ON CM ABELIAN VARIETIES OVER IMAGINARY QUADRATIC FIELDS

Tonghai Yang

Abstract. In this paper, we associate canonically to every imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ one or two isogenous classes of CM abelian varieties over K, depending on whether D is odd or even ($D \neq 4$). These abelian varieties are characterized as of smallest dimension and smallest conductor, and such that the abelian varieties themselves descend to \mathbb{Q}. When D is odd or divisible by 8, they are the ‘canonical’ ones first studied by Gross and Rohrlich. We prove that these abelian varieties have the striking property that the vanishing order of their L-function at the center is dictated by the root number of the associated Hecke character. We also prove that the smallest dimension of a CM abelian variety over K is exactly the ideal class number of K and classify when a CM abelian variety over K has the smallest dimension.

0. Introduction. The paper is motivated by two basic questions related to an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with fundamental discriminant $-D$ and abelian varieties over K with complex multiplications (CM). It is well-known that there is a CM elliptic curve over K if and only if K has ideal class number 1. What is then the smallest dimension of a CM abelian variety over K in general? We prove that the smallest dimension is exactly the ideal class number h of K (Theorem 3.1). We also classify the CM abelian varieties over K of dimension h in terms of its associated algebraic Hecke character (Theorems 3.4 and 3.5) in section 3. It turns out that it only depends on the restriction of the Hecke character on the principal ideals. To be more precise, let (A, i) be a CM abelian variety over K of CM type (T, Φ), and let χ be the associated algebraic Hecke character of K of conductor f, then

\begin{equation}
\chi(\alpha \mathcal{O}_K) = \epsilon(\alpha) \alpha
\end{equation}

for some odd character $\epsilon : (\mathcal{O}_K/f)^* \longrightarrow \mathbb{C}^*$. We will prove in section 3

1991 Mathematics Subject Classification. 11G05 11M20 14H52.

Key words and phrases. Hecke L-series, CM abelian varieties.

Partially supported by an AMS Centennial Fellowship and a NSF grant DMS-0070476.

Typeset by \textsc{AMS-TEX}
Theorem 0.1. Let the notation be as above, and let \(h \) be the ideal class number of \(K \). Then

1. (Theorem 3.1) one has \(h \mid \dim A \).

2. (Theorem 3.5) The equality \(\dim A = h \) holds if and only if one of the following holds.
 (a) \(\epsilon \) is quadratic,
 (b) \(3 \mid D \) and \(\epsilon \) is of order 6, there is \(\alpha \in K^* \) such that \(3\alpha^2 \) is prime to \(f \) and \(\epsilon(3\alpha^2) = -1 \), or
 (c) \(4 \mid D \) and \(\epsilon \) is of order 4 or 12, there is \(\alpha \in K^* \) such that \(2\alpha^2 \) is prime to \(f \) and \(\epsilon(2\alpha^2) = \pm i \).

In such a case, \(A \) is a scalar restriction of a CM elliptic curve over the Hilbert class field \(H \) of \(K \) if and only if \(\text{Im}(\epsilon) \subset \mathcal{O}_K^* \) (Proposition 2.2).

In view of the theorem, it is nature to ask whether and how one can associate ‘canonically’ a ‘nice’ CM abelian variety over \(K \) of dimension \(h \) to an imaginary quadratic field \(K \). When \(D \) is odd or \(8 \mid D \), this can be done by means of the scalar restriction of certain ‘canonical’ CM elliptic curves over \(H \), according to Gross ([Gr]) when \(D \) is an odd prime and Rohrlich ([Ro2-4]) in general. These CM abelian varieties descend to varieties over \(\mathbb{Q} \) and have bad reductions exactly at \(p \mid D \). Indeed, according to Rohrlich ([Ro2-4]), a Hecke characters \(\chi \) of \(K \) of conductor \(f \) is called canonical if it satisfies the following three conditions:

1. (0.2) \(\chi(\overline{a}) = \overline{\chi(a)} \) for all ideals \(a \) of \(K \) prime to \(f \);
2. (0.3) The character \(\epsilon \) in (0.1) is quadratic;
3. (0.4) The conductor \(f \) is divisible only primes ramified in \(K/\mathbb{Q} \).

If \(\chi \) is a canonical Hecke character of \(K \), so is \(\chi\phi \) for every ideal class character \(\phi \) of \(K \) or \(\chi^\sigma \) for every \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/K) \) with the same \(\epsilon \). They form the same family and gives rise to the same CM abelian variety \(A \) over \(K \) up to isogeny (different characters correspond to different embeddings \(i \) and different CM types). The condition (0.2) implies that \(A \) descends to an abelian variety over \(\mathbb{Q} \), and (0.3) implies that \(A \) is a scalar restriction of some CM elliptic curve over \(H \). (0.2) and (0.4) imply that \(A \) has bad reduction exactly at primes dividing \(DO_K \). One of the most striking properties of the canonical Hecke characters (or ‘canonical CM abelian varieties’) is

\[
\text{ord}_{s=1} L(s, \chi) = \frac{1 - W(\chi)}{2}
\]

where \(W(\chi) \) is the root number of \(\chi \).

However, a canonical CM abelian variety over \(K \) exists if and only if \(D \) is odd or is divisible by 8, according to Rohrlich ([Ro2]). When \(D \) is odd, it is unique up
to isogeny, and the associated ϵ is given by $(\mathcal{O}_K/\sqrt{-D})^* \cong (\mathbb{Z}/D)^* \rightarrow \{\pm 1\}$. The associated canonical Hecke characters have root number $(\frac{2}{D})$. When $8||D$, there are two canonical CM abelian varieties over K up to isogeny, the associated ϵ are given by

$$
\epsilon = \epsilon_2 \epsilon_0 : (\mathcal{O}_K/p_2^5)^* \times (\mathcal{O}_K/\sqrt{-D_1})^* \rightarrow \{\pm 1\}.
$$

Here p_2 is the prime ideal of K above 2, and ϵ_2 is a nontrivial quadratic character of $(\mathcal{O}_K/p_2^5)^*$ (two choices), and $\epsilon^0 = (\frac{D_1}{D})$ is the quadratic character of $(\mathcal{O}_K/\sqrt{-D_1})^* \cong \mathbb{Z}/D_1^*$ and $D_1 = D/8$. The associated canonical Hecke characters have the root number $W(\chi) = \epsilon(1 + \sqrt{-D/4})$. What about $4||D$? We will prove in section 4 the following theorem.

Theorem 0.2. Let $K = \mathbb{Q}(\sqrt{-D})$ be a quadratic imaginary quadratic field with fundamental discriminant $-D$, and let

$$
n(D) = \begin{cases}
1 & \text{if } D \text{ is odd or } D = 4, \\
2 & \text{if } D > 4 \text{ is even}.
\end{cases}
$$

Then there are exactly $n(D)$ CM abelian varieties A over K of dimension h, up to isogeny, such that the abelian variety itself (not the complex multiplications) descends to an abelian variety over \mathbb{Q} and has the smallest possible conductor. Moreover, then D is odd or $8||D$, they are the canonical CM abelian varieties discussed above.

We call the CM abelian varieties defined in Theorem 0.2 the *simplest* CM abelian varieties over K. In sections 5, we compute the root numbers of corresponding simplest Hecke characters and prove in sections 6 and 7 that the amazing formula (0.5) holds for all simplest Hecke characters of K, which we record here as

Theorem 0.3. Let χ be a simplest Hecke character of $K = \mathbb{Q}(\sqrt{-D})$. Then (0.5) holds.

This theorem, combining with the Gross-Zagier, and a deep result of Rubin and/or Kolyvagin, implies that the simplest CM abelian varieties A over K has always finite Shafarevich-Tate group over K and has the Mordell-Weil rank 0 or $2h$ over K depending on whether the root number of the associated simplest Hecke characters have root number +1 or −1. The exceptional case $D = 4$ is due to the fact that $i \in \mathbb{Q}(\sqrt{-4})$.

For simplicity, we sometimes miss out the CM type of CM abelian varieties in this paper. This does no harm since the arithmetic or L-function of a CM abelian variety does not depend on the choices of the CM types, see Remark 1.2. In section 1, We review the basic relation between CM abelian varieties
and the algebraic Hecke characters. In section 2, we study the relation between the scalar restriction of CM elliptic curves over the Hilbert class field of K and h-dimensional CM abelian varieties over K. In particular, we prove (Proposition 2.2) that a CM abelian variety over K of dimension h is a scalar restriction of a CM elliptic curve over H if and only if its Hecke character has values in K on principal ideals.

Acknowledgement This work was inspired by David Rohrlich’s work on canonical Hecke characters and my joint work with Stephen D. Miller on the same subject. The author thank both of them for their inspirations. The author thanks Dick Gross, Stephen Kudla, Ken Ribet, and David Rohrlich for stimulus discussions. Part of the work was done while the author visited the Department of Mathematics at HKUST for 3 weeks in 2002. The author thanks Jian-Shu Li and the department for their hospitality and financial support.

1. CM abelian varieties and algebraic Hecke characters.

Let K be a number field. Then a type of K is a formal sum $\Phi = \sum_{\sigma:K \hookrightarrow \mathbb{C}} n_{\sigma}\sigma$ with $n_{\sigma} \in \mathbb{Z}$. If L is a finite extension of K, one can extend Φ to a type Φ_L of L via

$$\Phi_L = \sum_{\sigma:L \hookrightarrow \mathbb{C}} n_{\sigma}\sigma, \quad n_{\sigma} = n_{\sigma|K}.$$

A type Φ is called simple if it can not be extended from a proper subfield. When K is Galois over \mathbb{Q}, embeddings of K into \mathbb{C} are elements of the Galois group $\text{Gal}(K/\mathbb{Q})$. In this case, one defines its reflex type

$$\Phi' = \sum_{\sigma:K \hookrightarrow \mathbb{C}} n_{\sigma}\sigma^{-1}.$$

In general, given a type (K, Φ), its reflex type (K', Φ') is defined as follows. Firstly, K' is the subfield of \mathbb{C} generated by all $\alpha^{\Phi} = \prod \sigma(\alpha)^{n_{\sigma}}$, $\alpha \in K^*$. Secondly, let L be a finite Galois extension of \mathbb{Q} containing both K and K', extend Φ to Φ_L. It is then a standard fact that there is a unique type Φ' of K' such that its extension to L is

$$(\Phi')_L = (\Phi_L)'.$$

This Φ' is independent of the choice of L and is called the reflex type of Φ.

An algebraic Hecke character of K of infinite type Φ and modulus f (an integral ideal) is a group homomorphism

$$\chi : I(f) \rightarrow \mathbb{C}^*$$

such that for every $\alpha \equiv 1 \mod \ast f$

$$\chi(\alpha \mathcal{O}_K) = \alpha^\Phi.$$
Here $I(f)$ denotes the group of fractional ideals of K prime to f, and $\alpha \equiv 1 \mod *f$ means
\[\text{ord}_v(\alpha - 1) \geq \text{ord}_v f \quad \text{if} \quad \text{ord}_v f > 0, \]
and $\sigma(\alpha) > 0$ for every real embedding σ of K. The Dirichlet unit theorem implies that there is an algebraic Hecke character of K of infinite type Φ if and only if $w(\Phi) = n_\sigma + n_{\rho}\sigma$ is independent of the choice of σ, where ρ is the complex conjugation of \mathbb{C}. In such a case, Φ is called a Serre type of weight $w(\Phi)$. Notice that the subfield $\mathbb{Q}(\chi)$ of \mathbb{C} generated by $\chi(a)$, $a \in I(f)$, is a number field containing the reflex field K' of (K, Φ). We say χ has values in T if $\mathbb{Q}(\chi) \subset T$.

When K is a CM number field, i.e., a quadratic totally imaginary extension of a totally real number field, a type Φ of K is a CM type if $n_\sigma \geq 0$ and $n_\sigma + n_{\rho}\sigma = 1$ for every complex embedding σ of K. In this case, Φ is often identified with the set of embeddings $\{\sigma : n_\sigma = 1\}$. In general, any extension of a CM type just defined is also called a CM type.

An abelian variety A defined over a subfield L of \mathbb{C} is said to be a CM abelian variety over L if there is a number field K of degree $[K : \mathbb{Q}] = 2\dim A = 2d$ together with an embedding
\[i : K \hookrightarrow \text{End}_L^0 A = \text{End}_L A \otimes \mathbb{Q}. \]
In such a case, K acts on the differentials $\Omega_{A/\mathbb{C}}$ diagonally via d embeddings $\Phi = \{\phi_1, \cdots, \phi_d\}$: there is a basis ω_i for $\Omega_{A/\mathbb{C}}$ such that for every $\alpha \in i^{-1}(\text{End}_L A)$
\[i(\alpha)^*(\omega_i) = \phi_i(\alpha)\omega_i. \]

We will identify Φ with the formal sum $\sum_{\phi \in \Phi} \phi$. We usually call (A, i) is of CM type (K, Φ). It is a fact ([Sh2, Theorem 1, Page 40]) that the two seemingly different definitions of CM types are the same. We remark that the CM type of (A, i) depends on i, A can have different CM types if one allows i change. For example, let $A = E^2$ be the square of a CM elliptic curve E by a quadratic field K. Then $\text{End}_0^0 A = M_2(K)$, and any quadratic field extension of K, embedded into $M_2(K)$, gives rise to CM type of A.

The following theorem summarizes the basic relation between CM abelian varieties and algebraic Hecke characters.

Theorem 1.1. Let $K \subset \mathbb{C}$ be a number field, and let (T, Φ) be a CM type and (T', Φ') be its reflex type. Assume $T' \subset K$.

1. (Shimura-Taniyama) If (A, i) is a CM abelian variety over K of CM type (T, Φ), then there is a (unique) algebraic Hecke character χ of K of infinite
type Φ'_K such that $i(\chi(p))$ reduces to the Frobenius endomorphism of A modulo p for every prime ideal p where A has good reduction. In particular,

$$L(s, A/K) = \prod_{\sigma : \mathbb{T} \rightarrow \mathbb{C}} L(s, \chi^\sigma).$$

Here $\chi^\sigma = \sigma \circ \chi$. We call χ the associated (algebraic) Hecke character of (A, i) or simply A.

(2)(Casselman) Conversely, if χ is an algebraic Hecke character of K of infinite type Φ'_K, valued in T, then there is a CM abelian variety (A, i) over K of CM type (T, Φ), unique up to isogeny, such that the associated Hecke character of (A, i) is χ. We call (A, i) or simply A an associated abelian variety of χ.

(3) Let (A, i) be a CM abelian variety over K of CM type (T, Φ) and let χ be the associated Hecke character of K. Then the following are equivalent.

(a) The CM abelian variety A is simple over K.

(b) $T = \mathbb{Q}(\chi)$.

Proof. For (1), see for example [Sh2, Theorems 19.8 and 19.11]. For (2), see for example [Sh2, Theorem 21.4]. If A is not simple, then A, is isogenous to B^r for some simple abelian variety B over K, and B is a CM abelian variety of some CM type (T_1, Φ_1). In this case, $\chi_A = j \circ \chi_B$, where j is an embedding of T_1 to T. So $\mathbb{Q}(\chi_A) \subset T_1 \neq T$. Conversely, if $T_1 = \mathbb{Q}(\chi_A) \neq T$, let (B, i_B) be a CM abelian variety over K of CM type (T_1, Φ_1) associated to χ_A, where $\Phi_1 = \Phi|_{T_1}$.

Then (B^r, i_B^r) is of CM type (T, Φ) for some i_B^r where $r = [T : T_1]$. So (A, i_A) and (B^r, i_B^r) have the same CM type and the same Hecke character, and thus are K-isogenous to each other. A is thus not simple over K. This proves (3).

Remark 1.2. If (A, i) is a CM abelian variety of CM type (T, Φ), with algebraic Hecke character χ, then $(A, i \circ \sigma^{-1})$ is of type $(T^\sigma, \Phi \circ \sigma^{-1})$, with algebraic Hecke character χ^σ. When A is simple over K, $(T^\sigma, \Phi \circ \sigma^{-1})$ and $i \circ \sigma^{-1}$ are all possible CM types and embeddings. In particular, the arithmetic and L-function of A over K do not depend on particular choices of the CM types or the embeddings. the abelian variety A is in correspondence with the family of algebraic Hecke characters $\{\chi^\sigma : \sigma \in \text{Aut}(\mathbb{C}/\mathbb{Q})\}$. If one wants to leave the infinite type Φ'_K of χ unchanged, one needs to require $\sigma \in \text{Aut}(\mathbb{C}/K'')$ where K'' is the reflex field of (K, Φ'_K).

2. CM abelian varieties over a quadratic field and Scalar restriction of CM elliptic curves.

From now on, Let $K = \mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field with fundamental discriminant $-D$, let H be the Hilbert class field of K, and let $h = [H : K]$ be the ideal class number of K. Let E be a CM elliptic curve over H of CM type (K, id), where id is the prefixed complex embedding of K.

such that $\text{Im}(\sqrt{-D}) > 0$. Let χ_E be the algebraic Hecke character of H associated to E, with values in K. It is interesting to study the scalar restriction $B = \text{Res}_{H/K}E$, which is an abelian variety over K such that $B(R) = E(H \otimes_K R)$ for every K-algebra R. In order for B to be a CM abelian variety over K, E has to be a K-curve, in the sense that every Galois conjugate E^σ for $\sigma \in \text{Gal}(H/K)$ is H-isogenous to E. But this condition is not sufficient in general. We refer to [Gr] and [Na] for results and references in this direction. In terms of Hecke characters, we have

Proposition 2.1. Let the notation be as above. Then $B = \text{Res}_{H/K}E$ is a CM abelian variety over K if and only if there is an algebraic Hecke character χ of K such that $\chi_E = \chi \circ N_{H/K}$.

Proof. If (B, i_B) is CM of type (T, Φ), then $\Phi = \{\sigma : T \to \mathbb{C} : \sigma|_K = \text{id}\}$. Let χ_B be the associated algebraic Hecke character of K associated to B. We have to verify $\chi_E = \chi_B \circ N_{H/K}$. They have the same type. So it suffices to prove that for a prime ideal \mathfrak{p} of H where E has good reduction, one has

$$\chi_E(\mathfrak{p}) = \chi_B(N_{H/K}(\mathfrak{p})) = \chi_B(\mathfrak{p})^f$$

where \mathfrak{p} is the prime ideal of K below \mathfrak{p} and $f = [O_H/\mathfrak{p} : O_K/\mathfrak{p}]$. By [Gr, Lemma 15.1.6],

$$\text{End}_K B = \sum_{\sigma \in \text{Gal}(H/K)} \text{Hom}_H(E^\sigma, E)\sigma.$$

Let $\widehat{\text{Fr}}(\sigma)$ be the Frobenius map from $\widehat{E^\sigma}$ to \widehat{E}, then $\widehat{\text{Fr}} = \sum \widehat{\text{Fr}}(\sigma)\sigma$ is the Frobenius of \widehat{B}, and thus it is equal to $\chi_B(\mathfrak{p})$ acting on \widehat{B}. On the other hand, $\sigma^f = 1$, $\widehat{\text{Fr}}(\sigma)^f$ is the Frobenius of \widehat{E}, independent of the choice of σ, and it is thus equal to $\chi_E(\mathfrak{p})$ acting on \overline{E}. So we have $\chi_E(\mathfrak{p}) = \chi_B(\mathfrak{p})^f$ as desired.

Conversely, if $\chi_A = \chi \circ N_{H/K}$ for some algebraic Hecke character χ of K, then $\chi(\alpha O_K) \in K^*$ since every principal ideal of K is a norm from H. Let $T(\chi) = \mathbb{Q}(\chi)$ and $\Phi(\chi)$ be the set of complex embeddings of T extending the fixed embedding of K. Let $A(\chi)$ be a CM abelian variety over K of CM type of (T, Φ) associated to χ. For every $\sigma \in \Phi$, $\chi^\sigma \chi^{-1}$ is trivial on principal ideals and thus an ideal class character. So

$$\{\chi^\sigma : \sigma \in \Phi\} \subset \{\chi \phi : \phi \text{ is an ideal class character of } K\}.$$

It will be proved in Theorem 3.1 that $\#\Phi \ge h$. So the above relation is in fact an equality. This implies $L(s, \chi_E) = \prod_{\sigma \in \Phi} L(s, \chi^\sigma)$, and thus B is isogenous to $A(\chi)$.

According to [Sh2, Theorem 19.13], the condition $\chi_E = \chi \circ N_{H/K}$ is also equivalent to that $K(E_{\text{tor}})$ is the maximal abelian extension of K.

Proposition 2.2. Let \((A, i)\) be a simple CM abelian variety over \(K\) of CM type \((T, \Phi)\). Let \(\chi_A\) be the associated algebraic Hecke character of \(K\) with values in \(T\). Then the following are equivalent.

1. There is a CM elliptic curve \(E\) over \(H\) such that \(A\) is isogenous to the scalar restriction of \(E\) from \(H\) to \(K\).

2. One has \(\chi_A(\alpha O_K) \in K^*\) for every principal ideal of \(K\) prime to the conductor of \(\chi_A\).

Proof. (1) \(\Rightarrow\) (2). The assumption (1) asserts that \(\chi_H = \chi_A \circ N_{H/K}\). By the global class field theory, every ideal \(\alpha O_K\) is a norm of some ideal \(\mathfrak{A}\) of \(H\). So \(\chi_A(\alpha O_K) = \chi_E(\mathfrak{A}) \in K^*\).

(2) \(\Rightarrow\) (1). Let \(\chi = \chi_A \circ N_{H/K}\). By the global class field theory again, \(N_{H/K}(\mathfrak{A})\) is a principal ideal of \(K\) for every ideal \(\mathfrak{A}\) of \(H\). So \(\chi(\mathfrak{A}) = \chi_A(N_{H/K}(\mathfrak{A})) \in K^*\), and thus \(\chi\) is an algebraic character of \(H\) with values in \(K\). Therefore there is a CM elliptic curve \(E\) over \(H\) whose associated algebraic Hecke character is \(\chi\). One has

\[
L(s, E/H) = L(s, \chi) L(s, \overline{\chi}) = \prod_{\phi} L(s, \chi_A\phi) L(s, \overline{\chi_A\phi}).
\]

Here the product runs over all ideal class characters \(\phi\) of \(K\). On the other hand, since \(A\) is simple, one has \(T = K(\chi_A)\) is generated by \(\chi_A\) over \(K\). So one has by assumption (2)

\[
\{\chi_A^\sigma : \sigma \in \Phi\} = \{\chi_A^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K)\}
= \{\chi_A\phi : \phi\text{ is an ideal class character of } K\}.
\]

So \(L(s, A/K) = L(s, E/H) = L(s, \text{Res}_{H/K} E)\). So \(A\) is isogenous to \(\text{Res}_{H/K} E\), proving (1).

3. CM abelian varieties over a quadratic imaginary field of smallest dimension.

Let \(K = \mathbb{Q}(\sqrt{-D})\) be again a quadratic imaginary field of fundamental discriminant \(-D\). Let \((A, i)\) be a CM abelian variety over \(K\) of type \((T, \Phi)\), and let \(\chi = \chi_A\) be the associated algebraic Hecke character of \(K\) of conductor \(\mathfrak{f}\). Then there is a character \(\epsilon\) of \((\mathcal{O}/\mathfrak{f})^*\) such that

\[
(3.1)\quad \chi(\alpha \mathcal{O}) = \epsilon(\alpha) \alpha
\]

for every principal ideal of \(K\) prime to \(\mathfrak{f}\). Obviously \(\epsilon(\alpha) = \alpha^{-1}\) for every unit \(\alpha\) in \(K\). In particular \(\epsilon(-1) = -1\).

Let \(K(\chi)\) be the subfield of \(\mathbb{C}\) generated by all \(\chi(\mathfrak{a})\) over \(K\), \(\mathfrak{a} \in I(\mathfrak{f})\). Then \(K(\chi) \subset T\), and \(K(\chi) = T\) if and only if \(A\) is simple.
Theorem 3.1. Let \((A, i)\) be a CM abelian variety over \(K\) of type \((T, \Phi)\). Then \(h|\dim A\).

When \(\dim A = 1\), this gives the well-known fact that in order to have a CM elliptic curve over a quadratic imaginary field, the field has to have ideal class number 1. The simple reason is the fact that the \(j\)-invariant generates the Hilbert class field.

Proof. We may assume that \(A\) is simple and thus \(T = K(\chi)\). For any number field \(F\), let \(\mu(F)\) be the group of roots of unity in \(F\), and let \(w_F = \#\mu(F)\). Choose an integer \(n > 0\) such that \(w_T|n\) and \(\chi(a^n) \in K^*\) for every \(a \in I(f)\). Then

\[
\theta : I(f)/P(f) \rightarrow K^*/K^{*n}, \quad [a] \mapsto \chi(a^n)K^{*n}
\]

is a well-defined map and is injective. Indeed, for any principal ideal \(\alpha O \in P(f)\), one has

\[
\chi(\alpha O)^n = \epsilon(\alpha)^n \alpha^n = \alpha^n \in K^{*n},
\]

which implies that \(\theta\) is well-defined. On the other hand, if \(\chi(a^n) = \alpha^n\) for some \(\alpha \in K\). Then \(a^n\) and \(\alpha^n\) generates the same ideal in \(K\), so are \(a\) and \(\alpha\). Therefore \(\theta\) is injective! Clearly, the image of \(\theta\) is in the kernel of the natural map

\[
K^*/K^{*n} \rightarrow T^*/T^{*n}.
\]

So one has \(h|[T : K]\) by [Ro1, Proposition 1].

The rest of this section is to determine all CM abelian varieties over \(K\) of the smallest possible dimension \(h\). For this purpose, we assume \(D > 4\) and fix an odd character

(3.2) \[
\epsilon : (O_K/f)^* \rightarrow \mathbb{C}^*, \quad \epsilon(-1) = -1.
\]

Let \(\chi\) be an algebraic Hecke character of \(K\) satisfying (3.1), and let \(T = K(\chi)\), and

\[
\Phi = \{\sigma : T \hookrightarrow \mathbb{C} : \sigma|_K = id\}.
\]

Let \(A = A(\chi)\) be the associated simple CM abelian variety over \(K\) of type \((T, \Phi)\).

Let \(L = K(\epsilon)\) be the subfield of \(T\) generated by \(\epsilon\) over \(K\). Let

\[
H(f) = \{a \in I(f) : a^2 \text{ is principal}\}.
\]

Then \(H(f)/P(f)\) is the genus ideal class group of \(K\) and has order \(2^r\), where \(r + 1\) is the number of prime factors of \(D\). Let \(T_g\) be the subfield of \(T\) generated by \(\chi(a), a \in H(a)\). We have

(3.3) \[
K \subset L \subset T_g \subset T.
\]

The same proof as in [Ro1, Theorem 2] yields
Proposition 3.2. (1) One has

\[\{ \chi^\sigma : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/T_g) \} = \{ \chi^\sigma : \sigma \text{ is a complex embedding of } T \text{ which is trivial on } T_g \} = \{ \chi \phi : \phi \text{ is an ideal class character trivial on the genus subgroup} \}. \]

(2) \([T : K] = 2^{-r} h[T_g : K]\) depends only on the effect of \(\chi\) on ideals whose square is principal, where \(r + 1\) is the number of prime factors of \(D\).

(3) \(\mu_T \subset T_g\).

Proof. (1) The first identity is clear. For a complex embedding \(\sigma\) of \(T\) fixing \(T_g\), \(\phi = \chi^\sigma \chi^{-1}\) is obviously an ideal class character trivial on the genus subgroup. So it suffices to prove \(#I(f)/H(f) \leq [T : T_g]\) for the second equality. Let \(F = T_g(\mu_T)\), and

\[\theta : I(f) \to F^*/F^{*n}, a \mapsto \chi(a^n)F^{*n}. \]

Here \(n\) again satisfies \(#\mu_T|n\) and \(\chi(a)^n \in K^*\) for every ideal \(a\) of \(K\). Then its image is in the kernel of the natural map \(F^*/F^{*n} \to T^*/T^{*n}\), and thus has order dividing \([T : F]\) by [Ro1, Proposition 1]. Next, define

\[\psi : \ker \theta \to K^*/K^{*n}, a \mapsto \chi(a^n)K^{*n}. \]

Then its image is in the kernel of the natural map \(K^*/K^{*n} \to F^*/F^{*n}\). Since \(F\) is an abelian extension of \(K\), [Ro1, Proposition 2] implies that for any \(a \in \ker \theta\)

\[\chi(a^n)^2 \in K^{*n}. \]

So \(a^2\) is principal, and thus \(\ker \theta \subset H(f)\). This proves

(3.4) \[#I(f)/H(f) \leq \text{Im}(\theta) \leq [T : F] \leq [T : T_g].\]

This proves the second identity of (1), and that the inequalities in (3.4) are all equalities. In particular,

\[[T : T_g] = #I(f)/H(f) = 2^{-r} h, \]

which proves claim (2). One has also \(F = T_g\), which gives claim (3).

Lemma 3.3. Let, for any prime \(p\),

(3.4) \(\mu_p(\epsilon) = \{ x \in \text{Im}(\epsilon) : x^{p^n} = 1 \text{ for some } n \geq 0 \}\).

Then there is a root of unity \(c_p \in \mu_2(\epsilon)\) for each prime number \(p|D\) such that \(T_g = L(\sqrt{c_p p}, p|D)\). Moreover, if \(\xi\) is a generator of \(\mu_2(\epsilon)\), then \(T_g \subset L(\sqrt{\xi}, \sqrt{p}, p|D)\).
Proof. Let \(p_l \) be the prime ideal of \(K \) above \(l \), for every \(l|D \), then \(p_l \) has order 2 in the ideal class group of \(K \) and generate the genus class group of \(K \). For each \(l|D \), choose \(\alpha_p \in K^* \) so that \(a_l = \alpha_l p_l \) is relatively prime to \(f \). Then \(a_l \) generate \(H(\bar{f})/P(\bar{f}) \). Now
\[
a_l^2 = \alpha_l^2 l\mathcal{O} \quad \text{and} \quad \chi(a_l) = \pm \sqrt{\epsilon(\alpha_l^2 l)\alpha_l} \in T_g.
\]
So
\[
(3.5) \quad \sqrt{\epsilon(\alpha_l^2 l)}l \in T_g.
\]
Obviously, \(\epsilon(\alpha_l^2 l) \) can be replaced by a root of unity \(c_l \in \mu_2(\epsilon) \). Since \(T_g \) is generated by \(\chi(a_l) \) over \(L \), we have
\[
L(\sqrt{c_l}, l|D) = T_g.
\]
Since \(\sqrt{c_l} \in L(\sqrt{\xi}) \), one has thus \(T_g \subset L(\sqrt{\xi}, \sqrt{l}, l|D) \). This proves the lemma.

Theorem 3.4. Let \(\epsilon \) be an odd character given by (3.2). Let \(\chi \) be a Hecke character of \(K \) satisfying (3.1), and let \(T = K(\chi) \).

(1) If \([T : K] = h \), then
\[
(3.6) \quad \text{Im}(\epsilon) \subset \left\{ \begin{array}{ll}
\mu_2 & \text{if } (6, D) = 1, \\
\mu_4 & \text{if } 3 \nmid D, \\
\mu_6 & \text{if } 2 \nmid D, \\
\mu_{12} & \text{if } 6|D.
\end{array} \right.
\]

(2) Conversely, assume that \(\epsilon \) satisfies (3.6), then \([T : K] = h \) or \(2h \), with \([T : K] = h \) if and only if \(\sqrt{\xi} \notin T_g \). Here \(\xi \) is a generator of \(\mu_2(\epsilon) \).

(3) Whether \([T : K] = h \) (equivalently \(\dim A(\chi) = h \)) or not depends only on \(\epsilon \), i.e., the restriction of \(\chi \) on principal ideals.

Proof. By Proposition 3.2, \([T : K] = h \) if and only if \([T_g : K] = 2^r \). Let \(H_g = K(\sqrt{p^*}, p|D) \) be the genus class field of \(K \), where
\[
p^* = \left\{ \begin{array}{ll}
(-1)^{\frac{p-1}{2}}p & \text{if } p \neq 2, \\
\prod_{p|D, p \neq 2} p & \text{if } p = 2.
\end{array} \right.
\]
Notice that \([H_g : K] = 2^r \), where \(r + 1 \) is the number of prime factors of \(D \). Since \([L(\sqrt{\xi}, \sqrt{p}, p|D) : T_g] = 1 \) or 2
by Lemma 3.3, and
\[[K(\sqrt{\xi}, \sqrt{p}, p|D) : H_g] \geq 2, \]
one has
\[
[T_g : K] \geq \frac{1}{2} [L(\sqrt{\xi}, \sqrt{p}, p|D) : K] \\
= 2^{r-1} [L(\sqrt{\xi}, \sqrt{p}, p|D) : K(\sqrt{\xi}, \sqrt{p}, p|D)] [K(\sqrt{\xi}, \sqrt{p}, p|D) : H_g] \\
\geq 2^r [L(\sqrt{\xi}, \sqrt{p}, p|D) : K(\sqrt{\xi}, \sqrt{p}, p|D)].
\]
So \([T_g : K] \geq 2^r\), and \([T_g : K] = 2^r\) if and only if the following three conditions hold.

(3.7) \(\sqrt{\xi} \notin T_g\),

(3.8) \(L(\sqrt{\xi}, \sqrt{p}, p|D) = K(\sqrt{\xi}, \sqrt{p}, p|D)\),

(3.9) \([K(\sqrt{\xi}, \sqrt{p}, p|D) : K(\sqrt{p^r}, p|D)] = 2\).

It is easy to see from (3.9) that \(\xi\) has at most order 4, which occurs only when \(4|D\). (3.8) implies then that \(L(\sqrt{\xi}, \sqrt{p}, p|D) \subset K(\sqrt{-1}, \sqrt{p}, p|D)\) contains at most \(\mu_{24}\). So \(\mu_T = \mu_{T_g} \subset \mu_{12}\) by (3.7). A slightly more careful inspection shows (3.6).

Now assume that (3.6) is satisfied. Then \(L \subset H_g\) except for two cases: \(D = 8\) when \(\epsilon\) has order 4, and \(D = 24\) when \(\epsilon\) has order 12. So except for the two cases one has
\[
[L(\sqrt{\xi}, \sqrt{p}, p|D) : H_g] = [H_g(\sqrt{\xi}) : H_g] = 2.
\]
Thus \([T_g : K] = 2^r\) or \(2^{r+1}\). Moreover \([T_g : K] = 2^r\) if and only if \(\sqrt{\xi} \notin T_g\).
This proves (2) except for the two exceptional cases. In the exceptional cases, \(T_p = L\) has degree \(2h\) over \(K\), and \(\sqrt{\xi} \in T_g\), the claim still holds. Finally, since \(c_l = \epsilon(\alpha_l^2l)\) up to a square in \(L^*\), \(T_g\) is determined by \(\epsilon\), thanks to Lemma 3.3. Now (3) follows from (2).

Theorem 3.5. Let the notation be as in Theorem 3.4, and assume that \(\epsilon\) satisfies (3.6). Let \(A(\chi)\) be the CM abelian variety over \(K\) associated to \(\chi\).

(1) If \(\epsilon^2 = 1\), then \(\dim A(\chi) = h\), and \(A(\chi)\) is isogenous to the scalar restriction of a CM elliptic curve \(E\) over \(H\), the Hilbert class field of \(K\).

(2) If \(\epsilon\) has order 4, then \(\dim A(\chi) = h\) if and only if \(4|D\), \(D \neq 8\), and for some (and every) element \(\alpha_2 \in K^*\) such that \(2\alpha_2^2\) is prime to \(\ell\), one has \(\epsilon(2\alpha_2^2)\) is of order 4.

(3) If \(\epsilon\) has order 6, then \(\dim A(\chi) = h\) if and only if \(3|D\), and for some (and every) element \(\alpha_3 \in K^*\) such that \(3\alpha_3^2\) is prime to \(\ell\) and \(\epsilon(3\alpha_3^2)\) is of order 2 or 6.
(4) If ϵ has order 12, then $\dim A(\chi) = h$ if and only if $12 | D$, and for some (and every) element $\alpha_2, \in K^*$ such that $2\alpha_2^2$ prime to \mathfrak{f} and $\epsilon(2\alpha_2^2)$ is of order 4 or 12.

Clearly, in cases (2)-(4) with $D > 4$, $A(\chi)$ is not a scalar restriction of any elliptic curve when its dimension is h.

Proof of Theorem 3.5. (1) follows from Proposition 2.2. For (2), notice first that $\mu_2(\epsilon)$ is generated by i and that $4 | D$ is necessary by Theorem 3.4(1). Assume thus $4 | D$. If $\epsilon(2\alpha_2^2) = \pm 1$, then $\sqrt{\pm 2} = \sqrt{\epsilon(2\alpha_2^2)2} \in T_g$ and thus $\zeta_8 = \frac{\sqrt{2}}{2}(1+i) \in T_g$. This implies $\dim A(\chi) = [T_g : K] = 2h$ by Theorem 3.4(2). If $\epsilon(2\alpha_2^2) = \pm i$, then $\sqrt{\epsilon(2\alpha_2^2)2} = \sqrt{\pm 2i} = \pm (1+i)$, and so

$$T_g = (i, \sqrt{-D/4}, \sqrt{\epsilon_l(l\alpha_l^2)}l, 2 \neq l | D).$$

Here $\alpha_l \in K^*$ are such that $a_l = p_l \alpha_l$ is prime to \mathfrak{f} as in the proof of Lemma 3.3. Since

$$\prod_{l | \mathfrak{f}} a_l = \frac{D}{4} \prod_{l | \mathfrak{f}} \alpha_l$$

is principal, one has

$$\prod_{l | \mathfrak{f}} \sqrt{\epsilon_l(l\alpha_l^2)}l = \pm \prod_{l | \mathfrak{f}} \alpha_l^{-1} \chi(\prod_{l | \mathfrak{f}} a_l) \in L^*.$$ (3.10)

This implies that $\sqrt{\epsilon_l(l\alpha_l^2)}l, 2 \neq l | D$ have a relation over L, and thus $[T_g : K] = 2^r$. So $[T_g : K] = h$.

For (3), notice first that $3 | D$ is necessary and $\mu_2(\epsilon) = \{ \pm 1 \}$. Notice also $L = K(\epsilon) = K(\sqrt{-3})$. If $\epsilon(3\alpha_3^2) = 1$ (up to a cubic root of unity), then $\sqrt{3} \in T_g$ by Lemma 3.3, and thus $i = \sqrt{-1} \in T_g$. This implies $\dim A(\chi) = 2h$ by Theorem 3.4(2). If so $\sqrt{3}$ can not be in T_g. If $\epsilon(3\alpha_3^2) = -1$ (up to a cubic root of unity), then $\sqrt{\epsilon(3\alpha_3^2)3} = \sqrt{-3} \in L$. Then same argument as in (2) (in particular (3.10)) shows $[T_g : K] = 2^r$ and thus $\dim A(\chi) = h$.

For (4), there is $\beta \in K^*$ prime to D such that $\epsilon(\beta)$ and $\epsilon(\beta^2)$ has order 3. Let $\alpha_2 \in K^*$ be such that $2\alpha_2^2$ is prime to D. Then $\epsilon(2\alpha_2^2)$ has order 4 if and only if $\epsilon(2\alpha_2^2\beta^2)$ has order 12. The rest is similar to (2) and left to the reader.

Corollary 3.6. When $(6, D) = 1$, every CM abelian variety over K of dimension h is K-isogenous to a scalar restriction of a CM elliptic curve over H.
Example 3.7. Assume that $4|D$ and $D > 4$. Let $p \equiv 1 \mod 4$ be a prime number split or ramified in $K = \mathbb{Q}(\sqrt{-D})$. Let \mathfrak{p} be a prime ideal of K above p. Let $\epsilon_\mathfrak{p}$ be a surjective character

$$
\epsilon_\mathfrak{p} : (\mathcal{O}_K/\mathfrak{p})^* \cong (\mathbb{Z}/\mathfrak{p})^* \rightarrow \mu_4
$$

so that a given generator g of $(\mathbb{Z}/\mathfrak{p})^*$ maps to i. Then

$$
\epsilon_\mathfrak{p}(-1) = -1 \leftrightarrow p \equiv 5 \mod 8 \leftrightarrow \epsilon_\mathfrak{p}(2) = \pm i.
$$

Let $f = \prod_p \mathfrak{p}$ be the product of finitely many such prime numbers $p \equiv 1 \mod 4$, and let \mathfrak{f} be an integral ideal of K whose norm is f. Let $\epsilon = \prod_\mathfrak{p} \epsilon_\mathfrak{p}$ and assume that $\epsilon(-1) = -1$, i.e., odd number of p’s are congruent 5 modulo 8. Then $\epsilon(2) = \pm i$ by the above equivalence. So any CM abelian variety over K has dimension h by Theorem 3.5(2). On the other hand, let $q \equiv 3 \mod 4$ be a prime split or ramified in K and let \mathfrak{q} be a prime above q. Let

$$
\epsilon'_\mathfrak{q} : (\mathcal{O}_K/\mathfrak{q})^* \cong (\mathbb{Z}/\mathfrak{q})^* \rightarrow \{\pm 1\}
$$

be such that $\epsilon'_\mathfrak{q}(n) = (\frac{n}{q})$ for an integer n prime to q. Then $\epsilon'_\mathfrak{q}(-1) = -1$. Now let $\mathfrak{f}' = f\mathfrak{q}$ with \mathfrak{f} being as above but with even number of primes $p \equiv 5 \mod 8$. Let $\epsilon' = \epsilon\epsilon'_\mathfrak{q}$, then $\epsilon'(-1) = -1$ is odd and $\epsilon'(2) = \pm -1$. So any CM abelian variety over K of type ϵ has dimension $2h$.

Example 3.8. Similarly, assume that $3|D$, and $D > 3$. Let $p \equiv 1 \mod 3$ be an odd prime number split or ramified in K and let $\epsilon_\mathfrak{p}$ be a surjective character

$$
\epsilon_\mathfrak{p} : (\mathcal{O}_K/\mathfrak{p})^* \cong (\mathbb{Z}/\mathfrak{p})^* \rightarrow \mu_6.
$$

Then

$$
\epsilon_\mathfrak{p}(-1) = -1 \leftrightarrow p \equiv 7 \mod 12 \leftrightarrow 3 \text{ is a square modulo } p.
$$

Let $f = \prod_p \mathfrak{p}$ be a product of odd primes $p \equiv 1 \mod 3$ split or ramified in K and let \mathfrak{f} be an ideal of K whose norm is f. Let $\epsilon = \prod_\mathfrak{p} \epsilon_\mathfrak{p}$ and assume that $\epsilon(-1) = -1$, i.e., there are odd number of prime divisors of f satisfying $p \equiv 7 \mod 12$. Then $\epsilon(3)$ is of order 2 or 6. So any CM abelian variety over K of type ϵ is of dimension h. On the other hand, if we let $q \equiv -1 \mod 12$ and $\epsilon'_\mathfrak{q}$ be as in Example 3.7. Let f and ϵ be as above but with $\epsilon(-1) = 1$, then $\epsilon' = \epsilon\epsilon'_\mathfrak{q}$ is odd and any CM abelian variety over K of type ϵ' is of dimension $2h$.

Example 3.9. Similarly, assume $12|D$. Let $p \equiv 1 \mod 12$ be a prime number split or ramified in K. Let $\epsilon_\mathfrak{p}$ be a surjective character

$$
\epsilon_\mathfrak{p} : (\mathcal{O}_K/\mathfrak{p})^* \cong (\mathbb{Z}/\mathfrak{p})^* \rightarrow \mu_{12}.
$$

Define f and ϵ the same way as in Example 3.7. If $\epsilon(-1) = -1$, then any CM abelian variety over K of type ϵ is of dimension h. if $\epsilon(-1) = 1$, let q and $\epsilon'_\mathfrak{q}$ be as in Example 3.7. Then any CM abelian variety over K of type $\epsilon' = \epsilon\epsilon'_\mathfrak{q}$ is of dimension $2h$.
4. Descent to \mathbb{Q}.

Let χ be a Hecke character of K satisfying (3.1) and let $A(\chi)$ be an associated abelian variety over K of CM type (T, Φ) with $T = \mathbb{Q}(\chi)$ and Φ being the set of complex embeddings of T which are the identity on K. If $A(\chi)$ descends to an abelian variety over \mathbb{Q}, then (0.2) holds. For convenience, we repeat it here as

\[(4.1) \quad \chi(\overline{a}) = \overline{\chi(a)}\]

for every ideal of K prime to the conductor f of χ. Conversely, the proof of [Sh1, Proposition 5, Page 521] gives

Lemma 4.1. Let χ be a Hecke character of K satisfying (3.1) and (4.1). Then there is a CM abelian variety (A, i) over K of CM type (T, Φ) associated to χ such that (A, i_{T+}) is actually defined over \mathbb{Q}. Here $T = \mathbb{Q}(\chi)$, Φ is the set of embeddings of T which is the identity on K, T^+ is the maximal totally real subfield of T and i_{T^+} is the restriction of i on T^+.

Proof. Choose $\delta \in T^*$ such that $\overline{\delta} = -\delta$. Then there is, by [Sh1, Theorem 6, Page 512], a structure (A, \mathcal{C}, i) of type $(T, \Phi, \mathcal{O}_T, \delta)$ rational over K which determines χ. Here \mathcal{C} is a polarization of A. We refer to [Sh1, Page 509] for the meaning of type $(T, \Phi, \mathcal{O}_T, \delta)$. Let ρ be the complex conjugation of \mathcal{C}, restricting to T or K. Then [Sh1, Lemma 3, Page 520] asserts that $(A^\rho, \mathcal{C}^\rho, i^*)$ is of the same type $(T, \Phi, \mathcal{O}_T, \delta)$, where $i^*(a) = i(a^\rho)^\rho$. So there is an isomorphism μ from (A, \mathcal{C}, i) to $(A^\rho, \mathcal{C}^\rho, i^*)$ over \mathbb{C}. On the other hand, (4.1) implies that they determine the same Hecke character χ by [Sh1, Proposition 1, Page 511], and thus any isogeny between the two structures is defined over K. In particular, the isomorphism μ is defined over K. Let

\[\omega : T_\mathbb{R} = T \otimes_\mathbb{Q} \mathbb{R} \longrightarrow A\]

be an homomorphism defining (A, \mathcal{C}, i) as of type $(T, \Phi, \mathcal{O}_T, \delta)$, and let $\omega'(u) = \omega(\overline{u})^\rho$. Then ω' is an homomorphism from $T_\mathbb{R}$ to A^ρ by [Sh1, Lemma 3, Page 520], and μ can be chosen so that $\mu' = \mu \circ \omega$. So

\[\omega(u) = \omega'(\overline{u})^\rho = \mu^\rho(\omega(\overline{u})^\rho) = \mu^\rho(\mu(\omega(u)))\]

and thus $\mu^\rho \mu = 1$. By the descent theory, $(A, \mathcal{C}, i_{T^+})$ can thus be descended to \mathbb{Q}.

By [Ro2, Proposition 1], the condition (4.1) is equivalent to each of the two following conditions

\[(4.2) \quad \epsilon(n) = \left(\frac{-D}{n}\right)\]
when \(n \) is prime to \(f \), or

\[
\chi^{\text{un}}|_{Q^*_A} = \kappa.
\]

Here \(\kappa = \prod \kappa_p \) is the quadratic character of the ideles \(Q^*_A \) associated to \(K/Q \) by the global class field theory, and \(\chi^{\text{un}} = \chi|_{A^*} \) is the unitarization of \(\chi \), viewed as an idele class character of \(K \). In particular, \(f \) is divisible by every prime ideal of \(K \) which is ramified in \(K/Q \). In this section, we consider the set \(E \) of characters

\[
\epsilon : (\mathcal{O}_K/f)^* \longrightarrow \mu_{12}
\]

satisfying (4.2) and that \(f \) is only divisible by ramified primes of \(K \). For simplicity, we assume \(D > 4 \) so \(\mathcal{O}_K^* = \{\pm 1\} \). For \(\epsilon \in E \), we will determine the dimension and conductor of a CM abelian variety over \(K \) of type \(\epsilon \). Write

\[
f = \prod_{p\mid D} p^{e_p}
\]

then

\[
(\mathcal{O}_K/f)^* \cong \bigoplus_{p\mid D} (\mathcal{O}_p/p^{e_p})^*.
\]

Here \(p \) is the unique prime ideal of \(K \) above \(p \). So a character \(\epsilon \) satisfying (4.4) is the same as a character

\[
\epsilon = \prod_{p\mid D} \epsilon_p : \prod_{p\mid D} \mathcal{O}_p^* \longrightarrow \mu_{12}
\]

with \(\epsilon_p : \mathcal{O}_p^* \longrightarrow \mu_{12} \). Here \(K_p = K \otimes \mathbb{Q}_p \) is the completion of \(K \) at the prime above \(p \), and \(\mathcal{O}_p \) is the ring of integers in \(K_p \). As remarked in \([Ro2, \text{Page 522}]\), \(\chi_p^{\text{un}} = \epsilon_p^{-1} \) on \(\mathcal{O}_p^* \), a fact we will use later. In particular, that \(\epsilon \) satisfies (4.2) is equivalent to that every \(\epsilon_p \) satisfies

\[
\epsilon_p|_{\mathbb{Z}_p^*} = \kappa_p.
\]

When \(p \nmid 6 \), \((\mathcal{O}_p)^* \cong (\mathcal{O}_p/p)^* \times (1 + \varpi_p \mathcal{O}_p) \), and \((\mathcal{O}_p/p)^* \cong (\mathbb{Z}/p)^* \), where \(\varpi_p \) is uniformizer of \(\mathcal{O}_p \). So there is a unique character \(\epsilon_p : \mathcal{O}_p^* \longrightarrow \mu_{12} \) satisfying (4.5), and it is trivial on \(1 + \varpi_p \mathcal{O}_p \). We denote it by \(\epsilon_p^0 \). Similarly, when \(p = 3 \), there is a unique character \(\epsilon_3^0 \) of \(\mathcal{O}_3^* \) of order 2 and conductor index 1 satisfying (4.5). Here the conductor index of a character \(\chi \) of \(K_p^* \) (or \(\mathcal{O}_p^* \)) is the smallest integer \(r \geq 0 \) such that \(\chi|_{1 + \varpi_p \mathcal{O}_p} = 1 \). Since \(1 + \varpi_3 \mathcal{O}_3 \) is a cyclic pro-3-group, there are also two characters of \(\mathcal{O}_3^* \) of order 6 and conductor index 2 satisfying (4.5), given by \(\epsilon_3^0 \phi_3^{\pm 1} \), where \(\phi_3 \) is trivial on \((\mathcal{O}_3/p_3)^* = \{\pm 1\} \) and of order 3 on \(1 + \varpi_3 \mathcal{O}_3 \). So the set \(E_3 \) of characters of \(\mathcal{O}_3^* \) of order \(\leq 12 \) satisfying (4.5) is

\[
E_3 = \{\epsilon_3^0 \phi_3^i : -1 \leq i \leq 1\}.
\]
The case $p = 2$ is a little more complicated and interesting. Let $G = \{ z \in K_2 : z \overline{z} = 1 \}$ be the norm one group, let

$$G_n = \{ z = x + y \sqrt{-d} : y \in 2^n \mathbb{Z}_2, x - 1 \in 2^n d \mathbb{Z}_2 \}$$

be subgroups of G for $n \geq 0$. Here $d = D/4$. Then $G = G_0$ and $[G_n : G_{n+1}] = 2$. One has an exact sequence

$$1 \rightarrow \mathbb{Z}_2^* \rightarrow \mathcal{O}_2^* \rightarrow G_1 \rightarrow 1.$$

The last map is $z \mapsto z/\overline{z}$.

When $8 | D$, 2
\[\overline{d}\] is a unit in \(\mathcal{O}_2\) and \(\mathcal{O}_2 = 1 + \sqrt{-d}\) is a uniformizer of \(K_2\). In this case, \(G_1 = \{\pm 1\} \times G_2\) and \(G_2\) is a cyclic pro-2-group. It is easy to check that \((\mathcal{O}_2/\mathcal{O}_2^*)\) is cyclic of order 4, generated by $\delta = \sqrt{-d}$. So

\[\epsilon_{\pm} : \mathcal{O}_2^* \rightarrow \mathcal{O}_2^*/\mathcal{O}_2^{\mathcal{O}_2^*} \rightarrow \mu_4, \sqrt{-d} \mapsto \pm i\]

(4.8)

gives two extensions of κ_2 to \mathcal{O}_2^*. Let ϕ be a fixed character of G_1 of order 4, trivial on G_3, and $\phi(z) = \phi(z/\overline{z})$. Since

$$1 \rightarrow (Z/8)^* \rightarrow (\mathcal{O}_2/\mathcal{O}_2^* \mathcal{O}_2^*) \rightarrow G_1/G_3 \rightarrow 1,$$

all characters in E_2 have conductor index 5.

When $4 | D$, \(\sqrt{-d}\) is a unit in \(\mathcal{O}_2\) and \(\mathcal{O}_2 = 1 + \sqrt{-d}\) is a uniformizer of \(K_2\). In this case, \(G_1 = \{\pm 1\} \times G_2\) and \(G_2\) is a cyclic pro-2-group. It is easy to check that \((\mathcal{O}_2/\mathcal{O}_2^*)\) is cyclic of order 4, generated by $\delta = \sqrt{-d}$. So

$$\epsilon_{\pm} : \mathcal{O}_2^* \rightarrow \mathcal{O}_2^*/\mathcal{O}_2^{\mathcal{O}_2^*} \rightarrow \mu_4, \sqrt{-d} \mapsto \pm i$$

(4.8)

gives two extensions of κ_2 to \mathcal{O}_2^*. Let ϕ be a fixed character of G_1 of order 4, trivial on $\{\pm 1\} \times G_4$. Then the set E_2 of characters of \mathcal{O}_2^* of order ≤ 12 satisfying (4.5) is

$$E_2 = \{ \epsilon_{\pm} \phi^i : -1 \leq i \leq 2 \}.$$

(4.9)

The characters $\epsilon_{\pm} \phi^i$ have conductor indices 3, 5, and 7 respectively according to $i = 0, 2, \pm 1$. So we have the following proposition.

Proposition 4.2. Assume $D > 4$. Let E be the set of characters of $(\mathcal{O}_K/\mathcal{f})^*$ of order ≤ 12 satisfying (4.2) and that \mathcal{f} is only divisible by primes dividing $\sqrt{-DO_K}$. Then $\#E = \#E_2 \cdot \#E_3$, where E_p is the set defined in (4.6), (4.7), or (4.9) when $p | D$ and trivial otherwise. Moreover

1. When $3 | D$, $\#E_3 = 3$, one of which has conductor index 1, and the other two have conductor index 2.
(2) When $8|D$, $\#E_2 = 4$, all have conductor index 5.

(3) When $4||D$, $\#E_2 = 8$, and their conductor indices are 3, 5, or 7.

(4) Let $\epsilon = \prod_{p|D} \epsilon_p \in E$ and let χ be a Hecke character of K of type ϵ. The character conductor of χ is $\prod_{p|D} \mathfrak{p}^{e_p}$ where e_p is the conductor index of ϵ_p. One has $e_p = 1$ for $p \neq 6$.

(5) Let $\epsilon \in E$, let χ be a Hecke character of K of type ϵ, and let A be a CM abelian variety over K associated with χ. Then $\dim A = h$ unless $4|D$ and $\epsilon_2 = \epsilon_2^\pm \tilde{\phi}$, where ϕ is a fixed character of G_1 of order 4 given above. In such a case,

$$\dim A = \begin{cases} h & \text{if } d = D/4 \equiv 1 \mod 8, \\ 2h & \text{otherwise}. \end{cases}$$

Proof. Every claim except (5) was proved above. We use Theorem 3.5 to verify (5) in the case $2|D$, and leave the other cases to the reader.

We first assume $8|D$ so that $2||d$. If ϵ is quadratic, it is obvious by Theorem 3.5. If $\epsilon_2 = \epsilon_2^\pm$ is quadratic, and $\epsilon_3 = \epsilon_3^0 \phi_3 \in E_3$ is of order 6 as in (4.6). Let $\alpha_3 = \beta \sqrt{-D} \in K^*$ be such that $3\alpha_3^2$ is prime to D and that β is prime to 3. Then

$$\epsilon(3\alpha_3^2) = \phi_3(3\alpha_3^2)\epsilon_2^\pm(3)\epsilon_3^0(-3/D) \prod_{p|D, p\neq 6} \epsilon_p^0(3)$$

$$= \phi_3(3\alpha_3^2)(-3/D, -D)_3 \prod_{p\neq 3} (3, -D)_p$$

$$= \phi_3(3\alpha_3^2) \prod_{p < \infty} (3, -D)_p(-1, -D)_3$$

$$= -\phi_3(3\alpha_3^2)$$

generates $\text{Im}(\epsilon)$. So Theorem 3.5(3) implies that $\dim A = h$. When $\epsilon_2 = \epsilon_2^\pm \tilde{\phi}$ is of order 4, let $\alpha_2 = \beta \sqrt{-d}$ such that $2\alpha_2^2$ is prime to D and β is prime to 2. Then

$$\epsilon(2\alpha_2^2) = \pm\epsilon_2(2\alpha_2^2) \prod_{2 \neq p|D} \epsilon_p(2\alpha_2^2)$$

$$= \pm\kappa_2(-2/d) \prod_{2 \neq p|D} \epsilon_p(2\alpha_2^2)$$

is of order 2 or 6. So Theorem 3.5 asserts that $\dim A = 2h$.

Finally, assume $4||D$, let $\alpha = \frac{1 + \sqrt{-d}}{2} \beta \in K^*$ be such that $2\alpha_2^2 = (\frac{1 - d}{2} + \sqrt{-d})\beta^2$ is prime to D and β is prime to 2. For $\epsilon_2 = \epsilon_2^\pm \tilde{\phi}^j$ with $-1 \leq j \leq 2$.

Then
\[\epsilon(2\alpha_2^2) = \pm \epsilon_2^\pm \left(\frac{1-d}{2} + \sqrt{-d} \right) \phi^j(g) \prod_{2 \neq p|D} \epsilon_p(2\alpha_2^2) \]

\[= \pm i \phi^j(g) \prod_{2 \neq p|D} \epsilon_p(2\alpha_2^2) \]

is of order 4 or 12 if and only if \(\phi^j(g) = \pm 1 \). Here

\[g = \frac{\sqrt{-d} + \frac{1-d}{2}}{\sqrt{-d} - \frac{1-d}{2}} \in G_2. \]

When \(j = 0 \) or 2, one has always \(\phi^j(g) = \pm 1 \). When \(j = \pm 1 \), \(\phi^j(g) = \pm 1 \) if and only if \(g \in G_3 \), which is in turn equivalent to \(d \equiv 1 \mod 8 \). This finishes the proof.

Corollary 4.3. Assume \(D > 4 \). Let the notation be as in Proposition 4.2. Let \(E_{Sim} \) be the subset of characters \(\epsilon \) in \(E \) such that a CM abelian variety \(A \) over \(K \) of type \(\epsilon \) has dimension \(h \) and the smallest conductor. Then

\[E_{Sim} = \begin{cases} \{ \prod_{p|D} \epsilon_p^0 \} & \text{if } 2 \nmid D, \\ \{ \epsilon_2^\pm \prod_{2 \neq p|D} \epsilon_p^0 \} & \text{if } 2|D. \end{cases} \]

In particular, \(\#E_{Sim} = 1 \) or 2 depending on whether \(D \) is odd or even.

Proof of Theorem 0.2 We may assume \(D > 4 \). By Remark 1.2, a simple CM abelian variety \(A \) over \(K \) is up to isogeny one-to-one correspondence to the set \(\{ \chi^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K) \} \), where \(\chi \) is a Hecke character of \(K \) associated to \((A,i) \) of CM type \((T,\Phi) \) for some embedding \(i \) and some type \((T,\Phi) \). Here we require all the associated Hecke characters of \(K \) to be of infinite type \{ id \}. When \(D \) is odd or divisible by 8, \(\epsilon \) is quadratic, and

\[\{ \chi^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K) \} = \{ \chi \phi : \phi \text{ is an ideal class character of } K \} \]

is uniquely determined by \(\epsilon \). So Theorem 0.2 follows from Corollary 4.3. Assume now that \(4||D \) and \(D > 4 \), and let \(L = K(i) \). Fix \(\rho' \in \text{Aut}(\mathbb{C}/K) \) such that \(\rho'(i) = -i \), and an ideal class character \(\phi' \) of \(K \) such that \(\phi'(p_2) = -1 \) for the prime ideal \(p_2 \) above 2. Fix an character \(\epsilon \) in Corollary 4.3 and a Hecke character \(\chi_0 \) of \(K \) of type \(\epsilon \). Then the other character in Corollary 4.3 is \(\epsilon^{-1} \), and \(\chi'_0 = \chi_0^{\phi'} \) is of type \(\epsilon^{-1} \). The Hecke characters of \(K \) satisfying (0.2) such that its associated abelian varieties have the smallest conductor and dimension
are of type $\epsilon \pm 1$ by Corollary 4.3 and are given by
\[
\{\chi_0, \chi'_0 : \phi \text{ is an ideal class character of } K\}
= \{\chi_0, \chi'_0 : \phi \text{ is an ideal class character of } K \text{ such that } \phi(p_2) = 1\}
\bigcup \{\chi_0, \chi'_0 \phi : \phi \text{ is an ideal class character of } K \text{ such that } \phi(p_2) = 1\}
= \{\chi_0^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K)\} \bigcup \{(\chi_0, \chi'_0)^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K)\}.
\]
Here we used the fact that
\[
\{\chi_0, \chi'_0 : \phi \text{ is an ideal class character of } K \text{ such that } \phi(p_2) = 1\}
= \{\chi_0^\sigma : \sigma \in \text{Aut}(\mathbb{C}/K)\}.
\]
Therefore, there are exactly two CM abelian varieties over K of dimension h, up to isogeny, which descend to \mathbb{Q} and have the smallest conductor.

From the proof, it is clear that the isogeny class of the CM abelian varieties A are not determined by ϵ when the image of ϵ is not in K.

5. Root number.

Let χ be a simplest Hecke character of K of type ϵ, given by Corollary 4.3. The condition (0.2) implies $W(\chi) = \pm 1$. It is known ([Ro3]) that
\[
W(\chi) = \begin{cases}
\left(\frac{2}{D}\right) & \text{if } 2 \nmid D, \\
\epsilon(1 + \sqrt{-D/4}) & \text{if } 8 \nmid D.
\end{cases}
\]

We may thus assume that $4 \mid D$ and $D > 4$. Let p_2 be the prime ideal of K above 2, $d = D/4$, and $\alpha_0 = 1 + \sqrt{-d}$. Then ϵ can be viewed as
\[
\epsilon = \epsilon_2 \epsilon^0 : \left(\mathcal{O}_K/p_2^3 \sqrt{-d}\right)^* = \left(\mathcal{O}_K/p_2^3\right)^* \times \left(\mathcal{O}_K/\sqrt{-d}\right)^* \longrightarrow \mu_4
\]
where ϵ_2 is trivial on $(\mathcal{O}_K/\sqrt{-d})^*$ but gives an isomorphism $(\mathcal{O}_K/p_1^3)^* \cong \mu_4$, while ϵ^0 is trivial on $(\mathcal{O}_K/p_2^3)^*$ and is $(\sqrt{-d})$ on $(\mathcal{O}_K/\sqrt{-d})^* \cong (\mathbb{Z}/d)^*$.

Proposition 5.1. Let the notation be as above, and let χ be a simplest Hecke character of $K = \mathbb{Q}(\sqrt{-D})$ of type ϵ. Then
\[
\chi(\alpha_0^{-1}p_2) = W(\chi)(1 - \epsilon_2(\sqrt{-d})\alpha_0^{-1})
\]

Proof. For the proof, we follow [Ro2] closely. Let $\kappa = \prod_p \kappa_p$ and $\chi^{un} = \chi|_{\mathbb{A}}^1 = \prod_p \chi_p^{un}$ be as in as in Section 4. Then
\[
\chi^{un}|_{\mathbb{A}^k} = \kappa, \quad \text{and} \quad \chi_p^{un}|_{\mathcal{O}_p^*} = \epsilon_p^{-1} \text{ for } p|D.
\]
Here we write $\epsilon = \prod_{p \mid D} \epsilon_p$ as in Corollary 4.3. Let $\psi = \prod \psi_p$ be a nontrivial additive character of $\mathbb{Q}_\mathfrak{a}$ and let $\psi_K = \psi \circ N_{K/\mathbb{Q}}$. Then Rohrlich proved in [Ro2] that the relative local root number

$$W(\kappa_p, \chi_p) = \frac{W(\chi_p, \psi_{K_p})}{W(\kappa_p, \psi_p)}$$

is independent of the choice of ψ. Here $W(\chi_p, \psi_{K_p})$ and $W(\kappa_p, \psi_p)$ are local root numbers. Since the global root number of κ is one, we have then

$$W(\chi) = \prod_{p \leq \infty} W(\kappa_p, \chi_p). \quad (5.2)$$

By [Ro2, Propositions 8, 11, and 12], one has

$$W(\kappa_p, \chi_p) = \begin{cases} 1 & \text{if } p \nmid D, \\ \kappa_p(2) & \text{if } 2 \neq p \mid D. \end{cases} \quad (5.3)$$

So

$$W(\chi) = \prod_{2 \neq p \mid D} \kappa_p(2)W(\kappa_2, \chi_2) = \kappa_2(2)W(\kappa_2, \chi_2). \quad (5.4)$$

On the other hand, since $\alpha_0^{-1}p_2$ is prime to $D\mathcal{O}_K$, one has

$$\chi(\alpha_0^{-1}p_2) = \prod_{p \mid D\infty} \chi_p(\alpha_0^{-1})$$

$$= \prod_{p \mid D\infty} \chi_p(\alpha_0)$$

$$= \chi_2(\alpha_0)\alpha_0^{-1}.$$

Combining this with (5.4) and the following lemma, one proves the proposition.

Lemma 5.2. Let the notation be as above. Then

$$W(\kappa_2, \chi_2) = \frac{1 + \chi_2(\sqrt{-d})}{\chi_2(1 + \sqrt{-d})}\kappa_2(2).$$

Proof. We first remark that $\chi_2(\sqrt{-d}) = \epsilon_2(\sqrt{-d})^{-1} = -\epsilon_2(\sqrt{-d})$ by (5.1). We recall a general way to compute local root numbers. Let F be a non-archimedean local field with ring of integers \mathcal{O}_F and a uniformizer ϖ. Let θ be a unitary
character of F^* of conductor index r and let ψ_F be a nontrivial additive character of F of conductor index $n = n(\psi_F)$, i.e., the smallest integer n such that $\psi|_{\varpi^n\mathcal{O}_F} = 1$. Then

\begin{equation}
(5.5) \quad W(\theta, \phi_F) = b^{-1}\theta^{-1}(\beta) \int_{\mathcal{O}_F^*} \theta^{-1}(x) \psi_F(x\beta)dx
\end{equation}

where $\beta \in \varpi^{-r+n}\mathcal{O}_F^*$ and $b = |\varpi|^{\frac{1}{2}} \text{Vol}(\mathcal{O}_F, dx)$. Now choose $\psi_2 : \mathbb{Q}_2 \to \mathbb{C}^*$ via $\psi_2(x) = e^{2\pi i \lambda_2(x)}$ where λ_2 is the canonical map

$$\lambda_2 : \mathbb{Q}_2 \to \mathbb{Q}_2/\mathbb{Z}_2 \hookrightarrow \mathbb{Q}/\mathbb{Z}.$$

Then a simple calculation gives

\begin{equation}
(5.6) \quad W(\kappa_2, \psi_2) = \begin{cases}
 i & \text{if } 4||D, \\
 i\kappa_2(2) & \text{if } 8||D \text{ and } \kappa_2(-1) = -1, \\
 \kappa_2(2) & \text{if } 8||D \text{ and } \kappa_2(-1) = 1.
\end{cases}
\end{equation}

As for $W(\chi_2, \psi_{K_2})$, one has $\chi_2^{un}(a) = \chi_2(a)|a|_2^{\frac{1}{2}}$, and in particular, $\chi_2^{un}(\alpha_0) = \chi_2(\alpha_0)/\sqrt{2}$. Since the conductor index of χ_2 and ψ_{K_2} are 3 and -2 respectively, and α_0 is a uniformizer of K_2, we may take $\beta = \alpha_0/8$ in (5.5) and have

$$W(\chi_2, \psi_{K_2}) = W(\chi_2^{un}, \psi_{K_2})$$

$$= \frac{2\sqrt{2}}{\text{Vol}(O_2, dz)} \chi_2^{un}(\alpha_0/8)^{-1} \int_{O_2^*} \chi_2^{un}(z^{-1}) \psi_{K_2}(z\alpha_0/8)dz$$

$$= \frac{1}{2\sqrt{2}} \kappa_2(2) \chi_2^{un}(\alpha_0)^{-1} \sum_{a \in (O_2/p_2^3)^*} \chi_2^{un}(a)^{-1} \psi_2(\frac{\text{tr}a\alpha_0}{8}).$$

Since $(O_2/p_2^3)^* = \{\pm 1, \pm \sqrt{-d}\}$, one has

$$W(\chi_2, \psi_{K_2}) = i\kappa_2(2)\chi_2^{un}(\alpha_0)^{-1} \frac{1 + \chi_2^{un}(\sqrt{-d})}{\sqrt{2}}$$

$$= W(\kappa_2, \psi_2)\kappa_2(2) \frac{1 + \chi_2(\sqrt{-d})}{\chi_2(1 + \sqrt{-d})}.$$

6. The central L-value.

The purpose of this section is to prove the following theorem.
Theorem 6.1. Let \(\chi \) be a simplest Hecke character of \(K = \mathbb{Q}(\sqrt{-D}) \). Then the central \(L \)-value \(L(1, \chi) \neq 0 \) if and only if \(W(\chi) = 1 \).

The case where \(D \) is odd or divisible by 8 was proved by Montgomery and Rohrlich ([MR]) in 1982. We will use the same method to settle the case \(4 \mid D \) and \(D > 4 \). The case \(D = 4 \) is well-known. We assume again in this section \(4 \mid D \). One complication is that the two family \(\{ \chi^\sigma : \sigma \in \text{Aut}(C/K) \} \) and \(\{ \chi^\phi : \phi \text{ is an ideal class character of } K \} \) are not the same in our case. Let \(L = K(i) \) and fix \(\rho' \in \text{Aut}(\mathbb{C}/K) \) such that \(\rho'(i) = -i \). If \(\chi \) is of type \(\varepsilon \) where \(\varepsilon = \varepsilon_2 e^0 \) is given by (5.1), then \(\chi' = \chi^{\rho'} \) is of type \(\varepsilon^{-1} = e_2^{-1} e^0 \). For each ideal class \(C \) of \(K \), let

\[
L(s, C, \chi) = \sum_{a \in C, \text{ integral}} \chi(a)(Na)^{-s}
\]

be the partial \(L \)-function, and denote

\[
\tilde{L}(s, C, \chi) = L(s, C, \chi) + L(s, C, \chi').
\]

We also write \([a]\) for the ideal class of \(K \) containing the ideal \(a \). Since \(\{ \chi^\sigma : \sigma \in \text{Aut}(\mathbb{C}/L) \} = \{ \chi^\phi : \phi \text{ is an ideal class character of } K \text{ with } \phi([p_2]) = 1 \} \), one has by the same argument as in [Ro3, Page 226]

Lemma 6.2. Let the notation be as above. Then the following are equivalent.

1. The central \(L \)-value \(L(1, \chi) = 0 \).
2. The partial central \(L \)-values \(L(1, C, \chi) + L(1, C[p_2], \chi) = 0 \) for every ideal class \(C \) of \(K \).
3. The partial central \(L \)-values \(\tilde{L}(1, C, \chi) + \tilde{L}(1, C[p_2], \chi) = 0 \) for every ideal class \(C \) of \(K \).

Following [MR], we recall that the theta function

\[
\theta(t) = h + 2 \sum_{n \geq 1} a(n)e^{-\frac{2\pi n}{\sqrt{D}}}
\]

is strictly increasing for \(t > 0 \) and satisfies the simple functional equation

\[
\theta(1/t) = t\theta(t).
\]

Here \(a(n) \) is the number of integral ideals of \(K \) with norm \(n \). Recall also that the Eisenstein series

\[
G(z, s) = \sum_{n > 0, m \in \mathbb{Z}} \left(\frac{-D}{n} \right) (mD\bar{z} + n)mDz + n\right|^{2s}
\]
has analytic continuation for all \(s \in \mathbb{C} \) and \(z \) in the upper half plane, and
\[
\frac{\sqrt{D}}{\pi} G(z, 1) = h + 2 \sum_{n \geq 1} a(n) e^{2\pi niz}.
\]
In particular,
\[
(6.6) \quad \frac{\sqrt{D}}{\pi} G(it, 1) = \theta(t).
\]
It is convenient to denote
\[
G_{\text{odd}}(z, s) = G(z, s) - G(2z, s) = \sum_{m \text{ odd}, n > 0} \left(\frac{-D}{n} \right) (mD\bar{z} + n) |mDz + n|^{-2s}.
\]
In particular,
\[
(6.7) \quad \frac{\sqrt{D}}{\pi} G_{\text{odd}}(it, 1) = \theta(t) - \theta(2t) > 0.
\]
Since we can switch between \(\chi \) and \(\chi' \), we may and will assume that \(\epsilon_2(\sqrt{-d}) = i \).

Lemma 6.2. Let \(\epsilon = \epsilon_2 \epsilon_0 \) with \(\epsilon_2(\sqrt{-d}) = i \).

1. When \(\beta = m\sqrt{-d} + n \) is prime to \(DO_K \), \(m, n \in \mathbb{Z} \), one has
\[
\epsilon(\beta) = \begin{cases}
\left(\frac{-D}{n} \right) & \text{if } m \equiv 0 \mod 4, \\
-\left(\frac{-D}{n} \right) & \text{if } m \equiv 2 \mod 4, \\
i \left(\frac{1}{m} \right) \left(\frac{n}{d} \right) & \text{if } n \equiv 0 \mod 4, \\
i \left(\frac{-1}{m} \right) \left(\frac{n}{d} \right) & \text{if } n \equiv 2 \mod 4.
\end{cases}
\]

2. When \(\beta = \alpha_0(a + b\frac{-1-\sqrt{-d}}{2}) \in \alpha_0 p_2^{-1} \) is prime to \(DO_K \), where \(\alpha_0 = 1 + \sqrt{-d} \), \(a, b \in \mathbb{Z} \), one has
\[
\epsilon(\beta) = \begin{cases}
\left(\frac{-D}{2a+b} \right) & \text{if } a \equiv 0 \mod 2, \\
i \left(\frac{-D}{2a+b} \right) & \text{if } a \equiv 1 \mod 2.
\end{cases}
\]

Proof. (1) follows from definition easily. For example, if \(m \equiv 2 \mod 4 \), then
\[
\beta = n - m + m\alpha_0 \equiv n - m \mod p_2^3 \text{ and thus}
\]
\[
\epsilon(\beta) = \epsilon_2(\beta) \left(\frac{n}{d} \right) = \left(\frac{-1}{n-m} \right) \left(\frac{d}{n} \right) = -\left(\frac{-D}{n} \right).
\]
(2) Notice that
\[\beta = a + \frac{1 + d}{2}b + a\sqrt{-d}. \]

When \(a \equiv 0 \mod 4 \), one has
\[\epsilon(\beta) = \left(\frac{-1}{a + \frac{1+d}{2}b} \right) \left(\frac{a + \frac{1+d}{2}b}{d} \right) \]
\[= \left(\frac{2}{d} \right) \left(\frac{2a+b}{d} \right) \left(\frac{-1}{a + \frac{1+d}{2}b} \right) \]
\[= \begin{cases} \left(\frac{d}{2a+b} \right) \left(\frac{-1}{b} \right) & \text{if } d \equiv 1 \mod 8 \\ -\left(\frac{d}{2a+b} \right) \left(\frac{-1}{3b} \right) & \text{if } d \equiv 5 \mod 8 \end{cases} \]
\[= \left(-\frac{D}{2a+b} \right). \]

The case \(a \equiv 2 \mod 4 \) is similar. When \(a \) is odd, and \(d \equiv 1 \mod 8 \),
\[a + \frac{1+d}{2}b \equiv a + b \mod 4, \] and so
\[\epsilon(\beta) = \begin{cases} i \left(\frac{-1}{a} \right) \left(\frac{2a+b}{d} \right) \left(\frac{2}{a} \right) & \text{if } a + b \equiv 0 \mod 4 \\ -i \left(\frac{-1}{a} \right) \left(\frac{2a+b}{d} \right) \left(\frac{2}{a} \right) & \text{if } a + b \equiv 2 \mod 4 \end{cases} \]
\[= i \left(\frac{-1}{2a+b} \right) \left(\frac{d}{2a+b} \right) \]
\[= i \left(-\frac{D}{2a+b} \right). \]

The case when \(a \) is odd and \(d \equiv 5 \mod 8 \) is similar.

Lemma 6.3. One has

(6.8) \[\tilde{L}(s, [\mathcal{O}_K], \chi) = 4G(\frac{2i}{\sqrt{D}}, s) - 2G(\frac{i}{\sqrt{D}}, s), \]

and

(6.9) \[\tilde{L}(s, [p_2], \chi) = 2^aW(\chi)G_{odd}(\frac{i}{2\sqrt{D}}, s). \]
Proof. Since $D > 4$, $\mathcal{O}_K^* = \{\pm 1\}$, one has by Lemma 6.2(1)

\[
\tilde{L}(s, [\mathcal{O}_K], \chi) = \sum_{\alpha \in \mathcal{O}_K} (\chi(\alpha \mathcal{O}_K) + \chi'(\alpha \mathcal{O}_K))(N\alpha)^{-s}
\]

\[
= \sum_{\alpha \in \mathcal{O}_K} \frac{\epsilon(\alpha) + \epsilon^{-1}(\alpha)}{2} \alpha(N\alpha)^{-s}
\]

\[
= 2 \sum_{m \equiv 0(4), n > 0} \left(\frac{-D}{n} \right) (m\sqrt{-d} + n)|m\sqrt{-d} + n|^{-2s}
\]

\[
- 2 \sum_{m \equiv 2(4), n > 0} \left(\frac{-D}{n} \right) (m\sqrt{-d} + n)|m\sqrt{-d} + n|^{-2s}
\]

\[
= 2G\left(\frac{2i}{\sqrt{D}}, s \right) - 2G_{\text{odd}}\left(\frac{i}{\sqrt{D}}, s \right)
\]

\[
= 4G\left(\frac{2i}{\sqrt{D}}, s \right) - 2G\left(\frac{i}{\sqrt{D}}, s \right).
\]

This proves (6.8). On the other hand, $a \in [p_2]$ is integral and prime to DO_K if and only if $a = \beta \alpha_0^{-1}p_2$ with $\beta \in \alpha_0p_2^{-1}$ prime to DO_K. In such a case, Proposition 5.1 gives

\[
\chi(a) = \epsilon(\beta)\beta \chi(\alpha_0^{-1}p_2)
\]

\[
= W(\chi)(1 - \epsilon_2(\sqrt{-d}))\alpha_0^{-1}\epsilon(\beta)\beta.
\]

One also has $W(\chi) = W(\chi')$ by Proposition 5.1. So

\[
\chi(a) + \chi'(a) = W(\chi)\alpha_0^{-1}\beta \left[\epsilon(\beta)(1 - \epsilon_2(\sqrt{-d})) + \epsilon(\beta)^{-1}(1 + \epsilon_2(\sqrt{-d})) \right]
\]

\[
= W(\chi)2\alpha_0^{-1}\beta \begin{cases}
\epsilon(\beta) & \text{if } \epsilon(\beta) = \pm 1, \\
-\epsilon(\beta)\epsilon_2(\sqrt{-d}) & \text{if } \epsilon(\beta) = \pm i.
\end{cases}
\]

\[
= W(\chi)(2a + b - b\sqrt{-d}) \left(\frac{-D}{2a + b} \right),
\]

if $\beta = \alpha_0(a + b\sqrt{-d}) \in \alpha_2p_2^{-1}$ as in Lemma 6.2, and $\epsilon_2(\sqrt{-d}) = i$ (our assumption). So

\[
\tilde{L}(s, [p_2], \chi) = \sum_{a \in [p_2], \text{ integral}} (\chi(a) + \chi'(a))(Na)^{-s}
\]

\[
= W(\chi)2^{s-1} \sum_{b \text{ odd}, a \in \mathbb{Z}} \left(\frac{-D}{2a + b} \right) (2a + b - b\sqrt{-d})|2a + b - b\sqrt{-d}|^{-2s}.
\]
Substituting $n = 2a + b$ and $m = n$, one gets

\[
\tilde{L}(s, [p_2], \chi) = W(\chi)2^{s-1} \sum_{m, n \text{ odd}} \left(\frac{D}{n} \right) (n - m\sqrt{-d})^{-2s} (n - m\sqrt{-d})^{-2s}
\]

\[
= W(\chi)2^s G_{\text{odd}}(\frac{i}{2\sqrt{D}}, s).
\]

Proof of Theorem 6.1. Now it is easy to verify Theorem 6.1. Indeed, Lemma 6.3 gives

\[
\tilde{L}(1, [\mathcal{O}_K], \chi) + \tilde{L}(1, [p_2], \chi)
\]

\[
= 4G(\frac{2i}{\sqrt{D}}, 1) - 2G(\frac{i}{\sqrt{D}}, 1) + 2W(\chi)G_{\text{odd}}(\frac{i}{2\sqrt{D}}, 1)
\]

\[
= \frac{\pi}{\sqrt{D}} (4\theta(2) - 2\theta(1)) + 2W(\chi) \frac{\pi}{\sqrt{D}} \left(\theta(\frac{1}{2}) - \theta(1) \right)
\]

\[
= \frac{2\pi}{\sqrt{D}} (1 + W(\chi)) \left(\theta(\frac{1}{2}) - \theta(1) \right).
\]

Since $\theta(\frac{1}{2}) - \theta(1) > 0$, Lemma 6.2 gives Theorem 6.1.

7. The Central Derivative.

Let χ be a simplest Hecke character of $K = \mathbb{Q}(\sqrt{-D})$ of conductor f, and let

\[
(7.1) \quad \Lambda(s, \chi) = \left(\frac{B}{2\pi} \right)^s \Gamma(s) L(s, \chi),
\]

where

\[
(7.2) \quad B = \begin{cases}
D & \text{if } 2 \nmid D, \\
\sqrt{2D} & \text{if } 4 \| D, \\
2D & \text{if } 8 \| D.
\end{cases}
\]

Then $\Lambda(s, \chi)$ has analytic continuation to the whole complex s-plane, and satisfies the functional equation

\[
(7.3) \quad \Lambda(s, \chi) = W(\chi)\Lambda(2 - s, \chi).
\]

Here $W(\chi) = \pm 1$ is the root number of χ. In section 6, we proved that $\Lambda(1, \chi) \neq 0$ if and only if $W(\chi) = 1$. In this section, we prove
Theorem 7.1. Let χ be a simplest Hecke character of K. Then $\Lambda'(1, \chi) \neq 0$ if and only if $W(\chi) = -1$.

Proof. The case where D is odd or divisible by 8 was proved by S. Miller and the author ([MY]). We will settle the case $4 \mid D$ and $D > 4$ the same way. The case $D = 4$ does not occur here. One direction is trivial by the functional equation. Now assume $W(\chi) = -1$. For simplicity, set

$$ L(s) = \tilde{L}(s, [O_K], \chi) + \tilde{L}(s, [p_2], \chi), \quad \Lambda(s) = \left(\frac{B}{2\pi} \right)^s \Gamma(s)L(s). $$

Then

$$ \Lambda(s) = W(\chi)\Lambda(2-s) = -\Lambda(2-s). $$

The same argument as in the proof of [MY, Lemma 2.1] gives

Lemma 7.2. When $W(\chi) = -1$ and $\Lambda'(1) \neq 0$, one has $\Lambda'(1, \chi) \neq 0$.

So to prove the theorem, it suffices to show $\Lambda'(1) \neq 0$ when $W(\chi) = -1$. By Cauchy’s theorem and (7.5), one has

$$ \Lambda'(1) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \Lambda(s) \frac{ds}{(s-1)^2} - \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \Lambda(s) \frac{ds}{(s-1)^2} $$

$$ = \frac{2}{2\pi i} \int_{2-i\infty}^{2+i\infty} \Lambda(s) \frac{ds}{(s-1)^2}. $$

The same calculation as in the proof of Lemma 6.3 gives

$$ \tilde{L}(s, [O_K], \chi) = \sum_{v \text{ even}, u \text{ odd}} \epsilon(u + v\sqrt{-d})(u + v\sqrt{-d})|u^2 + v^2d|^{-s} $$

$$ = 2 \sum_{u > 0, \text{ odd}} \left(\frac{-D}{u} \right) u^{1-2s} + 2 \sum_{v > 0, \text{ even}} \epsilon(u + v\sqrt{-d})2u|u^2 + v^2d|^{-s} $$

So

$$ \frac{1}{2} \tilde{L}(s, [O_K], \chi) = \sum_{n > 0} \left(\frac{-D}{n} \right) n^{1-2s} + \sum_{n > 0} a(n)n^{-s} $$

with

$$ a(n) = \sum_{u > 0, \text{ odd}, v > 0, \text{ even}} \epsilon(u + v\sqrt{-d})2u. $$
Similarly, Lemma 6.3(2) gives

\begin{equation}
\frac{1}{2} \tilde{L}(s, [p_2], \chi) = - \sum_{n>0} b(n)(n/2)^{-s},
\end{equation}

with

\begin{equation}
b(n) = \sum_{\substack{u^2 + v^2 d = n \\
u > 0, v > 0, \text{odd}}} \left(\frac{-D}{u}\right) 2u.
\end{equation}

Following [MY, pages 265-266], let

\begin{equation}
f(x) = \frac{\Gamma(0, x)}{x} = \frac{1}{x} \int_x^\infty e^{-t} \frac{dt}{t}
\end{equation}

be the inverse Mellin transform of \(\frac{\Gamma(s)}{(s-1)^2} \), then

\begin{equation}
\frac{1}{4} \Lambda'(1) = R + C_1 - C_2
\end{equation}

where

\begin{align*}
R &= \sum_{n>0} \left(\frac{-D}{n}\right) n f(\frac{2\pi n^2}{B}), \\
C_1 &= \sum_{n>0} a(n) f(\frac{2\pi n}{B}), \\
C_2 &= \sum_{n>0} b(n) f(\frac{\pi n}{B}).
\end{align*}

[MY, (2.12)] asserts that the main term is

\begin{equation}
R > .5235B - .8458B^{\frac{3}{4}} - .3951B^{\frac{1}{2}}.
\end{equation}

The same argument as in [MY, Section 4] gives the trivial upper bounds for \(C_1 \) and \(C_2 \) as follows:

\begin{align*}
|C_1| &\leq \frac{1}{4\pi^2} \sum_{v>0} v^{-4} e^{-2\sqrt{2\pi} v^2} \cdot \sum_{u>0} u e^{-u^2} \\
&\leq \frac{1}{4\pi^2} \times 0.0001383 \times \frac{B}{4\pi} \approx 2.789 \times 10^{-7} B
\end{align*}

\begin{equation}
(7.14)
\end{equation}
and

\[|C_2| \leq \frac{16}{\pi^2} \sum_{v > 0, \text{odd}} v^{-4} e^{-\frac{\pi v^2}{2}} \sum_{u > 0} u e^{-\frac{\pi u^2}{2}} \]

\[\leq \frac{16}{\pi^2} \times 0.3293220848 \frac{B}{2\pi} \approx 0.0850B. \]

(7.15)

Combining (7.12) − 7.15), one has

\[\frac{1}{4} \Lambda'(1) \geq 0.4385B - 0.8458B^{\frac{3}{2}} - 0.3951B^{\frac{1}{2}} > 0 \]

when \(B = \sqrt{2}D \geq 42\sqrt{2} \). This leaves one exception \(D = 20 \) (\(D = 4 \) does not occur here). A simple numerical calculation shows \(\Lambda'(1) > 0 \) in this case too. Now Theorem 7.1 follows from Lemma 7.2.

We remark that a little more work as in [MY] and [LX] would show that the beautiful formula (0.5) also holds for ‘small’ quadratic twists of the simplest Hecke characters. Similar results should also hold for odd powers of these characters.

Bibliography

[Gr] B. Gross, *Arithmetic on elliptic curves with complex multiplication*, LNM 776, Springer-Verlag, 1980.

[LX] Chunlei Liu and Lanju Xu, *The critical order of certain Hecke L-functions of imaginary quadratic fields*, Preprint (2002).

[MR] H. Montgomery and D. Rohrlich, *On the L-functions of canonical Hecke characters of imaginary quadratic fields II*, Duke Math. J. 49 (1982), 937-942.

[MY] S. Miller and T.H. Yang, *Non-vanishing of the central derivative of canonical Hecke L-functions*, Math. Res. letters 7 (2000), 263-277.

[Na] T. Nakamura, *On abelian varieties associated with elliptic curves with complex multiplication*, Acta Arith. 97 (2001), 379-385.

[Ro1] D. Rohrlich, *Galois conjugacy of unramified twists of Hecke characters*, Duke Math. J. 47 (1980), 695-703.

[Ro2] , *Root numbers of Hecke L-functions of CM fields*, Amer. J. Math. 104 (1982), 517-543.

[Ro3] , *The non-vanishing of certain Hecke L-functions at the center critical strip*, Duke Math. J. 47 (1980), 223-232.

[Ro4] , *On the L-functions of canonical Hecke characters of imaginary quadratic fields*, Duke Math. J. 47 (1980), 547-557.

[Sh1] G. Shimura, *On the zeta-function of an abelian variety with complex multiplication*, Ann. of Math. (2) 94 (1971), 504-533.
[Sh2], Abelian varieties with complex multiplication and modular functions, Princeton Univ. Press, 1998.