Backbone NMR assignments of the C-terminal domain of the human prion protein and its disease-associated T183A variant

Máximo Sanz-Hernández1 · Alfonso De Simone1,2

Received: 22 October 2020 / Accepted: 7 January 2021 / Published online: 15 February 2021
© The Author(s) 2021

Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders associated with the misfolding and aggregation of the human prion protein (huPrP). Despite efforts into investigating the process of huPrP aggregation, the mechanisms triggering its misfolding remain elusive. A number of TSE-associated mutations of huPrP have been identified, but their role at the onset and progression of prion diseases is unclear. Here we report the NMR assignments of the C-terminal globular domain of the wild type huPrP and the pathological mutant T183A. The differences in chemical shifts between the two variants reveal conformational alterations in some structural elements of the mutant, whereas the analyses of secondary shifts and random coil index provide indications on the putative mechanisms of misfolding of T183A huPrP.

Keywords Prion protein · Protein misfolding · Transmissible spongiform encephalopathies · Structural dynamics · Pathological T183A mutation

Biological context
The misfolding and aggregation of the human prion protein (huPrP) is directly linked to the development of a group of fatal neurodegenerative disorders known as transmissible spongiform encephalopathies (TSEs), including Creutzfeldt-Jakob disease (CJD), kuru or fatal familial insomnia (FFI) (Prusiner 1998). The native huPrP denoted as the cellular form (huPrPc) is believed to misfold and aggregate into the disease-associated scrapie form (huPrPSc). Misfolded huPrPSc can propagate its conformational state by acting as a protein-only infectious agent (Telling et al. 1996). huPrPc is a glycosylated protein that is bound to the plasma membrane via a C-terminal glycosylphosphatidylinositol (GPI) anchor (Aguzzi et al. 2008). The N-terminal domain of huPrPc (residues 23–124) is intrinsically disordered and contains five copper-binding octapeptide repeats, whereas the C-terminal domain (residues 125–230, here denoted huPrPc125–230) has a globular structure, composed of three α-helical segments (H1, H2 and H3) and two short β-strands (S1 and S2) forming an antiparallel β-sheet. The structure of huPrPc125–230 has been experimentally determined by NMR (Zahn et al. 2000) and X-ray crystallography (Knaus et al. 2001). In humans, TSEs may arise sporadically or can be associated with inherited mutations in the prion gene, which are primarily located in the C-terminal domain of huPrP, with nearly 40 TSE-associated single point mutations currently known (Minikel et al. 2016). Equilibrium unfolding experiments have determined that T183A is the most destabilizing TSE-associated mutation huPrPc (Liemann and Glockshuber 1999), resulting in the disruption of a crucial hydrogen bond between the sidechain of T183 and backbone atoms of Y162 (De Simone et al. 2007). This mutation is linked with a phenotype of very early-onset spongiform encephalopathy (Nitrini et al. 1997). In this work, we measured the NMR resonances of T183A huPrPc125–230 and compared their values with those of the wild type (WT) protein. The analysis of the chemical shifts indicates possible alterations of the native structure and dynamics associated with the pathological mutation. The differences between the NMR resonances of the two forms of the protein may suggest crucial insights into the mechanisms of onset of prion misfolding in the context of familial forms of TSE.

1 Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
2 Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
Methods and experiments

Constructs for WT and T183A huPrPC\textsubscript{125-230} contained an N-terminal His-tag followed by a TEV cleavage site. Transformed \textit{E. coli} BL21 (DE3) pLysS cells were initially grown in 2xTY medium to an OD\textsubscript{600} of 1.5, and then resuspended in M9 minimal medium containing 0.7 g/L 15NH\textsubscript{4}Cl and 2.0 g/L 13C D-glucose. Expression was induced by addition of 1 mM IPTG and cells were harvested after 3 h of expression at 37 °C. huPrPC\textsubscript{125-230} was purified from the insoluble fraction using Ni-NTA agarose resin in a buffer containing 6 M GdHCl, 100 mM Na\textsubscript{2}HPO\textsubscript{4}, 10 mM reduced L-glutathione, pH 8.0. The purified fractions were refolded by a 1:20 dropwise dilution at 4 °C, into a 100 mM Na\textsubscript{2}HPO\textsubscript{4}, pH 7.0 buffer. Samples were then concentrated using a stirred cell, and the tag was cleaved by addition of TEV protease at a 1:10 molar ratio. Proteins were further purified by reverse nickel affinity chromatography after cleaving, followed by size exclusion on a Superdex 75 column to ensure their monomeric state.

NMR experiments were performed in 1H, 13C and 15N labelled samples, in a buffer containing 100 mM Na\textsubscript{2}HPO\textsubscript{4}, 10 % D\textsubscript{2}O, pH 7.0 at 289K. Spectral assignment of the backbone resonances was achieved using a combination of 1H-15N HSQC, HNCA, HN(CO)CA, CBCANH, CBCA(CO)NH, HNCO and HN(CA)CO spectra as previously done (Fusco et al. 2012). Experiments were performed using an 18.8 T (800 MHz 1H frequency) Advance III HD Bruker Spectrometer. The spectra were processed and analysed using NMRPipe (Delaglio et al. 1995) and CCPNAnalysis (Vranken et al. 2005). Chemical shift analysis was performed using the CSI 2.0 web server (Hafsa and Wishart 2014).

Extent of assignments and data deposition

NMR spectra of both WT and T183A variants of huPrPC\textsubscript{125-230} were acquired at 289K and pH 7.0. Under these conditions we could assign 95 and 89 13C\textsubscript{\alpha} 15N correlations for WT and T183A huPrPC\textsubscript{125-230}, respectively, out of a possible 103 non-proline residues (Fig. 1). Both constructs showed the spectral properties typical of structured proteins as indicated by the dispersion of resonances in the 1H-15N HSQC spectra. In particular, the spectrum of WT huPrPC\textsubscript{125-230} is consistent with previously published data, suggesting that the protein is in the native state under these experimental conditions (Zahn et al. 2000). Samples of the WT huPrPC\textsubscript{125-230} could be concentrated above 300 µM without loss of NMR signal over time or visible precipitation in the NMR tube. By contrast, T183A huPrPC\textsubscript{125-230} showed some level of instability, with prompt precipitation at concentrations higher than 100 µM. Moreover, at 100 µM 32 % of the signal was found to be lost after 18 hours of incubation at 289K. These experimental conditions allowed for 3D NMR spectra for backbone assignment to be measured despite the inherent instability of the mutant protein, but at the cost of a drastic reduction in the signal to noise ratio. The signal reduction was significant for CBCANH and CBCA(CO)NH spectra, thereby reducing the amount of assigned 13C\textsubscript{\beta} resonances with respect to WT huPrPC\textsubscript{125-230} (Table 1).

Table 1 Assignment coverage in WT and T183A huPrPC\textsubscript{125-230}

	15N	1HN	13C\alpha	13C\beta	13CO
WT	96	95	76	94	94
T183A	93	89	13	89	89

Out of 103 non-proline residues
Resonances missing from the assigned spectra of WT huPrPC\textsubscript{125-230} mostly correspond to the loop connecting the β-strand S2 and the α-helix H2, spanning residues 164 to 171, whose signals are expected to broaden due to conformational exchange (Damberger et al. 2011). In addition, other missing resonances were associated with residues F175 and R220. In the case of T183A WT huPrPC\textsubscript{125-230}, several more residues were found to lack NMR peaks in the spectra. The missing S2-H2 region extended from residues 162 to 171. Other undetected resonances included residues M129, G131, F175, I182, V209 and M213. The spectral properties of T183A huPrPC\textsubscript{125-230} therefore suggested enhanced conformational exchange in this protein construct.

We analysed the chemical shift values to calculate the random coil index (RCI) (Berjanskii and Wishart 2005). This analysis generated RCI profiles that are generally in line with the structural elements of huPrPC\textsubscript{125-230} (Fig. 2a), suggesting that the native fold is preserved in both WT and T183A. However, in the loop regions of T183A huPrPC\textsubscript{125-230} we found a sharp increase in the RCI values, indicating an enhancement of the flexibility and structural dynamics as a result of the pathological mutation. We also evaluated the secondary \(^{13}\text{C}_\alpha\) chemical shifts of both variants, which are sensitive probes of secondary structure elements in proteins (Wishart and Sykes 1994). Secondary \(^{13}\text{C}_\alpha\) chemical shifts were calculated as the experimental chemical shifts minus the random coil values (calculated using the PROSECCO server, Sanz-Hernandez and De Simone 2017), resulting in similar profiles across large portions of the PrP sequence in the two variants. Some differences, however, were observed in the C-terminal region of the α-helix H2, with reduced secondary shifts in the T183A variant with respect to the WT protein, suggesting a lower content of α-helix. The destabilisation of the α-helix H2 ranges residues 184–194, suggesting that the mutation of T183 has downstream effects of structural destabilisation into the sequence. By contrast, no significant alterations of secondary chemical shifts were found in correspondence of the α-helix H1 (residue 144–155), which is prone to misfolding once detached from the native environment (Camilloni et al. 2011). The difference in secondary shifts between the two variants are clearer when plotting the raw differences of between \(^{13}\text{C}_\alpha\) and \(^1\text{HN}\) chemical shifts (Fig. 2c, d) showing a localised perturbation in the region 184–194 of the protein.

In summary, the NMR assignments of WT and T183A huPrPC\textsubscript{125-230} under native conditions reveal noticeable differences in the conformational properties of the protein, featuring enhanced structural dynamics in the case of the pathological mutant. The availability of these assignments will allow further studies at high-resolution characterisation of the misfolding mechanisms in this familial form of TSE.

Acknowledgements We acknowledge support from the European Research Council (ERC) CoG (819644 BioDisOrder) and UK Engineering and Physical Sciences Research Council (EP1579441).

Data availability The assignments have been deposited to the BMRB under the accession codes: 50,527 (WT) and 50,528 (T183A).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
References

Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477
Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971
Camilloni C, Schaaf D, Schweimer K, Schwarzer I, De Simone A (2011) Energy landscape of the prion protein helix 1 probed by metadynamics and NMR. Biophys J 102:158–167
Damberger FF, Christen B, Pérez DR, Hornemann S, Wüthrich K (2011) Cellular prion protein conformation and function. Proc Natl Acad Sci USA 108:17308–17313
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293
De Simone A, Zagari A, Derreumaux P (2007) Structural and hydration properties of the partially unfolded states of the prion protein. Biophys J 93:1284–1292
Fusco G, De Simone A, Hsu ST, Bemporad F, Vendruscolo M, Chiti F, Dobson CM (2012) 1H, 13C and 15N resonance assignments of human muscle acylphosphatase. Biocatal. NMR Assign 6(1):27–29
Hafsa NE, Wishart DS (2014) CSI 2.0: a significantly improved version of the chemical shift index. J Biomol NMR 60:131–146
Knaus KJ, Morillas M, Swietnicki W, Malone M, Sureau WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8:770–774
Liemann S, Glockshuber R (1999) Influence of Amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38:3258–3267
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, McLean CY, Tung JY, Yu LPC, Gambetti P et al (2016) Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med 8:322ra9
Nitrini R, Rosemberg S, Passos-Bueno MR, da Silva LS, Lucchetti P, Papadopoulos M, Carrilho PM, Caramelli P, Albrecht S, Zatz M et al (1997) Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol 42:138–146
Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383
Sanz-Hernandez M, De Simone A (2017) The PROSECCO server for chemical shift predictions in ordered and disordered proteins. J Biomol NMR 69:147–156
Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastroiani J, Lugaresi E, Gambetti P, Prusiner SB (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinforma 59:687–696
Wishart D, Sykes B (1994) The 13C Chemical-Shift Index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180
Zahn R, Liu A, Lährs T, Riek R, von Schroetter C, López García F, Billeter M, Calzolai L, Wider G, Wüthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145–150

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.