Research Article
A New Microarray System to Detect Streptococcus pneumoniae Serotypes

Yuka Tomita,1 Akira Okamoto,2 Keiko Yamada,2 Testuya Yagi,3 Yoshinori Hasegawa,4 and Michio Ohta2

1 Department of Infectious Disease, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
2 Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
3 Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya 466-8550, Japan
4 Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan

Correspondence should be addressed to Yuka Tomita, yu-cat@med.nagoya-u.ac.jp

Received 29 July 2010; Revised 10 December 2010; Accepted 18 January 2011

Streptococcus pneumoniae, one of the most common gram-positive pathogens to colonize the human upper respiratory tract, is responsible for many severe infections, including meningitis and bacteremia. A 23-valent pneumococcal vaccine is available to protect against the 23 S. pneumoniae serotypes responsible for 90% of reported bacteremic infections. Unfortunately, current S. pneumoniae serotype testing requires a large panel of expensive antisera, assay results may be subjective, and serotype cross-reactions are common. For this study, we designed an oligonucleotide-based DNA microarray to identify glycosyltransferase gene sequences specific to each vaccine-related serotype. Out of 56 isolates representing different serotypes, only one isolate, representing serotype 23A, was not detected correctly as it could not be distinguished from serotype 23F. Our data suggest that the microarray provides a more cost-effective and reliable way of monitoring pneumococcal capsular types.

1. Introduction

Streptococcus pneumoniae is an important cause of bacteremia, community-acquired bacterial pneumonia, and meningitis, especially among young children and older adults [1–3]. Capsular polysaccharide is the primary S. pneumoniae virulence factor and encapsulated pneumococci are responsible for more diseases than unencapsulated strains [4]. After comparing the differences in capsular polysaccharides composition, S. pneumoniae can be divided into more than 90 serotypes [5] and the 23 serotypes responsible for 90% of disease cases [6] are represented in a 23-valent pneumococcal vaccine. Pneumococcal serogroup and serotype identification is currently performed by using large panels of expensive antisera by various methods, including the capsular swelling (Quellung) reaction, latex agglutination, and coagglutination. Cross-reactions between serotypes and discrepancies between methods can occur and some strains are nonserotypable. On the other hand, molecular typing has the potential to improve discrimination and provide additional information. S. pneumoniae capsule production is predominantly controlled by capsular polysaccharide synthesis (cps) gene clusters [7, 8], which are responsible for each serotype-specific polysaccharide. The Sanger Institute has sequenced the cps gene clusters of 90 S. pneumoniae serotypes and predicted the general function of 1,973 of the 1,999 gene products [9, 10]. S. pneumoniae capsular polysaccharides represent a diverse group of polymers with distinct sugar compositions and linkages [10]. The key enzymes to link each serotype-specific sugar component are glycosyltransferases (GTs) [11], which transfer the sugar moiety from an activated nucleotide sugar to an acceptor to generate a serotype-specific capsular polysaccharide. After discovering that S. pneumoniae GT genes are highly variable and contain serotype- or serogroup-specific regions, we used GT sequences as probes in an oligonucleotide-based microarray to identify 23-valent pneumococcal vaccine and closely related S. pneumoniae serotypes. Our data suggest that
the microarray provides a more cost-effective and reliable way of monitoring serotype distribution.

2. Materials and Methods

2.1. Bacterial Strains, Growth Conditions, Immunological Serotyping, and Genomic DNA Extraction. *S. pneumoniae* strains representing various serotypes were obtained from the American Type Culture Collection, the Statens Serum Institute, and clinical isolates (Table 1). Each strain was cultivated on brain-heart infusion broth (Eiken, Tokyo, Japan) supplemented with 0.3% yeast extract (Becton Dickinson, Boston, MA) (BHI-γ) for 24 h at 37°C in 5% CO₂. Conventional serotyping was performed for clinical isolates obtained in Japan by slide agglutination (Denka Seiken, Tokyo, Japan) or quellung reaction (Statens Serum Institute, Copenhagen, Denmark).

Genomic DNA was extracted using a Wizard Genomic DNA purification kit (Promega, Madison, WI).

2.2. DNA Array Preparation. Oligonucleotide probes were synthesized and spotted on a glass slide at Nihon Gaishi (Nagoya, Japan). The slide was stirred in a beaker filled with 2 × SSC/0.2% SDS for 15 min, transferred to a second beaker filled with 2 × SSC/0.2% SDS to incubate for 5 min at 95°C, rinsed three times with dH₂O, and centrifuged at 900 rpm for 3 min at 25°C in a horizontal microtiter plate rotor before being covered with a plastic seal.

2.3. Chromosomal DNA Labeling. 500 ng of genomic DNA was suspended in 21 µL dH₂O and 20 µL of 2.5 × Random Primer Solution (Invitrogen, Carlsbad, CA), heated to 95°C for 5 min, and chilled on ice for 3 min. The DNA was labelled in a reaction including 5 µL of 10X dCTP Nucleotide Mix (Invitrogen, Carlsbad, CA), 5 µL Cy3 or Cy5-dCTP (GE Healthcare, Buckinghamshire, UK), and 1 µL of Exo-Klenow Fragment (Invitrogen, Carlsbad, CA). After a 2-hour incubation at 37°C, 5 µL of sodium acetate, 125 µL of ethanol and 1 µL of glycéron was added to 25 µL of Cy3 and Cy5 labeled DNA, which was purified previously by QIAprep Spin Miniprep Kit (250) (Qiagen, Tokyo, Japan). Following a 30-minute incubation at −80°C in the dark, the probe mixture was centrifuged for 30 min at 14,000 rpm at 4°C. The supernatant was removed and the probe was air-dried for 5 min in the dark. The probe mixture was diluted in 70 µL of the hybridization buffer (25% formamide, 0.1% SDS, 6 × SSPE), incubated for 30 min at room temperature in the dark, heated for 8 min at 75°C, and incubated for 30 min at 42°C.

2.4. Probe Hybridization and Microarray Signal Detection. Prewarmed probe mixture was applied to the prepared microarray slide, placed in a hybridization chamber and incubated for 20 h at 42°C. After hybridization, the plastic seal was removed and the slide was washed with 1 × SSC/0.1% SDS solution for 3 min, 0.05 × SSC for 3 min, and 95% ethanol for 90 s at room temperature. The washed microarray slide was dried by centrifugation and scanned using the DNA Microarray Scanner (Agilent, Santa Clara, CA).

2.5. Data Analysis. The signal and background intensities of each spot were quantified using GenePix Pro 6.0 software and the average was calculated with Microsoft Excel software.

3. Results

3.1. Target Gene Selection and Microarray Construction. In this study, we designed a DNA microarray to identify the 23 *S. pneumoniae* serotypes included in the 23-valent pneumococcal vaccine, using GT genes in *cps* locus. We compared the GT sequences of the 23-valent vaccine serotypes with other *S. pneumoniae* serotypes and found that these 23 serotypes were indistinguishable from 14 nonvaccine serotypes. Therefore, 37 serotypes, 23-valent vaccine serotypes and 14 closely related serotypes, were divided into 23 groups and each group had one to six GT genes in their *cps* locus.
Table 2: Twenty-three groups distinguished in this study and targeted glycosyltransferase genes.

Group name	Targeted GT genes in cps locus (probe number*)
1	wchB (1, 2, 3) wchD (4, 5, 6) wchH (13, 14, 15) wchI (16, 17, 18)
2	wchF (7, 8, 9) wchG (10, 11, 12) wchI (16, 17, 18)
3	wchE (19, 20, 21) wchI (22, 23, 24) wchJ (31, 23, 24)
4	wciJ (22, 23, 24) wciK (25, 26, 27) wciL (28, 29, 30)
5	wciJ (31, 23, 24) whaC (32, 33, 34) whaD (35, 36, 37)
6A/6B	wciN (38, 39, 40) wciP (41, 42, 43)
7F/7A	wchF (44, 45, 46) wcwA (47, 48, 49) wcwF (50, 51, 52) wcwG (53, 54, 55) wcwH (56, 57, 58)
8	wciR (59, 60, 61) wciR (62, 63, 64) wciS (65, 66, 67) wciT (68, 69, 70)
9A/9V	wchO (71, 72, 73, 74) wcjA (75, 76, 77) wcjB (78, 84, 85) wcjC (81, 82, 83)
9L/9N	wchO (71, 72, 73, 74) wcjA (75, 76, 77) wcjB (78, 79, 80) wcjC (81, 82, 83)
10	wciB (86, 87, 88) wcrC (89, 90, 91) wcrD (92, 93, 94) wciF (95, 96, 97) wcrG (98, 99, 100)
11A/11D	wchK (101, 102, 103) wcyK (104, 105, 106) wcrL (107, 108, 109)
12F/12A/44/46	wciJ (110, 111, 112) wcxB (113, 114, 115) wcxD (116, 117, 118) wcxE (119, 120, 121) wcxF (122, 123, 124)
14	wchK (125, 126, 127) wchL (128, 129, 130, 131) wchM (132, 133, 134) wchN (135, 136, 137)
15B/15C	wchK (138, 139, 125) wchL (128, 140, 141, 131) wchM (142, 143) wchN (135)
17F	wchF (144, 145, 146) abpI (147, 148, 149) wciP (150, 151, 152) wcrV (153, 154, 155)
18B/18C	wchF (156, 157) wciU (158, 159, 160) wciV (161, 162, 163) wciW (164, 165, 166)
19F	wchO (167, 72, 168, 169) wchQ (171, 172, 173)
19A	wchO (71, 70, 73, 74) wchQ (171, 172, 173)
20	wciB (174, 175, 176) whaJ (177, 178, 179) wciL (180, 181, 182) wcwK (183, 184, 185) wcwV (186, 187, 188) whaB (189, 190, 191)
22F/22A	wchF (7, 8, 192, 193) wcwA (48, 49, 194) wcwV (195, 196, 197) whaB (198, 199, 200)
23F	whcF (144, 156, 145, 193, 201) wcwA (202, 203, 204) wcwV (205, 206, 207)
33F/33B/37	wciB (208, 209, 210) wciC (211, 212, 213) wciD (214, 215, 216) wciE (217, 218, 219) wciF (220, 221, 222)

Explanatory notes: *Probes containing 60-bp oligonucleotides were designed and named as 1, 2, 3 etc from Group 1. The name of each GT gene (wchB etc) was derived from the Sanger Institute.*

(Table 2). The 60-bp oligonucleotide probes contained the variable middle region of each open reading frame and were designed from published sequences at the Sanger Institute (http://www.sanger.ac.uk/Projects/S_pneumoniae/CPs/) and Genbank websites. In most cases, the designed probes were gene specific, although some probes included sequences from more than one gene. Each serotype group was identified using 3 to 18 probes (Table 2) and a total of 222 probes were designed to target 23 groups (Table 3). 26 positive control probes were designed to hybridize *S. pneumoniae* housekeeping genes and 16S rDNA. In addition, 26 negative control probes were designed to detect housekeeping genes of other bacterial respiratory pathogens, including *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Legionella pneumophila*, *Chlamydophila pneumoniae*, *Mycoplasma pneumoniae*, *Pseudomonas aeruginosa*, and *Streptococcus pyogenes*. A schematic
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5’–3’)
1	wchB	Serotype 1	ATAAGATTATGAGAAAAATATAGACCGGATGTCTTGACATATACC-GTGAACCCAAAAT
2	wchB	Serotype 1	TTTATTGGTggAGATATTAAAAAGGTAGATAGACTTCTGGCTGCT-GCCCAACAAAT
3	wchB	Serotype 1	GAAAAATGAAAAACGAAAAAGATTGGAGCTTCAAGGGAGAATTGATATA-GAGCAAAATTT
4	wchD	Serotype 1	TTAATGGAAGGATGATGACATCTATGTTTGGATATGCTCTCATA-TAAATTGAGAT
5	wchD	Serotype 1	GCCATAGATTTGTATGGAAGCACAGATGATATCGAAATATTACAGTTTGGG
6	wchD	Serotype 1	AGGGAATTCGGGGAATCTCAATAATGATGAAATGAAAAAGATGAGGAAATGAGCAGTTTCG
7	wchF	Serotype 1	TTTTTGAGAAATACAAGAATATCACAAGATGGAACAGAATAGTTTACAGTTTCG
8	wchF	Serotype 1	CTTAAAAAGACCTTTTGTCCAATACACATGGAACAGAATAGTTTACAGTTTCG
9	wchF	Serotype 1	TTAATGGAAGGACATGGAAGGAGAATACGCATTTCGAGACTTAG-TAAATTAACCTTA
10	wchG	Serotype 2	GCAAATACCAAGAAAAATACCTTAAAAATTAAGTTATACAGATTTCCCTCCTGCTTGAAGAG
11	wchG	Serotype 2	TAGAAATTTAAACATCTGTGATGTATAGATATCGATAGCTATGAGATAGTTTGAGAT
12	wchG	Serotype 2	TTAATCGAAATCTCTCAAGTAATGAGGAGACAGATATTATCGTGAATTTATACAGTTTCG
13	wchH	Serotype 2	TAGAAACAGAAAATTTTTATCGGATAAAAAGCTTCTTTGGGGAATACCTCTAAAAACG
14	wchH	Serotype 2	CGTAATACGAAAAAGTTACCCTGATACCTTAAATGTGTTGAATTAATCTCGGAAAGAAAA
15	wchH	Serotype 2	CTTTTGTTGGAACCTCTCTAAATGTGAACAGATATTGTTGAGATGTTATTTACAGTTTCG
16	wchI	Serotype 2	CATTTTACGAGAACATGGAAATGTGGAGATGAGCTTTGAAACAAAAAGG-AATTAATACCTA
17	wchI	Serotype 2	TGATTATTGAGAGGATGAGCTTACATCTTCTGAGAGATATAAACAGATTTTAAATTTAAG
18	wchI	Serotype 2	TACAAAAAGAGATAATTACTTACTACAGAGAAAAACAGATATCTGTGAAACCCAGGAGATATATATAT
19	wchI	Serotype 2	TATAAGTCTCTAGAGATGTGAGATGGAGAATTTATATGAGGTCTGCTGATATTACCTC
20	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
21	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
22	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
23	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
24	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
25	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA
26	wchI	Serotype 2	ACCTTTAAAAAGGCTTAAACACTGTTATGCAGGATATCTCTGGTGTATGACAGATGTCA

Table 3: Oligonucleotide probes used in this study.
Spot identifier	Targeted GT gene	Specificity	Probe sequence (3′–5′)
27	wciK	Serotype4	GTGAAGATACCTATATAGAAAAAGTGTCAATAGAAGATGTTTGGTTTCTGTATACCTA
28	wciL	Serotype4	AAAAGCCCTCTACATCGTTTCTCTCTGCTAGAATAATAAAGAAAGGAGATTGATATA
29	wciL	Serotype4	AGAATCATTATTTAATCCAAACAAATTTGTATTTTACTCTTTATGTTGAATTGAGGGTGAGTA
30	wciL	Serotype4	AAAAACATTAGTACTTTACTCTATCACGAGAGCTGTGTGCTATAGGAAAAAGATAAGTA
31	wciL	Serotype5	TTACATAGGATATTTAATTATTTTTGAGATTTTTGGTTTCGTTTTACCTA
32	whaC	Serotype5	TTTCTGACTCTCAAGATATGAGATGTATATTCAAGAAAGAGACGCTATAAAGGAAAAAGTTGTTT
33	whaC	Serotype5	TATATCCGAACTCCTCAACTTTTGAACCTTTTAAAGGAAATATCATATCCGTTCAGATTATT
34	whaC	Serotype5	GAAGACATAAATCTTCAGCTGATAGGGAATGAAAGCGCTATAAAGGAAAAAGTTGTTT
35	whaD	Serotype5	AAGAGGGAGCTAGCTTTGCTATAGGGAATGAAAGCGCTATAAAGGAAAAAGTTGTTT
36	whaD	Serotype5	GAGGTTTCTCAAGGATATGATTTCAGAAGTAAGGAAAAAGTTGTTT
37	whaD	Serotype5	TCTAAATACATATAATCTCTCTTTTCTAGAAGAGGAGATATCTTCAGAGTTGATGAGGTTT
38	wciN	Serotype6A, 6B, 33D	AATAGATTATCAGAAAATTTGCGCAGAGAAATTTGAGATAGAGAAGGTTGAGGTG
39	wciN	Serotype6A, 6B, 33D	TTACAGGAAGATTAGGATGTTTAAATGCAAGTTTTTATATAACTCATTTGCTGTACTTCTT
40	wciN	Serotype6A, 6B, 33D	GAAGACAGTCATATGAGGCAATAGGGAATGAAAGCGCTATAAAGGAAAAAGTTGTTT
41	wciP	Serotype6A, 6B, 33D	GGACACCTTTTTATTAGGAGTATTGAAGTAAGGAAAAAGTTGTTT
42	wciP	Serotype6A, 6B, 33D	CAGGTTTTTATACATGCTATTGCTAGAGATTCTCTTTGCTATAGGGAATGAAAGGTTGTTT
43	wciP	Serotype6A, 6B, 33D	CTTACACATGTGCTGTTTAAATCGAAGTTCTCTTTGCTATAGGGAATGAAAGGTTGTTT
44	wchF	Serotype7F, 7A	ATACAATCAATGTGTGTGTGTGTTGAGAATAATCTCGATTTCTGAGTTGAGGTTT
45	wchF	Serotype7F, 7A	AAAAATAATGCTCAACAAGAGATTATAAGCACTCAGAGAAGGACACCTATATTGCTATAG
46	wchF	Serotype7F, 7A	TTGTTACAGGAACTGTTTTGCTAGAAGATGTTTGAATTGGAATGAAAGGTTGTTT
47	wcwA	Serotype7F, 7A	AAGTGCTATGTTCTCTTTCGTTGAAAGGTTATATGTTGGAATGAAAGGTTGTTT
48	wcwA	Serotype7F, 7A	ATGTTTGTTGAGATTACCGATTATCAAGGAAATCTCTCTAATCTCAAGGAGGTTTAGAAT
49	wcwA	Serotype7F, 7A	CTTACAAATGCTACCAAGGAGATGTTAGCAGACTGAGCTTTTATATTGTTGGAATGAAAGGTTGTTT
50	wcwA	Serotype7F, 7A	AAATATGAGAATATTACCAAGGATGTTAGCTAGAGAGGACACCTATATTGCTATAG
51	wcwF	Serotype7F, 7A	TATTTTATTGGGAGATGAGGTTGCTACTTACCCAAGTAGGGTTTGGAGATTATGTTGGAATGAAAGGTTGTTT
52	wcwF	Serotype7F, 7A	ATGAAAATTGATGAGGAAAAATCGAGAGAAGACTCAGACCTTTTTTATGAGGAGAGTAATGTTGGAATGAAAGGTTGTTT
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
-----------------	-----------------	-------------	-----------------------
53	wcwG Serotype7F, 7A	AAAACGATTACCCGGGATTTTATCCATAATTTTGGTTTAGAGAATGGTGTC-TAGAAAAAT	
54	wcwG Serotype7F, 7A	GGTGCAGATAGAAGAGGAGTGGTCTAACCCTTCTTAGAAGAAATGCAATTTTT-ATAGTTTTAAT	
55	wcwG Serotype7F, 7A	ATAAAAAAGGAGACCTGGTCTAACCTATGAGCAATGGAATCCATTTTTTTAT-ATAGTTTTAAT	
56	wcwH Serotype7F, 7A	GGAACAGAGCTTAGTAAAGAATGGTATGTTATATCATGAAG	
57	wcwH Serotype7F, 7A	ATTTTGCTAAATCTAGAAAGCGGCAATGTCCCAATAAAAGGACATGTT-ATAGTTTTAAT	
58	wcwH Serotype7F, 7A	TATTTTGAAATCTATAGACAGTATGTTATGTTATATCATGAAG	
59	wciO Serotype8	AACAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
60	wciO Serotype8	TAAAGCCTTGAATTAAGAAGAAGAAGGACATGATGTTATGTTATATCATGAAG	
61	wciO Serotype8	ATGCTTTGATATGCAATTGATGGCGAGAATGCACTTTTATCTTCGATGAAATAGGTTGTTT-GCTCAGATTGA	
62	wciO Serotype8	AAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
63	wciO Serotype8	TAAAGCCTTGAATTAAGAAGAAGAAGGACATGATGTTATGTTATATCATGAAG	
64	wciO Serotype8	ATGCTTTGATATGCAATTGATGGCGAGAATGCACTTTTATCTTCGATGAAATAGGTTGTTT-GCTCAGATTGA	
65	wciO Serotype8	AAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
66	wciO Serotype8	TAAAGCCTTGAATTAAGAAGAAGAAGGACATGATGTTATGTTATATCATGAAG	
67	wciO Serotype8	ATGCTTTGATATGCAATTGATGGCGAGAATGCACTTTTATCTTCGATGAAATAGGTTGTTT-GCTCAGATTGA	
68	wciO Serotype8	AAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
69	wciO Serotype8	AAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
70	wciO Serotype8	AAAATGAGCTTGAAGAAGGACATGATGTTATGTTATATCATGAAG	
71	wciO Serotype9A, 9V, 9L, 9N, 19A	ATTAACGATAGAAGAAACAGTGATGTCTGTGATGAAATAGTATGTTATGTT-ATTGAATATAGAT	
72	wciO Serotype9A, 9V, 9L, 9N, 19B, 19C	TTTTGATGTTATTCAGACACATAAAGGAGCTCCATTATTTGATGGAATGAAAAATTGAATCT	
73	wciO Serotype9A, 9V, 9L, 9N, 19A	GAAAGAATATATTATACATTCATCAATGATAATGGAATTAATGCTGTGT-TATGGAATCT	
74	wciO Serotype9A, 9V, 9L, 9N, 19A	GAGTAGGGGTATTTGTAGATGTCTTCTTGTAGTGTTGCTCATAATAAAAAGGATATT	
75	wcjA Serotype9A, 9V, 9L, 9N, 19A	AACAGGTGGCTATGAGGAGGAAACACTTTTATCAAAGGGAGCTCAACATATAATTTTAT	
76	wcjA Serotype9A, 9V, 9L, 9N, 19A	TTTAAAAAGGCAATTTTGATGAGGACTTGTGCCATGATGATTGTTGCTTCATCTCATTTTATATTGAATATAGAT	
77	wcjA Serotype9A, 9V, 9L, 9N, 19A	GAGTAGGGGTATTTGTAGATGTCTTCTTGTAGTGTTGCTCATAATAAAAAGGATATT	
Table 3: Continued.

Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
78	wcjB	Serotype9A, 9V, 9L, 9N	GAAAAGCTAATTTTAGAAAAATGAACTAATTGTGTTTCAGAAACCTTACCCAGCGCTTT
79	wcjB	Serotype9L, 9N	AGTTGTTCTAGTTGTAGCAGATCATCTTATTCTGCGAAATCATATAAGAAAAGTGAAGCTT
80	wcjB	Serotype9L, 9N	CAATCCGAGGAGAGTTTGTATATTTGAAATACGCATATGATAACAAAAGTGAATAGAGT
81	wcjC	Serotype9A, 9V, 9L, 9N	AAAATTTTCAGTTGAACACTTTGTAAAGAGGAAGAGCATAGGATTGTGCA-AATCTCTGATGT
82	wcjC	Serotype9A, 9V, 9L, 9N	TTATCAAATAAAGAGTTTATTAAACCATCTTCTCAAAAATGTATGCGCTATTGAAAAGTGA
83	wcjC	Serotype9A, 9V, 9L, 9N	CGAAAGTGTACCTGAGAATAAGTTTCTTGCAAGATAACAAAAGGCACTTAC
84	wcjB	Serotype9A, 9V	ATTTGAAATTTCGTTGATGATGACTCTCTATTCGCAATTACCCAGAAAGTATGGAATTCCTCTGATGT
85	wcjB	Serotype9A, 9V	TTATCAAATAAAGAGTTTATTAAACCATCTTCTCAAAAATGTATGCGCTATTGAAAAGTGA
86	wciB	Serotype10E, 10A, 10B, 10C, 47A	ATCAAGGTAAATCATATCACACTCAGAAATCTTATATTATTGGAATTGGCAAT
87	wciB	Serotype10E, 10A, 10B, 10C, 31, 47A	TTAAGATGGAAGCAGCGAGAAATTAAAGAGGTTTTCGCCAGAATATT GCAACCATTTGA
88	wciB	Serotype10E, 10A, 10B, 10C, 47A	TGAATTTATTTGGAAGGCAATCCTCTTGTGAAGGCAATTTTGCAAGAAAAATGATGGAAT
89	wcrC	Serotype10A, 10C, 34, 35F, 43, 47F, 47A	GTTGCTGTATCTTCTGGCAGAATCTCCTATTATTTGGAATTGATGGAATTCCTCTTGGCAAGAAAAATGATGGAAT
90	wcrC	Serotype10A, 10C	TAACGTGGTGGTCGTTGGCATTATAACAAAAGGATAGTATTATCTTACACGAGTCCGAAAGAA
91	wcrC	Serotype10A, 10C	TGGTTATCTGATAGATTTGTATAGTACCCGATAAGAGTGAGTGAGAAAATTGCTTATTGAGT
92	wcrD	Serotype10A, 10B	GGATATGTTTTCAGGGTTTTTACAGAGTACCCGAAATATTACCTATCTTGGCAGAA
93	wcrD	Serotype10A, 10B	ACCTTATAGAACACCTTCTATCAGTGGCAATTACTCCGTTTATGGAATTGAAAGAAAGAGGATG
94	wcrD	Serotype10A, 10B	TATCGAGAAGATTACAGACAAATTGAGACAGTCTTATGATGATATCTCGAGAAAGAAAGAGGATG
95	wciF	Serotype10A, 10B	AAGCATCATCAGATTGGAATTTTCTTTCTGATACCTGAGATTATTTGGAAGAGAGAATTATAACCTTCAACGAGGATG
96	wciF	Serotype10A, 10B	GGATAAAAATTGTGATTAGTCAGACTCTGCAATAACTATAACTATTACCGTGAAGAGAGAATTATAACCTTCAACGAGGATG
97	wciF	Serotype10A, 10B	AGGCTGCAGCTCCTGGTTTACAGAAATTTCGCAGAATCTTATTGGAATTGAAAGAAAGAGGATG
98	wcrG	Serotype10A, 10B	CTCTGGTGATATTAAAAAGGAACTGATATTATTATTATTGAGGAGCAAGAAGTGAATGTTG
99	wcrG	Serotype10A, 10B	GCTAGAAATATTCAGAAACAAATGTGCTGAAATTTTTGAGCATATTACCCTAGTAAAGGAGAAAAAGGAGAAGG
100	wcrG	Serotype10A, 10B	GCAGCTCAACTGCTGATATTAAAATTCAGATTTTAGTTAAAGGAAACAAATGTGCTGAAATTTTTGAGCATATTACCCTAGTAAAGGAGAAAAAGGAGAAGG
101	whhK	Serotype11A, 11B, 11C, 11D, 14, 15F, 15A	GATAGATTAAAAAGTGAGGGGATTATTACGAGGATGTTTTTTATTACGACTGGTTTTTCA
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
----------------	------------------	------------	----------------------
102	wchK	Serotype11A, 11D	TTTTTATGTAATGGAATCCATCATATATATATACACATGGCGG
103	wchK	Serotype11F, 11A, 11D	CCGAGGGTTGATATTATCTCCTGAATGTAATAAGCGAATCGTGATATGGTTAGTTAGTTTTG
104	wcyK	Serotype11F, 11A, 11D	CATCTAAATATGATATTCTCCTGAATGTAATAAGCGAATCGTGATATGGTTAGTTTTG
105	wcyK	Serotype11F, 11A, 11D	CTCGTTGATATTATCTCCTGAATGTAATAAGCGAATCGTGATATGGTTAGTTTTG
106	wcyK	Serotype11F, 11A, 11D	GGTCATCATATGTAATGGAATCTTCTGTCATCAATGGATTATATTTGTTAGTTTTG
107	wcrL	Serotype11F, 11A, 11D	TGTATGGAAATCAGGAATATTTATGAGATCATAGAGATAAACAGATGCGTTT
108	wcrL	Serotype11F, 11A, 11D	GTTATGTCCTGAATTTAAATACAGTCTTGTGTTATACCTTATTCGATCAGT
109	wcrL	Serotype11F, 11A, 11D	CAGATCAAAGATATCGTTTATGCTTTCAGCTAAAGAGATCAGT
110	wciJ	Serotype12F, 12A, 12B, 44	GGAATATATAGCTGATTATGGAATCTTCTAATTTGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
111	wciJ	Serotype12F, 12A, 12B, 44	ACTTTATTTGGCTGAATTTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
112	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
113	wciJ	Serotype12F, 12A, 12B, 44	AAGTTACAATTTGGCTGAATTTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
114	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
115	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
116	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
117	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
118	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
119	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
120	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
121	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
122	wciJ	Serotype12F, 12A, 12B, 44	AATGGTTGATCAGTTAGTGGAATATTGGAATCTCAGAAATTTTAGAGACTGATTGAAATGAGGCAAAGAGAGAGGACTATAATAGGTTGTTTC
Table 3: Continued.

Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
123	wcxF	Serotype12F, 12A, 12B, 44, 46	TGATTTGGTTTTTTGTGGACGTATCAACAAATAAGGATATCAAAAGAATGCCTGGAAGCCT
124	wcxF	Serotype12F, 12A, 12B, 44, 46	GAAATGCTCTCTCGGTATTACTTTCAATAGATTAGAGGAGCCATTTTTTTTTAGTAAGAA
125	wchK	Serotype13, 14, 15B, 15C	TTTATGGGAATATTTTGGATATAGGACTTACTTGTGATATTGATTTTCTGGTCATCAAC
126	wchK	Serotype14	TAAAAATGCAATTTAGATGATTAGAGGAGCAGGATATTTGCTGGAGCACGATTTAAGGTT
127	wchK	Serotype14	AGGACAAAATTTTTGAAATTTTGGATATAGGACTTACTTGTGATATTGCAGGATATTTAAGGTT
128	wchL	Serotype14, 15B, 15C	TTGGTGATTAGTGCTTTAAAGCAGAGGAGGATATTTGCTGGAGCACGATTTAAGGTT
129	wchL	Serotype14, 15F, 15A	AAAATTTCTTTGAAATTTTGGATATAGGACTTACTTGTGATATTGCAGGATATTTAAGGTT
130	wchL	Serotype14	GCTGGTTATTATTTGGATATAGGACTTACTTGTGATATTGCAGGATATTTAAGGTT
131	wchL	Serotype14, 15F, 15A, 15B, 15C	TCCTAAGATTGAGGAGACTCTACTCAAGCAACATATTGAGATTATTGATTTTCTGGAGGAG
132	wchM	Serotype14	AATAGAAGATTTTTGGAATACAAAGCTGATGATAACCTTGGATTCTATTAGTTCGATGAGG
133	wchM	Serotype14	AATAGAAGATTTTTGGAATACAAAGCTGATGATAACCTTGGATTCTATTAGTTCGATGAGG
134	wchM	Serotype14	CAGTAGTTGAATCTGGATTTTGATGTTGATATTGATTTGATTTGATTTGATTTGATTTGATTTG
135	wchN	Serotype14, 15F, 15A, 15B, 15C	CAAAAAATGATATGAACTTTTGGATATTTGAGTTTGGTTCAGGGCGAGAG
136	wchN	Serotype14	TATGCAGAAAACTACTCTGGGAGTATGGTGAGAAGAAAATAGTTTAGTCAATTATTTT
137	wchN	Serotype14	GAGTTTTAAATATCAATTTTTCAGAAAAAGGTGGGAAGCACTTAAACCG-ATATCGGGTTT
138	wchK	Serotype13, 15B, 15C	GATGAAAGTTATTATTTCAAGAAATGAGATACCAATTTGCAGAATATTGTTGTGGAGAG
139	wchK	Serotype15B, 15C	GCTATGGTAATGACCATCAGGTTTTCAGTGTTAAGATGTAAGAATGCAATATTATATCAATATTAT
140	wchL	Serotype15B, 15C	AGAAAATTTTGAAAGACAGCAATGAGATTTTGGTTGAGTATTGATTTTCTGGAGGAG
141	wchL	Serotype15F, 15A, 15B, 15C	GAAGAAAAATATATACCTTTTTCAGACTGAGATGTCATAGGTGAGATATGTCATTGTGG
142	wchM	Serotype15F, 15A, 15B, 15C	GAAAGATTTTTGGAATACAGACTTATCAAATACTGAGATTTTATTGGTTGTGAGAGGAAAAG
143	wchM	Serotype15F, 15A, 15B, 15C	GCTACGCAATTTGAGTTTACACAAGCAGACTCAGCTAACATAGTGAAGATTTTTAAA-TCTTAATTTT
144	wchF		GAAAGCAATTTTGGGGAAATACAGCCCTCAAACAGAGTATGGAAGCTATCCAGAAATTTATG

Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
145	wchF	Serotype16F, 17F, 18F, 18A, 18B, 18C, 23F, 24F, 24A, 24B, 28F, 28A, 48	AAGGTCTTATGGTCAAACATGCAGCTCTTTTAGTGTTAGTAGTAAGA-ATATTGAAAAAT
146	wchF	Serotype16F, 17F, 18F, 18B, 18C, 23A	TTCCGTACTTGAAGCATTAGCATCCACAAAGTTAAACTTACTACTCGATGT-TGGTTTTAAA
147	abp1	Serotype17F, 24F, 24A, 24B, 48	GCCAGTCTAATATATCTATACCTTTTACCATCAATAATTTCTATCGCTTGAAAGAATCAGCTAG
148	abp1	Serotype17F, 24F, 24A, 24B, 48	ACAAAACTCCTCCTATTGATTGATAATTTCTATCGCTTGAAAGAATCAGCTAG
149	abp1	Serotype17F, 24F, 24A, 24B, 48	TTAGTTCCTTCTTGGAAAACAGAGAAAAACTGAAAATAGGACTGAAAGAATCAGCTAG
150	wciP	Serotype17F	GAAGAAAAGATAAGAGCGAGAAGCGGGAAATATCATGGAGCGCTAT
151	wciP	Serotype17F	GTATACACGTCTCATCTATTACACCTTTATGCTCTATAAGTTGTGAGTAAATTACGTTT
152	wciP	Serotype17F	ATCTTTAAAGCTATCGGAAATATGAGACTGCTCTGAGAACAAATTCCT
153	wcrV	Serotype17F	TCGGAGGATGATGAAACAGAGAATAATGAGTTGAGTAAATTACGTTT
154	wcrV	Serotype17F	CATGGAAAAACTTAAAGTTGTTCTGCAAGATATTTAAAATTCAGAGAGCAGTTTATTTAAG
155	wcrV	Serotype17F	CGTTTTAATCTACTAAAAATAACGCAGGGAATGTTGGTGACTGCCACTATATATTATTTAAG
156	wchF	Serotype17F, 16F, 17F, 18F, 18A, 18B, 18C, 23F, 23A, 24F, 24A, 24B, 28F, 28A, 40, 48	TATAGGCTATGATATCGCTGCAATTAACAGCTATTGAAAATTCGAA-AGAAATAAGGA
157	wchF	Serotype16F, 18F, 18B, 18C	TATAATCAGCTATTAGCAAGTGATTGATAAAAGATCCACGAGTG-AAATTTGTGGA
158	wciU	Serotype16F, 18F, 18A, 18B, 18C, 28F, 28A	AGAAAGGATACACCCGACATTACATATACTCAGTTATGGGATTTGCA-TAAAGGAAT
159	wciU	Serotype16F, 18F, 18B, 18C, 28F, 28A	TCATCATCAGAGATTGACAATGTGTTGATAAAAGATCCACGAGTG-AAATTTGTGGA
160	wciU	Serotype18A, 18B, 18C	GACAAGAGGATTGTTGGCTAATATGACTCAGTTATGGGATTTGCA-TAAAGGAAT
161	wciV	Serotype18A, 18B, 18C	AATAATAAATACCTTTATGGAGTATGACTATGTTTATCTATAGATATGCTG-CAAAACTCTA
162	wciV	Serotype18F, 18A, 18B, 18C	AGAAGATGCTATTATTTTCAATGTTGTTTTTAAATTAGCAACATCTGCCCT-TGTATTCAC
163	wciV	Serotype18F, 18B, 18C	ACCCAATATCCAAATACAGTATTAGCTATTACATCTCGTTATCCACTTTACTAAAC
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
----------------	------------------	-------------	------------------------
164	wciW	Serotype18F, 18A, 18B, 18C	AAGTGCAACTTGAAGATAGGGGCTACACAGAATACTAAAAAGAAATACGGTTCCTTTAAATTT
165	wciW	Serotype18F, 18A, 18B, 18C	TGGATTTGACTCAACAGTGTATTITGACAGGAGATTTATTTATTTATTTTGATGAATTTTTTCAGAGGAAAG
166	wciW	Serotype18F, 18A, 18B, 18C	TACGACGCGAACCCATATATACTTAGTGGTGAATTTAATAATTTTTTTTTCAGAGGAAAG
167	wchO	Serotype19F, 19B, 19C	ATAGATAGTGAGAGAGAATATTTATTTAAGGAGGCTTTGAATAGAGGTTTTTTCAGAGGAAAG
168	wchO	Serotype19F, 19B, 19C	GCCTCAAGATATTTAGAGAAGGATTTGATATTGTGGGACAGAGAAATACGG
169	wchO	Serotype19F, 19B, 19C	AATTTAGAGGTGTATCTTCAATGAGCCTAAAAACTCCTCTTTTTTTATTTTGATTA
170	wchO	Serotype19A	GAGTTCGCGGAATAGCAGGTGAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
171	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATTAGAAAATTTAGGTTTTGATTTAATCTAGGAGAGGCTTTTTTCAGAGGAAAG
172	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
173	wchQ	Serotype19F, 19A	GATACGCTTTGTTAAGGCTAAAGGCACCATCAAACATTTCTTTTTTTCAGAGGAAAG
174	wchQ	Serotype19F, 19A, 19B, 19C	GCTCAAGATATTTAGAGAAGGATTTGATATTGTGGGACAGAGAAATACGG
175	wchQ	Serotype19F, 19A, 19B, 19C	AATTTAGAGGTGTATCTTCAATGAGCCTAAAAACTCCTCTTTTTTTATTTTGATTA
176	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
177	wchQ	Serotype19F, 19A	GATACGCTTTGTTAAGGCTAAAGGCACCATCAAACATTTCTTTTTTTCAGAGGAAAG
178	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
179	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
180	wchQ	Serotype19F, 19A, 19B, 19C	GATACGCTTTGTTAAGGCTAAAGGCACCATCAAACATTTCTTTTTTTCAGAGGAAAG
181	wchQ	Serotype19F, 19A, 19B, 19C	GATACGCTTTGTTAAGGCTAAAGGCACCATCAAACATTTCTTTTTTTCAGAGGAAAG
182	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
183	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
184	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
185	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
186	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
187	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
188	wchQ	Serotype19F, 19A, 19B, 19C	ATCGAGATACGATAGAAAACATTTACTAGGTGTCATAAGGAAGGAGAATACGG
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
----------------	-----------------	-------------	------------------------
189	*whaF*	Serotype20	ACTTTAATACAAAAACTGAAATTTCTCAATTCTATGACTATGTGTTGGCAAGGAGAA
190	*whaF*	Serotype20	ATTTGGTTAGATTCAACGATGATGTTCTCTCAACAAAAGTCAAATTTACTGAGATTGCAGGAAAA
191	*whaF*	Serotype20	AGGGAATATAAAAAAGTACCTCCATATTCTCTGACTAAGACATCTTTTGTTAGGAA
192	*wchF*	Serotype22F, 22A	ACTTATATGCTGCCCTATGGAACAGATACAAAGCAGATCTATTTAAAAACCTGATGAGCAAAGAAA
193	*wchF*	Serotype18F, 22F, 22A, 23F	ATCTGCTTTTTAGTACGCTCTTGGTTCAACAAAAGGTTAATTTACTGCTGATGTGGCTGGTTTTAAA
194	*wcwA*	Serotype22F, 22A	TAAGAAGCAGAGAATGCTGTTTGAGAAGGGGAATAAGATTATTTAGAAGTGG
195	*wcwV*	Serotype22F, 22A	GAAAAAGGGGAAAAATAAAGTATTTTGGAAGAGAGAATAAGATTATTTAGAAGTGG
196	*wcwV*	Serotype22F, 22A	GGAGAATAAGCAATTTATTTTTATTGAGAAGAGTAAATTTAGAAGTGG
197	*wcwV*	Serotype22F, 22A	CCACTTTGAAAAGAGGTTGGAAGCCCTATTTATTTACTGAGATGAGAGGAGTTG
198	*whaB*	Serotype22F, 22A	TGGCAATATAGAAGGTTGGAAGCCCTATTTATTTACTGAGATGAGAGGAGTTG
199	*whaB*	Serotype22F, 22A	CATCATCAAGATCTTTGTTGGAAGAGTAAATTTACTGAGATGAGAGGAGTTG
200	*whaB*	Serotype22F, 22A	TTATTTTACATGGGAGTTGTGTAATTTTTTACACATTATATGTTGTAAGGAGTG
201	*wchF*	Serotype23F, 23A	CCACTTTTCTGAGAGGTTGGAAGCCCTATTTATTTACTGAGATGAGAGGAGTTG
202	*wchV*	Serotype23F, 23A, 23B	CCTCAATTGGTTGCACTGATGATTGATTTGTCCTCAAGATATGGATATCTTTT
203	*wchV*	Serotype23F, 23A	GGCAGATAATTTAAAAAGAGGTTGGAAGAGAGAATAAGATTATTTAGAAGTGG
204	*wchV*	Serotype23F, 23A	TTTTGGAGATTACGAAACAATTATTATATTACATTTAGTGGATAATTGTTACGGGTGTAAGCT
205	*wchW*	Serotype23F, 23A	ATTTGAAAAAACAAATATTACAAATAACCTTGCCCTACAACAAACTCTTTGCAATGGAAAGGTTG
206	*wchW*	Serotype23F, 23A	CGGGGGGATATTATACAAATAAACCTTGCCCTACAACAAACTCTTTGCAATGGAAAGGTTG
207	*wchW*	Serotype23F, 23A	CCTATAGCTGAAATACGTCTCCACTACATTAAAAAACAGAGATCCTCAGATGCTCAAGTAAGAT
208	*wciB*	Serotype33F, 33A, 34, 35A, 35B, 35C, 37, 41F, 41A, 42	TTTGTTTATACCGTGCAATAATCTGGCCTAATAATCCTCCTCTCAAATCCATATTATTTGCAGGAT
209	*wciB*	Serotype33F, 33A, 34, 35A, 35B, 35C, 37, 41F	ATAGTTCCAAGAGGGAAGTTATTTATGGAACGACTTTTTTACTTTATCTCATTACATTAGCAG
210	*wciB*	Serotype33F, 33A, 34, 35A, 35B, 35C, 37, 41F	AACTATTAGATGATTATTACCGTGCAATTATTTATGGAACGACTTTTTTACTTTATCTCATTACATTAGCAG
211	*wciC*	Serotype33F, 33A, 37	CAAATTTTTATATCTGAACAGATGTTTATATTATTTTACTCCAGCTGGTGATGCTGTTGT
212	*wciC*	Serotype33F, 33A, 37	TTACGAAATTATATTGAAGAGTGCTAAAGAAAGATGTTGGGGAAGGATGAAATATCAACATT
213	*wciC*	Serotype33F, 33A, 37	GTTTTACGATGATATTATGAAAGAATTTTACTTTACTCAGATGTTGAGAACAGAAGCCACAT

Table 3: Continued.
Table 3: Continued.

Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
214	wciD	Serotype 33F, 33A, 37	AATAGCAAGAATTTGAGAGAATATGAGGAAATGTAGTTAGTTAT-AAGTAAGGAAAA
215	wciD	Serotype 33F, 33A, 37	TGCAAGAGAACATTTTGGCFTGCTGAAAAATGTTCTATGTAGATA-TGAGATATATTG
216	wciD	Serotype 33F, 33A, 37	GCATAAAACAGTGCTCTATCTATCTTTTAGTTTATATCATCAAGAGTACGCTC-GTAGGTCC
217	wciE	Serotype 33F, 33A, 37	GCAATTTTTAAAAATTTTATACTATCTGGGAGCAAAAGACATGAG-AAGTGGCC
218	wciE	Serotype 33F, 33A, 37	CTGAAATTTTAGAAAAAGATTTTATATCGAGGAGGAAATTTTTC- TAAACCAAGA
219	wciF	Serotype 33F, 33A, 37	TAAGAGTGAGAAATAATTTGAGATGATGATGCTGACGACA-TGAGTGGCC
220	wciF	Serotype 33F, 33A, 37	CTGGGGAAATATTTGAGGAGGAAACTGTGATGATGATGCTGACGACA-TTGTGGCC
221	wciF	Serotype 33F, 33A, 37	CAGAGCTTGTGTGGAATATTTATTTTACTTGAGGAGGAAACTGTGATGATG- TGTGGCC
222	wciF	Serotype 33F, 33A, 37	AAGGAATTTTAGCAGACGCTTTAAATGCTAAAAAGAGTAATTGCTGCTCTTTTAT- TTTGATGAT
223	16S	Streptococcus pneumoniae	TATTTGGAACGAGTACTATAACGCGATAAAGAGTAATTGCTGCTCTTTTAT- TTTGATGAT
224	16S	Streptococcus pneumoniae	ATTAGCTGAGTCCTTAAAGGGCTGCTTTAACATAGTGGCCTTGGGAA- AGAGTTTTAAG
225	aroE	Streptococcus pneumoniae	ATTTAAAAACGCTTGTTTCAAAGGTTGTTGATATGATACTGCAGATCA- GAGAGTTTTAAG
226	aroE	Streptococcus pneumoniae	AGCAGAGTCTCATTTTACCTGAAATTTGAAAGAAAGGCACACTTTA- AAAACCAAGGAG
227	aroE	Streptococcus pneumoniae	TCAGACGCTCATTTCGAGGAGGAAATAGTAATTGCTGCTCTTTTAT- TTTGATGAT
228	ddl	Streptococcus pneumoniae	TATTTGGAACGAGTACTATAACGCGATAAAGAGTAATTGCTGCTCTTTTAT- TTTGATGAT
229	ddl	Streptococcus pneumoniae	ATTAGCTGAGTCCTTAAAGGGCTGCTTTAACATAGTGGCCTTGGGAA- AGAGTTTTAAG
230	ddl	Streptococcus pneumoniae	ATAGCTGAGTCCTTAAAGGGCTGCTTTAACATAGTGGCCTTGGGAA- AGAGTTTTAAG
231	gdhA	Streptococcus pneumoniae	TGAATTCTACAAAGCTGCTTTGGAATATTTTACACACTTTTGGAAATAG- GAGAGTTTTAAG
232	gdhA	Streptococcus pneumoniae	TAAAGAAAGGATTTTGAATATTTTACACACTTTTGGAAATAG- GAGAGTTTTAAG
233	gdhA	Streptococcus pneumoniae	TGAAATTTTTGAAATTTCCTGCAACTGTGATGATGATGCTGACGACA-TGAGTGGCC
234	gdhA	Streptococcus pneumoniae	TAAGAGTGAGAAATAATTTGAGATGATGATGCTGACGACA-TGAGTGGCC
235	gdhA	Streptococcus pneumoniae	ATTAGCTGAGTCCTTAAAGGGCTGCTTTAACATAGTGGCCTTGGGAA- AGAGTTTTAAG
236	gcdK	Streptococcus pneumoniae	AAACAAAGGATTTGGAATATTTTACACACTTTTGGAAATAG- GAGAGTTTTAAG
237	gcdK	Streptococcus pneumoniae	AGAATTTCTTACAAAGGATTTGGAATATTTTACACACTTTTGGAAATAG- GAGAGTTTTAAG
238	spi	Streptococcus pneumoniae	AGAAGGTATTCTTACAAAGGATTTGGAATATTTTACACACTTTTGGAAATAG- GAGAGTTTTAAG
239	spi	Streptococcus pneumoniae	TGATGATGATGCTGATGATGCTGCTTGGAGAAATAGTAATTGCTGACGACA-TGAGTGGCC
240	spi	Streptococcus pneumoniae	AACATGCTGCTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
241	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
242	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
243	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
244	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
245	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
246	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
247	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
248	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
249	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
250	tktA	Streptococcus pneumoniae	ACAATTTTTTACACACTTTTGGAAATAGTAATTGCTGACGACA-TGAGTGGCC
Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
-----------------	------------------	-----------------------------	------------------------
242	tktA	Streptococcus pneumoniae	CAATCAAGATGCTATCAAAGTGCATTTTCATATACAAACATAGTGACCTTACCCAGGA
243	tktA	Streptococcus pneumoniae	TTCAAGATTTGGTCCCATGGAATTCAGCAGAAACAAAATGATGTGACCATTAACCCAGGA
244	tktA	Streptococcus pneumoniae	AACATGTTCTTTGAAATCAGCATATACTTGTTCTGGAATTTCAATATGCTTCGTTTCA
245	tktA	Streptococcus pneumoniae	TCACCAGATAGAATGATAGTGTAGTTGCTCCATCATATAGTTGATGAGGAGATGTTGAT
246	xpt	Streptococcus pneumoniae	AGATTTCCCTTTAACCACCAAGTGACCTTATGATGGAGGAGGCTTACCATATAGTTGAT
247	xpt	Streptococcus pneumoniae	ATGATTTTGGCCAAAAGACTAAGAATATCACCAGAAGGACATTCGATGTGCATACCCATG
248	xpt	Streptococcus pneumoniae	TTTGATTTATCGAGGATTTGCTATTGCTAATGGAACGTGTAAGGAGGCTTACCATATAGTTGAT
249	KP_{gapA}	Klebsiella pneumoniae	GAGCAGTGTTCTGGCAAGAAGAGCCAATGGCTATTCTCCAGGCACAGGACATTCGAT
250	KP_{rpoB}	Klebsiella pneumoniae	AAGGCGTTGTGTTACTGGAAGGAGCACTGAAACATTCCAGGCAATTCGATCTTTGAT
251	KP_{mdh}	Klebsiella pneumoniae	GTAGATGGTATTTGGAAGGCAATTCGAAACATTCCAGGCAATTCGATCTTTGAT
252	KP_{pgi}	Klebsiella pneumoniae	TCTCGCCCTTTGCTCTAATATCCAGGAAAAATACAGGATGAGTTAATGGAACATTCGAT
253	SA_{arcC}	Staphylococcus aureus	TGATAGGCTATTTGGAAGAATATACTCCGACATGATTCGATCTTTGAT
254	SA_{aroE}	Staphylococcus aureus	AAGTTTTTGATTTGGCATTAGTCTCTGGTATATTTGATGGCTTAAAATGTTAGG
255	SA_{glpF}	Staphylococcus aureus	TAAAGATTACTTTGGCCAAAATACAGGATGAGTTAATGGAACATTCGATCTTTGAT
256	SA_{gmk}	Staphylococcus aureus	CGTAAAGGGGTTTGGATATTATGTAATATTTGATGGCTGAAATACAGGATGAGTTAATGGAACATTCGATCTTTGAT
257	LP_{acnF}	Legionella pneumophila	CCAAAAGGAGGGTTTGGATATTATGTAATATTTGATGGCTGAAATACAGGATGAGTTAATGGAACATTCGATCTTTGAT
258	LP_{mompS}	Legionella pneumophila	TCAATGIGAACTGGATTTGATTTATGTAATATTTGATGGCTGAAATACAGGATGAGTTAATGGAACATTCGATCTTTGAT
259	CP_{groES}	Chlamydia pneumoniae	TTTCTTACCTGCTGATTTGGAATATATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
260	CP_{gyrA}	Chlamydia pneumoniae	GTTTGCTGGCTTAATAATAGAAGGAGGAGGCAATGATATATGGAACATGCTTTTGTGTTG
261	CP_{gyrB}	Chlamydia pneumoniae	CCAAGACCTTTTACACCCTGATAATATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
262	CP_{hcaA}	Chlamydia pneumoniae	CTCGCTGCTCTAATAATAATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
263	CP_{accA}	Chlamydia pneumoniae	TGATATAGGTAATACATTGCAATGAAATATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
264	CP_{hcaK}	Chlamydia pneumoniae	TCAAAAACGAGAGGCAATTGCTATCCAATCCAGAGATATATGGAACATGCTTTTGTGTTG
265	MP_{gyrB}	Mycoplasma pneumoniae	AGGAAACCTTTATTGAGGAGCATTATAATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
266	MP_{gyrA}	Mycoplasma pneumoniae	ACAAGATCAAATGGAATATATGGAACATGCTTTTGTGTTGTAATATTTTGTGTTG
267	MP_{hcm}	Mycoplasma pneumoniae	TTTGCCGAAGCTCAAGAATTTATACCTAATCCAGAGAATATATGGAACATGCTTTTGTGTTG
Table 3: Continued.

Spot identifier	Targeted GT gene	Specificity	Probe sequence (5′–3′)
268	MP_{gt}	Mycoplasma pneumoniae	TGGGATTGCGCTTTGGCATCTTAATGTTTGTCTTGAGTTAATTTACTTTTACAGATTCA
269	MP_{fus}	Mycoplasma pneumoniae	TAAGCTCCGGTAAACCTCCTCAAAAGAGAGTTGAGGTTGAAATTACATTAAACAAAT
270	MP_{ispA}	Mycoplasma pneumoniae	TTTTGGAAAAATGGTGATCGAACGTTACTCCAACGTCATGCACATCGGGTCTCCACTGTCGA
271	PA_{trpE}	Pseudomonas aeruginosa	TACCAGAAAAATGGTGATCGAAGCTTACCCCAAGGTCACTGCACATCGTGTTCCACCTATAT
272	PA_{nuoD}	Pseudomonas aeruginosa	GATCATGTGCGGAGGTTCCTCCGTATCTCGAAGCCACCTGCTATCCGTTCCACCTATAT
273	SP_{gki}	Streptococcus pyogenes	ATTCAGCCATGAAAAGCAGCTATTTGAATGGTGAAAGTGTTACCAGTAAGACATTTCATA
274	SP_{xpt}	Streptococcus pyogenes	ATGGCCTGTTAATTTCTTATCTAAAGAAGACAAGTTTTGATTATTGATGACCTTTTAGCT

diagram of the probe positions on the microarray is shown in Figure 1(a).

3.2. Evaluation of the Microarray. A total of 274 oligonucleotide probes were used in this microarray, including positive and negative controls and GT gene-specific probes. The microarray probes were tested using 36 pneumococcal isolates from 23 vaccine-associated serotypes and 19 additional pneumococcal isolates belonging to other serotypes (Table 1). Figure 1(b) shows the examples of scanned pictures of 6 strains representing different serotypes. Examples of the same serotype were tested repeatedly and shown to have an identical signal pattern, for example, 5 times for serotype 3 (data not shown). Of 23 strains representing 23-valent vaccine serotype, 18 strains hybridized to all the specific set of probes, and four strains hybridized to almost all the specific set of probes (Table 4). The strain representing serotype 22F may actually belong to serotype group 22F/22A, since this sample failed to hybridize specifically to wchF and wcwA probes but hybridized to the rest of group 22F/22A specific probes. Of the 13 strains representing the 23 vaccine-related serotypes, only 1 isolate (serotype 46), failed to hybridize to a specific probe while the other 12 strains hybridized perfectly. Of the 20 nonvaccine serotypes, 19 strains either hybridized partially to GT-specific probes or did not hybridize to any probes. One strain, representing serotype 23A, hybridized to most of the 23F-specific probe; thus, 23A may be indistinguishable from 23F using GT gene sequences.

In addition, the microarray method described here has the potential to be automated. To our knowledge, our report describes the first microarray to utilize GT genes to predict serotype of any bacteria.

Several molecular typing methods have been developed based on serotype-specific sequences [12–21]. Wang et al. [21] described microarray method using wzy and capA genes. Our approach is different in that GT genes were selected as serotype-specific genes. Since GTs catalyze the transfer of the sugar moiety to an acceptor and generate a serotype-specific capsular polysaccharide, detecting GT genes can directly reflect polysaccharide structure. We discovered considerable variability within S. pneumoniae GT genes, which provides groundwork for future investigations into new S. pneumoniae capsular types. Our method using GT genes can not only discriminate serotypes but can give information of the capsular polysaccharide structure.

The DNA microarray described here accurately detects the majority of S. pneumoniae serotypes and serogroups included in the 23-valent vaccine and in the 7, 9, 11, 13-valent conjugate vaccines, which will permit serotype surveillance before and after vaccination. Since 1983, the 23-valent pneumococcal vaccine has been administered to persons in the United States aged >2 years with certain underlying medical conditions or aged >65 years. In 2000, the more effective PCV7, 7-valent pneumococcal conjugate vaccine, which protects against serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F was approved for administration [22]. As a result of PCV7, antibiotic-resistant invasive pneumococcal infections have decreased dramatically in young children and older persons [23]; however, an increase in disease associated with serotypes not included in the PCV7 vaccine, has been observed [24, 25]. To address serotype vaccine coverage, the Advisory Committee on Immunization Practices (ACIP) issued recommendations in February 2010 for a newly licensed 13-valent pneumococcal conjugate vaccine (PCV13), which contains the seven serotypes in PCV7 (4, 6B, 9V, 14, 18C, 19F, and 23F) and six additional serotypes (1, 3, 5, 6A, 7F, and 19A) [26]. Taken together, our DNA
Serotype 3 (strain ID: D36)

Serotype 11A (strain ID: SSI 11A/2)

Serotype 9V (strain ID: KD10-11)

Strain 19F (strain ID: D33)

Serotype 22F (strain ID: KD01–23)

Strain 22A (strain ID: ATCC10363)

Figure 1: (a) Microarray oligonucleotide probes layout. Oligonucleotides 1 to 222 are provided in Tables 2 and 3. P represents *S. pneumoniae* housekeeping genes and 16S rDNA positive control oligonucleotides. N indicates negative control oligonucleotides designed from housekeeping genes of other bacterial species. E denotes empty spot. (b) Scanned microarray images of *S. pneumoniae* genomic DNA hybridized with 6 samples (serotype 3, 9V, 11A, 19F, 22F and 22A). The numbers correspond to the spot identifiers given in Tables 2 and 3, and Figure 1(a) P indicates positive spot.
Table 4: Microarray results of each strain.

Serotype	Strain ID	Positive probe\(^a\)	Microarray result	Assigned group
1	ATCC6301	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18	Perfectly matched	1
2	ATCC6302	13, 14, 15, 16, 17, 18	Perfectly matched	2
3	D36	19, 20, 21	Perfectly matched	3
4	JHK27	22, 23, 24, 25, 26, 27, 28, 29, 30	Perfectly matched	4
5	ATCC6305	23, 24, 31, 32, 33, 34, 35, 36, 37	Perfectly matched	5
6B	MSC1047	1 probe of group 6A/6B did not hybridized		6A/6B
7F	ATCC10351	44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63	Perfectly matched	7F/7A
8	ATCC6308	64, 65, 66, 67, 68, 69, 70	Perfectly matched	8
9V	KD10-11	71, 72, 73, 74, 75, 76, 77, 78, 84, 85, 81, 82, 83	Perfectly matched	9A/9V
9N	KD01-26	71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83	Perfectly matched	9L/9N
10A	ATCC8334	86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100	Perfectly matched	10A
11A	SSI11A/2	101, 102, 103, 104, 105, 106, 107, 108, 109	Perfectly matched	11A/11D
12F	ATCC6312	11, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137	1 extra probe of group 2 hybridized 12F/12A/12B/44/46	
14	D59	125, 128, 131, 135, 138, 139, 140, 141, 142, 143	Perfectly matched	14
15B	ATCC10354	144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156	1 extra probe of group 18B/18C hybridized	17F
17F	ATCC6317	156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166	Perfectly matched	18B/18C
18C	ATCC10356	167, 168, 169, 171, 172, 173	Perfectly matched	19F
19F	D33	71, 73, 74, 169, 170, 171, 172, 173	1 extra probe of group 19F hybridized	19A

23 serotypes included in 23-valent vaccine
Serotype	Strain ID	Positive probea	Microarray result	Assigned group
20	ATCC6320	174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191	Perfectly matched	20
22F	KD01-23	7, 8, 44, 195, 196, 197, 198, 199, 200	5 probes of group 22F/22A did not hybridized and 1 extra probe of group 7F/7A hybridized	22F/22A
23F	KD11-15	144, 145, 156, 193, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222	Perfectly matched	23F
33F	ATCC10370	208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222	Perfectly matched	33F/33A/37
6A	MSC1943	38, 39, 40, 41, 42, 43	Perfectly matched	6A/6B
7A	ATCC6307	44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58	Perfectly matched	7F/7A
9A	ATCC8333	71, 72, 73, 74, 75, 76, 77, 78, 84, 85, 81, 82, 83	Perfectly matched	9A/9V
9L	ATCC10349	71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83	Perfectly matched	9L/9N
11D	SSI11D/1	101, 102, 103, 104, 105, 106, 107, 108, 109	Perfectly matched	11A/11D
12A	SSI12A/5	110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 247	Perfectly matched	12F/12A/12B/44/46
12B	SSI12B/1	125, 128, 131, 135, 138, 139, 140, 141, 142, 143	Perfectly matched	12F/12A/12B/44/46
15C	SSI15C/2	156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 7, 48, 49, 192, 193, 194, 195, 196, 197, 198, 199, 200	Perfectly matched	15B/15C
18B	ATCC10355	208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222	Perfectly matched	18B/18C
22A	ATCC10363	22F/22A	Perfectly matched	22F/22A
33A	ATCC8340	33F/33A/37	Perfectly matched	33F/33A/37
Table 4: Continued.

Serotype	Strain ID	Positive probe^a	Microarray result	Assigned group
44	SSI44/3	110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 274	Perfectly matched	12F/12A/12B/44/46
46	SSI46/2	110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 274	1 probe of group 12F/12A/12B/44/46 did not hybridized	12F/12A/12B/44/46
7B	ATCC10348	143, 155	Partial hybridization	Not included in 23 group
7C	ATCC10350	none	None hybridization	Not included in 23 group
10F	ATCC6310	86, 87, 88	Partial hybridization	Not included in 23 group
10B	SSI10B/2	71, 72, 73, 74, 78, 79, 80, 81, 82, 83	Partial hybridization	Not included in 23 group
10C	SSI10C/2	71, 72, 73, 74, 75, 76, 77	Partial hybridization	Not included in 23 group
11F	ATCC6311	103, 104, 105, 106, 107, 108, 109	Partial hybridization	Not included in 23 group
11B	SSI11B/2	101	Partial hybridization	Not included in 23 group
11C	ATCC10353	101, 274	Partial hybridization	Not included in 23 group
15F	ATCC6315	101, 129, 131, 135, 141, 142, 143	Partial hybridization	Not included in 23 group
15A	ATCC6330	101, 129, 131, 135, 141, 142, 143	Partial hybridization	Not included in 23 group
17A	SSI17A/2	none	None hybridization	Not included in 23 group
18F	ATCC6318	144, 145, 156, 157, 158, 159, 162, 163, 164, 165, 166, 193	Partial hybridization	Not included in 23 group
18A	ATCC10344	144, 145, 156, 158, 160, 161, 162, 164, 165, 166	Partial hybridization	Not included in 23 group
19B	ATCC10358	72, 167, 168, 169, 171, 172	Partial hybridization	Not included in 23 group
19C	ATCC10359	72, 169, 171, 172	Partial hybridization	Not included in 23 group
23A	KD12-06	144, 146, 156, 201, 202, 203, 204, 205, 206, 207	1 probe of group 23F did not hybridized	23F
23B	ATCC10364	7, 46, 202,	Partial hybridization	Not included in 23 group
33B	ATCC10342	none	None hybridization	Not included in 23 group
33C	ATCC8339	none	None hybridization	Not included in 23 group
33D	SSI33D/2	49, 57	Partial hybridization	Not included in 23 group

Serotypes not included in 23 groups

Explanatory notes: ^aThe numbers correspond to the spot identifiers given in Tables 2, 3, and Figure 1(a).
microarray will be able to monitor serotype prevalence of all vaccine-related serotypes. However, in examining serotype replacement in vaccinated population a further study to distinguish more than 90 serotypes is required and is currently under investigation. Moreover, further study of the reproducibility of the microarray is needed.

5. Conclusion

We developed a S. pneumoniae DNA microarray that identifies GT gene polymorphisms to distinguish capsular types. We believe that our microarray system is more reliable and cost-effective and will help to survey the emergence of new S. pneumoniae serotype.

Acknowledgment

This study was performed using Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government.

References

[1] T. van der Poll and S. M. Opal, "Pathogenesis, treatment, and prevention of pneumococcal pneumonia," The Lancet, vol. 374, no. 9700, pp. 1543–1556, 2009.
[2] K. McIntosh, "Community-acquired pneumonia in children," New England Journal of Medicine, vol. 346, no. 6, pp. 429–437, 2002.
[3] CDC, "Preventing pneumococcal disease among infants and young children: recommendations of the Advisory Committee on Immunization Practices (ACIP)," Morbidity and Mortality Weekly Report, vol. 49, no. 6, pp. 1–35, 2000.
[4] J. O. Kim and J. N. Weiser, "Association of intraspecies phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae," Journal of Infectious Diseases, vol. 177, no. 2, pp. 368–377, 1998.
[5] J. Henrichsen, "Six newly recognized types of Streptococcus pneumoniae," Journal of Clinical Microbiology, vol. 33, no. 10, pp. 2739–2762, 1995.
[6] J. O. Klein, "The epidemiology of pneumococcal disease in infants and children," Reviews of Infectious Diseases, vol. 3, no. 2, pp. 246–253, 1981.
[7] J. Yother, "Capsule," in The Pneumococcus, E. I. Tuomanen, Ed., pp. 30–48, ASM Press, Washington, DC, USA, 2004.
[8] E. García, D. Llull, R. Muñoz, M. Mollerach, and R. López, "Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae," Research in Microbiology, vol. 151, no. 6, pp. 429–435, 2000.
[9] S. D. Bentley, D. M. Aanensen, A. Mavroidi et al., "Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes.,” PLoS Genetics, vol. 2, no. 3, article e31, 2006.
[10] J. E. G. Van Dam, A. Fleer, and H. Snippe, "Immunogenicity and immunochromatography of Streptococcus pneumoniae capsular polysaccharides," Antonie van Leeuwenhoek, vol. 58, no. 1, pp. 1–47, 1990.
[11] D. M. Aanensen, A. Mavroidi, S. D. Bentley, P. R. Reeves, and B. G. Spratt, "Predicted functions and linkage specificities of the products of the Streptococcus pneumoniae capsular biosynthetic loci," Journal of Bacteriology, vol. 189, no. 21, pp. 7856–7876, 2007.
[12] D. A. Brito, M. Ramirez, and H. De Lencastre, "Serotyping Streptococcus pneumoniae by multiplex PCR," Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2378–2384, 2003.
[13] F. Kong, M. Brown, A. Sabananthan, X. Zeng, and G. L. Gilbert, "Multiplex PCR-based reverse line blot hybridization assay to identify 23 Streptococcus pneumoniae polysaccharide vaccine serotypes," Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1887–1891, 2006.
[14] F. Kong and G. L. Gilbert, "Using cpsA-cpsB sequence polymorphisms and serotype-/group-specific PCR to predict 51 Streptococcus pneumoniae capsular serotypes," Journal of Medical Microbiology, vol. 52, no. 12, pp. 1047–1058, 2003.
[15] F. Kong, W. Wang, J. Tao et al., "A molecular-capsular-type prediction system for 90 Streptococcus pneumoniae serotypes using partial cpsA-cpsB sequencing and wzy- or wxx-specific PCR," Journal of Medical Microbiology, vol. 54, no. 4, pp. 351–356, 2005.
[16] E. R. Lawrence, C. A. Arias, B. Duke et al., "Evaluation of serotype prediction by cpsA-cpsB gene polymorphism in Streptococcus pneumoniae," Journal of Clinical Microbiology, vol. 38, no. 4, pp. 1319–1323, 2000.
[17] E. R. Lawrence, D. B. Griffiths, S. A. Martin, R. C. George, and L. M. C. Hall, "Evaluation of semiautomated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups," Journal of Clinical Microbiology, vol. 41, no. 2, pp. 601–607, 2003.
[18] R. Pai, R. E. Gertz, and B. Beall, "Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates," Journal of Clinical Microbiology, vol. 44, no. 1, pp. 124–131, 2006.
[19] F. Zhou, F. Kong, Z. Tong, and G. L. Gilbert, "Identification of less-common Streptococcus pneumoniae serotypes by a multiplex PCR-based reverse line blot hybridization assay," Journal of Clinical Microbiology, vol. 45, no. 10, pp. 3411–3415, 2007.
[20] S. L. Batt, B. M. Charalambous, T. D. McHugh, S. Martin, and S. H. Gillespie, "Novel PCR-restriction fragment length polymorphism method for determining serotypes or serogroups of Streptococcus pneumoniae isolates," Journal of Clinical Microbiology, vol. 43, no. 6, pp. 2656–2661, 2005.
[21] Q. Wang, M. Wang, F. Kong et al., "Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes," Journal of Microbiological Methods, vol. 68, no. 1, pp. 128–136, 2007.
[22] P. H. Mäkelä and J. C. Butler, "History of pneumococcal immunization," in Pneumococcal Vaccines, G. R. Siber, K. P. Klugman, and P. H. Mäkelä, Eds., chapter 1-2, pp. 19–29, ASM Press, Washington, DC, USA, 2006.
[23] M. H. Kyaw, R. Lynfield, W. Schaffner et al., "Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae," New England Journal of Medicine, vol. 354, no. 14, pp. 1455–1463, 2006.
[24] K. K. Hsu, J. E. Kellenberg, S. I. Pelton, D. S. Friedman, M. R. Moore, and H. T. Jordan, "Emergence of antimicrobial-resistant serotype 19A Streptococcus pneumoniae—Massachusetts, 2001–2006," Morbidity and Mortality Weekly Report, vol. 56, no. 41, pp. 1077–1080, 2007.
to introduction of the protein-conjugated pneumococcal vaccine,” *Clinical Infectious Diseases*, vol. 47, no. 11, pp. 1388–1395, 2008.

[26] CDC, “Licensure of a 13-valent pneumococcal conjugate vaccine (PCV13) and recommendations for use among children—advisory committee on immunization practices (ACIP), 2010,” *Morbidity and Mortality Weekly Report*, vol. 59, no. 9, pp. 258–261, 2010.