Strong modulation of optical properties in rippled 2D GaSe via strain engineering

David Maeso1, Sahar Pakdel1,2, Hernán Santos1, Nicolás Agrait1,3,5, Juan José Palacios1,4,5,6, Elsa Prada1,4,5,7 and Gabino Rubio-Bollinger1,4,5,7

1 Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
2 School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran
3 Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049, Madrid, Spain
4 Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
5 Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
6 Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States of America

E-mail: elsa.prada@uam.es and gabino.rubio@uam.es

Received 6 November 2018, revised 4 February 2019
Accepted for publication 1 March 2019
Published 26 March 2019

Abstract
Few-layer GaSe is one of the latest additions to the family of two-dimensional semiconducting crystals whose properties under strain are still relatively unexplored. Here, we study rippled nanosheets that exhibit a periodic compressive and tensile strain of up to 5%. The strain profile modifies the local optoelectronic properties of the alternating compressive and tensile regions, which translates into a remarkable shift of the optical absorption band-edge of up to 1.2 eV between crests and valleys. Our experimental observations are supported by theoretical results from density functional theory calculations performed for monolayers and multilayers (up to seven layers) under tensile and compressive strain. This large band gap tunability can be explained through a combined analysis of the elastic response of Ga atoms to strain and the symmetry of the wave functions.

Supplementary material for this article is available online

Keywords: gallium selenide (GaSe), two-dimensional materials, strain engineering, band gap modulation, optical absorption

(Some figures may appear in colour only in the online journal)

1. Introduction
Strain engineering [1, 2] of two-dimensional (2D) crystals is a technologically promising prospect as well as an attractive field of research in basic science, due to the remarkable tunability of their electronic properties under mechanical deformations, in particular when the number of layers is small. The electrical and optical responses under elastic strain fields are nowadays intensively studied in graphene, transition metal dichalcogenides, and black phosphorus, to name a few cases [3–8]. These 2D crystals belong to the family of layered van der Waals materials, characterized by strong intra-layer and relatively weak inter-layer interactions. Remarkably, they can be isolated and thinned down to flakes ranging from tens of layers down to one monolayer [9]. As opposed to their bulk counterparts, these materials in 2D form are highly
stretchable, bendable, and even foldable, withstanding strains of up to 10%–25% [3–6]. This translates into, for instance, highly tunable absorption and photoluminescence responses with applications in photovoltaics [10–12], photonics [13–15] and 2D optoelectronics [16]. This remarkable behavior is often accompanied by a strong dependence on the number of layers, adding an extra degree of freedom to create integrated layered materials nanoelectronics.

One of the less explored families of 2D semiconducting crystals is the one formed by post-transition group III monochalcogenides, which share the common formula MX (M = Ga, In and X = S, Se, Te) [17]. A monolayer is formed by two AA-stacked puckered honeycomb layers with M and X atoms forming the A and B sublattices, respectively [17, 18]. Here we focus our attention on GaSe. In its bulk form it has a direct gap of 2.1 eV [19, 20], but, as the number of layers decreases, the gap turns quasi-direct, attains a value of 2.4 eV [21–23], and the valence band becomes like an inverted Mexican hat.

Strain engineering is a powerful tool to tune the bandgap of semiconducting 2D materials, and a variety of techniques have been employed to accomplish mechanical deformation: bending of a flexible substrate for MoS2 [24–26] and GaSe [27], substrate elongation for WS2 [28], piezoelectric stretching for MoS2 [29] and controlled rippling for MoS2 [28], ReSe2 [30], TiS3 [31] and GaSe [32].

Here, we investigate rippled flakes down to a 6.3 nm thickness that exhibit a periodic compressive and tensile strain of up to 5%. This strain translates into a shift of the optical absorption band-edge of up to 1.2 eV between crests and valleys, the highest strain-induced energy variation reported to date, and comparable to the variation that can be obtained in quantum confined structures [23, 33–36]. We rationalize these experimental observations with the help of DFT calculations for monolayers and multilayers (up to seven layers) subjected to strain values similar to those in the experiments, finding excellent agreement for the range of strains where the gap changes linearly and isotropically.

2. Methods

2.1. Micro-transmittance measurements

We illuminate the sample using a white light source with enhanced infrared emission (Thorlabs; OSL2FB+OSL2BIR). The sample is actuated by linear positioners with a repeat-ability of 50 nm. The light transmitted through the flakes is collected by a microscope objective (50X, 0.8 NA). A multimode fiber, with a 25 μm diameter core, is placed at the image plane, which corresponds to a 500 nm diameter spot at the focal plane on the sample. The fiber is coupled to a spectrograph equipped with a cooled CCD detector (−60 °C) and spectral resolution of 1 nm (see supplementary information, available online at stacks.iop.org/NANO/30/24LT01/mmedia).

2.2. DFT calculations

The DFT calculations have been performed with the CRYSTAL14 code [37–39]. The crystal structures were optimized with the PBE functional [40], while the HSE06 hybrid functional [41, 42] was chosen for the presented band structure. A 16 × 16 × 1 Monkhorst-Pack k-point mesh was used and all the calculations were converged on the size of the basis set. We ignore the weak spin–orbit interaction [43] in this material since it is not relevant in the large gap variation ranges that we address in this work.

3. Results and discussion

3.1. Experimental measurements

We obtain highly strained few layer GaSe by mechanical exfoliation of bulk GaSe (HQ Graphene). The micro-mechanical exfoliation of the flakes involves several steps. First and adhesive tape (Nitto, SPV 224) is used to extract some thick GaSe flakes from the bulk crystal. Next, we repeatedly exfoliate the flakes adhered to the tape using another fresh and clean tape. The remaining flakes are inspected with an optical microscope, and once they are observed to be thin enough they are transferred to a clean and fresh poly-dimethylsiloxane (PDMS) substrate [44].

The optical absorption edge of rippled-strained samples is measured by a scanning micro-transmittance technique [45]. Transmitted light is collected by a 50X 0.8 NA objective, which yields a diffraction limited resolution of 300 nm at 500 nm wavelength. An optical fiber is used as the light detector pinhole and analyzed with a spectrograph equipped with a cooled CCD. We use atomic force microscopy (AFM) to determine the amplitude and the period of the ripples. In order to generate the ripples in the nanosheets, we first pre-stretch the elastomeric substrate (PDMS) by bending it and we later deposit the GaSe nanosheets on it. By releasing the substrate, wrinkles are generated in the GaSe flakes if the initial strain exceeds a critical value. This procedure, which is known as buckling induced rippling [46] generates uniaxial compression and has been successfully used to generate periodic strain profiles in other 2D materials to study their optical properties [7, 8, 27, 30, 32, 47, 48]. The maximum local tensile strain takes place at the crests of the wrinkles, where strain ε is positive, while at the valleys the compressive strain is negative. The high buckling induced strain relies on the large mismatch between the Young modulus of the nanosheet and the substrate, as well as on the reduced nanosheet thickness [46, 49] (see supplementary information). In addition, this fabrication method yields a fully supported 2D crystal, both at valleys and crests, thus providing a mechanically stable substrate and uniform environment screening.

Figure 1(a) shows a transmission mode optical microscopy image of a seven layer thick flake on a PDMS substrate where ripples and a flat unstrained region can be distinguished. By measuring the micro-transmittance spectrum at
the unstrained region, we determine the thickness of the wrinkled nanosheets. To determine the GaSe thickness, we first fabricate flat samples on PDMS by mechanical exfoliation from bulk GaSe and measure transmittance \( T = I/I_0 \), where \( I \) is the spectrum at the sample and \( I_0 \) is the spectrum at the elastomeric substrate. Afterwards, we transfer the GaSe flakes onto a Si substrate with a capping layer of 290 nm SiO\(_2\) by a dry deterministic transfer method [50]. An AFM was used to measure the thickness of the flakes. Combining both measurements, we relate the transmittance of a flat nanosheet with its number of layers. See supplementary information for more details.

The GaSe ripples have a sinusoidal profile with a period of \( \sim 500\text{-}700 \) nm, which is expected to be directly proportional to the nanosheet thickness [49]. This is the main reason to select seven layer flakes: thinner flakes would yield a shorter ripple period, beyond the optical diffraction limit, making local micro-transmittance measurements unfeasible. On the other hand, seven layer flakes are thin enough to sustain large strain values, as shown below. The amplitude of the wrinkles is obtained by inspecting the topography of the sample with an AFM in contact mode (see figure 1(b)). We observe a peak-to-peak amplitude of 200 nm and a period of \( \sim 500\text{-}700 \) nm. From these parameters, we estimate that the maximum strain in the seven layer GaSe nanosheet is \( \pm 5\% \) [49].

We have studied the optical properties of the strained GaSe crystal by using a diffraction limited spatially-resolved scanning micro-transmittance setup. In a semiconducting material, the absorption edge can be identified by an increase of the absorption coefficient \( \alpha \) above a certain photon energy, due to the excitation of carriers from the valence to the conduction band. We calculate the absorption coefficient from the optical transmittance \( T \) and flake thickness \( d \) following Lambert law: \( \alpha = -\log(T)/d \). In a few layer GaSe flake, the absorption edge energy dramatically shifts at wrinkle crests, valleys and flat regions (see figure 1(c)), that is, at spots with different strain. At the ripple crests, the absorption edge shifts to lower energies due to the closing of the semiconducting gap for tensile strained GaSe. In contrast, at ripple valleys the absorption edge shifts to higher energies. To quantify the shift of the absorption edge at the crests and valleys, we consider a linear fit of the absorption edge as a function of photon energy, and assign the energy at which the fit crosses \( \alpha = 0 \).
At ripple crests, where $\varepsilon > 0$, the absorption edge plummets to a value of 1.5 eV and at ripple valleys, where $\varepsilon < 0$, the absorption edge reaches 2.7 eV, which gives an overall change of $\sim$1.2 eV. To our knowledge, this is the highest strain induced band gap energy shift reported in 2D semiconducting post-transition metal monochalcogenides. The absorption edge energy shift can be obtained building an iso-absorption map or profile, that is, a map or profile of the energy at which the absorption coefficient at each position along the ripples reaches a certain value. These iso-absorption maps follow the periodic pattern of the ripples with alternating tensile and compressive strain at crests and valleys, respectively. A high resolution iso-absorption map of two wrinkles is shown in figure 1(d). This map shows the energy at which absorption coefficient is $\alpha_0 = 2 \times 10^3$ cm$^{-1}$ and these energies follow a periodic pattern in the direction where we have applied the compressive strain and are constant along the crests and valleys. Figure 1(e) shows the iso-absorption profile at $\alpha_0$ along ten consecutive ripples. There is an oscillation of the absorption edge energy corresponding to alternating valleys and crests of the ripples.

Previous attempts [33, 51–53] to measure micro-photo-luminescence (PL) in few layer GaSe have proved to be elusive because PL intensity is strongly quenched and indistinguishable from the noise (see figure S4(b), supplementary information). In addition, it has been reported that the light power density required for PL measurements induces degradation in the sample by thermal oxidation [33, 51–54]. Alternatively, optical absorption requires a power density four orders of magnitude lower. This leaves low power density absorption edge measurements as the sole straightforward experimental method to determine the optical gap of the thinnest GaSe flakes (more details in supplementary information).

3.2. Theoretical calculations

The crystal structure of GaSe is presented in figures 2(a), (b). Multilayers form the most common non-centrosymmetric AB stacking polytype, known as $\varepsilon$-GaSe. In figures 2(c)–(e) we show the band structure of single-layer, seven layer and bulk GaSe as obtained from DFT. As previously reported in the literature [22, 34, 55], we find that monolayer GaSe is a quasi-direct band gap semiconductor with gap energy $E_g = 2.73$ eV. The conduction-band (CB) minimum is located at the $\Gamma$ point while the valence band (VB) maximum is slightly shifted towards the M-point (figure 2(c)). The VB dispersion near $\Gamma$ has an inverted Mexican hat shape, which is present in all three gallium chalcogenides [17, 18, 56]. By increasing the number of layers, the gap decreases and the Mexican hat band shape flattens, although it is still visible for seven layers (see figure 2(d)). The VB eventually acquires a typical inverted parabolic shape around $\Gamma$ for the bulk crystal, as shown in figure 2(e), where we obtain a gap of 1.95 eV, in agreement with several experiments which report a value around 2.0–2.1 eV [19, 20]. In addition, the band structure has also an impact on the absorption coefficient. The density of states associated with the VB is comparatively much higher at the band-edge in the case of few-layers than in bulk. This is due to the almost flat band structure for a number of layers around or below 10 [17]. Thus one can expect a higher absorption coefficient for our flakes than for the bulk material.
where the VB presents a standard curvature. The experimental method used here is suitable to study band structure modifications for which the strain shifts the band gap energy vertically, corresponding to optical transitions.

We first consider the effect of uniaxial tensile and compressive strains applied in the armchair (AC) direction for a monolayer. The main effect of tensile strain is that of decreasing the gap by shifting the CB minimum downwards at the $\Gamma$ point (with respect to the M point) and splitting the highest VB further from the rest (see figure 2(g)). This behavior can be rationalized as follows. The CB and VB at $\Gamma$ belong to different irreducible representations (IRs) of the point group of the crystal. Following the notation of [18], the VB belongs to $\Gamma_{5}^{+}$ and the CB belongs to $\Gamma_{2}^{+}$, hence they transform differently under an in-plane mirror operation. Although they are not a simple bonding-antibonding pair with respect to the mirror plane (they have a different in-plane nodal structure [18]), still the $s_{p_{z}}$ orbitals of Ga atoms dominate the splitting (the gap), which is expected to increase with an increasing hybridization of these and vice versa. Our calculations reveal, somewhat counter-intuitively according to standard elasticity theory, that the vertical distance between Ga atoms in the same primitive cell increases with tensile strain (the opposite with compressive strain), decreasing the hybridization and thus reducing the gap. Although the change in bond length between Ga atoms is small (up to 2%), it is enough to have a visible effect due to the directional character of the $s_{p_{z}}$ orbitals. The reason behind this unexpected elastic behavior of the Ga atoms can be traced back to the ionic character of the Ga–Se bond. Under tensile strain, the monolayer thickness is decreased. This, in turn, reduces the Ga–Se bond length and the bond becomes more ionic. This withdraws charge from the Ga atom, thus reducing the bond between Ga atoms which separate from each other.

Conversely, when the crystal is compressed, the Ga–Ga distance reduces and the gap increases remaining quasi-direct until up to $-2\%$. Above this value the CB minimum at the $\Gamma$ point crosses over to the M-point and the gap turns to indirect (see figure 2(h)). This transition can be understood by examining the orbital nature of the CB at the M point. Here the $s$ character of the wave function increases compared to that at $\Gamma$ and this makes it less sensitive to changes in the Ga–Ga distance. The shape of the VB does not change until $\sim -5\%$ strain, when the lower energy VBs take over and the VB maximum shifts to the $\Gamma$ point (not shown). Again, this can be understood by the fact that the lower VBs belong to IRs $\Gamma_{5}^{+}$ which transform according to $p_{z}$, $p_{x}$ orbitals and are much less sensitive to changes in distances along the $z$ direction.

In figure 3 we show a theoretical DFT analysis of the behavior of the gap with strain and the number of layers. As can be seen in figure 3(a), the gap decreases with the number of layers and it does so in a similar fashion for the unstrained, the tensile and the compressive strained flakes.

In figure 3(b) we show the energy gap difference between $\pm 5\%$ strain for both crystal directions as a function of $N$. For seven layers, which is the thickness of our flakes in the experiment, we get $\Delta E_{g} \approx 1\ eV$ for strain in the ZZ direction and $\Delta E_{g} \approx 1.1\ eV$ for strain in the AC one, to be compared to the experimental value $\Delta E_{g} \approx 1.2\ eV$. The differences found between the AC and ZZ cases do not seem to be significant compared to the large band gap variation so as to consider this variable when contrasting theory and experimental results, which are, overall, in very good agreement.
In figure 3(c) we can observe the behavior of the gap with the applied strain in %, both for monolayer as well as for seven layers. \( E_g \) changes linearly with strain for almost all the strain range considered. In this range, the gap remains quasi-direct and its variation is moreover isotropic with strain direction. However, this linear and isotropic behavior is lost for compressive strain values larger than \(-2\%\) for monolayer and \(-3\%\) for \( N = 7 \), where the gap changes from quasi-direct to indirect (and becomes direction dependent). The absorption measurements can capture the variation of the gap with strain in the linear region where the gap is quasi-direct, corresponding to optical transitions, while it may not capture the onset of the indirect gap for the (small) region of compressive strains where it appears. The theoretical variation of the gap around the \( \Gamma \) point considering the whole strain range from +5\% to −5\% results in a slightly larger isotropic gap variation \( \Delta E_g \approx 1.2 \text{eV}. \)

Note that in this analysis the possible presence of excitons and their associated absorption gap reduction has been ignored. This assumption is justified since Budweg et al.\[57\] demonstrated the absence of excitons for GaSe flakes thinner than eight layers, both experimentally and theoretically. Based on these theoretical results, we conclude that the response of few layer GaSe to strain is isotropic in the entire quasi-direct band gap regime. Moreover, in this region we find a strain coefficient of 124 meV/\% for \( N = 7 \) and of 100 meV/\% for monolayer. A comparative table of the strain coefficients for several 2D crystals can be found in \[58\]. According to it, the strain coefficient that we find for GaSe is one of the highest strain coefficients reported in the literature, much larger than those for dichalcogenides, of the order of BP’s and slightly smaller than InSe’s. Previous reports also find a high strain coefficient for thicker GaSe flakes \[27\], which do not allow for such high strain as in our case, hence showing a significantly smaller absorption edge energy shift.

4. Conclusion

In summary, we find a strong modulation of the optical gap of strain-engineered few layer GaSe. A periodic compressive and tensile strain profile of up to 5\% is obtained by buckling induced rippling of the GaSe nanosheets. We locally measure diffraction limited micro-transmittance to obtain the optical absorption band-edge and find a blueshift for compressive strain and a redshift for tensile strain. Our DFT calculations show that the strong band gap variation is due to the applied in-plane stress. In the range of 5\% tensile to −3\% compressive deformations, wherein the electronic response is isotropic, we predict a linear change of the gap energy resulting in a strain coefficient of 124 meV/\% for a seven layer crystal, in agreement with our experimental findings. The large strain attained in the experiments yields an absorption edge shift as large as 1.2 eV from tensile to compressive strain, which is, to our knowledge, the highest strain-induced band gap energy variation in 2D semiconducting crystals reported to date.

Acknowledgments

Research supported by the Spanish MINECO through Grants MAT2017–88693-R, MAT2014–57915-R, FIS2016–80434–P (AEI/FEDER, EU), BES-2015-071316, the Ramón y Cajal programme RYC-2011-09345, the Fundación Ramón Areces and the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0377), as well as from the Comunidad Autónoma de Madrid (CAM) MAD2D-CM Program (S2013/MIT-3007) and the European Union Seventh Framework Programme under grant agreement No. 604391 Graphene Flagship. JJP acknowledges Fulbright Fellowship for Sabbatical leave at University of Texas at Austin, EEUU. We acknowledge the computer resources and assistance provided by the Centro de Computación Científica of the Universidad Autónoma de Madrid.

ORCID iDs

David Maeso @ https://orcid.org/0000-0001-5105-1789
Sahar Pakdel @ https://orcid.org/0000-0002-4676-0780
Hernán Santos @ https://orcid.org/0000-0002-6130-2163
Nicólás Agrait @ https://orcid.org/0000-0003-4840-5851
Juan José Palacios @ https://orcid.org/0000-0003-2378-0866
Elsa Prada @ https://orcid.org/0000-0001-7522-4795
Gabino Rubio-Bollinger @ https://orcid.org/0000-0001-7864-8980

References

[1] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 Strain engineering in semiconducting two-dimensional crystals J. Phys.: Condens. Matter 27 313201
[2] Roldán R, Chirolli L, Prada E, Silva-Guillén J A, San-Jose P and Guinea F 2017 Theory of 2D crystals: graphene and beyond Chem. Soc. Rev. 46 4387–99
[3] Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8
[4] Liu F, Ming P and Li J 2007 Ab initio calculation of ideal strength and phonon instability of graphene under tension Phys. Rev. B 76 064120
[5] Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS2 ACS Nano 5 9703–9
[6] Castellanos-Gomez A, Singh V, van der Zant H S J and Steele G A 2015 Mechanics of freely-suspended ultrathin layered materials Ann. Phys. 527 27–44
[7] Quereda J, San-Jose P, Parente V, Vaquero-Garzon L, Molina-Mendoza A J, Agrait N, Rubio-Bollinger G, Guinea F, Roldán R and Castellanos-Gomez A 2016 Strong modulation of optical properties in black phosphorus through strain-engineered rippling Nano Lett. 16 2931–7
[8] Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J and Steele G A 2013 Local strain engineering in atomically thin MoS2 Nano Lett. 13 5361–6
[9] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Two-dimensional atomic crystals Proc. Natl Acad. Sci. USA 102 10451–3
[10] Feng J, Qian X, Huang C-W and Li J 2012 Strain-engineered artificial atom as a broad-spectrum solar energy funnel Nat. Photon. 6 866

[11] San-Jose P, Parente V, Guinea F, Roldán R and Prada E 2016 Inverse funnel effect of excitons in strained black phosphorus Phys. Rev. X 6 031046

[12] Wang L, Huang L, Tan W C, Feng X, Chen L, Huang X and Ang K-W 2018 2D photovoltaic devices: progress and prospects Small Methods 2 1700294

[13] Xia F, Wang H, Xiao D, Dubey M and Ramanubramian A 2014 Two-dimensional material nanophotonics Nat. Photon. 8 899

[14] Shiue R-J, Efetov D K, Grosso G, Peng C, Fong K C and Englund D 2017 Active 2D materials for on-chip nanophotonics and quantum optics Nanophotonics 6 1329–42

[15] Hu P, Wen Z, Wang L, Tan P and Xiao K 2012 Synthesis of few-layer GaSe nanosheets for high performance photodetectors ACS Nano 6 5988–94

[16] Castellanos-Gomez A 2016 Why all the fuss about 2D semiconductors? Nat. Photon. 10 202

[17] Zólyomi V, Drummond N D and Fal'ko V I 2013 Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides Phys. Rev. B 87 195403

[18] Li P and Appelbaum I 2015 Symmetry, distorted band structure, and spin–orbit coupling of group-III metal-monochalcogenide monolayers Phys. Rev. B 92 195129

[19] Aulich E, Brebner J L and Mooser E 1969 Indirect energy gap in GaSe and GaS Phys. Status Solidi B 31 129–31

[20] Jie W, Chen X, Li D, Xie L, Hui Y Y, Lui S P, Cui X and Hao J 2015 Layer-Dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets Angew. Chem., Int. Ed. Engl. 54 1185–9

[21] Chen M-W, Kim H, Ovchinnikov D, Kuc A, Heine T, Renault O and Kis A 2018 Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion NPJ 2D Mater. Appl. 2 2

[22] Jung C S, Shojaei F, Park K, Oh J Y, Im H S, Jiang D M, Park J and Kang H S 2015 Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide ACS Nano 9 9585–93

[23] Aziza Z B et al 2017 Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures Phys. Rev. B 96 035407

[24] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T and Bolotin K I 2013 Bandgap engineering of strained monolayer and bilayer MoS2 Nano Lett. 13 3626–30

[25] He K, Poole C, Mak K F and Shan J 2013 Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 Nano Lett. 13 2931–6

[26] Zhu C, Wang G, Liu B, Marie X, Qiao X, Zhang X, Wu X, Fan H, Tan P and Amand T 2013 Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 Phys. Rev. B 88 121301

[27] Wu Y et al 2017 Simultaneous large continuous band gap tunability and photoluminescence enhancement in GaSe nanosheets via elastic strain engineering Nano Energy 32 157–64

[28] Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W and Yu T 2015 Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2 Nano Rev. 8 2562–72

[29] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y-T, Li L-J, Guo W and Lau S P 2013 Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet ACS Nano 7 7126–31

[30] Yang S et al 2015 Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering Nano Lett. 15 1600–6

[31] Biele R, Flores E, Ares J R, Sanchez C, Ferrer I J, Rubio-Bollinger G, Castellanos-Gomez A and D’Agosta R 2018 Strain-induced band gap engineering in layered TiS3 Nano Rev. 11 225–32

[32] Zhang D, Jia T, Dong R and Chen D 2017 Temperature-dependent photoluminescence emission from unstrained and strained gase nanosheets Materials 10 1282

[33] Andres-Penares D, Cros A, Martinez-Pastor J P and Sanchez-Royo J F 2017 Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation Nanotechnology 28 175701

[34] Ma Y, Dai Y, Guo M, Yu L and Huang B 2013 Tunable electronic and dielectric behavior of GaS and GaSe monolayers Phys. Chem. Chem. Phys. 15 7098–105

[35] Bandurin D A et al 2016 High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe Nat. Nanotech. 12 223

[36] Mudd G W et al 2013 Tuning the bandgap of exfoliated InSe Nanoscale 5 96

[37] Dovesi R, Orlando R, Erba A, Zicovich-Wilson C M, Civalieri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M and D’Arco P 2014 CRYSTAL14: a program for the ab initio investigation of crystalline solids Int. J. Quantum Chem. 114 1287–317

[38] For program description see http://crystal.unibo.it/ (Accessed: September 2018)

[39] Dovesi R et al 2014 CRYSTAL14 User’s Manual (Torino: University of Turin)

[40] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865

[41] Heyd J, Perdala J E, Scuseria G E and Martin R L 2005 Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional J. Chem. Phys. 123 174101

[42] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 Influence of the exchange screening parameter on the performance of screened hybrid functionals J. Chem. Phys. 125 224106

[43] Do D T, Mahanti S D and Lai C W 2015 Spin splitting in 2D monochalcogenide semiconductors Sci. Rep. 5 17044

[44] Novoselov K S 2011 Nobel Lecture: graphene: materials in the flatland Rev. Mod. Phys. 83 837–89

[45] Frisenda R et al 2017 Micro-reflection and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials J. Phys. D: Appl. Phys. 50 074002

[46] Mei H, Landis C M and Huang R 2011 Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates Mech. Mater. 43 627–42

[47] Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E and Zhang G 2011 Super-elastic graphene ripples for flexible strain sensors ACS Nano 5 3645–50

[48] Jia T et al 2018 Giant and linear Piezo-Phototronic response in layered GaSe nanosheets Adv. Electron. Mater. 4 1700447

[49] Chung J Y, Nolte A J and Stafford C M 2011 Surface wrinkling: a versatile platform for measuring thin-film properties Adv. Mater. 23 349–68

[50] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van der Zant H S J and Steele G A 2014 Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping 2D Mater. 1 011002

[51] Balitiski O A, Savchyn V P and Yukhmchuk V O 2002 Raman investigation of InSe and GaSe single-crystals oxidation Semicond. Sci. Technol. 17 L1
[52] Bergeron A, Ibrahim J, Leonelli R and Francoeur S 2017 Oxidation dynamics of ultrathin GaSe probed through Raman spectroscopy Appl. Phys. Lett. 110 241901

[53] Beechem T E, Kowalski B M, Brumbach M T, McDonald A E, Spataru C D, Howell S W, Ohta T, Pask J A and Kalugin N G 2015 Oxidation of ultrathin GaSe Appl. Phys. Lett. 107 173103

[54] Siciliano T, Tepore M, Genga A, Micocci G, Siciliano M and Tepore A 2013 Thermal oxidation of amorphous GaSe thin films Vacuum 92 65–9

[55] Yagmurcukardes M, Senger R T, Peeters F M and Sahin H 2016 Mechanical properties of monolayer GaS and GaSe crystals Phys. Rev. B 94 245407

[56] Wickramaratne D, Zahid F and Lake R K 2015 Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands J. Appl. Phys. 118 075101

[57] Budweg A, Yadav D, Grupp A, Leitenstorfer A, Trushin M, Pauly F and Brida D 2017 Control of excitonic absorption by thickness variation in few-layer GaSe arXiv:1712.06330

[58] Li Y et al 2018 Ultrasensitive tunability of the direct bandgap of two-dimensional InSe flakes via strain engineering 2D Mater. 5 021002