AFFINE OPEN COVERING OF THE QUANTIZED FLAG MANIFOLDS AT ROOTS OF UNITY

TOSHIYUKI TANISAKI

Abstract. We show that the quantized flag manifold at a root of unity has natural affine open covering parametrized by the elements of the Weyl group. In particular, the quantized flag manifold turns out to be a quasi-scheme in the sense of Rosenberg [12].

1. Introduction

Let G be a connected semisimple algebraic group over the complex number field C, and let B, B^+ be Borel subgroups of G such that $B \cap B^+$ is a maximal torus of G. The homogeneous space $\mathcal{B} = G/B$ is a projective algebraic variety called the flag manifold. Let W be the Weyl group of G. We have an affine open covering $\mathcal{B} = \bigcup_{w \in W} \mathcal{B}^w$, where $\mathcal{B}^w = wB^+B/B$. Let \mathcal{R} be the homogeneous coordinate algebra of \mathcal{B}, and let \mathcal{R}^w be the coordinate algebra of \mathcal{B}^w so that

$$\mathcal{B} = \text{Proj} \mathcal{R}, \quad \mathcal{B}^w = \text{Spec} \mathcal{R}^w \quad (w \in W).$$

Let us consider the situation where G is replaced by the corresponding quantum group. Let K be a field equipped with $q \in K^\times$. Using the quantum group we can naturally define q-analogues $\mathcal{R}_{K,q}$, $\mathcal{R}^w_{K,q}$ of \mathcal{R}, \mathcal{R}^w respectively. Here, $\mathcal{R}_{K,q}$ is a graded K-algebra, and $\mathcal{R}^w_{K,q}$ is a K-algebra. We have $\mathcal{R}_{C,1} \cong \mathcal{R}$ and $\mathcal{R}^w_{C,1} \cong \mathcal{R}^w$. A major difference compared to the ordinary case $q = 1$ is the fact that $\mathcal{R}_{K,q}$ and $\mathcal{R}^w_{K,q}$ are non-commutative in general. Hence in order to understand the “quantized flag manifold” in a geometric manner, we need the language of non-commutative algebraic geometry, which has been developed by Artin-Zhang [2], Verëvkin [15], Rosenberg [12] following Manin’s idea [10]. Using $\mathcal{R}_{K,q}$ and $\mathcal{R}^w_{K,q}$, we can define as in Rosenberg [12], Lunts-Rosenberg [7] (see also Joseph [5]) the abelian categories

$$(1.1) \quad \text{Mod}(\mathcal{O}_{\mathcal{B}_{K,q}}), \quad \text{Mod}(\mathcal{O}_{\mathcal{B}^w_{K,q}}) \quad (w \in W),$$

which are regarded as the categories of “quasi-coherent sheaves” on the virtual spaces

$$\mathcal{B}_{K,q} = \text{Proj} \mathcal{R}_{K,q}, \quad \mathcal{B}^w_{K,q} = \text{Spec} \mathcal{R}^w_{K,q} \quad (w \in W)$$

respectively, and the exact functors

$$(1.2) \quad (i^w_{K,q})^* : \text{Mod}(\mathcal{O}_{\mathcal{B}_{K,q}}) \to \text{Mod}(\mathcal{O}_{\mathcal{B}^w_{K,q}}) \quad (w \in W).$$

In order to verify that $\text{Mod}(\mathcal{O}_{\mathcal{B}_{K,q}})$ defines a quasi-scheme $\mathcal{B}_{K,q}$ in the sense of [12] we need to show the patching property

$$(1.3) \quad M \in \text{Mod}(\mathcal{O}_{\mathcal{B}_{K,q}}), \quad (i^w_{K,q})^*M = 0 \quad (\forall w \in W) \implies M = 0.$$
This holds for \(q = 1 \) since \(\mathcal{B}_{K,1} \) is isomorphic to the ordinary flag manifold over \(K \). From this we can derive the property (1.3) when \(q \) is transcendental over the prime field \(K_0 \) of \(K \) (see [7]).

The main result of this paper is (1.3) where \(q \) is a root of unity. By the aid of Lusztig’s quantum Frobenius homomorphism we can reduce its proof to the case where \(q = \pm 1 \). In the case \(q = 1 \) (1.3) is a classically known fact as mentioned above. The proof is rather involved in the case \(q = -1 \). We will construct an isomorphism \(\mathcal{R}_{K,-1} \cong \mathcal{R}_{K,1} \) of graded vector spaces. Although this isomorphism does not preserve the ring structure, it satisfies some favorable properties so that we can derive (1.3) for \(q = -1 \) from that for \(q = 1 \).

2. Quantized enveloping algebras

2.1. Let \(G \) be a connected reductive algebraic group over \(\mathbb{C} \), and let \(H \) be a maximal torus of \(G \). We denote by \((X, \Delta, Y, \Delta^\vee)\) the root datum associated to \(G \) and \(H \). Namely,

\[
X = \text{Hom}(H, \mathbb{C}^\times), \quad Y = \text{Hom}(\mathbb{C}^\times, H),
\]

and \(\Delta \) (resp. \(\Delta^\vee \)) is the set of roots (resp. coroots). The coroot corresponding to \(\alpha \in \Delta \) is denoted as \(\alpha^\vee \in \Delta^\vee \). We fix a set of simple roots \(\{\alpha_i \mid i \in I\} \) of \(\Delta \), and denote the corresponding set of positive roots by \(\Delta^+ \). The Weyl group \(W \) is the subgroup of \(GL(h^\ast) \) generated by the simple reflections \(s_i : h^\ast \to h^\ast \) (\(\lambda \mapsto \lambda - \langle \lambda, \alpha_i^\vee \rangle \alpha_i \)) for \(i \in I \). Set

\[
Q = \sum_{\alpha \in \Delta} \mathbb{Z}\alpha \subset X, \quad Q^\vee = \sum_{\alpha \in \Delta} \mathbb{Z}\alpha^\vee \subset Y,
\]

\[
Q^+ = \sum_{\alpha \in \Delta^+} \mathbb{Z}_{\geq 0}\alpha \subset Q, \quad X^+ = \{\lambda \in X \mid \langle \lambda, \alpha_i^\vee \rangle \geq 0 \ (i \in I)\} \subset X.
\]

For \(i, j \in I \) we set \(a_{ij} = \langle \alpha_j, \alpha_i^\vee \rangle \).

Let \(\mathfrak{g} \) and \(\mathfrak{h} \) be the Lie algebras of \(G \) and \(H \) respectively. We will identify \(X \) (resp. \(Y \)) with a \(\mathbb{Z} \)-lattice of \(h^\ast \) (resp. \(h \)). We have the root space decomposition

\[
\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_\alpha, \quad \mathfrak{g}_\alpha = \{x \in \mathfrak{g} \mid \left[h, x \right] = \alpha(h)x \ (h \in \mathfrak{h})\}.
\]

For \(i \in I \) we take \(\tau_i \in \mathfrak{g}_{\alpha_i}, \bar{f}_i \in \mathfrak{g}_{-\alpha_i} \) such that \([\tau_i, \bar{f}_i] = \alpha_i^\vee \).

We denote by \(B, B^+ \) the Borel subgroups of \(G \) with Lie algebras

\[
\mathfrak{b} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{-\alpha}, \quad \mathfrak{b}^+ = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_\alpha
\]

respectively. We denote by \(N, N^+ \) the unipotent radicals of \(B, B^+ \) respectively. Their Lie algebras are given by

\[
\mathfrak{n} = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{-\alpha}, \quad \mathfrak{n}^+ = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_\alpha
\]

respectively.
2.2. For a Lie algebra \(\mathfrak{a} \) we denote its enveloping algebra by \(\mathcal{U}(\mathfrak{a}) \). For \(\lambda \in X \) we define a character \(\chi_\lambda : \mathcal{U}(\mathfrak{h}) \to \mathbb{C} \) by
\[
\chi_\lambda(h) = \langle \lambda, h \rangle \quad (h \in \mathfrak{h}).
\]
For \(n \in \mathbb{Z}_{\geq 0} \) set
\[
\binom{x}{n} = \frac{x(x-1) \ldots (x-n+1)}{n!} \in \mathbb{Q}[x].
\]
We denote by \(\mathcal{U}_Z(\mathfrak{h}) \) the \(\mathbb{Z} \)-subalgebra of \(\mathcal{U}(\mathfrak{h}) \) generated by the elements
\[
\binom{y}{n} \quad (y \in Y, n \in \mathbb{Z}_{\geq 0}).
\]
For \(i \in I \) and \(n \in \mathbb{Z}_{\geq 0} \) we define \(\overline{e}_i^{(n)}, \overline{f}_i^{(n)} \in \mathcal{U}(\mathfrak{g}) \) by
\[
\overline{e}_i^{(n)} = \frac{e_i^n}{n!}, \quad \overline{f}_i^{(n)} = \frac{f_i^n}{n!}.
\]
We define \(\mathbb{Z} \)-subalgebras \(\mathcal{U}_Z(\mathfrak{n}), \mathcal{U}_Z(\mathfrak{n}^+), \mathcal{U}_Z(\mathfrak{b}), \mathcal{U}_Z(\mathfrak{g}) \) of \(\mathcal{U}(\mathfrak{g}) \) by
\[
\mathcal{U}_Z(\mathfrak{n}) = \langle \overline{e}_i^{(n)} | i \in I, n \geq 0 \rangle, \quad \mathcal{U}_Z(\mathfrak{n}^+) = \langle \overline{e}_i^{(n)} | i \in I, n \geq 0 \rangle,
\]
\[
\mathcal{U}_Z(\mathfrak{b}) = \langle \mathcal{U}_Z(\mathfrak{h}), \mathcal{U}_Z(\mathfrak{n}) \rangle, \quad \mathcal{U}_Z(\mathfrak{g}) = \langle \mathcal{U}_Z(\mathfrak{h}), \mathcal{U}_Z(\mathfrak{n}), \mathcal{U}_Z(\mathfrak{n}^+) \rangle.
\]
For a commutative ring \(R \) we set
\[
\mathcal{U}_R(\mathfrak{h}) = R \otimes_{\mathbb{Z}} \mathcal{U}_Z(\mathfrak{h}), \quad \mathcal{U}_R(\mathfrak{n}) = R \otimes_{\mathbb{Z}} \mathcal{U}_Z(\mathfrak{n}), \quad \mathcal{U}_R(\mathfrak{n}^+) = R \otimes_{\mathbb{Z}} \mathcal{U}_Z(\mathfrak{n}^+),
\]
\[
\mathcal{U}_R(\mathfrak{b}) = R \otimes_{\mathbb{Z}} \mathcal{U}_Z(\mathfrak{b}), \quad \mathcal{U}_R(\mathfrak{g}) = R \otimes_{\mathbb{Z}} \mathcal{U}_Z(\mathfrak{g}).
\]
They are Hopf algebras over \(R \). Note that for \(\lambda \in X \) we have \(\chi_\lambda(\mathcal{U}_Z(\mathfrak{h})) \subset \mathbb{Z} \). Hence the character \(\chi_\lambda : \mathcal{U}(\mathfrak{h}) \to \mathbb{C} \) induces the character \(\chi_\lambda : \mathcal{U}_R(\mathfrak{h}) \to R \) of \(\mathcal{U}_R(\mathfrak{h}) \).

2.3. For an integer \(m \) we define its \(t \)-analogues \([m]_t \) and \(\{m\}_t \) by
\[
[m]_t = \frac{t^m - t^{-m}}{t - t^{-1}} \in \mathbb{Z}[t, t^{-1}], \quad \{m\}_t = \frac{t^m - 1}{t - 1} \in \mathbb{Z}[t].
\]
For a non-negative integer \(n \) we set
\[
[n]_t! = [1]_t [2]_t \ldots [n]_t \in \mathbb{Z}[t, t^{-1}], \quad \{n\}_t! = \{1\}_t \{2\}_t \ldots \{n\}_t \in \mathbb{Z}[t].
\]
We have
\[
[m]_t = t^{-m+1} \{m\}_t!, \quad [n]_t! = t^{-n(n-1)/2} \{n\}_t!.
\]

2.4. We fix a \(W \)-invariant symmetric bilinear form
\[
(\cdot, \cdot) : \sum_{\alpha \in \Delta} \mathbb{Q} \alpha \times \sum_{\alpha \in \Delta} \mathbb{Q} \alpha \to \mathbb{Q}
\]
satisfying \((\alpha, \alpha) \in 2\mathbb{Z} \) for any \(\alpha \in \Delta \). For \(\alpha \in \Delta \) we set \(d_\alpha = (\alpha, \alpha)/2 \), and for \(i \in I \) we set \(d_i = d_{\alpha_i} \).

Set \(F = \mathbb{Q}(q) \). The quantized enveloping algebra \(U_F(\mathfrak{g}) \) is the associative algebra over \(F \) with 1 generated by the elements
\[
k_y \quad (y \in Y), \quad e_i, \quad f_i \quad (i \in I)
\]
satisfying the relations
\begin{align*}
k_0 &= 1, \quad k_y k_y = k_{y_1 y_2} \quad (y_1, y_2 \in Y), \\
k_y e_i &= q^{(\alpha_i, y)} e_i k_y, \quad k_y f_i = q^{-(\alpha_i, y)} f_i k_y \quad (y \in Y, i \in I), \\
e_i f_j - f_j e_i &= \delta_{ij} \frac{k_i - k_i^{-1}}{q_i - q_i^{-1}} \quad (i, j \in I), \\
(1-\alpha_{ij}) \sum_{r=0}^{1} (-1)^r e_i^{(1-\alpha_{ij}-r)} e_j e_i^{(r)} &= 0 \quad (i, j \in I, i \neq j), \\
(1-\alpha_{ij}) \sum_{r=0}^{1} (-1)^r f_i^{(1-\alpha_{ij}-r)} f_j f_i^{(r)} &= 0 \quad (i, j \in I, i \neq j).
\end{align*}

Here, \(q_i = q^{k_i}, \) \(k_i = k_{d_i \alpha_i} \) for \(i \in I, \) and \(e_i^{(n)} = e_i^n/[n]_q, \) \(f_i^{(n)} = f_i^n/[n]_q \) for \(i \in I, \) \(n \in \mathbb{Z}_{\geq 0}. \)

We will use the Hopf algebra structure of \(U_F(g) \) given by
\begin{align*}
\Delta(k_y) &= k_y \otimes k_y, \\
\Delta(e_i) &= e_i \otimes 1 + k_i \otimes e_i, \quad \Delta(f_i) = f_i \otimes k_i^{-1} + 1 \otimes f_i, \\
\varepsilon(k_y) &= 1, \quad \varepsilon(e_i) = \varepsilon(f_i) = 0, \\
S(k_y) &= k_y^{-1}, \quad S(e_i) = -k_i^{-1} e_i, \quad S(f_i) = -f_i k_i
\end{align*}
for \(y \in Y, i \in I. \) We define \(F \)-subalgebras \(U_F(h), U_F(b), U_F(n), U_F(n^+) \) of \(U_F(g) \) by
\begin{align*}
U_F(h) &= \langle k_y \mid y \in Y \rangle, \quad U_F(b) = \langle k_y, f_i \mid y \in Y, i \in I \rangle, \\
U_F(n) &= \langle f_i \mid i \in I \rangle, \quad U_F(n^+) = \langle e_i \mid i \in I \rangle.
\end{align*}

Then we have
\[U_F(h) = \bigoplus_{y \in Y} F k_y. \]

For \(\lambda \in X \) we define a character \(\chi_\lambda : U_F(h) \to F \) by
\[\chi_\lambda(k_y) = q^{(\lambda, y)} \quad (y \in Y). \]

For \(\gamma \in Q^+ \) set
\begin{align*}
U_F(n)_{-\gamma} &= \{ u \in U_F(n) \mid k_y u k_y^{-1} = q^{-(\gamma, y)} u \quad (y \in Y) \}, \\
U_F(n^+)_{\gamma} &= \{ u \in U_F(n^+) \mid k_y u k_y^{-1} = q^{\gamma, y} u \quad (y \in Y) \}.
\end{align*}

Then we have
\[U_F(n) = \bigoplus_{\gamma \in Q^+} U_F(n)_{-\gamma}, \quad U_F(n^+) = \bigoplus_{\gamma \in Q^+} U_F(n^+)_{\gamma}. \]

2.5. Set \(A = \mathbb{Z}[g, q^{-1}]. \) We define an \(A \)-subalgebra \(U_A(h) \) of \(U_F(h) \) by
\[U_A(h) = \{ u \in U_F(h) \mid \chi_\lambda(u) \in A \quad (\forall \lambda \in X) \}. \]
By the definition of $U_A(h)$, the character $\chi_\lambda : U_F(h) \to F$ for $\lambda \in X$ induces an algebra homomorphism $\chi_\lambda : U_A(h) \to A$. For $y \in Y$, $n \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}$ we have

$$k_y \in U_A(h), \quad \{q^m k_y\}_q \in U_A(h),$$

where, for $n \in \mathbb{Z}_{\geq 0}$, we set

$$\left\{ x \right\}_t = \prod_{s=1}^{n} \frac{x t^{-s+1} - 1}{t^s - 1} \in (Q(t))[x].$$

The proof of the following result is easily reduced to the case where Y is of rank one. Details are omitted.

Lemma 2.1. Let y_1, \ldots, y_m be a basis of the free \mathbb{Z}-module Y.

(i) (see [3, Theorem 3.1]) $U_A(h)$ is a free A-module with basis

$$\prod_{a=1}^{m} \left\{ k_{y_a} \right\}_{n_a} \left(n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0} \right).$$

(ii) $U_A(h) \cap F[k_{y_1}, \ldots, k_{y_m}]$ is a free A-module with basis

$$\prod_{a=1}^{m} \left\{ k_{y_a} \right\}_{n_a} \left(n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0} \right).$$

(iii) The ring $U_A(h)$ is the localization of $U_A(h) \cap F[k_{y_1}, \ldots, k_{y_m}]$ with respect to the multiplicative set $\{k_{n_1 y_1 + \cdots + n_m y_m} \mid n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0}\}$.

We denote by $U_A(g)$ the A-subalgebra of $U_F(g)$ generated by $U_A(h)$ and $e_i^{(n)}$, $f_i^{(n)}$ for $i \in I$, $n \in \mathbb{Z}_{\geq 0}$. It is naturally a Hopf algebra over A. We define A-subalgebras $U_A(b)$, $U_A(n)$, $U_A(n^+)$ of $U_A(g)$ by

$$U_A(b) = \langle U_A(h), e_i^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0} \rangle, \quad U_A(n) = \langle f_i^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0} \rangle, \quad U_A(n^+) = \langle e_i^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0} \rangle.$$

We have the triangular decomposition

$$U_A(g) \cong U_A(n^+) \otimes U_A(h) \otimes U_A(n), \quad U_A(b) \cong U_F(h) \otimes U_A(n),$$

where the isomorphisms are induced by the multiplication. For $\gamma \in Q^+$ set

$$U_A(n)_{-\gamma} = U_A(n) \cap U_F(n)_{-\gamma}, \quad U_A(n^+)_{\gamma} = U_A(n^+) \cap U_F(n)_{\gamma}.$$

Then we have

$$U_A(n) = \bigoplus_{\gamma \in Q^+} U_A(n)_{-\gamma}, \quad U_A(n^+) = \bigoplus_{\gamma \in Q^+} U_A(n^+)_{\gamma}.$$

It is known that $U_A(n)_{-\gamma}$ and $U_A(n^+)_{\gamma}$ are free A-modules of finite rank (see [3]).
2.6. Let R be a commutative ring equipped with $\zeta \in R^\times$. We set

$$U_{R,\zeta}(g) = R \otimes_A U_A(g), \quad U_{R,\zeta}(b) = R \otimes_A U_A(b), \quad U_{R,\zeta}(h) = R \otimes_A U_A(h),$$

$$U_{R,\zeta}(n) = R \otimes_A U_A(n), \quad U_{R,\zeta}(n^+) = R \otimes_A U_A(n^+),$$

where $A \to R$ is given by $q \mapsto \zeta$. Then $U_{R,\zeta}(g)$ is a Hopf algebra over R, and $U_{R,\zeta}(b)$, $U_{R,\zeta}(h)$, $U_{R,\zeta}(n)$, $U_{R,\zeta}(n^+)$ are naturally identified with R-subalgebras of $U_{R,\zeta}(g)$. Moreover, $U_{R,\zeta}(b)$, $U_{R,\zeta}(h)$ are Hopf subalgebras. We have the triangular decomposition

$$U_{R,\zeta}(g) \cong U_{R,\zeta}(n) \otimes U_{R,\zeta}(h) \otimes U_{R,\zeta}(n^+), \quad U_{R,\zeta}(b) \cong U_{R,\zeta}(n) \otimes U_{R,\zeta}(h).$$

For $\gamma \in \mathbb{Q}^+$ we set

$$U_{R,\zeta}(n)_{-\gamma} = R \otimes_A U_A(n)_{-\gamma}, \quad U_{R,\zeta}(n^+)_{\gamma} = R \otimes_A U_A(n^+)_\gamma.$$

Then we have

$$U_{R,\zeta}(n) = \bigoplus_{\gamma \in \mathbb{Q}^+} U_{R,\zeta}(n)_{-\gamma}, \quad U_{R,\zeta}(n^+) = \bigoplus_{\gamma \in \mathbb{Q}^+} U_{R,\zeta}(n^+)_{\gamma}.$$

Lemma 2.2. Let y_1, \ldots, y_m be a basis of the free \mathbb{Z}-module Y.

(i) $U_{R,\zeta}(h)$ is a free R-module with basis

$$1 \otimes \prod_{a=1}^m \left\{ \frac{k_{ya}}{n_a} \right\}_q k_{ya}^{-|[na+1]/2]} (n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0}).$$

(ii) The elements

$$1 \otimes \prod_{a=1}^m \left\{ \frac{k_{ya}}{n_a} \right\}_q (n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0})$$

of $U_{R,\zeta}(h)$ are linearly independent over R.

(iii) Denote by $U_{R,\zeta}^+(h)$ the R-submodule of $U_{R,\zeta}(h)$ generated by the elements in (ii). Then $U_{R,\zeta}^+(h)$ is a subring of $U_{R,\zeta}(h)$. Moreover, $U_{R,\zeta}(h)$ is a localization of $U_{R,\zeta}^+(h)$ with respect to the multiplicative set $\{k_{n_1y_1+\cdots+n_my_m} \mid n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0}\}$. Hence

$$U_{R,\zeta}(h) = \bigcup_{n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0}} k_{n_1y_1+\cdots+n_my_m}^{-1} U_{R,\zeta}^+(h).$$

Proof. Set

$L = R \otimes_A (U_A(h) \cap \mathbb{F}[k_{y_1}, \ldots, k_{y_m}])$, \quad $S = \{k_{n_1y_1+\cdots+n_my_m} \mid n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0}\} \subset L$.

In view of Lemma 2.1 it is sufficient to verify that the canonical homomorphism $L \to S^{-1}L$ is injective. Hence we have only to show that the map $L \ni z \mapsto k_{y_1}^{-1}z \in L$ is injective for any a. This is easily reduced to the case where Y is of rank one. Details are omitted.

Let $\lambda \in X$. By abuse of notation we denote by

$$\chi_\lambda : U_{R,\zeta}(h) \to R$$

the R-algebra homomorphism induced by $\chi_\lambda : U_F(h) \to F$.

The proof of the following fact is reduced to the rank one case. Details are omitted.
Lemma 2.3. \(\text{(i)}\) The subset \(\{\chi_\lambda \mid \lambda \in X\}\) of \(\text{Hom}_R(U_{R,\zeta}(\mathfrak{h}), R)\) is linearly independent over \(R\).

\(\text{(ii)}\) Let \(h \in U_{R,\zeta}(\mathfrak{h})\). If \(\chi_\lambda(h) = 0\) for any \(\lambda \in X\), then we have \(h = 0\).

We set \(\zeta_\alpha = \zeta_{d_\alpha} (\alpha \in \Delta), \quad \zeta_i = \zeta_{d_i} (i \in I)\).

2.7. In this subsection we assume that \(\zeta_\alpha = \pm 1\) for any \(\alpha \in \Delta\). We compare \(U_{R,\zeta}(\mathfrak{g})\) with \(U_{R,\zeta}(\mathfrak{h})\) in the following.

Note that \(\zeta_s = 1\) for some \(s \in \mathbb{Z}_{>0}\) by our assumption. For \(y \in Y\) and \(n \in \mathbb{Z}_{\geq 0}\) we set \(h(y,n) = 1 \otimes \left\{ k_{sy} \right\}_{q^s} \in U_{R,\zeta}(\mathfrak{h})\).

By Lemma 2.3 \(\text{(ii)}\) it is characterized as the element of \(U_{R,\zeta}(\mathfrak{h})\) satisfying

\[\chi_\lambda(h(y,n)) = \left(\langle \lambda, y \rangle \right)_{n} 1_R\]

for any \(\lambda \in X\). In particular, \(h(y,n)\) does not depend on the choice of \(s\). Denote by \(U'_{R,\zeta}(\mathfrak{h})\) the subalgebra of \(U'_{R,\zeta}(\mathfrak{h})\) generated by the elements \(h(y,n)\) for \(y \in Y\), \(n \in \mathbb{Z}_{\geq 0}\). By Lemma 2.3 \(\text{(ii)}\) we see easily the following

Lemma 2.4. If \(y_1, \ldots, y_m\) is a basis of the free \(\mathbb{Z}\)-module \(Y\), then

\[\prod_{a=1}^m h(y_a, n_a) \quad (n_1, \ldots, n_m \in \mathbb{Z}_{\geq 0})\]

form a basis of the \(R\)-module \(U'_{R,\zeta}(\mathfrak{h})\).

For \(i \in I\), \(n \in \mathbb{Z}_{\geq 0}\), \(s \in \mathbb{Z}\) set

\[\left[k_i; s \atop n \right]_{q_i} = \prod_{a=1}^n \frac{q_i^{s-a+1}k_i - q_i^{-s+a-1}k_i^{-1}}{q_i^a - q_i^{-a}} \in U_{A}(\mathfrak{h}),\]

\[t(i, n, s) = 1 \otimes q_i^{-n(n-s)}k_i \left[k_i; s \atop n \right]_{q_i} \in U_{R,\zeta}(\mathfrak{h}).\]

Then we have

\[\chi_\lambda(t(i, n, s)) = \left(\langle \lambda, \alpha_i^\vee \rangle + s \right)_{n} 1_R\]

for any \(\lambda \in X\). Note

\[\left(x + s \atop n \right) \in \sum_{m=0}^n \mathbb{Z} \left(x \atop m \right)\]

in \(\mathbb{Q}[x]\). Hence by Lemma 2.3 \(\text{(ii)}\) we have

\[t(i, n, s) \in \sum_{m=0}^n R h(\alpha_i^\vee, m) \in U'_{R,\zeta}(\mathfrak{h}) \quad (i \in I, n \in \mathbb{Z}_{\geq 0}).\]

Take a subset \(J\) of \(I\) satisfying

\[(2.2) \quad i, j \in I, \quad a_{ij} < 0 \implies |J \cap \{i, j\}| = 1.\]
For $i \in I$ and $n \in \mathbb{Z}_{\geq 0}$ we define $e(i, n), f(i, n) \in U_{R, \xi}(\mathfrak{g})$ by

$$e(i, n) = \begin{cases} \zeta_i^n e_{\xi i}^{(n)} & (i \in J) \\ \zeta_i^{n-1} e_{\xi i}^{(n)} & (i \notin J), \end{cases}$$

$$f(i, n) = \begin{cases} \zeta_i^n f_{\xi i}^{(n)} k_i^n & (i \in J) \\ \zeta_i^{n-1} f_{\xi i}^{(n)} & (i \notin J). \end{cases}$$

We define $U_{R, \xi}(n)$ (resp. $U_{R, \xi}(n^+)$) the R-subalgebra of $U_{R, \xi}(\mathfrak{g})$ generated by

$$\{ f(i, n) \mid i \in J, n \in \mathbb{Z}_{\geq 0} \} \text{ (resp. } \{ e(i, n) \mid i \in J, n \in \mathbb{Z}_{\geq 0} \}).$$

For $\gamma = \sum_{i \in I} m_i \alpha_i \in Q$ we set $\gamma^{+} = \sum_{i \in J} m_i \alpha_i \in Q$. Then we have

$$(2.3) \quad U_{R, \xi}^{+}(n) = \bigoplus_{\gamma \in Q^+} U_{R, \xi}(n)^{-\gamma} k_{\gamma}, \quad U_{R, \xi}^{+}(n^+) = \bigoplus_{\gamma \in Q^+} U_{R, \xi}(n^+) \gamma k_{\gamma-\gamma}.$$}

We define $U_{R, \xi}^{+}(\mathfrak{g})$ to be the R-subalgebra of $U_{R, \xi}(\mathfrak{g})$ generated by $U_{R, \xi}^{+}(\mathfrak{h}), U_{R, \xi}^{+}(\mathfrak{n}), U_{R, \xi}^{+}(n^+)$.

By well-known relations in $U_{\mathfrak{g}}(\mathfrak{f})$ we have

$$(2.4) \quad he(i, n) = \xi_{\alpha_{i}}(h) e(i, n) h, \quad hf(i, n) = \xi_{-\alpha_{i}}(h) f(i, n) h,$$

$$(2.5) \quad e(i, n) f(j, m) = f(j, m) e(i, n), \quad (i \neq j),$$

$$(2.6) \quad e(i, n) f(i, m) = \sum_{0 \leq a \leq n, m} f(i, m-a) t(i, a, 2a - m) e(i, n-a)$$

for $h \in U_{R, \xi}^{+}(\mathfrak{h}), n, m \in \mathbb{Z}_{\geq 0}, i, j \in I$. By (2.4), (2.5), (2.6) we see that the multiplication of $U_{R, \xi}^{+}(\mathfrak{g})$ induces the isomorphism

$$(2.7) \quad U_{R, \xi}^{+}(\mathfrak{g}) \cong U_{R, \xi}^{+}(\mathfrak{n}) \otimes U_{R, \xi}^{+}(\mathfrak{h}) \otimes U_{R, \xi}^{+}(n^+)$$

of R-modules.

Lemma 2.5. Recall that $\xi_{\alpha} = \pm 1$ for any $\alpha \in \Delta$. We have isomorphisms

$$U_{R}(\mathfrak{n}) \cong U_{R}^{+}(\mathfrak{n}) \quad (f_{i}^{(n)} \leftrightarrow f(i, n)), \quad U_{R}(n^+) \cong U_{R, \xi}^{+}(n^+) \quad (e_{i}^{(n)} \leftrightarrow e(i, n))$$

of R-algebras.

Proof. We may assume \mathfrak{g} is simple. By considering the situation where the bilinear form $(\ , \)$ in (2.1) is replaced by $d_{\alpha}^{-1}(\ , \)$ for short roots α, we may further assume that $q = q_{\alpha}$ for short roots α. In this case $\xi = \pm 1$, and we have

$$U_{R, \xi}^{+}(n) = R \otimes \mathbb{Z} U_{Z, \xi}(\mathfrak{n}), \quad U_{R, \xi}^{+}(n^+) = R \otimes \mathbb{Z} U_{Z, \xi}(n^+).$$

Here $\xi = 1 \in \mathbb{Z}$ if $\xi = 1 \in R$, and $\xi = -1 \in \mathbb{Z}$ if $\xi = -1 \in R$. Hence we have only to show

$$U_{Z}(\mathfrak{n}) \cong U_{Z, \xi}(\mathfrak{n}), \quad U_{Z}(n^+) \cong U_{Z, \xi}(n^+).$$

By using the embeddings

$$U_{Z}(\mathfrak{n}) \subset U_{\mathfrak{Q}}^{+}(\mathfrak{n}), \quad U_{Z}(n^+) \subset U_{\mathfrak{Q}}^{+}(n^+), \quad U_{Z, \xi}(\mathfrak{n}) \subset U_{\mathfrak{Q}, \xi}(\mathfrak{n}), \quad U_{Z, \xi}(n^+) \subset U_{\mathfrak{Q}, \xi}(n^+)$$

the proof is reduced to showing

$$U_{\mathfrak{Q}}^{+}(\mathfrak{n}) \cong U_{\mathfrak{Q}, \xi}(\mathfrak{n}), \quad U_{\mathfrak{Q}}^{+}(n^+) \cong U_{\mathfrak{Q}, \xi}(n^+).$$

This is easily verified by checking the Serre type relations. \hfill \Box
In view of the relations (2.4), (2.5), (2.6) we see from (2.7), Lemma 2.5 the following.

Proposition 2.6. Recall that \(\zeta_\alpha = \pm 1 \) for any \(\alpha \in \Delta \). We have an isomorphism

\[
\mathcal{U}_R(\mathfrak{g}) \cong U_{R,\zeta}(\mathfrak{g})
\]

of \(R \)-algebras given by

\[
(y) \mapsto h(y, n), \quad \mathcal{e}^{(n)}(i) \mapsto e(i, n), \quad \mathcal{f}^{(n)}(i) \mapsto f(i, n)
\]

for \(y \in Y, i \in I, n \in \mathbb{Z}_{\geq 0} \) (compare [9] Proposition 33.2.3).

Remark 2.7. For \(i \in I \) satisfying \(\zeta_i = 1 \) we have \(k_i = 1 \) in \(U_{R,\zeta}(\mathfrak{h}) \) by Lemma 2.3. Hence if \(\zeta_i = 1 \) for any \(i \in I \), then (2.8) turns out to be a Hopf algebra isomorphism. In general (2.8) does not preserve the comultiplication.

2.8. Let \(R \) be a commutative ring equipped with \(\zeta \in R^\times \). In this subsection we assume that there exists some \(\ell \in \mathbb{Z}_{>0} \) such that \(f_\ell(\zeta) = 0 \), where \(f_\ell \) is the \(\ell \)-th cyclotomic polynomial. As in [9] we define a root datum \((\tilde{\Delta}, \tilde{\mathfrak{g}}, \tilde{\Delta}^\vee)\) as follows. Let

\[
\tilde{\Delta} = \{ \tilde{\alpha} \mid \alpha \in \Delta \} \text{ turns out to be a root system with } \{ \tilde{\alpha}_i \mid i \in I \} \text{ a set of simple roots. Moreover, } \tilde{\Delta}^\vee = \{ \tilde{\alpha}^\vee \mid \alpha \in \Delta \} \text{ is the set of coroots for the root system } \tilde{\Delta}. \text{ Set}
\]

\[
\tilde{\Delta} = \{ \tilde{\alpha} \mid \alpha \in \Delta \} \text{ turns out to be a root system with } \{ \tilde{\alpha}_i \mid i \in I \} \text{ a set of simple roots. Moreover, } \tilde{\Delta}^\vee = \{ \tilde{\alpha}^\vee \mid \alpha \in \Delta \} \text{ is the set of coroots for the root system } \tilde{\Delta}. \text{ Set}
\]

Let \(\tilde{\mathfrak{g}} \) be the connected reductive algebraic group over \(C \) with root datum \((\tilde{\Delta}, \tilde{\mathfrak{g}}, \tilde{\Delta}^\vee)\), and let \(\mathfrak{g} \) be its Lie algebra. We denote by \(U_{R,\zeta}(\tilde{\mathfrak{g}}) \) the quantized enveloping algebra over \(R \) associated to the root datum \((\tilde{\Delta}, \tilde{\mathfrak{g}}, \tilde{\Delta}^\vee)\) and the \(W \)-invariant symmetric bilinear form (2.1) on \(\sum_{\alpha \in \Delta} Q^\alpha \). We similarly define \(R \)-subalgebras \(U_{R,\zeta}(\mathfrak{h}), U_{R,\zeta}(\mathfrak{t}), U_{R,\zeta}(\mathfrak{m}), U_{R,\zeta}(\mathfrak{m}^+) \) of \(U_{R,\zeta}(\tilde{\mathfrak{g}}) \).

Note that for any \(\alpha \in \Delta \) we have \(\zeta_\alpha = \zeta^\alpha = \pm 1 \). Hence we can apply the results in the preceding subsection to \(U_{R,\zeta}(\tilde{\mathfrak{g}}) \). In particular, we have \(\overline{U}_R(\mathfrak{g}) \cong U_{R,\zeta}(\mathfrak{g}) \subset U_{R,\zeta}(\tilde{\mathfrak{g}}) \).

Following Lusztig we define the quantum Frobenius homomorphism

\[
\mathcal{F} : U_{R,\zeta}(\mathfrak{g}) \to U_{R,\zeta}(\tilde{\mathfrak{g}})
\]
as follows. By $Y \subset \mathfrak{y}$ we have an inclusion $U_{\mathfrak{F}}(\mathfrak{h}) \subset U_{\mathfrak{F}}(\mathfrak{y})$ sending k_y for $y \in Y$ to k_y for $y \in Y \subset \mathfrak{y}$. This induces $U_{\mathfrak{A}}(\mathfrak{h}) \subset U_{\mathfrak{A}}(\mathfrak{y})$ because $\mathfrak{y} \subset \mathfrak{x}$. Hence we obtain a natural homomorphism
\[
F_\mathfrak{h} : U_{R,\zeta}(\mathfrak{h}) \to U_{R,\zeta}(\mathfrak{y}).
\]
On the other hand by [9, Theorem 35.1.7] we have well-defined algebra homomorphisms
\[
F_n : U_{R,\zeta}(n) \to U_{R,\zeta}(\mathfrak{y}), \quad F_{n+} : U_{R,\zeta}(n^+) \to U_{R,\zeta}(\mathfrak{y}^+)
\]
satisfying
\[
F_n(f_i^{(n)}) = \begin{cases} f_i^{(n/r_i)}(r_i|n) & \text{(otherwise)} \\ 0 & \text{(otherwise)} \end{cases}, \quad F_{n+}(e_i^{(n)}) = \begin{cases} e_i^{(n/r_i)}(r_i|n) & \text{(otherwise)} \\ 0 & \text{(otherwise)} \end{cases}
\]
for $i \in I$, $n \in \mathbb{Z}_{\geq 0}$ (see also the last paragraph of [9, 35.5.2]). The following result is proved exactly as in [9, Theorem 35.1.9] using Lemma 2.3 (ii).

Proposition 2.8. There exists a unique Hopf algebra homomorphism
\[
F : U_{R,\zeta}(\mathfrak{g}) \to U_{R,\zeta}(\mathfrak{y})
\]
satisfying $F|_{U_{R,\zeta}(\mathfrak{h})} = F_\mathfrak{h}$, $F|_{U_{R,\zeta}(n)} = F_n$, $F|_{U_{R,\zeta}(n^+)} = F_{n+}$.

3. Representations

3.1. Let \mathcal{H} be a Hopf algebra over a commutative ring R. For left \mathcal{H}-modules M_1, M_2 we regard the left $\mathcal{H} \otimes \mathcal{H}$-module $M_1 \otimes M_2 = M_1 \otimes_R M_2$ as a left \mathcal{H}-module via the comultiplication $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$. For a left (resp. right) \mathcal{H}-module M we regard $M^* = \text{Hom}_R(M, R)$ as a right (resp. left) \mathcal{H}-module by
\[
\langle m^* h, m \rangle = \langle m^*, hm \rangle, \quad \text{(resp. } \langle hm^*, m \rangle = \langle m^*, mh \rangle).\]
for $h \in \mathcal{H}$, $m \in M$, $m^* \in M^*$.

3.2. For a left (resp. right) $\mathcal{U}^e(\mathfrak{g})$-module V and $\mu \in X$ we set
\[
V_\mu = \{ v \in V \mid hv = \mu(h)v \ (h \in \mathfrak{h}) \}, \quad \text{(resp. } V_\mu = \{ v \in V \mid vh = \mu(h)v \ (h \in \mathfrak{h}) \}).\]
For $\lambda \in X^+$ we define a $\mathcal{U}^e(\mathfrak{g})$-module $\mathcal{V}(\lambda)$ by
\[
\mathcal{V}(\lambda) = \mathcal{U}(\mathfrak{g})/\left(\sum_{h \in \mathfrak{h}} \mathcal{U}(\mathfrak{g})(h - \lambda(h) + \sum_{i \in I} \mathcal{U}(\mathfrak{g})\mathfrak{e}_i + \sum_{i \in I} \mathcal{U}(\mathfrak{g})f_i^{(\lambda, n^\vee) + 1} \right).
\]
Then $\mathcal{V}(\lambda)$ is a finite-dimensional irreducible $\mathcal{U}^e(\mathfrak{g})$-module, which has the weight space decomposition $\mathcal{V}(\lambda) = \bigoplus_{\mu \in X} \mathcal{V}(\lambda)_\mu$. Set $\mathfrak{v}_\lambda = \mathfrak{I} \in \mathcal{V}(\lambda)$, so that $\mathcal{V}(\lambda)_\mu = C_{\mathfrak{v}_\lambda}$. Set $\mathcal{V}^e(\lambda) = \text{Hom}_C(\mathcal{V}(\lambda), C)$. It is a finite-dimensional irreducible right $\mathcal{U}^e(\mathfrak{g})$-module. The weight space decomposition of $\mathcal{V}(\lambda)$ gives the weight space decomposition $\mathcal{V}^e(\lambda) = \bigoplus_{\mu \in X} \mathcal{V}^e(\lambda)_\mu$ of $\mathcal{V}^e(\lambda)$, where $\mathcal{V}^e(\lambda)_\mu = (\mathcal{V}(\lambda)_\mu)^*$. We define $\mathfrak{v}_\lambda \in \mathcal{V}^e(\lambda)_\lambda$ by $\langle \mathfrak{v}_\lambda, \mathfrak{v}_\lambda \rangle = 1$.

For $\lambda \in X^+$ we define a $\mathcal{U}_Z(\mathfrak{g})$-submodule \mathcal{Z}_λ of $\mathcal{V}(\lambda)$ and a right $\mathcal{U}_Z(\mathfrak{g})$-submodule \mathcal{Z}_λ^e of $\mathcal{V}^e(\lambda)$ by
\[
\mathcal{Z}_\lambda = \mathcal{U}_Z(\mathfrak{g})\mathfrak{v}_\lambda, \quad \mathcal{Z}_\lambda^e = \mathfrak{v}_\lambda^e \mathcal{U}_Z(\mathfrak{g}).
\]
Then $\Delta_Z(\lambda)$ and $\Delta_Z^*(\lambda)$ are free \mathbb{Z}-modules satisfying
\[
C \otimes_{\mathbb{Z}} \Delta_Z(\lambda) \cong \nabla(\lambda), \quad C \otimes_{\mathbb{Z}} \Delta_Z^*(\lambda) \cong \nabla^*(\lambda).
\]
For $\lambda \in X^+$ we define a $U_Z(\mathfrak{g})$-submodule $\nabla_Z(\lambda)$ of $\nabla(\lambda)$ and a right $U_Z(\mathfrak{g})$-submodules $\nabla_Z^*(\lambda)$ of $\nabla^*(\lambda)$ by
\[
\nabla_Z(\lambda) = \{ v \in \nabla(\lambda) \mid \langle \Delta_Z(\lambda), v \rangle \subset \mathbb{Z} \} \cong \text{Hom}_{\mathbb{Z}}(\Delta_Z(\lambda), \mathbb{Z}),
\]
\[
\nabla_Z^*(\lambda) = \{ v^* \in \nabla^*(\lambda) \mid \langle v^*, \Delta_Z(\lambda) \rangle \subset \mathbb{Z} \} \cong \text{Hom}_{\mathbb{Z}}(\Delta_Z^*(\lambda), \mathbb{Z}).
\]
Then we have
\[
\Delta_Z(\lambda) \subset \nabla_Z(\lambda) \subset \nabla(\lambda), \quad \Delta_Z^*(\lambda) \subset \nabla_Z^*(\lambda) \subset \nabla^*(\lambda).
\]
Moreover, $\nabla_Z(\lambda)$ and $\nabla_Z^*(\lambda)$ are free \mathbb{Z}-modules satisfying
\[
C \otimes_{\mathbb{Z}} \nabla_Z(\lambda) \cong \nabla(\lambda), \quad C \otimes_{\mathbb{Z}} \nabla_Z^*(\lambda) \cong \nabla^*(\lambda).
\]
Let R be a commutative ring. For a $\mathcal{U}_R(\mathfrak{g})$-module V and $\mu \in X$ we set
\[
V_\mu = \{ v \in V \mid hv = \nabla_\mu(h)v \ (h \in \mathcal{U}_R(\mathfrak{h})) \}.
\]
We say that a $\mathcal{U}_R(\mathfrak{g})$-module V is integrable if it has the weight space decomposition $V = \bigoplus_{\mu \in X} V_\mu$, and for any $v \in V$ and $i \in I$ we have $e_i^{(n)} v = f_i^{(n)} v = 0$ for $n \gg 0$. We denote by $\text{Mod}_{\text{int}}(\mathcal{U}_R(\mathfrak{g}))$ the category of integrable $\mathcal{U}_R(\mathfrak{g})$-modules.

Let V be an integrable $\mathcal{U}_R(\mathfrak{g})$-module. For $i \in I$ we define an invertible R-homomorphism $T_i|_V = T_i : V \to V$ by
\[
T_i v = \sum_{a-b+c=(\lambda, \alpha_i^\vee)} (-1)^b f_i^{(a)} e_i^{(b)} f_i^{(c)} v \quad (\lambda \in X, v \in V_\lambda).
\]
For $w \in W$ we define an invertible R-homomorphism $T_w|_V = T_w : V \to V$ by
\[
T_w = T_{w_1} \cdots T_{w_N},
\]
where $w = s_{i_1} \cdots s_{i_N}$ is a reduced expression of w. It does not depend on the choice of a reduced expression. Moreover, we have $T_wV_\lambda = V_{w\lambda}$ for $\lambda \in X$. Regarding $\mathcal{U}_R(\mathfrak{g})$ as an integrable $\mathcal{U}_R(\mathfrak{g})$-module via the adjoint action we have
\[
(T_w|_V)(uv) = (T_w|_{\mathcal{U}_R(\mathfrak{g})}(u))(T_w|_V(v)) \quad (u \in \mathcal{U}_R(\mathfrak{g}), v \in V).
\]
The following is well-known.

Lemma 3.1. For integrable $\mathcal{U}_R(\mathfrak{g})$-modules V_1, V_2 we have
\[
T_w|_{V_1 \otimes V_2} = T_w|_{V_1} \otimes T_w|_{V_2}.
\]

For $\lambda \in X^+$ we define left $\mathcal{U}_R(\mathfrak{g})$-modules $\Delta_R(\lambda)$, $\nabla_R(\lambda)$ and right $\mathcal{U}_R(\mathfrak{g})$-modules $\Delta_R^*(\lambda)$, $\nabla_R^*(\lambda)$ as the base changes of $\Delta_Z(\lambda)$, $\nabla_Z(\lambda)$, $\Delta_Z^*(\lambda)$, $\nabla_Z^*(\lambda)$ respectively. We call $\Delta_R(\lambda)$, $\nabla_R(\lambda)$ the (left and right) Weyl modules with highest weight λ, and $\Delta_R^*(\lambda)$, $\nabla_R^*(\lambda)$ the (left and right) dual Weyl modules with highest weight λ. The left $\mathcal{U}_R(\mathfrak{g})$-modules $\Delta_R(\lambda)$, $\nabla_R(\lambda)$ are integrable.
3.3. For a left (resp. right) $U_F(\mathfrak{g})$-module V and $\mu \in X$ we set

$$V_\mu = \{ v \in V \mid hv = \chi_\mu(h)v \ (h \in U_F(\mathfrak{h})) \},$$

(resp. $V_\mu = \{ v \in V \mid vh = \chi_\mu(h)v \ (h \in U_F(\mathfrak{h})) \}).$

For $\lambda \in X^+$ we define a $U_F(\mathfrak{g})$-module $V_F(\lambda)$ by

$$V_F(\lambda) = U_F(\mathfrak{g})/ \left(\sum_{h \in U_F(\mathfrak{h})} U_F(\mathfrak{g})(h - \chi_\lambda(h)) + \sum_{i \in I} U_F(\mathfrak{g}) e_i + \sum_{i \in I} U_F(\mathfrak{g}) f_i^{(\lambda, \alpha_i)} \right).$$

Then $V_F(\lambda)$ is a finite-dimensional irreducible $U_F(\mathfrak{g})$-module. Set $V_F^*(\lambda) = \text{Hom}_F(V_F(\lambda), F)$. It is a finite-dimensional irreducible right $U_F(\mathfrak{g})$-module. The weight space decomposition $V_F(\lambda) = \bigoplus_{\mu \in X} V_F(\lambda)_\mu$ of $V_F(\lambda)$ gives the weight space decomposition $V_F^*(\lambda) = \bigoplus_{\mu \in X} V_F^*(\lambda)_\mu$ of $V_F^*(\lambda)$, where $V_F^*(\lambda)_\mu = (V_F(\lambda)_\mu)^*$. Set $v_\lambda = \overline{1} \in V_F(\lambda)$. Then we have $V_F(\lambda)_\lambda = Fv_\lambda$. We define $v_\lambda^* \in V_F^*(\lambda)_\lambda$ by $\langle v_\lambda^*, v_\lambda \rangle = 1$.

3.4. For $\lambda \in X^+$ we define a $U_A(\mathfrak{g})$-submodule $\Delta_A(\lambda)$ of $V_F(\lambda)$ and a right $U_A(\mathfrak{g})$-submodule $\Delta_A^*(\lambda)$ of $V_F^*(\lambda)$ by

$$\Delta_A(\lambda) = U_A(\mathfrak{g})v_\lambda, \quad \Delta_A^*(\lambda) = v_\lambda^* U_A(\mathfrak{g}).$$

They have the weight space decomposition

$$\Delta_A(\lambda) = \bigoplus_{\mu \in X} \Delta_A(\lambda)_\mu, \quad \Delta_A^*(\lambda) = \bigoplus_{\mu \in X} \Delta_A^*(\lambda)_\mu,$$

where

$$\Delta_A(\lambda)_\mu = \{ v \in \Delta_A(\lambda) \mid hv = \chi_\mu(h)v \ (h \in U_A(\mathfrak{h})) \},$$

$$\Delta_A^*(\lambda)_\mu = \{ v \in \Delta_A^*(\lambda) \mid vh = \chi_\mu(h)v \ (h \in U_A(\mathfrak{h})) \}.$$

It follows from the deep theory of canonical bases that $\Delta_A(\lambda)_\mu$ and $\Delta_A^*(\lambda)_\mu$ are free A-modules (see [9]). In particular, $\Delta_A(\lambda)$ and $\Delta_A^*(\lambda)$ are free A-modules satisfying

$$F \otimes_A \Delta_A(\lambda) \cong V_F(\lambda), \quad F \otimes_A \Delta_A^*(\lambda) \cong V_F^*(\lambda).$$

We define a $U_A(\mathfrak{g})$-submodule $\nabla_A(\lambda)$ of $V_F(\lambda)$ and a right $U_A(\mathfrak{g})$-submodules $\nabla_A^*(\lambda)$ of $V_F^*(\lambda)$ by

$$\nabla_A(\lambda) = \{ v \in V_F(\lambda) \mid \langle \Delta_A^*(\lambda), v \rangle \subset A \} \cong \text{Hom}_A(\Delta_A^*(\lambda), A),$$

$$\nabla_A^*(\lambda) = \{ v^* \in V_F^*(\lambda) \mid \langle v^*, \Delta_A(\lambda) \rangle \subset A \} \cong \text{Hom}_A(\Delta_A(\lambda), A).$$

Then we have

$$\Delta_A(\lambda) \subset \nabla_A(\lambda) \subset V_F(\lambda), \quad \Delta_A^*(\lambda) \subset \nabla_A^*(\lambda) \subset V_F^*(\lambda).$$

We have the weight space decomposition

$$\nabla_A(\lambda) = \bigoplus_{\mu \in X} \nabla_A(\lambda)_\mu, \quad \nabla_A^*(\lambda) = \bigoplus_{\mu \in X} \nabla_A^*(\lambda)_\mu,$$

where

$$\nabla_A(\lambda)_\mu = \{ v \in \nabla_A(\lambda) \mid hv = \chi_\mu(h)v \ (h \in U_A(\mathfrak{h})) \} = \text{Hom}_A(\Delta_A^*(\lambda)_\mu, A),$$

$$\nabla_A^*(\lambda)_\mu = \{ v \in \nabla_A^*(\lambda) \mid vh = \chi_\mu(h)v \ (h \in U_A(\mathfrak{h})) \} = \text{Hom}_A(\Delta_A(\lambda)_\mu, A).$$
By the duality $\nabla_A(\lambda)_\mu$ and $\nabla^*_A(\lambda)_\mu$ are free A-modules satisfying \[
\mathbf{F} \otimes_A \nabla_A(\lambda)_\mu \cong V_\mathbf{F}(\lambda)_\mu, \quad \mathbf{F} \otimes_A \nabla^*_A(\lambda)_\mu \cong V^*_\mathbf{F}(\lambda)_\mu.
\] In particular, $\nabla_A(\lambda)$ and $\nabla^*_A(\lambda)$ are free A-modules satisfying \[
\mathbf{F} \otimes_A \nabla_A(\lambda) \cong V_\mathbf{F}(\lambda), \quad \mathbf{F} \otimes_A \nabla^*_A(\lambda) \cong V^*_\mathbf{F}(\lambda).
\]

3.5. Let R be a commutative ring equipped with $\zeta \in R^\times$, and consider $U_{R,\zeta}(g) = R \otimes_A U_A(g)$. For a $U_{R,\zeta}(g)$-module V and $\mu \in X$ we set \[
V_\mu = \{ v \in V \mid hv = \chi_\mu(h)v \ (h \in U_{R,\zeta}(h)) \}.
\] We say that a $U_{R,\zeta}(g)$-module V is integrable if it has the weight space decomposition \[
V = \bigoplus_{\mu \in X} V_\mu,
\] and for any $v \in V$ and $i \in I$ we have $e_i^{(n)}v = f_i^{(n)}v = 0$ for $n \gg 0$. We denote by $\text{Mod}_m(U_{R,\zeta}(g))$ the category of integrable $U_{R,\zeta}(g)$-modules.

Let V be an integrable $U_{R,\zeta}(g)$-module. Following [9] we define an invertible R-homomorphism $T_i|_V = T_i : V \rightarrow V$ for $i \in I$ by \[
T_i v = \sum_{a-b+c=\langle \lambda, \alpha_i^\vee \rangle} (-1)^{b+c-a} f_i^{(a)} e_i^{(b)} f_i^{(c)} v \quad (v \in V_\lambda).
\] Note $T_i = T_{i-1}$ in the notation of [9]. We will use the following fact (see [9 Proposition 5.3.4]).

Lemma 3.2. Let $i \in I$, and let V_1, V_2 be integrable $U_{R,\zeta}(g)$-modules.

(i) Assume that $v_1 \in V_1$ satisfies $e_i^{(n)}v_1 = 0$ for any $n > 0$. Then we have \[
(T_i|_{V_1} \otimes |_{V_2})(v_1 \otimes v_2) = T_i v_1 \otimes v_2
\] for any $v_2 \in V_2$.

(ii) Assume $\zeta^2 = 1$. Then we have $T_i|_{V_1} \otimes |_{V_2} = T_i|_{V_1} \otimes T_i|_{V_2}$.

For $v \in V$ we define an R-homomorphism $T_w|_V = T_w : V \rightarrow V$ by $T_w = T_{i_1} \ldots T_{i_N}$, where $w = s_{i_1} \ldots s_{i_N}$ is a reduced expression of w. It does not depend on the choice of a reduced expression. Moreover, we have $T_wV_\lambda = V_{\lambda + \mu}$ for $\lambda \in X$. By [9] there exists an automorphism T_w of the R-algebra $U_{R,\zeta}(g)$ satisfying \[
T_wv = (T_w u)(T_w v) \quad (u \in U_{R,\zeta}(g), v \in V).
\]

Lemma 3.3. For a $U_{R,\zeta}(g)$-module V the following conditions are equivalent.

(a) V has the weight decomposition $V = \bigoplus_{\mu \in X} V_\mu$, and for any $v \in V$ the $U_{R,\zeta}(g)$-submodule $U_{R,\zeta}(g)v$ of V is a finitely generated R-module.

(b) V is an integrable $U_{R,\zeta}(g)$-module.

Proof. The indication (a)⇒(b) is clear from $e_i^{(n)}V_\lambda \subset V_{\lambda + n\alpha_i}$ and $f_i^{(n)}V_\lambda \subset V_{\lambda - n\alpha_i}$. Assume (b) holds. For any $v \in V$, $w \in W$, $i \in I$ we have $(T_w e_i^{(n)})v = (T_w f_i^{(n)})v = 0$ for $n \gg 0$ by (3.3). Hence we can deduce (a) using the PBW-type basis for $U_{R,\zeta}(g)$ (see [9]).

For $\lambda \in X^+$ we define left $U_{R,\zeta}(g)$-modules $\Delta_{R,\zeta}(\lambda)$, $\nabla_{R,\zeta}(\lambda)$ and right $U_{R,\zeta}(g)$-modules $\Delta_{R,\zeta}^*(\lambda)$, $\nabla_{R,\zeta}^*(\lambda)$ as the base changes of $\Delta_A(\lambda)$, $\nabla_A(\lambda)$, $\Delta_A^*(\lambda)$, $\nabla_A^*(\lambda)$ respectively. We call $\Delta_{R,\zeta}(\lambda)$, $\Delta_{R,\zeta}^*(\lambda)$ the (left and right) Weyl modules with highest
weight $λ$, and $∇_{R,ζ}(λ)$, $∇_{R,ζ}(λ)$ the (left and right) dual Weyl modules with highest weight $λ$.

3.6. In this subsection we assume $ζ_α = ±1$ for any $α ∈ Δ$. Take a subset J of I as in (2.2), and identify $U_R(ĝ)$ with a subalgebra of $U_{R,ζ}(ĝ)$ via Proposition 2.6. Since $U_{R,ζ}(ĝ)$ is generated by $U_R(ĝ)$ and $U_R(h)$, we see easily the following.

Proposition 3.4. The embedding $U_R(ĝ) ⊂ U_{R,ζ}(ĝ)$ induces the equivalence

$$\text{Mod}_{\text{int}}(U_{R,ζ}(ĝ)) ≅ \text{Mod}_{\text{int}}(U_R(ĝ))$$

of abelian categories.

Lemma 3.5. For $w ∈ W$ and $λ ∈ X$ there exists $ε_{w,λ} ∈ \{±1\}$ such that for any integrable $U_{R,ζ}(ĝ)$-module V we have

$$T_w v = ε_{w,λ} T_w v \quad (v ∈ V_λ).$$

Here, T_w (resp. $T_ν$) is defined as an operator on the integrable $U_R(ĝ)$-module (resp. $U_{R,ζ}(ĝ)$-module) V.

Proof. We may assume $w = s_i$ for $i ∈ I$. Recall

$$T_i v = ∑_{a-b+c=\langle λ,α_i^∨ \rangle} (-1)^b c^{\langle λ,α_i^∨ \rangle} f_i^n c_i e_i^n d_i v.$$

For $i ∈ J$ we have

$$c_i^{(n)} = ζ_i^{n(n-1)/2} c_i^{(n)}, \quad f_i^{(n)} = ζ_i^{n(n+1)/2} f_i^{(n)} k_i^{-n} \quad (n ∈ Z_{≥0}),$$

and hence

$$T_i v = ζ_i^{\langle λ,α_i^∨ \rangle(\langle λ,α_i^∨ \rangle-1)/2} ∑_{a-b+c=\langle λ,α_i^∨ \rangle} (-1)^b c_i^{(a)} e_i^{(b)} f_i^{(c)} v = ζ_i^{\langle λ,α_i^∨ \rangle(\langle λ,α_i^∨ \rangle-1)/2} T_i v.$$

For $i ∉ J$ we have

$$c_i^{(n)} = ζ_i^{n(n+1)/2} c_i^{(n)} k_i^{-n}, \quad f_i^{(n)} = ζ_i^{n(n-1)/2} f_i^{(n)} \quad (n ∈ Z_{≥0}),$$

and hence

$$T_i v = ζ_i^{\langle λ,α_i^∨ \rangle(\langle λ,α_i^∨ \rangle+1)/2} ∑_{a-b+c=\langle λ,α_i^∨ \rangle} (-1)^b c_i^{(a)} e_i^{(b)} f_i^{(c)} v = ζ_i^{\langle λ,α_i^∨ \rangle(\langle λ,α_i^∨ \rangle+1)/2} T_i v. \quad \Box$$

Proposition 3.6. As left or right $U_R(ĝ)$-modules we have

$$Δ_{R,ζ}(λ) ≅ Δ_R(λ), \quad Δ^*_{R,ζ}(λ) ≅ Δ_R^*(λ), \quad ∇_{R,ζ}(λ) ≅ ∇_R(λ), \quad ∇^*_{R,ζ}(λ) ≅ ∇_R^*(λ)$$

for $λ ∈ X^+$.

Proof. By duality we have only to show the first two isomorphisms. The proofs being similar, we only verify the first one. We may assume $ĝ$ is simple. Then as in the proof of Proposition 2.6 we may assume $q = q_α$ for short roots $α$, and $R = Z$. Using the embeddings

$$Δ_{Z,±1}(λ) ⊂ Δ_{Q,±1}(λ), \quad Δ_Z(λ) ⊂ Δ_Q(λ)$$

we have
the proof is reduced to showing $\Delta_{Q^+1}(\lambda) \cong \Sigma_Q(\lambda)$. By

$$\Delta_{Q^+1}(\lambda) \cong \overline{U}_Q(\mathfrak{g})/\left(\overline{U}_Q(\mathfrak{g})n^+ + \sum_{h \in T(h)} \overline{U}_Q(\mathfrak{g})(h - t\lambda(h)) + \sum_{i \in I} \overline{U}_Q(\mathfrak{g})f_i^{(\lambda, a_i^\nu + 1)}\right)$$

we can check that we have a surjective homomorphism $\Delta_{Q}(\lambda) \to \Delta_{Q^+1}(\lambda)$ given by $\tau_\lambda \mapsto \nu_\lambda$. We conclude that this is actually an isomorphism considering the dimensions. \hfill \Box

3.7. Let R be a commutative ring equipped with $\zeta \in R^\times$. In this subsection we assume that there exists some $\ell \in \mathbb{Z}_{>0}$ such that $f_\ell(\zeta) = 0$, where f_ℓ is the ℓ-th cyclotomic polynomial. Recall that we have the quantum Frobenius homomorphism $\mathcal{F} : U_{R,\zeta}(\mathfrak{g}) \to U_{R,\zeta}(\mathfrak{g})$. Applying Proposition 2.20 to $U_{R,\zeta}(\mathfrak{g})$ we obtain an embedding $\overline{U}_R(\mathfrak{g}) \subset U_{R,\zeta}(\mathfrak{g})$ of R-algebras (depending on the choice of a subset J of I). To avoid the confusion we denote the left and right Weyl modules over $\overline{U}_R(\mathfrak{g})$ with highest weight $\lambda \in \mathfrak{h}$ by $\nabla_{R,\lambda}(\mathfrak{g})$, $\Delta_{R,\lambda}(\mathfrak{g})$, and the left and right dual Weyl modules over $\overline{U}_R(\mathfrak{g})$ with highest weight $\lambda \in \mathfrak{h}$ by $\nabla_{R,\lambda}^*(\mathfrak{g})$, $\Delta_{R,\lambda}^*(\mathfrak{g})$ respectively. Similarly, we denote the left and right Weyl modules over $U_{R,\zeta}(\mathfrak{g})$ with highest weight $\lambda \in \mathfrak{h}$ by $\nabla_{R,\zeta,\lambda}(\mathfrak{g})$, $\Delta_{R,\zeta,\lambda}(\mathfrak{g})$, and the left and right dual Weyl modules over $U_{R,\zeta}(\mathfrak{g})$ with highest weight $\lambda \in \mathfrak{h}$ by $\nabla_{R,\zeta,\lambda}^*(\mathfrak{g})$, $\Delta_{R,\zeta,\lambda}^*(\mathfrak{g})$ respectively. As in Proposition 3.3.6 we can identify the left or right $\overline{U}_R(\mathfrak{g})$-modules $\nabla_{R,\lambda}(\mathfrak{g})$, $\Delta_{R,\lambda}(\mathfrak{g})$, $\nabla_{R,\lambda}^*(\mathfrak{g})$, $\Delta_{R,\lambda}^*(\mathfrak{g})$ for $\lambda \in \mathfrak{h}$ with the left or right $U_{R,\zeta}(\mathfrak{g})$-modules $\nabla_{R,\zeta,\lambda}(\mathfrak{g})$, $\Delta_{R,\zeta,\lambda}(\mathfrak{g})$, $\nabla_{R,\zeta,\lambda}^*(\mathfrak{g})$, $\Delta_{R,\zeta,\lambda}^*(\mathfrak{g})$ respectively. Hence they can also be regarded as left or right $U_{R,\zeta}(\mathfrak{g})$-modules via \mathcal{F}. Under this identification we have homomorphisms

$$\Delta_{R,\zeta}(\lambda) \to \nabla_{R,\lambda}(\mathfrak{g}) \to \nabla_{R,\zeta,\lambda}(\mathfrak{g}) \to \nabla_{R,\zeta,\lambda}^*(\mathfrak{g}) \to \Delta_{R,\lambda}^*(\mathfrak{g})$$

of $U_{R,\zeta}(\mathfrak{g})$-modules for $\lambda \in \mathfrak{h}$. They induce isomorphisms

(3.4) $\Delta_{R,\zeta}(\lambda)_{w,\lambda} \cong \nabla_{R,\lambda}(\mathfrak{g})_{w,\lambda} \cong \Delta_{R,\zeta,\lambda}(\mathfrak{g})_{w,\lambda} \cong \Delta_{R,\zeta,\lambda}^*(\mathfrak{g})_{w,\lambda}$

(3.5) $\Delta_{R,\zeta}^*(\lambda)_{w,\lambda} \cong \nabla_{R,\lambda}^*(\mathfrak{g})_{w,\lambda} \cong \Delta_{R,\zeta,\lambda}(\mathfrak{g})_{w,\lambda} \cong \Delta_{R,\zeta,\lambda}^*(\mathfrak{g})_{w,\lambda}$

of R-modules for any $w \in W$.

4. DUALITY FOR HOPF ALGEBRAS

4.1. Let \mathcal{T} be a Hopf algebra over a field K, which is commutative and cocommutative. Then the set $\text{Hom}_{\text{alg}}(\mathcal{T}, K)$ of algebra homomorphisms from \mathcal{T} to K is endowed with a structure of abelian group by

$$\langle \phi \psi \rangle(t) = (\phi \otimes \psi) (\Delta(t)) \quad (\phi, \psi \in \text{Hom}_{\text{alg}}(\mathcal{T}, K)).$$

For a subgroup \mathcal{Y} of $\text{Hom}_{\text{alg}}(\mathcal{T}, K)$ we denote by $\text{Mod}_{\mathcal{Y}}(\mathcal{T})$ the category of finite-dimensional \mathcal{T}-modules M with the weight space decomposition

$$M = \bigoplus_{\varphi \in \mathcal{Y}} M_{\varphi}, \quad M_{\varphi} = \{m \in M \mid tm = \varphi(t)m \ (t \in \mathcal{T})\}.$$
Assume that we are given a Hopf algebra \(H \), which contains \(T \) as a Hopf subalgebra. Note that the dual space \(H^* = \text{Hom}_K(H, K) \) is endowed with an \(H \)-bimodule structure by
\[
\langle h_1 f h_2, h \rangle = \langle f, h_2 h h_1 \rangle \quad (f \in H^*, h, h_1, h_2 \in H).
\]
By a standard argument we have the following (see for example [14]).

Proposition 4.1. The following conditions on \(f \in H^* \) are equivalent to each other.

(a) \(Hf \in \text{Mod}_{f,\text{irr}}(T) \),
(b) \(fH \in \text{Mod}_{f,\text{irr}}(T) \),
(c) \(HfH \in \text{Mod}_{f,\text{irr}}(T \otimes T) \),
(d) there exists a two-sided ideal \(I \) of \(H \) such that \(\langle f, I \rangle = \{0\} \) and \(H/I \in \text{Mod}_{f,\text{irr}}(T \otimes T) \).

We denote by \(H^*_{T,\text{irr}} \) the subspace of \(H^* \) consisting of \(f \in H^* \) satisfying the equivalent conditions of Proposition 4.1. Then \(H^*_{T,\text{irr}} \) turns out to be a Hopf algebra whose multiplication, unit, comultiplication, counit, antipode are induced by the transpose of the comultiplication, the counit, the multiplication, the unit, the antipode respectively of \(H \).

We denote by \(\text{Mod}_{T,\text{irr}}(H) \) the category of left \(H \)-modules which belong to \(\text{Mod}_{f,\text{irr}}(T) \) as a \(T \)-module. More generally, we denote by \(\text{Mod}_{T,\text{irr}}^l(H) \) the category of left \(H \)-modules which is a sum of submodules belonging to \(\text{Mod}_{f,\text{irr}}^l(T) \). For \(M \in \text{Mod}_{T,\text{irr}}^l(H) \) we have a homomorphism
\[
(4.1) \quad \Phi_M : M \otimes M^* \to H^*_{T,\text{irr}}
\]
of \(H \)-bimodules given by
\[
\langle \Phi_M(m \otimes m^*), h \rangle = \langle m^*, hm \rangle \quad (m \in M, m^* \in M^*, h \in H).
\]
Here, \(M \otimes M^* \) is regarded as an \(H \)-bimodule by
\[
h_1(m \otimes m^*)h_2 = h_1 m \otimes m^* h_2 \quad (m \in M, m^* \in M^*, h_1, h_2 \in H).
\]
Denote by \(\text{Mod}_{T,\text{irr}}^\text{irr}(H) \) the set of isomorphism classes of the irreducible \(H \)-modules belonging to \(\text{Mod}_{T,\text{irr}}^l(H) \). By a standard argument we have the following (see for example [14]).

Proposition 4.2. (i) We have
\[
H^*_{T,\text{irr}} = \sum_{M \in \text{Mod}_{T,\text{irr}}^l(H)} \text{Im}(\Phi_M) = \bigcup_{M \in \text{Mod}_{T,\text{irr}}^l(H)} \text{Im}(\Phi_M).
\]
(ii) Assume that \(\text{Mod}_{T,\text{irr}}^l(H) \) is a semisimple category and that \(\text{End}_H(M) = K \text{id} \) for any \(M \in \text{Mod}_{T,\text{irr}}^\text{irr}(H) \). Then
\[
\bigoplus_{M \in \text{Mod}_{T,\text{irr}}^l(H)} \Phi_M : \bigoplus_{M \in \text{Mod}_{T,\text{irr}}^\text{irr}(H)} M \otimes M^* \to H^*_{T,\text{irr}}
\]
is an isomorphism of \(H \)-bimodules.
4.2. For a finite subset Γ of $\text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ we define a two-sided ideal $\mathcal{I}(\Gamma)$ of \mathcal{H} by

$$\mathcal{I}(\Gamma) = \{ h \in \mathcal{H} \mid hM = \{0\} \ (\forall M \in \Gamma) \}.$$

Lemma 4.3. Assume that $\text{Mod}^f_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ is a semisimple category and that $\text{End}_\mathcal{H}(M) = K\text{id}$ for any $M \in \text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$.

(i) For any finite subset Γ of $\text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ we have

$$\mathcal{H}/\mathcal{I}(\Gamma) \cong \bigoplus_{M \in \Gamma} \text{End}_K(M).$$

(ii) For $f \in \mathcal{H}^*$ we have $f \in \mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$ if and only if there exists a finite subset Γ of $\text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ such that $\langle f, \mathcal{I}(\Gamma) \rangle = \{0\}$.

Proof. (i) Note that any $M \in \Gamma$ is an irreducible $\mathcal{H}/\mathcal{I}(\Gamma)$-module. Hence by a well-known fact on finite dimensional algebras the assertion follows from

$$\dim \mathcal{H}/\mathcal{I}(\Gamma) \leq \sum_{M \in \Gamma} (\dim M)^2.$$

To verify this it is sufficient to show for finite subsets Γ, Γ' of $\text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ satisfying $\Gamma' = \Gamma \cup \{ M \}$ that $\dim \mathcal{I}(\Gamma)/\mathcal{I}(\Gamma') \leq (\dim M)^2$. This follows from

$$\text{Ker}(\mathcal{I}(\Gamma) \to \text{End}_K(M)) = \mathcal{I}(\Gamma').$$

(ii) Assume $f \in \mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$. For

$$\Gamma = \{ M \in \text{Mod}^\text{irr}_{\mathcal{T},\mathcal{Y}}(\mathcal{H}) \mid \text{Hom}_\mathcal{H}(M, \mathcal{H}f) \neq \{0\} \}$$

we have

$$\langle f, \mathcal{I}(\Gamma) \rangle = \langle \mathcal{I}(\Gamma)f, 1 \rangle \subset \langle \mathcal{I}(\Gamma)(\mathcal{H}f), 1 \rangle = \{0\}.$$

The converse is clear from (i). \qed

4.3. In general, for a coalgebra \mathcal{C} we denote by $\text{Comod}(\mathcal{C})$ (resp. $\text{Comod}^f(\mathcal{C})$) the category of right \mathcal{C}-comodules (resp. finite dimensional right \mathcal{C}-comodules).

Note that for $M \in \text{Mod}^f_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$ we have a right $\mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$-comodule structure $\gamma_M : M \to M \otimes \mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$ given by

$$hm = \sum_a \langle f_a, h \rangle m_a \ (h \in \mathcal{H}) \implies \gamma_M(m) = \sum_a m_a \otimes f_a.$$

This induces functors

$$\text{Mod}^f_{\mathcal{T},\mathcal{Y}}(\mathcal{H}) \to \text{Comod}^f(\mathcal{H}^*_{\mathcal{T},\mathcal{Y}}), \quad \text{Mod}^f_{\mathcal{T},\mathcal{Y}}(\mathcal{H}) \to \text{Comod}(\mathcal{H}^*_{\mathcal{T},\mathcal{Y}}).$$

Proposition 4.4. The functors in (4.2) give equivalences of categories.

Proof. Assume that M is a finite-dimensional right $\mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$-comodule with respect to $\gamma : M \to M \otimes \mathcal{H}^*_{\mathcal{T},\mathcal{Y}}$. Then we can define a left \mathcal{H}-module structure of M by

$$\gamma(m) = \sum m_a \otimes f_a \implies hm = \sum_i \langle f_a, h \rangle m_a \ (h \in \mathcal{H}).$$

It is easily seen that this left \mathcal{H}-module belongs to $\text{Mod}^f_{\mathcal{T},\mathcal{Y}}(\mathcal{H})$. Moreover, this induces the inverse to the functors in (4.2). \qed
We will sometimes identify $\text{Mod}^f_{T,Y}(\mathcal{H})$ with $\text{Comod}(\mathcal{H}^*_T)$.

5. COORDINATE ALGEBRAS OF THE QUANTIZED ALGEBRAIC GROUPS

5.1. Let K be a field. We set

$$\overline{O}_K(G) = U_K(\mathfrak{g})_{U_K(\mathfrak{h}),X}.$$

It is isomorphic as a Hopf algebra to the coordinate algebra of the reductive algebraic group G_K over K with the same root datum $(X, \Delta, Y, \Delta^\vee)$ as G.

5.2. Let K be a field equipped with $\zeta \in K^*$. By Lemma 2.3 the map $X \ni \lambda \mapsto \chi_\lambda \in \text{Hom}_{\text{alg}}(\mathcal{U}_{K,\zeta}(\mathfrak{g}), K)$ is an injective group homomorphism. We will regard X as a subgroup of $\text{Hom}_{\text{alg}}(\mathcal{U}_{K,\zeta}(\mathfrak{g}), K)$ in the following. Set

$$O_{K,\zeta}(B) = \mathcal{U}_{K,\zeta}(\mathfrak{b})_{\mathcal{U}_{K,\zeta}(\mathfrak{h}),X}, \quad O_{K,\zeta}(H) = \mathcal{U}_{K,\zeta}(\mathfrak{b})_{\mathcal{U}_{K,\zeta}(\mathfrak{h}),X},$$

$$O_{K,\zeta}(G) = \mathcal{U}_{K,\zeta}(\mathfrak{g})_{\mathcal{U}_{K,\zeta}(\mathfrak{h}),X}.$$

It is easily seen that

$$O_{K,\zeta}(H) = \bigoplus_{\lambda \in X} K\chi_\lambda.$$

We identify $\mathcal{U}_{K,\zeta}(\mathfrak{n})^* \otimes \mathcal{U}_{K,\zeta}(\mathfrak{h})^* \otimes \mathcal{U}_{K,\zeta}(\mathfrak{n}^+)^*$ with a subspace of $\mathcal{U}_{K,\zeta}(\mathfrak{g})^*$ by

$$\langle \psi \otimes \chi \otimes \varphi, yhx \rangle = \langle \psi, y \rangle \langle \chi, h \rangle \langle \varphi, x \rangle \quad (y \in \mathcal{U}_{K,\zeta}(\mathfrak{n}), h \in \mathcal{U}_{K,\zeta}(\mathfrak{h}), x \in \mathcal{U}_{K,\zeta}(\mathfrak{n}^+)).$$

Similarly, we identify $\mathcal{U}_{K,\zeta}(\mathfrak{n})^* \otimes \mathcal{U}_{K,\zeta}(\mathfrak{h})^*$ with a subspace of $\mathcal{U}_{K,\zeta}(\mathfrak{g})^*$. Set

$$\mathcal{U}_{K,\zeta}(\mathfrak{n})^* = \bigoplus_{\gamma \in Q^+} (\mathcal{U}_{K,\zeta}(\mathfrak{n})_{-\gamma})^* \subset \mathcal{U}_{K,\zeta}(\mathfrak{g})^*,$$

$$\mathcal{U}_{K,\zeta}(\mathfrak{n}^+)^* = \bigoplus_{\gamma \in Q^+} (\mathcal{U}_{K,\zeta}(\mathfrak{n}^+)_\gamma)^* \subset \mathcal{U}_{K,\zeta}(\mathfrak{n}^+)^*.$$

Then we have

$$O_{K,\zeta}(G) \subset \mathcal{U}_{K,\zeta}(\mathfrak{n})^* \otimes O_{K,\zeta}(H) \otimes \mathcal{U}_{K,\zeta}(\mathfrak{n}^+)^* \subset \mathcal{U}_{K,\zeta}(\mathfrak{g})^*.$$

Moreover, we have

$$O_{K,\zeta}(B) = \mathcal{U}_{K,\zeta}(\mathfrak{n})^* \otimes O_{K,\zeta}(H) \subset \mathcal{U}_{K,\zeta}(\mathfrak{g})^*,$$

and the natural homomorphism $O_{K,\zeta}(G) \to O_{K,\zeta}(B)$ is surjective (see, for example [13, Section 2.7]). Hence we have

$$O_{K,\zeta}(B) \cong O_{K,\zeta}(G)/\{f \in O_{K,\zeta}(G) \mid \langle f, U_{K,\zeta}(\mathfrak{b}) \rangle = \{0\}\}.$$

\textbf{PROPOSITION 5.1.} Assume $\zeta^a_\alpha = 1$ for any $\alpha \in \Delta$. The surjection $\mathcal{U}_{K,\zeta}(\mathfrak{g})^* \to \mathcal{U}_{K}(\mathfrak{g})^*$ induced by the embedding $\mathcal{U}_{K}(\mathfrak{g}) \subset \mathcal{U}_{K,\zeta}(\mathfrak{g})$ given in Proposition 2.4 restricts to an isomorphism

$$O_{K,\zeta}(G) \cong \overline{O}_K(G)$$

of $\overline{U}_K(\mathfrak{g})$-bimodules.
PROOF. By Proposition 3.4 the surjection $U_{K,\zeta}(g)^* \to \overline{U}_K(g)^*$ restricts to a surjective homomorphism $O_{K,\zeta}(G) \to \overline{O}_K(G)$ of $\overline{U}_K(g)$-bimodules. In order to prove that it is injective it is sufficient to show

$$\text{Ker}(M \otimes M^* \to \overline{U}_K(g)^*) = \text{Ker}(M \otimes M^* \to U_{K,\zeta}(g)^*)$$

for any $M \in \text{Mod}_{\text{int}}(U_{K,\zeta}(g)) = \text{Mod}_{\text{int}}(\overline{U}_K(g))$ by Proposition 4.2. Since $M \otimes M^* \to \overline{U}_K(g)^*$ is a homomorphism of $\overline{U}_K(g)$-bimodule, we have only to show

$$\text{Ker}(M_{\lambda} \otimes M^* \to \overline{U}_K(g)^*) = \text{Ker}(M_{\lambda} \otimes M^* \to U_{K,\zeta}(g)^*)$$

for any $\lambda \in X$. By $\overline{U}_K(g) \cong \overline{U}_K(n) \otimes \overline{U}_K(n^+) \otimes \overline{U}_K(h)$ we have

$$\text{Ker}(M_{\lambda} \otimes M^* \to \overline{U}_K(g)^*) = \text{Ker}(M_{\lambda} \otimes M^* \to (\overline{U}_K(n) \otimes \overline{U}_K(n^+))^*)$$.

Similarly, we have

$$\text{Ker}(M_{\lambda} \otimes M^* \to U_{K,\zeta}(g)^*) = \text{Ker}(M_{\lambda} \otimes M^* \to (U'_{K,\zeta}(n) \otimes U'_{K,\zeta}(n^+))^*)$$.

They coincide under the identification $\overline{U}_K(g) = U'_{K,\zeta}(g)$.

REMARK 5.2. The isomorphism (5.3) does not preserve the ring structure in general (see Remark 2.7).

5.3. Assume that $\zeta \in K^\times$ has the order $\ell < \infty$. Define the root datum $(\check{X}, \check{\Delta}, \check{Y}, \check{\Delta}^\circ)$ and the corresponding complex reductive group \check{G} as in Section 2. The quantum Frobenius homomorphism \mathcal{F} induces the injection $\mathcal{F} : U_{K,\zeta}(\check{g})^* \hookrightarrow U_{K,\zeta}(g)^*$. This restricts to an injective Hopf algebra homomorphism

(5.4)

$$O_{K,\zeta}(\check{g}) \hookrightarrow O_{K,\zeta}(g).$$

6. INDUCTION FUNCTOR

6.1. Let $\mathcal{H}, \mathcal{H}'$ be Hopf algebras over a field K with invertible antipodes, and let $p : \mathcal{H} \to \mathcal{H}'$ be a surjective Hopf algebra homomorphism. We have a natural exact functor

$$\text{Res}_{\mathcal{H}'}^\mathcal{H} : \text{Comod}(\mathcal{H}) \to \text{Comod}(\mathcal{H}'),$$

where, for a K-module V with the right \mathcal{H}-comodule structure $\gamma : V \to V \otimes \mathcal{H}$, we associate the right \mathcal{H}'-comodule given by $(1 \otimes p) \circ \gamma : V \to V \otimes \mathcal{H}'$. We can also define the induction functor

$$\text{Ind}_{\mathcal{H}'}^\mathcal{H} : \text{Comod}(\mathcal{H}') \to \text{Comod}(\mathcal{H})$$

as follows. Let M be a right \mathcal{H}'-comodule. Regarding \mathcal{H} as a right \mathcal{H}'-comodule via $(1 \otimes p) \circ \Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}'$, the tensor product $M \otimes \mathcal{H}$ of the two right \mathcal{H}'-comodules is endowed with a right \mathcal{H}'-comodule structure $\gamma : M \otimes \mathcal{H} \to (M \otimes \mathcal{H}) \otimes \mathcal{H}'$. We set

$$\text{Ind}_{\mathcal{H}'}^\mathcal{H}(M) = \{ n \in M \otimes \mathcal{H} \mid \gamma(n) = n \otimes 1 \}.$$

Then $\text{Ind}_{\mathcal{H}'}^\mathcal{H}(M)$ is endowed with a right \mathcal{H}-comodule structure induced by that of $M \otimes \mathcal{H}$ given by

$$M \otimes \mathcal{H} \to (M \otimes \mathcal{H}) \otimes \mathcal{H} \quad (m \otimes h \mapsto \sum_k (m \otimes h_k') \otimes S^{-1}h_k),$$
where $\Delta(h) = \sum_k h_k \otimes h_k'$. For $V \in \text{Comod}(\mathcal{H})$, $M \in \text{Comod}(\mathcal{H}')$ we have
$$\text{Hom}(V, \text{Ind}_{\mathcal{H}'}^H(M)) \cong \text{Hom}(\text{Res}_{\mathcal{H}'}^H(V), M).$$
It follows that $\text{Ind}_{\mathcal{H}'}^H$ is left exact, and we have
$$\text{Ind}_{\mathcal{H}''}^H = \text{Ind}_{\mathcal{H}'}^H \circ \text{Ind}_{\mathcal{H}''}^H$$
for a sequence $\mathcal{H} \to \mathcal{H}' \to \mathcal{H}''$ of surjective homomorphisms of Hopf algebras with invertible antipodes. The following fact is well-known.

Lemma 6.1. For $M \in \text{Comod}(\mathcal{H}')$ and $V \in \text{Comod}(\mathcal{H})$ we have
$$\text{Ind}_{\mathcal{H}'}^H(\text{Res}_{\mathcal{H}'}^H(V) \otimes M) \cong V \otimes \text{Ind}_{\mathcal{H}'}^H(M), \quad \text{Ind}_{\mathcal{H}'}^H(M \otimes \text{Res}_{\mathcal{H}'}^H(V)) \cong \text{Ind}_{\mathcal{H}'}^H(M) \otimes V.$$

6.2. Assume that K is a field equipped with $\zeta \in K^\times$. We consider the left exact functor
$$\text{Ind} = \text{Ind}^{\mathcal{O}_K,\zeta(G)}: \text{Comod}(\mathcal{O}_K,\zeta(G)) \to \text{Comod}(\mathcal{O}_K,\zeta(G)).$$
It is known that the abelian category $\text{Comod}(\mathcal{O}_K,\zeta(G))$ has enough injectives, and we have its right derived functors
$$R^k \text{Ind}: \text{Comod}(\mathcal{O}_K,\zeta(G)) \to \text{Comod}(\mathcal{O}_K,\zeta(G)) \quad (k \geq 0).$$

For $\lambda \in X$ we denote by $K_\lambda = K_{1,\lambda}$ the one dimensional $U_{K,\zeta}(b)$-module given by
$$h_{1,\lambda} = \chi_\lambda(h)1_\lambda \quad (h \in U_{K,\zeta}(h)), \quad z_{1,\lambda} = \varepsilon(z)1_\lambda \quad (z \in U_{K,\zeta}(n)).$$
We also denote the corresponding right $\mathcal{O}_{K,\zeta}(B)$-comodule by $K_\lambda = K_{1,\lambda}$. The following fact is standard (see [1]).

Lemma 6.2. For $\lambda \in X$ we have
$$\text{Ind}(K_\lambda) \cong \begin{cases} \nabla_{K,\zeta}(\lambda) & (\lambda \in X^+) \\ 0 & (\lambda \notin X^+). \end{cases}$$

The following Kempf type vanishing theorem is a consequence of the deep theory of crystal bases due to Kashiwara.

Proposition 6.3 (Ryom-Hansen [13]). For $\lambda \in X^+$ and $k \neq 0$ we have $R^k \text{Ind}(K_\lambda) = 0$.

7. **Homogeneous coordinate algebras**

7.1. For a field K we set
$$\overline{\mathcal{O}}_K(N \setminus G) = \{ f \in \mathcal{O}_K(G) \mid f z = \varepsilon(z)f \ (z \in \mathcal{O}_K(n)) \}. $$
It is a subalgebra of $\mathcal{O}_K(G)$ and a $(\mathcal{O}_K(n), \mathcal{O}_K(h))$-bimodule. Set
$$\overline{\mathcal{O}}_K(N \setminus G; \lambda) = \{ f \in \overline{\mathcal{O}}_K(N \setminus G) \mid fh = \chi_\lambda(h)f \ (h \in \mathcal{O}_K(h)) \}$$
for $\lambda \in X^+$. It is known that
$$\overline{\mathcal{O}}_K(N \setminus G) = \bigoplus_{\lambda \in X^+} \overline{\mathcal{O}}_K(N \setminus G; \lambda).$$
Moreover, we have an isomorphism
$$\nabla_K(\lambda) \cong \overline{\mathcal{O}}_K(N \setminus G; \lambda) \quad (v \leftrightarrow \Phi_{\nabla_K}(\lambda)(v \otimes \tau_\lambda))$$
of left $\mathcal{U}_K(g)$-modules. Here, the image of $v^*_\lambda \in \mathfrak{X}^+_\mathfrak{A}(\lambda)$ in $\Sigma^*_K(\lambda) = (\nabla_K(\lambda))^*$ is denoted by v^*_λ by abuse of the notation. By

\begin{equation}
(7.4) \quad \mathcal{O}_K(N\backslash G; \lambda) \mathcal{O}_K(N\backslash G; \mu) \subset \mathcal{O}_K(N\backslash G; \lambda + \mu) \quad (\lambda, \mu \in X^+)
\end{equation}

$\mathcal{O}_K(N\backslash G)$ turns out to be a commutative K-algebra graded by the abelian group X. Under the identification \((7.3)\) we obtain a non-zero homomorphism

\begin{equation}
(7.5) \quad \nabla_K(\lambda) \otimes \nabla_K(\mu) \to \nabla_K(\lambda + \mu)
\end{equation}

of left $\mathcal{U}_K(g)$-modules corresponding to \((7.4)\). By

\begin{align*}
\text{Hom}_{\mathcal{U}_K(g)}(\nabla_K(\lambda) \otimes \nabla_K(\mu), \nabla_K(\lambda + \mu)) \\
\cong \text{Hom}_{\mathcal{U}_K(g)}^\ast(\Sigma^+_K(\lambda + \mu), \Sigma^+_K(\lambda) \otimes \Sigma^+_K(\mu)) \cong K
\end{align*}

\((7.5)\) is the unique (up to a scalar multiple) non-zero homomorphism of $\mathcal{U}_K(g)$-modules.

7.2. Let K be a field equipped with $\zeta \in K^\times$. We set

\begin{equation}
(7.6) \quad O_{K,\zeta}(N\backslash G) = \{ f \in O_{K,\zeta}(G) \mid f z = \varepsilon(z) f \ (z \in U_{K,\zeta}(n)) \}.
\end{equation}

It is a subalgebra of $O_{K,\zeta}(G)$ as well as a $(U_{K,\zeta}(g), U_{K,\zeta}(h))$-bimodule. By the definition of $O_{K,\zeta}(G)$ it is easily seen that $O_{K,\zeta}(N\backslash G)$ is a direct sum of subspaces

\begin{equation}
O_{K,\zeta}(N\backslash G; \lambda) = \{ f \in O_{K,\zeta}(N\backslash G) \mid f h = \chi_\lambda(h) f \ (h \in U_{K,\zeta}(h)) \}
\end{equation}

for $\lambda \in X$. Note that we have $O_{K,\zeta}(N\backslash G; \lambda) \cong \text{Ind}(K\lambda)$ by the definition of Ind. Hence by Proposition \(6.2\) we have $O_{K,\zeta}(N\backslash G; \lambda) \neq \{0\}$ only if $\lambda \in X^+$, and hence

\begin{equation}
(7.7) \quad O_{K,\zeta}(N\backslash G) = \bigoplus_{\lambda \in X^+} O_{K,\zeta}(N\backslash G; \lambda).
\end{equation}

Moreover, we have $O_{K,\zeta}(N\backslash G; \lambda) \cong \nabla_{K,\zeta}(\lambda)$ for $\lambda \in X^+$. More precisely, we have an isomorphism

\begin{equation}
(7.8) \quad \nabla_{K,\zeta}(\lambda) \cong O_{K,\zeta}(N\backslash G; \lambda) \quad (v \leftrightarrow \Phi_{\nabla_{K,\zeta}(\lambda)} (v \otimes v^*_\lambda))
\end{equation}

of $U_{K,\zeta}(g)$-modules. Here, the image of $v^*_\lambda \in \mathfrak{X}^+_\mathfrak{A}(\lambda)$ in $\Delta^*_{K,\zeta}(\lambda) = (\nabla_{K,\zeta}(\lambda))^*$ is denoted by v^*_λ by abuse of the notation.

By

\begin{equation}
(7.9) \quad O_{K,\zeta}(N\backslash G; \lambda) O_{K,\zeta}(N\backslash G; \mu) \subset O_{K,\zeta}(N\backslash G; \lambda + \mu) \quad (\lambda, \mu \in X^+)
\end{equation}

$O_{K,\zeta}(N\backslash G)$ turns out to be a K-algebra graded by the abelian group X. Similarly to the case of $\mathcal{O}_K(N\backslash G)$, the multiplication

\begin{equation}
O_{K,\zeta}(N\backslash G; \lambda) \otimes O_{K,\zeta}(N\backslash G; \mu) \to O_{K,\zeta}(N\backslash G; \lambda + \mu)
\end{equation}

corresponds to the unique (up to a non-zero scalar multiple) non-zero homomorphism

\begin{equation}
(7.10) \quad \nabla_{K,\zeta}(\lambda) \otimes \nabla_{K,\zeta}(\mu) \to \nabla_{K,\zeta}(\lambda + \mu)
\end{equation}

of left $U_{K,\zeta}(g)$-modules under the identification \((7.8)\).
7.3. Assume that $\zeta \in K^\times$ has the multiplicative order $\ell < \infty$. Define a subalgebra
$O_{K,\zeta}(\sharp N \backslash G)$ of $O_{K,\zeta}(G)$ and its subspace $O_{K,\zeta}(\sharp N \backslash G; \lambda)$ for $\lambda \in \sharp X$ similarly to the case of $O_{K,\zeta}(G)$, so that
$$
O_{K,\zeta}(\sharp N \backslash G) = \bigoplus_{\lambda \in \sharp X^+} O_{K,\zeta}(\sharp N \backslash G; \lambda).
$$

It is easily seen that the embedding (5.11) induces the embedding
(7.11) $$
O_{K,\zeta}(\sharp N \backslash G) \subset O_{K,\zeta}(N \backslash G)
$$
of algebras so that $O_{K,\zeta}(\sharp N \backslash G; \lambda) \subset O_{K,\zeta}(N \backslash G; \lambda)$ for $\lambda \in \sharp X$. Note also that we have an isomorphism $O_{K,\zeta}(G) \cong \overline{O}_K(\sharp G)$ of $\overline{U}_K(\sharp g)$-bimodules by Proposition 5.1.

It induces an isomorphism
(7.12) $$
O_{K,\zeta}(\sharp N \backslash G) \cong \overline{O}_K(\sharp N \backslash G)
$$
of left $\overline{U}_K(\sharp g)$-modules.

Proposition 7.1. For any $\mu \in \sharp X^+$ there exists some $N \geq 0$ such that for $\lambda \in X^+$ satisfying $\langle \lambda, \alpha_i^\vee \rangle \geq N$ for any $i \in I$ we have
$$
O_{K,\zeta}(N \backslash G; \lambda)O_{K,\zeta}(\sharp N \backslash G; \mu) = O_{K,\zeta}(N \backslash G; \lambda + \mu).
$$

Proof. Recall
$$
O_{K,\zeta}(N \backslash G; \lambda) \cong \nabla_{K,\zeta}(\lambda) \quad (\lambda \in X^+), \quad O_{K,\zeta}(\sharp N \backslash G; \mu) \cong \sharp \nabla_{K,\zeta}(\mu) \quad (\mu \in \sharp X^+).
$$
Under this identification, the multiplication
$$
O_{K,\zeta}(N \backslash G; \lambda) \otimes O_{K,\zeta}(\sharp N \backslash G; \mu) \to O_{K,\zeta}(N \backslash G; \lambda + \mu)
$$
corresponds to a non-zero homomorphism
(7.13) $$
\nabla_{K,\zeta}(\lambda) \otimes \sharp \nabla_{K,\zeta}(\mu) \to \nabla_{K,\zeta}(\lambda + \mu)
$$
of $U_{K,\zeta}(g)$-modules, where $\sharp \nabla_{K,\zeta}(\mu)$ is regarded as a $U_{K,\zeta}(g)$-module through the quantum Frobenius homomorphism $\mathcal{F}: U_{K,\zeta}(g) \to \sharp U_{K,\zeta}(g)$. Note that (7.13) is obtained by taking the dual of the unique (up to a scalar multiple) non-zero homomorphism
$$
\Delta_{K,\zeta}(\lambda + \mu) \to \Delta_{K,\zeta}(\lambda) \otimes \sharp \Delta_{K,\zeta}(\mu)
$$
of right $U_{K,\zeta}(g)$-modules.

Assume $\langle \lambda, \alpha_i^\vee \rangle \gg 0$ for any $i \in I$. We have a filtration
$$
K_\lambda \otimes \sharp \nabla_{K,\zeta}(\mu) = M_1 \supset M_2 \supset \cdots \supset M_s \supset M_{s+1} = 0
$$
of the $U_{K,\zeta}(b)$-module $K_\lambda \otimes \sharp \nabla_{K,\zeta}(\mu)$ such that $M_j/M_{j+1} \cong K_{\lambda + \nu_j}$, where $\nu_1 = \mu, \nu_2, \ldots, \nu_s$ are the weights of $\sharp \nabla_{K,\zeta}(\mu)$ with multiplicity. From the short exact sequence
$$
0 \to M_2 \to K_\lambda \otimes \sharp \nabla_{K,\zeta}(\mu) \to K_{\lambda + \mu} \to 0
$$
we obtain an exact sequence
$$
\text{Ind}(K_\lambda \otimes \sharp \nabla_{K,\zeta}(\mu)) \to \text{Ind}(K_{\lambda + \mu}) \to R^i \text{Ind}(M_2)
$$
of $U_{K,\zeta}(g)$-modules. By Proposition 6.3 and Lemma 6.1 we have
$$
\text{Ind}(K_\lambda \otimes \sharp \nabla_{K,\zeta}(\mu)) \cong \nabla_{K,\zeta}(\lambda) \otimes \sharp \nabla_{K,\zeta}(\mu), \quad \text{Ind}(K_{\lambda + \mu}) \cong \nabla_{K,\zeta}(\lambda + \mu).
$$
By our assumption on λ we have $\lambda + \nu_j \in X^+$ for any j, and hence $R^k \text{Ind}(M_j/M_{j+1}) = 0$ for any $j \geq 2$, $k \geq 1$. Therefore, we have $R^1 \text{Ind}(M_2) = 0$. We obtain a surjective homomorphism

$$\nabla_{K,\zeta}(\lambda) \otimes \nabla_{K,\zeta}(\mu) \to \nabla_{K,\zeta}(\lambda + \mu)$$

of $U_{K,\zeta}(\mathfrak{g})$-modules. Since (7.13) is the unique (up to a scalar multiple) non-zero homomorphism of $U_{K,\zeta}(\mathfrak{g})$-modules, we obtain the surjectivity of (7.13). \hfill \Box

8. QUANTIZED FLAG MANIFOLDS

8.1. We assume that G is semisimple and simply-connected. Namely, we assume $Y = Q^\nu$, so that the canonical homomorphism $X \to \text{Hom}_{\mathbb{Z}}(Q^\nu, \mathbb{Z})$ is bijective. Let K be a field, and let G_K be the split semisimple algebraic group defined over K with the same root datum $(X, \Delta, Y, \Delta^\vee)$ as G. We denote by B_K, N_K, N_K^+ the subgroups of G_K similarly defined as B, N, N^+ respectively. Set $B_K = B_K \backslash G_K$. It is a projective algebraic variety defined over K, called the flag variety. Denote by $\text{Mod}(\mathcal{O}_{B_K})$ the category of quasi-coherent \mathcal{O}_{B_K}-modules. It can be described using $\mathcal{O}_K(N\backslash G)$ as follows. Let $\text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$ be the category of graded $\mathcal{O}_K(N\backslash G)$-modules. We denote by $\text{Tor}_\text{gr}(\mathcal{O}_K(N\backslash G))$ the full subcategory of $\text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$ consisting of $M \in \text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$ such that for any $m \in M$ there exists some positive integer N satisfying

$$\lambda \in X, \ <\lambda, \alpha_i^\vee> \geq N \ (\forall i \in I) \implies \mathcal{O}_K(N\backslash G; \lambda)m = \{0\}.$$

Note that $\text{Tor}_\text{gr}(\mathcal{O}_K(N\backslash G))$ is closed under taking subquotients and extensions in $\text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$. Then we have

$$\text{Mod}(\mathcal{O}_{B_K}) \cong \text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))/\text{Tor}_\text{gr}(\mathcal{O}_K(N\backslash G)) := \mathcal{P}^{-1} \text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G)),$$

where \mathcal{P} consists of morphisms in $\text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$ whose kernel and cokernel belong to $\text{Tor}_\text{gr}(\mathcal{O}_K(N\backslash G))$, and $\mathcal{P}^{-1} \text{Mod}_\text{gr}(\mathcal{O}_K(N\backslash G))$ denotes the localization of the category so that the morphisms in \mathcal{P} turn out to be isomorphisms (see [4, 13]).

For $w \in W$ and $\lambda \in X^+$ we set

$$\mathcal{T}_w \mathcal{V}_\lambda = \Phi_{\mathcal{T}_w \mathcal{V}_\lambda} \in \mathcal{O}_K(N\backslash G; \lambda) \subset \mathcal{O}_K(N\backslash G).$$

Here, the images of $\mathcal{V}_\lambda \in \nabla_{\mathbb{Z}}(\lambda)$ and $\mathcal{T}_w \mathcal{V}_\lambda \in \nabla_{\mathbb{Z}}(\lambda)$ in $\mathcal{O}_K(N\backslash G)$ and $\nabla_{\mathbb{K}}(\lambda)$ are denoted by \mathcal{V}_λ and $\mathcal{T}_w \mathcal{V}_\lambda$ respectively. We have

$$\mathcal{V}_\lambda \mathcal{T}_w \mathcal{V}_\mu = \mathcal{T}_{\lambda + \mu} \quad (\lambda, \mu \in X^+, w \in W),$$

and hence $\mathcal{S}_w = \{\mathcal{V}_\lambda | \lambda \in X^+\}$ is a homogeneous multiplicative subset of the commutative graded ring $\mathcal{O}_K(N\backslash G)$. Therefore, the localization $(\mathcal{S}_w)^{-1} \mathcal{O}_K(N\backslash G)$ turns out to be a commutative graded ring graded by X. Set

$$\mathcal{O}_K(B^w) = ((\mathcal{S}_w)^{-1} \mathcal{O}_K(N\backslash G))(0).$$

This commutative ring is naturally identified with the coordinate algebra of the affine open subset $B_K^w = B_K \backslash B_K N_K^+ w^{-1}$ of B_K. In particular, the category $\text{Mod}(\mathcal{O}_{B_K^w})$ of quasi-coherent $\mathcal{O}_{B_K^w}$-modules is isomorphic to the category $\text{Mod}(\mathcal{O}_K(B^w))$ of $\mathcal{O}_K(B^w)$-modules. The natural exact functor

$$\mathcal{F}\mathcal{E}\mathcal{S}_w : \text{Mod}(\mathcal{O}_{B_K}) \to \text{Mod}(\mathcal{O}_{B_K^w})$$
Lemma 8.1 holds for general root data $(X, \Delta, Y, \Delta^\vee)$ without the assumption $Y = Q^\vee$. The general case easily follows from the special case.

8.2. We continue to assume $Y = Q^\vee$. Let K be a field equipped with $\zeta \in K^\times$. We define an abelian category $\text{Mod}(\mathcal{O}_{B_{K, \zeta}})$ by

$$\text{Mod}(\mathcal{O}_{B_{K, \zeta}}) := \text{Mod}_{\text{gr}}(O_{K, \zeta}(N\setminus G))/\text{Tor}_{\text{gr}}(O_{K, \zeta}(N\setminus G))$$

for every $\lambda \in X^+$ such that $\langle \lambda, \alpha_i \rangle \geq 0$ for any $i \in I$. Moreover, \mathcal{P} consists of morphisms in $\text{Mod}_{\text{gr}}(O_{K, \zeta}(N\setminus G))$ whose kernel and cokernel belong to $\text{Tor}_{\text{gr}}(O_{K, \zeta}(N\setminus G))$, and $\mathcal{P}^{-1}\text{Mod}_{\text{gr}}(O_{K, \zeta}(N\setminus G))$ denotes the localization of the category so that the morphisms in \mathcal{P} turn out to be isomorphisms.

For $w \in W$ and $\lambda \in X^+$ we set

$$\sigma^w_\lambda = \Phi_{\nabla_{K, \zeta}(\lambda)}(T_w v_\lambda \otimes v^*_\lambda) \in O_{K, \zeta}(N\setminus G) \subset O_{K, \zeta}(G).$$

Here, the images of $v_\lambda \in \nabla_A(\lambda)$ and $v^*_\lambda \in \nabla_{K, \zeta}(\lambda)$ in $\nabla_{K, \zeta}(\lambda)$ and $\Delta^*_{K, \zeta}(\lambda) = (\nabla_{K, \zeta}(\lambda))^*$ are denoted by v_λ and v^*_λ respectively. We have

$$\sigma^w_\lambda \sigma^w_\mu = \sigma^w_{\lambda + \mu} \quad (\lambda, \mu \in X^+, w \in W).$$

Set $S^w_{K, \zeta} = \{ \sigma^w_\lambda \mid \lambda \in X^+ \}$ for $w \in W$. It is known that the multiplicative set $S^w_{K, \zeta}$ satisfies the left and right Ore conditions in the ring $O_{K, \zeta}(N\setminus G)$ (see [6], [14]). Hence the localization $(S^w_{K, \zeta})^{-1}O_{K, \zeta}(N\setminus G)$ is a graded ring graded by X. We set

$$O_{K, \zeta}(B^w) := ((S^w_{K, \zeta})^{-1}O_{K, \zeta}(N\setminus G))(0).$$

Remark 8.3. In the case $w = 1$ we can identify the K-algebra $O_{K, \zeta}(B^1)$ with a subalgebra of $O_{K, \zeta}(B^\dagger)$ (see [14] Proposition 4.5]). For general w we do not know such an explicit description of the algebra $O_{K, \zeta}(B^w)$. In fact the ring $O_{K, \zeta}(B^w)$ does depend on the choice of $w \in W$.

Given by the restriction of quasi-coherent \mathcal{O}-modules is induced by

$$\text{Mod}_{\text{gr}}(O_{K}(N\setminus G) \ni M \mapsto ((S^w_{K})^{-1}M)(0) \in \text{Mod}(O_{K}(B^w)).$$

By $B_{K} = \bigcup_{w \in W} B^K_w$ we have obviously

$$M \in \text{Mod}(\mathcal{O}_{B_{K}}), \text{res}_w(M) = 0 \quad (\forall w \in W) \implies M = 0.$$

It is easily seen that this is equivalent to the following.

Lemma 8.1. For any $\mu \in X^+$ we have

$$\overline{O}_{K}(N\setminus G; \lambda + \mu) = \sum_{w \in W} \overline{O}_{K}(N\setminus G; \lambda) \sigma^w_\mu$$

for $\lambda \in X^+$ such that $\langle \lambda, \alpha_i \rangle \geq 0$ for any $i \in I$.

Remark 8.2. Lemma 8.1 holds for general root data $(X, \Delta, Y, \Delta^\vee)$ without the assumption $Y = Q^\vee$. The general case easily follows from the special case.
We define an abelian category \(\text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}) \) to be the category of left \(O_{K,\zeta}(\mathcal{B}^w) \)-modules;

\[
(8.4) \quad \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}) := \text{Mod}(O_{K,\zeta}(\mathcal{B}^w)).
\]

Then we have a natural exact functor

\[
(8.5) \quad \text{res}_w : \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}) \to \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}})
\]

induced by

\[
\text{Mod}_{gr}(O_{K,\zeta}(N\backslash G)) \ni M \mapsto ([\mathbb{S}_N^{k'}]^{-1}M)(0) \in \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}).
\]

Example 8.4. Let \(G = SL_2(\mathbb{C}) \). Let \(\alpha \) be the unique positive root, and set \(\rho = \alpha/2 \).

Then we have \(X = \mathbb{Z}_\rho, X^+ = \mathbb{Z}_{\geq 0}\rho \). In this case it is well-known that the \(X \)-graded \(K \)-algebra \(O_{K,\zeta}(N\backslash G) \) is generated by the elements \(a_\zeta, b_\zeta \) of degree \(\rho \) satisfying the fundamental relation \(a_\zeta b_\zeta = \zeta b_\zeta a_\zeta \). We define a functor \(F : \text{Mod}_{gr}(O_{K,\zeta}(N\backslash G)) \to \text{Mod}_{gr}(O_{K,1}(N\backslash G)) \) as follows. For \(M = \bigoplus_{n \in \mathbb{Z}} M(n\rho) \in \text{Mod}_{gr}(O_{K,\zeta}(N\backslash G)) \) we set \(F(M) = M \) as an \(X \)-graded \(K \)-module and define the action of \(O_{K,1}(N\backslash G) \) on \(F(M) = M \) by

\[
a_1m = a_\zeta m, \quad b_1m = \zeta^n b_\zeta m \quad (m \in M(n\rho)).
\]

It is easily seen that this gives equivalences

\[
\text{Mod}_{gr}(O_{K,\zeta}(N\backslash G)) \cong \text{Mod}_{gr}(O_{K,1}(N\backslash G)), \quad \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}) \cong \text{Mod}(\mathcal{O}_{B_w^K}), \quad \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}) \cong \text{Mod}(\mathcal{O}_{B_w^K})
\]

of categories.

The main result of this paper is the following.

Theorem 8.5. Recall that \(Y = Q^\vee \). Assume that \(\zeta \) is transcendental over the prime field \(K_0 \) of \(K \), or the multiplicative order of \(\zeta \) is finite. Then we have

\[
(8.6) \quad M \in \text{Mod}(\mathcal{O}_{B_w^{K,\zeta}}), \quad \text{res}_w(M) = 0 \quad (\forall w \in W) \implies M = 0.
\]

8.3. We recall the notion of quasi-schemes following Rosenberg [12]. Let \(\mathfrak{A}, \mathfrak{B} \) be abelian categories. We say that a morphism \(f : X_\mathfrak{A} \to X_\mathfrak{B} \) between the corresponding virtual spaces is given if we are given an isomorphism class of a right exact functor \(f^* : \mathfrak{B} \to \mathfrak{A} \) admitting a right adjoint \(f_* : \mathfrak{A} \to \mathfrak{B} \). If moreover \(f_* \) is exact and faithful, we say that \(f \) is an affine morphism. Let \(\mathfrak{A}, \mathfrak{A}_\lambda (\lambda \in \Lambda) \) be abelian categories and assume that we are given morphisms \(f_\lambda : X_{\mathfrak{A}_\lambda} \to X_{\mathfrak{A}} \). We say that \(\{f_\lambda\}_{\lambda \in \Lambda} \) is a Zariski cover of \(X_{\mathfrak{A}} \) if each \(f_\lambda^* \) is a localization of categories in the sense of [4] and the patching property

\[
M \in \mathfrak{A}, \quad f_\lambda^* M = 0 \quad (\forall \lambda \in \Lambda) \implies M = 0
\]

is satisfied. Let \(\mathfrak{A}, \mathfrak{B} \) be abelian categories, and assume that we are given a morphism \(f : X_\mathfrak{A} \to X_\mathfrak{B} \) between the corresponding virtual spaces. Then we say that \(X_\mathfrak{A} \) is a quasi-scheme over \(X_\mathfrak{B} \) if there exists a Zariski cover \(\{f_\lambda\}_{\lambda \in \Lambda} \) of \(\mathfrak{A}_\lambda \) such that \(f_\lambda, f \circ f_\lambda \) are affine. Note that an ordinary scheme \(Y \) is regarded as a quasi-scheme \(X_{\text{Mod}(O_Y)} \).

By Theorem 8.5 we have the following.
Recall that $Y = Q^\vee$. Assume that ζ is transcendental over the prime field K_0 of K, or the multiplicative order of ζ is finite. Then (8.3), (8.4), (8.5) give a quasi-scheme $B_{K,\zeta}$ over $\text{Spec}(K)$ with affine open covering $B_{K,\zeta} = \bigcup_{w \in W} B_{K,\zeta}^w$, in the sense of Rosenberg [12].

8.4. We no longer assume $Y = Q^\vee$. Theorem 8.5 follows easily from the following Theorem applied to the special case $Y = Q^\vee$.

Theorem 8.7. Assume that ζ is transcendental over the prime field K_0 of K, or the multiplicative order of ζ is finite. For any $\mu \in X^+$ we have

\begin{equation}
O_{K,\zeta}(N \setminus G; \lambda + \mu) = \sum_{w \in W} O_{K,\zeta}(N \setminus G; \lambda) \sigma^w_{\mu}
\end{equation}

for $\lambda \in X^+$ such that $\langle \lambda, \alpha_{\gamma}^i \rangle \gg 0$ for any $i \in I$.

From Theorem 8.7 we obtain the following.

Corollary 8.8. Assume that ζ is transcendental over the prime field K_0 of K, or the multiplicative order of ζ is finite. For any $\mu \in X^+$ we have

\begin{equation}
O_{K,\zeta}(G) = \sum_{w \in W} O_{K,\zeta}(G) \sigma^w_{\mu}.
\end{equation}

Proof. We first show

\begin{equation}
O_{K,\zeta}(G) = O_{K,\zeta}(G)O_{K,\zeta}(N \setminus G; \nu)
\end{equation}

for any $\nu \in X^+$. Take $\varphi \in O_{K,\zeta}(N \setminus G; \nu)$ such that $\varepsilon(\varphi) = 1$. Then we have

\[
\sum_k (S^{-1} \varphi_k) \varphi_k = \varepsilon(\varphi) = 1,
\]

where $\Delta(\varphi) = \sum_k \varphi_k \otimes \varphi_k'$. By the definition of $O_{K,\zeta}(N \setminus G; \nu)$ we have

\[
\Delta(O_{K,\zeta}(N \setminus G; \nu)) \subset O_{K,\zeta}(N \setminus G; \nu) \otimes O_{K,\zeta}(G).
\]

Hence we have $1 \in O_{K,\zeta}(G)O_{K,\zeta}(N \setminus G; \nu)$, from which we obtain (8.8).

Now let $\mu \in X^+$. By Theorem 8.7 there exists some $\lambda \in X^+$ such that

\[O_{K,\zeta}(N \setminus G; \lambda + \mu) = \sum_{w \in W} O_{K,\zeta}(N \setminus G; \lambda) \sigma^w_{\mu}. \]

Then we obtain

\[O_{K,\zeta}(G) = O_{K,\zeta}(G)O_{K,\zeta}(N \setminus G; \lambda + \mu) = \sum_{w \in W} O_{K,\zeta}(G)O_{K,\zeta}(N \setminus G; \lambda) \sigma^w_{\mu} \]

\[\subset \sum_{w \in W} O_{K,\zeta}(G) \sigma^w_{\mu}. \]

□
8.5. The remainder of this section is devoted to the proof of Theorem 8.7. We will derive it from Lemma 8.1.

We first consider the case ζ is transcendental over the prime field K_0 of K. This case was already dealt with in [5] and [7]. We include its proof here for the sake of the readers.

Set $R = K_0[q, q^{-1}]$. For $λ ∈ X^+$ we define a subspace $O_{\mathcal{R}, q}(N \setminus G; λ)$ of $\text{Hom}_{\mathcal{R}}(U_{\mathcal{R}, q}(\mathfrak{g}), \mathcal{R})$ by

$$O_{\mathcal{R}, q}(N \setminus G; λ) = \{ \Phi_{\nabla_{\mathcal{R}, q}(λ)}(v ⊗ v^*_λ) \mid v ∈ \nabla_{\mathcal{R}, q}(λ) \},$$

where

$$\langle \Phi_{\nabla_{\mathcal{R}, q}(λ)}(v ⊗ v^*_λ), u \rangle = \langle v^*_λ, uv \rangle \quad (u ∈ U_{\mathcal{R}, q}(\mathfrak{g})).$$

We set

$$O_{\mathcal{R}, q}(N \setminus G) = \bigoplus_{λ ∈ X^+} O_{\mathcal{R}, q}(N \setminus G; λ).$$

It is a ring graded by X. Moreover, we have

$$K ⊗_R O_{\mathcal{R}, q}(N \setminus G) ≃ O_{K, ζ}(N \setminus G)$$

with respect to $s_ζ : R → K$ ($q → ζ$), and

$$K_0 ⊗_R O_{\mathcal{R}, q}(N \setminus G) ≃ \overline{O}_{K_0}(N \setminus G)$$

with respect to $s_1 : R → K_0$ ($q → 1$). Set

$$\hat{σ}_μ = \Phi_{\nabla_{\mathcal{R}, q}(μ)}(T_w v_μ ⊗ v^*_μ) ∈ O_{\mathcal{R}, q}(N \setminus G)$$

for $μ ∈ X^+$, and consider the \mathcal{R}-linear map

$$F_λ : O_{\mathcal{R}, q}(N \setminus G; λ)^{\oplus W} → O_{\mathcal{R}, q}(N \setminus G; λ + μ) \quad ((f_w)_{w ∈ W} ↦ \sum_{w ∈ W} f_w \hat{σ}_μ^w)$$

between free \mathcal{R}-modules of finite rank. Assume $⟨λ, α_τ^\vee⟩ ≫ 0$. We see by Lemma 8.1 and Remark 8.2 that $K_0 ⊗_R F_λ$ with respect to s_1 is surjective. Hence $K ⊗_R F_λ$ with respect to $s_ζ$ is surjective when $ζ$ is transcendental over K_0. This is exactly what we need to show. The proof of Theorem 8.7 is now complete in the case $ζ$ is transcendental over the prime field K_0 of K.

8.6. We consider the case $ζ^2 = 1$ for any $α ∈ Δ$. Let $λ, μ ∈ X^+$. Let

$$\Xi : \nabla_K(λ) ⊗ \nabla_K(μ) → \nabla_K(λ + μ)$$

and

$$\Xi : \nabla_{K, ζ}(λ) ⊗ \nabla_{K, ζ}(μ) → \nabla_{K, ζ}(λ + μ)$$

be the unique (up to a non-zero scalar multiple) non-zero homomorphisms of $\overline{U}_K(\mathfrak{g})$-modules and $U_{K, ζ}(\mathfrak{g})$-modules respectively. In view of (7.3), (7.8) and Lemma 8.1 (see also Remark 8.2), we have only to show that $\Xi(\nabla_{K, ζ}(λ) ⊗ T_w v_μ)$ coincides with $\Xi(\nabla_K(λ) ⊗ T_w v_μ)$ under the identification $\nabla_{K, ζ}(λ + μ) ≃ \nabla_K(λ + μ)$ of Proposition 8.6. By Lemma 3.7.i and Lemma 3.2 (ii) we have

$$\Xi(\nabla_K(λ) ⊗ T_w v_μ) = \Xi(T_w(\nabla_K(λ) ⊗ v_μ)) = T_w \Xi(\nabla_K(λ) ⊗ v_μ),$$

$$\Xi(\nabla_{K, ζ}(λ) ⊗ T_w v_μ) = \Xi(T_w(\nabla_{K, ζ}(λ) ⊗ v_μ)) = T_w \Xi(\nabla_{K, ζ}(λ) ⊗ v_μ).$$
Hence by Lemma \ref{lem} it is sufficient to show
\begin{equation}
\Xi(\nabla_K(\lambda) \otimes \mu) = \Xi(\nabla_K(\lambda) \otimes v_\mu).
\end{equation}
Setting
\begin{equation}
\begin{array}{c}
M = \{ m \in \Delta_{K,\zeta}^*(\lambda + \mu) \mid \langle m, \Xi(\nabla_K(\lambda) \otimes v_\mu) \rangle = \{0\} \}, \\
\overline{M} = \{ \overline{m} \in \overline{\Delta}_K(\lambda + \mu) \mid \langle \overline{m}, \overline{\Xi}(\nabla_K(\lambda) \otimes \overline{\mu}) \rangle = \{0\} \},
\end{array}
\end{equation}
\begin{equation}
(8.9)
\end{equation}
is equivalent to \(\overline{M} = M \) under the identification \(\Delta_{K,\zeta}^*(\lambda + \mu) = \overline{\Delta}_K(\lambda + \mu) \). Let
\begin{equation}
\Xi^*: \Delta_{K,\zeta}^*(\lambda + \mu) \to \overline{\Delta}_K(\lambda) \otimes \overline{\Delta}_K(\mu)
\end{equation}
and
\begin{equation}
\Xi^*: \Delta_{K,\zeta}^*(\lambda + \mu) \to \Delta_{K,\zeta}^*(\lambda) \otimes \Delta_{K,\zeta}^*(\mu)
\end{equation}
be the unique (up to a scalar multiple) non-zero homomorphisms of \(\overline{U}_K(\mathfrak{g}) \)-modules and \(U_{K,\zeta}(\mathfrak{g}) \)-modules respectively. Note that any \(m \in \Delta_{K,\zeta}^*(\lambda + \mu)_{\lambda+\mu-\gamma} \) can be written in the form \(m = v_{\lambda+\mu}^* y \) for \(y \in U_{K,\zeta}(\mathfrak{n})_{-\gamma} \). For such \(m \) we have
\begin{equation}
\langle m, \Xi(\nabla_K(\lambda) \otimes v_\mu) \rangle = \langle \Xi^*(m), \nabla_{K,\zeta}(\lambda) \otimes v_\mu \rangle = \langle \Xi^*(v_{\lambda+\mu}^* y), \nabla_{K,\zeta}(\lambda) \otimes v_\mu \rangle
\end{equation}
\begin{equation}
= \langle (v_\lambda^* \otimes v_\mu^*) y, \nabla_{K,\zeta}(\lambda) \otimes v_\mu \rangle.
\end{equation}
By \(\Delta(y) \in y \otimes k_+ + \sum_{\delta \in Q^+ \setminus \{0\}} U_{K,\zeta}(\mathfrak{n}) \otimes U_{K,\zeta}(\mathfrak{h}) U_{K,\zeta}(\mathfrak{n})_{-\delta} \) we have
\begin{equation}
\langle m, \Xi(\nabla_K(\lambda) \otimes v_\mu) \rangle = \langle v_\lambda^* y, \nabla_{K,\zeta}(\lambda) \rangle.
\end{equation}
Hence \(M = v_{\lambda+\mu}^* A \) with \(A = \{ y \in U_{K,\zeta}(\mathfrak{n}) \mid v_\lambda^* y = 0 \} \). By \(2.3 \) we can also write \(M = v_{\lambda+\mu}^* A' \) with \(A' = \{ y \in U_{K,\zeta}(\mathfrak{n}) \mid \overline{\nabla}_\lambda y = 0 \} \). On the other hand by a similar argument we have \(\overline{M} = \overline{\nabla}_{\lambda+\mu} A \) with \(\overline{A} = \{ y \in \overline{U}_K(\mathfrak{n}) \mid \overline{\nabla}_\lambda y = 0 \} \). Therefore, we obtain \(\overline{M} = M \) from Lemma \ref{lem} \(\Xi \) is now complete in the case \(\zeta_0 = 1 \) for any \(\alpha \in \Delta \).

8.7. Finally, we consider the case where the multiplicative order of \(\zeta \in K^\times \) is finite. Denote the multiplicative order of \(\zeta \) by \(\ell \), and consider the root datum \((\ell X, \ell \Delta, \ell Y, \ell \Delta^\vee)\) as in Section 2. Recall that we have an embedding
\begin{equation}
O_{K,\zeta}(\ell N \backslash \ell G) \subset O_{K,\zeta}(N \backslash G)
\end{equation}
of algebras satisfying
\begin{equation}
O_{K,\zeta}(\ell N \backslash \ell G; \lambda) \subset O_{K,\zeta}(N \backslash G; \lambda)
\end{equation}
for \(\lambda \in \ell X^+ \). Let \(\mu \in X^+ \). We can take \(\nu \in X^+ \) and \(\mu' \in \ell X^+ \) such that \(\mu + \nu = \mu' \). By the result of the preceding subsection together with \(3.4 \), \(3.5 \) we obtain
\begin{equation}
O_{K,\zeta}(\ell N \backslash \ell G; \lambda' + \mu') = \sum_{w \in W} O_{K,\zeta}(\ell N \backslash \ell G; \lambda') \sigma_{\mu'}^w
\end{equation}
for some $\lambda' \in \mathbb{X}^+$. Let $\xi \in \mathbb{X}^+$ such that $\langle \xi, \alpha_i \rangle \gg 0$ for any $i \in I$. Then by Proposition 7.1 we have
\[
O_{K,\zeta}(N \setminus G; \xi + \lambda' + \nu + \mu) = O_{K,\zeta}(N \setminus G; \xi + \lambda' + \mu')
\]
\[
= O_{K,\zeta}(N \setminus G; \xi)O_{K,\zeta}(N \setminus G; \lambda')\sigma_{\mu'}^w
\]
\[
\subset \sum_{w \in W} O_{K,\zeta}(N \setminus G; \xi + \lambda')\sigma_{\mu'}^w = \sum_{w \in W} O_{K,\zeta}(N \setminus G; \xi + \lambda')\sigma_{\nu}^w\sigma_{\mu}^w
\]
The proof of Theorem 8.7 is complete.

Acknowledgment

A part of this work was done while the author was staying at East China Normal University in 2019 May as a Zijiang Professor. I would like to thank the members of the Department of Mathematics of East China Normal University, especially Bin Shu, for their hospitality.

References

[1] Andersen, H., Polo, P., Wen, K.: Representations of quantum algebras. Invent. Math. 104 (1991), 1–59.
[2] Artin, M., Zhang, J.: Noncommutative projective schemes. Adv. Math. 109 (1994), 228–287.
[3] De Concini, C., Lyubashenko, V.: Quantum function algebra at roots of 1. Adv. Math. 108 (1994), 205–262.
[4] Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 Springer-Verlag New York, Inc., New York 1967 x+168 pp.
[5] Joseph, A.: Faithfully flat embeddings for minimal primitive quotients of quantized enveloping algebras. Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 79–106, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993.
[6] Joseph, A.: Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 29. Springer-Verlag, Berlin, 1995. x+383 pp.
[7] Lunts, V., Rosenberg, A.: Localization for quantum groups. Selecta Math. (N.S.) 5 (1999), 123–159.
[8] Lusztig, G.: Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89–114.
[9] Lusztig, G.: Introduction to quantum groups, Progr. Math., 110, Boston etc. Birkhäuser, 1993.
[10] Manin, Yuri I.: Topics in noncommutative geometry. M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1991. viii+164 pp.
[11] Popescu, N.: Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No. 3. Academic Press, London-New York, 1973. xii+467 pp.
[12] Rosenberg, A.: Noncommutative algebraic geometry and representations of quantized algebras. Mathematics and its Applications, 330. Kluwer Academic Publishers Group, Dordrecht, 1995. xii+315 pp.
[13] Ryom-Hansen, S.: A q-analogue of Kempf’s vanishing theorem. Mosc. Math. J. 3 (2003), 173–187, 260.
[14] Tanisaki, T.: The Beilinson-Bernstein correspondence for quantized enveloping algebras. Math. Z. 250 (2005), 299–361.
[15] Verëvkin, A.: On a noncommutative analogue of the category of coherent sheaves on a projective scheme. Algebra and analysis (Tomsk, 1989), 41–53, Amer. Math. Soc. Transl. Ser. 2, 151, Amer. Math. Soc., Providence, RI, 1992.

9-3-12 JIYUGAOKA, MUNAKATA, FUKUOKA, 811-4163 JAPAN
Email address: ttanisaki@icloud.com