Discovery of an Entrapped Early Permian (ca. 299 Ma) Peri-Gondwanic Sliver in the Cretaceous Shyok Suture of Northern Ladakh, India: Diverse Implications
Discovery of an Entrapped Early Permian (ca. 299 Ma) Peri-Gondwanic Sliver in the Cretaceous Shyok Suture of Northern Ladakh, India: Diverse Implications

Rajeev Upadhyay, Dept. of Geology (CAS), Kumaun University, Nainital-263001 (Uttarakhand), India; rajeevmtl1@gmail.com; Saurabh Gautam, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, India; and Ram Awatar, 7/464 A, Vikas Nagar, Lucknow-226022, India

ABSTRACT
In a significant breakthrough, we report the first discovery of twenty-six genera and thirty-five species of Early Permian (Asselian–Sakmarian and Artinskian; 299 Ma to 276 Ma) Gondwanic palynomorphs from a tectonically emplaced metasedimentary sliver of Shyok Ophiolitic Mélange of the India-Asia Collision zone of Northern Ladakh, India. These palynofloral assemblages are of peri-Gondwanian (Cimmerian) origin and have a strong affinity with the Gondwana assemblage of peripeninsular India. Similar palynofloral assemblages are also known from Extra-Peninsular India, Salt Range, Karakoram, Antarctica, Australia, South Africa, and South America. The occurrence of Gondwanic sliver within the Shyok Suture is interpreted as a thin flake of active continental margin of peri-Gondwanic microcontinent/Kshiroda plate, which was sliced off during the subduction/collision process, between Ladakh block and Karakoram–Qiangtang-Lhasa terrane and amalgamated with obducted remnants of the accretionary prism of the nascent Shyok Suture. The Shyok Suture closed during the mid- to Late Cretaceous period. Subsequent syn- and post-collision synkinematic episodes tectonically juxtaposed the peri-Gondwanic sliver in the tectonized zone of Shyok Ophiolitic Mélange. The India-Asia collision, which took place ca. 60–50 Ma with the demise of Neo-Tethys Ocean, along the Indus Tsangpo Suture Zone, modified the geometry of accreted ophiolitic stack of the Shyok Suture.

INTRODUCTION
The supercontinent Pangaea began to break apart during the late Carboniferous–early Permian period (ca. 300 Ma–272 Ma). This break-up is followed by the seafloor spreading, which produced new oceanic crust and several smaller oceans and larger plates. The erstwhile Tethys Ocean, juxtaposed between the Eurasian continent in the north and Gondwana in the south, ruptured, and culminated into the subsequent opening and closing of nascent Neo-Tethys and Paleo-Tethys oceans, respectively. Several smaller continental fragments existed between the two continental masses (Smith et al., 1981; Nie et al., 1990; Scotese and Langford, 1995; Upadhyay et al., 1999b).

Paleogeographic reconstructions of Pangaea during the late Paleozoic (Smith et al., 1981; Nie et al., 1990; Scotese and Langford, 1995) show that a southern belt of these continental fragments stretching from Iran and Afghanistan, through Tibet to western Thailand, Malaysia, and Sumatra has been accreted to Asia since the mid-Paleozoic (Şengör, 1987; Metcalfe, 2006). The Karakoram-Hindukush microplate in the west and the Qiangtang-Lhasa block in central and southeastern Asia are among these blocks, which were welded/sutured to Asia, probably around 130–120 Ma (Şengör, 1987; Dewey et al., 1988, and references therein) (Fig. 1). The origin, migration path, timing of accretion, and assembly of all of these blocks in their present tectonic position are little known. The paleogeography during the break-up of Gondwana is poorly constrained, and scant geological information is available from Pamir, Northern Ladakh, Karakoram, and western Tibet. However, based on temperate fauna, flora, and even glacial and glaciomarine deposits (tillites or diamicrites) from the Permian sequences, the Central Iran, Helmand, Western Qiangtang, Lhasa, and Sibumasu blocks are interpreted as having rifted off the northern margin of Gondwana in post-Early Permian times (Smith et al., 1981; Nie et al., 1990; Scotese and Mc kerrow, 1990; Scotese and Langford, 1995; Upadhyay et al., 1999b; Muttoni et al., 2009). These blocks belong to a poorly defined continent named peri-Gondwana or Cimmeria (Şengör, 1987). Based on the occurrence of Early Permian marine Gondwanan sediments, the Karakoram terrane is now (Fig. 1) identified as a peri-Gondwanan microcontinent at a latitude ~35 S, somewhere between the Indian plate and the Qiangtang-Lhasa blocks (Upadhyay et al., 1999b). Paleogeographic reconstruction of the Early Permian shows that these peri-Gondwanan microcontinents were situated between ~20° and 40° southern latitudes (Nie et al., 1990; Scotese and Langford, 1995; Muttoni et al., 2009).

Thus, the origin and evolution of the Ladakh-Kohistan block and Karakoram terrane of northwest India and Lhasa and Qiangtang blocks of western Tibet have now been widely accepted to have resulted from multiple subduction/collisional events between Gondwana-derived terranes or continents and Eurasia since the late Paleozoic (Gansser, 1977; Allègre et al., 1984; Şengör, 1987; Dewey et al., 1988; Scotese and Mc kerrow, 1990; Nie et al., 1990; Beck et al., 1995; Burg et al., 1996; Upadhyay et al., 1999b; Metcalfe, 2006; Muttoni et al., 2009; Bouilhol et al., 2013; Upadhyay, 2002, 2014; Borneman et al., 2015).

In northwest India, the Ladakh block lies between the Indian Plate in the south and the Eurasian Plate in the north. To the west, this block is separated from the Kohistan Complex by the Nanga Parbat–Haramosh synaxis, and to the east, it is separated from the Lhasa and Qiangtang blocks by the Karakoram fault (Upadhyay, 2002, 2014) (Figs. 1 and 2). The Ladakh block is bounded by two suture zones—the Indus Suture in the south and the Shyok Suture in
the north. These sutures mark the closing of different branches of the Tethys Ocean with the Indus Suture, recording the final collision of India with Asia at 60–50 Ma (Gansser, 1977; Beck et al., 1995; Burg et al., 1996; Bouilhol et al., 2013; Upadhyay, 2002, 2014; Borneman et al., 2015, and references therein). The more northerly Shyok Suture (Figs. 1 and 2) separates Ladakh from Asian continental rocks of the Karakoram mountains to the north and contains ophiolitic mélanges and thrust units derived from the southern Asian margin that were juxtaposed when Kohistan/Ladakh collided with Asia at 102–85 Ma or 40 Ma (Gansser, 1977; Beck et al., 1995; Burg et al., 1996; Bouilhol et al., 2013; Upadhyay, 2002, 2014; Borneman et al., 2015, and references therein). The more northerly Shyok Suture (Figs. 1 and 2) separates Ladakh from Asian continental rocks of the Karakoram mountains to the north and contains ophiolitic mélanges and thrust units derived from the southern Asian margin that were juxtaposed when Kohistan/Ladakh collided with Asia at 102–85 Ma or 40 Ma (Gansser, 1977; Beck et al., 1995; Burg et al., 1996; Bouilhol et al., 2013; Upadhyay, 2002, 2014; Borneman et al., 2015, and references therein).
2015, and references therein). The accreted are units are well exposed along the Indus-Shyok sutures. All along its length, the Indus and Shyok sutures are characterized by obducted remnants of Neo-Tethyan oceanic crust (Figs. 1 and 2).

In northern Ladakh, the rocks of the Shyok Suture Zone, trending northwest-southeast across the Nubra-Shyok River valleys, occur within intensely deformed tectonic slices between the Ladakh batholith—to the southwest—and the Karakoram batholith to the northeast (Figs. 1 and 2). The occurrence of Aptian-Albian rudists and orbitolinids from the Shyok Suture Zone defines a minimum age for the subduction-related volcanics associated with the Shyok Suture (Upadhyay, 2014) and establishes a strong correlation with the equivalent suture zone in northern Pakistan (i.e., Northern Suture) to the west of the Nanga Parbat–Haramosh syntaxis and in Lhasa-Quingtang (i.e., Bangong Nujiang Suture) to the east (Gansser, 1977). The geological structure of the Shyok Suture Zone has recently been described and discussed elsewhere (Burg et al., 1996; Bouilhol et al., 2013; Upadhyay, 2002, 2014; Borneman et al., 2015, and references therein).

SAMPLE LOCATION

The palynomorphs bearing tectonic slivers are ~50 m thick and crop out at two different localities; i.e., near the village of Skuru (on Diskit-Turtuk road section; 34°66′75″N and 77°29′66″E) and ~300 m ENE of Tirit Bridge (on Diskit-Panamik road section; 34°31′59″N and 77°41′24″E) (Figs. 1 and 2). These outcrops are tectonically juxtaposed by mafic volcanics and slates and are located ~400 m below the main structure of the Shyok suture in Skuru and ~500 m below the Karakoram shear zone in Tirit Bridge locality. The highly cleaved and deformed outcrops are pale brown to buff-colored and are made up of pebbly mudstone with interspersed dark gray-black fragmentary, coaly, and sometimes powdery remains of possible plant fossil fragments (Figs. 1C–1E). The pebbly mudstone is dominated by quartzite clasts and is completely devoid of ophiolitic and volcanic arc-related debris-clasts, matrix, and cementing material, defying its ophiolitic and arc origin.

MATERIAL AND METHODS

The dark gray-black portion of half a dozen samples of the pebbly mudstone and associated shale were macerated to recover spore and pollen grains. Samples were cleaned with distilled water, and after drying, crushed into smaller pieces (2–3 mm) and treated with hydrofluoric acid (40% concentration) to dissolve the siliceous component. The samples were then treated with nitric acid to digest the organic matter and treated with 5%–10% alkali to remove the humus. The samples were thoroughly washed with distilled water, and the residue was mixed with polyvinyl alcohol and smeared over a cover glass and kept for drying at room temperature. After complete drying, the cover glasses were mounted in Canada balsam. For quantitative estimation, two hundred palynomorphs were counted per sample. These slides are housed at the repository of the Museum of the Birbal Sahni Institute of Palaeosciences, Lucknow, India.

CISULARIAN (EARLY PERMIAN) PALynomorphS

In a significant breakthrough, we report Early Permian (Asselian-Sakmarian and Artinskian; 299 Ma to 276 Ma) palynomorphs from a metasedimentary sliver, which is tectonically sandwiched within the litho-tectonic units of the Ophiolitic Mélange zone of the Shyok Suture (Figs. 1–3). The
Figure 3. (A) Early Permian (Asselian-Sakmarian) palynomorphs recovered from Shyok Ophiolitic Mélange near Tirit Bridge Northern Ladakh: 1. Parasaccites korbaensis; 2. Parasaccites diffuses; 3. Picatipollenites indicus; 4. Barakarites densicorpus; 5. Ginkgocycadophytus vetu; 6. Picatipollenites trigonaisis; 7. Potonieisporets mutabilis; 8. Laciniriletes badamensis; 9. Leiotriletes adnoides; 10. Striasulcites ovatus; 11. Scheuringipollenites tentulus; 12. Rhizomaspora indica; 13. Rhizomaspora fimbriata; 14. Verticipollenites cf. V. debilis; 15. Ibisporites diplosaccus; 16. Faunipollenites varius; 17. Platisaccus brevizonatus; 18. Verticipollenites secretus; 19. Striatites subtilis; 20. Crescentipollenites korbaensis; 21. Laharites parvus; 22. Lunatipollenites sp.; 23. Districtites bilateris. (B) Early Permian (Artinskian) palynomorphs recovered from Shyok Ophiolitic Mélange near Skuru locality of Northern Ladakh: 1. Scheuringipollenites minutes; 2. Scheuringipollenites barakarensis; 3. Scheuringipollenites maximus; 4. Faunipollenites varius; 5. Faunipollenites perexiguus; 6. Faunipollenites magnus; 7. Faunipollenites goraiensis; 8. Faunipollenites congruens; 9. Striatopodocarpites sp.; 10. Rhizomaspora indica; 11. Striatosaccites ovatus; 12. Parasaccites obscureus; 13. Ibisporites diplosaccus. (C) Quantitative analysis shows the dominance and frequency of characteristic palynomorphs recorded in the present study.
following 26 genera and 35 species have been identified from the Tirrit Bridge locality (Fig. 3A); Barakarites densicolorus Tiwari, 1965; Crescentipollenites korbaensis (Tiwari) Bharadwaj, Tiwari and Kar, 1974; Distriatites bilateris Bharadwaj, 1962; Faunipollenites varius Bharadwaj emend. Tiwari et al., 1989; Ibisporites diplosaccus Tiwari, 1968; Lacinirilesites badamensis Venkatachala and Kar, 1965; Lahirites parvus Bharadwaj and Saluja, 1964; Lunatisporites sp., Parasaccites korbaensis Bharadwaj and Tiwari, 1964; Platsysaccus brevizonatus Tiwari, 1968; Plicatipollenites trigonalis Lele, 1964; Potonieisporites mutabilis Lele and Chandra, 1971; Primuspollenites, Rhizomaspora indica, Scheuringipollenites tentulus Tiwari, 1973; Striatiites subtilis Bharadwaj and Saluja, 1964; Striasulcites ovatus Venkatachala and Kar, 1968; Striatopodocarpites gondwanensis Lakhanpal, Sah and Dube, 1960; and Verticipollenites secretus Bharadwaj, 1962. The genera found within the count (Fig. 3C) are Callumispora (3%–8%); Parasaccites (10%–15%); Plicatipollenites (8%–12%); Potonieisporites (5%–10%); Rhizomaspora (2%–3%); Primuspollenites (1%–2%); Faunipollenites (2%–5%); Striatopodocarpites (3%–5%); Striatiites (2%–3%); Scheuringipollenites (3%–4%); Vescaspora (2%–4%); Striasulcites (1%–3%); Crescentipollenites (2%–3%); Hapiamipollenites (1%–2%); Distriatites (2%–3%) and the sporadic taxa (0%–1%) includes Lacinirilesites, Verticipollenites, Barakarites, Leiotriletes, Ferrucosisperites, Ibisporites, Lunatisporites, Sahmites, Caheniasaccites, Corisaccites, Ginkgocadophytes, and Tetraropina (Figs. 3A and 3C).

The dominance of Parasaccites and sub-dominance of Plicatipollenites in Tirrit Bridge samples point to an Asselian age (early Permian; 299–297 Ma); however, the presence of monosaccates (Parasaccites, Plicatipollenites) in association with Calumispora spp. Faunipollenites spp., Striatopodocarpites spp., Crescentipollenites spp., and the First Appearance Datum (FADs) species of Barakarites gondwanensis Maithy, 1965, and Scheuringipollenites barakarenensis Tiwari, 1973, points to a Sakmarian age (early Permian; 297–284 Ma). The aforementioned palynofloral assemblage is similar to those observed from the Parasaccites korbaensis zone (Tiwari and Tripathi, 1992) of Upper Talchir (Asselian) and the Karharbari Formation (Sakmarian) of Gondwana assemblage of peninsular India (Potonié and Lele, 1961), Chhongtash Formation of Karakoram (Upadhyay et al., 1999b), Salt Range in Pakistan (Balme, 1970), Tethys Himalaya (Gothan and Sahni, 1937), Arunachal Pradesh (Srivastava and Bhattacharyya, 1996), Antarctica (Barrett and Kyle, 1975), Australia (Kemp et al., 1977), South Africa (Manum and Tien, 1973), and South America (Souza, 2006).

The assemblage at the Skuru locality (Fig. 3B) is dominated by a non-striate bisaccate pollen grain and is represented by: Faunipollenites varius Bharadwaj and Saluja emend. Tiwari et al., 1989; F. perexiguus Bharadwaj and Saluja emend. Tiwari et al., 1989; F. magnus (Bose and Kar) Tiwari and Vijaya, 1989; F. goraiensis Potonie and Lele, 1961; F. congensis (Bose and Kar) Tiwari et al., 1989; Ibisporites diplosaccus Tiwari, 1968; Parasaccites obscures Tiwari, 1965; Platsysaccus hingirensis Tiwari, 1968; Rhizomaspora indica Tiwari, 1965; Scheuringipollenites barakarenensis Tiwari, 1973; S. minutes (Sinha) Bharadwaj and Dwivedi, 1981; S. maximus (Hart) Tiwari, 1973; and Striomonosaccites ovatus Bharadwaj, 1962, besides the occurrence of Platsysaccus Naumova emend. Potonie and Klaus, 1954; Rhizomaspora Wilson, 1962; Striasulcites Venkatachala and Kar, 1968 and Striatopodocarpites Soritscheva and Sedova emend. Bharadwaj, 1962. The palynofloral assemblage is dominated by nonstriate bisaccate pollen Scheuringipollenites (40%) and striate bisaccate pollen Faunipollenites (35%), Ibisporites (3%), monosaccates pollen Parasaccites (8%–10%), whereas the forms Platsysaccus, Rhizomaspora, Striasulcites and Striatopodocarpites are sporadic (1%–2%) (Fig. 3B).

The dominance of non-striate bisaccate pollen Scheuringipollenites (40%) and striate bisaccate pollen Faunipollenites (35%) in the Skuru samples favors an Artinskian (late Cisuralian, ca. 284–276 Ma) age. These palynofloral assemblages are similar to those established from the Barakar Formation of Gondwana assemblage of India (Tiwari and Tripathi, 1992); Antarctica (Kyle, 1977); Collie Basin Australia (Kemp et al., 1977); Ketawaka and Songwe-Kiwira Coalfield in Tanzania, Africa (Manum and Tien, 1973); and South America (Souza and Marques-Toigo, 2003).

TECTONIC IMPLICATION

The palynofloral assemblages from the pebbly mudstone unit of the Shyok Suture Zone (Figs. 1–3) dates these metasediments of Asselian to Artinskian age (ca. 299–276 Ma, early Permian) and record this age for the first time, from the entire length and width of Indus-Shyok sutures across the tectonic collision of Asia-India continental collision. It is remarkable to note that the palynoflora assemblages have a strong affinity to those that were recorded from the Lower Gondwana stratigraphic units of peninsular India and in other Gondwanic domains (Upadhyay et al., 1999b; Gothan and Sahni, 1937; Potonie and Lele, 1961; Balme, 1970; Manum and Tien, 1973; Barrett and Kyle, 1975; Kemp et al., 1977; Kyle, 1977; Backhouse, 1991; Tiwari and Tripathi, 1992; Srivastava and Bhattacharyya, 1996; Souza and Marques-Toigo, 2003; Souza, 2006, and references therein).

Keeping in mind the global significance of the Permian period of Gondwana supercontinent with regard to the palaeogeographic evolution of the Asian margin during the late Palaeozoic to Palaeogene, it is prudent to denote that the existence of Permian rocks, together with Palaeozoic biogeographic data, firmly establishes a Gondwanan origin for most of the peri-Gondwanian (Cimmerian) microcontinents. In particular, the identification of extensive Early Permian pebbly mudstones in the region and the subsequent interpretation of these pebbly mudstones as glacial-marine deposits (Stauffer and Lee, 1986; Metcalfe, 2006, and references therein). Therefore, based on the assumption mentioned above, we suggest that the early Permian palynomorphs bearing tectonic sliver of deformed pebbly mudstone, which is entrapped in the Ophiolitic Mélange of the Shyok Suture, have a close affinity to those of peri-Gondwanian (Cimmerian) origin.

It is well known that the peri-Gondwanan (Cimmerian) tectonic elements and early Permian exposures are well distributed in the Shyok Suture vicinity; i.e., the Karakoram terrane to the north and the Qiangtang-Lhasa blocks to the ENE and ESE, respectively. It is well known that the peri-Gondwanan microcontinents/Kshiroda plate (Jagouz et al., 2015) were sliced off during the course of the subduction/collision process, between India and Asia continental margin of these peri-Gondwanic microcontinents. Therefore, it is quite evident that a thin flake of active continental margin of these peri-Gondwanic microcontinents/Kshiroda plate (Jagouz et al., 2015) were sliced off during the course of the subduction/collision process, between India and Asia continental margin of these peri-Gondwanic microcontinents/Kshiroda plate. The Shyok Suture closed during the mid- to Late Cretaceous period. Subsequent syn- and post-collision synkinematic episodes were responsible for...
their tectonic juxtaposition and exhumation in the tectonized zone of Shyok Ophiolite Mélange.

ACKNOWLEDGMENTS

RU is grateful to the APG, Dehradun (India), and Prof. Oliver Jagoutz (MIT, USA) for organizing several field expeditions to Ladakh and Karakoram Mountains of Northern India. He thanks the Head, Department of Geology, Kumaun University, Nainital (India), for extending the facility for research under CAS and FIST programmes. SG and RA are grateful to the Director, Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow (India), for providing facilities for research. The authors are grateful to Prof. Peter Copeland, science editor, GSA Today, and two anonymous reviewers for their encouragement and constructive suggestions toward improving the initial version of this manuscript.

REFERENCES CITED

Allègre, C.J., and 34 others, 1984, Structure and evolution of the Himalaya-Tibet orogenic belt: Nature, v. 307, p. 17–22, https://doi.org/10.1038/30717a0.

Backhouse, J., 1991, Permian palynostratigraphy of the Collie Basin, Western Australia: Review of Palaeobotany and Palynology, v. 67, p. 237–314, https://doi.org/10.1016/0034-6667(91)90046-6.

Balme, B.E., 1970, Palynology of Permian and Triassic strata in the Salt Range and Surgbar Range, West Pakistan, in Kummel, B., and Teichert, C., eds., Stratigraphic boundary Pakistan problems: Permian and Triassic of West Pakistan: Lawrence, Kansas, The University Press of Kansas, p. 305–435.

Barrett, P.J., and Kyle, R.A., 1975, The Early Permian glacial beds of South Victoria Land and Darwin Mountains, Antarctica, in Campbell, K.S.W., ed., Gondwana Geology: Canberra, Australia, Australian National University Press, p. 333–346.

Beck, R.A., Burbank, D.W., Sercombe, W.J., Riley, A.M.W., Barndt, J.K., Berry, J.R., Afzat, J., Khan, A.M., Jurgen, H., Metje, J., Cheema, A., Shafique, G.W., Barndt, J.K., Berry, J.R., Afzat, J., Khan, A.M., Metje, J., Cheema, A., Shafique, G.W., and Barndt, J.K., 2006, Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys: Gondwana Research, v. 9, p. 24–46, https://doi.org/10.1016/j.gr.2005.04.002.

Bourne, N.L., Hodges, K.V., van Soest, M.C., Bohon, W., Wartho, J.A., Cronk, S.S., and Ahmad, T., 2015, Age and structure of the Shyok suture in the Ladakh region of northwestern India: Implications for slip on the Karakoram fault system: Tectonics, v. 34, p. 2011–2033, https://doi.org/10.1002/2015TC003933.

Bouilhol, P., Jagoutz, O., Hanchar, J.M., and Dudas, F.O., 2013, Dating the India–Eurasia collision through arc magmatic records: Earth and Planetary Science Letters, v. 366, p. 163–175, https://doi.org/10.1016/j.epsl.2013.01.023.

Burg, J.P., Chaudhry, M.N., Ghazanfar, M., Anzcziewicz, R., and Spencer, D., 1996, Structural evidence for back sliding of the Kohistan arc in the collisional system of northwest Pakistan: Geology, v. 24, p. 739–742, https://doi.org/10.1130/0091-7613(1996)024<0739:SEBFSO>2.3.CO;2.

Dewey, J.F., Shackleton, R.M., Cheng, F., and Sun, Y., 1988, The tectonic evolution of the Tibetan Plateau: Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, v. 327, p. 379–413.

Gansser, A., 1977, The great suture between Himalaya and Tibet: A preliminary account, in Jest, C., ed., Himalaya: Paris, Sciences de la Terre. Colloq. Int. C.N.R.S., v. 268, p. 181–192.

Ghazanfar, M., and Anczkiewicz, R., 1996, Palynostratigraphy of Permian strata of the Salt Range and Surgbar Range, West Pakistan, in Kummel, B., and Teichert, C., eds., Stratigraphic boundary Pakistan problems: Permian and Triassic of West Pakistan: Lawrence, Kansas, The University Press of Kansas, p. 305–435.

Jagoutz, O., Royden, L., Holt, A.F., and Becker, T.W., 2015, Anomalously fast convergence of India and Eurasia caused by double subduction: Nature Geoscience, v. 8, p. 475–478, https://doi.org/10.1038/ngeo2418.

Kemp, E.M., Balme, B.E., Helby, R.J., Kyle, R.A., Playford, G., and Price, P.L., 1977, Carboniferous and Permian palynostratigraphy in Australia and Antarctica: A review: BMR Journal of Australian Geology and Geophysics, v. 2, p. 177–208.

Kestern, L.A., Sinclair, H., Stuart, F.M., and Dobson, K., 2006, Rapid early Miocene exhumation of the Ladakh batholith, western Himalaya: Geol. v. 34, p. 1049–1052, https://doi.org/10.1130/G22857A.1.

Kyle, R.A., 1977, Palynostratigraphy of the Victoria Group of South Victoria Land, Antarctica: New Zealand Journal of Geology and Geophysics, v. 20, p. 1081–1082, https://doi.org/10.1080/002883019710420697.

Manum, S.B., and Tien, N.D., 1973, Palynostratigraphy of the Letewaka Coalfield (Lower Permian): Review of Palaeobotany and Palynology, v. 16, p. 213–227, https://doi.org/10.1016/0034-6667(73)90020-1.

Metcalfe, I., 2006, Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys: Gondwana Research, v. 9, p. 24–46, https://doi.org/10.1016/j.gr.2005.04.002.

Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, M., Mattei, M., and Zanchi, A., 2009, Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian: GeoArabia, v. 14, p. 17–48, https://doi.org/10.2113/geoarabia.140147.

Nie, Y.S., Rowley, D.B., and Ziegler, A.M., 1990, Constraints on the locations of Asian microcontinents in Palaeo-Tethys during the Late Palaeozoic, in McKerrow, W.S., and Scotese, C.R., eds., Palaeozoic Palaeogeography and Biogeography: Geological Society of London Memoir 12, p. 397–408.

Potonie, R., and Lele, K.M., 1961, Studies in the Stratigraphy of the Letewaka Coalfield (Lower Permian): Review of Palaeobotany and Palynology, v. 16, p. 213–227, https://doi.org/10.1016/0034-6667(73)90020-1.

Smethurst, J.D., and Bhatnagar, Y.P., 1996, Palynofloral assemblages from Permian sediments, West Siang District, Arunachal Pradesh, India, in Guha, P.K.S., Sengupta, S., Ayyasami, K., and Ghosh, R.N., eds., Ninth International Gondwana Symposium Hyderabad, Geological Survey of India: New Delhi–Calcutta, Oxford and IBH Publishing Co., p. 261–268.

Stauffer, P.H., and Lee, C.P., 1986, Late Palaeozoic glacial marine facies in Southeast Asia and its implications: Bulletin of the Geological Society of Malaysia, v. 20, p. 363–397, https://doi.org/10.7186/bsgm2019618.

Tiwari, R.S., and Tripathi, A., 1992, Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic–Mesozoic sequence in India: Palaeobotanist, v. 40, p. 194–236.

Upadhyay, R., 2002, Stratigraphy and tectonics of Ladakh, eastern Karakoram, western Tibet and western Kun Lun: Journal of the Geological Society of India, v. 59, p. 447–467.

Upadhyay, R., 2014, Palaeogeographic significance of ‘Yasin-type’ rudist and orbitolinid fauna of the Shyok Suture Zone, Saltoro Hills, northern Ladakh, India: Current Science, v. 106, p. 223–228.

Upadhyay, R., Sinha, A.K., Chandra, R., and Rai, H., 1999a, Tectonic and magmatic evolution of the eastern Karakoram, India: Geodinamika Acta, v. 12, p. 341–358, https://doi.org/10.1515/ga.1999.1105354.

Upadhyay, R., Chandra, R., Sinha, A.K., Kar, R.K., Chandra, S., Jha, N., and Rai, H., 1999b, Discovery of Gondwana plant fossils and palynomorphs of Late Asselian (Early Permian) age in the Karakoram Block: Terra Nova, v. 11, p. 278–283, https://doi.org/10.1046/j.1365-3121.1999.00259.x.

MANUSCRIPT RECEIVED 16 AUG. 2020
REVISED MANUSCRIPT RECEIVED 23 SEPT. 2021
MANUSCRIPT ACCEPTED 27 Oct. 2021.