Genotype- and tissue-specific miRNA profiles and their targets in three alfalfa (Medicago sativa L) genotypes

Robert Pokoo¹, Shuchao Ren², Qingyi Wang², Christy M. Motes³, Timothy D. Hernandez³, Sayvan Ahmadi¹, Maria J. Monteros³, Yun Zheng²⁴* and Ramanjulu Sunkar¹*

From 29th International Conference on Genome Informatics
Yunnan, China. 3-5 December 2018

Abstract

Background: Alfalfa (Medicago sativa L.) is a forage legume with significant agricultural value worldwide. MicroRNAs (miRNAs) are key components of post-transcriptional gene regulation and essentially regulate many aspects of plant growth and development. Although miRNAs were reported in alfalfa, their expression profiles in different tissues and the discovery of novel miRNAs as well as their targets have not been described in this plant species.

Results: To identify tissue-specific miRNA profiles in whole plants, shoots and roots of three different alfalfa genotypes (Altet-4, NECS-141 and NF08ALF06) were used. Small RNA libraries were generated and sequenced using a high-throughput sequencing platform. Analysis of these libraries enabled identification of 100 miRNA families; 21 of them belong to the highly conserved families while the remaining 79 families are conserved at the minimum between M. sativa and the model legume and close relative, M. truncatula. The profiles of the six abundantly expressed miRNA families (miR156, miR159, miR166, miR319, miR396 and miR398) were relatively similar between the whole plants, roots and shoots of these three alfalfa genotypes. In contrast, robust differences between shoots and roots for miR160 and miR408 levels were evident, and their expression was more abundant in the shoots. Additionally, 17 novel miRNAs were identified and the relative abundance of some of these differed between tissue types. Further, the generation and analysis of degradome libraries from the three alfalfa genotypes enabled confirmation of 69 genes as targets for 31 miRNA families in alfalfa.

Conclusions: The miRNA profiles revealed both similarities and differences in the expression profiles between tissues within a genotype as well as between the genotypes. Among the highly conserved miRNA families, miR166 was the most abundantly expressed in almost all tissues from the three genotypes. The identification of conserved and novel miRNAs as well as their targets in different tissues of multiple genotypes increased our understanding of miRNA-mediated gene regulation in alfalfa and could provide valuable insights for practical research and plant improvement applications in alfalfa and related legume species.

* Correspondence: zhengyun5488@gmail.com; ramanjulu.sunkar@okstate.edu
1Institute of Primate Translational Medicine, Kunming University of Science and Technology, 727 South Jingming Road, Kunming 650500, Yunnan, China
2Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction

Alfalfa (Medicago sativa L.) is an important forage legume species with global adaptation, high forage quality and the capacity for harvesting biomass multiple times during the growing season. Alfalfa is an autotetraploid (2n = 4x = 32), perennial outcrossing species with high levels of genetic diversity in cultivated and non-cultivated populations. Besides its use as a forage, alfalfa also has potential crop breeding line with good agronomic performance (Forage Genetics International). The three alfalfa genotypes (NECS-141, Altet-4 and NF08ALF06) were clonally propagated and grown in tissue culture. After 13 d of growth in rooting media, these were transferred to medium at pH 7 for 96 h as previously described [25]. The rooting media contains 0.55 g/L Murashige & Skoog Basal Medium with Vitamins (PhytoTechnology #M519), 1 ml Plant Preservative Mixture, PPM (PhytoTechnology), adjust the pH to 5.8, and add 12 g/L Gelzan. The plants were placed in a Conviron growth chamber (24 °C, 18 h/6 h day/night cycle, 100 μmol light intensity) for root development and growth. An additional 20 clonally propagated plants of these genotypes were grown in a Conviron growth chamber as previously described and used to evaluate the tissue-specific expression of the miRNAs. Tissue samples were harvested and immediately flash frozen in liquid nitrogen and stored at −80 °C.

Materials and methods

Plant materials and growth conditions

Three alfalfa genotypes NECS-141, Altet-4 and NF08ALF06 were evaluated in this study. NECS-141 is the genotype being used to sequence the tetraploid alfalfa genome [23]. Altet-4 is an aluminum tolerant genotype used to develop a mapping population [24]. NF08ALF06 is a commercial breeding line with good agronomic performance (Forage Genetics International). The three alfalfa genotypes (NECS-141, Altet-4 and NF08ALF06) were clonally propagated and grown in tissue culture. After 13 d of growth in rooting media, these were transferred to medium at pH 7 for 96 h as previously described [25]. The rooting media contains 0.55 g/L Murashige & Skoog Basal Medium with Vitamins (PhytoTechnology #M519), 1 ml Plant Preservative Mixture, PPM (PhytoTechnology), adjust the pH to 5.8, and add 12 g/L Gelzan. The plants were placed in a Conviron growth chamber (24 °C, 18 h/6 h day/night cycle, 100 μmol light intensity) for root development and growth. An additional 20 clonally propagated plants of these genotypes were grown in a Conviron growth chamber as previously described and used to evaluate the tissue-specific expression of the miRNAs. Tissue samples were harvested and immediately flash frozen in liquid nitrogen and stored at −80 °C.

Small RNA library construction and sequencing

Total RNA was isolated from the whole plants, roots and shoots of three alfalfa genotypes using TRIZol® Reagent (Invitrogen), according to the manufacturer’s instructions. The quality of total RNA was monitored on 1% agarose gel and their concentrations were measured using Nanodrop spectrophotometer. Small RNA libraries were generated as described previously [26] by following the protocol described for the Illumina Truseq® Small RNA Preparation kit (Illumina, San Diego, USA). Briefly, 1 μg total RNA per sample was ligated sequentially with 5′ and 3′ RNA adaptors. The ligated products were converted into cDNAs and then amplified using PCR. The amplified products were sequenced using an Illumina Hiseq® Analyzer.

Identification of conserved and novel miRNAs

The raw sequencing reads were processed as follows: adaptor sequences were trimmed off from the raw reads to obtain small RNAs. These reads were then mapped to ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNAs (snRNA), and the aligned and mapped reads were not used for further analysis. The remaining reads were aligned to miRBase v 20 [27] to identify miRNAs in Medicago sativa. The reads with 100% sequence identity were designated as conserved miRNA homologs. To identify novel miRNAs, the presence of the miRNA-star (miRNA*) sequences coupled with the predictable hairpin-like structure for the precursor sequences were used.
Degradome library construction and analyses
Degradome libraries from the alfalfa genotypes NECS-141, Altet-4 and NF08ALF06 were constructed as previously described to identify potential target mRNAs [28]. Briefly, the cleaved 5’ monophosphate containing polyadenylated mRNA fragments were ligated to an RNA oligo-nucleotide adapter containing Mmel recognition site at its 3’ end. The ligated products were converted into cDNA using reverse transcriptase and the product was amplified using only 5 PCR cycles. The PCR product was eluted, digested with Mmel restriction enzyme and then ligated to a double-stranded DNA adapter. The ligated product was again purified and amplified using 15 cycles of PCR. The final PCR product was sequenced. The reads were processed for quality and then aligned to the transcriptome assembly of M. truncatula to identify potential miRNA targets using the SeqTar pipeline [29].

Results and discussion
The analyses of small RNA libraries
High-throughput sequencing has been used to identify miRNAs and their target mRNAs in plants [15, 30, 31]. To catalogue conserved and novel miRNAs in alfalfa, a total of eight small RNA libraries from the whole plants, roots and shoots of Altet-4, NECS-141 and NF08ALF06 genotypes were constructed and sequenced. After removal of the adapter sequences and low-quality reads, the total reads ranging between 11 to 42 million, and unique reads ranging between 1.8 to 8.5 million reads from these nine libraries were obtained (Table 1). However, the quality of the small RNA library generated from the shoots of NF08ALF06 did not meet the threshold criteria, therefore only NECS-141 and Altet-4 were used for the miRNA analyses of shoot tissues.

Quantification of miRNA abundances between the genotypes and tissues was preceded by normalizing the expression levels of miRNA families to reads per ten million (RPTM). The normalized miRNA family read frequencies ranged between 1 to 552,267 RPTM for the whole plants, between 1 to 134,679 RPTM for the root samples, and 1 to 165,310 RPTM for the shoot samples (Table 2). The range of miRNA read frequencies varied slightly between the three genotypes. As expected, the most conserved miRNAs appeared to be the most abundantly expressed in all tissues and genotypes, with the exception of miR169, miR393, miR395 and miR172 which exhibited low abundances. Specifically, miR172 levels in roots and shoots of the three genotypes were extremely low and in most cases was below 20 RPTM (Table 2). The miRNA families with the lowest expression levels, and in some cases as low as 1 RPTM, were largely represented by the non-conserved miRNAs or miRNAs that have been reported exclusively from M. truncatula (miRBase) that include miR2601, miR2674, miR5207, miR5241, miR5243, miR5244, miR5255, miR5256, miR5269, miR5282, miR5289, miR5294, miR5296, miR5299, miR5561, miR5744, and miR7701 (Table 2). miR5207 is the only miRNA that was also reported from Gossypium raimondii (miRBase). The majority of the miRNA families identified are 21 nt long, although some cases including miR2601 and miR2603 were represented by 22 nucleotides. Further, a total of 23 miRNA families included between miR5267 to miR5299 were 24 nt long. The fact that these small RNAs were initially identified in M. truncatula (miRBase), and could be identified in several independent small RNA libraries from three different alfalfa genotypes (Table 2), suggests that these sequences and their associated processing are conserved between alfalfa and its close relative M. truncatula. However, their extremely low abundances coupled with their longer read lengths could also indicate that these may be 24-nt long siRNAs. Additional studies are needed to assess the precise nature of these small RNAs, i.e., miRNAs or siRNAs.

MicroRNA profiles in alfalfa plants, roots and shoots
A total of 100 known miRNA families were identified from the small RNA libraries of the three alfalfa genotypes (Table 2). Of these, 21 families were represented by the highly conserved miRNAs, whereas the remaining 79 families could be considered as Medicago-specific miRNA families. The identification of these 79 miRNA families in alfalfa was based on their expression in M. truncatula (miRbase), therefore, these are conserved at least between M. truncatula and alfalfa.

Among the highly conserved miRNA families, miR166 was the most highly expressed family in seven of the eight samples that were surveyed in this study. The only exception to this trend was observed in the shoots of NECS-141 in which the miR2118 family was the most abundant followed by the miR166 family. The miRNA families, miR396 and miR2118 represents the second and third most abundantly expressed in the whole plants, while miR159 and miR396 were the second and third most highly expressed miRNAs in roots. Several additional miRNA families including miR398, miR160, miR168, miR319, miR408, miR1510 and miR2643 were also highly expressed but miR169, miR171, miR393, miR397 and miR395 were expressed at relatively very low levels (Table 2). On the other hand, miR159, miR156, miR319, miR398 miR1507 and miR1510 were highly expressed but miR164, miR169, miR172, miR393, miR397, miR399 and miR482 were expressed at very low levels in roots of these genotypes. Interestingly, miR160 was not sequenced from the roots of three alfalfa genotypes.

Overall, the conserved miRNA families such as the miR156, miR159, miR166, miR168, miR319, miR396, miR398 and miR408 were more highly expressed in the plants, roots and shoots of all three alfalfa genotypes. Among the legume-specific families, miR1507, miR1510,
	Alter-4 whole plants	NECS-141 whole plants	NF08ALF06 whole plants	Alter-4 Roots	NECS-141 Roots	NF08ALF06 Roots	Alter-4 Shoots	NCES-141 Shoots
Total reads	6,858,719	6,197,308	6,197,308	8,142,985	9,352,477	19,665,339	8,930,063	17,117,689
Unique reads	336,266	430,819	493,929	276,276	732,738	352,167	352,167	669,572
Total reads	6,610,937	5,666,067	5,666,067	7,722,727	9,833,993	18,454,661	8,684,028	14,718,199
Unique reads	261,134	213,396	213,396	284,785	271,496	272,596	237,827	280,087
Total reads	567,518	943,976	943,976	1,162,233	147,326	1,102,879	426,327	2,520,492
Unique reads	3182	3888	3888	4005	2409	5780	3213	7051
Total reads	5,451,840	162,552	162,552	5,756,349	8,267,063	15,744,403	7,536,403	3,798,312
Unique reads	4,218,992	148,297	148,297	183,418	158,310	180,030	146,043	104,708
Total reads	8,951,430	1,142,594	1,142,594	11,387,413	11,557,742	29,143,549	11,588,832	29,192,098
Unique reads	9,878,838	2,398,705	2,398,705	2,053,582	784,140	1,488,546	5,246,027	5,834,731
Total reads	12,008,892	11,645,217	11,645,217	15,733,102	1,860,736	33,335,201	2,708,737	34,441,313
Unique reads	2,343,120	3,348,188	3,348,188	3,739,163	1,860,736	14,378,859	2,708,737	7,748,996
Table 2: Identified miRNA families and their frequencies (reads per ten million [RPTM]) in whole plants, roots and shoots of three alfalfa genotypes (miRNA-stars were marked in bold)

miRNA Family	Whole plants	Roots	Shoots
miR156-5p	4712	1001	19,808
miR156-3p	3262	545	4634
miR159-3p	6315	3910	61,929
miR160-5p	225	20	3505
miR162-3p	140	194	533
miR164-5p	108	6	48
miR166-3p	336,505	34,634	101,118
miR166-5p	544	228	800
miR167-5p	218	107	699
miR168-5p	2	0	0
miR168-5p	1121	735	3460
miR168-5p	672	182	5550
miR169-5p	19	47	46
miR169-3p	7	6	2
miR171-3p	51	44	60
miR171e-5p	26	22	7
miR172-3p	3	1	2
miR172-5p	3	1	2
miR319-3p	1631	1607	4330
miR319-3p	46	3	129
miR390-5p	95	86	121
miR393-3p	11	4	22
miR393-5p	3	1	2
miR396-5p	12,185	2835	39,236
miR396-3p	250	76	323
miR397-5p	57	37	94
miR399-3p	19	0	4
miR408-3p	3814	2101	39,236
miR408-3p	3814	2101	39,236
miR408-5p	17	25	62
miR482-3p	7	11	9
miR482-5p	2	2	2
miR500-3p	96	52	256
miR500-5p	96	52	256
miR507-3p	963	881	1778
miR510-5p	1959	523	12,496
miR510-3p	96	52	256
miR2111	47	44	278
miR2111	5607	106	79,977
miR2199	95	21	156
miR2585	57	28	239
miR2587	0	0	13
Table 2 Identified miRNA families and their frequencies (reads per ten million [RPTM]) in whole plants, roots and shoots of three alfalfa genotypes (miRNA-stars were marked in bold) (Continued)

	Whole plants	Roots	Shoots					
	Altet-4	NECS-141	NF08ALF06	Altet-4	NECS-141	NF08ALF06	Altet-4	NECS-141
miR2590	15	41	42	23	55	25	109	177
miR2592	393	1350	395	119	1612	268	1224	1742
miR2601-5p	0	0	0	0	0	0	1	1
miR2603-5p	0	8	1	1	1	1	5	24
miR2629-5p	2	5	4	1	3	7	2	5
miR2632-5p	0	1	0	0	0	0	1	18
miR2634-3p	5	3	7	6	4	15	9	6
miR2643-3p	1502	2689	2106	382	1462	948	9682	24,971
miR2651-3p	27	52	22	4	21	7	40	49
miR2661-5p	3	4	5	2	4	5	13	9
miR2666-3p	0	21	0	0	14	0	0	29
miR2674-3p	0	0	1	0	0	0	0	0
miR2678-3p	2	6	4	0	4	4	4	12
miR4414-3p	2	4	4	0	1	1	3	7
miR4414-5p	1	3	4	1	1	0	5	7
miR5037-5p	4	3	13	3	8	24	2	4
miR5204-3p	4	10	6	3	28	17	6	10
miR5205-5p	7	22	14	0	6	6	15	6
miR5207-5p	0	0	0	0	0	1	0	1
miR5208-3p	2	1	1	0	0	0	1	1
miR5208d-5p	0	0	1	0	1	0	1	1
miR5211-5p	432	85	23	559	71	41	292	59
miR5213-5p	801	836	887	181	891	829	1397	1379
miR5214-3p	63	155	153	97	414	452	153	201
miR5225-5p	4	2	8	3	1	8	1	1
miR5230-5p	1	2	1	0	1	0	6	1
miR5231-5p	10	7	7	3	11	1	43	69
miR5232-5p	67	253	419	56	503	417	602	3964
miR5237-3p	2	2	0	0	2	1	6	4
miR5238-5p	2	0	2	1	2	1	0	0
miR5239-5p	347	269	430	16	52	72	622	773
miR5241-3p	0	0	0	0	0	0	0	1
miR5243-3p	0	0	0	0	0	0	0	1
miR5244-3p	0	1	1	0	0	0	0	1
miR5248-5p	0	2	1	0	2	1	0	3
miR5255-3p	0	1	1	0	0	0	0	1
miR5257-5p	1	0	0	0	0	0	0	0
miR5261-3p	76	89	93	22	302	127	283	227
miR5266-5p	0	0	0	4	2	3	0	1
miR5267-5p	1	3	1	0	1	1	0	2
miR5269-3p	0	1	1	1	0	0	0	0
miR5271-5p	1	1	1	1	2	2	1	1
miR2118, miR2592, miR2643, miR5213, miR5232, miR5558 and miR7696 (Table 2) were also abundant in all tissues of alfalfa genotypes. Conversely, some conserved miRNA families represented by miR169 and miR393 recorded very low abundances in all samples. Other notable differences between roots and shoots include relatively low expression levels of miR160, miR167, and miR408 in roots compared to the shoots of alfalfa genotypes (Table 2).

Several miRNA families including miR482, miR1507, miR2118, miR4416 are conserved in *M. truncatula*, soybean, chickpea (miRBase). These miRNA families are known to regulate NBS-LRR genes that are involved in pathogen resistance. The miRNA-guided cleavage on the NBS-LRR genes initiates the generation of phasiRNAs [16, 18, 32]. In alfalfa, miR482, miR1507 and miR2118 were detected in all three tissues (Table 2), but not miR4416. Both miR2118 and miR1507 families were more abundantly expressed in all tissues and genotypes compared with miR482 family. Remarkably, miR2118 was the top most highly expressed miRNA family in shoots of NECS-141. By contrast, miR2118 levels were very low in roots of three

Table 2
Identified miRNA families and their frequencies (reads per ten million [RPTM]) in whole plants, roots and shoots of three alfalfa genotypes (miRNA-stars were marked in bold) (Continued)

Whole plants	Roots	Shoots						
	After-4	NECS-141	NF08ALF06	After-4	NECS-141	NF08ALF06	After-4	NECS-141
miR5272-5p	17	22	12	12	34	21	18	18
miR5273-3p	1	3	1	1	3	1	4	2
miR5277-3p	60	108	62	75	99	48	16	20
miR5279-5p	3	19	13	1	16	8	8	7
miR5281-3p	29	47	29	35	69	18	141	150
miR5282-3p	0	0	0	0	0	0	1	0
miR5284-3p	20	52	50	4	14	17	10	23
miR5285-5p	0	0	1	1	1	0	2	3
miR5286-3p	2	0	2	1	3	2	3	2
miR5287-3p	6	10	14	8	9	4	17	19
miR5289-3p	0	1	0	1	0	0	0	0
miR5290-3p	0	5	1	1	2	1	2	6
miR5291-3p	0	1	1	0	3	1	0	1
miR5292-3p	16	35	21	6	34	21	53	82
miR5294-3p	0	0	1	0	0	0	0	0
miR5295-3p	9	29	13	3	15	9	7	6
miR5296-3p	1	0	0	0	0	0	0	0
miR5297-3p	0	1	2	1	0	1	1	1
miR5298-3p	0	4	1	4	0	1	3	15
miR5299-3p	0	1	0	0	1	1	0	0
miR5558-5p	539	1938	1820	220	415	412	1103	1276
miR5559-5p	7	3	0	0	0	0	8	5
miR5561-3p	5	14	18	0	5	5	4	5
miR5561-5p	0	0	0	1	0	0	0	0
miR5743-3p	19	113	6	0	1	1	70	398
miR5744-5p	0	0	0	0	0	1	0	0
miR5745-3p	28	39	41	69	144	171	126	113
miR5752-3p	0	4	0	0	1	0	8	11
miR5754-3p	0	6	19	0	1	3	2	41
miR7696-5p	0	1	1	0	1	0	0	1
miR7696-3p	174	95	253	40	138	184	1173	255
miR7701-3p	0	1	0	0	0	0	0	0
miR4414, miR5213, miR5232, and miR5234 among others. miR1520, miR1521, miR2118, miR2086, miR2109, miR2199, miR7696 were specifically highly expressed in all three genotypes. Moreover, the miRNA-star expression levels for miR156, miR166 and miR168 were very high (Table 2). Intriguingly, like miR168, miR168 star levels differed greatly between different tissue. In shoots of NECS-141, miR168 star levels were slightly more than that of miR168, while both in whole plants and roots, the star levels were approximately half of the levels of miR168.

miRNA diversity in alfalfa compared with other legumes
Several miRNA families are specifically reported from the leguminous plants such as the M. truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, Cicer arietinum, Vigna unguiculata and Acacia auriculiformis [14, 16, 18, 19, 32, 33]. These lineage-specific miRNAs include miR1507, miR1508, miR1509, miR1510, miR1512, miR1514, miR1520, miR1521, miR2118, miR2086, miR2109, miR2199, miR4414, miR5213, miR5232, and miR5234 among others (miRBase). The majority of these were reported from M. truncatula and soybean, since these legume species have been the subject of multiple studies exploring small RNAs. Most of these legume-specific miRNAs were also identified in alfalfa and a few of them including miR1507, miR1510, miR2118, miR2592, miR2643, miR5211, miR5213, miR5214, miR5232, miR5239, miR5277, miR5558, and miR7696 were specifically highly expressed in all three alfalfa genotypes (Table 2).

Identification of novel miRNAs from alfalfa
The sequencing of the small RNAs from multiple tissues of three different alfalfa genotypes would allow us to identify the novel miRNAs more confidently. Novel miRNA identification was dependent on sequencing of the miRNA complementary strand (miRNA-star) coupled with the predictable fold back structure for the primary miRNA transcript. Because a stable assembly of the tetraploid alfalfa genome sequence is not available, the small RNAs were mapped to the M. truncatula genome. Mapping of the small RNAs from the three alfalfa genotypes onto the M. truncatula genome enabled the identification of novel miRNAs more confidently because they have been sequenced from M. sativa and mapped on to the M. truncatula, suggesting their conservation between M. sativa and M. truncatula. Moreover, the novel miRNA identification in this study is more robust as it includes sequencing of these small RNAs from three different genotypes. We have identified a total of 17 novel miRNAs which have been sequenced from all of the three genotypes (Table 3 and Fig. 1). Among these, t50582913 was highly expressed followed by t50063038. In roots, t50582913 was highly expressed in NECS-141 and Altet-4 but not in NF08ALF06. In shoots, t50063038 was highly expressed followed by the t50582913 and t51235783.

Identification of miRNA targets in alfalfa
Although the alfalfa is one of the important legumes agronomically, the genome sequencing and annotations are not available so far. Due to this, studies have utilized the well-studied and closely related M. truncatula genome annotations as a model for alfalfa studies. The nucleotide identity for some genes was greater than 97% between M. sativa and M. truncatula [34]). Thus, using M. truncatula transcript annotations can facilitate identification of miRNA targets in alfalfa. We used SeqTar algorithm (Zheng et al., 2012) to identify miRNA targets by allowing a maximum of 4 mismatches between miRNAs and their potential target transcripts.

Previous studies have revealed that conserved miRNAs are strongly associated with the regulation of genes that encode transcription factors [35]. These transcription factors in turn regulate key developmental processes and pathways in plants. Degradome sequencing has been very effective in identifying plant miRNA targets. Besides identifying the conserved targets, this approach can also identify non-conserved targets for the conserved miRNAs [28, 36, 37]. Degradome sequencing was used in this study to identify the cleaved miRNA fragments corresponding to the miRNA recognition sites in all three alfalfa genotypes. Approximately 30 million degradome reads were obtained from the transcripts of each of the alfalfa genotypes (Table 4) and these reads were analysed using SeqTar program. In total, we have identified 69 targets for 31 miRNA families that included 16 highly conserved families (Table 5). With respect to the conserved miRNAs, 33 targets for 16 conserved miRNA families were identified (Table 5). The known targets for miR162, miR165/166, miR398 and miR399 families were not identified in this study. Although miR165/166 family is the most abundantly expressed as scored from their read frequencies in almost all libraries but the cleaved fragments from the HD-Zip target transcripts were not recovered from degradome libraries of alfalfa genotypes.

The identified miRNA targets in all three genotypes include mainly transcription factors. Specifically, five members of the squamosa promoter-binding-like protein (SPL) targeted by the miR156 family, five members of the auxin response factors targeted by both miR160 and miR167 families, five members of the apetala2 (AP2)-domain containing transcription factors, four members of the growth-regulating factor (GRFs) family targeted by miR396, two members of the TCP family transcription factors targeted by miR319, and, a NAC domain-containing
Table 3 Identified novel miRNAs based on sequencing both 5' and 3' reads and the most abundant ones that is marked in bold denotes potential novel miRNA based on their greater abundances

miR-5p	miR-5p_seq	miR-3p	miR-3p_seq	Altet-4 Plants	NECS-141 Plants	NF08ALF06 Plants	Altet-4 Roots	NECS-141 Roots	NF08ALF06 Roots	Altet-4 Shoots	NECS-141 Shoots
t61680599	UUUCUUUGACUGUUUUGAAU	CAUAAGCCGUGCAUAGAAUG	0	31	0	0	0	312	0	0	32
t464052976	UAGCAUCAAGCGUGCGUCGAU	CGACCCGAGGCUGAUUGCAUC	115	97	145	81	479	229	335	315	
t59820880	UUGGCAGAAUCACGUGAGCC	CUGUUGGCAUUGAUGAUGAC	0	6	25	1	6	8	1	47	
t21870702	CAACUCGGUCCCUUGUUAAC	UUACAGAAGACUGAGUUGGCC	0	11	3	1	41	12	24	103	
t62603216	UUUUGAAGUUGUCCULUCAG	CUAAGGGCAACUCUGAAACU	77	178	196	7	240	107	529	899	
t8901469	ACCUGAGACAGAGAUGCAAU	UACGUCUCUGUCUUGGAGUUG	1	55	28	2	222	28	6	247	
t12927907	AGGAUGAAGAAUUGUCAAGA	UUGUAGCAUGAGUUGUGAGA	13	43	85	14	273	147	83	262	
t63076572	UUUUGAAGAUAUGAAUGAUA	UAUGUAAAGUGAAGUCUAAU	10	10	14	4	40	2	208	177	
t53501433	UGAUUAUUCUACUAACCGGACC	UCGGGGUAGCAUAGAAUCAUC	350	371	78	45	371	18	17,057	20,494	
t12458129	AGCGGUGUUGGAUCUGCAUAu	UCCACUUGUACCAACUCCUGC	544	915	0	123	1148	0	881	1453	
t40560414	GUUCCUGAGUUUUGUUGAGG	UCUCAGAAGACAAAGAAGCGC	19	281	0	24	762	0	269	1655	
t55270980	UGGCUUUGACUGUCCGAAACa	UGUCCGUAGAUGAGAUGCAC	4	4	0	2	23	0	24	40	
t14211567	AGGUUAUUUGUGUUGAGUAUGUu	UUGUACAGAUGAAUUGUACUA	17	26	60	3	48	22	42	50	
t8194733	ACAUUUUGUAGUGUUGAGGAA	CCUGUAAUUAUGAUGAUGUUU	0	6	0	0	3	6	6	0	
t62313687	UUUUGUUAACUUGUUGUUC	AAACACCCAGUUUGACACUAG	0	6	0	0	15	1	0	12	
t55268321	UGGCUUUGCUUGUCAAAAGAAGua	UUUUGUGGAAACCAUCACUA	4	19	13	1	29	4	9	56	
t51870988	UCUUUAUUCGACAUUGGAAAG	UUGCACUGUCAGGAAAGAAG	19	99	71	1	9	1	353	1072	
transcription factor-like protein (NAC) targeted by miR164 [35]. Additionally, transcripts encoding Arga-
nauta targeted by miR168, laccase targeted by miR397,
and three plantacyanin containing proteins targeted by
miR408 were also identified. Although evidence
indicates that miR398 targets Cu/Zn superoxide
dismutases and a copper chaperone for the superoxide
dismutases (CCS) in plants [28, 38] these relationships
were not apparent in the data from this study. On the
other hand, we have identified three potentially
non-conserved targets (plastocyanin, protein disulphide
isomerase and a hypothetical protein) for miR398 in
three alfalfa genotypes. In addition to the GRFs, our
analyses revealed potential non-conserved targets for
miR396 including TNP1, Ulpl protease and hypothet-
cial proteins (Table 5).

Fig. 1 The predicted foldback structures using the novel miRNA precursor sequences. a The fold-back structures for six novel miRNAs. b The distribution of small RNA reads on the precursors of the novel miRNAs depicted in Fig. 1a
The analyses of legume-specific miRNAs and their targets have revealed an interesting miRNA: target networks between the miRNAs and the NBS-LRR genes [14, 16, 18, 32]. In this study, we identified NBS-LRR disease resistance genes as targets for four different miRNA families including miR482, miR1507, miR1510 and miR5213 in alfalfa (Table 5).

Degradome analyses has also been utilized to identify potential targets for several non-conserved miRNAs or miRNAs that are present only in closely related species such as the M. truncatula. To increase the confidence in identification of targets for the non-conserved miRNAs that are usually expressed at low abundances and the cleavage frequencies on those targets are relatively low, we considered as ‘targets’ only those for which the cleavages were detected at least in two of the three alfalfa genotypes. The transcripts for Medtr6g053240.1 (F-box protein interaction domain protein) had a cleavage frequency of approximately 75% and were targeted by the miR2643 in NF08ALF06 genotype. Additionally, two other F-box protein interaction domain protein genes were also identified as targets for miR2643 in alfalfa genotypes (Table 5). These results suggest that the F-box protein interaction domain protein family are regulated by this potential legume-specific miRNA. Another notable observation is that 6 different genes identified as potential targets for miR7696, and the cleavage frequency of a particular target gene (hypothetical protein, Medtr3g112250.1) was more abundant in all three alfalfa genotypes (Table 5).

Because some of the miRNA-stars are also highly expressed, we scrutinized the degradome reads for potential cleavages on the transcripts that are complementary to the miRNA-stars. This analysis has identified potential targets for at least four conserved miRNAs. Specifically, miR156-star targets a heat shock transcription factor, miR164-star targets a protein transporter Sec61 subunit alpha-like protein, miR167-star targets a GRAS family transcription factor, and, miR482-star targets an auxin response factor 1 in alfalfa (Table 5).

The confirmed targets of conserved miRNAs are known to regulate diverse developmental processes in the lifecycle of plants. For example, the SPL transcription factors (target of miR156) which regulate the transition from juvenile to adult phase of the life cycle in land plants [39]. Auxin receptors (TIR1 proteins) and ARFs targeted by miR393 and miR160, miR167, are components of the auxin signalling pathway that regulates several aspects of plant growth and development. The roles of NAC factors (targeted by miR164) include shoot meristem initiation and later root formation in Arabidopsis [40, 41]. Similarly, TCP family transcription factors have several different roles including regulating leaf morphogenesis [42, 43]. In Arabidopsis, seven out of nine GRFs are known targets for miR396 [44], and we have identified four GRFs as targets for miR396 in alfalfa (Table 5). By interacting with its coactivators called GRF-interacting factors (GIFs), this regulatory network (miR396-GRFs-GIFs) regulate leaf size, leaf growth and senescence in Arabidopsis [44]. The known targets for miR397 include laccase, which is involved in oxidative polymerization of lignin in plants [45]. Similarly, miR408 is targeting a family of plantacyanins, which could function in shuttling electron-transfer between proteins [46, 47].

The miR398 family is known to target CSDs and a copper chaperone for superoxide dismutase (CCS) genes in plants [28, 38]. In this study, we have identified plastocyanin-domain like proteins (plastocyanin is an essential electron carrier which shuttles the electrons between cytochrome b_6f and PS I) represents a novel target for miR398. Protein disulphide isomerase (PDI) is a member of a family of dithiol/disulfide oxidoreductases, the thioredoxin superfamily, which functions in the formation of disulphide linkage between the cysteine residues for proper protein folding [48]. Our degradome analyses confirms that PDI represents a novel target for miR398 in alfalfa (Table 5). The other confirmed miRNA target transcripts include Leucine rich repeat resistance (LRR) proteins (TIR-NBS-LRR and CC-NBS-LRR) that play important roles in plant pathogen recognition and activation of plant innate immune responses [14, 16, 18, 32]. Yet another interesting target include the F-box protein interaction domain proteins that are regulated by miR2643, one of the very abundantly expressed miRNA in alfalfa.
Table 5 miRNA targets identified in the degradome libraries generated from three alfalfa genotypes. #Mis. is number of mismatches on the miRNA complementary site; Valid reads is Reads corresponding to the expected cleavage site; Total reads is Total reads mapped to the cDNA of the gene; Percent is Percent reads at the expected cleavage site.

genotypes	miRNA id#	Target gene	#Mis.	Valid reads	Total reads	Percent	Target gene annotation
Altet-4	miR156e	Medtr7g028740.2	0	4	23	17.4	squamosa promoter-binding-like protein
Altet-4	miR156a	Medtr7g444860.1	0	2	28	7.1	squamosa promoter-binding-like protein
Altet-4	miR156a	Medtr3g099080.1	0	1	3	33.3	squamosa promoter-binding 13A-like protein
Altet-4	miR159b	Medtr8g042410.1	2.5	1	16	6.3	MYB transcription factor
Altet-4	miR160c	Medtr2g094570.3	1	4	21	19.1	auxin response factor 1
Altet-4	miR164d	Medtr2g064470.1	1	2	34	5.9	NAC transcription factor-like protein
Altet-4	miR164d	Medtr8g058330.1	2	5	49	10.2	protein transporter Sec61 subunit alpha-like protein
Altet-4	miR167b-5p	Medtr8g079492.3	4	4	62	6.5	auxin response factor 2
Altet-4	miR169e-5p	Medtr2g099490.2	2	1	20	5	CCAAT-binding transcription factor
Altet-4	miR171f	Medtr0992s0100.2	1.5	5	24	20.8	GRAS family transcription regulator
Altet-4	miR172a	Medtr2g094868.8	1	1	13	7.7	AP2 domain transcription factor
Altet-4	miR172a	Medtr5g016810.2	1	1	18	5.6	AP2 domain transcription factor
Altet-4	miR172a	Medtr2g093060.3	0	4	17	23.5	AP2-like ethylene-responsive transcription factor
Altet-4	miR319d-3p	Medtr2g078200.1	3	2	34	5.9	TCP family transcription factor
Altet-4	miR319d-3p	Medtr8g463380.1	3	2	7	28.6	TCP family transcription factor
Altet-4	miR393a	Medtr1g088950.1	1	11	83	13.3	transport inhibitor response-like protein
Altet-4	miR393a	Medtr7g083610.1	2	38	134	28.4	transport inhibitor response 1 protein
Altet-4	miR395j	Medtr1g102550.1	1	1	76	1.3	ATP sulfurylase
Altet-4	miR396b-5p	Medtr1g017490.2	3	47	100	47	growth-regulating factor
Altet-4	miR396b-5p	Medtr2g041430.3	3	5	12	41.7	growth-regulating factor-like protein
Altet-4	miR396b-5p	Medtr5g027030.1	3	5	15	33.3	growth-regulating factor
Altet-4	miR399c	Medtr4g114870.1	3	8	23	34.8	plastocyanin-like domain protein
Altet-4	miR398a-3p	Medtr8g064810.1	3	5	36	13.9	protein disulfide isomerase (PDII)-like protein
Altet-4	miR408-3p	Medtr8g089110.1	3	3	9	33.3	basic blue-like protein
Altet-4	miR408-3p	Medtr8g007020.1	3.5	5	73	6.9	plastocyanin-like domain protein
Altet-4	miR408-3p	Medtr8g007035.1	3.5	5	123	4.1	plastocyanin-like domain protein
Altet-4	miR408-3p	Medtr3g074830.1	3.5	2	442	0.5	phosphate-responsive 1 family protein
Altet-4	miR1510a-5p	Medtr2g012770.1	1	1	5	20	disease resistance protein (TIR-NBS-LRR class)
Altet-4	miR2199	Medtr7g080780.2	2	2	8	25	helix loop helix DNA-binding domain protein
Altet-4	miR2643a	Medtr3g010590.1	1	1	15	6.7	F-box protein interaction domain protein
Altet-4	miR2643a	Medtr6g053240.1	3	2	4	50	F-box protein interaction domain protein
Altet-4	miR4414a-5p	Medtr3g117120.1	4	3	84	3.6	BZIP transcription factor bZIP124
Altet-4	miR5213-5p	Medtr6g084370.1	2	1	2	50	disease resistance protein (TIR-NBS-LRR class)
Altet-4	miR5213-5p	Medtr6g088245.1	3	1	5	20	disease resistance protein (TIR-NBS-LRR class)
Altet-4	miR5239	Medtr3g018680.1	3	1	5	20	F-box/RNI superfamily protein, putative
Altet-4	miR5561-3p	Medtr2g045295.1	3	1	4	25	hypothetical protein
Altet-4	miR5752b	Medtr8g066820.1	4	9	423	2.1	PLATZ transcription factor family protein
Altet-4	miR7696a-5p	Medtr1g072130.1	3	2	27	7.4	PHD finger protein, putative
Altet-4	miR7696c-3p	Medtr3g081480.1	3	2	21	9.5	endoplasmic reticulum vesicle transporter
Altet-4	miR7696d-5p	Medtr3g112250.1	3.5	8	36	22.2	hypothetical protein
Altet-4	miR7696c-3p	Medtr4g011600.2	3.5	1	26	3.9	sulfate transporter-like protein
Table 5 miRNA targets identified in the degradome libraries generated from three alfalfa genotypes. #Mis. is number of mismatches on the miRNA complementary site; Valid reads is Reads corresponding to the expected cleavage site; Total reads is Total reads mapped to the cDNA of the gene; Percent is Percent reads at the expected cleavage site (Continued)

Genotypes	miRNA id#	Target gene	#Mis.	Valid reads	Total reads	Percent	Target gene annotation
Altet-4	miR7696c-3p	Medtr7g088560.4	3.5	1	6	16.7	sulfate adenylyltransferase subunit 1/adenylylsulfate kinase
Altet-4	miR7701-3p	Medtr6g011380.2	2	1	137	0.7	SPFH/band 7/PHB domain membrane-associated family protein
NF08ALF06	miR156e	Medtr7g028740.2	0	14	36	38.9	squamosa promoter-binding-like protein
NF08ALF06	miR156a	Medtr7g44860.1	0	1	144	0.7	squamosa promoter-binding-like protein
NF08ALF06	miR156h-3p	Medtr7g091370.1	3	1	11	9.1	heat shock transcription factor
NF08ALF06	miR159b	Medtr8g042410.1	2.5	4	30	13.3	MYB transcription factor
NF08ALF06	miR160c	Medtr2g094570.3	1	8	46	17.4	auxin response factor 1
NF08ALF06	miR160d	Medtr1g064430.2	0.5	3	24	12.5	auxin response factor 1
NF08ALF06	miR160d	Medtr3g073420.1	0.5	2	17	11.8	auxin response factor, putative
NF08ALF06	miR164d	Medtr2g064470.1	1	41	151	27.2	NAC transcription factor–like protein
NF08ALF06	miR167b-5p	Medtr8g079492.3	4	9	133	6.8	auxin response factor 2
NF08ALF06	miR167a	Medtr4g07650.2	3.5	5	77	6.5	GRAS family transcription factor
NF08ALF06	miR171f	Medtr00920100.2	1.5	60	115	52.2	GRAS family transcription regulator
NF08ALF06	miR172a	Medtr4g094868.3	1	1	45	2.2	AP2 domain transcription factor
NF08ALF06	miR172a	Medtr5g016180.2	1	1	84	1.2	AP2 domain transcription factor
NF08ALF06	miR172a	Medtr2g093060.3	0	4	35	11.4	AP2-like ethylene-responsive transcription factor
NF08ALF06	miR172a	Medtr4g061200.4	1	1	28	3.6	AP2-like ethylene-responsive transcription factor
NF08ALF06	miR172a	Medtr7g100590.1	1	2	17	11.8	AP2 domain transcription factor
NF08ALF06	miR319d-3p	Medtr2g078200.1	3	2	126	1.6	TCP family transcription factor
NF08ALF06	miR319d-3p	Medtr8g463380.1	3	2	48	4.2	TCP family transcription factor
NF08ALF06	miR393a	Medtr1g088950.1	1	54	268	20.2	transport inhibitor response-like protein
NF08ALF06	miR393a	Medtr7g078360.1	2	472	771	61.2	transport inhibitor response 1 protein
NF08ALF06	miR393a	Medtr8g098695.2	4	1	46	2.2	transport inhibitor response 1 protein
NF08ALF06	miR396b-5p	Medtr1g017490.2	3	423	742	57	growth-regulating factor
NF08ALF06	miR396b-5p	Medtr2g041430.3	3	30	75	40	growth-regulating factor–like protein
NF08ALF06	miR396b-5p	Medtr5g027030.1	3	10	42	23.8	growth-regulating factor
NF08ALF06	miR396a-5p	Medtr3g011560.1	3	1	3	33.3	TNP1
NF08ALF06	miR396a-5p	Medtr3g052060.1	3	1	2	50	Ulp1 protease family, carboxy-terminal domain protein
NF08ALF06	miR396c-3p	Medtr4g114870.1	1	14	49	28.6	plastocyanin-like domain protein
NF08ALF06	miR396c-3p	Medtr8g064810.1	3	8	44	18.2	protein disulfide isomerase (PDI)-like protein
NF08ALF06	miR408-3p	Medtr8g089110.1	3	8	34	23.5	basic blue-like protein
NF08ALF06	miR408-3p	Medtr8g007020.1	3.5	10	375	2.7	plastocyanin-like domain protein
NF08ALF06	miR408-3p	Medtr8g007035.1	3.5	10	675	1.5	plastocyanin-like domain protein
NF08ALF06	miR408-5p	Medtr3g074830.1	3.5	27	948	2.9	phosphate-responsive 1 family protein
NF08ALF06	miR482-3p	Medtr1g064430.2	3.5	1	24	4.2	auxin response factor 1
NF08ALF06	miR530	Medtr3g072110.1	2.5	3	102	2.9	transmembrane amino acid transporter family protein
NF08ALF06	miR5107-3p	Medtr8g036195.1	2	4	9	44.4	NBS-LRR type disease resistance protein
NF08ALF06	miR510a-5p	Medtr7g108860.4	3.5	21	1061	2	CS domain protein
NF08ALF06	miR2199	Medtr7g080780.2	2	1	26	3.9	helix loop helix DNA-binding domain protein
Genotypes	miRNA id#	Target gene	#Mis.	Valid reads	Total reads	Percent	Target gene annotation
-----------	-------------	-------------	-------	-------------	-------------	---------	--
NF08ALF06	miR2643a	Medtr6g053240.1	3	25	33	75.8	F-box protein interaction domain protein
NF08ALF06	miR1441a-5p	Medtr3g117120.1	4	8	260	3.1	BZIP transcription factor bZIP124
NF08ALF06	miR5037c	Medtr4g070550.1	3	2	44	4.6	F-box protein interaction domain protein
NF08ALF06	miR5213-5p	Medtr4g014580.1	1.5	3	31	9.7	TIR-NBS-LRR class disease resistance protein
NF08ALF06	miR5238	Medtr3g077740.2	2.5	1	259	0.4	pantothenate kinase
NF08ALF06	miR5239	Medtr8g018680.1	3	4	43	9.3	F-box/RNI superfamily protein, putative
NF08ALF06	miR5561-3p	Medtr2g045295.1	3	1	12	8.3	hypothetical protein
NF08ALF06	miR5752a	Medtr8g066820.1	4	13	936	1.4	PLATZ transcription factor family protein
NF08ALF06	miR7696a-5p	Medtr1g072130.1	3	4	259	1.5	PHD finger protein, putative
NF08ALF06	miR7696c-3p	Medtr3g081480.1	3	2	46	4.4	endoplasmic reticulum vesicle transporter
NF08ALF06	miR7696c-5p	Medtr7g078830.1	3	3	103	2.9	DEAD-box ATP-dependent RNA helicase-like protein
NF08ALF06	miR7696d-5p	Medtr3g11220.1	3.5	5	30	16.7	hypothetical protein
NF08ALF06	miR7696c-3p	Medtr4g01600.2	3.5	1	103	1	sulfate transporter-like protein
NF08ALF06	miR7696c-3p	Medtr7g085650.4	3.5	2	10	20	sulfate adenyllytransferase subunit 1/adenylylsulfate kinase
NCES-141	miR156e	Medtr7g028740.2	0	18	46	39.1	squamosa promoter-binding-like protein
NCES-141	miR156a	Medtr7g444860.1	0	4	101	4	squamosa promoter-binding-like protein
NCES-141	miR156a	Medtr8g096780.1	0	11	11	9.1	squamosa promoter-binding 1A-like protein
NCES-141	miR156a	Medtr3g08180.1	1	2	50	50	squamosa promoter-binding-like protein
NCES-141	miR156h-3p	Medtr7g091370.1	3	2	5	40	heat shock transcription factor
NCES-141	miR159b	Medtr8g042410.1	2.5	3	36	8.3	MYB transcription factor
NCES-141	miR160c	Medtr2g04570.3	1	12	37	32.4	auxin response factor
NCES-141	miR164d	Medtr2g064470.1	1	33	100	33	NAC transcription factor-factor like protein
NCES-141	miR164d	Medtr8g058330.1	2	14	119	11.8	protein transporter Sec61 subunit alpha-like protein
NCES-141	miR167b-5p	Medtr8g079490.2	4	10	101	9.9	auxin response factor
NCES-141	miR167a	Medtr4g076020.1	3.5	4	45	8.9	GRAS family transcription factor
NCES-141	miR167b-3p	Medtr4g124900.2	3.5	1	154	0.7	auxin response factor
NCES-141	miR168a	Medtr6g047790.2	4	2	245	0.8	argonaute protein 1A
NCES-141	miR171f	Medtr00920100.2	1.5	36	70	51.4	GRAS family transcription regulator
NCES-141	miR172a	Medtr4g094868.3	1	2	50	4	AP2 domain transcription factor
NCES-141	miR172a	Medtr5g016810.2	1	2	56	3.6	AP2 domain transcription factor
NCES-141	miR172a	Medtr2g093060.3	0	1	19	5.3	AP2-like ethylene-responsive transcription factor
NCES-141	miR172a	Medtr4g061200.4	1	3	32	9.4	AP2-like ethylene-responsive transcription factor
NCES-141	miR319d-3p	Medtr2g078200.1	3	1	55	1.8	TCP family transcription factor
NCES-141	miR319d-3p	Medtr8g463380.1	3	1	26	3.9	TCP family transcription factor
NCES-141	miR393a	Medtr1g088950.1	1	38	222	17.1	transport inhibitor response-like protein
NCES-141	miR393a	Medtr7g083610.1	2	337	539	62.5	transport inhibitor response protein
NCES-141	miR395j	Medtr1g012550.1	1	1	163	0.6	ATP sulfurylase
NCES-141	miR396b-5p	Medtr1g014790.2	3	201	352	57.1	growth-regulating factor
NCES-141	miR396b-5p	Medtr5g027030.1	3	6	16	37.5	growth-regulating factor
Conclusions
The analyses of small RNA libraries from the whole plants, shoots and roots resulted in the identification of 100 miRNA families that included highly conserved miRNAs as well as miRNAs that are at least conserved between M. truncatula and alfalfa. The conserved miRNA profiles share some similarities and a few differences between genotypes and types of tissues (roots and shoots). The tissue-specific profiles were used to identify miRNAs that are highly abundant as well as those miRNAs that are expressed at low levels. Additionally, 17 novel miRNAs with varying levels of expression were also identified in alfalfa. The present study also reports identification of 69 targets for 31 miRNA families. In addition to the conserved targets for conserved miRNAs, a few non-conserved targets such as the PDI for miR398 were confirmed. Similarly, miR2643 is targeting three transcripts encoding F-box protein interaction domain containing proteins in alfalfa. In summary, the results from this study have increased our understanding of miRNAs and miRNA-mediated gene regulation in alfalfa that could result in potential tangible targets for practical applications in alfalfa and related legume species to increase biomass yield and address abiotic and biotic limitations to agricultural productivity.

Acknowledgements
Not applicable.

Funding
This research was funded by the Noble Research Institute and Forage Genetics International, a hatch grant from NIFA-0229360 (OKL02844) to RS and MM, and the National Natural Science Foundation of China (numbers.
The authors declare that they have no competing interests.

Availability of data and materials
The small RNA and degradome datasets generated and analyzed in the present study are available in the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) under accession number GSE119460 available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119460.

About this supplement
This article has been published as part of BMC Genomics Volume 19 Supplement 10, 2018: Proceedings of the 29th International Conference on Genome Informatics (GIW 2018): genomics. The full contents of the supplement are available online at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-10.

Authors’ contributions
RS and MM conceived the idea and designed the study. CM and TH cultured the plants used in this study; RP isolated the RNA from samples and edited the manuscript; YZ, SR, QW, SA and RS analyzed the small RNA libraries; YZ, SR, QW, SA and RS wrote the manuscript; MM edited the manuscript. All authors reviewed and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
2Institute of Pritmate Translational Medicine, Kunming University of Science and Technology, 727 South Jingming Road, Kunming 650500, Yunnan, China.
3Noble Research Institute, Ardmore, OK 73401, USA.
4Faculty of Information Engineering and Automation, Kunming University of Science and Technology, 727 South Jingming Road, Kunming 650500, Yunnan, China.

Published: 31 December 2018

References
1. Sheaffer CC, Martin NP, Lamb JFS, Cuomo GR, Grimsbo JW, Quiring SR. Leaf and stem properties of alfalfa entries. Agron J. 2000;92(4):733–9.
2. Doolie GL, Pannell DJ. Role and value of including lucerne (Medicago sativa L.) phases in crop rotations for the management of herbicide-resistant Lolium rigidum in Western Australia. Crop Prot. 2008;27:497–504.
3. Latta RA, Blacklow LJ, Cocks PS. Comparative soil water, pasture production, and crop yields in phase farming systems with lucerne and annual pasture in Western Australia. Aust J Agric Res. 2001;52:295–303.
4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
5. Sunkar R, Zhu JK. MicroRNAs and short-interfering RNAs in plants. J Integr Plant Biol. 2007;49:17–26.
6. Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25:2383–99.
7. Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Ann Rev Plant Biol. 2014; 65:473–503.
8. Chen X. Small RNAs and their roles in plant development. Ann Rev Cell and Dev Biol. 2009;25:21–44.
9. Sunkar R. MicroRNAs with macro effects on plant stress responses. Semin Cell Dev Biol. 2010;21(8):805–11.
10. Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–205.
11. Sunkar R, Jagadeeswaran G. In silico identification of conserved miRNAs in large number of diverse plant species. BMC Plant Biol. 2008;8:37.
12. Axtell MJ, Snyder JP, Bartel DP. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19:1750–69.
13. Sittitya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics. 2008;9(1):593.
14. Jagadeeswaran G, Zheng Y, Li Y-F, Shukla L, Matts J, Hoyt P, Sunkar R. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol. 2009;184(1):85–98.
15. Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, et al. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. 2009;21(10):2780–96.
16. Zhai J, Jeong D, DePaoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitts SL, Gruskai MA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2001;25:2450–53.
17. Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, He Y, Lai X, Yu S. Identification and characterization of microRNAs from peanut (Arachis hypogaea L) by high-throughput sequencing. PLoS One. 2011;6(11):e27530.
18. Sinha S, Zhang Y, Vashistha A, Sunkar R, Jagadeeswaran G, Hivrale V, Varthney RK, Sunkar R. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasedRNA loci in chickpea. Plant Sci. 2015;235:46–57.
19. Zheng Y, Hivrale V, Vallyiodan B, Lelandais-Brière C, Farmer AD, May GD, Crespi M, Nguyen HT, Sunkar R. Small RNA profiles in soybean primary root tips under water deficit. BMC Syst Biol. 2016;10(5):126.
20. Fan W, Zhang S, Du H, Sun X, Shi Y, Wang C. Genome-wide identification of different dormant Medicago sativa l. MicroRNAs in response to fall dormancy. PLoS One. 2014;9(12):e114612.
21. Li Y, Wan L, Bi W, Wan X, Li Z, Cao J, Tong Z, Xu H, He F, Lo X. Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes. 2017;8:119.
22. Li Z, Xu H, Li Y, Wan X, Ma Z, Cao J, Li Z, He F, Wang Y, Wan L, Tong Z, Li X. Analysis of physiological and miRNA responses to p1 deficiency in alfalfa (Medicago sativa L.). Plant Mol Biol. 2018;96:473–92.
23. Monteros MJ, Tang H, Ramirez J, Devitt NP, Cameron CT, Bhatkar AK, Mudge J, Farmer AD, Motes CM, Town CD, Brummer EC, Udvardi M. Progress in sequencing the genome of tetraploid alfalfa (Medicago sativa L.) San Diego: Plant and Animal Genome Conference. 2015. Jan 10–14, 2015.
24. Khuc DM, Reyno R, Brummer EC, Bouton JH, Monteros MJ. Identification of aluminum tolerance QTLs in tetraploid alfalfa (Medicago sativa L.). Crop Sci. 2013;53:148–63.
25. Khuc DM, Reyno R, Brummer EC, Monteros MJ. Screening methods for aluminum tolerance in alfalfa (Medicago sativa L.). Crop Sci. 2012;52:161–7.
26. Jagadeeswaran J, Nimmakayala P, Zheng Y, Gowdu K, Reddy U, Sunkar R. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics. 2012;13:329.
27. Kozomara A, Griffiths-Jones S. miBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.
28. Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. The Plant J. 2009;53:148–59.
29. Zheng Y, Hivrale V, Valliyodan B, Lelandais-Brière C, Farmer AD, May GD, Crespi M, Nguyen HT, Sunkar R. Small RNA profiles in soybean primary root tips under water deficit. BMC Syst Biol. 2016;10(5):126.
30. Fan W, Zhang S, Du H, Sun X, Shi Y, Wang C. Genome-wide identification of different dormant Medicago sativa l. MicroRNAs in response to fall dormancy. PLoS One. 2014;9(12):114612.
stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One. 2014;9(10):e108851.

34. Tesfaye M, Silverstein K, Bucciarelli B, Samac CD, Vance CP. The Affymetrix Medicago GenChip® array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct Plant Biol. 2006;33:783–8.

35. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.

36. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008;18(10):758–62.

37. German MA, Pillay M, Jeong DHH, Hetawal A, Luo S, Jararhahan P, Kanman V, Rymarquis LA, Nobuta K, German R, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2006;24:941–6.

38. Sunkari R, Kapoor A, Zhu JK. Post transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18:2051–65.

39. Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev. 2009;19:374–8.

40. Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17:1376–86.

41. Laufs P, Peaucelle A, Morin H, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development. 2004;131:4311–22.

42. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature. 2003;425:257–63.

43. Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol. 2017;175(2):874–85.

44. Debernardi JM, Mechina MA, Vercruyssen L, Smaezniak C, Kaufmann K, Irié D, Rodriguez RE, Palatnik JF. Post-transcriptional control of GRF transcription factors by microRNA396 and GRF co-activators affects leaf size and longevity. Plant J. 2014;79:413–26.

45. Zhao Q, Nakashima J, Chen F, Yin YB, Fu CX, Yun JF, Shao H, Wang XQ, Wang ZY, Dixon RA. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell. 2013;25:3976–87.

46. Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Hermann RG, Valentine JS, Uclacyanins, stellacyanins, and plantacyanins: ane distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci. 1998;7:1915–29.

47. Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J. 2015;84:169–87.

48. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochem Biophys Acta. 2004;1699:35–44.