Reduce, reuse, recycle, for robust cluster state generation

Clare Horsman,1,2∗ Katherine L. Brown,3 William J. Munro,4,5 and Vivien M. Kendon3

1Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
2H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
3School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
4National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
5NTT Basic Research Laboratories, NTT Corporation,
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

(Dated: 29th March 2011)

PACS numbers: 03.67.Lx,42.50.Ex,03.67.Mn,32.80.-t

Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating smaller cluster “Lego bricks”, reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster state generation requiring only 20 controlled-PHASE gates per bus use.

I. INTRODUCTION

Hybrid schemes for quantum information processing are among the most promising for scalable quantum computers. Such systems combine both matter and optical elements, where the computational gates between qubits of one type can be mediated by a shared bus of the other type 1–3. A computational model for such hybrid systems has recently been characterized as ancilla-based computation 4, in contrast to the usual quantum computation models that use direct qubit-qubit gates. Ancilla-driven schemes are important for chip-based quantum computing architectures, where a flying ancilla mediates between fixed qubits 5,7.

Hybrid architectures form a natural substrate for measurement-based quantum computing (MBQC) 6, one type of which (the topological model based on the surface code 3) has the best error threshold for quantum computing 10. In MBQC a highly-entangled cluster state is generated, and then computation performed by sequential qubit measurements. The quantum processing task is to generate the cluster state, after which it becomes a matter of measurement and classical processing to feed forward the measurement outcomes. The first proposal for cluster-state construction was a one shot scheme, where the entire cluster was created by a small number of global operations 6. Since the cluster qubits are measured sequentially, in scalable physical realizations the cluster is prepared dynamically, a few rows at a time 11,12. This avoids the need for long coherence times for entangled qubits 13,14, a critical requirement for scalable schemes. Photonic schemes for constructing cluster states probabilistically 14 exploit the linear optics quantum computing scheme of Knill, Laflamme and Milburn 15. The disadvantage of this approach is the large number of repeated operations required to successfully build the cluster. To reduce this overhead, heralded PHASE operations occurring between two qubits were proposed by Browne et al. 16. Duan et al. 17 showed that this probabilistic generation does indeed allow the cluster to grow, and Gross et al. 18 determined the optimal growth strategies for regimes with low and high probabilities of success per operation. Louis et al. 19 showed that using a three qubit entangling gate instead of a two qubit entangling gate increased the success probability from 1/2 to 3/4. The advantages of deterministic gates were explored by exploiting ancilla-based schemes 6,19,22. Wang et al. 23 proposed a method to transfer an atomic cluster state to photonic qubits, inverting the usual role of the qubit and ancilla between the matter and optical systems.

As the cluster state is the fundamental quantum resource of a measurement-based computation, it becomes extremely important to make it as error-free as possible. Errors in constructing the cluster can propagate rapidly through a computation because of the highly-entangled nature of the state, leading to failure of the computation. Topological surface encodings on cluster states provide a robust fault-tolerance for quantum computation, provided each component in the system has an error below a certain threshold 6,24,25. The construction of the cluster itself is one such component, and schemes to reduce cluster error can enable systems that would otherwise be unusable to reach the threshold for use with error correction. Hybrid systems are susceptible to specific types of error that other systems are not, because of the use of the mediating ancilla. In cases where the ancilla is not destroyed after each gate there is the additional possibil-

* Current address: Keio University Shonan Fujisawa Campus, Kanagawa 252-0882, Japan; clare@sfc.wide.ad.jp
ity of errors propagating through ancilla reuse. We show there is a trade-off between increasing efficiency by using the same bus for multiple gates, and increasing errors because of this.

In this paper we present the optimal scheme for dynamic 2D cluster-state generation in hybrid systems where the mediating system (bus) can be used for more than one gate operation without being reset. We divide the cluster state into “Lego bricks”, each of which is built with a single bus. We give the optimal method for constructing the bricks, reducing the number of system-bus entanglements. We then show how to determine the brick size based on the error threshold of the system being used. We find that, even when the probability of error in the system is high, this scheme can still deliver significant efficiency savings through bus reuse, enabling a larger cluster to be generated. The paper is organised as follows. In section III we give an overview of the qubus system, the particular ancilla-based scheme we will focus on. Section III explains how to reduce the number of operations required when reusing the qubus for multiple gates. In section IV we introduce our error model for reusing the qubus, and in section V we apply bus reuse to generating a 2D cluster state. In section VI we calculate the optimal bus reuse scheme in the ideal case, and in section VII we combine this with our error model to give the optimal bus reuse scheme with dephasing. Section VIII discusses how to apply our results to dynamic 2D cluster-state generation in hybrid systems, and in section IX we calculate the optimal brick size in terms of the system parameters. Section X summarises our conclusions.

II. QUBUS SYSTEM

To provide a concrete setting for our calculations, we will focus on the qubus system, which consists of matter qubits and a photonic field as the mediating ancilla [26, 27]. The cluster state we are generating is a regular square lattice of qubits with nearest neighbors entangled. Each qubit is initialized in the state $|0\rangle + |1\rangle/\sqrt{2}$, then cphase gates are applied between neighboring qubits. Using the qubus, cphase gates are performed using a conditional evolution

$$U_e = \exp(-iH_{int}\tau/\hbar),$$

(1)

where τ is the fixed time for one such operation and

$$H_{int} = \hbar\chi\sigma_z(a^\dagger e^{i\theta} + ae^{-i\theta}),$$

(2)

where χ is nonlinearity strength, $a(a^\dagger)$ the field annihilation(creation) operators, and $\theta = \Omega(\pi/2)$ describes coupling of the qubit to the position(momentum) quadrature of the field. The result of this interaction is deterministic displacements along discrete paths in phase space, of amplitude $\beta = \chi\tau$. The application of $U_e(\pm x_j)$ applies a displacement of β in the positive(negative) direction in position-space for the j-th qubit, and $U_e(\pm p_k)$ a displacement of β along the positive(negative) axis in momentum-space for the k-th qubit. The sequence

$$U_e(x_2)U_e(-p_1)U_e(-x_2)U_e(p_1)$$

(3)

performs a geometric phase gate between qubits 1 and 2, with the phase change proportional to the area traced out [1, 28]. When $\beta^2 = \pi/8$, this provides the cphase gate required for cluster-state construction. The qubus thus acts as a discrete-level system with two partitions, equivalent to two coupled qudit ancillas. There are two options for using such an ancilla-based system to construct a cluster state. Either the ancilla is discarded after every gate, or it is recycled for use with further gates.

III. REUSING THE BUS

If each cphase gate is performed by a different bus, then each qubit in the cluster (apart from the perimeter) needs to be operated on by four different buses to generate the four entanglements it is part of. For a cluster of $m \times n$ qubits we therefore need

$$N = 8mn - 4(m + n)$$

(4)

bus operations to complete it – one entangling and one disentangling operation per qubit per gate. However, if we are able to reuse the bus, then we can use fewer operations. Consider the following sequence of unitaries for three qubits:

$$U_e(x_3)U_e(-p_2)U_e(-x_3)U_e(-x_1)U_e(p_2)U_e(x_1).$$

(5)

Reading from the right, a cphase is performed between qubits 1 and 2, and then qubit 1 disentangled from the bus. Qubit 2 is kept on the bus, and qubit 3 entangled with the position quadrature. Finally, qubits 2 and 3 are disentangled from the bus (in that order). The result is cphase gates between both (1, 2) and (2, 3) using six bus operations rather than the 8 needed if qubit 2 were disentangled after the first interaction. Such sequential operations are possible in all ancilla-based systems which can reuse the ancilla.

IV. DEPHASING ERRORS

Reusing the ancilla reduces the total number of operations required, speeding up the process and hence reducing the length of time decoherence acts on the cluster qubits. For N bus operations taking a total time $N\tau$ to perform, the probability of a phase-flip error due to qubit dephasing is $(1 - \exp[-N\gamma \tau])/2$, where γ is the dephasing rate for one qubit. Fewer bus operations therefore mean less dephasing. However, we have to take into account error accumulating on the ancilla. For the qubits, the errors come from photon loss. The probability of a phase-flip error due to photon loss on the bus is $(1 - \exp[-4\eta\beta^2])/2.$
where C is the number of CPHASE gates constructed per bus and η is the loss parameter for the bus. Combining these gives the total probability of dephasing:

$$\varepsilon = \frac{1}{2}[1 - \exp(-N\gamma \tau - 4C\eta\beta^2)] . \quad (6)$$

We can therefore trade off the two dephasings by reusing the bus, which reduces N but increases C. If we minimize N for a given ε, this then enables a maximum number of CPHASE gates to be completed before the dephasing reaches a critical value.

V. CLUSTER-STATE GENERATION

We now apply bus reuse to more efficient cluster-state construction. Extending the bus reuse sequence in equation (3) to further qubits allows one ancilla to generate a line of entangled qubits with just two operations per qubit – one entangling followed by one disentangling. A set of such lines of length L arranged to form a $L \times L$ grid generates a 2D cluster, as proposed by Louis et al. [19]. The minimum number of operations required to build a cluster from 1D entangled lines of qubits can be obtained by a simple combinatorial argument. Consider the cluster as a 2D lattice graph, with qubits as vertices and entanglement links as edges. We count how many edges of the graph can be generated using a line of qubits when each qubit is only visited once: this corresponds to being connected to the bus once only, thus minimizing bus use. For the cluster of mn qubits, the total number of edges is mn. The maximum number of edges that can be generated is therefore $mn - 1$. Each entangling action requires two bus operations per qubit (one to connect to the bus, one to disconnect). We can therefore generate $mn - 1$ edges with $2mn$ bus operations. The total number of edges in the cluster is $m(m-1) + n(n-1)$, so we are left with $(n-1)(m-1)$ edges to fill in. The path we have generated can connect a maximum of two edges to each vertex in the lattice. All vertices except the corners require more than two edges. Therefore all qubits except the four corners will require reactivation in order to fill in the extra edges, requiring $2mn - 8$ additional operations. We therefore have a minimum number of bus operations $4mn - 8$ to generate the cluster state using an ancilla system where at most two qubits are coupled to the ancilla at any time. The method of Louis et al. [19] achieves the minimum up to a constant. If the total number of operations one bus can perform is limited by the errors accumulating, each change to a new bus requires in general an extra disentangling of the old bus and re-entangling of the new bus, a total of two extra operations per extra bus.

VI. OPTIMAL BUS REUSE

Generation of a line of entangled qubits is the simplest use of sequential operations, with a maximum of one qubit on each quadrature of the bus at any time. However, it does not use the full power of the qubits to reduce the number of bus operations per gate. The displacement operators on the qubits allow a qubit on one quadrature to become entangled with all qubits on the other. If we start by connecting one qubit to, say, the position quadrature, then all its neighbors can be simultaneously coupled to the momentum quadrature. However, if we then try to connect any other qubit to the position quadrature there will be cross-entanglements generated that are not part of the required cluster state (where qubits are entangled only with nearest neighbors). Only two of the momentum quadrature qubits can remain on the bus and not generate unwanted entanglement. These qubits must neighbor both of the position quadrature qubits; this then forms a closed box in the lattice.

In contrast with the previous scenario, we now need to consider a path across the lattice that is two qubits wide, rather than a single qubit line (figure 1). By inspection, the maximum number of edges that can be generated on such a path that visits all mn qubits in the cluster only once is $3mn/2 - 2$, for even mn. The number of cluster edges remaining after $2mn$ sequential bus operations is therefore $\frac{3}{2}mn - (m + n) + 2$. We could either finish the sequential operations and then generate these edges separately (requiring two qubits per edge to be reconnected with the bus), or we could construct these edges as we go along. In the latter case, before a qubit is disconnected from the bus, we generate the extra edges required for that qubit. Then only one qubit per additional edge needs to be connected to the bus again. With two bus operations per connection, this requires a further $mn - 2(m + n) + 4$ uses of the bus. This gives a lower bound of

$$N_{\text{min}} = 3mn - 2(m + n) + 4 \quad (7)$$

FIG. 1. A path of width two generating a 5×6 cluster. Dark edges represent entanglement between qubits that have connected to the bus once, light edges require at least one qubit to connect to the bus twice, and dotted edges indicate CPHASE gates not yet performed (color online).
achieves the bound N_{min}. A spiral path does not allow dynamic generation, so in practice we will use a zig-zag path (figure 1). The U-shaped turns require up to two extra operations per turn, so we will want to minimise their number to minimise the actual cost. The zig-zag path in figure 1 is the minimum turn arrangement for dynamically generating rectangular clusters.

Equation (7) tells us the most efficient a scheme can be when the bus acts as an ancilla partitioned into two. Clearly in general an ancilla can have more than two partitions, although multipartition ancillas are more naturally suited to multiqubit gates. With a path of width a, the number of operations using a single bus would only improve to order $2mn + 2(mn/a)$. We can see then that going to large partition sizes significantly increases the ancilla complexity for a rapidly reducing pay-off in terms of bus efficiency.

\section{VII. REUSE WITH DEPHASING}

We now consider the case where building the entire cluster with one bus would take us beyond the threshold value of the error as given by equation (6). In such a situation we would need to use multiple buses, each one creating a smaller part of the cluster. Since there are always at least two qubits entangled with the bus for the path of width two, changing buses requires two qubit disconnects and reconnects, a total of four extra operations per extra bus. We term these sections of the cluster generated by one bus “Lego bricks” (figure 2). If these Lego bricks have length b, see figure 2(a), an $m \times n$ cluster will contain $mn/2b$ of them. The number of extra operations is thus $4(mn/2b - 1)$, giving a minimum number of operations to create the cluster using multiple buses of

$$N_{\text{min}}(b) = (3 + 2/b)mn - 2(m + n).$$

\section{VIII. DYNAMIC GENERATION}

For dynamic generation of our cluster, we need to produce a strip a few qubits wide with the measurements that perform the computation applied just behind the construction process. When a whole number of bricks fit across the cluster, it can be dynamically generated without any loss of efficiency. When bus changing operations don’t happen conveniently at the edge of the cluster, we will need to turn a corner within a brick. These U-shaped turns will cost at most two extra operations per turn \cite{30}. Lego bricks also facilitate optimally efficient dynamic generation where multiple buses are used in parallel to produce a fully-scalable cluster-state scheme. We orient our bricks along the growth direction, see figure 3, producing parallel connected paths of width two. To avoid the buses entangling to the same qubit at the same time, alternate buses must be started six operations apart. Since we want a wide enough strip to allow room for the measurements to follow behind the cluster construction, we can also use twice as many buses (one per qubit row). This is less efficient in operations per bus, but generates a wider strip in the same time frame \cite{30}. The optimal choice will depend on the decoherence rates and the cost of extra buses for the particular system.
IX. OPTIMAL BRICK SIZE

The system’s error threshold ε will determine the size of our Lego bricks. A brick has $3b + 2$ qubits, each operated on twice for a total of $6b + 4$ bus operations, and $4b$ edges (Cphase gates); using equation (6) we require

$$\frac{1}{2} \left(1 - \exp[-(6b + 4)\gamma \tau - 16b\eta \beta^2]\right) \leq \varepsilon.$$ \hspace{1cm} (9)

For a given set of experimental parameters γ, τ and η, and desired dephasing limit ε, this determines b.

Let us now compare our scheme to the capabilities of one without bus reuse. If we use one bus per Cphase gate to generate a brick, equation (6) gives

$$\frac{1}{2} \left(1 - \exp[-16b\gamma \tau - 4\eta \beta^2]\right) \leq \varepsilon.$$ \hspace{1cm} (10)

Comparing equations (9) and (10), we find our Lego scheme produces less qubit dephasing than using one bus per Cphase gate provided $\eta \beta^2 \lesssim \gamma \tau / 2$. For example, if $\gamma \tau = 5 \times 10^{-4}$ and $\eta = 10^{-4}$, then for an error threshold $\varepsilon = 10^{-2}$, the bus-per-gate method could generate only 8 Cphase gates between 8 qubits ($b = 2$) before reaching the threshold, while the Lego method would be able to connect at least 17 qubits with 20 Cphase gates ($b = 5$) before the same dephasing occurred. For the case using multiple buses in parallel, this would give a coherent strip of cluster four qubits wide, just enough to apply the measurements behind the construction, as shown in figure 3.

X. CONCLUSIONS

We have described the optimally efficient method for generating cluster states in ancilla-based computation, based on dividing the cluster into “Lego bricks”, each of which is constructed with a single, reused, ancilla. We have shown how, in the specific case of the qubus system, the reduction in ancilla operations can offset the increased noise due to bus reuse, allowing approximately twice the number of qubits to be connected into a cluster state compared to single-bus use. Compared with $8mn - 4(m + n)$ bus operations with no bus reuse, for large clusters, the Lego scheme uses fewer than half for $b > 2$, $O(3mn)$ compared to $O(8mn)$. Even for $b = 1$, the reduction is to $5mn - 2(m + n)$, equivalent to the method in [13] when limited to five qubits per bus. This will therefore be the method of choice for any deterministic ancilla-based cluster generation that allows bus reuse (see [18] for optimal probabilistic schemes). This form of bus reuse can provide savings in many other contexts, including the quantum Fourier transform [31].

While the exact error model will vary with the underlying physical system, our analysis can be generalized to all ancilla-based cluster generation schemes. Our results are directly applicable to bus-based experimental production of cluster states, enabling the same resources to produce dynamically generated cluster states of twice the size compared to single-gate bus use. For multibus dynamic schemes, this means fully scalable operation can be achieved with half the coherence time compared to single-gate buses. In practical terms, this needs as few as 20 Cphase gates per bus, independent of cluster size.

ACKNOWLEDGMENTS

We thank Aram Harrow, Ashley Stephens and Simon Devitt for helpful discussions. CH was supported by EU project QAP and the Bristol Centre for Nanoscience and Quantum Information. KLB is supported by a UK Engineering and Physical Sciences Research Council industrial CASE studentship from Hewlett-Packard, VMK is supported by a UK Royal Society University Research Fellowship and WJM acknowledges partial support from the EU project HIP and MEXT in Japan.

[1] T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, New J. Phys., 8, 30 (2006).
[2] P. van Loock, W. J. Munro, K. Nemoto, T. P. Spiller, T. D. Ladd, S. L. Braunstein, and G. J. Milburn, Phys. Rev. A, 78, 022303 (2008).
[3] G. J. Milburn, S. Schneider, and D. F. V. James, Fortschritte der Physik, 48, 9 (2000).
[4] J. Anders, D. K. L. Oi, E. Kashefi, D. E. Browne, and E. Andersson, Phys. Rev. A, 82, 020301 (2010).
[5] S. J. Devitt, A. D. Greentree, R. Ioniciou, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, Phys. Rev. A, 76, 052312 (2007).
[6] R. Ioniciou, T. P. Spiller, and W. J. Munro, Phys. Rev. A, 80, 012312 (2009).
[7] S. J. Devitt, A. G. Fowler, A. M. Stephens, A. D. Greentree, L. C. Hollenberg, W. J. Munro, and K. Nemoto, New J. Phys., 11, 083032 (2009).
[8] H. J. Briegel, D. E. Browne, W. Dr, R. Raussendorf, and M. V. den Nest, Nature Physics, 5, 19 (2009).
[9] A. Y. Kitaev, Annals of Physics, 303, 2 (2003).
[10] R. Raussendorf and J. Harrington, Phys. Rev. Lett., 98, 190504 (2007).
[11] S. J. Devitt, A. G. Fowler, T. Tilma, W. J. Munro, and K. Nemoto, Int J Quantum Inf, 8, 121 (2010).
[12] A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, Phys. Rev. A, 78, 032318 (2008).
[13] N. Yoran and B. Reznik, Phys. Rev. Lett., 91, 037903 (2003).
[14] M. A. Nielsen, Phys. Rev. Lett., 93, 040503 (2004).
[15] E. Knill, R. Laflamme, and G. J. Milburn, Nature, 409, 46 (2001).
[16] D. E. Browne and T. Rudolph, Phys. Rev. Lett., 95, 010501 (2005).
[17] L.-M. Duan and R. Raussendorf, Phys. Rev. Lett., 95, 080503 (2005).
[18] D. Gross, K. Kieling, and J. Eisert, Phys. Rev. A, 74, 042343 (2006).
[19] S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, New Journal of Physics, 9, 193 (2007).
[20] G. D. Hutchinson and G. J. Milburn, J. Mod. Optics, 51, 1211 (2004).
[21] Q. Lin and B. He, Phys. Rev. A, 82, 022331 (2010).
[22] R. Ionicioiu and W. J. Munro, International Journal of Quantum Information, 8, 149 (2010).
[23] H. Wang, C. P. Yang, and F. Nori, Phys. Rev. A, 81, 052332 (2010).
[24] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev. A, 80, 052312 (2009).
[25] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hollenberg, Quantum Information and Computation, 10, 456 (2010).
[26] S. G. R. Louis, W. J. Munro, T. P. Spiller, and K. Nemoto, Phys. Rev A, 78, 022326 (2008).
[27] W. J. Munro, K. Nemoto, T. P. Spiller, S. D. Barrett, P. Kok, and R. G. Beausoleil, J. Opt. B: Quantum Semiclass. Opt., 7, S135 (2005).
[28] X. Wang and P. Zanardi, Phys. Rev. A, 65, 032327 (2002).
[29] S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, Phys. Rev. A, 75, 042323 (2007).
[30] K. L. Brown, C. Horsman, W. J. Munro, and V. M. Kendon, “Lego brick construction of cluster states.” (2011), unpublished.
[31] K. L. Brown, S. De, W. J. Munro, and V. M. Kendon, “Ancilla-based quantum simulation,” (2010), arXiv:1011.2984v4[quant-ph].