Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries

Lang Liu,1,2,* Zong-Kuan Guo,1,2,† and Rong-Gen Cai1,2,‡

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

(Dated: March 27, 2019)

We develop an analytic formalism for computing the merger rate of primordial black hole binaries with a general mass function by taking into account the torques by the surrounding primordial black holes and linear density perturbations. We find that \(\alpha = -\frac{1}{36} \) is independent of the mass function. Moreover, the ratio of the merger rate density of primordial black hole binaries by taking into account the torques by the surrounding primordial black holes to the nearest primordial black hole is independent of the masses of binaries.

Primordial black holes (PBHs) produced in the early Universe due to the collapse of large energy density fluctuations, as a promising candidate for dark matter (DM), have recently attracted much attention [1–9].

On the other hand, the gravitational wave events observed by the LIGO detectors [10] can be explained by the coalescence of PBH binaries [11–20]. At present, we do not know how to discriminate the PBH scenario from other astrophysical scenarios. In Ref. [19] a new method is proposed to test the PBH scenario. A quantity \(\alpha \) can be constructed from the mass distribution of the merger rate density per unit cosmic time and comoving volume \(R(m_1, m_2) \). It is found that the quantity, \(\alpha = -\frac{1}{36} \), is independent of the black hole mass function. In the PBH scenario, \(\alpha \) is closed to unity. For black holes from dynamical formation in a dense stellar system, \(\alpha \approx 4 \) [21]. Therefore, it provides us a possibility to discriminate PBHs from astrophysical black holes. However, in Ref. [22] it is pointed out that if \(P(m)/m \) is a constant, \(\alpha = \frac{36}{37} \) which is consistent with the result derived in Ref. [19] while for a general mass function, the value of \(\alpha \) deviates from \(\frac{36}{37} \). In this letter, we re-analyze the merger rate distribution of PBH binaries with a general mass function by taking into account the torques by the surrounding PBHs and linear density perturbations. We find that \(\alpha = \frac{36}{37} \) for a general mass function.

In this letter, we use units of \(c = G = 1 \). Whenever relevant, we adopt the values of cosmological parameters from the Planck measurements [23]. The scale factor \(s(t) \) is normalized to unity at the matter radiation equality.

The probability distribution function of PBHs, \(P(m) \), is normalized to be

\[
\int_0^\infty P(m) dm = 1. \tag{1}
\]

The abundance of PBHs in the mass interval \((m, m+dm)\) is given by

\[
fP(m)dm, \tag{2}
\]

where \(f \equiv \Omega_{\text{pbh}}/\Omega_m \) is the total abundance of PBHs in non-relativistic matter. The fraction of PBHs in DM is related to \(f \) by \(f_{\text{pbh}} \equiv \Omega_{\text{pbh}}/\Omega_m \approx f/0.85 \). The average number density of PBHs in mass interval \((m, m+dm)\) at equality is given by

\[
n(m)dm = \frac{fP(m)dm\rho_{\text{eq}}}{m}, \tag{3}
\]

where \(\rho_{\text{eq}} \) is the energy density of the Universe at the matter radiation equality, and the comoving total average number density of PBHs \(n_T \) is given by

\[
n_T \equiv f\rho_{\text{eq}} \int_0^\infty \frac{P(m)dm}{m}. \tag{4}
\]

For simplicity, we define \(m_{\text{pbh}} \) as

\[
\frac{1}{m_{\text{pbh}}} = \int_0^\infty \frac{P(m)dm}{m}, \tag{5}
\]

and \(F(m) \) as

\[
F(m) \equiv \frac{n(m)}{n_T} = P(m)m_{\text{pbh}}, \tag{6}
\]

where \(F(m) \) is the fraction of the average number density of PBHs with mass \(m \) in the total average number density of PBHs. It is easily obtained

\[
\int_0^\infty F(m)dm = 1, \tag{7}
\]

which can be rewritten as

\[
\sum_{l=1}^L F(m_l)dm_l = 1, \tag{8}
\]

where \(m_1 \) represents the minimum mass of PBH and \(m_L \) represents the maximum mass of PBH.

Let us consider the condition two nearest PBHs with masses \(m_i \) and \(m_j \) decouple from the expanding Universe, assuming negligible initial peculiar velocities here.
and throughout. Considering the different scaling with time of the two competing effects (their gravitational attraction versus the expansion of the Universe), the equation of motion for their proper separation r in Newtonian approximation is given by

$$\ddot{r} - \left(\ddot{H} + H^2 \right) r + \frac{m_b}{r^2} \dot{r} = 0,$$

where x is the comoving distance between these two nearest PBHs and $h(s) \equiv H(s) / \left(\frac{8\pi G\rho_m}{3} \right)^{1/2} = \sqrt{s^{-3} + s^{-4}}$. Primes denote differentiation with respect to scale factor s and the dimensionless parameter λ is

$$\lambda = \frac{8\pi \rho_m x^3}{3m_b},$$

The solution of Eq. (10) in [16] implies the semi-major axis a of the formed binary is given by

$$a \approx 0.1 \lambda x.$$

Assuming that the distribution of PBHs is random distribution, the probability distribution of the separation x between two nearest PBHs with masses m_i and m_j and without other PBHs in the volume of $\frac{4\pi}{3} x^3$ is given by

$$dP(m_i, m_j, x) = F(m_i) \sum_{m \neq m_i} \int dx \int dm_j e^{-\frac{4\pi x^2}{3} n_m dm_j}$$

$$\times \frac{4\pi x^2}{3} n_m dm_j e^{-\int \frac{4\pi x^2}{3} n_m dm_j}$$

$$= F(m_i) \sum_{m \neq m_i} \int dx \int dm_j e^{-\frac{4\pi x^2}{3} n_m dm_j}$$

$$= F(m_i) \sum_{m \neq m_i} \int dx \int dm_j e^{-\frac{4\pi x^2}{3} n_m dm_j}.$$

The average distance \bar{x}_{ij} between two nearest PBHs with masses m_i and m_j is

$$\bar{x}_{ij} = \int \frac{4\pi x^2}{3} n_T e^{-\frac{4\pi x^2}{3} n_T} dx$$

$$= \frac{\Gamma(1/3)}{6^{2/3} \pi^{1/3} n_T^{-1/3}} \approx 0.554 n_T^{-1/3}.$$

Following Ref. [16], we denoted by \bar{x}_{ij} characteristic comoving separation between nearest PBHs with mass m_i and m_j,

$$\bar{x}_{ij} = \left(\frac{3}{4\pi} \right)^{1/3} n_T^{-1/3} \approx 0.620 n_T^{-1/3},$$

which is independent of the PBH binary masses. Therefore, from now on, we omit the subscript `ij' unless it is necessary. Given a comoving separation x, we define the dimensionless variable X as

$$X \equiv \left(\frac{x}{x} \right)^3.$$

When the two PBHs come closer and closer, the surrounding PBHs, especially the nearest PBH, will exert torques on the PBH binaries. As the result, the two PBHs avoid a head-on collision with each other. The tidal force will provide a angular momentum to prevent this system from direct coalescence. Here, we introduce a dimensionless angular momentum \dot{j} defined by

$$\dot{j} \equiv \sqrt{1 - e^2},$$

where e is the eccentricity of the binary at the formation time. From [16], the angular momentum generated by a PBH with mass m at a comoving separation $y \geq x$ is given by

$$\dot{j} \approx \frac{3}{m_b y^3} (\hat{x} \cdot \hat{y})(\hat{x} \times \hat{y}).$$

where \hat{x} is the unit vector along x and where \hat{y} is the unit vector along y.

We consider N_l PBHs with mass m_l uniformly distributed within a volume $V = \frac{4\pi}{3} R^3$ and take the limit $N_l V \to \infty$ at constant density $n(m_l)dm_l = \frac{N_l}{V}$. Therefore, the reduced angular momentum \dot{j} resulting from N_l PBHs with mass m_l is given by

$$\dot{j} = \sum_{l=1}^{L} \dot{j}_l \approx \sum_{l=1}^{L} \sum_{p=1}^{N_l} \frac{m_l}{m_b y_{l,p}^3} (\hat{x} \cdot \hat{y}_{l,p})(\hat{x} \times \hat{y}_{l,p}).$$

where $y_{l,p}$ is the comoving distance from the binary to the p-th PBH with mass m_l. The total reduced angular momentum \dot{j} resulting from the surrounding PBHs with masses from m_1 to m_L is given by

$$\dot{j} = \sum_{l=1}^{L} \dot{j}_l \approx \sum_{l=1}^{L} \sum_{p=1}^{N_l} \frac{m_l}{m_b y_{l,p}^3} (\hat{x} \cdot \hat{y}_{l,p})(\hat{x} \times \hat{y}_{l,p}).$$

Using Eq. (20), the two-dimensional probability distribution for \dot{j} is given by

$$dP_{\dot{j}} = \lim_{V \to \infty} \prod_{l=1}^{L} \prod_{p=1}^{N_l} \int d\dot{y}_{l,p} \delta_D \left[\dot{j} - \sum_{l=1}^{L} \sum_{p=1}^{N_l} m_l \frac{x^3}{m_b y_{l,p}^3} y_{l,q} \right],$$

where $y_{l,q} \equiv \hat{y} \cdot \hat{x}, y_{l,q} \equiv \hat{x} \times \hat{y}$, and δ_D is the two-dimensional Dirac function, which we rewrite as

$$\delta_D(X) = \int_{k \perp \hat{x}} \frac{d^2k}{(2\pi)^2} e^{ik \cdot X}.$$

(22)
We hence get

\[
\frac{dP}{d^2j} = \lim_{V \to \infty} \prod_{l=1}^{N_l} \prod_{p=1}^{N_p} \int \frac{d^3 y_{l,p}}{V} \int \frac{d^2 k}{(2\pi)^2} \times e^{i (k \cdot j - 3 \sum_{l=1}^{N_l} \sum_{p=1}^{N_p} \frac{m_{l,p}}{m_b} \frac{e^3}{y_{l,p}^3} y_{l,p} \cdot k \cdot y_{l,p})} \\
= \lim_{V \to \infty} \int \frac{d^2 k}{(2\pi)^2} e^{i k \cdot j} \\
\times \prod_{l=1}^{N_l} \prod_{p=1}^{N_p} \int \frac{d^3 y_{l,p}}{V} \left(-3 \sum_{l=1}^{N_l} \sum_{p=1}^{N_p} \frac{m_{l,p}}{m_b} \frac{e^3}{y_{l,p}^3} y_{l,p} \cdot k \cdot y_{l,p} \right) \\
= \lim_{V \to \infty} \int \frac{d^2 k}{(2\pi)^2} e^{i k \cdot j} \left[\int \frac{d^3 y}{V} e^{i (\frac{3}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y)} \right]^{N_l} \\
\times \ldots \times \left[\int \frac{d^3 y}{V} e^{i (\frac{3}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y)} \right]^{N_l} \\
= \lim_{V \to \infty} \int \frac{d^2 k}{(2\pi)^2} e^{i k \cdot j} \prod_{l=1}^{N_l} \mathcal{I}_l^{N_l},
\]

where

\[
\mathcal{I}_l = \int \frac{d^3 y}{V} \exp \left[-3 \frac{m_l}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y \right] \\
= 1 - \frac{1}{V} \int d^3 y \left\{ 1 - \exp \left[-3 i \frac{m_l}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y \right] \right\}.
\]

When \(V \to \infty \) the latter integral is convergent, then we arrive

\[
\lim_{V \to \infty} \mathcal{I}_l^{N_l} = \lim_{V \to \infty} \left\{ 1 - \frac{1}{V} \int d^3 y \left(1 - e^{-3 \frac{m_l}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y} \right) \right\}^{n(m_l)d_m V} = e^{-n(m_l)d_m \mathcal{J}_l},
\]

where\n
\[
\mathcal{J}_l = \int d^3 y \left(1 - \exp \left[-3 i \frac{m_l}{m_b} \frac{e^3}{y^3} y \cdot k \cdot y \right] \right) \\
= \int d^3 y \left(1 - \exp \left[-3 i \frac{m_l}{m_b} \frac{k x^3}{y^3} (\hat{y} \cdot \hat{x}) (\hat{y} \cdot \hat{k}) \right] \right).
\]

By rescaling \(y \to (1.5k)^{1/3} xy \) and defining \(v = 1/y^3 \), the integral \(\mathcal{J}_l \) becomes

\[
\mathcal{J}_l = 1.5k x^3 \int d^3 y \left(1 - \exp \left[2i \frac{m_l}{m_b} \frac{e^3}{y^3} (\hat{y} \cdot \hat{x})(\hat{y} \cdot \hat{k}) \right] \right) \\
= 2\pi k x^3 \int_0^\infty \frac{dv}{v^2} \int \frac{d^2 \hat{y}}{4\pi} \left(1 - 2i \frac{m_l}{m_b} v (\hat{y} \cdot \hat{x})(\hat{y} \cdot \hat{k}) \right) \\
= 2\pi k x^3 \int_0^\infty \frac{dv}{v^2} A_l(v),
\]

where

\[
A_l(v) = \int \frac{d^2 \hat{y}}{4\pi} \left(1 - e^{2i \frac{m_l}{m_b} v (\hat{y} \cdot \hat{x})(\hat{y} \cdot \hat{k})} \right).
\]

By using

\[
\hat{y} \cdot \hat{x} = \sin \theta \cos \phi, \\
\hat{y} \cdot \hat{k} = \sin \theta \sin \phi,
\]

we can get

\[
(\hat{y} \cdot \hat{x})(\hat{y} \cdot \hat{k}) = \frac{\sin 2\phi}{2} (1 - \mu^2),
\]

where \(\mu = \cos \theta \). From (28) and (30) and using \(d^2\hat{y} = \sin \theta d\theta d\phi \), \(A_l(v) \) is given by

\[
A_l(v) = \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^1 \frac{dv}{v} \left(1 - \exp \left[i \frac{vm_l}{m_b} v (\sin 2\phi)(1 - \mu^2) \right] \right) \\
= \int_0^1 \frac{dv}{v} \left(1 - J_0 \left[\frac{vm_l}{m_b} (1 - \mu^2) \right] \right),
\]

where \(J_0(x) \) is the zeroth-order Bessel function. Since \(J_0(x) = 1 + O(x^2) \) for \(x \to 0 \), we could compute the integral over \(v \) first. From (27) and (31), \(\mathcal{J}_l \) is given by

\[
\mathcal{J}_l = 2\pi k x^3 \int_0^1 \frac{dv}{v^2} \left(1 - J_0 \left[\frac{vm_l}{m_b} (1 - \mu^2) \right] \right) \\
= 2\pi k x^3 \int_0^1 \frac{dv}{v^2} (1 - \mu^2) \int_0^\infty \frac{du}{u^2} (1 - J_0(u)),
\]

where \(u = \frac{vm_l}{m_b} (1 - \mu^2) \). The last two integrals are analytic. By using

\[
\int_0^1 \frac{dv}{v^2} (1 - \mu^2) = 2/3, \int_0^\infty \frac{du}{u^2} (1 - J_0(u)) = 1,
\]

we can get a simple expression

\[
\mathcal{J}_l = \frac{4\pi}{3} \frac{m_l}{m_b} x^3 k.
\]

So, (25) becomes

\[
\lim_{V \to \infty} \mathcal{I}_l^{N_l} = e^{-n(m_l)d_m \mathcal{J}_l} = e^{-n(m_l)d_m \frac{4\pi}{3} \frac{m_l}{m_b} x^3 k}.
\]

Since \(m_l n(m_l) = \rho l \) is the energy density of PBHs with mass \(m_l \), we can get

\[
\sum_{l=1}^{L} \rho_l d_m = \rho_{pbh} = \frac{\rho_{eq}}{3}.
\]

So we can arrive

\[
\prod_{l=1}^{L} \mathcal{I}_l^{N_l} = e^{- \frac{4\pi}{3} \frac{\rho_{eq}}{m_b} x^3 k} = e^{- jX k},
\]

where

\[
\rho_{eq} = \frac{4\pi}{3} \frac{\rho_{pbh}}{m_b} X.
\]

We hence arrive at the probability distribution

\[
\frac{dP}{dj} = 2\pi j \frac{dP}{dj} = j \int \frac{d^2 k}{2\pi} e^{ik \cdot j - jX k} \\
= j \int kdk J_0(kj) e^{-jX k} \\
= \frac{jjX}{(j^2 + jX^2)^{3/2}}.
\]
For a given X,
\[
\left. j \frac{dP}{dj} \right|_X = \mathcal{P}(j/jX), \quad \mathcal{P}(\gamma) \equiv \frac{\gamma^2}{(1 + \gamma^2)^{3/2}}. \tag{40}
\]

Similar to [16], taking into account both the torques by the surrounding PBHs and density perturbations, we can rewrite the characteristic value of j_X as
\[
j_X \approx \frac{m_{\text{pbh}}}{m_b} \left(1 + \frac{\sigma_{\text{eq}}^2}{f^2} \right)^{1/2} X, \tag{41}\]

where $\sigma_{\text{eq}} \equiv \left(\frac{\delta_{\text{eq}}^2}{f^2} \right)^{1/2}$ is the variance of density perturbations of the rest of DM at the matter radiation equality. Once the PBHs decouple from the expanding Universe and form a binary, they gradually shrink by gravitational radiation and finally merge. The coalescence time can be estimated as [24]
\[
t = \frac{3}{85} \frac{a^4}{m_i m_j m_b} j^7. \tag{42}\]

We can rewrite (42) as
\[
j = \left(\frac{3}{85} \frac{a^4}{m_i m_j m_b} \right)^{-1/7} t^{1/7}. \tag{43}\]

The differential probability distribution of X and t is given by
\[
\frac{d^2P}{dX dt} = \frac{dP}{dX} \frac{dP}{dt} \bigg|_X = \frac{dP}{dX} \times \left[\frac{\partial j}{\partial t} \frac{dP}{dj} \bigg|_X \right]_{j(t; X)}. \tag{44}\]

From (13) and (16), we can get
\[
dP/dX = e^{-X} F(m_i) dm_i F(m_j) dm_j. \tag{45}\]

Given that $j \propto t^{1/7}$, $\partial j/\partial t = j/(7t)$. By using (40), we can get
\[
\frac{d^2P}{dX dt} = \frac{1}{7t} e^{-X} F(m_i) dm_i F(m_j) dm_j \mathcal{P}(\gamma_X), \tag{46}\]

where
\[
\gamma_X \equiv \frac{j(t; X)}{j_X}. \tag{47}\]

From Bayes’ theorem, we get the probability distribution of X for binaries merging after a time t
\[
\frac{dP}{dX} \bigg|_t \propto \frac{d^2P}{dX dt} \propto e^{-X} \mathcal{P}(\gamma_X). \tag{48}\]

We now find the value of X_* to satisfy the probability is maximized. Since $X_* \ll 1$, we approximate $e^{-X} \approx 1$. The equation we need to solve is
\[
0 = \frac{\partial}{\partial X} \left[\frac{dP}{dX} \bigg|_t \right]_{X_*} \propto \mathcal{P}'(\gamma_{X_*}) \frac{\partial \gamma_{X_*}}{\partial X}. \tag{49}\]

Since γ_X is strictly monotonic, this implies $\mathcal{P}'(\gamma_{X_*}) = 0$, then we get
\[
j(t; X_*) = \sqrt{2} j_{X_*}. \tag{50}\]

By solving (41), (43) and (50), the most probable value of X for binaries merging at time t is given by
\[
X_* \approx 2.12 \frac{f^{10/37}}{m_i^{3/37} m_j^{3/37}} (m_i + m_j)^{36/37} t^{3/37} \times m_{\text{pbh}}^{\frac{1}{37}} \frac{\sigma_{\text{eq}}^2}{f^2} \left(1 + \frac{\sigma_{\text{eq}}^2}{f^2} \right)^{-21/74}. \tag{51}\]

The probability distribution of the time of PBH merger with mass m_i and m_j is given by
\[
\frac{dP}{dt} = \int dX \frac{d^2P}{dX dt} = \frac{1}{7t} F(m_i) dm_i \times F(m_j) dm_j \frac{dX}{e^{-X} \mathcal{P}(\gamma_X)}. \tag{52}\]

Since the integrand peaks at $X_* \ll 1$, we get $e^{-X} = 1$. By using $\gamma_X \propto X^{-37/21}$, and $\gamma_{X_*} = \sqrt{2}$, we can find
\[
\int dX \mathcal{P}(\gamma_X) = \frac{21}{37} \frac{X_*}{\sqrt{2}} \int d\gamma (\gamma/\sqrt{2})^{-58/37} \mathcal{P}(\gamma) \approx 0.59 X_* \tag{53}\]

The total probability distribution of the time of merger is given by
\[
\frac{dP_T}{dt} = \int \int 0.084 \frac{X_*}{t} F(m_i) F(m_j) dm_i dm_j. \tag{54}\]

The merger rate per unit volume at time t is obtained from
\[
R(t) = \frac{dN_{\text{merge}}}{dt dV} = \frac{1}{2} \frac{n_T}{(1 + z_{\text{eq}})^3} \frac{dP_T}{dt}, \tag{55}\]

where the factor 1/2 account for that each merger event involves two PBHs and $z_{\text{eq}} \approx 3400$ is the redshift at the matter radiation equality. Finally, we arrive at
\[
R(t) = \int \int R(m_i, m_j, t) dm_i dm_j, \tag{56}\]

where
\[
R(m_i, m_j, t) = F(m_i) F(m_j) \frac{a^3}{m_b} \left(1 + \frac{\sigma_{\text{eq}}^2}{f^2} \right)^{-21/74} \times 1.94 	imes 10^6 \times (M_\odot)^{\frac{38}{44}} \left(\frac{t}{t_0} \right)^{-\frac{37}{44}} (m_i m_j)^{\frac{36}{44}} \times (m_i + m_j)^{\frac{38}{44}} m_{\text{pbh}}^{\frac{44}{37}}, \tag{57}\]

which can be interpreted as the merger rate density in unit of Gpc$^{-3}$ yr$^{-1}$ M$_\odot^{-2}$. From (57), we confirm the result derived in [19], without considering the merger history of PBHs, $\alpha = -(m_i + m_j)^2 \partial^2 \ln R(t, m_i, m_j)/\partial m_i \partial m_j = 36/37$, which is independent of the PBH mass function, by taking into account the torques by the surrounding PBHs.

Only accounting for tidal torquing by the nearest PBH, the merger rate per unit volume at time t is given by [25]
\[
\hat{R}(t) = \int \int \hat{R}(m_i, m_j, t) dm_i dm_j, \tag{58}\]
where
\[
\mathcal{R}(m_i, m_j, t) = \int F(m_i) (m_i)^{-\frac{3\sigma}{2}} \, dm_i \\
\times 9.46 \times 10^5 \times (M_{\odot})^{3\sigma} \left(\frac{t}{t_0} \right)^{-\frac{3\sigma}{2}} (m_i m_j)^{3\sigma/2} \\
\times F(m_i) F(m_j) (m_{\text{pbh}})^{-\frac{3\sigma}{2}} (m_i + m_j)^{3\sigma} f_{\text{pbh}}, \tag{59}
\]
which can be interpreted as the merger rate density in unit of Gpc^{-3} yr^{-1} M_{\odot}^{-2}. As a comparison, we define \(\lambda \) as
\[
\lambda = \frac{\mathcal{R}(m_i, m_j, t)}{\mathcal{R}(m_i, m_j, t)}.
\tag{60}
\]
By using \(f_{\text{pbh}} = f/0.85 \), \(\lambda \) is given by
\[
\lambda = 0.61 \times \int F(m_i) (m_i)^{-\frac{3\sigma}{2}} \, dm_i (m_{\text{pbh}})^{-\frac{3\sigma}{2}} (1 + \frac{\sigma_{\text{eq}}^2}{f^2})^{21/74},
\tag{61}
\]
which is independent of \(m_i, m_j \) and \(t \).

Now let us consider two typical PBH mass functions. One is the monochromatic case \([12, 14, 17]\),
\[
P(m) = \delta(m - M). \tag{62}
\]
The other takes the power-law form as follows \([3]\)
\[
P(m) = \frac{\beta - 1}{M} \left(\frac{m}{M} \right)^{-\beta}, \tag{63}
\]
with \(m \geq M \) and \(\beta > 1 \). In the monochromatic case, we arrive at
\[
\lambda = 0.61 \times (1 + \frac{\sigma_{\text{eq}}^2}{f^2})^{21/74}. \tag{64}
\]
Neglecting the density perturbation, \(\lambda = 0.61 \) is independent of the mass of PBH. In the power-law case, \(\lambda \) is given by
\[
\lambda = 0.61 \times \frac{37\beta^{58/37}}{(\beta - 1)^{21/37}(21 + 37\beta)} (1 + \frac{\sigma_{\text{eq}}^2}{f^2})^{21/74}. \tag{65}
\]
Neglecting the density perturbation, in the case \(\beta > 1.05 \), \(\lambda \sim O(1) \) is almost independent on the mass function of PBH.

Fig. 1 and Fig. 2 show that the merger rate constrained by LIGO/VIRGO could be explained by mergers of PBH binaries. Here we take \(M = 30 M_{\odot} \) for the monochromatic case and \(M = 5 M_{\odot}, \beta = 2.3 \) for the power-law case. In the monochromatic case, LIGO/VIRGO implies that \(0.0019 \lesssim f_{\text{pbh}} \lesssim 0.014 \) for taking into account the torque by the nearest PBH and \(0.0013 \lesssim f_{\text{pbh}} \lesssim 0.0098 \) for taking into account the torques by all PBHs. In the power-law case, LIGO/VIRGO implies that \(0.0014 \lesssim f_{\text{pbh}} \lesssim 0.010 \) for taking into account the torque by the nearest PBH and \(0.0010 \lesssim f_{\text{pbh}} \lesssim 0.0077 \) for taking into account the torques by all PBHs. Such an abundance of PBHs satisfies current constraints from other observations \([27-40]\).

So far, several gravitational wave events from black hole binary mergers have been detected by LIGO/VIRGO collaboration, such as GW150914 \([10]\), GW151226 \([41]\), GW170104 \([26]\), GW170608 \([42]\) and GW170814 \([43]\). One of the most important question is how to discriminate PBHs and astrophysical black holes. In this letter, we develop a formalism for calculating the merger rate distribution of PBH binaries with a general mass function by taking into account the torques by the surrounding PBHs and linear density perturba-
tions. We find $\alpha = 36/37$ is independent of the mass function of PBHs. The ratio of the merger rate density of PBHs by taking into account the torques by the surrounding PBHs to the nearest PBH is independent of m_i and m_j. We apply our formalism to two specific examples, the monochromatic and power-law cases. In these cases, three body approximation is a good approximation. In the future, more and more coalescence events of black hole binaries will be detected by LIGO/VIRGO. This will provide more information of the merger rate distribution of black hole binaries to test the PBH scenario.

Note added

In finishing this letter, we find a parallel independent work [44] that has some overlap with our calculation of the merger rate of primordial black hole binaries.

ACKNOWLEDGMENTS

We thank Jing Liu, Yu-Tian Shen, Zu-Cheng Chen, Qing-Guo Huang for helpful discussions. This work is supported in part by the National Natural Science Foundation of China Grants No.11575272, No.11690021, No.11690022, No.11851302, No.11375247 and No.11435006, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant No. XDB23030100, No. XDA15020701 and by Key Research Program of Frontier Sciences, CAS.

[1] Stephen Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
[2] Bernard J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974).
[3] Bernard J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J. 201, 1–19 (1975).
[4] Tie-Jun Gao and Zong-Kuan Guo, “Primordial Black Hole Production in Inflationary Models of Supergravity with a Single Chiral Superfield,” Phys. Rev. D98, 063526 (2018), arXiv:1806.09320 [hep-ph].
[5] Rong-Gen Cai, Tong-Bo Liu, and Shao-Jiang Wang, “Sensitivity of primordial black hole abundance on the reheating phase,” Phys. Rev. D98, 043538 (2018), arXiv:1806.05390 [astro-ph.CO].
[6] Zu-Cheng Chen, Fan Huang, and Qing-Guo Huang, “Stochastic Gravitational-Wave Background from Binary Black Holes and Binary Neutron Stars,” (2018), arXiv:1809.10360 [gr-qc].
[7] M. Yu. Khlopov, “Primordial Black Holes,” Res. Astron. Astrophys. 10, 495–528 (2010), arXiv:0801.0116 [astro-ph].
[8] Konstantin M. Belotsky, Vyacheslav I. Dokuchaev, Yury N. Eroshenko, Ekaterina A. Esipova, Maxim Yu. Khlopov, Leonid A. Khromykh, Alexander A. Kirillov, Valeriy V. Nikulin, Sergey G. Rubin, and Igor V. Svadkovsky, “Clusters of primordial black holes,” (2018), arXiv:1807.06590 [astro-ph.CO].
[9] Ryo Saito and Jun’ichi Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys. Rev. Lett.107,069901(2011)], arXiv:0812.4339 [astro-ph].
[10] B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc].
[11] A. Kashlinsky, “LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies,” Astrophys. J. 823, L25 (2016), arXiv:1605.04023 [astro-ph.CO].
[12] Simeon Bird, Ilias Cholis, Julian B. Muoz, Yacine Ali-Hamoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess, “Did LIGO detect dark matter?” Phys. Rev. Lett. 116, 201301 (2016), arXiv:1603.00464 [astro-ph.CO].
[13] Sebastien Clesse and Juan Garca-Bellido, “The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO,” Phys. Dark Univ. 15, 142–147 (2017), arXiv:1603.05234 [astro-ph.CO].
[14] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama, “Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914,” Phys. Rev. Lett. 117, 061101 (2016), [erratum: Phys. Rev. Lett.121,no.5,059901(2018)], arXiv:1603.08338 [astro-ph.CO].
[15] Takashi Nakamura, Misao Sasaki, Takahiro Tanaka, and Kip S. Thorne, “Gravitational waves from coalescing black hole MACHO binaries,” Astrophys. J. 487, L139–L142 (1997), arXiv:astro-ph/9708060 [astro-ph].
[16] Yacine Ali-Hamoud, Ely D. Kovetz, and Marc Kamionkowski, “Merger rate of primordial black hole binaries,” Phys. Rev. D96, 123523 (2017), arXiv:1709.06576 [astro-ph.CO].
[17] Hiroya Nishikawa, Ely D. Kovetz, Marc Kamionkowski, and Joseph Silk, “Primordial-black-hole mergers in dark-matter spikes,” (2017), arXiv:1708.08449 [astro-ph.CO].
[18] Martti Raidal, Ville Vaskonen, and Hardi Veerme, “Gravitational Waves from Primordial Black Hole Mergers,” JCAP 1709, 037 (2017), arXiv:1707.01480 [astro-ph.CO].
[19] Bence Kocsis, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama, “Hidden universality in the merger rate distribution in the primordial black hole scenario,” Astrophys. J. 854, 41 (2018), arXiv:1709.09007 [astro-ph.CO].
[20] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama, “Primordial black hole perspectives in gravitational wave astronomy,” Class. Quant. Grav. 35, 063001 (2018), arXiv:1801.05235 [astro-ph.CO].
[21] Ryan M. O’Leary, Yohai Meiron, and Bence...
Kocsis, “Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO,” Astrophys. J. 824, L12 (2016), arXiv:1602.02809 [astro-ph.HE].

[22] Zu-Cheng Chen and Qing-Guo Huang, “Merger Rate Distribution of Primordial-Black-Hole Binaries,” Astrophys. J. 864, 61 (2018), arXiv:1801.10327 [astro-ph.CO].

[23] P. A. R. Ade et al. (Planck), “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO].

[24] P. C. Peters, “Gravitational Radiation and the Motion of Two Point Masses,” Phys. Rev. 136, B1224–B1232 (1964).

[25] Lang Liu, Zong-Kuan Guo, and Rong-Gen Cai, “Effects of the merger history on the merger rate of primordial black hole binaries,” (2019), arXiv:1901.07672 [astro-ph.CO].

[26] Benjamin P. Abbott et al. (LIGO Scientific, Virgo), “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett. 118, 221101 (2017), [Erratum: Phys. Rev. Lett. 121, no.12,129901(2018)], arXiv:1706.01812 [gr-qc].

[27] Lu Chen, Qing-Guo Huang, and Ke Wang, “Constraint on the abundance of primordial black holes in dark matter from Planck data,” JCAP 1612, 044 (2016), arXiv:1608.02174 [astro-ph.CO].

[28] Anne M. Green, “Micro-micronalensing and dynamical constraints on primordial black hole dark matter with an extended mass function,” Phys. Rev. D94, 063530 (2016), arXiv:1609.01143 [astro-ph.CO].

[29] Katelin Schutz and Adrian Liu, “Pulsar timing can constrain primordial black holes in the LIGO mass window,” Phys. Rev. D95, 023002 (2017), arXiv:1610.04234 [astro-ph.CO].

[30] Sai Wang, Yi-Fan Wang, Qing-Guo Huang, and Tjonnin G. F. Li, “Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background,” Phys. Rev. Lett. 120, 191102 (2018), arXiv:1610.08725 [astro-ph.CO].

[31] Daniele Gaggero, Gianfranco Bertone, Francesca Calore, Riley M. T. Connors, Mark Lovell, Sera Markoff, and Emma Storm, “Searching for Primordial Black Holes in the radio and X-ray sky,” Phys. Rev. Lett. 118, 241101 (2017), arXiv:1612.00457 [astro-ph.HE].

[32] Yacine Ali-Hamoud and Marc Kamionkowski, “Cosmic microwave background limits on accreting primordial black holes,” Phys. Rev. D95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO].

[33] Daniel Aloni, Kfir Blum, and Raphael Flauger, “Cosmic microwave background constraints on primordial black hole dark matter,” JCAP 1705, 017 (2017), arXiv:1612.06811 [astro-ph.CO].

[34] Benjamin Horowitz, “Revisiting Primordial Black Holes Constraints from Ionization History,” (2016), arXiv:1612.07264 [astro-ph.CO].

[35] Florian Khnel and Katherine Freese, “Constraints on Primordial Black Holes with Extended Mass Functions,” Phys. Rev. D95, 083508 (2017), arXiv:1701.07223 [astro-ph.CO].

[36] Yoshiyuki Inoue and Alexander Kusenko, “New X-ray bound on density of primordial black holes,” JCAP 1710, 034 (2017), arXiv:1705.00791 [astro-ph.CO].

[37] Bernhard Carr, Martti Raidal, Tommi Tenkanen, Ville Vaskonen, and Hardi Veerme, “Primordial black hole constraints for extended mass functions,” Phys. Rev. D96, 023514 (2017), arXiv:1705.05567 [astro-ph.CO].

[38] Anne M Green, “Astrophysical uncertainties on stellar microlensing constraints on multi-Solar mass primordial black hole dark matter,” Phys. Rev. D96, 043020 (2017), arXiv:1705.10818 [astro-ph.CO].

[39] Hua-Ke Guo, Jing Shu, and Yue Zhao, “Using LISA-like Gravitational Wave Detectors to Search for Primordial Black Holes,” (2017), arXiv:1709.03500 [astro-ph.CO].

[40] Vivian Poulin, Pasquale D. Serpico, Francesca Calore, Sebastien Clesse, and Kazunori Kohri, “CMB bounds on disk-accreting massive primordial black holes,” Phys. Rev. D96, 083524 (2017), arXiv:1707.04206 [astro-ph.CO].

[41] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc].

[42] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence,” Astrophys. J. 851, L35 (2017), arXiv:1711.05578 [astro-ph.HE].

[43] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc].

[44] Martti Raidal, Christian Spethmann, Ville Vaskonen, and Hardi Veerme, “Formation and Evolution of Primordial Black Hole Binaries in the Early Universe,” (2018), arXiv:1812.01930 [astro-ph.CO].