Spin-lattice relaxation time in pressure-induced two-leg ladder cuprate superconductors

Jihong Qin
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China

Yu Lan
Department of Physics, Jinan University, Guangzhou 510632, China

Abstract. Spin-lattice relaxation time in pressure-induced two-leg ladder cuprate superconductors is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-lattice relaxation time exhibits a temperature linear dependence at low temperature followed by a peak developed below the superconducting transition temperature, in qualitative agreement with experiments.

The great interest of superconducting (SC) spin ladder cuprates lies in that its ground state may be a spin liquid state with a finite spin gap of the magnetic excitations[1]. This spin liquid state may play a crucial role in superconductivity of doped cuprates as emphasized by Anderson [2]. Experimentally it has been shown that the doped two-leg ladder copper oxide material Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ has a SC phase at high pressure [3]. Moreover, the structure under high pressure remains the same as the case in ambient pressure [4], and the spin background in the SC phase does not drastically alter its spin gap properties [1]. Recently, the dynamical spin response on the doped two-leg ladder cuprate Sr$_2$Ca$_{12}$Cu$_{24}$O$_{41}$ in the SC state under pressure has been detected by virtue of nuclear magnetic resonance and nuclear quadrupole resonance [5]. It is indicated that the spin-lattice relaxation time possesses temperature linear dependence at low temperature followed by a peak appears below the SC transition temperature T_c.

Within the charge-spin separation (CSS) fermion-spin theory [6], the dynamical spin response of Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ in the normal state has been studied [7]. Furthermore, the pressure-induced superconductivity in Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ [8] has been discussed based on the kinetic energy driven SC mechanism [9]. In this paper, we apply the kinetic energy driven SC mechanism to discuss the spin-lattice relaxation time in the pressure-induced two-leg ladder cuprate superconductor Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ in the SC state.

We start from the two-leg t-J ladder model,

$$H = -t_{\|} \sum_{i\sigma} C_{ia\sigma}^\dagger C_{i+\|a\sigma} - t_{\perp} \sum_{i\sigma} (C_{i1\sigma}^\dagger C_{i2\sigma} + H.c.) - \mu \sum_{i\sigma} C_{ia\sigma}^\dagger C_{ia\sigma} + J_{\|} \sum_{i\sigma} S_{ia} \cdot S_{i+\|a\sigma} + J_{\perp} \sum_{i} S_{i1} \cdot S_{i2},$$

(1)

1 Author to whom correspondence should be addressed. E-mail: jhqin@sas.ustb.edu.cn
supplemented by the single occupancy local constraint \(\sum_{\sigma} C_{i_{\sigma}} C_{i_{\bar{\sigma}}} \leq 1 \), where \(i \) runs over all rungs, \(\eta = \pm \hat{x}, a(= 1, 2) \) and \(\sigma(= \uparrow, \downarrow) \) are leg and spin indices, respectively, \(C_{i_{\sigma}} \) and \(C_{i_{\bar{\sigma}}} \) are the electron creation (annihilation) operators, \(S_{i_{\sigma}} = C_{i_{\sigma}}^{\dagger} C_{i_{\bar{\sigma}}} / 2 \) are the spin operators with \(\bar{\sigma} = (\sigma_{x}, \sigma_{y}, \sigma_{z}) \) as the Pauli matrices, and \(\mu \) is the chemical potential. The local constraint can be treated properly within the CSS fermion-spin theory, \(C_{i_{\uparrow}} = h_{i_{\uparrow}}^{\dagger} S_{i_{\uparrow}}^{-}, C_{i_{\downarrow}} = h_{i_{\downarrow}}^{\dagger} S_{i_{\downarrow}}^{+} \). In this CSS fermion-spin representation, the low-energy behavior of the \(t-\hat{J} \) ladder Hamiltonian (1) can be expressed as,

\[
H = t_{\parallel} \sum_{i\bar{\eta}} (h_{i+\bar{\eta}a_{\bar{\eta}}1}^{\dagger} S_{i_{\bar{\eta}}}^{+} S_{i+\bar{\eta}a_{\bar{\eta}}1} + h_{i+\bar{\eta}a_{\bar{\eta}}1}^{\dagger} h_{i+\bar{\eta}a_{\bar{\eta}}1}^{\dagger} S_{i+\bar{\eta}a_{\bar{\eta}}1}^{+} S_{i_{\bar{\eta}}}^{+}) \\
+ t_{\perp} \sum_{i} (h_{i1}^{\dagger} S_{i1}^{+} S_{i1} + h_{i1}^{\dagger} h_{i2}^{\dagger} S_{i2}^{+} S_{i1} + h_{i1}^{\dagger} h_{i2} h_{i2}^{\dagger} S_{i1}^{+} S_{i2}^{+}) \\
+ \mu \sum_{i\sigma} h_{i\sigma}^{\dagger} h_{i\sigma} + J_{\parallel \text{eff}} \sum_{i\bar{\eta}} S_{i_{\bar{\eta}}} \cdot S_{i+\bar{\eta}a_{\bar{\eta}}1} + J_{\perp \text{eff}} \sum_{i} S_{i_{1}} \cdot S_{i_{2}},
\]

(2)

where \(J_{\parallel \text{eff}} = J_{\parallel} (1-p)^{2}, J_{\perp \text{eff}} = J_{\perp} (1-p)^{2}, \) and \(p = \langle h_{i_{\text{eff}}}^{\dagger} h_{i_{\text{eff}}} \rangle = \langle h_{i_{\text{eff}}}^{\dagger} h_{i_{\text{eff}}} \rangle \) is the charge carrier doping concentration.

Based on the kinetic energy driven SC mechanism, the dynamical spin structure factor of the doped two-leg ladder cuprate superconductors under pressure can be obtained [10] as,

\[
S(k, \omega) = -2[1 + n_{B}(\omega)][\text{Im} D_{L}(k, \omega) + \text{Im} D_{T}(k, \omega)]
\]

\[
= -2[1 + n_{B}(\omega)] \frac{B_{i_{\text{eff}}}^{2} \text{Im} \Sigma_{s}^{(1)}(k, \omega)}{[\omega^{2} - \left(\omega_{1k} \right)^{2} - B_{1} \text{Re} \Sigma_{s}^{(1)}(k, \omega)]^{2} + \left(B_{1} \text{Im} \Sigma_{s}^{(1)}(k, \omega) \right)^{2}},
\]

(3)

where \(n_{B}(\omega) \) is the boson distribution function, \(\text{Im} \Sigma_{s}^{(1)}(k, \omega) = \text{Im} \Sigma_{L}^{(s)}(k, \omega) + \text{Im} \Sigma_{T}^{(s)}(k, \omega), \text{Re} \Sigma_{s}^{(1)}(k, \omega) = \text{Re} \Sigma_{L}^{(s)}(k, \omega) + \text{Re} \Sigma_{T}^{(s)}(k, \omega), \text{Im} \Sigma_{L}^{(s)}(k, \omega)[\text{Re} \Sigma_{L}^{(s)}(k, \omega)] \) and \(\text{Im} \Sigma_{T}^{(s)}(k, \omega)[\text{Re} \Sigma_{T}^{(s)}(k, \omega)] \) are the corresponding imaginary (real) parts of the spin longitudinal and transverse self-energy, respectively, while the spin longitudinal and transverse self-energy, \(\Sigma_{L}^{(s)}(k, \omega) \) and \(\Sigma_{T}^{(s)}(k, \omega) \), \(B_{1} \text{Re} \) and the mean-field spin excitation spectrum \(\omega_{1k} \) have been given in Refs. [10, 11].

In the dynamical spin response of the pressure-induced two-leg ladder cuprate superconductors, one of the characteristic features is the spin-lattice relaxation time \(T_{1} \), which is closely related to the dynamical spin structure factor, and can be expressed as,

\[
\frac{1}{T_{1}} = \frac{2K_{B}T_{c}}{g^{2} \mu_{B}^{2}} \lim_{\omega \to 0} \frac{1}{N} \sum_{k} F_{\alpha}^{2}(k) \chi''(k, \omega) / \omega,
\]

(4)

where \(g \) is the lande-factor, \(\mu_{B} \) is the Bohr magneton, and \(F_{\alpha}(k) \) is the form factors, while the dynamical spin susceptibility \(\chi''(k, \omega) = (1 - e^{-\beta \omega}) S(k, \omega) \). This form factors \(F_{\alpha}(k) \) can be set to constant without loss of generality [7]. The pressure effects are imitated through the variation of the values of \(J_{\perp} / J_{\parallel} \) and \(t_{\perp} / t_{\parallel} \) [8]. \((t_{\parallel} / t_{\perp})^{2} \) is chosen the same as that of \(J_{\perp} / J_{\parallel} \). In this case, \(1/T_{1} \) has been evaluated and the result at \(p = 0.20 \) for \(t_{\parallel} / J_{\parallel} = 2.5 \) and \(t_{\perp} / t_{\parallel} = 0.7 \) (underpressure) is plotted in Fig. 1 in comparison with the experimental data [5] taken from \(\text{Sr}_{1-x} \text{Ca}_{x} \text{Cu}_{2+y} \text{O}_{4+x} \) at \(x = 12 \left(p \approx 0.20 \right) \), where we have chosen units \(\hbar = K_{B} = 1 \).

Our theoretical results show that \(1/T_{1} \) exhibits a linear temperature dependent behavior at low temperatures \((T > T_{c}) \) followed passes through a minimum and displays a tendency towards an increase with decreasing temperatures, which is dominated by a peak developed below the SC transition temperature \(T_{c} \). Our results are in qualitative agreement with the experiments [5].
Figure 1. The temperature dependence of the spin-lattice relaxation time $1/T_1$ in both logarithmic scales at $p = 0.20$ for $t_\parallel /J_\parallel = 2.5$ and $t_\perp /t_\parallel = 0.7$. Inset: the experimental result on Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ taken from Ref. [5].

Furthermore, this peak can be attributed to a SC coherence peak while the temperature linear dependence of T_1^{-1} at low temperatures to K Corringa-type behavior. In the doped two-leg ladder cuprate superconductors, the charge carrier-spin bound state in the normal state is due to the interaction between charge carriers and spins from the kinetic energy term in the t-J ladder (2) [7]. At low temperatures ($T > T_c$), the spin in the charge carrier-spin bound state moves almost freely, which induces the temperature-linear component in T_1^{-1}, even if the most of spins in the system form the spin liquid state [7].

In conclusion, we have discussed the spin-lattice relaxation time in the pressure-induced two-leg ladder cuprate superconductor Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ based on the kinetic energy driven SC mechanism. Our results show that the spin-lattice relaxation time exhibits a temperature linear dependence at low temperature followed by a peak developed below the SC transition temperature, in qualitative agreement with experimental measurements on Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ in the pressure-induced SC state.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos 11004006 and 11004084.

References
[1] Dagotto E and Rice T M 1996 Science 271 618; Dagotto E 1999 Rep. Prog. Phys. 62 1525
[2] Anderson P W 1987 Science 235 1196
[3] Uehara Masatomo, Nagata Takashi, Akimitsu Jun, Takahashi Hiroki, Mori Nobuo and Kinoshita Kyoichi 1996 J. Phys. Soc. Japan 65 2764
[4] Isobe M, Ohta T, Onoda M, Izumi F, Nakano S, Li J Q, Matsui Y, Takayama-Muromachi E, Matsumoto T and Hayakawa H 1998 Phys. Rev. B 57 613
[5] Fujiwara Naoki, Mori Nobuo, Uwatoko Yoshiya, Matsumoto Takehiko, Motoyama Naoki and Uchida Shinichi 2003 Phys. Rev. Lett. 90 137001; Fujiwara N, Fujimaki Y, Uchida S, Matsubayashi K, Matsumoto T and Uwatoko Y 2009 Phys. Rev. B 80 100503(R)
[6] Feng Shiping, Qin Jihong and Ma Tianxing 2004 J. Phys.: Condens. Matter 16 343
[7] He Jianhui, Feng Shiping and Chen Weiyeu 2003 Phys. Rev. B 67 094402
[8] Qin Jihong, Chen Ting and Feng Shiping 2007 Phys. Lett. A 366 611
[9] Feng Shiping 2003 *Phys. Rev. B* **68** 184501; Feng Shiping, Ma Tianxing and Guo Huaiming 2006 *Physica C* **436** 14

[10] Qin Jihong, Lan Yu and Feng Shiping (unpublished)

[11] Qin Jihong, Yuan Feng and Feng Shiping 2006 *Phys. Lett. A* **358** 448