Implementation and performance of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter

Alberto Valero, on behalf of the ATLAS Tile Calorimeter Group
IFIC (CSIC & Universidad de Valencia – Depto. Ingeniería Electrónica), Valencia, Spain

Abstract

The Tile Calorimeter (TileCal) for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is currently taking data with proton-proton collisions. The Tile Calorimeter is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front-end electronics allows to read-out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read-out system is designed to reconstruct the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read-out system is the Digital Signal Processor (DSP) which, using the Optimal Filtering technique, allows to compute for each channel the signal amplitude, phase and quality factor at the required high rate. A solid knowledge of the signal pulse-shapes and of the timing is fundamental to reach the required accuracy in energy reconstruction. Systematic studies to understand the pulse-shape have been carried out using both electronic calibration signals and data collected in the proton-proton collisions at √s = 7 TeV. After a short overview of the TileCal system we will discuss the implementation of Optimal Filtering signal reconstruction highlighting the constraints imposed by the use of the DSP fixed point arithmetic. We will report also results on the validation of the implementation of the DSP signal reconstruction and on the overall signal reconstruction performance measured in calibration, single beam and collision events.

© 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of the organizing committee for TIPP 11. Open access under CC BY-NC-ND license.

Keywords: LHC, ATLAS, Calorimeter, DSP, Optimal Filtering, Reconstruction.
1. Introduction

ATLAS [1] is a general purpose experiment located on the Large Hadron Collider (LHC) ring. The LHC produces proton-proton collisions at a center of mass energy of 7 TeV. The Tile Calorimeter (TileCal) [2] of ATLAS is a sampling calorimeter made of steel as absorber material and scintillator tiles as active medium. The light produced in the scintillator tiles is read-out by wavelength shifting fibers coupled to photomultipliers tubes (PMT). The analogue signal from the approximately 10000 PMTs are amplified, shaped and digitized in the front-end electronics. The digital samples are transmitted to the back-end electronics through high speed optical links at the ATLAS first level trigger rate (100 kHz).

The Read-Out Drivers (ROD) [3] is the interface between the front-end electronics and the general data acquisition system (DAQ) of the ATLAS detector (Fig 1). The main function of the ROD is to reconstruct the signal amplitude and phase at the first level trigger rate and to transmit them to the DAQ system for offline analysis. The signal amplitude is also provided to the High Level Trigger to form the calorimetric trigger signals. Other important tasks of the ROD are: the synchronization of the detector data and the time of the trigger signal (Trigger Timing and Control Information [4]- TTC); the computation of total energy for specific detector areas; and the packing and transmission of all the digital samples for channels with amplitude above a configurable threshold for offline reconstruction which is particularly interesting in the case of pile-up events where an offline reconstruction could improve the signal reconstruction resolution. The core of the ROD are the Digital Signal Processors (DSP) that provide the high processing power required to execute these algorithms within the tight time constraint defined by the first level trigger rate.

2. Code Structure

The input stage of the code is composed by two circular buffers for data storage and one circular buffer for TTC data. When the data are received, the first task performed by the DSP is the synchronization between the detector data and the trigger information. Then, the DSP executes the signal reconstruction algorithm exploiting the Optimal Filtering [5] algorithm. The result of the reconstruction is used to compute information to be used to tag energy releases in TileCal compatible with a Muon signal.
(MuonTag algorithm) and to calculate the TileCal Missing transverse energy component (MissingEt algorithm) [6]. The computation of these algorithms is optional and the result is packed in a special data fragment that is used for Level 2 trigger computation. Finally, the result of the reconstruction is packed and copied to an output circular buffer and transmitted out of the ROD.

The DSPs are responsible for generating the busy signal if any of the input buffers is becoming full. It is used to avoid overwriting of data in the buffers and it is transmitted from the DSPs to the Central Trigger Processor to stop the acceptance of events at the first level of trigger.

Fig. 2. Sketch of the DSP code structure.

2.1. The Optimal Filtering Algorithm

Optimal Filtering [5] is the algorithm used to reconstruct the calibrated energy, proportional to the amplitude of the pulse, and the phase of the digitized signal that corresponds to the time between the peak of the pulse and the central sample (Fig 3a). It requires a good knowledge of the signal pulse-shapes as well as a constant and well known synchronization of the signal with respect to the digitizing clock in order to achieve the required precision in the reconstructed magnitudes. The goodness of the reconstruction is estimated with the computation of the so-called Quality Factor.

The Amplitude (A), Phase (τ) and Quality Factor (QF) are calculated as:

\[A = \sum_{i=1}^{n} a_i S_i \]
\[\tau = \frac{1}{A} \sum_{i=1}^{n} b_i S_i \]
\[QF = \sum_{i=1}^{n} (S_i - (A g_i + A \tau g'_i + p))^2 \]

where \(S_i \) represent the digital sample \(i \); \(a_i \) and \(b_i \) are the Optimal Filtering weights; \(g_i \) and \(g'_i \) are the pulse shape and its derivative (values normalized to one computed at the reference points) and \(p \) is the pedestal that is estimated as the first sample.

The Optimal Filtering uses a linear combination of the samples and a set of weights previously computed and it represents a very suitable algorithm to be implemented in the DSP devices since it is based on a sum of products. The weights are calculated using the pulse shape, the noise (autocorrelation matrix of the samples) and the expected phase of the signal. Therefore, the reconstruction is very sensitive to

The DSPs are responsible for generating the busy signal if any of the input buffers is becoming full. It is used to avoid overwriting of data in the buffers and it is transmitted from the DSPs to the Central Trigger Processor to stop the acceptance of events at the first level of trigger.

Fig. 2. Sketch of the DSP code structure.

2.1. The Optimal Filtering Algorithm

Optimal Filtering [5] is the algorithm used to reconstruct the calibrated energy, proportional to the amplitude of the pulse, and the phase of the digitized signal that corresponds to the time between the peak of the pulse and the central sample (Fig 3a). It requires a good knowledge of the signal pulse-shapes as well as a constant and well known synchronization of the signal with respect to the digitizing clock in order to achieve the required precision in the reconstructed magnitudes. The goodness of the reconstruction is estimated with the computation of the so-called Quality Factor.

The Amplitude (A), Phase (τ) and Quality Factor (QF) are calculated as:

\[A = \sum_{i=1}^{n} a_i S_i \]
\[\tau = \frac{1}{A} \sum_{i=1}^{n} b_i S_i \]
\[QF = \sum_{i=1}^{n} (S_i - (A g_i + A \tau g'_i + p))^2 \]

where \(S_i \) represent the digital sample \(i \); \(a_i \) and \(b_i \) are the Optimal Filtering weights; \(g_i \) and \(g'_i \) are the pulse shape and its derivative (values normalized to one computed at the reference points) and \(p \) is the pedestal that is estimated as the first sample.

The Optimal Filtering uses a linear combination of the samples and a set of weights previously computed and it represents a very suitable algorithm to be implemented in the DSP devices since it is based on a sum of products. The weights are calculated using the pulse shape, the noise (autocorrelation matrix of the samples) and the expected phase of the signal. Therefore, the reconstruction is very sensitive to
variations in any of these parameters. The weights are offline computed and downloaded into the DSP at configuration time.

The variation in the phase of pulses causes an underestimation of the reconstructed amplitude that can be parameterized. Therefore, the deviation produced by small phase variations within one bunch crossing can be corrected (Fig 3b). The energy generated in interactions of bunch crossings different from the one that has generated the trigger is indicated as out-of-time pile-up energy. This energy is not correctly reconstructed from the Optimal Filtering algorithm since it has a phase largely shifted from the expected one. This phase shift implies that the reconstructed energy is largely underestimated and therefore suppressed with respect to energy released with the correct phase. This is the main reason to use a non iterative method in the DSP in the presence of pile-up.

3. Optimal Filtering Validation

During the ATLAS commissioning phase and with the first collisions at low luminosity it was possible to transmit from the DSP the digital samples for all the channels together with the reconstructed magnitudes. The digital samples were offline reconstructed and the result was used as reference to validate the online reconstruction. We used different reconstruction methods for the offline reconstruction.

3.1. Validation with offline Non Iterative algorithm

The offline Non Iterative Optimal Filtering method is an implementation of the algorithm used in the DSP but using floating point instead of fixed point arithmetic. Therefore, some minor differences are expected between both reconstruction results. The same set of weights retrieved from a centralized database is used online and offline in order to guarantee similar reconstruction conditions.

The maximum expected difference due to fixed point arithmetic is, in this case, proportional to the calibration constant (from ADC to MeV) and therefore changes from channel to channel. Fig 4a shows the absolute difference between the signal amplitude calculated on collision data with the Non Iterative Optimal Filtering Algorithm online (E_{DSP}), and offline (E_{OFLNI}). The red dashed lines indicate the maximum expected precision for standard functioning channels and contain 99% of the channels. The blue lines indicate the expected precision for the highest calibration constant.
Concerning the phase reconstruction since the same Non Iterative algorithm is used online and offline the expected difference is due to fixed point arithmetic and to the Look-up-Table (LUT) used in the DSP to implement the division by the energy (Equation 1). Fig 4b shows the absolute difference between the phase reconstructed online (DSP) and offline without iterations (OFL NI) as a function of the phase reconstructed offline for collisions data and for channels with energy reconstructed by the DSP above 50 MeV. We observe that the LUT effect is enhanced for larger phases but differences are within ±1.5 ns in the [-25, +25] ns range.

![Fig. 4.](image)

Fig. 4. (a) Absolute difference between the signal amplitude calculated on Collision data with the Non Iterative Optimal Filtering algorithm online (E_{DSP}), and offline (E_{OFL NI}) as a function of the energy reconstructed offline; (b) absolute difference between phase reconstructed online (DSP) and offline without iterations (OFL NI) as a function of phase reconstructed offline for collisions data (7 TeV) for Tile Calorimeter channels with energy reconstructed by the DSP above 50 MeV.

3.2. Validation with Iterative algorithm

The offline Iterative algorithm (used for cosmic rays and during commissioning for detector timing studies) uses two initial iterations of the optimal filtering algorithm to estimate the phase of the pulse. The result is used to select from a database the correct set of weights to be used in a third iteration to obtain the final signal amplitude and phase. Therefore, the result is not affected by phase variations in the pulse on an event-by-event basis. The comparison between the online Non Iterative method and the offline Iterative method shows the deviation produced by phase variations (Fig 3b). The bias can be corrected by applying a factor dependent on the reconstructed signal phase as discusses in section 3.1. In the phase range [-10,10] ns the average difference between the offline and online reconstruction is within 1%.

The phase reconstruction in the DSP is also affected by the amplitude deviation due to phase variations. Fig 5 shows the correlation between the phase reconstructed by the DSP and by the offline Iterative method. We observe a good correlation between both methods in the ± 1 bunch crossing range. It should be noted that 95% of the pulses are within the [-5,5] ns range.
Fig. 5. Correlation between phase reconstructed online (DSP) and Offline with Iterative algorithm (OFL I) for collisions data (7 TeV) for Tile Calorimeter channels with energy reconstructed offline with iterations above 300 MeV.

3.3. Reconstruction in the presence of pile-up interactions

The time spacing between bunches has recently been shrunk to 50 ns increasing the pile-up contribution. The iterative method can reconstruct signals generated by a different bunch crossing as it can be seen from the two peaks at ± 50 ns on Fig. 6a. On the other hand, the Optimal Filtering Non Iterative algorithm as implemented in the DSP (Fig 6b) uses a well defined signal phase for each channel and is not very sensitive to the presence of signals from other bunch crossing (out of time Minimum Bias pileup noise). Currently the Non Iterative method is being used for offline reconstruction in TileCal and the parabolic correction is applied for phase variations within 1 bunch crossing.

Fig. 6. The plots show the phase as a function of the energy reconstructed at the channel level in the Tile Calorimeter using (a) the offline Iterative and (b) the DSP Non Iterative methods applied to 2011 collision data. A run with train of bunches crossing every 50 ns is used. A cut of 200 MeV is used to reduce the contribution of the electronic noise.

4. Conclusions

The TileCal online signal reconstruction performed in the DSPs has been validated during the commissioning phase and with the first LHC collisions. It was validated using the offline reconstruction as reference. The results are compatible with the expected differences between the fixed point arithmetic used in the DSP and the floating point arithmetic used for the offline reconstruction. Currently the DSP Optimal Filtering reconstruction is used in the High Level trigger system. In addition, the DSP transmits
the digital samples for pulses above a programmable threshold. These samples are reconstructed offline with Optimal Filtering running in floating point arithmetic processors. Therefore, it is used a mixture of DSP and offline reconstructions for physics analysis.

References

[1] ATLAS Collaboration, “ATLAS Technical Proposal”, CERN/LHCC/94-43, 1994.
[2] TileCal Collaboration, “TileCal Technical Design Report”, CERN/LHCC 96-42, 1996.
[3] A. Valero et al, “Setup, Tests and Results for the ATLAS TileCal Read-Out Driver Production”, Proceedings of the 12th workshop on Electronics for LHC and Future Experiments, 2007.
[4] Taylor, B., “TTC Distribution for LHC detectors”, IEEE Transactions on Nuclear Science, Vol. 45, No. 4, pp. 821-828, 1998.
[5] E. Fullana et al, “Digital Signal Reconstruction in the ATLAS Hadronic Tile Calorimeter, IEEE Trans. Sci, vol.53, no.4, pp.2139-2143, Aug. 2006
[6] A. Valero et al, “DSP Online Algorithms for the ATLAS TileCal Read-Out Drivers”, IEEE Transactions on Nuclear Science, vol. 55, NO. 1, Feb. 2008, pag. 1-7.