Failure to Medically Optimize Before Total Hip Arthroplasty: Which Modifiable Risk Factor Is the Most Dangerous?

Joseph M. Statz, MD a, Susan M. Odum, PhD b, c, Nicholas R. Johnson, MD c, Jesse E. Otero, MD, PhD b, c, d, *

a South Bend Orthopaedics, South Bend, IN, USA
b OrthoCarolina Research Institute, Charlotte, NC, USA
c Department of Orthopaedic Surgery, Atrium Health Musculoskeletal Institute, Charlotte, NC, USA
d OrthoCarolina Hip and Knee Center, Charlotte, NC, USA

Introduction

Primary total hip arthroplasty (THA) is one of the most successful surgeries in the world today and is associated with extremely high postoperative patient satisfaction rates and functional scores with a low complication rate. However, when complications do occur, they can be devastating for the patient and surgeon alike. The most common complications seen after THA include infection, periprosthetic fracture, instability, aseptic loosening, transfusion, and deep venous thrombosis [1–4].

Recently, there has been a movement toward ensuring patients are preoperatively medically optimized before undergoing THA [5–15]. This movement is based on increasing evidence that patients with complex medical problems and/or modifiable behaviors are at higher risk of complications after THA [11,16–25]. Although not all risk factors are modifiable, certain ones are. There is mounting evidence that smoking, abnormal body mass index (BMI), uncontrolled diabetes, and poor nutritional status are associated with complications after total hip arthroplasty (THA). The goal of the present study was to evaluate the consequences of failure to medically optimize Medicare-eligible patients with respect to these key modifiable health targets by assessing complications in the early postoperative period after THA.

Methods: The National Surgical Quality Improvement Program database was queried for all primary THAs performed in 2018. Data were collected on preoperative serum albumin, BMI, diabetes, and tobacco use as well as postoperative infections, readmissions, complications, and mortality. We identified 47,924 THA patients with a median BMI of 29 kg/m² and age of 72 years, and 60% of whom were female.

Results: We found that preoperative albumin <3.5 g/dL, BMI >40 kg/m², tobacco use, and diabetes were all individually associated with increased risk of postoperative complications. Serum albumin <3.5 g/dL was the greatest overall risk factor for infection (odds ratio [OR]: 3.1, 95% confidence interval [CI]: 2.3–4.4, \(P < .0001 \)), readmission (OR: 2.2, 95% CI: 1.9–2.5, \(P < .0001 \)), any complication (OR: 4.2, 95% CI: 3.8–4.6, \(P < .0001 \)), and mortality (OR: 7.5, 95% CI: 5.3–10.6, \(P < .0001 \)).

Conclusions: Low albumin, elevated BMI, tobacco use, and diabetes are associated with increased risk of postoperative infection, readmission, any complication, and mortality after primary THA. Low albumin poses the greatest risk of these. Preoperative optimization should be obtained in all patients before elective surgery, and the final decision for surgery should be individually made between a surgeon and patient.

Level of Evidence: IV.

© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
been introduced with the goal of reducing complications and cost through preoperative patient health optimization [69]. The goal of the present study was to evaluate the consequences of failure to optimize Medicare-eligible patients in key modifiable health targets by assessing complications in the early postoperative period after THA. We hypothesized that a greater burden of nonoptimized targets would result in a higher complication rate. Furthermore, we believed that preoperative optimization of these risk factors would decrease the risk of complications compared with patients who did not undergo preoperative optimization.

Material and methods

The data for this study were sourced from the 2017 and 2018 Participant Use Data Files (PUF) from the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database. The PUFs are patient-level, aggregate data that are compliant with the Health Insurance Portability and Accountability Act. As such, PUFs do not contain any patient or hospital identifiers, and with the execution of a data use agreement, any research with these data do not require the review and approval of an institutional review board. All primary THA surgeries between January 2017 and December 2018 were identified using the 27,101th Procedural Terminology code, and data on patient medical problems, BMIs, laboratory values, and complications were extracted and analyzed.

Outcome variables and risk factors

We extracted patient data on sex, age, BMI, serum albumin levels, current tobacco use, and diagnosis of diabetes along with insulin dependence. We additionally recorded the occurrence of infection, readmission, any complication, and mortality within 90 days postoperatively. The category “any complication” encompassed the following complications: superficial and deep wound infection, organ space infection, wound dehiscence, pneumonia, unplanned intubation, deep venous thrombosis, pulmonary embolism, renal insufficiency, stroke, coma, cardiac arrest, myocardial infarction, postoperative transfusion, implant failure, sepsis, septic shock, and mortality.

Patient demographics

We identified a total of 85,880 THAs. After excluding 37,956 patients younger than 65 years, a total of 47,924 THAs were included for analysis. The median BMI was 28.7 (interquartile range: 25.2-32.8 kg/m²), age was 72 (interquartile range: 68-78) years, and 60.2% were female.

Statistical methods

BMI, albumin, tobacco use, and diabetes were analyzed as dichotomous variables. BMI <40 kg/m² was compared to BMI ≥40 kg/m², albumin <3.5 g/dL was compared to ≥3.5 g/dL, current use of tobacco was compared to no current use, and having insulin-dependent diabetes was compared to having non–insulin-dependent diabetes as well as to not having diabetes. If a patient was missing data for one or more of these risk factors, they were considered not medically optimized if they had any risk factor that was not optimized. If they had missing data but were optimized in all the risk factors for which data were present, they were excluded from analysis of patients who were medically optimized vs those not medically optimized [2].

At the bivariate level, categorical variables were statistically compared using Chi-squared tests. For all categorical data, frequency and percentages are reported. Four multivariable logistic regression models were used to evaluate the risk factors associated with infection, readmission, any complication, and mortality. Model testing revealed multicollinearity when the optimized variable was included with each individual risk factor. Furthermore, model fit statistics indicated that the regression models that included BMI, albumin, tobacco use, and diabetes were the best fitting models. For all logistic regression models, odds ratios (ORs) and Wald 95% confidence intervals (CIs) are reported. An apriori level of significance of 0.05 was defined. All data were managed and analyzed using SAS/STAT software version 9.4 (SAS Institute Inc., Cary, NC).

Sources of funding

No external sources of funding were used for this study.

Results

Risk factor optimization

Of the 47,924 THAs in this study, 28,468 (59.4%) had data available to determine preoperative medical optimization. Of these, 35,251 (70.3%) were considered optimized with BMI <40 kg/m², albumin ≥3.5 g/dL, no current tobacco use, and no diabetes. Looking at each risk factor individually, BMI data were available for 47,541 (99.2%) THAs, albumin data were available for 25,641 (53.5%) THAs, and tobacco use and diabetes data were available for 47,924 (100%) THAs. Of the THAs with data available, there were 2292 (4.8%) THAs with BMI ≥40 kg/m², 2242 (8.7%) THAs with albumin <3.5 g/dL, 3177 (6.6%) THAs who were current tobacco users, 1628 (3.4%) THAs with insulin-dependent diabetes, and 5187 (10.8%) THAs with non–insulin-dependent diabetes.

Risk factors for infection

Infection was more common in the presence of any of the studied risk factors. The risk factor that was most highly correlated with postoperative infection was BMI ≥40 kg/m² (OR: 3.196, 95% CI: 2.32-4.404, P < .0001), followed by albumin <3.5 g/dL (OR: 3.147, 95% CI: 2.419-4.093, P < .0001), diabetes (OR: 1.392, 95% CI: 1.065-1.818, P = .0011), and tobacco use (OR: 1.267, 95% CI: 0.858-1.871, P = .2727). Patients who were not optimized preoperatively were more likely to develop an infection postoperatively as compared to patients who were optimized preoperatively (2.5% vs 0.9%, respectively, P < .0001). Infection risk data are summarized in Table 1.

Risk factors for readmission

Readmission was more common in the presence of any of the studied risk factors. The risk factor that was most highly correlated with postoperative readmission was albumin <3.5 g/dL (OR: 2.173, 95% CI: 1.865-2.532, P < .0001), followed by BMI ≥40 kg/m² (OR: 1.79, 95% CI: 1.439-2.226, P < .0001), tobacco use (OR: 1.389, 95% CI: 1.13-1.706, P = .0003), and diabetes (OR: 1.225, 95% CI: 1.057-1.419, P < .0001). Patients that were not optimized preoperatively were more likely to be readmitted postoperatively than patients who were optimized preoperatively (7.0% vs 4.3%, respectively, P < .0001). Readmission risk data are summarized in Table 2.
Postoperative complications were more common in the presence of any of the studied risk factors. The risk factor that was most highly correlated with any complication was albumin <3.5 g/dL (OR: 4.162, 95% CI: 3.759-4.609, P < .0001), followed by diabetes (OR: 1.853, 95% CI: 1.251-2.742, P < .0001), tobacco use (OR: 1.192, 95% CI: 1.024-1.387, P = .0003), and BMI >40 kg/m² (OR: 1.185, 95% CI: 1.094-1.413, P = .0003). Patients who were not optimized preoperatively were more likely to develop a complication postoperatively than patients who were optimized preoperatively (16.1% vs 8.8%, respectively, P < .0001). Complication risk data are summarized in Table 3.

Risk factors for mortality

Mortality was more common in the presence of any of the studied risk factors. The risk factor that was most highly correlated with postoperative mortality was albumin <3.5 g/dL (OR: 7.477, 95% CI: 5.251-10.646, P < .0001), followed by diabetes (OR: 1.398, 95% CI: 1.024-1.387, P = .0003), and tobacco use (OR: 1.216, 95% CI: 1.094-1.413, P = .0003). Patients that were not optimized preoperatively were more likely to die postoperatively than patients who were optimized preoperatively (10.1% vs 3.3%, respectively, P < .0001). Mortality risk data are summarized in Table 4.

Discussion

In this article, we performed a retrospective review of NSQIP data including all THAs performed in 2018 and sought to determine the increased risk associated with certain preoperative variables and their impact on postoperative outcomes. We found that preoperative albumin <3.5 g/dL, BMI >40 kg/m², tobacco use, and diabetes were associated with increased risk of postoperative infection, readmission, any complication, and mortality.

The finding that these risk factors were associated with adverse outcomes is consistent with previous studies [1-4]; [11,26-43]; [44-57]. It is unsurprising that these risk factors would be associated with poorer outcomes after THAs as they are harbingers of impaired wound healing and poor general state of health. The present study lends further evidence that less healthy patients tend to have a higher rate of postoperative complications.

Importantly, we found that preoperative serum albumin <3.5 g/dL was the variable most predictive of these postoperative complications despite being tested for in the smallest number of patients. Serum albumin <3.5 g/dL had odds ratios of 2.317 to 7.221 for the complications examined in this study and a complication rate of up to 17% (Table 3). This finding has led to a change in the senior author’s practice, and now preoperative albumin levels are drawn on every patient undergoing THA. If albumin levels are low, patients are started on supplemental nutritional shakes twice daily and instructed to be in a low-inflammatory diet during their

Table 1

Risk factors for postoperative infection.

Demographic variable	Infection, n (%)	No infection, n (%)	OR (95% CI)	P value
Albumin				
<3.5 g/dL	231 (10.3)	2011 (89.7)	2.173 (1.865-2.532)	P < .0001
≥3.5 g/dL	2134 (4.5)	22348 (95.5)	1.79 (1.439-2.226)	P < .0001
BMI				
>40 kg/m²	168 (7.3)	2124 (92.7)	1.389 (1.13-1.706)	P = .0003
<40 kg/m²	1966 (4.3)	43283 (95.7)		
Tobacco use	2154 (4.5)	45770 (95.5)		
Yes	184 (5.8)	2993 (94.2)		
No	1570 (4.4)	42777 (95.6)		
Diabetes	2154 (4.5)	45770 (95.5)		
Insulin-dependent	118 (7.2)	1510 (92.8)	1.225 (1.057-1.419)	P < .0001
Non-insulin-dependent	258 (5.0)	4929 (95.0)		
No	1778 (4.3)	39331 (95.7)		
Optimized	1444 (5.1)	27824 (94.9)		
No	502 (7.0)	7852 (93.0)		
Yes	852 (4.3)	19172 (95.7)		P < .0001

Table 2

Risk factors for postoperative readmission.

Demographic variable	Readmission, n (%)	No readmission, n (%)	OR (95% CI)	P value
Albumin	1282 (5.0)	24359 (95.0)		
<3.5 g/dL	231 (10.3)	2011 (89.7)		
≥3.5 g/dL	1051 (4.5)	22348 (95.5)		
BMI				
>40 kg/m²	2134 (4.5)	45407 (95.5)		
<40 kg/m²	1966 (4.3)	43283 (95.7)		
Tobacco use	2154 (4.5)	45770 (95.5)		
Yes	184 (5.8)	2993 (94.2)		
No	1570 (4.4)	42777 (95.6)		
Diabetes	2154 (4.5)	45770 (95.5)		
Insulin-dependent	118 (7.2)	1510 (92.8)		
Non-insulin-dependent	258 (5.0)	4929 (95.0)		
No	1778 (4.3)	39331 (95.7)		
Optimized	1444 (5.1)	27824 (94.9)		
No	502 (7.0)	7852 (93.0)		
Yes	852 (4.3)	19172 (95.7)		P < .0001
Risk factors for postoperative mortality.

Table 3
Risk factors for postoperative complication.

Demographic variable	Complication, n (%)	No complication, n (%)	OR (95% CI)	P value
Albumin	2853 (11.1)	22788 (88.9)		
<3.5 g/dL	706 (31.5)	1536 (68.5)	4.162 (3.759-4.609)	P < .001
≥3.5 g/dL	2147 (9.2)	21252 (90.8)		
BMI	4634 (9.7)	42907 (90.3)	1.185 (0.994-1.413)	P = .0003
<40 kg/m²	274 (11.9)	2018 (88.1)		
<40 kg/m²	4360 (9.6)	40889 (90.4)		
Tobacco use	4717 (9.8)	43207 (90.2)		
Yes	335 (10.5)	2842 (89.5)	1.192 (1.024-1.387)	P = .1693
No	4382 (9.8)	40365 (90.2)		
Diabetes	4717 (9.8)	43207 (90.2)		
Insulin-dependent	277 (17.0)	1351 (83.0)	1.445 (1.304-1.601)	P < .0001
Non–insulin-dependent	641 (12.4)	4546 (87.6)		
No	3799 (9.2)	37310 (90.8)		
Optimized	3118 (11.0)	25350 (89.0)		
No	1359 (16.1)	7085 (83.9)	(-)	
Yes	1759 (8.8)	18265 (91.2)		

There are many weaknesses of this study. First, its retrospective nature may make it susceptible to selection bias, selecting which patients had preoperative values obtained. However, data are prospectively collected, which mitigates this weakness, and data concerning BMI, tobacco use, and diabetes was available for almost all patients. Second, the presence of diabetes was used in this study as a risk factor, but this was not available in the NSQIP database. However, we aimed to give a broad overview of risk factors and postoperative complications, and getting into such specifics was outside the aims of this study. Sixth, this study attempted to determine risk associate with a failure to optimize patients before THA, but the ability to truly determine this from the NSQIP database could be called into question because of the limitations of the database. This database is only able to give us demographic and laboratory data on patients during the perioperative time. It does not tell us whether any attempt at true preoperative optimization of the aforementioned risk factors was attempted by the patient’s health-care team preoperatively. Thus, it is possible that our data more accurately represent increased risk associated with poor patient selection rather than poor patient optimization. In addition, follow-up is only available short term and is fallible with regard to coding and data entry error.

Strengths of this study include its large numbers, the analysis of multiple risk factors, analysis based on whether a patient was preoperatively optimized or not, and the determination that serum albumin <3.5 g/dL is the most important risk factor for postoperative complications.

Table 4
Risk factors for postoperative mortality.

Demographic variable	Mortality, n (%)	No mortality, n (%)	OR (95% CI)	P value
Albumin	137 (0.5)	25504 (99.5)		
<3.5 g/dL	63 (2.8)	2179 (97.2)	7.477 (5.251-10.646)	P < .0001
≥3.5 g/dL	74 (0.3)	23325 (99.7)		
BMI	193 (0.8)	47334 (99.2)		
<40 kg/m²	9 (0.4)	2283 (99.6)	1.398 (0.672-2.906)	P = .9183
<40 kg/m²	184 (0.4)	45063 (99.6)		
Tobacco use	202 (0.4)	47722 (99.6)		
Yes	12 (0.4)	3165 (99.6)	1.216 (0.63-2.348)	P = .6934
No	190 (0.4)	44557 (99.6)		
Diabetes	202 (0.4)	47722 (99.6)		
Insulin-dependent	23 (1.4)	1605 (98.6)	1.853 (1.251-2.742)	P < .0001
Non–insulin-dependent	77 (1.9)	7761 (98.1)		
No	153 (0.4)	40956 (99.6)		
Yes	144 (0.5)	28324 (99.5)	(-)	
Optimized	84 (1.0)	8360 (99.0)		
Yes	60 (0.3)	19964 (99.7)	(-)	
Our current practice and recommendation for preoperative optimization is to obtain a thorough history (including tobacco use and history of diabetes), physical examination (including BMI), and x-ray to determine if a patient would benefit from elective primary THA. If the patient’s BMI >40 kg/m², if they currently use tobacco, or if the patient has diabetes with a hemoglobin A1C > 8.0%, the patient is informed that his or her risk of surgery is elevated, and weight loss, tobacco cessation, and/or improved diabetes control need to occur before THA to minimize risk. If these factors are optimized, laboratory work is obtained including serum albumin. If the albumin is <3.5 g/dL, surgery is not delayed, but patients are started on supplementation as detailed previously. All THA candidates are sent to a primary care physician for preoperative medical optimization. In addition, we ensure that the patient has other resources available to aid in optimization including a referral to a nutritionist and smoking cessation program.

We do recognize that there is a difference between being medically optimized and meeting all these cutoffs. For example, some patients, due to various medical conditions, may be as optimized as possible with a serum albumin level of <3.5 g/dL. Therefore, we believe it is important to individualize decision-making and to note that the final decision for surgery should be made between an individual surgeon and patient. If nothing else, these data can help guide this individualized decision-making to aid surgeons and patients in making informed decisions for their THAs. Nonetheless, we do believe that preoperative optimization is vital and that it is important to improve modifiable risk factors as much as possible to decrease risk, even if recommended objective cutoffs are not met [57–67].

Conclusions

Preoperative serum albumin <3.5 g/dL, BMI >40 kg/m², tobacco use, and diabetes are associated with increased risk of postoperative infection, readmission, any complication, and mortality after primary THA. Albumin <3.5 g/dL is the most predictive of adverse outcomes. Preoperative optimization should be obtained in all patients before elective surgery, and the final decision for surgery should be individually made between a surgeon and patient.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

References

[1] Angemeier MR, Fehring TK, Masonis JL, Mason JB, Odum SM, Springer BD. Early failure of primary total hip arthroplasty: is surgical approach a risk factor? J Arthroplasty 2018;33(6):1780.
[2] Barnett SL, Peters DJ, Hamilton WG, Ziran NM, Gorab RS, Matta JM. Is the anterior approach safe? Early complication rate associated with 5057 consecutive primary total hip arthroplasty procedures performed using the anterior approach. J Arthroplasty 2016;31(10):2291.
[3] Kurtz SM, Lau EC, Adler EM, Kolisek FR, Manley MT. Which clinical and patient factors influence the national economic burden of hospital readmissions following total joint arthroplasty? J Orthop Relat Res 2017;475(12):2926.
[4] George J, Chughtai M, Khlopas A, et al. Readmission, recuperation, and complications: total hip vs total knee arthroplasty. J Arthroplasty 2018;33(2):655.
[5] Rudasill SE, Ng A, Kamath AF. Preoperative serum albumin levels predict treatment cost in total hip and knee arthroplasty. Clin Orthop Surg 2018;10(4):398.
[6] Lavernia CJ, Sierra RJ, Baerga L. Nutritional parameters and short term outcome in arthroplasty. J Am Coll Nutr 1999;18(3):274.
[7] Schroer WC, Diesfeld PJ, LeMarr AR, Morton DJ, Reedy ME. Modifiable risk factors in primary joint arthroplasty increase 90-day cost of care. J Arthroplasty 2018;33(9):2740.
Yang L, Sun Y, Li G, Liu J. Is hemoglobin A1c and perioperative hyperglycemia an explanation for worse surgical outcomes? A large database study. Clin Orthop Relat Res 2019;477(3):523.

Zhang JC, Matelski J, Gandhi R, Jackson T, Urbach D, Cram P. Can patients explain the obesity paradox in orthopaedic hip surgery? An analysis of the ACS-NSQIP registry. Clin Orthop Relat Res 2018;476(5):564.

Electricula AJ, Narkumann R, Huddleston 3rd JI, Maloney WJ, Goodman SB, Amanullah DF. Obesity is associated with early total hip revision for aseptic loosening. J Arthroplasty 2016;31(9 Suppl):217.

Chen MJ, Blouwnick S, Reseter L, et al. Strategies for weight reduction prior to total joint arthroplasty. J Bone Joint Surg Am 2018;100(21):1888.

Goodnough LH, Finlay AK, Huddleston 3rd JI, Goodman SB, Maloney WJ, Amanullah DF. Obesity is independently associated with early aseptic loosening in primary total hip arthroplasty. J Arthroplasty 2018;33(3):882.

Zusmanovich M, Kester BS, Schwarzkopf R. Postoperative complications of total joint arthroplasty in obese patients stratified by BMI. J Arthroplasty 2018;33(3):856.

Mouchi S, Whitehouse MR, Sayers A, Hunt LP, MacGregor A, Blom AW. The association of body mass index with risk of long-term revision and 90-day mortality following primary total hip replacement: findings from the national joint registry for England, Wales, northern Ireland and the Isle of Man. J Bone Joint Surg Am 2018;100(24):2140.

Sayed-Noor AS, Mukka S, Mohaddes M, Kærholm J, Rolfsøn O. Body mass index is associated with risk of reoperation and revision after primary total hip arthroplasty: a study of the Swedish Hip Arthroplasty Register including 83,146 patients. Acta Orthop 2019;90(3):220.

Gurunathan U, Anderson C, Berry KE, Whitehouse SL, Crawford RW. Body mass index and in-hospital postoperative complications following primary total hip arthroplasty. Hip Int 2018;28(6):613.

Maradit Kremers H, Levalleau LW, Mabry TM, Berry DJ, Berbari EF, Osman DR. Diabetes mellitus, hyperglycemia, hemoglobin A1C and the risk of prosthetic joint infections in total hip and knee arthroplasty. J Arthroplasty 2015;30(3):439.

Maradit Kremers H, Schleck CD, Levalleau EA, Larson DR, Van Wijnen AJ, Levalleau DG. Diabetes mellitus and hyperglycemia and the risk of aseptic loosening in total joint arthroplasty. J Arthroplasty 2017;32(95):S251.

Shohat N, Tarabichi M, Tischler EH, Jabbour S, Parvizi J. Serum fructosamine: a simple and inexpensive test for assessing preoperative glycemic control. J Bone Joint Surg Am 2017;99(22):1900.

J Bone Joint Surg Am 2018;100(21):1888.

Kulikarni A, Jameson SS, James P, Woodcock S, Muller S, Reed MR. Does bariatric surgery prior to lower limb joint replacement reduce complications? A meta-analysis. J Arthroplasty 2019;34(3):577.

McLawhorn AS, Levack AE, Lee Y-Y, Ge Y, Do H, Dodwell ER. Bariatric surgery improves outcomes after lower extremity arthroplasty in the morbidly obese: a propensity score-matched analysis of a New York statewide database. J Arthroplasty 2018;33(7):2062.

Werner BC, Kurkis GM, Gwathmey FW, Browne JA. Bariatric surgery prior to total knee arthroplasty is associated with fewer postoperative complications. J Arthroplasty 2015;30(9 Suppl):81.

Rudasill SE, Ng A, Kamath AF. Preoperative serum albumin levels predict the operative impact of diabetes, chronic kidney disease, hemodialysis, and renal transplant after total hip arthroplasty. J Arthroplasty 2017;32(95):S135.

Jamsen E, Nevalainen P, Eskelinen A, Huotari K, Kalliovallakama J, Moilanen T. Obesity, diabetes, and preoperative hyperglycemia as predictors of peri-prosthetic joint infection: a single-center analysis of 7181 primary hip and knee replacements for osteoarthritis. J Bone Joint Surg Am 2012;94(14):e101.

Budasil SE, Ng A, Kamath AF. Preoperative serum albumin levels predict treatment cost in total hip and knee arthroplasty. Clin Orthop Surg 2018;10(4):298.

Laverness CJ, Sierra RJ, Baerja L. Nutritional parameters and short-term outcome in arthroplasty. J Am Coll Nutr 1999;18(3):274.

Bala A, Ivanov DV, Huddleston 3rd JI, Goodman SB, Maloney WJ, Amanullah DF. The cost of malnutrition in total joint arthroplasty. J Arthroplasty 2020;35(4):926.

Schoor WC, LeMarr AR, Mills K, Childress AL, Morton DJ, Reedy ME. 2015 Chitranjan S. Ranawat Award: elective joint arthroplasty outcomes improve in malnourished patients with nutritional intervention: a prospective population analysis demonstrates a modifiable risk factor. Bone Joint 2019;101-B(7 Supple_C):17.

Nearing 2nd EE, Santos TM, Topolksi MS, Borgert AJ. Kallies KJ, Kothari SN. Benefits of bariatric surgery before elective total joint arthroplasty: is there a role for weight loss optimization? Surg Obes Relat Dis 2017;13(3):457.

Springer BD. Modifying risk factors for total joint arthroplasty: strategies that work. J Arthroplasty 2016;31(8):1628.

Lee SM, Landry J, Jones FM, Buhmann O, Morley-Forster P. Long-term quit rates after a perioperative smoking cessation randomized controlled trial. Anesth Analg 2015;120(3):582.

Young-Well KCS, Adams SR, Fogelberg R, Goldstein AA, Preston PG. Evaluation of a pilot perioperative smoking cessation program: a pre-post study. J Surg Res 2019;237:30.

Li S, Luo X, Sun H, Wang K, Zhang K, Sun X. Does prior bariatric surgery improve outcomes following total joint arthroplasty in the morbidly obese? A meta-analysis. J Arthroplasty 2019;34(3):577.

Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection: a single-center analysis of 7181 primary hip and knee replacements for osteoarthritis. J Bone Joint Surg Am 2012;94(14):e101.

Akhavan S, Nguyen L-C, Chan V, Saleh J, Bozic KJ. Impact of smoking cessation on outcome or death following primary total joint arthroplasty. J Arthroplasty 2016;31(9 Suppl):217.

Kildow BJ, Agaba P, Moore BF, Hallows RK, Bolognesi MP, Seyler TM. Postoperative impact of diabetes, chronic kidney disease, hemodialysis, and renal transplant after total hip arthroplasty. J Arthroplasty 2017;32(95):S135.