Case Report

Bilateral Sacroiliac Joint Dislocation Treated by Posterior Instrumentation Case Report and Literature Review

Fernando Moreno Mateo, Rubén Hernández Ramajo, José María Trigueros Larrea, Silvia Santiago Maniega, Francisco Ardura Aragón, David César Noriega González

Department of Traumatology and Orthopaedic Surgery, University Hospital of Valladolid, Valladolid, Spain

ORCID:
Fernando Moreno Mateo: 0000-0002-8111-6173
Rubén Hernández Ramajo: 0000-0001-9775-9758
José María Trigueros Larrea: 0000-0001-9775-9758
Silvia Santiago Maniega: 0000-0002-8111-6173
Francisco Ardura Aragón: 0000-0002-9348-5646
David César Noriega González: 0000-0002-5909-1555

Abstract

Sacroiliac joint dislocation is an uncommon and potentially life-threatening injury secondary to high-energy trauma. Given that bilateral sacroiliac joint dislocation has rarely been reported, its management constitutes a clinical challenge. The aim of this study was to review the literature available about sacroiliac joint dislocation management and to show an effective and reliable method to treat this kind of injury. Case report. We present a 15-year-old female patient who suffered a complete bilateral sacroiliac joint dislocation. The definitive treatment consisted of bilateral L4-iliac assembly plus right sacroiliac screw assisted by an O-arm navigation system. Surgical instrumentation allowed mobilization and full-weight-bearing a few days after surgery. At the 2-year follow-up, the patient remained asymptomatic. The triangle fixation technique stabilizes the sacroiliac joint and binds the lumbar spine to the pelvis. This method could represent a good option that allows early mobilization and weight-bearing.

Keywords: Iliac posterior instrumentation, O-arm navigation, sacroiliac joint dislocation, unstable pelvic fractures

Introduction

Bilateral sacroiliac joint dislocation is a very unusual and potentially life-threatening injury secondary to high-energy trauma. Given its low incidence and the limited number of cases reported,[1-3] guidelines are not available to treat this condition. It has been hypothesized that the mechanism of injury involves posterior-anterior compression force[4-7] with the lower extremities in a hyperflexed position.[8] This injury corresponds to 61C3.1 according to the AO Classification. Although this lesion constitutes a lost connection between the axial skeleton and pelvis, the term spondylo-pelvic dissociation is not exact and should be reserved for transverse sacral fractures (U, H, or Y types).[9,10]

Case Report

The patient was a 15-year-old woman involved in a motor vehicle accident. She exhibited signs of peripheral hypoperfusion, including being cold, pale, and clammy (Glasgow Coma Scale 12/15). Vital signs were: Blood pressure, 90/50 mmHg; heart rate, 120 bpm; respiratory rate, 16 bpm; and O2 Sat, 99%. She complained of back and left lower-extremity pain. Hematuria was not observed in the Foley catheter. She exhibited mild lower abdominal stiffness and pain on palpation, ecchymosis in the posterior right thigh and mild internal rotation of her left lower extremity. She was able to mobilize both lower extremities with pain. A blood test revealed the following: Hb, 7.5 g/dL; Ht, 20.7%; and platelets, 100,000. Values compatible with consumption coagulopathy were noted.

Address for correspondence: Dr. Fernando Moreno Mateo, Avda Ramón y Cajal 3, 5th Planta Este, Secretaría de Traumatología 47003, Valladolid, Spain. E-mail: fmorenomateo@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Mateo FM, Ramajo RH, Trigueros Larrea JM, Maniega SS, Aragón FA, González DC. Bilateral sacroiliac joint dislocation treated by posterior instrumentation case report and literature review. Arch Trauma Res 2019;8:41-4. Received: 17-11-2018, Accepted: 30-04-2019.
Body-Tc under superficial sedation revealed bilateral total sacroiliac joint dislocation with the sacrum and lumbar spine inside the pelvic cavity and nondisplaced fractures, including L5 transverse process, left superior and inferior pubic ramus with minimal symphysis diastasis and left anterior acetabulum [Figure 1].

Given the hemodynamic instability of the patient, urgent reduction was necessary. The reduction maneuver was performed using an X-ray scope and general anesthesia, and 6 kg bilateral femoral supracondylar traction plus upper-extremity contra-traction on both underarms was employed. A roll of sheets was placed under the lumbar spine to achieve lordosis. Given the persistent articular instability confirmed by X-ray, the patient was flipped into a prone position, and traction was maintained for the operation. The surgery involved a posterior right L5, S1, and iliac plus left L5 and iliac arthrodesis [Figure 2]. A total of 1 g of synthetic fibrinogen, 6 units of red blood cells, 2 units of platelets, and 4 fresh-frozen plasma units were required during surgery.

Postsurgical X-ray [Figure 2] revealed mild left sacroiliac joint subluxation. Hemodynamic stability and the patient’s overall status improved, allowing the surgery to be performed on day 7. Thus, posterior instrumentation was extended, and a new bilateral L4-iliac assembly and a right sacroiliac screw were placed using an O-arm navigation system [Figure 3].

Pubic symphysis diastasis was also treated surgically: Open reduction and internal fixation by plate and cortical screws [Figure 4] were achieved through an anterior Pfannenstiel approach. Three days after the last surgery, the patient was discharged from intensive care. Bowel and bladder sphincter control were intact. Neurological exploration of the lower extremities was also completely normal. The patient started physical therapy and deambulation 7 days later (day 23). The patient was discharged on day 36 after admission with full-weight-bearing ability. At the 2-year follow-up, the patient was completely asymptomatic. Clinical evaluation revealed the complete absence of pain, full-weight-bearing ability without limp, normal osteotendinous reflexes, and 5 points in the Medical Research Council manual testing scale for all the muscle groups. Neurological examination through dermatomes revealed no alteration, and sphincter control remained unaffected. Radiological findings were satisfactory [Figures 5 and 6].

DISCUSSION

Conservative treatment avoiding any type of reduction attempt,2 reduction and bed rest with skeletal traction,5 external fixation11 and reduction plus internal fixation1,4,12-15 have...
been reported in the literature. The latter method is the method we applied in this case in an emergency manner because the patient exhibited hemodynamic instability with no other known bleeding focus. In addition, the acceptable reduction is difficult to achieve if treatment is delayed.[1,9,10]

The principal objective should be anatomic reduction and stable fixation to avoid posttraumatic pain, early osteoarthritis, or dysmetria. Early treatment also reduces morbidity and mortality.[10] Biomechanical studies in laboratory models have shown sacroiliac techniques (spinal instrumentation, iliosacral screw, and compression AO-plates) could be generally considered of equivalent stability value in an immediate postoperative period. Longer (>60 mm) iliac pedicle screws combined with bilaterally placed SI screws may theoretically provide the best stability to the separated iliosacral joint, particularly if the disrupted symphysis is stabilized as well.[17,18] Other biomechanical studies report that the combination of the fixation procedures is recommended to allow early mobilization and weight-bearing.[19]

Some authors state that open reduction is needed to restore sacroiliac joint congruity. However, modern techniques allow closed anatomical reduction and percutaneous fixation with stable construction to reduce the second hit on these polytrauma patients.

The triangle fixation technique described in this article stabilizes the sacroiliac joint while binding the lumbar spine to the pelvis. This technique could serve as a good option that allows early mobilization and weight-bearing. Anterior pelvic ring osteosynthesis contributes to total pelvic stability.

Given the lack of consensus about implant removal for posterior spinal instrumentation,[20,21] pelvic osteosynthesis,[22,23] and the symphysis plate in women of childbearing age,[22] we advocate implant removal in cases of complication, material intolerance, or patient preference.

Declarations of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Loupasis G, Anastopoulos G, Asimakopoulos A. Pure bilateral sacroiliac dislocation with intact anterior pelvis. Injury 2005;36:1379-82.
2. Marcus RE, Hansen ST. Bilateral fracture-dislocation of the sacrum. A case report. J Bone Joint Surg Am 1984;66:1297-9.
3. Silva JC, Braga EF. Bilateral sacroiliac fracture-dislocation. Injury 1993;24:199-201.
4. LaFollette BF, Levine MJ, McNieh LM. Bilateral fracture-dislocation of the sacrum. J Bone Joint Surg Am 1986;68:1099-101.
5. Hwang SK, Ahn JN. Bilateral fracture-dislocation of the sacroiliac joint: A case report. J Trauma 1991;31:299-300.
6. Nagi ON, Dhillon MS, Gill SS. Bilateral fracture dislocation of the sacrum without injury to the anterior pelvis. Orthopedics 1993;16:215-7.
7. Torok G. Bilateral sacroiliac joint dislocation with intrapelvic intrusion of the intact lumbosacral spine and sacrum. J Trauma 1976;16:930-4.
8. Tile M. Disruption of the pelvic ring. In: Tile M, editor. Fractures of the Pelvis and Acetabulum. 2nd ed. Baltimore: Williams and Wilkins; 1995. p. 66-199.
9. Bents RT, France JC, Glover JM, Kaylor KL. Traumatic spondylolpelic dissociation. A case report and literature review. Spine (Phila Pa 1976) 1996;21:1814-9.
10. Matta JM, Saucedo T. Internal fixation of pelvic ring fractures. Clin Orthop 1989;242:83-97.
11. Garcia A, Rey del Castillo J, Marco-Martinez F, Gimeno MD, Lopez-Duran L, Martinez J. Bilateral sacroiliac dislocation with intrapelvic intrusion of the lumbosacral spine. A case report. Int Orthop 1994;18:177-9.
12. Wright V, Zelle BA, Prayson M. Bilateral sacroiliac joint dislocation...
without associated fracture or anterior pelvic ring injuries. J Orthop Trauma 2004;18:634-7.
13. Lee DH, Jeong WK, Inna P, Noh W, Lee DK, Lee SH. Bilateral sacroiliac joint dislocation (anterior and posterior) with triradiate cartilage injury: A case report. J Orthop Trauma 2011;25:e111-4.
14. Stevens KJ, Preston BJ, Hahn DM. Bilateral fracture dislocation of the sacroiliac joint. Skeletal Radiol 1997;26:556-8.
15. Hungerer S, Woltmann A, Bühren V. Bilateral sacroiliac joint dislocation in an adolescent after a skiing accident. Eur J Trauma Emerg Surg 2008;34:181-7.
16. Schildhauer TA, McCulloch P, Chapman JR, Mann FA. Anatomic and radiographic considerations for placement of transiliac screws in lumbopelvic fixations. J Spinal Disord Tech 2002;15:199-205.
17. Korovessis PG, Magnissalis EA, Deligianni D. Biomechanical evaluation of conventional internal contemporary spinal fixation techniques used for stabilization of complete sacroiliac joint separation: A 3-dimensional unilaterally isolated experimental stiffness study. Spine (Phila Pa 1976) 2006;31:E941-51.
18. Schildhauer TA, Josten Ch, Muhr G. Triangular osteosynthesis of vertically unstable sacrum fractures: A new concept allowing early weight-bearing. J Orthop Trauma 2006;20:S44-51.
19. Yinger K, Scalise J, Olson SA, Bay BK, Finkemeier CG. Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma 2003;17:481-7.
20. Sponseller PD. Pediatric revision spinal deformity surgery: Issues and complications. Spine (Phila Pa 1976) 2010;35:2205-10.
21. Cook S, Asher M, Lai SM, Shobe J. Reoperation after primary posterior instrumentation and fusion for idiopathic scoliosis. Toward defining late operative site pain of unknown cause. Spine (Phila Pa 1976) 2000;25:463-8.
22. Giannoudis PV, Chalidis BE, Roberts CS. Internal fixation of traumatic diastasis of pubic symphysis: Is plate removal essential? Arch Orthop Trauma Surg 2008;128:325-31.
23. Williams SK, Quinlan SM. Percutaneous lumbopelvic fixation for reduction and stabilization of sacral fractures with spinopelvic dissociation patterns. J Orthop Trauma 2016;30:318-24.