Cryptanalysis of a computer cryptography scheme based on a filter bank

David Arroyo\(^a\), Chengqing Li\(^b\), Shujun Li\(^c\) and Gonzalo Alvarez\(^a\)

\(^a\)Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas, Serrano 144, 28006 Madrid, Spain
\(^b\)Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
\(^c\)FernUniversität in Hagen, Lehrgebiet Informationstechnik, Universitätsstraße 27, 58084 Hagen, Germany

Abstract

This paper analyzes the security of a recently-proposed signal encryption scheme based on a filter bank. A very critical weakness of this new signal encryption procedure is exploited in order to successfully recover the associated secret key.

Key words: Chaotic encryption, logistic map, known-plaintext attack, cryptanalysis
PACS: 05.45.Ac, 47.20.Ky.

1 Introduction

The application of chaotic systems to cryptographical issues has been a very important research topic since the 1990s [1–4]. This interest was motivated by the close similarities between some properties of chaotic systems and some characteristics of well-designed cryptosystems [5, Table 1]. Nevertheless, there exist security defects in some chaos-based cryptosystems such that they can be partially or totally broken [6–11].

In [12] the encryption procedure is carried out by decomposing the input plaintext signal into two different subbands and masking each of them with

* Corresponding author: David Arroyo (david.arroyo@iee.es).

Preprint submitted to Elsevier 2 February 2008
a pseudo-random number sequence generated by iterating the chaotic logistic map. The decomposition of the input plaintext signal $x[n]$ is driven by

$$t_0[n] = K_0 \sum_{\forall m} x[m] h_0[2n - m], \quad (1)$$
$$t_1[n] = K_1 \sum_{\forall m} x[m] h_1[2n - m], \quad (2)$$

where h_0, h_1 are so-called “analysis filters” and K_0, K_1 are gain factors.

Then, the masking stage generates the ciphertext signal $(v_0[n], v_1[n])$ according to the following equations:

$$v_0[n] = t_0[n] + \alpha_0(t_1[n]), \quad (3)$$
$$v_1[n] = t_1[n] - \alpha_1(v_0[n]), \quad (4)$$

where $\alpha_i(u) = u + s_i[n]$ and $s_i[n]$ is the state variable of a logistic map with control parameter $\lambda_i \in (3, 4)$ defined as follows:

$$s_i[n] = \lambda_i s_i[n - 1](1 - s_i[n - 1]). \quad (5)$$

Substituting $\alpha_i(u) = u + s_i[n]$ into Eqs. (3) and (4), we have

$$v_0[n] = (t_0[n] + t_1[n]) + s_0[n], \quad (6)$$
$$v_1[n] = (t_1[n] - v_0[n]) - s_1[n]. \quad (7)$$

The secret key of the cryptosystem is composed of the initial conditions and the control parameters of the two logistic maps involved, i.e., $s_0[0], s_1[0], \lambda_0$ and λ_1.

The decryption procedure is carried out by doing

$$t_1[n] = v_1[n] + \alpha_1(v_0[n]), \quad (8)$$
$$t_0[n] = v_0[n] - \alpha_0(t_1[n]). \quad (9)$$

Then, the plaintext signal is recovered with the following filtering operations:

$$\tilde{x}[n] = \frac{1}{K_0} \sum_{\forall m} t_0[m] f_0[n - 2m] + \frac{1}{K_1} \sum_{\forall m} t_1[m] f_1[n - 2m], \quad (10)$$

1 In [12], the authors use x_i to denote the state variable of the logistic map. However, this nomenclature may cause confusion because the plaintext signal is denoted by x. Therefore, we turn to use another letter, s. In addition, we unify the representation of $x_i(k)$ to be in the form $s_i[n]$ because all other signals are in the latter form.
where \(f_0, f_1 \) are so-called “synthesis filters”. To ensure the correct recovery of the plaintext signal, the analysis and synthesis filters must satisfy a certain requirement as shown in Eq. (8) of [12]. The reader is referred to [12] for more information about the inner working of the cryptosystem.

This paper focuses on the security analysis of the above cryptosystem. The next section points out a security problem about the reduction of the key space. Section 3 discusses how to recover the secret key of the cryptosystem by a known-plaintext attack. In the last section the conclusion is given.

2 Reduction of the key space

As it is pointed out in [5, Rule 5], the key related to a chaotic cryptosystem should avoid non-chaotic areas. In [12] it is claimed that the key space of the cryptosystem under study is given by the set of values \(\lambda_i \) and \(s_i[0] \) satisfying \(3 < \lambda_i < 4 \) and \(0 < s_i[0] < 1 \) for \(i = 0, 1 \). However, when looking at the bifurcation diagram of the logistic map (Fig. 1), it is obvious that not all candidate values of \(\lambda_i \) and \(s_i[0] \) are valid to ensure the chaoticity of the logistic map. There are periodic windows which have to be avoided by carefully choosing \(\lambda_i \). As a consequence, the available key space is drastically reduced.

Fig. 1. Bifurcation diagram of the logistic map

Asymptotic values

\[\lambda \]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 3.2 3.4 3.6 3.8 4
3 Known-plaintext attack

In a known-plaintext attack the cryptanalyst possesses a plaintext signal \(\{x[n]\} \) and its corresponding encrypted subband signals \(\{v_0[n]\} \) and \(\{v_1[n]\} \). Because \(\{h_0[n]\}, \{h_1[n]\}, K_0 \) and \(K_1 \) are public, we can get \(\{t_0[n]\} \) and \(\{t_1[n]\} \) from \(\{x[n]\} \). Then we can get the values of \(\{s_0[n]\} \) and \(\{s_1[n]\} \) as follows:

\[
\begin{align*}
 s_0[n] &= v_0[n] - t_0[n] - t_1[n], \\
 s_1[n] &= t_1[n] - v_0[n] - v_1[n].
\end{align*}
\] (11) (12)

For \(n = 0 \), the values of the subkeys \(s_0[0] \) and \(s_1[0] \) have been obtained. Furthermore, we can obtain the control parameters by just doing the following operations for \(i = 0, 1 \):

\[
\lambda_i = \frac{s_i[n+1]}{s_i[n](1 - s_i[n])}.
\] (13)

In [12], the authors did not give any discussion about the finite precision about the implementation of the cryptosystem in computers. If the floating-point precision is used, then the value of \(\lambda_i \) can be estimated very accurately. It was experimentally verified that the error for the estimation of \(\lambda_i \) using (13), and working with floating-point precision, was never greater that \(4 \cdot 10^{-12} \). If the fixed-point precision is adopted, the deviation of the parameter \(\lambda_i \) estimated exploiting Eq. (13) from the real \(\lambda_i \) may be very large. Fortunately, according to the following Proposition [13, Proposition 2], the error is limited to \(2^4/2^L \) (which means only \(2^4 \) possible candidate values to be further guessed) when \(s[n+1] \geq 0.5 \).

Proposition 1 Assume that the logistic map \(s[n+1] = \lambda \cdot s[n] \cdot (1 - s[n]) \) is iterated with \(L \)-bit fixed-point arithmetic and that \(s(n+1) \geq 2^{-i} \), where \(1 \leq i \leq L \). Then, the following inequality holds: \(|\lambda - \bar{\lambda}| \leq 2^{i+3}/2^L \), where \(\bar{\lambda} = \frac{s[n+1]}{s[n] \cdot (1 - s[n])} \).

4 Conclusion

In this paper we have analyzed the security properties of the cryptosystem proposed in [12]. It has been shown that there exists a great number of weak keys derived from the fact that the logistic map is not always chaotic. In addition, the cryptosystem is very weak against a known-plaintext attack in the sense that the secret key can be totally recovered using a very short plaintext.
Consequently, the cryptosystem introduced by [12] should be discarded as a secure way of exchanging information.

Acknowledgments

The work described in this paper was partially supported by Ministerio de Educación y Ciencia of Spain, Research Grant SEG2004-02418. Shujun Li was supported by the Alexander von Humboldt Foundation, Germany.

References

[1] S. Li, Analyses and new designs of digital chaotic ciphers, Ph.D. thesis, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China, available online at http://www.hooklee.com/pub.html (June 2003).

[2] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Chaotic cryptosystems, in: L. D. Sanson (Ed.), Proc. 33rd Annual 1999 International Carnahan Conference on Security Technology, IEEE, 1999, pp. 332–338.

[3] L. Kocarev, Chaos-based cryptography: A brief overview, IEEE Circuits Syst. Mag. 1 (2001) 6–21.

[4] T. Yang, A survey of chaotic secure communication systems, Int. J. Comp. Cognition 2 (2) (2004) 81–130.

[5] G. Alvarez, S. Li, Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos 16 (8) (2006) 2129–2151.

[6] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalyzing a discrete-time chaos synchronization secure communication system, Chaos, Solitons and Fractals 21 (3) (2004) 689–694.

[7] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Breaking parameter modulated chaotic secure communication system, Chaos, Solitons and Fractals 21 (4) (2004) 783–787.

[8] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalyzing an improved security modulated chaotic encryption scheme using ciphertext absolute value, Chaos, Solitons and Fractals 23 (5) (2004) 1749–1756.

[9] G. Alvarez, S. Li, F. Montoya, G. Pastor, M. Romera, Breaking projective chaos synchronization secure communication using filtering and generalized synchronization, Chaos, Solitons and Fractals 24 (3) (2005) 775–783.
[10] S. Li, G. Alvarez, G. Chen, Breaking a chaos-based secure communication scheme designed by an improved modulation method, Chaos, Solitons and Fractals 25 (1) (2005) 109–120.

[11] G. Alvarez, Security problems with a chaos-based deniable authentication scheme, Chaos, Solitons and Fractals 26 (1) (2005) 7–11.

[12] B. W.-K. Ling, C. Y.-F. Ho, P. K.-S. Tam, Chaotic filter bank for computer cryptography, Chaos, Solitons and Fractals 34 (2007) 817–824.

[13] S. Li, C. Li, G. Chen, K.-T. Lo, Cryptanalysis of the RCES/RSES image encryption scheme, J. Systems and Software, in press, doi:10.1016/j.jss.2007.07.037 (2007).