Site-Specific Allometric Equations for Biomass Prediction of *Moringa oleifera* Lam. in the Northern Zone of Cameroon

Zang Emgbang Benedicte Priscile a*, Tchindebe Alexandre a, Awe Djongmo Victor a, Witanou Nathalie a, Megueni Clautilde a and Mapongmetsem Pierre-Marie a

a Department of Biological Sciences, Faculty of Sciences, University of Ngaoundere, P.O.Box 454 Ngaoundere, Cameroon.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAERI/2022/v23i230218

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/84817

Original Research Article

ABSTRACT

Aims: *Moringa oleifera* is a species with multivariate uses. Despite its socio-economic importance in the northern part of Cameroon, it remains undervalued. Understanding its contribution to the fight against climate change requires precise quantification of its biomass. However, there is a lack of site-specific allometric equations for estimating this biomass. The development of site-specific allometric equations of *M.oleifera* is therefore imperative to facilitate this effort.

Study Design: To achieve this objective, a sample of fourteen trees of *M.oleifera* was taken in from the two areas and divided into diameter classes between 5 and 13 cm.

Place and Duration of Study: Sample: Agroecological zones of High guinean savannas and Sudano-sahelian zone of Cameroon between April and July 2021.

Methodology: The diameter at breast height of these trees and their height were measured. After tree cutting, biomass of compartments of leaves, branches, trunks and roots were determined after drying and weighing. Various allometric equations between biomasses and two parameters of the tree (the diameter and the height) were tested. The adjusted coefficient of determination (R²adj), the residual standard error (RSE) and the Akaike Information Criteria were used for choosing the best models.

Corresponding author: E-mail: priscilezang@gmail.com;
The success of REDD+ thus depends on the biomass produced, and its antropical carbon stocks [18]. The objective is to incentivize such as REDD+ that economic income from biomass provi

despite the Moringaceae family, is widely exploited for its preventive and curative properties for several diseases [13]. The exploitation of the products from this plant makes it possible to improve the diet as well as the health of the population and to generate income for the producers [14]. However, knowledge on the biomass produced by this species is very limited in the ecological conditions of the northern zone of Cameroon. However, biomass provides important information on the ecological and economic performance of agrosystems [15,16]. Moreover, biomass provides information on the potential of atmospheric carbon sequestration by a species. This issue is particularly relevant to the global concern of climate change mitigation due to greenhouse gas emissions [17]. Indeed, climate change has received increasing attention, particularly with regard to the sustainable management of forest ecosystems [18]. These ecosystems, including sustainably managed agroforestry systems, can contribute to climate change mitigation [19-22]. It is with this regard that economic incentives such as REDD+ (Reduction of emissions from deforestation and forest degradation + conservation and sustainable management of forests) have been designed to offset carbon inputs by reducing emissions from deforestation and forest degradation [23]. The success of REDD+ thus relies on robust, reliable and efficient procedures for assessing carbon stocks [24]. Data on species of socio-economic importance such as Moringa oleifera must therefore be documented [25] to build a database to predict biomass and, in turn, carbon stocks. Specific biomass estimation models must be formulated. In the tropical forests of Africa, biomass estimates are hampered by the lack of accurate allometric equations [26,27]. Therefore, many biomass estimates in Africa have relied on pantropical models [28, 29]. However, the applicability of these general equations in tropical African ecosystems is questionable [30,26,27]. Species- and site-specific allometric equations are therefore needed for reliable monitoring and verification of carbon stocks [18]. The objective of this study was to develop allometric equations that accurately predict the biomass of M. oleifera in agrosystems, thus addressing Goal 13 of the Sustainable Development Goals (to take urgent action to address climate change and its impacts) as well as the opportunities offered by the Clean Development Mechanism (CDM) and REDD+.

2. MATERIALS AND METHODS

2.1 Study Sites

This study was carried out in the northern zone more precisely in the high Guinean savannahs and the Sudano-Sahelian zone of Cameroon. These areas are located between 6° and 8° North latitude, 10° and 16° East longitude for the High guinean savannahs (HGS) and between 7° and 10° North latitude and between 12° and 16° East longitude for the Sudano-Sahelian zone (SS) (Fig.1) [31]. The climate of the HGS has two distinct seasons (the rainy season followed by
the dry season). The dry season extends from November to March [32]. The rainy season from April to October. During this period, the rhythm of the rains is sustained with more than 200 mm of monthly rain for five months and 1600 to 1800 mm/year. The SS zone is characterized by annual rainfall reaching 1290 mm/year. It is characterized by 6 to 7 months of rain (April to October) and 5 to 6 months of drought (November to March) [33]. Sudano-Sahelian type are ferruginous with a predominantly sandy texture, clayey horizon at depth [34,35]. Concerning the vegetation, the HGS are covered at more than 90% by a shrubby savannah or open tree whose dominant species are *Daniella oliveri* and *Lophira lanceolata* [36]. As for the SS zone, it abounds in shrubby to wooded or tree savannahs and even open forests in the Bénoué basin. The main plant formations are: gregarious formations with *Isoberrhinia doka* and *Isoberrhinia tomentosa*, formations with *Boswellia odorata*, *Sclerocarya birrea*, *Prosopis africana* [37]. Livestock raising predominates peasant activities in the HGS [35,38]. The SS zone is marked by a dominant production system based on cotton and food crops [39].
2.2 Sampling and Data Collection

2.2.1 Selections of individuals

Fourteen *M. oleifera* trees (seven per zone) were harvested for developing allometric models. Selection of each individual tree was based on diameter at breast height. Destructive method was adopted to determine the biomass of each individual tree in the two agro-ecological zones. The individuals were grouped into five DBH classes: 1-5 cm, 5-9 cm, 9-13 cm and 13-17 cm. For each sample tree the DBH and total height (H) of the stand trees were first recorded. Trees were felled close to ground level. The trees were selected to ensure a representative distribution of diameter classes within the sampling plots. Individuals were selected on the basis of their availability and the absence of human exploitation (traces of pruning or limping) or disease.

2.2.2 Data collection for the establishment of allometric models

The felling down of trees was preceded by the measurement of their DBH. Each tree was then separated into trunk, branches and leaves as well as small twigs, following the method described by Picard et al. [40]. The different trunk compartments, branches and leaves were weighed using a 50 kg capacity scale after which the total wet weight of each compartment of the tree was determined in the field. Trunks, roots and large branches were cut into discs. A disc sample from the trunk, a branch and a leaf sample were taken and weighted. At the level of the root, disc samples were taken at random after clearing the roots of mud. Samples obtained were immediately stored in plastic bags and transported to the National school of agro-industrial sciences of the University of Ngaoundere precisely in the Physicochemical laboratory where their dry masses were determined. In the laboratory, samples of leaves, trunks, branches and roots were oven-dried at a constant temperature of 75°C to constant weight after 72 hours. The water content (WC) in the different compartments (leaves, branches, trunk, root) was determined after drying the samples according to the formula:

\[
WC \, (\%) = ((WM - DM) / DM) \times 100
\]

Where: WC is the water content of the samples in percentage, WM and DM are respectively the wet mass (Kg) and the dry mass (Kg) of the sample.

From the water content of the samples, the total dry mass (TDM) of each compartment was calculated according to the French standard NF M 03-002 using the following formula:

\[
TDM = 100 \times TWM / (100 + WC)
\]

Where: TDM is the total dry mass, TWM is the total wet mass (Kg). The total dry masses are called biomass and expressed in Kilograms (Kg) [41]. The total dry mass of each tree was estimated by adding the dry mass of the different compartments of the trees.

2.3 Data Analysis

Allometric equation were established using the physical parameters of the tree, namely diameter at breast height (DBH), height (H), and tree biomass (B) [42]. Prior to this step, since allometric relationships are influenced by growth stages [43], the relationship between tree height (H) and diameter (D) (H–D) was initially analyzed by plotting H (m) versus D (cm) to identify the diameter classes where the predictions were better. The models frequently found in the literature to predict biomass are of two types: the power model and the polynomial model [44]. In this study, the power model was used because it has long been noted that a growing plant maintains the proportion of weight between different parts [45,46] and because the polynomial model frequently exhibits abnormal behavior outside their range of validity. The mathematical model commonly used to predict the phytomass was adopted:

\[
B = aD^b
\]

Where a, b and c are the scaling or adjustment coefficients, D the DBH and B the aboveground biomass of a tree [47-51]. In this study, three allometric models [52] were evaluated to predict the aboveground biomass of *M. oleifera*:

\[
B = aDb
\]

\[
B = a(D^2H)^b
\]

\[
B = aD^bH^c
\]

In order to eliminate the influence of the heteroscedasticity of the data, the transformation in logarithmic form is regularly used to change the nonlinear model into a linear model [51]. Therefore, (4), (5) and (6) have been converted to (7), (8) and (9) respectively as follows:
\[
\begin{align*}
\ln(B) &= a + b \ln(D) \quad (7) \\
\ln(B) &= a + b \ln(D^2H) \quad (8) \\
\ln(B) &= a + b \ln(D) + c \ln(H) \quad (9)
\end{align*}
\]

For each of these models, the following indicators that permits good quality when a model is adjustment, were used to select the best model:

- The adjusted \(R^2 \): This coefficient, between 0 and 1, gives an idea of the proportion of the explained variability of the aerial biomass by the model. The closer it is to 1, the better the model is [52]

\[
R^2 = 1 - \frac{\text{SCR}}{\text{SCT}}
\]

Where \(\text{SCT} \): Sum of Total Squares and \(\text{SCR} \): Sum of Residual Squares.

- The residual standard error (RSE): square root of the residual variance around the regression function. The lower a model has a CSR, the better it is:

\[
\text{RSE} = \sqrt{\frac{\sum(\text{AGB}_{\text{obs}} - \text{AGB}_{\text{pred}})^2}{n-2}}
\]

Where \(\text{RSE} \): Residual standard error; \(\text{AGB}_{\text{obs}} \): Measured above ground biomass; \(\text{AGB}_{\text{pred}} \): Predicted above-ground biomass, \(n \)= data points in population.

- Akaike's Information Criterion (AIC): The quality measurement of adjustment of a regression model proposed by [53]. The best model minimizes the value of the AIC obtained by the following formula:

\[
\text{AIC} = -2 \ln(L) + 2p
\]

with \(p \) the number of model parameters and \(L \) the maximized likelihood.

The logarithmic transformation of the data generally leads to a bias in the estimation of the phytomass [28,54]. A correction is necessary and consists in multiplying the estimated phytomass by a correction factor (CF) which is calculated as follows:

\[
\text{CF} = \exp\left(\frac{\text{RSE}^2}{2}\right)
\]

where \(\text{CF} \) is a number that is always greater than 1. For as long as these criteria are low (particularly RSE and AIC), and the higher the adjusted \(R^2 \), the better the model will be [28].

All these statistical analyses were performed with Microsoft office Excel 2016, and the allometric equations were developed in R Studio software who benefits from a strong community of users who can freely contribute to the development of the software by adding additional functionalities.

In R, producing an analysis generates a large number of results of all sorts with a display reduced to a minimum and the user can ask to see additional or more detailed results. However, as R is more like a programming language than a software itself, the learning curve can be a bit “steep”, especially for those who have never programmed before. [55].

3. RESULTS

3.1 Relationship between Diameter and Height

The correlation established between the diameter and the height of the individuals in the two zones is significant (Fig. 2) with a coefficient of determination of 0.93 and 0.90 respectively for the High guinean savannahs (HGS) and the Sudano-Sahelian zone (SS). In the field of forestry, height-diameter relationships make it possible to best estimate the height of a tree knowing its diameter. Thus the allometric relationship of all the individuals measured fits better with the following equations:

a) HGS: \(H = 0.316D + 2.250, \quad R^2 = 0.90, \quad n = 7 \) and \(P < 0.001 \);

b) SS: \(H = 0.155D + 2.031, \quad R^2=0.93, \quad n=7 \) and \(P < 0.001 \).

The diameter-height relationship is a good indicator of the ecological conditions for the growth of a species [56]. Studies conducted by Fayolle et al. [57] and Imani et al. [58] have suggested that the appropriateness of a model function for predicting tree height in forest sites may vary due to differences in height–diameter relationship of trees in different forest sites. The equations obtained present the determination coefficients in the order: 93.93% and 90.75%. They make it possible to predict the height of a tree from the diameter. This distribution model shows that it is in the middle diameter classes 5-9 cm that it is appropriate to predict the total height of the individuals studied. The biases observed are lower for the lower diameter class (class I) than those of the upper diameter class (class III) on the distribution of the point cloud.
3.2 Development of Allometric Equations
Specific to Moringa oleifera

The various data from the allometric equations obtained by testing the three mathematical models for each zone; High guinean savannah (HGS) and the Sudano-Sahelian (SS) zones, as well as a model grouping the data from the two zones (Global), are presented in Tables 1, 2, 3, 4, 5 and 6 according to the different compartments. The variables a, b and c are the model adjustment coefficients, N the number of samples, R²aj the adjusted coefficient of determination, CF the correction factor, RSE the residual standard error and AIC the Akaike information criterion.

3.2.1 Leaves

The constants regression of all the equations retained except those of the SS zone are statistically significant (P < .05). They range from P = .31 to P = .49 (SS), P = .004 to P = .01 (HGS) and P = .01 to P = .03 (Global). The presented prediction models explain the variation in the biomass of about 6.5 to 15.5%, 79.8 to 82.5% and 32.2 to 36.5% for the SS zone leaves, HGSs and the northern zone (Global) respectively. Linear models with DBH as the sole predictor were used to predict the biomass of the branches of the Global (AIC = 48.941; RSE = 1.211; Adj.R² = 0.623). For the SS zone and the HGSs, the incorporation of the height as a second variable in addition to DBH was necessary for a better estimation of the biomass of their branches (Table 2) and (Fig. 4).

3.2.2 Branches

The constants regression of all the equations retained are statistically significant (P < .05) except those of SS zone. They range from P = .06 to P = .16 (SS), P = .003 to P = .02 (HGS), P < .001 (Global). The presented prediction models explain about 39-43.9%, 77.6-80.8% and 59.1-62.5% of the variation in branch biomass as regard the SS, HS and Northern (Global) zones respectively. Linear models with DBH as the sole predictor predicted leaf biomass of M. oleifera as the least. The incorporation of height as a second variable in addition to DBH was necessary for a better estimation of leaf biomass (Table 1). The addition of height in these models improved the quality of the fit in the form ln(B)=a+bln(DBH) (SS) and ln(B)=a+bln(DBH²) (HGS and Global). This improvement is observed with the leaf models of the two zones as well as that grouping the two zones (AIC = 30.955; RSE = 1.65; Adj.R² = 0.155 (SS); AIC = 20.102; RSE = 0.784; Adj.R² = 0.825 (HGS) and AIC = 53.116; RSE = 1.406; Adj.R² = 0.365 (Global)). We can therefore adjust a simple linear regression for predicting ln(B) relative to ln(DBH) and ln(DBH²) (Fig. 3).

3.2.3 Trunks

For the trunk biomass estimation models, the constants regression of all the equations retained were statistically significant (P < .05). They ranged from P = .004 to P = .01 (SS), P < .001 to P = .001 (HGS), P < .001 (Global). The presented prediction models explain about 77.6-84%, 90.9-95.2% and 74.2-78.9% of the variation in the biomass for SS zone trunk, HGSs and northern zone (Global) respectively. For all these areas, the incorporation of the height as a
second variable in addition to the DBH giving the form $\ln(B) = a + b\ln(D) + c\ln(H)$, was necessary for a better estimation of the biomass of their trunks (Table 3) and (Fig. 5).

Fig. 3. Regression models between biomass and physical parameters of trees (D and H) for the leaves

Fig. 4. Regression models between biomass and physical parameters of trees (D and H) for the branches
Table 1. Allometric models of leaves

Zones	Allometrics models	a	b	c	R^2_{adj}	RSE	N	CF	AIC	P
SS	ln(B) = $a + bln(D)$	-2.799 (2.17)	0.815 (1.11)	0.083	1.868	7	5.724	32.259	0.49	
	ln(B) = $a + bln(D^2)$	-3.151 (2.44)	0.384 (0.48)	-0.065	1.852	7	5.556	32.141	0.46	
	ln(B) = $a + bln(D) + cln(H)$	-13.061 (6.88)	-3.801 (3.13)	16.417 (10.56)	0.155	1.65	7	3.901	30.955	0.31
HGS	ln(B) = $a + bln(D)$	-5.564 (0.88)	2.544 (0.51)	0.798	0.841	7	1.424	21.087	0.004	
	ln(B) = $a + bln(D^2)$	-6.343 (0.95)	1.059 (0.19)	0.825	0.784	7	1.359	20.102	0.002	
	ln(B) = $a + bln(D) + cln(H)$	-7.610 (2.1)	1.289 (1.27)	2.243 (2.74)	0.804	0.828	7	1.408	21.319	0.01
Global	ln(B) = $a + bln(D)$	-4.194 (1.26)	1.631 (0.60)	0.323	1.452	14	2.869	54.020	0.01	
	ln(B) = $a + bln(D^2)$	-4.853 (1.25)	0.736 (0.25)	0.365	1.406	14	2.686	53.116	0.01	
	ln(B) = $a + bln(D) + cln(H)$	-6.069 (1.83)	0.841 (0.85)	2.562 (2.00)	0.356	1.416	14	2.725	54.084	0.03

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R^2_{adj}), correction factor (CF), residual standard error (RSE) and Akaike information criteria (AIC).

Table 2. Allometric branches models

Zones	Allometrics models	a	b	c	R^2_{adj}	RSE	N	CF	AIC	P
SS	ln(B) = $a + bln(D)$	-1.685 (1.08)	1.282 (0.55)	0.420	0.93	7	1.541	22.498	0.06	
	ln(B) = $a + bln(D^2)$	-2.075 (1.20)	0.570 (0.23)	0.439	0.915	7	1.519	22.270	0.06	
	ln(B) = $a + bln(D) + cln(H)$	-4.996 (3.98)	-0.206 (1.81)	5.296 (6.11)	0.390	0.954	7	1.576	23.294	0.16
HGS	ln(B) = $a + bln(D)$	-5.906 (1.16)	3.438 (0.66)	0.808	1.104	7	1.839	24.890	0.003	
	ln(B) = $a + bln(D^2)$	-6.909 (1.30)	1.420 (0.27)	0.819	1.071	7	1.774	24.469	0.003	
	ln(B) = $a + bln(D) + cln(H)$	-7.356 (3.02)	2.550 (1.83)	2.084 (3.95)	0.776	1.193	7	2.037	26.420	0.02
Global	ln(B) = $a + bln(D)$	-3.996 (0.93)	2.406 (0.50)	0.623	1.211	14	2.081	48.941	0.000	
	ln(B) = $a + bln(D^2)$	-4.715 (1.08)	1.033 (0.21)	0.622	1.213	14	2.086	48.985	0.000	
	ln(B) = $a + bln(D) + cln(H)$	-4.337 (1.63)	2.263 (0.76)	0.465 (1.78)	0.591	1.261	14	2.214	50.855	0.002

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R^2_{adj}), correction factor (CF), residual standard error (RSE) and Akaike information criteria (AIC)
Table 3. Allometric trunk models

Zones	Allometrics models	a	b	c	R² adjusted	RSE	N	CF	AIC	P
SS	ln(B)=a+bln(D)	-1.211(0.52)	1.244(0.26)	0.776	0.447	7	1.05	12.246	0.005	
	ln(B)=a+bln(D^2H)	-1.582(0.55)	0.55 (0.11)	0.799	0.423	7	1.093	11.471	0.004	
	ln(B)=a+bln(D)+cln(H)	-3.832(1.57)	0.065(0.71)	-1.492(2.42)	0.840	7	1.07	10.33	0.011	
HGS	ln(B)=a+bln(D)	-3.942 (0.44)	2.471(0.25)	0.94	0.417	7	1.09	11.289	0.000	
	ln(B)=a+bln(D^2H)	-4.574 (0.62)	1.002(0.12)	0.909	0.511	7	1.139	14.15	0.000	
	ln(B)=a+bln(D)+cln(H)	-2.841 (0.94)	3.270(0.57)	-1.871(1.23)	0.952	7	1.07	10.102	0.001	
Global	ln(B)=a+bln(D)	-2.769 (0.50)	1.929(0.27)	0.788	0.656	14	1.24	31.782	0.000	
	ln(B)=a+bln(D^2H)	-3.244 (0.64)	0.807(0.13)	0.742	0.723	14	1.29	34.526	0.000	
	ln(B)=a+bln(D)+cln(H)	-2.068 (0.84)	2.224(0.39)	-0.958(0.92)	0.789	14	1.238	31.486	0.000	

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error (RSE) and Akaike information criteria (AIC).

Table 4. Allometric models of above-ground biomass

Zones	Allometrics models	a	b	c	R² adjusted	RSE	N	CF	AIC	P
SS	ln(B)=a+bln(D)	-0.453 (0.73)	1.189(0.37)	0.603	0.627	7	1.217	16.979	0.02	
	ln(B)=a+bln(D^2H)	-0.816 (0.80)	0.529(0.15)	0.628	0.607	7	1.202	16.522	0.02	
	ln(B)=a+bln(D)+cln(H)	-3.653 (2.40)	-0.250 (1.09)	5.119(3.69)	0.665	7	1.180	16.230	0.04	
HGS	ln(B)=a+bln(D)	-3.916 (0.30)	2.982 (0.17)	0.979	0.291	7	1.043	6.271	0.000	
	ln(B)=a+bln(D^2H)	-4.750 (0.37)	1.224 (0.07)	0.977	0.304	7	1.047	6.876	0.000	
	ln(B)=a+bln(D)+cln(H)	-4.223 (0.80)	2.794 (0.44)	0.441 (1.05)	0.975	7	1.052	7.973	0.000	
Global	ln(B)=a+bln(D)	-2.340 (0.60)	2.117(0.32)	0.760	0.777	14	1.352	36.512	0.000	
	ln(B)=a+bln(D^2H)	-2.963 (0.70)	0.907(0.14)	0.756	0.785	14	1.360	36.796	0.000	
	ln(B)=a+bln(D)+cln(H)	-2.554 (1.04)	2.027(0.48)	2.027 (1.14)	0.740	14	1.387	38.429	0.000	

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error (RSE) and Akaike information criteria (AIC).
3.2.4 Above-ground biomass

The constants regression of the equations retained are statistically significant \((P < .05)\) and ranging from \(P = .02\) to \(P = .04\) (SS), \(P < .001\) (HGS and Global). The presented prediction models explain about 60.3-66.5\%, 97.5-97.9\% and 74-76\% of the variation in the total biomass of the SS zone, the HGSs and the northern zone (Global) respectively. DBH as a single variable was found to be the best predictor of total biomass in HGSs and for the overall equation (Table 4) and (Fig. 6). In this model, the values of RSE and AIC are the lowest \((0.291\) and \(6.271\); \(0.77\) and \(36.512\)) as well as the strongest adjusted \(R^2\) \((0.979\) and \(0.760\)) compared to the two other models. As for the SS zone, the linear regression of this model expresses higher values of RSE and AIC \((0.627\) and \(16.979\)) as well as a lower adjusted \(R^2\) \((0.603)\). This model is therefore the least suitable for predicting the total biomass of *M. oleifera* in the SS zone.

3.2.5 Belowground biomass

For the belowground biomass estimation models, the regression constants of all the equations retained were statistically significant \((P < .05)\) and ranging from \(P < .001\) to \(P = .003\). The prediction models presented explain approximately 85.7 to 88\% of the variation in belowground biomass. Belowground biomass using DBH as the sole variable performed better than that integrating height (adjusted \(R^2=0.880\); RSE= 0.719; AIC=21.140) (Table 5) and (Fig. 7).

Taking into account the criteria for assessing the precision and accuracy of the models developed, the best models of allometric equations according to compartments and zones, retained are summarized in Table 6.

4. DISCUSSION

The significant and positive diameter-height relationship corroborates those reported by Mamadou [59] on 574 individuals of 8 species from the Ngaoundere savannas \((R^2=0.5063)\) and by Halilou [60] on 96 individuals belonging to 16 species from the Ngaoundere savannas. \((R^2=0.4956)\). The diameter-height relationship is also a good indicator of the ecological growth conditions of a species [56]. The choice of the
mathematical model to adjust the parameters must be carefully considered in the estimation of the biomass of woody plants [61]. Leaf biomass, branch biomass, trunk biomass, total aboveground biomass (AGB) and belowground biomass (BGB) of individuals were calculated using the power model. This mathematical model has been widely used in the literature for predicting the standing biomass of woody species in Europe [48] and in Africa [45,61,62,63]. The allometric models developed vary from one compartment to another and even from one area to another. This variation would be linked to the variation in biomass observed between the different parts of the species Ganame et al. [61]. The sample size was small at 14 individuals. Indeed, the sample size in the development of allometric models is variable in the literature and takes into account the availability of resources (individuals) and the time allocated to the study Tchindebe et al. [64]. Some predictive allometric equations of biomass have been constructed from different numbers of individuals depending on the ecosystem: 26 trees in the forest zone of Benin by Guendehou et al. [65], 20 trees in the wooded savannah of the Sudanian zone of Senegal by Mbow et al. 2014 [66], 38 trees in the Sahelian zone in Senegal by Thiam et al. [67], 20 trees in the Sudano-Sahelian savannas of Cameroon by Tchindébé et al. [52]. However, this number of individuals is equal to that used by Manzo et al. [68] in *Faidherbia albida* agrosystems in Aguié, Niger.

![Fig. 6. Regression models between biomass and physical parameters of trees (D and H) for the Above-ground biomass](image-url)
Table 5. Allometric models of below-ground biomass

Allometric models	a	b	c	R² adjusted	RSE	N	CF	AIC	P
ln(B)=a+bln(D)	-6.426 (0.47)	2.182 (0.30)	0.880	0.719	6	1.294	21.140	0.000	
ln(B)=a+bln(D^2H)	-7.227 (0.58)	0.952 (0.13)	0.877	0.728	6	1.303	21.327	0.000	
ln(B)=a+bln(D)+cln(H)	-6.709 (1.42)	2.090 (0.54)	0.329(1.54)	0.857	6	1.359	23.068	0.003	

Table 6. Summary of the best allometric models

Compartments	Zones	Allometric models	a	b	c	R² adjusted	RSE	N	CF	AIC	P
Leaves	SS	ln(B)=a+bln(D)+cln(H)	-10.061 (6.88)	-3.801 (3.13)	16.417 (10.56)	0.155	1.65	7	3.901	30.955	0.31
	HGS	ln(B)=a+bln(D^2H)	-6.343 (0.95)	1.059 (0.19)	0.825	0.784	6	1.359	20.102	0.002	
	Global	ln(B)=a+bln(D^2H)	-4.853 (1.25)	0.736 (0.25)	0.365	1.406	7	1.286	53.116	0.013	
Branches	SS	ln(B)=a+bln(D^2H)	-2.075 (1.20)	0.570 (0.23)	0.439	0.915	7	1.519	22.270	0.06	
	HGS	ln(B)=a+bln(D^2H)	-6.909 (1.30)	1.420 (0.27)	0.819	1.071	7	1.774	24.469	0.003	
	Global	ln(B)=a+bln(D)	-3.996 (0.93)	2.406 (0.50)	0.623	1.211	7	2.081	48.941	0.000	
Trunks	SS	ln(B)=a+bln(D)+cln(H)	-3.832 (1.57)	0.065 (0.71)	4.192 (2.42)	0.840	0.378	7	1.074	10.333	0.01
	HGS	ln(B)=a+bln(D)+cln(H)	-2.641 (0.94)	3.270 (0.57)	1.871 (1.23)	0.952	0.372	7	1.071	10.102	0.001
	Global	ln(B)=a+bln(D)+cln(H)	-2.068 (0.84)	2.224 (0.39)	-0.958 (0.92)	0.789	0.654	14	1.238	31.486	0.000
Aboveground biomass	SS	ln(B)=a+bln(D^2H)	-3.633 (2.40)	0.529 (0.15)	0.623	0.607	7	1.202	16.522	0.02	
	HGS	ln(B)=a+bln(D^2H)	-3.916 (0.30)	2.982 (0.17)	0.979	0.291	7	1.043	6.271	0.000	
	Global	ln(B)=a+bln(D)	-2.340 (0.60)	2.117 (0.32)	0.760	0.777	14	1.352	36.512	0.000	
Belowground biomass	Global	ln(B)=a+bln(D)	-6.426 (0.47)	2.182 (0.30)	0.880	0.719	14	1.294	21.140	0.000	

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error (RSE) and Akaike information criteria (AIC)
Fig. 7. Regression models between biomass and physical parameters of trees (D and H) for the below-ground biomass

Allometric models developed with diameter (D) as the only explanatory variable were the most effective in predicting branch biomass, aboveground biomass of individuals from High guinea savannas, global as well as belowground biomass. Numerous studies have shown that the DBH is the most commonly used explanatory variable for predicting the biomass of different compartments of woody species [24,45,69]. Indeed, DBH can be easily measured in the field with more precision than other dendrometric parameters. In addition, this variable is still available in inventory data Ganame et al [61]. However, linear models with DBH as the sole predictor predict leaf biomass the least in this study. The leaves are the most consumed component of M. oleifera [6,70,71]. This heavy use explains its abusive exploitation, making the individuals less and less healthy. Haoua et al. [72] showed that anthropogenic activities are major causes of the decrease in biomass of the most exploited parts of a woody plant. Ducat et al. [73] report the influence of sample quality on the models. In this case, it significantly influenced the establishment and choice of the leaf model. The incorporation of height as a second variable in addition to DBH was therefore necessary to improve the prediction of leaf biomass. The \(\ln(B) = a + b \ln(D^2H) \) and \(\ln(B) = a + b \ln(D) + c \ln(H) \) models better predict the biomass of other compartments and zones. Including height as a secondary variable contributes in some cases to the improvement of the model fit. Studies have reported that using DBH as a sole predictor of biomass underestimates [74] or overestimates tree biomass [75,76]. Other studies have recommended adding a second and/or third variable to the DBH to improve the accuracy of biomass estimation [77,78]. In addition, some authors like Picard et al. [41], Ngomanda et al. [79] and Sawadogo et al. [80] have found that the inclusion of tree height as an integrated or secondary independent variable can improve model performance with the advantage of increasing the applicability of the equations at larger scales. Although obtaining tree height in forest inventories is not an easy task [81], incorporating the height parameter is known to significantly improve tree biomass [82,83]. Biomass prediction models vary across different tree compartments. The results of this study are similar to those obtained by Djomo et al. [26], Ganame et al. [61], Sawadogo et al. [80], Dimobe et al. [84] and Traore et al. [85] who all showed variation in the allometric equations depending on the parts of the tree. These models (except those of the trunk) for the same species, also vary according to the climatic zones.

5. CONCLUSION

This study established mono-specific allometric equations to predict the biomass of leaves, branches, trunks, roots, above-ground and below-ground biomass of Moringa oleifera in the Sudano-Sahelian zone as well as the High guinean savannahs of Cameroon. The three models opposite were tested: \(\ln(B) = a + b \ln(D) \), \(\ln(B) = a + b \ln(D^2H) \) and \(\ln(B) = a + b \ln(D) + c \ln(H) \). Tree biomass allocation varies between compartments and sites of M. oleifera. The DBH as a single variable proved to be the best predictor of the global biomass of the branches, above-ground biomass of the HSGs and global as well as the below-ground biomass. However, the incorporation of height as a second predictor variable improved the performance of predicting the biomass of other compartments in
their respective areas. Thus, the best models for the prediction of aboveground biomass of *M. oleifera* are: -3.653 - 0.250lnD + 5.119lnH (Sudano-Sahelian), -3.916 + 2.982lnD (High guinean savannahs), -2.340 + 2.117lnD (Global) and finally for the roots -6.426 + 2.182lnD. The results of this study provide a reliable and rapid contribution to the assessment of the biomass and carbon stock of *M. oleifera* in agroforestry systems under the ecological conditions of Cameroon.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Boumenjel A, Papadopoulos A, Ammari Y. Growth response of *Moringa oleifera* (Lam) to water stress and to arid bioclimatic conditions. Agroforestry System. 2021;95(9). DOI: org/10.1007/s10457-020-00509-2

2. Dhakar RC., Maurya SD., Pooniya BK., Bairwa N., Gupta M. *Moringa*; The herbal gold to combat malnutrition. Chronicles of Young Scientists. 2011;2(3):119.

3. Mishra G, Pradeep S, Ramesh V, Kumar S, Srivastav S, Jha KK, Khosa RL. Traditional uses, phytochemistry and pharmacological properties of *Moringa oleifera* plant: An overview. Der Pharmacia Lettre. 2011;3(2):141-164.

4. Leone A, Spada A, Battezzati A, Schiralda A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of *Moringa oleifera* leaves: An Overview. International Journal of Molecular Science. 2015;16:12791-12835. DOI: 10.3390/iijms160612791

5. Santos ASD, Luz LA, Pontual EV, Napoleão TH, Paiva P M.G, Luana CBB, Coelho LCBB. *Moringa oleifera*; Resource Management and Multiuse Life Tree. Advances in Research. 2015;4(6): 388-402.

6. Madi PO, Bourou S, Woin N. Utilisations et importances socio-économiques de *Moringa oleifera* Lam, en zone de savanes d’Afrique Centrale. Cas de la ville de Maroua au Nord-Cameroun. Journal of Applied Biosciences. 2012;60:4421-4432.

7. Fagbuhun A, Afolayan M, Ikokoh P, Olajide O, Adebiyi A, Fatokun O, Ayesanmi A, Orishadipe A. Isolation and characterization studies of *Moringa oleifera* root starch as a potential pharmaceutical and industrial biomaterial. International Journal of Chemistry and Applications. 2013;5(2):117-126.

8. Zongo U, Zoungrina ST, Savadogo A, Traoré AS. Nutritional and Clinical Rehabilitation of Severely Malnourished Children with *Moringa oleifera* Lam. Leaf Powder in Ouagadougou Burkina Faso. Food and Nutrition Sciences. 2013;4:991-997. DOI.org/10.4236/fns.2013.49128

9. Godinez-Oviedo A, Guemes-Vera N, Acevedo-Sandoval OA. Nutritional and phytochemical composition of *Moringa oleifera* Lam and its potential use as nutraceutical plant: A Review. Pakistan Journal of Nutrition. 2016;15(4):397-405. DOI: 10.3923/pjn.2016.397.405

10. Ravani A, Prasad RV, Gajera RR, Joshi D.C. Potentiality of *Moringa oleifera* for food and nutritional security - A review. Agricultural Reviews. 2017;38(3):228-232. DOI:10.18805/ag.v38i3.8983

11. Boateng L, Quarong W, Ohemeng A, Asante M, Steiner-Asiedu M. Effect of complementary foods fortified with *Moringa oleifera* leaf powder on hemoglobin concentration and growth of infants in the Eastern Region of Ghana. Food Science and Nutrition. 2018;7:302-311. DOI: 10.1002/fsn3.890.

12. Bello AA, Gernah DI, Ariahu CC, Ikyaa JK. Physico-Chemical and Sensory Properties of Complementary Foods from Blends of Malted and Non-Malted Sorghum, Soybean and Moringa Oleifera Seed Flours. American Journal of Food and Technology. 2020;8(1):1-13. DOI: 10.12691/ajfst-8-1-1

13. Subha G, Tapas B. Health promoting components with natural medicinal and nutritional facts of *Moringa oleifera*; A review. International Journal of Pharmaceutical Research and Bioscience. 2013;2(6):284-286.

14. Rajangam J, Azahakia MRS, Thangaraj T, Vijayakumar A, Muthukrishan N. Production et utilisation du *Moringa* en Inde: la situation actuelle. 2001;9p.

15. Breman H, Kessler JJ. 1995. Le Rôle des Ligneux dans les Agro-Ecosystèmes des Régions Semi-Arides (avec un accent Particulier sur les Pays Sahéliens). Springer Verlag. 1995;Berlin.
16. Kémeuzé VA, Mapongmetsem PM, Tientcheu MA, Nkongmeneck BA, Jiofack RB *Boswellia dalzielii* Hutch: état du peuplement et utilisation traditionnelle dans la région de Mbé (Adamaoua, Cameroun). Science et Changements Planétaires/Sécheresse. 2012;23(4):278-283.

17. GIEC (Groupe Intergouvernemental d’Expert sur le Changement Climatique). Bilan 2007 des changements climatiques. Contribution des Groupes de travail I, II et III au quatrième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat, Équipe de rédaction principale, Pachauri RK et Reisinger A. GIEC, Genève, Suisse. 2007:103.

18. Balimi LB, Nacoulma BMI, Bayen P, Dimobe K, Kouamé FN, Thiombiano A. Aboveground biomass allometric equations and distribution of carbon stocks of the African oak (*Afzelia africana* Sm.) in Burkina Faso. Journal of Forestry Research. 2019:1–13. DOI:10.1007/s11676-019-00955-4

19. Wani NR, Qaisar KN. Carbon percent in different components of tree species and soil organic carbon pool under these tree species in Kashmir Valley. Current World Environment. 2014; 9(1):174–181. DOI: 10.12944/CWE.9.1.24

20. Mensah S, Veldtman R, du Toit B, Gle’le´ Kakai R, Seifert T. Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests. 2016;79:1–17. DOI:10.3390/f7040079

21. Yang J, Ji X, Deane DC, Wu L, Chen S. Spatiotemporal distribution and driving factors of forest biomass carbon storage in China : 1977–2013. Forests. 2017;8(263) :1–14, 263. Available: https://doi.org/10.3390/f8070263

22. Bateni C, Ventura M, Tonon G, Pisanelli A. Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics. Agroforestry System. 2021;95(5) :1-11. DOI:10.1007/s10457-019-00367-7

23. Convention-Cadre des Nations Unies sur les Changements Climatiques (CCNUCC). Report of the Conference of the Parties on its Thirteenth Session, Held in Bali from 3 to 15 December 2007. Addendum Part Two : Action Taken by the Conference of the Parties at its Thirteenth Session. https://unfccc.int/docum

24. Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H. Allometric equations for estimating biomass in agricultural landscapes, Aboveground biomass. Agriculture, Ecosystem and Environment. 2012;158 : 216–224. DOI:10.1016/j.agee.2012.05.011

25. Noul’e-koun F, Naab JB, Lamers JPA, Baumont S, Khamzina A. Sapling biomass allometry and carbon content in five afforestation species on marginal farmland in semi-arid Benin. New Forests ; 2017.

26. Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G. Allometric Equations for Biomass Estimations in Cameroon and Pan Moist Tropical Forests Including Biomass Data from Africa. Forest Ecology and Management. 2010;260:1873-1885. DOI:10.1016/j.foreco.2010.08.034

27. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu SA, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest, Ecology and Management. 2010;260:1375–1388. DOI:10.1016/j.foreco.2010.07.040

28. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Mwangi P, Coe R, Neufeldt H, Muller-Landau HC, Mencuccini M, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 2005;145: 87-99. DOI:10.1007/s00442-005-0100-x

29. Chave J, Rejou Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Péllissier R, Ploton P, Ryan CM, Saldañariga JG, Vieilledent G. Improved allometric models to estimate the above ground biomass of tropical trees. Global Change Biology. 2014;20:3177–3190. DOI: 10.1111/gcb.12629

30. Basuki TM, van Laake PE, Skidmore AK, Hussin YA. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests.
31. Boutrais J. Les conditions naturelles de l'élevage sur le plateau de l'Adamaoua. In : Cahiers ORSTOM, série Sciences Humaines. 1974;10(2):145-198.

32. Rippstein G. Description du milieu. In : Etude sur la végétation del'Adamaoua. Maisons-Alfort. 1986;36-127. (Etudes et synthèses de l'IEMVT, n° 14).

33. Suchel JB. La répartition des pluies et les régimes pluviométriques au Cameroun. CEGET/CNRS Université fédéral du CamerounYaoundé. 1972:287.

34. Humbel FX. Etude de certains sols rouges à sables quartzieux de l'Adamaoua (Cameroun). Orstom, Yaoundé Cameroun. 1996:28 .

35. Boutrais J. Hautes terres d'élevage au Cameroun. Thèse de Doctorat de Géographie, Université de Paris X, Orstom, Paris. 1995:1302.

36. Letoudze R. Flore du Cameroun 8. Ulmaceées, Urticacées. National Museum of Natural History. 1986:222.

37. Offosou DK. Remise en culture des jachères enrichies à Acacia Sénégal au Nord-Cameroun : Productions forestière et agricole, et perceptions paysannes. Mémoire de Stage. AgroParisTech, Centre de Montpellier. 2011:121.

38. Podlewski A. La dynamique des principales populations du Nord-Cameroun (2e partie) : piémont et plateau de l'Adamaoua. Cahier Orstom série Sciences Humaines. 1971:148.

39. Koussoumna LN. De la mobilité à la sédentarisation : gestion des ressources naturelles et des territoires par les éleveurs Mbororo au Nord du Cameroun. Géographie. Université Paul Valery - Montpellier III. Thèse de Doctorat. 2008:285.

40. Picard N, Boyemb Bosela F, Rossi V. Reducing the error in biomass estimates strongly depends on model selection. Annals of Forest Science. 2015 72 : 811–823. DOI 10.1007/s13595-014-0434-9

41. ADEME. Mesure des caractéristiques des combustibles bois : évaluation et proposition de méthodes d’analyse de combustible. 2001:54.

42. Lotfi A. Durabilité écologique des paysages agricoles et production de bois, bocage et néobocage. Dissertation, Rennes : Université de Rennes 1 ; 2008.

43. Pilli R, Anfodillo T, Carrer M. Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management. 2006;237:583–593. DOI:10.1016/j.foreco.2006.10.004

44. Henry M, Picard N, Trotta C, Manlay R, Valentini R, Bernoux M, Saint-André L. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica. 2011;45(3B):477–569. DOI:10.14214/sf.38

45. West GB, Brown JH, Enquist BJ. A general model for the origin of allometry scaling laws in biology. Science. 1997;276 :122–126. DOI: 10.1126/science.276.5309.122

46. West GB, Brown JH, Enquist B.J. A general model for the structure and allometry of plant vascular systems. Nature. 1999;400:664–667. DOI: 10.1038/23251

47. Zianis D, Mencuccini M. Simplifying allometric analyses of forest biomass. Forest Ecology and Management. 2004; 187:311–332. DOI:10.1016/j.foreco.2003.07.007

48. Niklas KJ. Plant allometry. In: The Scaling of Form and Process. The University of Chicago Press, Chicago/London. 1994.

49. Kaitaniemi P. Testing allometric scaling laws. Journal of Theoretical Biology. 2004;228:149–153.

50. He H, Zhang C, Zhao X, Fousseni F, Wang J, Dai H, Zuo Q. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS one. 2018;13(1):1–16. DOI:10.1371/journal.pone.0186226

51. Brown S, Schroeder P, Birdsey R. Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecolony and Management. 1997;1-2:37-47.

52. Tchenidebe A, Thobsala, Amadou MLM, Ahmadou H, Adamou I. Species-Specific Allometric Equations for Predicting Biomass of Faidherbia albida (Del.) A. Chev. In the Sudano-sahelian Savannahs of Far-North, Cameroon. Journal of Agriculture and Ecology Research International. 2020;21(6):33-44. DOI: 10.9734/JAERI/2020/v21i630151
53. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974;19 (6):716–723. DOI: 10.1109/TAC.1974.1100705

54. Duan N. Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association. 1983;78:605–610. DOI. 10.1080/01621459.1983.10478017

55. Larmorange J. Introduction à l’analyse d’enquêtes avec r et rstudio. Available: https://larmorange.com. accessed March 2022.

56. Ng’andwe P, Chungu D, Yambayamba AM, Chilambwe F. Modeling the height-diameter relationship of planted Pinus keisia in Zambia. Forest Ecology and Management. 2019;447:1–11. DOI:10.1016/j.foreco.2019.05.051

57. Fayolle A, Loubota Panzou, GJ, Drouet T.. Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management. 2016;374:42–50. DOI:10.1016/j.foreco.2016.04.033

58. Imani G, Boyemba F, Lewis S. Height-diameter allometry and above ground biomass in tropical montane forests: insights from the Albertine Rift in Africa. PLoS One. 2017 ;e0179653. DOI:10.1371/journal.pone.0179653.

59. Mamadou LMA. Equations de prédiction de la Biomasse de quelques espèces ligneuses des savanes de Ngaoundéré, Cameroun. Mémoire de Master en Biologie des Organismes Végétaux, Faculté des Sciences, Université de Ngaoundéré. 2014;80.

60. Halilou A. Equations de prédiction de la Biomasse de quelques espèces ligneuses des savanes de Ngaoundéré, Cameroun. Mémoire de Master en Biologie des Organismes Végétaux, Faculté des Sciences, Université de Ngaoundéré. 2015;85.

61. GanaMé M, BAYENa P, Ouédraogo I, Balima LH, Thiombiano A. Allometric models for improving aboveground biomass estimates in West African savanna ecosystems. Trees, Forests and People. 2021;4:100077. DOI: 10.1016/j.tfp.2021.100077

62. Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest, Ecology and Management. 2013;305:29–37. DOI: 10.1016/j.foreco.2013.05.036

63. Djomo AN, Picard N, Fayolle A, Henry M, Ngomanda A, Ploton P, McElvanan J, Saborowski J, Adamou I, Lejeune P. Tree Allometry for Estimation of Carbon Stocks in African Tropical Forests. Forestry. 2016;89:446-455. DOI: 10.1093/foresterie/cpw025

64. Tchindebe A, Ibrahima A, Tchobsala, Mohamadou LMA. Allometric Equations for Predicting Biomass of Daniellia oliveri (Rolfe) Hutch. & Dalz. Stands in the Sudano-Guinean Savannahs of Ngaoundere, Cameroon. Ecology and Evolutionary Biology. 2019;4(2):15-22. DOI: 10.11648/j.eeb.20190402.11

65. Guendehou GHS, Lehtonen A, Moudachirou M, Mäkipää R, Sinsin B. Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests. 2012;74(2):77–88. DOI: 10.2989/20702620.2012.701432

66. Mbow C, Verstraete MM, Sambou B, Diaw AT, Neufeldt H. Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan Guinean ecosystems of Southern Senegal. Journal of Forest Research. 2014;19:340–347. DOI 10.1007/s10310-013-0414-1

67. Thiam S, Sambou B, Mbow C, Guisse A. Élaboration de modèles allométriques d’Acacia Sénégal L. Willd pour l’analyse du carbone ligneux en milieu sahélien: cas de la zone sylvopastorale au Sénégal. Afrique. Science. 2014;10(3):304-315.

68. Manzo OU, Moussa M, Issoufou HBA, Abdoulaye D, Morou B, Youssifi S, Mahamane A, Paul R. Equations allométriques pour l’estimation de la biomasse aérienne de Faidherbia albida (Del.) Achev dans les agrosystèmes d’Aguie, Niger. International Journal of Biological and Chemical Sciences. 2015;9(4):1863-1874. DOI :10.4314/ijbcs.v9i4.12

69. Vahedi AA, Mataji A, Babayi KS, Eshaghi RJ, Hodjati SM, Djomo A. Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. Journal of forest Forest Science. 2014;60:236-247. DOI: 10.17221/39/2014-JFS
70. Agamou JAA, Fombang EN, Mbofung CMF. Particular benefits can be attributed to *Moringa oleifera* lam. leaves based on origin and stage of maturity. Journal of Experimental Biology and Agricultural Sciences. 2015;3(6):541-555. DOI: 10.18006/2015.3(6),541-555

71. Zakawa NN, Timon D, Yusuf CS, Oyebanji EO, Batta K, Jalalan RT. Ethno-botanical survey and phytochemical analysis of *Moringa oleifera* in mubi local government of Adamawa state. Journal of Medicinal Plants Studies. 2020;8(2):107-111.

72. Haoua M, Haiwa G, Djibirilla M, Ibrahim A, Tchobsala. The impact of anthropic activities on the primary productivity and carbon sequestered on Mount Ngaoundal in Adamawa-Cameroon. Journal of Animal & Plant Sciences. 2021;49 (1):8793-8805. DOI: 10.35759/JAmpPlSci.v49-1.4

73. Dutcă L, Mather R, & Ioraș D. Sampling trees to develop allometric biomass models: How does tree selection affect model prediction accuracy and precision? Ecological Indicators. 2020;117:106553. DOI:10.1016/j.ecolind.2020.106553

74. Alvarez E, Duque A, Saldañariaga J, Cabrera K, Salas GDL, Valle LD, Lema A, Moreno F, Orrego S, Rodríguez L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management. 2012;267:297–308. DOI: 10.1016/j.foreco.2011.12.013

75. Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arts EJMM, Berry NJ, Bird, M. Brondizio ES, de Camargo P, Chave J, Djabbletley G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Ida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KSH, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taeoudoung HE, Tan S, White L, Wöll H, Lloyd J. Height-diameter allometry of tropical forest trees. Biogeosciences. 2011;8:1081–1106. DOI: 10.5194/bg-8-1081-2011

76. Marshall AR, Willcock, S, Plattt PJ, Lovett JC, Balmford A, Burgess, ND, Latham JE, Munishi PKT, Salter R, Shirima DD, Lewis SL. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biology Conservation. 2012;154:20–33. DOI: 10.1016/j.biocon.2012.03.017

77. Xue Y, Yang Z, Wang X, Lin Z, Li D, Su S. Tree biomass allocation and its model Additivity for *Casuarina equisetifolia* in a tropical forest of Hainan Island, China. PlosOne. 2016;11(3):1-20. DOI: 10.1371/journal.pone.0151858

78. Dong L, Zhang LLF. Additive biomass equations based on different Dendrometrics variables for two dominant species (*Larix gmelini* Rupr. and *Betula platyphylla* Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests. 2018;9(5):261. DOI: 10.3390/9050261

79. Ngomanda A, Obiang NLE, Lebamba J, Mavourolou QM, Gomat H, Mankou GS, Loumejto I, Iponga DM, Ditsouga FK, Kombua RZ, Bobé KHB, Okouyi CM, Nyangadouma R, Lépengué N, Mbatchi B, Picard N. Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest, Ecology and Management. 2014;312:1-9. DOI: 10.1016/j.foreco.2013.10.029

80. Sawadogo L, Savadogo P, Tiveau D, Dayamba SD, Zida D, Nouvellet Y, Oden PC, Guinok S. Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna woodland of West Africa. Journal of Forest Research. 2010;21:475-481. DOI: 10.1007/s11676-010-0101-4

81. Larjavaara M, Muller-Landau HC, Metcalf J. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution. 2013;4(9):793–801. DOI: 10.1111/2041-210X.12071

82. Sampaio E, Gasson P, Baracat A, Cutler D, Pareyn F, Lima K. Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. Forest, Ecology and Management. 2010;259(6):1135–1140.

83. Limu RBD, Alves Júnior FT, Oliveira CPD., Silva JAAD, Ferreira RLC. Predicting of biomass in Brazilian tropical dry forest: A statistical evaluation of generic equations. Anais Da Academia Brasileira De Ciências. 2017;89(3):1815–1828.
Dimobe K, Mensah S, Goetze D, Ouédraogo A, Kuyah S, Porembski S, Thiombiano A. Aboveground biomass partitioning and additive models for *Combretum glutinosum* and *Terminalia laxisora* in West Africa. Biomass Bioenergy. 2018;115:151-159.

Traore S, Djomo AN, N’guessan AK, Coulibaly B, Ahoba A, Gnahoua GM, N’guessan EK, Adou Yao CY, N’Dja JK, Guede NZ. Stand structure, allometric equations, biomass and carbon sequestration capacity of *Acacia mangium* Wild (Mimosaceae) in Cote d’Ivoire. Open Journal of Forestry. 2018;8:42-60. DOI: 10.4236/ojf.2018.81004

© 2022 Zang et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/84817