Search for excited quarks of light and heavy flavor in $\gamma + \text{jet}$ final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search is presented for excited quarks of light and heavy flavor that decay to $\gamma + \text{jet}$ final states. The analysis is based on data corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s} = 13$ TeV at the LHC. A signal would appear as a resonant contribution to the invariant mass spectrum of the $\gamma + \text{jet}$ system, above the background expected from standard model processes. No resonant excess is found, and upper limits are set on the product of the excited quark cross section and its branching fraction as a function of its mass. These are the most stringent limits to date in the $\gamma + \text{jet}$ final state, and exclude excited light quarks with masses below 5.5 TeV and excited b quarks with masses below 1.8 TeV, assuming standard model like coupling strengths.

Published in Physics Letters B as doi:10.1016/j.physletb.2018.04.007.
1 Introduction

High energy proton-proton collisions resulting in a photon and a jet with large transverse momenta (p_T) provide a powerful means of searching for new physics. For example, models involving compositeness [1–3] predict excited states of quarks that can be identified by searching for events that contain a photon and a jet from their decays. We present a search for excited states of light (u,d) and heavy (b) quarks using this decay signature.

We assume that the coupling between the excited quark (q^*), the ordinary quarks, and gauge bosons proceeds through a gauge-invariant magnetic-moment operator, described by the effective Lagrangian [4]:

$$L_{\text{int}} = \frac{1}{2\Lambda} q^*_R \sigma^{\mu\nu} \left[g s f \frac{\lambda_a}{2} G_{\mu\nu} + g f \tau \frac{\tau^a}{2} W_{\mu\nu} + g' f' Y \frac{1}{2} B_{\mu\nu} \right] q_L + \text{h.c.},$$

where q^*_R is the right-handed excited quark field; $\sigma^{\mu\nu}$ the Pauli spin matrix; q_L the left-handed quark field; $G_{\mu\nu}$, $W_{\mu\nu}$, and $B_{\mu\nu}$ are the field tensors of the SU(3), SU(2), and U(1) gauge fields respectively; λ_a, τ, and Y are the corresponding gauge structure constants, and g_s, g, and g' are the gauge couplings. The compositeness scale Λ is the energy scale typical for these interactions. The quantities f_s, f, and f' are unknown dimensionless constants that represent the strengths of the excited quark couplings to the standard model (SM) partners. Their values are determined by the compositeness dynamics, and are usually assumed to be of order unity.

In pp collisions, excited quarks are expected to be produced predominantly through quark-gluon fusion (qg), and then decay into a quark and a gauge boson (g, W, Z, γ). Searches have been performed in different channels [5–12], but no evidence for the existence of excited quarks has yet been found. This analysis looks for evidence of $qg \rightarrow q^* \rightarrow q\gamma$ (where q represents u or d) and $bg \rightarrow b^* \rightarrow b\gamma$ production by searching for resonances in γ + jet final states. The signal model includes excited quarks with spin-$1/2$, and assumes a compositeness scale that equals the mass of the resonance (m_{Res}). An assumption is also made that f_s, f, and f' have identical values [3, 4] and henceforth these will be referred to collectively as f. The data correspond to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment in pp collisions at $\sqrt{s} = 13$ TeV at the CERN LHC, in 2016.

A final state with a photon and a jet is produced in the SM mainly through qg → $q\gamma$, qg → $g\gamma$, gg → $g\gamma$, multijet, and W/Z+γ processes. Among these, the main irreducible backgrounds are quark-gluon Compton scattering (qg → $q\gamma$) and quark-antiquark annihilation ($q\bar{q} \rightarrow g\gamma$). Although the probability for a jet to be reconstructed as a photon is $\approx 10^{-4}$ to 10^{-3}, the cross section for multijet production is two to three orders of magnitude larger than that for the irreducible backgrounds, depending on the p_T of the jet [13], making jet misidentification the second-largest source of background. Electroweak production of W/Z+γ, where the W or Z boson decays to a pair of quark jets, contributes a very small fraction of the background due to its small production cross section.

This Letter provides a brief description of the CMS detector in Section 2. The main strategy used in selecting the events is discussed in Section 3. Section 4 contains information about signal and background models, while Section 5 lists the systematic uncertainties estimated in this analysis. The results of the study are presented in Section 6 and summarized in Section 7.
2 The CMS detector

The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The very forward regions of the detector near the beam line is covered by the forward calorimeters. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range. The remaining barrel photons have a resolution of about 1.3% up to pseudorapidity $|\eta| = 1$ rising to about 2.5% at $|\eta| = 1.4$ \[13\], where η is defined as $-\ln(\tan(\theta/2))$, θ being the polar angle of the cylindrical coordinates of the CMS detector. In the endcaps, the resolution of unconverted or late-converting photons is about 2.5%, while the remaining endcap photons have a resolution between 3–4%. When combining information from the entire detector, the jet energy resolution is typically around 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in \[14\].

The CMS experiment selects physics events using a two-tier trigger system, a hardware-based level-1 (L1) and a software-based high-level trigger (HLT). The L1 trigger selects events of interest using information from the calorimeters and the muon system only, and reduces the readout rate from the bunch crossing frequency of 40 MHz to below 100 kHz. The HLT system further decreases this rate to an average of a few 100 Hz to a maximum of 1 kHz. The events selected by the HLT are then reconstructed offline and used for analysis.

3 Event selection

Events are analyzed using a particle-flow (PF) algorithm \[15\], which reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects \[13\]. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

The jets in each event are formed mainly from photons, charged, and neutral hadrons using the infrared- and collinear-safe anti-k_T algorithm \[16\], with distance parameter $\Delta R = 0.4$ where $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$, $\Delta\eta$ and $\Delta\phi$ being the pseudorapidity and azimuthal angle (in radians) difference between the jet axis and its constituents. Jet momenta and energies are corrected to establish a uniform calorimetric response in η and an absolute response in p_T at the particle level using calibration constants \[17\] obtained from simulation, test beam results, and pp collision data at $\sqrt{s} = 13$ TeV.

The data sample used in this analysis consists of events that are selected by a photon trigger having a p_T^γ threshold of 165 GeV and an additional condition on the ratio of the photon energy
deposited in the HCAL to that in the ECAL (H/E), which is required to be less than 10%. The efficiency of the trigger used in the study has been evaluated separately using samples collected with photon, muon, or jet triggers to account for possible biases in trigger selection. The trigger efficiencies measured in these samples are greater than 95% for \(p_T^\gamma > 200 \text{ GeV} \), as measured offline.

In the offline selection, each event is required to have at least one reconstructed primary vertex with at least four associated tracks, and lie within 24 cm along the \(z \) direction and within 2 cm in the transverse plane, from the nominal collision point. The reconstructed vertex with the largest value of summed physics-object \(p_T^2 \) is taken as the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [16, 18] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the \(p_T \) of those jets.

The photon identification [13] is based on requirements on H/E and shower profile of the photon. The photon is isolated from identified electrons in the detector by requiring the absence of hits in the inner tracker layers near the photon direction. The photon is also required to be well isolated from other photons and hadrons within a cone of \(\Delta R = 0.3 \) around its axis. The photon must have \(p_T^\gamma > 200 \text{ GeV} \) and lie in the central barrel region (\(|\eta| < 1.4442 \)). Among the photons passing the above criteria in each event, the one with the highest \(p_T \) is selected to reconstruct the mass of the photon+jet system in the event. The isolation quantities are corrected for effects from overlapping pp interactions (pileup) in the same or adjacent bunch crossings, by subtracting the energy calculated from the mean energy density in the event, as computed using the FASTJET package [18]. The photon identification and isolation criteria used in this analysis lead to a signal efficiency of \(\sim 80\% \) with an estimated background rejection of \(\sim 90\% \).

In order to be combined with a photon to form a resonance candidate, the selected jet must be separated from the chosen photon candidate by \(\Delta R > 0.5 \) and satisfy the tight jet identification criteria [19]. The jet identification criteria comprise requirements on the number of constituents, and on the fraction of jet energy carried by each constituent type. The jet is required to be within the region \(|\eta|^{\text{jet}} < 2.4 \) and must have \(p_T^{\text{jet}} > 170 \text{ GeV} \). The angular separation between the selected photon and jet is restricted by applying a requirement of \(\Delta \eta (\gamma, \text{jet}) < 1.5 \). This selection removes a large fraction of the multijet background coming from non-isolated \(\pi^0 \)s, without rejecting signal events, and thus enhances the signal-over-background ratio. If more than one jet candidate is present in the event, the jet with the highest \(p_T \) is used in the analysis. The selected events form the “inclusive category” for the search of light excited quarks.

Jets originating from b quarks are identified using the combined secondary vertex v2 algorithm (CSVv2) [20, 21]. The algorithm combines the information from the primary vertex, impact parameters, and secondary vertices within the jet using a neural network discriminator. The loose working point used in the analysis has \(\sim 81\% \) b jet selection efficiency, \(\sim 10\% \) misidentification rate for light-quark and gluon jets, and \(\sim 40\% \) misidentification rate for c quark jets [20]. Depending on the outcome of the CSVv2 algorithm, a jet is tagged either as a b jet or a non b jet candidate. According to this tagging, for the \(\text{b}^* \) analysis, the events are classified into “1b tag” and “0b tag” categories, corresponding to the selections with b jets and without b jets respectively. Since the \(\text{b}^* \) acceptance falls off slightly for 1b tag category at higher masses (Fig. [1]), the sensitivity of the search is improved by including the results from 0b tag category in the \(\text{b}^* \) limit computation.

The above selection criteria are optimized for the best expected 95% confidence level (CL) limits on the cross section versus mass of \(q^* \) and \(\text{b}^* \).
The efficiencies for assigning events to the 1b tag and 0b tag categories, determined from the Monte Carlo (MC) simulation, are corrected using b tag scale factors (SFs), to take into account the observed differences between the b tagging efficiency of the CSVv2 tagger applied to data and to MC simulation. The SFs are defined as $\epsilon_{\text{data}} / \epsilon_{\text{MC}}$, where ϵ_{data} and ϵ_{MC} correspond to the b tagging efficiencies of the CSVv2 algorithms in data and MC simulation, respectively. These SFs have been measured using the techniques described in [20].

The invariant mass of the selected $\gamma + \text{jet}$ ($\gamma + b$ jet) system is required to be $m_{\gamma+\text{jet}} > 700$ GeV, to avoid the turn-on region due to the requirements imposed on the kinematic properties of the trigger objects. Fig. 1 shows the total selection and reconstruction efficiency times acceptance for $q^* \rightarrow q\gamma$ and $b^* \rightarrow b\gamma$ processes. The acceptance times efficiency for the 1b tag category decreases with increasing mass owing to the decrease in the efficiency of the track reconstruction and the resolution of the reconstructed track parameters with increasing p_T of the jet.

4 Modeling signal and background

The signal samples for q^* and b^* are simulated at leading order (LO) with the PYTHIA 8.212 event generator [22] for $f = 1.0$, 0.5 and 0.1 at different resonance masses in the range from 1 to 7 TeV at intervals of 1 TeV and from 1 to 5 TeV at intervals of 0.5 TeV, respectively. The generated events are processed through a full CMS detector simulation based on GEANT4 [23]. The simulation uses the CUETP8M1 underlying event tune [24, 25], a renormalization and factorization scale corresponding to $\mu = p_T$ for the hard-scattered partons, and NNPDF2.3LO parton distribution functions (PDFs) [26]. The natural width of the resonance, at parton level, can be approximated as $\Gamma \sim 0.03 f^2 m_{\text{Res}}$ [3]. The production cross section is also proportional to f^2. The signals for intermediate mass points are interpolated at intervals of 50 GeV.

The MadGraph5_aMC@NLO v2.2.2 program [27] has been used to generate the $\gamma + \text{jet}$ and $W/Z+\gamma$ background MC samples at LO, with the showering and hadronization carried out by the PYTHIA 8.212 program. A double counting of the partons generated with MADGRAPH and those with PYTHIA is removed using the MLM [28] matching scheme. The multijet MC events are generated using PYTHIA 8.212 event generator. The same event reconstruction is
employed in data and MC simulations. However, the background is evaluated from data, and
the MC simulation is used only for the optimization of the event selection. The invariant mass
distribution of the SM \(\gamma + \text{jet}\) background falls smoothly and can be described by an analytic
function.

The inclusive invariant mass distribution and the distributions for 1b tag and 0b tag categories,
expressed in TeV, are shown in Figs. 2 and 3, respectively. The binning is chosen to have a bin
width approximately equal to the expected \(\gamma + \text{jet}\) mass resolution, which varies from about
4.5\% at a mass of 1 TeV to 3.3\% at 6 TeV. These distributions are modeled using an empirical
parametrization that has been used widely in similar previous searches [7, 8, 10, 11]:

\[
\frac{d\sigma}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2} + P_3 \ln(m/\sqrt{s})}
\]

where \(\sqrt{s} = 13\) TeV and \(P_0, P_1, P_2,\) and \(P_3\) are four parameters used to describe the background
distribution and its normalization. The order of the function has been chosen by performing
Fisher tests [29], with a cut-off p-value of 0.05. The function is found to be in good agreement
with data with a \(\chi^2/\text{ndf} = 40.7/41.4\). The highest invariant mass event observed in data has
\(m_{\gamma+\text{jet}}\) of 4.6 TeV with a b-tagged jet, and thus belongs to both the inclusive and 1b tag
categories.

In order to examine the presence of a possible systematic bias due to the choice of background
fitting function, tests are performed using alternate functional forms. These alternative expres-
sions are polynomial functions that also provide adequate descriptions of the data. To perform
these tests, an invariant mass distribution of the SM background is obtained from MC simula-
tion. This invariant mass distribution is fitted with alternate test functions and the results of the
fit, considered as the truth model, are used to generate a large number of pseudo-data samples
that have bin-to-bin statistical fluctuations similar to those of the data. A signal with a cross
section close to the expected sensitivity is also injected in the pseudo-data distributions. These
distributions are then fitted using the default background function along with a signal model,
and the signal cross section is extracted. Pull distributions defined as the difference between
the true and extracted signal cross sections divided by the estimated statistical uncertainty, for
the obtained signal cross sections are constructed. The deviation from zero, of the mean in the
pull distribution, is a measure of the bias present in the model. The pull distributions for \(q^*\) and
\(b^*\) modeling over the studied mass range are found to be consistent with normalized Gaussian
forms with medians deviating by no more than 0.5 from zero, and widths consistent with unity
for the full mass range. When added in quadrature with the statistical uncertainty, the bias un-
certainty is found to contribute approximately 10\% of the total. Therefore, it is concluded that
the systematic uncertainty associated with the choice of the parametric function is negligible,
and the statistical uncertainty of the fit is the only uncertainty in the background prediction
that needs to be considered.

5 Systematic uncertainties

The dominant sources of the systematic uncertainties affecting the \(q^*\) and \(b^*\) signals are sum-
marized in Table 1.

The uncertainties in the jet energy scale and jet energy resolution [17] affect both the signal
yield and its distribution. The size of the effect is determined by varying the four-momenta of
the jets by the corresponding uncertainties and repeating the full analysis with the modified
quantities.
Figure 2: The $\gamma + \text{jet}$ invariant mass distribution in data (black points) for the inclusive category used for the q^* analysis, after final selection. The result of the fit to the data using the parametrization defined in Eq. (2) is shown by the blue dashed curve with associated bands indicating the uncertainty. The bin-by-bin pull, $(\text{Data-Fit})/(\text{stat. unc.})$, where the denominator refers to the statistical uncertainty in data, is also presented. The green and yellow bands correspond to 1 and 2 standard deviations, respectively from the mean value. Simulations of excited quark signals representing the expected excess of signal events over the background are shown for the mass values of 1.0 and 5.0 TeV for $f = 1.0$, and 2.0 TeV for $f = 0.5$.

Table 1: Summary of the dominant sources of uncertainties and their effect on the signal yield.

Source	Effect on the signal yield(%)
Integrated luminosity	2.5
Jet energy scale	~ 1
Jet energy resolution	0.2–0.4
Photon energy scale	~ 0.6
Photon energy resolution	0.2–0.4
Pileup	1–2
Photon ID efficiency	~ 2
Trigger efficiency	~ 5
Signal interpolation	0.5–1
PDF choice	1.5–3
b tag SF (only b^*)	~ 1
b tag SF normalization (only b^*)	~ 2

The systematic uncertainties in the photon energy scale and resolution, and photon identification efficiency are derived from $Z \rightarrow e^+e^-$ events. The uncertainty in the photon energy scale is found to be about 1% and it includes the uncertainty in the extrapolation to higher p_T, beyond the reach of the $Z \rightarrow e^+e^-$ control samples [13]. The uncertainty in the photon identification is estimated to be around 2%. Also, a systematic uncertainty of 5% has been included to account for the precision of the photon trigger efficiency measurement. The effect of the b tagging scale-factor uncertainty on the distribution of the signal is evaluated to be around 1% while on the normalization, the effect is around 2%. The method used to interpolate the signal distributions from the generated distributions is assigned an uncertainty of 0.5–1.0%, which accounts for the difference between the generated and interpolated signals. The PDF uncertainty affects the signal acceptance by 1.5–3.0% for both q^* and b^* quarks and is evaluated using PDF4LHC.
Figure 3: The $\gamma + b$ jet invariant mass distribution in data (black points) used for the b^* analysis, after final selection for (left) 1b tag category and (right) 0b tag category. The result of the fit to the data using the parametrization defined in Eq. (2) is shown by the blue dashed curve with associated bands indicating the uncertainty. The bin-by-bin pull, (Data-Fit)/(stat. unc.), where the denominator refers to the statistical uncertainty in data, is also presented. The green and yellow bands correspond to 1 and 2 standard deviations, respectively from the mean value. Simulations of excited b quark signals representing the expected excess of signal events over the background are shown for the 1b and 0b tag categories for the mass values of 1.0 and 2.0 TeV for $f = 1.0$. The uncertainties in the measurement of the integrated luminosity (2.5%) and pileup description (1%) affect the overall signal yield. The uncertainty in the background estimate is accounted for in the fit by varying the parameter values within their respective uncertainties, with no additional constraints.

6 Results

In the mass region studied, no significant excess has been observed. We use the $\gamma + b$ jet invariant mass spectra (Figs. 2), the background parametrization, and the q^* and b^* theoretical predictions to set 95% CL upper limits on the production cross section of q^* and b^* decaying to $q\gamma$ and $b\gamma$, respectively.

The modified frequentist CL_s method in the asymptotic approximation is utilized to set upper limits on signal cross sections. The asymptotic approximation is found to be in good agreement with the full CL_s approximation over the entire mass range. In order to evaluate limits, a likelihood function is constructed that is the product of the Poisson likelihoods of all the bins in the distribution. The systematic uncertainties in the signal are implemented in terms of nuisance parameters with Gaussian and log-normal constraints. The uncertainty due to the background parametrization is found to have the largest impact and is quantified by considering the effect of changing the parameters from their central values by their estimated ± 1 sigma uncertainties. We calculate limits by evaluating the likelihood independently at successive values of resonance mass from 1 to 6 TeV for q^*, and 1 to 5 TeV for b^* in steps of 50 GeV. The cross section limits are not evaluated below 1 TeV, because of uncertainties in the signal efficiency associated with the invariant mass selection, $m_{\gamma+\text{jet}} > 700$ GeV.
In order to evaluate limits for b^*, likelihoods for 1b and 0b tag categories are combined together. The observed and expected mass limits for q^* and b^* are computed at 95% CL. The results are presented in terms of limits on the product of the cross section (σ) and branching fraction (B). The cross section upper limits are compared to the LO theoretical predictions, for all the three couplings, to estimate the lower mass limit on excited quarks. In Figs. 4 and 5, the experimental limits for $f = 1.0$ are shown for q^* and b^*, respectively, with the theoretical predictions for the different couplings overlaid. There is a small dependence of $\sigma \times B$ on f, of the order of 10% − 20%, which is taken into account correctly when extracting the mass limits. Observed lower bounds of 5.5 and 1.8 TeV are obtained for q^* and b^*, respectively, for $f = 1.0$. The corresponding expected mass limits obtained are 5.4 (1.8) TeV for q^* (b^*). The variation of the excluded mass as a function of the coupling strength, obtained by interpolating the efficiencies for three signal MC samples corresponding to $f = 1.0$, 0.5, 0.1, is shown for q^* and b^* in Fig. 6. This result can also be interpreted in terms of the ratio of the resonance mass and Λ, i.e., if we relax the assumption of $\Lambda = m_{Res}$, the excited quark production cross section is proportional to f as well as m_{Res}/Λ.

![Figure 4: The observed and expected upper limits at 95% CL on $\sigma \times B$ as a function of the mass of the excited quark, for $f = 1.0$. The limits are compared with theoretical predictions for excited quark production for three couplings. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the mean limits under the background-only hypothesis.](image)

7 Summary

A search has been presented for excited states of light and b quarks in $\gamma +$ jet final states, using data corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected at $\sqrt{s} = 13$ TeV. Upper limits at the 95% confidence level are placed on the product of production cross section and decay branching fraction for the presence of q^* and b^* excited quarks in $\gamma +$ jet final states. Comparing these upper limits with theoretical predictions, excited light quarks within the mass range $1.0 < m_{q^*} < 5.5$ TeV and excited b quarks within the mass range $1.0 < m_{b^*} < 1.8$ TeV are excluded at 95% confidence level, assuming standard model like coupling strengths. These are the most sensitive limits for q^* and b^* searches in the $\gamma +$ jet final states. In addition, the search for excited b quarks is the first to be presented in any final state at $\sqrt{s} = 13$ TeV.
Figure 5: The observed and expected upper limits at 95% CL on σB as a function of the mass of the excited b quark, for $f = 1.0$. The limits are compared with theoretical predictions for excited b quark production for three couplings. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the mean limits under the background-only hypothesis.

Figure 6: The observed and expected regions excluded at 95% CL for q^* and b^* production and decay, as a function of m_{q^*}, m_{b^*}, and f.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria);
CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] W. Buchmuller, “Composite quarks and leptons”, Acta Phys. Austriaca Suppl. 27 (1985) 517, doi:10.1007/978-3-7091-8830-9_8

[2] U. Baur, I. Hinchcliffe, and D. Zeppenfeld, “Excited quark production at hadron colliders”, Int. J. Mod. Phys. A 2 (1987) 1285, doi:10.1142/S0217751X87000661

[3] U. Baur, M. Spira, and P. M. Zerwas, “Excited quark and lepton production at hadron colliders”, Phys. Rev. D 42 (1990) 815, doi:10.1103/PhysRevD.42.815

[4] S. Bhattacharya, S. S. Chauhan, B. C. Choudhary, and D. Choudhury, “Quark excitations through the prism of direct photon plus jet at the LHC”, Phys. Rev. D 80 (2009) 015014, doi:10.1103/PhysRevD.80.015014, arXiv:0901.3927

[5] CDF Collaboration, “Search for excited quarks in p ¯p collisions at √s = 1.8 TeV”, Phys. Rev. Lett. 72 (1994) 3004, doi:10.1103/PhysRevLett.72.3004

[6] CDF Collaboration, “Search for new particles decaying to dijets at CDF”, Phys. Rev. D 55 (1997) 5263, doi:10.1103/PhysRevD.55.R5263, arXiv:hep-ex/9702004
[7] CDF Collaboration, “Search for new particles decaying into dijets in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. D* 79 (2009) 112002, [doi:10.1103/PhysRevD.79.112002](http://dx.doi.org/10.1103/PhysRevD.79.112002) [arXiv:0812.4036](http://arxiv.org/abs/0812.4036).

[8] CMS Collaboration, “Search for excited quarks in the γ+jet final state in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *Phys. Lett. B* 738 (2014) 274, [doi:10.1016/j.physletb.2014.09.048](http://dx.doi.org/10.1016/j.physletb.2014.09.048) [arXiv:1406.5171](http://arxiv.org/abs/1406.5171).

[9] CMS Collaboration, “Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *Phys. Rev. D* 91 (2015) 052009, [doi:10.1103/PhysRevD.91.052009](http://dx.doi.org/10.1103/PhysRevD.91.052009) [arXiv:1501.04198](http://arxiv.org/abs/1501.04198).

[10] CMS Collaboration, “Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* 116 (2016) 071801, [doi:10.1103/PhysRevLett.116.071801](http://dx.doi.org/10.1103/PhysRevLett.116.071801) [arXiv:1512.01224](http://arxiv.org/abs/1512.01224).

[11] ATLAS Collaboration, “Search for new phenomena with photon+jet events in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *JHEP* 03 (2016) 041, [doi:10.1007/JHEP03(2016)041](http://dx.doi.org/10.1007/JHEP03(2016)041) [arXiv:1512.05910](http://arxiv.org/abs/1512.05910).

[12] ATLAS Collaboration, “Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Eur. Phys. J. C* 78 (2018) 102, [doi:10.1140/epjc/s10052-018-5553-2](http://dx.doi.org/10.1140/epjc/s10052-018-5553-2) [arXiv:1709.10440](http://arxiv.org/abs/1709.10440).

[13] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* 10 (2015) P08010, [doi:10.1088/1748-0221/10/08/P08010](http://dx.doi.org/10.1088/1748-0221/10/08/P08010) [arXiv:1502.02702](http://arxiv.org/abs/1502.02702).

[14] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004](http://dx.doi.org/10.1088/1748-0221/3/08/S08004).

[15] CMS Collaboration, “Particle-flow reconstruction and global event description with the cms detector”, *JINST* 12 (2017) P10003, [doi:10.1088/1748-0221/12/10/P10003](http://dx.doi.org/10.1088/1748-0221/12/10/P10003) [arXiv:1706.04965](http://arxiv.org/abs/1706.04965).

[16] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* 04 (2008) 063, [doi:10.1088/1126-6708/2008/04/063](http://dx.doi.org/10.1088/1126-6708/2008/04/063) [arXiv:0802.1189](http://arxiv.org/abs/0802.1189).

[17] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* 12 (2017) P02014, [doi:10.1088/1748-0221/12/02/P02014](http://dx.doi.org/10.1088/1748-0221/12/02/P02014) [arXiv:1607.03663](http://arxiv.org/abs/1607.03663).

[18] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* 72 (2012) 1896, [doi:10.1140/epjc/s10052-012-1896-2](http://dx.doi.org/10.1140/epjc/s10052-012-1896-2) [arXiv:1111.6097](http://arxiv.org/abs/1111.6097).

[19] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[20] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, (2017). [arXiv:1712.07158](http://arxiv.org/abs/1712.07158). Submitted to *JINST*.

[21] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* 8 (2013) P04013, [doi:10.1088/1748-0221/8/04/P04013](http://dx.doi.org/10.1088/1748-0221/8/04/P04013) [arXiv:1211.4462](http://arxiv.org/abs/1211.4462).
[22] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024 arXiv:1410.3012.

[23] GEANT4 Collaboration, “GEANT4 — a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[24] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016) 155, doi:10.1140/epjc/s10052-016-3988-x arXiv:1512.00815.

[25] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, *Eur. Phys. J. C* **74** (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y; arXiv:1404.5630.

[26] NNPDF Collaboration, “Parton distributions with LHC data”, *Nucl. Phys. B* **867** (2013) 244, doi:10.1016/j.nuclphysb.2012.10.003 arXiv:1207.1303.

[27] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, doi:10.1007/JHEP07(2014)079 arXiv:1405.0301.

[28] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, *Eur. Phys. J. C* **53** (2008) 473, doi:10.1140/epjc/s10052-007-0490-5 arXiv:0706.2569.

[29] R. A. Fisher, “On the interpretation of χ^2 from contingency tables, and the calculation of p”, *J. Roy. Stat. Soc.* **85** (1922) 87, doi:10.2307/2340521.

[30] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* **43** (2016) 023001, doi:10.1088/0954-3899/43/2/023001 arXiv:1510.03865.

[31] CMS Collaboration, “CMS luminosity measurement for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[32] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* **434** (1999) 435, doi:10.1016/S0168-9002(99)00498-2 arXiv:hep-ex/9902006.

[33] A. L. Read, “Presentation of search results: The CLs technique”, *J. Phys. G* **28** (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[34] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0 arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Walterberger, J. Wittmann, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, I. Van Mulders, J. Van Parijs

Ghent University, Gent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silva, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, São Paulo, Brazil
S. Ahuja, C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang6, X. Gao6, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger8, M. Finger Jr.8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb9, S. Elgammal10, A. Ellithi Kamel11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, H. Siikonen, E. Tuominen, J. Tuominiemi
Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teysssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn,
E. Eren, E. Gallo, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefanuik, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf, F. Hartmann, S.M. Heindl, U. Husemann, F. Kassel, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, M. Röhrig, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrrman, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou

National Technical University of Athens, Athens, Greece
K. Kousouris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, Á. Hunyadi, F. Sikler, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szilassi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Bhowmik, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, N. Sahoo, S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, S. Kaur,
R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri,
A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandep, S. Dey, S. Dutt, S. Dutta,
S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nand, A. Purohit,
A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant,
P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guichait, Sa. Jain, S. Kumar, M. Maity,
G. Majumder, K. Mazumdar, T. Sarkar, N. Wickramage

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M.Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh,
M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis,
M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi,
G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri,
G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli,
R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti,
M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli,
C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria,
A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi

INFN Sezione di Roma Tor Vergata, Università di Roma Tor Vergata, Rome, Italy
G. Capra, A. Cocchi, G. Curatola, A. De Fazio, S. De Angelis, G. De Glise,
A. De Ruggiero, D. Di Nardo, S. Dondini, G. Gobotto, A. Giannetti,
G. Giannini, R. Giordano, A. Granata, C. Guidi, G. Gubler, G. Guerrieri,
A. Guzzi, G. Hierl, M. Grande, S. De Guio, B. Giordani, A. Gandolfini

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglia, K. Chatterjee, V. Ciulli, C. Civinini, R. D'Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paololetti, L. Russo, G. Sguazzoni, D. Strom, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, F. Ravera, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, University of Milano-Bicocca, Milano, Italy
A. Benaglia, A. Besch, L. Brianza, F. Brivio, V. Cirio, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, K. Pauwels, D. Pedrini, S. Pigazzini, S. Ragazzi, T. Tabarelli de Fatis

INFN Sezione di Napoli, University of Naples ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida, F. Fabbri, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola, P. Paolucci, C. Sciacca, F. Thyssen

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azzi, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, S. Lacaparra, A. Lujan, M. Margoni, G. Maron, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossin, E. Torassa, S. Ventura, M. Zanetti, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, F. Vitullo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bileri, C. Cecchi, D. Ciangottini, L. Fanò, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio

INFN Sezione di Torino, Università di Torino, Turin, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Montei, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni,
A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

\textbf{INFN Sezione di Trieste} a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, A. Zanettie

\textbf{Kyungpook National University}, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

\textbf{Chonbuk National University}, Jeonju, Korea
A. Lee

\textbf{Chonnam National University, Institute for Universe and Elementary Particles}, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

\textbf{Hanyang University}, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim

\textbf{Korea University, Seoul, Korea}
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

\textbf{Seoul National University, Seoul, Korea}
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

\textbf{University of Seoul, Seoul, Korea}
H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

\textbf{Sungkyunkwan University, Suwon, Korea}
Y. Choi, C. Hwang, J. Lee, I. Yu

\textbf{Vilnius University, Vilnius, Lithuania}
V. Dudenas, A. Juodagalvis, J. Vaitkus

\textbf{National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia}
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

\textbf{Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico}
Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz34, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

\textbf{Universidad Iberoamericana, Mexico City, Mexico}
S. Carrillo Moreno, C. Oropesa Barrera, F. Vazquez Valencia

\textbf{Benemerita Universidad Autonoma de Puebla, Puebla, Mexico}
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

\textbf{Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico}
A. Morellos Pineda

\textbf{University of Auckland, Auckland, New Zealand}
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byyszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadrucio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
V. Alexakhin, P. Bunin, A. Golunov, I. Golutvin, N. Gorbounov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Solosn, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Deremen, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen, D. Shiro

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin,
D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian,
A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz,
A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix,
M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares,
A. Álvarez Fernández

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández,
E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez,
J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martínez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani,
I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco,
P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon,
Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck,
N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Perisert, P. Everaerts,
F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan,
P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban, J. Kieseler, V. Knünz,
A. Kornmayer, M.J. Kortelainen, M. Krammer, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini,
L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic,
F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez,
M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pleiﬀer, M. Pierini, D. Rabady, A. Racz, T. Reis,
G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, M. Seidel, M. Selvaggi, A. Sharma,
P. Silva, P. Sphicas, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirotou,
V. Veckalns, M. Verweij, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli,
D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà,
C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Luestermann,
Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
M.N. Bakirci, A. Bat, F. Boran, S. Cerci, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, U. Kimsu, M. Oglakci, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, U.G. Tok, S. Turkapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, I. Köseoglu

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.I. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria,
A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Ženz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breeden, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghias Shirazi, G. Hanson, J. Heilman, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, F. Golf, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorne, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albur, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincol, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, M. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczuk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi
Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

University of Miami, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdseeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alves, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, D. Trocino, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard
The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon71, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpína, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu
University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at Ain Shams University, Cairo, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Now at Cairo University, Cairo, Egypt
12: Also at Université de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
30: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Universität Zürich, Zurich, Switzerland
49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
50: Also at Gaziosmanpasa University, Tokat, Turkey
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Necmettin Erbakan University, Konya, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at Beykent University, Istanbul, Turkey
66: Also at Bingol University, Bingol, Turkey
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Sinop University, Sinop, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea