Quasi-Periodic WaveNet Vocoder: A Pitch Dependent Dilated Convolution Model for Parametric Speech Generation

Yi-Chiao Wu¹, Tomoki Hayashi², Patrick Lumban Tobing¹, Kazuhiro Kobayashi³, Tomoki Toda³

¹ Graduate School of Informatics, Nagoya University, Japan
² Graduate School of Information Science, Nagoya University, Japan
³ Information Technology Center, Nagoya University, Japan

yichiao.wu@g.sp.m.is.nagoya-u.c.jp, tomoki@icts.nagoya-u.c.jp

Abstract

In this paper, we propose a quasi-periodic neural network (QNet) vocoder with a novel network architecture named pitch-dependent dilated convolution (PDCNN) to improve the pitch controllability of WaveNet (WN) vocoder. The effectiveness of the WN vocoder to generate high-fidelity speech samples from given acoustic features has been proved recently. However, because of the fixed dilated convolution and generic network architecture, the WN vocoder hardly generates speech with given \(F_0 \) values which are outside the range observed in training data. Consequently, the WN vocoder lacks the pitch controllability which is one of the essential capabilities of conventional vocoders. To address this limitation, we propose the PDCNN component which has the time-variant adaptive dilatation size related to the given \(F_0 \) values and a cascade network structure of the QNet vocoder to generate quasi-periodic signals such as speech. Both objective and subjective tests are conducted, and the experimental results demonstrate the better pitch controllability of the QNet vocoder compared to the same and double sized WN vocoders while attaining comparable speech qualities.

Index Terms: WaveNet, vocoder, quasi-periodic signal, pitch-dependent dilated convolution, pitch controllability

1. Introduction

For conventional parametric speech synthesis, speech is usually decomposed into several acoustic features and synthesized with these acoustic features. The analysis-synthesis technique is called vocoder [1], and the foundation of vocoder is a speech production mechanism based on source excitation and vocal tract. The main advantage of vocoder is that it provides high flexibility for users to manipulate the synthesized speech to meet their scenarios. However, because of the over-simplified assumptions of conventional vocoders such as STRAIGHT [2] or WORLD [3], temporal details and phase information are lost, and it causes significant quality degradation.

Recently, neural network (NN) based speech synthesis [4-11] has become one of the most popular techniques, which is widely applied to many devices in daily life such as speech assistants and car navigators. However, human perception is quite sensitive to speech quality, and that of synthesized speech highly depends on the generation model. WaveNet (WN) [4] is one of the state-of-the-art speech generation models, which has been applied to many applications, such as speech enhancement [12, 13], text-to-speech (TTS) [7, 9], speech coding [11], and voice conversion (VC) [15-18]. Specifically, WN is an autoregressive model that predicts a current speech sample based on a specific number of previous samples which is called receptive field. Because of the long-term dependence of speech signals, WN applies a stacked dilated convolution network (DCNN) structure to efficiently extend the length of receptive field. Furthermore, non-autoregressive generation models [19, 20] also have been proposed to reduce the generation time while keeping the comparable speech qualities as WN. For NN-based vocoder, the WaveNet vocoder [21-23], which is a WaveNet conditioning on the acoustic features extracted by a traditional vocoder to generate speech, achieves significant improvements in speech naturalness than traditional vocoders.

However, it is difficult for the WN vocoder to deal with unseen conditional features. That is, the WN vocoder cannot generate relevant speech from the given fundamental frequency (\(F_0 \)) that outside the range observed in training data while the pitch controllability is an essential mechanism of traditional vocoders. This difficulty may be caused by the fixed network architectures. Specifically, the fixed receptive field length indicates that each speech sample correlates to the same numbers of past samples, but it is more reasonable that each sample has its own dependent field. Furthermore, in order to generate high-fidelity speech samples, the required long receptive field length makes a huge network size.

To tackle these problems, we propose a quasi-periodic NN-based (QNet) vocoder with a novel pitch-dependent dilated convolution network (PDCNN), which is inspired from source-filtering model [24] and code-excited linear prediction (CELP) codec [25], to model the relationships of speech samples in a pitch cycle with the short-term correlation and then extend that to whole quasi-periodic signals with the long-term correlation. Specifically, QNet includes two cascaded WNs with different dilated convolution structures. The first part is the original WN using the fixed DCNNs to presumably generate signals based on a specific segment of previous samples. The second part including PDCNNs makes the network generate signals based on the relevant segments of previous cycles. The adaptive dilated structure deal with the unseen \(F_0 \) with the introduced quasi-periodic information, and it makes each sample has exclusive receptive field corresponding to the conditional \(F_0 \). Moreover, because the proposed QNet vocoder expands the receptive field more efficiently than the original WN vocoder, a halved network size is required to achieve acceptable performance according to the experimental results.

2. WaveNet vocoder

The WN vocoder model the long-term dependency among sequential waveform samples and auxiliary acoustic features using a conditional probability as follows:

\[P(Y | h) = \prod_{t=1}^{T} P(y_t | y_{t-1}, \ldots, y_{t-r}, h), \]

(1)
where \(t \) is the sample index, \(r \) is the length of receptive field, \(y_t \) is the current audio sample, and \(h \) is the vector of the auxiliary features. That is, the WN vocoder predicts the conditional distribution of the current speech sample with input auxiliary features and a specific number, which is called receptive field, of previous samples. Furthermore, the WN vocoder usually transforms the speech generation into a classification problem. By encoding speech signals into 8-bits using \(\mu \)-law, the WN vocoder makes its output become a categorical distribution. In addition, a gated structure is applied to enhance the modeling ability which is formulated as:

\[
Z = \tanh(V^{(0)} * Y + V^{(1)} * u(h))(\sigma(V^{(0)} * Y + V^{(2)} * u(h))),
\]

where \(V^{(0)} \) and \(V^{(2)} \) are trainable convolution filters, \(* \) is the convolution operator, \(\sigma \) is an elementwise multiplication operator, \(k \) is the layer index, \(f \) and \(g \) represent the “filter” and “gate”, respectively, and \(u(\cdot) \) is an upsampling layer used to adjust the resolution of auxiliary features to match that of input speech samples. Moreover, because of the very long-term dependency and causality of speech signals, WaveNet applies a stacked dilated causal convolutions structure \([4, 26]\) to guarantee the causality and extend the receptive field size efficiently. To sum up, previous speech samples go through a pipeline including a causal layer and several residual blocks which contains dilated convolution layer, gated activation with auxiliary features, and residual and skip connections. Then, the summation of all skip connections pass to two \(1 \times 1 \) convolutions and one softmax layers to output the predicted distribution of the current sample.

However, because of the data-driven nature without speech specific prior knowledge, the WN vocoder lacks the pitch controllability. For example, the traditional vocoders based on source-filtering model easily generate speech with precise pitches matched to arbitrarily input \(F_0 \) values, but the WN vocoder often has the difficulty in generating speech and tends to generates speech within the \(F_0 \) range observed in training data when conditioning on the \(F_0 \) values in the outside range.

3. Quasi-Periodic WaveNet vocoder

The cascaded structure of the autoregressive networks and the pitch-dependent mechanism of the dilated convolution neural networks of QPN are inspired from the short/long-term prediction architectures and the pitch filtering technique of CELP. The details are as follows.

3.1. Pitch filtering in CELP

For CELP, a given excitation sequence from a code book is filtered by a linear-prediction and a pitch filters to reconstruct speech. The linear-prediction filter restores the spectral (short-term correlation) information. The pitch (long-delay) filter generates the pitch periodicity of voiced speech follows:

\[
c_c[i] = G \cdot c_a[i] + b \cdot c_a[i - t_i],
\]

where \(c_c[i] \) is the input, \(c_a[i] \) is the output, \(G \) is the gain, \(b \) is the pitch filter coefficient and \(t_i \) is the pitch delay.

3.2. Pitch-dependent dilated convolution

Figure 1 elaborates the concept of the pitch-dependent dilated convolution. If the input is a sequential quasi-periodic signal with time-variant \(F_0 \), the receptive field lengths of the original structure (fixed dilated convolution) are time-invariant but that of the pitch-dependent one are changed corresponding to the \(F_0 \) values. Specifically, the dilated convolution is formulated as:

\[
X^{(e)} = W^{(e)} \cdot X^{(o)} + W^{(o)} \cdot X^{(i)}.
\]

where \(X^{(o)} \) and \(X^{(e)} \) are the input and output of the DCNN layer. \(W^{(e)} \) and \(W^{(o)} \) are the trainable \(1 \times 1 \) convolution filters of current and past samples, respectively. The dilation size \(d \) is a constant for conventional dilated convolution but time-variant for pitch-dependent one. Specifically, the pitch-dependent \(d \) makes the receptive field of each sample with arbitrary pitch contains a specific number of previous cycles. That is, the network predicts the current sample given the same number of previous cycles for samples with different pitches. Therefore, the pitch-dependent structure makes the network efficiently extend the receptive field length without losing trajectory information of the sequential signals.

In addition, for original stacked DCNN, the dilation size is doubled for every layer up to a specific number and then repeated. Proposed PDCNN also follows the same rule to layer-wise extend the dilation sizes but with an extra dilated factor \(E_i \) to adjust the dilation sizes to match the pitch of the current sample. The pitch-dependent dilated factor \(E_i \) is as follows:

\[
E_i = F_i / (F_{0_{i}} \times \alpha),
\]

where \(F_i \) is the sampling rate which is a constant of whole utterance, \(F_{0_{i}} \) is the fundamental frequency of speech sample
with sample index i, and a is a hyperparameter. Therefore, each speech sample has a specific length of receptive field matched to its pitch. Furthermore, a indicates the number of samples in one cycle for considering, and we set it 8 empirically in this paper. We also applied the interpolated continuous F_0 rather than the discrete ones to get the pitch-dependent dilated factors because of quality concern based on our internal experiments.

3.3. Cascaded autoregressive networks

Figure 2 shows the architecture of the proposed QPNet vocoder that consists of two main modules. The first module is like the original WN vocoder that has a causal layer and several stacked residual blocks including dilated convolutions, conditional auxiliary features, gated activations, and residual and skip connections. The second module also has several stacked adaptive residual blocks that are like the residual blocks of the first module but alternatively using pitch-dependent dilated convolutions. Furthermore, motivated by CELP, we cascade the two modules to respectively model the short and long-term dependences of speech signals. Specifically, based on the assumption that speech can be decomposed into periodic and non-periodic components, we assume that the non-periodical parts depend on the nearest samples (short receptive field), and the periodic parts have very long-term dependences. Therefore, the first module of QPNet is used to estimate the short-term information, and the second module models the long-term periodic correlations.

4. Experiments

4.1. Experimental settings

We conducted objective and subjective tests to evaluate the performance of four vocoders including WORLD [3], the WaveNet vocoder with two different network sizes, and the proposed QPNet vocoder. Specifically, we trained a compact size QPNet vocoder to compare with a compact size WaveNet (WNc), a full size WaveNet (WNe), and WORLD vocoders. The hyperparameters of network structure are shown in Table 1. The training process followed our previous work [16].

The training corpus of the multi-speaker WNe, WNc and QPNet vocoders included the training data of “bdi” and “slt” speakers of CMU-ARTIC [27] and all training data of VCC2018 [28], which was consistent with [16]. The four source speakers (two males and two females) of the SPOKE set of VCC2018 were used as an evaluation set, which contained 35 testing utterances of each speaker. The original acoustic features were extracted by WORLD, which consisted of one-dimensional F_0 and 513-dimensional spectral (sp) and aperiodic (ap) features. F_0 was converted into continuous F_0 features and voice/unvoice (uv) binary symbols, sp was further parameterized into 34-dimensional mel-cepstrum coefficients (mcep), and ap were coded into two-dimensional components [18]. Furthermore, we simulated outside unseen acoustic features by scaling F_0 with ten different ratios from 1/2 to 2. The following evaluations were conducted based on the transformed F_0, original natural mcep, coded ap, WORLD vocoder, and the multi-speaker vocoders of WNc, WNe, and QPNet.

4.2. Objective evaluations

For the objective tests, we measured the pitch accuracy and spectral distortion of generated speech using root mean square error (RMSE) of logarithmic F_0 and mel-cepstral distortion (MCD), respectively. Specifically, to check the pitch generation accuracy of each vocoder corresponding to the conditional F_0, we calculated the RMSE between the conditional F_0 and the F_0 extracted from the generated speech. Moreover, we computed MCD between the conditional and extracted mcep to measure the robustness of spectrum reconstruction while conditioning on the unseen acoustic features.

Table 2 shows the results of RMSE of log-F_0, and we can find that the proposed QPNet vocoder significantly outperforms than the WNc vocoder which has the same network size as QPNet. Even compared to the WNe vocoder, which has doubled network size, the QPNet vocoder still achieves better pitch generation accuracy, especially conditioning on the scaled F_0 with large offset. Although the conventional WORLD vocoder reasonably achieves the lowest RMSE, the proposed QPNet vocoder still obviously improves the accuracy of pitch generation with unseen conditional F_0 compared to the original WN vocoders. In addition, Table 3 indicates that the proposed QPNet vocoder still has much better spectrum prediction ability.
than the same sized WNe vocoder. However, the QPNet vocoder gets worse performance than the WNf vocoder. The much shorter receptive field length caused by the halved network size might degrade the spectral prediction ability of QPNet. To sum up, the objective evaluations show that the proposed pitch-dependent dilation structure can improve the pitch generation accuracy for NN-based vocoders.

4.3. Subjective evaluations

For the perceptual evaluations, we conducted mean opinion score (MOS) and XAB preference tests to evaluate the sound quality and the pitch accuracy of the generated utterances from different vocoders conditioning on the acoustic features with different scaled F_0. Specifically, we randomly selected 20 utterances from 35 testing utterances of each speaker and scaled F_0 condition to form an evaluation set. Then, we divided it into five subsets and each subset were evaluated by two subjects. The total number of subjects was 10. The demo can be found at "https://bigpon.github.io/QuasiPeriodicWaveNet_demo".

For the MOS test, the subjects evaluated the 960 utterances which were generated using the WORLD, WNf, WNe and QPNet vocoders given the acoustic features with unchanged, 1/2, and 3/2 F_0. The measurements were 1–5 and the higher score meant the better sound quality. For the XAB test, each subject first listened to one reference and two testing utterances and then selected the testing utterance that had more consistent pitch with the reference one. Moreover, because we did not have the real speech with scaled F_0, and the conventional vocoders could generate speech with more precise pitch in the unseen F_0 scenarios, we took the WORLD generated utterances as the reference ones. That is, the subjects evaluated the pitch accuracy of the WNf and QPNet generated utterances based on the WORLD generated reference utterances.

As shown in Fig. 3, in the inside F_0 range (unchanged F_0) case, although WORLD achieves better MCD, WNf still gets much better MOS. The oversimplified excitation model of WORLD causes serious buzz noise, and WNf generates speech without many handcraft assumptions and achieves better perceptual quality. However, this result also indicates that the performance of the WN vocoder highly depends on the length of receptive field, so the quality of the WNe generated speech significantly degrades. As a result, after applying PDCNN, which can extend the receptive field size efficiently, the QPNet vocoder achieves comparable sound quality as that of the WNf vocoder. Moreover, Fig. 4 suggests that QPNet achieves comparable pitch generation accuracy with WNf, which is consistent with the objective results. In addition, in the outside 1/2 F_0 cases, WORLD suffers severe naturalness degradation especially in very low F_0 (male speakers) cases which makes WORLD generate robotic speech. However, conditioning on 1/2 F_0, QPNet and WNf still generate speech with acceptable quality as shown in Fig. 3, and QPNet performs remarkable better pitch generation accuracy as shown in Fig. 4. In the outside 3/2 F_0 cases, WORLD shows the robustness with arbitrary F_0 input. Although QPNet still attains notably pitch accuracy, the sound quality become worse than that of WNf.

4.4. Discussion

We selected a compact network size which was only half of the original WN vocoder, so only about 75% training and 40% generation times are required. However, it made the receptive field length become much shorter. For example, the length of the receptive field of WNf was 3070 (The receptive field length of 10 layers in each repeat is $2^6+2^4+...+2^2=1023$, so the total length is 1023×3 with extra one from causal layer), but that of WNe was only 61 (2^6,2^4,2^3,2^2,2^1,2^0 in each repeat, and the total receptive field length is 15×4+1=61). Furthermore, the effective receptive field length of QPNet was $46+15*E$ (The receptive field length of fixed and causal layers is 15×3+1=46, and that of adaptive layers is the product of 15 and the pitch-dependent dilated factors), so the size was around 886 to 136 for the F_0 range of training corpus is around 50 to 500 Hz with sampling rate of 22.05 kHz (the pitch-dependent dilated factor of 50 Hz is 56 that is the ceiling of 22050/(50×8)), which are quite shorter than that of WNf. It is possible that QPNet achieved worse speech quality while the auxiliary F_0 with high scaled ratio.

5. Conclusions

In this paper, we proposed a QPNet vocoder with the new pitch-dependent dilated convolution which extend the receptive field length more efficiently than the WaveNet vocoder. Moreover, the QPNet vocoder also has better pitch generation accuracy, which takes advantage of proposed PDCNN, and comparable sound quality compared to the double sized WaveNet vocoder. To sum up, the QPNet vocoder is more in line with the definition of vocoder. For future works, we will survey the effectiveness of QPNet in voice conversion.

6. Acknowledgements

This work was partly supported by JST, PRESTO Grant Number JPMJPR1657, and JSPS KAKENHI Grant Number 17H01763.
7. References

[1] H. Dudley, “The vocoder,” Bell Labs Record, vol. 18, no. 4, pp. 122–126, 1939.

[2] H. Kawasaki, I. Masuda-Katsuse, and A. de Cheveigné, “Restructuring speech representations using a pitch-adaptive time frequency smoothing and an instantaneous-frequency-based Fs extraction: Possible role of a repetitive structure in sounds,” Proc. Speech Commun., vol. 27, no. 3-4, pp. 187-207, 1999.

[3] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: a vocoder-based high-quality speech synthesis system for real-time applications,” Proc. IEICE Trans. Inf. Syst., vol. E99-D, no. 7, pp. 1877–1884, 2016.

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A generative model for raw audio,” Proc. SSW, 2016.

[5] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta, and M. Shoeybi, “Deep Voice: Real-time neural text-to-speech,” Proc. ICML, 2017.

[6] S. O. Arik, G. Diamos, A. Gibiansky, J. Miller, K. Peng, W. Ping, J. Raiman, and Y. Zhou, “Deep Voice 2: Multi-speaker neural text-to-speech,” Proc. NIPS, 2017.

[7] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan and S. Narang, “Deep Voice 3: 2000-speaker neural text-to-speech,” Proc. ICLR, 2018.

[8] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, “Tacotron: Towards end-to-end speech synthesis,” Proc. Interspeech, 2017.

[9] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. S. Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu, “Natural TTS synthesis by conditioning WaveNet on Mel spectrogram predictions,” Proc. ICASSP, 2018.

[10] J. Sotelo, S. Mehri, K. Kumar, J. F. Santoyo, K. Kastner, A. Courville, and Y. Bengio, “Char2wav: End-to-end speech synthesis,” Proc. ICLR, 2017.

[11] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville and Y. Bengio, “SampleRNN: An unconditional end-to-end neural audio generation model,” Proc. ICLR, 2017.

[12] K. Qian, Y. Zhang, S. Chang, X. Yang, D. Florencio, and M. H. Johnson, “Speech enhancement using Bayesian WaveNet,” Proc. Interspeech, 2017.

[13] D. Rethage, J. Pons, and X. Serra, “A WaveNet for speech denoising,” Proc. ICASSP, 2018.

[14] W. Bastiaan Kleijn, Felicia S. C. Lim, Alejandro Luehs, Jan Skoglund, Florian Stimberg, Quan Wang, and T. C. Walters, “WaveNet based low rate speech coding,” Proc. ICASSP, 2018.

[15] K. Kobayashi, T. Hayashi, A. Tamamori, and T. Toda, “Statistical voice conversion with WaveNet-based waveform generation,” Proc. Interspeech, pp. 1138–1142, 2017.

[16] Y. C. Wu, P. Lumban Tobing, T. Hayashi, K. Kobayashi, and T. Toda, “The NU non-parallel voice conversion system for the Voice Conversion Challenge 2018,” Proc. Odyssey, 2018.

[17] P. Lumban Tobing, Y. C. Wu, T. Hayashi, K. Kobayashi, and T. Toda, “The NU voice conversion system for the Voice Conversion Challenge 2018,” Proc. Odyssey, 2018.

[18] Y. C. Wu, K. Kobayashi, T. Hayashi, P. Lumban Tobing and T. Toda, “Collapsed speech segment detection and suppression for WaveNet vocoder,” Proc. Interspeech, 2018.

[19] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, and K. Kavukcuoglu, “Parallel WaveNet: fast high-fidelity speech synthesis,” arXiv preprint arXiv: 1711.10433, 2017.

[20] W. Ping, K. Peng, and J. Chen, “ClariNet: parallel wave generation in end-to-end text-to-speech,” Proc. ICASSP, 2019.

[21] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda, “Speaker-dependent WaveNet vocoder,” Proc. Interspeech, pp. 1118–1122, 2017.

[22] T. Hayashi, A. Tamamori, K. Kobayashi, K. Takeda, and T. Toda, “An investigation of multi-speaker training for WaveNet vocoder,” Proc. ASRU, 2017.

[23] K. Tachibana, T. Toda, Y. Shiga, and H. Kawai, “An investigation of noise shaping with perceptual weighting for WaveNet-based speech generation,” Proc. ICASSP, 2018.

[24] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a sinusoidal representation,” Proc. IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp. 744–754, 1986.

[25] M. Schroeder and B. Atal, “Code-excited linear prediction (celp): High-quality speech at very low bit rates,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 937.940, 1984.

[26] F. Yu, and V. Kolmb, “Multi-scale context aggregation by dilated convolutions,” Proc. ICRL, 2016.

[27] J. Komon and A. W. Black, “The CMU ARCTIC speech databases for speech synthesis research,” Tech. Rep. CMU-LTI-03-177, 2003.

[28] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, T. Kinnunen, and Z. Ling, “The Voice Conversion Challenge 2018: Promoting development of parallel and nonparallel methods,” Proc. Odyssey, 2018.