Aligning evidence: concerns regarding multiple sequence alignments in estimating the phylogeny of the Nudibranchia suborder Doridina

Joshua M. Hallas¹,², Anton Chichvarkhin³,⁴ and Terrence M. Gosliner²

¹Department of Biology, University of Nevada, Reno. 1664 N. Virginia St, Reno, NV 89557, USA
²Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr Golden Gate Park, San Francisco, CA 94118, USA
³National Scientific Center of Marine Biology, Far East Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690041, Russia
⁴Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia

Molecular estimates of phylogenetic relationships rely heavily on multiple sequence alignment construction. There has been little consensus, however, on how to properly address issues pertaining to the alignment of variable regions. Here, we construct alignments from four commonly sequenced molecular markers (16S, 18S, 28S and cytochrome c oxidase subunit I) for the Nudibranchia using three different methodologies: (i) strict mathematical algorithm; (ii) exclusion of variable or divergent regions and (iii) manually curated, and examine how different alignment construction methods can affect phylogenetic signal and phylogenetic estimates for the suborder Doridina. Phylogenetic informativeness (PI) profiles suggest that the molecular markers tested lack the power to resolve relationships at the base of the Doridina, while being more robust at family-level classifications. This supports the lack of consistent resolution between the 19 families within the Doridina across all three alignments. Most of the 19 families were recovered as monophyletic, and instances of non-monophyletic families were consistently recovered between analyses. We conclude that the alignment of variable regions has some effect on phylogenetic estimates.
of the Doridina, but these effects can vary depending on the size and scope of the phylogenetic query and PI of molecular markers.

1. Introduction

The debate regarding multiple sequence alignment (MSA) construction [1–8] and molecular marker selection [9] for use in phylogenetic estimates has been well established in the literature. There is little consensus, however, on the most accurate and replicable approach when considering MSA assemblies [10]. The crux of the matter is how best to align and represent homology in highly variable regions of sequence data. Most approaches employ a combination of a mathematical algorithm and manual curation of variable regions. Unfortunately, in most instances manual curation is loosely defined—which makes subsequent studies difficult to replicate—and even though mathematical algorithms allow for studies to be easily replicated, they do not take into account evolutionary history and consider homology exclusively as similarity [3]. In addition, they often fail to accurately align variable regions [11].

The estimation of evolutionary relationships relies heavily on the ability to determine homology between any given set of characters. The wrongful designation of characters as homologous can confound interpretations of evolutionary relationships by creating homoplasies, which results in the loss of phylogenetic signal [12]. Thus, the determination of homology in either morphological character matrices or MSAs (computational or manually curated) has a direct impact on the accuracy and ability to replicate phylogenetic estimates. This has led to differing positions concerning variable regions and their importance in increasing [13,14] or decreasing [15–17] phylogenetic signal. These highly variable loop regions become increasingly more difficult to align as sequences become more divergent. This confounds the ability to determine accuracy in MSAs and may result in contradictory estimates of deeper evolutionary relationships. It has been proposed that the large sections created by highly variable loop regions in MSAs should be excluded because of the uncertainty in determining reliable estimates of positional homology [18]. Conversely, it has also been suggested that effects from MSAs should be explored in determining phylogenetic estimates due to their likelihood of containing phylogenetic signal [19,20].

Highly divergent sequences and a general lack of diverse molecular markers have made MSAs and resulting phylogenetic estimates for the Nudibranchia problematic [21–26]. For these reasons, we examine how MSA construction of common nDNA and mtDNA markers affect phylogenetic estimates of the diverse Nudibranchia clade Doridina. Dorid nudibranchs have been a robust model for investigating biochemical diversity [27–33], morphological evolution [34–42], colour evolution [43–49], population structure [50–52] and development [53–57]. Even though there have been previous phylogenetic estimates that included dorid nudibranchs (e.g. [35,36]), they did not include representatives of all 19 families within the Doridina, and thus, a comprehensive phylogenetic context for the evolution of these traits is deficient.

The Doridina suborder currently consists of 19 families and more than 2000 described species. The classification has been divided into five superfamilies (Bathydoridoidea, Doridoidea, Onchidoridoidea, Phyllidioidea and Polyceroidea) defined by morphological variation in gill and feeding structures [21,36,58,59]. Species that possess the ability to retract their gills into fully formed gill pockets, Eudoridoidea (=Cryptobranchia), are divided into two clades based on the presence or absence of radula, Labiostomata (=Doridoidea) and Porostomata (=Phyllidioidea), respectively [36]. Dorid nudibranchs that lack a fully formed gill pocket represent the Anthobranchia (=Phanerobranchia), which is subdivided into the Suctoria (=Onchidoridoidea) and the Non-Suctoria (=Polyceroidea) based on the presence or absence of a buccal pump. Even though morphological [36,59] and molecular [22,23,60,61] analyses have shown the Doridina to be monophyletic, no study has focused on a complete sampling of all currently recognized families. Thus, relationships between families are poorly understood due to conflicting phylogenies and inadequate sampling.

In this study, we use three common MSA methodologies: (i) strict mathematical algorithm; (ii) exclusion of variable or divergent regions and (iii) manually curated. We then discuss issues pertaining to the lack of resolution in phylogenetic estimates and limitations in resolving the base of the Doridina. We also address the possible effects alignment construction may have on phylogenetic informativeness (PI), and how phylogenetic signal may shift given alignment methodology. Lastly, we re-evaluate taxonomic classifications that were consistent between all three analyses.
2. Material and methods

2.1. Taxon sampling

We sampled (121 taxa) representatives from the five superfamilies and all 19 families that currently comprise the Doridina, and mined GenBank for specimens that had at least two sequences. To limit the amount of missing data, we obtained extractions or tissue samples from published specimens to sequence molecular markers that were previously unattained. *Pleurobranchaea meckeli* and *Berthella martensi* were chosen as outgroups because the Pleurobranchomorpha has been suggested to be sister to the Nudibranchia [23]. Additional members from the Aeolidina and Dendronotina were also used in testing the monophyly of the Doridina. Specimens, voucher numbers, collection sites and GenBank accession numbers are listed in table 1. Voucher specimens are located in the collections at California Academy of Sciences (CASIZ) and the Museum of National Scientific Center of Marine Biology, Vladivostok (MIMB).

2.2. Extraction, PCR protocols and sequencing

Genomic DNA was extracted using the Qiagen DNeasy Blood & Tissue extraction kit (Valencia, CA). Amplification and sequencing for targeted gene fragments 16S, 18S, 28S and cytochrome c oxidase subunit I (COI) followed protocols used by Hallas & Gosliner [62]. Amplified fragments were sequenced at the Center for Comparative Genomics located at the California Academy of Sciences and National Scientific Center of Marine Biology.

2.3. Multiple sequence alignments

We assembled and edited sequences in Geneious Pro v. 9.1.7 [63] and BioEdit [64]. We aligned rDNA fragments (16S, 18S and 28S) using three different methodologies to examine conflicts regarding estimated phylogenies. For our first method, we used a computer algorithm E-INS-i in MAFFT (MA) [65]. The E-INS-i algorithm is designed to handle sequence data with several conserved regions embedded in long unalignable gapped regions. Our second method excluded all variable regions from the initial MAFFT alignment of rDNA using Gblocks (GA) [11]. We determined blocks using a less stringent selection by allowing for smaller final blocks, gap positions within the final blocks and less strict flank positions. For our third method, we used the initial MAFFT alignment from method one, but manually curated variable regions (CA). This was done by hand to correct for possible inappropriate alignment of sequence regions. For each alignment method, we concatenated all four targeted molecular markers into single MSAs that resulted in three separate concatenated datasets.

2.4. Phylogenetic informativeness

We estimated PI for each molecular marker per alignment [9] through the PhyDesign web interface [66], and estimated each PI profile using the site-rates model HyPhy [67]. First, we generated ultrametric trees by converting our concatenated Bayesian inference (BI) phylogenetic estimates in Mesquite [68]. Owing to the lack of a fossil record for the Doridina, our ultrametric trees are not in known time units. However, it has been shown that PI profiles can be used effectively even if divergence time estimates are absent [69]. Then, we analysed alignments in relation to each of their resulting estimated phylogeny to gain a greater understanding of how PI can change based on the alignment approach.

2.5. Phylogenetic analyses

We determined evolutionary models using PartitionFinder v.1.1.1 [70], and partitioned our concatenated datasets by rDNA fragment as well as codon position for COI. We also analysed our nDNA and mtDNA fragments separately to investigate possible conflicting evolutionary histories. We did this by aligning both nDNA and mtDNA datasets using the algorithm E-INS-i in MAFFT, and used the same partitioning scheme as in our concatenated datasets.

We analysed all our datasets using BI and maximum-likelihood (ML). BI searchers were run using MrBayes v. 3.2.1 [71], and convergence was checked in TRACER v.1.5 [72]. The datasets were run for 5×10^7 generations with Markov chains sampled every 1000 generations. The standard 25% burn-in was calculated and remaining tree estimates were used to create a 50% majority rule consensus tree.
Table 1. Specimens successfully sequenced and used for molecular analyses. Voucher numbers, GenBank accession numbers and collection localities.

specimen	voucher	GenBank accession number	locality			
		16S	18S	28S	COI	
PLEUROBRANCHOIDEA						
Pleurobranchaea meckeli		FJ917439	FJ917449	FJ917481	FJ917499	Mediterranean Sea, Spain
Pleurobranchidae						
Berthella martensi	MZUCR6982	HM162592	MF958319	MF958363	HM162683	Las Secas, Islas sin nombre, Panama
AEOLIDINA						
Flabellinidae						
Flabellina pedata	AF249247	AF124788	—	—	AF249817	North Sea, Helgoland
DENDRONOTINA						
Arminidae						
Armina loveni		AF249243	AF249196	—	AF249781	North Sea, Kattegat
DORIDINA						
Bathydoirididea						
Bathydoirididae						
Prodoris clavigera	CASIZ167553	JX274067	MF95832D	MF958364	JX274106	Elephant Island, Antarctica
Doridoidae						
Actinocyclus verrucomus	CASIZ189448	MF958311	MF958392	MF958397	MF958438	Kauai, Hawaii
Hallina indecora	CASIZ179600	MF958302	MF958340	MF958386	—	South Lof Island, Marshall Islands
Hallina translucens	CASIZ173447	EU982814	MF958341	MF958387	EU982760	Iles Radama, Madagascar
Hallina juju	CASIZ175559	EU982813	—	—	EU982799	Maui, Hawaii
Cadlinidae						
Aldisa sanguinea	CASIZ182031	MF958309	MF95830	MF958394	MF958435	Marin Co., California
Aldisa sp.	CASIZ175733	EU982818	MF958301	MF958395	MF958436	Tiger Reef, Malaysia
Cadlina cf. luteomarginata	CASIZ188599A	KJ653679	KP340317	KP340350	KM219678	Parksville, Vancouver Island, British Columbia
Cadlina laevis	CASIZ175444	—	MF958399	MF958406	—	Scotland
Cadlina luna	CASIZ175437	EU982768	—	—	EU982718	Guanacaste, Costa Rica
Cadlina modesta	CASIZ1823286	MF958310	—	—	M958437	Vista del Mar, San Luis Obispo Co., California
Cadlina pelucida	CASIZ175448	EU982774	—	MF958396	EU982724	Ilha de Pessegueiro, Baixo Alentejo Prov., Portugal
Cadlina sparsa	CASIZ182932	EU982776	—	—	EU982726	La Jolla, San Diego Co., California

(Continued.)
Table 1. (Continued.)

specimen	voucher	GenBank accession number	locality
Chromodorididae			
Cadlinella omatissima (Risbec, 1928)	CASIZ 177420	MF958284 MF958325 MF958371 MF958415	Maricaban Island, Luzon, Philippines
Cadlinella omatissima (Risbec, 1928)	CASIZ 175452	EU982779 — — EU982728	Mooloolaba, Queensland, Australia
Chromodoris alternata (Burn, 1957)	SAM D19281	AY458800 EF534031 — EF535120	Port Phillip Bay, Victoria, Australia
Chromodoris ambiguus Rudman, 1987	SAM D19260	AY458801 EF534038 — EF535119	Port Phillip Bay, Victoria, Australia
Chromodoris quadricolor (Rüppell & Leuckart, 1830)		AF249241 AJ224773 — AF249802	Red Sea, Egypt
Doriprismatica atromarginata (Cuvier, 1804)		— AF249211 — AF249789	Great Barrier Reef, Australia
‘Felimare’ elegans (Cantraine, 1835)		AF249238 AJ224779 — AF249787	NE Atlantic, Spain
‘Felimare’ midatlantica (Golinski, 1990)	CASIZ 175443	JQ727789 — — JQ727898	Islotes do Martinhal, Algarve, Portugal
‘Felimare’ picta verdensis Ortea, Valds & Garca-Gmez, 1996	CASIZ 179384	HM162594 MF958346 MF958389 HM162685	Gulf of Guinea, Ilha do Principe, São Tomé & Principe
‘Felimare’ villafranca (Riaoa, 1818)		AF249237 AJ224780 — —	NE Atlantic, Spain
‘Felimida’ emundsi Cervera, Garcia-Gmez & Ortea, 1989	CASIZ 179385	HM162595 MF958347 MF958390 HM162686	Gulf of Guinea, Ilha do Principe, São Tomé & Principe
‘Felimida’ krohni (Verany, 1846)		AF249239 AJ224774 AY427445 AF249805	NE Atlantic, Spain
Goniobranchus geometricus (Risbec, 1928)	CASIZ 175549	JQ727717 — — JQ727842	Nosy Valiha, Iles Radama, Madagascar
Hypselodoris imperialis (Pease, 1860)	CASIZ 142952	EU982807 — — EU982754	Mala Wharf, Maui, Hawaii
Hypselodoris infulata (Rüppell & Leuckart, 1830)		FJ917427 FJ917442 FJ917467 FJ917485	NSW, Australia
Mirama magnaefico Eliot, 1904	CASIZ 169951	EU982781 — — EU982731	Old Woman Island, Queensland, Australia
Thorunna danieleae (Kay and Young, 1969)	CASIZ 170055	EU982809 — — EU982756	Malaeaa Marina, Maui, Hawaii
Tynina evelinae (Marcus, 1958)	CASIZ 175440	EU982811 — MF958391 EU982757	Playa Ventana, Guanacaste, Costa Rica
Tynina nobilis Bergh, 1898	ZSM M20050508	EF34054 EF34035 — EF35127	
Dorididae			
Aphelodoris sp. 1	CASIZ 176920	MF958293 MF958322 MF958379 MF958424	Oudekraal, Cape Prov., South Africa
Aphelodoris sp. 1		— — GQ292033 GQ292034	Auckland, New Zealand
Aphelodoris luctuosa (Cheeseman, 1882)		— — GQ292044	Auckland, New Zealand
Doris montereyensis (Cooper, 1862)	CASIZ 174493	MF982894 MF958333 — MF958425	Battery Point, Crescent City, Del Norte Co., California
Doris odhneri MacFarland, 1966	CASIZ 188014	MF982895 MF958334 MF958380 —	Duxbury Reef, Marin Co., California
Doris sp. 8	CASIZ 192348	MF98306 MF958345 — —	Red Sea, Saudi Arabia

(Continued)
specimen	voucher	GenBank accession number	GenBank accession number	GenBank accession number	GenBank accession number	locality	
Discodorididae							
Asteronotus cespitosus (van Hasselt, 1824)	CASIZ 191096	MF958288	MF958328	MF958375	MF958419	Kranket Island, Papua New Guinea	
Atagema cf osseosa (Kelaart, 1859)	CASIZ 185142	MF958296	MF958335		MF958426	Maui, Hawaii	
Discodoris coerulescens Bergh, 1888	CASIZ 182850	MF958290	MF958330	MF958377	MF958421	Maricaban Island, Luzon, Philippines	
Halgerda dalanghita Tahey & Gosliner, 1999	CASIZ 181264	MF958289	MF958329	MF958376	MF958420	Maricaban Island, Luzon, Philippines	
Discodorididae							
Peltodoris nobilis (MacFarland, 1905)	CASIZ 182223	EU982816				Pillar Point, San Mateo Co., California	
Platyodoris sanguinea Bergh, 1905	CASIZ 177762	MF958285	MF958326	MF958372	MF958416	Maricaban Island, Batangas Prov., Philippines	
Rostanga calumus Rudman & Avern, 1989	CASIZ 190788	MF958286	MF958327	MF958373	MF958417	Madang Prov., Papua New Guinea	
Sclerodoris tuberculata Eliot, 1904	CASIZ 179590	MF958287		MF958374	MF958418	Kwajalein Atoll, Marshall Islands	
ONCHIDORIDOIDEA							
Akiodorididae							
Armodoris anudeorum Valdés, Moran & Woods, 2011	LACM 3118	KP340290	GQ326879	KP340355	KP340387	McMurdo Sound, Ross Sea, Antarctica	
Calycidorididae							
Calycidoris guentheri Abraham, 1876	CASIZ 190966A	KP340301	KP340338	KP340371	KP340397	Chukchi Sea, Alaska	
Diaphorodoris lurulacauda Milien, 1985	CASIZ 184341	KP340307	KP340344	KP340377	KP340403	Duxbury Reef, Marin Co., California	
Diaphorodoris luteoancta (Sars, 1870)	LACM 8.7A	KP340308		KP340378	KP340404	Bahia de Algeciras, Cadiz Prov., Spain	
Diaphorodoris cf mitsuii	CASIZ 185986	KP340310	KP340345	KP340379	KP340406	Sepok Point, Philippines	
Diaphorodoris papillata Portmann & Sandmeier, 1960	LACM 8.6A	KP340311			KP340407	Bahia de Algeciras, Cadiz Prov., Spain Peninsula	
Corambididae							
Corambes obscura (Verrill, 1870)	CASIZ 183942	KP340303	KP340340	KP340373	KP340399		New Castle Portsmouth Bay, New Hampshire
Corambes pacifica MacFarland & O'Donoghue, 1929	LACM 2007-2.6C	KP340305	KP340342	KP340375	KP340401		Long Beach Marina, Los Angeles Co., California
Corambes steinbergae (Lance, 1962)	CASIZ 190508	KP340306			KP340402		Pillar Point, San Mateo Co., California
Goniodorididae							
Anula gibbsae (Risso, 1818)	CASIZ 182028	KP340291	KP340322	KP340356	KP340388	Cumberland Co., Maine	
Anula gibbsae (Risso, 1818)	CASIZ 181271	MF958291			MF958422	Duxbury Reef, Marin Co., California	
Goniodoris nodosa (Montagu, 1808)	LACM 18625A	AF249226	AJ224783		AF249788	NE Atlantic, Spain	
Okenia kendi Gosliner, 2004	CASIZ 191431	MF958303	MF958342		MF958432		Tab Island, Papua New Guinea

(Continued)
specimen	voucher	GenBank accession number	16S	18S	28S	COI	locality	
Onchidorididae	Acanthodoris atrogrisea	Onchidoris atrogrisea	CASIZ 186000	KJ653646	KP340323	KP340357	KM219646	Puget Sound, Kitsap Co., Washington
Acanthodoris hussoni	MacFarland, 1905	Acanthodoris hussoni	CASIZ 179480	KJ653652	KP340324	KP340359	KM219650	Asilomar, Monterey Co., California
Acanthodoris nanaimoensis	O'Donoghue, 1921	Acanthodoris nanaimoensis	CASIZ 181569A	KJ653656	KP340325	KP340360	KM219657	Pillar Point, San Mateo Co., California
Acanthodoris pilosa	A. S. Milne-Edwards & J. J. Chevalier, 1889	Acanthodoris pilosa	CASIZ 183941A	KJ653659	KP340326	KP340361	—	—
Acanthodoris plana	Fahey & Valdés, 2005	Acanthodoris plana	CASIZ 176116	KJ653669	KP340327	KP340362	KM219671	Table Bay, Western Cape Prov., South Africa
Acanthodoris rhodoceras	Cockerell & Eliot, 1910	Acanthodoris rhodoceras	CASIZ 181572	KJ653671	KP340328	KP340363	KM219673	Pillar Point, San Mateo Co., California
Knoutsodonta brasilensis	Alvim, Padula & Pimenta, 2011	Knoutsodonta brasilensis	—	—	—	—	—	—
Knoutsodonta depressa	Alder & Hancock, 1842	Knoutsodonta depressa	CASIZ 186769A	KJ653676	KP340315	KP340347	KM219680	Asilomar, Monterey Co., California
Knoutsodonta jannae	Milten, 1987	Knoutsodonta jannae	CASIZ 175578	KJ653677	KP340326	KP340359	KM219676	Passamaquody Bay Eastport, Washington Co., Maine
Onchidoris bilamellata	Linnaeus, 1767	Onchidoris bilamellata	CASIZ 18593	KJ653680	KP340317	KP340349	KM219678	Puget Sound, Kitsap Co., Washington
Onchidoris macropompa	Korshunova, Sanamyan & Sanamyan, 2009	Onchidoris macropompa	MIMB 34210	MF958292	MF958331	MF958378	MF958423	Avacha Bay, Kamchatka
Onchidoris proxima	Alder & Hancock, 1854	Onchidoris proxima	CASIZ 183921A	KJ653672	KP340328	KP340362	KM219679	Passamaquody Bay Eastport, Washington Co., Maine
Onchimira cavifera	Korshunova, Sanamyan & Sanamyan, 2009	Onchimira cavifera	MIMB 34209	MF958298	MF958334	MF958379	MF958424	Avacha Bay, Kamchatka
Onchimira cavifera	Korshunova, Sanamyan & Sanamyan, 2009	Onchimira cavifera	MIMB 34209	MF958298	MF958334	MF958379	MF958424	Avacha Bay, Kamchatka

Phyllidiidae

specimen	voucher	GenBank accession number	16S	18S	28S	COI	locality	
Dendrodorididae	Dendrodoris arborescens	Dendrodoris arborescens	CMNH-ZM08965	—	AB917459	—	AB917459	Oka, Tateyama
Dendrodoris atomaculata	Alder & Hancock, 1864	Dendrodoris atomaculata	CASIZ 18123	M958293	MF958348	MF958392	MF958434	Janao Bay, Luzon, Philippines
Dendrodoris denisoni	Angas, 1862	Dendrodoris denisoni	CASIZ 17702	M958308	MF958349	MF958393	—	—
Dendrodoris fumata	Rüppell & Leuckart, 1830	Dendrodoris fumata	CASIZ 192304	M958358	MF958405	MF958444	Red Sea, Saudi Arabia	
Dendrodoris guttata	Othertobe, 1917	Dendrodoris guttata	CMNH-ZM 08967	—	AF249122	FJ91470	AF249799	Great Barrier Reef, Australia
Dendrodoris nigra	Stimpson, 1855	Dendrodoris nigra	CASIZ 182821	M958318	MF958357	MF958404	MF958443	Maricaban Island, Luzon, Philippines
Dendrodoris nigra	Stimpson, 1855	Dendrodoris nigra	AF249242	MF958318	MF958357	MF958404	MF958443	Great Barrier Reef, Australia

(Continued)
Table 1. (Continued.)

Specimen	Voucher	GenBank Accession Number	16S	18S	28S	COI	Locality
Doriopsilla albopunctata (J. G. Cooper, 1863)	CPIC 00909	KR002428	—	—	—	KR002480	Long Beach, California
Doriopsilla bertschi Hoover, Lindsay, Goddard & Valdés, 2015	CPIC 01058	KR002462	—	—	—	KR002517	Bahía de los Ángeles, Baja California, Mexico
Doriopsilla davibehrensi Hoover, Lindsay, Goddard & Valdés, 2015	LACM 3419	KR002476	—	—	—	—	Bahía de los Ángeles, Baja California, Mexico
Doriopsilla fulva (MacFarland, 1905)	CPIC 00933	KR002444	—	—	—	KR002498	Malibu, California
Doriopsilla gemela Gosliner, Schaefer & Millen, 1999	CPIC 00938	KR002453	—	—	—	KR002506	Malibu, California
Doriopsilla janaina Marcus &. Marcus, 1967	CASIZ 173618	MF958312	MF958333	MF958398	—	Galápagos Islands, Ecuador	
Doriopsilla miniata (Alder & Hancock, 1864)	CMNH ZM008770	—	AB917464	—	AB917457	Yoshio, Katsuura	
Doriopsilla spaldingi Valdés & Behrens, 1998	CPIC 00908	KR002427	—	—	—	KR002479	San Pedro, Los Angeles Co., California
Mandalidae	Mandalia mirocornata Valdés & Gosliner, 1999	CASIZ 176266	MF958278	MF958321	MF958365	MF958411	Oudekraal, Cape Prov., South Africa
Phyllidiidae	Ceratophyllidia sp.	CASIZ 181247	MF958281	MF958313	MF958368	MF958413	Beatrice, Philippines
Phyllidia coelestis Bergh, 1905	CASIZ 190982	MF958279	—	MF958366	MF958412	—	Kranket Island, Madang Prov., Papua New Guinea
Phyllidiella nigra (van Hasselt, 1824)	CASIZ 186196A	MF958280	MF958322	MF958367	—	Maricaban Strait, Batangas Prov., Luzon, Philippines	
Phyllidiella pustulosa (Cuvier, 1804)	AF243232	AF249208	—	—	—	—	Great Barrier Reef, Australia
Phyllidopsis annae Brunkhorst, 1993	CASIZ 186138	MF958283	MF958324	MF958370	—	—	Philippines
Reticulidia halgerda Brunkhorst & Burnin Brunkhorst, 1990	CASIZ 186491	MF958282	—	MF958369	MF958414	—	Maricaban Island, Luzon, Philippines
Polyceridae	Aegires salopunctatus MacFarland, 1905	CASIZ 182213	MF958313	MF958354	MF958399	MF958439	Marin Co., California
Aegires citrinus Pruvot-Fol, 1930	CASIZ 144027	MF958314	MF958355	MF958400	MF958440	—	Mooloolaba, Queensland, Australia
Aegires flores Fahey & Gosliner, 2004	CASIZ 191244	MF958316	—	MF958402	MF958442	—	Papua New Guinea
Aegires serenae (Gosliner and Behrens, 1997)	CASIZ 192185	MF958315	—	MF958401	MF958441	—	Papua New Guinea
Aegires villosus Faran, 1905	CASIZ 177563	MF958317	MF958356	MF958403	—	—	—
Gymnodorididae	Gymnodoris sp.	CASIZ 176781	—	MF958361	—	—	Pulau Penang, Malaysia
Gymnothorax sp.	CAZIS 119381	18S 740	—	MF958343	—	—	Kapalua Bay, Maui, Hawaii
Hexabranchidae	Hexabranthus sanguineus (Ruppell & Leuckart, 1828)	CASIZ 142942	MF958304	MF958343	—	—	Papua New Guinea
Hexabranthus sanguineus (Ruppell & Leuckart, 1828)	CASIZ 142942	MF958305	MF958344	MF958388	MF958433	—	—

(Continued)
specimen	voucher	GenBank accession number	GenBank accession number	GenBank accession number	GenBank accession number	locality
Vayssiera sp.	CASIZ 190731	—	MF958362	MF958408	—	Sunshine Coast, Kings Beach, Australia
Polyceridae						
Kaloplocamus sp. 1	CASIZ 194412	MF958299	MF958337	MF958383	MF983429	South Madagascar, Madagascar
Limacia sp. 1	CASIZ 176312	HM162602	KP340320	KP340353	HM162692	False Bay, Western Cape Prov., South Africa
Limacia sp. 2	CASIZ 176276	HM162603	—	—	HM162693	Oudekraal, Cape Prov., South Africa
Nembrotha cristata Bergh, 1877	CASIZ 191428	MF958301	MF958339	MF958385	MF958431	Madang Prov., Papua New Guinea
Plocamopherus pecoso Valls and Gosliner, 2006	CASIZ 191587	MF958300	MF958338	MF958384	MF958430	Madang Prov., Papua New Guinea
Polycera quadrilineata (Müller, 1776)	CASIZ 173900	AF249229	AJ224777	—	—	North Sea, Kattegat
Roboastra ricei Pola, Cervera & Gosliner, 2008	CASIZ 170648	HM162601	—	—	—	Florida, 5 mi offshore of Loran Tower
Tambja marbellensis Schick & Cervera, 1998	CASIZ 180379	HM162600	KP340321	KP340354	HM162690	Setubal District, Oitao, Portugal
Triophacatalinae (Cooper, 1863)	CASIZ 181556	HM162601	—	—	—	Duxbury Reef, Marin Co., California
of calculated posterior probabilities. Posterior probabilities (pp) that exceeded 0.95 were considered strongly supported, and values 0.94 and below were interpreted as having low support. For our ML analyses, we calculated non-parametric bootstrapping (bs) values and the ML tree simultaneously in RAxML v. 7.2.6 [73]. We used the same partitioning scheme as in our BI search, but used the evolution model GTR+I− and executed fast bootstrapping runs for 5×10^4 iterations. Bootstrap values 70 or higher were considered strongly supported, while all other values were evaluated as weakly supported [74].

3. Results

3.1. Molecular data

Sequences obtained for phylogenetic analyses and PI profiles are labelled in table 1, and all alignments have been deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S20396). As expected, our concatenated alignments (MA, GA and CA) varied in length as well as number of parsimony informative characters (table 2). Surprisingly, there were more parsimony informative characters in the MA than the CA. The GA had far fewer parsimony informative characters than the other two alignments generated. Evolutionary model GTR+I+I− was selected by PartitionFinder v. 1.1.1 for each partition based on the Akaike information criterion. Interestingly, specific species of Dendrodoris (D. nigra, D. arborescens, D. guttata and D. funata) had mtDNA regions that were highly divergent.

3.2. Phylogenetic informativeness

The net PI profiles depict the amount of signal through time of each molecular marker in relation to the respective estimated phylogeny (figure 1a–c). Regardless of the alignment, net PI profiles show most phylogenetic signal resides towards the tips of the trees. The amount of overall phylogenetic signal was lowest in our GA estimate, which suggests that information was lost when variable regions were excluded. Lastly, our MA appeared to have slightly more PI than our CA.

3.3. Phylogeny

BI posterior probability estimates generally resulted in higher overall support of relationships than ML non-parametric bootstrap values. Branch lengths for basal nodes were extremely short (figure 2a–c), especially in regions of the tree that resulted in low resolution for relationships between superfamilies (figure 3a–c). There were, however, some general similarities between topologies of both phylogenetic searches and among alignments.

The Doridina suborder was recovered as monophyletic with high support in all analyses estimates (CA: pp = 1.00, bs = 91; GA: pp = 1.00, bs = 86; MA: pp = 1.00, bs = 86; figures 4–6). GA was the only analysis that recovered the Aegiridae sister to all other members of the Doridina, but there was no support. Both MA and CA recovered Prodoris sister to the rest of the Doridina.

Onchidoridoidea and Phyllidioidae were the only two superfamilies recovered as monophyletic in any of the three analyses (figure 3a–c). Onchidoridoidea was recovered as monophyletic only in the CA (pp = 0.99, bs = 46). Phyllidioidae was monophyletic with little to no support in CA (pp = 0.94; bs = 47) and MA (pp = 0.75, bs = 34) analyses. Most families, however, were recovered as monophyletic with high pp and bs support across all three alignments analysed. The Phyllidiidae and Calycidorididae were the only two families that were not supported in all three analyses. In addition, Chromodorididae, Dendrodididae, Dorididae and Polyceridae were consistently recovered as not monophyletic.
Figure 1. Phylogenetic informativeness profiles estimated by PhyDesign. (a) MAFFT alignment. (b) Gblocks alignment. (c) Curated alignment.

The Dorispsilla clade was recovered more closely related (GA: pp = 1.00, bs = 50; MA: pp = 1.00, bs = 65) to a monophyletic Phyllidiidae than to the Dendrodorid clade. This strongly suggests the Dendrodorid clade is not monophyletic. Interestingly, Cadlinidae was recovered as sister to the Phyllidioidea in MA (pp = 0.67, bs = 13) and CA (pp = 0.64), but in our GA estimate Cadlinidae was sister (pp = 1.00, bs = 17) also to a clade formed by Phyllidiidae and Dorispsilla. Aphelodoris was recovered nested within Discodorididae and sister to Atagema cf. osseosa (CA: pp = 0.63, bs = 52; GA: pp = 0.98, bs = 73; MA: pp = 0.95, bs = 67). Furthermore, Vayssiera sp. and Gymnodoris sp. were recovered nested in the Polyceridae and sister to Polycentra quadridlineata (CA: pp = 1.00, bs = 64; GA: pp = 0.98, bs = 77; MA: pp = 0.53, bs = 86).

The Polyceroida, excluding Aegiridae and Hexabrandidae, was consistently recovered closely related to the Chromodorididae (CA: pp = 0.69; GA: pp = 0.99, bs = 36; MA: pp = 0.97, bs = 53). In addition, all three analyses recovered similar topologies that suggest Cadlinella ornitismus to be sister to Hexabrandus sanguineus. MA is the only phylogenetic estimate that recovered significant support for this relationship (pp = 0.96, bs = 82). Onchimira cavifera was recovered nested in the Onchidoridae and sister to Polycentra quadridlineata (CA: pp = 1.00, bs = 86; GA: pp = 1.00, bs = 87; MA: pp = 1.00, bs = 91).

There were only two instances where long branches were evident in the Doridina; Vayssiera sp. and a clade formed by Dendrodorid arborescens, D. fumata, D. guttata and D. nigra. Analysis of nDNA (electronic supplementary material, figure S1) and mtDNA data (electronic supplementary material, figure S2) suggests that the long branches may be an artefact of mtDNA data. The nDNA tree depicts no significantly long branches within the Doridina and recovers a monophyletic Dendrodorid clade, which contradicts our mtDNA tree that recovered a polyphyletic Dendrodorid clade.

4. Discussion

4.1. Resolving the Doridina

Disparity between phylogenetic estimates can confound interpretations and conclusions regarding processes and patterns of lineage diversification. Conflicting estimates are usually consequences of opposing methodologies, which have centred on taxonomic sampling [75–77], molecular markers [12,78], phylogenetic estimates [79–81] and alignment construction [2,3,14,79]. We examined molecular markers, which have been used in varying arrangements, that are most commonly used in nudibranch phylogenetics [21,23,24,49,60–62,82–92].

The large spikes observed in rDNA fragments for our MA and CA are probably a result of highly variable regions or ambiguous sequence calls, which ML is poor at estimating [66], thus overestimating PI towards the tips of their respective tree. Furthermore, PI profiles suggest that information was
lost when these regions were excluded from our analyses, and resulted in surprisingly high loss of parsimony informative characters (25%–55%) for rDNA markers. The removal of these variable regions has been shown to negatively affect phylogenetic estimates [9] and may explain why some relationships were not consistently recovered. This supports the position that highly variable loop regions can be vital in resolving some phylogenetic relationships [8]. Unfortunately, we were unable to increase the resolution of the dorid tree by any of our three MSA construction methods. All three PI profiles were fairly consistent in depicting similar curves, and as we have been able to show, these markers are more appropriate for phylogenetic estimates at family- or higher-level classifications.

Another issue we encountered was the potential noise that was incorporated into our estimates by additional taxon sampling. Even though PI profiles suggest these markers were informative at family level, our increased taxonomic sampling may have hindered our ability to recover consistency across analyses. For example, we only recovered a monophyletic Onchidoridoidea in our CA phylogenetic

Figure 2. Phylograms of Doridina phylogenetic estimates from all three different alignment constructions. Topologies represent Bayesian estimates. (a) MAFFT alignment. (b) Gblocks alignment. (c) Curated alignment.
Figure 3. Cladogram of Doridina phylogenetic estimates. Topology represents Bayesian estimate. Branches are coloured based on superfamily designations, which are pictured adjacent to the phylogenies. Only four of the five families are depicted due to the inability to obtain an image of Bathydoridoidea. Circles represent posterior probabilities (top) and non-parametric bootstrap support values (bottom). Closed circles indicate high Bayesian and ML support (pp ≥ 0.95; bs ≥ 75). Red circles indicate moderate support values (pp: 0.95–0.90; bs: 75–70). Open circles indicate no support (pp < 0.90; bs < 70). Relationships that were not recovered by ML analysis are represented by dashes. (a) MAFFT alignment. (b) Gblocks alignment. (c) Curated alignment.
Figure 4. Phylogenetic estimate from MAFFT Alignment. Topology represents Bayesian estimate, with posterior probabilities (pp) and non-parametric bootstrap (bs) support values depicted above and below each branch, respectively. Relationships that were not recovered by ML analysis are represented by dashes. Branches are coloured based on family designations and represented on the exterior of the phylogeny.
Figure 5. Phylogenetic estimate from Gblocks alignment. Topology represents Bayesian estimate, with posterior probabilities (pp) and non-parametric bootstrap (bs) support values depicted above and below each branch, respectively. Relationships that were not recovered by ML analysis are represented by dashes. Branches are coloured based on family designations and represented on the exterior of the phylogeny.
Figure 6. Phylogenetic estimate from Curated alignment. Topology represents Bayesian estimate, with posterior probabilities (pp) and non-parametric bootstrap (bs) support values depicted above and below each branch, respectively. Relationships that were not recovered by ML analysis are represented by dashes. Branches are coloured based on family designations and represented on the exterior of the phylogeny.
estimate. By contrast, Hallas & Gosliner [62] recovered a mostly resolved monophyletic Onchidoridoidea with significant pp and bs support. Their taxonomic sampling, however, was much more focused and included histone 3 as an additional molecular marker. These contradictory estimates illustrate issues that can result from inappropriate taxonomic sampling [93] and noise incorporated into analyses with inclusion of highly divergent taxa.

In a few instances, however, our expansive taxonomic sampling has illuminated the relationships of some problematic groups, specifically Aphelodoris, Cadlinidae, Cadlinella, Hexabranchidae and Polyceridae, but in relation to the Onchidoridoidea our estimates contradicted previously highly supported hypotheses. Even though we were able to include Onchimira cavifera, it is relevant to state that we were unable to procure other morphologically unique species that may have affected our ability to resolve some family relationships in the Doridina (e.g. Colga, Goslineria, Hoplodoris, Kalinga, Murphydoris, Otinodoris). These findings illustrate that each phylogenetic query has its own set of challenges and optimal sampling strategy [94], and that the focus for each investigation should be carefully calculated.

4.2. Doridina relationships

We were not able to confidently investigate patterns of biogeographical, morphological or chemical evolution due to the lack of resolution at the base of our phylogenetic estimates. The present study, however, offers some consistent new insights into Doridina relationships, in part due to our increased taxonomic sampling.

This work reinforces the conclusion from previous studies that traditional phanerobranch and cryptobranch groupings are not monophyletic [36,59,62]. Even though there was only moderate support in our GA, Cadlinidae does appear to be closely related to at least some members of the Porostomata, despite the ambiguous position of some porostomes such as Dendrodoris and Mandelia. In addition, we consistently recovered Gymnodorididae and Okadaiidae nested within the Polyceridae, which together are closely related to the Chromodorididae and Hexabranchidae. Unexpectedly, Cadlinella was recovered sister to the Hexabranchidae in our phylogenetic estimates. Cadlinella was originally included into the Chromodorididae based on morphological similarities [95] and further supported by molecular studies [84,93]. Our broader tax sampling, however, consistently recovered Cadlinella sister to Hexabranchus and that both of these taxa, together with the Polyceridae, are closely related to the Chromodorididae. This also is supported by the sperm ultrastructure of Cadlinella, which has been shown to be divergent from members of the Chromodorididae [96].

In addition, the yellowish northeastern Pacific species of Doriopsilla were thought to represent a species complex of closely related taxa, but this assumption was not tested by including any species from outside the complex, other than the outgroup taxon D. spauldingi [97]. In our analysis, we included D. miniata from Japan and D. janaina, another eastern Pacific species that has divergent colouration. In all three of our analyses, the ‘species complex’ suggested by Hoover et al. [97] includes members of two separate lineages, rather than a single radiation. This suggests that these species with yellowish colouration and white spots evolved similar colouration convergently rather than by means of radiation from a single common ancestor.

Lastly, the evolution of the gill pocket is further confounded by the recovery of Onchimira cavifera nested within the Onchidorididae. Onchimira cavifera was described as having both cryptobranch and phanerobranch characteristics, and hypothesized as a missing link in the current understanding of gill reduction [37,62,98,99]. Onchimira possess all the characteristics of a phanerobranch: buccal pump, rectangular rachidian tooth and hooked shaped first lateral tooth, but also possesses a fully formed gill pocket and retractable gill, which is typical of cryptobranch dorids. Surprisingly, Onchimira is not closely related to the only other two members of the Onchidorididae that possess similar gill structure to the Cryptobranchia, Calycidoris and Diaphorodoris [62], but instead nested within the Onchidorididae. Based on our estimates, it is unclear how or under what conditions the gill pocket might have evolved or was lost throughout the Doridina because of the lack of resolution at the base of the tree.

4.3. Molecular evolution

It is unclear why there are such large inconsistencies between mtDNA and nDNA phylogenies regarding Dendrodoris. To confirm if there was sequencing error, we examined additional specimens of D. fumata and D. nigra to compare to those on GenBank [61,100]. Surprisingly, all sequences collected were identical. Our inclusion of D. atromaculata and D. denisoni, however, suggested that there are possible highly divergent regions among mtDNA sequences. We were unable to compare other species of
Dendrodoris from Hirose et al. [100] because they only analysed COI. A complete sampling of Dendrodoris is needed to fully comprehend the discrepancies between mtDNA and nDNA sequences. Furthermore, there appears to be no molecular distinction between Aegires citrinus and A. serenae. Both species are clearly defined by morphological characteristics [101], but both the mtDNA and the nDNA suggest they are in fact the same species. Much like in the Dendrodorididae, it is unclear what molecular mechanisms might have influenced our observations. Further investigations are needed, but are beyond the scope of our data.

5. Conclusion

We decided to take an approach that used three common methods used in MSA construction for Nudibranchia phylogenetics. As expected, our findings suggested that MSA methodology affected phylogenetic estimates of the Doridina, especially regarding how we decided to align highly variable rDNA regions. We were able to show that the most commonly sequenced molecular markers for the Nudibranchia lacked the robustness to resolve the base of the dorid tree, and manipulation of highly variable regions affected our ability to recover consistent phylogenetic estimates. This effect, however, is most probably dependent upon the size and scope of the phylogenetic query and amount of missing data. These markers are better suited for higher-level classifications as suggested by our PI profiles. Even though the base of the Doridina was unresolved, family-level classifications were mostly supported across our three analyses, and families that were recovered as non-monophyletic were consistent between alignments. Our analyses suggest that the exclusion of variable regions may have weakened our ability to resolve the base of the Doridina, but previous studies that used much larger datasets have benefited from removing these regions (e.g. [102,103]).

Even though the focus of the present study was to understand MSA construction, our estimates of the Doridina also give a frame of reference for allowing more intensive queries into specific family evolutions. For example, the evolution of caryophyllidia in the Discodorididae, molecular evolution in Aegiridae and Dendroridoridae, or the relationships pertaining to the Polyceridae, Okakaiidae, Gymnodorididae, Hexabranchidae and Chromodorididae, which are some of the most morphologically unique and chemically distinct families.

Nudibranch studies unquestionably suffer from a lack of abundant and diverse molecular markers. Studies have argued that increasing molecular markers could resolve problematic relationships [94,104], but an increase in molecular markers does not resolve issues regarding homology and variable region alignments. Automated filtering protocols allow for MSAs to be easily replicated and eliminate the uncertainty of manual curation of alignments; however, these methods are not without error. In addition, there has been little consensus on the soundest method of increasing signal to resolve phylogenies [6]. Genomic tools, which only have recently been used to investigate nudibranch [105] and larger opisthobranch phylogenetics [106,107], have potential of resolving dorid relationships. However, genomic applications also suffer from alignment and homology issues [108,109]. Phylogenetic resolution of the Doridina can greatly benefit from a genomic approach, but it is important to emphasize the critical role MSAs and homology have on phylogenetic studies. Owing to the varying size and scope of molecular and taxonomic sampling, we strongly recommend the exploration of multiple MSA construction methods that can aid in the selection of an approach that best suits the data.

Data accessibility. Supporting files are accessible in the electronic supplementary material. Sequence alignments have been deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S20396). Finally, DNA sequences (listed in table 1) have been uploaded to GenBank accession ranges: 16S(MF958278-MF958318); 18S(MF958319-MF958362); 28S(MF958363-MF958409); COI(MF958411-MF958446).

Authors’ contributions. J.M.H. and T.M.G conceived the study. J.M.H and A.C. carried out molecular sequencing. J.M.H carried out analyses and wrote the manuscript. All the authors edited the manuscript.

Competing interests. We declare that we have no competing interests.

Funding. Portions of this research were supported by Research Program Far East, grant no. 15-I-6-014o to A.C., the US National Science Foundation (DEB, grant no. 12576304) grant to T.M.G., Richard Mooi, Luis Rocha and Gary Williams, and a generous donation from Lucy Jones.

Acknowledgements. This project would not have been possible without the help and support of the following people and institutions: Rebecca Johnson, Vanessa Knutson, Kelly Laughlin and Marta Pola for supplying unpublished sequences and DNA extractions for specimens; California Academy of Sciences (CAS) for help in acquiring specimens; all past and present graduate students from Nudi Central at CAS; everyone at the Center for Comparative Genomics at CAS, especially Anna Sellas, for their help with troubleshooting sequencing; Ryan Hulett and Nick Sinatra for editing and providing valuable suggestions; and, lastly, two anonymous reviewers for constructive comments. This work was
References

1. Morrison DA, Morgan MJ, Kelchner SA. 2015. Molecular homology and multiple-sequence alignment: an analysis of concepts and practice. Aust. Syst. Bot. 28, 46–62. (doi:10.1071/SB15001)

2. Morgan MJ, Kelchner SA. 2010. Inference of molecular homology and sequence alignment by direct optimization. Mol. Phylogenet. Evol. 56, 305–311. (doi:10.1016/j.ympev.2010.03.032)

3. Morrison DA. 2015. Is sequence alignment an art or a science? Syst. Bot. 40, 14–26. (doi:10.1002/psb.1966)

4. Patterson C. 1998. Homology in classical and molecular biology. Mol. Biol. Evol. 5, 603–625.

5. Smith TF, Waterman MS. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197. (doi:10.1016/0022-2836(81)90087-5)

6. Tan G, Muffato M, Ledergerber C, Herrera J, Goldman N, Gil M, Desimone C. 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64, 778–791. (doi:10.1093/sysbio/syv033)

7. Wheeler WC. 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9. (doi:10.1086/101666)

8. Desimone C, Gil M. 2010. Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol. 11, R27. (doi:10.1186/gb-2010-11-4-r27)

9. Townsend JP. 2007. Profiling phylogenetic informatics. Syst. Biol. 56, 222–231. (doi:10.1080/1063515070131362)

10. Morrison DA. 2009. Why would phylogeneticists ignore computerized sequence alignment? Syst. Biol. 58, 150–158. (doi:10.1093/sysbio/yyp009)

11. Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577. (doi:10.1080/1063515070142164)

12. Brocchieli L. 2001. Phylogenetic inferences from molecular sequences: review and critique. Theor. Popul. Biol. 59, 27–40. (doi:10.1006/tpbi.2000.1465)

13. Aagesen L. 2004. The information content of an ambiguously alignable region, a case study of the trnL intron from the Rhamnaceae. Org. Divers. Evol. 4, 35–49. (doi:10.1006/ode.2003.1103)

14. Lee MSY. 2001. Unalignable sequences and molecular evolution. Trends Evol. 16, 681–685. (doi:10.1016/j.tree.2001.06.013)

15. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. (doi:10.1093/oxfordjournals.molbev.a026334)

16. Grundy WH, Naylor GIP. 1999. Phylogenetic inference from conserved sites alignments. J. Exp. Zool. 285, 128–139. (doi:10.1002/(SICI)1110-1203(19990805)285:2<128::AID-JEZ5>3.0.CO;2-C)

17. Lötjönyi A, Milinkovitch MC. 2001. SOAF: cleaning multiple alignments from unalignable blocks. Bioinformatics 17, 573–574. (doi:10.1093/bioinformatics/17.8.751)

18. Swoford DL, Olsen GJ, Waddell PJ, Hillis DM. 1996. Phylogenetic inference. In Molecular systematics (eds DM Hillis, C Moritz, BK Mable), pp. 407–534. Sunderland, MA: Sinauer.

19. Wheeler WC. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44, 321–331. (doi:10.1093/sysbio/44.3.321)

20. Doyle JJ, Daszak P. 1998. Homology in molecular phylogenetics: a parsimony perspective. In Molecular systematics of plants II (eds DE Soltis, PS Soltis, JJ Doyle), pp. 101–131. Berlin, Germany: Springer US.

21. Vonnemann V, Schrödl M, Klussmann-Kolb A, Wägele H. 2015. Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18s and 28s rRNA gene sequences. J. Molliusc. Stud. 71, 113–125. (doi:10.1007/s10802-014-9014-0)

22. Pala M, Godsilin TM. 2010. The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). Mol. Phylogenet. Evol. 56, 931–941. (doi:10.1016/j.ympev.2010.05.003)

23. Gobbele K, Klussmann-Kolb A. 2010. Out of Antarctica — new insights into the phylogeny and biogeography of the Pleurobranchomorpha (Mollusca, Gastropoda). Mol. Phylogenet. Evol. 55, 996–1007. (doi:10.1016/j.ympev.2009.11.027)

24. Dinapoli A, Klussmann-Kolb A. 2010. The long way to diversity — phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Mol. Phylogenet. Evol. 55, 60–76. (doi:10.1016/j.ympev.2009.09.019)

25. Schrödl M, Jörger KM, Klussmann-Kolb A, Wilson NG. 2011. Bye bye 'opisthobranchia'? A review on the contribution of mesopamnic sea slugs to eutheynuran systematics. Thalassias 27, 101–112.

26. Wägele H, Klussmann-Kolb A, Verbeek E, Schrödl M. 2014 Flashback and foreshadowing — a review of the taxon Opisthobranchia. Org. Divers. Evol. 14, 133–149. (doi:10.1016/j.ode.2014.03.015)

27. Faulkner DJ. 1988. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13, 295–301. (doi:10.3354/meps01295)

28. Cimino G, De Rosa S, De Stefano S, Sodano G, Villani G. 1983. Dorid nudibranchs elaborates its own chemical defense. Science 219, 1237–1238. (doi:10.1126/science.219.4589.1237)

29. Parlik JR, Kershner MR, Malinisi TF, Harper MK, Faulkner DJ. 1988. Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 119, 99–109. (doi:10.1016/0025-326X(88)90225-0)

30. Faulkner DJ, Malinisi TF, Andersen RJ, Dumedé EJ, De Silva ED. 1990. Geographical variation in
85. Stout CC, Pola M, Valdés Á. 2010 Phylogenetic analysis of Demodnnotus nudibranchs with emphasis on northeastern Pacific species. J. Molluscan Stud. 76, 367–375. (doi:10.1093/mollus/ey022)

86. Carmona L, Pola M, Gosliner TM, Cervera JL. 2013 A tale that morphology fails to tell: a molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE 8, e68300. (doi:10.1371/journal.pone.0068300)

87. Churchill CK, Valdés Á, O'Feighl D. 2014 Molecular and morphological systematics of neotectonic nudibranchs (Mollusca: Gastropoda: Glaucidae: Glauca), with descriptions of three new cryptic species. Invertebr. Syst. 28, 174. (doi:10.1007/s1051802)

88. Hulett RE, Mahgoub I, Gosliner TM, Valdés Á. 2015 Molecular evaluation of the phylogenetic position of the enigmatic species Trivettia papalotli (Bertsch) (Mollusca: Nudibranchia). Invertebr. Syst. 29, 215–222. (doi:10.1007/s1051802)

89. Shipman C, Gosliner TM. 2015 Molecular and morphological systematics of Doto Oken, 1831 (Gastropoda: Heterobranchia), with descriptions of five new species and a new genus. Zootaxa 3973, 107–114. (doi:10.11646/zootaxa.3973.1.2)

90. Furago F, Picton B, Martynov AV, Marsutini P. 2016 Diaphorodoris alba Portmann & Sandmeier, 1960 is a valid species: molecular and morphological comparison with D. iteotruncata (M. Sars, 1870) (Gastropoda: Nudibranchia). Zootaxa 4193, 304–316. (doi:10.11646/zootaxa.4193.2.6)

91. Combsch DJ et al. 2017 A family-level tree of life for brachiopods based on a Sanger–sequencing approach. Mol. Phylogenet. Evol. 107, 191–208. (doi:10.1016/j.ympev.2016.11.003)

92. Cella K, Carmona J, Ekemova I, Ochshahrkin A, Schegrov D, Gosliner TM. 2016 A radical solution: the phylogeny of the nudibranch family Fornicolidae. PLoS ONE 11, e0167800. (doi:10.1371/journal.pone.0167800)

93. Johnson RF. 2010 Breaking family ties: sampling and molecular phylogeny of chomodorid nudibranchs (Mollusca, Gastropoda). Zool. Syst. 40, 137–157. (doi:10.1111/j.1463-6409.2010.00457.x)

94. Rogers A, Carroll SB. 2005 More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Phylogenet. Evol. 22, 1337–1344. (doi:10.1016/j.molphy.2001)

95. Rudman WB. 1984 The Chromodorididae (Opisthobranchia: Mollusca) of the Indo-West Pacific: a review of the genera. Zool. J. Linn. Soc. 81, 115–273. (doi:10.1111/1463-6409.1984.tb1174x)

96. Wilson NG, Healy JM. 2002 Is Cadlinaella ornatrixs a chromodorid? Sperm ultrastructure in an enigmatic nudibranch (Opisthobranchia, Nudibranchia, Mollusca). Invertebr. Reprod. Dev. 42, 179–188. (doi:10.1079/079242592.2006.592774)

97. Hoover C, Lindsay T, Goddard JHR, Valdés Á. 2015 Seeing double: pseudocryptic diversity in the Doripolisa albopunctata-Doripolisa genetida species complex of the north-eastern Pacific. Zool. Syst. 44, 612–631. (doi:10.1111/zsc.12123)

98. Martynov AV, Korshunova T, Sanamyan N, Sanamyan K. 2009 Description of the first cryptobranch onchidorid Onchimira caurina gen. et sp. nov., and of three new species of the genera Adalarina Bergh, 1870 and Onchidoris Blainville, 1816 (Nudibranchia: Onchidorididae) from Kamchatka waters. Zoolog. 43, 1–43.

99. Martynov AV, Khorshunova T. 2011 Opisthobranch molluscs of the seas of Russia. A colour guide to their taxonomy and biology. Moscow, Russia: Fiton-1.

100. Hinse M, Hirose E, Ryimoto M. 2015 Identification of five species of Dendronotus (Mollusca: Nudibranchia) from Japan, using DNA barcode and larval characters. Mar. Biodivers. 45, 769–780. (doi:10.1515/nr-2014-0088)

101. Fahey SJ, Gosliner TM. 2004 A phylogenetic analysis of the Aeolidae Fischer, 1883 (Mollusca, Nudibranchia, Phanerobranchia) with descriptions of eight new species and a reassessment of phanerobranch relationships. Proc. Calif. Acad. Sci. 55, 613–689.

102. Deluc F, Brinkmann H, Philippe H. 2005 Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375. (doi:10.1038/nrg1565)

103. Mitrus T, Richards GJ, Conaco C, Dacre M, Degnan SM, Oakley TH, Plachetzk DC, Zhao Y. 2010 The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726. (doi:10.1038/nature09201)

104. Doyle VP, Young RE, Naylor GP, Brown JM. 2015 Can we identify genes with increased phylogenetic reliability? Syst. Biol. 64, 824–837. (doi:10.1093/systbio/syv041)

105. Goodheart JA, Bazinet AL, Collins AG, Cummings MP. 2015 Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation. R. Soc. open. sci. 2, 150196. (doi:10.1098/rsos.150196)

106. Medina M, Iral S, Vallejo Y, Takaoka TL, Dayrat B, Boore JL. 2011 Crawling through time: transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics. Mol. Genomics 4, 51–59. (doi:10.1093/mgen/mep011)

107. tractoral, M. 2010 Phylogenomic studies support Pampulomonata: Opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol. Phylogenet. Evol. 69, 75–771. (doi:10.1016/j.ympev.2013.07.001)

108. Kocot KM, Halanych KM, Krug PI. 2013 Phylogenomics supports Pangulomonata: Opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol. Phylogenet. Evol. 69, 75–771. (doi:10.1016/j.ympev.2013.07.001)

109. Nater A, Burs R, Kawakami T, Smets L, Ellegren H. 2015 Resolving evolutionary relationships in closely related species with whole-genome sequencing data. Syst. Biol. 64, 1–54. (doi:10.1093/sysbio/syv045)

110. Leach A, Banbury BL, Jelsenstein J, De Oca AM, Stamatikos A. 2015 Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047. (doi:10.1093/sysbio/syv053)