Distinguishing Driver and Passenger Mutations in an Evolutionary History Categorized by Interference

Christopher J. R. Illingworth and Ville Mustonen

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom

Abstract

In many biological scenarios, from the development of drug resistance in pathogens to the progression of healthy cells toward cancer, quantifying the selection acting on observed mutations is a central question. One difficulty in answering this question is the complexity of the background upon which mutations can arise, with multiple potential interactions between genetic loci. We here present a method for discerning selection from a population history that accounts for interference between mutations. Given sequences sampled from multiple time points in the history of a population, we infer selection at each locus by maximizing a likelihood function derived from a multilocus evolution model. We apply the method to the question of distinguishing between loci where new mutations are under positive selection (drivers) and loci that emit neutral mutations (passengers) in a Wright–Fisher model of evolution. Relative to an otherwise equivalent method in which the genetic background of mutations was ignored, our method inferred selection coefficients more accurately for both driver mutations evolving under clonal interference and passenger mutations reaching fixation in the population through genetic drift or hitchhiking. In a population history recorded by 750 sets of sequences of 100 individuals taken at intervals of 100 generations, a set of 50 loci were divided into drivers and passengers with a mean accuracy of 0.95 across a range of numbers of driver loci. The potential application of our model, either in full or in part, to a range of biological systems, is discussed.

Interference between mutations in an evolving population can have significant effects on adaptation, affecting the development of both beneficial and nonbeneficial mutations. In the absence of recombination, beneficial mutations arising within different individuals compete with one another, in a process referred to as clonal interference (Fisher 1930; Muller 1932). Where the effects of selection are strong, effects on nonbeneficial mutations are seen, with neutral and deleterious alleles fixing via hitchhiking with strongly beneficial alleles (Smith and Haigh 1974).

The importance of interference, caused by genetic linkage between mutations, has been noted in a range of experimental studies. For example, clonal interference places a constraint on the speed of adaptive evolution (De Visser et al. 1999) and it affects the magnitude of selection coefficients of mutations escaping genetic drift (Perfeito et al. 2007). Studies of the evolution of an RNA virus have shown a loss of beneficial mutations through interference (Bollback and Huelsenbeck 2007; Betancourt 2009). Observations of reduced genomic diversity in regions of genomes with lower recombination rates are consistent with the fixation of alleles through hitchhiking (Stephan and Langley 1989). In a recent large-scale study of beneficial mutations in the adaptation of yeast, background genetic variation was observed to be critical in determining the fate of new mutations (Lang et al. 2011).

In an attempt to understand the underlying dynamics of populations characterized by interference, a range of theoretical models have been developed, giving estimates for properties such as the fixation probability of a beneficial mutation, the expected rate of change of the mean fitness of the population, and the rate of substitutions within the population (see, e.g., Barton 1995; Gerrish and Lenski 1998; Gillepie 2001; Rouzine et al. 2003; Wilke 2004; Desai and Fisher 2007). As summarized in recent reviews (Park et al. 2010; Sniegoski and Gerrish 2010), these studies and others have made a substantial and still growing contribution to the understanding of asexual evolution.

In this work we present a method to infer selection in an evolving population characterized by multiple genetic linkages.
between mutations at different loci. While in our understanding we lean heavily on the body of theoretical work discussed above, our approach is substantially different. Rather than describing general properties of systems under selection, such as mean times for allele fixation, we consider the evolutionary history of a single system. Using time-resolved data from the system, we try to deduce the fitness landscape according to which adaptation has in that one specific case taken place.

Our method complements existing methods of discerning selective effects. In a commonly used method, the labeling of a fraction of the population by a genetic marker with known or neutral effect can be used to measure evolutionary fitness (Hegreness et al. 2006; Kao and Sherlock 2008; Barrick et al. 2010; Lang et al. 2011). Our method bears some similarity to this approach, in that we consider subsections of the population with and without given mutations at a locus, but extends the idea to consider all mutations present at any one time.

Our method is designed for the analysis of time-series data. In microbial systems, an increasing amount of data of this form are becoming available via application of modern sequencing technologies, with measurements in some cases taken over long time periods (Barrick et al. 2009). The potential scope for application, however, may extend beyond these examples. In studies of the development of cancer, for example, a distinction is made between driver mutations, which push a cell toward a cancerous state, and passenger mutations not directly contributing to the cancer phenotype of the cell (Stratton et al. 2009). Time-series genetic data, recorded over the development of a cancer, have the potential to aid the identification of mutations that lead to cancer. To give another example, viral systems adapt over time to acquire resistance to drug therapy (Coffin 1995) or to evade immune pressure (Grenfell et al. 2004). The analysis of time-series data of viral evolution, in a single patient or across a local or global outbreak, leads to the possibility of distinguishing the selective effects of observed mutations.

To demonstrate the principles of our method, we here apply it to a model system consisting of two-allele loci divided into “drivers”, at which mutants convey a fixed fitness benefit, and “passengers”, which evolve neutrally. The inspiration for the model is taken from a viral system that evolves under pressure to escape from its host’s immune system. A survey of 35 negative-sense RNA viruses has suggested that homologous recombination is relatively rare, implying the potential importance of genetic background effects on mutations (Chare 2003). RNA viruses have high mutation rates, allowing for rapid adaptation to selective pressure (Holland et al. 1982). Our model, in which beneficial mutants at driver loci revert to wild-type fitness levels upon fixation, represents to an extent viruses such as influenza, where immune escape is an important driver to evolution in strains affecting both humans and other species (Smith et al. 2004; Park et al. 2009).

We here demonstrate the ability of our method to separate driver and passenger loci by discerning selection coefficients in a system characterized by interference between mutations. We examine the performance of the method in capturing the effects of selection under a range of sampling conditions, considering different time resolution and depths of sequencing. Finally, we discuss the potential for developing and applying the method for use with biological data.

Methods
Overview of the inference method
We divide our description of the method into two sections, considering first methods and results that are inherent to our procedure for estimating selection in a system of linked mutations and second those adaptations or implementations that are particular to the testing of the method carried out here. Thinking first about the inherent method, we here consider a population of N individuals, represented by sequences each of L loci. We suppose that each locus i is biallelic with alleles $\{0, 1\}$, the mutant allele having a constant selection coefficient $\sigma_i = f_i^1 - f_i^0$ (i.e., constant fitness difference between the alleles).

At the heart of our method is a maximum-likelihood calculation. Given a set of measurements from a system describing allele and two-locus haplotype frequencies at a range of different points in time (frequencies potentially being derived from individual sequences), we calculate the likelihood of these data given an arbitrary set of locus selection coefficients. This provides an objective function, which can be maximized to obtain the maximum-likelihood set of locus selection coefficients. Figure 1 provides an overview of the different steps of the method, which we now describe in more detail.

Measuring allele and haplotype frequencies
Given our population, we consider changes in the population over time. At a given time t, we define $q_i^a(t)$ to be the frequency of the allele $a \in \{0, 1\}$ at locus i and $q_{ij}^{ab}(t)$ to be the frequency of the two-locus haplotype $a, b \in \{0, 1\}$ at loci i, j. We now suppose that the population is sampled at a set of time points t_k for $k = 1, 2, \ldots, n_{tk}(t_k)$ individuals being sequenced at time t_k. We write $q_i^a(t_k)$ for the sampled frequency of the allele $a \in \{0, 1\}$ at locus i at time t_k and $\hat{q}_{ij}^{ab}(t_k)$ as the sampled frequency of the two-locus haplotype $a, b \in \{0, 1\}$ at loci i, j, also at time t_k.

Dividing mutant allele frequencies into trajectories
Sampled allele frequencies from each locus were divided into trajectories, each trajectory consisting of a set of frequencies at consecutive sample times describing the evolution of a single polymorphism. The first element in a trajectory was characterized by the first observation of polymorphism at a locus at which no trajectory was already in progress, while the last element of a trajectory was defined as the first observation at which the fixation or death of the polymorphism was observed. To distinguish the real fixation or death of a polymorphism from artifacts of the finite sampling
and sample allele frequencies subsequent to the apparent fixation or death were examined.

Guessing initial locus selection coefficients

We use the notation \(\{ \tilde{\sigma}_i \} \) to describe the set of estimates of the locus selection coefficients \(\{ \sigma_i \} \). Initial estimates for locus selection coefficients were assigned from the uniform random distribution \(U(-\sigma, \sigma) \).

Identifying nonneutral trajectories

As we go on to describe, our method attempts to identify the strength of selection on an allele from observations of changes in the allele frequency, making the assumption that changes in allele frequency are driven primarily by selection. This assumption makes sense only if selective effects are indeed the main cause of allele frequency changes. We note that, at very small frequencies, changes in an allele frequency are dominated by genetic drift, with selection becoming the primary driver of evolution at a threshold frequency of \(1/N\sigma \) (Rouzine et al. 2001). To avoid assigning selection to primarily stochastic events, observed trajectories were divided into two sets according to their maximum observed frequency. Given an estimated locus selection coefficient \(\tilde{\sigma}_i \), trajectories at the locus \(i \) with a maximum allele frequency of less than a threshold \(q_{\text{th}} = \min\{1/N\tilde{\sigma}_i, \frac{1}{10}\} \), or \(< \frac{1}{10} \) for \(\tilde{\sigma}_i \leq 0 \), were modeled as evolving neutrally, the value of \(N \) here being taken from the underlying population. Trajectories above this threshold were modeled as evolving nonneutrally, due to the effects of selection. While not eliminating drift from the system, this removed from consideration a substantial number of trajectories for which selection was not the primary driver of allele frequency change.

Calculating time-dependent selection coefficients accounting for linkage effects

Due to effects such as hitchhiking and clonal interference, the selection acting on a mutant allele can change over time. We define the effective selection coefficient \(\sigma_i^e(t_k) \) as the selection acting on a mutant allele at locus \(i \) at time \(t_k \), accounting for linkage to alleles at other loci under positive or negative selection. Assuming an additive model of selection, the effect of linkage with other alleles can be written as a sum of pairwise interactions, such that

\[
\sigma_i^e(t_k) = \sigma_i + \sum_j \sigma_{ij}(t_k),
\]

where \(\sigma_{ij}(t_k) \) is the effect that alleles at locus \(j \) have on the selection acting on the mutant allele at \(i \) at time \(t_k \).

To demonstrate this, we first recall the standard result that, assuming deterministic dynamics, changes in the two-locus haplotype frequencies can be written in the form

\[
\dot{q}_{ab} = f_{ij}^ab q_{ij}^a - q_{ij}^b \left(\sum_{a',b' \in \{0,1\}} f_{ij}^{a'b'} q_{ij}^{a'b'} \right),
\]

where a dot denotes a time derivative, \(f_{ij}^{ab} \) denotes the fitness of the respective two-locus haplotype, and the term in parentheses is the mean fitness. We now consider the development of the frequency of a mutant allele at locus \(i \) given a simultaneous polymorphism at locus \(j \). At the locus \(i \), the change in the mutant allele frequency can be expressed as

\[
\dot{q}_{i} = q_{i}^{11} + q_{i}^{10}.
\]

Combining this with the equation above, and using the assumption of additive fitness, we obtain

\[
\dot{q}_{i} = (\sigma_i + \sigma_j)q_{ij}^{11} + \sigma_j q_{ij}^{10} - \left(q_{ij}^{11} + q_{ij}^{10} \right) \times \left[\sigma_i + \sigma_j q_{ij}^{11} + \sigma_j q_{ij}^{10} + \sigma_i q_{ij}^{01} \right].
\]

Collecting terms in \(\sigma_i \) and \(\sigma_j \) and rearranging gives

\[
\dot{q}_i = \sigma_i \left[q_{ij}^{11} + q_{ij}^{10} - \left(q_{ij}^{11} + q_{ij}^{10} \right)^2 \right] + \sigma_j \left[q_{ij}^{00} q_{ij}^{11} - q_{ij}^{10} q_{ij}^{01} \right],
\]

which with further rearrangement gives the form

\[
\dot{q}_i = \sigma_i \left[q_{ij}^{11} q_{ij}^{10} - q_{ij}^{11} \frac{q_{ij}^{01} + q_{ij}^{00}}{q_{ij}^{11} + q_{ij}^{10}} \right] q_i (1 - q_i^i).
\]
Noting that, in a single-locus case, changes in the mutant allele frequency can be written as

\[\dot{q}^i_1 = \sigma^i q^i_1 (1 - q^i_1), \]

we obtain the result

\[\sigma^i_0(t_k) = \sigma^i \left(\frac{q^{11}_0(t_k) + q^{10}_0(t_k)}{q^{10}_0(t_k) + q^{00}_0(t_k)} - \frac{q^{11}_0(t_k) + q^{10}_0(t_k)}{q^{10}_0(t_k) + q^{00}_0(t_k)} \right). \]

While only two interacting loci are considered here, Equation 8 is correct for multiple interacting loci (for derivation repeat the above calculations for \(q^1_1 = q^{111}_i + q^{110}_i + q^{101}_i + q^{100}_i \)). These equations are part of the standard population genetic toolkit and as shown above are straightforward to derive from Equations 2 (for a thorough treatment of multilocus systems including equations for the time evolution of the linkages, see Barton and Turelli 1991; Kirkpatrick et al. 2002; Neher and Shraiman 2011).

For trajectories with maximal frequency less than the threshold frequency, the effective selection coefficient \(\bar{\sigma}^i(t_k) \) was set to zero for each \(t_k \), while the effects of linkage between these and other trajectories were ignored; i.e., \(\sigma^i_0(t_k) = 0 \), where \(\max(q^i_1(t_k)) < 1/N \sigma^i \). For all other trajectories, approximate time-dependent selection coefficients \(\tilde{\sigma}^i(t_k) \) were calculated from the estimated selection coefficients \(\tilde{\sigma}^i \) and the sample haplotype frequencies \(\tilde{q}^{ij}_n(t_k) \). Using Equations 1 and 8, we can derive a selection acting on the mutant allele throughout the time for which it remained polymorphic.

Fitting maximum-likelihood deterministic trajectories

A deterministic curve, satisfying the approximate selection coefficients \(\tilde{\sigma}^i_0(t_k) \), was fitted to each trajectory. Under a deterministic scenario, if the locus \(i \) is the only polymorphic locus in the system, the evolution of \(q^i_1 \) has the analytical solution

\[q^i_1(t) = \frac{q^i_1(0)e^{\sigma^i t}}{1 - q^i_1(0) + q^i_1(0)e^{\sigma^i t}}, \]

where \(q^i_1(0) \) is the frequency at time \(t = 0 \). Where more than one locus in the system is polymorphic, changes in the haplotype frequencies and effective selection coefficients become interlinked, leading to complex evolutionary behavior; however, changes in the mutant allele frequency can be approximated using a discrete method. If \(\Delta t_k = t_{k+1} - t_k \) is small, such that the linkage between alleles does not change substantially within this time interval, we can write the difference equation

\[\frac{q^i_1(t_{k+1})}{q^i_1(t_k)} = \frac{q^i_1(t_k)e^{\sigma^i(t_k)\Delta t_k}}{1 - q^i_1(t_k) + q^i_1(t_k)e^{\sigma^i(t_k)\Delta t_k}}. \]

This gives an approximation of the behavior of a mutant allele in a linked system under a deterministic scenario, making the assumption of constant linkage between consecutive sampling points.

Assuming the underlying frequencies \(q^i_1(t) \) to evolve in a deterministic manner according to selection, Equation 10 was applied to values of \(\tilde{\sigma}^i(t_k) \) generated from the locus selection coefficients \(\tilde{\sigma}_i \). This gave, for each observed allele trajectory, a hypothetical mutant allele trajectory \(\{\tilde{q}^i_1(t_k)\} \), approximating the evolution of \(q^i_1(t) \), in accordance with the observed linkage between alleles, and obeying the calculated effective selection coefficients. Equation 10 defines a family of frequency curves, parameterized by \(q^i_1(t_k) \) for any one time point \(t_k \). For each trajectory, the sampling time \(t_c \) closest to equidistant between the start and end points of the trajectory was found, and the frequency \(\tilde{q}^i_1(t_c) \) was optimized to identify the deterministic curve best fitting the observed allele frequencies.

Curve fitting was carried out using a maximum-likelihood method, utilizing a binomial model. Given a large population in which the frequency of a mutant allele is \(q \), the probability that a sample of \(n_g \) sequences from the population will have the mutant allele frequency \(q \) is

\[P(q | q, n_g) = \binom{n_g}{q} q^n (1 - q)^{n - q}. \]

Considering a specific locus \(i \) at time \(t_k \), the likelihood of a given underlying frequency \(\tilde{q}^i_1(t_k) \) given the observation \(\tilde{q}^i_1(t_k) \) can be expressed as

\[L(\tilde{q}^i_1(t_k) | \tilde{q}^i_1(t_k), n_g(t_k)) = P(\tilde{q}^i_1(t_k) | \tilde{q}^i_1(t_k), n_g(t_k)), \]

while given multiple observed frequencies \(\{\tilde{q}^i_1(t_k)\} \), the log likelihood of the underlying frequencies \(\{\tilde{q}^i_1(t_k)\} \) can be written as

\[\log L(\{\tilde{q}^i_1(t_k)\}) = \sum \log L(\tilde{q}^i_1(t_k), n_g(t_k)). \]

For each trajectory, this equation was used to find the inferred frequencies \(\{\tilde{q}^i_1(t_k)\} \) best approximating the underlying allele frequencies \(\{q^i_1(t_k)\} \), whether the trajectory was neutral or nonneutral. An illustration of the fitting process for a single polymorphism is shown in Figure 2.

Calculating the overall likelihood for the selection coefficients

The fitting of inferred frequencies to the observed frequencies for each trajectory results in an associated log likelihood in each case, the likelihood being a function of the estimated selection coefficients \(\{\tilde{\sigma}_i\} \). Summing over all trajectories gave an overall log likelihood for the observed polymorphism frequencies given these selection coefficients. Varying the locus selection coefficients using a simulated annealing process gave an estimate of the most likely selection coefficients given the behavior of the system. Full details of the annealing process are given below.
The underlying population was simulated using a Wright–Fisher model with a fixed population size of $N = 10^4$ individuals. Each individual consisted of a sequence of $L = 50$ binary loci, $a_j \in \{0, 1\}$, where the first index denotes the individual ($1 \leq i \leq N$) and the second denotes the locus ($1 \leq j \leq L$). Loci themselves were divided into D driver loci, at which the mutant allele had some selection coefficient $\sigma > 0$, and $L - D$ passenger loci, at which the mutant allele had no selective advantage. An additive fitness landscape was assumed, such that the fitness F_i of an individual in the population was defined as the sum of its allele fitnesses f^a_i:

$$F_i = \sum_{j=1}^{L} f^a_i.$$

(14)

Within each generation, the alleles of any individual were subject to mutation from 0 to 1 or vice versa with fixed probability μ, defined by $2N\mu = 0.01$. Subsequent generations were sampled from the previous population using a multinomial sampling process, in which the probability p_i of choosing an individual i for replication was proportional to e^{F_i}. Simulations were carried out using a range of values of $D \in \{5, 10, 15, 20, 25, 50\}$ and with $2N\sigma \in \{10, 20, 50, 100\}$. In each case the evolution of the population was recorded over 4 million generations. For each combination of parameters $\{D, 2N\sigma\}$, five simulated population histories were generated.

In viral systems such as influenza, selective pressure on antigenic loci varies according to immune adaptation to the current strain. Here, a model of constant selective pressure on the driver loci was assumed, such that any new allele is always under selective advantage. As such, when a mutant allele at some locus fixed in the population, the frequency of the mutant was kept at fixation, removing the possibility of back mutations, for 3200 generations, the mutant frequency with $D = 2$ and $2N\sigma = 100$. In each case the evolution of the population was recorded over 4 million generations. For each combination of parameters $\{D, 2N\sigma\}$, five simulated population histories were generated.

Testing the performance of the method using model data

Having outlined the general principles of the method, we now describe its application to detect selection in a simulated population. A Wright–Fisher model was used to simulate a population of fixed size, with loci divided into drivers, at which the mutant allele was under positive selection, and passengers, which evolved in a neutral fashion. Under a range of different model parameters, the ability of the method to identify locus selection coefficients was tested. Details of the process are given below.

Simulating evolutionary histories: The underlying population was simulated using a Wright–Fisher model with a fixed population size of $N = 10^4$ individuals. Each individual consisted of a sequence of $L = 50$ binary loci, $a_j \in \{0, 1\}$, where the first index denotes the individual ($1 \leq i \leq N$) and the second denotes the locus ($1 \leq j \leq L$). Loci themselves were divided into D driver loci, at which the mutant allele had some selection coefficient $\sigma > 0$, and $L - D$ passenger loci, at which the mutant allele had no selective advantage. An additive fitness landscape was assumed, such that the fitness F_i of an individual in the population was defined as the sum of its allele fitnesses f^a_i:

$$F_i = \sum_{j=1}^{L} f^a_i.$$

(14)

Within each generation, the alleles of any individual were subject to mutation from 0 to 1 or vice versa with fixed probability μ, defined by $2N\mu = 0.01$. Subsequent generations were sampled from the previous population using a multinomial sampling process, in which the probability p_i of choosing an individual i for replication was proportional to e^{F_i}. Simulations were carried out using a range of values of $D \in \{5, 10, 15, 20, 25, 50\}$ and with $2N\sigma \in \{10, 20, 50, 100\}$. In each case the evolution of the population was recorded over 4 million generations. For each combination of parameters $\{D, 2N\sigma\}$, five simulated population histories were generated.

In viral systems such as influenza, selective pressure on antigenic loci varies according to immune adaptation to the current strain. Here, a model of constant selective pressure on the driver loci was assumed, such that any new allele is always under selective advantage. As such, when a mutant allele at some locus fixed in the population, the frequency of the mutant was kept at fixation, removing the possibility of back mutations, for 3200 generations, the mutant frequency then being set to zero. The value of 3200 generations was picked arbitrarily, but allowed, with the exception of very long sample times, fixation events to be detected. Resetting fixed mutant allele frequencies in this manner caused difficulties in calling trajectories that would not be encountered with biological sequence data; details of the solution applied in this instance are given in Supporting Information, File S1.

Generating sample populations: A sample of constant size n_g individuals was drawn from the population at regular intervals of dt generations, across a total of T generations. The occurrence and development of polymorphisms at each of the loci in the system were recorded, along with two-locus haplotype frequencies at each sample point.
Fitting deterministic trajectories: To enable fitting between the inferred and observed frequencies in the case of very short polymorphisms (the extreme case being a single observation), null “observations” of zero frequency were added to the start of each trajectory, with further observations, representing fixation or death as appropriate, being added to the end of the trajectory. The number of observations, \(n_o \), added in each case was calculated as a function of the difference between sample times across the trajectory, \(dt_s \), and the mean time to fixation of a trajectory across the simulation, \(t_{fix} \), each measured in generations

\[
 n_o = \max\left\{ \frac{t_{fix}}{10dt_s}, 10 \right\}. \tag{15} \]

Additional observations were added at intervals of \(dt_s \). At these additional sample times, for trajectories identified as being nonneutral, effective selection coefficients were set to the locus selection coefficient if the deterministic estimate for the wild-type frequency was in the interval \([q_o, 1 - q_o]\) and to zero, representing neutral evolution, for allele frequencies outside of this interval. For trajectories not crossing the neutral threshold, effective selection coefficients were set uniformly to zero.

Simulated annealing: For each simulation, and each set of values \((T, n_g, dt_g)\), five separate annealing runs were carried out, each beginning with a different set of estimates for the locus selection coefficients \(\{\hat{\sigma}_i\}\). At each step of the annealing process, a trial change was made to a randomly chosen \(\hat{\sigma}_i\) of magnitude chosen from a uniform random distribution. If the resulting change in log likelihood, \(\Delta \log L\), was positive, this change was accepted, while if \(\Delta \log L\) was negative the change was accepted with probability \(e^{\Delta \log L} \) for an annealing parameter \(\beta\). In the case where a change in a locus selection coefficient led to a change in log likelihood of precisely zero, the change was accepted if the new selection coefficient had a smaller magnitude than the previous selection coefficient. This step implies the null hypothesis that each locus evolves under neutral selection; if no data were observed at a locus, it would be assigned close to zero selection. The annealing parameter \(\beta\) used in the evaluation of changes in likelihood was set to an initial value of 0.002, increasing by a factor of 1.005 each generation. In the event of 80 consecutive rejections of changes to \(\{\hat{\sigma}_i\}\) the magnitude of the random changes was decreased, the algorithm terminating after the third such set of rejections. In a sample set of calculations, across a variety of parameters, the mean standard deviation in a single optimized selection coefficient calculated across five annealing processes was 0.04, measured in units of \(2N\sigma\).

Linked and unlinked analyses: Analyses of the simulated population data were carried out using two distinct methods. In the first method, referred to from this point on as the “linked method”, identification of selection coefficients was carried out precisely as described in the methods above. In the second method, referred to as the “unlinked method”, selection coefficients were discerned without the inclusion of linkage, setting \(\hat{\sigma}_i(t_k) = \sigma_i\) for all time points. Comparison of the results of the linked and unlinked methods gave an insight into the importance of linkage for correctly identifying selection effects.

Analysis of results from model data

Having obtained predicted selection coefficients for each locus, two methods were applied to separate predicted driver loci from predicted passenger loci. In an initial measurement of the ability of the method to distinguish driver from passenger loci in a case where the number of driver loci is known to be equal to \(D\), the loci with the \(D\) highest selection coefficients were identified as drivers, the remaining \(L - D\) loci being identified as passengers. Using this approach, receiver operating characteristic (ROC) curves were plotted, comparing true and false positive identifications of drivers across cases in which the model had between 5 and 25 driver loci for a default set of parameters \(n_g = 100\) and \(dt_g = 100\), representing 1% sampling of the population in 1% of generations, and \(T = 5 \times 10^5\), for each value of \(\sigma\). A comparison was made between results of the linked and unlinked methods. Optimized selection coefficients obtained for driver and passenger loci were examined, examining the effect of linkage on estimates of each of these values.

In a more thorough assessment of the performance of the method, a clustering algorithm was used to separate drivers from passenger loci. Loci with large negative selection coefficients (less than minus the mean absolute value of \(\{\hat{\sigma}_i\}\) were automatically classified as passengers, while remaining loci were separated using a K-means clustering method, identifying initial cluster centers as the two loci with estimated selection coefficients closest to \(2\Delta\sigma\) and zero, respectively. The accuracy of identifying drivers and passenger loci was then calculated from the numbers of correctly and incorrectly classified loci,

\[
\text{Accuracy} = \frac{d^+ + p^+}{d^+ + d^- + p^+ + p^-}, \tag{16} \]

where \(d^+\) is the number of correctly identified driver loci, \(p^+\) is the number of correctly identified passenger loci, \(d^-\) is the number of incorrectly assigned passenger loci, and \(p^-\) is the number of incorrectly assigned driver loci. Mean accuracy values were calculated across simulated population histories with between 5 and 25 driver loci. Next, to assess the ability of the method to reproduce precise magnitudes of selection, the mean predicted selection coefficient was calculated over the prespecified driver loci across simulated population histories having between 5 and 50 driver loci. Calculations were performed separately for population histories with each specified value of \(2N\sigma\) and for a range of sampling parameters \((T, dt_g, \text{and } n_g)\). Results were compared for
Results

Measuring selection in a linked system

In general, a good fit was observed between the frequencies inferred with the linked method and the observed allele frequencies. This is a nontrivial result as the inference is based on a deterministic approximation (see Methods) of a complex stochastic system. It is precisely due to this approximate description of the dynamics that the inference problem remains computationally tractable.

Figure 3 gives an illustration of the output generated by the inference at a single time point in a set of sample data.

Comparison between the observed allele frequencies and those inferred shows errors where linkage between polymorphisms was ignored, but a close fit where linkage was included. The inclusion of linkage in the inference accounts for changes in the mutant allele’s effective fitness caused by changes in the background population. The graph of correct fitness values and interlocus effects shows that linkage has a substantial effect on the locus selection coefficients and the resulting network of interactions is complex at the time point shown. While the mutant alleles at each of the 5 polymorphic loci are all beneficial, the growth of the mutant at locus 9 is opposed by the influence of the beneficial alleles at loci 2, 10, 14, and 15, leaving it under strong negative selection. The mutant at locus 2, while opposed by the influence of the mutant allele at locus 9, is positively influenced by the mutant alleles at loci 10, 14, and 15, so retaining a strong positive selection.

The distribution of haplotypes gives some insight into these fitness effects. While the beneficial allele at locus 9 is the only mutation in its haplotype, most other haplotypes contain two or more mutant alleles, and as such have higher fitnesses. Relative to the remainder of the population, the haplotype with the mutant at locus 9 is therefore under negative selection. By contrast, the haplotypes containing...
C. J. R. Illingworth and V. Mustonen

This result arises because the linked method can detect hitchhiking of neutral alleles with drivers. Examination of selection coefficients show the ability of the linked method to capture interference between mutations and more generally the importance of linkage in the evolution of the system. At the time point in question, the unlinked method infers loci 2, 14, and 15 to be under weak positive selection, while loci 9 and 10 are close to neutral. Under the linked method, however, the inferred pattern of selection and linkage between loci is close to being correct, with, for example, locus 9 under strong negative selection and locus 15 close to neutral.

We note here that the inferred selection coefficients represented in the graphs have been evaluated from the entire data set, rather than simply for this time window. Differences between the values obtained through the linked and unlinked methods therefore reflect, to some extent, the ability of these models to explain the whole of the data. Replicas of the three graphs, in which numerical values for the effective selection acting on each locus and the effects on the effective selection resulting from each pairwise interaction between loci are shown, are given in Figure S1.

Comparison of selection coefficients obtained with and without the incorporation of linkage

Examination of selection coefficients inferred with the linked method showed an improvement in two characteristics. First, driver loci inferred using the linked method had substantially more accurate (higher) selection coefficients than those obtained with the unlinked method. This is due to the former method accounting for clonal interference. Second, passenger loci at which a fixation occurred were inferred to have significantly lower selection coefficients under the linked method compared to the unlinked method. This result arises because the linked method can detect hitchhiking of neutral alleles with drivers.

Under the default parameters for the sampling process, 100 individuals were sampled from the population every 100 generations for a total of 5×10^5 generations. With these parameters, the method of taking the D loci with the highest selection coefficients to identify drivers, the linked method showed a large improvement over the unlinked method in its ability to discern driver from passenger loci. Figure 4 shows ROC curves for the default model for various values of σ, the selection coefficient acting on driver loci in the population. Here, and throughout, this selection coefficient is expressed in terms of $2N\sigma$, where N is the population size.

At each level of selection, the accuracy of the linked method was greater than that of the unlinked method. With $2N\sigma = 10$, the calculated accuracies were 0.85 and 0.79 for the linked and unlinked methods, respectively, while with $2N\sigma = 50$, the accuracies were 0.999 and 0.91. At the higher selection coefficients, the linked method separated driver and passenger loci almost perfectly.

The histograms of selection coefficients identified with the linked and unlinked methods at $2N\sigma = 50$ showed a clear improvement by the former method in the assignment of selection coefficients to driver loci. Under the linked method, inferred selection coefficients of drivers and passenger were well separated into roughly Gaussian distributions, with clusters close to 0 and 1 (in units of $2N\sigma$), with mean selection coefficients for driver and passenger loci of 0.94 and 0.08, respectively. Under the unlinked method, the distribution of the inferred driver loci selection coefficients had a substantially lower mean of 0.41 resulting from the failure to recognize clonal interference between drivers, while the mean of the passenger loci selection coefficients was 0.07.

Although no significant difference between methods was seen between mean selection coefficients for passenger loci, an improvement was seen under the linked method in the assignment of selection coefficients for passenger loci at which a fixation event took place, with substantially lower
mean selection coefficients being assigned. Figure S2 shows mean optimized selection coefficients for this subset of loci.

Performance of the method across varying sampling parameters

The performance of both methods was tested across a range of sampling parameters, the accuracy in identifying drivers and passengers being quantified using a clustering method, and selection coefficients being measured for driver loci. Results for the linked method are shown in Figure 5, with equivalent numbers for the unlinked method shown in Figure S4. For each parameter set, five different sets of sample frequencies were generated from the evolutionary history of the population. These sets of frequencies were analyzed in five independent runs of the annealing process, so that each point in the figure represents a mean over at least 125 calculations (averaging also over at least five values of D). While statistical noise is still evident in the data, the overall trends are captured by the analysis.

The ability of the linked method to distinguish driver from passenger loci increased as the amount of sampling data increased, here quantified in terms of the number of generations sampled, T. Accuracies were higher at larger selection coefficients, due primarily to the increased difference between driver and passenger loci, but also because of the greater amount of information available for highly selected driver loci. At large selection coefficients, the probability of a mutant allele escaping genetic drift is increased, leading to a larger number of observed fixation events. Furthermore, fixations occur more quickly, allowing for more fixations to occur in a given time. In the simulation run here, a mean of 2.71 fixations per 10^5 generations were observed in each driver locus for $2N_{s} = 100$, but only 0.38 fixations in the same time period for each driver locus for $2N_{s} = 10$. For $2N_{s} = 100$, an accuracy of >0.95 was observed after 75,000 generations. The same result was observed for $2N_{s} = 50$ at 2×10^5 generations, while the accuracy for $2N_{s} = 20$ is close to 0.95 after 1 million generations. As T increased, the accuracy of the method increased, representing better discrimination between drivers and passengers with more information available to the method. Perfect discrimination between driver and passenger loci was observed after 1 million generations for $2N_{s} = 100$. Results obtained with the unlinked method were substantially worse, with an accuracy of <0.85 for all selection coefficients tested after 2 million generations.

Variance in the accuracy of the linked method for varying values of the sample size n_g shows roughly constant performance for sample sizes >100, with a decrease in performance at smaller sample sizes. At the highest selection
coefficients, good results are obtained at a sample size of 20, with accuracies of 0.97 achieved for 2Nσ = 100 and 2Nσ = 50; however, accuracy is rapidly lost below this point. Comparison of locus selection coefficients obtained from simulations with n_D = 5, n_P = 100, and 2Nσ = 50 suggested poorer accuracy at the lowest sampling level resulted from an increase in the variance of the inferred locus selection coefficients. Details are shown in Figure S3.

The accuracy of the linked method showed dramatic changes with increased time between sampling points, dt. At short sampling times, as already observed, high accuracies can be achieved. However, as dt increases, a decline in performance is seen, with an increased rate of decline at higher selection coefficients. At very long intervals between sample points, little information is collected about each trajectory, such that, in the extreme case, fixations are observed as changes in frequency from 0 to 1 at subsequent sample points. In such cases, measurements of linkage either cannot be made or become highly inaccurate when extrapolated over the time between sample points.

In systems for which every locus was a driver, improved selection coefficients were observed with the linked method compared to the unlinked method. Under the default sampling parameters, selection coefficients were underestimated using the unlinked method, with a larger underestimate at high selection coefficients. Mean inferred selection coefficients (in units of 2Nσ) varied from 0.29 at 2Nσ = 100 to 0.63 at 2Nσ = 10. Under the linked method, mean inferred selection coefficients for the all-driver case varied from 0.91 to 1.00, with no clear correlation between the inferred coefficient and the size of σ.

Interestingly, analysis of the selection coefficients obtained for driver loci reveals a systematic error in the coefficients obtained. As T increases, the mean selection coefficient appears to tend to a limit that is less than one, with values closer to one obtained at lower selection coefficients. As dt increases, a dramatic fall in mean selection coefficients is seen, again with greater errors at higher selection coefficients. An explanation for this is discussed next.

Interference reduces the fitness of mutations
Supposing the existence of a polymorphism at locus i, the function Σ_i(t) was defined as the difference between the mean fitnesses of sequences in the population with and without the mutant allele at locus i at some time t. Furthermore, the change in the selective benefit of the mutant allele at i after some time τ, resulting from changes in polymorphisms at other loci, is given by Σ_i(t + τ)−Σ_i(t). Figure 6 shows the mean of this statistic over all polymorphisms and all time steps τ calculated directly from simulations with 20 driver loci and a varying driver selection coefficient. Averaged over all polymorphic observations, the real change in selection is negative, indicating that the selective advantage of a mutant allele generally decreases with time. Because of this, the assumption made in the method that the effective selection coefficient will remain constant between sample points will, on a statistically consistent basis, produce an overestimate of the selective effects in the system. This overestimate, while initially small, increases as the interval between sample points increases both with the time interval τ and with an increasing selection coefficient. When selection coefficients are optimized, therefore, the increased selection coefficient generated by the constant fitness assumption will be compensated for by reducing the inferred selection coefficient, the lower selection coefficient combining with the overestimate of selection over time to recreate the behavior of the system.

Discussion
We have given examples of the use of a method for quantifying selection in driver–passenger systems and demonstrated its potential to separate driver from passenger loci in a model system. By accounting for the background set of polymorphisms on which a trajectory develops, the linked method corrects for clonal interference, which can reduce apparent selection coefficients, and, through recognition of fixation events occurring through hitchhiking with driver alleles, assigns lower selection coefficients to passenger loci at which the mutant allele reaches fixation.

Unsurprisingly, the performance achieved in separating driver and passenger loci depended to a great extent on the magnitude of selection acting on the driver loci, a greater driver selection coefficient describing a greater inherent difference between the two classes of loci. Here, a driver selection coefficient of 2Nσ = 50 led to accuracies >95% under a range of conditions, while drivers at 2Nσ = 20 were more difficult to distinguish.

Variation in the sampling parameters gave a range of results. Under variation in the length of the simulation, an
increase in the available data consistently improved perfor-
mance. With an underlying selection coefficient defined by
\(2N_\sigma = 100 \), an accuracy of \(>0.95 \) in separating driver from
passenger loci was achieved in a 50-locus model after 75,000
generations of sampling, captured by 750 sample points, each
containing 100 individuals. Under variance in the depth of
sampling, consistent accuracy was achieved down to locus
sample sizes of 20, well within the reach of next-generation
sequencing methods. Finally, where the time between consec-
utive samples was varied, while good results were achieved at
high sampling rates, increasing the sampling time was detri-
mental to the accuracy achieved. At the higher selection coef-
ficients, \(>95\% \) accuracy was achieved up to a sample time of
400 generations, representing the collection of, on average,
10.7 and 6.2 samples within the mean time for a fixation
event at \(2N_\sigma = 50 \) and \(2N_\sigma = 100 \), respectively.

Reproducing precise values of selection coefficients proved
a challenge, with the assumption of constant selection
between sampling points leading to a systematic underesti-
mate in the coefficients assigned to driver loci. Due to the
computational and theoretical difficulties inherent in mod-
eling stochastic evolution of multiple linked loci over
a number of generations, some form of approximation to
model the selection acting on trajectories between sampled
time points is necessary [evaluation of selection using a
trajectory including stochastic effects has been carried out in
a single-locus case (Bollback et al. 2008)]. We leave the task
of improving on the constant selection between the sample
points approximation to future work.

Considering the application of the method to specific
events of experimental data, we note that care must be
taken in the interpretation of the parameters discussed above
and their effect on the accuracy potentially achievable. For
the number of generations sampled, while the amount of
information available increases linearly with time, the rate of
this increase is a function of the inherent properties of the
system. Under a higher mutation rate, more events would be
observed per generation, such that more information would
be available in a set number of generations. Whereas if the
selection coefficient was increased, more mutations in driver
loci would escape being removed at low frequencies by
genetic drift, such that more fixation events would be seen.
Here, where division of the entire set of loci into driver and
passenger sets was the goal, a large amount of data were
required, with the observation of at least one significant event
in a driver locus being necessary for its identification as
a driver. Accounting for driver loci in which no fixation was
observed improved results at low values of \(T \) (data not
shown). Depending on what is desired to be learned from
a system, and depending on the underlying dynamics of the
system in question, the numerical values for parameters re-
quired for a given accuracy may vary substantially.

For the purposes of method development we have here
considered a simplified model of a viral genome under
constant selective pressure at each locus. However, given the
caveats mentioned above, we suggest that the approach we
present, with suitable modification, has the potential to be
applied to a wide range of biological systems. While, as
mentioned above, the use of genetic markers can be used to
identify the fitness of subsets of a population (Lang et al.
2011), where a greater amount of sequence information is
available, the effect of the genetic background on the de-
velopment of individual alleles can be quantified. Even in
systems for which a small number of mutations are ob-
erved, the core component of the method, of fitting trajec-
tories that obey an effectively time-dependent model of
selection to observed allele frequencies, can be applied.

While many simplifications were made in the application
of the inference method presented here, the method has
potential to be extended in several directions. Considering
biological data, with allowance for synonymous and non-
synonymous mutations, the binary locus model used here
could be extended. Replacement of the constant sampling
time intervals and sampling depths with variable measures
is easily implementable within the current framework.

More complex evolutionary scenarios could also be mod-
eled. For example, while recombination decreases linkage
between alleles, disrupting the driver–passenger paradigm
considered here, it would not necessarily prevent application
of the method. If the rate of recombination were low relative
to the rate of sampling, estimates of linkage captured by
haplotype sampling would still be accurate enough to provide
a meaningful picture of linkage between polymorphisms until
the next sample was taken, thereby allowing for improved
discernment of selection in the system.

A larger challenge to the model is that of fitness effects
that are epistatic (Weinreich et al. 2005), frequency and/or
genuinely time dependent, reflecting an underlying fitness
seascape (Mustonen and Lässig 2009) (as opposed to the
effectively time-dependent selection considered here caused
by linkage even if the underlying additive fitness landscape
is static). While epistatic fitnesses for each pair of loci could
easily be incorporated into the model, the multiplication of
terms to be learned would provide a substantial challenge
given any but the largest data set. Modeling of epistasis,
therefore, would likely involve some further simplification.
Supposing loci interacting through epistasis are not simulta-
neously polymorphic, selection coefficients could be deter-
mined on a trajectory, rather than at a locus level. The
same remedy would also be applicable to time-dependent
selection if the pressure were to stay roughly constant on
the timescale of polymorphism lifetimes. Consistent changes
in the fitness detected for trajectories at a given locus would
then provide an indication of such effects. In general, we
suggest that problems in applying the method to more com-
plex systems arise more from the availability of data than
from the theoretical difficulty of adapting the model given
here.
Acknowledgments

We thank Stephan Schiffels for advice regarding the implementation of the Wright–Fisher model and participants of the Kavli Institute of Theoretical Physics (KITP) program on Microbial and Viral Evolution for discussions. We acknowledge the Wellcome Trust for support under grant 091747. This research was also supported in part by the National Science Foundation under grant NSF PHY05-51164 during a visit at the KITP (Santa Barbara, CA).

Literature Cited

Barrick, J. E., D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh et al., 2009 Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268): 1243–1247.

Barrick, J. E., M. R. Kauth, C. C. Strelioff, and R. E. Lenski, 2010 Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol. Biol. Evol. 27(6): 1338–1347.

Barton, N. H., 1995 Linkage and the limits to natural selection. Genetics 140(2): 821–841.

Barton, N. H., and M. Turelli, 1991 Natural and sexual selection on many loci. Genetics 127(1): 229–255.

Barton, N. H., and M. Turelli, 1995 Linkage and the limits to natural selection. Genetics 140(2): 821–841.

Bollback, J. P., and J. P. Huelsenbeck, 2007 Clonal interference is quantified from temporal allele frequency data. Genetics 179: 497–502.

Bollback, J. P., T. L. York, and R. Nielsen, 2008 Estimation of 2Nes from temporal allele frequency data. Genetics 179: 497–502.

Chare, E. R., 2003 Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 84(10): 2691–2703.

Coffin, J. M., 1995 HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267 (5167): 483–489.

de Visser, J. A. M., C. W. Zeyl, P. J. Gerrish, J. L. Blanchard, and R. E. Lenski, 1999 Diminishing returns from mutation supply rate in asexual populations. Science 283(5400): 404–406.

Desai, M. M., and D. S. Fisher, 2007 Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176(3): 1759–1798.

Fisher, R. A., 1930 The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

Gerrish, P. J., and R. E. Lenski, 1998 The fate of competing beneficial mutations in an asexual population. Genetics 102–103 (1–6): 127–144.

Gillepie, J. H., 2001 Is the population size of a species relevant to its evolution? Evolution 55(11): 2161–2169.

Grenfell, B. T., O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly et al., 2004 Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303(5626): 327–332.

Hegreness, M., N. Shores, D. Hartl, and R. Kishony, 2006 An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311(5767): 1615–1617.

Holland, J., K. Spindler, F. Horodyński, E. Grabau, S. Nichol et al., 1982 Rapid evolution of RNA genomes. Science 215(4540): 1577–1585.

Kao, K. C., and G. Sherlock, 2008 Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40(12): 1499–1504.

Kirkpatrick, M., T. Johnson, and N. Barton, 2002 General models of multilocus evolution. Genetics 161: 1727–1750.

Lang, G. I., D. Botstein, and M. M. Desai, 2011 Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188: 647–661.

Muller, H. J., 1932 Some genetic aspects of sex. Am. Nat. 66 (703): 118–138.

Mustonen, V., and M. Lässig, 2009 From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 25(3): 111–119.

Neher, R. A., and B. I. Shraiman, 2011 Statistical genetics and evolution of quantitative traits. Rev. Mod. Phys. (in press).

Park, A., J. Daly, N. Lewis, D. Smith, J. Wood et al., 2009 Quantifying the impact of immune escape on transmission dynamics of influenza. Science 326(5953): 726–728.

Park, S.-C., D. Simon, and J. Krug, 2010 The speed of evolution in large asexual populations. J. Stat. Phys. 138(1–3): 381–410.

Perfeito, L., I. Fernandes, C. Mota, and I. Gordo, 2007 Adaptive mutations in bacteria: high rate and small effects. Science 317 (5839): 813–815.

Rouzine, I., A. Rodrigo, and J. Coffin, 2001 Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol. Mol. Biol. Rev. 65(1): 151–185.

Rouzine, I. M., J. Wakeley, and J. M. Coffin, 2003 The solitary wave of asexual evolution. Proc. Natl. Acad. Sci. USA 100(2): 587–592.

Smith, D. J., A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan et al., 2004 Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682): 371–376.

Smith, J., and J. Haigh, 1974 The hitch-hiking effect of a favourable gene. Genet. Res. 23(01): 23–35.

Sniegowski, P. D., and P. J. Gerrish, 2010 Beneficial mutations and the dynamics of adaptation in asexual populations. Philos. Trans. R. Soc. B Biol. Sci. 365(1544): 1255–1263.

Stephan, W., and C. H. Langley, 1989 Molecular genetic variation and the dynamics of adaptation in asexual populations. Science 246(5936): 199–205.

Stratton, M., P. Campbell, and P. Futreal, 2009 The cancer genome. Nature 458(7239): 719–724.

Weinreich, D. M., R. A. Watson, and L. Chao, 2005 Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59(6): 1165–1174.

Wilke, C. O., 2004 The speed of adaptation in large asexual populations. Genetics 167: 2045–2053.

Communicating editor: N. A. Rosenberg
Distinguishing Driver and Passenger Mutations in an Evolutionary History Categorized by Interference

Christopher J. R. Illingworth and Ville Mustonen
Calling trajectories The resetting of fixed mutant alleles led to difficulties in calling trajectories which would not be encountered with biological sequence data, particularly in identifying the end of a trajectory. While, in the identification of the initial point of a trajectory, ignoring sampling effects makes for a pragmatic solution, the time of fixation or death of a polymorphism is more difficult to pinpoint. Indeed, errors at this point can lead to the spurious identification of new trajectories, leading to obvious problems in the later analysis. Here, a cutoff number of observations, c, was defined as

\[c = \max\{300/n_g, 8\} \quad (1) \]

In the case of an apparent death of a polymorphism at some locus i, indicated by a zero sample frequency, the frequencies \(\hat{q}_i^l(t_k) \) at the subsequent \(c-1 \) samples were examined. If a non-zero sample frequency was observed in any of these samples, it was assumed that the apparent death was an artefact of limited sampling, and the polymorphism was assumed to be in existence across the intervening time-points. If no non-zero sample frequencies were observed, the apparent observation of the death of the wild-type allele was assumed to reflect a death in the underlying population. The value of 300 used in the definition of c here reflects the number of observations required to be 95% certain that a polymorphism does not exist at a frequency greater than 1% in the underlying population. In the case of an apparent fixation in the population, marked by a sample frequency value of 1, a slightly different process was required, due to the delayed return in the simulation of fixed mutant alleles to the wild type. Subsequent to an apparent fixation, the allele frequencies at the locus were observed.
as above. If a polymorphic frequency between 0 and 0.5 was observed at that locus, it was assumed that the fixed mutant allele had been returned to the wild-type, and a fixation was recorded at the first time of apparent fixation in the locus. If a polymorphic frequency greater than 0.5 was observed at the locus, it was assumed that the initial observation of fixation arose through limited sampling, no fixation having occurred in the intervening time. We note that, at large values of dt_s, this method is not error-free in the histories of polymorphisms called at different loci, leading to a potential worsening of the results reported in the main text for long sampling times. However, when the method is extended to a biological system, with binary alleles replaced by codons, the mutation of a fixed allele back to wild-type would become easily distinguishable from a mutation to a new, third allele at the same locus.
Figure S1 Selection and inter-locus effects in a model system. Details of selection coefficients in the system represented in Figure 2 of the main text. Red edges indicate positive selection and inter-locus effects, while blue edges indicate negative selection and inter-locus effects. The data represented is identical to that in the graphs of Figure 2, albeit with numerical values included. A close fit between the true selection and the inferred selection using linked method can be observed.
Figure S2 The linked method more accurately measures selection in passenger loci observed to undergo fixation. Mean inferred selection coefficients, in units of $2Na$, assigned to loci from simulations with $T = 500$, $n_g = 100$, and $dt_s = 100$, for various values of the underlying selection coefficient σ, calculated from the models excluding linkage (purple), and including linkage (blue). The correct value in each case is zero. More than 800 inferred selection coefficients are represented by each data point. A similar relationship between selection coefficients is observed for different values of the parameters T, n_g, and dt_s.
Selection $2N\sigma = 50$, Sample depth $n_g=100$, Linked

Figure S3 Selection coefficients inferred from lower sampling levels had a greater variance. Inferred selection coefficients, in units of $2N\sigma$, for driver (red), and passenger (blue) selection coefficients for $T = 500$, $dt_s = 100$, and n_g equal to 100 and 5 respectively. The greater variance at lower sampling is evident. Outlier passenger coefficients falling lower than the range shown are excluded - these comprise 3.5% of coefficients at $n_g = 5$ and 0.3% of passenger coefficients at $n_g = 100$.
Figure S4 Performance of the unlinked method under varying data collection scenarios. Variation in the accuracy of the method in identifying driver and passenger loci (left column) and in the reproduction of selection coefficients, in units of $2N\sigma$, for driver loci (right column). Default parameters were $T = 5 \times 10^5$, $n_g = 100$, and $dt_s = 100$. Top: Variation in performance under different values of T, the number of generations sampled. Middle: Variation in performance under different values of n_g, the number of individuals sampled at each time point. Bottom: Variation in performance given different values of dt_s, the time between sample points. Data is plotted for values of $2N\sigma$ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green). Accuracy values are averaged over simulations with 5, 10, 15, 20, and 25 drivers, while mean sigma values are averaged over simulations with 5, 10, 15, 20, 25, and 50 drivers.