Abstract
The spectral independence approach of Anari et al. (2020) utilized recent results on high-dimensional expanders of Alev and Lau (2020) and established rapid mixing of the Glauber dynamics for the hard-core model defined on weighted independent sets. We develop the spectral independence approach for colorings, and obtain new algorithmic results for the corresponding counting/sampling problems.

Let $\alpha^* \approx 1.763$ denote the solution to $\exp(1/x) = x$ and let $\alpha > \alpha^*$. We prove that, for any triangle-free graph $G = (V, E)$ with maximum degree Δ, for all $q \geq \alpha \Delta + 1$, the mixing time of the Glauber dynamics for q-colorings is polynomial in $n = |V|$, with the exponent of the polynomial independent of Δ and q. In comparison, previous approximate counting results for colorings held for a similar range of q (asymptotically in Δ) but with larger girth requirement or with a running time where the polynomial exponent depended on Δ and q (exponentially). One further feature of using the spectral independence approach to study colorings is that it avoids many of the technical complications in previous approaches caused by coupling arguments or by passing to the complex plane; the key improvement on the running time is based on relatively simple combinatorial arguments which are then translated into spectral bounds.

1 Introduction
The colorings model is one of the most-well studied models in computer science, combinatorics, and statistical physics. Here, we will be interested in designing efficient algorithms for sampling colorings uniformly at random. More precisely, given a graph $G = (V, E)$ of maximum degree Δ and an integer $q \geq 3$, let Ω denote the set of proper q-colorings of G; the goal is to generate a coloring uniformly at random (u.a.r.) from Ω in time polynomial in $n = |V|$. The colorings model can be interpreted as a “spin system”, when we view colors as spins with interactions between spins induced by forbidding neighboring vertices to be assigned the same spin. Note, the colorings model is a multi-spin system, in contrast to 2-spin systems such as the hard-core and the Ising models.

For spin systems, the key algorithmic task for studying the equilibrium properties of the model is sampling from the associated Gibbs distribution. For integer $q \geq 2$, the Gibbs distribution of a q-spin system on an n-vertex graph G is defined on the q^n possible assignments of the spins to the vertices of the graph, where the weight of a spin assignment is determined by nearest-neighbor interactions; our goal is a sampling algorithm with running time polynomial in n. An efficient approximate sampler is polynomial-time equivalent to an efficient approximation scheme for the corresponding partition function $\left[16, 31, 17, 19 \right]$, which is the normalizing factor in the Gibbs distribution.

The classical approach for the approximate sampling/counting problem is the Markov Chain Monte Carlo (MCMC) approach, where we design a Markov chain whose stationary distribution is the Gibbs distribution. A particularly popular Markov chain is the Glauber dynamics. Due to its simplicity and easy applicability, it is also studied as an idealized model for how the physical system approaches equilibrium. The Glauber dynamics updates the spin at a random vertex based on its marginal distribution in the Gibbs distribution conditional on the spins of its neighbors. The Glauber dynamics (X_t) is quite simple to describe for the colorings problem. Starting from an arbitrary coloring $X_0 \in \Omega$, at time $t \geq 0$, choose a vertex v u.a.r. and then set $(X_{t+1}(w) = X_t(w) \text{ for all } w \neq v \text{ and } X_{t+1}(v) \text{ u.a.r. from the set of colors that do not appear in the neighborhood of } v)$. The key quantity for the Glauber dynamics is the mixing time which is the number of steps from the worst initial state X_0 to reach within total variation distance $\leq 1/4$ of its stationary distribution. Despite its simplicity, analyzing the mixing time of the Glauber dynamics even for the canonical case of the colorings model is surprisingly challenging.

There are two non-MCMC algorithmic methods that have been powerful and more amenable to a finer understanding so far: the correlation decay and Barvinok’s interpolation methods. The basis of the correlation decay method is the so-called strong spatial mixing (SSM) condition; for 2-spin systems, one for example

*Full version [5] is available at arXiv:2007.08058.
†School of Computer Science, Georgia Institute of Technology, USA. Research supported in part by NSF grant CCF-2007022.
‡Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
§Department of Computer Science, University of Rochester, USA. Research supported in part by NSF grant CCF-2007287.

Roughly speaking, the SSM condition captures whether, if we fix two partial assignments σ, τ on a subset of vertices T, the difference in the conditional marginal distribution at a vertex v decays exponentially in the distance between S and v, where $S \subseteq T$ is the subset of vertices that σ, τ differ.
can utilize SSM together with a clever tree construction of Weitz [33] to efficiently estimate marginals and hence obtain an approximation algorithm. The alternative algorithmic method by Barvinok [3], which was further refined by Patel and Regts [24], examines instead the roots of the partition function in the complex plane and approximates the Taylor series of the partition function in a zero-free region.

Both of these non-MCMC approaches have been shown to work for antiferromagnetic 2-spin systems2 up to the so-called tree uniqueness threshold, see [33, 27, 21] for the correlation decay approach and [26, 28] for the interpolation method; see also [29, 30, 8] for complementary hardness results. However, the running time of these algorithmic approaches scales as \(O(n^C)\) where the exponent \(C\) depends on \(\Delta\) and on the multiplicative gap \(\delta\) from the tree uniqueness threshold; obtaining faster algorithms even for 2-spin systems is a major open problem.

To this vein, MCMC methods typically give much faster (randomized) algorithms, however corresponding results were lacking until a recent breakthrough result of Anari, Liu and Oveis Gharan [2], who proved rapid mixing of the Glauber dynamics for the hard-core model, matching the parameter range of the aforementioned non-MCMC approaches and also improving the running time with a polynomial exponent which is independent of the degree bound \(\Delta\). They introduced a spectral independence approach which utilizes high-dimensional expander results of Alev and Lau [1] (cf. [18, 25]). The work of [2] establishes that, for 2-spin systems, it suffices to bound the largest eigenvalue of the \(n \times n\) influence matrix \(I\) where the \((v, w)\) entry captures the influence of the fixed spin at vertex \(v\) on the marginal probability at vertex \(w\); we explain this in more detail in Section 1.1. The running time of the result of [2] was further improved in [6], who also generalised the approach to antiferromagnetic 2-spin systems up to the tree-uniqueness threshold by showing how to utilize potential-function arguments that were previously used to establish SSM.

Going beyond 2-spin systems, all of these methods become harder to control even well above the tree-uniqueness threshold, \(q = \Delta + 1\), which marks the onset of computational hardness (even for triangle-free graphs, see [9]). Let \(\alpha^* \approx 1.763\) be the solution to \(\exp(1/x) = x\); this threshold has appeared in several related results for colorings, though obtaining corresponding algorithms has been challenging. For example, for \(\alpha > \alpha^*\), Gamarnik, Katz, and Misra [11] proved SSM on triangle-free graphs when \(q > \alpha\Delta + \beta\) for some constant \(\beta = \beta(\alpha)\); see also [12] for a related result on amenable graphs. However, the correlation decay approach has so far yielded an efficient algorithm only for \(q \geq 2.58\Delta\), see [10, 23]. It was not until recently that the SSM result of [11] was converted to an algorithm for triangle-free graphs by Liu, Sinclair, and Srivastava [22] utilizing the complex zeros approach; however, just as for 2-spin systems, the polynomial exponent in the running time depends exponentially on \(\Delta\) and the distance of \(\alpha\) from \(\alpha^*\).

The analysis of Glauber dynamics for colorings has not been easier. Jerrum [15] proved that the mixing time is \(O(n \log n)\) for all graphs when \(q > 2\Delta\). This was improved to \(q > \frac{11}{6}\Delta\) with mixing time \(O(n^2)\) by Vigoda [32], which was only recently improved to \(q > \left(\frac{11}{6} - \delta\right)\Delta\) for a small constant \(\delta > 0\) [4]. Back to asymptotic results (that is, results that hold for sufficiently large degree), for \(\alpha > \alpha^*\) and large degrees \(\Delta > \Delta_0(\alpha)\), Dyer et al. [7] showed that on graphs with girth \(\geq 5\) and maximum degree \(\Delta\) the mixing time of the Glauber dynamics is \(O(n \log n)\) using sophisticated coupling arguments building upon local uniformity results of Hayes [13]. See [7, 14] for improvements by imposing other degree/girth restrictions.

Our main contribution is to develop a spectral independence approach of [1, 2] for colorings, and analyze Glauber dynamics in the regime \(q \geq \alpha\Delta + 1\) for all \(\alpha > \alpha^*\) on triangle-free graphs. Our result applies for all \(\Delta\) and we show that the exponent of the mixing time does not depend on \(\Delta\) and \(q\), yielding substantially faster randomized algorithms for sampling/counting colorings than the previous deterministic ones (at the expense of using randomness).

Theorem 1.1. Let \(\alpha^* \approx 1.763\) denote the solution to \(\exp(1/x) = x\). For all \(\alpha > \alpha^*\), there exists \(c = c(\alpha) > 0\) such that, for any triangle-free graph \(G = (V, E)\) with maximum degree \(\Delta\) and any integer \(q \geq \alpha\Delta + 1\), the mixing time of the Glauber dynamics on \(G\) with \(q\) colors is at most \(n^c\), where \(n = |V|\).

We remark that the constant \(c\) is a function of the gap \(\alpha - \alpha^*\) and is independent of \(q\) and \(\Delta\). One feature of using the spectral independence approach to study colorings is that it avoids many of the technical complications caused by coupling arguments or by passing to the complex plane, and allows us to get a better grip on the quantities of interest (marginals); indeed, as we shall explain in the next section, the key improvement on the running time is inspired by relatively simple combinatorial arguments and translating them into appropriate spectral bounds.
1.1 Proof approach Our work builds upon the spectral independence approach introduced by Anari, Liu, and Oveis Gharan [2], which in turn utilizes the high-dimensional expander work of Alev and Lau [1]. Consider a graph $G = (V, E)$ of maximum degree Δ. The key to this approach is to analyze the spectral radius of the $nq \times nq$ matrix \mathcal{M} where, for distinct $v, w \in V$ and $i, k \in [q]$,

$$\mathcal{M}((v, i), (w, k)) = \mathbb{P}(\sigma_w = k \mid \sigma_v = i) - \mathbb{P}(\sigma_w = k).$$

The spectral independence approach is formally presented in Section 2, and the connection to rapid mixing is formally stated in Theorem 2.5.

To be precise, in the spectral independence approach we need to analyze the corresponding matrix \mathcal{M} for the Gibbs distribution μ_G conditional on all fixed assignments σ_S for all $S \subseteq V$. A fixed assignment σ_S yields a list-coloring problem instance and hence we need to consider the more general list-coloring problem. At a high-level this is analogous to SSM (strong spatial mixing). We do not formally define SSM in this paper since it is not explicitly used. Roughly speaking, in SSM we consider the effect of a pair of boundary colorings on v for an arbitrary subset S. This is illustrated by the simple example $G = (V, E)$, any $v \in V$, there is an appropriately defined tree $T = T_{\text{wav}}(G, v)$ (corresponding to the self-avoiding walks in G starting from v with a particularly fixed assignment to the leaves) so that the marginal distribution for the root of T (in the corresponding Gibbs distribution μ_T) is identical to the marginal distribution for v (in μ_G).

Utilizing this self-avoiding walk tree construction, the main idea in proofs establishing SSM is to design a potential function on the ratio of the marginal distributions for the root of a tree and prove that this potential function is contracting for the corresponding tree recursions.

Gamarnik, Katz, and Misra [11] established SSM for the colorings problem when $k > \alpha^* \Delta + \beta_1$ for some constant $\beta_1 > 0$ for all triangle-free graphs of maximum degree Δ. Even though Weitz’s self-avoiding walk tree connection no longer holds for colorings, [11] utilized an appropriately constructed computation tree for the more general list-coloring problem. They then present a potential function which is contracting with respect to the corresponding recursions for their computation tree.

Previous proofs for the spectral independence study entries of the influence matrix using the derivative of the potential function. Instead, the SSM proof approach of [11] uses a non-differentiable potential function so we cannot use the same analytical approach. We analyze the entries of the influence matrix by a more combinatorial argument, paying attention to the entries that are potentially large and therefore corresponds to highly correlated vertex-spin pairs.

In particular, to bound the spectral radius of the matrix \mathcal{M}, we consider the following quantity: for a pair of vertices $v, w \in V$ and a color $k \in [q]$, define the maximum influence of v on (w, k) as:

$$\mathcal{I}[v \to (w, k)] = \max_{i, j \in [q]} |\mathbb{P}(\sigma_w = k \mid \sigma_v = i) - \mathbb{P}(\sigma_w = k \mid \sigma_v = j)|.$$

This is reminiscent of the potential function given in [11] and an adaptation of their arguments allows us to write a recursion for $\mathcal{I}[v \to (w, k)]$, expressing it in terms of the influences of the neighbors of v in a graph where v is deleted. In turn, this gives a recursion for the aggregate influences (over w, k); the growth rate of the aggregate influences in the recursion is controlled by the product of the degree of v and the marginal probability at v and the condition $q \geq \alpha \Delta + 1$ guarantees that this product is less than 1. The end result of this “vanilla” approach yields that the spectral radius of \mathcal{M} is $C \Delta / \varepsilon$ when $q \geq (1 + \varepsilon) \alpha^* \Delta + 1$ for arbitrarily small $\varepsilon > 0$ and C is an absolute constant. This in turn gives a (weaker) polynomial bound for fixed values of Δ (the constant in the exponent grows linearly with Δ). While this argument does not quite give what we want, it contains many of the relevant ideas that are used in the more refined argument later, so we present the simpler argument in Section 3.2.

To get the stronger polynomial bound stated in Theorem 1.1 for all Δ, we need instead to prove that the spectral radius of \mathcal{M} is independent of Δ and q; achieving this stronger result requires further insight. For the influences \mathcal{M} the only large entries are the “diagonal” entries corresponding to the cases when $i = k$. This is illustrated by the simple example of a star on $\Delta + 1$ vertices in Section 3.3 where these diagonal entries are of order $\Theta(1/q)$ whereas the non-diagonal entries are $O(1/q^2)$. To handle this discrepancy we introduce a new notion of maximum influence $\hat{I}_L[v \to (w, k)]$ corresponding to the cases $i, j \neq k$. We need a more intricate induction argument to simultaneously maintain appropriate bounds on both of these two quantities. The final result upper bounds the row-sum of \mathcal{M} by $O((\Delta/q)^{\varepsilon^{-2}})$. This proof which is the main ingredient of the proof of Theorem 1.1 is presented in the full version [5] of this paper.
2 Spectral independence and proof outline

2.1 Preliminaries Let \(q \geq 3 \) be an integer and denote by \([q] := \{1, \ldots, q\}\).

A list-coloring instance is a pair \((G, L)\) where \(G = (V, E)\) is a graph and \(L = \{L(v)\}_{v \in V}\) prescribes a list \(L(v) \subseteq [q]\) of available colors for each \(v \in V\); it will also be convenient to assume that the vertices of \(G\) are ordered by some relation \(<\) (the ordering itself does not matter). A proper list-coloring for the instance \((G, L)\) is an assignment \(\sigma : V \rightarrow [q]\) such that \(\sigma_v \in L(v)\) for each \(v \in V\) and \(\sigma_v \neq \sigma_w\) for each \(\{v, w\} \in E\). The instance is satisfiable iff such a proper list-coloring exists. Note, \(q\)-colorings correspond to the special case where \(L(v) = [q]\) for each \(v \in V\).

For a satisfiable list-coloring instance \((G, L)\), we will denote by \(Z_{G,L}\) the set \(\{(v, i) \mid v \in V, i \in L(v)\}\), by \(\Omega_{G,L}\) the set of all proper list-colorings, and by \(P_{G,L}\) the uniform distribution over \(\Omega_{G,L}\); we will omit \(G\) from notations when it is clear from context. We typically use \(\sigma\) to denote a random list-coloring that is distributed according to \(P_{G,L}\).

We will be interested in analyzing the Glauber dynamics on \(\Omega_{G,L}\). This is a Markov chain \((Z_t)_{t \geq 0}\) of list-colorings which starts from an arbitrary \(Z_0 \in \Omega_{G,L}\) and at each time \(t \geq 0\) updates the current list-coloring \(Z_t\) to \(Z_{t+1}\) by selecting a vertex \(v \in V\) u.a.r. and setting \(Z_{t+1}(v) = c\), where \(c\) is a color chosen u.a.r. from the set \(L(v)\). The transition matrix of the Glauber dynamics will be denoted by \(P = P_{G,L}\).

To ensure satisfiability of \((G, L)\) as well as ergodicity of the Glauber dynamics, we will henceforth assume the well-known condition that \(|L(v)| \geq \Delta_G(v) + 2\) for all \(v \in V\), where \(\Delta_G(v) = |N_G(v)|\) and \(N_G(v)\) is the set of neighbors of \(v\) in \(G\).\(^3\) Then, Glauber dynamics converges to the uniform distribution over \(\Omega_{G,L}\). The mixing time \(T_{\text{mix}}\) of the chain is the number of steps needed to get within total variation distance \(\leq 1/4\) from a worst-case initial state, i.e.,

\[
\max_{\sigma \in \Omega_{G,L}} \min \left\{ t \geq 0 \mid X_0 = \sigma, \|X_t - P_{G,L}\|_{\text{TV}} \leq 1/4 \right\}.
\]

It is well-known that, for any integer \(k \geq 1\), after \(kT_{\text{mix}}\) steps the total variation distance from the stationary distribution is no more than \((1/2)^{k+1}\); see, e.g., [20, Chapter 4]. Let \(\lambda_2(P)\) be the second largest eigenvalue\(^4\) of \(P\), and since the Glauber dynamics on \((G, L)\) is reversible, irreducible, and aperiodic, we have the following bound by applying well-known results from the theory of Markov chains.

Lemma 2.1 (see, e.g., [20, Theorem 12.3 & 12.4]). Let \((G, L)\) be a list-coloring instance with \(G = (V, E)\) and \(L = \{L(v)\}_{v \in V}\). Let \(n = |V|\) and \(Q = \max_{v \in V} |L(v)|\).

Then, denoting by \(\lambda_2 = \lambda_2(P_{G,L})\) the second largest eigenvalue of \(P_{G,L}\), we have that the mixing time of the Glauber dynamics satisfies \(T_{\text{mix}} \leq \frac{n \ln(4Q)}{1 - \lambda_2^2}\).

2.2 Local expansion for list-colorings and connection to Glauber dynamics

In order to analyze the Glauber dynamics on a list-coloring instance \((G, L)\), we will use the spectral independence approach of [1, 2]. The key ingredient in this approach is to give a bound on the spectral gap of a random walk on an appropriate weighted graph; here we explain how these pieces can be adapted in the list-coloring setting and state the main result that allows us to conclude fast mixing of Glauber dynamics.

Definition 2.2. Let \(H_{G,L}\) be the weighted graph with vertex set \(U_{G,L}\) and edges \(\{(v, i), (w, k)\}\) for all \((v, i), (w, k) \in U_{G,L}\) with \(v \neq w\), with corresponding edge weight \(P_{G,L}(\sigma_v = i, \sigma_w = k)\).

Let \(\hat{P}_{G,L}\) be the transition matrix of the simple non-lazy random walk on \(H_{G,L}\).

Definition 2.3. For \(\alpha \in [0, 1]\), we say that \((G, L)\) has local expansion bounded by \(\alpha\) if the second largest eigenvalue of the simple non-lazy random walk on the weighted graph \(H_{G,L}\) is at most \(\alpha\), i.e., \(\lambda_2(\hat{P}) \leq \alpha\) where \(\hat{P} = \hat{P}_{G,L}\) is the transition matrix of the random walk.

For the spectral independence approach of [1, 2], we will need to consider conditional distributions of \(P_{G,L}\) given a partial list-coloring\(^5\) on a subset of vertices; this setting is reminiscent of SSM, though the goal is different. For a partial list-coloring \(\tau\) on a subset \(S \subseteq V\), let \((G_\tau, L_\tau)\) be the list-coloring instance on the induced subgraph \(G[\setminus S]\) with lists obtained from \(L\) by removing the unavailable colors that have been assigned by \(\tau\) for each vertex in \(V \setminus S\), i.e., \(L_\tau = \{L_\tau(v)\}_{v \in V \setminus S}\) where for \(v \in V \setminus S\) we have \(L_\tau(v) = L(v) \setminus \tau(N_G(v) \cap S)\).

To capture those instances of list-colorings obtained from an instance of \(q\)-colorings by assigning fixed colors

\(^3\)More generally, for a square matrix \(M \in \mathbb{R}^{n \times n}\) all of whose eigenvalues are real, we let \(\lambda_1(M), \lambda_2(M), \ldots, \lambda_n(M)\) denote the eigenvalues of \(M\) in non-increasing order.

\(^4\)For a subset \(S \subseteq V\), we say that \(\tau\) is a partial list-coloring of \((G, L)\) on \(S\) if \(\tau = \sigma_S\) for some \(\sigma \in \Omega_{G,L}\).
to a subset of vertices, the following notion of \((\Delta,q)\)-list-colorings will be useful.

Definition 2.4. Let \(\Delta, q\) be positive integers with \(\Delta \geq 3\) and \(q \geq \Delta + 2\). We say that \((G, L)\) is a \((\Delta,q)\)-list-coloring instance if \(G = (V,E)\) has maximum degree \(\Delta\) and for each \(v \in V\) it holds that \(L(v) \subseteq [q]\) and \(|L(v)| \geq q - \Delta + \Delta_G(v)\).

We are now ready to state the spectral independence approach for list-colorings.

Theorem 2.5. Let \((G, L)\) be a \((\Delta,q)\)-list-coloring instance where \(G\) is an \(n\)-vertex graph. Suppose that for each integer \(s = 0, 1, \ldots, n-2\) there is \(\ell_s \in [0,1)\) such that for every partial list-coloring \(\tau\) on a subset \(S \subseteq V\) with \(|S| = s\), the conditioned instance \((G_\tau, L_\tau)\) has local expansion bounded by \(\ell_s\).

Then, for \(L := \prod_{s=0}^{n-2} (1 - \ell_s)^{-1}\), the spectral gap of the Glauber dynamics on \((G, L)\) is at least \(1/(nL)\) and its mixing time is at most \(Ln^2\ln(4q)\).

2.3 Key lemmas: establishing local expansion for list-colorings

The hard part for us is to verify the conditions of Theorem 2.5, i.e., bound the local expansion of a (conditioned) list-coloring instance. To do this the following matrix will help us to concentrate on the non-trivial eigenvalues of the corresponding random walk.

Definition 2.6. Let \((G, L)\) be a list-coloring instance. Let \(M = M_{G,L}\) be the square matrix with entries from the set \(U_{G,L}\), where the entry indexed by \((v,i), (w,k)\) \(\in U_{G,L}\) is 0 if \(v = w\), and

\[
M((v,i), (w,k)) = P_{G,L}(\sigma_w = k | \sigma_v = i) - P_{G,L}(\sigma_w = k),
\]

if \(v \neq w\).

In the full version [5] of this paper, we show that the second largest eigenvalue of \(\tilde{P}\) can be studied by focusing on the largest eigenvalue of \(M\).

Theorem 2.7. Let \((G, L)\) be a list-coloring instance with \(G = (V,E)\) and \(L = \{L(v)\}_{v \in V}\) such that \(|L(v)| \geq \Delta_G(v) + 2\) for all \(v \in V\), and \(n = |V| \geq 2\). Let \(\tilde{P}\) be the transition matrix of the simple non-lazy random walk on the weighted graph \(H_{G,L}\). Then, the eigenvalues of \(M\) are all real and \(\lambda_2(\tilde{P}) = \frac{1}{n-1} \lambda_1(M)\) where \(M = M_{G,L}\) is the matrix from Definition 2.6.

Theorem 2.7 follows from spectral arguments and is inspired from ideas about \(d\)-partite simplicial complexes in [2, 25]. Then, the core of our argument behind the proof of Theorem 1.1 is to establish the following bound on \(\lambda_1(M)\) by studying the list-coloring distribution.

Theorem 2.8. Let \(\varepsilon > 0\) be arbitrary, and suppose that \((G, L)\) is a \((\Delta,q)\)-list-coloring instance with \(q \geq (1 + \varepsilon)\Delta + 1\) and \(G\) a triangle-free graph. Then, \(\lambda_1(M) \leq 64 \left(\frac{1}{\varepsilon} + 1\right)^2 \frac{\Delta}{q}\) where \(M = M_{G,L}\) is the matrix from Definition 2.6.

2.4 Combining pieces: proof of Theorem 1.1

Assuming Theorems 2.5, 2.7 and 2.8, we can complete here the proof of Theorem 1.1.

Theorem 1.1. Let \(\alpha^* \approx 1.763\) denote the solution to \(\exp(1/x) = x\). For all \(\alpha > \alpha^*\), there exists \(c = c(\alpha) > 0\) such that, for any triangle-free graph \(G = (V,E)\) with maximum degree \(\Delta\) and any integer \(q \geq \alpha \Delta + 1\), the mixing time of the Glauber dynamics on \(G\) with \(q\) colors is at most \(n^c\), where \(n = |V|\).

Proof. We may assume that \(\alpha < 2\), otherwise the result follows from [15]. Let \(\varepsilon > 0\) be such that \(\alpha = (1 + \varepsilon)\alpha^*\). We will show the result with \(c = 80C^2\) where \(C = \frac{64}{\alpha} \left(\frac{1}{\varepsilon} + 1\right)^2\). Assume that \(G\) is a \(q\)-vertex triangle-free graph with maximum degree \(\Delta\), and \(q \geq \Delta + 1\). Again, from the result of [15] we may assume that \(q \leq 2\Delta\). If \(n = 1\) the result is immediate, so assume \(n \geq 2\) in what follows. Let \(C = 64 \left(\frac{1}{\varepsilon} + 1\right)^2\Delta\) be the bound from Theorem 2.8, and note that \(1 < C^* \leq C\).

Consider the list-coloring instance \((G, L)\) where \(L(v) = [q]\) for each \(v \in V\). Then, Glauber dynamics with \(q\) colors on \(G\) is the same as Glauber dynamics on \((G, L)\), so it suffices to bound the mixing time of the latter. We will show that Theorem 2.5 applies with \(\ell_s = \min\{\frac{C}{n-1-s}, 1 - 2(1/q^4)^{n-s}\}\) for each \(s \in \{0, 1, \ldots, n-2\}\). Indeed, let \(\tau\) be an arbitrary partial list-coloring on \(S \subseteq V\) with \(|S| = s\) for some \(s \in \{0, 1, \ldots, n-2\}\) and consider the conditioned instance \((G_\tau, L_\tau)\) with \(G_\tau = (V_\tau, E_\tau)\). Then, for every vertex \(v \in V_\tau\) we have that \(|L_\tau(v)| \geq q - \Delta + \Delta_G(v)|\) since the conditioning on \(\tau\) disallows at most \(\Delta - \Delta_G(v)|\) colors from \(v\), and hence \((G_\tau, L_\tau)\) is a \((\Delta,q)\)-list-coloring instance. Therefore, by Theorem 2.7 and Theorem 2.8 applied to \((G_\tau, L_\tau)\), we obtain that \((G_\tau, L_\tau)\) has local expansion bounded by \(\frac{C}{n-1-s}\). The local expansion is also bounded by \(1 - 2(1/q^4)^{n-s}\) using conductance arguments. This verifies the assumptions of Theorem 2.5, so it follows that the mixing time of the Glauber dynamics on \(G\) is...
at most $L n^2 \ln(4q)$, where $L = \prod_{s=0}^{n-2}(1 - \ell_s)^{-1}$. Let $k_0 = [2C] \leq 3C\alpha$, then we have that
\[L \leq \left(\frac{q^{k_0}}{2} \right) k_0^{-1} \cdot \prod_{s=0}^{n-1} \left(1 - \frac{C}{n - s - 1} \right)^{-1} \leq q^{4k_0^2} \cdot n^{-2C} \leq n^{7qC^2}, \]

since $-\sum_{i=k_0}^{n-1} \ln(1 - C / q) \leq 2C \sum_{i=k_0}^{n-1} \frac{1}{i} \leq 2C \ln n$ and $q \leq 2\Delta \leq n^2$.

Using the bound on L, Theorem 2.5 yields that $T_{\text{mix}} \leq n^c$ with $c = 80C^2\alpha$, finishing the proof. \qed

Organisation of the rest of the paper. Section 3 is devoted to the proof of the key Theorem 2.8, and more accurate analysis is given in the full version [5]. We also give the details of the spectral independence approach for colorings and prove Theorems 2.5 and 2.7 in the full version [5].

In our proofs henceforth, it will be convenient to define the following slightly more accurate form of the region of (Δ, q), where our results apply to.

Definition 2.9 (Parameter Region Λ_ε). Let $\alpha^* \approx 1.763$ denote the solution to $\exp(1/x) = x$. For $\varepsilon > 0$, define $\Lambda_\varepsilon = \{ (\Delta, q) \in \mathbb{N}^2 \mid \Delta \geq 3, q \geq \alpha \Delta + \beta \}$ where $\alpha = (1 + \varepsilon)\alpha^*$ and $\beta = 2 - \alpha + \frac{\alpha}{2(\alpha^2 - 1)} < 0.655$.

3 Simpler proof of a slower mixing result

Let (G, L) be a (Δ, q)-list-coloring instance as in Theorem 2.8, our goal is to bound the spectral radius of the matrix $M_{G, L}$ from Definition 2.6. In this section, we will prove a weaker result than the one in Theorem 2.8 which already contains some of the key ideas and will motivate our refinement in the full version [5].

In particular, we will show that for $\alpha > \alpha^*$ there exists a constant $C = C(\alpha)$ such that whenever $q \geq \alpha \Delta + 1$ it holds that $\lambda_1(M_{G, L}) \leq C \Delta$. Note the dependence on Δ of this bound, in contrast to that of Theorem 2.8; mimicking the proof of Theorem 1.1 given earlier would give a mixing time bound of $O(n^{C'D})$ for the Glauber dynamics for some constant $C' = C'(\alpha) > 0$, which is much weaker than what Theorem 1.1 asserts. Nevertheless, we will introduce several of the relevant quantities/lemmas that will also be relevant in the more involved argument of [5].

It is well-known that, for any square matrix the spectral radius is bounded by the maximum of the L_1-norms of the rows. In our setting, the (weaker) bound on $\lambda_1(M_{G, L})$ will therefore be obtained by showing that, for an arbitrary vertex v of G and a color $i \in L(v)$, it holds that 7
\[\sum_{v \in V \setminus \{v\}} \sum_{k \in [q]} |M_{G, L}(v, i), (w, k)| \leq 4 \left(\frac{1}{\varepsilon} + 1 \right) \Delta. \]

To bound the sum in (3.1), we introduce the maximum influence, which describes the maximum difference of the marginal probability of $\sigma_w = k$ under all color choices of v.

Definition 3.1 (Maximum Influences). Let (G, L) be a (Δ, q)-list-coloring instance. Let v, w be two vertices of G, and $k \in [q]$. The maximum influence of v on (w, k) is defined to be
\[I_{G, L}(v \rightarrow (w, k)) = \max_{i, j \in L(v)} |P_{G, L}(\sigma_w = k \mid \sigma_v = i) - P_{G, L}(\sigma_w = k \mid \sigma_v = j)|. \]

Observation 3.2. For all distinct $v, w \in V$, $i \in L(v)$, and $k \in [q]$, we have $|M_{G, L}(v, i), (w, k))| \leq I_{G, L}(v \rightarrow (w, k))$.

Proof. If $k \notin L(w)$, then we have $M_{G, L}(v, i), (w, k)) = I_{G, L}(v \rightarrow (w, k)) = 0$. For $k \in L(w)$, since $v \neq w$, we have $M_{G, L}(v, i), (w, k)) = \mathbb{P}(\sigma_w = k \mid \sigma_v = i) - \mathbb{P}(\sigma_w = k)$ and so the law of total probability gives
\[M_{G, L}(v, i), (w, k)) = \sum_{j \notin L(v)} \left(\mathbb{P}(\sigma_w = k \mid \sigma_v = i) - \mathbb{P}(\sigma_w = k \mid \sigma_v = j) \right) \mathbb{P}(\sigma_v = j), \]
from where the desired inequality follows. \qed

Hence, to bound the sum in (3.1), it suffices to bound the sum $\sum_{v \in V \setminus \{v\}} \sum_{k \in [q]} I_{G, L}(v \rightarrow (w, k))$ instead. Our ultimate goal is to write a recursion for this latter sum, bounding by an analogous sum for the neighbors of v (in the graph where v is deleted). To get on the right track, we start by writing a recursion for influences.

3.1 A recursive approach to bound influences

In this section, we derive a recursion on influences. Recall that a list-coloring instance is a pair (G, L) where $G = (V, E)$ is a graph, $L = \{ L(v) \}_{v \in V}$ prescribes a list $L(v)$ of available colors for each $v \in V$, and the vertices of G are ordered by some relation $<$.

Definition 3.3. Let (G, L) be a list-coloring instance with $G = (V, E)$ and $L = \{ L(v) \}_{v \in V}$.
Let \(v \in V \). For \(u \in N_G(v) \) and colors \(i, j \in L(v) \) with \(i \neq j \), we denote by \((G_v, L^u_v) \) the list-coloring instance with \(G_v = G \setminus v \) and lists \(L^u_v = \{ L^u_v(w) \}_{w \in V \setminus \{v\}} \) obtained from \(L \) by:
- removing the color \(i \) from the lists \(L(u') \) for \(u' \in N_G(v) \) with \(u' < u \),
- removing the color \(j \) from the lists \(L(u') \) for \(u' \in N_G(v) \) with \(u' > u \), and
- keeping the remaining lists unchanged.

The following lemma will be crucial in our recursive approach to bound influences, and follows by adapting suitably ideas from [11].

Lemma 3.4. Let \((G, L)\) be a \((\Delta, q)\)-list-coloring instance with \(G = (V, E) \) and \(L = \{L(v)\}_{v \in V} \). Then, for \(v \in V \) and arbitrary colors \(i, j \in L(v) \) with \(i \neq j \), for all \(w \in V \setminus \{v\} \) and \(k \in [q] \), we have

\[
P(\sigma_w = k \mid \sigma_v = i) - P(\sigma_w = k \mid \sigma_v = j) = \sum_{u \in N_G(v)} P^u_{ij}(\sigma_u = j) \cdot M^u_j((u, j), (w, k)) - P^u_{ij}(\sigma_u = i) \cdot M^u_i((u, i), (w, k)),
\]

where \(P := P_{G,L} \) and, for \(u \in N_G(v) \), \(P^u_{ij} := P_{G,L,L^u}(u) \) and \(M^u_j := M_{G,L,L^u}(u) \).

Recall that we set \(M^u_j((u, c), (w, k)) = 0 \) for \(c \notin L^u_j(u) \) (see Footnote 7). To apply Lemma 3.4 recursively, it will be helpful to consider multiple list-coloring instances on the same graph \(G \). For a collection of lists \(L = \{L_1, \ldots, L_n\} \), where each \(L \in L \) is a set of lists of all vertices for \(G \), we use \((G, L)\) to denote the collection of all \(|L|\) list-coloring instances \(\{(G, L_1), \ldots, (G, L_n)\} \). When considering the pair \((G, L)\) or \((G, L)\), we usually omit the graph \(G \) when it is clear from the context.

Definition 3.5. Let \((G, L)\) be a collection of list-colorings instances with \(G = (V, E) \) and a collection of lists \(L \) on \(G \). For \(v \in V \), we define \(L_v \) to be the collection of lists for \(G_v = G \setminus v \) obtained from \(L \) by setting

\[
L_v = \{ L^u_v \mid L \in L, u \in N_G(v), i, j \in L(v) \text{ with } i \neq j \}.
\]

Note that \((G_v, L_v)\) consists of \(|L_v| = \sum_{L \in L} \Delta_G(v) \cdot |L(v)| \cdot (|L(v)| - 1)\) list-coloring instances.

Lemma 3.6. If \((G, L)\) is a collection of \((\Delta, q)\)-list-coloring instances, then for each vertex \(v \) of \(G \), \((G_v, L_v)\) is also a collection of \((\Delta, q)\)-list-coloring instances.

Proof. Let \(L_v \in L_v \) be arbitrary, so that \(L_v \) is obtained from some \(L \in L \). Then, by definition, for \(u \notin N_G(v) \) we have \(|L_v(u)| = |L(u)|\) and \(\Delta_G(u) = \Delta_G(u) \), while for \(u \in N_G(v) \) we have \(|L_v(u)| \geq |L(u)| - 1\) and \(\Delta_G(u) = \Delta_G(u) - 1 \). This implies that \(L_v \) is \((\Delta, q)\)-induced.

3.2 Aggregating influences

Definition 3.7. Let \((G, L)\) be a collection of \((\Delta, q)\)-list-coloring instances with \(G = (V, E) \). Fix a vertex \(v \in V \) and let \(w \in V \setminus \{v\} \), \(k \in [q] \). The maximum influence of \(v \) on \((w, k)\) with respect to \((G, L)\) is defined to be

\[
\mathcal{I}_{G,L}[v \to (w, k)] = \max_{L \in L} \mathcal{I}_{G,L}[v \to (w, k)].
\]

The total maximum influence of \(v \) with respect to \((G, L)\) is defined to be 0 if \(\Delta_G(v) = 0 \), and

\[
\mathcal{I}_{G,L}[v \to (w, k)] = \frac{1}{\Delta_G(v)} \sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} \mathcal{I}_{G,L}[v \to (w, k)]
\]

if \(\Delta_G(v) \geq 0 \).

The following lemma gives a recursive bound on the total maximum influence.

Lemma 3.8. Let \((G, L)\) be a collection of list-coloring instances and \(v \) be a vertex of \(G \) with \(\Delta_G(v) \geq 1 \). Then, with \(G_v, L_v \) as in Definition 3.5,

\[
\mathcal{I}_{G,L}[v \to (w, k)] \leq \max_{u \in N_G(v)} \left\{ \frac{R_G(u)}{\Delta_G(v)} \sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} \mathcal{I}_{G_v,L_v}[u \to (w, k)] \right\},
\]

where \(R_G(u) = \max_{L \in L_v} \max_{e \in L(u)} \frac{P_{G,L,L}(\sigma_u = c)}{\Delta_G(v)} \) for \(u \in N_G(v) \).

Proof. Suppose that \(G = (V, E) \). For convenience, we will drop the subscripts \(G \) from \(I \) and \(L \) from \(I \) and use \(I \) as a shorthand for the subscripts \(G_v \), \(L_v \) of \(I \) and \(L \) and the quantity \(R \). We will soon show that for every \(w \in V \setminus \{v\} \) and color \(k \in [q] \), we have

\[
\mathcal{I}[v \to (w, k)] = \sum_{v \in N_G(v)} R_G(u) \cdot \mathcal{I}[u \to (w, k)].
\]

Assuming (3.2) for the moment, we have that

\[
\mathcal{I}^*(v) = \frac{1}{\Delta_G(v)} \sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} \mathcal{I}[v \to (w, k)]
\]

\[
\leq \frac{1}{\Delta_G(v)} \sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} \sum_{u \in N_G(v)} R_G(u) \cdot \mathcal{I}[u \to (w, k)]
\]

\[
= \frac{1}{\Delta_G(v)} \sum_{u \in N_G(v)} R_G(u)
\]

\[
\cdot \left(\sum_{w \in V \setminus \{v, u\}} \sum_{k \in [q]} \mathcal{I}[u \to (w, k)] + \sum_{k \in [q]} \mathcal{I}[u \to (u, k)] \right)
\]

\[
\leq \max_{u \in N_G(v)} \left\{ R_G(u) \cdot \Delta_G(u) \cdot \mathcal{I}^*(u) + q \right\},
\]
which is precisely the desired inequality. To prove (3.2), consider $L \in \mathcal{L}$ and $i, j \in L(v)$ with $i \neq j$. For simplicity, let $P := P_{G,L}$ and, for $u \in N_G(v)$, $P^i_u := P_{G_i,L_i^u}$, $M^i_u := M_{G_i,L_i^u}$, and $T^i_u := T_{G_i,L_i^u}$. Let also $P^i_{w,k} := P(\sigma_w = k \mid \sigma_v = i) - P(\sigma_w = k \mid \sigma_v = j)$, so that from Lemma 3.4 we have

\begin{equation}
(3.3) \quad P^i_{w,k} = \sum_{u \in N_G(v)} \frac{P^i_u(\sigma_u = j)}{P^i_u(\sigma_u \neq j)} \cdot M^i_u((u, j), (w, k)) - \frac{P^i_u(\sigma_u = i)}{P^i_u(\sigma_u \neq i)} \cdot M^i_u((u, i), (w, k)).
\end{equation}

By the law of total probability, we have

\begin{equation}
(3.4) \quad m^i_u := \min_{i' \in L^u(v)} M^i_u((u, i'), (w, k)) \leq 0
\end{equation}

and

\begin{equation}
(3.5) \quad M^i_u := \max_{j' \in L^u(v)} M^i_u((u, j'), (w, k)) \geq 0.
\end{equation}

Observe further that

\begin{equation}
(3.6) \quad T^i_u[u \rightarrow (w, k)] = \max_{i', j' \in L^u(v)} \left| P^i_u(\sigma_w = k \mid \sigma_u = i') - P^i_u(\sigma_w = k \mid \sigma_u = j') \right|. = M^i_u - m^i_u.
\end{equation}

Combining (3.3), (3.4), (3.5), (3.6) we obtain that

\begin{equation}
P^i_{w,k} \leq \sum_{u \in N_G(v)} R_v(u)(M^i_u - m^i_u)
= \sum_{u \in N_G(v)} R_v(u) \cdot T^i_u[u \rightarrow (w, k)]
\leq \sum_{u \in N_G(v)} R_v(u) \cdot T_u[u \rightarrow (w, k)].
\end{equation}

Since $T_{G,L}[v \rightarrow (w, k)] = \max_{i, j \in L(v)} P^i_{w,k}$, by taking maximum over $i, j \in L(v)$ of the left-hand side, we obtain the same upper for $T_{G,L}[v \rightarrow (w, k)]$. We then obtain (3.2) by taking maximum over $L \in \mathcal{L}$, and thus finish the proof.

For the bound in Lemma 3.8 to be useful, we need to show that the ratio $R(u)$ defined there is strictly less than $1/\Delta_G(u)$. The following lemma does this for $(\Delta, q) \in \Lambda_e$, building on ideas from [12, 11].

Lemma 3.9. Let $\varepsilon > 0$ and $(\Delta, q) \in \Lambda_e$. Let (G, L) be a (Δ, q)-list-coloring instance with G a triangle-free graph. Then for every vertex u of G with degree at most $\Delta - 1$ and every color $c \in L(u)$, we have

\begin{equation}
P_{G,L}(\sigma_u = c) \leq \frac{1}{(1 + \varepsilon)\Delta_G(u)} \cdot \frac{4}{q}.
\end{equation}

We remark that when $\Delta_G(u)$ is small, the bound $1/\Delta_G(u)$ is poor and we shall apply the simpler crude bound $4/q$. The proof of Lemma 3.9 can be found in our full version [5]. Combining Lemmas 3.8 and 3.9, we can now bound the total influence.

Theorem 3.10. Let $\varepsilon > 0$ and $(\Delta, q) \in \Lambda_e$. Suppose that (G, L) is a collection of (Δ, q)-list-coloring instances where G is a triangle-free graph. Then for every vertex v of G we have $T_{G,L}(v) \leq 4(\frac{1}{\varepsilon} + 1)$. \hfill \Box

Proof. Let $v_0 = v_i, G^0 = G$ and $c^0 = L$. For $\ell \geq 0$, we will define inductively a sequence of (Δ, q)-list-coloring instances (G^ℓ, L^ℓ) and a vertex v_ℓ in G^ℓ as follows. Let $G^{\ell+1}$ be the graph obtained from G^ℓ by deleting v_ℓ; namely, $G^{\ell+1} = G^\ell \setminus v_\ell$ and $L^{\ell+1} = L^\ell \setminus v_\ell$. Note that all neighbors of v_ℓ in G_ℓ have degree at most $\Delta - 1$ in $G^{\ell+1}$. Moreover, since by induction (G^ℓ, L^ℓ) is a set of (Δ, q)-list-coloring instances, by Lemma 3.6 so is $(G^{\ell+1}, L^{\ell+1})$. Since $q \geq (1 + \varepsilon)\Delta + 1$, combining Lemmas 3.8 and 3.9, we obtain that

\begin{equation}
T^*_{G^\ell,L^\ell}(v_\ell) \leq \frac{1}{1 + \varepsilon} \cdot \max_{u \in N_G(v_\ell)} \left\{ T^*_{G^{\ell+1},L^{\ell+1}}(u) \right\} + 4.
\end{equation}

We let $v_{\ell+1}$ be the vertex $u \in N_G(v_\ell)$ that attains the maximum of the right-hand side of (3.7), so

\begin{equation}
(3.8) \quad T^*_{G^\ell,L^\ell}(v_\ell) \leq \frac{1}{1 + \varepsilon} \cdot T^*_{G^{\ell+1},L^{\ell+1}}(v_{\ell+1}) + 4.
\end{equation}

Hence, we obtain a sequence of vertices v_0, v_1, \ldots, v_m and also collections of lists L^0, L^1, \ldots, L^m, till when $\Delta_G(v_m) = 0$ and thus $T_{G_m,L^m}(v_m) = 0$. From this, and since (3.8) holds for all $0 \leq \ell \leq m - 1$, we obtain by solving the recursion that $T_{G,L}(v) \leq 4(\frac{1}{\varepsilon} + 1)$, as wanted. \hfill \Box

We remark that our region Λ_e is slightly smaller than that of [12], where similar bounds are shown for $q \geq \alpha \Delta - \gamma$ for $\gamma \approx 0.4703$. The difference is that the arguments in [12] upper-bound $P_{L}(\sigma_u = c)$ instead of the ratio $P_{L}(\sigma_u = c)/P_{L}(\sigma_u \neq c)$ which is relevant here, and which is clearly larger than $P_{L}(\sigma_u = c)$. See also the discussion in our full version [5].
Combining Theorem 3.10 with Observation 3.2 and Definition 3.7 of total maximum influence gives (3.1), which therefore yields the bound \(\lambda_1(M_{G,L}) \leq 4 \left(\frac{1}{q} + 1 \right) \Delta \) for any \((\Delta, q)\)-list-coloring instance \((G, L)\) with \((\Delta, q) \in \Lambda_\varepsilon\), as claimed at the beginning of this section.

3.3 An example where this spectral bound is not tight

From the arguments of the previous section we get that, for a \((\Delta, q)\)-list-coloring instance \((G, L)\) with \((\Delta, q) \in \Lambda_\varepsilon\) it holds that \(\lambda_1(M_{G,L}) \leq 4 \left(\frac{1}{q} + 1 \right) \Delta \). As discussed earlier, this only yields an \(n^{\Delta} \) upper bound on the mixing time for some \(C = C(\alpha) > 0 \), which is exponential in the maximum degree \(\Delta \). The following example shows that (3.1) and therefore the bound on \(\lambda_1(M_{G,L}) \) are not tight.

Example 3.11. Consider \(q \)-colorings of a star graph \(G = (V, E) \) on \(\Delta + 1 \) vertices centered at \(v \). Then for every \(w \in N_G(v) = V \setminus \{v\} \) and every \(k \in [q] \), we have \(I_{G,L}[v \to (w, k)] = \frac{1}{q \cdot k} \), and hence,

\[
(3.9) \sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} I_{G,L}[v \to (w, k)] = \frac{q}{q - 1} \cdot \Delta \geq \Delta.
\]

Meanwhile, given \(i \in [q] \), for every \(w \in N_G(v) = V \setminus \{v\} \) and every \(k \in [q] \) we have

\[
M_{G,L}((v, i), (w, k)) = \begin{cases}
\frac{1}{q(q-1)} & \text{if } k \neq i; \\
-\frac{1}{q} & \text{if } k = i.
\end{cases}
\]

Therefore, for every \(i \in [q] \) we have

\[
\sum_{w \in V \setminus \{v\}} \sum_{k \in [q]} \left| M_{G,L}((v, i), (w, k)) \right| = \frac{2\Delta}{q},
\]

which is a factor of at least \(q/2 \) smaller than the bound in (3.9).

Example 3.11 indicates that the maximum influence \(I_L[v \to (w, k)] \) does not always provide a good bound on \(M_L((v, i), (w, k)) \); in fact, as we can see from our full version [5], it loses a factor of roughly \(q \) when it comes to the off-diagonal entries, i.e., when \(k \neq i \).

References

[1] V. I. Alev and L. C. Lau. Improved analysis of higher order random walks and applications. In *Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC)*, 2020.

[2] N. Anari, K. Liu, and S. O. Gharan. Spectral independence in high-dimensional expanders and applications to the hardcore model. Preprint, 2020. Available from arXiv at: arXiv:2001.00303

[3] A. Barvinok. Combinatorics and Complexity of Partition Functions. Algorithms and Combinatorics, volume 30. Springer, 2016.

[4] S. Chen, M. Delcourt, A. Moitra, G. Perarnau, and L. Postle. Improved bounds for randomly sampling colorings via linear programming. In *Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 2216–2234, 2019.

[5] Z. Chen, A. Galanis, D. Štefankovič, and E. Vigoda. Rapid mixing for colorings via spectral independence. Preprint, 2020. Available from arXiv at: arXiv:2007.08058

[6] Z. Chen, K. Liu, and E. Vigoda. Rapid mixing of Glauber dynamics up to uniqueness via contraction. Preprint, 2020. Available from arXiv at: arXiv:2004.09083

[7] M. E. Dyer, A. M. Frieze, T. P. Hayes, and E. Vigoda. Randomly coloring constant degree graphs. *Random Structures and Algorithms*, 43(2):181–200, 2013.

[8] A. Galanis, D. Štefankovič, and E. Vigoda. Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models. *Combinatorics, Probability & Computing*, 25(4):500–559, 2016.

[9] A. Galanis, D. Štefankovič, and E. Vigoda. Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region. *Journal of the ACM*, 62(6):article no. 50, 2015.

[10] D. Gamarnik and D. Katz. Correlation decay and deterministic FPTAS for counting list-colorings of a graph. *Journal of Discrete Algorithms*, 12:29–47, 2012.

[11] D. Gamarnik, D. Katz, and S. Misra. Strong spatial mixing for list coloring of graphs. *Random Structures & Algorithms*, 46(4):599–613, 2015.

[12] L.A. Goldberg, R. Martin, and M. Paterson. Strong spatial mixing with fewer colors for lattice graphs. *SIAM Journal on Computing*, 35(2):486–517, 2005.

[13] T.P. Hayes. Local uniformity properties for Glauber dynamics on graph colorings. *Random Structures & Algorithms*, 43:139–180, 2013.

[14] T. P. Hayes and E. Vigoda. A non-Markovian coupling for randomly sampling colorings. In *Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 618–627, 2003.

[15] M. R. Jerrum. A very simple algorithm for estimating the partition function for the antiferromagnetic Ising model. *Random Structures & Algorithms*, 7(2):157–165, 1995.

[16] M.R. Jerrum, L.G. Valiant and V.V. Vazirani. Random generation of combinatorial structures from a uniform distribution. *Theoretical Computer Science* 43(2-3):169–188, 1986.

[17] M. Huber. Approximation algorithms for the normalizability of the partition function for the antiferromagnetic Ising model. *Random Structures & Algorithms*, 7(2):157–165, 1995.
[19] V. Kolmogorov. A faster approximation algorithm for
the Gibbs partition function. In Conference On Learn-
ing Theory, COLT 2018, pages 228–249, 2018.
[20] D. A. Levin and Y. Peres. Markov Chains and Mixing
Times, 2nd edition. American Mathematical Society;
2017.
[21] L. Li, P. Lu, and Y. Yin. Correlation decay up to
uniqueness in spin systems. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 67–84, 2013.
[22] J. Liu, A. Sinclair, and P. Srivastava. A determinis-
tic algorithm for counting colorings with 2Δ colors.
In Proceedings of the 60th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages
1380–1404, 2019.
[23] P. Lu and Y. Yin. Improved FPTAS for multi-spin
systems. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2013), pages 67–84, 2013.
[24] V. Patel and G. Regts. Deterministic polynomial-
time approximation algorithms for partition functions
and graph polynomials. SIAM Journal on Computing,
46(6): 1893–1919, 2017.
[25] I. Oppenheim. Local spectral expansion approach to
high dimensional expanders Part I: descent of spectral
gaps. Discrete and Computational Geometry, 59:293–
330, 2018.
[26] H. Peters and G. Regts. On a conjecture of Sokal
concerning roots of the independence polynomial. The
Michigan Mathematical Journal, 68(1):33–55, 2019.
[27] A. Sinclair, P. Srivastava, and M. Thurley. Approxima-
tion algorithms for two-state anti-ferromagnetic spin
systems on bounded degree graphs. J. Stat. Phys.,
155(4):666–686, 2014.
[28] S. Shao and Y. Sun. Contraction: a unified perspective
of correlation decay and zero-freeness of 2-spin systems.
In Proceedings of the 47th International Colloquium
on Automata, Languages and Programming (ICALP),
2020.
[29] A. Sly. Computational transition at the unique-
ness threshold. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 287–296, 2010.
[30] A. Sly and N. Sun. The computational hardness of
counting in two-spin models on d-regular graphs. The
Annals of Probability, 42(6):2383–2416, 2014.
[31] D. ˇStefankoviˇc, S. Vempala, and E. Vigoda. Adaptive
simulated annealing: a near-optimal Connection be-
tween sampling and counting. Journal of the ACM,
56(3):1–36, 2009.
[32] E. Vigoda. Improved bounds for sampling colorings.
Journal of Mathematical Physics, 41(3):1555–1569,
2000.
[33] D. Weitz. Counting independent sets up to the tree
threshold. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC), pages
140–149, 2006.