The σ and ρ in D and B decays

Nello Pavera,b and Riazuddinc,d

a Dipartimento di Fisica Teorica, Università di Trieste

b Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy

c The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

d National Center for Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

Abstract

We study the $D^+ \rightarrow \sigma \pi^+$, $D^+ \rightarrow \rho^0 \pi^+$, $B^- \rightarrow \sigma \pi^-$, $B^- \rightarrow \rho^0 \pi^-$ and $\bar{B}^0 \rightarrow \rho^\mp \pi^\pm$ decays in a valence quark triangle model, incorporating chiral symmetries. We find a good agreement with recent experimental data for $D^+ \rightarrow \rho^0 \pi^+$ and for $D^+ \rightarrow \rho^0 \pi^+$. We point out that a long-distance contribution due to the axial vector a_1 meson pole, calculated by using chiral symmetry, can be relevant to explain $D^+ \rightarrow \rho^0 \pi^+$ and for lowering the ratio

$$R = \frac{\mathcal{B}(\bar{B}^0 \rightarrow \rho^\mp \pi^\pm)}{\mathcal{B}(B^- \rightarrow \rho^0 \pi^-)}$$

to be consistent with its phenomenological determination, within the large experimental uncertainty.
1 Introduction

Recently there has been a revival of interest \[1\text{–}6\] in a broad scalar-isoscalar light $\pi\pi$ resonance, the σ meson, which has been controversial for a long time. It has appeared in the Reviews of Particle Physics \[7\], as a broad resonance under the entry $f_0\,(400 - 1200)$ or σ. The E791 collaboration measurement of the $D^+ \rightarrow 3\pi$ rate provides an evidence for a scalar resonance σ having mass $m_\sigma = 478 \pm 24$ MeV and width $\Gamma_\sigma = 324 \pm 41$ MeV; the σ is seen as a dominant peak leading to a fit in which 46% of the rate occurs via $D^+ \rightarrow \sigma\pi^+$ while 33% of the rate occurs via $D^+ \rightarrow \rho^0\pi^+$ \[8\]. There has been considerable interest in explaining these rates \[1\].

The effective weak Hamiltonian for the above decays can be written as \[9\]

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{ud} \left\{ a_1 (\bar{d}c)_{V-A} (\bar{u}d)_{V-A} + a_2 (\bar{d}d)_{V-A} (\bar{u}c)_{V-A} \right\},$$

(1)

where, in the factorization ansatz, $a_1 = 1.10 \pm 0.05$ and $a_2 = -0.49 \pm 0.04$ fitted with D-decays \[9\] \[10\]. In this ansatz the relevant transition matrix elements are given as $[A_\mu = d\gamma_\mu \gamma_5 c, V_\mu = \bar{u}\gamma_\mu c]$:

$$\langle \sigma (k) \pi^+ (q) | H_{\text{eff}} | D^+ (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{ud} a_1 f_\pi (-iq^\mu) \langle \sigma (k) | A_\mu | D^+ (p) \rangle,$$

(2)

$$\langle \rho (k) \pi^+ (q) | H_{\text{eff}} | D^+ (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{ud} \left[a_1 f_\pi (-iq^\mu) \langle \rho (k) | A_\mu | D^+ (p) \rangle \right.$$

$$\left. + a_2 \left(- \frac{f_\rho}{\sqrt{2}} \right) \epsilon^{* \mu} \langle \pi (q) | V_\mu | D^+ (p) \rangle \right].$$

(3)

The problem thus reduces to evaluating the form factors

$$A_{\mu}^{D\sigma} = \langle \sigma (k) | A_\mu | D^+ (p) \rangle$$

$$= i \left[G_+ (q^2) (p + k)_\mu + G_- (q^2) (p - k)_\mu \right]$$

$$= i \left[\left(\frac{m_D^2 - m_\sigma^2}{q^2} \right) q_\mu G_0 (q^2) + \left((p + k)_\mu - \frac{m_D^2 - m_\sigma^2}{q^2} q_\mu \right) G_1 (q^2) \right],$$

(4)

$$A_{\mu}^{D\rho} = \langle \rho (k) | A_\mu | D^+ (p) \rangle$$

$$= i \left[\left(\epsilon^{* \mu} - q_\mu \frac{\epsilon^* \cdot q}{q^2} \right) (m_\rho + m_D) A_1 (q^2) - \left((p + k)_\mu - \frac{m_D^2 - m_\rho^2}{q^2} q_\mu \right) \epsilon^{* \mu} \cdot q \frac{A_2 (q^2)}{m_\rho + m_D} \right.$$

$$\left. + q_\mu \epsilon^{* \mu} \cdot q \frac{2m_\rho}{q^2} A_0 (q^2) \right],$$

(5)

$$V_{\mu}^{D\pi} = \langle \pi^+ (q) | V_\mu | D^+ (p) \rangle$$

$$= F_+ (k^2) (p + q)_\mu + F_- (k^2) (p - q)_\mu.$$

(6)

Thus we obtain:

$$\langle \sigma (k) \pi^+ (q) | H_{\text{eff}} | D^+ (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{ud} a_1 f_\pi \left(m_D^2 - m_\sigma^2 \right) \left[G_0^{D\sigma} (m_\pi^2) \right],$$

(7)
\[\langle \rho (k) \pi^+ (q) | H_{\text{eff}} | D^+ (p) \rangle = \frac{G_F}{\sqrt{2}} V_{cd}^* V_{ud} a_1 f_{\pi} (2m_\rho) \left(e^* \cdot q \right) \left[A_0^{D\rho} \left(m_\pi^2 \right) - \frac{a_2}{a_1} \frac{f_\rho}{\sqrt{2} f_\pi m_\rho} F_+^{D\pi} \left(m_\pi^2 \right) \right]. \] (8)

We evaluate the above form factors \(G_0^{D\sigma} \) and \(A_0^{D\rho} \) in the model based on the constituent quark “triangle” graph of Fig. 1. It is in this respect that we differ from the calculation in Ref. [4]. Moreover, we take into account the “long-distance” contribution coming through the \(a_1^- \)-pole shown in Fig. 2, which has not been previously considered. Here, the weak vertex in the factorization ansatz can be expressed as

\[\langle a_1 | H_w | D^+ \rangle = \frac{G_F}{\sqrt{2}} V_{cd}^* V_{ud} a_1 f_{a_1} (i f_D p^\mu), \] (9)

with \(f_D \) the leptonic constant of the \(D \) meson, while the strong vertices are defined by

\[\langle \sigma (k) \pi^+ (q) | a_1 (p) \rangle = \frac{i}{2} \gamma_{a_1 \sigma \pi} \eta \cdot (q - k), \] (10)

corresponding to the Lagrangian \((\sigma \partial_{\mu} \pi - \pi \partial_{\mu} \sigma) \cdot a_1^\mu \). Moreover,

\[\langle \rho (k) \pi^+ (q) | a_1 (p) \rangle = i \left(m_{a_1}^2 - m_\rho^2 \right) \eta \cdot e^* f_{a_1 \rho \pi}, \] (11)

where we have neglected the \(D \)-wave coupling \(g_{a_1 \rho \pi} \), for which there is evidence to be negligible [7]:

\[\frac{\text{D-wave amplitude}}{\text{S-wave amplitude}} = -0.107 \pm 0.016. \] (12)

The above considerations can be easily extended to \(B^- \to \rho^0 \pi^- \) and \(\bar{B}^0 \to \rho^\pm \pi^\mp \), where the \(a_1^- \) contributes to \(B^- \to \rho^0 \pi^- \) and only in a negligible way (being proportional to \(a_2 \)) to \(\bar{B}^0 \to \rho^\pm \pi^\mp \). In principle, this provides a mechanism to lower the value of the ratio

\[\mathcal{R} = \frac{\mathcal{B} (\bar{B}^0 \to \rho^\pm \pi^\mp)}{\mathcal{B} (B^- \to \rho^0 \pi^-)}. \]

Previous theoretical estimates computed in the simple factorization ansatz of Ref. [9] tend to give this ratio much larger than its experimental value: \(2.65 \pm 1.8 \) or \(2.0 \pm 1.3 \) determined, respectively, from the measured indicated branching ratios in [11] and [12]. Recent efforts to understand the size of this ratio have been published, e.g., in Refs. [5] and [13–16].

2 Form factors and \(D^+ \to \sigma \pi^+ \) and \(D^+ \to \rho^0 \pi^+ \) decays

The valence quark contribution shown in Fig. 1 gives

\[J^{(\sigma)}_\mu = \int \frac{d^3 K}{(2\pi)^3} K^{(\sigma)}_\mu, \] (13)
where $F^{(\sigma)}_\mu$ is the matrix element

$$F^{(\sigma)}_\mu = -ig_{\sigma q} \sqrt{\frac{m_d}{p_{do}}} \bar{v}^i(p_d) \left(\frac{p_d^i + m_d^k}{p_d^2 - m_d^2} \right) (\gamma_\mu \gamma_5)^k \gamma_i (p_c) \sqrt{\frac{m_c}{p_{co}}} \times \left(\sqrt{2m_D} \frac{1}{\sqrt{2}} \sqrt{3} \bar{m} (p_c) (\gamma_5)^n v_n (p_d) \right) \phi_D (K).$$

(14)

Here, the term within the parenthesis is the bound state wave function of the D-meson, $\sqrt{3}$ being the color factor. We define the kinematical variables $K = p_c - p_d$ and $P = p_c + p_d$, so that K is the relative momentum and P is the center of mass momentum of the $c\bar{d}$ system.

The evaluation of the trace implied in Eq. (14) gives:

$$F^{(\sigma)}_\mu = -4iC(K) g_{\sigma q} \{ (p_c \cdot p_d + m_c m_d) p_d^\mu \}
-(p_c' \cdot p_c + m_c m_d) p_d^\mu + (p_c' \cdot p_d - m_d^2) p_c^\mu \}
\frac{1}{p_d^2 - m_d^2},$$

(15)

where

$$C(K) = \sqrt{2m_D} \frac{1}{\sqrt{2}} \sqrt{3} \bar{m} (p_c) (\gamma_5)^n v_n (p_d) \phi_D (K).$$

(16)

Working in the D-meson rest frame ($P = 0$), where

$$p_d^2 - m_d^2 = \frac{m_c^2 - m_d^2 + m_d^2}{2} \left(1 - \frac{q^2}{m_D^2} \right) + \frac{m_c^2 + m_d^2 - m_d^2}{2} \frac{k^2}{m_D^2} + q \cdot K,$$

(17)

and noting that, if $\phi_D (K)$ is of Gaussian type, $K \approx 0$ dominates in the integration [17], one obtains [18]

$$J^{(\sigma)}_\mu = 4iC(0) g_{\sigma q} \frac{m_c^2 - (m_c - m_d)^2}{2m_D^2} \frac{1}{m_D^2 - m_c^2 + m_d^2} \left\{ \frac{1}{1 - \frac{q^2}{m_D^2} - a \frac{k^2}{m_D^2}} \right\} \times \left\{ (m_D^2 - 2m_d (m_c + m_d)) (p + k)_\mu - (m_D^2 + 2m_d (m_c + m_d)) q_\mu \right\},$$

(18)

where

$$a = \frac{m_c^2 + m_d^2 - m_d^2}{m_D^2 - m_c^2 + m_d^2}.$$

Note that, in the above approximation, $4\pi \int K^2 dK \phi_D (K)$ becomes $\int d^3 K \phi_D (K)$, which is the Fourier transform of the wave function at the origin, and we write it as $\phi_D (0)$ or equivalently $C(0)$.
To eliminate $4C(0)$, we consider the matrix element

$$\langle 0 | A_\mu | D(p) \rangle = i f_D p_\lambda$$

which, when evaluated in the same valence quark approximation employed for the calculation of $J^{(\sigma)}_\mu$, gives:

$$f_D = \frac{4C(0)}{2m_D^2} (m_c + m_d) \left[m_D^2 - (m_c - m_d)^2 \right].$$

(20)

Thus, we finally obtain the valence quark triangle contribution

$$G_+ (q^2) = f_D \sigma q \bar{q} \left(\frac{m_D^2 - 2m_d (m_c + m_d)}{m_D^2 - m_c^2 + m_d^2} \right) \frac{1}{1 - \frac{q^2}{m_D^2} - \frac{k^2}{m_D^2}},$$

(21)

and, for $k^2 = m_D^2$, this gives:

$$G_{0D}^\sigma (m_\pi^2) \simeq G_+ (0) = f_D \sigma q \bar{q} \left(\frac{m_D^2 - 2m_d (m_c + m_d)}{m_D^2 - m_c^2 + m_d^2} \right) \frac{1}{1 - \frac{m_D^2}{m_D^2}}.$$

(22)

An exactly similar calculation for the case of the ρ^0 in the ρ-dominance approximation ($k^2 = 0$), so that $g_{\rho d} f_\rho = -\frac{1}{2}$, gives:

$$-i q^\mu J^{(\rho)}_{\mu} \equiv (q \cdot \epsilon^*) (2m_\rho) A_0 (q^2) = -\frac{\sqrt{2} m_\rho^2}{2 f_\rho} \frac{1 + \frac{q^2}{m_\rho^2} q \cdot \epsilon^*}{1 - \frac{q^2}{m_\rho^2}}.$$

(23)

Thus, for $q^2 \simeq m_\pi^2 \simeq 0$, on using the KSRF relation $f_\rho = \sqrt{2} f_\pi m_\rho$ [19], we find:

$$A_{0D}^{\rho} (0) = -\frac{1}{4} \left(\frac{f_D}{f_\pi} \right).$$

(24)

Note that this result is independent of quark masses in contrast to Eq. (22). It is, however, subject to a suppression factor $F_\rho (0)$ due to the off-mass-shellness of the ρ-meson [$F_\rho (m_\rho^2) = 1$]. From the ρ-dominance of the pion form factor, the experimental determination $\gamma_{\rho\pi\pi} \frac{F_\rho}{m_\rho^2} = 1.22 \pm 0.03$ indicates $F_\rho (0) \simeq 0.8$ [20]. Accordingly, we rewrite Eq. (24) as:

$$A_{0D}^{\rho} (0) = -\frac{1}{4} \left(\frac{f_D}{f_\pi} \right) F_\rho (0) = -1.52 f_D \text{ GeV}^{-1}. $$

(25)

To account for the effect of the a_2-term in Eq. (8), we use the KSRF relation and the numerical value [21],

$$F_{0D}^{\rho} (m_\rho^2) \simeq \frac{1}{1 - \frac{m_\rho^2}{m_D^2}} \frac{F_{0D}^{\rho} (0)}{1 - \frac{m_\rho^2}{m_{D'}^2}} \simeq \frac{1}{4} \left(\frac{1.62}{f_\pi} \right).$$

(26)
with \(F^D_\pi(0) \simeq 0.3 f_D, \frac{m_\rho}{m_D} = 1.14, \) \(D' \) being the radial excitation of the \(D \). Using \(f_D = 0.23 \text{ GeV} \) \cite{22}, \(F^D_\pi(0) = 0.53 \), not inconsistent with its other estimates \cite{23}. With \(-a_2/a_1 = 0.44\), the square bracket on the right-hand side of Eq. (8) has the value

\[
\left[A^D_0(0) + 0.44 F^D_\pi \left(m_\rho^2 \right) \right] \simeq -\left[F_\rho(0) - 0.71 \right] \frac{1}{4} \frac{f_D}{f_\pi} = -0.09 \times \frac{1}{4} \frac{f_D}{f_\pi}. \tag{27}
\]

This indicates that, in the framework used here, the \(a_2 \)-term of Eq. (1) can give a significant contribution to the \(D \to \rho \pi \) channel.

To obtain the numerical estimate for \(G^D_\rho(0) \) from Eq. (22), we have to first fix \(g_{\sigma q q} \).

The linear \(\sigma \)-model gives \cite{3, 24, 25}:

\[
v = \langle \sigma \rangle = \frac{f_\pi}{\sqrt{2}}; \quad g = g_{\sigma q q} = g_{\pi q q}; \quad g_{\sigma \pi \pi} = 2 \lambda v = 2g'; \tag{28}
\]

\[
m^2_\sigma = 2 \lambda v^2; \quad m_q = gv = g \frac{f_\pi}{\sqrt{2}}; \quad g' = 2gm_q = \sqrt{2g^2 f_\pi}. \tag{29}
\]

From these relations one finds:

\[
g_{\sigma \pi \pi} = \frac{\sqrt{2}m_\rho^2}{f_\pi} = 2g' \tag{30}
\]

\[
g_{\sigma q q} = g = \left(\frac{g'}{\sqrt{2}f_\pi} \right)^{1/2} = \left(\frac{g_{\sigma \pi \pi}}{2\sqrt{2}f_\pi} \right)^{1/2} = \frac{m_\sigma}{\sqrt{2}f_\pi} \simeq 2.57 \tag{31}
\]

Using Eqs. (30) and (31), \(m_D = 1.87 \text{ GeV} \) and \(m_c = 1.45 \text{ GeV} \), we obtain

\[
G^D_\rho(0) = 3.7 f_D \text{ GeV}^{-1} \tag{32}
\]

The \(a_1 \)-pole contribution from Fig. 2 gives, on using Eqs. (33):

\[
\langle \sigma (k) \pi^+(q) | H_{\text{eff}} | D^+(p) \rangle = \frac{G_F}{\sqrt{2}} V^*_{cd} V^*_{ud} a_1 \left(if_D f_{a_1} \right) p_\mu \\
\times \left[\frac{-g^{\mu \lambda} + p^\mu p^\lambda}{m_{a_1}^2} \frac{-1}{m_{a_1}^2 - p^2} \frac{i}{2} \gamma_{a_1 \pi \sigma} (q - k) \right]_\mu \\
= \frac{-G_F}{\sqrt{2}} V^*_{cd} V^*_{ud} a_1 f_D f_{a_1} \gamma_{a_1 \pi \sigma} \frac{p \cdot (q - k)}{2m_{a_1}^2}, \tag{33}
\]

\[
\langle \rho (k) \pi^+(q) | H_{\text{eff}} | D^+(p) \rangle = \frac{G_F}{\sqrt{2}} V^*_{cd} V^*_{ud} a_1 f_D f_{a_1} i p_\mu \\
\times \left[\frac{-g^{\mu \lambda} + p^\mu p^\lambda}{m_{a_1}^2} \frac{-1}{m_{a_1}^2 - p^2} - \frac{i}{2} \frac{\left(m_{a_1}^2 - m_\rho^2 \right) f_{a_1 \rho \sigma} \epsilon^*_\lambda}{f_{a_1 \rho \sigma} q \cdot \epsilon^*} \right] \tag{34}
\]

\]

5
Now \(p \cdot (q - k) = m_\pi^2 - m_\sigma^2 \) independent of \(p^2 \), and the above equations give, in the square brackets on the right-hand sides of Eqs. (7) and (8), the additional contributions to \(G_{a_1}^{D\sigma} \) and \(A_{a_1}^{D\rho} \), respectively:

\[
G_{a_1}^{D\sigma} = -\frac{f_D f_{a_1} m_\pi^2 - m_\sigma^2}{f_\pi^2 m_D^2 - m_\sigma^2} \frac{1}{2m_{a_1}^2} \gamma_{a_1\sigma\pi} \quad (35)
\]

\[
A_{a_1}^{D\rho} = -\frac{f_D f_{a_1} m_\sigma^2 - m_\rho^2}{2m_\rho m_{a_1}^2} f_{a_1\rho\pi}. \quad (36)
\]

Moreover, the effective Lagrangian approach to Chiral symmetry gives \[26\]:

\[
g_{a_1\rho\pi} = 0, \quad f_{a_1\rho\pi} = \frac{1}{\sqrt{2} f_\pi}, \quad m_{a_1} = \sqrt{2} m_\rho,
\]

\[
f_{a_1} = f_\rho = \sqrt{2} f_\pi m_\rho, \quad \gamma_{a_1\sigma\pi} = \sqrt{2} \gamma_{\rho\pi\pi} = \sqrt{2} \frac{m_\rho}{f_\pi}.
\]

Using the above relations, we obtain for Eqs. (35) and (36) the numerical values

\[
G_{a_1}^{D\sigma} = -\frac{1}{2} \frac{f_D m_\pi^2 - m_\sigma^2}{f_\pi^2 m_D^2 - m_\sigma^2} = 0.27 f_D \text{ GeV}^{-1} \quad (37)
\]

\[
A_{a_1}^{D\rho} = -\frac{1}{4} \frac{f_D}{f_\pi} = -1.9 f_D \text{ GeV}^{-1} \quad (38)
\]

and finally, using Eqs. (27), (32), (37) and (38), the total contributions to the square brackets in the right-hand sides of Eqs. (7) and (8) become:

\[
\left[G_0^{D\sigma} + G_{a_1}^{D\sigma} \right] \simeq [1 + 0.073] 3.7 f_D \text{ GeV}^{-1}, \quad (39)
\]

\[
\left[A_0^{D\rho} + 0.44 F_+^{D\sigma} (m_\rho^2) + A_{a_1}^{D\rho} \right] \simeq [-0.09 + 1] (1.9) f_D \text{ GeV}^{-1}. \quad (40)
\]

For \(f_D \simeq 230 \text{ MeV} \), one gets

\[
\left[G_0^{D\sigma} + G_{a_1}^{D\sigma} \right] \simeq 0.91, \quad (41)
\]

to be compared with \(0.79 \pm 0.15 \) needed \[2, 3\] to explain the experimental branching ratio for \(D^+ \to \sigma \pi^+ \). Clearly, predicted branching ratios depend on the actual values of \(f_D \) (and \(f_B \)) which, hopefully, will be experimentally determined in the near future \[27\]. With the same values we obtain, from Eq. (40), the width \(\Gamma (D^+ \to \rho^0 \pi^+) = 10.39 \times 10^{-16} \text{ GeV} \) giving the branching ratio \(1.66 \times 10^{-3} \) to be compared with its experimental value \((1.05 \pm 0.31) \times 10^{-3} \) \[7\].

If we extend the previous analysis to \(D_s \to \phi \pi \) where \(\phi (1020) \) is treated as a pure \(\bar{s}s \) state, we obtain \(\langle 0 | \bar{s} \gamma_{\mu} s | \phi \rangle = f_\phi \epsilon_\mu \):

\[
A_{a_1}^{D\phi} \simeq \frac{f_D m_\phi^2}{2m_\rho f_\phi}. \quad (42)
\]
In this case the intermediate a_1-exchange should be absent and, in the factorization approximation, the a_2-term in H_{eff} should not contribute. Using $f_\phi \simeq 0.23$ GeV2 from $\Gamma(\phi \to e^+e^-)$, we would obtain

$$A_{0}^{D\phi} \simeq 2.2 f_D, \text{ GeV}^{-1} \simeq 0.62.$$ \hfill (43)

This leads to $\Gamma(D_s \to \phi \pi) \approx 2.8 \times 10^{-14}$ GeV and $B(D_s \to \phi \pi) \approx 2.1\%$, compatible with the experimentally measured value $3.6 \pm 0.9\%$ \cite{7} and the theoretical estimate of Ref. \cite{28}.

3 $B \to \sigma \pi$, $B \to \rho \pi$ decays

The effective weak Hamiltonian is given by \cite{9}

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ub}^* V_{ud} \left\{ a_1 (\bar{u}b)_{V-A} (\bar{d}u)_{V-A} + a_2 (\bar{d}b)_{V-A} (\bar{u}u)_{V-A} \right\},$$ \hfill (44)

where the Wilson coefficients c_1 and c_2, fitted for B-decays, are $c_1 (m_b) = 1.105$ and $c_2 (m_b) = -0.228$ so that $a_1 = c_1 + \frac{1}{3} c_2 = 1.03$ and $a_2 = c_2 + \frac{1}{3} c_1 = 0.14$. The factorization ansatz gives for the decay $B^- \to \sigma \pi^-$ the analogue of Eqs. (21) and (22). With $m_B = 5.28$ GeV, $m_b = 4.757$ GeV, $m_d = 0.240$ GeV, one obtains:

$$\langle \sigma (k) \pi^- (q) | H_{\text{eff}} | B^- (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ub}^* V_{ud} a_1 f_\pi \left(m_B^2 - m_\sigma^2 \right) \left[G_0^{B\sigma} (m_\pi^2) \right],$$ \hfill (45)

and the valence quark triangle contribution

$$G_0^{B\sigma} = 2.67 f_B \text{ GeV}^{-1}. $$ \hfill (46)

With $f_B = 0.150$ GeV, this gives [the a_1-pole contribution is negligible because of the factor $(m_\sigma^2/m_B^2) / (1 - m_\sigma^2/m_B^2)$ in Eq. (37)]:

$$G_0^{B\sigma} = 0.4,$$ \hfill (47)

consistent with the value found in \cite{5}.

For $B \to \rho \pi$ decays, using the factorization ansatz:

$$\langle \rho^0 (k) \pi^- (q) | H_{\text{eff}} | B^- (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ub}^* V_{ud} \left[a_1 f_\pi \left(-i q^\mu \right) \langle \rho^0 (k) | A_\mu | B^- (p) \rangle + a_2 \left(\frac{f_\rho}{\sqrt{2}} \right) e^{\nu \mu} \langle \pi^- (q) | V_\mu | B^- (p) \rangle \right]$$

1 Treating the $f_0(980)$ as a pure $s\bar{s}$ state we would obtain from the analogous quark triangle diagram, with $m_s \approx 1.6 m_q$, a value for $B(D_s \to f_0 \pi)$ substantially larger than the experimental one (and the result of \cite{28}). To have agreement we would require a mixing angle with the nonstrange scalar-isoscalar component of the order of 10 - 20 degrees for $m_q = (0.24 - 0.31)$ GeV. Thus, our model does not favour the description of f_0 as a pure $s\bar{s}$ state.
the quark triangle diagrams give:

\[
\langle \rho^+ (k) \pi^- (q) | H_{\text{eff}} | B^0 (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ub}^* V_{ud} a_1 f_\pi (2m_\rho) \epsilon^* \cdot q A_0^{B\rho^0} \left(m_\pi^2 \right) + a_2 \left(\frac{f_\rho}{\sqrt{2}} \right) (2\epsilon^* \cdot q) F_+^{B-\pi^-} \left(m_\rho^2 \right),
\]

(48)

\[
\langle \rho^- (k) \pi^+ (q) | H_{\text{eff}} | \bar{B}^0 (p) \rangle = \frac{G_F}{\sqrt{2}} V_{ub}^* V_{ud} a_1 f_\pi (2m_\rho) \epsilon^* \cdot q \left[A_0^{B\rho^+} \left(m_\pi^2 \right) \right],
\]

(49)

\[
\langle \pi^+ (k) | V_\mu | \bar{B}^0 (p) \rangle = (p + q)_\mu F_+ \left(k^2 \right) + (p - q)_\mu F_- \left(k^2 \right).
\]

(50)

Here: \(A_\mu = \bar{u} \gamma_\mu \gamma_5 b \), \(V_\mu = \bar{u} \gamma_\mu b \), and

\[
\langle \pi^+ (k) | V_\mu | \bar{B}^0 (p) \rangle = (p + q)_\mu F_+ \left(k^2 \right) + (p - q)_\mu F_- \left(k^2 \right).
\]

(51)

Noting the relations

\[
g_{\rho^+ ud} = \sqrt{2} g_{\rho^0 ub} = \frac{m_\rho^2}{f_\rho} = \frac{m_\rho}{2f_\pi},
\]

the quark triangle diagrams give:

\[
A_0^{B\rho^+} = \sqrt{2} A_0^{B-\rho^0} = \frac{\sqrt{2}}{4} \frac{f_B}{f_\pi} = \sqrt{2} (0.25) \frac{f_B}{f_\pi}.
\]

(52)

The form factor \(F_{\rho^0 \pi^-} \) introduced in Eq. (51) has been found to be about 0.30 [23, 18], so that, with \(f_B = 0.150 \) GeV [notice that, here, \(F_{\rho^0 \pi^-}(m_\rho^2) \approx F_{\rho^0 \pi^-}(0) \) to a very good approximation as \(m_\rho^2/m_B^2 \) corrections are negligible):

\[
F_{\rho^0 \pi^-}(0) = F_{\rho^0 \pi^-}(0) \approx 0.26 \frac{f_B}{f_\pi}.
\]

(53)

Now, the \(a_1^- \) -pole contributes to \(B^- \to \rho^0 \pi^- \) and, in vacuum saturation, negligibly to \(\bar{B}^0 \to \rho^\pm \pi^\mp \), the latter contribution being controlled by the small \(a_2 \) coefficient. This can enhance the branching ratio for \(B^- \to \rho^0 \pi^- \) and, as such, provide a mechanism (in addition to the \(\sigma \)-contribution to \(B^- \to \rho^0 \pi^- \) decay [5]) to lower the ratio \(R \). The additional, intermediate \(a_1^- \)-contribution to be included in the square brackets on the right-hand sides of Eqs. (48)-(50), see Eq. (38), is given by

\[
A_{a_1}^{B-\rho^0} = (0.25) \frac{f_B}{f_\pi}.
\]

(54)

One can note the change of sign since the \(a_1^- \to \rho^0 \pi^- \) coupling has sign opposite to \(a_1^+ \to \rho^0 \pi^+ \), and similar is the case for the relative signs of \(a_1^0 \to \rho^+ \pi^- \) and \(a_1^0 \to \rho^- \pi^+ \).
Thus, on using Eqs. (48)-(54), and the suppression factor $F_\rho(0) \simeq 0.8$ to take care of the off-mass-shellness of the ρ-meson in Eq. (52), one finds [we also include the small contribution controlled by $a_2/a_1 \simeq 0.13$ of the a_1 meson to the $\rho^\pm\pi^\mp$ modes]:

$$R = \left(\sqrt{2}\right)^2 \frac{[0.20 + 0.25 \cdot 0.13/\sqrt{2}]^2 + [0.26 - 0.25 \cdot 0.13/\sqrt{2}]^2}{[0.20 + 0.26 \cdot 0.13 + 0.25]^2} \approx 0.91,$$

(55)
in the lower range, but still consistent with the interval allowed by the experimental determination. Note that this ratio is almost independent of the value of f_B/f_π, and that the effect of the a_2-term of Eq. (44) is almost negligible\(^2\). The individual branching ratio is

$$B(B^- \to \rho^0\pi^-) = 1.99 |V_{ub}|^2 = (2.43 \pm 2.08) \times 10^{-5}$$

for $|V_{ub}| = (3.5 \pm 1.5) \times 10^{-3}$, that is compatible, within the uncertainty, with the experimental upper limit $B < (1.0 \pm 0.4) \times 10^{-5}$ [7].

\section{Conclusions}

Our analysis of the decays $D^+ \to \sigma\pi^+$, $D^+ \to \rho^0\pi^+$, $B^- \to \sigma\pi^-$, $B^- \to \rho^0\pi^-$ and $\bar{B}^0 \to \rho^\pm\pi^\mp$ show that the valence quark "triangle" graph, supplemented by the long distance a_1-exchange, is in reasonable agreement with the available branching ratios, in particular with $D^+ \to \rho^0\pi^+$ and that of $D^+ \to \sigma\pi^+$ recently measured. The contribution from the a_1-pole has also been found important. In particular, the inclusion of this contribution gives the ratio

$$R = \frac{B(\bar{B}^0 \to \rho^\pm\pi^\mp)}{B(B^- \to \rho^0\pi^-)} \approx 0.9,$$

consistent with the experimental values within the large experimental uncertainties. More accurate determinations of this ratio would provide a stringent test of the model presented here.

\section*{Acknowledgement}

One of the authors (R) would like to thank Professor M. A. Virasoro for hospitality at the Abdus Salam International Center for Theoretical Physics, Trieste where most of this work was done. NP acknowledges partial financial support from MURST (Italian Ministry of University, Scientific Research and Technology) and from funds of the University of Trieste.

\(^2\) Actually, in principle the "long-distance" a_1-meson contribution could be subject to a suppression factor taking into account the a_1 off-mass-shellness. This effect does not relate to the a_1-meson propagator, that is cancelled by a corresponding numerator, see Eqs. (33)-(36), but may reside in the coupling $f_{a_1\rho\pi}$. Such correction might be taken into account by introducing a B-factor B_{a_1}. Assuming $B_{a_1} \simeq 0.7 - 0.8$, i.e., the same order of magnitude found for $K - \bar{K}$ and $B - \bar{B}$ mixing [23], the correction would slightly increase the numerical result for R in Eq. (55), thus improving the agreement with the experimental value.
References

[1] L. Babukhadia, Ya. A. Berdnikov, A. N. Ivanov and M. D. Scadron, Phys. Rev. D62, 037901 (2000)

[2] A. D. Polosa, N. A. Törnqvist, M. D. Scadron and V. Elias, hep-ph/0005106

[3] C. Dib and R. Rosenfeld, Phys. Rev. D63, 117501 (2001)

[4] R. Gatto, G. Nardulli, A. D. Polosa and N. A. Törnqvist, Phys. Lett. B494, 168 (2000)

[5] A. Deandrea and A. D. Polosa, Phys. Rev. Lett. 86, 216 (2001)

[6] N. A. Törnqvist and A. D. Polosa, hep-ph/0011107 and hep-ph/0011109

[7] D. E. Groom et al., Particle Data Group, Eur. Phys. J. C15, 2000

[8] E791 collaboration, E. M. Aitala et al., Phys. Rev. Lett. 86, 770 (2001); C. Göbel, hep-ex/0012009

[9] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C34, 103 (1987)

[10] M. Neubert and B. Stech, in Heavy Flavours II, eds. A. J. Buras and M. Lindner (World Scientific, 1998), page 294

[11] C. P. Jessop et al., CLEO Collaboration, Phys. Rev. Lett. 85, 2881 (2000)

[12] B. Aubert et al., BABAR Collaboration, SLAC-PU3-8537

[13] Y. Gao and F. Würthwein, CLEO Collaboration, hep-ex/9904008

[14] M. Ciuchini, R. Contino, E. Franco, G. Martinelli and L. Silvestrini, Nucl. Phys. B512, 3 (1998)

[15] A. Deandrea, R. Gatto, M. Ladisa, G. Nardulli and P. Santorelli, Phys. Rev. D62, 0036001 (2000)

[16] A. Deandrea, hep-ph/0005014; A. Deandrea, R. Gatto, M. Ladisa, G. Nardulli and P. Santorelli, Phys. Rev. D62, 114011 (2000)

[17] N. Isgur, Phys. Rev. D13, 129 (1976), D23, 817E (1981)

[18] For details, see a similar calculation: Riazuddin, T. A. Al-Aithan and A. H. S. Gilani, hep-ph/0007164

[19] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 225 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966)

[20] C. A. Dominguez, N. Paver and Riazuddin, Zeit. Phys. C48, 55 (1990)
This follows from ref. [18] by replacing m_b, m_B, f_B and $g_{BB\pi} = \lambda m_B/f_\pi$ by $m_c = 1.45$ GeV, m_D, f_D and $g_{DD\pi} = \lambda m_D/f_\pi$ with $\lambda = 0.7$

See for instance, G. Burdman and Kambor, Phys. Rev. D55, 2817 (1997)

See, for example, “The BABAR Physics Book”, edited by P. F. Harrison and H. R. Quinn, Report No. SLAC-R-504 (1998)

D. Ebert, Bosonization in particle physics, hep-ph/9710511 and references there

M. D. Scadron, hep-ph/0007184

See for example, N. S. Craigie, N. Paver and Riazuddin, Z. Phys. C30, 69 (1986); S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969)

J. J. Thaler, Proc. of the DPF2000 Conference, Columbus (Ohio), August 2000, to appear in the Proceedings; for a review of theoretical predictions see, e.g.: V. Lubicz, hep-ph/0010171; P. Colangelo and A. Khodjamirian, hep-ph/0010175

A. Deandrea, R. Gatto, G. Nardulli, A. D. Polosa and N. A. Törnquist, Phys. Lett. B502, 79 (2001)
Figure 1: Quark triangle graph for $\langle \sigma, \rho^0 | d\gamma_\mu \gamma_5 c | D^+ \rangle$

Figure 2: a_1-pole contribution to $D^+ \to \sigma (\rho^0) \pi^+$