The CMB Anisotropy Power Spectrum from the Background Emission Anisotropy Scanning Telescope Experiment

Ian J. O’Dwyer, Marco Bersanelli, Jeff Childers, Newton Figueiredo, Doron Halevi, Gregory G. Huey, Philip M. Lubin, Davide Maino, Nazzareno Mandolesi, Joshua Marvil, Peter R. Meinhold, Jorge Mejía, Paolo Natoli, Hugh O’Neill, Agenor Pina, Michael D. Seiffert, Nathan C. Stebor, Camilo Tello, Thyrso Villela, Benjamin D. Wandelt, Brian Williams, Carlos Alexandre Wuensche

ABSTRACT

The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2m off-axis telescope with an 8 element mixed Q (38-45GHz) and Ka (26-36GHz) band focal plane, designed for balloon borne and ground based studies of the Cosmic Microwave Background. Here we present the Cosmic Microwave Background (CMB) angular power spectrum calculated from 682 hours of data observed with the BEAST instrument. We use a binned pseudo-C_ℓ estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumbers ℓ between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produces a good constraint on $\Omega_k = 1 - \Omega_{tot} = -0.074 \pm 0.070$, consistent with a flat Universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations.

Subject headings:

1Astronomy Department, University of Illinois at Urbana-Champaign, IL 61801-3074
2Physics Department, University of Milano, via Celoria 16, 20133 Milano, Italy
3Physics Department, University of California, Santa Barbara, CA 93106
4UC Santa Barbara Center for High Altitude Astrophysics at White Mountain
5Universidade Federal de Itajubá, Departamento de Física e Química, Caixa Postal 50 37500-903, Itajubá, MG Brazil
6Department of Physics, University of Illinois at Urbana-Champaign, IL 61801-3080
7University of California, White Mountain Research Station, CA 93514
8IASF-CNR sezione di Bologna, via P.Gobetti, 101, 40129 Bologna, Italy
9Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Caixa Postal 515, 12245-970 São José dos Campos, SP Brazil
10Dipartimento di Fisica e sezione INFN, Università di Roma "Tor Vergata", Rome, Italy
11Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA 91109
1. Introduction

Understanding the mechanisms of structure formation in the early universe \((10 < z < 1000)\) is one of the most important and active areas in Cosmology today and measurements of the Cosmic Microwave Background (CMB) anisotropy play a pivotal role in this field. In the framework of the standard cosmological model, the CMB radiation is interpreted as the blackbody radiation associated with a hot dense phase of the Universe, when matter and radiation were in thermal equilibrium (e.g. Peebles 1993). On large angular scales the CMB radiation traces the primordial power spectrum set by physical processes during the first instants after the Big Bang. On smaller angular scales, CMB anisotropies are influenced by factors that control the expansion rate of the Universe and formation of large-scale structure, such as the cosmological constant, the matter density and the existence and nature of dark matter (e.g. Kolb and Turner 1994). By measuring the angular power spectrum of CMB fluctuations, one can discriminate among various competing theories that predict the primordial mass distribution (e.g., inflation, cosmic strings and textures, primordial isocurvature baryonic perturbations) and understand the gravitational collapse that ultimately brought about the formation of galaxies. Since the fluctuation amplitudes at angular scales of a few degrees and smaller are also sensitive to the free electron distribution, CMB measurements can also be used to determine the ionization history of the universe.

After the release of the WMAP full-sky data (Bennett et al. 2003), sub-orbital CMB anisotropy experiments are still of high scientific interest as they can improve angular resolution and sensitivity over limited sky regions. The Background Emission Anisotropy Scanning Telescope (BEAST) is the only project currently on-going which is probing a frequency range overlapping with that of WMAP, with improved angular resolution (up to 0.38 degrees at \(\sim 40\) GHz) and potentially better sensitivity over approximately 5% of the sky. The experiment is installed in a conventionally accessible, high altitude site and it has so far accomplished three observing campaigns, on which this paper is based. In this paper we discuss the constraints BEAST places on the power spectrum of CMB anisotropies and its consistency with data taken from a subset of previous experiments (MAXIMA1 (Hanany et al. 2000), TOCO (Miller et al. 1999), BOOMERANG02 (Ruhl et al. 2002), DASI01 (Halverson et al. 2001), VSA1 (Grainge et al. 2002), ACBAR1 (Kuo et al. 2002), CBI (Padin et al. 2001), WMAP (Bennett et al. 2003)).

We present a brief overview of the experiment in §2 and an overview of the estimator in §3. §4 details our implementation of the estimator for the BEAST data and §5 presents the power spectrum and the parameter estimation. We summarize the results in §6.

2. The BEAST Experiment

BEAST is a 2.2 meter off axis telescope, currently configured with an 8 element mixed Q (38-45 GHz) and Ka (26-36 GHz) focal plane, and a modulating flat mirror. BEAST was designed as a high altitude balloon system and had two flights: May 20-21, 2000 and October 16, 2000.
Subsequent to the second flight BEAST was reconfigured to take advantage of the UC White Mountain Research Station, Barcroft Station at an altitude of 3.8 km in the Eastern Sierra of California. The instrument was fully installed and operational at Barcroft in July, 2001, and took data nearly continuously until December 2001 (except for weather and several equipment failures due to power surges and lightning). Two more weeks of data were obtained in February 2002. A second data taking campaign proceeded in August and September of 2002. The data used for determining the power spectrum presented in this paper are taken from all three of these campaigns.

The data presented in this paper were gathered using the BEAST telescope in a fixed elevation mode. The telescope is kept at a fixed elevation near 90 degrees and the rotation of the Earth provides the map scanning. This strategy results in a sky coverage which forms an annulus centered on the NCP. The annulus is 9 degrees wide and is located between 33 and 42 degrees in declination.

Other aspects of the BEAST experiment are described in the following papers: The instrument is described in Childers et al. (2003) and a more detailed discussion of the optics can be found in Figueiredo et al. (2003). The map-making procedure is described in Meinhold et al. (2003) and constraints on galactic foregrounds in Mejía et al. (2003).

3. The MASTER Method

We extract the CMB power spectrum from the BEAST data using the MASTER method, a binned pseudo-C_ℓ estimator (Wandelt, Hivon & Górski 2001; Hivon et al. 2002). We chose this estimator for its ease of implementation and the flexibility it offers, which allows testing the analysis with a number of cuts and filtering schemes designed to remove galactic, terrestrial and instrumental foregrounds.

The MASTER method is a de-biasing scheme calibrated against Monte Carlo simulations. Pseudo-C_ℓ are calculated on the noisy maps over the observed region on the sky with no corrections made for the effect of this cut in terms of the couplings introduced between spherical harmonic modes. The expectation values of these Pseudo-C_ℓ are modeled in terms of an ansatz which involves, as parameters, an instrumental transfer function F_ℓ and a noise bias term N_ℓ. These terms are estimated from Monte Carlo simulations of CMB signal and of experimental noise.

The signal and noise are simulated by taking separate random realizations of pure CMB signal and realistic simulations of experimental noise and subjecting them separately to exactly the same data processing (such as beam smoothing, scanning, cuts in the time-ordered data, filtering, template removal and map-making) as the real data.

The power spectra of the resulting signal and noise maps are averaged over the Monte Carlo runs to produce expectation values of the signal-only and noise-only power spectra. These are used to compute the transfer function and noise bias terms in the pseudo-C_ℓ estimator.

To the extent to which the MASTER ansatz models the expectation values of the pseudo-C_ℓ
and to which our Monte Carlo procedure mimics the acquisition of the real data, we are guaranteed an unbiased power spectrum result.

The experimental data is now passed through the data processing pipeline and the pseudo-C_ℓ are calculated. Since the experiment covers only a fraction of the sky, a coupling is introduced when performing the spherical harmonic transforms to calculate the power spectra. By calculating the mode-mode coupling kernel for the observed unmasked region on the sky, it is possible to correct for this effect.

Lastly, a binning scheme is chosen in ℓ for the final power spectrum and a number of Monte Carlo simulations containing both signal and noise are performed. The covariance matrix of the estimates is calculated by computing the pseudo-C_ℓ estimator on these simulations. The diagonal elements of the binned covariance matrix are the variances of the binned power spectrum.

4. Implementation of MASTER for BEAST

In order to produce an accurate CMB power spectrum from the BEAST data, a detailed knowledge of the experimental beam shape and pointing is required. A residual χ^2 fit of a smoothed delta function to maps of Cygnus A and a best fit to the flux from Cygnus A lead us to characterize the beam as circularly symmetric, with an effective FWHM of $23' \pm 1'$. We use the pointing information reconstructed from a pointing model, which is included in the raw data files, to project our simulations onto the sky in the same manner that the real data is scanned.

A total of 682 individual hours of experimental data are used for the analysis. The data are naturally divided into 55 minute sections by our hourly calibration cycles. These hourly sections are a useful size for several reasons. In addition to the natural delineation by calibrations, 55 minutes is a very manageable size for manipulation in the IDL software package on a desktop computer. Also, sky rotation over one hour at our observing angle provides redundant scanning over a nearly symmetric sky patch. The most important effect of this choice of time slices is on our 'template removal' described below. We tested the sensitivity of our results to varying the timescale of our template removal from the fiducial hour down to a minimum (set by sky rotation) of 600 seconds, and observed no significant changes.

The data has been inspected and spurious signal events, e.g. due to aircraft, have been removed. The data includes both the signal measured by the experiment and the experimental pointing at that instant. This information is used to construct a sky map of the observed signal. For all the maps created in the data analysis we use the HEALPix 1 (Górski, Hivon & Wandelt 1999) pixelization scheme with an $nside$ parameter of 512. This results in a map containing 3,145,728 pixels. Given the size of the experimental beam and the high sampling frequency which is possible

1http://www.eso.org/science/healpix/
with a ground based instrument (450Hz for BEAST), the effects of pixel smoothing are negligible and are ignored here. For the experimental data we create a HEALPix map and calculate the CMB power spectrum using the HEALPix anafast package. Further details of the map making process can be found in Meinhold et al. (2003). Fig. 1 shows an overview of the steps in the BEAST simulation and analysis pipeline.

The WMAP (Bennett et al. 2003) best-fit theoretical power spectrum is used to create random realizations of the pure CMB sky. We tested the BEAST pipeline with the power spectra from two fiducial cosmological models and found the final power spectrum to be unchanged by this choice. The first model was a set of reasonable current estimates for cosmological parameters prior to the WMAP data release and the second was the best-fit power spectrum published by the WMAP team.

We scan these signal maps using our experimental pointing strategy read from the time-ordered data (TOD) files. We expect the time-averaged atmospheric contributions to the data to vary with elevation. To remove this foreground we fit a function of elevation angle to the TOD for each hour and subtract it from the TOD samples. Subsequently a 10Hz high pass filter is used. The simulation has now been subjected to exactly the same scanning and filtering as the real BEAST data and we project this simulated data back onto a sky map.

A foreground mask is applied to remove the Galaxy and point source contamination from known sources. We remove from the analysis all pixels with latitude $b \leq 17.5^\circ$. We tested the analysis pipeline with a range of galactic latitude cuts and found that below $b = 17.5^\circ$ there was significant galactic foreground contamination. In addition to this, a separate analysis of the Galactic foregrounds for the BEAST experiment (Mejía et al. 2003) showed that $b \leq 17.5^\circ$ gives an optimal compromise between maximizing the sky fraction observed by the experiment and minimizing the amount of foreground contamination. In this work it was also found that residual Galactic foregrounds outside the mask are small and they are ignored here.

Finally a power spectrum is generated from each signal map and these power spectra are averaged to produce an average signal-only power spectrum.

To construct noise-only maps we subtract our signal estimate for the map from each sample in the experimental TOD and assume that each hourly segment of experimental data is now noise-dominated. We further assume the noise to be piecewise stationary over one hour sections of data and that each one hour noise chunk is independent. We estimate noise power spectra using a windowed FFT on each hourly segment (Press et al. 1986). We are then able to generate synthetic noise simulations which have the same power spectrum as the actual noise from the experiment. We filter the simulated noise TOD in the same manner as for the data and signal simulations and project the noise onto a sky map, then calculate the average noise power spectrum. Comparisons of the data map and the maps created in the simulation pipeline are shown in Fig.2.

Since we have all of the pointing information, we can also create the experimental window function on the sky. This is a simple geometrical construction which is 1 for any HEALPix pixel
which the experiment observes and 0 elsewhere. We use this window function to calculate the mode-mode coupling kernel, \(M_{\ell\ell'} \), which depends only on the geometry of the observed region of sky. We use the ansatz for the expected pseudo-C\(\ell \) which was proposed in Hivon et al. (2002).

From the signal-only simulations we can calibrate the transfer function

\[
F_{\ell} = M_{\ell\ell'}^{-1} \langle C_{\ell s} \rangle \langle C_{\ell} \rangle^{-1} (B_{\ell}^2)^{-1},
\]

where \(\langle C_{\ell s} \rangle \) are the signal-only pseudo \(C_{\ell} \) and \(\langle C_{\ell} \rangle \) are the best-fit theory \(C_{\ell} \) from the WMAP experiment. \(B_{\ell} \) is the experimental beam, a Gaussian with FWHM of 23 arcmin in this case. Since the coupling kernel is ill conditioned we use an iterative approach for computing \(M_{\ell\ell'}^{-1} \langle C_{\ell s} \rangle \). The transfer function for the BEAST experiment is shown in Fig. 3.

Now our \(C_{\ell} \) estimate is given by

\[
\hat{C}_{\ell} = \frac{M_{\ell\ell'}^{-1} \hat{C}_{\ell} - \langle \hat{N}_{\ell} \rangle}{F_{\ell} B_{\ell}^2},
\]

where \(\langle \hat{N}_{\ell} \rangle \) are the pseudo-\(C_{\ell} \) from the noise Monte Carlo simulations and \(\hat{C}_{\ell} \) are the pseudo-\(c_{\ell} \) from the data.

In practice we use the binned version of the above equation as given in Hivon et al. (2002). The binned mode-mode coupling kernel is shown in Fig. 4.

By averaging the power spectrum over bins in \(\ell \) we effectively reduce correlations between the \(C_{\ell} \) bins which were introduced by the sky cut and we also reduce the errors on the resulting power spectrum estimator. We have tried different binning schemes and choose a bin width of \(\Delta \ell = 55 \).

Finally, we create sky simulations by adding the signal and the noise maps, produced as described above. The covariance matrix \(C_{MM'} \) of the binned power spectrum is calculated from these simulations and the diagonal elements give us the error bars on the binned power spectrum estimator. The power spectrum obtained from this process is discussed in the next section.

The code for the BEAST analysis pipeline was written and executed on an IBM SP RS/6000 (Seaborg) at the National Energy Research Scientific Computing Center. The code was parallelized using MPI and ran on 640 processors. In order to obtain a stable PS estimate and to estimate our error bars to \(\sim 20\% \) accuracy we required 40 Monte Carlo runs. The operation count for our analysis pipeline scales approximately as \(N_{\text{tod}} \log(N_{\text{tod}}) \) with a large prefactor, where \(N_{\text{tod}} \) is the number of samples in the TOD.

In order to minimize the computational time, we modified the Healpix routines \texttt{synfast} (which makes a sky map from a power spectrum) and \texttt{anafast} (which calculates the power spectrum from a sky map) so that they only performed analysis on the portion of the sky where BEAST scans. Since the data set read in for the BEAST simulations is \(\sim 80\text{GB} \) and the output maps for 40 MC runs are \(\sim 1.7\text{TB} \), we also implemented compression algorithms for storing the output maps on disk.
5. Power Spectrum and Parameter Estimation

The CMB power spectrum extracted from the BEAST data is shown in Fig. 5. The values of the power spectrum are shown in Table 1. The 1-σ error bars shown in the figure should be interpreted with some caution. 40 Monte Carlo simulations allow us to calculate these error bars to within 20%, which is sufficient for our purposes here, but more simulations would lead to more accurate error bars. In addition, we use the Monte Carlo simulations to calculate the transfer function \(F_\ell\), which is then used to produce the \(C_\ell\) estimates and we use these same simulations to calculate the error bar on these estimates. Therefore, our estimate of the error bars on the power spectrum is not unbiased and we underestimate the size of these error bars. In calculating our 8 binned \(C_\ell\) estimates, we effectively compute a binned transfer function \(T_b\) and a binned noise estimate \(N_b\) for each bin. We use 40 Monte Carlo simulations of noise to estimate \(N_b\) and 40 signal simulations to estimate \(T_b\). Based on the number of degrees of freedom used to produce these 8 binned \(N_b\) and \(T_b\), we estimate the bias in the error bar to be approximately 15%, of the same order as our Monte Carlo uncertainty in the errors. However, since this latter effect is a systematic bias, the comparison of the BEAST power spectrum estimates and the resulting parameter estimates to WMAP should be taken as "worst-case" consistency checks.

A \(\chi^2\) comparison of the BEAST data and the WMAP data was performed. For this comparison the WMAP data was assumed to have zero error. We find a \(\chi^2\) parameter of 15.02. With 9 degrees of freedom this means a larger value of \(\chi^2\) would occur approximately 10% of the time, so the BEAST power spectrum is marginally consistent with the WMAP result. We show the BEAST power spectrum overplotted with the power spectra from several recent experiments in Fig. 6.

After the mean power spectrum was determined, its likelihood was sampled 40 times, producing 40 sample binned power spectra. The likelihood around the power spectrum is not, in general, Gaussian distributed, but through a change of variables - to the log-offset-normal variables of Bond, Jaffe and Knox (BJK parameterization (Knox et al. 1998)) - the distribution can be mapped into one that is much more nearly Gaussian. However, it was found that 40 samples of the power spectrum distribution was too few for a reliable determination of the BJK parameters, and thus it was decided that the power spectrum likelihood would be approximated as Gaussian-distributed. We then calculate the Likelihood \(L\) of a theoretical power spectrum, \(D_i^{th}\), as follows:

\[
\chi^2 = \sum_{ij}^{} (D_i^{th} - D_i^{ob}) M_{ij} (D_j^{th} - D_j^{ob}) \\
L = \exp(-\chi^2/2) \\
D_i^{ob} \equiv C_i^{ob} l(l + 1)/2\pi
\]

where \(C_i^{ob}\) is the observed band-power of the i-th bin, and \(M_{ij}\) is the covariance matrix.

We determined the best-fit (maximally likely) points in parameter space for:

1) BEAST data + WMAP + MAXIMA1,MAT98,BOOMERANG02,DASI01,VSA1,ACBAR1,CBI + Hubble Key Project + Big Bang Nucleosynthesis relation between \(\Omega_B h^2\) and \(He^4\) mass-fraction
(Y_p) (Huey, Cyburt & Wandelt 2003) over the parameter space: \(\Omega_m, \Omega_A, h, n_s, \Omega_B h^2, Y_p, \tau, n_t, r \)

2) BEAST data alone.

For 1) BEAST data + other recent cosmological data, we found the parameter values and errors via a Markov chain approach. Starting from a 30000 point Markov chain previously run with the experiments: WMAP + MAXIMA1, MAT98, BOOMERANG02, DASI01, VSA1, ACBAR1, CBI + Hubble Key Project + BBN \(\Omega_B h^2 - He^4 \) relation, the Markov chain was thinned by discarding 99 out of every 100 points. Each point was then weighted by the Beast likelihood. From this weighted point distribution the parameter means and variance matrix were determined. The parameter estimates were taken to be the means, and the parameter errors were taken as square roots of the diagonal elements of the variance matrix.

For 2) BEAST data alone, cosmic parameter space was searched for the maximally likely point by first trying several candidate points, and then applying the Numerical Recipes Amoeba algorithm (Press et al. 1986) to minimize the trial \(\chi^2 \). The Amoeba algorithm has no inherent minimum scale (similar to adaptive mesh refinement, the resolution increases as necessary, with the precision limited only by the machine floating point arithmetic), and makes no assumptions about the shape of likelihood function.

Once the BEAST-alone best-fit cosmic parameters have been found, we determined the errors in these values. Ideally a method that, again, does not depend on the parameter likelihood function having a particular shape (ie: Gaussian, for example), such as a Markov Chain algorithm, would be used. In this case however, a less computationally costly method can be employed. We determined the errors in the best-fit parameter values by fitting the likelihood function around that point to a multivariate Gaussian. The resulting estimate of the errors is crude, but sufficient to give an overall measure of the dispersion. To the extent to which the likelihoods are approximately Gaussian in the narrowly constrained case (1) we expect these errors to be more accurate. The results of the joint parameter estimation for BEAST plus other experiments are shown in Table 2. We found the BEAST alone parameters to be consistent with these values, although much less well constrained. For example we found \(\Omega_k = 1 - \Omega_{tot} = -0.074 ± 0.070 \) for BEAST alone compared with \(-0.014 ± 0.012\) for the joint estimate.

In order to examine possible future directions for the BEAST experiment we analyzed the effect of increased quantities of data on the power spectrum error bars. A two- and four-fold reduction in the simulated noise were considered, equating to four and sixteen times more data respectively, assuming no improvement in radiometer sensitivity. We found that over the first peak in the power spectrum there was not a significant improvement in the error bars with more data (see Fig 7). This is expected, since in this region we are sample variance limited by the relatively small patch of sky we observe. However, at larger \(\ell \) we do see a significant improvement in the power spectrum error bars, up to the point where the experimental beam cuts off around an \(\ell \) of 600, when the error bars become large regardless of the amount of data.
6. Conclusions

We have presented the angular power spectrum of the cosmic microwave background as measured by the BEAST experiment. We have demonstrated that it is possible to extract cosmological signal from an easily accessible, ground based CMB experiment which is dominated by correlated noise and that the resulting power spectrum and parameter estimation is consistent with previous results.

The MASTER method was successfully implemented and although this method is approximate, it proved to be flexible and robust and produced a power spectrum with less than 1000 CPU hours of computational time. We believe the BEAST CMB dataset to be one of the largest TOD’s analyzed to date and this proved feasible within the MASTER framework. This suggests that the analysis of future, larger CMB datasets (e.g. Planck) should be computationally feasible.

We also analyzed how additional observing time would improve the power spectrum errors and found that significant improvements could be made between $250 \leq l \leq 600$ with additional time. We note that the atmospheric conditions at White Mountain allow for a better than 50% 'good observing' fraction over the year and that the 26 days of data presented here were limited by funding constraints.

This work was partially supported by the University of Illinois at Champaign-Urbana. This work has been partially supported by the National Computational Science Alliance under grant number AST020003N. This work was funded by NASA grants NAG5-4078, NAG5-9073, and NAG5-4185, and by NSF grants 9813920 and 0118297. In addition we were supported by the White Mountain Research Station, the California Space Institute (CalSpace), and the UCSB Office of Research. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.M is supported by FAPESP grants 01/13235-9 and 02/08471-1. T.V. and C.A.W were partially supported by FAPESP grant 00/06770-2. T.V was partially supported by CNPq grants 466184/00-0 and 302266/88-7-FA. CAW was partially supported by CNPq grant 300409/97-4-FA and FAPESP grant 96/06501-4. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. N.F and A.P. were partially supported by CNPq grant number 470531/2001-0. B.D.W. acknowledges the 2003/4 NCSA Faculty Fellowship. Some of the results in this paper have been derived using HEALPix (Górski, Hivon & Wandelt 1999). We would like to thank Julian Borrill at NERSC for valuable discussions on the computational aspects of this project. We also thank members of the Planck community for stimulating discussions.
Fig. 1.— Overview of the steps in the BEAST simulation and analysis pipeline.
Fig. 2.— Comparison of simulated and actual BEAST maps in units of Kelvin. The noise dominated nature of the BEAST data can be seen by comparing the noise map to the BEAST data map.
Fig. 3.— Unbinned transfer function for BEAST. Monte Carlo noise is visible, which is smoothed by the binning process. The turnover at $\ell \sim 550$ is caused by the ill conditioned mode-mode coupling kernel.
Fig. 4.— Mode-mode coupling kernel for the BEAST experiment. The z-axis is logarithmically scaled in order to show the off diagonal elements, which decrease rapidly. The width of the diagonal is approximately 25 in \(\ell \) either side of the peak. In order to avoid correlations between the bins in our final power spectrum, we therefore choose a bin width of 55 in \(\ell \).
Table 1. Beast Power Spectrum Estimates

\begin{tabular}{lllll}
\hline
\text{Bin} & \text{Bin} & \text{Estimate in } \mu K^2 \text{ of } \ell(\ell + 1)C_\ell/2\pi & 1-\sigma \text{ error} \\
\ell_{min} & \ell_{max} & & \\
\hline
139 & 193 & 3776 & \pm 552 \\
194 & 248 & 4744 & \pm 781 \\
249 & 303 & 3597 & \pm 782 \\
304 & 358 & 3374 & \pm 625 \\
359 & 413 & 1829 & \pm 969 \\
414 & 468 & 5040 & \pm 1571 \\
469 & 523 & 711 & \pm 3319 \\
524 & 678 & 4599 & \pm 6136 \\
\hline
\end{tabular}

Note. — The BEAST C_ℓ estimates obtained using the MASTER method. The starting and ending values of each ℓ bin are shown. The C_ℓ values in the table and those shown in Fig. 5 are averaged over these bins.
Table 2. Cosmological Parameter Estimates

Parameter	BEAST+others
Ω_k	-0.014 ± 0.011
$\Omega_{CDM}h^2$	0.094 ± 0.012
$\Omega_b h^2$	0.024 ± 0.002
h	0.727 ± 0.048
n_s	1.002 ± 0.052
τ	0.154 ± 0.074
Y_p	0.249 ± 0.001

Note. — BEAST parameter estimates calculated using a joint analysis with other CMB data and BBN and Hubble Key Project constraints. $\Omega_k \equiv 1 - \Omega_{tot}$. The parameter errors were obtained from the variance of a Markov chain in parameter space.
Fig. 5.— CMB anisotropy power spectrum for the BEAST experiment. Error bars are 1σ

REFERENCES

Bennett, C. L. et al. 2003, ApJS, 148, 1
Childers, J. et al., 2003, in preparation
Figueiredo, N. et al, 2003, in preparation
Górski, K. M., Hivon, E., & Wandelt, B. D. 1999, Analysis Issues for Large CMB Data Sets. Proceedings: Evolution of Large Scale Structure, Garching.
Keith Grainge et al. Mon. Not. R. Astron. Soc. 000, 15 (2002)
Halverson, N. W. et al., 2001, astro-ph/0104489
Hanany, S. et al. 2000, ApJ, 545, L5
Hivon, E., Górski, K. M., Netterfield, C. B., Crill, B. P., Prunet, S., & Hansen, F. 2002, ApJ, 567,
Fig. 6.— Comparison of the BEAST determination of the CMB power spectrum with 8 other recent experiments. The 4 BEAST points over the first peak are hashed circles. These points were not used in the parameter estimation since they overlap with WMAP, which is cosmic variance limited over this range. The remaining 4 BEAST data points are solid circles.

Huey, G., Cyburt, R. H., Wandelt, B.D., 2003, astro-ph/0307080, Phys. Rev. D, in press
Knox, L., Bond, J. R., Jaffe, A. H., Segal, M., & Charbonneau, D. 1998, Phys. Rev. D, 58, 83004
Kolb, E.W. and Turner, M.S., The Early Universe, 1994, Addison-Wesley
Kuo, C. L. et al. 2002, Bulletin of the American Astronomical Society, 34, 649
Mejía, J. et al., 2003, In Preparation
Meinhold, P. M, et al, ApJ, submitted. (astro-ph/0302034)
Miller, A.D. et al. 1999 Astrophys.J. 524 (1999) L1-L4
Padin, S. et. al., ApJ 549, L1, (2001)
Peebles, P.J.E., Principles of Physical Cosmology, 1993, Princeton University Press
Fig. 7.— We examined the effect on the power spectrum error bars of increasing the quantity of data. 4 and 16 times more data were considered, effectively reducing the noise by factors of 2 and 4 respectively. The original error bars are plotted, followed by the half and quarter noise error bars. The original error bars are centered on the ℓ bin, while the half and quarter noise are offset from the original position for illustrative purposes. In the analysis all of the error bars were calculated at the same ℓ.

Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetter, W.T., Numerical Recipes - The Art of Scientific Computing, Cambridge University Press, Cambridge 1986

Ruhl, J.E. et al. 2002, astro-ph/0212229

Wandelt, B.D., Hivon, E.F, Górski, K.M. 2001, Phys. Rev. D64, 083003

This preprint was prepared with the AAS LaTeX macros v5.0.