1. Introduction

Children with Down syndrome (DS) have a 10- to 20-fold increased risk of developing acute leukemia. [1-4] The relative risk of developing acute megakaryoblastic leukemia (AMKL) is estimated to be 500 times higher in children with DS than in those without DS. Interestingly, five to 10% of neonates with DS develop transient abnormal myelopoiesis (TAM). In most cases, it resolves spontaneously within 3 months. However, approximately 15% of the severe cases are fatal and 20% of patients develop AMKL until 3 year-old (Fig.1). AMKL in DS has a number of distinct features and it is now considered a specific subtype of acute myeloid leukemia (AML) in the 4th edition of the World Health Organization (WHO) classification called Myeloid Leukemia of Down syndrome (ML-DS).

2. Acute Myeloid Leukemia (AML)

The majority of cases of AML with DS (70-100%) are megakaryoblastic [5] and occur within the first 4 years of life. [6] The characteristic antecedent preleukaemic TAM is observed in 20–30% of cases. Overt leukemia in DS children is preceded in 20–60% of cases by an indolent myelodysplasia, characterised by thrombocytopenia and bone marrow fibrosis, which may last several months before overt AML. [1, 7] The median age at presentation of AML is 1.8 years. [7] The bone marrow aspirate shows dysplasia, increased blasts, abnormal megakaryocytes and variable myelofiбрosis.[5, 7-8] Immunophenotypically, ML-DS blasts typically express megakaryocytic (CD42b and CD41) and erythroid markers (CD36 and Glycophorin A) as well as the T cell marker, CD7. [9] Neither the favorable cytogenetic changes, such as t(8;21), t(15;17), t(9;11) and inv(16), nor the AMKL-associated translocations, t(1;22) and t(1;3), occur in ML-DS. [1] Additional copies of chromosome 8 and/or 21 (in addition to the +21c, 10-15%), monosomy 7 and –5/5q- (together in 10–20%) are observed. [10]
2.1. Treatment for AML-DS

Conventional treatment of AML-DS has been associated with excessive treatment-related mortality (TRM), cardiac toxicity due to anthracyclines and serious infections. Zwaan et al demonstrated a 12-fold increase in sensitivity to cytarabine in DS-AML cells compared with non-DS AML cells, as well as increased sensitivity to anthracyclines (two- to seven-fold) and etoposide (20-fold).[11] Several collaborative study groups have adapted their standard AML protocol for AML-DS by reducing the dose of drugs (Table 1).[5, 8, 12-17] In the Children’s Oncology Group (COG) trial A2971 (n=132), [13] etoposide, dexamethasone, and the maintenance course were eliminated from the previous CCG2891 protocol. COG A2971 achieved a 5-year EFS rate of 79% plus or minus 7% (versus 77% plus or minus 7% in the CCG2891 trial) while maintaining a low induction failure rate of 6.4%, attaining a 0% CNS relapse rate, and sustaining an acceptably low 5-year postremission. In the AML-BFM98 study (n=66), [7] AML-DS patients were treated with reduced doses of anthracyclines and cytarabine compared with the previous AMLBFM93 protocol (n = 44). The cumulative doses of anthracyclines and cytarabine were 220 to 240mg/m2 and 23 to 29g/m2 in the BFM98 study, and 440mg/m2 and
23.3 g/m² in the AMLBFM93 study, respectively. Outcome improved significantly for patients treated in the AMLBFM98 study, with a 3-year EFS of 91% plus or minus 4% versus 70% plus or minus 7% in the AMLBFM93 study.

Protocol	No of patients	EFS (%)	Relapse (%)	death in CCR (%)	Cytarabine (g/m²)	Daunorubicin (mg/m²)	Mitoxantrone (mg/m²)	Etoposide (mg/m²)
POG9421¹²	57	77 (5y)	7	14	20.7	135	80	1,000
CCG2891⁵	161	77 (6y)	14	4	15.8	320	0	1,600
COG-A2971¹³	132	79 (5y)	11	3	24.8	80	0	0
NOPHO-AML93⁴⁴	41	85 (8y)	7	5	49.6	150	30	1,600
AML-BFM98⁷	67	89 (3y)	6	5	23-29	Ida; 26-36	0-14	950
MRC-AML10/12⁸	46	74 (5y)	3	15	7.8	300	50	1,500
AT-DS(Japan)¹⁵	33	80 (8y)	6	9	4.2	100-400	0	2,700
AML99 DS¹⁶	72	83 (4y)	12.5	1.4	3.5	THP; 250	0	2,250
JCCLSG 9805DS¹⁷	24	83 (5y)	0	13	12.6	THP; 135	0	200

POG, Pediatric Oncology Group; CCG, Children’s Cancer Group; COG, Children’s Oncology Group; NOPHO, Nordic Society for Paediatric Haematology and Oncology; BFM, Berlin-Frankfurt-Munster; MRC, Medical Research Council; JCCLSG; Japan Children’s Cancer and Leukemia Study Group DS, Down syndrome; Ida, Idarubicin; THP, pirarubicin

Table 1. Comparison of the results in DS-AML patients

A treatment regimen specifically designed for AML-DS has been used in Japan since the mid-1980s.[¹⁵, ¹⁶] AML 99 DS protocol consisted of pirarubicin (25 mg/m²/d, on days 1 and 2), which was estimated to be equivalent as 25mg/m²/d of daunomycin (DNR), cytarabine (100 mg/m²/d on day 1 through 7), and etoposide (150 mg/m²/d on day 3 through 5). Pirarubicin is much less cardiotoxic and more myelosuppressive than daunorubicin. A total of 70 of the 72 patients (97.2%) achieved a CR. The 4-year EFS was 83.3% plus or minus 9.1% and the 4-year OS was 83.7% plus or minus 9.5%. The regimen-related toxicities were relatively tolerable. Only one patient died as a result of pneumonia in the second course of intensification. The 3-year EFS in the five patients with monosomy 7 was significantly worse than in the 65 patients without monosomy 7 (40.0% plus or minus 26.3% v 86.2% plus or minus 8.8%). Future treatment protocols could include adherence to a very low-intensity chemotherapy for the majority of ML-DS patients, identification of the subgroup with a poor prognosis using minimal residual disease (MRD), and stratification of these patients to receive a more intensive chemotherapy containing high-dose and/or continuous infusion of intermediate-dose cytarabine.
3. Transient Abnormal Myelopoiesis (TAM)

Transient abnormal myelopoiesis (TAM), also known as transient leukemia (TL) or transient myeloproliferative disorder (TMD) occurs in approximately 10% of infants with DS.\[1, 4\] TAM was considered to be “self-limiting”; the prognosis of TAM was favorable, except for the risk of the subsequent development of acute leukemia. Most of newborns are asymptomatic and only present with circulating blast cells, with or without leucocytosis. Other clinical features include hepatomegaly, splenomegaly, serous effusions and, in up to 10% of patients, liver fibrosis due to blast cell infiltration that can rarely cause fulminant liver failure. Leucocytosis and thrombocytopenia are common. About a quarter of patients have abnormal liver transaminases and abnormal laboratory coagulation tests. The blast cells in TAM usually have the ‘blebby’ appearance characteristic of megakaryoblasts and typically express CD41, CD42b. Most neonates with TAM do not need chemotherapy as the clinical and laboratory abnormalities spontaneously resolve within 3–6 months after birth. However, symptomatic babies with TAM, especially those with high blast counts or liver dysfunction, may benefit from low-dose cytarabine.

In 2006, Children’s Oncology Group (COG) reported a prospective study of the natural history of 48 children with DS and TAM. \[18\] Early death occurred in 17% of infants and was significantly correlated with higher WBC count at diagnosis, increased bilirubin and liver enzymes, and failure to normalize the blood count. Recurrence of leukemia occurred in 19% of infants at a mean of 20 months. In the AML-BFM study, 22 children among total 146 children (15%) died within the first 6 months. The 5-year OS and EFS were 85% plus or minus 3% and 63% plus or minus 4%, respectively. \[19\] A total of 28 children received a short course of cytarabine treatment. Interestingly, EFS and OS did not differ significantly in the treated versus the untreated group. Among the 124 children who survived the first 6 months of life, 29 (23.4%) subsequently developed ML-DS. The 5-year EFS after diagnosis of ML-DS for all 29 patients was 91% plus or minus 5%, which is significantly higher than the 5-year EFS of those of ML-DS patients without documented TAM (70% plus or minus 4%). According to the retrospective study from Japan, estimated gestational age (EGA), higher WBC counts and higher direct bilirubin levels were significant predictive factors for poor prognosis. \[20, 21\] Muramatsu et al devised a simple risk stratification system based on the EGA and the peak WBC count. The high-risk group (HR) was defined as preterm infants with WBC >100 x 10^9/l, the intermediate-risk group (IR) was defined as preterm infants with WBC <100 x 10^9/l and term infants with WBC >100 x 10^9/l, and the low-risk group (LR) was defined as term infants with WBC < 100 x 10^9/l. In the LR group, only three of 39 patients (7.7 %) died early. Based on their data, patients in the LR group should receive no interventions. However, since the probability of early death in patients in the HR group exceeded 50%, active intervention including low dose cytarabine should be tried in the context of a clinical trial for these patients.

3.1. Treatment for TAM

In patients with a severe form of TAM, the main causes of death in early life are progressive hepatic fibrosis, cardiopulmonary failure, and disseminated intravascular coagulation. These
complications may be caused by blast cell infiltration into visceral organs. In the Pediatric Oncology Group (POG) study 9481, 10 mg/m² per dose or 1.2–1.5 mg/kg per dose was given subcutaneously or intravenously by slow injection twice a day for 7 days (Table 2). [18] In the AML-BFM study, 0.5–1.5 mg/kg was administered for 3–12 days. [19] As TAM blasts are highly sensitive to cytarabine, there is generally a rapid response, characterized by the disappearance of peripheral blasts by day 7 of treatment.

Study group	No of patients	Early death (%)	Leukemia (%)	OS (%)	No of treated patients	Cytarabine
POG9481¹⁸	48	17	19	78 (3y)	2	10mg/m² x 2 x 1-2 days
AML-BFM¹⁹	146	15	23.4*	85 (5y)	28	0.5-1.5 mg/kg x 3-12 days
COGA2971²⁰	135	21	16	77 (3y)	29	3.33mg/kg/24 hrs x 5 days
Tokai (Japan)²¹	70	23	22*	74.3(1y)	3	0.7 mg/kg x 5days, 10mg/m² x 2/day
Kikuchi (Japan)²²	73	22	23	71.2(3y)	9	

POG, Pediatric Oncology Group; BFM, Berlin-Frankfurt-Munster; COG, Children’s Oncology Group; *. Alive > 6 mo

Table 2. The outcomes of transient abnormal myelopoiesis with Down syndrome.

Although TAM resolves in the majority of DS infants, 20–30% subsequently develop ML-DS, usually within in the first 4 years of life. [18-22] In the COG study 2971, twenty-one patients among total 135 TAM patients (16%) developed ML-DS, including 3 received cytarabine. [20] The development of AMKL after remission of TAM has been interested as a model of myeloid leukaemogenesis, presumably from a subclone of persisting TMD cells that acquire a selective advantage. This hypothesis can be verified by monitoring minimal residual disease, either by immunophenotype or quantitative GATA1[23] polymerase chain reaction.

Author details

Kazuko Kudo

Address all correspondence to: kazukok@sch.pref.shizuoka.jp

Division of Hematology and OncologyShizuoka Children’s Hospital, Urushiyama, Aoi-ku, Shizuoka, Japan
References

[1] Lange B: The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol 110(3): 512-24, 2000

[2] Zwaan CM, Reinhardt D, Hitzler J, et al: Acute leukemias in children with Down syndrome. Hematol Oncol Clin North Am 24(1): 19-34, 2010

[3] Izraeli S, Rainis L, Hertzberg L, et al. Trisomy of chromosome 21 in leukemogenesis. Blood Cells Mol Dis 39(2): 156-9, 2007

[4] Roy A, Roberts I, Norton A, et al. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol. 2009 Oct;147(1):3-12. Epub 2009 Jul 6. Review.

[5] Gamis AS, Woods WG, Alonzo TA, et al. Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group Study 2891. J Clin Oncol. 2003 Sep 15; 21(18): 3415-22.

[6] Hasle H, Abrahamsson J, Arola M, et al. Myeloid leukemia in children 4 years or older with Down syndrome often lacks GATA1 mutation and cytogenetics and risk of relapse are more akin to sporadic AML. Leukemia. 2008 Jul; 22(7): 1428-30.

[7] Creutzig U, Reinhardt D, Diekamp S, et al: AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 19(8): 1355-60, 2005

[8] Rao A, Hills RK, Stiller C, et al. Treatment for myeloid leukaemia of Down syndrome: population-based experience in the UK and results from the Medical Research Council AML 10 and AML 12 trials. Br J Haematol. 2006 Mar; 132(5): 576-83.

[9] Yumura-Yagi K, Hara J, Kurahashi H, et al. Mixed phenotype of blasts in acute megakaryocytic leukaemia and transient abnormal myelopoiesis in Down’s syndrome. Br J Haematol. 1992 Aug;81(4):520-5.

[10] Forestier E, Izraeli S, Beverloo B, et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood. 2008 Feb 1;111(3):1575-83. Epub 2007 Oct 30.

[11] Zwaan CM, Kaspers GJ, Pieters R, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood. 2002 Jan 1; 99(1):245-51.

[12] O’Brien MM, Taub JW, Chang MN, et al. Cardiomyopathy in children with Down syndrome treated for acute myeloid leukemia: a report from the Children’s Oncology Group Study POG 9421. J Clin Oncol. 2008 Jan 20; 26(3):414-20.
[13] Sorrell AD, Alonzo TA, Hilden JM, et al. Favorable survival maintained in children who have myeloid leukemia associated with Down syndrome using reduced-dose chemotherapy on Children’s Oncology Group trial A2971: A report from the Children’s Oncology Group. Cancer 2012 Mar 5 [Epub ahead of print]

[14] Abildgaard L, Ellebaek E, Gustafsson G, et al: Optimal treatment intensity in children with Down syndrome and myeloid leukaemia: data from 56 children treated on NOPHO-AML protocols and a review of the literature. Ann Hematol 85(5): 275-80, 2006

[15] Kojima S, Sako M, Kato K, et al: An effective chemotherapy regimen for acute myeloid leukemia and myelodysplastic syndrome with Down’s syndrome. Leukemia 14: 786-91, 2000

[16] Kudo K, Kojima S, Tabuchi K, et al: Prospective study of a pirarubicin, intermediate-dose cytarabine, and etoposide regimen in children with Down syndrome and acute myeloid leukaemia: the Japanese Childhood AML Cooperative Study Group. J Clin Oncol 25(34): 5442-7, 2007

[17] Taga T, Shimomura Y, Horikoshi Y, et al: Continuous and high-dose cytarabine combined chemotherapy in children with Down syndrome and acute myeloid leukaemia: Report from the Japanese Children’s Cancer and Leukemia Study Group (JCCLSG) AML 9805 Down Study. Pediatr Blood Cancer 2011; 57(1): 36-40.

[18] Massey GV, Zipursky A, Chang MN, et al: A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood 107(12): 4606-13, 2006

[19] Klusmann JH, Creutzig U, Zimmermann M, et al: Treatment and prognostic impact of transient leukemia in neonates with Down syndrome Blood 111(6): 2991-8, 2008

[20] Gamis AS, Alonzo TA, Gerbing RB, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. Blood. 2011 Dec 22; 118(26):6752-9; quiz 6996. Epub 2011 Aug 17.

[21] Muramatsu H, Kato K, Watanabe N, et al: Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br J Haematol 142(4): 610-5, 2008

[22] Kikuchi A: Transient abnormal myelopoiesis in Down’s syndrome. JPH23: 58-61, 2009

[23] Wechsler J, Greene M, McDevitt MA et al: Acquired mutations in GATA 1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32: 148-52, 2002
