Modern Friedel-Crafts chemistry. Part 31.†
An efficient synthetic approach to mono-, di- and triphenylindane derivatives via direct Friedel-Crafts cyclialkylation of selected phenylated alkanols

Ali A. Khalaf,* Ahmed M. El-Khawaga, Ibrahim M. Awad, and Hassan A. K. Abd El-Aal

Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
E-mails: prof_khalaf@hotmail.com

Abstract
Facile procedures for the synthesis of mono-, di- and triphenylindane derivatives from the alcohols 1-4 are described thus treatment with 85% H$_2$SO$_4$, AlCl$_3$/CH$_3$NO$_2$, H$_3$PO$_4$ and/or PPA under varying conditions produced 1,1-dimethyl-3-phenylindane 6 from 2-methyl-4,4-diphenyl-2-butanol 1, 3,3-dimethyl-1,1-diphenylindane 9 from 2-methyl-4,4,4-triphenyl-2-butanol 2, 1-methyl-1,3-diphenylindane 12 from 2,4,4-triphenyl-2-butanol 3 and 1,1,3-triphenylindane 15 from 1,1,3,3-tetraphenyl-1-propanol 4. The starting and final products were characterized by elemental, IR, 1H NMR and MS analyses.

Keywords: Friedel-Crafts cyclialkylation, 1,1-dimethyl-3-phenylindane, 3,3-dimethyl-1,1-diphenylindane, 1-methyl-1,3-diphenylindane, 1,1,3-triphenylindane, di-, tri- and tetrphenyl alkanols

Introduction
Intramolecular Friedel-Crafts reactions promoted by Bronsted and Lewis acid catalysts provide good routes for the construction of carbo- and heteropolycyclic systems.$^{1-3}$ In recent years, we have directed part of our research efforts to study both the synthetic utilities and the mechanistic aspects of these important reactions.$^{4-6}$ These efforts not only illustrated the broad

†Part of the Ph D. Thesis of H A. K. Abd El-Aal. For preceding part of this series see: Khalaf, Ali A.;Albar, H. A.; El-Futy, Kh. O. Indian J. Chem., Sec. B, 2010, 49B, in press.
applicability and the facility of this ring closure approach, but also proved its dependence on electronic, steric and ring-strain factors.7-11

Herein, we describe the synthesis of mono-, di- and triphenylated indane derivatives \textit{via} intramolecular Friedel-Crafts reactions of alkanols 1-4 (Scheme 1).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme1}
\caption{Scheme 1. Starting alkanols 1-4}
\end{figure}

\section*{Results and Discussion}

\subsection*{Production of 1,1-dimethyl-3-phenylindane 6}
As shown in Table 1 and Scheme 2, reaction of 2-methyl-4,4-diphenyl-2-butanol 1 in the presence of \(\text{AlCl}_3/\text{CH}_3\text{NO}_2\), \(\text{H}_3\text{PO}_4\) or PPA gave 1,1-dimethyl-3-phenylindane 6 as a sole product. In the presence of 85\% \(\text{H}_2\text{SO}_4\) however, the reaction gave 3-methyl-1,1-diphenyl-2-butene 7 after 2 hours and a mixture of 6 and 7 after 12 hours.

The failure of 85\% \(\text{H}_2\text{SO}_4\) to induce complete closure of 5 is probably due to the greater tendency, under these conditions, to localize the positive charge on the tertiary center, so elimination to 3-methyl-1,1-diphenyl-2-butene 7 is favored.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme2}
\caption{Cyclialkylation of 2-methyl-4,4-diphenyl-2-butanol 1.}
\end{figure}

\subsection*{Production of 3,3-dimethyl-1,1-diphenylindane 9}
A set of six experiments carefully designed to explore the effect of reaction variables (such as catalyst type, solvent nucleophilicity, time and temperature) on the course of cyclialkylation of 2-methyl-4,4,4-triphenyl-2-butanol 2 were conducted. Indane 9 was obtained as sole product in the presence of \(\text{AlCl}_3/\text{CH}_3\text{NO}_2\), \(\text{H}_3\text{PO}_4\) or PPA catalysts. With 85\% \(\text{H}_2\text{SO}_4\) catalyst, however, varying proportions of 9 and 1,1,1-triphenyl-2-butene 10 were obtained depending on reaction time (Table 1, entries 7-12 and Scheme 3).
Scheme 3. Cyclialkylation of 2-methyl-4,4,4-triphenyl-2-butanol 2.

Production of 1-methyl-1,3-diphenylindane 12
This was obtained as a sole product from 2,4,4-triphenyl-2-butanol 3 with either AlCl₃/CH₃NO₂ or H₃PO₄ catalyst. Using 85% H₂SO₄ as catalyst, however, resulted in pure 1,1,3-triphenyl-2-butene 13 after 2 hours of reaction and in a mixture of 12 (38%) and 13 (49%) after 15 hours (Scheme 4 and Table 1, entry 16).

Scheme 4. Cyclialkylation of 2,4,4-triphenyl-2-butanol 3.

Production of 1,1,3-triphenylindane 4
Attempted cyclialkylation of 1,1,3,3-tetraphenyl-1-propanol 4 with 85% H₂SO₄ or AlCl₃/CH₃NO₂ catalyst at room temperature failed, giving similar products whose elemental, spectral and chromatographic data confirmed the formation of pure 1,1,3,3-tetraphenylpropene 16 (Scheme 1 and Table 1, entries 17 and 18). More strenuous conditions were then applied. While treatment of 4 with H₃PO₄ for 4 hours at 240-260 °C gave a mixture consisting of 15 (27%) and 16 (68%), treatment with PPA at 230-250 °C for 48 hours gave solely 15 (75% yield) (Table 1, Entry 19). These results can be attributed to two factors: (i) the steric crowding of the two phenyls encountered in closure of tertiary carbocation 14 to 15 and (ii) the doubly benzylic nature of 14 causes extensive delocalization of the positive charge over the two phenyl groups resulting in a lower energy, and hence a less reactive reaction site in the intermediate cation. The relative retardation influence of these steric and electronic factors on the ring closure step is hard to measure, but it is believed that the steric factor plays the major part.

Scheme 5. Cyclialkylation of 1,1,3,3-tetraphenyl-1-propanol 4.
Table 1. Conditions and results of cyclialkylation reactions of alkanols 1-4

Entry no.	Reaction conditions					
	Catalyst type	Solvent	Temp °C	Time h	Yield %	Product Composition (%)
A. 2-Methyl-4,4-diphenyl-2-butanol 1						
1^a	85% H₂SO₄	PE^b	RT	2	83	7 (100)
2	85% H₂SO₄	PE	RT	12	86	6 (48), 7 (45)
3^c	AlCl₃/CH₃NO₂	PE	RT	2	90	6 (100)
4	AlCl₃/CH₃NO₂	DCM^d	RT	1	85	6 (100)
5	PPA^e	--	230-250°	5	88	6 (100)
6^f	H₃PO₄	--	240-260°	1	80	6 (100)
B. 2-Methyl-4,4,4-triphenyl-2-butanol 2						
7	85% H₂SO₄	PE	RT	6	84	9 (31), 10 (68)
8	85% H₂SO₄	PE	RT	20	87	9 (85), 10 (12)
9	H₃PO₄	--	240-260°	1	83	9 (100)
10	AlCl₃/CH₃NO₂	PhH	RT	2	88	9 (100)
11	AlCl₃/CH₃NO₂	PE	RT	2	91	9 (100)
12	PPA	--	230-250°	2	81	9 (100)
C. 2,4,4-Triphenyl-2-butanol 3						
13	H₃PO₄	--	240-260°	1	87	12 (100)
14	AlCl₃/CH₃NO₂	PE	RT	4	89	12 (100)
15	85% H₂SO₄	PE	RT	2	85	13 (100)
16	85% H₂SO₄	PE	RT	15	83	12 (38), 13 (49)
D. 1,1,3,3-Tetraphenyl-1-propanol 4						
17	85% H₂SO₄	PE	RT	10	82	16 (100)
18	AlCl₃/CH₃NO₂	PE	RT	4	86	16 (100)
19	PPA	--	230-250°	48	75	15 (100)
20	H₃PO₄	--	240-260°	4	86	15 (27), 16 (68)

^aWith 85% H₂SO₄ catalyst proportions were: carbinol (0.002 mol), 85% H₂SO₄ (2 ml), solvent (10 ml). ^bPetroleum ether (PE) b.p. 60-80 °C. ^cWith AlCl₃/CH₃NO₂ catalyst reactant proportions were: carbinol (0.002 mol), AlCl₃ (0.0024 mol), CH₃NO₂ (0.024 mol), solvent (10 ml). ^dDichloromethane. ^eWith PPA catalyst reactant proportions were carbinol (0.5 g) and PPA (3 g). ^fWith H₃PO₄ catalyst proportions were: carbinol (0.5 g) and H₃PO₄ (4 g).
Conclusions

Commenting on the results of Table 1, it is useful to point out the following:
(i) Friedel-Crafts cyclialkyla tions provide a facile route for the synthesis of mono-, di- and triphenylindane derivatives.
(ii) Intramolecular reactions are much favored over intermolecular ones as indicated by the fact that compound 9 was solely obtained in spite of the presence of nucleophilic benzene as solvent.
(iii) The results of Table 1, especially those with 85% H$_2$SO$_4$, reveal that intramolecular ring closure is highly dependent on steric factors. Thus, the ease of ring closure to indanes seems to follow the following order between the employed tertiary alcohols: 1 > 2 > 3 > 4

Experimental Section

General. Melting points were measured on a digital Gallenkamp capillary melting point apparatus and are uncorrected. Infrared spectra were determined with a Shimadzu 470 infrared spectrophotometer using KBr wafer and thin film techniques (ν cm$^{-1}$). 1H NMR spectra were recorded by 90 MHz Varian NMR spectrometer using the appropriate deuterated solvent with TMS as internal standard. Chemical shifts (δ) and J values are reported in ppm and Hz, respectively. Elemental analyses were performed on a Perkin-Elmer 2400 Series II analyzer. The mass spectra were performed by JEOL JMS 600 spectrometer at an ionizing potential of 70 ev using the direct inlet system. Reactions were monitored by thin layer chromatography using precoated silica plates (Kieselgel 60, F 254, E. Merck), visualized with UV light. Flash column chromatography (FC) was performed on silica gel (230-400 mesh, E. Merck). All reagents were purchased from Merck, Sigma or Aldrich Chemical Co. and were used without further purification.

Synthesis of starting substrates
2-Methyl-4,4-diphenyl-2-butanol 1. This alcohol was prepared by addition of two equivalents of methylmagnesium iodide to ethyl 3,3-diphenylpropanoate.12 The reaction mixture was left to stir for overnight then decomposed with sat. aq. NH$_4$Cl soln and the product was extracted with ether and dried over anhydrous magnesium sulfate. Flash chromatography (FC) of the liquid product [neutral alumina, petroleum ether (PE 60-80o) eluant] gave alcohol 1 in the form of faintly yellowish viscous oil (82%), n_D^{25} 1.5376 (Lit.13 n_D^{25} 1.5636, b.p. 180-2o/12 mm); IR (Film) v 3450, 3550, 3046, 2960, 1590, 1520, 1485, 1480, 1378, 1247, 1143, 1081, 760, 695 cm$^{-1}$. 1H NMR (90 MHz, CDCl$_3$, ppm), $\delta = 1.2$ (6H, s, 2CH$_3$), 2.35 (2H, d, $J = 7.5$ Hz, CH$_2$), 2.4 (1H, s, OH exchangeable with D$_2$O), 4.3 (1H, s, $J = 7.5$ Hz, CH), 7.1-7.45 (10H, m, Ar-H).

2-Methyl-4,4,4-triphenyl-2-butanol 2. Addition of two equivalents of methylmagnesium iodide to ethyl 3,3,3-triphenylpropanoate13 followed by stirring overnight and decomposition with sat. aq. NH$_4$Cl soln and extraction of the product with ether gave a solid. Crystallization from
petroleum (60-80 °C) gave the product as white needles (86%), m.p. 45 °C; IR (KBr) v 3563, 3490, 3043, 2975, 1590, 1486, 1440, 1040, 1015, 740, 700 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 0.9\) (6H, s, 2CH\(_3\)), 1.67 (1H, s, OH exchangeable with D\(_2\)O), 3.05 (2H, s, CH\(_2\)), 7.1-7.56 (15H, m, Ar-H). Anal. Calcd. for C\(_{23}\)H\(_{24}\)O (316): C, 87.34; H, 7.59%; Found: C, 87.15; H, 7.72%

2,4,4-Triphenyl-2-butanol 3. This alcohol was prepared by two alternative routes: (i) By the reaction of \(\beta,\beta\)-diphenyl-2-propanone\(^{14}\) with phenylmagnesium bromide and (ii) by the reaction of \(\beta,\beta\)-diphenylpropiophenone\(^{15}\) with methylmagnesium iodide. In both routes, the reaction mixtures were heated at reflux for 2 h then left to stir overnight. Decomposition with sat. aq. NH\(_4\)Cl soln, extraction with ether and purification by chromatography (basic alumina, petroleum 60-80 °C as eluant) gave 3 as a pale yellow viscous oil (84% and 82% resp.), \(n^25_D\) 1.5527; IR (film) v 3450, 3054, 2975, 1600, 1486, 1440, 1370, 1210, 1180, 740, 695 cm\(^{-1}\)\

1,1,3,3-Tetraphenyl-1-propanol 4. This alcohol was prepared by addition of two equivalents of PhMgBr to ethyl 3,3-diphenylpropanoate.\(^{12}\) The reaction mixture was left to stir overnight, decomposed with sat. aq. NH\(_4\)Cl soln and the product was extracted, dried and rotary evaporated as above. Crystallization from petroleum (60-80 °C) gave the product as white needles (79%), m.p. 92 °C (Lit.\(^{16}\) m.p. 94.5 °C); IR (KBr) v 3550, 3450, 3060, 2963, 1590, 1488, 1445, 1367, 1250, 1160, 745, 697 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.8\) (1H, s, OH exchangeable with D\(_2\)O), 2.95 (2H, d, \(J = 6\) Hz, CH\(_2\)), 3.9 (1H, t, \(J = 6\) Hz, CH), 6.85-7.52 (20H, m, Ar-H).

Synthesis of Reference Samples

3-Methyl-1,1-diphenyl-2-butene 7. Dehydration of 2-methyl-4,4-diphenyl-2-butanol (1) by AcOH/H\(_2\)SO\(_4\) as reported\(^{17}\) and purification by chromatography (neutral alumina, \(n\)-hexane eluant) gave 7 (82%) as a faintly yellowish oil, \(R_f\) 0.41 (petroleum 60-80 °C/AcOEt 9:1, silica gel), \(n^25_D\) 1.574; IR (Film) v 3055, 3010, 2980, 1590, 1570, 1480, 1422, 1285, 1070, 1020(s), 970, 750, 693 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.7\) (6H, s, 2CH\(_3\)), 4.75 (1H, d, \(J = 7.5\) Hz, CH), 5.52 (1H, d, \(J = 7.5\) Hz, CH); 7.0-7.3 (10H, m, Ar-H). Anal. Calcd. for C\(_{17}\)H\(_{18}\) (222): C, 91.89; H, 8.10%; Found: C, 91.46; H, 8.32%

3-Methyl-1,1,1-triphenyl-2-butene 10. Dehydration of 2-methyl-4,4,4-triphenyl-2-butanol (2) by AcOH/H\(_2\)SO\(_4\) as directed\(^{17}\) and purification by chromatography (neutral alumina, petroleum 60-80° eluant) gave 10 (85%) as yellowish oil, \(R_f\) 0.43 (petroleum 60-80 °C/AcOEt 9:1, silica gel); \(n^25_D\) 1.591; IR (Film) v 3050, 3020, 2980, 1595, 1543, 1490, 1440, 1285, 1145, 1027, 940, 745, 697 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.2\) (6H, s, 2CH\(_3\)), 5.52 (1H, s, CH), 7.0-7.3 (10H, m, Ar-H). Anal. Calcd. for C\(_{23}\)H\(_{32}\) (298): C, 92.61; H, 7.38%; Found: C, 92.12; H, 7.46%

1-Methyl-1,3-diphenylindane 12. This compound was obtained in a series of three consecutive steps starting with 3-phenylindanone.\(^{18}\)
(i) Addition of phenylmagnesium bromide to 3-phenylindanone\(^{18}\) and treatment as usual gave 1,3-diphenyl-1-indanol in the form of yellow crystals from methanol (84%) m.p. 78 °C (Lit.\(^{19}\) m.p. 84 °C); IR (KBr) ν 3550, 3455, 3053, 2990, 1596, 1487, 1443, 1370, 1165, 1065, 10350, 765, 695 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 2.0 (1H, s, OH exchangeable with D\(_2\)O), 2.6-2.83 (2H, m, J = 7.5 Hz, CH\(_2\)), 4.23 (1H, t, J = 7.5 Hz, CH), 7.1-7.45 (14H, m, Ar-H).

(ii) Conversion into chloride by reaction with thionyl chloride in pyridine\(^{20}\), extraction and purification by chromatography (basic alumina, petroleum 40-60 °C eluant) gave the corresponding 1-chloro-1,3-diphenylindane as a reddish viscous oil (78%), \(n_D^{25}\) 1.638: IR (Film) ν 3062, 2985, 1595, 1510, 1440, 765, 690 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 2.7-3.05 (2H, m, J = 7.5 Hz, CH\(_2\)), 4.3 (1H, t, J = 7.5 Hz, CH), 7.1-7.32 (14H, m, Ar-H).

(iii) Coupling with dimethylcadmium\(^{21}\) in benzene gave 1-methyl-1,3-diphenylindane (12) in the form of a thick pale yellowish oil (73%) upon purification by flash chromatography (basic alumina, \(n\)-hexane eluant), \(R_f\) 0.29 (silica gel, petroleum 60-80 °C/AcOEt 9:1 eluant); \(n_D^{25}\) 1.6103; IR (Film) ν 3070, 2983, 1680, 1594, 1589, 1455, 1055, 1025, 760, 695 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 1.7 (3H, s, CH\(_3\)), 3.5-4.0 (2H, apparent m, J = 7.5 Hz, CH\(_2\)), 4.25 (1H, m, J = 7.5 Hz, CH), 7.0-7.52 (14H, m, Ar-H). Anal. Calcd. for C\(_{22}\)H\(_{20}\) (284): C, 92.95; H, 7.08%; Found: C, 92.99; H, 7.26%

1,1,3-Triphenyl-2-butene 13. Dehydration of 2,4,4-triphenyl-2-butanol (3) by AcOH/H\(_2\)SO\(_4\) following reported procedure\(^{17}\) and purification by chromatography (neutral alumina, petroleum 40-60 °C eluant) gave 13 (79%) as a yellowish oil, \(R_f\) 0.4 (silica gel, petroleum 60-80 °C/AcOEt 9:1 eluant); \(n_D^{25}\) 1.638; IR (Film) ν 3050, 3014, 2985, 1638, 1595, 1487, 1446, 1370, 765, 695 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 1.7 (3H, s, CH\(_3\)), 4.65 (1H, d, J = 7.5 Hz, CH), 5.3 (1H, d, J = 7.5 Hz, CH), 7.2-7.5 (15H, m, Ar-H). Anal. Calcd. for C\(_{22}\)H\(_{20}\) (284): C, 92.95; H, 7.08%; Found: C, 92.87; H, 7.16%

1,1,3-Triphenylindane 15. An authentic sample of this compound was obtained in four steps starting from 3,3,3-triphenylpropanoic acid.\(^{22}\)

(i) Reaction of 3,3,3-triphenylpropanoic acid with thionyl chloride in dry benzene gave 3,3,3-triphenylpropanoyl chloride in the form of white crystals from petroleum (60-80 °C) (71%), m.p. 123 °C (Lit.\(^{22}\) m.p.127 °C) IR (KBr); ν 3065, 3100(s), 2930(m), 1800(s), 760(s) 690(s) cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 3.76 (2H, s, CH\(_2\)), 7.1-7.5 (15H, m, Ar-H).

(ii) Cyclacylation of 3,3,3-triphenylpropanoyl chloride with AlCl\(_3\) catalyst in carbon disulfide solvent gave 76% of crude product which upon crystallization from ethyl alcohol gave 69% of pure 3,3-diphenylindanone as white crystals m.p. 126 °C (Lit.\(^{22}\) m.p. 130-1 °C); IR (KBr) ν 3045, 2920, 1750, 1595, 1580, 1484, 1450, 1010, 750, 690 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), δ = 3.52 (2H, s, CH\(_2\)), 7.1-7.5 (15H, m, Ar-H).

(iii) Reaction of 3,3-diphenylindanone with phenylmagnesium bromide in dry ether and decomposition with sat. aq. NH\(_4\)Cl soln gave 1,3,3-triphenyl-1-indanol in the form of yellowish viscous oil upon purification by chromatography (basic alumina, petroleum 60-80 °C/PhH eluant), \(n_D^{25}\) 1.5957; IR (Film) ν 3450, 3040, 2985, 1595, 1520, 1487, 1440, 1345, 1110, 745,
692 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.9\) (1H, s, OH exchangeable with D\(_2\)O), 2.9-3.1 (2H, apparent m, \(J = 7.5\) Hz, CH\(_2\)), 7.1-7.5 (19H, m, Ar-H).

(iv) Reduction of 1,3,3-triphenyl-1-indanol with P/HI in glacial acetic acid as reported\(^{23}\) gave 1,1,3-triphenylindane 15 as a yellowish viscous oil upon purification by chromatography (silica gel, benzene eluant) (68%), \(R_f\) 0.27 (silica gel, PE 60-80 °C/AcOEt 7.8:2.2 eluant); \(n_D^{25}\) 1.574; IR (Film) \(\nu\) 3060, 2983, 1660, 1596, 1580, 1483, 1440, 1065, 1020, 760, 695 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 2.7\) & 3.2 (2H, both apparent m, \(J = 7.5\) Hz, CH\(_2\)), 4.3 (1H, t, CH), 7.0-7.45 (19H, m, Ar-H).

1,1,3,3-Tetraphenylpropene 16. Dehydration of 1,1,3,3-tetraphenyl-1-propanol 4 by KHSO\(_4\) as reported\(^{24}\) gave 16 as white crystals from methanol (77%), m.p. 122 °C (Lit.\(^{25}\) m.p. 125-6 °C), \(R_f\) 0.29 (petroleum 60-80 °C/AcOEt 9:1 eluant); IR (KBr) \(\nu\) 3065, 3030, 2980, 1650, 1595, 1480, 1440, 1274, 1180, 1025, 750, 698 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 4.76\) (1H, d, \(J = 9\) Hz, CH), 6.5 (1H, d, \(J = 10.5\) Hz, CH), 7.2-7.5 (20H, m, Ar-H).

Cyclialkylation procedures
The procedures described earlier\(^{10}\) for cyclialkylation of arylalkanols with 85% H\(_2\)SO\(_4\), H\(_3\)PO\(_4\), AlCl\(_3\)/CH\(_3\)NO\(_2\) and PPA were essentially followed. The conditions and results are depicted in Table 1.

Product separation and identification
3-Methyl-1,1-diphenyl-2-butene 7. This product was identical in all respects with the prepared authentic sample.
1,1-Dimethyl-3-phenylindane 6. Viscous oil, \(R_f\) 0.35 (silica gel, PE 60-80 °C/AcOEt 9:1 eluant); IR (Film) \(\nu\) 3050, 2980, 1600, 1540, 1589, 1495, 1450, 1025, 743, 697 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.25\) (6H, d, \(J = 15\) Hz, 2CH\(_3\)), 1.8 & 2.3 (2H, both apparent m, \(J = 9\) Hz, CH\(_2\)), 4.3 (1H, t, CH), 6.8-7.4 (9H, m, Ar-H). MS (EI, 70 ev) \(m/z\) (%), 222 (M\(^+\), 49), 207 (M\(^+\)-CH\(_3\), 100), 192 (M\(^+\)-2CH\(_3\), 4.5), 178 (12.3), 167 (2.4), 166 (2.6), 91 (16.1), 77 (3.3). Anal. Calcd. For C\(_{17}\)H\(_{18}\) (222): C, 91.89; H, 8.10%; Found: C, 91.46; H, 8.32%
3,3-Dimethyl-1,1-diphenylindane 9. Yellow viscous oil, \(R_f\) 0.37 (silica gel, petroleum 60-80 °C/AcOEt 8:2 eluant); IR (Film) \(\nu\) 3055, 2992, 1595, 1540, 1495, 1440, 1030, 740, 695 cm\(^{-1}\). \(^1\)H NMR (90 MHz, CDCl\(_3\), ppm), \(\delta = 1.25\) (6H, s, 2CH\(_3\)), 2.9 (2H, s, CH\(_2\)), 7.2-7.45 (14H, m, Ar-H). MS (EI, 70 ev) \(m/z\) (%), 298 (M\(^+\), 79.1), 283 (M\(^+\)-CH\(_3\), 59), 268 (M\(^+\)-2CH\(_3\), 3.9), 221 (M\(^+\)-Ph, 100), 206 (M\(^+\)-Ph-CH\(_3\), 11.9), 205 (M\(^+\)-Ph-CH\(_3\)-H, 30.7), 191(18.9), 178(13), 165 (27), 154 (2.9), 142 (14.5), 124 (12.1), 95 (18.5), 77 (3.4). Anal. Calcd. For C\(_{23}\)H\(_{22}\) (298): C, 92.61; H, 7.38%; Found: C, 92.12; H, 7.46%
3-Methyl-1,1,1-triphenyl-2-butene 10. This product was identical in all respects with the prepared authentic sample.
1-Methyl-1,3-diphenylindane 12. This product was identical in all respects with the prepared authentic sample.
1,1,3-Triphenyl-2-butene 13. This product was identical in all respects with the prepared authentic sample.

1,1,3-Triphenylindane 15. This product was identical in all respects with the prepared authentic sample.

1,1,3,3-Tetraphenylpropene 16. This product was identical in all respects with the prepared authentic sample.

Acknowledgements

We are thankful to the University of Assiut at Assiut, Egypt for facilities and unfailing support.

References

1. (a) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry. A Century of Discovery; Marcel Dekker: New York, 1984; (b) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.8, p. 293. (c) Barclay, L. R. C. In Friedel-Crafts and Related Reactions, Olah, G. A. Ed.; Interscience, New York, 1964, Vol. II, Chap. 22 and references therein.

2. Jøgensen, K. A. Synthesis 2003, 1117.

3. Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew Chem. Int. Ed. 2004, 43, 550.

4. Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199.

5. Poulsen, T. B.; Jøgensen, K. A. Chem. Rev. 2008, 108, 2903.

6. Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; John Wiley & Sons, New York, 1985.

7. (a) Khalaf, A. A.; Roberts, R. M. J. Org. Chem. 1969, 34, 3571; ibid.1966, 31, 89; ibid. 1972, 37, 4227; ibid. 1971, 36, 1040 and references therein.(b) Khalaf, A. A. Rev. Roum. Chim. 1973, 18, 297; ibid. 1974, 19, 1373.

8. Khalaf, A. A.; Albar, H. A. J. Indian Chem. Soc. 2004, 81, 1.

9. Khalaf, A. A.; Roberts, R. M. J. Org. Chem. 1973, 38, 1388.

10. Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2006, 83, 10; Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2008, 85, 6.

11. Khalaf, A. A.; Makki, M. S. I. T.; Kabli, R. A. J. Indian Chem. Soc. 1997, 74, 148.

12. Auwers, K. V. Ber. 1929, 62B, 693.

13. Bergmann, E.; Weiss, H. Liebigs Ann. 1930, 49, 480.

14. Volkov, R. N.; Tsybin, Yu. S. Tr. Lab. Khim. Vysokomolekul. Soedin., Voronezhsk Univ. 1964, 3, 50.
15. Parham, W. E.; Braxton, H. G. Jr.; Serres, C. Jr. *J. Org. Chem.* **1961**, *26*, 1831.
16. Petrov, A. D.; Bataev, P. S. *Zhur. Obshchei. Khim. (J. Gen. Chem.)* **1950**, *20*, 2236.
17. Simamura, O.; Suzuki, H. *Bull. Chem. Soc. Jpn.* **1954**, *27*, 231.
18. Johnson, W. S.; Shelberg, W. E. *J. Am. Chem. Soc.* **1945**, *67*, 1745.
19. Dufraisse C.; Enderlin L. *Bull. Soc. Chim.* **1934**, *1*, 267.
20. Beyer, H.; Hess, U. *Chem. Ber.* **1961**, *94*, 1717.
21. Gomberg, M.; Cone, L. H. *Ber.* **1906**, *39*, 1461.
22. Koelsch, C. F.; Le-Claire, C. D. *J. Org. Chem.* **1941**, *6*, 516.
23. Fuson, R. C. *J. Am. Chem. Soc.* **1926**, *48*, 2937.
24. De Kamp, J. V.; Sletzinger, M., *J. Am. Chem. Soc.* **1941**, *63*, 1878.
25. Fuson, R. C.; San, T.; Diekmann, J. *J. Org. Chem.* **1962**, *27*, 1221.