Loss of the F-Actin Binding and Vesicle-Associated Protein Comitin Leads to a Phagocytosis Defect

Thomas Schreiner,1 Martina R. Mohrs,1 Rosemarie Blau-Wasser,1 Alfred von Krempelhuber,2 Michael Steinert,3 Michael Schleicher,4 and Angelika A. Noegel1*

Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne,1 Max-Planck-Institut für Biochemie, 82152 Martinsried,2 Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg,3 and Institut für Zellbiologie, Ludwig-Maximillians-Universität, 80336 Munich,4 Germany

Received 11 November 2001/Accepted 5 August 2002

Comitin is an F-actin binding and membrane-associated protein from Dictyostelium discoideum, which is present on Golgi and vesicle membranes and changes its localization in response to agents affecting the cytoskeleton. To investigate its in vivo functions we have generated knockout mutants by gene replacement. Based on comitin’s in vitro functions we examined properties related to vesicular transport and microfilament function. Whereas cell growth, pinocytosis, secretion, chemotaxis, motility, and development were unaltered, comitin-lacking cells were impaired in the early steps of phagocytosis of Saccharomyces cerevisiae particles and of Escherichia coli, whereas uptake of latex beads was unaffected. Furthermore, the lack of comitin positively affected survival of pathogenic bacteria. Mutant cells also showed an altered response to hyperosmotic shock in comparison to the wild type. The redistribution of comitin during hyperosmotic shock in wild-type cells and its presence on early phagosomes suggest a direct involvement of comitin in these processes.

The actin cytoskeleton is important for cell architecture, cell motility, intracellular vesicle transport, phagocytosis, and endo- and exocytosis. This broad range of functions is supported by many actin-binding proteins, such as unconventional myosins (2, 23, 40), profilin, spectrin (7, 17, 53), and synapsin (56). These proteins are involved in actin polymerization and cross-linking the filaments into bundles or networks. Comitin, a 24-kDa protein, can also bundle actin filaments. It furthermore associates with membranes and, based on its properties, was proposed to provide a link between membrane vesicles and the actin-based microfilament system, and thus it belongs to the group of membrane anchors. Comitin was first identified in Dictyostelium discoideum as an F-actin binding protein (52, 42). It is a highly basic protein of 185 amino acids and consists of two domains. The C-terminal domain is composed of 41 residues possessing six repeats of the GYP(P)Q motif, which are also found in proteins of rather diverse functions such as Octopus rhodopsin, which is involved in light perception (44); annexins A7 and 11, Ca2+ and phospholipid binding proteins that function as a Ca2+ channel and mediate membrane fusion (12, 20) or are present in the nucleus (54); and synaptophysin, a protein present on synaptic vesicles (36). The N-terminal core domain of comitin is constructed of 144 residues and carries nearly the whole charge of the protein.

Comitin is a bifunctional protein. In addition to its actin binding activity it exhibits a mannose binding activity with which it might bind mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles, providing a mechanism for comitin’s membrane association. The actin-binding site is primarily located between amino acids 90 and 135 of comitin; another binding site of lower affinity was mapped near the N terminus (30). Comitin’s binding site on F-actin has been mapped near the actin N terminus in subdomain 1 (24). This site is different from the binding site on F-actin for other actin binding proteins, such as α-actinin, which contact two actin monomers in the filament (39). Immunoelectron microscopy, immunofluorescence studies, and biochemical data localized comitin to the Golgi region and to vesicles distributed throughout the cell and suggested a function for comitin as a mediator between the cytoskeleton and the membrane vesicle system (59).

In this work, we describe the generation of a comitin gene knockout in D. discoideum and the effects of the mutation on cellular processes requiring a functional actin cytoskeleton as well as membrane vesicle system. We present evidence that comitin is involved in phagocytosis and protection against osmotic stress and discuss the role of comitin-decorated vesicles during these processes in view of comitin’s bifunctional role. We propose that the vesicles are guided by the cytoskeleton to their place of destiny where they fuse with the plasma membrane to allow formation of a phagocytic cup or protection during osmotic shock.

MATERIALS AND METHODS

D. discoideum strains and growth conditions. D. discoideum strain AX2-214 (referred to as the wild type), an axenically growing derivative of wild strain NC4, and the comitin-negative mutants 1a1 and 3a1 used in this study were grown at 21°C in liquid medium with shaking at 160 rpm (15) or on SM agar plates with Klebsiella aerogenes (21).

Disruption of the comitin gene. For construction of a comitin targeting vector, a 1.5-kb genomic DNA fragment carrying the comitin gene was obtained from HindIII- and EcoRV-cut DNA. This fragment was cloned into pIC19R (38). A 0.4-kb BglII/XbaI fragment, including the start codon ATG, was replaced by a blasticidin resistance cassette under the control of the actin 15 promoter and actin 8 terminator (1). The resulting vector was linearized and introduced into AX2 cells by electroporation. For selection, cells were grown in liquid nutrient medium containing blasticidin (3.5 μg/ml). Mutants lacking comitin were identified by colony blotting. For mutant characterization we used the previously
described monoclonal antibodies (MABS) (59) as well as a newly generated polyclonal antibody against recombinant comitin.

Growth and development of D. discoideum. For the analysis of growth in shaking suspension under stress conditions, \(5 \times 10^6\) cells/ml were inoculated and grown to densities below \(5 \times 10^9\) cells/ml with Soerensen phosphate buffer (17 mM K-phosphate, pH 6.0). For shaking in shaken suspension an Escherichia coli Brt. E. coli cells were adjusted to a density of \(10^9\) cells in Soerensen phosphate buffer (17 mM K-phosphate, pH 6.0), and this suspension was inoculated with mutant and wild-type strains at various densities. Shaking was done at 160 rpm and 21°C. Cell numbers were determined by counting. For analysis of development, cells were grown to a density of \(3 \times 10^7\) cells/ml, harvested, and resuspended at a density of \(10^8\) cells/ml in Soerensen phosphate buffer. Cells (\(5 \times 10^7\)) were deposited on phosphate agar plates. For development in shaking suspension, cells were washed in Soerensen phosphate buffer, resuspended at a density of \(10^7\) cells/ml and shaken at 21°C and 160 rpm (49). Osmotic shock experiments were done as described in the work of Schuster et al. (50).

Fluorescence microscopy. For fluorescence microscopy, cells were grown to a density of \(3 \times 10^7\) cells/ml, harvested, and resuspended at a density of \(5 \times 10^7\) cells/ml with Soerensen phosphate buffer. Cells were transferred onto glass coverslips and allowed to settle for 15 min. For fixation, cells were inoculated in cold methanol (–20°C) for 10 min. Fixation was determined by incubation with the comitin-specific MABS 190-23-5, 190-68-1, and 190-340-8 followed by incubation with Cy3-labeled anti-mouse immunoglobulin G (59).

RESULTS

Generation and analysis of a comitin-lacking mutant. To investigate the comitin function in vivo we have generated \(D.\) discoideum knockout mutants by homologous recombination. We used a transformation vector that contains a 1.5-kb EcoRV/HindIII fragment carrying comitin gene sequences. Of this fragment a 0.4-kb BglII/XbaI fragment encompassing the ATG start codon was replaced by the 1.4-kb blasticidin resistance cassette (Fig. 1A). Several independent clones lacking comitin were isolated by colony blotting and confirmed by Western, Northern, and Northern blotting. Southern blot analysis revealed a replacement of the endogenous gene by the transformation vector, since a probe consisting of the 0.4-kb fragment that was deleted from the transformation vector no longer hybridized to the mutant DNA, whereas the endogenous gene in AX2 wild-type DNA was recognized (Fig. 1B).

The mutant cells did not produce the comitin-specific mRNA anymore, nor was protein detectable when tested with polyclonal antibodies and MABS (Fig. 1C and data not shown). In further studies we focused on two independently isolated mutants designated 1a1 and 3a1. The results obtained with both mutants were nearly identical; therefore, mainly data from mutant 1a1 are shown.

Growth, pinocytosis, secretion, chemotaxis, and development are not impaired in comitin-lacking cells. As comitin is both a vesicle- and F-actin-associated protein, we addressed aspects of the actin cytoskeleton as well as of intracellular transport processes when assaying for defects in the mutant. We analyzed growth behavior under different temperatures as detailed in Materials and Methods and did not detect any differences compared to the wild type. Furthermore, addition of EGTA, a Ca\(^{2+}\) chelator that should block Ca\(^{2+}\)-dependent processes, and brefeldin A, a drug known to inhibit transport processes, affected growth similarly in wild-type and mutant cells, leading to lower cell densities at saturation (data not shown).

** Fluid-phase endocytosis depends on membrane flow and on the rearrangement of the actin cytoskeleton.** In general, growth in liquid medium is already a measure of pinocytic activity, and the results mentioned above are an indication that this property is not substantially altered in comitin-lacking mutants. In addition we performed a quantitative assay and measured the pinocytic activity by monitoring the uptake of \(3^H\)-labeled dextran, since the pinocytosed radioactivity corresponds to the amount of liquid volume taken up. These experiments also did not reveal differences between wild-type and comitin-lacking cells (data not shown).

Exocytotic processes were studied by following the secretion of the lysosomal enzymes α-mannosidase and acid phosphatase to nylon membranes (Pall; Filtron, Dreieich, Germany) and incubated with \(^{32}P\)-labeled probes generated by using a random prime labeling kit (Stratagene, La Jolla, Calif.). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was done as described by Laemmli (33). Western blotting was performed using MABS, an anti-mannosidase and acid phosphatase conjugated antibody (Sigma) as secondary antibody, and the ECL detection system (Amersham, Braunschweig, Germany). Phosphodiesterase activity was determined according to the method of Gerisch et al. (26), and \(\alpha\)-mannosidase and acid phosphatase activities were determined according to the method of Dimond et al. (19). Antibodies specific for the cell surface protein contact site A are described by Berthold et al. (5).
and were found to be unaltered. Similarly, the development-
specific secretion of the enzyme phosphodiesterase was unaf-
fected. Correct posttranslational modi-
fication was analyzed for
the contact site A, a developmentally regulated cell surface
glycoprotein, which was properly O- and N-glycosylated as
assessed using speci-
fic antibodies, and was transported to the
cell surface (8, 28) (data not shown). Likewise, PsA, a lipid-
linked cell surface glycoprotein of prespore cells, was properly
expressed and posttranslationally modi-
fied (22, 31). This im-
plies that modi-
fications occurring in the endoplasmic reticulum (ER) and Golgi as well as transport of proteins to the cell
surface are not impaired.

Mutant cells underwent normal development, expressed the
developmental markers at the same time as wild-type cells, and
formed fruiting bodies showing normal morphology. Further-
more, the expression of stage-specific genes followed the pat-
tern observed in AX2 wild type. In chemotaxis assays the cells
reacted towards cyclic AMP and migrated with similar speed
and orientation as wild-type cells (data not shown).

Comitin-lacking cells show a defect in phagocytosis. Several
assays are available for the analysis of phagocytosis in Dictyo-
stelium. We have tested uptake of bacteria, latex beads, and
yeast particles in suspension in phosphate buffer. The particles
differ in size and, more importantly, in the nature of their
surface. E. coli B/r and yeast particles have a hydrophilic sur-
face, whereas the latex beads have a very hydrophobic surface
and the receptors responsible for the uptake will differ (16, 57).
We found that the uptake of latex beads was comparable
between mutant and wild-type strains (Fig. 2A), whereas
phagocytosis of E. coli and yeast particles was impaired in the
mutant strains. For yeast uptake, cells were fed with heat-killed
TRITC-labeled yeast cells. The lack of comitin resulted in a
marked defect in uptake of yeast cells. This defect was mainly
due to a lag in initiating internalization. At 40 min comitin-null
cells showed an uptake of 39% compared to wild-type cells.
After 80 min the uptake of mutant cells reached 67.5% of the
wild-type level (Fig. 2B). To investigate this in more detail we
determined the time-dependent uptake of yeast particles by
allowing cells to take up TRITC-labeled yeast particles in sus-
pension and fixing them at the indicated time points. The
numbers of yeast cells taken up were determined by micro-
scopic analysis. At early points (10 min) D. discoideum wild-
type cells had ingested 0.79 yeast particle/cell, whereas mutant
cells took up only 0.37 yeast particle/cell as determined by
immunofluorescence analysis. After 60 min both cell types
reached a steady-state level of internalized yeast which was
then maintained (Fig. 2C). When comparing the actual num-
bers, this behavior is even more obvious. After 10 min, 71.3%
of all mutant cells had not taken up a yeast cell, whereas 52.3% of the AX2 wild type had ingested at least one particle. The difference between mutant and wild type decreases over time, and at 60 min there is no longer a prominent difference between wild type and mutant. The observed impairment in phagocytosis therefore appears to reside mainly in initial uptake and not in the downstream processing of the phagosomes.

Impairment in the initial phases of uptake was also observed when the growth of mutant and wild-type strains in shaking suspension with \textit{E. coli} B/r as the food source was determined. Although inoculation was carried out with equal cell numbers, the mutant cells exhibited an extended lag phase before resuming growth at rates similar to those of wild-type cells (Fig. 2D).

Infection experiments with \textit{L. pneumophila} Corby demonstrated that the lack of comitin had a positive effect on intracellular bacterial numbers compared to the wild type (51). In a subsequent analysis, by using flow cytometry and GFP-tagged \textit{Legionella} we found that 39% of comitin-lacking cells harbored the bacteria, compared to 26% of AX2 control cells, indicating that processing of the phagosome is less efficient in the mutant.

Comitin is present on phagosomes. A broad range of F-actin proteins are involved in phagocytosis, but not all of them contribute to the formation of the phagosome layer. Comitin shows a vesicular distribution; its presence on phagosomes has not been analyzed so far. To demonstrate comitin incorporation into the protein layer associated with the membrane of early phagosomes, we loaded \textit{D. discoideum} wild-type cells...
with magnetic iron beads. After 10 min, cells were lysed by freeze-thaw or by passage through a cell cracker, vesicles containing the magnetic beads were isolated by magnetic fractionation and carefully washed, and the protein content was analyzed by Western blotting. Comitin was enriched in the phagosome fraction relative to other proteins (Fig. 3 and data not shown) as is actin (45). GFP-tagged comitin behaved similarly and was also found in the phagosomal fraction, whereas α-actinin was enriched in the cytosol and only a weak signal was observed in the phagosome fractions (data not shown). α-Actinin had been shown previously to accumulate on the phagosome only during later stages of phagocytosis (25).

We also analyzed the comitin distribution during phagocytosis by immunofluorescence studies. It was, however, difficult to prove an accumulation of comitin around the phagosome since comitin is present throughout the cells making it difficult to detect a specific enrichment in areas of phagosome formation.

Phagosomal cup formation is normal in mutant cells. Actin accumulation on phagosomes is essential for phagocytosis, and accumulation of actin on phagosomes can conveniently be taken as a measure for formation of phagosomes (3, 4, 45). To study phagosomal cup formation we monitored actin assembly during the uptake of yeast particles in vivo in comitin-lacking cells expressing a GFP-actin fusion protein and compared it with the process in wild-type cells that also expressed GFP-actin. Wild-type and mutant cells were incubated with heat-killed yeast cells labeled with TRITC and analyzed by confocal laser scanning microscopy. We found that the F-actin accumulation on phagocytic cups was unaltered in mutant cells in comparison to wild-type cells. At the beginning of the sequence shown, actin became enriched beneath the cell surface at contact sites with the particle. Then GFP-actin enriched extensions that formed on leading edges off the cell surface began to engulf the yeast cell until it was surrounded by a continuous ring of GFP-actin. Once the yeast particle was completely taken up, GFP-actin disappeared from the phagosome (Fig. 4). The process and time course of actin accumulation and disappearance of actin from the phagosome were nearly indistinguishable in AX2 cells (data not shown).

Comitin-lacking cells show an increased sensitivity towards osmotic shock. Several *Dictyostelium* mutants lacking actin-associated proteins exhibit a reduced resistance against osmotic shock (48). This has often been taken as evidence that an intact cytoskeleton is required in stress responses. To determine the survival rate in response to osmotic stress, wild-type and mutant cells were treated up to 2 h with 0.4 M sorbitol and afterwards were diluted into Soerensen phosphate buffer. We found a markedly reduced survival rate of the comitin-lacking mutant in comparison to AX2 cells. The osmotic shock reduced the viability of 1a1 cells to 47% after 1 h and to 34% after 2 h in hypertonic medium, whereas more than 77% of AX2 cells survived this treatment (Fig. 5). Lack of comitin thus resulted in a markedly reduced survival rate of *D. discoideum* cells under these conditions of acute osmotic shock, whereas

![FIG. 3. Comitin is present in isolated phagosomal membranes. Lanes 1 through 3 show successive wash fractions of phagosomal preparations; the last lane represents protein of the phagosome fraction. Protein extracts were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12% acrylamide), blotted onto nitrocellulose, and probed with the comitin-specific MAb 190-68-1. The 24-kDa signal of comitin decreased in the wash fractions and was present in the phagosome fraction.](image)

![FIG. 4. Distribution of a GFP-actin fusion protein during phagocytosis. AX2 wild-type cells and 1a1 mutant cells expressing a GFP-actin fusion protein were fed with TRITC-labeled yeast cells. Phagocytosis was observed by confocal laser scanning microscopy at the indicated times (in minutes). GFP-actin distribution did not differ between the two *Dictyostelium* strains. Thus, we only show the series of confocal images for the mutant 1a1. (A and B) Enrichment of actin beneath the cell surface at sites of contact with the yeast particle. (C and D) GFP-actin-stained leading edges begin to engulf the yeast cell. (E) The engulfed yeast cell is surrounded by a ring of GFP-actin. (F and G) GFP-actin disassembled from the mature phagosome. (H) AX2 cell forming a phagocytic cup which shows an enrichment of F-actin.](image)
the ability of the mutant strains to grow in the presence of increased osmolarity by supplementing the axenic medium with either 30 mM NaCl or 115 mM sorbitol was comparable to that of the wild type.

Comitin redistribution during osmotic shock. Exposure to high osmolarities evokes cell volume changes which affect a broad range of metabolic pathways (34, 58). In yeast, osmotic stress evokes changes in fusion pathways and in vacuolar morphologies (9); in mammalian cells, hyperosmotic shock induces inhibition of the ER export, the ER-to-Golgi-transport and the ER-Golgi intermediate compartment transport steps whereas the retrograde transport is not impaired by cell swelling. This cell response leads to the collapse of the ER-Golgi intermediate compartment and Golgi apparatus into the ER (35).

We studied the comitin distribution in osmotically shocked cells. In general, exposure to high osmolarities causes cell volume changes which affect a rounding up of the cells. In immunofluorescence studies, MAb 190-68-1 stains vesicles throughout the cells. After treatment of AX2 cells for 90 min with 0.4 M sorbitol, the vesicles appeared larger in size and were more enriched in the vicinity of the plasma membrane (Fig. 6).

DISCUSSION

Up to now the function of comitin was elucidated mainly by biochemical methods. Here we study mutant cells lacking the protein and demonstrate a role for comitin in phagocytic processes and in protection against osmotic shock. Our previous analysis showed that a lack of comitin does not cause phenotypic defects during development when cells are grown under conditions that resemble those in the natural environment of *Dictyostelium* (46). We now focused our experiments primarily on actin- and membrane-mediated cellular processes.

The actin cytoskeleton has been implicated in responses to osmotic shock in previous studies. Lack of the F-actin cross-linking proteins α-actinin and *Dictyostelium* filamin (previously called gelation factor or ABP120) resulted in a reduced resistance toward cell volume changes (48). For myosin mutants a

FIG. 5. Resistance to hyperosmotic shock of strains AX2 and 1a1. Cells were shaken in phosphate buffer in the presence and absence of 0.4 M sorbitol for the times indicated, diluted into phosphate buffer, and plated on SM agar plates with *K. aerogenes*. Cell viability after 1 and 2 h of treatment was determined as the percentage of colonies in relation to the number of colonies observed at 0 h, which was assigned 100%. Each point is the average of colony counts from five plates. Data represent the average of four independent experiments (error bars, standard deviations).

FIG. 6. Altered distribution of comitin in response to hyperosmotic shock. AX2 cells were incubated in 0.4 M sorbitol for the times indicated. The cells were allowed to settle on coverslips and fixed. Shown are cells after 90 min of incubation without (A) and with (B) sorbitol. The MAb 190-68-1 stained vesicles in the control cell, which were distributed throughout the cell. After treatment with sorbitol, the vesicles were enriched in the vicinity of the cell boundaries. Bar, 10 μm.
similar observation has been made (32). In both instances the increased sensitivity towards osmotic stress was discussed as being the result of a reduced strength of the cortical cytoskeleton. A role of the actin cytoskeleton in the adaptation to situations of changed osmotic conditions was also described for melanoma cells deficient in mammalian filamin. These mutant cells were not capable of activating potassium channels and of regulating their cell volume when swollen in diluted solutions. Reexpression of filamin corrected these defects (13). Experiments with yeast cells point out a rapid and reversible disassembly and redistribution of the actin cytoskeleton in response to osmotic stress, and additional genetic and morphological analyses performed with an osmosensitive mutant hint at an actin-binding protein being involved in actin redistribution during osmotic shock (14).

Lack of comitin resulted in an increased sensitivity towards osmotic shock, observed by a markedly reduced survival rate of mutants compared to wild-type cells. As comitin was characterized as an F-actin binding protein which bundles filaments in vitro, it might act like α-actinin or myosin and physically strengthen the cytoskeleton. In cells it was always found in association with membranes, and it could well be that a redistribution of comitin-containing vesicles is involved in the generation of resistance to osmotic shock.

Comitin also has a role in phagocytosis. Phagocytosis is generally considered an actin-driven process, and it was suggested that actin polymerization is responsible for formation of pseudopods that surround a particle. This view is supported by the assembly of actin and the accumulation of actin binding proteins on the phagosome and by mutant analysis in Dictyostelium, which demonstrated the roles of actin binding proteins in phagocytosis (43). F-actin is also important for the subsequent processes, since intracellular transport and fusion of the phagosome with endocytic organelles can be inhibited by cytochalasin D (55). Phagocytosis also involves an increase in membrane area when pseudopods form and a loss of membrane when the particle is engulfed. These changes in membrane area are quite significant, especially in cells such as phagocytes, and Dictyostelium is considered a natural phagocyte. A polarized insertion of new membrane at sites of particle uptake could ensure pseudopod extension and would counteract a loss of membrane during phagocytic uptake. A similar mechanism was proposed for the membrane area increase that occurs when pseudopods form during cell movement, and in both cases endocytic vesicles have been proposed as the source of membranes (10, 11; I. Mellman, Letter, J. Cell Biol. 149: 529-530, 2000). Motility, however, is not impaired in the comitin-lacking mutants. Fusion of endosomes with phagosomes is also important for phagosome maturation; Desjardins et al. (18) showed that early phagosomes fuse preferentially with early endocytic vesicles, and Bajno et al. (5) provided evidence that endosomal vesicles accumulate in the vicinity of phagosomes and fuse before phagosome sealing.

Our results indicate that comitin is present on early phagosomes. The deficiency in comitin resulted in a reduction of phagocytic efficiency. Notably, only the early steps of phagocytosis were affected, whereas the processing of the phagosome-containing yeast particles or E. coli appeared to be normal and actin accumulation around the phagosome occurred as in the wild type. These results and the presence of comitin on early and late endosomes (59) support the notion of a general mechanism of membrane insertion during phagocytosis as discussed above and comitin’s role as a vesicle-associated protein in this process.

The phagocytosis defect is not a general defect, as the uptake of latex beads was comparable in wild-type and mutant cells. We have documented a specific defect in the phagocytosis of E. coli and of yeast particles, whereas uptake of latex beads and L. pneumophila (data not shown) was normal or slightly increased, respectively. During phagocytosis a particle is first recognized by the cell surface and bound via specific or nonspecific receptors. Work by Vogel et al. (57) identified different recognition sites for phagocytosis in mutants with altered phagocytic properties. One class of receptors mediated binding of particles containing terminal glucose as it is present on E. coli B/r, and the other one allows binding of hydrophobic particles (i.e., latex beads). The defect in the comitin mutant appears to be associated with the specific receptor and might reflect a defect in adhesion to the particles or in early processes of uptake and processing. Independent of this defect, in experiments studying the uptake and survival of pathogenic bacteria in Dictyostelium host strains, we observed that comitin-lacking mutants were more permissive to infections with L. pneumophila and showed a delayed degradation of Salmonella enterica serovar Typhimurium (51). This defect is clearly separable from the altered uptake characteristics and alludes to processes further downstream.

The findings presented here link comitin to intracellular trafficking and suggest that comitin participates in the early processes of uptake as well as the maturation of the phagosomes. The data support our working model for comitin (30) and are compatible with data from the structural modeling of the molecular domains (6). Comitin is a dimer with a lectin-binding activity and an actin-binding activity. The lectin domains bind to mannose residues at the cytoplasmic side of vesicles, which allows a close contact between vesicles and might be a first step towards fusion. Moreover, comitin is also able to bind a vesicle via its lectin activity and anchor it at actin filaments due to its actin binding activity, thus helping to direct vesicles to the sites where they are required.

ACKNOWLEDGMENTS

This work was supported by grants from the Deutsche Forschungsgemeinschaft, Köln Fortune, and the Fonds der Chemischen Industrie. We thank Barbara Baracino for her help with phagocytosis assays, G. Gerisch for kindly providing antibodies, Rolf Müller for help with phagocytosis analysis, and Berthold Gassen for production of MAbs.

REFERENCES

1. Adachi, H., T. Hasebe, K. Yoshinaga, T. Ohta, and K. Sutoh. 1994. Isolation of Dictyostelium discoideum cytokinesis mutants by restriction enzyme-mediated integration of the blastoeidin S resistance marker. Biochem. Biophys. Res. Commun. 205:1808–1814.
2. Adams, R. J., and T. D. Pollard. 1986. Propulsion of organelles isolated from Acanthamoeba along actin-filaments by myosin-I. Nature 322:754–756.
3. Allen, L. L., and A. Ademre. 1995. A role for MARCKS, the alpha isoform of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182:829–840.
4. Allison, A. C., P. Davies, and S. De Petris. 1971. Role of contractile microfilaments in macrophage movement and endocytosis. Nat. New Biol. 232:153–155.
5. Bajno, L., X. R. Peng, A. D. Schreiber, H. P. Moore, W. S. Trimble, and S. Grinstein. 2000. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149:977–986.
6. Barre, A., E. J. M. Van Damme, W. J. Pemans, and P. Rougé. 1999.
The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J. Cell Biol. 123:23–34.

60. Westphal, M., A. Jungbluth, M. Heidecker, B. Mühlauer, C. Heizer, J. M. Schwartz, G. Marriott, and G. Gerisch. 1997. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7:176–183.