ON THE MONODROMY OF THE INFLECTION POINTS OF PLANE CURVES

VIK.S. KULIKOV

ABSTRACT. We prove that the monodromy group of the inflection points of plane curves of degree \(d\) is the symmetric group \(S_{3d(d-2)}\) for \(d \geq 4\) and in the case \(d = 3\) this group is the group of the projective transformations of \(\mathbb{P}^2\) leaving invariant the nine inflection points of the Fermat curve of degree three.

0. Introduction.

Let \(F(\overline{a}, \overline{z}) = \sum_{k+m+n=d} a_{k,m,n} z_1^k z_2^m z_3^n\) be the homogeneous polynomial of degree \(d\) in variables \(z_1, z_2, z_3\) and of degree one in variables \(a_{k,m,n}, k+m+n=d\). Denote by \(C_d \subset \mathbb{P}^{K_d} \times \mathbb{P}^2\), where \(K_d = \frac{d(d+3)}{2}\), the complete family of plane curves of degree \(d\) given by equation \(F(\overline{a}, \overline{z}) = 0\). Let \(\tilde{h}_d : C_d \rightarrow \mathbb{P}^{K_d}\) and \(h_d : I_d = C_d \cap \mathcal{H}_d \rightarrow \mathbb{P}^{K_d}\) be the restrictions of the projection \(pr_1 : \mathbb{P}^{K_d} \times \mathbb{P}^2 \rightarrow \mathbb{P}^{K_d}\) to \(C_d\) and \(I_d\) respectively, where

\[
\mathcal{H}_d = \{(\overline{a}, \overline{z}) \in \mathbb{P}^{K_d} \times \mathbb{P}^2 | \det \left(\frac{\partial^2 F(\overline{a}, \overline{z})}{\partial z_i \partial z_j} \right) = 0 \}.
\]

It is well-known (see, for example, [1]) that for a generic point \(\overline{a}_0 \in \mathbb{P}^{K_d}\) the intersection of the curve \(C_{\overline{a}_0} = \tilde{h}_d^{-1}(\overline{a})\) and its Hessian curve \(H_{C_{\overline{a}_0}}\) given by \(\frac{\partial^2 F(\overline{a}_0, \overline{z})}{\partial z_i \partial z_j} = 0\) is the set of the inflection points of \(C_{\overline{a}_0}\) containing \(3d(d-2)\) points. Therefore for \(d \geq 3\) we have \(\deg h_d = 3d(d-2)\).

Let \(S_d\) be the subvariety of \(\mathbb{P}^{K_d}\) consisting of the points \(\overline{a}\) such that the curves \(C_{\overline{a}}\) are singular and let \(M_d\) be the closure of subvariety of \(\mathbb{P}^{K_d}\) consisting of the points \(\overline{a}\) such that for \(\overline{a} \in M_d\) the curve \(C_{\overline{a}}\) has a \(r\)-tuple inflection point with \(r \geq 2\), i.e., \(C_{\overline{a}}\) has a smooth point \(p\) such that the tangent line \(L\) to \(C_{\overline{a}}\) at \(p\) and \(C_{\overline{a}}\) have at \(p\) the intersection number \((L, C_{\overline{a}})_p = r + 2 \geq 4\). Let \(B_d = S_d \cup M_d\) (if \(d = 3\) then \(M_3 = \emptyset\)).

Then \(h_d : I_d \setminus h_d^{-1}(B_d) \rightarrow \mathbb{P}^{K_d}\) \(\setminus B_d\) is an unramified covering and therefore it defines a homomorphism \(h_{ds} : \pi_1(\mathbb{P}^{K_d}\setminus B_d, \overline{a}_0) \rightarrow S_{3d(d-2)}\) (here \(S_{3d(d-2)}\) is the symmetric group acting on the set \(I_\overline{a} = C_{\overline{a}_0} \cap I_d\)). The group \(G_d = \text{Im } h_{ds}\) is called the monodromy group of the inflection points of plane curves of degree \(d\).

The main result of the article is the following.
Theorem 1. The group $G_d = S_{3d(d-2)}$ if $d \geq 4$ and G_3 is a group of order 216 isomorphic to the group of the projective transformations of \mathbb{P}^2 leaving invariant the nine inflection points of the Fermat curve of degree three.

The proof of Theorem 1 is given in Section 1. To prove Theorem 1 some properties of the variety \mathcal{I}_d near r-tuple inflection points of curves are investigated in this section. In Section 2 we investigate properties of \mathcal{I}_d near a node of a nodal curve of degree d which will be useful in the further investigations of the variety of the inflection points of plane curves of degree d.

1. Proof of Theorem 1

1.1. On the monodromy of dominant morphisms. Let $\mathcal{B} \subset \mathbb{P}^K$ be a reduced hypersurface in the projective space \mathbb{P}^K. It is well-known that the fundamental group $\pi_1(\mathbb{P}^K \setminus \mathcal{B}, p)$ is generated by, so called, bypasses $\gamma_{q, L}$ around \mathcal{B}, that is, elements presented by loops $\Gamma_{q, L}$ of the following form. Let $L \subset \mathbb{P}^K$ be a germ of a smooth curve intersecting the curve \mathcal{B} at a point $q \in \mathcal{B}$, $L \not\subset \mathcal{B}$, and let $S^1 \subset L$ be a circle of small radius with center at q. The right orientation on \mathbb{P}^K, defined by complex structure, defines an orientation on S^1 and then $\Gamma_{q, L}$ is a loop consisting of a path l lying in $\mathbb{P}^K \setminus \mathcal{B}$ and connecting the point p with some point $q_1 \in S^1$, the loop S^1 (with right orientation) starting and ending at q_1, and return to the point p along the path l.

Let $f : X \to \mathbb{P}^K$ be a dominant morphism, where X is a reduced variety, $\dim X = K$. Then there is a hypersurface $\mathcal{B} \subset \mathbb{P}^K$ (called the discriminant locus of f) such that $f : Y = X \setminus f^{-1}(\mathcal{B}) \to \mathbb{P}^K \setminus \mathcal{B}$ is an unramified finite covering. Note that Y is a smooth variety.

Let the degree of the covering $f : Y \to \mathbb{P}^K \setminus \mathcal{B}$ is equal to n. Then the covering f defines a homomorphism $f_* : \pi_1(\mathbb{P}^K \setminus \mathcal{B}, p) \to S_n$ (called the monodromy of the covering f), where the image $G_f := f_*(\pi_1(\mathbb{P}^K \setminus \mathcal{B}, p))$ (called the monodromy group of f) is a subgroup of the symmetric group S_n and it acts on the fibre $f^{-1}(p) = \{p_1, \ldots, p_n\}$ as follows. A loop $\Gamma \subset \mathbb{P}^K \setminus \mathcal{B}$ representing an element $\gamma \in \pi_1(\mathbb{P}^K \setminus \mathcal{B}, p)$ can be lifted to Y and this lift consists of n paths $\Gamma_1, \ldots, \Gamma_n \subset Y$ starting and ending at the points of $f^{-1}(p)$. Therefore this lift defines an action $f_*(\gamma)$ on $f^{-1}(p)$ which sends the start point $p_i \in \Gamma_i$ to the end point of Γ_i for each $i = 1, \ldots, n$.

The following Lemma is obvious.

Lemma 1. In notations used above, let

1. $\nu : \tilde{L} \to f^{-1}(L)$ be the normalization of the curve $f^{-1}(L)$, where $L \subset \mathbb{P}^N$;
2. the preimage $\tilde{f}^{-1}(q)$ consist of k points q_1, \ldots, q_k, where $\tilde{f} = f \circ \nu$ and $q \in L \cap \mathcal{B}$;
3. n_i be the ramification index of \tilde{f} at q_i, $n_1 + \cdots + n_k = n$.

Then $f_*(\gamma_{q, L}) = c_1 \cdots c_k \in S_n$ is the product of k pairwise disjoints cycles c_i of length n_i.

Let \(V \subset \mathbb{P}^K \) be a small neighbourhood (in complex-analytic topology) of a point \(q \in \mathcal{B} \) bi-holomorphic to a polidisk
\[
\Delta^K = \{(z_1, \ldots, z_K) \in \mathbb{C}^K \mid |z_j| < \varepsilon << 1 \text{ for } j = 1, \ldots, K\}
\]
with center at \(q \). The imbedding \(i : V \setminus \mathcal{B} \hookrightarrow \mathbb{P}^K \setminus \mathcal{B} \) induces a homomorphism \(i_* : \pi_1(V \setminus \mathcal{B}) \to \pi_1(\mathbb{P}^N \setminus \mathcal{B}) \) and a homomorphism \(f_{*, loc} = f_* \circ i_* : \pi_1(V \setminus \mathcal{B}) \to G_f \) defined by \(i_* \) and \(f_* \) uniquely up to conjugation in \(G \). If a neighbourhood \(V \) is small enough then the image \(G_{f,q} := f_{*, loc}(\pi_1(V \setminus \mathcal{B})) \) does not depend of \(V \) and it is called the local monodromy group of \(f \) at the point \(q \). The following Claim is well-known.

Claim 1. In notations used above, let \(q \) be a smooth point of \(\mathcal{B} \) and a curve \(L \) intersects with \(\mathcal{B} \) transversally at \(q \). Then the local monodromy group \(G_{f,q} \) is cyclic and it is generated by \(f_*(\gamma_{q,L}) \).

Lemma 2. Let \(Z \subset \Delta^{K+1} \) be a germ of a reduced complex-analytic variety, \(\dim Z = K \), in the polidisk \(\Delta^{K+1} = \{(z_1, \ldots, z_{K+1}) \in \mathbb{C}^{K+1} \mid |z_j| < \varepsilon \ll 1 \text{ for } j = 1, \ldots, n+1\}, \)
\(o = (0, \ldots, 0) \in Z \), and let the restriction \(f : Z \to \Delta^K \) of the projection \(pr: \Delta^{K+1} \to \Delta^K \), \(pr: (z_1, \ldots, z_{K+1}) \mapsto (z_1, \ldots, z_K) \), has the following properties:

(i) \(f \) is a proper finite holomorphic map, \(\deg f = n \);
(ii) the discriminant locus \(\mathcal{B} \subset \Delta^K \) is a smooth hypersurface;
(iii) the local degree \(\deg_o f = n \);
(iv) there is a germ \(L \subset \Delta^K \), \(\dim L = 1 \), such that \(L \) meets \(\mathcal{B} \) at the point \(o' = f(o) \), \(L \not\subset \mathcal{B} \), and \(E = f^{-1}(L) \) is a smooth curve.

Then \(o \) is a non-singular point of \(Z \).

Proof. Without loss of generality, we can assume that \(\mathcal{B} \) is given by \(z_1 = 0 \) and, by Weiershtrass preparation theorem, \(Z \) is given by equation of the form
\[
z^2_{K+1} + \sum_{j=0}^{n-1} \alpha_j(z_1, \ldots, z_K) z^j_{K+1} = 0, \tag{1}
\]
where \(\alpha_j(z_1, \ldots, z_K) \in \mathbb{C}[[z_1, \ldots, z_K]]. \) By Claim \(\square \) \(\alpha_j(0, z_2, \ldots, z_K) = 0 \) for each \(j = 0, \ldots, n - 1 \). Therefore \(z_1 \) is a divisor of each power series \(\alpha_j(z_1, \ldots, z_K), \) \(\alpha_j(z_1, \ldots, z_K) = z_1^{k_j} \beta_j(z_1, \ldots, z_K) \), where \(\beta_j(z_1, \ldots, z_K) \) is a power series coprime with \(z_1 \) and \(k_j \) is a positive integer. Let the germ \(L \) be given by parametrization
\[
z_j = \sum_{l=1}^{\infty} c_{j,l} t^l, \quad j = 1, \ldots, K. \tag{2}
\]
Then the curve \(E = f^{-1}(L) \) is given by \(\square \) and \(\square \). Therefore \(\beta_0(0, \ldots, 0) \neq 0, \) \(c_{1,1} \neq 0, \) and \(k_0 = 1, \) since \(E \) is a smooth curve at \(o \). Now, the smoothness of \(Z \) follows from inequality \(\beta_0(0, \ldots, 0) \neq 0. \) \(\square \)
1.2. On \(r \)-tuple inflection points. In that follows we shall use the following well-known properties of plane curves of degree \(d \geq 3 \) (see, for example [1]). First of all remind that the Hessian curve \(H_C \) of a plane curve \(C \) is independent on the choice of coordinates; \(H_C \) intersects \(C \) at the singular and inflection points of \(C \) if \(C \) does not contain a line as its irreducible component. If a line \(L \) is a component of \(C \), then \(L \) also is a component of \(H_C \). Moreover, if \(z_0 \) is a \(r \)-tuple inflection point of \(C \), then (Theorem 1 in subsection 7.3 in [1]) the intersection number \((C, H_C)_{z_0} \) at the point \(z_0 \) is equal to \(r \). Therefore we have

Claim 2. Let \(C_{\pi_0} = C \cup (\cup_{j=1}^{k} L_j) \) be the union of a curve \(C \) of degree \(\deg C \geq 3 \) and \(k \) lines \(L_j \) (may be, \(k = 0 \)). Let \(\{z_1, \ldots, z_n\} \) be the set of the inflection points of \(C_{\pi_0} \) which do not lie in \(\cup_{j=1}^{k} L_j \). Then there is a small (in complex analytic topology) neighbourhood \(U \subset \mathbb{P}^{K_4} \) of the point \(\pi_0 \) such that \(H_d^{-1}(U) \) is the disjoint union of \(n + 1 \) open sets \(V_l, l = 1, \ldots, n + 1 \), such that \((\pi_0, z_l) \in V_l \) for \(l \leq n \). The local degree \(\deg_{\pi_0,z_l} h_d \) of the covering \(h_d \) at a point \((\pi_0, z_l) \) is equal to \(r_l \) if \(z_l \) is a \(r_l \)-tuple inflection point of \(C_{\pi_0} \). In particular, if \(z_l \) is a simple inflection point (that is, \(r_l = 1 \)) and \(U \) is chosen small enough, then \(h_d|_{V_l} : V_l \to U = h_d(V_l) \) is a bi-holomorphic map.

Proof. The local degree \(\deg_{\pi_0,z_0} h_d \) of the covering \(h_d \) at the point \((\pi_0, z_0) \) is equal to the intersection number \((\mathcal{I}, \text{pr}^{-1}_1(\pi_0))_{(\pi_0, z_0)} \) of the variety \(\mathcal{I} \) and the fibre \(\text{pr}^{-1}_1(\pi_0) \) at \((\pi_0, z_0) \). On the other hand, \((\mathcal{I}, \text{pr}^{-1}_1(\pi_0))_{(\pi_0, z_0)} \) is equal to the intersection number of \(C_{\pi_0} \) and its Hessian \(H_{C_{\pi_0}} \) at \(z_0 \) in \(\mathbb{P}^2 \).

The following Proposition is well-known, but since I do not know a good reference, a proof will be given.

Proposition 1. The variety \(\mathcal{M}_d \) is an irreducible hypersurface in \(\mathbb{P}^{K_4} \) for each \(d \geq 4 \). There is a non-empty Zariski open neighbourhood \(\mathcal{M}_d \subset \mathcal{M}_d \) such that for each \(\pi \in \mathcal{M}_d \) the curve \(C_{\pi} \) is non-singular and it has \(3d(d - 2) - 1 \) inflection points (that is, it has the only one multiple \((r = 2) \) inflection point).

Proof. Denote by \(\mathcal{D}_r \subset C_d, r = 2, 3, \) the subfamilies of curves given by

\[
z_1 S(z - 1, z_2, z_3) + z_2^{r+2} R(z_2, z_3) = 0, \tag{3}
\]

where \(S(z_1, z_2, z_3) \) is the generic homogeneous polynomial of degree \(d - 1 \) in variables \(z_1, z_2, z_3 \) and \(R(z_2, z_3) \) is the generic homogeneous polynomial of degree \(d - (r + 2) \) in variables \(z_2, z_3 \). Denote also by \(D_r = \text{pr}_1(\mathcal{D}_r) \subset \mathbb{P}^{K_4} \) the image of \(\mathcal{D}_r \) under the projection \(\text{pr}_1 \). Obviously, \(D_3 \subset D_2, D_2 \) and \(D_3 \) are irreducible projective varieties, and it is easy to see that \(\dim D_2 = \frac{(d-1)(d+2)}{2} + (d-3) = K_d - 4 \) and \(\dim D_3 = \frac{(d-1)(d+2)}{2} + (d-4) = K_d - 5 \).

\(^1\) In [1], Theorem 1 is proved under the additional assumption that there is not a line among the irreducible components of \(C \). But, it is easy to see that this assumption is not used in the proof of this Theorem.
Similarly, let $D_{2,2} \subset D_2$ be the subfamily of curves given by
\[z_1z_3S(z_1, z_2, z_3) + z_2^4(R_1(z_1, z_2) + R_2(z_2, z_3)) = 0, \]
where $\deg S(z_1, z_2, z_3) = d - 2$ and $\deg R_1(z_1, z_2) = \deg R_2(z_2, z_3) = d - 4$; $D_{2,2,1} \subset D_2$ the subfamily of curves given by
\[z_1z_3S(z_1, z_2, z_3) + z_2^4z_3R_1(z_2, z_3) + z_1^4R_2(z_1, z_2)) = 0, \]
where $\deg S(z_1, z_2, z_3) = d - 2$, $\deg R_1(z_1, z_2) = d - 5$, and $\deg R_2(z_2, z_3) = d - 4$; and $D_{2,2,2} \subset D_2$ the subfamily of curves given by
\[z_1S(z_1, z_2, z_3) + z_2^4z_3R_1(z_2, z_3) = 0, \]
where $\deg S(z_1, z_2, z_3) = d - 1$ and $\deg R_1(z_2, z_3) = d - 8$. As above, denote by $D_{2,2} = \text{pr}_1(D_{2,2})$, $D_{2,2,1} = \text{pr}_1(D_{2,2,1})$, and $D_{2,2,2} = \text{pr}_1(D_{2,2,2})$ the images respectively of $D_{2,2}$, $D_{2,2,1}$, and $D_{2,2,2}$ under the projection pr_1. Obviously, $D_{2,2}$, $D_{2,2,1}$, and $D_{2,2,2}$ are irreducible projective varieties, and it is easy to see that $\dim D_{2,2} = K_d - 7$ and $\dim D_{2,2,1} = \dim D_{2,2,2} = K_d - 8$.

Let p_1 be a r-tuple point, $r = 2$ or $r \geq 3$, of a curve C. We choose homogeneous coordinates (z_1, z_2, z_3) so that the point p_1 has coordinates $(0, 0, 1)$ and the line $L_1 = \{z_1 = 0\}$ is the tangent line to C at the point p_1. Then an equation of C has the form \[(3) \].

Let C has two 2-tuple inflection points p_1 and p_2, and let L_1 and L_2 be the tangent lines to C respectively at p_1 and p_2. We have three possibilities depending on the position of the points p_1 and p_2 with respect to the curve C: either $p_1 \notin L_2$ and $p_2 \notin L_1$, or $p_2 \in L_1$, but $L_1 \neq L_2$, or $L_1 = L_2$. In the first case, if we choose homogeneous coordinates (z_1, z_2, z_3) so that the point p_1 has coordinates $(0, 0, 1)$ and the line $L_1 = \{z_1 = 0\}$ is the tangent line to C at the point p_1, the point p_2 has coordinates $(1, 0, 0)$ and the line $L_2 = \{z_3 = 0\}$ is the tangent line to C at the point p_2, then an equation of C has the form \[(1) \]. In the second case, if we choose homogeneous coordinates (z_1, z_2, z_3) so that the point p_1 has coordinates $(0, 0, 1)$ and the line $L_1 = \{z_1 = 0\}$ is the tangent line to C at the point p_1, the point p_2 has coordinates $(0, 1, 0)$ and the line $L_2 = \{z_3 = 0\}$ is the tangent line to C at the point p_2, then an equation of C has the form \[(5) \]. In the third case, if we choose homogeneous coordinates (z_1, z_2, z_3) so that the point p_1 has coordinates $(0, 0, 1)$, the point p_2 has coordinates $(0, 1, 0)$, and the line $L_1 = \{z_1 = 0\}$ is the tangent line to C at the points p_1 and p_2, then an equation of C has the form \[(6) \].

The group $PGL(3, \mathbb{C})$ acts on \mathbb{P}^{K_d} so that $g(\pi) \in M_d$ for each $g \in PGL(3, \mathbb{C})$ and $\pi \in D_2$. Denote by $\Gamma_1 \subset PGL(3, \mathbb{C})$ the subgroup leaving invariant the variety D_1, where \dagger is either 2, or 3, or $\{2, 2\}$, or $\{2, 2, 1\}$, or $\{2, 2, 2\}$.

Obviously, the groups Γ_r, $r = 2$ or $r \geq 3$, contain a subgroup Γ_0 consisting of the elements of the following form
\[g = \begin{pmatrix} g_{1,1} & 0 & 0 \\ g_{2,1} & g_{2,2} & 0 \\ g_{3,1} & g_{3,2} & g_{3,3} \end{pmatrix} \] (7)
and it is easy to see that Γ_0 is a subgroup of finite index in Γ_r, since each non-singular curve C can have only finitely many multiple inflection points. Therefore $\dim \Gamma_r = 5$. Note that if there exists a curve C_ϖ, $\varpi \in \mathcal{M}_d$, which has only one multiple inflection point, then $\Gamma_0 = \Gamma_2$.

Similarly, the diagonal group Δ is a subgroup of $\Gamma_{2,2}$ of finite index; the group consisting of the elements of the form

$$ g = \begin{pmatrix} g_{1,1} & 0 & 0 \\ g_{2,1} & g_{2,2} & 0 \\ 0 & 0 & g_{3,3} \end{pmatrix} \in PGL(3, \mathbb{C}) $$

is a subgroup of $\Gamma_{2,2,1}$ of finite index; and the group consisting of the elements of the form

$$ g = \begin{pmatrix} g_{1,1} & 0 & 0 \\ g_{2,1} & g_{2,2} & 0 \\ g_{3,1} & g_{3,2} & g_{3,3} \end{pmatrix} \in PGL(3, \mathbb{C}) $$

is also a subgroup of $\Gamma_{2,2,1}$ of finite index. Therefore $\dim \Gamma_{2,2} = 2$, $\dim \Gamma_{2,2,1} = 3$, and $\dim \Gamma_{2,2,2} = 4$.

Consider the morphism $\nu : PGL(3, \mathbb{C}) \times D_2 \rightarrow \mathbb{P}^{K_d}$ given by $\nu((g, \varpi)) = g(\varpi)$. Obviously, the image $\text{Im} \nu \subset \mathcal{M}_d$ is an everywhere dense subset of \mathcal{M}_d. The preimage of a point $\nu((g_0, \varpi_0))$, where ϖ_0 is a generic point of D_2, is the variety $\{(g, g^{-1}g_0(\varpi_0) \mid g \in \Gamma_r)\}$ of dimension five. Therefore

$$ \dim \nu(PGL(3, \mathbb{C}) \times D_r) = \dim PGL(3, \mathbb{C}) + \dim D_r - \dim \Gamma_r = K_d - r + 1. $$

In particular, $\dim \mathcal{M}_d = \dim \nu(D_2) = K_d - 1$ and therefore \mathcal{M}_d is a hypersurface in \mathbb{P}^{K_d}.

Similar calculations give rise $\dim \nu(PGL(3, \mathbb{C}) \times D_{2,2}) = K_d - 2$,

$$ \dim \nu(PGL(3, \mathbb{C}) \times D_{2,2,1}) = K_d - 3, \quad \dim \nu(PGL(3, \mathbb{C}) \times D_{2,2,2}) = K_d - 4. $$

It is well-known that S_d is a divisor in \mathbb{P}^{K_d} and it is easy to see that $\mathcal{M}_d \not\subset S_d$. Therefore $\dim \mathcal{M}_d \cap S_d = K_d - 2$. Now,

$$ \mathcal{M}_d = \mathcal{M}_d \setminus (\nu(PGL(3, \mathbb{C}) \times (D_{2,2} \cup D_{2,2,1} \cup D_{2,2,2}) \cup S_d) $$

is the desired variety, where by $\overline{\mathcal{M}}$ is denoted the closure of a variety $M \subset \mathbb{P}^{K_d}$.

Therefore $\Gamma_2 = \Gamma_0$ and hence $\nu(PGL(3, \mathbb{C}) \times D_2)$ is irreducible, since there is a point $\varpi \in D_2$ such that C_ϖ is non-singular and it has only one multiple inflection point (more precisely, 2-tuple inflection point). \qed
1.3. On a quasi-imbedding of the permutation group \(\mathcal{G}_d \) into \(\mathcal{G}_{d+1} \). Denote by \((G, n)\) a subgroup \(G \) of the symmetric group \(S_n \) acting on a set \(J_n \) of cardinality \(n \) as permutations and call \((G, n)\) a permutation group.

Let \(J_n = J_m \cup J_k \), \(m + k = n \), be a partition of \(J_n \) and \((G, n)\) a permutation group such that the action of \(G \) on \(J_n \) leaves invariant the set \(J_m \). The action of \(G \) on \(J_m \) defines a homomorphism \(\varphi_{n,m} : G \to S_m \), that is, it defines the permutation group \((G_{J_m}, m)\), where \(G_{J_m} = \text{Im } \varphi_{n,m} \). We say that a permutation group \((H, m)\) is quasi-imbedded in a permutation group \((G, n)\) (and denote this quasi-imbedding by \((H, m) \prec (G, n)\)) if

(i) \(n \geq m \) and there is a partition \(J_n = J_m \cup J_{n-m} \) such that \(G \) leaves invariant the set \(J_m \);

(ii) the permutation groups \((G_{J_m}, m)\) and \((H, m)\) are isomorphic as permutation groups.

Remind that the group \(\mathcal{G}_d \) is the image of \(\pi_1(\mathbb{P}^K_d \setminus \mathcal{B}_d, \overline{\sigma}_0) \) under the homomorphism \(h_{d*} : \pi_1(\mathbb{P}^K_d \setminus \mathcal{B}_d, \overline{\sigma}_0) \to S_{3d(d-2)} \), where the symmetric group \(S_{3d(d-2)} \) acts on \(J_{3d(d-2)} := h_{d}^{-1}(\overline{\sigma}_0) \). Therefore in what follows, the group \(\mathcal{G}_d \) will be considered as a permutation group \((\mathcal{G}_d, 3d(d-2))\), but it will be denoted again simply by \(\mathcal{G}_d \).

Claim 3. For each \(d \geq 3 \) there is a quasi-imbedding of \(\mathcal{G}_d \) in \(\mathcal{G}_{d+1} \).

Proof. For each \(g \in \mathcal{G}_d \) let us choose a continuous loop \(\Gamma : [0, 1] \to \mathbb{P}^K_d \setminus \mathcal{B}_d \) representing an element \(\gamma \in h_{d*}^{-1}(g) \subset \pi_1(\mathbb{P}^K_d \setminus \mathcal{B}_d, \overline{\sigma}_0) \), where \([a, b] = \{ t \in \mathbb{R} \mid a \leq t \leq b \} \) is a segment in \(\mathbb{R} \). Then the action of \(g \) on \(J_{3d(d-2)} \) is defined by the disjoint union \(h_{d*}^{-1}(\Gamma([0, 1])) = \bigsqcup_{j=1}^{3d(d-2)} l_j([0, 1]) \) of \(3d(d-2) \) continuous paths \(l_j : [0, 1] \to \mathbb{P}^K_{d+1} \setminus \mathcal{B}_{d+1} \) starting and ending at the points of \(h_{d*}^{-1}(\overline{\sigma}_0) \). Denote \(\overline{\tau}_{\gamma,j} = \text{pr}_2(l_j(\tau)) \).

Since \(h_{d*}^{-1}(\Gamma([0, 1])) \) is one-dimensional as a topological space, we can choose a line \(L \subset \mathbb{P}^2 \) such that \(L \cap \text{pr}_2(\bigsqcup_{j=1}^{3d(d-2)} l_j([0, 1])) = \emptyset \). For each \(\overline{\sigma} \in \mathbb{P}^K_d \) the curve \(C_{\overline{\sigma}} \cup L \) has degree \(d+1 \). Therefore the choice of \(L \) defines an imbedding \(\lambda_d : \mathbb{P}^K_d \hookrightarrow \mathbb{P}^K_{d+1} \) given by \(\lambda_d : \overline{\sigma} \mapsto \overline{b} = \overline{h}_{d+1}(C_{\overline{\sigma}} \cup L) \in \mathbb{P}^K_{d+1} \) for \(\overline{\sigma} \in \mathbb{P}^K_d \).

Consider the loop \(\lambda_d(\Gamma([0, 1])) \). By Claim 2 for each \(\tau \in [0, 1] \) there is a small (in complex analytic topology) connected neighbourhood \(U_\tau \subset \mathbb{P}^K_{d+1} \) of the point \(\lambda_d(\Gamma(\tau)) \) such that \(h_{d+1}^{-1}(U_\tau) \) is the disjoint union of \(3d(d-2) + 1 \) open sets \(V_{\overline{\tau},j} \), \(j = 1, \ldots, 3d(d-2) + 1 \), such that \((\lambda_d(\Gamma(\tau)), \overline{\tau}_{\gamma,j}) \in V_{\overline{\tau},j} \) and \(h_{d+1} : V_{\overline{\tau},j} \to U_\tau \) is a bi-holomorphic map for \(j \leq 3d(d-2) \), where \(\{\overline{\tau}_{\gamma,1}, \ldots, \overline{\tau}_{\gamma,3d(d-2)}\} \) is the set of the inflection points of the curve \(C_{\Gamma(\tau)} \). Note that we can choose \(U_0 \) and \(U_1 \) such that \(U_0 = U_1 \) and this open set does not depend on \(g \in \mathcal{G}_d \).

Let \(\Delta_\gamma = \{ t \in [0, 1] \mid \tau - \varepsilon_\tau < t < \tau + \varepsilon_\tau \} \) be segments in \([0, 1]\) such that \(\lambda_d(\Gamma(\Delta_\tau)) \subset U_\tau \) for \(0 < \tau < 1 \) and, similarly, \(\Delta_0 = \{ t \in [0, 1] \mid t < \varepsilon_0 \} \) and \(\Delta_1 = \{ t \in [0, 1] \mid t > 1 - \varepsilon_1 \} \) be segments such that \(\lambda_d(\Gamma(\Delta_0)) \subset U_0 \) and \(\lambda_d(\Gamma(\Delta_1)) \subset U_1 \).

Consider a path \(\Theta : [0, 1] \to \mathbb{P}^K_{d+1} \times [0, 1] \) given by \(\Theta : \tau \mapsto (\lambda(\Gamma(\tau)), \tau) \). Obviously, \(\{U_\tau \times \Delta_\tau\}_{\tau \in [0, 1]} \) is a cover of the path \(\Theta([0, 1]) \). Since \(\Theta([0, 1]) \) is a compact, we can
choose a finite cover
\[\{ U_0 \times \Delta_0, U_1 \times \Delta_1, \ldots, U_n \times \Delta_n, U_1 \times \Delta_1 \}, \quad 0 = \tau_0 < \tau_1 < \cdots < \tau_n < \tau_{n+1} = 1. \]

It is easy to see that \(U_{\tau_j} \cap U_{\tau_{j+1}} \neq \emptyset \) for each \(j = 0, \ldots, n \). Let us choose a point \(\bar{b}_0 \in U_0 \setminus B_{d+1} \) and points \(\bar{b}_{j+1} \in (U_j \cap U_{\tau_{j+1}}) \setminus B_{d+1} \) for \(j = 0, \ldots, n \). Each variety \(U_{\tau_j} \setminus B_{d+1} \) is connected. Therefore for \(0 \leq j \leq n+1 \) we can connect the point \(\bar{b}_{j-1,j} \) with \(\bar{b}_{j+1} \) by a continuous path \(\Gamma_j \subset U_j \setminus B_{d+1} \), where \(\bar{b}_{-1,0} = \bar{b}_{n+1,n+2} = \bar{b}_0 \).

Consider the set \(J_{3(d^2-1)} = h_{d+1}^{-1}(\bar{b}_0) = \{ \tilde{q}_1, \ldots, \tilde{q}_3(d^2-1), \tilde{q}_3(d^2-1) \} \), where \(\tilde{q}_j \in V_{0,j} \) for \(j = 1, \ldots, 3d(d-1) \). Denote \(\tilde{J}_{3d(d-2)} = \{ \tilde{q}_1, \ldots, \tilde{q}_3(d^2-1) \} \subset J_{3(d^2-1)} \). The consecutive join of the paths \(\Gamma_j \), \(j = 0, \ldots, n+1 \), is a continuous loop \(\tilde{\Gamma} = \Gamma_0 \cup \ldots \cup \Gamma_{n+1} \subset P^{K_{d+1}} \setminus B_{d+1} \)

starting and ending at \(\bar{b}_0 \). Then the start and end points of the paths \(\tilde{l}_j \), entering in the disjoint union \(h_{d+1}^{-1}(\tilde{\Gamma}) = \bigsqcup_{j=1}^{3(d^2-1)} \tilde{l}_j \) of \(3(d^2-1) \) continuous paths, are contained in \(J_{3(d^2-1)} \). Let \(\tilde{g} = h_{d+1}^{-1}(\tilde{\Gamma}) \in G_{d+1} \), where \(\tilde{\gamma} \in \pi_1(P^{K_{d+1}} \setminus B_{d+1}, \bar{b}_0) \) is represented by \(\tilde{\Gamma} \). If we number the paths \(\tilde{l}_j \) so that the start point of \(\tilde{l}_j \) is \(\tilde{q}_j \) for \(j \leq 3d(d-2) \), then it easily follows from the construction of \(\tilde{\Gamma} \) that

1. the end point of \(\tilde{l}_j \) lies also in \(\tilde{J}_{3d(d-2)} \) for each \(j \leq 3d(d-2) \);
2. \(\tilde{g} \) leaves invariant the set \(\tilde{J}_{3d(d-2)} \);
3. the restriction of the action of \(\tilde{g} \) to \(\tilde{J}_{3d(d-2)} \) is the same as the action of \(g \) on \(J_{3d(d-2)} \) if we identify \(\tilde{J}_{3d(d-2)} \) with \(J_{3d(d-2)} \).

Denote by \(\tilde{G}_d \) a permutation subgroup of \(G_{d+1} \) generated by the elements \(\tilde{g} \), where \(g \in G_d \). Obviously, the permutation subgroup \(\tilde{G}_d \) defines a quasi-embedding of \(G_d \) in \(G_{d+1} \).

1.4. Behaviour of the covering \(h_d \) near the inflection points of the Fermat curve. Let \(F_d \subset \mathbb{P}^2 \) be the Fermat curve of degree \(d \), i.e., the curve given by equation \(z_1^d + z_2^d + z_3^d = 0 \). It has \(3d \) the \((d-2) \)-tuple inflection points \(\bar{x}_{j,l} \), where

\[\bar{x}_{1,l} = (0, \mu_l, 1), \quad \bar{x}_{2,l} = (\mu_l, 0, 1), \quad \bar{x}_{3,l} = (\mu_l, 1, 0), \quad l = 1, \ldots, d, \quad \mu_l = e^{\pi i (2l-1)/d}. \]

The subgroup \(G_d \) of \(PGL(3, \mathbb{C}) \), generated by

\[g_1 = \begin{pmatrix} 0, 1, 0 \\ 1, 0, 0 \\ 0, 0, 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1, 0, 0 \\ 0, 0, 1 \\ 0, 1, 0 \end{pmatrix}, \quad g_3 = \begin{pmatrix} e^{2\pi i/d}, 0, 0 \\ 0, 1, 0 \\ 0, 0, 1 \end{pmatrix}, \]

leaves invariant the curve \(F_d \) and acts transitively on the set of its inflection points. As a group, it is isomorphic to \(\mathbb{Z}_d^2 \rtimes S_3 \).

Let \(f_d \in \mathbb{P}^{K_d} \) be the point corresponding to the Fermat curve \(F_d \) and let \(C^{K_d} \subset \mathbb{P}^{K_d} \) be the affine space given by \(a_{0,0,d} \neq 0 \). Denote again the non-homogeneous coordinates in \(C^{K_d} \) by \(a_{k,m,n}, (k, m, n) \neq (0, 0, d) \) (here we assume that \(a_{0,0,d} = 1 \)). Then the point
Consider a neighbourhood
\[U_\varepsilon = \{ \bar{a} \in \mathbb{C}^{K_d} \mid |a_{k,m,n} - 1| < \varepsilon, \ \text{for} \ (k,m,n) = (d,0,0) \ \text{or} \ (0,d,0) \ \text{and} \]
\[|a_{k,m,n}| < \varepsilon \ \text{for all} \ (k,m,n) \neq (d,0,0) \ \text{or} \ (0,d,0) \} \]
of the point \(f_d \).

Claim 4. For positive \(\varepsilon \ll 1 \) the variety \(U_\varepsilon = h_d^{-1}(U_\varepsilon) \) is the disjoint union of \(3d \) irreducible varieties \(U_{j,l} \), where for each \(j = 1, 2, 3 \) and \(l = 1, \ldots, d \) the variety \(U_{j,l} \) is defined by the following condition: the \((d-2)\) -tuple inflection point \(\bar{\xi}_{j,l} \) of the curve \(F_d \) lies in \(U_{j,l} \). The restriction \(U_{j,l} \to U_\varepsilon \) of the morphism \(h_d \) to each \(U_{j,l} \) has degree \(d-2 \).

Proof. Obviously, Claim 4 is true in the case \(d = 3 \). Therefore we will assume that \(d \geq 4 \).

It is easy to see that if \(\varepsilon \) is small enough, then the variety \(U_\varepsilon = h_d^{-1}(U_\varepsilon) = \bigcup_{j=1}^{3} \bigcup_{l=1}^{d} U_{j,l} \) is the disjoint union of \(3d \) varieties \(U_{j,l} \) such that \((f_d, \bar{\xi}_{j,l}) \in U_{j,l}\). Therefore to prove Claim 4 it suffices to prove that \(U_{1,1} \) is an irreducible variety, since the induced actions of the group \(G_d \) on \(\mathbb{P}^{K_d} \times \mathbb{P}^2 \) and \(\mathbb{P}^{K_d} \) leave invariant the varieties \(U_\varepsilon \), \(\tilde{h}_d^{-1}(U_\varepsilon) \), and \(U_\varepsilon \), \(g \circ h_d = h_d \circ g \) for each \(g \in G_d \), and this action induces a transitive action on the set of varieties \(U_{j,l} \). Obviously, the restriction of \(h_d \) to each \(U_{j,l} \) has degree \(d-2 \).

To prove that \(U_{1,1} \) is an irreducible variety, consider a family \(C_u \) of curves in \(\mathbb{P}^{K_d} \times \mathbb{P}^2 \) given by
\[
F(u, \bar{\xi}) := z_1^d + z_2^d + z_3^d + u z_1^2 z_3^{d-2} = 0
\]
and its image \(L = \bar{h}(C_u) \simeq \mathbb{C} \). Denote by \(L_\varepsilon = L \cap U_\varepsilon \). The family \(C_u \) lies in \(L \times \mathbb{P}^2 \subset \mathbb{P}^{K_d} \times \mathbb{P}^2 \). It is easy to check that in coordinates \((u; z_1, z_2, z_3)\) the Hessian of the family \(C_u \) is
\[
\mathcal{H}(u, \bar{\xi}) = \det \left(\frac{\partial^2 F(u, \bar{\xi})}{\partial z_i \partial z_j} \right) = d(d-1)z_2^{d-2}z_3^{d-4}H(u, z_1, z_3), \tag{11}
\]
where
\[
H(u, z_1, z_3) = \frac{(d(d-1)z_1^{d-2} + 2uz_3^{d-2})(d(d-1)z_3^{d-2} + (d-2)(d-3)uz_1^2) - 4(d-2)^2u^2 z_1^2 z_3^{d-2}}{(d-4)!} = \frac{d!}{(d-4)!} u z_1^d + \frac{d}{d-1} \left(2z_1^{d-2}z_3^{d-2} - 2(d-1)(d-2)u z_1^2 z_3^{d-2} \right) + 2d(d-1)u z_3^d.
\]
Therefore the curve \(J = h_d^{-1}(L) \subset \mathbb{C} \times \mathbb{P}^2 \), given by \(F(u, \bar{\xi}) = \mathcal{H}(u, \bar{\xi}) = 0 \), is the union of curves, \(J = J_1 \cup J_2 \cup J_3 \) (if \(d = 4 \) then \(J_3 = \emptyset \)), where \(J_2 \) and \(J_3 \) (if \(d \geq 5 \)) are the intersections of the surface given by (11) and, respectively, two surfaces given
by \(z_2 = 0 \) and \(z_3 = 0 \), and \(J_1 \) is the intersection of the surface given by equation (10) and the surface \(\overline{H}_1 \) given by

\[
\frac{d!}{(d-4)!} u z_1^d + d^2(d-1)^2 z_1^{d-2} z_3^2 - 2(d-1)(d-2) u^2 z_1^2 z_3^{d-2} + 2d(d-1)u z_3^d = 0. \tag{12}
\]

It is easy to see that \((\bigcup_{i=1}^{d} U_{i,1}) \cap (J_2 \cup J_3) = \emptyset \) and \((\bigcup_{i=1}^{d} U_{i,1}) \cap J_1 \subset C \times C^2\), where \(C = \mathbb{P}^2 \setminus \{z_3 = 0\} \). Let \(x = z_1/z_3 \), \(y = z_2/z_3 \) be coordinates in \(C^2 \), then the surface \(H_1 = \overline{H}_1 \cap (C \times C^2) \) is given by equation

\[
\frac{d!}{(d-4)!} u x^d + d^2(d-1)^2 x^{d-2} - 2(d-1)(d-2) u^2 x^2 + 2d(d-1)u = 0. \tag{13}
\]

Since the polynomial in equation (13) depends only on the variables \(x \) and \(u \), the surface \(H_1 \) is isomorphic to the product \(E \times C^1 \), where \(E \) is a curve in \(C^2 \) given by equation (13).

Let us show that the polynomial \(H(u, x) \) in the left side of (13) is irreducible in the ring \(C[u, x] \). Indeed, assume that \(H(u, x) = H_1(u, x)H_2(u, x) \). Then \(H_1(u, x) = A_1(x)u + A_2(x) \) and \(H_2(u, x) = A_3(x)u + A_4(x) \), since \(H(u, x) \) is a polynomial of degree two in variable \(u \) and the polynomials \(2(d-1)(d-2)x^2 \) and \(\frac{d!}{(d-4)!} x^d + 2d(d-1) \) are coprime. Therefore we have

\[
A_1(x)A_3(x) = -2(d-1)(d-2)x^2, \quad A_2(x)A_4(x) = d^2(d-1)^2 x^{d-2}, \tag{14}
\]

\[
A_1(x)A_4(x) + A_2(x)A_3(x) = \frac{d!}{(d-4)!} x^d + 2d(d-1). \tag{15}
\]

It follows from (14) that \(A_1(x) = b_1 x^{k_1} \), and \(A_3(x) = b_3 x^{2-k_1} \), where \(0 \leq k_1 \leq 2 \) and \(b_1 b_3 = -2(d-1)(d-2) \in C \). Similarly, \(A_2(x) = b_2 x^{k_2} \) and \(A_4(x) = b_4 x^{d-2-k_2} \), where \(0 \leq k_2 \leq d-2 \) and \(b_2 b_4 = d^2(d-1)^2 \in C \). Therefore

\[
b_1 b_2 b_3 b_4 = -2d^2(d-1)^3(d-2). \tag{16}
\]

It follows from (13) that

\[
b_1 b_4 x^d + b_2 b_3 x^d = \frac{d!}{(d-4)!} x^d + 2d(d-1)
\]

and therefore

\[
b_1 b_4 = \frac{d!}{(d-4)!} \text{ and } b_2 b_3 = 2d(d-1) \text{ or } b_1 b_4 = 2d(d-1) \text{ and } b_2 b_3 = \frac{d!}{(d-4)!},
\]

but in both cases we have

\[
b_1 b_2 b_3 b_4 = 2 - \frac{d!}{(d-4)!} d(d-1) = 2d^2(d-1)^2(d-2)(d-3). \tag{17}
\]

It follows from (16) and (17) that we have the equality

\[
2d^2(d-1)^2(d-2)(d-3) = 2d^2(d-1)^2(d-2)(d-3),
\]
i.e., \(d = 0, 1 \) or 2, but, by assumption, \(d \geq 3 \) and therefore \(H(u, x) \) is an irreducible polynomial.

Denote by \(S \) the union of the set of critical values of the restriction \(p : E \to \mathbb{C} \cong L \) of the projection \(\text{pr} : (u, x) \mapsto (u) \) to the irreducible curve \(E \) and the set of the images under the projection of the intersection points of \(E \) and the curve given by \(x^d + u x^2 + 1 = 0 \). Note that \(S \) is a finite set. Let \(S = \{0, u_1, \ldots, u_l\} \). Then for \(\varepsilon < \min u_s \), where minimum is taken over all \(u_s \in S \setminus \{0\} \), and for each fixed non-zero value \(u_0 \) of \(u \), \(|u_0| < \varepsilon \), the set \(p^{-1}(0) = \{(u_0, x_1(u_0)), \ldots, (0, x_d(u_0))\} \) consists of \(d \) different points such that two of these points, say \((u_0, x_{d-1}(u_0)) \) and \((0, x_{d}(u_0)) \), lie very far from the point \((0, 0)\) and the other \(d-2 \) points \((u_0, x_1(u_0)), \ldots, (u_0, x_{d-2}(u_0)) \) are very close to the point \((0, 0)\), since the closure of the line \(\{u = 0\} \) meets the closure of the curve \(E \) at infinity with multiplicity two and at the point \((0, 0)\) with multiplicity \(d-2 \).

Therefore
\[
(U_{1,l}^d \cap h_{\varepsilon}^{-1}(u_0)) = \{(u_0, x_s(u_0), y_l(u_0, x_s(u_0)))\}_{1 \leq s \leq d-2, 1 \leq l \leq d},
\]
where \(y_l(u_0, x_s(u_0)) \), \(l = 1, \ldots, d \), are the roots of the equation
\[
x^d(u_0) + y^d + 1 + u_0 x^2(u_0) = 0,
\]
and hence the intersection \(U_{1,1} \cap h_{\varepsilon}^{-1}(u_0) \) consists of \(d-2 \) different points for each \(u_0 \in L_\varepsilon \setminus \{0\} \). Note also that \(U_{1,1} \cap h_{\varepsilon}^{-1}(0) \) is the single point \((0, \xi, 1, 1)\). Therefore to prove that \(U_{1,1} \) is irreducible, it suffices to show that \(U_{1,1} \cap h_{\varepsilon}^{-1}(L_\varepsilon) \) is a smooth curve, since otherwise the curve \(U_{1,1} \cap h_{\varepsilon}^{-1}(L_\varepsilon) \) is the union of several components lying in different irreducible components of \(U_{1,1} \) and meeting at the point \((0, \xi, 1, 1)\) which must be the singular point of \(U_{1,1} \cap h_{\varepsilon}^{-1}(L_\varepsilon) \).

To prove the smoothness of \(U_{1,1} \cap h_{\varepsilon}^{-1}(L_\varepsilon) \) at \((0, \xi, 1, 1)\) note that in non-homogeneous coordinates \((u, x, y_1 = y - \mu)\) the curve \(U_{1,1} \cap h_{\varepsilon}^{-1}(L_\varepsilon) \) is the complete intersection of two surfaces given by equation (13) and the equation \(x^d + (y_1 + \mu_1)^d + 1 + u x^2 = 0 \). It is easy to check that these two surfaces are non-singular at the point \((u, x, y_1) = (0, 0, 0)\) and meet transversally at this point.

Corollary 1. Let \(U_{j,l} \subset U_\varepsilon \) be the same as in Claim 4. Then \(U_{j,l} \cap h_{S_d}^{-1}(B_d) \) is a connected smooth variety.

1.5. **Transitivity of the actions of the groups \(G_d \).** In notation used in subsection 1.4, let the base point \(\bar{u}_0 \) of the fundamental group \(\pi_1(\mathbb{P}^{K_d}, B_d, \bar{u}_0) \) lie in the neighbourhood \(U_{\varepsilon}, \varepsilon << 1 \). Then the set \(I_{\bar{u}_0} = h_{d}^{-1}(\bar{u}) \) naturally splits into the union of 3d subsets, \(I_{\bar{u}_0} = \bigsqcup_{j=1}^{3} \bigsqcup_{l=1}^{d} I_{j,l}, \) where \(I_{j,l} = I_{\bar{u}} \cap U_{j,l} = \{p_{j,l,1}, \ldots, p_{j,l,d-2}\} \).

Claim 5. The group \(G_d = \text{Im } h_{d*} \subset S_{3d(d-2)} \) acts transitively on the set \(I_{\bar{u}_0} \).

Proof. In the beginning, let us assume that the group \(G_d \) acts transitively on each subset \(I_{j,l} \). Indeed, by Corollary 1 for each pair \((j, l)\) the variety \(U_{j,l} \cap h_{S_d}^{-1}(B_d) \) is connected. Therefore any two points \(p_{j,l,m_1}, p_{j,l,m_2} \in I_{j,l} \) can be connected by a
smooth path $\gamma \subset U_{j,l} \setminus h_d^{-1}(B_d)$. Then the image $g = h_d(\gamma) \in S_{3d(d-2)}$ of the element $\gamma \in \pi_1(\mathbb{P}^N_d \setminus B_d, \overline{\gamma})$ represented by the loop $h_d(\gamma)$ sends the point p_{j,l,m_1} to p_{j,l,m_2}.

Now to complete the proof of Claim 5 it suffices to show that for each pair (j, l) the point $p_{1,1,1} \in I_{1,1}$ can be connected with some point $p_{j,l,m} \in I_{j,l}$ by a smooth path $l \subset I_d \setminus B_d$. For this let us consider an element $g_1 \in G_d \subset PGL(3, \mathbb{C})$ such that $g_1(U_{1,1}) = U_{j,l}$, where the group G_d was introduced in Subsection 1.4. The group $PGL(3, \mathbb{C})$ is connected. Therefore we can find a smooth path $g_t \subset PGL(3, \mathbb{C})$, $t \in [0, 1]$, connecting the elements $g_0 = Id$ and g_1 in $PGL(3, \mathbb{C})$. Then the path $g_t(p_{1,1,1})$ lies in $I_d \setminus h_d^{-1}(B_d)$, since for each $t \in [0, 1]$ the curve $g_t(C_{1})$ is smooth and it has not multiple inflection points, and the point $g_t(p_{1,1,1})$ is an inflection point of the curve $g_t(C)$. Note also that the path $g_t(p_{1,1,1})$ connects the point $p_{1,1,1}$ with some point $g_1(p_{1,1,1}) \in U_{j,l}$. As above, by Corollary 1 the point $g_1(p_{1,1,1})$ can be connected with any point lying in $I_{j,l}$ by a path in $U_{j,l} \setminus h_d^{-1}(B_d)$. \hfill \square

1.6. Behaviour of the covering h_d near a 2-tuple inflection point. Let p be a 2-tuple inflection point of a curve C of degree $d \geq 4$. Without loss of generality, we can assume that $p = (0, 0, 1)$ and the line $\{z_1 = 0\}$ is the tangent line to C at the point p. Then C is given by equation $F(z_1, z_2, z_3) = 0$, where $F(z_1, z_2, z_3)$ is a homogeneous polynomial of the form $z_1^d R(z_2, z_3) + z_1 S(z_1, z_2, z_3)$ and where $R(z_1, z_3)$ is a homogeneous polynomial of degree $d - 4$ such that $R(0, 1) = 1$, and $S(z_1, z_2, z_3)$ is a homogeneous polynomial of degree $d - 1$ such that $S(0, 0, 1) = 1$.

Let $V \subset P^{K_d}$ be a very small neighbourhood of the point c corresponding to the curve C and $V = h_d^{-1}(V) \subset P^{K_d} \times \mathbb{P}^2$. Then V is the disjoint union of two components, $V = V_1 \bigcup V_2$, where V_1 contains the point $(c, p) \in P^{K_d} \times \mathbb{P}^2$. Obviously, the restriction of h_d to V_1 has degree two, since p is a 2-tuple inflection point of C and therefore under small deformation of C the deformed curves, near the point p, have either two different inflection points or one 2-tuple inflection point.

Claim 6. There is a smooth curve $E_1 \subset V_1$ passing through the point (c, p) and such that the restriction $h_d|E_1 : E_1 \rightarrow L_1$ of h_d to E_1 is ramified at (c, p) with multiplicity $\deg h_d|E_1 = 2$.

Proof. Consider the family of curves $C_v \subset \Delta \times \mathbb{P}^2 \subset P^{K_d} \times \mathbb{P}^2$ given by $F(z_1, z_2, z_3) + v z_1^2 z_2^4 z_3^{-2} = 0$, where $\Delta = \{|v| < \varepsilon_1\}$ is the disk in \mathbb{C} of small radius ε_1.

Consider the curve $E_1 = V_1 \cap C_v \cap H_v$, were H_v is the Hessian of the family C_v. Let $x = z_1/z_3$ and $y = z_2/z_3$. Denote by $R'_j = \frac{\partial R}{\partial z_j}(x, 1)$, $S'_j = \frac{\partial S}{\partial z_j}(x, y, 1)$, $R''_j = \frac{\partial^2 R}{\partial z_j \partial z_l}(x, 1)$, and $R'''_j = \frac{\partial^3 R}{\partial z_j \partial z_l \partial z_m}(x, y, 1)$. In the coordinates (v, x, y) the family C_v is given by
\begin{equation}
y^4 R(y, 1) + vy^2 + x S(x, y, 1) = 0
\end{equation}
and the Hessian H_v is given by
\begin{align}
\begin{bmatrix}
2 S'_1 + x S''_1, \\
S'_2 + x S''_2, \\
S'_3 + x S''_3, \\
12 y^2 R + 8 y S' + y R'' + 2 + x S'''_2, \\
4 y^3 R'_1 + y^2 R'''_2 + 2vy + x S''''_3, \\
y^4 R''_1 + \beta v y^2 + x S''''_3
\end{bmatrix} = 0,
\end{align}
where $\alpha = d - 2$ and $\beta = (d - 2)(d - 3)$.

Let $S'_j(0,0,1) = s_j$ and $S''_j(0,0,1) = s_{j,i}$. By assumption, $S(0,0,1) = 1$. Therefore $S'_3(0,0,1) = d - 1$ and it is easy to see that the differentials at the point $(v, x, y) = (0, 0, 0)$ of the polynomials in the left side of equations (18) and (19) are equal respectively to dx and $(2s_2s_3s_{2,3} - s_2^2s_{3,3})dx - 2(d - 1)\frac{dv}{v}$ (here we denote by df the differential of function f in order not to confuse with degree d of the curve C). Therefore the surfaces C_v and H_v are nonsingular at the point $(0, 0, 0)$ and meet transversally at this point, since these differentials are linear independent. It follows from this that $E_1 = V_1 \cap C_v \cap H_v$ is a smooth curve and the differential of $h_{d|E_1} : E_1 \to \Delta$ vanishes at the point $(0, 0, 0)$. Therefore $\deg h_{d|E_1} = 2$ since if a holomorphic surjective map of a smooth curve has degree one, then its differential vanishes nowhere. \hfill \Box

Corollary 2. Let C be a smooth curve of degree $d \geq 4$ having $3d(d - 2) - 1$ inflection points. Then, in notations used in the proof of Claim 6, $h_d^{-1}(\Delta) \cap \mathcal{V}$ is the disjoint union of $3d(d - 2) - 1$ smooth curves, $h_d^{-1}(\Delta) \cap \mathcal{V} = \bigsqcup_{j=1}^{3d(d-2)-1} E_j$, where $h_{d|E_j} : E_j \to \Delta$ is a bi-holomorphic map for $j = 2, \ldots, 3d(d - 2) - 1$ and $h_{d|E_1}$ is a two-sheeted covering branched at the point $(v = 0) \in L_1$.

Consider a point $(\overline{a}, \overline{z}) \in h_d^{-1}(M_d)$, where $M_d \subset \mathbb{P}K_d$ is the variety defined in Subsection 1.2. Lemma 2 and Claim 6 imply

Proposition 2. Let $\overline{a}_0 \in M_d$ and \overline{z}_0 be a 2-tuple inflection point of the curve $C_{\overline{a}_0}$. Then $(\overline{a}_0, \overline{z}_0)$ is a smooth point of the variety \mathcal{L}_d.

Corollary 2 and Lemma 1 imply

Claim 7. For $d \geq 4$ the group $\mathcal{G}_d \subset S_{3d(d-2)}$ contains a transposition.

1.7. **Case** $d = 3$. Consider the Hesse pencil, that is, the one-dimensional linear system of plane cubic curves given by

$$C_{(t_1, t_2)} : \ t_1z_1^3 + z_2^3 + z_3^3 + t_2z_1z_2z_3 = 0, \quad (t_1, t_2) \in \mathbb{P}^1, \quad (20)$$

We call the surface \(\mathcal{H} \subset L \times \mathbb{P}^2 \subset \mathbb{P}K_3 \times \mathbb{P}^2 \) given in $L \times \mathbb{P}^2$ by equation (20) the body of the Hesse pencil, where $L \simeq \mathbb{P}^1$ and $K_3 = 9$.

It is easy to see that \mathcal{H} is a smooth surface and the restriction $\sigma : \mathcal{H} \to \mathbb{P}^2$ of pr_2 to \mathcal{H} is the composition of nine σ-processes of \mathbb{P}^2 with centers at the base points of the Hesse pencil. Let $E_{q_j} = \sigma^{-1}(q_j)$, $j = 1, \ldots, 9$, be the exceptional curve of σ over the base point $q_j \in \mathbb{P}^2$ of the pencil. The curves E_j are sections of the projection $pr_1 : L \times \mathbb{P}^2 \to L$.

It is well-known (see, for example, [11]) that the base points of the Hesse pencil are the inflection points of each smooth member of the pencil. The Hesse pencil has four degenerate members, $C_{(0, 1)}$, $C_{(1, -3)}$, $C_{(1, -3e^{2\pi i/3})}$, and $C_{(1, -3e^{4\pi i/3})}$. Each of the degenerate members is the union of three lines. Therefore

$$\mathcal{L}_3 \cap \mathcal{H} = C_{(0, 1)} \cup C_{(1, -3)} \cup C_{(1, -3e^{2\pi i/3})} \cup C_{(1, -3e^{4\pi i/3})} \cup (\bigcup_{j=1}^{9} E_j).$$
The group $Hes \subset PGL(3, \mathbb{C})$ of the projective transformations leaving invariant the set of the inflection points of the Fermat curve $F_3 = C(1,0)$ is well investigated (see, for example, [I]). The order of Hes is equal to 216 and the action of Hes on the 9 inflection points of F_3 defines an imbedding $Hes \subset S_9$ such that Hes is a 2-transitive subgroup of S_9. The orbit of the Fermat curve F_3 under the action of Hes consists of four members of the Hesse pencil: $F = C(1,0), C(1,6e^{2\pi i/3}), C(1,6e^{4\pi i/3})$. We choose three continuous paths $l_j, j = 0, 1, 2,$ in $L \setminus \{(0,1), (1,-3), (1,-3e^{2\pi i/3}), (1, -3e^{4\pi i/3})\}$ connecting the points $(1, 6e^{2j\pi i/3})$ with the point $(1,0)$.

It is well-known ([3], [4]) that the set of nine inflection points of a plane cubic curve is a projectively rigid set, that is, for each two smooth plane cubic curves C_1 and C_2 there is a projective transformation of the plane sending the set of the inflection points of C_1 onto the set of the inflection points of C_2. Therefore there is an imbedding $\varphi: PGL(3, \mathbb{C}) \to (\mathbb{P}^2)^9$ given for $\tau \in PGL(3, \mathbb{C})$ by

$$\varphi: \tau \mapsto (\tau(q_1), \ldots, \tau(q_9)) \in (\mathbb{P}^2)^9,$$

where $\{q_1, \ldots, q_9\} \subset \mathbb{P}^2$ is the set of the inflection points of the Fermat curve F_3. (Note that φ depends on the numbering of the inflection points of the Fermat curve F_3, that is, there are $9!$ such imbeddings.) Denote by $P = \varphi(PGL(3, \mathbb{C})) \subset (\mathbb{P}^2)^9$.

Claim 8. We have $G_3 = Hes \subset S_9$.

Proof. Consider the homomorphism $h_{3*}: \pi_1(\mathbb{P}^K_3 \setminus S_3, f) \to S_9$, where $f = (1,0) \in L \subset \mathbb{P}^K_3$ is the point corresponding to the Fermat curve F_3. Then $G_3 = h_{3*}(\pi_1(\mathbb{P}^K_3 \setminus S_3, f))$ acts on the set $h_{3*}^{-1}(f) = \{q_1, \ldots, q_9\}$.

Let us show that $Hes \subset G_3$. For this, consider an element $g_1 \in Hes \subset PGL(3, \mathbb{C})$. Since $PGL(3, \mathbb{C})$ is a connected variety, we can choose a continuous path $g_t \subset PGL(3, \mathbb{C}), 0 \leq t \leq 1$, connecting $g_0 = Id$ with g_1. The path g_t defines a continuous path $l(t) \subset \mathbb{P}^K_3 \setminus S_3$ such that $C_{l(t)} = g_t(F_3)$. We have $C_{l(1)}$ is a member of the Hesse pencil, since $g_1 \in Hes$. Denote by $\Gamma \subset \mathbb{P}^K_3 \setminus S_3$ the path $l(t)$ if $C_{l(1)} = F_3$ and $l(t) \cup l_j$ if $C_{l(1)} = C(1,6e^{2\pi i/3})$. Then the loop Γ represents an element $\gamma \in \pi_1(\mathbb{P}^K_3 \setminus S_3, f)$ and it is easy to see that the action of $h_{3*}(\gamma)$ on $h_{3*}^{-1}(f) = \{q_1, \ldots, q_9\}$ is the same as the action of g_1.

Let us show that $G_3 \subset Hes$. For this, consider an element $g \in G_3$ and a continuous loop $\Gamma(t) \subset \mathbb{P}^K_3 \setminus S_3$ starting and ending at f and representing an element $\gamma \in \pi_1(\mathbb{P}^K_3 \setminus S_3, f)$ such that $h_{3*}(\gamma) = g$. We lift the loop $\Gamma(t)$ to \mathcal{I}_3 and this lift consists of 9 continuous paths $\Gamma_1(t), \ldots, \Gamma_9(t) \subset \mathcal{I}_3$ starting and ending at the points of $h_{3*}^{-1}(f)$. So, we obtain 9 continuous paths $pr_2(\Gamma_1(t)), \ldots, pr_2(\Gamma_9(t)) \subset \mathbb{P}^2$. If we number the paths $\Gamma_j(t)$ so that $\Gamma_j(0) = q_j$, then $(pr_2(\Gamma_1(t)), \ldots, pr_2(\Gamma_9(t)))$ is a continuous path in P, since $\{pr_2(\Gamma_1(t)), \ldots, pr_2(\Gamma_9(t))\}$ is the set of the inflection points of smooth plane cubic curves. Therefore there is an element $\tau \in PGL(3, \mathbb{C})$ such that $\tau(q_j) = pr_2(\Gamma_j(1)) \in h_3^{-1}(f)$ for $j = 1, \ldots, 9$, that is, $g = \tau \in Hes$. \qed
1.8. **Case** $d = 4$. Consider the Klein curve $Kl \subset \mathbb{P}^2$ given by
\[z_1^3z_2 + z_1^3z_3 + z_1z_2^3 + z_2z_3^3 + z_1z_3^3 + z_2z_3^3 = 0. \]

It is well-known (see, for example, [2]) that the automorphism group $Aut(Kl)$ of Kl have the following properties. The order of $Aut(Kl)$ is equal to 168 and $Aut(Kl) \simeq PSL(2, \mathbb{Z}/7)$, the group $Aut(Kl)$ can be represented as a subgroup of $PGL(3, \mathbb{C})$ leaving invariant the curve Kl and the set of inflection points is an orbit under the action $Aut(Kl)$, the order of the stabilizer of each inflection point is equal to 7. In particular, the action of $Aut(Kl)$ on the set of the inflection points of Kl is transitive.

Claim 9. There is an imbedding $Aut(Kl) \subset G_4 \subset S_{24}$ such that $Aut(Kl)$ is a transitive subgroup of S_{24}.

Proof. Let $\pi_0 \in \mathbb{P}^{Kl}$ be the point corresponding to the curve Kl and g_1 an element of $Aut(Kl) \subset PGL(3, \mathbb{C})$. Since $PGL(3, \mathbb{C})$ is connected, there is a continuous path $g_t \subset PGL(3, \mathbb{C})$, $t \in [0, 1]$, connecting $g_0 = Id$ and g_1. Then the loop $\Gamma \subset \mathbb{P}^{Kl} \setminus B_4$ given by $g_t(\pi_0)$, $t \in [0, 1]$, defines an element $\gamma \in \pi_1(\mathbb{P}^{Kl} \setminus B_4, k)$ such that the action of $h_4(\gamma) \in S_{24}$ on the set $h_4^{-1}(\pi_0)$ of the inflection points of Kl coincides with the action of $g_1 \in Aut(Kl)$. \hfill \Box

By Claim 3 and 9, the group $G_4 \subset S_{24}$ has the following properties:

1. G_4 contains a subgroup $Aut(Kl)$ which acts transitively on the set $I_{24} = \{1, 2, \ldots, 23, 24\}$;
2. there are a partition $I_{24} = J_1 \cup J_2$, $|J_1| = 9$, $|J_2| = 15$, and a quasi-imbedding $G_3 \prec G_4$ such that J_1 is invariant under the action of $\tilde{G}_3 \subset G_4$ (see subsection 1.3) and the action of \tilde{G}_3 on J_1 is 2-transitive;
3. the group G_4 contains a transposition.

Claim 10. Properties (1) – (3) imply $G_4 = S_{24}$.

Proof. We say that a subset $J \subset I_{24}$ is 2-transitive (with respect to the action of G_4) if for each two pairs $\{j_1, j_2\} \subset J$ and $\{j_3, j_4\} \subset J$ there is an element $g \in G_4$ such that $g(\{j_1, j_2\}) = \{j_3, j_4\}$.

Denote by $\tilde{J} \subset I_{24}$ a 2-transitive subset of maximal cardinality. Obviously, if $J \subset I_{24}$ is a 2-transitive subset then for each $g \in G_4$ the set $g(J)$ is also 2-transitive, and if J_1 and J_2 are 2-transitive subsets such that the cardinality $|J_1 \cap J_2| \geq 2$, then $J_1 \cup J_2$ is also 2-transitive. Therefore it is easy to see that there are two possibilities: either $\tilde{J} = I_{24}$, or $|\tilde{J}| = 12$, since, by property (2), the cardinality $|\tilde{J}| \geq 9$ and, by property (1), G_4 acts transitively on I_{24}.

Let us show that the second case is impossible. Indeed, in this case it follows from transitivity of the action of G_4 that for each $g \in G_4$ either $g(\tilde{J}) = \tilde{J}$, or $g(\tilde{J}) = I_{24} \setminus \tilde{J}$. Therefore the action of G_4 on I_{24} induces an action on the set $\{\tilde{J}, I_{24} \setminus \tilde{J}\}$ of cardinality two, that is, there is an epimorphism $\varphi : G_4 \to \mathbb{Z}_2$. But, in this case the restriction $\varphi|_{Aut(Kl)} : Aut(Kl) \to \mathbb{Z}_2$ is also an epimorphism, since $Aut(Kl)$ acts transitively
on the set I_{24}. On the other hand, $\text{Aut}(Kl) \simeq PSL(2, \mathbb{Z}_7)$ is a simple group and therefore $\varphi|_{\text{Aut}(Kl)}$ must be trivial homomorphism.

Now, to complete the proof of Claim 10, it suffices to apply property (3), since G_4 acts 2-transitively on I_{24} and therefore all transpositions of S_{24} are contained in G_4. \hfill \Box

1.9. The end of the proof of Theorem 1. To complete the proof of Theorem 1 we need in the following

Lemma 3. Let G be a subgroup of the symmetric group S_m acting on a finite set M of cardinality m. Assume that

- (i) G acts transitively on M;
- (ii) there is a subgroup G_1 of G and a subset M_1 of M such that
 - (ii)$_1$ M_1 is invariant under the action of the group G_1,
 - (ii)$_2$ $2m_1 \geq m + 2$, where m_1 is the cardinality of the set M_1,
 - (ii)$_3$ the action of the group G_1 on M_1 is 2-transitive;
- (iii) the group G contains a transposition.

Then $G = S_m$.

Proof. By (ii)$_3$, for each element $g \in G$ the subgroup gG_1g^{-1} of G acts 2-transitively on $g(M_1)$ and by (ii)$_2$, the group G acts 2-transitively on $M_1 \cup g(M)$, since there are at least two elements in the intersection of $M_1 \cap g(M_1)$. It follows from (i) that for each element $x \in M$ there is an element $g \in G$ such that $x \in g(M_1)$. Therefore G acts 2-transitively on M and hence applying (iii) the group $G \subset S_m$ contains all transpositions. \hfill \Box

Now, applying induction on d, Theorem 1 follows from Claims 3, 5, 7, 8, 10 and Lemma 3 since

$$2[3d(d-2)] \geq [3(d+1)(d-1)] + 2$$

for $d \geq 4$.

2. Behaviour of the covering h_d near a node of a nodal curve

2.1. On the subset of S_d consisting of the points corresponding to the nodal curves. Denote by N_d a subvariety of S_d consisting of the points $\overline{\omega} \in S_d$ such that the set of singular points of the curves C_{π} consist of the only one ordinary node. The following Proposition is well-known.

Proposition 3. The variety S_d is an irreducible hypersurface in \mathbb{P}^{K_d} for each $d \geq 3$. The variety N_d is a non-empty Zariski open subset of S_d.

Proof of this proposition is similar to the proof of Proposition 1 and therefore it will be omitted. \hfill \Box

Claim 11. The variety $N_d \subset \mathbb{P}^{K_d}$ is smooth.
Proposition 4. Let \(\overline{a}_0 \in \mathcal{N}_d \) and \(\overline{z}_0 \) be the singular point of \(C_{\overline{a}_0} \). Then the local monodromy group \(\mathcal{G}_{d,\overline{a}_0} \subset S_{3d(d-2)} \) at the point \(\overline{a}_0 \) is a cyclic group of order 3 and it is generated by the product of two disjoint cycles of length 3.
Proof. Without loss of generality we can assume that \(C_{\mathfrak{a}_0} \) is given by equation \(F(\mathfrak{a}_0, z) = 0 \), where

\[
F(\mathfrak{a}_0, z) = z_1 z_2 z_3^{d-2} + z_3^{d-3} \sum_{j+k=3} \alpha_{j,k,d-3} z_1^j z_2^k + R(z_1, z_2, z_3)
\]

and where \(R \) is a polynomial of degree \(\leq d - 4 \) in the variable \(z_3 \).

Note that \(a_{3,0,d-3} \neq 0 \) and \(a_{0,3,d-3} \neq 0 \) if \(\mathfrak{a}_0 \in \mathfrak{N}_d \). Indeed, if, for example, \(a_{3,0,d-3} = 0 \) then it is easy to see that the line \(L \) given by \(t \mathfrak{u} + \mathfrak{a}_0 \), where \(t \in \mathbb{C} \) and in \(\mathfrak{u} \) all coordinates except the coordinate \(u_{0,1,d-1} \) are equal to zero and \(u_{0,1,d-1} = 1 \), lies in \(\mathcal{M}_d \).

Consider a one-parametric family \(C_{\mathfrak{a}_i} \) given by equation

\[
F(\mathfrak{a}_i, z) + tz_3^d = 0
\]

and its projection \(\text{pr}_1(C_{\mathfrak{a}_i}) = L = \{ \mathfrak{a}_t = \mathfrak{a}_0 + t \mathfrak{u} \} \subset \mathbb{P}^{K_d} \), where in \(\mathfrak{u} \) all coordinates except the coordinate \(v_{0,0,d} \) are equal to zero and \(v_{0,0,d} = 1 \). By Claim \(\square \) \(L \) meets \(S_d \) transversally at \(\mathfrak{a}_0 \).

In non-homogeneous coordinates \(x = \tilde{x}_z, y = \tilde{y}_z \) we have \(\mathfrak{a}_0 = (0, 0) \), the family \(C_{\mathfrak{a}_i} \) in \(L \times \mathbb{C}^2 \subset \mathbb{P}^{K_d} \times \mathbb{P}^2 \) is given by equation

\[
t + xy + \sum_{i+j=3} a_{i,j,d-3} x^i y^j + \text{terms of higher degree} = 0,
\]

and everybody can easily check that its Hessian \(H_{C_{\mathfrak{a}_i}} \) is given by equation

\[
2(d - 2)^2(xy - 3a_{3,0,d-3} x^3 + a_{2,1,d-3} x^2 y + a_{1,2,d-3} xy^2 - 3a_{0,3,d-3} y^3) + (d(d-1)) (1 + 4a_{2,1,d-3} x + 4a_{1,2,d-3} y) t + r_1(x, y) + tr_2(x, y) = 0,
\]

were \(r_1(x, y) = \sum_{i+j \geq 4} b_{i,j} x^i y^j \) and \(r_2(x, y) = \sum_{i+j \geq 2} c_{i,j} x^i y^j \) are some polynomials.

Consider the curve \(Z = h_d^{-1}(L) = C_{\mathfrak{a}_0} \cap H_{C_{\mathfrak{a}_0}} \subset X \), where \(X \) is a surface in \(\mathbb{C}^3 \) given by equation \((24) \). It is easy to see that \(X \) is isomorphic to \(\mathbb{C}^2 = \text{Spec} \mathbb{C}[x, y] \) and \(Z \) in \(X \) is given by equation

\[
(d^2 - 7d + 8)xy - 6(d - 2)(a_{3,0,d-3} x^3 + a_{0,3,d-3} y^3) - 2(d^2 + 2d - 4)(a_{2,1,d-3} x^2 y + a_{1,2,d-3} xy^2) + \text{terms of higher degree} = 0,
\]

since

\[
t = -(xy + \sum_{i+j=3} a_{i,j,d-3} x^i y^j + \text{terms of higher degree}).
\]

It follows from \((26) \) that \(Z \) has a node at the point \(p = (\mathfrak{a}_0, z_0) \). To resolve this point, consider the \(\sigma \)-process \(\sigma : \tilde{X} \rightarrow X \) with center at \(p \). The surface \(\tilde{X} \) is covered by two open neighbourhoods isomorphic to \(\mathbb{C}^2 \), \(\tilde{X} = U_1 \cup U_2 \). The coordinates in \(U_j \), \(j = 1, 2 \), are \(x_j, y_j \) and \(\sigma_{|U_j} \) is given by \(x = x_1 \) and \(y = x_1 y_1 \), and \(\sigma_{|U_2} \) is given by \(x = x_2 y_2 \) and \(y = y_2 \). Therefore the proper inverse image \(\sigma^{-1}(Z) \cap U_1 \) is given by equation

\[
(d^2 - 7d + 8)y_1 - 6(d - 2)^2(a_{3,0,d-3} x_1 + a_{0,3,d-3} x_1^3) - 2(d^2 + 2d - 4)(a_{2,1,d-3} x_1 y_1 + a_{1,2,d-3} x_1^2 y_1^2) + \text{terms of higher degree} = 0,
\]
and therefore the curve $\tilde{Z} = \sigma^{-1}(Z)$ is non-singular at the point $p_1 = \tilde{Z} \cap U_1 \cap E$, where E is the exceptional divisor of σ.

Since $a_{3,0,d-3} \neq 0$, the coordinate x_1 is a local parameter in \tilde{L} at the point p_1 and
\[y_1 = \frac{6(d-2)^2a_{3,0,d-3}}{d^2 - 7d + 8}x_1 + \sum_{j=2}^{\infty} b_j x_1^j. \]

It follows from (27) that
\[t = \frac{x_1^2 y_1 + a_{3,0,d-3}x_1^3}{(\frac{6(d-2)^2}{d^2 - 7d + 8} + 1)a_{3,0,d-3}x_1^3} + \text{terms of higher degree}. \]

Therefore the covering $h_d \circ \sigma : \tilde{Z} \to L$ is ramified at p_1 with multiplicity three.

Similar calculations (which will be omitted) show that the covering $h_d \circ \sigma : \tilde{Z} \to L$ also is ramified at $p_2 = \tilde{Z} \cap U_2 \cap E$ with multiplicity three, since $a_{0,3,d-3} \neq 0$. \qed

Let $\nu_d : I_d \to I_d$ be the normalization of the variety I_d and $\nu_{d-1} = h_d \circ \nu_d : I_d \to \mathbb{P}^{K_d}$. The following Proposition is an easy corollary of Lemma 1, Claim 1, and Proposition 4.

Proposition 5. Let $a_0 \in \mathfrak{m}_d$ and z_0 is the singular point of the curve C_{a_0}. Then

(i) the variety I_d is smooth at the point $p = (a_0, z_0)$;
(ii) $\nu_d^{-1}(p) = \{q_1, q_2\}$ consists of two points;
(iii) h_d is ramified along $\nu_d^{-1}(I_d)$ and the local degree $\deg_{q_j} h_d = 3$ for $j = 1, 2$.

References

[1] E. Brieskorn and H. Knörrer: *Plane algebraic curves*. Birkhäuser Verlag (1986), Basel. Boston
[2] I.V. Dolgachev: *Classical algebraic geometry*, Cambridge University Press, (2012), 639 p.
[3] O. Hesse: Über die Elimination der Variablen aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variablen. J. Reine Angew. Math., 28 (1844), 68 – 96.
[4] O. Hesse: Über die Wendepuncte der Curven dritte Ordnung. J. Reine Angew. Math., 28 (1844), 97 – 102.
[5] Vik. S. Kulikov: A Remark on Classical Plücker’s formulae, Ann. Fac. Sci. Toulouse. Math., 25:5 (2016), 959 – 967.

Steklov Mathematical Institute

E-mail address: kulikov@mi.ras.ru