Chelating magnetic nanocomposite for the rapid removal of Pb(II) ions from aqueous solutions: characterization, kinetic, isotherm and thermodynamic studies

Atefeh Moradi, a Peyman Najafi Moghadam, *b Reza Hasanzadeh b and Mika Sillanpää cd

In this study, a Fe3O4@GMA–AAm magnetic nanocomposite was synthesized as a novel adsorbent with a suitable core–shell structure, high adsorption capacity (158.73 mg g–1), easy separation and rapid adsorption rate. For this purpose, Fe3O4 NPs were first reacted with 3-aminopropyltrimethoxysilane for the preparation of MNPs–NH2. Then the MNPs–NH2 was allowed to react with glycidylmethacrylate to form Fe3O4–GMA. Finally Fe3O4@GMA–AAm was synthesized by grafting polyacrylicamide onto the Fe3O4–GMA using a radical polymerization process. The morphology and characteristics of the adsorbent were examined by various techniques such as FT-IR, TEM, SEM, XRD, AFM, TGA, EDX, EMA and VSM analysis. The synthesized adsorbent was used for the removal of Pb2+ ions from aqueous media and the effect of different parameters (pH, adsorbed dosage, temperature, etc.) was investigated. The isotherm analysis indicated that the adsorption experimental data fitted very well with the Langmuir isotherm model. Two kinetics equations were used to describe the adsorption rate. The result showed that the pseudo-second-order model had a better fit with the experimental data, so the chemical adsorption was the rate controlling step of the adsorption process. The thermodynamic parameters for adsorption of Pb2+ ions onto the Fe3O4@GMA–AAm adsorbent showed that the adsorption was endothermic in nature and spontaneous.

1. Introduction

Nowadays, by increasing industrial activities, numerous hazardous heavy metal ions are discharged into natural water resources. This environmental pollution occurs through military, industrial, and agricultural processes and waste disposal.1,2 The presence of these toxic metal ions in wastewater and surface water is becoming a serious problem even at trace levels,3 because of their adverse effects on aquatic ecosystems, the environment and human safety.4 Heavy metal ions can accumulate in the environment and food chain which can be a major concern due to their progressive toxic effects and heavy metal poisoning. Also unlike some organic pollutants, they are not biodegradable and cannot be metabolized or decomposed.5–8 Mental confusion, memory loss, fatigue and rashes are the problems that associated with the accumulation of heavy metal ions in the human body. Therefore, simple and efficient removal of heavy metal ions from water and various industrial effluents is very important and has given rise to considerable amounts of research and practical concern.5 Among the various toxic metal ions, lead is one of the most significant pollutants that is noxious to aquatic life and deleterious to human safety and may cause adverse health effects such as hepatitis, anaemia, nephritic syndrome, mental retardation, headache, dizziness, irritability and muscle deterioration.9 Thus it is especially important and necessary to completely remove or reduce to an acceptable the level of Pb2+ ions.

To cleanse water resources of toxic metal ions like Pb2+ ions various treatment techniques have been used including chemical precipitation, liquid–liquid extraction, filtration, electrochemical treatment, ion exchange, membrane separation, adsorption, etc.9 Among the widely used methods, adsorption is preferred due to its flexibility in design,10 lower cost, high efficiency and the availability of various adsorbents.11 Furthermore, because of the reversible nature of many adsorption processes, using suitable desorption processes, adsorbents can easily be regenerated to that these processes have high efficiency, low maintenance cost and ease of operation for multiple uses.12 A good adsorbent should generally have a high surface area and
short equilibrium time in adsorption process, so that it can remove large amounts of contaminants in shorter amounts of time. In addition, it should generate a minimum amount of sludge and by-product. Among the adsorbent materials developed polymeric nanomaterials can be key resolvents. Nanotechnology has been considered one of the most important progress in science and technology and its advances has shown that by decreasing the adsorbents size to nanometer may significantly increase the number of adsorption sites and raise the adsorption capacity. Various adsorbents with significant adsorption capacity have been developed. Among them, magnetic nanoparticles (Fe$_3$O$_4$), have attracted much attention and are widely used because of their simplicity and being easy to use. However, it must be conceded that pure Fe$_3$O$_4$ is highly sensitive to oxidation when exposed to the atmosphere because of its small size and is not suitable for samples with complicated matrices. To overcome these problems and improve the applicability of MNPs in real wastewater the surface of Fe$_3$O$_4$ nanoparticles needs to be coated with polymer compounds with suitable functional groups. A combination of polymers with magnetic particles can prevent direct contact between the magnetic substance and the environment, thus leading to improved chemical stability and reduced toxicity.

2. Experimental

2.1. Materials

Glycidylmethacrylate (GMA) was obtained from Daegu Chemicals and Metals Company (South Korea) and distilled under reduced pressure to remove their inhibitor. FeCl$_3$·6H$_2$O, acrylamide (AAm) and 3-aminopropyltriethoxysilane (APTES) were used without further purification. Benzoyl peroxide (BPO) was purchased from Merck and recrystallized from boiling methanol. Analytical-reagent grade Pb(NO$_3$)$_2$, other organic solvents and inorganic chemicals including tetrahydrofuran (THF), AlCl$_3$, HCl, NaOH and ammonium hydroxide (NH$_4$OH) were purchased from Sigma Aldrich.

2.2. Instrumentation

Fourier transform infrared (FT-IR) spectra were measured with a Nexus 670, Thermo Nicolet (USA) spectrophotometer. X-ray diffraction (XRD) was measured on an X'Pert Pro an X-ray photoelectron spectrometer (Netherlands) using nonmonochromated Cu Kz radiation as an excitation source. A vibrating sample magnetometer (VSM; Lakeshore Cryotronics, Westerville, OH, USA) was used for measuring the magnetic properties of the prepared samples. The morphology of the magnetic adsorbent was examined with two types of scanning electron microscopy (SEM), (LEO 1430VP, Germany and MIRA3 TESCAN, Czech Republic). The size and structure were investigated by transmission electron microscopy (TEM), (Philips CM30 300 kV). The surface components of the samples were analysed using energy dispersive spectrometer (EDX) and element mapping analysis (EMA) (XL30 Philips Company, Netherlands). TGA analyses of the samples were done using the NETSCH (Germany)-200 F 3 Maia by scanning to 600 °C with a heating rate of 10 °C min$^{-1}$. The concentrations of the metal ions in the solution were measured with an atomic absorption spectrophotometer (AAS) (Analytic Jenanov AA 400).

2.3. Preparation of Fe$_3$O$_4$ nanoparticles (MNPs)

The Fe$_3$O$_4$ nanoparticles were prepared with the co-precipitation method ammonium hydroxide (30 mL) with deionized water (20 mL) was deoxygenated in a flask by bubbling Ar for 20 min. In another beaker, 5.41 g FeCl$_3$ and 2.99 g FeCl$_3$ were dissolved in 50 mL deionized water. Then, the solution obtained was added drop-wise into the above-mentioned alkaline solution under vigorous stirring at 60 °C. Ferrous and ferric chloride were allowed to react in ammonium

The Fe$_3$O$_4$ nanoparticles were prepared with the co-precipitation method ammonium hydroxide (30 mL) with deionized water (20 mL) was deoxygenated in a flask by bubbling Ar for 20 min. In another beaker, 5.41 g FeCl$_3$ and 2.99 g FeCl$_3$ were dissolved in 50 mL deionized water. Then, the solution obtained was added drop-wise into the above-mentioned alkaline solution under vigorous stirring at 60 °C. Ferrous and ferric chloride were allowed to react in ammonium
hydroxide solution by alkaline co-precipitation and a black precipitate was obtained. The black precipitate which formed was called magnetite (Fe₃O₄) and harvested by magnetic bar, then washed several times with deionized water and finally dried in a vacuum oven at 50 °C for 24 h. Then the obtained Fe₃O₄ nanoparticles were used for the next step in the synthesis of the magnetic nanocomposite. The chemical reactions for precipitation of Fe₃O₄ are expressed as follows:

\[
\begin{align*}
Fe^{2+} + 2OH^- & \rightarrow Fe(OH)_2 \\
Fe^{3+} + 3OH^- & \rightarrow Fe(OH)_3 \\
Fe(OH)_2 + Fe(OH)_3 & \rightarrow Fe_3O_4 + 4H_2O
\end{align*}
\]

The overall reaction can be written as:

\[
Fe^{2+} + Fe^{3+} + 8(OH)^- \rightarrow Fe_3O_4 + 4H_2O
\]

2.4. Preparation of MNPs–NH₂

Modified Fe₃O₄-NPs (MNPs–NH₂) was achieved through a reaction between APTES and the hydroxyl groups on the surface of the magnetite. Therefore obtained Fe₃O₄-NPs (2.00 g) powder was dispersed in pure ethanol (140 mL) by sonication under Ar atmosphere for about 40 min. Then the APTES (4 mL) was added into the mixture and the mixture was sonicated for 1 h. After that the mixture was heated at 50 °C under magnetic stirring for 20 h. The resulting modified MNPs were washed with acetone and deionized water several times. Finally the product was dried in vacuum oven at 60 °C for 24 h.

2.5. Synthesis of modified MNPs–NH₂ with GMA

The MNPs–NH₂ (1.50 g) and GMA (6.00 g) were added into 40 mL dry THF in a two-necked flask equipped with ultrasonic probe and inlet and outlet of inert gas. The mixture was sonicated for 20 min to obtain a uniform mixture. Finally aluminium trichloride (AlCl₃) as a Lewis acid was added and the reaction was carried out by stirring at 30 °C for 7 days. The product was separated using external magnet and washed several times with methanol and ether. The obtained Fe₃O₄–GMA was dried in a vacuum oven at 40 °C for 24 h.

2.6. Synthesis of magnetic nanocomposite (Fe₃O₄@GMA–AAm)

For the synthesis of Fe₃O₄@GMA–AAm magnetic nanocomposite, grafting of polyacrylamide onto the Fe₃O₄–GMA surface was done in THF solvent. For this purpose, Fe₃O₄–GMA (1.00 g) was added to THF (30 mL) in a two-necked flask equipped with ultrasonic probe and inlet and outlet of inert gas and sonicated for 20 min. Acrylamide monomer (2.00 g) and BPO initiator were added to the mixture and the polymerization reaction was carried out by stirring at 80 °C for 20 h. The product obtained was retained by an external magnet and washed with H₂O and methanol to remove unreacted monomer. Finally, the synthesized magnetic nanocomposite was dried in a vacuum oven at 60 °C for 24 h.

3. Results and discussion

The Fe₃O₄@GMA–AAm magnetic nanocomposite was synthesized by grafting polyacrylamide onto the surface of Fe₃O₄–GMA with a radical polymerization process. For this purpose firstly the Fe₃O₄ nanoparticles were prepared with co-precipitation method using FeCl₂·4H₂O and FeCl₃·6H₂O in a molar ratio of 1 : 2. Then the hydroxyl groups on the surface of Fe₃O₄ were allowed to react with APTES for the preparation of MNPs–NH₂. After that the MNPs–NH₂ was allowed to react with the epoxy group of GMA to form Fe₃O₄–GMA. The products were

![Scheme 1](image-url) Scheme 1 Synthetic diagram of the Fe₃O₄@GMA–AAm nanocomposite.
characterized by various techniques as mentioned described below. The overall synthetic procedure was presented in Scheme 1.

3.1. FT-IR spectroscopy

FT-IR spectroscopy was used to show the structure of the pure Fe₃O₄ (A), Fe₃O₄–APTES (B), GMA (C), Fe₃O₄@GMA (D) and Fe₃O₄@GMA–AAm (E) magnetic nanocomposites. From the IR spectra presented in Fig. 1, the strong absorption peaks at 585 cm⁻¹ belonged to the stretching vibration mode of Fe–O from the magnetic nanoparticles cores and two peaks at 3430 and 1650 cm⁻¹ are attributed to the stretching and bending vibrations of the O–H group respectively. The introduction of APTES onto the surface of the Fe₃O₄-NPs was confirmed by the bands at 1115 and 1060 cm⁻¹ assigned to the Si–O–Si stretching vibrations. The two broad bands at 3446 and 1670 cm⁻¹ can be attributed to the N–H stretching vibration and NH₂ bending vibration of free NH₂ group respectively. Furthermore, hydrogen bonds of terminal NH₂ silanols and C–N band also appeared at around 3270 and 1290 cm⁻¹. The presence of the propyl group was confirmed by C–H asymmetric stretching vibration and symmetric stretching vibration that appeared at 2930 and 2841 cm⁻¹. Compared to the IR spectrum (C), the IR spectrum (D) of GMA and Fe₃O₄@GMA, the asymmetrical and symmetrical stretching due to the methyl and methylene groups were observed at 2995 and 2939 cm⁻¹. The stronger absorption band at 1740 cm⁻¹ was attributed to the ester carbonyl stretching of monomer GMA units, evidence that the GMA were successfully grafted onto Fe₃O₄–APTES nanoparticles. Another band seen at 905 cm⁻¹ was related to the asymmetric stretching of the epoxy group. The bands at 1174 and 1289 cm⁻¹ were attributed to the ester C–O symmetric stretching of GMA. However, the identification of a peak attributable to the stretching vibrations of the epoxy groups from GMA with the symmetric stretching and asymmetric stretching vibrations was problematic due to the overlapping of the peaks of Si–O groups. The spectrum of the Fe₃O₄@GMA (D) and Fe₃O₄@GMA–AAm (E) showed a peak at 2926 cm⁻¹ due to C–H bonds of aliphatic chain stretching vibrations. The broad band at 3433 cm⁻¹ corresponds to the hydrogen bonded O–H and N–H.

![FT-IR spectra of the pure Fe₃O₄ (A), Fe₃O₄–APTES (B), GMA (C), Fe₃O₄@GMA (D) and Fe₃O₄@GMA–AAm nanocomposites (E).](image-url)
stretching vibration of AAm. The peaks at 1650 and 1732 cm\(^{-1}\) should be assigned to the stretching vibration of the amide and ester C=O respectively from both AAm and GMA. The absorption band at 1400 cm\(^{-1}\) is due to the bending vibration of CH\(_2\) and CH\(_3\) groups.\(^3\)

3.2. Particle size and morphology studies

The morphology of the magnetic nanocomposite (Fe\(_3\)O\(_4@\)GMA–AAm) was characterized by TEM, SEM and AFM techniques. The transmission electron microscope images are shown in Fig. 2. In this image two different areas can been seen, the dark areas may be represented magnetic monomer (Fe\(_3\)O\(_4\)) while the bright ones are indications of amorphous polymers formed around the primary particles, so the core–shell structure has been clearly seen and can be taken as evidence of the successful synthesis of Fe\(_3\)O\(_4@\)GMA–AAm. The particle size deduced from the TEM images was about 70–150 nm.

The surface morphology of the samples was studied by SEM analysis. The SEM images of bare MNPs (A), Fe\(_3\)O\(_4@\)GMA (B) and synthesized nanocomposite (C) are given in Fig. 3. As can be seen in Fig. 3A, the MNPs are quasi-spherical in shape with the particle size about 45 nm, while Fig. 3B shows that the Fe\(_3\)O\(_4@\)GMA are greater in size than Fe\(_3\)O\(_4\) (about 64 nm) and attached to each other due to modification of the surface of the nanoparticles in two processes using APTES and GMA. The SEM image of nanocomposite in Fig. 3C clearly shows the formation of final product and the growth of the polymer chains on the surface of the nanoparticles. The particle size of the nanocomposites was nearly 88 nm.

The morphology and three-dimensional shape (topography) study of the synthesized nanocomposite was investigated by AFM technique. As shown in Fig. 4A, the topography image clearly shows the polymer chains formed on the surface of the modified nanoparticles. Likewise in Fig. 4B, a phase contrast demonstrates the heterogeneity in the sample that it was due to different structural components in the nanocomposite.

3.3. XRD

The crystalline structure of the Fe\(_3\)O\(_4\) nanoparticles before and after surface modification and polymer coating was identified by XRD, and the results were displayed in Fig. 5. The intense diffraction peaks at \(2\theta = 30.27^\circ, 35.63^\circ, 43.29^\circ, 57.14^\circ, 62.73^\circ\) and \(74.25^\circ\), which corresponded to the (220), (311), (400), (422), (511), (440) and (533), indicated a cubic spinel structure of magnetite (Fig. 5A) which was matched to the standard XRD pattern of magnetite (JCPDS card, file no. 85-1436).\(^29\) The same characteristic peaks were also observed for Fe\(_3\)O\(_4@\)GMA Fig. 5B and Fe\(_3\)O\(_4@\)GMA–AAm Fig. 5C, indicating that during the graft and polymerization process the crystalline phase of the Fe\(_3\)O\(_4\) nanoparticles was largely unchanged.
obvious difference at baseline of the XRD patterns of Fe$_3$O$_4$@GMA and nanocomposite with Fe$_3$O$_4$ nanoparticles showed that the magnetite had been successfully coated by the amorphous structure. The average crystallite size of the materials prepared was obtained from the Debye–Scherrer equation:

$$ D = \frac{k \lambda}{\beta \cos \theta} $$

where, k (0.89) is the Debye–Scherrer constant, λ (0.15406 nm) is the X-ray wavelength, β is the peak width of half-maximum, θ is the Bragg’s angle in degree and D is the average crystalline diameter which was estimated using the strongest peak. In these cases the strongest peak in the three XRD patterns was (3

Fig. 4 AFM images; three-dimensional shape (A) and phase contrast (B) of the Fe$_3$O$_4$@GMA–AAm.

Fig. 5 XRD patterns of the magnetite (A), Fe$_3$O$_4$@GMA (B), Fe$_3$O$_4$@GMA–AAm (C).
1) at $2\theta = 35.63^\circ$. The calculated diameters of the Fe$_3$O$_4$, Fe$_3$O$_4$@GMA and Fe$_3$O$_4$@GMA–AAm were seen to be respectively 35.5, 43.75 and 78.84 nm.

3.4. Magnetic measurements

Magnetic measurements of the naked Fe$_3$O$_4$, Fe$_3$O$_4$@GMA and Fe$_3$O$_4$@GMA–AAm were studied with the VSM at room temperature. The hysteresis loops of the three tested nanoparticles are shown in Fig. 6. The magnetic saturation (M_s) values obtained for the Fe$_3$O$_4$, the Fe$_3$O$_4$@GMA and the Fe$_3$O$_4$@GMA–AAm were respectively 80.53, 71.86 and 66.76 emu g$^{-1}$. It can also be observed from this figure that magnetization of pure Fe$_3$O$_4$ nanoparticles decreased slightly after surface modification with GMA and the coating of the polymer shell on the modified Fe$_3$O$_4$ core. This decrease may be due to the small quenching of the magnetic moment by interplay between the coated layers and the Fe$_3$O$_4$ surface. This is another proof of successful coating of the GMA and the polyacrylamide onto the surface of the Fe$_3$O$_4$ nanoparticles. The magnetic property of the Fe$_3$O$_4$@GMA–AAm was still strong enough to be rapidly separated (10 s) from the solution compared to other reported nanocomposites based on Fe$_3$O$_4$ (Table 1) using an external magnetic field (Scheme 2).

3.5. TGA analysis

The thermal stability of the Fe$_3$O$_4$@GMA and the Fe$_3$O$_4$@GMA–AAm was investigated by the TGA analysis (Fig. 7). For both of the samples, upon heating from 50°C to 200°C, the TGA curves showed a weight loss of about 10% which can be due to the loss of moisture. As shown in Fig. 7A, which is related to the Fe$_3$O$_4$@GMA, the weight loss (200–800°C) is attributed to the decomposition of the coated GMA onto the surface of the Fe$_3$O$_4$ nanoparticles (about 15%). The Fe$_3$O$_4$@GMA–AAm thermogram (Fig. 7B) showed a higher weight loss than the Fe$_3$O$_4$@GMA (about 45%) because of the loss of GMA and polyacrylamide components formed onto the surface of the Fe$_3$O$_4$ nanoparticles.

3.6. SEM, EDX and EMA analyses before and after Pb$^{2+}$ ions adsorption

The SEM micrographs of the Fe$_3$O$_4$@GMA–AAm nanocomposite after adsorption of Pb$^{2+}$ ions are given in Fig. 8. The SEM images clearly show uniform particles with angular shape. During the adsorption process these particles join together making large particles (~200 nm), thereby increasing the size of particles after adsorption is apparent with respect to the size of particles before adsorption (88.09 nm).

Fig. 6 Magnetization curves of the naked Fe$_3$O$_4$, Fe$_3$O$_4$@GMA and Fe$_3$O$_4$@GMA–AAm nanocomposite.

Table 1

Adsorbents	Time (s)	M_s (emu g$^{-1}$)	q_{max} (mg g$^{-1}$)	Reference
Fe$_3$O$_4$@silica–xanthan gum composites	180 s	32.84	21.32	24
Fe$_3$O$_4$@SiO$_2$ core–shell magnetic nanomaterial	120 s	34	76.39	31
Fe$_3$O$_4$@DAPT core–shell ferromagnetic nanorods	25 s	56.1	83.3	32
Fe$_3$O$_4$@SiO$_2$–p(1,2-diaminobenzene) core–shell sub-micron particles	20 s	60	~65	26
DHPCT@Fe$_3$O$_4$ MNPs	15 s	24.7	52.1	33
Fe$_3$O$_4$@GMA–AAm	10 s	66.76	158.7	Present work
The chemical composition of the Fe₃O₄@GMA–AAm nanocomposite was analysed by EDX before and after the adsorption of Pb²⁺ ions onto the nanocomposite surface. The EDX pattern before adsorption clearly showed the presence of Fe, O, N, and C (Fig. 9A). After the adsorption of Pb²⁺ ions, the appearance of lead peaks along with Fe, O, N, and C peaks in the EDX spectrum confirms that the Pb²⁺ ions were taken up onto the surface of prepared adsorbent.

The elemental mapping analysis by EDX was shown in Fig. 10, that was used for the analysis of the chemical composition and determination of elements. These images indicate the distribution and presence of Fe, O, N, C elements on the surface of the nanocomposite before and after adsorption (Fig. 10A). Also, after adsorption the images of the nanocomposite show the presence of a Pb element, which corroborates the adsorption of the Pb²⁺ ions by the synthesized magnetic adsorbent (Fig. 10B).

3.6.1. Batch adsorption experiments. Adsorption of the Pb²⁺ ions by the Fe₃O₄@GMA–AAm nanocomposite was measured from batch adsorption experiments by mixing 10 mg of adsorbent with an aqueous solution containing a predetermined concentration of Pb²⁺ ions (50 mL). The mixture was shaken at 200 rpm to reach equilibrium. After a specified time, the solid and liquid were separated by external magnet and the concentrations of Pb²⁺ ions were measured by AAS. To find the optimized pH in adsorption of Pb²⁺ ions the effect of the pH was studied. The initial pH of the solutions was adjusted in the range of 2.0–7.0 by adding 0.1 N HCl or 0.1 N NaOH solution at 25 °C. The effect of the dosage of adsorbent on the adsorption was also determined with different nanocomposites dosages (0.005–0.03 g/50 mL Pb²⁺ ions, 10 mg L⁻¹). The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms were studied at different temperatures, namely 15,
25, 35 and 45 °C (the adsorbent dosage 0.007 g in 50 mL Pb²⁺ ions solution) with constant shaking (200 rpm). The effect of contact time between solution and adsorbent was also investigated to analyse the adsorption kinetics at a pH of 6 at room temperature. The kinetics of the adsorption process were carried out by adding 0.007 g of adsorbent into 50 mL of 10 mg L⁻¹ Pb²⁺ ions solution, at different times at 25 °C. For the kinetic study, pseudo-first-order and pseudo-second-order models were studied.

The concentrations of the metal ions in the adsorption solutions were determined by AAS. According to the experimental results obtained, a mechanism which can be proposed for the adsorption of Pb²⁺ ions on the Fe₃O₄@GMA–AAm surface was shown in Scheme 3.

The equilibrium adsorption capacity (q_e) (mg g⁻¹) for Pb²⁺ ions was calculated according to the following equation:

$$q_e = \frac{(C_0 - C_e)V}{m}$$ (1)

where C_0 and C_e (mg L⁻¹) are respectively the initial and equilibrium Pb²⁺ ions aqueous concentrations. V is the volume (mL) of Pb²⁺ ions aqueous solution; m is the mass (mg) of adsorbents used in the experiment. The removal percentage of metal ions was calculated using the following equation:

$$\%\ R = 100\ \frac{(C_0 - C_e)}{C_0}$$ (2)

3.7 Adsorption study of the Fe₃O₄@GMA–AAm adsorbent

3.7.1 Effect of pH value

The pH value of the media is one of the most important factors in the adsorption of metal ions. It is well known that Pb²⁺ ions are present in several forms in media depending on the pH solution: these are Pb²⁺, Pb(OH)⁺, Pb(OH)₂, and Pb(OH)₃. The effect of pH on the adsorption of Pb²⁺ ions with Fe₃O₄@GMA–AAm nanocomposite was investigated in pH ranges between 2.0 and 7.0 at 25 °C with an initial Pb²⁺ ions concentration of 10 mg L⁻¹. The results showed that the adsorption of Pb²⁺ ions in solution completely depends on pH. In fact, in acidic pH the H⁺ ions compete with the Pb²⁺ ions to reach functional groups of synthesized composite. Thus the adsorption of Pb²⁺ ions in acidic media is low. Therefore the efficient removal of the Pb²⁺ ions appeared at pH 6.0 and reached a constant state up to pH 7.0. It can be said that at pH around 6.0 Pb²⁺ ions are the main element substance in the...
solution. When the pH is above 6.0 the solubility of Pb(OH)$_2$ is very low and the precipitation of lead ions prevails. The Fe$_3$O$_4$@GMA–AAm displayed a maximum Pb$^{2+}$ ions removal efficiency of 99% at pH 6.0. Therefore pH 6 appeared to be the optimal condition and was chosen as the optimal pH for the following experiments. The effect of pH on lead adsorption is shown in Fig. 11A.

3.7.2. Effect of adsorbent dosage.

To determine the optimal adsorbent dose for the Pb$^{2+}$ ions solution (50 mL) at an initial concentration of 10 mg L$^{-1}$, various adsorbent dosages...
(0.005, 0.007, 0.01, 0.013, 0.02, 0.025 and 0.03 g) of synthesized Fe₃O₄@GMA–AAm were added. The results of the experiments are presented in Fig. 11B. It can be seen that the efficient removal of metal ions increased from 97% to 99.5% with an increase in the dosage of adsorbent from 0.005 g to 0.01 g. Increasing the dose of adsorbent enabled the number of available adsorption sites to increase, so the removal percentage of Pb²⁺ ions increased. After that, as the dosage continued to increase, the adsorption levels reached a steady state value or possibly even started to decrease slightly. This result can be explained by the increased likelihood of contact between these small particles due to increased adsorbent dose and also to the shaking process in a horizontal shaker, leading to aggregation, thus as a result the total surface area and active sites of adsorbent decreased. The optimal dosage of the nanocomposite for the adsorption of Pb²⁺ ions was therefore found to be about 0.007 g/50 mL.

3.7.3. Effect of adsorption time. The contact time between the metal ions and adsorbent plays an important role in the adsorption process and revealed the minimum time required for the removal of the maximum percentage of pollutants from the media. Fig. 12A shows the contact time vs. the removal percentage curves. It can be observed that the uptake of Pb²⁺ ions was very rapid and a large amount of this toxic ion was removed within a few minutes (2 min). The fast adsorption process may be the result of the fast kinetics of active sites on the surface of the synthesized composite in the adsorption of Pb²⁺ ions along with a large number of accessible active adsorption sites on the uncovered absorbent surface. After this time there was no significant change in terms of the amount of adsorption due to the saturation of the active sites on the absorbent surface. Therefore the equilibrium time for the synthesized nanocomposite was found to be about 2 min.

3.7.4. Effect of initial concentration. Solutions with different initial concentrations of Pb²⁺ ions (1, 5, 10, 20, 30, 50 mg L⁻¹) were used to study the effect of concentration variation on the removal of metal ions by 0.007 g L⁻¹ adsorbent at pH 6 and temperature 298 K. It can be seen from Fig. 12B that the removal yield decreased from 99 to 44% as the initial Pb²⁺ ions concentration increased. Therefore at a higher initial concentration of Pb²⁺ ions the adsorption was decreased due to the active sites of the adsorbent being rapidly occupied by metal ions and the number of accessible adsorption sites was reduced.

3.7.5. Effect of solution temperature. Temperature plays an important role in the adsorption process as it provides valuable information on three basic thermodynamic parameters; the standard Gibbs free energy, enthalpy and entropy changes. The changes in these parameters were used to characterize the adsorption thermodynamics. In this study the Pb²⁺ ions adsorption experiment was performed with varying temperatures from 10°C to 45°C using 0.007 g of adsorbent and pH 6.

Fig. 11 Effect of pH (A) and adsorbent dosage (B) on Pb²⁺ ions adsorption by Fe₃O₄@GMA–AAm (initial Pb²⁺ ions concentration: 10 mg L⁻¹; agitation rate: 200 rpm, contact time: 2 min, T = 298 K).

Fig. 12 Effect of adsorption time (A) and initial concentration (B) on Pb²⁺ ions adsorption by the Fe₃O₄@GMA–AAm nanocomposite (adsorbent dose: 0.007 g/50 mL Pb²⁺ ions, agitation rate: 200 rpm, pH 6, T: 298 K).
Fig. 13A shows the removal percentage of Pb$^{2+}$ ions which were adsorbed onto the nanoadsorbent at different temperatures. The results showed that adsorption increased slightly from 94.3 to 99.5% when the temperature increased from 10°C to 25°C. This result showed that the adsorption of the lead ions was an endothermic process. The increase in the adsorption with the increase in temperature may be due to the increase in the mobility of the ions, which can be probably increase the number of ions for interaction with active sites.

3.7.6. Effect of agitation rate. Agitation speed is an effective parameter in the adsorption performance and influences the distribution of the solute in the solution. The effect of agitation rate on removal percentage efficiency for Pb$^{2+}$ ions was studied by varying the rate of agitation from 100 to 300 rpm, while the other conditions were held constant. As shown in Fig. 13B, when the agitation rate increased to 200 rpm, the adsorption capacity also increased. This was due to the additional turbulence that raised the diffusion of the adsorbate ions into the internal surface of adsorbent. This also decreased the boundary layer thickness around the adsorbent particles. Further increase in the agitation rate to 250 and 300 rpm reduced the adsorption capacity, because the extreme turbulence caused a decrease in the interplay time between the adsorbent and adsorbate ions. An agitation speed of 200 rpm was therefore selected as optimal.

3.7.7. Effects of adsorption kinetics. To investigate adsorption kinetics and describe the rate of the adsorption mechanisms of the Pb$^{2+}$ ions onto the magnetic nano-composite, two kinetic models were used to fit the experimental data. These models are the Lagergren pseudo-first-order and the Ho pseudo-second-order equations. The Lagergren kinetic model describes the rate of adsorption proportional to the number of unoccupied sites by the solutes and is expressed in the following linear equation:

$$\log(q_e - q_t) = \frac{k_1}{2.303} t + \log q_e$$ \hspace{1cm} (3)

where q_e and q_t are the numbers of Pb$^{2+}$ ions adsorbed (mg g$^{-1}$) at equilibrium and at time t (min) respectively. k_1 (min$^{-1}$) is the pseudo-first-order adsorption kinetic constant. k_1 and q_e can be obtained from the slope and intercept of $\log(q_e - q_t)$ versus t (Fig. 14A). The Ho kinetic model based on adsorption equilibrium capacity assumes that the rate of possession for adsorption sites is proportional to the square of the number of unoccupied sites. The adsorption rate is dependent on the concentration of the activated sites on the surface of adsorbent. This model is expressed by the following equation:

$$\frac{t}{q_e} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$ \hspace{1cm} (4)

where k_2 (g mg$^{-1}$ min$^{-1}$) is the pseudo-second-order adsorption kinetic parameter and both k_2 and q_e can be obtained from the intercept and slope of the graph of (t/q_e) versus t (Fig. 14B).
Table 2 Kinetic parameters for Pb²⁺ ions adsorption using Fe₃O₄@GMA–AAm

Kinetic models and parameters	Pb²⁺ ions
Pseudo-first-order model	
qₑₑₑₑ (mg g⁻¹)	70.71
qₑₑₑₑ (mg g⁻¹)	0.784
k₁ (min⁻¹)	-0.0046
R²	0.1284
NSD (%)	49.9
Pseudo-second-order model	
qₑₑₑₑ (mg g⁻¹)	70.71
qₑₑₑₑ (mg g⁻¹)	69.93
k₂ (g mg⁻¹ min⁻¹)	1.02
R²	1
NSD (%)	0.551

The experimental data of two kinetic models are calculated and shown in Table 2. The rate constants, correlation coefficients (R) and calculated qₑₑ for the two kinetic models of nanocomposite showed that the fit of the pseudo-first-order model with the experimental was poor according to the low correlation coefficients. Also the calculated equilibrium adsorption capacities (qₑₑₑₑ) digressed too much from the measured values (qₑₑₑelem

3.7.8. **Validity of the kinetic model.** In addition, the values of normalized standard deviation (NSD) (%) were also calculated to confirm the fitness of the kinetic models to the experimental data, ⁴⁰ which is defined as:

NSD (%) = \sqrt{\frac{\sum [(qₑₑ.elem

where N is the number of measurements, qₑₑₑelem

It can also be determined by transforming eqn (6) into linear form:

\[
\frac{C_e}{q_e} = \frac{1}{K_l q_m} + \frac{C_e}{q_m}
\]

where qₑₑ represents the number of Pb²⁺ ions adsorbed onto the absorbent surface in equilibrium state (mg g⁻¹); Cₑ is the equilibrium Pb²⁺ ions concentration (mg L⁻¹); qₘ denotes the maximum adsorption capacity corresponding to complete monolayer coverage and Kₑ is the Langmuir adsorption equilibrium constant (L mg⁻¹). When Cₑ/qₑ is plotted against Cₑ, a straight line is obtained, so qₘ and Kₑ values were defined respectively from the slope and the intercept of the linear plots.

The results are presented in Fig. 15A.

Fig. 15 Langmuir (A), Freundlich (B) and D–R (C) adsorption isotherms for Pb²⁺ ions adsorption onto the magnetic adsorbent.
The amount of R_L factor indicates that the type of isotherm is irreversible ($R_L = 0$), favourable ($0 < R_L < 1$), linear ($R_L = 1$) or unfavourable ($R_L > 1$). The R_L is defined by the following equation:

$$R_L = \frac{1}{1 + \frac{C_0}{K_L C_0}}$$ (8)

where C_0 (mg L$^{-1}$) is the initial concentration of Pb$^{2+}$ ions. The R_L values in this study showed favourable adsorption between Pb$^{2+}$ ions and adsorbent.

The Freundlich isotherm model is an experimental equation valid for multilayer adsorption on a heterogeneous adsorbent surface with a non-uniform distribution of adsorption heat. It is used to evaluate the adsorption intensity of the adsorbent to the adsorbate and it was assumed that at the first strong and quick adsorption occurs at binding sites, which depends on the ions concentration in the solution. The binding strength was decreased with the increasing of occupied site. The Freundlich isotherm model is given by the following equation:

$$q_e = K_F C_e^n$$ (9)

The linear form can be expressed as follows:

$$\log q_e = \frac{1}{n} \log C_e + \log K_F$$ (10)

where K_F is the Freundlich constant indicating adsorption capacity; n is an experimental parameter related to the intensity of adsorption. The amount of heterogeneity of the adsorbent may change the value of n and for a favorable adsorption process the value of n should be in the range 1–10. The K_F and n can be calculated from the intercept and slope of linear plot of $\log q_e$ vs. $\log C_e$ respectively (Fig. 15B).

The Dubinin–Radushkevich isotherm is universally applied to represent the adsorption mechanism between physical and chemical adsorption onto a heterogeneous surface with a Gaussian energy distribution. This adsorption model is represented by the following equation:

$$q_e = q_{max} e^{-\beta \varepsilon^2}$$ (11)

The linear form of the D–R isotherm equation is:

$$\ln(q_e) = \ln(q_{exp}) - \beta \varepsilon^2$$ (12)

where ε is the activity coefficient related to mean adsorption energy (mol2 J$^{-2}$); q_e is the amount of adsorbate in the adsorbent at equilibrium (mg g$^{-1}$); q_{max} is the maximum adsorption capacity of Pb$^{2+}$ ions on the adsorbent corresponding to D–R monolayer coverage (mg g$^{-1}$). If $\ln q_e$ is plotted against ε^2, β and q_{max} will be obtained from the slope and intercept respectively (Fig. 15C). The parameter ε is the Polanyi potential, which can be calculated as the following relation:

$$\varepsilon = RT \ln(1 + \frac{1}{C_0})$$ (13)

where R (8.314 J mol$^{-1}$ K$^{-1}$) is the gas constant and T (K) is the absolute temperature. The β gives the mean free energy E (kJ mol$^{-1}$) of adsorption per molecule of adsorbate when it is transferred to the surface of the absorbent from infinity in the solution and can be calculated using the following relationship:

$$E = \frac{1}{\sqrt{2\beta}}$$ (14)

The magnitude of this parameter is useful for information about the type of sorption process such as chemical ions exchange or physical sorption. When it lies between 8 and 16 (kJ mol$^{-1}$), the adsorption occurs chemically. However, the reaction proceeds physically as it smaller than 8 kJ mol$^{-1}$. It can be seen that the E value in this study is between 8 and 16 (kJ mol$^{-1}$), indicating that the adsorption of Pb$^{2+}$ ions may be interpreted as chemical ion exchange adsorption.

The Langmuir, Freundlich and D–R parameters for the adsorption of Pb$^{2+}$ ions onto the magnetic adsorbent were summarized in Table 3. It was obvious that the Langmuir model fitted the experimental data better than the other models based on the R^2 values in Table 3.

3.8. Effect of coexisting ions

Various toxic metal ions generally present in wastewater and the sample matrix may interfere in the removal efficiency of Pb$^{2+}$ ions in media. The effects of coexisting cationic ions on the Pb$^{2+}$ ions adsorption were studied and investigated in 50 mL solutions containing 10 mg L$^{-1}$ of metal ions such as Ag$^+$, Fe$^{2+}$, Cu$^{2+}$,

Isotherms and linear equations	Parameters	Pb$^{2+}$ ions
Langmuir $q_e = \frac{C_e}{K_L q_m + C_e}$	q_m (mg g$^{-1}$)	158.73
	K_L (L mg$^{-1}$)	3.15
	R^2	0.03
	q_{max} (mg g$^{-1}$)	90.07
	k	4.06
	R^2	0.9264
Freundlich $q_e = \frac{1}{n} \log C_e + \log K_F$	q_{max} (mg g$^{-1}$)	124.83
	E (kJ mol$^{-1}$)	8.45
	β (mol2 kJ$^{-2}$)	7×10^{-9}
	R^2	0.9704
Zn$^{2+}$, Cd$^{2+}$ ions. As seen in Fig. 16, the decreased number of Pb$^{2+}$ ions in the presence of coexisting ions was lower than the decreased amount of Pb$^{2+}$ ions in the absence of coexisting ions in solution. However, the results indicated that the adsorbent illustrated good selectivity for Pb$^{2+}$ ions in the presence of coexisting ions. In general the competitive adsorption ability changes from one metal ion to another, which may be related to factors such as molecular mass, ion charges, hydrated ionic radius and hydration energy of the ionic metal. Apparently the coexisting cations compete with Pb$^{2+}$ ions for the active sites on the magnetic adsorbent. Therefore the number of active sites on the surface of the adsorbent was decreased for the adsorption of Pb$^{2+}$ ions in solution.

3.9. Thermodynamic studies

The effect of various temperatures on the adsorption process was investigated to assess the spontaneity of the adsorption process. This provided valuable information about three thermodynamic parameters, Gibbs’ free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) that change during the adsorption. In order to obtain the thermodynamic of the adsorption process, 0.007 g of adsorbent was added into 50 mL of Pb$^{2+}$ ion solution with an initial concentration of 10 mg L$^{-1}$ at different temperatures (283, 288, 298, 308, and 318 K). The amounts of Pb$^{2+}$ ions adsorbed onto the magnetic adsorbent. Therefore the number of active sites on the surface of the adsorbent was decreased for the adsorption of Pb$^{2+}$ ions onto the Fe$_3$O$_4$@GMA

Table 4 Thermodynamic parameters of Pb$^{2+}$ ions adsorption at different temperatures using nanocomposite

T (K)	K_{eq} (mL g$^{-1}$)	ΔG° (kJ mol$^{-1}$)	ΔH° (kJ mol$^{-1}$)	ΔS° (J mol$^{-1}$ K$^{-1}$)
283	111.9	$-$11.09	$+$50.786	$+$213.59
288	230.9	$-$13.03		
298	707.1	$-$16.25		
308	1013.14	$-$17.72		
318	1421.4	$-$19.19		

where R is the ideal gas constant (8.314 J mol$^{-1}$ K$^{-1}$), T is the temperature (K) and K_{eq} is the adsorption equilibrium constant. K_{eq} can be calculated by eqn (16) and the enthalpy (ΔH°) and the entropy (ΔS°) can be determined from the van’t Hoff equation which shows the dependence of the equilibrium constant on the adsorption process on temperature as follows:

$$\Delta G^\circ = -RT \ln K_{eq}$$ \hspace{1cm} (15)

$$K_{eq} = \frac{q_{e}}{C_{e}}$$ \hspace{1cm} (16)

The van’t Hoff equation (eqn (18)) is obtained by combining eqn (15) and (17) as follows:

$$\ln K_{eq} = \frac{\Delta H^\circ}{R} \frac{1}{T} - \frac{\Delta S^\circ}{R}$$ \hspace{1cm} (18)

The values of ΔH° and ΔS° were calculated from the slope and intercept of the van’t Hoff plots of $\ln(K_{eq})$ vs. $1/T$ respectively, as presented in Fig. 17. The calculated thermodynamic parameters for the sorption of Pb$^{2+}$ ions onto the Fe$_3$O$_4$@GMA–AAm surface are reported in Table 4. As can be seen, the ΔG° at given temperatures was a negative value, confirming that the adsorption of Pb$^{2+}$ ions onto the adsorbent was spontaneous and thermodynamically favourable adsorption had occurred. The positive value of ΔH° suggests that the interaction between Pb$^{2+}$ ions and nanoadsorbent is endothermic in nature, while the positive value of ΔS° may be attributed to the increase of randomness in the solid/liquid interface during the adsorption process. All the thermodynamic data indicated that the adsorption of Pb$^{2+}$ ions onto Fe$_3$O$_4$@GMA–AAm is favourable and can be used as an efficient adsorbent to remove Pb$^{2+}$ ions from aqueous solution.

4. Conclusion

The Fe$_3$O$_4$@GMA–AAm magnetic nanocomposite was successfully synthesized as a novel adsorbent for the efficient and fast
removal of Pb^{2+} ions from aqueous media. The TEM image showed the core–shell structure and the growth of the polymer chains on the surface of the nanoparticles could also be seen in the SEM and AFM images. The equilibrium time of Pb^{2+} ions adsorption was very short and obtained within 2 min. The kinetic models were applied to the experimental data. The adsorption was found to follow the pseudo-second-order model, and chemical adsorption was the rate controlling step of the adsorption. The isotherm analysis indicated that the adsorption of Pb^{2+} ions fitted the Langmuir equation well. The thermodynamic parameters showed that the adsorption process was spontaneous and endothermic in nature. As a result, our synthesized Fe_{3}O_{4}@GMA-AAM nanocomposite with suitable core-shell structure, easy separation method, high adsorption capacity and rapid adsorption rate (158.73 mg g^{-1} and 2 min) may be a good magnetic adsorbent for the removal of Pb^{2+} ions from aqueous solutions, compared to some other reported nanocomposites based on Fe_{3}O_{4} (Table 1).

References

1. Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren and L. Zu, *Sep. Purif. Technol.*, 2009, 68, 312–319.
2. R. Hasanzadeh, P. Najafi Moghadam and N. Samadi, *Polym. Adv. Technol.*, 2013, 24, 34–41.
3. M. H. Mashhadizadeh and Z. Karami, *J. Hazard. Mater.*, 2011, 190, 1023–1029.
4. P. Castaldi, M. Silvetti, G. Garau, D. Demurtas and S. Deiana, *J. Hazard. Mater.*, 2015, 283, 140–147.
5. F. Ge, M.-M. Li, H. Ye and B.-X. Zhao, *J. Hazard. Mater.*, 2012, 211, 366–372.
6. N. Samadi, R. Hasanzadeh and M. Rasad, *J. Appl. Polym. Sci.*, 2015, 132, 41642.
7. S. Luo, T. Lu, L. Peng, J. Shao, Q. Zeng and J.-D. Gu, *J. Mater. Chem. A*, 2014, 2, 15463–15472.
8. S. Taşar, F. Kaya and A. Özer, *J. Environ. Chem. Eng.*, 2014, 2, 1018–1026.
9. A. Z. M. Badruddoza, Z. B. Z. Shawon, W. J. D. Tay, K. Hidajat and M. S. Uddin, *Carbohydr. Polym.*, 2013, 91, 322–332.
10. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv and Q. Zhang, *J. Hazard. Mater.*, 2012, 211, 317–331.
11. Z. Li, Y. Kong and Y. Ge, *Chem. Eng. J.*, 2015, 270, 229–234.
12. M. K. Krusić, N. Milosavljević, A. Debeljković, Ö. Üzüm and E. Karadağ, *Water, Air, Soil Pollut.*, 2012, 223, 4355–4368.
13. N. N. Nassar, *J. Hazard. Mater.*, 2010, 184, 538–546.
14. S. Ghoraie, A. Sinhamahapatra, A. Sarkar, A. B. Panda and S. Pal, *Bioreour. Technol.*, 2012, 119, 181–190.
15. M. Ozmen, K. Can, G. Arslan, A. Tor, Y. Cengeloglu and M. Ersoz, *Desalination*, 2010, 254, 162–169.
16. T. Wang, L. Zhang, C. Li, W. Yang, T. Song, C. Tang, Y. Meng, S. Dai, H. Wang and L. Chai, *Environ. Sci. Technol.*, 2015, 49, 5654–5662.
17. Y.-M. Hao, C. Man and Z.-B. Hu, *J. Hazard. Mater.*, 2010, 184, 392–399.
18. L. Feng, M. Cao, X. Ma, Y. Zhu and C. Hu, *J. Hazard. Mater.*, 2012, 217, 439–446.
19. D. Horák, M. Trchová, M. J. Beneš, M. Veverka and E. Pollert, *Polymer*, 2010, 51, 3116–3122.
20. H. V. Tran, L. Dai Tran and T. N. Nguyen, *Mater. Sci. Eng. C*, 2010, 30, 304–310.
21. C. Zhang, Z. Mo, P. Zhang, C. Feng and R. Guo, *Mater. Lett.*, 2013, 106, 107–110.
22. S.-H. Huang and D.-H. Chen, *J. Hazard. Mater.*, 2009, 163, 174–179.
23. Y.-G. Zhao, H.-Y. Shen, S.-D. Pan and M.-Q. Hu, *J. Hazard. Mater.*, 2010, 182, 295–302.
24. X. Peng, F. Xu, W. Zhang, J. Wang, C. Zeng, M. Niu and E. Chmielewská, *Colloids Surf., A*, 2014, 443, 27–36.
25. D. Maity and D. Agrawal, *J. Magn. Magn. Mater.*, 2007, 308, 46–55.
26. F. Zhang, J. Lan, Z. Zhao, Y. Yang, R. Tan and W. Song, *J. Colloid Interface Sci.*, 2012, 387, 205–212.
27. B. Saif, C. Wang, D. Chuan and S. Shuang, *J. Biomater. Nanobiotechnol.*, 2015, 6, 267.
28. L. Lei, X. Liu, Y. Li, Y. Cui, Y. Yang and G. Qin, *Mater. Chem. Phys.*, 2011, 125, 866–871.
29. J. Liu, W. Wang, H. Liu, Y. Zhou, H. Zhang and X. Zhou, *RSC Adv.*, 2014, 4, 25983–25992.
30. X. Guan, J. Chang, Y. Chen and H. Fan, *RSC Adv.*, 2015, 5, 50126–50136.
31. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu and D. Zhu, *J. Colloid Interface Sci.*, 2010, 349, 293–299.
32. S. Venkateswarlu and M. Yoon, *ACS Appl. Mater. Interfaces*, 2015, 7, 25362–25372.
33. S. Venkateswarlu and M. Yoon, *Dalton Trans.*, 2015, 44, 18427–18437.
34. V. K. Gupta, S. Agarwal and T. A. Saleh, *J. Hazard. Mater.*, 2011, 185, 17–23.
35. L. Xiong, C. Chen, Q. Chen and J. Ni, *J. Hazard. Mater.*, 2011, 184, 741–748.
36. N. Sharma and A. Tiwari, *Desal. Water Treat.*, 2016, 57, 3642–3653.
37. R. M. Ali, H. A. Hamad, M. M. Hussein and G. F. Malash, *Ecol. Eng.*, 2016, 91, 317–332.
38. H. Chong, P. Chia and M. Ahmad, *Bioresour. Technol.*, 2013, 130, 181–186.
39. Y. Lin, H. Chen, K. Lin, B. Chen and C. Chiou, *J. Environ. Sci.*, 2011, 23, 44–50.
40. B. Cheng, Y. Le, W. Cai and J. Yu, *J. Hazard. Mater.*, 2011, 185, 889–897.
41. K. Hall, L. Eagleton, A. Acrivos and T. Vermeulen, *Ind. Eng. Chem. Fundam.*, 1966, 5, 212–223.
42. A. Dada, A. Olalekan, A. Olatunya and O. Dada, *J. Appl. Chem.*, 2012, 3, 38–45.
43. H. Zheng, D. Liu, Y. Zheng, S. Liang and Z. Liu, *J. Hazard. Mater.*, 2009, 167, 141–147.
44. B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpää, *Chem. Eng. J.*, 2015, 259, 1–10.
45. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei and Y. Yang, *Water Res.*, 2013, 47, 2563–2571.