ON PSEUDO-AMENABILITY OF BEURLING ALGEBRAS

KOBR OUSTAD, AMIN MAHMOODI

Abstract. Amenability and pseudo-amenability of $\ell^1(S,\omega)$ is characterized, where S is a left (right) zero semigroup or it is a rectangular band semigroup. The equivalence conditions to amenability of $\ell^1(S,\omega)$ are provided, where S is a band semigroup. For a locally compact group G, pseudo-amenability of $\ell^1(G,\omega)$ is also discussed.

1. Introduction and Preliminaries

For a Banach algebra A the projective tensor product $A\hat{\otimes}A$ is a Banach A-bimodule in a natural manner and the multiplication map $\pi : A\hat{\otimes}A \rightarrow A$ defined by $\pi(a \otimes b) = ab$ for $a, b \in A$ is a Banach A-bimodule homomorphism.

Amenability for Banach algebras introduced by B. E. Johnson [9]. Let A be a Banach algebra and E be a Banach A-bimodule. A continuous linear operator $D : A \rightarrow E$ is a derivation if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in A$. Given $x \in E$, the inner derivation $ad_x : A \rightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. A Banach algebra A is amenable if for every Banach A-bimodule E, every derivation from A into E^*, the dual of E, is inner.

An approximate diagonal for a Banach algebra A is a net (m_i) in $A\hat{\otimes}A$ such that $a \cdot m_i - m_i \cdot a \rightarrow 0$ and $a\pi(m_i) \rightarrow a$, for each $a \in A$. The concept of pseudo-amenability introduced by F. Ghahramani and Y. Zhang in [5]. A Banach algebra A is pseudo-amenable if it has an approximate diagonal. It is well-known that amenability of A is equivalent to the existence of a bounded approximate diagonal.

The notions of biprojectivity and biflatness of Banach algebras introduced by Helemski˘ in [7]. A Banach algebra A is biprojective if there is a bounded A-bimodule homomorphism $\rho : A \rightarrow A\hat{\otimes}A$ such that $\pi o \rho = I_A$, where I_A is the identity map on A. We say that A is biflat if there is a bounded A-bimodule homomorphism $\rho : A \rightarrow (A\hat{\otimes}A)^{**}$ such that $\pi^{**} o \rho = k_A$, where $k_A : A \rightarrow A^{**}$ is the natural embedding of A into its second dual.

Let S be a semigroup. A continuous function $\omega : S \rightarrow (0, \infty)$ is a weight on S if $\omega(st) \leq \omega(s)\omega(t)$, for all $s, t \in S$. Then it is standard that

$$\ell^1(S,\omega) = \left\{ f = \sum_{s \in S} f(s)\delta_s : \|f\|_\omega = \sum_{s \in S} |f(s)|\omega(s) < \infty \right\}$$

is a Banach algebra with the convolution product $\delta_s * \delta_t = \delta_{st}$. These algebras are called Beurling algebras.

In this note, we study the earlier mentioned properties of Banach algebras for Beurling algebras. Firstly in section 2, we characterize amenability and pseudo-amenability of $\ell^1(S,\omega)$, for some certain class of semigroups. Let S be a left or right zero semigroup. We prove that pseudo-amenability of $\ell^1(S,\omega)$ is equivalent to it’s amenability and these equivalent conditions imply that

2010 Mathematics Subject Classification. Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

Key words and phrases. amenability, pseudo-amenability, Beurling algebra.
Proposition 2.1. Suppose that \(\rho \) and similarly \(\ell \) semigroup, and Remark 2.2. for each \(\mathbf{1} \) is singleton. We show that the same result holds for \(\ell^1(S, \omega) \), whenever \(S \) is a rectangular band semigroup and \(\omega \) is separable. Further, we investigate biprojectivity of \(\ell^1(S, \omega) \) whenever \(S \) is either left (right) zero semigroup or a rectangular band semigroup. For a band semigroup \(S \), we show that amenability of \(\ell^1(S, \omega) \) is equivalent to that of \(\ell^1(S) \) and these are equivalent to \(S \) being a finite semilattice.

Finally in section 3, we investigate pseudo-amenability of \(L^1(G, \omega) \) where \(G \) is a locally compact group and \(\omega \) is a weight on \(G \). We prove that pseudo-amenability of \(L^1(G, \omega) \) implies amenability of \(G \), and under a certain condition it implies diagonally boundedness of \(\omega \). Next, if \(L^1(G, \omega) \) is pseudo-amenable we may obtain a character \(\varphi \) on \(G \) for which \(\varphi \leq \omega \).

2. Amenability and pseudo-amenability of \(\ell^1(S, \omega) \)

A semigroup \(S \) is a **left zero semigroup** if \(st = s \), and it is a **right zero semigroup** if \(st = t \) for each \(s, t \in S \). Then for \(f, g \in \ell^1(S, \omega) \), it is obvious that \(f \ast g = \varphi_S(f)g \) if \(S \) is a right zero semigroup, and \(f \ast g = \varphi_S(g)f \) if \(S \) is a left zero semigroup, where \(\varphi_S \) is the **augmentation character** on \(\ell^1(S, \omega) \).

We extend somewhat the obtained results for \(\ell^1(S) \) in [2,3] to the weighted case \(\ell^1(S, \omega) \).

Proposition 2.1. Suppose that \(S \) is a right (left) zero semigroup and \(\omega \) be a weight on \(S \). Then \(\ell^1(S, \omega) \) is biprojective.

Proof. We only give the proof in the case \(S \) is a right zero semigroup. Define \(\rho : \ell^1(S, \omega) \to \ell^1(S, \omega) \otimes \ell^1(S, \omega) \) by \(\rho(f) = \delta_t \otimes f \), where \(t_0 \) is an arbitrary element \(S \). Then for each \(f, g \in \ell^1(S, \omega) \) we have

\[
\rho(f \ast g) = \delta_t \otimes (f \ast g) = \varphi_S(f)(\delta_t \otimes g) = (f \ast \delta_{t_0}) \otimes g = f \cdot (\delta_{t_0} \otimes g) = f \cdot \rho(g)
\]

and similarly \(\rho(f \ast g) = \rho(f) \cdot g \). Further, \(\pi \rho \) is the identity map on \(\ell^1(S, \omega) \), as required. \(\square \)

Remark 2.2. It is known that every biprojective Banach algebra is biflat. Hence Proposition 2.1 shows that for every right or left zero semigroup \(S \), \(\ell^1(S, \omega) \) is biflat.

Given two semigroups \(S_1 \) and \(S_2 \), we say that a weight \(\omega \) on \(S := S_1 \times S_2 \) is **separable** if there exist two weights \(\omega_1 \) and \(\omega_2 \) on \(S_1 \) and \(S_2 \), respectively such that \(\omega = \omega_1 \otimes \omega_2 \). It is easy to verify that \(\ell^1(S, \omega) \cong \ell^1(S_1, \omega_1) \otimes \ell^1(S_2, \omega_2) \).

Let \(S \) be a semigroup and let \(E(S) = \{ p \in S : p^2 = p \} \). We say that \(S \) is a **band semigroup** if \(S = E(S) \). A band semigroup \(S \) satisfying \(st = s \), for each \(s, t \in S \) is called a **rectangular band semigroup**. For a rectangular band semigroup \(S \), it is known that \(S \cong L \times R \), where \(L \) and \(R \) are left and right zero semigroups, respectively [8, Theorem 1.1.3].

Proposition 2.3. Let \(S \) be a rectangular band semigroup and \(\omega \) be a separable weight on \(S \). Then \(\ell^1(S, \omega) \) is biprojective, and so it is biflat.

Proof. In view of earlier argument, it follows from Proposition 2.1, and then from [10, Proposition 2.4].

Theorem 2.4. Let \(S \) be a rectangular band semigroup and \(\omega \) be a weight on \(S \). Then \(\ell^1(S, \omega) \) is amenable if and only if \(S \) singleton.
Theorem 2.7. Let \(\ell^1(S) \) be amenable. Then it is immediate by [2, Theorem 3.3].

For a semigroup \(S \), we denote by \(S^{op} \) the semigroup whose underlying space is \(S \) but whose multiplication is the multiplication in \(S \) reversed.

Proposition 2.5. Let \(S \) be a right (left) zero semigroup and \(\omega \) be a weight on \(S \). Then \(\ell^1(S, \omega) \) is amenable if and only if \(S \) is singleton.

Proof. Suppose that \(S \) is a left zero semigroup, and that \(\ell^1(S, \omega) \) is amenable. Then \(S^{op} \) is a right zero semigroup. It is readily seen that \(S \times S^{op} \) is a rectangular band semigroup, and \(\ell^1(S^{op}, \omega) \) is amenable. Hence \(\ell^1(S, \omega) \otimes \ell^1(S^{op}, \omega) \cong \ell^1(S \times S^{op}, \omega \otimes \omega) \) is amenable. Now, by Theorem 2.4, \(S \) is singleton.

Let \(\mathcal{A} \) be Banach algebra, \(\mathcal{I} \) be a semilattice (i.e., \(\mathcal{I} \) is a commutative band semigroup) and \(\{ \mathcal{A}_\alpha : \alpha \in \mathcal{I} \} \) be a collection of closed subalgebras of \(\mathcal{A} \). Then \(\mathcal{A} \) is \(\ell^1 \)-graded of \(\mathcal{A}_\alpha \)'s over the semilattice \(\mathcal{I} \), denoted by \(\mathcal{A} = \bigoplus_{\alpha \in \mathcal{I}} \mathcal{A}_\alpha \), if it is \(\ell^1 \)-directsum of \(\mathcal{A}_\alpha \)'s as Banach space such that \(\mathcal{A}_\alpha \mathcal{A}_\beta \subseteq \mathcal{A}_{\alpha \beta} \), for each \(\alpha, \beta \in \mathcal{I} \).

Suppose that \(S^1 \) is the unitization of a semigroup \(S \). An equivalence relation \(\tau \) on \(S \) is defined by \(s \tau t \iff S^1 s S^1 = S^1 t S^1 \), for all \(s, t \in S \). If \(S \) is a band semigroup, then by [8, Theorem 4.4.1], \(S = \bigcup_{\alpha \in \mathcal{I}} S_{\alpha} \) is a semilattice of rectangular band semigroups, where \(\mathcal{I} = \widehat{S}^\tau \) and for each \(\alpha = [s] \in \mathcal{I} \), \(S_{\alpha} = [s] \).

Theorem 2.6. Let \(S \) be a band semigroup and \(\omega \) be a weight on \(S \). Then the following are equivalent:

(i) \(\ell^1(S, \omega) \) is amenable.

(ii) \(S \) is finite and each \(\tau \)-class is singleton.

(iii) \(\ell^1(S) \) is amenable.

(iv) \(S \) is a finite semilattice.

Proof: The implications (ii) to (iv) are equivalent [2, Theorem 3.5]. We establish (i) \(\implies \) (ii) and (iv) \(\implies \) (i).

(i) \(\implies \) (ii) If \(\ell^1(S, \omega) \) is amenable, then \(E(S) = S \) is finite and so \(\mathcal{I} = \widehat{S}^\tau \) is a finite semilattice.

Hence \(\ell^1(S, \omega) \cong \bigoplus_{\alpha \in \mathcal{I}} \ell^1(S_{\alpha}, \omega_{\alpha}) \), where \(\omega_{\alpha} = \omega|_{S_{\alpha}} \). Then by [6, Proposition 3.1], each \(\ell^1(S_{\alpha}, \omega_{\alpha}) \) is amenable. Now by Theorem 2.4, \(S_{\alpha} \) is singleton for each \(\alpha \in \mathcal{I} \), as required.

(iv) \(\implies \) (i) In this case \(\ell^1(S, \omega) \cong \ell^1(S) \), and \(\ell^1(S) \) is amenable.

Theorem 2.7. Let \(S \) be a rectangular band semigroup, and let \(\omega \) be a separable weight on \(S \). Then \(\ell^1(S, \omega) \) is pseudo-amenable if and only if \(S \) is singleton.

Proof. There is a left zero semigroup \(L \) and a right zero semigroup \(R \), and there are weights \(\omega_L \) and \(\omega_R \) on \(L \) and \(R \), respectively such that \(S \cong L \times R \) and \(\omega = \omega_L \otimes \omega_R \). We have \(\ell^1(S, \omega) \cong \ell^1(L, \omega_L) \otimes \ell^1(R, \omega_R) \). Hence the map \(\theta : \ell^1(S, \omega) \rightarrow \ell^1(L, \omega_L) \) defined by \(\theta(f \otimes g) = \varphi_R(g)f \) for \(f \in \ell^1(L, \omega_L) \) and \(g \in \ell^1(R, \omega_R) \), is an epimorphism of Banach algebras, whereas \(\varphi_R \) is the augmentation character on \(\ell^1(R, \omega_R) \). Whence \(\ell^1(L, \omega_L) \) has left and right approximate identity. Therefore \(L \) is singleton, because it is left zero semigroup. Similarly \(R \) is singleton, so is \(S \).

Corollary 2.8. Let \(S \) be a right (left) zero semigroup and \(\omega \) be a weight on \(S \). Then the following are equivalent:

(i) \(\ell^1(S, \omega) \) is pseudo-amenable.
(ii) S is singleton.
(iii) $\ell^1(S,\omega)$ is amenable.

Proof. The implication $(ii) \iff (iii)$ is Proposition 2.5. For $(i) \implies (ii)$, we apply Theorem 2.7 for the rectangular band semigroup $S \times S^{op}$ with $\omega_L = \omega_R = \omega$.

The following is a combination of Theorems 2.4 and 2.7. Notice that in Theorem 2.4, we need not ω to be separable.

Corollary 2.9. Let S be a rectangular band semigroup, and let ω be a separable weight on S. Then the following are equivalent:

(i) $\ell^1(S,\omega)$ is pseudo-amenable.
(ii) S is singleton.
(iii) $\ell^1(S,\omega)$ is amenable.

For the left cancellative semigroups we have the following.

Theorem 2.10. Suppose that S is a left cancellative semigroup and ω is a weight on S. If $\ell^1(S,\omega)$ is pseudo-amenable, then S is a group.

proof: This is a more or less verbatim of the proof of [3, Theorem 3.6 $(i) \implies (ii)$].

3. **Pseudo-amenability of $L^1(G,\omega)$**

Throughout G is a locally compact group and ω is a weight on G. The weight ω is *diagonally bounded* if $\sup_{g \in G} \omega(g)\omega(g^{-1}) < \infty$. It seems to be a right conjecture that $L^1(G,\omega)$ will fail to be pseudo-amenable whenever ω is not diagonally bounded. Although we are not able to prove (or disprove) the conjecture, the following is a weaker result.

The proofs in this section owe much to those of [4, Section 8].

Theorem 3.1. Suppose that $L^1(G,\omega)$ is pseudo-amenable for which there is an approximate diagonal (m_i), such that $m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}} \to 0$ uniformly on G. Then ω is diagonally bounded.

Proof. We follow the standard argument in [4, Proposition 8.7]. Choose $f \in L^1(G,\omega)$ such that $K := \text{supp}f$ is compact and $\int f \neq 0$. Putting $F := f \cdot \chi_K \in L^\infty(G,\omega^{-1})$, we see that $\pi^*(F) \in L^\infty(G \times G,\omega^{-1} \times \omega^{-1})$ with

$$\pi^*(F)(x,y) = F(xy) = \int \chi_K(xyt)f(t)dt.$$

Let $(m_i) \subseteq L^1(G \times G,\omega \times \omega)$ be an approximate diagonal for $L^1(G,\omega)$ such that $\delta_g \cdot m_i \cdot \delta_{g^{-1}} - m_i \to 0$ uniformly on G, and $\pi(m_i)f - f \to 0$. Then for each i

$$\langle \pi^*(F),m_i \rangle = \langle F,\pi(m_i) \rangle = \langle \chi_K,\pi(m_i)f \rangle \to \langle \chi_K,f \rangle = \int f.$$

Consequently

$$\lim_i \langle \pi^*(F),m_i \rangle \neq 0. \quad (1)$$

We define $E := K \cdot \overline{K}$, and $A := \{(x,y) \in G \times G : xy \in E\}$. For $r > 0$, we define $A_r := \{(x,y) \in A : \omega(x)\omega(y) < r\}$, and $B_r := \{(x,y) \in A : \omega(x)\omega(y) \geq r\}$. Obviously, $\pi^*(F)\chi_A$ and $\pi^*(F)\chi_B$ both are in $L^\infty(G \times G,\omega^{-1} \times \omega^{-1})$, and $\pi^*(F) = \pi^*(F)\chi_A = \pi^*(F)\chi_A + \pi^*(F)\chi_B$. For every i, it is easy to see that

$$|\langle \pi^*(F)\chi_{B_r},m_i \rangle| \leq \|m_i\| \|F\| r^{-1} c_1$$
where \(c_1 := \sup_{t \in E} \omega(t) \). Hence
\[
\lim_{r \to \infty} \langle \pi^*(F) \chi_{B_r}, m_i \rangle = 0. \tag{2}
\]
Next, for every \(g \in G \), \(r > 0 \), and \(i \), we obtain
\[
|\langle \pi^*(F) \chi_{A_r}, \delta_g \cdot m_i \cdot \delta_{g^{-1}} \rangle| \leq \|m_i\| \|F\| r \ c_2 \frac{1}{\omega(g)\omega(g^{-1})} \]
where \(c_2 := \sup_{t \in E^{-1}} \omega(t) \). Therefore
\[
|\langle \pi^*(F) \chi_{A_r}, m_i \rangle| \leq |\langle \pi^*(F) \chi_{A_r}, m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}} \rangle| + |\langle \pi^*(F) \chi_{A_r}, \delta_g \cdot m_i \cdot \delta_{g^{-1}} \rangle|
\]
\[
\leq \|\pi^*(F)\| \sup_{g \in G} \|m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}\| + \|m_i\| \|F\| r \ c_1 \ c_2^2 \frac{1}{\omega(g)\omega(g^{-1})}. \tag{3}
\]
Towards a contradiction, we assume that \(\omega \) is not diagonally bounded. Then there is a sequence \((g_n)\) in \(G \) such that \(\lim_n \omega(g_n)\omega(g_n^{-1}) = \infty \). Whence, it follows from (3) that for each \(i \) and \(r > 0 \)
\[
|\langle \pi^*(F) \chi_{A_r}, m_i \rangle| \leq \|\pi^*(F)\| \sup_{g \in G} \|m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}\|.
\]
Hence
\[
|\langle \pi^*(F), m_i \rangle| \leq \|\pi^*(F)\| \sup_{g \in G} \|m_i - \delta_g \cdot m_i \cdot \delta_{g^{-1}}\| + |\langle \pi^*(F) \chi_{B_r}, m_i \rangle|.
\]
Putting (2) and (4) together, we may see that
\[
\lim_i \langle \pi^*(F), m_i \rangle = 0
\]
contradicting (1). \(\square \)

Theorem 3.2. Suppose that \(L^1(G, \omega) \) is pseudo-amenable, and that \(\omega \) is bounded away from 0. Then \(G \) is amenable.

Proof. Since \(L^1(G, \omega) \) is unital, pseudo-amenity and approximate amenability are the same [5, Proposition 3.2]. Now, it is immediate by [4, Proposition 8.1]. \(\square \)

We conclude by the following which is an analogue of [4, Proposition 8.9].

Proposition 3.3. Let \(L^1(G, \omega) \) be pseudo-amenable. Then there is a continuous positive character \(\varphi \) on \(G \) such that \(\varphi \leq \omega \).

Proof. Suppose that \((m_i)_i \subseteq L^1(G \times G, \omega \times \omega)\) be an approximate diagonal for \(L^1(G, \omega) \). For each \(i \) and \(f \in L^\infty(G \times G, \omega^{-1} \times \omega^{-1})^+ \) we define
\[
\tilde{m}_i(f) := \sup \{ Re(\langle m_i, \psi \rangle) : 0 \leq \psi \leq f, \ \psi \in L^\infty(G \times G, \omega^{-1} \times \omega^{-1}) \}.
\]
Then \(\tilde{m}_i \neq 0 \) on \(L^\infty(G \times G, \omega^{-1} \times \omega^{-1})^+ \) and we may extend \(\tilde{m}_i \) to a bounded functional on \(L^\infty(G \times G, \omega^{-1} \times \omega^{-1}) \) in the obvious manner. It is readily seen that \(\tilde{m}_i \neq 0, \langle \tilde{m}_i, f \rangle \geq 0 \), and \(\delta_{g^{-1}} \cdot \tilde{m}_i \cdot \delta_g - \tilde{m}_i \to 0 \), for every \(f \in L^\infty(G \times G, \omega^{-1} \times \omega^{-1})^+ \) and \(g \in G \).

Putting \(\bar{\omega}(x) := \sup_{y \in G} \omega(g^{-1}xy), \ x \in G \). Then \(\bar{\omega} \in L^\infty(G, \omega^{-1}), \ \bar{\omega}(xy) = \bar{\omega}(yx), \ \pi^*(\bar{\omega}) \in L^\infty(G \times G, \omega^{-1} \times \omega^{-1}) \) and \(\delta_g \cdot \pi^*(\bar{\omega}) \cdot \delta_{g^{-1}} = \pi^*(\bar{\omega}) \).

Take \(f \in C_c(G)^+ \) with \(\int f = 1 \), and then \(h := f \cdot \chi_K \), where \(K := supp f \). One may see that \(h \) is continuous, and there is \(c > 0 \) such that \(\pi^*(h) \geq c \pi^*(h) \). Hence
\[
\lim_i \langle \pi^*(\bar{\omega}), m_i \rangle \geq c \lim_i \langle \tilde{m}_i, \pi^*(h) \rangle \geq c \lim_i Re(\langle m_i, \pi^*(h) \rangle) = c \lim_i Re(\pi(m_i), h)
\]
\[
= c \lim_i Re(\pi(m_i) \cdot f, \chi_K) = c Re(f, \chi_K) = c > 0.
\]
Therefore there is i_0 for which $\langle \tilde{m}_{i_0}, \pi^*(\tilde{\omega}) \rangle > 0$. Set $F := \langle \tilde{m}_{i_0}, \pi^*(\tilde{\omega}) \rangle^{-1} \pi^*(\tilde{\omega})$, and for $g \in G$ we put

$$A_g(x, y) := \frac{1}{2} \left(\log \frac{\omega(gx)\omega(gy^{-1})}{\omega(x)\omega(y^{-1})} \right) F(x, y), \quad (x, y \in G).$$

Finally, for each $g \in G$, we define $\varphi(g) := \exp(\langle \tilde{m}_{i_0}, A_g \rangle)$. A similar argument used in [4, Proposition 8.9], shows that φ is the desired character on G. \hfill \Box

References

[1] H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and their compactifications, *Mem. Amer. Math. Soc.*, 205, 2010.

[2] M. Esmaeili and A. Medghalchi, Biflatness of certain semigroup algebra, *Bull. Iran. Math. Soc.*, 39 (2013), 959-969.

[3] M. Esmaeili and M. Rostami and A. R. Medghalchi, Pseudo-contractibility and Pseudo-amenability of semigroup algebras, *Arch. Math.*, 97 (2011), 167-177.

[4] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability II, *J. Funct. Anal.*, 254 (2008), 1776-1810.

[5] F. Ghahramani and Y. Zhang, Pseudo-amenable and Pseudo-contractible Banach algebras, *Math. Proc. Cambridge Phil. Soc.*, 142 (2007), 111-123.

[6] M. Ghandahari, H. Hatami and N. Spronk, Amenability constant for semilattice algebras, *Semigroup Forum* 79, no. 2. (2009), 279-297.

[7] A. Ya. Helemski, Flat Banach modules and amenable algebras, *Trans. Moscow Math. Soc.* 47 (1985), 199-224.

[8] J. Howie, Fundamental of semigroup theory, The Clarendon Press, Oxford University Press, New York, 1995.

[9] B.E. Johnson, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* 127 (1972).

[10] P. Ramsden, Biflatness of semigroup algebras, *Semigroup Forum* 79 (2009), no. 3, 515-530.

[11] M. Soroshmehr, Weighted Ress matrix semigroups and their applications, *Arch. Math.*, 100 (2013), no. 2, 139-147.