Integrin triplets of marine sponges in the murine and human MHCI-CD8 interface and in the interface of human neural receptor heteromers and subunits

Alexander O Tarakanov1* and Kjell G Fuxe2

Abstract
Based on our theory, main triplets of amino acid residues have been discovered in cell-adhesion receptors (integrins) of marine sponges, which participate as homologies in the interface between two major immune molecules, MHC class I (MHCI) and CD8αβ. They appear as homologies also in several human neural receptor heteromers and subunits. The obtained results probably mean that neural and immune receptors also utilize these structural integrin triplets to form heteromers and ion channels, which are required for a tuned and integrated intracellular and intercellular communication and a communication between cells and the extracellular matrix with an origin in sponges, the oldest multicellular animals.

Keywords: Neural receptor-receptor interactions, Receptor interface, Marine sponges, Triplet homologies

Introduction
Based on a mathematical approach, Tarakanov and Fuxe (2010, 2011) have deduced a set of triplet homologies (so called ‘triplet puzzle’) that may be responsible for protein-protein interactions, including receptor heteromers and human immunodeficiency virus (HIV) entry. For example, the triplet of amino acid residues ITL (Ile-Thr-Leu) appears in both receptors of any of six receptor heteromers: GABAB1-GABAB2 (GABAB receptor), GABAB1-mGluR1, GABAB1-CXCR4, CXCR4-CCR2, 5HT1B-5HT1D, and MHC class I MHCI-CD8. At the same time, this triplet ITL does not appear in both receptors of any of known non-heteromers (GABAB2-A2A, A2A-D1, A1-D2, NTSR1-D1, TSHR-D2, and CD4-D2; see Tarakanov and Fuxe 2010). According to recent biochemical studies (Borroto-Escuela et al. 2010, 2011, 2012a,b; Romero-Fernandez et al. 2011), such triplets exist in the interacting domains forming the receptor interface. Furthermore, a ‘guide-and-clasp’ manner of receptor-receptor interactions has been proposed where the ‘adhesive guides’ may be the triplet homologies (Tarakanov and Fuxe, 2010). According to recent bioinformatic studies (Tarakanov et al. 2012 a,b,c,d), several triplet homologies of such receptor heteromers in human brain may be the same as in cell-adhesion receptors of marine sponges, known to be highly conserved from the lowest metazoa to vertebrates (Gamulin et al. 1994; Muller 1997; Pancer et al. 1997; Buljan and Bateman 2009). Interactions between such triplets probably represent a general molecular mechanism for receptor-receptor interactions (Fuxe et al 2012) and may play an important role in human learning (Agnati et al. 2003) and some diseases (Tarakanov et al. 2009).

In the current paper, many of such triplets have been found in integrins of marine sponges together with human alpha and beta integrins. This means that such triplet homologies may play a role in alpha-beta heterodimeric complexes forming integrin receptors and interact with extracellular matrix proteins (Barcyk et al. 2010). Of especial interest is that the same integrin triplets exist also in the murine and human MHCI interface with CD8, in human neural receptors and in the interface of both protomers of several receptor heteromers. The presence of such triplet homologies in several receptor subunits building up the neuromuscular nicotinic cholinergic...
Protein	Species	Type	Accession code						
ITGA	Sponge (Geodia cydonium)	Metazoan adhesion receptor subunit Integrin-α	CAA65943						
ITGB	Sponge (Geodia cydonium)	Metazoan adhesion receptor subunit Integrin-β	CAA77071						
ITGB4	Sponge (Marichromatium purpuratum)	Metazoan adhesion receptor subunit Integrin-β4	ZP_08774040						
MHC1	Mouse (Mus musculus)	H-2 class I histocompatibility antigen	NP_0010001892						
CD8a	Mouse	T-cell surface glycoprotein chain CD8α	NP_001074579						
CD8b	Mouse	T-cell surface glycoprotein chain CD8β	NP_00339886						
MHC1	Human (Homo sapiens)	H-2 class I histocompatibility antigen	AAA595999						
CD8a	Human	T-cell surface glycoprotein chain CD8α	NP_001139345						
CD8b	Human	T-cell surface glycoprotein chain CD8β	NP_7573623						
CXCR4	Human	Chemokine receptor	P61073						
TSHR	Human	Thyroid stimulating hormone receptor	NP_000360						
FGFR1	Human	Fibroblast growth factor receptor	NP_075598						
SHT1A	Human	Serotonin receptor	AAHE69159						
Collagen	Human	Matrix protein	P02452						
ITGAIIB	Human	Integrin receptor subunit-αIib	P08514						
ITGAL	Human	Integrin receptor subunit-αL	P20701						
ITGAM	Human	Integrin receptor subunit-αM	NP_001139280						
ITGAV	Human	Integrin receptor subunit-αV	EAX10934						
ITGAX	Human	Integrin receptor subunit-αX	NP_000878						
ITGB2	Human	Integrin receptor subunit-β2	NP_000202						
ITGB3	Human	Integrin receptor subunit-β3	NP_000203						
ITGB4	Human	Integrin receptor subunit-β4	NP_000204						
ITGB5	Human	Integrin receptor subunit-β5	NP_000205						
ITGB6	Human	Integrin receptor subunit-β6	P18564						
ITGB8	Human	Integrin receptor subunit-β8	P26012						
ACHA	Human	Acetylcholine receptor subunit-α	P02708						
ACHB	Human	Acetylcholine receptor subunit-β	P11230						
ACHD	Human	Acetylcholine receptor subunit-δ	Q07001						
ACHF	Human	Acetylcholine receptor subunit-ε	Q04844						
mGluR1	Human	Metabotropic glutamate receptor	NP_000829						
GABAB2	Human	γ-aminobutyric acid receptor subunit-2	O75899						
GABAB1	Human (Homo sapiens)	γ-aminobutyric acid receptor subunit-1	NP_001461						
GABAB1	Mouse (Mus musculus)	*	NP_062312						
GABAB1	Norway rat (Rattus norvegicus)	*	NP_112290						
GABAB1	Western clawed frog (Xenopus (Silurana) tropicalis)	*	NP_001107291						
GABAB1	Green puffer (Tetraodon nigroviridis)	*	uniprot/Q459D9						
GABAB1	Zebrfish (Danio rerio)	*	NP_001070794						
GABAB1	African malaria mosquito (Anopheles gambiae)	*	uniprot/Q7PM55						
GABAB1	Drosophila pseudoobscura	*	XP_01357356						
GABAB1	Human body louse (Pediculus humanus corporis)	*	XP_002430445						
GABAB1	Caenorhabditis elegans	*	ACE63490						
Protein	Species	Type	LLG	GLL	ITL	RPA	GDR	RDG	DGR
---------	---------	------------	-----	-----	-----	-----	-----	-----	-----
ITGA	Sponge	Integrin-α	-	-	+	+	+	-	-
ITGB	Sponge	Integrin-β	+	+	-	-	-	-	-
ITGB4	Sponge	Integrin-β	-	-	-	-	-	+	+
MHC Class I	Mouse	Immune receptor	+	-	+	+	-	-	+
CD8a	Mouse	Immune receptor	+	-	+	-	-	-	-
CD8b	Mouse	Immune receptor	-	-	-	-	-	-	-
MHC Class I	Human	Immune receptor	+	-	+	+	-	+	+
CD8a	Human	Immune receptor	-	-	+	+	-	-	-
CD8b	Human	Immune receptor	-	-	+	-	-	-	-
CXCR4	Human	Endocrine receptor	-	-	-	-	+	-	-
TSHR	Human	Endocrine receptor	-	-	-	-	-	-	-
FGFR1	Human	Receptor tyrosine kinase	-	-	-	-	+	-	-
SHT1A	Human	Neural receptor	+	-	-	-	-	-	-
Collagen	Human	Matrix protein	-	-	-	-	+	+	+
ITGALB	Human	Integrin-α	+	-	-	-	-	+	+
ITGAL	Human	Integrin-α	-	+	-	-	-	-	-
ITGAM	Human	Integrin-α	+	+	-	-	-	-	-
ITGAV	Human	Integrin-α	+	-	-	-	-	-	-
ITGAX	Human	Integrin-α	+	+	-	-	-	+	+
ITGB2	Human	Integrin-β	-	+	-	-	-	-	-
ITGB3	Human	Integrin-β	-	+	-	-	-	-	-
ITGB4	Human	Integrin-β	+	-	-	-	-	-	-
ITGB5	Human	Integrin-β	+	-	-	-	-	+	+
ITGB6	Human	Integrin-β	-	+	-	-	-	-	-
ITGB8	Human	Integrin-β	-	+	-	-	+	-	-
ACHA	Human	Neural receptor subunit	+	-	-	-	-	-	-
ACHB	Human	Neural receptor subunit	+	-	+	+	+	-	-
ACHD	Human	Neural receptor subunit	-	+	+	-	-	-	-
ACHE	Human	Neural receptor subunit	+	+	-	-	-	-	-
GABA	Human	Neural receptor	+	-	-	-	-	-	-
GABAB2	Human	Neural receptor	-	+	+	-	-	-	-
mGluR1	Human	Neural receptor	-	+	+	-	-	-	-

(+ yes, - no).
Receptor heteromer	Reference	Function	LLG	GLL	ITL	RPA	DGR
MHCI-CD8a	Gao et al. (1997)	Adaptive immune response	-	-	#	+	-
MHC1-CD8b	Wang et al. (2009)	Adaptive immune response	-	-	#		
CD8a-CD8b	Wang et al. (2009)	Coreceptor of T cells	-	-	+	-	
ITGAVB-ITGB3	Barczyk et al. (2010)	RGD (Arg-Gly-Asp) receptor					#
ITGAVB-ITGB5	Barczyk et al. (2010)	RGD receptor	#	-		-	-
ITGAVB-ITGB6	Barczyk et al. (2010)	RGD receptor			#		-
ITGAVB-ITGB8	Barczyk et al. (2010)	RGD receptor			#		-
ITGAB-ITGB2	Barczyk et al. (2010)	Leukocyte receptor	-	+			
ITGAB-ITGB2	Barczyk et al. (2010)	Leukocyte receptor	-	+			
GABAB1-GABAB2	Marshall et al. (2001)	Activation of the potassium channels and regulation of receptor trafficking	-	#		-	-
GABAB1-mGluR1	Hirono et al. (2001)	Modulation of excitatory transmission	-	#		+	-
GABAB1-CXCR4	Guyon and Nahon (2007)	Modulation of neuroendocrine systems	-	-	#		-
ACHA-ACHB	Changeux et al. 1984	Part of the neuromuscular nicotinic receptor	+	-			-
ACHA-ACHE	Changeux et al. 1984	Part of the neuromuscular nicotinic receptor	+	-			-
ACHB-ACHD	Changeux et al. 1984	Part of the neuromuscular nicotinic receptor	-	-			#

(+ yes in both receptors, # may mediate their interaction, - no in any receptor).
receptors has also been demonstrated. At least one of the homologies may have a role in the intermolecular subunit interactions of this ion channel receptor.

Methods

Amino acid codes of receptors and other proteins have been obtained from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) and the Universal Protein Resource (http://www.uniprot.org). Table 1 summarizes data on proteins used. In abstract mathematical terms, any protein is just a word coded by a 20-letter alphabet where triplet is any 3-letter subword. Thus, triplet homology is any triplet which exists in both given words. Our theory of triplet puzzle supposes some basic set of triplets as a code that determines whether two receptors bind or not (Tarakanov and Prokaev 2007; http://youtu.be/1DevThU5fyM).

No experimental research has been performed on humans and/or animals.

Results

The triplets ITL (Ile-Thr-Leu), RPA (Arg-Pro-Ala), DGR (Asp-Gly-Arg), LLG (Leu-Leu-Gly), and GLL (Gly-Leu-Leu) of the integrin receptors of marine sponges appear as homologies in murine (underlined) and human MHCI-CD8 complex, human collagen (DGR triplet), and human receptor heteromers: TM1, TM2 and TM7 are the first, the second and the seventh transmembrane α-helices of ACHB, CXCR4, and GABAB (GABAB1-GABAB2 heteromer) receptors, respectively, and contain the ITL triplet. The RPA triplet is also found in the TSHR and FGFR1; the RPA but not the ITL triplet homologies are in a position to contribute to the physical interaction between the beta and delta subunits of the neuromuscular nicotinic receptor (ACHB-ACHD); light-shaded letters are positively charged amino acids (R, K, and H), whereas dark-shaded white letters are negatively charged amino acids (D and E); bold letters are main players of leucine-rich motifs (L, S, and C).
This triplet homology exists also in three GABAB1 receptor heteromers of human brain: GABAB1-GABAB2 forming the GABAB receptor (Marshall et al. 2001), GABAB1-mGluR1, and GABAB1-CXCR4 and may mediate the interaction in two of them (see Table 3 and Figure 1). In the first two heteromers also triplet GLL (Gly-Leu-Leu) may participate in the interaction (see Table 3 and Figure 2).

The triplet DGR (Asp-Gly-Arg) is in fact the inverse triplet of RGD (Arg-Gly-Asp) that provides the binding site for integrin RGD-binding receptors (see Table 3). Moreover, a small peptide ligand RGD (Arg-Gly-Asp) that mimics extracellular matrix protein binding to integrins also causes impairments in plasticity at glutamatergic synapses (Wiggins et al. 2011).

The evolution of the ITL triplet in the GABAB1 receptor subunit is displayed in Figure 3. In phylogeny, it appears to begin in fish (Tetraodon) and then continues to man, while it is missing in zebrafish (Danio rerio). Thus, the usefulness of the ITL triplet in recognition is rediscovered in the fish GABAB1 receptor.

Furthermore, the RPA triplet homology in the beta and delta interacting nicotinic subunits of the neuromuscular nicotinic receptor (see Changeux et al. 1984) is in a location...
(N-terminal parts of ACHB and ACHD) where it may participate in forming part of their interface (see Figure 1 and Table 3).

Discussion
The triplet ITL (Ile-Thr-Leu) found in integrins of marine sponges is presented as a homology in the interface between MHC Class I and CD8αβ heterodimer (coreceptor in T cells). It is postulated that this triplet homology can contribute to the formation of the MHCI-CD8 heteromeric complex which leads to a strong activation of the T cell by guiding the T-cell receptor into relevant self-MHC recognition (see Wang et al. 2009). Thus, it seems possible that the ITL triplet may have a critical role in the interaction between these two immune receptors which is necessary for appropriate T cell function. A mutation of the ITL triplet in these immune receptors will be of value to test this hypothesis. The indications have also been obtained that triplet homology ITL in the N-terminal of beta and delta nicotinic receptor subunits of the neuromuscular nicotinic receptor may help mediate their interaction in the subunit interface.

Conclusion
Integrin triplets of marine sponges found in the interface of human receptor heteromers and even in the interface between two major immune molecules MHCI-CD8 seem to confirm once more our theory. This triplet puzzle arose as a surprising merger of pure mathematics and most recent biochemical studies of receptor-receptor interactions. As a result, it appears that neural and immune receptor heteromers in humans may also utilize these structural elements originating in sponges, the oldest multicellular animals. Thus, the triplet puzzle may be an ancient and general mechanism for protein-protein recognition.

Competing interests
Both authors declare that they have no competing interests.

Authors’ contributions
AT carried out the mathematical studies and computations. KF carried out the biomedical interpretation of the results. All authors read and approved the final manuscript.

Acknowledgement
The authors have not received any support for this work.

Author details
1 Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia. 2 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Received: 23 October 2012 Accepted: 11 March 2013 Published: 22 March 2013

References
Agnati LF, Franzén O, Ferre S, Leo G, Franco R, Fuxe K (2003) Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J Neural Transm Suppl 65:1–28
Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280
Borroto-Escuela DO, Narvaez M, Marcelino D, Parado C, Narvaez JA, Tarakanov AO, Agnati LF, Diaz-Cabale Z, Fuxe K (2010) Galanin receptor-1 modulates 5-hydroxytryptamine-1A signaling via heterodimerization. Bioch Biophys Res Commun 393:767–772
Borroto-Escuela DO, Tarakanov AO, Guidolin D, Ciruela F, Agnati LF, Fuxe K (2011) Moonlight characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life 63:463–472
Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO, Narvaez M, Di Liberto V, Agnati LF, Belluardo N, Fuxe K (2012a) FGFR1-S-HT1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psych 71:84–91
Borroto-Escuela DO, Romero-Fernandez W, Perez-Alea M, Narvaez M, Tarakanov AO, Mudo G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2012b) The existence of FGFR1-S-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity. J Neurosci 32:6295–6303
Bujaln M, Bateman A (2009) The evolution of protein domain families. Biochem Soc Trans 37:751–755
Changeux JP, Devillers-Thiély A, Chemouilli P (1984) Acetylcholine receptor: an allosteric protein. Science 225:1335–1345
Fuxe K, Borroto-Escuela DO, Marcelino D, Romero-Fernandez W, Frankovska M, Guidolin D, Filip M, Ferraro L, Woods AS, Tarakanov A, Ciruela F, Agnati LF, Tangarelli S (2012) GPCR heteromers and their allosteric receptor-receptor interactions. Curr Med Chem 19:356–363
Gamulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WE (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest metazoan (marine sponges) to vertebrates. Biol Chem Hoppe Seyler 375:583–588
Gao GF, Torno I, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Jakobsen NK (1997) Crystal structure of the complex between human CD8α and HLA-A2. Nature 387:630–634
Guyen A, Nahon JL (2007) Multiple actions of the chemokine stromal cell-derived factor 1α on neuronal activity. J Mol Endocrinol 38:363–376
Hirono M, Yoshioka T, Konishi S (2001) GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4:1207–1216
Marshall FH, Jones KA, Kaufmann K, Bettler B (2001) GABAB receptors – the first 7TM heterodimers. Trends Pharmacol Sci 20:396–399
Muller WEG (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review. Cell Tissue Res 289:383–395
Pancer Z, Krase M, Muller IM, Muller WEG (1997) On the origin of metazoan adhesion receptors: Cloning of integrin α subunit from the sponge Geodia cydonium. Mol Biol Evol 14:391–398
Romero-Fernandez W, Borroto-Escuela DO, Tarakanov AO, Mudo G, Narvaez M, Perez-Alea M, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2011) Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochem Biophys Res Commun 409:764–768
Tarakanov AO, Fuxe KG (2010) Triplet puzzle: homologies of receptor heteromers. J Mol Neurosci 40:676–687
Tarakanov AO, Fuxe KG (2011) The triplet puzzle of homologies in receptor heteromers exists also in other types of protein-protein interactions. J Mol Neurosci 44:173–177
Tarakanov AO, Prokaev A (2007) Identification of cellular automata by immunocomputing. J Cellular Automata 2:39–45
Tarakanov AO, Fuxe KG, Agnati LF, Goncharova LB (2009) Possible role of receptor heteromers in multiple sclerosis. J Neural Transm 116:989–994
Tarakanov AO, Fuxe KG, Borroto-Escuela DO (2012a) On the origin of the triplet puzzle of homologies in receptor heteromers: Immunoglobulin triplets in different types of receptors. J Mol Neurosci 46:616–621
Tarakanov AO, Fuxe KG, Borroto-Escuela DO (2012b) On the origin of the triplet puzzle of homologies in receptor heteromers: toll-like receptor triplets in different types of receptors. J Neural Transm 119:517–523
Tarakanov AO, Fuxe KG, Borroto-Escuela DO (2012c) Integrin triplets of marine sponges in human brain receptor heteromers. J Mol Neurosci 48:154–160
Tarakanov AO, Fuxe KG, Borroto-Escuela DO (2012d) Integrin triplets of marine sponges in human D2 receptor heteromers. J Recept Sig Transd 32:202–208

Wang R, Natarajan K, Margulies DH (2009) Structural basis of the CD8ab/MHCI interaction: focused recognition orients CD8b to a T cell proximal position. J Immunol 183:2554–2564

Wiggins A, Smith RJ, Shen HW, Kalivas PW (2011) Integrins modulate relapse to cocaine-seeking. J Neurosci 31:16177–16184

doi:10.1186/2193-1801-2-128

Cite this article as: Tarakanov and Fuxe: Integrin triplets of marine sponges in the murine and human MHCI-CD8 interface and in the interface of human neural receptor heteromers and subunits. SpringerPlus 2013 2:128.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Immediate publication on acceptance
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com