Nutraceutical Aid for Allergies – Strategies for Down-Regulating Mast Cell Degranulation

Mark F McCarty1, Aaron Lerner2, James J DiNicolantonio3,4, Carina Benzvi2

1Catalytic Longevity Foundation, San Diego, CA, USA; 2Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel; 3Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA; 4Advanced Ingredients for Dietary Products, AIDP, City of Industry, CA, USA

\textbf{Abstract:} Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H\textsubscript{2}S) likewise opposes mast cell activation; H\textsubscript{2}S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes – including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H\textsubscript{2}S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H\textsubscript{2}S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.

\textbf{Keywords:} nutraceuticals, mast cell, degranulation, allergy, FcεRI-IgE receptor, hydrogen sulfide, phycocyanobilin, berberine, biotin, lipoic acid

\section*{Introduction}
Pharmacological strategies are most commonly employed to control mast cell degranulation and its pathogenic consequences. This essay deals with nutraceutical strategies, which may have analogous therapeutic potential. The functions of mast cells and the molecular biology underlying mast cell degranulation will first be described.

\section*{Contemporary Insights into Mast Cell Functions}
Mast cell degranulation plays a key role in many human health disorders – not exclusively in allergies. The clinical presentation is wide, involving respiratory, neurologic, digestive, cardiovascular, cutaneous and even musculoskeletal symptoms.1 Mast cells contribute to the pathogenesis of infection, cancer,
cardiovascular and many other systemic diseases.2 Notably, not only in pathologic conditions, they can play an immunomodulatory role, by secreting anti-inflammatory mediators, and thereby impacting the interaction between the immune cells and the environment.1,3

Mast cells are endowed with a wide range of plasma membrane receptors, enabling them to sense and react to a plethora of stimuli. The chief receptor triggering mast cell degranulation is the high-affinity IgE receptor FceRI (Figure 1). A more recently described mast cell receptor capable of provoking degranulation is the Mas-related G protein-coupled receptor X2 (MRGPRX2), which responds to a range of basic peptides and small proteins, resulting in allergic or neurologic inflammations, pain and itch; hence, there are more receptors that react to drugs, cytokines, complement anaphylatoxins, physical triggers and physical stimuli.1,4 Upon sensing endogenous or exogenous danger signals, the activated mast cell releases mediators by three mechanisms. The immediate and rapid one is exocytosis of secretory granules containing pre-synthesized molecules, including histamine, various proteases, heparin, cysteiny1 leukotrienes, prostaglandins, and certain proteoglycans. In the second phase, de novo-synthesized cytokines, chemokines, interferons and several growth factors can be released independently of the degranulation process. Finally, activated mast cells can secrete extracellular vesicles, such as exosomes, thereby exteriorizing cellular proteins, enzymes, RNAs and miRNAs to the extracellular compartment.1

Mast Cell Degranulation Process

Mast cells can assume a migratory or a secretory behavior, depending on their actin conformation. The secretory actin phenotype supports mobility and exocytosis, in which diaphanous-related formin, mDia1, plays a major role in intracellular actin rearrangement.1 Upon reaching its destination and encountering a secretagogue, mast cell degranulation can be executed in three different modes: full, partial, or the kiss-and-run phenomenon. In the full pathway, the granules can fuse completely with the plasma membrane, in the partial one, they form multiple granules fusion and creating a channel, and the third one implies a transiently fuse with the membrane, releasing part of their content. An additional means of degranulation has been discovered by electron microscopy, namely, piece-meal degranulation. Secretory granules can bud, producing vesicles that are transported to and fused with the plasma membrane.5 These varying mechanisms whereby mast cells can release their contents determine the dynamics, intensity and the outcome of degranulation.1

A schematic presentation of the mast cells activation is presented in Figure 1.

An Outline of FceRI Receptor Signaling

The FceRI receptor, whose activation triggers mast cell degranulation and increased production of lipid and cytokine pro-inflammatory mediators, is a heterotetramer that binds tightly to extracellular IgE.6,7 The binding of this IgE to specific antigens triggers crosslinking of two FceRI receptor complexes such that src-family tyrosine kinase Lyn bound to each complex can auto-transphosphorylate. These phosphorylations, in turn, enable Lyn to phosphorylate tyrosine residues on the γ subunit of the FceRI complex; this enables spleen tyrosine kinase (Syk) to bind to this subunit via its SH2 domain, and this bound Syk is then activated via phosphorylation by Lyn. Activated Syk then phosphorylates multiple tyrosines on a nearby LAT (linker for activated T cells) protein, enabling various other proteins to bind to LAT via their SH2 domains and to promote assembly of a complex signaling platform. Some of these proteins are also phosphorylated by Syk. The resulting signaling platform results in downstream activation of phospholipase C-γ, phosphatidylinositol-3-kinase (PI3K), IκB kinase, the MAP kinases ERK, JNK, and p38, and NADPH oxidase.6-8 These collaborate to promote mast cell degranulation, while boosting synthesis of pro-inflammatory cytokines and lipid mediators. Although the src-family tyrosine kinase Fyn can substitute for Lyn in some of its signaling duties, it is clear that activation of Syk plays a fundamental and essential role in driving mast cell activation.9,10

Tyrosine kinase-mediated signaling is opposed and controlled by tyrosine phosphatase activities. Src homology region 2 domain-containing phosphatase 1 (SHP-1) has been shown in mast cells to oppose antigen-induced FceRI signaling;11-14 it reverses tyrosine phosphorylations conferred by Syk on LAT and the associated scaffolding protein SLP-76 (Src homology region 2 domain-containing leukocytes protein of 76 kDa).11 Notably, SHP-1 is susceptible to reversible inhibition by physiological concentrations of hydrogen peroxide, via conversion of cysteine sulphydryl groups to sulfenic acid groups; reversible inactivation of tyrosine phosphatases by hydrogen peroxide is a common mechanism whereby generation of oxidants up-regulates tyrosine kinase signaling.15-20
Antigen activation of FceRI in mast cells has been shown to rapidly induce production of superoxide in the extracellular space. This effect is inhibited by wortmannin, diphenyleneiodonium, and apocynin – and hence points to membrane-bound NADPH oxidase as the superoxide source. Other research has determined that NOX2 is the predominant form of NADPH oxidase in mast cells. Its activation may reflect PLCγ-mediated
production of diacylglycerol (which in turn promotes PKC activity), and PI3K-mediated activation of Rac, likely via Bruton’s tyrosine kinase (BTK).6,23,24 Importantly, inhibition of this initial burst of superoxide production suppresses antigen-stimulated mast cell degranulation.8 A likely explanation is that hydrogen peroxide generated near the plasma membrane inhibits SHP-1 activity, thereby up-regulating Syk-mediated tyrosine phosphorylation of the FccRI signaling complex. Several studies show that heme oxygenase-1 (HO-1) induction in mast cells opposes mast cell degranulation and activation; this may reflect, in part, the fact that the bilirubin generated by HO-1 functions as an inhibitor of NOX2-dependent NADPH oxidase activity.25-32

AMPK, Cyclic GMP, and Hydrogen Sulfide Down-Regulate Mast Cell Degranulation

Several molecular mechanisms have been shown to inhibit antigen-stimulated mast cell degranulation. These include activation of AMP-activated kinase (AMPK),14,33-36 elevation of cyclic GMP (cGMP),37-39 and increased generation of hydrogen sulfide (H2S).40-43 With respect to AMPK, this has been shown to suppress the association of Lyn and Syk with the FccRI receptor complex.44 While the basis of this effect has not yet been clarified, activated AMPK has been shown to confer a phosphorylation on the beta chain of this receptor; conceivably, this might suppress Lyn’s ability to bind to this chain.44

With regard to cGMP, the cGMP-dependent protein kinase G II (PKGII) can confer an activating phosphorylation on the C-terminal region of SHP-1.45 Whether the inhibitory impact of cGMP on mast cell degranulation reflects, in whole or in part, increased SHP-1 activity, requires further evaluation. The inhibitory effect of HO-1 activity on mast cell degranulation likely stems in part from the ability of carbon monoxide to promote cGMP production by soluble guanylate cyclase (sGC).46,47

Endogenous generation of H2S, as well as exposure to H2S-releasing drugs, have been shown to suppress mast cell degranulation.40-43 Several complementary mechanisms may contribute to this effect. In at least certain contexts, H2S is capable of stimulating AMPK activity, via activation of calcium/calmodulin-dependent kinase kinase-β.48-51 H2S, via S-sulfhydrations of Keap1 that blocks its binding to Nrf2 and thereby stimulate Nrf2’s transcriptional activity, promotes induction of HO-1.52-55 And H2S can also promote cGMP generation by reversing oxidative inhibition of sGC, as well as by inhibiting phosphodiesterase 5 (PDE5), which degrades cGMP in mast cells.56-58 In regard to the latter mechanism, the drug inhibitor of PDE5, vardenafil, has been reported to oppose mast cell degranulation.59

Discussion on Nutraceutical Strategies for Mast Cell Stabilization

The foregoing considerations offer a basis for proposing nutraceutical measures that could be expected to stabilize mast cells and thereby aid prevention and control of allergic reactions.

Berberine, a compound derived from certain medicinal herbs used in traditional Chinese medicine, is currently widely used in China both for glycemic control in type 2 diabetes, and as a hypolipidemic agent.59-61 Its clinical utility in diabetes has been traced to its ability to activate AMPK62,63 – in that respect, its mechanism of action appears to be comparable to that of the drug metformin (which itself is a modification of herbal compounds with hypoglycemic activity). Berberine, in vitro, has been found to inhibit mast cell degranulation by suppressing Syk phosphorylation – precisely as would be predicted for an AMPK activator.64,65 In rodents, it has conferred protection in models of ovalbumin- or house-mite-induced allergic rhinitis, and in passive cutaneous anaphylaxis.65-67

Phase 2 inducing agents, via Nrf2-mediated induction of HO-1, could be expected to inhibit mast cell NADPH oxidase activity, as well as to boost cGMP via carbon monoxide generation. Lipoic acid and sulforaphane evolved from broccoli sprout extract (BSE) are phase 2 inducers with documented clinical utility.68-72 Lipoic acid has been found to be protective in rodent models of anaphylaxis, lessening histamine release,73-75 In a controlled clinical trial, ingestion of BSE was shown to benefit allergic rhinitis symptoms; another clinical study concluded that BSE ameliorated the nasal allergic response to inhalation of diesel exhaust particles.76,77 Melatonin can promote phase 2 induction by increasing Nrf2 expression; also, via induction of Sirt1, it can boost AMPK activity while antagonizing the NF-kappaB-mediated phase of mast cell activation.78-80 It has shown efficacy in ovalbumin-induced allergic rhinitis in rats, and has been found to suppress mast cell degranulation provoked by water avoidance stress.81,82 It also lessens inflammatory cytokine production by mast cells activated with phorbol ester and calcium ionophore, owing to down-regulation of NF-kappaB signaling.83
While this discussion focuses on strategies for suppressing FceRI-mediated mast cell activation, it is of interest to note recent evidence that Nrf2 activation can also inhibit the MRFPRX2 signaling that mediates pseudo-allergic mast cell activation. 84 Another agent with the potential for inhibiting both FceRI and MRFPRX2 signaling in mast cells is paenoflorin, a bioactive component in peony flower extracts; the mast cell stabilizing action of this agent has been demonstrated both in mast cell cultures and in rodent allergy models. 85–88 The direct molecular target of its action in this regard has yet to be defined.

Phycocyanobilin (PCB), a light-absorbing chromophore found in cyanobacteria (such as the food spirulina) and certain blue-green algae, is reduced within cells by biliverdin reductase to phycocyanorubin, a compound almost identical in secondary and tertiary structure to bilirubin. 89,90 Not surprisingly, PCB has been shown to mimic bilirubin’s inhibitory effect on NADPH oxidase complexes – a phenomenon, which may be largely responsible for the profound antioxidant and anti-inflammatory activities of orally administered spirulina (or of its protein phycocyanin, to which PCB is covalently bound) in a wide range of rodent models of health disorders. 90–93 Indeed, oral administration of spirulina or phycocyanin has been found to alleviate symptoms and reduce histamine release in rat models of anaphylaxis induced by ovalbumin or compound 48/80; spirulina also stabilized mast cells and lessened symptoms in ovalbumin-induced allergic rhinitis. 94–97 Small clinical trials with modest oral doses of spirulina have found it to confer symptomatic benefits in allergic rhinitis, and oral spirulina has also been shown to decrease interleukin-4 production by peripheral blood mononuclear cells stimulated ex vivo. 98–100 The latter suggests that, independent of its impact on mast cells, spirulina might lessen the propensity to generate IgE.

In supraphysiological concentrations, which are achievable with practical and well-tolerated high-dose supplementation, the B vitamin biotin can directly activate sGC – mimicking the physiological effects of nitric oxide and carbon monoxide in that regard. 101–103 However, it is incapable of increasing sGC’s activity by more than 2–3-fold – explaining why it cannot produce profound hypotension the way that NO overdoses can. The authors are unaware of any past effort to evaluate the impact of supraphysiological biotin concentrations on mast cell activation.

Endogenous production of H₂S can be boosted by supplemental N-acetylcysteine (NAC), as cysteine is the preferred substrate for generation of H₂S by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). 104–107 In addition, by promoting increased glutathione synthesis, NAC might help to counter the inhibitory effect of oxidants on SHP-1 activity, as glutathione acts to reverse the oxidative inhibition of this enzyme. 108 NAC is in vascular tissues, supplemental taurine has recently been found to induce expression of both CBS and CSE. 105,110,111 It is not clear whether taurine can have this effect in mast cells. However, taurine administration has been found to alleviate ovalbumin-induced allergic rhinitis in mice. 112,113

A further resource for mast cell stabilization is offered by benifuuki tea, a cultivar of green tea that is unusually rich in an O-methylated form of the prominent green tea catechin epigallocatechin-gallate (EGCG); the site of methylation is on the 3’-hydroxyl of the gallate group. 114 This type of tea has been shown to be clinically effective in seasonal allergies (Japanese cedar pollinosis), and its efficacy is thought to reflect the fact that O-methylated EGCG has far superior pharmacokinetics compared to EGCG per se. 115–118 Both EGCG and O-methylated EGCG can stabilize mast cells in vitro, and this effect appears to be mediated through the high-affinity binding of these compounds to the 67 kDa laminin receptor (67LR) on mast cells. 114,119–126 How this receptor induces mast cell stabilization is at present poorly understood, although the interaction of EGCG with the laminin receptor is associated with down-regulated cell surface expression of FceRI. 124 This effect is homologous to the ability of EGCG/67LR interaction to down-regulate the surface expression of epidermal growth factor receptors in cancer cells, an effect reflecting accelerated internalization of these receptors; perhaps EGCG likewise induces endosomal uptake of FceRI. 127 Interaction of EGCG with 67LR also inhibits mast cell degranulation induced by calcium ionophores, blocking phosphorylation of myosin II regulatory light chain. 125 And EGCG-mediated inhibition of NADPH oxidase assembly in stimulated mast cells has been reported. 122 The clinical practicality of using 3-O-methyl EGCG to manage allergies would evidently be greater if polyphenol extracts of benifuuki tea were commercially available.

Conclusions

In summary, it can be concluded that nutraceutical regimens providing some or all of the following agents – berberine, spirulina (or isolated PCB), lipoic acid (and/or broccoli sprouts), melatonin, NAC, taurine, high-dose biotin, benifuuki catechins – may have clinical potential for
Table 1 Suggested Dose Schedules for Nutraceuticals with Potential for Opposing Mast Cell Degranulation

Nutraceuticals	Dosage
Spirulina	5–15 g daily (or 30–100 mg PCG daily)
Lipoic acid	600 mg, 2–3 times daily
Broccoli Sprout Extract (AvmacolTM)	375 mg twice daily
Berberine	500 mg twice daily
Biotin	10–20 mg, twice daily
N-Acetyl cysteine	600 mg, 2–3 times daily
Taurine	2–3 g daily
Catechin-enriched Green Tea Extract	500 mg, twice daily

Table 1 suggests dose schedules of the various discussed nutraceuticals that might be expected to have some clinical impact. We do not represent these dose schedules as ideal for allergy management – rather, these are dose schedules that have shown clinical impact in other contexts, and hence might have potential to be active in allergy.

Abbreviations

SyK, spleen tyrosine kinase; H₂S, Hydrogen sulfide; PCB, Phycocyanobilin; LAT, linker for activated T cells; PI3K, phosphatidylinositol-3-kinase; SHP-1, Src homology region 2 domain-containing phosphatase 1; BTK, Bruton’s tyrosine kinase; HO-1, heme oxygenase-1; AMPK, AMP-activated kinase; cGMP, cyclic GMP; PKGIi-cGMP, dependent protein kinase G II; sGC, soluble guanylate cyclase; PDE5, phosphodiesterase 5; BSE, broccoli sprout extract; NAC, N-acetylcysteine; CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; ROS, reactive oxygen species.

Author Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval for the version to be published; and agreed to be accountable for all aspects of the work.

Disclosure

Author MFM is co-inventor and co-owner of a patent covering nutraceutical uses of phycocyanobilin oligopeptides derived from spirulina. Author JJD is Director of Scientific Affairs for Advanced Ingredients for Dietary Products. The authors have no other conflicts of interest to disclose.

References

1. Dahlin JS, Maurer M, Metcalfe DD, Peijler G, Sagi-Eisenberg R, Nilsson G. The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy Eur J Allergy Clin Immunol. 2021. doi:10.1111/all.14881
2. Varricchi G, Marone G. Mast cells: fascinating but still elusive after 140 years from their discovery. Int J Mol Sci. 2020;21(464):464. doi:10.3390/ijms21020464
3. Giannetti A, Filice E, Caffarelli C, Ricci G, Pession A. Mast cell activation disorders. Med. 2021;57:124. doi:10.3390/medicina57020124
4. Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med. 2015;373(2):163–172. doi:10.1056/NEJMRA1409700
5. Dvorak A. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents. Chem Immunol Allergy. 2005;85:135–184. doi:10.1159/000086516
6. Metcalfe D, Peavy R, Gilfillan A. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639–646. doi:10.1016/j.jaci.2009.08.035
7. Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol. 2021;72:51–58. doi:10.1016/J.COI.2021.03.015
8. Inoue T, Suzuki Y, Yoshimaru T, Ra C. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: role of NADPH oxidase and mitochondria. Biochim Biophys Acta Mol Cell Res. 2008;1783(5):789–802. doi:10.1016/J.BBAMCR.2007.12.004
9. Costello PS, Turner M, Walters AE, et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene. 1996;13(12):2595–2605.
10. Shao Y, Zhang S, Zhang Y, Liu Z. Recent advance of spleen tyrosine kinase in diseases and drugs, Int Immunopharmacol. 2021;90:107168. doi:10.1016/J.INTIMPP.2020.107168
11. Nakata K, Yoshimaru T, Suzuki Y, et al. Positive and negative regulation of high affinity IgE receptor signaling by src homology region 2 domain-containing phosphatase 1. J Immunol. 2008;181(8):5414–5424. doi:10.4049/JIMUNOL.181.8.5414
12. Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev. 2009;228(1):149–169. doi:10.1111/j.1600-065X.2008.00742.X
13. Mahajan A, Barua D, Cutler P, et al. Optimal aggregation of FcεRI with a structurally defined trivalent ligand overides negative regulation driven by phosphatases. ACS Chem Biol. 2014;9(7):1508–1519. doi:10.1021/CB500134T
14. Deng Y, Jin F, Li X, et al. Saunochine suppresses FceRI-mediated mast cell signaling and anaphylaxis through regulation of LKB1/AMPK axis and SHP-1-Syk signaling module. *Int Immunopharmacol*. 2019;74:105702. doi:10.1016/J.INTIMMP.2019.105702

15. Cunnick JM, Dorsey JF, Mei L, Wu J. Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. *IUBMB Life*. 1998;45(5):887–894. doi:10.1002/(ISSN)1022-8057

16. Weibrecht I, Böhmer SA, Dugnell M, Kappert K, Östman A, Böhmer FD. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. *Free Radic Biol Med.* 2007;43(1):100–110. doi:10.1016/J.FREERADBIOMED.200703.021

17. Chen C-Y, Willard D, Rudolph J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. *Biochemistry*. 2009;48(6):1399–1409. doi:10.1021/BI901973Z

18. Heneberg P, Dráberová L, Bambousková M, Pompač P, Dráber P. Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. *J Biol Chem*. 2010;285(17):12787–12802. doi:10.1074/JBC.M109.052555

19. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. *Antioxid Redox Signal*. 2011;15(1):77–97. doi:10.1089/ARS.2010.3611

20. Lo Conte M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfhydration. *J Biol Chem*. 2013;288(37):26480–26488. doi:10.1074/JBC.R113.467738

21. Li ZY, Jiang WY, Cui ZJ. An essential role of NAD(P)H oxidase 2 in UVA-induced calcium oscillations in mast cells. *Photochem Photobiol Sci*. 2015;14(2):414–428. doi:10.1039/C4PP00304G

22. Min A, Lee YA, Kim KA, Shin MH. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, sulfenylation and sulfinylation. *Antioxid Redox Signal*. 2010;12(3):362–372. doi:10.1089/ARS.2010.3611

23. Masini E, Mammoeni PF, Pistelli A, Salvemini D, Vane J. Impairment of the L-arginine-nitric oxide pathway in mast cells from spontaneously hypertensive rats. *Biochem Biophys Res Commun*. 1991;177(3):1788–1802. doi:10.1016/0006-291X(91)80242-3

24. Yip KH, Huang Y, Lu LF, Lau HY. Cyclic guanosine monophosphate dependent pathway contributes to human mast cell inhibitory actions of the nitric oxide donor, diethylamine NONOate. *Eur J Pharmacol*. 2010;632(1–3):86–92. doi:10.1016/J.EJPHAR.2010.01.007

25. El-Awady MS, Erman S. Vardenafil ameliorates immunologic and non-immunologic-induced allergic reactions. *Can J Physiol Pharmacol*. 2014;92(3):175–180. doi:10.1139/CJP-2013-0316

26. Liu Y-H, Lu M, Xie Z-Z. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. *Antioxid Redox Signal*. 2014;20(5):759–769. doi:10.1089/ARS.2012.4888

27. Rovizetto F, Bertolino A, Sorrentino R, et al. Hydrogen sulfide inhalation ameliorates allergen induced airway hyperreactivity by modulating mast cell activation. *Pharmaco Res. 2015;100:85–92.* doi:10.1007/10166-2015-07302

28. Marino A, Martelli A, Citi V, et al. The novel H2S donor H2S donor 3-carboxy-phenyl isothiocyanate inhibits mast cell degranulation. *Inhalation therapeutics* 1990;20:85–92. doi:10.1007/BF02142356

29. Matsushima M, Takagi K, Ogawa M, et al. Heme oxygenase-1 suppresses reactive oxygen species generation and plasmogen activator inhibitor-1 induction. *Mol Cell Biochem.* 2006;291(1):21–28. doi:10.1007/S11010-006-9190-Y

30. Jiang F, Roberts SJ, Datla S, Dusting GJ. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. *Hypertension*. 2006;48(5):950–957. doi:10.1161/10180024336.58387.1F

31. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase-derived oxidative stress. *Hypertension*. 2007;50(4):636–642. doi:10.1161/HYPERTENSIONAHA.107.092296

32. Hwang SL, Li X, Lu Y, et al. AMP-activated protein kinase negatively regulates FceRI-mediated mast cell signaling and anaphylaxis in mice. *J Allergy Clin Immunol*. 2013;132(3):729–736, e12. doi:10.1016/J.JACI.2013.02.018

33. Hwang SL, Lu Y, Li X, et al. ERK1/2 antagonize AMPK-dependent regulation of FceRI-mediated mast cell activation and anaphylaxis. *J Allergy Clin Immunol*. 2014;134(3):714–721.e7. doi:10.1016/J.JACI.2014.05.001

34. Li X, Park SJ, Jin F, et al. Tanshinone IIA suppresses FceRI-mediated mast cell signaling and anaphylaxis by activation of the Sirt1/LKB1/AMPK pathway. *Biochem Pharmacol*. 2018;15 2:362–372. doi:10.1016/J.BCP.2018.04.015

35. Wang C, Li L, Jiang J, et al. Pterostilbene inhibits FcεRI signaling through activation of the LKB1/AMPK pathway in allergic response. *J Agric Food Chem*. 2020;68(11):3456–3465. doi:10.1021/ACS.JAFCS.9B07126

36. Masini E, Mammoeni PF, Pistelli A, Salvemini D, Vane J. Impairment of the L-arginine-nitric oxide pathway in mast cells from spontaneously hypertensive rats. *Biochem Biophys Res Commun*. 1991;177(3):1788–1802. doi:10.1016/0006-291X(91)80242-3

37. Masini E, Mammoeni PF, Pistelli A, Salvemini D, Vane J. Impairment of the L-arginine-nitric oxide pathway in mast cells from spontaneously hypertensive rats. *Biochem Biophys Res Commun*. 1991;177(3):1788–1802. doi:10.1016/0006-291X(91)80242-3
51. Zhou X, Cao Y, Ao G, et al. CaMKKβ-dependent activation of AMP-activated protein kinase in renal epithelial cells. J Biol Chem. 2012;287(7):4451–4461. doi:10.1074/JBC.M111.278325

52. Hourihan JM, Kenna JG, Hayes JD. The gasotransmitter hydro hydrogen sulfide on neuroinflammation. Am J Physiol Cell Physiol. 2012;313(4):G330–G341. doi:10.1152/AJPCELL.00161.2010

53. Siow RCM, Sato H, Mann GE. Heme oxygenase–carbon mon oxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res. 1999;41(2):385–394. doi:10.1016/S0008-6364(98)00278-8

54. Chen X, Zhao X, Lan F, et al. Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-1251-0

55. Zhou Z, Martin E, Sharina I, et al. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Diabetes. 2016;65(10):3171–3184. doi:10.2337/db16-0020

56. Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signalling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312(1):C3–C15. doi:10.1152/AJPCELL.00282.2016

57. Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS. Augmentation of cGMP/PGK pathway and colonic motility by hydrogen sulfide. Am J Physiol Gastrointest Liver Physiol. 2017;313(4):G330–G341. doi:10.1152/ajpgil.00161.2017

58. Zhou Z, Martin E, Sharina I, et al. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Nature. 2016;531(7598):556–562. doi:10.1038/nphs.2016.06.029

59. Liang Y, Xu X, Yin M, et al. Effects of berberine on glucose in patients with type 2 diabetes mellitus: a systematic literature review and a meta-analysis. Endocr J. 2019;66(1):51–63. doi:10.1507/ENDOCRJ.E118-0109

60. Jeong JH, Kim SE, Ahn SY, et al. Effects of berberine on dyslipidemia: a systematic review and meta-analysis of randomized clinical trials. J Clin Pharmacol. 2020;60(3):295–304. doi:10.1002/jcph.20401

61. Ye Y, Liu X, Wu N, et al. Efficacy and safety of berberine alone for several metabolic disorders: a systematic review and meta-analysis of randomized clinical trials. Front Pharmacol. 2021;12. doi:10.3389/FPHAR.2021.653887

62. Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55(8):2256–2264. doi:10.2337/db06-0006

63. Turner N, Li J-Y, Gosby A, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I. Diabetes. 2008;57(5):1414–1418. doi:10.2337/DB07-1552

64. Song Y, Qu C, Srivastava K, et al. Food allergy herbal formula 2 protection against peanut anaphylactic reaction is via inhibition of mast cells and basophils. J Allergy Clin Immunol. 2010;126(6):1208–1217.e3. doi:10.1016/j.jaci.2010.09.013

65. Fu S, Ni S, Wang D, Fu M, Hong T. Berberine suppresses mast cell-mediated allergic responses via regulating FeRf-mediated and MAPK signaling. Int Immunopharmacol. 2019;71:1–6. doi:10.1016/J.INTIMMP.2019.02.041

Kim BY, Park HR, Jeong HG, Kim SW. Berberine reduce allergic inflammation in a house dust mite allergic rhinitis mouse model. Rhinol J. 2015;53(4):353–358. doi:10.4193/RHIN15.028

67. Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signalling. Annu Rev Physiol. 2006;68:309–336. doi:10.1146/annurev.physiol.68.033005.100231

68. Burchell JS, Wilson IR, Ellison MW, et al. Oral sulforaphane enhances Nrf2/HO-1 pathway signaling. Am J Physiol Cell Physiol. 2017;312(1):C3–C15. doi:10.1152/AJPCELL.00282.2016

69. Siow RCM, Sato H, Mann GE. Heme oxygenase–carbon mon oxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res. 1999;41(2):385–394. doi:10.1016/S0008-6364(98)00278-8

70. Jeffrey S, Samraj P, Raj B. The role of alpha-lipoic acid supplementation in the prevention of diabetes complications: a comprehensive review of clinical trials. Curr Diabetes Rev. 2021;17. doi:10.2174/1573399817666210118145550

71. Kensler TW, Egner PA, Agyeman AS, et al. Keap1-nrf2 signal mechanism mediated by the activation of Nrf2. Eur J Pharmacol. 2015;761:135–143. doi:10.1016/J.EURJPHAR.2015.05.001

72. Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol. 2009;130(3):244–251. doi:10.1016/J.CLIM.2008.10.007

73. Choi YH, Choi OH, Han E-H, Choi S-Y, Kim HT, Song CH. Lipoic acid: an immunomodulator that enhances Nrf2 signaling: a target for cancer prevention by sulforaphane. Am J Physiol Gastrointest Liver Physiol. 2010;309(3):G308–G318. doi:10.1152/AJPGAST.00579.2009

74. Grau BE. Heme oxygenase and hydrogen sulfide: key players in inflammation and immunity. J Biol Chem. 2019;294(42):15115–15122. doi:10.1074/JBC.R119.009513

75. Gu J, Wang Y, Chen Y, et al. Sulforaphane-rich broccoli sprout extract on seasonal grass pollen-induced allergic rhinitis. Food Funct. 2015;6(1):295–305. doi:10.1039/C4FO02771A

76. Yusin J, Wang V, Henning SM, et al. The effect of broccoli sprout extract on seasonal grass pollen-induced allergic rhinitis. Nutrients. 2011;3(4):295–305. doi:10.3390/NU11010254

77. Ma X, He P, Sun P, Han P, Lipoic acid: an immunomodulator that enhances Nrf2 signaling: a target for cancer prevention by sulforaphane. Am J Physiol Gastrointest Liver Physiol. 2009;307(1):G330–G341. doi:10.1152/AJPGAST.00579.2009

78. Van Nguyen T, Piao CH, Fan YJ, et al. Anti-allergic rhinitis activity of a-lipoic acid via balancing Th17/Treg expression and enhancing Nr2/3 HO-1 pathway signaling. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-69234-1

79. Mera SK, Goyal S, Angar S, et al. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating Nrf2 and inhibiting ER stress. Aging (Albany NY). 2018;10(10):2954. doi:10.18632/AGING.101602

80. Hardeland R. Melatonin and inflammation—story of a double-edged blade. J Pineal Res. 2018;65(4):12525. doi:10.1111/JPR.12525

81. Merlo S, Luaces JP, Spampinato SF, et al. SIRT1 mediates melatonin’s effects on microglial activation in hypothia: in vitro and in vivo evidence. Biomolecules. 2020;10(3):364. doi:10.3390/BION10030364
98. Chen LL, Zhang SF, Huang DN, Tan JQ, He SH. Experimental effects of melatonin on an ovalbumin-induced allergic rhinitis model in rats. *Auris Nasus Larynx*. 2021;48(6):1109–1119. doi:10.1016/J.A NL.2021.04.010

99. Nouroallahian M, Rasoulian B, Gafari A, Anoushiravani M, Jabari F, Bakhshae M. Clinical comparison of the efficacy of spirulina platensis and cetirizine for treatment of allergic rhinitis. *Acta Otorhinolaryngol Ital*. 2020;40(3):224–229. doi:10.14639/0392-100X-N0139

100. Mao TK, Van De Water J, Gershwin ME. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. *J Med Food*. 2005;8(1):27–30. doi:10.1089/JMF.2005.8.27

101. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The protective effects of spirulina platensis in treating allergic rhinitis in rats. *Int Immunopharmacol*. 2021;97:107426. doi:10.1016/J. INTIMP.2021.107426

102. Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, et al. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. *Br J Nutr*. 2008;99(4):756–763. doi:10.1017/S0007114507841122

103. Maldonado MD, García-Moreno H, González-Yanes C, Calvo JR. Protective effects of melatonin against water avoidance stress-induced mast cell degranulation in dermis. *Acta Histochem*. 2005;106(6):467–475. doi:10.1016/J.ACTHIS.2004.10.001

104. Chen LL, Zhang SF, Huang DN, Tan JQ, He SH. Experimental effects of melatonin against water avoidance stress-induced mast cell degranulation in dermis. *Acta Histochem*. 2005;106(6):467–475. doi:10.1016/J.ACTHIS.2004.10.001

105. Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy in an experimental model. *Arch Toxicol*. 2013;87(4):3759–3768. doi:10.1007/s00204-012-0963-5

106. Wang G, Cheng N. Paeoniflorin inhibits mast cell–mediated allergic inflammation in allergic rhinitis. *J Cell Biochem*. 2018;119(10):8636–8642. doi:10.1002/J.CJB.27135

107. Wang G, Cheng N. Paeoniflorin inhibits mast cell–mediated allergic inflammation in allergic rhinitis. *J Cell Biochem*. 2018;119(10):8636–8642. doi:10.1002/J.CJB.27135

108. Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. *Am J Physiol Regul Integr Comp Physiol*. 2013;304(2):R110–R120. doi:10.1152/AJPREGU.00648.2011

109. Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of spirulina platensis derived C-phycocyanin. *Evid Based Complement Altern Med*. 2016;2016. doi:10.1155/2016/7803846

110. Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, et al. Antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina platensis: an overview. *Acta Histochem*. 2016;117(8):1926–1933. doi:10.1016/J.ACTHIS.2015.02.029

111. Wang J, Zhang Y, Hu S, Ge S, Jia M, Wang N. Resveratrol inhibits MRGPRX2-mediated mast cell activation via Nrtr2 pathway. *Int Immunopharmacol*. 2021;93:107426. doi:10.1016/J. INTIMP.2021.107426

112. Yang Z, Hu S, Ge S, Wang J, He L. Paeoniflorin inhibits IgE-mediated allergic reactions by suppressing the degranulation of mast cells though binding with FceRI alpha subunits. *Eur J Pharmacol*. 2020;886:173415. doi:10.1016/J.EJPHAR.2020.173415

113. Csikler E, Ercan F, Çetinel S, Contuk G, Şener G. The protective effects of spirulina platensis in treating allergic rhinitis in rats. *Acta Histochem*. 2016;117(8):1926–1933. doi:10.1016/J.ACTHIS.2015.02.029

114. Zhou J, Lu Y, Li F, Wu W, Xie D, Feng Y. In vitro and in vivo effects of melatonin on an ovalbumin-induced allergic rhinitis. *Acta Histochem*. 2017;119(10):8636–8642. doi:10.1016/J.ACTHIS.2017.10.012

115. Bourgonje AR, Offringa AK, van Eijk LE, et al. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. *Expert Opin Biol Ther*. 2008;8(12):1955–1962. doi:10.1517/14722220802517901

116. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-acetylcysteine—a safe antioxidant for cysteine/glutathione deficiency. *Curr Opin Pharmacol*. 2007;7(4):355–359. doi:10.1016/J.COPH.2007.04.005

117. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy; pharmacology and clinical utility. *Expert Opin Biol Ther*. 2008;8(12):1955–1962. doi:10.1517/14722220802517901

118. Sun Q, Wang B, Li Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in pre-hypertension: Randomized, Double-Blind, Placebo-Controlled Study. *Hypertension*. 2016;67(3):541–549. doi:10.1161/HYPERTENSIONAHA.115.06624

119. Guizoni DM, Freitas IN, Victorio JA, et al. Taurine treatment reverses protein malnutrition-induced endothelial dysfunction of the pancreatic vasculature: the role of hydrogen sulfide. *Metabolism*. 2021;116:154701. doi:10.1016/J.METABOL.2021.154701

120. Nam SY, Kim HM, Jeong HJ. The potential protective role of taurine against experimental allergic inflammation. *Life Sci*. 2017;184:18–24. doi:10.1016/J.LIFS.2017.07.007

121. Zhou J, Lu Y, Li F, Wu W, Xie D, Feng Y. In vitro and in vivo antiallergic effects of taurine on allergic rhinitis. *Int Arch Allergy Immunol*. 2020;181(6):404–416. doi:10.1159/000505209

122. Maeda Yamamoto M, Ema K, Monobe M, Tokuda Y, Tachibana H. Epicatechin-3-O-(3’-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release. *J Agric Food Chem*. 2012;60(9):2165–2170. doi:10.1021/JF204497B
115. Masuda S, Maeda-Yamamoto M, Usui S, Fujisawa T. “Benifuuki” green tea containing O-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double-blind, placebo-controlled trial. Allergol Int. 2014;63(2):211–217. doi:10.2332/ALLERGOLINT.13-OA-0620

116. Maeda-Yamamoto M, Ema K, Monobe M, et al. The efficacy of early treatment of seasonal allergic rhinitis with benifuuki green tea containing O-methylated catechin before pollen exposure: an Open Randomized Study. Allergol Int. 2009;58(3):437–444. doi:10.2332/ALLERGOLINT.08-OA-0066

117. Oritani Y, Setoguchi Y, Ito R, Maruki-Uchida H, Ichiyanagi T, Ito T. Comparison of (−)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats. Biol Pharm Bull. 2013;36(10):1577–1582. doi:10.1248/BPB.B13-00349

118. Maeda-Yamamoto M, Ema K, Tokuda Y, et al. Effect of green tea powder (Camellia sinensis L. cv. Benifuuki) particle size on O-methylated EGCG absorption in rats; the Kakegawa Study. Cytotechnology. 2011;63(2):171–179. doi:10.1007/S10616-010-9331-8

119. Inoue T, Suzuki Y, Ra C. Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction. Free Radic Biol Med. 2010;49(4):632–640. doi:10.1016/J.FREERADBIOMED.2010.05.015

120. Yamashita K, Suzuki Y, Matsui T, et al. Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway. Biochem Biophys Res Commun. 2000;274(3):603–608. doi:10.1006/BBRC.2000.3200

121. Fujimura Y, Tachibana H, Maeda-Yamamoto M, Miyase T, Sano M, Yamada K. Antiallergic tea catechin, (−)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FceRI expression in human basophilic KU812 cells. J Agric Food Chem. 2002;50(20):5729–5734. doi:10.1021/JF025680Z

122. Nishikawa H, Wakano K, Kitani S. Inhibition of NADPH oxidase subunits translocation by tea catechin EGCG in mast cell. Biochem Biophys Res Commun. 2007;362(2):504–509. doi:10.1016/J.BBRC.2007.08.015

123. Fujimura Y, Sumida M, Sugihara K, Tsukamoto S, Yamada K, Tachibana H. Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS One. 2012;7(5):5. doi:10.1371/JOURNAL.PONE.0037942

124. Fujimura Y, Yamada K, Tachibana H. A lipid raft-associated 67 kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FceRI expression. Biochem Biophys Res Commun. 2005;336(2):674–681. doi:10.1016/J.BBRC.2005.08.146

125. Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem Biophys Res Commun. 2006;348(2):524–531. doi:10.1016/J.BBRC.2006.07.086

126. Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H. The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun. 2007;364(1):79–85. doi:10.1016/J.BBRC.2007.09.095

127. Adachi S, Nagao T, To S, et al. (−)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis. 2008;29(10):1986–1993. doi:10.1093/CARCIN/BGN128