Wavelet-based Adaptive Enhancement Method of Aeromagnetic Anomaly Signal

Zhentao Yu*, Jie Chen, Suqin Xu, Cheng Chi and Tingting Li

1Navy Submarine Academy, Qingdao, Shandong, 266199, China
*Corresponding author’s e-mail: qdqyyzt@163.com

ABSTRACT: In view of the wide and effective application of wavelet transform in the study of weak signal detection, it has been applied to the enhancement of magnetic anomaly signal of underwater target. But there is a problem of the decomposition level selection in the process of wavelet enhancement, which is related to the parameters of Aeronautical platform and underwater target. In this paper, based on the detection model of underwater target magnetic field, the selection model of wavelet decomposition level of aeromagnetic anomaly signal was established, and was realized adaptive wavelet enhancement of aeromagnetic anomaly signal by weighted reconstruction. The processing results of the simulation test signal show that the method can effectively enhance the weak magnetic signal of underwater target.

1. Instruction

The detection of magnetic anomaly signal of underwater target by airborne platforms equipped with high-sensitivity magnetic detectors has become an important means of aerial anti-submarine detection operations. But in the actual detection process, the signal-to-noise ratio of magnetic anomaly signal is usually less than 1 due to the influence of geomagnetic background, and the types of these noise include white Gaussian noise, non-Gaussian noise and colored noise. These complex noises greatly increase the difficulty of detecting the magnetic anomaly signal of underwater target[1-5].

In view of the wide and effective application of wavelet transform in the field of weak signal detection, it has been applied to the enhancement of magnetic anomaly signal of underwater target[6-7]. The magnetic anomaly signal of underwater target exists in several decomposition level after discrete wavelet transform. Weighted reconstruction of these decomposition level can effectively enhance the magnetic anomaly signal. But there is a problem of choosing the decomposition level in the process of wavelet enhancement, which is related to the parameters of Aeronautical platform and underwater target. In this paper, based on underwater target magnetic detection model, the calculation formula of signal characteristic time width was deduced, and the signal characteristic frequency range was estimated by simulation, and the selection model of wavelet decomposition level of aeromagnetic anomaly signal by was established, which realized adaptive wavelet enhancement of aeromagnetic anomaly signal. The processing results of the simulation test signal show that the method can effectively enhance the weak magnetic signal of underwater target.

2. The detection model of underwater target magnetic field

When the detection distance is more than 2.5 times the length of the magnetic target, the magnetic target can be regarded as a magnetic dipole [8]. Under these conditions, the magnetic field at the distance $r(x, y, z)$ from the magnetic target can be expressed as[8-10].
The magnetic field vector of the magnetic dipole is given by the formula:

\[B = \frac{\mu_0}{4\pi} \frac{3(m \cdot r) r - m}{r^3} \]

(1)

Formula (1) is the mathematical model of a magnetic dipole. \(m(x, y, z) \) is the magnetic moment of the magnetic target; \(\mu_0 \) is the permeability of vacuum; \(r = |r| \) is the distance from the magnetic target to the measuring point.

After vector operation of the magnetic dipole model (1), we can get the following formula.

\[
\begin{bmatrix}
B_x \\
B_y \\
B_z
\end{bmatrix} = \frac{\mu}{4\pi r^3} \begin{bmatrix}
3x^2 - r^2 & 3xy & 3xz \\
3xy & 3y^2 - r^2 & 3yz \\
3xz & 3yz & 3z^2 - r^2
\end{bmatrix} \begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix}
\]

(2)

3. The selection model of wavelet decomposition level

3.1 Frequency analysis of magnetic anomaly signal

Based on the detection model of the underwater target magnetic field, multiple typical magnetic anomaly signals can be emulated, and the frequency band of these signals can be calculated and shown as figure 2, when the characteristic time width \(T_e \) is 1.
Analyzing the frequency band of multiple typical magnetic anomaly signals, we can get the calculation formula (5), which is the frequency band of underwater target aeromagnetic anomaly signal.

\[
\begin{align*}
 f_{\text{low}} &= \frac{1}{T_i} \\
 f_{\text{high}} &= \frac{10}{T_i}
\end{align*}
\]

(5)

3.2 The calculation of wavelet decomposition level selection

The wavelet basis function which is the closest to the underwater target magnetic signal is selected, and the original signal is decomposed into wavelet coefficients and scaling coefficients of different level. The multi-resolution decomposition formula is as follows.

\[
\begin{align*}
 c_{m+1}(k) &= \sum_{n=-\infty}^{\infty} h_{m}^{*}(n-2k)c_{m}(n) \\
 d_{m+1}(k) &= \sum_{n=-\infty}^{\infty} h_{m}^{*}(n-2k)c_{m}(n)
\end{align*}
\]

(6)

In formula (6), \(h_{0}(k) = \{\varphi_{0,0}(t), \varphi_{0,1}(t)\}\) is low pass filter; \(h_{1}(k) = \{\psi_{1,0}(t), \varphi_{0,1}(t)\}\) is high pass filter; \(\varphi(t)\) and \(\psi(t)\) are scaling function and wavelet function\[11-12\].

The sampling frequency of the magnetometer is \(f_s\). According to the principle of multi-resolution signal decomposition based on wavelet transform, the frequency band of the wavelet coefficients \(d_{m}(k)\) of \(m\) level is \(\frac{f_s}{2^{m+1}} - \frac{f_s}{2^m}\).

Let the upper and lower limits of the bandwidth of the magnetic anomaly signal satisfy the following formulas.

\[
\begin{align*}
 \frac{f_s}{2^{m_1+1}} &\leq f_{\text{high}} \leq \frac{f_s}{2^{m}} \\
 \frac{f_s}{2^{m_2+1}} &\leq f_{\text{low}} \leq \frac{f_s}{2^{m_2}}
\end{align*}
\]

(7)

In formula (7), \(m_1\) is wavelet decomposition level corresponding to the upper bandwidth limit of magnetic anomaly signal, and \(m_2\) is wavelet decomposition level corresponding to the low bandwidth.
limit of magnetic anomaly signal, and \(m_1 < m_2 \). By introducing formula (5) into formula (7), the wavelet decomposition level \(m_1 \) and \(m_2 \) can be calculated. Weighted reconstruction of these decomposition level \(m_1 \) to \(m_2 \) can effectively enhance the magnetic anomaly signal.

4. Wavelet weighted reconstruction algorithm

The formula of wavelet reconstruction is as follows.

\[
c_{m-1}(k) = \sum_{n=-\infty}^{\infty} c_m(n)h(k-2n) + \sum_{n=-\infty}^{\infty} d_m(n)h(k-2n)
\]

(8)

The scaling coefficients of \(m-1 \) level can be reconstructed from wavelet coefficients and scaling coefficients of \(m \) level by formula (8). By analogy, the original signal can be reconstructed\(^{[11-12]}\).

According to the selection model of wavelet decomposition level, \(m_1 \) and \(m_2 \) can be calculated. The original magnetic anomaly signal is decomposed into wavelet coefficients and scaling coefficients of \(m_1 \) level, then wavelet coefficients and scaling coefficients between \(m_1 \) and \(m_2 \) are weighted by the following formula (9) and (10).

\[
\hat{d}_m(k) = \begin{cases}
 a \cdot d_m(k) & m_1 \leq m \leq m_2 \\
 b \cdot d_m(k) & m < m_1 \text{ or } m > m_2
\end{cases}
\]

(9)

In formula(9) and (10), \(a \) and \(b \) are Weighting coefficients, \(a > 1, 0 < b < 1 \). Using \(\hat{d}_m(k) \) and \(\hat{c}_{m_1}(k) \) to reconstruct the magnetic signal can effectively enhance the underwater target weak magnetic signal.

5. Simulation test

By adding the underwater target simulation signal to the background signal of aeromagnetic measurement, the simulation test signal is constructed. The underwater target simulation signal is shown as figure 3, and the simulation test signal is shown in figure 4.

The wavelet-based adaptive enhancement method proposed in this paper is used to process the simulated test signal, and the enhanced aeromagnetic anomaly signal is obtained as shown in figure 5. The result show that the proposed method can effectively enhance the underwater target weak magnetic signal.

Figure 3 The underwater target simulation signal
6. Conclusion

Aiming at the problem of the decomposition level selection in the process of wavelet enhancement, this paper proposed the selection model of wavelet decomposition level of aeromagnetic anomaly signal, and realized adaptive wavelet enhancement of aeromagnetic anomaly signal by weighted reconstruction. The processing results of the simulation test signal show that the method can effectively enhance the weak magnetic signal of underwater target.

Reference

[1] Ketter T N. Anti-submarine warfare in the 21st century[R]. ADA27660, 2004.
[2] Chadebec O, Coulomb J, Vincent L, et al. Modeling of static magnetic anomaly created by iron plates[J]. IEEE Trans on Magnetics, 2000, 36(4):667-671.
[3] M. Hirota, T. Furuse, K. Ebana et al. Magnetic Detection of a Surface Ship by an Airborne LTS SQUID MAD[J]. IEEE Transactions on applied superconductivity. 2001, 11 (1):884-887.
[4] Wood Micheal, Agpaoa Roy, Cawley Matthew, et al. Hybrid Airship Multi-Role (HAMR)
Anti-Submarine Warfare (ASW) mission capability [M], 2008.

[5] Ginzburg B, Frumkis L, Kaplan B Z. Processing of magnetic scalar gradiometer signals using orthonormalized function [J]. Sensors and Actuators A, 2002, Vol. 102: 67-75.

[6] Thomas T. Liu, Antony C. Fraser-Smith. An Undecimated Wavelet Transform Based Detector for Transients in 1/f Noise [J]. Proceedings of ICASSP-99, 1-4.

[7] De Stefano A, Allen R, White P R. Noise Reduction in Spine Video fluoroscopic Images Using the Undecimated Wavelet Transform [J]. Computerized Medical Imaging and Graphics, 2004, 28: 453~459

[8] R. F. Wiegert. Magnetic Anomaly Sensing System for Detection, Localization and Classification of Magnetic Objects. United States Patent: 6841994, 2005-01-11.

[9] R. F. Wiegert. Magnetic anomaly sensing system for detection, localization and classification of a magnetic object in a cluttered field of magnetic anomalies. United States Patent: 7603251, 2009-10-13.

[10] Arie Scheinker, Biaz Lerner, Nizan Salomonski, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing [J]. Measurement Science and Technology, 2007, 18: 64-67.

[11] Mallat S. A Wavelet Tour of Signal Processing (Second Edition) [M]. California: Academic Press, 1999.

[12] Starck J L, Fadili J, Murtagh F. The Undecimated Wavelet Decomposition and its Reconstruction [J]. IEEE Transactions on Image Processing, 2007, 16(2): 297~309.