Multiple regulatory roles of AP2/ERF transcription factor in angiosperm

Chao Gu*, Zhi-Hua Guo, Ping-Ping Hao, Guo-Ming Wang, Zi-Ming Jin and Shao-Ling Zhang*

Abstract
APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) is a superfamily in plant kingdom, which has been reported to be involved in regulation of plant growth and development, fruit ripening, defense response, and metabolism. As the final response gene in ethylene signaling pathway, AP2/ERF TF could feedback modulate phytohormone biosynthesis, including ethylene, cytokinin, gibberellin, and abscisic acid. Moreover, AP2/ERF TF also participates in response to the signals of auxin, cytokinin, abscisic acid, and jasmonate. Thus, this superfamily is key regulator for connecting the phytohormonal signals. In this review, based on the evidence of structural and functional studies, we discussed the multiple regulator roles of AP2/ERF TF in angiosperm, and then constructed the network model of AP2/ERF TF in response to various phytohormonal signals and regulatory mechanism of the cross-talk.

Keywords: AP2/ERF TF, Stress, Plant growth and development, Fruit ripening, Phytohormones

Background
The superfamily APETAL A2/ethylene response factor (AP2/ERF) has been studies in many plants, which have a range of 119–200 members (Du et al. 2014; Nakano et al. 2006; Rao et al. 2015; Zhuang et al. 2008), and have been reported in responses to ethylene, stress, metabolic, fruit ripening and senescence (Han et al. 2016; Koyama et al. 2013; Lee et al. 2012; Li et al. 2007; Fits and Memelink 2000; Trujillo et al. 2008; Zhu et al. 2014). All the time, regulatory mechanism of AP2/ERF TF in these fields were wide-spread studies by many scientists and their research teams, and increasing experimental evidence was exploited to elucidate the detailed roles in each field (Guo and Ecker 2004; Liu et al. 2014; Pré et al. 2008; Taketa et al. 2008; Tang et al. 2016; Xiao et al. 2013; Yin et al. 2016). Herein, research advance of AP2/ERF TF was reviewed in plant, and the doubtful viewpoints were also discussed.

Classification and DNA-binding elements
According to previous reports, the superfamily AP2/ERF members contain a common DNA binding domain, AP2 domain. Based on the difference of this domain in copy numbers, AP2/ERF TF could usually be divided into four families, AP2, ERF, RAV, and Soloist (Nakano et al. 2006; Licausi et al. 2010a). AP2 members constitute by one or additionally taking a tandem repeated AP2 domain (Kagaya et al. 1999; Swaminathan et al. 2008). All the time, regulatory mechanism of AP2/ERF TF in these fields were wide-spread studies by many scientists and their research teams, and increasing experimental evidence was exploited to elucidate the detailed roles in each field (Guo and Ecker 2004; Liu et al. 2014; Pré et al. 2008; Taketa et al. 2008; Tang et al. 2016; Xiao et al. 2013; Yin et al. 2016). Herein, research advance of AP2/ERF TF was reviewed in plant, and the doubtful viewpoints were also discussed.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
to X, VI-L, and Xb-L or group A to J (Nakano et al. 2006). The re-designated classification is employed in horticultural plants, such as *Vitis vinifera*, *Prunus mume*, and *Solanum lycopersicon* (Licaisi et al. 2010a; Du et al. 2013; Pirrello et al. 2012), whereas the traditionally classification is used in other plant species, including *Salix arbutifolia*, *Nicotiana tabacum*, and *Populus trichocarpa* (Rao et al. 2015; Sasaki et al. 2007; Zhuang et al. 2008).

AP2/ERF proteins have strongly capacity to bind a wide range of cis-regulatory elements in promoter of target genes (Sasaki et al. 2007). Of these cis-regulatory elements, GCC-box (AGCCGCC element) and DRE/CRT (dehydrationresponsive element/C-repeat, RCCGCC element) are the mainly two DNA-binding elements (De Boer et al. 2011; Fujimoto et al. 2000; Hao et al. 1998, 2002; Ohate-Sánchez et al. 2007; Wang et al. 2012). Noteworthy, most AP2/ERF proteins can bind GCC-box containing promoter, but the activation degree is different among members in various groups. For instance, the members are weak activators in group A, B and E, neutral in class G and H, and strong in group C, whereas that are as repressor in group F (Pirrello et al. 2012). Besides GCC-box and DRE/CRT, the elements diverged from these two also belong to cis-regulatory elements, which may be in response to different stimuli underlying various stresses (Mizoi et al. 2012; Shaikhali et al. 2008; Welsch et al. 2007). Moreover, ERF protein can also bind to VVRE (vascular wounded responsive element, GAAAAAGAAAATTTC) and CE1 (coupling element, CACCG) in tobacco (Sasaki et al. 2007; Wu et al. 2008). In addition, fewer reports reveal that ERF proteins could interact directly with a non-GCC element containing promoters (Chakravarthy et al. 2003).

Ethylene response

Ethylene is an important phytohorome for plant growth, development, senescence, and stress tolerance. Ethylene is synthesized by ACS (1-aminocyclopropane-1-carboxylic acid) catalyzing substrate of SAM (S-adenosyl methionine) to form ACC (1-aminocyclopropane-1-carboxylic acid), and then impel by ACO (1-aminocyclopropane-1-carboxylic acid oxidase). Sequentially, how much ethylene produced in plant tissues are positively correlated to ACS and ACO activities. The produced ethylene in plant tissues is combined with ETR (Ethylene receptor) to activate constitutive triple response (CTR), and then induce expression of a set of ethylene insensitive (EIN) and Ethylene insensitive-like (EIL). The EIN/EIL proteins bind to upstream regions of ERF TFs to promote it expressed in tissues (Alexander and Grierson 2002; Guo and Ecker 2003; Solano et al. 1998). However, due to GCC-box usually presented in the promoter of ACS and ACO in many plants, the expressed *ERF* genes will enhance the activities of the two genes, thereby accelerate ethylene biosynthesis and signal transduction, such as *LeERF1*, *AtERF73/HRE1*, *TERF2/LeERF2*, and *MaERF9* (Li et al. 2007; Xiao et al. 2013; Yang et al. 2011; Zhang et al. 2009). Besides the positive feedback genes, few ERF TFs also represent as repressor of ACS and ACO activities to prevent ethylene biosynthesis, including *AtERF4*, *AtERF11*, *SIERF6*, and *MaERF11* (Lee et al. 2012; Li et al. 2011; Xiao et al. 2013; Yang et al. 2005). In addition, ERF B3 has the ability to modulate the transcription levels of a subset of other ERF TFs (Liu et al. 2013). Noteworthy, this subset contains the aforementioned activators and repressors of ethylene biosynthesis and signal pathway genes. Thus, AP2/ERF TF is not only in response to ethylene signal transduction, but also can feedback regulate ethylene synthesis in plant tissues.

Stress tolerance

Stresses are the negative environment factors around plant growth and development. Both abiotic and biotic stresses are mediated by multiple transcriptional factors, such as NAC, WRKY, MYB, bHLH, bZIP, and ERF (Abe et al. 2003; Li et al. 2013; Puranik et al. 2012; Rushton et al. 2010; Singh et al. 2002; Zhang et al. 2012a). Most studies have found the importance of AP2/ERF TF in defense of various stresses. In general, the AP2/ERF TFs in response to abiotic stresses are the members of DREB family (Licaisi et al. 2013; Sakuma et al. 2002). Such as *AtERF98*, *MsERF8*, *JcERF011*, and *CaERF/LP1* that enhance tolerance to salt (Chen et al. 2012; Lee et al. 2004; Tang et al. 2016; Zhang et al. 2004, 2012b). *TERF2/LeERF2*, *CBF1*, and *CBF3* exalt cold and freezing tolerances (Novillo et al. 2007; Tian et al. 2011; Zhang et al. 2010b). *Sub1A*, *SNORKEL1* and *SNORKEL2* allow rice to adapt to deep water (Fukao et al. 2006, 2011; Hattori et al. 2009; Xu et al. 2006). *HRE1* and *HRE2* improve the tolerance of the plant to the hypoxia stress (Licaisi et al. 2010b). *OsWR1*, *JERF1*, *TERF1*, and *SHINE* are positive regulators of resistance to drought (Aharoni et al. 2004; Wang et al. 2012; Zhang et al. 2005, 2010a). Moreover, few of AP2/ERF TFs are involved to modulate at least two different abiotic stresses in defense response. For example, over-expression of *SIERF5* in transgenic tomato plants result in high tolerance to drought and salt stress (Pan et al. 2012). Over-expression of *JERF3* and *SodERF3* improve resistance to drought, osmotic, salt, and freezing stresses in transgenic rice and tobacco (Trujillo et al. 2008; Wu et al. 2008; Zhang et al. 2010c). Ectopic expression of *DREB2A* in *Arabidopsis* increase endurance to drought, stress, and heat stresses (Sakuma et al. 2006a, b).

Unless enhanced tolerance to abiotic stresses, AP2/ERF TF also are reported to be concerned in raising
resistance to biotic stresses. Over-expression of NtERF5 contributes to high tolerance to Tobacco mosaic virus in Nicotiana tabacum (Fischer and Droge-Laser 2004). Silence-expression of ORA59 or RAP2.2 results in low tolerance to Botrytis cinerea in Arabidopsis thaliana (Pré et al. 2008; Zhao et al. 2012). Loss-of-function mutants of AtERF2 or AtERF14 are more susceptible against Fusarium oxysporum in Arabidopsis thaliana (McGrath et al. 2005; Oñate-Sánchez et al. 2007). Exceptionally, AtERF4 is the negatively genes in regulating Fusarium oxysporum resistance (McGrath et al. 2005). Similar to that in abiotic stress defense, few of AP2/ERF TFs have the ability to coordinate two or more biotic stresses in defense response. For instance, Over-expression of MtERF1-1 improves tolerance to Rhizoctonia solani and Phytophthora medicaginis in Medicago roots (Anderson et al. 2010). Over-expression of ERF1 in Arabidopsis conferred resistance to necrotrophic fungi including B. cinerea and Plectosphaerella cucumerina (Berrocal-Lobo et al. 2002). The tomato Transcription Factor PtI4 Regulates Defense-Related Gene Expression for Pseudomonas syringae and Erysiphe orontii by combined to GCC Box and Non-GCC Box cis Elements (Chakravarthy et al. 2003).

In addition, few AP2/ERF TFs had been reported responsible for biotic and abiotic stress, simultaneously. A typical example is the positively regulator TaPIE1 that raise the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes (Zhu et al. 2014). Taken together, AP2/ERF TF plays very important roles in regulating defense response to all kinds of biotic and abiotic stresses.

Plant growth, development, and senescence
The life of plant is cycled through seed germination, seedling growth, organ development, and senescence. In this cycle, AP2/ERF TF also displays their regulatory roles for shaping many architectural traits. In the process of seed germination, SIERF2 positively improve transcription level of marker gene, mannanase 2, resulting in a stimulation of premature germination, and enhance hook formation of darkgrown (Pirrello et al. 2006). In the progression of plant growth and development, AINTEGUMENTA and AINTEGUMENTA-LIKE6 are related to flower organ growth and ovule development in Arabidopsis (Elliott et al. 1996; Jofuku et al. 1994; Klucher et al. 1996; Krizek 2009; Mizukami and Fischer 2000). Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating ent-kaurene synthase A, leading to a reduction of rice plant height and panicle length at maturity (Qi et al. 2011). In contrast, AtERF1, AtDREB1, and TINY present their ability in dwarving plant height (Liu et al. 1998; Solano et al. 1998; Wilson et al. 1996). Moreover, NtERF3, AtERF4 and AtERF8 had been found to be associated with plant aging (Koyama et al. 2013). Of these three genes, AtERF4 and AtERF8 belonged to class II ERFs in Arabidopsis, which can accelerate precocious leaf senescence by targeting the EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENESCENCE REGULATOR gene and regulating the expression of many genes related to senescence (Koyama et al. 2013). In addition, AP2/ERF TF is involved in regulating metabolite productions, such as chlorophyll, wax and cutin. The present evidences show that CitERF13 is negative regulator for chlorophyll degradation during Citrus fruit degreening by directly binding to the Cit-PPH promoter and enhancing the activity of a metabolite of phenophorbid hydrolase (Yin et al. 2016). AtWIN1, AtSHN, and HvNUD could increase an accumulation of wax and cutin on the epidermis by regulating a lipid biosynthesis pathway (Aharoni et al. 2004; Broun et al. 2004; Taketa et al. 2008). Obviously, the functions of these AP2/ERF TFs are distinctly elucidated in these reported traits, but the regulatory roles of other members should be further explored in unknown properties in future.

Fruit ripening
Fruit is one of important tissues in fruited plants, which harbors seed formation, development, and maturity. According to respiratory intensity during ripening, fruit is divided into climacteric and non-climacteric phenotypes. The climacteric fruit must release massive ethylene at ripening, also called ethylene-dependent fruit. On the contrary, the non-climacteric fruit is ethylene-independent. To date, ethylene-dependent fleshy-fruits are the primary materials for studying fruit ripening, such as tomato, apple, and banana. In ethylene-dependent fruits, ERF, as the final response gene in ethylene signaling pathway, directly regulate fruit ripening by binding to the promoters of their downstream genes, including ACO, ACS, PG, EXP, and PSY (Han et al. 2016; Lee et al. 2012; Liu et al. 2014). At present, LeERF1, MaERF9, MdERF1, and MdERF3 has been reported as the positive activator (Li et al. 2007, 2016; Wang et al. 2007; Xiao et al. 2013), whereas SIERF6, MaERF11, and MdERF2 are the negative repressors for fruit ripening (Han et al. 2016; Lee et al. 2012). Of these ERFs, MaERF9 and MaERF11 could not only regulate the transcription levels of ACO1 and ACS1 by binding to their promoter, but also physically interacted with ACO1 (Xiao et al. 2013). Interestingly, MaERF11 also interact with MaHDA1, the complex repress expression levels of downstream genes targeted by MaERF11 via histone deacetylation (Han et al. 2016). Moreover, the regulatory route of ERF genes is intricate during fruit ripening. In apple, MdERF2 presents at least three roads in regulating MdACS expression. MdERF2 repressor and MdERF3 activator could
regulate the transcription level of *MdACS* by binding to their promoter, respectively. Meanwhile, *MdERF2* inhibit *MdERF3* activity by combining to the DRE element in the promoter, indirectly suppressing the expression level of *MdACS*. Thirdly, a directly interaction between *MdERF2* and *MdERF3* restrain the binding of *MdERF3* to the *MdACS* promoter, and then suppress the *MdACS* expressed in fruit flesh (Li et al. 2016). In tomato, *SlERF.B3* has the ability to activate the regulatory network for fruit ripening. A dominant repressor version of *SlERF.B3* down-regulates ethylene receptor expression levels of *EIN3-like* gene, contributing to an acceleration of fruit ripening (Liu et al. 2013). Further study found that *SlERF.B3-SRDX* could alter the expression pattern of other ERF family members. Most notably, *SlERF.B3-SRDX* also stimulate the transcription levels of ripening regulators, including *RIPENING INHIBITOR (RIN)*, *NON-RIpening (NOR)*, *COLORLESS NON-RIpening (CNR)*, and *Homeodomain-leucine zipper HOMEOBOX (HB-1)* (Liu et al. 2014). Therefore, the regulatory role of AP2/ERF TF is multiple, and their regulated mechanism is very complex during fruit ripening.

Integration of phytohormonal signals

Phytohormones are a group of naturally occurring, organic substances which affected plant growth, development, and senescence at low concentrations. Of these phytohormones, auxin, cytokinin, and gibberellin are reported to be involved in regulation of seed germination and plant growth (Pacifici et al. 2015; Urbanova and Leubner-Metzger 2016; Werner et al. 2001). Ethylene plays extremely important roles in climacteric fleshy fruit ripening and senescence (Hayama et al. 2006; Xiao et al. 2013; Yin et al. 2008), and together with jasmonate and abscisic acid, participate in defense response to biotic and abiotic stresses (Li et al. 2011; Lorenzo et al. 2003; Pré et al. 2008). Obviously, cross-talk among these phytohormones must be carried out in plant tissues. This cross-talk is always surveyed by many scientists, and increasing evidences are emerged to elucidate the talk mechanism. Ethylene signal transduction is a general pathway during the life cycle of plant. As the final response gene in ethylene signaling pathway, AP2/ERF are also documented to be involved in response to other hormones. In rice, an AP2/ERF TF OsCRL5 is induced by treating with exogenous auxin, and inhibits cytokinin signal transduction by enhancing the activities of two repressors (Kitomi et al. 2011). Interestingly, several AP2/ERF TFs in subgroup B-5 are shown to modulate abscisic acid responses, such as *AtERF11* and *TSRF1* (Li et al. 2011; Zhang et al. 2008). The ethylene-, jasmonate-, and abscisic acid-responsive *JERF1* regulates abscisic acid biosynthesis-related gene in expression level (Zhang et al. 2004; Wu et al. 2007). Moreover, *NIC2* participate in mediating jasmonate-elicited nicotine biosynthesis (De Boer et al. 2011). *ORA59*, which was induced by jasmonate and ethylene in expression level, is the key regulator of jasmonate- and ethylene-responsive PLANT DEFENSIN 1.2 expression by binding to GCC-box element in the promoter (Pré et al. 2008; Zarei et al. 2011). *AtERF2* is a positive regulator of jasmonate-responsive defense genes, while *AtERF4* negative adjust jasmonate-responsive defense gene expression (McGrath et al. 2005). Overall, AP2/ERF TF is the key regulator to integrate all kinds of phytohormonal signals.

Conclusions

The AP2/ERF superfamily has hundreds of members in various plants, which contains at least one AP2 domain in all designated families. Generally, AP2/ERF TF mediates downstream responsible genes by binding to the GCC-box and/or DREB element in the promoter. Unless responses to ethylene signal, a large number of AP2/ERF members are stimulated by auxin, cytokinin, abscisic acid, and jasmonate signals. Meanwhile, several members also modulate gibberellin, cytokinin, and abscisic acid contents by directly regulating biosynthesis pathway genes of these phytohormones. Moreover, the stimulated genes would further regulate downstream effectors, resulting in changes of agronomic traits, including plant growth, defense responses, and fruit ripening (Fig. 1). In summary, AP2/ERF TF presents multiple regulatory roles in angiosperm.
Authors' contributions

CG and SLZ conceived and wrote the manuscript. ZHG provided the advance of classification and DNA-binding elements of AP2/ERF TF, ethylene signal transduction pathway, and ethylene-induced fruit ripening. PPH contributed the integration of phytohormone signals related to AP2/ERF. GMW and ZMJ conducted the advance of AP2/ERF TFs involved in regulating stress, plant growth and development. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundations of China (31471856 and 31672118).

Competing interests

The authors declare that they have no competing interests.

Received: 15 November 2016 Accepted: 26 December 2016

Published online: 03 January 2017

References

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

Aharoni A, Diot S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB (2010) The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in *Medicago truncatula* without adversely affecting symbiosis with rhizobia. Plant Physiol 154:861–873

Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in *Arabidopsis* confers resistance to several necrotrophic fungi. Plant J 29:23–32

Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Despres C, Martin GB (2003) The tomato transcription factor Pt4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

Chen TT, Yang QC, Gruber M, Kang JM, Sun Y, Ding W, Zhang TJ, Zhang XQ (2012) Expression of an alfalfa (*Medicago sativa L.*) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075

De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sitter V, Vanderhaegen R, Hillion P, Hamill JD, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loops-helix tobacco transcription factors cooperatively mediate jasmonate-elicted nicotine biosynthesis. Plant J 66:1053–1065

Fig. 1 A network model for AP2/ERF genes response to phytohormones and regulating downstream effectors in angiosperm. Ethylene biosynthesis pathway, ethylene signaling pathway, and ripening regulators are indicated by yellow, green, and gray colors, respectively. AP2/ERF family members is boxed and filled with red color. In ethylene biosynthesis pathway, S-adenosine methionine (SAM) is converted to ethylene (ET) via an intermediate metabolites 1-aminoacyclopropane-1-carboxyla (ACC), underlying the catalysis of the two enzymes 1-aminoacyclopropane-1-carboxyla synthase (ACS) and oxidase (ACO). In ethylene signaling pathway, ET is firstly combined with ethylene receptor (ETR) to activate constitutive triple response (CTR), leading to expression of ethylene insensitive (EIN) and EIN-induced ethylene insensitive-like (EIL). EIL promote expression of ethylene response factor (ERF), including activator and repressor. The ERF activities are induced by auxin (IAA), cytokinin (CTK), abscisic acid (ABA), and jasmonate (JA), as well as ripening-related genes, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and Homeodomain-leucine zipper HOMEobox (HB-1). Meanwhile, ERF can reduce CTK and gibberellin (GA) levels but increase ABA biosynthesis. In ethylene responses, ERF also regulate ethylene level by enhancing and decreasing ACS/ACO activity mediated by the activators and repressors, respectively. As for effectors of plant growth, defense responses and fruit ripening, ERF can directly modulate the expression by binding to GCC-box/DREB element in the promoter, and have the ability to indirectly regulate it, due to few ERFs inhibit expression of RIN, NOR, CNR, and HB-1 that can directly bind to the promoter of effectors.
Du DL, Hao RJ, Cheng TR, Pan HT, Yang WR, Wang J, Zhang QX (2013) Genome-wide analysis of the AP2/ERF gene family in Prunus mume. Plant Mol Biol Rep 31:741–750

Du HW, Huang M, Zhang ZX, Cheng SY (2014) Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. Euphytica 198:115–126

Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Du HW, Huang M, Zhang ZX, Cheng SY (2014) Genome-wide analysis of the AP2/ERF family in maize waterlogging stress response. Euphytica 198:115–126

Fischer U, Droge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Mol Plant Microbe Interact 17:1162–1171

Fujimoto SY, Ohta M, Usui A, Shinshii H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factor acts as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene responsive element binding factors acts as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 18:412–427

Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

Han YC, Kuang JF, Chen JY, Liu XC, Xiao YY, Fu CC, Wang JN, Wu KQ, Lu WJ (2016) Banana transcription factor MaERF11 recruits histone deacetylase MalHDA1 and represses the expression of MalACO1 and expansins during fruit ripening. Plant Physiol 171:1070–1084

Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

Hao DY, Yamazaki K, Sarai A, Ohme-Takagi M (2002) Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochem 41:4202–4208

Hatton Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu JZ, Matsu moto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

Hayama H, Shimada T, Fuji H, Ito A, Kashimura Y (2006) Ethylene-regulation of fruit softening and softening-related genes in peach. J Exp Bot 57:4071–4077

Jofuku KD, Denboer BGW, Vanmontagu M, Okamuro JK (1994) Control of arabi namon ripening with pleiotropic roles in ovule development and floral organ growth. Plant Cell 5:4071–4077

Kagaya Y, Ohmura K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to sequence specific elements of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochem 41:4202–4208

Kanazawa Y, Yamasaki K, Hatton Y, Aya K, Ito A, Kashimura Y (2006) Ethylene-regulation of fruit softening and softening-related genes in peach. J Exp Bot 57:4071–4077

Kofuku KD, Denboer BGW, Vanmontagu M, Okamuro JK (1994) Control of arabinom ripening with pleiotropic roles in ovule development and floral organ growth. Plant Cell 5:4071–4077

Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis plays an important role in ripening and carotenoid accumulation. Plant J 10:191–204

Lee YC, Zhi BZ, Xu WT, Zhu HL, Chen AJ, Xie YH, Shao Y, Luo YB (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008

Li ZF, Zhang LX, Yu YW, Quan RD, Zhang ZJ, Zhang HW, Huang RF (2011) The ethylene response factor aERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 68:88–99

Li XP, Zhu YX, Mao J, Zou Y, Fu DW, Chen WX, Lu WJ (2013) Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plant Physiol Bioch 70:81–91

Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A (2016) Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J 88:735–748

Licausi F, Giorgi FM, Zenoni S, Forni I, Pezzotti M, Perata P (2010a) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genom 11:719

Licausi F, van Dongen JT, Gentili B, Novi G, Santavito A, Geigenberger P, Perata P (2010b) HRE1 and HRE2, two hypoia-inducible ethylene response factors, affect anebracenic responses in Arabidopsis thaliana. Plant J 62:302–315

Licausi F, Ohme-Takagi M, Perata P (2013) APETELA2/ETHYLENResponsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with ERF/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively. Arabidopsis Cell 10:1391–1406

Liu M, Pirrello G, Kesari R, Mila R, Roustan JP, Li Z, Latche A, Pech JC, Bouzayen M, Regad F (2013) A dominant repressor version of the tomato Si-ERF33 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J 76:406–419

Liu MC, Di Ettore G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M (2014) The chimeric repressor version of an ethylene response factor (ERF) family member, Si-ERF33, shows contrasting effects on tomato fruit ripening. New Phytol 203:206–218

Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2010a) Genomic and transcriptional characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plant Physiol Bioch 70:81–91

Megrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and patterning. Bba-Gene Regul Mech 1455:115–125

Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

Opaté-Sánchez L, Anderson JP, Young J, Singh KB (2007) AERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143:400–409

Pacifico E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Toumier B, Khalil-Ahmad Q, Regad F, Latche A, Pech JC, Bouzayen M (2006) Si-ERF2, a tomato...
ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47:1195–1205

Pirrello J, Prasad BC, Zhang W, Chen K, Mila I, Zouine M,Latche A, Pech JC, Omhe-Takagi M, Regad F, Bouzyatem M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12:190

Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The transcription factor JAR1, a negative regulator of plant growth, is encoded by a ribosomal RNA gene. Mol Biol Cell 19:3665–3677

Qi WW, Sun F, Wang Q, Chen ML, Huang YQ, Feng YQ, Luo XJ, Yang JS (2011) Rice ethylene response factor OsERF43 affects the sensitivity of rice to cold stress. Plant Sci 185:126–135

Rao GD, Sui JX, Zeng YF, He CY, Zhang JG (2015) Genome-wide analysis of the AP2/ERF gene family in Salix alba. Open Bio 5:132–137.

Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Plant Physiol 140:11081–11085

Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Co 290:998–1009

Sakuma Y, Maruyama K, Osakabe Y, Ito H, Matsui H, Ohashi Y (2007) Two novel AP2/ERF domain transcription factors ORA59 and ORA9. Plant Cell 19:1229–1303

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1303

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

Sasaki K, Mitsuhara I, Ito S, Hattori Y, Ohashi Y (2007) Two novel AP2/ERF domain proteins interact with cis-element VRE for wound-induced expression of the Tobacco ptoX1 gene. Plant J 50:1079–1092

Shaik S, Jager K, Iseit A, Beilstein M, Thomeer M, Veys P, Petzold H, Schaller G, Korth M, Böggild K (2008) The redox-sensitive transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenoid biosynthetic pathway. Proc Natl Acad Sci USA 105:4062–4067

Taketa S, Amano S, Tsuruno Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto M, Sato T, Kanamori H, Kawasaki S, Takada K (2008) barley grain with adhering hulls is controlled by an ERF family transcription factorencoding a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067.

Wang A, Tan D, Takahashi A, Li TZ, Harada T (2007) c-MeRFS, two ethylene- response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

Wang YH, Wan LY, Zhang LX, Zhang ZJ, Zhang HW, Quan RD, Zhou SR, Huang RF (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

Welsh R, Maass D, Voegel T, DellaPenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145:1073–1085

Werner T, Motyka V, Strnad M, Schumilling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671

Wu LJ, Chen XL, Ren HY, Zhang ZJ, Zhang HW, Wang JY, Wang XC, Huang RF (2007) ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta 226:815–825

Wu LJ, Zhang ZJ, Zhang HW, Wang XC, Huang RF (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

Xiao YY, Chen JY, Kuang JF, Shan W, Xie H, Jiang YM, Lu WJ (2013) Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot 64:2499–2510

Xu K, Xu F, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Issam AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

Yang CY, Hsu FC, Li JP, Wang WN, Shih MC (2011) The AP2/ERF transcription factor ATERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 156:202–212

Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lullu N, Ferguson IB (2008) Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J Exp Bot 59:2097–2108

Yin XR, Xie XL, Xia XJ, Yu QJ, Ferguson IB, Giovannoni JJ, Chen KS (2016) Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant J 86:403–412

Zarei A, Korbes AP, Younesi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA9/1 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331

Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249

Zhang HW, Zhang J, Xie BY, Chen Q, Tian X, Zhang XL, Zhang HB, Lu XY, Huang DF, Huang RF (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262–270

Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222:494–501

Zhang HB, Yang YH, Zhang ZJ, Chen J, Wang XC, Huang RF (2008) Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Planta 228:777–787

Zhang ZJ, Zhang HW, Quan RD, Wang XC, Huang RF (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

Zhang Z, Li F, Li D, Zhang H, Huang R (2010a) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774

Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010b) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012a) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to

Urbanova T, Leubner-Metzger G (2016) Gibberellins and seed germination. Annu Rev Plant Biol 145:253–284

van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297
Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol 196:1155–1170
Zhang ZJ, Wang J, Zhang RX, Huang RF (2012b) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287
Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Ou LJ, Qin G (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460
Zhu Xl, Qi L, Liu X, Cai SB, Xu HJ, Huang RF, Li JR, Wei XN, Zhang ZY (2014) The wheat ethylene response factor transcription factor PATHOGEN-INDUCED ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–1514
Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Bioph Res Co 371:468–474