Capabilities of the NASA/IPAC Extragalactic Database in the Era of a Global Virtual Observatory

Joseph M. Mazzarella, Barry F. Madore, George Helou, and the NED Team

California Institute of Technology, Jet Propulsion Laboratory, MS 100-22, Pasadena, CA 91125

To appear in *Proceedings of SPIE: Astronomical Data Analysis*, eds. J. Starck & F. D. Murtagh, Volume 4477, 2001 (in press).

ABSTRACT

We review the capabilities of the NASA/IPAC Extragalactic Database (NED, http://ned.ipac.caltech.edu) for information retrieval and knowledge discovery in the context of a globally distributed virtual observatory. Since its inception in 1990, NED has provided astronomers worldwide with the results of a systematic cross-correlation of catalogs covering all wavelengths, along with thousands of extragalactic observations culled from published journal articles. NED is continuously being expanded and revised to include new catalogs and published observations, each undergoing a process of cross-identification to capture the current state of knowledge about extragalactic sources in a panchromatic fashion. In addition to assimilating data from the literature, the team is incrementally folding in millions of observations from new large-scale sky surveys such as 2MASS, NVSS, APM, and SDSS. At the time of writing the system contains over 3.3 million unique objects with 4.2 million cross-identifications. We summarize the recent evolution of NED from its initial emphasis on object name-, position-, and literature-based queries into a research environment that also assists statistical data exploration and discovery using large samples of objects. Newer capabilities enable intelligent “Web mining” of entries in geographically distributed astronomical archives that are indexed by object names and positions in NED, sample building using constraints on redshifts, object types and other parameters, as well as image and spectral archives for targeted or serendipitous discoveries. A pilot study demonstrates how NED is being used in conjunction with linked survey archives to characterize the properties of galaxy classes to form a training set for machine learning algorithms; an initial goal is production of statistical likelihoods that newly discovered sources belong to known classes, represent statistical outliers, or candidates for fundamentally new types of objects. Challenges and opportunities for tighter integration of NED capabilities into data mining tools for astronomy archives are also discussed.

Keywords: databases, information retrieval, knowledge discovery, classification, data mining

1. INTRODUCTION

The NASA/IPAC Extragalactic Database (NED) is widely acknowledged as the most comprehensive and easy-to-use resource for information about sources populating the Universe beyond our Milky Way galaxy. NED is an online research facility designed to support scientists, educators, space missions and observatories in the planning, execution and publication of research on extragalactic objects. The foundation of NED is a growing database of galaxies, quasars and all types of extragalactic objects that can be searched by positions, redshifts, object types, references, authors, and multi-wavelength cross-identifications produced from thousands of catalogs and journal articles. The primary goal of NED is to maintain an up-to-date panchromatic synthesis of basic data for all known (cataloged and published) extragalactic objects, including pointers to the astrophysical literature and to relevant distributed archive resources. Scientists working in observational extragalactic astronomy use NED in their research at nearly every step, from proposal planning, through data collection, data interpretation, publication, and archiving of calibrated images and spectra. Many professors also incorporate NED into their lesson plans. As of the time of writing, over 2,100 articles in the refereed astrophysics literature (*Astrophysical Journal, Astronomical Journal, Monthly Notices of the Royal Astronomical Society, Astronomy & Astrophysics*, etc.) have acknowledged NED directly as an important tool for the authors’ research.

a For additional information send correspondence to J.M.M. (mazz@ipac.caltech.edu) or B.F.M. (barry@ipac.caltech.edu).

E.g., *Nature, Netguide*, October 2000, also available online at http://www.nature.com/netguide.
NED consists of these main components: (1) a growing database serving cross-correlated panchromatic data and pointers for millions of extragalactic objects; (2) a Web-based user interface accessible from any Web browser with an Internet connection (as well as legacy VT-100 and X-window versions); (3) support for direct connectivity from remote computer programs and Web sites that function as clients to the NED servers; and (4) an automated batch mode for processing large requests. In this paper we review highlights of each of these areas, outline a case study currently under way that shows how NED is being used in conjunction with linked survey archives to characterize the properties of galaxy classes using machine learning algorithms, and conclude with a discussion of how the capabilities will evolve in support of large-scale data mining applications that can utilize NED in concert with geographically distributed archives. There is insufficient space here for a comprehensive history and complete technical review of NED. A discussion of the motivation, initial design, and early history of NED was given by Helou et al. Casual users, or those who have not used it in a long time, may think of NED mainly as a ‘literature’ service or ‘digital library’ in which users can only look up information on objects one at a time by catalog entry name, or through article author name searches and the like. In this paper we review the recent and ongoing evolution of NED beyond these classic queries, including support for data exploration and discovery using classes of objects.

2. CROSS-IDENTIFICATIONS AND DATA INTEGRATION SERVICES

2.1. Multi-wavelength Cross-Identifications and Statistical Associations

Cross-identification refers to the process of establishing which observation in a specific catalog (for example, the FIRST radio survey) corresponds to the same astrophysical source in surveys at other wavelengths (for example, the far-infrared IRAS Faint Source Catalog). The process is much more difficult that it may first appear, because observations taken with different telescopes and at various wavelengths often differ in substantial ways. Positional uncertainties may differ by factors of 2 to 10, or even more; and they may be ellipses with different dimensions and position angles for each source (e.g., IRAS) rather than a constant value across the sky. There are sometimes systematic errors in the astrometry, such that positions in one survey will be offset from those in another. If the angular resolution of one survey (e.g., X-rays from ROSAT) is much lower than another (e.g., near-infrared detections from 2MASS), more then one source in the second survey may contribute to the emission seen in the first survey. If only positional proximity is used to make matches, different flux sensitivity limits and calibration uncertainties (flux error bars) can lead to incorrect cross-identification between a source in one catalog with a physically unrelated source in another catalog that is nearby only in projection along the line of sight. Also, astrophysical sources can display very different structures at different wavelengths because different physical processes are being observed. For example, a radio source may have a core plus lobe emission located on one or both sides of the core, but only the core (galaxy nucleus) is typically detected in a survey at visual wavelengths. There is also a strong wavelength dependency on the amount of extinction due to dust in the interstellar medium of a galaxy; this can shift the centroid of a source measured at a visual wavelength from that measured at an ultraviolet or infrared wavelength. In extreme cases like the merging system Arp 220, a double central morphology in the blue band is produced by a dust lane, while true double nuclei reside inside the dust lane and are visible only at infrared and radio wavelengths. Finally, objects populate a hierarchical Universe: active nuclei, supernovae, and star-forming regions reside in their host galaxies; many galaxies are members of pairs and groups; galaxies, pairs and groups are typically members of clusters, and galaxy clusters reside in superclusters separated by vast voids.

For these reasons, complex relationships between objects are needed (e.g., one-to-one, one-to-many, many-to-one, many-to-many), in addition to statistical associations for cases in which simple, confident one-to-one relationships cannot be established. NED activities revolve around a systematic process of establishing realistic cross-identifications and statistical associations between millions of entries in multi-wavelength catalogs and publications. Cross-identifications are established in an iterative way, being refined as new information becomes available. The NED team works closely with the astronomical community in this process, often resolving disputes and documenting errors in extensive notes that are made available to users. It is sometimes assumed that the NED team establishes cross-IDs in an ‘old-fashioned’, manual way. In fact, the process involves a fairly sophisticated computer program that cross-correlates the positional uncertainties of positions in NED with those in a new input catalog; the output is sorted into lists containing (a) sources that are obviously new to NED, (b) a list of secure matches (cross-identifications) with previously known sources, and (c) a list of ‘fuzzy’ cases that need follow-up analysis of the statistical association parameters for the many reasons outlined above. The association parameters include the separation in arcseconds, the position angle in degrees, and dimensionless parameters r and p that represent measures of the “goodness of fit”.

2
of the convolved positional uncertainty ellipses of an input object and a nearby NED object. The NED interface currently makes these catalog source association parameters available to users before they are worked off and turned into cross-identification (where possible); prior to October 2000 these parameters were utilized only internally by the NED team.

2.2. Database Management, Growth and Related Activities

NED does not simply ingest complete catalogs and maintain them in their original form and format. While fundamental data such as positions, redshifts, sizes, and flux/magnitude measurements are assimilated into NED for the purposes of cross-identification and construction of multi-wavelength SEDs, other data are connected in context using pointers to remote archives. For example, extended sources in the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) catalogs have many types of magnitude measurements. Only the magnitudes from the recommended “default” method from each survey catalog are folded directly into NED; the rest are being made easily accessible using hyperlinks that query complete catalog entries at the survey/mission archive sites. NED provides hyperlinks that issue queries of many major archive services (e.g., High Energy Astrophysics Research Center [HEASARC], Multi-Mission Archive at STScI [MAST], Infrared Science Archive [IRSA] at IPAC, SIMBAD and VizieR services at CDS [Strasbourg, France], NRAO and the NASA Astrophysics Data System [ADS] abstract service and its linked journal Web sites) in a convenient “1-click” fashion that utilizes source names, survey/catalog cross-identifications, and sky positions as the “glue” between the distributed data sets. An illustration of this innovative capability (available online in NED since April 2000) is given in Figure 3. The database contents and relationship pointers are revised and augmented constantly to keep up with new online survey data and knowledge appearing in the literature. Updates to the public database occur approximately every three months after periods of data entry, quality assurance checks, and testing using an internal development version.

Important recent additions to NED’s holdings include extragalactic supernovae, the Hubble Deep Fields (North & South), the FAINT IMAGES OF THE RADIO SKY AT TWENTY-CENTIMETERS (FIRST), Eighth Cambridge Radio Catalog (8C), Molonglo Reference Catalog (MRC), Texas, Westerbork and MIT-Greenbelt radio surveys, the Automated Plate Measurement (APM) Bright Galaxy Catalog, the Canadian Network for Observational Cosmology (CNOC) Catalog, and the Las Companas Redshift Survey (LCRS). In addition to folding in data appearing in the current literature, the team is establishing cross-identifications and probabilistic associations between new observations from large surveys (more than 10⁶ objects) and previously known sources in NED. Large surveys which are being assimilated in an incremental fashion at the time of writing include the Two Micron All Sky Survey (2MASS), NRAO VLA Sky Survey (NVSS), Automated Plate Measurement/United Kingdom Schmidt (APM/UKS), and Sloan Digital Sky Survey (SDSS). The total data holdings have been roughly doubling each year. Larger database disks have recently been configured to accommodate a system containing about ten times the current holdings, enough for essential data and relationships for about 50 million objects. Ongoing upgrades to the data management and catalog cross-correlation and association processes, combined with the rapid rates of increasing computer speed and decreasing data storage costs, will allow NED to scale up its data integration activities to handle order of magnitude increases in the number of unique extragalactic sources (and candidates) with their cross-identifications and associations in coming years.

NED staff works in coordination with other NASA archive centers, referred to collectively as the Space Science Data System (SSDS), the CDS (Strasbourg, France), the AAA publications board, Journal editors, authors and referees, IAU Working Groups on Nomenclature, Data and Journals, and the broader astronomical community to improve data handling and archive services. The team provides extensive user support (Help Desk) to answer questions and take users’ input for priorities on new developments.

† The first parameter, r, is the distance between the two sources in units of the standard deviations of the convolved uncertainties on the principal axes of the error ellipsoid; mathematically, this is the chi-square parameter with two degrees of freedom evaluated for the observed separation and catalog uncertainties, assuming Gaussian errors, and is dimensionless. The second parameter, p (stored in NED as a base-10 logarithm), is the expected-error density function evaluated for the observed separation. The expected-error density function is the convolution of the error density functions for the two catalogs involved, assuming Gaussian errors; the density function has units of probability mass per steradian. More information about these parameters is available in NED’s online documentation.

‡ The NED interface currently provides hyperlinks that query complete catalog entries at the survey/mission archive sites.

¶ Inquiries may be emailed to ned@ipac.caltech.edu.

http://ssds.nasa.gov/
http://cdsweb.u-strasbg.fr
2.3. DATABASE CONTENTS
The database contents of NED at the time of writing (July 2001) are summarized in Table 1. This information is updated periodically on the NED home page (Figure 1) after each update to the public database.

Table 1. NED database contents as of July 2001.
4.7 million cross-identifications in thousands of multi-wavelength surveys and journal articles
3.7 million unique extragalactic objects
3.4 million photometric measurements covering gamma-rays through radio wavelengths (with uncertainties) and dynamic spectral energy distribution plots
2.0 million detailed position measurements with uncertainties
1.5 million bibliographic references to 48,000 articles
167,000 redshifts from the published literature
628,000 science-grade FITS images and remote links with “thumbnail” previews
50,000 detailed notes from catalogs and journal publications
26,000 journal article abstracts and 1,150 Ph.D. thesis abstracts

The essential data for sources in NED include positions, redshifts, morphological types, nuclear spectral types, panchromatic photometry, and images. When available, uncertainties in the measurements are also stored and provided by the interface. Photometry data are stored in original units and converted to common frequency (Hz) units and flux density units \((W m^{-2} Hz^{-1})\) for construction of Spectral Energy Distributions (see Figure 5); the data are also tagged with their aperture sizes or status as a “total flux” measurement. The extragalactic objects types available in NED are summarized in Table 2.

Table 2. Extragalactic object types in NED.
Galaxies

Galaxy Pairs
Galaxy Triples
Galaxy Groups
Galaxy Clusters

3. INTERFACES AND QUERY SERVICES
NED is accessible on the World Wide Web at \[http://ned.ipac.caltech.edu\]. The Web interface is by far the most common way that most users access NED; usage has grown from about \(10^5\) requests per month in 1997 to an average of over \(10^6\) requests per month in 2001. The rate of growth of access to the NED Web server is also rising quickly. There is also a VT-100 (ASCII) and X-Window graphical user interface available via telnet login session (’telnet ned.ipac.caltech.edu’). These legacy services provide access to the same database updates as available through the Web interface, but they are no longer maintained or enhanced with new services. Limited resources to build new tools are going into the much more heavily used Web and batch access modes.

3.1. Web Query Services
Figure 1 shows the NED Web interface main menu (home page), where the main functionality is organized in columns as follows.
3.1.1. Objects

In the OBJECTS column NED can be searched for extragalactic objects using menus designed for searches ‘By Name’, ‘Near Name’ (input a name and search radius), ‘Near Position’ (input celestial coordinates and a search radius), ‘IAU Format’ (object names), or ‘By Reference Code’ (a 19 digit code developed jointly by NED with the ADS* and CDS to uniquely identify publications in astronomy). The ‘Skyplot’ service generates finder charts indicating NED objects and star positions in a specified field of view. Figure 2 illustrates an example of the Essential Data that is available from NED after a query of the galaxy NGC 4151.

3.1.2. Global Archive Connectivity

Figure 3 shows hyperlinks to ‘External Archives and Services’, easily found when the user scrolls down below the Essential Data that comes directly from the NED database. Links here allow the user to retrieve images and

* http://adswww.harvard.edu

Figure 1. The NED Web interface main menu available at http://ned.ipac.caltech.edu. The annotations refer to example query results which are displayed in Figures 2-6.
Figure 2. Essential Data returned by NED from a query of NGC 4151: includes coordinates and redshift (with uncertainties), multi-wavelength survey cross-identifications and object types, size, magnitude, classifications, Galactic extinction along the line of site, as well as links to query references, notes, photometry, positions, velocities, and images. This information is followed by links to External Archives (Figure 3).

query original catalog data or observation log entries. The first set of hyperlinks are to data related directly to an object name; the second set of links are to services that can be queried at the object’s coordinates. A summary of the available resources includes: original catalog record entries in VizieR at CDS/France; the NVSS, and FIRST catalog and image servers and the Observation Log of the VLA telescope from the National Radio Astronomy Observatories (NRAO); infrared mission archives at IRSA/IPAC (2MASS, IRAS, etc.); visual and UV mission archives at MAST/STScI (HST, IUE, etc.); high energy mission archives at HEASARC/GSFC (ASCA, CGRO, Einstein, etc.); and the IMPRESS focal plane plotting service for NASA astrophysics missions at the NASA Goddard Space Flight Center/Astrophysics Data Facility (GSFC/ADF). This tool makes it very easy for researchers to determine whether an object has been observed by one or more of the major surveys or observatories. New archive services are being added as they become available. With this service, users now have at their fingertips distributed

†† http://cdsweb.u-strasbg.fr, http://www.nrao.edu, http://irsa.ipac.caltech.edu, http://archive.stsci.edu, http://heasarc.gsfc.nasa.gov, http://adf.gsfc.nasa.gov/adf.html
data dynamically cross-linked (federated, fused) using source names and positions indexed and maintained by NED.

This innovative service is a major step toward federating distributed archives as discussed in reference to a National Virtual Observatory portal.

3.1.3. Sample Building with ‘By Parameter’ Queries

The ‘By Parameters’ menu allow the user to query NED using joint constraints on redshift range, sky area, object types, or survey/catalog name prefixes. Casual users of NED may not realize the benefits of querying NED using a catalog name prefix. With this feature one can dynamically regenerate a classic catalog sample that contains not simply the original catalog measurements (available elsewhere, such as VizieR), but rather the most precise and currently available source positions and redshifts, with links to up-to-date references, multi-wavelength photometry, images, etc. For example, today anyone can use NED to generate an up-to-date compilation analogous to the ‘Catalog of Markarian Galaxies’ [2] or generate a current data set for the entire Third Cambridge (3C) radio galaxy sample, with the click of a mouse. Since entries in NED are continuously updated through a synthesis of the literature and large surveys, errors in original catalogs are often found and documented. Therefore, for many studies it is more efficient and effective to cross-correlate new observations against the data synthesis in NED rather than against catalogs in their original published forms. A visualization of one example of this powerful feature is shown in Figure 4. Other example queries that can be performed with the ‘By Parameters’ tool are (including the number of objects
Figure 4. Objects that meet the search criteria \([Redshift > 4.0 \text{ AND Glat} < -60^\circ]\) returned after submitting a query using the ‘By Parameters’ menu (see Figure 1).
returned at the time of writing):

- Find known objects with a redshift greater than 3.0: 1034 objects
- Find known objects with a redshift greater than 3.0 which are not QSOs or absorption line systems: 154 objects
- Find extragalactic radio sources (from ANY catalog/survey) with a redshift less than 0.05 and Galactic latitude greater than 50°: 735 objects
- Report up-to-date data and pointers for all extragalactic objects in the 8C radio sample: over 6200 objects

Planned upgrades to this functionality are reviewed below (Section 4.2).

3.1.4. Data

The DATA column in the main NED menu allows the user to enter an object name (e.g., ‘NGC 4151’, ‘AP-MUKS(BJ) B003425.77-334949.0’, ‘SN 1993G’, ‘2MASXi J1132350+582422’, ‘SDSS J1044-0125’, ‘Antennae’) and query NED for ‘Photometry & SEDs’, ‘Catalogs’, ‘Positions’, ‘Redshifts’, ‘Notes’, or ‘Images. In the report resulting from a query of any NED object, hyperlinks are included that provide access to this same information; the DATA search menus simply provide more direct access. Figure 5 illustrates an example of multi-wavelength photometry data and Spectral Energy Distribution (SED) plots available from NED.

Figure 6 shows an example of the rich variety of multi-wavelength FITS images available for immediate download or visualization using the Aladin Java applet. With Aladin the user can: superimpose entries from NED, the USNO catalog and various other astronomical catalogs; interactively link to information for all known objects in the field; measure interactively positions and distances in celestial coordinates. Aladin’s interoperability with NED and other distributed data services provides a visual summary of the multi-wavelength sky. Aladin was developed at the CDS (Strasbourg, France) and is configured with the NED interface through a cooperative agreement. The NED team has made significant contributions to testing and debugging of Aladin using the richness of FITS image types in the NED archive. This is a successful example of software tool reuse to meet common goals and interests through an international collaboration.

3.1.5. Literature

In the LITERATURE column of the main NED menu, the user can: (1) enter an object name and access the ‘References’ related to that object; (2) enter an ‘Author Name’ and retrieve a list of references; (3) search journal article ‘Abstracts’ by year, volume or page numbers; (4) search ‘Thesis Abstracts’ by year range; (5) use the ‘Text Search’ tool to perform a keyword search on the indexed contents of the journal and thesis abstracts in NED or the full text content of LEVEL5; and (6) access the LEVEL5 ‘Knowledgebase’.

LEVEL5 can also be accessed directly at http://ned.ipac.caltech.edu/level5. It contains hyperlinked review articles and documents of current and lasting interest to cosmologists and extragalactic astronomers. Contents include a glossary of terms, essays, recent research articles, detailed monographs and extensive reviews (where copyrights allow). Within each article, cited extragalactic objects are cross-linked to NED Basic Data frames, and all available citations are hyperlinked to NASA’s Abstract Data Service (ADS), to on-line NED abstracts, or to preprints on astro-ph. Tabular data, images and graphs are being progressively linked to and from relevant essays and review articles.

3.1.6. Tools

The TOOLS column of the main NED menu contains a ‘Coordinate & Extinction Calculator’ that performs coordinate conversions and precession, and displays line-of-sight Galactic extinction estimates using two modern techniques. The ‘Velocity Calculator’ computes conversions between redshifts for extragalactic objects in different reference frames: heliocentric, Local Group, Galactic Standard of Rest, and 3K Microwave Background. There is also a link to NED’s public FTP site, primarily used by users to pick up their output from the NED batch mode.

3.1.7. Information

The INFO column of the main menu contains links to a Frequently Asked Questions (‘FAQ’) document, an ‘Introduction’, summary of ‘Features’, ‘News’, information about the NED development ‘Team’, forms and documentation for submitting NED ‘Batch jobs’, and finally a page of useful ‘Web Links’ relevant to extragalactic astronomy.
Figure 5. Multi-wavelength photometry and spectral energy distributions (SEDs) covering gamma-ray through radio wavelengths. The data are available in original units as published, and also in common units ($Hz, Wm^{-2}Hz^{-1}$) used to construct SED plots. The data include uncertainties and references. The SED plots are dynamic, with configurable axis units (e.g., wavelength or frequency for the abscissa and $f_\nu, \nu f_\nu$ or f_λ for the ordinate) and optional error bars.

3.2. Batch Mode

NED can process requests for large amounts of data through its ‘Batch Job’ option. Using this mode simply involves submitting to NED via email a “batch form” containing a list of objects or positions, or other constraint parameters (e.g., redshift, object type, or survey/catalog name prefix). After the request has been processed, NED sends the user a notice by return email indicating where the resulting data files may be copied via FTP. There are two types of batch job forms available. One form is to search any of the main data categories in NED – Objects, Basic

The forms are available from the 'Batch Jobs' link in the INFO column on the main NED menu. The forms can be emailed to nedbatch@ipac.caltech.edu for processing.
Figure 6. Multi-wavelength galaxy images, including previews (GIF) and science-grade data (FITS). Image overlays and graphical inter-activity between sky coordinates (from information in the FITS image header) and object markers (from NED and other databases) are available using the Aladin Java applet (CDS).

Data, References, Photometry, Positions, and Redshifts; the second form is to constrain searches By Parameters – positions, names, object types, and redshifts. The input forms are flexible enough to support several different searches with a single form. Though the batch processor will currently support only 3,000 input requests per job, it will return up to 10,000 objects per request. See Section 4.2 for a summary of planned upgrades to the batch mode.

3.3. Client/Server Mode Connectivity

For many years NED has provided a ‘server mode’ with custom client (C) software that has been used by computer programmers all over the world to build applications that issue queries and retrieve data from the NED database in a format that can be integrated into their services. Astrophysics archive centers and observatories use NED’s server mode extensively to resolve extragalactic object names into celestial coordinates, and to retrieve lists of objects by specifying an input position and search radius. A number of sky visualization tools also make use of NED’s client/server mode, including IPAC’s IRSKY and SIRTF Planning Observations Tool (SPOT)∗∗ and the Scientist’s Expert Assistant (SEA) developed at GSFC and STScI for HST and NGST proposal planning††. The

† The NED client C code is available at http://ned.ipac.caltech.edu/pub/ned/client.2/.∗∗ For information about Skyview and SPOT see the IPAC Web site at http://www.ipac.caltech.edu.†† http://aaaprod.gsfc.nasa.gov/sea
NED client/server service is being updated with a new approach as discussed below (Section 3.4).

3.4. Current and Future Technologies

NED is currently operated using UNIX (Sun/Solaris) servers, a combination of Sun D-1000 disk arrays and miscellaneous SCSI disk “shoe boxes” (totaling over 650 GB, including a backup system), two Informix relational database servers, Apache Web servers, and custom Web interface software (CGI) written mostly in C. Perl is also used for some applications, as well as Java applets. New technologies are evaluated as time allows, and applied only when there is a clear benefit in capabilities or performance over current approaches. As for most operational systems with a large base of users, limited resources require a gradual transition to new technologies, because legacy services have to be maintained during any transition. A relatively new technology planned for future NED interface enhancements is a Web application server (‘middle-ware’) using Java Servlets and Enterprise Java Beans (EJBs); this will enable a more sophisticated interface that includes customized options stored across user sessions, load balancing across multiple servers, and better performance and scalability compared to current CGI-based Web services. The NED team, in coordination with the CDS, IRSA, and the ADC/ADF group at GSFC, is also designing new formats for data output from the NED Web (HTTP) servers based on eXtensible Markup Language (XML). XML is a markup language designed for producing logical, well structured documents and data services that separate data content and metadata issues from those of display and presentation. This development will simplify the ability of client computer programs to be written that can parse and utilize NED data in more efficient ways than is possible using the classic NED ‘server mode’ (described in Section 3.3), or by parsing the HTML output which is expected to undergo frequent changes to provide improved presentation for NED’s interactive users. Providing XML output from NED will enable, among other things, the construction of software “agents” that perform automated data mining by streaming and combining data from NED and other services, improved interoperability with other services that are planned by developers of new Virtual Observatory applications, and support for the next generation of Web browsers and data analysis software that will increasingly utilize XML rather than HTML. Providing XML output from NED will establish the next generation ‘server mode’, superseding the need to enhance the custom NED client/server package (Section 3.3), because builders of future observatory and archive center tools will find it more convenient and powerful to connect their software with NED using industry-standard XML development tools.

4. NED IN THE ERA OF A GLOBAL VIRTUAL OBSERVATORY

In a nutshell, the basic vision of the ‘virtual observatories’ (VO) involves interconnected, globally distributed archives from observatories and large-scale sky surveys which are federated using common database query standards and data interchange protocols, combined with user interfaces and data mining tools that integrate and analyze the fused, multi-wavelength data sets to facilitate making new discoveries about the Universe (regardless of the location of the data or the investigators). A popular level description of the concept is given in an article by Cowen. The term ‘virtual observatory’ is new, but the concept is essentially the same as that outlined a decade ago for the original Astrophysics Data System (ADS). Portions of the VO concept also overlap, to some degree, the functionality of NED with respect to the production of multi-wavelength catalog cross-identifications and statistical associations, queries that join distributed archives, and support for studies of fused panchromatic data for extragalactic sources. It is noteworthy that Helou et al. pointed out in 1991 that there is a dual challenge presented by the explosive growth in astronomical data: “dealing with the sheer volume, but also inter-connecting intelligently the huge variety of information available.” Yet there is much work left to be done on all fronts by a broad community of astronomers teamed with computer scientists and programmers. The NED team shares a common vision regarding what a VO can enable for all fields of astrophysics, and we are actively involved in numerous collaborations and proposals designed to lay the foundation of the VO and extend its functionality. It is useful to summarize the role of NED in the emerging global VO in the context of current capabilities and logical future enhancements that will support related projects.

4.1. Current Capabilities

As the primary astrophysics data integration service of NASA’s Space Science Data System (SSDS), in cooperation with the Astrophysics Data Center Coordinating Council (ADCCC) and new VO partners, NED will continue to establish

‡‡For information about XML see http://www.xml.org, http://www.w3.org/XML, and the astronomical XML resources at http://xml.gsfc.nasa.gov, http://ssds.nasa.gov, and http://www.adccc.org. There are dozens of books published on the subject.
and improve high fidelity relationships between multi-wavelength data with anchors to the literature for millions of extragalactic objects, using a combination of computer software that utilizes positional uncertainties and astronomical source properties (e.g., fluxes, redshifts, sample source densities), followed by human inspection to resolve important, complex cases that cannot be fully automated. In addition, through collaboration on a number of proposals to NASA and the National Science Foundation, the NED team is committed to participation in the collaborative development, testing, and deployment of the next generation of catalog cross-identification software tool-kits. The idea is that new tools that may be developed for individual researchers to construct dynamic catalog cross-identifications in a VO framework, for example enabling Bayesian type probabilities of association that incorporate prior astrophysical knowledge about a sample will also be useful for performing rapid, bulk cross-identifications of new surveys against the data synthesis in NED. The advantages of this approach (over repeatedly performing dynamic cross-comparisons against a plethora of original catalogs) for many types of studies were reviewed in Section 2.

NED will also continue to maintain its object-based portal into distributed data sets (Section 3.1.2, Figure 3), in order to make this innovative service even more useful for a wide cross-section of the extragalactic research community. This work will involve keeping up with evolving technology for interoperability between archive query services, primarily XML and its associated family of protocols (e.g., XLink, Namespaces, DTD, Schema, CSS, XSL, SOAP) as they are adopted by the community of VO developers (along with the much broader Internet industry).

4.2. Future Enhancements

In addition to staying current with the literature and extragalactic source observations in modern large-scale sky surveys, the NED team is committed to providing new functionality to extend the usefulness of NED as a research tool for astronomers. The newer NED capabilities with direct relevance to the VO concept were reviewed above. Over the next few years NED will provide the following enhanced capabilities for even tighter integration with other VO initiatives: (1) development of a spectral archive for extragalactic sources, focusing on reduced, calibrated spectra contributed by authors and links to spectra in mission/observatory archives (very similar to the NED image archive); (2) enhancements to the ‘By Parameters’ tool to support all-sky queries based on multi-wavelength flux and color criteria; (3) upgrades to the ‘Batch Mode’ to support larger result sets with output content and formats that can be configured by users for input into data mining applications; (4) integration of the ‘By Parameter’ service on the Web interface with the Batch Mode to support queries that run too long to maintain connectivity with a Web browser; (5) production of an XML server mode, with the many benefits summarized above (Section 3.4) to support people who want to write software to analyze NED data or synthesize the query results into new VO interfaces and services.

5. NED AS A RESOURCE FOR KDD

Knowledge discovery in databases (KDD) refers to the complex process of applying data mining (e.g., pattern finding) and modern statistical analysis techniques to extract knowledge from large databases and image archives. The first wave of results in a number of areas of scientific research and business has made it increasingly clear that in order to discover something fundamentally new, and to adequately handle encounters with various “mine fields,” it is essential to incorporate prior domain knowledge into the KDD process. As outlined above, new and emerging capabilities of NED provide a valuable resource for incorporating prior knowledge into future KDD applications in astronomy. For example, using the present HTML output or the future XML server, one could write a client program that extracts information from NED’s panchromatic SEDs to fold into automated algorithms that search for different known types of extragalactic objects in new survey data. Likewise, a thorough comparison of new observations with images, SEDs, high resolution spectra, or literature resources available in NED (or distributed archive entries linked with NED by object names and coordinates) can prevent pitfalls such as a false claim of a new class of extragalactic object. As a third example, the NED image archive presents an unprecedented resource for developing and testing advanced algorithms to tackle the differing resolutions, pixel scales, and calibration uncertainties in multi-wavelength images that must be confronted to make novel discoveries. NED’s image archive already provides hundreds of objects that have images spanning ultraviolet, visual, near-infrared, and radio wavelengths. In addition, construction of intelligent Web ‘agent’ programs that can transverse the External Links from NED object queries and extract relevant information in an automated fashion could expand the possibilities for discovery in innumerable ways.

†See http://www.w3.org for descriptions of these and other XML protocols put forth by the World Wide Web Consortium.
5.1. Fusion and Classification Using Large Astronomical Databases

Since NED currently serves a large fraction of the world-wide extragalactic research community with fused, multi-wavelength data for millions of objects, it provides a unique opportunity to introduce many astronomers to new analysis tools and protocols developed by the VO community. The planned upgrades discussed above will enable the use of NED data streams containing multi-wavelength, multi-dimensional data such as SEDs and object classifications (with pointers to additional, distributed data) in extragalactic data mining applications. NED can effectively serve this role because the database contains 10-50 attributes (positions, redshifts, multi-wavelength photometric measurements, and object classifications) for millions of extragalactic objects. Using NED as a test-bed for data mining algorithms is a logical initial step for more ambitious VO efforts planning to eventually handle hundreds of attributes in catalogs containing $10^8 - 10^9$ objects or more, which is common when all types of astrophysical sources are blended together. (Most survey catalogs initially contain stars, Galactic nebulae, galaxies, QSOs, asteroids, etc., until they are classified and extracted into specialized lists.)

High dimensionality presents great challenges to effectively visualize, summarize, and extract new information from large databases. Data fusion across large databases is fraught with practical problems: compiling a complete sample across many wavelengths is difficult; source cross-identifications are non-trivial to get right; there are problems of duplicate observations, contamination, confusion, etc.; different coding schemes for missing data must be made uniform; effects of sampling biases must be considered; mixed data types include quantitative (continuous), categorical (nominal), and binary (e.g., quality flags, codes); ignoring or treating non-detections, upper-limits and different flux limits (censored data) in combined surveys can lead to biases; observed scatter can be intrinsic to astrophysical sources, measurement uncertainties, or both; most classical multivariate statistical methods do not handle explicit data uncertainties. Nevertheless, if we are to live up to the challenges of making discoveries from fused VO archives, these and the problems of scale will have to be confronted and solved.

5.2. A Pilot Study

Here we briefly summarize an ongoing project to exploit NED and its interconnected archive resources to aid the process of automated, large-scale galaxy classification. A representative problem is that among approximately a half-million objects in the Second Incremental Release of the 2MASS Extended Source Catalog, only about 10% were previously known objects (established using NED, prior to loading the 2MASS sources into the database), and only a small number of known NED objects with 2MASS cross-identifications have available morphological or spectral classifications from the historical catalogs and literature. A common goal of many “data miners” in astronomy is to discover large numbers of new cases of previously known types of objects, to perform statistical analyses which typically suffer from small number statistics and severe selection biases in previous investigations. Another “Holy Grail” is the potential to discover a new class of objects, those rare nuggets that may teach us something fundamentally new about the contents, structure or evolution of the Universe. Clearly using classical approaches, even one involving manual, interactive queries of NED and connected online archives to classify the all the previously known objects in 2MASS (or the SDSS) is impractical. A more automated approach is needed. An outline of the steps required for this pilot project are as follows: (1) construct cross-identifications between near-infrared sources in 2MASS, visual sources in SDSS, and radio sources in the NVSS and FIRST surveys; (2) fuse the cross-correlated survey data with source classifications and other available data in NED – morphological types, nuclear activity types (starburst/HII, LINER, Sy2, Sy 1, QSO, etc.), magnitudes, redshifts; (3) comprehensively summarize correlations, dominant variables, and clusters in the resulting high dimensionality ($N > 20$), multi-wavelength data matrix; (4) produce a training set for machine learning classifiers (decision trees and neural nets); (5) derive provisional classifications (predictors) for the sources that lack any historical data. These results will guide follow-up observations by providing candidate lists of known classes of extragalactic objects, candidates for possible previously unknown classes of objects, and rare objects (outliers) revealed in the multivariate analysis. The results will be published in summary form and be made available in bulk on the Internet as a resource for other investigators.

6. SUMMARY

NED provides data and relationships between multi-wavelength observations of millions of extragalactic objects. The goal is a complete panchromatic census of objects in the extragalactic sky. NED team activities revolve around an ongoing fusion of data from sky surveys and the literature, focusing on established and candidate extragalactic sources, and maintaining cross-identifications, statistical associations, and anchors to online references and pointers.
NED serves as an interface into its own database and now also as a portal for the extragalactic research community into an emerging federation of astrophysics data centers and service providers with queries indexed by object names and coordinates synthesized by NED. As a key participant in the global Virtual Observatory (VO), NED will continue evolving the core functions for knowledge management that it provides today, while supporting new initiatives through use of XML standards to establish higher degrees of interoperability with other services, cooperation in the development and application of new tools for bulk dynamic catalog cross-identifications, serving large multidimensional data streams from NED to interface with data mining and visualization applications, and in general enabling new opportunities for discovery by leveraging new information technologies. Opportunities and challenges to integrate NED into new VO applications have been reviewed, and we discussed a pilot study to utilize prior knowledge on a large scale to assemble large samples of candidates for established and potentially new classes of objects from sky surveys. The experience of over a decade of successful NED services and user support, combined with new capabilities to be developed through collaboration with other organizations taking part in construction of a global virtual observatory, is ushering in an exciting new era of discovery using the rapidly growing online archives.

ACKNOWLEDGMENTS
The NED and LEVEL5 development team consists of Kay Baker, Judy Bennett, Harold Corwin, Cren Frayer, George Helou, Anne Kelly, Cheryl Lague, Joseph Mazzarella, Barry Madore, Olga Pevunova, Marion Schmitz, Brian Skiff, and Dianna Schettini. The Apache Web servers are maintained by Rick Ebert, and Informix database administration is performed by Nian-Ming Chiu. We also thank the IPAC Systems Group for their fine computer and network infrastructure support. This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NED is funded by the Mission Operations and Data Analysis program of NASA’s Office of Space Science. LEVEL5 is funded through the NASA Applied Information Systems Research Program (AISRP).

REFERENCES
[1] G. Helou, B. F. Madore, M. Schmitz, M. D. Bicay, X. Wu, and J. Bennett, “The NASA/IPAC Extragalactic Database,” in Databases and Online Astronomy, M. A. Albrecht and D. Egret, eds., pp. 89–106, Kluwer, 1991.
[2] J. M. Mazzarella and V. A. Balzano, “A Catalog of Markarian Galaxies,” Astrophysical Journal Supplement Series, 62, pp. 751–819, 1986.
[3] D. J. Schlegel, D. P. Finkbeiner, and M. Davis, “Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds,” Astrophysical Journal, 500, pp. 525–555, 1998.
[4] D. Burstein and C. Heiles, “Reddenings Derived From H I and Galaxy Counts - Accuracy and Maps,” Astronomical Journal, 87, pp. 1165–1189, 1982.
[5] R. Cowen, “Mining the Sky,” Science News, 159, pp. 124–125, 2001.
[6] J. Weiss and J. Good, “The NASA Astrophysics Data System,” in Databases and Online Astronomy, M. A. Albrecht and D. Egret, eds., pp. 139–150, Kluwer, 1991.
[7] R. Rutledge, R. Brunner, T. Prince, and C. Lonsdale, “XID: Cross-Association of ROSAT/Bright Source Catalog X-Ray Sources with USNO A-2 Optical Point Sources,” Astrophysical Journal Supplement Series, 131, pp. 335–353, 2000.
[8] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery: An Overview,” in Advances in Knowledge Discovery and Data Mining, U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds., pp. 1–34, AAAI Press / The MIT Press, 1996.