Dilational symmetry-breaking in thermodynamics

Chris L Lin and Carlos R Ordóñez

Department of Physics, University of Houston, Houston, TX 77204-5005, United States of America
E-mail: cllin@uh.edu and ordonez@uh.edu

Received 6 September 2016, revised 7 February 2017
Accepted for publication 3 April 2017
Published 26 April 2017

Abstract. Using thermodynamic relations and dimensional analysis we derive a general formula for the thermodynamical trace $2\mathcal{E} - D\mathcal{P}$ for nonrelativistic systems and $\mathcal{E} - D\mathcal{P}$ for relativistic systems, where D is the number of spatial dimensions, in terms of the microscopic scales of the system within the grand canonical ensemble. We demonstrate the formula for several cases, including anomalous systems which develop scales through dimensional transmutation. Using this relation, we make explicit the connection between dimensional analysis and the virial theorem. This paper is focused mainly on the non-relativistic aspects of this relation.

Keywords: conformal field theory, cold atoms, quantum gases, renormalisation group
1. Introduction

The quantity $2\mathcal{E} - DP$ for non-relativistic systems, or $\mathcal{E} - DP$ for relativistic systems, where \mathcal{E} is the thermal energy density, D the number of spatial dimensions, and P the pressure, plays an important role in physics. For example, this quantity is the thermal analog of the trace of the improved stress-energy tensor which is a measure of dilational symmetry-breaking and which plays a central role in the renormalization group [1–3].

In non-relativistic physics, $2\mathcal{E} - DP$ can be used as a measure of deviations of real gases from ideal ones. Traditionally, such deviations are measured by giving the two systems the same value for two of their thermodynamic variables, and taking the difference between them for a third. For example, the difference in pressure between a real gas and an ideal one at the same temperature and density can be written approximately as the virial equation: $P_{\text{real}} - P_{\text{ideal}} = \rho kT (B_2(T)\rho + B_3(T)\rho^2 + ...)$ [4]. For ideal gases, and in general non-anomalous scale-invariant systems, $2\mathcal{E} - DP = 0$. Therefore at constant pressure and volume, one can define $(2\mathcal{E}_{\text{real}} - DP) = (2\mathcal{E}_{\text{real}} - DP) - (2\mathcal{E}_{\text{ideal}} - DP) = (2\mathcal{E}_{\text{real}} - 2\mathcal{E}_{\text{ideal}}) \equiv 2\mathcal{E}_{\text{res}}$, so that $(2\mathcal{E}_{\text{real}} - DP)$ equals twice the residual internal energy characterizing the departure of the system from ideal [5]. In other words, for any system, $2\mathcal{E} - DP$ is equal to the difference in its energy from any non-anomalous scale-invariant system’s energy at the same V and P. For ultracold gases interacting via contact interaction, $2\mathcal{E} - DP$ is
proportional to the Tan contact $\lambda^2\langle\bar{\psi_i}\psi_i\bar{\psi}_j\psi_j\rangle$ [6]. Many universal relations depending on the contact exist, independent of the exact details of the experimental setup [7, 8].

For systems that are scale invariant at the level of the classical action, a non-zero value of $2\mathcal{E} - DP$ signifies a quantum anomaly, so that $2\mathcal{E} - DP$ measures quantum anomalies. Previously, it was shown that even in anomalous non-relativistic systems, $2\mathcal{E} - DP$ can be expressed as a functional determinant via use of Fujikawa’s path integral methods [9–12]. Therefore, one can potentially extract information about $\beta(C)$ and hence obtain information from or even solve the scattering problem by extracting information from the thermodynamic problem.

In this paper we derive a simple expression for $2\mathcal{E} - DP$ from dimensional analysis and thermodynamics, independent of quantum mechanics or field theory and independent of Noether’s theorem and canonical commutation relations. In this paper we will use units where $\hbar = m = k_B = 1$. The units for all quantities can then be written as $\hbar m^{j}k_B^{k}L^{l} = L^{l}$, where L is a variable in the problem with units of length. We will define $[g_k] = \ell$, and call ℓ the dimensions of the variable g_k.

With this convention, $2\mathcal{E} - DP = \sum_k [g_k]g_k\frac{\partial P}{\partial g_k}$, where $\mathcal{E} = \frac{E}{V}$ is the thermal energy per unit volume, P is the pressure, and D is the number of spatial dimensions. In this formula g_k are the microscopic parameters of the theory, and $[g_k]$ are the dimensions of these parameters. The derivatives w.r.t. microscopic parameters are taken at constant temperature β^{-1}, volume V, and chemical potential for each species μ_i. The LHS is written in terms of pure macroscopic thermodynamic variables, while the RHS contains derivatives purely on the microscopic parameters. Such an equation can be seen as connecting thermodynamics on the LHS (variables characterizing the macrostate) and statistical mechanics on the RHS (microscopic variables that are system dependent). In particular, for a theory in which all the couplings are dimensionless (in the sense that they have no length dimension as defined above), $[g_k] = 0$, and one might expect the system to be scale invariant with $2\mathcal{E} - DP = 0$. However, for such systems, we show $2\mathcal{E} - DP = -\beta(C)\frac{\partial P}{\partial C}$. The microscopic parameters g_k of a system usually appear in its Hamiltonian as coupling constants, except in the case of dimensional transmutation. The latter leads to a new scale appearing in the pressure P, and in the literature this is called a quantum anomaly [13]. Therefore $2\mathcal{E} - DP$ is also a measure of the anomaly for classically scale-invariant systems.

The relativistic generalization is $\mathcal{E} - DP = \sum_k [g_k]g_k\frac{\partial P}{\partial g_k}$. It was shown in [14, 15] that the trace of the improved stress-energy tensor in relativistic $\lambda\phi^4$ has the property $\theta^{00} - \sum_i \theta^{ii} = m^2\phi^2$, where the mass term represents a dilational symmetry-breaking term and the improved stress-energy tensor $\theta^{\mu\nu}$ is related to the canonical one $T^{\mu\nu}$ by $\theta^{\mu\nu} = T^{\mu\nu} + \frac{D-1}{4D} (g^{\mu\nu}\partial^2 - \partial^\mu\partial^\nu)\phi^2$ [16]. Identifying θ^{00} as \mathcal{E} and $\sum_i \theta^{ii} = DP_H$, where P_H is the hydrodynamic pressure, one derives the thermal analog, θ^{ii} is equal to the hydrodynamic pressure [17]; however, in equilibrium, the thermodynamic pressure P equals P_H via the virial theorem (although anomalies can complicate matters [18]). Therefore deriving this expression from the stress-energy tensor requires an improvement of the stress-energy tensor, and an identification of field variables with thermodynamic variables. Similarly, the canonical stress-tensor T_{ij} for nonrelativistic fields can be improved to $\theta_{ij} = T_{ij} + \frac{D}{4(D-1)} (\delta_{ij}\nabla^2 - \partial_i\partial_j) (\psi^\dagger\psi)$ such that $2\theta_{00} - \theta_{ii}$, which can be
identified with $2\mathcal{E} - DP$, gives the divergence of the dilation current [19]. We avoid the complications of having to construct the improved stress-energy tensor, or having to work in the context of field theory, by working directly within thermodynamics. We show the consistency of the equation for a variety of cases, with and without anomalies, and then we show that starting from $2\mathcal{E} - DP = \sum_k [g_k] g_k \frac{\partial P}{\partial g_k}$, one can derive the virial theorem, further illustrating the correctness of the expression and showing the relationship between scaling and the virial theorem. The relativistic case is also considered.

While the emphasis of this paper is on structural aspects of the thermodynamical traces $2\mathcal{E} - DP$ and $\mathcal{E} - DP$ (nonrelativistic and relativistic cases respectively), we have included in section 4 a few examples that connect our results with the literature and illustrate how to apply the techniques developed here. In our recent work [9–11, 20] we have aimed at offering a different approach and new perspectives to the study of the type of systems presented here. We hope to use the insight gained to apply these techniques and concepts to other problems and systems [21].

2. Proof of relation

For ease of presentation, take the independent, dimensionful microscopic parameters g_k of our theory, and form new parameters E_k with dimensions of energy by raising g_k to the appropriate power, and rewrite the pressure in terms of these new variables [1]. The grand potential $\Omega = \Omega(\beta, \mu, V, E_i)$ for a homogeneous system in D-spatial dimensions must have the form

$$\Omega(\beta, z_i, V, E_i) = V \beta^{-\frac{D}{2}} f(z_i, \beta E_i),$$

(1)

where $f(z_i, \beta E_i)$ is a dimensionless function of dimensionless variables, and $z_i = e^{\beta \mu_i}$ is the fugacity corresponding to μ_i. The reason Ω must have this form is because β and μ_i don’t depend on the absolute size of the system (they are intensive variables). If one doubles the system keeping β and μ_i constant, then Ω, being an extensive quantity, should double. So Ω must be proportional to V. To make up for the remaining dimension ($[\Omega] = -2$), we are free to pull out one of the dimensionful arguments of Ω, and the rest of the arguments must be ratios with the argument we pulled out. We will pull out β. This is equivalent to choosing our scale as β and measuring all other quantities in units of β.

Now take the derivative of equation (1) w.r.t. to β at constant fugacity z_i and volume V, and multiply times β:

$$\beta \left. \frac{\partial \Omega}{\partial \beta} \right|_{z_i, V} = \left. \left(-1 - \frac{D}{2} \right) \Omega + V \beta^{-\frac{D}{2}} \beta \frac{\partial f(z_i, \beta E_i)}{\partial \beta} \right|_{z_i}$$

$$= \left. \left(-1 - \frac{D}{2} \right) \Omega + V \beta^{-\frac{D}{2}} \beta \left[\sum_k E_k \frac{\partial f(z_i, \beta E_i)}{\partial E_k} \right] \right|_{z_i}$$

$$= \left. \left(-1 - \frac{D}{2} \right) \Omega + \sum_k E_k \frac{\partial \Omega}{\partial E_k} \right|_{z_i}. \quad (2)$$

1 E.g. if one has a scattering length a, replace it with the variable $E_k = 1/a^2 = \hbar/ma^2$.

https://doi.org/10.1088/1742-5468/aa6b2d
Now, we use the thermodynamic identity \(E = \frac{\partial (\beta \Omega)}{\partial \beta} \bigg|_{z_i, V} = \Omega + \beta \frac{\partial \Omega}{\partial \beta} \bigg|_{z_i, V} \).

\[
2E - DPV = 2 \left(\Omega + \beta \frac{\partial \Omega}{\partial \beta} \bigg|_{z_i, V} \right) - DPV
\]

\[
= 2 \left(\Omega + \left(-1 - \frac{D}{2} \right) \Omega + \sum_k E_k \frac{\partial \Omega}{\partial E_k} \bigg|_{z_i, V} \right) - DPV
\]

\[
= -2 \left(P + \left(-1 - \frac{D}{2} \right) P + \sum_k E_k \frac{\partial P}{\partial E_k} \bigg|_{z_i, V} \right) V - DPV
\]

\[
= -2 \sum_k E_k \frac{\partial P}{\partial E_k} V
\]

\[
2\mathcal{E} - DP = -2 \sum_k E_k \frac{\partial P}{\partial E_k} \quad (3)
\]

For 0-temperature, we lose \(\beta \) as a scale. Instead we use \(\mu_1 \), where \(\mu_1 \) is the chemical potential for one of the particles:

\[
\Omega = V \mu_1^{1+D/2} f \left(\frac{\mu_1}{E_i}, \frac{\mu_1}{\mu_{j \neq 1}} \right). \quad (4)
\]

The calculation is done in appendix B.

In general, as long as the theory has microscopic parameters \(g_i \) that have dimensions of length (and not necessarily energy or \(L^{-2} \)), then by forming appropriate dimensionless variables \(x_i = \beta^{-\frac{|g_i|}{2}} g_i \) for the argument of \(\Omega(\beta, z_i, V, g_i) = V \beta^{-1-D} f(z_i, \beta^{-\frac{|g_i|}{2}} g_i) \), then one gets:

\[
2\mathcal{E} - DP = \sum_k [g_k] g_k \frac{\partial P}{\partial g_k} \quad (5)
\]

Alternatively, one can note that \(E_k = g_k^{-\frac{2}{|g_k|}} \), and apply the chain rule to equation (3) to get equation (5).

3. Relativistic Systems

In relativistic theories, \(\hbar = c = k_B = 1 \), and mass attains a dimension equal to \(1/L \). The units for all quantities can then be written as \(\hbar^i c^j k_B^k L^\ell = L^i \), and we define the dimensions of the parameter \(g_k \) as \([g_k] = \ell\). The grand potential \(\Omega \) has \([\Omega] = -1 \) rather than the NR case \([\Omega] = -2 \), and can be written as:

\[
\Omega(\beta, z_i, V, E_i) = V \beta^{-1-D} f(z_i, \beta E_i). \quad (6)
\]

Following more or less the same steps as before one derives:
\[\mathcal{E} - DP = \sum_k [g_k] g_k \frac{\partial P}{\partial g_k}, \]

(7)

where again as in the nonrelativistic case, the derivatives are taken w.r.t. constant \(\beta^{-1}, V, \) and \(\mu_i. \)

4. Examples

4.1. No anomalies, no dimensionful parameters

The Tonks–Girardeau gas \([22, 23]\) is a 1-dimensional gas of bosons interacting via a two-body contact potential \(V = 2g \delta(x_i - x_j) \) in the limit \(g \to \infty. \) At zero temperature, \(\mathcal{E} = \frac{\pi^2}{6} \rho^3 \) and \(P = \frac{\pi^2}{3} \rho^3. \) Since the only dimensional parameter grows without bound, the gas is scale invariant, and hence by equation (5):

\[2\mathcal{E} - P = 0. \]

(8)

4.2. No anomalies, dimensionful parameters

For a contact-interaction Bose gas at zero temperature (i.e. \(\mathcal{L} = \psi^\dagger \left(i\partial_t + \frac{\nabla^2}{2} \right) \psi - \frac{g}{2} (\psi^\dagger \psi)^2 \)), in odd dimensions \(D = 2n + 1 \) (perfectly finite in dimensional regularization, no anomalies), one can make the following 1-loop calculation for small coupling \([24, 25]\)

\[\Omega = \left(-\frac{1}{2} \frac{\mu^2}{g} - L_D \mu \frac{D+1}{2} \right) V, \]

(9)

where \(\Omega \) is the grand potential, \(L_D = \frac{\Gamma(1 - \frac{D}{2}) \Gamma(\frac{D+1}{2})}{2 \pi^{\frac{D+1}{2}} \Gamma(\frac{D}{2}+2)} \) is a pure number that depends only on dimension. We will verify equation (5) by computing the LHS involving macroscopic thermodynamic parameters by using thermodynamic relations on equation (9). Then we will calculate the LHS of equation (5) by differentiation w.r.t. microscopic parameters of equation (9), and compare the two results.

For the LHS, the following thermodynamic identities will be used, true for any homogeneous system:

\[\Omega = -PV; \]

\[\Omega = E - TS - \mu N \Rightarrow E = \Omega + \mu N; \]

\[N = -\frac{\partial \Omega}{\partial \mu}. \]

(10)

Calculating \(N \) for equations (9) using (10):

\[N = \left(\frac{\mu}{g} + L_D \left(\frac{D}{2} + 1 \right) \mu \frac{D}{2} \right) V. \]

(11)
Therefore:
\[
2E - DPV = 2(\mu N - PV) - DPV = 2\mu N - (D + 2)PV
\]
\[
= 2\mu \left(\frac{\mu}{g} + L_D \left(\frac{D}{2} + 1 \right) \mu \frac{g}{2} \right) V + (D + 2) \left(-\frac{1}{2} \frac{\mu^2}{g} - L_D \mu \frac{g}{2} + 1 \right) V
\]
\[
= \left(\left[1 - \frac{D}{2} \right] \frac{\mu^2}{g} \right) V
\]
\[
2\mathcal{E} - DP = \left(\left[1 - \frac{D}{2} \right] \frac{\mu^2}{g} \right).
\tag{12}
\]

Now make the same calculation but using the microscopic scales. Since we restrict ourselves to \(D = 2n + 1 \), there is no renormalization scale as everything is perfectly finite, a feature peculiar to odd dimensions \cite{odd_dimensions}. However, there is a microscopic length scale associated with the coupling \(g \), where \(g = D - 2 \):
\[
\partial P \partial g (\frac{g}{g}) = -\partial \left(\frac{\mathcal{E} V}{g} \right) (D - 2) g = \left(\left[1 - \frac{D}{2} \right] \frac{\mu^2}{g} \right).
\tag{13}
\]

The above calculation was performed for small coupling \(g \) so that perturbation theory could be used, but the relationship is in fact general. The Lieb–Liniger model which describes \(N \) bosons in one dimension interacting via a two-body contact potential interaction \(H = -\sum_i \frac{1}{2} \frac{\partial^2}{\partial x^2} + \sum_{i<j} 2g\delta(x_i - x_j) \) is exactly solvable in quantum mechanics, and the thermodynamic limit \(N, L \to \infty \) with \(\frac{N}{L} = \rho = \text{constant} \) can be taken \cite{lieb_liniger}. Approximate closed-form solutions exist for large and small \(g \) at zero temperature. For large coupling:
\[
\mathcal{E} = \frac{\sqrt{2} \mu^{3/2}}{3\pi} + \frac{4\mu^2}{3\pi^2 g} + \frac{14\mu^{5/2}}{3\sqrt{2}\pi^3 g^2} + \frac{32(100 - 9\pi^2)\mu^3}{405\pi^4 g^3},
\]
\[
P = \frac{2\sqrt{2} \mu^{3/2}}{3\pi} + \frac{4\mu^2}{3\pi^2 g} + \frac{14\mu^{5/2}}{9\pi^3 g^2} + \frac{16(100 - 9\pi^2)\mu^3}{405\pi^4 g^3},
\]
\[
- g \frac{\partial P}{\partial g} = \frac{4\mu^2}{3\pi^2 g^2} + \frac{28\sqrt{2} \mu^{5/2}}{9\pi^3 g^3} + \frac{16(100 - 9\pi^2)\mu^3}{135\pi^4 g^4}.
\tag{14}
\]

In the limit \(\frac{g}{\sqrt{\rho}} \to \infty \), the residual energy goes to zero and one gets the Tonks–Girardeau gas of equation (8).

For small coupling:
\[
\mathcal{E} = \frac{\mu^2}{4g} + \frac{\mu^{3/2}}{3\pi},
\]
\[
P = \frac{\mu^2}{4g} + \frac{2\mu^{3/2}}{3\pi},
\]
\[
- g \frac{\partial P}{\partial g} = \frac{\mu^2}{4g},
\tag{15}
\]

which agrees with the Bogoliubov approximation of equation (12) when \(g \to g \frac{3}{2} \) and \(D = 1 \).
For fermions in 3-dimensions interacting via contact interactions
\[\mathcal{L} = \psi^\dagger \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi - 4\pi a \psi^\dagger \psi \psi^\dagger \psi, \quad [a] = 1: \]
\[2\mathcal{E} - 3P = [a]a \frac{\partial P}{\partial a}. \tag{16} \]

Now \(\beta PV = \ln \int [d\psi d\psi^\dagger] e^{-\int_0^\beta \mathcal{L}_0 + 4\pi a \psi^\dagger \psi \psi^\dagger \psi} \) so that differentiating the path integral w.r.t. \(a \) gives
\[[a]a \frac{\partial P}{\partial a} = -4\pi a \langle \psi^\dagger \psi^\dagger \psi \psi \rangle. \tag{17} \]

Plugging this into equation (16), we get Tan’s pressure relation:
\[2\mathcal{E} - 3P = -4\pi a \langle \psi^\dagger \psi^\dagger \psi \psi \rangle = -\frac{C}{4\pi a}, \tag{18} \]
where \(C = (4\pi a)^2 \langle \psi^\dagger \psi^\dagger \psi \psi \rangle \) is the Tan contact [6]. Equation (18) was also derived using the Hellmann–Feynman theorem and dimensional arguments in the canonical ensemble in [28]. Indeed, the energy \(E \), Helmholtz energy \(F \), Gibbs energy \(G \), and grand potential \(\Omega \) are related by Legendre transformation that trades conjugate macroscopic variables but leaves the microscopic parameters alone. Therefore:
\[\left. \frac{\partial \Omega}{\partial g} \right|_{\mu,V,T} = \left. \frac{\partial F}{\partial g} \right|_{N,V,T} = \left. \frac{\partial G}{\partial g} \right|_{N,P,T} = \left. \frac{\partial E}{\partial g} \right|_{S,V,T}. \tag{19} \]

In fact, for the Lieb–Liniger model, where the N-body system is exactly solvable, it is more natural to work with the density \(\rho \) instead of the chemical potential \(\mu \):
\[\mathcal{E} = \frac{1}{6} \pi^2 \left(1 - \frac{1}{3} 12 \gamma^2 + \frac{32 (\pi^2 - 15)}{15 \gamma^3} \right) \rho^3 \quad \text{(strong)}, \]
\[\mathcal{E} = \frac{1}{2} \left(\gamma - \frac{4 \gamma^{3/2}}{3 \pi} \right) \rho^3 \quad \text{(weak)}, \tag{20} \]
where \(\gamma = \frac{2a}{\rho} \). By the third law of thermodynamics, along a zero temperature path, variations in the coupling \(\gamma \) occur at constant entropy \(S \), so twice the residual energy is:
\[g \frac{\partial E}{\partial g} = \gamma \frac{\partial E}{\partial \gamma} = \frac{1}{6} \pi^2 \left(\frac{4}{\gamma} - \frac{24}{\gamma^2} - \frac{32 (\pi^2 - 15)}{5 \gamma^3} \right) \rho^3 = g \left(\langle \psi^\dagger (x) \rangle^2 \langle \psi (x) \rangle^2 \right) \quad \text{(strong)}, \]
\[= \frac{1}{2} \left(\gamma - \frac{2 \gamma^{3/2}}{\pi} \right) \rho^3 = g \left(\langle \psi^\dagger (x) \rangle^2 \langle \psi (x) \rangle^2 \right) \quad \text{(weak)} \tag{21} \]

4.3. Anomalies, no dimensionful parameters

A Fermi-gas in \(D = 2 \) has no dimensionful parameters in the Lagrangian, \(\mathcal{L} = \psi^\dagger \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi - C \psi^\dagger \psi \psi^\dagger \psi, \quad [C] = 0 \). Nevertheless, the system develops a bound
state via dimensional transmutation, and the derivation of equation (3) goes through with \(E_k = E_b \), the bound state energy. Using cutoff regularization, the \(T \)-matrix is [29]:

\[
\frac{1}{T(E)} = \frac{1}{C} - \frac{1}{4\pi} \ln \left(\frac{-E}{\Lambda^2} \right).
\] (22)

The bound state is special since \(T(E) \) blows up there, so that \(\frac{1}{T(-E_b)} = 0 \). Therefore plugging in \(E = E_b \) into equation (22) gives:

\[
\frac{1}{C} = \frac{1}{4\pi} \ln \left(\frac{E_b}{\Lambda^2} \right).
\] (23)

Taking the derivative w.r.t. \(E_b \) on both sides of equation (23):

\[
-\frac{dC}{dE_b} = \frac{1}{4\pi E_b} \quad \text{and} \quad \frac{dC}{dE_b} = -\frac{C^2}{4\pi E_b}.
\] (24)

Therefore:

\[
-2E_b \frac{\partial P}{\partial E_b} = -2E_b \frac{dC}{dE_b} \frac{\partial P}{dC} = \frac{C^2}{2\pi} \frac{\partial P}{\partial C}.
\] (25)

Now \(\beta PV = \ln \int [d\psi d\psi^\dagger] e^{-\int_0^\beta t \int d^2 x \left(\mathcal{L}_0 + C\psi^\dagger \psi \psi^\dagger \psi \right)} \) so that differentiating the path integral w.r.t. \(C \) we obtain:

\[
\frac{\partial P}{\partial C} = -\langle \psi^\dagger \psi \psi \psi \rangle.
\] (26)

Plugging this result into equation (25) and using \(2\mathcal{E} - DP = -2E_b \frac{\partial P}{dE_b} \):

\[
2\mathcal{E} - 2P = -\frac{C^2}{2\pi} \langle \psi^\dagger \psi \psi \psi \rangle,
\] (27)

agreeing with [30]. The coupling is bare, but the RHS is finite, and both sides are RG-invariant.

In our example, for equation (5), the dimensionful parameter is the bound-state energy. If one has a pressure written in term of bare parameters and cutoff \(P = P(C, \Lambda) \) or renormalized with scale \(\mu, P = P(C_R, \mu) \), then it is not correct to regard \(\Lambda \) or \(\mu \) as a microscopic parameter with dimensions of momentum \((L^{-1}) \), because \(\frac{dP}{d\Lambda} = \frac{dP}{d\mu} = 0 \), so that there is in fact no dependence on these parameters. For our particular example, from equation (23), it is true that \(2E_b \frac{dC}{dE_b} = -\Lambda \frac{dC}{d\Lambda} = -\beta(C) \) where \(\beta(C) \) is the beta function of the theory, so that equations (25) into our (5) would give:

\[
2\mathcal{E} - DP = -\beta(C) \frac{\partial P}{\partial C},
\] (28)

and comparison with equation (27) allows us to read off \(\beta(C) = \frac{C^2}{2\pi} \).
5. Connection with virial theorem

In previous work [20] we derived the virial theorem via path integrals, and then used the virial theorem to derive equation (5). One can also work backwards from equation (5) to derive the virial theorem by following the argument backwards. We reproduce the argument here. For a two-body potential $U = \frac{1}{2} \int d^Dx d^Dy \psi^*(\tau, \vec{x}) \psi(\tau, \vec{x}) V(\vec{x} - \vec{y}) \psi^*(\tau, \vec{y}) \psi(\tau, \vec{y})$:

$$2E - DPV = V \sum_k [g_k] g_k \frac{\partial P}{\partial g_k}$$

$$= \sum_k [g_k] g_k \frac{1}{\beta} \ln \int [d\psi] \int [d\psi^\dagger] e^{-\int_0^\beta \int d\tau \int d\vec{x} \psi^*(\tau, \vec{x}) \psi(\tau, \vec{x}) V(\vec{x} - \vec{y}) \psi^*(\tau, \vec{y}) \psi(\tau, \vec{y})}$$

$$= \sum_k [g_k] g_k \left(-\frac{1}{2} \right) \left\langle \int \int d\tau d\vec{x} d\vec{y} \psi^*(\tau, \vec{x}) \psi(\tau, \vec{x}) \frac{\partial V}{\partial g_k} \psi^*(\tau, \vec{y}) \psi(\tau, \vec{y}) \right\rangle. \quad (29)$$

Denoting $r = |\vec{x} - \vec{y}|$, one can show that $- \sum_k [g_k] g_k \frac{\partial V}{\partial g_k} = r \frac{dV}{dr} + 2V$ (see appendix A). Plugging this into equation (29) gives:

$$2E - DPV = \frac{1}{2} \left\langle \psi^*(\tau, \vec{x}) \psi(\tau, \vec{x}) r \frac{dV}{dr} \psi^*(\tau, \vec{y}) \psi(\tau, \vec{y}) \right\rangle + 2 \langle U \rangle$$

$$DPV = 2KE - \frac{1}{2} \left\langle \int d^Dx d^Dy \psi^*(\tau, \vec{x}) \psi(\tau, \vec{x}) \left[(\vec{x} - \vec{y}) \cdot \nabla V(\vec{x} - \vec{y}) \right] \psi^*(\tau, \vec{y}) \psi(\tau, \vec{y}) \right\rangle,$$

which is the virial theorem [31–33].

6. Conclusion

We have derived an expression for $2E - DP$ using only dimensional arguments, valid for classical and quantum systems, for use in the grand canonical ensemble. We worked directly within the framework of thermodynamics, not having to improve the stress-energy tensor and invoke hydrodynamics, but instead working directly with thermodynamic variables. In the case of quantum systems, since the microscopic scales appear as coupling constants, or in the case of dimensional transmutation appear via the coupling constants, $\sum_k [g_k] g_k \frac{\partial P}{\partial g_k}$ manifests itself as thermal expectation values of the operators multiplying the coupling constants in the system’s Hamiltonian, which is manifest in the path integral formalism. Finally, using the path integral, we’ve shown how dimensional analysis leads to the virial theorem.

Acknowledgments

The authors would like to thank the reviewer for many helpful suggestions. This work was supported in part by the US Army Research Office Grant No. W911NF-15-1-0445.

https://doi.org/10.1088/1742-5468/aa6b2d
Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Appendix A

The potential $V(r)$ has dimensions $[V] = -2$, so can generically be written:

$$V(r) = \frac{f\left(\frac{g}{r^2}\right)}{r^2},$$

(A.1)

f is a dimensionless function whose arguments are the ratios of the couplings g_i of $V(r)$ to their length dimension $[g_i]$ expressed in units of r.

$$r \frac{dV}{dr} = -2V(r) + \frac{1}{r} \frac{df\left(\frac{g}{r^2}\right)}{dr}$$

$$= -2V(r) - \frac{1}{r^2} \sum_i [g_i] g_i \frac{\partial f \left(\frac{g}{r^2}\right)}{\partial g_i}$$

$$= -2V(r) - \sum_i [g_i] g_i \frac{\partial V}{\partial g_i}$$

(A.2)

Appendix B

At zero temperature for a homogeneous system, the grand potential Ω can be written as:

$$\Omega = V \mu_1^{1+D/2} f\left(\frac{\mu_1}{E_1}, \frac{\mu_1}{\mu_j \neq 1}\right),$$

(B.1)

where f is dimensionless function and μ_1 is the non-zero chemical potential of one of the species. We calculate the number of particles:

$$N_1 = -\left. \frac{\partial \Omega}{\partial \mu_1} \right|_{V, \mu_j \neq 1}$$

$$= - \left(1 + D/2\right) \frac{\Omega}{\mu_1} - V \mu_1^{1+D/2} \frac{\partial f\left(\frac{\mu_1}{E_1}, \frac{\mu_1}{\mu_j \neq 1}\right)}{\partial \mu_1}$$

$$= - \left(1 + D/2\right) \frac{\Omega}{\mu_1}$$

$$- V \mu_1^{1+D/2} \left[- \sum_k \frac{E_k}{\mu_1} \frac{\partial f\left(\frac{\mu_1}{E_1}, \frac{\mu_1}{\mu_j \neq 1}\right)}{\partial E_k} - \sum_{\ell \neq 1} \frac{\mu_{\ell \neq 1}}{\mu_1} \frac{\partial f\left(\frac{\mu_1}{E_1}, \frac{\mu_1}{\mu_j \neq 1}\right)}{\partial \mu_{\ell \neq 1}} \right]$$

$$= - \left(1 + D/2\right) \frac{\Omega}{\mu_1} + \sum_k \frac{E_k}{\mu_1} \frac{\partial}{\partial E_k} \Omega + \sum_{\ell \neq 1} \frac{\mu_{\ell \neq 1}}{\mu_1} \frac{\partial}{\partial \mu_{\ell \neq 1}} \Omega,$$

$$N_1 \mu_1 = - \left(1 + D/2\right) \Omega + \sum_k E_k \frac{\partial}{\partial E_k} \Omega - \sum_{\ell \neq 1} N_{\ell \neq 1} \mu_{\ell \neq 1},$$

$$\sum_i N_i \mu_i = - \left(1 + D/2\right) \Omega + \sum_k E_k \frac{\partial}{\partial E_k} \Omega.$$

(B.2)

https://doi.org/10.1088/1742-5468/aa6b2d
The energy E of the system at zero temperature is given by $E = \sum_i N_i \mu_i - PV$ which follows from the thermodynamic identity $E - TS + PV = \sum_i N_i \mu_i$. Therefore

$$2E - DPV = 2 \left(\sum_i N_i \mu_i - PV \right) - DPV = 2 \sum_i N_i \mu_i - (D + 2)PV$$

$$= 2 \left(- (1 + D/2)\Omega + \sum_k E_k \frac{\partial \Omega}{\partial E_k} \right) - (D + 2)PV$$

$$= 2 \left(- (1 + D/2)(-PV) + \sum_k E_k \frac{\partial}{\partial E_k}(-PV) \right) - (D + 2)PV$$

$$= -2V \sum_k E_k \frac{\partial}{\partial E_k}P,$$

$$2\mathcal{E} - DP = -2 \sum_k E_k \frac{\partial P}{\partial E_k}. \quad (B.3)$$

References

[1] Brown L 1992 *Quantum Field Theory* (Cambridge: Cambridge University Press)

[2] Carruthers P 1971 Broken scale invariance in particle physics *Phys. Rep.* 1 1–29

[3] Gaite J 2013 The relativistic virial theorem and scale invariance *Phys.—Usp.* 56 919

[4] Huang K 1987 *Statistical Mechanics* (New York: Wiley)

[5] Mancarella F, Mussardo G and Trombettoni A 2014 Energy-pressure relation for low-dimensional gases *Nucl. Phys.* B887 216–45

[6] Tan S 2008 Generalized virial theorem and pressure relation for a strongly correlated fermi gas *Ann. Phys.* 323 2987–90

[7] Tan S 2008 Energetics of a strongly correlated fermi gas *Ann. Phys.* 323 2952–70

[8] Tan S 2008 Large momentum part of a strongly correlated fermi gas *Ann. Phys.* 323 2971–86

[9] Ordóñez C R 2016 Path-integral fujikawas approach to anomalous virial theorems and equations of state for systems with symmetry *Physica* A 446 64–74

[10] Lin C L and Ordóñez C R 2015 Bose and fermi statistics and the regularization of the nonrelativistic jacobian for the scale anomaly *Phys. Rev.* D 94 085023

[11] Lin C L and Ordóñez C R 2015 Path-integral derivation of the nonrelativistic scale anomaly *Phys. Rev.* D 91 085023

[12] Lin C L and Ordóñez C R 2015 Path-integral approach to scale anomaly at finite temperature *Phys. Rev.* D 92 085050

[13] Haugset T and Ravndal F 1994 Scale anomalies in nonrelativistic field theories in $(2 + 1)$-dimensions *Phys. Rev.* D 49 4299–301

[14] Coleman S and Jackiw R 1971 Why dilatation generators do not generate dilatations *Ann. Phys.* 67 552–98

[15] Callan C G, Coleman S and Jackiw R 1970 A new improved energy-momentum tensor *Ann. Phys.* 59 42–73

[16] Shizuya K and Tsukahara H 1986 Path-integral formulation of conformal anomalies *Z. Phys.* C 31 553–6

[17] Jizba P 2004 Hydrostatic pressure of the ϕ^4 theory in the large N limit *Phys. Rev.* D 69 085011

[18] Landsman N P and Van Weert C G 1987 Real- and imaginary-time field theory at finite temperature and density *Phys. Rep.* 145 141–210

[19] Hagen C R 1972 Scale and conformal transformations in galilean-covariant field theory *Phys. Rev.* D 5 377–88

[20] Lin C L and Ordóñez C R 2015 Virial theorem for non-relativistic quantum fields in D spatial dimensions *Adv. High Energy Phys.* 2015 790275

[21] Daza W S, Lin C L and Ordóñez C R 2017 in preparation

https://doi.org/10.1088/1742-5468/aa6b2d
Dilational symmetry-breaking in thermodynamics

[22] Tonks L 1936 The complete equation of state of one, two and three-dimensional gases of hard elastic spheres
Phys. Rev. 50 955–63
[23] Girardeau M 1960 Relationship between systems of impenetrable bosons and fermions in one dimension
J. Math. Phys. 1 516–23
[24] Schakel A 2008 Boulevard of Broken Symmetries: Effective Field Theories of Condensed Matter
(Singapore: World Scientific)
[25] Braaten E and Nieto A 1999 Quantum corrections to the energy density of a homogeneous bose gas
Eur. Phys. J. B 11 143–59
[26] Wódkiewicz K 1991 Fermi pseudopotential in arbitrary dimensions Phys. Rev. A 43 68–76
[27] Lieb E H and Liniger W 1963 Exact analysis of an interacting bose gas. I. The general solution and the
ground state Phys. Rev. 130 1605–16
[28] Braaten E 2012 Universal Relations for Fermions with Large Scattering Length ed W W Zwerger (Berlin: Springer)
[29] Phillips D R, Beane S R and Cohen T D 1998 Nonperturbative regularization and renormalization: simple
examples from nonrelativistic quantum mechanics Ann. Phys. 263 255–75
[30] Hofmann J 2012 Quantum anomaly, universal relations, and breathing mode of a two-dimensional fermi gas
Phys. Rev. Lett. 108 185303
[31] Toyoda T and ichi Takiuchi K 1998 Quantum field theoretical reformulation of the virial theorem Physica A
261 471–81
[32] Toyoda T 1993 Canonical generator of conformal transformations in nonrelativistic quantum many-body
systems at finite temperatures Phys. Rev. A 48 3492–8
[33] Takiuchi K, Okada M, Koizumi H, Ito K and Toyoda T 2000 Exact relations for two-dimensional electron
gas spin correlation functions Physica E 6 810–2