Acute tubulointerstitial nephritis following aciclovir treatment for chickenpox in children with nephrotic syndrome – a report of two cases

MAŁGORZATA PAŃCZYK-TOMASZEWSKA1, ELŻBIETA KUŹMA-MROCZKOWSKA1, Piotr Skrzypczyk1, Hanna Szymanik-Grzelak1, Jadwiga Małdyk2

1Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
2Department of Pathology, Medical University of Warsaw, Warsaw, Poland

Abstract

Tubulointerstitial nephritis (TIN) is an inflammatory process primarily involving the renal interstitium and is the cause of acute kidney injury (AKI) in 3-7% of cases confirmed by renal biopsy in children. Aciclovir may have a nephrotoxic effect by crystallization in renal tubules or by inducing an immunologic process that leads to development of TIN.

We report 2 male patients, aged 10 and 8 years, with nephrotic syndrome (NS), in whom disease relapse was triggered by varicella zoster infection. The patients received intravenous aciclovir which resulted in AKI due to acute TIN with the glomerular filtration rate 19.5 and 24.9 ml/min/1.73 m², respectively. The diagnosis was confirmed by kidney biopsy in one of these patients. Initiation of glucocorticosteroids and withdrawal of aciclovir resulted in resolution of proteinuria and symptoms of AKI.

In children with active NS treated with intravenous aciclovir, a possibility of AKI due to TIN should be taken into account.

Key words: children, nephrotic syndrome (NS), acute tubulointerstitial nephritis (TIN), acyclovir.

(Centr Eur J Immunol 2020; 45 (4): 494-497)

Introduction

Tubulointerstitial nephritis (TIN) is an inflammatory process which primarily involves the renal interstitium. It is caused by toxic agents or microorganisms. The most common cause of TIN, present in as many as 70% cases, is an immunological/allergic response to non-steroidal anti-inflammatory drugs, antibiotics, and antiviral drugs. It may also develop secondarily to glomerular or renal vascular damage. Based on the duration of symptoms, TIN is categorized as acute or chronic (the latter with symptoms for ≥3 months). TIN usually manifests with acute kidney injury (AKI) with evidence of tubular damage. It may also be accompanied by systemic symptoms and signs including abdominal pain, vomiting, skin rash, and fever. TIN is the cause of AKI in 27% of cases in adults, and of 3-7% of cases confirmed by biopsy in children [1-3].

Varicella zoster infection may have a very severe course in patients with nephrotic syndrome (NS), in rare cases leading even to death [4]. Kidney Disease: Improving Global Outcomes guidelines encourage vaccination of NS patients with life varicella vaccine. However, vaccination is contraindicated while on immunosuppressive or cytotoxic agents, and should be deferred until the prednisone dose is below 20 mg/day and/or immunosuppressive agents have been stopped for at least 1-3 months [5]. Also, following close contact with varicella infection, non-immune children with NS treated with immunosuppressive agents ought to be given varicella zoster immune globulin. And once chicken pox lesions appear, the child should be started on aciclovir or valaciclovir.

We report 2 patients in whom symptoms of AKI due to TIN following aciclovir therapy were associated with recurrent NS.

Case reports

Patient 1

A 10-year-old boy was admitted due to a relapse of NS related to chickenpox. The patient had steroid-sensitive NS since 4 years of age and had suffered six relapses of NS. Glucocorticosteroid (GCS) therapy was discontinued 1.5 years earlier. The patient had not been vaccinated against varicella zoster virus. On admission, the patient presented with generalized edema and chickenpox rash, and laboratory tests showed nephrotic range proteinuria of 1000 mg/dl (daily urinary collection – 66 mg/kg/24 h),
Central European Journal of Immunology 2020; 45(4)

Acute tubulointerstitial nephritis following aciclovir treatment for chickenpox in children with nephrotic syndrome – a report of two cases

Serum albumin level of 2.2 g/dl, serum creatinine level of 0.5 mg/dl, cholesterol level – 176 mg/dl, and triglycerides – 186 mg/dl. Therapy included aciclovir at a standard dose. In addition, the patient received twice 100 ml 20% albumin infusion, furosemide and hydrochlorothiazide. On the second day of treatment, the patient presented with abdominal pain, nausea, vomiting, and hypertension (133/82 mmHg). Laboratory tests showed evidence of AKI (Table 1), and urinalysis revealed persisting proteinuria of 800 mg/dl, with no changes in urine sediment (1-2 leukocytes, 3-4 erythrocytes per field of view). In immunological studies, white blood cell count was 10.0 × 10³/µl, lymphocyte count 1.6 × 10³/µl, neutrophil count 7.2 × 10³/µl, monocyte count 1.0 × 10³/µl; C3 100 mg/dl (n: 88-201), C4 19.5 mg/dl (n: 16-47), antinuclear and antineutrophil cytoplasm antibodies were negative; also negative hepatitis serology (anti HBs 15.4 mIU/ml, negative HBs antigen and antiHCV antibodies). Ultrasound showed enlarged, hyperechogenic kidneys with reduced parenchymal perfusion. Aciclovir was discontinued. Kidney needle biopsy performed on the fourth day showed interstitial inflammatory foci with lymphocytes and single eosinophils, and heterogeneously increased cellularity and mesangial matrix within the glomeruli (Fig. 1). Acute TIN in a patient with idiopathic NS was diagnosed. Prednisone 1 mg/kg/day was initiated on the fourth day. Renal function and blood pressure normalized after 5 days of treatment, with resolution of proteinuria. Prednisone treatment was continued for 6 months.

Patient 2

An 8-year-old boy was admitted due to recurrent NS related to chickenpox. The patient had steroid-sensitive NS since 2 years of age and had suffered nine relapses of NS. He had been previously treated with prednisone, methylprednisolone pulses (8 pulses during treatment of the fifth disease relapse), cyclophosphamide, and chlorambucil. The patient had not received varicella zoster vaccination either. The patient was also diagnosed with renovascular hypertension, with computed tomography angiography showing dual arterial supply to both kidneys and a stenosis of the accessory right renal artery. On admission, the patient was treated with prednisone 1.25 mg/kg/48 hours and the antihypertensive drugs amlodipine and enalapril. Initially, the patient also presented with mild generalized edema and chickenpox rash, normal diuresis and well-controlled hypertension. Nephrotic range proteinuria of 519 mg/dl was found but without full laboratory criteria of an NS relapse (Table 1). Initial treatment included previous prednisone dose daily and intravenous aciclovir at a standard dose. On the third day of treatment, the patient presented with abdominal pain and increasing parameters of renal dysfunction (Table 1). In immunological studies, white blood cell count was 10.1 × 10³/µl, lymphocyte count 2.1 × 10³/µl, neutrophil count 0.7 × 10³/µl, monocyte count 1.2 × 10³/µl; there was normal IgM 112 mg/dl (n: 36-198), lowered IgG 269 mg/dl

Table 1. Laboratory test results in the studied children with nephrotic syndrome and acute kidney injury

	Creatinine [mg/dl]	Urea [mg/dl]	GFR acc. to Schwartz [ml/min/1.73 m²] [19]	Hb [g/dl]	WBC [10³/µl]	Platelets [10³/µl]	CRP [mg/dl]	Albumin [g/dl]	Proteinuria [mg/dl]
Patient 1									
Day 1	0.5	30	120.6	11.4	280	< 0.5	2.2	1000	
Day 2	3.1	108	19.5	11.5	10	269	< 0.5	3.2	800
Day 4	2.5	106	24.0	11.4	13.2	338	< 0.5	3.1	300
Day 9	0.6	22	100.5	12.6	24.8	617	< 0.5	3.3	0
Day 13	0.4	16	150.7	13.4	24.5	548	< 0.5	4.0	0
Patient 2									
Day 1	0.4	12	130.6	15.9	281	< 0.5	3.2	519	
Day 3	2.1	66	24.9	16.1	312	< 0.5	3.1	300	
Day 6	0.6	37	87.1	16.2	5.64	406	< 0.5	3.8	0

GFR – glomerular filtration rate, Hb – hemoglobin, WBC – white blood cells, CRP – C-reactive protein.
treated with intravenous aciclovir. Using the RIFLE score (GFR) reduction was noted in 35% (131/373) of children. In an analysis by Rao

The drug impairs renal function by crystallization in renal tubules, particularly in patients with hypovolemia [13, 14]. The disease manifests with proteinuria, renal dysfunction, leukocyturia, erythrocyturia, eosinophiluria, eosinophilia, and systemic symptoms and signs including fever, abdominal pain, rash, and arthralgia. Proteinuria is usually mild but may also be in the nephrotic range and lead to clinical and laboratory manifestations of NS [3, 17].

In our patients, AKI was superimposed on active NS. In patient 1, the diagnosis of TIN was confirmed by kidney biopsy. In another case reported in the literature, TIN preceded NS in a child, and biopsy confirmed lesions typical for both conditions [18]. In our paper, we reported two cases of AKI due to TIN following aciclovir treatment which were superimposed on active NS. In both these patients, prompt diagnosis of TIN, discontinuation of aciclovir, and treatment with GCS led to rapid normalization of renal function and rapid remission of NS.

Conclusions

In children with active NS treated with intravenous aciclovir, a possibility of AKI due to TIN should be taken into account.

The authors declare no conflict of interest.
7. Agarwal N, Phadke KD, Garg I, et al. (2003): Acute renal failure in children with idiopathic nephrotic syndrome. Pediatr Nephrol 18: 1289-1292.
8. Praga M, Gonzalez E (2010): Acute interstitial nephritis. Kidney Int 77: 956-961.
9. Printza N, Koukourgianni F, Saleh T, et al. (2009): Drug-induced interstitial nephritis in a child with idiopathic nephrotic syndrome. Saudi J Kidney Dis Transpl 20: 1072-1075.
10. Tanaka H, Waga S, Tateyama T, et al. (1999): Acute tubulointerstitial nephritis following intravenous immunoglobulin therapy in a male infant with minimal-change nephrotic syndrome. Tohoku J Exp Med 189: 155-161.
11. Patzer L (2008): Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol 23: 2159-2173.
12. Krishnan N, Perazella MA (2015): Drug-induced acute interstitial nephritis: pathology, pathogenesis, and treatment. Iran J Kidney Dis 9: 3-13.
13. Seedat A, Winnett G (2012): Acyclovir-induced acute renal failure and the importance of an expanding waist line. BMJ Case Rep 2012: bcr2012006264.
14. Pela I, Micheletti MV (2010): Acute kidney injury in a child with MCNS during cyclosporine A and acyclovir treatment. Clin Exp Nephrol 14: 645-646.
15. Rao S, Abzug MJ, Carosone-Link P, et al. (2015): Intravenous acyclovir and renal dysfunction in children: a matched case control study. J Pediatr 166: 1462-1468.
16. Rashid A, Azadeh B, Abu Romeh SH (1990): Acyclovir-induced acute tubulo-interstitial nephritis. Nephron 56: 436-438.
17. Dharnidharka VR, Rosen S, Somers SH (1998): Acute interstitial nephritis presenting as presumed minimal change nephrotic syndrome. Pediatr Nephrol 12: 576-578.
18. Takahashi S, Kitamura T, Murakami H, et al. (2005): Acute interstitial nephritis predisposed a six-year-old girl to minimal change nephrotic syndrome. Pediatr Nephrol 20: 1168-1170.
19. Schwartz GJ, Munoz A, Schneider MF, et al. (2009): New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20: 629-637.