Multiple reproductive events in female wolf spiders *Pardosa hyperborea* and *Pardosa furcifera* in the Low-Arctic: one clutch can hide another

Nathan Viel1,2 · Cecilie Mielec2 · Julien Pétillon1 · Toke T. Høye2

Received: 24 March 2021 / Revised: 26 October 2021 / Accepted: 27 October 2021 / Published online: 9 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Changing abiotic conditions can affect the phenology of animals and plants with implications for their reproductive output, especially in rapidly changing regions like the Arctic. For instance in arthropods, it was recently shown that females of the spider species *Pardosa glacialis* (Thorell 1872) (Lycosidae) are able to produce two clutches within one growing season in years when snowmelt occurs particularly early. This phenomenon could be widespread in northern latitudes, and here we investigated the voltinism of two other very abundant species of wolf spiders in the Low-Arctic, *Pardosa hyperborea* (Thorell 1872) and *Pardosa furcifera* (Thorell 1875), over the period 2015–2017. Whilst a bimodal pattern in the clutch size frequency distribution was only revealed for *P. hyperborea*, we were able to show that both species can produce a second clutch over the active season by using information on the embryonic stages. We also observed significantly larger first than second clutches. We argue that information about the embryonic stage can be critical for evaluating evidence of wolf spider populations producing more than one clutch in a season. Our study provides evidence that bivoltinism could be a more widespread pattern than expected in Arctic wolf spiders. It remains to be investigated what the trophic consequences of such patterns are in a global warming context. We thus highlight the need for a coordinated framework for such further studies, integrating and relating various functional traits.

Keywords Voltinism · Life-history traits · South-Greenland · Lycosidae · Phenology · Fitness

Introduction

The Arctic is known to warm at a high rate (IPCC 2019), and several biological consequences have already been reported like shrub encroachment, northward expansion of insect herbivores or shifting phenologies (Post et al. 2009). This region, defined as the bioclimatic zone north of the climatic limit of trees and characterised by a tundra vegetation (CAFF 2013, 2021), is considered ideal for monitoring biological responses to environmental variation across space and time because of the various and especially strong abiotic gradients shaping the landscapes (Hansen et al. 2016).

Within the last decades, studies have documented abundance trends and species assemblages across Arctic habitats, especially focusing on arthropods (e.g. Høye et al. 2018). Recent phenological studies have brought precious insights about the importance of these organisms in the Arctic food web (e.g. Leung et al. 2018) and about arthropod activity in relation to climate (e.g. Kankaanpää et al. 2018).

Numerically dominating a highly interconnected trophic web (Schmidt et al. 2017), terrestrial arthropods are generally known to respond quickly to several environmental changes (Spiller et al. 2017) and therefore constitute suitable study models. Wolf spider species are particularly relevant for such purpose (Marusik and Koponen 2002), because of their importance in ecological communities as prey and predators (Schmidt et al. 2017), and because they are ubiquitous, being present in high densities in many habitats (Jocqué and Alderweireldt 2005). In the temperate zone, wolf spider life-cycles and patterns of voltinism are well documented (e.g. Brown et al. 2003), contrary to higher altitudes and northern latitudes (e.g. Bowden and Buddle...
2012b). *Pardosa* species, for example, have one generation a year in the temperate zone, females often producing more than one clutch (i.e. egg sac), whilst they would require more time to complete their development in the colder parts of the Arctic (Ameline et al. 2017). Buddle (2000) and Pickavance (2001) described in five boreal/sub-Arctic *Pardosa* species a biennial life-cycle model characterised by individuals being juveniles and sub-adults two winters in a row, and maturing as adults the third active season where individuals breed and die. In the Arctic, it has been assumed that female wolf spiders are only able to produce one clutch per lifetime because of the harsh conditions of the region (Bowden and Buddle 2012a; but see Hein et al. 2018). Indeed, extreme low temperatures and short active seasons limit the available time for organisms to mature and reproduce (Roff 1980; Høye et al. 2009). However, Høye et al. (2020) recently showed that in the High-Arctic (sensu CAFF 2013) at Zackenberg, NE Greenland, the wolf spider species *Pardosa glacialis* Thorell 1872 was able to produce a second clutch during the same season. This phenomenon could be more widespread than expected, and other wolf spider species from lower northern latitudes could already present a second phase of clutch production. This lack of fundamental knowledge points out the need for more basic research about arthropods life-history and ecology in the Arctic (Høye 2020).

In this paper, we investigate the voltinism of the two most abundant spider species of Low-Arctic areas in Greenland (Høye et al. 2018), *Pardosa hyperborea* and *Pardosa furcifera*, for the period 2015–2017. We predict that these species are able to produce a second clutch in one active season, like their High-Arctic congeneric *P. glacialis*. We also review the method described in Høye et al. (2020) for detecting second clutches and advocate for the use of more functional information like the embryonic stage when studying the reproductive phenology of wolf spider species.

Materials and methods

The study area is located near Narsarsuaq, South Greenland (61.16°N, 45.40°W) in the Sub-Arctic/Low-Arctic transition zone. This area can be defined as a transition zone between the northernmost part of the boreal zone, the “forest tundra”, and the southernmost part of the Arctic where the herbaceous vegetation cover is continuous and where shrubs are frequent (CAFF 2013). The experimental design (see Høye et al. 2018 for more details) consisted of transects of yellow pitfall traps of 10 cm in diameter, containing a 50% propylene glycol:water mixture. Transects have been set-up in the two most representative habitats of the study area, i.e. (i) either in fen habitats as 40 m×5 m rectangles, consisting of 2 rows of 9 pitfall traps 5 m apart, or (ii) in shrub habitats as 20 m×5 m rectangles, consisting of 2 rows of 5 pitfall traps 5 m apart. The limited size of shrub patches at the study site did not allow for making them as large as fen transects (Høye et al. 2018). In total, in each habitat type, three transects have been set up at 50 m above sea level, and two transects have been set up at 450 m above the sea level. The traps were collected weekly during the growing seasons of the period 2015–2017. In this study, samples from only one transect line in each plot have been used, and analyses have been kept basic, e.g. not considering elevation or habitat influence, to primarily focus on phenological general trends over the three year period.

In the laboratory, spiders were identified to the species level and samples containing female wolf spiders were kept separate with their egg sac if any whenever possible. Amongst the four wolf spider species collected (see Høye et al. 2018), only *P. furcifera* and *P. hyperborea* were retained for analyses as they were by far the most abundant species at the site (Høye et al. 2018). Clutches were opened, the content was counted and the embryonic stage of the pulli was reported in two stages (after Ameline et al. 2018): “A”: the prosoma is not visible or is developing, i.e. early embryonic stage, and “B”: the postembryonic individual is hatched within the egg sac, i.e. late embryonic stage. Specimens are preserved in 75% ethanol and stored at the Natural History Museum Aarhus, Denmark (Høye et al. 2018).

In order to investigate the voltinism of the studied species, two methods were used for a comparative purpose. The first one, used by Høye et al. (2020), consisted of plotting the frequency distribution of the clutch sizes (i.e. the number of eggs per clutch). The second one, the method we are proposing here, is based on the embryonic stage information. Firstly, the distribution of the clutch size was plotted against the week of the year, i.e. against the week of collecting, according to the embryonic stage (“A” or “B”, see above). Then, the number of clutches per week was plotted for each embryonic stage and a corresponding smoothing curve, using the loess method, was drawn (package “ggplot2”: Wickham 2016). These last plots were used to split potential clutch phases without invoking a separation based on the clutch size.

All analyses were performed with the software R v.3.6.2 (R Core Team 2019).

Results

The frequency distribution method revealed a clear bimodal distribution for *P. hyperborea* (Fig. 1a). In other words, this species showed two distinct peaks of clutch size with a split at 15 eggs. Over the 1393 clutches, 973 containing more than 15 eggs would be assigned to a first laying episode, and 420 containing 15 eggs or less would be assigned to a second laying episode. However, the clutch size distribution of *P.
Pardosa hyperborea did not show a similar pattern. We gathered the clutches into size classes of five (Fig. 1b) to reduce potential noise from the wide range of clutch sizes in this species (from 14 to 177 eggs per clutch). However, this plot did not display any bimodal trend either. Therefore, this method indicates a single phase of clutch production for *P. furcifera*.

From the embryonic stage method, the clutch size distribution over time showed two main results for both species (Fig. 2a, b). Firstly, the distribution across the season indicated a trend towards smaller clutches near the end of the sampling period. Secondly, a relatively clear pattern appeared when looking at the embryonic stage for both species: (i) the plots showed a majority of early embryonic stage clutches (i.e. stage A), followed by a period of late embryonic stage clutches (i.e. stage B), itself followed by a second occurrence of early embryonic stage clutches. To clarify what seemed to be two phases of clutch production, we plotted the number of clutches collected over time (Fig. 2c, d). For both species, the smoothing curves of the early embryonic stage supported the idea of two laying episodes, which would split between week 31 and 32. However, no specific pattern was observed for the late embryonic stage. Therefore, considering the first embryonic stage of the puli, this method indicated (i) a first laying episode between the weeks 24–31 and 25–31 for *P. hyperborea* and *P. furcifera*, respectively, and (ii) a second laying episode between the weeks 32–36 and 32–35 for *P. hyperborea* and *P. furcifera*, respectively. Furthermore, to test the trend of declining clutch sizes over the season, we performed a Generalised Linear Model using a negative binomial distribution and an ANOVA test for each species. Regardless of the embryonic stage, we found a significant difference in mean clutch size between the two time periods for *P. hyperborea* (23.54 ± 0.26 mm, *n* = 922 vs. 13.58 ± 0.24 mm, *n* = 471; Log-likelihood ratio test: Chisq = 693.4, *df* = 1, *p* < 0.0001) and for *P. furcifera* (87.07 ± 2.55 mm, *n* = 150 vs. 63.37 ± 2.60 mm, Log-likelihood ratio test: Chisq = 38.57, *df* = 1, *p* < 0.0001).

Discussion

We found that both species of wolf spiders in this study exhibit two distinct phases of clutch production over time, which supports our hypothesis that the ability to produce more than one clutch is widespread, not only in the temperate zone but also in northern latitudes. This pattern is particularly striking when looking at the early embryonic stage of the puli, i.e. when clutches mainly contain eggs. The clutches with later embryonic stage should follow the same temporal progression, but in our data, this pattern was less clear. This could be due to developmental differences between clutches inducing an overlap of the phases, e.g. a slow development of the puli from the beginning of the season concomitant with a faster development of the puli from the middle of the season, as arthropods development is particularly sensitive to factors like temperature (van der Have and de Jong 1996). However, it is more likely that our sampling stopped before the effective end of the active season.
and that we missed the second peak of the late embryonic stage. Indeed, local weather readings usually display positive average temperatures 3 to 4 weeks after our last pitfall trap collection (5–10 °C on average between weeks 37 to 39 for the years 2012–2016; Høye, unpubl. data).

Pardosa species (e.g. Eason 1969) as others wolf spiders (e.g. Brown et al. 2003) are known to produce more than one clutch per lifetime in temperate latitudes. Høye et al. (2020) showed a similar pattern in High-Arctic Greenland (at Zackenberg). It is therefore not surprising to observe the same phenomenon at these lower latitudes. Nevertheless, it is the first time that a bivoltinism pattern is clearly demonstrated for spiders in the Low-Arctic. This represents a valuable addition of information to the many knowledge gaps about the ecology of most arthropod species of this region (Høye 2020).

Plasticity in voltinism has previously been reported in arthropods (e.g. Jönsson et al. 2009) for which environmental and climatic factors are decisive parameters mediating their life-cycle (Horne et al. 2015). In the Arctic, timing of snowmelt plays a substantial role for the ground-dwelling animals, e.g. by initiating the active season for many

Fig. 2 Clutch size distribution and number of clutches collected over weeks of year for the wolf spiders *Pardosa hyperborea* (a and c, respectively) and *P. furcifera* (b and d, respectively) according to the embryonic stage (black line and dots for stage “A”; yellow line and triangles for stage “B”), from pitfall traps collected at Narsarsuaq (Greenland) during the period 2015–2017. The solid lines (c and d) represent locally weighted smoothing with default span parameters and identify local minimums between weeks 31 and 32 for both species, implying two phases of clutch production over time, as indicated by the grey vertical hatched lines.
species (Høye et al. 2009; Kankaanpää et al. 2018). In *P. glacialis* (Høye et al. 2020), earlier snowmelt would allow females to produce their first clutch earlier, which would give them enough time to produce a second clutch before the season ends. Given the harsh conditions of the Arctic, it is likely that *P. hyperborea* and *P. furcifera* are also adapted to quickly respond to favourable conditions by modulating their volitivism over space and time. More specifically, whilst climatic conditions are fluctuating from one year to the next, the ability to rapidly take advantage of favourable conditions, e.g. by showing plasticity in the reproduction, might have been selected over time. As conditions like temperatures are likely becoming less severe with the current warming, the phenomenon we describe here could become more pronounced in the coming years. Future studies could examine how spatial environmental gradients (e.g. temperature and moisture) that characterise Arctic landscapes (Hansen et al. 2016) may affect patterns of volitivism.

It is noteworthy that we would not have been able to identify the second clutches in *P. furcifera* without information about the embryonic stages. Whilst the frequency distribution method proposed by Høye et al. (2020) is easy to apply and to explain, and doable with relatively little information, it did not catch the expected pattern for *P. furcifera*. This method might not be sufficiently precise to unravel intraspecific variations from an actual phenological trend in a more complex situation where abiotic factors (e.g. environmental and climatic parameters) are probably influencing the clutch size. Indeed, the clutch size has been observed to decline over laying episodes (e.g. Eason 1969; Buddle 2000), probably because the females have a limited amount of energy to allocate for reproduction, mostly invested in the first clutch (i.e. the so-called size-number trade-off, e.g. Marshall and Gittleman 1994; Hein et al. 2018). For these reasons, we recommend using the embryonic stage as complementary to the frequency distribution method when studying wolf spiders life-histories. It seems to be a more precise indicator and it does not require a substantial additional lab workload.

More broadly, we support the measurement and the consideration of more functional predictors, i.e. functional traits (Violle et al. 2007), many related traits such as the maternal body size can directly affect the number of offspring produced in spiders (e.g. Simpson 1995; Ameline et al. 2018). A more mechanistic approach would allow to better understand the interactions between the species and their environment over space and time (Bartomeus et al. 2013; Moretti et al. 2017). Whilst it remains unclear if an increased reproductive rate leads to increasing fitness (Høye et al. 2020), as additional cocoons might be unfertilised or not viable, rising temperatures could result in higher wolf spider densities in the Arctic tundra (Entling et al. 2010; Ameline et al. 2018). An increased population growth would probably affect the whole trophic web (e.g. Eitzinger et al. 2019), altering intra- (e.g. cannibalism—Koltz and Wright 2020) and inter-specific interactions (e.g. parasitism—Koltz et al. 2019), or even processes like carbon cycle feedbacks (e.g. litter decomposition—Koltz et al. 2018). Such issues highlight the importance of a coordinated framework for ecologists and evolutionary biologists working on arthropods, favouring a more efficient and standardised collection, management and treatment of data in a long-term research perspective (Høye and Culler 2018; Lowe et al. 2020).

Acknowledgements We thank the Arctic Research Centre at Aarhus University and ECOBIO from the University of Rennes 1 for supporting this project, and the Natural History Museum Aarhus for access to laboratory facilities and for storing samples. NV acknowledges funding from Erasmus+ program and financial support from ECOBIO. We also thank our reviewers Yuri Marusik and Matthias Foellmer for helpful feedback on this manuscript.

Authors’ contributions All authors contributed to the study conception and design. The monitoring program at Narsarsuaq is led by TTH and carried out by numerous field assistants. All specimens were identified by CM. Data were generated, analysed, and interpreted by NV under the supervision of TTH and JP. Analyses were carried out by NV in collaboration with TTH and JP. The first draft of the manuscript was written by NV. All authors contributed to article revision and final approval.

Funding An Erasmus+ grant allowed NV to complete an internship, as part of a master’s degree, which led to the writing of this manuscript. Travel from University of Rennes 1 to Aarhus University was funded by ECOBIO (UR1).

Data availability Data transparency.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code availability Software application or custom code.

References

Ameline C, Høye TT, Bowden JJ et al (2018) Elevation variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae). Polar Biol 41:2561–2574. https://doi.org/10.1007/s00300-018-2391-5

Ameline C, Puzin C, Bowden JJ et al (2017) Habitat specialization and climate affect arthropod fitness: a comparison of generalist vs. specialist spider species in Arctic and temperate biomes. Biol J Linn Soc 121:592–599. https://doi.org/10.1093/biolinnean/blx014

Bartomeus I, Park MG, Gibbs J et al (2013) Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecol Lett 16:1331–1338. https://doi.org/10.1111/ele.12170

Bowden JJ, Buddle CM (2012a) Egg sac parasitism of Arctic wolf spiders (Araneae: Lycosidae) from northwestern North America. J Arachnol 40:348–350. https://doi.org/10.1636/P11-50.1

Bowden JJ, Buddle CM (2012b) Life history of tundra-dwelling wolf spiders (Araneae: Lycosidae) from the Yukon Territory, Canada. Can J Zool 90:714–721. https://doi.org/10.1139/z2012-038
Brown CA, Sanford BM, Swedon RR (2003) Clutch size and offspring size in the wolf spider *Pirata sedentaria* (Araneae, Lycosidae). J Arachnol 31:285–296. https://doi.org/10.1636/m01-62

Buddle CM (2000) Life History of *Pardosa moesta* and *Pardosa mac- kenziana* (Araneae, Lycosidae) in Central Alberta, Canada. J Arachnol 28:319–328. https://doi.org/10.1636/0161-8202(2000)028[0319:LHOPMA]2.0.CO;2

CAFF (2013) Arctic biodiversity assessment. status and trends in arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri

CAFF (2021) CAFF - Circumpolar Arctic Vegetation Map (CAVM). https://www.caff.is/flora-cfg/circumpolar-arctic-vegetation-map. Accessed 15 Oct 2021

Eason RR (1969) Life history and behavior of *Pardosa lapidicina* Emerston (Araneae: Lycosidae). J Kans Entomol Soc 42:23

Eitzinger B, Abrego N, Gravel D et al (2019) Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Mol Ecol 28:266–280. https://doi.org/10.1111/mec.14872

Entling W, Schmidt-Entling MH, Bacher S et al (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485. https://doi.org/10.1111/j.1365-2430.2009.02216.x

Hansen RR, Hansen OLP, Bowden JJ et al (2016) Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. PeerJ 4:e2224. https://doi.org/10.7717/peerj.2224

Hein N, Brendel MR, Fellhauer H et al (2018) Egg size versus egg number trade-off in the alpine-tundra wolf spider, *Pardosa palustris* (Araneae: Lycosidae). Polar Biol 41:1607–1617. https://doi.org/10.1007/s00300-018-2301-x

Horne CR, Hirst Andrew G, Atkinson D (2015) Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol Lett 18:327–335. https://doi.org/10.1111/ele.12413

Høye TT (2020) Arthropods and climate change: arctic challenges and opportunities. Curr Opin Insect Sci 40:45. https://doi.org/10.1016/j.cois.2020.06.002

Høye TT, Bowden JJ, Hansen OLP et al (2018) Elevation modulates how Arctic arthropod communities are structured along local environmental gradients. Polar Biol 41:1555–1565. https://doi.org/10.1007/s00300-017-2204-2

Høye TT, Culler LE, Bowden JJ et al (2019) Dominant arctic predator is free of major parasitoid at northern edge of its range. Front Ecol Evol 7:250. https://doi.org/10.3389/feevo.2019.00250

Koltz AM, Schmidt NM, Høye TT (2018) Differential arthropod responses to warming are altering the structure of Arctic communities. R Soc Open Sci 5:171503. https://doi.org/10.1098/rsos.171503

Koltz AM, Wright JP (2020) Impacts of female body size on cannibalism and juvenile abundance in a dominant arctic spider. J Anim Ecol 89:1788–1798. https://doi.org/10.1111/1365-2652.13230

Koltz AM, Culler LE, Bowden JJ et al (2019) Clutch size and offspring size trade-off in the alpine-tundra wolf spider, *Pardosa tris* (Araneae, Lycosidae). Polar Biol 41:1607–1617. https://doi.org/10.1007/s00300-017-2204-2

Koltz AM, Schmidt NM, Høye TT (2018) Phenology of hatching and food in low Arctic passerines and shorebirds: is there a mismatch? Arct Sci 4:538–556. https://doi.org/10.1139/as-2017-0054

Koltz AM, Culler LE, Bowden JJ et al (2020) Towards establishment of a centralized spider traits database. J Arachnol 48:103–109. https://doi.org/10.1636/0161-8202-48.2.103

Marshall SD, Gittleman JL (1994) Clutch size in spiders: is more better? Funct Ecol 8:118–124. https://doi.org/10.2307/2390120

Marusik YM, Koponen S (2002) Diversity of spiders in boreal and arctic zones. J Arachnol 30:205–210. https://doi.org/10.1636/0161-8202(2002)030[0205:OSIBA]2.0.CO;2

Moretti M, Dias ATC, Bello F et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567. https://doi.org/10.1111/fec.12776

Pickavance JR (2001) Life-cycles of four species of *Pardosa* (Araneae, Lycosidae) from the island of Newfoundland, Canada, J Arachnol 29:367–377. https://doi.org/10.1636/0161-8202(2001)029[0367:LCOFSO]2.0.CO;2

Post E, Forchhammer MC, Bret-Harte MS et al (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358. https://doi.org/10.1126/science.1173113

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Roff D (1980) Optimizing development time in a seasonal environment: The “ups and downs” of clinical variation. Oecologia 45:202–208. https://doi.org/10.1007/BF00346461

Simpson MR (1995) Convariation of spider egg and clutch size: the “ups and downs” of clinal variation. Oecologia 101:66/j. cois. 2020. 06. 002

Simpson MR (1995) Convariation of spider egg and clutch size: the “ups and downs” of clinal variation. Oecologia 101:66/j. cois. 2020. 06. 002

Spiller MS, Spiller C, Garlet J (2017) Arthropod bioindicators of environmental quality. Revista Agroambiente On-line 12:41. https://doi.org/10.18227/1982-8470ragravo.v12i1.4516

van der Have TM, de Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 183:329–340. https://doi.org/10.1006/jtbi.1996.0024

van der Have TM, de Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 183:329–340. https://doi.org/10.1006/jtbi.1996.0024

Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.