Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing?

Yu Zhang, Zhenghua Li, Houquan Zhou, Min Zhang
School of Computer Science and Technology, Soochow University, China
yzhang.cs@outlook.com, hqzhou@stu.suda.edu.cn
{zhli13,minzhang}@suda.edu.cn

Abstract

In the pre deep learning era, part-of-speech tags have been considered as indispensable ingredients for feature engineering in dependency parsing due to their important role in alleviating data sparseness of purely lexical features, and quite a few works focus on joint tagging and parsing models to avoid error propagation. In contrast, recent studies suggest that POS tagging becomes much less important or even useless for neural parsing, especially when using character-based word representations such as CHARLSTM. Yet there still lacks a full and systematic investigation on this interesting issue, both empirically and linguistically. To answer this, we design four typical multi-task learning frameworks (i.e., Share-Loose, Share-Tight, Stack-Discrete, Stack-Hidden), for joint tagging and parsing based on the state-of-the-art biaffine parser. Considering that it is much cheaper to annotate POS tags than parse trees, we also investigate the utilization of large-scale heterogeneous POS-tag data. We conduct experiments on both English and Chinese datasets, and the results clearly show that POS tagging (both homogeneous and heterogeneous) can still significantly improve parsing performance when using the Stack-Hidden joint framework. We conduct detailed analysis and gain more insights from the linguistic aspect.

1 Introduction

Among different NLP tasks, syntactic parsing is the first to convert sequential utterances into full tree structures. Due to its simplicity and multi-lingual applicability, dependency parsing has attracted extensive research interest as a main-stream syntactic formalism (Nivre et al., 2016; Zeman et al., 2018), and been widely used in semantic parsing (Hajič et al., 2009), information extraction (Roller et al., 2018), machine translation (Zhang et al., 2019), etc.

Given an input sentence $S = w_0w_1 \ldots w_n$, dependency parsing constructs a tree $T = \{(h, d, l), 0 \leq h \leq n, 1 \leq d \leq n, l \in L\}$, as depicted in Figure 1 where (h, d, l) is a dependency from the head w_h to the dependent w_d with the relation label l, and w_0 is a pseudo root node.

In the pre deep learning (DL) era, part-of-speech (POS) tags are considered as indispensable ingredients for feature engineering in dependency parsing. POS tags function as word classes in the sense that the same POS tags usually play similar syntactic roles in language utterances. For example, ordinary verbs are tagged as VV and ordinary nouns as NN in Penn Chinese Treebank (CTB). Yet some tags are designed for serving other tasks such as information extraction. For instance, proper nouns and temporal nouns are distinguished from NN as NR and NT respectively. In this sense, we refer to tag pairs like {NN, VV} as syntax-sensitive and {NN, NR} as syntax-insensitive. Parsing performance drops dramatically when removing POS-related features, since POS tags play a key role in reducing the data sparseness problem of using pure word-based lexical features. Meanwhile, to alleviate error propagation in the first-tagging-then-parsing pipeline, researchers propose to jointly model POS tagging and dependency parsing under both graph-based (Li et al., 2011) and transition-based (Hatori et al., 2011) frameworks.

In the past five years, dependency parsing has achieved tremendous progress thanks to the strong capability of deep neural networks in representing word and long-range contexts (Chen and Manning, 2014).
Figure 1: An example dependency tree with both homogeneous (CTB) and heterogeneous (PKU) POS tags.

Dyer et al., 2015; Zhou et al., 2015; Andor et al., 2016; Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017). Yet all those works hold the assumption of POS tags being important and concatenate word and POS tag embeddings as input.

Moreover, researchers show that using CHAR LSTM based word representations is helpful for named entity recognition (Lample et al., 2016), dependency parsing (Dozat et al., 2017), and constituency parsing (Kitaev and Klein, 2018). The idea is first to perform LSTM over word characters and then to add (or concatenate) together word embeddings and CHAR LSTM word representations as model inputs. In particular, Kitaev and Klein (2018) show that with CHAR LSTM word representations, POS tags are useless for constituency parsing. We believe the reason may be two-fold. First, word embeddings, unlike lexical features, suffer from much less data sparseness, since syntactically similar words can be associated via similar dense vectors. Second, CHAR LSTM word representation can effectively capture morphological inflections by looking at lemma/prefix/suffix, which provide similar information as POS tags. However, there still lacks a full and systematic study on the usefulness of POS tags for dependency parsing.

In this work, we try to answer the question whether POS tagging is necessary or even helpful for neural dependency parsing and make the following contributions.

• We design four typical multi-task learning (MTL) frameworks (i.e., Share-Loose, Share-Tight, Stack-Discrete, Stack-Hidden), for joint POS tagging and dependency parsing based on the state-of-the-art biaffine parser.

• Considering that there exist large-scale heterogeneous POS-tag data for Chinese partly because it is much cheaper to annotate POS tags than parse trees, we also investigate the helpfulness of such heterogeneous data, besides homogeneous POS-tag data that are annotated together with parse trees.

• We conduct experiments on both English and Chinese benchmark datasets, and the results show that POS tagging, both homogeneous and heterogeneous, can still significantly improve parsing accuracy when using the Stack-Hidden joint framework. Detailed analysis sheds light on the reasons behind helpfulness of POS tagging.

We will release our code at https://github.com

2 Basic Tagging and Parsing Models

This section presents the basic POS tagging and dependency parsing models separately in a pipeline architecture. In order to make fair comparison with the joint models, we make the encoder-decoder architectures of the tagging and parsing models as similar as possible, as shown in Figure 2. The input representation contains both word embeddings and CHAR LSTM word representations. The encoder part adopts three BiLSTM layers.
Figure 2: The basic tagging and parsing models.

Figure 3: An illustration of the input representation of word “中央台(CCTV)”. The homogeneous POS embedding e^p and heterogeneous POS embedding $e^{p'}$ are used in the pipeline framework.

2.1 The Encoder Part

Given a sentence $S = w_0 w_1 \ldots w_n$, the input layer map each word w_i into a dense vector x_i.

$$x_i = e^{w}_i \oplus e^c_i$$ \hspace{1cm} (1)

The input layer. where e^{w}_i is the word embedding, e^c_i is the CHARLSTM word representation vector, and \oplus means vector concatenation. As shown in Figure 3, CHARLSTM word representations e^c_i are obtained by applying BiLSTM to the word characters and concatenating the final hidden output vectors. Following Dozat and Manning (2017), the word embeddings e^{w}_i is the sum of a fixed pretrained word embedding and a trainable word embedding initialized as zero. Infrequent words in the training data (less than 2 times) are treated as a special OOV-token to learn its embedding.

Under the pipeline framework, the parsing model may use extra POS tag embedding as input.

$$x_i = e^{w}_i \oplus e^c_i \oplus e^p_i \oplus e^{p'}_i$$ \hspace{1cm} (2)

where e^p_i and $e^{p'}_i$ are the embeddings of the homogeneous and heterogeneous POS tags, respectively. For dropouts, we follow Dozat and Manning (2017) and drop the different components of the input vector x_i, independently.

The BiLSTM encoder. We employ the same $N = 3$ BiLSTM layers over the input layer to obtain context-aware word representations for both tagging and parsing. We follow the dropout strategy of Dozat and Manning (2017) and share the same dropout masks at all time steps of the same unidirectional LSTM. The hidden outputs of the top-layer BiLSTM are used as the encoded word representations, denoted as h_i.

2.2 The Tagging Decoder

For the POS tagging task, we use two MLP layers to compute the score vector for different tags and get the optimal tag via softmax. The first MLP layer uses leaky ReLU activation, while the second MLP layer is linear without activation. During training, we take the local cross-entropy loss.

2.3 The Parsing Decoder

We adopt the state-of-the-art biaffine parser of Dozat and Manning (2017). We apply an MLP layer with leaky ReLU activation to obtain the representations of each word as a head (r^h_i) and as a dependent (r^d_i).

$$r^h_i; r^d_i = \text{MLP} (h_i)$$ \hspace{1cm} (3)

As discussed in Dozat and Manning (2017), this MLP layer on the one hand reduces the dimensionality of h_i, and more importantly on the other hand strips away syntax-unrelated information and thus avoids the risk of over-fitting.

\footnote{We have also tried the sum of e^{w}_i and e^c_i, leading to slightly inferior performance.}
Then a biaffine layer is used to compute scores of all dependencies.

\[
\text{score} \left(i \leftarrow j \right) = \begin{bmatrix} r_i^d \\
1 \end{bmatrix}^T W r_j^h
\]

where \(\text{score} \left(i \leftarrow j \right) \) is the score of the dependency \(i \leftarrow j \), and \(W \) is a weight matrix. During training, supposing the gold-standard head of \(w_i \) is \(w_j \), we use the cross-entropy loss to maximize the probability of \(w_j \) being the head against all words, i.e.,

\[
\sum_{0 \leq k \leq n} e^{\text{score} \left(i \leftarrow k \right)}.
\]

For dependency labels, we use extra MLP and Biaffine to compute the scores \(\text{score} \left(i \leftarrow j \right) \) and also adopt cross-entropy classification loss. We omit the details due to space limitation.

3 Joint Tagging and Parsing Models

The pipeline framework suffers from the error propagation problem, meaning that POS tagging mistakes badly influence parsing performance. In the pre-DL era, researchers propose joint tagging and parsing models under both graph-based and transition-based parsing architectures (Li et al., 2011; Hatori et al., 2011). The key idea is to define the joint score of a tag sequence and a parse tree and to find the optimal joint result in the enlarged search space. In the neural network era, jointly modeling two tasks becomes much easier thanks to the commonly used encoder-decoder architecture and the MTL framework.

In this work, we design and compare four typical MTL frameworks for joint POS tagging and dependency parsing, i.e., Share-Loose, Share-Tight, Stack-Discrete, and Stack-Hidden, as illustrated in Figure 4. The Share-Loose and Share-Tight methods treat tagging and parsing as two parallel tasks, whereas the Stack-Discrete and Stack-Hidden methods consider parsing as the main task and derive POS tag-related information as the inputs of the parsing component. Moreover, for all joint models, the inputs only include the word embeddings and CHARLSTM word representations, as shown in Equation 1.

Share-Loose. The tagging and parsing tasks use nearly separate networks, and only share the word and char embeddings. To incorporate heterogeneous POS tagging data, we add another scoring MLP at the top to compute scores of different heterogeneous POS tags. Under such architecture, the loosely connected tagging and parsing components can only influence each other in very limited manner.

Share-Tight. This is the most commonly used MTL framework, in which the tagging and parsing components share not only the embeddings, but also the BiLSTM encoder. Different decoders are then used for different tasks. In this tightly joint model, the tagging and parsing components can interact
with and mutually help each other to a large extent. The shared parameters are trained to capture the commonalities of the two tasks.

Stack-Discrete. Different from the Share-Loose/Tight methods, the Stack-Discrete method uses shared word and char embeddings and separate BiLSTM encoders for the tagging and parsing tasks. Most importantly, the parsing component takes the discrete 1-best POS tag predicted by the tagging component as extra inputs, similarly to the pipeline framework. For example, if the tagging component predict “NN” as the max-scoring tag of \(w_i \), we feed the corresponding tag embedding of “NN”, denoted as \(e_p^i \), as extra input of the BiLSTM encoder of the parsing component.

\[
x_{i}^{\text{parse}} = x_i \oplus e_p^i
\]

We argue that this method can alleviate (though still suffers from) the error propagation problem to some extent, since the tagging and parsing components are jointly trained and adapted to becoming more robust.

The idea behind the Stack-Discrete joint method is borrowed from Nguyen and Verspoor (2018). They show that the joint method can greatly improve parsing performance of the BIST parser based on BiLSTM encoder (Kiperwasser and Goldberg, 2016), and achieves an LAS of 92.87 on PTB. In this work, we use the Stack-Discrete joint method as a representative approach and try to make thorough investigations based on the state-of-the-art biaffine parser.

Stack-Hidden. The key difference between Stack-Hidden and Stack-Discrete is that, rather than using discrete 1-best POS tag, Stack-Hidden takes continuous BiLSTM hidden outputs of the tagger, denoted as \(r_p^i \), as extra input of the parser. In this way, the error propagation problem can be better handled.

\[
x_{i}^{\text{parse}} = x_i \oplus r_p^i
\]

The idea of the Stack-Hidden joint method is mainly borrowed from Zhang and Weiss (2016). They propose the stack-propagation approach to avoid using explicit POS tags in dependency parsers. They employ the simple feed-forward networks for both tagging and parsing (Chen and Manning, 2014). Without BiLSTM encoders, they use the hidden outputs of a single-layer MLP of the tagging component as extra inputs of the parsing component.

Training loss. During training, we directly add together all losses of different tasks, i.e., the parsing loss, the homogeneous POS tagging loss, and the heterogeneous POS tagging loss.

\[
\mathcal{L} = \mathcal{L}_{\text{DEP}} + \mathcal{L}_{\text{POS}} + \mathcal{L}_{\text{POS}'}
\]

4 Experiments

In this section, we conduct experiments and detailed analysis to make full investigation on the usefulness of POS tagging for dependency parsing.
Table 2: Parsing performance (LAS) on the dev data under the pipeline framework. $e_w \oplus e_c$ is our basic model.

	PTB	CoNLL09	CTB7
e_p	87.79	75.94	75.72
e_w	93.42	85.30	84.43
e_c	93.34	84.42	83.73
$e_w \oplus e_p$	93.92	89.94	85.12
$e_w \oplus e_c$	**93.97**	86.09	85.23
$e_w \oplus e_c \oplus e_p$	93.88	**86.17**	**85.32**
$e_w \oplus e_c \oplus e_p \oplus e_{p'}$	-	86.01	85.23

Table 3: Parsing performance (LAS) comparison on the dev data for the four joint methods.

	PTB	CoNLL09	CTB7
w/o hetero			
Share-Loose	93.95	86.28	85.56
Share-Tight	93.93	86.17	85.56
Stack-Discrete	93.86	**86.35**	85.49
Stack-Hidden	**94.09**	86.26	**85.79**
w/ hetero			
Share-Loose	-	86.30	85.57
Share-Tight	-	86.62	85.86
Stack-Discrete	-	86.46	85.85
Stack-Hidden	-	**86.69**	**85.88**

4.1 Experimental Settings

Data. We conduct experiments on the English Penn Treebank (PTB), the Chinese dataset at the CoNLL-2009 shared task (CoNLL09) (Hajič et al., 2009), and the larger-scale Chinese Penn Treebank 7 (CTB7). For PTB, we adopt the same settings such as the data split and Stanford dependencies of Chen and Manning (2014). For CoNLL09 and CTB7, we follow the official settings.

We use the Stanford Parser v3.0 to obtain Stanford dependencies for CTB7. For Chinese, besides the homogeneous POS tags, we also incorporate the large-scale People Daily corpus of Peking University (PKU) as heterogeneous POS tagging data. Table 1 shows the statistics.

Evaluation metrics. We use POS tagging accuracy (TA), and unlabeled attachment score (UAS) and labeled attachment scores (LAS) for dependency parsing. For UAS and LAS computation, We follow Dozat and Manning (2017) and ignore all punctuation marks for PTB. We adopt Dan Bikel’s randomized parsing evaluation comparator for significance test.

Hyper-parameters. We follow most hyper-parameter settings of Dozat and Manning (2017) for all our models. For CHARLSTM word representations, we set the dimension of the character embeddings to 50, and the dimension of CHARLSTM outputs to 100.

We train each model for at most 1,000 iterations, and stop training if the peak performance on the dev data does not increase in 100 (50 for models with BERT) consecutive iterations.

Use of BERT. The recently proposed contextualized word representations, such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), has been shown extremely useful for a large range of NLP tasks. We would like to investigate whether POS tagging is helpful for stronger parsers enhanced by BERT. We adopt the BERT-base model (cased for English). We use the word representations from BERT, denoted as r_{bert}, as extra inputs via concatenation, i.e., $x_i \oplus r_{bert}$. During training, we allow the model to fine-tune the BERT parameters, which we find leads to better performance than freezing BERT parameters.

To fuse useful knowledge in different self-attention layers, we compute the weighted sum of word representations of all 12 layers as r_{bert}. Since BERT treats the input sentences as subword (English) or character (Chinese) sequences, we use the averaged representations of contained subwords/characters as word representations, which is slightly superior to previous practice of using the first or last piece.

During training, we adopt two useful strategies to avoid over-fitting (Clark et al., 2018; Kondratyuk, 2019). First, we keep the masking operation for the BERT encoder. We replace the input pieces (subwords/characters) with a special token [MASK] with the probability of 0.2. Second, we randomly discard self-attention layers with the probability of 0.1 when computing r_{bert} via weighted sum.

https://nlp.stanford.edu/software/stanford-dependencies.shtml
https://github.com/huggingface/transformers
4.2 Results on the Dev Data

Results of the pipeline framework. Table 2 shows the influence of using homogeneous and heterogeneous POS tags in the pipeline framework. More results are also presented to understand the contributions of each of the four components in the input layer, as shown in Figure 3. The homogeneous tagging accuracy is 97.58, 96.59, 96.72, 97.85, on the dev data of PTB, CoNLL09, and CTB7, and PKU, respectively. We perform 5-fold jack-knifing to obtain the automatic homogeneous POS tags on the training data to avoid closed testing, and use the PKU-tagger to produce heterogeneous POS tags for sentences of CoNLL09 and CTB7.

The results of using only one component clearly show that lexical information (i.e., e_w and e_c) is most crucial for parsing, and only using POS tag embeddings leads to very large accuracy drop.

When using two components at the same time, using CHARLSTM word representations (e_c) is slightly yet consistently better than using POS tag embeddings (e_p), both substantially outperforming the model using only word embeddings (e_w) by more than 0.5 on all three datasets.

Moreover, using three components leads to slight improvement on both CoNLL09 and CTB7, but hurts performance on PTB. Further using heterogeneous tag embeddings slightly degrades the performance.

All those results indicate that under the pipeline framework, POS tags become unnecessary and can be well replaced by the CHARLSTM word representations. We believe the reasons are two-fold. First, CHARLSTM can effectively capture morphological inflections by looking at lemma/prefix/suffix, and thus plays a similar role as POS tags in terms of alleviating the data sparseness problem of words. Second, the error propagation issue makes predicted POS tags less reliable.

Results of the joint methods. Table 3 presents the results of the four joint tagging and parsing methods without or with heterogeneous POS tagging.

When using only homogeneous POS tagging, we find that the performance gaps between different joint methods are very small. The best joint methods outperform the basic model by 0.1, 0.3, and 0.6 respectively.

When using both homogeneous and heterogeneous tagging, we can see that the overall performance is further improved by large margin. The best Stack-Hidden method outperforms the basic model by 0.6 on CoNLL09 and 0.7 on CTB7, showing that heterogeneous labeled data can inject useful knowledge into the model.

Overall, we can see that the Stack-Hidden method is more stable and superior compared with the other three methods, and is adopted for the following experiments and analysis.

4.3 Final Results on the Test Data

Table 4 shows the results on the test data. For the scenario of not using BERT, the pipeline method using homogeneous POS tags is slightly yet consistently inferior to the basic model. The joint Stack-Hidden method using only homogeneous POS tags significantly outperforms the basic method by 0.2 ($p < 0.005$), 0.4 ($p < 0.0005$), and 0.5 ($p < 0.0005$) in LAS on the three datasets respectively. Utilizing heterogeneous POS tags on Chinese further boosts parsing performance, leading to large overall improvements of 0.9 ($p < 0.0001$) on both datasets.

When using BERT, parsing accuracy of the basic method increases by very large margin. Compared with the stronger baseline, the improvement introduced by POS tagging becomes smaller. Overall, using both homogeneous and heterogeneous POS tagging, the joint Stack-Hidden method significantly outperforms the basic method by 0.3 ($p < 0.005$) on both CoNLL09 and CTB7.

For POS tagging, the trend of performance change is similar. First, the joint method can also improve tagging accuracy, especially when with heterogeneous POS tagging. Using Bert can substantially improve TA on both Chinese datasets. However, it is surprising to see a slight decrease in TA when using BERT, which is possibly due to over-fitting considering the TA is already very high on English.

We also list the results of recent previous works. We can see that our final joint models achieve new state-of-the-art parsing accuracy on PTB and CoNLL09 w/ or w/o BERT.
Table 4: Final results on the test data.

Method	PTB		CoNLL09	CoNLL09	CTB7				
	TA	UAS	LAS	TA	UAS	LAS	TA	UAS	LAS
w/o BERT									
Andor et al. (2016)	97.44	94.61	92.79	-	84.72	80.85	-	-	-
Dozat and Manning (2017)	97.3	95.74	94.08	-	88.90	85.38	-	-	-
Ji et al. (2019)	97.3	95.97	94.31	-	-	-	-	-	-
Li et al. (2019)	97.3	95.93	94.19	-	88.77	85.58	-	-	-
Basic (ew ⊕ ec)	97.50	95.97	94.34	96.42	89.12	86.00	96.48	88.54	85.34
Pipeline (ew ⊕ ec ⊕ ep)	97.50	95.88	94.27	96.42	89.12	85.98	96.48	88.42	85.28
Joint Stack-Hidden	97.91	96.13	94.53	96.55	89.46	86.44	96.62	88.86	85.88
Joint Stack-Hidden w/ hetero	-	96.56	88.85	96.71	89.21	86.22	-	-	-
w/ BERT									
Li et al. (2019)	-	96.67	95.03	-	92.24	89.29	-	-	-
Basic (ew ⊕ ec)	97.42	96.85	95.14	97.29	92.21	89.42	97.22	91.66	88.75
Joint Stack-Hidden	97.57	96.85	95.25	97.36	92.44	89.68	97.32	91.67	88.84
Joint Stack-Hidden w/ hetero	-	-	-	97.39	92.46	89.76	97.40	91.81	89.04

4.4 Detailed Analysis

In the following, we conduct detailed analysis on the CoNLL09 test data, in order to understand or gain more insights on the interactions and mutual influence between POS tagging and dependency parsing. For the joint method, we adopt the Stack-Hidden model with both homogeneous and heterogeneous POS tagging without using BERT, to jointly produce automatic POS tags and parse trees. For the pipeline method, we use the two basic tagging and parsing models separately to produce automatic results.

Correlation of performance changes between tagging and parsing. Overall, the joint method outperforms the pipeline method by 0.2 in TA, and 0.7/0.9 in UAS/LAS, as shown in Table 4. To gain more insights, we categorize all words according to their gold-standard POS tags and compare the accuracy changes for each set. Figure 5 shows the most frequent tags. We can see that there is clear positive correlation of absolute performance changes between tagging and parsing. For instance, as the most frequent tags NN and VV, their tagging accuracy increases by 0.2 and 0.7, and parsing accuracy increases by 0.7 and 1.4, respectively. The most notable exception is NR with opposite changes in tagging and parsing accuracy (-0.6 vs. +1.3), which can be explained from two aspects. First, we find that most of NR mistakes are due to the \{NR, NN\} ambiguous pair, which is syntax-insensitive and thus has very small impact on parsing decisions. Second, the joint Stack-Hidden model may be more robust to tagging errors.

Overall, we conclude that tagging and parsing performance is highly correlated due to the close relationship between the two tasks.

Influence of tagging errors on parsing. In the joint Stack-Hidden method, the hidden representations from the tagging encoder is fed into the parsing encoder as extra inputs. We would like to understand how tagging decisions influence parsing. Overall, UAS/LAS are 90.42/88.38 for words getting correct POS tags, whereas 73.40/42.59 for wrongly tagged words. We can observe dramatic drop of 17.0/45.8, indicating that POS tags has much larger influence on LAS than UAS.

Looking deeper into this issue, Table 5 shows the parsing accuracy for words of different POS tagging patterns. A tagging pattern \(X \rightarrow Y\) represents the set of words whose correct tag is \(X\) and are tagged as \(Y\).

We can see that higher parsing accuracy are usually achieved by correct tagging patterns \(X \rightarrow X\) than wrong pattern \(X \rightarrow NOT-X\), except \(DEC \rightarrow DEG\) in UAS.

The tagging ambiguities can be classified into three types. First, the syntax-sensitive ambiguous pairs such as \{NN, VV\} and \{VV, AD\} lead to large performance decrease in both UAS and LAS if wrongly

4.4 Detailed Analysis

In the following, we conduct detailed analysis on the CoNLL09 test data, in order to understand or gain more insights on the interactions and mutual influence between POS tagging and dependency parsing. For the joint method, we adopt the Stack-Hidden model with both homogeneous and heterogeneous POS tagging without using BERT, to jointly produce automatic POS tags and parse trees. For the pipeline method, we use the two basic tagging and parsing models separately to produce automatic results.

Correlation of performance changes between tagging and parsing. Overall, the joint method outperforms the pipeline method by 0.2 in TA, and 0.7/0.9 in UAS/LAS, as shown in Table 4. To gain more insights, we categorize all words according to their gold-standard POS tags and compare the accuracy changes for each set. Figure 5 shows the most frequent tags. We can see that there is clear positive correlation of absolute performance changes between tagging and parsing. For instance, as the most frequent tags NN and VV, their tagging accuracy increases by 0.2 and 0.7, and parsing accuracy increases by 0.7 and 1.4, respectively. The most notable exception is NR with opposite changes in tagging and parsing accuracy (-0.6 vs. +1.3), which can be explained from two aspects. First, we find that most of NR mistakes are due to the \{NR, NN\} ambiguous pair, which is syntax-insensitive and thus has very small impact on parsing decisions. Second, the joint Stack-Hidden model may be more robust to tagging errors.

Overall, we conclude that tagging and parsing performance is highly correlated due to the close relationship between the two tasks.

Influence of tagging errors on parsing. In the joint Stack-Hidden method, the hidden representations from the tagging encoder is fed into the parsing encoder as extra inputs. We would like to understand how tagging decisions influence parsing. Overall, UAS/LAS are 90.42/88.38 for words getting correct POS tags, whereas 73.40/42.59 for wrongly tagged words. We can observe dramatic drop of 17.0/45.8, indicating that POS tags has much larger influence on LAS than UAS.

Looking deeper into this issue, Table 5 shows the parsing accuracy for words of different POS tagging patterns. A tagging pattern \(X \rightarrow Y\) represents the set of words whose correct tag is \(X\) and are tagged as \(Y\).

We can see that higher parsing accuracy are usually achieved by correct tagging patterns \(X \rightarrow X\) than wrong pattern \(X \rightarrow NOT-X\), except \(DEC \rightarrow DEG\) in UAS.

The tagging ambiguities can be classified into three types. First, the syntax-sensitive ambiguous pairs such as \{NN, VV\} and \{VV, AD\} lead to large performance decrease in both UAS and LAS if wrongly
Changes of tagging accuracy and parsing accuracy (LAS) on the CoNLL09 test set for words of different POS tags.

Table 5: The impact of specific POS tagging error patterns on parsing.

POS1 → POS2	UAS	LAS	POS1 → POS2	UAS	LAS
NN → NN	91.73	89.69	NR → NR	91.73	86.96
→ VV	67.25	44.98	→ NN	86.39	83.67
→ NR	90.43	86.96	→ JJ	95.40	94.33
→ JJ	91.96	20.54	→ NN	92.82	14.92
VV → VV	85.92	84.12	DEG → DEG	96.75	95.91
→ NN	65.60	40.07	→ DEC	92.06	26.56
→ VA	84.75	83.05	→ DEC	94.28	92.39
→ AD	55.32	25.53	→ DEG	96.88	22.22

5 Related Works

Previous studies (McDonald et al., 2011; Lei et al., 2014) show POS tags are indispensable ingredients for composing different features in the traditional pre-DL dependency parsers (Koo and Collins, 2010; Zhang and Nivre, 2011). Meanwhile, Li et al. (2011) show that the error propagation problem introduced by predicted POS tags degrades parsing accuracy by about 6 (UAS) on different Chinese datasets. Therefore, researchers propose to jointly model the POS tagging and dependency tasks in the graph-based (Li et al., 2011) and transition-based (Hatori et al., 2011) frameworks, leading to promising results. The key challenge is to define scoring functions on the joint results, and design effective search algorithms to determine optimal joint answers in the enlarged search space. Furthermore, joint models of word segmentation, POS tagging, and parsing are also proposed (Hatori et al., 2012).

In the DL era, joint modeling of multiple related tasks becomes much easier under the MTL framework (Collobert and Weston, 2008). In fact, MTL has become an extensively used and powerful technique for many problems. The basic idea is sharing the encoder part while using separate decoders for different tasks. The major advantages of employing MTL are two-fold, i.e., 1) exploiting the correlation and mutual helpfulness among related tasks, and 2) making direct use of all (usually non-overlapping) labeled tagged. Second, the syntax-insensitive ambiguous pairs such as \{NN, NR\} and \{VV, VA\} have very small influence on parsing accuracy. Finally, some ambiguous pairs only greatly influence LAS but have little effect on UAS, such as \{NN, JJ\} and \{DEC, DEG\}.
data of different tasks. The Share-Light and Share-Tight joint methods are both typical MTL frameworks, and the main difference lies in the amount of shared parameters. Actually, there are still many other variants due to the flexibility of MTL. For example, Straka (2018) stacks task-specific private BiLSTMs over shared BiLSTMs for joint tagging and dependency parsing. Based on the current results, we expect that such variants may achieve very similar performance.

The Stack-Discrete method investigated in this work is borrowed from Nguyen and Verspoor (2018), who first propose to jointly model POS tagging and dependency parsing by 1) stacking two BiLSTM encoders and 2) using the embeddings of online predicted 1-best POS tags as extra inputs of the BiLSTM encoder of the parsing component. They implement this idea based on the BIST parser (Kiperwasser and Goldberg, 2016) and report large improvement. In this work, we use the Stack-Discrete joint method as a representative approach and try to make thorough investigations based on the state-of-the-art biaffine parser.

The Stack-Hidden joint method is similar to the stack-propagation method of Zhang and Weiss (2016). Their basic idea is to use the hidden outputs of the POS tagging components as extra inputs of the parsing components, forming a stacked structure. During training, parsing loss is directly propagated into the full tagging component whereas tagging loss only indirectly influences the parsing components via their shared parts. Their pioneer work employ a simple feed-forward network for both tagging and parsing (Chen and Manning, 2014), and only achieves an LAS of 91.41 on PTB. Another inspiring work related with the Stack-Hidden method is Hashimoto et al. (2017), who propose to jointly train many tasks of different complexity in a very deep and cascaded network architecture, where higher levels are used for more complex tasks.

6 Conclusions

Unlike the findings in traditional pre-DL dependency parsing, recent studies indicate that POS tagging becomes much less important and can be replaced by CHARLSTM word representations in neural dependency parsers. However, there lacks a full and systematic investigation on this interesting issue, from both empirical and linguistic perspectives. In this paper, we try to investigate the role of POS tagging for neural dependency parsing in both pipeline and joint frameworks. We design and compare four typical joint methods based on the state-of-the-art biaffine parser. We try to accommodate both homogeneous and heterogeneous POS tagging, considering it is much cheaper to annotate POS tags than parse trees and there exist large-scale heterogeneous POS tag datasets for Chinese. Based on the experiments and analysis on three English and Chinese benchmark datasets, we can draw the following conclusions.

• For the pipeline method, both homogeneous and heterogeneous POS tags provide little help to the basic parser with both word embeddings and CHARLSTM word representations, due to error propagation and the overlapping role in reducing data sparseness.

• The four joint methods investigated in this work perform better than the pipeline method. Among them, the Stack-Hidden joint method is more stable and superior compared with the other three, leading to significant improvement over the basic model on all datasets.

• POS tagging is still helpful for dependency parsing under the joint framework even if the parser is enhanced with BERT, especially when with heterogeneous POS tagging.

• Detailed analysis shows that POS tagging and dependency parsing are two closely correlated tasks. In particular, If the joint model fails to resolve syntax-sensitive POS tagging ambiguities, it usually makes wrong parsing decisions as well.

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In Proceedings of ACL.
Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural networks. In Proceedings of EMNLP.

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc Le. 2018. Semi-supervised sequence modeling with cross-view training. In Proceedings of EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency parsing. In Proceedings of ICLR.

Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-based neural dependency parser at the CoNLL 2017 shared task. In Proceedings of CoNLL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based dependency parsing with stack long short-term memory. In Proceedings of ACL.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antonia Martí, Lluís Marquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of CoNLL.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. 2017. A joint many-task model: Growing a neural network for multiple NLP tasks. In Proceedings of EMNLP.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2011. Incremental joint POS tagging and dependency parsing in Chinese. In Proceedings of IJCNLP.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2012. Incremental joint approach to word segmentation, POS tagging, and dependency parsing in Chinese. In Proceedings of ACL.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based dependency parsing with graph neural networks. In Proceedings of ACL.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. Transactions of ACL.

Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive encoder. In Proceedings of ACL.

Daniel Kondratyuk. 2019. 75 languages, 1 model: Parsing universal dependencies universally. ArXiv.

Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of NAACL.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-rank tensors for scoring dependency structures. In Proceedings of ACL.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and Haizhou Li. 2011. Joint models for Chinese POS tagging and dependency parsing. In Proceedings of EMNLP.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng Li, and Luo Si. 2019. Self-attentive biaffine dependency parsing. In Proceedings of IJCAI.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011. Multi-source transfer of delexicalized dependency parsers. In Proceedings of EMNLP.

Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint POS tagging and dependency parsing. In Proceedings of CoNLL.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal dependencies v1: A multilingual treebank collection. In Proceedings of LREC.
Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of NAACL.

Stephen Roller, Douwe Kiela, and Maximilian Nickel. 2018. Hearst patterns revisited: Automatic hypernym detection from large text corpora. In Proceedings of ACL.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of CoNLL.

Daniel Zeman, Jan Hajíč, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim Nivre, and Slav Petrov. 2018. CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies. In Proceedings of CoNLL.

Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In Proceedings of ACL.

Yuan Zhang and David Weiss. 2016. Stack-propagation: Improved representation learning for syntax. In Proceedings of ACL.

Meishan Zhang, Zhenghua Li, Guohong Fu, and Min Zhang. 2019. Syntax-enhanced neural machine translation with syntax-aware word representations. In Proceedings of NAACL.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen. 2015. A neural probabilistic structured-prediction model for transition-based dependency parsing. In Proceedings of ACL.