Clinical outcomes and a nomogram for de novo metastatic breast cancer with lung metastasis: a population-based study

Weiming Liu1 & Yiqun Han2*

To better understand the clinical characteristics of newly diagnosed lung metastatic breast cancer (LMBC) and quantify its prognosis, we retrieved data on patients with LMBC from the Surveillance, Epidemiology, and End Results database. Eligible patients were randomly assigned to training and validation cohorts (ratio 7:3) to establish a nomogram using the Cox proportional hazards regression model. In total, 4310 patients with LMBC were enrolled, including 52.4% (2259/4310) HR+/HER2−, 17.6% (757/4310) HR+/HER2+, 10.8% (467/4310) HR−/HER2+, and 19.2% (827/4310) HR−/HER2− subtype patients. Inclinations of lung and brain involvement in HR−/HER2+ and HR−/HER2− subgroups, liver involvement in the HER2 overexpressing subgroup, and bone involvement in the HR-positive subgroup were detected in the LMBC population. Regarding prognosis, HR+/HER2+ subtype patients presented the most favorable profile (mOS 35.0 months, 95% CI 30.1–39.9), while HR−/HER2− patients exhibited the worst (mOS 11.0 months, 95% CI, 10.0–11.9). A nomogram was developed in the training cohort and validated internally (C ‑index 0.70) and externally (C‑index 0.71), suggestive of decent performance. This study assessed the clinical outcomes associated with molecular subtypes, metastatic patterns, and surgical intervention and provided a robust nomogram for the estimation of survival probabilities, which are promising for the management of LMBC in clinical practice.

De novo metastatic breast cancer refers to distant metastasis at the initial diagnosis and an inferior prognosis, with a 5-year survival rate of less than 30%; patients with de novo metastatic breast cancer account for approximately 5% of the entire population1,2. Although it is treatable considering the advances in novel therapeutics, de novo metastatic disease tends to be incurable and could be a therapeutic challenge in clinical practice. Among this group of diseases, the occurrence of lung metastasis is estimated to be 21–77%; the lung is one of the most common sites of cancer spread3–5.

Despite the notable prevalence of lung metastatic breast cancer (LMBC), limited studies have evaluated the presentations of patients with LMBC. Hence, the clinicopathological features and prognostic profiles are unclear. Previous studies have reported preliminary findings regarding the molecular subtypes and lung metastasis4. However, this association needs to be adequately studied due to insufficient clinical outcomes and follow-up. In addition, the tumor burden at initial diagnosis could be a critical factor, and the metastatic pattern is a significant component for cancer management and survival prediction of de novo disease. However, few studies have focused on this profile in the LMBC population. Moreover, as a predominant treatment, surgical intervention could be the foremost option for early breast cancer, but its prognostic benefits have not been adequately determined for de novo metastatic disease5–9. Therefore, the prognostic value of surgical performance in the therapeutic course of patients with LMBC should be clarified.

We conducted this study to comprehensively discuss the clinicopathological and prognostic characteristics of patients with LMBC to assess the associations between clinical outcomes and molecular subtypes, metastatic patterns, and surgical performance. We further aimed to establish a prediction model for the individual estimation of survival probabilities of patients with LMBC to provide promising evidence and reference for the introduction of individual therapeutics for patients with LMBC in clinical practice.

1China Rehabilitation Research Center, Beijing Boai hospital, Beijing, China. 2National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. *email: hanyiqun803@163.com
Methods

Population. Data on patients diagnosed with breast cancer between January 1, 2010 and December 31, 2016 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Patients who were newly diagnosed with LMBC and had no missing clinicopathological and survival data were assessed for eligibility. Patients were excluded if (1) tumor grade; molecular subtypes; and the status of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2), in addition to that of visceral metastases, were unknown and (2) tumor size and node involvement were not evaluated. Data analyses were performed in December 2020.

Information on the selected cohort was successively extracted for the analysis of the following: age at diagnosis, sex, race, laterality, histologic type, grade, molecular subtypes, immunochemical status (ER, PR, and HER2), tumor size, node involvement, visceral metastases, performance of surgery, radiotherapy, and chemotherapy. This study was conducted in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology guidelines10 and the Transparent Reporting of a Multivariate Prediction Model for Individual Prognosis or Diagnosis statement11.

Outcome. LMBC was defined as de novo metastatic breast cancer presenting with lung metastasis with positive histological confirmation. The differences in clinicopathological features and prognosis were compared among the molecular subtypes, which were classified into four categories—hormone receptor (HR)-positive HER2-negative (HR+/HER2−), HR-positive HER2-positive (HR+/HER2 +), HR-negative HER2-positive (HR−/HER2 +, HER2), and HR-negative HER2-negative (HR−/HER2−, TN). Overall survival (OS) was defined as the interval between the initial diagnosis of breast cancer and death caused by any reason. According to SEER terminology, visceral metastases involve the liver and brain. The American Joint Committee on Cancer 7th edition guidelines were adopted to define the tumor–node–metastasis stage of breast cancer.

Statistical analysis. Comparative analysis of baseline characteristics was performed using Pearson’s chi-square test and Fisher’s exact probability test for qualitative data and the t-test or Wilcoxon rank test for quantitative data with a normal and abnormal distribution, respectively. Survival outcomes were compared using the Kaplan–Meier method with log-rank tests. Patients were randomly assigned to the training and validation cohorts in a 7:3 ratio to establish and externally validate the model. Prognostic factors were identified with concomitant performance of univariate and multivariate Cox proportional hazards regression analyses, which were adopted to develop a nomogram for estimating the 2- and 5-year survival probabilities. The discriminative and calibrating capabilities of this nomogram were evaluated both internally and externally using the concordance index (C-index) and calibration curves with bias-corrected validation under 1000 bootstrap resamples. A C-index of 0.5 indicated agreement by chance, and a C-index of 1 indicated perfect discrimination. All statistical analyses were two sided, with $P < 0.05$ considered statistically significant, and were performed using IBM SPSS Statistics (version 26.0; IBM Corp., Armonk, NY), and R software (version 3.6.4, www.r-project.org/).

Results

Among the 7746 initially identified patients with LMBC, 4310 were finally eligible (Supplementary Fig. 1). The population demographics and baseline clinicopathological characteristics are presented in Supplementary Table 1.

Clinical outcomes associated with molecular subtypes. In total, 52.4% (2259/4310) patients were HR+/HER2−, 17.6% patients (757/4310) were HR+/HER2+, 10.8% (467/4310) patients were HR−/HER2+, and 19.2% (827/4310) patients were HR−/HER2−. Their baseline features are listed in Table 1. The median age at diagnosis in patients with HR−/HER2−, HR+/HER2+, HR+/HER2−, and HR−/HER2− subtypes was 64.0, 59.0, 59.0, and 62.0 years, respectively, and there was profound heterogeneity in the disease characteristics among them. Compared to luminal-like subtype disease, the HER2 and TN subtypes of LMBC presented a higher grade ($P < 0.0001$), a larger tumor size ($P < 0.0001$), a higher rate of node involvement ($P < 0.0001$), and a higher incidence of brain metastasis ($P < 0.0001$). Luminal-like subtype LMBC exhibited a higher rate of bone metastasis ($P < 0.0001$), while the HER2 overexpression subtype, including HR+/HER2+ and HR−/HER2+, tended to be associated with a relatively higher occurrence of liver metastasis ($P < 0.0001$).

Regarding prognosis related to molecular subtypes, the median OS was 35.0 months (95% confidence interval [CI] 30.1–39.9) in HR+/HER2+, 28.0 months (95% CI 26.0–29.9) in HR+/HER2−, 22.0 months (95% CI 18.1–25.9) in HR−/HER2+ and 11.0 months (95% CI 10.0–11.9) in HR−/HER2− subtypes, indicating a successively worse trend in overall prognosis ($P < 0.0001$; Fig. 1).

Clinical outcomes associated with metastatic patterns. The metastatic patterns of patients with LMBC were analyzed; the involved cases and their survival were analyzed for outcome evaluation. Overall, lung-only metastatic disease had the highest incidence rate (1555/4310, 36.1%), followed by lung and bone metastatic disease (1332/4310, 30.9%), with no statistical significance in the median OS between the groups ($P = 0.053$; Supplementary Tables 2, 3). With respect to the number of metastatic sites, the overall prognosis constantly worsened with an increase in the number of involved organs (Supplementary Fig. 2A). For patients with malignancy involving three sites, an inferior tendency was detected in patients with bone, lung, and brain metastases ($P < 0.0001$; Supplementary Fig. 2B). However, no statistical significance was noted in the prognosis of patients with malignancy involving three sites (Supplementary Fig. 2C). In addition, patients with LMBC and brain metastasis exhibited the worst survival, and the additional involvement of the bone tended to exert little
Characteristics	HR+/HER2− (N = 2259)	HR+/HER2+ (N = 757)	HR−/HER2+ (N = 467)	HR−/HER2− (N = 827)	P value
Age, years	64.0	59.0	62.0	62.0	< 0.0001
Age group, years	< 0.0001				
< 50	147 19.4	103 22.1	128 27.4	237 28.7	
50–69	430 56.8	236 50.5	128 27.4	237 28.7	
≥ 70	180 23.8	128 27.4	128 27.4	237 28.7	
Sex	0.013				
Female	742 98.0	466 99.8	466 99.8	820 99.2	
Male	15 0.2	7 0.8	7 0.8	7 0.8	
Race	< 0.0001				
White	548 72.4	331 70.9	555 67.1	555 67.1	
Black	130 17.2	87 18.6	215 26.0	215 26.0	
Others	79 10.4	49 10.5	97 13.9	97 13.9	
Lateraly	0.986				
Left	388 51.3	240 51.4	413 49.9	413 49.9	
Right	364 48.1	225 48.2	410 49.6	410 49.6	
Others	5 0.7	2 0.4	4 0.5	4 0.5	
Histologic type	< 0.0001				
DC	658 86.9	405 86.7	676 81.7	676 81.7	
LC	11 1.5	4 0.9	5 0.6	5 0.6	
Others	88 11.6	58 12.4	146 17.7	146 17.7	
Grade	< 0.0001				
Grade1	9 3.3	1 0.2	8 1.0	8 1.0	
Grade2	271 35.8	96 20.6	125 15.1	125 15.1	
Grade3	461 60.9	362 77.5	682 82.5	682 82.5	
Grade4	4 0.5	8 1.7	12 1.5	12 1.5	
T	< 0.0001				
T0	0 0.0	1 0.2	5 0.6	5 0.6	
T1	79 10.4	40 8.6	70 8.5	70 8.5	
T2	223 29.5	115 24.6	217 26.2	217 26.2	
T3	130 17.2	86 18.4	181 21.9	181 21.9	
T4	325 42.9	225 48.2	354 42.8	354 42.8	
N	< 0.0001				
N0/N1mi	135 17.8	104 22.3	225 27.2	225 27.2	
N1	395 51.9	217 46.5	368 44.5	368 44.5	
N2	113 14.9	70 15.0	82 9.9	82 9.9	
N3	116 15.3	76 16.3	152 18.4	152 18.4	
Bone involvement	< 0.0001				
Yes	420 55.5	145 39.6	277 33.5	277 33.5	
No	437 44.5	282 60.4	550 66.5	550 66.5	
Liver involvement	< 0.0001				
Yes	269 35.5	178 38.1	228 27.6	228 27.6	
No	488 64.5	289 61.9	599 72.4	599 72.4	
Brain involvement	< 0.0001				
Yes	82 10.8	58 12.4	109 13.2	109 13.2	
No	675 89.2	409 87.6	718 86.8	718 86.8	
Surgery	< 0.0001				
Yes	232 30.6	172 36.8	339 41.0	339 41.0	
No/unknown	525 69.4	295 63.2	488 59.0	488 59.0	
Radiotherapy	0.750				
Yes	206 27.2	131 28.1	244 29.5	244 29.5	
No/unknown	351 72.8	336 71.9	583 70.5	583 70.5	
Chemotherapy	< 0.0001				
Yes	579 76.5	363 77.7	600 72.6	600 72.6	
No/unknown	178 23.5	104 22.3	227 27.4	227 27.4	

Table 1. Population demographics and baseline characteristics of included patients associated with molecular subtypes.
effect on the prognosis of patients with lung-only ($P = 0.053$); lung and liver ($P = 0.621$); and lung, liver, and brain metastasis ($P = 0.648$; Supplementary Table 3, Supplementary Fig. 2D).

Clinical outcomes associated with treatment. The prognostic benefits of surgical performance were assessed in patients with de novo LMBC. Regarding molecular subtypes, a constantly improved OS was revealed across HR+/HER2+, HR+/HER2−, HR−/HER2+, and HR−/HER2− subtype disease (Supplementary Fig. 3A–D), which was consistent with the prognostic outcomes of patients with lung-only and paired-organ metastases with bone, liver, and brain involvement (Supplementary Fig. 4A–D). For the entire LMBC population, the overall OS was significantly improved by surgical intervention ($P < 0.0001$), and the comparative prognosis stratified by clinical characteristics is presented in Supplementary Table 4.

In addition, treatment patterns were subjected to comparative analysis in terms of survival benefits. A comparable effectiveness was detected between surgery plus chemotherapy (40.9 months, 95% CI 43.9–38.0) and surgery plus radiotherapy (42.0 months, 95% CI 48.8–35.2). In addition, no additional benefit was retrieved from surgery plus chemotherapy plus radiotherapy. The surgery-based combination regimen was advantageous compared to the other treatment options, including surgery alone, chemotherapy alone, or chemotherapy plus radiotherapy.

Development and validation of the nomogram. Eligible patients were randomly allocated to the training and validation cohorts, which included 3017 and 1293 individuals, respectively. In the training cohort, the prognostic factors were successively identified, including age at diagnosis ($P < 0.0001$), race ($P < 0.0001$), histologic type ($P = 0.001$), tumor grade ($P < 0.0001$), molecular subtype ($P < 0.0001$), AJCC T stage ($P = 0.006$), bone metastasis ($P < 0.0001$), liver metastasis ($P < 0.0001$), brain metastasis ($P < 0.0001$), performance of surgery ($P < 0.0001$), and chemotherapy ($P < 0.0001$), which were collectively adopted to develop the prognostic model (Table 2). The nomogram showed that a tumor grade, molecular subtype, and age at diagnosis had a higher effect. The points of each variable were summed up by locating the respective points on the scale and then a straight line was drawn down to the total point scales to estimate the 2-year and 5-year survival rates.

The nomogram constructed for the estimation of 2- and 5-year survival in patients with LMBC was constructed is shown in Fig. 2. The overall C-index was 0.70 (95% CI 0.69–0.83) in the training cohort and 0.71 (95% CI 0.68–0.72) in the validation cohort, and the time-dependent C-index curves of the two cohorts signified that the values associated with survival were consistently > 0.50, indicative of favorable discriminative power (Fig. 3A). Calibration plots of the two cohorts demonstrated a decent agreement between the actual and predicted 2- and 5-year survival probabilities, which suggested a satisfactory calibration capability (Fig. 3B,C). In summary, the newly established nomogram showed good performance for survival estimation in patients with LMBC.

Discussion

To our knowledge, this is the first study to comprehensively discuss the clinical features and prognostic outcomes associated with molecular subtypes, metastatic patterns, and surgical intervention and to develop a robust prediction model for the estimation of individual prognosis of de novo metastatic breast cancer with lung involvement. To illustrate the distinctive presentations associated with molecular subtypes, we first performed comparative analyses among the LMBC population with HR+/HER2+, HR+/HER2−, HR−/HER2+, and HR−/HER2− subtype disease. The percentage of TN and HER2 subtype disease was relatively higher in patients with LMBC than in the entire breast cancer population (approximately 10% vs. 4%)\(^2\), suggesting an inclination of lung metastasis related to molecular subtype in patients with LMBC. An ascending tendency of lung involvement in TN and HER2 subtype breast cancer was noted in previous studies, with a recorded incidence of 20.8–35.0% and 22.9–45.0%,

Figure 1. Comparative analysis of OS associated with molecular subtypes. (R software version 3.6.4, www.r-project.org).
Characteristics	Univariate		P value	Multivariate		P value
	HR (95%CI)	P value		HR (95%CI)	P value	
Age group, years		<0.0001		<0.0001		
<50	Reference			Reference		
50–69	1.10 (0.96–1.26)	0.180		1.16 (1.01–1.33)	0.032	
≥70	1.55 (1.35–1.79)	<0.0001		1.61 (1.38–1.87)	<0.0001	
Sex		0.135				
Female	Reference			Reference		
Male	0.74 (0.51–1.10)	0.135				
Race		<0.0001		<0.0001		
White	Reference			Reference		
Black	1.29 (1.15–1.45)	<0.0001		1.35 (1.20–1.52)	<0.0001	
Others	0.79 (0.66–0.96)	0.016		0.85 (0.70–1.02)	0.080	
Laterality		0.844				
Left	Reference			Reference		
Right	0.97 (0.89–1.07)	0.599				
Others	1.08 (0.54–2.17)	0.830				
Histologic type		0.034		0.001		
DC	Reference			Reference		
LC	1.23 (0.97–1.57)	0.086		1.41 (1.10–1.81)	0.006	
Others	1.15 (1.01–1.32)	0.037		1.21 (1.05–1.38)	0.007	
Grade		<0.0001		<0.0001		
Grade1	Reference			Reference		
Grade2	1.28 (1.01–1.63)	0.043		1.34 (1.05–1.71)	0.018	
Grade3	1.80 (1.42–2.28)	<0.0001		1.87 (1.46–2.40)	<0.0001	
Grade4	2.07 (1.19–3.61)	0.010		2.06 (1.17–3.63)	0.012	
Subtype		<0.0001		<0.0001		
HR+/HER2−	Reference			Reference		
HR+/HER2+	0.81 (0.70–0.94)	0.005		0.92 (0.79–1.07)	0.267	
HER2	1.15 (0.97–1.35)	0.108		1.37 (1.14–2.64)	0.001	
TN	2.36 (2.10–2.65)	<0.0001		2.77 (2.42–3.18)	<0.0001	
T		<0.0001		0.006		
T0	Reference			Reference		
T1	0.69 (0.29–1.69)	0.420		0.77 (0.32–1.89)	0.573	
T2	0.72 (0.29–1.74)	0.462		0.76 (0.32–1.85)	0.551	
T3	0.79 (0.33–1.92)	0.606		0.81 (0.33–1.96)	0.639	
T4	0.91 (0.38–2.19)	0.828		0.94 (0.39–2.26)	0.883	
N		0.106				-
N0/N1mi	Reference					
N1	0.98 (0.87–1.10)	0.727				
N2	0.83 (0.70–0.98)	0.026				
N3	0.92 (0.79–1.07)	0.264				
Bone involvement		<0.0001		<0.0001		
Yes	Reference			Reference		
No	0.84 (0.76–0.92)	<0.0001		0.79 (0.71–0.88)	<0.0001	
Liver involvement		<0.0001		<0.0001		
Yes	Reference			Reference		
No	0.56 (0.51–0.62)	<0.0001		0.62 (0.54–0.73)	<0.0001	
Brain involvement		<0.0001		<0.0001		
Yes	Reference			Reference		
No	0.58 (0.50–0.67)	<0.0001		0.56 (0.51–0.63)	<0.0001	
Surgery		<0.0001		<0.0001		
No/unknown	Reference			Reference		
Yes	0.65 (0.59–0.73)	<0.0001		0.67 (0.60–0.75)	<0.0001	
Radiotherapy		0.757				-
No/unknown	Reference					
Yes	0.98 (0.89–1.09)	0.757				-
Continued						
Table 2. Prognostic factors identified by univariate and multivariate COX regression analyses in the training cohort.

Characteristics	Univariate			
	HR (95%CI)	P value	HR (95%CI)	P value
Chemotherapy	< 0.0001		< 0.0001	
No/unknown	Reference		Reference	
Yes	0.69 (0.63–0.76)	< 0.0001	0.56 (0.49–0.62)	< 0.0001

Figure 2. Nomogram for individual estimation of 2- and 5-year survival probabilities in LMBC patients. (R software version 3.6.4, www.r-project.org).
respectively12–14. In addition, we demonstrated that bone involvement tended to occur in luminal-like disease, while liver metastasis tended to occur in HER2 overexpression disease, which is consistent with the findings of previous studies that focused on de novo metastatic breast cancer12,15,16. The current evidence suggests that this kind of presentation can be independent of disease characteristics17, and our study demonstrated that the organ-specific metastasis remained stable in patients with initial lung metastasis. This type of subtype-associated predisposition could potentially constitute the intrinsic profiles of breast malignancies and provide clinical implications for organ selectivity in the management of cancer metastasis.

We also assessed the heterogeneous prognosis among the different molecular subtypes of LMBC, and our results suggested that the survival was in great favor of the HR+/HER2+ subtype, and patients with TN exhibited a relatively worse prognosis than the other subtypes. It is well acknowledged that TN breast cancer presents the most unfavorable disease features, with a median OS of 10–13 months in de novo metastatic breast cancer18,19, which was in line with the survival outcomes reported in the present study. In contrast, patients with HR+/HER2+LMBC had relatively favorable prognostic profiles, which could be the result of multiple treatment options for this type of subtype, including anti-HER2-targeted therapy and endocrine therapy. However, we could not further discuss the therapeutic influences on prognosis due to insufficient information on treatment in SEER database.

This is the first study to show that the distinctive survival outcomes are associated with metastatic profiles. We classified the metastatic patterns and further investigated the effects of the involved sites on the prognosis of LMBC. The prognosis gradually worsened as the total number of involved sites increased, and for patients with LMBC with paired metastatic sites, a successively inferior tendency was detected in lung involvement combined with bone, liver, and brain involvement. However, no statistical significance was revealed in patients with LMBC and three concurrent metastases. To further clarify the prognosis of patients with LMBC with diverse metastatic patterns, we performed a comparative analysis in the entire population. The corresponding results showed that patients with LMBC and brain metastasis had the worst survival, and the additional involvement of the bone did not decrease the overall prognosis. Although the metastatic patterns and prognostic correlations have been discussed in previous studies13,18,20, they tended to focus on the entire group of patients with de novo metastatic breast cancer instead of patients with LMBC. Therefore, the findings might not apply to patients with newly diagnosed lung involvement. In the current study, we conducted analyses in this specific cohort and reported novel findings of prognostic profiles associated with involved patterns, which can provide promising evidence for clinical management of patients with LMBC in clinical practice.
Given the controversial role of surgical intervention in de novo metastatic breast cancer22–25, we comprehensively discussed the potential effects of surgical performance on the prognosis of LMBC. Surgical performance could prolong the OS of patients with LMBC independent of the molecular subtypes. For patients with LMBC with lung-only and paired metastases, this kind of survival benefit remained consistent. Collectively, resection of primary disease can improve the overall prognosis of patients with LMBC and this benefit tended to vary with metastatic patterns, which was consistent with previous findings26. There is a promising rationale for this practice, and increasing evidence has emerged for surgical performance in de novo stage IV breast cancer27.

However, we could not further elaborate on the correlations between surgical performance and involved patterns in specific breast cancer subtypes due to the limited sample size, in addition to the specific techniques regarding surgery including surgical procedures, the optimal time point for surgery, and predictive biomarkers of the advantageous population for the receipt of surgical intervention due to limited data in the database. In addition, the overall prognosis could be interpreted by a show of factors associated with cancer treatment and disease characteristics in the setting of therapeutic phrases, these findings should be used with enough caution for physicians. However, considering the limited evidence for the prognostic value of surgical intervention for patients with LMBC, the current study could provide emerging evidence, and further studies should be conducted to investigate the associations between primary disease resection and surgical performance in the specified cohorts from the LMBC population.

To further quantify the estimation for individual prognosis, we developed a prediction model for the 2- and 5-year survival probabilities of patients with de novo LMBC, which was further validated internally and externally in the selected cohorts. The results of model validation suggested that this novel nomogram provided a robust prediction of survival in the LMBC population. Considering that this reliable nomogram was the first fulfillment of prognostic estimation for LMBC, the present study provides strong evidence for practitioners to introduce individual-based therapeutics for survival benefits in clinical practice.

There are limitations to our findings. First, metastatic sites were not fully recorded in this database, which comprised the metastatic sites after sequential therapies and the soft tissue and distant lymph nodes at the initial diagnosis, and could exert inevitable effects on the proportion of results regarding metastatic patterns. However, the organs commonly involved in breast cancer include the lung, bone, liver, and brain28, which were included in our analyses, and the study results can be applied to all patients with LMBC. In addition, treatment information was not sufficiently available. This includes, for instance, endocrine therapy as a first-line intervention for ER+/HER2− breast cancer, targeted therapy for HER2+ breast cancer, chemotherapeutic protocols, radiation performance, and surgical removal of metastatic lesions, which could result in misestimation of the associations between current treatment options and survival benefits as well as ignorance of the influence of some new treatments, such as immunotherapy, PARP inhibitors, and PI3K-AKT inhibitors on survival benefits. This should be further improved in future population-based studies. Moreover, information on progression-free survival was not included in the SEER database, leading to a lack of a major survival profile. Finally, several disease characteristics vital to clinical outcomes are absent in this database, such as the Ki-67 index and lymphovascular invasion; therefore, we could consider all disease characteristics to further calibrate this prediction model.

In conclusion, this study revealed great heterogeneity in the clinical outcomes of LMBC associated with molecular subtypes, metastatic patterns, and surgical performance. Prognostic factors were identified, and we established a robust nomogram for the estimation of individual 2- and 5-year survival in patients with LMBC. Prospective studies with more cohorts for extensive validation are warranted in the future.

Data availability

The SEER database was available from: www.seer.cancer.gov.

Received: 6 July 2021; Accepted: 22 February 2022

References

1. Malmgren, J., Mayer, M., Atwood, M. & Kaplan, H. Differential presentation and survival of de novo and recurrent metastatic breast cancer over time: 1990–2010. *Breast Cancer Res. Treat.* \textbf{167}, 579–590. https://doi.org/10.1007/s10549-017-4529-5 (2018).

2. DeSantis, C. et al. Breast cancer statistics, 2019. *CA* \textbf{69}, 438–451. https://doi.org/10.3322/caac.21583 (2019).

3. Cardoso, F. et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)*. *Ann. Oncol.* \textbf{29}, 1654–1657. https://doi.org/10.1093/annonc/mdy192 (2018).

4. Parham, D. & Robertson, A. A retrospective study of breast carcinoma: Causes of death and pattern of metastases. *Br. J. Cancer* \textbf{60}, 394–396. https://doi.org/10.1038/bjc.1989.292 (1989).

5. Lee, Y. Breast carcinoma: Pattern of metastasis at autopsy. *J. Surg. Oncol.* \textbf{23}, 175–180. https://doi.org/10.1002/jso.2930230311 (1983).

6. Xiao, W. et al. Risk factors and survival outcomes in patients with breast cancer and lung metastasis: A population-based study. *Cancer Med.* \textbf{7}, 922–930. https://doi.org/10.1002/cam4.1370 (2018).

7. Golse, N. & Adam, R. Liver metastases from breast cancer: What role for surgery? Indications and results. *Clin. Breast Cancer* \textbf{17}, 256–265. https://doi.org/10.1016/j.clbc.2016.12.012 (2017).

8. Mudgway, R. et al. The impact of primary tumor surgery on survival in HER2 positive stage IV breast cancer patients in the current era of targeted therapy. *Ann. Surg. Oncol.* \textbf{27}, 2711–2720. https://doi.org/10.1245/s10434-020-08310-2 (2020).

9. Badwe, R. et al. Locoregional treatment versus no treatment of the primary tumour in metastatic breast cancer: An open-label randomised controlled trial. *Lancet Oncol.* \textbf{16}, 1380–1388. https://doi.org/10.1016/S1470-2045(15)00135-7 (2015).

10. von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. *Lancet* \textbf{370}, 1453–1457. https://doi.org/10.1016/S0140-6736(07)61602-x (2007).

11. Collins, G., Reitsma, J., Altman, D. & Moons, K. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. *BMJ* \textbf{350}, g7594. https://doi.org/10.1136/bmj.g7594 (2015).

12. Soni, A. et al. Breast cancer subtypes predispose the site of distant metastases. *Am. J. Clin. Pathol.* \textbf{143}, 471–478. https://doi.org/10.1093/ajcp/pxv3053 (2015).
Author contributions
Conception and design: H.-Y.Q., L.-W.M. Development of methodology: H.-Y.Q. Acquisition of data: L.-W.M. Analysis and interpretation of data: H.-Y.Q., L.-W.M. Writing of the manuscript: L.-W.M. Review and revision of the manuscript: H.-Y.Q., L.-W.M. Study supervision: H.-Y.Q.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-07565-x.

Correspondence and requests for materials should be addressed to Y.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022