How do Size and Resource Availability Control Aboveground Biomass Allocation of Tree Seedlings?

Christina Lödige*, Peter Schall and Christian Ammer

Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-Universität Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

Abstract

In a three (light availability levels) × two (soil moisture levels) factorial greenhouse experiment we quantified to what extent light availability and soil moisture on the one hand and seedling size on the other hand control the relationship between branch and stem biomass of European beech and Norway spruce seedlings. Aboveground biomass partitioning of both tree species were influenced by size and to a lesser extent by the environmental conditions. The branch biomass allocation pattern to reduced light and soil moisture differed strongly between the two species. European beech allocation was only driven by size and of Norway spruce by size and the environmental conditions. Overall, beech seedlings seem to have much higher crown plasticity as spruce. Our results indicate that in contrast to above-belowground biomass allocation pattern which depend very much on the environmental conditions, aboveground biomass partitioning seem to be mainly controlled by plant size.

Keywords: Aboveground biomass; Branch; Environmental condition; Size; European beech; Norway spruce

Introduction

European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) are prevalent and the economically most important tree species of Central Europe. For a variety of reasons the two species are cultivated in mixed stands on an increasing number of sites [1,2]. Such mixtures have been studied in detail [3,4]. It was shown that beech is more efficient in space occupation while spruce is more efficient in space exploitation under constant conditions in mixed stands. Furthermore, spruce is more sensitive to disturbance than beech [5]. However, most of the studies which compared the plasticity of European beech and Norway spruce focused on mature stands, but not on seedlings and hence did not address tree regeneration. Experiments using seedlings mainly dealt with the growth responses of one of the two species to different resource availability (light, soil moisture and/or nutrients) [6-12]. However, we know of just one study, which comparatively investigated the response of beech and spruce to different levels of light and soil moisture [13]. Moreover the existing studies on beech or spruce seedlings and saplings mainly focused on photosynthesis, diameter and height growth or above and belowground biomass partitioning [14,15], but not much comparative research was done on the pattern of space occupation by the two species under different resource availability levels in the seedling stage.

Beech seedlings are characterized as shade-tolerant, whereas spruce seedlings are considered to be of intermediate shade-tolerance. Both tree species are regarded as sensitive to drought in Central Europe [16-18] but for beech the situation seems to be much less clear than for spruce [19,20]. Climatic changes with more extreme heats, droughts and storms are predicted for Europe [21,22]. These changes in environmental conditions could fundamentally alter interspecific competition and hence the composition, structure, and biogeography of forest in many regions [23]. For example Grundmann et al. found for Southern Sweden that these shifts increased the sensitiveness of Norway spruce, whereas European beech seemed to benefit from warmer conditions in the growing season [24]. However, the impact of more frequent droughts on beech in Central or Southern Europe may be seen in a different light [25].

Against this background it is of interest to analyze the response of the two species to limited resource availability in more detail as it will inherently alter their competitive interactions. The expected climate changes, i.e. higher temperatures and reduced precipitation during summer may affect seedlings even more than mature trees, as resource limitations are known to be crucial in the establishment phase [1]. During this stage the seedlings have to compete for light, water and nutrients with over-story and under-story trees, herbaceous plants but also neighboring seedlings [26,27]. However, resource availability does not only limit tree growth but also determine biomass allocation to shoot, branches, or roots [28], organs which are essential for space occupation and hence competition.

Most research on biomass partitioning has focused on the influence of light and/or soil moisture on stems, leaves or roots [e.g. 7,11,29,30]. In a recent study Schall et al. showed that Norway spruce and European beech seedlings responded differently to limitations in light and water [13]. Whereas growth and biomass allocation to above and belowground plant components of both species were affected by light availability, a shift in biomass partitioning between above and belowground components due to limited soil moisture was found for European beech but not for Norway spruce. While the effect of resource availability on seedling above and belowground biomass was studied for many species and resource levels [9,15,29,31-35], only few studies differentiated between the aboveground components [12,36-38], although the partitioning between branch and stem seems to be an interesting but often disregarded factor for studying pattern of interspecific competition.

In the present study branch growth dynamics of European beech and Norway spruce seedlings in response to shade and drought, was

*Corresponding author: Christina Lödige, Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-Universität Göttingen, Büsgenweg 1, 37077 Göttingen, Denmark, Tel: +49-551 39-221; E-mail: cبدو@gwdg.de

Received May 11, 2014; Accepted June 10, 2014; Published August 12, 2014

Citation: Lödige C, Schall P, Ammer C (2014) How do Size and Resource Availability Control Aboveground Biomass Allocation of Tree Seedlings? Forest Res 3: 123. doi:10.4172/2168-9776.1000123

Copyright: © 2014 Lödige C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
investigated in a greenhouse experiment. The aim of the study was to quantify to what extent light availability and soil moisture on the one hand and seedling size on the other hand control the relationship between branch and stem biomass of the two species. More specifically, we hypothesized that i) the expected change in the relationship between branch and stem biomass to reduced soil moisture and/or shade does vary between tree species, and ii) resource availability determines the relationship between branch and stem biomass to a lesser extent than seedlings size. The latter would mean that, in contrast to biomass partitioning between above and belowground compartments, the partitioning within the aboveground compartment are rather size dependent than influenced by the environment.

Materials and Methods

Experimental design and treatments
We set up a 3×2 factorial greenhouse experiment with 32 replicates per treatment and species between April 2006 and November 2008. In total 192 one-year-old European beech and 192 two-years-old Norway spruce seedlings were examined (two species \times three light levels \times two soil moisture levels \times 32 seedlings) using potted plants. The seeds originated from stands registered for seed harvests which were located in the Bavarian alpine forestland (Provenance Hkg 81024, certificate D-092161001603 for European beech and provenance Hkg 84027, certificate D-09216000203 for Norway spruce). The seedlings were cultivated in a stated owned nursery (Pflanzgarten Stützpunkt Laufen, Bayerische Staatsforsten), where the seedlings grew under open field conditions. In 2006 all seedlings were planted in pots each with a volume of 20 l. The mineral soil in the pots was taken from two neighboring and very productive forest stands growing on haplic luvisols from loess near Freising (southern Germany). One stand was a pure beech, and the other a pure spruce stand. The mineral soil was mixed and filled into the pots. This advancement should assure that seedlings were able to develop a species-specific mycorrhiza during the period of the experiment [13].

At the beginning of the experiment all seedlings were well watered to field capacity and obtained a photosynthetic radiation representing 65% of open field conditions. In 2007 and 2008 the seedlings were exposed to different treatments on the basis of three light levels (28.7%, 58.9% and 80.8% of ambient light) and two soil moisture levels (-400 hPa and -1500 hPa on average). The three light levels reflected different light conditions below the canopy of spruce stands where irregular drying at 105°C until constant weight.

Results

Branch biomass

The regression equations for estimating branch biomass (BB) from the measured branch biomass 2008 is, eb is the estimated branch biomass 2008, CF (European beech CF = 0.89, Norway spruce CF = 1.07) was used for correcting the estimated branch biomass for all years.

Estimated branch biomass for all years and the share of increment of branch biomass to increment of aboveground biomass were analyzed with non-parametrical Kruskal-Wallis ANOVA followed by multiple comparisons using Wilcoxon rank sum test with the Bonferroni adjustment.

The effect of light availability and soil moisture on the relationship between increment of branch biomass and increment of aboveground biomass of the seedlings was analyzed using Generalized Least Squares (GLS). In GLS model variance functions were used to model the variance structure of the errors using covariates [39]. The variance covariate with the best visual fit was used. Aboveground biomass increment, light availability, soil moisture, size (initial aboveground woody biomass) and interactions between aboveground biomass increment and light availability or soil moisture were included in the full model. The full model and all potential simplifications were tested to find the best and simplest model (Table 1 and Table 2 in Appendix). Therefore the Akaike’s Information Criterion was used [40,41]. Pseudo R^2 was used to describe the strength of the relationship between dependent and independent variable. It was calculated by regressing model predictions and observations.

Normal distribution and homogeneity of variance of residuals were analyzed visually and by using the Kolmogorov-Smirnov-test and the Fligner-Killeen test. All analysis and statistical tests were conducted using R, version 2.14.2 (R Development core team). Norway spruce seedlings infested by fungi (treatment 29% light and moist) had to be excluded from the analyses.
The relationship between branch diameter and branch length was:

0.7761 x diameter\(^{2.0534}\) x length\(^{0.6875}\) for beech and

0.11848 x diameter\(^{1.6360}\) x length\(^{1.1597}\) for spruce.

The relationship between measured and calculated branch biomass yielded an adjusted \(R^2\) of 0.97 (\(P<0.001\)) for European beech and of 0.95 (\(P<0.001\), Figure 1) for Norway spruce. Thus, branch biomass could be estimated quite precisely from the measurements. Also the relationship between measured and calculated stem biomass yielded an adjusted \(R^2\) of 0.90 (\(P<0.001\)) for European beech and of 0.89 (\(P<0.001\)) for Norway spruce.

Prior to shading and irrigation estimated branch biomasses within species did not differ between the variants (Table 2). After being exposed to different resource levels, both species responded. Whereas branch biomass of beech did not differ between light levels in the first but in the second year (2008), branch biomass increased with increasing soil moisture in both years (\(P<0.001\)). In contrast to beech, spruce showed an increase in branch biomass with increasing light and soil moisture already in the first year (\(P<0.001\), Table 2). In 2008 beech seedlings which had been exposed to the medium light level yielded the highest branch biomass (\(P<0.001\)), whereas for spruce highest branch biomass was found for the seedlings which received the highest amount of light (\(P<0.001\), Table 2). In the second year branch biomass of both tree species was higher under moist than under dry conditions (\(P<0.001\)) for Norway spruce.

Partitioning between aboveground compartments

Both tree species responded to resource availability in the share of branch biomass increment on aboveground biomass increment. The share of branch biomass increment of European beech responded to different light availability in the first year and showed a higher value under full and low light conditions than under medium light (Table 3). In contrast to beech spruce showed no response to light availability in the first year. In 2008 only the beech seedlings of the dry treatment responded in the share of branch biomass increment to light availability and showed the highest increment in branch biomass under low light. For spruce in 2008 no significant effects of the different treatments on the share of branch biomass increment were detected.

The relationship between branch increment and total aboveground biomass increment of European beech did not differ between the treatments in both years. However it was affected by tree size (Figures 2a and 2b, Table 1 in Appendix). The shift in partitioning to branch biomass increment became more pronounced with increasing seedling size in 2007, whereas the opposite was true for the second year.

For Norway spruce the allocation between increment of branch biomass and increment of aboveground biomass was changed by size (Figure 3a) and by different environmental conditions for Norway spruce in 2007. Only slight differences were found in the AICc-values of the models tested (Table 2, Appendix). Thus it was difficult to decide which of two more or less equal models should be identified as 'best' model: a model indicating an effect of light availability or a model suggesting soil moisture being important. However, the model including soil moisture showed a slightly higher pseudo \(R^2\) (0.93) when compared to the model including light availability (0.92). In the first model the slope of the relationship was higher under moist conditions than under dry conditions. Moreover we identified an interaction between soil moisture and increment of aboveground biomass. In other words, spruce showed disproportionately high increment in branch biomass with increasing aboveground biomass when growing under moist conditions. In the second model the slope of the partitioning was higher under full and middle light conditions than under low light. However, in both models size was an influential factor, indicating that the allocation of branch biomass increased with increasing aboveground biomass (Figure 3a).

In the second year the partitioning between branch biomass increment and aboveground biomass increment was influenced only by light availability. The intercept of the partitioning was higher under middle and low light conditions than under full conditions. Thus, whereas the slope and hence the partitioning between branch biomass increment and total aboveground biomass increment remained unchanged, branch biomass increment at a given value of aboveground biomass increment was higher in the medium and low light environment (Figure 3b). In contrast to 2007 the partitioning was not significantly influenced by size in 2008. Norway spruce showed a higher pseudo \(R^2\) in 2007 and 2008 when compared to European beech (Table 1 and Table 2, Appendix). In contrast to Norway spruce, where the pseudo \(R^2\) remained unchanged between 2007 and 2008, the pseudo \(R^2\) of European beech was smaller in 2008.

Discussion

As in other studies branch biomass was positively related to light availability [29,36,42-45] and soil moisture [14,46] in our experiment. However, the main focus of this study was on aboveground biomass allocation. We found that aboveground biomass partitioning of tree seedlings was influenced by size in three out of four cases (2 species and 2 years) and to a lesser extent by the environmental conditions. These findings confirm hypothesis 2 which stated that resource availability...
tree species, with a highly variable stem axis and the ability to promote spur shoots and thus providing a high number of leaves without many branches [48,49]. Surprisingly the effect of size on aboveground biomass partitioning changed for European beech between 2007 and 2008 (Figure 2). Whereas the increment in branch biomass in relation to total aboveground biomass increment increased with increasing plant size in 2007, the opposite was true in 2008 (Figure 2). It might be that this observation was caused by an artefact. In the second year beech seedlings from neighboring pots may had restricted the growing space which could had led to a reduced branch growth.

Aboveground biomass allocation as a function of the environmental conditions

The results of our experiment did not only reveal changing patterns of aboveground biomass allocation as a function of size, but also due to resource availability (Figure 3b, Table 3). At the end of the study period the seedlings were harvested. For beech, but not for spruce, it was shown that the seedlings allocated more biomass to the belowground compartments under dry conditions [13]. This is in line with the biomass partitioning theory [50]. However, it seems as if this shift of biomass toward the roots was caused by equal reductions of branch growth and main stem growth, as beech did not change aboveground biomass allocation in the different soil moisture treatments (Table 3). This is in contrast to the results of a field study where beech seedlings determines the relationship between branch and stem biomass to a lesser extent than seedlings size. This result is important as it shows that the partitioning within the aboveground compartment are rather size dependent whereas biomass partitioning between above and belowground compartments is very much influenced by the environment [13]. As hypothesized (hypothesis 1) the branch biomass allocation pattern to reduced light and soil moisture differed strongly between European beech and Norway spruce.

Aboveground biomass allocation as a function of size

As predicted by the pipe model [47] both species showed a rather constant relationship between branch biomass increment and the increment of total aboveground biomass indicating a substantial size effect (Figures 2 and 3a).

However, interestingly spruce showed higher pseudo R² (Figures 2 and 3, Table 1 and Table 2 in Appendix) than beech, indicating a higher variability of allocation to branches of the latter species. These different patterns can be explained by the morphology of the two species. Spruce is characterized as a monopodial growing tree species, with a straight stem axis and a more or less fixed pattern of branch number per whorl. In contrast to spruce, beech is characterized as a plagiotrop growing

Figure 1: Relationship between measured branch biomass (g) and estimated branch biomass of European beech (y = -0.01188 + 1.00170 * x; N=60) and Norway spruce (y = 0.01277 + 0.99217 * x; N=254). Biomass models are given in Table 1.

Figure 2: Relationship between increment of branch biomass (g/a) and increment of aboveground woody biomass (g/a) of European beech seedlings in 2007 (a) and 2008 (b). Regression lines represent the minimum, mean and maximum initial biomass (g, size).
responded to increased soil moisture due to cutting over story tree roots with a higher increase in branch biomass compared with the increase in main stem biomass [14]. However, as the plants were not harvested in the field study, it is not clear whether the changed aboveground pattern were actually linked to changes in root biomass. Additionally sizes effects, which were shown to be important for aboveground biomass allocation, were not tested.

Spruce on the other hand, which had not changed its biomass allocation to above and belowground compartments under dry or moist conditions at the end of the experiment [13], showed adjustments in aboveground biomass allocation due to drought in the first year. Actually, under dry conditions branch biomass increment of spruce was reduced at a given aboveground biomass increment. However, we have no explanation why this effect could not be observed also in the second year. The allocation of spruce responded to light availability. Branch biomass increment was reduced at a given aboveground biomass increment under high light conditions in 2008 (Figure 3b). In summary it can be concluded that spruce seedlings tended to cope with environmental stress primarily by adjustments in aboveground biomass partitioning whereas beech responded in a change of above and belowground biomass allocation.

Overall our results confirm the conclusions of [51] suggesting that aboveground biomass allocation of seedlings and sapling are driven by size and – in our case only for spruce – by the environmental conditions. Delagrange et al. [52] and Balandier et al. [53] stated that morphological parameters are driven more by tree size than by light availability, whereas physiological leaf parameters reflect light availability. From our experiment this statement can be widened in so far that above- and belowground biomass partitioning and physiological adjustments seem to be ways to cope with limited resource availability. Adjustments in aboveground biomass seem to be less important. Instead the aboveground allocation pattern seems to represent plant size effects.

Spruce and beech are described as tree species sensitive to drought [18], but the aboveground biomass allocation pattern as reaction to drought differed between both species. Beech seedlings seem to have much higher crown plasticity as spruce. However with regard to climate change, the question, if the better plasticity of beech in response to

Table 2: Estimated branch biomass (g), mean ± standard error, from 2005 to 2008. Significance of treatment effects is indicated by P-value of the Kruskal-Wallis test. Treatments started in spring 2007. Same letters indicate a non-significant difference between single treatments (two-sided: P<0.05, Wilcoxon rank sum test with the Bonferroni adjustment).

Light level	Soil moisture	81%	59%	29%	P-value	Moist	Dry	P-value
European beech								
2005		0.03± 0.0 0.03± 0.0 0.03± 0.0	0.809	0.03± 0.0 0.03± 0.0	0.770			
N	62	63	62	62	92	95		
2006		1.06± 0.1 0.84± 0.1 0.84± 0.1	0.204	0.98± 0.1 0.85± 0.1	0.158			
N	62	63	61	61	92	94		
2007		11.86± 0.8 13.62± 1.2 10.87± 0.7	0.405	14.11± 0.8 10.20± 0.6	<0.001			
N	62	62	61	61	91	94		
2008		24.48± 1.2 31.33± 2.2 23.69± 1.3	0.017	30.94± 1.5 22.32± 1.0	<0.001			
N	62	62	61	61	91	94		
Norway spruce								
2005		0.03± 0.0 0.03± 0.0 0.03± 0.0	0.323	0.03± 0.0 0.03± 0.0	0.209			
N	61	63	64	64	94	94		
2006		0.20± 0.0 0.20± 0.0 0.27± 0.0	0.952	0.19± 0.0 0.25± 0.0	0.240			
N	59	57	59	59	88	87		
2007		6.26± 0.4 4.44± 0.4 2.46± 0.3	<0.001	6.78± 0.5 3.40± 0.2	<0.001			
N	59	57	30	30	59	87		
2008		20.60± 1.3 17.12± 1.0 11.75± 0.9	<0.001	22.99± 1.3 13.63± 0.6	<0.001			
N	56	57	30	30	57	86		
drought may reflect a competitive advantage compared to spruce, cannot be answered yet. Further long-term experiments with beech and spruce under different environmental conditions and different tree ages are required to increase our knowledge in this field. In further studies non-destructive monitoring methods such as 3D-laser scanning are promising tools to provide more insights in aboveground biomass allocation in the field [54].

Acknowledgement
We gratefully acknowledge the support by Isabella Dully, Fevzije Osmani, Ulrike Westphal and student helpers with the laborious measurements. Christina Lödige was supported by the Functional Biodiversity Research Cluster of Göttingen University, led by Andrea Polle and financed of the Lower Saxony Ministry of Science and Culture. We are grateful for this support.

References
1. Ammer C, Stimm B, Mosandl R (2008) Ontogenetic variation in the relative influence of light and belowground resources on European beech seedling growth. Tree Physiology 28: 721-728.
2. Knoka T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. European Journal of Forest Research 127: 89-101.
3. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared to pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. European Journal of Forest Research 128: 183-204.
4. Pretzsch H, Block J, Dieter J, Dong PH, Kohnle U, et al. (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science 67: 712.
5. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biology 7: 626-639.
6. Badoux H (1898) Lichtversuche mit Deckgittern. Mitteilungen der Schweizerischen Centralanstalt für das forstliche Versuchswesen 6: 29-36.
7. Burschel P, Schmalz J (1965) Die Bedeutung des Lichthes für die Entwicklung junger Buchen. Allgemeine Forst- und Jagdzeitung 136: 193-210.
29. Curt T, Coll L, Prévost B, Balandier P, Kunstler G (2005) Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbage competition. Annals of Forest Science 62: 51-60.

30. Löf M, Boite A, Welander NT (2005) Interacting effects of irradiance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings. Scandinavian Journal of Forest Research 20: 322-328.

31. Tesch SD, Korpela EJ, Hobbs SD (1993) Effects of sclerophyllous shrub competition on root and shoot development and biomass partitioning of Douglas-fir seedlings. Canadian Journal of Forest Research 23: 1415-1426.

32. Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity in Root/Shoot Partitioning: Optimal, Ontogenetic, or Both?. Functional Ecology 10: 44-50.

33. Cao K-F, Ohkubo T (1998) Allometry, root/shoot ratio and root architecture in understory saplings of deciduous dicotyledonous trees in central Japan. Ecological Research 13: 217-227.

34. Van Hees AFM, Clercx APPM (2003) Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech. Forest Ecology and Management 176: 439-448.

35. Luo Y, Wang X, Zhang X, Booth TH, Lu F (2012) Root:shoot ratios across China’s forests: Forest type and climatic effects. Forest Ecology and Management 269: 19-25.

36. Cornelissen JHC (1993) Aboveground Morphology of Shade-Tolerant Castanopsis fargesii Saplings in Response to Light Environment. International Journal of Plant Sciences 154: 481-495.

37. Ammer C (2000) Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung junger Buchen. Shaker Verlag, Aachen.

38. Linhart M (2009) Wachstum und Qualität junger Buchen in einem unterschiedlich aufgelichteten Fichtenaltbestand. Band 3, Göttinger Forstwissenschaften, Universitätsverlag Göttingen.

39. Pinheiro JC, Bates DM (2000) Mixed effects models in S and S-PLUS. Statistics and Computing Series, Springer, New York.

40. Burnham KP, Anderson DR (2002) Model Selection and Multimodal Inference. A Practical Information-Theoretic Approach. Second edition, Springer, New York.

41. Metz J, Seidel D, Schall P, Scheffer D, Schulze ED, Ammer C (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. Forest Ecology and Management 310: 275-288.

42. Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. Forest Ecology and Management 86: 61-71.

43. Aussénac G (2000) Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science 57: 287-301.

44. Ammer C (2003) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Annals of Forest Science 60: 163-171.

45. Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79: 489-502.

46. Chan SS, Radosevich SR, Grotta AT (2003) Effects of contrasting light and soil moisture availability on the growth and biomass allocation of Douglas-fir and red alder. Canadian Journal of Forest Research 33: 106-117.

47. Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form - the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology 14: 133-139.

48. Gruber F (1992) Dynamik und Regeneration der Gehölze. Baumbauarchitektur auf ökologisch-dynamischer Grundlage und zur Biodindikation am Beispiel der Europäischen Fichte (Picea abies (L.) Karst.), Weißtanne (Abies alba Mill.), Douglasie (Pseudotsuga menziesii Franco) und Europäischen Lärche (Larix decidua Mill.). Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, A 86, Teil I, Selbstverlag, Göttingen.

49. Sitte P, Weiler E, Kaderet J, Breinsky A, Körner C (2002) Strasburger. Lehrbuch der Botanik für Hochschulen, 35. Auflage. Spektrum Akademischer Verlag, Heidelberg.

50. Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16: 326-331.

51. Claveau Y, Messier C, Comeau PG (2005) Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance. Tree Physiology 25: 373-384.

52. Delagrange S, Messier C, Lechowicz J, Dziengrzemel P (2004) Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology 24: 775-784.

53. Balandier P, Sinoquet H, Fraek E, Giuliani R, Vandame M, et al. (2007) Six-year time course of light-use efficiency, carbon gain and growth of beech saplings (Fagus sylvatica) planted under a Scots pine (Pinus sylvestris) shelterwood. Tree Physiology 23: 1073-1082.

54. Seidel D, Beyer F, Hertel D, Fleck S, Leuschner C (2011) 3D-laser scanning: A non-destructive method for studying above-ground biomass and growth of juvenile trees. Agricultural and Forest Meteorology 151: 1305-1311.