Condorcet domains of tiling type

Vladimir I. Danilov, Alexander V. Karzanov, Gleb A. Koshevoy

Abstract

We propose a method to construct “large” Condorcet domains by use of so-called rhombus tilings. Then we explain that this method fits to unify several previously known constructions of Condorcet domains. Finally, we discuss some conjectures on the size of such domains.

Keywords: rhombus tiling, weak Bruhat order, pseudo-line arrangement, alternating scheme, Fishburn’s conjecture

1 Introduction

In the social choice theory, a Condorcet domain, further abbreviated as a CD, is meant to be a set of preferences with the property that, whenever the chosen preferences of all voters belong to this set, the aggregated (social) preference determined by the natural majority rule does not contain cycles. For a state of the art in this field, see, e.g., [12]. A challenging problem in the field is to construct CDs of “large” size. Several interesting methods based on different ideas have been proposed in literature.

One of them is a method of Abello [1] who constructed large CDs by completing a maximal chain in the Bruhat lattice. Chameni-Nembua [2] handled distributive sublattices in the Bruhat lattice. Fishburn [3] used a clever combination of “never conditions” to construct so-called “alternating schemes”. Galambos and Reiner [8] proposed an approach using the second Bruhat order. However, each of these methods (which are briefly reviewed in the Appendix to this paper) is rather indirect and it may take some efforts to see that objects generated by the method are good CDs indeed.

In this paper we construct a class of complete (inclusion-wise maximal) CDs by using known planar graphical diagrams called rhombus tilings. Our construction and proofs are rather transparent and the CDs constructed admit a good visualization. It should be noted that the obtained CD class is essentially the same as each of three above-mentioned classes (namely, proposed by Abello, by Chameni-Nembua, and by Galambos and Reiner); see Appendix. Our main result (Theorem 4) asserts that any hump-hole domain is a subdomain of a tiling CD. As a consequence, three conjectures posed by Fishburn, by Monjardet, and by Galambos and Reiner turn out to be equivalent. A simple example shows that these conjectures are false.

1 Central Institute of Economics and Mathematics of the RAS, 47, Nakhimovskii Prospect, 117418 Moscow, Russia; emails: danilov@cemi.rssi.ru (V.I. Danilov); koshevoy@cemi.rssi.ru (G.A. Koshevoy).

2 Institute for System Analysis of the RAS, 9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia; email: sasha@cs.isa.ru.
2 Linear orders and the Bruhat poset

Let X be a finite set whose elements are thought as alternatives. A linear order on X is a complete transitive binary relation $<$ on X. It ranges the elements of X, say, $x_1 < \ldots < x_n$, where $n = |X|$. Therefore, we can encode the linear orders on X by words of the form $x_1 \ldots x_n$, regarding x_1 as the least (or worst) alternative, x_2 as the next alternative, and so on; then x_n is the greatest (or best) alternative. The set of linear orders on X is denoted by $L(X)$. If $Y \subset X$, we have a natural restriction map $L(X) \to L(Y)$.

In what follows we identify the ground set X with the set $[n]$ of integers $1, \ldots, n$ (and denote $L(X)$ as $L([n])$). The natural linear order $1 < 2 < \ldots < n$ is denoted by α, and the reversed order $1 > 2 > \ldots > n$ is denoted by ω. We use Greek symbols, e.g., σ, for linear orders on $[n]$, and write $i \prec_\sigma j$ instead of $i \sigma j$.

Let $\Omega = \{(i, j), i, j \in [n], i < j\}$. A pair $(i, j) \in \Omega$ is called an inversion for a linear order σ if $j \prec_\sigma i$. In other words, the symbol j occurs before i in the order $\sigma = s_1 \ldots s_n$. The set of inversions for σ is denoted by $\text{Inv}(\sigma)$. For example, $\text{Inv}(\alpha) = \emptyset$ and $\text{Inv}(\omega) = \Omega$.

Definition. For linear orders $\sigma, \tau \in L([n])$, we write $\sigma \ll \tau$ if $\text{Inv}(\sigma) \subset \text{Inv}(\tau)$. The relation \ll on L is called the weak Bruhat order, and the partially ordered set (L, \ll) is called the Bruhat poset.

Clearly \ll is indeed a partial order, and the linear orders α and ω are the minimal and maximal elements. It is known that the Bruhat poset is a lattice, but we will not use this fact later on. Let us say that a linear order τ covers a linear order σ if $\text{Inv}(\tau)$ equals $\text{Inv}(\sigma)$ plus exactly one inversion. Drawing an arrow from σ to τ if τ covers σ, we obtain the so-called Bruhat digraph. The Bruhat poset (L, \ll) is the transitive closure of this digraph, and the latter is the Hasse diagram of the former. Ignoring the directions of arrows, we obtain the Bruhat graph (or the permutohedron) on the set L. For $n = 3$ the Bruhat digraph is drawn in Fig. 1.

![Fig. 1.](image)

3 Condorcet domains

A set $D \subset L$ is called cyclic if there exist three alternatives i, j, k and three linear orders in D whose restrictions to $\{i, j, k\}$ have the form either ijk, jki, kij or kji, jik, ikj.

2
Otherwise D is called an **acyclic set of linear orders**, or a **Condorcet domain** (CD). Such domains are of interest in the social choice theory (see, e.g., [12]) because if all preferences of the voters form a CD then the naturally aggregated ‘social preference’ has no cycles (and therefore it is a linear order when the number of voters is odd). Conversely, if D is cyclic then there exist preference profiles which yield cycles in the ‘social preference’.

In what follows we deal only with the domains D that contain the distinguished orders α and ω. An important problem is constructing ‘large’ CDs. More precisely, we say that a CD D is **complete** if it is inclusion-wise maximal, i.e. adding to D any new linear order would violate the acyclicity.

In the case $n = 3$ there are exactly four complete CDs. These are:

a) the set of four orders 123, 132, 312 and 321. These orders are characterized by the property that the alternative 2 is never the worst. If we draw the corresponding utility functions, we observe that each of them has exactly one hump (or “peak”). Due to this, we call such a CD the **hump domain** and denote it as $D_3(\cap)$.

b) the set of orders 123, 213, 231, 321. In these orders the alternative 2 is never the best. This CD is called the **hole domain** and denoted by $D_3(\cup)$.

c) the set $\{123, 213, 312, 321\}$. Here the alternative 3 is never the middle. We denote this domain by $D_3(\rightarrow)$.

d) the set $D_3(\leftarrow) = \{123, 132, 231, 321\}$. Here the alternative 1 is never the middle.

A **casting** is a mapping c from the set $\binom{[n]}{3}$ of triples ijk ($i < j < k$) to the set $\{\cap, \cup, \rightarrow, \leftarrow\}$. For a casting c, we define $D(c)$ to be the set of linear orders $\sigma \in \mathcal{L}$ whose restriction to any triple ijk (further denoted as $\sigma_{|ijk}$) belongs to $D_3(c(ijk))$. The previous observations can be summarized as follows.

Proposition 1. 1) For any casting c, the domain $D(c)$ is a Condorcet domain.

2) Every Condorcet domain is contained in a set of the form $D(c)$.

Note that a casually chosen casting may produce a small CD. As Fishburn writes in [6]: “.. it is far from obvious how the restrictions should be selected jointly to produce a large acyclic set.” In Sections 4–6 we describe and examine a simple geometric construction generating a representable class of complete CDs. Some facts given in these Sections are known, possibly being formulated in different terms. Nevertheless, we prefer to give short proofs to have our presentation self-contained.

4 Rhombus tilings

The complete CDs that we are going to introduce one-to-one correspond to certain known geometric arrangements on the plane, called rhombus tilings. We start with recalling this notion; this is dual, via a sort of planar duality, to the notion of pseudo-line arrangement (see, e.g., [5, 7] and see also [4] for some generalizations).

In the upper half-plane $\mathbb{R} \times \mathbb{R}_{>0}$, we fix n vectors ξ_1, \ldots, ξ_n going clockwise around $(0, 0)$. It is convenient to assume that these vectors have the same length. The sum of n segments $[0, \xi_i], i = 1, \ldots, n,$ forms a **zonogon**; we denote it by Z_n. In other words, Z_n is the set of points $\sum a_i \xi_i$ over all $0 \leq a_i \leq 1$. It is a center-symmetric $2n$-gon with the
bottom vertex $b = 0$ and the top vertex $t = \xi_1 + \ldots + \xi_n$. A tile (more precisely, an ij-tile for $i, j \in [n]$) is a rhombus congruent to the sum of two segments $[0, \xi_i]$ and $[0, \xi_j]$.

A rhombus tiling (or simply a tiling) is a subdivision T of the zonogon Z_n into a set of tiles which satisfy the following condition: if two tiles intersect then their intersection consists of a common vertex or a common edge. Figures 2 and 4 illustrate examples of rhombus tilings.

Orienting the edges of T upward, we obtain the structure of a planar digraph G_T on the set of vertices of T. The tiles of T are just the (inner two-dimensional) faces of G_T.

Next we need some more definitions. By a snake of a tiling T we mean a directed path in the digraph G_T going from the bottom vertex b to the top vertex t. For $i \in [n]$, the union of i-tiles is called an i-track, where an i-tile is a tile having an edge congruent to ξ_i. (The term “track” is borrowed from [9]; other known terms are “de Bruijn line”, “dual path”, “stripe”.) One easily shows that the i-tiles form a sequence in which any two consecutive tiles have a common i-edge, and the first (last) tile contains the i-edge lying on the left (resp. right) boundary of Z_n. Also the following simple property takes place.

Lemma 1. Every snake intersects an i-track by exactly one i-edge.

Indeed, removing the i-track Q cuts the zonogon into two parts, upper and lower ones, and all i-edges of Q are directed from the lower part to the upper one. Therefore, any directed path of G_T can intersect Q at most once. This implies that any snake intersects Q exactly once (since it goes from the lower to the upper part of $Z_n - Q$). □

This lemma shows that any snake contains exactly one i-edge, for each i. So the sequence of “colors” of edges in a snake constitutes a word $\sigma = i_1 \ldots i_n$, which is a linear order on $[n]$. In what follows we do not distinguish between snakes S and their corresponding linear orders σ, denoting the snake as $S(\sigma)$ and saying that the linear order σ is compatible with the tiling T. The set of linear orders compatible with T is denoted by $\Sigma(T)$.

Example 1. When $n = 3$, there are exactly two tilings of the zonogon (hexagon) Z_3, as depicted below:

![Figure 2](image-url)

The set $\Sigma(T)$ consists of four orders, namely: 123,132,312,321. This is precisely the hump domain $D(\cap)$. In its turn, the set $\Sigma(T')$ consists of four orders 123,213,231,321, which is just the hole domain $D(\cup)$. 4
So, the domains $\Sigma(T)$ and $\Sigma(T')$ are CDs in this example. In Section 6 we explain that a similar property holds for any rhombus tiling.

5 Structure of the poset $\Sigma(T)$

Fix a tiling T of the zonogon Z_n. The snakes of T are partially ordered “from left to right” in a natural way. The minimal element is the leftmost snake $S(\alpha)$ going along the left boundary of Z_n, and the maximal element is the rightmost snake $S(\omega)$ going along the right boundary of Z_n. The set $\Sigma(T)$ equipped with this partial order is, obviously, a (distributive) lattice: for two (or more) snakes, their greatest lower bound is the left envelope of the snakes and their least upper bound is the right envelope.

In order to better understand a relationship between the partial order on $\Sigma(T)$ and the weak Bruhat order on L, let us consider the mapping $\psi = \psi_T : \text{Rho}(T) \rightarrow \Omega$. Here $\text{Rho}(T)$ is the set of tiles in T and Ω is the set of pairs (i, j) with $i < j$. This mapping associates to each ij-tile the pair (i, j).

Lemma 2. The mapping $\psi : \text{Rho}(T) \rightarrow \Omega$ is a bijection.

We have to check that for any pair $(i, j) \in \Omega$, there exists exactly one ij-tile in the tiling T. It is clear for pairs of the form (i, n). Indeed, such tiles form the n-track and we can argue as in the proof of Lemma 1. If $j < n$ then the assertion follows by induction applied to the reduced tiling $T|_{[n-1]}$, see Section 6.

Given a snake $S(\sigma)$, let $L(\sigma)$ be the set of tiles of the tiling T lying on the left from $S(\sigma)$. The next assertion gives a visual description of inversions for a linear order $\sigma \in \Sigma(T)$.

Corollary 1. $\psi(L(\sigma)) = \text{Inv}(\sigma)$.

Indeed, let (i, j) be an inversion for σ. Then the edge of color i is situated in the snake $S(\sigma)$ after the edge of color j. Therefore, the i- and j-tracks meet before they reach the snake $S(\sigma)$, and hence the ij-tile where they meet lies on the left from $S(\sigma)$. Conversely, if ij-tile lies on the left from the snake $S(\sigma)$, then the i- and j-tracks meet before $S(\sigma)$, implying that the j-edge appears in the snake before the i-edge.

Let us return to the partial order on $\Sigma(T)$. It is clear that a snake $S(\sigma)$ lies on the left from a snake $S(\tau)$ if and only if $L(\sigma) \subseteq L(\tau)$, that is (due to Corollary 1), if and only if $\sigma \ll \tau$. So the partial order on $\Sigma(T)$ is induced by the weak Bruhat order on L. In reality, a sharper property takes place: the covering relation on the poset $\Sigma(T)$ is the same as that on the Bruhat poset. In other words, we assert that if a snake $S(\tau)$ lies on the right from $S(\sigma)$ and there is no snake between them, then these snakes differ by one tile.

Indeed, suppose that these snakes coincide until a vertex v and that the next elements are different: the edge e of $S(\sigma)$ leaving v has color i, the edge e' of $S(\tau)$ leaving v has color j, and $i \neq j$. Clearly $i < j$. We claim that the edges e, e' belong to a tile in T. Otherwise T would have an l-edge leaving v such that $i < l < j$, and we could draw an intermediate snake between $S(\sigma)$ and $S(\tau)$. Now consider the ij-tile ρ with the
bottom at \(v\). The first left edge of \(\rho\) (namely, \(e\)) belongs to the snake \(S(\sigma)\). One can see that the second left edge of \(\rho\) (which has color \(j\)) belongs to \(S(\sigma)\) as well. (If \(S(\sigma)\) contains another edge leaving the vertex \(v + \xi_i\) then one can produce an intermediate snake between \(S(\sigma)\) and \(S(\tau)\).) For a similar reasons, both right edges of \(\rho\) belong to \(S(\tau)\). Thus, our snakes differ only by the tile \(\rho\), as required.

As a consequence, we obtain that any maximal chain in the poset \(\Sigma(T)\) is a maximal chain in the Bruhat poset \((\mathcal{L}, \ll)\).

6 Condorcet domains of tiling type

In this section we show that for any rhombus tiling \(T\), the set \(\Sigma(T)\) is a CD. The main role in the proof plays the reduction of a tiling under deleting elements from \([n]\). Let \(i \in [n]\). As is said above, the \(i\)-track divides the zonogon into two parts: above and below the track. Remove this track from the tiling and move the upper part by the vector \(-\xi_i\). As a result, we obtain a rhombus tiling \(T'\) of the reduced zonogon \(Z' = Z_{n-1}\) determined by the vectors \(\xi_1, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_n\). The tiling \(T'\) is called the reduction of \(T\) by the alternative \(i\) and is denoted as \(T|_{[n]-i}\).

Under this operation, a snake \(S(\sigma)\) compatible with the tiling \(T\) is transformed into a snake (corresponding to the restricted linear order \(\sigma|_{[n]-i}\)) which is compatible with the reduced tiling \(T|_{[n]-i}\). This gives the restriction mapping

\[
\Sigma(T) \to \Sigma(T|_{[n]-i}).
\]

One can iterate the reduction operation by deleting alternatives in an arbitrary order, so as to reach a subset \(X \subset [n]\). This gives the corresponding restriction mapping

\[
\Sigma(T) \to \Sigma(T|_X).
\]

Theorem 1. The set \(\Sigma(T)\) is a complete Condorcet domain.

Proof. Consider the restriction of linear orders from \(\Sigma(T)\) to a triple \(ijk\), where \(i < j < k\). By reasonings above, the restricted orders get into the domain \(\Sigma(T|_{ijk})\), which is either \(D(\cup)\) or \(D(\cap)\) (defined in Section 2). Therefore, \(\Sigma(T)\) is a CD.

To check the completeness of this domain, let us try to add to it a new linear order \(\rho\). Let \(S(\rho)\) be the snake for \(\rho\) drawn in the zonogon. Then \(S(\rho)\) is not compatible with the tiling \(T\). Let \(e\) be the first edge of the snake \(S(\rho)\) that is not an edge of \(T\). There are three possible cases, as depicted in Figure 3.

![Fig. 3](image-url)
Consider the middle case. Let the edge \(e \) be parallel to a vector \(\xi_j \), and let the tile covering \(e \) be the \(ik \)-tile; it is clear that \(i < j < k \). On the other hand, in the linear order \(\rho \) the alternative \(j \) occurs earlier than both \(i \) and \(k \). Two subcases are possible: either \(j <_\rho i <_\rho k \) or \(j <_\rho k <_\rho i \). In the first subcase, add to \(\rho \) two linear orders from the domain \(\Sigma(T) \), namely: \(i <' k <' j \) (realized by a snake going through the left side of the \(ik \)-tile), and the linear order \(\omega \), yielding \(k <_\omega j <_\omega i \). As a result, we obtain a cyclic triple. In the second subcase, we act symmetrically, by adding to \(\rho \) a linear order \(k <'_\omega i <'_\omega j \) (realized by a snake going through the right side of the \(ik \)-tile) and the linear order \(\alpha \) (yielding \(i <_\alpha j <_\alpha k \)), which again gives a cyclic triple.

Two other cases are examined in a similar way. □

We refer to a domain of the form \(\Sigma(T) \) as a Condorcet domain of tiling type, or a tiling CD.

7 Main result

A domain \(D \) in \(L \) is called a hump-hole domain if, for any triple \(ijk \), either the hump condition \(D(\cap) \) or the hole condition \(D(\cup) \) is satisfied. As is seen from the proof of Theorem 1,

(*) any tiling CD is a hump-hole domain.

We claim that the converse is also true.

Theorem 2. Every hump-hole domain is contained in a Condorcet domain of tiling type.

We need some preparations before proving this theorem.

Let \(\sigma \) be a linear order on \([n]\). A subset \(X \subset [n] \) is an ideal of \(\sigma \) if \(x \in X \) and \(y <_\sigma x \) imply \(y \in X \). In other words, if we represent \(\sigma \) as a word \(i_1 \ldots i_n \), then an ideal of \(\sigma \) corresponds to an initial segment of this word. Denote by \(Id(\sigma) \) the set of ideals of \(\sigma \) (including the empty set); so it is a set-system of cardinality \(n+1 \). For example, \(Id(\alpha) \) consists of the intervals \([0],[1],\ldots,[n-1],[n] \).

Let \(D \) be a subset of \(L \). We associate to \(D \) the following set-system

\[
Id(D) = \cup_{\sigma \in D} Id(\sigma).
\]

Example 2. Let \(D \) be the hump domain for \(n = 3 \); it consists of the four orders 123, 132, 312, and 321. Then \(Id(D) \) consists of the seven sets \(\emptyset, 1,3,12,13,23, \) and \(123=\{3\} \), that is, of all subsets of \([3]\) except for \(\{2\} \) (since 2 is never the worst).

Similarly, if \(D \) is the hole domain, then \(Id(D) \) consists of all subsets of \([3]\) except for \(\{1,3\} \).

Consider a tiling \(T \). We associate to each of its vertices \(v \) the subset \(sp(v) \) of \([n] \) as follows. Let \(S(\sigma) \) be a snake passing \(v \). Then \(sp(v) \) is the ideal of the order \(\sigma \) corresponding to the part of \(S(\sigma) \) from the beginning to \(v \). (One can see that \(sp(v) \) does
not depend on the choice of a snake σ passing v.) Equivalently, the set $sp(v)$ consists of all alternative which are ‘not better than v’. One more equivalent definition is that $sp(v)$ consists of the elements $i \in [n]$ such that the i-track goes below the vertex v. The collection of sets $sp(v)$ over the set of vertices v of T, is denoted by $Sp(T)$ and called the spectrum of T. One can see that a linear order σ belongs to $\Sigma(T)$ if and only if the inclusion $Id(\sigma) \subset Sp(T)$ holds.

Proof of Theorem 2. Let D be a hump-hole domain. Our aim is to show the existence of a tiling T such that $Id(D) \subset Sp(T)$. We will use a criterion due to Leclerc and Zelevinsky \[11\] (see also \[3, Sec. 5.3\]), on a system of subsets of $[n]$ that can be extended to the spectrum $Sp(T)$ of a tiling T. It is based on the following notion. Two subsets A, B of $[n]$ are said to be separated (more precisely, strongly separated, in terminology of \[11\]) from each other if the convex hulls of $A \setminus B$ and $B \setminus A$ (as the corresponding intervals in \mathbb{R}) do not intersect. For example, the sets $\{1, 2\}$ and $\{2, 4\}$ are separated, whereas $\{1, 3\}$ and $\{2\}$ are not. In particular, A and B are separated if one includes the other. A collection of sets is called separated if any two of its elements are separated.

Theorem 3 \[11\]. The spectrum $Sp(T)$ of any rhombus tiling T is separated. Conversely, if X is a separated system, then there exists a tiling T such that $X \subset Sp(T)$.

Due to this theorem, it suffices to show that for every hump-hole domain D, the system $Id(D)$ is separated. Suppose this is not so for some D. Then there exist two sets $A, B \in Id(D)$ and a triple $i < j < k$ in $[n]$ such that A contains j but none of i, k, whereas B contains i, k but not j. We can restrict the members of D to the set $\{i, j, k\}$, or assume that $n = 3$. Then $Id(D|_{i,j,k})$ contains both sets $\{j\}$ and $\{i, k\}$. Thus, we are neither in the hump domain nor in the hole domain case, as we have seen in Example 2.

Now we combine Theorem 2 and a slight modification of property $(*)$, yielding the main assertion in this paper. Let us say that a domain D is semi-connected if the linear orders α and ω can be connected in the Bruhat graph by a path in which all vertices belong to D.

Theorem 4. 1) Every domain of tiling type is semi-connected.
2) Every semi-connected Condorcet domain is a hump-hole domain.
3) Every hump-hole domain is contained in a domain of tiling type.

Proof of Theorem 4.
Any domain of the form $\Sigma(T)$ is semi-connected since it contains a maximal chain of the Bruhat poset, yielding the first claim.

It is easy to see that the semi-connectedness is stable under reductions. Because of this, we can restrict ourselves to the case $n = 3$. In this case there exist exactly four CDs. Two of them, where one of the alternatives 1 and 3 is never the middle, are not semi-connected. The other two domains are semi-connected; they are just hump and hole domains. This implies the second claim.

The third claim is just Theorem 2.
As a consequence, we obtain that the CDs constructed by Abello [1], Galambos and Reiner [8], and Chameni-Nembua [2] (see the Appendix for a brief outline), as well as maximal hump-hole domains, are CDs of tiling type. Moreover, all these classes of CDs are equal.

8 On Fishburn’s conjecture

Fishburn [6] constructed Condorcet domains by the following method. Given a set of linear orders and a triple \(i < j < k \), the ‘never condition’ \(jN1 \) means the requirement that, in the restriction of each linear order to the set \(\{i, j, k\} \), the alternative \(j \) is never the worst. One can see that this is exactly the case of ‘hump condition’. Similarly, the ‘never condition’ \(jN3 \) (saying that “the alternative \(j \) is never the best”) is equivalent to the ‘hole condition’.

Fishburn’s alternating scheme is defined by the following combination of hump and hole conditions. For each triple \(i < j < k \), we impose the hump condition when \(j \) is even, and impose the hole condition when \(j \) is odd. The set of linear orders obeying these conditions constitutes the *Fishburn domain* and we denote its cardinality by \(\Phi(n) \).

By Theorem 2, the Fishburn domain \(D \) is contained in a CD of tiling type. Also it is a complete CD, as is shown in [8]. So \(D \) is exactly a tiling CD. The corresponding tiling for \(n = 8 \) is drawn in Fig. 4.

Fig. 4

Fishburn conjectured that the size of any hump-hole CD does not exceed \(\Phi(n) \).

Galambos and Reiner [8] proposed the following weakening of Fishburn’s conjecture (an equivalent conjecture in terms of pseudo-line arrangements was formulated by Knuth [10]):

Galambos-Reiner’s conjecture: The size of any GR-domain does not exceed \(\Phi(n) \).

Monjardet [12] calls a CD *connected* if it induces a connected subgraph of the Bruhat graph. His conjecture there sounds as follows: the size of any connected CD does not exceed \(\Phi(n) \).

Due to our main result, the conjectures by Fishburn, by Galambos and Reiner, and by Monjardet are equivalent and they assert that \(\gamma_n = \Phi(n) \), where \(\gamma_n \) is the maximum possible size of a tiling CD (for a given \(n \)). However, such an equality is false in general.
This is a consequence of some lower bound on γ_n given by Ondjey Bilka, as an anonymous referee of the original version of this paper kindly pointed out to us (though not providing us with details). A simple proof subsequently found by authors is as follows.

Let T and T' be rhombus tilings of zonogons Z_n and $Z_{n'}$, respectively. We will identify the set $[n']$ with the subset $\{n+1, \ldots, n+n'\}$ in $[n+n']$. If we merge the top vertex of T with the bottom vertex of T' (putting T' over T), we obtain a partial tiling of the zonogon $Z_{n+n'}$, as illustrated in Fig. 5, where $n = 4$ and $n' = 3$.

This partial tiling can be extended (by a unique way) to a complete rhombus tiling \hat{T} of the whole zonogon $Z_{n+n'}$. If σ is a snake of T and σ' is a snake of T', then the concatenated path $\sigma \sigma'$ is a snake of the tiling \hat{T}. Thus, we obtain the injective map

$$\Sigma(T) \times \Sigma(T') \to \Sigma(\hat{T}),$$

which gives the inequality $\gamma_n \gamma_{n'} \leq \gamma_{n+n'}$.

Now let T and T' be the Fishburn tilings for $n = n' = 21$. From the formula for $\Phi(n)$ given in [8] one can compute that $\Phi(21) = 4443896$ and $\Phi(42) = 19.156.227.207.750$. Then $\Phi(21)^2 = 19.748.211.658.816 > \Phi(42)$. Thus, $\Phi(42) < \gamma(42)$, disproving Fishburn’s conjecture.

9 Some reformulations

It is easy to see that any linear order can be realized as a snake in some rhombus tiling. However, this need not hold for a pair of linear orders. For example, the linear orders 213 and 312 (which together with 123 and 321 form the CD $\mathcal{D}_3(\leftarrow)$) cannot appear in the same tiling.

Let us say that two linear orders σ and τ are strongly consistent if there exists a tiling T such that $\sigma, \tau \in \Sigma(T)$. For example, σ and τ are strongly consistent if $\sigma \preceq \tau$. Using observations and result from previous sections, one can demonstrate some useful equivalence relations.

Proposition 2. Let σ and τ be linear orders in $[n]$. The following properties are equivalent:

\begin{itemize}
 \item $\sigma \preceq \tau$
 \item $\sigma \preceq \tau$
 \item $\sigma \preceq \tau$
\end{itemize}
(i) linear orders σ and τ are strongly consistent;
(ii) the set-system $Id(\sigma) \cup Id(\tau)$ is separated;
(iii) for each triple $i < j < k$, the restrictions of σ and τ to this triple are simultaneously either humps or holes;
(iv) $Id(\sigma) \cup Id(\tau) = Id(\sigma \vee \tau) \cup Id(\sigma \wedge \tau)$;
(iv') $Id(\sigma) \cup Id(\tau) \subset Id(\sigma \vee \tau) \cup Id(\sigma \wedge \tau)$.

Proof. Properties (i) and (ii) are equivalent by Theorem 3.
Properties (i) and (iii) are equivalent by Theorem 2.
To see that (i) implies (iv), observe that if σ and τ occur in a tiling T, then $S(\sigma \vee \tau)$ and $S(\sigma \wedge \tau)$ are the left and right envelopes of the snakes for σ and τ, respectively. Therefore, any vertex of the snake $S(\sigma \vee \tau)$ is a vertex of $S(\sigma)$ or $S(\tau)$. Conversely, each vertex of $S(\sigma)$ is a vertex of $S(\sigma \vee \tau)$ or $S(\sigma \wedge \tau)$.

Obviously, (iv) imply (iv'). Let us prove that (iv') implies (ii). Since $\sigma \wedge \tau \ll \sigma \vee \tau$, the linear orders $\sigma \wedge \tau$ and $\sigma \vee \tau$ are strongly consistent. By the equivalence of (i) and (ii), $Id(\sigma \vee \tau) \cup Id(\sigma \wedge \tau)$ is a separated system. Since $Id(\sigma) \cup Id(\tau) \subset Id(\sigma \vee \tau) \cup Id(\sigma \wedge \tau)$, the set-system $Id(\sigma) \cup Id(\tau)$ is separated as well. □

Appendix

Here we briefly outline approaches of Abello [1], Galambos and Reiner [8], and Chemeni-Nembua [2], and an interrelation between them and our approach.

Abello

Let D be a CD. Then there exists a casting c such that $D \subset D(c)$ (see Proposition 1). Abello applies this fact to a maximal chain C in the Bruhat lattice (it had been known that any chain is a CD). In this case the casting c is unique (and is a hump-hole casting), so the domain $C(c)$ (denoted by \hat{C}) is also a CD. We call such a CD by A-domain. Abello shows that an A-domain is a complete CD.

Different chains can give the same A-domain. Maximal chains C and C' are called equivalent if the A-domains \hat{C} and \hat{C}' coincide. In the conclusion of his article Abello gives another characterization of this equivalence. A maximal chain in the Bruhat lattice can be thought as a reduced decomposition (in a product of adjacent transpositions s_i, $i = 1, ..., n-1$) of the inverse permutation ω. Namely, chains are equivalent if one reduced decomposition can be obtained from the other by a sequence of transformations when a decomposition of the form $...s_is_j...$ (with $|i - j| > 1$) changes to a decomposition of the form $...s_js_i...$. This characterization played the role of the starting point for Galambos and Reiner approach.
Galambos and Reiner

Let C be an equivalence class of maximal chains. (In reality, Galambos and Reiner define the equivalence in a somewhat different way; see Definition 2.5 in [8].) Define $D(C) := \bigcup_{C \in \mathcal{C}} C$; in their terminology, this domain consists of “permutations visited by an equivalence class of maximal reduced decompositions”). We call such domains by GR-domains. It is easy to see (and Galambos and Reiner explicitly mention it) that GR-domains are exactly A-domains. Nevertheless, they give explicit proofs, in Theorems 1 and 2 of [8], that GR-domains are complete CDs.

To give more enlightening representation for these equivalence classes of maximal reduced decompositions, Galambos and Reiner use the so-called arrangements of pseudo-lines. Permutations (or linear orders) from the domain $D(C)$ are realized in these terms as cutpaths (viz. directed cuts) of such an arrangement. Although they do not prove explicitly that the set of cutpaths of an arrangement forms a complete CD, it can be done rather easily. (We just have done this in Section 6 working in dual terms of rhombus tilings.) One can see from these arguments that GR-domains (as well as A-domains) are nothing but CDs of tiling type.

We prefer to use in this paper the language of rhombus tiling, rather than pseudo-line arrangements, because of their better visualization and simplicity to handle. In all other respects, these approaches are equivalent.

Chameni-Nembua

One more approach was proposed by Chameni-Nembua. A sublattice L in the Bruhat lattice is called covering if the cover relation in this sublattice is induced by the cover relation in the Bruhat lattice.

Chameni-Nembua shows that a distributive covering sublattice in the Bruhat lattice is a CD. Suppose now that L is a maximal distributive covering sublattice. One can easily see that it contains α and ω and, hence, it contains a maximal chain. Therefore it is a subset of a unique tiling CD. On the other hand, since the tiling CD is a distributive covering sublattice (see Section 4), we can conclude that L is the whole tiling CD.

Thus, Chameni-Nembua approach gives the same CDs as the rhombus tilings.

Acknowledgements. We thank the anonymous referees for comments and useful suggestions and, especially, the referee who informed us about the appearance of a result of Ondjey Bilka disproving Fishburn’s conjecture.

References

[1] J.M. Abello, The weak Bruhat order on S_n, consistent sets, and Catalan numbers, SIAM Journal on Discrete Mathematics 4 (1991) 1–16.

[2] C. Chameni-Nembua, Règle majoritaire et distributivité dans le permutoèdre, Mathematiques Informatique et Sciences humaines 108 (1989) 5–22.
[3] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, On bases of tropical Plücker functions, ArXiv:0712.3996v2[mathCO], 2007.

[4] V. Danilov, A. Karzanov and G. Koshevoy, Plücker environments, wiring and tiling diagrams, and weakly separated set-systems, Adv. Math. 224 (2010) 1–44.

[5] S. Felsner, Geometric Graphs and Arrangements, Advances Lectures in Mathematics, Vieweg Verlag, 2004.

[6] P. Fishburn, Acyclic sets of linear orders, Social Choice and Welfare 14 (1997) 113–124.

[7] J.E. Goodman, Pseudoline arrangements, in: Handbook of Discrete and Computational Geometry, Goodman and O’Rourke eds., CRC Press, 1997, pp. 83–110.

[8] A. Galambos and V. Reiner, Acyclic sets of linear orders via the Bruhat Order, Social Choice and Welfare 30 (2008) 245–264.

[9] R. Kenyon and J.-M. Schlenker, Rhombic embeddings of planar graphs with faces of degree 4, ArXiv:math-ph/0305057, 2003.

[10] D. E. Knuth, Axions and Hulls, Lect. Notes Comput. Sci., vol. 606, Springer-Verlag, 1992.

[11] B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates, Amer. Math. Soc. Trans., Ser. 2, 181 (1998) 85–108.

[12] B. Monjardet, Acyclic domains of linear orders: a survey, in: The Mathematics of Preference, Choice and Order (S. Brams, W. Gehrlein, and F. Roberts, eds.), Springer, 2009, pp. 136–160.
Condorcet domains of tiling type

Vladimir I. Danilov ∗ Alexander V. Karzanov †
Gleb Koshevoy ‡

Abstract

A Condorcet domain (CD) is a collection of linear orders on a set of candidates satisfying the following property: for any choice of preferences of voters from this collection, a simple majority rule does not yield cycles. We propose a method of constructing “large” CDs by use of rhombus tiling diagrams and explain that this method unifies several constructions of CDs known earlier. Finally, we show that three conjectures on the maximal sizes of those CDs are, in fact, equivalent and provide a counterexample to them.

Keywords: Condorcet domain, rhombus tiling, weak Bruhat order, pseudo-line arrangement, alternating scheme, Fishburn’s conjecture

1 Introduction

In the social choice theory, a Condorcet domain (further abbreviated as a CD) is a collection of linear orders on a finite set of candidates (alternatives) such that if the voters choose their preferences to be linear orders belonging to this collection, then a simple majority rule does not yield cycles. For a survey, see, e.g., [15]. A challenging problem in the field is to construct CDs of “large” size. Several interesting methods based on different ideas have been proposed in the literature.

Abello [1] constructed CDs by a method of completing a maximal chain in the Bruhat lattice. (For maximal chains in the Bruhat lattice and their

∗Central Institute of Economics and Mathematics of the RAS; 47, Nakhimovskii Prospect, 117418 Moscow, Russia; email: danilov@ce.mi.rssi.ru
†Institute for System Analysis of the RAS; 9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia; email: sasha@cs.isa.ru
‡Central Institute of Economics and Mathematics of the RAS; 47, Nakhimovskii Prospect, 117418 Moscow, Russia; email: koshevoy@ce.mi.rssi.ru
applications in combinatorics, see also [9].) Chameni-Nembua [4] proved that covering distributive sublattices in the Bruhat lattice are CDs. Fishburn [8] constructed CDs in the form of “alternating schemes”, by using a clever combination of so-called “never conditions”. An alternating scheme of this sort is a representative of an important class of CDs which we call peak-pit domains. Galambos and Reiner [11] developed an approach using the second Bruhat order. However, each of those methods (which are briefly reviewed in the Appendix to this paper) is rather indirect, and it may take some efforts to see that the objects it generates are “good CDs” indeed.

In this paper we construct a class of inclusion-wise maximal, or complete, CDs by use of known planar graphical diagrams called rhombus tilings. Our construction and proofs are rather transparent and the obtained CDs admit a good visualization. It should be noted that the obtained class of CDs is essentially the same as each of above-mentioned classes. We show that any peak-pit domain is a subdomain of a rhombus tiling CD (in Theorem 4). As a consequence, we obtain that three conjectures posed, respectively, by Fishburn, by Monjardet, and by Galambos and Reiner turn out to be equivalent. Finally, a simple example that we construct disproves these conjectures.

2 Linear orders and the Bruhat poset

Let X be a finite set whose elements are interpreted as alternatives. A linear order on X is a complete transitive binary relation $<$ on X. It ranges the elements of X, and we can encode a linear order $x_1 < \ldots < x_n$ on X (where $n = |X|$) by the word $x_1 \ldots x_n$, regarding x_1 as the least (or worst) alternative, x_2 as the next alternative, and so on; then x_n is the greatest (or best) alternative. The set of linear orders on X is denoted by $\mathcal{L}(X)$. If $Y \subset X$, we have a natural restriction map $\mathcal{L}(X) \to \mathcal{L}(Y)$.

In what follows the ground set X is identified with the set $[n]$ of integers $1, \ldots, n$. We usually use Greek symbols, say, σ, for linear orders on $[n]$, and write $i <_\sigma j$ rather than $i \sigma j$. The linear order $1 < 2 < \ldots < n$ is denoted by α, and the reversed order $n < (n-1) < \ldots < 1$ by ω.

Let $\Omega = \{(i,j) : i,j \in [n], i < j\}$. For a linear order σ, a pair $(i,j) \in \Omega$ is called an inversion (w.r.t. α) if $j <_\sigma i$. The set of inversions for σ is denoted by $\text{Inv}(\sigma)$. In particular, $\text{Inv}(\alpha) = \emptyset$ and $\text{Inv}(\omega) = \Omega$.

Definitions. For linear orders $\sigma, \tau \in \mathcal{L} = \mathcal{L}([n])$, we write $\sigma \ll \tau$ if $\text{Inv}(\sigma) \subseteq \text{Inv}(\tau)$. The relation \ll on \mathcal{L} is called the weak Bruhat order, and

\footnote{The coincidence of the CD classes proposed by Abello and by Galambos and Reiner was established in [11].}
the partially ordered set \((L, \ll)\) is called the Bruhat poset. A linear order \(\tau\) covers a linear order \(\sigma\) if \(\text{Inv}(\tau)\) equals \(\text{Inv}(\sigma)\) plus exactly one inversion (this is known to agree with the notion of covering in a poset). The Bruhat digraph is formed by drawing a directed edge from \(\sigma\) to \(\tau\) if and only if \(\tau\) covers \(\sigma\), and the underlying undirected graph is called the Bruhat graph.

Clearly \(\alpha\) and \(\omega\) are the minimal and maximal elements of the Bruhat poset. It is known that this poset is a lattice. Also \((L, \ll)\) is the transitive closure of the Bruhat digraph. For \(n = 3\) this digraph is drawn in Fig. 1.

![Fig. 1.](image)

3 Condorcet domains

Let \(D \subseteq L([n])\). We say that \(D\) is cyclic if there exist three alternatives \(i, j, k\) and three linear orders in \(D\) whose restrictions to \(\{i, j, k\}\) are of the form either \(\{ijk, jki, kij\}\) or \(\{kji, jik, ikj\}\). An acyclic set \(D\) of linear orders is called a Condorcet domain (CD). Such domains are important since they admit aggregations (see, e.g., [15]).

More precisely, consider a mapping \(\nu : D \rightarrow \mathbb{Z}_+\) (called a \(D\)-opinion), where \(\nu(\sigma)\) is interpreted as the number of voters that pick a linear order \(\sigma\). Then \(|\nu| = \sum_{\sigma \in D} \nu(\sigma)\) is the total number of voters. The “social preference” is defined to be the binary relation \(sm(\nu)\) on \([n]\) constructed by the majority rule: \(i sm(\nu) j \iff\) the number of voters which prefer \(i\) to \(j\) in their chosen linear orders is strictly more than those having the opposite preference. When the relation \(sm(\nu)\) has no cycle for every \(D\)-opinion \(\nu\), the set \(D\) is just a CD. (Indeed, it suffices to consider only \(D\)-opinions where the total number of voters is odd (cf. [15]). Then the relation \(sm(\nu)\) is complete, and the acyclicity of \(D\) implies that \(sm(\nu)\) is a linear order on \([n]\). Conversely, if \(D\) is cyclic, then there exists a \(D\)-opinion yielding a cycle in the “social preference”.)

In the rest of this paper we consider only domains \(D \subseteq L([n])\) containing both distinguished orders \(\alpha\) and \(\omega\) (this, in fact, matches considerations in [1].
We say that D is complete if it is inclusion-wise maximal, i.e. adding to D any new linear order would violate the acyclicity.

One can check that in case $n = 3$ there are exactly four complete CDs. These are:

a) the set of four orders 123, 132, 312 and 321. These orders are characterized by the property that the alternative 2 is never the worst. We call this CD the peak domain (for $n = 3$) and denote it as $D_3(\cap)$.

b) the set of orders 123, 213, 231, 321. In these orders the alternative 2 is never the best. This CD is called the pit domain and denoted by $D_3(\cup)$.

c) the set $\{123, 213, 312, 321\}$. Here the alternative 3 is never the middle. We denote this domain by $D_3(\rightarrow)$.

d) the set $\{123, 132, 231, 321\}$, denoted by $D_3(\leftarrow)$. Here the alternative 1 is never the middle.

A casting is meant to be a mapping c of the set $\binom{[n]}{3}$ of triples ijk ($i < j < k$) to $\{\cap, \cup, \rightarrow, \leftarrow\}$. For a casting c, we define $D(c)$ to be the set of linear orders $\sigma \in L([n])$ whose restrictions to each triple ijk (further denoted as $\sigma|_{ijk}$) belongs to $D_3(c(ijk))$. The following assertions are immediate.

Proposition 1.

(i) For any casting c, $D(c)$ is a Condorcet domain.

(ii) Any Condorcet domain is contained in a set $D(c)$, where c is a casting.

Note that a casually chosen casting may produce a small and/or non-complete CD. As Fishburn writes in [8]: “.. it is far from obvious how the restrictions should be selected jointly to produce a large acyclic set.” In the next section we describe and examine a simple geometric construction generating a representable class of complete CDs.

4 Rhombus tilings and related CDs

The complete CDs that we are going to introduce one-to-one correspond to certain geometric arrangements on the plane, called rhombus tilings. In this section we recall this notion, review basic properties of tilings needed to us, and finally we establish some facts about related CDs.

A. In the upper half-plane $\mathbb{R} \times \mathbb{R}_{>0}$, we fix n vectors ξ_1, \ldots, ξ_n going in this order clockwise around $(0, 0)$ and having the same length. The sum of segments $[0, \xi_i]$, $i = 1, \ldots, n$, forms a zonogon, denoted by $Z = Z_n$. This is the center-symmetric $2n$-gon formed by the points $\sum_i a_i \xi_i$ over all $0 \leq a_i \leq 1$. Two vertices of the zonogon are distinguished: the bottom vertex $b(Z) := (0, 0)$ and the top vertex $t(Z) := \xi_1 + \ldots + \xi_n$. A rhombus congruent
To the sum of two segments \([0, \xi_i]\) and \([0, \xi_j]\), where \(1 \leq i < j \leq n\), is called an \(ij\)-tile, or simply a tile.

A rhombus tiling (or simply a tiling) is a subdivision \(T\) of the zonogon into a set of tiles satisfying the following condition: if two tiles intersect, then their intersection consists of a single vertex or a single (closed) edge. The set of tiles of \(T\) is denoted by \(\text{Rho}(T)\). Figures 2 and 4 illustrate examples of rhombus tilings.

We associate to a tiling \(T\) the planar directed graph \(G_T = (V_T, E_T)\) whose vertices and edges are those occurring in the tiles and the edges are oriented upward. The tiles of \(T\) are just the (inner two-dimensional closed) faces of \(G_T\). An edge congruent to \(\xi_i\) is called an \(i\)-edge, or an edge of color \(i\).

We will need two more definitions. First, since all edges of \(G_T\) are directed upward, this digraph is acyclic and any maximal directed path in it goes from \(b(Z)\) to \(t(Z)\). We call such a path a snake of \(T\). In particular, the zonogon is bounded by two snakes, namely, those forming the left boundary \(\text{lbd}(Z)\) and the right boundary \(\text{rbd}(Z)\) of \(Z\); note that the sequence of edge colors in the former (latter) gives the linear order \(\alpha\) (resp. \(\omega\)).

Second, for \(i \in [n]\), we apply the term an \(i\)-track (borrowed from [12]) to a maximal alternating sequence \(Q = (e_0, F_1, e_1, \ldots, F_k, e_k)\) formed by \(i\)-edges and different tiles, where \(e_{j-1}, e_j\) are opposite edges of a tile \(F_j\) (other known names for \(Q\) are “de Bruijn line” [3], “dual \(i\)-path”, “\(i\)-stripe”). Note that the projections of \(e_0, \ldots, e_k\) to a line orthogonal to \(\xi_i\) give a monotone sequence of points (since consecutive tiles in \(Q\) do not overlap). This implies that \(Q\) is not cyclic, is determined uniquely up to reversing, contains all \(i\)-edges of \(T\), and connects the pair of \(i\)-edges on the boundary of the zonogon. We assume for definiteness that the \(i\)-track begins (with the edge \(e_0\)) on the left boundary of \(Z_n\), and ends (with \(e_k\)) on the right boundary.

B. Next we exhibit some properties of tilings. One important use of tracks consists in the following. When removing the \(i\)-track \(Q\) from the zonogon (i.e. removing the interiors of the edges and tiles of \(Q\)), we obtain two connected regions \(L_i, U_i\) such that: \(L_i\) (the lower region) contains the bottom vertex \(b(Z)\) and \(U_i\) (the upper region) contains the top vertex \(t(Z)\); the edges of \(G_T\) connecting these regions are exactly the \(i\)-edges \(e_0, \ldots, e_k\) and these are directed from \(L_i\) to \(U_i\); gluing \(L_i\) with \(U_i\) shifted by \(-\xi_i\) produces the \((n-1)\)-zonogon \(Z'\) generated by the vectors \(\xi_1, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_n\). Moreover, removing from \(T\) the tiles of \(Q\) (and shifting those in \(U_i\) by \(-\xi_i\)) gives a rhombus tiling \(T'\) of \(Z'\); we call \(T'\) the reduction of \(T\) by the color \(i\) and denote it as \(T|_{[n]-i}\).

Using this operation and some other simple constructions and observations, one can demonstrate a number of rather elementary properties of
tilings. Among these, the following nice properties of T are known.

Proposition 2. (i) Any snake S intersects an i-track at exactly one i-edge. Therefore, S contains exactly n edges and the sequence of edge colors along S gives a linear order on $[n]$.

(ii) For any $1 \leq i < j \leq n$, there is exactly one ij-tile in T. This yields a natural bijection $\psi: \text{Rho}(T) \rightarrow \Omega$ (which maps an ij-tile to the pair $(i,j) \in \Omega$).

(iii) For a snake S of T, let σ be the linear order determined by S, and let $L(S)$, or $L(\sigma)$, denote the set of tiles of T lying on the left from S, i.e. those contained in the region bounded by S and $\text{lbd}(Z)$. Then $\psi(L(\sigma)) = \text{Inv}(\sigma)$.

(iv) For a snake S, there exist two consecutive edges e,e' in S (where e precedes e') which have colors i and j, respectively, and belong to a tile $\rho \in \text{Rho}(T)$ so that: (a) if $S \neq \text{lbd}(Z)$ then $i > j$ and ρ lies on the left from S, and (b) if $S \neq \text{rbd}(Z)$ then $i < j$ and ρ lies on the right from S.

Remark. These facts (or somewhat close to them) were established in several works, possibly being formulated in different terms. See, e.g., [7, 10, 11, 12, 16]. Some authors (e.g., in [11]) prefer to operate in terms of so-called commutation classes of pseudo-line arrangements (visualizing reduced words for permutations, cf. [2]). Such objects, related to rhombus tilings via planar duality, are in fact equivalent to simple wiring diagrams (a special case of wirings studied in [6]). The latter diagram can be introduced as a set of curves (“wires”) ζ_1, \ldots, ζ_n in the strip $[0,1] \times \mathbb{R}$ with the following properties: ζ_i begins at the point $(0,i)$ and ends at the point $(1,n-i)$; any two wires intersect at exactly one point; and no three wires have a common point. This is bijective (up to an isotopy) to a rhombus tiling T in which an ij-tile corresponds to the intersection point of wires ζ_i, ζ_j and an i-track corresponds to the wire ζ_i. In their turn, the snakes of T correspond to the so-called cutpaths in the wiring (in terminology of [11]).

In light of (i) in Proposition 2, we will not distinguish between snakes S and their corresponding linear orders σ, denoting the snake as $S(\sigma)$ and saying that the linear order σ is compatible with the tiling T. The set of linear orders compatible with T is denoted by $\Sigma(T)$.

Example 1. When $n = 3$, there are exactly two tilings of the zonogon (hexagon) Z_3, as depicted below. Here the set $\Sigma(T)$ consists of four orders, namely: 123, 132, 312, 321. This is precisely the peak domain $D(\cap)$. In its turn, the set $\Sigma(T')$ consists of four orders 123, 213, 231, 321, which is just the pit domain $D(\cup)$.
Fig. 2.

So the domains $\Sigma(T)$ and $\Sigma(T')$ in this example are CDs. We will explain later that a similar property holds for any rhombus tiling.

Next, the snakes of a tiling T of the zonogon $Z = Z_n$ are partially ordered “from left to right” in a natural way. The minimal element is the leftmost snake $S(\alpha) = \text{lbd}(Z)$, and the maximal element is the rightmost snake $S(\omega) = \text{rbd}(Z)$. The corresponding poset is a (distributive) lattice in which for two snakes S and S', their greatest lower bound $S \land S'$ coincides with their “left envelope”, and the least upper bound $S \lor S'$ coincides with the “right envelope”. In terms of left regions of snakes (cf. Proposition 2(iii)), we have $L(S \land S') = L(S) \cap L(S')$ and $L(S \lor S') = L(S) \cup L(S')$.

Thus, we obtain a natural partial order \prec on the set $\Sigma(T)$ of linear orders, defined by $\sigma \prec \tau \iff L(\sigma) \subset L(\tau)$. Moreover, by (iii) in Proposition 2, the relation $L(\sigma) \subset L(\tau)$ is equivalent to $\text{Inv}(\sigma) \subset \text{Inv}(\tau)$, and therefore the partial order \prec on $\Sigma(T)$ is induced by the the weak Bruhat order \ll on $\mathcal{L}([n])$.

In its turn, (iv) in Proposition 2 shows that if a snake $S(\tau)$ lies on the right from a snake $S(\sigma)$ and there is no snake between them, then these snakes differ by a single tile. This leads to a sharper version of the above property, namely: the covering relations on the poset $\Sigma(T)$ (w.r.t. \prec) are induced by covering relations on the Bruhat poset. As a consequence, we obtain the following

Corollary 1. Any maximal chain in the poset $\Sigma(T)$ is a maximal chain in the Bruhat poset (\mathcal{L}, \ll).

C. In the rest of this section we show that for any rhombus tiling T of Z_n, the set $\Sigma(T)$ is a CD.

We use the track reducing operation defined above. Take the reduction $T' = T|_{[n]-i}$ of T by an alternative i. Then any snake $S(\sigma)$ compatible with T is transformed into a snake corresponding to the restricted linear order $\sigma|_{[n]-i}$ and compatible with T'. This gives the restriction map

$$\Sigma(T) \to \Sigma(T|_{[n]-i}).$$
Making a sequence of reducing operations, we can reach any subset $X \subset [n]$ and obtain the corresponding restriction map

$$\Sigma(T) \to \Sigma(T|_X).$$

Theorem 1. The set $\Sigma(T)$ is a complete Condorcet domain.

Proof. Consider the restrictions of linear orders from $\Sigma(T)$ to a triple ijk. By reasonings above, they belong to $\Sigma(T|_{ijk})$. The obtained domain is either $\mathcal{D}(\cup)$ or $\mathcal{D}(\cap)$ (defined in Section 3). Therefore, $\Sigma(T)$ is a CD (cf. Proposition 1(i)).

To check the completeness of $\Sigma(T)$, let us try to add to it a new linear order ρ. Then the corresponding path $S(\rho)$ drawn in \mathbb{Z}_n is not contained in G_T. Let e be the first edge of $S(\rho)$ which is not an edge of T, and let v be the beginning vertex of e. Then the part P of $S(\rho)$ from $b(Z_n)$ to v lies in G_T. Three cases are possible, as depicted in Figure 3.

![Fig. 3](image)

Consider the middle case. Let the edge e have color j, and let the tile of T whose interior meets e be an ik-tile Q. Then $i < j < k$. Clearly the part P of $S(\rho)$ cannot contain an edge with color in $\{i,j,k\}$. Hence, in the linear order ρ the alternative j occurs earlier than each of i,k. Two subcases are possible: either $j < \rho i < \rho k$ or $j < \rho k < \rho i$. In the first subcase, compare ρ with two linear orders from the domain $\Sigma(T)$: a linear order σ that follows the path P and then the left side of Q, yielding the relation $i <_\sigma k <_\sigma j$, and the linear order ω, yielding $k <_\omega j <_\omega i$. This gives a cyclic triple. In the second subcase, act symmetrically, by comparing ρ with a linear order τ that follows P and the right side of Q (yielding $k <_\tau i <_\tau j$) and the linear order α (yielding $i <_\alpha j <_\alpha k$), again obtaining a cyclic triple.

Two other cases are examined in a similar way. \square

We refer to a domain of the form $\Sigma(T)$ as a *Condorcet domain of tiling type*, or a *tiling CD*.
5 Tiling CDs and peak-pit domains

A set $D \subseteq \mathcal{L}([n])$ is called a peak-pit domain if for each triple $i < j < k$ in $[n]$, the peak condition or the pit one is satisfied (in the sense that the projection of D to $\{i, j, k\}$ is contained either in the peak domain $D_3(\cap)$ or in the pit domain $D_3(\cup)$ (with ijk in place of 123) or in both). We have the following property (cf. the proof of Theorem 1):

\begin{equation}
(*) \quad \text{any tiling CD is a peak-pit domain.}
\end{equation}

The converse property is valid as well.

Theorem 2. Any peak-pit domain is contained in a tiling CD.

To prove this assertion (which is less trivial) we need some definitions and preliminary observations.

Let $\sigma \in \mathcal{L}([n])$. A subset $X \subseteq [n]$ is called an ideal of σ if $x \in X$ and $y <_\sigma x \Rightarrow y \in X$. In other words, if σ is represented as a word $i_1 \ldots i_n$, then an ideal of σ corresponds to an initial segment of this word. Let $Id(\sigma)$ denote the set of ideals of σ (including the empty set). In particular, $Id(\alpha)$ consists of the intervals $[0], [1], \ldots, [n-1], [n].$

We associate to a collection $D \subseteq \mathcal{L}([n])$ the following set-system

\[Id(D) = \bigcup_{\sigma \in D} Id(\sigma). \]

Example 2. Let D be the peak domain for $n = 3$; it consists of four orders 123, 132, 312, and 321. Then $Id(D)$ consists of seven sets $\emptyset, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \text{and} \{1, 2, 3\} = [3]$, that is, of all subsets of $[3]$ except for $\{2\}$. In its turn, for the pit domain D', $Id(D')$ consists of all subsets of $[3]$ except for $\{1, 3\}$.

Consider a tiling T. We associate to each vertex v in it a certain subset $sp(v)$ of $[n]$, as follows. Let $S(\sigma)$ be a snake passing v. Then $sp(v)$ is the ideal of σ corresponding to the part of $S(\sigma)$ from the beginning to v (the set $sp(v)$ does not depend on the choice of a snake σ passing v). This is equivalent to saying that $sp(v)$ consists of the elements $i \in [n]$ such that the i-track goes below the vertex v (in view of Proposition 2(i)). The collection of sets $sp(v)$ for all vertices v of T is denoted by $Sp(T)$ and called the spectrum of T (following terminology in [6]). One can check that a linear order σ belongs to $\Sigma(T)$ if and only if the inclusion $Id(\sigma) \subset Sp(T)$ holds.

Proof of Theorem 2. Let $D \subseteq \mathcal{L}([n])$ be a peak-pit domain. Our aim is to show the existence of a tiling T such that $Id(D) \subseteq Sp(T)$. We use a criterion due to Leclerc and Zelevinsky [13] on a system of subsets of $[n]$ that can be extended to the spectrum $Sp(T)$ of a tiling T. (Strictly speaking, the criterion
in [14] concerns set-systems associated with pseudo-line arrangements (which correspond, in a sense, to rhombus tilings, cf. [7]). For a direct proof, in terms of tilings, see [5, Sec. 5.3].

Two subsets A, B of $[n]$ are said to be separated (more precisely, strongly separated, in terminology of [14]) from each other if the convex hulls of $A \setminus B$ and $B \setminus A$ (viz. the minimal intervals containing these sets) are disjoint. For example, the sets $\{1, 2\}$ and $\{2, 4\}$ are separated, whereas $\{1, 3\}$ and $\{2\}$ are not. In particular, A and B are separated if one includes the other. A collection of sets is called separated if any two sets in it are separated.

Theorem 3 [14]. The spectrum $Sp(T)$ of any rhombus tiling T is separated. Conversely, if \mathcal{X} is a separated set-system on $[n]$, then there exists a tiling T of \mathbb{Z}_n such that $\mathcal{X} \subset Sp(T)$.

Due to this theorem, it suffices to show that for a peak-pit domain \mathcal{D}, the system $Id(\mathcal{D})$ is separated. Suppose this is not so for some \mathcal{D}. Then there are two sets $A, B \in Id(\mathcal{D})$ and a triple $i < j < k$ in $[n]$ such that A contains j but none of i, k, whereas B contains i, k but not j. Restrict the members of \mathcal{D} to the set $\{i, j, k\}$. Then $Id(D_{ijk})$ contains both sets $\{j\}$ and $\{i, k\}$. Thus, we are neither in the peak nor in the pit domain case, as we have seen in Example 2.

Now we combine Theorem 2 and a slight modification of property (\ast) (in the beginning of this section), yielding the main assertion in this paper. Let us say that a domain \mathcal{D} is semi-connected if the linear orders α and ω can be connected in the Bruhat graph by a path in which all vertices belong to \mathcal{D}.

Theorem 4. (i) Every domain of tiling type is semi-connected.

(ii) Every semi-connected Condorcet domain is a peak-pit domain.

(iii) Every peak-pit domain is contained in a domain of tiling type.

Proof. Any domain of the form $\Sigma(T)$ is semi-connected since it contains a maximal chain of the Bruhat poset (cf. Corollary 1), yielding (i).

It is easy to see that the semi-connectedness preserves under reducing alternatives. Because of this, we can restrict ourselves to the case $n = 3$. In this case there exist exactly four CDs. Two of them, where one of the alternatives 1 and 3 is never the middle, are not semi-connected. The other two domains are semi-connected; they are just the peak and pit domains. This implies (ii).

Claim (iii) is just Theorem 2.

As a consequence, we obtain that the CDs constructed by Abello[1], Chameni-Nembua [4], and Galambos and Reiner [11] (see the Appendix for a brief outline), as well as the maximal peak-pit domains, are CDs of tiling type. Moreover, all these classes of CDs are equal.
6 On Fishburn’s conjecture

Fishburn \([8]\) constructed Condorcet domains by the following method. For a set of linear orders and a triple \(i < j < k\), Fishburn’s “never condition” \(jN1\) means the requirement that, in the restriction of each of these linear orders to \(\{i, j, k\}\), the alternative \(j\) is never the worst. This is exactly the above-mentioned “peak condition” for \(ijk\). Similarly, the “never condition” \(jN3\) (saying that “the alternative \(j\) is never the best”) coincides with the “pit condition” for \(ijk\).

Fishburn’s alternating scheme is defined by imposing, for each triple \(i < j < k\), the peak condition when \(j\) is even, and the pit condition when \(j\) is odd. The set of linear orders (individually) obeying these conditions is called Fishburn’s domain, and its cardinality is denoted by \(\Phi(n)\).

By Theorem 2, Fishburn’s domain \(D\) is contained in a CD of tiling type. Also it is a complete CD, as is shown in \([11]\). So \(D\) is a tiling CD. The corresponding tiling for \(n = 8\) is drawn in Fig. 4.

![Fig. 4](image)

Fishburn conjectured that the size of any peak-pit CD does not exceed \(\Phi(n)\), and verified this conjecture for \(n \leq 6\).

Galambos and Reiner \([11]\) considered a class of CDs, which we call GR-domains (see the definition in the Appendix), and raised a weakened version of Fishburn’s conjecture saying that the size of any GR-domain does not exceed \(\Phi(n)\). It should be noted that an equivalent conjecture in terms of pseudo-line arrangements was raised earlier by Knuth \([13]\).

Monjardet \([15]\) calls a CD connected if it induces a connected subgraph of the Bruhat graph. He conjectured that the size of any connected CD does not exceed \(\Phi(n)\).

Applying Theorem 4, one can conclude that the conjectures by Fishburn, by Galambos and Reiner, and by Monjardet are equivalent, and we can express this conjecture as follows:

\(C\) the maximum possible size \(\gamma_n\) of a tiling CD for \(n\) is equal to \(\Phi(n)\).
However, (C) is not true in general. The authors learnt via B. Monjardet (however, without pointing out to us any details or references) that Ondjey Bilka had established some lower bound on γ_n which leads to a contradiction with (C). Subsequently the authors found a simple argument, as follows.

Let T and T' be rhombus tilings of zonogons Z_n and $Z_{n'}$, respectively. We identify the set $[n']$ with the subset $\{n + 1, \ldots, n + n'\}$ in $[n + n']$ and merge the top vertex $t(T)$ of T with the bottom vertex $b(T')$ of T' (erecting T' over T). This gives a “partial tiling” of the zonogon $Z_{n+n'}$, as illustrated in Fig. 5 where $n = 4$ and $n' = 3$.

![Fig. 5](image)

This partial tiling can be extended (in a unique way, in fact) to a complete rhombus tiling \widehat{T} of the whole zonogon $Z_{n+n'}$. If σ is a snake of T and σ' is a snake of T', then the concatenated path $\sigma \sigma'$ is a snake of \widehat{T}. Thus, we obtain the injective mapping

$$\Sigma(T) \times \Sigma(T') \to \Sigma(\widehat{T}),$$

which gives the inequality $\gamma_n \gamma_{n'} \leq \gamma_{n+n'}$.

Now take both T and T' to be Fishburn’s tilings for $n = n' = 21$. Using a precise formula for $\Phi(n)$ from [11], one can compute that $\Phi(21) = 4.443.896$ and $\Phi(42) = 19.156.227.207.750$. Then $\Phi(21)^2 = 19.748.211.658.816 > \Phi(42)$. Thus, $\Phi(42) < \gamma_{42}$, contradicting (C).

Remark. The above construction can be given in terms of “concatenating” corresponding peak-pit domains rather than tilings. So Fishburn’s conjecture can be disproved without appealing to Theorem 4.

7 Some reformulations

Any linear order can be realized as a snake of some rhombus tiling. However, this need not hold for a pair of linear orders. For example, the linear orders
213 and 312 (which together with 123 and 321 form the CD $D_3(\leftarrow)$ from Section 3) cannot appear in the same tiling.

Let us say that two linear orders σ and τ are strongly consistent if there exists a tiling T such that $\sigma, \tau \in \Sigma(T)$. For example, σ and τ are strongly consistent if $\sigma \ll \tau$ (where \ll is defined in Section 2). Using observations and results from previous sections, we can demonstrate some useful equivalence relations.

Proposition 3. Let σ and τ be linear orders on $[n]$. The following properties are equivalent:

(i) σ and τ are strongly consistent;

(ii) the set-system $\text{Id}(\sigma) \cup \text{Id}(\tau)$ is separated;

(iii) for each triple in $[n]$, the restrictions of σ and τ to this triple simultaneously satisfy either peak conditions or pit conditions (or both);

(iv) $\text{Id}(\sigma) \cup \text{Id}(\tau) = \text{Id}(\sigma \vee \tau) \cup \text{Id}(\sigma \wedge \tau)$ (where \vee, \wedge concern the Bruhat lattice);

(iv$'$) $\text{Id}(\sigma) \cup \text{Id}(\tau) \subseteq \text{Id}(\sigma \vee \tau) \cup \text{Id}(\sigma \wedge \tau)$.

Proof. Properties (i) and (ii) are equivalent by Theorem 3. Properties (i) and (iii) are equivalent by Theorem 2.

To see that (i) implies (iv), observe that if σ and τ occur in a tiling T, then $S(\sigma \vee \tau)$ and $S(\sigma \wedge \tau)$ are the left and right envelopes of the snakes for σ and τ, respectively. Therefore, any vertex of the snake $S(\sigma \vee \tau)$ is a vertex of $S(\sigma)$ or $S(\tau)$, and similarly for $S(\sigma \wedge \tau)$. Conversely, each vertex of $S(\sigma) \cup S(\tau)$ is a vertex of $S(\sigma \vee \tau)$ or $S(\sigma \wedge \tau)$.

Obviously, (iv) implies (iv$'$). Let us prove the converse. Since $\sigma \wedge \tau \ll \sigma \vee \tau$, the linear orders $\sigma \wedge \tau$ and $\sigma \vee \tau$ are strongly consistent. By the equivalence of (i) and (ii), $\text{Id}(\sigma \vee \tau) \cup \text{Id}(\sigma \wedge \tau)$ is a separated system. Since $\text{Id}(\sigma) \cup \text{Id}(\tau) \subseteq \text{Id}(\sigma \vee \tau) \cup \text{Id}(\sigma \wedge \tau)$, the set-system $\text{Id}(\sigma) \cup \text{Id}(\tau)$ is separated as well. Thus, we obtain (ii), whence (iv$'$) \Rightarrow (iv). \qed

Appendix

Here we briefly outline approaches of Abello [1], Galambos and Reiner [11], and Chameni-Nembua [4], and an interrelation between them and our approach.

Abello

Let \mathcal{D} be a CD. Then there exists a casting c such that $\mathcal{D} \subseteq \mathcal{D}(c)$ (see Proposition 1). Abello applied this fact to a maximal chain \mathcal{C} in the Bruhat
lattice (it had been known that any chain is a CD). In this case the casting \(c \) is unique (and is a peak-pit casting), so the domain \(\mathcal{D}(c) \), denoted by \(\hat{C} \), is a CD as well. We call such a CD an \(A \)-domain (abbreviating Abello’s domain). Abello shows that an A-domain is a complete CD.

Note that different chains can give the same A-domain. Maximal chains \(C \) and \(C' \) are called equivalent if the A-domains \(\hat{C} \) and \(\hat{C'} \) coincide. In the end of \([1]\) Abello gives another characterization of this equivalence. A maximal chain in the Bruhat lattice can be thought of as a reduced decomposition (a product of standard transpositions \(s_i, i \in [n-1] \)) of the longest permutation \(\omega \). Then two chains are equivalent if one reduced decomposition can be obtained from the other by a sequence of transformations, each replacing a decomposition fragment of the form \(s_is_j \) with \(|i - j| > 1 \) by \(s_js_i \). This characterization became a starting point in Galambos and Reiner’s approach.

Galambos and Reiner

Let \(C \) be an equivalence class of maximal chains in the Bruhat lattice. Define \(\mathcal{D}(C) := \cup_{C \in C} C \) (Galambos and Reiner referred to this domain as consisting of “permutations visited by an equivalence class of maximal reduced decompositions”). We call \(\mathcal{D}(C) \) a GR-domain. It is easy to see (and Galambos and Reiner explicitly mention this) that the GR-domains are exactly the A-domains. Moreover, they give a direct proof (in Theorems 1 and 2 of \([11]\)) that a GR-domain is a complete CD.

To give a more enlightening representation for the equivalence classes of maximal reduced decompositions, Galambos and Reiner used arrangements of pseudo-lines (cf. \([2]\)). Permutations (or linear orders) from the domain \(\mathcal{D}(C) \) are realized in these arrangements as certain cutpaths (viz. directed cuts). Although they do not prove explicitly that the set of cutpaths of an arrangement forms a complete CD, this can be done rather easily. Using a relationship between pseudo-line arrangements and rhombus tilings (cf. \([7]\)), one can conclude that the GR-domains (as well as the A-domains) are exactly CDs of tiling type.

Chameni-Nembua

One more interesting approach was proposed by Chameni-Nembua. A sublattice \(\mathcal{D} \) in the Bruhat lattice is called covering if the cover relation in this sublattice is induced by the cover relation in the Bruhat lattice.

Chameni-Nembua shows that a distributive covering sublattice in the Bruhat lattice is a CD. Suppose that \(\mathcal{D} \) is a maximal distributive covering sublattice. One can easily see that it contains \(\alpha \) and \(\omega \), and hence it contains
a maximal chain. Therefore, it is a subset of a unique tiling CD. On the other hand, since any tiling CD forms a distributive covering sublattice (see Section 4), one can conclude that D coincides with this tiling CD.

Thus, Chameni-Nembua’s approach gives the same class of CDs as the one of rhombus tilings.

Acknowledgements. We thank the anonymous referees for remarks and useful suggestions intended to improve the presentation stylistically. This research was supported by RFBR grant 10-01-9311-CNRSLa.

References

[1] J.M. Abello, The weak Bruhat order on S_n, consistent sets, and Catalan numbers, SIAM J. on Discrete Math. 4 (1991) 1–16.

[2] A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996) 49-149.

[3] N.G. de Bruijn, Dualization of multigrids, J. Phys. France 47 (1986) 3–9.

[4] C. Chameni-Nembua, Règle majoritaire et distributivité dans le permutoèdre, Mathematiques Informatique et Sciences humaines 108 (1989) 5–22.

[5] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, On bases of tropical Plücker functions, ArXiv:0712.3996v2[mathCO], 2007.

[6] V. Danilov, A. Karzanov and G. Koshevoy, Plücker environments, wiring and tiling diagrams, and weakly separated set-systems, Adv. Math. 224 (2010) 1–44.

[7] S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, J. Comb. Theory, Ser. A, 77 (1997) 193–221.

[8] P. Fishburn, Acyclic sets of linear orders, Social Choice and Welfare 14 (1997) 113–124.

[9] C.Greene and P.Edelman, Combinatorial correspondences for Young tableaux, balanced tableaux and maximal chains in the weak Bruhat order of S_n, in “Combinatorics and Algebra” (Proceedings, Boulder Conferences) (C.Greene, Ed.), Contemporary Mathematics, Vol. 34, AMS, Providence, R.I., 1985
[10] J.E. Goodman, Pseudoline arrangements, in: *Handbook of Discrete and Computational Geometry*, Goodman and O’Rourke eds., CRC Press, 1997, pp. 83–110.

[11] A. Galambos and V. Reiner, Acyclic sets of linear orders via the Bruhat Order, *Social Choice and Welfare* 30 (2008) 245–264.

[12] R. Kenyon and J.-M. Schlenker, Rhombic embeddings of planar graphs with faces of degree 4, ArXiv:math-ph/0305057, 2003.

[13] D. E. Knuth, Axions and Hulls, *Lect. Notes Comput. Sci.*, vol. 606, Springer-Verlag, 1992.

[14] B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates, *Amer. Math. Soc. Trans., Ser. 2*, 181 (1998) 85–108.

[15] B. Monjardet, Acyclic domains of linear orders: a survey, in: *The Mathematics of Preference, Choice and Order* (S. Brams, W. Gehrlein, and F. Roberts, eds.), Springer, 2009, pp. 136–160.

[16] G.M. Ziegler, Higher Bruhat orders and cyclic hyperplane arrangements. *Topology* 32 (1993) 259–279.