Constraints on planet formation via gravitational instability across cosmic time

Jarrett L. Johnson* and Hui Li
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Nuclear and Particle Physics, Astrophysics and Cosmology Group (T-2)
5 May 2014

ABSTRACT
We estimate the maximum temperature at which planets can form via gravitational instability (GI) in the outskirts of early circumstellar disks. We show that due to the temperature floor set by the cosmic microwave background, there is a maximum distance from their host stars beyond which gas giants cannot form via GI, which decreases with their present-day age. Furthermore, we show that planet formation via GI is not possible at metallicities \(\lesssim 10^{-4} Z_{\odot}\), due to the reduced cooling efficiency of low-metallicity gas. This critical metallicity for planet formation via GI implies a minimum distance from their host stars of \(\sim 6\) AU within which planets cannot form via GI; at higher metallicity, this minimum distance can be significantly larger, out to several tens of AU. We show that these maximum and minimum distances significantly constrain the number of observed planets to date that are likely to have formed via GI at their present locations. That said, the critical metallicity we find for GI is well below that for core accretion to operate; thus, the first planets may have formed via GI, although only within a narrow region of their host circumstellar disks.

Key words: Planets and satellites: formation – Cosmology: theory

1 INTRODUCTION

When did the first planets form and what were their properties? The answers to these questions depend critically on the process by which the first planets formed. There are two main mechanisms of planet formation that are widely discussed (e.g. Papaloizou & Terquem 2006; Youdin & Kenyon 2012): core accretion, in which dust coagulates into larger and larger bodies which become the cores of planets (e.g. Pollack et al. 1996); and gravitational instability (GI), in which the self-gravity of a circumstellar disk triggers the fragmentation and collapse of gas into a gas giant planet directly (e.g. Boss 1997).

In previous work, we have discussed the formation of the earliest planets via core accretion (see also Shchekinov et al. 2012 for related calculations). In this scenario, we estimated the minimum, or 'critical', metallicity to which the gas must be enriched before planet formation can begin (Johnson & Li 2012; hereafter Paper I). We found that the critical metallicity is a function of the distance from the host star, and that the minimum metallicity for the formation of Earth-like planets is likely to be \(\sim 0.1 Z_{\odot}\). Furthermore, we were able to show that our prediction of the critical metallicity was consistent with the data that were available on planetary systems, with no planets lying in the 'Forbidden zone' in which their metallicities imply formation times longer than the time available (i.e. the disk lifetime).

Recently, however, Setiawan et al. (2012) have announced the discovery of a planet orbiting a star with a very low iron abundance of \([\text{Fe/H}] \sim -2\) (HIP 11952b) which appears to lie in the Forbidden zone for planet formation via core accretion (if this claim proves correct; see Desidera et al. 2013 in prep). This implies that this metal-poor planet likely formed via some other process, such as GI. Furthermore, if it is true that planets can form via GI at metallicities below the critical value for core accretion, then the first planets to form may have been gas giants formed via GI. Terrestrial planet formation (and perhaps the emergence of life), which likely must instead occur via core accretion, may only occur at later stages of cosmic history when the process of metal enrichment has progressed further. This then raises

* E-mail: jlj@lanl.gov

\[\text{arXiv:1212.1482v3 [astro-ph.EP]} \] 5 Feb 2013

© 2012 RAS
the question of, instead of the critical metallicity for planet formation via core accretion, what conditions must be satisfied for the first planets to form via GI. Here we address two aspects of this question, namely the impacts of the cosmic microwave background (CMB) and of the reduced cooling efficiency of low-metallicity gas in regulating planet formation via GI.

In the next Section, we review the conditions required for the formation of planets via GI. In Section 3, we consider the constraints placed on this model due to the temperature floor imposed at high redshifts by the CMB, and in Section 4 we estimate the minimum metallicity necessary for planet formation via GI. In Section 5 we compare our predictions for when the first planets form via GI to the available observational data. We give our conclusions in Section 6.

2 CONDITIONS FOR PLANET FORMATION VIA GRAVITATIONAL INSTABILITY

We begin by reviewing the conditions required for GI in a circumstellar disk, which we will use to derive constraints on where planets can form in early disks via GI.

The first condition for fragmentation to occur in a thin disk is that \(Q < 1 \), where (e.g. Toomre 1964; Boss 1998)\(^\dagger\)

\[
Q = \frac{0.93c_s \Omega}{\pi G \Sigma} \\
\approx 30 \left(\frac{m_*}{1 M_\odot} \right)^{\frac{1}{2}} \left(\frac{T}{100 \text{K}} \right)^{\frac{1}{2}} \\
\times \left(\frac{\Sigma}{10^2 \text{g cm}^{-2}} \right)^{-1} \left(\frac{r}{10 \text{AU}} \right)^{\frac{3}{2}}.
\] (1)

Here \(c_s \) is the sound speed of a gas at temperature \(T \) with mean molecular weight \(\mu = 2 \) (close to the value for fully molecular gas) and adiabatic index \(\gamma = 2 \), \(\Omega \) is the Keplerian angular velocity (which here we assume is identical to the epicyclic frequency), \(\Sigma \) is the surface density of the disk, and \(r \) is the distance from the central host star. In the second equality we have assumed a disk temperature normalized to \(T = 100 \text{K} \) at \(r = 10 \) astronomical units (AU), and a disk surface density normalized to \(\Sigma = 10^2 \text{g cm}^{-2} \) at \(r = 10 \text{AU} \). Finally, we have normalized the above formula to a central stellar mass of \(m_* = 1 M_\odot \). According to equation (1), fragmentation is only possible in sufficiently dense and/or cold disks, and/or far out from the host star, especially if it is massive. We shall use this condition in Section 3 to derive constraints on planet formation via GI due to the temperature floor set by the CMB.

The second requirement for planet formation via GI is that a circumstellar disk also cools sufficiently fast (see e.g. Goodman 2003; Thompson et al. 2005). We shall use this condition, along with the requirement that \(Q \approx 1 \), in Section 4 to explore the limits on first planet formation via GI due to the limited cooling efficiency of low-metallicity gas.

\(^\dagger\) Instabilities leading to fragmentation can occur even for \(Q \approx 1.4 - 1.7 \) (e.g. Mayer et al. 2004; Durisen et al. 2007), but adopting such slightly higher values would not affect our results strongly.

3 CONSTRAINTS FROM THE CMB

Here we estimate the maximum temperature at which planet-mass fragments may form and we then use this to derive the limits on planet formation via GI due to the temperature floor set by the CMB.

3.1 Minimum Planet Mass

Here we define the minimum mass of a planet formed via GI, as a function of the properties of the disk. We follow Kratter et al. (2010; see also Rafikov 2005; Levin 2007; Cossins et al. 2009; Forgan & Rice 2011) who estimate the initial mass of fragments formed via GI (in a disk with \(Q \approx 1 \)) as that on the scale of the most unstable wavelength. This yields the following for the minimum planet mass (in units of the mass \(M_\text{J} \) of Jupiter):

\[
m_{\text{min}} \approx \Sigma \left(\frac{2 \pi c_s}{\Omega} \right)^2 \\
= 0.5 M_\text{J} \left(\frac{m_*}{1 M_\odot} \right)^{-1} \left(\frac{T}{100 \text{K}} \right) \\
\times \left(\frac{\Sigma}{10^2 \text{g cm}^{-2}} \right) \left(\frac{r}{10 \text{AU}} \right)^{-3}.
\] (2)

Simulations of disk fragmentation via GI also suggest that this is a reasonable estimate for the minimum mass of planets (e.g. Boley 2009; Stamatellos & Whitworth 2009). Indeed, given that this is the initial mass scale of fragments, it is very likely that the final mass they achieve via the continued accretion of gas will be much higher than this value. As noted by Kratter et al. (2010), if such fragments accreted enough gas to attain their isolation mass they will have greatly overshot the planet mass range and may end up instead as e.g. brown dwarfs. As noted by these authors, it appears that some mechanism must halt accretion in order for planet-mass objects to survive (see also e.g. D’Angelo et al. 2010; Boss 2011). One possibility is that the circumstellar disk is photoevaporated (e.g. Gorti & Hollenbach 2009; Ercolano & Clarke 2010) or otherwise disappears (e.g. Melis et al. 2012) before accretion to super-planet mass scales occurs.

As we shall show next, our adoption of the minimum planet mass allows to estimate a maximum disk temperature at which planets may form via GI.

3.2 Maximum Disk Temperature for Planet Formation

To ensure that fragments which arise in the disk are not too large to be classified as planets we must have \(m_{\text{min}} \lesssim 13 M_\text{J} \), which is the commonly adopted upper mass limit for planets – above this mass deuterium burning occurs and we assume the object to be a brown dwarf. We can combine equation (2) with \(Q = 1 \) in equation (1) to obtain the maximum disk temperature \(T_{\text{max}}(r) \) from which a planet of mass \(m_{\text{min}} \) can form from fragmentation of the disk:

\[
T_{\text{max}} \approx 100 \text{K} \left(\frac{m_*}{1 M_\odot} \right)^{\frac{1}{2}} \left(\frac{m_{\text{min}}}{13 M_\text{J}} \right)^{\frac{1}{2}} \left(\frac{r}{10 \text{AU}} \right)^{-1},
\] (3)

where we have normalized to the maximum planet mass of \(m_{\text{min}} = 13 M_\text{J} \). If the temperature of the disk exceeds
this value, then planet formation via GI may be impossible, either because fragmentation is suppressed (see equation 1), or if fragmentation occurs the fragment(s) form with super-planetary masses (becoming e.g. brown dwarfs instead of planets; see equation 2). While temperatures below this maximum value may be necessary for planet formation (and are found in simulations including radiative cooling; e.g. Nelson et al. 2000; Mejía et al. 2005; Boley et al. 2006; Forgan et al. 2011), they are not alone sufficient. In addition, the surface density of the disk must also be high enough that \(Q \lesssim 1 \) (equation 1), and in the case of non-isothermal disks the cooling criterion of Gammie (2001) must also be satisfied.

3.3 The CMB temperature floor

It is well-known that gas cannot cool radiatively to temperatures lower than that of the CMB, given by \(T_{\text{CMB}} = 2.73 \) K \((1+z)\), where \(z \) is redshift. Therefore, planet formation will not be possible if it requires that the disk cools below \(T_{\text{CMB}} \). Following equation (3), this implies that at high redshifts planet formation can only occur relatively close to the host star. We can express this maximum radius \(r_{\text{max}} \) for planet formation, as a function of the host star mass \(m_\star \) and redshift \(z \), by equating \(T_{\text{CMB}} \) to the maximum disk temperature for planet formation given by equation (3). This yields

\[
r_{\text{max}} \approx 40 \text{AU} \left(\frac{m_\star}{1 M_\odot} \right)^{\frac{1}{2}} \left(\frac{m_{\text{min}}}{13 M_\text{J}} \right)^{\frac{1}{2}} \left(\frac{1 + z}{10} \right)^{-1}.
\]

Therefore, even for the highest mass stars that may have survived to the present day (\(\approx 0.8 M_\odot \)), planets can only form inside \(r \lesssim 40 \) AU at \(z \gtrsim 10 \), roughly the epoch of the first metal-enriched star formation in the earliest galaxies (e.g. Bromm & Yoshida 2011). Thus, we would expect such old planets formed via GI to be found on relatively tight orbits around old, low-mass, metal-poor stars. In the next Section, we estimate how tight these orbits can be, given the limited cooling properties of metal-poor gas.

4 CONSTRAINTS AT LOW METALLICITY

To explore the effect of metallicity on the fragmentation properties of circumstellar disks, we impose the two conditions required for planet formation via GI described in Section 2. We follow the common approach of estimating the cooling rate of the disk based on its opacity (e.g. Rafikov 2005; Levin 2007; Kratter et al. 2010), which we assume to be proportional to the metallicity of the disk. Specifically, we follow exactly the calculation presented by Levin (2007), for four different metallicities: \(Z = 10^{-6}, 10^{-4}, 10^{-2}, \) and \(1 Z_\odot \). We use the opacities for solar metallicity gas \(\kappa(Z_\odot) \) given by equation (9) of Levin (2007; from Bell & Lin 1994), and we scale them with metallicity, such that \(\kappa(Z) = \kappa(Z_\odot) \times (Z/Z_\odot) \). From this, we solve for the critical surface density \(\Sigma_{\text{crit}} \) and temperature \(T_{\text{crit}} \) at which the effective viscosity of the disk reaches the critical value of \(\alpha_{\text{crit}} = 0.3 \) (Gammie 2001) and the disk fragments. These are shown in Figure 1, for the various metallicities we consider. We then use these critical values for the surface density and temperature in equation (2) to find the minimum mass \(m_{\text{min}} \) of fragments formed. The values we find for \(m_{\text{min}} \), as functions of the mass \(m_\star \), and distance \(r \) from the host star, are shown in Figure 2.

For the case of solar metallicity, we successfully reproduce the results presented by Levin (2007), as expected. **For the lower metallicity cases, the effect of the reduced opacity of the disk is that the critical temperature \(T_{\text{crit}} \) and surface density \(\Sigma_{\text{crit}} \) are significantly higher (lower) at large (small) radii, as shown in Fig. 1. In turn, this translates into larger minimum fragment masses at smaller radii, at lower metallicities, as shown in Fig. 2. At solar metallicity, our result for the minimum fragment mass is similar to that found by e.g. Rafikov (2005), and our result that fragment-
The minimum fragment mass m_{min} as a function of distance from the host star in circumstellar disks of various metallicities, as labeled. The critical metallicity for planet formation via GI is $Z_{\text{crit}} \approx 10^{-3} Z_\odot$, as below this metallicity the $m_{\text{min}} \geq 13 M_\oplus$, the maximum planet mass. This corresponds to a minimum distance from the host star of $r_{\text{min}} \approx 6$ pc (for $m_* \approx 1 M_\odot$), shown by the dotted line. At $r \leq r_{\text{min}}$ planet formation via GI is not possible. As the curves at 10^{-2} and $1 Z_\odot$ show, r_{min} is even larger at higher metallicity; hence the arrows denoting the value of r_{min} shown here to be a lower limit. Note that m_{min} increases at large radii, despite the decrease in Σ_{crit}, due to its strong r-dependence via $\Omega(r)$ in equation (2).

5 COMPARISON WITH DATA

Here we compare our theoretical predictions of r_{max} set by the CMB and r_{min} set by the critical metallicity for GI with the star-planet separations inferred from observations. This allows to test whether GI is a viable explanation for the formation of the oldest known planets. In Fig. 3, we make this comparison, plotting the semimajor axes and host stellar ages of planets compiled in Wright et al. (2011)†† with host stars having sub-solar iron abundance ([Fe/H] < 0), which we take as an indicator of old age. We have also included the four gas giants in our Solar System, as well as the metal-poor planetary systems reported by Sigurdsson et al. (2003) and Setiawan et al. (2012), and the wide orbit planets reported by Chauvin et al. (2004), Marois et al. (2008) and Lagrange et al. (2010). Here we have taken the Sigurdsson et al. (2011)†† data directly from exoplanets.org.

†† We have taken the data directly from exoplanets.org.
All of the planets shown in Fig. 3 appear to lie at radii much smaller than r_{max}, in part because most are relatively young (e.g. $\lesssim 10\text{ Gyr old}$) and formed at times when the temperature of the CMB temperature was low. We also note that Boss (2011) argues that the formation of wide orbit gas giants, such as those shown at $\gtrsim 20\text{ AU}$, may be best explained by GI, especially if they are formed around relatively massive stars, consistent with the curves in Fig. 3.

There are additional candidate planets with very wide orbits that are not included in Fig. 1. These candidates, reported by Kalas et al. (2008) and Lafrenière et al. (2008; 2010), respectively, would lie at $\simeq 115\text{ AU}$ and $\simeq 150\text{ AU}$ from their host stars, which have masses of $\simeq 1.9\,M_\odot$ and $\simeq 1\,M_\odot$, and ages of just $\simeq 0.4\text{ Gyr}$ and $\simeq 5\text{ Myr}$ (see also Béjar et al. 2008; Bowler et al. 2011; and Ireland et al. 2011 for other very wide orbit $\simeq 14\,M_\odot$ companions). If veritable planets, they would lie just outside the CMB-prohibited zone and so may have formed via GI at their present locations. Alternatively, they could have formed at smaller radii and migrated outward (e.g. Veras et al. 2009; but see Dodson-Robinson et al. 2009; Bowler et al. 2011) or originated as free-floating planets (Perets & Kouwenhoven 2012; Strigari et al. 2012).§§

While the planets shown in Fig. 3 lie well below the CMB-prohibited zone, there are only a few planets that are outside the metal cooling-prohibited zone, at $r \gtrsim 6\text{ AU}$. Thus, unless they migrated inward from larger radii, it appears that there are only a handful of known planets that could have formed via GI. In particular, this is the case for the planets reported by Setiawan et al. (2012). While they orbit a star with $[\text{Fe/H}] \simeq -2$, suggesting that they formed from gas with metallicity well above the critical metallicity for GI, they lie at $r \lesssim 0.81\text{ AU}$, well within $r_{\text{min}} \simeq 6\text{ AU}$. Importantly, however, given the old age of $\simeq 12.8\text{ Gyr}$ inferred for this planetary system, if there is indeed a larger r_{min} of $\sim 25\text{ AU}$ for circumstellar disks at this metallicity (and for the mass $m_\star \simeq 0.8\,M_\odot$ inferred for its host star), as suggested by Fig. 2, then this would pose a strong challenge to GI as an explanation even in this case.

Finally, we note that it has been suggested that planets currently on relatively tight orbits around their host stars may have formed from the collapse of significantly more massive (perhaps super-planetary) fragments at larger radii, which then migrated inward and lost mass due to tidal shear or stellar irradiation (Nayakshin 2010). If this process is indeed at play, then it is possible that some of the planets in Fig. 3 may have originated from GI, despite residing in the metal cooling-prohibited zone today.

§§ Migration and/or capture by the host star are important caveats to consider with regard to conclusions drawn from comparison with data, which only reflect where the planets orbit their host stars today. In particular, we note that inward migration is especially likely for planets formed via GI (e.g. Baruteau et al. 2011), which could potentially place some of the planets in Fig. 1 in the CMB-prohibited zone at their formation, or place some of those currently within r_{min} in between r_{min} and r_{max} at their formation.

Figure 3. The semimajor axes (vertical axis) and host stellar age (horizontal axis) of planets, as described in Section 5, along with any reported error in these quantities. The top series of colored lines show the maximum possible distances r_{max} at which planets can form from their host stars via GI, as a function of their present age (see equation 4), for four different host stellar masses as labeled. Beyond this maximum distance it is predicted that planet formation is not possible via GI, due to the CMB temperature floor. We term this region the ‘CMB-prohibited’ zone. The bottom series of colored lines show the minimum possible temperature floor. We term this region the ‘CMB-prohibited’ zone.

‡‡ We have chosen to plot the curves for this single maximal planet mass m_{min}, since most of the data imply only a lower limit to their mass, meaning that such a high mass can not in general be ruled out. We emphasize, however, that the region in which planet formation is suppressed is larger for planets with lower masses (see equation 4 and Fig. 2).
6 CONCLUSIONS

As an alternative to the core accretion model for the formation of the first planets (discussed in Paper I), we have considered here the formation of the earliest planets via GI.

We have argued that there is a maximum circumstellar disk temperature only below which can planets form via GI. In turn, this implies a maximum distance from their host stars at which planets can form via GI due to the temperature floor set by the CMB. As the CMB temperature is higher at earlier times, planets may only form via GI at distances from their host stars which decrease with their present-day age.

We have furthermore estimated the minimum metallicity required for the fragmentation of circumstellar disks into planet mass objects. We find that this critical metallicity for GI is \(Z_{\text{crit}} \approx 10^{-4} Z_{\odot} \), well below that for core accretion. In turn, because planet formation via GI is possible at smaller distances from the host star at lower metallicities, this critical metallicity implies a minimum distance of a few AU at which planets can form via GI.

These two limits together imply that, while planet formation via GI can take place at metallicities below those required for core accretion, it can only occur at metallicities \(\gtrsim 0.1 Z_{\odot} \) at times \(\gtrsim 2 \) Gyr after the Big Bang. In particular, this does not rule out that the first planets in the Universe may indeed have formed via GI at metallicities \(10^{-4} \lesssim Z \lesssim 10^{-1} Z_{\odot} \) during the epoch of the first galaxies, \(\sim 500 \) Myr after the Big Bang (e.g. Bromm & Yoshida 2011).

That said, we find that there are only a handful of known planets which lie within the bounds of the metal cooling- and CMB-prohibited zones in which planets can form via GI. It may be, however, that some known planets could have migrated inward from their formation sites outside the metal cooling-prohibited zone. This may explain, in particular, the existence of the very low-metallicity planets reported by Setiawan et al. (2012), the formation of which is otherwise difficult to explain in the core accretion model.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy through the LANL/LDRD Program. JLJ gratefully acknowledges the support of a Director’s Postdoctoral Fellowship at Los Alamos National Laboratory. The authors thank the reviewers for constructive and cordial reports, as well as for encouraging us to explore the impact of low metallicity on planet formation via GI as we have done in Section 4.

REFERENCES

Barkana, R., Loeb, A. 2001, PhR, 349, 125
Baruteau, C. et al. 2011, MNRAS, 416, 1971
Béjar, V. J. S. et al. 2008, ApJ, 673, 185
Bell, K. R., Lin, D. N. C. 1994, ApJ, 427, 987
Boley, A. C., et al. 2006, ApJ, 651, 517
Boley, A. C. 2009, ApJ, 695, L53
Boley, A. C., et al. 2010, Icar, 207, 509
Boss, A. P. 1997, Sci, 276, 1836
Boss, A. P. 1998, ApJ, 503, 923
Boss, A. P. 2002, ApJ, 567, L149
Boss, A. P. 2011, ApJ, 731, 74

6 CONCLUSIONS

Boss, A. P. 2012, MNRAS, 419, 1930
Bowler, B., et al. 2011, ApJ, 743, 148
Bromm, V., Yoshida, N. 2011, ARA&A, 49, 373
Cai, K., et al. 2006, ApJ, 636, L149
Cai, K., et al. 2008, ApJ, 673, 1138
Chauvin, G., et al. 2004, A&A, 425, 29
Clark, P. C., et al. 2011, Science, 331, 1040
Clark, P. C., Glover, S. C. O., Klessen, R. S. 2008, ApJ, 672, 757
Clarke, C. J., Lodato, G. 2009, MNRAS, 398, L6
Cossins, P., Lodato, G., Clarke, C. 2009, MNRAS, 393, 1157
Cossins, P., Lodato, G., Clarke, C. 2010, MNRAS, 401, 2587
D’Angelo, et al. 2010, arXiv:1006.5486
Desidera, S., et al. 2013, A&A, in prep
Dodson-Robinson, S. E., et al. 2009, ApJ, 707, 79
Durisen, R. H., et al. 2007, PrPl, 951, 607
Ercolano, B., Clarke, C. J. 2010, MNRAS, 402, 2735
Forgan, D., et al. 2011, MNRAS, 410, 994
Forgan, D., Rice, K. 2011, MNRAS, 417, 1928
Forgan, D., Rice, K. 2013, MNRAS, accepted (arXiv:1301.1151)
Gammie, C. F. 2001, ApJ, 553, 174
Goodman, J. 2003, MNRAS, 339, 937
Gorti, U., Hollenbach, D. 2009, ApJ, 690, 1539
Greif, T. H., et al. 2010, ApJ, 716, 510
Helled, R., Bodenheimer, P. 2011, Icar, 211, 939
Ireland, M. J., et al. 2011, ApJ, 726, 113
Johnson, J. L., Li, H. 2012, ApJ, 751, 81
Kalas, P., et al. 2008, Sci, 322, 1345
Kimura, S. S., Tsuribe, T. 2012, ApJ, submitted (arXiv:1205.3013)
Komatsu, E., et al. 2011, ApJS, 192, 18
Kratter, K. M., et al. 2010, ApJ, 710, 1375
Kratter, K. M., Murray-Clay, R. A. 2011, ApJ, 740, 1
Lafrenière, D., et al. 2008, ApJ, 689, 153L
Lafrenière, D., et al. 2010, ApJ, 719, 497
Lagrange, A.-M., et al. 2010, Sci, 329, 57
Levin, Y. 2007, MNRAS, 374, 515
Marois, C., et al. 2008, Sci, 322, 1348
Mayer, L., et al. 2004, ASPC, 321, 290
Mejía, A. C., et al. 2005, ApJ, 619, 1098
Melles, C., et al. 2012, Nat, in press (arXiv:1207.1162)
Meru, F., Bate, M. R. 2010, MNRAS, 406, 2279
Nayakshin, S. 2006, MNRAS, 372, 143
Nayakshin, S. 2010, MNRAS, 408, L36
Nelson, A. F., et al. 2000, ApJ, 529, 357
Papaloizou, J. C. B., Terquem, C. 2006, RPPh, 69, 119
Perets, H. B., Kouwenhoven, M. B. N. 2012, ApJ, submitted (arXiv:1202.2362)
Pollack, J. B., et al. 1996, Icar, 124, 62
Rafikov, R. R. 2005, ApJ, 621, 69
Rice, W. K. M., et al. 2011, MNRAS, 411, 2228
Rice, W. K. M., et al. 2011, MNRAS, 418, 1356
Rogers, P. D., Wadsley, J. 2011, MNRAS, 414, 913
Setiawan, J., et al. 2012, A&A, 540, A141
Shechenkov, et al. 2012, arXiv:1210.6519
Sigurdsson, S., et al. 2003, Sci, 301, 193
Stamatellos, D., Whitworth, A. P. 2008, A&A, 480, 879
Stamatellos, D., Whitworth, A. P. 2009, MNRAS, 392, 413
Strigari, L. E., et al. 2012, MNRAS, 423, 1856
Thompson, T. A., Quataert, E., Murray, N. 2005, ApJ, 630, 167
Toomre, A., 1964, ApJ, 139, 1217
Vazan, A., Helled, R. 2012, ApJ, accepted (arXiv:1206.5887)
Veras, D., Crepp, J. R., Ford, E. B. 2009, ApJ, 696, 1600
Wise, J. H., Abel, T. 2008, ApJ, 685, 40
Wright, J. T., et al. 2011, PASP, accepted (arXiv:1012.5676)
Youdin, A. N., Kenyon, S. J. 2012, arXiv:1206.0738
Zhu, Z., et al. 2012, ApJ, 746, 110

© 2012 RAS, MNRAS 000, 000–000