Curve complexes and Garside groups

Bert Wiest, Matthieu Calvez

University Rennes 1, France / University of Temuco, Chile

These slides are at
http://perso.univ-rennes1.fr/bertold.wiest/CALtalk.pdf
• M. Calvez, B. Wiest, Curve graphs and Garside groups, Geometriae Dedicata

• M. Calvez, B. Wiest, Acylindrical hyperbolicity and Artin-Tits groups of spherical type, Geometriae Dedicata
1 Results

2 A crash course on the Garside theory of braids

3 Construction of C_{AL}, with motivation

4 Advertisement break

5 A bestiary of complexes
Mapping class grps $\text{Mod}(S)$
($S = \text{surface}$)

Braid groups
$B_n = \text{Mod}(D_n)$
($D_n = n$-punctured disk)

Garside grps G
e.g. Artin groups of spherical type
Mapping class grps
\(\text{Mod}(S) \)
(\(S = \text{surface} \))

Braid groups
\(B_n = \text{Mod}(D_n) \)
(\(D_n = n \)-punctured disk)

Garside grps \(G \)
e.g. Artin groups of spherical type

\textbf{Classical :}
- \(\text{Mod}(S) \curvearrowright \text{CC}(S) \)
- \(\text{CC} \) is \(\delta \)-hyp. \((\delta \text{ indep. of } S)\)
- For \(\varphi \in \text{Mod}(S) \),
 * \(\varphi \) finite order or reducible
 \(\implies \varphi \curvearrowright \text{elliptically} \)
 * \(\varphi \) pA \(\implies \varphi \curvearrowright \text{lox.}, \text{WPD} \)
In partic., \(\text{diam(CC)} = \infty \)

\textbf{Our contribution :}
- \(G \curvearrowright \mathcal{C}_{\text{AL}}(G) \) additional length cx.
- Conj : \(\mathcal{C}_{\text{AL}}(B_n) \overset{q.i.}{\sim} \text{CC}(D_n) \)
- \(\mathcal{C}_{\text{AL}}(G) \) is \(\delta \)-hyp. \((\delta \text{ indep. of } G)\)
- If \(G = B_n \) : \(g \) finite order or reducible \(\implies g \curvearrowright \text{ellipt.} \)
- If \(G \) any spherical type Artin :
 \(\exists g \in G \) s.t. \(g \curvearrowright \text{lox.}, \text{WPD} \)
Mapping class grps $\text{Mod}(S)$
($S =$ surface)

Braid groups
$B_n = \text{Mod}(D_n)$
($D_n =$ n-punctured disk)

Garside grps G
e.g. Artin groups of spherical type

Classical:
- $\text{Mod}(S) \curvearrowright \text{CC}(S)$
- CC is δ-hyp. (δ indep. of S)
- For $\varphi \in \text{Mod}(S)$,
 - φ finite order or reducible $\implies \varphi \curvearrowright$ elliptically
 - φ pA $\implies \varphi \curvearrowright$ lox., WPD
- In partic., $\text{diam}(\text{CC}) = \infty$

Our contribution:
- $G \curvearrowright \mathcal{C}_\text{AL}(G)$ additional length cx.
- Conj : $\mathcal{C}_\text{AL}(B_n)^{q.i.} \sim \text{CC}(D_n)$
- $\mathcal{C}_\text{AL}(G)$ is δ-hyp. (δ indep. of G)
- If $G = B_n : g$ finite order or reducible $\implies g \curvearrowright$ ellipt.
- If G any spherical type Artin : $\exists g \in G$ s.t. $g \curvearrowright$ lox., WPD
Results

2 A crash course on the Garside theory of braids

3 Construction of C_{AL}, with motivation

4 Advertisement break

5 A bestiary of complexes
Our preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

\uparrow

Permutations of $\{1, \ldots, n\}$

- **Typical example**

 Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- **Very special example**

 Half-twist $\Delta \leftrightarrow$ permutation $\begin{pmatrix} 1 & \ldots & n \\ n & \ldots & 1 \end{pmatrix}$

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $\text{Center}(B_n)$)
Our preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

- **Typical example**

 Simple braid $x \in B_4$, permutation $(1 \ 2 \ 3 \ 4)

 $(3 \ 1 \ 4 \ 2)$

- **Very special example**

 Half-twist $\Delta \leftrightarrow$ permutation $(1 \ \cdots \ n)$

 $(n \ \cdots \ 1)$

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $\text{Center}(B_n)$)
Our preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

- **Typical example**

 Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- **Very special example**

 Half-twist Δ \leftrightarrow permutation $\begin{pmatrix} 1 & \ldots & n \\ n & \ldots & 1 \end{pmatrix}$

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $\text{Center}(B_n)$)
Left-weighting

Example

The product $x_1 \cdot x_2$ is not left-weighted; the product $\tilde{x}_1 \cdot \tilde{x}_2$ is.

Theorem (Adjan, Thurston, Elrifai–Morton)

Every $x \in B_n$ has a unique representative of the form

$$\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell \quad (k \in \mathbb{Z})$$

with $x_i \cdot x_{i+1}$ left-weighted $\forall i$

Notation $k =$ “infimum of x”, $k + \ell =$ “supremum of x”

Remark Normal forms are described by a FSA.
The prefix-ordering

Definition Partial ordering on B_n :

$$x \preceq y :\Leftrightarrow \exists \alpha \in B_n^+, \ x \cdot \alpha = y$$

Proposition (Garside)

On B_n^+, the monoid of positive braids, this partial ordering is a lattice ordering : for $x, y \in B_n^+$

$$x \land y = g.c.d.(x, y) \text{ and } x \lor y = l.c.m.(x, y) \text{ exist}$$
Triangles in $Cayley(B_n)/\langle \Delta \rangle$

Picture of a triangle in $Cayley(B_n)/\langle \Delta \rangle$.
Edge paths $=$ normal form words. (They are geodesics [Charney])
1 Results

2 A crash course on the Garside theory of braids

3 Construction of \mathcal{C}_{AL}, with motivation

4 Advertisement break

5 A bestiary of complexes
The shadowing map $\pi : \text{Cayley}(B_n) \to CC$

$D_n = \{ c_0 \}$

Look at $B_n = \text{Mod}(D_n)$, and the projection (shadowing map):$
\pi : \text{Cayley}(B_n) \to CC := CC(D_n)$
vertex $x \mapsto x.c_0$

For $x \in B_n$, the normal form $x = x_1 \cdot \ldots \cdot x_k$ represents a geodesic path in $\text{Cayley}(B_n)$ from 1 to x.

Conjecture 1

The projection of this path to CC
(the path $c_0 \to x_1.c_0 \to x_1x_2.c_0 \to x_1x_2x_3.c_0 \to \ldots$)
is an unparametrized quasi-geodesic in CC.
The shadowing map $\pi : \text{Cayley}(B_n) \longrightarrow CC$

Look at $B_n = \text{Mod}(D_n)$, and the projection (shadowing map):

$$\pi : \text{Cayley}(B_n) \longrightarrow CC := CC(D_n)$$

vertex $x \mapsto x.c_0$

For $x \in B_n$, the normal form $x = x_1 \cdot \ldots \cdot x_k$ represents a geodesic path in $\text{Cayley}(B_n)$ from 1 to x.

Conjecture 1 Let us assume that this is true

The projection of this path to CC

(the path $c_0 \rightarrow x_1.c_0 \rightarrow x_1x_2.c_0 \rightarrow x_1x_2x_3.c_0 \rightarrow \ldots$)

is an unparametrized quasi-geodesic in CC.

Look at triangle in $\text{Cayley}(B_n)$, edge paths = normal form words

$\exists x \in B_n^+, y \in B_n^+$

Question Where are the pre-images of the quasi-center?
Look at triangle in $\text{Cayley}(B_n)$, edge paths $= \text{normal form words}$

$\forall x \in B_n^+, \quad \forall y \in B_n^+$

$\text{length} = \text{length}(x \wedge y)$

Question Where are the pre-images of the quasi-center?

Conjecture 2 This is the correct picture;
Look at triangle in $\text{Cayley}(B_n)$, edge paths = normal form words

$x \in B_n^+$, $y \in B_n^+$

$\text{length} = \text{length}(x \wedge y)$

Question Where are the pre-images of the quasi-center?

Conjecture 2 This is the correct picture; more precisely, the blue arrows are squashed in the curve complex.
Plan: construct a new space...
...where Conjectures 1 & 2 are true “by construction”

Definition: absorbable

A braid y with $\inf(y) = 0$ or $\sup(y) = 0$ is absorbable if there exists a braid x such that

$$\inf(x \cdot y) = \inf(x) \quad \text{and} \quad \sup(x \cdot y) = \sup(x)$$

Idea y adds no length and no initial Δs to x.

Example $\sigma_1^k \in B_4$ is absorbable for all k.
(Proof: absorbed by σ_3^ℓ, with $\ell \geq k$.)

Example (more surprising) $y = \sigma_2^2 \sigma_3^2 \sigma_2^2 \sigma_1 \in B_4$
absorbed by $x = \sigma_1 \sigma_2^4 \sigma_1 \sigma_2 \sigma_3$

Definition: The additional length complex $C_{AL}(B_n)$

- Take $\text{Cayley}(B_n)/\langle \Delta \rangle$
- Cone off \{ absorbable braids \}
- Transport cone everywhere in $\text{Cayley}(B_n)$ using left action
Plan: construct a new space...
...where Conjectures 1 & 2 are true “by construction”

Definition: absorbable
A braid y with $\inf(y) = 0$ or $\sup(y) = 0$ is absorbable if there exists a braid x such that

$$\inf(x \cdot y) = \inf(x) \quad \text{and} \quad \sup(x \cdot y) = \sup(x)$$

Idea y adds no length and no initial Δs to x.

Example $\sigma_1^k \in B_4$ is absorbable for all k.
 (Proof: absorbed by σ_3^ℓ, with $\ell \geq k$.)

Example (more surprising) $y = \sigma_1^2 \sigma_2^2 \sigma_3^2 \sigma_2^2 \sigma_1 \in B_4$
 absorbed by $x = \sigma_1 \sigma_2^4 \sigma_1^2 \sigma_2 \sigma_3$

Definition: The additional length complex $C_{AL}(B_n)$
- Take $\text{Cayley}(B_n)/\langle \Delta \rangle$
- Cone off $\{ \text{absorbable braids} \}$
- Transport cone everywhere in $\text{Cayley}(B_n)$ using left action
Thm: • $C_{AL}(B_n)$ is δ-hyperbolic
• Garside n.f. words are quasi-geodesics in C_{AL}

Proof: triangles with (edges $=$ Garside normal form words) are 2-thin.

Conjecture: $C_{AL}(B_n)$ quasi-isometric to $CC(D_n)$

• Easy: Lipschitz map $CC(D_n) \to C_{AL}(B_n)$
• Difficult: inverse map. Need to prove:
 $x \in B_n$ absorbable $\implies d_{CC}(c_0, x.c_0)$ bounded.

Theorem: $\exists x^* \in B_n$ s.t. $x^* \curvearrowright C_{AL}(B_n)$ lox., WPD

Proof: Construct x^*: • in left and right normal form,
• starts and ends with a single-atom-letter, and
• contains letters that are only a single atom short of being \triangle
Prove that x^* is “contracting” in the Cayley graph.

There are analogues for all this for all irreducible Artin-Tits of spherical type.
Thm: • $C_{AL}(B_n)$ is δ-hyperbolic
• Garside n.f. words are quasi-geodesics in C_{AL}

Proof: triangles with (edges = Garside normal form words) are 2-thin.

Conjecture: $C_{AL}(B_n)$ quasi-isometric to $CC(D_n)$

• Easy: Lipschitz map $CC(D_n) \to C_{AL}(B_n)$
• Difficult: inverse map. Need to prove:
 \[x \in B_n \text{ absorbable} \implies d_{CC}(c_0, x.c_0) \text{ bounded.} \]

Theorem: $\exists x^* \in B_n$ s.t. $x^* \curvearrowright C_{AL}(B_n)$ lox., WPD

Proof: Construct x^*: • in left and right normal form,
• starts and ends with a single-atom-letter, and
• contains letters that are only a single atom short of being \triangle

Prove that x^* is “contracting” in the Cayley graph.

There are analogues for all this for all irreducible Artin-Tits of spherical type.
Thm: • $C_{AL}(B_n)$ is δ-hyperbolic
• Garside n.f. words are quasi-geodesics in C_{AL}

Proof: triangles with (edges = Garside normal form words) are 2-thin.

Conjecture: $C_{AL}(B_n)$ quasi-isometric to $CC(D_n)$
• Easy: Lipschitz map $CC(D_n) \to C_{AL}(B_n)$
• Difficult: inverse map. Need to prove:
 $x \in B_n$ absorbable $\implies d_{CC}(c_0, x.c_0)$ bounded.

Theorem: \(\exists x^* \in B_n\) s.t. $x^* \bowtie C_{AL}(B_n)$ lox., WPD

Proof: Construct x^*: • in left and right normal form,
• starts and ends with a single-atom-letter, and
• contains letters that are only a single atom short of being Δ

Prove that x^* is “contracting” in the Cayley graph.

There are analogues for all this for all irreducible Artin-Tits of spherical type.
Application: genericity

Let G be an Artin-Tits group of spherical type (e.g. $G = B_n$). Let $g \in G$ be a large random element. Then

$$\mathbb{P}(g \curvearrowright C_{AL}(G) \text{ loxodromically}) \longrightarrow 1$$

Here a “large random element” is either

- the result of a long random walk in B_n, or
- a random element (with uniform probability) in a large ball with center 1 in $\text{Cay}(G)$. [S.Caruso, W]

In particular, generic braids are pseudo-Anosov.

The definition of C_{AL} is very naive!

Why not try adapting it to your favorite finitely gen. groups?
Application : genericity

Let G be an Artin-Tits group of spherical type (e.g. $G = B_n$). Let $g \in G$ be a large random element. Then

$$P(g \curvearrowright \text{CAL}(G) \text{ loxodromically}) \longrightarrow 1$$

Here a “large random element” is either

- the result of a long random walk in B_n, or
- a random element (with uniform probability) in a large ball with center 1 in $\text{Cay}(G)$. [S.Caruso, W]

In particular, generic braids are pseudo-Anosov.

The definition of CAL is very naive!

Why not try adapting it to your favorite finitely gen. groups?
1 Results

2 A crash course on the Garside theory of braids

3 Construction of C_{AL}, with motivation

4 Advertisement break

5 A bestiary of complexes
Please submit your best articles to the

Annales Henri Lebesgue

a new general mathematics journal (pure and applied)

- Very high quality (judging by the editorial board)
- Free for authors and readers
- Authors retain copyright
1 Results

2 A crash course on the Garside theory of braids

3 Construction of C_{AL}, with motivation

4 Advertisement break

5 A bestiary of complexes
Classification of Artin-Tits groups of spherical type, and their parabolic subgroups

Type	Diagram
A_n	$n \geq 2$
B_n	$n \geq 2$
D_n	$n \geq 3$
H_3	
H_4	

Notes:
- A_n, B_n, D_n, H_3, and H_4 are groups of type A, B, D, H_3, and H_4, respectively.
- E_6, E_7, E_8, F_4, and I_{2m} are other types of Artin-Tits groups.

Proposition 1.28 (Brieskorn & Saito, 1972; Deligne, 1972).

Proposition 1.29 (Brieskorn & Saito, 1972, Lemme 5.1, Théorème 7.1).

1.2.1 Subgroups paraboliques

The long the second part of this thesis we will work with specific subgroups, the parabolic subgroups, which are the algebraic analogues of the non-braided systems for braid groups.
Let G be an irreducible Artin-Tits group of spherical type.

Want

We want G to act on a δ-hyperbolic complex.

(Further goal: prove G is hierarchically hyperbolic, with the hierarchical structure given by parabolic subgroups.)

Three candidate complexes!

1. $\mathcal{C}_{COPS}(G)$ (cone off standard parabolic subgroups) = generalised arc complex δ-hyperbolic ?
 - Lipschitz, *not* quasi-isom.

2. Complex of parabolic subgroups of G $[C,G,G,M,W]$ (cone off normalisers of standard parabolic subgroups) = generalised curve complex δ-hyperbolic ?
 - Lipschitz. Conj: quasi-isom.

3. $\mathcal{C}_{AL}(G)$ (cone off absorbables) δ-hyperbolic !