New Isorhamnetin Derivatives from Salsola imbricata Forssk. Leaves with Distinct Anti-inflammatory Activity

Samir M. Osman, Walaa A. El Kashak, Michael Wink, Mohamed A. El Raey

Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Departments of Chemistry of Natural Compounds and Phytochemistry and Plant Systematic, National Research Center, Dokki, Cairo, Egypt, Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany

ABSTRACT

Background: Salsola imbricata Forssk. is a shrub widely growing in Egypt, used as a camel food, traditionally, used as anti-inflammatory agent. Literature survey showed no report about the anti-inflammatory activity of S. imbricata. Aim of the Study: This work was designed to study the phenolic constituents and to provide evidence for the traditional use of S. imbricata as an anti-inflammatory agent. Materials and Methods: The in vitro anti-inflammatory activity of the total aqueous methanol extract and some isolated compounds were investigated in RAW 264.7 macrophage cells using nitric oxide assay. All chemical structures were identified on the basis of electrospray ionization-mass spectrometry, one- and two-dimension nuclear magnetic resonance. Results: Nine phenolic compounds, among them two new natural products; isorhamnetin-3-O-β-D-glucuronol (1'''→4'') glucuronide (1) and its dimethyl ester; isorhamnetin-3-O-β-D-di glucuronate dimethyl ester (2), two isorhamnetin glycosides: Isorhamnetin-3-O-β-D-gala ctoopyranoside (3), isorhamnetin-3-O-β-D-glucopyranoside (4), and isorhametin (5). In addition, an alkaloidal phenolic; trans N-feruloyl-β-D-glucopyranoside (4), and...

SUMMARY

Investigation of the chemical constituents of the leaves of Salsola imbricata led to isolation of two new isorhamnetin derivatives: isorhamnetin-3-O-β-D-glucuronol (1'''→4'') glucuronide (1) and its dimethyl ester (2), together with seven known phenolic compounds. The extract and the tested compounds showed distinct anti-inflammatory activities with no toxicity on RAW 264.7 macrophage cells.

INTRODUCTION

The Amaranthacea (formerly Chenopodiaceae) is a large family that contains approximately 175 genera and 2000 species, including the genus Salsola (from Latin salus, meaning salty).[1] Salsola imbricata Forssk. (syn. Chenopodium baryosmum, Salsola foetida, Caroxylon imbricata, and Salsola baryosma) is a shrub wildly growing in Egypt, used as a camel food.[2,3] Traditionally, S. imbricata is used as a diuretic and anti-inflammatory agent.[4] It has also been reported to possess antioxidant[5] and antidiabetic activity;[6] in addition, it inhibits tyrosinase[7] and leads to central nervous system depression.[8] S. imbricata was reported to contain triterpene glycoside derivatives,[9] triterpenes,[5] isoflavonoids, flavonoids, coumarins,[8,11] alkaloidal phenolics,[7,12] and sterols.[13]

Inflammation is a normal protective response induced by tissue injury or infection to combat invaders in the body (microorganisms and non-self-cells) and to remove dead or damaged host cells. The level of nitric oxide (NO) induced may reflect the degree of inflammation.

Recently, some plant secondary metabolites have been reported to inhibit NO production such as 6-gingerol, tanshinone IIA, and artigentin.[14] Most of the traditionally known biological activities are not supported by experimental or clinical data. In this context, this work was designed to study the phenolic constituents and to provide evidence for the traditional use of S. imbricata as an anti-inflammatory agent.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Cite this article as: Osman SM, El Kashak WA, Wink M, El Raey MA. New isorhamnetin derivatives from Salsola imbricata Forssk. leaves with distinct anti-inflammatory activity. Pharmacogn Mag 2016;12:S47-S51.
MATERIALS AND METHODS

General methods

1H-nuclear magnetic resonance (NMR) spectra were measured with a Bruker avance 400 MHz NMR spectrometer. 1H chemical shifts (δ) were measured in ppm, relative to TMS and 13C-NMR chemical shifts to dimethyl sulfoxide-d_6, and converted to the TMS scale by adding 39.5. Electrospray ionization-mass spectrometry (ESI-MS) were measured on an AB SCIXE API 3200QTRAP liquid chromatography (LC)/MS/MS System, ultraviolet (UV) recordings were made on a Shimadzu UV-Visible-1601 spectrophotometer. Paper chromatographic (PC) analysis and preparative PC separation were carried out on Whatman No. 1 and 3 MM papers, using solvent systems 15% HOAc and BAW (n-BuOH-HOAc-H$_2$O, 4:1:5, upper layer). Medium pressure LC (MPLC) was performed on Sepaore X50 (Buchi Labortechnik, swissland).

Plant materials

S. imbricata leaves were collected in the Western desert near Baharia Oasis (Egypt) in April 2012. Authentication was performed by Dr. M. El-Gebali, former researcher of Botany at the National Research Centre (NRC) of Cairo, Egypt. In addition, a voucher specimen was deposited at the Herbarium of the NRC.

Extraction and isolation

One thousand grams air-dried powdered leaves of *S. imbricata* were extracted successively for three times under reflux inaq. methanol MeOH-H$_2$O (3:1). The filtrates were collected and evaporated to dryness under vacuum to yield a dark brown amorphous powder of theaq. methanol extract (112 g). The residue was suspended in water and partitioned between methylene chloride (for defatting), ethyl acetate, and n-butanol (BuOH), successively. The n-BuOH extract (21 g) was fractionated by column chromatography on Diaion HP-20 column (5 cm × 50 cm, 200 g) using H$_2$O and MeOH in H$_2$O (25:75 v/v, 2 L) as an eluent to give mainly two fractions. The second fraction (1 g) was purified with MPLC using RP-18 column (40 g) eluting with water-MeOH in order of decreasing polarity, yielding two amorphous yellow powder compounds (1,2). The ethyl acetate extract (33 g) was chromatographed on Sephadex LH-20 column (11 cm × 50 cm, 300 g). Elution started with water then water/MeOH mixtures while gradually decreasing the polarity. Collected fractions were monitored using PC. Three major fractions were collected and then applied to further fractionation on Sephadex LH-20 columns. The first fraction (2 g) gave three compounds (3-5), the second fraction (0.5 g) gave one compound 6, and the third one (1.5 g) yielded three compounds (7-9). All the isolated compounds were further purified on Sephadex LH-20 columns using methanol (high-performance LC grade) to give pure compounds. All isolated compounds were identified by ESI-MS, UV, 1H-, and 13C-NMR, heteronuclear multiple-bond correlation (HMBC), and heteronuclear single-quaternion correlation (HMQC).

Isorhamnetin-3-O-β-D-glucuronyl-(1''→4'')-β-glucuronic acid (1)

Amorphous yellow powder, R$_f$ - values: 0.87 (HOAc), 0.23 (BAW). UV λ_{max} nm in MeOH: 254, 352; +NaOMe 267, 326, 404; +NaOAc 272, 362, +NaOAc-H$_2$BO 253, 354; AlCl$_3$ 265, 356; and AlCl$_3$ + HCl 272, 360. Normal acid hydrolysis (2N aqueous HCl, 100°C, 2 h) gave glucuronic acid and isorhamnetin. Positive ESI-MS: m/z [M + H]$^+$697 and 317 [M-diglucuronic dimethyl ester]$^+$. 1H- and 13C-NMR spectra [Table 1].

Isorhamnetin-3-O-β-D-glucuronol-(1''→4'')-β-glucuronic acid methyl ester (1''→4'')-β-glucuronic acid methyl ester (2)

Amorphous yellow powder, R$_f$ - values: 0.87 (HOAc), 0.23 (BAW). UV λ_{max} nm in MeOH: 254, 352; +NaOMe 267, 326, 404; +NaOAc 272, 362, +NaOAc-H$_2$BO 253, 354; AlCl$_3$ 265, 356; and AlCl$_3$ + HCl 272, 360. Normal acid hydrolysis (2N aqueous HCl, 100°C, 2 h) gave glucuronic acid and isorhamnetin. Positive ESI-MS: m/z [M + H]$^+$697 and 317 [M-diglucuronic dimethyl ester]$^+$. 1H- and 13C-NMR spectra [Table 1].

Biological assays

Cytotoxicity study on macrophages.

Cell culture

Raw murine macrophages (RAW 264.7) were purchased from the American Type Culture collection. Cells were routinely cultured in RPMI-1640. Media were supplemented with 10% fetal bovine serum, 2 mM L-glutamine, containing 100 U/ml penicillin G, 100 U/ml streptomycin, and 250 ng/ml amphotericin B. Cells were maintained in humidified air containing 5% CO$_2$ at 37°C. RAW 264.7 cells were collected by scraping them from the solid support. All experiments were repeated four times, unless mentioned, and the data is represented as a mean ± standard deviation. Cell culture material was obtained from Cambrex, Bio-Science (Copenhagen, Denmark).

Position	Compound 1	Compound 2		
	δ_c	δ_h	δ_c	δ_h
1	156.68	156.66		
2	133.25	133.34		
3	177.74	178.14		
4	161.32	161.26		
5	99.21	6.23 (d, J=1.6)	99.25	6.23 (d, J=1.6)
6	166.11		166.41	
7	94.18	6.48 (d, J=1.6)	94.30	6.48 (d, J=1.6)
8	95.66		156.66	
9	103.48		103.52	
10	120.19		120.15	
1'	113.42	7.93 (d, J=1.6)	113.52	7.93 (d, J=1.6)
2'	147.39		147.51	
3'	151.20		151.41	
4'	115.67	6.92 (d, J=8)	115.81	6.92 (d, J=8)
5'	122.85	7.59 (dd, J=1.6 and 8)	122.91	7.60 (dd, J=1.6 and 8)
6'	56.29	3.84 (s)	56.26	3.85 (s)
1''	99.24	5.52 (d, J=7.8)	99.32	5.54 (d, J=7.9)
2''	74.35	3.0–3.8 (m)	74.27	3.0–3.8 (m)
3''	76.58		76.53	
4''	79.52		79.50	
6''	76.92		76.52	
5''	171.40		170.51	
OMe			52.59	3.59 (s)
1'''	103.89		103.85	
2'''	74.87		74.30	
3'''	76.96		76.92	
4'''	70.75		70.19	
6'''	77.34		76.92	
5'''	171.59		170.75	
COOME			52.63	3.56 (s)

DMSO: Dimethyl sulfoxide

1H, 13C spectral data of 1 and 2 (in DMSO, in ppm, J in Hz)
Cell viability assay

The viability of RAW 264.7 cells, treated with isolated extracts and compounds, was determined with the 3-(4,5-dimethylthiazol-2-yI)-2,5-diphenyl tetrazolium bromide cell viability assay.[13]

Estimation of nitric oxide

Raw murine macrophages (RAW 264.7) were seeded in 96-well plates at 0.5 × 10⁵ cells/well for 2 h in RPMI without phenol red. The cells were stimulated with lipopolysaccharide (LPS) at final concentrations of 100 µg/ml. After two extra hours stimulated cells were either treated with 100 µg/ml (safe dose) of samples. Dexamethasone (50 ng/ml) was employed as a potent anti-inflammatory drug. Negative controls included cells left with the LPS alone or left completely untreated. After incubation for 24 h, the supernatants were removed and assessed for NO. Nitrite accumulation was used as an indicator of NO production using a microplate assay based on the Griess reaction. The Griess reaction is a two-step diazotization reaction in which acidified nitrites generate a nitrosating agent that reacts with sulfanilic acid to form diazonium ion. The ion is then coupled to a nitrosating agent that reacts with sulfanilic acid to form diazonium ion. The ion is then coupled to the absorbance of the mixture was determined at 540 nm.[14]

Procedures

In each well of a flat bottom 96-well-microplate, 40 µl freshly prepared Griess reagent (40 mg/ml deionized water) was mixed with 40 µl cell supernatant or different concentrations of sodium nitrite ranging from 0 to 100 µmol/L. The plate was incubated for 10 min in the dark, and the absorbance of the mixture was determined at 540 nm using the microplate enzyme-linked immunosorbent assay reader. A standard curve relating NO in µmol/L to the absorbance was constructed from which the NO level in the cell supernatant was computed by interpolation.

Calculation

The NO level of each of the tested cell supernatants was expressed as NO level of the tested cell supernatant ×100/NO level of the control.

RESULTS AND DISCUSSION

Structure elucidation of the new compounds

Compounds 1 and 2 were isolated from the n-butanol extract as an amorphous yellow powder, which appeared to be a flavonoid derivative with a substituted 3-hydroxyl group and free hydroxyl groups at C-5, C-7, and C-4.[15] Ths was identified from the UV spectra of both compounds 1 and 2 in the presence of shift reagents. Normal acid hydrolysis of 1 and 2 (2 N aqueous HCl, 100°C, 3 h) gave glucuronic acid (CoPC and UV). Positive ESI-MS spectrum showed a molecular ion [M + H]+ and loss of a dihexanoic acid moiety (isorhamnetin aglycone) was observed at m/z 697 and 317, respectively, for compound 1. Compound 2 showed a molecular ion [M + H]+ and loss of dihexanoic acid dimethyl ester moiety (isorhamnetin aglycone) was observed at m/z 697 and 317, respectively, thus identifying compounds 1 and 2 to be isorhamnetin-3-O-diglucuronic acid and isorhamnetin-3-O-diglucuronic dimethyl ester, respectively. To determine and confirm the structure of 1 and 2 and the site of attachments, 1H-NMR, 13C-NMR, HMBC, and HMQC spectroscopic analysis were performed. 1H- and 13C-NMR spectra of 1 and 2 [Table 1] were similar to those of isorhamnetin aglycone with substituted 3-OH.[16,19] Substitution at the 3-O position of the isorhamnetin moiety of 1 and 2 was confirmed by 13C-NMR from the upfield shift of C-3 up to 2 ppm compared to that of isorhamnetin aglycone.
of isorhamnetin aglycone together with HMBC correlation between the anomeric proton H-1' at about δ 5.54 (d, J = 7.9) of glucuronic acid and the carbon at about δ ppm 133.25 of C-3[26] [Figure 1]. In 13C-NMR spectrum a large downfield shift of the glucuronic acid C-4' carbon [Table 1] was observed, compared to the corresponding signal of flavanol attached to glucuronic acid at position 3 suggesting an interglycosidic linkage at 4' position of the first glucuronic acid.[21,22] This was also corroborated by the HMBC correlation between the anomeric proton H-1' δ ppm 4.70 (d, J = 7) of the terminal glucuronic acid and a carbon δ ppm 79.50 assigned to C-4' of the initial glucuronic acid.[26] Furthermore, the β-configuration of each glucuronyl moiety was deduced from the large coupling constants (7.6–7.9 Hz) at the anomeric position[23] in the 1H-NMR spectra [Table 1] in the 'H-NMR spectra [Table 1]. Therefore, compound 1 was identified as isorhamnetin-3-O-β-D-glucopyranosyl-(1"→4")-β-D-glucuronic acid methyl ester. The presence of dimethyl group attached to glucuronic acid moiety was confirmed by 1H-NMR; signals at δ ppm 5.52 and 5.32 and 13C-NMR signals at δ 52.63 and 52.59, characteristic for glucuronic acid methyl ester attached to flavonoid moiety,[24,25] Therefore, compound 2 was identified as isorhamnetin-3-O-β-D-glucuronic acid methyl ester-(1"→4")-β-D-glucuronic acid methyl ester [Figure 1].

Identification of the known compounds

Seven known compounds (3-9) were isolated from ethyl acetate fraction. All compounds were identified by comparing observed data with published one for these compounds. These compounds were identified as isorhamnetin-3-O-β-D-galactopyranoside,[26] isorhamnetin-3-O-β-D-glucopyranoside,[29] isorhamnetin,[30] trans-N-feryluloyl tyramine,[31] isoavanillic acid,[32] (ferulic acid,[32]) and p-hydroxy benzoic acid,[33] respectively.

Cytotoxicity and nitric oxide index

All examined samples did not show cytotoxicity at a concentration of 100 µg/ml [Figure 2]. NO, overproduced by activated macrophages via inducible NO synthase (iNOS), is suggested to be a signifi cant pathogenic factor in various inflammatory tissue injuries.[14] In order to elucidate the anti-inflammatory action of S. imbricata, this study was designed to isolate its active constituents and examine their effects on NO production, detected as nitrite in the culture medium of macrophages induced by LPS through iNOS expression, to refl ect the degree of anti-inflammatory activity.

The results indicated that the inflammatory (LPS 100 µg/ml) induced NO production up to 1.2 fold of the control, while that the potent anti-inflammatory dexamethasone (50 µg/ml) signifi cantly reduced the levels of NO production compared to that of the LPS [Figure 3].

Figure 3 showed different anti-inflammatory effects at the used concentration level 100 µg/ml of all samples. Compound 2 showed a signifi cant reduction of NO level production compared to LPS. Compounds 5 and 6 showed a signifi cant reduction compared to both dexamethasone and LPS. Furthermore, the methanol extract and compound 4 exhibited a signifi cant reduction of NO as compared to dexamethasone, LPS and even that of the control. Literature data confi rms that isorhamnetin and its derivatives have potent anti-inflammatory activity.[18,19] In our study, we found that compound 4, isorhamnetin-3-O-glucopyranoside was more potent than galactopyranoside and the two new compounds 1 and 2 which contain a diglucuronic moiety. It was also observed that the methoxylated derivative (compound 2) decreased NO concentration compared to that of compound 1. Moreover, compound 4, isorhamnetin-3-O-glucopyranoside showed higher potency than the isorhamnetin aglycone. Fortunately, displaying higher anti-inflammatory activity, compounds 2, 4, 5, and 6 in addition to the methanol extract do not exhibit cytotoxicity to RAW 264.7.

Acknowledgments

This study was supported by the cooperation between the National Research Center, Dokki, Cairo, Egypt, and Faculty of Pharmacy, October 6 University Giza, Egypt.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no confi lts of interest.

REFERENCES

1. Mabberley DJ. Mabberley's Plant-Book: A Portable Dictionary of Plants, their Classifi cations, and Uses. UK: Cambridge University Press; 2008.
2. Taqholm V. Students' Flora of Egypt. Cairo: Cairo University; 1974. p. 2.
3. Batanouny KH. Wild Medicinal Plants in Egypt (An Inventory to Support Conservation and Sustainable Use). Cairo, Egypt: The Palm Press C.; 1999.
4. Al-Saleh FH, Ali HH, Mriza M. Chemical constituents of some medicinal plants growing in Bahrain. Fitoterapia 1989;64:251-6.
5. Ahmad Z, Mehrnoosh S, Fatima I, Malik A, Ifzal R, Afza N, et al. Structural determination of salolins A and B, new antioxidant polyoxogenated triterpenes from Saladsa barysosa, by 1D and 2D NMR spectroscopy. Magn Reson Chem 2006;48:94:98.
6. Khacheba I, Djeridane A, Kamei AK, Youssi M. The inhibitory effect of some Algerian plants phenolics extracts on Ag-glucosidase and α-amylase activities and their antioxidant activities. Curr Enzym Inhib 2014;10:59-68.
7. Khan KM, Mahaur GM, Abbaskhan A, Hayat S, Khan MT, Makhmoor T, et al. Three tyrosinase inhibitors and antioxidant compounds from Salsola foetida. Helv Chim Acta 2003;86:457-64.
8. Ahmad S, Mahaur GM, Ashraf M, Riaz N, Afza N, Khan KM, et al. Phytochemical studies on Salsola barysosa. J Chem Soc Pak 2006;28:176-8.
9. Taha A, Alsayed H. Brine shrimp bioassay of ethanol extracts of Sesuvium peruvianum, Salsola barysosa and Zygophyllum quatarense medicinal plants from Bahrain. Phytother Res 2000;14:48-50.
10. Hamed AI, Masullo M, Sheded MG, Mahalel UA, Tawil MM, Perrone A, et al. Triterpene saponins from Salsola imbricata. Phytochem Lett 2011;4:935-9.
11. Saleem M, Akhter N, Shaiq Ali M, Nazir M, Riaz N, Moazzam M, et al. Structure determination of salolamide and salolflavon, two new secondary metabolites from Salsola imbricata, by 1D and 2D NMR spectroscopy. Magn Reson Chem 2009;47:263-5.
12. Hussein NS, El-Bassuony AA. Hydroxycinnamoylmalides from Salsola barysosa. Rev Latinoam Quimica 2004;32:15-20.
13. Andhival C, Kishore K. Sterols of Salsola foetida. J. Indian Chem. Soc. 1984; 61:729-730.
Yang EJ, Yim EY, Song G, Kim GO, Hyun CG. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol 2009;2:245-9.

Hansen MB, Nielsen SE, Beng K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989;119:203-10.

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982;126:131-8.

Mabry T, Markham K, Thomas MB. The Systematic Identification of Flavonoids. New York: Springer-Verlag; 1970. p. 41-164.

Wang DM, Pu WJ, Wang YH, Zhang YJ, Wang SS. A new isorhamnetin glycoside and other phenolic compounds from Callianthemum taipaiicum. Molecules 2012;17:6396-603.

Olszewska MA, Roj JH. Phenolic constituents of the inflorescences of Sorbus terminalis (L.) Crantz. Phytochem Lett 2011;4:151-7.

Hirayama C, Ono H, Meng Y, Shimada T, Daimon T. Flavonoids from the cocoon of Rondota menciana. Phytochemistry 2013;94:108-12.

Yamauchi K, Mitsunaga T, Batubara I. Synthesis of quercetin glycosides and their melanogenesis stimulatory activity in B16 melanoma cells. Bioorg Med Chem 2014;22:3937-44.

Hasan A, Ahmed I, Jay M, Vorin B. Flavonoid glycosides and an anthraquinone from Rumex chalepensis. Phytochemistry 1999;59:1211-3.

Nawwara M, Ayoub N, Hussein S, Hashim A, El-Sharawy R, Wende K, et al. A flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona municata Linn. Arch Pharm Res 2012;35:761-7.

Nawwara MA, Souleman AM, Buddrus J, Linscheid M. Flavonoids of the flowers of Tamarix nilotica. Phytochemistry 1984;23:2347-9.

Ma YM, Wang P, Chen L, Feng CL. Chemical composition of the leaves of Peniopoa setosa. Chem Nat Compd 2010;46:464-5.

Satake T, Kamiya K, An Y, Oishi Nee Taka T, Yamamoto J. The anti-thrombotic active constituents from Centella asiatica. Biol Pharm Bull 2007;30:935-40.

Moehle B, Heller W, Wellmann E. UV-induced biosynthesis of quercetin 3-O-β-D-glucuronide in dill cell cultures. Phytochemistry 1985;24:465-7.

Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 2002;50:5844-9.

Su XC, Chen L, Aisa HA. Flavonoids and sterols from Alhagi sparsifolia. Chem Nat Compd 2008;44:365.

Cao X, Wei Y, Ito Y. Preparative isolation ofisorhamnetin from stigma maydis using high-speed countercurrent chromatography. J Liq Chromatogr Relat Technol 2009;32:273-290.

Chen CY, Wang YD, Wang HM. Chemical constituents from the roots of Synsepalum dulcificum. Chem Nat Compd 2010;46:448-9.

Balde AM, Claeyss M, Pieters LA, Wray V, Vietenck AJ. Ferulic acid esters from stem bark of Pavetta ov firearms. Phytochemistry 1991;30:1024-6.

Ren Q, Chen W, Zhao H, Wu Z, Zhang H. Organic acids from Capparis spinosa fruit. Chem Nat Compd 2012;48:866-9.

Chen YC, Lee HZ, Chen HC, Wen CL, Kuo YH, Wang, GJ. Anti-inflammatory components from the root of Solarum arantiaceum. Int J Mol Sci 2013;14:12581-92.

Chirumbolo S. Anti-inflammatory action of isorhamnetin. Inflammation 2014;37:1200-1.