Thermally Stratified Darcy Forchheimer Flow on a Moving Thin Needle with Homogeneous Heterogeneous Reactions and Non-Uniform Heat Source/Sink

Muhammad Ramzan 1,2,*, Nila Shaheen 1, Seifedine Kadry 3, Yeu Ratha 4 and Yunyoung Nam 5,*

1 Department of Computer Science, Bahria University, Islamabad 44000, Pakistan; shiningstartechno@gmail.com
2 Department of Mechanical Engineering, Sejong University, Seoul 143-747, Korea
3 Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut 11072809, Lebanon; s.kadry@bau.edu.lb
4 Department of ICT Convergence Rehabilitation Engineering, Soonchunhyang University, Asan 31538, Korea; yeuratha@gmail.com
5 Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Korea
* Correspondence: mramzan@bahria.edu.pk (M.R.); ynam@sch.ac.kr (Y.N.)

Received: 10 December 2019; Accepted: 5 January 2020; Published: 7 January 2020

Abstract: This study discusses the flow of viscous fluid past a moving thin needle in a Darcy–Forchheimer permeable media. The novelty of the envisioned mathematical model is enhanced by adding the effects of a non-uniform source/sink amalgamated with homogeneous–heterogeneous (hh) reactions. The MATLAB bvp4c function is employed to solve the non-linear ordinary differential equations (ODEs), which are obtained via similarity transformations. The outcomes of numerous parameters are explicitly discussed graphically. The drag force coefficient and heat transfer rate are considered and discussed accordingly. It is comprehended that higher estimates of variable source/sink boost the temperature profile.

Keywords: Darcy–Forchheimer flow; homogeneous-heterogeneous reactions; thermal stratification; non-uniform heat source/sink

1. Introduction

The phenomenon of stratification is the result of concentrations and temperature variations or fluid having different densities. Stratification is an essential phenomenon in terms of heat and mass transfer. Thermal stratification in reservoirs such as oceans, rivers, groundwater helps in reducing the amalgamation of water and oxygen. Stratification plays a major role in keeping a balance between hydrogen and oxygen to rationalize the breeding of species. Ramzan et al. [1] discussed double stratification on an inclined stretched cylinder with a chemical reaction on a Jeffery magnetic nanofluid. Hayat et al. [2] investigated the results of thermal stratification with Cattaneo–Christov (CC) heat flux on a stretching flow. Mukhopadhyay et al. [3] examined a mixed convection flow with the impact of thermal stratification on a stretching cylinder. Eichhorn et al. [4] inspected natural convection on cylinders and isothermal spheres immersed in a stratified fluid. Kumar et al. [5] analyzed the thermal stratification effect in a fluid that was saturated in a porous enclosure with free convection. Many scholars have shown a huge interest in stratification, as cited in [6–12].

Chemical reactions have extensive applications and are categorized as homogeneous–heterogeneous (hh) reactions. Some reactions progress slowly, so a catalyst plays a key role in enhancing the rate of a chemical reaction. The relation shared by hh reactions is somewhat
perplexing. As the rate of fabrication and incineration of reactant species fluctuates with time. Chemical reactions have a wide range of applications such as the formation of fog, the assembly of ceramics, polymers, crop damage through freezing, and the orchards of fruit trees. There has been extensive research that has discussed hh reactions, including that by Ramzan et al. [13], who examined the influence of hh reactions with CC heat flux on an magneto hydro dynamic (MHD) 3D Maxwell fluid with convective boundary conditions. Lu et al. [14] reported CC heat flux on the unsteady flow of a nanofluid with hh reactions. Suleman et al. [15] numerically studied hh reactions past a stretched cylinder with Newtonian heating and their impact on a silver–water nanofluid. More research on hh reactions is mentioned in [14, 16–22].

A fluid flow through a porous medium is of extreme significance due to its appearance in the movement of water in reservoirs, the processing of mines and minerals, agriculture, the petroleum industry, the production of oil and gas, the insulation of thermal processes, and cooling reactors. Enormous problems involving porous mediums have been described with classical Darcy’s theory [23]. Darcy’s expression is only applicable to situations of small velocity and low porosity, as it lacks the capability of dealing with inertia and boundary effects at a high flow rate. Flows with a Reynold number (> 1) are non-linear due to their higher velocities. The impact of inertia and boundary layer cannot be neglected, as a porous medium mostly involves relatively higher velocities. Forchheimer [24] added the term of square velocity in order to make Darcy’s law more conveniently applicable. Muskat [25] later recognized this term as Forchheimer’s term. Majeed et al. [26] examined a numerical study of the Darcy–Forchheimer (DF) flow with slip condition of the momentum of order two and chemically reactive species. Ganesh et al. [27] scrutinized a thermally stratified porous medium on a stretching/shrinking surface with a DF flow and a second-order slip on a hydromagnetic nanofluid. Abbasi et al. [28] detected a DF flow with a CC heat flux in a viscoelastic fluid with a porous medium. Recent research works involving the Darcy flow include [29,30].

In many physical problems, variable source/sink plays an important role in controlling the transfer of heat. Gireesha et al. [31] perceived the transfer of heat and mass on a chemically reacting Casson fluid with variable heat source/sink on an occupied MHD boundary layer. Saravanti et al. [32] discussed non-linear thermal radiation on a nanofluid with a slip condition on a stretching vertical cylinder involving a variable heat source/sink. Mabood et al. [33] presented Soret effects and non-Darcy convective flows with radiation on an MHD micropolar fluid over a stretchable surface with a variable heat source/sink. Studies involving variable sources/sinks were carried out by researchers such as Sandeep et al. [34] and Reddy et al. [35].

Despite all the aforementioned research, the impacts of a Darcy–Forchheimer flow, when amalgamated with thermal stratification past a thin needle, have been barely described. In this paper, the novelty of the envisaged mathematical model is boosted with variable source/sink effects combined with homogeneous–heterogeneous reactions. The aforementioned model is numerically handled. The impression of pertinent parameters is graphically illustrated with requisite deliberations.

2. Mathematical Formulation

Consider a steady, two dimensional, laminar, incompressible fluids over a thin moving needle. The influence of variable heat source/sink and hh reactions should also be considered. The geometry of the problem and its cylindrical coordinates \((x, r)\) are demonstrated in Figure 1. The axial direction \(x\) is parallel to the moving thin needle, and radial direction \(r\) is in the direction of the flow that is normal to it. The width of the needle is smaller than the thickness of the boundary layer formed over it. The impact of the curvature in the transverse direction is of utmost prominence, as the anticipation of the needle is thin. The pressure variation is unkempt along the surface of the needle [36–38].
Figure 1. Flow model.

Let \(r = R(x) = \left(\frac{\nu r_{nx}}{U} \right)^{0.5} \) stipulate the radius of the needle. Following Chaudhary and Merkin [39,40], the cubic autocatalysis homogeneous reaction is stated as:

\[
A^* + 2B^* \rightarrow 3B^*, \text{rate} = k_c a^* b^*,
\]

and on a catalyst surface, the heterogeneous reaction is indicated as:

\[
A^* \rightarrow B^*, \text{rate} = k_i a^*,
\]

where \(A^*, B^* \) are two chemical species with \(k_c, k_i \) as the respective concentrations of these chemical species.

Keeping in view the prior assumptions, the non-linear partial differential equations (PDEs) that govern the problem are as follows [2,41–43]:

\[
\frac{\partial (ru)}{\partial x} + \frac{\partial (rv)}{\partial r} = 0,
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} = \frac{v}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) - Fu^2,
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial r} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{\rho C_p} h^* \]

\[
u \frac{\partial a^*}{\partial x} + v \frac{\partial a^*}{\partial r} = D_a \left(\frac{\partial^2 a^*}{\partial r^2} + \frac{1}{r} \frac{\partial a^*}{\partial r} \right) - k_c a^* b^{2*},
\]

\[
u \frac{\partial b^*}{\partial x} + v \frac{\partial b^*}{\partial r} = D_b \left(\frac{\partial^2 b^*}{\partial r^2} + \frac{1}{r} \frac{\partial b^*}{\partial r} \right) + k_c a^* b^{2*},
\]

The suitable associated boundary conditions [11,44–46] are:

\[
u = u_w, v = 0, T = T_w = T_0 + ex, D_a \frac{\partial a^*}{\partial r} = k_c a^*, D_b \frac{\partial b^*}{\partial r} = -k_c a^*, \text{ at } r = R(x)
\]

\[
u \rightarrow u_w, T \rightarrow T_w = T_0 + fx, a^* \rightarrow a_0, b^* \rightarrow 0 \text{ as } r \rightarrow \infty.
\]

The variable heat source/sink \(h^* \) [47] is articulated as:
3. Similarity Transformations

In order to obtain ODEs for Equations (3)–(7), the following non dimensional parameters are used [48,49]:

\[
\psi = \nu x f(\zeta), \quad \zeta = \frac{U r^2}{v x}, \quad \theta(\zeta) = \frac{T - T_0}{T_w - T_\infty}, \quad g(\zeta) = \frac{a^*}{a_0}, \quad m(\zeta) = \frac{b^*}{a_0}.
\]

Equation (3) is satisfied by utilizing Equations (8) and (9). Equations (4)–(7) are converted into the following ODEs:

\[
2 f'' + 2 \zeta f'' + f f'' - F_r f''^2 = 0, \quad (11)
\]

\[
4 \theta' + 4 \zeta \theta'' + 2 Pr (f \theta' - f' \theta - f' S) + \lambda (C f''(\zeta) + D \theta)(\zeta) = 0, \quad (12)
\]

\[
\frac{1}{Sc} (2g' + \zeta g'') + fg'' - Kgm^2 = 0, \quad (13)
\]

\[
\frac{\beta}{Sc} (2m' + \zeta m'') + fm'' + Kgm^2 = 0. \quad (14)
\]

The non-dimensional form of these parameters is [50,51]:

\[
F_r = \frac{C_{pa}x}{\sqrt{k}}, \quad Pr = \frac{\nu}{\alpha}, \quad S = \frac{f}{S}, \quad Sc = \frac{v}{D_a}, \quad \beta = \frac{D_B}{D_A}, \quad K = \frac{k_0 a^2}{a_0}, \quad K_s = \frac{k_s}{D_a} \sqrt{\frac{v_x}{U_0}}. \quad (15)
\]

The modified boundary conditions are given as:

\[
f(\zeta) = \frac{\lambda}{2} \zeta, \quad f'(\zeta) = \frac{\lambda}{2}, \quad \theta(\zeta) = 1 - S, \quad g'(\zeta) = K_s g(\zeta), \quad \beta m'(n) = -K_s g(\zeta), \quad \text{as} \quad \zeta = n
\]

\[
f'(\zeta) \rightarrow \frac{1 - \lambda}{2}, \quad \theta(\zeta) \rightarrow 0, \quad g(\zeta) \rightarrow 1, \quad m(\zeta) \rightarrow 0 \quad \text{as} \quad \zeta \rightarrow \infty \quad (16)
\]

Since \(U = u_w + u_\infty \neq 0 \), \(\lambda = 0 \) and corresponds to a needle that behaves to be static in a flowing nanofluid. On the other hand, \(\lambda = 1 \) indicates the approach of dynamic needle in a deskbound ambient fluid. When \(\lambda \) varies between zero and one, i.e., \(0 < \lambda < 1 \), the movement of the needle is similar to the direction of fluid. For \(\lambda < 0 \), the needle moves toward the negative \(x \)-axis, and the free stream velocity moves towards positive \(x \)-axis; for \(\lambda > 1 \), it is vice-versa.

For simplicity, a comparison can be drawn between \(\lambda^* \) and \(\beta^* \) in terms of size of diffusion coefficients. Thus, the diffusion coefficients \(D_A \) and \(D_B \) are equal [52], i.e., \(\beta = 1 \).

\[
g(\zeta) + m(\zeta) = 1. \quad (17)
\]

Now, Equations (13) and (14) yield:

\[
\frac{1}{Sc} (2\zeta g'' + 2g'') + fg'' - Kgm^2 = 0, \quad (18)
\]

with the boundary conditions:

\[
g'(\zeta) = K_s g(\zeta), \quad \text{as} \quad \zeta = n
\]
The physical quantity of noteworthy attention are the drag force coefficient C_f and the rate of heat transfer Nu_x, which are specified as follows:

$$
C_f = \frac{\tau_w}{\rho U_0^2}, \quad \tau_w = \frac{\mu}{r=r_{B(x)}} \frac{\partial u}{\partial r},
$$

$$
Nu_x = \frac{xq_w}{k(T_w-T_\infty)}, \quad q_w = -k \frac{\partial T}{\partial r} \bigg|_{r=r_{B(x)}}.
$$

By using Equation (8), Equations (20) and (21) can be transmuted as:

$$
C_f \text{Re}^{1/2} = 4n^{1/2} f^{'''}(n), \quad Nu_x \text{Re}^{1/2} = -2n^{1/2} \theta'(n).
$$

4. Numerical Methodology

The non-linear ODEs (11), (12), and (18), in combination with ODEs (16) and (19), are solved by employing MATLAB bvp4c. The following numerical code converts the problem into first order ODEs.

$$
\begin{align*}
y_1 &= f(\zeta) \\
y_2 &= f'(\zeta) \\
y_3 &= f''(\zeta) \\
y_4 &= \theta(\zeta) \\
y_5 &= \theta'(\zeta) \\
y_6 &= g(\zeta) \\
y_7 &= g'(\zeta) \\
y_8 &= g''(\zeta)
\end{align*}
$$

and the boundary conditions take the form:

$$
\begin{align*}
y_1(0) &= \frac{1}{2n}, \quad y_2(0) = \frac{1}{2}, \quad y_4(0) = 1 - S, \quad y_7(0) = K_s y_6(0), \\
y_2(\infty) &\to \frac{1-\frac{\lambda}{2}}{2}, \quad y_4(\infty) \to 0, \quad y_6(\infty) \to 1.
\end{align*}
$$

5. Graphical Analysis

This section exhibits the behavior of innumerable parameters on velocity $f'(\zeta)$, temperature $\theta(\zeta)$ and concentration $g(\zeta)$ profile.
Figure 2 illustrates the performance on $f'(\zeta)$ for the velocity ratio parameter λ. In our models, the velocity profile shows an increasing behavior near the surface of the needle for $0 \leq \lambda \leq 0.5$; however, for $\lambda > 0.5$, when it’s far away from the needle surface, a decreasing nature is observed. Figure 3 displays the result on $f'(\zeta)$ for inertia coefficient F_r. This figure illustrates that the inertial forces increase with growth in F_r. A downfall of $f'(\zeta)$ appears as diminution of thickness of the boundary layer for different values of F_r that oppose the fluid motion. The influence of λ on $\theta(\zeta)$ is highlighted in Figure 4. An up rise for increasing values of λ as heat intensely intrudes inside the fluid can be seen for $\theta(\zeta)$. Figure 5 describes the impact of the Prandtl number Pr on $\theta(\zeta)$. Pr is the ratio of momentum to thermal diffusivity, so, as values of Pr increase, the momentum diffusion and thermal diffusion drop. The outcome of larger values of Pr results in the diminution of $\theta(\zeta)$ and the thermal boundary layer. Figure 6a,b illustrates the result of non-uniform source parameter on $\theta(\zeta)$. As $C > 0, D > 0$ corresponds to the internal heat source, an escalation can be analyzed for the strengthening the conduct of C, D for the thermal boundary layer. Higher values of C, D respond as heat generators, which are energy, and whose output is in the form of an increasing temperature profile $\theta(\zeta)$. In Figure 7a,b, $C < 0, D < 0$ behave as heat sinks that are the parameters that control the flow and transfer of heat. Additionally, decreasing values act as absorbers of heat for a non-uniform heat sink. This shows a reduction in the thickness of the boundary layer, and $\theta(\zeta)$ exhibits a downfall. The response of different values of the thermal stratification parameter S on the temperature profile $\theta(\zeta)$ can be noticed in Figure 8. It is noticed that the $\theta(\zeta)$ shows a deteriorating nature for larger values of S due to the difference between the surface temperature and the ambient temperature. Figures 9–11 provide analyses of homogeneous reaction strength K, heterogeneous reaction strength K_s, and the Schmidt number Sc. The outcome of K and K_s on the concentration profile $g(\zeta)$ is shown in Figures 9 and 10. As the homogeneous and heterogeneous reaction reactants are utilized such that the concentration profile decreases for higher values of K and K_s. An analysis of Sc is shown in Figure 11 for the concentration profile of $g(\zeta)$. As Sc is the ratio of momentum diffusion to mass diffusion, higher values of Sc boost momentum diffusivity and lower mass diffusivity. Due to this impact, escalation in the concentration profile $g(\zeta)$ is seen.
Figure 3. Effect of inertia coefficient (Fr) on $f' (\zeta)$.

Figure 4. Effect of λ on $\theta (\zeta)$.

Figure 5. Effect of the Prandtl number (Pr) on $\theta (\zeta)$.
(a) Effect of $C > 0$ on $\theta(\zeta)$.

(b) Effect of $D > 0$ on $\theta(\zeta)$.

Figure 6. Effect of $C > 0$ and $D > 0$ on $\theta(\zeta)$

(a) Effect of $C < 0$ on $\theta(\zeta)$

(b) Effect of $D < 0$ on $\theta(\zeta)$.

Figure 7. Effect of $C < 0$ and $D < 0$ on $\theta(\zeta)$

Figure 8. Effect of thermal stratification (S) on $\theta(\zeta)$.

Fr = 0.3, Pr = 2.0, $\lambda = 0.8$, $C = 0.1$, $S = 0.1$,
Sc = 0.5, $K = 0.2$, $K_s = 0.5$, $n = 0.1$
Figure 9. Effect of K on $g(\zeta)$.

Figure 10. Effect of K_s on $g(\zeta)$.

Figure 11. Effect of the Schmidt number (Sc) on $g(\zeta)$.

Figure 12 the drag force coefficient C_f is plotted against thermal stratification S and inertia coefficient Fr. An increasing behavior of C_f is seen for higher values of S. For higher values of Fr, the drag force coefficient C_f reduces. Figure 13 depicts the effect of Pr and S on the heat transfer rate Nu_x. It is noted that Nu_x is an increasing function of Pr. For escalating values of S, the heat transfer rate decreases. The graphical result of Nu_x versus Sc for varying K is shown in Figure 14.
It is observed that heat transfer rate increases for higher values of Sc, whereas Nu is a diminishing function of K_c.

Figure 12. Effect of S and Fr_r on $4n^{1/2} f' (n)$.

Figure 13. Effect of Pr and S on $-2n^{1/2} \theta (n)$.

Figure 14. Effect of K and Sc on $-2n^{1/2} \theta (n)$.

Table 1 depicts the numerically calculated values of $f''(n)$ for numerous estimates of n done by Ishak et al. [38] and Rida et al. [45], but in limiting cases. An outstanding harmony between the results is found. That also validates the current exploration results.
Table 1. Comparison of $f''(n)$ for varied estimates of n done by Ishaq et al. [38] and Rida et al. [45].

n	$f''(n)$ [38]	$f''(n)$ [45]	Present
0.10	01.2888	0.1288171	0.1288188
0.010	08.4924	08.4924360	08.4924389
0.0010	062.1637	062.163672	062.163677

6. Conclusions

In this paper, the impact of variable heat sources/sinks on a Darcy–Forchheimer fluid flow with an hh reaction and thermal stratification on a moving thin needle is examined. MATLAB bvp4c was used to solve the dimensionless equations governing the problem. The foremost findings of this study are as follows:

- Higher values of F_r result in the decline of velocity distribution as well as the thickness of the boundary layer.
- Increments of S and Pr diminish the thermal boundary layer and temperature field.
- The temperature field increases for non-uniform heat sources $C, D > 0$ as they respond to heat generators, while $C, D < 0$ signifies variable heat sinks that absorb heat and affirm the decline of $\theta(\xi)$ and boundary layer thickness.
- The concentration distribution is lessened with upgraded values of K and K_s that are the homogeneous and heterogeneous parameters,
- The concentration profile increases for larger estimates of the Schmidt number.

Author Contributions: Conceptualization, M.R.; methodology, N.S.; software, S.K.; validation, S.K. and Y.R.; formal analysis, N.S.; investigation, Y.N.; writing—original draft preparation, N.S.; writing—review and editing, Y.N.; supervision, M.R.; project administration, M.R.; funding acquisition, Y.N.

Acknowledgments: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03028309) and also supported by the Soonchunhyang University Research Fund.

Conflicts of Interest: The authors have no conflict of interest regarding this publication.

Nomenclature

u, v	Component of velocity along the axial and radial direction		
ν	Kinematic viscosity	Sc	Schmidt number
\n	Size of needle	$U = u_n + u_w$	Composite velocity
a^*, b^*	Concentration of chemical species	q_w	Heat flux at wall
ϵ = $\frac{\kappa_n - \kappa_h}{\kappa_h}$	Small parameter depends on the nature of fluid	K_s	Strength of heterogeneous reaction
k_c, k_s	Rate constants	u_w	Constant velocity of needle
Symbol	Definition	Unit	
--------	---	---------------	
T	Temperature of fluid		
T₀	Reference temperature	S	
Tₘ	Temperature away from the surface	β	
Tₘ₀	Constant wall temperature	λ = \frac{uₘ}{U}	
u	Stream function in terms of component	β	
C	heat sink/source w.r.t space	C_f	
D	heat sink/source w.r.t time	τₘ	
C, D > 0	Internal heat generation	F_r	
C, D < 0	Internal heat absorption	K	
A', B'	Chemical species	ψ	
Reₘ	Local Reynold number	α	

References

1. Ramzan, M.; Gul, H.; Chung, J.D. Double stratified radiative Jeffrey magneto nanofluid flow along an inclined stretch cylinder with chemical reaction and slip condition. *Eur. Phys. J. Plus* 2017, 132, 456.
2. Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Khan, M.I. Thermally stratified stretching flow with Cattaneo–Christov heat flux. *Int. J. Heat Mass Transf.* 2017, 106, 289–294.
3. Mukhopadhyay, S.; Ishak, A. Mixed convection flow along a stretching cylinder in a thermally stratified medium. *J. Appl. Math.* 2012, 2012, 491695.
4. Eichhorn, R.; Lienhard, J.H.; Chen, C-C. Natural convection from isothermal spheres and cylinders immersed in a stratified fluid. In *International Heat Transfer Conference Digital Library*; Begel House Inc.: Danbury, CT, USA, 1974.
5. Kumar, B.V.R.; Singh, P. Effect of thermal stratification on free convection in a fluid-saturated porous enclosure. *Numer. Heat Transf. Part A Appl.* 1998, 34, 343–356.
6. Ramzan, M.; Liaquet, A.; Kadry, S.; Yu, S.; Nam, Y.; Lu, D. Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux. *Coatings* 2019, 9, 849.
7. Paul, A.; Deka, R.K. Unsteady natural convection flow past an infinite cylinder with thermal and mass stratification. *Int. J. Eng. Math.* 2017, 2017, 8410691.
8. Ramzan, M.; Gul, H.; Kadry, S. Onset of Cattaneo-Christov Heat Flux and Thermal Stratification in Ethylene-Glycol Based Nanofluid Flow Containing Carbon Nanotubes in a Rotating Frame. *IEEE Access* 2019, 7, 146190–146197.
9. Ramzan, M.; Ullah, N.; Chung, J.D.; Lu, D.; Farooq, U. Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. *Sci. Rep.* 2017, 7, 12901.
10. Ramzan, M.; Bilal, M.; Chung, J.D. Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption. *Int. J. Mech. Sci.* 2017, 131, 317–324.
11. Hayat, T.; Hussain, T.; Shehzad, S.A.; Alsaedi, A. Thermal and concentration stratifications effects in radiative flow of Jeffrey fluid over a stretching sheet. *PLoS ONE* 2014, 9, e107858.
12. Ibrahim, W.; Makinde, O.D. The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. *Comput. Fluids* **2013**, *86*, 433–441.

13. Ramzan, M.; Bilal, M.; Chung, J.D. Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo-Christov heat flux and convective boundary condition. *J. Mol. Liq.* **2017**, *230*, 415–422.

14. Lu, D.; Li, Z.; Ramzan, M.; Shafee, A.; Chung, J.D. Unsteady squeezing carbon nanotubes-based nano-liquid flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. *Appl. Nanosci.* **2019**, *9*, 169–178.

15. Suleman, M.; Ramzan, M.; Ahmad, S.; Lu, D.; Muhammad, T.; Chung, J.D. A Numerical Simulation of Silver–Water Nanofluid Flow with Impacts of Newtonian Heating and Homogeneous–Heterogeneous Reactions Past a Nonlinear Stretched Cylinder. *Symmetry* **2019**, *11*, 295.

16. Ramzan, M.; Bilal, M.; Chung, J.D. Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo-Christov heat flux. *J. Mol. Liq.* **2016**, *223*, 1284–1290.

17. Suleman, M.; Ramzan, M.; Ahmad, S.; Lu, D. Numerical simulation for homogeneous–heterogeneous reactions and Newtonian heating in the silver-water nanofluid flow past a nonlinear stretched cylinder. *Phys. Scr.* **2019**, *94*, 085702.

18. Ramzan, M.; Shaheen, N. Thermally stratified Darcy–Forchheimer nanofluid flow comprising carbon nanotubes with effects of Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. *Phys. Scr.* **2019**, *95*, 015701.

19. Hayat, T.; Imtiaz, M.; Alsaedi, A.; Almezzal, S. On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. *J. Magn. Magn. Mater.* **2016**, *401*, 296–303.

20. Lu, D.; Ramzan, M.; Bilal, M.; Chung, J.D.; Farooq, U.; Tahir, S. On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction. *J. Braz. Soc. Mech. Sci. Eng.* **2018**, *40*, 387.

21. Lu, D.; Ramzan, M.; Ahmad, S.; Chung, J.D.; Farooq, U. A numerical treatment of MHD radiative flow of Micropolar nanofluid with homogeneous-heterogeneous reactions past a nonlinear stretched surface. *Sci. Rep.* **2018**, *8*, 12431.

22. Ramzan, M.; Bilal, M.; Chung, J.D. MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous–heterogeneous reactions and convective boundary condition—A numerical approach. *J. Mol. Liq.* **2017**, *225*, 856–862.

23. Hayat, T.; Ijaz Khan, M.; Shehzad, S.A.; Imran Khan, M.; Alsaedi, A. Numerical simulation of Darcy–Forchheimer flow of third grade liquid with Cattaneo–Christov heat flux model. *Math. Methods Appl. Sci.* **2018**, *41*, 4352–4359.

24. Forchheimer, P. Wasserbewegung durch boden. *Z. Ver. Deutsch Ing.* **1901**, *45*, 1782–1788.

25. Muskat, M. The flow of homogeneous fluids through porous media. *Soil Sci.* **1938**, *46*, 169.

26. Majeed, A.; Zeeshan, A.; Noori, F.M. Numerical study of Darcy-Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two. *AIP Adv.* **2019**, *9*, 045035.

27. Ganesh, N.V.; Hakeem, A.K.A.; Ganga, B. Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. *Ain Shams Eng. J.* **2016**, *9*, 939–951.

28. Abbasi, F.M.; Hayat, T.; Shehzad, S.A.; Alsaedi, A. Impact of Cattaneo-Christov heat flux on flow of two-types viscoelastic fluid in Darcy-Forchheimer porous medium. *Int. J. Numer. Methods Heat Fluid Flow* **2017**, *27*, 1955–1966.

29. Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z. Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier’s partial slip. *J. Phys. Commun.* **2018**, *2*, 110514.

30. Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M. Darcy-Forchheimer flow of Maxwell nanofluid with nonlinear thermal radiation and activation energy. *AIP Adv.* **2018**, *8*, 035102.

31. Gireesha, B.J.; Mahanthes, B.; Rashidi, M.M. MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink. *Int. J. Ind. Math.* **2015**, *7*, 247–260.

32. Sravanthi, C.S. Slip flow of nanofluid over a stretching vertical cylinder in the presence of non-linear thermal radiation and non-uniform heat source/sink. *Sci. Iran. Trans. B Mech. Eng.* **2018**, *25*, 2098–2110.
33. Mabood, F.; Ibrahim, S.M.; Rashidi, M.M.; Shadloo, M.S.; Lorenzini, G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. *Int. J. Heat Mass Transf.* 2016, 93, 674–682.

34. Sandeep, N.; Sulochana, C. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink. *Eng. Sci. Technol.* 2015, 18, 738–745.

35. Reddy, P.S.; Sreedevi, P.; Chamkha, A.J. MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. *Powder Technol.* 2017, 307, 46–55.

36. Lee, L.L. Boundary layer over a thin needle. *Phys. Fluids* 1967, 10, 820–822.

37. Chen, J.L.S.; Smith, T.N. Forced convection heat transfer from nonisothermal thin needles. *J. Heat Transf.* 1978, 100, 358–362.

38. Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow over a continuously moving thin needle in a parallel free stream. *Chin. Phys. Lett.* 2007, 24, 2895.

39. Chaudhary, M.A.; Merkin, J.H. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. *Fluid Dyn. Res.* 1995, 16, 311.

40. Chaudhary, M.A.; Merkin, J.H. Homogeneous-heterogeneous reactions in boundary-layer flow: Effects of loss of reactant. *Math. Comput. Modell.* 1996, 24, 21–28.

41. Das, K.; Chakraborty, T.; Kundu, P.K. Analytical exploration of a TiO2-nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink. *Eur. Phys. J. Plus* 2017, 132, 555.

42. Hayat, T.; Farooq, M.; Alsaedi, A. Homogeneous-heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating. *AIP Adv.* 2015, 5, 027130.

43. Raju, S.S.; Kumar, K.G.; Rahimi-Gorji, M.; Khan, I. Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. *Microsyst. Technol.* 2019, 25, 3399–3405.

44. Malik, R.; Khan, M. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder. *Results Phys.* 2018, 8, 64–70.

45. Ahmad, R.; Mustafa, M.; Hina, S. Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study. *Chin. J. Phys.* 2017, 55, 1264–1274.

46. Afridi, M.I.; Tlili, I.; Qasim, M.; Khan, I. Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. *Bound. Value Probl.* 2018, 2018, 148.

47. Mehmood, K.; Hussain, S.; Sagheer, M. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid. *AIP Adv.* 2016, 6, 065126.

48. Salleh, S.N.A.; Bachok, N.; Ariffin, N.M.; Ali, F.M. Numerical Analysis of Boundary Layer Flow Adjacent to a Thin Needle in Nanofluid with the Presence of Heat Source and Chemical Reaction. *Symmetry* 2019, 11, 543.

49. Afridi, M.I.; Qasim, M. Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. *Int. J. Therm. Sci.* 2018, 123, 117–128.

50. Pal, D.; Mondal, H. Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. *Int. Commun. Heat Mass Transf.* 2012, 39, 913–917.

51. Raees, A.; Wang, R.Z.; Xu, H. A homogeneous-heterogeneous model for mixed convection in gravity-driven film flow of nanofluids. *Int. Commun. Heat Mass Transf.* 2018, 95, 19–24.

52. Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. *PLoS ONE* 2017, 12, e0174938.