Awareness of Daegu Citizens on Urban Agriculture

Boong Hoon Eom¹ and Eun Jin Jang²

¹Faculty of Environment, Horticulture and Landscaping, Catholic University of Daegu 38430, South Korea
²Department of Horticulture, The Graduate School, Catholic University of Daegu 38430, South Korea

Abstract

The purpose of this study was to investigate the awareness of Daegu citizens on urban agriculture. A questionnaire was conducted for 15 days from May 9 to May 25, 2015, and a sample group consisting of 328 residents of Daegu. The cognitions of awareness to effects and preferences of urban agriculture were analyzed. The cognition level of urban agriculture is in a very low state, the level of satisfaction in experienced groups were high. In addition, intentions of participation in the future were very high. The potential capability of urban agriculture is very strong. In motivation and purpose of urban agriculture activities, such as ‘Hobby and leisure activities’, ‘Safe food production’ were shown as high frequency. In cognition towards the effects of urban agricultural activity, ‘Safe agricultural products’, ‘Change in dietary life’ were shown to be in high points of agreement. Furthermore, in preferences of the type and activities, ‘Rooftop garden’, ‘Learning/education type home garden’, ‘Home garden utilizing the pieces of small land’, ‘Box home garden’, and ‘Personal weekend farm’ were shown to be highly preferred types. Within the effects of urban agriculture, 4 factors were categorized; ‘Negative effects of urban agriculture’, ‘Positive effects of urban agriculture’, ‘Environmental Improving effects’, and ‘Benefits effects’. In addition, 3 factors are prevalent in type and activities of urban agriculture, ‘Participations of experiencing/education programs’, ‘Cultivation of rental home gardens’, and ‘Lifestyle home garden type’. Conclusively, although the situation of urban agriculture is in the beginning stages, the potential capability of urban agriculture is great. In the future, diverse types of hardware and software programs, such as diverse education/experiencing programs and information supporting programs, will both be required for development.

Key words: city farming, cognition to urban agriculture, effects, preferences

Received on October 31, 2016. Revised on November 4, 2016. Accepted on November 30, 2016.

*Corresponding author: bheom@cu.ac.kr

©2016 by the Korean Society for People, Plants, and Environment
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, and reproduction in any medium, provided the original work is properly cited.
being 1,084,000 in 2014. In addition, the number of urban family vegetable gardens have increased to 16 times from 4,093 in 2011 to 69,244 in 2014 (Shin, 2015).

In order to activate the culture of urban agriculture, Daegu-city has hosted the annual fair of urban agriculture at the Daegu agricultural high school since 2012. The city has proclaimed the activation plan of urban agriculture, investing 4,160 million won until 2017. This investment increases the population of urban farmers to 250,000, which is 10% of the total population of citizens of Daegu (MAFRA, 2015).

At the moment, this research is performed in order to investigate the awareness of Daegu citizens on urban agriculture, such as cognition to urban agriculture, participation intention, preference of activities and further needs. The results of this survey are utilized as basic data for the activation policy of urban agriculture in Daegu city.

II. Theoretical basis

In 2012, Korea enacted the ‘Law of Nurturing and Supporting Urban Agriculture’. Within this law, urban agriculture is defined as “An action of growing or cultivating crops, utilizing lands and buildings or diverse life spaces in the city area, for a hobby, leisure, learning and experiencing” (http://www.lawnb.com). Jang (2009) has defined urban agriculture as “An agriculture of expanding plural functions of agriculture, for mitigating or solving urban problems and eco-oriented lifestyles”. Na (2010) has also stressed multiple common benefits of urban agriculture.

Effects and functions of urban agriculture are presented by precedent researches. Na (2011) has suggested the functional effects of urban agriculture as ① Energy saving effects, ② Environmental improvement effects, ③ Food safety effects, ④ Community activation effects, ⑤ Experiential education effects, ⑥ Health and recreational effects, and ⑦ Social welfare effects. Lee & Hwang (2012) have presented 8 functions of urban agriculture as ① Environmental conservation, ② Disaster prevention, ③ Community activation, ④ Activation of local economy, ⑤ Environmental education, ⑥ Leisure activities, ⑦ Health and recreation, and ⑧ Social welfare.

In the ‘Law of Nurturing and Supporting Urban Agriculture’, urban agriculture is divided into 5 types; ① Residential types, ② Neighborhood types, ③ Downtown types, ④ Farm & park types, and ⑤ School education types (http://www.lawnb.com). Kim et al. (2010) have categorized urban agriculture into 5 types of agricultural activities; ① Industrial type agriculture, ② Experiential type agriculture, ③ Learning-education type agriculture, ④ Exchanging type agriculture, and ⑤ Cycling type agriculture.

Lee (2013) has suggested health seeking lifestyles have more influence on urban agricultural policy. And he also has reported that groups of women and higher incomes showed higher preferences for urban agricultural activities.

This paper, focused mainly on cognition to urban agriculture, awareness on effects of urban agriculture, and preference in types and activities of urban agriculture.

III. Research method

1. Survey Period & Sample Group

A questionnaire was conducted in the downtown area (Dongseong-Ro, 2-28 memorial park) of Daegu city, from May 9, to May 25, 2015. Self-administered questionnaire was done with a sample group of 340 respondents. Thus, final data of 328 respondents were analyzed with the exclusion of 12 sheets of insincere answer.

2. Design of survey form

Current research papers were reviewed and reclassified as survey question items, for the preference of types and activities in urban agriculture (Jeong et al., 2012; Jeong et al., 2013; Lee et al., 2013). In addition, to secure the validity of assessment tools, two expert professors examined the survey items.

34 question items total for the survey of awareness and attitude of Daegu citizens; were prepared in Table 1. Five items of demographic characteristics and eight items of awareness of urban agriculture were presented on nominal scale. In addition, each of the 20 items of the cognition to effect of urban agriculture, and the preference of types and activities in urban agriculture, were presented on a 5-point Likert type interval scale.
Table 1. Survey contents.

Variables	Categories	Scale	No. of questions
Demographic characteristics	Gender, age, education, resident area, occupation	Nominal	5
	1) Awareness of the term urban agriculture		
	2) The experience of urban agriculture activities		
	(1) Experience period		
	(2) Satisfaction of experience		
	(3) Future ongoing intention		
	3) The purpose (motivation) of urban agriculture activities	Nominal	8
	4) To anyone with the urban agriculture activities		
	(1) Experience period		
	(2) Satisfaction of experience		
	(3) Future ongoing intention		
	6) Intention of participation in urban agriculture activities		
	7) Rent home garden size (area)		
	8) Annual fee for rent		
Awareness on urban agriculture	1) Health promotion	Interval	20
	2) Make changes in dietary life		
	3) Psychological sense of stability		
	4) Recovery of humanity through nature sympathy		
	5) Revitalization of local communities		
	6) Effect of learning experiences related to agriculture		
	7) Create employment in the city		
	8) Supply of safe agricultural products		
	9) Promotion of urban and rural exchanges		
	10) Activation of Agriculture by local farming		
	11) Economic benefits (Food security)		
	12) Prevention of urban floods and disasters		
	13) Mitigation of the urban heat island phenomenon		
	14) Improving the local environment		
	15) Lack of living space by urban gardens		
	16) Lack of urban green space by urban agriculture		
	17) Damaging urban landscapes		
	18) Occurrence of environmental pollution		
	19) Bad influence on the rural economy		
	20) Pest occurred by the cultivation of the crops		
Preference in types and activities of urban agriculture	1) Indoor cultivation of vegetable gardens	Interval	20
	2) Apartment balcony vegetable gardens		
	3) Home garden cultivation utilizing the boxes		
	4) Home garden cultivation utilizing the rooftops		
	5) Cultivation of residents' common vegetable garden in apts.		
	6) Home garden development utilizing pieces of small land		
	7) Personal weekend farm cultivation in suburban areas		
	8) Cultivation of rental gardens in urban agricultural parks		
	9) Cultivation of rental gardens from public institutions		
	10) Cultivation of rental garden in private farmlands		
	11) Learning-education type garden cultivation in schools		
	12) Donate-produced agricultural products to low-incomes		
	13) Participate in healing garden and nature learning centers		
	14) Participate in the agricultural experience program		
	15) Participate in rural education farm experiences		
	16) Participate in eco-friendly compost productions		
	17) Participate in gardening education programs		
	18) Participate in horticultural healing programs		
	19) Join urban agriculture leadership training programs		
	20) Join urban agriculture fairs and exhibitions		
3. Statistical Analysis

The data, collected by questionnaires, were processed by cleaning and coding for statistical analysis. SPSS Statistics 19.0 program was used for the statistical analysis. Frequency analysis was used for demographic attributes of respondents, and awareness to urban agriculture. For the analysis of awareness for effects and preferences of type and activities of urban agriculture, the mean values of each item were compared, and the reliability tests by using Cronbach’s alpha value were also performed. To verify the validity of each variables of awareness for the effects and preferences of type and activities of urban agriculture, exploratory factor analysis by the varimax rotation method was also performed.

IV. Results and Discussions

1. Demographics of Respondents

The items for demographic characteristics were gender, age, education level, monthly income, resident area, and job. The results of frequency analysis for these demographic characteristics were shown in Table 2.

In gender, number of women (58.2%) are more than that of men (41.8%). In age, forties was the biggest group by 38.1%, and then fifties (27.7%). Thirties (18.3%) was the next in frequency. In education level, college/univ. (58.2%), high-school (31.4%), and graduate school (6.4%) were high in frequency, respectively. In resident areas, Nam-gu (22.0%), Suseong-gu (18.3%), Dong-gu (16.5%), and Buk-gu (12.5%) were high, respectively. In occupation, housewives (23.2%), office workers (22.3%), and self-employed (16.8%) were high in frequency, respectively.

2. Awareness on Urban Agriculture

1) Cognition to Urban Agriculture

In the results of cognition to urban agriculture, ‘Have heard, don’t know exact meaning’ and ‘Never heard, don’t know’ were as high as 55.8% and 22.9%, respectively. Therefore, the ‘Knowing’ group of urban agriculture was just 21.3% (Fig. 1).
To compare this, the precedent research reported that the ‘Knowing’ group of urban agriculture is up to 33.8% in Kyeong-nam residents (Kim et al., 2011). This means that the cognition level of our sample to urban agriculture is very low.

2) Experience extents of urban agriculture

In the results of frequency in experience of urban agriculture, those in the ‘No experience’ group were 67.4%, and those in the ‘Experience’ group was just 32.6%. Then, in the experiencing periods, ‘Less than a year’ and ‘Less than 5 years’ were 45.4% and 35.2%, respectively. Therefore, the experiences and its periods of urban agriculture are shown to be very low and relatively short. The results show little difference with the precedent report that Kim et al. (2011) reported showing the ‘Experienced’ group as 25.9% in Kyeong-nam residents. This means that the stage of urban agriculture in Korea is at the beginning stage.

Nevertheless, the satisfaction level of experience in urban agriculture is very high. 90% of respondents answered over than moderate satisfaction. In addition, the future ongoing intention of urban agriculture was also high. Over 85% of respondents answered over than moderate agreement to ongoing urban agricultural activities in the future. This is a similar result to the precedent research, the participation will was shown to be 82.7% (Jeong et al., 2013).

3) Purpose of urban agriculture

For the purpose of urban agriculture, ‘Safe food production’ and ‘Hobby and leisure activity’ were shown to be high frequency, 53.2% and 33.5%, respectively. Also, ‘Physical and mental health’ was shown as 8.5%. Kim et al. (2011) have reported ‘Safe food production’ (55.7%), ‘Experiencing education’ (17.6%), and ‘Environmental improvement’ (12.5%). Hence, ‘Safe food production’ is said to be the main purpose of urban agriculture. Detailed results are shown in Table 4.

4) Awareness on urban agriculture

Partners in urban agricultural activities, ‘Spouse and family’ was absolutely high at 83.9%. ‘Neighbors’ and ‘Friends, colleagues’ were next at 11.0% and 4.9%, respectively. And, in the source of obtaining informations on urban agriculture, ‘Newspaper, broadcast and internet’ was the highest frequency as 48.5%. Then, ‘Neighbors and relatives’, ‘Related books’, and ‘Agricultural technology center’ were high at 23.2%, 15.2%, and 6.7%, respectively.

In participation intention in the future, ‘Moderate’ was the most high at 42.1%. Then, ‘Agree’ and ‘Strongly agree’ was high at 37.3% and 6.4%, respectively. This means that in spite of very low awareness and experience level, the participation

Table 3. Experience extent of the urban agriculture.

Variable	Categories	Freq.	%	
Experience	No experience	220	67.4	
	Experience	108	32.6	
	Total	328	100	
Experience period	Less than 1 year	49	45.4	
	1 ~ 4 years	38	35.2	
	5 ~ 9 years	14	13.9	
	More than 10 years	6	5.6	
	Total	108	100	
Satisfaction of experience	Very dissatisfied	2	2.8	
	Dissatisfied	8	7.4	
	Neither dissatisfied nor satisfied	46	42.6	
	Satisfied	45	41.7	
	Very satisfied	5	5.6	
	Total	108	100	
Future ongoing intention	Extremely not	4	4.6	
	Not so	11	10.2	
	Average	38	35.2	
	So	43	39.8	
	Extremely so	11	10.2	
	Total	108	100	

Table 4. Purpose of urban agriculture.

Categories	Freq.	%
Safe food production	174	53.0
Hobby and leisure activity	110	33.5
Physical and mental health	28	8.5
Children’s experience education	7	2.1
Rural perfume	4	1.2
Recovery of neighbor community	2	0.6
Return to farming	3	0.9
Total	328	100.0

543
willingness was very high. This result could be interpreted as a very high capability of urban agriculture. As for the size of rent garden, in the case of lease a garden, the wanted size of a garden is shown as ‘16.5~33 m²’ (31.7%), ‘9.9~16.5 m²’ (28.4%), ‘Less than 9.9 m²’ (16.5%), 33~49.5 m² (14.0%), and 49.5~66.5 m² (9.5%), respectively. Total average size was calculated as 23.7 m² (7.2Pyeong). In annual rent, ‘less than 50,000won’ was the top frequency at 34.1%, 50,000~100,000won (32.0%), 100,000~150,000won (23.8%), 150,000~200,000won (9.1%) were high in order, respectively. Total average annual rent was calculated as about 80,000won.

3. Awareness on effects of urban agriculture

Total 20 variables for effects of urban agriculture, were tested for reliability. Cronbach’s α value was shown very high at 0.943, and no variable was recommended to exclude. This means that the reliability of each variables were very high with the high level of internal consistency.

In the awareness on effects of urban agriculture, mean score of ‘Supply of safe agricultural products’ was the highest score at 3.83 in the 5-point Likert scale (1=strongly disagree, 5=strongly agree). Then, ‘Effect of the learning experience in agriculture’ (3.79), ‘Psychological sense of stability’ (3.78), ‘Health promotion’ (3.65) were high-scored variables. On the other hand, the negative effects, such as ‘Damage and inharmonious of urban landscape’ (2.43) and ‘Bad influence on rural economy’ (2.51), estimated at very low average scores. This means that the negative effects were evaluated as not so much significance (Table 6).

These results were very similar to the precedent research, which was reported as, “urban agriculture is very beneficial leisure activity which have diverse effects, such as nature appreciation, supplying safe agricultural products, pleasure in cultivating garden products, rehabilitation of body and mind, and happiness of sharing with neighbors” (Park, 2011).

Next, an exploratory factor analysis was conducted using the validity test by the KMO (Kaiser-Meyer-Olkin) test and Bartlett’s sphericity test. KMO value was 0.862 and the significance of Bartlett’s sphericity test was 0.000. This means the factor analysis is adequate and valid, verifying common factors. In the factor analysis, factors having over 1 in eigenvalue and varimax rotation methods were adopted. Generally, the criteria for construct validity of each variable’s factor loading score is over 0.5. In this result, factor loading scores of all variables were estimated to be over 0.6, thus the construct validity of variables is verified.

As the result of rotated factor pattern, there were 4 factors. In factor 1, ‘Bad influence on rural economy’, ‘Lack of urban green space by urban agriculture’, ‘Damaging urban landscape by urban agriculture’, ‘Occurrence of environmental pollution’, ‘Pest occurred by the cultivation of the crops’, and ‘Lack of other living space by urban gardens’ were categorized. Therefore, factor 1 was named as ‘Negative effects of urban agriculture’.

In factor 2, ‘Health promotion’, ‘Psychological sense of stability’, ‘Recovery of humanity by nature sympathy’, ‘Revitalization of local community’, ‘Make change in dietary life’, and ‘Activation
Table 6: Cognition of the overall effect of urban agriculture.

Component	Factor loadings	α	Eigen value	% of Variance	Communality	M±SD	z
	Factor 1						
Bad influence on the rural economy	0.819	0.702	3.754	18.77	0.702	2.51±0.84	
Lack of urban green space by urban agriculture	0.814	0.683	2.53±0.80				
Damaging urban landscape by urban agriculture	0.790	0.699	2.43±0.83				
Occurrence of environmental pollution	0.787	0.662	2.58±0.78				
Pest occurred by the cultivation of the crops	0.747	0.602	2.80±0.80				
Lack of other living space by urban gardens	0.719	0.571	2.65±0.82				
	Factor 2						
Health promotion	0.787	0.734	3.65±0.86				
Psychological sense of stability	0.780	0.745	3.78±0.85				
Recovery of humanity by nature sympathy	0.761	0.672	3.55±0.95				
Revitalization of local community	0.672	0.663	3.33±0.85				
Make changes in dietary life	0.603	0.652	3.83±0.80				
Activation of Agriculture by local farming	0.593	0.691	3.16±0.90				
	Factor 3						
Mitigation of urban heat island phenomenon	0.798	0.689	3.31±0.77				
Prevention of urban flood and disaster	0.752	0.635	3.14±0.79				
Improving local environment	0.729	0.624	3.28±0.82				
Create employment in the city	0.684	0.549	3.13±0.83				
Promotion of urban and rural exchange	0.603	0.674	3.11±0.88				
	Factor 4						
Supply of safe agricultural products	0.769	0.721	3.83±0.81				
Effect of the learning experience in agriculture	0.662	0.629	3.79±0.79				
Economic benefits (Food security)	0.635	0.605	3.53±0.84				

α value was shown very high at 0.868, and no variable was recommended to exclude. This means the reliability of each variables is also high with a high level of internal consistency.

The average score of preference by each variable, ‘Home garden cultivation utilizing the rooftops’ was the highest score at 3.84, in 5-point Likert scale (1=not at all prefer, 5=very highly prefer). Then, ‘Learning education type home garden cultivation’ (3.64), ‘Home garden development utilizing piece of small land’ (3.62), ‘Home garden cultivation utilizing the boxes’ (3.60) ‘Personal weekend farm cultivation in suburbs’ (3.56) were high-scored variables. On the other hand, ‘Participate in eco-friendly compost production’ (3.20), and ‘Join urban agriculture leadership training program’ (3.23) estimated as relatively low average scores (Table 7). These results were similar to precedent research, which reported that ‘Vegetable harvesting’ was the most preferred activity, and that ‘Fertilizing’ was the least preferred activity (Jeong et al., 2013).
Table 7. Preference of type and activity in urban agriculture.

Measurement item	Factor loadings	α	Eigen value	% of Variance	Communality	M±SD
Participate in the rural education farm experience	0.847	0.769	6.208	31.041	0.769	3.33±0.95
Participate in the agricultural experience program	0.847	0.780	3.37±0.94			
Participate in gardening education programs	0.829	0.781	3.39±0.93			
Participate in eco-friendly compost production	0.810	0.711	3.20±0.93			
Join urban agriculture leadership training programs	0.791	0.934	3.23±0.91			
Participate in horticultural healing programs	0.789	0.659	3.52±0.92			
Join urban agriculture fairs and exhibitions	0.789	0.696	3.38±0.96			
Participate in healing gardens and nature centers	0.784	0.673	3.49±0.93			
Donate-produced agricultural products	0.534	0.489	3.36±0.91			
Learning education type home garden cultivation	0.453	0.473	3.64±0.86			

Factor 1						
Cultivation of rental gardens in urban agricultural parks	0.851	0.792	4.086	20.429	0.791	3.46±0.86
Cultivation of rental gardens from public institutions	0.851	0.791	4.37±0.88			
Cultivation of rental gardens in private farmlands	0.789	0.891	3.40±0.88			
Personal weekend farm cultivation in suburbs	0.743	0.640	3.56±0.90			
Home garden development utilizing pieces of small land	0.613	0.648	3.62±0.91			

Factor 2						
Apartment balcony vegetable garden culture	0.820	0.784	3.51±1.03			
Home garden cultivation utilizing the boxes	0.807	0.794	3.60±0.90			
Home garden cultivation utilizing the rooftops	0.786	0.887	3.84±0.91			
Indoor cultivation of vegetable gardens	0.784	0.721	3.40±1.04			
Cultivation of residents common vegetable garden in aps.	0.560	0.605	3.49±1.02			

Factor 3						
House garden cultivation utilizing the rooftops	0.887	3.618				
Indoor cultivation of vegetable gardens	0.784	0.721	3.40±1.04			
Cultivation of residents common vegetable garden in aps.	0.560	0.605	3.49±1.02			

Means±SD. Cumulative % = 69.56, KMO = 0.910, Bartlett’s Chi-Square = 5412.84 (df=190, p=0.000), Mean=Average value of 5-point Likert Scale (1=not at all prefer, 5=very highly prefer).

An exploratory factor analysis was also conducted with the validity test by the KMO (Kaiser-Meyer-Olkin) test and Bartlett’s sphericity test. The KMO value was 0.910, and the significance of Bartlett’s sphericity test was 0.000. This means, the factor analysis was adequate and valid in verifying common factors. In this result, factor loading scores of all variables were estimated at over 0.5, except ‘Learning education type home garden cultivation’.

As the result of the rotated factor pattern, there were 3 factors. In factor 1, ‘Participate in the rural education farm experience’, ‘Participate in the agricultural experience programs’, ‘Participate in gardening education programs’, ‘Participate in eco-friendly compost production’, ‘Join urban agriculture leadership training programs’, ‘Participate in horticultural healing programs’, ‘Join urban agriculture fairs and exhibitions’, ‘Participate in healing gardens and nature centers’, ‘Donate-produced agricultural products’, and ‘Learning education type home garden cultivation’ were categorized. Therefore, factor 1 was named ‘Participations of experiencing/education programs’.

In factor 2, ‘Cultivation of rental gardens in urban agricultural parks’, ‘Cultivation of rental gardens from public institutions’, ‘Cultivation of rental gardens in private farmlands’, ‘Personal weekend farm cultivation in suburbs’, and ‘Home garden development utilizing pieces of small land’ were categorized. Thus, was named ‘Cultivation of rental home gardens’.

In factor 3, ‘Apartment balcony vegetable garden culture’, ‘Home garden cultivation utilizing the boxes’, ‘Home garden cultivation utilizing the rooftops’, ‘Indoor cultivation of vegetable gardens’, and ‘Cultivation of residents common vegetable garden in aps’ was categorized. Thus, factor 3 Was named ‘Lifestyle home garden type’. The percent of factor 1 for total variance was 31.04%, factor 2 was 20.43%, and factor 3 was 18.09%. Cumulative variance of total factors was 69.56% (Table 7).
V. Summary

The purpose of this study was to investigate the awareness of Daegu citizens towards urban agriculture. The intentions of participation and preference of type and activities were the main survey topics, and the results could be utilized as basic data for the activation of urban agriculture of Daegu city.

In cognition of urban agriculture, 78.7% of respondents were of no recognition group, and also 67.1% were of no experience group. This means that the cognition level to urban agriculture is in a very low state. Although, the experienced group had a short period of experience, the level of satisfaction in the experienced group was high. And intentions of participation in the future were also very high. This means that the potential capability of urban agriculture was very strong.

In motivation and purpose of urban agriculture activities, ‘Hobby and leisure activities’ and ‘Safe food production’ were shown as high frequency. In addition, a majority of respondents answered ‘Spouse and family’ as their participation partners. In cognition towards the effects of urban agricultural activity, ‘Safe agricultural products’, ‘Change in dietary life’, ‘Learning experience’, and ‘Psychological sense of stability’ were shown as a high average score of agreement. In preferences of the types and activities, ‘Rooftop gardens’, ‘Learning/education type home gardens’, ‘Home garden utilizing the pieces of small land’, ‘Box home garden’, and ‘Personal weekend farm’ were shown to be highly preferred types. From the result of factor analysis for 20 variables of effects of urban agriculture, 4 factors were categorized; ‘Negative effects of urban agriculture’, ‘Positive effects of urban agriculture’, ‘Environmental Improving effects’, and ‘Benefits effects’. In addition, there were 3 factors in preferences for types and activities of urban agriculture; ‘Participations of experiencing/education programs’, ‘Cultivation of rental home gardens’, and ‘Lifestyle home garden type’.

In conclusion, the cognition and experience of Daegu citizens in urban agriculture is very low. Although the situation of urban agriculture is in its beginning stages, the potential capability of urban agriculture is great. In the future, diverse types of hardware and software programs, such as education/experiencing programs and information supporting programs, will both need to be required for development. Especially, regarding the result of this research, development of daily life space home gardens such as rooftops, balconies, and box home gardens, should be strengthened as policy and measures for urban agriculture of Daegu city.

VI. References

Daegu Agricultural Technology Center. 2015. The main business plan of urban agriculture. http://www.daegu.go.kr
Im, M.J. 2011. A Perception survey on the users of urban gardens for local community vitalization. MS thesis, Seoul Women’s Univ., Seoul, Korea.
Jang, D.H. 2006. Study on ecology-oriented urban agriculture. PhD Diss., Chonbuk Natl. Univ., Chonju, Korea.
Jeong, S.J., S.M. Lee, Y.J. Lee, Y.J. Song, and J.H. Moon. 2012. Preference and needs of users and staffs in botanical gardens and arborets for activities related to urban agriculture. J. Korean Soc. People Plants Environ. 15(6):501-510.
Jeong, S.J., S.M. Lee, J.H. Moon, Y.J. Lee, and Y.J. Song. 2013. Preference and needs of users in urban park for activities related to urban agriculture. J. Korean Soc. People Plants Environ. 16(4):217-225.
Kim, S.B., J.H. Cho, and E.H. Jung. 2002. Environmental friendly city and city farming. J. Nakdonggang Environ. Res. 7(1):71-91.
Kim, T.G., M.H. Park, and J.N. Heo. 2010. Vision and assignment for the urban agriculture. Korea Rural Economy Institute. Research Paper R629.
Kim, H.D., Y.D. Gwon, and Y.S. Kim. 2011. The actual state and activation plan of urban agriculture in Kyeong-nam Area. Gyeongnam Development Institute. Focus and Issues, 6:1-31.
Lee, B.N., D.H. Yang, and E.H. Lee. 2013. Analysis of policy and current status in urban agriculture. J. Korean Soc. People Plants Environ. 16(3):151-159.
Lee, C.W. and W.J. Hwang. 2012. Seoul urban agriculture activation measures. The Seoul Institute. Working Paper PR-35.
Lee, D.G. 2013. A Study of the preference on the type of urban agriculture and activity preferences by lifestyle. MS thesis, Hanyang Univ., Seoul, Korea.
Ministry of Agriculture, Food and Rural Affairs. 2014. Ministry of agriculture, food and rural affairs annual report.
Ministry of Land, Infrastructure and Transport. 2015. Urban planning statistics annual report.
Na, Y.E. 2010. Driving projects of urban agriculture for the energy independence. Korean J. Environ. Agric. 29(3):303-308.
Park, S.G. 2007. Our agriculture, hope of choice. Sidaeuichang. Seoul, Korea.
Park, T.H. 2011. Effect of urban farming program on the participants’ sense of community-focused on the urban farms in Seoul. MS thesis, Univ. of Seoul, Seoul, Korea.
Shin, S.Y. 2015. A study on the improvement of a system for activation of urban farm. PhD Diss., Youngsan Univ., Yangsan, Korea.
Son, S.G. 2013. Sociological reflections on the urban agriculture activation. MS thesis, Seoul Natl. Univ., Seoul, Korea.