Data Article

A raw data article on the physico-chemical properties of soil from six firkas in Dharmapuri district, Tamil Nadu, India

M. Ramya, S. Sathiyamurthi*

Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University, Annamalai Nagar-608002, India

A R T I C L E I N F O

Article history:
Received 30 May 2022
Revised 1 July 2022
Accepted 4 July 2022
Available online 9 July 2022

Dataset link: raw data article on the physico-chemical properties of soil from six firkas in Dharmapuri district, Tamil Nadu, India (Original data)

Keywords:
Soil properties
Physico
Chemical properties
Spatial variability
Dharmapuri district

A B S T R A C T

The present study was aimed to assess the physical and chemical characteristics of soil belonging to six firkas covering three blocks of Dharmapuri district. A total of 125 samples were collected by means of Global Positioning System (GPS). The processed soil samples were analyzed for pH, Electrical conductivity (EC), soil separates, Bulk density (BD), Water holding capacity (WHC), organic carbon (OC), calcium carbonate (CaCO$_3$), available nitrogen (AVN), available phosphorus (AVP), and available potassium (AVK). Extreme value in the data set was removed by outlier removal algorithm. Spatial variability maps were prepared using the kriging method using ArcGIS 10.4. The best fitted semi-variance model for pH, EC, AVK and CaCO$_3$ was spherical; BD, sand, silt, and OC was circular; a Gaussian model was best fitted for WHC and AVN, while clay and AVP were exponential. The data presented in this study will help farmers, land managers, and policymakers to mitigate land degradation, and other environmental issues, thereby helping to increase land productivity.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author: Dr. S. Sathiyamurthi, Assistant professor, Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University, Annamalai Nagar-608002, India

E-mail address: sathya.soil@gmail.com (S. Sathiyamurthi).

https://doi.org/10.1016/j.dib.2022.108452

2352-3409/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specification Table

Subject area	Agriculture and Biological science
Specific subject area	Soil Science
Type of data	Tables and Images
How the data were acquired	The study area boundary was extracted using SOI Toposheet (57H/14, 57H/15, 57L/3, and 57L/4) from GSL, a cadastral map, and Block boundary map from local authorities. The soil sample's location was determined by the regular point sampling method. The soil samples were collected during fallow period (February and April, 2021). The soil sample's location was recorded using GARMIN 76 CS x GPS device.
Data format	Raw and Analyzed data
Description of data collection	The soil sample's location was predetermined by regular point generation technique and recorded using a GPS device. The surface litters and grass were removed and 'V' shaped pit was dug at the depth of 15 cm. After cleaning the pit, one-inch thickness soil was collected from each side. Using a wooden mallet, the air-dried soil samples were ground into powder. The samples were mixed and reduced in volume to roughly 500 g by quartering method. The samples were stored in air tight container and analyzed for pH, EC, particle size analysis, BD, WHC, OC, CaCO$_3$ and available NPK by following the standard procedures. These data were converted into vector layers and kriging was applied to create a spatial variable map for each soil parameters.
Data source location	The study area is the part of Dharmapuri district, Tamilnadu, India. Latitude ranges between 11° 45' and 12° 15' N and longitude ranges between 77° 30' and 78° 30'E, encompassing about 482 sq.km. The elevation of the study area ranged from 403 to 1213 m MSL.
Data accessibility	Data accessibility Repository name: Mendeley Data, Title of the data set: A raw data article on the physical and chemical properties of soil from six firkas in Dharmapuri district, Tamil Nadu, India. Data identification number: 10.17632/nm5b82wbmt.4, Direct URL to data: https://data.mendeley.com/datasets/nm5b82wbmt/3

Value of the Data

- This data set will be used to determine the agricultural land suitability and crop suitability of the study area.
- This data will help the land manager and policymakers to suggest an action plan for sustainable crop production.
- Furthermore, this data will aid other science and engineering fields in better understanding the soil in the study region, and it can be used for educational and research purposes.

1. Data Description

The data represents the physico-chemical properties of soil located in six firkas of Dharmapuri district. Tables 1–6 presents the physical and chemical properties of the soil in the study area. Table 7 presents the descriptive statistics of the soil properties. Fig. 1 shows the study area map and sample's location. Figs. 2–4 depict thematic maps showing the physical and chemical parameters of soil. Fig. 2 depicts information on the pH, EC (dS/m), BD (Mg/m3), WHC (%), where Fig. 3 represents sand (%), silt (%), clay (%) and OC (g/kg), and Figure 4 reveals thematic map of the available NPK, (kg/ha), and CaCO$_3$ (%).
Table 1
The Physico-chemical properties of the Marandahalli firka soil samples from the Dharmapuri district in Tamil Nadu, India.

Sample no	Latitude	Longitude	pH	EC (mS/m)	Sand (%)	Silt (%)	Clay (%)	Textural class	BD (Mg/m³)	WHC (%)	OC (g/kg)	CaCO₃ (%)	AVN (kg/ha)	AVP (kg/ha)	AVK (kg/ha)
M1	12.5049	77.98748	7.5	0.3	67.80	4.5	27.7	SCL	1.3	47	5.2	3	252	19	183
M2	12.50488	78.00748	7.8	0.4	65.80	5.0	29.2	SCL	1.2	60	4.2	5	248	21	196
M3	12.48491	77.94751	7.7	0.2	65.80	7.0	27.2	SCL	1.2	46	5.8	4.5	279	19	210
M4	12.48499	77.9675	7.8	0.3	61.30	8.0	30.7	SCL	1.3	64	4	3.5	263	29	199
M5	12.48485	77.98753	7.5	0.3	64.55	6.25	29.2	SCL	1.2	46	7.3	5.5	250	36	171
M6	12.4848	78.00751	7.6	0.3	61.30	8.0	30.7	SCL	1.3	44	7.3	7	248	34	160
M7	12.46486	77.94742	7.4	0.4	65.80	7.0	27.2	SCL	1.4	54	9.1	5.5	246	20	328
M8	12.46477	77.9675	7.9	0.3	63.30	5.0	31.7	SCL	1.2	34	0.6	8.5	176	27	210
M9	12.4501	77.98753	7.3	0.4	64.99	5.3	29.7	SCL	1.3	42	6.9	5.6	253	36	195
M10	12.46491	78.00751	7.5	0.88	63.30	4.5	32.2	SCL	1.3	40	5.2	7	320	21	123
M11	12.46501	78.02749	6.4	0.25	68.80	5.5	25.7	SCL	1.5	34	7.4	1.5	267	61	279
M12	12.4483	77.98734	7.2	0.52	65.48	5.6	28.9	SCL	1.3	32	6.9	5.2	262	37	153
M13	12.44507	78.00756	7.3	0.82	65.80	7.0	27.2	SCL	1.5	30	3.6	5.5	289	34	65
M14	12.44488	78.0275	7	0.53	65.30	7.0	27.7	SCL	1.3	31	5.2	5	263	20	169
M15	12.42491	77.98747	7.4	0.38	60.30	9.5	30.2	SCL	1.3	39	10.3	7	229	34	180
M16	12.42472	78.0074	7.7	0.38	65.80	4.5	29.7	SCL	1.2	44	10.6	2	332	45	209
M17	12.40508	77.98756	7.2	0.38	67.80	4.5	27.7	SCL	1.3	32	11.7	5.5	229	36	180
M18	12.40496	78.0075	7	0.34	65.65	4.5	29.8	SCL	1.3	24	9.7	4.6	246	41	199
M19	12.40493	78.02752	7.8	0.37	63.30	4.5	32.2	SCL	1.4	22	4.5	8	248	29	81
M20	12.38503	77.96751	7.1	1.3	66.05	6.25	27.7	SCL	1.3	39	6.5	4.5	263	34	225
M21	12.38499	77.98754	7.4	0.42	64.63	7.0	28.37	SCL	1.5	30	2.7	5	238	45	254
M22	12.38503	78.00752	7.9	0.32	65.80	5.0	29.2	SCL	1.4	32	9.5	7	248	54	328
M23	12.38484	78.02746	7.7	0.27	68.70	4.5	27.7	SCL	1.4	60	5.8	1	307	36	210
M24	12.36491	77.96754	7.4	0.3	61.30	8.0	30.7	SCL	1.3	64	3.7	5.5	248	17	180
M25	12.36493	78.0075	7.5	0.47	70.30	2.0	27.7	SCL	1.3	18	12.9	8.5	116	53	424
M26	12.3649	78.02753	7.8	0.32	63.80	7.0	29.2	SCL	1.3	47	1.2	3	232	34	488

EC – Electrical conductivity, BD - Bulk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Table 2
The Physico-chemical properties of the Vellichandai firka soil samples from the Dharmapuri district in Tamil Nadu, India.

| Sample no | Latitude | Longitude | pH | EC (dS/m) | Sand (%) | Silt (%) | Clay (%) | Textural class | BD (Mg/m³) | WHC (%) | OC (g/kg) | CaCO₃ (%) | AVN (kg/ha) | AVP (kg/ha) | AVK (kg/ha) |
|-----------|------------|-----------|----|-----------|----------|----------|----------|----------------|-------------|----------|-----------|-----------|-------------|-------------|-------------|-------------|
| V27 | 12.4649 | 78.04752 | 7.7| 0.5 | 65.8 | 7 | 27.2 | SCL | 1.3 | 45 | 1.5 | 4.5 | 220 | 28 | 328 |
| V28 | 12.44497 | 78.04755 | 7.5| 0.36 | 69.3 | 8 | 25.95 | SCL | 1.2 | 30 | 0.3 | 5.2 | 130 | 28 | 378 |
| V29 | 12.44492 | 78.06743 | 7.3| 0.43 | 67.8 | 8 | 25.82 | SCL | 1.3 | 38 | 1.8 | 4 | 153 | 28 | 355 |
| V30 | 12.42493 | 78.02753 | 7.4| 0.37 | 60.3 | 9.5 | 30.2 | SCL | 1.4 | 25 | 12.4 | 3 | 263 | 56 | 403 |
| V31 | 12.42487 | 78.04752 | 7.6| 0.25 | 68.3 | 7 | 24.7 | SCL | 1.4 | 42 | 0.2 | 2 | 144 | 3 | 333 |
| V32 | 12.42499 | 78.06753 | 7.2| 0.57 | 66.3 | 8 | 25.7 | SCL | 1.4 | 46 | 4.6 | 8 | 176 | 29 | 332 |
| V33 | 12.42497 | 78.08753 | 7.4| 0.33 | 68.3 | 4.5 | 27.2 | SCL | 1.4 | 38 | 6.2 | 7 | 220 | 50 | 326 |
| V34 | 12.42492 | 78.10754 | 7.2| 0.48 | 66.05 | 6.25 | 27.7 | SCL | 1.4 | 39 | 3.1 | 5.5 | 279 | 77 | 452 |
| V35 | 12.40844 | 78.04752 | 6.7| 0.3 | 60.3 | 9.5 | 30.2 | SCL | 1.3 | 39 | 8.8 | 2.5 | 279 | 51 | 517 |
| V36 | 12.40494 | 78.0675 | 8 | 0.32 | 61.3 | 9.5 | 29.2 | SCL | 1.4 | 64 | 4.6 | 4.5 | 191 | 35 | 352 |
| V37 | 12.40494 | 78.08753 | 6.3| 0.29 | 68.3 | 4.5 | 27.2 | SCL | 1.5 | 28 | 4.6 | 7 | 204 | 9 | 196 |
| V38 | 12.40494 | 78.10756 | 6.6| 0.24 | 63.8 | 8 | 28.2 | SCL | 1.5 | 37 | 5.8 | 8 | 232 | 44 | 112 |
| V39 | 12.38496 | 78.04752 | 7.3| 0.37 | 64.63 | 7 | 28.37 | SCL | 1.4 | 47 | 12 | 8 | 198 | 27 | 303 |
| V40 | 12.38496 | 78.06746 | 6.6| 1.24 | 65.8 | 7 | 27.2 | SCL | 1.4 | 26 | 4 | 7 | 260 | 53 | 186 |
| V41 | 12.38496 | 78.08748 | 7.9| 0.48 | 68.3 | 7 | 24.7 | SCL | 1.4 | 33 | 3.9 | 5.5 | 326 | 29 | 338 |
| V42 | 12.38496 | 78.10747 | 6.9| 0.34 | 66.3 | 5.5 | 28.2 | SCL | 1.4 | 38 | 3.7 | 3.5 | 229 | 22 | 225 |
| V43 | 12.3649 | 78.04755 | 7.3| 0.43 | 65.6 | 6 | 28.4 | SCL | 1.5 | 70 | 0.6 | 5 | 116 | 21 | 119 |
| V44 | 12.36495 | 78.06753 | 7.9| 0.43 | 65.8 | 5 | 29.21 | SCL | 1.4 | 108 | 11.1 | 3.5 | 238 | 38 | 198 |
| V45 | 12.36488 | 78.08751 | 7.4| 0.3 | 63.3 | 5 | 31.7 | SCL | 1.3 | 33 | 2.7 | 9.5 | 201 | 21 | 372 |
| V46 | 12.36488 | 78.10754 | 7 | 0.27 | 66.8 | 5.6 | 27.6 | SCL | 1.3 | 32 | 3.6 | 6.5 | 219 | 26 | 252 |
| V47 | 12.34478 | 78.06753 | 6.9| 0.65 | 61.3 | 8 | 30.7 | SCL | 1.4 | 37 | 4 | 5 | 276 | 22 | 338 |
| V48 | 12.34497 | 78.08751 | 7.4| 0.2 | 70.8 | 6.5 | 22.7 | SCL | 1.4 | 32 | 8.9 | 2.5 | 194 | 25 | 350 |

EC – Electrical conductivity, BD - Buk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Table 3
The Physico-chemical properties of the Palacode firka soil samples from the Dharmapuri district in Tamil Nadu, India.

Sample no	Latitude	Longitude	pH	EC (dS/m)	Sand (%)	Silt (%)	Clay (%)	Textural class	BD (Mg/m²)	WHC (%)	OC (g/kg)	CaCO₃ (%)	AVN (kg/ha)	AVP (kg/ha)	AVK (kg/ha)
Pal49	12.34495	78.00751	7.5	0.37	63.8	7	29.2	SCL	1.3	32	7.1	9	138	58	220
Pal50	12.34502	78.02752	7.3	0.34	63.8	7	29.2	SCL	1.4	39	8	14.5	194	52	192
Pal51	12.34497	78.04752	7.6	0.57	68.3	5	26.7	SCL	1.4	53	11.7	5.5	182	29	163
Pal52	12.32205	77.94757	7.4	0.32	68.8	3.5	31.7	SCL	1.2	61	4.9	13	235	14	517
Pal53	12.32004	77.96755	7.7	0.25	68.8	4.5	26.7	SCL	1.5	29	8.3	15	160	10	251
Pal54	12.32494	77.98753	7.4	0.39	64.6	6.6	28.8	SCL	1.3	22	9.5	21.5	201	57	235
Pal55	12.32499	78.00742	7.5	0.31	67.02	6.15	26.83	SCL	1.4	26	7.1	17	198	46	188
Pal56	12.32484	78.02759	6	0.2	70.8	6.5	22.7	SCL	1.4	24	8.8	13	226	36	132
Pal57	12.32489	78.04752	7.8	0.33	67.6	4.57	27.83	SCL	1.5	37	7.4	14	176	16	161
Pal58	12.32513	78.06764	7.9	0.31	63.63	6.64	29.74	SCL	1.5	36	6.3	8.5	211	26	287
Pal59	12.30515	77.9676	7.3	0.36	63.3	5	31.7	SCL	1.4	59	7	5	213	40	517
Pal60	12.30491	77.98753	7.6	0.29	63.3	7	29.7	SCL	1.4	56	8.3	15	201	13	191
Pal61	12.30505	78.00742	7.2	0.25	68.8	4.5	26.7	SCL	1.5	23	3.4	9.5	226	33	165
Pal62	12.30496	78.02749	7.3	0.28	70.3	2	27.7	SCL	1.5	31	9.7	4	254	33	273
Pal63	12.30505	78.04757	7.6	0.32	71.3	4.5	24.2	SCL	1.4	47	8.9	3.5	263	50	517
Pal64	12.30486	78.08746	7.6	0.37	61.3	7	31.7	SCL	1.3	60	6.6	11	166	25	448
Pal65	12.30496	78.08748	7.5	0.25	65.3	4.5	30.2	SCL	1.4	38	6.5	4.5	232	26	84
Pal66	12.30491	78.10751	7.4	0.29	58	13	29	SL	1.2	30	3.7	3	219	20	173
Pal67	12.28512	77.9675	6.1	0.4	68.55	3.5	27.95	SCL	1.3	72	4	8.5	210	39	280
Pal68	12.28493	77.98743	7.3	0.3	73.8	2	24.2	SCL	1.3	43	3	8.5	202	39	240
Pal69	12.28498	78.00751	7.5	0.2	72.8	2	25.2	SCL	1.4	63	15.5	12.5	194	25	172
Pal70	12.28498	78.02744	7.5	0.26	72.5	2.8	24.7	SCL	1.5	44	2.8	12.8	223	28	145
Pal71	12.28498	78.04752	7.7	0.3	73.8	4.5	21.7	SCL	1.5	38	3.7	13.5	223	26	118
Pal72	12.28517	78.06764	8.3	0.27	65.8	7.2	27	SCL	1.2	70	7.7	30	202	13	138
Pal73	12.28498	78.08748	7.4	0.38	65.3	4.5	30.2	SCL	1.4	12	4	2	201	17	125
Pal74	12.2649	77.98751	7	0.6	68.05	4.5	27.5	SCL	1.3	60	4	13.6	197	19	181

EC – Electrical conductivity, BD - Bulk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Table 4
The physico-chemical properties of the Karimangalam firka soil samples from the Dharmapuri district in Tamil Nadu, India.

Sample no	Latitude	Longitude	pH	EC (dS/m)	Sand (%)	Silt (%)	Clay (%)	Textural class	BD (Mg/m³)	WHC (%)	OC (g/kg)	CaCO₃ (%)	AVN (kg/ha)	AVP (kg/ha)	AVK (kg/ha)
K75	12.3449	78.10747	7.6	0.3	65.8	4.5	29.7	SCL	1.3	38	8	1.5	295	50	286
K76	12.3448	78.1275	7.3	0.34	66	6	28	SCL	1.3	35	12	1.5	326	22	276
K77	12.3449	78.1475	7.4	0.28	65.3	7	27.7	SCL	1.5	32	8.3	4	257	53	117
K78	12.34504	78.1785	6	0.14	66.3	8	25.7	SCL	1.5	54	3.4	4.5	157	38	88
K79	12.3249	78.0875	7.3	0.28	64.3	7	28.7	SCL	1.3	43	5.1	4.6	226	44	201
K80	12.3249	78.1075	7.3	0.29	63.3	9.5	27.2	SCL	1.3	58	11	4	254	15	194
K81	12.3248	78.1275	7.2	0.32	65.8	7	27.2	SCL	1.3	42	2.5	10.5	263	15	237
K82	12.3248	78.1475	7.1	0.25	68.3	4.5	27.2	SCL	1.5	41	1.5	3.5	229	13	307
K83	12.3248	78.1674	6	0.2	68.3	4.5	27.2	SCL	1.5	22	3.4	5.5	254	11	30
K84	12.3249	78.1874	7.5	0.71	63.3	7	29.7	SCL	1.4	37	3.4	1	188	48	261
K85	12.3250	78.1274	7.7	0.49	43.9	28.15	27.95	CL	1.3	33	12	15.5	245	12	174
K86	12.3250	78.1675	7	0.33	68.3	4.5	27.2	SCL	1.3	40	10.6	4	304	10	229
K87	12.32478	78.18751	7.9	0.5	65.8	6.5	27.7	SCL	1.3	45	10.6	2.5	151	28	186
K88	12.3249	78.2075	7.8	0.56	65.8	7	27.2	SCL	1.3	35	13.6	1.5	279	27	168
K89	12.2849	78.1674	7.4	0.37	65.3	4.5	30.2	SCL	1.3	26	6.1	5	229	31	133
K90	12.2849	78.1874	7.6	0.34	67.8	4.5	27.7	SCL	1.5	27	5.5	6.5	215	28	151
K91	12.2849	78.2074	7.6	0.29	63.8	5	26.2	SCL	1.4	39	3.1	3	129	30	151
K92	12.2649	78.1874	6	0.26	65.8	4.5	29.7	SCL	1.3	15	8.2	4.5	241	25	201
K93	12.2649	78.2074	7.2	0.33	66	6.4	27.7	SCL	1.4	32	4	6	254	58	251
K94	12.26491	78.2275	7.5	0.26	65.3	4.5	30.2	SCL	1.3	23	3.9	6.5	235	17	257

EC – Electrical conductivity, BD - Buk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Sample no	Latitude	Longitude	pH	EC (dS/m)	Sand (%)	Silt (%)	Clay (%)	Textural class	BD (Mg/m3)	WHC (%)	OC (g/kg)	CaCO$_3$ (%)	AVN (kg/ha)	AVP (kg/ha)	AVK (kg/ha)
Pul95	12.28488	78.1075	7.3	0.32	55	15.75	29.25	SCL	1.3	19	11.4	6	174	47	272
Pul96	12.2649	78.0674	6.4	0.22	70.8	2	27.2	SCL	1.5	30	8	3	220	38	316
Pul97	12.2649	78.0875	7.5	0.32	68.8	3.3	27.9	SCL	1.4	27	2.8	7	211	22	153
Pul98	12.2649	78.1075	7.4	0.35	64.12	8.5	27.38	SCL	1.4	23	2.7	8.6	192	41	241
Pul99	12.2449	78.0875	7.5	0.6	73.3	3.5	23.2	SCL	1.5	40	2.5	12	213	62	399
Pul100	12.2448	78.1074	7.7	0.5	65.8	7	27.2	SCL	1.4	19	7.1	17	202	47	230
Pul101	12.225	78.0875	7.3	0.4	68.3	5.5	26.2	SCL	1.4	38	4.9	17	202	50	271
Pul102	12.2249	78.1074	7.3	0.46	63.3	7.5	29.2	SCL	1.4	37	5.2	11	191	39	144
Pul103	12.2049	78.0874	7.2	0.37	70.8	6	23.2	SCL	1.2	31	3.2	9	194	35	283
Pul104	12.2049	78.1074	7.62	0.54	70.8	6	23.2	SCL	1.2	27	3.4	4	166	32	447
Pul105	12.185	78.0875	7.9	0.33	68.3	6.4	25.3	SCL	1.3	36	6.8	15	223	40	119
Pul106	12.1849	78.1075	7.8	0.37	70.8	6	23.2	SCL	1.4	28	5.8	8.5	166	26	283
Pul107	12.1649	78.0875	7.8	0.59	63.3	7	29.7	SCL	1.3	36	7.4	7	191	33	180

EC – Electrical conductivity, BD - Buk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Table 6
The Physico-chemical properties of the Periyanahalli firka soil samples from the Dharmapuri district in Tamil Nadu, India.

Sample no	Latitude	Longitude	pH	EC (dS/m)	Sand (%)	Silt (%)	Clay (%)	Textural class	BD (Mg/m³)	WHC (%)	OC (g/kg)	CaCO₃ (%)	AVN (kg/ha)	AVP (kg/ha)	AVK (kg/ha)
Pe 108	12.3048	78.1475	7.2	0.58	41.5	29.3	29.2	CL	1.3	86	5.2	4.1	251	26	250
Pe 109	12.2849	78.1275	7.1	0.29	46.3	27	26.7	SCL	1.4	26	1.8	13	147	47	419
Pe 110	12.2849	78.1475	7.4	0.33	70.3	4.5	25.2	SCL	1.4	59	8	5	226	69	291
Pe111	12.2649	78.1274	7.1	0.27	72.8	4.5	22.7	SCL	1.7	26	2.5	13	193	48	310
Pe112	12.2649	78.1475	7.8	0.44	68.3	4.5	27.2	SCL	1.3	29	4.2	4	241	21	288
Pe113	12.2449	78.1675	6.7	0.94	71.3	2	26.7	SCL	1.4	82	3.8	7	232	51	192
Pe114	12.2449	78.1275	7.2	0.43	69.3	5.75	24.95	SCL	1.5	23	4.6	15	197	49	290
Pe115	12.2448	78.1475	7.0	0.67	68.8	5.2	26	SCL	1.4	30	2.5	9	206	42	233
Pe116	12.2449	78.1675	7.9	0.31	69.72	3.51	26.77	SCL	1.4	31	1.8	10.5	182	56	123
Pe117	12.2448	78.1874	7.6	0.23	68.3	4.5	27.2	SCL	1.4	19	5.2	14	243	22	135
Pe118	12.2449	78.2075	8.2	0.38	68.3	4.5	27.2	SCL	1.2	44	2.5	7	292	14	420
Pe119	12.2249	78.1275	7.8	0.29	66.14	5.91	27.95	SCL	1.1	29	3	15.5	215	47	203
Pe120	12.225	78.1474	7.5	0.46	68.58	4.37	27.05	SCL	1.2	32	1.8	9.5	194	50	336
Pe121	12.2249	78.1675	7.9	0.42	70.8	2	27.2	SCL	1.2	39	8.6	4	163	63	517
Pe122	12.2249	78.1874	7.2	0.39	65.8	4.5	29.7	SCL	1.5	27	7.4	17	257	53	177
Pe123	12.2249	78.2074	7.2	0.87	67.05	4.5	28.45	SCL	1.3	36	5.5	8	135	24	149
Pe124	12.205	78.1274	7.4	0.53	68.47	5.95	25.58	SCL	1.3	36	0.6	9.7	141	39	325
Pe125	12.2049	78.1475	7.4	0.49	68.5	5.2	26.3	SCL	1.2	34	2.5	9.6	167	44	330

*EC – Electrical conductivity, BD - Buk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium
Table 7
Descriptive statistics of the soil sample parameters of the six firkas in the Dharmapuri district of Tamil Nadu, India.

Parameter	Minimum	Maximum	Mean	Std. Dev.	CV	Skewness	Kurtosis
pH	6	8.3	7.4	0.44	0.04	-1.20	2.01
EC (dS/m)	0.14	1.3	0.34	0.18	0.02	2.52	8.62
Sand (%)	41.5	73.8	65.8	4.75	0.52	-2.41	10.01
Silt (%)	2	29.3	5.75	3.98	0.44	4.09	20.35
Clay (%)	21.7	32.2	27.7	2.17	0.24	-0.36	0.17
BD (Mg/m³)	1.1	1.7	1.4	0.09	0.01	0.18	0.14
WHC (%)	12	108	36	14.97	1.66	1.51	3.65
OC (g/kg)	0.2	13.6	5.2	3.12	0.34	0.51	-0.42
CaCO₃ (%)	1	30	6.5	4.69	0.52	1.48	3.59
AVN (kg/ha)	116	332	223	45.39	5.04	-0.007	-0.05
AVP (kg/ha)	3	77	33	14.60	1.62	0.35	-0.38
AVK (kg/ha)	65	517	225	106.03	11.78	0.81	0.20

*EC – Electrical conductivity, BD - Bk density, WHC – Water holding capacity, OC – Organic carbon, AVN-Available nitrogen, AVP-Available phosphorus, AVK-Available potassium

Fig. 1. Study area and soil sample’s locations
Fig. 2. Spatial distribution maps of (A) Soil pH, (B) Soil EC, (C) Bulk density, (D) Water holding capacity.
Fig. 3. Spatial distribution maps of (E) Sand content, (F) Silt content, (G) Clay content, (H) Organic carbon.
Fig. 4. Spatial distribution maps of (I) Available Nitrogen, (J) Available Phosphorus, (K) Available Potassium, (L) Calcium Carbonate.
2. Data, Experimental Design, Materials and Methods

2.1. Data

➢ The physical and chemical characteristics of surface soil samples including pH, EC (dS/m), sand (%), silt (%), clay (%), BD (Mg/m³), and WHC (%), OC (g/kg), CaCO₃ (%) and available NPK (kg/ha) in the six selected firkas of Dharmapuri district were analyzed.
➢ The sampling locations are illustrated in Fig. 1 and the detailed soil characteristics are presented in Table 1–6.
➢ The data presented in the tables were based on the laboratory investigation.

3. Experimental Design

3.1. Study area description

The study area comprises six firkas namely Marandahalli, Vellichandai, Palacode, Karimangalam, Pulikarai, and Periyanahalli are located in the Dharmapuri district (Fig. 1), which covers latitudes between 11°45’ and 12°15’N and longitudes between 77°30’ and 78°30’E, encompassing approximately 482 km² [1]. Regarding the climate, the hottest period of the study area was March to May, with maximum temperature of 38°C and minimum temperature is about 17°C which was recorded in January. The mean annual rainfall ranged from 900 to 1200 mm, through southwest and northeast monsoons. The study area is occupied by diverse range of igneous and metamorphic rocks.

3.2. Soil sample collection and laboratory analysis

The soil samples were collected between February and April, 2021. A Garmin 76 CSx Global Positioning Systems (GPS) device was used to record the exact soil sample’s locations. The soil samples were taken from the plough layer after the surface litter was removed; a total of 125 samples were collected. At each sampling point, a 15-cm deep ‘v’-shaped cut was made using a spade, soil was collected from each side. The soil samples were air-dried and pulverized using a wooden mallet. The samples were sieved using a 2-mm sieve and packed in plastic bags or air tight containers. Furthermore, the soil samples were analyzed for pH [2], electrical conductivity [2], soil separates [3], bulk density [2], water-holding capacity [4], organic carbon [5], calcium carbonate [6], available N [7], available P [8], and available K [9], and the data analyzed statistically to remove outlier values. The analyzed data are presented in the table format.

4. Spatial Variability Map Preparation

A spatial variability map of the study area was generated using the kriging method in the ArcGIS 10.4 software [10]. The kriging technique was used to underestimate the lower values and exaggerate larger values by applying a smooth model of spatial variability to the dataset and limiting its fitting errors. Using the kriging method, a smooth surface was created by reducing the errors generated by variance in the fit of the model to each neighborhood. The kriged surface was generalized for all the parameters by sub-setting the mean of the surrounding pixels and substituted in the sampled point. The variance error was used to detect issues in the sample point, model parameters, and local neighborhood design. Before using the ordinary kriging method, the semi variance was calculated to identify the interpolation model. Semi variance was
calculated using the equation below, as follows:

$$\gamma(h) = \frac{1}{2|N(h)|} + \sum_{N(h)} \left(Z(x_i) - Z(x_j) \right),$$

where the number of pairs parted by distance is indicated by N(h), and Z(xi) and Z(xj) represent Z in the xi and xj positions, respectively.

The soil physico-chemical data were converted into shape file and kriged to identify soil characteristic of unknown location. The spatial variability maps are presented in Figs. 2, 3 and 4.

Ethics Statement

All the authors declare that there is no ethical statement or clearance required for the presented data.

CRediT Author Statement

S. Sathiyamurthi: Conceptualization, Methodology, Data analysis and manuscript reviewing and editing; M. Ramya: Lab analysis, data curation, and manuscript writing.

Declaration of competing Interest

On behalf of all authors, there is no conflict of interest.

Data Availability

raw data article on the physico-chemical properties of soil from six firkas in Dharmapuri district, Tamil Nadu, India (Original data) (Mendeley Data).

Acknowledgments

The authors would like to thank Dr M.V. Sriramachandrasekharan, Professor and Head, Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University, for providing facilities and suggestions for conducting the research work. The authors also extend their gratitude to Dr S. Saravanan, Assistant Professor in Civil Engineering, NITT, Tiruchirappalli, for providing a facility for geospatial analysis. The authors also thank the reviewers and editor, whose comments enormously helped improve this manuscript. This investigation was performed as part of a PhD thesis at Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University and was not supported by any funding agency.

References

[1] D. Jegadeeswari, D. Muthumanickam, T. Chideshwari, Arvind Kumar Shukla, Fertility Mapping of Available Micronutrients Status in the Soils of Dharmapuri District, Tamil Nadu, Using GIS and GPS Techniques, Madras Agri. J. 104 (2017) 330.

[2] P.C. Jaiswal, Soil, Plant and Water analysis, Third ed., Kalyani publishers, Ludhiana, 2011.

[3] G.J. Bouyoucos, Hydrometer method improved for making particle size analyses of soils, Agronomy J 54 (1962) 464–465.

[4] B.A. Keen, H. Rackzkowski, The relation between the clay content and certain physical properties of a soil, J. Agr Sci. 11 (1921) 441–449.
[5] A. Walkley, I.A. Black, Estimation of soil organic carbon by the chromic acid titration method, Soil Sci 37 (1934) 29–38.
[6] C.S. Piper, Soil and Plant analysis, Scientific publishers India, Jodhpur, 2010.
[7] B.V. Subbiah, G.L. Asija, A rapid procedure for determination of available nitrogen in soils, Curr. Sci. 25 (1956) 259–260.
[8] S.R. Olsen, C.V. Cole, F.S. Watanabe, L.A. Dean, Estimation of available phosphorus in soils by extraction with sodium bicarbonate, United States Department of Agriculture Circular No. 939, 1954.
[9] S. Standford, L. English, Use the flame photometer in rapid soil tests for K and Ca, Agron. J. 41 (1949) 446-445.
[10] P.K. Shit, G.S. Bhunia, R. Maiti, Spatial analysis of soil properties using GIS based geostatistics models, Model. Earth Syst. Environ. 2 (2016) 107, doi:10.1007/s40808-016-0160-4.