Abstract - Drip irrigation has received considerable attention from policy makers, researchers, and economists for its ability to contribute significantly improvements to water resource development, agricultural productivity, economic growth, and environmental sustainability. In this paper, the impact of drip irrigation has been studied on a farming system in terms of environmental and economic conditions using the developed Trickle Irrigation System Design Modeling (TISD). The environmental conditions included soil type, land topography, climate zones, water sources, their quality, and the farm dimensions. The economic conditions comprised of real and nominal interest rates, raw land price, and the energy and labor escalation rates. The study considered only the Benefit-Cost Ratio (BCR) to indicate the impact of environmental and economic parameters on the use of the drip irrigation system. The study used tomato-sesame as a crop rotation (line-source) and citrus as a long-life tree (point-source). Some parameters such as soil type, land topography, and water quality had a significant impact on the BCR.

Keywords - trickle irrigation; system configuration; economics; environmental changes; citrus; tomato-sesame rotation

I. INTRODUCTION

Developing infrastructure for water resources and their management is a common policy agenda in many developing economies, particularly in arid and semi-arid tropical countries like Egypt. A study by the International Water Management Institute (IWMI) has shown that around 50% of the increase in water demand by the year 2025 can be met by improving the efficacy of irrigation [1]. Drip irrigation systems require a general understanding of the economic and environmental site conditions. Lack of consideration of economic conditions could lead to the failure of a system that may environmentally appear to be well designed. Some of the environmental conditions that must be considered are: crops and cultural practices, farm size and shape, topography, soil type, climate, water supply, and water quality [2-11]. Economic efficiency is paramount to the system selection process. The data required for economic analysis fall into two general categories, site-dependent and system-dependent [3]. Site-dependent economic parameters include: interest rate, labor cost, energy cost, energy inflation factor, general inflation factor, property taxes (on equipment), water cost, land value, and the return to irrigation for each crop. Real rate is the current rate of interest charged by the lending institution that will provide the credit and includes an inflationary component and a risk management and profit component. The real rate (inflation-free and ranges from 5 to 7%) is used to determine the annualized cost of capital expenditures that tend to appreciate, such as land values and permanent improvement to the land, like land-leveling. Nominal rate is used to determine the annualized cost of capital expenditures that depreciate or reach technical obsolescence with little or no salvage value. The energy inflation factor is the expected inflation rate for energy over the system's economic life and is important for balancing capital and operating costs. Inflation factors should be included for other input costs, such as for labor and water. System-dependent parameters include: system component costs, system component lifetimes, and labor, energy and maintenance costs. The economic impacts of Drip Method of Irrigation (DMI) had been studied in [12] for sugarcane cultivation. The cost of cultivation was reduced in operations like weeding, intercultural and irrigation cost (both labor and other costs). The benefit-cost ratio varied from 1.98 to 2.02 (without subsidy condition) and from 2.07 to 2.10 (30% subsidy at different discount rates). Further, the net present worth indicated that the entire capital cost was recovered from the income of the very first year itself even without subsidy. The measures of zero sales tax were suggested to bring down the cost of drip set. The effect of planting distance on guava yield, quality and economic return under DMI was conducted experimentally in [13]. The guava had been planted at 6m×6m...
50% of crop water requirement) and two mulches (black
climate effect on the tomato yield under DMI, authors in [19]
investigated the impacts of soil sort and climate on consumption of water. Soil moisture was measured by two
Enviroscan sensors. In addition, the climate parameters were
measured by two weather stations. Software, based on
Penman–Monteith approach, was used to estimate the crop
evapotranspiration and the amount of irrigation water
according to the FAO guidelines as a reference. The outcomes
manifested a significant increase in crop productivity by 18%
when the proposed SDI system was used over the normal DMI. Authors in [16] studied the effect of DMI of cultivation in
terms of cropping pattern, resource use and yield. The DMI has
been found to get an important effect on saving resources,
cultivation cost, crops yield and farm profitability. Authors in
[17] studied the adaptability of the DMI with the aid of solar
power. Although the recurring cost for energy was waived due
to the use of freely available solar energy, the initial investment
for the solar powered drip system is high. Further, the BCR
was 2.64 for using solar operated drip rather than the diesel
operated system which had BCR equal to 1.30. The study in [18]
aimed to assess the techno-economic feasibility of solar and
wind based pumping irrigation systems. In the first stage of
the study, the irrigation water requirements were determined by
using the CROPWAT software to assess two different crop
patterns that represent existing feasible alternatives for small
farmers. For 1ha, the pumping systems powered by solar, wind
and diesel energy were sized based on the crop water
requirements. The costs of irrigation due to the three
technologies, the two crop patterns and the three methods of
irrigation (surface, sprinkler and drip) were estimated and
compared. The economic analysis was complemented by a
cost–benefit analysis spanning over 20 years. The economic
analysis showed that windmills are the most cost effective
solution, with solar pumping systems in second place. Diesel
pumping systems are the least cost effective. To study the
climate effect on the tomato yield under DMI, authors in [19]
investigated three different combination levels (100, 75 and
50% of crop water requirement) and two mulches (black
polyethylene sheet and paddy straw). The highest yield for each
mulch was obtained when the 50% of water requirement was
applied. The yield results were 81.12t/ha for polyethylene and
79.49t/ha for straw. With 100% water application, the straw
mulched treatment produced higher yield than polyethylene-
mulched treatment. The highest water use efficiency of
592kg/ha/mm was acquired with 50% water application under
polyethylene mulch. The highest net return (US$ 7098/ha),
incremental net return (US$ 1556/ha), and incremental benefit-
cost ratio (7.03) were found for 50% water application with
straw mulch. Authors in [20] studied the economic and
resource impacts of drip irrigation including its benefit–cost
pattern using survey data in okra cultivation. The study results
revealed that the drip irrigation usage can reduce about 15% of
cultivation cost, save about 47% of water resources and
electrical energy, and increase okra productivity by 49% for the
same cultivated area under traditional methods of irrigation.
Farmers cultivating okra under the usage of drip irrigation
acquired an extra farm trade income of RS 72,711 per acre over
the non-drip adopters. Author in [21] conducted economic
analysis on seven crops and nine vegetables using the Trickle
Irrigation System Design (TISD) developed in a hypothetical
field in Egypt based on local environmental and economic
conditions [22]. Economic B/C analysis and net returns
amounts were calculated. The results of the study showed that
high values of net return were attained for most crop rotations.
Further, most B/C for crop rotations ranged from 1.5 to up to
more than 2.0. Authors in [23] used the TISD [22] linked with
the measures of the economic analysis in [21] to study the
effects of system configuration and lateral directions for long-
life fruit trees on the selected economic bases. The study was
conducted on eleven long-life fruit trees based on environmental, crop, and economic conditions. The results
revealed that the drip irrigation system with configurations and
lateral directions has a very small effect on BCR, annual net
return, total annual costs, and net cultivated area. The used
system has significance on initial capital cost and annual
energy cost. Moreover, the drip irrigation system
configurations and lateral directions have a considerable effect
on annual maintenance cost. The objective of this study was to
assess the impact of environmental and economic parameters in
drip irrigation systems in farms using the TISD. The
considered environmental conditions were: soil type, land
topography, climate conditions, and water source conditions.
The economic conditions were: real and nominal interest rates,
raw land price, and energy and labor escalation rates.

II. MATERIALS AND METHODS

This study used the TISD [22] to design the trickle
irrigation system with the economic analysis detailed in [21] to
estimate the impacts of farm conditions under drip irrigation
system on the BCR. Figure 1 shows the flowchart of the TISD.
The conditions considered are the environmental and economic
data and suitable crop rotations. The environmental site data
are soil type [24-29], land shape and topography [30-31], water
source position and type, irrigation water quantity and quality
[32-34], and climate zone [35-37]. The economic data include:
land price [38], real and nominal interest rates [12, 39], energy
source type and fuel cost [40-43], energy inflation factor, labor
availability and cost, labor inflation factor, and system
components’ availability and costs. Crop rotations are either
long-life trees or combination of winter and summer field crops
or vegetables. The crop rotations should be compatible against
soil type, irrigation methods, climate zone, water quality, and
agricultural recommendations. After designing the concerned
system, TDIS calculates the different system costs and returns
to determine the different selection bases. The system costs
include: installation, operation, maintenance, land, water (if
any), and crop production (land preparation, seeding and
planting, fertilization, weeding, pest control, harvesting, and

www.etasr.com Khalifa et al.: Farm-Based Environmental and Economic Impacts of Drip Irrigation System
transportation). To analyze this methodology, a farm with certain environmental and economic parameters was proposed as the base farm (base run). This base run will be used in comparison with the following runs. In this study, one crop rotation (tomato-sesame) and one long-life tree (citrus) cultivation were selected. The TISD model runs by using the environmental and economic data of the base run for tomato-sesame and citrus with the drip irrigation system configurations and lateral directions. This step was repeated for different parameter values, by changing one parameter while keeping the others to the value of the base run. Then, the effect of each environmental and economic parameter on the BCR as the only selection basis could be discussed.

A. Proposed Data for Base Farm (Run)

Figure 2 shows the proposed farm’s shape and topography. The proposed data to complete the analysis procedures for the base run include environmental and economic conditions (Table I). Further, crop rotations are considering the required information of the concerned crop rotations (tomato-sesame) and long-life fruit trees (citrus) in 2018 (Table II). The TISD model proposes the suitable crop rotations and their average production costs, expected average crop productions, and average crop prices as in [21] and [23].

B. Proposed Changes in Base Run’s Data

The proposed changes of the base run environmental and economic data are listed in Tables III and IV. To study the
The effect of farm area and dimensions on system costs and returns, the base farm was divided into two, four, six, and eight equal parts. This partition was made by dividing the farm length and/or width and introduces dimension ratios (L/B) of (1.179, 1.272, 1.696, 3.39, 4.716, 5.089, 6.785, 7.075, and 9.433). Other farm dimension ratios with constant farm area were also studied. The considered farm dimension ratios with the same farm area are: 1.0, 1.5, 2.0, 2.5, and 3.0. Figure 3 shows the methodology flowchart.

TABLE II. ECONOMIC INFORMATION FOR THE CASE STUDY [44, 2018]

Crop Rotations	Fruit production price (US$/ha)	Average fruit production (ton/ha)	Average fruit price US$/ton
Tomato	4064.11	40.9689	99.2
Sesame	1183.84	1.2941	914.8
Citrus	3726.2	24.11	154.8

TABLE III. PROPOSED CHANGES ON BASE RUN ENVIRONMENTAL PARAMETERS

Crop Rotations	Economic conditions				
	Land value	Real and nominal interest rates	Energy escalation		
	RAW US$/ha	Real %	Nominal %	ESCR %	LASC %
Tomato-sesame	2000, 4000, 8000	4,8,10	8,12,14	3.5,9	2.6,8
Citrus	2000, 4000, 8000	4,8,10	8,12,14	3.5,9	2.6,8

III. RESULTS AND DISCUSSION

The TISD model was run for the preselected crop rotation (tomato-sesame) and long-life trees (citrus) under the drip irrigation system and configuration by using the environmental and economic data of the base run according to Tables III and IV. For tomato-sesame rotation, the laterals must be perpendicular to the North direction. For citrus trees, the laterals may be arranged parallel or perpendicular to the North. As in [22], if the laterals are parallel to the North direction, the configuration is either #1 (with pump at the farm center [DP1], with pump on the big side [DP11], with pump on the small side [DP12]) or #2 [DP2]. If the laterals are perpendicular on the North direction, the configuration is either #1 (with pump at the farm center [DN1], with pump on the big side [DN11], with pump on the small side [DN12]) or #2 [DN2].

A. Effect of Different Environmental Conditions on the BCR

1) Soil Type

The effects of different soil types on the BCR of tomato-sesame crop rotation and citrus trees are shown in Figure 4. The Figure shows the BCR (stated as B/C) of the base run (coarse texture, Text = 2) with different configurations. Figure 4 shows the changes of the base run BCR due to changes to the soil texture from coarse to medium and moderately fine (Text = 4 and 5, tomato-sesame) and from coarse to medium and fine texture (text = 4 and 6, citrus).

Fig. 4. Effect of soil texture and climate condition on the BCR.
to medium to moderately fine is negligible. For the point-source drip system, the improvement in the BCR due to change of the soil texture from coarse to medium or fine is negligible. So, it is preferable to use the point source drip system on the coarser soil textures.

2) Uniform Land Topography

The effects of different uniform land slopes on the BCR of tomato-sesame crop rotation and long-life citrus plantation are shown in Figure 5. This figure shows the B/C of the base run (DZ=DZ1=0.0%) under the drip irrigation system configurations. The Figure shows the resulting changes in the BCR of the base run due to changes in the farm slopes. From Figure 5, it could be noted that the effect of land slope on the BCR depends on the slope value and direction, and the pump position. The negative effect of the land slope on the BCR could be avoided by putting the pump unit on the upper farm side (if possible). Also, for the point-source drip system, it is better to arrange the lateral lines on the small slope direction. Land slopes have a considerable effect on the configuration selection, especially for high slopes. Configuration #1 with the pump on the upper farm side may improve B/C. Configuration #2 improves the B/C due to increase in the land slope up to 2.0%. Therefore, Configuration #1 with the pump station at the farm’s center is not always the optimum configuration for inclined lands.

3) Climate and Wind Conditions

The effects of different Climate Zones (CLZ) and Wind Speeds (WS) on the BCR of tomato-sesame crop rotation and long-life citrus trees are shown in Figure 4. It should be noted that there is no effect of WS on the BCR of drip irrigation systems. In addition, the effect of climate on the B/C is negligible for line-source, and small (3.0%) for point-source. Climate has a negligible effect on the configuration’s selection. Therefore, it is preferable to use drip systems in hot climate and high wind speeds.

4) Water Source Quality Conditions

The effects of water source quality and type on the BCR of tomato-sesame crop rotation and citrus trees long-life plantation are shown in Figure 6.

It can be noted that the effect of water quality on the BCR of line-source and point-source drip systems depends on the salt concentration in the irrigation water. This effect is negligible if the salt concentration approaches the lower limit of the crop salt tolerance range, $E_{c_{min}}$ (2.5dS/m for tomato and 1.7dS/m for citrus, [52-55]). When the salt concentration increases to approach the upper limit of the crop salt tolerance range, $E_{c_{max}}$ (12.5dS/m for tomato and 8.0dS/m for citrus, [52-55]), the system costs increase and the crop yield decreases [56-59]. The reduction in the BCR may be more than 45% with E_{cW} = 8.0dS/m for tomato-sesame and more than 30% with E_{cW} = 4.0dS/m for citrus trees. The BCR reduces about 5% to 35% due to increase in the suction head from 6.0 (base run) to 30.0m. Water source quality and type have a negligible effect on the selection of system configurations or laterals’ direction.

5) Farm’s Size and Shape

The effects of different farm areas and dimensions on the B/C of long-life citrus trees are shown in Figure 7. It can be noted that the effects of farm area and dimension ratio on the BCR of point-source drip system are small. The resulting changes in the BCR due to the farm partition are not bigger than 4.0%. The best improvement in the BCR was obtained with L/B ratio within 1.18-1.27 (L/2×B/2 and L/3×B/2) and farm area within 8.82-13.23ha. Further, farm partition has a small effect on the selection of system configurations and laterals’ direction. For the same farm dimension ratio, L/B, (L×B/2 and L/2×B/4) and different farm areas (26.46 and 6.615ha, respectively), B/C improves by less than 1.0%. Therefore, the farm area has a negligible effect on the BCR of the point-source drip system. Further, the base run farm area remained constant (52.92ha) and the L/B ratio changed. The used dimension ratios, L/B, are 1, 1.5, 2.0, 2.5, and 3.0. The effects of L/B ratio on the base run B/C of tomato-sesame and citrus are shown in Figure 8. It can be noted that the effect of farm dimension on the BCR is negligible. The BCR changes by less than 2.0%. The best L/B ratio is less or equal to 1.5. Also, the farm dimension ratio has a negligible effect on the selection of system configuration and laterals’ direction.
B. Effect of Different Economic Conditions on the BCR

1) Real and Nominal Interest Rates

Interest rates are often categorized as real or nominal. Nominal rates are the current rates of interest charged by the lending institution that will provide credit [60-61]. The rate includes an inflationary component and a risk, management, and profit component. The real rate is inflation-free, therefore, it is less than the nominal by the long-term inflation rate. The real rate is used to determine the annualized cost of capital expenditures such as land value and permanent land improvements (land-leveling). Nominal rate is used to determine the annualized cost of capital expenditures that depreciate or reach technical obsolescence with little or no salvage value. The effects of real and nominal rates on the B/C of tomato-sesame and citrus are shown in Figure 9.

2) Raw Land Price

The effects of raw land price on the BCR of tomato-sesame crop rotation and long-life citrus trees plantation are shown in Figure 10. It can be noted that the effect of raw land value on the B/C depends on the land price. The BCR increases as the raw land price decreases. There is no effect for raw land price on the selection of system configuration or laterals’ direction. The effect of raw land price on the BCR of line-source and point-source drip systems is small and approximately the same (about 2.6% for every 1000US$/ha increase).

3) Energy and Labor Escalation Rates

The effects of energy and labor inflation factors on the BCR of tomato-sesame crop rotation and long-life citrus trees are shown in Figure 11. It can be seen that the effect of energy and labor inflation rates on the BCR depends on their values. The BCR increases as the inflation rates decrease. There is no effect for the energy and labor inflation rates on the drip system configuration or laterals’ direction. There is no effect for labor inflation rate on the BCR of drip systems. The effect of energy inflation rate on the BCR of the line-source and point-source drip systems is small and approximately the same (1.0% for every 1.0% inflation rate).
The conducted analyses through the present study for different environmental and economic parameters (Tables III and IV) are summarized in Table V. Environmental and economic analyses were conducted based on the BCR for tomato-sesame crop rotation and long-life citrus trees cultivation.

IV. CONCLUSION

The outcome of this study is based on the environmental and economic parameters of cultivating farms using the TISD software to fulfill the needs of the irrigation agencies and engineers. The TISD model was used to select the drip system’s configuration type that could potentially meet the desired economic goal of BCR. The effect of the soil type on the BCR and the configuration selection and laterals’ direction are considerable for line-source and negligible for point-source. The soil type has a negligible effect on the selection of system configuration for all drip systems. The effect of land slopes on the BCR depends on the slope direction with laterals and pump configuration for all drip systems. The effect of land slopes on the BCR and the configuration selection and laterals’ direction is considerable for line-source and negligible for point-source.

TABLE V. EFFECT OF DIFFERENT ENVIRONMENTAL AND ECONOMIC CONDITIONS ON BCR

No.	Parameters	Drip sys. type	Drip sys. effect	Configuration effect	Lateral direction effect
1	Soil texture	L-source	High	No	-
2	Land topography	L-source	Small	Negligible	-
3	Climate zone	L-source	Negligible	Negligible	-
4	Wind speed	L-source	No	No	-
5	Water quality	L-source	Very small	No	-
6	Water source type	L-source	Small	No	-
7	Farm Area	L-source	Very small	Small	-
8	Farm dimension	L-source	Very small	Small	-
9	Interest rates	L-source	Small	Negligible	-
10	Raw land cost	L-source	Small	Negligible	-
11	Energy escalation	L-source	Small	Negligible	-
12	Labor escalation	L-source	Very small	Negligible	-

ACKNOWLEDGMENT

The authors are thankful to the Deanship of Scientific Research at the University of Hail, Saudi Arabia for the financial support under the contract (RG-191313).

REFERENCES

[1] D. Seckler, U. Amarasinge, D. Molden, R. de Silva, and R. Barker, World water demand and supply, 1990 to 2025: Scenarios and issues. Colombo, Sri Lanka: International Water Management Institute, 1998.
[2] M. E. Jensen, R. D. Burman, and R. G. Allen, Evapotranspiration and Irrigation Water Requirements. New York, NY, USA: American Society of Civil Engineers, 1990.
[3] J. Keller and R. D. Bliessner, Sprinkle and trickle irrigation. New York, NY, USA: Springer, 1990.
[4] C. M. Burt, A. J. Clemmens, R. Bliessner, J. L. Mermiam, and L. Hardy, Selection of Irrigation Methods for Agriculture. New York, NY, USA: American Society of Civil Engineers, 2000.
M. Stubbis, “Irrigation in U.S. Agriculture: On-Farm Technologies and Best Management Practices,” Congressional Research Service, 7–5700, Oct. 2016.

J. Seyedmohammadi, L. Esmaeileenjad, and H. Ramezanpour, “Land suitability assessment for optimum management of water consumption in precise agriculture,” Modeling Earth Systems and Environment, vol. 2, no. 3, Sep. 2016, doi: 10.1007/s40808-016-0122-9, Art. No. 162.

W. R. Adams and K. T. Zeleke, “Diurnal effects on the efficiency of drip irrigation,” Irrigation Science, vol. 2, no. 35, pp. 141–157, Nov. 2016, doi: 10.1007/s00271-016-0529-1.

X. Chen, K. R. Thorp, Z. Ouyang, Y. Hou, B. Zhou, and Y. Li, “Energy cropping and drip irrigation during the reclamation of severe salt affected soils,” Agriculture in China, Science, vol. 12, no. 4, Apr. 2020, doi: 10.1109/scitcic.2019.03.179.

C. Wei et al., “Effects of Irrigation Water Salinity on Soil Properties, N2O Emission and Yield of Spring Maize under Mulched Drip Irrigation,” Water, vol. 11, no. 8, Aug. 2019, doi: 10.3390/w11081548, Art. No. 1548.

I. Fernandez Garcia et al., “Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain,” Water, vol. 12, no. 3, Mar. 2020, doi: 10.3390/w12030785, Art. No. 785.

A. Y. Yimam, T. T. Assela, N. F. Adane, S. A. Tilahun, M. K. Jha, and M. R. Reyes, “Experimental Evaluation for the Impacts of Conservation Agriculture with Drip Irrigation on Crop Coefficient and Soil Properties in the Sub-Humid Ethiopian Highlands,” Water, vol. 12, no. 4, Apr. 2020, doi: 10.1109/scitcic.2019.03.179.

A. Narayanamoorthy, “Economics of Drip Irrigation in Sugarcane Cultivation: Case Study of a Farmer from Tamil Nadu,” Indian Journal of Agricultural Economics, vol. 60, no. 2, pp. 235–248, 2005.

G. Mandal, S. Kumar, R. Kumar, and R. Singh, “Effect of drip irrigation and plant spacing on yield, quality and economic return of guava (Psidium guajava L) grown in saline soil,” Acta Horticulturae, vol. 735, no. 60, pp. 427–432, 2007, doi: 10.17666/ActaHortic.2007.735.60.

J. Tan and Y. Kang, “Changes in Soil Properties Under the Influences of Cropping and Drip Irrigation During the Reclamation of Severe Salt Affected Soils,” Agricultural Sciences in China, vol. 8, no. 10, pp. 1228–1237, Oct. 2009, doi: 10.1016/S1671-2927(08)60333-8.

H. K. Sousa, “Effects of Drip Irrigation Water Amount on Crop Yield, Productivity and Efficiency of Water Use in Desert Regions in Egypt,” Nile Basin Water Science & Engineering Journal, vol. 3, no. 2, pp. 96–109, 2010.

D. S. Kumar and K. Palanisami, “Impact of drip irrigation on farming system: evidence from Southern India,” Agricultural Economics Research Review, vol. 23, no. 2, pp. 265–272, 2010.

S. Halder, D. Sadhukhan, and R. Verma, “Adaptability of drip irrigation in coastal and hard rock terrain of west bengal, India,” presented at the International Ground Water Conference 2012, Maharashtra India, Jan. 2012.

J. A. C. Bolanos, W. Ortiz, and R. Bhandari, “Techno-economic feasibility study of solar and wind based irrigation systems in Northern Colombia,” presented at The 4th World Sustainability Forum, Basel, Switzerland, 2014, pp. 1–20.

S. K. Biswas, A. R. Akanda, M. S. Rahman, and M. A. Hossain, “Impact of drip irrigation and mulching on yield, water-use efficiency and economics of tomato,” Plant, Soil and Environment, vol. 61, no. 3, pp. 97–102, Mar. 2015, doi: 10.17221/804-2014-PSE.

A. Narayanamoorthy and N. Devika, “Economics of Drip Irrigation in Sugarcane Cultivation: Case Study of a Farmer from Tamil Nadu,” Indian Journal of Agricultural Economics, vol. 60, no. 2, pp. 235–248, 2005.

W. M. A. Khalifa, “An Economic Analysis of crops Production using a Trickle Irrigation System,” International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 11, no. 8, Apr. 2020, Art. No. 11A8J.

W. M. A. Khalifa, “Computer Model for Trickle Irrigation System Design,” International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 11, no. 7, 2020, Art. No. 11A07U.

M. R. Reyes, “Experimental Evaluation for the Impacts of Conservation Agriculture with Drip Irrigation on Crop Coefficient and Soil Properties in the Sub-Humid Ethiopian Highlands,” Water, vol. 12, no. 4, Apr. 2020, doi: 10.1109/scitcic.2019.03.179.

C. Wei et al., “Effects of Irrigation Water Salinity on Soil Properties, N2O Emission and Yield of Spring Maize under Mulched Drip Irrigation,” Water, vol. 11, no. 8, Aug. 2019, doi: 10.3390/w11081548, Art. No. 1548.

I. Fernandez Garcia et al., “Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain,” Water, vol. 12, no. 3, Mar. 2020, doi: 10.3390/w12030785, Art. No. 785.

A. Y. Yimam, T. T. Assela, N. F. Adane, S. A. Tilahun, M. K. Jha, and M. R. Reyes, “Experimental Evaluation for the Impacts of Conservation Agriculture with Drip Irrigation on Crop Coefficient and Soil Properties in the Sub-Humid Ethiopian Highlands,” Water, vol. 12, no. 4, Apr. 2020, doi: 10.1109/scitcic.2019.03.179.

H. K. Sousa, “Effects of Drip Irrigation Water Amount on Crop Yield, Productivity and Efficiency of Water Use in Desert Regions in Egypt,” Nile Basin Water Science & Engineering Journal, vol. 3, no. 2, pp. 96–109, 2010.

D. S. Kumar and K. Palanisami, “Impact of drip irrigation on farming system: evidence from Southern India,” Agricultural Economics Research Review, vol. 23, no. 2, pp. 265–272, 2010.

S. Halder, D. Sadhukhan, and R. Verma, “Adaptability of drip irrigation in coastal and hard rock terrain of west bengal, India,” presented at the International Ground Water Conference 2012, Maharashtra India, Jan. 2012.

J. A. C. Bolanos, W. Ortiz, and R. Bhandari, “Techno-economic feasibility study of solar and wind based irrigation systems in Northern Colombia,” presented at The 4th World Sustainability Forum, Basel, Switzerland, 2014, pp. 1–20.

S. K. Biswas, A. R. Akanda, M. S. Rahman, and M. A. Hossain, “Impact of drip irrigation and mulching on yield, water-use efficiency and economics of tomato,” Plant, Soil and Environment, vol. 61, no. 3, pp. 97–102, Mar. 2015, doi: 10.17221/804-2014-PSE.

W. M. A. Khalifa, “An Economic Analysis of crops Production using a Trickle Irrigation System,” International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 11, no. 8, Apr. 2020, Art. No. 11A8J.

W. M. A. Khalifa, “Computer Model for Trickle Irrigation System Design,” International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 11, no. 7, 2020, Art. No. 11A07U.

M. R. Reyes, “Experimental Evaluation for the Impacts of Conservation Agriculture with Drip Irrigation on Crop Coefficient and Soil Properties in the Sub-Humid Ethiopian Highlands,” Water, vol. 12, no. 4, Apr. 2020, doi: 10.1109/scitcic.2019.03.179.

C. Wei et al., “Effects of Irrigation Water Salinity on Soil Properties, N2O Emission and Yield of Spring Maize under Mulched Drip Irrigation,” Water, vol. 11, no. 8, Aug. 2019, doi: 10.3390/w11081548, Art. No. 1548.

I. Fernandez Garcia et al., “Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain,” Water, vol. 12, no. 3, Mar. 2020, doi: 10.3390/w12030785, Art. No. 785.
include water quality and hydrodynamics modeling, pressurized irrigation modeling, and design of RC water structures.

Dr. Hatem Gasmiri is an Assistant Professor at Hail University, Saudi Arabia. He received his B.S. in Civil Engineering and his Ph.D. in Geotechnical and Soil Risks Evaluation from the National Engineering School of Tunis. His research interests include ground improvement and soil reinforcement, evaluation of soil risks, and innovation system and strategies.

Dr. Tayyab A. Butt is an Assistant Professor at Hail University, Saudi Arabia. He received his B.S. in Civil Engineering from University of the Engineering & Technology, Lahore, Pakistan and hid Ph.D. in Environmental Engineering from KAIST, South Korea. His research interests include energy & environment, adsorption engineering, and wastewater treatment technologies.