Abstract In [8] we introduced the notion of a k-almost-quasifibration. In this article we update this definition and call it a k-c-quasifibration. This will help us to relate it to quasifibrations. We study some basic properties of k-c-quasifibrations. We also generalize a series of results on quasifibrations ([1]) to k-c-quasifibrations giving criteria for a map to be a k-c-quasifibration.

Keywords Quasifibration · Homotopy group

Mathematics Subject Classification Primary 55Q05; Secondary 55P05

1 Introduction

Recall that a surjective map $f : X \to Y$ is called a quasifibration ([1], [2], chap 4, p. 479) if for all $y \in Y$ and $x \in F_y$, the map $f : (X, F_y, x) \to (Y, y)$ is a weak equivalence. Hence, a quasifibration $f : X \to Y$ induces a long exact sequence of homotopy groups for all $y \in Y$. In [8] we introduced the notion of a k-almost-quasifibration for path connected spaces. For $k = \infty$, we called it an almost-quasifibration. It says that for some $y \in Y$ there exist an exact sequence of homotopy groups of the above type. Hence a quasifibration $f : X \to Y$ is an almost-quasifibration.

The main motivation behind the definition of a k-almost-quasifibration was that for computational purposes of homotopy groups, we need the long exact sequence of homotopy groups induced by f, for some $y \in Y$, instead of for all the points of Y. Also, since we constructed a class of examples in [8] supporting this definition. Furthermore, we had given many examples in [8] of 1-almost-quasifibrations and almost-quasifibrations which are not quasifibrations.

In this article we make a general definition of k-almost-quasifibration, and add an extra condition. We call it a k-c-quasifibration, and for $k = \infty$, we call it a c-quasifibration. This extra condition helps us to make the concept functorial and to give a necessary and sufficient condition for an almost-quasifibration to be a quasifibration. We also observe here that the examples of k-almost-quasifibrations we gave in [8] are all k-c-quasifibrations.

Here, we plan to study some basic properties of k-c-quasifibrations. We prove several criteria for a map to be a k-c-quasifibration. These results are analogous to the fundamental results proved in [1] in the context of quasifibrations. The methods used in the proofs of our results are not new, but we see that they are applicable in the case of k-c-quasifibrations also.
Throughout the paper for topological spaces X and Y, $f : X \to Y$ will always denote a surjective continuous map.

Definition 1.1 A subset of Y is called exhaustive if it has a nonempty intersection with each path component of Y.

Definition 1.2 Let $k \geq 0$ be an integer. Choose an exhaustive subset \overline{Y} of Y. Then, f is called a k-almost-quasifibration with respect to \overline{Y}, if for all $y \in \overline{Y}$ and $x \in F_y := f^{-1}(y)$ there are homomorphisms

$$\partial : \pi_{q+1}(Y, y) \to \pi_q(F_y, x),$$

for $q = 0, 1, 2, \ldots, k - 1$, so that the following sequence is exact.

$$1 \longrightarrow \pi_k(F_y, x) \overset{i_y}{\longrightarrow} \pi_k(X, x) \overset{f_*}{\longrightarrow} \pi_k(Y, y) \longrightarrow \pi_{k-1}(F_y, x) \longrightarrow \cdots$$

$$\cdots \longrightarrow \pi_1(Y, y) \overset{\partial}{\longrightarrow} \pi_0(F_y, x) \overset{i_*}{\longrightarrow} \pi_0(X, x) \overset{f_*}{\longrightarrow} \pi_0(Y, y) \longrightarrow 1.$$

f is called an almost-quasifibration if the above sequence can be extended on the left up to infinity.

Denote the path components of Y by C_α, $\alpha \in I$. Let $X_\alpha = f^{-1}(C_\alpha)$. It is clear that f is a k-almost-quasifibration with respect to an exhaustive subset \overline{Y} if and only if for all $\alpha \in I$, $f|_{X_\alpha} : X_\alpha \to C_\alpha$ is a k-almost-quasifibration with respect to $\overline{Y} \cap C_\alpha$.

In Definition 1.2 we only assumed the existence of the connecting homomorphisms ∂. In Lemma 3.1 we observe that the commutativity of Diagram 1 is the key connection between an almost-quasifibration and a quasifibration. In the diagram, $\partial = \partial_\alpha$ is the connecting homomorphism coming from the long exact sequence of homotopy groups for the pair (X, F_y). The commutativity of Diagram 1 makes f_α a bijection and hence ∂ becomes unique.

![Diagram 1](image)

Therefore, we now make the following definition.

Definition 1.3 A k-almost-quasifibration $f : X \to Y$ with respect to an exhaustive subset $\overline{Y} \subseteq Y$ is called a k-c-quasifibration with respect to \overline{Y}, if Diagram 1 is commutative for $q = 0, 1, 2, \ldots, k - 1$, for all $y \in \overline{Y}$ and $x \in F_y$. When $k = \infty$ we call f a c-quasifibration.

Therefore, we observe that a c-quasifibration $f : X \to Y$ with respect to Y is a genuine quasifibration in the sense of [1] (Corollary 3.2). And the fibers of a c-quasifibration with respect to \overline{Y}, over the points of \overline{Y} are all weak homotopy equivalent. We also show in Lemma 3.3 that the examples of k-almost-quasifibrations, (for $k = 1, \infty$) we gave in [8] are all k-c-quasifibrations (see Example 3.6).

In the next section we state our main results. In Section 3 we relate quasifibrations and k-c-quasifibrations and prove some basic results we need. Section 4 contains the proofs of the main results.

2 Statements of main results

Recall that for a surjective map \(f : X \to Y \), a subset \(Y_1 \subset Y \) is called distinguished ([1]) if \(f|_{f^{-1}(Y_1)} : f^{-1}(Y_1) \to Y_1 \) is a quasifibration. We need the following analogue of this definition, in the context of \(k \)-c-quasifibrations.

Definition 2.1 A subset \(Y_1 \subset Y \) is called \((k)\)-\(c \)-distinguished with respect to an exhaustive subset \(\tilde{Y}_1 \subset Y_1 \), if \(f|_{f^{-1}(Y_1)} : f^{-1}(Y_1) \to Y_1 \) is a \((k)\)-c-quasifibration with respect to \(\tilde{Y}_1 \).

We begin with the following result giving a criterion for a map \(f \) to be a \(c \)-quasifibration from local data.

Theorem 2.2 Let \(\{U_{\alpha}\}_{\alpha \in J} \) be an open covering of \(Y \), which is closed under taking finite intersections. Assume that, for any \(\alpha \in J \), there is an exhaustive subset \(\tilde{U}_{\alpha} \subset U_{\alpha} \), such that \(\tilde{U}_{\beta} \subset U_{\gamma} \) whenever \(\beta, \gamma \in J \), for \(\beta, \gamma \in J \). Furthermore, assume that \(U_{\alpha} \) is \(c \)-distinguished with respect to \(\tilde{U}_{\alpha} \), for any \(\alpha \in J \). Then \(f \) is a \(c \)-quasifibration with respect to some exhaustive subset of \(Y \).

Now, recall that a filtration of a space \(Y \) is an increasing sequence of subspaces \(Y_0 \subset Y_1 \subset \cdots \) such that \(Y = \bigcup_{i=0}^{\infty} Y_i \), and \(Y \) has the colimit topology.

For each \(i \in \mathbb{N} \), let \(\tilde{Y}_i \subset Y_i \) be an exhaustive subset of \(Y_i \), such that \(\tilde{Y}_i \subset \tilde{Y}_{i+1} \). Then clearly, the union \(\tilde{Y} := \bigcup_{i \in \mathbb{N}} \tilde{Y}_i \) is an exhaustive subset of \(Y \). We call \(\tilde{Y} \) an exhaustive subset of \(Y \) for the filtration \(\{Y_i\}_{i \in \mathbb{N}} \).

More generally, for any covering \(\{V_{\alpha}\}_{\alpha \in J} \) of \(Y \) by subsets with exhaustive subsets \(\tilde{V}_{\alpha} \subset V_{\alpha} \), for \(\alpha \in J \), \(\tilde{Y} := \bigcup_{\alpha \in J} \tilde{V}_{\alpha} \) is an exhaustive subset of \(Y \).

The following result shows that being a \(k \)-c-quasifibration is preserved under taking colimit.

Theorem 2.3 Let \(Y, Y_1 \) and \(\tilde{Y} \) be as above. Assume that, for each \(i \), \(Y_i \) is \(T_1 \) and \(k \)-c-distinguished with respect to the exhaustive subset \(\tilde{Y}_1 \). Then, \(f \) is a \(k \)-c-quasifibration with respect to \(\tilde{Y} \).

In the next result we show that being a \(k \)-c-quasifibration is also preserved under deformation. For this, we need the following two definitions.

First, we make a variation of the definition of a \(k \)-equivalence.

Definition 2.4 For pairs \((X, X_1) \) and \((Y, Y_1) \) of topological spaces, a map \(g : (X, X_1) \to (Y, Y_1) \) is called a \(k \)-\(c \)-equivalence with respect to a subset \(\tilde{X}_1 \subset X_1 \), if the following conditions are satisfied.

\[g^{-1}\text{Image}(\pi_0(Y_1) \to \pi_0(Y)) = \text{Image}(\pi_0(X_1) \to \pi_0(X)) \]

- For all \(x \in \tilde{X}_1, g_* : \pi_q(X, X_1, x) \to \pi_q(Y, Y_1, g(x)) \) is a bijection for \(1 \leq q \leq k - 1 \), and is a surjection for \(q = k \).

\(g \) is called a \(c \)-weak equivalence with respect to \(\tilde{X}_1 \), if the above conditions are satisfied for all \(k \).

We need this variation, since we will be considering only selected fibers of \(f : X \to Y \) in this work. Here, notice that a \(k \)-\(c \)-equivalence is defined with respect to a subset of the domain, and a \(k \)-c-quasifibration is defined with respect to a subset of the codomain.

Remark 2.5 Recall that a \(k \)-equivalence demands that the second condition in Definition 2.4 must be satisfied for all \(x \in X_1 \). If \(\tilde{X}_1 \) is an exhaustive subset of \(X_1 \), then it has nonempty intersection with each path component of \(X_1 \), and hence a \(k \)-\(c \)-equivalence with respect to an exhaustive subset, is a \(k \)-equivalence. Similarly a \(c \)-weak equivalence with respect to an exhaustive subset is a weak equivalence in the standard sense.

Definition 2.6 Let \(Y_1 \subset Y \) be a subset. Let \(X_1 = f^{-1}(Y_1) \). A deformation of \(f : X \to Y \) to \(f_1 := f|_{X_1} : X_1 \to Y_1 \) is a pair \((H, h)\) of maps defined by \(H : X \times I \to X \) and \(h : Y \times I \to Y \), such that the following conditions are satisfied.

- \(h|_{X \times 0} = id_X, h_1(y_1) := h(t, y_1) = y_1 \) for all \(y_1 \in Y_1, t \in I \) and \(h_1(y) \in Y_1 \) for all \(y \in Y \).
- \(H|_{X \times 0} = id_X, H_1(y_1) := H(t, x_1) = x_1 \) for all \(x_1 \in X_1, t \in I \) and \(H_1(x) \in X_1 \) for all \(x \in X \).
- \(f \circ H_1 = h_1 \circ f_1 \).

We are now in a position to state our next result.

Theorem 2.7 Let \(Y_1 \subset Y \) be a subset and \(\tilde{Y} \subset Y, \tilde{Y}_1 \subset Y_1 \) be exhaustive subsets, such that \(\tilde{Y}_1 \subset \tilde{Y} \). Then \(f : X \to Y \) is a \(c \)-quasifibration with respect to \(\tilde{Y} \) if the following are satisfied.

- There is a deformation \((H, h)\) from \(f \) to \(f_1 \) such that \(h_1(\tilde{Y}) \subset \tilde{Y}_1 \).
\begin{itemize}
\item $H_1 : f^{-1}(y) \to f^{-1}(h_1(y))$ is a weak equivalence for all $y \in \tilde{Y}$.
\item Y_1 is c-distinguished with respect to \tilde{Y}_1.
\end{itemize}

Combining Theorems 2.2, 2.3 and 2.7, we can now deduce our final result. This is analogous to Theorem 2.6 in [4].

Main Theorem Let $\{Y_i\}_{i \in \mathbb{N}}$ be a filtration of Y by closed and T_1 subspaces. Let, $\tilde{Y} = \bigcup_{i \in \mathbb{N}} \tilde{Y}_i$ be an exhaustive subset of Y for the filtration $\{Y_i\}_{i \in \mathbb{N}}$. Assume that \tilde{Y}_i intersects each open subset U of Y in an exhaustive subset \tilde{U} (e.g., if \tilde{Y}_i is dense in Y_i), and the following is satisfied.

- Y_1 is c-distinguished with respect to \tilde{Y}_1 and for each $i \geq 1$, each open subset U of $Y_{i+1} - Y_i$ is c-distinguished with respect to the exhaustive subset $\tilde{U} \subset \tilde{Y}_{i+1}$. For each $i \in \mathbb{N}$, Y_i has a neighborhood U_{i+1} in Y_{i+1} and a deformation (H, h) from $f \mid f^{-1}(U_{i+1}) : f^{-1}(U_{i+1}) \to U_{i+1}$ to $f \mid f^{-1}(Y_i) : f^{-1}(Y_i) \to Y_i$, such that $h_1(U_{i+1}) \subset \tilde{Y}_{i+1}$ and $H_1 : f^{-1}(y) \to f^{-1}(h_1(y))$ is a weak equivalence for all $y \in \tilde{U}_{i+1}$.

Then, each Y_i is c-distinguished with respect to \tilde{Y}_i and f is a c-quasifibration with respect to \tilde{Y}.

Here, we recall that the quasifibration versions of Theorems 2.2, 2.3 and 2.7 were the basic tools behind the proof of the Dold-Thom Theorem ([1]). In particular, using these theorems one shows that for a based connected CW-pair (X, A), the map $SP(X) \to SP(X/A)$ is a quasifibration with fiber $SP(A)$. Here, $SP(\cdot)$ is the union of the n-fold symmetric products $SP_n(\cdot)$. Recall that, the functor $SP_n(\cdot)$ sends a space to the quotient of its n-fold product by the obvious action of the symmetric group S_n. Also see [2], p. 484.

3 Quasifibrations and k-c-quasifibrations

In this section we study properties of k-c-quasifibrations and prove some basic results needed for the proofs of the theorems.

3.1 k-c-quasifibrations and its functoriality

In the following lemma we give a simple necessary and sufficient condition for an almost-quasifibration to be a quasifibration.

Lemma 3.1 $f : X \to Y$ is a quasifibration if and only if f is an almost-quasifibration with respect to Y, and Diagram 1 is commutative for all $y \in Y, x \in F_y$ and for $q = 0, 1, 2, \ldots$.

Proof We observe that if f is an almost-quasifibration and Diagram 1 is commutative then, Diagram 2 is also commutative.

Hence using the Five Lemma, we see that $f_* : \pi_{q+1}(X, F_y, x) \to \pi_{q+1}(Y, y)$ is a bijection. Here $j : (X, x) \to (X, F_y, x)$ is the inclusion map.

\[
\begin{array}{ccccccccc}
\pi_{q+1}(F_y, x) & \xrightarrow{i_*} & \pi_{q+1}(X, x) & \xrightarrow{j_*} & \pi_{q+1}(X, F_y, x) & \xrightarrow{\partial_*} & \pi_q(F_y, x) & \xrightarrow{i_*} & \pi_q(X, x) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\pi_{q+1}(F_y, x) & \xrightarrow{i_*} & \pi_{q+1}(X, x) & \xrightarrow{f_*} & \pi_{q+1}(Y, y) & \xrightarrow{\partial} & \pi_q(F_y, x) & \xrightarrow{i_*} & \pi_q(X, x)
\end{array}
\]

Diagram 2

Conversely, assume that f is a quasifibration, and hence $f_* : \pi_{q+1}(X, F_y, x) \to \pi_{q+1}(Y, y)$ is a bijection. Then, we can define ∂ as $\partial_\ast \circ f_*^{-1}$, which makes f an almost-quasifibration and Diagram 1 is commutative. This proves the lemma.

Corollary 3.2 $f : X \to Y$ is a c-quasifibration with respect to Y if and only if f is a quasifibration.

Therefore, if f is a c-quasifibration with respect to an exhaustive subset \tilde{Y}, and \tilde{Y} is c-distinguished with respect to \tilde{Y}, then $f \mid f^{-1}(\tilde{Y})$ is a quasifibration.
Lemma 3.3 A 1-almost-quasifibration with respect to some exhaustive subset \(\widetilde{Y} \) is a 1-c-quasifibration with respect to \(\widetilde{Y} \), if \(i_* : \pi_0(F_y, x) \to \pi_0(X, x) \) is an injection, equivalently if \(f_* : \pi_1(X, x) \to \pi_1(Y, y) \) is a surjection, for all \(y \in \widetilde{Y} \) and \(x \in F_y \).

Proof The proof is clear from Diagram 3. Since we only have to show that the triangle is commutative. But that follows, as \(i_* \) is an injection if and only if \(\partial \) is trivial and also \(i_* \) is an injection if and only if \(\partial \) is trivial. \(\square \)

\[\begin{array}{c}
\pi_1(X, F_y, x) \\
\downarrow f_* \\
\pi_1(F_y, x) \\
\downarrow i_* \\
1 \\
\end{array} \]

Diagram 3

Therefore, we see that if \(F_y \) is connected for all \(y \in \widetilde{Y} \), then there is no difference between a 1-almost-quasifibration and a 1-c-quasifibration with respect to \(\widetilde{Y} \).

More generally, we have the following criterion.

Lemma 3.4 \(f : X \to Y \) is a \(k \)-c-quasifibration with respect to an exhaustive subset \(\widetilde{Y} \) if and only if \(j_* : \pi_{k+1}(X, x) \to \pi_{k+1}(F_y, x) \) is a surjection and the map \(f_* : \pi_{q+1}(X, F_y, x) \to \pi_{q+1}(Y, y) \) is a bijection, for all \(y \in \widetilde{Y}, x \in F_y \) and for \(q = 0, 1, 2, \ldots, k-1 \).

Proof Consider the general Diagram 4.

First note that \(j_* : \pi_{k+1}(X, x) \to \pi_{k+1}(F_y, x) \) is a surjection if and only if \(\partial : \pi_{k+1}(F_y, x) \to \pi_k(F_y, x) \) is the trivial homomorphism if and only if \(i_* : \pi_k(F_y, x) \to \pi_k(X, x) \) is an injection.

\[\begin{array}{c}
\pi_{k+1}(X, F_y, x) \\
\downarrow j_* \\
\pi_{k+1}(F_y, x) \\
\downarrow i_* \\
\cdots \\
\end{array} \]

Diagram 4

If \(f \) is a \(k \)-c-quasifibration then \(i_* : \pi_k(F_y, x) \to \pi_k(X, x) \) is an injection by definition. Also since Diagram 1 is commutative for all \(q = 0, 1, 2, \ldots, k-1 \), by the Five Lemma applied to Diagram 2, we get \(f_* : \pi_{q+1}(X, F_y, x) \to \pi_{q+1}(Y, y) \) is a bijection.

Conversely, assume that \(i_* : \pi_k(F_y, x) \to \pi_k(X, x) \) is an injection and \(f_* : \pi_{q+1}(X, F_y, x) \to \pi_{q+1}(Y, y) \) is a bijection for \(q = 0, 1, 2, \ldots, k-1 \). Once again, as in Lemma 3.1 we can define the homomorphisms \(\partial \), so as to get the required exact sequence and Diagram 1 to be commutative. \(\square \)

Corollary 3.5 Assume \(\pi_2(X, x) = \langle 1 \rangle \) for all \(x \in X \). Then \(f \) is a 1-c-quasifibration with respect to \(\widetilde{Y} \), if and only if \(\pi_2(X, F_y, x) = \langle 1 \rangle \) and \(f_* : \pi_1(X, F_y, x) \to \pi_1(Y, y) \) is a bijection, for all \(y \in \widetilde{Y} \) and \(x \in F_y \).

We now give some non-trivial examples of \(k \)-c-quasifibrations.
Example 3.6 Let S be a connected aspherical 2-manifold. Let G be a discrete group acting on S, effectively and properly discontinuously with isolated fixed points. If S/G has genus zero assume that it has a puncture. Consider the space $O_n(S, G)$ of n-tuples of points of S with pairwise distinct orbits. Then, in [8], Theorem 1.3 and Proposition 1.6] we had shown that the projection $p_1 : O_n(S, G) \to O_1(S, G)$ to the first l coordinates is a 1-almost-quasifibration, with respect to the subset $O_1(S, G)$ of points of $O_1(S, G)$, whose coordinates have trivial isotropy groups. And the projection is an almost-quasifibration with respect to $O_1(S, G)$, if either the action of G on S is free, or if S/G has genus zero with at most two cone points of order 2 each. Using Lemma 3.3, now it follows that p_1 is a 1-c-quasifibration or a c-quasifibration with respect to $O_1(S, G)$, for the respective cases as above.

The next examples are from 3-manifold topology and of much importance, since they are the building blocks of 3-manifolds, other than the hyperbolic ones. The standard references for the background of these examples are [3] and [9].

Example 3.7 Let M be a connected Seifert fibered space. Let B be the base orbifold with infinite orbifold fundamental group. Let $q : M \to B$ be the quotient map. Then, it is well known that for any regular point $b \in B$, there is the following exact sequence (9, Lemma 3.2). Here, S^1_b is the circle fiber over b and $m \in S^1_b$.

$$
1 \longrightarrow \mathbb{Z} \cong \pi_1(S^1_b, m) \longrightarrow \pi_1(M, m) \longrightarrow \pi_1^{orb}(B, b) \longrightarrow 1.
$$

Note that B is a good orbifold, since it has infinite orbifold fundamental group ([7], Proposition 3.15). That is, there is a 2-manifold \hat{B} and a discrete group G acting effectively and properly discontinuously on \hat{B} with $B = \hat{B} / G$. Let $p : \hat{B} \to B$ be the orbifold covering map. Let $\hat{p} : \hat{M} \to \hat{B}$ be the pull back of p by q as shown in Diagram 5. Let \hat{G} be the group of covering transformation of \hat{p}.

$$
\begin{array}{ccc}
\hat{M} & \xrightarrow{\hat{p}} & M \\
\downarrow {\hat{q}} & & \downarrow {q} \\
\hat{B} & \xrightarrow{p} & B \\
\end{array}
$$

Diagram 5

For the rest of the deduction we follow the reference [5]. Let $G(\hat{M}, \hat{G})$ and $G(\hat{B}, G)$ be the corresponding translation Lie groupoids. The above data induces a homomorphism $\hat{Q} : G(\hat{M}, \hat{G}) \to G(\hat{B}, G)$, which in turn defines a continuous map $BQ : B\hat{G}(\hat{M}, \hat{G}) \to B\hat{G}(\hat{B}, G)$ on their classifying spaces. From some generalities, we have the following two isomorphisms.

$$
\pi_1(B\hat{G}(\hat{M}, \hat{G}), \hat{m}) \cong \pi_1(M, m) \text{ and } \pi_1(B\hat{G}(\hat{B}, G), \hat{b}) \cong \pi_1^{orb}(B, b).
$$

Here, $b \in B$ is a regular point such that $p(\hat{b}) = b$, $\hat{p}(\hat{m}) = m$ and $q(m) = b$. Furthermore, BQ induces the above exact sequence. Therefore, BQ is a 1-c-quasifibration with respect to the set \hat{B} of all points of \hat{B} with trivial isotropy groups. Consequently, it is also a c-quasifibration with respect to \hat{B}, since the above two classifying spaces are aspherical, which is a consequence of the fact that both \hat{M} and \hat{B} are aspherical.

The following examples, although easy, show that there are k-c-quasifibrations for any k.

Example 3.8 One can also construct examples of k-c-quasifibrations from Example 3.6 by taking product with a space Z, that is by considering

$$
p_1 \times id_Z : O_n(S, G) \times Z \to O_1(S, G) \times Z.
$$

Then, $p_1 \times id_Z$ becomes a 1-c-quasifibration with respect to $O_1(S, G) \times Z$. More generally, for a k-c-quasifibration f with respect Y, $f \times id_Z : X \times Z \to Y \times Z$ is a k-c-quasifibration with respect to $Y \times Z$. In addition, if X, Y and F_ϑ are all aspherical for all $\vartheta \in \hat{Y}$ and if f is a 1-c-quasifibration, then $f \times id_Z$ is a k-c-quasifibration for all k. Also, for any quasifibration f, if we change the sign of ϑ at some stage, say q and for all $\vartheta \in Y$, then the long sequence of homotopy groups still remains exact, and hence f has an almost-quasifibration structure which is not a c-quasifibration, since Diagram 1 at stage q is not commutative.
We also asked in [8] if for any connected manifold M with an effective and properly discontinuous action of a discrete group G, $p_1 : \mathcal{O}_a(M, G) \to \mathcal{O}_b(M, G)$ is an almost-quasifibration (c-quasifibration) with respect to $\mathcal{O}_b(M, G)$?

Next, we observe that the exact sequence in the definition of k-c-quasifibration is functorial, in the sense described in the following lemma. The lemma is easy to verify.

Lemma 3.9 Let $f : X \to Y$ and $\hat{f} : \hat{X} \to \hat{Y}$ be two k-c-quasifibrations with respect to \hat{Y} and \tilde{Y}, respectively. Assume that there are continuous maps $g : X \to \hat{X}$ and $h : Y \to \hat{Y}$ making Diagram 6 commutative and that $h(\tilde{Y}) \subset \tilde{Y}$.

\[
\begin{array}{c}
X \\ \downarrow g \\
\hat{X} \\
\end{array} \rightarrow
\begin{array}{c}
Y \\ \downarrow h \\
\hat{Y} \\
\end{array}
\]

Diagram 6

Then, for all $y \in \tilde{Y}$ and $x \in F_y$, Diagram 7 is commutative. Here, $\hat{x} = g(x)$, $\hat{y} = h(y)$ and $\hat{F}_y = \hat{f}^{-1}(\hat{y})$.

\[
\begin{array}{c}
1 \longrightarrow \pi_k(F_y, x) \longrightarrow \pi_k(X, x) \longrightarrow \pi_k(Y, y) \longrightarrow \pi_{k-1}(F_y, x) \longrightarrow \cdots \longrightarrow \pi_0(Y, y) \longrightarrow 1 \\
\downarrow g_* \quad \quad \downarrow g_* \quad \quad \downarrow h_* \quad \quad \downarrow g_* \quad \quad \downarrow h_* \\
1 \longrightarrow \pi_k(\tilde{F}_y, \hat{x}) \longrightarrow \pi_k(\hat{X}, \hat{x}) \longrightarrow \pi_k(\tilde{Y}, \hat{y}) \longrightarrow \pi_{k-1}(\tilde{F}_y, \hat{x}) \longrightarrow \cdots \longrightarrow \pi_0(\tilde{Y}, \hat{y}) \longrightarrow 1
\end{array}
\]

Diagram 7

3.2 Some basic results

We will need the following local to global type lemma for the proofs of the theorems.

Lemma 3.10 Let $\mathcal{O} = \{Y_a\}_{a \in I}$ be a covering of Y by subsets. Consider the partial ordering on I induced by set inclusions of the members of \mathcal{O}, and let this order (denoted by \preceq) be a total ordering. Assume that any compact subset of \tilde{Y} is contained in some $Y_a \in \mathcal{O}$. Let Y_a be an exhaustive subset of $Y_\alpha \in \mathcal{O}$, with the property that if $a \preceq b$ in I, then $\tilde{Y}_a \subset \tilde{Y}_b$. If each $Y_a \in \mathcal{O}$ is k-c-distinguished with respect to \tilde{Y}_a, then f is a k-c-quasifibration with respect to $\bigcup_{a \in I} \tilde{Y}_a$.

Proof Let $y \in \bigcup_{a \in I} \tilde{Y}_a$ and choose $\beta \in I$ so that $y \in \tilde{Y}_\beta$. Let $X_{\alpha} = f^{-1}(Y_{\alpha})$ for all $\alpha \in I$. For $\beta \preceq y \preceq \delta$ in I, consider Diagram 8.

\[
\begin{array}{c}
\pi_{q+1}(X_\delta, F_y, x) \\
\downarrow f_* \quad \quad \downarrow a_* \\
\pi_{q+1}(X_\delta, y) \longrightarrow \pi_q(F_y, x) \longrightarrow \pi_{q+1}(X_\delta, F_y, x) \\
\downarrow f_* \quad \quad \downarrow a_* \\
\pi_{q+1}(Y_\gamma, y) \longrightarrow \pi_q(F_y, x)
\end{array}
\]

Diagram 8
The two vertical triangles are commutative for $q = 0, 1, 2, \ldots, k - 1$, since each $f|_{X_a}$ is a k-c-quasifibration with respect to \tilde{Y}_a, and $Y_{\beta} \subset \tilde{Y}_\gamma \subset \tilde{Y}_\delta$. And the whole diagram is commutative by functoriality of boundary maps. Now, note that, since any compact subset of Y is contained in some member of O, it is contained in Y_a for some $\alpha \in J$ with $\beta \not\approx \alpha$, as $(J, \not\approx)$ is totally ordered. Therefore, a colimit argument on Diagram 8 gives the commutative Diagram 1, and hence we obtain a definition of ∂ for $f : X \to Y$.

\[
\begin{array}{ccccccc}
1 & \longrightarrow & \pi_k(F_y, x) & \overset{i} \longrightarrow & \pi_k(X_y, x) & \overset{f_r} \longrightarrow & \pi_k(Y_y, y) & \overset{\partial} \longrightarrow & \pi_{k-1}(F_y, x) & \longrightarrow & \cdots \\
\downarrow & & \cdots \\
1 & \longrightarrow & \pi_k(F_y, x) & \overset{i} \longrightarrow & \pi_k(X_y, x) & \overset{f_r} \longrightarrow & \pi_k(Y_y, y) & \overset{\partial} \longrightarrow & \pi_{k-1}(F_y, x) & \longrightarrow & \cdots
\end{array}
\]

Diagram 9

Next, consider Diagram 9. This diagram is commutative by functoriality of k-c-quasifibration (see Lemma 3.9). Hence, again by taking colimit we see that, since $f|_{X_a}$ is a k-c-quasifibration with respect to \tilde{Y}_a, for each α, f is a k-c-quasifibration with respect to $\bigcup_{a \in J} \tilde{Y}_a$. \hfill \square

The following proposition is the main ingredient for the proof of Theorem 2.2. This result is analogous to [1], Satz 2.2.

Proposition 3.11 Let $(Y_1; Y_1, Y_2)$ be an excisive triad. Let $\tilde{Y}_{12} \subset Y_1 \cap Y_2$, $\tilde{Y}_1 \subset Y_1$ and $\tilde{Y}_2 \subset Y_2$ be exhaustive subsets such that $\tilde{Y}_{12} \subset \tilde{Y}_1 \cap \tilde{Y}_2$. If Y_1, Y_2 and $Y_1 \cap Y_2$ are all c-distinguished with respect to the corresponding exhaustive subsets above, then f is a c-quasifibration with respect to $\tilde{Y}_1 \cup \tilde{Y}_2$.

To prove the proposition we need the following two lemmas.

Lemma 3.12 Let $Y_1 \subset Y$ be c-distinguished with respect to an exhaustive subset $\tilde{Y}_1 \subset Y_1$. Then $f : (X, F_y, x) \to (Y, y)$ is a weak equivalence for all $y \in \tilde{Y}_1$ if and only if $f : (X, f^{-1}(Y_1), x) \to (Y, Y_1, y)$ is a c-weak equivalence with respect to $f^{-1}(\tilde{Y}_1)$.

Proof For $y \in \tilde{Y}_1$, consider the following map of triples

$$f : (X, f^{-1}(Y_1), f^{-1}(y)) \to (Y, Y_1, y).$$

Then, the proof follows by applying the Five Lemma on the commutative diagram of the long exact sequences of homotopy groups for triples, induced by the above map of triples. \hfill \square

The following lemma is analogous to Proposition 4K.1 of [2], for our variation of the definition of a k-equivalence.

Lemma 3.13 Let $f : (X; X_1, X_2) \to (Y; Y_1, Y_2)$ be a map of excisive triads. Let $\tilde{X}_{12} \subset X_1 \cap X_2$, $\tilde{X}_1 \subset X_1$ and $\tilde{X}_2 \subset X_2$ be exhaustive subsets. Assume that, $f : (X_i, X_1 \cap X_2) \to (Y_i, Y_1 \cap Y_2)$ is a k-c-equivalence with respect to \tilde{X}_{12}, for $i = 1, 2$. Then $f : (X, X_1) \to (Y, Y_1)$ is a k-c-equivalence with respect to \tilde{X}_i, for $i = 1, 2$.

Proof First note that, since \tilde{X}_{12} is exhaustive in $X_1 \cap X_2$, $f : (X_i, X_1 \cap X_2) \to (Y_i, Y_1 \cap Y_2)$ is a k-c-equivalence, for $i = 1, 2$, by Remark 2.5. Therefore, by Proposition 4K.1 of [2], $f : (X, X_1) \to (Y, Y_1)$ is a k-c-equivalence, and hence, in particular, k-c-equivalence with respect to \tilde{X}_i, for $i = 1, 2$. \hfill \square

Now, we can prove Proposition 3.11.

Proof of Proposition 3.11 First note that, since $Y_1 \cap Y_2$ is c-distinguished with respect to \tilde{Y}_{12}, for $i = 1, 2$, $f : (f^{-1}(Y_1), F_y) \to (Y_i, y)$ is a weak equivalence for all $y \in \tilde{Y}_{12}$. See Corollary 3.2. Hence by Lemma 3.12, for $i = 1, 2$,

$$f : (f^{-1}(Y_1), f^{-1}(Y_1) \cap f^{-1}(Y_2)) \to (Y_i, Y_1 \cap Y_2)$$

is a c-weak equivalence with respect to $f^{-1}(\tilde{Y}_{12})$. Now using Lemma 3.13, we get that $f : (X, f^{-1}(Y_1)) \to (Y, Y_1)$ is a c-weak equivalence with respect to $f^{-1} (\tilde{Y}_1)$ for $i = 1, 2$. Applying the converse of Lemma 3.12 we get that $f : (X, F_y) \to (Y, y)$ is a weak equivalence for all $y \in \tilde{Y}_1, i = 1, 2$, and hence for all $y \in \tilde{Y}_1 \cup \tilde{Y}_2$. This completes the proof of the proposition. \hfill \square
4 Proofs of the Theorems

We begin with the proof of Theorem 2.2 which says that a c-quasifibration can be deduced from local data.

Proof of Theorem 2.2 The proof is a consequence of Lemma 3.10, Proposition 3.11 and the Zorn’s lemma.

Let $\mathcal{O} = \{U_a\}_{a \in J}$ be the open covering of Y and $(\tilde{U}_a)_{a \in J}$ be the exhaustive subsets of \mathcal{O}. Recall that $\bigcup_{a \in J} \tilde{U}_a$ is denoted by \bar{Y}. Next, we define a set \mathcal{U} as follows.

$$\mathcal{U} = \{V_K \mid V_K \subset Y, \ V_K = \bigcup_{a \in K \subset J} U_a, \text{ for some } K \subset J, \ V_K \text{ is } c\text{-distinguished with respect to } \tilde{V}_K := \bigcup_{a \in K} \tilde{U}_a, \text{ and for } K_1, K_2 \subset J, \ V_{K_1} \cap V_{K_2} \text{ is } c\text{-distinguished with respect to } \bigcup_{a \in K_1 \cap K_2} \tilde{U}_a\}.$$

By hypothesis, \mathcal{U} is nonempty, since it contains \mathcal{O}. Now, we partially order \mathcal{U} using set inclusions of its members. Then, given any chain \mathcal{C} in \mathcal{U}, Lemma 3.10 shows that $\bigcup_{V \in \mathcal{C}} V$ is c-distinguished with respect to $\bigcup_{V \in \mathcal{C}} \bar{V}$. This is because any compact subset of $\bigcup_{V \in \mathcal{C}} V$ is contained in one of the members of \mathcal{C}.

Therefore, by the Zorn’s lemma \mathcal{U} has a maximal element, say V_{K_0}. We claim that $V_{K_0} = Y$. If not, then choose $U \in \mathcal{O}$ such that U is not contained in V_{K_0}. Now since, $\mathcal{O} \subset \mathcal{U}$, by definition of \mathcal{U}, $V_{K_0} \cap U$ is c-distinguished with respect to $(\bigcup_{a \in K_0} \tilde{U}_a) \cap \bar{U}$. Next, using Proposition 3.11, we get that $V_{K_0} \cap U$ is a c-distinguished with respect to $(\bigcup_{a \in K_0} \tilde{U}_a) \cup \bar{U}$. Hence $V_{K_0} \cup U$ is an element of \mathcal{U}, which is a contradiction to the maximality of V_{K_0}.

Therefore, $V_{K_0} = Y$ and hence f is a c-quasifibration with respect to the exhaustive subset $\bigcup_{a \in K_0} \tilde{U}_a$. This completes the proof of the theorem. \hfill \Box

Next, we prove Theorem 2.3 which says that under a colimit k-c-quasifibration is preserved.

Proof of Theorem 2.3 Theorem 2.3 is an immediate application of Lemma 3.10. We just have to note that under the colimit topology on Y, induced by the filtration $\{Y_1\}_{k \in \mathbb{N}}$ of T_1 subspaces, any compact subset of \bar{Y} is contained in one of the members of the filtration. \hfill \Box

Recall that Theorem 2.7 says that a certain kind of deformation preserves c-quasifibration.

Proof of Theorem 2.7 Let us first recall the notations and the hypothesis.

$f : X \to Y$ is a surjective map, $Y_1 \subset Y$ and $X_1 = f^{-1}(Y_1)$. $\bar{Y} \subset Y$ and $\bar{Y}_1 \subset Y_1$ are exhaustive subsets, such that $\bar{Y}_1 \subset \bar{Y}$. (H, h) is a deformation from f to $f_1 = f|_{Y_1} : X_1 \to Y_1$ such that $h_1(\bar{Y}) \subset \bar{Y}_1$. Furthermore, for all $y \in \bar{Y}$, $H_{1|f^{-1}(y)} : f^{-1}(y) \to f^{-1}(h_1(y))$ is a weak equivalence.

Now, consider Diagrams 10 and 11 for all $y \in \bar{Y}$.

Note that, since $H_{1|f^{-1}(y)} : f^{-1}(y) \to f^{-1}(h_1(y))$ is a weak equivalence, an application of the Five Lemma to the long exact sequence of homotopy groups of pairs proves that the composition $i \circ H_1$ is a weak equivalence. Next, note that since H is a deformation, the inclusion map i is a weak equivalence. Therefore, we conclude that the vertical map H_1 in Diagram 10 is a weak equivalence.

$$\begin{array}{ccc}
(X, f^{-1}(y)) & \xrightarrow{h_1} & (X_1, f^{-1}(h_1(y))) \\
\downarrow & & \downarrow \quad i \\
(X_1, f^{-1}(h_1(y))) & \xrightarrow{i} & (X, f^{-1}(h_1(y)))
\end{array}$$

Diagram 10

Hence, in Diagram 11, the top horizontal map is a weak equivalence. Also, the right hand side vertical map is a weak equivalence, since Y_1 is c-distinguished with respect to \bar{Y}_1. Finally, the below horizontal map is a weak equivalence since h is a deformation.
\[(X, f^{-1}(y)) \xrightarrow{H_1} (X_1, f^{-1}(h_1(y))) \]
\[
\downarrow f \hspace{1cm} \downarrow f_1 \\
(Y, y) \xrightarrow{h_1} (Y_1, h_1(y))
\]

Diagram 11

Therefore, we conclude that the left hand side vertical map in Diagram 11 is a weak equivalence for all \(y \in \tilde{Y}\), that is \(f\) is a \(c\)-quasifibration with respect to \(\tilde{Y}\).
This completes the proof of the theorem. \(\square\)

Funding No funds, grants, or other support was received.

Declarations

Conflicts of interest The author has no conflict of interest to declare that are relevant to the content of this article.

References

1. Dold, A., Thom, R. Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math., Second Series 67, 239-281 (1958)
2. Hatcher, A.: Algebraic Topology. Cambridge University Press. First south Asian edition. (2003)
3. Hempel, J.: 3-manifolds. Ann. of Math. Studies 86, Princeton University Press, Princeton, N.J. (1976)
4. May, J.P.: Weak equivalences and quasifibrations. In: Groups of Self-equivalences and Related Topics, pp. 91-101. Lecture Notes in Mathematics, 1425. Eds. A. Dold, B. Eckmann and F. Takens. Springer-Verlag, Proceedings, Montreal (1988)
5. I. Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Madison, WI, 2001), 205-222, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, (2002)
6. Roushon, S.K.: Configuration Lie groupoids and orbifold braid groups. Bull. Sci. math. 171 (2021) 35p. https://doi.org/10.1016/j.bulsci.2021.103028
7. Roushon, S.K.: Quasifibrations in configuration Lie groupoids and orbifold braid groups. Preprint. https://doi.org/10.48550/arXiv:2106.08110
8. Roushon, S.K.: Almost-quasifibrations and fundamental groups of orbit configuration spaces. https://doi.org/10.48550/arXiv:2111.06159
9. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 no. 5, 401-487 (1983)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.