Association between ACE A240T polymorphism and cancer risk: a meta-analysis

Yingjun Xiao1,2, Zheqing Dong2, Ji Zhu2, Jinhiao You2 and Jun Fan1

Abstract

Objectives: The relationship between the A240T polymorphism in the angiotensin-converting enzyme (ACE) gene and cancer risk remains controversial. Therefore, we conducted a meta-analysis of relevant studies from the published literature.

Methods: We comprehensively searched available databases to identify eligible studies on the relationship of ACE A240T polymorphism with cancer risk. We calculated pooled odds ratios (OR) with 95% confidence intervals (CI) and then evaluated heterogeneity and publication bias.

Results: Eight case-control studies were identified from five articles. Results showed that the ACE A240T polymorphism was related to cancer risk (AT vs AA: OR 2.14, 95% CI: 1.51–3.04; TT vs AA: OR 1.07, 95% CI: 0.90–1.27; recessive model: OR 0.48, 95% CI: 0.31–0.77; dominant model: OR 2.13, 95% CI: 1.54–2.97). The same conclusion was made for subgroup analysis by race or cancer type. In the subgroup analysis by quality score assessment, the ACE A240T polymorphism contributed to cancer risk in high-quality studies but not in low-quality studies.

Conclusion: The A240T polymorphism in the ACE gene might be related to the risk of cancer. Nevertheless, large-scale studies should be performed to obtain convincing evidence on the roles of ACE A240T polymorphism on cancer risk.

Keywords

Cancer, ACE gene, angiotensin-converting enzyme, genetic variant, meta-analysis, risk

Date received: 23 May 2019; accepted: 24 September 2019
Introduction

Cancer is one of the most frequent causes of death in economically developing and developed countries. According to the updated global estimation in 2018, approximately 42 million people across the world suffered from any type of cancer. Although great efforts have been made to clarify the mechanisms of carcinogenesis, much remains unknown. Many risk factors that promote carcinogenesis have been identified, such as family history of cancer, dietary habits, alcohol use, obesity, smoking, and occupational exposures. However, most individuals exposed to these environmental factors never develop cancer, whereas many cancer cases develop among individuals without these known risk factors, suggesting that genetic susceptibility is a more significant indication of an individual’s risk of cancer.

The renin angiotensin system (RAS), which mostly participates in systemically modulating cardiovascular homeostasis, has been reported to be expressed in a number of tumor types. Angiotensin-converting enzyme (ACE) is one of the most important members of the RAS family, with frequent reports on the over-expression of ACE in the neoplastic stages. The ACE gene is located on chromosome 17 (17q23) in humans, spanning 21 kb and comprising 26 exons and 25 introns. Two ACE polymorphisms are reported to be related to circulating ACE concentration, the A240T polymorphism in the 5’-flanking region and the 287-bp Alu insertion/deletion (I/D) polymorphism in intron 16. A previous meta-analysis showed a possible relationship of the ACE I/D polymorphism with susceptibility to cancer.

In this study, we explored the correlation of the ACE A240T polymorphism with cancer risk. Generally, outcomes based on meta-analyses are likely to be more convincing than those of a single study. Therefore, this meta-analysis was conducted to determine the potential correlation of the ACE A240T polymorphism with cancer risk.

Material and methods

Literature and search strategy

This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. A search of the PubMed and Embase databases was conducted using the following search terms: “renin angiotensin system, RAS or ACE”, “polymorphism or variant”, and “cancer, neoplasm or tumor”. A manual search was conducted for additional studies based on the references of the original studies. When overlapping or the same data were found, the most recent, large-scale articles were chosen.

Inclusion criteria and data extraction

Studies included in the present meta-analysis had to meet the inclusion criteria as follows: (1) case-control studies for assessment of the correlation of the ACE A240T polymorphism with cancer risk; (2) odds ratios (OR) and 95% confidence intervals (CI) could be calculated from adequate genotype information; and (3) studies had to include a clear description of case and control sources. The following exclusion criteria were used: (1) not case-control studies assessing the relationship of the ACE A240T polymorphism with cancer risk; (2) editorials, letters, meta-analyses, case reports, or reviews; (3) studies that lacked complete raw data or useful information; or (4) duplicate publications.

Data extraction

Relevant publications were independently reviewed by two investigators (J. Y. and J. F.)
for information extraction in accordance with a standard data form. Discrepancies were discussed until agreement was reached. The following information was extracted from every study: region, genotype frequencies in cases and controls, numbers of cases and controls, year of publication, first author, and evidence of Hardy-Weinberg equilibrium (HWE) in controls.

Quality score assessment

Two investigators (Y. X. and Z. D.) independently assessed the quality of included studies in line with relevant criteria (Table 1), covering sources of cases, sources of controls, specimens of cases determining genotypes, HWE in controls, and total sample size.9

Criteria	Score
Source of cases	
Selected from population or cancer registry	3
Selected from hospital	2
Selected from pathology archives, but without description	1
Not described	0
Source of controls	
Population-based	3
Blood donors or volunteers	2
Hospital-based (cancer-free patients)	1
Not described	0
Specimens of cases determining genotypes	
White blood cells or normal tissues	3
Tumor tissues or exfoliated cells of tissue	0
Hardy-Weinberg equilibrium in controls	
Hardy-Weinberg equilibrium	3
Hardy-Weinberg disequilibrium	0
Total sample size	
≥1000	3
≥500 but <1000	2
≥200 but <500	1
>0 but <200	0

Discrepancy was resolved following discussion. For this assessment, the range of the total score was from 0 (worst) to 15 (best). Articles with scores ≥10 were considered high quality; otherwise, studies were considered low quality.

Statistical analysis

STATA version 11.0 (Stata Corp., College Station, TX, USA) was used for statistical analysis. The relationship between ACE A240T polymorphism and cancer risk was evaluated using ORs and corresponding 95% CI. Heterogeneity was determined using I^2 values. In the case of insignificant heterogeneity of pooled ORs between studies, a fixed-effects model was conducted using the Mantel–Haenszel method; otherwise, a random-effects model with DerSimonian and Laird methods was used. A sensitivity test was conducted by excluding a single study every time from the pooled analysis, to determine the impact of each study on the overall ORs. Moreover, we conducted subgroup analyses to investigate the effects of tumor type, race, and quality score assessment. Finally, publication bias was evaluated qualitatively by preparing funnel plots and quantitatively by Egger’s test. A P-value < 0.05 in Begg’s test suggested significant publication bias.

Results

Eligible studies

The study selection process is shown in Figure 1. The literature search of PubMed and EMBASE yielded 84 relevant papers; five articles, including eight case-control studies were included in this meta-analysis.$^3,10–13$ The publication years ranged from 2003 to 2016. Detailed information of the included five papers is given in Table 2. Of these, three studies were in Caucasians, four were in Asians, and one study focused on
Africans. All included studies were written in English. The genetic distributions of controls were consistent with HWE in all studies except for Koh et al.3 The studies included seven breast cancer studies and one endometrial cancer study concerning the \textit{ACE} A240T polymorphism. In terms of quality scores, all studies except Koh et al. and Mendizábal-Ruiz et al.3,11 were classified as high quality with a quality score ≥ 10.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Study included} & \textbf{Year} & \textbf{Area} & \textbf{Race} & \textbf{Cancer type} & \textbf{Genotypes for cases} & \textbf{Genotypes for controls} & \textbf{HWE test} & \textbf{Quality scores} \\
\hline
Koh & 2003 & Singapore & Asian & BC & 29 & 79 & 76 & 63 & 318 & 271 & 0.03 & 8 \\
Haiman a & 2003 & USA & African & BC & 42 & 116 & 90 & 78 & 276 & 280 & 0.44 & 11 \\
Haiman b & 2003 & USA & Asian & BC & 43 & 159 & 125 & 56 & 180 & 155 & 0.75 & 11 \\
Haiman c & 2003 & USA & Caucasian & BC & 17 & 109 & 124 & 78 & 267 & 312 & 0.08 & 11 \\
Haiman d & 2003 & USA & Caucasian & BC & 48 & 128 & 129 & 70 & 195 & 161 & 0.40 & 11 \\
Mendizábal-Ruiz & 2010 & Mexico & Asian & BC & 3 & 31 & 28 & 3 & 18 & 29 & 0.93 & 9 \\
Ding & 2015 & China & Asian & BC & 76 & 294 & 236 & 75 & 303 & 255 & 0.30 & 12 \\
Pringle & 2016 & Australia & Caucasian & EC & 28 & 90 & 65 & 23 & 70 & 60 & 0.73 & 10 \\
\hline
\end{tabular}
\caption{Characteristics of the included studies of \textit{ACE} A240T polymorphism.}
\end{table}
Overall and subgroup analyses

The major outcomes, ORs and 95% CIs, of the ACE A240T polymorphism with cancer risk in this meta-analysis are shown in Table 3. The ACE A240T polymorphism was correlated with cancer risk when all eligible studies were pooled into the meta-analysis (TT vs AA: OR 1.07, 95% CI: 0.90–1.27, P = 0.06; AT vs AA: OR 2.14, 95% CI: 1.51–3.04, P = 0.00; dominant model: OR 2.13, 95% CI: 1.54–2.97, P = 0.00; recessive model: OR 0.48, 95% CI: 0.31–0.77, P = 0.00). In subgroup analyses stratified by ethnicity, cancer type, and study quality, statistically significant associations were observed. However, we found that the ACE A240T polymorphism did not contribute to cancer risk in low-quality studies (Figure 2).

Sensitivity analysis

To confirm the influence of every study on the overall OR, sensitivity analysis was performed by omitting a single study each time. As shown in Figure 3, no individual study exerted any impact on the pooled OR qualitatively, suggesting that the pooled outcomes were robust.

Table 3. Summary ORs and 95% CI of ACE A240T polymorphism with cancer risk.

Variables	N	TT vs AA	AT vs AA	Dominant model	Recessive model
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Total	8	1.07 (0.90–1.27)	2.14 (1.51–3.04)	2.13 (1.54–2.97)	0.48 (0.31–0.77)
Race					
Asian	4	1.15 (0.90–1.47)	2.79 (1.39–5.63)	2.79 (1.48–5.26)	0.42 (0.19–0.92)
Caucasian	3	0.79 (0.58–1.06)	1.90 (1.27–2.84)	1.84 (1.21–2.79)	0.42 (0.33–0.54)
African	1	–	–	–	–
Cancer type					
BC	7	1.07 (0.80–1.42)	2.02 (1.40–2.93)	2.02 (1.43–2.86)	0.50 (0.30–0.84)
EC	1	–	–	–	–
Quality					
High	6	1.00 (0.76–1.33)	2.12 (1.56–2.87)	2.09 (1.53–2.85)	0.47 (0.32–0.71)
Low	2	2.58 (0.97–2.56)	1.44 (1.02–2.02)	4.03 (0.33–50.03)	0.37 (0.02–6.52)

OR, odds ratio; CI, confidence interval; BC, breast cancer; EC, endometrial cancer.

Publication bias

Egger’s funnel plots were prepared for evaluation of publication bias of enrolled studies on the ACE A240T polymorphism. As shown in Figure 4, the shape of the plots showed no obvious asymmetry, suggesting no evidence of publication bias in the collected studies on ACE A240T.

Discussion

Cancer is a common cause of mortality worldwide; the disease originates from complicated interrelationships between environmental and genetic factors. RAS is a promising signaling pathway that is involved in tumor metastasis, angiogenesis, and homeostasis. Until now, a number of studies have been conducted to evaluate the relationship of ACE A240T polymorphism with risk of different types of cancers; however, results have been controversial. The identification of novel genetic and molecular predictors is essential for successful early diagnosis and prevention of tumors. Therefore, we conducted this meta-analysis to determine the relationship of this polymorphism with cancer risk, aiming at more comprehensive and accurate outcomes.
Figure 2. Stratification analyses by quality score assessment between ACE A240T polymorphism and cancer susceptibility for genotype AT versus AA. The squares and horizontal lines correspond to the study-specific OR and 95% CI, respectively. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. OR, odds ratio; CI, confidence interval.

Figure 3. Sensitivity analyses between ACE A240T polymorphism and cancer risk.
The \textit{ACE} A240T polymorphism was related to tumor risk when all eligible studies were pooled in the meta-analysis. Stratified analysis by races revealed a significant correlation in both Asians and Caucasians. Only one study focused on Africans; therefore, more studies are needed to draw further conclusions. The analysis stratified by cancer type showed similar results. Stratified analysis by quality score assessment showed that this polymorphism was positively correlated with cancer risk in high-quality studies, but not in low-quality studies, suggesting that the result of our meta-analysis is credible. The mechanism underlying the association remains unclear. Serum ACE levels are shown to be increased in subjects carrying the 240T allele.6 The primary effector molecule of this system is angiotensin II (ANG II) and is formed after two cleavage steps via renin and ACE. ANG II mediates its physiological effects through two G protein-coupled receptors, angiotensin II type 1 receptor (AGTR1) and angiotensin II type 2 receptor (AGTR2).15 Although ACE is found in a wide variety of human normal tissues, increased expression of ACE is often found in the corresponding neoplastic tissues, suggesting that its overexpression is involved in carcinogenesis.16 In conclusion, the A240T polymorphism in the \textit{ACE} gene might be related to an increased risk of cancer.

This meta-analysis had some limitations. First, we failed to investigate gene-gene and gene-environment interplays, data that were absent from the original studies. Second, data from only eight studies were included and analyzed, limiting the statistical power of the meta-analysis. Thus, large-scale studies are needed to obtain robust outcomes in the future. Third, we included only studies published in English, which may have introduced a publication bias. Finally, heterogeneity was
observed in some models. Thus, age and sex
should be matched in all cases and controls;
this could not be addressed due to insufficient
clinical data.

Our meta-analysis suggests that the ACE
A240T polymorphism is likely to be related
to cancer risk. Further large-scale genetic
correlation studies are needed to produce
convincing outcomes regarding the influence
of ACE as well as other genes within
the RAS system on cancer risk.

Declaration of conflicting interest
The authors declare that there is no conflict of
interest.

Funding
This research received no specific grant from any
funding agency in the public, commercial, or
not-for-profit sectors.

ORCID iD
Jun Fan https://orcid.org/0000-0003-4419-0312

References
1. Qi Y, Zeng T, Fan S, et al. Genetic associa-
tion between interleukin-4 receptor poly-
morphisms and cancer susceptibility: a
meta-analysis based on 53 case-control stud-
ies. J Cancer 2019; 10: 1538–1549.
2. Marron M, Boffetta P, Zhang ZF, et al.
Cessation of alcohol drinking, tobacco
smoking and the reversal of head and neck
cancer risk. Int J Epidemiol 2010; 39:
182–196.
3. Koh WP, Yuan JM, Sun CL, et al. Angiotensin I-converting enzyme (ACE)
gene polymorphism and breast cancer risk
among Chinese women in Singapore. Cancer Res 2003; 63:
573–578.
4. Louis SN, Wang L, Chow L, et al. Appearance of angiotensin II expression in
non-basal epithelial cells is an early feature
of malignant change in human prostate.
Cancer Detect Prev 2007; 31: 391–395.
5. El Sharkawy RM, Zaki AM, Kamel AAEF,
et al. Association between the polymor-
phisms of angiotensin converting enzyme
(Peptidyl-Dipeptidase A) INDEL mutation
(I/D) and Angiotensin II type I receptor
(A1166C) and breast cancer among post
menopausal Egyptian females. Alex J Med
2014; 50: 267–274.
6. Villard E, Tiret L, Visvikis S, et al.
Identification of new polymorphisms of the
angiotensin I-converting enzyme (ACE)
gene, and study of their relationship to
plasma ACE levels by two-QTL segrega-
tion-linkage analysis. Am J Hum Genet
1996; 58: 1268–1278.
7. Xie Y, You C and Chen J. An updated
meta-analysis on association between angio-
tensin I-converting enzyme gene insertion/deletion polymorphism and cancer risk.
Tumour Biol 2014; 35: 6567–6579.
8. Shamseer L, Moher D, Clarke M, et al.
Preferred reporting items for systematic
review and meta-analysis protocols
(PRISMA-P) 2015: elaboration and expla-
nation. BMJ 2015; 350: g7647. DOI:
10.1136/bmj.g7647.
9. Camargo MC, Mera R, Correa P, et al.
Interleukin-1beta and interleukin-1 receptor
antagonist gene polymorphisms and gastric
cancer: a meta-analysis. Cancer Epidemiol
Biomarkers Prev 2006; 15: 1674–1687.
10. Haiman CA, Henderson SO, Bretssky P,
et al. Genetic variation in angiotensin I-con-
verting enzyme (ACE) and breast cancer
risk: the multiethnic cohort. Cancer Res
2003; 63: 6984–6987.
11. Mendiza´ bal-Ruiz AP, Morales J, Castro
Martinez X, et al. RAS polymorphisms in
cancerous and benign breast tissue. J Renin
Angiotensin Aldosterone Syst 2011; 12:
85–92.
12. Ding P, Yang Y, Ding S, et al. Synergistic
association of six well-characterized polymor-
phisms in three genes of the renin-angiotensin
system with breast cancer among Han
Chinese women. J Renin Angiotensin
Aldosterone Syst 2015; 16: 1232–1239.
13. Pringle KG, Delforce SJ, Wang Y, et al.
Renin-angiotensin system gene polymor-
phisms and endometrial cancer. Endocr
Connect 2016; 5: 128–135.
14. Egami K, Murohara T, Shimada T, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. *J Clin Invest* 2003; 112: 67–75.

15. Mehta PK and Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. *Am J Physiol Cell Physiol* 2007; 292: C82–C97.

16. Okamoto K, Tajima H, Ohta T, et al. Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. *Int J Oncol* 2010; 37: 1251–1259.