Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility

Yang, Peng; Zha, Jiajia; Gao, Guoyun; Zheng, Long; Huang, Haoxin; Xia, Yunpeng; Xu, Songcen; Xiong, Tengfei; Zhang, Zhuomin; Yang, Zhengbao; Chen, Ye; Ki, Dong-Keun; Liou, Juin J.; Liao, Wugang; Tan, Chaoliang

Published in:
Nano-Micro Letters

Published: 01/12/2022

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1007/s40820-022-00852-2

Publication details:
Yang, P., Zha, J., Gao, G., Zheng, L., Huang, H., Xia, Y., Xu, S., Xiong, T., Zhang, Z., Yang, Z., Chen, Y., Ki, D.-K., Liou, J. J., Liao, W., & Tan, C. (2022). Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. Nano-Micro Letters, 14(1), Article 109. Advance online publication. https://doi.org/10.1007/s40820-022-00852-2

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility

Peng Yang1,2, Jiajia Zha2✉, Guoyun Gao3, Long Zheng4, Haoxin Huang2, Yunpeng Xia2, Songcen Xu2, Tengfei Xiong5, Zhuomin Zhang6, Zhengbao Yang6, Ye Chen4, Dong-Keun Ki3, Juin J. Liou1, Wugang Liao1✉, Chaoliang Tan2,7

HIGHLIGHTS

- The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate.
- The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm² V⁻¹ s⁻¹ at room temperature.

ABSTRACT The lack of stable p-type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p-type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p-type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm² V⁻¹ s⁻¹ at room temperature, that may lay the foundation for the future high-performance p-type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility.

KEYWORDS Chemical vapor deposition; Substrate engineering; Tellurium; Field-effect transistors; Hole mobility
1 Introduction

Van der Waals (vdW) materials hold great promise in fabricating advanced monolithic integrated circuits by virtue of the absence of the dangling bonds and their superior electrical properties [1–10]. As the basic unit in the monolithic integrated circuits, the complementary metal-oxide–semiconductor (CMOS) is one of the most important architectures. In which, \( n \)-type field-effective transistors (FETs) and \( p \)-type FETs are both indispensable. Although multiple \( n \)-type FETs have been demonstrated based on various \( n \)-type 2D semiconductors [11–16], the development of their \( p \)-type counterparts is still an urgent need. Since Li et al. first reported the black phosphorus (bP)-based FETs in 2014, the bP once became an alternative option for researchers to prepare \( p \)-type FETs [17–20]. However, bP shows poor stability under ambient conditions and thus it has not received as much attention as its \( n \)-type counterparts for instance MoS\(_2\) [21, 22]. The situation has not improved until the rediscovery of tellurium (Te) by Wang et al. [23], their \( p \)-type FETs based on the Te nanoflakes by hydrothermal synthesis showed a considerable hole mobility of 700 cm\(^2\) V\(^{-1}\) s\(^{-1}\) [23]. Meanwhile, their fabricated Te FETs showed a great air stability without any encapsulation. Moreover, superior mechanical and thermoelectric properties of Te endow it with great potential in flexible electronics and wearable sensors [24, 25]. However, considering the electrical transport property of Te is dominated by several factors including structural defects, phonon scattering, charge impurities, surface traps, and the used organic solvents in the hydrothermal method may increase trap densities, it is believed that there is still plenty of room by using other growth strategy to obtain high-quality single-crystalline Te nanostructures with higher hole mobilities.

Substrate engineering is well accepted as an effective growth strategy to obtain high-quality single-crystalline vdW materials [26–31]. For example, by introducing the liquid gold substrate in the chemical vapor deposition (CVD) system, the ultrathin wafer-scale single-crystalline hexagonal boron nitride (h-BN) film can be grown via self-collimated grain formation [27]. Except for h-BN, large-scale single-crystalline MoS\(_2\) can also be grown on Au (111) substrate in a CVD system [28]. In a recent study, 2 inch single-crystalline monolayer MoS\(_2\) thin films has been synthesized on the sapphire substrate, and the observed electron mobility was 102.6 cm\(^2\) V\(^{-1}\) s\(^{-1}\) [26]. Moreover, the epitaxial growth of single-domain graphene on h-BN with a fixed stacking orientation has been reported [30]. And in another work, an extremely high Hall mobility was observed in graphene synthesized via CVD on h-BN [31]. Apart from CVD method, the substrate engineering can also be introduced into molecular beam epitaxy (MBE) system, for example, by using which, large-scale single-crystalline MoSe\(_2\) monolayer has been grown on h-BN substrate [29].

In this work, we report a promising strategy for growth of high-quality single-crystalline Te nanobelts with high hole mobilities by introducing atomically flat h-BN nanoflakes into the CVD system as the growth substrate. The single-crystalline nature of the synthesized Te nanobelts is characterized by the high-resolution transmission electron microscope (HRTEM). In addition, our synthesized Te nanobelts exhibit an obvious optical anisotropy as characterized by Raman spectroscopy. Importantly, the FET based on the synthesized Te nanobelts presents a typical \( p \)-type transfer characteristic with a field-effect hole mobility up to 1370 cm\(^2\) V\(^{-1}\) s\(^{-1}\) at room temperature, which is much higher than the previously reported value in FETs based on Te nanoflakes synthesized by the hydrothermal method and other CVD methods [23, 32, 33].

2 Experimental Section

2.1 Growth of Te Nanobelts

The Te nanobelts were grown on h-BN nanoflakes mechanically exfoliated onto the SiO\(_2\)/Si wafer. The thickness of the SiO\(_2\) dielectric layer is 300 nm. The bulk h-BN crystals were purchased from 2D Semiconductor Inc. A quartz boat containing 50 mg TeO\(_2\) powder (99.999%, Aladdin) was placed at the center of the heating zone of the tube furnace, and the SiO\(_2\)/Si substrate caped with discrete h-BN nanoflakes was put at the downstream end of the tube outside the heating zone. Before reaction, the tube was pumped to 1 \( \times \) 10\(^{-2}\) Torr to sweep away the air and then refilled by Ar/H\(_2\) hybrid gas (the volume ratio of H\(_2\) is 10%) to atmospheric pressure. During the reaction, a constant mixture of Ar (90 sccm) and H\(_2\) (10 sccm) was
used as the carrier gas and served as reductive agent at the same time. The pressure of the tube was kept as atmospheric pressure. The temperature of the furnace ramped up to 750–800 °C in 40 min, and was maintained at the peak temperature for 20 min. The crystallization temperature for Te nanobelts was 170–200 °C which can be controlled by adjusting the distance of the SiO₂/Si wafer from the heating zone. After the reaction, the furnace was cooled down naturally to room temperature.

2.2 Device Fabrication

The Te FETs based on the h-BN/SiO₂/Si and bare SiO₂/Si substrates in global bottom-gate geometry were prepared by using the electron-beam lithography (EBL) technique without transfer. The electrodes were defined by EBL (TESCAN, VEGA3). gold (Au) (70 nm) was used as contact metal for source/drain electrodes, and achieving a good ohmic contact between the metal and Te nanobelts. On the other hand, the fabrication of Te FETs in local bottom-gate geometry started from the pre-pattern of local bottom-gate electrode, which was defined by EBL and followed by the deposition of chromium (Cr) (5 nm) and Au (60 nm). Then the Te nanobelts together with h-BN substrates were transferred onto the bottom electrode via a wet-transfer method. Similarly, Au (70 nm) was used as contact metal for source/drain electrodes, and a good ohmic contact was realized.

2.3 Material Characterization

The morphologies of Te nanobelts were characterized by optical microscopy (Nikon, ECLIPSE LV100ND) and scanning electron microscopy (SEM) (TESCAN, VEGA3). The surface morphologies and heights of the synthesized Te nanobelts were measured by atomic force microscope (AFM) (Bruker, Dimension Icon with Scan Asyst). The Raman spectrum and mapping were measured by Renishaw with a polarized incident laser at room temperature, the wavelength of the excitation laser is 532 nm. The Raman peak of a silicon wafer at 520 cm⁻¹ was used as the reference to calibrate the spectrometer. High-resolution transmission electron microscope (HRTEM) images were obtained by Tecnai F20 TEM (TF20).

2.4 Electrical Characterization

The room-temperature electrical measurements were performed in a cryogenic probe station (LakeShore) in vacuum with a source meter (Keysight B2902B). The low-temperature electrical measurements were conducted in a home-built cryostat with a dry closed cycle cryocoolers (Sullitomo Heavy Industries, Ltd.) under 5 × 10⁻⁶ Torr with Keithley’s standard series 2400-c source meters controlled by LabVIEW program. Before the measurements, the fabricated Te FET was connected to pins of a ceramic package by indium wires via wire bonding.

3 Results and Discussion

3.1 Growth of Te Nanobelts

Single-crystalline Te is composed of individual helical chains stacked via vdW force interactions and within each molecular chain, one Te atom is strongly covalently-bonded with two neighboring atoms along the long-axis [23, 34–36]. The schematic illustration of the Te nanobelts growth is shown in Fig. 1a, where the tellurium dioxide (TeO₂) powder was used as the precursor material and the hydrogen/argon (H₂/Ar) hybrid gas helped reduce TeO₂ and served as carrier gas. In the growth process, after completing the placement of the sample and growth substrate under the ambient conditions, the quartz tube was first vacuumed and then inflated to atmospheric pressure by H₂/Ar hybrid gas. When the precursor was heated up to ~750 °C, TeO₂ was reduced by the H₂ and then the Te atoms moved to the growth zone assisted by the Ar carrier gas. In the growth zone, we put the silicon (Si) wafer caped by 300 nm silicon dioxide (SiO₂) as the substrate, on which distributed the h-BN nanoflakes obtained by the mechanical exfoliation. After the reaction, single-crystalline Te nanobelts with length of tens of micrometers (μm) and width of several micrometers were found on the substrate. Figure 1b shows the scheme of the crystal structure of the Te nanobelts on the h-BN
substrate in a top view. The c-axis of our Te crystals is along the surface of the h-BN nanoflakes, which is different from the ultrathin Te nanoflakes grown by other CVD method and physical vapor deposition (PVD) process, in which, the molecular chains in the obtained Te nanoflakes are perpendicular to the substrate surface [37, 38]. The introduction of h-BN nanoflakes in our growth strategy can provide an atomically flat surface for the growth of Te nanobelts and reduce the probable surface trap states, leading to the synthesis of high-quality Te nanobelts. As shown in Figs. 1c and S1b, which are the optical images of typical Te nanobelts on h-BN nanoflakes and bare SiO₂/Si wafer, respectively, most of samples are in the rectangular and trapezoid shapes. The length and width of the Te nanobelts can reach up to 50 and 10 μm, respectively. The morphologies of Te samples are quite similar to the solution-synthesized Te nanoflakes [23, 32]. The typical thickness of the synthesized Te nanobelts ranges from 30 to 70 nm, which is shown in Figs. 1d and S1c–d. We note that the measured height profiles of these samples were extremely uniform, which indicates that there are no organic residues on the surface of Te nanobelts, unlike those synthesized by hydrothermal method [32]. Besides Te nanobelts, Te nanowires could also be synthesized by adjusting the distance of the substrate from the heating zone to control the substrate temperature, the obtained samples are shown in Fig. S1a, this growth phenomenon can be explained by the different surface energies of Te crystals as reported before [33]. The nucleation energy along the c-axis is the lowest, which means the highest growth rate along the c-axis (that is of [001] orientation). In the low-temperature region, the growth rate is much higher compared with growth rates of other orientations, thus leading to Te nanowires. In high-temperature regions, the growth energy becomes higher, the growth rates of [100] and [10 11] orientations are comparable to the growth rate along the c-axis, so that Te nanobelts in rectangular and trapezoid shapes also appear. The temperature-dependent behavior of the growth of Te crystals provides us the opportunity to control the morphologies of Te crystals in our growth strategy in future.

**Fig. 1**  
a Schematic illustration of the growth of Te nanobelts.  
b Schematic illustration of Te crystal structure on h-BN crystal structure in a top view.  
c Typical optical image of Te nanobelts grown on h-BN.  
d AFM image of a typical Te nanobelt with thickness of 59 nm, the inset shows the height profile corresponding to the red line across the sample.
3.2 Raman and TEM Characterizations of Te Nanobelts

The structure anisotropy of a typical synthesized Te nanobelt with the thickness of ~30 nm is further analyzed by angle-resolved Raman spectra at room temperature. Figure 2a shows the Raman spectra with angles between the crystal orientation and the polarization of the incident laser. From which, we can see that there are three Raman peaks locate at 91 cm⁻¹ (E₁ transverse (TO) phonon mode), 120 cm⁻¹ (A₁ mode) and 140 cm⁻¹ (E₂ mode), respectively, and the absence of the longitudinal (LO) phonon mode is consistent with the Raman features of thick Te nanostructures reported elsewhere [23, 32]. By rotating the Te nanobelt in steps of 15°, we observed nearly no changes in the peak locations; however, the change of the peak intensities is obvious. We extracted the peak intensities of E₁-TO and A₁ modes by fitting with a sine function and plotted them into the polar figures (Fig. 2b–c). It is obvious that the intensities of these Raman peaks present periodic changes with the rotation angles. Moreover, both E₁-TO and A₁ modes show the maximum intensity at 90 and 270°, by considering 0° indicates polarization of the used laser is parallel with the long-axis of the Te nanobelts, that confirms the helical chain is along the long-axis of our samples [23]. The Raman intensity mapping of A₁ mode with the angles of 90 and 0° is shown in Fig. S2. The uniform Raman signal across the whole Te nanobelts demonstrates that the quality of Te nanobelts is quite uniform. To further identify the crystal structure of the Te nanobelts, HRTEM was used to measure the lattice structure of the Te nanobelts grown on h-BN. Figure 2d–f shows HRTEM images of Te nanobelts grown on h-BN, where perfect hexagonal lattice without defects demonstrates the high quality of the used h-BN substrate, which is the precondition for the high-quality Te nanobelts growth.
can see that the measured lattice constant of Te nanobelt is 0.2 nm, which is assignable to the (0001) lattice direction parallel with the helical chains, in agreement with the Te nanoflakes synthesized by hydrothermal method [23, 32].

3.3 Electrical Performance of Te FET with Global Bottom-gate Structure

The vdW h-BN dielectric layer with atomically flat surface provides an ideal platform for the growth of high-quality...
single-crystalline Te nanobelts. Moreover, the free of dangling bonds on the surface of h-BN nanoflakes leads to low density of charge-scattering centers and charge trap states, which will result in high carrier mobilities observed in the channel material [39, 40]. To investigate the electrical transport properties of the Te nanobelts in our growth strategy, we first fabricated FET with global bottom-gate structure directly on the Te nanobelts grown on h-BN substrate without further transfer, the scheme of the device architecture is shown in Fig. 3a. The heavily doped silicon was used as a global bottom-gate and the source/drain electrodes were patterned by EBL. The thickness of the SiO2 layer is 300 nm. To reduce the contact resistance, Au (70 nm) was evaporated by thermal evaporation as the electrodes. Figure 3b is the optical image of a typical device, the thickness of the channel material is 30 nm, which is indicated by Fig. S3b. Figure S3a shows the detailed SEM image of this device. Output and transfer curves of this device are shown in Fig. 3c–d. It can be concluded from Fig. 3c that the ohmic contact has been realized for the source-drain current (I_{ds}) changes linearly with the bias voltage (V_{dd}) under different back-gate voltages. Figure 3d shows that the transfer curves of our device under the source-drain bias of 10 and 500 mV, respectively. The transfer curves showing in this figure present a p-type-dominant slightly ambipolar behavior and that suggests the superior crystal quality of our samples. Limited by the thickness of our Te nanobelt, the on/off ratio only reaches ~10^2. This relatively low on/off ratio can be explained by the thickness-dependent bandgap of Te, which reduces to ~0.3 eV when the thickness of Te is larger than 20 nm [23, 35]. At the same time, the gate voltage exhibits an inferior control over the thick channel material. The energy band diagram of this device is shown in Fig. S3c–d. When a negative voltage is applied on the bottom gate, holes will be accumulated in the channel, thus increasing its conductivity significantly (“on” state); on the other hand, once a positive voltage is applied on the bottom gate, holes will be depleted, and the conducting channel will be turned off (“off” state).

The field-effect hole mobilities of our Te FETs can be derived by inserting numbers into the following formula:

$$\mu_{FE} = \frac{g_m L}{W \times C_x \times V_{ds}}$$  \hspace{1cm} (1)

where g_m, L, W, and C_x are the transconductance, channel length, channel width, and h-BN/SiO2 capacitance, respectively. The calculation result under the bias voltage of 10 mV at room temperature is shown in Fig. 3e, in which the device thickness of h-BN/SiO2 is 82/300 nm, and we can extract a peak $\mu_{FE}$ of 1370 cm² V⁻¹ s⁻¹. This value is much higher than the room-temperature field-effect hole mobility (984 cm² V⁻¹ s⁻¹) extracted in bP FET [17]. In Fig. 3f, we summarize the reported room-temperature field-effect mobilities of typical vdW semiconductors including solution-synthesized Te [23, 32], bP [17, 41], tungsten diselenide (WSe2) [42, 43], platinum diselenide (PtSe2) [13, 44], molybdenum disulfide (MoS2) [26, 45, 46], and rhenium disulfide (ReS2) [47, 48]. It can be seen that the hole mobility of our device is the highest among the p-type vdW semiconductors and compared with the well-known TMD materials, our Te FETs show much higher room-temperature mobility. In addition, our device shows a good air stability. We have remeasured the electrical performance of this device with one-week air exposure and the measured results are shown in Fig. S4. The transfer curve of our device measured after one week is similar to the as-prepared one under the same bias voltage, which is shown in Fig. S4c. The extracted peak hole mobility as shown in Fig. S4b is 1370 cm² V⁻¹ s⁻¹, which is nearly the same as the value (1370 cm² V⁻¹ s⁻¹) extracted from the as-prepared device. The much higher stability of Te FET can compensate for the drawback of bP originating from the unstable nature in air conditions.

To further confirm the high hole mobilities observed in the nanobelts synthesized by our growth strategy, we make the statistics on the hole mobilities and on/off ratios of the FETs fabricated on the Te nanobelts grown on h-BN substrates. The calculated results are shown in Table S1. In all these fabricated devices, the hole mobilities range from 847–1370 cm² V⁻¹ s⁻¹, and the average hole mobility is 1108 cm² V⁻¹ s⁻¹, which is higher than the reported value in bP FET [17]. Limited by the thickness of our Te samples, the on/off ratios found in our devices are in the range of ~10–10^2. Considering the on/off ratios in vdW material-based FETs can be improved further by employing dual-gate architectures, it is expected that there is still sufficient room for further improvement on the performances of our FETs [49–52]. As a control group, we also fabricated FETs based on Te nanobelts grown on the SiO2/Si wafer but without h-BN nanoflakes in the same CVD method. Its performance is shown in Fig. S5. Figure S5a is the optical image of a typical device. In which, same to the FETs fabricated on Te nanobelts grown on h-BN nanoflakes, the heavily doped silicon was used as the global bottom-gate. The thickness of the used dielectric SiO2 layer is 300 nm. The 70 nm Au has been deposited as contact electrodes. The linear output
curves shown in Fig. S5b indicate the realization of ohmic contact. Figure S5c shows the transfer curves of the measured device under the bias voltage of 0.1 and 0.5 V, respectively. Its on/off ratio is ~3. The field-effect hole mobility $\mu_{\text{FE}}$ is extracted from its transfer curve according to Eq. (1), and the result is shown in Fig. S5d. The peak value of its mobility is 375 cm$^2$ V$^{-1}$ s$^{-1}$ under the source-drain voltage of 0.1 V. The calculated field-effect hole mobilities and on/off ratios of all the fabricated Te FETs based on bare SiO$_2$/Si substrate are listed in Table S2, the average $\mu_{\text{FE}}$ among these devices is 394 cm$^2$ V$^{-1}$ s$^{-1}$, which is similar to the effective mobility extracted in Te nanostructures synthesized by hydrothermal method and other CVD method [32, 33]. This much more inferior mobility also further indicates the superiority of our growth strategy. And the huge improvement on $\mu_{\text{FE}}$ in FETs fabricated on Te nanobelts grown on h-BN substrate compared with those on bare SiO$_2$/Si substrate is believed to originate from the better crystal quality and the reduced carrier scattering induced by the atomically flat surface provided by the introduced h-BN nanoflakes.

To better understand the electrical transport properties of the Te nanobelts synthesized by our growth strategy, we performed the temperature-dependent electrical characterization of one typical Te FET. The optical image of this device is shown in Fig. S6a, the thickness of the channel material is ~30 nm. The transfer curves of our device measured over a temperature range from 30 to 300 K are shown in Fig. S6b. It’s obvious that the on/off ratio of the Te FET increases when the device is cooled, this can be ascribed to the small-band-gap nature of Te, that is, as the temperature being elevated, the thermal generation will increase the carrier densities dramatically. An on/off ratio of 420 is obtained at the temperature of 30 K, while when the temperature increases to 300 K, the on/off ratio decreases to 10. The extracted field-effect mobility reduces as temperature increases as well, which is shown in Fig. S6c. Our device shows a $\mu_{\text{FE}}$ of 3500, 2548, and 1184 cm$^2$ V$^{-1}$ s$^{-1}$ at 30, 70, and 300 K, respectively. To show the reliability of the calculated field-effect mobility values, we replotted the temperature dependence of the $I_{\text{d,min}}$ on linear scale as shown in Fig. S7. Where the reliability factor $r_{\text{in}}$ of the claimed mobility values extracted in the linear regime at different temperature was obtained by calculating the ratio of the slope of the black dashed line to the slope of the pink dashed line in each panel [53]. The black dashed line corresponds to the mobility of an electrically equivalent FET following the ideal Shockley behavior and has a zero-contact resistance; and the claimed field-effect mobility in the manuscript was extracted from the pink dashed line. Figure S7 clearly shows that as temperature increase, the threshold voltage of the measured device approaches zero in general and $r_{\text{in}}$ increases from 186% at 30 K to 107% at 300 K, that suggests that under low temperature, the effect of the contact on the device is non-negligible and leads to an overestimation of the mobility values. However, as the temperature increases to room temperature (300 K), our claimed mobility presents a high reliability ($r_{\text{in}} = 93\%$). Meanwhile, the observed temperature dependence of field-effect mobility can be fitted with a power law $\mu_{\text{FE}} \propto T^{-\gamma}$, in our case $\gamma = 0.48$, this probably indicates the observed mobility in our device is limited by phonon scattering rather than charge impurities [32, 39]. Which further demonstrates that the introduced h-BN substrate provides a dielectric layer with less charge-scattering centers for Te channel. In addition, the band gap of the used Te nanobelt can be estimated via the temperature-dependent minimum drain current $I_{\text{d,min}}$, which is determined by thermal activation of carriers over the band gap of the Te nanobelt [32, 54],

$$I_{\text{d,min}} \propto \exp \left(- \frac{E_g}{k_B T} \right)$$

where $k_B$ is the Boltzmann constant, $E_g$ is the transport band gap, and $T$ is the temperature. On the basis of the low-temperature electrical measurement on our device, we extract a band gap of $E_g = 0.2$ eV. It is worth pointing out that the band gap extracted for thick samples in this way is usually underestimated and that can be attributed to the measured thick Te sample cannot be effectively turned off by the used gate voltage for gate electric field only depletes channel region within Debye length. In another word, the carriers in Te channel region beyond Debye length remains undepleted and thus lead to a high off-state current in the measurement [32, 55].

### 3.4 Electrical Performance of Te FET with Local Bottom-gate Structure

In the end, we demonstrated the construction of Te FET in local bottom-gate architecture. Compared with global-gate geometry, the local gate usually exhibits a better control over the channel material and can be applied in building logic gates and circuits [1, 2, 56, 57]. The local
bottom-gate was patterned by EBL followed by the deposition of 5 nm Cr and 60 nm Au, respectively. After that, the Te nanobelts with the h-BN nanoflakes beneath were together transferred from the SiO2/Si wafer onto the local bottom-gate in a wet-transfer method [58]. In this way, the bottom interface between the Te nanobelt and the h-BN dielectric layer is expected to be protected from contamination. Similarly, the Au with the thickness of 70 nm was deposited as source/drain electrodes. Figure 4a illustrates the scheme of this device and the optical image of one typical device is shown in the inset in Fig. 4b. Figure S8a shows the detailed SEM image of this device, the white dotted rectangular box indicates the location of the channel material. Figure S8b is the AFM image of our device. The thickness of the chosen Te nanobelt is 30 nm. The output curves measured in this device are shown in Fig. 4b, the linear relationship of the source-drain current versus source-drain voltage under different gate voltages indicates the realization of ohmic contact. Figure 4c shows the transfer curves measured at room temperature on this device, compared with Te FET with channel material in equal thickness, this device shows a much larger on/off ratio of 370 and 460 under the bias of 100 and 10 mV, respectively. The larger on/off ratios indicate a better gate control over channel material in local-gate geometry. From the transfer curve under the bias of 10 mV in Fig. 4c, we extracted the field-effect mobility in Fig. 4d. The peak value is $\mu_{FE} = 608 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, which is only half of the calculated value in the global-gate Te FET, this may be explained by the more scattering centers induced by...
the wet-transfer method. Moreover, future complexed logic gates and even circuits may be designed and constructed on the basis of our demonstration of Te FET in local-gate geometry.

4 Conclusion

In summary, we have developed a substrate engineering-based CVD strategy for growth of high-quality single-crystalline Te nanobelts for fabrication of high-performance p-type FETs. The introduced h-BN nanoflakes in the CVD system not only provide the growth substrate with atomically flat surface for the synthesis of high-quality Te nanobelts, but also reduce the scattering centers in the subsequent Te FETs, finally leading to a significant improvement on its field-effect hole mobility. The high quality of the synthesized Te nanobelts was confirmed by HRTEM. Compared with the solution-synthesized single-crystalline Te nanoflakes, our samples show a much cleaner surface. In addition, consistent with the previous reports on Te nanostructures, our samples show significant optical anisotropy, which is characterized by Raman spectra. Moreover, the uniform Raman signal in the Raman mapping on our samples also suggests their uniform qualities. We obtained an ultrahigh \( \mu_{FE} \) of 1370 cm\(^2\) V\(^{-1}\) s\(^{-1}\) in our Te nanobelts grown on the h-BN substrates. The much smaller \( \mu_{FE} \) in Te grown on bare SiO\(_2\)/Si wafer confirms the critical role of h-BN in our growth strategy. In the end, we demonstrated the Te FET in local-gate geometry, which may provide guidance for future Te-based logic gates and circuits. Such high-mobility p-type FETs may find their applications in highly integrated vdW semiconductor-based logic circuits, thus promoting the rapid development of vdW semiconductor-based nanoelectronics.

Acknowledgements This work is supported by the financial supports from National Natural Science Foundation of China (Grant No. 61904110) and Young Teachers’ Startup Fund for Scientific Research of Shenzhen University (Grant No. 860-000002110426). C.T. thanks the funding support from the National Natural Science Foundation of China (52122002), the Start-Up Grant (Project No. 9610495) from City University of Hong Kong and ECS scheme (CityU 21201821) from the Research Grant Council of Hong Kong. We thank Instrument Analysis Center of Shenzhen University for the assistance with TEM analysis.

Author Contributions CT and WL directed the research work. CT, WL and PY conceived and designed the experiments. PY synthesized the Te nanobelt samples and performed the Raman characterizations. JZ and PY fabricated Te FET and conducted electrical transport measurements. GG, JZ and PY conducted the low-temperature electrical transport measurements under the guidance of DK, LZ and YC carried out the TEM test. TX and ZZ performed the AFM measurements. PY, JZ, WL and CT analyzed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Funding Open access funding provided by Shanghai Jiao Tong University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40820-022-00852-2.

References

1. K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
2. A. Kis, How we made the 2D transistor. Nat. Electron. 4, 853 (2021). https://doi.org/10.1038/s41928-021-00675-w
3. C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
4. C. Chang, W. Chen, Y. Chen, Y.H. Chen, Y. Chen et al., Recent progress on two-dimensional materials. Acta Phys. Sin. 37(12), 2108017 (2021). https://doi.org/10.3866/PKU.WHXB202108017
5. Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12, 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
6. J. Zha, M. Luo, M. Ye, T. Ahmed, X. Yu et al., Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 32(15), 2111970 (2022). https://doi.org/10.1002/adfm.202111970
7. Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
8. M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3(4), 362–396 (2021). https://doi.org/10.1002/inf2.12161
9. J. Pang, A. Bachmatiuk, F. Yang, H. Liu, W. Zhou et al., Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 13, 191 (2021). https://doi.org/10.1007/s40820-021-00721-4
10. J. Pang, Y. Wang, X. Yang, L. Zhang, Y. Li et al., A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 3(3), 1497–1505 (2022). https://doi.org/10.1039/D1MA00757B
11. Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
12. W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013). https://doi.org/10.1063/1.4789365
13. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu et al., High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
14. S.B. Desai, S.R. Madhavapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698
15. K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017). https://doi.org/10.1021/acs.nanolett.6b04576
16. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/NNANO.2010.279
17. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/NNANO.2014.35
18. J. Na, Y.T. Lee, J.A. Lim, D.K. Hwang, G.T. Kim et al., Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8(11), 11753–11762 (2014). https://doi.org/10.1021/nn5052376
19. X. Li, Z. Yu, X. Xiong, T. Li, T. Gao et al., High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5(6), eaau3194 (2019). https://doi.org/10.1126/sciadv.aau3194
20. Y. Du, H. Liu, Y. Deng, P.D. Ye, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014). https://doi.org/10.1021/nn502553m
21. J.O. Island, G.A. Steele, H.S.J. Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
22. G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
23. Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
24. Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nano-imprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12, 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
25. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan et al., Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020). https://doi.org/10.1007/s40820-020-0373-x
26. T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
27. J.S. Lee, S.H. Choi, S.J. Yun, Y.I. Kim, S. Boandoh et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362(6416), 817–821 (2018). https://doi.org/10.1126/science.aau2132
28. P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
29. W. Pacuski, M. Grzeszczyk, K. Nogajewski, A. Bogucki, K. Oreszczuk et al., Narrow excitonic lines and large-scale homogeneity of transition-metal dichalcogenide monolayers grown by molecular beam epitaxy on hexagonal boron nitride. Nano Lett. 20(5), 3058–3066 (2020). https://doi.org/10.1021/acs.nanolett.9b04998
30. W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013). https://doi.org/10.1038/nmat3695
31. S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang et al., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). https://doi.org/10.1038/ncomms7499
32. M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
33. M. Peng, R. Xie, Z. Wang, P. Wang, F. Wang et al., Black-body-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition.
34. A. Koma, S. Tanaka, Etch pits and crystal structure of tellurium. Phys. Status Solidi 8 40(1), 239–248 (1970). https://doi.org/10.1002/pssb.19700400125

35. C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for P-type field-effect transistors and circuits. Nat. Nanotechnol. 15, 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9

36. C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated SeTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020). https://doi.org/10.1002/adma.202001329

37. X. Zhang, J. Jiang, A.A. Suleiman, B. Jin, X. Hu et al., Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoreponse. Adv. Funct. Mater. 29(49), 1906585 (2019). https://doi.org/10.1002/adfm.201906585

38. Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104

39. K. Liu, B. Jin, W. Han, X. Chen, P. Gong et al., A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021). https://doi.org/10.1038/s41928-021-00683-w

40. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo et al., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015). https://doi.org/10.1038/srep10699

41. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 40336–44041 (2014). https://doi.org/10.1021/nn501226z

42. H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad et al., High-mobility holes in dual-gated WS2 field-effect transistors. ACS Nano 9(10), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611

43. P.R. Pudasaini, M.G. Stanford, A. Oyedele, A.T. Wong, A.N. Hoffman et al., High performance top-gated multilayer WS2 field effect transistors. Nanotechnology 28(47), 475202 (2017). https://doi.org/10.1088/0957-4484/aa8081

44. Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889

45. Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3

46. P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han et al., Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 12, 1958–1966 (2020). https://doi.org/10.1039/C9NR09129G

47. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu et al., Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015). https://doi.org/10.1038/ncomms7991

48. F. Cui, C. Wang, X. Li, G. Wang, K. Liu et al., Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 28(25), 5019–5024 (2016). https://doi.org/10.1002/adma.201600722

49. F. Liao, Z. Guo, Y. Wang, Y. Xie, S. Zhang et al., High-performance logic and memory devices based on a dual-gated MoS2 architecture. ACS Appl. Electron. Mater. 2(1), 111–119 (2020). https://doi.org/10.1021/acsaelm.9b00628

50. J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021). https://doi.org/10.1002/adma.202101036

51. Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 3(12), 1900349 (2019). https://doi.org/10.1002/smtd.201900349

52. Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der Waals integration of bismuth quantum dots–decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15(47), 1903233 (2019). https://doi.org/10.1002/smll.201903233

53. H. Choi, K. Cho, C. Frisbie, H. Siringhaus, V. Podzorov, Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17(1), 2–7 (2018). https://doi.org/10.1038/nmat5035

54. A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang et al., Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4(3), 447–450 (2004). https://doi.org/10.1021/nl035185x

55. J. Guo, L. Wang, Y. Yu, P. Wang, Y. Huang et al., SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 31(49), 1902962 (2019). https://doi.org/10.1002/adma.201902962

56. J. Kwon, Y.K. Hong, G. Han, I. Omkaram, W. Choi et al., Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27(13), 2224–2230 (2015). https://doi.org/10.1002/adma.201404367

57. B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c

58. H.W. Guo, Z. Hu, Z.B. Liu, J.G. Tian, Stacking of 2D materials. Adv. Funct. Mater. 31(4), 2007810 (2021). https://doi.org/10.1002/adfm.2020007810