Network Medicine: A Clinical Approach for Precision Medicine and Personalized Therapy in Coronary Heart Disease

Teresa Infante¹, Luca Del Viscovo², Maria Luisa De Rimini³, Sergio Padula⁴, Pio Caso⁴ and Claudio Napoli⁵,⁶

¹ Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
² Department of Precision Medicine, Section of Diagnostic Imaging, University of Campania “Luigi Vanvitelli”, Naples, Italy
³ Unit of Nuclear Medicine, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
⁴ Department of Cardiology, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
⁵ Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
⁶ IRCCS SDN, Naples, Italy

Early identification of coronary atherosclerotic pathogenic mechanisms is useful for predicting the risk of coronary heart disease (CHD) and future cardiac events. Epigenome changes may clarify a significant fraction of this “missing hereditability”, thus offering novel potential biomarkers for prevention and care of CHD. The rapidly growing disciplines of systems biology and network science are now poised to meet the fields of precision medicine and personalized therapy. Network medicine integrates standard clinical recording and non-invasive, advanced cardiac imaging tools with epigenetics into deep learning for in-depth CHD molecular phenotyping. This approach could potentially explore developing novel drugs from natural compounds (i.e. polyphenols, folic acid) and repurposing current drugs, such as statins and metformin. Several clinical trials have exploited epigenetic tags and epigenetic sensitive drugs both in primary and secondary prevention. Due to their stability in plasma and easiness of detection, many ongoing clinical trials are focused on the evaluation of circulating miRNAs (e.g. miR-8059 and miR-320a) in blood, in association with imaging parameters such as coronary calcifications and stenosis degree detected by coronary computed tomography angiography (CCTA), or functional parameters provided by FFR/CT and PET/CT. Although epigenetic modifications have also been prioritized through network based approaches, the whole set of molecular interactions (interactome) in CHD is still under investigation for primary prevention strategies.

Key words: Coronary heart disease, Cardiac imaging, Network medicine, Primary and secondary prevention, Precision medicine

Introduction

Coronary heart disease (CHD) represents a relevant issue for the public health system¹. In spite of, substantial progress in elucidating genetic and environmental risk factors for CHD, these determinants can explain a part of overall risk, whereas changes in the epigenome may clarify a significant fraction of this “missing hereditability”, thus offering novel potential biomarkers for prevention of CHD²-⁶. Atherogenic process begins early in human life and it is influenced by maternal risk factors⁷-⁹ which include epigenetic events¹⁰,¹¹. In the era of next generation sequencing, the development of a plethora of high-throughput platforms has provided significant impact concerning the knowledge of CHD molecular characterization generating big “omics” data sets¹²-¹⁴. Furthermore, several non-invasive imaging techniques have been developed over the last few years to detect CHD with the aim to guide optimal patient management, such as coronary computed tomography angiography (CCTA), cardiac magnetic resonance (CMR), and nuclear medicine technique positron emission tomography (PET)¹⁵. These advances have raised challenges...
to individualize/focus treatments and develop new diagnostic tools, useful in primary prevention, and in subjects in early stages of disease, as well as for secondary prevention6, 16).

Complex diseases and traits, such as cardiovascular risk factor susceptibility and CHD, are caused by perturbations of biological networks. The network medicine approach, integrating big omics, imaging data, and clinical information, aims to identify pathological interacting genes and proteins, revolutionizing disease knowledge and shifting the understanding of pathogenic phenomena from a reductionist to a holistic approach17-19). Currently, epigenetics, combined with the innovative system biology approach, is useful for personalized CHD therapy20-22). Furthermore, unlike DNA variations, epigenetic modifications are, potentially, pharmacologically reversible23, 24). The aim of this review is to discuss the network medicine tools that could reveal new candidate genes to translate into clinical practice as diagnostic, prognostic, and predictive biomarkers, which could shed new light into CHD clinical settings and susceptibility to cardiovascular risk factors.

We performed electronic searches in three different electronic databases, including PubMed, Google Scholar, and Web of Science, selecting studies in English between 2013 and 2019 and reporting the association between CHD and its risk factors into network based models, as well as epigenetic-sensitive CHD mechanisms. The search syntax considered terms related to CHD combined with the terms cardiac imaging, system biology, epigenetics, gene expression, network medicine, network pharmacology, drug repurposing, primary and secondary prevention, precision medicine, and personalized therapy. Concerning network-based studies, the search provided five original genetic studies associated to cardiovascular risk factors, ten network based genomic studies for primary prevention of CHD, and four network pharmacology analyses associated with CHD with a possible impact for personalized therapy. Two epigenetic network models identified regulatory pathways and key epigenetic and genetic regulators in CHD and familial hypercholesterolemia.

Cardiac Imaging for CHD Diagnosis and Risk Prediction

The first step in primary prevention of CHD represents non-invasive anatomical evaluation of the coronary tree. Then, the concept of primary prevention should be revisited in regard to recent scientific achievements and the best advances in diagnostic imaging techniques. Minimizing the incidence of major cardiac events, in the absence of clinically evident underlying obstructive CHD, should be the goal. Several non-invasive imaging techniques have been developed to rule out and/or detect CHD for optimal patient management. Among them, CTCA, which has a higher spatial resolution, provides a direct evaluation and quantification of coronary artery alteration, while CMR and nuclear medicine technique positron emission tomography (PET) provide indirect CHD information, estimating myocardial perfusion and metabolism alterations, thus representing useful tools for evaluating CHD in secondary prevention15). Furthermore, emerging hybrid imaging techniques in the field of cardiovascular medicine, such as PET/CT and PET/MR, provide simultaneous morphological and functional parameters15).

Carotid Ultrasound Imaging

Carotid artery ultrasound remains a reliable tool in the current armamentarium of diagnostic modalities used to assess atherosclerosis and quantify the degree of arterial injury at an early stage. The procedure has undergone considerable technological upgrades thanks to the introduction of more powerful probes, new color flow, and 3D imaging techniques16, 25). Its great advantage is that it can be used in a broad range of populations, such as children and adolescents, where the use of ionizing radiation is not recommended or there may be a low compliance to perform lengthy tests30). Carotid intima-media thickness (IMT) is strongly associated with risk factors for atherosclerotic vascular disease and is an independent predictor of future cardiovascular events, thus providing a better risk reclassification26, 27). Based on this evidence, the test is a recommended clinical tool to assess risk prediction in a wide population of subjects27) (Fig. 1A and 1B).

CTCA

CCTA evolved not only to reduce radiation exposure, but also to optimize image acquisition, achieving more spatial and contrast resolution28-31). The real revolution for non-invasive anatomical evaluation of the coronary tree has been achieved only recently, with the introduction of “fourth generation” wide-volume scanners, with up to 16 cm of cranial-caudal coverage in a single rotation, enabling whole-heart coverage at one acquisition time point (within one heartbeat or volume). It eliminates “stair-step” or misalignment artifacts and provides uniform attenuation when evaluating the coronary arteries or measuring contrast attenuation gradients across atherosclerotic lesions29). Furthermore, radiation doses are lower with wide-area detector scanners because of shorter
require at least three, or even four, cardiac cycles to image the whole coronary tree, which could lead to "misalignment" artifacts deriving from the frequent, even minimal, variability of the RR interval. Unless we assume a perfectly constant RR interval (which is not the rule), it is essential to program the data acquisition during a sufficiently extended diastolic period, with a consequent increase in exposure, in order to post-process each coronary artery position shift34).

Since almost cardiac CT systems have now settled down, with rotation speeds ranging from 250 to 280 ms, detector width became discriminant, and it would scanning times and lower redundant radiation from either overlapping sequential axial scans or helical oversampling.

Effectively, “temporal resolution” is one of the objectives32, 33). One solution proposed to improve data sampling time, and then temporal resolution, during CCTA acquisition is based on using two x-ray tubes, shifted 90° toward each other33). Theoretically, this technology, based on acquisition of two different heart views at the same time, could lead to a halving of temporal resolution, but the true limit of this technology lies in detector size. It is so small that it would
be as large as possible to allow the study of the entire cardiac area in the smallest number of heart cycles35.

In addition, the total iodinated contrast material volume can be decreased to as low as 40 mL at 5 mL/sec in patients with normal cardiac output. This new generation of scanners combines the almost complete absence of beam hardening artifacts or from slices misalignment, with a high spatial and contrastographic resolution36 (Fig. 1C, 1D and Supplementary Fig. 1A).

Several studies have investigated the relationship between coronary artery stenosis severity and ischemia. The COURAGE sub-study showed that, among patients with coronary artery stenosis \geq 70%, only 32% of patients had severe ischemia, and 40% had negligible ischemia by myocardial perfusion37. In addition, Tonino \textit{et al.} pointed out that 20% of lesions with \geq 70% stenosis did not produce ischemia, and 17% of lesions with 50% stenosis caused ischemia38. Recently, software for computing DICOM data, obtained with the latest generation of CT scanners, has been developed to evaluate, in a non-invasive way, the fractional flow reserve (FFR\textsubscript{ct}) and the functional impact of stenosis on blood flow all along the vessel; values of FFR\textsubscript{ct} below 0.8 are considered expression of critical hypoperfusion39 (Fig. 1C). The next goals are characterizing atherosclerotic plaque and predicting plaque instability. The latest generation CT scanner can acquire images at two different energies, 80 and 140 kVp, and perform dual energy computed tomography to characterize plaque elements by their CT attenuation profiles, which allows differentiation between lipids, fibrous and calcification40. In primary prevention settings, an important parameter detected by CTCA recently gained importance. Indeed, in the 2018 update of ACC/AHA cholesterol guidelines, coronary artery calcium (CAC) scoring was assumed to be a valuable strategy to reclassify CV risk and begin statin treatment41.

CMR

CMR is considered the gold standard imaging modality for evaluating myocardial function and perfusion and detecting myocardial scars without exposing the patient to ionizing radiation42, 43. Indeed, CMR provides accurate mapping of myocardial edema, fibrosis, and necrosis in follow up and prognostic assessment. With recent hardware and software improvements, first-pass perfusion imaging, using CMR, has emerged as an attractive alternative to single photon emission computed tomography myocardial perfusion imaging (MPI) for CHD detection44. Perfusion is determined by the first pass of a gadolinium-based contrast agent: regions that are hypoperfused have a slower uptake and lower gadolinium concentration, appearing as hypointense perfusion defects. In a later evaluation, rapid cellular metabolism of cardiomyocytes produces an early dismissal of intracellular gadolinium highlighting as strongly hyperintense, metabolically slowed down, fibrotic/necrotic tissue42 (Fig. 1E and 1F).

Perfusion CMR superior diagnostic performance, versus single photon emission computed tomography MPI, has been studied in multiple clinical trials, such as the CE-MARC study44. Furthermore, perfusion CMR imaging can resolve the differences in myocardial perfusion between subepicardial and subendocardial layers for its high spatial resolution ranging from 1.2 to 3 mm. This information is clinically relevant because the subendocardium is the most susceptible layer to ischemia and typically the earliest affected. In addition to myocardial perfusion, CMR global and regional systolic LV function can also be obtained, overcoming objective difficulties of a correct and reproducible ultrasound approach, which is strongly affected by the patient habitus. CMR has been also applied to anatomical coronary visualization. Combined with the development of three dimensional acquisition techniques, superior visualization of coronary anatomy was achieved. Nevertheless, CMR still remains limited in the visualization of distal coronary segments due to inferior spatial resolution45. Research in this field could focus on plaque composition assessment as well as coronary flow to provide a comprehensive evaluation of the presence, extent, and functional significance of CHD46.

Cardiac PET

Cardiac PET is useful for perfusion, functional evaluation, and assessment of myocardial viability with high sensitivity and high negative predictive value in the diagnosis of CHD and cardiomyopathies47. PET is more accurate than SPECT for diagnosing obstructive CHD and quantifying global and regional myocardial blood flow (MBF) and myocardial flow reserve (MFR)48. \(^{18}\)F-FDG is mostly used for metabolic evaluation of myocardial viability (Supplementary Fig. 1B) and is considered the most sensitive modality for predicting left ventricular functional recovery post-coronary revascularization. Moreover, it may help assess plaque metabolism in atherosclerosis, allowing prediction of vascular risk inflammation (Supplementary Fig. 1B) and unstable plaques49. PET has high spatial and temporal resolution, allowing the acquisition of dynamic sequences obtained on first-pass extraction at the time of radionuclide infusion to quantify resting and hyperemic regional MBF50 (Fig. 1G and 1H).
The advent of hybrid imaging overcomes the limitations and drawbacks of standalone modalities, providing both functional and morphological information. Thus, integrated PET/CT and PET/MR systems have huge potential for cardiac imaging assessment. The incremental value of multimodality imaging lies in accurate spatial co-localization of myocardial perfusion defects and anatomic coronary arteries (Fig. 1I and 1J). This combined technology allows detection and quantification of the burden of calcified and non-calcified plaques, quantification of vascular activity and endothelial function, identification of flow-limiting coronary stenosis, and, potentially, identification of high-risk plaques (Fig. 1K, 1L and 1M). PET/CT is today well established in clinical routine imaging (51). PET/MR represents a new integrated protocol for simultaneous evaluation of viability, perfusion, morphological and functional imaging, thus eliminating ionizing radiation and improving tissue contrast (52). At present, 18F-FDG PET/MRI is potentially a very promising evaluation technique for in vivo imaging of systemic atherosclerosis-related inflammation (52).

The selective reorganization of vulnerable atherosclerotic lesions represents a major task in cardiovascular research. 18F-FDG could be used as an inflammation radiotracer in atheroma to identify sites of active inflammation and to predict future thrombotic effects (53). 18F-FDG PET is a marker of vascular inflammation in large vessels, which is helpful for selecting patients who can benefit from new therapies. Similarly, Gallium-68, labelled DOTATATE, targets the somatostatin receptor subtype 2 (SSTR2) found on the surface of macrophages. Pre-clinical studies have confirmed 68Ga-DOTATATE’s superiority over FDG in terms of macrophage specificity in atherosclerotic inflammation and in discriminating between unstable and stable coronary plaques (54). 18F-fluorocholine (18F-FCH), a PET tracer with potential anti-inflammatory affinity, shows a strong association between large vessel uptake and atherosclerotic changes in the arterial walls, with an apparent inverse relationship with calcification (54).

Also of growing interest is the use of other radio tracers for functional imaging of the atherosclerotic plaques, such as 11C-PK11195 (55), or tracers of molecular calcification, such as Sodium Fluoride (18F-NaF), and hypoxia radiotracers, such as 18Fluoromisonidazole (FMISO) (56), both to evaluate intra-plaque calcification and to discriminate between stable and unstable plaques.

The evolution of atherosclerosis and the emergence of new technologies to measure the vulnerability of atherosclerotic plaque allow non-invasive visualization of biochemical processes and provide a new molecular imaging pattern in atherosclerosis pathophysiology. At present, the results appear encouraging and may have a wide impact on personalized medicine, allowing an early diagnosis and foreseeing the response to new targeted treatments (57).

Next, we discuss the most important consortia and clinical networks, including imaging data extracted from the aforementioned techniques.

Cardiovascular Consortia for Precision Medicine Implementation

Since 1948, beginning with the Framingham Heart Study, several consortia have been set up to improve and harmonize clinical studies for primary and secondary prevention. Integral parts of consortia are represented by biobanks storing biological samples or completed patient genotyping and clinical information, thus providing new possibilities in the context of personalized medicine (58).

By 2002, the possibility of linking data collected in childhood through adulthood to future cardiac events became a realistic focus with the organization of the International Childhood Cardiovascular Cohort (i3C) Consortium, collecting data from over 40,000 children and adolescents and providing three key research areas: 1) follow-up of CV morbidity and mortality; 2) genetic data collection and analysis; and 3) repeated assessment of non-invasive vascular measures (e.g. carotid IMT). Furthermore, several consortia for risk prediction in adulthood have been organized. CARDioGRAMplusC4D (Coronary ARtery Disease Genome wide Replication and Meta-analysis (CARDioGRAM) plus The Coronary Artery Disease (C4D) Genetics) consortium combines omics data from multiple large studies to identify risk loci for CHD and MI.

Wellcome Trust Case Control Consortium (WTCCC), Cardiogenics, and CVgenes@target consortia collected adult individuals with CHD and, in association with risk factors, performed case-control genome wide association studies (GWASs) or identified several genetic loci affecting the risk of CHD development, thus representing attractive targets for therapeutic intervention.

The UK Biobank is a prospective cohort study with deep genetic, imaging, and clinical data, along with serum metabolic profiles and biospecimens collected from about 500,000 individuals (40-69 years) in the UK during 2006-2010. One of the most promising aims of both the UK Biobank and the CVgenes@target Consortium is the application of network approach and machine learning.
Multicentre consortia were also instituted for the genetic determination of cardiovascular risk factors. The Global Lipids Genetics Consortium covers several cohort studies aimed at understanding the genetic etiology of quantitative lipid traits in age groups, starting from young adults up to the elderly. Furthermore, the International Consortium for Blood Pressure (ICBP) focuses on the genetics of blood pressure dysfunction, thus providing potential novel therapeutic pathways for CVD prevention. The Genetic Investigation of ANthropometric Traits consortium ultimately contributes to understanding the genetics of obesity onset.

The European Research Infrastructure for Imaging Technologies in Biological and Biomedical Sciences (Euro-BioImaging or EuBI) provides physical user access to a wide range of technologies in biological and biomedical imaging. A biobank service is also available, providing different types of biological materials (DNA, RNA, proteins). The Advanced Cardiovascular Imaging Consortium is a program involving the collection of data related to CCTA scans patient and clinical features. The Cardiac Atlas Project is an open source, freely available, large-scale database of CMR examinations associated with clinical data in order to develop a structural and functional atlas for clinical research. In particular, the MESA (Multi-Ethnic Study of Atherosclerosis) is a large-scale, cardiovascular study population aiming to investigate the manifestation of subclinical to clinical CHD before symptoms onset. The PowerShare Network shares medical images and patient data for artificial intelligence applications.

Cohort studies investigating cardiovascular phenotypes over time provides the opportunity to implement secondary prevention strategies. Indeed, the GENeTics of sUbSequent Coronary Heart Disease (GENIUS-CHD) is an international consortium collecting patients with known CHD, at baseline and prospective follow up, for cardiac acute events as well as biological samples/DNA or completed genotyping. Furthermore, the Myocardial Infarction Genetics Consortium (MIGen) was instituted to study the genetics of early onset MI (men < 50 and women < 60) (Table 1).

Network Medicine in CHD Characterization and Cardiovascular Risk Factor Susceptibility

Network Medicine Workflow

The evolution of precision medicine is now the concept of “network medicine”. The term was coined in 1999 by Barabasi\(^{59}\), who proposed that the biology of living organisms can be studied in a complex of nodes, and edges between nodes, that lead to the formation of the interactome, or the whole set of molecular interactions in cells\(^{60}\). The network approach central focus is on exploiting the complexity of gene regulation, metabolic reactions, and protein-protein interactions (PPIs), which synergistically interact each other\(^{60}\). By integrating electronic health records, omics data, and imaging techniques, network medicine aims to provide specific roadmaps for understanding CHD causes and mechanisms and establishing tailored treatments and preventive strategies. Indeed, the main goal is to establish a precision medicine approach by focusing on the intermediate phenotypes (endophenotypes), which may identify risk factors, provide early detection, predict clinical outcomes, and provide innovative drug targets (Fig. 2 and Fig. 3). Clustering and machine learning algorithms are used to integrate data in a multi-level analysis, aiming to build complex molecular networks\(^{61, 62}\). Networks are composed of nodes, represented by biological factors such as proteins (protein-protein networks), genes (co-expression networks), metabolites, and epigenetic hallmarks (regulatory networks), and edges depicting their relationship such as physical interactions, common metabolic pathways, and shared genes\(^{63}\).

Network Based Approach and Cardiovascular Risk Factors

Hypertension pathophysiology is characterized by a complex interplay between genes and environmental factors\(^{64}\). Network approaches were also applied to detect novel candidate genes involved in blood pressure (BP) regulation and hypertension\(^{55}\). Huan et al. performed a co-expression network analysis, identifying 34 genes responsible of BP variation. To further assess molecular key driver genes in BP regulation, weighted correlation network analysis (WCGNA) was used to build co-expression networks and sub-networks, in which the SH2B2B adaptor protein 3 (SH2B3) resulted in a connector gene in the different sub-networks, representing a novel target for prevention or treatment of hypertension\(^{55}\).

Similar to hypertension, hypercholesterolemia is a quantitative trait controlled by the interactions among several quantitative trait loci and environmental factors\(^{60}\). Network studies were focused on Familial Hypercholesterolaemia (FH). WCGNA identified a triglyceride-associated co-expression module enriched for genes involved in lipid metabolic processes where an hub gene was fatty acid desaturase 3 (FADS3), classified as a new gene for FCHL disease risk\(^{57}\). Another study investigated co-expressed gene networks that are potentially involved in FH development by integrating GEO microarray datasets and
Consortium	Description	URL
PRIMARY PREVENTION		
International Childhood Cardiovascular Cohort (i3C)	Cohorts of children and adolescents in follow up for CVD morbidity and mortality	https://www.i3cconsortium.org/index.html
CARDIoGRAMplusC4D	Combination of data from multiple large scale genetic studies to identify risk loci for CHD	http://www.cardiogramplusc4d.org/
Wellcome Trust Case Control (WTCCC)	Collection of GWASs to shed light on the genetic architecture of human diseases	https://www.wtccc.org.uk/
Cardiogenics	Collection of GWASs on cardiovascular disorders	https://www.cardiogenics.org/web/
CVgenes@target	European collaboration to investigate genomic variants affecting atherosclerosis risk for identification of underlying genes and involved pathways	http://cvgenesattarget.eu/
Uk Biobank	Large prospective study with deep genetic, imaging and health related data with the aim of improving the prevention, diagnosis and treatment of a wide range of illness such as CHD	https://biobank.ctsu.ox.ac.uk/
Global Lipids Genetics (GLGC)	World-wide collaboration to understand the genetic etiology of quantitative lipid traits	http://lipidgenetics.org/
International Consortium for Blood Pressure (ICBP)	Collection of GWASs focused on the genetics blood pressure dysfunction	http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000585.v1.p1
Genetic Investigation of ANthropometric Traits (GIANT)	International collaboration seeking to identify genetic loci that modulate human body size and shape, including obesity	https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium&oldid=251
European Research Infrastructure for Imaging Technologies in Biological and Biomedical Sciences (Euro-BioImaging)	Open access to a broad range of technologies in biomedical imaging such as CT, MR, PET, coupled also to biobank data	http://www.eurobioimaging.eu/
Advanced Cardiovascular Imaging Consortium (ACIC)	Clinical program collecting CCTA scans and patient characteristics aimed to reduce cost and improve safety and efficiency in patient care	https://clinicaltrials.gov/ct2/show/NCT00640068
Cardiac Atlas Project (CAP)	Large-scale database of cardiac MR examinations and associated clinical data structural and functional of the normal heart and cardiac diseases	http://www.cardiacatlas.org/
PowerShare Network	Highly scalable cloud-based platform that enables the secure access and exchange of images and patient data	https://www.nuance.com/healthcare/medical-imaging/powershare-network.html
SECONDARY PREVENTION		
CARDIoGRAMplusC4D	Combination of data from multiple large scale genetic studies to identify risk loci for MI	http://www.cardiogramplusc4d.org/
GENetIcs of sUbSequent Coronary Heart Disease (GENIUS-CHD)	Clinical cohorts of patients with established CHD with biological sample repository and longitudinal follow up for subsequent events	http://www.genius-chd.com/
Myocardial Infarction Genetics (MIGen)	Combination of data from multiple large scale genetic studies to identify risk loci related to early MI	http://www.kathiresanlab.org/collaborators/myocardial-infarction-genetics-exome-sequencing-consortium/

CCTA: coronary computed tomography angiography; CHD: coronary heart disease; CT: computed tomography; CVD: cardiovascular disease; GWAS: genome-wide association study; MI: myocardial infarction; MR: magnetic resonance; PET: positron emission tomography.
Fig. 2. Nodes, edges and molecular network analysis

The picture shows basic network analysis principles. The blue circles represent genes or their products (nodes) that are topologically related in the human interactome. Each pair of nodes is linked (edges) when a physical or functional interaction occurs between them. The red circles represent the seed genes arising from GWASs, OMIM, and literature, which are clustered in the interactome, as a starting point for a molecular network analysis. By using network-oriented algorithms, it is possible to identify a specific disease module, revealing novel molecular pathways underlying disease. The validation of these bioinformatic findings in animal and cell-based models could provide novel useful biomarkers and/or drug targets to improve precision medicine and personalized therapy.

Fig. 3. Workflow of network medicine approach in CHD characterization and cardiovascular risk factor susceptibility

Individuals may have a similar clinical cardiovascular phenotype but a distinct molecular disease profile. Using a network approach, patients undergo deep phenotyping with data analysis, thus improving precision cardiology. The first step is collecting multiomics and imaging big data on CHD and cardiovascular risk factor studies from available repositories, consortia, and cohort studies, and integrating them to build different types of networks. Machine learning methods and statistical approaches are then applied to obtain the interactome by identifying disease modules and hub nodes at individual level. Functional analysis leads to identification of new disease genes and pathways. The next step is validation of network findings in cell-based models, small and large animal models and in clinical trials. This analytic strategy clusters individuals into groups that are different from those based on clinical phenotypes, allowing a deep CHD phenotyping and personalized risk stratification and improving the identification of disease biomarkers, the prediction and prognosis, and optimize primary prevention.
functional pathways of leukocyte subsets from FH patients and healthy individuals. A total of 4,232 co-expressed relationships were identified in patients showing dysregulation in lipoprotein and cholesterol metabolism as well as neurotrophin signaling (SNARE proteins), MAPK pathways, and endocytosis processes, suggesting an altered transport of low-density lipoprotein receptor (LDLR) across membrane.

Beyond environmental and lifestyle factors, obesity is highly influenced by genetics at multiple loci (polygenic), considering this condition is an inherited trait. Kogelman and colleagues performed a network-based approach study on obesity, building inter-tissue gene co-expression networks between healthy and obese adult subjects from the whole genome expression profiles of four tissues (liver, muscle, subcutaneous and visceral adipose tissues). Weighted gene co-expression network analysis (WGCNA) showed that IL-6 and IL1B genes were differentially co-expressed across tissues in obese patients compared to non-obese individuals. Furthermore, an eQTL mapping approach, used to detect genes influencing mRNA levels, led to the identification of PTPRE, IL-6R, and SLC6A5 genes with a putative key role in obesity risk (Table 2).

Network Based Approach for Primary Prevention of CHD

The network approach modularity has also been applied for CHD, opening new perspectives in understanding pathogenic mechanisms aimed at promoting predictive disease models and primary prevention strategies. Furthermore, several investigations of network medicine have been used as a starting point for obtaining clinical and biological information from consortia and cohort studies. Oguz et al. identified a molecular network predictive of advanced coronary calcium in CHD, using genotype data from middle-aged male patients of the ClinSeq® and Framingham Heart studies. The GeneMANIA algorithm was used to create a functional network associated to “vascular aging” functional pathways and significantly related to high levels of calcium score, thus providing a robust predictive model.

Several co-expression network analyses were performed to identify key modules and hub genes in CHD. Microarray data from patients and controls were downloaded from GEO database. WGCNA identified 21 modules and 30 hub genes in CHD associated to membrane biological processes cellular components, and pathway included in hypertrophic cardiomyopathy. Moreover, hub genes, which provided glucose-6-phosphate dehydrogenase (GDPD) and S100 calcium binding protein A7A (S100A70) as key driver genes, suggesting a potential role for target in CHD.

Furthermore, Mäkinen et al. integrated 14 GWASs, including patients and controls of the CARDIoGRAM Consortium, with tissue gene expression studies of CHD. WGCNA and Bayesian network models revealed specific CHD-associated networks for lipid metabolism, coagulation and immunity. A gene network involved in antigen processing was strongly associated with CHD in which glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPII) were identified as key driver genes. Results were also validated in human aortic endothelial cells. Huan et al. performed an integrated system biology analysis by constructing co-expression networks in whole blood gene expression profiles from 188 CHD cases and 188 controls, leading to the identification of 24 co-expression modules. Computational analysis using Key Driver Analysis algorithm indicated TNFRSF13C and EBF1 as key driver genes.

PPI networks were also investigated in the CHD setting. Li et al. selected a set of 266 CHD disease genes as initial seed genes and protein data (Fig. 2). PPI network analysis provided 10 separate networks, and a CHD specific network was distributed into 14 modules and 114 hub genes. The GO enrichment and KEGG pathway revealed novel functional pathways, such as the androgen receptor signaling pathway, neuropptide hormone activity, peptide YY receptor activity, NOD-like receptor signaling pathway, and RIG-I-like receptor signaling pathway, thus providing new pathogenic mechanisms in CHD. Duan et al. proposed an integrated GWAS network analysis combining GWAS genotyping dataset from WTCCC, PPI database and pathway annotation information. Using GIN software, molecular data were organized into specific networks characterized by four modules. Mitogen-Activated Protein Kinase 10 (MAPK10) and Collagen Type IV Alpha 2 Chain (COL4A2) emerged as significant genes, providing novel clues for clarifying CHD pathogenesis.

Recently, Wang and Loscalzo developed a novel network based algorithm, called the Seed Connector algorithm (SCA), to discover disease modules. Computational analysis identified a CHD network module with 88 proteins and 111 interactions comprising physiological pathways related to genetic loci associated with CHD such as LDL cholesterol and lipoproteins, triglyceride-rich lipoproteins, inflammation molecules, cellular proliferation, and vascular and vascular tone and nitric oxide signaling. GO annotation evidenced 28 seed connectors (Fig. 2), 18 of which were associated with the cardiovascular system, confirmed the key functional role of seed connectors.
3 CVD-related modules. Authors identified several hub SNPs related to CHD and the presence of cardiovascular risk factors, such as BP, body mass index, and HDL-C LDL-C, and triglycerides. The integration of gene expression data to the SNP modules showed a

Table 2. Network based studies associated to cardiovascular risk factors and network pharmacology studies for primary prevention of CHD

Big data source	Computational method	Results	Reference
FHS (SNPs); Microarrays; GO	WGCNA; BN algorithm	Identification of SH2B3 as a key driver gene in blood pressure regulation	65
Microarrays; DAVID	WGCNA	Identification of FADS3 as a candidate hub gene for FCHL	67
GEO; DAVID; KEGG	PCC analysis	Identification of dysfunctional network in FH patients involving SNARE proteins, MAPK pathways and endocytosis processes	68
GEO; TRANSFAC; TRED; HMDD; miR2Disease; starBase; miRecords; TarBase; KEGG	Interaction analysis	Identification of a key role of SP1, STAT1, SFFV and SPI1 genes in FH pathological mechanisms; significant association of USF2 and WAS genes with FH	90
SNPs, Microarrays, GOAmiGO2; KEGG	WGCNA	Differential co-expression of IL-6 and IL1B in tissues of obese patients; identification of PTPRE, IL-6R, and SLC6A5 as key genes in insulin-related pathways	70

Personalized therapy

Big data source	Computational method	Results	Reference
1000 Genomes project; STAGE study (SNPs); ConsensusPathDB; AmiGO 2; DGIdb	Girvan-Newman algorithm	Identification in CHD module of several kinases and GPCR genes for which drug already existed or target drugs in development	94
IntAct; MINT; TRANSFAC; GO; DrugBank; PharmGKB; TTD	SCA algorithm	Identification of NRP1 as seed connector targeted by Pegaptanib (DB04895)	78
HPRD; PhosphositePlus; Phospho.ELM; BioGRID; MINT; IntAct; DisGeNET; GWAS Catalog; GWASdb; DrugBank; PharmGKB; TTD	Reference distance distribution	Hydroxychloroquine was significantly associated with a reduced risk of CHD	21
OMIM; DisGeNe; GWAS Catalog; HGMD; HPRD; PhosphositePlus; Phospho.ELM; BioGRID; MINT; IntAct; DrugCentral database	Permutation testing	Identification of several approved drugs (fasudil, parecoxib, dexamethasone) or natural products (resveratrol, luteolin, daidzein, caffeic acid) as novel drug targets in CHD	96

BioGRID: Biological General Repository for Interaction Datasets; BN: Bayesian network; BP: blood pressure; FADS3: fatty acid desaturase 3; CHD: Coronary heart disease; DGIdb: Drug Gene Interaction Database; FH: Familial Hypercholesterolemia; FHCL: Familial Combined Hyperlipidemia; FHS: Framingham Heart Study; GEO: Gene Expression Omnibus; GO: Gene ontology; GPCR: G protein-coupled receptors; GWAS: genome wide association study; HMDD: Human MicroRNA and Disease Database; HPRD: Protein Reference Database; IL1B: Interleukin 1 beta; IL-6: Interleukin-6; IL-6R: Interleukin-6 receptor; IntAct: protein Interaction database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAPK: mitogen-activated protein kinase; MINT: Molecular INT eraction database; NRP1: Neuruphin 1; OMIM: Online Mendelian Inheritance in Man; PCC: Pearson correlation coefficient; PharmGKB: Pharmacogenomics Knowledge Base; PTPRE: Receptor-type tyrosine-protein phosphatase epsilon; SFFV: spleen focus forming virus; SH2B3: SH2B3 adapter protein 3; SLC6A5: Solute Carrier Family 6 Member 5; SNARE: Soluble NSF Attachment; SNP: Single Nucleotide Polymorphism; SP1: specificity protein 1; SPI1: proviral integration oncogene spi1; STAGE: Stockholm Atherosclerosis Gene Expression; STAT1: signal transducer and activator of transcription 1; TRANSFAC: TRANSCRIPTION FACTor; TRED: Transcriptional Regulatory Element Database; TTD: Therapeutic Target Database; USF2: upstream transcription factor 2; WAS: Wiskott-Aldrich Syndrome.

in CHD characterization. Through multidimensional big data (GWASs, SNPs and gene expression) from the Framingham Heart Study, Yao et al. built an integrated network by iterated Transfer-Fusion (TFit) algorithm, identifying 13 CVD-related modules. Authors identified several hub SNPs related to CHD and the presence of cardiovascular risk factors, such as BP, body mass index, and HDL-C LDL-C, and triglycerides. The integration of gene expression data to the SNP modules showed a
networks were elaborated, using dmGWAS software, and a CHD interaction network was built using experimentally validated gene interactions and gene co-expression in coronary samples. The network contained 53 genes significantly associated with CHD. A pathway enrichment analysis revealed an overlap in the network with genes involved in regulating peripheral arteries with a set of key driver genes, such as UBC, CAND, and SMARCA4, suggesting that abnormalities in the peripheral vasculature might be also important pathways underlying CHD pathogenesis80) (Table 3).

Table 3. Network based genomic studies for primary prevention of CHD

Big data source	Computational method	Results	Ref.
ClinSeq study and FHS (GWAS); GEO; BioGRID	GeneMANIA	Identification of a SNP predictive network of advanced coronary calcium	72
GEO; DAVID; KEGG	WGCNA	Identification of G6PD and S100A7 as CHD disease genes	73
CARDioGRAM Consortium; Ottawa Heart Genomics Study; KEGG	WGCNA; BN algorithm	GLO1 and PPI1 were identified as key driver genes in CHD	74
FHS (GWAS); GO	WGCNA; KDA algorithm	Association of TNFRSF13C and EBF1 as key driver genes in CHD	75
CADgene; HPRD; DAVID; KEGG	Newman's algorithm	Evidence of AR, NLR and RLR signaling pathways, and neuropeptide and PYY receptor activity as new pathogenic mechanisms in CHD	76
WTCCC; MiMi software	GIN software	Identification of MAPK10 and COL4A2 as CHD susceptibility genes	77
IntAct; MINT, TRANSFAC; GO	SCA algorithm	Identification of 18 network seed connector genes involved in CHD	78
dbGaP; GWAS catalog; ENCODE	TFit algorithm	Identification of a 3-way relationships between genetic variants, gene expression, and phenotypes in CHD and risk factors	79
CARDioGRAMplusC4D 1000 GWAS; iRefIndex database	dmGWAS software	Identification of key driver genes (UBC, CAND, and SMARCA4) underlying CHD pathogenesis	80
GEO; TRANSFAC; TransmiR; miRTarBase; miRecords; TarBase; HMDD; KEGG	BFS algorithm	By prioritized core sub network analysis PTEN resulted to be a key regulator gene in CHD	81

AR: Androgen receptor; BFS: breadth-first search; BioGRID: Biological General Repository for Interaction Datasets; BN: Bayesian network; CARDioGRAM: Coronary ARtery Disease Genome-wide Replication And Meta-Analysis; CHD: coronary heart disease; COL4A2: Collagen Type IV Alpha 2 Chain; dbGaP: database of Genotypes and Phenotypes; EBF1: Early B-Cell Factor 1; ENCODE: Encyclopedia of DNA Elements; FHS: Framingham Heart; G6PD: G6PD glucose-6-phosphate dehydrogenase; GEO: Gene Expression Omnibus; GLO1: glyoxalase I; GO: Gene ontology; GWAS: Genome-wide association study; HMDD: Human MicroRNA and Disease Database; HPRD: Human Protein Reference Database; IntAct: protein Interaction database; KDA: Key Driver Analysis; Study; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAPK10: Mitogen-activated protein kinase 10; MiMi: Michigan Molecular Interactions; MINT: Molecular INTERaction database; NLR: NOD-like receptor; PPI1: peptidylprolyl isomerase I; PTEN: Phosphatase and tensin homolog; PYY: peptide YY; RLR: RIG-I-like receptor; S100A7: S100 calcium binding protein A7A; SNP: Single Nucleotide Polymorphism; TFit: iterated Transfer-Fusion; TRANSFAC: TRANScription FACtor database; TNFRSF13C: TNF Receptor Superfamily Member 13C; UBC: polyubiquitin; WGCNA: Weighted correlation network analysis; WTCCC: Wellcome Trust Case Control Consortium.

large number of eQTL-associated genes already associated to CVD phenotypes such as fatty acid desaturase 1 (FADS1), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR), lipoprotein Lipase (LPL), LDLR, and sterol Regulatory Element Binding Transcription Factor 2 (SREBF2), suggesting the existence of 3-way relationships between genetic variants, gene expression, and phenotypes79).

In a recent study, Miao et al. performed a tissue-specific network analysis of CHD. Biological inputs of CHD genetic variants were obtained from the CARDioGRAMplusC4D 1000 GWAS. Co-expression networks were elaborated, using dmGWAS software, and a CHD interaction network was built using experimentally validated gene interactions and gene co-expression in coronary samples. The network contained 53 genes significantly associated with CHD. A pathway enrichment analysis revealed an overlap in the network with genes involved in regulating peripheral arteries with a set of key driver genes, such as UBC, CAND, and SMARCA4, suggesting that abnormalities in the peripheral vasculature might be also important pathways underlying CHD pathogenesis80) (Table 3).
Recently, in medical imaging, we have assisted with a shift from qualitative imaging to quantitative assessment through the extraction of imaging biomarkers by applying artificial intelligence\(^{81}\). Machine and deep learning approaches involve using raw imaging data to extrapolate imaging features and, together with clinical information and big data, are processed into algorithms to build disease models and neural networks in order to improve diagnosis, make clinical decisions, and predict outcomes towards a personalized medical approach\(^{81}\). Recent studies on machine learning approaches exploiting CTCA showed high prognostic accuracy in risk stratification and prediction of mortality in CHD patients\(^{82-84}\). Furthermore, in a recent study, a novel algorithm for T1 mapping and extracellular volume fraction in CMR was tested, providing a better computational efficiency than other well-consolidated methods\(^{85}\).

Pathogenic Epigenetic-Sensitive Nodes in Primary and Secondary Prevention of CHD

Genomic variants identified through GWASs account for 9% of CHD risk; therefore, a large proportion of the underlying genetic risk remains unclear\(^{86}\). The phenomenon of missing heritability is attributed to the notion that much of a complex trait’s heritability lies in SNPs that do not reach genomewide significance association, but rather in epigenetic sites associated with transcriptionally active, thus influencing gene expression\(^{9}\). Furthermore, a recent study showed that genetic variants have a regulatory impact on circulating miRNAs, highlighting an interplay between genetic and epigenetic components\(^{87}\).

In **Supplementary Table 1**, we report a brief description of ongoing or completed clinical trials from the website https://clinicaltrials.gov/ started between 2013 and 2018 and aimed to test epigenetic changes as useful tags to diagnose, prevent, and treat CHD. Concerning primary prevention, a recent clinical trial aims to evaluate the relationship between DNA methylation and the degree of coronary atherosclerosis detected by coronary angiography. Due to their stability in plasma and easiness of detection, many ongoing clinical trials are focused on the evaluation of circulating miRNAs in blood, in association with imaging parameters such as coronary calcifications and stenosis degree, detected by CCTA to characterize the CHD burden\(^{88}\) (*Supplementary Table 1*). Regarding clinical trials for secondary prevention evaluation, most analyzed epigenetic tags are still circulating miRNAs coupled with imaging tools, such as PET/CT, to evaluate infarct-related vessels. In the Multiomics and Imaging-based Assessment of Vulnerable Coronary Plaques in Acute Coronary Syndromes (MultiPlaque) Study, the outcomes will be to assess the vulnerability degree of the atheromatous plaques, before and after a MI, based on miRNA analysis, associated with invasive and non-invasive data, such as coronary angiography, intravascular ultrasound, optical coherence tomography, and FFR/CT. A multiparametric model for risk prediction will be developed to evaluate the risk associated with the vulnerable coronary plaques in patients who have suffered acute coronary syndrome, as well as the determination of the rate of adverse events and MACE rates.

A further advancement in the field of epigenetic knowledge could represent the employment of epigenetic big data in network models. Zhang *et al.* developed an integrated systems approach to identify regulatory pathways along with key epigenetic and genetic regulators in CHD. In particular, multiple resources, such as differentially expressed genes and miRNAs, known disease genes, and KEGG analysis were integrated using a breadth-first search algorithm providing a prioritized core sub-network in which PTEN was found to be a key regulator gene. This data was also validated on peripheral blood samples of CHD patients\(^{89}\) (*Table 3*). Furthermore, to identify additional genes related to FH and their interactions, Chen *et al.* performed a transcriptome and miRNA network analysis integrating the transcription profiles, miRNA datasets, and functional analysis of CHD patients, heterozygous FH patients and healthy subjects. In the regulatory network obtained, specificity protein 1 (SPI), signal transducer and activator of transcription 1 (STAT1), spleen focus forming virus oncogene spi1 (SPI1) formed local networks with a higher node degree, suggesting an important role of these genes in FH. In addition, the transcription factor, upstream transcription factor 2, c-fos interacting (USF2) and the gene, Wiskott-Aldrich syndrome, were identified for the first time to be associated with FH\(^{90,91}\) (*Table 2*).

Personalized Therapy for Primary Prevention and Secondary Prevention of CHD

Due to network medicine ability to reveal hidden connections, one field of application could be identifying new drug targets as well as drug repurposing\(^{92,93}\). These improvements open a new scenario for the personalized therapy, in which therapeutic strategies are customized to a specific genetic background (*Supplementary Fig. 2*). Network pharmacology exploits sources in drug-target databases and connect therapeutic and targeted proteins and disease-target databases (*Table 2*).

Experimental studies have investigated a net-
work-based approach in novel drug target identification and drug repurposing for primary prevention and treatment of CHD. Recently, Lempiäinen et al. prioritized the 68 most likely causal genes for CHD and examined their regulatory roles in 286 metabolic and vascular tissue gene-protein modules. Co-expression networks were constructed by integrating GWAS with PPI datasets, and modules were identified with the Girvan-Newman algorithm. Module analysis was also performed to find novel target for the currently used cardiometabolic drugs. The top identified modules included several kinases and GPCR genes for which drugs already existed (e.g.
CXCR4 and CCR1 in cellular signaling module), or drugs in development, or for which drug compounds were not reported (e.g. TRIB3 in the module enriched for extracellular matrix organization and regulation, blood coagulation and platelet activation pathways). These interesting results provided new opportunities both for drug repurposing and for new development in CHD.

A novel algorithm, called SCA, identified 14 seed connector sensitive drug targets not previously reported for CHD (Fig. 2). An interesting seed connector was Neurilpin-1 (NRPI), the pharmacological target of pegaptanib (DB04895) an anti-angiogenic drug to treat neovascular age-related macular degeneration. NRPI is a membrane receptor involved in physiological and pathological neoangiogenesis and arteriogenesis. In the identified CHD module, NRPI was linked to the transcription factor REST, FLT1, and PDGFD, all of which were involved in cellular proliferation and vascular remodeling.

In a recent study, Cheng et al. developed a system pharmacology-based platform to assess the interplay between disease proteins and drug targets in the protein-protein interactome to predict CV outcome. Computational characterization was evaluated by reference distance distribution, resulting in four drug network-based predictions. From this analysis, hydroxychloroquine was significantly associated with a 24% reduced risk of CHD.

A recent, network-based analysis of novel drug pleiotropy and drug repurposing in CHD treatment was performed through in silico models by integrating known drug-target interactions, CHD genes, and PPI data. In particular, two drug-target networks for both approved drugs and natural products were assembled considering experimentally validated drug-target interactions. Permutation testing identified significant associations of 51 approved drugs and 27 natural products with CHD, including several well-known anti-CHD natural products (quercetin and luteolin) and known cardiovascular drugs. Furthermore, computational elaboration provided significant links with other approved drugs, such as fasudil, parecoxib, and dexamethasone, and natural compounds, such as resveratrol, luteolin, daidzein and caffeic acid, thus suggesting a new mechanism of action in CHD intervention and drug repurposing with a network approach (Table 2).

Epidrugs in CHD Personalized Therapy: Focus on Clinical Trials

Looking for novel therapies to treat CHD, the possibility of exploiting the reversibility of epigenetic changes has been entertained. Indeed, a great variety of small molecules with epigenetic and anti-atherogenic activity have been described in recent years.

Epidrugs can be classified according to their epigenetic effects, in particular, acting on DNA methylation or histone modification, thus providing strategies to ameliorate CHD care and prevent complications. Interestingly, some natural compounds, including polyphenols, fenofibrates, cocoa, and folic acid, can also modulate DNA methylation status, while resveratrol can influence chromatin modifications by inhibiting histone modifying enzymes. Furthermore, statins and ezetimibe may promote epigenetic-based control in CHD prevention through inhibiting HDAC activity.

We reported clinical trials on the above-mentioned epigenetic modulating compounds in CHD, and its risk factors, both in monotherapy and combined therapy, in primary and secondary prevention using the website https://clinicaltrials.gov/ (Table 4). Cocoa polyphenols were tested as methylation targeting drugs in a clinical trial in both hypertensive and hypercholesterolemic patients, and resulted in a significant reduction of DNA methylation levels in patient blood cells, with an association between DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B, thus suggesting a functional effect of these polymorphisms. Statins represent the gold standard cholesterol-lowering agent to prevent CHD. Furthermore, the pleiotropic effects of these therapeutic compounds may depend, in part, on their epigenetic effects, since they can inhibit HDAC activity. The protective effect of statins for primary prevention has also been demonstrated in three large clinical studies: the MEGA, the JUPITER and HOPE-3. Another clinical trial for primary prevention investigated fenofibrate treatment, in combination with atorvastatin, to test the efficacy and safety of once daily fenofibrate assumption on cIMT detected by US in dyslipidemic patients with optimal levels of low density lipoprotein cholesterol after atorvastatin treatment. In the setting of secondary prevention, resveratrol, considered a DNA methylation tar-
Table 4. Ongoing and completed clinical trials update on epidrug-based therapy in CHD and cardiac events in primary and secondary prevention of non diabetic subjects

PRIMARY PREVENTION	Epidrug	Conditions	Effects	Phase/Status	NCT
Monotherapy					
Polypheonols (cocoa)	Hypertension	To evaluate the effects of flavanols on coronary endothelial function in response to cold pressor testing and the combined cholesterol lowering effect of treatment with cocoa to reduce plasma LDL-c concentrations	Phase 3/ Completed	NCT00511420 (53)	
Diet plus pravastatin	Hypercholesterolemia	To evaluate the primary preventive effect of pravastatin against CHD	Phase 4/ Completed	NCT00211705, (99)	
Rosuvastatin	Elevated hs-CRP	To determine the safety and effectiveness of long-term therapy with rosvastatin in reducing the risk of major cardiovascular events	Phase 3/ Completed	NCT00239681 (101)	
Metformin	Normotensive, LVH, obesity, CHD	To investigate the benefit of 12 month metformin XL 2,000 mg/day treatment on LVH assessed by CMR, as well as on fasting insulin resistance index, obesity and improvement in endothelial function	Phase 4/ Completed	NCT02226510	
Combination Therapy					
Rosuvastatin plus candesartan/ hydrochlorothiazide	CV intermediate risk, normal cholesterol and blood pressure	To evaluate rosuvastatin and a combination blood pressure lowering candesartan/hydrochlorothiazide, used alone or together can reduce the risk of heart attacks, stroke and their sequelae in people without known heart disease and at average risk	Phase 4/ Completed	NCT00468923 (102)	
Fenofibrate plus atorvastatin	Dyslipidemia	To test the effect and safety of once daily fenofibrate assumption on calciulm detected by US in dyslipidemic patients who have optimal levels of low density lipoprotein cholesterol aterosclerotic treatment	Phase 3/ Completed	NCT00616772	
Metformin Plus statins	CHD	To test the beneficial impact of 1 year metformin treatment on carotid artery atherosclerosis evaluated by US	Phase 4/ Completed	NCT00723307 (107)	
SECONDARY PREVENTION	Epidrug	Conditions	Effects	Phase/Status	NCT
Monotherapy					
Resveratrol	CHD	To assess the improvement of endothelial function, lipidomic signatures, and cell signaling in patients undergoing CABG	NA/ Recruiting	NCT03762096	
Fluvastatin	ACS	To evaluate the safety and efficacy of fluvastatin, dosed shortly after or immediately when the coronary event occurs as well as cardiac recurrence and MACEs	Phase 4/ Completed	NCT00171275 (103)	
Statin	SA and UA	To investigate whether an additional treatment with statins in high does before CABG surgery can reduce the incidence of major post-surgery complications including death, MI and stroke	Phase 4/ Recruiting	NCT01715714	
Metformin	STEMI	To evaluate the effect of metformin therapy following STEMI in terms of LVEF assessed by CMR and MACE occurrence	Phase 2 and 3/ Completed	NCT01217307 (104)	
Metformin	MI	To determine if pretreatment with metformin can reduce myocardial injury in patients undergoing elective CABG surgery	Phase 4/ Completed	NCT01438723 (105)	
Combined Therapy					
Folic acid plus vitamins	CHD	To evaluate the clinical effects of homocysteine lowering treatment with B vitamins during 3-5 years follow-up of patients undergoing PTCA and CABG	Phase 3/ Completed	NCT003540	
Folic acid plus rosuvastatin	CHD	To compare the effects on endothelial function of the forearm resistance vessels in patients with a previous history of PTCA	Phase 2/ Completed	NCT006935	
Folic acid plus simvastatin plus vitamins	MI	To evaluate the effectiveness and safety of more intensive cholesterol-lowering for the reduction of major vascular events in a high-risk population, and of the effects of homocysteine-lowering with folic acid plus vitamin B12	Phase 3/ Completed	NCT00124072	
Folic acid plus methotrexate	CHD	To evaluate the efficacy of methotrexate to improve health in patients with symptomatic CHD and previous history of PTCA as well as to monitor the incidence of acute cardiac events.	Phase 2 and 3/ Completed	NCT00759811	
Ezetimibe plus simvastatin	SA	To evaluate the efficacy of ezetimibe plus simvastatin treatment vs simvastatin alone in patients affected by SA after PTCA	NA/ Recruiting	NCT03771053	
Ezetimibe plus simvastatin	ACS	To compare the of these combined therapy in terms of reduction in the risk of the occurrence of MACEs, cardiac death, and stroke	Phase 3/ Completed	NCT00202878 (104)	

ACS: acute coronary syndrome; CABG: coronary artery bypass graft surgery; CMR: cardiac magnetic resonance; CT: computed tomography; CTA: computed tomography coronary angiography; CHD: coronary heart disease; Hs-CRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVH: left ventricular hypertrophy; MACE: major cardiovascular events; MI: myocardial infarction; PET: positron emission tomography; PTCA: percutaneous transluminal coronary angioplasty; STEMI: ST elevation myocardial infarction; UA: unstable angina; SA: stable angina; US: ultrasound.
investigated putative beneficial effects of one year metformin XL (2000mg/day) treatment in patients with left ventricular hypertrophy, CHD, and obesity. Clinical outcomes were assessed for LVH evaluation by CMR, fasting insulin resistance index, obesity, and improved endothelial function.

In secondary prevention, the GIPS-III trial (Metformin to Reduce Heart Failure After Myocardial Infarction) tested metformin in patients who have ST-segment-elevation MI and reported few or no beneficial effects in terms of left ventricular ejection fraction improvement, detected by CMR, and the incidence of major adverse cardiac events. Another trial evaluated the potential efficacy of metformin pretreatment in limiting cardiac injury, assessed by troponin concentrations, during CABG surgery in patients, reporting no significant reduction of periprocedural myocardial injury.

Conclusions

The possibility of integrating big epigenetic data, non-invasive imaging parameters, and clinical information in network-based models could provide a revolution for detecting novel specific markers of cardiovascular risk, thus improving primary prevention regimen. Furthermore, network approaches could open a new scenario for personalized therapy, in which therapeutic strategies are customized to a specific genetic background. Indeed, a promising challenge could be applying network modeling approaches to large amount of data from consortia, particularly in a cohort of children and adolescents, in order to characterize the molecular alterations at the base of individual susceptibility to develop CHD in the future and the incidence of acute cardiac events. Furthermore, implementing network studies in patients with known CHD could help improve secondary prevention strategies.

Disclosure

There are no conflicts of interest to disclose.

Funding

This work was supported by “Ricerca Corrente 2018” grant funded by Italian Ministry of Health. T.I. is a postdoc with a specific project “Nuove tecniche in immunologia clinica” granted by “Programma VALERE” of the University of Campania “Luigi Vanvitelli”, Department of Advanced Clinical and Surgical Sciences and awarded ESC Congress 2019.
References

1) Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res, 2017; 121: 677-694

2) Infante T, Forte E, Punzo B, Cademartiri F, Cavaliere C, Salvatore M, Napoli C. Correlation of Circulating miR-765, miR-93-5p and miR-433-3p to Obstructive Coronary Heart Disease Evaluated by Cardiac Computed Tomography. Am J Cardiol, 2019; 124: 176-182

3) Infante T, Forte E, Schiano C, Punzo B, Cademartiri F, Cavaliere C, Salvatore M, Napoli C. Evidence of association of circulating epigenetic-sensitive biomarkers with suspected coronary heart disease evaluated by Cardiac Computed Tomography. PLoS One, 2019; 14: e0210909

4) Li J, Zhu X, Yu K, Jiang H, Zhang Y, Deng S, Cheng L, Liu X, Zhong J, Zhang X, He M, Chen W, Yuan J, Gao M, Bai Y, Han X, Liu B, Luo X, Mei W, He X, Sun S, Zhang L, Zeng H, Sun H, Liu C, Guo Y, Zhang B, Zhang Z, Huang J, Pan A, Yuan Y, Angeli F, Ming B, Zheng F, Zeng Q, Mao X, Peng Y, Mao Y, He P, Wang QK, Qi L, Hu FB, Liang L, Wu T. Genome-Wide Analysis of DNA Methylation and Acute Coronary Syndrome. Circ Res, 2017; 120: 1754-1767

5) Nikpay M, Stewart AFR, McPherson R. Partitioning the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovasc Res, 2017; 113: 973-983

6) Thomas MR, Lip GY. Novel Risk Markers and Risk Assessments for Cardiovascular Disease. Circ Res, 2017; 120: 133-149

7) Palinski W, Napoli C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J, 2002; 16: 1348-1360

8) D’Armiento FP, Bianchi A, de Nigris F, Capuzzi DM, D’Armiento MR, Crimi G, Abete P, Palinski W, Condorelli M, Napoli C. Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial lesions in humans. JAMA Cardiol, 2018; 3: 1184-1191

9) Napoli C, Lerman LO, de Nigris F, Gossl M, Balestrieri A, Napoli C, Lerman A. Rethinking primary prevention of atherosclerosis-related diseases. Circulation, 2006; 114: 133-149

10) Napoli C, Infante T, Casamassimi A. Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage. Cardiovasc Res, 2011; 92: 367-374

11) de Nigris F, Cacciatore F, Mancini FP, Vitale DF, Manueto G, D’Armiento FP, Schiano C, Soricelli A, Napoli C. Epigenetic Hallmarks of Fetal Early Atherosclerotic Lesions in Humans. JAMA Cardiol, 2018; 3: 1184-1191

12) CARDIoGRAMplus4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkesen L, Goel A, Grundberg E, Hawulchina AS, Ho WK, Hopewell JC, Eriksson N, Kleerup ME, Kristiansson K, Lundmark P, Lyttikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voigt BF, Waite LL, Zhang W, Ziegler A, Absher D, Alshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R; DIAGRAM Consortium; CARDIOGENICS Consortium, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, Morris AD, Müller-Nurasyid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schäfer A, Sivananthan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schoot CE, Wagner Pj; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferran M, Ferrières J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Ibarraen C, Jang Y, Kähönen M, Kee F, Kim HS, Klop N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind L, Owuendo WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Trégouët DA, Virtamo J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, Pastinen T, Svyänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O’Donnell C, Reilly MP, März W, Collins R, Kathiresan S, Hamsten A, Kooser JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins H, Schunkert H, Samani NJ. Large-scale association analyses identify new loci for coronary artery disease. Nat Genet, 2013; 45: 25-33
Network Medicine and CHD

SR, O’Donnell CJ, Altshuler D, Gabriel S, Kathiresan S. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015; 518: 102-106

14) Roberts R. Genetics of coronary artery disease. Circ Res, 2014; 114: 1890-1903

15) Infante T, Forte E, Schiano C, Cavaleri C, Tedeschi C, Soricelli A, Salvatore M, Napoli C. An integrated approach to coronary heart disease diagnosis and clinical management. Am J Transl Res, 2017; 9: 3148-3166

16) Antman EM, Loscalzo J. Precision medicine in cardiology. Nat Rev Cardiol, 2016; 13: 591-602

17) Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Zaid M, Fujiyoshi A, Kadota A, Abbott RD, Miura K. Complexity and network dynamics in physiological adaptation: an integrated view. Physiol Behav, 2014; 131: 49-56

18) Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, Gulbahce N, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun, 2018; 9: 2691

19) Leopold JA, Loscalzo J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ Res, 2018; 122: 1302-1315

20) Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T, Mancini FP. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation, 2012; 125: 2363-2373

21) Schiano C, Vietri MT, Grimaldi V, Picascia A, De Pascale MR, Napoli C. Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci, 2015; 36: 226-235

22) Murray CSG, Nahar T, Kalashyan H, Becher H, Nanda NC. Ultrasound assessment of carotid arteries: Current concepts, methodologies, diagnostic criteria, and technological advancements. Echocardiography, 2018; 35: 2079-2091

23) Zaid M, Fujiyoshi A, Kadota A, Abbott RD, Miura K. Coronary Artery Calcium and Carotid Artery Intima Media Thickness and Plaque: Clinical Use in Need of Clarification. J Atheroscler Thromb, 2017; 24: 227-239

24) Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Muntendam P, McGregor MJ, Gregson J, Pocock S, Falk E, Fuster V. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol, 2015; 65: 1065-1074

25) Lin ZX, Zhou CS, Schoepf UJ, Eid M, Duguay TM, Greenberg WT, Luo S, Quan W, Zhou F, Lu GM, Zhang LJ. Coronary CT angiography radiation dose trends: A 10-year analysis to develop institutional diagnostic reference levels. Eur J Radiol, 2019; 113: 140-147

26) Noguchi T, Nakao K, Asaumi Y, Morita Y, Otsuka F, Kataoka Y, Hosoda H, Miura H, Fukuuda T, Yasuda S. Noninvasive Coronary Plaque Imaging. J Atheroscler Thromb, 2018; 25: 281-293

27) Verheij VA, Scholtz JE, Meyersohn NM, Parry BA, Hoffmann U, Ghoshhajra BB, Nagurney JT. Secondary cardiac risk stratifying tests after coronary computed tomography angiography in emergency department patients. J Cardiovasc Comput Tomogr, 2018; 12: 500-508

28) Lee J, Kim TH, Lee BK, Yoon YW, Kwon HM, Hong BK, Min PK, Choi EY, Oh CS, Park CH. Diagnostic accuracy of low-radiation coronary computed tomography angiography with low tube voltage and knowledge-based model reconstruction. Sci Rep, 2019; 9: 1308

29) Chen Y, Liu Z, Li M4, Yu Y, Jia Y, Ma G, Hu Z, Wei D, Li D, He T. Reducing both radiation and contrast doses in coronary CT angiography in lean patients on a 16-cm wide-detector CT using 70 kVp and ASiR-V algorithm, in comparison with the conventional 100-kVp protocol. Eur Radiol, 2019; 29: 3036-3043

30) Qu TT, Li JY, Xiao XJ, Zhang XL, Song ZF, Guo YX, Guo JX. Contrast dose reduction with shortened injection durations in coronary CT angiography on 16-cm Wide-detector CT scanner. Br J Radiol, 2018; 91: 20180580

31) Kawaguchi Y, Fujimoto S, Takamura K, Kato E, Suda S, Matsumori R, Hiki M, Kumamaru KK, Daida H. Submillisievert imaging protocol using full reconstruction and advanced patient motion correction in 320-row area detector coronary CT angiography. Int J Cardiovasc Imaging, 2018; 34: 465-474

32) Chen Y, Wei D, Li D, Liu Z, Hu Z, Li M, Jia Y, Yu Y, Han D, Ren R, Yu N, He T. The Value of 16-cm Wide-Detector Computed Tomography in Coronary Computed Tomography angiography for Patients With High Heart Rate Variability. J Comput Assist Tomogr, 2018; 42: 906-911

33) Ghanem AM, Hamimi AH, Matta JR, Carass A, Elgarf RM, Gharib AM, Abd-Elmoniem KZ, Automatic Coronary Wall and Atherosclerotic Plaque Segmentation from 3D Coronary CT Angiography. Sci Rep, 2019; 9: 47

34) Bradley SM, Chan PS, Hartigan PM, Nallamothu BK, Weintraub WS, Seldis SP, Dada M, Maron DJ, Kostuk WJ, Berman DS, Teo KK, Mancini GB, Boden WE, Spertus JA. Validation of the appropriate use criteria for percutaneous coronary intervention in patients with stable coronary artery disease (from the COURAGE trial). Am J Cardiol, 2015; 116: 167-173

35) Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijs NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol, 2010; 55: 2816-2821

36) Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR 2nd, Litwin SE, Steinberg DH, Schoepf UJ. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology, 2017; 285: 17-33

37) Albrecht MH, De Cecco CN, Schoepf UJ, Spandoner A, Eid M, De Santis D, Varga-Szemes A, van Assen M, von Knebel-Doebertitz PL, Tesche C, Puntmann VO, Nagel E, Vogl TJ, Nance JW. Dual-energy CT of the heart current and future status. Eur J Radiol, 2018; 105: 110-118
41) Grundy SM, Stone NJ, Bailey AL, Beam C, Birtridge K, Blumenthal RS, Braun LT, de Ferranti S, Failla-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sterling L, Virani SS, Ysboah J. 2018 AHA/ACC/AACVPR/ABA/ACPM/ADA/AGS/AHA/SCPC/PCNA guideline on the management of blood cholesterol: Executive summary: A report of the American college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol, 2019; 73: 3168-3209

42) Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent advances in cardiovascular magnetic resonance: Techniques and applications. Circ Cardiovasc Imaging, 2017; 10: pii: e003951

43) Sanaani A, Fuisz A. Cardiac magnetic resonance for diagnosis and risk stratification. Cardiol Clin, 2019; 37: 27-33

44) Greenwood JP, Maredia N, Younger JF, Brown JM, Sanaani A, Fuisz A. Cardiac magnetic resonance: current status and future direction. Cardiovasc Diagn Ther, 2015; 5: 290-310

45) kotecha T, martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, Patel D, Coghlan G, Moon J, Plein S, Lockie T, Rakhit R, Patel N, Xue H, Kellman P, Fontana M. Automated pixel-Wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction. JACC Cardiovascular Imaging, 2017; 10: pii: e003951

46) krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Machine learning in medicine. Circulation, 2015; 132: 1920-1930

47) Pelletier-Galarneau M, Ruddy TD. Molecular imaging of coronary inflammation. Trends Cardiovasc Med, 2019; 29: 191-197

48) Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET myocardial blood flow. Curr Cardiol Rep, 2019; 21: 11

49) Sheikine Y, Akram K. FDG-PET imaging of atherosclerosis: Do we know what we see? Atherosclerosis, 2010; 211: 371-380

50) Nudi F, Biondi-Zoccai G, Di Belardino N, Nudi A, Schillaci O. Myocardial-coronary fusion imaging with positron emission tomography and computed tomography: Benchmarking and slingshooting. J Nucl Cardiol, 2018. doi: 10.1007/s12350-018-01538-2

51) Fernández-Frier L, Fuster V, López-Melgar B, Oliva B, Sánchez-González J, Macías A, Pérez-Azenjo B, Zamudio D, Alonso-Farto JC, España S, Mendiguren J, Bueno H, García-Ruiz JM, Ibáñez B, Fernández-Ortiz A, Sanz J. Vascular inflammation in subclinical atherosclerosis detected by Hybrid PET/MRI. J Am Coll Cardiol, 2019; 73: 1371-1382

52) Buscombe JR. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET). Br J Radiol, 2015; 88: 20140648

53) Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis, 2017; 272: 118-128

54) Ammirati E, Moroni F, Magnoni M, Busnardo E, Di Terlizzi S, Villa C, Sizzano F, Scotti I, Palini A, Presotto L, Bettinardi V, Spagnolo P, Besana F, Gianollini L, Rimoldi OE, Cambi G. Carotid artery plaque uptake of (11)C-PK11195 inversely correlates with circulating monocytes and classical CD14+(++)CD16(-) monocytes expressing HLA-DR. Int J Cardiol Heart Vasc, 2018; 21: 32-35

55) Li L, Li X, Jia Y, Fan J, Wang H, Fan C, Wu L, Si X, Hao X, Wu P, Yan M, Wang R, Hu G, Liu J, Wu Z, Hacker M, Li S. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging, 2018; 45: 2181-2189

56) Jung KH, Lee KH. Molecular imaging in the era of personalized medicine. J Pathol Transl Med, 2015; 49: 5-12

57) Litton JE. Launch of an infrastructure for health research: BBMRI-ERIC. Biopreserv Biobank, 2018. doi: 10.1089/bio.2018.0027

58) Barbasi AL, Albert R. Emergence of scaling in random networks. Science, 1999; 286: 509-512

59) Menche J, Sharma A, Kitsak M, Ghisian SD, Vidal M, Loscalzo J, Barbási AL. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science, 2015; 347: 1257601

60) Deo RC. Machine learning in medicine. Circulation, 2015; 132: 1920-1930

61) Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol, 2017; 69: 2657-2664

62) Chan SY, Loscalzo J. The emerging paradigm of network medicine in the study of human disease. Circ Res, 2012; 111: 359-374

63) Nardi C, Benincasa G, Loscalzo J. Epigenetic inheritance underlying pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol, 2019; 39: 653-664

64) Huan T, Meng Q, Saleh MA, Norlander AE, Joehanes R, Zhu J, Chen BH, Zhang B, Johnson AD, Ying S, Courchesne P, Raghavachari N, Wang R, Liu P; International Consortium for Blood Pressure GWAS (ICBP). O’Donnell CJ, Vasan R, Munson PJ, Madhur MS, Harrison DG, Yang X, Levy D. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol Syst Biol, 2015; 11: 799

65) Nardi C, Postiglione A, Triggiani M, Corso G, Palumbo
G, Carbone V, Ruocco A, Ambrosio G, Montefusco S, Malorni A, Condorelli M, Chiarriello M. Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia. Atherosclerosis, 1995; 118: 259-273

67) Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P. A systems genetics approach implicates USF1, FAD53, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet, 2009; 5: e1000642

68) Ye Y, Li K, Liu J, Li M, Wang W, Wang R, Zou J, Xie P, Wei L, Jiao G, Yuan Z. Dysfunctional co-expression network analysis of familial hypercholesterolemia. J Cardiol, 2013; 62: 58-62

69) Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism, 2018. pii: S0026-0495(18)30225-7

70) Kogelman LJ, Fu J, Franke L, Greve JW, Hofker M, Renson SS, Kadarmideen HN. Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals. PLoS One, 2016; 11: e0167519

71) Yong-Hwa Lee L, Loscalzo J. Network Medicine In Pathobiology. Am J Pathol, 2019. pii: S0002-9440(19)30093-30098

72) Oguz C, Sen SK, Davis AR, Fu YP, O’Donnell CJ, Gibbons GH. Genotype-driven identification of a molecular network predictive of advanced coronary calcium in ClinSeq® and Framingham Heart Study cohorts. BMC Syst Biol, 2017; 11: 99

73) Liu J, Jing L, Tu X. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc Disord, 2016; 16: 54

74) Mäkinen VP, Civelek M, Meng Q, Zhang B, Zhut J, Levian C, Huan T, Segre AV, Ghosh S, Vivar J, Nikpay M, Stewart AF, Nelson CP, Willenborg C, Erdmann J, Blakenberg S, O’Donnell CJ, Márz W, Laaksonen R, Epstein SE, Kathiresan S, Shah SH, Hazen SL, Reilly MP; Coronary Artery Disease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Consortium, Luis AJ, Samani NJ, Schunkert H, Quertermous T, McPherson R, Yang X, Assimes TL. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet, 2014; 10: e1004502

75) Huan T, Zhang B, Wang Z, Johanes R, Zhu J, Johnson AD, Ying S, Munson PJ, Raghavachari N, Wang R, Liu P, Courchesne P, Hwang SJ, Assimes TL, McPherson R, Samani NJ, Schunkert H; Coronary Artery Disease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium, International Consortium for Blood Pressure GWAS (ICBP), Meng Q, Suver C, O’Donnell CJ, Derry J, Yang X, Levy D. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol, 2013; 33: 1427-1434

76) Li H, Zuo X, Ouyang P, Lin M, Zhao Z, Liang Y, Zhong S, Rao S. Identifying functional modules for coronary artery disease by a prior knowledge-based approach. Gene, 2014; 537: 260-268

77) Duan S, Luo X, Dong C. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis. Gene, 2013; 531: 347-354

78) Wang RS, Loscalzo J. Network-Based Disease Module Discovery by a Novel Seed Connector Algorithm with Pathobiological Implications. J Mol Biol, 2018; 430: 2939-2950

79) Yao C, Chen BH, Johanes R, Otlu B, Zhang X, Liu C, Huan T, Tastan O, Cupples LA, Meigs JB, Fox CS, Freedman JE, Courchesne P, O’Donnell CJ, Munson PJ, Keles S, Levy D. Integrogenic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes. Circulation, 2015; 131: 536-549

80) Miao X, Chen X, Xie Z, Lin H. Tissue-specific Network Analysis of Genetic Variants Associated with Coronary Artery Disease. Sci Rep, 2018; 8: 11492

81) Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, Min JK, Tang WHW, Halperin JL, Narayan SM. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J, 2019. pii: ehz056

82) van Rosendael AR, Maliaikal G, Kolli KK, Beehey A, Al’Aref SJ, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr, 2018; 12: 204-209

83) Al’Aref SJ, Maliaikal G, Singh G, van Rosendael AR, Ma X, Xu Z, Alawamli OAH, Lee B, Pandey M, Achenbach S, Al-Mallah MH, Andreini D, Bax JJ, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnayani K, Chow BJW, Cury RC, DeLago A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann PA, Kim YJ, Leipsic JA, Maffei E, Marques H, Gonçalves PA, Pontone G, Raff GL, Rubinstein R, Villines TC, Gransar H, Lu Y, Jones EC, Peña JM, Lin FY, Min JK, Shaw LJ. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur Heart J, 2019. pii:ehz565

84) Mortwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnayani K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic JA, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinstein R, Shaw LJ, Stellh J, Villines TC, Dunnig A, Min JK, Smolka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J, 2017; 38: 500-507

85) Borrazzo C, Pacilio M, Galea N, Preziosi E, Carni M, Francione M, Catalano C, Carbio I. T1 and extracellular volume fraction mapping in cardiac magnetic resonance: estimation of accuracy and precision of a novel algorithm. Phys Med Biol, 2019; 64: 04NT06

86) Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.
Nat Genet, 2015; 47: 1121-1130

87) Clarke SL, Assimes TL. Genome-Wide Association Studies of Coronary Artery Disease: Recent Progress and Challenges Ahead. Curr Atheroscler Rep, 2018; 20: 47

88) Nikpay M, Beehler K, Valsesia A, Hager J, Harper ME, Dent R, McPherson R. Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of several miRNAs in the regulation of Cardiovascular phenotypes. Cardiovasc Res, 2019. doi: 10.1093/cvr/cvz030

89) Howlett P, Cleal JK, Wu H, Shah N, Horton A, Curzen N, Mahmoudi M. MicroRNA 8059 as a marker for the presence and extent of coronary artery calcification. Open Heart, 2018; 5: e006768

90) Zhang Y, Liu D, Wang L, Wang S, Yu X, Dai E, Liu X, Luo S, Jiang W. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease. J Mol Med (Berl), 2015; 93: 1381-1390

91) Chen H, Wang L, Jiang J. Transcriptome and miRNA network analysis of familial hypercholesterolemia. Int J Mol Med, 2014; 33: 679-676

92) Guney E, Menche J, Vidal M, Barási AL. Network-based in silico drug efficacy screening. Nat Commun, 2016; 7: 10331

93) Björnsson E, Borén J, Mardinoglu A. Personalized Cardiovascular Disease Prediction and Treatment-A Review of Existing Strategies and Novel Systems Medicine Tools. Front Physiol, 2016; 7: 2

94) Ozdemir ES, Halakou F, Nussinov R, Gursoy A, Keskin O. Methods for Discovering and Targeting Druggable Protein-Protein Interfaces and Their Application to Repurposing. Methods Mol Biol, 2019; 1903: 1-21

95) Silverman EK, Llosalzo J. Developing new drug treatments in the era of network medicine. Clin Pharmacol Ther, 2013; 93: 26-28

96) Lempiäinen H, Brænne I, Michoel T, Tragante V, Vilne CVgenes@target consortium, Pasterkamp G, Watkins H, Frölich E, Scherer P, Wieland R, Tan ES, Nieuwland W, Willem-Boer RA, van den Heuvel AF, van der Werf HW, Schröter RA, Pundziute G, Tershakovec AM, Braunwald E. Reduction in Total Cardiovascular Events With Ezetimibe/Simvastatin Post-Acute Coronary Syndrome: The IMPROVE-IT Trial. J Am Coll Cardiol, 2016; 67: 353-361

97) Fang J, Cai C, Chai Y, Zhou J, Huang Y, Gao L, Wang Q, Cheng F. Quantitative and systems pharmacology 4. Network-based analysis of drug pleiotropy on coronary artery disease. Eur J Med Chem, 2019; 161: 192-204

98) Crescenti A, Solà R, Valls RM, Caimari A, Del Bas JM, Anguera A, Angles N, Arola L. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial. PLoS One, 2013; 8: e65744

99) Allen SC, Mamotte CDS. Pleiotropic and Adverse Effects of Statins-Do Epigenetics Play a Role? J Pharmacol Exp Ther, 2017; 362: 319-326

100) Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, Nakaya N, Nishimoto S, Muranaka M, Yamamoto A, Mizuno K, Ohashi Y; MEGA Study Group. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet, 2006; 368: 1155-1163

101) Mizuno K, Nakaya N, Ohashi Y, Tajima N, Kushiro T, Teramoto T, Uchiyama S, Nakamura H; MEGA Study Group. Usefulness of pravastatin in primary prevention of cardiovascular events in women: analysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA study). Circulation, 2008; 117: 494-502

102) Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JY, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med, 2008; 359: 2195-2207

103) Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, López-Jaramillo P, Leiter LA, Dans A, Avezum A, Piegas LS, Parkhomenko A, Keltai K, Keltai M, Sliva K, Peters RJ, Held C, Chazova I, Yusoff K, Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Sanchez-Vallejo G, Mckelvie R, Pogue J, Jung H, Gao P, Díaz R, Lonn E; HOPE-3 Investigators. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med, 2016; 374: 2021-2031

104) Ostadal P, Alan D, Veyjova J, Kukacka J, Macek M, Hajek P, Mates M, Kvalip M, Kettner J, Wiend M, Aschermann O, Slaby J, Holm F, Telekes P, Horak D, Blasko P, Zemanek D, Veselka J,cepova J. Fluuvastatin in the first-line therapy of acute coronary syndrome: results of the multicenter, randomized, double-blind, placebo-controlled trial (the FACS-trial). Trials, 2010; 11: 61

105) Murphy SA, Cannon CP, Blazing MA, Giugliano RP, White JA, Lokhnygina Y, Reist C, Im K, Bohula EA, Isaza D, Lopez-Sendon J, Dellborg M, Kher U, Tershakovec AM, Braunwald E. Reduction in Total Cardiovascular Events With Ezetimibe/Simvastatin Post-Acute Coronary Syndrome: The IMPROVE-IT Trial. J Am Coll Cardiol, 2016; 67: 353-361

106) Wongcharoen W, Jai-Aue S, Phrommintikul A, Nawarawong W, Wogridpoonpol S, Tepsuwan T, Sukonthasarn A, Apaijai N, Chattipakorn N. Effects of curcuminoids on frequency of acute myocardial infarction after coronary artery bypass grafting. Am J Cardiol, 2012; 110: 40-44

107) Sommese L, Benincasa G, Lanza M, Sorriento A, Schiano C, Luccchesi R, Alfano R, Nicoletti GF, Napoli C. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complications, 2018; 32: 1076-1084

108) Preis D, Lloyd SM, Ford I, McMurray JJ, Holman RR, Welsh P, Fisher M, Packard CJ, Sattar N. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol, 2014; 2: 116-124

109) Lexis CP, van der Horst IC, Lipsic E, Wieringa WG, de Boer RA, van den Heuvel AF, van der Werf HW, Schurer RA, Pundziute G, Tan ES, Nieuwland W, Willemesen HM, Dorhout B, Molmans BH, van der Horst-Schrivers AN, Wolffensuttel BH, ter Horst GJ, van Rossum AC, Tijsen JG, Hillege HL, de Smet BJ, van der
Harst P, van Veldhuisen DJ; GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA, 2014; 311: 1526-1535

110) Messaoudi S, Nederlof R, Zuurbier CJ, van Swieten HA, Pickkers P, Noyez L, Dieker HJ, Coenen MJ, Donders AR, Vos A, Rongen GA, Riksen NP. Effect of metformin pretreatment on myocardial injury during coronary artery bypass surgery in patients without diabetes (Met-CAB): a double-blind, randomised controlled trial. Lancet Diabetes Endocrinol, 2015; 3: 615-623
Supplementary Fig. 1. A. Single wrong projection of a coronary artery could lead to a mistake in the evaluation of stenosis

(A) X-ray beam impact straightened right coronary artery perpendicular to major axis of wide-appearing patent lumen; (B) a 90°-shifted projection shows a stenotic lumen. The right evaluation of stenosis could only be derived by directly measuring area of patent lumen, only achievable in a computer assisted three-dimensional study like CCTA. On the right side of the re-elaborations (A and B) are shown three cross sections of the coronary artery conducted at the point of maximum stenosis, as well as in the immediately preceding and following tract: the width of the lumen is clearly demonstrated, but also the atheromatous plaque can also be seen in its peripheral development (open arrows). Note the optimal representation of stent in the proximal tract of coronary artery, with absolute lack of artifacts projecting in intrastent lumen. B. ¹⁸F-FDG PET/CT: ¹⁸F-FDG increased uptake on Abdominal Aorta plaque. A) CT calcific plaque; B) ¹⁸F-FDG PET/CT Fusion Imaging; C) ¹⁸F-FDG PET.
Supplementary Fig. 2. Workflow of network pharmacology approach in CHD

In the current used reductionist approach, after patient clinical evaluation using laboratory and non-invasive imaging tests, the risk to develop clinical manifestations of CHD and the clinical decision making is estimated on the basis of the current guidelines and risk scores where classical cardiovascular risk factors are the predominant indicators leading to the "one-size-fits-all" therapeutic strategies. In the network approach, big data and clinical variables are collected as well as information about drugs and drug targets and integrated through machine learning into network models to create individual molecular/pathway signatures and to identify specific drug sensitive-clinical phenotypes matched to previously defined disease profiles that can guide the selection of tailored treatments. The appropriate tailored drug or medical procedure (i.e. PTCA) is then selected based on this match, to improve the efficacy of treatment and reduce the probability of side effects and recurrence.
Supplementary Table 1. Ongoing clinical trials investigating useful epigenetic tags in primary and secondary prevention of CHD

PRIMARY PREVENTION

Epigenetic tag	Participants	Samples	Description	Status	NCT
DNA methylation	200	Blood samples, aortic tissues	To investigate the relationship between DNA methylation the degree of coronary atherosclerosis in subjects undergoing carotid ultrasound and coronary angiography	Recruiting	NCT03462277
microRNAs	80	Plasma	To determine the levels of cardiospecific circulating miRNAs in patients with different stages of atherosclerosis according to 640-slice multispiral CT	Recruiting	NCT03855891
	24	Plasma	MiR-8059 down-regulation is correlated to coronary calcification detected by CTCA	Completed	NCT01992848 80
	4,000	Plasma	To determine the expression level of miR-320a as effective biomarker in evaluating the diagnosis of CHD	Recruiting	NCT02751060
	100	Plasma	To evaluate the potential diagnostic and prognostic value of circulating miRNAs compared with cTnI for suspected ACS	Recruiting	NCT02755207

SECONDARY PREVENTION

Epigenetic tag	Participants	Samples	Description	Status	NCT
microRNAs	460	Plasma	To identify circulating miRNA expression profiles that may serve as a sensitive and reliable biomarker to predict future adverse CV outcomes and death in patients with established CHD	Recruiting	NCT03635255
	4,000	Plasma	To determine whether the expression level of miR-320a are effective as biomarker for prognosis and treatment effects in CHD	Recruiting	NCT02751060
	100	Plasma	To research the vulnerability of ateromatous plaque, based on multiomics data (miRNA signature) and imaging data, in patients with previous ACS (UA or MI) as well as the evaluation of MACEs	Recruiting	NCT03391908
	100	Plasma	To evaluate CHD progression in ACS patients, and to investigate the predictive value of metabolic profiles, patterns of circulating miRNAs and inflammatory mediators on CHD progression evaluated by PET/CT. To evaluate the progression of disease within the infarct-related vessel treated with the use of bioresorbable stent/bioresorbable polymer stents	Not yet recruiting	NCT03890822

ACS: acute coronary syndrome; cTnI: cardiac Troponin I; CT: computed tomography; CTCA: computed tomography coronary angiography; CHD: coronary heart disease; MACE: major cardiovascular events; MI: myocardial infarction; PET: positron emission tomography; UA: unstable angina.