First Report of Web Blight of Rosemary (Rosmarinus officinalis) Caused by Rhizoctonia solani AG-1-IB in Korea

Md. Aktaruzzaman, Joon-Young Kim, Tania Afroz and Byung-Sup Kim*

Department of Plant Science, Gangneung-Wonju National University, Gangneung 210-702, Korea

Abstract
Herein, we report the first occurrence of web blight of rosemary caused by Rhizoctonia solani AG-1-IB in Gangneung, Gangwon Province, Korea, in August 2014. The leaf tissues of infected rosemary plants were blighted and white mycelial growth was seen on the stems. The fungus was isolated from diseased leaf tissue and cultured on potato dextrose agar for identification. The young hyphae had acute angular branching near the distal septum of the multinucleate cells and mature hyphal branches formed at an approximately 90° angle. This is morphologically identical to R. solani AG-1-IB, as per previous reports. rDNA-ITS sequences of the fungus were homologous to those of R. solani AG-1-IB isolates in the GenBank database with a similarity percentage of 99%, thereby confirming the identity of the causative agent of the disease. Pathogenicity of the fungus in rosemary plants was also confirmed by Koch’s postulates.

Keywords Pathogenicity, Rhizoctonia solani, Rosemary, Rosmarinus officinalis, Web blight

Mycobiology 2015 June, 43(2): 170-173
http://dx.doi.org/10.5941/MYCO.2015.43.2.170
pISSN 1229-8093 • eISSN 2092-9123
© The Korean Society of Mycology

*Corresponding author
E-mail: bskim@gwnu.ac.kr
Received January 13, 2015
Revised February 2, 2015
Accepted May 27, 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
dried with a sterilized filter paper. The small pieces were then placed in Petri plates containing potato dextrose agar (PDA) medium (Difco, Detroit, MI, USA) and incubated at 20 ± 2°C for 5 days. To obtain a genetically pure culture, the hyphal tips from the mycelia grown on the PDA plates were cut and transferred to fresh PDA plates.

For the pathogenicity test, three fungal mycelial discs (14-day-old, 6.5 mm in diameter) were placed on the stems of three young plants (65-day-old) on the soil line and covered with plastic bags. Three other plants served as controls where only agar plugs were used. All the plants were then incubated in a growth chamber (at 28 ± 2°C, 90% relative humidity). After 14 days, blight symptoms similar to the original symptoms were seen on inoculated plants, whereas no symptoms were observed in control plants. The pathogenicity test was performed twice.

The fungal pathogen was re-isolated from disease lesions of inoculated plants. The re-isolated pathogen met the criteria stipulated by Koch’s postulates, it was recognized as the causal pathogen of web blight of rosemary.

Identification of the AG. Identification of the AG of the *R. solani* isolate was carried out on sterilized glass slides that were coated with 2% water agar medium and placed in Petri dishes. The mycelia of an AG tester and an isolate were placed on the two ends of a slide [10]. After 72 hr of incubation at 20 ± 2°C, hyphal interactions were observed under an optical microscope (>20, Olympus BH-2; Olympus, Tokyo, Japan) and the occurrence of anastomosis was established when hyphae fused with each other and exchanged cytoplasm. Tester isolates for AG-1-IA (KACC 40101), AG-1-IB (KACC 40108), and AG-1-IC (KACC 40117) were obtained from Korean Agricultural Culture Collection (KACC), and the identification of AGs was performed twice.

DNA extraction, PCR, and sequence analysis for molecular identification. DNA was extracted from fungal mycelium by using the cetyltrimethylammonium bromide method [11]. The primers ITS1 (5'-TCCGTAAGGTGAACTGCGGC-3') and ITS4 (5'-TCCCTCCGTATTGATATGC-3') were used to amplify the internal transcribed spacer (ITS) and 5.8S rDNA regions [12]. PCR was performed in a total volume of 25 µL by using 0.5 µL of dNTP, 2.5 units of Taq DNA polymerase (0.5 µL of 5 U/µL enzyme; Bioneer, Daejeon, Korea), 2.0 µL of genomic DNA, 2.5 µL of 10× PCR reaction buffer and 5 pmol/L of each primer (0.5 µL each). The PCR amplification conditions were as follows: 94°C for 5 min, followed by 35 cycles of 94°C for 35 sec, 52°C for 55 sec, and 72°C for 1 min, with a final extension step at 72°C for 10 min. The sequence of ITS-5.8S rDNA was compared with the sequences in the NCBI database (http://www.ncbi.nlm.nih.gov/BLAST). MEGA5 program with the neighbor-joining method was used for phylogenetic analysis of *R. solani* [13].

Identification and characterization of *R. solani*. Five fungal isolates were obtained from the web blight of rosemary. Since all isolates looked morphologically alike, only one isolate, namely RWB-3, was examined for identification. Isolate RWB-3 was identified as *R. solani* AG-1-IB by analyzing the morphological features of the isolated fungus and by carrying out rDNA sequence analysis. We found that the colony growth rate for the isolated fungus in PDA ranged from 25.7 to 28.6 mm/day. The fungus produced a white mycelium when young, but produced a brown mycelium with dark brown sclerotia after growing on PDA. Since all isolates looked morphologically alike, only one isolate, namely RWB-3, was examined for identification. Isolate RWB-3 was identified as *R. solani* AG-1-IB by analyzing the morphological features of the isolated fungus and by carrying out rDNA sequence analysis. We found that the colony growth rate for the isolated fungus in PDA ranged from 25.7 to 28.6 mm/day. The fungus produced a white mycelium when young, but produced a brown mycelium with dark brown sclerotia after growing on PDA at 20 ± 2°C for 14 days (Fig. 1C). The hyphae were often branched at a 90° angle (Fig. 1D). Diameter of the hyphae ranged from approximately 2.6 µm to 8.4 µm. The isolate anastomized only with the tester strain AG-1-IB (Fig. 1E). Morphological characteristics of the studied isolate are summarized in Table 1. The ITS arrangement was compared to the sequences in GenBank database by utilizing the NCBI BLAST tool. The 718-bp rDNA-ITS arrangement
Aktaruzzaman et al. showed 99% similarity to sequences from some *R. solani* AG-1-IB (teleomorph *T. cucumeris*) species (accession Nos. JQ692292.1, GU585667.1, and KF907718.1). The nucleotide sequence of rDNA-ITS from the isolate has been assigned GenBank Accession No. KP202862. Thus, *R. solani* AG-1-IB was identified as the causative agent of web blight of rosemary in Korea (Fig. 2). To the best of our knowledge, this is the first report of web blight of rosemary in Korea.

REFERENCES

1. Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (*Rosmarinus officinalis* L. and *Salvia officinalis* L., Lamiaceae) essential oils. J Agric Food Chem 2007;55:7879-85.
2. Ogoshi A. The genus *Rhizoctonia*. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G, editors. *Rhizoctonia* species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Kluwer Academic Publishers; 1996. p. 1-9.
3. Korean Society of Plant Pathology. List of plant diseases in Korea. 5th ed. Seoul: Korean Society of Plant Pathology; 2009. p. 7-766.
4. Ogoshi A. Ecology and pathogenicity of anastomosis and intraspecific groups of *Rhizoctonia solani* Kühn. Annu Rev Phytopathol 1987;25:125-43.
5. Sneh B, Burpee L, Ogoshi A. Identification of *Rhizoctonia* species. St. Paul: APS Press; 1991.
6. Duan C, Yang G, Ni Z, Liu G, Wu H. Occurrence of foliar rot of Chinese cabbage, mint and lettuce caused by *Rhizoctonia solani* AG-1 IB in China. J Yunnan Agric Univ 2008;23:422-5.
7. Yang GH, Chen HR, Naito S, Wu JY, He XH, Duan CF. Occurrence of foliar rot of pak choy and Chinese mustard caused by *Rhizoctonia solani* AG1-IB in China. J Gen Plant Pathol 2005;71:377-9.
8. Holcomb GE. Web blight of rosemary caused by *Rhizoctonia solani* AG-1. Plant Dis 1992;79:859-60.
9. Garibaldi A, Bertetti D, Pensà P, Poli A, Gullino ML. First report of web blight on rosemary (Rosmarinus officinalis) caused by Rhizoctonia solani AG-1-IA in Italy. Plant Dis 2013;97:844-5.

10. Parmeter JR, Sherwood RT, Platt WD. Anastomosis grouping among isolates of Thanatephorus cucumeris. Phytopathology 1969;59:1270-8.

11. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 1992;20:6115-6.

12. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.

13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9.

14. Parmeter JR. Rhizoctonia solani biology and pathology. Berkeley: University of California Press; 1970. p. 7-19.