Algorithmic upper bounds for graph geodetic number

Ahmad T. Anaqreh · Boglárka G.-Tóth · Tamás Vinkó

Accepted: 22 June 2021 / Published online: 10 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Graph theoretical problems based on shortest paths are at the core of research due to their theoretical importance and applicability. This paper deals with the geodetic number which is a global measure for simple connected graphs and it belongs to the path covering problems: what is the minimal-cardinality set of vertices, such that all shortest paths between its elements cover every vertex of the graph. Inspired by the exact 0–1 integer linear programming formalism from the recent literature, we propose new method to obtain upper bounds for the geodetic number in an algorithmic way. The efficiency of these algorithms are demonstrated on a collection of structurally different graphs.

Keywords Geodetic number · Integer linear programming · Upper bound · Greedy heuristic

1 Introduction

Path covering problems play an important role both in theory and applications mostly by reasons of their straight interpretability. Complex notions of cover are possible, one of the most relevant set of such problems is involving shortest paths. The graph geodetic number, which belongs to this problem set, was introduced in Harary et al. (1993). There might be several application fields for the problem, perhaps the most straight-forward one is given in Manuel et al. (2018) which poses it as a social network problem. It turned out that calculating the geodetic number is an NP-hard problem for general graphs (Atici 2002). As for many similar graph theoretical problems,
an integer linear programming (ILP) formulation is possible and such a model was given in a recent paper by Hansen and van Omme (2007), containing also the first computational experiments on a set of random graphs of moderate size. Motivated by these results, this paper empirically investigates upper bound algorithms, which, according to our experiments provide results of small gap on the same set of random graphs using relatively low computation time even on graphs with 150 nodes, as well as on real-world graphs of large scale.

In the rest of this section the definition of the geodetic number problem is given, followed by the 0–1 linear programming formalism from Hansen and van Omme (2007). Then, in Sect. 2 the algorithmic descriptions of the two proposed upper bound procedures are given. Finally, we report our extensive computational experiments in Sect. 3 to demonstrate the efficiency of these algorithms.

Problem description
A simple connected graph is denoted by $G = (V, E)$, where V is the set of vertices and E is the set of edges. Assume that $n = |V|$ and $m = |E|$. Given $i, j \in V$, the set $I[i, j]$ contains all $k \in V$ which lies on any shortest paths (geodetics) between i and j. The union of all $I[i, j]$ for all $i, j \in S \subseteq V$ is denoted by $I[S]$, which is called *geodetic closure* of $S \subseteq V$. Formally

$$I[S] := \{k \in V : \exists i, j \in S, k \in I[i, j]\}.$$

The *geodetic set* is a set S for which $V = I[S]$. The *geodetic number* of G is

$$g(G) := \min\{|S| : S \subseteq V \text{ and } I[S] = V\}.$$

A 0–1 integer linear programming model
In Hansen and van Omme (2007) a binary integer linear programming model has been proposed which is as follows. We denote the length of the shortest path between u and v by $d(u, v)$ for every $u, v \in V$. For each node $k \in V$ define the set

$$P_k := \{(i, j) \in V \times V : d(i, k) + d(k, j) = d(i, j)\}.$$

Set P_k hence contains all pairs of vertices for which a shortest path is going through node k.

The 0–1 LP model is

$$\min \sum_{k=1}^{n} x_k$$

(1)
subject to

\[1 - x_k \leq \sum_{(i,j) \in P_k} y_{ij}\] \hspace{1cm} (2)

\[y_{ij} \leq x_i\] \hspace{1cm} (3)

\[y_{ij} \leq x_j\] \hspace{1cm} (4)

\[x_i + x_j - 1 \leq y_{ij}\] \hspace{1cm} (5)

and the variables are all binary

\[x_i \in \{0, 1\} \quad \forall i \in V\]

\[y_{ij} \in \{0, 1\} \quad \forall i, j \in V, i < j\]

The value of variable \(x_k\) indicates if vertex \(k\) belongs to the set \(S\) or not. Thus, the sum of these binary variables needs to be minimized.

The auxiliary variables \(y_{ij}\) denote the bilinear term \(x_i x_j\), so (2) means \(x_k\) can be 0 only if there are \(i, j \in S\) such that \(k\) is on their shortest path. McCormick conditions (3)–(5) describe the \(y_{ij} = x_i x_j\) correspondence.

2 Upper bounds

The trivial upper bound for the geodetic number is \(g(G) \leq n\), which is tight for the complete graph. Chartrand et al. (2002) prove that \(g(G) \leq n - d + 1\), where \(d\) is the length of the longest shortest path (called diameter) of \(G\). Other upper bounds are also given Brešar et al. (2008), Soloff et al. (2015), and Wang et al. (2006) but these are concerning specific graph structures.

In this section we aim at deriving upper bounds for general graphs in algorithmic ways. Two upper bound algorithms are given. The first one uses Floyd’s algorithm, while the second algorithm is based on Dijkstra’s algorithm.

2.1 Greedy algorithm

The main idea of the algorithm is to generate a geodetic set in a greedy fashion: in every step choose that vertex \(i\) to be included in \(S\) which makes the largest increase in \(I[S]\). Namely, where the cardinality \(|I[S \cup \{i\}] \setminus I[S]|\) is maximal.

Initialization The initialization part is shown in Algorithm 1. In the lines 4 and 5 all-pair shortest paths are calculated, which are then used in lines 6–8 where the sets \(I_{ij}\) are defined. At this point these sets are essentially the same as \(I[i, j]\) which got defined already in Sect. 1, i.e., containing all nodes which lie on any shortest paths between nodes \(i\) and \(j\). We use different notation here on purpose, as the sets \(I_{ij}\) are subject to change later in our algorithm. In line 9 the nodes with degree at most
one are put into (the initially empty) geodetic set S. The degree-one node is the node connected by one edge in the graph, these nodes must be part of geodetic set S based on the fact that degree-one nodes are always part of the geodetic set, see Harary et al. (1993).

The geodetic closure $I[S]$ gets initialized for S in lines 10 and 11. Note that this set could be empty here. Finally, in lines 12 and 13 all of the already covered vertices from the sets I_{ij} are removed.

Algorithm 1: Greedy algorithm - Initialization

```
Function GreedyInit

$S = \emptyset$, $I[S] = \emptyset$, $I_{ij} = \emptyset \ \forall i, j \in V$

$d_{ij} = 1 \ \forall (i, j) \in E$, $d_{ij} = \infty \ \forall (i, j) \notin E$

for $\forall k \in V, i \in V, j \in V$ do // distance calculation

$\left[ \begin{array}{l}
    d_{ij} = \min(d_{ij}, d_{ik} + d_{kj}) \\
    I_{ij} = I_{ij} \cup \{k\}
\end{array} \right.$ // by Floyd algorithm

for $\forall i \in V, j \in V, k \in V$ do // calculation of $I_{ij}$

if $d_{ij} = d_{ik} + d_{kj}$ then

$S = \{k \in V \mid \deg(k) \leq 1\}$ // unreachable nodes from all paths must be in $S$

for $\forall i \in S, j \in S$ do // build $I[S]$ for $S$

$\left[ \begin{array}{l}
    I[S] = I[S] \cup I_{ij}
\end{array} \right.$

for $\forall i \in V, j \in V$ do // Update $I_{ij}$-s by removing

$\left[ \begin{array}{l}
    I_{ij} = I_{ij} \setminus I[S]
\end{array} \right.$ // all covered vertices
```

Auxiliary functions The description of our greedy method continues in Algorithm 2, where the functions LargestIncrease and LargestIncreasePair are defined. These compute the vertex (and vertex pair, respectively) which increases most the covered set $I[S]$ if it is included in S. Two notations are used: the sets $I_i[S]$ contain vertices which are covered if node i was included in set S, and sets $I_{ij}[S]$ contain vertices which are covered if both i and j nodes were included in set S. The sets $I_i[S]$ are initialized as empty in line 16. In lines 15–18 the sets $I_i[S]$ are constructed by the nodes currently in I_{ij}, where i is not an element of S and j is in S. Then, in line 19 we define ℓ to be the node from $V \setminus S$ for which $I_i[S]$ is the largest. Similarly, in the function LargestIncreasePair(V, S, I), at lines 22 and 23 the sets $I_{ij}[S]$ are calculated with nodes which would make $I[S]$ increasing if the pair (i, j) were included. Finally, in line 24 such a pair of nodes is selected for which the set $I_{ij}[S]$ is the largest.

Main algorithm The main loop of our greedy approach is shown in Algorithm 3. The condition in line 29 checks if there is a node which is not covered yet. In lines 30–35 a heuristic rule is applied, which simply checks if the size of set $I_\ell[S]$ is at least half
Algorithm 2: Greedy algorithm - Auxiliary functions

14 Function LargestIncrease(V, S, I)
15 for ∀i ∈ V \ S do // compute I_i[S], the set increasing
16 I_i[S] = ∅ // I[S] if i is included for ∀j ∈ S
17 do
18 I_i[S] = I_i[S] ∪ I_j
19 end do
20 ℓ = argmax_i∈V \ S |I_i[S]| // find the node for which I[S] would grow most
21 return ℓ, I_ℓ[S]

19 Function LargestIncreasePair(V, S, I)
20 for ∀i ∈ V \ S, j ∈ V \ S do // compute I_ij[S], the set increasing
21 I_ij[S] = I_ij[S] ∪ I_i[S] ∪ I_j[S] // I[S] if i, j are included
22 end do
23 (k, h) = argmax_i,j∈V \ S |I_ij[S]| // find pair of nodes for which I[S] would grow most
24 return k, h, I_kh[S]

the size of set I_kh[S]. This is a greedy choice, however, other conditions could also be applied here to decide whether one node or a pair of nodes should be added to S. After this, in lines 36 and 37 the sets I_ij get updated by removing all the covered vertices from them. In line 38 we need to choose again the node for which the increase of I[S] is the largest. Finally, the execution of lines 39–42 depend on the parameter AddOne. If it is set as AddOne = 0, then the algorithm chooses the best pair of nodes to be added to the set S by calling the LargestIncreasePair function. Otherwise, i.e., in case of AddOne = 1, this function call is simply skipped, the settings done in line 40 are needed for keeping the consistency. In the numerical experiments reported in Sect. 3 this simplified version will be referred as AddOne.

Note that due to the fact that the input graph G is undirected, similarly to the 0–1 LP model description in Sect. 1, one can assume the condition i < j for all appropriate cases. This is done in the actual implementation of the greedy algorithm to make it faster, but we omit these details for the easier understanding of the pseudocodes.

2.1.1 Computational complexity

The greedy heuristic uses Floyd’s algorithm to calculate the distances in the input graph, which needs time O(n^3). There are nested loops used to build I_ij, the complexity of these loops is again time O(n^3). The calculation of I[S], as well as the update of I_ij, has time O(n^2).

In the main loop of the algorithm there are nested loops, starting with an outer loop to check if there is still any non-empty I_ℓ[S] in which it can enter up to n times in the worst case. Then, the inner loop to update all I_ij takes time O(n^2). Both of the auxiliary functions to find the vertex or vertices that make I[S] growing the most, have basically two loops, resulting in time O(n^2). Taking the outer and inner loop together makes the complexity of this part in total time O(n^3). Therefore the computational complexity for the heuristic algorithm is O(n^3).
Algorithm 3: Greedy algorithm - Main

GreedyInit // initialize I_{ij} sets and S

$[\ell, I_\ell[S]] = \text{LargestIncrease}(V, S, I)$ // ℓ would make $I[S]$ grow most

$[k, h, I_{kh}[S]] = \text{LargestIncreasePair}(V, S, I)$ // k and h would make $I[S]$ grow most

while $|I_\ell[S]| + |I_{kh}[S]| > 0$ do // the set is not geodetic yet

if $|I_\ell[S]| > |I_{kh}[S]|/2$ then // balance adding one or two vertices to S

$S = S \cup I_\ell[S]$ // update $I[S]$

else

$S = S \cup \{k, h\}$

$I[S] = I[S] \cup I_{kh}[S]$ // update $I[S]$

for $\forall i \in V, j \in V$ do // Update I_{ij}-s by removing

$I_{ij} = I_{ij} \setminus I[S]$ // all covered vertices

end

end

$L[I_\ell[S]] = \text{LargestIncrease}(V, S, I)$ // recompute $I[S]$

if AddOne then // AddOne is a control parameter

$k = h = 0; I_{kh}[S] = \emptyset$

else

$[k, h, I_{kh}[S]] = \text{LargestIncreasePair}(V, S, I)$ // recompute $I_{kh}[S]$

end

2.2 Locally greedy algorithm

In our locally greedy algorithm, the purpose is the same as earlier, i.e., to find upper bound on $g(G)$ efficiently. Furthermore, by using local information only we aimed at making the algorithm faster compared to the method introduced in Sect. 2.1. Therefore, instead of calculating all shortest paths using Floyd’s algorithm, we calculate the distances from a specific node v to all nodes not in the geodetic set S by Dijkstra’s algorithm.

The details of locally greedy algorithm are given in Algorithm 4. The algorithm takes node v as an input, this node can be a degree-one node for the same reason discussed in Sect. 2.1, or a simplicial node, where the simplicial node is the node such that its neighbors form a clique (a complete subgraph), namely, every two neighbors are adjacent. In Ahangar et al. (2016) the authors proved that simplicial nodes are always part of the geodetic set.

Node v is the starting node for set S. Then $\text{LargestLocalIncrease}$ function in line 2 returns the node u for which the set $I[S]$ would grow most. This function is detailed in lines 13–18. First, it calculates the distance from node v to all other nodes in the graph together with the shortest paths and fills the sets I_v:

Dijkstra’s algorithm is not detailed in the pseudocode as it is well-known. In lines 14–16 the function computes the sets I_j for all $j \in V \setminus S$. In line 17 the function finds the node u that would increase $I[S]$ most by adding it to S.

In lines 3–5 the algorithm adds u to the geodetic set S, updates $I[S]$, and then removes $I[S]$ from R, which is the set of remaining nodes to be covered. The main loop of the algorithm is given in lines 7–12, in each iteration the algorithm checks if set R is empty, namely, if there are still any uncovered nodes. As long as there
are still uncovered nodes the algorithm will repeat the execution in lines 8 by calling \texttt{LargestLocalIncrease} function to node \(w \).

Algorithm 4: Locally Greedy algorithm

Input: \(v \) a degree-one or simplicial node

1. \(R = V, S = v, I[S] = \emptyset, I_i[S] = \emptyset \quad \forall i \in V, I_{ij} = \emptyset \quad \forall i, j \in V \)
2. \([u, I_u[S]] = \text{LargestLocalIncrease}(v, V, S, I) \quad \text{// } I[S] \text{ would grow most for node } u \)
3. \(S = S \cup \{u\} \quad \text{// update } S \)
4. \(I[S] = I[S] \cup I_u[S] \cup \{v, u\} \quad \text{// update } I[S] \)
5. \(R = R \setminus I[S] \quad \text{// update } R \text{ by removing covered nodes} \)
6. \(w = u \)
7. while \(|R| > 0\) do
 // the set is not geodetic yet
8. \([u, I_u[S]] = \text{LargestLocalIncrease}(w, V, S, I) \quad \text{// compute } I_u[S] \)
9. \(S = S \cup \{u\} \quad \text{// update } S \)
10. \(I[S] = I[S] \cup I_u[S] \cup \{u\} \quad \text{// update } I[S] \)
11. \(R = R \setminus I[S] \quad \text{// update } R \text{ by removing covered nodes} \)
12. \(w = u \)
13. Function \texttt{LargestLocalIncrease}(v, V, S, I)
14. \(I_v, := \text{Dijkstra}(v) \quad \text{// shortest paths by Dijkstra algorithm} \)
15. for \(\forall j \in V \setminus S \) do
16. \(I_j = I_j[S] \cup I_{ij} \)
17. \(u = \arg \max_{j \in V \setminus S} |I_j[S] \setminus I[S]| \quad \text{// find the node for which } I[S] \text{ would grow most} \)
18. return \(u, I_u[S] \)

2.2.1 Computational complexity

The locally greedy algorithm uses Dijkstra’s algorithm to calculate the distances in the input graph, which needs time \(O(n^2) \). There are nested loops used to build \(I_j[S] \), the complexity for these loops is again \(O(n^2) \). In total, the \texttt{LargestLocalIncrease} function needs time \(O(n^2) \). The main while loop of the algorithm is used to fill the geodetic set \(S \) by calling the function \texttt{LargestLocalIncrease} until set \(R \) becomes empty, that is, at most \(n \) times. Thus, the total complexity is \(O(n^3) \), like for the other greedy methods proposed in Sect. 2.1.

3 Numerical experiments

In order to investigate the execution time and quality of the upper bound algorithms discussed in Sect. 2, the ILP model and the algorithms were implemented in AMPL (Fourer and Kernighan 2002). As a solver we used Gurobi with parameters setup \texttt{mipfocus=1,timelim=3600}. Tests were run on a computer with a 3.10GHz i5-2400 CPU and 8GB memory.
The obtained results are reported in Tables 1, 2, 3, and 4. The meaning of the columns are:

graph: size of the graphs as number of vertices \(n \) and number of edges \(m \);
exact: exact geodetic number (or best solution found by Gurobi in case of running out of time) and the time in seconds to find this solution;
greedy: upper bound found by the greedy algorithm (i.e., Algorithm 3) by using \(\text{AddOne} = 0 \) and its execution time in seconds;
greedy (AddOne): upper bound found by the greedy algorithm (i.e., Algorithm 3) using \(\text{AddOne} = 1 \), i.e., the addition of only 1 vertex at a time, and its execution time in seconds;
locally greedy: upper bound found by the locally greedy algorithm (i.e., Algorithm 4) and its execution time in seconds.

3.1 Graph instances

As input graphs for the algorithms, we have generated several random graphs which are structurally different to obtain deeper insights how the solution of the geodetic number problem depends on the graph \(G \). Besides, a small set of real-world graphs were also included in the benchmark.

3.1.1 Random graphs

The random graphs were generated by using the following standard models.

- **Erdős–Rényi (ER) model** (Erdős and Rényi 1959), where a graph is chosen uniformly at random from the set of all graphs which have \(n \) nodes and \(m \) edges.
- **Watts–Strogatz (WS) model** (Watts and Strogatz 1998), which produces graphs with small world properties, namely (i) the average value of all shortest paths in the graph is low, and (ii) high clustering coefficient. Property (ii), which measures the average probability that two neighbors of a node are themselves neighbor of each other, makes them different from ER graphs.
- **Barabási–Albert (BA) model** (Albert and Barabási 2002), which creates graphs using preferential attachment growing mechanism, where the more connected a node is, the more likely it is to receive new links. This leads to scale-free property, i.e., power law distribution of the form \(p_k \sim k^{-\alpha} \), where \(p_k \) is the fraction of nodes with degree \(k \) and \(\alpha \) is a parameter typically in the range \(2 < \alpha < 3 \). Note that BA graphs have low clustering coefficient (similarly to ER graphs) and short path lengths (similarly to WS graphs).

Regarding the number of nodes and edges the following approach were used:

- the number of nodes were \(n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 \), and
- for the number of edges we followed the scheme as in Hansen and van Omme (2007),
- for each case one can have maximum \(n \cdot (n - 1)/2 \) edges,
- and we took 20, 40, 60, and 80% of this maximum number of edges.
– Apart from these graphs, we created some bigger ones with \(n = 115, 135, 150 \) nodes using the same procedure as above with the only difference that 25, 50, and 75% of the maximum number of edges were taken.

To generate all these input graphs the \texttt{R/igraph} package was used with the appropriate functions.

3.1.2 Real-world graphs

The graphs have been used are benchmark graphs, the first set of the graphs taken from UCINET software datasets,\(^1\) the other graphs are well-known graphs from Network Repository.\(^2\)

3.2 Discussion on results with random graphs

3.2.1 General observations

Before the discussion of the results for the different types of random graphs, a general overview can be summarized as follows.

– The exact solutions were found in less than half of the cases, and this is caused by running out of time. In these cases, the reported solution is a lower bound of the geodetic number.

– Both of the two versions of the greedy algorithm (Algorithm 3) were able to finish their execution below 2 seconds for each and every tested random graph. Their execution times were roughly equal. The version which takes pair of vertices into account (Add\texttt{One}=0) gives better or equal upper bound compared with the version taking one vertex (Add\texttt{One}=1).

– For the locally greedy algorithm (Algorithm 4) the execution time was less than 0.2 s for each tested graph. This algorithm is the fastest one on average.

– Not surprisingly, as the number of nodes increases the geodetic number and its computation time increases as well (for the same density). Taking the averages for the graphs with the same density we can conclude that the geodetic number is decreasing as the density is increasing, while the computational effort is maximal when the density is 0.4, and minimal when it is 0.8.

3.2.2 Erdős–Rényi random graphs

The results for the Erdős–Rényi graphs are reported in Table 1. The ILP solver was able to find the optimal solution within the time limit for 22 instances (45% of the cases).

The greedy algorithm missed the optimal solution in 28 cases. So it reported the optimal value as upper bound in 43% of the cases. For 20 graphs it missed the optimum

\(^1\) https://sites.google.com/site/ucinetsoftware/datasets/.

\(^2\) http://networkrepository.com/.
Table 1 Numerical results for the Erdős–Rényi random graphs, time is given in seconds

Graph	Exact Value	Greedy Value	Greedy (AddOne) Value	Locally greedy Value
n	m	Time	Time	Time
-------	-------------	--------------	------------------------	----------------------
10	9	0.004	0.004	0.003
10	18	0.004	0.004	0.004
10	30	0.007	0.002	0.002
10	36	0.011	0.004	0.004
20	37	0.063	0.009	0.008
20	76	0.073	0.011	0.011
20	114	0.767	0.01	0.011
20	156	76.422	0.03	0.027
30	87	89.274	0.031	0.031
30	174	3.258	0.019	0.019
30	261	2.198	0.016	0.015
30	348	3.259	0.02	0.018
40	156	76.422	0.03	0.027
40	312	89.274	0.031	0.031
40	468	17.424	0.039	0.037
40	624	4.086	0.036	0.037
50	245	208.332	0.056	0.051
50	490	1169.8	0.059	0.052
50	735	832.257	0.068	0.059
50	1000	18.231	0.061	0.057
60	354	> 3600	0.092	0.083
60	708	> 3600	0.106	0.096
60	1062	> 3600	0.111	0.097
60	1416	429.412	0.104	0.101
70	483	> 3600	0.131	0.121
70	966	> 3600	0.164	0.139
70	1449	> 3600	0.156	0.152
70	1932	> 3600	0.144	0.142
80	632	> 3600	0.193	0.181
80	1264	> 3600	0.235	0.208
80	1896	> 3600	0.242	0.215
80	2528	> 3600	0.225	0.214
90	801	> 3600	0.277	0.261
90	1602	> 3600	0.331	0.295
90	2403	> 3600	0.347	0.316
90	3204	> 3600	0.319	0.302
100	990	> 3600	0.375	0.348
with one more vertex, and for 7 graphs with two more vertices in the minimal geodetic set. On the other hand, it found a better solution in one case than the reported upper bound by Gurobi. Comparing the two versions of the greedy algorithm: in 38 cases they reported the same values, AddOne=1 resulted in better upper bounds only for 2 input graphs, while the default version gave better upper bounds in 9 cases.

The locally greedy algorithm reported the optimal solution in 22 cases (45% of the cases). In 16 cases the upper bound missed the optimal solution with one more vertex, in 6 cases with two more vertices and in 5 cases with three or more vertices.

Comparing the greedy algorithm with the locally greedy algorithm: the two algorithms reported the same upper bound in 32 cases. In 7 cases locally greedy algorithm gave better upper bound, while in 10 cases the greedy algorithm was closer to the optimal solution.

The last line of Table 1 reports the mean values for the obtained bounds of the geodetic number as well as the average execution times. Although the differences are really small, the greedy algorithm is the best in getting good upper bounds, whereas the locally greedy method was the fastest one for the Erdős–Rényi random graphs.

3.2.3 Watts-Strogatz graphs

The results for the Watts–Strogatz graphs are shown in Table 2. The exact method ran out of time in 23 instances, so it was only able to solve the problem in 53% of the cases.

The greedy algorithm obtained the same value as the exact method in 29% of the cases (for 14 graphs). When it did not find the optimal (or best reported) value, it gave +1 for 25 graphs and +2 for 10 graphs.
Table 2 Numerical results for the Watts–Strogatz random graphs, time is given in seconds

Graph n	Exact Value	Exact Time	Greedy Value	Greedy Time	Greedy (AddOne) Value	Greedy (AddOne) Time	Locally greedy Value	Locally greedy Time
10	9	5	0.008	5	0.003	5	0.003	5.002
10	18	3	0.013	3	0.004	3	0.004	3.003
10	30	3	0.012	3	0.004	3	0.004	3.003
10	36	2	0.007	2	0.001	2	0.001	2.001
20	37	5	0.102	6	0.011	6	0.008	6.007
20	76	5	0.512	6	0.011	6	0.011	6.008
20	114	4	0.477	4	0.009	4	0.008	4.006
20	152	4	0.728	4	0.011	5	0.011	5.007
30	87	7	2.294	7	0.019	7	0.018	9.013
30	174	6	6.423	6	0.02	6	0.02	7.011
30	261	5	3.852	5	0.022	5	0.019	5.012
30	348	4	1.052	4	0.019	4	0.018	4.006
40	156	7	20.866	9	0.036	9	0.032	10.018
40	312	6	106.294	6	0.035	9	0.032	8.019
40	468	4	35.792	4	0.038	4	0.035	5.015
40	624	3	2.963	4	0.035	5	0.034	3.011
50	245	7	82.019	8	0.054	8	0.047	11.023
50	490	≤ 7	> 3600	9	0.067	9	0.058	9.024
50	735	5	255.426	6	0.072	6	0.063	6.019
50	1000	4	4.742	5	0.059	5	0.058	5.017
60	354	9	771.2	10	0.094	11	0.085	12.031
60	708	≤ 7	> 3600	9	0.102	9	0.094	9.031
60	1062	5	561.631	7	0.107	8	0.1	6.026
60	1416	4	10.923	5	0.097	5	0.095	5.021
70	483	≤ 8	> 3600	10	0.138	9	0.126	11.035
70	966	≤ 7	> 3600	9	0.161	9	0.137	9.037
70	1449	≤ 5	> 3600	6	0.157	6	0.141	6.026
70	1932	4	28.026	5	0.148	5	0.137	5.024
80	632	≤ 9	> 3600	10	0.208	10	0.183	13.047
80	1264	≤ 8	> 3600	9	0.238	10	0.207	10.048
80	1896	≤ 5	> 3600	7	0.239	7	0.216	7.042
80	2528	4	390.748	5	0.213	5	0.208	5.028
90	801	≤ 10	> 3600	11	0.276	13	0.265	13.058
90	1602	≤ 8	> 3600	9	0.336	9	0.286	10.061
90	2403	≤ 6	> 3600	7	0.344	7	0.311	7.049
Table 2 continued

Graph	Exact Value	Time	Greedy Value	Time	Greedy (AddOne) Value	Time	Locally greedy Value	Time	
90	3204	4	106.156	6	0.327	6	0.302	5	0.041
100	990	≤ 11	> 3600	11	0.371	13	0.343	15	0.082
100	1980	≤ 8	> 3600	9	0.472	9	0.387	9	0.068
100	2970	≤ 6	> 3600	7	0.452	7	0.417	7	0.059
100	3960	4	350.92	6	0.415	6	0.398	6	0.043
115	1638	≤ 13	> 3600	14	0.614	14	0.574	15	0.106
115	3277	≤ 8	> 3600	9	0.715	9	0.648	9	0.091
115	4916	≤ 5	> 3600	6	0.693	6	0.645	6	0.071
135	2261	≤ 14	> 3600	15	0.927	16	0.832	15	0.135
135	4522	≤ 7	> 3600	9	1.112	9	0.952	9	0.116
135	6783	≤ 5	> 3600	6	1.065	6	0.997	6	0.086
150	2793	≤ 13	> 3600	14	1.287	16	1.164	15	0.183
150	5587	≤ 8	> 3600	8	1.497	8	1.338	9	0.141
150	8381	≤ 5	> 3600	6	1.502	6	1.411	6	0.106
Average	6.265	1745.78	7.163	0.303	7.45	0.28	7.673	0.043	

The best results are highlighted in bold.

In 38 cases the two versions of the greedy algorithm reported the same values, AddOne=1 resulted in better upper bounds in one case only, while the default version gave better upper bounds 10 times.

The locally greedy algorithm reported the optimal solution in 8 cases. In 22 cases the upper bound missed the optimal solution with one more vertex, in 12 cases with two more vertices and in 7 cases with three or more vertices.

The greedy algorithm and the locally greedy algorithm reported the same upper bound in 29 cases, the locally greedy algorithm gave better upper bound in 3 cases, while the default version gave better upper bound in 17 cases.

Regarding the average performance, which is reported in the last line of Table 2, the default greedy algorithm was the best with respect to the upper bound, while the locally greedy approach was the quickest for the Watts–Strogatz random graphs.

3.2.4 Barabási-Albert graphs

Finally, for the Barabási–Albert graphs the computational results are reported in Table 3. Gurobi was able to find the optimal solution within the time limit for 25 instances (51% of the cases). The greedy algorithm was not able to obtain the same value as the exact method in 31 cases, meaning a 37% success rate. For 21 graphs it reported +1, for 8 graphs +2 and for one graph +3 compared to the value obtained by the exact method. For one graph instance it found better upper bound than Gurobi.

By comparing the two versions of the greedy algorithm: in 29 cases they reported the
Table 3 Numerical results for the Barabási–Albert random graphs, time is given in seconds

Graph	Exact	Greedy	Greedy (AddOne)	Locally greedy				
	Value	Time	Value	Time	Value	Time	Value	Time
10	9	6	8	0.004	6	0.004	6	0.002
10	18	4	4	0.007	4	0.004	4	0.001
10	30	4	4	0.007	4	0.004	4	0.002
10	36	3	3	0.009	3	0.002	3	0.001
20	37	7	7	0.042	7	0.012	7	0.011
20	76	5	6	0.058	6	0.011	6	0.009
20	114	4	5	0.176	5	0.012	5	0.012
20	152	3	3	0.046	3	0.008	3	0.007
30	87	9	10	0.269	12	0.02	11	0.011
30	174	6	7	0.382	7	0.02	8	0.017
30	261	5	5	0.995	5	0.016	5	0.015
30	348	3	4	0.724	4	0.019	4	0.019
40	156	10	11	20.117	12	0.032	12	0.033
40	312	7	10	4.014	10	0.038	10	0.035
40	468	5	7	9.844	7	0.037	7	0.034
40	624	4	4	1.955	4	0.036	4	0.035
50	245	11	12	6.754	12	0.064	12	0.051
50	490	8	10	197.846	10	0.063	9	0.056
50	735	5	7	58.891	7	0.067	8	0.061
50	1000	4	6	12.052	6	0.059	6	0.053
60	354	11	12	>3600	12	0.097	12	0.092
60	708	8	10	>3600	10	0.103	10	0.096
60	1062	6	6	645.853	6	0.101	7	0.094
60	1416	4	4	26.435	4	0.092	4	0.089
70	483	11	11	>3600	11	0.142	14	0.129
70	966	9	11	>3600	11	0.164	11	0.139
70	1449	6	6	>3600	6	0.151	6	0.135
70	1932	4	5	67.771	5	0.146	5	0.137
80	632	11	11	>3600	11	0.207	12	0.187
80	1264	9	9	>3600	9	0.224	9	0.203
80	1896	6	7	>3600	7	0.231	7	0.208
80	2528	4	5	132.305	5	0.217	5	0.207
90	801	13	14	>3600	14	0.305	17	0.283
90	1602	9	10	>3600	10	0.315	11	0.281
90	2403	6	7	>3600	7	0.334	8	0.311
90	3204	4	5	713.099	5	0.305	5	0.283
90	3904	3	3	>3600	3	0.319	3	0.284
same values, AddOne=1 resulted in better upper bound in 2 cases, while the default version gave better upper bounds 18 times.

The locally greedy algorithm achieved the optimal solution in 10 cases. In 19 cases the upper bound missed the optimal solution with one more vertex, in 10 cases with two more vertices and in 10 cases with three or more vertices.

The default version of greedy algorithm and locally greedy algorithm reported the same upper bound in 25 cases. In 4 cases locally greedy algorithm gave better upper bound, whereas in 20 cases the default version was better.

The last line of Table 3 reports the average performances. Similarly to the other two types of random graphs, the default greedy algorithm is the best one for obtaining upper bound for the geodetic number, and the locally greedy algorithm can do this the fastest for the Barabási–Albert random graphs.

3.3 Discussion of the results on larger graph instances

It is obvious from the values reported in Table 4 that ILP can take many hours to get the exact geodetic number for graphs with thousands of nodes and edges, while our proposed algorithms were able to obtain acceptable upper bounds in reasonable time. Note that for this set of graphs we did not use any time limit for Gurobi. Even for the largest graph instance (ia-email-univ) both variants of the greedy algorithm were able to report a slightly worse upper bound than the exact value in less than 700 s. Although the locally greedy algorithm was the fastest, for the larger graphs it missed the upper bound by a much larger margin than the greedy method. This trend can also be seen in the last line of Table 4, where the average performances are reported.
Table 4 Numerical results for real-world graphs, time is given in seconds, unless indicated otherwise

Graph Name	Exact	Greedy	AddOne	Locally greedy
	Value	Value	Value	Value
	Time	Time	Time	Time
Karate	34	78	16	0.06
Mexican	35	117	7	0.21
Sawmill	36	62	14	0.09
Chesapeake	39	170	5	0.12
Ca-netscience	379	914	253	37m
Bio-celegans	453	2025	172	1h
Rt-twitter-copen	761	1029	459	6h
Soc-wiki-vote	889	2914	275	14h
Ia-email-univ	1133	5451	244	16h
Average	160.6	4h	162.7	122.1

4 Conclusions

Given the fact that the graph geodetic number problem is NP-hard, it is desirable to establish efficient algorithmic upper bounds which can provide feasible solutions of acceptable quality and reasonable running time. We have proposed greedy type approaches and experimentally shown that these algorithms can determine such upper bounds. Their running time can be a small fraction of the time required to obtain the exact geodetic number.

Acknowledgements We thank our reviewers for their critical comments and valuable suggestions that highlighted important details and helped us in improving our paper. The project has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002), by Grant NKFIH-1279-2/2020 of the Ministry for Innovation and Technology, Hungary and by the Grant SNN-135643 of the National Research, Development and Innovation Office, Hungary.

Funding Ministry for Innovation and Technology, Hungary.

References

Ahangar HA, Fujie-Okamoto F, Samodivkin V (2016) On the forcing connected geodetic number and the connected geodetic number of a graph. Ars Comb 126:323–335
Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97
Atıcı M (2002) Computational complexity of geodetic set. Int J Comput Math 79(5):587–591
Brešar B, Klavžar S, Horvat AT (2008) On the geodetic number and related metric sets in cartesian product graphs. Discret Math 308(23):5555–5561
Chartrand G, Harary F, Zhang P (2002) On the geodetic number of a graph. Netw: Int J 39(1):1–6
Erdős P, Rényi A (1959) On random graphs. Publ Math 6:290–297
Fourer R, Kernighan B (2002) AMPL: a modeling language for mathematical programming. Duxbury Press
Hansen P, van Omme N (2007) On pitfalls in computing the geodetic number of a graph. Optim Lett 1(3):299–307
Harary F, Loukakis E, Tsouros C (1993) The geodetic number of a graph. Math Comput Model 17(11):89–95
Manuel P, Klavžar S, Xavier A, Arokiaraj A, Thomas E (2018) Strong geodetic problem in networks. Discuss Math Graph Theory 40:307–321
Soloff JA, Márquez RA, Friedler LM (2015) Products of geodesic graphs and the geodetic number of products. Discuss Math Graph Theory 35(1):35–42

Wang FH, Wang YL, Chang JM (2006) The lower and upper forcing geodetic numbers of block-cactus graphs. Eur J Oper Res 175(1):238–245

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.