Uso Ininterrupto de Anticoagulantes Orais na Ablação de Flutter Atrial Istmo-Cavotricuspídeo Dependente: Coorte Unicêntrica de 154 Pacientes

Uninterrupted Use of Oral Anticoagulants for the Ablation of Atrial Flutter: A Single Center Cohort of 154 Patients

Tiago Luiz Luz Leiria, Alexandre Kreling Medeiros, Eduardo Dytz Almeida, Antonio Lessa Gaudie Ley, Catarine Benta Lopes dos Santos, Roberto Toffani Sant’Anna, Marcelo Lapa Kruse, Leonardo Martins Pires, Gustavo Glotz de Lima

Instituto de Cardiologia / Fundação Universitária de Cardiologia – IC/FUC, Porto Alegre, RS – Brasil

Resumo

Fundamento: O uso ininterrupto de anticoagulação oral (ACO) com antagonistas da vitamina K (AVKs) para procedimentos de eletrofisiologia está sendo cada vez mais recomendado. A prática clínica em nosso serviço é de uso continuado dessas drogas para ablação de flutter atrial. Existem poucas evidências quanto ao uso ininterrupto dos anticoagulantes orais não antagonistas da vitamina K (NOACs) nesse cenário.

Objetivos: Comparar as taxas de complicações relacionadas ao uso ininterrupto de diferentes tipos de anticoagulantes orais em pacientes referidos para ablação por flutter atrial (FLA).

Métodos: Coorte histórica e unicêntrica dos procedimentos de ablação por FLA realizados no período de novembro de 2012 a abril de 2016. O desfecho primário foi o de ocorrência de complicações hemorrágicas ou embólicas durante o procedimento. O desfecho secundário foi o de ocorrência de acidente vascular cerebral (AVC) ou acidente isquêmico transitório (AIT) no acompanhamento. O nível de significância estatística adotado foi de 5%.

Resultados: Foram incluídas 288 ablações por FLA; 154 foram feitas com uso ininterrupto de ACO (57,8% com AVK e 42,2% com NOAC). A idade média foi de 57 ± 13 anos. A taxa de complicação hemorrágica durante o procedimento foi de 3% em cada grupo (p = NS). A taxa de AVC/AIT foi, respectivamente, de 56/1.000-pessoas-ano no grupo AVK contra zero/1.000-pessoas-ano no grupo NOAC (p = 0,02).

Conclusão: Em nossa população não ocorreram complicações hemorrágicas relacionadas ao procedimento com uso de ACO de forma ininterrupta, incluindo NOACs. Houve maior ocorrência de AVC/AIT no seguimento no grupo de pacientes em uso de AVK, contudo essa diferença pode não ser decorrente apenas do tipo de ACO em uso. (Arq Bras Cardiol. 2018; 110(2):151-156)

Palavras-chave: Anticoagulantes; Vitamina K; Ablação por Cateter; Flutter Atrial; Tromboembolismo.

Abstract

Background: The uninterrupted use of oral anticoagulation (OAC) with vitamin K antagonists (VKAs) for electrophysiology procedures has been more and more recommended. The clinical practice in our service recommends the continuous use of these drugs for atrial flutter ablation. There is little evidence as to the uninterrupted use of non-vitamin K antagonist oral anticoagulants (NOACs) in this scenario.

Objective: To compare the rates of complications related with the uninterrupted use of different types of oral anticoagulants in patients referred to atrial flutter (AF) ablation.

Methods: Historical, single-center cohort of ablation procedures by AFL conducted from November 2012 to April 2016. The primary outcome was the occurrence of hemorrhagic or embolic complication during the procedure. The secondary outcome was the occurrence of stroke or transient ischemic attack (TIA) in follow-up. The statistical significance level was 5%.

Results: There were 288 ablations per AFL; 154 were carried out with the uninterrupted use of OAC (57.8% with VKA and 42.2% with NOAC). Mean age was 57 ± 13 years. The rate of hemorrhagic complication during the procedure was 3% in each group (p = NS). The rate of stroke/TIA was, respectively, of 56/1,000 people-year in the VKA group against zero/1,000 people-year in the NOAC group (p = 0.02).

Conclusion: In our population there were no hemorrhagic complications regarding the procedure of OAC use uninterrupted, including NOACs. There was higher occurrence of stroke/TIA in the follow-up of the group of patients undergoing VKAs; however, this difference may not only be a result of the type of OAC used. (Arq Bras Cardiol. 2018; 110(2):151-156)

Keywords: Anticoagulants; Vitamin K; Catheter Ablation; Atrial Flutter; Tromboembolism.

Correspondência: Tiago Luiz Luz Leiria • Av. Princesa Isabel, 370. CEP 90620-000, Santana, Porto Alegre, RS – Brasil
E-mail: pesquisa.leiria@gmail.com, editoracao-pc@cardiologia.org.br
Artigo recebido em 25/04/2017, revisado em 17/07/2017, aceito em 09/08/2017

DOI: 10.5935/abc.20180001
Introdução

As diretrizes de terapia com anticoagulante oral1 recomendam a suspensão dessas medicações e a realização de ponte com heparina, quando da realização de uma vasta gama de procedimentos invasivos em Cardiologia. Recentemente, as novas classes de anticoagulantes orais não antagonistas da vitamina K (NOACs: rivaroxabana, apixabana, dabigatran e edoxabana) se mostraram eficazes na prevenção de eventos tromboembólicos em paciente portadores de fibrilação atrial (FA) e flutter atrial (FLA).2

A ablação por cateter de FLA é um procedimento com alta taxa de sucesso na reversão para o ritmo sinusal.3,4 Nesses casos são necessárias, pelo menos, quatro semanas de anticoagulação antes do procedimento, assim como nas cardioversões elétricas, para prevenção de acidente vascular cerebral (AVC) ou fenômenos tromboembólicos que podem ocorrer após a reversão do FLA para ritmo sinusal.5 Estudos demonstram que o uso dos NOACs parece ser seguro na prevenção desses fenômenos tromboembólicos para a reversão para ritmo sinusal.6,7

Após a ablação, o uso de anticoagulante é recomendado para todos os pacientes por, no mínimo, um mês após a reversão para ritmo sinusal.5 O uso intermitente de anticoagulante oral para procedimentos de FA tem se mostrado seguro8,9 e nossa instituição adota essa recomendação também para os pacientes com FLA. Nesse cenário, no entanto, há poucos estudos desenvolvidos no Brasil.

O objetivo central do estudo foi demonstrar a segurança do uso intermitente de anticoagulação durante ablação de flutter comparando os pacientes em uso de NOACs com os antagonistas da vitamina K (AVKs). Mais especificamente, avaliamos a taxa de complicações hemorrágicas, bem como a ocorrência de eventos tromboembólicos no decorrer do seguimento.

Métodos

Nosso estudo trata-se de uma coorte histórica que inclui os procedimentos de ablação por FLA realizados em nosso serviço de Eletrofisiologia (Instituto de Cardiologia - Fundação Universitária de Cardiologia do Rio Grande do Sul). De 5.506 procedimentos realizados entre os meses de novembro de 2012 e abril de 2016, 288 (5,2%) corresponderam a ablações por FLA. A coleta de dados contou com a descrição presente nos laudos eletrofisiológicos e com informações obtidas em prontuário eletrônico e físico disponível. Os pacientes que descontinuaram o acompanhamento no ambulatório foram selecionados para uma entrevista por telefone.

Os pacientes foram acompanhados em âmbito ambulatorial, sendo a primeira consulta realizada entre um a três meses após a ablação, por meio de visita clínica e ECG de 12 (ECG). Durante o seguimento desses pacientes, também incluímos os dados referentes a atendimentos de emergência ou de internação realizados em nossa instituição.

Os pacientes que descontinuaram o acompanhamento no ambulatório foram selecionados para uma entrevista por telefone para esclarecer:

- se continuaram em uso do anticoagulante;
- se apresentaram episódio de AVC ou AIT;
- se tiveram alguma complicação tardia relacionada ao procedimento.

O Comitê de Ética em Pesquisa (CEP) do nosso hospital aprovou o protocolo do estudo e obtivemos consentimento de todos os ouvintes para a realização da entrevista. O estudo tem registro no CEP sob o número UP 5252/16.

Desfechos

Definimos como principais desfechos: a ocorrência de complicação hemorrágica durante o procedimento; entre essas incluímos tamponamento cardíaco, sangramento com necessidade de transfusão, sangramento com queda de des pontos no hematócrito, complicação vascular local com necessidade de intervenção (eventos hemorrágicos maiores) e hematoma clinicamente não complicado (evento hemorrágico...
menor); eventos cardíacos adversos foram considerados como um composto de todas as causas de mortalidade, AVC, AIT durante o acompanhamento.

Um especialista em cada campo validou cada desfecho.

Critérios de exclusão

Foram excluídos todos os pacientes com FLA submetidos a um segundo procedimento, aqueles com história de ablação prévia em outro serviço bem como os FLA esquerdos e aqueles que não fizeram uso ininterrupto de ACO no período periprocedimento. Os pacientes em uso de heparina de baixo peso molecular em dose anticoagulante plena ou heparina não fracionada em infusão intravenosa contínua, embora anticoagulados, não foram incluídos no estudo.

Análise estatística

Os dados foram armazenados e analisados pelo *Statistical Package for the Social Sciences* (SPSS), versão 22.0 (SPSS Inc., Chicago, IL, EUA). As variáveis contínuas foram expressas como média ± desvio-padrão e comparadas pelo teste t de Student para amostras independentes. As variáveis categóricas foram expressas em porcentagens e comparadas por meio do teste do χ². As variáveis foram consideradas normais de acordo com a observação das medidas de tendência central, curtose e assimetria nos histogramas de frequência. A densidade de incidência foi calculada utilizando a taxa de pessoas-tempo para a ocorrência de fenômenos tromboembólicos no seguimento pós-ablação. Essa medida foi realizada combinando o número de pessoas e a contribuição do tempo durante o estudo, então utilizada como denominador nas taxas de incidência. Ela foi definida como a soma de unidades de tempo individuais às quais as pessoas na população estudada foram expostas ou em risco para o desfecho de interesse. O nível de significância estatística adotado foi de 5%.

Resultados

No período do estudo foram realizadas 288 ablações por FLA. Dessas, 154 foram realizadas com uso ininterrupto de anticoagulantes orais, sendo esses os casos incluídos no estudo. A Figura 1 demonstra o organograma de inclusão dos casos no estudo. A idade média foi de 57,3 ± 13,1 anos, sendo a maioria do sexo masculino (70%). O CHA₂DS₂-VASc médio foi de 2,1 ± 1,5 pontos, sendo que 63% possuíam um escore maior ou igual a 2. Das ablações, 98% foram realizadas com cateter de ponta 8 mm – apenas 2% foram realizadas com cateter irrigado.

AVKs foram utilizados de forma ininterrupta em 57,8% dos casos e NOACs, em 42,2% dos participantes. O INR médio foi de 2,54 ± 0,54 no grupo AVK no dia da ablação. Os pacientes em uso de NOAC estavam em maior número em ritmo sinusal no dia da ablação. Esses pacientes possuíam átrios esquerdos de menor dimensão. Além disso, eles também faziam mais uso de drogas antiarrítmicas, menor uso de betabloqueadores.
e estatinas, tendo menor prevalência de cirúrgica cardíaca prévia quando comparados com os pacientes em uso de AVK. A Tabela 1 demonstra as características clínicas dos pacientes estratificados pelo tipo de anticoagulante em uso. A Tabela 2 exemplifica a frequência de uso dos diferentes tipos de NOACs e AVKs utilizados no estudo.

A taxa de complicação hemorrágica relacionada ao procedimento foi de 3% em cada grupo (p = 0,97). Não houve nenhum caso de tamponamento cardíaco ou complicação hemorrágica maior nos pacientes do estudo. As principais complicações relacionadas ao procedimento foram hematomas em região inguinal. A taxa de AVC/AIT foi de 57/1.000-pessoas-ano no grupo AVK contra zero/1.000-pessoas-ano no grupo NOAC (p = 0,02).

Discussão

Nosso estudo demonstra a segurança do uso de anticoagulantes orais (AVKs ou NOACs) no período periprocedimento da ablação por radiofrequência de FLA típico. O uso de anticoagulação periprocedimento baseia-se no achado frequente de trombos atriais ou de contraste ecogênico espontâneo no ecocardiograma transesofágico. Os estudos a respeito da anticoagulação oral nesses pacientes, no entanto, são escassos, e não há recomendações claras nas diretrizes a respeito do manejo da anticoagulação periprocedimento para ablação de FLA.

Um estudo retrospectivo de 254 pacientes, comparando varfarina e dabigatran periprocedimento de ablação de FLA e FA, demonstrou resultados semelhantes aos de nossa coorte, com baixas taxas de complicações tromboembólicas e hemorrágicas. No entanto, os autores não explicitam o número de pacientes com FLA incluídos no estudo.

Um segundo estudo retrospectivo com 60 pacientes que utilizaram dabigatran ou rivaroxabana no período periprocedimento de ablação de FLA demonstrou baixa incidência de complicações hemorrágicas, com 4 sangramentos menores (3 dos 23 pacientes em uso de dabigatran 150 mg

Tabela 1 – Diferença entre as populações que receberam antagonistas da vitamina K e as que receberam anticoagulantes orais não antagonistas da vitamina K de forma ininterrupta para ablação de flutter atrial

Fator	NOAC (n = 65)	AVK (n = 89)	Valor de p
História prévia de FA	23 (35,4%)	28 (31,5%)	0,77
Idade (anos)	56,1 ± 11,7	56,8 ± 14,1	0,55
Gênero (masculino)	45 (69,2%)	63 (70,8%)	0,97
Ritmo basal sinusal	33 (50,8%)	28 (31,4%)	0,02
FEVE (%)	59,6 ± 12,3	58,0 ± 16,6	0,57
AE (mm)	44,3 ± 6,2	47,7 ± 7,7	0,01
CHA$_2$DS$_2$VASc ≥ 2	64,8%	61,8%	0,852
HAS	59,4%	73,0%	0,07
DM	20,8%	20,2%	0,95
AVC	9,5%	3,4%	0,113
Beta-bloqueadores	55,4%	79,8%	0,002
Bloqueadores do canal de cálcio	10,8%	13,5%	0,79
iECA/BRA	44,6%	55,1%	0,26
Diuréticos	29,2%	41,6%	0,16
Digoxina	12,9%	14,9%	0,90
Estatinas	27,7%	44,9%	0,04
AAS	15,4%	28,1%	0,09
Antiamílnicos	55,4%	33,7%	0,01
Cirurgia cardíaca prévia	7,7%	38,6%	< 0,001
– Valvar	0,0%	22,7%	0,0001
Cardiopatia isquémica	10,8%	19,3%	0,22
Cardiopatia congênita	9,2%	9,1%	0,79
Miocardiopatia	10,8%	19,3%	0,22
DPOC	3,0%	7,9%	0,36

NOAC: anticoagulantes orais não antagonistas da vitamina K; AVK: anticoagulantes antagonistas da vitamina K; FA: fibrilação atrial; FEVE: fração de ejeção do ventrículo esquerdo; AE: átrio esquerdo; CHA$_2$DS$_2$VASc: acrômio do escore de risco para AVC (congestive heart failure, hypertension, age, diabetes, stroke, vascular diseases, and female gender); HAS: hipertensão arterial sistêmica; DM: diabetes mellitus; AVC: acidente vascular cerebral; iECA/BRA: inibidores da enzima conversora do angiotensinogênio/bloqueadores do receptor da angiotensina; AAS: ácido acetilsalicílico; DPOC: doença pulmonar obstrutiva crônica. Valor do p expressa a diferença do teste t de Student para variáveis contínuas e do teste do χ2 nas variáveis categóricas. O nível de significância estatística adotado foi de 5%.
Anticoagulantes ininterruptos e ablação de flutter atrial

Um ponto que deve ser salientado em nosso estudo é a variação da realização da anticoagulação pré-procedimento por um período mínimo de 5 dias em nosso estudo versus 21 dias em outros serviços. Existe um sentimento de que na região do istmo-cavo-tricúspide, que possui espessura variando entre 0,5 e 5 mm,19,20 a aplicação de alta energia (70 W) possa agravar um risco aumentado de perfuração. Contudo, os estudos que avaliaram o uso de cateteres com ponta 8 mm, comparativamente aos irrigados, na ablação de FLA istmo-dependente demonstraram não haver uma diferença significativa na ocorrência de lesões por vaporização (“pop”) ou perfuração cardíaca.20,21

A ocorrência de carbonização na ponta do cateter, por sua vez, parece ser mais alta do que o irrigado,20 porém esse fato não foi mensurado em nosso estudo.

Limitações do estudo

Como limitações de nosso estudo, citamos que uma parte da coleta de dados foi realizada de forma retrospectiva, por meio da análise de prontuários, o que poderia levar a um viés de aferição aos desfechos. No entanto, nosso centro apresenta uma rotina de cuidados peri e pós-procedimento que contempla as variáveis coletadas, o que mitigá-lo viés potencial. Ainda, o número de pacientes estudados pode não ter sido suficiente para detectar diferença estatisticamente significativa entre os grupos com relação a desfechos de menor incidência. Outro ponto importante é que, embora a densidade de incidência para eventos isquêmicos tenha sido maior em nosso estudo no grupo AVK, isso não significa uma superioridade de uma estratégia sobre a outra no período pós-ablação. Conforme demonstrado, os pacientes em uso de AVK possuem características diferentes daqueles que usaram NOAC. A comparação entre os grupos absolutamente distintos de pacientes é uma significativa limitação deste estudo.

Além do viés causado pelo desenho retrospectivo, o grupo AVK apresenta quase 23% dos pacientes de etiologia (contra nenhum do grupo NOAC). Os pacientes valvares claramente apresentam maior risco tromboembólico. Ainda, como se trata de um desenho observacional, estratégias para controle rigoroso do tempo no alvo terapêutico (TTR) não foram realizadas e estudos desenvolvidos em nosso serviço demonstram um TTR médio em torno de 50% em nossa população.21

Conclusão

Esta coorte histórica aponta para a segurança na realização de procedimentos de ablação por radiofrequência de FLA típico com uso ininterrupto de anticoagulantes orais, independentemente da classe desse grupo de medicação.

Contribuição dos autores

Concepção e desenho da pesquisa e Análise e interpretação dos dados: Leiria TLL; Obtenção de dados: Medeiros AK, Almeida ED, Ley ALG, Santos CBL; Análise estatística: Medeiros AK, Ley ALG; Redação do manuscrito: Leiria TLL, Almeida ED, Sant’Anna RT, Pires LM, Lima GG; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Sant’Anna RT, Kruse ML, Pires LM, Lima GG.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.
Referências

1. Doherty JT, Gluckman Tj, Hucker WJ, Januzzi JL, Ortel TL, Saxhouse SJ, et al. 2017 ACC Expert Consensus Decision pathway for periprocedural management of anticoagulation in patients with nonvalvular atrial fibrillation: a Report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol. 2017;69(7):871-98. doi: 10.1016/j.jacc.2016.11.024.

2. Kakkos SK, Kirkilesis GI, Tsolakis I. Editor’s choice: efficacy and safety of the new oral anticoagulants dabigatran, rivaroxaban, apixaban, and edoxaban in the treatment and secondary prevention of venous thromboembolism: a systematic review and meta-analysis of phase III trials. Eur J Vasc Endovasc Surg. 2014;48(5):565-75. doi: 10.1016/j.ejvs.2014.05.001.

3. Page RL, Joglar J, Caldwell M, Calkins H, Conti JB, Deal BJ, et al. 2015 ACC/AHA/HRS Guideline for the management of adults with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2015;67(13):e27-e115. doi: 10.1016/j.jacc.2015.08.856.

4. Spector P, Reynolds MR, Calkins H, Xu Y, Martin A, et al. Meta-analysis of ablation of atrial flutter and supraventricular tachycardia. Am J Cardiol. 2009;104(5):671-7. doi: 10.1016/j.amjcard.2009.04.040.

5. Kirchhof P, Benussi S, Kotecha D, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-2962. doi: 10.1093/eurheartj/ehw210.

6. Cappato R, Ezekowitz MD, Klein AL, Camm AJ, Ma CS, Le Heuzey JY, et al; EACTS. Radiofrequency catheter ablation of atrial fibrillation: an observational study. Future Cardiol. 2014;10(6):699-705. doi: 10.2217/fca.14.70.

7. Goette A, Merino JL, Ezekowitz MD, Zamoryakhin D, Melino M, Jin J, et al; ENSURE-AF Investigators. Rivaroxaban vs. vitamin K antagonists for cardioversion in atrial fibrillation. Eur Heart J. 2014;35(47):3346-55. doi: 10.1093/eurheartj/ehu367.

8. Finlay M, Sawhney V, Schilling R, Thomas G, Duncan E, Hunter R, et al. Uninterrupted warfarin for periprocedural anticoagulation in catheter ablation of typical atrial flutter: a safe and cost-effective strategy. J Cardiovasc Electrophysiol. 2010;21(2):150-4. doi: 10.1111/j.1540-8167.2009.01603.x.

9. Wu S, Yang YM, Zhu J, Wan HB, Wang J, Zhang H, et al. Meta-analysis of efficacy and safety of new oral anticoagulants compared with uninterrupted vitamin K antagonists in patients undergoing catheter ablation for atrial fibrillation. Am J Cardiol. 2016;117(4):526-34. doi: 10.1016/j.amjcard.2015.12.027.

10. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijs HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on atrial fibrillation. Chest. 2010;137(2):623-72. doi: 10.1378/chest.09-1584.

11. Grönfeldt GC, Wegener F, Israel CW, Tegue C, Hohnloser SH. Thromboembolic risk of patients referred for radiofrequency catheter ablation of typical atrial flutter without prior appropriate anticoagulation therapy. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):323-7. PMID: 12687838.

12. Kaiser DW, Steur MM, Nagarakanti R, Whalen SP, Ellis CR. Continuous warfarin versus periprocedural dabigatran to reduce stroke and systemic embolism in patients undergoing catheter ablation for atrial fibrillation or left atrial flutter. J Interv Card Electrophysiol. 2013;37(3):241-7. doi: 10.1007/s10840-013-9973-7.

13. Kaess BM, Ammar S, Reents T, Diller R, Lennerz C, Semmler V, et al. Comparison of safety of left atrial catheter ablation procedures for atrial arrhythmias under continuous anticoagulation with apixaban versus phenprocoumon. Am J Cardiol. 2015;115(1):47-51. doi: 10.1016/j.amjcard.2014.10.005.

14. Kiehl EL, Makki T, Kumar R, Gumber D, Kwon DH, Rickard JW, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13(2):227-8. doi: 10.1016/j.hrthm.2016.09.027.

15. Amara W, Fromentin S, Dompnier A, Nguyen C, Allouche E, Taieb J, et al. New oral anticoagulants in patients undergoing atrial flutter radiofrequency catheter ablation: an observational study. Future Cardiol. 2014;10(6):699-705. doi: 10.2217/fca.14.70.

16. Glover BM, Chen J, Hong KL, Boveda S, Baranchuk A, Hauaga KH, et al. Catheter ablation for atrial flutter: a survey by the European Heart Rhythm Association and Canadian Heart Rhythm Society. Europace. 2017;19(4):e1. doi: 10.1093/europace/euw392.

17. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand JP, Berger E, et al.; GARFIELD-AF Investigators. Evolving antithrombotic treatment patterns for patients with newly diagnosed atrial fibrillation. Heart. 2017;103(4):307-314. doi: 10.1136/heartjnl-2016-309832.

18. KlimiekJ-Piotrowska W, Holda MK, Kuziej M, Holda J, Piatek K, Tryak K, et al. Clinical anatomy of the cavotricuspid isthmus and terminal crest. PLoS One. 2016;11(9):e0163383. doi: 10.1371/journal.pone.0163383.

19. Averham SJ. Correlative anatomy and electrophysiology for the interventional electrophysiologist: right atrial flutter. J Cardiovasc Electrophysiol. 2009;20(1):113-22. doi: 10.1111/j.1540-8167.2008.01344.x.

20. Melo SL, Scansavacca MI, Darieux FC, Hachut DT, Sosa EA. Ablation of typical atrial flutter: a prospective randomized study of cooled-tip versus 8-mm-tip catheters. Arq Bras Cardiol. 2007;88(3):273-8. doi: http://dx.doi.org/10.1590/S0066-782X2007000300004.

21. Leiria TL, Becker G, Kus T, Eisebahg V, Hadjitsis T, Sturmer ML. Improved flutter ablation outcomes using a 10mm-tip ablation catheter. Indian Pacing Electrophysiol J. 2010;10(11):e0163383. doi: 10.2217/pej.10.70.

22. Leiria TL, Pellanda L, Miglioranza MH, Sant’anna RT, Becker LS, Magalhães AJ. Aprovação Ética e consentimento informado
Este estudo foi aprovado pelo Comitê de Ética do Instituto de Cardiologia/Fundação Universitária de Cardiologia sob o número de protocolo UP 5252/16. Todos os procedimentos envolvidos neste estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.

23. Leiria TL, Pellanda L, Miglioranza MH, Sant’anna RT, Becker LS, Magalhães AJ. Anticoagulantes ininterruptos e ablação de flutter
Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons