Radiative transfer meets Bayesian statistics: where does a galaxy’s \([\text{C} \text{II}]\) emission come from?

G. Accurso1*, A. Saintonge1, T.G. Bisbas2,3, S. Viti1.

1Dept of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
2Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany.
3Department of Astronomy, University of Florida, Gainesville, FL 32611, USA.

March 8, 2022

\textbf{ABSTRACT}

The \([\text{C} \text{II}]\) 158\,\mu m emission line can arise in all phases of the ISM, therefore being able to disentangle the different contributions is an important yet unresolved problem when undertaking galaxy-wide, integrated \([\text{C} \text{II}]\) observations. We present a new multi-phase 3D radiative transfer interface that couples \textsc{starburst99}, a stellar spectrophotometric code, with the photolysis and astrochemistry codes \textsc{mocassin} and 3D-PDR. We model entire star forming regions, including the ionised, atomic and molecular phases of the ISM, and apply a Bayesian inference methodology to parametrise how the fraction of the \([\text{C} \text{II}]\) emission originating from molecular regions, \(f_{\text{[CII],mol}}\), varies as a function of typical integrated properties of galaxies in the local Universe. The main parameters responsible for the variations of \(f_{\text{[CII],mol}}\) are specific star formation rate (SSFR), gas phase metallicity, H\textsc{II} region electron number density \((n_e)\), and dust mass fraction. For example, \(f_{\text{[CII],mol}}\) can increase from 60\% to 80\% when either \(n_e\) increases from \(10^{4.5}\) to \(10^{5.5}\) cm\(^{-3}\), or SSFR decreases from \(10^{-8.6}\) to \(10^{-10.6}\) yr\(^{-1}\). Our model predicts for the Milky Way that \(f_{\text{[CII],mol}}= 75.8 \pm 5.9\%\), in agreement with the measured value of 75\%. When applying the new prescription to a complete sample of galaxies from the Herschel Reference Survey (HRS), we find that anywhere from 60 to 80\% of the total integrated \([\text{C} \text{II}]\) emission arises from molecular regions.

\textbf{Key words:} ISM: molecules - (ISM:) photodissociation region (PDR) - ISM: structure - astrochemistry - infrared: ISM - infrared: galaxies

1 INTRODUCTION

The \([\text{C} \text{II}]\) 158\,\mu m emission of singly ionised carbon is one of the strongest cooling lines of the ISM, and can carry up to a few percent of the total far-infrared (FIR) energy emitted from galaxies. It correlates with the total molecular gas mass of galaxies \((M_{\text{H}_2})\), as measured from \(^{12}\text{CO}\) emission, and with the total star formation rate inferred from FIR luminosity. For these reasons, \([\text{C} \text{II}]\) is an important and widely used tracer of massive star formation in galaxies at both low and high redshifts (Stacey et al. 2010; de Looze et al. 2011). Ionised carbon \((\text{C}^+\)) can be found throughout the ISM, from photodissociation regions (PDRs) to diffuse ionised and atomic regions, owing to the fact that carbon has a first ionisation potential of 11.3\,eV, lower than hydrogen’s (Kaufman et al. 1999; Kaufmann et al. 2003). While \([\text{C} \text{II}]\) originates in good part from PDRs, explaining the correlation with \(M_{\text{H}_2}\) and SFR, observations have shown that a non-negligible fraction of the emission can originate from the ionised and diffuse atomic gas components where massive star formation does not occur (Heiles et al. 1994; Vasta et al. 2010; Langer et al. 2010; Pineda et al. 2013; Kramer et al. 2013).

The CO molecule, as a tracer of the cold molecular phase of the ISM, suffers from the opposite problem: in low metallicity environments, the CO molecule can be photodissociated by UV radiation while \(H_2\) self-shields and survives, resulting in the presence of molecular gas that is missed by CO observations. For example, Velusamy et al. (2010) find that \(\sim 25\%\) of the molecular gas in the Milky Way may be CO-dark in such a way. If it were possible to discern the contribution of the different ISM phases to the total \([\text{C} \text{II}]\) emission, then the combination of CO and \([\text{C} \text{II}]\) measurements could increase significantly the accuracy of \(M_{\text{H}_2}\) calculations (Mookerjea et al. 2016). There is also a new interest in using \([\text{C} \text{II}]\) as a probe of the ISM in \(z > 5\) galaxies and up to well into the epoch of reionisation; such studies are now made increasingly possible with facilities such as ALMA and NOEMA (e.g. Ota et al. 2014; Riechers et al. 2014; Maiolino et al. 2015). In this context also, disentangling the contributions from the different phases of the ISM is of significant importance, yet this problem remains unsolved.

Solving this problem requires one of two things: either high spatial resolution observations of several FIR lines such as \([\text{N} \text{II}]122.205\,\mu m\) and \([\text{O} \text{I}]63.145\,\mu m\) in addition to \([\text{C} \text{II}]\), or a self-consistent model of the ISM on galaxy-wide scales, including PDRs, ionised and neutral diffuse regions. Since such detailed observations are only available for a handful of very nearby galaxies, we focus here on the modelling ap-
proach. Numerical codes treating PDRs have been around for decades and have now grown into complex models capable of solving the thermal balance equations and chemical reactions occurring within these regions (Viti 2013). Some codes have aimed to include all the small scale physics to describe the chemical and thermal processes at work in the gas and grains, while others focus on treating the gas-grain chemistry while approximating other processes. Various codes treating one dimensional PDRs have been developed in the past and only recently three-dimensional codes have emerged which can treat PDRs of an arbitrary density distribution (Bisbas et al. 2012). Furthermore, calculations typically treat the ionised and PDR regions separately (Röllig et al. 2006), which is problematic for emission lines such as [CII] that originate in both these phases of the ISM and can lead to overestimations of line intensities and incorrect interpretations of the physical conditions in the ISM (e.g. hydrogen column density and incident ionisation field).

Photoionisation codes, used to model the HII regions, have likewise been around for several decades now. They typically work by solving the equations of radiative transfer while making assumptions concerning spherical symmetry. The earliest HII region models contained the basic physics of ionisation, recombination of hydrogen and helium, thermal balance, and the emission of photons from the nebula (Flower 1968), with subsequent codes having seen the addition of other important physical processes such as charge exchange and dielectric recombination, and the consideration of a wider range of ions. More recently, three dimensional codes have been developed to handle varying geometries using a Monte-Carlo approach to solve the 3D equations of radiative transport (Wood et al. 2004).

Although numerical models for the individual components of the ISM are aplenty, codes which can simulate all aforementioned phases of the ISM consistently are not so common. One very successful example is CLOUDY (Ferland et al. 2013), a plasma simulation which models the ionisation, chemical and thermal state of the gas that may be exposed to an external radiation field coming from a nearby heating source such as star clusters. The code works by predicting the spectrum from this non-equilibrium gas and simulating its level populations as well as its ionisation, molecular and thermal states, over a wide range of densities and temperatures. However, CLOUDY is intrinsically a 1D code, and involves assumptions concerning the thermal balance in PDRs. Both of these limitations should be lifted to accurately simulate the entire ISM of star-forming regions and galaxies. Indeed, it has been shown that results from 1D and 3D simulations vary depending on the specific physical conditions (Ercolano et al. 2012). An example of a successful attempt at building such a 3D, multi-phase radiative transfer code is TORUS-3DPDR (Bisbas et al. 2015), a Hydrodynamics and Monte Carlo radiative transfer code. TORUS-3DPDR does not use the complexity of MOCASSIN to calculate particular photoionisation calculations and therefore won’t be as accurate.

In this paper, we present a new modelling interface which combines self-consistently state of the art astrochemistry and photoionisation codes: 3D-PDR, a three-dimensional code for treating PDRs and molecular regions, MOCASSIN, a full 3D Monte Carlo photoionisation code, and STARBURST99, a stellar population synthesis code. This integrated code is used to simulate entire star forming regions, including the ionised, neutral and molecular phases of the ISM, with the aim of parametrising how the fraction of the total [CII] emission originating from molecular regions, \(f_{\text{[CII],mol}} \) varies as a function of the physical conditions in the ISM. A Bayesian Inference technique is used to solve this complex multi-parameter problem, allowing us to derive a series of prescriptions to calculate the contributions of the different phases of the ISM to the total integrated [CII] emission in extragalactic sources.

In Sections 2 and 3 we provide further technical details concerning the codes and the modelling strategy, while the choice of input parameters is explained in Section 4. The results of the modelling and of the Bayesian analysis to produce scaling relations for \(f_{\text{[CII],mol}} \) are presented in Sections 5 and 6, respectively. These prescriptions are validated through comparisons with observations in Sections 6.5. Finally, we conclude in Section 7 with a concise presentation of our new prescriptions to infer \(f_{\text{[CII],mol}} \) from galaxy-integrated quantities.

Throughout this paper we use a standard flat \(\Lambda \)CDM cosmology with \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \) and the IMF from Chabrier (2003).

2 OVERVIEW OF NUMERICAL CODES

We here briefly describe each of the codes used within this work; for more detailed explanations, see the references provided for each code.

2.1 The starburst99 code

STARBURST99 (Leitherer et al. 1999, 2010; Vázquez & Leitherer 2005; Conroy 2013), hereafter sb99, is a multi-purpose evolutionary synthesis code which models the spectrophotometric properties of unresolved stellar populations, and makes predictions for various observables, such as spectral energy distributions, supernovae rates, and mass loss rates. The code simulates a population of stars based on an input metallicity and stellar initial mass function (IMF), and evolves them across the Hertzsprung-Russell (HR) diagram. The code creates a grid covering the HR diagram and integrates over it with weights assigned according to properties of the stellar population to produce the integrated spectrum for the population. sb99 can thus provide the relation between the stellar mass (\(M_* \)) and luminosity (\(L_* \)) of the stellar population at any time interval; see Conroy (2013) for a comprehensive review of the synthesis technique.

2.2 The mocassin code

The numerical code MOCASSIN (MOnte Carlo SimulationS of Ionised Nebulae, Ercolano et al. (2003)) is a three-dimensional Monte Carlo (MC) radiative transfer code which operates on a non-uniform cartesian grid. It was originally intended as a tool to construct realistic gas models of planetary nebulae, but has since evolved to incorporate dust radiative transfer (Ercolano et al. 2005) and is now used to simulate ionised gas emission on galaxy-wide scales (Karczewski et al. 2013). Photoionization calculations are performed using an iterative Monte Carlo photon energy packet propagating routine, based on the methods presented by Lucy (1999). Photons are emitted from the ionising source in random but isotropic directions, and propagate for a path length, \(l \), determined by a randomly-selected optical depth (Harries & Howarth 1997). An abundance file is used as an input, providing the chemical abundance of each species.
along with an input SED and files specifying the dust properties, opacities, cross-sections etc while the dust to gas ratio is also specified as an input parameter. Given these, the code self-consistently solves the radiative transfer equations and calculates the gas and dust temperatures, ionisation degree, and the overall emergent SED of the full dust, gas and stars network.

2.3 The 3D-PDR code

The 3D-PDR code (Bisbas et al. 2012) is a three-dimensional astrochemistry code which simulates PDRs of arbitrary density distribution. It solves the chemistry and the thermal balance self-consistently in each computational element of a given cloud and uses the chemical model features of Bell et al. (2006). Like MOCASSIN, the code has been used in various extragalactic applications such as modelling molecular line intensities in NGC 4038 (Bisbas et al. 2014) and neutral carbon mapping (Offner et al. 2014).

3D-PDR uses a ray-tracing scheme based on the HEALPix (Górski et al. 2005) package which calculates properties along a given line of sight. This allows for the quick calculation of a) column densities of species along a particular direction b) the attenuation of the Draine field in the PDR and c) the propagation of the FIR/submm line emission out of the PDR.

The reaction rates within the chemical network are taken from the UMIST 2012 chemical network database in McElroy et al. (2013). Extinction within the cloud is calculated assuming a grain size of 0.1µm, albedo of 0.7 and a mean photon scattering by grains of q = 0.9. Emission and fine structure lines are calculated using the escape probability method of de Jong et al. (1980) and non-LTE level populations determined from the collisional rate coefficients explained in Bisbas et al. (2012).

Moreover, for the H2 and CO photodissociation rates, the code adopts the treatments of Lee et al. (1996) and van Dishoeck & Black (1988). To account for the shielding of CI populations determined from the collisional rate coefficients presented in McElroy et al. (2013). Extinction within the cloud is calculated assuming a grain size of 0.1µm, albedo of 0.7 and a mean photon scattering by grains of q = 0.9. Emission and fine structure lines are calculated using the escape probability method of de Jong et al. (1980) and non-LTE level populations determined from the collisional rate coefficients explained in Bisbas et al. (2012).

3 SELF-CONSISTENT COUPLING METHOD

To self-consistently couple all three of the above codes it is important to use as many outputs from one model as inputs for subsequent models, ensuring consistency within the full simulation. This coupling technique was first attempted in Vasta (2010) to model carbon and oxygen emission in nearby galaxies. We describe here how each code is numerically coupled to the other models, with a detailed discussion of the specific input parameters and their values presented in Section 4. Spherical symmetry is assumed throughout this paper, in all phases of the ISM and for all the simulated 3D clouds. Although MOCASSIN and 3D-PDR are both fully capable of handling non-uniform densities, this will not be used here.

3.1 Coupling Starburst99 to Mocassin

A stellar radiation density field, coming from the stellar population within our simulated star forming regions, is created using sb99. From this output sb99 stellar spectrum, the luminosity, temperature and number of ionising photons of the source are calculated; these quantities are then used as input parameters for the 3D photoionisation code MOCASSIN. In this way, the radiation field is coupled with the photoionisation in the HII region.

3.2 Coupling Mocassin to 3D-PDR

Henney et al. (2005) showed how dynamical processes, such as gas flows and thermal gas pressure, link the HII and PDR regions, which are simulated here by MOCASSIN and 3D-PDR, respectively. The physical properties of the PDR are a consequence of the transport of gas, dust and radiation through the ionised region, while the converse is also true. Other than in the case of a very fortuitous choice of initial conditions, simply matching boundary conditions between quantities such as temperature and density, of the two regions, can lead to discontinuities in the thermal and dynamical pressure across the two ISM phases. Only by physically coupling the two regions is it possible to get an accurate representation of the multi-phase ISM; this modelling philosophy is at the heart of this work as we aim to self-consistently calculate the temperature, ionisation, and density at the face of PDR regions.

The output of the MOCASSIN code is the SED of the ionised gas, dust and stars emerging from the HII region, along with the flux in the most important far infrared fine structure emission lines from the ionised gas, such as [CI]. We calculate the strength of the radiation field, G0, at the ionisation front between the HII and neutral gas regions by integrating the MOCASSIN SED in the far-UV range between 912 to 2400Å, which is the classical Draine field definition (Draine 1978). This value of G0 is used as an input into 3D-PDR. We also need to ensure that MOCASSIN only simulates the gas up to the edge of the ionised region and does not leak over into the neutral regions (which 3D-PDR will simulate). To this end, we first calculate the outer radius of the ionised cloud simply by running MOCASSIN to a very large radius, and then inspecting at which radius the ionised Hydrogen abundance is less than 10%, ensuring the end of the ionised region has been reached; this is taken to be the outer radius of the ionised part of the star forming region. The inner radius of the PDR is equal to the outer radius of the ionised region, ensuring that the PDR is adjacent to the ionised region (see Section 4.2 for further details).

We further link the HII and PDR regions by assuming constant total pressure at the interface, ensuring the temperature and density of the gas and dust between the two regions are self-consistently calculated. Constant pressure is an approximation to the actual flow which has been assumed by previous authors such as Carral et al. (1994), Abel et al. (2005) and Ferland et al. (2013). Pressure originates from the stellar continuum and internally generated light, gas pressure, and sometimes from turbulence, ram, and...
magnetic pressures when appropriate (Baldwin et al. 1991; Henney et al. 2005). We are only interested in terms which change across the boundary and hence focus on the gas and dust terms as all others remain constant. The pressure terms of interest originate from internal radiation, from the gas and dust, and the thermodynamic gas pressure. We assume that the gas and dust emission is optically thick as we are only interested in solving the equation at the boundary between the two regions. Therefore, we set up an equation of pressure balance as follows:

\[
\frac{n_{\text{HI}} k_{\text{b}} T_{\text{HI}}^{4}}{n_{\text{HII}}} + \frac{\epsilon_{\text{gas}} \sigma_{\text{b}} T_{\text{gas}}^{4}}{c} = \frac{n_{\text{PDR}} k_{\text{b}} T_{\text{PDR}}^{4}}{n_{\text{HII}}} + \frac{\epsilon_{\text{dust}} \sigma_{\text{b}} T_{\text{dust}}^{4}}{c} \tag{1}
\]

where \(n_{\text{HII}} \) and \(n_{\text{PDR}} \) are the electron number densities in the HII and PDR region, respectively, \(k_{\text{b}} \) is the Boltzmann Constant, \(\sigma_{\text{b}} \) is the Stefan Boltzmann constant, while \(\epsilon_{\text{gas}} \) and \(\epsilon_{\text{dust}} \) are the emissivities of the gas and dust species. \(T_{\text{HI}} \) and \(T_{\text{HII}} \) are the gas and dust temperatures at the edge of the HII region, as calculated from the mocassin output. Since \(n_{\text{HII}} \) is one of the input parameters of our code, the above equation needs to be solved for \(n_{\text{PDR}} \), \(T_{\text{PDR}} \) and \(T_{\text{dust}} \).

Motivated by dust temperature continuity across the two regions obtained in other self-consistent calculations such as cloudy (Ferland et al. 2013) and torus-3dpdr (Bisbas et al. 2015) we set

\[
T_{\text{dust}} = T_{\text{PDR}}. \tag{2}
\]

We further assume the same dust species in both regions, leading to the cancellation of the terms describing radiation pressure from dust emission in Equation 1. The equation of pressure balance solely for the gas remains, such that:

\[
\frac{n_{\text{HI}} k_{\text{b}} T_{\text{HI}}^{4}}{n_{\text{HII}}} + \frac{\epsilon_{\text{gas}} \sigma_{\text{b}} T_{\text{gas}}^{4}}{c} = n_{\text{PDR}} k_{\text{b}} T_{\text{PDR}}^{4} + \frac{\epsilon_{\text{gas}} \sigma_{\text{b}} T_{\text{gas}}^{4}}{c} \tag{3}
\]

Due to the low emissivity of gas we make the approximation that the radiation pressure caused by photons emitted from the gas can be ignored and so this term is set to zero. Therefore, to set the conditions in the PDR, caused by the ionised region, we are left to solve:

\[
n_{\text{HII}} k_{\text{b}} T_{\text{HII}}^{4} = n_{\text{PDR}} k_{\text{b}} T_{\text{PDR}}^{4}. \tag{4}
\]

The temperature at the surface of the PDR is dependent on its hydrogen number density, \(n_{\text{PDR}} \), therefore the above equation can be solved using a newton-raphson numerical method to provide the value of the hydrogen number density of the PDR given the conditions in the HII region\(^1\), ensuring self-consistency.

Overall our method leads to dust temperature continuity between the two regions, and also ensures gas pressure equilibrium. The resulting temperature and density profiles of the gas and dust across the two regions are consistent with profiles obtained in cloudy (Ferland et al. 2013) and torus-3dpdr (Bisbas et al. 2015).

4 MODEL PARAMETER SPACE

The main purpose of this work is to provide a prescription to calculate the fraction of the total integrated [CII] emission of a galaxy emanating from the molecular phase of the ISM, \(f_{\text{[CII],mol}} \), from typical extragalactic observables such as stellar mass, SSFR and metallicity. Therefore, we are interested in running our self-consistent modelling interface over an input parameter space corresponding to meaningful observables on galaxy wide scales. To this end, parameters which do not correspond to galactic observables shall be kept constant and typical values shall be used and taken from the literature. Before presenting the results of the modelling, we describe in this section the parameters chosen for the different codes, and the final seven input parameters that are required to run the full coupled model.

4.1 Stellar population parameters in starburst99

We simulate the total stellar SED as originating from a single ionising source (even though it physically originates from multiple sources) for simplicity and ease. Karczewski et al. (2013) have compared the outputs of mocassin when the ionising flux is produced by a single source or by 100 sources distributed uniformly within a sphere of 0.2 kpc. They find the results to vary only at small radii; outside of the inner radius, the gas effectively sees a point source. As we are here integrating far out of the cloud, this simplifying assumption will not affect our results.

The specific SED produced by sb99 depends on assumptions made regarding the star formation history, IMF, and metallicity of the stellar population. The code allows input stellar metallicities of 0.02, 0.2, 1 or 2.5 Z$_{\odot}$, and either periods of constant star formation or instantaneous bursts. Although the stellar metallicity is not a variable parameter in this work, it is undoubtedly correlated with the gas-phase metallicity, which will be a variable parameter in our models. Within these constraints, we build the star formation histories of our model galaxies as follows: (1) a first instantaneous burst of star formation at approximately the Hubble time with the total stellar mass produced in this burst given as an input parameter, and a stellar metallicity of 0.02Z$_{\odot}$ as the

\(^1\) We iteratively solve Equation 4 up to a 1% accuracy level.
metal content of the early universe is negligible, (2) a period of quiescence followed by a secondary burst, with the age of this second burst another input parameter, and (3) a period of constant star formation until the present day, with this rate of star formation a third input parameter. Due to metal enrichment of the gas from previous supernovae, we set the stellar metallicity of phases (2) and (3) to be the available input parameter greater than the input gas-phase metallicity, e.g. for a gas-phase metallicity of 0.65Z⊙ we would set the stellar metallicity to 1Z⊙. The mass lost to supernovae and stellar winds in the initial burst is calculated and fed back into the secondary burst, ergo the input stellar mass parameter for phase (2), ensuring that the total stellar mass of the star forming region (one of the input parameters) is successfully produced by the present day. We do this in keeping with the current paradigm that star formation is regulated by outflows from stellar winds and supernovae (Davé et al. 2011, 2012; Walch 2016).

SB99 only allows the use of a piecewise power law IMF and so we build one which closely matches the IMF of Chabrier (2003). We use exponents of 2.3 and 1.3 for IMF boundaries of 1.0 < M∗/M⊙ < 100.0 and 0.1 < M∗/M⊙ < 1.0 respectively. The latter boundary exponent choice is equivalent to the IMF of Kroupa (2001), which is approximately equal to that of Chabrier (2003) as noted by Speagle et al. (2014). When running SB99, we use the Padova stellar evolution tracks, detailed in Fagotto et al. (1994), with thermally pulsating AGB stars and Pauldrach and Hiller model atmospheres. Figure 1 shows an example of a stellar SED produced by SB99 for such a star formation history, with the contribution of the three different phases also shown separately.

4.2 Ionised region parameters in MOCASSIN

The MOCASSIN simulations employ 3D spherically symmetric geometry, with the ionising source at the centre of the clouds. The inner radius of the ionised gas region is set to as close to zero as computationally possible. To determine the outer radius of the ionised gas region, we run MOCASSIN up to a large outer radius and calculate the radius at which the ionised hydrogen fraction drops below ten percent (this is the effective Strömgren sphere radius). We then take this calculated radius value and re-run MOCASSIN but now setting the outer radius to this calculated radius.

The ionisation rate and the dust mass fraction. The gas-phase metallicity is taken to be the same as the value selected for the ionised region. Abundances of all metals scale linearly with metallicity, and Table 1 summarises the initial chemical abundances used in both MOCASSIN and in 3D-PDR at solar metallicity. We use identical chemical abundances between the codes to maintain self-consistency and take the abundances at solar metallicity from Cormier et al. (2012).

Table 1. Gas-phase elemental abundances used in MOCASSIN and 3D-PDR, relative to total hydrogen number density, at solar metallicity. All these elements, except Hydrogen and Helium which are primordial in origin, scale linearly with metallicity.

Species	Gas-phase abundance
He/H	0.1
O/H	4.9 × 10^{-4}
N/H	6.9 × 10^{-5}
Ne/H	1.1 × 10^{-4}
S/H	8.1 × 10^{-6}
Ar/H	1.9 × 10^{-6}
C/H	3.6 × 10^{-4}
Si/H	4.8 × 10^{-6}
Mg/H	4.0 × 10^{-5}
Fe/H	3.6 × 10^{-6}

Hydrodynamical effects such as turbulence, shocks and magnetic fields are ignored in our simulations. The input stellar spectrum, the source luminosity and temperature are all taken from SB99. MOCASSIN calculates from them the number of ionising photons per second, Q_{phot}. The 3D grid used for the simulations has 15 × 15 × 15 resolution elements so as not to be too computationally expensive, while also ensuring no loss of detail via blending across cells. The two input parameters we are free to vary are the electron number density of the HII region, which takes typical values from 10^{5.5} to 10^{9} cm^{-3}, and the gas-phase metallicity which we vary between 0.2-1.1Z⊙. The metallicity determines the dust to gas ratio input as, to ensure consistency with 3D-PDR, we use the prescription by Leroy et al. (2011) (as discussed in 2.3). We use different grain properties for HII and PDR regions due to the different physical conditions found in these regions. Within MOCASSIN we use the standard silicate dust properties detailed in Draine & Lee (1984). For the PDR region we use a mixture of silicates + PAHs + graphite, due to the higher column densities, with graphite grains being the dominant dust species.

4.3 Photodissociation region parameters in 3D-PDR

For 3D-PDR, we consider a spherically symmetric shell of uniform density neutral and molecular gas, surrounding the ionised region. The inner radius of the PDR region is therefore the outer radius of the ionised region as calculated with MOCASSIN, and the outer radius and corresponding A_v is set by the dust mass fraction, M_{dust}/M*; we integrate out to a radius that is set by the dust mass budget available. We define the molecular region as the region where more than 1% of hydrogen is in molecular form, marking the beginning of the CO-dark phase. Geometrical dilution effects of the UV field are taken into account to obtain accurate 3D results. We assume a standard turbulent velocity of 1.5 km s^{-1}, while the hydrogen number density is self-consistently calculated (see Section 3.2). Therefore, the two input parameters we are free to vary for the PDR regions are the cosmic ray ionisation rate and the dust mass fraction. The gas-phase metallicity is taken to be the same as the value selected for the ionised region. Abundances of all metals scale linearly with metallicity, and Table 1 summarises the initial chemical abundances used in both MOCASSIN and in 3D-PDR at solar metallicity. We use identical chemical abundances between the codes to maintain self-consistency and take the abundances at solar metallicity from Cormier et al. (2012).

4.4 Summary of input parameters

Our objective is to provide a prescription for variations of f_{[CII],mol} in galaxy-integrated observations that can be applied to unresolved galaxy-wide observations. Therefore, we use as input parameters quantities that are motivated by galaxy-wide observations, where possible. Choices for all the input parameters of our multi-phase ISM code are justified here and summarised in Table 2.

- **Stellar mass** - We let the stellar mass of our simulated star-forming regions vary from 10^2 to 10^4 M⊙. These values are typical of star-forming regions within the Milky Way (Wright et al. 2010).

² This turbulence contributes a negligible amount to the total pressure between the two regions, and hence is excluded in Equation 1.
Table 2. Variable input parameters used in the fully coupled multi-phase code.

Input parameter	Minimum value	Maximum value	Number of Variations	Model
Gas-phase metallicity	0.20Z⊙	1.12Z⊙	4	MOCASSIN, 3D-PDR, sb99
Stellar mass of the cloud	10² M⊙	10⁴ M⊙	3	sb99
Stellar population age	10⁵ Myr	10⁹ Myr	3	sb99
HII region electron number density	10¹.⁵ cm⁻³	10³.⁰ cm⁻³	4	MOCASSIN
Cosmic ray ionisation rate	10⁻¹⁷ s⁻¹	10⁻¹⁴ s⁻¹	4	3D-PDR
Dust mass fraction	10⁻⁴	10⁻²	5	3D-PDR
Specific star formation rate	10⁻¹¹.⁵ yr⁻¹	10⁻⁹.⁵ yr⁻¹	3	sb99

- **Age of the secondary burst** - Since our choice of star formation histories is meant to reproduce a broad range of possible integrated population ages, we choose to probe a wide range for the time since the secondary burst, spanning over 1.5 dex from 10⁻² - 10¹.⁵ Myr.
- **Specific star formation rate** - Deep multi-wavelength extragalactic surveys have revealed a tight correlation between SFR and stellar mass for star-forming galaxies (e.g. Noeske et al. 2007; Elbaz et al. 2007; Daddi et al. 2007). This correlation is well-established in the local universe and up to z ~ 3 (e.g. Brinchmann et al. 2004; Peng et al. 2010; Reddy et al. 2012). We choose SSFRs in the range of 10⁻¹¹.⁵ - 10⁻⁹.⁵ yr⁻¹, typical of main sequence galaxies in the local universe, using the stellar mass of the star-forming regions for normalisation.
- **Gas-phase metallicity** - We use the mass metallicity relation from Tremonti et al. (2004) to guide this choice, and adopt a metallicity range of 0.2 - 1.12Z⊙ to reproduce conditions in local universe star-forming galaxies with M* > 10⁸ M⊙.
- **Electron number density of the HII region** - We choose to vary the hydrogen number density between 10¹⁻⁵ and 10⁻³.⁰ cm⁻³ based on the values calculated by Hunt & Hirashita (2009) for extragalactic HII regions.
- **Cosmic Ray Ionisation Rate** - In the local universe, this is known to be roughly 10⁻¹⁷ s⁻¹ - 10⁻¹⁶ s⁻¹ (Cummings 2015; Dalgarno 2006), but values can be larger by up to three orders of magnitude in galaxies with very large SFRs such as local ULIRGs and high-redshift star-forming galaxies (Papadopoulos 2010). We therefore explore a range of cosmic ray ionisation rates ranging from 10⁻¹⁷ to 10⁻¹⁴ s⁻¹ to allow us to also explore conditions typical of z ~ 2 galaxies.
- **Dust Mass Fraction** - We run models with the dust mass fraction (M_dust/M*) varying between 10⁻⁴ and 10⁻² based on the scaling relation between dust mass fraction and stellar mass derived from the galaxies in the Herschel Reference Survey (Boselli et al. 2010).

5 NUMERICAL RESULTS

To cover the full parameter space summarised in Table 2, we simulated a total of 8640 individual star forming regions. Of those, 8016 clouds fully converged to a solution achieving thermal equilibrium. The main quantity of interest in the context of this study is f_{[CII],mol}, the fraction of the total [CII] emission originating from the molecular regions. A quantitative analysis of the data requires a multi-dimensional hierarchical Bayesian inference method, which will be performed in Section 6.1. For now, we qualitatively investigate the dependence of f_{[CII],mol} on the input parameters of the model and explain the physics behind the trends which emerge.

5.1 Stellar mass and star formation rate

We first show in Fig. 2 how f_{[CII],mol} varies as a function of metallicity for three different values of stellar mass. At fixed mass and metallicity, the figure also shows the impact of a varying the dust mass fraction and SFR. In this example, the hydrogen number density, the cosmic ray ionisation rate and the age of the secondary burst of star formation are kept fixed. The figure shows that f_{[CII],mol} does not vary significantly with either stellar mass or metallicity. This is as expected because, as the stellar mass decreases, the number of ionising photons also decreases, reducing the overall size of the cloud. However, the relative sizes and densities of the HII to PDR regions will not change. By scaling down the stellar mass at the centre of each cloud we have simply scaled down the size of the cloud while maintaining the same physical structure throughout each cloud.

Figure 2 also shows that at fixed stellar mass, metallicity and dust mass fraction, an increase in SFR corresponds to a decrease in f_{[CII],mol}. This is because, at fixed dust mass, an increase in the star formation rate leads to an increase in the radius of the HII regions as more photoionising UV photons are available. More [CII] will therefore arise from the ionised regions versus the molecular regions, and hence f_{[CII],mol} decreases.

5.2 Age of secondary burst

The variations caused by the age of the secondary burst are of a similar nature to star formation rate. Star formation histories which involve a younger secondary burst provide more photoionising UV photons. Hence, the younger the age of the secondary burst, the more [CII] will emerge from the HII regions, as the Strömgren sphere radius increases. This can be seen in Fig. 3, with the mean value of f_{[CII],mol} increasing as the age of the secondary burst increases from 0.1 to 0.32 to 1.0 Gyr. This effect is less pronounced than that caused by variations in star formation rate, because the majority of UV photons are produced by the low level star formation happening at the present time rather than by the secondary burst (see Fig. 1). Interestingly though, the time since the last burst of star formation nonetheless has a detectable effect on f_{[CII],mol} variations.

5.3 Gas-phase metallicity

Metallicity is responsible for variations in a more complex manner, with two main effects competing for dominance. To investigate these two processes we refer to Figs. 2 and 3.

One could naively expect that by decreasing the amount of metals available throughout the whole system, that the abundance of carbon in the ionised, neutral and molecular
Disentangling C\textsc{ii} emission on galaxy-wide scales using a unified ISM model.

Figure 2. Variations of $f_{[\text{C\textsc{ii}}]}$ as a function of metallicity for three different stellar mass bins. In each panel the relation is shown for different values of the dust mass fraction (different colours) and SFR (different linestyles). The hydrogen number density, cosmic ray ionisation rate and age of the secondary burst of star formation are kept constant.

Figure 3. Variations of $f_{[\text{C\textsc{ii}}]}$ as a function of metallicity for three different ages for the secondary burst of star formation. In each panel the relation is shown for different values of the dust mass fraction (different colours) and SFR (different linestyles). The hydrogen number density, cosmic ray ionisation rate and stellar mass are kept constant.

regions would decrease in equal measure and hence no variations of $f_{[\text{C\textsc{ii}}]}$ should be seen because of metallicity (a similar argument to the lack of variations caused by stellar mass). However, within the ionised regions, the cooling rate is a function of metallicity; a decrease in metallicity leads to a lower cooling rate and therefore an increase in the size of the Strömgren sphere. Hence, from this first effect (the Cooling Rate effect, hereafter), we can expect that by decreasing metallicity there will follow a decrease of $f_{[\text{C\textsc{ii}}]}$.

However a second, more dominant effect, is the well-known photodissociation of CO into ionised carbon (The Photodissociation effect, hereafter). In low metallicity environments, FUV radiation penetrates further into the clouds leading to an enhanced abundance of ionised carbon in the molecular regions. The Photodissociation effect therefore has the opposite effect of increasing $f_{[\text{C\textsc{ii}}]}$ as metallicity decreases.

In different parts of parameter space, the Cooling Rate and the Photodissociation effects cancel each other out, leading to negligible variations of $f_{[\text{C\textsc{ii}}]}$ as a function of metallicity, as seen in Figs. 2 and Fig. 3. Under other circumstances, the Cooling Rate or the Photodissociation effect dominates, leading to positive or negative slopes in the $f_{[\text{C\textsc{ii}}]}$-$Z$ relation, respectively.

5.4 Electron number density of the ionised region.

An increase in the density of the ionised region (n_e) leads to no change on the C\textsc{ii} emission from this region as we’ve already reached the critical density for collisions with electrons, of ~ 50 cm$^{-3}$ (Goldsmith et al. 2012), which dominate in the H\textsc{ii} region. However, due to equilibrium, this leads to an increase in the density of the PDR allowing for an increase in the C\textsc{ii} emission from the molecular region, and correspondingly, an increase of $f_{[\text{C\textsc{ii}}]}$. This continues until we reach the critical density for collisions with hydrogen in the PDR, of $\sim 10^{3.5}$ cm$^{-3}$ (Goldsmith et al. 2012), which dominate in the neutral ISM phases, at which point $f_{[\text{C\textsc{ii}}]}$ remains roughly constant. We can see these variations caused by the electron number density in the ionised regions in Fig. 4. We keep the cosmic ray ionisation rate, stellar mass and age of the secondary burst constant and see that increasing n_e leads to an increase of $f_{[\text{C\textsc{ii}}]}$, in all dust mass fraction and star formation rate bins.

The variations caused by density are linked with those of metallicity. In lower density environments, which have larger ionised regions, the metallicity variations are either flat or have a positive gradient implying that the Cooling Rate effect, detailed above, is more dominant. However, as density increases, the slope of the $f_{[\text{C\textsc{ii}}]}$-$Z$ relation changes as the Photodissociation effect begins to dominate. Understanding quantitatively how, and when, these effects dominate follows in Section 6.1.
5.5 Cosmic ray ionisation rate

The cosmic ray ionisation rate input parameter is used only in the molecular and neutral regions (i.e. the PDR) where the heating function increases with the cosmic ray ionisation rate. This creates higher temperatures in the PDR regions, which leads an increase in the [CII] PDR emission, as this line is a major coolant of the gas, leading to an increase in $f_{\text{[CII]}}$.mol.

5.6 Dust Mass Fraction

As discussed above, the dust mass fraction effectively controls the total size of our clouds and determines how far into the PDR were integrate up to. In Fig. 5 we show for two different example clouds how the emissivity and carbonaceous species abundances relative to Hydrogen vary as a function of the radius in the neutral and molecular regions. Under certain conditions 'warm clouds' are simulated such that the temperature of the PDR never reaches 10K, the freeze-out temperature of hydrogen onto dust grains. This occurs for clouds with low PDR densities, high cosmic rays ionisation rates and high gas-phase metallicities. In these warm clouds the emissivity of [CII] always remains larger than that of CO (top left panel). This is because of the warmer conditions, and because the relative abundance of ionised carbon is also always larger than its molecular counterpart (bottom left panel). Therefore, by increasing the dust mass fraction, we are able to retrieve more [CII] the deeper we integrate, and so $f_{\text{[CII]}}$.mol increases with the dust mass fraction.

However in 'colder' conditions, where the temperature of the PDR eventually reaches 10K, the emissivity of ionised carbon decreases deep into the molecular regions, where molecular emission begins to dominate (top right panel). Therefore, increasing the dust mass fraction (i.e. integrating further into the cloud) does not affect the relative emission of [CII]. This can also been seen in the abundance profile (bottom right panel), where the molecular carbon abundance now dominates deep into the clouds. Hence, in cases such as these, increasing the dust mass fraction will only increase $f_{\text{[CII]}}$.mol up to a point before no more [CII] is obtained and increasing dust mass fraction makes no difference.

We find that 6513, out of our 8016, clouds harbour these 'warmer' conditions with [CII] emission dominating over CO(1-0). The emergence of these two groups of clouds has been physically observed in the Galactic Plane (Langer et al. 2014) where 557/1804 clouds observed there where detected in [CII] with no CO. Our fraction of warm clouds to cold clouds defer to the observations because our parameter space is not representative of the Galactic plane, as explained above.

6 APPLICATIONS TO GALAXY WIDE OBSERVATIONS

The qualitative discussion in Section 5 was sufficient to understand the physics underpinning the variations of $f_{\text{[CII]}}$.mol between our different simulated star forming regions. In this section, we make the jump from these individual star forming regions to the ISM of entire galaxies. Ideally, we would want to build a model for the ISM of a whole galaxy by appropriately summing up a number of our individual simulated clouds. To do this, we could start from observations of the molecular cloud mass function (e.g. Wright et al. 2010; Wong et al. 2011; Colombo et al. 2014; Gusev et al. 2016), however it is still highly debated whether there is a uni-
versal cloud mass function that is applicable to all galaxies, or whether the properties of clouds depend on other global physical parameters and therefore vary from galaxy to galaxy (see e.g. Hughes et al. 2013). Given this uncertainty and as a first step, we here propose a simpler alternative method to predict how \(f_{\text{[CII],mol}} \) varies as a function of integrated galaxy properties using our simulated clouds. We make the assumption that the physical conditions found in each of our clouds, for a given set of input parameters, can represent the average physical conditions found on galaxy-wide scales for galaxies with similar physical properties. Under this assumption, a whole galaxy can be considered to be built up from an appropriate number of identical star forming regions.

6.1 Bayesian Inference

We now want (a) to parametrise an analytic prescription for how \(f_{\text{[CII],mol}} \) varies as a function of our model parameters for extragalactic observations on galaxy wide scales, and (b) to determine the minimum number of parameters needed to provide a statistically-robust fit to our data. We therefore use a Bayesian inference method to find the best fit relations and the minimum number of parameters required. Bayesian inference fitting methods have been successfully employed in several, wide-ranging, astrophysical scenarios from the derivation of the extinction law in the Perseus molecular cloud (Foster et al. 2013) and Type Ia supernova light curve analysis (Mandel et al. 2011) to the extragalactic Kennicutt-Schmidt relation (Shetty et al. 2013) and the formation and evolution of Interstellar Ice (Makrymallis & Viti 2014). For a more in depth explanation of the Bayesian regression fitting method we refer the reader to Kelly (2007) and restrict ourselves here to the basic concepts. Our 3D radiative transfer methodology provides a complete model for how [CII] varies as a function of the seven input parameters of the coupled code. However, the radiative transfer modelling is highly non-linear and complex, so we explore how well a polynomial fit can describe the outputs from the 3D radiative transfer simulation, and what is the optimal number of parameters for this fit. This is done by evaluating the posterior probability of the simulated data, \(\text{y}_{\text{Model,i}} \) given the polynomial fit, denoted \(y_{\text{QF}} \). We assume that the measurement uncertainties associated with each of our fits, are normally distributed, therefore \(y_{\text{QF,i}} \) is a random variable distributed like:

\[
y_{\text{QF,i}} = \mathcal{N}(y_{\text{Model,i}}, \sigma_{\text{QF,i}}^2)
\]

where \(\sigma_{\text{QF,i}} \) is the measurement uncertainty associated with the polynomial fit \(y_{\text{QF,i}} \) on the \(i^{th} \) model which will be an additional parameter which we need to fit. For simplicity, we assume that all \(\sigma_{\text{QF,i}} \) are equal to the same value, \(\sigma_{\text{QF}} \). Under the assumption of the normal distribution in Equation 5, the probability of obtaining a certain polynomial fit, given the output of the numerical modelling, combined with the fitted uncertainties and the weighting factors is:

\[
P(y_{\text{QF,i}}|y_{\text{Model,i}}, \sigma_{\text{QF}}) = \frac{\sqrt{2\pi \sigma_{\text{QF}}}}{\sqrt{2\pi \sigma_{\text{QF}}}}
\times \exp \left(-\frac{g_i (y_{\text{Model,i}} - y_{\text{QF,i}})^2}{2\sigma_{\text{QF}}^2} \right)
\]

where \(g_i \) is the dimensionless statistical weighting for each cloud. As described in Section 6.3, weights are assigned to each of the simulated ISM conditions to take into account how likely they are to reproduce SIM conditions typical of local galaxies.

The next assumption to make is that all our radiative transfer simulated data points are independent, which is perfectly reasonable as we ran through each point in parameter space regardless of the other parameters. Under this assumption, all the individual probabilities can be multiplied to produce the Likelihood. By taking the log-likelihood the product returns back to a sum:

\[
\mathcal{L} = -\frac{N}{2} \ln(2\pi) - N\ln(\sigma_{\text{QF}}) - \sum_{i=1}^{N} \left(\frac{g_i (y_{\text{Model,i}} - y_{\text{QF,i}})^2}{2\sigma_{\text{QF}}^2} \right) + \sum_{i=1}^{N} \left(\ln g_i \right)
\]

Maximising this log-likelihood for the polynomial fit parameters and the associated error, \(\sigma_{\text{QF}} \), will provide us with the best fitting analytical expression alongside the one sigma error of the parametrisation.

To compare likelihoods from models with different numbers of free parameters we use two different methodologies. Firstly we employ the Akaike Information Criterion (AIC) (Akaike 1981):

\[
AIC = -2\mathcal{L} + 2p + 2p(p+1)N - p - 1
\]

where \(p \) is the number of free parameters and \(N \) is the sample size. The best model and the optimal number of free parameter is found by minimising the AIC. We also calculate the Bayesian Information Criterion (BIC) (Schwarz 1978):

\[
BIC = -2\mathcal{L} + p\log(N)
\]

and compare the results of both tests to ensure our results are not dependent on the choice of the information criterion used.

6.2 Sampling Methods and Quadratic Models

A direct solution for the posterior probability distribution is computationally expensive and so, to efficiently and effectively sample the full parameter space, we use the well tested Python implementation of the affine-invariant ensemble sampler for Markov Chain Monte Carlo (MCMC) called emcee (Goodman & Weare 2010).

Given the saturation effect which may occur when [CII] is mainly emitted from the molecular regions (i.e. when \(f_{\text{[CII],mol}} \) approaches 1) and the low number of bins in our parameter space, we only fit quadratic polynomials to our data, including all second order cross-terms when multiple parameters are involved e.g for three parameters we would use:

\[
y_{\text{QF},i} = \alpha + \alpha_2 x_1 + \alpha_3 x_1^2 + \alpha_4 x_2 + \alpha_5 x_2^2 + \alpha_6 x_3 + \alpha_7 x_3^2 + \alpha_8 x_1 x_2 + \alpha_9 x_1 x_3 + \alpha_{10} x_2 x_3
\]

(10)

We also fit for \(\sigma_{\text{QF}} \) and therefore have 2(\(\epsilon + 1 \)) + 4C2 free parameters to constrain, where \(\epsilon \) is the number of different variables in our fits.\(^3\) This number can range from 1 to 4 as we focus on the four input parameters of the coupled

\(^3\) An example of the code can be found at http://dan.iel.fm/emcee/current/

\(^4\) This applies when \(\epsilon \) is greater or equal to two. For one variable we have four free parameters.
code which are also commonly-available extragalactic observables. These are the gas-phase metallicity, the electron number density of the HII regions, the specific star formation rate and the dust mass fraction.

6.3 Statistical Weighting Calculation

The simulated clouds, which we now assume represent average physical conditions on galaxy wide scales, fill up a very large parameter space representing a large range of possible physical conditions. In which parts of this parameter space do galaxies actually lie? Which simulated clouds therefore represent average physical conditions in local galaxies? To account for this, we calculate a weighting factor for each cloud based on how likely it is to be representative of a local galaxy.

To determine these weighting factors, we make use of the Herschel Reference Survey (Cortese et al. 2012, HRS hereafter), a statistically complete K-band selected sample of galaxies located between 15 and 25 Mpc (Boselli et al. 2010). We retrieve dust masses, stellar masses and star formation rates from HRS catalogs (Boselli et al. 2015; Cortese et al. 2014; Boselli et al. 2013). From these we can directly infer for 112 HRS galaxies two of the input parameters of our coupled model: dust mass fractions and specific star formation rates. Another input parameter, the electron number densities in the ionised regions, is calculated from the [SII] line intensity ratio $R = [SII]_{\lambda 6716}/[SII]_{\lambda 6731}$ using the prescription of Sanders et al. (2016):

$$n_e = \sqrt{T_e} \left(\frac{1.4498 - R}{0.1595R - 0.0668} \right).$$

where T_e is the electron temperature and assumed to be a standard 10^4 K, typical for HII regions. Similar temperature assumptions have been made previously in Ho et al. (2014) and Sanders et al. (2016). These electrons densities are equivalent to hydrogen number densities in the HII regions in the range of 10 – 1000 cm^{-3}. Comparison with the input parameters for the coupled multi-phase code given in Table 2 confirms that we have sampled the appropriate ranges to reproduce conditions typical of local galaxies.

We bin the HRS data to match the sampling used in the radiative transfer modelling (shown in Table 2), i.e. for the above three parameters (dust mass fractions, SSFR and n_e) we bin the 112 HRS galaxies into 60 bins (5x4x3). It is possible to include metallicity in the binning, however, this would restrict and reduce the sample size further. If we did include metallicity our sample would now shrink to 69 objects and we would now have 120 bins, meaning that our weighting function would be comb-like leading to erroneous results as the number of bins exceed the sample size. A variant of the Freedman & Diaconis rule (Freedman & Diaconis 1981) states that the number of bins must be less than the sample size, hence why we do not include metallicity into the weighting. We use the Python N-dimensional histogram routine, histogramdd, to calculate the normalised weighting for each of our simulated clouds.

From here on, we limit our sample to clouds with cosmic ray ionisation rates equal to the average Milky Way value (10^{-16} s^{-1}), as it is unlikely to vary much away from this value for any of the HRS galaxies, which are local normal star-forming and quiescent galaxies. Higher cosmic ray rates (∼10^2x Milky Way value) are found in ULIRGs and galaxies with more enhanced star formation (Kelly et al. 2015), hence we keep this fixed at the average Milky Way value for now. Even though the HRS sample does not have measured cosmic ray ionisation rates, based on their position in the SFR-M* plane, and the fact that they are local galaxies, we can be sure that they all have a value approximately equal to that of the average Milky Way cosmic ray ionisation rate. Therefore we set to 0 the statistical weight of any cloud simulated with a cosmic ray ionisation rate higher than that of the Milky Way.

We also present in Appendix A the results if we limit our sample to clouds with cosmic ray ionisation rates equal to ten times the average Milky Way value (10^{-17} s^{-1}). We find identical results when using the two different cosmic ray ionisation rates; using the average Milky Way value (10^{-17} s^{-1}) does not affect our results for local universe galaxies.

6.4 Statistical Results

Using the Bayesian formalism and statistical weights described above, we fit the simulated values of $f_{[CII],mod}$ as a function of the four key observables (density, dust mass fraction, SSFR and metallicity), allowing the number of these parameters used in any one fit to vary between 1 and 4. As the number of free parameters increases, the quality of the fit improves as shown by both the AIC and BIC (Figure 6).

We hereby present several novel prescriptions for the fraction of [CII] emission emerging from molecular regions on galaxy wide scales simply involving dust mass fraction, HII region electron number density, specific star formation rate and metallicity. The full analytical prescription, according to the AIC and BIC is one involving all four galaxy parameters, namely:

$$f_{[CII],mod} = \frac{4.405 + 0.133}{Z_{\odot}} - \frac{0.172}{Z_{\odot}} + 1.448\rho - 0.206\rho^2 + 0.814\phi - 0.050\phi^2 - 0.818\psi - 0.032\psi^2 - 0.063\frac{Z}{Z_{\odot}}\rho + 0.003\frac{Z}{Z_{\odot}}\phi - 0.027\frac{Z}{Z_{\odot}}\psi - 0.222\rho\phi + 0.098\rho\psi + 0.050\phi\psi$$

where Z_{\odot} is the metallicity, $\rho = \log n_e$, $\phi = \log \frac{M_{dust}}{M_*}$, and $\psi = \log(\text{SSFR})$. The one sigma error derived from the fitting is $\sigma f_{[CII],mod} = 0.0597$ (a unit-less quantity as it’s a relative fraction). Furthermore, we also present the best three, two
Disentangling CII emission on galaxy-wide scales using a unified ISM model.

Figure 7. Relation between $f_{[CII], mol}$ as calculated from Eq. 12 for galaxies from the HRS sample that have four key integrated properties (metallicity, density, dust mass fraction and SSFR). We also overlay the single prescriptions for density and SSFR, Equations 15 and 16 respectively, in the upper right and bottom right panels by the green lines. The red lines represent the one sigma errors on both prescriptions.

and one parameter prescriptions as we understand acquiring all the necessary data to use Equation. 12 may be a challenge. The three parameter prescription includes only dust mass fraction, n_e and SSFR:

$$f_{[CII], mol} = -3.92 + 1.50\rho - 0.209\rho^2 + 0.471\psi - 0.072\psi^2 - 0.628\psi - 0.018\psi^2 - 0.227\rho\psi + 0.106\rho\psi + 0.027\phi\psi.$$ \hspace{1cm} (13)

The one sigma error in this case is is $\sigma_{f_{[CII], mol}} = 0.061$. The two parameter prescription does away with the dust mass fraction and therefore simplifies as

$$f_{[CII], mol} = -5.63 + 1.31\rho - 0.17\rho^2 - 0.87\psi - 0.034\psi^2 + 0.046\psi\rho.$$ \hspace{1cm} (14)

with an error of $\sigma_{f_{[CII], mol}} = 0.064$. The best fitting one parameter prescription involves only n_e and has $\sigma_{f_{[CII], mol}} = 0.069$:

$$f_{[CII], mol} = -0.556 + 1.087\rho - 0.219\rho^2.$$ \hspace{1cm} (15)

As we will show in the next section, there is also a trend between $f_{[CII], mol}$ and SSFR. As this latter quantity is typically more readily available to extragalactic observers than n_e, we also perform this one parameter fit even though it is not formally selected by the AIC and BIC. This alternative one parameter prescription, with an associated error of

$$\sigma_{f_{[CII], mol}} = 0.072,$$

is

$$f_{[CII], mol} = -6.224 - 1.235\psi - 0.0543\psi^2.$$ \hspace{1cm} (16)

Figure 8. By applying our prescription to the HRS sample we find that the majority of the galaxies have 60-80% of their total integrated $[CII]$ emission arising from molecular regions. Due to the completeness of the sample it implies that on galaxy wide scales, in the local universe, 60-80% of a galaxy’s $[CII]$ emission will originate from molecular regions.
In the following section, we test and compare these five prescriptions, and then advise on the best relation to use to estimate \(f_{[\text{CII}],\text{mol}} \) for individual galaxies in Section 7.

6.5 Validation of the \(f_{[\text{CII}],\text{mol}} \) prescriptions and example applications

Measurement of the [CII] fraction emerging from molecular regions in extragalactic objects are uncommon at best, making validating our prescription for \(f_{[\text{CII}],\text{mol}} \) against a large and complete galaxy sample impossible. However, Pineda et al. (2013) have have measured \(f_{[\text{CII}],\text{mol}} \) across the Milky Way as part of the GOT C+ survey. Assuming a dust mass for the Milky Way of \(10^{7.7} \, M_\odot \) (Pierce-Price et al. 2000), a star formation rate of 1.65 M_\odot yr^{-1} and a total stellar mass of \(10^{10.7} \, M_\odot \) (Licquia & Newman 2014), a metallicity of 12Z_\odot, and finally a electron number density of 100 cm^{-3}, Eq. 12 predicts \(f_{[\text{CII}],\text{mol}} \approx 75.84 \pm 5.97\% \) for the Milky Way. As a comparison, the alternative prescriptions evoking fewer input parameters, Equations 16, 15, 14 and 13, predict values of 77.6 \pm 6.3\%, 74.42 \pm 6.94\%, 74.42 \pm 6.94\% and 73.80 \pm 6.10\%, respectively. All of these predictions are in excellent agreement with the measured value of 75\% (Pineda et al. 2013).

Extragalactic observations have been done, however, which accurately measure the fraction of [CII] emerging from ionised gas regions, using the [CII]/[NII]205\mu m and [NII]122\mu m/[NII]205\mu m ratios (Oberst et al. 2006). This fraction has been measured to be between 15%-65\% in NGC 891 (Hughes et al. 2015) and 20%-30\% in the star forming region BCLMP 302 of M33 (Mookerjea et al. 2011). Our ISM model here is unable to measure exactly the [CII] fraction arising from similar ionised regions; it would have to be modified to produce the emissivity profiles across the ionised and neutral phases to discriminate the origin of [CII] between these two phases of the ISM. We can however provide an upper limit for the fraction of [CII] emerging from the ionised regions as \(1-f_{[\text{CII}],\text{mol}} \approx 20-40\% \), in agreement with these observations.

We also apply our prescription to the HRS galaxies which have measurements available for all four physical parameters going into Eq. 12, and find that the typical value of \(f_{[\text{CII}],\text{mol}} \) for these representative local galaxies is 60-80\%, shown in Fig. 8. This agrees well with Olsen et al. (2016) who also find [CII] emission to be dominated by the molecular gas. Furthermore Figure 7 shows how these values of \(f_{[\text{CII}],\text{mol}} \) depend on key parameters. In the model grid (Table 2), all the parameters were varied independently, without enforcing any correlations between each of them. However, observations of star-forming regions and local galaxies make it clear that many of these physical properties are highly correlated. The scaling relations of Fig. 7 therefore implicitly contain these physical correlations, and interestingly show no trend with metallicity and dust mass fraction. Correlations are seen however with SSFR and \(n_e \) with explanations similar to those in sections 5.1 and 5.4. The initial increase in \(f_{[\text{CII}],\text{mol}} \) with \(n_e \) occurs as we have already reached the critical density of [CII] in the HII region, hence emission from the HII region saturates while continuing to increase in the PDR region. There is then a plateau of the relation which occurs at \(\sim 10^2 \, cm^{-3} \) because the densities are starting to approach the critical density of [CII] in the PDR regions as shown in Fig. 9. At these densities the [CII] emission from the PDR also saturates, leading to an overall constant value of \(f_{[\text{CII}],\text{mol}} \). Finally, we test the consistency of the values of \(f_{[\text{CII}],\text{mol}} \) obtained from equations 12-16. The value of \(f_{[\text{CII}],\text{mol}} \) is calculated for the HRS galaxies using all five of these equations. Assuming that the most accurate estimate is given by the four parameter Eq. 12, the offset between the other sets of measurements and this reference are shown in Figure 10. As expected, the dispersion increases as the number of parameters used to calculate \(f_{[\text{CII}],\text{mol}} \) decreases, and the uncertainty on \(f_{[\text{CII}],\text{mol}} \) increases when using the one-parameter equations 15 or 16 compared to the four-parameter equation 12. This increase in uncertainty is accounted for by the larger \(\sigma_{f_{[\text{CII}],\text{mol}}} \) values of equations 15 and 16 versus that of equation 12. As these relations were derived using the HRS to determine weighting factors, they are mostly applicable over the parameter space probed by the HRS galaxies which can be seen in Fig. 7. While the full parameter space covered by our simulated clouds was very large (see Tab. 2) some regions of this space were ignored via the weighting factors if found to be not representative of physical conditions in local galaxies. Throughout the analysis presented in Section 6, a Galactic cosmic ray ionisation
Where does a galaxy’s [CII] emission come from?

Figure 11. We here present a flowchart which can be used to constrain the fraction of [CII] emission from molecular regions from a galaxy. This will help to decide which equation should be used depending on which physical parameters of the galaxy have been observed and, therefore, what data is available for an individual galaxy.

Finally, throughout the modelling presented here, we held constant the N/O abundance ratio which is known to vary as a function of metallicity (Guseva et al. 2011; Pettini et al. 2008). In Appendix B we explore how variations of this abundance ratio change our results, and find an uncertainty on $f_{[\text{CII}],\text{mol}}$ of less than 3%, less than the reported errors in equations 12-16; ergo this does not affect our results or the conclusions of this paper.

7 WHERE DOES A GALAXY’S [CII] EMISSION COME FROM?

Here we summarise the main prescriptions detailed in this paper, and provide a cookbook to help decide which prescription is appropriate for a user’s specific needs given their available data. There are five equations (Equations 12, 13, 14, 15, 16) which accurately quantify the fraction of [CII] emission emerging from molecular regions, however which one should be used? To answer this we present a flowchart in Figure 11, which can be used to make this decision. The main decisions lie in determining which physical parameters of the galaxy have been observed and, therefore, what data is available.

7.1 Summary & Conclusions

We built a new 3D multi-phase radiative transfer interface through the combination of STARBURST99, MOCASSIN and 3D-PDR, which can simulate all phases of the interstellar medium, from ionised to molecular, where photoionisation and photochemistry dominates. We assume pressure equi-
librium between the ionised and neutral phases of the ISM, solving the thermal balance equations between the two regions to ensure self-consistency. This interface was used to simulate a broad family of spherically-symmetric star-forming regions, with the aim of understanding how much of the total [CII] emission originates from the cold molecular ISM under varying conditions. This is of importance for example to correctly interpret integrated [CII] measurements for distant galaxies.

An analysis of the relations obtained between \(f_{[\text{CII}], \text{mol}} \) and the key input parameters of the multi-phase code for these star-forming regions show that an increase in the strength of the UV radiation field (whether by increasing the current SFR or having a recent burst of star formation) leads to a decrease of \(f_{[\text{CII}], \text{mol}} \). Metallicity variations can lead to both an increase and a reduction of \(f_{[\text{CII}], \text{mol}} \) depending on other global parameters, as it can both affect the cooling rate and the level of photodissociation of the CO molecule.

To extend the analysis to the integrated [CII] emission from extragalactic objects, we employed a Hierarchical Bayesian Inference method to identify the simulated clouds that are representative of the physical conditions in local star-forming galaxies, as found in the Herschel Reference Survey. This is possible under the assumption that the physical conditions found in a simulated star-forming cloud can represent the average conditions found on galaxy-wide scales for objects with similar physical properties such as metallicity, SSFR, and density.

We find that \(f_{[\text{CII}], \text{mol}} \) is best predicted using four key parameters: \(n_e \), SSFR, dust mass fraction and metallicity (equation 12). We tested this prescription on the Milky Way and obtained an estimate that 75.9 ± 5.9% of its total [CII] emission arises from molecular regions, which is in very good agreement with observations placing this number at 75% (Pineda et al. 2013). Given that it is relatively rare for measurements of all four of these parameters to be available for large samples of galaxies, we provide alternative prescriptions which invoke fewer parameters. These other prescriptions (equations 13-16) also produce estimates for the Milky Way consistent with direct observations, although the uncertainty on \(f_{[\text{CII}], \text{mol}} \) increases slightly as the number of parameters involved in the prescription decreases. Of most practical use for many extragalactic studies is Equation 16 which relates \(f_{[\text{CII}], \text{mol}} \) to SSFR.

Applying the prescription to a sample of galaxies from the HRS, we find that typical galaxies in the local universe have 60-80% of their [CII] emission arising from molecular regions. Within this sample, \(f_{[\text{CII}], \text{mol}} \) increases with density, and decreases with SSFR. Combining the relations obtained through the bayesian analysis, we propose a decision tree in Fig. 11 to help determine which equation to use depending on the type of galaxy and the data products available. Using this, it is possible to estimate the relative fraction of [CII] emerging from the molecular phase of the ISM when only galaxy-wide observations are available.

ACKNOWLEDGMENTS

GA would like to thank the UK Science and Technologies Facilities Council (STFC) for their support via a postgraduate Studentship, as well as Patrick J. Owen for informative discussions regarding the use of MOCASSIN. AS acknowledges the support of the Royal Society through the award of a University Research Fellowship and of a Research Grant.

References

Abel N. P., Ferland G. J., Shaw G., van Hoof P. A. M., 2005, ApJS, 161, 65
Akaïke H., 1981, Journal of Econometrics, 16, 3
Baldwin J. A., Ferland G. J., Martin P. G., Corbin M. R., Cota S. A., Peterson B. M., Slettebak A., 1991, ApJ, 374, 580
Bell T. A., Roueff E., Viti S., Williams D. A., 2006, MNRAS, 371, 1865
Bisbas T. G., Bell T. A., Viti S., Yates J., Barlow M. J., 2012, MNRAS, 427, 2100
Bisbas T. G., Bell T. A., Viti S., Barlow M. J., Yates J., Vasta M., 2014, MNRAS, 443, 111
Bisbas T. G., Haworth T. J., Barlow M. J., Viti S., Harries T. J., Bell T., Yates J. A., 2015, MNRAS, 454, 2828
Boselli A., et al., 2010, PASP, 122, 261
Boselli A., Hughes T. M., Cortese L., Gavazzi G., Buat V., 2013, A&A, 550, A114
Boselli A., Fossati M., Gavazzi G., Ciesla L., Buat V., Boissier S., Hughes T. M., 2015, A&A, 579, A102
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 353, 1151
Carral P., Hollenbach D. J., Lord S. D., Colgan S. W. J., Haas M. R., Rubin R. H., Erickson E. F., 1994, ApJ, 423, 223
Cazaux S., Tielens A. G. G. M., 2004, ApJ, 604, 222
Chabrier G., 2003, PASP, 115, 763
Colombo D., et al., 2014, ApJ, 784, 3
Conroy C., 2013, ARA&A, 51, 203
Cornier D., et al., 2012, A&A, 548, A20
Cortese L., et al., 2012, A&A, 540, A52
Cortese L., et al., 2014, MNRAS, 440, 942
Cummings A., 2015, Proceedings of Science
Daddi E., et al., 2007, ApJ, 670, 156
Dalgarano A., 2006, Proceedings of the National Academy of Science, 103, 12269
Davé R., Oppenheimer B. D., Finlator K., 2011, MNRAS, 415, 91
Davé R., Finlator K., Oppenheimer B. D., 2012, MNRAS, 421, 98
Drainance B. T., 1978, ApJS, 36, 505
Drainance B. T., Lee H. M., 1984, ApJ, 285, 89
Elbaz D., et al., 2007, A&A, 468, 33
Ercolano B., Barlow M. J., Storey P. J., Liu X.-W., 2003, MNRAS, 340, 1136
Ercolano B., Barlow M. J., Storey P. J., 2005, MNRAS, 362, 1038
Ercolano B., Dale J. E., Gritschneder M., Westmoquette M., 2012, MNRAS, 420, 141
Fagotto F., Bressan A., Bertelli G., Chiosi C., 1994, A&AS, 105, 29
Ferland G. J., et al., 2013, Rev. Mex. Astron. Astrofis., 49, 137
Flower D. R., 1968, in Osterbrock D. E., O’Dell C. R., eds, IAU Symposium Vol. 34, Planetary Nebulae. p. 205
Foster J. B., Mandel K. S., Pineda J. E., Covey K. R., Arce H. G., Goodman A. M., 2013, MNRAS, 428, 1606
Freedman D., Diaconis P., 1981, ZWVG, 57, 453
Goldsmith P. F., Langer W. D., Pineda J. L., Velusamy T., 2012, ApJS, 203, 13
Goodman J., Weare J., 2010, Comm. App. Math. and Comp. Sci., 5
Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759
Gusev A. S., et al., 2016, MNRAS
Guseva N. G., Izotov Y. I., Stasińska G., Fricke K. J., Henkel C., Papadopoulos P., 2011, A&A, 529, A149
Harries T. J., Howarth I. D., 1997, A&AS, 121, 15
Heiles et al. C., 1994, ApJ, 436, 720
Henney W. J., Arthur S. J., Williams R. J. R., Ferland G. J., 2005, ApJ, 621, 328
Ho L-T. et al., 2014, MNRAS, 444, 3894
Hollenbach D., McKee C. F., 1979, ApJS, 41, 555
Hollenbach D. J., Takahashi T., Tielens A. G. G. M., 1991, ApJ,
APPENDIX A: VARYING THE COSMIC RAY IONISATION RATE

We performed a similar analysis as in Section 6.1 for clouds with a cosmic ray ionisation rate 10x the average Milky Way value (10^{-16} \text{s}^{-1}). We find that the same four parameters emerge as necessary to provide the a prescription for f_{\text{[CII]}}. We use this higher cosmic ray ionisation rate and produce identical plots to Figs 6, 7 and 8. We show in Fig 1 a plot for the variation of the Akaike Information Criterion and the Bayesian Information Criteria in blue and green respectively, but now for clouds with a cosmic ray ionisation rate 10x the average Milky Way value. It can be seen how they reach a minimum of three to four necessary parameters, similar to Fig. 6.

This paper has been typeset from a TeX/LaTeX file prepared by the author.
starts to break down. Furthermore our prescription would not be valid at high redshift because the complete HRS sample is only complete for the low redshift universe. Therefore, our prescription is accurate only for low redshift, star forming and quiescent, galaxies regardless of their cosmic ray ionisation rate.

Obtaining a similar prescription for high redshift objects is possible, using the above method, however a statistically complete sample of galaxies at high redshift would be needed to provide the weightings necessary for the Bayesian Inference method. This could be done via a Machine Learning technique to generate a predictive sample of galaxies at high redshift, however this is beyond the scope of this paper.

APPENDIX B: VARYING CHEMICAL ABUNDANCES

When varying the metallicity parameter, we scaled all the abundances in Table 1 equally, except for hydrogen and helium. This means that the relative abundances between non-hydrogen and helium elements is constant. While this is generally correct, it is not true of the N/O ratio, which varies as a function of metallicity (Guseva et al. 2011; Pettini et al. 2008). When log(O/H) + 12 > 8.2, nitrogen is a secondary element and the N/O ratio decreases with metallicity. However, when log(O/H) + 12 < 8.2, nitrogen is a primary element and the N/O ratio is of constant value $10^{-1.5}$. Therefore, by assuming a constant N/O ratio, we have over-supplied the low metallicity clouds with nitrogen, which could lead to an erroneous $[\text{CII}]$ emission calculation in the mocassin simulations. Given that nitrogen is a coolant in ionised regions only, this would manifest itself as an underestimation of the $[\text{CII}]$ emission from the ionised regions.

To test for the effect of the varying N/O ratio with metallicity, we adopt the prescription from Pettini et al. (2008) and re-run mocassin for three of the low metallicity clouds ($Z = 0.2Z_\odot$) with different SSFR and n_e (the age of the secondary burst is kept constant). We find that assuming a constant N/O could lead to
Table A1. To test for the effect of varying the N/O ratio as a function of metallicity we re-run three of our mocassin runs. We find that, even in the most extreme cases, our calculations could underestimate the \([\text{C}\,\text{II}]\) emission from the ionised regions by 3.7-7.7%.

Metallicity (Z/Z⊙)	Log(SSFR) (yr⁻¹)	n_e (cm⁻³)	\([\text{CII}]\) with N/O constant (L/L⊙)	\([\text{CII}]\) with N/O varying (L/L⊙)	Fractional difference (%)
0.2	-11.5	$10^{1.5}$	5.15×10^{-3}	5.19×10^{-3}	7.7
0.2	-10.5	$10^{2.0}$	11.32×10^{-3}	11.92×10^{-3}	5.3
0.2	-10.5	$10^{3.0}$	9.55×10^{-3}	9.91×10^{-3}	3.77

an underestimation of the \([\text{CII}]\) emission from the ionised of only 3.7-7.7%. Since ionised regions contribute between 20-40% of the total \([\text{CII}]\) emission (Sec. 6.5), this corresponds to an uncertainty on $f_{\text{[CII],mol}}$ of less than 3%, less than the reported errors in equations 12-16. This is therefore not a dominant source of uncertainty; the results for these runs are shown in Table A1.