Further improvement of warming-equivalent emissions calculation

M. A. Smith1,2, M. Cain1,3✉ and M. R. Allen3,2

npj Climate and Atmospheric Science (2021)4:19 ; https://doi.org/10.1038/s41612-021-00169-8

GWP* was recently proposed1 as a simple metric for calculating warming-equivalent emissions by equating a change in the rate of emission of a short-lived climate pollutant (SLCP) to a pulse emission of carbon dioxide. Other metrics aiming to account for the time-dependent impact of SLCP emissions, such as CGWP, have also been proposed2. In 2019 an improvement to GWP* was proposed by Cain et al.3, hereafter CLA, combining both the rate and change in rate of SLCP emission, justified by the rate of forcing decline required to stabilise temperatures following a recent multi-decade emissions increase. Here we provide a more direct justification of the coefficients used in this definition of GWP*, with a small revision to their absolute values, by equating CO2 and SLCP forcing directly, without reference to the temperature response. This provides a more direct link to the impulse-response model used to calculate GWP values and improves consistency with CGWP values.

The formula for CO2-warming-equivalent emissions using GWP* in CLA is:

\[E^*(t) = \frac{(1-s)N(t)}{dE} + sE(t), \]

where \(E(t) \) are CO2-equivalent emissions defined using GWP with a time-horizon \(H \), much longer than the SLCP lifetime, and \(s \) was a coefficient introduced by CLA and estimated by reproducing the response to a simple climate model to various emission scenarios. \(\Delta E(t) = E(t) - E(t-\Delta t) \), the change in emissions over a recent time period \(\Delta t \). Twenty years has been used in implementations of GWP* to date1,4 and appears to work well for methane (here we explain why this is the case).

Setting \(E^*(t) \) to zero in Eq. (1) shows the ratio \(s/|H(1-s)| \) defines the decay rate of SLCP emissions required to have the same warming impact as zero CO2 emissions. CLA justify a value of 0.33% per year, giving \(s = 0.25 \) for \(H = 100 \) years, as the decline rate required to give stable temperatures under typical values of the Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR). They further justify this formulation using the constraint that total CO2-warming-equivalent emissions over \(H \) years corresponding to a steady emission of an SLCP starting in year zero should be equal to total CO2-equivalent emissions over the same period, arguing that equal constant CO2-equivalent emissions give, by construction, the same forcing at the GWP time-horizon, and redistributing CO2 emissions over time has minimal impact on final warming. An advantage of the above formula is that it involves no new model-dependent coefficients other than \(s \).

Although confirmed by fitting the warming response to methane emissions in an explicit climate model, this justification is not entirely satisfactory: if the aim is to produce a CO2 emissions series that generates the same forcing trajectory as that generated by the SLCP, there should be no need to invoke the warming response. The relationship between CO2-warming-equivalent emissions and radiative forcing should, by construction, replicate the relationship between CO2 emissions and radiative forcing.

We can focus on timescales of 30–200 years, on the grounds that on shorter timescales the temperature response is dominated by internal variability5, so exact reproduction of forcing timeseries is irrelevant, while 200 years captures at least the initial cumulative impact of CO2 emissions. By restricting the timescale of interest, CO2 emissions and radiative forcing can be approximately related by the first-order equation:

\[aE_{CO2}(t) = \frac{\Delta E(t)}{dE} + \rho F(t), \]

where \(\rho \) is the rate of decline of radiative forcing over these timescales under zero emissions, and \(a \) is a constant representing the forcing impact of ongoing CO2 emissions. In terms of the linear impulse-response model used to provide GWP values in ARS5,6, this formulation assumes the short adjustment timescales are fully equilibrated and neglects the very long cumulative timescale, in effect fitting an exponential to the mid-range impulse-response function. As we show below, this turns out to be a surprisingly good approximation.

We express \(a \) in familiar terms by noting that the forcing response after \(H \) years to steady CO2 emissions of 1 kg per year, starting in year 0, is by definition the Absolute Global Warming Potential of CO2, or AGWP\(_H\) (this is identical to the standard definition15,6 because the calculation of AGWP\(_H\) values is based on a linear model). Hence, integrating equation (2) for \(E_{CO2} = 1 \)

\[F(H) = AGWP_H = a \frac{(1-e^{-\rho H})}{\rho}. \]

So \(a = AGWP_H \rho (1 - e^{-\rho H})^{-1} \), or 1.08 W m\(^{-2}\) per 1000 GtCO2 with \(\rho = 0.33\% \) per year, \(H = 100 \) years and the ARS value5 of AGWP\(_{100}\) of 91.7 W-years m\(^{-2}\) per 1000 GtCO2. With these coefficients, this expression (solid black line in Fig. 1) reproduces the forcing response to constant unit CO2 emissions computed using the full impulse-response model used for GWP calculations in ARS (solid red line) accurately over multi-decade to century timescales. Decreasing \(\rho \) (dotted line) causes the fit to deteriorate on all timescales, since it fails to capture the curvature of the AGWP as a function of \(H \), while increasing \(\rho \) (dashed line) causes...

1Atmospheric Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK. 2Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK. 3Centre for Environmental and Agricultural Informatics, School of Water, Energy and Environment, Cranfield University, Bedford, UK. ✉email: michelle.cain@cranfield.ac.uk

Published in partnership with CECCR at King Abdulaziz University
The radiative forcing due to a constant SLCP emission of 1 kg CO2-equivalent per year starting in year 0 can be expressed:

$$F(t) = AGWP_H(1 - e^{-t/H}) \cdot \alpha H g(s)(1 - s)(1 - e^{-t/H}),$$

provided \(t \ll H\), so \(e^{-H/t} \ll 1\), where AGWP_H is the AGWP of CO2 for the time-horizon used to evaluate CO2-equivalent emissions and \(t\) is the SLCP lifetime. Substituting this into Eq. (4) gives an expression for the CO2-warming-equivalent emissions corresponding to this constant SLCP emission:

$$E'(t) = g \left[\left(\frac{H(1-s)}{s} - \frac{s}{s(1-s)} \right) e^{-t/H} + s \right] \approx g \left[H(1-s) e^{-t/H} + s \right].$$

Hence the CO2-warming-equivalent SLCP emissions corresponding to this CO2-equivalent SLCP emission are a constant \(g\) kg per year plus an emission totalling of \(gH(1-s)\) kg almost all of which occurs in the first \(\sim 2t\) years (using \(\int_0^t (e^{-t/H}/H)dt = 1\)). GWP* approximates this pulse as a constant additional emission spread over the first \(\Delta t\) years, and explains why \(\Delta t = 20\) years works for an SLCP with a lifetime of order one decade. The initial adjustment time of the solid blue curve in Fig. 1 is of this order: hence using 20 years approximately matches the initial gradients of the blue solid and dashed lines, which correspond to the instantaneous radiative forcing impact of the release of one tonne of methane relative to that of CO2.

Hence a more consistent definition of CO2-warming-equivalent emissions under GWP* is:

$$E''(t) = g \left[\frac{(1-s)}{s} e^{-t} + gE(t) \right].$$

This is identical to that of CLA but scaled by \(g = 1.13\) and now justified without reference to the temperature response. Including this scaling improves the consistency with simulated warming responses under ambitious mitigation scenarios, at the expense of consistency with warming responses under higher emissions, as shown in Fig. 2, which reproduces Fig. 1 of CLA but now including the scaling factor \(g\). It appears that the reproduction of simulated warming under the higher emissions scenarios noted in CLA was coincidental: additional methane emissions have less warming impact per tonne if introduced into a higher background emission scenario, compensating for the use of \(g = 1\) in the calculation of warming-equivalent emissions.

Given the approximations involved in greenhouse gas metrics in the first place, such as the choice of background emissions trajectory against which to linearise, it is debatable whether scaling factors of order 10% are worth any additional complexity. The parameter \(g\), however, is an unambiguous function of \(s\), not an additional tunable parameter, so we propose that it should be included in the definition of GWP* for greater consistency with the linear models used for metric calculations. As these linear models are updated the forcing decay rate corresponding to zero CO2 emissions will change, potentially resulting in a change in \(s\); however, given the weak dependence seen in Fig. 1, any changes are likely to be small. Including \(g\) means that the expression for CO2 warming-equivalent emissions of methane becomes \(E''(t) = 128 H e^{0.43 (t - 120)} E_{CH4}(t - 120)\), where \(E_{CH4}\) is methane emissions in tCH4 per year, with AR5 GWP values. For a generic SLCP, \(E''(t) = 4.53 H E_{100}(t - 4.25) E_{100}(t - 20)\), where \(E_{100}\) is CO2-equivalent emissions calculated using GWP_100 with residual discrepancies due to rounding. A shorter than 20-year period might be better suited to representing shorter-lived climate pollutants, but given this choice has no impact on cumulative warming-equivalent emissions, we propose a consistent value is used for all SLCPs for simplicity.

DATA AVAILABILITY

The code to produce Figs 1 and 2 is available at https://gitlab.ouce.ox.ac.uk/OMP_climate_pollutants/co2-warming-equivalence.
REFERENCES

1. Allen, M. R. et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. *npj Clim. Atmos. Sci.* 1, 1–8 (2018).

2. Collins, W. J., Frame, D. J., Fuglestvedt, J. S. & Shine, K. P. Stable climate metrics for emissions of short and long-lived species - combining steps and pulses. *Environ. Res. Lett.* 15, 024018 (2020).

3. Cain, M. et al. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. *npj Clim. Atmos. Sci.* 2, 1–7 (2019).

4. Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate projections. *Clim. Dyn.* 46, 3807–3819 (2016).

5. Myhre, G. et al. Anthropogenic and natural radiative forcing. In: *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

6. Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. *Atmos. Chem. Phys.* 13, 2793–2825 (2013).

ACKNOWLEDGEMENTS

We would like to acknowledge helpful and timely comments from the anonymous reviewer and the editorial team. M.A.S., M.C. and M.R.A. acknowledge support from the Natural Environment Research Council award number NE/T004053/1 – A practical tool and robust framework for evaluating greenhouse gas emissions from land-based activities, and the Oxford Martin Programme on Climate Pollutants.

AUTHOR CONTRIBUTIONS

M.R.A. initiated the work with M.A.S. and M.C. developing the work to bring it to submission. M.R.A. produced Fig.1. M.C. produced Fig.2. All authors contributed to developing the scientific questions, discussion of the results, subsequent drafts of the paper and in editing the final version.

COMPETING INTERESTS

M.C. and M.R.A. are both authors of “Improved calculation of warming-equivalent emissions for short-lived climate pollutants”.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to M.C.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

Received: 11 December 2020; Accepted: 30 January 2021; Published online: 19 March 2021

Fig. 2 A reproduction of Fig. 1 from CLA with scaling factor g applied to GWP* (purple solid lines). Cumulative emissions of methane are shown for three scenarios, (a) RCP2.6, (b) RCP4.5 and (c) RCP6) aggregated using GWP$_{100}$ (cyan), GWP* with $s=0$ (orange), GWP* with $s=0.25$ and $g=1.13$ (purple solid), and GWP* with $s=0.25$ and $g=1$ (thin purple, largely hidden behind dashed black line in b, c).