RESEARCH ARTICLE

Genetic interaction of GSH metabolic pathway genes in cystic fibrosis

Fernando Augusto de Lima Marson1,2, Carmen Silvia Bertuzzo2, Rodrigo Secolin2, Antônio Fernando Ribeiro1 and José Dirceu Ribeiro1

Abstract

Background: Cystic fibrosis (CF) is a monogenic disease caused by CFTR gene mutations, with clinical expression similar to complex disease, influenced by genetic and environmental factors. Among the possible modifier genes, those associated to metabolic pathways of glutathione (GSH) have been considered as potential modulators of CF clinical severity. In this way it is of pivotal importance investigate gene polymorphisms at Glutamate-Cysteine Ligase, Catalytic Subunit (GCLC), Glutathione S-transferase Mu 1 (GSTM1), Glutathione S-transferase Theta 1 (GSTT1), and Glutathione S-transferase P1 (GSTP1), which have been associated to the GSH metabolic pathway and CF clinical severity.

Method: A total of 180 CF's patients were included in this study, which investigated polymorphisms in GCLC and GST genes (GCLC -129C>T and -3506A>G; GSTM1 and GSTT1 genes deletion, and GSTP1*+313A>G) by PCR and PCR-RFLP associating to clinical variables of CF severity, including variables of sex, clinical scores [Shwachman-Kulczycki, Kanga e Bhalla (BS)], body mass index, patient age, age for diagnosis, first clinical symptoms, first colonization by Pseudomonas aeruginosa, sputum's microorganisms, hemoglobin oxygen saturation in the blood, spirometry and comorbidities. The CFTR genotype was investigated in all patients, and the genetic interaction was performed using MDR2.0 and MDRPT0.4.7 software.

Results: The analysis of multiple genes in metabolic pathways in diseases with variable clinical expression, as CF disease, enables understanding of phenotypic diversity. Our data show evidence of interaction between the GSTM1 and GSTT1 genes deletion, and GSTP1*+313A>G polymorphism with CFTR gene mutation classes, and BS (Balance testing accuracy= 0.6824, p= 0.008), which measures the commitment of bronchopulmonary segments by tomography.

Conclusion: Polymorphisms in genes associated with metabolism of GSH act on the CF's severity.

Background

Cystic Fibrosis (CF) is a common disease in Caucasian population, with a prevalence of 1:2,500 live births [1]. CF shows an autosomal recessive pattern of inheritance [2], which is caused by mutations in Cystic Fibrosis Transmembrane Regulator (CFTR) gene. More than 1,900 mutations in CFTR gene have been associated to CF clinical severity [3-6]. However, in the pulmonary disease, which is the main cause of CF morbidity and mortality, several studies have demonstrated that clinical variability is influenced by modifier genes and environmental factors [2,7].

Most of modifier genes related to CF have been associated with chloride transportation, infection and inflammation in the lungs [2,7-10]. In our group, as previously published, multiple genes are associated with CF clinical severity, including Transforming growth factor beta 1 (TGF-β1) [11], Glutathione S-transferase Mu 1 (GSTM1), Glutathione S-transferase Theta 1 (GSTT1) [12], Angiotensin-converting enzyme (ACE) [13] and Beta-2-Adrenergic Receptor (ABDR2) [14] genes as possibly modifier genes. In the same population the mannose-binding lectin (protein C) 2 (MBL2) and monocye differentiation antigen CD14 (CD14) genes were not associated with the CF clinical severity [11].

Glutathione (GSH) is a tripeptide involved in the intracellular defense system, which protect the epithelium against injuries and inflammation, both common events of CF [15]. Polymorphisms in regulator genes of GSH metabolic pathway have been described in CF, including Glutathione S-transferase P1 (GSTP1), GSTT1, GSTM1 and Glutamate-Cysteine Ligase, Catalytic Subunit (GCLC) genes, which have been associated with greater CF clinical severity.
severity [7,12,16-23]. In the other hand, GCLC [129C>T and -3506A>G] polymorphisms gene has not been yet evaluated for pulmonary disease variability in CF.

GCLC gene encodes the catalytic subunit of glutamate-cysteine ligase (GCL) [24], which is the first limiting enzyme in the GSH synthesis [25]. Polymorphisms -129C>T and -3506A>G, located in GCLC gene promoter region, have been associated to reduced GSH production [15,25].

The Glutathione S-transferase (GST) is a family of enzymes, which associates GSH and causative compounds of oxidative stress, to a wide variety of endogenous (e.g. by-products of reactive oxygen species activity) and exogenous (e.g. polycyclic aromatic hydrocarbons) electrophilic substrates [26]. Polymorphisms in GST family genes can also be involved in CF’s severity [15,26], especially in pulmonary disease, including GSTM1, GSTTI and GSTP1 genes [15,19,20,26-28].

In our referral center, we have observed clinical variability among CF’s patients. However, the patients present similar socioeconomic status, none severe malnutrition, mutations of classes I, II and/or III, similar support of the Parents Association (www.fibrocis.org.br), and receive free medication by the government. Therefore, we postulate that clinical variability could be associated with interaction of polymorphisms in modifier genes. In this context, we aim to analyze polymorphisms in GCLC and GST genes (GCLC -129C>T and -3506A>G; GSTM1 and GSTTI genes deletion, and GSTP1*+313A>G) associating to clinical markers of CF severity.

Methods
Ascertainment of patients
It was conducted a cross-sectional study and patients were selected during the period of 2010 and 2011, in a university center for CF patients care. This study was approved by Ethics Research Board of the Faculty of Medical Sciences of University of Campinas - São Paulo – Brazil (#528/2008). The study was in accordance to the Helsinki declaration and all patients signed a consent form before beginning the study. For patients below the age of 18 the consent was granted by their parents or guardians.

Diagnosis of CF was confirmed in patients with two doses of sodium and chloride from the sweat with values greater than 60 mEq/L. In a group of patients we identified two CFTR gene mutations. No patient had received neonatal screening test performed for CF. A total of 215 patients were selected for the study. Among them, 35 patients without clinical data for statistical analysis and those who did not sign the consent form were excluded from the study, and 180 CF patients were included at the study.

Clinical variables
The following clinical variables were employed: clinical scores [Shwachman-Kulczycki (two groups: ≤ 65 and > 65), Kanga (two groups: ≤ 17 and > 17) and Bhalla (BS) (two groups: ≤ 8 and > 8)] [29]; body mass index (BMI) [for the patients older than 19 years the BMI= weight/(height)^2 formula was used; for the remaining patients the WHO ANTHRO programs (children under 5 years old) and WHO ANTHRO PLUS (children 5 - under 19 years old) [30,31] were used; patient age (group: ≤ 154 and > 154 months) and age at diagnosis (according to the sodium and chloride in altered perspiration: ≤ 25 and > 25 months); first clinical symptoms [(digestive: ≤ 4 and > 4 months; pulmonary: ≤ 7 and > 7 months)]; the period up to first colonization by Pseudomonas aeruginosa (≤ 31 and > 31 months); sputum’s microbiorganisms [P. aeruginosa mucoid and non mucoid, Achromobacter xylonyxidans, Burklerdia cepacia and Staphylococcus aureus]; hemoglobin oxygen saturation in the blood (≤ 96 and > 96); spirometry and comorbidities: nasal obstruction score [29]; Pancreatic insufficiency 80.0% (144) #; one Class I. II or III identified mutation 28.33% (51) #; Onset of digestive symptoms 3.39 ± 9.11 years (0 - 24 years)*; Onset of pulmonary symptoms 2.90 ± 9.89 years (0 - 14.23 years)*; Age at diagnosis 7.62 ± 13.63 years (0 - 24 years)*; FEV1/FVC (%) 83.46 ± 15.95 (37 - 99)*; FEV1 (%) 71.29 ± 27.47 (17 - 135)*; FVC (%) 79.29 ± 23.55 (19 - 135)*; Shwachman-Kulczycki score 65.85 ± 16.77 (20 - 95)*; Osteoporosis 16.11% (29)*; Diabetes mellitus 18.33% (33)*; Meconium ileus 15.00% (27)*; First Isolated P. aeruginosa 8.55 ± 14.65 years (0 - 15 years)*; P. aeruginosa status 56.67% (102)*; P. aeruginosa mucoid status 42.22% (76)*; B. cepacia status 13.88% (25)*; A. xylosoxidans status 10.00% (18)*; S. aureus status 78.88% (142)*

BMI body mass index, SpO2 Hemoglobin oxygen saturation in the blood, % percentage, FVC forced vital capacity, FEV1 forced expiratory volume in the first second, FEF25-75 forced expiratory flow between 25 and 75% of FVC. 2. Based on 3 Consecutive positive respiratory cultures.

* Continuous variables expressed as mean ± SD (range).
The clinical score evaluation was performed by two specialists in double-blind analyses, and in discordance case, another one was consulted. The Shwachman-Kulczycki score compares clinical manifestations among patients, detect treatment effects and aid in the determination of diagnostic criteria. To that end, the system evaluates 4 major parameters: general activity, nutrition, chest radiographic findings and physical examination. The score for each parameter ranges from 5 to 25. Lower score values are associated with CF severity [29].

Spirometry was performed in patients older than 7 years, using the CPFS/D spirometer (MedGraphics, Saint Paul, Minnesota, USA). Data was recorded by the PF BREEZE software version 3.8B for Windows 95/98/NT [32] and the following markers were included: forced

Table 2 Genotypic characteristic of gene polymorphisms at GCLC, GSTM1, GSTT1, and GSTP1 genes and CFTR gene mutation among cystic fibrosis patients
Gene

GCLC, rs17883901
GCLC, rs137852340
GSTP1, rs1695
GSTM1
GSTT1

CFTR mutation genotype	N	Frequency
F508del/F508del	57	31.67%
F508del/G542X	12	6.67%
F508del/R1162X	5	2.78%
F508del/N1303K	4	2.22%
F508del/R553X	1	0.56%
F508del/S4X	1	0.56%
F508del/1717-1G>A	1	0.56%
G542X/R1162X	1	0.56%
G542X/I618T	1	0.56%
G542X/2183A>G	1	0.56%
R1162X/R1162X	1	0.56%
F508del/-	45	25.00%
G542X/-	5	2.78%
R1162X/-	1	0.56%
-/-	44	24.45%

GCLC glutamate-cysteine ligase catalytic subunit, GSTM1 Glutathione S-transferase Mu 1, GSTT1 Glutathione S-transferase theta 1, GSTP1 Glutathione S-transferase P1, CFTR Cystic fibrosis transmembrane conductance regulator, C Cytosine, T Thymine, A Adenine, G Guanine, < minor than, > bigger than, MAF minor allele frequency, % percentage, *p value for Hardy-Weinberg Equilibrium, N number of patients, Wt Wild allele, del deleted allele, (-) CFTR mutation no identified.

1- GCLC, rs17883901 is not in Hardy-Weinberg Equilibrium in our sample.
vital capacity [FVC(%) ≤ 82 and > 82], forced expiratory volume in the first second [FEV₁(%) ≤ 72 and > 72], FEV₁/FVC(%) ≤ 86 and > 86] and forced expiratory flow between 25 and 75% of the FVC [FEF₂₅₋₇₅(%) ≤ 57 and > 57].

DNA extraction and polymorphisms genotyping

DNA sample was obtained from peripheral blood using phenol-chloroform standard procedure. In order to evaluate DNA concentration, we quantified the entire sample using GE NanoVue™ Spectrophotometer (GE Healthcare Biosciences, Pittsburgh, USA).

The **CFTR** gene mutations were investigated by PCR technique (F508del) and the restriction fragment length polymorphism (RFLP) method (G542X, R1162X, R553X, G551D and N1303K). Some mutations in CF patients were obtained by sequencing or MLPA (Multiplex Ligation-dependent Probe Amplification) analysis: S4X, 2183A>G, 1717-G>A and I618T. For sequencing and MLPA, we used the same MegaBace1000^®^ (GE Healthcare Biosciences, Pittsburgh, USA) [33]. The **CFTR** genotype separated the patients in 3 groups: (1) patients with two mutations identified classes I, II and/or III, (2) patients with one mutations identified classes I, II or III, (3) patients with no identified mutation. All mutations identified were included in the class one, two or three of the **CFTR** gene. Other identified mutations, class IV (P205S e R334W) were not included in the statistical analysis.

For the GSTM1 and GSTT1 genes deletion, a multiplex PCR reaction was performed and the CYPIIA1

Clinical variables	Gene	Ratio	Testing ball. acc.	p-value	Cross validation consistency
Male/female	CFTR-GSTP1*GSTT1*GSTM1	1	0.5056	0.8906	10/10
Race (caucasian/ no caucasian)	CFTR-GSTP1*GSTT1*GSTM1	0.0909	0.3909	0.9915	10/10
Age	CFTR-GSTP1*GSTT1*GSTM1	0.9889	0.5312	0.6870	10/10
Age for diagnosis	CFTR-GSTP1*GSTT1*GSTM1	0.8804	0.4100	0.9898	10/10
Onset of symptoms	CFTR-GSTP1*GSTT1*GSTM1	0.7526	0.4286	0.9945	10/10
Clinical scores					
Bhalla	CFTR-GSTP1*GSTT1*GSTM1	0.9552	0.6824	0.0080⁎	10/10
Kanga	CFTR-GSTP1*GSTT1*GSTM1	0.9571	0.5131	0.8165	10/10
Shwachman-Kulczycki	CFTR-GSTP1*GSTT1*GSTM1	0.9	0.5562	0.5474	10/10
Body mass index	CFTR-GSTP1*GSTT1*GSTM1	3.45	0.5484	0.6260	10/10
Sputum’s microbiology	CFTR-GSTP1*GSTT1*GSTM1	0.1118	0.4617	0.9418	10/10
A. xylosidans	CFTR-GSTP1*GSTT1*GSTM1	0.7379	0.5050	0.5507	10/10
P. aeruginosa mucoid	CFTR-GSTP1*GSTT1*GSTM1	1.2949	0.4151	0.9951	10/10
S. aureus	CFTR-GSTP1*GSTT1*GSTM1	3.7105	0.5094	0.8317	6/10
B. cepacia	CFTR-GSTP1*GSTT1*GSTM1	0.1548	0.5277	0.7610	10/10
First isolated P. aeruginosa	CFTR-GSTP1*GSTT1*GSTM1	0.9552	0.4913	0.8903	7/10
Hemoglobin oxygen saturation in the blood	CFTR-GSTP1*GSTT1*GSTM1	0.9602	0.5312	0.6904	10/10
Spirometry	CFTR-GSTP1*GSTT1*GSTM1	0.0848	0.4746	0.9448	10/10
FEV₁	CFTR-GSTP1*GSTT1*GSTM1	0.9000	0.4437	0.9833	10/10
FVC(%)	CFTR-GSTP1*GSTT1*GSTM1	0.9403	0.6426	0.0586	10/10
FEV₁/FVC(%)	CFTR-GSTP1*GSTT1*GSTM1	0.9845	0.5054	0.8447	10/10
Comorbidities					
Pancreatic insufficiency	CFTR-GSTP1*GSTT1*GSTM1	3.977	0.5266	0.7486	10/10
Meconium ileus	CFTR-GSTP1*GSTT1*GSTM1	0.1776	0.5401	0.6950	10/10
Nasal polyps	CFTR-GSTP1*GSTT1*GSTM1	0.2292	0.5713	0.5139	10/10
Diabetes mellitus	CFTR-GSTP1*GSTT1*GSTM1	0.2292	0.4527	0.9728	10/10
Osteoporosis	CFTR-GSTP1*GSTT1*GSTM1	0.1959	0.3815	0.9988	10/10

GCLC glutamate-cysteine ligase catalytic subunit, GST glutathione S-transferase, Testing Ball. Acc. Testing Balance Accuracy, CFTR Cystic Fibrosis Transmembrane Regulator, A. xylosidans Achromobacter xylosidans, B. cepacia Burkholderia cepacia, P. aeruginosa Pseudomonas aeruginosa, S. aureus Staphylococcus aures, FVE forced expiratory volume in one second, FVC - forced vital capacity, FEF₂₅₋₇₅(%) forced expiratory flow between 25 and 75% of FVC. 1. **statistical test** for polymorphism: allele T, GCLC 129C>T polymorphism, allele G - GCLC 350A>G and GSTP1+313A>G polymorphisms, deletion allele GSTM1 and GSTT1 genes. # Association of GCLC-129C>T, GCLC-350A>G, GSTP1+313A>G, GSTM1 and GSTT1 genes deletion and mutations in the CFTR gene with the Bhalla Score, p: 0.0080. Statistical analysis performed by the MDR2.0 and MDRPTD:4.7 software.
gene was included as an internal reaction control [34]. In the assay tests for the wild type allele, the samples for which no signal is obtained are homozygous for the deletion. Heterozygotes and homozygotes for the wild-type allele cannot be differentiated by the multiplex technique used. As GSTM1 and GSTT1 deletion analyze not provide complete genotypes, minor allele frequencies and Hardy-Weinberg Equilibrium cannot be evaluated for these loci in our study. By the method realized we have two groups of GSTM1 and GSTT1 gene: (i) patients homozygous to gene deletion; (2) patients with at least an allele expressed. The RFLP was performed for polymorphisms GCLC*129C>T, GCLC*-3506A>G [10,15] and GSTPI*+313A>G [28].

Other genes were studied in the same CF reference center with same population as previously published [11,13,14]. The GSTM1 and GSTT1 genes were studied in our center considering other CF patients as recent published data showed [12]. The patient's studies by Lima et al. (2012) [12] did not include the same CF patients, and in the previously study, only the follow clinical variables were employed: age, sex, ethnic and Shwachman-Kulczycki.

Statistical analysis
To develop statistical analyses, patients were divided into two subgroups according to clinical variables distribution. We evaluate minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE) using OEGE software (Online Encyclopedia for Genetic Epidemiology studies, 2008). In order to evaluate genetic interaction among the polymorphisms in our sample, we used the Multifactor Dimensionality Reduction (MDR) model, which is a nonparametric and genetic model-free data mining for nonlinear interaction identification among genetic and environmental attributes [35-37]. To adjust results for multiple comparisons, we performed a MDR permutation test in our sample, totaling 100,000 permutations.

Results and discussion
The CF is a disease with a high phenotypic variability, resulting from the interaction between genetic and environmental factors, which could affect differential expression between patients with similar CFTR gene mutations [2]. Despite CF’s severity is difficult to characterize, we describe 28 clinical variables (Table 1), consistent with the phenotype feature of the disease.

Analyses of GCLC, GSTM1, GSTT1, and GSTP1 genes polymorphism is shown in Table 2. The CFTR mutation showed two different mutations in 85 (47.22%) CF patients; only one mutation in 51 (28.33%) CF patients and none mutation in 44 (24.44%) CF patients (Table 2).

The polymorphism GCLC-129C>T is not in Hardy-Weinberg equilibrium. The MAF observed in present data is 0.012, and the data achieved at National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/), by HapMap project, shows a MAF of 0.076. The observed difference can be a strong factor to consider the
polymorphism as an important modifier of CF severity, but we did not find in our data genotype-phenotype-association. Maybe, with a bigger population and other clinical variables can be possible to determine the polymorphism influence. Another factor should be considered that is the Brazilian population is an admixture population, what can provide changes in the clinical associations.

The MDR analysis showed evidence of interaction of GSTM1 and GSTT1 genes deletion, GSTP1*+313A>G, and CFTR mutations (p= 0.008) and BS clinical score (Table 3). All data was previously associated with a point-point analysis considering which gene polymorphism in association with one clinical manifestation at a time by CFTR groups, and after Bonferroni correction, we did not observed positives p-value

Figure 2 Dendrogram and graph of entropy with the genes interaction and their polymorphisms in response to Bhalla score.

A. Dendrogram with the genes interaction and their polymorphisms in response to Bhalla score (BS). The stronger interaction of response to Bhalla clinical score is given by CFTR mutations and GSTM1 and GSTT1 genes deletion. Secondly, the polymorphism GSTP1*+313A>G was associated with the clinical variable. Polymorphisms GCLC*-129C>T and GCLC*-350A>G were not associated with the BS. B. Graph of entropy measuring the power of different genotypes and the interaction between them, for the genes analyzed in the gene-gene interaction with BS. The CFTR mutation gene, GSTP1*+313A>G and GSTM1 and GSTT1 deletion polymorphisms showed significant association with BS. The CFTR mutation showed influence of 3.38% for BS, the GSTM1 and GSTT1 deletion together, showed 2.82% of influence, while the GSTP1*+313A>G showed influence of 0.5%. The CFTR mutation showed a value of 4.15% for the interaction between the deletion polymorphism with GSTM1 and GSTT1 genes and 3.57% for the association with GSTP1*+313A>G. The dendrogram construction was performed by the software MDR2.0. The analysis included 180 Cystic Fibrosis patients. # Association of GCLC-129C>T, GCLC-350A>G, GSTP1+313A>G, GSTM1 and GSTT1 genes deletion and CFTR mutations with the BS show a p-value of 0.0080. CFTR - Cystic Fibrosis Transmembrane Regulator; GCLC - glutamate-cysteine ligase, catalytic subunit; GSTP1 - glutathione S-transferase P1; GSTM1 - glutathione S-transferase M1; GSTT1 - glutathione S-transferase T1. The power of interaction is show by the distance between the two genes on the figure A in horizontal direction. The redundancy/synergy power is show in the figure B by the color intensity.
(Additional file 1: Table S4, Additional file 2: Table S5, Additional file 3: Table S6, Additional file 4: Table S7, Additional file 5: Table S8). In this context, the data by gene-gene interaction provides a better tool to contribute in the clinical manifestation association. The association observed cannot identify if those patients who carry risk alleles at all four loci will have the most severe clinical phenotype reflected by the BS.

Genotype combinations of the genes that show association with BS clinical score are demonstrated in Figure 1. The largest association regarding to BS clinical response was given by the interaction of GSTM1 and GSTT1 genes deletion, and CFTR mutations. The polymorphism GSTPI*T313A>G presented entropy with BS clinical score, but with minor intensity (Figure 2).

In the study, different clinical markers were analyzed and the association has found with BS clinical score. The BS clinical score is a computed tomography, which measures pulmonary involvement, therapeutic effects and selection of patients for transplantation, which detects anatomical changes of the lung parenchyma [29,38,39]. The BS has low variation between examiners, good reproducibility, high sensitivity and specificity, and high correlation with pulmonary function test [29]. Values obtained in the BS can predict severity associated with deterioration of the structure of the lung parenchyma, which later in clinical evolution can be observed by other variables such as BMI and lung function.

The most important cause of mortality and morbidity is the increase of oxidizing reactions; in this way, understand the mechanisms associated with this process is important to the clinical dynamics of the disease and to comprehend the mechanisms by which the disease shows a variability in its severity among patients with similar CFTR genotype. The association of clinical, laboratory, and genetic markers, such as modifier genes, with CF's severity can provide better understanding of clinical variability finding among these patients being important in the clinical prognosis. In addition, further studies should be developed to investigate the possibility to use products related to GSH pathway as a possible target of new drugs to CF and also to understand the oxidative process which takes place in the lungs of these patients.

Conclusion

The described results with the support of the MDR analysis tool demonstrated a genetic interaction of CF severity with the BS, and gene polymorphisms related to GSH pathway, showing that the BS is an important marker of CF severity, since it indicates early pulmonary disease, and contribute to determine patients of a risk group without the search of other clinical and laboratory markers. In this context, polymorphisms in genes associated with metabolism of GSH act on the CF's severity.

Additional files

- **Additional file 1**: Table S4. GCLC-129C>T polymorphism in GCLC gene in association with clinical variables in cystic fibrosis patients distributed by CFTR mutation.
- **Additional file 2**: Table S5. GCLC-3506A>G polymorphism in GCLC gene in association with clinical variables in cystic fibrosis patients distributed by CFTR mutation.
- **Additional file 3**: Table S6. The GSTM1 gene deletion polymorphism in association with clinical variables in cystic fibrosis patients distributed by CFTR mutation.
- **Additional file 4**: Table S7. The GSTT1 gene deletion polymorphism in association with clinical variables in cystic fibrosis patients distributed by CFTR mutation.
- **Additional file 5**: Table S8. The GSTP1*313A>G polymorphism in GSTP1 gene in association with clinical variables in cystic fibrosis patients distributed by CFTR mutation.

Abbreviations

ACE: Angiotensin-converting enzyme; ADH2: Beta-2-adrenergic receptor; BMI: Body mass index; BS: Balsa score; CD14: Cluster of differentiation 14; CF: Cystic fibrosis; CFTR: Cystic fibrosis transmembrane regulator; CYP1A1: Cytochrome P450, family 1, subfamily A, polypeptide 1; DNA: Deoxyribonucleic acid; FEF25-75%: Forced expiratory flow between 25% and 75% of FVC; FEV1: Forced expiratory volume; FVC: Forced vital capacity; GCLC: Glutathione cysteine ligase, subunit catalytic; GSH: Glutathione; GSTM1: Glutathione S-transferase Mu 1; GSTP1: Glutathione S-transferase Pi 1; GSTT1: Glutathione S-transferase Theta 1; HWE: Hardy-Weinberg equilibrium; MAF: Minor allele frequency; MBL2: Mannose-binding Lectin-2; MDR: Multifactor dimensionality reduction; MLPA: Multiplex ligation-dependent probe amplification; OGE: Online encyclopedia for genetic epidemiology; PCR: Polymerase chain reaction; RFLP: Restriction fragment length polymorphisms; TGF-β1: Transforming growth factor Beta-1; WHO: World Health Organization.

Competing interests

Authors declare that they have no competing interests.

Authors’ contributions

PALM made substantial contributions to conception and design, acquisition of data, analysis and interpretation data included in this study; involved in drafting the manuscript and revising it for critically important intellectual content. CSB: carried out the molecular genetic studies and drafted the manuscript. AFR: has been involved in drafting the manuscript and revising it critically for important intellectual content. RS: carried out analyses and data interpretation included in this study; involved in drafting the manuscript and revising it for critically important intellectual content. All authors read and approved the final manuscript.

Acknowledgments

Authors are grateful to Tais Daiane Russo Hortencio, Luciana Cardoso Bonadia, Kátia Cristina Alberto Aquiar, Aline Gonçalves and Simoni Avanissi for the assistance in data collection and organization of ideas, and to Maria Angela Ribeiro for spirometry analysis. We thank Professor Dr. Frauke Stanke and Professor Dr. Marilda de Souza Gonçalves to all corrections and contributions to this manuscript. We thank www.laboratoriomultusuario.com.br and LAFIP/CIPED to help in the search. Funding Source: Fapesp.

Received: 13 August 2012 Accepted: 7 June 2013
Published: 10 June 2013

References

1. CFF – Cystic Fibrosis Foundation; 2012. www.cff.org. Access: 12.05.2012.
2. Drumm ML, Zidady AG, Davis PB: Genetic variation and clinical heterogeneity in cystic fibrosis. Annu Rev Pathol 2012, 7:367–282.
3. Kerem BS, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science 1989, 245:1073–1080.

4. Rordran JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Giege M, Jordanian M, Ricardovik J, Macek M Jr, Radojkovic D, Ballmann M, Greipel J, Casmimn JJ, Wisnork TF, Tümmler B. Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. J Med Genet 2011, 48:124–31.

5. Rommens JM, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G, Dean M, Bradley L, Eversole CA, Tsui LC, Collins FS. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989, 245:1059–1065.

6. Cystic Fibrosis Genetic Analysis Consortium – CFTR. The cystic fibrosis mutation database. 2012, http://www.genet.sickkids.ca/cftr. Access: 06/03/2012.

7. Stanke F, Becker T, Kumar V, Hedtfeld S, Becker C, Møller S, Dean M, Rosenhale R, Giege M, Jordanian M, Ballmann M, Rordran JR, Tsui LC, Collins FS. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989, 245:1059–1065.

8. Feuillet-Fieux MN, Nguyen-Khoa T, Loriot MA, Kelly M, de Villartay P, Sermet I, Gévaudeau E, Bouchard DP, Carbone C, Ailhaud G, Combes M, et al. Contribution of genetic factors other than MBL2 gene polymorphism as a modulator of severity of cystic fibrosis. J Bras Pneumol 2012, 38(1):50–56.

9. Davies JC, Griesenbach U, Alton E. Modifier genes in cystic fibrosis. Pediatr Pulmonol 2005, 39(5):383–391.

10. Davies JC, Griesenbach U, Alton E. Modifier genes in cystic fibrosis. Pediatr Pulmonol 2005, 39(5):383–391.

11. Faria EJ, Faria IC, Ribeiro JD, Ribeiro AF, Hessel G, Bertuzzo CS: http://www.biomedcentral.com/1471-2350/14/60

12. Penninat A, Auffray JC, Bjomson J, Haagte P, Rothmann N, Chatterjee N. Power of data mining methods to detect genetic associations and polymorphism. Cystic Fibrosis – J Cyst Fibros 2008, 7:72–78.

13. Marson FA, Bertuzzo CS, Hortencio TD, Ribeiro JD, Bonadia LC, Ribeiro AF: Gene D/I polymorphism as a modulator of severity of cystic fibrosis. J Bras Pneumol 2008, 34(4):334–342.

14. Henrion-Caude A, Flamant C, Roussey M, Housset C, Flahault A, Fryer AA, Marson FA, Bertuzzo CS, Ribeiro JD: Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997, 18(4):641–644.

15. Liu S, Li B, Zhou Y, Zhong N, Ran P: Association of polymorphism in glutamate-Cysteine-Ligase gene are associated with cystic fibrosis lung disease. J Bras Pneumol 2009, 35(2):85–92.

16. Liu S, Li B, Zhou Y, Zhong N, Ran P: Genetic analysis of OGG1 and CD14 gene polymorphisms with lung disease severity in cystic fibrosis. J Bras Pneumol 2009, 35(4):334–342.

17. Lima CS, Ortega MM, Marson FA, Zulli R, Ribeiro AF, Bertuzzo CS. Cystic fibrosis transmembrane conductance regulator gene mutations and glutathione S-transferase null genotypes in cystic fibrosis patients in Brazil. J Bras Pneumol 2012, 38(1):50–56.

18. Marson FA, Bertuzzo CS, Hortencio TD, Ribeiro JD, Bonadia LC, Ribeiro AF: The ACE gene D/A polymorphism as a modulator of severity of cystic fibrosis. BMC Pulm Med 2012, 12:81–42.

19. Marson FA, Bertuzzo CS, Ribeiro AF, Ribeiro JD: Polymorphisms in ADHB2 gene can modulate the response to bronchodilators and the severity of cystic fibrosis. BMC Pulm Med 2012, 5:110. doi:10.1186/1471-2350-14-60

20. Martinez F, Llorente J, Ochoa I, Martin A, Cenarro S, Martin J, Contreras J, et al. A multiplex PCR procedure for polymorphic analysis of GSTM1 e GSTT1 genes in population studies. Cancer Lett 1996, 107(2):229–233.

21. Hanf LW, Ritchie MO, Jr. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19(3):376–382.

22. Ritchie MO, Hanf LW, Jr. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 2002, 24(4):150–157.

23. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006, 241(3):252–261.

24. Hoh J, K¨allberg P, Caribbio CC, Kabasakal, P, Boscaro S, Garcia-Esparriza E, Cystic fibrosis in images: the Bhalla scoring system for computed tomography in paediatric patients. Radiology 2012, 254(3):360–268.

25. Bhalla M, Turcios N, Aponite V, Jenkins M, Leitman BS, McCaulley DI, Naichl DP. Cystic fibrosis: scoring system with thin-section CT. Radiology 1991, 179(3):783–788.

26. Strange RP, Spiteri MA, Ramachandran S, Fryer AA: Glutathione-S-transferase family of enzymes. Mutat Res 2001, 482:1–2216.

27. Amorim LM, Rosini A, Mendonca G, Lottchi P, Simao TA, Gallo CM, Pinto L: CYP1A1, GSTM1, and GSTT1 polymorphisms and breast cancer risk in Brazilian women. Cancer Lett 2002, 181(2):79–186.

28. Harries LW, Stubbs MI, Forman D, Howard GCW, Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997, 18(4):641–644.

29. Santos CS, Ribeiro JD, Ribeiro AF, Hessel G. Critical analysis of scoring systems used in the assessment of Cystic Fibrosis severity: state of the art. J Bras Pneumol 2004, 30(3):286–298.

30. MWD: Antro [programa de computador]. Version 3.0.1. Geneva: WORLD HEALTH ORGANIZATION 2006.

31. WHO: AntroPLUS [programa de computador]. Version 1.02. Geneva: WORLD HEALTH ORGANIZATION 2007.

32. American Thoracic Society (ATS); 2012. http://www.thoracic.org/. Access: 03/04/2012.

33. Bonadia LC. Correlation entre aspectos clinicos, moleculares e fisiologicos de pacientes adultos com hipose diagnostic de fibrose cistic de um centro de referencia no Brasil. Phd thesis. Brazil, State University of Campinas, PhD Thesis: University of Campinas, Department of Genetics; 2011.

34. Abdel-Rahman SZ, El-Zein RA, Anwar UW, Aww WW: A multiplex PCR procedure for polymorphic analysis of GSTM1 e GSTT1 genes in population studies. Cancer Lett 1996, 107(2):229–233.

35. Hanf LW, Ritchie MO, Jr. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19(3):376–382.

36. Ritchie MO, Hanf LW, Jr. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 2002, 24(4):150–157.

37. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006, 241(3):252–261.

38. Albi G, Bayon-Alejo JC, Caballero P, Rosado P, Garcia-Esparriza E: Cystic fibrosis in images: the Bhalla scoring system for computed tomography in paediatric patients. Radiology 2012, 254(3):360–268.

39. Bhalla M, Turcios N, Aponite V, Jenkins M, Leitman BS, McCaulley DI, Naidich DP. Cystic fibrosis: scoring system with thin-section CT. Radiology 1991, 179(3):783–788.