HYPERCYCLIC AND MIXING COMPOSITION OPERATORS ON H^p

ZHENG RONG

Abstract. Extending previous results of Bourdon and Shapiro we characterize the hypercyclic and mixing composition operators C_φ for the automorphisms of \mathbb{D} on any of the spaces H^p with $1 \leq p < +\infty$.

1. Introduction

Throughout this article, let \mathbb{N} denote the set of nonnegative integers. Let \mathbb{C} denote the complex number field. Let $\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}$ and $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$.

An automorphism of \mathbb{D} is a bijective analytic function $\varphi : \mathbb{D} \to \mathbb{D}$. The set of all automorphisms of \mathbb{D} is denoted by $\text{Aut}(\mathbb{D})$. It is well known that the automorphisms of \mathbb{D} are the linear fractional transformations

$$\varphi(z) = \frac{bz - a}{1 - az}, |a| < 1, |b| = 1.$$

Moreover, every $\varphi \in \text{Aut}(\mathbb{D})$ maps \mathbb{T} bijectively onto itself (see [8, pages 131-132]).

For $1 \leq p < +\infty$, let H^p denote the space of all analytic functions on \mathbb{D} for which

$$\sup_{0 \leq r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} < +\infty.$$

For any $f \in H^p$, let

$$\|f\|_p = \sup_{0 \leq r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}}.$$

Then $(H^p, \| \cdot \|_p)$ is a Banach space.

Let $\varphi \in \text{Aut}(\mathbb{D})$ and let $C_\varphi(f) = f \circ \varphi(f \in H^p)$ be the corresponding composition operator on H^p. It is well known that for any $1 \leq p < +\infty$ and $\varphi \in \text{Aut}(\mathbb{D})$, C_φ defines a continuous linear operator on H^p (see [25, pages 220-221]).

A continuous linear operator T on a Banach space X is called hypercyclic if there is an element x in X whose orbit $\{T^n x : n \in \mathbb{N}\}$ under T is dense in X; topologically transitive if for any pair U, V of nonempty open subsets of X, there exists some nonnegative integer n such that $T^n(U) \cap V \neq \emptyset$; and mixing if for any pair U, V
of nonempty open subsets of X, there exists some nonnegative integer N such that $T^n(U) \cap V \neq \emptyset$ for all $n \geq N$.

Recently Bourdon and Shapiro \[5, 6\] have done an extensive study of cyclic and hypercyclic linear fractional composition operators on H^2. Zorboska \[26\] has determined hypercyclic and cyclic composition operators induced by a linear fractional self map of \mathbb{D}, acting on a special class of smooth weighted Hardy spaces $H^2(\beta)$. Gallardo and Montes \[11\] have obtained a complete characterization of the cyclic, supercyclic and hypercyclic composition operators C_φ for linear fractional self-maps φ of \mathbb{D}, acting on any of the spaces S_ν, $\nu \in \mathbb{R}$. In particular, S_0 is the Hardy space H^2, $S_{-\frac{1}{2}}$ is the Bergman space A^2, and $S_{\frac{1}{2}}$ is the Dirichlet space D under an equivalent norm. Since the Hardy space H^2 is a particular case of the spaces H^p with $1 \leq p < +\infty$, it is therefore very natural to try to characterize the cyclic, supercyclic and hypercyclic composition operators C_φ for linear fractional self-maps φ of \mathbb{D} on any of the spaces H^p with $1 \leq p < +\infty$. In this paper we will characterize the hypercyclic and mixing composition operators C_φ for the automorphisms of \mathbb{D} on any of the spaces H^p with $1 \leq p < +\infty$, generalizing the corresponding results in \[5, 6\].

Theorem 1.1. Let $1 \leq p < +\infty$. Let $\varphi \in \text{Aut}(\mathbb{D})$ and C_φ be the corresponding composition operator on H^p. Then the following assertions are equivalent:

1. C_φ is hypercyclic;
2. C_φ is mixing;
3. φ has no fixed point in \mathbb{D}.

Bourdon and Shapiro \[5, 6\] proved the above result in the case $p = 2$. Hence the above result generalizes the corresponding results in \[5, 6\].

This paper is organized as follows. In Section 2 we characterize the hypercyclic and mixing composition operators C_φ for the automorphisms of \mathbb{D} on any of the spaces H^p with $1 \leq p < +\infty$.

2. **HYPERCYCLIC AND MIXING COMPOSITION OPERATORS ON H^p**

In this section we characterize the hypercyclic and mixing composition operators C_φ for the automorphisms of \mathbb{D} on any of the spaces H^p with $1 \leq p < +\infty$, generalizing the corresponding results in \[5, 6\].

The following propositions are the major techniques we need.

If $f \in H^p(1 \leq p < +\infty)$, then \(\lim_{r \to 1^-} f(re^{i\theta}) \) exists for almost all values of θ (see \[10\], page 17), thus defining a function which we denote by $f(e^{i\theta})$.

We need the following important properties of the H^p-spaces (see \[10\], pages 9, 12, 21).

Proposition 2.1. Let $f \in H^p, 1 \leq p < +\infty$. Then

1. \(\|f\|_p = \lim_{r \to 1^-} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}; \)
\[\lim_{r \to 1^-} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta = \int_0^{2\pi} |f(e^{i\theta})|^p d\theta; \]
\[\lim_{r \to 1^-} \int_0^{2\pi} |f(re^{i\theta}) - f(e^{i\theta})|^p d\theta = 0. \]

We need the following property of the Taylor coefficients of \(H^p \) functions (see \cite{10}, page 94).

Proposition 2.2. Let \(1 \leq p \leq 2 \) and \(f \in H^p \). Let \(\sum_{n=0}^{\infty} a_n z^n \) be the Taylor series of \(f \) at the origin. Then \(\{a_n\}_{n=0}^{\infty} \in l^q \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Our aim now is to characterize when \(C_\varphi \) is hypercyclic on \(H^p \). To this end we need some important dynamical properties of automorphisms \(\varphi \) of \(\mathbb{D} \).

Let \(\varphi(z) = \frac{az + b}{cz + d}, ad - bc \neq 0 \)
be an arbitrary linear fractional transformation, which we consider as a map on the extended complex plane \(\hat{\mathbb{C}} \). Then \(\varphi \) has either one or two fixed points in \(\hat{\mathbb{C}} \), or it is the identity.

Suppose that \(\varphi \) has two distinct fixed points \(z_0 \) and \(z_1 \), and let \(\sigma \) be a linear fractional transformation that maps \(z_0 \) to 0 and \(z_1 \) to \(\infty \). Then \(\psi := \sigma \circ \varphi \circ \sigma^{-1} \) has fixed points 0 and \(\infty \), which easily implies that \(\psi(z) = \lambda z \) for some \(\lambda \neq 0 \). The constant \(\lambda \) is called the **multiplier** of \(\varphi \). Replacing \(\sigma \) by \(1/\sigma \) one sees that also \(1/\lambda \) is a multiplier, which, however, causes no problem in the following.

Definition 2.3. Let \(\varphi \) be a linear fractional transformation that is not the identity.
(a) If \(\varphi \) has a single fixed point then it is called **parabolic**.
(b) Suppose that \(\varphi \) has two distinct fixed points, and let \(\lambda \) be its multiplier. If \(|\lambda| = 1 \) then \(\varphi \) is called **elliptic**; if \(\lambda > 0 \) then \(\varphi \) is called **hyperbolic**; in all other cases, \(\varphi \) is called **loxodromic**.

We need the following dynamical properties of automorphisms \(\varphi \) of \(\mathbb{D} \) (see \cite{15}, pages 125-126).

Proposition 2.4. Let \(\varphi \in \text{Aut}(\mathbb{D}) \), not the identity. Then we have the following:
(i) if \(\varphi \) is parabolic then its fixed point \(z_0 \) lies in \(\mathbb{T} \), and \(\varphi^n(z) \to z_0 \), \(\varphi^{-n}(z) \to z_0 \) for all \(z \in \hat{\mathbb{C}} \);
(ii) if \(\varphi \) is elliptic then it has a fixed point in \(\mathbb{D} \);
(iii) if \(\varphi \) is hyperbolic then it has distinct fixed points \(z_0 \) and \(z_1 \) in \(\mathbb{T} \) such that \(\varphi^n(z) \to z_0 \) for all \(z \in \hat{\mathbb{C}}, z \neq z_1 \), and \(\varphi^{-n}(z) \to z_1 \) for all \(z \in \hat{\mathbb{C}}, z \neq z_0 \);
(iv) \(\varphi \) cannot be loxodromic.

The dynamical properties of \(\varphi \in \text{Aut}(\mathbb{D}) \) imply the dynamical properties of \(C_\varphi \).

Finally we prove Theorem 1.1.

Proof of Theorem 1.1.
(2)⇒(1) Assume that C_{φ} is mixing. Then C_{φ} is topologically transitive. Since the polynomials form a dense set in H^p, H^p is separable. Since a continuous linear operator on a separable Banach space is topologically transitive if and only if it is hypercyclic (see [13, page 10]), C_{φ} is hypercyclic.

(1)⇒(3) Assume that C_{φ} is hypercyclic. We will show that φ has no fixed point in \mathbb{D}. Suppose φ has a fixed point $z_0 \in \mathbb{D}$. Since C_{φ} is hypercyclic, there exists a $f \in H^p$ such that $\{(C_{\varphi})^n f : n \geq 0\}$ is dense in H^p. We may choose a $g \in H^p$ with $g(z_0) \neq f(z_0)$. Since $\{(C_{\varphi})^n f : n \geq 0\} = H^p$, we may choose a sequence $\{n_k\}_{k=1}^{\infty}$ of positive integers with $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$ such that $\lim_{k \to \infty} (C_{\varphi})^{n_k} f = g$.

Since each point evaluation $k_\lambda : H^p \to \mathbb{C}(\lambda \in \mathbb{D})$ is continuous on H^p, where $k_\lambda(f) = f(\lambda)(f \in H^p)$, we have $\lim_{k \to \infty} ((C_{\varphi})^{n_k} f)(z_0) = g(z_0)$. Notice that $((C_{\varphi})^{n_k} f)(z_0) = (f \circ \varphi^{n_k})(z_0) = f(\varphi^{n_k}(z_0)) = f(z_0)$.

Hence $f(z_0) = g(z_0)$, this is a contradiction with $f(z_0) \neq g(z_0)$. Therefore φ has no fixed point in \mathbb{D}.

(3)⇒(2) Suppose that φ has no fixed point in \mathbb{D}. It suffices to show that C_{φ} satisfies Kitai’s criterion. By Proposition 2.4, φ is either parabolic or hyperbolic, and in both cases φ has fixed points z_0 and z_1 in \mathbb{T} (possibly with $z_0 = z_1$) such that $\varphi^n(z) \to z_0$ for all $z \in \mathbb{T}\{z_1\}$ and $\varphi^{-n}(z) \to z_1$ for all $z \in \mathbb{T}\{z_0\}$.

Now, for X_0 we will take the subspace of H^p of all functions that are analytic on a neighbourhood of $\overline{\mathbb{D}}$ and that vanish at z_0. Since z_0 is a fixed point of φ, C_{φ} maps X_0 into itself.

Claim 1. For any $1 \leq p < +\infty$ we have $X_0 = H^p$.

We divide it into two cases.

Case i. If $1 < p < +\infty$. First we will show that $X_0^{+} = \{0\}$. Let $1 < p < +\infty$ and $x^* \in X_0^{+}$. We will show that $x^* = 0$. Since $1 < p < +\infty$ and $x^* \in (H^p)^*$, there exists a unique function $g \in H^q$ such that

$$x^*(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) g(e^{-i\theta}) d\theta (f \in H^p),$$

where $\frac{1}{p} + \frac{1}{q} = 1$ (see [10, pages 112-113]). By Proposition 2.1 we have

$$\lim_{r \to 1^-} \int_0^{2\pi} |g(re^{i\theta}) - g(e^{i\theta})|^q d\theta = 0.$$

Hence for each $f \in H^p$ we have

$$\lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) g(re^{-i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) g(e^{-i\theta}) d\theta.$$
Since, for any \(n \geq 0 \), the functions \(g_n : \mathbb{C} \to \mathbb{C} \) defined by \(g_n(z) = z_0 z^n - z^{n+1} \) belong to \(X_0 \) we have that \(x^*(g_n) = 0(n \geq 0) \). Notice that
\[
x^*(g_n) = \frac{1}{2\pi} \int_0^{2\pi} g_n(\epsilon^{i\theta})g(\epsilon^{-i\theta})d\theta
= \lim_{r\to 1^{-}} \frac{1}{2\pi} \int_0^{2\pi} g_n(\epsilon^{i\theta})g(re^{-i\theta})d\theta.
\]
Hence for any \(n \geq 0 \) we have
\[
\lim_{r\to 1^{-}} \frac{1}{2\pi} \int_0^{2\pi} g_n(\epsilon^{i\theta})g(re^{-i\theta})d\theta = 0.
\]
Let \(g(z) = \sum_{n=0}^{\infty} a_n z^n(z \in \mathbb{D}), 0 < r < 1 \) and \(n \geq 0 \). Then
\[
\frac{1}{2\pi} \int_0^{2\pi} g_n(\epsilon^{i\theta})g(re^{-i\theta})d\theta
= \frac{1}{2\pi} \int_0^{2\pi} (z_0 \epsilon^{in\theta} - \epsilon^{i(n+1)\theta})g(re^{-i\theta})d\theta
= \frac{1}{2\pi} \int_0^{2\pi} z_0 \epsilon^{in\theta} g(re^{-i\theta})d\theta - \frac{1}{2\pi} \int_0^{2\pi} \epsilon^{i(n+1)\theta}g(re^{-i\theta})d\theta
= \frac{1}{2\pi} \int_0^{2\pi} z_0 \epsilon^{in\theta} \sum_{k=0}^{\infty} a_k r^k e^{-ik\theta}d\theta - \frac{1}{2\pi} \int_0^{2\pi} \epsilon^{i(n+1)\theta} \sum_{k=0}^{\infty} a_k r^k e^{-ik\theta}d\theta
= \sum_{k=0}^{\infty} \frac{1}{2\pi} \int_0^{2\pi} z_0 a_k r^k \epsilon^{-ik\theta}d\theta - \sum_{k=0}^{\infty} \frac{1}{2\pi} \int_0^{2\pi} \epsilon^{i(n+1)\theta} a_k r^k e^{-ik\theta}d\theta
= \frac{1}{2\pi} \int_0^{2\pi} z_0 a_n r^n d\theta - \frac{1}{2\pi} \int_0^{2\pi} a_{n+1} r^{n+1} d\theta
= z_0 a_n r^n - a_{n+1} r^{n+1}.
\]
Since \(\lim_{r\to 1^{-}} \frac{1}{2\pi} \int_0^{2\pi} g_n(\epsilon^{i\theta})g(re^{-i\theta})d\theta = 0 \), we have
\[
\lim_{r\to 1^{-}} (z_0 a_n r^n - a_{n+1} r^{n+1}) = z_0 a_n - a_{n+1} = 0.
\]
Hence \(a_n = a_0 z^n_0(n \geq 0) \). Since \(q = \frac{p}{p-1} > 1 \), we may choose \(1 < q_1 \leq 2 \) with \(q_1 < q \). It is evident that \(H^q \subset H^{q_1} \). Since \(g \in H^q, g \in H^{q_1} \). By Proposition 2.2 we have \(\{a_n\}_{n=0}^{\infty} \subset l^{p_1} \), where \(\frac{1}{p_1} + \frac{1}{q_1} = 1 \). Notice that
\[
\sum_{n=0}^{\infty} |a_n|^{p_1} = \sum_{n=0}^{\infty} |a_0 z^n_0|^{p_1} = \sum_{n=0}^{\infty} |a_0|^{p_1} < +\infty.
\]
Hence \(a_0 = 0 \) and \(a_n = 0 \) for \(n \geq 0 \). Therefore \(g(z) = 0 \) for all \(|z| < 1 \) and \(x^* = 0 \).
Second we will show that $X_0 = H^p$. Since $X_0^\perp = X_0^\perp = X_0$ and $X_0 = \{0\}$, we have $X_0^\perp = \{0\}$. Hence $X_0^{\perp\perp} = (0)^\perp = H^p$. Since $1 < p < +\infty$, H^p is reflexive. Since X_0 is norm-closed, X_0 is $\sigma(X^*, X)$-closed. Finally we have $X_0^{\perp\perp} = X_0$. Hence $X_0^{\perp\perp} = H^p$. This proves the case $1 < p < +\infty$.

Case ii. If $p = 1$. We will show that $X_0 = H^1$. Let $f \in H^1$ and $\varepsilon > 0$. We will show that there exists a $g \in X_0$ such that $\|f - g\|_1 < \varepsilon$. Since the polynomials form a dense set in H^1, there exists a polynomial h such that $\|f - h\|_1 < \frac{\varepsilon}{2}$. By the case $p = 2$, X_0 is dense in H^2. Hence there exists a $g \in X_0$ such that $\|g - h\|_2 < \frac{\varepsilon}{2}$. Notice that $\|g - h\|_1 \leq \|g - h\|_2$. Then $\|g - h\|_1 < \frac{\varepsilon}{2}$. Hence $\|f - g\|_1 < \|f - h\|_1 + \|h - g\|_1 < \varepsilon$. This proves the case $p = 1$.

Claim 2. $(C_\varphi)^n f \to 0$ for all $f \in X_0$.

Let $f \in X_0$. Since $f \circ \varphi^n$ is continuous on \overline{D}, by Proposition 2.1 we have

$$
\|(C_\varphi)^n f\|_p = \frac{1}{2\pi} \int_0^{2\pi} |f(\varphi^n(e^{i\theta}))|^p d\theta.
$$

Since the integrands are uniformly bounded and convergent to $|f(z_0)|^p = 0$, for every t with possibly one exception, the dominated convergence theorem implies that $(C_\varphi)^n f \to 0$. This proves Claim 2.

Next, for Y_0 we will take the subspace of H^p of all functions that are analytic on a neighbourhood of \overline{D} and that vanish at z_1, and for S we take the map $S = C_{\varphi^{-1}}$. Since z_1 is a fixed point of φ^{-1}, S maps Y_0 into itself, and clearly $C_\varphi S = I$. It follows as above that Y_0 is dense in H^p and that $S^n f \to 0$ for all $f \in Y_0$. Therefore the conditions of Kitai’s criterion are satisfied, so that C_φ is mixing.

\[\Box \]

Bourdon and Shapiro [5, 6] proved Theorem 1.1 in the case $p = 2$. Hence Theorem 1.1 generalizes the corresponding results in [5, 6].

REFERENCES

[1] Beauzamy, B.: Introduction to Operator Theory and Invariant Subspaces, North-Holland Publishing Co., Amsterdam, 1988
[2] Bernal-González, L.: Derivative and antiderivative operators and the size of complex domains. Ann. Polon. Math., 59, 267–274 (1994)
[3] Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal., 167, 94–112 (1999)
[4] Birkhoff, G. D.: Démonstration d’un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris., 189, 473–475 (1929)
[5] Bourdon, P. S., Shapiro, J. H.: Cyclic composition operators on H^2, American Mathematical Society, Providence, RI, 1990
[6] Bourdon, P. S., Shapiro, J. H.: Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., no. 596, 125 (1997)
[7] Chan, K. C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. *J. Operator Theory*, **52**, 39–59 (2004)
[8] Conway, J. B.: Functions of One Complex Variable, Graduate Texts in Mathematics, 11, Springer-Verlag, New York, 1978
[9] Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. *Proc. Amer. Math. Soc.*, **132**, 385–389 (2004)
[10] Duren, P. L.: Theory of H^p Spaces, Academic Press, New York, 1970
[11] Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A: The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc., no. 791, 167 (2004)
[12] Gethner, R. M., Shapiro, J. H.: Universal vectors for operators on spaces of holomorphic functions. *Proc. Amer. Math. Soc.*, **100**, 281–288 (1987)
[13] Godefroy, G., Shapiro, J. H.: Operators with dense, invariant, cyclic vector manifolds. *J. Funct. Anal.*, **98**, 229–269 (1991)
[14] Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. *Studia Math.*, **139**, 47–68 (2000)
[15] Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos, Universitext, 223, Springer-Verlag, London, 2011
[16] Gulisashvili, A., MacCluer, C. R.: Linear chaos in the unforced quantum harmonic oscillator. *J. Dynam. Systems Measurement Control.*, **118**, 337–338 (1996)
[17] Kitai, C.: Invariant closed sets for linear operators, Thesis, University of Toronto, Toronto, 1982
[18] MacLane, G. R.: Sequences of derivatives and normal families. *J. Anal. Math.*, **2**, 72–87 (1952/53)
[19] Martínez-Giménez, F., Peris, A.: Chaos for backward shift operators. *Internat. J. Bifur. Chaos Appl. Sci. Engng.*, **12**, 1703–1715 (2002)
[20] Mathew, V.: A note on hypercyclic operators on the space of entire sequences. *Indian J. Pure Appl. Math.*, **25**, 1181–1184 (1994)
[21] Rolewicz, S.: On orbits of elements. *Studia Math.*, **32**, 17–22 (1969)
[22] Salas, H.: A hypercyclic operator whose adjoint is also hypercyclic. *Proc. Amer. Math. Soc.*, **112**, 765–770 (1991)
[23] Salas, H.: Hypercyclic weighted shifts. *Trans. Amer. Math. Soc.*, **347**, 993–1004 (1995)
[24] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis, second edition, John Wiley-Sons, New York, 1980
[25] Zhu, K.: Operator Theory in Function Spaces, second edition, American Mathematical Society, Providence, RI, 2007
[26] Zorboska, N.: Cyclic composition operators on smooth weighted Hardy spaces. *Rocky Mountain J. Math.*, **29**, 725–740 (1999)
Z.R., College of statistics and mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010000, China.

Email address: rongzhenboshi@sina.com