Direct evidence that hydralazine can induce hypoxia in both transplanted and spontaneous murine tumours

MR Horsman, M Nordsmark, M Høyer and J Overgaard

Danish Cancer Society, Department of Experimental Clinical Oncology, Nørrebrogade 44, Bldg. 5, DK-8000 Aarhus C, Denmark.

Summary

Hydralazine can substantially decrease blood flow and increase hypoxia in transplanted tumours. Previous indirect studies have suggested that hydralazine does not induce such effects in spontaneous tumours. We have now directly investigated the ability of hydralazine to increase hypoxia in both transplanted and spontaneous murine tumours by measuring tumour oxygen partial pressure (pO₂) distributions using an Eppendorf oxygen electrode. Spontaneous tumours arose at different sites in CDF1 mice, while transplanted tumours were produced by implanting a C3H mouse mammary carcinoma on the backs of the same mouse strain. Measurements of pO₂ were made in anaesthetised mice immediately before and 45 min after an intravenous injection of 5 mg kg⁻¹ hydralazine. In the transplanted tumours hydralazine significantly decreased tumour oxygenation, such that the percentage of pO₂ values ≤ 5 mmHg increased from 45% to 87%, and median pO₂ decreased from 5 to 3 mmHg. Similar significant changes were induced by hydralazine in the spontaneous tumours, the percentage of pO₂ values ≤ 5 mmHg increasing from 60% to 94% while the median pO₂ values decreased from 8 to 2 mmHg. These results clearly show that there is no difference in the response of transplanted and spontaneous mouse tumours to hydralazine.

Keywords: hydralazine; transplanted C3H mouse mammary carcinoma; spontaneous murine tumours; hypoxia; Eppendorf oxygen electrode

It has been well established that the antihypertensive drug hydralazine (Sutton, 1986), when injected into animals at high doses, can substantially decrease blood flow to a variety of transplanted tumours (Voorhees and Babbs, 1982; Chaplin and Acker, 1987; Horsman et al., 1989, 1992; Bhujwalla et al., 1990; Kalmus et al., 1990; Lin and Song, 1990; Fisker et al., 1991; Honess and Bleehen, 1992; Dewhirst et al., 1994). This effect leads to changes in tumour oxygenation (Stratford et al., 1987; Horsman et al., 1989; Lin and Song, 1990; Fisker et al., 1991; Lemmon and Brown, 1991) and energy metabolism (Okunieff et al., 1988; Bhujwalla et al., 1990; Tozer et al., 1990; Bremner et al., 1991), and as a result this drug will enhance the anti-tumour activity of a range of agents. These include hypoxic cell cytotoxins such as bioreductive drugs (Chaplin and Acker, 1987; Bremner et al., 1990) and hyperthermia (Horsman et al., 1989; Kalmus et al., 1990), as well as certain conventional chemotherapeutic agents such as melphanal (Stratford et al., 1987; Adams et al., 1989; Chaplin et al., 1989) and chlorambucil (Skarsgard et al., 1992).

However, recent studies using 31P magnetic resonance spectroscopy (31P-MRS) reported that primary or spontaneous murine tumours were in general unresponsive to hydralazine (Field et al., 1991; Wood et al., 1992). Moreover, when one of the unresponsive primary tumours was subcutaneously transplanted into the flanks of isogenic mice it did respond to hydralazine (Field et al., 1991). These findings have not only raised questions about the potential adjuvant use of vascular modifying agents such as hydralazine in clinical therapy, they have also led to criticism about the use of transplanted murine tumours as preclinical screens for testing the activity of such agents.

We have now used an Eppendorf oxygen electrode to measure directly tumour oxygenation, both before and after hydralazine treatment, in a transplanted C3H mouse mammary carcinoma and a series of spontaneous murine tumours. Our results show that hydralazine can in fact significantly decrease oxygenation status in both tumour types.

Materials and methods

Transplanted tumour

A C3H mouse mammary carcinoma was used. Its derivation and maintenance have been described previously (Overgaard, 1980). Experimental tumours were produced following sterile dissection of large flank tumours. Macroscopically viable tumour tissue was minced with a pair of scissors and 5–10 µl of this material injected subcutaneously on the backs of 10-14-week old male and female C3D2F1/Bom (C3H/Tif female × DBA/2 male) mice. Measurements of tumour oxygenation were carried out when tumours had achieved volumes ranging from about 500 to 5000 mm³ (see Table 1). Tumour size was determined by the formula $D_1 \times D_2 \times \pi / 6$ (where the D values represent three orthogonal diameters). This size range was selected to allow direct comparison with our spontaneous tumours.

Spontaneous tumours

The characteristics of the spontaneous mouse tumours are also listed in Table 1. Tumours were used when they had reached about 500–5000 mm³ in size. These volumes were chosen because they were similar to the range of spontaneous tumour volumes used in previous 31P-MRS studies (Field et al., 1991). Our spontaneous tumours were not deliberately produced for these experiments but arose at different sites in male and female C3D2F1/Bom mice aged between 14 and 28 months that had previously undergone some form of radiation treatment at around 3 months of age in connection with other experiments. Two mice had received whole body irradiation with 6–8 Gy given in three daily fractions. The remaining eight mice had been implanted with a C3H mammary carcinoma in the right rear foot and then locally irradiated with 30–70 Gy when the tumours were <200 mm³. Determination of the tumour type was made from microscopic examination of haematoxylin-stained histological sections. DNA index of the tumours was estimated by flow cytometry on ethanol-fixed tumour specimens as described previously (Barlogie et al., 1977).
Table 1 Characteristics of the transplanted and spontaneous mouse tumours

Mouse No.	Tumour (Controls)*	Transplanted (HDZ treated)*	Spontaneous (HDZ treated)*		
	Tumour site	Radiation treatment*	Age treated	DNA index	
1	509 F	Malignant lymphoma Left flank	Foot	22	1.00
2	749 F	Sarcoma Head at right eye Whole body	20	1.89	
3	919 M	Necrotic tissue Right side of neck	Foot	22	NA
4	968 M	Adenocarcinoma Right breast	Whole body	14	2.37
5	968 M	Adenocarcinoma Anal–genital region	Foot	24	1.00
6	1021 F	Adenocarcinoma Top of right foreleg	Foot	23	NA
7	2547 F	Adenocarcinoma Left flank	Foot	28	1.00
8	2681 F	Adenocarcinoma Left shoulder	Foot	22	NA
9	2893 F	Anaplastic tumour Right flank	Foot	22	1.00
10	5012 M	Adenocarcinoma Foot	22	NA	

*Mice were intravenously injected with either saline (controls) or hydralazine (HDZ; 5 mg kg⁻¹). *Mice had previously been irradiated when around 3 months old. Radiation was given either whole body (6–8 Gy in three fractions), or locally to the right rear foot (single dose of 30–70 Gy) in which a C3H mammary carcinoma had been implanted. NA, not available.

Drug preparation

Hydralazine (1-hydrizinophthalazine) was supplied by Ciba-Geigy, Copenhagen, Denmark. A fresh solution was prepared in saline (0.9% sodium chloride) before each series of measurements. It was then injected intravenously (i.v.) at a constant injection volume of 0.02 ml g⁻¹ mouse body weight.

PO2 measurements

Measurements of tumour PO2 were made using a computerised fine-needle polarographic oxygen electrode probe (Eppendorf, Hamburg, Germany), the details of which have been described previously (Kallinowski et al., 1990). The location of some of the spontaneous tumours required the use of anaesthesia, thus for consistency PO2 measurements in all the spontaneous and transplanted tumours were performed under anaesthesia. To achieve this mice were given a single injection with a mixture of hypnorm (fluanisnonum 10 mg ml⁻¹ + fentanyl 0.2 mg ml⁻¹) and diazepam (5 mg ml⁻¹) and water in the ratio of 1:1:4. This mixture was injected intraperitoneally at 0.005 g⁻¹ mouse body weight. The oxygen electrode was then inserted up to a depth of 1 mm into the tumour. It was subsequently moved automatically through the tissue in 0.7 mm increments, followed each time by a 0.3 mm backward step before measurement. Between two and six repeated parallel insertions were performed in each tumour. Mice were then injected with saline or hydralazine and 45 min later the PO2 measurements were repeated, the animals remaining anaesthetised for this entire period. The average number of PO2 values obtained per set of measurements was 120 (range 37–220). Body temperature was monitored using a rectally inserted thermocouple before hydralazine injection and at various times after, and maintained at the prehydralazine level by warming the mice from above with a standard desk-top lamp.

Data analysis

The relative frequency of the PO2 measurements was automatically calculated and displayed as a histogram, but from the original raw data a number of parameters can be selected to reflect tumour oxygenation. In this study we decided to show the results from only two of these end points, namely, median PO2 and percentage of PO2 values ≤ 5 mmHg, because the former is indicative of the overall oxygenation status, while the latter is likely to include all the radiobiologically hypoxic cells in the tumour. Statistical analysis of the data was performed using the Student t-test after testing for variance homogeneity by an F-test, with P = 0.05 selected as the level of significance.

Results

Histological characterisation of the spontaneous tumours showed that half of them were adenocarcinomas (Table 1). The remaining being a malignant lymphoma, a sarcoma, an anaplastic tumour and one tumour (mouse number 3) which histologically was actually found to consist of highly vascularised, yet necrotic tissue, with no malignant cells being seen. Seven of the tumours also had their DNA-index determined and of these, five were diploid (DNA index of 1.00), while the remaining two were either hypotetraploid (mouse number 2) or hypertetraploid (mouse number 4). The transplanted C3H mouse mammary carcinoma was found to be tetraploid with a DNA index of 2.01.

Figures 1 and 2 show the median PO2 and percentage of PO2 values ≤ 5 mmHg, before and after drug injection, for all the transplanted and spontaneous tumours used in this study. To check on the validity of making repeated PO2 measurements in tumours, measurements were made in transplanted tumours before and after injection with saline. The pretreatment median PO2 values ranged from 2 to 8 mmHg (mean = 5 mmHg) and the percentage of PO2 values ≤ 5 mmHg ranged from 8% to 94% (mean = 55%). Following injection with saline the PO2 measurements were repeated and although there was some variability between the pre- and post-saline measurements, there were no consistent changes. Moreover, the post-injection results covered a similar range (median values went from 2 to 9 mmHg and the percentage ≤ 5 mmHg from 19% to 99%) as the presaline measurements, and the average estimates of the median PO2 values and percentage of PO2 values ≤ 5 mmHg were calculated to be 5 mmHg and 58% respectively, which were not significantly different from the average presaline values.

The pretreatment PO2 values measured in the transplanted tumours used for the hydralazine study were almost identical to those seen in the saline-treated transplanted tumours. However, when mice were injected with hydralazine every single transplanted tumour became less well oxygenated. Indeed, for all ten tumours the average of the median PO2 values was decreased from 5 to 3 mmHg, while the percentage of PO2 values ≤ 5 mmHg increased from 45% to 87%, and these changes in both parameters were significant. Similar significant changes were also seen for mean PO2 and the percentage of values ≤ 10 mmHg, but not for the percentage ≤ 2.5 mmHg (data not shown).

For the spontaneous tumours the prehydralazine treatment PO2 values did appear to show a wider range, at least in terms of median PO2, than the pretreatment values measured in transplanted tumours, however, the average results for all ten spontaneous tumours were not significantly different from the average pretreatment PO2 estimates of the transplanted tumours. After hydralazine treatment, every spontaneous
Figure 1 The effect of hydralazine (5 mg kg⁻¹) on the oxygenation status of transplanted C3H mouse mammary carcinomas and spontaneous murine tumours. Measurements of pO_2 were made in tumours before (−, ○) or 45 min after (+, ●) an i.v. injection with saline or hydralazine (HDZ). Results show the median pO_2 values obtained either in individual tumours (top panels) or the mean ± 1 s.e. of these tumours (bottom panels). Numbers on the figures refer to the relevant animals listed in Table I.

Figure 2 The effect of hydralazine (5 mg kg⁻¹) on the oxygenation status of transplanted C3H mouse mammary carcinomas and spontaneous murine tumours. Measurements of pO_2 were made in tumours before (−, ○) or 45 min after (+, ●) an i.v. injection with saline or hydralazine (HDZ). Results show the percentage of pO_2 values < 5 mmHg obtained either in individual tumours (top panels) or the mean ± 1 s.e. of these tumours (bottom panels). Numbers on the figures refer to the relevant animals listed in Table I.
tumour showed a decreased oxygenation status. For the median pO2, the average value for all ten tumours decreased from 8 to 2 mmHg, while the percentage of pO2 values < 5 mmHg increased from 60% to 94%, and again these changes were significant. The average estimates for the mean pO2 and the percentage of values < 2.5 and 10 mmHg also showed significant differences between the pre- and post-hydralazine treatments (data not shown).

Discussion

It has been established that the Eppendorf oxygen electrode can directly measure the oxygenation status of both animal and human tumours (Kalimowiski et al., 1990; Hoeckel et al., 1991; Fielden et al., 1995). Using this electrode we have now demonstrated that a large single dose of hydralazine (5 mg kg⁻¹) can significantly decrease the level of oxygenation in a transplanted C3H mouse mammary carcinoma. These changes were identical to those we reported for hydralazine in small 200 mm³ C3H tumours (Horsman et al., 1995) and are consistent with our radiation studies in this tumour, which showed that for several hours after hydralazine injection tumour response to radiation was equivalent to that seen in tumours made fully radiobiologically hypoxic by clamping (Horsman et al., 1989; Fisker et al., 1991), an effect that correlated with the drug’s ability to decrease tumour blood flow. Studies with other transplanted tumour models have also shown that hydralazine can decrease tumour blood flow (Voorhees and Babbs, 1982; Chaplin and Acker, 1987; Bijuwalla et al., 1990; Kalmus et al., 1990; Lin & Song, 1990; Honess and Bleehen, 1992; Dewhirst et al., 1994) and oxygenation (Straitford et al., 1987; Lin and Song, 1990; Lemmon and Brown, 1991).

Our current study also investigated the effect of hydralazine on the oxygenation status of ten spontaneous murine tumours and in every case a reduction in tumour oxygenation was observed. These tumours arose in mice that had either been whole-body irradiated some 11 to 17 months earlier, or in animals which 19–25 months before had been implanted in the right rear foot with the C3H mammary carcinoma and the tumour then controlled by local irradiation. Histological examination and measurement of DNA index clearly showed that these spontaneous tumours were not recurrences of the previously transplanted tumour. Moreover, although some of the tumours may have been induced by the previous radiation treatment, the time at which the spontaneous tumours appeared and the site of growth, suggests that the irradiation was probably not responsible for all the tumours. Two other studies have looked at the effect of hydralazine in primary or spontaneous tumours, both using 31P-MRS to assess response. One found that 12/19 primary tumours did not respond to hydralazine (Field et al., 1991), while the other showed that 10/12 spontaneous tumours failed to respond to the drug (Wood et al., 1992). Why there should be this apparent discrepancy between the pO2 and 31P-MRS data is not clear. The study by Field et al. (1991) used radiation- or chemically induced primary tumours and there is evidence showing that murine tumours that can respond to hydralazine do not do so if grown in a previously irradiated site (Lemmon and Brown, 1991). While this may help explain the lack of effect in some of the primary tumours in the Field study, and why a non-responding primary tumour did respond when transplanted, it pO2 and does not explain the failure to see an effect in all the primary tumours, nor does it account for the lack of effect in the majority of truly spontaneous tumours in the study by Wood et al. (1992). Our pO2 measurements also showed that for at least four out of ten of the spontaneous tumours the percentage of pO2 values < 5 mmHg before hydralazine treatment were around 80% or above. Such tumours could be considered very hypoxic and, although they did respond to hydralazine, they were incapable of showing any large change. Although 31P-MRS can be used to monitor changes in tumour metabolism with growth or after treatment (Rofstad et al., 1988; Adams et al., 1992), its ability to actually measure the level of hypoxia in tumours is limited (Rofstad et al., 1988; Nordsmark et al., 1995). It is, therefore, possible that the failure to see a response in spontaneous tumours with 31P-MRS after hydralazine may have been because these tumours were relatively hypoxic and unable to respond. However, this again is unlikely to be the explanation for the lack of effect with so many tumours in the 31P-MRS studies; even in our experiments some 60% of the spontaneous tumours could be considered reasonably well oxygenated. Nor does it explain why hydralazine-induced changes in metabolic activity can be detected with 31P-MRS in transplanted tumours (Okunieff et al., 1988; Bijuwalla et al., 1990; Tozer et al., 1990; Bremner et al., 1991). Clearly there is no easy explanation as to why our current study showed substantial effects of hydralazine in spontaneous tumours using measurements of pO2 as the end point, and other studies using 31P-MRS failed to find such effects.

Nevertheless, the important finding from our current study is that all the spontaneous tumours we studied responded to hydralazine and the average effect was identical to that seen in size-matched, transplanted murine tumours. Whether or not hydralazine can actually be used clinically to decrease blood flow in human tumours and thus enhance the anti-tumour activity of hypoxic cell cytotoxins is not clear. Limited clinical data has shown that hydralazine can decrease blood flow in a glioblastoma (Chaplin and Trotter, 1991) and a squamous cell carcinoma (Acker et al., 1987), but actually increased flow by 38% in lung tumours (Rowell et al., 1990). That latter effect was seen with a drug dose that produced only an 8% decrease in mean arterial blood pressure (Rowell and Clark 1990). Experimental murine studies have also reported hydralazine-induced increases in tumour blood flow of around 30% (Kalmus et al., 1990; Horsman et al., 1992), but these occurred at low drug doses and, as in the human lung studies, were associated with a small decrease in mouse blood pressure of about 10%. Only when blood pressure was reduced by 15% or more did blood flow drop below control levels (Horsman et al., 1992). It seems unlikely that such large decreases in blood pressure can be routinely achieved in humans, although decreases in excess of 20% were observed in the glioblastoma and squamous cell carcinoma studies (B Acker, written communication, January 1991). What is needed are agents that can physiologically decrease tumour blood flow without substantially decreasing blood pressure. Our finding that transplanted and spontaneous tumours responded identically to hydralazine suggests that transplanted tumours grown in mice would be a good effective screen to identify such agents.

Acknowledgements

The authors wish to thank Ms IM Johansen for expert technical assistance, Dr S Heyer for performing the pathological classification of the spontaneous tumours and Ms L Splid for help in preparing the manuscript. This investigation was supported by a grant from the Danish Cancer Society.

References

ACKER B, LENTLE B AND CHAPLIN DJ. (1987). The effect of hydralazine (apresoline) on blood flow in human tumours. In Proceedings of the Eighth International Congress on Radiation Research, Vol. 1, Fielden EM, Fowler JF, Hendry JH and Scott D. (eds) pp. 297. Taylor and Francis: London.

ADAMS GE, STRATFORD JJ, GODDEN J AND HOWELLS N. (1989). Enhancement of the anti-tumor effect of melphalan in experimental mice by some vasoactive agents. Int. J. Radiat. Oncol. Biol. Phys., 16, 1137–1139.
Hydralazine in transplanted and spontaneous tumors
MR Horsman et al

ADAMS GE, BREMNER JCM, STRATFORD IJ AND WOOD PJ. (1992). Can 31P magnetic resonance spectroscopy measurements of changes in experimental tumour metabolism be related to modification of oxygen status. Br. J. Radiol., 24, (suppl.) 137–141.

BARLOGIE B, HITTELMAN W, SPITZER G, TRUILLIO JM, HART JS, SMALLWOOD L AND DREWINKO B. (1977) Correlation of DNA distribution abnormalities with cytogenetic findings in human adult leukemia and lymphoma. Cancer Res., 37, 4400–4407.

BHUWALLA ZM, TOZER GM, FIELD SR, MAXWELL RJ AND GRiffiths JR. (1990). The energy metabolism of RIF-1 tumors following hydralazine. Radiother. Oncol., 19, 281–291.

BREMNER JCM, STRATFORD IJ, BOWLER J AND ADAMS GE. (1990). Bioactive drugs and the selective induction of tumour hypoxia. Br. J. Cancer, 64, 717–721.

BREMNER JCM, COUNSELL CJR, ADAMS GE, STRATFORD IJ, WOOD PJ, DUNN JF AND RADDKA GK. (1991) In vivo 31P nuclear magnetic resonance spectroscopy of experimental murine tumors and human tumor xenografts: effects of blood flow modification. Br. J. Cancer, 64, 862–866.

CHAPLIN DJ AND ACKER B. (1987). The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069: evidence for therapeutic gain. Int. J. Radiat. Oncol. Biol. Phys., 13, 579–585.

CHAPLIN DJ AND TROTTER MJ. (1991). Chemical modifiers of tumor blood flow. In Tumor Blood Supply and Metabolic Microenvironment, Vaupel P and Jain RK (eds) pp. 65–85. Gustav Fischer: Stuttgart.

CHAPLIN DJ, ACKER B AND OLIVE PL. (1989). Potentiation of the tumor cytotoxicity of melphalan by vasodilating drugs. Int. J. Radiat. Oncol. Biol. Phys., 16, 1113–1135.

DEWHIRST MW, MADWED D, MEYER RE, ONG ET, KLITZMAN B, ROSNER GL AND DODGE R. (1994). Reduction in tumor blood flow in skin flap tumor after hydralazine is not due to a vascular steal phenomenon. Radiat. Oncol. Invest., 1, 270–278.

FIELD SB, BURNEY IA, NEEDHAM S, MAXWELL RJ, COGGLE JE AND GIFFRITHTH JR. (1991). Are transplanted tumors suitable as models for studies on vasculature. Int. J. Radiat. Biol., 60, 255–260.

FISKER RV, HORSMAN MR AND OVERGAARD J. (1991). Hydralazine induced changes in tissue perfusion and radiation response in a C3H mammary carcinoma and mouse normal tissues. Acta Oncol., 30, 641–647.

HOECKEL M, KNOOP C, SCHLENGER K, VORDRAN B, MITZ M, KNAPSTEIN PG AND VAUPEL P. (1993). Intratumoural pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol., 26, 45–50.

HONES DJ AND BLEEHEN NM. (1992). Comparative effects of hydralazine on perfusion of KHT tumor, kidney and liver and on renal function in mice. Int. J. Radiat. Oncol. Biol. Phys., 22, 953–961.

HORSMAN MR, CHRISTENSEN KL AND OVERGAARD J. (1989). Hydralazine-induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo. Int. J. Hyperther., 5, 123–136.

HORSMAN MR, CHRISTENSEN KL AND OVERGAARD J. (1992). Relationship between the hydralazine-induced changes in murine tumour blood supply and mouse blood pressure. Int. J. Radiat. Oncol. Biol. Phys., 22, 455–458.

HORSMAN MR, KHALIL AA, NORDMARK M, SIEMANN DW, HILL SA, LYNCH EM, CHAPLIN DJ, STEIN SR, THOMAS CD, GUICHARD M, GRAU C AND OVERGAARD J. (1993). The use of oxygen electrodes to predict radiobiological hypoxia in tumours. In Tumour Oxygenation, Vaupel PW, Kelleher DK and Gandereth M (eds) pp. 49–57. Gustav Fischer: New York.

KALLINOWSKI F, ZANDER R, HOECKEL M AND VAUPEL P. (1990). Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int. J. Radiat. Oncol. Biol. Phys., 19, 953–961.

KALMUS J, OKUNIEFF P AND VAUPEL P. (1990). Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSAll tumors. Cancer Res., 50, 15–19.

LEMMON MJ AND BROWN JM. (1991). Hydralazine does not increase hypoxia in tumors growing in periradiated tissue. Int. J. Radiat. Oncol. Biol. Phys., 21, 1435–1440.

LIN JC AND SONG CW. (1990). Effects of hydralazine on the blood flow in RIF-1 tumors and normal tissues of mice. Radiat. Res., 124, 171–177.

NORDMARK M, GRAU C, HORSMAN MR, STÖDKILDE-JÖRGENSEN H AND OVERGAARD J. (1995). Relationship between tumour oxygenation, bioenergetic status and radiobiological hypoxia in an experimental model. Acta Oncol., 34, 329–334.

OKUNIEFF P, KALLINOWSKI F, VAUPEL P AND NEURINGER LJ. (1988). Effects of hydralazine-induced vasoilation on the energy metabolism of murine tumors studied by in vivo 31P-nuclear magnetic resonance spectroscopy. J. Natl Cancer Inst., 80, 745–750.

OVERGAARD J. (1980). Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int. J. Radiat. Oncol. Biol. Phys., 6, 1507–1517.

ROSTFAD EK, DEMUTH P, FENTON BM AND SUTHERLAND RM. (1988). 31P-nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intercapillary oxygenoglobin saturation status and tumor hypoxia. Cancer Res., 48, 5440–5446.

ROWELL NP AND CLARK K. (1990). The effects of oral hydralazine on blood pressure, cardiac output and peripheral resistance with respect to dose, age and acetylator status. Radiother. Oncol., 18, 293–298.

ROWELL NP, FLOWER MA, McCREADY VR, CRONIN B AND HORWICH A. (1990). The effects of single dose oral hydralazine on blood flow through human lung tumors. Radiother. Oncol., 18, 293–299.

SKARSWARD LD, CHAPLIN DJ, WILSON DJ, SKWARCHUK MW, VINZCAN A AND KRISTJ J. (1992). The effect of hypoxia and low pH on the cytotoxicity of chlorambucil. Int. J. Radiat. Oncol. Biol. Phys., 22, 737–741.

STRATFORD IJ, GODDEN J, HOWELLS N, EMBLING P AND ADAMS GE. (1987). Manipulation of tumor oxygenation by hydralazine increases the potency of bioreactive radiosensitizers and enhances the effect of melphalan in experimental tumors. In Proceedings of the Eighth International Congress on Radiation Research, Vol. 2, Fielden EM, Fowler JF, Hendry JH and Scott D. (eds) pp. 737–742. Taylor and Francis: London.

SUTTON FJ. (1986). Vasodilator therapy. Am. J. Med., 80, 54–58.

TOZER GM, MAXWELL RJ, GIFFITHS JR AND PHAM P. (1990). Modification of the 31P magnetic resonance spectra of a rat tumor using vasodilators and its relationship to hypotension. Br. J. Cancer, 62, 553–560.

VOORHEES WD AND BABBS CF. (1982). Hydralazine-enhanced selective heating of transmissible venereal tumour implants in dogs. Eur. J. Cancer Clin. Oncol., 19, 1027–1033.

WOOD PJ, STRATFORD IJ, SANSOM JM, CATTANACH BM, QUINNEY RM AND ADAMS GE. (1992). The response of spontaneous and transplanted murine tumors to vasoactive agents measured by 31P magnetic resonance spectroscopy. Int. J. Radiat. Oncol. Biol. Phys., 22, 473–476.