THE TIDAL FILAMENT OF NGC 4660

S. N. KEMP1, C. MARTÍNEZ-ROBLES2, R. A. MÁRQUEZ-LUGO2, D. ZEPEDA-GARCÍA2, R. FRANCO-HERNÁNDEZ2, A. NIGOCHO-NETRO1, G. RAMOS-LARIOS1, S. G. NAVARRO1, AND L. J. CORRAL1

1 Instituto de Astronomía y Meteorología, Universidad de Guadalajara, Av. Vallarta 2602, Arcos Vallarta, 44130, Guadalajara, Mexico; snk@astro.iam.udg.mx
2 CUCEI, Universidad de Guadalajara, Av. Revolución No. 1500 S.R., 44420 Guadalajara, Jalisco, Mexico

Received 2015 September 21; revised 2016 June 14; accepted 2016 June 23; published 2016 October 11

ABSTRACT

NGC 4660, in the Virgo cluster, is a well-studied elliptical galaxy which has a strong disk component (D/T approximately 0.2–0.3). The central regions, including the disk component, have stellar populations approximately 12–13 Gyr in age, based on SAURON studies. However, we report the discovery of a long, narrow tidal filament associated with the galaxy, as seen in deep co-added Schmidt plate images and deep CCD frames, implying that the galaxy has undergone a tidal interaction and merger within the last few Gyr. The relative narrowness of the filament implies a wet merger with at least one spiral galaxy involved, but the current state of the system shows little evidence of such. However, a two-component photometric fit using GALFIT shows much bluer $B - V$ colors for the disk component than for the elliptical component, which may represent a residual trace of enhanced star formation in the disk caused by the interaction 1–2 Gyr ago. There are brighter concentrations within the filament that resemble tidal dwarf galaxies, although they are at least 40 times fainter. These concentrations may represent faint, evolved versions of those galaxies. A previously detected stripped satellite galaxy south of the nucleus seen in our residual image may imply that the filament is a tidal stream produced by perigalactic passages of this satellite.

Key words: galaxies: evolution – galaxies: fundamental parameters – galaxies: individual (NGC 4660) – galaxies: photometry – galaxies: stellar content – galaxies: structure

1. INTRODUCTION

NGC 4660 is an E5 elliptical galaxy with a strong incrusted disk component; it has frequently been used as a “classic” example of this type of galaxy. As such, it has appeared frequently in the literature. It is located in the Virgo cluster, and has been identified as a member of the nearest compact group (CG) satisfying the Hickson criterion (Mamon 1989), along with other Virgo galaxies like M59 and M60. However, Mamon (2008) concluded from surface brightness fluctuation measurements that M59 and NGC 4660 form a pair ~1–2 Mpc closer to us than the other three galaxies of the potential CG. Thus, we adopt a distance of 18 Mpc for this galaxy, giving a scale of 87 pc/arcsec and 5.2 kpc/arcmin.

It has been generally assumed that the disk in NGC 4660 is primordial and the galaxy has not undergone a significant interaction or merger, but here we report the discovery of a long, curved filament apparently emanating from NGC 4660, in the direction of M59, which implies that it has experienced some kind of major event with a dynamical timescale of a few $\times 10^8$ years.

The filament was discovered on a co-added array of scanned Kodak Technical Pan films of the SE region of the Virgo cluster, taken with the UK Schmidt Telescope (Katsiyannis et al. 1998, 2001), which have previously been used to identify or confirm other filamentary structures, e.g., the filamentary “ellipse” of IC 3481 (Pérez-Grana et al. 2009), the filamentary connections between NGC 4410 A/B, C, and D (Pérez-Grana et al. 2008), etc. Although such Schmidt plate/film studies have become almost obsolete in modern astronomy, the present discovery of this previously unsuspected filament of NGC 4660 shows that they can still be put to productive uses.

Here, we report the discovery of this filament using the Schmidt data and describe subsequent multiband CCD observations with the 2.1 m telescope at the San Pedro Mártir Observatory that provide color information for this galaxy and further imaging of the filament. In Section 2, we provide a summary of previous work on the galaxy NGC 4660; in Section 3, we describe the observational data and their processing. Results of the photometry of NGC 4660 and the filament are given in Section 4; in Section 5, we discuss the age and formation of the filament and give general conclusions.

2. PREVIOUS WORK ON NGC 4660

NGC 4660 (VCC 2000) has been studied in various ways, and has formed part of many samples of early-type galaxies over the years, on account of its proximity to us in the Virgo cluster and its incrusted disk component. It is located at R.A. = 12:44:32.0 decl. = +11:11:26 (J2000), with a recessional velocity of 1083 km s$^{-1}$ and redshift of 0.003612 (NASA/IPAC Extragalactic Database). Although its classification in the SIMBAD database is E5, the Virgo Cluster Catalogue (Binggeli et al. 1985) gives a classification of E3/S0–I(3), emphasizing its transitional nature.

There have been a few previous photometric and structural studies of NGC 4660, but three of them have used the same observational data set. We compare our photometric results with theirs in Section 4. Bender et al. (1988) carried out CCD photometry and isophote analysis on NGC 4660 in the V, R, and I bands. They found an effective radius r_e between 9 and 9.8 arcsec and an isophote twist of 5$^\circ$. Peak ellipticity was ~0.5 and a_4/a (used as the fourth cosine coefficient in this case) rises to 0.04 at 30 arcsec.

Rix & White (1990) performed photometric modeling of galaxies with two components (spheroidal $r^{1/4}$ law bulge plus exponential disk). They applied their techniques to Bender et al.’s (1988) data on NGC 4660 and found that better fits were achieved with a significant disk component included ($L_{disk} \sim 50\% L_{bulge}$). Bender (1988) described NGC
4660 as a rapidly rotating elliptical, whereas Rix & White (1990) concluded that disk rotation is the major contributor to the detected velocity.

Scorza & Bender (1995), again using the same photometric data as Bender et al. (1988) for NGC 4660, found disk signatures in the ellipticity and a_4/a profiles (again used as the fourth cosine coefficient). The ellipticity is -0.2 at the center and peaks at 0.5 at 10–30 arcsec, and $a_4/a < 0.01$ in the center, rising to 0.02–0.04 between 10 and 40 arcsec. The velocity dispersion σ is ~ 200 km s$^{-1}$ at <5 arcsec (0.43 kpc) and 100 km s$^{-1}$ at 30 arcsec (2.6 kpc), whereas the disk rotation velocity is 180 km s$^{-1}$ at 10–25 arcsec (0.87–2.17 kpc) and ~ 100 km s$^{-1}$ at 0–10 arcsec (0–0.87 kpc). They found evidence of an isophotal twist, with PAs in the range 90$^\circ$ to 100$^\circ$, between 10 and 20 arcsec (0.87–1.74 kpc), taking this as evidence of a disk with an inclined bar extending to 12 arcsec (1.04 kpc) from the center. Its surface brightness profile is similar to early-type barred galaxies (Combes & Elmegreen 1993). For the disk, ψ/σ is very high, ~ 3.3, and D/B within the bar is 0.5. Scorza & Bender (1995) suggest that the disk may be unstable to bar formation, and the bar may have a long evolution time.

The data set of Scorza & Bender (1995) comprises mainly disky elliptical galaxies, i.e., E galaxies with "pointed" isophotes (of which, NGC 4660 has the highest D/B ratio, 0.28). These galaxies are found to lie on the same correlation between central surface brightness and disk scale length defined by lenticular and spiral galaxies. This implies that disky E's are not inclined S0's, but form "transition" objects between E's and S0's. The disk profile is not generally exponential. In NGC 4660, the disk and bulge rotate in the same direction and have similar surface brightness profiles, suggesting that they formed at about the same time out of the same material.

This galaxy was observed by Ferrarese et al. (2006) with the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) as part of a sample of 100 early-type galaxies in Virgo. These data depict the central regions of the galaxy at high spatial resolution, and so the present data are complementary to that data set. Their image shows the presence of a possible stripped satellite galaxy, 2.5 arcsec across and 4.5 arcsec south of the center, described as blue and "resembling a nucleus with two spiral arms." They fit the luminosity profile of NGC 4660, with just one component with Sérisc indices of 4.0 in the g band, 4.5 in the z band, and an average $g - z$ color of 1.51. Structural parameters such as ellipticity, PA, a_3, a_4, b_3, and b_4 are reported, giving results quite similar to previous references. Here, b_4 is used as the fourth cosine coefficient and provides a clear separation of the boxy bulge and the disk. The $g - z$ color profile shows a blueward tendency from 0.3 to 20 arcsec, then rises slightly to 50 arcsec.

NGC 4660 forms part of the SAURON sample, a survey of 72 early-type galaxies using the integral-field spectrograph SAURON at the William Herschel Telescope. Stellar population studies of this sample give us ages and metallicities of the dominant stellar populations in central regions of this galaxy (Bacon et al. 2001; de Zeeuw et al. 2002). Kuntschner et al. (2010) carried out a stellar population analysis of absorption line strength maps of 48 of these galaxies, including NGC 4660. They find only old stellar populations in this galaxy, $12.2^{+0.6}_{-0.5}$ Gyr at $R_e/8$ (1.4 arcsec, 1.3 kpc) and $13.4^{+1.1}_{-1.2}$ Gyr at R_e (11.5 arcsec, 1.0 kpc). The metallicity [Fe/H] varies from 0.15 ± 0.02 at $R_e/8$ to 0.11 ± 0.02 at R_e, whereas the α-element composition varies slightly; [α/Fe] is 0.24 ± 0.04 at $R_e/8$ and 0.29 ± 0.05 at R_e.

Although the [α/Fe] variation is within the errors, it is typical of the other galaxies in the sample to have depressed [α/Fe] values in their centers, corresponding to higher metallicities. The velocity dispersion σ is 221 km s$^{-1}$ at $R_e/8$ and 181 km s$^{-1}$ at R_e. All galaxies in the sample that are fast rotators and have flattened components with disk-like kinematics are found to have different stellar populations in these flattened components. Those with young populations (<3 Gyr) frequently have circumnuclear disks and rings that are still forming stars. Meanwhile, NGC 4660 belongs to the other extreme in which the structures with disk-like kinematics are slightly older and have lower [α/Fe] ratios. In such cases, the "secondary" star formation event that formed the disk-like structure is presumably nearly as old as the "elliptical" component of the galaxy. We compare these results with populations indicated by our photometric colors in Section 5.

Another interesting line of work carried out concerning NGC 4660 pertains to its possible CG membership. Mamoun (1989) considered it, alongside members M59, M60, NGC 4638, and NGC 4647 of the Virgo cluster, as a possible CG because it was found to satisfy Hickson’s (1982) criteria according to new magnitude measurements. However, Mamoun (2008) concluded from surface brightness fluctuation measurements of individual early-type galaxies that NGC 4660 may form a pair with M59, at a distance ~ 2 Mpc closer to us than most of the rest of the Virgo cluster. Although the various statistical calibrations differ, M59 and NGC 4660 are, as a pair, at least 440 kpc closer to us than M60 and NGC 4638. This line of sight depth would be too great for a CG (Mamoun 2008). Our new data do not provide anything new on this interesting possibility.

In the following section, we consider the new observational data and their processing.

3. OBSERVATIONS AND DATA REDUCTION

3.1. The Schmidt Films

The use of deep, wide-field imaging to detect faint material in groups and clusters is well-established, e.g., Kemp & Meaburn (1993). Katsiyannis et al. (1998, 2001) produced a stack of 13 digitally co-added Kodak Technical Pan films obtained with the UK Schmidt telescope, using the "OR" filter (equivalent to the Cousins R band). The films covered the SE part of the Virgo cluster with the aim of detecting and mapping faint material in galaxy halos and filamentary structures in this cluster. Faint material is detected down to 28 R mag arcsec$^{-2}$.

Figure 1 is a section of these data containing NGC 4660. A curved filament is clearly seen to the NW of the galaxy. Our CCD fields are indicated and an arrow gives the direction of M59.

3.2. Optical CCD Photometry and Data Reduction

We carried out direct imaging of a field containing NGC 4660 (at its SE corner, including part of the area occupied by the filament) on 2005 March 30 with the 2.1 m telescope of the Observatorio Astronómico Nacional, San Pedro Mártil, Baja California, Mexico. The SITe1 CCD camera with Johnson BVRI filters was used. We obtained total combined exposure times of 900, 600, 450, and 300 s in BVRI, respectively, in photometric conditions. The spatial scale for these data was 0.31 arcsec pixel$^{-1}$ and the CCD field of view was 5.3×5.3 arcmin2, with a seeing of ~ 2 arcsec. Six images of 600 s in R were also taken of a field to the W, which is centered on the brightest parts of the filament (as seen in the Schmidt data).
The standard procedures of bias-subtraction, dark-correction, and flat-fielding were carried out using IRAF.

For the broad-band observations, we observed Landolt standard fields containing Palomar-Green stars (Landolt 1992) at intervals during the night at a range of airmasses. Estimates of the extinction coefficients were obtained by plotting instrumental magnitudes against airmass for multiple observations of the same field of standard stars. The values of these extinction coefficients were used to obtain photometric zero points and color terms. The photometric transformation equations obtained were

\[B = b + 24.24 - 0.24X + 0.13(B - V), \]
\[V = v + 24.94 - 0.15X + 0.02(B - V), \]
\[R = r + 24.67 - 0.01X + 0.05(B - V), \]
\[I = i + 24.17 - 0.04X + 0.05(B - V), \]

where \(X \) is the effective airmass of the exposure.

The errors associated with our data have two main contributors: (a) the systematic error in obtaining the calibration equation and (b) the error in determining the true sky value. The first is obtained by analyzing the residuals in the fits used to obtain the parameters of the calibration equation. The second is estimated by measuring the sky level in several different areas of the image (free from bright objects) and calculating the \(\sigma \) for these independent measurements of the sky value. Error (a) is the most significant in brighter regions whereas (b) is most significant for fainter regions. Errors in colors are calculated by adding in quadrature the errors in individual bands.

We note that, for the 2.1 m telescope data, we have used Landolt standards defined in the Johnson–Kron–Cousins system whereas we have used Johnson filters for the observations; in \(R \) and \(I \), there are significant differences between the two filter systems. Pérez-Grana et al. (2008) reported no significant differences between the surface brightnesses obtained over a range of galaxy colors, using previous observations of galaxies in both systems.

The typical seeing FWHM in each filter was measured and the images smoothed with a Gaussian filter until the image in each filter had the same FWHM. The calibration equations were applied to the counts in the images to obtain color maps by direct subtraction of images.

We performed surface photometry on NGC 4660 using the final images in counts with the stars masked out. Radial color profiles were created by subtraction of individual calibrated surface brightness profiles, with errors calculated as above. Ellipse-fitting was carried out using the program ellipse in the isophote package in IRAF, with an outer isophote of 25.8 \(B \) mag arcsec\(^{-2}\) in \(B \) (4% of sky level).

The best-fit isophotal models generated can be subtracted from the final reduced image (in counts) to produce residual images in which non-axisymmetrical structures, previously hidden in the brighter parts of the galaxy, can be revealed.

We also used GALFIT (Peng et al. 2002), an algorithm that can analyze the light distribution profiles of astronomical objects in digital images using analytic functions. It can use single-component models to describe the overall morphology, or a combination of different structural components such as bulges, disks, bars, and spiral arms to model more precisely the structure of particular galaxies. Each component can be described by scale lengths, total magnitudes, ellipticity, position angle, Sérsic index, etc. We used a one-component Sérsic model and a two-component model (Sérsic and exponential disk) to fit the images of NGC 4660 in all photometric bands, obtaining Sérsic indices, bulge-to-disk luminosity ratios (B/D), effective radii, scale lengths, etc. A star taken from the same field was selected as the input point-spread function (PSF) image in GALFIT included in the modeling fits to the image. This PSF image is 101 \(\times \) 101 pixels, with its peak flux at the 51st pixel in \(X \) and \(Y \).

4. RESULTS

4.1. NGC 4660

An image of the CCD field in \(V \), containing NGC 4660, is presented in Figure 2(a). In order to show details across the entire range of brightness including the brightest core regions, the image was represented in logarithmic scale and processed.
Figure 2. (a) CCD field in V band containing NGC 4660, in the SE corner. Taken at the 2.1 m telescope of the Observatorio Astronómico Nacional, Baja California, México. The field is 5.3 × 5.3 arcmin². North is to the top and east to the left. In order to show details across the entire range of brightness and the brightest core regions, the image was represented in logarithmic scale and processed through layer masks. (b) Residual image in V of NGC 4660 from the CCD data. The bright cross pattern in the center of the galaxy indicates the presence of disky isophotes. The bright spot 5 arcmin south of the center may be the “stripped satellite galaxy” detected by Ferrarese et al. (2006).

through layer masks. As mentioned in Section 3.2, the galaxy appears in the SE corner to allow the inclusion of part of the area occupied by the filament in the field, although this part of the filament was not detected even at high contrast. The “pointy” isophotes indicating the presence of a disk component are quite obvious. There is a small, diffuse object about 1 arcmin NE of the center of NGC 4660, VCC 2002 (LEDA 49295), which is classified as a dE (Binggeli et al. 1985). The residual image in V is shown in Figure 2(b). A characteristic pattern due to the disk component is evident, with excesses of light (bright areas) along the major and minor axes and minima (dark areas) at ∼45°. The stripped satellite galaxy observed by Ferrarese et al. (2006) can be seen at about 5 arcsec south of the center of NGC 4660.

The surface brightness profiles in the four filters are shown in Figure 3(a). The outer ellipse has a semimajor axis of approximately 100 arcsec. The center of this galaxy is particularly bright, reaching a central surface brightness of 14.7 I mag arcsec⁻², 17.1 B mag arcsec⁻². Figure 3(b) shows the surface brightness profiles plotted against a₁/₄, showing that this galaxy does not obey the de Vaucouleurs r¹/₄ law, but at the same time does not show huge deviations from this law. The profiles in each of the four filters show the same broad tendencies.

Figures 4(a) and (b) show the B − V and B − R color maps, respectively. The most distinctive feature is the nuclear and central region, including much of the disk, that displays slightly redder colors to a radius of about 20 arcsec. To the NNE of the nucleus, B − V and B − R display a slightly yellower zone. The “halo,” i.e., the main body of the elliptical, is much noisier but is bluer than the center. In B − R, the eastern half of the disk appears slightly less red than the western, by ∼0.10–0.15 mag. The small galaxy VCC 2002, 1 arcmin NE of the center, also can be seen in these color maps. There is no clear evidence of the feature at 4.5 arcsec south of the center, as in the HST/ACS data of Ferrarese et al. (2006), though there does seem to be a slight and abrupt change in color—becoming redder going from east to west—at its position south of the center of NGC 4660. There also seem to be some subtle color changes over the disk area, which may support the “tidal stream” hypothesis (see Section 5).

Figure 5 shows the radial color profiles of NGC 4660 in B − V, B − R, and B − I. The error bars include systematic and sky noise contributions. In the central regions, the sky noise is insignificant relative to the galaxy counts, so changes in color of order 0.05 mag are significant in these regions. In the disk region, B − V is at about 0.90–0.95, rising slowly to ∼1.15 at a ∼70–80 arcsec and then declining. In B − R, the disk color is ∼1.7, rising to 1.90–2.00 at ∼70–80 arcsec, then declining further out. In B − I, the regions occupied by the disk have a color of ∼2.3, and this rises steadily to about 2.8 at 65–80 arcsec. In general, there is evidence for a slight but significant redward gradient in the fitted isophotes from about 35 to 80 arcsec, whereas the region occupied by the disk has a flatter color profile. The color maps appear to show that the central plane of the inner disk component may be ∼0.1 mag redder than neighboring parts of the galaxy. However, the galaxy light is not dominated by the disk even at small radii, and the overall colors of the isophotes (rounder than the disk component) may be less red than implied by the disk colors. The g − z color profile of Ferrarese et al. (2006) is dominated by a bluer gradient between 0.3 and 20 arcsec, but is redward to 80 arcsec and so is broadly in agreement with our profiles.

For all the structural parameters investigated, the V band data are used, although no significant variation was seen between this and other filters. The radial variations of the structural parameters a₄/a and b₄/a are plotted in Figures 6(a) and (b) respectively. We use b₄/a as the fourth cosine coefficient. Where the disk dominates, a₄/a is predominantly slightly positive (though <0.01) between 10 and 30 arcsec, and predominantly slightly negative between 30 and 45 arcsec. The value of b₄/a rises steadily from 0.01 at ∼10 arcsec to 0.05 at ∼30 arcsec, indicating clearly disky isophotes in the whole radial range occupied by the disk. Beyond ∼45 arcsec, the values of b₄/a are negative (boxy), implying a disk embedded in a boxy halo. The same tendencies with radii are shown in the HST/ACS data of Ferrarese et al. (2006) between 5 and
30 arcsec (this paper also uses b_4/a as the fourth cosine coefficient).

The radial ellipticity profile of NGC 4660 is shown in Figure 7(a). The position angle profile is shown in Figure 7(b). The ellipticity and PA profiles are both similar to other results in the literature, including Ferrarese et al. (2006); the twist at 5–10 arcsec is taken as evidence of a disk with an inclined bar (Scorza & Bender 1995). The bulge/halo therefore has the same position angle as the disk component.

Results from the GALFIT program show that the bulge component and the galaxy as a whole have a $(B - V) \approx 1.0$ whereas the disk is significantly bluer, with $(B - V) \approx 0.7$. The D/B ratio is 0.09 for B and 0.06 for V, confirming that the disk is somewhat bluer than the bulge component. These are lower D/B ratios than previously reported. Sérsic indices for the bulge component are ≈ 6. The disk scale length of around 11 arcsec is similar to the galaxy effective radius noted by previous authors, e.g., Kuntschner et al. (2010), whereas the bulge component effective radius is twice as large, possibly due to our relatively deeper exposures detecting more light associated with the filament around the galaxy. This may also explain the lower D/B ratios. For a summary of photometric parameters measured, see Table 1.

4.2. The Filament

The brightest parts of the filament, as seen in the Schmidt image (Figure 1), are detected in the CCD field (Figure 8) as an area of diffuse emission in the north-center of the field (running NNE-SSW) and just south of center between two stars. There is also an area of emission in the SE of the field corresponding to the emission from the NW part of the halo of NGC 4660. The northern detection of the filament has two peaks of surface brightness of approximately $26.6 R \text{mag arcsec}^{-2}$ (R.A. = 12:44:18.5 decl. = +11:15:27 (J2000)) and $27.4 R \text{mag arcsec}^{-2}$ (R.A. = 12:44:20.2 decl. = +11:16:04), corresponding to only about 0.4% and 0.2%, respectively, of the sky brightness in R. These diffuse features may correspond to tidal dwarf galaxies (TDGs). Figure 9 shows the Schmidt field containing NGC 4660 and the filament without any lines marked on the image. This figure gives an unobstructed view of the filament, in which the brightest areas in the CCD filament field can be seen more clearly (with help from Figure 1).
The northern object (TDG-1) has an apparent R mag of approximately 20.9, whereas that of TDG-2 is 21.5, corresponding to absolute magnitudes of −10.4 and −9.8, respectively.

The scale lengths are on the order of a few pixels (100–200 pc). There are further candidate objects to the south marked as “TDGs.”

The straightened-out length of the filament is about 12 arcmin, corresponding to about 60 kpc at a distance of 18 Mpc to NGC 4660. Moving at 100 km s⁻¹, a typical velocity for material in filaments (e.g., Hibbard & Mihos 1995), stellar material at the tip of the filament would have taken ~6 × 10⁸ years to reach this position.

5. DISCUSSION AND CONCLUSIONS

Tidal tails and other fine, low-surface-brightness features around galaxies can only be formed in gravitational interactions between galaxies (usually major mergers with proportions of mass greater than 1:4) over a timescale of a few ×10⁸ years (Toomre & Toomre 1972). Therefore, the detection of the filament near NGC 4660 appears to indicate a past gravitational interaction of this galaxy, for which there was no previous evidence. Properties of tidal tails can be used to date the merger event that formed them. Tidal tails may be long-lived after a gravitational encounter.

NGC 4660 may have had an encounter, or a “dry” interaction (not merger), with another early-type galaxy. The nearest candidate galaxy for such an interaction with NGC 4660 is LEDA 42878 (VCC 1991), which can be seen at about 6 arcmin W–SW of NGC 4660 (seen in Figures 1 and 9) at 12:44:09.2 +11:10:32 (J2000), is classified as a dE in the SIMBAD database and identified as a nucleated dwarf galaxy by Binggeli et al. (1985). This galaxy has a radial velocity of 1681 km s⁻¹ (Sanchez Almeida et al. 2011), approximately 600 km s⁻¹ more than that of NGC 4660, which would make any significant interaction between them unlikely. There is also the dE 1 arcmin NE of the center of NGC 4660, VCC 2002, but it appears to be too small to produce such a long filament in an interaction with NGC 4660.

Such prominent tidal tails are more likely to be formed in “wet mergers” (in which at least one progenitor is a gas-rich spiral). There are no HI observations that could demonstrate whether the filament observed near NGC 4660 is gas-rich. The presence of only one tail may indicate that only one of the...
progenitors of NGC 4660 was a gas-rich spiral. The period of time for which a tail may be observed is important to studies of galactic history and evolution, especially in the case of NGC 4660 where it is the only direct evidence of the galaxy having experienced a tidal interaction.

Tails are formed on the dynamical timescale of \(\sim 10^8 \) years and the existence of a bright tail does not imply that the interaction which formed it was recent; bright tails may survive for a few Gyr. The galaxy evolution numerical simulations of Peirani et al. (2010) show early-type/spiral mergers producing peaks in star formation rate for \(\sim 2 \) Gyr after the closest approach, whereas shells are seen at \(\sim 1.5 \) Gyr after the closest approach. Conselice (2009) predicts maximum merger timescales of \(1.1 \pm 0.3 \) Gyr, without taking into account the detailed history of the fallback of tidal features.

Hibbard & Mihos (1995) modeled the spatial morphology and velocity structure of the famous merger product NGC 7252, suggesting that the merger occurred 0.6 Gyr ago and 80% of the mass would fall back to the merger remnant in 2.5 Gyr. Consequently, detection of tidal debris would become difficult after about 3 Gyr, whereas if the merger were older, there would be time for more minor mergers to occur, disrupting the filament (Duc et al. 2011). Most of the tail material would and does remain bound—there are currently velocity reversals along the tails indicating material that has already reached the turnaround point in its orbit and has started falling to smaller radii. In the Hubble time, 20% of current tail particles will not fall back to \(< 5 R_e \).

Figure 6. (a) \(a_4/a \) profile for NGC 4660 in the V band from the CCD data. Positive values \(< 0.01\) appear in the region of the disk, whereas there are large, mainly positive values for \(a > 50 \) arcsec. (b) \(b_4/a \) profile for NGC 4660 in the V band. There are large, positive “disky” values for the whole region \(a < 45 \) arcsec. Here, \(b_4/a \) is used as the fourth cosine coefficient. In both plots, the innermost data point is at 3 arcsec, outside the seeing FWHM of 2 arcsec.

The presence of a spiral galaxy would make this a gas-rich (“wet”) merger. The two peaks in surface brightness in the north of the CCD field (Figure 8) may correspond to TDGs that are small, gravitationally bound systems of stars and gas
formed in major mergers (mass ratio >1:4); see also Mirabel et al. (1992). TDGs are generally thought to form from gas clouds pulled out of galaxies during mergers and so do not represent previously existing stellar systems. Here, we only have data in red filters for these TDGs, which are often found to have a bluish color (Duc et al. 2011). Studies of the colors and spectra of the candidate TDGs in NGC 4660 could prove interesting, but their faintness makes studies difficult. However, the candidate old tidal dwarfs studied by Duc et al. (2014) have typical sizes of 0.8–2.3 kpc and absolute magnitudes corresponding to −13.5 to −17.5 in R, and their central surface brightnesses are 23.5–26.5 R mag arcsec$^{-2}$. Younger dwarfs in the same article have scale lengths of 2–6 kpc, absolute R magnitudes of −14 to −17.5, and central surface brightnesses ranging from 20.5 to 25 R mag arcsec$^{-2}$. Although our candidate TDGs in NGC 4660 are at the low end of the surface brightness range for old dwarfs, they are much smaller objects, with luminosities at least 40 times less than previously identified TDGs, and only a few pixels in size, so they inevitably have small scale lengths given the detection threshold. The implied masses will also be roughly two orders of magnitude less; so although the objects in Duc et al. (2014) are on the order of $10^8 M_\odot$, the present objects may be only about $10^6 M_\odot$ in mass. Duc et al. (2011) consider that the TDGs in the eastern tidal tail of NGC 5557 may be at least 2 Gyr old and they are still 1.3 mag bluer than the rest of this tail, and Duc et al. (2014) give a spectroscopic age of 4 Gyr for one of these TDGs. If the filament in NGC 4660 is several Gyr old, then these could represent faint, evolved, even older TDGs; however, they are so much smaller that they seem more likely

Parameter	Total	Bulge	Disk
Magnitude	10.9	11.0	14.1
r_e (arcsec)	22	21	...
r_e (arcsec)	…	…	11
n	5.8	6.2	1
Ellipticity	0.3	0.3	0.6
PA (degrees)	91	91	91
color $B - V$	1.0	1.0	0.7
D/B	0.06	…	…

Table 1
Photometric Parameters Measured for the Whole Galaxy, Bulge, and Disk Component in the V Filter

Figure 7. (a) Ellipticity profile of NGC 4660 in the V band from the CCD data. The maximum in the profile seen around 20 arcsec corresponds to the disk component. (b) Position angle profile of NGC 4660 in V. There is a slight twist from 92° to 87° between 3 and 10 arcsec, and again from 87° to 93° between 10 and 20 arcsec. These correspond to the presence of a bar in the disk component. In both plots, the innermost data point is at 3 arcsec outside the seeing FWHM of 2 arcsec.
to represent extreme lower-luminosity cases of the class of TDGs or a different class of objects. Evidence for long-lived TDGs, or detection of many fainter but similar objects, would be significant for studies of the numbers of dwarf satellite galaxies.

The “stripped satellite” detected by Ferrarese et al. (2006) may provide an alternative origin for the filament, formed by stars tidally stripped from this satellite galaxy during the closest parts of its orbit to NGC 4660, making the filament a tidal stream comparable to that associated with the Sagittarius dwarf galaxy satellite of the Milky Way (Ibata et al. 1994). This would account for the presence of only one detectable filament.

Staudaher et al. (2015) note that detection of extragalactic tidal streams from the ground is complicated by their low surface brightnesses (below 28 mag arcsec$^{-2}$) and this seems roughly compatible with the surface brightness of the filament of NGC 4660 away from the possible TDGs. The color maps of Figures 4(a) and (b) do imply some complicated structure in the inner disk area, with gradients from east to west, on the south side of the disk. Studies of tidal streams are now commonly made with the 3.6 and 4.5 μm filters of the Spitzer Space Telescope on its warm mission (Staudaher et al. 2015). It would be interesting to map the area around NGC 4660 in these filters. Although the present filament is relatively bright, this tidal stream hypothesis does provide a possible explanation for the origin of the filament.

The ages of stellar populations in the galaxy given by the SAURON data (Kuntschner et al. 2010) are 12–14 Gyr, with metallicities of 1.3–1.4 times solar (with marginal evidence for lower central metallicities), though this only covers the galaxy interior to and at R_e (11.5 arcsec). The $(B-V)$ color profile varies from ~ 0.9 in the disk region to ~ 1.15 in the exterior regions, which is a greater color change than implied by the marginal metallicity gradient in the SAURON data (according to the tables in Bressan et al. 1994, the change in metallicity will only raise the $B-V$ color by a few hundredths of a magnitude). However, the GALFIT results do show a rather bluer color for the disk $(B-V \approx 0.7$ compared with ≈ 1.0 for the much larger and brighter Sérsic component), and the disk is progressively less prominent in the two-component fit from B to I. The models of Bressan et al. (1994) give $B-V$ colors of 1.03–1.13 for a 12.5 Gyr population with metallicity 1.0–2.5 times solar, slightly redder than the Sérsic component here, but compatible with the colors in the inner color profile. Meanwhile, the disk component colors can be reproduced with models of age 1–2 Gyr for solar metallicity and 1 Gyr for 2.5 times solar metallicity.

This may imply relatively young stellar populations in the disk, masked because the elliptical “bulge” component dominates at all radii and the SAURON data use circular apertures, but now revealed by GALFIT’s ability to separate the light from the two components. This may, therefore, be evidence for star formation produced by a merger 1–2 Gyr ago, detectable now due to a bluer color in the stellar population of the disk component separated by GALFIT.

In conclusion, we have detected a tidal filament in the vicinity of NGC 4660 using the enhanced Schmidt film material and...
detected brightness peaks of the filament in subsequent deep CCD data. This is not a galaxy expected to have undergone a tidal interaction/merger recently, and the SAURON data indicate only old populations and a disk coeval with—or only slightly younger than—the elliptical component of the galaxy. However, the two-component fit shows that the disk component has bluer colors, indicating that the disk may have been formed in a merger 1–2 Gyr ago, or that this interaction caused enhanced star formation in a pre-existing disk. There are brighter concentrations within the filament that resemble TDGs, although they are at least 40 times fainter. These may represent faint, evolved TDGs or may be another class of object. A previously detected stripped satellite south of the nucleus is also found in our residual image and may imply that the filament is really a tidal stream produced by perigalactic passages of this satellite. It would be interesting to carry out deep H I observations in the region of the filament and its brightness peaks to determine its gas content, and to obtain Spitzer images of the filament, thus mapping the old stellar populations to fainter levels.

We thank CONACyT for providing financial help for the project number 83393 “Stellar populations in early-type galaxies.” G. R. L. acknowledges support from CGCI, SEP, CONACyT, and PRODEP (Mexico). S. G. N. J. acknowledges CONACyT support through project CB-2011-168078. We thank the staff of the UKST for obtaining the Schmidt films between 1991 and 1994, the APM group for scanning the films, and Mike Irwin for helpful advice at that time. The co-addition of the APM scans of the Schmidt films was carried out at the Manchester STARLINK node by Dave Berry and Thanassis Katsiyannis. We thank John Meaburn for contributing the idea of stacking Schmidt plates. We also thank all the staff in San Pedro Mártir for their technical support, and Violeta Guzman and Nely Cerda for their help with the observations. Our appreciation goes to Andrés Rodríguez for computer management and software help. We also thank the anonymous referee for many thorough and helpful suggestions which led to great improvements in this paper.

Note added in proof. Shortly after this paper was accepted and appeared on the arXiv server, we became aware that this filament had been briefly reported on in Appendix A of Taylor et al. (2013).

REFERENCES

Bacon, R., Copin, Y., Monnet, G., et al. 2001, MNRAS, 326, 23
Bender, R. 1988, A&A, 193, L7
Bender, R., Dobereiner, S., & Mollenhoff, C. 1988, A&AS, 74, 385
Binggeli, B., Sandage, A., & Tammann, G. A. 1985, AJ, 90, 1681
Bressan, A., Chiosi, C., & Fagotto, F. 1994, ApJS, 94, 63
Combes, F., & Elmegreen, B. G. 1993, A&A, 271, 391
Conselice, C. J. 2009, MNRAS, 399, L16
de Zeeuw, P. T., Bureau, M., Emsellem, E., et al. 2002, MNRAS, 329, 513
Duc, P.-A., Cuillandre, J.-C., Serra, P., et al. 2011, MNRAS, 417, 863
Duc, P.-A., Paudel, S., McDermid, R. M., et al. 2014, MNRAS, 440, 1458
Ferrarese, L., Côté, P., Jordán, A., et al. 2006, ApJSS, 164, 334
Grant, N. I., Kuipers, J. A., & Phillipps, S. 2005, MNRAS, 363, 1019
Hibbard, J. E., & Milos, J. C. 1995, AJ, 110, 140
Hickson, P. 1982, ApJ, 255, 382
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Natur, 370, 194
Katsiyannis, A. C., Kemp, S. N., Berry, D. S., & Meaburn, J. 1998, A&AS, 132, 387
Katsiyannis, A. C., Kemp, S. N., Berry, D. S., & Meaburn, J. 2001, Ap&SS, 276, 733
Kemp, S. N., & Meaburn, J. 1993, A&A, 274, 19
Kuntschner, H., Emsellem, E., Bacon, R., et al. 2010, MNRAS, 408, 97
Landolt, A. 1992, AJ, 104, 372
Mamon, G. A. 1989, A&A, 219, 98
Mamon, G. A. 2008, A&A, 486, 113
McRae, J. F., Dottori, H., & Lutz, D. 1992, A&A, 256, L19
Peirani, S., Crockett, R. M., Geen, S., et al. 2010, MNRAS, 405, 2327
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
Pérez-Grana, J. A., Kemp, S. N., de la Fuente, E., et al. 2009, NewA, 14, 556
Pérez-Grana, J. A., Kemp, S. N., Katsiyannis, A. C., et al. 2008, A&A, 485, 435
Rix, H.-W., & White, S. D. M. 1990, ApJ, 362, 52
Sanchez Almeida, J., Aguerri, J. A. L., Munoz-Tunon, C., & Huertas-Company, M. 2011, ApJ, 735, 125
Scozzi, S., & Bender, R. 1995, A&A, 293, 20
Starahder, S. M., Dale, D. A., van Zee, L., Barnes, K. L., & Cook, D. O. 2015, MNRAS, 454, 3613
Taylor, R., Davies, J. I., Auld, R., Minchin, R. F., & Smith, R. 2013, MNRAS, 428, 459
Temi, P., Brighenti, F., & Mathews, W. G. 2009a, ApJ, 695, 1
Temi, P., Brighenti, F., & Mathews, W. G. 2009b, ApJ, 707, 890
Toomre, A., & Toomre, J. 1972, ApJ, 178, 623