Ellipticine cytotoxicity to cancer cell lines – a comparative study

Marie STIBOROVÁ 1, Jitka POLJAKOVÁ 1, Eva MARTÍNKOVA 1, Lucie BOŘEK-DOHALSKÁ 1, Tomáš ECKSCHLAGER 2, René KIZEK 3, Eva FREI 4

1 Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
2 Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University and University Hospital Motol, Prague, Czech Republic
3 Department of Chemistry and Biochemistry, Faculty of Agriculture, Mendel University of Agriculture and Forestry, Brno, Czech Republic
4 Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany

ABSTRACT

Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of action. This anticancer agent should be considered a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its cytochrome P450 (CYP)- and/or peroxidase-mediated activation to species forming covalent DNA adducts. Ellipticine can also act as an inhibitor or inducer of biotransformation enzymes, thereby modulating its own metabolism leading to its genotoxic and pharmacological effects. Here, a comparison of the toxicity of ellipticine to human breast adenocarcinoma MCF-7 cells, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells and U87MG glioblastoma cells and mechanisms of its action to these cells were evaluated. Treatment of all cells tested with ellipticine resulted in inhibition of cell growth and proliferation. This effect was associated with formation of two covalent ellipticine-derived DNA adducts, identical to those formed by 13-hydroxy- and 12-hydroxyellipticine, the ellipticine metabolites generated by CYP and peroxidase enzymes, in MCF-7, HL-60, CCRF-CEM, UKF-NB-3, UKF-NB-4 and U87MG cells, but not in neuroblastoma UKF-NB-3 cells. Therefore, DNA adduct formation in most cancer cell lines tested in this comparative study might be the predominant cause of their sensitivity to ellipticine treatment, whereas other mechanisms of ellipticine action also contribute to its cytotoxicity to neuroblastoma UKF-NB-3 cells.

KEY WORDS: Ellipticine; cancer cell lines; DNA adducts; mechanisms of anticancer effects of ellipticine

Introduction

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole, Figure 1), an alkaloid isolated from Apocynaceae plants, exhibits significant antitumor and anti-HIV activities (for a summary see Stiborová et al., 2001). The main reason for the interest in ellipticine and its derivatives for clinical purposes is their high efficiency against several types of cancer, their rather limited toxic side effects, and their complete lack of hematological toxicity (Auclair, 1987). Nevertheless, ellipticine is a potent mutagen. Most ellipticine derivatives are mutagenic to Salmonella typhimurium Ames tester strains, bacteriophage T4, Neurospora crassa, and mammalian cells and induce prophage lambda in Escherichia coli (for an overview see Stiborová et al., 2001). Ellipticine has been reported to arrest cell cycle progression by regulating the expression of cyclin B1 and Cdc2 as well as phosphorylation of Cdc2 (Kuo et al., 2005a; b) to induce apoptotic cell death by generation of cytotoxic free radicals, activation of Fas/Fas ligand system, regulation of Bcl-2 family proteins (Kuo et al., 2005a; b; 2006), increase of wild-type p53, rescue of mutant p53 activity and initiation of the mitochondrial apoptosis pathway (Garbett and Graves., 2004; Kuo et al., 2005a; b; 2006). Ellipticine also activates the p53 pathway in glioblastoma cells; its impact on these cancer cells depends on the p53 status. In a U87MG glioblastoma cell line expressing p53wt, ellipticine provoked an early G0/G1 cell cycle arrest, whereas in a U373 cell line expressing p53mt it caused arrest in S and G2/M phase (Martínková et al., 2010).

Ellipticine and 9-hydroxyellipticine also cause selective inhibition of p53 protein phosphorylation in several
human cancer cell lines (Ohashi et al., 1995; Sugikawa et al., 1999) and this correlates with their cytotoxic activity. However, the precise molecular mechanism responsible for these effects has not been explained yet. Chemotherapy-induced cell cycle arrest was shown to result from DNA damage caused by a variety of chemotherapeutics. In the case of ellipticine, it has been suggested that the prevalent DNA-mediated mechanisms of its antitumor, mutagenic and cytotoxic activities are (i) intercalation into DNA and (ii) inhibition of DNA topoisomerase II activity (Auclair, 1987; Garbett & Graves, 2004; Stiborová et al., 2006; 2007a; b; Poljaková et al., 2006; Moserová et al., 2008), suggesting a third possible mechanism of action. Two major DNA adducts generated from 13-hydroxyellipticine (Figure 2F) and 12-hydroxyellipticine (Figure 2G) or N²-oxide of ellipticine (Figure 2H), which rearranges to 12-hydroxyellipticine by a Polonowski rearrangement (Stiborová et al., 2004), during the ellipticine CYP- and peroxidase-mediated metabolism are formed in vitro and in vivo in mice (Figure 2I) and rats (Figure 2J) treated with this anticancer

Figure 1. Scheme of the metabolism of ellipticine by peroxidases and human CYPs showing the characterized metabolites and those proposed to form DNA adducts. The compounds shown in brackets are hypothetical electrophilic metabolites postulated as ultimate arylating species or postulated N²-deoxyguanosine adducts.
drug (Stiborová et al., 2001; 2003a; b; 2004; 2006; 2007a; b; 2008; Frei et al., 2002; Poljaková et al., 2006). The same DNA adducts were also detected in cancer cells in culture, such as human breast adenocarcinoma MCF-7 cells (Figure 2L) (Bořek-Dohalská et al., 2004), leukemia HL-60 (Figure 2M) and CCRF-CEM cells (Figure 2N) (Poljaková et al., 2007), neuroblastoma cells (Figure 2O) (Poljaková et al., 2009) and glioblastoma cells (Figure 2P) (Martinová et al., 2009) in vitro, and in rat breast adenocarcinoma in vivo (Figure 2K) (Stiborová et al., 2011). On the basis of these data, ellipticine might be considered a drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its activation by CYPs and peroxidases in target tissues.

In order to evaluate contributions of DNA adduct formation by ellipticine to its toxicity to cancer cells, a comparison of cytotoxicity and of DNA adduct formation by 0.1–10 μM ellipticine in different cancer cell lines was performed. The 32P-postlabeling method was used to determine DNA adduct formation by ellipticine and cytotoxicity of ellipticine was determined with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide (MTT) assay (Cinatl et al., 1997). Human cancer cell lines sensitive to ellipticine such as human breast adenocarcinoma, leukemia, neuroblastoma and glioblastoma cancer cells were utilized for this study.

Material and methods

Chemicals

Ellipticine was obtained from Sigma (St. Louis, MO, USA). All other chemicals used in the experiments were of analytical purity or better.

Cell cultures

The MCF-7 cell line was from the collection of cell lines of the German Cancer Research Center Heidelberg, Germany). MCF-7 cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM, Biochrom AG, Berlin, Germany), high-glucose type (DMEM with 4.5 g D-glucose/l), supplemented with 4 mM L-glutamine, 25 mM HEPES Sigma, St. Louis, MO, U.S.A.), 5% fetal calf serum (Biochrom AG, Berlin, Germany) at 37 °C, 5% CO2 and 95% atmospheric humidity. The MCF-7 cell line was from the collection of cell lines of the Institute, (Buffalo, NY, USA) and HL-60 cells (a promyelocytic line) were from the collection of cell lines of the Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University and University Hospital Motol (Prague, Czech Republic). HL-60 cells were cultivated in Iscove’s modified Dulbecco’s medium (IMDM, Biochrom AG, Berlin, Germany), high-glucose type, supplemented with 4 mM L-glutamine, 10% fetal calf serum (PAA Laboratories, Pasching, Austria), 100 units (U) per ml of penicillin and 100 μg/ml streptomycin (PAA, Vienna, Austria) and 0.3% (w/v) NaHCO3 at 37 °C, 5% CO2 and 95% atmospheric humidity. CCRF-CEM cells were cultivated in RPMI 1640 medium (Biochrom AG, Berlin, Germany) supplemented with 2 mM L-glutamine, 10% fetal calf serum (PAA Laboratories, Pasching, Austria) and 0.3% (w/v) NaHCO3 at 37 °C, 5% CO2 and 95% atmospheric humidity.

The UKF-NB-3 and UKF-NB-4 neuroblastoma cell lines, established from bone marrow metastases of high risk neuroblastoma, were a gift of Prof. J. Cinatl, Jr. (J. W. Goethe University, Frankfurt, Germany). The cell line UKF-NB-4 was established from chemoresistant recurrence. IMR-32, high risk neuroblastoma derived cell line, was of commercial source (LGChem, Wesel, Germany). All three cell lines used were derived from high risk neuroblastoma with MYCN amplification, del1p and aneuploidy. Cells were grown at 37 °C and 5% CO2 in Iscove’s modified Dulbecco’s medium (IMDM) (KlinLab Ltd, Prague, Czech Republic), supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 units/ml of penicillin and 100 μg/ml streptomycin (PAA Laboratories, Pasching, Austria).

MTT assay

The cytotoxicity of ellipticine was determined by MTT test. For a dose-response curve, solution of ellipticine in dimethyl sulfoxide (DMSO) (1 mM) was dissolved in culture medium to final concentrations of 0–10 μM. Cells in exponential growth were seeded at 1 × 104 per well in a 96-well microplate. After incubation (48 hours) at 37 °C in 5% CO2 saturated atmosphere the MTT solution (2 mg/ml PBS) was added, the microplates were incubated for 4 hours and cells lysed in 50% N,N-dimethylformamide containing 20% of sodium dodecyl sulfate (SDS), pH 4.5. The absorbance at 570 nm was measured for each well by multiiwell ELISA reader Versamax (Molecular devices, CA, USA). The mean absorbance of medium controls was subtracted as a background. The viability of control cells was taken as 100% and the values of treated cells were calculated as a percentage of control. The IC50 values were calculated from at least 3 independent experiments using linear regression of the dose-log response curves by SOFTmaxPro.

Treatment of cancer cell lines with ellipticine for DNA adduct analyses

Cell lines were seeded 24 hr prior to treatment at a density of 1 × 105 cells/ml in two 75 cm² culture flasks in a total volume of 20 ml of IMDM. Ellipticine was dissolved in 20 μl of DMSO, the final concentration was 0, 0.1, 1, 5 or 10 μM. After 48 h the cells were harvested after trypsinizing by centrifugation at 2000 × g for 3 min and two washing steps with 5 ml of PBS yielded a cell pellet, which was stored at –20°C until DNA isolation. DNA was isolated and labeled as described in the next section.
DNA isolation and 32P-postlabeling of DNA adducts
DNA from cells was isolated by the phenol-chloroform extraction as described (Frei et al., 2002; Borek-Dohalská et al., 2004; Poljaková et al., 2007; 2009). 32P-postlabeling analyses were performed using nuclease P1 enrichment as described previously (Stiborová et al., 2001) from experiments performed earlier, calf thymus DNA incubated with ellipticine activated with CYP3A4 (Stiborová et al., 2004), LPO, MPO, COX-1 and -2 (Stiborová et al., 2007a), with 13-hydroxyellipticine, 12-hydroxyellipticine and N2-oxide of ellipticine (Stiborová et al., 2004; 2007a) and liver DNA of rats (Stiborová et al., 2007b) or mice (Stiborová et al., 2008) treated with ellipticine were labeled with 32P to compare adduct spot patterns.

HPLC analysis of 32P-labeled DNA adducts
HPLC analysis was performed essentially as described previously (Stiborová et al., 2003a; b; 2004). Individual spots detected by 32P-postlabeling were excised from the thin layer and extracted (Stiborová et al., 2003a; b; 2004). Cut-outs were extracted with two 800μl portions of 6 M ammonium hydroxide/isopropanol (1:1) for 40 min. The eluent was evaporated in a Speed-Vac centrifuge.

The dried extracts were dissolved in 100μl of methanol/phosphate buffer (pH3.5) 1:1 (v/v). Aliquots (50μl) were analyzed on a phenyl-modified reversed-phase column (250mm × 4.6 mm, 5μm Zorbax Phenyl; Säulentechnik Knauer, Berlin, Germany) with a linear gradient of methanol (from 40 to 80% in 45 min) in aqueous 0.5 M sodium phosphate and 0.5 M phosphoric acid (pH 3.5) at a flow rate of 0.9 ml/min. Radioactivity eluting from the column was measured by monitoring Cerenkov radiation with a Berthold LB 506 C-I flow-through radioactivity monitor (500μl cell, dwell time 6 s).

Results
Cytotoxicity of ellipticine to human breast adenocarcinoma MCF-7, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells, and glioblastoma U87MG cells
To determine the cytotoxicity of ellipticine to human breast adenocarcinoma MCF-7, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells and glioblastoma UKF87MG cells, they were treated with increasing concentrations of...
ellipticine and viable cells detected with MTT assay. As shown in Table 1, all cell lines were sensitive to ellipticine. Ellipticine inhibited the growth of all cell lines tested in this study in a dose-dependent manner. The IC₅₀ values for ellipticine calculated from the dose-log response curves are shown in Table 1. Neuroblastoma IMR-32 cells, followed by neuroblastoma UKF-NB-4 and UKF-NB-3 and leukemia HL-60 cells, were the cells most sensitive to ellipticine, with IC₅₀ values lower than 1 μM (see IC₅₀ values shown in Table 1). When sensitivity of additional cells to ellipticine was compared, cytotoxicity of this agent to human breast adenocarcinoma MCF-7 cells and a glioblastoma U87MG cell line was found to be comparable (the IC₅₀ values were around 1 μM), while leukemia CCRF-CEM cells were less sensitive. The IC₅₀ value for ellipticine was almost 4 times higher in these leukemia cells than in MCF-7 and U87MG cells (Table 1).

Determination of DNA adduct formation by ellipticine in human breast adenocarcinoma MCF-7, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells, and glioblastoma U87MG cells

The cell lines shown to be sensitive to ellipticine (Table 1) were treated with increasing concentrations of ellipticine (0.1–10 μM) for 48 h and DNA was isolated from these cells. Using the nuclease P1 version of ³²P-postlabeling assay, which was found to be suitable to detect and quantify DNA adducts formed by ellipticine (Stiborová et al., 2001; 2003a; b; 2004; 2007a; b, 2011), ellipticine-derived adducts were detected in the DNA of these cells (Figure 2L-P, Table 2). Two major ellipticine-DNA adducts were detected in the DNA of these cells. Using the nuclease P1 version of ³²P-postlabeling assay, which was found to be suitable to detect and quantify DNA adducts formed by ellipticine (Stiborová et al., 2001; 2003a; b; 2004; 2007a; b, 2011), ellipticine-derived adducts were detected in the DNA of these cells (Figure 2L-P, Table 2). Two major ellipticine-DNA adducts (spots 1 and 2 in Figure 2I) were detected in all cells with an overproportional increase between 1 μM and 10 μM (or 5 μM) ellipticine in MCF-7, HL-60, IMR-32, UKF-NB-3, UKF-NB-4 and U87MG cells, but not in CCRF-CEM cells (Table 2). The highest levels were formed in leukemia HL-60 cells (Table 2).

Discussion

The results of this study show a comparison of ellipticine cytotoxicity to several human cancer cell lines (breast adenocarcinoma MCF-7, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3, UKF-NB-4 lines and glioblastoma U87MG cells). In addition, the mechanism of ellipticine cytotoxicity to these cells was evaluated. The mode of antitumor, cytotoxic and mutagenic action of ellipticine is considered to be based mainly on DNA damage, such as intercalation into DNA, inhibition of topoisomerase II, and formation of covalent DNA adducts mediated by CYPs and peroxidases (Auclair, 1987, Stiborová et al., 2001; 2006; 2009; Garbett & Graves, 2004). Intercalation of ellipticine into DNA and inhibition of topoisomerase II occur in all cell types irrespective of their metabolic capacity, because of the general chemical properties of this drug and its affinity to DNA and topoisomerase II protein (Auclair, 1987). However, the formation of ellipticine-DNA adducts, which is dependent on ellipticine activation by CYPs and peroxidases, has not yet been proven as a general mechanism. We found this ellipticine action unambiguously in vitro, using several CYP and peroxidase enzymes for ellipticine activation (Stiborová et al., 2001; 2003a; b; 2004; 2007a) and in vivo in rats and mice (Stiborová et al., 2003a; 2007b; 2008). In our former studies (Bořek-Dohalská et al., 2004; Poljaková et al., 2007; 2009; Martínková et al., 2009) and in the present work, ellipticine-DNA adducts were detected also in several human cancer cell lines. Here we evaluated a contribution of this mechanism to ellipticine toxicity to these cancer cells. The toxic effects of ellipticine to leukemia HL-60 and CCRF-CEM cells (expressed as IC₅₀ values) correspond to levels of ellipticine-DNA adducts formed in these cells. This finding indicates that covalent modification of DNA

Cells	IC₅₀ (μM)
Breast adenocarcinoma MCF-7	1.25±0.13
Leukemia HL-60	0.67±0.06
Leukemia CCRF-CEM	4.70±0.48
Neuroblastoma IMR-32	0.27±0.02
Neuroblastoma UKF-NB-3	0.44±0.03
Neuroblastoma UKF-NB-4	0.49±0.04
Glioblastoma U87MG	1.48±0.62

IC₅₀ values were calculated from the linear regression of the dose-log response curves. Values are mean ± S.D. of at least 3 experiments.
by ellipticine plays an important role in cytotoxicity of ellipticine to these leukemia cells. Even though the IC_{50} values for ellipticine in MCF-7 and U87MG cells essentially correspond to levels of DNA adducts formed by ellipticine, we cannot account these data as valuable because these cell lines are cells of different cancer types. In the case of two of neuroblastoma cell lines tested, IMR-32 and UKF-NB-3, toxic effects of ellipticine to these cells also correspond to levels of ellipticine-DNA adducts formed in these cells. The cytotoxic activity of ellipticine to IMR-32 and UKF-NB-4 neuroblastoma cell lines was also previously found to be a consequence of the formation of ellipticine-DNA adducts (Poljaková et al., 2009). In addition, the role of ellipticine-DNA adduct formation in cytotoxicity of this drug to neuroblastoma cells was further supported by the finding that a decrease in the levels of these adducts in IMR-32 and UKF-NB-4 cells under hypoxic conditions correlated with a decrease in toxicity of ellipticine under these conditions (Poljaková et al., 2009). This is, however, not the case of the UKF-NB-3 cell line; lower levels of DNA adducts were found in these cells than in UKF-NB-4 cells, although both neuroblastoma cells exhibited similar sensitivity to ellipticine. All these findings suggest that DNA adduct formation by ellipticine

Table 2. DNA adduct formation by ellipticine in human cancer cell lines.

Cells	Levels of DNA adducts (RAL x 10^{-7})a				
	Adduct 1	Adduct 2	Adduct 6	Adduct 7	Total
MCF-7					
+ 1.0 μM ellipticine	0.12±0.01	0.20±0.02	n.d.	n.d.	0.32±0.03
+ 5 μM ellipticine	1.90±0.20	2.63±0.30	0.17±0.02	n.d.	4.70±0.50
+ 10 μM ellipticine	3.72±0.40	4.77±0.50	0.81±0.07	n.d.	9.30±0.92
HL-60					
+ 0.1 μM ellipticine	0.41±0.04	0.24±0.01	n.d.	n.d.	0.65±0.07
+ 1.0 μM ellipticine	4.30±0.42	3.20±0.34	n.d.	n.d.	7.50±0.73
+ 5 μM ellipticine	46.32±4.30	21.18±2.30	n.d.	n.d.	67.50±6.23
CCRF-CEM					
+ 0.1 μM ellipticine	0.02±0.01	0.01±0.01	n.d.	n.d.	0.03±0.01
+ 1.0 μM ellipticine	1.12±0.01	1.08±0.02	n.d.	n.d.	2.20±0.22
+ 5 μM ellipticine	3.60±0.30	3.20±0.40	n.d.	n.d.	6.80±0.65
+ 10 μM ellipticine	9.40±0.95	8.40±0.79	n.d.	n.d.	17.80±1.62
IMR-32					
+ 0.1 μM ellipticine	0.10±0.01	0.13±0.01	n.d.	n.d.	0.23±0.02
+ 1.0 μM ellipticine	0.26±0.02	0.31±0.03	n.d.	n.d.	0.57±0.05
+ 10 μM ellipticine	13.15±1.30	13.13±1.30	n.d.	n.d.	26.28±2.60
UKF-NB-3					
+ 1.0 μM ellipticine	0.12±0.01	0.23±0.02	n.d.	n.d.	0.35±0.04
+ 10 μM ellipticine	3.26±0.32	2.64±0.40	n.d.	n.d.	5.90±0.68
UKF-NB-4					
+ 0.1 μM ellipticine	0.04±0.01	0.01±0.01	n.d.	n.d.	0.05±0.01
+ 1.0 μM ellipticine	0.20±0.02	0.38±0.04	n.d.	n.d.	0.58±0.06
+ 10 μM ellipticine	5.40±0.56	6.50±0.81	0.27±0.03	0.37±0.05	12.54±1.51
U87MG					
+ 1.0 μM ellipticine	0.11±0.01	0.19±0.02	n.d.	n.d.	0.30±0.04
+ 10 μM ellipticine	1.98±0.15	3.42±0.33	n.d.	n.d.	5.40±0.53

Cancer cells were exposed to ellipticine for 48 h. DNA adducts were analyzed by the nuclease P1 version of the 32P-postlabeling assay. aRAL, relative adduct labeling; averages and S.D. of three experiments. n.d. - not detected (the detection limit of RAL was 1/10^9 nucleotides).
might be the predominant mechanism responsible for ellipticine cytotoxicity to most of cancer cell lines tested in this work, except UKF-NB-3 neuroblastoma cells. Thus the DNA adduct formation by ellipticine is probably not the major mechanism responsible for ellipticine cytotoxicity to UKF-NB-3 neuroblastoma cells. Other mechanisms such as intercalation into DNA (Auclair, 1987; Singh et al., 1994) and inhibition of DNA topoisomerase II activity (Auclair, 1987; Monnot et al., 1991; Fossé et al., 1992; Froelich-Ammon et al., 1995) that were found to be additional DNA-mediated mechanisms of ellipticine anti-tumor, mutagenic and cytotoxic activities [for a summary see (Stiborová et al., 2001; 2006; 2011)] seem to contribute to ellipticine cytotoxicity to these neuroblastoma cells. In order to resolve the real contribution of covalent DNA adduct formation by ellipticine in these cells, additional DNA damage such as intercalation of ellipticine into DNA in these and other cancer cells should be assessed. Recently, we used square wave voltammetry to evaluate intercalation of ellipticine into DNA in vitro and covalent modification of DNA by ellipticine in a UKF-NB-3 neuroblastoma cell line and found participation of both these mechanisms in DNA damage caused by this drug in this neuroblastoma cell line (Huska et al., 2010a; Huska et al., 2010b). Nevertheless, further detailed studies have to be performed which would examine differences in electrochemical signals of DNA with intercalated ellipticine and DNA covalently modified by this antitumor agent. In our former studies, toxic effects of ellipticine to several cancer cells were found to be dependent on expression of CYP1A1, 1B1, 3A4 and peroxidases LPO, COX and MPO in these cells (Bořek-Dohalská et al., 2004; Poljaková et al., 2007; 2009; Martinòvá et al., 2009). Moreover, expression of CYP1A1, 1B1 and 3A4 enzymes was found to be induced by treating glioblastoma U87MG, adenocarcinoma MCF-7 and neuroblastoma UKF-NB-4 cells with ellipticine (Martinková et al., 2009; Stiborová et al., unpublished results). Likewise, CYP1A1 was found to be induced by ellipticine in rats in vivo (Aimová et al., 2007). Hence, the sensitivity of individual cancer cells to ellipticine cytotoxicity to ellipticine derivatives in human breast adenocarcinoma MCF-7 cells. Collect Czech Chem Commun 69: 603–615. Cinnati J Jr, Cintali J, Driever PH, Kotchetkov R, Pouckova P, Kornhuber B and Schwade D. (1997). Sodium valproate induces in vivo growth of human neuroblastoma cells. Anti-Cancer Drugs 8: 588–63.

Frei E, Bieler CA, Arlt VM, Wiessler M and Stiborová M. (2002). Covalent binding of the anticancer drug ellipticine to DNA in V79 cells transfected with human thymocyte P450 enzymes. Biochem Pharmacol 64: 289–295.

Garbett NC and Graves DE. (2004). Extenting nature’s leads: the anticancer agent ellipticine. Curr Med Chem Anti-Cancer Agents 4: 149–72.

Huska D, Adam V, Križková S, Hrabeta J, Eckschlager T, Stiborová M and Kizek R. (2010a) An electrochemical study of interaction of an anticancer alkaloid ellipticine with DNA. Chim Oggi-Chem Today 28(3 Suppl S): 15–17.

Huska D, Adam V, Hulábková J, Trnková L, Eckschlager T, Stiborová M, Provazník I and Kizek R. (2010b). Off-line coupling of automated pipetting system with square wave voltammetry as a tool for study of drug-DNA interaction. Chim Oggi-Chem Today 28(5 Suppl S): 18–20.

Fosse P, René B, Charra M, Paeretti C and Saucier JM. (1992). Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: structure-activity relationships. Mol Pharmacol 42: 590–595.

Froelich-Ammon SJ, Patchan MW, Ochrocz N and Thompson RB. (1995). Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J Biol Chem 270: 4998–5004.

Kuo PL, Hsu YL, Chang CH and Lin CC. (2005a). The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett 223: 293–301.

Kuo PL, Hsu YL, Kuo YC, Chang CH and Lin CC. (2005b). The antiproliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anti-Cancer Drugs 16: 789–795.

Kuo PL, Kuo YC, Hsu YL, Cho CY and Lin CC. (2006). Ellipticine induced apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci. 78: 2550–2557.

Martinková E, Dondtwill M, Frei E and Stiborová M. (2009). Cytotoxicity of and DNA adduct formation by ellipticine in human U87MG glioblastoma cancer cells. Neuro Endocrinol Lett 30(Suppl 1): 60–66.

Martinková E, Maglott A, Leger, DY, Bonnet D, Stiborová M, Takeda K, Martin and Dondtwill M. (2010). α5β1 integrin antagonists reduce chemotherapy-induced premature senescence and facilitate apoptosis in human glioblastoma cells. Int J Cancer 127: 1240–1248.

McCormick DL, Adamowski CB, Fiks A, Moon RC. (1981). Lifetime dose-response relationships for mammalian tumor induction by a single administration of N-methyl-N-nitrosourea, Cancer Res 41: 1690–1694.

Monnot M, Mauffret O, Simon V, Lescot E, Psaume B, Saucier JM, Charra M, Belehradek J Jr and Fermandjian S. (1991). DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J Biol Chem 265: 1820–1829.

Mosrová M, Kotrubová V, Rupertová M, Naiman K, Hudeček J, Hudeck P, Frei E and Stiborová M. (2008). Isolation and partial characterization of the adduct formed by 13-hydroxyellipticine with deoxyguanosine in DNA. Neuro Endocrinol Lett 29: 728–732.

Ohashi M, Sugikawa E and Nakanishi N. (1995). Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: A possible anticancer mechanism. Jpn J Cancer Res 86: 819–829.

Poljaková J, Dračínský M, Frei E, Hudeček J and Stiborová M. (2006). The effect of pH on peroxidase-mediated oxidation of and DNA-adduct formation by ellipticine. Collect Czech Chem Commun. 71: 1169–1185.

Poljaková J, Frei E, Gomez JE, Aimová D, Eckschlager T, Hrabět J and Stiborová M. (2007). DNA adduct formation by the anticancer drug ellipticine in human leukemia HL-60 and CCRF-CEM cells. Cancer Lett 252: 270–279.
Poljaková J, Eckschlager T, Hrabětová J, Hřebáčková J, Smutný S, Frei E, Martinek V, Kizek R and Stiborová M. (2009). The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem Pharmacol 77: 1466–1479.

Singh MP, Hill GC, Peoch D, Rayner, B, Inabach, JL and Lown JW. (1994). High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry 33: 10271–10285.

Stiborová M, Bieler CA, Wiessler M and Frei E. (2001). The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem Pharmacol 62: 675–684.

Stiborová M, Breuer A, Aimová D, Stiborová-Rupertová M, Wiessler M and Frei E. (2003a). DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P-postlabeling. Int J Cancer 107: 885–893.

Stiborová M, Stiborová-Rupertová M, Bořek-Dohalská L, Wiessler M, Frei E. (2003b). Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem Res Toxicol 16: 38–47.

Stiborová M, Sejbal J, Bořek-Dohalská L, Aimová D, Poljaková J, Forsterová K, Rupertová M, Wiesner J, Hudeček J, Wiessler M and Frei E. (2004). The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res 64: 8374–8380.

Stiborová M, Rupertová M, Schmeiser HH and Frei E. (2006). Molecular mechanism of antineoplastic action of an anticancer drug ellipticine. Biomed Pap Med Fac Univ Palacký Olomouc Czech Repub 150: 13–23.

Stiborová M, Poljaková J, Ryšlavá H, Dračinský M, Eckschlager T and Frei E. (2007a). Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int J Cancer 120: 243–251.

Stiborová M, Rupertová M, Aimová D, Ryšlavá H and Frei E. (2007b). Formation and persistence of DNA adducts of anticancer drug ellipticine in rats. Toxicology 236: 50–60.

Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Kotrbová V, Moserová M, Hudeček J, Phillips DH and Frei E. (2008). Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: studies with the hepatic NADPH:cytochrome P450 reductase null mouse. Toxicol Appl Pharmacol 226: 318–327.

Stiborová M, Rupertová M and Frei E. (2011). Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its antitumor efficiency. Biochim Biophys Acta 1814: 175–185.

Sugikawa E, Hosoi T, Yazaki N, Gamanuma N, Nakanishi N and Ohashi M. (1999). Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anticancer Res 19: 3099–3108.