Ribosome Profiling of *Synechocystis* Reveals Altered Ribosome Allocation at Carbon Starvation

Jan Karlsen, a **Johannes Asplund-Samuelsson,** a **Quentin Thomas,** a **Michael Jahn,** a **Elton P. Hudson** a

aSchool of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden

ABSTRACT Cyanobacteria experience both rapid and periodic fluctuations in light and inorganic carbon (C) and have evolved regulatory mechanisms to respond to these, including extensive posttranscriptional gene regulation. We report the first genome-wide ribosome profiling data set for cyanobacteria, where ribosome occupancy on mRNA is quantified with codon-level precision. We measured the transcriptome and translatome of *Synechocystis* during autotrophic growth before (high carbon [HC] condition) and 24 h after removing CO2 from the feedgas (low carbon [LC] condition). Ribosome occupancy patterns in the 5′ untranslated region suggest that ribosomes can assemble there and slide to the Shine-Dalgarno site, where they pause. At LC, total translation was reduced by 80% and ribosome pausing was increased at stop and start codons and in untranslated regions, which may be a sequestration mechanism to inactivate ribosomes in response to rapid C depletion. Several stress response genes, such as thioredoxin M (*sll1057*), a putative endonuclease (*slr0915*), protease HtrA (*slr1204*), and heat shock protein HspA (*sll1514*) showed marked increases in translational efficiency at LC, indicating translational control in response to C depletion. Ribosome pause scores within open reading frames were mostly constant, though several ribosomal proteins had significantly altered pause score distributions at LC, which might indicate translational regulation of ribosome biosynthesis in response to C depletion. We show that ribosome profiling is a powerful tool to decipher dynamic gene regulation strategies in cyanobacteria.

IMPORTANCE Ribosome profiling accesses the translational step of gene expression via deep sequencing of ribosome-protected mRNA footprints. Pairing of ribosome profiling and transcriptomics data provides a translational efficiency for each gene. Here, the translatome and transcriptome of the model cyanobacterium *Synechocystis* were compared under carbon-replete and carbon starvation conditions. The latter may be experienced when cyanobacteria are cultivated in poorly mixed bioreactors or engineered to be product-secreting cell factories. A small fraction of genes (<200), including stress response genes, showed changes in translational efficiency during carbon starvation, indicating condition-dependent translation-level regulation. We observed ribosome occupancy in untranslated regions, possibly due to an alternative translation initiation mechanism in *Synechocystis*. The higher proportion of ribosomes residing in untranslated regions during carbon starvation may be a mechanism to quickly inactivate superfluous ribosomes. This work provides the first ribosome profiling data for cyanobacteria and reveals new regulation strategies for coping with nutrient limitation.

KEYWORDS cyanobacteria, gene regulation, light stress, translational control
biotechnological applications, as insufficient gas transfer and mixing in large microalgal cultivations can reduce productivity (3–4). Furthermore, cyanobacterial strains engineered for biofuel or biochemical production may encounter a C_i limitation as core metabolites are converted to product, resulting in reduced photosynthetic capacity over time (5).

The regulatory network and transcriptional regulators governing the Synechocystis C_i limitation response were elucidated mostly by using gene expression microarrays (6–8). Complexity was added with the discovery that cyanobacteria have a higher quantity of noncoding RNAs (ncRNAs) than other bacteria and that several prominent ncRNAs are involved in gene regulation during nutrient shifts, including C_i and light (9). Further evidence of posttranscriptional regulation in cyanobacteria can be inferred from reports showing that the transcriptome oscillates strongly during the day/night cycle, while proteome oscillations are weak or nonexistent (10–11).

Ribosome profiling quantifies the translation step of gene expression through deep sequencing of ribosome-protected RNA fragments (RPFs, or “footprints”) (12). Aligning and counting RPFs allows estimation of protein synthesis rates throughout the genome, thus providing a measure of cellular resource allocation at the time of sampling. Additionally, the distribution of RPFs mapped within an open reading frame (ORF) indicates ribosome pausing during elongation (13). Comparative ribosome profiling can reveal time- or condition-dependent translational gene regulation. For example, antibiotic biosynthesis pathways in Streptomyces coelicolor were found to be “translationally induced” as cells enter stationary phase, as evidenced by increases in translational efficiency for genes in secondary metabolism (14). Also working with Streptomyces coelicolor, Bucca et al. reported an increase in translational efficiency of several genes upon temperature shift from 30°C to 42°C (15). Ribosome profiling of Synechocystis during C_i depletion might, thus, reveal new mechanisms for how carbon limitation is ultimately transduced to an altered proteome.

Here we used genome-wide ribosome profiling to examine the response of Synechocystis sp. strain PCC6803 (Synechocystis) to C_i depletion. By comparing data from ribosome profiling and transcriptomics, we found that 7% of genes showed enrichment or depletion of relative ribosome density on mRNAs after C_i depletion, suggesting translational regulation. Ribosome profiling revealed ribosome pausing during translation, which increased at C_i starvation on start and stop codons and in 5′ and 3′ untranslated regions (UTRs). Enhanced ribosome occupancy in UTRs at C_i starvation suggests that these regions may serve as sequestration sites for excess ribosomes in response to rapid loss of nutrient.

RESULTS
C_i starvation reduces global protein synthesis and alters the allocation of translating ribosomes. Synechocystis was grown in a turbidostat photobioreactor fed with CO_2-enriched air (3%) for 6 days to achieve steady state. A C_i depletion phase was initiated by switching off the CO_2 component of the inlet gas (Fig. 1). A simultaneous rise in culture pH, drop in photosynthetic activity (80% decrease), and arrest in cell growth rate indicated transition to a C_i-limited condition after 6 h. However, protein synthesis did not stop completely; a puromycin incorporation assay showed 20% of overall translational activity remained 24 h after CO_2 switch-off (Fig. S1). Cells were also still viable and resumed growth upon addition of CO_2 back to the feed gas after 4 days. Samples were collected at five time points relative to the CO_2 switch-off: −5 min, +10 min, +30 min, +2 h, and +24 h. Ribosome profiling reads of the first four samples correlated strongly with each other (r > 0.997) (Fig. S2) but significantly more weakly to the +24-h sample. We therefore considered the first four samples technical replicates of cells growing under conditions of replete C_i (high C_i [HC]) and considered the +24-h sample under C_i-starved conditions (low C_i [LC]).

The number of RPF reads that map to an ORF (RPF reads per million mapped reads [RPF RPM]) corresponds to the number of ribosomes translating that gene’s transcripts (Fig. 2A). Normalization of a gene RPF RPM to gene length gives the RPF read density.
The RPF RPM and RPF RPKM are proportional to protein synthesis rate by mass and number, respectively, assuming that the average specific elongation rate is constant (16). The change in protein synthesis (RPF RPKM) between HC and LC was significant for 750 genes (304 up, 446 down; absolute log2-fold change $/H_{11022}/H_{11021}$; q/H_{11021}$0.05 in Grubbs’ test for outliers) (Fig. 2B; Table S1). We used Cyanobase functional categories to interpret changes (Fig. 2C). At HC, protein synthesis within Photosynthesis and Respiration and Translation was prioritized, with 34% and 12% of total RPF RPKM allocated, respectively. At LC, the priority of protein synthesis shifted to the functional categories Hypothetical, Cellular Processes, and Regulatory Functions, though the large reallocation was due mainly to the change of a few genes: $slr0376$ in the Hypothetical category (46% of RPF RPKM in this category at LC, 7% at HC), $gifA$ in the Regulatory category (58% at LC, 2% at HC), and $pilA1$ in Cellular Processes (83% at LC and 47% at HC). The $slr0376$ operon ($slr0373$-$slr0376$) has been implicated previously in Ci starvation (17–18) and provides an example of potential translational control. While the mRNA abundance increased similarly (~10-fold) for all three genes, the protein synthesis rate increased 3.2-, 10.7-, and 18.3-fold for $slr0373$, $slr0374$, and $slr0376$, respectively, suggesting that $slr0373$ and $slr0376$ are regulated at both the transcriptional and translational levels (Fig. 53). Overall, 69% (53/77) and 36% (19/53) of genes reported to be upregulated in response to Ci limitation in previous transcriptomics (8) and proteomics (19) data sets, respectively, were also upregulated in our data set. Discrepancies may be attributed to differences in translational efficiency, protein degradation, coverage, and experimental setups. Our analysis also includes several hypothetical proteins that were only recently annotated by the NCBI Prokaryotic Genome Annotation Pipeline (2017). Among these, SGL_RS18840, SGL_RS18795 and SGL_RS10635 were more prominently expressed at LC (fold changes of 46, 6.4, and 6.0, respectively).

We also compared ribosome profiling-derived mass protein synthesis rates at HC (89% coverage; 3,207/3,594 ORFs) to relative protein mass fractions measured with liquid chromatography-mass spectrometry (LC-MS) shotgun proteomics (58% cover-
age; 2,116/3,672 proteins). The correlation was positive but weak (r = 0.54) (Fig. 2D).

Discrepancies can be due to biases in protein isolation and purification and in peptide fragmentation and ionization in the MS, active degradation of some proteins, the possibility that the ribosome elongation rate is not constant across all genes, or slight differences in cultivation conditions.

FIG 2 Protein synthesis rates probed by ribosome profiling. (A) Transcription level (mRNA) and protein synthesis rate (ribosome-protected footprints [RPFs]) of the RuBisCO operon under the HC sample at ~5 min (HC*) and LC conditions. Black vertical lines indicate ORF boundaries. Red vertical bars indicate RPMs greater than 250. (B) Comparison of RPF RPKMs under HC* and LC conditions. Each point is one ORF passing filtration cutoffs. (C) Total RPF RPKM for ORFs grouped by Cyanobase functional categories (1st level). “No annotation” indicates that no information was available for the feature ID. (D) Comparison of protein synthesis rates to protein abundances. Points represent matching ORFs in the HC* RPF sample and the proteomes of cells under 100 μmol photons m$^{-2}$ s$^{-1}$ with a μ of 0.0485 h$^{-1}$ (45). *HC, sample at ~5 min.
Gene-specific translational regulation of several genes at LC. Protein synthesis in prokaryotes is known to be regulated globally by controlling the number of active ribosomes (20) and locally by riboswitches or binding of regulatory proteins or RNAs (21). The translational efficiency (TE) of a gene is a measure of protein synthesis per mRNA (TE = RPF RPKM/mRNA RPKM). Gene-specific translational regulation in response to Cζ depletion changes TE between HC and LC conditions. Most genes fell within a 2-order of magnitude range of TE at HC and LC (Fig. 3A and B), and TEs were generally conserved between HC and LC as changes in RPF RPKM were concomitant with changes in mRNA for most genes (Fig. 3C and D). However, TE increased or decreased more than 2-fold for 94 and 72 ORFs (7% of ORFs), respectively (Table S2). Glutamine synthetase-inactivating factor IF7 (gifA, ssl1911) had the highest increase in TE at LC (12.6-fold). The increase in translation (80-fold increase in RPF RPKM) exceeded transcriptional amplification (6.4-fold increase in mRNA RPKM). Several genes associated with a high-light stress response, including a putative endonuclease (ssl0915), thioredoxin M (ssl1057), protease HtrA (ssl1204), and heat shock protein HspA (ssl1514), were amplified only at the translational level. The heat shock protein HspA is translationally activated via a thermosensitive 5′ UTR (22).

The TE of a gene is relative to the TE of other genes measured at the same condition, since RPF RPKM and mRNA RPKM are relative measures of protein synthesis rate and mRNA abundance. Changes in TEs between HC and LC are, thus, not affected by changes in total cellular protein synthesis rate and mRNA abundance, which are globally regulated.

Ribosome occupancy in the 5′ UTR suggests translation preinitiation upstream of the Shine-Dalgarno (SD) ribosome binding site. Mapped RPF reads within a gene are typically unevenly distributed due to ribosome pausing during elongation (Fig. 2A).
We calculated the average ribosome pause score (PS) at each nucleotide position over ORFs (3,206 ORFs) (Fig. 4A; see also Materials and Methods). The PS was defined as the RPF read density at a gene position normalized to the average RPF read density on the ORF and is indicative of the time ribosomes spend at that position. Thus, the average
PS over each ORF is equal to 1 and independent of expression level. Mapped RPF reads were assigned to the genome position corresponding to the first nucleotide in the A site of the ribosome. The PS was elevated at start and stop codons (+3 nucleotides [nt] in the 5′ end and −2 nt in the 3′ end, respectively) since translation initiation and termination are generally slower than one elongation cycle (23, 24). There was a sharp decrease in PS downstream of initiation, followed by a ramping from +3 to +125 nt (diminished at LC), suggesting faster elongation in 5′ ends. Three-nucleotide periodicity in the average PS along ORFs reflects codon-by-codon movement of elongating ribosomes and that resolution is approximately one codon. We note that while there were differences in the median PSs of all 64 codons across the genome, a large variation in PS within each codon precluded correlation of the PS to amino acid type or tRNA abundance (Fig. S4).

We also observed ribosome occupancy in many 5′ and 3′ UTRs (see Materials and Methods for classification and filtering). The average 5′ UTR PS showed a sharp peak around −10 nt (Fig. 4A); this peak was evident in many genes (Fig. S5) and indicates that the anti-SD and the SD sequence are not aligned. We looked for patterns in genes with a high 5′ UTR PS, defined as a 5′ UTR RPF read density higher than the average intergenic read density (AIRD) (27% of ORFs, 810/2,971). These genes were overrepresented in the categories Photosynthesis and Respiratory and Translation (Fig. 4B), categories that demand high protein synthesis rates (Fig. 2B). Consensus sequence analysis revealed that an SD motif (AG rich) was enriched in the 5′ UTRs of these genes but not in low-density 5′ UTR genes. An AU-rich region (−40 to −12 nt) was apparent in both gene sets (Fig. 4C).

The PS pattern in 5′ UTRs might arise within operons if some ribosomes do not disassemble at the stop codon and instead scan for downstream ORFs, where they pause (25). However, when we examined genes whose 5′ UTRs were more than 150 nt away from other ORFs and, thus, likely to be the first gene in a transcriptional unit, the average PS in 5′ UTRs did not change significantly and the peak at −10 nt remained evident (Fig. 4A; Fig. S6). This indicates that the observed ribosome occupancy in 5′ UTRs is due not only to 70S scanning but also to the possibility that mechanisms for 70S assembly in the 5′ UTR exist. Several genes with very high PSs at the −10 nt are known to be the first genes in transcriptional units (gifA, psaA, and psaK) (Fig. 57).

At the LC condition, the PS at start and stop codons increased (Fig. 4A and D), indicating that translation initiation and termination are slowed. The PS ramping in the 5′ ends of ORFs was diminished at LC, suggesting a reduced elongation rate in this region. It is unlikely that the reduced ramping pattern at LC is due to the conditions during cell harvest since no elongation inhibitors were added and the time periods to filter and freeze cells were short and similar for all collected samples (35 to 45s). Furthermore, dramatic increases in PS at the 5′ ends of ORFs were seen in Escherichia coli when aminoacyl tRNAs were depleted (26). Among all genes, the average PS in both UTRs was elevated approximately 2-fold at LC. Changes in 5′ UTR ribosome occupancy upon shift to LC correlated only weakly (r = 0.4) with changes in protein synthesis, indicating that increased ribosome abundance in the 5′ UTR does not necessarily lead to more translation (Fig. S8).

Ribosome pause score within ribosomal protein genes is altered at C5 starvation. The intragenic PS distributions were remarkably consistent among samples (compare, e.g., the patterns of RPF peaks in Fig. 2A). We calculated per-gene Pearson correlation coefficients for intragenic PS as a metric for how PS at each nucleotide position changed between two samples. A low correlation coefficient would indicate a significant change in PS at multiple positions within that gene. We focused on highly expressed genes (RPF RPKM ≥ 100 under all conditions) to exclude variations in intragenic PS due to technical or biological noise (Fig. S9). The PS correlation coefficients were high (mean, 0.95) and narrowly distributed when the four HC samples were compared and only slightly reduced (mean, 0.89) when HC was compared to LC (Fig. 5A). The PS distribution and local elongation rates are, thus, largely conserved within genes during shift from HC to LC. However, 31 genes had PS correlation...
coefficients of <0.80 between HC and LC (Table S3). Interestingly, this gene set contained four ribosomal proteins (Fig. 5B). Ribosome biogenesis requires coordinated assembly of protein and rRNA subunits and ribosome demand is clearly reduced at LC. In *E. coli*, there is extensive mRNA-based, autogenous regulation of ribosomal proteins that control ribosome assembly, where ribosomal proteins bind their own mRNA to prevent translation (27). In light of reports that local mRNA structure and cotranslational events can hinder translation elongation (28–30), the observed increases in PS in ribosomal genes in *Synechocystis* may be at sites of autogenous or small RNA (sRNA) binding.

DISCUSSION

The translational efficiency (TE) of genes was largely constant between HC and LC, despite large changes in mRNA abundance. This suggests that most ncRNA-mediated regulation during Ci starvation does not specifically affect ribosome binding or elongation. Accordingly, genes known to be regulated by the high-light-responsive ncRNA PsrR1 (*cpcA, chiN, psaJ*) did not show TE changes in our data, even though PsrR1 is also upregulated during Ci downshift (31). However, 7% of genes did exhibit a TE fold change of >2. The mechanisms of how translational control is effected are difficult to decipher from ribosome profiling data alone, though some clues can be found. For example, the *gifA* protein product IF7 is an inhibitor of glutamine synthase and, thus, contributes to balancing N and C assimilation during nutrient shifts (32). At LC, the expression of *gifA* was strongly upregulated both at the transcriptional (6-fold increase in RNA RPKM) and translational (13-fold increase in TE) levels. The trans-acting sRNA Nsir4, induced primarily during nitrogen starvation, coregulates *gifA* through imperfect hybridization to the 5’ UTR, resulting in double-stranded RNA (dsRNA) degradation (33). The downregulation of Nsir4 at LC (34) might explain the observed elevation in *gifA*
mRNA as well as the increase in \(\text{gifA TE} \), since improved ribosome binding and translation initiation can be expected as NsiR4 no longer blocks the ribosome binding site. An increased rate of ribosome binding may further explain the elevated 5' UTR PS of \(\text{gifA} \) at LC.

Several translationally controlled genes reported here can be considered part of a common stress response; an endonuclease, a protease, and thioredoxin M all exhibited increases in protein synthesis without a corresponding increase in mRNA. Translational control of these genes may be a faster way of coordinating their expression than a transcription program (15, 22). It is not known whether these genes have a common effector; \(\text{Ci} \) depletion induces many ncRNAs with unknown targets (34).

The observed RPF read density in 5' UTRs indicates the presence of bound 70S ribosomes and that ribosome assembly may occur upstream of the classical SD-dependent ribosome assembly site. One possibility is 70S scanning, first reported in \(\text{E. coli} \), where preassembled 70S ribosomes slide to the start codon from the stop codon of the upstream ORF (25). This mechanism also explains the read density observed in the 3' UTR. Furthermore, a 55% downregulation of the ribosome release factor (\(\text{sll0145} \)) (Table S2) is consistent with increased UTR read density at LC. However, the 5' UTR read density was not significantly lower for genes lacking an upstream ORF (Fig. 4A; Fig. S6) which suggests that additional mechanisms of ribosome upstream of the SD binding site exist in \(\text{Synechocystis} \), possibly in the AU-rich region (−15 to −45 nt) (Fig. 4C). In line with this hypothesis, the AU-rich region has been shown to bind the 30S ribosomal protein S1 (\(\text{sll1356} \) and \(\text{slr1984} \) in \(\text{Synechocystis} \)) and to be necessary for efficient translation of \(\text{Synechococcus rbcS in vitro} \) (35). 70S assembly in the AU-rich region would further require a subsequent slide in the 5'-to-3' direction to position the E-site over the start codon. The average PS in 5' UTRs had 3 nt periodicity, albeit with lower regularity, which might indicate a stepwise movement of ribosomes. The strong peak in average PS at the −10 nt position indicates that ribosomes pause before reaching the start codon, possibly due to ribosome interaction with the SD motif. The presence of novel initiation mechanisms in cyanobacteria has also been proposed based on phylogenetic analysis (36). However, orthogonal analyses are required to validate the mechanism proposed from our data set.

Though \(\text{Ci} \) depletion resulted in a rapid decrease in growth rate and total translation, the total ribosomal content did not change significantly (total RNA abundance in RNA extracts as proxy), implying that HC ribosomes may be inactivated at LC, as recently described for \(\text{E. coli} \) during nutrient limitation (20). We observed dimerization of 70S ribosomes into inactive 100S particles (Fig. S10). A second possible inactivation mechanism is stabilization of unproductive 70S particles by a protein factor that binds the 30S and 50S interface and blocks the mRNA channel, such as YfiA in \(\text{E. coli} \) (37). However, we did not observe a large increase in 70S particles at LC. Furthermore, the YfiA homolog LrtA (\(\text{sll0947} \)) (38) was not significantly changed at LC (Table S1). The increased ribosome occupancy in UTRs at LC may represent an alternative form of ribosome “inactivation,” namely, sequestration at noncoding regions of mRNA. This type of ribosome inactivation could be beneficial for cells in response to nutrient stress, as the regulation of total translational capacity can be coupled to the regulation of certain metabolic pathways. For example, strong upregulation of the \(\text{gif} \) mRNA at LC not only results in reduced nitrogen uptake but also reduces the number of active ribosomes due to its high ribosome occupancy in the 5' UTR relative to the translated region.

MATERIALS AND METHODS

Cultivation and experimental setup. \(\text{Synechocystis} \) sp. PCC 6803 was cultivated in turbidostat mode (optical density at 730 nm [OD\(_{730}\)] set point = 0.54) in BG-11 medium (1.6 liters; pH 7.8; 30°C) in a cylindrical photobioreactor (\(d = 100 \text{ mm} \)) modified JENNY; Belach Bioteknik AB). Irradiance (200 \(\mu \text{mol photos} \text{m}^{-2} \text{s}^{-1} \)) was supplied by a red/blue LED jacket (90% red, 10% blue). Inlet gas flow and stirrer rate was 0.2 liters min \(^{-1}\) and 150 rpm, respectively. The pH was automatically regulated to 7.6 by the concentration of \(\text{CO}_2 \) in the inlet gas to provide stable and unlimited availability of \(\text{Ci} \) in the medium (3.4% \(\text{CO}_2 \) at stable pH). After 6 days, \(\text{Ci} \) depletion was initiated by switching off the \(\text{CO}_2 \) supply and sparging the culture with \(\text{CO}_2 \)-free air. Samples for ribosome profiling were collected at −5 min,
+10 min, +30 min, +2 h, and +24 h after switch-off. Samples for mRNA sequencing were collected at −5 min and +24 h. Temperature, pH, dissolved oxygen, medium feed rate, and OD880 were continuously monitored throughout the cultivation time course. OD730 was measured externally at specific time points in order to convert online OD880 measurements.

Ribosome profiling. A detailed protocol is available in Supplemental Methods (Text S1). Cells from 110 ml culture were rapidly harvested by vacuum filtration and snap-frozen in liquid nitrogen (stored at −80°C). The time to transfer cells from culture to liquid nitrogen was typically around 45 s. Lysis was performed by cryogenic grinding together with frozen droplets of lysis buffer. The pulverized lysate was thawed in additional lysis buffer, and cell debris was removed by centrifugation. The nucleic acid concentration in the cleared lysate was calculated from OD260 measurements. A volume corresponding to 1 mg of nucleic acids was digested with 3,000 U of micrococcal nuclease (New England Biolabs; M0247) on a thermoshaker for 1 h at 25°C and 450 rpm. The digest was subsequently loaded on top of a 10 to 50% sucrose gradient and centrifuged for 2.5 h at 217,000 × g and 4°C. The 70S fraction was selected, and a hot phenol-chloroform method was used to extract the RNA. RPFs were isolated by size selection on a denaturing polyacrylamide gel. Around 50 μg RNA was loaded, and fragments ranging between 25 and 45 nt were cut out. Following T4 PNK treatment, RPFs were converted to a cDNA sequencing library using the NEBNext small RNA library prep set (New England Biolabs; E7300). Around 40 ng of RNA was used as starting material, and 16 PCR cycles were run in the amplification step. Sequencing was performed on an Illumina NextSeq 500 platform (75-bp read length, single end).

mRNA sequencing. Samples for mRNA sequencing (25 ml) were collected 5 min before the CO2 switch-off and 24 h after. Total RNA was extracted and depleted of rRNA before fragmentation and conversion into cDNA sequencing libraries following protocols provided by kit manufacturers. See the supplemental methods (Text S1) for details. Libraries were sequenced on an Illumina MinSeq platform (75-bp read length, single end).

Puromycin incorporation assay. The total translational activity was measured by puromycin incorporation in biological duplicates at −5 min, +2 h, and +24 h relative to a CO2 switch-off in a replicated cultivation setup. See the supplemental methods (Text S1) for details.

Quality control, filtering, and mapping of sequencing reads to the genome. Data analysis was performed using Python v.3.5.2 and R v.3.4.4. Bash commands parallelized using GNU Parallel v.20141022 (39), and Python v.2.7.12 scripts adapted from reference 40. The quality and general properties of the sequence data sets were initially analyzed using FastQC (Babraham Bioinformatics). Adapter sequences were removed with Cutadapt (41). Reads with an average quality score lower than 25 were removed using seqmagick v.0.6.2 (https://github.com/fhcrc/seqmagick/). Bowtie v.1.1.2 (42) was used to remove reads mapping to rRNA or tRNA sequences (31 to 49% and 89% of the reads in the ribosome profiling and mRNA sequencing data set, respectively). Remaining reads were mapped to the genome (NC_000911.1) using Bowtie. A maximum of two alignment mismatches were allowed. In case of multiple mappings of a read, the one with the fewest mismatches was selected. The read was discarded if a unique location could not be mapped in this manner. The total number of non-rRNA/rRNA reads mapped to the genome was 39 to 63 million and 3 million per sample in the ribosome profiling and RNA sequencing (RNA-seq) data set, respectively. The per-sample read length distributions for all mapped footprints are shown in Fig. S11. Assigning read counts to the 3′ end of mapped RPF reads provides superior accuracy and is compatible with a P-site placement 12 nt upstream of the 3′ edge of the translated mRNA (23), confirming the distance established by structural experiments (43, 44). Thus, we assumed that the A site is situated 12 nt from the 3′ edge. In order to apply 3′ assignment and A-site mapping, the genome position aligning to the 3′ end of each mapped RPF read was first assigned a read count of 1. Only 25-nt or longer reads were accepted. The signal was then aligned to the first nucleotide position in the A site of ribosomes by shifting all 3′-end-assigned read counts 12 positions upstream, a distance that is supported by an abrupt drop in read counts 12 nt after the stop codon if the shift is not applied (Fig. S12). In contrast, the count for each RNA-seq read was distributed evenly over all its aligning genome positions. The numbers of reads mapped to annotated ORFs (coding DNA sequences [CDSS] defined in the GenBank file for NCBI reference sequence NC_000911.1) were subsequently counted. The expression level of a gene (RPKM) was calculated by dividing the ORF read count by the total number of reads (in millions) mapped to ORFs for ribosome profiling or the whole genome for RNA-seq and the length (in thousand base pairs) of the ORF. RPM at single genome positions were calculated by dividing the assigned read count by the total number of reads mapped to the genome (in million reads). Analyses focused on genes were limited to those with ≥128 and ≥32 mapped reads at all time points for the ribosome profiling and RNA-seq data set, respectively.

Comparison of ribosome profiling to RNA-seq and proteomics. Per-gene RPKM values at time points −5 min and +24 h were used for Pearson correlation of the ribosome profiling and RNA-seq data sets. Translational efficiency was calculated for each gene and each of the two time points as RPF RPKM divided by mRNA RPKM. Furthermore, per-gene RPM values at time point −5 min were used for Pearson correlation of the ribosome profiling data to proteome mass fraction determined by LC-MS shotgun proteomics of cells under 100 μmol photons m−2 s−1 and a μ of 0.0485 h−1 (45).

Differential gene expression analysis. The four initial time points showed highly similar gene RPKM values (mean Pearson r, 0.996), while the 24-h time point was divergent (mean Pearson r, 0.757). RPKM values were inverse hyperbolic sine transformed and then subjected to a per-gene Grubbs outlier test (R functions asinh and grubbs.test). Significant differential expression in the last time point was assumed if it was identified as an outlier with a Benjamini-Hochberg adjusted q value of <0.05 (R function p.adjust) and an absolute log2-fold change of ≥1 compared to the mean of the first four time points.

Karlsen et al.

September/October 2018 Volume 3 Issue 5 e00126-18

msystems.asm.org
PS calculation for analysis of ribosome pausing. Pause score (PS) was calculated by dividing the number of reads mapped to a feature by the length of the feature and then dividing by the same metric for the associated ORF (excluding UTR reads). Excluding genes not meeting the read count requirement above, PS was calculated for all non-pseudo-ORF codons and for all nucleotides in positions −50 from the start codons (5’ end) to +50 from the stop codons (3’ end) of ORFs. Note that single nucleotide PS values were not calculated for positions within other genes and that positions outside the ORF were not included in the length or read count of the gene used for PS calculation.

Evaluation of 5’ UTR read densities. Here we define the 5’ UTR as the region encompassing positions −50 to −1 relative to the start codon, excluding positions within other ORFs. In order to identify genes with a high 5’ UTR PS, the read density was calculated for all 5’ UTRs and was considered significant if it exceeded the average intergenic read density (AIRD) for each time point. AIRD was calculated as the average read count per nucleotide and time point for positions outside ORFs with at least one mapped mRNA read, including 5’ UTRs.

5’ UTRs with lengths of ≥6 nt were extracted from the genome nucleotide FASTA file and aligned so that their 3’ end corresponded to the closest nucleotide upstream of the ORF. The alignments were used to create sequence logos for significantly high PS 5’ UTRs and other 5’ UTRs, using http://skyline.org/, displaying above-background information content based on observed counts.

Accession number(s). Raw sequencing data are available at the European Nucleotide Archive under accession number PRJEB28203. LC-MS shotgun proteomics data are available at the PRIDE Archive under accession number PXD009582 (45).

ACKNOWLEDGMENTS

We thank Vincent Pelechano (Karolinska Institutet), A. Amunts (Stockholm University), Lukas Käll (KTH), Ton van Maris (KTH), and the Bakau Lab (University of Heidelberg) for valuable discussions and technical assistance.

This work was supported by the Swedish Research Council Formas (grant 2015-939), the Swedish Foundation for Strategic Research SSF (grant RBP14-0013), and the Swedish Research Council Vetenskapsrådet (grant 2016-06160).

J.K., J.A.-S., Q.T., and E.P.H. conceived the project. J.K. and Q.T. performed cultivations and sequencing. J.A.-S. performed data analysis. M.J. performed proteomics and provided technical assistance. J.K., J.A.-S., and E.P.H. wrote the manuscript with contributions from all authors.

REFERENCES

1. Morales-Pineda M, Cózar A, Laiz I, Úbeda B, Gálvez JÁ. 2014. Daily, biweekly, and seasonal temporal scales of pCO2 variability in two stratified Mediterranean reservoirs. J Geophys Res Biogeosci 119:509–520. https://doi.org/10.1002/2013JG002317.
2. Burnap R, Hagemann M, Kaplan A. 2015. Regulation of CO2 concentrating mechanism in cyanobacteria. Life (Basel) 5:348–371. https://doi.org/10.3390/life5010348.
3. Silva TL, Reis A. 2015. Scale-up problems for the large scale production of algae, p 125–149.
4. Tamburic B, Evenhuis CR, Suggett DJ, Larkum AWD, Raven JA, Ralph PJ. 2015. Gas transfer controls carbon limitation during biomass production by marine microalgae. ChemSusChem 8:2727–2736. https://doi.org/10.1002/cssc.201500332.
5. Popka J, Schmidt S, Dethloff F, Pade N, Berends S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A. 2017. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Biofuels 10:56. https://doi.org/10.1186/s13068-017-0140-7.
6. Wang HL, Postier BL, Burnap RL. 2004. Alterations in global patterns of gene expression in Synechocystis sp. strain PCC 6803. Plant Physiol 134:1946–1959. https://doi.org/10.1104/pp.103.103341.
7. Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S. 2016. CyAxb82 contributes to the transcriptional regulation of low CO2 acclimation in Synechocystis sp. PCC 6803. Plant Cell Physiol 57:2223–2242. https://doi.org/10.1093/pcp/pcw146.
8. Kopf M, Hess WR. 2015. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 39:301–315. https://doi.org/10.1093/femsre/fuv017.
9. Guerrero ACL, Benevento M, Lehmann R, van Breukelen B, Post H, Giansanti P, Maarten Altena A, Aaxman IM, Heck AJR. 2014. Daily rhythms in the cyanobacterium Synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins. Mol Cell Proteomics 13:2042–2055. https://doi.org/10.1074/mcp.M113.035840.
10. Waldlbauer JR, Rodrigue S, Coleman ML, Chisholm SW. 2012. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 7:e43432. https://doi.org/10.1371/journal.pone.0043432.
11. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978.
12. Brar GA, Weissman JS. 2015. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16:651–664. https://doi.org/10.1038/nrm4069.
13. Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, Kim BG, Roe JH, Kim SC, Smith CP. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605. https://doi.org/10.1038/ncomms11605.
14. Bukk G, Pothi R, Hesketh A, Moller-Levet C, Hodgson DA, Laing EE, Stewart GR, Smith CP. 2018. Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor. bioRxiv 46:5692. https://doi.org/10.1103/nr/mg235.
15. Li GW, Burkhartd D, Gross C, Weissman JS. 2014. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635. https://doi.org/10.1016/j.cell.2014.02.033.
16. Singh AK, Sherman LA. 2002. Characterization of a stress-responsive
Georg J, Dienst D, Schurgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Subramaniam AR, Zid BM, O'Shea EK. 2014. An integrated approach to translation initiation in bacteria: mechanisms, regulatory circuits, dynamics. Biochimie 114:18–29. https://doi.org/10.1016/j.bioch.2015.03.007.

Kortmann J, Szc rodor K, Rinnenthal J, Schwalbe H, Narberhaus F. 2011. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 39:2855–2868. https://doi.org/10.1093/nar/gkq1252.

Woolstenhulme CJ, Gyudosh NR, Green R, Buskirk AR. 2015. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep 11:13–21. https://doi.org/10.1016/j.celrep.2015.03.014.

Shah P, Ding Y, Niemczyk M, Kudla G, Plo tkin JB. 2013. XRate-limiting steps in yeast protein translation. Cell 153:1589–1601. https://doi.org/10.1016/j.cell.2013.05.049.

Yamamoto H, Wittek D, Gupta R, Qin B, Ueda T, Krause R, Yamamoto K, Albrecht P, Pech M, Nierhaus KH. 2016. 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc Natl Acad Sci U S A 113:E1880–E1889. https://doi.org/10.1073/pnas.1524554113.

Subramani am AR, Zid BM, O'Shea EA. 2014. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159:1200–1211. https://doi.org/10.1016/j.cell.2014.10.043.

Fu Y, Deiorio-Haggar K, Anthony J, Meyer MM. 2013. Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteobacteria. Nucleic Acids Res 41:3491–3503. https://doi.org/10.1093/nar/gkt055.

Tystjärvi T, Herranen M, Aro E-M. 2001. Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 40:476–484. https://doi.org/10.1046/j.1365-2958.2001.02040.x.

Burkhardt DH, Rouskin S, Zhang Y, Li GW, Weissman JS, Gross CA. 2017. Operon miRNAs are organized into ORF-centric structures that predict translation efficiency. Elife 6:1–23. https://doi.org/10.7554/eLife.22037.

Gawroński P, Jensen PE, Karpinski S, Leister D, Scharff LB. 2018. Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly. Plant Physiol 176:2557. https://doi.org/10.1104/pp.17.01564.

Georg J, Dienst D, Schurgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klahn S, Lokstein H, Hess WR, Wilde A. 2014. The small regulatory RNA SyR1/ParR1 controls photosynthetic functions in cyanobacteria. Plant Cell 26:3661–3679. https://doi.org/10.1105/tpc.114.129767.