Airspace dimension assessment with nanoparticles as a proposed biomarker for emphysema

H Laura Aaltonen,1,2,3 Madeleine Petersson Sjögren,4,5 Jonas K F Jakobsson,4,5 Hanna Nicklasson,1 Sandra Díaz,1,6 Francisco Sánchez Montiel,1,2 Sophia Zackrisson,1,2 Veronica Ideböhn,4 Gunnar Engström,7 Jakob Löndahl,4,5 Per Wollmer1,2

ABSTRACT
Airspace dimension assessment with nanoparticles (AIDA) is a novel method to measure distal airspace radius non-invasively. In this study, AIDA radii were measured in 618 individuals from the population-based Swedish Cardiopulmonary Biomaging Study, SCAPIS. Subjects with emphysema detected by computed tomography were compared to non-emphysematous subjects. The 47 individuals with mainly mild-to-moderate visually detected emphysema had significantly larger AIDA radii, compared with non-emphysematous subjects (326±48 µm vs 291±36 µm); OR for emphysema per 10 µm; 1.22 (1.13–1.30, p<0.0001). Emphysema according to CT densitometry was similarly associated with larger radii compared with non-emphysematous CT examinations (316±41 µm vs 291±36 µm); OR per 10 µm: 1.16 (1.08–1.24, p<0.0001). The results show that AIDA is a potential biomarker for emphysema in individuals in the general population.

INTRODUCTION
Chronic obstructive pulmonary disease (COPD) originates in the distal airspaces, causing chronic inflammation and irreversible airspace enlargement, emphysema. The emphysematous component of COPD can be diagnosed by CT, which may be poorly accessible, expensive and complicated by large interobserver variation in interpretation, especially at early stages of disease. Reduced diffusing capacity for carbon monoxide (DLCO), in the presence of airflow obstruction, is indicative of emphysema, but the method is not specific.1

We have suggested a simple method, airspace dimension assessment (AiDA), to determine distal airspace radius based on inhalation of nanoparticles. Nanoparticles deposit in the distal airspaces by diffusion, the probability being dependent on residence time in the lung and distance to an airspace wall. Measurement of deposition related to time allows the mean airspace radius (rAiDA) to be calculated.2,4 In a proof-of-concept study, a preliminary version of the method differentiated emphysema patients from healthy controls.6

The aim of this study was to determine if rAiDA differs between persons with and without CT-verified emphysema in an unselected population. We expected persons with enlarged, emphysematous airspaces to have larger rAiDA compared with non-emphysematous individuals. Secondary and tertiary aims were to determine whether subjects with emphysema suggested by lung function parameters have larger rAiDA relative to non-emphysematous persons, and to investigate the role of comorbidities.

METHODS
The Swedish CArdioPulmonary bioImage Study (SCAPIS) is a national population-based study with 30,154 participants between 50 and 64 years of age. Our study was performed in a random sample of participants examined in Malmö, Sweden, between 2014 and 2016 (figure 1, online supplemental 1).

In AiDA measurements, the subjects inhaled 50 nm nanoparticles and held their breath for 5–10 s. Exhaled nanoparticles were measured from a sample at a volumetric lung depth of 1300 mL. The procedure was repeated six times. Particle recovery was calculated as the ratio between exhaled and inhaled concentration.7 An exponential decay curve was fitted to the recovery values obtained at different breath-hold times, and the half-life (t1/2) was calculated. By solving the diffusion equation, rAiDA is obtained:

\[r_{AiDA} = 2.89 \sqrt{\frac{D}{t_{1/2}}} \]

where D is the diffusion coefficient given by the Stokes-Einstein equation.2

A chest CT was obtained and interpreted visually by one of four chest radiologists. A semiquantitative emphysema score with a maximum value of...
18 was recorded (online supplemental 1). CT-derived total lung capacity by volumetric CT was calculated, and the percentage of voxels with a Hounsfield unit value below −950 (RV-950) was recorded. Emphysema was also defined quantitatively using two RV-950 percentage thresholds; >7% and >5%. Pulmonary function tests were performed according to American Thoracic Society and European Respiratory Society (ATS/ERS) standards.

RESULTS

Of the 744 subjects who underwent AiDA measurements, 618 were eligible for analysis (figure 1). The 47 persons with visually detected emphysema demonstrated an average emphysema score of 3.4±3.2, indicating mild-to-moderate disease. Most subjects had normal lung function, but some showed airflow obstruction. The r_{AiDA} was approximately normally distributed (online supplemental 3).

The persons with emphysema had a significantly larger r_{AiDA} compared with non-emphysematous subjects (tables 1A, B). By visual CT interpretation, the mean difference was 35 μm (95% CI 21 to 50 μm, p<0.0001). Findings were similar for emphysema defined by CT densitometry; mean differences were 25 μm (95% CI 11 to 36 μm, p<0.0001) and 37 μm (95% CI 15 to 59 μm, p<0.0001) for the 5% and 7% thresholds, respectively.

Dividing the r_{AiDA} into tertiles, we observed that with increasing radius, an increasing percentage of the subjects had emphysema and airflow obstruction. (online supplemental 4)

Logistic regression analysis was conducted using several definitions of emphysema and airflow obstruction (table 2). The radius was associated with increased OR with little effect of adjustments. No comorbidities caused significant differences in r_{AiDA} (online supplementals 1 and 2).

Table 1A Subject characteristics with and without visually detected emphysema

	Absent	Present	T-test						
	N	M	SD	Range	N	M	SD	Range	P value
Age (year)	563	57.3	4.5	50–65	47	59.2	4.2	51–65	0.004
Weight (kg)	563	80	16	43–146	47	81	17	53–121	NS
Height (cm)	563	171	9	146–199	47	172	10	158–194	NS
BMI (kg/m²)	563	27	5	17–45	47	27	4	18–36	NS
TLC (CTV) (L)	493	5.3	1.3	2.3–10.1	40	6.0	1.5	4.0–10.0	0.006
VC (L)	561	4.0	0.9	2.1–6.5	47	4.9	1.1	3.9	NS
VC (% pred)	561	110	15	66–154	47	107	15	60–143	NS
FEV₁ (L)	561	3.1	0.70	1.55–5.35	47	2.7	0.91	0.99–5.35	0.006
FEV₁ (% pred)	561	107	14	65–152	47	93	22	30–138	<0.0001
D_{LCO} (mmol min⁻¹ kPa⁻¹)	530	8.12	1.61	4.47–14.66	45	7.16	2.20	4.56–12.82	0.006
D_{LCO} (% pred)	526	91	13	54–170	43	81	20	29–134	0.001
RV−950 (%)	493	1.9	1.9	0–11	40	2.8	4.3	0–23	NS
Pack-years	517	9.9	12.8	0–86	44	27.6	16.0	0–66	<0.0001
r_{AiDA} (µm)	563	291	36	214–428	47	326	48	266–516	0.00001

Table 1B Subject characteristics with and without emphysema according to CT RV-950 cutoff >5%

	Absent	Present	T-test						
	N	M	SD	Range	N	M	SD	Range	P value
Age (y)	492	57.4	4.5	50–65	41	57.5	4.7	50–65	NS
Weight (kg)	492	80	16	43–139	41	89	13	54–106	NS
Height (cm)	492	171	9	146–199	41	177	9	151–197	<0.0001
BMI (kg/m²)	492	27	5	17–45	41	25	4	18–34	0.01
TLC (CTV) (L)	492	5.2	1.2	2.3–10.1	41	7.1	9.4	5.5–9.2	<0.0001
VC (L)	492	3.9	0.9	1.9–7.3	40	4.8	0.9	2.5–6.4	<0.0001
VC (% pred)	492	110	15	60–154	40	112	13.2	78–139	NS
FEV₁ (L)	492	3.1	0.72	0.27–5.35	40	3.45	0.95	0.99–5.08	0.03
FEV₁ (% pred)	492	106	15	46–152	40	103	22	30–139	NS
D_{LCO} (mmol min⁻¹ kPa⁻¹)	463	8.07	1.67	2.2–14.3	38	8.49	1.93	2.6–11.3	NS
D_{LCO} (% pred)	460	91	13	42–170	38	89	17	29–117	NS
RV−950 (%)	492	1.4	1.2	0–5	41	7.4	5.2	5–23	NS
Pack-years	453	10.5	14.2	0–86	38	10.1	14.8	0–54	NS
r_{AiDA} (µm)	492	291	36	214–516	41	316	41	239–412	<0.0001

AiDA, Airspace dimension assessment with nanoparticles; BMI, body mass index; TLC (CTV), total lung capacity measured by volumetric CT; D_{LCO}, diffusing capacity for carbon monoxide; FEV₁, forced expiratory flow in one second; NS, not significant; r_{AiDA}, distal airspace radius measured with the AiDA method; RV-950, the relative volume of voxels in lung parenchyma with a Hounsfield Unit value less than -950; TLC, total lung capacity; VC, vital capacity.
DISCUSSION

This is the first study where distal airspace radii have been determined by nanoparticles in subjects with emphysema. In a previous study, we showed nanoparticle recovery at a single breath-hold time to be different between healthy subjects and patients with moderate to severe COPD. The present study in a population-based sample extends the information to calculation of distal airspace radius, \(r_{\text{AiDA}} \), in subjects with mainly mild emphysema. Our results are in line with comparative methods \(^{7,9} \) (online supplemental S).

The small airways, <2 mm in diameter, have been suggested as the major site of early pathology in COPD. The repetitive toxic deposition stimulates an inflammatory response, repair and remodelling sequence, which later gives rise to a quantifiable airflow obstruction currently used as the diagnostic standard. \(^{10} \)

There is a long clinically silent period, where the pathophysiological changes do not result in airflow obstruction, and therefore the early stages of COPD often remain undiagnosed. \(^{1} \) Also, spirometry alone will not differentiate between obstruction caused by airway narrowing and emphysema.

Due to their small size, nanoparticles traverse the distal airspaces and deposit there by diffusion. The \(r_{\text{AiDA}} \) is not affected by specific airway generation, but corresponds to a mean of airspaces distal to generation 15–17. This may not apply in diseased airspaces and deposit there by diffusion. The \(r_{\text{AiDA}} \) distal airspace radius measured with the AiDA method, RV-950, the relative volume of voxels in lung parenchyma with a Hounsfield Unit value less than -950; VC, vital capacity.

The AiDA measurements cause a low exposure to nanoparticles, \(D_{LCOP} \) diffusing capacity for carbon monoxide; FEV\(_1\), forced expiratory flow in 1 s; LLN, lower limit of normal; NS, not significant; \(r_{\text{AiDA}} \) distal airspace radius measured with the AiDA method; RV-950 <7%.

Emphysema present in CT, visual evaluation	N	Model 1 OR	Model 2 OR	Model 3 OR
Not present	47	1.216 (1.134–1.303)**	1.209 (1.123–1.318)**	1.203 (1.184–1.311)**
Emphysema according to CT cut-off RV-950 >5%	41	1.157 (1.075–1.245)**	1.141 (1.054–1.235)*	1.146 (1.055–1.245)*
Airflow obstruction present according to FEV\(_1\)/VC <0.7	38	1.170 (1.088–1.258)**	1.166 (1.083–1.256)**	1.132 (1.044–1.227)*
Airflow obstruction present according to FEV\(_1\)/VC <LLN	36	1.196 (1.109–1.289)**	1.196 (1.107–1.292)**	1.162 (1.069–1.264)**
Emphysema suggested by D\(_{CO}\) <2SD	28	1.213 (1.137–1.318)**	1.18 (1.09–1.29)**	
Emphysema according to CT cut-off RV-950 >7%	18	1.019 (1.009–1.029)**		
Any respiratory symptom†	219	NS	1.051 (1.005–1.100)* NS	

Model 1, OR per 10 µm crude, unadjusted model. Model 2, with AiDA adjusted for age, sex, height and weight. Model 3, as Model 2 with additional adjustment for pack-years. Due to small N, models 2 and 3 are not given for emphysema suggested by D\(_{CO}\) < 2SD and emphysema by CT cutoff RV-950 <7%.

*P<0.05. **p<0.01.

† That is, cough, phlegm, wheezing or dyspnoea.

discussion on persons with predominantly airway involvement versus parenchymal disease phenotype are warranted, as well as studies to visualise where exactly the particles deposit.

We suggest AiDA is a potential biomarker for emphysema. \(^1\) To validate the method, however, a diagnostic accuracy study in target populations should be conducted, and sensitivity and specificity calculated.

Acknowledgements The authors would like to acknowledge Haris Zilic from the Department of Imaging and Physiology, Skåne University Hospital Malmö, Sweden, for conducting the AiDA measurements.

Contributors PW, JL, GE, LHA and JJ participated in the experimental design. LHA, JJ, MPS, VI, FSM and SD participated in the data collection. All authors participated in the data analysis and interpretation. LHA prepared the first draft of the manuscript. All authors revised and approved the final version to be published. All authors are accountable for all aspects of the work.

Funding This work was supported by The Swedish Heart and Lung Foundation (grant number not applicable), Knut and Alice Wallenberg Foundation (grant number not applicable), The Swedish Research Council (project 2011-3560); FORTE (grant number not applicable); the Crafoord foundation (grant number not applicable); the Swedish Governmental Agency for Innovation Systems/VINNOVA (grant number not applicable); the ERA-NET project EUrONanoMed2 (grant number not applicable); Governmental funding of clinical research within the National Health Services (grant number not applicable), Skåne region (grant number not applicable). The SCAPIS project has received additional material and equipment support from University of Gothenburg and Sahlgrenska University Hospital, Karolinska Institutet and Karolinska University Hospital, Linköping University and University Hospital, Lund University and Skåne University Hospital, Örebro University and University Hospital, Uppsala University and University Hospital.

Competing interests PW and JL have a patent issued for the device used in the measurements. PW reports personal fees from AstraZeneca and Chiesi Pharma, outside the submitted work, SZ reports grants from Allmänna sjukhuset i Malmö, Stiftelsen för bekämpande av cancer (Translation: Malmö general hospital's foundation for defeating cancer), and grants from Stiftelsen för cancerforskning vid onkologiska kliniken vid Universitetssjukhuset Malmö (Translation: Foundation for cancer research within the department of oncology in Malmö University Hospital) outside the submitted work.

Patient consent for publication Not required.
Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
H Laura Aaltonen http://orcid.org/0000-0002-4520-3229
Jakob Löndahl http://orcid.org/0000-0001-9379-592X

REFERENCES
1. Mannino DM. Biomarkers for chronic obstructive pulmonary disease diagnosis and progression: insights, disappointments and promise. *Curr Opin Pulm Med* 2018.
2. Löndahl J, Jakobsson JK, Broday DM, et al. Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease? *Int J Nanomedicine* 2017;12:41–51.
3. Jakobsson JKF, Hedlund J, Kumlin J, et al. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath. *Sci Rep* 2016;6:36147.
4. Aaltonen HL, Kindvall SS, Jakobsson JK, et al. Airspace dimension assessment with nanoparticles reflects lung density as quantified by MRI. *Int J Nanomedicine* 2018;13:2989–95.
5. Jakobsson JKF, Wollmer P, Löndahl J. Charting the human respiratory tract with airborne nanoparticles - evaluation of the Airspace Dimension Assessment technique. *J Appl Physiol* 2018. doi:10.1152/japplphysiol.00410.2018. [Epub ahead of print: 06 Sep 2018].
6. Aaltonen HL, Jakobsson JK, Diaz S, et al. Deposition of inhaled nanoparticles is reduced in subjects with COPD and correlates with the extent of emphysema: proof of concept for a novel diagnostic technique. *Clin Physiol Funct Imaging* 2018;38:1068–14.
7. Tanabe N, Vasiilescu DM, McDonough JE, et al. Micro-Computed tomography comparison of preterminal bronchioles in centrilobular and Panlobular emphysema. *Am J Respir Crit Care Med* 2018. doi:10.1164/rccm.201805-1057OC. [Epub ahead of print: 06 Sep 2018].
8. Aaltonen HL, Kindvall SS, Jakobsson JK, et al. Deposition of inhaled nanoparticles is reduced in subjects with COPD and correlates with the extent of emphysema: proof of concept for a novel diagnostic technique. *Clin Physiol Funct Imaging* 2018;38:1068–14.
9. Aaltonen HL, Kindvall SS, Jakobsson JK, et al. Deposition of inhaled nanoparticles is reduced in subjects with COPD and correlates with the extent of emphysema: proof of concept for a novel diagnostic technique. *Clin Physiol Funct Imaging* 2018;38:1068–14.
10. Husseini T, Löndahl J, Paasonen P, et al. Modeling regional deposited dose of submicron aerosol particles. *Sci Total Environ* 2013;458-460:140–9.