Experimental evolution confirms signatures of sexual selection in genomic divergence.

R. Axel W. Wiberg*, Paris Veltsos, Rhonda S. Snook & Michael G. Ritchie*

RAWW: Centre for Biological Diversity, University of St Andrews, St Andrews, Fife, Scotland KY16 9TH, UK. Current address: Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, 4051, Switzerland. Orcid 0000-0002-8074-8670.

PV: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA. Orcid 0000-0002-8872-6281

RRS: Department of Zoology, Stockholm University, Stockholm 106 91 Sweden. Orcid 0000-0003-1852-1448

MGR: Centre for Biological Diversity, University of St Andrews, St Andrews, Fife, Scotland KY16 9TH, UK. Orcid 0000-0001-7913-8675.

* Corresponding authors

Article type: Letter

Running title: Sexual selection and genomic divergence

Key Words:

Experimental Evolution, Sexual Selection, Genomic divergence, Drosophila pseudoobscura, Fst, Tajima’s D, Genomic Islands, Large X effect

Total word count (main text only): 6,600
Abstract

Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex-biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography and neutral processes which occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequences for genomic divergence. Here we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in “islands”, many of which contain candidate genes implicated in mating behaviours and other sexually selected phenotypes. These are more often seen on the X chromosome, which overall shows divergence above neutral expectations. There are also characteristic signatures of selection seen in these regions, with lower diversity and greater F_{st} on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima’s D implies that selective sweeps have occurred within the divergent regions, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence in natural populations, and hence provide experimental confirmation of the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Impact Summary

How does sexual selection contribute to the divergence of genomes? It is often thought that sexual selection is a potent force in evolutionary divergence, but finding ‘signatures’ of sexual selection in the genome is not straight-forward, and has been quite controversial recently. Here we used experimental evolution to allow replicate populations of fruit fly to evolve under relaxed or strengthened sexual selection for over 150 generations, then sequenced their genomes to see how they had diverged. The feature we find are very similar to those reported in populations of natural species thought to be under strong sexual selection. We found that genomic divergence was concentrated in small patches of the genome rather than widespread. These are more often seen on the X chromosome, which overall shows greatly elevated divergence. There are also characteristic signatures of selection seen in these regions, with lower genetic diversity and greater differences on the X chromosome than the autosomes. Selection was probably strong in these regions. The changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Many of the patches of divergence also contain candidate genes implicated in mating behaviours and other sexually selected phenotypes. Our results provide experimental confirmation of the likely role of sexual selection in driving such types of genetic divergence.
Introduction

The role of sexual selection in influencing evolutionary divergence and speciation is unclear (Panhuis et al., 2001; Ritchie, 2007; Maan & Seehausen, 2011; Servedio & Boughman, 2017). Associations between species diversity and proxies of sexual selection such as sexual dimorphism or mating system variation often imply that sexual selection can accelerate divergence, especially when acting alongside natural selection (Arnqvist et al., 2000; Gage et al., 2002; Ellis & Oakley, 2016). However, different indicators of sexual selection give contrasting results in such comparative studies, and a consensus is not clear (Kraaijeveld et al., 2011; Janicke et al., 2018). One potentially compelling source of evidence that sexual selection is involved in divergence is coming from the increasing number of comparative genomic studies available across a range of organisms. Many descriptions of genomes, including those of species thought to have undergone strong sexual selection such as the Hawaiian Drosophila or African cichlids, have found that genes associated with mating behaviour or sensory perception potentially involved in sexual communication are often outliers in measures of divergence (e.g. Mattersdorfer et al., 2012; Kang et al., 2016). It has also been known for some time that genes which diverge particularly rapidly and show stronger signatures of positive divergent selection are often sex-biased in expression (Pröschel et al., 2006; Ellegren & Parsch, 2007; Zhang et al., 2007). Sex-biased gene expression itself, especially male-biased expression, evolves rapidly and is associated with indicators of sexual selection such as increased sexual dimorphism in birds (Harrison et al., 2015; Wright et al., 2019). Additionally, divergence of sex chromosomes between species is usually much greater than autosomes, sometimes dramatically so (Counterman et al., 2004; Ellegren et al., 2012).

However, such patterns of divergence are not necessarily driven by elevated sexual selection on these genes or genomic regions. The evolution of sex-biased gene expression is often due to sexually antagonistic selection on gene expression, which is often an important factor in sexual selection. However, it is complicated by additional factors including dosage compensation, as well as turnover of sex-biased expression and resolution of conflict via sex-linkage or sex-limited expression (Mank et al., 2010a; Wright et al., 2019). The increased divergence of sex chromosomes is potentially influenced by many factors, only one of which is sexual selection. These include a greater role of genetic drift due to a smaller effective population size on X chromosomes compared to autosomes, dominance effects, and other consequences of sex-linkage such as dosage compensation (Vicoso & Charlesworth, 2006; Ellegren, 2009; Mank et al., 2010b). Hemizygosity results in a lower effective population size (N_e) on the X (N_{eX}) than on autosomes (N_{eA}). Under random mating the ratio is expected to be...
3:4 and this should reduce neutral diversity and increase between-species divergence by the same proportion (Vicoso & Charlesworth, 2006). Hemizygosity should also result in an increased efficacy of selection for partially recessive beneficial mutations and against recessive deleterious mutations on the X. Finally, because of the inheritance patterns of X-linked loci (males transmit them only to daughters while females transmit them to both daughters and sons), sex-specific selection as well as sexual selection will influence their divergence (Mank et al., 2010a; Corl & Ellegren, 2012).

It is very difficult to infer the historical role of different evolutionary processes from patterns of contemporary divergence between populations and species, because they can result in similar genomic signals (Butlin et al., 2012). One way of directly addressing the role of sexual selection or mating system variation in genomic divergence is to examine the genomic consequences of experimental evolution under manipulated sexual selection regimes in the laboratory. A great advantage of this approach is that there are potentially fewer confounding variables involved than when making comparisons across species or natural populations. However, a disadvantage is that the time scale over which divergence can be studied is typically much shorter than evolutionary time-scales in nature. Studies of experimental evolution and speciation are in their infancy, and general conclusions are, as yet, difficult to draw (White et al., 2020). Enforcing monogamy in otherwise polyandrous species will lead to both changes in the intensity of sexual selection and the balance of sexual conflict, as it effectively eliminates sexual selection and sexually antagonistic selection. A classic example of such manipulation is where *D. melanogaster* were kept under enforced monogamy for about 50 generations (Holland & Rice, 1999). Females from the monogamy treatment had reduced longevity compared to ancestral females, when exposed to ancestral males. This was expected because the reduction of conflict should favour less harmful males and females that are less resistant to male harm. Other experimental evolution studies under altered mating systems have been performed in dung flies (Hosken et al., 2001; Hosken & Ward, 2001; Martin & Hosken, 2003), different species of fruit flies (*D. melanogaster*; Gerrard et al., 2013; Hollis et al., 2014; Innocenti et al., 2014; Perry et al., 2016); *D. pseudoobscura*; (Crudgington et al., 2005), seed beetles (McNamara et al., 2020) and hermaphroditic flatworms (Janicke et al., 2016). Though aspects of the treatments differ amongst such experiments, some common patterns have emerged. Gene expression changes are seen, especially of genes that are initially sex-biased, though the details can vary between studies (Hollis et al., 2014; Veltsos et al., 2017). Moreover, gene expression changes can be more pronounced for genes expressed in
reproductive tissues (Innocenti et al., 2014), and genes involved in the post-mating physiological manipulation of female egg-laying and re-mating rates (Perry et al., 2016).

A feature emerging from genomic comparisons between diverging species is that details of genomic architecture complicate the assessment of patterns of divergence across chromosomes. Whole chromosomal regions can show correlated responses due to reduced recombination and hitchhiking effects, especially in species with segregating inversions. Early studies of species differences interpreted “islands” of divergence in the genome as resulting from divergent selection on genes within these regions with gene flow homogenising the genetic background (Turner et al., 2005; Nosil et al., 2009). More recently it has been appreciated that chromosomal inversions and other regions of low recombination or diversity can accentuate such clustered divergence (Noor & Bennett, 2009; Cruickshank & Hahn, 2014; Wolf & Ellegren, 2016; Ravinet et al., 2017). “Barrier loci”, genomic regions under divergent selection that restrict gene flow (Butlin & Smadja, 2018), may occur within such clusters but the lack of recombination makes them difficult to localise precisely. In experimental evolution the amount of recombination will be determined by both genomic architecture and the number of generations completed during the study, which is often modest in studies of eukaryotes. Also, in experimental evolution the lines can be kept effectively allopatric, so homogenising gene flow in regions not experiencing selection should be absent. The genomic divergence which occurs during experimental evolution is usually extensive, with widespread differences dispersed throughout the genome (Kawecki et al., 2012; Tobler et al., 2014; Michalak et al., 2019).

Here we directly test the influence of sexual selection on genomic divergence. We examine replicated experimentally evolved lines of D. pseudoobscura in which sexual selection has been manipulated for over 160 generations. One set of 4 replicate lines were raised under enforced monogamy (M lines), which should eliminate both sexual selection and conflict. Another 4 replicates were reared under elevated polyandry (E lines), with 6 males per female. Polyandry mediates the strength of both intra- and intersexual selection and sexual conflict (Pizzari & Wedell, 2013) and elevated polyandry will increase both pre- and post-copulatory sexual selection via female choice and sperm competition (Snook, 2014). Previous studies of these lines have found divergence in some, but not all, of the types of traits predicted to diverge under sexual selection. Sperm morphology and heteromorphism, and testis mass did not diverge, but E males had larger accessory glands and a greater mating capacity (Crudgington et al., 2009), were more competitive in mating encounters (Debelle et al., 2016), and produced more attractive courtship song than M males (Debelle et al., 2017). Coe-
volutionary changes have occurred in female song preferences (Debelle et al., 2014). Sexu-
ally dimorphic cuticular hydrocarbons have also diverged between the lines (Hunt et al.,
2012).

Patterns of gene expression have changed between the lines. E females show an in-
crease in expression of genes normally enriched in ovaries (Immonen et al., 2014). Sex-
bias genes responded more strongly to the sexual selection treatment, but the direction of
gen expression changes differed between sexes, tissues, and according to courtship experi-
ence (Veltsos et al., 2017). In most cases, the transcriptome was “feminised” under polyandry
(i.e. female-biased genes were up-regulated or male-biased downregulated in E lines), in a
striking contrast to a similar study with D. melanogaster (Hollis et al., 2014). Males changed
in patterns of gene expression in the testes and accessory glands, and changes in gene expres-
sion in females following mating also diverged, especially in the female reproductive tract
(Veltsos et al. in prep.).

Here we examine genomic divergence between these lines using a pool-sequence ap-
proach after more than 160 generations of experimental evolution. The relatively long time-
scale of this study should reduce linkage effects on allele frequency changes. We identify al-
leles that changed in frequency consistently across the replicates, to help reduce the poten-
tially confounding effects of drift or replicate-specific selection. We find that divergent SNPs
are not distributed randomly across the genome, but occur in distinct, obvious clusters. We
examine what genes are involved and find several with mutant phenotypes related to mating
and courtship behaviours. We found that the X chromosome has accumulated more diver-
gence than the autosomes and explore if divergence is associated with recombination rate or
changes in gene expression between the experimental lines.

Methods

Experimental Evolution

A full description of the experimental evolution methods is available elsewhere
(Crudgington et al., 2005). Briefly, a population of D. pseudoobscura was established from
50 wild caught females, bred in the laboratory for four years then four independent
monogamy (M) and elevated polyandry (E) lines were established. M females were housed
with a single male and E females with 6 males, with females typically mating with two or
three males. The effective population size was maintained around 120 (Snook et al., 2009) for
both treatments. At each generation, offspring were collected and pooled together for each
replicate line, and a random sample used to constitute the next generation in the appropriate
sex ratio, thus reflecting the differential offspring production across families (Crudgington et al., 2005; Crudgington et al., 2009). Enforced monogamy is expected to eliminate sexual selection and sexual conflict while elevated polyandry increases both pre- and postmating sexual selection and sexual conflict (Crudgington et al., 2005; Bacigalupe et al., 2007; Crudgington et al., 2009).

Sequencing and Mapping

Sequencing was carried out after ca. 160 generations of selection (specifically, 164 for replicate 1, 163 for replicate 2, 162 for replicate 3, and generation 160 for replicate 4). Two pools of 40 females (one E and one M) were taken from each replicate line and genomic DNA extracted using a standard Phenol-Chloroform extraction protocol. Each pool was sequenced across two lanes on an Illumina HiSeq platform at the Center for Genomic Research (CGR) at the University of Liverpool. Details of coverage are provided in the supplementary material. Reads from each sequenced pool were mapped to the D. pseudoobscura reference genome (FlyBase v3.1 February 2013) using BWA mem (v. 0.7.7; Li, 2013). Alignments were filtered to remove duplicate reads, reads with a mapping quality < 30, and any reads which were not properly paired, using samtools (v 1.3; Li et al., 2009 following Schlotterer et al., 2014). Reads were locally re-aligned around indels using GATK (v3.7.0; McKenna et al., 2010; DePristo et al., 2011). The .bam files for each line were then merged using bamtools (Barnett et al., 2011) and the genome-wide coverage calculated from these merged files with bedtools (v. 2.26; Quinlan & Hall, 2010). SNPs were called using a heuristic SNP calling algorithm (PoolSNP; Kapun et al., 2020). Sites were considered only if the total coverage at the site was > 17 and < the 95th percentile for each contig or chromosome. An allele was only called if the count for that allele across all pools was > 16. Nearly 2 million SNPs were called and used in downstream analyses (see Supplementary Material).

Genomic Analyses

Identifying Consistent Allele Frequency Differences

Many evolve and resequence studies of Drosophila find that a multitude of SNPs have diverged, perhaps tens of thousands (Michalak et al., 2019). The number is inflated upwards at least in part due to segregating inversions and other areas of low recombination, and hitchiking (Barghi & Schlotterer, 2019). In order to focus on the loci most likely to have diverged due to the treatment, we only considered as significant SNPs which diverged consistently across all 4 replicate pairs of lines. We identified these using quasibinomial
Generalised Linear Models, which are less prone than other statistical approaches to be influenced by strong divergence in only some replicates (Wiberg et al., 2017). The model structure applied was;

\[y \sim \text{treatment} + e \]

where \(y \) is the allele frequency, \textit{treatment} is the experimental evolution treatment regime, and \(e \) is a quasibinomially distributed error term. +1 was added to zero counts in any population. P-values were converted to q-values using the “qvalues” R package (v. 2.16.0; Storey & Tibshirani, 2003). A threshold of 0.05 was chosen to control the false discovery rate (FDR), thus we define “top SNPs” as those with q-value < 0.05 and the rest are referred to as “background” SNPs.

Genetic Diversity and Differentiation

We calculated genome-wide genetic diversity statistics (\(\pi \) and Tajima’s D) for windows of 50kb (with a 10kb overlap) using available python scripts (Kapun et al., 2020). Similarly, we computed pairwise \(F_a \) estimates between E and M line pairs for each SNP using the R package “poolfstat” (v. 0.0.1; Hivert et al., 2018), averaged in windows of 50kb (with a 10kb overlap between windows). Comparisons of parameters between selection regimes and genomic regions were tested using non-parametric Wilcoxon tests. Additionally, we estimated the \(F_X \) expected from drift and differences in effective population sizes on X chromosomes (\(F_X \)) as in (Machado et al., 2016) using the equations of (Ramachandran et al., 2004) (equation 8), \(F_X \) is given by:

\[
F_X = 1 \left(1 - \frac{\frac{9}{8} |z+1| |1-F_A|}{\frac{2}{7} |z+1| |1-F_A|} \right)
\]

where, \(z \) is the ratio of the number of breeding males to females and \(F_A \) is the observed \(F_a \) on autosomes. We assumed \(z \) to be either 1 or 6 to represent extreme possibilities based on the mating system manipulation. For each E-M pairwise comparison, we calculated mean \(F_a \) across each chromosome type and converted to \(F_X \). We used a bootstrapping approach to obtain a random distribution of \(F_X \) for each replicate. For each of 1,000 bootstrap iterations we sampled, with replacement, a number of windows equal to the total number across all autosomes from the set of all windows, then we calculated mean \(F_a \) across all sampled windows and converted to \(F_X \) using the equation above. Additionally, we computed a value of...
273 F_d and Tajima’s D for each annotated *D. pseudoobscura* gene by taking the mean value across all 50kb windows that spanned a gene.

276 **Linkage Disequilibrium (LDx)**

Although haplotype information is not available from pool-seq data, short range linkage information is available from paired reads. We used LDx (Feder et al., 2012) to first compute the r^2 of SNPs located on the same read pairs. We only used SNPs with a minor allele frequency > 0.1, a minimum coverage of 10, a maximum read coverage of 400, and a phred score > 20. We binned pairs of SNPs into distance classes and then computed mean r^2 per distance class. We only used distance classes with a minimum of 5 SNPs. We estimated the decay of r^2 as a function of distance by fitting a linear model of r^2 as a function of the log of the distance between the SNPs. Thus, the slope measures the decay rate of linkage due to recombination (Feder et al., 2012), giving an indication of the distance over which LD is present. In regions of low recombination one would expect high overall values of r^2 but a weakly negative slope as LD is maintained over relatively longer regions of the genome. Comparing the slope parameter across different genomic regions gives an indication of differences in the recombination rate (or extent of selective sweeps). This was performed for each chromosome, as well as for different regions on the 3rd chromosome (see below).

291 **Functional Genomics**

In analyses of gene function and regulation we used the *D. pseudoobscura* annotation and a dataset of regulatory long non-coding RNAs (IncRNAs; Nyberg & Machado, 2016). We identified genes or IncRNAs within a distance of 10kb up- or downstream of focal SNPs with bedtools (Quinlan & Hall, 2010) intersect (keeping any potential ties). Enhancer regions, transcription factor binding sites, and other regulatory regions can occur up to 1 Mb up- or downstream from a target gene in other species (e.g. Maston et al., 2006; Chan et al., 2010; Werner et al., 2010; Pennacchio et al., 2013) but typically lie within 2kb of a gene region in *D. melanogaster* (Arnosti, 2003), 10kb thus represents a compromise. We submitted the implicated genes to ModPhEA (Weng & Liao, 2017) for phenotypic enrichment analysis. We combined the phenotypic classes “courtship behavior defective” (FBcv:0000399) and “mating rhythm defective” (FBcv:0000401) into one phenotype group and also tested the phenotypic class “stress response defective” (FBcv:0000408) for enrichment. We chose these classes *a priori* because they were most likely to be involved in phenotypic differences between the treatments related to mating or courtship behaviour and responses.
We also took advantage of recent sex- and tissue-specific expression data from the same experimental evolution lines (Veltsos et al., 2017; Veltsos et al., in prep.) to ask if SNPs co-localised with genes that are differentially expressed between the lines and if these also show different levels of diversity (Tajima’s D) or differentiation (F_{st}) between E and M lines. Full details of the differential expression analyses are given elsewhere (Veltsos et al., 2017 Veltsos et al., in prep.). Briefly, gene expression was measured in different tissues, and for individuals of different mating status (virgin or mated). For simplicity here we consider a gene to be differentially expressed if it shows significant differences between E and M lines in any of the tissues examined; male abdomens, male heads, testes, accessory glands, female abdomens, female heads, reproductive tracts of mated or virgin females, and ovaries of mated or virgin females. We used a bootstrapping approach, sampling genes (without replacement) from the *D. pseudoobscura* annotation, to determine the amount of overlap with the DE genes that is expected by chance. For each bootstrap sample, we picked 428 genes from the annotation, which is the same size as the set of genes near top SNPs (see Results). We then calculated the proportion of these genes that also occur in the DE gene sets and repeated this procedure 1,000 times to build a distribution of expected overlap between bootstrap samples and the DE gene sets. If the empirical set of genes near top SNPs had a proportion \geq the 95th percentile of the bootstrap distribution it was deemed a “significant” overlap. Furthermore, using the values of Tajima’s D and F_{st} computed for each gene (see above) we also asked whether there was any evidence of different levels of diversity or divergence between DE genes in any set ($N = 3,173$) and non-DE genes ($N = 13,583$). For Tajima’s D we contrast DE and non-DE genes separately for each chromosome type (autosomes, X-chromosome left arm, X-chromosome right arm), and each experimental evolution treatment (E and M; 6 contrasts in total), using Wilcoxon rank sum tests. For F_{st} we contrast DE genes and non-DE genes separately for each chromosome type (3 contrasts), testing for differences with Wilcoxon rank sum tests. In both cases, the mean value for non-DE genes was used as a single value against which to compare DE genes, which reduces the effect of the enormous sample size for the non-DE genes on the significance of the test. Finally, we asked whether the changes in sex-biased expression (data from Veltsos et al., 2017) between E and M treatments (ΔSB$_{EM}$) was related to diversity (Tajima’s D) within either E or M lines. Sex-bias in expression was assessed for two tissues, head and abdomen, in both courted or virgin data combined. Within each tissue, sex-bias was computed as the log(fold change) in expression between males and females in E and M lines separately, after which ΔSB$_{EM}$ is calculated as $\log(FC)_E - \log(FC)_M$. Thus, positive values of ΔSB$_{EM}$ correspond to greater male-bias in
expression in the E lines, while negative values correspond to greater male-bias in the M lines. ΔSB_{EM} was then related to values of Tajima’s D in either E (TajD_{E}) or M (TajD_{M}) lines. For each tissue (head and abdomen) we performed an ANCOVA with chromosome (autosome, X-chromosome right arm, and X-chromosome left arm) as a co-factor, as well as mean Tajima’s D across E lines and mean Tajima’s D across M lines as co-variates. We also included the interactions between Tajima’s D and chromosome. The full model is:

$$\Delta SB_{EM} \sim chromosome + TajD_{E} + TajD_{M} + TajD_{E}:chromosome + TajD_{M}:chromosome$$

We further extracted the 30bp up- and down-stream of each SNP from the reference genome using gffread from the Cufflinks package (v2.2.1; Trapnell et al., 2010) and tested for enrichment of TF binding site motifs around divergent SNPs with the AME routine from the MEME package (v. 4.10.2; McLeay & Bailey, 2010). GO term enrichment analysis was performed with GOwinda (v. 1.12; Kofler & Schlotterer, 2012). We considered SNPs to be associated with genes if they occurred within 10kb up or downstream of an annotated gene. An empirical p-value distribution was produced from 1 million simulated SNP sets.

All statistical analyses were made with R (v. 3.6.3; R Development Core Team 2020) except where otherwise stated. Figures were drawn using the “ggplot2” package (v. 2.2.1; Wickham, 2009) and associated packages (table S1).

Results

Consistent Allele Frequency Differences

In total, 480 SNPs show significant consistent allele frequency differences due to the experimental evolution treatment (hereafter the “top SNPs”). These occur on all of the main chromosomes but many show striking co-occurrence into a few clusters of highly differentiated SNPs (figure 1A). The distribution of the top SNPs across the genome is not random, with a significant excess on the 3rd chromosome and both arms of the X chromosome (table S3). In particular, a large cluster of differentiated SNPs are observed at the end of the right arm of chromosome 3 (figure 1A). Other large clusters occur on both arms of the X chromosome (figure 1A). If all top SNPs within 50kb of others are grouped into clusters, this produces 70 distinct clusters throughout the genome (figure 1A). The majority of SNPs (72.9%) occur in only 6 clusters with > 10 SNPs. The clusters do not correspond to known inversions in *D. pseudoobscura*. In particular, the large cluster on chromosome 3 containing many (N = 199, 41.5%) top SNPs does not correspond to the most common inversions that
have shaped the evolution of this chromosome in the wild (Wallace et al., 2011; Wallace et al., 2013). Allele frequencies in E and M lines for the top 100 SNPs are shown in figure S2. More than half of these (57%) are fixed differences in all replicates. Across all the top SNPs, 12% are fixed differences between the E and M lines in all replicates, with all of these occurring on the X chromosomes

Genetic diversity

The observed discrete clusters of divergent SNPs are unusual in evolve and resequence studies. A possible explanation is strongly localised selective sweeps, which would reduce Tajima’s D. Within E lines, Tajima’s D is actually slightly higher within the clusters containing top SNPs (-0.03) than outside these clusters (-0.05; Wilcoxon signed rank test: V = 17623, p-value = 0.04). Within M lines there is no statistically significant difference between clusters (-0.07) and outside clusters (-0.6; V = 13390, p-value = 0.3). However, patterns of Tajima’s D are very variable. The most differentiated region on chromosome 3 shows reductions in Tajimas’s D within replicates from the E treatment compared to the M treatment (figure 1B), as would be expected following selective sweeps. Similar patterns are seen for some peaks on the X chromosome (figure S3). In a few cases, there are reductions of Tajima’s D associated with regions containing top SNPs within M lines compared to E lines (figure 1B and figure S3). However, many of these regions are quite small and consequently estimates of Tajima’s D may be unreliable (figure S3).

Nucleotide diversity across the chromosomes was estimated as π (figure S4). Diversity is lower overall in E lines than in M lines (figure 2A). Lowest diversity (in both treatments) is seen on the more differentiated chromosomes (X and 3; figure 2A) and mean π is marginally non-significantly lower within the clusters of M (V = 12471, p = 0.052), but not E (V = 13843, p = 0.19), lines. The ratio of diversity between the sex chromosome and autosomes is lower in E lines than in M lines, though this is variable across replicates (figure 2B). Overall, it seems like there is greater evidence for selective sweeps in E lines, especially for the X.

F_{st} between the E and M lines is always higher on the X chromosome than on autosomes (figure 3A). Moreover, average F_{st} on the X is greater than expected when compared to the autosomes, even after accounting for the effects of drift and expected differences in effective population sizes when compared to F_{st} on the autosomes (figure 3B) and the X:A ratio of F_{st} is always > 1 (figure 3C). As expected, F_{st} was higher within peak regions than outside peak regions (0.64 vs. 0.59; Wilcoxon signed rank test: V = 15309, p-value < 0.001, Figure 3D).
Linkage Disequilibrium

A combination of hitchhiking and selective sweeps could lead to clustered genomic divergence, often with low diversity, especially in regions of low recombination such as telomeric regions. We examined patterns of linkage disequilibrium in the clusters and if this varied with treatment. Throughout the genome, the decay rate \((a)\) parameter of LD is generally shallower (i.e. less negative) in the E treatment (figure 4A). This is seen for chromosome 3 as well as both arms of the X chromosome (figure 4A). A lower decay rate is indicative of more LD, due to less recombination and/or a potential for greater hitchhiking under positive selection. Contrary to predictions, we found a steeper rate of decay (less LD) within the differentiated region of chromosome 3 than outside it, especially in E lines (figure 4B and C). Although statistically significant \((F_{(2,13)} = 4.6, p < 0.001)\), these differences are slight. The most striking pattern overall is greater overall LD on chromosome 3.

Gene functions and expression variation

The top SNPs were not significantly enriched in any GO terms after correcting for multiple testing, even at a 10% FDR (table S4). Similarly, there was no enrichment of genes with annotations for mating behaviour or stress response phenotypic classes. However, several genes within 10kb of a top SNP are potentially interesting candidate genes for traits evolving under sexual selection based on described functions (table S4). For example, the genes *Odorant-binding protein 47a* (*Obp47*), *pickpocket 6* (*ppk6*), and *Accessory gland protein 53C14c* (*Acp53C14c*) all occur within 10kb of a top SNP and are genes potentially underlying sexually selected behaviours or traits. Two of these genes (*ACP53C14c* and *Obp47a*) are within the region of highly differentiated SNPs on the 3rd chromosomes, which also includes several additional accessory gland proteins (*Acp53Ea, Acp53C14b, Acp53C14a*), and other genes (table S4), all of which are thought to influence mating and courtship behaviours or phenotypes based on known functions of similar genes in *D. melanogaster*.

Previous studies have shown that there is divergence in gene expression patterns between E and M lines (Immonen *et al.*, 2014; Veltsos *et al.*, 2017; Veltsos *et al.*, in prep.). We therefore asked if these expression differences were associated with the top SNPs. Genes within 10kb \((N = 428)\) of the top SNPs show a significantly greater overlap with genes that are differentially expressed (DE) in ovaries and testes between E and M lines than expected by chance (figure S5 and table S3). This pattern also holds for genes within 1Mb \((N = 7,045;\)
Also, there is evidence that F_{st} between E and M lines is higher for genes that are DE between the lines, especially for X-linked genes (figure 5A; Wilcoxon rank sum tests, Autosomes - $V = 1026000$, $p = 0.03$; X-chromosome right arm - $V = 89067$, $p = 0.005$; X-chromosome left arm – $V = 59623$, $p = 0.04$). There is no evidence that Tajima’s D is different between DE and non-DE genes (Wilcoxon rank sum test; all $p > 0.05$; figure 5B). There is some evidence that the degree to which sex-biased expression of a gene changes between E and M lines is associated with Tajima’s D in M lines, but only on the X-chromosome and only within abdominal tissues (figure 5C). Specifically, as the change in sex-bias becomes more negative (i.e. more female-biased expression in M lines), Tajima’s D also becomes more negative (interaction of Tajima’s D in M lines and chromosome type: $F_{(11189,11191)} = 4.4$, $p = 0.013$).

The regions immediately up- or down-stream of top SNPs are not enriched for TF binding motifs or lncRNAs, after correction for multiple testing, so there were no obvious differences between treatments in regions governing gene expression.

Discussion

There is much debate about the influence of sexual selection and sexually antagonistic selection on patterns of genomic variation (Mank, 2017; Sayadi et al., 2019) and how this may influence divergence between species (Wolf & Ellegren, 2016). Sex-biased gene expression, especially male-bias, evolves quickly and is related to phenotypic sexual dimorphism (Wright et al., 2019). Outliers in genome scans often implicate sexual selection as a diversifying force (Andres et al., 2008; Blankers et al., 2018). Sexual antagonism may be associated with genomic signatures of selective sweeps or balancing selection (Cheng & Kirkpatrick, 2016; Wright et al., 2019) and may be promoted by strong sexual selection. However, inferences of the sources of selection on natural variation in genomic divergence are usually indirect and ambiguous, because multiple forces act in concert to produce variation seen at the genomic level in nature. Here we used experimental evolution to alter sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of divergence in the genome after more than 160 generations of experimental evolution.

Many of the results we found recapitulate patterns seen in natural populations and between species. Divergence is not uniform across the genome but clustered in “islands” of divergence, some of which contain candidate genes for an involvement in mating success. These clusters are more often seen on the X chromosome, which is a “hot spot” for
divergence. There are signatures of selection within the islands of divergence, with marginally lower diversity (π) within clusters than the rest of the genome, but only in M lines. Moreover, F_{st} between E and M lines is greater within clusters. F_{st} is also greater on the X than autosomes, and differences in diversity are seen in the autosomes between selection regimes. Tajima’s D implies selective sweeps have occurred, but only within some of the divergent regions. These patterns of diversity and divergence are associated with changes in both differential gene expression between the lines and sex-biased genes. Overall, F_{st} between the lines is high in all replicates, probably due to low overall effective population sizes, though effective population sizes are similar between E and M lines (Snook et al., 2009).

The concept of “islands” of divergence originated from comparisons of genomic divergence between species has given rise to (Nosil et al., 2009; Ravinet et al., 2017). These are usually thought to have arisen due to the combination of strong selection on barrier loci and genetic hitchhiking within genomic regions, with background gene flow reducing divergence outside of the islands. Here we find distinct clustered divergence akin to the islands seen in natural systems. Our system is effectively allopatric, so there was no background gene flow countering divergence outside of these clusters, which therefore must have arisen due to strong localised divergent selection across all replicates. Although D. pseudoobscura has relatively well-characterised inversion polymorphisms (Sturtevant & Dobzhansky, 1936; Dobzhansky & Sturtevant, 1938; Wallace et al., 2011), the clusters we describe do not correspond to the most common inversions known for this species, which are often very large. Our short-read sequencing approach allowed some examination of LD and there was no suggestion of reduced LD within the clusters. In fact, the large peak at the right end of chromosome 3 (figure 4) surprisingly seems to be within a region of high recombination (which is often suppressed at telomeric regions). Interestingly, recombination is higher within this peak than the chromosome-wide rate, but also differs between the treatments, being greater in the M lines. Perhaps selection against recombination was reduced in monogamous individuals because of epistatic interactions in the region which were important in sexual selection or sexual conflict. There was no obvious difference in LD in the other clusters but their smaller size and hence “noisier” estimates makes robust inferences from pool-sequence data difficult. Indeed, the estimates of LD within the cluster on chromosome 3 also rely on relatively few SNPs at longer ranges compared to the rest of the chromosome, so inferences should be taken with caution.

The lack of background gene flow or stronger linkage disequilibrium within the clusters suggests that they have arisen primarily through localised strong selection which is consistent
across all replicates. In support of this, we see lower Tajima’s D in some of the larger clusters. However, these patterns are very variable with lower Tajima’s D in separate clusters for the E and M lines. Thus, overall, there is no significant difference between E and M lines. The genes contained within the clusters are not enriched for genes of particular functional categories, however, they do include strong candidate genes for an involvement in mating system evolution. For example, the large region on chromosome 3 contains numerous accessory gland proteins. In *D. melanogaster* these are well known to influence male reproductive success, exert antagonistic effects on female fecundity and lifespan, and play a role in sperm competitive success (Chapman *et al.*, 1995; Ram & Wolfner, 2007). Some of the evolutionary response in E lines is antagonistic, because M females have a higher fecundity when mated with E males. Moreover, when mated to E males, the reproductive schedule of M females is manipulated to the males benefit (Crudgington *et al.*, 2010). Accessory gland proteins show accelerated coding sequence and expression evolution across species (Swanson & Vacquier, 2002; Begun & Lindfors, 2005). Other genes within the clusters are involved in sexual chemical communication, which is also often implicated in outlier analyses in genome comparisons between species (Smadja & Butlin, 2009). For example, mutants of members of the pickpocket family in *D. melanogaster* show aberrant male mating success because of their involvement in the detection of female pheromones (Thistle *et al.*, 2012; Toda *et al.*, 2012). E males, subject to both intra- and intersexual selection, have diverged in aspects of courtship behaviour, such as time until initiation of courtship, have a higher intensity courtship song and have a higher competitive mating success than M males (Debelle *et al.*, 2016; Debelle *et al.*, 2017).

If strong selection has driven this clustered genomic divergence, an interesting question is whether the responses to selection are stronger in the E or M lines. Imposing monogamy on a naturally polyandrous species probably leads to relaxed selection on many genes involved in intra-or intersexual competition. Therefore, the response is likely to involve changes in both the intensity and direction of selection on some loci. Thus, perhaps the variation in signals of selection we see in Tajima’s D and changes in LD are to be expected. Overall, we see stronger reductions in divergence in E lines, perhaps suggesting that directional selection was stronger when sexual selection was strengthened.

One pattern very commonly seen in studies of natural populations and species is more rapid divergence of the X chromosome (Vicoso & Charlesworth, 2006). We also see this here, the X having a higher prevalence of divergent clustered regions and higher F_{st} between the lines. Remarkably, all SNPs with fixed differences between the lines occurred on the X.
Faster X evolution can occur for many reasons, including greater genetic drift due to its smaller effective population size. We calculated expected X/A divergence ratios under a range of plausible sex ratios and the observed X/A divergence exceeded all of them, suggesting the accelerated X divergence is not due to drift effects alone, and that either selection or a combination of effects are involved. Genes under sexual selection are potentially more likely to be sex-linked, due to antagonistic, or sex-specific selection, or if sexually selected loci show dominance effects (Reinhold, 1998; Kirkpatrick & Hall, 2004; Grieshop & Arnqvist, 2018).

Links between genomic parameters and gene expression variation have been somewhat contentious source of evidence of sexual selection, especially antagonistic forms of sexual selection (Kasimatis et al., 2019; Cheng & Kirkpatrick, 2020; Mank et al., 2020). Genes that are male-biased in expression show accelerated divergence between species and sex-biased gene expression shows rapid evolution and turnover (Pröschel et al., 2006; Harrison et al., 2015). Whether sex-biased expression is expected to be related to sex-specific F_{ST} or signatures of balancing selection such as Tajima’s D is open to debate, partly because of the potential resolution of antagonistic selection by the strengthening of sex-biased expression. Previously we found that gene expression differences have evolved between the lines, especially in sex-biased genes (Veltos et al., 2017). Here we show that there is significant overlap between these genes and genes and the regions of genomic divergence of the lines found here. Thus, the expression divergence is associated with the broad patterns of genomic divergence. Also, genetic differentiation (F_{ST}) is greater for the differentially expressed genes, once again recapitulating patterns from natural systems (sex-biased genes here are not more likely to be sex-linked, so this is independent of the large X effect seen). We find no general difference in Tajima’s D between these DE loci. However, there is one very intriguing pattern where the magnitude of change in sex-biased gene expression is related to Tajima’s D. As ΔSB increases (more male-biased expression in E lines) Tajima’s D in these lines becomes more negative. This pattern is potentially consistent with more resolved sexual conflict in the M lines, because males in M lines are released from sexual selection, and selection driving female-beneficial alleles to fixation or high frequency could result in sweeps and/or reduced balancing selection.

In conclusion, we have examined genomic divergence following >160 generations of experimental evolution under altered mating systems. We find that genomic divergence between the experimental lines is highly clustered in the genome, much greater on the X and is associated with changes in gene expression between the experimental lines. Associations
with LD and population genetic parameters indicative of selective sweeps or balancing selection are also observed, but are very variable. This raises the possibility that selection has been strong in both M and E lines, but differs in nature (relaxed in M, directional in E), complicating predictions of responses. Overall, our main results confirm those seen in natural populations, providing an elegant demonstration of the power of experimental evolution to aid the interpretation of complex patterns of natural variation.

Acknowledgments

This work was part-funded by NERC (grant NE/I014632/1) to MGR & RRS and a combined Natural Environment Research Council and St Andrews 600th Anniversary PhD Studentship grant (NE/L501852/1) to RAWW. Sequencing was supported by the NERC Biomolecular Analysis Facility at the University of Liverpool (NBAF654). Computational analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award (grant 105621/Z/14/Z). In addition the authors would like to thank Louise Reynolds, Paulina Giraldo-Perez, and Rudi Verspoor for help with DNA extraction protocols, and Mohamed Noor for helpful advice.

Author contributions

RAWW performed the data analysis. PV contributed data. The experiment was designed by MGR and RRS. All authors contributed to writing the MS.

Data Accessibility

Raw reads have been deposited in the short read archive (SRA) of NCBI under the BioProject PRJNA661678
Figures and Figure Legends

Figure 1. A) Manhattan plot of log10(q-values) for each SNP from a quasibinomial GLM with treatment as a predictor. Red points denote SNPs with a q-value < 0.05 and the horizontal red dashed line indicates the q < 0.05 cutoff. Grey bars give the locations and span of the 70 divergent regions (see text). B) Mean (± SE) Tajima’s D across replicates for the three most divergent regions (see text), red points denote SNPs with a q-value < 0.05, all have been plotted at the same value on the y-axis for convenience.

Figure 2. A) Levels of genetic diversity (π) on each chromosome in E and M lines. π is estimated in overlapping windows of 50kb, then averaged across the chromosomes. Boxplots show the distribution of π on each chromosome across replicate experimental evolution lines. B) The X chromosome to autosome ratio of π in the replicates of E and M lines and overall.

Figure 3. A) F_{st} between E and M treatment lines on the main chromosome arms for each replicate. F_{st} is calculated for each SNP then averaged within overlapping 50kb windows on each chromosomal segment. B) Observed F_{st} on the autosomes and on the X chromosome as well as the expected F_{st} on the X chromosomes (see Methods), error bars represent bootstrap 95% confidence intervals. C) The X:autosome ratio of F_{st} within each replicate line. The error bars are bootstrap 95% confidence intervals.

Figure 4. A) Slope coefficients from the model $r^2 \sim a + \log(bp)$ where bp is the distance between pairs of SNPs and r^2 is the average measure of LD between SNPs. Distributions are shown for average values of each of the main chromosomes as well as X chromosomes across replicates in E and M lines. B) Decay in LD as a function of distance between SNPs with the chromosome 3 peak region (see figure 3) and outside the peak region for E and M lines. C) The distribution of slope parameters for SNPs within the chromosome 3 peak and outside the peak region.

Figure 5. A) F_{st} at DE vs. non-DE genes for different chromosome types. Asterisks indicate significant differences B) Tajima’s D at DE vs. non-DE genes for different chromosome types. C) relationship between change in sex-bias between E and M lines and Tajima’s D in M lines.
References

Andres, J.A., Maroja, L.S. & Harrison, R.G. 2008. Searching for candidate speciation genes using a proteomic approach: seminal proteins in field crickets. *Proceedings of the Royal Society B-Biological Sciences* **275**: 1975-1983.

Arnosti, D.N. 2003. Analysis and function of transcriptional regulatory elements: Insights from Drosophila. *Annual Review of Entomology* **48**: 579-602.

Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. 2000. Sexual conflict promotes speciation in insects. *Proc. Natl. Acad. Sci. USA* **97**: 10460-10464.

Bacigalupe, L.D., Crudgington, H.S., Hunter, F., Moore, A.J. & Snook, R.R. 2007. Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura. *Journal of Evolutionary Biology* **20**: 1763-1771.

Barghi, N. & Schlotterer, C. 2019. Shifting the paradigm in Evolve and Resequence studies: From analysis of single nucleotide polymorphisms to selected haplotype blocks. *Molecular Ecology* **28**: 521-524.

Barnett, D.W., Garrison, E.K., Quinlan, A.R., Stromberg, M.P. & Marth, G.T. 2011. BamTools: a C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics* **27**: 1691-1692.

Begun, D.J. & Lindfors, H.A. 2005. Rapid Evolution of Genomic Acp complement in the melanogaster subgroup of Drosophila. *Molecular Biology and Evolution* **22**: 2010-2021.

Blankers, T., Vilaça, S.T., Waurick, I., Gray, D.A., Hennig, R.M., Mazzoni, C.J., Mayer, F. & Berdan, E.L. 2018. Demography and selection shape transcriptomic divergence in field crickets. *Evolution* **72**: 553-567.

Butlin, R., Debelle, A., Kerth, C., Snook, R.R., Beukeboom, L.W., Castillo Cajas, R.F., Diao, W., Maan, M.E., Paolucci, S., Weissing, F.J., van de Zande, L., Hoikkala, A., Geuverink, E., Jennings, J., Kankare, M., Knott, K.E., Tyukmaeva, V.I., Zoumadakis, C., Ritchie, M.G., Barker, D., Immonen, E., Kirkpatrick, M., Noor, M., Macias Garcia, C., Schmitt, T., Schilthuizen, M. & Marie Curie, S.N. 2012. What do we need to know about speciation? *Trends in ecology & evolution* **27**: 27-39.

Butlin, R.K. & Smadja, C.M. 2018. Coupling, Reinforcement, and Speciation. *American Naturalist* **191**: 155-172.

Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Shapiro, M.D., Brady, S.D., Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M., Petrov, D., Jonsson, B., Schluter, D., Bell, M.A. & Kingsley, D.M. 2010. Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer. *Science* **327**: 302-305.

Chapman, T., Liddle, L.F., Kalb, J.M., Wolfner, M.F. & Partridge, L. 1995. COST OF MATING IN DROSOPHILA-MELANOGASTER FEMALES IS MEDIATED BY MALE ACCESSORY-GLAND PRODUCTS. *Nature* **373**: 241-244.

Cheng, C.D. & Kirkpatrick, M. 2016. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies. *Plos Genetics* **12**: e1006170.

Cheng, C.D. & Kirkpatrick, M. 2020. The signal of sex-specific selection in humans is not an artefact: Reply to Mank et al. *Molecular Ecology* **29**: 1406-1407.

Corl, A. & Ellegren, H. 2012. THE GENOMIC SIGNATURE OF SEXUAL SELECTION IN THE GENETIC DIVERSITY OF THE SEX CHROMOSOMES AND AUTOSOMES. *Evolution* **66**: 2138-2149.

Counterman, B.A., Ortiz-Barrientos, D. & Noor, M.A.F. 2004. Using comparative genomic data to test for fast-x evolution. *Evolution* **58**: 656-660.
Crudgington, H.S., Beckerman, A.P., Brustle, L., Green, K. & Snook, R.R. 2005. Experimental removal and elevation of sexual selection: Does sexual selection generate manipulative males and resistant females? *American Naturalist* **165**: S72-S87.

Crudgington, H.S., Fellows, S., Badcock, N.S. & Snook, R.R. 2009. Experimental manipulation of sexual selection promotes greater male mating capacity but does not alter sperm investment. *Evolution* **63**: 926-938.

Crudgington, H.S., Fellows, S. & Snook, R.R. 2010. Increased opportunity for sexual conflict promotes harmful males with elevated courtship frequencies. *Journal of Evolutionary Biology* **23**: 440-446.

Cruickshank, T.E. & Hahn, M.W. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. *Molecular Ecology* **23**: 3133-3157.

Debelle, A., Ritchie, M.G. & Snook, R.R. 2014. Evolution of divergent female mating preference in response to experimental sexual selection. *Evolution* **68**: 2524-2533.

Debelle, A., Ritchie, M.G. & Snook, R.R. 2016. Sexual selection and assortative mating: an experimental test. *Journal of Evolutionary Biology* **29**: 1307-1316.

Debelle, A., Courtiol, A., Ritchie, M.G. & Snook, R.R. 2017. Mate choice intensifies motor signalling in Drosophila. *Animal Behaviour* **133**: 169-187.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., McKenna, A., Fennell, T.J., Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K., Gabriel, S.B., Altshuler, D. & Daly, M.J. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics* **43**: 491-+.

Dobzhansky, T. & Sturtevant, A.H. 1938. Inversions in the chromosomes of drosophila pseudoobscura. *Genetics* **23**: 28-64.

Ellegren, H. & Parsch, J. 2007. The evolution of sex-biased genes and sex-biased gene expression. *Nature Reviews Genetics* **8**: 689-698.

Ellegren, H. 2009. The different levels of genetic diversity in sex chromosomes and autosomes. *Trends in Genetics* **25**: 278-284.

Ellegren, H., Smeds, L., Burri, R., Olason, P.I., Backstrom, N., Kawakami, T., Kunstner, A., Makinen, H., Nadachowska-Brzyska, K., Qvarnstrom, A., Uebbing, S. & Wolf, J.B.W. 2012. The genomic landscape of species divergence in Ficedula flycatchers. *Nature* **491**: 756-760.

Ellis, E.A. & Oakley, T.H. 2016. High Rates of Species Accumulation in Animals with Bioluminescent Courtship Displays. *Current Biology* **26**: 1916-1921.

Feder, A.F., Petrov, D.A. & Bergland, A.O. 2012. LDx: Estimation of Linkage Disequilibrium from High-Throughput Pooled Resequencing Data. *Plos One* **7**.

Gage, M.J.G., Parker, G.A., Nylin, S. & Wiklund, C. 2002. Sexual selection and speciation in mammals, butterflies and spiders. *Proc. Roy. Soc. Lond. B* **269**: 2309-2316.

Gerrard, D.T., Fricke, C., Edward, D.A., Edwards, D.R. & Chapman, T. 2013. Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes. *Plos One* **8**: 15.

Grieshop, K. & Arnqvist, G. 2018. Sex-specific dominance reversal of genetic variation for fitness. *PLOS Biology* **16**: e2006810.

Harrison, P.W., Wright, A.E., Zimmer, F., Dean, R., Montgomery, S.H., Pointer, M.A. & Mank, J.E. 2015. Sexual selection drives evolution and rapid turnover of male gene expression. *Proceedings of the National Academy of Sciences* **112**: 4393-4398.

Hivert, V., Leblois, R., Petit, E.J., Gautier, M. & Vitalis, R. 2018. Measuring Genetic Differentiation from Pool-seq Data. *Genetics* **210**: 315-330.
Holland, B. & Rice, W.R. 1999. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. *Proceedings of the National Academy of Sciences of the United States of America* 96: 5083-5088.

Hollis, B., Houle, D., Yan, Z., Kawecki, T.J. & Keller, L. 2014. Evolution under monogamy feminizes gene expression in Drosophila melanogaster. *Nature Communications* 5.

Hosken, D.J., Garner, T.W.J. & Ward, P.I. 2001. Sexual conflict selects for male and female reproductive characters. *Current Biology* 11: 489-493.

Hosken, D.J. & Ward, P.I. 2001. Experimental evidence for testis size evolution via sperm competition. *Ecology Letters* 4: 10-13.

Hunt, J., Snook, R.R., Mitchell, C., Crudgington, H.S. & Moore, A.J. 2012. Sexual selection and experimental evolution of chemical signals in Drosophila pseudoobscura. *Journal of Evolutionary Biology* 25: 2232-2241.

Immonen, E., Snook, R.R. & Ritchie, M.G. 2014. Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura. *Ecology and Evolution* 4: 2186-2201.

Innocenti, P., Flis, I. & Morrow, E.H. 2014. Female responses to experimental removal of sexual selection components in Drosophila melanogaster. *Bmc Evolutionary Biology* 14.

Janicke, T., Sandner, P., Ramm, S.A., Vizoso, D.B. & Scharer, L. 2016. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm. *Journal of Evolutionary Biology* 29: 1713-1727.

Janicke, T., Ritchie, M.G., Morrow, E.H. & Marie-Orleach, L. 2018. Sexual selection predicts species richness across the animal kingdom. *Proceedings of the Royal Society B: Biological Sciences* 285.

Kang, L., Settlage, R., McMahon, W., Michalak, K., Tae, H., Garner, H.R., Stacy, E.A., Price, D.K. & Michalak, P. 2016. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila. *Genome Biology and Evolution* 8: 1482-1488.

Kapun, M., Barrón, M.G., Staubach, F., Obbard, D.J., Wiberg, R.A.W., Vieira, J., Goubert, C., Rota-Stabelli, O., Kankare, M., Bogaerts-Marquez, M., Haudry, A., Waidele, L., Kozeretska, I., Pasyukova, E.G., Loeschke, V., Pascual, M., Vieira, C.P., Serga, S., Montchamp-Moreau, C., Abbott, J., Gibert, P., Porcelli, D., Posnien, N., Sánchez-Gracia, A., Grath, S., Sucena, É., Bergland, A.O., Guerreiro, M.P.G., Onder, B.S., Argyridou, E., Guio, L., Schou, M.F., Deplancke, B., Vieira, C., Ritchie, M.G., Zwaan, B.J., Tauber, E., Oreno, D.J., Puerma, E., Aguadé, M., Schmidt, P.S., Parsch, J., Betancourt, A.J., Flatt, T. & González, J. 2020. Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. *Molecular Biology and Evolution*.

Kasimatis, K.R., Ralph, P.L. & Phillips, P.C. 2019. Limits to Genomic Divergence Under Sexually Antagonistic Selection. *G3-Genes Genomes Genetics* 9: 3813-3824.

Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I. & Whitlock, M.C. 2012. Experimental evolution. *Trends in Ecology & Evolution* 27: 547-560.

Kirkpatrick, M. & Hall, D.W. 2004. Sexual selection and sex linkage. *Evolution* 58: 683-691.

Kofler, R. & Schlotterer, C. 2012. Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies. *Bioinformatics* 28: 2084-2085.

Kraaijeveld, K., Kraaijeveld-Smit, F.J.L. & Maan, M.E. 2011. Sexual selection and speciation: the comparative evidence revisited. *Biological Reviews* 86: 367-377.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & Durbin, R. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25.
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997.

Maan, M.E. & Seehausen, O. 2011. Ecology, sexual selection and speciation. Ecology Letters 14: 591-602.

Machado, H.E., Bergland, A.O., O'Brien, K.R., Behrman, E.L., Schmidt, P.S. & Petrov, D.A. 2016. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster. Molecular Ecology 25: 723-740.

Mank, J.E., Nam, K. & Ellegren, H. 2010a. Faster-Z Evolution Is Predominantly Due to Genetic Drift. Molecular Biology and Evolution 27: 661-670.

Mank, J.E., Vicoso, B., Berlin, S. & Charlesworth, B. 2010b. Effective population size and the faster-X effect: Empirical results and their interpretation. Evolution 64: 663-674.

Mank, J.E. 2017. Population genetics of sexual conflict in the genomic era. Nature Reviews Genetics 18: 721-730.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. & DePristo, M.A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297-1303.

McLeay, R.C. & Bailey, T.L. 2010. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. Bmc Bioinformatics 11: 11.

McNamara, K.B., Sloan, N.S., Kershaw, S.E., Van Lieshout, E. & Simmons, L.W. 2020. Males evolve to be more harmful under increased sexual conflict intensity in a seed beetle. Behavioral Ecology 31: 591-597.

Michalak, P., Kang, L., Schou, M.F., Garner, H.R. & Loeschcke, V. 2019. Genomic signatures of experimental adaptive radiation in Drosophila. Molecular Ecology 28: 600-614.

Noor, M.A.F. & Bennett, S.M. 2009. Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103: 439-444.

Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. 2009. Divergent selection and heterogeneous genomic divergence. Molecular Ecology 18: 375-402.

Nyberg, K.G. & Machado, C.A. 2016. Comparative Expression Dynamics of Intergenic Long Noncoding RNAs in the Genus Drosophila. Genome Biology and Evolution 8: 1839-1858.

Panthuis, T.M., Butlin, R., Zuk, M. & Tregenza, T. 2001. Sexual selection and speciation. Trends Ecol. Evol. 16: 364-371.

Pennacchio, L.A., Bickmore, W., Dean, A., Nobrega, M.A. & Bejerano, G. 2013. Enhancers: five essential questions. Nature Reviews Genetics 14: 288-295.

Perry, J.C., Joag, R., Hosken, D.J., Wedell, N., Radwan, J. & Wigby, S. 2016. Experimental evolution under hyper-promiscuity in Drosophila melanogaster. Bmc Evolutionary Biology 16: 14.

Pizzari, T. & Wedell, N. 2013. The polyandry revolution. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368: 20120041.
Pröschel, M., Zhang, Z. & Parsch, J. 2006. Widespread adaptive evolution of drosophila genes with sex-biased expression. *Genetics* **174**: 893-900.

Quinlan, A.R. & Hall, I.M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**: 841-842.

R Development Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, https://www.R-project.org/

Ram, K.R. & Wolffier, M.F. 2007. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. *Integrative and Comparative Biology* **47**: 427-445.

Ramachandran, S., Rosenberg, N.A., Zhivotovsky, L.A. & Feldman, M.W. 2004. Robustness of the inference of human population structure: A comparison of X-chromosomal and autosomal microsatellites. *Human Genomics* **1**: 87-97.

Ravinet, M., Faria, R., Butlin, R.K., Galindo, J., Bierne, N., Rafajlovic, M., Noor, M.A.F., Mehlig, B. & Westram, A.M. 2017. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. *Journal of Evolutionary Biology* **30**: 1450-1477.

Reinhold, K. 1998. Sex linkage among genes controlling sexually selected traits. *Behav. Ecol. Sociobiol.* **44**: 1-7.

Ritchie, M.G. 2007. Sexual selection and speciation. *Annual Review of Ecology Evolution and Systematics* **38**: 79-102.

Sayadi, A., Martínez Barrio, A., Immonen, E., Dainat, J., Berger, D., Tellgren-Roth, C., Nystedt, B. & Arnebjörklund, G. 2019. The genomic footprint of sexual conflict. *Nature Ecology & Evolution* **3**: 1725-1730.

Schlotterer, C., Tobler, R., Kofler, R. & Nolte, V. 2014. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. *Nature Reviews Genetics* **15**: 749-763.

Servedio, M.R. & Boughman, J.W. 2017. The Role of Sexual Selection in Local Adaptation and Speciation. In: *Annual Review of Ecology, Evolution, and Systematics*, Vol 48, Vol. 48 (D. J. Futuyma, ed., pp. 85-109.

Smadja, C. & Butlin, R.K. 2009. On the scent of speciation: the chemosensory system and its role in premating isolation. *Heredity* **102**: 77-97.

Snook, R.R., Brustle, L. & Slate, J. 2009. A test and review of the role of effective population size on experimental sexual selection patterns. *Evolution* **63**: 1923-1933.

Snook, R.R. 2014. *The evolution of polyandry*. Oxford Univ Press, New York.

Storey, J.D. & Tibshirani, R. 2003. Statistical significance for genomewide studies. *Proceedings of the National Academy of Sciences of the United States of America* **100**: 9440-9445.

Sturtevant, A.H. & Dobzhansky, T. 1936. Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. *Proceedings of the National Academy of Sciences of the United States of America* **22**: 448-450.

Swanson, W.J. & Vacquier, V.D. 2002. The rapid evolution of reproductive proteins. *Nature Reviews Genetics* **3**: 137-144.

Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L. & Scott, K. 2012. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. *Cell* **149**: 1140-1151.

Tobler, R., Franssen, S.U., Kofler, R., Orozco-terWengel, P., Nolte, V., Hermisson, J. & Schlotterer, C. 2014. Massive Habitat-Specific Genomic Response in D. melanogaster Populations during Experimental Evolution in Hot and Cold Environments. *Molecular Biology and Evolution* **31**: 364-375.
Toda, H., Zhao, X.L. & Dickson, B.J. 2012. The Drosophila Female Aphrodisiac Pheromone Activates ppk23(+) Sensory Neurons to Elicit Male Courtship Behavior. *Cell Reports* 1: 599-607.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. & Pachter, L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology* 28: 511-U174.

Turner, T.L., Hahn, M.W. & Nuzhdin, S.V. 2005. Genomic islands of speciation in Anopheles gambiae. *Plos Biology* 3: 1572-1578.

Veltos, P., Fang, Y., Cossins, A.R., Snook, R.R. & Ritchie, M.G. 2017. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. *Nature Communications* 8: 2072.

Vicoso, B. & Charlesworth, B. 2006. Evolution on the X chromosome: unusual patterns and processes. *Nature Reviews Genetics* 7: 645-653.

Wallace, A.G., Detweiler, D. & Schaeffer, S.W. 2011. Evolutionary History of the Third Chromosome Gene Arrangements of Drosophila pseudoobscura Inferred from Inversion Breakpoints. *Molecular Biology and Evolution* 28: 2219-2229.

Weng, M.P. & Liao, B.Y. 2017. modPhEA: model organism Phenotype Enrichment Analysis of eukaryotic gene sets. *Bioinformatics* 33: 3505-3507.

Werner, T., Koshikawa, S., Williams, T.M. & Carroll, S.B. 2010. Generation of a novel wing colour pattern by the Wingless morphogen. *Nature* 464: 1143-U1157.

White, N.J., Snook, R.R. & Eyres, I. 2020. The Past and Future of Experimental Speciation. *Trends in Ecology & Evolution* 35: 10-21.

Wiberg, R.A.W., Gaggiotti, O.E., Morrissey, M.B. & Ritchie, M.G. 2017. Identifying consistent allele frequency differences in studies of stratified populations. *Methods in Ecology and Evolution* 8: 1899-1909.

Wickham, H. 2009. *ggplot2: Elegant Graphics for Data Analysis*. Springer, New York.

Wolf, J.B.W. & Ellegren, H. 2016. Making sense of genomic islands of differentiation in light of speciation. *Nat Rev Genet* 18: 87-100.

Wright, A.E., Rogers, T.F., Fumagalli, M., Cooney, C.R. & Mank, J.E. 2019. Phenotypic sexual dimorphism is associated with genomic signatures of resolved sexual conflict. *Molecular Ecology* 28: 2860-2871.

Zhang, Y., Sturgill, D., Parisi, M., Kumar, S. & Oliver, B. 2007. Constraint and turnover in sex-biased gene expression in the genus Drosophila. *Nature* 450: 233-237.
Figure 1

A

B

3:18.89−19.79

XR.6:5.95−6.27

XR.6:8.94−9.48

19.0 19.2 19.4 19.6 19.8

6.0 6.1 6.2

0.4

Tajima's D

Position (Mb)

Position (Mb)

Position (Mb)

Treatment

E

M

XR.1a

XR.1e

XR.3a

XR.3b

XR.3a

XR.5

XR.6

XR.8

3:18.89−19.79

XR.6:5.95−6.27

XR.6:8.94−9.48
Figure 2

A

B

Chromosome

Treatments

Ratio of $\pi (X/A)$
Figure 4

A

Chromosome
- Chromosome 2
- Chromosome 3
- Chromosome 4
- Chromosome X (L)
- Chromosome X (R)

距离 (bp)

皮质区域

超出皮质区域

B

r^2

距离 (bp)

C

皮质区域

超出皮质区域
Figure 5

(A) Box plots showing the distribution of Tajima's D in M Lines for different autosomal chromosomes (Autosome, XL, XR). The y-axis represents Tajima's D values, and the x-axis shows the treatment lines (M, E). DE Status is indicated by the legend with DE and Not-DE categories.

(B) Detailed box plots for each chromosome (Autosome, XL, XR) comparing M and E treatment lines. The y-axis shows Tajima's D values, with DE and Not-DE statuses indicated.

(C) Scatter plots showing the relationship between Mean Tajima's D in M Lines and Change in Sex-bias for Autosome, XL, and XR. The x-axis represents Mean Tajima's D in M Lines, ranging from -1.0 to 1.0, while the y-axis shows the Change in Sex-bias ranging from -5 to 5.