Achieving tailorable magneto-caloric effect in the Gd-Co binary amorphous alloys

C. Wu, D. Ding, L. Xia, and K. C. Chan

ARTICLES YOU MAY BE INTERESTED IN

Magneto-caloric effect of a Gd$_{50}$Co$_{50}$ amorphous alloy near the freezing point of water
AIP Advances 5, 097122 (2015); https://doi.org/10.1063/1.4930832

Magnetocaloric effect in high Gd content Gd-Fe-Al based amorphous/nanocrystalline systems with enhanced Curie temperature and refrigeration capacity
AIP Advances 6, 035220 (2016); https://doi.org/10.1063/1.4945407

Large magnetic entropy change and adiabatic temperature rise of a Gd$_{55}$Al$_{20}$Co$_{20}$Ni$_{5}$ bulk metallic glass
Journal of Applied Physics 115, 223904 (2014); https://doi.org/10.1063/1.4882735
Achieving tailorable magneto-caloric effect in the Gd-Co binary amorphous alloys

C. Wu,1,2 D. Ding,2 L. Xia,1,2 and K. C. Chan1,a

1Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
2Laboratory for Microstructure, Institute of Materials, Shanghai University, Shanghai 200072, China

(Received 12 December 2015; accepted 25 February 2016; published online 3 March 2016)

Tailorable magnetic properties and magneto-caloric effect were achieved in the Gd-Co binary amorphous alloys. It was found that the Curie temperature (T_c) of the Gd$_x$Co$_{100-x}$ ($x=50, 53, 56, 58, 60$) metallic glasses can be tuned by changing the concentration of Gd as $T_c = 708.8 - 8.83x$, and the mechanism involved was investigated. On the other hand, a linear correlation between the peak value of magnetic entropy change ($-\Delta S_m^{\text{peak}}$) and $T_c - 2/3$ is found in the amorphous alloys with a linear correlation coefficients of above 0.992. Therefore, the $-\Delta S_m^{\text{peak}}$ of the Gd-Co binary amorphous alloys under different magnetic fields can be easily tailored by adjusting the composition of the alloy.

Magnetic refrigeration (MR) based on the magneto-caloric effect (MCE) shows several advantages superior to the traditional vapor-compression refrigeration such as: i) the using of solid working substance, which does not produce high level of greenhouse gases; ii) the saving of energy cost as much as 30%; iii) low noise; iv) high reliability; v) long service life and so on.1–3 It is well known that a practical magnetic refrigerant material, which is critical to the magnetic refrigerators, should exhibit excellent MCE, good mechanical properties, high corrosion resistance, low energy loss due to large electric resistance and nearly zero magnetic hysteresis. The unique properties of metallic glasses make the materials prospective candidates for magnetic refrigerant.4–22 Metallic glasses undergo a second order magnetic transition and exhibit a broadened magnetic entropy change peak.8–22 Therefore, although the peak values of magnetic entropy change ($-\Delta S_m^{\text{peak}}$) for the metallic glasses are not as high as some of the crystalline alloys, the amorphous alloys still have evoked intensive interests because their refrigeration capacity (RC) are usually several times higher than that of the crystalline alloys. Our recent results have shown that the RC can reach an ultra-high value of above 800 J·kg$^{-1}$ under 5 T, accompanied with a relatively high $-\Delta S_m^{\text{peak}}$ value of nearly 10 J·kg$^{-1}$·K$^{-1}$ under 5 T in some of the Gd-based metallic glasses.19–22 Besides, as the essential requirement for industrial application of the magneto-caloric materials, the metallic glasses can be fabricated in a wide compositional range and thus the tailorable magnetic properties can be easily achieved in metallic glasses by adjusting the composition within the compositional range of glass forming alloys. However, the mechanism for the tailorable properties of the metallic glasses, such as the compositional dependence of the Curie temperature (T_c), has not been studied systematically.

In the present work, we employed a simple Gd-Co binary alloy system for the investigation of the compositional dependence of magnetic properties of metallic glasses and the mechanism involved. Based on our preliminary work on the glass forming ability of the Gd-Co binary alloys, we selected Gd$_x$Co$_{100-x}$ ($x=50, 53, 56, 58, 60$) amorphous ribbons for the investigation. The field dependence of $-\Delta S_m^{\text{peak}}$ was constructed for the investigation of magneto-caloric behavior of the

aCorresponding author: Email: kc.chan@polyu.edu.hk
metallic glasses. The relationships between Gd concentration and T_c, ΔS_m^{peak} were also constructed for revealing the mechanism of tailorable MCE of the Gd-Co amorphous alloys.

Ingots of Gd-Co alloys with nominal compositions Gd$_x$Co$_{100-x}$ ($x=45, 50, 53, 56, 58, 60, 61$) were prepared by arc-melting a mixture of the Gd and Co elements, respectively. The purity both the Gd and Co elements is above 99.9% (at%). The ingots were remelted for at least four times under a titanium-gettered argon atmosphere to ensure the homogeneity of the mother alloys. As-spun ribbons are produced by melt-spinning in a high-purified argon atmosphere using a single copper wheel with a surface speed of 30 m/s single-roller. The structure of the ribbons was characterized by X-ray diffraction (XRD) on a Rigaku D\(\)\text{max}-2550 diffractometer using Cu K_{α} radiation. A Quantum Design Physical Properties Measurement System (PPMS 6000) was used to measure the magnetic properties of the amorphous ribbons. The temperature dependence of the magnetization ($M-T$) curves was measured under a field of 0.03 T in the cooling process. The hysteresis loops were measured at the temperature well below the Curie temperature under a field of 2 T. The isothermal magnetization curves ($M-H$) of the amorphous ribbons were measured at selected temperatures under a field of 5 T. All the data obtained by PPMS were corrected by high purity Ni.

Our preliminary results have demonstrated that some of the Gd-Co binary amorphous alloys can be fabricated in the shape of ribbons under a high cooling rate.

Figure 1 shows the XRD patterns of Gd$_x$Co$_{100-x}$ ($x=45, 50, 53, 56, 58, 60, 61$) as-spun ribbons.

It is known that there are three kinds of exchange interaction in the Gd-Co binary alloys, the strong interaction between Co and Co atoms, and the indirect interactions between Gd-Gd atoms and Gd-Co atoms. The ordering temperature, namely, the Curie temperature of the Gd-Co amorphous alloys is mainly determined by the strong interaction between Co-Co atoms, which is closely related to the local environment of Co atoms. The increase of Gd concentration, however, will
simultaneously reduce the amount of Co atoms, which means enlarge the distance between Co atoms and thus diminish the Co-Co interaction of the amorphous alloys. On the other hand, the interactions involving Gd, that is, the indirect interactions between Gd-Gd and Gd-Co, play a more important role in determining the magnetic behavior of the amorphous alloys. The increase of Gd concentration will enhance the Gd-Co indirect interaction, which may reduce the density of the Fermi surface states and lead to the suppression of Co-Co interaction. As a result, Gd-Co alloys containing less Co show lower Curie temperature, while most of the rare earth (R)-transition metal (M) permanent magnets such as the SmCo$_{17}$ exhibit much higher T_c. The linear relationship between the alloy composition and T_c indicates the tailorable magneto-caloric effect of the Gd-Co amorphous alloys according to relationship between $-\Delta S_{m}^{\text{peak}}$ and $T_c^{-2/3}$ proposed recently by Belo et al. recently as follows:

$$-\Delta S_{m}^{\text{peak}} = \frac{1}{2C} \left(\frac{C^2}{K} \right)^{\frac{1}{2}} \left(\frac{H}{T_c} \right)^{\frac{3}{2}} + \cdots$$

where $C=NJ(J+1)\mu_B^2/(3k_B)$ and $K=(2J^2+2J+1)/[10J(J+1)k_B N]$, N is the density of the magnetic atoms, g is the Lande factor, μ_B is the Bohr magneton, k_B is the Boltzmann constant, J is the total spin number, and H is the applied magnetic field. For the binary Gd-Co amorphous alloys, the parameters N, μ_B and k_B are constants. J for the Gd$_x$Co$_{100-x}$ ($x=50, 53, 56, 58, 60$) amorphous alloys can be expresses as $J=[7x/2+3(100-x)/2]/100=1.5+0.02x$. g of the amorphous alloys can be expressed as $g=[2x+4][3(100-x)]/[100=4/3+ x/150]$. T_c of the Gd$_xCo_{100-x}$ amorphous alloys, as mentioned above, is about 708.8-8.83x. As a result, the $-\Delta S_{m}^{\text{peak}}$ of the Gd$_x$Co$_{100-x}$ glassy ribbons under a specific magnetic field can be determined by the composition of the alloys.
The magnetic entropy change (ΔS_m) of the Gd$_{50}$Co$_{50}$ amorphous alloy can be derived from the isothermal M-H curves according to the Maxwell equation. Figure 3 shows the $(-\Delta S_m)$-T curves of the Gd$_{50}$Co$_{50}$ amorphous ribbons under a field of 5 T. Each sample shows a broadened $-\Delta S_m$ peak, which is the typical characteristic of amorphous alloys undergoing a second order magnetic phase transition. In general, as proposed by Franco according to the Arrott-Noakes equation, the n value changes with temperature as follows: $n=1$ at the temperature well below T_c, $n=2$ at the temperature much higher than T_c, and $n=0.72$ at the temperature near T_c. Therefore, the investigation on the field dependence of $-\Delta S_m$ peak for the Gd$_{50}$Co$_{50}$ amorphous alloy containing only 60% (at. %) Gd exhibits a high value of $-\Delta S_m$ peak up to about 88% as high as pure Gd.

It is known that the field dependence of $-\Delta S_m$ for an amorphous alloy undergoing a second-order magnetic phase transition can be expressed as $-\Delta S_m \propto H^n$. In general, as proposed by Franco according to the Arrott-Noakes equation, the n value changes with temperature as follows: $n=1$ at the temperature well below T_c, $n=2$ at the temperature much higher than T_c, and $n=0.72$ at the temperature near T_c. Therefore, the investigation on the field dependence of $-\Delta S_m$ peak for the Gd$_{50}$Co$_{50}$ amorphous alloy containing only 60% (at. %) Gd exhibits a high value of $-\Delta S_m$ peak up to about 88% as high as pure Gd.

Table I shows the $-\Delta S_m$ peak of Gd-Co amorphous alloys under different magnetic fields.

$-\Delta S_m$ peak (J·kg$^{-1}$·K$^{-1}$)	1T	2T	3T	4T	5T
Gd$_{50}$Co$_{50}$	1.38	2.36	3.16	3.92	4.6
Gd$_{53}$Co$_{47}$	1.66	2.78	3.74	4.61	5.41
Gd$_{50}$Co$_{44}$	1.99	3.34	4.47	5.48	6.41
Gd$_{50}$Co$_{42}$	2.56	4.22	5.58	6.8	7.9
Gd$_{50}$Co$_{40}$	2.84	4.74	6.1	7.42	8.62

Figure 5 shows the $-\Delta S_m$ peak vs T_c plot for the Gd$_{50}$Co$_{50}$ amorphous alloy containing only 60% (at. %) Gd under the magnetic field ranging from 1 T to 5 T. A linear relationship
FIG. 4. The temperature dependence of $-\Delta S_m$ and the field dependence of $-\Delta S_m^{\text{peak}}$ for the Gd$_x$Co$_{100-x}$ amorphous ribbons under the magnetic fields ranging from 1 T to 5 T: (a) Gd$_{50}$Co$_{50}$, (b) Gd$_{53}$Co$_{47}$, (c) Gd$_{56}$Co$_{44}$, (d) Gd$_{58}$Co$_{42}$ and (e) Gd$_{60}$Co$_{40}$, respectively.

between $-\Delta S_m^{\text{peak}}$ and $T_c^{-2/3}$ (or $(708.8-8.83x)^{-2/3}$) is found in Gd-Co binary amorphous alloys and the linear correlation coefficients are above 0.992. Therefore, as predicted above, the $-\Delta S_m^{\text{peak}}$ of the Gd-Co binary amorphous alloys under different magnetic fields can be easily tailored by adjusting the composition of the alloy.

FIG. 5. The dependence of $-\Delta S_m^{\text{peak}}$ on $T_c^{-2/3}$ under the magnetic fields ranging from 1 T to 5 T.
In summary, we obtained tailorable magnetic properties and magneto-caloric effect in the Gd-Co binary amorphous alloys. The magnetic properties and magneto-caloric effects of Gd\textsubscript{100-x}Co\textsubscript{x} (x = 50, 53, 56, 58, 60) amorphous alloys fabricated in the shape of ribbons were investigated. It was found that \(T_c \) of the ribbons decreases monotonically with the increasing Gd concentration, which is supposed to be due to the suppression of Co-Co interaction with the increase of Gd concentration. The linear relationship between the alloy composition and \(T_c \) can be expressed as \(T_c = 708.8 - 8.83x \), indicating the tailorable magneto-caloric effect of the Gd-Co amorphous alloys according to relationship between \(-\Delta S_m^{\text{peak}}\) and \(T_c^{-2/3} \) proposed by Belo et al. Experimental results have revealed a linear dependence of \(-\Delta S_m^{\text{peak}}\) on \(T_c^{-2/3} \) (or \((708.8-8.83x)^{-2/3}\)) in the Gd\textsubscript{100-x}Co\textsubscript{x} (x = 50, 53, 56, 58, 60) amorphous alloys, justifying the tailorable \(-\Delta S_m^{\text{peak}}\) by adjusting the composition of Gd-Co binary alloys.

The work described in this paper was mainly supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 511212).

1. K. A. Gschneidner and V. K. Pecharsky, Jr., Annu. Rev. Mater. Sci. 30, 387 (2000).
2. E. Bruck, J. Phys. D 38, R381 (2005).
3. K. A. Gschneidner, Jr., M. Földéaki, B. R. Gopal, R. Chahine, T. K. Bose, X. Y. Liu, and J. A. Barclay, Adv. Cryog. Eng. 54, 40 (2002).
4. A. Inoue, Acta Mater. 48, 279 (2000).
5. W. L. Johnson, JOM 54, 40 (2002).
6. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004).
7. A. Inoue and A. Takeuchi, Acta Mater. 59, 2243 (2011).
8. M. Földéaki, R. Chahine, B. R. Gopal, R. Chahine, T. K. Bose, X. Y. Liu, and J. A. Barclay, J. Magn. Magn. Mater. 174, 295 (1997).
9. M. Földéaki, R. Chahine, B. R. Gopal, T. K. Bose, X. Y. Liu, and J. A. Barclay, J. Appl. Phys. 83, 2727 (1998).
10. A. Atlay, H. Gencer, and V. S. Kolat, J. Non-Cryst. Solids 351, 2373 (2005).
11. X. Y. Liu, J. A. Barclay, M. Földéaki, B. R. Gopal, R. Chahine, and T. K. Bose, Adv. Cryog. Eng. 42, 431 (1996).
12. N. S. Bingham, H. Wang, F. Qin, H.X. Peng, J.F. Sun, V. Franco, H. Srikanth, and M.H. Phan, Appl. Phys. Lett. 101, 102407 (2012).
13. B. Schwarz, N. Mattern, Q. Luo, and J. Eckert, J. Magn. Magn. Mater. 324, 1581 (2012).
14. F. X. Qin, N.S. Bingham, H. Wang, H.X. Peng, J.F. Sun, X. Franco, S.C. Yu, H. Srikanth, and M.H. Phan, Acta Mater. 61, 1284 (2013).
15. V. Franco, J. M. Borrego, A. Conde, and S. Roth, Appl. Phys. Lett. 88, 132509 (2006).
16. P. Alvarez-Alonso, J. L. Sánchez Llamazares, C. F. Sánchez-Valdés, M. L. Fdez-Gubieda, P. Gorria, and J. A. Blanco, J. Appl. Phys. 117, 17A710 (2015).
17. V. Franco, C. F. Conde, A. Conde, and L. F. Kiss, Appl. Phys. Lett. 90, 052509 (2007).
18. Q. Y. Dong, B. G. Shen, J. Chen, J. Shen, F. Wang, H. W. Zhang, and J. R. Sun, J. Appl. Phys. 105, 053908 (2009).
19. L. Xia, C. Wu, S. H. Chen, and K. C. Chan, AIP Advances 5, 097122 (2015).
20. L. Xia, M.B. Tang, K.C. Chan, and Y.D. Dong, J. Appl. Phys. 115, 223904 (2014).
21. L. Xia, Q. Guan, D. Ding, M.B. Tang, and Y.D. Dong, Appl. Phys. Lett. 105, 192402 (2014).
22. C. Wu, P. Yu, and L. Xia, Journal of Non-Cryst. Solids 422, 23 (2015).
23. Y. F. Ma, P. Yu, and L. Xia, Materials and Design 85, 715 (2015).
24. E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Girvord, and H. S. Li, J. Appl. Phys. 61, 3971 (1987).
25. J. H. Zhang, S. Liu, F. Gu, L. J. Yang, and M. Liu, Acta Phys. Sin. 55, 2928 (2006).
26. J. R. Jeffries, L. S. I. Veiga, G. Fabbris, D. Haskel, P. Huang, N. P. Butch, S. K. McCull, K. Holliday, Z. Jenei, Y. Xiao, and P. Chow, Phys. Rev. B 90, 104408 (2014).
27. J. H. Bloe, J. S. Amaral, A. M. Pereira, V. S. Amaral, and J. P. Araujo, Appl. Phys. Lett. 100, 242407 (2012).
28. T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Cryogenics 21, 647 (1981).
29. M. Tishin and Y. I. Spichkin, MagnetoCaloric Effect and its Applications (Institute of Physics, Bristol, 2003).
30. V. Franco, J. S. Blázquez, and A. Conde, Appl. Phys. Lett. 89, 222512 (2006).
31. V. Franco, J. M. Borrego, C. F. Conde, A. Conde, M. Stoica, and S. Roth, J. Appl. Phys. 100, 083903 (2006).
32. V. Franco, J. S. Blázquez, and A. Conde, J. Appl. Phys. 100, 064507 (2006).