Isolated biomolecules of pharmacological interest in hemostasis from Cerastes cerastes venom

Fatah Chérifi1 and Fatima Laraba-Djebari2*

Abstract
Biomolecules from Cerastes cerastes venom have been purified and characterized. Two phospholipases isolated from Cerastes cerastes venom share 51% of homology. CC2-PLA2 exhibits antiplatelet activity that blocks coagulation. CCSV-MPase, a non-hemorrhagic Zn2+-metalloproteinase, significantly reduced the plasmatic fibrinogen level and hydrolyzes only its Bβ chain. Serine proteinases such as RP34, afaâcytin and CC3-SPase hydrolyze the fibrinogen and are respectively α, αβ and αβ fibrinogenases. In deficient human plasma, afaâcytin replaces the missing factors VIII and IX, and activates purified human factor X into factor Xa. It releases serotonin from platelets and directly aggregates human (but not rabbit) blood platelets. RP34 proteinase also had no effect on both human and rabbit blood platelet aggregation. CC3-SPase revealed a pro-coagulant activity. However, the insolubility of the obtained clot indicates that CC3-SPase does not activate factor XIII. In addition, CC3-SPase clotting activity was carried out with human plasmas from volunteer patients deficient in clotting factors. Results showed that CC3-SPase shortens clotting time of plasma deficient in factors II and VII but with weaker clotting than normal plasma. The clotting time of plasma deficient in factor II is similar to that obtained with normal plasma; suggesting that CC3-SPase is able to replace both factors IIa and VII in the coagulation cascade and thus could be involved in the blood clotting process via an extrinsic pathway. These results imply that CC3-SPase and afaâcytin could repair hemostatic abnormalities and may replace some factors missing in pathological deficiency. Afaâcytin also exhibits α fibrinase property similar to a plasmin-like proteinase. Despite its thrombin-like characteristics, afaâcytin is not inhibited by plasmatic thrombin inhibitors. The procoagulant properties of afaâcytin might have potential clinical applications.

Keywords: Cerastes cerastes venom, Proteinases, Phospholipases A2, Platelets, Blood-clotting, Hemostasis

Introduction
Serine proteases and phospholipases A2 isolated from snake venoms act on the hemostatic system as procoagulants, anticoagulants, pro- or anti-platelet aggregants. Some of these isolated molecules, mainly from Viperidae venoms, are used in diagnosis or treatment of thrombotic diseases and ischemic heart disease. Metalloproteinases can cause hemorrhage after accidental or experimental envenomation. However, some of these metalloproteinases are directly involved in the clotting of blood as they can act on fibrinogen and/or fibrin; they are called in this case fibrino(gen)lytic metalloproteinases. Their fibrinolytic activity makes them potent inhibitors of blood coagulation. Phospholipase A2 exert their anticoagulant effect by their ability to inhibit platelet aggregation due to their high affinity to bind to activated factor Stewart (FXa). All these biological effects based on their direct involvement in hemostasis, let consider these molecules as potential tools or biomarkers in blood diseases.

Review
Viperidae and Crotalidae venoms are rich sources of hydrolytic enzymes and produce a complex pattern of clinical and toxic effects such as coagulation disorders, hemorrhage and necrosis [1-10]. Some of venom components act at various stages of the coagulation cascade. These components perform antagonistic functions, whilst some of them act synergistically. Therefore, the venom toxicity cannot be attributed to only one component [11]. However, most venom components produce beneficial effects when they act alone [12]. Snake venom also contains non-protein components including citrate,
metal ions, carbohydrates, nucleotides as well as low concentrations of free amino acids and lipids [13-15].

Phospholipases A2 (PLA2s) represent more than 10% of the dry weight of the snake venoms from which they are isolated. PLA2s isolated from Viperidae venoms consist of 125–130 amino acid residues cross-linked by seven disulfide bonds which confer stability on the molecule and are calcium-dependant [16]. In addition to their hydrolytic activity, PLA2s may display many other activities, such as edematous, neurotoxic, cardiotoxic, hemolytic, convulsive, antiplatelet, antitumoral and anticoagulant properties. Based on their anticoagulant activity, PLA2s can be clinically useful against thrombotic diseases and for the diagnosis and treatment of hemostatic disorders [17]. The anticoagulant activity is due to their ability to inhibit platelet aggregation through factor Xa (FXa) blockade. Based on their direct involvement in the hemostatic cascade, PLA2 could also be used as tools or biomarkers in blood diseases.

Metalloproteinases found in Viperidae venoms may cause local hemorrhaging following accidental or experimental intradermal or subcutaneous injection of venom [18]. Some of them are known to display fibrino (geno)lytic activity. Fibrino(genol)ytic metalloproteinases dissolve fibrin clots and prevent clot formation by hydrolyzing fibrinogen, thus enhancing the toxic effect of hemorrhagic metalloproteinases, giving rise to pathological bleeding [19]. However, similar to PLA2s, metalloproteinases could be clinically useful against thrombotic diseases thanks to their potential use in laboratory tests or as therapeutic agents [20,21]. These proteinases may be useful for investigating the mechanisms of blood coagulation and platelet aggregation [11,12].

In addition to their beneficial effects, venom molecules are the cause of health problems after snake envenomation. Annually, more than 100,000 deaths are recorded worldwide, including 20,000 on African continent, while 400,000 victims retain severe and permanent functional sequelae [3]. Epidemiological data estimate envenomation cases at more than 5 million per year, with a mortality rate of 2.5%. In tropical Africa, Viperidae bites are responsible for 90% of envenomations [3]. All of these proteins were identified with at least two unique specific peptides and presented similarities with venom of different snake species [17].

Cerastes cerastes venom is a mixture of various proteins with broad biological and physiological activities; most of them are proteinases while some have been well characterized. Most of these proteins act on blood coagulation, including PLA2, the thrombin-like enzymes RP34 and afaâcytin, anticoagulant protease fraction, aggregant serine protease, hemorrhagic metalloproteinase CcH1, and the non-hemorrhagic metalloproteinase CCSV-MPase [11,12,31-35]. In this paper, we report pharmacological activity of biomolecules isolated from Cerastes cerastes on hemostasis process.

Biochemical properties of biomolecules and their proteomic identification
Several molecules from Cerastes cerastes venom act on hemostasis, such as RP34, a serine proteinase which consists of two subunits of 48.5 kDa [32]. Another serine proteinase, a thrombin-like molecule denominated afaâcytin, was purified and characterized [11]. Afaâcytin presents caseinolytic, arginine-esterase and amidase activities. It is a homodimeric proteinase with two subunits, alpha and beta, which have the same apparent molecular mass (40.0 kDa for each unit) and are indistinguishable in the absence of reduction or/and deglycosylation [11]. Both α and β chains are N-glycosylated. The two chains present the same N-terminal sequence (20 residues) which is similar to the sequence of other proteinases isolated from snake venom.

Three molecules – CC2-PLA2, CCSV-MPase and CC3-SPase – were characterized by proteomic analysis. Results showed some sequence similarity with other homologous enzymes isolated from several venoms [11,12,17,31-34]. CC2-PLA2, another PLA2 found in the same venom, presents 51% sequence homology with a previously purified molecule from the same venom by Laraba-Djebari et al. [32] (accession number in NCBI nr is gi [129506]), i.e. 61 out of 120 amino acid residues are common to the two PLA2s [31]. The peptide sequence of the new PLA2 was obtained by alignment with sequences of other venom PLA2s. Some snake venom proteinases were identified sharing sequence homology with CCSV MPase, four of which belonged to the metalloproteinase family (Group III snake venom metalloproteinase and Zn^2+ metalloproteinase disintegrin) [17]. Three of these proteins corresponded to Cerastes vipera venom and the others to venom proteins of different snake species [17].

All of these proteins were identified with at least two unique specific peptides and presented similarities with the purified CCSV-MPase. Previous studies showed that CCSV-MPase, characterized by SDS-PAGE analysis, could be classified as a member of the high-molecular-mass metalloproteinase family, due to its molecular mass estimated at 70 kDa in both reducing and non-reducing electrophoresis conditions [12]. Furthermore, the partial amino acid sequence of CCSV-MPase was identified by MALDI-TOF MS/MS analysis. Based on its molecular mass and partial amino acid sequence, CCSV-MPase may be classified in the P-III class of
SVMPs containing a disintegrin-like metalloproteinase, with cystein-rich domains.

It is well established that some venom components have beneficial effects when acting in isolation. Cerastes cerastes venom is a mixture of protein components with multiple actions including coagulation [11,32,36,37]. These proteins may induce hemorrhage and capillary permeability disorders, through their disintegrin domain or related proteins that disrupt primary hemostasis by acting on platelet adhesion. Thus, a single molecule can be endowed with several activities. The structural differences between proteins, natural factors of hemostasis, as well as the multiplicity of target components of the same venom, are elements that could explain the efficiency of partial immunotherapy [15]. Fibrinogenases (serine proteinases or metalloproteinases) are widespread in Viperidae venoms. They hydrolyze fibrinogen and/or degrade the fibrin clot, enhancing the effect of hemorrhagic metalloproteinases that give rise to pathological bleeding.

Coagulant and fibrinogenolytic activities of isolated molecules

Fibrinogen is a glycoprotein of 340 kDa with three polypeptide chains; Aα (67 kDa), Bβ (50 kDa) and γ (43 kDa) linked by disulfide bonds. It can be hydrolyzed by thrombin, thus producing fibrin components and fibrinopeptides. Thrombin activity (control) on fibrinogen demonstrated the release of fibrinopeptide A (FpA) followed by fibrinopeptide B (FpB).

Proteolytic enzymes of Cerastes cerastes venom were identified as α, β or γ fibrinogenases depending on their ability to hydrolyze the fibrinogen in vitro. SDS-PAGE analysis of fibrinogen in the presence of venom revealed two entities (55 kDa and 50 kDa) indicating activities of α- and β-fibrinogenase. Purification and characterization of three procoagulant proteinases (RP34, afàâcytin and CC3-SPase proteinase) showed fibrinogenolytic activities when analyzed by SDS-PAGE, afàâcytin and RP34 displayed, respectively, α,β-fibrinogenase and α-fibrinogenase activity [11,32,34]. Like afàâcytin, CC3-SPase is also characterized as an α,β-fibrinogenase due to the release of both A and B fibrinopeptides.

Susceptibility of afàâcytin to diisopropyl fluorophosphate and benzamidine indicates the presence of a serine and an aspartic (or glutamic) acid residues in the catalytic site. Calcium is required for structural cohesion of the afàâcytin molecule [11]. CCVS-MPase cleaves only the Bβ chain of fibrinogen and exerts no action on Aα or γ chains. This property contrasts with those of other SVMPs which preferentially cleave only the Aα-fibrinogen chain. However, these metalloproteinases, belonging to the PI class of SVMPs, present low molecular mass, with only the metalloproteinase domain, as in the case of fibrolase purified from Akgistrodon contortrix contortrix, piscivorase II of Akgistrodon piscivorus piscivorus, lebetase purified from the venom of Vipera lebetina, neuwiedase from Bothrops neuwiedi venom, the atroxase of Crotalus atrox venom and leucurolysins from venom of Bothrops leucurus [5,38-42].

Proteinases (afàâcytin, RP34, CC3-SPase and CCVS-MPase) showed caseinolytic activity as crude venom. CC3-SPase displayed arginine ester hydrolyase activity while the CCVS-MPase does not. Both molecules presented a high amidolytic activity similar to that of crude venom. Previous results revealed that the use of specific inhibitors for serine proteinases and metalloproteinases showed that CC3-SPase is a thrombin-like Ca2+-dependent serine proteinase. Afàâcytin isolated from the venom of Cerastes cerastes showed that Ca2+ is essential for its activity not only as a cofactor but can contribute to the stability or structural cohesion of the enzyme [11]. CCVS-MPase appears to be a zinc-dependent metalloproteinase given that metal chelators, EDTA and 1,10-phenanthroline completely inhibited its proteolytic activity, which also suggested that unlike CC3-SPase, Ca2+ is not required for its catalytic activity. The sensitivity of the serine proteinase CC3-SPase, a specific inhibitor of thrombin (heparin and antithrombin III) may indicate that the receptor of CC3-SPase is identical to that of thrombin. Given its procoagulant properties and insensitivity to thrombin-specific plasma inhibitors, afàâcytin might be interesting to employ as a hemostatic agent in some types of hemorrhage, such as post-operative thrombocytopenia [11].

Serine-proteinases hydrolyze fibrinogen by acting on the two chains, α and β, of this substrate thereby causing the formation of a fragile fibrin clot. CCVS-MPase acts on the β chain of fibrinogen resulting in the release of only fibrinopeptide B. Afàâcytin, as a component of the venom (2% w/w), hydrolyzes fibrinogen in the same manner that CC3-SPase degrades firstly the Aα chain and then, 24 hours later, the Bβ chain, leading to a fragile clot, which suggests that CC3-SPase, similarly to afàâcytin, is unable to activate the factor XIII responsible for the resistance of the fibrin clot [11,34]. CCVS-MPase cleaves only the Bβ chain of fibrinogen and exerts no activity on Aα and γ chains. CCVS-MPase properties may allow its use as a therapeutic agent in some pathologies that require anticoagulant administration.

Most thrombin-like enzymes (TLE) isolated from snake venoms act on fibrinogen by hydrolyzing one chain rather than two, although the cleavage site is the same (Arg16-Gly17) as the α chain (Arg15-Gly16) on β chain, by releasing fibrinopeptides A or B as CCVS-MPase which degrades only the β chain of fibrinogen. CC3-SPase shortened the clotting time of plasma deficient in factor VII and II with a weaker clot than that formed with normal plasma. The clotting time of plasma
deficient in factor II is similar to that obtained with normal plasma after the action of serine protease CC3-SPase, which suggests that this molecule is able to replace factors IIa and VII.

Procoagulant and anticoagulant snake venom components often act at later stages of the coagulation cascade. The main targets of these components are fibrinogen, prothrombin, factor X and platelets [3,5,11,12,17].

Several molecules have been purified from Viperidae and Crotalidae venoms and characterized as FX activator factors that are used as biomarkers in many hemostatic disorders. Indeed, thrombin-like components serve as structural models to extend our understanding of the structure-function relationships of blood coagulation factors, some of which have been clinically used for the treatment of thrombotic diseases, and are employed as tools in clinical assays [43].

Combination of gel filtration and ion-exchange chromatography proved to be successful in obtaining milligram quantities of new pure TLEs from the venoms of Crotalus durissus terrificus and Crotalus durissus collilineatus [43]. Functional characterization indicates that both enzymes preferentially degrade the Bβ chain of bovine fibrinogen and present edema-inducing and coagulant activities. However, the TLE from Crotalus durissus collilineatus venom showed twofold higher coagulant activity with a minimum coagulant dose (MCD) of 0.6 μg/μL, whereas the enzyme isolated from Crotalus durissus terrificus indicated an MCD of 1.5 μg/μL [43].

Recently, a TLE denominated BpSP-I was isolated from Bothrops pauloensis snake venom; its biochemical, enzymatic and pharmacological characteristics were determined. BpSP-I showed high clotting activity upon bovine and human plasma and was inhibited by PMSF, benzamidine and leupeptin. Moreover, this enzyme showed stability when examined at different temperatures (~70 to 37°C), pH values [3-9] or in the presence of divalent metal ions (Ca²⁺, Mg²⁺, Zn²⁺ and Mn²⁺). BpSP-I showed high catalytic activity upon substrates, such as fibrinogen, TAME, S-2238 and S-2288. It also showed kallikrein-like activity, but was unable to act upon factor Xa or plasmin substrates [44].

Reducing blood viscosity is often required in the treatment of thrombotic and ischemic heart diseases. Defibrinogenation of the plasma by some enzymes from snake venoms is of interest. Indeed, all of these defibrinogenating biomolecules sharing these properties could be used as tools in clinical applications and in basic research. Further studies, in pharmacology and toxicology should be undertaken to determine their mode of action in vivo.

Effect of molecules on platelet function

Biological characterization of CCSV-MPase and CC2-PLA2 has been shown to be highly anti-aggregative in relation to human platelets. The antagonistic effect of CC3-SPase is of interest in the context of the antiplatelet action of the hemostatic system, and may be an effective tool for reducing blood viscosity, a property that is often necessary in the treatment of thrombotic diseases and ischemic heart syndrome due to platelet aggregation. Previous studies have already demonstrated that α-faâcytin may replace the missing factors VIII and IX in deficient plasmas, and activate purified human factor X into factor Xa [11]. It releases serotonin from platelets and directly aggregates human (but not rabbit) blood platelets. On the other hand, RP 34 has no effect on platelet aggregation [32]. Several anticoagulant PLA2s from snake venoms have been isolated and well characterized. Recently, two phospholipases, known as CC-PLA2-1 and CC-PLA2-2 with antplatelet aggregation activity, were isolated from Cerastes cerastes venom [45]. An anticoagulant PLA2 was isolated and characterized as an inhibitor of the prothrombinase complex through its specific binding to FX [46]. Ammodytoxin A (Atxa) and its natural ammodytoxin isoform C were isolated from Vipera ammodytes ammodytes venom and belong to group IIa secreted phospholipases. These two isoforms differ only by two amino acid residues (Phe 124 > Ile and Lys128 > Glu), but there are significant differences in toxicity. The mechanism by which they block coagulation has been elucidated. Complementary experiments using surface plasmon resonance showed complete inhibition of binding to FXa through calmodulin (CaM). The crystal structure showed that the C-terminal region required for binding to FXa and CaM is highly exposed and accessible for interaction with receptor proteins in the monomeric and dimeric forms of ammodytoxin [45].

Conclusion

Viperidae venoms, considered to be one of the most important bioresources, include pharmacologically active molecules such as proteinases (metalloproteinases and serine proteinases) and phospholipase A2 [46,47]. All of these molecules are of interest in biotherapy as biomedicines or may be used as diagnostic tools. Proteases and PLA2 act on the hemostatic system as procoagulants, anticoagulants, and as agents of pro- or anti-platelet aggregation. Some of these molecules, especially those isolated from Viperidae venoms, are used in the diagnosis and treatment of thrombotic and heart diseases. Some components act synergistically at different stages of the coagulation cascade [48]. Constituents of Viperidae venoms contain two categories of components that act antagonistically through activation or inhibition of coagulation factors and platelet aggregation. These compounds, able to hydrolyze the coagulation factors with high specificity, are divided into serine proteinases and metalloproteinases. Phospholipases
also display potent inhibition of platelet aggregation. Bio-
molecules of snake venoms are of great fundamental
diagnostic and therapeutic interest. Therapeutically,
proteinases from Viperidae venoms are widely used as an-
ticoagulants. Furthermore, they are valuable tools for un-
derstanding the different mechanisms of hemostasis and
are also used in the diagnosis of dysfunctions related to
coaugulation factors such as enzyme activity in thrombin-
like venoms that are used for the fibrinogenopathy screening.
Venoms are also used for diagnostic analysis of vari-
ous coaugulation factors (factors V, VII, X, platelet factor
III, protein C and factor of Willibrord). Snake venom pro-
teases are useful tools for studying coaugulation reactions.

Ethics committee approval

The present study was approved by the Ethics Committee.

Competing interests

The authors declare no conflicts of interest.

Authors’ contributions

Both authors collaborated in this work; they read and approved the final
manuscript. FLD carried out the purification and characterization of Serine
proteinases; RP34 and AfAicytin and drafted the manuscript. FC
with contribution of FLD, purified and characterized the molecules (CC2-PLA2,
CC3-SPhase and CCSV-MPase).

Acknowledgments

This work was partially supported by PNR and ANDRS (National Agency for
the Development of Health Research, Oran, Algeria) projects. We are grateful
Toxicon 2009, 55:461–464.
14. Bieber AL. Metal and non-protein constituents in snake venoms. In Snake
venoms. Edited by Lee CY. Berlin; Springer; 1979:295–304.
15. Mion G, Olive F, Hernandez E, Martin YN, Vellefossse S, Goyffon M. Action
des venins sur la coagulation sanguine: diagnostic des syndromes
hémorragiques. Bull Soc Path Exot 2002, 95(3):132–138.
16. Kini RM. Venom phospholipase A2 enzymes: structure, function and
mechanism. England: Chichester; 1997:1–51.
17. Chérifi F, Rousselle JC, Namane A, Laraba-Djebari F. CCV-MP phase,
a novel procoagulant metalloproteinase from Cerastes cerastes venom:
purification, biochemical characterization and protein identification.
Protein J 2010, 29:466–474.
18. Kamiguti AS. Platelets as target of snake venom metalloproteinases.
Toxicon 2005, 45(8):1041–1049.
19. Leonardi A, Fox JW, Trampus-Bakja A, Krizaj J. Ammodytase, a
metalloproteinase from Viper ammodytes ammodytes venom, possesses
strong fibrinolytic activity. Toxicon 2007, 49(6):833–842.
20. Svenson S, Markland FS Jr. Snake venom fibrin(ogen)olytic enzymes.
Toxicon 2005, 45(8):1021–1039.
21. Hutton RA, Warrel DA. Action of snake venom components on the
haemostatic system. Blood Rev 1993, 7(3):840–855.
22. Chippaux JP, Lang J, Arnald-Eddine S, Fatou P, Le Mener V. Short report:
treatment of snake envenomations by a new polyvalent antivenom
composed for highly purifyied F(ab’2)2. Results of a clinical trial in
northern Cameroon. Am J Trop Med Hyg 1999, 61(6):1017–1018.
23. Hawgood B, Doctor Albert Calmette 1863–1933: founder of antivenomous
erthrotherapy and of antituberculous BCG vaccination.
Toxicon 1999, 37(9):1241–1258.
24. Kritt MN, El AI, Dellagi K. The improvement and standardization of
antivenom production in developing countries: comparing antivenom
quality, therapeutic efficiency, and cost. J Venom Anim Toxins 1999,
5(2):128–141.
25. Ferreira Junior RS, Nascimento N, Couto R, Alves JB, Meira DA, Baraviera B:
Laboratory evaluation of young orines inoculated with natural or
60Co-irradiated Crotalus durissus terrificus venom during
hyperimmunization process. J Venom Anim Toxins incl Toxins Dis 2006,
12(4):620–631.
26. Oussedik-Ournehdi H, Laraba-Djebar F. Irradiated Cerastes cerastes venom
as a novel tool for immunotherapy. Immunopharmacol Immunotoxicol
2008, 30(1):37–52.
27. Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy.
Toxicon 1998, 36(6):823–846.
28. Morais VM, Massaldi H. Snake antivenoms: adverse reactions and
production technology. J Venom Anim Toxins 2009, 15(1):12–18.
29. Theakston RD, Warrell DA, Griffiths E. Report of a WHO workshop on
the standardization and control of antivenoms. Toxicon 2003, 41(5):541–557.
30. Wilde H, Thipkon P, Srivastava V, Chaiyabutr N. Heterologous antiserum
and antivenins are essential biologicals: perspectives on a worldwide crisis.
Ann Intern Med 1996, 125(5):233–236.
31. Laraba-Djebari F, Martin-Eauclaire MF. Purification and characterization
of a phospholipase A2 from Cerastes cerastes (horn viper) snake venom.
Toxicon 1993, 28(6):637–646.
32. Laraba-Djebari F, Martin-Eauclaire MF, Marchot PA. A fibrinogen-clotting
serine proteinase from Cerastes cerastes (horned viper) with arginine -
esterase an amidase activities, purification, characterization and kinetic parameter determination. Toxicon 1992, 30(1):1399–1410.

33. Chérifi F, Laraba-Djebari F: Purification and caractérisation d’une fraction anti-coagulante et protéolytique du venin de Cerastes cerastes. Rencontres en ToxinoLologi, «Toxines émergentes: nouveaux risques» Lavoisier, Editions TEC et DOC. 2007:234–235.

34. Chérifi F, Laraba-Djebari F: Mise en évidence et Caractérisation d’une Fraction Coagulante et Agrégante du venin de Cerastes cerastes. Toxines et fonctions cholinergiques neuronales et non neuronales. Editions de la SFET. 2008:153–154.

35. Bello CA, Hermogenes AL, Magalhaes A, Veiga SS, Gremski LH, Richardson M, et al: Isolation of a phospholipase A2 from the venom of snake Cerastes cerastes. Toxicon 2006, 49(2):285–290.

36. El-Asmar MF, Shaban E, Hagag M, Swelam N, Tu A: Coagulant component in Cerastes cerastes (Egyptian sand viper) venom. Toxicon 1986, 24(11–12):1037–1044.

37. Bazaar A, Manalichi N, El Ayeb M, Sanz L, Calvete JJ: Snake venom: a fibrinolytic enzymes from the venoms of Cerastes cerastes, Cerastes viphera and Macrophage lebetina. Proteomics 2005, 5(16):4223–4235.

38. Retzios AD, Markland FS: Fibrinolytic enzymes from the venoms of Agkistrodon contortrix contortrix and Crotalus basiliscus basiliscus: cleavage site specificity towards the alpha-chain of fibrin. Thromb Res 1994, 74(4):355–367.

39. Hahn BS, Chang IM, Kim YS: Purification and characterization of piscicarase I and II, the fibrinolytic enzymes from eastern cottonmouth moccasin venom (Agkistrodon piscivorus piscivorus). Toxicon 1995, 33(7):929–941.

40. Sigur E, Samel M, Tánismagi K, Subbi J, Sigur J, Tu AT: Biochemical characterization of lebtase, a direct-acting fibrinolytic enzyme from Vipera lebetina snake venom. Thromb Res 1998, 90(1):39–49.

41. Rodrigues VM, Soares AM, Guerra-Sá R, Rodrigues V, Fontes MR, Giglio JR: Structural and functional characterization of neuwiedase, a non-hemorrhagic fibrin(ogen)olytic metalloprotease from Bothrops neuwiedi snake venom. Arch Biochem Biophys 2000, 381(2):213–224.

42. Bello CA, Hermogenes AL, Magalhaes A, Veiga SS, Gremski LH, Richardson M, et al: Isolation and biochemical characterization of a fibrinolytic protease from Bothrops leucurus (white-tailed Jararaca) snake venom. Biochimie 2005, 88(2):189–200.

43. de Oliveira DG, Murakami MT, Cintra ACO, Franco JJ, Sampaio SV, Ami RK: Functional and structural analysis of two fibrinogen-activating enzymes isolated from the venoms of Crotalus durissus terrificus and Crotalus durissus collilineatus. Acta Biochim Biophys Sin (Shanghai). 2000, 32(1):21–29.

44. Costa FL, Rodrigues RS, Izidoro LF, Menaldo DL, Hamaguchi A, Homsi-Brandeburgo MI, et al: Biochemical and functional properties of a thrombin-like enzyme isolated from Bothrops pauloensis snake venom. Toxicon 2009, 54(6):725–735.

45. Zouari-Kessentini R, Luis-José L, Karray A, Kallech-Ziri O, Srairi-Abid N, Bazaa A, et al: Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibits cancerous cell adhesion and migration. Toxicon 2009, 53(4):444–453.

46. Faure G, Gowda VT, Marcon RC: Characterization of a human coagulation factor Xa-binding site on Viperid snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC Struct Biol 2007, 7:22.

47. Franceschi A, Rucavado A, Mora N, Gutiérrez JM: Purification and characterization of BaH4, a haemorrhagic metalloprotease from the venom of snake Bothrops asper. Toxicon 2000, 38(1):63–77.

48. Manaliuchi N, Barbouche R, Guermazi S, Bon C, el Ayeb M: Procoagulant and platelet-aggregating properties of Cerastocytin from Cerastes cerastes venom. Toxicon 1997, 35(2):261–272.