Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
TRANSMISSION OF EIMERIA, VIRUSES, AND BACTERIA TO CHICKS: DARKLING BEETLES (ALPHITOBIIUS DIAPERINUS) AS VECTORS OF PATHOGENS

MARK A. GOODWIN
Georgia Poultry Laboratory, P. O. Box 20, Oakwood, GA 30566
Department of Veterinary Pathology, The University of Georgia, Athens, GA 30602
Phone: (770) 535-5996
FAX: (770) 535-5941

W. DOUGLAS WALTMAN
Georgia Poultry Laboratory, P. O. Box 20, Oakwood, GA 30566
Department of Medical Microbiology, The University of Georgia, Athens, GA 30602

Primary Audience: Flock Supervisors, Nutritionists, Veterinarians, Researchers

SUMMARY

Darkling beetle homogenates (DBH) were prepared from beetles collected from seven premises (farms). DBH were shown to contain myriad infectious organisms including bacteria (e.g., Salmonella), viruses (e.g., reovirus), and Eimeria (the causative agents of intestinal coccidiosis).

The present study establishes the fact that darkling beetles serve as vectors for common avian pathogens. Darkling beetles must be considered on a list of other vectors known to transmit common poultry pathogens. The risk posed by beetles with respect to dissemination of diseases is of immense importance to the poultry industry. The possibility of severe adverse economic impact as a result of these diseases should not be overlooked or casually dismissed.

Keywords: Alphitobius diaperinus, bacteria, chickens, darkling beetles, pathogens, poultry, Salmonella, virus

DESCRIPTION OF PROBLEM

Darkling beetles (also called litter beetles or black bugs) are the adult stage of the lesser mealworm Alphitobius diaperinus [1]. These beetles reside and reproduce within today’s modern poultry microenvironments, where their populations can reach astronomical proportions [2].

1 To whom correspondence should be addressed

Excessive populations of darkling beetles can cause financial losses for the poultry producer [2, 3, 4, 5, 6]. These losses center on the ability of darkling beetles to transmit (vector) poultry pathogens including bacteria (e.g., Salmonella, Escherichia coli), fungi (Aspergillus), and viruses such as infectious bursal disease virus (birnavirus), fowl poxvirus, Newcastle disease virus (paramyxovirus),...
and avian leukosis virus (herpesvirus). In addition, excessive beetle populations can adversely affect feed conversion ratios and chick body weight gains and can cause damage to poultry house insulation. Furthermore, excessive dry litter conditions created, at least in part, by the use of nipple-type drinkers has resulted in nocturnal darkling beetle attacks on live chickens as the beetles seek any and all sources of water [5]. As a consequence, beetle bites of the skin around feather follicles may cause lesions that resemble skin leukosis. Lastly, when beetle-infested litter is spread on pastures, large populations of adult beetles may reach near-by residences. Complaints and health concerns are passed from the homeowner to local health officials [7].

Poultry health and production personnel have recently become increasingly concerned about the spread of poultry diseases within and among poultry in their companies. The frequency with which darkling beetles serve as vectors for common poultry pathogens is not known. The purpose of the present study was to test darkling beetles for common poultry pathogens.

MATERIALS AND METHODS

CASE MATERIALS

The farms selected for the present study were known to harbor large populations of darkling beetles. At least seventy-five darkling beetles were collected from one broiler chicken house on each of seven premises (farms). Beetles were collected by hand into clean plastic bags, labeled with the farm name, chilled on ice, shipped frozen to our laboratory, and stored at -80°C. The seven beetle samples were always kept separate.

EXPERIMENTAL DESIGN

Specific pathogen-free chicks (SPAFAS, Inc, Storrs, CT) were hatched from eggs in a biosecure incubator and hatcher, wing-banded with a numerical code, placed into sterilized bioisolators, and given feed and water *ad libitum*.

Each bag of frozen beetles was assigned an alphanumerical code. Thawed beetles were weighed *en masse*, then placed into coded sterile plastic centrifuge tubes to which 30 mL of sterile physiologic buffered saline (PBS) were added. Beetles were macerated and homogenized with a hand held blender (Braun, Lynnfield, MA). A coded 10 mL aliquot was reserved for bacterial culture. Plate count methods were used to enumerate the bacterial profile.

Aerobic Plate Count: Beetle homogenate was inoculated onto tryptose agar and incubated at 35°C for 48 hr. All bacterial colonies were counted. Counts represent CFU/mL of homogenate.

Coliform Count: Beetle homogenate was inoculated onto MacConkey agar and incubated at 35°C for 48 hr. All pink-red (lactose fermentative) bacterial colonies were counted. Counts represent CFU/mL of homogenate.

Gram Negative Bacterial Count: Beetle homogenate was inoculated onto MacConkey agar and incubated at 35°C for 48 hr. All bacterial colonies were counted. Because of the bile salts and crystal violet dye, this medium is inhibitory to most all Gram + bacteria. Counts represent CFU/mL of homogenate. **S. aureus Count:** Beetle homogenate was inoculated onto Baird-Parker agar and incubated at 35°C for 48 hr. Only black colonies with zones were counted as *S. aureus*. Counts represent CFU/mL of homogenate.

Enterococcal Count: Beetle homogenate was inoculated onto bile esculin azide agar and incubated at 35°C for 48 hr. All black colonies were counted and represent putative enterococci. Counts represent CFU/mL of homogenate.

Fungal (mold) Count: Beetle homogenate was inoculated onto Sabaroud dextrose agar supplemented with 20 µg/mL chloramphenicol and incubated at 35°C for 3–5 days. All fungal colonies were counted. Counts represent CFU/mL of homogenate.

Yeast Count: Beetle homogenate was inoculated onto Sabaroud dextrose agar supplemented with 20 µg/mL chloramphenicol and incubated at 35°C for 3–5 days. All yeast colonies were counted. Counts represent CFU/mL of homogenate.

Sorbitol Negative E. coli: Beetle homogenate was inoculated onto MacConkey agar base supplemented with sorbitol and incubated at 35°C for 48 hr. Ten clear (sorbitol negative) colonies were inoculated onto MacConkey agar and incubated at 35°C for 24 hr. All pink-red colonies were confirmed biochemically to be *E. coli.*
Research Report

GOODWIN and WALTMAN

Clostridium Count: Beetle homogenate was inoculated into cooked meat media undiluted, and at a 1:100 dilution. The medium was incubated at 35°C for 48 hr. Tubes were observed for the presence of gas. All tubes were further checked for *Clostridium* by Gram stain.

Salmonella: Beetle homogenate was inoculated (1:10) into tetrathionate enrichment broth and incubated at 35°C for 24 hr. The broth was inoculated onto brilliant green agar with 20 μg/mL novobiocin and xylose lysine tergitol four agar. These plates were incubated at 35°C for 24 hr and observed for typical colonies. Three typical *Salmonella* colonies were identified and inoculated into triple sugar iron agar and incubated at 35°C for 24 hr. Each *Salmonella* culture was confirmed biochemically and serologically. If the original plating was negative, the original tetrathionate broth was left at room temperature for five days and 0.5–1.0 mL of broth was transferred to a fresh tube of tetrathionate broth and incubated once again at 35°C for 24 hr. The culture was then processed as described above.

Antibiotics (gentamicin sulfate, 0.25 mg/mL; penicillin, 1,000 u/mL; and streptomycin, 1 μg/mL) were added to the remaining beetle homogenate portions. The homogenates were frozen and thawed twice. Each of seven day-old chicks were given 0.5 mL of beetle homogenate by transpharyngeal cannulation of the esophagus (PO) and by intraperitoneal injection (IP). Control chicks were sham-inoculated with 0.5 mL antibiotics in PBS.

At 10 days post-infection (DPI), feces were collected by nylon loop catheterization of the rectum and examined for parasite ova/oocysts [8]. At 21 DPI, chicks were gently restrained, and blood samples were collected from medial ventral wing veins. Serum was obtained and processed for detection (ELISA, Kirkegaard and Perry Laboratories, Gaithersburg, MD) of common avian pathogen (reovirus [REO], coronavirus [IBV, IB], paramyxovirus [NDV, ND], birnavirus [IBDV, IBD], and herpesvirus [ILT]) antibodies. Findings were inventoried and tabulated.

RESULTS AND DISCUSSION

The present study establishes the fact that darkling beetles serve as vectors for common avian pathogens (Tables 1 and 2), a finding supported by the works of others [9, 10, 11, 12, 13, 14]. In addition, we have found that the frequency with which these beetles can carry detectable pathogenic viruses, coccidia, or bacteria is unexpectedly high. Darkling beetles must be considered on a list of vectors known to transmit common poultry pathogens. These pathogens also include bacteria such as *Salmonella*. The risk posed by beetles as disseminators of diseases is of immense importance to the poultry industry, and the threat of severe adverse economic

TABLE 1. Results from testing darkling beetle (*Alphitobius diaperinus*) homogenates for bacterial, fungal, and yeast pathogens

LABORATORY COUNTS	TEST RESULTS BY FARM						
	1	2	3	4	5	6	7
Aerobes	1.2 x 10⁶	2.6 x 10⁶	3.3 x 10⁶	4.5 x 10⁷	3.6 x 10⁶	3.6 x 10⁶	1.4 x 10⁷
Coliforms	4.0 x 10⁴	1.2 x 10⁴	9.0 x 10³	5.0 x 10⁴	2.0 x 10⁴	20	6.2 x 10⁴
Gram negatives	4.5 x 10⁴	1.2 x 10³	1.8 x 10⁴	3.3 x 10⁵	8.2 x 10⁴	800	1.4 x 10⁷
S. aureus	>20	<20	<20	>20	>20	<20	<20
Strep⁵⁵	5.9 x 10⁵	2.8 x 10⁵	1.3 x 10⁴	<10⁵	1.9 x 10⁴	8.9 x 10⁵	<10⁶
Fungi	<10⁴	400	20	<10⁴	160	20	40
Yeasts	400	600	<20	400	<20	<20	4.8 x 10³
E. coli	<20	<20	<20	<20	<20	<20	<20
Clostridium	<200	<200	>200	>200	<200	>200	>200
Salmonella	negative	negative	positive⁶	negative	negative	negative	negative

⁵ Group D
⁶ Group C
impact from these diseases should not be overlooked or casually dismissed. Follow-up studies are warranted, perhaps to calculate the impact of beetle homogenate on production performance parameters and financial cost/loss estimates. One practical implication of our findings is that poultry producers should seriously consider incorporating darkling beetle abatement programs into their disease control programs.

LABORATORY TEST	TEST RESULTS BY FARM^A						
	1	2	3	4	5	6	7
Viruses							
reovirus (REO)	Y	N	Y	Y	N	N	N
coronavirus (IBV, IB)	N	N	N	N	N	N	N
paramyxovirus (NDV, ND)	N	N	N	N	N	N	N
birnavirus (IBDV, IBD)	Y	N	N	Y	Y	Y	N
herpesvirus (ILT)	N	N	N	N	N	N	N
Protozoa							
Eimeria sp.	N	Y	Y	Y	Y	Y	Y

^A Y = yes, N = no

CONCLUSIONS AND APPLICATIONS

1. Darkling beetles serve as vectors for common avian pathogens.
2. The incidence of beetle-vectored pathogens is unexpectedly high.
3. These pathogens include immunosuppressive viruses (birnavirus, the agent of infectious bursal disease) and bacteria such as Salmonella.
4. There is substantial risk posed by beetles with respect to dissemination of diseases. The poultry industry should consider the implications of this risk seriously.
5. The threat of severe adverse economic impact from beetle-vectored diseases should not be overlooked or casually dismissed.
6. Darkling beetle abatement programs should be incorporated into disease control programs and should eliminate beetle-vectored pathogens, thus decreasing poultry production costs and increasing poultry production profits.

REFERENCES AND NOTES

1. McAllister, J.C., 1993. Determination of the potential of lesser mealworms, Alphitobius diaperinus (Coleoptera: Tenebrionidae), to transmit poultry pathogens. Ph.D. Dissertation, University of Arkansas.
2. Arends, J.J., 1991. External parasites and poultry pests. Pages 702–730 in: Diseases of Poultry, 9th Edition. B.W. Calnek, H.J. Barnes, C.W. Beard, W.M. Reid, and H.W. Yoder, Jr., eds. Iowa State University Press, Ames, IA.
3. Gall, A., 1980. Are lesser mealworms worth the trouble they cause? Poultry Digest 39:76–77.
4. Gould, G.E. and H.E. Moses, 1951. Lesser mealworm infestation in a broiler house. J. Econ. Entomol. 44:265.
5. Savage, S., 1993. Darkling beetles can not be eradicated, just controlled. Poultry Times 15(6):11–13.
6. Vaughan, J.A., E.C. Turner, Jr., and P.C. Ruszler, 1984. Infestation and damage of poultry house insulation by the lesser mealworm (Alphitobius diaperinus) (Panzer). Poultry Sci. 63:1094–1100.
7. Arends, J.J. and S.M. Stringham, 1989. Poultry Pest Management. North Carolina Cooperative Extension Service, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC.
8. McDougald, L.R. and W.M. Reid, 1991. Coccidiosis. Pages 780–797 in: Diseases of Poultry, 9th Edition. B.W. Calnek, H.J. Barnes, C.W. Beard, W.M. Reid, and H.W. Yoder, Jr., eds. Iowa State University Press, Ames, IA.
9. De las Casa, E., B.S. Pomeroy, and P.K. Harein, 1968. Infection and quantitative recovery of Salmonella typhimurium and Escherichia coli from within the lesser mealworm (Alphitobius diaperinus). Poultry Sci. 47:1871–1875.

10. De las Casa, E., P.K. Harein, and B.S. Pomeroy, 1972. Bacteria and fungi within the lesser mealworm collected from poultry brooder houses. Environ. Entomol. 1:27–30.

11. De las Casa, E., P.K. Harein, D.R. Deshmukh, and B.S. Pomeroy, 1973. The relationship between the lesser mealworm and avian viruses. I. Reovirus. Environ. Entomol. 2:1043–1047.

12. De las Casa, E., P.K. Harein, D.R. Deshmukh, and B.S. Pomeroy, 1976. The relationship between the lesser mealworm, fowl pox, and Newcastle disease virus in poultry. J. Econ. Entomol. 69:775–779.

13. Eidson, C.S., S.C. Schmittle, J.B. Lal, and R.B. Goode, 1965. The role of the darkling beetle (Alphitobius diaperinus) in the transmission of acute leukosis in chickens. Poultry Sci. 44:1366–1367.

14. Eidson, C.S., S.C. Schmittle, R.B. Goode, and J.B. Lal, 1966. Induction of leukosis tumors with beetle (Alphitobius diaperinus) in the transmission of acute leukosis in chickens. Am. J. Vet. Res. 27:1053–1057.

ACKNOWLEDGEMENTS
We thank Ms. Debrah Fuchs and Ms. Alice Horne for their technological assistance.