Recent Updates on Outbreaks of Shiga Toxin-Producing *Escherichia coli* and Its Potential Reservoirs

Jun-Seob Kim 1, Moo-Seung Lee 2,3* and Ji Hyung Kim 1,2*

1 Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, 2 Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea, 3 Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea

Following infection with certain strains of Shiga toxin-producing *Escherichia coli* (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing *Escherichia coli* (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.

Keywords: Shiga toxin-producing *Escherichia coli*, Shiga toxin, STEC reservoir, HUS, environmental transmission

INTRODUCTION

Escherichia coli is a component of the normal flora in the human gut, but some strains are pathogenic. Based on its pathotypes, intestinal pathogenic *E. coli* can be classified into six groups: Shiga toxin (Stx)-producing [STEC, also referred to as verocytotoxin-producing (VTEC) or enterohemorrhagic (EHEC)], enterotoxigenic (ETEC), enteropathogenic (EPEC), enteroaggregative (EAEC), enteroinvasive (EIEC), and diffusely adherent (DAEC) (Kaper et al., 2004). Among those, STEC tends to be a clonal group characterized by somatic (O) antigen, and more than 200 serotypes of *E. coli* have been known to produce Stxs based on their molecular and genetic features. In addition, a new classification scheme of five seropathotypes (A–E) based on virulence and serological features has been suggested due to the various symptoms and severity of clinical STEC infections (Frankel et al., 1998; Nataro and Kaper, 1998; Boerlin et al., 1999; Karmali et al., 2003). However, a recent massive outbreak in Germany raised questions about the efficacy of this categorization because the strain involved was not classified as type A or B based...
on its genetics (specifically, it was negative for the LEE Island). Hence, in this review, we summarize outbreaks and STEC isolates by serotype, not seropathotype, based on surveillance reports.

Stxs are a family of bacterial exotoxins expressed by *Shigella dysenteriae* serotype 1 and STEC (Fraser et al., 1994; Sandvig, 2001). These toxins are primary virulence factors responsible for bloody diarrheal disease that can progress to life-threatening systemic sequelae, such as an acute renal failure syndrome (also known as hemolytic uremic syndrome, HUS), as well as central nervous system (CNS) abnormalities (Tarr et al., 2005; Lee et al., 2016; Lee and Tesh, 2019). The toxins produced by STEC are classified as type 1 (Stx1) and type 2 (Stx2), and several Stx1/Stx2 subtypes and variants have been reported based on the receptor preference and toxin potency (Scheutz et al., 2012; Melton-Celsa, 2014). And among those, Stx2, which is more potent than Stx1, causes clinically severe weight loss and renal injury (Lentz et al., 2011; Pradhan et al., 2016).

Multiple studies have focused on revealing the source and transmission route of STEC infections in humans and the food chain (Erickson and Doyle, 2007; Kintz et al., 2017). Animals are undoubtedly the most important carriers of STEC, as these strains have been isolated from a wide variety of domestic and human-associated animal species (Persad and LeJeune, 2014; Espinosa et al., 2018). Several lines of evidence have confirmed zoonotic human infections caused by contact with companion and domestic animals (Chalmers et al., 1997; Luna et al., 2018). In addition, work in recent decades has emphasized the importance of wildlife surveillance, as a large proportion of emerging zoonotic pathogens are of wildlife origin (Jones et al., 2013), and increasing numbers of wild animals have been shown to be potential STEC reservoirs (Espinosa et al., 2018). Although the need for the One Health approach has been continuously emphasized in STEC research, surveillance studies have generally been limited to domestic animals (Garcia et al., 2010). However, a recent STEC surveillance study revealed that more distantly related fields, such as aquaculture, should be included as important areas of interest and monitored accordingly. In this review, we update the list of animal species recently reported as STEC reservoirs. In so doing, our goal is to emphasize the importance of applying the interdisciplinary One Health approach in surveillance systems by strengthening multi-sectorial collaboration between agriculture, aquaculture, and wildlife science, as well as to provide a broad perspective on industrial fields relevant to food production.

STEC GLOBAL OUTBREAKS AND CLINICAL ISOLATES

Historically, Stxs and verotoxin were studied separately. Stxs was discovered by Kiyoshi Shiga in 1898 as a factor involved in bacterial dysentery caused by *S. dysenteriae* serotype 1 (Kaper and O’Brien, 2014). Independently, in 1977, verotoxin was discovered by Konovalchuck in diarrheagenic *E. coli* strains (Konovalchuk et al., 1977). In 1983, Johnson et al. confirmed that two toxins belonged to the same family (Johnson et al., 1983), and they began to be considered together in studies of the first STEC outbreak strains from 1982. Shiga toxin-producing bacteria, including STEC and *S. dysenteriae* serotype 1, are agents of hemorrhagic colitis, which can progress to potentially lethal complications, such as bloody diarrhea-associated HUS (D + HUS) with acute renal dysfunction (Figure 1) and CNS disorders, such as seizure or paralysis. Investigations of major outbreaks have focused on STEC, rather than on *S. dysenteriae* serotype 1 because STEC infections are more common in the broader community than *Shigella* infections.

In the United States

In 1982, two severe outbreaks that caused HUS occurred in Oregon and Michigan. *E. coli* O157:H7 was isolated from the stool specimens of patients and determined to be the cause of disease (Centers for Disease, 1982). After a year, production of Stxs was confirmed by comparing toxins purified from *S. dysenteriae* and three *E. coli* isolates from the outbreaks (O’Brien et al., 1983). Since then, STEC O157 has rapidly emerged as a major problem in the food industry and clinics. In the 30 years since the first report, a total of 740 outbreaks caused by STEC O157:H7 and O157:NM were reported in the United States. A total of 13,526 cases resulted in 2,765 hospitalizations (20%), 653 HUS (4.8%), and 73 deaths (0.5%) (Rangel et al., 2005; Heiman et al., 2015). In all years since 1994 except for 1997, the annual outbreak size rose above 30 cases a year.

Food is the best-known transmission route of STEC O157. The frequency of foodborne outbreaks has increased dramatically over the past three decades: 183 out of a total of 350 outbreaks (52%) in the first 20 years (1982–2002) vs. 255 out of a total of 390 outbreaks (65%) in the last 10 years (2003–2012). Over the same period, the incidence of outbreaks via other routes has decreased: person-to-person (14–10%), water (9–4%), and other or unknown reasons (21–11%). Interestingly, STEC outbreaks due to animal contact have also become more common, from 11 (3%) in the first 20 years to 39 (10%) in the last 10 years, indicating that animal resources represent important STEC reservoirs (Rangel et al., 2005; Heiman et al., 2015) (see Environmental Transmission section).

Although STEC O157 was the first *E. coli* strain involved in Stx-related disease and remains the most important strain in this regard, non-O157 STEC strains also represent a major public health concern. The Centers for Disease Control and Prevention estimates that 265,000 STEC infections occur each year in the United States, of which STEC O157 causes 36%; thus 64% of STEC infections are non-O157 (Scallan et al., 2011). More than 50 non-O157 STEC serogroups are involved in human illness. The first US outbreak of non-O157 STEC, caused by STEC O111, was reported in 1990; over the next 20 years (1990–2010), 46 outbreaks caused 1,727 illnesses, 144 hospitalizations, and one death. As with O157, food (n = 20, 43%) is a major transmission route in non-O157 outbreaks (Luna-Gierke et al., 2014).

Since the first outbreak in 1990, 11 serotypes and one undefined type have been observed in non-O157 outbreaks. The most commonly isolated serotype is O111, followed by O26; together, O111 and O26 account for more than 60% of outbreaks (Brooks et al., 2005; Luna-Gierke et al., 2014). O103, O121, O45, O145, O104, O165, O69, O84, and O141 are also frequently
After ingestion of food or water contaminated with pathogenic STEC, Stxs may cross the intestinal epithelial barrier via M-cell uptake and transcytosis or paracellular transport. Once in the submucosa, the toxins activate innate immune cells, such as neutrophils or monocytes that act as “carrier” cells to deliver Stxs in the bloodstream and may also further exacerbate tissue injury via localized production of proinflammatory cytokines. Ultimately, the toxins are transferred to glomerular endothelial cells and tubular epithelial cells, which are rich in the toxin receptor Gb3. Damage to the kidney, the primary target organ, leads to D+HUS (diarrhea-associated hemolytic uremic syndrome).

Outside the United States

The World Health Organization (WHO) estimated that STEC infection caused more than 1 million illnesses and 100 deaths in 2010 (Havelaar et al., 2015). Between 1998 and 2016, the European region (EUR) and Western Pacific region (WPR) reported 211 STEC outbreaks (EUR: 176, WPR: 35), far fewer than the number of outbreaks in the Americas (708) (FAO/WHO, 2018).

The largest O157 STEC outbreak ever recorded occurred in the WPR (Japan, 1996) (Fukushima et al., 1999). Of 12,680 symptomatic patients, 121 (0.95%) developed HUS, and three died. After that massive outbreak, the frequency of STEC cases increased dramatically: from 1999 to 2012, more than 3,000 cases were reported in Japan, whereas during the previous 5 years (1991–1995) the annual average was only 105 cases. Following O157, the most frequent serotype, other common serogroups of STEC are O26, O111, O103, O121, and O145 (Terajima et al., 2014).

The most severe outbreak of non-O157 STEC (O104) occurred in EUR (Germany, 2011): over a 3 months period, 3,816 cases were reported. Despite the smaller number of cases relative to the Sakai outbreak, the rates of HUS (n = 845, 22.4%) and death (n = 54) made the German outbreak historic (Frank et al., 2011). According to surveillance reports from Food- and Waterborne Diseases and Zoonoses and the European Centre for Disease Prevention and Control, the total number of confirmed STEC infections was 3,573 (doi: 10.2903/j.efsa.2011.2090) in 2009, increasing dramatically to 6,073 cases in 2017 (https://doi.org/10.2903/j.efsa.2018.5500). As in other regions, the most commonly reported serogroup from 2009 to 2017 was O157, followed by O26, O103, O91, O145, and O146. However, the proportion of O157 dropped from 51.7 to 31.9%, whereas the proportion of non-O157 infections increased accordingly. Among the 31 countries in Europe, Germany and the United Kingdom had the highest human STEC infection rates.

ENVIRONMENTAL TRANSMISSION OF STEC

Over the past decade, interest in zoonotic pathogens of wildlife origin has increased because those pathogens were shown to constitute the primary source (>60%) of emerging infectious
diseases (Jones et al., 2008). Moreover, adaptation of certain urban exploiter animal species has increased contact between wild animals and humans, potentiating the transmission of zoonotic pathogens by fecal contamination of agri-food, the environment, or the water chain (Rothenburger et al., 2017). Although most E. coli are commensal organisms of both humans and animals, the emergence of STEC has been reported in almost all parts of the world and from a wide variety of animal species, including mammals, birds, amphibians, fish, and invertebrates (Persad and LeJeune, 2014; Espinosa et al., 2018). We have updated the list of animal species reported to be reservoir or spillover hosts for, or to be contaminated by, STEC strains (Table 1).

Domestic Animals Are Indisputable Reservoirs of STEC

Ruminants are recognized as principal reservoirs of STEC, especially O157 (Gyles, 2007; La Ragione et al., 2009). As with humans, ruminants are exposed to STEC through contaminated feed and drinking water, or by exposure to the feces of other animals that are shedding the bacteria (LeJeune et al., 2001; Persad and LeJeune, 2014). Among ruminants, cattle (especially ruminating post-weaning calves and heifers) are considered to be the most important STEC reservoirs without symptomatic colonization (Caprioli et al., 2005; Gyles, 2007; Ferens and Hovde, 2011). The natural absence of vascular receptors (globotriaosylceramide) in the intestinal vasculature of the cattle inhibits endocytosis and transportation of Stxs to other organs that might be sensitive to the toxins, resulting in asymptomatic colonization in the large intestine (Pruinboom-Brees et al., 2000; Naylor et al., 2003; Nguyen and Sperrando, 2012). Like cattle, smaller ruminants, such as sheep and goats are also recognized as significant carriers due to their ability to harbor STEC O157 and other serotypes; these animals are important asymptomatic shedders in the epidemiology of bacterial infections in the United States, Australia, and Europe (Beutin et al., 1993; Cortes et al., 2005; Gyles, 2007; La Ragione et al., 2009; Brandal et al., 2012). Also as in cattle, the asymptomatic nature of STEC colonization in smaller ruminants might be due to their lack of vascular receptors for Stx (Persad and LeJeune, 2014). In addition, STEC O157 and non-O157 strains have been reported in other domestic or captive ruminant species, such as alpacas, antelopes, American bison, various deer species, elk, llamas, moose, water buffalo, and yaks (Galiero et al., 2005; French et al., 2010; Chandran and Mazumder, 2013; Mohammed Hamzah et al., 2013; Nyholm et al., 2015).

Several recent surveillance studies have provided strong evidence that monogastric farm animals should now be considered as important reservoir or spillover hosts of STEC. Although the prevalence of STEC O157 and other serotypes varies in swine (Fairbrother and Nadeau, 2006; Ferens and Hovde, 2011), pigs have been shown to harbor and shed STEC for up to 2 months post-infection (Booher et al., 2002). Moreover, because pigs possess Stx-sensitive vascular receptors (globotriaosylceramide) in their intestines, they are susceptible to STEC strains possessing Stx2e, which cause edema with

TABLE 1 | Animal species recently identified as potential STEC reservoirs.

Common name	Scientific name	References
MAMMALS		
Cattle	Bos taurus	Gyles, 2007
Goats	Capra aegagrus hircus	Beutin et al., 1993
Sheep	Ovis aries	Gyles, 2007
Water buffalo	Bubalus bubalis	Galiero et al., 2005
White-tailed deer	Odocoileus virginianus	Sargeant et al., 1999
Red deer	Cervus elaphus	Bardiau et al., 2010
Fallow deer	Dama dama	Bardiau et al., 2010
Roe deer	Capreolus capreolus	Bardiau et al., 2010
American bison	Bison bison	Reinstein et al., 2007
Elk	Cervus canadensis	Franklin et al., 2013
Llamas	Lama glama	Mohammed Hamzah et al., 2013
Alpaca	Lama pacos	Lottta et al., 2006
Yak	Bos grunniens	Lottta et al., 2006
Eliand	Taurotragus oryx	Lottta et al., 2006
Antelope	Antilope cervicapra	Leotta et al., 2006
Mountain goat	Oreamnos americanus	Chandran and Mazumder, 2013
Guanaco	Lama guanicoe	Mercado et al., 2004
Moose	Alces alces	Nyholm et al., 2015
Chamois	Rupicapra rupicapra	Hofer et al., 2012
Ibex	Capra ibex	Hofer et al., 2012
RUMINANTS		
Cattle	Bos taurus	Gyles, 2007
Feral swine (or wild boar)	Sus scrofa	Wachek et al., 2010
Horses	Equus ferus caballus	Hancock et al., 1998
Donkey	Equus africanus asinus	Chandran and Mazumder, 2013
Dogs	Canis lupus familiaris	Beutin et al., 1993
Cats	Felis catus	Beutin, 1999
Coyote	Canis latrans	Chandran and Mazumder, 2013
Fox	Vulpes vulpes	Chandran and Mazumder, 2013
Rabbit	Oryctolagus cuniculus	Pritchard et al., 2001
Hares	Lepus timidus	Espinosa et al., 2018
Pika	Ochotona daurica	Espinosa et al., 2018
Racoon	Procyon lotor	Shere et al., 1998
Rats	Rattus spp.	Nielsen et al., 2004
Norway rats	Rattus norvegicus	Czech et al., 2000
Ground hog	Marmota monax	Chandran and Mazumder, 2013
Patagonian cavy	Dolichotis patagonum	Leotta et al., 2006
Agouti	Dasyprocta spp.	Espinosa et al., 2018
Lowland paca	Cuniculus paca	Espinosa et al., 2018
Bear	Unknown	Vasan et al., 2013
Opossum	Unknown	Espinosa et al., 2018
Armadillo	Unknown	Espinosa et al., 2018
Cougar	Puma concolor	Espinosa et al., 2018

(Continued)
apparent clinical signs and mortality (Waddell et al., 1998; Prumboom-Brees et al., 2000; Fratamico et al., 2004; Steil et al., 2016). Moreover, although horses are not considered reservoirs for STEC due to its low prevalence in that species (Hancock et al., 1998; Pritchard et al., 2009; Lengacher et al., 2010), some cases of clinical infection from equine contact have been reported (Chalmers et al., 1997; Luna et al., 2018); therefore, horses should be considered as a potential source of infection. Domestic poultry, such as chicken, duck, and turkeys have also been reported to carry STEC (Koochakzadeh et al., 2015). In particular, chickens which were experimentally inoculated with STEC O157 can harbor and shed the bacteria in their feces for almost a year (Schoeni and Doyle, 1994).

The importance of companion animals (pets) in the epidemiology of STEC infection should not be underestimated. Via their feces, pets, such as dogs and cats can serve as asymptomatic shedders in the epidemiology of a wide range of STEC serotypes (Beutin, 1999; Roopnarine et al., 2007; Hogg et al., 2009; Rumi et al., 2012). Accordingly, several clinical infections due to canine and feline exposure have been reported (Busch et al., 2007; Ferens and Hovde, 2011; Koochakzadeh et al., 2015). In particular, chickens which were experimentally inoculated with STEC O157 can harbor and shed the bacteria in their feces for almost a year (Schoeni and Doyle, 1994).

Wild Animals Are Important Reservoir or Spillover Hosts of STEC

The number of STEC outbreaks associated with the consumption of fruits and vegetables contaminated with wild animal feces is increasing (World Health Organization, 2016). Hence, from a global public health standpoint, it is important to investigate the prevalence of STEC in urban exploiter and wild animals that can transmit the bacteria to human by direct and/or indirect contact. Therefore, several studies have investigated the prevalence of STEC among urban exploiter species, such as rats (Himsworth et al., 2015), pigeons (Gargiulo et al., 2014; Murakami et al., 2014), and flies (Kobayashi et al., 1999; Alam and Zurek, 2004; Keen et al., 2006). In fact, rodents are capable of harboring and shedding STEC, and various serogroups have been recovered

TABLE 1 | Continued

Common name	Scientific name	References
FISH		
Nile tilapia	Oreochromis niloticus	Cardozo et al., 2018
African sharptooth catfish	Clarias lazera	Hussein et al., 2019
Flathead gray mullet	Mugil cephalus	Hussein et al., 2019
Atlantic lizardfish	Synodus saurus	Hussein et al., 2019
Red porgy	Pagothus pagrus	Hussein et al., 2019
Catla	Labeo catla	Sekhar et al., 2017
Grass carp	Ctenopharyngodon idella	Siddhath et al., 2018
Mrigal	Cirrhus mrigala	Siddhath et al., 2018
Common carp	Cyprinus carpio	Siddhath et al., 2018
AMPHIBIANS		
Red-eyed tree frog	Agalychnis callidryas	Dipinet et al., 2010
Oriental fire-bellied toad	Bombina orientalis	Dipinet et al., 2010

(Continued)
from animals living in urban areas and farms (Blanco Crivelli et al., 2012; Kilonzo et al., 2013). Moreover, many wild bird species found in close proximity to livestock operations, waste disposal landfill sites, and human habitation areas have also been identified as potential sources of STEC infection (Cizek et al., 2000; Pedersen and Clark, 2007). In addition, houseflies can harbor and transmit STEC O157 to other animals, demonstrating that insects can transmit STEC within the environment (Kobayashi et al., 1999; Alam and Zurek, 2004; Keen et al., 2006). Because domestic animal feed represents an easy food source for rodents, birds, and insects, these animals are attracted to farms and may transmit STEC between livestock and humans or vice versa.

Likewise, wild animals residing in close proximity to livestock facilities can be contaminated (or harbored) with STEC (Espinosa et al., 2018). Several recent studies emphasized the urgent need to investigate the prevalence of STEC in wild animals, as some large STEC outbreaks were closely related to or originated from contamination from wild animal feces (Laidler et al., 2013; Crook and Senior, 2017; Sodergqvist et al., 2019). Although wild animals were identified as a source of STEC in the 1990s, more than 70% of relevant studies were published since the turn of the century, and an increasing number of wild animal species have been identified as reservoir or spillover hosts for STEC (Espinosa et al., 2018). Nevertheless, very little published research has addressed the role of wild animals in the transmission of STEC to humans, domestic animals, and within the food chain. Animals, such as wild boars, deer, birds, and rodents might be involved in direct interspecies contact between humans, domestic, and wild animals, thereby creating a circle of transmission that increases the prevalence of STEC. These species should be thoroughly monitored, as they could potentially cause a spillover or spillback to humans and other animals (Daszak et al., 2000).

Emerging Reservoirs of STEC and Needs for the One Health Approach

Numerous studies have reported both O157 and non-O157 STEC in fresh fish and shellfish, and their ready-to-eat products in retail markets (Thampuran et al., 2005; Surendraraj et al., 2010; Prakasan et al., 2018), suggesting that human activities, such as handling, processing, and ingestion of the products might be a major source of STEC contamination. Interestingly, fish and shellfish residing in coastal areas, some cultured fish, and those in close proximity to or downstream of animal livestock facilities have been found to be contaminated with STEC (Gourmelon et al., 2006; Sekhar et al., 2017; Cardozo et al., 2018; Siddhnath et al., 2018; Hussein et al., 2019). These results strongly indicate that fish and shellfish are a potential reservoir or spillover hosts of STEC, and that effluent water from STEC-contaminated culture ponds might also be an additional potential source of transmission, emphasizing the need for further investigations of the aquaculture industry.

Based on the findings of recent surveillance approaches, a wide range of domestic, captive, and wild animals, including aquatic animals, can transmit STEC to humans directly by ingestion or contact at farms and petting zoos, or indirectly through fecal contaminations in water sources, vegetable fields, or meats and milks. Moreover, STEC is closely associated with human activities; therefore, the broad expansion of human activities due to technological advances will expand contaminations to an increasingly wider variety of wild organisms and foodstuffs in the future. Therefore, a detailed identification of the prevalence of STEC in various animal species will be essential for epidemiological investigations and the development of proper risk mitigation strategies (Persad and LeJeune, 2014). The integration of human and animal health was appreciated in ancient times, but this idea was comprehensively revisited through the One Health perspective, which proposes a unification of human and veterinary medicine to protect against zoonotic pathogens (King et al., 2008; Zinsstag et al., 2011). Investigations of STEC outbreaks in humans also clearly demonstrate the relevance of the One Health concept (Jay et al., 2007; Laidler et al., 2013; McFarland et al., 2017). Moreover, the importance of a One Health approach for control or prevention of STEC infection has already been emphasized in practical cases (García et al., 2010). A number of new animal species, including those of aquatic origin, have been identified as unexpected reservoir or spillover hosts of STEC. Therefore, we propose an alternative One Health approach in which coordinated multidisciplinary efforts integrate terrestrial and aquatic animal medicine within future STEC surveillance. These efforts should facilitate the development of novel strategies to prevent, control, and treat zoonotic STEC infections.

CONCLUSION

Since the advent of systematic and efficient diagnostic techniques, reports of national STEC outbreaks have increased dramatically. The current world-wide surveillance system reveals the impact of STEC infection, the diversity of STEC, and sources of contamination. Although contaminated food is the most prominent source of STEC outbreaks, infections caused by contact with animals has increased over the past 10 years. Hence, understanding of animals as potential STEC reservoir and their transmission is essential for preventing the occurrence of STEC infections and outbreaks. Multiple complex studies aimed at discovering numerous STEC in the various animals have revealed a wide range of strains capable of producing Stxs, however, it remains to be determined to what extent these newly identified reservoirs are involved in the pathogenesis and transmission of the bacteria. In particular, several animals in more distantly related fields, such as fish produced by the aquaculture industry and a wide range of underestimated wild animal species have been reported as potential STEC reservoirs. Therefore, we propose an alternative One Health approach in which coordinated multidisciplinary efforts integrate terrestrial and aquatic animal medicine in the context of future STEC surveillance efforts.

AUTHOR CONTRIBUTIONS

Written and revised by J-SK, M-SL, and JK.
FUNDING

This work was supported by the KRIBB Research Initiative Programs, the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (20180430) funded by the Ministry of Oceans and Fisheries, and Basic Science Research Program (2019R1I1A2A041041221) through the National Research Foundation of Korea (NRF), funded by the Ministry of Education.

REFERENCES

Alam, M. J., and Zurek, L. (2004). Association of *Escherichia coli* O157:H7 with houseswills on a cattle farm. Appl. Environ. Microbiol. 70, 7578–7580. doi: 10.1128/AEM.70.12.7578-7580.2004

Bardid, M., Gregoire, F., Muylaert, A., Nahayo, A., Duprez, J. N., Mainil, J., et al. (2010). Enteropathogenic (EPEC), enterohaemorragic (EHEC) and verotoxigenic (VTEC) *Escherichia coli* in wild cervids. J. Appl. Microbiol. 109, 2214–2222. doi: 10.1111/j.1365-2672.2010.04855.x

Beutin, L. (1999). *Escherichia coli* as a pathogen in dogs and cats. Vet. Res. 30, 285–298.

Beutin, L., Geier, D., Steinnrück, H., Zimmermann, S., and Scheutz, F. (1993). Prevalence and some properties of verotoxin (Shiga-like toxin)-producing *Escherichia coli* in seven different species of healthy domestic animals. J. Clin. Microbiol. 31, 2483–2488. doi: 10.1128/JCIM.31.9.2483-2488.1993

Blanco Crivelli, X., Rumi, M. V., Carfagnini, J. C., Degregorio, O., and Beutin, L., Geier, D., Steinruck, H., Zimmermann, S., and Scheutz, F. (1993). *Escherichia coli* in wild animal species. *Vet. Microbiol.* 37, 497–503. doi: 10.1016/S0378-1135(93)80019-3

Booher, S. L., Cornick, N. A., and Moon, H. W. (2002). Persistence of *Escherichia coli* O157:H7 in experimentally infected swine. *Vet. Microbiol.* 89, 69–81. doi: 10.1016/S0378-1135(02)00176-1

Borges, C. A., Cardozo, M. V., Beraldo, L. G., Oliveira, E. S., Maluta, R. P., Barboza, K. B., et al. (2017). Wild birds and urban pigeons as reservoirs for diarrheagenic *Escherichia coli* with zoonotic potential. *J. Microbiol.* 55, 344–348. doi: 10.1128/JCM.02947-16

Brandal, T. L., Sekse, C., Lindstedt, B. A., Sunde, M., Lobersli, I., Urdael, A. M., et al. (2012). Norwegian sheep are an important reservoir for human-pathogenic *Escherichia coli* O26:H11. *Appl. Environ. Microbiol.* 78, 4083–4091. doi: 10.1128/AEM.05186-12

Brooks, J. T., Sowers, E. G., Wells, J. G., Greene, K. D., Griffin, P. M., Caprioli, A., Morabito, S., Brugere, H., and Oswald, E. (2005). *Escherichia coli* O104:H4 outbreak in Germany. *N. Engl. J. Med.* 353, 1771–1780. doi: 10.1056/NEJMoa1106483

Cizek, A., Literak, I., and Scheer, P. (2000). Survival of *Escherichia coli* O157 in faeces of experimentally infected rats and domestic pigeons. *Lett. Appl. Microbiol.* 31, 349–352. doi: 10.1046/j.1472-765x.2000.00820.x

Cortes, C., De La Fuente, R., Blanco, J., Blanco, M., Blanco, J. E., Dhahi, G., et al. (2005). Serotoxins, virulence genes and intimin types of verotoxin-producing *Escherichia coli* and enteropathogenic *E. coli* isolated from healthy dairy goats in Spain. *Vet. Microbiol.* 110, 67–76. doi: 10.1016/j.vetmic.2005.06.005

Crook, B., and Senior, H. (2017). Wildlife as source of human *Escherichia coli* O157 infection. *Emerg. Infect. Dis.* 23, 2122. doi: 10.3201/eid2312.171210

Daszk, P., Cunningham, A. A., and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife—threats to biodiversity and human health. *Science* 287, 443–449. doi: 10.1126/science.287.5452.443

De Oliveira, M. C. V., Camargo, B. Q., Cunha, M. P. V., Saldanha, A. B., Teixeira, R. H. F., Matajira, C. E. C., et al. (2018). Free-ranging synanthropic birds (Ardea alba and Columba livia domestica) as carrier of *Salmonella* spp. and diarrheagenic *Escherichia coli* in the vicinity of an Urban Zoo. *Vector Borne Zoonotic. Dis.* 18, 65–69. doi: 10.1089/vbz.2017.2174

Dipietro, L., Gargiulo, A., Russo, T. P., De Luca Bossa, L. M., Borrelli, L., D’ovidio, D., et al. (2010). Survey of *Escherichia coli* O157 in captive frogs. *J. Wildl. Dis.* 46, 944–946. doi: 10.7589/0090-3558-46.3.944

Doane, C. A., Pangolli, P., Richards, H. A., Mount, J. R., Golden, D. A., and Draughon, F. A. (2007). Occurrence of *Escherichia coli* O157:H7 in diverse farm environments. *J. Food Prot.* 70, 6–10. doi: 10.4315/0362-028X-70.1.6

Dickson, M. C., and Doyle, M. P. (2007). *Food as a vehicle for transmission of Shiga toxin-producing *Escherichia coli*. *J. Food Prot.* 70, 2426–2449. doi: 10.4315/0362-028X-70.10.2426

Espinoza, L., Gray, A., Duff, G., Fanning, S., and Mcmahon, B. J. (2018). A scoping review on the prevalence of shiga-toxigenic *Escherichia coli* in wild animal species. *Zoonoses Public Health* 65, 911–920. doi: 10.1111/zph.12508

Fadel, H. M., Afifi, R., and Al-Qabili, D. M. (2007). Characterization and zoonotic impact of Shiga toxin producing *Escherichia coli* in some wild bird species. *Vet. World* 10, 1118–1128. doi: 10.14202/vetworld.2017.1118-1128

Fairbrother, J. M., and Nadeau, E. (2006). *Escherichia coli*: on-farm contamination of animals. *Rev. Sci. Tech.* 25, 555–569. doi: 10.20506/rst.25.2.1682

FAO/WHO (2018). “Shiga toxin-producing *Escherichia coli* (STEC) and food: attribution, characterization, and monitoring,” in Microbiological Risk Assessment Series (FAO/WHO) (Rome: FAO).

Ferens, W. A., and Hovde, C. J. (2011). *Escherichia coli* O157:H7: animal reservoir and sources of human infection. *Foodborne Pathog. Dis.* 8, 465–487. doi: 10.1089/fpd.2010.0673

Foster, G., Evans, J., Knight, H. I., Smith, A. W., Gunn, G. J., Allison, L. J., et al. (2006). Analysis of feces samples collected from a wild-bird garden feeding station in Scotland for the presence of verocytotoxin-producing *Escherichia coli* O157. *Appl. Environ. Microbiol.* 72, 2265–2267. doi: 10.1128/AEM.72.6.2265-2267.2006

Frank, C., Weber, D., Cramer, J. P., Askar, M., Faber, M., An der Heiden, M., et al. (2011). Epidemic profile of Shiga-toxin-producing *Escherichia coli* O104:H4 outbreak in Germany. *N. Engl. J. Med.* 365, 1771–1780. doi: 10.1056/NEJMoa1106483

Frankel, G., Phillips, A. D., Rossh slime, L., Dougan, G., Kaper, J. B., and Knutton, S. (1998). Enteropathogenic and enterohaemorrhagic *Escherichia coli*: more subversive elements. *Mol. Microbiol.* 30, 911–921. doi: 10.1046/j.1365-2958.1998.01144.x

Franklin, A. B., Vercauteren, K. C., Maguire, H., Cichon, M. K., Fischer, J. W., Lavelle, M. J., et al. (2013). Wild ungulates as disseminators of Shiga toxin-producing *Escherichia coli* in urban areas. *PLoS ONE* 8(8):e71512. doi: 10.1371/journal.pone.0081512
Fraser, M. E., Crenn, M. M., Kozlov, Y. V., and James, M. N. (1994). Crystal structure of the holotoxin from Shigella dysenteriae at 2.5a resolution. Nat. Struct. Biol. 1, 59–64. doi: 10.1038/nsb0194-59

Fratamico, P. M., Bagi, L. K., Bush, E. J., and Solow, B. T. (2004). Prevalence and characterization of Shiga toxin-producing Escherichia coli in swine following recovery in the national animal health monitoring system’s Swine 2000 study. Appl. Environ. Microbiol. 70, 7173–7178. doi: 10.1128/AEM.70.12.7173-7178.2004

French, E., Rodriguez-Palacios, A., and Lejeune, J. T. (2010). Enteric bacterial pathogens with zoonotic potential isolated from farm-raised deer. Foodborne Pathog. Dis. 7, 1031–1037. doi: 10.1089/fpd.2009.0486

Fukushima, H., Hashizume, T., Morita, Y., Tanaka, J., Azuma, K., Mizumoto, Y., et al. (1999). Clinical experiences in sakai city hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 41, 213–217. doi: 10.1046/j.1442-200X.1999.0121041.x

Gallero, G., Conedera, G., Alfano, D., and Caprioli, A. (2003). Isolation of verocytotoxin-producing Escherichia coli O157 from water buffaloes (Bubalus bubalis) in southern Italy. Vet. Rec. 156, 382–383. doi: 10.1136/vr.156.12.382

Garcia, A., Fox, J. G., and Besser, T. E. (2010). Zoonotic enterohemorrhagic Escherichia coli: a one health perspective. ILAR J. 51, 221–232. doi: 10.1093/ilar.51.3.3221

Gargiulo, A., Russo, T. P., Schettini, R., Mallardo, K., Calabria, M., Mennu, L. F., et al. (2014). Occurrence of enteropathogenic bacteria in urban pigeons (columba livia) in Italy. Vector Borne Zoonotic Dis. 14, 251–255. doi: 10.1089/vbz.2013.1789

Gioia-Di Chiaccio, R. M., Cunha, M. P. V., De Sa, L. R. M., Davi, Y. M., Pereira, C. L. (2007). Shiga toxin-producing Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg. Infect. Dis. 13, 1908–1911. doi: 10.3201/eid1311.070763

Johnson, W. M., Lior, H., and Bezanson, G. S. (1983). Cytotoxic Escherichia coli O157:H7 associated with haemorrhagic colitis in Canada. Lancet 1:76. doi: 10.1016/S0140-6736(83)91616-1

Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., et al. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. U.S.A. 110, 8399–8404. doi: 10.1073/pnas.1208059110

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature 451, 990–993. doi: 10.1038/nature06536

Kaper, J. B., Nataro, J. P., and Mobley, H. L. (2004). Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140. doi: 10.1038/nrmicro818

Kaper, J. B., and O’Brien, A. D. (2014). Overview and historical perspectives. Microbiol. Spectr. 2, 1–2. doi: 10.1128/microbiolspec.EHEC-0028-2014

Karmali, M. A., Mascalzun, M., Shen, S., Ziebell, K., Johnson, S., Reid-Smith, R., et al. (2003). Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol. 41, 4940–4940. doi: 10.1128/JCM.41.11.4930-4940.2003

Kent, E. J., Wittum, T. E., Dunn, J. R., Bono, J. L., and Durso, L. M. (2006). Shiga-toxigenic Escherichia coli O157 in agricultural fair livestock. United States. Emerg. Infect. Dis. 12, 780–786. doi: 10.3201/eid1205.050984

Kilonzo, C., Li, X., Vivas, E. J., Jay-Russell, M. T., Fernandez, K. L., and Atwill, E. R. (2013). Fecal shedding of zoonotic food-borne pathogens by wild rodents in a major agricultural region of the central California coast. Appl. Environ. Microbiol. 79, 6337–6344. doi: 10.1128/AEM.01503-13

King, L. I., Anderson, L. R., Blackmore, C. G., Blackwell, M. J., Lautner, E. A., Marcus, L. C., et al. (2008). Executive summary of the AVMA one health initiative task force report. J. Am. Vet. Med. Assoc. 233, 259–261. doi: 10.2460/javma.233.2.259

Kinz, E., Brainard, J., Hooper, L., and Hunter, P. (2017). Transmission pathways for sporadic Shiga-toxin producing E. coli infections: a systematic review and meta-analysis. Int. J. Hyg. Environ. Health 220, 57–67. doi: 10.1016/j.ijheh.2016.10.011

Kobayashi, H., Kanaizaki, M., Hata, E., and Kubo, M. (2009). Prevalence and characteristics of eae- and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay. Appl. Environ. Microbiol. 75, 292–295. doi: 10.1128/AEM.01534-08

Kobayashi, M., Sasaki, T., Saito, N., Tamura, K., Suzuki, K., Watanabe, H., et al. (1999). Houselles: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. J. Jpn. Trop. Med. Hyg. 61, 625–629. doi: 10.4269/jjtmh.1999.61.625

Konwalchuk, J., Speirs, J. I., and Stavric, S. (1977). Vero response to a cytotoxin of Escherichia coli. Infect. Immun. 18, 775–779. doi: 10.1128/IAI.18.3.775-779.1977

Koochakzadeh, A., Askari Badouei, M., Zarraei Salehi, T., Aghasherif, S., Soltani, M., and Ehsan, M. R. (2015). Prevalence of Shiga toxin-producing and enteropathogenic Escherichia coli in wild and pet birds in Iran. Braz. J. Poult. Sci. 17, 445–450. doi: 10.1590/1516-653X1704445-450

Kulas, H., Coles, M., Rhyar, J., and Clark, L. (2002). Prevalence of Escherichia coli serogroups and human virulence factors in faeces of urban Canada geese (branta canadensis). Int. J. Environ. Health Res. 12, 153–162. doi: 10.1080/096302202202192319

La Ragione, R. M., Best, A., Woodward, M. J., and Wales, A. D. (2009). Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol. Rev. 33, 394–410. doi: 10.1111/j.1574-6976.2008.00138.x

Laidler, M. R., Tourjdjian, M., Buser, G. L., Hostetler, T., Repp, K. K., Leman, R., et al. (2013). Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin. Infect. Dis. 57, 1129–1134. doi: 10.1093/cid/cit468

Lee, M. S., Koo, S., Jeong, D. G., and Tesh, V. L. (2016). Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins (Basel) 8:77. doi: 10.3390/toxins8030077
Naylor, S. W., Low, J. C., Besser, T. E., Mahajan, A., Gunn, G. J., Pearce, M. C., et al. (2003). Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71, 1505–1512. doi: 10.1128/IAI.71.3.1505-1512.2003

Nguyen, Y., and Sperandio, V. (2012). Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell. Infect. Microbiol. 2. doi: 10.3389/fcimb.2012.00090

Nielsen, E. M., Skov, M. N., Madsen, J. J., Lodal, J., Jespersen, J. B., and Baggesen, D. L. (2004). Verocytotoxin-producing Escherichia coli in wild birds and rodents in proximity to farms. Appl. Environ. Microbiol. 70, 6944–6947. doi: 10.1128/AEM.70.11.6944-6947.2004

Nyholm, O., Heinikainen, S., Pelkonen, S., Hallanvuo, S., Haukka, K., and Sitonen, A. (2015). Hybrids of shiga-toxicogenic and enterotoxigenic Escherichia coli (STEC/ETEC) among human and animal isolates in Finland. Zoonoses Public Health 62, 518–524. doi: 10.1111/zph.12177

O’Brien, A. O., Lively, T. A., Chen, M. E., Rothman, S. W., and Formal, S. B. (1983). Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (STHGA) like cytotoxin. Lancet 1:702. doi: 10.1016/S0140-6736(83)91987-6

Pedersen, K., and Clark, L. (2007). A review of Shiga toxin Escherichia coli and salmonella enterica in cattle and free-ranging birds: potential association and epidemiological links. Hum. Wildl. Conf. 1, 68–77.

Persad, A. K., and LeJeune, J. T. (2014). Animal reservoirs of Shiga toxin-producing Escherichia coli. Microbiol. Spectr. 2.EHEC-0007-2014. doi: 10.1128/microbiolspec.EHEC-0007-2014

Pradhan, S., Pellino, C., Macmaster, K., Coyle, D., and Weiss, A. A. (2016). Shiga toxin mediated neurologic changes in murine model of disease. Front. Cell. Infect. Microbiol. 6:114. doi: 10.3389/fcimb.2016.00114

Prakash, S., Prabhakar, P., Lekshmi, M., Kumar, S., and Nayak, B. B. (2018). Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood. Vet. World 11, 379–385. doi: 10.14202/vetworld.2018.379-385

Pritchard, G. C., Smith, R., Ellis-Iversen, J., Cheasty, T., and Willshaw, G. A. (2009). Verocytotoxigenic Escherichia coli O157 in animals on public amenity premises in England and Wales, 1997 to 2007. Vet. Rec. 164, 545–549. doi: 10.1136/vr.164.18.545

Pritchard, G. C., Williamson, S., Carson, T., Bailey, J. R., Warner, L., Willshaw, G., et al. (2001). Wild rabbits—a novel vector for verocytotoxigenic Escherichia coli O157. Vet. Rec. 149:567.

Prunboom-Brees, I. M., Morgan, T. W., Ackermann, M. R., Nystrom, E. D., Samuel, J. E., Cornick, N. A., et al. (2000). Cattle lack vascular receptors for Escherichia coli O157:H7 strains. Proc. Natl. Acad. Sci. U.S.A. 97, 10325–10329. doi: 10.1073/pnas.103929997

Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., and Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609. doi: 10.3201/eid1104.040739

Reinstein, S., Fox, J. T., Shi, X., Alam, M. J., and Najaraja, T. G. (2007). Prevalence of Escherichia coli O157:H7 in the American bison (Bison bison). J. Food Prot. 70, 2555–2560. doi: 10.3163/0022-028X.70.11.2555

Roepnarine, R. R., Ammerman, D., Rampersad, J., and Adesiyun, A. A. (2007). Occurrence and characterization of verocytotoxigenic Escherichia coli (VTEC) strains from dairy farms in Trinidad. Zoonoses Public Health 54, 78–85. doi: 10.1111/j.1863-2378.2007.00124.x

Rothenburger, J. L., Himsworth, C. H., Nemeth, N. M., Pearl, D. L., and Jardine, C. M. (2017). Environmental factors and zoonotic pathogen ecology in urban exploiter species. Ecohealth 14, 630–641. doi: 10.1007/s10393-017-1288-5

Rumi, M. V., Irino, K., Deza, N., Huguet, M. J., and Bentancor, A. B. (2012). First isolation of a Shiga toxin-producing Escherichia coli O157:H7 strain from fecal samples of zoo wildlife-carried, Shiga toxin-producing Escherichia coli strains with the same characteristic human pathogenic isolates. Appl. Environ. Microbiol. 78, 2578–2585. doi: 10.1128/AEM.07320-11

Murakami, K., Etoh, Y., Ichihara, S., Maeda, E., Takenaka, S., Horikawa, K., et al. (2014). Isolation and characteristics of Shiga toxin 2-producing Escherichia coli among pigeons in Kyushu, Japan. PLoS ONE 9:e86076. doi: 10.1371/journal.pone.0086076

Nataro, J. P., and Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201. doi: 10.1128/CMR.11.1.142

Naylor, S. W., Low, J. C., Besser, T. E., Mahajan, A., Gunn, G. J., Pearce, M. C., et al. (2003). Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71, 1505–1512. doi: 10.1128/IAI.71.3.1505-1512.2003
Schoeni, J. L., and Doyle, M. P. (1994). Variable colonization of chickens perorally inoculated with Escherichia coli O157:H7 and subsequent contamination of eggs. Appl. Environ. Microbiol. 60, 2958–2962. doi: 10.1128/AEM.60.8.2958-2962.1994
Sekhar, M. S., Sharif, N. M., and Rao, T. S. (2017). Serotypes of sorbitol-positive shiga toxigenic Escherichia coli (SP-STEC) isolated from freshwater fish. Int. J. Fish. Aquatic Sci. 5, 503–505.
Shere, J. A., Bartlett, K. J., and Kaspar, C. W. (1998). Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Appl. Environ. Microbiol. 64, 1390–1399. doi: 10.1128/AEM.64.4.1390-1399.1998
Siddhnath, K., Majumdar, R. K., Parhi, J., Sharma, S., Mehta, N. K., and Laishram, A. (2010). Molecular screening, Premature death due to enterotoxigenic Escherichia coli from carp from integrated aquaculture system. Aquaculture 487, 97–101. doi: 10.1016/j.aquaculture.2018.01.008
Soderqvist, K., Rosberg, A. K., Boqvist, S., Alsanius, B., Mogren, L., and Vagsholm, I. (2019). Season and species: two possible hurdles for reducing the food safety risk of Escherichia coli O157 contamination of leafy vegetables. J. Food Prot. 82, 247–255. doi: 10.3160/0362-028X.2018.18292
Stil, D., Bonse, R., Meisen, I., Pohlentz, G., Vallejo, J., Karch, H., et al. (2016). A Topographical atlas of Shiga toxin 2e receptor distribution in the tissues of weaned piglets. Toxins (Basel). 8:357. doi: 10.3390/toxins8120357
Surendraraj, A., Thampuran, N., and Surendran, P. K. (2005). Prevalence and Characterization of typical and atypical Escherichia coli from fish sold at retail in Cochin, India. J. Food Prot. 68, 2208–2211. doi: 10.3160/0362-028X-68.10.2208
Vasan, A., Leong, W. M., Ingham, S. C., and Ingham, B. H. (2013). Thermal tolerance characteristics of non-O157 shiga toxigenic strains of Escherichia coli (STEC) in a beef broth model system are similar to those of O157:H7 STEC. J. Food Prot. 76, 1120–1128. doi: 10.4315/0362-028X.JFP-12-500
Wachek, S., Fredriksen-Ahoma, M., Konig, M., Stolle, A., and Stephan, R. (2010). Wild boars as an important reservoir for foodborne pathogens. Foodborne. Pathog. Dis. 7, 307–312. doi: 10.1089/fpd.2009.0367
Waddell, T. E., Coomber, B. L., and Gyles, C. L. (1998). Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can. J. Vet. Res. 62, 81–86.
Wadolkowski, E. A., Burrus, J. A., and O’Brien, A. D. (1990). Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 58, 2438–2445. doi: 10.1128/IAI.58.8.2438-2445.1990
Woods, J. B., Schmitt, C. K., Darnell, S. C., Meyrick, C. K., and O’Brien, A. D. (2002). Ferrets as a model system for renal disease secondary to intestinal infection with Escherichia coli O157:H7 and other Shiga toxin-producing E. coli. J. Infect. Dis. 185, 550–554. doi: 10.1086/338633
World Health Organization (2016). E. coli Fact Sheet. Retrieved from: https://www.who.int/mediacentre/factsheets/fs125/en/
Xu, J., Liu, Q., Jing, H., Pang, B., Yang, J., Zhao, G., et al. (2003). Isolation of Escherichia coli O157:H7 from dung beetles catharus mullosum. Microbiol. Immunol. 47, 45–49. doi: 10.1111/j.1348-0421.2003.tb02784.x
Zanzagl, J., Schelling, E., Walther-Toews, J., and Tannier, M. (2011). From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 101, 148–156. doi: 10.1016/j.prevetmed.2010.07.003

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Kim, Lee and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.