Helly-type theorem for eigenvectors

Alexandr Polyanskii

February 14, 2017

Abstract

We prove that if any \(\lfloor 3d/2 \rfloor \) or fewer elements of a finite family of linear operators \(\mathbb{K}^d \to \mathbb{K}^d\) (\(\mathbb{K}\) is an arbitrary field) have a common eigenvector then all operators in the family have a common eigenvector. Moreover, \(\lfloor 3d/2 \rfloor \) cannot be replaced by a smaller number. Also, we study the following problem, achieving partial results: prove that if any \(\ell = O(d)\) or fewer elements of a finite family of linear operators \(\mathbb{K}^d \to \mathbb{K}^d\) have a common non-trivial invariant subspace then all operators in the family have a common non-trivial invariant subspace.

1 Introduction

We denote the set of numbers \(\{a, a+1, \ldots, b\}\) by \([a,b]\), where \(a < b\) are positive integer numbers. Also, we use the following notation \([b] := [1, b]\).

The well-known Helly’s theorem [5] claims.

Theorem 1. Let \(\mathcal{F}\) be a finite family of convex sets in \(\mathbb{R}^d\). If every \(d+1\) or fewer elements of \(\mathcal{F}\) intersects, then all the sets in the family \(\mathcal{F}\) intersect.

There is an abundance of literature on Helly-type theorems, see for example [1, 3, 4, 6, 8]. The aim of this work is to answer the following Helly-type question.

Problem 1. Let \(\mathcal{A}\) be a finite family of linear operators \(\mathbb{K}^d \to \mathbb{K}^d\), where \(\mathbb{K}\) is an arbitrary field and \(d \geq 2\). Find minimal \(k = HE(\mathbb{K}^d)\) such that if any \(k\) or fewer elements of \(\mathcal{A}\) have a common eigenvector then there is a common eigenvector for all operators in the family \(\mathcal{A}\).

The authors of [2] considered Problem 1 and gave the wrong proof of the fact that \(HE(\mathbb{R}^d) = d + 1\) (see Theorem 5.1 in [2]). Our main result is the following theorem.

Theorem 2. \(HE(\mathbb{K}^d) = \lfloor 3d/2 \rfloor\) for an arbitrary field \(\mathbb{K}\).

We prove Theorem 2 in Section 2.

Also, we discuss the following Helly-type question posed by Andrey Voynov [7].

Problem 2. Let \(\mathcal{A}\) be a finite family of linear operators \(\mathbb{K}^d \to \mathbb{K}^d\), where \(\mathbb{K}\) is an arbitrary field and \(d \geq 2\). Find minimal \(l = HI(\mathbb{K}^d)\) such that if any \(l\) or fewer elements of \(\mathcal{A}\) have a common non-trivial invariant subspace then there is a common non-trivial invariant subspace for all operators in the family \(\mathcal{A}\).
It is easy to see that \(HI(K^d) \leq d^2 \). Indeed, suppose that we know that any \(d^2 \) or fewer operators in a finite family have a common non-trivial invariant subspace. Note that the space of linear operators is in fact the space of matrices of size \(d \times d \) therefore among operators in the family we can find at most \(d^2 \) operators such that any operator in the family is equal to a linear combination of these operators (with coefficients in \(K \). Therefore, because of our assumption all elements of the family have a common non-trivial subspace.

It is not difficult to slightly improve the above estimate \(HI(K^d) \leq d^2 - d + 1 \). We leave this improvement to reader as an exercise. Moreover, we believe that the following conjecture holds.

Conjecture 1. \(HI(K^d) = O(d) \).

The following theorem is a partial result confirming Conjecture 1.

Theorem 3. Suppose that \(A \) is a finite family of linear operators such that \(A_0 \in A \) have \(d \) eigenvectors in \(K^d \) with different eigenvalues and any \(2d - 1 \) or fewer elements of \(A \) have a common non-trivial invariant subspace then there is a common non-trivial invariant subspace for all elements of \(A \).

We deduce Theorem 3 from the following combinatorial lemma, which seems to be of independent interest.

Lemma 1. Let \(q > 0 \) and \(p \geq 0 \) be integer numbers. Given a family \(M = \{M_1, \ldots, M_p\} \) of non-empty and proper subsets of \([q]\). Suppose that for every non-empty subset \(I \subseteq [p] \) we have either

\[
\bigcup_{i \in I} M_i = [q] \text{ or } \bigcup_{i \in I} M_i \neq \bigcup_{i \in I \setminus \{j\}} M_i
\]

for some \(j \in I \). Then \(p \leq 2q - 2 \).

Theorem 3 and Lemma 1 are proved in Section 3.

Acknowledgment. We are grateful to Roman Drnovšek for valuable comments that helped to significantly improve the presentation of the paper. We wish to thank Ilya Bogdanov for pointing out a mistake in the original proof of Lemma 1.

2 Proof of Theorem 2

The following example shows that \(HE(K^d) \geq \lfloor 3d/2 \rfloor \).

Example. Let \(e_1, \ldots, e_{3n} \) be such vectors that

\[
\{e_j : j \in [3n], 3 \not\mid j\}
\]

is the standard basis vectors of \(K^{2n} \) and \(e_{3i} = e_{3i-2} + e_{3i-1} \) for any \(i \in [n] \). Let us introduce the following notations:

\[
H_j = \text{span}(e_i : i \in [3n] \setminus \{j, j + f(j)\}), L_j = \text{span}(e_j),
\]

here \(j \in [3n] \) and

\[
f(j) = \begin{cases} 1, & \text{if } j \equiv 1, 2 \pmod{3}; \\ -2, & \text{if } j \equiv 0 \pmod{3}. \end{cases}
\]

Let us define a family \(A = \{A_1, \ldots, A_{3n}\} \) of \(3n \) operators. The operator \(A_j, j \in [3n], \) is such that \(H_j \) is the eigenspace associated with the eigenvalue 1 and \(L_j \) is the
eigenspace associated with the eigenvalue 0. Obviously, \(A_j \) are well defined and all operators but \(A_j \) have a common eigenvector \(e_{j+f(j)} \), but all operators do not have a common eigenvector. Analogously, if \(d \) is odd we can construct an example of a family of \([3d/2] \) operators \(\mathbb{K}^d \to \mathbb{K}^d \) such that all operators does not have a common eigenvector and all operators but any operator have.

The proof is based on induction on \(n \). Suppose that Theorem 2 is shown for families of linear operators containing less then \(n \) operators, where \(n \geq [3d/2] + 1 \). Let us prove Theorem 2 for a family \(\mathcal{A} = \{A_1, \ldots, A_n\} \) of \(n \) operators. By the induction hypothesis, we can find a vector \(\mathbf{v}_i \) that is a common eigenvector of all elements of \(\mathcal{A} \) but \(A_i \).

Suppose that \(\mathbf{v}_{k+1}, \ldots, \mathbf{v}_n \) is the maximal set of linearly independent vectors among \(\mathbf{v}_1, \ldots, \mathbf{v}_n \), then \(n-k \leq d \) and

\[
\mathbf{v}_i = \sum_{j=k+1}^{n} \mu_{i,j} \mathbf{v}_j = \sum_{j \in X_i} \mu_{i,j} \mathbf{v}_j \quad (1)
\]

for any \(i \in [k] \). Here \(X_i \) is the set of \(j \in [k+1, n] \) such that \(\mu_{i,j} \neq 0 \).

Fact 1. \(H_i := \text{span}(\{ \mathbf{v}_j : j \in X_i \}) \) is a common eigenspace for operators \(A_m, m \in [n] \setminus (X_i \cup \{i\}) \).

Proof of Fact 1. Let us apply the operator \(A_m \) for fixed \(m \in [n] \setminus (X_i \cup \{i\}) \) to (1). Because vectors \(\mathbf{v}_j, j \in X_i \cup \{i\} \), are eigenvectors of \(A_m \) thus we get

\[
\lambda_{i,m} \mathbf{v}_i = \sum_{j \in X_i} \lambda_{j,m} \mu_{i,j} \mathbf{v}_j,
\]

where \(\lambda_{j,m}, j \in \{i\} \cup X_i \), is the eigenvalue corresponding to the operator \(A_m \) and the eigenvector \(\mathbf{v}_j \). Because vectors \(\mathbf{v}_j, j \in X_j \subset [k+1, n] \), are linearly independent therefore \(\lambda_{j,m} = \lambda \) for all \(j \in \{i\} \cup X_i \). Thus the operator \(A_m \) is a scalar operator on \(H_i \).

Fact 2. Suppose that \(l \in X_i \) for \(i \in [k] \). Then vectors \(\mathbf{v}_j, j \in \{i\} \cup [k+1, n] \setminus \{l\} \), are linearly independent.

Proof of Fact 2. A simple exercise.

If \(X_i = \emptyset \) for some \(i \in [k] \) then \(\mathbf{v}_i = 0 \), i.e. we get the contradiction because eigenvectors are non-trivial vectors. If \(X_i = \{m\} \) for some \(i \in [k], m \in [k+1, n] \) then \(\mathbf{v}_i = \mu_{i,m} \mathbf{v}_m \), i.e. \(\mathbf{v}_i \) is a common eigenvector for all elements of \(\mathcal{A} \). Therefore, \(|X_i| \geq 2 \), thus without loss of generality we have \(X_{1,2} = X_1 \cap X_2 \neq \emptyset \). Indeed, otherwise

\[
2k \leq \left| \bigcup_{i=1}^{k} X_i \right| \leq |[k+1, n]| = n-k, \text{ i.e.}
\]

\[
n - d \leq k \leq n/3, \quad 2n/3 \leq d,
\]

the last inequality contradicts our assumption \(n \geq [3d/2] + 1 \).

Fix \(l \in X_{1,2} = X_1 \cap X_2 \neq \emptyset \). Summing (1) for \(i = 1 \) and \(i = 2 \) with proper coefficients, we get the following equality

\[
\mu_{2,l} \mathbf{v}_1 - \mu_{1,l} \mathbf{v}_2 = \sum_{j \in X_1 \setminus X_{1,2}} \mu_{2,l} \mu_{1,j} \mathbf{v}_j - \sum_{j \in X_2 \setminus X_{1,2}} \mu_{1,l} \mu_{2,j} \mathbf{v}_j + \sum_{j \in X_{1,2}} (\mu_{2,l} \mu_{1,j} - \mu_{1,l} \mu_{2,j}) \mathbf{v}_j. \quad (2)
\]
Denote by X_0 the set of such $j \in X_{1,2}$ that $\mu_{2,l}\mu_{1,j} = \mu_{1,l}\mu_{2,j}$, i.e. the set of such $j \in X_{1,2}$ that coefficients corresponding v_j in (2) are equal to 0. Note that $l \in X_0$. Let us write (2) in the following way

$$v_1 = \sum_{j \in ((2) \cup X_1 \cup X_2) \setminus X_0} \beta_j v_j,$$

where $\beta_j \neq 0$ for all $j \in ((2) \cup X_1 \cup X_2) \setminus X_0$. Applying A_l to (3) and using that $v_j, j \in ((1,2) \cup X_1 \cup X_2) \setminus X_0$, are eigenvectors of A_l we get

$$\lambda_{1,l} v_1 = \sum_{j \in ((2) \cup X_1 \cup X_2) \setminus X_0} \lambda_{j,l} \beta_j v_j,$$

where $\lambda_{j,l}, j \in ((1,2) \cup X_1 \cup X_2) \setminus X_0$, is the eigenvalue corresponding the operator A_l and v_j. By Fact 2 vectors $v_j, j \in ((2) \cup X_1 \cup X_2) \setminus X_0 \subset ((2) \cup [k+1,n]) \setminus \{l\}$ are linearly independent therefore we have that A_l is a scalar operator on $\operatorname{span}(\{v_j : j \in ((1,2) \cup X_1 \cup X_2) \setminus X_0\})$ associated with the eigenvalue $\lambda = \lambda_{1,l},$ i.e.

$$w = \mu_{2,l} v_1 - \sum_{j \in X_1 \setminus X_0} \mu_{2,l} \mu_{1,j} v_j = \sum_{j \in X_0} \mu_{2,l} \mu_{1,j} v_j =$$

$$= \sum_{j \in X_0} \mu_{1,l} \mu_{2,j} v_j - \mu_{1,l} v_2 - \sum_{j \in X_1 \setminus X_0} \mu_{1,l} \mu_{2,j} v_j$$

is also an eigenvector of A_l associated with the eigenvalue λ. Analogously, w is an eigenvector of $A_{l'}$ for every $l' \in X_0$. Because of $w \in H_1 \cap H_2$ thus by Fact 1 w is an eigenvector of A_j for any $j \in [n] \setminus X_{1,2}$.

Lastly, let us show that w is an eigenvector of any $A_m, m \in X_{1,2} \setminus X_0$. Again summing (1) for $i = 1$ and $i = 2$ with proper coefficients, we have

$$\mu_{2,m} v_1 - \mu_{1,m} v_2 = \sum_{j \in X_1 \setminus X_{1,2}} \mu_{2,m} \mu_{1,j} v_j - \sum_{j \in X_{1,2}} \mu_{1,m} \mu_{2,j} v_j +$$

$$+ \sum_{j \in X_{1,2}} (\mu_{2,m} \mu_{1,j} - \mu_{1,m} \mu_{2,j}) v_j. \quad (4)$$

Denote by X'_0 the set of such $j \in X_{1,2}$ that $\mu_{2,m} \mu_{1,j} = \mu_{1,m} \mu_{2,j}$, i.e. the set of such $j \in X_{1,2}$ that coefficients corresponding v_j in (4) are equal to 0. Note that $X_0 \cap X'_0 = \emptyset$, because otherwise we get $\mu_{2,m} \mu_{1,l'} = \mu_{1,m} \mu_{2,l'}$ and $\mu_{2,l} \mu_{1,l'} = \mu_{1,l} \mu_{2,l'}$, where $l' \in X_0 \cap X'_0$, thus $\mu_{2,m} \mu_{1,l} = \mu_{1,m} \mu_{2,l}$, i.e. $m \in X_0$. We now apply the argument used for (2) again, with l replaced by m, to obtain that A_m is a scalar operator on $\operatorname{span}(\{v_j : j \in ((1,2) \cup X_1 \cup X_2) \setminus X'_0\})$, i.e. A_m is a scalar operator on $\operatorname{span}(\{v_j : j \in X_0\})$. Thus $w \in \operatorname{span}(\{v_j : j \in X_0\})$ is an eigenvector of A_m.

Therefore, w is a common eigenvector of all operators $A_j, j \in [n]$. Theorem 2 is proved.

3 Proof of Theorem 3

Proof of Theorem 3 using Lemma 1 Suppose that we proved Theorem 3 for any family A containing A_0 of size less then n, where $n \geq 2d$. Let us prove Theorem 3 for a family $A = \{A_0, A_1, \ldots, A_{n-1}\}$. By induction hypothesis, for any $j \in [n-1]$ there exists an invariant non-trivial subspace H_j such that it is an invariant for all operators but A_j.

Denote eigenvectors of A_0 by v_1, \ldots, v_d. Since these vectors are associated with different eigenvalues, they forms a basis of \mathbb{K}^d. Therefore, for any non-trivial invariant subspace H of A_0 there exists $I \subseteq [d]$ such that $H = \text{span}(v_i : i \in I)$. Indeed, assume the contrary, i.e. $H \neq \text{span}(v_i, i \in I)$ for any $I \subseteq [d]$, i.e. there are vectors in H such that they could be represented as sums of eigenvectors of A_0 that do not belong to H. Choose such a vector v that it has the minimal number of terms in its representation, i.e.

$$v = \sum_{i=1}^{k} \alpha_i v_i,$$

where $v_i \notin H$, $\alpha_i \in \mathbb{K}$, $\alpha_i \neq 0$, $i \in [k]$, and $k > 1$ is minimal. Applying A_0 to (5) we get that

$$v' = \sum_{i=1}^{k} \alpha_i \lambda_i v_i \in H,$$

where $\lambda_i \in \mathbb{K}$, $i \in [k]$, is the eigenvalue of A_0 corresponding to the eigenvector v_i. Therefore, we have that the vector

$$v' - \lambda_k v = \sum_{i=1}^{k-1} \alpha_i (\lambda_i - \lambda_k) v_i \in H,$$

can be represented as the sum of $k - 1$ eigenvectors of A_0 that do not belong to H. This contradiction shows that for each i, $i \in [n - 1]$, we can assign a non-empty subset $M_i \subset [d]$ such that $H_i = \text{span}(v_i : i \in M_i)$ because H_i are invariant subspaces of A_0. By Lemma 1, there exists a non-empty set $I \subset [d]$ such that

$$M = \bigcup_{i \in I} M_i = \bigcup_{i \in I \setminus \{j\}} M_i \neq [d]$$

for any $j \in I$, i.e. $\text{span}(v_j : j \in M) \neq \mathbb{K}^d$ is a common non-trivial invariant subspace of all operators in the family A.

Proof of Lemma 1. The proof is by induction on q. For $q = 1$, there is nothing to prove. Assume that the inequality $p \leq 2q - 2$ is proved for $q < n$, let us prove it for $q = n$. A non-empty subset $I \subseteq [p]$ is called interesting if $\bigcup_{i \in I} M_i \neq M_j$ for any $j \in [p]$ and $\bigcup_{i \in I} M_i \neq [q]$. Assume that there is at least one interesting subset and choose an interesting subset J that has the maximal cardinality. Note that there is $k \in J$ such that M_k contains an unique element, i.e. there is $x \in M_k$ such that $x \notin M_j$ for any $j \in I \setminus \{k\}$. Let us consider the following family $\mathcal{N} = \{N_1, \ldots, N_p\}$, where $N_k = \bigcup_{i \in J} M_i$ and $N_i = M_i$ for $i \neq k$. Note that for any $l \in [p] \setminus J$ we have $N_k \subset N_l$ or $N_k \cup N_l = [q]$. In the converse case, we get the interesting subset $J \cup \{l\}$ that should have the larger cardinality then J. Let us check that the condition of the lemma holds for the new family. Trivially, it holds for any $I \subseteq [q] \setminus \{k\}$ and $I \subseteq J$ (because $x \in N_k$ and $x \notin N_i$, $i \in J$). Let us check that the condition holds for I such that $k, l \in I$, where $l \notin J$. We know that the condition holds for the family \mathcal{M} and $I' = I \cup J$. If $\bigcup_{i \in I'} M_i = [q]$ then $\bigcup_{i \in I} N_i = [q]$. If there is $k' \in I'$ such that $M_{k'}$ contains an unique element y then, since $N_k = \bigcup_{i \in I} M_i \subset N_i = M_i$, we get $k' \notin J$. It is easy to check that the condition holds for the family \mathcal{N} and I because $N_{k'} = M_{k'}$ has the unique element y.

We make such replacements of the family till it is possible. Obviously, we can not do them infinitely many times because after each replacement the total cardinality
of sets increases. Finally, we get a family \(M' \) that for every two subsets in \(M' \) one contains another or their union is \([q]\). Without loss of generality assume that a subset \(A = \{1, \ldots, t\} \in M' \) such that it does not contain another subset in \(M \). Denote by \(K_1, \ldots, K_l \in M \) subsets that do not contain \(A \), i.e. \([q] \setminus A \subseteq K_i \). We can certainly assume that \(K_i \cap A = \emptyset \) (if for every \(K_i \) we have \(K_i \cap A \neq \emptyset \) then we can add the subset \([q] \setminus A\) to the family \(M' \)). Note that the family \(\{K_i \cap A : i \in \{l - 1\}\} \) (where the role of \(q \) is played by \(k \)) satisfies condition of the lemma. By the induction hypothesis, we get \(l - 1 \leq 2k - 2 \), i.e. \(l \leq 2k - 1 \). If we delete \(A \) and \(K_i \) from the family \(M' \) (i.e. at most \(2k \) subsets) and delete elements \(1, \ldots, k \) from other subsets in \(M' \) then the new family satisfies the condition of the lemma, i.e. it has at most \(2(q - k) - 2 \) subsets. Thus the original family \(M \) contains at most \(2k + 2(q - k) - 2 = 2q - 2 \) subsets.

Example. Obviously, the following example shows that the inequality in Lemma 1 is sharp:

\[
M = \{\{1\}, \{1, 2\}, \{1, 2, 3\}, \ldots, \{1, \ldots, q - 1\}\} \cup \\
\cup \{\{q\}, \{q, q - 1\}, \{q, q - 1, q - 2\}, \ldots, \{q, \ldots, 2\}\}.
\]

References

[1] N. Amenta, J. A. De Loera, P. Soberón, *Helly’s Theorem: New Variations and Applications*, arXiv:1508.06706

[2] J. Bernik, R. Drnovšek, T. Košir, T. Laffey, G. MacDonald, R. Meshulam, M. Omladič, H. Radjavi, *Common fixed points and common eigenvectors for sets of matrices*, Linear and Multilinear Algebra, 53(2), 2005, 137–146

[3] L. Danzer, B. Grünbaum, and V. Klee, *Helly’s theorem and its relatives*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, 101–180.

[4] J. Eckhoff, *Helly, Radon, and Carathéodory type theorems*, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 389448

[5] E. Helly, *Über Mengen konvexer Körper mit gemeinschaftlichen Punkten*, Jahresbericht der Deutschen Mathematiker-Vereinigung, 32, 1923, 175–176.

[6] J. Matoušek, *Lectures on discrete geometry*, Graduate Texts in Mathematics, vol. 12, Springer-Verlag, New York, 2002

[7] A. Voinov, personal communication, 2016.

[8] R. Wenger, *Helly-type theorems and geometric transversals*, Handbook of discrete and computational geometry 4 (2004), 6382.