Supporting Information

for

A facile synthesis of functionalized 7,8-diaza[5]helicenes through an oxidative ring-closure of 1,1’-binaphthalene-2,2’-diamines (BINAMs)

Youhei Takeda*,1,2, Masato Okazaki2, Yoshiaki Maruoka2, and Satoshi Minakata*2

Address: 1Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan and 2Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

Email: Youhei Takeda - takeda@chem.eng.osaka-u.ac.jp; Satoshi Minakata - minakata@chem.eng.osaka-u.ac.jp

*Corresponding author

Table of contents

General remarks S2
Materials S2–S3
Optimization studies of reaction conditions S3–S6
Oxidative ring-closure of biaryldiamines 1 and 3 S7–S11
Physicochemical properties S12–S16
1H and 13C NMR spectra S17–S23
References S24
General remarks

All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. 1H and 13C NMR spectra were recorded on a JEOL JMTC-400/54/SS spectrometer (1H NMR, 400 MHz; 13C NMR, 100 MHz) using tetramethylsilane as an internal standard. Infrared spectra were acquired on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. Mass spectra were obtained on a JEOL JMS-DX303HF mass spectrometer. High-resolution mass spectra were obtained on a JEOL JMS-DX303HF mass spectrometer. UV/vis spectra were recorded on a Shimadzu UV-2550 spectrophotometer. Emission spectra were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere. Cyclic voltammetry (CV) was performed with ALS-600 (BAS Inc.) system. Thermogravimetric analysis (TGA) was performed with TG/DTA-7200 (SII) system. Products were purified by chromatography on silica gel BW-300 and Chromatorex NH (Fuji Silysia Chemical Ltd.). Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Merck silica gel 60 F254 and Fuji Silysia Chromatorex NH, 0.25 mm thickness). Compounds were visualized with UV lamp. Optical rotations were measured in a thermostated conventional 10 cm cell on a JASCO P-2200 polarimeter using the sodium-D line (589 nm).

Materials

1,1’-Binaphthalene-2,2’-diamine (BINAM) was purchased from Sigma-Aldrich and used as received. DBU, triethylamine, and 2,6-lutidine were distilled with Kugelrohr apparatus, and other commercial reagents were purchased from Sigma-Aldrich, TCI, or Wako Pure Chemical Industries, Ltd. and used as received. Alcohol solvents were dried over activated molecular sieves 3A. THF, CH$_3$CN, and Et$_2$O were purchased as dehydrated grade and dried by passing through a glass contour solvent dispensing system (Nikko Hansen & Co., Ltd.). Dehydrated CH$_2$Cl$_2$ and toluene were purchased from Kanto Chemical Co., Inc. and used as received. DMF was distilled using CaSO$_4$ as a dehydrating agent. CH$_2$Cl$_2$ (fluorescence spectroscopic grade) was purchased from Kanto Chemical Co., Inc. for the measurement of UV-vis and emission spectra. Biaryldiamines 1bS1 [360779-01-7], 1cS2 [1051425-55-8, (R)-enantiomer], 1dS3 [1229013-43-7], 1eS4 [155855-47-3], 1gS5 [861890-12-2], and 3S6 [1454-80-4] were prepared according to the procedures in literature.

Preparation of 6,6'-di-n-butyl-1,1’-binaphthalene-2,2’-diamine (1f)

Biaryldiamine 1f was prepared by modified cross-coupling methodS7 from biaryldiamine 1g as follows (Scheme S1): THF was degassed through freeze-pump-thaw cycling for three times before used. To a round-bottomed flask (50 mL) equipped with a
magnetic stir bar, were added biarylamine 1g (1.326 g, 3.0 mmol), Pd(OAc)$_2$ (13.4 mg, 0.06 mmol), and SPhos (49.2 mg, 0.12 mmol) under the air. The tube was capped with a rubber septum, evacuated, and then refilled with N$_2$ gas for three times. THF (2 mL) and 0.5 M THF solution of n-BuZnBr (14.4 mL, 7.2 mmol) were added to the tube through the septum, and the mixture was stirred under N$_2$ atmosphere at room temperature for 12 h. To the reaction mixture, was added saturated aqueous NH$_4$Cl solution (10 mL), and the resulting mixture was extracted with EtOAc (20 mL × 3). The organic extract was dried over Na$_2$SO$_4$ and concentrated under vacuum to give the crude product. Purification by flash column chromatography on silica gel (eluent: hexane/EtOAc 8:2) gave biarylamine 1f as pale brown solid (1.051 g, 88%). mp 130°C (dec.); R$_f$ 0.13 (hexane/EtOAc 8:2); 1H NMR (400 MHz, CDCl$_3$) δ 0.92 (t, J = 7.2 Hz, 6H), 1.37 (tq, J = 7.2, 7.6 Hz, 4H), 1.63 (tt, J = 7.6, 7.6 Hz, 4H), 2.68 (t, J = 7.6 Hz, 4H), 3.60 (br, 4 H), 7.01 (d, J = 8.8 Hz, 2H), 7.05 (dd, J = 1.6, 8.8 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 1.6 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 13.9, 22.4, 33.5, 35.4, 112.9, 118.3, 123.9, 126.6, 128.3, 128.6, 128.8, 132.0, 136.8, 141.9; IR (ATR) ν 2929, 1606, 1500, 1382, 1282, 824, 810 cm$^{-1}$; MS (EI): m/z (relative intensity, %) 396 (M$^+$, 100), 353 ([C$_{25}$H$_{25}$N$_2$]$^+$, 45); HRMS (EI): m/z calcd for C$_{28}$H$_{32}$N$_2$ (M) 396.2565, found 396.2568.

Scheme S1. Preparation of 1f.

Optimization studies of reaction conditions

A typical procedure for the optimization studies using 1a as substrate

To a two-necked reaction tube (20 mL, entry 2 in Table S1) or a two-necked round-bottomed flask (50 mL, entries 1 and 3–11 in Table S1, Table S2, and Table S3) equipped with a magnetic stir bar, was added 1,1′-binaphthalene-2,2′-diamine (1a) (0.2 mmol) under the air. The vessel was capped with a rubber septum and evacuated and refilled with N$_2$ gas for three times, and an appropriate solvent was added through the septum. To the mixture, were added an additive and an appropriate oxidant under a stream of N$_2$ gas at the indicated temperature. The resulting solution was stirred for indicated time before quenched with aqueous Na$_2$S$_2$O$_3$ solution (1.0 M, 20 mL), and the resulting mixture was extracted with
CH$_2$Cl$_2$ (20 mL × 3). The combined organic extracts were dried over Na$_2$SO$_4$ and concentrated under vacuum to give the crude product. The yields of products were calculated by the integration of 1H NMR signals of the crude product. Separation by flash column chromatography on silica gel gave product 2a.

7,8-Diaza[5]helicene (2a) [188-55-6]

Spectroscopic data were in good agreement with those previously reported. The spectroscopic data are also available in our previous paper. Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc, 99:1 to 5:5) and recrystallization from CHCl$_3$; Yellow solid; R_f 0.15 (hexane/EtOAc 8:2); MS (EI): m/z (relative intensity, %) 280 (M$^+$, 70), 252 ([C$_{20}$H$_{12}$]+, 100); HRMS (EI): m/z calcd for C$_{20}$H$_{12}$N$_2$ (M) 280.1000, found 280.1002.

entry	solvent	yield (%)a	recovery of 1a (%)a
1	t-BuOH	89b	0
2	t-BuOHc	54	0
3	THF	30	0
4	CH$_3$CN	22	0
5	CH$_2$Cl$_2$	52	0
6	toluene	68	0
7	DMF	62	0
8	Et$_2$O	37	0
9	2-propanol	47	48
10	EtOH	61	0
11	MeOH	58	0

a 1H NMR yields. b isolated yield. c 40 mM.

Table S1. The effect of solvents.
Table S2. The effect of chlorine-containing oxidants.

![Chemical structures]

entry	chlorine-containing oxidant (mmol)	yield (%)\(^a\)	recovery of 1a (%)\(^a\)
1	NCS (0.8)	0	63
2	DCH (0.4)	24\(^b\)	0
3	DCH (0.8)	57	0
4	NCPh (0.8)	0	95
5	TCCA (0.27)	20	0

\(^a\) ^1H NMR yields. \(^b\) isolated yield.

Structures of chlorine-containing oxidants:

- NCS: \(N\)-chlorosuccinimide
- DCH: 1,3-dichloro-5,5-dimethylhydantoin
- NCPh: \(N\)-chlorophthalimide
- TCCA: trichloroisocyanuric acid
Table S3. The effect of equivalents of t-BuOCl and bases.

![Chemical structure](image)

entry	t-BuOCl (mmol)	base (mmol)	time (h)	yield (%)^a	recovery of 1a (%)^b
1	0.6	-	3	93	0
2	0.4	-	3	54	34
3	0.4	-	24	71	19
4	0.4	K₂CO₃ (0.4)	3	69	20
5	0.4	DABCO (0.4)	3	32	45
6	0.4	DBU (0.4)	3	0	34
7	0.4	NEt₃ (0.4)	3	0	65
8	0.4	pyridine (0.4)	3	33	40
9	0.4	2,6-di-³-tert-butylpyridine (0.4)	3	77	19
10	0.4	2,6-lutidine (0.4)	3	90	10
11	0.4	2,6-lutidine (0.4)	7	92	8
12	0.44	2,6-lutidine (0.44)	3	97^b	0

^aH NMR yields. ^bisolated yield.

Structures of bases

![Chemical structure](image)

DABCO
1,4-diazabicyclo[2.2.2]octane

DBU
1,8-diazabicyclo[5.4.0]undec-7-ene

Oxidative ring-closure of biaryldiamines 1 and 3

A typical procedure for the oxidative ring-closure of biaryldiamines 1 and 3

To a two-necked round-bottomed flask (50 mL) equipped with a magnetic stir bar, was added biaryldiamine 1 (or 3) (0.1 mmol) under the air. The flask was capped with a
rubber septum, evacuated, and refilled with N₂ gas for three times. Solvent (10 mL) and 2,6-lutidine (23.5 mg, 0.22 mmol or none) were added to the tube through the septum. To the mixture, was added t-BuOCl (23.8 mg, 0.22 mmol or 43.4 mg, 0.40 mmol) through the septum at the indicated temperature. The resulting solution was stirred for the indicated time (Table 2 in the text) before quenched with aqueous Na₂S₂O₃ solution (1.0 M, 20 mL), and the resulting mixture was extracted with CH₂Cl₂ (20 mL × 3). The combined organic extracts were dried over Na₂SO₄ and concentrated under vacuum to give the crude product. Purification by flash column chromatography on silica gel gave the corresponding 7,8-diaza[5]helicene (for example, compound 2a: 27.2 mg, 97%).

Table S4. The oxidative ring-closure of biaryldiamine 1b.

entry	solvent	yield (%)^a	recovery of 1b (%)^a
1	t-BuOH	32	22
2	MeOH	17	28
3	CH₂Cl₂	16	trace
4	toluene	44^b	11^b

^a ¹H NMR yields. ^b isolated yield.

6,9-Dimethyl-7,8-diaza[5]helicene (2b)

Purified by flash column chromatography on NH silica gel (eluent: hexane/EtOAc 99:1) and recrystallization from hexane; Yellow solid (13.6 mg, 44%); mp 196 °C (dec.); R_f 0.33 (hexane/EtOAc 8:2, NH)₂; ¹H NMR (400 MHz, CDCl₃) δ 3.16 (s, 6H), 7.31 (dd, J = 8.0, 8.0 Hz, 2H), 7.64 (dd, J = 8.0, 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.95 (s, 2H), 8.71 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.5, 120.0, 124.5, 127.3, 127.5, 129.2, 129.5, 129.8, 134.0, 134.2, 145.9; IR (ATR) ν 2922, 1734, 1457, 1425, 1261, 1160, 1116, 889, 753 cm⁻¹; MS (EI): m/z (relative intensity, %) 308 (M⁺, 100), 280 ([C₂₂H₁₆]⁺, 31); HRMS (EI): m/z calcd for C₂₂H₁₆N₂ (M) 308.1313, found 308.1312.
Table S5. The oxidative ring-closure of biaryldiamine 1c

![Oxidative ring-closure of biaryldiamine 1c](image)

entry	solvent	temp. (°C)	time (h)	yield (%)^a	recovery of 1c (%)^a
1	t-BuOH	rt	20	44^b	15^b
2^c	t-BuOH	rt	19	77^b	0
3	t-BuOH	60	24	36	12
4	MeOH	rt	9	9	28
5	toluene	rt	24	15	0

^a 1H NMR yields. ^b isolated yield. ^c t-BuOCl (4.0 equiv), 2,6-lutidine (0 equiv)

6,9-Dibromo-7,8-diaza[5]helicene (2c)

Parts of spectroscopic data are available in a literature.^{S10} Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 99:1–95:5) and recrystallization from hexane/CHCl₃; Yellow solid (19.3 mg, 44% or 33.7 mg, 77%); mp 307 °C (dec.); R_f 0.40 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.0, 8.0 Hz, 2H), 7.71 (dd, J = 8.0, 8.0 Hz, 2H), 7.94 (d, J = 8.0 Hz, 2H), 8.51 (s, 2H), 8.64 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 121.3, 121.6, 126.0, 127.4, 127.5, 129.5, 130.3, 134.4, 134.5, 143.6; IR (ATR) ν 3053, 1591, 1383, 1250, 1108, 960, 890, 837, 773, 753 cm⁻¹; MS (EI): m/z (relative intensity, %) 438 (M⁺, 50), 357 ([C₂₀H₁₀BrN₂]⁺, 14), 278 ([C₂₀H₁₀N₂]⁺, 23), 250 ([C₂₀H₁₀]⁺, 100); HRMS (EI): m/z calcd for C₂₀H₁₀Br₂N₂ (M) 435.9211, found 435.9210.
Table S6. The oxidative ring-closure of biaryldiamine 1d.

\[
\begin{align*}
&1d \\
\text{Ph} & \quad \text{NH}_2 \\
\text{Ph} & \quad \text{NH}_2 \\
\end{align*}
\]

(43.6 mg, 0.1 mmol)

\[
\begin{array}{ccc}
\text{entry} & \text{solvent} & \text{yield (%)}\text{a} & \text{recovery of 1d (%)}\text{a} \\
1 & t-\text{BuOH} & 33^b & 18^b \\
2 & \text{MeOH} & 28 & 24 \\
3 & \text{toluene} & 87^b & 0 \\
\end{array}
\]

\text{a}^1\text{H NMR yields. }^b\text{isolated yield.}

6,9-Diphenyl-7,8-diaza[5]helicene (2d)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 97:3) and recrystallization from hexane/CHCl\textsubscript{3}; Yellow solid (37.6 mg, 87%); mp 239 °C (dec.); \textit{R}_f 0.35 (hexane/EtOAc 8:2); 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.43–7.45 (m, 4H), 7.50 (dd, \(J = 7.6, 7.6\) Hz, 4H), 7.72 (dd, \(J = 7.6, 7.6\) Hz, 2H), 7.82 (d, \(J = 6.8\) Hz, 4H), 8.06 (d, \(J = 7.6\) Hz, 2H), 8.17 (s, 2H), 8.79 (d, \(J = 8.8\) Hz, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 120.1, 125.4, 127.7, 128.0, 128.1, 128.3, 129.4, 129.5, 130.9, 131.2, 133.8, 137.8, 138.4, 144.6; IR (ATR) \(\nu\) 3027, 1494, 1445, 898, 766, 754 cm-1; MS (EI): \textit{m/z} (relative intensity, %) 432 (M+, 67), 431 ([C\textsubscript{32}H\textsubscript{19}N\textsubscript{2}]+, 100); HRMS (EI): \textit{m/z} calcd for C\textsubscript{32}H\textsubscript{20}N\textsubscript{2} (M) 432.1626, found 432.1624.

Dimethyl 7,8-diaza[5]helicene-6,9-dicarboxylate (2e)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 8:2–5:5) and recrystallization from hexane/CHCl\textsubscript{3}; Yellow solid (33.3 mg, 84%); mp 215 °C (dec.); \textit{R}_f 0.35 (hexane/EtOAc 5:5); 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 4.14 (s, 6H), 7.48 (dd, \(J = 8.0, 8.0\) Hz, 2H), 7.75 (dd, \(J = 8.0, 8.0\) Hz, 2H), 8.07 (d, \(J = 8.0\) Hz, 2H), 8.45 (s, 2H), 8.69 (d, \(J = 8.0\) Hz, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 53.1, 119.7,
127.2, 128.8, 129.1, 129.2, 129.4, 130.1, 132.1, 132.6, 143.3, 168.0; IR (ATR) ν 2942, 1724, 1618, 1464, 1259, 1105, 891, 827, 810 cm⁻¹; MS (EI): m/z (relative intensity, %) 396 (M⁺, 32), 338 ([C₂₂H₁₄N₂O₂]⁺, 100), 250 ([C₂₀H₁₀]⁺, 18); HRMS (EI): m/z calcd for C₂₄H₁₆N₂O₄ (M) 396.1110, found 396.1112.

Table S7. The oxidative ring-closure of biaryldiamine 1f.

entry	solvent	yield (%)	recovery of 1f (%)
1	t-BuOH	49	23
2	MeOH	26	0
3	toluene	72	0

Table legend:

- a ¹H NMR yields.
- b isolated yield.

3,12-Di-n-butyl-7,8-diaza[5]helicene (2f)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 9:1–8:2) and recrystallization from hexane; Pale yellow solid (28.2 mg, 72%); mp 161 °C (dec.); Rₘ 0.18 (hexane/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 0.99 (t, J = 7.6 Hz, 6H), 1.44 (tq, J = 7.6, 7.6 Hz, 4H), 1.76 (tt, J = 7.6, 7.6 Hz, 4H), 2.86 (t, J = 7.6 Hz, 4H), 7.28 (dd, J = 1.6, 8.4 Hz, 2H), 7.80 (d, J = 1.6 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H), 8.49 (d, J = 8.8 Hz, 2H), 8.75 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 22.5, 33.3, 35.7, 120.0, 126.1, 126.5, 126.9, 129.1, 130.5, 134.4, 144.6, 146.6 (one carbon is unsatisfied, probably due to the overlap of signals.); IR (ATR) ν 2930, 1618, 1464, 1259, 1105, 891, 827, 810 cm⁻¹; MS (EI): m/z (relative intensity, %) 392 (M⁺, 100), 364 ([C₂₈H₂₈]⁺, 15), 349 ([C₂₇H₂₅]⁺, 12), 335 ([C₂₆H₂₃]⁺, 31), 321 ([C₂₅H₂₁]⁺, 17), 307 ([C₂₄H₁₉]⁺, 47); HRMS (EI): m/z calcd for C₂₈H₂₈N₂ (M) 392.2252, found 392.2251.
3,12-Dibromo-7,8-diaza[5]helicene (2g)

Purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 9:1–7:3) and recrystallization from CHCl₃; Brown solid (39.9 mg, 91%); mp 205 °C (dec.); \(R_f \) 0.18 (hexane/EtOAc 8:2); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.55 (dd, \(J = 2.0, 8.8 \) Hz, 2H), 8.09 (d, \(J = 8.8 \) Hz, 2H), 8.20 (d, \(J = 2.0 \) Hz, 2H), 8.58 (d, \(J = 8.8 \) Hz, 2H), 8.61 (d, \(J = 8.8 \) Hz, 2H); \(^13\)C NMR (100 MHz, CDCl₃) \(\delta \) 119.4, 123.8, 126.4, 127.9, 129.0, 129.8, 130.4, 130.5, 135.6, 146.5; IR (ATR) \(\nu \) 3061, 1591, 1495, 1436, 1263, 1086, 876, 852, 833, 820, 803 cm\(^{-1}\); MS (EI) m/z (relative intensity, %) 438 (M⁺, 69), 278 ([C\(_{20}\)H\(_{10}\)N\(_2\)]⁺, 79), 250 ([C\(_{20}\)H\(_{10}\)]⁺, 100); HRMS (EI) m/z calcld for C\(_{20}\)H\(_{10}\)N\(_2\)Br\(_2\) (M) 435.9211, found 435.9208.

Table S8. The oxidative ring-closure of biaryldiamine 3.
![Reaction Scheme](image)
entry
1
2
3
4

\(^a\)\(^1\)H NMR yields. \(^b\)isolated yields.

Benzo[c]cinnoline (4) [230-17-1]

Spectroscopic data were in agreement with those previously reported.\(^{11}\) The spectroscopic data are also available in our previous paper.\(^9\) Purified by flash column chromatography on silica gel (hexane/EtOAc 95:5 to 8:2); Yellow solid; \(R_f \) 0.18 (hexane/EtOAc 8:2).
Physicochemical properties

Table S9. Summary of physicochemical properties of diazahelicenes 2 and cinnoline 4.

	Absorption	Emission (solvent)	CV (vs. Fc/Fc⁺)	TGA					
	ƛmax (nm)	ε (M⁻¹cm⁻¹)	ƛmax (nm)	φₚL	mₜEₜ₁ (V)	mₜEₜ₂ (V)	mₜEₜ₃ (V)	LUMO level (eV)	Tₘ (5% wt loss) (°C)
2a	306, 308, 421	27672, 2294, 2509	300	0.02	-1.92	-1.83	-1.98	-2.02	261
2b	312, 408, 331	25282, 2403, 2403	300	<0.01	-	-	-	-	268
2c	318, 410, 434	30326, 2580, 2648	300	<0.01	-1.70	-1.62	-1.66	-3.13	306
2d	316, 413, 436	31470, 3157, 3286	300	<0.01	-1.53	-1.86	-1.86	-2.93	222
2e	309, 397, 419	33390, 3223, 3223	300	<0.01	-1.74	-1.61	-1.67	-3.12	315
2f	311, 392, 418	40513, 2715, 2280	300	<0.01	-	-	-	-	300
2g	310, 365, 418, 445	31106, 3035, 4342, 2524	300	<0.01	-1.60	-1.72	-1.76	-3.03	277
4	206, 209, 351, 367	6990, 9192, 1515, 1313	300	0.15	-	-	-	-	172

UV–vis and emission spectra

CH₂Cl₂ (fluorescence spectroscopic grade) was purged with N₂ for 30 min before the measurements. UV-vis and emission spectra of diazahelicenes 2 and cinnoline 4 were measured at room temperature using CH₂Cl₂ solutions (1.0 × 10⁻⁵ M).
Cyclic voltammetry

Cyclic voltammetry experiments were conducted at room temperature with CH$_2$Cl$_2$ solutions of diazahelicenes 2 and cinnoline 4 (5.0 \times 10$^{-4}$ M) containing 0.1 M tetrabutylammonium hexafluorophosphate as a supporting electrolyte in a cell equipped with a Pt as the working electrode (scanning rate: 100 m/V). A Pt wire and an Ag wire were applied as the counter and the reference electrode, respectively. All the potentials were corrected against the Fc/Fc$^+$ (Fc = ferrocene) couple and the values of LUMO levels were calculated with the equation S1.

$$\text{LUMO} = -(4.8 + \text{red}E_{1/2} \text{ vs. } \text{Fc/Fc}^+) \quad \text{(S1)}$$
Thermogravimetric analysis (TGA)

All the TGA profiles of diazahelicenes 2 and cinnoline 4 were measured under the nitrogen flow (200 mL/min), starting from 40 °C to 600 °C at the ramp rate of 10 °C/min.
1H and 13C NMR spectra

1H NMR: (400 MHz, CDCl$_3$)

13C NMR: (100 MHz, CDCl$_3$)
^{1}H NMR: (400 MHz, CDCl$_3$)

^{13}C NMR: (100 MHz, CDCl$_3$)
^1H NMR: (400 MHz, CDCl₃)

^13C NMR: (100 MHz, CDCl₃)
1H NMR: (400 MHz, CDCl$_3$)

13C NMR: (100 MHz, CDCl$_3$)
1H NMR: (400 MHz, CDCl$_3$)

13C NMR: (100 MHz, CDCl$_3$)
1H NMR: (400 MHz, CDCl$_3$)

13C NMR: (100 MHz, CDCl$_3$)
1H NMR: (400 MHz, CDCl$_3$)

13C NMR: (100 MHz, CDCl$_3$)
References

S1 Mikami, K.; Korenaga, T.; Yusa, Y.; Yamanaka, M. *Adv. Synth. Catal.* **2003**, *345*, 246.
S2 Kano, T.; Tanaka, Y.; Osawa, K.; Yurino, T.; Maruoka, K. *J. Org. Chem.* **2008**, *73*, 7387.
S3 Scarborough, C. C.; McDonald, R. I.; Hartmann, C.; Sazama, G. T.; Bergant, A.; Stahl, S. S. *J. Org. Chem.* **2009**, *74*, 2613.
S4 (a) Taffarel, E.; Chirayil, S.; Thummel, R. P. *J. Org. Chem.* **1994**, *59*, 823. (b) Smrcina, M.; Vyskocil, S.; Maca, B.; Polasek, M.; Claxton, T. A.; Abbott, A. P.; Kocovsky, P. *J. Org. Chem.* **1994**, *59*, 2156.
S5 (a) Vilches-Herrera, M.; Miranda-Sepúlveda, J.; Rebolledo-Fuentes, M.; Fierro, A.; Lühr, S.; Iturriaga-Vasquez, P.; Cassels, B. K.; Reyes-Parada, M. *Bioorg. Med. Chem.* **2009**, *17*, 2452. (b) Yan, P.; Millard, A. C.; Wei, M.; Loew, L. M. *J. Am. Chem. Soc.* **2006**, *128*, 11030.
S6 Dehghanpour, S.; Afshariazar, F.; Assoud, J. *Polyhedron* **2012**, *35*, 69.
S7 Manolikakes, G.; Hernandez, C. M.; Schade, M. A.; Metzger, A.; Knochel, P. *J. Org. Chem.* **2008**, *73*, 8422.
S8 Caronna, T.; Fontana, F.; Mele, A.; Sora, I. N.; Panzeri, W.; Viganò, L. *Synthesis* **2008**, 413.
S9 Takeda, Y.; Okazaki, M.; Minakata, S. *Chem. Commun.* **2014**, *50*, 10291.
S10 Holt, P. F.; Smith, A. E. *J. Chem. Soc.* **1965**, 7088.
S11 Bjørvik, H. R.; González, R. R.; Liguori, L. *J. Org. Chem.* **2004**, *69*, 7720.