Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system

Nina Marí G.P. de Queiroz, Fabio V. Marinho, Marcelo A. Chagas, Luciana C.C. Leite, E. Jane Homan, Mariana T.Q. de Magalhães, Sergio C. Oliveira

a Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
b Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
c iGenetics LLC, Madison, WI, USA
d Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq/MCT, BA, Brazil

Abstract

This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.

© 2020 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

The pandemic Coronavirus Disease 2019 (COVID-19) is the third global threat mediated by betacoronaviruses within this century. These enveloped viruses were thought to be restricted to animals until the first outbreak in 2002, where Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) infected around 8000 people reaching a fatality ratio of 9.6% [1]. Again in 2012, Middle East Respiratory Coronavirus (MERS-CoV) was the cause of an endemic in Middle Eastern countries, affecting almost 2500 people with approximately 35% of fatality ratio and outbreaks outside the region [1]. Less than a decade later, SARS-CoV-2 spread COVID-19 worldwide, so far with more than 18,847,261 confirmed cases and 708,469 deaths (data updated on 08/06/2020, available at John Hopkins Coronavirus Resource Center, https://coronavirus.jhu.edu/map.html). Currently, the only way to deal with this disease is through supportive care to treat the symptoms and mandatory isolation to slow down the transmission, that includes even those not affected. The course of COVID-19 and other coronaviruses diseases outbreaks can overload worldwide health systems and have severe implications in lives lost and economics, underscoring the need for effective vaccines.

SARS-CoV-2, together with SARS-CoV and MERS-CoV, belong to the cluster of betacoronaviruses, presenting large positive-sense RNA genomes. Cellular infection initiates when the spike glycoprotein binds to its cellular receptor, angiotensin-converting enzyme 2 (ACE2) for SARS-CoV and SARS-CoV-2 [2], or the dipeptidyl peptidase 4 (DPP4) for MERS-CoV [3]. After membrane fusion, the viral RNA genome is released into the cytoplasm. The replication cycle begins with the translation of non-structural proteins (nsps), whose main function is to form the replication-transcription polyprotein complex. Afterwards, a nested set of subgenomic mRNAs is transcribed into structural and accessory proteins [4,5]. A unique feature of coronaviruses is the exoribonuclease function of nsp14 that provides proofreading function to the polyprotein complex and contributes to the maintenance of the large RNA genome [6,7]. The subgenomic mRNAs encode the four structural proteins spike (S), envelope (E), membrane (M) and nucleocapsid (N), as well as proteins that interfere with the host innate immune response [8–10]. At the 5’ prime of SARS-CoV-2 genome we can find ORF1a (polyprotein pp1a) and ORF1b (Fig. 1). The ORF1a encodes 2 important proteases: (i) the papain-like and (ii) the 3C-like protease, also called Mpro [11–13].
During SARS and MERS, the activation of the RLRs RIG-I and MDA5 retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) [25]. This process results in the excessive production of inflammatory cytokines and chemokines followed by gene expression programs indicative of development of an adaptive immune response [37,38]. By contrast, those patients who died maintained high levels of ISG-encoded proteins, CXCL10/IP-10 and CCL2/MCP1, associated with low or absent production of spike-specific antibodies, which suggests that severe disease is related to the lack of a switch from an innate to an acquired immune response [19]. The infection with SARS-CoV induces an adaptive immune response against predominantly the structural antigens of the virus rather than nsps [39,40]. The S protein acts as a major antigen for both humoral and cellular acquired immunity [41]. Consistent with this, most peptides identified as CD4+ or CD8+ T cell epitopes are derived from the S protein, although there are also peptides from N and M proteins [42]. This observation may be related to the distribution and physiology of the structural proteins. The S protein is more exposed to the host immune system and influences virus entry; the M protein is the most abundant protein in the virion, and N protein is conserved among different coronaviruses [42]. T cell responses often target highly conserved internal proteins and promote long-term protection. Memory CD4+ T cells are more numerous at sites of infection than CD8+ T cells and have multiple roles in initiation and maintenance of efficient immune response, while cytotoxic CD8+ T cells (CTLs) eliminate infected cells [43–45]. CD4+ T cells protect against lethal disease through rapid local IFN-γ production and induction of neutralizing antibodies. These cells can also facilitate
CD8+ T cell responses by stimulating migration of innate cells and CD8+ T cell mobilization [46]. CTL mediated protection through increased production of IFN-γ and cytotoxicity [40]. The antibody response is crucial for preventing viral infection and to reduce viral titers during ongoing infection. A subset of these antibodies is defined as neutralizing antibodies due to their capacity of blocking the entry of the virus into a healthy cell by binding to surface viral epitopes. Besides that, enveloped viruses can be eliminated through complement activation or antibody-mediated opsonization [47]. During SARS-CoV infection it seems that neutralization of viral invasion and elimination by phagocytic macrophages are the main mechanisms of protection, with neutralizing IgGs playing a major role [48]. Memory B cells provide long-lasting protection in SARS in association with cellular immune responses [49]. However, the protective ability of T cells is desirable since SARS-CoV antibodies levels decline rapidly after recovery. SARS-CoV-specific memory T cells persisted for at least 6 years in patients who have recovered from the disease while memory B cell response was not detected by this time [50].

The early research on SARS-CoV-2 infection identified some peculiarities that should be considered for medical interventions, such as vaccine development. Some COVID-19 patients secreted excessive IL-4, IL-13 and IL-10, which may be an indicator of inflammatory suppression via T-helper 2 or regulatory immune responses [16]. In most cases lymphopenia occurs, with significant reduction in T cells and NK cells numbers in severe cases. This clinical outcome is associated with functional exhaustion of cytotoxic lymphocytes [16,51]. Moreover, the high CXCL10/IP-10 production during SARS-CoV-2 infection is a sign of virulence since high and persistent levels of this chemokine are associated with death of patients in all recent epidemic CoVs infections. Some patients with COVID-19 develop a defective immune response that may lead to accumulation of immune cells in the lungs and overproduction of pro-inflammatory cytokines/chemokines, causing severe damage to the lung and a systemic pathogenesis [52]. A simple and direct approach that has been investigated to combat rapidly the COVID-19 is passive immunity through the use of plasma from convalescent patients [53]. Even though promising, the outcomes of this therapy are unpredictable due to variability of sera from different patients. Antibody-based therapies and vaccines should dedicate great effort to safety evaluation given the reports of antibody-dependent enhanced SARS-CoV entry and antibody-mediated lung injury during SARS in experimental models [54–56]. However, the viral peptides that induce protection can be identified and distinguished from the detrimental ones through epitope design [55]. Vaccine strategies include live attenuated and inactivated whole virions, nucleic acids (DNA and RNA) and recombinant proteins, most of them focusing on the highly immunogenic aspect of the spike protein.

2. The spike protein: the main target of host immune response

It is known that SARS-CoV-2 enters the host cells by the fusion of viral and cellular membranes [57–61] with the densely glycosylated spike protein. The S protein is a class I viral fusion protein and an important target for antibody neutralization and vaccine development. The role of glycosylation in camouflaging immunogenic protein epitopes has been studied for other coronaviruses. High viral glycan density and local protein architecture can influence the trafficking of recombinant immunogens to germinal centers [62]. Fusion S proteins of SARS-CoV-2, SARS-CoV and MERS-CoV are examples of viral proteins that are widely glycosylated [63]. The spike protein is comprised of three protein domains (Fig. 2) [12]. They participate in the cell recognition process by binding to host cell receptors and facilitating membrane fusion [58]. Analysis shows around 69–87 N-linked glycosylation sites identified on the surface of each trimeric peak in SARS-CoV-2 S protein, and approximately 22 N-linked glycosylated amino acids per domain (PDB ID 6VSB) [62]. The receptor binding sites formed by amino acids and glycan residues are a common feature of viral glycoproteins, as observed on SARS-CoV S and MERS-CoV S (respectively, PDB ID 5X58 and PDB ID 5X59) [64]. This structural glycosylation has functions in viral pathology such as mediating protein folding and stability, besides shaping viral tropism [65]. Thus, these glycosylation sites show selective pressure, as they facilitate evasion of the host immune system by protecting specific epitopes that induce antibodies or T cell responses [66,67].

S protein allows the virus to attach on the target cell and fuse membranes, and it is presented as a trimeric structure on the viral surface [68,69]. During the infection phase, S proteins are cleaved into two subunits: (a) receptor binding subunit, S1, and (b) membrane fusion subunit, S2. It uses the N-terminal region as a signal sequence to access the endoplasmic reticulum of cells and this region is highly N-glycosylated. The S1 subunit of S protein has a receptor binding domain (RBD) composed of a central subdomain (core) and a connection motif for the receptor. The central subdomain has four antiparallel sheets, connected by alpha-helices, and stabilized by 3 disulfide bridges. The protein’s S2 subunit is also similar to that of SARS-CoV and is responsible for the fusion of membranes from severe conformational changes [69,59,70]. S2 has two regions of heptad repeats (HR). During the fusion process, S2 dissociates from S1 and the HR1 and HR2 regions and form a 6-helix bundle (6-HB) structure, exposing a hydrophobic fusion peptide inserted in the host membrane and allowing the membrane to approach the virus for fusion.

Recent experimental data support biophysical and structural evidence that the glycosylated S protein of SARS-CoV-2 binds to the ACE2 receptor with greater affinity than that of SARS-CoV [12]. Hence, the atomic level understanding of these interactions is important for the structural and biophysical elucidation of the initial virus infection process in human cells. By screening the experimentally-determined SARS-CoV-derived B cell and T cell epitopes in the immunogenic structural proteins of SARS-CoV, many authors identified a set of B cell and T cell epitopes derived from the spike and the nucleocapsid proteins that map identically to SARS-CoV-2 proteins. As no mutation has been observed in these identified epitopes among the 120 available SARS-CoV-2 sequences (as of February 2020), immune targeting of these epitopes may potentially offer protection against this novel virus. These results provide a screened set of epitopes that can help guide experimental efforts towards the development of vaccines against SARS-CoV-2. The identification of critical residues involved in receptor binding is important for the development of vaccines and inhibitor targets [63]. These studies provide regions to be modeled and investigated either experimentally or theoretically by computer simulations [42]. For this purpose, Briell et al. compared the interaction between ACE2 and peak SARS-CoV-2 S protein with that of other pathogenic coronaviruses using classical molecular dynamics (MD) simulations [71]. The authors observed that SARS-CoV and SARS-CoV-2 have comparable binding affinities. However, the complex formed by the interaction and fusion between SARS-CoV-2 and ACE2 contains a greater number of contacts between the amino acid residues of the side chains of the proteins. These data imply an evolution due to mutations to increase cell recognition and have implications for therapeutic strategies [72]. Veeramachaneni et al. evaluated through computational analysis the structural changes caused by specific mutations, hot spots binding residues and their interactions between the SARS-CoV-2 S RBD protein receptor and ACE2 [73]. We performed molecular dynamic simulations of the
complexes. The major amino acids involved in the binding identified by interaction analysis after simulations, include the Glu 35, Tyr 83, Asp 38, Lys 31, Glu 37, His 34 amino acid residues of the ACE2 receptor and Gln 493, Gln 498, Asn 487, Tyr 505 and Lys 417 residues in the SARS-CoV-2 S protein RBD. By locating these amino acid residues, the authors propose that blockers can be designed to inhibit binding and interrupt the entry of the SARS-CoV-2 virus into host cells (Fig. 3).

By using a computational approach, the RBD region of the SARS-CoV-2 S protein was explored to identify various immunodominant epitopes for the development of diagnostics and vaccines. B cell linear epitope probability and MHC binding affinity were determined for all sequential peptides with a single amino acid displacement by our group, using an updated version of methods previously described [74]. The results obtained here could also help us to understand the SARS-CoV-2 surface protein response towards T- and B-cells. Mapping of predicted B and T cell epitopes indicates that the most probable B cell epitopes are located throughout the RBD region of Spike protein (Fig. 4). In the region of amino acids 450–525 there are also two regions where sequential 15-mers are predicted to have high affinity binding for many human MHC II DRB alleles. Within the region of amino acids 475–500 there is also a region of sequential 9-mers predicted to bind to multiple MHC class I alleles. This indicates that the RBD region of Spike from SARS-CoV-
2 is most likely to elicit a strong antibody response due to the number of B cell epitopes with associated T cell help predicted and may also elicit CTLs.

3. Vaccine strategies against SARS-CoV-2

The spread of COVID-19 challenged the world to accelerate research in companies and universities in the search for a safe and effective vaccine against SARS-CoV-2 [75]. At the time of writing (August, 2020), at least 165 teams are working on different projects towards the same goal of developing a COVID-19 vaccine. The development process has been optimized with at least 26 groups already starting to test their vaccine candidates in clinical safety trials and many others are testing their candidates in cells and animals. Researchers are investing in different strategies and technologies, but most of these novel approaches have not been extensively tested for safety and do not have large-scale manufacturing capacity to produce the high number of doses needed. For this reason, the many candidates still in the race are creating real possibilities and new knowledge in vaccine design [76,77].

Twenty-six vaccine candidates are in clinical trials, six of which are in final clinical tests (phase 3) using different designs and vaccine strategies (Table 1). Among the SARS-CoV-2 vaccines under development are whole virus vaccines, nucleic acids vaccines, viral vector vaccines and protein-based vaccines. Virus vaccine are the most common platform used for other diseases. SARS-CoV-2 could be used as an inactivated or live attenuated virus that conserves most of the virus antigens. There are currently three vaccines based on inactivated virus already in phase 3 clinical trials, including one vaccine from SINOVAC (NCT04456595) and two from Sinopharm (ChiCTR2000031781). Instead of using the whole virus, many studies use protein subunit vaccines including antigens with strong immunogenicity, most focusing on the spike protein or only the receptor binding domain. Another protein-based vaccine strategy consists of virus-like particles (VLP) that mimic the SARS-CoV-2 structure on the surface of a non-replicative empty virus shell lacking genetic material [78,76,79]. Several virus (e.g., vesicular stomatitis virus (VSV), influenza, measles and adenovirus) could also be engineered as replicative or non-replicative recombinant vector expressing coronavirus S protein. A live-attenuated recombinant vesicular stomatitis virus (VSV) expressing the Ebola glycoprotein (VSV-EBOV) successfully completed a phase III clinical trial and was shown to be safe and immunogenic against the Ebola virus [80]. The same strategy was used to make an attenuated VSV recombinant expressing the SARS-CoV spike protein (VSV–S) able to control a challenge with SARS-CoV and stimulating neutralizing antibody in mice [81,82]. The ChAdOx1 nCoV19 vaccine developed at the University of Oxford is a very promising candidate that uses a replication-deficient chimpanzee adenovirus to deliver SARS-CoV-2 antigen protein. A single dose of ChAdOx1 nCoV19 has protected six rhesus macaques from pneumonia caused by SARS-CoV-2, pushing the vaccine to a phase 3 (ISRCTN89951424) clinical trial [83,77]. Another phase 2 candidate from CanSino Biological Inc./Beijing Institute of Biotechnology uses non replicating Adenovirus type 5 as a vector based on the same platform strategy used for Ebola (Phase 2 – ChiCTR2000031781) [77,84].

Another strategy is focused on nucleic acid manipulation to build DNA or RNA vaccines. A genetic construct coding for specific antigen(s) can be easily synthesized in DNA or RNA and inserted into human cells to generate many copies of the immunogenic virus protein. DNA vaccines are typically generated by a plasmid DNA containing eukaryotic expression elements that encode one or more antigens. The plasmid contains components that allows growth and selection of the vector in bacteria, such as Escherichia coli, followed by a purification process. The eukaryotic expression cassette contains a 5’ promoter, the gene of interest and a 3’ polyadenylation (poly A) signal, important for nuclear export, translation and stability of the transcript mRNA [85–87]. DNA vaccines are stable but have the challenge of needing to cross two cellular membranes before entering the nucleus, and may also bring the risk of vector integration in the human genome. The most common route of DNA vaccine administration is intramuscular or intradermal injection. However, DNA vectors alone generally lead to relatively low immunogenicity. Therefore, different delivery methods have been developed to improve DNA uptake, including the gene gun, needle free injection (jet injection) and in vivo electroporation [88,86].

The mRNA vaccines manufacturing process is essentially chemical, comprising an in vitro transcription from a linearized DNA template, then removing the template by digestion with DNases to get a purified mRNA. mRNA comprises a 5’ cap, a 5’ untranslated region (UTR) (leader RNA), the coding sequence with a stop signal, a 3’ UTR, and a poly(A) tail. mRNA enters into the
cytoplasm as a template to be translated making multiple copies of the antigen(s) protein(s) [87]. Various mRNA vaccine platforms have been developed to render the synthetic RNA sequence more translatable, stable and non-toxic. The use of “naked” mRNA is not recommended because RNA is highly unstable under physiological conditions, due to the extracellular ribonucleases which catalyze RNA hydrolysis and due to the hydrophilicity and strong conditions, due to the extracellular ribonucleases which catalyze RNA hydrolysis, and due to the hydrophilicity and strong conditions, due to the extracellular ribonucleases which catalyze RNA hydrolysis.

Strategies for optimizing mRNA vaccines includes: synthetic cap analogues and capping enzymes to stabilize mRNA and increase translatable, stable and non-toxic. The use of mRNA is not taken up efficiently by the cells. DNA vaccines were first tested in 1993, showing protective immunity against influenza in mice [99]. In the same year, a liposome-entrapped mRNA vaccine in mice was shown to induce virus-specific cytotoxic T lymphocytes response [89]. After decades, new techniques and formulations have improved, so SARS-CoV-2 candidates could possibly be the first licensed human nucleic acid vaccine.

Table 1

Platform vaccine	Consortium	Candidate vaccine	Clinical Stage	Clinical trial register
Inactivated	Sinovac	Adsorbed COVID-19 (inactivated)	Phase 3	NCT04456595
Wuhan Institute of Biological Products/Sinopharm	Inactivated novel coronavirus pneumonia (COVID-19)	Phase 3	ChiCTR2000034780	
Beijing Institute of Biological Products/Sinopharm	Inactivated novel coronavirus (2019-CoV)	Phase 3	ChiCTR2000034780	
Institute of Medical Biology, Chinese Academy of Medical Sciences	Inactivated SARS-CoV-2	Phase 1/2	NCT04470609	
Bharat Biotech	Whole-Virion Inactivated SARS-Cov-2 Vaccine (BBB152)	Phase 1/2	NCT04471519	
Non-Replicating Viral Vector	University of Oxford/AstraZeneca	ChAdOx1 nCoV-19	Phase 3	ISRCTN89951424
CanSino Biological Inc./Beijing Institute of Biotechnology	Recombinant Novel Coronavirus (2019-nCoV) Vaccine (Adenovirus Vector)	Phase 3	ChiCTR2000031781	
Janssen Pharmaceutical Companies	Ad26Cov51	Phase 1/2	NCT04436276	
Gamaleya Research Institute	Gam-COVID-Vac Lyo	Phase 1	NCT04437875	
Moderna/NIAID	mRNA-1273	Phase 3	NCT04470427	
BioNTech/Fosun Pharma/Pfizer	BNT162b1	Phase 3	NCT04368728	
Arcturus/Duke-NUS	ARCT-021	Phase 1/2	NCT04480957	
Imperial College London	LNP-nCoVsaRNA	Phase 1	SRCTN17072692	
Curevac	CvnCoV	Phase 1	NCT04449276	
People’s Liberation Army (PLA) Academy of Military Sciences/Walvax Biotech.	SARS-CoV-2 mRNA	Phase 1	ChiCTR2000034112	
DNA	Inovio Pharmaceuticals/International Vaccine Institute	INO-4800	Phase 1/2	NCT0436410
Osaka University/AnGe/Takara Bio	AG0301-COVId19	Phase 1/2	NCT04463472	
Cadila Healthcare Limited	Novel Corona Virus-2019-nCoV	Phase 1/2	NCT044826352	
Genexine Consortium	GX-19	Phase 1/2	NCT04453839	
Protein Subunit	Anhui Zhifei Longcom Biopharmaceutical/Institute of Microbiology, Chinese Academy of Sciences	Recombinant New Coronavirus	Phase 2	NCT0466085
Novavax	SARS-CoV-2 s (COVID-19) Nanoparticle	Phase 1/2	NCT04368988	
Clover Biopharmaceuticals Inc./GSK/Dynavax	KBP-COVID-19	Phase 1/2	NCT04473690	
Vaxine Pty Ltd/Medytox	SCR-2019	Phase 1	NCT04459908	
University of Queensland/CSL/Seqirus	Monovalent Recombinant COVID19 Vaccine (COVAX19)	Phase 1	NCT0453852	
Medicago Inc.	SARS-CoV-2 Scalm Protein Subunit Vaccine	Phase 1	ACTRN12620000674932p	
Medigen Vaccine Biologics Corporation/NIID/Dynavax	Coronavirus-Like Particle COVID-19	Phase 1	NCT04450004	
Medigen Vaccine Biologics Corporation/NIID/Dynavax	MVC-COV1901	Phase 1	NCT04487210	

* Source: WHO - DRAFT landscape of COVID-19 candidate vaccines (07/31/2020).
knowledge and comparison among well-known virus (SARS-CoV and MERS) and SAR-CoV-2 provided a screened set of epitopes candidates that can help guide experimental efforts and accelerate the development of specific SARS-CoV-2 vaccine [67,103,104].

The first full genome sequence of SARS-CoV-2 was made public in January 2020, and within a few days the U.S. National Institutes of Health (NIH) and Moderna’s infectious disease research team finalized the sequence for mRNA-1273. Two months later they started a safety phase I clinical trial to test a lipid nanoparticle (LNP) dispersion containing an mRNA that encodes for the prefusion stabilized spike protein 2019-nCoV and they are now conducting the final clinical tests (Phase 3 - NCT04470427). Inovio Pharmaceutica also focused on the S protein to build a DNA plasmid vaccine administered intradermally followed by electroporation that is being tested on healthy volunteers (Phase 1/2 - NCT04336410). So far, there are 15 projects involving DNA vaccines and 19 involving RNA vaccines (Table 1) [78,77]. Nucleic acid vaccines are promising, but there is still no licensed manufacturing platform. However, recent improvement in nucleic acid vaccine stability and protein translation efficiency combined with large financial investments may bring a new disruptive vaccine technology.

4. BCG as a priming strategy or delivery system for SARS-CoV-2 vaccine

Mycobacterium bovis BCG (Bacillus Calmette-Guerin) vaccine against tuberculosis (TB) is the most widely used vaccine in the world, has an excellent safety standard and has been shown to be also an effective adjuvant inducing cellular immunity in animals and humans. BCG is a live attenuated vaccine produced in more than 40 sites around the world using different substrains (Connaught, Danish, Glaxo, Moreau, Moscow, Pasteur and Tokyo) which are not identical in efficacy, safety and immunogenicity. The World Health Organization (WHO) adopted requirements for BCG vaccine in 1965 and still maintains lyophilized seed of the vaccine strains to prevent deviation from the original BCG [105–108]. BCG is a slow-growing organism and provides low-level and persistent antigenic exposure, favoring the induction of a long-lasting cellular and/or humoral T-cell immune response with just one dose [109,110]. In addition, BCG vaccine induces protection in neonates, has high stability, well-established large-scale production and low cost.

Recombinant BCG (rBCG) maintains all BCG’s characteristics. rBCG has also been investigated as a vehicle for antigen delivery strategy against different pathogens. It is possible to construct rBCG strains expressing different levels of viral, bacterial or parasitic pathogens antigens, resulting in the activation of cellular and/or humoral immune response depending on the vector and antigen [111]. BCG vaccine expressing HIV immunogens demonstrated its efficiency in activating the production of cytokines and T cell responses in mice, showing a strong potential as an integrative vaccine against HIV-1/TB or as a priming associated with other virus vector boost vaccines [112–115]. Different rBCG strains expressing specific antigens have induced protection against the challenge with the respective pathogen, including *Borreella burgdorferi*, *Streptococcus pneumoniae*, *Leishmania major* and *Plasmodium falciparum* [116–120]. Currently, rBCG studies are also focused on improving the BCG vaccine efficacy against tuberculosis [121,122].

In addition to inducing a specific anti-TB immune response, BCG vaccination appears to have other effects that have been associated with decreased infant mortality and a lower prevalence of other infections [123–125]. The revaccination with BCG in adults or the elderly can reduce respiratory tract infections [126,127]. This may be due to the trained innate immunity mechanism caused by metabolic changes, epigenetic reprogramming, cytokines releases, monocyte activation and improved host immune response after BCG vaccination [128–131]. The COVID-19 pandemic raised the question whether BCG vaccine could offer protection or be used as a tool in the fight against SAR-CoV-2. The phenomenon has recently been correlated with the possibility that countries where vaccination for TB is mandatory would (so far) have a lower incidence of COVID-19 cases. However, as we are comparing very different cultures and people, it is difficult to exclude other variables that could confuse the analysis and some results are contradictory. Another aspect that needs to be taken into account is that the persistence and immunostimulatory properties of BCG strains differ and it could lead to a variable trained immunity response [132–138]. A recent study compared infection rates and proportions of severe COVID-19 in two similar populations in Israel, comprising one group with individuals born during the 3 years before and other group born 3 years after cessation of the Universal BCG vaccine program, resulting in no statistically significant difference-between BCG-vaccinated vs unvaccinated group [139]. To better investigate the correlation between BCG vaccine and SARS-CoV-2 infection, large clinical trials, including one already started in Australia [https://clinicaltrials.gov/ct2/show/NCT04327206] and others in different countries, propose to test BCG vaccination in health professionals naturally exposed to COVID-19 infection to determine whether heterologous protection exists or not. The heterologous effect of BCG vaccination remains a vast field for research.

Our group is working in collaboration with national and international institutes to develop a new vaccine strategy using rBCG to express the immunodominant epitopes in the RBD region of the S protein from SARS-CoV-2 (Fig. 4) that can lead to immune system activation synergistically with BCG recognition. In addition, another interesting strategy would be to use a BCG vector to express other agonists that activate important innate immunity pathways involving type I IFN, which play an important role in the anti-viral response and in the recruitment of lymphocytes [140–142]. The concern that people already vaccinated with BCG could mount an immune response against the vector, preventing it from delivering the spike protein antigen into human, does not seem to be relevant given the satisfactory results with other studies involving rBCG persistence in the host. Another concern involves the release of IL-6 and other inflammatory cytokines that could aggravate COVID-19 pathology. However, previous studies related to other diseases suggests that BCG could lead to a decrease in viremia at the beginning of the SARS-CoV-2 infection, before a possible cytokine storm happens, thus preventing a systemic inflammation and severe disease [131,143]. Netea and collaborators suggest that BCG vaccine could be used at the beginning of a pandemic as a booster of the host defense, even if effective for a limited period of time, it might contribute reducing SARS-CoV-2 spread and help fight the pandemic until a specific vaccine against COVID-19 can be developed [135,134]. BCG vaccine can be explored as a priming strategy together with other virus specific vaccines, as a potent adjuvant and/or as a delivery system for SARS-CoV-2 proteins in host cells. The exploration of rBCG’s potential for the development of new products can help to solve this and other epidemic outbreaks that may arise.

5. Conclusions

During SARS-CoV-2 infection, immune responses are believed to be essential for viral infection clearance and immunological memory. However, they also cause collateral damage to the lung tissue that can be detrimental and even fatal in some cases. This is a comprehensive review that has focused on host immune responses to SARS-CoV-2 infection, potential epitope targets for vaccine
development and different vaccine strategies from live viral vectors, protein-based vaccines, nucleic acid vaccines and the use of BCG as a potential delivery system to boost antiviral response via trained immunity. Additionally, we added original data on prediction of B cell and T cell epitopes on RBD region of spike protein, structural comparison analysis between the SARS-CoV-2, SARS-CoV and MERS CoV S proteins and interaction of SARS-CoV-2 RBD with ACE2 receptor. Here, we discussed the hypothesis that BCG vaccination might be a potent preventive measure against SARS-CoV-2 infection and/or may reduce COVID-19 disease severity. One critical vaccine target is to raise antibodies directed to the SARS-CoV-2 spike protein and its receptor-binding domain, the component required for virus binding to its host cell entry receptor ACE2. Given the immediate threat of the SARS-CoV-2 pandemic, vaccine trials should be designed and started as pragmatic studies with feasible primary end points that can be performed rapidly and that could provide results in a short period. Due to limitations in vaccine development, randomized controlled trials are needed to provide the highest quality proof that these vaccines can protect against COVID-19. Additionally, we also must recognize that there are potential safety issues that could slow the clinical development path and testing. Since, there is a desperately urgent need to develop strategies that restrain SARS-CoV-2 and limit the pandemic, worldwide efforts are gathered to move forward with all these vaccine candidates already in clinical testing and development.

Declaration of competing interest

EJH is an employee and equity holder in ioGenetics LLC. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Acknowledgements

This study was carried out with the financial support of CNPq - Brazil (grants# 302660/2015-1, 401209/2020-2 and 465229/2014-0), CAPES - Brazil (grants# 302660/2015-1, 401209/2020-2 and 465229/2014-0), CAPES - Brazil (grants# 88887.506611/2020-00, #88887.504420/2020-00 and #88887-364490/2019-00), National Institutes of Health – United States (grant# R01 AI116453), FAPESP - Brazil (grant# 2017/24832-6) and FAPEMIG Rede Mineira de Imunobiologicos - Brazil (grant# REDE-00140-16).

References

[1] WHO. Summary of MERS cases with onset of illness from 1 September 2012. Available at: https://www.who.int/emergencies/mers-cov/en/.
[2] Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the Middle East respiratory syndrome coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020;63:457–60.
[3] Raj VS, Moini H, Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Alsbirk PH, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus. Nature 2013;495:251–4.
[4] Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Oost J, Schellekens F, et al. Spike glycoprotein of SARS coronavirus mediates viral infection and/or may reduce COVID-19 disease severity. J Virol 2007;81:5481–9.
[5] Deng X, Hackett M, Miellet RN, O’Brien A, Mielech AM, Yi G, et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci U S A 2017;114:E4251–60.
[6] Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEPV ns16 negatively regulates innate immune response to promote viral proliferation. Virus Res 2020;265:57–66.
[7] Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–74.
[8] Wraige D, Wang N, Gorbett KC, Goldsmith JA, Hsieh CL, Ahiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–3.
[9] Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M(Pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289–93.
[10] Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009;7:439–50.
[11] Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016;24:490–502.
[12] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
[13] Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003;361:1767–77.
[14] Zhou J, Chu H, Li C, Wang BH, Cheng SG, Poon VK, et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 2014;209:1331–42.
[15] Cameron MJ, Ran L, Xu L, Danesh A, Bernejo-Martin JF, Cameron CM, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 2007;81:8602–706.
[16] Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020;9:221–35.
[17] Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020;12.
[18] Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875–9.
[19] Imai Y, Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112–6.
[20] Okamoto M, Tsukamoto H, Kowutki T, Seto Y, Oshiumi H. Recognition of viral RNA by pattern recognition receptors in the induction of innate immune response and excessive inflammation during respiratory viral infections. Viral Immunol 2017;30:408–20.
[21] Neelamani T, Kikkert M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses 2019;11:961.
[22] tenOever BR. The evolution of antiviral defense systems. Cell Host Microbe 2016;19:142–9.
[23] Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT, et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 2016;7:e00638-15.
[24] Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog 2008;4:e1000240.
[25] Hamming I, Timens W, Bulthuis ML, Lely AT, Nijman G, van Houwelingen AJ. Distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;204:631–7.
[26] Law HK, Cheung CY, Sia SF, Chan YD, Peiris JS, LauYL. Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells. BMC Immunol 2009;10:35.
[27] Knoop K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS coronavirus replication is supported by a reticuloviral network of modified endoplasmic reticulum. PLoS Biol 2008;6:e226.
[28] Bouvet M, Debarrot C, Imbert I, Selisko B, Snijder EJ, Canard B, et al. In vitro reconstitution of SARS-coronavirus mRNA maturation. PLoS Pathog 2010;6:e1000863.
[29] Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Gene 2011;42:71–5.
[30] Kopecký-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007;81:548–57.
N.M.G.P. de Queiroz, F.V. Marinho, M.A. Chagas et al. Microbes and Infection 22 (2020) 515–524

Ou X, Guan H, Qin B, Mu Z, Wojdyla JA, Wang M, et al. Crystal structure of the Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of Changapanaparan R, Frett C, Meyerholz DK, et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, et al. Highlight of NY, Kohara M, Kitabatake M, Nishiwaki T, Fujii H, Tateno C, et al. Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS- Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao Z, et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome infection. Li, Moore CB, Liesman RM, O...
Lucchese G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol 2020;17:15:1.
Lazzaro S, Giovanni C, Mangiavacchi S, Magini D, Malone D, Baumer B, et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen-presenting cells and may involve antigen transfer from myocytes. Immunology 2015;146:312–26.
Ulmer JB, Donnelly J, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, et al. Inhibition of crosstalk between pathways leading to TNF-α production demonstrates similar human and murine innate response. J Transl Med 2019;17:15:1.

N.M.G.P. de Queiroz, F.V. Marinho, M.A. Chagas et al. Microbes and Infection 22 (2020) 515–524

Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a 2019-nCoV S protein-fusion glycoprotein demonstrates similar human and murine innate response. J Transl Med 2020;18:15:1.

Promperitchar A, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020;38:1–9.

Smith TBF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020;11:2601.

Lucchese G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol 2020;17:539–40.
Lee CH, Koohy H. In silico identification of vaccine targets for 2019-nCoV. F1000Res; 2020. p. 145.

Bloom BR, Jacobs Jr WR. New strategies for leposy and tuberculosis and for development of bacillus Calmette-Guérin into a multi-vaccine vehicle. Ann N Y Acad Sci 1989;569:155–73.

Milstien JB, Gibson JJ. Quality control of BCG vaccine by WHO: a review of factors that may influence vaccine effectiveness and safety. Bull World Health Organ 1990;68:93–108.

Oettinger T, Jorgensen M, Ladefoged A, Haslov K, Andersen P. Development of Mycobacterium bovis BCG vaccine: review of the historical and biochemical evidence for a genealogical tree. Tuberc Lung Dis 1999;79:243–50.

WHO. BCG (tuberculosis). Date last accessed: May 20, 2020. Date last updated: July 5, 2018. https://www.who.int/immunization/areas/vaccines/bcg/Tuberculosis/en/; 2018.

Ravn P, Boesen H, Pedersen BK, Andersen P. Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guérin. J Immunol 1997;158:494–55.

van Faassen H, Dudani R, Krishnan L, Sad S, et al. Prolonged antigen presentation, T-cell responses, and long-lasting and effective immunity. J Virol 2005;79:12871–90.

Matsuo K, Yasutomi Y. Bacillus Calmette-Guerin (BCG) vaccination predicts susceptibility to and the severity of SARS-CoV-2 infection. Cell 2020;181:518–31.

Miller A, Beandalder MJ, Fasciglione K, Roumenova V, Li Y, Otazo GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv. 2020. https://doi.org/10.1101/2020.03.24.2004293 [Preprint].

Green CM, Fanucchi S, Fok ET, Moorlag SCFM, Dominguez-Andres J, Negishi Y, et al. COVID-19: a model correlating BCG vaccination to protection from mortality implicates trained immunity. medRxiv. 2020. https://doi.org/10.1101/2020.04.10.20057531 [Preprint].

Matsuo K, Yu Q, Salvador CE, Melani I, Kitayama S. Mandated Bacillus Calmette-Guérin (BCG) vaccination predicts flattened curves for the spread of COVID-19. Sci Adv 2020. https://doi.org/10.1126/sciadv.abc1463 [Online ahead of print].

Hamel U, Kozier E, Youngster I. SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults. J Am Med Assoc 2020;323:2340–1.

Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signaling during RNA virus infection. Cytokine Growth Factor Rev 2014;25:659–70.

Chen X, Yang X, Zheng Y, Yang X, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 2014;5:369–81.

Ceron S, North BJ, Taylor SA, Leib DA. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state against Dengue virus. PLoS Pathog 2015;11:e1005013.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033–4.