A NEW PROGRESS ON WEAK DIRAC CONJECTURE

HOANG HA PHAM AND TIEN CUONG PHI

Abstract. In 2014, Payne-Wood proved that every non-collinear set \(P \) of \(n \) points in the Euclidean plane contains a point in at least \(\frac{n}{37} \) lines determined by \(P \). This is a remarkable answer for the conjecture, which was proposed by Erdős, that every non-collinear set \(P \) of \(n \) points contains a point in at least \(\frac{n}{c_1} \) lines determined by \(P \), for some constant \(c_1 \). In this article, we refine the result of Payne-Wood to give that every non-collinear set \(P \) of \(n \) points contains a point in at least \(\frac{n}{26} + 2 \) lines determined by \(P \). Moreover, we also discuss some relations on theorem Beck that every set \(P \) of \(n \) points with at most \(l \) collinear determines at least \(\frac{1}{61} n(n - l) \) lines.

1. Introduction

Let \(P \) be a set of points in the Euclidean plane. A line that contains at least two points in \(P \) is said to be determined by \(P \).

In 1951, G. Dirac ([4]) made the following conjecture, which remains unsolved:

Conjecture 1 (Strong Dirac Conjecture). Every non-collinear set \(P \) of \(n \) points in the plane contains a point in at least \(\frac{n}{2} - c_0 \) of the lines determined by \(P \), for some constant \(c_0 \).

In 2011, J. Akiyama, H. Ito, M. Kobayashi, and G. Nakamura ([2]) gave some examples to show that the \(\frac{n}{2} \) bound would be tight. We note that if \(P \) is non-collinear and contains \(\frac{n}{2} \) or more collinear points, then Dirac’s Conjecture holds. Thus we may assume that \(P \) does not contain \(\frac{n}{2} \) collinear points, and \(n \geq 5 \).

In 1961, P. Erdős ([5]) proposed the following weakened conjecture.

Conjecture 2 (Weak Dirac Conjecture). Every non-collinear set \(P \) of \(n \) points contains a point in at least \(\frac{n}{c_1} \) lines determined by \(P \), for some constant \(c_1 \).

2010 Mathematics Subject Classification. 52C10, 52C30.

Key words and phrases. Arrangement of points, Incident-line-number, Dirac conjecture, lines with few point.
In 1983, Beck ([3]) and Szemerédi-Trotter ([18]) proved the Weak Dirac Conjecture for the case c_1 but it is unspecified or very large. In 2014, Payne-Wood ([15]) proved the following theorem:

Theorem 1. Every non-collinear set P of n points contains a point in at least $\frac{n}{37}$ lines determined by P.

For the first purpose of this article, we would like to give a new progress for the Weak Dirac conjecture. In particular, we prove the following:

Main theorem 1. Every non-collinear set P of n points contains a point in at least $\frac{n}{26} + 2$ lines determined by P.

Moreover, relate to work on the Weak Dirac Conjecture, Beck gave the number of lines determined by P. He proved the following theorem.

Theorem 2. ([3]) Every set P of n points with at most l collinear determines at least $c_2 n(n - l)$ lines, for some constant c_2.

In 2014, Payne-Wood also gave a remarkable improvement of Beck’s theorem by proving the following.

Theorem 3. ([15]) Every set P of n points with at most l collinear determines at least $\frac{1}{98} n(n - l)$ lines.

We note that the number 98 can be instead by 93. The details can be found in [14].

For the final purpose, we would like to give some results for the number of lines with few points from n points in plane. Then, we also give the following theorems.

Main theorem 2. Every set P of n points with at most l collinear determines at least $\frac{1}{61} n(n - l)$ lines.

Main theorem 3. Every set P of n points with at most l collinear determines at least $\frac{1}{122} n(n - l)$ lines with at most 3 points.

2. **Auxiliary Results**

We list here some known results which are very helpful for the proofs of the main theorems.

The crossing number of a graph G, denoted by $cr(G)$, is the minimum number of crossings
Lemma 4. *(Crossing lemma [13]).* For every graph with \(n \) vertices and \(m \geq \frac{103}{16}n \) edges, then
\[
\text{cr}(G) \geq \frac{1024m^3}{31827n^2}.
\]

We set \(E(H) \) to be the set of all edges of a graph \(H \). The visibility graph \(G \) of a point set \(P \) has vertex set \(P \), where \(vw \in E(G) \) whenever the line segment \(vw \) contains no other point in \(P \) (that is, \(v \) and \(w \) are consecutive on a line determined by \(P \)). For \(i \geq 2 \), an \(i \)-line is a line containing exactly \(i \) points in \(P \). Let \(s_i \) be the number of \(i \)-lines. Let \(G_i \) be the spanning subgraph of the visibility graph of \(P \) consisting of all edges in \(j \)-lines where \(j \geq i \). Note that since each \(i \)-line contributes \(i-1 \) edges, \(|E(G_i)| = \sum_{j \geq i} (j-1)s_j \).

We introduce some useful results:

Theorem 5. *(Hirzebruch’s Inequality [10]).* Let \(P \) be a set of \(n \) points with at most \(n-3 \) collinear. Then
\[
s_2 + \frac{3}{4}s_3 \geq n + \sum_{i \geq 5} (2i - 9)s_i.
\]

Theorem 6. *(Szemerédi-Trotter [18]).* Let \(\alpha \) and \(\beta \) be positive constants such that every graph \(H \) with \(n \) vertices and \(m \geq \alpha n \) edges satisfies
\[
\text{cr}(H) \geq \frac{m^3}{\beta n^2}.
\]

Let \(P \) be a set of \(n \) points in the plane. Then
\[
\text{a)} \quad |E(G_i)| = \sum_{j \geq i} (j-1)s_j \leq \max \{ \alpha n, \frac{\beta n^2}{2(i-1)^2} \},
\]
\[
\text{b)} \quad \sum_{j \geq i} s_j \leq \max \{ \frac{\alpha n}{i-1}, \frac{\beta n^2}{2(i-1)^3} \}.
\]

3. A new progress on Weak Dirac’s conjecture

In order to get the main theorem 1, we refine the method of Payne-Wood to find the largest number \(\varepsilon \) such that every set \(P \) of \(n \) non-collinear points in the plane at most \(\varepsilon n + 2 \) collinear points, the arrangement of \(P \) has at least \(\varepsilon n^2 + 2n \) point-line incidents. We start by the following result.
Theorem 7. Let α and β be positive constants such that every graph G with n vertices and $m \geq \alpha n$ edges satisfies $cr(G) \geq \frac{m^3}{\beta n^2}$.

Fix two integers $c \geq 8, 0 \leq q \leq 3$ and a real number $\epsilon \in (0; \frac{1}{2})$, $\epsilon n \geq 2$. Let $h := \frac{c(c-2)}{5c-18}$. Then for every set P of n points in the plane with at most $\epsilon n + q$ collinear points, the arrangement of P has at least $\delta n^2 + r n$ point-line incident, where

$$
\delta = \frac{1}{h+1} \left(1 - \epsilon \alpha - \frac{\beta}{2} \left(-\frac{18(c-2)}{c^3(5c-18)} + \sum_{i \geq c} \frac{i+1}{i^3} \right) \right),
$$

$$
r = \frac{2h-1 + \alpha}{h+1}.
$$

Proof. Let $J = \{2; 3; \ldots; \lfloor \epsilon n \rfloor + q \}$ and assume that $\epsilon n \geq 2$. Considering the visibility graph G of P and its subgraphs G_i as defined previously. Let k be the minimum integer such that $|E(G_k)| \leq \alpha n$. If there is no such k then let $k = \lfloor \epsilon n \rfloor + q + 1$. An integer $i \in J$ is large if $i \geq k$, and is small if $i \leq c$. An integer in J that is neither small nor large is medium.

Recall that an i-line is a line containing exactly i points in P. An i-pair is a pair of points in an i-line. A small pair is an i-pair for some small i. Define large pair, medium pair analogously. Let P_S, P_M and P_L denote the number of small, medium and large pairs respectively. An i-incidence is an incidence between a point of P and an i-line. A small incidence is an i-incidence for some small i, and define medium, large incidences analogously. Let I_S, I_M and I_L denote the number of small, medium and large incidences respectively and let I denote the total number of incidences. Since every s_i has i points incidence with its, then

$$I = \sum_{i \in J} i s_i = I_S + I_M + I_L$$

Because P has no more than $\frac{n}{2}$ collinear points and $n \geq 5$, thus $\lfloor \epsilon n \rfloor + q \leq \frac{n}{2} \leq n - 3$. Therefore, for n points of P has no more than $n - 3$ collinear points. Applying the Hirzebruch’s Inequality (Theorem 5), we have

$$s_2 + \frac{3}{4} s_3 \geq n + \sum_{i \geq 5} (2i - 9) s_i.$$
Since $h > 0$ then,

$$hs_2 + \frac{3}{4}hs_3 - hn - h\sum_{i \geq 5} (2i - 9)s_i \geq 0.$$

$$P_S = \sum_{i=2}^{c} \left(\frac{i}{2} \right) s_i$$

$$= s_2 + 3s_3 + 6s_4 + \sum_{i=5}^{c} \left(\frac{i}{2} \right) s_i$$

$$\leq (h + 1)s_2 + \left(\frac{3h}{4} + 3 \right)s_3 + 6s_4 + \sum_{i=5}^{c} \left(\frac{i}{2} \right) s_i - hn - h\sum_{i \geq 5} (2i - 9)s_i$$

$$= \frac{h + 1}{2}s_2 + \frac{h + 4}{4}s_3 + \frac{3}{2}4h_4 + \sum_{i=5}^{c} \left(\frac{i - 1}{2} - 2h + \frac{9h}{i} \right) is_i$$

$$- h\sum_{i=c+1}^{k-1} (2i - 9)s_i - h\sum_{i \geq k} (2i - 9)s_i - hn$$

$$\leq \frac{h + 1}{2}s_2 + \frac{h + 4}{4}s_3 + \frac{3}{2}4h_4 + \sum_{i=5}^{c} \left(\frac{i - 1}{2} - 2h + \frac{9h}{i} \right) is_i$$

$$- h\sum_{i=c+1}^{k-1} (2 - \frac{9}{c + 1}) is_i - h\sum_{i \geq k} (2 - \frac{7}{c})(i - 1)s_i - hn.$$

Setting $X := \max\{\frac{h + 1}{2}; \frac{h + 4}{4}; \frac{3}{2}; \max_{5 \leq i \leq c} (\frac{i - 1}{2} - 2h + \frac{9h}{i})\}$ implies that,

$$P_S \leq XI_S - h\sum_{i=c+1}^{k-1} (2 - \frac{9}{c + 1}) is_i - h\sum_{i \geq k} (2 - \frac{7}{c})(i - 1)s_i - hn. \quad (3.1)$$

Let $\gamma(h, i) = \frac{i - 1}{2} - 2h + \frac{9h}{i}$ for $5 \leq i \leq c$.

We have: $\gamma_i'' \geq 0 \forall i \in (5, c) \Rightarrow \gamma(h, i)_{\text{max}} = \gamma(h, 5) = 2 - \frac{h}{5}$

or $\gamma(h, i)_{\text{max}} = \gamma(h, c) = \frac{c - 1}{2} - 2h + \frac{9h}{c}$ for $c \geq 8$.
Clearly, \(h(c) = \frac{c(c - 2)}{5c - 18} \) has minimum value \(\frac{24}{11} \) when \(c = 8 \). Hence,

\[
\begin{align*}
\frac{h + 1}{2} & \geq \frac{3}{2} \\
\frac{h + 1}{2} & \geq \frac{h + 4}{4} \\
\frac{h + 1}{2} & \geq 2 - \frac{h}{5} \\
\frac{h + 1}{2} & = \frac{c - 1}{2} - 2h + \frac{9h}{c}.
\end{align*}
\]

Thus, \(X = \frac{h + 1}{2} \).

On the other hand, if \(i \in J \) is medium \((c < i < k) \) then \(i \) is not large. Therefore, \(\sum_{j \geq i} (j - 1)s_j > \alpha n \). Because if \(\sum_{j \geq i} (j - 1)s_j \leq \alpha n \) then \(|E(G_i)| \leq \alpha n \), contradict with minimum property of \(k \). Using part (a) and (b) of the Szemerdi-Trotter theorem 6,

\[
\sum_{j \geq i} js_j = \sum_{j \geq i} (j - 1)s_j + \sum_{j \geq i} s_j \leq \frac{\beta n^2}{2(i - 1)^2} + \frac{\beta n^2}{2(i - 1)^3} = \frac{\beta n^2i}{2(i - 1)^3}.
\]

(3.2)

Given \(X \) as above, we have

\[
P_M - XI_M = \left(\sum_{i = c + 1}^{k-1} \left(\begin{array}{c} i \\ 2 \end{array} \right) s_i \right) - X \left(\sum_{i = c + 1}^{k-1} is_i \right)
= \frac{1}{2} \sum_{i = c + 1}^{k-1} (i - 1 - 2X)is_i.
\]

Combining with (3.1), we get

\[
P_S + P_M \leq XIS - hn + XI_M + \frac{1}{2} \sum_{i = c + 1}^{k-1} \left(i - 1 - 2X - 4h + \frac{18h}{c + 1} \right) is_i - h(2 - \frac{7}{c})|E(G_k)|.
\]

(3.3)

We define

\[
Y = c - 5h - 2 + \frac{18h}{c + 1}
= c - 2 - 5\frac{c(c - 2)}{5c - 18} + \frac{18c(c - 2)}{(c + 1)(5c - 18)}
= -18\frac{(c - 2)}{(c + 1)(5c - 18)}.
\]
This implies $-1 < Y < 0$ with $c \geq 8$. Thus we have,

$$T = \frac{1}{2} \sum_{i=c+1}^{k-1} \left(i - 1 - 2X - 4h + \frac{18h}{c+1} \right) is_i = \frac{1}{2} \sum_{i=c+1}^{k-1} (i - c + Y) is_i$$

$$= \frac{1}{2} \left(\sum_{i=c+1}^{k-1} \sum_{j=1}^{k-1} js_j \right) + \frac{Y}{2} \left(\sum_{i=c+1}^{k-1} is_i \right)$$

$$\leq \frac{1}{2} \left(\sum_{i=c+1}^{k-1} \sum_{j=i}^{k-1} js_j \right) + \frac{Y}{2} \left(\sum_{i=c+1}^{k-1} is_i \right).$$

Applying (3.2) and $Y + 1 > 0$, this yields

$$T \leq \frac{1}{2} \sum_{i \geq c+1}^{k-1} \beta n^2 i \frac{2}{2(i-1)^2} + \frac{Y}{2} \beta n^2 (c+1) = \frac{\beta n^2}{4} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right). \quad (3.4)$$

Finally, we have

$$P_L - XI_L = \sum_{i=k}^{\lceil \epsilon n \rceil + q} \frac{i}{2} \left(s_i - \sum_{i \geq k} \sum_{i \geq k} (i-1)s_i - X \sum_{i \geq k} (i-1)s_i = \left(\frac{\epsilon n + q}{2} - X \right)|E(G_k)|. \quad (3.5)$$

Combining (3.3), (3.4), (3.5), we get

$$P_S + P_M + P_L \leq X(I_S + I_M + I_L) - hn$$

$$+ \frac{\beta n^2}{4} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right) + \frac{1}{2} (\epsilon n + q - 2X - 4h + \frac{7h}{c})|E(G_k)|$$

$$\leq XI - hn + \frac{\beta n^2}{4} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right) + \frac{1}{2} (\epsilon n - 2)|E(G_k)| \quad (by 1 \leq q \leq 3, c \geq 8)$$

$$\leq XI - hn + \frac{\beta n^2}{4} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right) + \frac{1}{2} (\epsilon n - 2)\alpha n.$$

On the other hand, we have $P_S + P_M + P_L = \left(\frac{n}{2} \right) = \frac{1}{2}(n^2 - n)$.

Thus, we get

$$\frac{1}{2}(n^2 - n) \leq XI - hn + \frac{\beta n^2}{4} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right) + \frac{\epsilon \alpha n^2}{2} - \alpha n.$$

$$\Rightarrow I \geq \frac{1}{2X} \left(1 - \epsilon \alpha - \frac{\beta}{2} \left(Y \frac{c+1}{c^3} + \sum_{i \geq c} \frac{i+1}{i^3} \right) \right) n^2 + \frac{2h - 1 + \alpha}{2X} n.$$
Since $X = \frac{h + 1}{2}$ and $Y = \frac{-18(c - 2)}{c^3(5c - 18)}$ then,

$$I \geq \frac{1}{h + 1} \left(1 - \epsilon \alpha - \frac{\beta}{2} \left(\frac{-18(c - 2)}{c^3(5c - 18)} + \sum_{i \geq c} \frac{i + 1}{i^3} \right) \right) n^2 + \frac{2h - 1 + \alpha n}{h + 1}$$

$$= \delta n^2 + rn.$$

□

Theorem 8. Every set P of n non-collinear points in the plane with at most $\frac{n}{26} + 2$ collinear points, the arrangement of P has at least $\frac{n^2}{26} + 2n$ point-line incidents.

Proof. Case 1. If $0 < \frac{n}{26} < 1$, then the arrangement of P is $n^2 - n > \frac{n^2}{26} + 2n$ by $n \geq 5$.

Case 2. If $1 \leq \frac{n}{26} < 2$, then $I = 2s_2 + 3s_3 \geq s_2 + 3s_3 = \frac{n^2 - n}{2} > \frac{n^2}{26} + 2n$ by $n \geq 26$.

Case 3. If $\frac{n}{26} \geq 2$, then the assumptions of Theorem 7 satisfy with $\epsilon = \frac{1}{26}, c = 46, q = 2$.

We have

$$I \geq \delta n^2 + rn \geq \frac{n^2}{26} + 2n.$$

The proof of Theorem 8 is completed.

□

So we now can give the proof of Main theorem 1.

Proof. Let P be a set of n non-collinear points in the plane. If P contains at least $\frac{n}{26} + 2$ collinear points, then every other point is in at least $\frac{n}{26} + 2$ lines P (one through each of the collinear points). Otherwise, by Theorem 8, the arrangement of P has at least $\frac{n^2}{26} + 2n$ incidences, and so some point is incident with at least $\frac{n}{26} + 2$ lines determined by P. Main theorem 1 is proved.

□

We note that the number $\epsilon = \frac{1}{26}$ is best possible in this technic. Indeed, for our purpose, we need $\delta \geq \epsilon$ to get a constant ϵ in Theorem 7. Using equivalent transformation,

$$\epsilon \leq \frac{1 - \frac{\beta}{2} \left(\frac{-18(c - 2)}{c^3(5c - 18)} + \sum_{i \geq c} \frac{i + 1}{i^3} \right)}{h + 1 + \alpha}$$

$$= \frac{1 - \frac{\beta}{2} \left(\frac{-18(c - 2)}{c^3(5c - 18)} + \sum_{i \geq c} \frac{i + 1}{i^3} \right)}{\frac{c(c - 2)}{5c - 18} + 1 + \alpha}.$$

We have $0 < \epsilon < 1$, and so $1 - \epsilon \alpha - \sum_{i \geq c} \frac{i + 1}{i^3} \geq 0$, we have

$$\epsilon \leq \frac{1 - \frac{\beta}{2} \left(\frac{-18(c - 2)}{c^3(5c - 18)} + \sum_{i \geq c} \frac{i + 1}{i^3} \right)}{\frac{c(c - 2)}{5c - 18} + 1 + \alpha}.$$
In order to having maximum value ε we need to optimal value c. We define

$$f(c) = \frac{1 - \frac{\beta}{2} \left(\frac{-18(c - 2)}{c^3(5c - 18)} + \sum_{i \geq c} \frac{i + 1}{i^3} \right)}{\frac{c(c - 2)}{5c - 18} + 1 + \alpha},$$

for defined constant α, β in Crossing lemma 4. Using Maple application we have that the maximum value of $f(c)$ is at $c = 46$. Hence, we can choose $\varepsilon > \frac{1}{26}$. This shows that $\frac{1}{26}$ is the best constant.

4. THE LINES WITH FEW POINTS

Theorem 9. Let α, β be positive constants such that every graph H with n vertices and $m \geq \alpha n$ edges satisfies

$$cr(H) \geq \frac{m^3}{\beta n^2}.$$

Fix an integer $c \geq 29$. Then for every set P of n points in the plane with at most l collinear points, the arrangement of P has at least

$$s_2 + \frac{3h}{4}s_3 - hn - h \sum_{i \geq 5} (2i - 9)s_i \geq 0.$$
Now we have,

\[P_S = \sum_{i=2}^{c} \binom{i}{2} s_i \]

\[= s_2 + 3s_3 + 6s_4 + \sum_{i=5}^{c} \binom{i}{2} s_i \]

\[\leq (h+1)s_2 + \left(\frac{3h}{4} + 3 \right) s_3 + 6s_4 + \sum_{i=5}^{c} \binom{i}{2} s_i - hn - h \sum_{i \geq 5}^{c} (2i-9)s_i \]

\[\leq (h+1)s_2 + \frac{3}{4}(h+4)s_3 + 6s_4 + \sum_{i=5}^{c} \left(\frac{i(i-1)}{2} - h(2i-9) \right) s_i - hn - h \sum_{i \geq c+1}^{c} (2i-9)s_i. \]

By \(c \geq 29 \), it is easy to see that

\[X := h + 1 = \max\{h + 1; \frac{3}{4}(h + 4); 6; \max_{5 \leq i \leq c} \left(\frac{i(i-1)}{2} - h(2i-9) \right) \}, \]

and thus we get

\[P_S \leq XL_S - hn - h \sum_{i \geq c+1}^{c} (2i-9)s_i. \]

For the medium index \(i \), we use the Crossing Lemma 4 and part (a) of Theorem 6 to imply that

\[\sum_{j \geq i} (j-1)s_j \leq \frac{\beta n^2}{2(i-1)^2}, \]
thus we have

\[
P_S + P_M - XLS \leq -hn - h \sum_{i \geq c+1} (2i - 9)s_i + \sum_{i = c+1}^{k-1} \left(\binom{i}{2} \right) \frac{i(i - 1)}{2} - h(2i - 9)s_i
\]

\[
= -hn - h \sum_{i \geq k} (2i - 9)s_i + \sum_{i = c+1}^{k-1} \left(\binom{i}{2} \right) \frac{i(i - 1)}{2} - h(2i - 9)s_i
\]

\[
= -hn - h \sum_{i \geq k} (2i - 9)s_i + \frac{1}{2} \left(\sum_{i = c+1}^{k-1} \left(c - \frac{4hi - 18h}{i - 1} \right)(i - 1)s_i + \sum_{i = c+1}^{k-1} \sum_{j = i}^{k-1} (j - 1)s_j \right)
\]

\[
\leq -hn - h \sum_{i \geq k} (2i - 9)s_i + \frac{1}{2} \left(\sum_{i = c+1}^{k-1} \left(c - \frac{4h + 14h}{i - 1} \right)(i - 1)s_i + \sum_{i = c+1}^{k-1} \sum_{j = i}^{k-1} (j - 1)s_j \right)
\]

\[
= -hn - h \sum_{i \geq k} (2i - 9)s_i + \frac{1}{2} \left(\sum_{i = c+1}^{k-1} \left(c - \frac{4h + 14h}{i - 1} \right)(i - 1)s_i + \sum_{i = c+1}^{k-1} \sum_{j = i}^{k-1} (j - 1)s_j \right)
\]

On the other hand, we have

\[
c - 4h + \frac{14h}{c} = c - 4\frac{c^2 - c - 2}{4c - 16} + \frac{7c^2 - 7c - 14}{c(2c - 8)} = \frac{c^2 - 3c - 14}{2c(c - 4)}
\]

\[
\Rightarrow c - 4h + \frac{14h}{c} > 0 \text{ (by } c \geq 29)\]

So we get

\[
P_S + P_M - XLS \leq -hn - h \sum_{i \geq k} (2i - 9)s_i + \frac{1}{2} \left(\sum_{i = c+1}^{k-1} \left(c^2 - 3c - 14 \right) \frac{2c^3 - 4c^2}{2c(c + 4)} (i - 1)s_i + \sum_{j = c+1}^{k-1} \sum_{i \geq j} (i - 1)s_i \right)
\]

\[
\leq -hn - h \sum_{i \geq k} (2i - 9)s_i + \left(\sum_{i = c+1}^{k-1} \left(c^2 - 3c - 14 \right) \frac{2c^3 - 4c^2}{2c^3(c - 4)} + \sum_{i \geq c} \frac{1}{i^2} \right) \frac{\beta n^2}{4}.
\]
Thus, we now have

\[
\binom{n}{2} - XL_S = P_S + PM + PL - XL_S
\]

\[
\leq -hn - h \sum_{i \geq k} (2i - 9) s_i + \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \frac{\beta n^2}{4} + \sum_{i = k}^{l} \binom{i}{2} s_i
\]

\[
= -hn + \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \frac{\beta n^2}{4} + \sum_{i \geq k} \left(\frac{i(i - 1)}{2} - 2hi + 9h \right) s_i
\]

\[
= -hn + \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \frac{\beta n^2}{4} + \sum_{i \geq k} \left(\frac{i}{2} - 2h + \frac{7h}{i - 1} \right) (i - 1) s_i
\]

\[
\leq -hn + \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \frac{\beta n^2}{4} + \frac{l}{2} E(G_k) |\]

\[
\leq -hn + \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \frac{\beta n^2}{4} + \frac{l}{2} \alpha n.
\]

So we get

\[
L_S \geq \left(1 - \beta \frac{1}{4} \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \right) n^2 \frac{X}{X} + \left(h - \frac{1}{2} - \frac{l}{2} \alpha \right) n
\]

\[
\geq \left(1 - \frac{1}{2} - \frac{\beta}{4} \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \right) n^2 \frac{X}{X} - \frac{l}{2} \alpha n.
\]

On the other hand, \(X = h + 1 = \frac{c^2 + 3c - 18}{4c - 16} \), we thus get

\[
L_S \geq \left(1 - \frac{\beta}{2} \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq e} \frac{1}{i^2} \right) \right) \frac{2c - 8}{c^2 + 3c - 18} n^2 - \frac{(2c - 8) \alpha}{c^2 + 3c - 18} ln.
\]

Theorem 9 is proved.

For the case \(c = 36 \), we get the following.

Corollary 10. Every set \(P \) of \(n \) points with at most \(l \) collinear determines at least \(\frac{1}{39} n^2 - \frac{1}{3} ln \) lines with at most 36 points.

We now apply Theorem 9 to give the proof of Main theorem 2.
Proof. We may assume that \(l \) is the size of the longest line. For some integer \(c \geq 29 \), then by Theorem 9 we have \(L \geq L_s \geq A(c)n^2 - B(c)nl \) for some \(A(c) \) and \(B(c) \) evident in the theorem. Observe that,

\[
A(c) = \left(1 - \frac{\beta}{2} \left(\frac{c^2 - 3c - 14}{2c^3(c - 4)} + \sum_{i \geq c} \frac{1}{i^2} \right) \right) \frac{2c - 8}{c^2 + 3c - 18}
\]

\[
B(c) = \frac{(2c - 8)\alpha}{c^2 + 3c - 18}.
\]

We note that,

\[
\frac{2A}{1 + 2B} \geq \epsilon
\]

\[
\Rightarrow A \geq \frac{\epsilon}{2} + B\epsilon - \frac{\epsilon^2}{2}
\]

\[
\Rightarrow An \geq \frac{en}{2} + (B - \frac{\epsilon}{2})en
\]

\[
\Rightarrow An \geq \frac{en}{2} + (B - \epsilon)nl
\]

\[
\Rightarrow An^2 - Bnl \geq \frac{en(n - l)}{2}.
\]

So we can find the maximum of \(\frac{2A(c)}{1 + 2B(c)} \) to get a largest number \(\epsilon \). Now, set \(c = 44 \) we get \(\epsilon \leq \frac{1}{30.2} \). So we choose \(\epsilon = \frac{1}{30.5} \) to complete Main theorem 2. \(\square \)

We now get Main theorem 3 by using Main theorem 2 and the following observation:

Theorem 11. ([15]) Let \(P \) be a set of \(n \) non-collinear points in a plane. Then at least half the lines determined by \(P \) contain at most 3 points.

References

[1] Martin Aigner and Günter M. Ziegler, *Proofs from The Book*. Springer, 3rd edn., 2004.

[2] Jin Akiyama, Hiro Ito, Midori Kobayashi, and Gisaku Nakamura, *Arrangements of \(n \) points whose incident-line-numbers are at most \(n/2 \).* Graphs Combin., 27(3):321-326, 2011.

[3] József Beck, *On the lattice property of the plane and some problems of Dirac, Motzkin and Erdos in combinatorial geometry*, Combinatorica, 3(3-4):281-297, 1983.

[4] Gabriel A. Dirac, *Collinearity properties of sets of points.* Quart. J. Math., Oxford Ser. (2), 2:221-227, 1951.

[5] Paul Erdős, *Some unsolved problems.* Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:221-254, 1961. http://www.renyi.hu/~p_erdos/1961-22.pdf.
[6] Paul Erdős and George Purdy, *Some combinatorial problems in the plane*. J. Combin. Theory Ser. A, 25(2):205-210, 1978.
[7] Paul Erdős and George Purdy, *Two combinatorial problems in the plane*. Discrete Comput. Geom., 13(3-4):441-443, 1995.
[8] Paul Erdős and Endre Szemerédi, *On sums and products of integers*. In Studies in pure mathematics, pp. 213-218. Birkhauser, Basel, 1983.
[9] Ben J. Green and Terence Tao, *On sets defining few ordinary lines*, Discrete Comput Geom., 50:409-468, 2013.
[10] Friedrich Hirzebruch, *Singularities of algebraic surfaces and characteristic numbers*. In The Lefschetz Centennial Conference, Part I, vol. 58 of Contemp. Math., pp. 141-155. Amer. Math. Soc., 1986.
[11] Leroy M. Kelly and William O. J. Moser, *On the number of ordinary lines determined by n points*. Canad. J. Math., 10:210-219, 1958.
[12] Eberhard Melchior, *Über Vielseite der projektiven Ebene*. Deutsche Math., 5:461-475, 1941.
[13] János Pach, Radoš Radoičić, Gábor Tardos and Géza Tóth, *Improving the crossing lemma by finding more crossings in sparse graphs*. Discrete Comput. Geom., 36(4):527-552, 2006.
[14] Michael S. Payne, *Combinatorial geometry of point sets with collinearities*. PhD thesis, The University of Melbourne, Department of Mathematics and Statistics, 2014. http://www.ms.unimelb.edu.au/~mspayne/MichaelPayneThesis.pdf.
[15] Michael S. Payne and David R. Wood, *Progress on Dirac’s Conjecture*, The electronic journal of combinatorics, 21(2):2-12, 2014.
[16] George Purdy, *A proof of a consequence of Dirac’s conjecture*. Geom. Dedicata, 10(1-4):317-321, 1981.
[17] László A. Székely, *Crossing numbers and hard Erdös problems in discrete geometry*. Combin. Probab. Comput. 6(3):pp 353-358, 1997.
[18] Endre Szemerédi and William T. Trotter, Jr, *Extremal problems in discrete geometry*. Combinatorica, 3(3-4):381-392, 1983.

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy str., Hanoi, Vietnam

E-mail address: ha.ph@hnue.edu.vn; cuong.tienphi@gmail.com