leelayoova S, Morris K, Thompson RC. Direct characterization of Blastocystis from faeces by PCR and evidence of zoonotic potential. Parasitology. 2007;134(3):359-67. DOI: 10.1017/S0031182006001582.

Tables

Table 1. Summary of the studied samples features

| Study group | No. examined | %    |
|-------------|--------------|------|
| **Gender**  |              |      |
| Male        | 28           | (40%)|
| female      | 42           | (60%)|
| Total       | 70           | (100%)|
| **Age**     |              |      |
| >50 years   | 34           | (69.4%)|
| <50 years   | 15           | (30.6%)|
| Total       | 49           | (100%)|
| **Symptoms**|              |      |
| Abdominal pain | 40       | 57%  |
| Diarrhea    | 24           | 34.3%|
| Abdominal cramps | 28       | 40%  |
| Bloating    | 32           | 45.7%|
| Nausea      | 29           | 41.4%|
| Weight loss | 22           | 31.4%|
| Rash skin   | 6            | 8.6% |
Table 2. Parasites detected by microscopic examination in conjunction with *Blastocystis*

| Parasites                                      | No. of positive samples (%) |
|-----------------------------------------------|-----------------------------|
| *Blastocystis*                                | 32 (65.3%)                  |
| *Blastocystis* + *E. coli*                    | 7 (14.3%)                   |
| *Blastocystis* + *E. histolytica* complex*    | 5 (10.2%)                   |
| *Blastocystis* + *E. histolytica* complex* + *E. coli* | 3 (6.2%)                   |
| *Blastocystis* + *E. histolytica* complex* + *Giardia* sp. | 1 (2%)                     |
| *Blastocystis* + *E. histolytica* complex* + *Chilomastix* | 1 (2%)                     |
| Total                                         | 49 (100%)                   |

* E. histolytica complex = *E. histolytica/E. dispar/E. moshkovskii

Table 3. Comparison between microscope and PCR assay in detection of *Blastocystis*

| Microscope | PCR | Total (%) |
|------------|-----|-----------|
|            |     | Positive (%) | Negative (%) |
| Positive   | 47   | 49 (70)   | 2 (2.9)       |
| Negative   | 17   | 21 (30)   | 4 (5.7)        |
| Total      | 64   | 70 (100)  | 6 (8.6)        |

Positive predictive value (PPV) = 95.9% ; Negative predictive value (NPV) = 19.1%

Table 4. Comparison between *in vitro* cultures and PCR tool in detection of *Blastocystis*

| Culture  | PCR | Total (%) |
|----------|-----|-----------|
|          |     | Positive (%) | Negative (%) |
| Positive | 58   | 60 (85.7)  | 2 (2.9)       |
| Negative | 6    | 10 (14.3)  | 4 (5.7)        |
| Total    | 64   | 70 (100)   | 6 (8.6)        |

Positive predictive value (PPV) = 96.7% ; Negative predictive value (NPV) = 40%

Figures
Figure 1

Iodine stained smears: A. Blastocystis (vacuole forms “arrows”) 100×; B: co-infection Entamoeba cysts “red arrow” with Blastocystis “black arrows” 100×; C: Blastocystis in vitro culture in Jones’ medium (granular “red arrows”; vacuolar “black arrow”; amoeboid form “green arrow” 40×.

Figure 2

Ethidium Bromide-Stained 2% agarose gel electrophoresis of PCR products. Lanes M; molecular weight marker (100bp). Lanes 1-7 PCR Product; a single specific PCR fragment of 310 bp. NTC: negative control for contamination detection.