Abstract

The paper presents a simple probabilistic analysis of the energy consumption in preamble sampling MAC protocols. We validate the analytical results with simulations. We compare the classical MAC protocols (B-MAC and X-MAC) with LA-MAC, a method proposed in a companion paper. Our analysis highlights the energy savings achievable with LA-MAC with respect to B-MAC and X-MAC. It also shows that LA-MAC provides the best performance in the considered case of high density networks under traffic congestion.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have recently expanded to support diverse applications in various and ubiquitous scenarios, especially in the context of Machine-to-Machine (M2M) networks [1]. Energy consumption is still the main design goal along with providing sufficient performance support for target applications. Medium Access Control (MAC) methods play the key role in reducing energy consumption [2] because of the part taken by the radio in the overall energy budget. Thus, the main goal consists in designing an access method that reduces the effects of both idle listening during which a device consumes energy while waiting for an eventual transmission and overhearing when it receives a frame sent to another device [2].

To save energy, devices aim at achieving low duty cycles: they alternate long sleeping periods (radio switched off) and short active ones (radio switched on). As a result, the challenge of MAC design is to synchronize the instants of the receiver wake-up with possible transmissions of some devices so that the network achieves a very low duty cycle. The existing MAC methods basically use two approaches. The first one synchronizes devices on a common sleep/wake-up schedule by exchanging synchronization messages (SMAC [3], TMAC [4]) or defines a synchronized network wide TDMA structure (LMAC [5], D-MAC [6], TRAMA [7]). With the second approach, each device transmits before each data frame a preamble long enough to ensure that intended receivers wake up to catch its frame (Aloha with Preamble Sampling [8], Cycled Receiver [9], LPL (Low Power Listening) in B-MAC [10], B-MAC+ [11], CSMA-MPS [12] aka X-MAC [13], BOX-MAC [14], and DA-MAC [15]). Both approaches converge to the same scheme, called synchronous preamble sampling, that uses very short preambles and requires tight synchronization between devices (WiseMAC [16], Scheduled Channel Polling (SCP) [17]).

Thanks to its lack of explicit synchronization, the second approach based on preamble sampling appears to be more easily applicable, more scalable, and less energy demanding than the first synchronous approach. Even if methods based on preamble sampling are collision prone, they have attracted great research interest, so that during last years many protocols have been published. In a companion paper, we have proposed LA-MAC, a Low-Latency Asynchronous MAC protocol [18] based on preamble sampling and designed for efficient adaptation of device behaviour to varying network conditions.

In this paper, we analytically and numerically compare B-MAC [10], X-MAC [13], and LA-MAC in terms of energy consumption. The novelty of our analysis lies in how we relate the expected energy consumption to traffic load. In prior energy analyses, authors based the expected energy consumption on the average Traffic Generation Rate (TGR) of devices [17] as well as on the probability of receiving a packet in a given interval [13]. In contrast to these approaches, which only focus on the consumption of a “transmitter-receiver” couple, we rather consider the global energy cost of a group of neighbour contending devices. Our analysis includes the cost of all radio operations involved in the transmission of data messages, namely the cost of transmitting, receiving, idle listening, and overhearing.

The motivation for our approach comes from the fact that in complex, dense, and multi-hop networks, traffic distribution is not uniformly spread over the network. Thus, the expected energy consumption depends on traffic pattern, e.g. convergecast, broadcast, or multicast, because instantaneous traffic load may differ over the network. In our approach, we estimate the expected energy consumption that depends on the instantaneous traffic load in a given localized area. As a result, our analysis estimates the energy consumption independently of the traffic pattern.

II. BACKGROUND

We propose to evaluate the expected energy consumption of a group of sensor nodes under three different preamble sampling MAC protocols: B-MAC, X-MAC and LA-MAC. In complex, dense, and multi-hop networks, the instantaneous traffic distribution over the network is not uniform. For example, in the case of networks with the convergecast traffic pattern
(all messages must be delivered to one sink), the traffic load is higher at nodes that are closer to the sink in terms of number of hops. Due to this funneling effect \cite{19}, devices close to the sink exhaust their energy much faster than the others.

The evaluation of the expected energy consumption in this case is difficult and the energy analyses published in the literature often base the expected energy consumption of a given protocol on the traffic generation rate of the network \cite{17}. In our opinion, this approach does not fully reflect the complexity of the problem, so we propose to analyze the expected consumption with respect to the number of messages that are buffered in a given geographical area. This approach can simulate different congestion situations by varying the instantaneous size of the buffer.

In our analysis, we consider a “star” network composed of a single receiving device (sink) and a group of N devices that may have data to send. All devices are within 1-hop radio coverage of each other. We assume that all transmitting devices share a global message buffer for which B sets the number of queued messages, B is then related to network congestion. Among all N devices, N_s of them have at least one packet to send and are called active devices. Remaining devices have empty buffers and do not participate in the contention, nevertheless, they are prone to the overhearing effect. Thus, there are $N_o = N - N_s$ overhearers. According to the global buffer state B, there are several combinations of how to distribute B packets among N sending devices: depending on the number of packets inside the local buffers of active devices, N_s and N_o may vary for each combination. For instance, there can be B active devices with each one packet to send or less than B active devices with some of them having more than one buffered packet.

In the remainder, we explicitly separate the energy cost due to transmission E_t, reception E_r, polling (listening for any radio activity in the channel) E_p, and sleeping E_s. The overall energy consumption of all overhearers. The overall expected energy consumption E is the sum of all these energies. The power consumption of respective radio states is P_t, P_r, P_l, and P_s for transmission, reception, channel polling, and sleeping. The power depends on a specific radio device. We distinguish the polling state from the reception state. When a node is performing channel polling, it listens to any channel for activity—to be detected, a radio transmission must start after the beginning of channel polling. Once a radio activity is detected, the device immediately switches its radio state from polling to receiving. Otherwise, the device that is polling the channel cannot change its radio state. The duration of a message over the air is t_d. The time between two wakeup instants is $t_f = t_l + t_s$, where t_l and t_s are respectively the channel polling duration and the sleep period. These values are related to the duty cycle.

III. Preamble Sampling MAC Protocols

In this section, we provide the details of analyzed preamble sampling protocols. Figure 1 presents the operation of all protocols.

A. B-MAC

In B-MAC \cite{10}, all nodes periodically repeat the same cycle during their lifetime: wake up, listen for the channel, and then go back to sleep. When an active node wants to transmit a data frame, it first transmits a preamble long enough to cover the entire sleep period of a potential receiver. After the preamble the sender immediately transmits the data frame. When the receiver wakes up and detects the preamble, it switches its radio to the receiving mode and listens to until the complete reception of the data frame. Even if the lack of synchronization results in low overhead, the method presents several drawbacks due to the length of the preamble: high energy consumption of transmitters, high latency, and limited throughput. In the remainder, we define t_p^B, the duration of the B-MAC preamble.

B. X-MAC

In CSMA-MPS \cite{12} and X-MAC \cite{13}, nodes periodically alternate sleep and polling periods. After the end of a polling period, each active node transmits a series of short preambles spaced with gaps. During a gap, the transmitter switches to the idle mode and expects to receive an ACK from the receiver. When a receiver wakes up and receives a preamble, it sends an ACK back to the transmitter to stop the series of preambles, which reduces the energy spent by the transmitter. After the reception of the ACK, the transmitter sends a data frame and goes back to sleep. After data reception, the receiver remains awake for possible transmission of a single additional data frame. If another active node receives a preamble destined to the same receiver it wishes to send to, it stops transmitting to listen to the channel for an incoming ACK. When it overhears the ACK, it sets a random back-off timer at which it will send its data frame. The transmission of a data frame after the back-off is not preceded by any preamble. Note however that nodes that periodically wake up to sample the channel need to keep listening for a duration that is larger than the gap between short preambles to be able to decide whether there is an ongoing transmission or not. The duration of each short preamble is t_p^X and the ACK duration is t_a^X.

C. LA-MAC

LA-MAC \cite{13} is a scalable protocol that aims at achieving low latency and limited energy consumption by building on three main ideas: efficient forwarding based on proper scheduling of children nodes that want to transmit, transmissions of frame bursts, and traffic differentiation. The method periodically adapts local organization of channel access depending on network dynamics such as the number of active users and the instantaneous traffic load. In LA-MAC, nodes periodically alternate long
sleep periods and short polling phases. During polling phases each receiver can collect several requests for transmissions that are included inside short preambles. After the end of its polling period, the node that has collected some preambles processes the requests, compares the priority of requests with the locally backlogged messages and broadcasts a SCHEDULE message. The goal of the SCHEDULE message is to temporarily organize the transmission of neighbor nodes to avoid collisions. If the node that ends its polling has not detected any channel activity and has some backlogged data to send, it starts sending a sequence of short unicast preambles containing the information about the burst to send. As in B-MAC and X-MAC, the strobed sequence is long enough to wakeup the receiver. When a receiver wakes up and receives a preamble, it clears it with an ACK frame containing the instant of a rendezvous at which it will broadcast the SCHEDULE frame. If a second active
node overhears a preamble destined to the same destination it wants to send to, it waits for an incoming ACK. After ACK reception, a sender goes to sleep and wakes up at the instant of the rendezvous. In Figure 1, we see that after the transmission of an ACK to Tx1, Rx device is again ready for receiving preambles from other devices. So, Tx2 transmits a preamble and receives an ACK with the same rendezvous. Preamble clearing continues until the end of the channel polling interval of the receiver.

IV. ENERGY ANALYSIS

LA-MAC provides its best performance in contexts of high density and traffic congestion. In order to showcase the gain of LA-MAC, we provide an energy analysis aimed at comparing expected energy consumption of all considered protocols.

We focus on evaluating expected energy consumption of a group of nodes when the number of messages to transmit within the group is known. In our analysis, we consider one receiver and a group of devices that can have some messages to send as well as empty buffers. In the analysis we provide, we focus our attention to the fact that in a complex sensor network traffic congestion is not uniformly distributed over the network. In fact, elements such as the MAC protocol, the density and the traffic model have different impact in different areas of the network. For this reason instead of focusing on the simple traffic generation rate (TGR) \([17]\) on the probability of receiving a packet in a given interval \([13]\), we base our analysis on the number of messages that a group of nodes must send to a reference receiver.

With this approach we can show different congestion situations as they happen in a multi-hop networks with convergecast traffic pattern, where traffic distribution is not uniform with respect to proximity to the sink (in terms of number of hops). In fact, the closer the sink, the higher the average traffic. We provide an evaluation that shows energy consumption with respect to a group of nodes. We assume that a group of nodes share a global message buffer, depending on the number of messages in the buffer there may be zero, one, two or multiple senders. Those nodes that have any message to send are called others or overhearers, they don’t participate in the contention but are prone to the overhearing problem (one of the major causes of energy waste in wireless sensor networks).

In the analysis we separate energy cost due to transmission (couple, triple or more) \(E_t\), reception \(E_r\), polling (listening some activities in the channel) \(E_p\) and sleep \(E_s\). Consumption of other node that overhears the channel is represented by \(E_o\).

Overall expected energy consumption \(E\) is the sum of all energies. Global buffer state of the group of nodes is \(B\). Power consumption of radio states are \(P_t\) for transmission, \(P_r\) for reception, \(P_p\) for channel polling and \(P_s\) for sleep. We assume that when a device is polling the channel, it listens to the air interface for some activity; if a message is already being sent while a device starts polling the channel, the device will not change its radio state. Otherwise, if a device that is polling the channel hears the beginning of new message, it switches its radio in receiving mode increasing the energy consumption. We consider that the group is composed by \(N\) devices and one receiver. Depending on the state of buffers, the number of senders \(N_s\) varies as well as the number of overhearing nodes \(N_o = N - N_s\). We assume that all devices are within radio range of each others. Duration of a message over the air is \(t_d\). Each frame elapses \(t_f = t_t + t_s\).

A. Global buffer is empty \((B = 0)\)

If all buffers are empty, all protocols behave in the same way: nodes periodically wakeup, poll the channel, then go back to sleep because of absence of channel activity. Consumption only depends on time spent in polling and sleeping.

\[
E^{ALL}(0) = (N + 1) \cdot (t_t \cdot P_t + t_s \cdot P_s)
\]

(1)

B. Global buffer contains one message \((B = 1)\)

If there is one message to send, there are only two devices that are active: the one which has a message in the buffer \((N_s = 1)\) and the destination. The number of overhears is \(N_o = N - 1\).

B-MAC \((B = 1)\)

When message sender wakes up, it polls the channel and then starts sending one large preamble that anticipates data transmission. Even if data is unicast, destination field is not included in preambles; therefore, all nodes need to hear both preamble and the header of the following data in order to know the identity of the intended receiver. Provided that devices are not synchronized, each device will hear in average half of the preamble. The cost of transmission is the cost of an entire preamble plus the cost of transmitting data.

\[
E^B_t(1) = (t^B_p + t_d) \cdot P_t
\]

(2)

The cost of reception is the cost of receiving half of the duration of a preamble plus the cost of receiving data. In packetized radios, a large preamble is obtained by a sequence of short preambles sent one right after the other. For this reason, if a generic device B wakes up and polls the channel while a generic device A is sending a long preamble, radio state of device B will remain in polling state for a short time until the beginning of the next small packet of the large preamble; afterwards the radio will switch in receiving mode consuming more energy. When the receiver (that is not synchronized with the sender)
wakes up, it polls the channel for some activity. Because of lack of synchronization, it may happen that at the time when the receiver wakes up, the sender is performing channel polling. Probability of this event is \(p = t_i / t_f \), so if the receiver wakes up during this period, it will perform half of the polling and then it will listen for the entire preamble. Otherwise, if the receiver wakes up after the end of the polling of sender, it will listen half of the preamble (probability \(1 - p \)). In the remainder of this document we say that with probability \(p \) transmitter and receiver are somehow quasi-synchronized.

\[
E_r^B(1) = (p \cdot t_p^B + (1 - p) \cdot \frac{t_p^B}{2} + t_d) \cdot P_r
\]

(3)

So more than the entire polling of the sender we must consider half of polling period that must be performed by the receiver with probability \(p \).

\[
E_r^B(1) = (1 + \frac{p}{2}) \cdot t_i \cdot P_t
\]

(4)

The cost of sleeping activity for the couple transmitter/receiver it depends on the time that they do not spend in polling, receiving or transmitting messages.

\[
E_s^B(1) = (2 \cdot t_f - (\frac{t_p^B}{2} \cdot (p + 3) + 2 \cdot t_d + t_i \cdot (1 + \frac{p}{2}))) \cdot P_s
\]

(5)

With B-MAC there is not difference in terms of energy consumption between overhearing and receiving a message. Therefore, the cost of overhearing is:

\[
E_o^B(1) = N_o \cdot (E_r^B(1) + t_i \cdot \frac{t_i}{2} + (t_f - (p \cdot \frac{t_f}{2} + t_p^B) + (1 - p) \cdot \frac{t_p^B}{2} + t_d)) \cdot P_s
\]

(6)

X-MAC (\(B = 1 \))

When the sender wakes up, it polls the channel and starts sending a sequence of unicast preambles separated by a time for early ACK reception. When the intended receiver wakes up and polls the channel, it receives the preamble and clear it. Then the sender can transmit its message. After data reception, the receiver remains in polling state for an extra backoff time \(t_b \) that is used to receive other possible messages \([13]\) coming from other senders. All devices that have no message to send, overhear channel activity and go to sleep as soon as they receive any unicast message (preamble, ACK or data). The expected number of preambles that are needed to \(\text{wakeup} \) the receiver is \(\gamma^X \). Average number of preambles depends on the duration of polling period, preamble and ACK messages as well as the duration of an entire frame \([13]\). \(\gamma^X \) Is the inverse of the collision probability of one preamble over the polling period of the receiver. In fact, if the couple sender/receiver is not synchronized, the sender can not know when the receiver will wake up, thus each preamble has the same probability to be heard or not by the receiver. Each sent preamble is a trial of a geometric distribution, so we say that before there is a collision between preamble and polling period there are \((\gamma^X - 1) \) preambles whose energy is wasted.

\[
\gamma^X = \frac{1}{t_i - t_b - t_f}
\]

(7)

Total amount of energy that is due to the activity of transmitting one message depends on the average number of preambles that must be sent \((\gamma^X) \) and the cost of early ACK reception. Provided that wakeup schedules of nodes are not synchronous, it may happen that when the receiver wakes up, the sender is performing channel polling (transmitter and receiver are quasi-synchronized with probability \(p \)).

In the case of quasi-synchronization, the receiver will perform in average half of the polling period and afterwards it the will be able to clear the very first preamble of the strobe. In this case the cost of transmission only includes the transmission of one preamble and the cost of receiving the ACK. Otherwise, if nodes are not synchronous (the receiver wakes up after the end of the polling of sender), the receiver will cause the sender to waste energy for the transmission of \(\gamma^X \) preambles and the wait for an ACK (we consider waiting for ACK as a polling state) before it can hear one of them. The energy consumption of all activities of polling is reported separately in \(E_t^X(1) \). Transmission cost is:

\[
E_t^X(1) = (1 - p) \cdot \gamma^X \cdot t_p^X \cdot P_t + p \cdot \gamma^X \cdot t_p^X \cdot P_t + t_a^X \cdot P_r + t_d \cdot P_t
\]

(8)

\[
= ((1 - p) \cdot \gamma^X + p) \cdot t_p^X \cdot P_t + t_a^X \cdot P_r + t_d \cdot P_t
\]

(9)

The cost of the receiving activity is represented by the transmission of one ACK and the reception of both data and preamble.

\[
E_r^X(1) = (t_d + t_a^X) \cdot P_r + t_a^X \cdot P_t
\]

(10)

With probability \(1 - p \) (no synchronization) the receiver will wakeup while the sender is already transmitting a preamble (or it is waiting for an early ACK). Otherwise (with probability \(p \)) the receiver will perform in average, only half of its polling
period. The reason for this is that if the active couple is quasi-synchronized they simultaneously perform channel sensing, then the sender starts the preamble transmission. As far as the sender is concerned, we must consider both the entire polling period and the time that the sender waits for early ACK without any answer (event that happens with probability $1 - p$).

$$E_t^X(1) = ((t_i + (1 - p) \cdot (\gamma^X - 1) \cdot t_a^X) + ((1 - p) \cdot \frac{t_p^X + t_a^X}{2} + p \cdot \frac{t_l}{2}) + t_b) \cdot P_l \quad (11)$$

$$= ((1 - p) \cdot (\frac{t_p^X + t_a^X}{2} + (\gamma^X - 1) \cdot t_a^X) + (\frac{p}{2} + 1) \cdot t_l + t_b) \cdot P_l \quad (12)$$

Sleep activity of the active couple is twice a frame duration minus the time that both devices are active.

$$E_s^X(1) = (2 \cdot t_f - (t_i + ((1 - p) \cdot \gamma^X + p) \cdot (t_p^X + t_a^X) + t_d) - (p \cdot \frac{t_l}{2} + t_p^X + t_a^X + (1 - p) \cdot \frac{t_p^X + t_a^X}{2} + t_d + t_b)) \cdot P_s \quad (13)$$

$$= (2 \cdot t_f - 2 \cdot t_d - p \cdot \frac{t_l}{2} - t_p^X - t_a^X - (1 - p) \cdot \frac{t_p^X + t_a^X}{2} - t_l - ((1 - p) \cdot \gamma^X + p) \cdot (t_p^X + t_a^X) - t_b) \cdot P_s \quad (14)$$

As other devices, the overhearers can wake up at a random instant. However, differently from active agents, as soon as they overhear some activity they go back to sleep. Therefore their energy consumption depends on the probability that such nodes wake up while the channel is busy or not. The probability that at wakeup instant the channel is free depends on polling duration, buffer states, the number of senders etc. In figure 2 we present all the possible situations that can happen. We consider as reference instant, the time at which the transmitter wakes up (root of the tree). With probability p, the receiver and the transmitter are quasi-synchronized, not synchronized otherwise (probability $(1 - p)$). With probability $p \cdot p$ both the receiver and a generic overhearer are quasi-synchronized with the transmitter, this is the Case 1 in the tree.

![Figure 2. X-MAC. Tree of different wakeup cases.](image)

- Case 1: Sender, receiver and overhearer are quasi-synchronized. The overhearer will sense a preamble that is not intended to it and the goes back to sleep.

$$E_{Case1,o}^X = \frac{t_l}{2} \cdot P_l + t_p^X \cdot P_r + (t_f - \frac{t_l}{2} - t_p^X) \cdot P_s \quad (15)$$

- Case 2, 3, 4: Sender and receiver are synchronized but not the overhearer. When the overhearer wakes up, it can overhear different messages (preamble, ACK or data) as well as clear channel. Possible situations are summarized in figure 4.
Figure 3. Global buffer size A=1. Overhearing situations for Case 1. X-MAC protocol

Figure 4. Global buffer size A=1. Overhearing situations for Cases 2, 3 and 4. X-MAC protocol

- Case 2: If the overhearer wakes up during a preamble transmission, it will overhear the following ACK and afterwards go back to sleep. The probability for the overhearer to wake up during a preamble is $p_a = \frac{t_p^X}{t_f}$.

\[
E_{\text{Case 2, o}}^X = t_p^X \cdot P_t + t_a^X \cdot P_r + (t_f - \frac{t_p^X}{2} - t_a^X) \cdot P_s
\]

- Case 3: If the overhearer wakes up during an ACK transmission, it will overhear the following data message and afterwards go back to sleep. The probability for the overhearer to wake up during an ACK is $p_b = \frac{t_a^X}{t_f}$.

\[
E_{\text{Case 3, o}}^X = \frac{t_a^X}{2} \cdot P_t + t_d \cdot P_r + (t_f - \frac{t_a^X}{2} - t_d) \cdot P_s
\]

- Case 4: The overhearer will either wake up during data transmission or after the end of it. In both cases when the sender wakes up and senses the channel, it will sense it as free because the sender was sleeping when data packet transmission begun. Therefore the overhearer performs an entire polling and go back to sleep. The probability for this event to happen is $1 - p_a - p_b$.

\[
E_{\text{Case 4, o}}^X = t_l \cdot P_t + (t_f - t_l) \cdot P_s
\]

- Case 5: Similarly to Case 1, if the overhearer is quasi-synchronized with the transmitter it will overhear the first preamble even if the receiver is still sleeping. The energy cost is:

\[
E_{\text{Case 5, o}}^X = E_{\text{Case 1, o}}^X
\]

- Cases 6, 7, 8: If neither the receiver nor the overhearer are synchronized with the sender, it may happen that the receiver wakes up before the overhearer. Therefore, similarly to cases 2, 3 and 4 we have different situations. Cases 6, 7, 8 are
respectively similar to 2,3 and 4:

\[E_{Case_6,o}^X = E_{Case_2,o}^X \] \hspace{1cm} (20)

\[E_{Case_7,o}^X = E_{Case_3,o}^X \] \hspace{1cm} (21)

\[E_{Case_8,o}^X = E_{Case_4,o}^X \] \hspace{1cm} (22)

• Case 9: If the overhearer wakes up before the intended receiver, it will receive a preamble and go back to sleep. The cost in this case is:

\[E_{Case_9,o}^X = t_p^X \cdot P_r + \frac{t_p^X + t_a^X}{2} \cdot P_l + (t_f - \frac{t_p^X + t_a^X}{2} - t_p^X) \cdot P_s \] \hspace{1cm} (23)

The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen

\[E_o^X(1) = N_o \cdot \sum_{i=1}^{9} p_{Case_i} \cdot E_{Case_i,o}^X \] \hspace{1cm} (24)

LA-MAC (B = 1)

In the present analysis we do not consider adaptive wakeup schedule of senders presented in section [REF PROTOCOL DESCRIPTION SECTION]. Therefore, wakeup schedules are assumed random. Even if this is a worst case for LA-MAC, it helps to better compare it with other protocols. When sender wakes up, polls channel and send preambles as in X-MAC. However differently from X-MAC, after early ACK reception, the sender goes back to sleep and waits for Schedule message to be sent. When the intended receiver receives one preamble, it clears it and completes its polling period in order to detect other possible preambles to clear. Immediately after the end of polling period, the receiver processes requests and broadcasts the Schedule message. In LA-MAC, overhearers go to sleep as soon as they receive any unicast message (preamble, ACK or data) as well as the Schedule. Due to lack of synchronization, expected number of preambles per slot follows X-MAC with different size of preambles \(t_p^L \) and ACK \(t_a^L \). When the sender wakes up, it perform an entire channel polling before starting transmitting strobed preambles. When the receiver wakes up, it polls the channel. With probability \(p = t_i/t_f \) the sender and receiver are quasi-synchronized; so with probability \(p \) the sender is still polling the channel when the receiver wakes up.
When the sender wakes up, it polls the channel and starts sending preambles to *wakeup* the receiver. With probability \(p \), the first preamble that is sent will wake up the receiver, so the sender will immediately receive an *early* ACK. Otherwise, if nodes are not synchronized (probability \((1 - p)\)) the sender will wake up its destination in average after \(\gamma^L \) preambles. \(E_{L}^{(1)} \) is similar to the cost of X-MAC plus the cost of receiving the Schedule.

\[
E_{L}^{(1)}(1) = (1 - p) \cdot \gamma^L \cdot t_p^L \cdot P_t + p \cdot t_p^L \cdot P_t + t_a^L \cdot P_r + t_d \cdot P_t + t_g \cdot P_r
\]

(25)

Cost of reception depends on the duration of preamble, ACK, data and Schedule messages.

\[
E_{R}^{(1)}(1) = (t_l + (1 - p) \cdot (\gamma^L - 1) \cdot t_a^L) \cdot P_t
\]

(26)

When the sender wakes up, it performs a full polling period before the beginning of the strobed preambles. Moreover the degree of synchronization between sender and receiver (called *active* nodes) also influences the consumption. If active nodes are not synchronized, the sender will poll the channel \((\gamma^L - 1)\) times in order to wait for *early* ACK. Differently from X-MAC, the receiver will complete its polling period even if it clears one preamble, so its radio will remain in polling state the duration of a full polling period less the time for preamble reception and ACK transmission.

\[
E_{L}^{(1)}(1) = ((t_l + (1 - p) \cdot (\gamma^L - 1) \cdot t_a^L) + (t_l - t_p^L - t_a^L)) \cdot P_t
\]

(27)

When the active nodes are not transmitting, receiving or polling the channel they can sleep.

\[
E_{S}^{(1)}(1) = (2 \cdot t_f - (t_l + (1 - p) \cdot \gamma^L \cdot t_p^L + p \cdot t_p^L + t_a^L + (1 - p) \cdot (\gamma^L - 1) \cdot t_a^L + t_d + t_g) - (t_l + t_d + t_g)) \cdot P_s
\]

(28)

As in X-MAC as soon as overhearers receive some messages they go back to sleep. Therefore their energy consumption depends on the probability that such nodes wake up while the channel is busy or not. All the possible combinations of wakeup schedules with relative probabilities are shown in figure 7.

- Case 1: Sender, receiver and overhearer are quasi-synchronized. The overhearer will sense a preamble that is not intended to it and goes back to sleep. Probability of this event is \(p \cdot p \)

\[
E_{Case_{1,o}}^{(1)} = \frac{t_f}{2} \cdot P_t + t_p^L \cdot P_r + (t_f - \frac{t_f}{2} - t_p^L) \cdot P_s
\]

(29)

- Case 2, 3, 4, 5: the receiver is synchronized with Sender. Nevertheless, the overhearer is not synchronized with the sender. When the overhearer wakes up, it can receive different messages (preamble, ACK, Schedule or data) as well as clear channel.

Figure 7. Lamac. Tree of different wakeup cases.
Case 2: If the overhearer wakes up during a preamble transmission, it will receive in average half of the preamble and overhear the following ACK. Afterwards it will go back to sleep. Probability of this event is \(p \cdot (1 - p) \cdot p_c \), where \(p_c = \frac{t^L}{t_f} \) represents the event that wake-up instant of the overhearer is slightly after the end of polling of the sender.

\[
E_{Case2,o}^L = \frac{t_p^L}{2} \cdot P_t + t_a^L \cdot P_r + (t_f - \frac{t_p^L}{2} - t_a^L) \cdot P_s
\]

(30)

Case 3: If the overhearer wakes up during an ACK transmission, it will sense a silent period and overhear the following schedule message. Afterwards it goes back to sleep. Probability of this event is \(p \cdot (1 - p) \cdot p_d \), where \(p_d = \frac{t_a^L}{t_f} \) includes the event that wake-up instant of the overhearer happens at least after the transmission of a preamble. \(p_d \) Neglects the time that elapses between the end of the ACK and the end of channel polling of the receiver. In other words, \(p_d \) supposes that schedule message is sent immediately after the transmission of ACK.

\[
E_{Case3,o}^L = \frac{t_a^L}{2} \cdot P_t + t_g^L \cdot P_r + (t_f - \frac{t_a^L}{2} - t_g^L) \cdot P_s
\]

(31)

Case 4: If the overhearer wakes up during the transmission of the Schedule, it will hear the following data and then go to sleep. Probability of this event is \(p \cdot (1 - p) \cdot p_e \), where \(p_e = \frac{t_g}{t_f} \) assumes that the wake-up instant of the overhearer happens in average during the middle of schedule transmission.

\[
E_{Case4,o}^L = t_g \cdot P_t + (t_f - t_g) \cdot P_s
\]

(32)

Case 5 The overhearer will either wakes up during data transmission or will sense a free channel because both sender and receiver are already sleeping. Therefore the overhearer performs an entire polling and goes back to sleep. Probability of this event is \(p \cdot (1 - p) \cdot (1 - p_c - p_d - p_e) \).

\[
E_{Case5,o}^L = t_i \cdot P_t + (t_f - t_i) \cdot P_s
\]

(33)

Case 6: Similarly to Case 1, if the overhearer is quasi-synchronized with the sender with probability \((1 - p) \cdot p \), the energy cost is:

\[
E_{Case6,o}^L = \frac{t_i}{2} \cdot P_t + t_f^L \cdot P_r + (t_f - \frac{t_i}{2} - t_f^L) \cdot P_s
\]

(34)

Cases 7,8,9,10: If neither the receiver nor the overhearer are synchronized with sender, it may happen that the receiver wakes up before the overhearer. We distinguish the situations of quasi-synchronization of the couple overhearer-preambles and lack of synchronization.

In cases 7 and 8, overhearer is quasi-synchronized with the receiver.
Figure 11 with their happening probability: We assume that the frame begins at the wakeup instant of the first transmitter; scenarios that may happen are illstrated on instants of the active agents are scheduled with respect to each others. Wakeup instant of different agents are all independent.

\[E_{L_{\text{Case},a}} = E_{L_{\text{Case},o}} \]

(35)

- Case 7: There is a probability to overhear a preamble. Such a probability is \((1 - p) \cdot (1 - p) \cdot 1/2 \cdot p_c\). Consumption of this case is the same of Case 2.

\[E_{L_{\text{Case},a}} = E_{L_{\text{Case},o}} \]

(36)

- Case 8: There is a probability to overhear an ACK. Such a probability is \((1 - p) \cdot (1 - p) \cdot 1/2 \cdot p_d\). Consumption of this case is the same of Case 2.

If the overhearer and the receiver are not synchronized:

- Case 9: There is a probability to overhear a Schedule. Such a probability is \((1 - p) \cdot (1 - p) \cdot 1/2 \cdot p_e\). Consumption of this case is the same of Case 4.

\[E_{L_{\text{Case},a}} = E_{L_{\text{Case},o}} \]

(37)

- Case 10: There is a probability to overhear a data message. Such a probability is \((1 - p) \cdot (1 - p) \cdot 1/2 \cdot (1 - p_e - p_d - p_e)\).

Consumption of this case is the same of Case 5.

\[E_{L_{\text{Case},a}} = E_{L_{\text{Case},o}} \]

(38)

- Case 11: Otherwise, if the overhearer wakes up before the intended receiver, it will receive one preamble (whichever preamble amongst \(\gamma^L\)) and go back to sleep. The cost in this case is:

\[E_{L_{\text{Case},a}} = \frac{t_p^L + t_a^L}{2} \cdot P_t + t_p^L \cdot P_r + (t_f - \frac{t_p^L + t_a^L}{2} - t_p^L) \cdot P_s \]

(39)

The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen

\[E_0^L(1) = N_o \cdot \sum_{i=1}^{11} p_{\text{Case}_i} \cdot E_{L_{\text{Case},i},o} \]

(40)

C. Global buffer contains two messages \((B = 2)\)

If \(A=2\), there can be either one sender with two messages to deliver, or two senders with each only one message. The others devices may overhear some channel activity. The number of overhearers will be \(N_o = N - 1\) if there is just one sender, \(N_o = N - 2\) otherwise. The probability that two messages are in different buffers is equal to \((N - 1)/N\).

B-MAC \((B = 2)\)

The overall power consumption for transmission and reception when \(A \geq 1\) is linear with the global number of packets in buffer, independently on how packets are distributed in the different buffers, i.e., independently of the number of senders. In fact, due to the long preamble to send \((t_p^L = t_f)\), there can be only one sender per frame. Thus, we have the following relation:

\[E^B(A) = A \cdot E^B(1) = A \cdot (E^B_1 + E^B_2 + E^B_3 + E^B_4 + E^B_5 + E^B_6) \]

Such a relation depicts the limitations of B-MAC protocol, since high-loaded traffic can hardly be addressed.

X-MAC \((B = 2)\)

After the reception of the first data message, the receiver remains in polling state for an extra back-off time \(t_b\) during which it can receive a second message. The energy consumed for the transmission of the first packet is the same as the energy \(E^X_1\) defined in the previous subsection; then the cost of the transmission for the second message must be added.

Differently from B-MAC, the distribution of messages in the buffers impacts X-MAC protocol behaviour. With probability \(1/N\) both packets are in the same buffer; otherwise two different senders are implicated, so we need to study how wakeup instants of the active agents are scheduled with respect to each others. Wakeup instant of different agents are all independent. We assume that the frame begins at the wakeup instant of the first transmitter; scenarios that may happen are illstrated on Figure [1] with their happening probability:
Case 1: All three agents are quasi-synchronized. The very first preamble sent by the first transmitter is cleared by the receiver who sends an ACK; the second transmitter hears both the preamble and the ACK. Probability of this scenario is

\[p_{\text{Case 1}} = \frac{(N-1)}{N} \cdot p \cdot p. \]

\[E_{X}^{\text{Case 1},d}(2) = t_{p}^{X} \cdot P_{t} + t_{a}^{X} \cdot P_{r} + (t_{p}^{X} + t_{a}^{X}) \cdot P_{r} + 2 \cdot t_{d} \cdot P_{t} \] (41)

\[E_{X}^{\text{Case 1},r}(2) = (t_{p}^{X} + 2 \cdot t_{d}) \cdot P_{r} + t_{a}^{X} \cdot P_{t} \] (42)

\[E_{X}^{\text{Case 1},l}(2) = (t_{l} + \frac{t_{l}}{2} + \frac{t_{l}}{2}) \cdot P_{l} \] (43)

\[E_{X}^{\text{Case 1},s}(2) = (3 \cdot t_{f} - (t_{l} + t_{p}^{X} + t_{a}^{X} + t_{d}) - \frac{t_{l}}{2} + t_{p}^{X} + t_{a}^{X} + t_{d}) - \frac{t_{l}}{2} + t_{p}^{X} + t_{a}^{X} + 2 \cdot t_{d}) \cdot P_{s} \] (44)

Depending on wakeup instants of overhearers several situations may happen. If the overhearer is quasi-synchronized with one of the three active agents (receiver or one of the two senders), then it will sense a busy channel (cf. figure 12). We assume that an overhearer polls the channel for some time and then overhears a message that can be a preamble, an ACK or a data. For simplicity, we assume the overhearer polls the channel during in average a half polling frame and then overhears a data (the largest message that can be overheard). Probability to wakeup during a busy period is
\(p_{case_{1,A=2}}^X = (t_p^X + t_a^X + 2 \cdot t_d)/t_f \). Otherwise, the overhearer wakes up while channel is free; it polls the channel and then goes back to sleep.

\[
E_{Case_{1,o}}^X(2) = N_o \cdot (p_{case_{1,A=2}}^X \cdot \left(\frac{t_l}{2} \cdot P_l + t_d \cdot P_r + (t_f - \frac{t_l}{2} - t_d) \cdot P_s \right) + (1 - p_{case_{1,A=2}}^X) \cdot (t_l \cdot P_l + (t_f - t_l) \cdot P_s)) \quad (45)
\]

- **Case 2:** First sender and receiver are quasi-synchronized, contrary to second sender (cf. figure 13). The only possibility for the second sender to send data in the current frame is to manage to catch the ACK of the receiver during its polling period. This event happens with probability \(q^X = (t_l - t_a^X)/t_f \). Probability of this scenario is \(p_{Case_2} = (N - 1)/N \cdot p \cdot (1 - p) \cdot q^X \).

\[
\text{Figure 13. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 2.}
\]

Energy consumption of this second scenario is quite the same as the one of Case 1 but event probability is different. Since the second sender is not quasi-synchronised, it cannot hear the full preamble sent by the first sender and has a shorter polling period.

\[
E_{Case_{2,t}}^X(2) = E_{Case_{1,t}}^X(2) - \frac{t_p^X \cdot P_r}{2} \quad (46)
\]

\[
E_{Case_{2,r}}^X(2) = E_{Case_{1,r}}^X(2) \quad (47)
\]

\[
E_{Case_{2,d}}^X(2) = E_{Case_{1,d}}^X(2) - \frac{t_l}{2} \cdot t_p^X \cdot P_l \quad (48)
\]

\[
E_{Case_{2,s}}^X(2) = E_{Case_{1,s}}^X(2) + \frac{t_l + t_p^X}{2} \cdot P_l \quad (49)
\]

We assume that the probability of busy channel is the same as the previous scenario. So, overhearing consumption is unchanged.

\[
E_{Case_{2,o}}^X(2) = E_{Case_{1,o}}^X(2) \quad (50)
\]

- **Case 3:** With probability \(1 - q^X \), the second sender wakes up too late and cannot catch the ACK. In this case, it goes back to sleep and it will transmit its data during the next frame. So, energy cost is the sum of the transmission cost for the first packet in the current frame and for the second packet in the following frame. This second frame is the same as \(E^X(1) \). This scenario happens with probability \(p_{Case_3} = (N - 1)/N \cdot p \cdot (1 - p) \cdot (1 - q^X) \).

\[
E_{Case_{3,t}}^X(2) = t_p^X \cdot P_l + t_a^X \cdot P_r + t_d \cdot P_l + E_l^X(1) \quad (51)
\]

\[
E_{Case_{3,r}}^X(2) = t_p^X \cdot P_r + t_a^X \cdot P_t + t_d \cdot P_r + E_l^X(1) \quad (52)
\]

\[
E_{Case_{3,d}}^X(2) = (t_l + t_d + t_f^X) \cdot P_l + E_l^X(1) \quad (53)
\]

\[
E_{Case_{3,s}}^X(2) = (3 \cdot t_f - (t_l + t_p^X + t_a^X + t_d) - t_l - (\frac{t_l}{2} + t_p^X + t_a^X + t_d)) \cdot P_s + E_s^X(1) \quad (54)
\]
In the second frame, the first sender has nothing to send any more and can be count as an overhearer. Then the number of overhearers should be updated between two frames but energy cost per overhearer is unchanged in comparison to the one for a unique message in global buffer (A+1):

\[
E_{\text{Case 4, data}}^X(2) = (N_o + (N_o + 1)) \cdot \frac{E_{\text{case 1}}^X(1)}{N_o + 1}
\] (55)

- Case 4: First and second senders are quasi-synchronized but the receiver wakes up later. In this scenario, the first sender sends a strobbed preamble until the receiver wakes up and sends an ACK; the second sender hears the whole strobbed preamble and then sends its data during the back-off time. Between short preambles, senders poll channel waiting for an ACK from receiver. Probability of this scenario is

\[
p_{\text{Case 4}} = \frac{N - 1}{N} \cdot (1 - p) \cdot p.
\]

\[
E_{\text{Case 4, preamble}}^X(2) = (t_f - (t_f - t_1 + \gamma^X \cdot (t_p + t_a^X) + t_d) - \frac{t_1}{2} + \gamma^X \cdot (t_p^X + t_a^X) + t_d) - (\frac{t_p^X + t_a^X + t_p + t_a^X + 2 \cdot t_d}{2}) \cdot P_s
\] (59)

When receiver wakes up later than both senders, the probability that an overhearer wakes up during a transmission of a preamble is higher than with previous scenarios. If this happens, the overhearer performs a very short polling, overhears a message (most probably a preamble) and then goes back to sleep. For simplicity we assume that the overhearer of a preamble is higher than with previous scenarios. If this happens, the overhearer performs a very short polling, and then sends its data during the back-off time. Between short preambles, senders poll channel waiting for an ACK from receiver. Probability of this scenario is

\[
p_{\text{Case 4, data}} = (\gamma^X \cdot (t_p^X + t_a^X) + 2 \cdot t_d) / t_f.
\]

\[
E_{\text{Case 4, preamble}}^X(2) = N_o \cdot (p_{\text{case 4, data}}^X - (\frac{t_p^X + t_a^X}{2}) \cdot P_t + 2 \cdot t_d \cdot P_t + (t_f - \frac{t_p^X + t_a^X}{2} - t_d^X) \cdot P_s) + (1 - p_{\text{case 4, data}}^X) \cdot (t_f \cdot P_t + (t_f - t_1) \cdot P_s)
\] (60)

- Cases 5, 6, 7: Second sender and receiver are not synchronized with first sender; the behaviour of the protocol depends on which device among the second sender and the receiver will wake up as first.

- Case 5: Receiver wakes up as first. Similarly to Case 2, the only possibility for the second transmitter to send data in the current frame is to catch the ACK of the receiver during its polling. This event happens with probability

\[
q^X = (t_1 - t_a^X) / t_f.
\]

However, there is also the possibility for Tx2 to catch the preamble sent by Tx1 that just precedes the overheared ACK. Such eventuality can happen with probability

\[
u^X = \frac{t_p^X + t_a^X}{2 \cdot t_p^X + t_a^X}.
\]

This scenario happens with probability

\[
p_{\text{Case 5}} = (N - 1) / N \cdot (1 - p) \cdot (1 - p) \cdot \frac{1}{2} \cdot q^X.
\]

\[
E_{\text{Case 5, preamble}}^X(2) = (N_o + (N_o + 1)) \cdot \frac{E_{\text{case 2}}^X(1)}{N_o + 1}
\] (55)
Figure 15. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 5.

\[E_{\text{Case5},t}^X(2) = (\gamma^X \cdot t_p^X + t_d) \cdot P_t + t_a^X \cdot P_r + (u^X \cdot t_p^X + t_a^X) \cdot P_r + t_d \cdot P_t \]
\[E_{\text{Case5},r}^X(2) = (t_p^X + 2 \cdot t_d) \cdot P_r + t_a^X \cdot P_t \]
\[E_{\text{Case5},l}^X(2) = (t_l + (\gamma^X - 1) \cdot t_a^X + \frac{t_p^X + t_a^X}{2} + u^X \cdot \frac{t_p^X + t_a^X}{2} + (1 - u^X) \cdot \frac{t_p^X}{2}) \cdot P_l \]
\[E_{\text{Case5},s}^X(2) = (3t_f - (t_l + \gamma^X \cdot (t_p^X + t_a^X) + t_d)) - (u^X \cdot \frac{t_p^X + t_a^X}{2} + (1 - u^X) \cdot \frac{t_p^X + t_a^X + t_d}{2}) \cdot P_s \]

As in the previous case, the overhearer perceives a very busy channel because of the transmission of preambles; so when it wakes up it will perform half of \((t_p^X + t_a^X)\) in polling state before overhearing an entire preamble. Probability of busy channel is \(p_{\text{Case5}} = p_{\text{Case4}}\).

\[E_{\text{Case5},o}^X(2) = E_{\text{Case4},o}^X(2) \]

Case 6: Receiver wakes up as first. Similarly to Case 3, with probability \(1 - q^X\), the second sender wakes up too late and cannot catch the ACK from the receiver. Thus it goes back to sleep and will transmit its data during the next frame. This scenario happens with probability \(p_{\text{Case6}} = (N - 1)/N \cdot (1 - p) \cdot (1 - p) \cdot \frac{1}{2} \cdot (1 - q^X)\).

\[E_{\text{Case6},t}^X(2) = \gamma^X \cdot t_p^X \cdot P_t + t_a^X \cdot P_r + t_d \cdot P_t + E_t^X(1) \]
\[E_{\text{Case6},r}^X(2) = (t_p^X + t_d) \cdot P_r + t_a^X \cdot P_t + E_r^X(1) \]
\[E_{\text{Case6},l}^X(2) = (t_l + (\gamma - 1) \cdot t_a^X) \cdot P_l + t_l \cdot P_l + \frac{t_p^X + t_a^X}{2} \cdot P_l + E_l^X(1) \]
\[E_{\text{Case6},s}^X(2) = (3t_f - (t_l + \gamma^X \cdot (t_p^X + t_a^X) + t_d) + t_l + (t_p^X + t_a^X + t_d)) \cdot P_s + E_s^X(1) \]
\[E_{\text{Case6},o}^X(2) = E_{\text{Case6},o}^X(2) = 2 \cdot E_o^X(1) \]

Case 7: Second transmitter wakes up as first, it hears a part of the strobod preamble until the receiver wakes up and sends its ACK. In average, when the second transmitter wakes up, it performs a short polling whose duration is the one between two successive short preambles: \(\frac{\gamma^X + t_p^X}{2}\). After that, it hears an average number of \(\lceil \frac{\gamma^X}{2} \rceil\) short preambles before the receiver wakes up and stops the strobod preamble by sending its ACK. Probability of this scenario is \(p_{\text{Case7}} = (N - 1)/N \cdot (1 - p) \cdot (1 - p) \cdot \frac{1}{2}\).

\[E_{\text{Case7},t}^X(2) = (\gamma^X \cdot t_p^X + t_d) \cdot P_t + t_a^X \cdot P_r + (\lfloor \frac{\gamma^X}{2} \rfloor \cdot t_p^X \cdot t_a^X) \cdot P_r + t_d \cdot P_t \]
\[E_{\text{Case7},r}^X(2) = (t_p^X + t_d) \cdot P_r + t_a^X \cdot P_t + t_d \cdot P_r \]
\[E_{\text{Case7},l}^X(2) = (t_l + (\gamma - 1) \cdot t_a^X) \cdot P_l + ((\lfloor \frac{\gamma}{2} \rfloor - 1) \cdot t_a^X + \frac{t_p^X + t_a^X}{2}) \cdot P_l + \frac{t_p^X + t_a^X}{2} \cdot P_l \]
\[E_{\text{Case7},s}^X(2) = (t_l + (\gamma^X - 1) \cdot t_a^X) \cdot P_l + t_a^X \cdot P_t + t_d \cdot P_t \]
\[E_{\text{Case7},o}^X(2) = E_{\text{Case7},o}^X(2) = 2 \cdot E_o^X(1) \]
\[E_{\text{Case } 7,o}^X(2) = (3 \cdot t_f - (t_l + \gamma X \cdot (t_p + t_a) + t_d) - \left(\frac{t_p + t_a}{2} + \left[\frac{t_a}{2} \cdot (t_p^\ell + t_a^\ell) + t_d \right) - \left(\frac{t_p + t_a}{2} + t_p^X + t_a^X + 2 \cdot t_d \right) \right) \cdot P_s \]

From the overhearers point of view, this case is equivalent to Cases 4 and 5.

\[E_{\text{Case } 7,o}^X(2) = E_{\text{Case } 4,o}^X(2) \]

- Case 8: There is only one sender that sends two messages in a row during the extra back-off time. This last scenario happens with a probability equal to \(p_{\text{Case } 8} = \frac{1}{N} \).

\[E_{\text{Case } 8,o}^X(2) = E_t^X(1) + t_d \cdot P_t \]

\[E_{\text{Case } 8,r}^X(2) = E_r^X(1) + t_d \cdot P_r \]

\[E_{\text{Case } 8,l}^X(2) = E_l^X(1) - t_d \cdot P_l \]

\[E_{\text{Case } 8,s}^X(2) = E_s^X(1) - t_d \cdot P_s \]

When the sender is unique, energy consumption of the overhearers can be assumed quite the same as the one in case of a global buffer with one packet to send (\(A=1 \)).

\[E_{\text{Case } 8,o}^X(2) = E_o^X(1) \]

The overall energy cost is the sum of the costs of each scenario, weighted by the probability of the scenario to happen (as showed in the figure 11):

\[E^X(2) = \sum_{i=1}^{8} p_{\text{Case } i} \cdot E_{\text{Case } i}^X(2) \]

LA-MAC (B = 2)

When global buffer contains more than one message, there can be one or several senders. In this section we deal with the case \(A = 2 \). Energy consumption \(E^L(2) \) depends on the number of senders as well as on how wake-up are scheduled. All different combinations of wake-up instants with their probabilities are given on figure 16. With probability \((N-1)/N \) there are two senders, otherwise there is a single sender. Cases 1-7 refer to situations in which two senders are involved, whereas case 8 refers to a scenario with one sender.

- Case 1: The three agents are quasi-synchronized. The very first preamble is instantly cleared by the receiver; the second transmitter hears this preamble and the ACK. This scenario happens with a probability equal to \(p_{\text{Case } 1} = (N-1)/N \cdot p \cdot p \).
Case 2: The first transmitter and receiver are quasi-synchronized. However the second sender is not. The only possibility is for the overhearer to send a preamble during the polling of the receiver plus the probability to receive an ACK. This event happens with probability $q^L = 1/\gamma^L + (t_f - t_a)/t_f$.

$$E^L_{\text{Case1,o}}(2) = p^L_{\text{case1,A=2}} \cdot \left(\frac{t_f}{2} \cdot P_t + t_d \cdot P_re + (t_f - t_f - t_d) \cdot P_s \right) + (1 - p^L_{\text{case1,A=2}})/(t_f) \cdot (t_i \cdot P_t + (t_f - t_i) \cdot P_s)$$

Case 3: with probability $1 - q^L$, the second sender wakes up too late and cannot catch the acknowledge. In this case it will go back to sleep and it will transmit its data during the next frame.

$$E^L_{\text{Case1}(2)} = 2 \cdot E^L(1)$$
• Case 4: First and second senders are quasi-synchronized but the receiver wakes up later. In this case, the first sender will send a strobed preamble and the second will hear all the preambles until the receiver wakes up and sends the ACK.

\[
E_{Case4,t}^L(2) = E_{Case4,t}^L(1) + \gamma^L \cdot t_p^L \cdot P_r + 2 \cdot t_a^L \cdot P_r + t_g \cdot P_r + (t_p^L + t_d) \cdot P_t
\]

(93)

\[
E_{Case4,r}^L(2) = E_{Case4,r}^L(1) + (t_p^L + t_d) \cdot P_r + t_a^L \cdot P_t
\]

(94)

\[
E_{Case4,l}^L(2) = (E_{Case4,l}^L(1) - (t_p^L + t_a^L) \cdot P_l) + ((\gamma^L - 1) \cdot t_a^L + t_i^L) \cdot P_l
\]

(95)

\[
E_{Case4,s}^L(2) = E_{Case4,s}^L(1) - (t_f - (\gamma^L + 1) \cdot (t_p^L + t_a^L) - t_g - t_d - \frac{t_i^L}{2}) \cdot P_s
\]

(96)

If the receiver wakes up later than the couple of senders, the probability that an overhears wakes up during a transmission of a preamble is high. If this happens, the overhearer performs a very short polling, overhears a message (most probably a preamble) and then it goes back to sleep. For simplicity we assume that the overhearer will perform half of \((t_p^L + t_a^L)\) of polling and than overhears an entire preamble. Probability of busy channel is \(p_{Case4}^L = \gamma^L \cdot ((t_p^L + t_a^L) + (t_p^L + t_a^L) + t_g + 2 \cdot t_d)

\[
E_{Case4,o}^L(2) = p_{Case4}^L \cdot \left(\frac{t_p^L + t_a^L}{2} \cdot P_l + t_p^L \cdot P_r + (t_f - \frac{t_p^L + t_a^L}{2} - t_p^L) \cdot P_s\right) + (1 - p_{Case4}^L) \cdot (t_l \cdot P_l + (t_f - t_i) \cdot P_s)
\]

(97)

• Cases 5, 6, 7: The second transmitter and the receiver are not synchronized with the first transmitter, the behaviour of the protocol depends on which agent will wakes up as first among the second transmitter and the receiver.

– Case 5: the receiver wakes up as first, similarly to Case 2, the only possibility for it to send data in the current frame is to listen to the ACK of the receiver, during its polling. This event happens with probability \(q^L = 1/\gamma^L\).

\[
E_{Case5,t}^L(2) = E_{Case2,t}^L
\]

(98)

\[
E_{Case5,r}^L(2) = E_{Case2,r}^L
\]

(99)

\[
E_{Case5,l}^L(2) = E_{Case2,l}^L
\]

(100)

\[
E_{Case5,s}^L(2) = E_{Case2,s}^L
\]

(101)

As in the previous case, the overhearer will perceive a very busy channel because of the transmission of preambles so when it will wake up, it will perform half of \((t_p^L + t_a^L)\) in polling state and than it will overhear an entire preamble. Probability of busy channel is \(p_{Case5} = p_{Case4} = \gamma^L \cdot ((t_p^L + t_a^L) + (t_p^L + t_a^L) + t_g + 2 \cdot t_d)

\[
E_{Case5,o}^L(2) = E_{Case4,o}^L(2)
\]

(102)
Figure 19. Global buffer size A=2. Overhearing situations for Case 5. LA-MAC protocol

- Case 6: the receiver wakes up as first, similarly to Case 3, with probability \(1 - q^L\), the second sender wakes up too late and can not catch the acknowledge. In this case it will go back to sleep and it will transmit its data during the next frame.

\[
E_{\text{Case 6}}^L (2) = E_{\text{Case 3}}^L = 2 \cdot E_{\text{Case 1}}^L
\]

(103)

- Case 7: the second transmitter wakes up as first, will hear a part of the strobed preamble until the receiver wakes up and sends the ACK. In average, the second transmitter will hear \(\left\lfloor \frac{\gamma^L}{2} \right\rfloor\) preambles.

\[
E_{\text{Case 7, t}}^L (2) = E_{\text{t}}^L (1) + \left\lfloor \frac{\gamma^L}{2} \right\rfloor \cdot t_p^L \cdot P_t + 2 \cdot t_a^L \cdot P_r + (t_p^L + t_d) \cdot P_t + t_g \cdot P_r
\]

(104)

\[
E_{\text{Case 7, r}}^L (2) = E_{\text{r}}^L (1) + (t_p^L + t_d) \cdot P_t + t_a^L \cdot P_l
\]

(105)

\[
E_{\text{Case 7, l}}^L (2) = (E_{\text{l}}^L (1) - (t_p^L + t_a^L) \cdot P_l) + ((\left\lfloor \frac{\gamma^L}{2} \right\rfloor - 1) \cdot t_a^L + \frac{t_p^L + t_a^L}{2}) \cdot P_l
\]

(106)

\[
E_{\text{Case 7, s}}^L (2) = E_{\text{s}}^L (1) - (t_f - ((\left\lfloor \frac{\gamma^L}{2} \right\rfloor + 1) \cdot (t_p^L + t_a^L) - \frac{t_p^L + t_a^L}{2} - t_g - t_d) \cdot P_s
\]

(107)

From the overhearers point of view, this case is equivalent to Cases 4 and 5.

\[
E_{\text{Case 7, o}}^L (2) = E_{\text{Case 4, o}}^L (2)
\]

(108)

- Case 8: there is only one sender that will send two messages in a row.

\[
E_{\text{Case 8, t}}^L (2) = E_{\text{t}}^L (1) + t_d \cdot P_t
\]

(109)

\[
E_{\text{Case 8, r}}^L (2) = E_{\text{r}}^L (1) + t_d \cdot P_r
\]

(110)

\[
E_{\text{Case 8, l}}^L (2) = (E_{\text{l}}^L (1) - t_d \cdot P_l)
\]

(111)

\[
E_{\text{Case 8, s}}^L (2) = E_{\text{s}}^L (1) - t_d \cdot P_s
\]

(112)

When the sender is unique, overhearer consumption can be assumed the same as the case of A=1.

\[
E_{\text{Case 8, o}}^L (2) = E_{\text{o}}^L (1)
\]

(113)

The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen (as showed in the figure 11):

\[
E^L (2) = \sum_{i=1}^{8} p_{\text{Case } i} \cdot E_{\text{Case } i}^L
\]

(114)
D. Global buffer contains more than two messages ($B > 2$)

B-MAC ($B > 2$)

X-MAC ($B > 2$)

LA-MAC ($B > 2$)

V. Numerical Validation

We have implemented the analyzed MAC protocols in the OMNeT++ simulator [20] for numerical evaluation. Each numerical value is the average of 100 runs and we show the corresponding confidence intervals at 95% confidence level. We assume that devices use the CC1100 [21] radio stack with bitrate of 20Kbps. The values of power consumption for different radio states are specific to the CC1100 transceiver considering a 3V battery. In the following, we assume $N = 9$ senders. The periodical wakeup period is the same for all protocols: $t_f = t_l + t_s = 250 \text{ ms}$. Also the polling duration is the same for all protocols: $t_l = 25 \text{ ms}$, thus the duty cycle with no messages to send is 10%. We provide numerical and analytical results for buffer size $B \in [1, 50]$. We compare the protocol performance with respect to several criteria:

- **Latency [s]**: the delay between the beginning of the simulation and the instant of packet reception at the sink (we present the latency averaged over all nodes).
- **Energy Consumption [Joules]**: the averaged energy consumed by all nodes due to radio activity.
- **Delivery Ratio**: the ratio of the number of received packet by the sink to the total number of packets sent.

In Figure 20, we show the comparison between the proposed energy consumption analysis and numerical simulations for different values of the global buffer size. We assume that at the beginning of each simulation all messages to send are already buffered. Each simulation stops when the last message in the buffer is received by the sink. Figure 20 highlights the validity of the analytical expressions for energy consumption: all curves match very well. As expected, B-MAC is the most energy consuming protocol: as the buffer size increases, the transmission of a long preamble locally saturates the network resulting in high energy consumption and latency (cf. Figure 22). In X-MAC, short preambles mitigate the effect of the increasing local traffic load, thus both latency and energy consumption are reduced with respect to B-MAC. Even if X-MAC is more energy efficient than B-MAC, Figure 21 shows that even for small buffer sizes, the delivery ratio for this protocol is lower than 100% most likely because packets that are sent after the back-off collide at the receiver. LA-MAC is the most energy saving protocol and it also outperforms other protocols in terms of latency and the delivery ratio. We observe that when the instantaneous
buffer size is lower than 8 messages, the cost of the SCHEDULE message is paid in terms of a higher latency with respect to X-MAC (cf. Figure 22); however, for larger buffer sizes the cost of the SCHEDULE transmission is compensated by a high number of delivered messages. In Figure 23, we show the percentage of the time during which devices spend in each radio state versus the global buffer size. Thanks to efficient message scheduling of LA-MAC, devices sleep most of the time independently of the buffer size and all messages are delivered.

VI. CONCLUSIONS

In the present paper, we have analyzed the energy consumption of preamble sampling MAC protocols by means of a simple probabilistic modeling. The analytical results are then validated by simulations. We compare the classical MAC protocols (B-MAC and X-MAC) with LA-MAC, a method proposed in a companion paper. Our analysis highlights the energy savings achievable with LA-MAC with respect to B-MAC and X-MAC. It also shows that LA-MAC provides the best performance in the considered case of high density networks under traffic congestion.

REFERENCES

[1] “ICT-258512 EXALTED project.” [Online]. Available: http://www.ict-exalted.eu/.
[2] K. Langendoen, “Energy-Efficient Medium Access Control,” Book chapter in Medium Access Control in Wireless Networks, H. Wu and Y. Pan (editors), Nova Science Publishers, 2008.
[3] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” IEEE Infocom, pp. 1567–76, New York, NY, July 2002.
[4] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks,” In Proceedings of ACM Sensys, pp. 171–80, Los Angeles, CA, November 2003.
[5] L. van Hoesel, P. Havinga, “A lightweight medium access protocol (LMAC) for wireless sensor networks: Reducing Preamble Transmissions and Transceiver State Switches,” In Proceedings of IEEE INSS, Tokyo, Japan 2004.
[6] G. Lu, B. Krishnamachari, and C. Raghavendra, “An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks,” in Proc. of 18th IEEE IPDPS, 2004, p. 224.
[7] V. Rajendran, J. J. Garcia-Luna-Aceves, and K. Obraczka, “Energy-Efficient, Application-Aware Medium Access for Sensor Networks,” IEEE MASS, 2005.
[8] A. El-Hoiydi, “Aloha with Preamble Sampling for Sporadic Traffic in Ad Hoc Wireless Sensor Networks,” IEEE ICC, New York, NY, USA, April 2002.
[9] E-Y. Lin, J. Rabaey, A. Wolisz, “Power-Efficient Rendez-vous Schemes for Dense Wireless Sensor Networks,” In Proceedings of IEEE ICC, Paris, France, June 2004.
[10] J. Polastre, J. Hill and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” In Proceedings of ACM SenSys, 2004.
[11] M. Avvenuti, P. Corsini, P. Masci, and A. Vecchio, “Increasing the efficiency of preamble sampling protocols for wireless sensor networks,” in Proc. of the First Mobile Computing and Wireless Communication International Conference, MCWC, 2006, pp. 117–122.
[12] S. Mahlknecht and M. Boeck, “CSMA-MPS: A Minimum Preamble Sampling MAC Protocol for Low Power Wireless Sensor Networks,” In Proceedings of IEEE Workshop on Factory Communication Systems, Vienna, Austria, September 2004.
Figure 22. Average latency versus the global buffer size.

Figure 23. Percentage of the time spent in each radio state versus the global buffer size.

[13] M. Buettner et al., “X-MAC: A Short Preamble MAC Protocol For Duty-Cycled Wireless Networks,” In Proceedings of ACM SenSys, Boulder, CO, November 2006.

[14] R. Kuntz, A. Gallais, and T. Noel, “Auto-adaptive mac for energy-efficient burst transmissions in wireless sensor networks,” in Wireless Communications and Networking Conference (WCNC), 2011 IEEE. IEEE, pp. 233–238.
[15] G. Corbellini, E. Calvanese Strinati, E. Ben Hamida, and A. Duda, “DA-MAC: Density Aware MAC for Dynamic Wireless Sensor Networks,” in *Proceedings of 22nd IEEE International Symposium on PIMRC, Toronto, Canada*, September 2011.

[16] C. Enz, A. El-Hoiydi, J. Decotignie, V. Peiris., “WiseNET: An Ultralow-Power Wireless Sensor Network Solution,” *IEEE Computer*, vol. 37, no. 8, pp. 62–70, August 2004.

[17] W. Ye, F. Silva and J. Heidemann, “Ultra-Low Duty Cycle MAC with Scheduled Channel Polling,” *ACM SenSys*, Boulder, CO, USA, November 2006.

[18] G. Corbellini, E. Calvanese Strinati, and A. Duda, “LA-MAC: Low-Latency Asynchronous MAC for Wireless Sensor Networks,” in *submitted for publication*.

[19] C. Wan, S. Eisenman, A. Campbell, and J. Crowcroft, “Siphon: overload traffic management using multi-radio virtual sinks in sensor networks,” in *Proceedings of the 3rd international conference on Embedded networked sensor systems*. ACM, 2005, pp. 116–129.

[20] “OMNeT++ Discrete Event Simulator.” [Online]. Available: http://www.omnetpp.org.

[21] “Texas Instruments, CC1100 datasheet.” [Online]. Available: http://focus.ti.com/docs/prod/folders/print/cc1100.html.