A closed Candidatus Odinarchaeum genome exposes Asgard archaeal viruses

Daniel Tamarit1,2, Eva F. Caceres3, Mart Krupovic4, Reindert Nijland5, Laura Eme6, Nicholas P. Robinson7, Thijs J. G. Ettema1

1Laboratory of Microbiology, Wageningen University, 6708WE Wageningen, The Netherlands
2Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
3Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
4Archaeal Virology Unit, Institut Pasteur, Paris, France
5Marine Animal Ecology Group, Wageningen University, 6708WE Wageningen, The Netherlands
6Laboratoire Écologie, Systématique, Évolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
7Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology remains enigmatic, and their virome, completely unknown. Here, we describe the closed genome of Ca. Odinarchaeum yellowstonii LCB_4, and, from this, obtain novel CRISPR arrays with spacer targets to several viral contigs. We find related viruses in sequence data from thermophilic environments and in the genomes of diverse prokaryotes, including other Asgard archaea. These novel viruses open research avenues into the ecology and evolution of Asgard archaea.

Asgard archaea are a diverse group of microorganisms that comprise the closest relatives of eukaryotes. Their genomes were first explored over six years ago, and much of their physiology and cell biology remains to be studied. While over two hundred draft genomes are available for this group, the majority is represented by highly fragmented and incomplete metagenome assembled genomes (MAGs), which has precluded obtaining insights into their mobile genetic elements (mobiliome). Given the central role of Asgard archaea in eukaryogenesis models, access to their complete genomes and information about their interactions with viruses are highly relevant.

To obtain a complete Asgard archaeal genome, we reassembled the Odinarchaeota LCB_4 genome, currently a 96% complete assembly of 1.46 Mbp distributed in 9 contigs. A promising reassembly yielded a 1.41 Mbp contig, a 13 kbp contig containing CRISPR-associated (cas) genes, and multiple short contigs harboring mobile element or repeat signatures (see Methods for details). After contig boundary inspection, we postulated that the first two contigs represented the entire Odinarchaeota LCB_4 chromosome as these were flanked by similar CRISPR arrays that extended for several kilobasepairs (Suppl. Fig S1). We successfully amplified these gaps using long-range PCR, sequenced the resulting amplicons with Nanopore sequencing, and performed a hybrid assembly, finally generating a single 1.418 Mbp circular contig. Given the high quality of this genome, we suggest recognizing this strain as Candidatus Odinarchaeum yellowstonii LCB_4 (hereafter ‘LCB_4’), in reference to Yellowstone National Park, location of the hot spring where it was sampled.

The LCB_4 genome contains a unique disposition of CRISPR-Cas genes (Fig. 1), including neighboring Type I-A and Type III-D cas gene clusters, separated by a 6.1 kb-long Type I-A CRISPR array, and further followed by another 2.7 kb-long Type I-A CRISPR array, with a total of 144 CRISPR spacers across both arrays. Nine of these spacers targeted, with 100% identity and query coverage, four putative mobile element contigs obtained in the same assembly that were not part of the closed genome (Fig. 1). Two of these contigs contained genes encoding common mobile element proteins, such as restriction endonucleases and integrases, but did not contain any viral signature genes (Suppl. Table S1). A third contig represented a complete, circular viral genome (Suppl. Fig. 1E) encoding transcriptional regulators, an endonuclease, and a double jelly-roll major capsid protein (DJR-MCP), typical of tailless icosahedral viruses (Fig. 1; Suppl. Fig. S2A; Suppl. Table S1). This specific protein was previously found in a study of the DJR-MCP family, and was tentatively classified as belonging to an “Odin group” since it was found in the same metagenome as Ca. Odinarchaeum LCB_4. The present complete recovery of LCB_4 CRISPR arrays allowed us to confirm that this circular contig indeed represents a virus associated with Ca. Odinarchaeum, for which we suggest the name Huginnvirus, in reference to Odin’s raven, Huginn (“thought”).
 Furthermore, 3 spacers yielded 100% identity (and a further 5 spacers if 1-2 mismatches were permitted) and 100% query coverage matches against a 12.7 kb-long contig recovered by the new Ca. Odinarchaeum LCB_4 assembly (Fig. 1). All 3 hits targeted an ORF encoding a primed family B DNA Polymerase (PolB), a gene frequently observed in archaeal viruses. Further inspection of this contig revealed genes encoding a zinc-ribbon protein and a His1-family MCP (Suppl. Fig S2B; Suppl. Table S1), conserved in spindle-shaped viruses10. This contig was flanked by ca. 80 nucleotides-long terminal inverted repeats, a typical signature of viruses with linear dsDNA genomes replicated by protein-primed PolBs11. Thus, this contig represents a complete Asgard archaeal viral genome for which we suggest the name Muninnvirus, in relation to Odin’s raven, Muninn (“memory”). We further queried the PolB sequence from the Muninnvirus genome through phylogenetic analysis, finding that it is closely related to a homolog in a Sulfolobus ellipsoid virus 1 (SEV1)12 (Fig. 2A), recently isolated from a Costa Rican hot spring. No other genes were found to be shared between Muninnvirus and SEV1, indicative of recent horizontal transfer of polB in at least one of these viruses. Interestingly, other close homologs included multiple sequences that were likewise obtained from hot springs or hydrothermal vents (Fig. 2A). Two of these hits were part of an Asgard archaeal MAG (QZMA23B3), and a third one belonged to a MAG (SpSt-845) originally classified as Bathyarchaeota. A phylogenomic analysis that indicated that the QZMA23B3 belonged to the recently described Asgard archaeal class Jordarchaeia7, and that SpSt-845 in fact belonged to the Nitrososphaeria (Suppl. Fig. S3). Two additional PolB sequences from the same Nitrososphaerai MAG were found to be highly similar (>80% identity) to HGY28086.1 (and were thus not included in the phylogenetic analysis). The five PolB homologs were encoded in contigs containing SIRV2-family MCP genes (Fig. 2B; Suppl. Fig. S2C; Suppl. Table S1), exclusive to archaeal filamentous viruses with linear dsDNA genomes and classified into the realm Adnaviria13. Both the Jordarchaeia and the Nitrososphaeria contigs displayed high conservation in synteny and protein sequences, indicating high contig completeness and recent diversification (Fig. 2B). Notably, none of the known archaeal viruses with SIRV2-family MCP encodes its own PolB, suggesting that the
group identified herein represents a new archaeal virus family. However, while we detected 104 CRISPR arrays in the MAGs where these viral contigs were identified, we could not find accurate spacer matches (query coverage > 90%, identity > 90%) to these viral sequences and therefore the identity of the hosts of these thermophilic viruses remains unclear.

Figure 2. Discovery of additional Asgard archaeal mobile elements. (A) Phylogeny of DNA polymerase B obtained with IQTree2 under the Q.pfam+C60+R4+F+PMSF model. Color: Ca. Odinarchaeum LCB_4 MAG (red); sequences obtained from hot springs (pink); hydrothermal vents (purple); marine water (dark blue); Chatahoochee river (USA) (light blue); mine drainage (brown). Branch support value are Felsenstein Bootstrap Proportions (left) and Transfer Bootstrap Expectation (right). The tree presented here is a clade of the full tree shown in Suppl. Fig. S4. (B and C) Comparison between the viral contigs (B) of Jordarchaeia QZMA23B3 and Nitrososphaeria SpSt-845, and (C) of Muninnvirus and another viral contig in the Ca. Odinarchaeum LCB_4 assembly. Similarity lines represent BlastP hits with E-value lower than 1e-5, and percent identity as shown in the upper-right legend.

The PoB phylogeny further suggests that a clade of viral sequences found in MAGs from mesophiles evolved from a likely thermophile-infecting ancestor. While none of the mentioned mobile elements share other proteins in common with Muninnvirus, a more distant relative of the Muninnvirus PoB sequence was found in a contig from the same assembly. Like Muninnvirus, this sequence encoded a His1-like MCP, and a gene encoding a transmembrane protein of unknown function (Fig. 2C). The latter two genes surrounded another gene encoding a relatively long protein (580 and 553 amino acid residues) with multiple transmembrane helices and complex predicted structures (Suppl. Fig. S2D), with no detectable similarity, but possibly related functions.

The CRISPR-Cas system of Ca. Odinarchaeum yellowstonii LCB_4 is likely its primary antiviral defense system. We could find no homologs for DISARM14 or other recently discovered antiviral systems15,16 in its genome. The retention of numerous CRISPR spacers against these mobile elements is significant and indicates coevolutionary dynamics with viruses from multiple families.

Our findings highlight the benefits of improving the quality of Asgard archaeal genomes. The discovery of viruses of thermophilic Asgard archaea opens the door to the study of the Asgard archaeal mobilome, promising exciting new insights into the ecology, physiology and evolution of the closest archaeal relatives of eukaryotes.
ACKNOWLEDGEMENTS

We thank Laura Wenzel for discussions on hybrid assemblies, and Raymond Staals and John van der Oost for helpful comments on CRISPR-Cas systems. This research was funded by the Swedish Research Council (International Postdoc grant 2018-00669 to DT), the European Research Council (ERC consolidator grant 817834 to TJGE), the Swedish Foundation for Strategic Research (SSF-FFL5 to TJGE) and a Wellcome Trust collaborative award (203276/Z/16/Z to TJGE). NR was supported by start-up funds from BLS, Lancaster University and a Leverhulme Research Project Grant (RPG-2019-297). MK was supported by the Agence Nationale de la Recherche (ANR-20-CE20-0009-02) and Ville de Paris (Emergence(s) project MEMREMA). LE received funding from the European Research Council (ERC Starting Grant 803151).

DATA AVAILABILITY

Raw Nanopore amplicon reads and complete Ca. Odinarchaeum LCB_4 assembly are available at NCBI under Bioproject PRJNA XXXXXX. Additional data and supporting alignments and trees can be found in Zenodo, under the link: XXXXXXXXXXX.

METHODS

Odinarchaeon LCB_4 genome reassembly

To reassemble the Odinarchaeon LCB_4 genome (Suppl. Fig. S1A), its corresponding Illumina reads17 (BioSample SAMN04386028) were mapped against Asgard MAGs4 using Minimap218 v2.2.17. Mapped reads were extracted and assembled with Unicycler19 v0.4.4. This assembly obtained a 1.406 Mb contig, which was not predicted as circular despite both of its contig boundaries ending in CRISPR arrays (Suppl. Fig. S1B). Additional short (< 13 kb) contigs were not considered part of the main chromosome if they represented mobile elements (with signatures such as differing coverage, circularity, CRISPR spacer hits and/or presence of typical mobile element genes), rRNA genes from different organisms, or CRISPR arrays. The latter two were expected due to the conservation of sequences such as rRNA gene sequences and CRISPR repeats. After removing these contigs, only one additional contig of 10.6 kb containing type I-A cas genes remained. Given that the 1.406 Mb contig ended in type I-A CRISPR arrays, we hypothesized that these two contigs could represent the entire circular chromosome of Ca. Odinarchaeum LCB_4. In parallel, we assembled the Illumina reads with MEGAHIT20 v.1.1.3 with options “--k-min 57 --k-max 147 --k-step 12”. While highly fractionated, this assembly found an alternative solution for the sequences involved in the contig borders of the previous assembly (Suppl. Fig. S1B). In this case, the type-I-A cas genes were surrounded by two separate CRISPR arrays. Moreover, four consecutive spacers in the innermost side of one of the CRISPR arrays in this assembly were identical to the outermost spacers of the CRISPR array present at the border of the 1.406 Mb contig in the Unicycler assembly (Suppl. Fig. S1B). These results suggested a specific disposition for the two aforementioned contigs.

Long-range PCR and Nanopore sequencing

Four regions were selected for long-range Polymerase Chain Reaction (lrPCR): two contig gaps, corresponding to CRISPR arrays, and two control regions spanning ca. 5 kb of the rRNA
Operon and ca. 10 kb of a ribosomal protein gene cluster (Suppl. Table S2). Primers were designed using the Sigma-Aldrich OligoEvaluator™ (http://www.oligoevaluator.com/OligoCalcServlet) and synthesized by Integrated DNA Technologies, Inc. MDA-amplified environmental DNA isolated from the Lower Culex Basin at Yellowstone National Park (USA)17 was then amplified with Herculase polymerase (Agilent). Amplification of control and gap regions was then performed following the parameters shown in Suppl. Table S2. Products were separated on a 0.8% agarose gel in 1XTBE stained with SYBR-Gold, and purified using a Qiagen Spin purification kit following the manufacturers instructions. Purified PCR fragments were pooled and used to construct a library with the ligation kit SQK-LSK109. Sequencing was performed on an Oxford Nanopore MinION Mk1C sequencer using an R9.4.1 flow cell. Raw sequence data was basecalled using Guppy v4.2.2.

High Accuracy. Reads were separated in two bins at 3-9 kb (subsampled to 30X) and 9-12 kb, and processed to obtain consensus sequences using Decon (https://github.com/Saskia-Oosterbroek/decona) v0.1.2 (-c 0.85 -w 6 -i -n 25 -M -r). Both control regions, comprising the rRNA and ribosomal protein operons, were 100% identical to the corresponding nucleotide sequences of the published assembly.

Hybrid assembly

Reads were filtered using NanoFilt v.2.6.0 with options “-q 10 -l 1000”. We used these filtered Nanopore reads and the mapped Illumina reads to perform a hybrid assembly with Unicycler 0.4.4, which resolved both the main chromosomal contig and a viral contig (Huginnvirus) as circular (Suppl. Fig S1DE). Read mapping was performed using bowtie221 v2.3.5.1 for Illumina reads and minimap218 v2.17.r941 for Nanopore reads. A local cumulative GC skew minimum (Suppl. Fig S1E), together with low R-Y (purine minus pyrimidine), M-K (amino minus keto) and cumulative AT skew values, was selected as a potential replication origin and the circular contig was permutated to set this position as nucleotide +1.

Annotation

CRISPR arrays were detected and classified using CRISPRdetect22 v2.4 online, and cas genes were detected and classified through CRISPRcasIdentifer23 v1.1.0. Proteins were classified into COG families24 based on 5 best local Blastp25 hits to the same COG, and domain annotation was performed through InterProScan26 v5.48-83.0. Mobile element protein annotation was performed using HHsearch27 against Pfam28, PDB29, SCOPe30, CDD31 and Uniprot32 viral protein sequence databases. Synteny plots were performed with genoPlotR33. Structural predictions were performed with RoseTTAFold34 through the Robetta portal.

Phylogenetics

Reference DNA polymerase B sequences were obtained from Kim et al.35 and used for Psiblast36 v2.10.0+ against the NR database and a group of Asgard archaeal MAGs from Eme et al.4. Sequences with over 70% similarity were removed with CD-Hit37 v4.7. The remaining sequences were aligned with Mafft-linsi38 v7.450 and columns with over 50% gaps were removed using trimAl39 v1.4.rev22. Additionally, sequences with over 50% gaps in the trimmed alignment were removed. Maximum-likelihood trees were reconstructed using IQ-TREE40 v2.0-rc1 using ModelFinder41 with all combinations of the empirical models LG, JTT, WAG and Q.pfam with site-class mixtures (none, C20, C40, C60), rate heterogeneity (none, G4 and R4)
and frequency (none, F) parameters. Using the previous tree as a guide, a PMSF42 approximation of the selected model was used to reconstruct a tree with 100 non-parametric bootstrap pseudo-replicates, which was then interpreted both as the standard Felsenstein bootstrap proportions and as transfer bootstrap expectation43. To assess the taxonomy of selected MAGs, all archaeal GTDB44 representative sequences (as of August 2021) were retrieved and supplemented with Asgard archaeal sequences from the Hermod45, SiF, Wukong8 and Jord7 groups. Together with query sequences, GToTree46 v1.5.45 was then used to reconstruct a tree with parameters “-H Archaea -D -G 0.2”.

SUPPLEMENTARY MATERIAL

Supplementary Table S1. Annotation of mobile elements. Yellow cells represent annotation of key viral proteins.

Supplementary Table S2. Methods: primers and lPCR cycling parameters.

Supplementary Figure S1. Obtaining a closed Ca. Odinarchaeum LCB_4 genome. (A) Summary methodology for the reassembly, refinement and closing of the Ca. Odinarchaeum LCB_4 genome. (B) Schematic of the assembly status before long-range PCR, indicating the presence of gaps and the agreement between two separate assemblies, which guided primer design. (C) Purified PCR products; lane 1: DNA ladder, 2: Positive control ca. 5 kb rRNA gene cluster; 3: Positive control ca. 10 kb ribosomal protein gene cluster; 4-5: first gap closing, at distances of ca. 5 and 5.5 kb; 6-8: second gap closing, at distances of ca. 4, 4.5 and 5 kb. (D) Genome map of Ca. Odinarchaeum LCB_4, including (from inside out): GC skew (line) and cumulative GC skew (histogram); GC content; Crick strand genes; Watson strand genes; Nanopore reads coverage capped at 1500X; Illumina read coverage (light: proper pairs, NM<3) capped at 50X; repeats; chromosome. (E) Comparison between previous assembly and new assembly for Huginnvirus, indicating circularity. Similarity lines represent two single BlastN hits with up to 1 mismatches. (F) Genomic patterns of the Ca. Odinarchaeum LCB_4 indicating a potential origin of replication at position 959350.

Supplementary Figure S2. Predicted structure of selected proteins. Comparisons between the structures of (A) DJR-MCPs (left: Huginnvirus: OLS18934.1; right: Sulfolobus turreted icosahedral virus 1: 3J31); (B) His1-like MCPs (left: Muninnvirus: OLS18630.1; right: His1 virus: YP_529533.1); (E) SIRV2-like MCPs (left: Jordarchaeia QZMA23B3: QZMA23B3_25900; right: Sulfolobus islandicus rod-shaped virus 2 (SIRV-2): 3J9X) and (F) transmembrane proteins (left: Muninnvirus: OLS18631.1; right: Ca. Odinarchaeum LCB_4 virus: OLS16720). All structures predicted with RoseTTAFold are color-coded according to their error estimate (Å). (C,D) Given the high error estimates for the predicted structures of His1-like MCPs (B), we append HHsearch results for OLS18630.1 (Muninnvirus) and OLS18934.1 (Ca. Odinarchaeote LCB_4 MAG), the latter of which shows a tandem duplication (Regions 1 and 2) of the His1-like MCP. H(h), α-helix; E(e), β-strand; C(c), coil.

Supplementary Figure S3. Taxonomic placement of archaeal MAGs. Phylogenomic tree obtained with FastTree including two archaeal MAGs (arrows) containing viral contigs within all current GTDB Archaea representatives (see methods). Branch colors represent Nitrososphaeria (red), Asgard archaea (light blue), and Jordarchaeia (purple). All placements are supported with branch support values of 1.0. Full tree can be found in data repository.

Supplementary Figure S4. PolB phylogeny. Midpoint-rooted full tree corresponding to Fig. 2A. Taxon labels shown in Fig 2A are colored with the same pattern, and their corresponding branches are colored red. Support values are transfer bootstrap expectation (left) and Felsenstein bootstrap proportions (right).
REFERENCES

1 Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. *Nature* **541**, 353-358, doi:10.1038/nature21031 (2017).

2 Williams, T. A., Cox, C. J., Foster, P. G., Szollosi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. *Nat Ecol Evol* **4**, 138-147, doi:10.1038/s41559-019-1040-x (2020).

3 Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. *Nat Rev Microbiol* **15**, 711-723, doi:10.1038/nrmicro.2017.133 (2017).

4 Eme, L. et al. Inference and reconstruction of the Skadiarchaeal ancestry of eukaryotes. *Manuscript under revision* (2021).

5 Farag, I. F., Zhao, R. & Biddle, J. F. "Sifarchaeota," a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy. *Appl Environ Microbiol* **87**, doi:10.1128/AEM.02584-20 (2021).

6 Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. *Nature* **593**, 553–557 (2021).

7 Sun, J. E., P.N.; Gagen, E.J.; Woodcroft, B.J.; Hedlund, B.P.; Woyke, T.; Hugenholtz, P.; Rinke, C. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. *ISME Communications* **1**, 30 (2021).

8 Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. *Nature* **521**, 173-179, doi:10.1038/nature14447 (2015).

9 Yutin, N., Backstrom, D., Ettema, T. J. G., Krupovic, M. & Koonin, E. V. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. *Virol J* **15**, 67, doi:10.1186/s12985-018-0974-y (2018).

10 Krupovic, M., Quemin, E. R., Bamford, D. H., Forterre, P. & Prangishvili, D. Unification of the globally distributed spindle-shaped viruses of the Archaea. *J Virol* **88**, 2354-2358, doi:10.1128/JVI.02941-13 (2014).

11 Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. *Virus Res* **244**, 181-193, doi:10.1016/j.virusres.2017.11.025 (2018).

12 Wang, H. et al. Novel Sulfolobus Virus with an Exceptional Capsid Architecture. *J Virol* **92**, doi:10.1128/JVI.01727-17 (2018).

13 Krupovic, M. et al. Adnaviria: a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. *J Virol* **95**, e0067321, doi:10.1128/JVI.00673-21 (2021).

14 Ofir, G. et al. DISARM is a widespread bacterial defence system with broad antiphage activities. *Nat Microbiol* **3**, 90-98, doi:10.1038/s41564-017-0051-0 (2018).

15 Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. *Nature* **589**, 120-124, doi:10.1038/s41586-020-2762-2 (2021).

16 Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pan-genome. *Science* **359**, doi:10.1126/science.aar4120 (2018).

17 Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaeia. *Nat Microbiol* **1**, 16002, doi:10.1038/nmicrobiol.2016.2 (2016).

18 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).

19 Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. *PLoS Comput Biol* **13**, e1005595, doi:10.1371/journal.pcbi.1005595 (2017).
Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3-11, doi:10.1016/j.ymeth.2016.02.020 (2016).

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359, doi:10.1038/nmeth.1923 (2012).

Biswas, A., Staals, R. H., Morales, S. E., Fineran, P. C. & Brown, C. M. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics 17, 356, doi:10.1186/s12864-016-2627-0 (2016).

Padilha, V. A., Alkhnbashi, O. S., Shah, S. A., de Carvalho, A. & Backofen, R. CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience 9, doi:10.1093/gigascience/giaa062 (2020).

Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43, D261-D269, doi:10.1093/nar/gku1223 (2015).

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421, doi:10.1186/1471-2105-10-421 (2009).

Chandonia, J. M., Fox, N. K. & Brenner, S. E. SCOPe: classification of large macromolecular structures in the structural classification of proteins extended database. Nucleic Acids Res 47, D475-D481, doi:10.1093/nar/gky1134 (2019).

Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48, D265-D268, doi:10.1093/nar/gkz991 (2020).

UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49, D480-D489, doi:10.1093/nar/gkaa100 (2021).

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871-876, doi:10.1126/science.abj8754 (2021).

Kim, J. G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci U S A 116, 15645-15650, doi:10.1073/pnas.1905682116 (2019).

Schaffer, A. A. et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29, 2994-3005, doi:10.1093/nar/29.14.2994 (2001).

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152, doi:10.1093/bioinformatics/bts656 (2012).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772-780, doi:10.1093/molbev/mst010 (2013).

Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).

Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534, doi:10.1093/molbev/msaa015 (2020).

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods* **14**, 587-589, doi:10.1038/nmeth.4285 (2017).

Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. *Syst Biol* **67**, 216-235, doi:10.1093/sysbio/syx068 (2018).

Lemoine, F. *et al.* Renewing Felsenstein's phylogenetic bootstrap in the era of big data. *Nature* **556**, 452-456, doi:10.1038/s41586-018-0043-0 (2018).

Parks, D. H. *et al.* A complete domain-to-species taxonomy for Bacteria and Archaea. *Nat Biotechnol* **38**, 1079-1086, doi:10.1038/s41587-020-0501-8 (2020).

Zhang, J. W. *et al.* Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/ benzyl-succinate synthase and benzoyl-CoA pathway. *ISME J* **15**, 1826-1843, doi:10.1038/s41396-020-00890-x (2021).

Lee, M. D. GTorTree: a user-friendly workflow for phylogenomics. *Bioinformatics* **35**, 4162-4164, doi:10.1093/bioinformatics/btz188 (2019).