UNBOUNDED TOWERS AND THE MICHAEL LINE TOPOLOGY

WANDA PRZYBYLSKA

Abstract. A topological space satisfies (Ω^γ) (also known as Gerlits–Nagy’s property γ) if every open cover of the space such that each finite subset of the space is contained in a member of the cover, contains a point-cofinite cover of the space. A topological space satisfies $(\Omega^\text{ctbl}\Gamma)$ if in the above definition we consider countable covers. We prove that subspaces of the Michael line with a special combinatorial structure have the property $(\Omega^\text{ctbl} \Gamma)$. Then we apply this result to products of sets of reals with the property (Ω^γ). The main method used in the paper is coherent omission of intervals invented by Tsaban.

1. Introduction

By space we mean a topological space. A cover of a space is a family of proper subsets of the space whose union is the entire space. An open cover is a cover whose members are open subsets of the space. An ω-cover is an open cover such that each finite subset of the space is contained in a set from the cover. A γ-cover is an infinite open cover such that each point of the space belongs to all but finitely many sets from the cover. Given a space, let Ω, Ω^ctbl, Γ be the families of ω-covers, countable ω-covers and γ-covers, respectively. For families \mathcal{A} and \mathcal{B} of covers of a space, the property that every cover in the family \mathcal{A} has a subcover in the family \mathcal{B} is denoted by $(\mathcal{A} \subseteq \mathcal{B})$. The property $S_1(\mathcal{A}, \mathcal{B})$ means that for each sequence $U_1, U_2, \ldots \in \mathcal{A}$ there are sets $U_1 \subseteq U_2, U_2 \subseteq U_2, \ldots$ such that $\{U_n : n \in \mathbb{N}\} \subseteq \mathcal{B}$.

Let $[\mathbb{N}]^\infty$ be the set of infinite subsets of \mathbb{N} and Fin be the set of finite subsets. For sets $a, b \in [\mathbb{N}]^\infty$ we say that a is an almost subset of b, denoted $a \subseteq^* b$, if the set $a \setminus b$ is finite. A pseudointersection of a family of infinite sets is an infinite sets a with $a \subseteq^* b$ for all sets b in the family. A family of infinite sets is centered if the finite intersections of its elements, are infinite. Let p be the minimal cardinality of a subfamily of $[\mathbb{N}]^\infty$ that is centered and has no pseudointersection.

Definition 1.1 ([28, Definition 2.2]). Let κ be an uncountable ordinal number. A set $X \subseteq [\mathbb{N}]^\infty$ with $|X| \geq \kappa$ is a κ-generalized tower if for each function $a \in [\mathbb{N}]^\infty$, there are sets $b \in [\mathbb{N}]^\infty$ and $S \subseteq X$ with $|S| < \kappa$ such that

$$x \cap \bigcup_{n \in b} [a(n), a(n + 1)) \subseteq \text{Fin}$$

for all sets $x \in X \setminus S$.

Let κ be an uncountable ordinal number. A set $X \cup \text{Fin}$ is κ-generalized tower set if the set X is a κ-generalized tower.

2010 Mathematics Subject Classification. 26A03, 54D20, 03E75, 03E17.

Key words and phrases. unbounded tower, $S_1(\Gamma, \Gamma)$, Gerlits–Nagy, γ-property, γ-set, selection principles, products.
The *Michael line* is the set $\mathbb{P}(\mathbb{N})$, with the topology where the points of the set $[\mathbb{N}]^\infty$ are isolated, and the neighborhoods of the points of the set Fin are those induced by the Cantor space topology on $\mathbb{P}(\mathbb{N})$.

Lemma 1.2 ([14, Lemma 1.2]). Let \mathcal{U} be a family of open sets in $\mathbb{P}(\mathbb{N})$ such that $\mathcal{U} \in \Omega(\text{Fin})$. There are a function $a \in [\mathbb{N}]^\infty$ and sets $U_1, U_2, \ldots \in \mathcal{U}$ such that for each set $x \in [\mathbb{N}]^\infty$ and all natural numbers n:

\[
\text{If } x \cap [a(n), a(n + 1)) = \emptyset, \text{ then } x \in U_n.
\]

For a set $U \subseteq \mathbb{P}(\mathbb{N})$, let $\text{Int}(U)$ be the interior of the set U in the Cantor space topology on $\mathbb{P}(\mathbb{N})$. If $\mathcal{U} \in \Omega(\text{Fin})$ is a family of open sets in $\mathbb{P}(\mathbb{N})$ with the Michael line topology, then $\{ \text{Int}(U) : U \in \mathcal{U} \} \in \Omega(\text{Fin})$. Thus Lemma 1.2 holds for a family of open sets with the Michael line topology.

2. Main result

For functions $f, g \in \mathbb{N}^\mathbb{N}$ let $(f \circ g) \in \mathbb{N}^\mathbb{N}$ be a function such that $(f \circ g)(n) := f(g(n))$ for all natural numbers n.

Theorem 2.1. Let $X \cup \text{Fin}$ be a p-generalized tower set with the Michael line topology. The space $X \cup \text{Fin}$ satisfies $(\Omega_{\text{Fin}}^{\text{ctbl}})$.

Proof. Let $\mathcal{U} \in \Omega_{\text{ctbl}}(X \cup \text{Fin})$ be a family of open sets in $\mathbb{P}(\mathbb{N})$ with the Michael line topology. Let $S_1 := \text{Fin}$. Fix a natural number $k > 1$, and assume that the set $S_{k-1} \subseteq X \cup \text{Fin}$ with $\text{Fin} \subseteq S_{k-1}$ and $|S_{k-1}| < p$ has been already defined. Since $|S_{k-1}| < p$, there is $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \subseteq \Gamma(S_{k-1})$. By Lemma 1.2 there are a function $a_k \in [\mathbb{N}]^\infty$ and sets $U_1^{(k)}, U_2^{(k)}, \ldots \in \mathcal{V}$ such that for each set $x \in [\mathbb{N}]^\infty$ and all natural numbers n:

\[
\text{If } x \cap [a_k(n), a_k(n + 1)) = \emptyset, \text{ then } x \in U_n^{(k)}.
\]

Since the set X is p-generalized tower, there are a set $b_k \in [\mathbb{N}]^\infty$ and a set $S_k \subseteq X \cup \text{Fin}$ with $S_{k-1} \subseteq S_k$ and $|S_k| < p$ such that

\[
x \cap \bigcup_{n \in b_k} [a_k(n), a_k(n + 1)) \in \text{Fin}
\]

for all sets $x \in X \setminus S_k$. Then

\[
\{ U_{b_k(j)}^{(k)} : j \in \mathbb{N} \} \in \Gamma((X \setminus S_k) \cup S_{k-1}).
\]

There is a function $a \in [\mathbb{N}]^\infty$ such that for each natural number k, we have

\[
|(a_k \circ b_k) \cap [a(n), a(n + 1))| \geq 2,
\]

for all but finitely many natural numbers n. Since the set X is p-generalized tower, there are a set $b \in [\mathbb{N}]^\infty$ and a set $S \subseteq X$ with $|S| < p$ such that

\[
x \cap \bigcup_{n \in b} [a(n), a(n + 1)) \in \text{Fin}
\]

for all sets $x \in X \setminus S$. We may assume that $\bigcup_k S_k \subseteq S$. The sets

\[
c_k := \{ i \in b_k : [a_k(i), a_k(i + 1)) \subseteq \bigcup_{n \in b} [a(n), a(n + 1)) \}
\]
are infinite for all natural numbers k. Thus,
\[
\{ U_{ck(j)}^{(k)} : j \in \mathbb{N} \} \in \Gamma((X \setminus S_k) \cup S_{k-1}).
\]
Since the sequence of the sets S_k is increasing, we have $X = \bigcup_k (X \setminus S_k) \cup S_{k-1}$ and each point of X belongs to all but finitely many sets $(X \setminus S_k) \cup S_{k-1}$. For each point $x \in S$, define
\[
g_x(k) := \begin{cases} 0 & x \notin (X \setminus S_k) \cup S_{k-1}, \\ \min\{ j : x \in \bigcap_{i \geq j} U_{ck(i)}^{(k)} \} & x \in (X \setminus S_k) \cup S_{k-1}. \end{cases}
\]
Since $|S| < p$, there is a function $g \in \mathbb{N}^\mathbb{N}$ with $\{ g_x : x \in S \} \leq^* g$ and
\[
a_k(c_k(g(k)+1)) < a_{k+1}(c_{k+1}(g(k+1)))
\]
for all natural numbers k. Let
\[
\mathcal{W}_k := \{ U_{ck(j)}^{(k)} : j \geq g(k) \}
\]
for all natural numbers k. Then $\mathcal{W}_1, \mathcal{W}_2, \ldots \in \Gamma(S)$. We may assume that families \mathcal{W}_k are pairwise disjoint. Since properties (Ω_{ctbl}) and $S_1(\Omega_{\text{ctbl}}, \Gamma)$ are equivalent, the set S satisfies $S_1(\Omega_{\text{ctbl}}, \Gamma)$. Then there is a function $h \in \mathbb{N}^\mathbb{N}$ such that $g \leq h$ and
\[
\{ U_{ck(h(k))}^{(k)} : k \in \mathbb{N} \} \in \Gamma(S).
\]
Fix a set $x \in X \setminus S$. By (\ref{2.1.3}), for each natural number k, we have
\[
\bigcup_{n \in c_k} [a_k(n), a_k(n+1)] \subseteq \bigcup_{n \in b} [a(n), a(n+1)).
\]
By (\ref{2.1.2}), (\ref{2.1.4}) and the fact that $g \leq h$, the set x omits all but finitely many intervals $[a_k(c_k(h(k))), a_k(c_k(h(k))+1))$.

By (\ref{2.1.1}), we have
\[
\{ U_{ck(h(k))}^{(k)} : k \in \mathbb{N} \} \in \Gamma(X \setminus S).
\]
Then
\[
\{ U_{ck(h(k))}^{(k)} : k \in \mathbb{N} \} \in \Gamma(X \cup \text{Fin}).
\]

3. Applications

For spaces X and Y, let $X \sqcup Y$ be the disjoint union of these spaces. Let X be a space satisfying $(\Omega_{\Gamma_{\text{ctbl}}})$. Then the space $X \sqcup X$ satisfies $(\Omega_{\Gamma_{\text{ctbl}}})$. In the realm of sets of reals, the properties $(\Omega_{\Gamma_{\text{ctbl}}})$ and (Ω_{Γ}) are equivalent.

Lemma 3.1 ([14, Proposition 2.3.]). If X, Y are sets of reals then the space $X \times Y$ satisfies (Ω_{Γ}) if and only if the space $X \sqcup Y$ satisfies $(\Omega_{\Gamma_{\text{ctbl}}})$.

From our main result we can obtain the following corollary which has originally was proved by Szewczak and Wlodecka [28, Theorem 4.1.(1)].

Corollary 3.2. Let $n \in \mathbb{N}$ and $X_1 \cup \text{Fin}, \ldots, X_n \cup \text{Fin}$ be p-generalized tower sets with the Cantor topology. Then the space $(X_1 \cup \text{Fin}) \times \cdots \times (X_n \cup \text{Fin})$ satisfies $(\Omega_{\Gamma_{\text{ctbl}}})$.

Proof. We prove the statement for $n = 2$. The proof for other n is similar. Let X, Y be p-generalized towers in $[\mathbb{N}]^{\omega}$. Then $X \cup Y$ is a p-generalized tower. By Theorem 2.1, the space $X \cup Y \cup \text{Fin}$ with the Michael line topology satisfies $(\Omega_{\text{ctbl}}^\Gamma)$. Then the space $(X \cup Y \cup \text{Fin}) \cup (X \cup Y \cup \text{Fin})$ satisfies $(\Omega_{\text{ctbl}}^\Gamma)$. Since the property $(\Omega_{\text{ctbl}}^\Gamma)$ is hereditary for closed subset, thus the space $(X \cup \text{Fin}) \cup (Y \cup \text{Fin})$ with the Michael line topology satisfies $(\Omega_{\text{ctbl}}^\Gamma)$. Then $(X \cup \text{Fin}) \cup (Y \cup \text{Fin})$ with the Cantor topology satisfies $(\Omega_{\text{ctbl}}^\Gamma)$, and $(\Omega_{\text{ctbl}}^\Gamma)$, too. By Lemma 3.1, the space $(X \cup \text{Fin}) \times (Y \cup \text{Fin})$ with the Cantor topology satisfies $(\Omega_{\text{ctbl}}^\Gamma)$. □

References

[1] A. Arhangel’skiǐ, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972), 1185–1189.
[2] A. Arhangel’skiǐ, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Mathematics Doklady 33 (1986), 396–399.
[3] T. Bartoszyński, H. Judah, Set Theory: On the structure of the real line, A. K. Peters, Massachusetts: 1995.
[4] T. Bartoszyński, B. Tsaban, Hereditary topological diagonalizations and the Menger–Hurewicz Conjectures, Proceedings of the American Mathematical Society 134 (2006), 605–615.
[5] A. Blass, Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory (M. Foreman, A. Kanamori, eds.), Springer, 2010, 395–489.
[6] L. Bukovský, J. Hales, QN-spaces, wQN-spaces and covering properties, Topology and its Applications 154 (2007), 848–858.
[7] L. Bukovský, On wQN_* and wQN^* spaces, Topology and its Applications 156 (2008), 24–27.
[8] L. Bukovský, I. Reclaw, M. Repický, Spaces not distinguishing convergences of real-valued functions, Topology and its Applications 112 (2001), 13–40.
[9] J. Gerlits, Zs. Nagy, Some properties of $C_p(X)$, I, Topology and its Applications 14 (1982), 151–161.
[10] F. Galvin, A. Miller, γ-sets and other singular sets of real numbers, Topology and its Applications 17 (1984), 145–155.
[11] J. Hales, On Scheepers’ conjecture, Acta Universitatis Caroliniae. Mathematica et Physica 46 (2005), 27–31.
[12] W. Just, A. Miller, M. Scheepers, P. Szeptycki, The combinatorics of open covers II, Topology and its Applications 73 (1996), 241–266.
[13] R. Laver, On the consistency of Borel’s conjecture, Acta Mathematicae 137 (1976), 151–169.
[14] A. Miller, A hodgepodge of sets of reals, Note di Matematica 27 (2007), suppl. 1, 25–39.
[15] A. Miller, B. Tsaban, Point cofinite covers in Laver’s model, Proceedings of the American Mathematical Society 138 (2010), 3313–3321.
[16] A. Miller, B. Tsaban, L. Zdomskyy, Selective covering properties of product spaces, II: γ spaces, Transactions of the American Mathematical Society 368 (2016), 2865–2889.
[17] T. Orenshtein, B. Tsaban, Linear σ-additivity and some applications, Transactions of the American Mathematical Society 363 (2011), 3621–3637.
[18] A. Osipov, P. Szewczak, B. Tsaban, Strongly sequentially separable function spaces, via selection principles, Topology and its Applications, 270 (2020), 106942.
[19] M. Sakai, Property C^π and function spaces, Proceedings of the American Mathematical Society 104 (1988), 917–919.
[20] M. Sakai, The sequence selection properties of $C_p(X)$, Topology and its Applications 154 (2007), 552–560.
[21] M. Sakai, Selection principles and upper semicontinuous functions, Colloquium Mathematicum 117 (2009), 251–256.
[22] M. Sakai, M. Scheepers, The combinatorics of open covers, in: Recent Progress in General Topology III (K. Hart, J. van Mill, P. Simon, eds.), Atlantis Press, 2014, 751–800.
[23] M. Scheepers, Combinatorics of open covers. I: Ramsey theory, Topology and its Applications 69 (1996), 31–62.
[24] M. Scheepers, *Sequential convergence in $C_p(X)$ and a covering property*, East-West Journal of Mathematics 1 (1999), 207–214.

[25] M. Scheepers, $C_p(X)$ and Arhangel’skiǐ’s α_i spaces, Topology and its Applications 89 (1998), 265–275.

[26] M. Scheepers, B. Tsaban, *The combinatorics of Borel covers*, Topology and its Applications 121 (2002), 357–382.

[27] P. Szewczak, B. Tsaban, *Products of Menger spaces: A combinatorial approach*, Annals of Pure and Applied Logic 168 (2017), 1–18.

[28] P. Szewczak, M. Włodecka, *Unbounded towers and products*, Annals of Pure and Applied Logic 172 (2021), 102900–.

[29] B. Tsaban, *Additivity numbers of covering properties*, in: Selection Principles and Covering Properties in Topology (L. Kocinac, editor), Quaderni di Matematica 18, Seconda Universita di Napoli, Caserta 2006, 245–282.

[30] B. Tsaban, *Menger’s and Hurewicz’s Problems: Solutions from “The Book” and refinements*, Contemporary Mathematics 533 (2011), 211–226.

[31] B. Tsaban, L. Zdomskyy, *Scales, fields, and a problem of Hurewicz*, Journal of the European Mathematical Society 10 (2008), 837–866.

[32] B. Tsaban, L. Zdomskyy, *Hereditarily Hurewicz spaces and Arhangel’skiǐ sheaf amalgamations*, Journal of the European Mathematical Society 12 (2012), 353–372.

Wanda Przybylska, Institute of Mathematics, Faculty of Mathematics and Natural Science College of Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, 01–938 Warsaw, Poland

Email address: przybylska.wanda@gmail.com