Garpenbergite, Mn₆□As⁵⁺Sb⁵⁺O₁₀(OH)₂, a new mineral related to manganostibite, from the Garpenberg Zn–Pb–Ag deposit, Sweden

Dan Holtstam¹*, Luca Bindi², Hans-Jürgen Förster³, Andreas Karlsson⁴ and Kjell Gatedal⁴

¹Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden; ²Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, 50121, Firenze, Italy; ³Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section Geoenergy, 14473 Potsdam, Germany; and ⁴Baldersgatan 21, SE-713 32 Nora, Sweden

Abstract

Garpenbergite is a new mineral (IMA2020-099) from the Garpenberg Norra mine, Hedemora, Dalarna, Sweden. It occurs with carlfrancisite and minor stibarsen, paradoacrasis and filipstadite in a fractured skarn matrix of granular jacobite, alleghanyite, kutilnoreite and dolomite. Crystals are short-prismatic, up to 1.5 mm in length. They have a blackish to greyish brown colour, and are lustrous semi-opaque, with brown streak. Garpenbergite is brittle, with an uneven to subconchoidal fracture. Cleavage is distinct on {010}. Hardness ∼5 (Mohs) and VHN₁₀₀ = 650(40). D(calc) = 4.47(1) g·cm⁻³, overall n(calc) = 1.85. Maximum specular reflectance values (%) obtained are 9.2 (470 nm), 9.1 (546 nm), 9.0 (589 nm) and 8.9 (650 nm). The empirical chemical formula of garpenbergite, based on electron microprobe data, is

\[\text{Mn}_6\square\text{As}_{5+}\text{Sb}_{5+}\text{O}_{10}\text{(OH)}_2 \]

The presence of hydroxyl groups is supported by vibration bands at 3647 and 3622 cm⁻¹ in the Raman spectrum of garpenbergite and by bond-valence considerations.

Keywords: garpenbergite, new mineral, manganostibite, carlfrancisite, crystal structure, cubic close packing, Raman spectrum, skarn, Garpenberg, Sweden

(Received 30 November 2021; accepted 11 January 2022; Accepted Manuscript published online: 21 January 2022; Associate Editor: Daniel Atencio)

Introduction

Metal mining at Garpenberg, Hedemora, Dalarna (Dalecarlia), Sweden, has been described in annals since the fourteenth Century, however recent studies of Holocene lake-sediment records in the area indicate that small-scale extraction of copper occurred earlier, in the pre-Roman iron age, from ca. 375 B.C. (Bindler et al., 2017). Mining is still active, the current business produces 3 Mt of ore per year. The grades are 0.5 g/t Au, 70–160 g/t Ag, 0.1% Cu, 2% Pb and 3–4% Zn (Bolin et al., 2003; Tiu et al., 2021).

The sample containing the new mineral presented here was collected in situ at the 900 m level of the Garpenberg Norra mine (60°20’N, 16°13.5’E), where various exotic skarn mineral assemblages have been noted to exist (Eriksson and Kalinowski, 2001; Holtstam et al., 2001; Holtstam, 2002; Kolitsch and Holtstam, 2002; Nysten, 2003). Garpenbergite was first spotted by one of the authors (K.G.) in a polished section. Preliminary chemical data suggested a close relationship to manganostibite, \(\text{Mn}_7\text{AsSbO}_{12} \), but possesses a cation vacancy (□) at an octahedrally coordinated structural site; the two minerals are thus related by the exchange \(\text{Mn}^{2+} + 2 \text{O}_2^{-} \rightarrow \square + 2(\text{OH})^{-} \).

The name of the mineral is for the place of discovery, Garpenberg. In the Middle Ages, ‘garp’ was the colloquial word in Swedish for a German person. The term here refers to the fact that the Swedish Crown recruited German miners at the time in order to increase know-how and develop regulations in the kingdom’s growing mining industry (Carlberg, 1879).

The new mineral species and its name (symbol Grp) have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2020-099, Holtstam et al., 2021). The holotype material is deposited in the type mineral collection of the Department of
Occurrence

Garpenberg is situated in the northern part of the Palaeoproterozoic Bergslagen ore region in central Sweden, where numerous strata-bound sulfide and (Fe±Mn) oxide deposits are hosted by 1.9–1.8 Ga felsic volcanic rocks and interlayered limestones, with enveloping siliciclastic sedimentary rocks and intruding Svecokarelian plutons (Stephens and Jansson, 2020). The Garpenberg polymetallic Zn–Pb–Ag–(Cu–Au) sulfide deposit stretches about seven km in a SW–NE direction, and comprises several ore bodies, mainly confined to a marble horizon. Significant mineralisation also occurs in adjacent metavolcanic rocks. At a stratigraphically lower level, several magnetite skarn ores are present. The rock units have experienced pervasive hydrothermal alteration proximal to the ore bodies (Vivallo 1985; Allen et al., 2003), metamorphism and polyphase deformation. Most or all of the Fe oxide and complex sulfide ores in the Garpenberg area formed within the time span 1895–1890 Ma during a syn-volcanic event (Jansson and Allen, 2011). Peak metamorphic conditions for the deposit are estimated at $T \geq 550^\circ$ C and $P < 0.35$ GPa imposed around 1.85 Ga (Vivallo 1985).

The marbles at Garpenberg host enclaves of sporadic low-S, Mn–Zn–Pb–Ba–Sb–As mineralisation, reminiscent of both Långban (Holstam and Langhof, 1999; Holstam and Mansfeld, 2001) and Franklin–Sterling Hill (Dunn, 1995; Peck et al., 2009) types of deposits. The genetic relation to the main sulfide ores and skarns at Garpenberg remains unclear.

The size of the sample containing the new mineral is small, ca. 2 cm × 1.5 cm × 1 cm. Garpenbergite occurs in a filled fracture together with mainly carlfrancisite (Fig. 1). Minor stibarsens and paradocosite appear in fractures of garpenbergite. Filipstadite has been observed in a few cases, as tiny overgrowths on garpenbergite. The rock matrix consists of granular jacobsite, alleghanyite, kutnohorite and dolomite. Following a brittle-deformation event, garpenbergite probably crystallised from a locally mobilised, As–Sb-rich fluid. Redox conditions were apparently varying, as evidenced by the presence of arsenate, arsenite and arsenide mineral species in the same fissure mineralisation. The mineral-forming episode is probably coeval with the transition from ductile to brittle deformation that occurred in the area at ~1.8–1.7 Ga (Stephens and Jansson, 2020).

Physical and optical properties

The new mineral occurs as heavily fractured, short-prismatic (along $[010]$) and mostly subhedral crystals up to 1.5 mm in length. The macroscopic colour is blackish to greyish brown, the streak is light brown. Garpenbergite has a sub-adamantine to greasy lustre and is semi-opaque (translucent in thin splinters). The hardness is ~5 on the Mohs scale. The micro-indentation hardness (VHN$_{100}$), obtained by means of a Shimadzu type-M tester, is 650 (6.37 GPa) based on ten measurements, giving a total range of 580–694. The shape of indentations are straight to slightly concave, with simple shell fractures (Jambor and Vaughan, 1990). Garpenbergite is brittle, with an uneven to sub-conchoidal fracture. Cleavage is distinct on $[010]$.

The density was not measured, because of current prohibition of heavy liquids; a calculated value of 4.47(1) g cm$^{-3}$ was obtained based on the empirical formula and unit-cell volume from single-crystal diffraction data (see below). Garpenbergite is non-magnetic with respect to a neodymium hand magnet, and soluble in 30% HCl (aq) at room temperature. No fluorescence was detected under ultra-violet light.

Fig. 1. Back-scattered electron scanning electron microscopy image of a polished section of the garpenbergite (Grp) type specimen, with carlfrancisite (Cfc), jacobsite (Jcb), alleghanyite (Alh), dolomite (Dol) and kutnohorite (Kut). The arrow points to one area (white) containing a fine intergrowth of stibarsen and paradocosite. Sample GEO-NRM #20200040.
The optical character in transmitted light could not be determined owing to strong absorption and high refraction of the crystals. The overall refractive index (n) is calculated to 1.847, using Gladstone-Dale constants listed by Mandarino (1981). In reflected polarised light, garpenbergite is grey, with no perceptible bireflectance or pleochroism. It is weakly to moderately anisotropic under crossed polars. Reflectance spectra were measured in air with an AVASPEC-ULS2048×16 spectrometer connected to a Zeiss Axiotron UV-microscope (10×/0.20 Ultrafluar objective), using a tungsten filament lamp (100 W) and a dichroic HNPB polaroid filter. Silicon carbide (Zeiss no. 846) was used as standard, and the annular measurement area was ~ 0.1 mm in diameter on the sample surface. Results from the visible spectrum range (average of 100 scans, 100 ms integration time) are given in Table 1.

In comparison with the related manganostibite, garpenbergite is slightly more translucent, and has a lower overall reflectance.

Raman spectroscopy

A micro-Raman spectrum of garpenbergite (Fig. 2) was obtained from a crystal in the polished section on a LabRAM HR 800 spectrometer, using a 514 nm Ar-ion laser source at < 1 mW power, a Peltier-cooled (−70°C) 1024 × 256 pixel CCD detector, an Olympus M Plan N 100×/0.9 NA objective and laser spot of ca. 3 μm. A 600 grooves/cm grating was used, and the spectral resolution is ~ 1 cm$^{-1}$. Peak positions were corrected against the Raman band at 789 cm$^{-1}$ of a silicon carbide crystal. Instrument control and data acquisition (range 100–4000 cm$^{-1}$, 10 s exposure time in 20 cycles) were made with the LabSpec 5 software. Laser-induced degradation of the sample was not observed. A single crystal of manganostibite (from Igelström’s type specimen, GEO-NRM #18840177) was measured with the same settings for a comparison (Fig. 2).

Observeable bands are at 3647, 3622, 1300, 1020, 818, 791 (shoulder), 695, 659, 620 (shoulder), 580, 541, 482, 464, 339, 259 and 233 cm$^{-1}$. The two distinct Raman bands above 3600 cm$^{-1}$ are related to OH-stretching vibration modes. The strongest peak at 818 cm$^{-1}$ (with shoulder at 791 cm$^{-1}$) corresponds to stretching vibrations of the [AsO$_4$]$^{3−}$ groups (Myneni et al., 1998). Bands in the region 695–620 cm$^{-1}$ are attributable to the symmetric and antisymmetric stretching modes of SbO$_6$ octahedra (cf. Guillén-Bonilla et al., 2014), whereas peaks at lower frequencies down to ~ 450 cm$^{-1}$ probably arises from the Mn(Mg)–O stretching in tetrahedra and octahedra. Specifically, bands around 530 cm$^{-1}$ could be attributed to octahedrally coordinated Mn$^{2+}$ (Bernardini et al., 2021). In the spectrum of manganostibite, corresponding bands occur at similar positions (within 10–20 cm$^{-1}$), with a clear exception for the OH vibration modes, which are absent.

Chemical composition

Preliminary energy-dispersion (EDS) X-ray measurements on a polished sample section showed Mn, Mg, Sb, As, Zn and O to be present in garpenbergite. The chemical composition was ultimately determined using a JEOL JXA 8230 electron microprobe operating in wavelength dispersive spectroscopy mode at 15 kV and 20 nA, with a defocused beam size of 10 μm (to minimise

Table 1. Reflectance values (in %; wavelengths recommended by the Commission on Ore Mineralogy in bold).

λ (nm)	R_2	R_1	λ (nm)	R_2	R_1
400	9.50	8.93	560	9.02	8.49
420	9.41	8.83	580	9.07	8.50
440	9.30	8.73	589	9.02	8.47
460	9.23	8.68	600	9.06	8.44
470	9.20	8.67	620	9.03	8.44
480	9.17	8.66	640	8.88	8.47
500	9.17	8.65	650	9.00	8.48
520	9.04	8.54	660	9.03	8.48
540	9.05	8.50	680	8.91	8.46
546	9.04	8.49	700	8.90	8.46

Fig. 2. Raman spectra of garpenbergite and manganostibite, obtained with a 514-nm laser.
diffusion of elements mobile under the electron beam). Measurement time on peaks and background was 20 and 10 s, respectively. Reference materials and measured lines were: rhodonite (SiKα, orthoclase (AlKα), Fe₂O₃ (FeKα), MnTiO₃ (MnKα), diopside (MgKα and CaKα), adamite (AsLα and ZnKα), InSb (SbLα), fluorite (FKα) and tugtupite (CKαK). The number of spot analyses was 49. The H₂O content was not determined directly, because of scarcity of material. No CO₂ was indicated by crystal structure refinements or spectroscopic data. The following elements were sought but found to be below detection: Na, Ca, Al, P, V and F. The results of the analyses are given in Table 2. Associated carlfrancisite was also analysed (10 spots) at the same analytical conditions, and gave: SiO₂ 8.41, Al₂O₃ 0.12, Fe₂O₃ 0.77, MnO 51.84, MgO 10.87, CaO 0.03, As₂O₅ 18.23, Sb₂O₅ 0.06, ZnO 0.42, F 0.11, H₂Ocalc 8.31, total 99.17 (all in wt.%).

The empirical formula of garpenbergite, calculated on the basis of eight cations and assuming *Inferred from crystal structure, (OH + Cl) = 2 apfu. As and Sb as pentavalent cations, and Mn²⁺/Mn³⁺ ratio adjusted to obtain overall electronegativity balance (Si₀.₈₀As₀.₈₉Fe₀.₁₁O₁₀(OH)₁₀Cl₀.₀₂) (Sheldrick, 2015). (As₀.₈₉Fe₀.₁₁O₁₀(OH)₁₀Cl₀.₀₂) corresponds to (in wt.%) MnO 30.42Mg₁.₄₈Zn₀.₂₄Ca₀.₀₂)

X-ray diffraction data and crystal-structure refinement

Powder X-ray diffraction data (Table 3) were obtained with a Bruker D8 Venture diffractometer equipped with Photon III CCD detector, with graphite-monochromatised MoKα radiation (λ = 0.71073 Å), with 20 s exposure time per frame; the detector-to-sample distance was 60 mm (summarised in Table 4). The small fragment was mounted on a 5 μm diameter carbon fibre, which was, in turn, attached to a glass rod. The diffraction intensity data were integrated and corrected for standard Lorentz polarisation factors with the software package APEX3 (Bruker AXS Inc., 2016). A total of 1317 unique reflections was collected up to 2θ = 73.4⁰. The program SHELXL (Sheldrick, 2015) was used for the refinement of the structure. The structure solution was initiated from manganostibite structure data (Moore, 1970), and the structure solution was undertaken in the space group *I4nm.

Though it has a nearly identical unit-cell geometry and structural topology with manganostibite (Moore, 1970), it was immediately realised that the octahedral position at the origin of the cell in manganostibite is empty in garpenbergite (see below), thus giving an overall content of M cations = 6, and not 7 as in manganostibite (cf. Table 5).

Table 2. Chemical composition of garpenbergite (in wt.% oxide).

Constituent	Mean	Range
SiO₂	0.11	0.05–0.20
Fe₂O₃	0.71	0.23–2.16
MnO	41.93	40.75–43.63
MnO₂₀₂ calc	3.71	2.37–5.31
MgO	8.89	7.98–9.27
As₂O₅	15.15	13.92–16.02
Sb₂O₅	23.63	22.90–24.25
ZnO	3.55	3.32–3.86
H₂O	2.67	2.64–2.69
Cl	0.04	0.02–0.09
O=Cl	0.01	
Total	100.38	99.21–100.98

*Inferred from crystal structure, (OH + Cl) = 2 apfu.

Table 3. Powder X-ray diffraction data (d in Å) for garpenbergite*.

h k l	lcalc	lobs	dcalc	dobs
47	-	9.4529	-	0.20
14	-	7.8876	-	1.10
22	15	5.0994	5.10	1.30
27	25	4.9942	5.00	1.01
5	-	4.7264	-	0.40
32	30	4.4158	4.42	1.21
13	15	4.3395	4.38	2.00
26	20	3.4770	3.48	2.11
30	30	3.0533	3.05	1.00
100	100	2.6649	2.66	1.61
5	-	2.6292	-	3.30
8	-	2.6196	-	1.32
45	40	2.6144	2.61	0.01
18	25	2.5832	2.58	2.51
16	20	2.5647	-	0.42
24	20	2.5497	-	2.60
11	10	2.4971	-	2.02
7	7	2.4143	-	2.22
10	9	2.2976	-	3.50
17	14	2.2912	2.29	1.52
24	20	2.1927	2.19	0.62
12	11	2.1697	2.17	4.00
4	-	2.1466	-	2.71
4	-	1.9701	-	1.72
5	-	1.9571	-	2.62
9	-	1.8780	1.88	4.60
4	-	1.7681	-	1.10
4	-	1.6972	-	1.92
25	20	1.680	1.68	1.63
12	-	1.6697	-	5.01
9	-	1.6647	-	3.03
4	-	1.6566	-	2.53
14	-	1.5755	-	0.12
45	45	1.5423	1.54	4.62
13	-	1.5266	-	0.04
8	-	1.4944	-	3.12
4	-	1.3208	-	5.03
5	-	1.1608	-	4.64
4	-	1.1459	-	5.12
4	-	1.1443	-	3.12
4	-	1.1291	-	1.65

*The calculated diffraction pattern was obtained with the atom coordinates reported in Table 5 (only reflections with |h||k||l| ≤ 4 are listed; strongest experimental values in bold).
The site occupation factor (s.o.f.) at the cation sites was allowed to vary (Mn vs. Mg for the M sites and Sb vs. As for the other metal sites) using scattering curves for neutral atoms taken from the International Tables for Crystallography (Wilson, 1992). The refinement of the site-occupancies gave the scattering values and the possible site populations reported in Table 6 (unconstrained refinement). At this point, taking into account the observed bond distances (Table 7), the s.o.f. occurring at the M and Sb/As sites, and the electron microprobe analysis, the following site populations were proposed: Sb = Sb0.06 As = As0.94Fe0.06Mn0.04Si0.01; M1 = Mn0.71Mg0.22Zn0.07; M3 = Mn0.70Mg0.30; and M4 = Mn0.71Mg0.22Zn0.07 (Table 6). These proportions were then fixed in subsequent refinement cycles (see Table 6 – constrained refinement). The bond-valence sums (Table 5) indicate O1 as a likely hydroxyl ion in the structure. However, the individual H atoms could not be located in the difference-Fourier maps.

Table 4. Crystal data and experimental conditions for the single-crystal XRD study.

Parameter	Value
Ideal formula	Mn2AsSbO12(OH)2
Crystal dimensions (mm)	0.055 × 0.045 × 0.040
Crystal system, space group	Orthorhombic, Ibmnm
Temperature (K)	293(2)
α, β, γ (Å)	8.6790(9), 18.9057(19), 6.1066(6)
Z	4
Calculated density (g·cm⁻³) μ	4.47(1)
Data collection	Brownish block Brooker D8 Venture diffractometer MoKα 0.71073
Instrument	Multi-scan
Radiation type, wavelength (Å)	4.0 to 36.68
θ range (°)	4.00 to 36.68
No. of measured, observed and refined reflections	8724, 1317, 957
Rmin	0.040
R indices range of h, k, l	–14 to 14, –31 to 29, –10 to 9
Refinement	Full-matrix least squares on Fl²
No. of reflections parameters, restraints	R1 [P > 2σ(P)], R2 all
GoF	0.99
wR1, wR2 (all)	0.099, 0.101
Δρmax, Δρmin (e·Å⁻³)	2.50, –3.05

Weighting scheme: w = q / [σ²(F²) + 2σ² + d + e|sinθ|] where P = 1 + Maximum of (0 or F²) × (1 + F²)²

Table 6. Site-scattering values and site occupancies of garpenbergite.

Site	SCXRD	Site	SCXRD	EPMA	
Sb	51	Sb	51.00	Sb	50.64
As	31.81	As	31.82	As	31.94
M1	22.53	Mn2AsO10Fe1.57	22.52	Mn2AsO10Fe1.57	22.49
M3	21.10	Mn2AsO10Fe1.57	21.06	Mn2AsO10Fe1.57	21.10
M4	22.53	Mn2AsO10Fe1.57	22.48	Mn2AsO10Fe1.57	22.49

Table 7. Selected bond distances (Å) in the crystal structure of garpenbergite.

Site	Bond distance	Value
Sb–O1	1.961(4)	2.033(3)
Sb–O2	1.978(3)	2.135(3)
As–O3	1.689(5)	2.157(4)
As–O4	1.696(5)	2.122(2)
M1–O1	2.041(5)	2.251(3)
M1–O2	2.042(3)	2.251(3)
M1–O3	2.097(5)	2.251(3)

Table 8. Bond-valence sums calculated with the site populations reported in Table 5 and according to the parameters of Brese and O’Keeffe (1991) for all the atoms but Sb, which was modelled with the parameters of Mills et al. (2009).

Site	Bond-valence sum	Value	
O1	0.045(2)	0.370	1.280
O2	0.033(2)	0.293(2)	1.794
O3	0.031(2)	0.293(2)	1.986
O4	0.506(2)	0.341(2)	1.986
O5	5.048	4.718	1.925

The crystal structure refinement finally converged to R1 = 3.7% for 957 reflections with F > 4σ(F) and 53 parameters. The experimental details and all R indices obtained are summarised in Table 4. Fractional atomic coordinates and isotropic displacement parameters are reported in Table 5. Bond distances are given in Table 7, and calculated bond-valence sums in Table 8. The crystallographic information file has been deposited with the
Description of the crystal structure

The crystal structure of garpenbergite (Fig. 3a) consists of a cubic close-packed array of oxygen atoms with layers stacked along [100], with cations occupying tetrahedral and octahedral voids in a spinel-like arrangement. The heteropolyhedral framework consists of chains of edge-sharing \(M_4 \) and Sb octahedra along the \(b \) axis, connected by strips of edge-sharing \(M_3 \) octahedra stretching along \(c \). \(M_1 \) (×2) and As tetrahedra sharing corners with each other in triplets, and with adjacent octahedra. The calculated bond-valence sums (Table 8) for cation sites are in good agreement with the expected formal charges of the main ionic species, Mn\(^{2+}\), As\(^{5+}\) and Sb\(^{5+}\). The higher value obtained for the \(M_3 \) polyhedron is probably related to accumulation of Mn\(^{3+}\) at that site, along with some enrichment of Mg. The octahedrally coordinated \(M_2 \) site, filled with Mn\(^{2+}\) in manganostibite, is vacant in garpenbergite (Fig. 3b). Charge-compensation is achieved by incorporation of protons in the structure. This is most likely to occur close to the octahedral vacancy, in order to obtain a favourable electrostatic situation locally. As \(O_1 \) and \(O_4 \) are the most under-saturated anions in the structure (1.28 and 1.79 valence units, respectively), we conclude that protonation occurs along edges of the otherwise empty \(M_2 \) octahedron. The hydroxyl-stretching bands around 3600 cm\(^{-1}\) suggest O–O contacts > 3.0 Å (Libowitzky, 1999), in agreement with O1–O4 distances of 3.2 and 3.3 Å obtained for the present crystal structure.

![Figure 3](https://doi.org/10.1180/mgm.2022.6)

(a) The crystal structure of garpenbergite. The unit cell and the orientation of the structure are outlined. (b) Structural sketches highlighting the empty \(M_2 \) site of garpenbergite, which is occupied by Mn in manganostibite (Moore, 1970). Orange and light blue tetrahedra indicate As and \(M_1 \) sites. Dark blue and green octahedra refer to Sb, \(M_3 \) and \(M_4 \) sites, respectively. Red spheres indicate oxygen atoms.

Concluding remarks

Relation with other mineral species and synthetic compounds

The structural topology of garpenbergite is nearly the same as for manganostibite (Moore, 1970). The new mineral is derived from manganostibite via the coupled ion exchange \(\text{Mn}^{2+} + 2\text{O}^{2-} \rightarrow \square + 2\text{(OH)}^- \), or in vector notation, \(\text{Mn}^{2+}([\text{H}_2\text{O}])_n \), which leaves the space-group symmetry invariant. Notably, \(\text{Ibmm} \) is one of the orthorhombic subgroups of the \(\text{Fd\text{3m}} \) spinel space group (Moore and Smith, 1969).

Garpenbergite fits in the Strunz group 4.CA rather than 4.BA (with manganostibite; Strunz and Nickel, 2001) due to a different metal:oxygen ratio (2.3 vs. 3.4). The synthetic orthorhombic phases denoted ‘spinelloid phase II’ (e.g. Ni\(_3\)Al\(_2\)SiO\(_5\), Ma, 1974; Fe\(_{2.71}\)Si\(_{1.29}\)O\(_{12}\), Angel and Woodland, 1998) and Co\(_2\)As\(_2\)O\(_{12}\) (Barbier, 1997) have a close structural kinship with both manganostibite and garpenbergite. Moreover, the nesosilicate gerstmannite (Moore and Araki, 1977a) has a metrically similar unit cell, but crystallises in the space-group \(\text{Bc}m \). Somewhat related are also the OH-bearing arsenosilicates holdenite (Moore and Araki, 1977b) and kolicite (Peacor, 1980). Note that the overgrowth of filipstadite on garpenbergite is probably epitaxial; both minerals exhibit the spinel-structure theme with Sb\(^{5+}\) ions ordered at octahedral sites, and the unit-cell parameter \(a \) of garpenbergite is \(\frac{3}{5} \times a \) of filipstadite (∼26 Å; Bonazzi et al., 2013).

The handbook formula for garpenbergite might be written in simplified form as Mn\(_n\)AsSbO\(_{10}\)(OH)\(_2\), but at this instance, we prefer Mn\(_n\)□\(_{3}\)AsSbO\(_{10}\)(OH)\(_2\) for the close relationship with manganostibite. If the essential constituents are grouped after coordination environment (\(M = \text{octahedral} \) and \(T = \text{tetrahedral} \)), the general formula is \(M_n\text{O}_{2n}T_3\text{O}_{10} \) for manganostibite and \(M_n\square\text{O}_{2n}T_3\text{O}_{10} \) for garpenbergite. These minerals are part of a homologous series formalised as \(M_{2n}\square_{n-1}T_n\text{O}_{3n+1} \), where \(n = 1 \) for spinel and \(n = 3 \) for manganostibite/garpenbergite, and with \(\varphi \) representing O\(^2-\) or OH\(^-\).

Crystal chemistry

There is partial replacement of Mn by Mg and Zn in the ideal end-member formula of garpenbergite, which is apparent in the chemical point analytical data for the slightly inhomogeneous crystal (Fig. 4). It has a significantly higher Mg concentration than that known for manganostibite (1.0–2.9 wt.% MgO; Holtstam et al., 1998), but Mg\(^{3+}\) is not strongly ordered at any particular site in the structure. Garpenbergite is also comparably enriched in Zn; this element ought to be concentrated at the tetrahedral (\(M_1 \)) site. The \(M_3 \) octahedron is axially compressed, with two short and four long \(M-O \) distances. This coordination environment is thus favourable for Mn\(^{3+}\) due to the Jahn–Teller interaction of the \(d^4 \) ion.

The Sb content in garpenbergite is close to the nominal value of 1 apfu; the situation is invariably the same for different samples of manganostibite (Holtstam et al., 1998). In contrast, the As site is hosting additional cations, like Si, Fe\(^{3+}\) and probably Mn\(^{3+}\). This is not unexpected, since manganostibite is shown to contain up to 0.48 Si apfu (Holtstam et al., 1998) and explained by considerations of electrostatic bond valences for the ideal (non-substituted) structure (Moore 1970). The AsO\(_4\) tetrahedra may seem too small to accommodate the trivalent cations; however, limited Fe\(^{3+}\)-for-As\(^{5+}\) substitution is still indicated by chemical variations in the crystal (Fig. 5).
The mechanism introducing H\(^+\) in a spinel-like atomic arrangement invoked here is not unique; it is found for, e.g. high-pressure variants of MgAl\(_2\)O\(_4\) spinel (Bromiley et al., 2010) and related compounds, like ringwoodite \((n = 1)\) (Grüninger et al., 2020) and wadsleyite \((n = 2)\) (Deon et al., 2010), and is coupled to cation vacancies at, most frequently, octahedral sites in those structures. For garpenbergite, high-pressure conditions are not inferred, but a high-\(f_{\text{H}_2\text{O}}\) environment of formation is indicated by the close association with the strongly hydrous mineral carlfrancisite. Notably, carlfrancisite from Garpenberg is very similar in composition to the holotype specimen from Kombat, Namibia (Hawthorne, 2018). We do not, however, expect to find the same paragenesis as described here at Kombat, because of insignificant Sb concentration in the ore lithologies there.

Acknowledgements. We thank Franz Vyskytensky, Kopperberg, for providing specimens from the Garpenberg deposit over the years. Oona Appelt (GFZ) is thanked for her support with the electron microprobe work. Reviews by two anonymous reviewers and Structural Editor Peter Leverett improved the paper.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1180/mgm.2022.6

References
Allen R., Bull S., Ripa M. and Jonsson R. (2003) Regional stratigraphy, basin evolution, and the setting of stratabound Zn–Pb–Cu–Ag–Au deposits in Bergslagen, Sweden. Sveriges geologiska undersökning, FoU-rapport, 3, 1–99.
Angel R.J. and Woodland A.B. (1998) Crystal structure of spinelloid II in the system Fe\(_3\)O\(_4\)–Fe\(_2\)SiO\(_4\). European Journal of Mineralogy, 10, 607–612.
Barbier J. (1997) Co\(_2\)As\(_2\)O\(_4\): a new cobalt arsenate with a spinelloid-type structure. Zeitschrift für Kristallographie, 212, 445–449.
Bernardini S., Bellatreccia F., Della Ventura G. and Sodo, A. (2021) A reliable method for determining the oxidation state of manganese at the microscale in Mn oxides via Raman spectroscopy. Geostandards and Geoanalytical Research, 45, 223–244.
