Upper limb extravasation of cytotoxic drugs: results of the saline washout technique in children

Virginie Mas¹,²
Anne Laure Simon¹
Ana Presedo¹
Cindy Mallet¹
Brice Ilharreborde¹
Pascal Jehanno¹,³

Abstract

Purpose Extravasation of cytotoxic vesicant drugs is a surgical emergency (within six hours) since this incident can lead to severe skin and soft-tissue damage. Outcomes after the saline washout procedure have been extensively described in adults, but rarely in children. The aim of this study was to evaluate the outcome of early saline washout procedure for upper limb cytotoxic drug extravasation in children.

Methods All consecutive children with vesicant drug extravasation were retrospectively reviewed. The saline washout procedure was performed. Cosmetic aspect, residual pain and range of movement were analyzed as well as time to surgery and chemotherapy resumption at last follow-up.

Results Between 2014 and 2018, 13 cytotoxic vesicant drug extravasations occurred (mean age 8 years (sem 5)), including 11 treated by the saline washout procedure. At mean follow-up of 11 months (sem 7), the patients had no or low pain and ranges of movement were fully conserved. Two patients (one within the six hours’ delay) had soft-tissue necrosis leading to extensive reconstructive surgery.

Conclusion The saline washout procedure is safe and easy and significantly reduces the incidence of extensive skin damage. Early referral to a specialized department is essential. However, the key parameter remains prevention by educating medical staff and nurses about these injuries and by training them for early and urgent management.

Level of Evidence: IV

Cite this article: Mas V, Simon AL, Presedo A, Mallet C, Ilharreborde B, Jehanno P. Upper limb extravasation of cytotoxic drugs: results of the saline washout technique in children. J Child Orthop 2020;14:230-235. DOI: 10.1302/1863-2548.14.200020

Keywords: cytotoxic solutes; extravasation; chemotherapy; saline washout procedure; children; upper limb; vesicant agent

Introduction

Extravasation injury is defined as an inadvertent administration of intravenous medications into the soft-tissue rather than the intended vascularization.¹,² These incidents might occur after a chemotherapy diffusion, after perfusion of antibiotics, radiopaque contrast agent or parenteral nutrition.³,⁴ Ineffective management can cause devastating damage such as severe soft-tissues necrosis, depending on the type of perfused drugs. Two types of agents exist: vesicant and irritant agents. Vesicants have the potential to cause blistering, skin slough and ulceration with variable subcutaneous tissues injuries when the drug is accidentally disseminated.⁵,⁶ Conversely, irritants are drugs that do not destroy tissues if they disseminate.

While the incidence of cytotoxic vesicant drug extravasation is low (0.1% to 6.5%), the natural course is unpredictable and initial clinical symptoms are non-specific and difficult to identify.⁷,⁸ Nonetheless, these incidents must be detected early (within six hours) because medical management and surgical treatment are urgent.⁸⁻¹² Among these incidents, the literature reported a low rate (0.25%) of extravasations evolving towards severe necrosis and extensive soft-tissue destruction requiring further reconstruction surgeries. The severity of the damage depends on the volume, concentration and toxicity of the substance.⁹,¹⁰ Upper limbs should be carefully managed because of the presence of important functional structures (tendons, muscles and nerves) that could be permanently damaged.²,³,¹¹ As a matter of fact, an upper limb is frequently involved (dorsal hand, wrist and forearm).

Numerous strategies have been reported in adults.⁸,¹¹⁻¹⁷ Two types of treatment predominate: conservative management (local topic application, antidotes) and saline washout.¹¹,¹⁵,¹⁶ However, there is a lack of evidence

¹ Department of Pediatric Orthopaedics and Pediatric Hand Emergencies, Robert Debré Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris University, Paris, France
² Department of Orthopaedic Surgery and Hand Emergencies, Hôpital Privé des Peupliers, Paris, France
³ Department of Orthopaedic Surgery, Hôpital Privé Nord Parisien, Sarcelles, France

Correspondence should be sent to Anne Laure Simon, Department of Pediatric Orthopaedics, Robert Debré University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris University, 48 Bd Sécurier, 75019 Paris, France.
E-mail: annelaure_simon@hotmail.com
In recent literature, conservative management is not always possible in extravasation injuries. Furthermore, local washout has proved to significantly reduce the risk of soft-tissue necrosis and also the need for revision surgeries in adults, unless the patients were referred early (less than six hours) to a team qualified for the procedure.11,17

The aim of this study was to evaluate the results of early surgical management by the saline washout procedure in children with upper limb cytotoxic extravasation. A standardized procedure has been used for the management of all the cases based on an institutional written protocol, following international guidelines.20,22

First, the nurse stops the administration of the solute, then starts to elevate the upper limb, administers an intravenous painkiller on another perfusion site and applies cool or hot (depending on the drug) compresses soaked with a 5% glucose solution. The estimated volume of cytotoxic drug that diffused is recorded in the medical file. Then, the nurse contacts the paediatric orthopaedic surgeon (standby duty list of hand surgeons). The following details must be provided to the surgeon: time of injury, distal vascularization, area and site of injury, local examination and details of the drug/ fluid. Thereafter, the surgeon rapidly examines clinical symptoms and gives an indication for surgical intervention if necessary.

Operative technique

The washout saline procedure used for the study corresponds to the emergency approach described by Gault et al., performed within six hours following the diffusion, if possible.11,23 A 0.9% saline solution was administrated in subcutaneous tissues with a syringe under sterile conditions around the affected area. The infiltrated volume was deliberately high (200 ml to 500 ml) and depended on the affected anatomical area for a maximal dilutive effect. Multiple small skin stab incisions (minimum of four) were performed afterwards, to allow placement of a blunt cannula with a diameter of 2 mm (Fig. 1). Then, the cannula was introduced in order to create multiple subcutaneous tunnels. A lipoaspiration was carefully performed with the cannula through all the incisions to aspirate saline solution diluted with the cytotoxic drug. This procedure was repeated a couple of times to obtain maximal dilution of the cytotoxic solute. The saline was evacuated through the small incisions, which were not sutured in order to maintain the evacuation of the saline. Local analgesics were not used since the product could have poured from the small incisions and might have hidden symptoms of skin necrosis. Scars were covered with pads soaked with a 5% glucose solution for better absorption.

Outcomes evaluation

Initial follow-up consisted of daily visits to ensure that the patient healed well and that no skin necrosis developed. Then, the patients were seen during outpatient clinic visits between six and 12 months after the procedure. At last follow-up, the following data were recorded: residual pain assessed by the visual analogue scale (VAS),24 aesthetic aspect of the scars and goniometric measurement of upper limb ranges of movement.24 Concerning the VAS,
it was considered that there was no pain, low, moderate, high or unbearable pain if the VAS was respectively scored as < 2, 3 to 4, 5 to 6, 7 to 8 and > 8. Cosmetic aspect was subjectively evaluated by the patient and/or the parents. The surgeon asked the parents and the patient if they considered the appearance of the scar as normal or as a low, moderate or important scar Further data were also recorded: delay to surgical intervention, delay to restart the chemotherapy and postoperative complications.

Statistical analysis

All statistical analyses were performed using the Stata 13.0 software package (Stata Corp., College Station, Texas). Numerical data were expressed as means (SEM). No comparative analysis was possible as the study is descriptive.

Results

Initial assessment and operative intervention

Among the 13 patients, saline washout was performed for 11 children and extravasation was located as followed: anterior forearm (seven), dorsal hand (five) and thorax with a central-venous system (one) (Table 2).

Initial clinical symptoms were oedema (seven), erythema (three), blister (two) and paraesthesia (one). Mean age at surgery was eight years (SEM 5; 4 to 15) and mean time to surgery was 6.2 hours (SEM 2; 2 to 12). The mean volume of cytotoxic drug that accidentally diffused in upper-limb soft tissues was 33 ml (SEM 8; 20 to 55).

The delay to further medication (chemotherapy or antiviral) was 6.5 days (SEM 5; 2 to 25). Regarding the one patient with trunk extravasation on a port-a-cath, the central catheter was removed under the same anaesthesia as the saline washout procedure and chemotherapy was later administrated on a peripheral catheter.

Outcomes evaluation

Mean follow-up was 11 months (SEM 7; 2 to 21). Ten patients had no pain at last follow-up and three patients had low pain essentially located at the forearm. No patient used painkillers. Surgery did not leave any significant scar except for in two patients (Fig. 2). There was no limitation of upper limb range of movement in any patient.

Complications

Severe tissue necrosis required surgery in two patients. First, a 15-years old girl treated for a Hodgkin lymphoma by Vincristine on a peripheral forearm line. The saline washout procedure was carried out four hours after the extravasation, the volume of which was estimated at 55 ml. Two days postoperatively, she developed external signs of skin infection (fever, inflammatory aspect and C-reactive protein > 10 mg/L). After collecting blood cultures, a probabilistic intravenous antibiotherapy (80 mg/kg per day of Clavulanic Acid – Amoxicillin) was initiated. The infection did not progress well, since the patient developed necrotizing fasciitis, and surgical debridement was necessary 48 hours after the saline washout.
After there was no sign of residual infection (no inflammatory syndrome, no fever, good local evolution), a secondary skin graft was performed causing unattractive scars. However, upper limb range of movement was preserved (Fig. 3). The second patient was a 14-year-old boy also treated for a Hodgkin lymphoma by Doxorubicin, perfused on a peripheral forearm line. At that time, the written extravasation protocol was not yet established and hand surgeons were not contacted within six hours (> 12 hours in this case). A conservative treatment was decided on (cold compresses soaked with a 5% glucose solute) without the antidote administration (dexrazoxane) that has proper cytotoxicity if locally administrated.8,18,20,25 The boy had severe forearm skin necrosis requiring reconstructive surgery with a free latissimus dorsi flap. Even if the elbow flexion-extension range of movement was fully preserved, the cosmetic sequela was major.

Discussion

Extravasation injury might cause serious and permanent damage such as skin necrosis, skin infections with abscess and necrotizing fasciitis and sequelae such as un-aesthetic skin and muscular contractures and/or digit amputation.2,3,14

Initial assessment

Reliable criteria for decision-making must be defined in order to decide if a patient requires surgery or not, even
though initial symptoms are poor and non-specific and the evolution is unpredictable.7,18,22 Local adverse effects of antineoplastic drugs are variable.5,6,12,26 Vesicants agents induce necrosis and secondary infections, the severity of which is mostly influenced by the tissue–drug concentration (volume and speed of drug perfusion) and the localization of the injury.9,10,12

Surgical management

The treatment of extravasation injuries remains controversial, but all have the same objective: to remove the toxic agent from the affected tissues.13,14,18,25 The washout technique initially described by Gault et al is rather quick, with few complications and consists of a mechanical process combining the dilution and aspiration of the cytotoxic drug.11,13,16,23 Several technical modifications have been added (cannula size, solute infiltrated) without changing the initial concept of the mechanical dilution.12,11 While the washout procedure is the reference method in most studies, some vesicant agents have specific antidotes that can be used to treat these injuries.15,17,19,27,28 However, the lack of agreement between animal studies and human clinical findings, antidotes inherent toxicity if locally administered, should make their use cautious.1,18,29,30 On the other hand, other authors have suggested complete excision of all abnormal tissues that could leave either cosmetic damage or functional sequelae.1,18,29,30

Prevention

Prevention remains crucial for the management of cytotoxic extravasation, following international guidelines.20,22,28,31 As a matter of fact, medical staff and paediatric nurses, especially in haematology, must be trained for cytotoxic intravenous administration and for early detection and management of extravasation injuries as previously described.12,20,22 Simple recommendations must also be developed in paediatric haematology, such as the use of a central venous system, avoiding perfusion next to a joint, the use of a small plastic gauge cannula and verification of blood return prior to vesicant administration. Finally, one risk factor has been well-identified and crucial to avoid sequelae: the delay of management, either conservative or surgical.12,19 Therefore, in our institution, a standby duty list was available for the concerned department and the written protocol was essential in making the different teams aware of the risk, helping to reduce the delay of management.22,30,32

Limitations

The current study has several limitations. First, it is a descriptive and retrospective study based on a small group of patients. Despite the low sample size, the study shows good effectiveness on children. Second, a control group has not been established to assess the reliability of this method. Indeed, there is no evidence in the literature about the superiority of conservative management compared with the washout technique, especially in children with extravasation of cytotoxic drugs such as chemotherapy.17,22,31 A randomized control study comparing various procedures (antidote administration and conservative treatment) is required. Furthermore, cytotoxicity of chemotherapy drugs has been essentially reviewed for the study (except one case of antiviral drug), in order to provide a more consistent and homogenous work.31 Finally, the incidence of extravasation injuries was not reported since it is impossible to report all diffusion incidents occurring in a single institution.

In conclusion, upper limb extravasation of cytotoxic solutes remains a surgical emergency that can lead to serious sequelae. The saline washout procedure is a safe and easy procedure that reduces the incidence of skin necrosis. Early referral to a specialized department is essential. However, the key parameter remains prevention by educating medical staff and nurses following international guidelines.

Received 3 February 2020; accepted after revision 1 May 2020.

COMPLIANCE WITH ETHICAL STANDARDS

FUNDING STATEMENT

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

OA LICENCE TEXT

This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) licence (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed.

ETHICAL STATEMENT

Ethical approval: All procedures performed in the study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent: Informed consent was not required for this retrospective work.

ICMJE CONFLICT OF INTEREST STATEMENT

Bi reports they are a consultant for Implanet, ZimmerBiomet and Medtronic, outside the submitted work. The other authors declare no conflict of interest.

ACKNOWLEDGEMENTS

All the authors would like to thank the head chief of the oncology-haematology department of the Robert Debré University Hospital, Professor André Baruchel, for his active participation in the elaboration of the protocol.

AUTHOR CONTRIBUTIONS

VM: Data collection and analysis, Manuscript writing.

ALS: Data analysis, Manuscript writing and revision.

AP: Data collection, Manuscript revision.

CM: Data analysis, Manuscript revision.
REFERENCES
1. Khan MS, Holmes JD. Reducing the morbidity from extravasation injuries. Ann Plast Surg 2002;48:628-632.
2. Schrijvers DL. Extravasation: a dreaded complication of chemotherapy. Ann Oncol 2003;14(suppl 3):iii26-iii30.
3. Santoshi JA, Pallapati SCR, Thomas BP. Hand contracture: an unusual sequel of intravenous fluid extravasation in the neonatal period. J Postgrad Med 2008;54:244-245.
4. Vandeweyer E, Heymans O, Deraemaeker R. Extravasation injuries and emergency suction as treatment. Plast Reconstr Surg 2000;105:109-110.
5. Boyle DM, Engelking C. Vesicant extravasation: myths and realities. Oncol Nurs Forum 1995;22:57-67.
6. Wang JJ, Cortes E, Sinks LF, Holland JF. Therapeutic effect and toxicity of adriamycin in patients with neoplastic disease. Cancer 1971;28:837-843.
7. Dougherty L. IV therapy: recognizing the differences between infiltration and extravasation. Br J Nurs 2008;17:896, 898-901.
8. Schulmeister L. Extravasation management: clinical update. Semin Oncol Nurs 2011;27:82-90.
9. Phelps SJ, Helms RA. Risk factors affecting infiltration of peripheral venous lines in infants. J Pediatr 1987;111:384-389.
10. Brown AS, Hoelzer DJ, Piercy SA. Skin necrosis from extravasation of intravenous fluids in children. Plast Reconstr Surg 1979;64:145-150.
11. Gault DT. Extravasation injuries. Br J Plast Surg 1993;46:91-96.
12. Harrold K, Gould D, Drey N. The management of cytotoxic chemotherapy extravasation: a systematic review of the literature to evaluate the evidence underpinning contemporary practice. Eur J Cancer Care (Engl) 2015;24:771-800.
13. Steiert A, Hille U, Burke W, et al. Subcutaneous wash-out procedure (SWOP) for the treatment of chemotherapeutic extravasations. J Plast Reconstr Aesthet Surg 2011;64:240-247.
14. Napoli P, Corradino B, Badalamenti G, et al. Surgical treatment of extravasation injuries. J Surg Oncol 2005;91:264-268.
15. Dorr RT. Antidotes to vesicant chemotherapy extravasations. Blood Rev 1990;4:41-60.
16. Giunta R. Early subcutaneous wash-out in acute extravasations. Ann Oncol 2004;15:7146-7147.
17. Corbett M, Marshall D, Harden M, et al. Treating extravasation injuries in infants and young children: a scoping review and survey of UK NHS practice. BMC Pediatr 2019;19:6.
18. Pattison J. Managing cytotoxic extravasation. Nurs Times 2002;98:32-34.
19. Hurst S, McMillan M. Innovative solutions in critical care units: extravasation guidelines. Dimens Crit Care Nurs 2004;23:125-128.
20. Wengström Y, Margulies A. European Oncology Nursing Society Task Force. European Oncology Nursing Society extravasation guidelines. Eur J Oncol Nurs 2008;12:357-361.
21. Llaneres ME, Bermúdez M, Fuster JL, et al. Toxicity to topical dimethyl sulfoxide in a pediatric patient with anthracycline extravasation. Pediatr Hematol Oncol. 2005;22:49-52.
22. Ghanem AM, Mansour A, Exton R, et al. Childhood extravasation injuries: improved outcome following the introduction of hospital-wide guidelines. J Plast Reconstr Aesthet Surg 2015;68:505-518.
23. Lambert F, Couturaud B, Arnaud E, et al. Iatrogenic extravasations of cytotoxic or hyperosmolar aqueous solutions. Value of surgical emergency by aspiration and lavage. Ann Chir Plast Esthet 1997;42:305-313.
24. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 1983;16:87-101.
25. Bharani A, Chattopadhyay BP, Dani P, Bhargava KD. Metronidazole extravasation causing digital gangrene. Indian J Physiol Pharmacol 1995;39:307-308.
26. Fleming A, Butler B, Gault D. Surgical management after doxorubicin and epirubicin extravasation. J Hand Surg Edinb Scotl 1999;24:390.
27. Wiegand R, Brown J. Hyaluronidase for the management of dextrose extravasation. Ann Emerg Med 2010;28:257.e1-257.e2.
28. Goolsby TV, Lombardo FA. Extravasation of chemotherapeutic agents: prevention and treatment. Semin Oncol 2006;33:139-143.
29. Telisselis P, Heers G, Plock B, et al. Emergency open surgical treatment of extravasations of cytostatic agents in the upper extremity. Handchir Mikrochir Plast Chir 2010;42:247-250.
30. Boschi R, Rostagno E. Extravasation of antineoplastic agents: prevention and treatments. Pediatr Rep 2012;4:e18.
31. Corbett M, Marshall D, Harden M, et al. Treatment of extravasation injuries in infants and young children: a scoping review and survey. Health Technol Assess 2018;22:1-112.
32. Kassner E. Evaluation and treatment of chemotherapy extravasation injuries. J Pediatr Oncol Nurs 2000;17:139-148.
33. Neocleous C, Andonopoulou E, Adramerina A, et al. Tissue necrosis following extravasation of acyclovir in an adolescent: a case report. Acta Med Acad 2017;46:55-58.