Hemagglutinin presented on the surface of *Lactococcus lactis* confers broad cross-clade protection against different H5N1 viruses in chickens

Han Lei*, Qianhong Cen¹, Tong Gao¹, Xiaojue Peng²

¹ College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

² Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi 330031, China.

*Correspondence: hlei@swjtu.edu.cn

College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
Abstract

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus has the potential threat to poultry industry. Current avian influenza H5N1 vaccines for poultry are clade-specific, Therefore, there is an urgent need to develop an effective vaccine for preventing and controlling H5N1 viruses from different clades.

Results

Recombinant *L. lactis*/pNZ8148-Spax-HA was generated which influenza virus hemagglutinin (HA) protein of A/chicken/Henan/12/2004 was displayed on the surface of *Lactococcus lactis* (*L. lactis*) and Spax was used as an anchor protein. Chickens vaccinated orally with the unadjuvanted *L. lactis*/pNZ8148-Spax-HA could produce significant humoral and mucosal responses, as well as the neutralizing activities against different clades of H5N1 viruses. Importantly, the unadjuvanted *L. lactis*/pNZ8148-Spax-HA could conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model.

Conclusion

This study provides insight into the cross-clade protection conferred by the unadjuvanted *L. lactis*/pNZ8148-Spax-HA that may help establish a promising platform for the development of a safe and effective H5N1 cross-clade vaccine in poultry.

Keywords: *L. lactis*/pNZ8148-Spax-HA, cross protection, H5N1 cross-clade vaccine.
Background

Since high mortality and antigen drift rate, highly pathogenic avian influenza (HPAI) H5N1 virus are associated with severe disease and pose a serious threat to poultry industry [1]. To date, HPAI H5N1 viruses have undergone significant genetic diversifications resulting in 10 viral clades originating from clade 0 to clade 9. Among them, clade 2 has shown significant genetic variation into numerous subclades [2]. There are numerous H5N1 influenza vaccines from candidate clade 1 and 2 viruses have been approved for the production [3]. In addition, most of the licensed inactivated and live-attenuated H5N1 vaccines are produced in embryonated chicken eggs affected by seed viruses and the manufacturing process can take up 9 months [4, 5]. Unfortunately, the highly diverse genetic nature and the rapid evolution of H5N1 viruses has resulted in titer reduction of quality allantoc fluid [6]. Furthermore, the protective immunities of currently licensed H5N1 influenza split and inactivated egg-derived whole virus H5N1 vaccines are inadequate immunogenicity against different H5N1 clades infection [7] and the current vaccine manufacturing capacity is inadequate during an emerging H5N1 pandemic [8, 9]. As the rapid generation of a well-matched H5 vaccine would represent a challenging task at the onset of a pandemic, one important issue is how to supply enough H5 vaccine doses in a timely manner and evaluate the efficacy that could provide cross-clade protection against newly emerged strains of H5 influenza viruses. Therefore, the development of cross-clade protective vaccine is ongoing effort of high priority for domestic poultry to be prepared for a potential epidemic of HPAI H5N1.
Several vaccines approaches have been developed against different H5N1 clades. A monovalent H5 vaccine with RG-epitope-chimeric H5N1 protected mice from lethal challenge with H5N1s of different clades, including clade 1.0, 2.1, 2.2 and 2.3 [10]. Furthermore, a vesicular stomatitis virus-based influenza vaccine by a single immunization conferred rapid protection against different H5N1 clades in the mouse model [11].

L. lactis has been applied to express the heterologous proteins such as viral antigens, cytokines and enzymes [12, 13]. Importantly, *L. lactis* expression system is suitable as a promising vaccine platform for the development of animal influenza A viruses. Our previous studies have shown that *L. lactis* expressing the H5N1 HA, HA1 or NP is a safe and effective delivery vehicle against homologous H5N1 virus challenge in mouse or chicken model with the use of mucosal adjuvant or enteric capsule [14-17]. However, there is not yet investigated whether the unadjuvanted *L. lactis* can provide cross-clade protective immunity against different H5N1 viruses in the chicken model.

In the present study, we generated and tested the *L. lactis* displayed delivery vector expressing the H5N1 HA of A/Vietnam/1203/2004 (clade 1.0) to demonstrate the feasibility of the *L. lactis* display platform for a well-matched H5N1 vaccine. Chickens were vaccinated orally with prime/boost regimen of the unadjuvanted *L. lactis* displayed H5N1 vaccine candidate which could elicit significant humoral immune response and mucosal immune response, as well as the neutralizing antibody response. Most importantly, the vaccinated chickens were protected from the lethal challenge with different H5N1 clades.
Methods

Construction of *L. lactis* vectored vaccine

Spax (411 bp) gene was used as anchor domain and PCR-amplified from *Staphylococcus aureus* (*S. aureus*) genome, as described previously [18]. The HA gene fragment (1650 bp) of A/Vietnam/1203/2004 (H5N1) (Genebank accession No. EU122404) without signal and transmembrane region was PCR-amplified from pcDNA3.1-HA (kindly provided by Institute of Virology, Chinese Academy of Science, Wuhan, China) using the following primers in which GS linker sequence and *Hind* III were underlined, respectively, (H-F: 5' GGCAGCGCCGCGCCGATCAGATTTGCATTGGTTAC 3'; H-R: 5' CCGAAGCTTTTAAATGCAAATTCAGCATT 3'). The Spax and HA fragments were fused into Spax-HA using primes S-F (5' CTAGCTAGCAGTCTTCTAAACGAG 3') and H-R via GS linker. The resulting Spax-HA containing *Nhe* I/*Hind* III was sub-cloned into a *L. lactis* expression vector, pNZ8148 (Fig. 1A), and then electroporated into competent *L. lactis* NZ9000. The positive clone of the *L. lactis*/pNZ8148-Spax-HA was screened and expressed, as described previously [16]. The *L. lactis*/pNZ8148-Spax was used as a negative control for subsequent analyses.

Western blot analysis

The HA protein expression level on the surface of recombinant *L. lactis* was determined by Western blot analysis as described previously [15]. Briefly, 10^8 cells of the *L. lactis*/pNZ8148-Spax-HA pellets were washed three times with 500 μL of sterile phosphate-buffered saline (PBS), and then re-suspended with 50 μL of 6 × loading
buffer and boiled for 10 minutes. Treated samples were run on SDS-polyacrylamide gel electrophoresis and then transferred to nitrocellulose membrane (Bio-rad, Hercules, California, USA). After blocking with 5% non-fat milk at room temperature for 2 h, the membrane was incubated with a monoclonal mouse anti-HA antibody. After incubated overnight at 4 ℃, and then followed by affinity-purified horseradish peroxidase (HRP)-conjugated anti-mouse IgG (Sigma-Aldrich Corporation, St. Louis, MO, USA). The membrane was reacted with the West Pico Chemiluminescent Substrate (Thermo Fisher Scientific Inc., Rockford, IL, USA) and imaged using Molecular Imager ChemiDoc XRS System (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Immunofluorescence assay and flow cytometry analysis

HA protein displayed on the surface of *L.lactis* was confirmed by immunofluorescence assay (Olympus IX70, Japan) and flow cytometry (FACS) analysis (BD FacsCalibur, BD Bioscience, San Jose, CA, USA). Briefly, 10^8 cells of the *L.lactis*/pNZ8148-Spax-HA were washed three times with sterile PBS containing 0.5% bovine serum albumin (BSA) and then incubated with monoclonal mouse anti-HA antibody at 4 ℃ for 1h, followed by a FITC-conjugated goat anti-mouse IgG at 4 ℃ for 30 min and re-suspended with 500 µL of sterile PBS. Finally, the *L.lactis*/pNZ8148-Spax-HA cells were used for immunofluorescence assay and FACS analysis, respectively.

Quantification of the *L.lactis*/pNZ8148-Spax-HA expressing HA protein

The *L.lactis*/pNZ8148-Spax-HA expressing HA protein was determined by indirect ELISA [xxx]. Briefly, 10^{12} colony forming unit (CFU) of the *L.lactis*/pNZ8148-Spax-HA pellets were re-suspended in 100 µL of a monoclonal mouse anti-HA antibody (0,
10, 25, 50, 75, 100, 125, 150, 175, 200 μg/mL) in PBS containing 2% BSA and
incubated at room temperature for 2 h. Followed by incubation with Goat anti-mouse
IgG antibody conjugated with horseradish peroxidase (1 mg/ml) (Sigma-Aldrich
Corporation, St. Louis, MO, USA) at room temperature for 1 h. After washing with
sterile PBS, the cells were re-suspended in 100 μl of HRP substrate 3,3’,5,5’-
tetramethylbenzidine (TMB) (Sigma-Aldrich Corporation, St. Louis, MO, USA) in
the dark for 25 min and then 100 μl of 2 mol/l H2SO4 was added to stop the reaction.
OD450nm value of the supernatant was measured using a microplate reader. The
*L.lactis/pNZ8148-Spax was used a negative control.

Animals, immunization, sample collection and virus challenge

Specific pathogen-free (SPF) white Leghorn chickens (7 days old) were purchased from
the Veterinary Research Academy of Agricultural Sciences of Jiangxi Province (Jiangxi,
China), and housed in ventilated cages (5 chickens / cage). The chickens were managed
with pelleted feed and sterile water, maintained in a SPF environment.
The concentration of the *L.lactis/pNZ8148-Spax-HA was adjusted to 10^{12} colony
forming unit (CFU) / ml. The chickens (n=11 per group) were vaccinated orally with 2
ml of at days 0, 1, 2 for prime immunization and days 17, 18, 19 for boost immunization.
PBS and the *L.lactis/ pNZ8148-Spax cells were used as controls.

At day 15 and day 34 after the initial vaccination, blood samples were collected from
the wing vein. Sera were separated by centrifugation of blood at 2,000 × g for 10 min
and stored at -20 °C until use. Intestines were isolated from the vaccinated chickens
(n=3 / group) and washed with 500 μl sterile PBS. Feces were also collected and re-
suspended with 500 µl PBS, and stored at -20 °C until use.

Two weeks after the final vaccination, all the vaccinated chickens were transferred into an animal BSL-3 containment facility. Slight ether narcosis-anesthetized chickens were intranasally infected with 20 µl of 5 × 50% lethal dose (5 × LD₅₀) of clade 1.0 (A/Vietnam/1203/2004, VN1203), clade 2.3 (A/Anhui/1/2005, Anhui) or clade 8.0 (A/chicken/Henan/12/2004, Henan) HPAI H5N1 virus strain. Three chickens in each group were sacrificed at day 3 post challenge to check virus titer in lungs and other five chickens remained in each group have been used for survival record. Chickens were monitored every alternate day at fixed time point for recording the weight loss and survival. The humane endpoint of the challenge studies was body weight loss exceeded 25% relative to the weight at the time of challenge inoculation. After final monitoring, all survived chickens were euthanized using CO2 inhalation for 5 minutes.

All animal immunizations were carried out at biosafety level 2 (BLS-2) and virus challenge experiments must be strictly performed under the bio-safety level-3 laboratory (BSL-3) containment facilities complying with the Guidelines for Use and Care of Experimental Animals and were approved by the Institute Animal Care and Use Committee of the Nanchang University.

Determination of antibody responses by ELISA

Antibody responses of serum IgG and IgA in the intestinal washes and feces were determined by ELISA using recombinant HA protein (2 µg/ml) of A/Vietnam/1203/2004 as a coating antigen as described previously [15]. Optical density (OD) was measured at 405 nm using ELISA plate reader. The IgG or IgA titer
was determined to be the lowest dilution with an OD greater than the mean OD of naïve controls plus 2 standard deviations.

Neutralization assay

Neutralization activity of serum against different H5N1 viruses was performed as described previously [15]. Briefly, receptor-destroying enzyme (RDE)-treated sera were serially diluted (2-fold) and incubated with 100 TCID50 of clade 1.0 (A/Vietnam/1203/2004, VN1203), clade 2.3 (A/Anhui/1/2005, Anhui) or clade 8.0 (A/chicken/Henan/12/2004, Henan) for 1 h at room temperature and plated in duplicate onto MDCK cells grown in a 96-well plate. The neutralizing titer was assessed as the highest antibody dilution in which no cytopathic effect was observed by light microscopy.

Statistical analysis

All analysis for statistically significant differences was performed by the Student *t* test and one-way ANOVA with multiple comparison. Significant differences in the survival curves were performed by Log-Rank analysis. A *p* value less than 0.05 was considered statistically significant.

Results

Characterization of HA protein expressed on the surface of *L. lactis*

The *L. lactis/pNZ8148*-Spax-HA was generated by fusing the HA gene of A/Vietnam/1203/2004 (clade 1.0) lacking signal peptide and transmembrane domain with Spax via GS linker (Fig. 1a). This Spax has been shown previously to be an
effective anchor protein for display [18]. Expression of the HA protein was detected by Western blot analysis. As expected, specific Spax-HA band was shown at expected size (approximately 120 kDa) (Fig. 1b).

Next, we performed immunofluorescence assay and flow cytometry analysis to determine the display efficiency of HA protein on the surface of L. lactis, the L. lactis/pNZ8148-Spax-HA was incubated with mouse anti-HA monoclonal antibody for direct labelling. Compared to the L. lactis/pNZ8148-Spax control, positive fluorescence signals were observe and detected in the L. lactis/pNZ8148-Spax-HA (Fig. 1c and d). Collectively, these results demonstrated HA protein was located on the surface of L. lactis.

Quantification of HA protein on the surface of L. lactis

Further, As shown in Fig. 1e, 10^{12} colony forming unit (CFU) of the L. lactis/pNZ8148-Spax-HA showed the optical densities at 125 μg reach a stable point suggesting that expression of HA proteins on the L. lactis surface was at its saturation limit at 125 μg/ml.

Antibody responses induced by the L. lactis/pNZ8148-Spax-HA

HA–specific antibody responses were measured by ELISA. Sera IgG titers from chickens vaccinated orally with the L. lactis/pNZ8148-Spax-HA showed a slight significant difference compared to PBS and the L. lactis/pNZ8148-Spax controls at day 15. However, a highly significant increase was detected in the L. lactis/pNZ8148-Spax-HA group at day 34, whereas there were still no significant changes in the PBS or L. lactis/pNZ8148-Spax controls after the boost immunization (Fig. 2a). Similarly, significantly mucosal IgA antibody was detected in the intestine washes and feces of...
chickens vaccinated orally with the *L. lactis*/*pNZ8148*-Spax-HA (Fig. 2b and c). These results revealed the *L. lactis*/*pNZ8148*-Spax-HA could induce significant humoral and mucosal immune responses in vaccinated chickens based on prime-boost regimen.

Neutralization assay

Due to frequent mutation of H5N1 virus, it is important to determine if vaccine candidate elicits neutralization antibody against different H5N1 clades. Therefore, we performed neutralization tests to examine the ability of the *L. lactis*/*pNZ8148*-Spax-HA to generate cross-neutralizing antibody responses against different H5N1 viruses. As shown in Fig. 2d, cross-neutralizing antibodies were elicited in the detected in the *L. lactis*/*pNZ8148*-Spax-HA group that was similar to the HA-specific IgG response. In contrast, no significant cross-neutralizing antibodies were detected in the *L. lactis*/*pNZ8148*-Spax control group. These data were consistent with ELISA assay, chickens vaccinated orally with the *L. lactis*/*pNZ8148*-Spax-HA after prime/boost regimen could produce a higher HA-specific IgG antibody and also elicit neutralization activities which might contribute to preventing H5N1 clade 1.0 (*A/Vietnam/1203/2004, VN1203), clade 2.3 (*A/Anhui/1/2005, Anhui*) and clade 8.0 (*A/chicken/Henan/12/2004, Henan*) infection.

Cross-protection against H5N1 virus infection

Finally, in order to support the cross-protective potential of the *L. lactis*/*pNZ8148*-Spax-HA vaccine, the vaccinated chickens (n=8) were challenged with 20 μL of 5 × LD$_{50}$ of clade 1.0 (*A/Vietnam/1203/2004, VN1203), clade 2.3 (*A/Anhui/1/2005, Anhui*) or clade 8.0 (*A/chicken/Henan/12/2004, Henan*) H5N1 virus, and monitored for 14 days. The
control groups that received PBS or the L.lactis/pNZ8148-Spax showed clinical signs of severe disease, significant body weight loss, a higher lung virus titer at post virus infection, and died within day 8 after the lethal challenge (Fig. 3). In contrast, chickens vaccinated orally with the L.lactis/pNZ8148-Spax-HA survived completely and recovered by 14 days and no significant weight loss or apparent illness symptoms were noted at post virus challenge (Fig. 3). A lower level of lung virus titer was observed in the L.lactis/pNZ8148-Spax-HA group (Fig. 3). Taken together, virus challenge experiment provided the reliable evidence that the L.lactis/pNZ8148-Spax-HA vaccine candidate conferred cross-clade protection against divergent H5N1 clades in the chicken model.

Discussion

Due to frequently occurring antigenic changes with HPAI H5N1 viruses, there exists an epidemic or potential pandemic risk in poultry. A well-matched H5N1 vaccine is likely the effective measure to fight potential H5N1 panzootic. In this study, we generated the well-characterized L.lactis/pNZ8148-Spax-HA vaccine candidate based on the L.lactis display platform as it shows advantages over other vaccine approaches such as ease of genetic modification, efficient and cost-effective manufacturing, mucosal delivery route and proven safety and immunogenicity profile [19].

To define a more optimized vaccine approach, we investigated the immunogenicity of the unadjuvanted L.lactis/pNZ8148-Spax-HA via oral administration in the chicken model. It is accepted generally that the trimeric HA has strong immunogenicity.
Promising results from previous studies in chickens via injection route showing that adjuvanted subunit vaccines consisting of the trimeric H5N1 HA induced high levels of cross-neutralizing antibodies against H5N1 clade 1 and 2 [20, 21]. However, we demonstrated the unadjuvanted \(L.\text{lactis}/pNZ8148-\text{Spax-HA} \) in which HA gene without the signal and trimerization sequence performed convincing cross-clade protection following prime/boost oral vaccination. Further, the \(L.\text{lactis} \) displayed H5N1 vaccine candidate has advantage compared to the currently used influenza virus vaccines including the ease of generation of the vectors as well as the vaccine production in cell lines which are already approved for manufacturing of human vaccines [22]. In addition, the \(L.\text{lactis} \) displayed vaccines are efficacious without safety issues compared to the viral vectored approaches and do not require adjuvants [23]. Thus, the \(L.\text{lactis} \) displayed platform would have a beneficial effect on influenza vaccine manufacturing.

Anchor protein plays an important role in the \(L.\text{lactis} \) displayed vaccines. Our previous studies have shown that pgsA and Spax could be used as anchor proteins for antigen display [16, 18]. The \(L.\text{lactis}/pNZ8110-\text{pgsA-HA1} \) adjuvanted with CTB provided immune protection against homologous H5N1 virus in a mouse model [16]. Also, the unadjuvanted \(L.\text{lactis}/pNZ8110-\text{pgsA-NA} \) and the unadjuvanted \(L.\text{lactis}/pNZ8008-\text{Spax-HA2} \) could protect mice from homologous and heterologous virus infection [18, 23]. Compare to the display efficiency via the anchor protein, we found that the Spax is superior over the pgsA in the \(L.\text{lactis} \) displayed influenza vaccines. Thus, in our present study, the Spax is chosen to design the \(L.\text{lactis} \) displayed H5N1 HA and unadjuvanted \(L.\text{lactis}/pNZ8148-\text{Spax-HA} \) conferred cross-clade protection against
different H5N1 viruses in the chicken model. Based on these findings, the *L. lactis*
displayed platform via the Spax will contribute to providing feasibility in influenza
H5N1 vaccine development for poultry against different H5N1 clades.

The rapid evolution of new sublineages of influenza A/H5N1 virus poses a great threat
to poultry health [24]. A major obstacle in vaccine development against influenza H5N1
virus infection is the rapid evolution of genetic diversity [25], as a result, newer vaccine
approaches for panzootic preparedness against these viruses are needed, given the
limitations of vaccines currently approved for H5N1 viruses in terms of their production
timelines and the ability to induce cross-clade protective immune responses [26]. The
availability of a simple and broadly protective vaccine for influenza H5N1 is a high
priority in preparedness for a future influenza panzootic in poultry industry. The study
demonstrated clearly that the unadjuvanted *L. lactis/pNZ8148*-Spax-HA could serve as
an alternative approach for the development of H5N1 cross-clade vaccine in poultry for
a mass vaccination, which is currently showing particular promise. Overall, the *L. lactis*
displayed platform may contribute a new strategy for the development of the universal
flu vaccine in poultry and human.

Conclusions

These findings suggest that the unadjuvanted *L. lactis* display platform can be
considered as an alternative H5N1 cross-clade vaccine candidate to overcome the
bottleneck of current manufacturing process, and provide a safe, effective and low cost
production of H5N1 vaccine for poultry in a flexible and high output system during an
influenza H5N1 panzootic.

Acknowledgements

The authors gratefully acknowledge for Dr. Yuhong Xu for technical assistance.

Authors’ contributions

All authors approved the manuscript. HL, QC, TG and XP contributed to study design and data interpretation. All contributed to data analysis and results interpretation. HL wrote the manuscript and produced all figures.

Funding

This work was supported by Sichuan Science and Technology Program (No. 2019YFN0134) and the Fundamental Research Funds for the Central Universities (No. 2682018CX73) to H. Lei.

Availability of data and materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

All animal studies complied with the Guidelines for Use and Care of Experimental Animals and were approved by the Animal Committee of the Institute of Nanchang
University consent to participate.

Competing interests

All authors claim no conflict of interests.

References

1. Fielding R, Bich TH, Quang LN, Lam WW, Leung GM, Tien TQ, et al. Live poultry exposures, Hong Kong and Hanoi, 2006. Emerg Infect Dis. 2007; 13: 1065-67.

2. Zhong L, Zhao Q, Zhao K, Wang X, Zhao G, et al. The antigenic drift molecular basis of the H5N1 influenza viruses in a novel branch of clade 2.3.4. Vet Microbiol. 2014; 171: 23-30.

3. Sun X, Belser JA, Pult-Penaloza JA, Creager HM, Guo Z, Jefferson SN, et al. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets. Virology. 2017; 508:164-69.

4. Rajao DS, Perez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front. Microbiol. 2018; 9:123.

5. Tosh PK, Poland GA. Emerging vaccines for influenza. Expert Opin. Emerg. Drugs. 2008; 13:21–40.

6. Nicholson KG, Colegate AE, Podda A, Stephenson I, Wood J, Ypma E, Zambon MC: Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet. 2001; 357:1937-43.

7. Treanor JJ, Schiff GM, Hayden FG, Brady RC, Hay CM, Meyer AL, et al. Safety and
1. Immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine: a randomized controlled trial. JAMA. 2007; 297: 1577-82.

2. Clegg CH, Rninger JA, Baldwin SL. Clinical vaccine development for H5N1 influenza. Expert Rev Vaccines. 2013; 12:767–77.

3. Stohr K. Perspective: Ill prepared for a pandemic. Nature. 2014; 507:S20–1.

4. He F, Prabakaran M, Rajesh Kumar S, Tan Y, Kwang J. Monovalent H5 vaccine based on epitope-chimeric HA provides broad cross-clade protection against variant H5N1 viruses in mice. Antiviral Res. 2014; 105: 143-51.

5. Furuyama W, Reynolds P, Haddock E, Meade-White K, Quynh Le M, Kawaoka Y, et al. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines. 2020; 5:4.

6. Bahey-El-Din M: Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine. 2012; 30: 685-90.

7. Wells JM, Mercenier A: Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008; 6: 349-62.

8. Lei H, Peng X, Shu H, Zhao D: Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus. J Med Virol. 2015; 87: 39-44.

9. Lei H, Xu Y, Chen J, Wei X, Lam DM: Immunoprotection against influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules. Virology 2010, 407:319-24.
recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined
with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine. Immunol 2011, 18: 1046-51.

17. Lei H, Peng X, Jiao H, Zhao D, Ouyang J. Broadly protective immunity against divergent
influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein
adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact. 2015; 14:111.

18. Lei H, Peng X, Zhao D, Jiao H, Ouyang J. Cross-protection of Lactococcus lactis-displayed
HA2 subunit against homologous and heterologous influenza A viruses in mice. Arch Virol. 2015;
160(12):3011-9.

19. Azizpour M, Hosseini SD, Jafari P, Akbary N. Lactococcus lactis: A New Strategy for
Vaccination. Avicenna J Med Biotechnol. 2017; 9:163-8.

20. Lin SC, Huang MH, Tsou PC, Huang LM, Chong P, Wu SC. Recombinant trimeric HA protein
immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or
adenovirus vaccines. PLoS One. 2011; 6:e20052.

21. Cornelissen LA, de Vries RP, de Boer-Luijtingze EA, Rigter A, Rottier PJ, de Haan CA.
A single immunization with soluble recombinant trimeric hemagglutinin protects chickens against
highly pathogenic avian influenza virus H5N1. PLoS One. 2010; 5:e10645.

22. Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for
the future. Hum Vaccin Immunother. 2015;11:1223-34.

23. Villatoro-Hernandez J, Montes-de-Oca-Luna R, Kuipers OP. Targeting diseases with genetically
engineered Lactococcus lactis and its course towards medical translation. Expert Opin Biol Ther.
2011; 11:261-7.
23. Lei H, Peng X, Zhao D, Ouyang J, Jiao H, Shu H, Ge X. Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza A viruses in mice. Virology. 2015; 476:189-95.

24. Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Mizuike R Hiramatsu H, et al. Acquisition of humantype receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 2011; 7: e1002068.

25. Linster M, van Boheemen S, de Graaf M, Schrauwen EJ, Lexmond P, Mänz B, et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014; 157: 329-39.

26. Prieto-Lara E, Llanos-Mendez A. Safety and immunogenicity of prepandemic H5N1 influenza vaccines: a systematic review of the literature. Vaccine 2010; 28: 4328–34.
Fig. 1. Characterization of the HA displayed on the surface of *L. lactis*. (a) Schematic diagram of the *L. lactis*/pNZ8148-Spax-HA. A GS linker inserted between Spax and HA to stabilize the HA protein expression. (b) Western blot analysis. Lane 1: *L. lactis*/pNZ8148-Spax-HA; Lane 2: *L. lactis*-pNZ8148-Spax. (c) Immunofluorescence microscopy assay of the HA protein. *L. lactis*/pNZ8148-Spax (left) and *L. lactis*/pNZ8148-Spax-HA (right) (magnification: 1,000×). (d) Flow cytometric analysis of the HA display on the surface of *L. lactis*. *L. lactis*/pNZ8148-Spax (left) and *L. lactis*/pNZ8148-Spax-HA (positive rate: 60.5%) (right). 15,000 cells were counted. (e) Quantification of the *L. lactis*/pNZ8148-Spax-HA expressing HA protein by indirect ELISA. The values were determined from three independent experiments. Bar indicates mean ± SD.

Fig. 2. Determination of antibody responses elicited by the *L. lactis*/pNZ8148-Spax-HA in chickens. Sera, feces and intestine washes were collected from chickens vaccinated orally with PBS, *L. lactis*/pNZ8148-Spax or *L. lactis*/pNZ8148-Spax-HA. (a) HA-specific IgG antibody responses in the sera. (b) HA-specific IgA antibody responses in the intestine washes. (c) HA-specific IgA antibody responses in the feces. (D) Neutralizing antibody titer. Data are represented as mean ± SD. Asterisk indicates significant difference, as compared to PBS and the *L. lactis*/pNZ8148-Spax controls (p < 0.05)

Fig. 3. Cross-clade protection of chickens against lethal challenge with different H5N1 viruses. The results are expressed in terms of percent body weight (a, b and c), lung virus titer (d, e and f) and percent survival (g, h and i). Two weeks after the last immunization, chickens were intranasally infected with 20 μL of 5 × LD₅₀ of clade 1.0: A/Vietnam/1203/2004 (a, d and g), clade 2.3:
A/Anhui/1/2005, Anhui (b, e and f) or clade 8.0: A/chicken/Henan/12/2004 (c, f and i) HPAI H5N1 virus strains. Chickens were monitored throughout a 14-day observation period (n=5 / group). Data for lung virus titers are represented as mean ± SD. Asterisk indicates significant difference, as compared to PBS and the L.lactis/pNZ8148-Spax controls (p < 0.05).