Lifshitz transitions in multi-band Hubbard models for topological superconductivity in complex quantum matter

Antonio Bianconi1,2,3

1RICMASS Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, 00185 Rome, Italy
2CNR-IC, Istituto di Cristallografia, Via Salaria Km 29.3, Monterotondo, Roma, I-00015, Italy
3National Research Nuclear University, MEPhI, Kashirskoe sh. 31, 115409 Moscow, Russia
(Dated: 31 Dec 2017, Journal of Superconductivity and Novel Magnetism DOI: 10.1007/s10948-017-4535-1)

How the macroscopic quantum coherence can resist to the decoherence attacks of high temperature is a major challenge for the science of the 21st century. Superstripes 2017 conference held in Ischia on June 2017 has been focused on the new physics of high T_c superconductors made of complex quantum matter. Today the standard model of high T_c superconductivity which grabs the physics of complex quantum matter is the multi-band Hubbard model where the dome of T_c occurs by driving the chemical potential in the proximity of a topological Lifshitz transition. The multi-gap superconductivity in the T_c dome is driven by exchange interaction between a first condensate in the BEC-BCS crossover which coexists with second BCS condensates. The proximity to Lifshitz transitions in correlated electronic systems gives the ubiquitous arrested phase separation observed in all high temperature superconductors. Non Euclidean filamentary hyperbolic geometry is needed for the space description of superstripes textures produced by the coexistence of short range CDW puddles, hole poor SDW puddles and self organized dopants rich puddles. A road map to room temperature superconductors in particular organic compounds made of superlattices of quantum wires driven by Fano resonances with one of the condensates in the BEC-BCS crossover has been proposed.

PACS numbers: 05.70.Fh, 05.70.Jk,74.20.

I. INTRODUCTION.

High temperature superconductivity has been found in a sequence of exotic complex materials: ceramics, intermetallies, diborides, iron pnictides and chalcogenides, with the record for the highest critical temperature T_c in pressurized sulfur hydride near structural phase transitions. These superconductors show a dome of high critical temperature in a particular range of interstitials or defects concentration and in a particular range of pressure or misfit strain. Each system shows a different complex landscape characterized by a different type of multi-scale arrested phase separation with local-lattice-distortion, orbital, charge and spin modulations forming textures of puddles of stripes from atomic-scale to nanoscale, mesoscale and micron-scale. These exotic systems are clearly far away from a typical conventional BCS superconductor made of homogeneous metal with a single large Fermi surface.

Experimental evidence for stripes due to anharmonic incommensurate lattice and orbital modulation has been found since 1990 by novel experimental methods using synchrotron radiation. The early results have been reported and discussed at several international conferences focusing on lattice complexity and phase separation [1–5].

The date of birth of the stripes physics in high temperature superconductors can be fixed on Dec 7, 1993 which is the priority date of the patent for material design of heterostructures at atomic limit formed by superlattices of quantum stripes [6]. In this stripes scenario a Fermi liquid coexists with an incommensurate 1D charge density wave (CDW) forming a multigap superconductor near a Lifshitz transition where the critical temperature amplification is driven by Fano resonances involving different condensates. This stripes scenario for the high T_c mechanism was presented at several international conferences in 1994-1996 [3, 9]. The series of conferences on stripes in high temperature superconductors started three years later on Dec 1996 following the confirmation for the presence of stripes by other standard experimental methods like neutron diffraction and NMR [10]. The first Stripes 1996 conference was followed by the second very large conference Stripes 1998 [11] where the very simple Emery model of spin stripes with wave-vector q_{sdw}, locked with a charge stripes with wave-vector q_{cdw} became very popular within the scientific community. The series of stripes conference have kept open the discussion on many different proposals for the stripes scenarios like the coexistence of short range charge stripes puddles unlocked from spin stripes puddles [12]. A major problem in the field was the diversity of the stripes scenarios in different families of hole doped cuprates which was solved in 2000 by the disclosure of the key role of the lattice strain field with a critical strain value for the appearing of short range stripes ordering [13]. Moreover at the stripes conference the term superstripes [14] has been coined to indicate the complex landscape generated by an arrested phase-separation near a critical strain point, forming a texture of nano puddles of short range striped charge density wave order [15–19].

At that time, in the year 2000, the proposed heterogeneous landscape of superstripes was in contrast with the most popular paradigm i.e., the single-band Hubbard model. Later many Scanning Tunneling Microscopy.
(STM) experiments have confirmed this scenario providing compelling evidence for electronic nanoscale phase separation. Today the presence of nanoscale puddles of electronic pseudogap matter competing with superconducting condensate puddles with different symmetries is well established. In the new emerging paradigm high temperature superconductors are described as particular forms of complexity where particular forms of complexity are not detrimental (like normal disorder in the majority of disordered superconductors) but they favor higher critical temperatures.

The name of the series of stripes conferences changed its name into superstripes conferences in 2008 driven by clear evidence for phase separation in iron based superconductors. This decision marked the shift of the scientific interest toward quantum phenomena in complex materials. Paul Chu discussed the role of lattice architecture, internal strain and strong electron-phonon coupling and high density of states (DOS) at the van Hove singularity.

On the contrary experiments have shown the failure of these predictions since the parent compounds are antiferromagnetic insulators with an energy gap of about 2 eV. The insulating phase was explained by two different schools. The first school assumed the opening of a Peierls gap over the full Fermi surface with wave-vector $2k_F$ associated with the formation of a 2D Peierls charge density wave. The 2D Peierls CDW can be described as the ordering of polarons in the real space. The CDW competes with the ordering of polaron pairs (bipolarons) in the k-space forming a superconducting phase in the strong coupling limit where below T_c a Bose Einstein Condensation (BEC) occurs. The second school proposed that the insulating phase was due to the opening of a Peierls singularity.

The chemical potential is tuned at the electronic topological Lifshitz transition from the hole-like to the electron-like Fermi surface. Here the system shows a peak in the Density of States (DOS) and strong electron-phonon scattering at the nesting wave-vector $2k_F$ connecting opposite sides of the square Fermi surface. Therefore high temperature superconductivity was expected according with BCS theory because of strong electron-phonon coupling and high density of states (DOS) at the van Hove singularity.

II. FROM THE WOODSTOCK OF PHYSICS TO SUPERSTRIPES 2017

The international conference Superstripes 2017 has been held on June 4-10, 2017 at the Ischia island of the Neapolitan archipelago in Italy. Scientists leaders in the field have been invited to discuss the latest advances in this field. Some discussions at Superstripes 2017 have given an answer to topics open since the APS March meeting held in New York, on 18 March 1987, the so called Woodstock of Physics, where 30 years ago Alex Muller presented the discovery of high temperature superconductivity in ceramic La-Ba-Cu-O materials. Paul C.W Chu reported superconductivity above liquid nitrogen temperature in $YBa_2Cu_3O_{6+y}$ (Y123). At Ischia 2017 conference Alex Muller, presented a review on the key role of complexity in cuprates recently reported in the book on high-T_c copper oxide superconductors presenting the scenario of high temperature superconductivity in complex materials. Paul Chu discussed the role of interfaces in the enhancement of T_c above 77 K including the role of lattice architecture, internal strain and pressure. He pointed out the fact that a single-band Hubbard model is not sufficient for describing high T_c, why multi-band Hubbard models are needed. Vladimir Kresin who proposed at the 1987 APS March meeting the theoretical scenario of strong electron-phonon coupling in a complex lattice discussed in Ischia the strong coupling limit in the pairing involving high energy phonons in view of explaining 203 K superconductivity in pressurized H_3S which is today object of active research.

Band structure calculations of the parent compounds La_2CuO_4 and $YBa_2Cu_3O_6$ presented at the Woodstock of Physics predicted that the Fermi level is at half filling in a wide band due to the covalent bond between $Cu(3d)$ [ml=2] and $O(2p_{x,y})$ orbital in the metallic CuO_2 layers. Considering a perfect tetragonal bcc lattice including only first-neighbor hopping t, the 2D Fermi surface at half filling is predicted to have a square shape. The chemical potential is tuned at the electronic topological Lifshitz transition from the hole-like to the electron-like Fermi surface. Here the system shows a peak in the Density of States (DOS) and strong electron-phonon scattering at the nesting wave-vector $2k_F$ connecting opposite sides of the square Fermi surface. Therefore high temperature superconductivity was expected according with BCS theory because of strong electron-phonon coupling and high density of states (DOS) at the van Hove singularity.

III. FROM SINGLE-BAND TO MULTI-BAND HUBBARD MODEL AND LIFSHITZ TRANSITIONS

It was well known that in the frame of a single-band Hubbard model the Mott insulator occurs if U_{dd} is larger than the conduction band-width W. At the 1987 APS March meeting it was assumed by the scientific community that chemical doping form itinerant Cu^{3+} impurity states, with $3d^8$ configuration, moving in a background made of Cu^{2+} ions with the $3d^9$ configuration.

Three weeks later on Apr 8th 1987 in the Symposium on High T_c Superconductivity at the 7th General Conference of the Condensed Matter Division of the European Physical Society held in Pisa, Italy, it was reported that the doped holes in doped metallic $Y123$ do not form the expected Cu^{3+} with $3d^8$ configuration but they form the unexpected Cu^{2+} O^{1-} states called $3d^9L$, where L indicates the hole in the ligand oxygen $2p$ orbital.
This result was obtained by Cu $L_{2,3}$-edge x-ray absorption near edge structure (XANES) spectroscopy of the high T_c superconductor Y123 measured using ACO storage ring in Orsay, France in March 1987 [44, 45] and by the Cu K-edge XANES measured at the Adone storage ring in Frascati, Italy [46].

These results have been possible thanks to the development of XANES spectroscopy as a probe of both of multiple scattering resonances or shape resonances [47–51] and of many body electronic configurations in valence fluctuation materials, heavy fermions and charge transfer correlated transition metal oxides like NiO, CeO$_2$ and PrO$_2$ [51, 52].

The Cu $L_{2,3}$ X-ray photoelectron spectroscopy (XPS) spectra of Y123 were measured to get U_{dd} in the Italian ENEA Laboratory [53] and the results were found to be in agreement with the XPS experiments made by Fujimori in Tokyo [54] at the same time.

These works have been confirmed in different cuprate families like in $La_{1+0.15}Sr_{0.85}CuO_4$ (La124) [55]. The results have been presented at the four major international conferences in 1987: 1) the Pisa EPS April meeting [56]; 2) at the Special Adriatico Research Conference on High Temperature Superconductors held on 6-8 Jul 1987 in Trieste, Italy [60]; 3) at the tenth Taniguchi international symposium held on October 19-23, 1987 in Kashiokima, Japan [61]; and 4) at the 14th International Conference on X-ray and inner-shell processes, held in Paris on September 14-18, 1987 [62]. The relevance of these results was recognized on 8 Dec 1987 at the Nobel prize ceremony where Alex Muller reported that:

> [early photoelectron core-level spectra (XPS and UPS) by Fujimori et al. [55] and Bianconi et al. [57] in $La_{1-0.15}Sr_{0.85}Cu_2O_4$ and $YBa_2Cu_3O_7$ did not reveal a final state owing to a Cu$^{3+}$ 3d0 state]

In fact the XPS experiments [49, 57] have clearly shown that the parent compounds are Mott insulators with the Coulomb repulsion between two holes in the Cu 3d orbitals $U_{dd} = 6 \, \text{eV}$ [48, 57], larger than the conduction bandwidth which was calculated by band structure calculations for non interacting fermions. The Cu L_3 XANES experiments have shown that the carriers, created by doping, are states with 3d0L many body configuration in the correlation gap.

The correlation gap in both La124 and Y123 compounds is not U_{dd} as expected for a single-band Hubbard model but the charge transfer gap for the excitation from the $[\text{Cu}(3d^0), O(2p^6)]$ to the $[\text{Cu}(3d^{10}), O(2p^5)]$ many body configuration, called also the $3d^0$ to $3d^{10}L$ gap, which was predicted for the correlated charge transfer transition metal oxides [58].

A month after the EPS 1987 Pisa conference, Emery understood that the results of the Cu L_3-edge experiment [44] had falsified the single-band Hubbard model and proposed in June 1987 the three-band Hubbard model [63] involving p and d orbitals for hole doped cuprates.

The experimental evidence of the 3d0L by A. Bianconi [60] and the V. Emery theory paradigm of the p-d three-band Hubbard model were presented together at the Adriatico Trieste meeting in July 1987. After the Adriatico 1987 meeting the fact that doped holes are in the oxygen orbital in cuprates was widely accepted by the community as recognized by Alex Muller in the opening talk at the 3rd international conference on Materials and Mechanisms of Superconductivity in 1991 at Kanazawa Japan [65]:

> [The carriers in these type of conducting cuprates are holes on the oxygens. To me the first indication came from X-ray absorption spectroscopy by Prof. Bianconi at University of Rome]

Evidence for the 3d0L states induced by doping in the correlation gap was presented in 1988 at the first M^2S conference in Interlaken [66, 68], and at the international Symposium on the Electronic Structure of High T_c Superconductors, Rome, 5-7 October 1988 [69], where it was confirmed by many authors [70, 74]. These results have been confirmed by experiments and theories published in 1989 [75, 76]; and in 1990 [77, 78]; in 1991 [79, 81]; in 1992 [82, 83]; in 1993 [84, 85]; in 1995-1997 [86, 87] and in these last 10 years [88, 90].

It was established that the correct model for high temperature superconductors is the multi-band Hubbard model, where the domes of high T_c occur in the proximity of electronic topological transitions called Lifshitz transitions.

Boguliobov equations for a multigap superconductor near a band edge have been solved by numerical calculations for the cases of sulfur hydrides, cuprates, diborides, and iron based superconductors [37, 91–99]. Recently it was shown that this mechanism for high T_c can be in action in particular filamentary organic compounds [100] where the condensate in the new appearing Fermi surface is in the BEC-BCS crossover regime.

Also the ubiquitous nanoscale phase separation occurring in high temperature superconductors has been shown to be driven by the proximity to a Lifshitz transition in multi-band Hubbard models [101, 102].

IV. RECENT ADVANCES

At superstripes 2017 conference it was proposed that the origin of the multiple Fermi surfaces could be determined by oxygen interstitials self-organization as it has been shown in the case of HgBa$_2$CuO$_{4-y}$ (Hg1201) where the oxygen interstitials (O-i) are not homogeneously distributed but form one-dimensional atomic wires which can dramatically enhance the critical temperature. [103]. The complex interplay of charge, spin [104, 105] and orbital degrees of freedom including spin-orbit interaction in topological matter [110, 111] are now object of investigation as key ingredients. The rich physics of unconventional superconductivity in cuprates and their asymmetry between electron doped and hole doped families continue to attract theory and experimental research [112–117]. Ivanov has shown the noncentrosymmetric struc-
ture of a Bi2212 crystal at optimum doping in a high magnetic field by using x-ray magnetic circular dichroism, XMCD. This new result suggests a possible role of spin-orbit coupling. Investigation of basic physics in low dimensional quasi 1D superconductors \[118, 119\] and in the 2D electron gas \[120, 121\] have been object of high interest to unveil key features of dimensionality in unconventional superconductors. Iron based superconductors continue to provide a clear case for the study of the interplay of nanoscale phase separation and multi-gap superconductivity \[122-124\]. New topics in physics and materials science are provided by systems out-of-equilibrium \[125\], novel silver based materials \[126\] and granular materials \[127\]. Finally key advances in the quantum electronics using superconducting devices \[128, 129\] and on metal-to-insulator transition in \(\text{VO}_2\) \[130\] have been reported at Superstripes 2017.

V. CONCLUSIONS

There is today after many years of discussion a growing agreement in the scientific community on some key common physical features of high temperature superconductors. All high \(T_c\) superconductors are highly inhomogeneous and different multi-band Hubbard models are needed to describe unconventional high temperature superconductors. Topology, Lifshitz transitions, and spin-orbit coupling are opening new fields of research in condensed matter of strongly correlated materials. Further works will be addressed to exchange interaction giving Fano resonances between condensates in the strong coupling regime in hot spots of the Fermi surface coexisting with condensates in other portions of the Fermi surfaces in the weak coupling regime, which can be manipulated in metalorganic materials to get room temperature superconductors \[100\].

[1] Ashkenazi, J., Barnes, S.E., Zuo, F., Vezzoli, G.C., Klein, B.M. Eds. High-Temperature Superconductivity: Physical Properties, Microscopic Theory, and Mechanisms, Proceedings of the workshop held Jan. 3-9, 1991, University of Miami, Coral Gables, (Springer US, Boston MA, 1991) doi:10.1007/978-1-4615-3338-2
[2] Bar-Yam, Y., Egami, T., Leon, J. M.-d., Bishop, A.R. (Eds.), Proc. of the conference: Lattice Effects in High-\(T_c\) Superconductors. Santa Fe, New Mexico, January 13-15, 1992 (World Scientific Pub., Singapore 1992)
[3] Muller, K.A., Benedek, G. (Eds.), Phase Separation in Cuprate Superconductors, Proc. Erice Workshop, Italy 6-12 May 1992, (World Scientific Pub., Singapore, 1993)
[4] Proc. 7th Int. Conf. X-ray Absorption Fine Structure, Kobe, Aug 1992. Jpn. J. Appl. Phys. 32 (Supplement 32-2) 1993 http://iopscience.iop.org/issue/1347-4065/32/S2
[5] Sigmund, E.; Muller, K.A. (Eds.), "Phase Separation in Cuprate Superconductors : Proc. of the second international workshop on "Phase Separation in Cuprate Superconductors" September 4-10, 1993, Cottbus, Germany (Springer Berlin Heidelberg, 1994)
[6] Bianconi, A., Jul. 2001. Priority date (7 Dec 1993) Process of increasing the critical temperature \(T_c\) of a bulk superconductor by making metal heterostructures at the atomic limit. US Patent 6:265,019
[7] Bianconi, A., Jul. 1994. On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high \(T_c\) superconductivity. Solid State Communications 91 (1), 1-5. http://dx.doi.org/10.1016/0038-1098(94)90831-1
[8] Mihailovic, D., Muller K. A., Ruani G. (Eds.), Anharmonic properties of high-\(T_c\) cuprates (Proc. of the International Workshop on Anharmonic properties of High-\(T_c\) Cuprates, Bled, Slovenia, September 1-6, 1994) (World Scientific, Singapore 1995)
[9] Kaldis, E., Liarokapis, E., Muller, K. A. (Eds.), High-\(T_c\) Superconductivity 1996: Ten Years after the Discovery. Vol. 343 of NATO ASI Series. Springer Netherlands, (Proc. of the International Workshop on High-\(T_c\) Superconductivity 1996: Ten Years after the Discovery, Delphi, Greece, 1996) http://dx.doi.org/10.1007/978-94-011-5554-0_16
[10] Bianconi, A., Saini, N. L. , Lanzara, A., Perali, A., Rossetti, T., Valletta, A., 1997. From a homogeneous CuO\(_2\) plane to a superlattice of quantum stripes. In: \[8\] pp. 383-403.
[11] Bianconi A., Saini, N. L. (Eds.) Stripes and related phenomena Proceedings of the International Conference Stripes 98, June 4-7 1998, Rome, Italy, (Kluwer Academics - Plenum Publisher 2000) isbn:9780306461915
[12] Caprara, S., Sulpizi, M., Bianconi, A., Di Castro, C., Grilli, M., Jun. 1999. Single-particle properties of a model for coexisting charge and spin quasicritical fluctuations coupled to electrons. Physical Review B 59 (23), 14980-14991. http://dx.doi.org/10.1103/physrevb.59.14980
[13] Bianconi, A., Bianconi, G.; Caprara, S., Di Castro, D., Oyanagi, H., Saini, N. L., Dec. 2000. The stripe critical point for cuprates. Journal of Physics: Condensed Matter 12 (50), 10655-10666. http://dx.doi.org/10.1088/0953-8984/12/50/326
[14] Bianconi, A., Aug. 2000. Superstripes. International Journal of Modern Physics B 14 (29-31), 3289-3297. http://dx.doi.org/10.1142/S0217979200003769
[15] Saini, N. L., Bianconi, A., Dec. 2000. Superstripes by anomalous X-Ray diffraction and angle resolved photoemission in Bi2212. International Jour-
Bianconi, A., Saini, N. L., Agrestini, S., Castro, D. D., Agrestini, S., Saini, N. L., Bianconi, G., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N. L., Agrestini, S., Bianconi, A., Di Castro, D., Bianconi, G., Saini, N. L., Feb. 2001. The strain quantum critical point for superstripes. AIP Conf. Proc. **554** (1), 124-132. http://dx.doi.org/10.1063/1.1363067

Agrestini, S., Saini, N. L., Bianconi, G., Bianconi, A., Sep. 2003. The strain of CuO_2 lattice: the second variable for the phase diagram of cuprate perovskites. Journal of Physics A: Mathematical and General **36** (35), 9133-9142. http://dx.doi.org/10.1088/0305-4470/36/35/302

Bianconi, A. (Eds.) 2006, Symmetry and Heterogeneity in High Temperature Superconductors. (Proceedings of the NATO Advanced Study Research. Workshop, Erice, Sicily, Italy October 4-10, 2003) NATO Science Series, Vol. **214**. (Springer, Dordrecht, The Netherlands, 2006) ISBN:978-1-4020-3987-4

Muller, K. A., Bussmann-Holder, A., Superconductivity in Complex Systems, in Structure and Bonding series, vol. **114** (Springer Berlin Heidelberg, 2005)

Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A., Jan. 2009. Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Superconductor Science and Technology **22** (1), 014004. http://dx.doi.org/10.1088/0953-2048/22/1/014004

Ricci, A., Poccia, N., Ciacca, G., Fratini, M., Bianconi, A., Aug. 2009. The microstrain-doping phase diagram of the iron pnictides: Heterostructures at atomic limit. Journal of Superconductivity and Novel Magnetism **22** (6), 589-590. http://dx.doi.org/10.1007/s10948-009-0473-x

Bianconi, A., Apr. 2011. Resonances and complexity: From stripes to superstripes. Journal of Superconductivity and Novel Magnetism **24** (3), 1117-1121. http://dx.doi.org/10.1007/s10948-011-1142-4

Bianconi, A., Poccia, N., Jul. 2012. Superstripes and complexity in High-Temperature superconductors. Journal of Superconductivity and Novel Magnetism **25** (5), 1403-1412. http://dx.doi.org/10.1007/s10948-012-1670-6

Bianconi, A., Innocenti, D., Campi, G., Aug. 2013. Superstripes and superconductivity in complex granular matter. Journal of Superconductivity and Novel Magnetism **26** (8), 2585-2588. http://arxiv.org/abs/1304.6939

Bianconi, A., 2014. Superstripes and percolating Nanoscale-Striped puddles in heterostructures at atomic limit. Journal of Superconductivity and Novel Magnetism **27** (4), 909-912. http://dx.doi.org/10.1007/s10948-014-2516-1

Bianconi, A., Apr. 2015. Superstripes in the low energy physics of complex quantum matter at the mesoscale. Journal of Superconductivity and Novel Magnetism **28** (4), 1227-1229. http://arxiv.org/abs/1503.02966

Bianconi, A. 2013. Quantum Materials: Shape Resonances in Superstripes, Nature Physics **9**, 536

Leggett, A. J., Zhang, S., 2012 The BEC-BCS Crossover: Some History and Some General Observations. In The BCS-BEC Crossover and the Unitary Fermi Gas, Vol. 836: Zwerger, W., Ed.; (Springer, Berlin Heidelberg, 2012). doi:10.1007/978-3-642-21978-5_2

Bednorz, J. G., Muller, K. A., Jun. 1986. Possible high T_c superconductivity in the Ba-La-Cu-O system. Zeitschrift fur Physik B Condensed Matter **64** (2), 189-193. http://dx.doi.org/10.1007/bf01303701

Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., Chu, C. W., Mar. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters **58** (9), 908-910. http://dx.doi.org/10.1103/physrevlett.58.908

Bussmann-Holder, A., Keller, H., Bianconi, A. (Eds.), 2017. High-T_c Copper Oxide Superconductors and Related Novel Materials. Vol. 255. Springer International Publishing. Cham. http://dx.doi.org/10.1007/978-3-319-52675-1

Chu C. W. in Abbamonte A. et al., Superstripes 2017, Bianconi A. Editor, Science Series; Vol. **11** (Superstripes Press, Rome, Italy) Isbn: 9788866830696 http://www.superstripes.net

Kresin, V. Z., Jun. 1987. On the critical temperature for any strength of the electron-phonon coupling. Physics Letters A **122** (8), 434-438. http://dx.doi.org/10.1016/0375-9601(87)90744-4

Kresin, V., 2017. Paths to Room-Temperature superconductivity. J Supercond Nov Magn (2017) http://dx.doi.org/10.1007/s10948-017-4382-0

Bianconi, A., Jarlborg, T., 2015. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity Novel Superconducting Materials 1, 37

Bianconi, A., Jarlborg, T., 2015 EPL (Europhysics Letters) **112** 37001. http://dx.doi.org/10.1209/0295-5075/112/37001

Jarlborg, T., Bianconi, A., 2016 Scientific Reports 6, 24816 http://dx.doi.org/10.1038/srep24816

Bussmann-Holder, A., Koheler, J., Simon, A., Whangbo, M.-H., Bianconi, A., Perali, A., Jul. 2017. The road map toward Room-Temperature superconductivity. Manipulating different pairing channels in systems composed of multiple electronic components. Condensed Matter **2**(3), 24. http://dx.doi.org/10.3390/condmat2030024

Chakraverty, B. K., 1981: Bipolarons and superconductivity. Journal de Physique 42 (9), 1351-1356. http://dx.doi.org/10.1051/jphys:019810042090135100

Ogg, R. A., Mar. 1946. Bose-Einstein condensation of trapped electron pairs. phase separation and superconductivity of Metal-Ammonia solutions. Physical Review **69** (5-6), 243-244. http://dx.doi.org/10.1103/physrev.69.243

Pauling, L., Apr. 1949. A Resonating-Valence-bond theory of metals and intermetallic compounds. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 196 (1046), 343-362.
[44] Bianconi, A., Congiu-Castellano, A., Desantis, M., Rudolf, P., Lagarde, P., Flank, A.M., Marcelli, A., Jun 1987 Cu $L_{2,3}$ XANES of the high T_c superconductor $YBa_2Cu_3O_7$ presented at the Symposium on High T_c Superconductivity at the 7th General Conference of the Condensed Matter Division of the European Physical Society, Pisa, Italy, 8 Apr. 1987. http://adsabs.harvard.edu/abs/1987eps...symp.....B

[45] Bianconi, A., CongiuCastellano, A., De Santis, M., Rudolf, P., Lagarde, P., Flank, A. M., Marcelli, A., Sep. 1987. $L_{2,3}$ XANES of the high T_c superconductor $YBa_2Cu_3O_7$ with variable oxygen content. Solid State Communications 63 (11), 1009-1013. http://dx.doi.org/10.1016/0038-1098(87)90650-8

[46] Bianconi, A., Castellano, De Santis, M., Politis, C., Marcelli, A., Mobilio, S., Savoia, A., Sep. 1987. Lack of delocalized Cu p states at the Fermi level in the high-T_c superconductor $YBa_2Cu_3O_7$ by XANES spectroscopy. Zeitschrift fur Physik B Condensed Matter 67 (3), 307-312. http://dx.doi.org/10.1007/bf01307254

[47] Bianconi, A., Doniach, S., Lublin, D., 1978 X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compounds Chemical Physics Letters 59, 121. http://dx.doi.org/10.1016/0009-2614(78)85629-2.

[48] Bianconi, A., Jan. 1979. Core excitons and inner well resonances in surface soft x-ray absorption (SSXA) spectra. Surface Science 89 (1-3), 41-50.

[49] Bianconi, A., Nov. 1980. Surface x-ray absorption spectroscopy: Surface EXAFS and surface XANES. Applications of Surface Science 6 (3-4), 392-418. http://dx.doi.org/10.1016/0379-6063(80)90024-0

[50] J. Garcia, A. Bianconi, M. Benfatto, C. R. Natoli, 1986 Le Journal de Physique Colloques 47 C8-49. http://dx.doi.org/10.1051/jpophys:1986807

[51] Bianconi, A., Sep. 1982. Multiplet splitting of final-state configurations in x-ray-absorption spectrum of metal VO$_2$: Effect of core-hole-screening, electron correlation, and metal-insulator transition. Physical Review B 26 (6), 2741-2747. http://dx.doi.org/10.1103/physrevb.26.2741

[52] Marcelli, A., Bianconi, A., Davoli, I., Stizza, S., Feb. 1985. Localization mixing and/or hybridization in intermetallic compounds RPd$_5$ (R = La, Ce, Pr, Nd, Sm) by XANES. Journal of Magnetism and Magnetic Materials 47-48, 206-208. http://dx.doi.org/10.1016/0304-8853(85)90395-6

[53] Davoli, I., Marcelli, A., Bianconi, A., Tomellini, M., Fanfoni, M., Feb. 1986. Multielectron configurations in the x-ray-absorption near-edge structure of NiO at the oxygen K threshold. Physical Review B 33 (4), 2979-2982. http://dx.doi.org/10.1103/physrevb.33.2979

[54] Bianconi, A., Marcelli, A., Dexpert, H., KTNakata, R., Kotani, A., Jo T., Petiau, J., Jan. 1987. Specific intermediate-valence state of insulating 4f compounds detected by L_3 x-ray absorption. Physical Review B 35 (2), 806-812. http://dx.doi.org/10.1103/physrevb.35.806

[55] Kotani, A., Okada, M., Jo T., Bianconi, A., Marcelli, A., Parlebas, Feb. 1987. Many body effect in inner shell photoemission and photoabsorption spectra of La compounds. Journal of the Physical Society of Japan 56 (2), 798-809. http://dx.doi.org/10.1143/jpsj.56.798

[56] Zaanen, J., Sawatzky, G. A., Allen, J. W., Jul. 1985. Band gaps and electronic structure of transition-metal compounds. Physical Review Letters 55 (4), 418-421. http://dx.doi.org/10.1103/physrevlett.55.418

[57] Bianconi, A., Congiu-Castellano, A., De Santis, M., Delogu, Gargano, Giorigi, Sep. 1987. Localization of Cu 3d levels in the high T_c superconductor $YBa_2Cu_3O_7$ by Cu 2p x-ray photoelectron spectroscopy. Solid State Communications 63 (12), 1135-1139. http://dx.doi.org/10.1016/0038-1098(87)91063-5

[58] Fujimori, A., Takayama-Muromachi, E., Uchida, Y., Sep. 1987. Electronic structure of superconducting Cu oxides. Solid State Communications 63(9), 857-860. http://dx.doi.org/10.1016/0038-1098(87)90901-x

[59] Bianconi, A., Budnick, J., Flank, A. M., Fontaine, A., Lagarde, P., Marcelli, A., Tolentino, H., Chamberland, B., Michel, C., Raveau, B., Demazeau, G., Feb. 1988. Evidence of 3d2-ligand hole states in the superconductor $La_{1.85}Sr_{0.15}CuO_4$ from L_3 x-ray absorption spectroscopy. Physics Letters A 127 (5), 285-291. http://dx.doi.org/10.1016/0375-9601(87)90698-6

[60] Bianconi, A., Clozza, A., Congiu-Castellano, A., Della-Longa, S., De Santis, M., Di-Cicco, A., Garg, K., Delogu, P., Gargano, A., Giorgi, R., Lagarde, P., Flank, A. M., Marcelli, A., 1987. Experimental evidence of itinerant Cu(3d^3)-Oxygen-hole many body configuration in the high-T_c superconductor $YBa_2Cu_3O_7$. (Proc. Special Adriatico Research Conference on High Temperature Superconductors 6-8 Jul 1987. Trieste, Italy) International Journal of Modern Physics B (IJMPB) 1 (3-4), 853-862. http://www.worldscinet.com/jmpyb/01/013n04/s0217979287001217

[61] Bianconi, A., Clozza, A., Congiu-Castellano, A., Della Longa, S., De Santis, M., Di-Cicco, A., Garg, K., Delogu, P., Gargano, A., Giorgi, R., Lagarde, P., Flank, A. M., Marcelli, A., Dec. 1987. Cu 3d2-ligand hole configuration in $YBa_2Cu_3O_7$ by x-ray spectroscopics. Le Journal de Physique Colloques 48(C9), C9-1179 - C9-1184. (Proc. of 14th International Conference on x-ray and inner-shell processes, Paris, September 14-18, 1987) http://dx.doi.org/10.1051/jphyscol:19879212

[62] Bianconi A in Kanamori, J., Kotani, A., editors 1988. Core-Level spectroscopy in condensed systems. Proceedings of the tenth Taniguchi international symposium, Kashikojima, Japan, October 19-23, 1987. http://dx.doi.org/10.1016/0375-9601(87)90024-0

[63] Bednorz, J. G., Muller, K. A., Jul. 1988. Perovskite-type oxides - The new approach to high- T_c superconductivity. Reviews of Modern Physics 60 (3), 585-600. URL http://dx.doi.org/10.1103/revmodphys.60.585

[64] Emery, V. J., Jun. 1987. Theory of high-T_c superconductivity in oxides. Physical Review Letters 58 (26), 2794-2797. http://dx.doi.org/10.1103/physrevlett.58.2794

[65] Muller, K. A., Dec. 1991. The first five years of high-T_c superconductivity. Physica C: Superconductivity 185-189, 3-10. http://dx.doi.org/10.1016/0921-4534(91)91942-w

[66] Bianconi, A., Budnick, J., Chamberland, B., Clozza, A., Dartyge, E., Demazeau, G., De Santis, M., Flank, A. M., Fontaine, A., Jegoudez, J., Lagarde, P., Lynds, L. L., Michel, C., Otter, F. A., Tolentino, H., Raveau, B., Revcolevschi, A., Jun. 1988. 3d2L states induced by doping in $La_{1.85}Sr_{0.15}CuO_4$ and in magnetic and non magnetic $M_{1}Ba_{2}Cu_{3}O_{7}$ (M = Gd, Ho and Y). (Proc.
International Conference on High Temperature Superconductors and Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 28 - March 4, 1988. Physica C: Superconductivity 153-155, 113-114. http://dx.doi.org/10.1016/0921-4534(88)90507-2

[67] Bianconi, A., De Santis, M., Di Cicco, A., Clozza, A., Congiu Castellano, A., Della Longa, S., Gargano, A., Delogu, P., Dikonimos Makris, T., Giorgi, R., Flank, A. M., Fontaine, A., Lagarde, P., Marcelli, A., Jun. 1988. Weight of 3d^0 ligand hole configuration as function of oxygen content in $YBa_2Cu_3O_6+y$ by joint L_3 XAS and XPS. (Proc. International Conference on High Temperature Superconductors and Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 28 - March 4, 1988) Physica C: Superconductivity 153-155, 115-116. http://dx.doi.org/10.1016/0921-4534(88)90508-4

[68] Bianconi, A., Desantis, M., Flank, A., Fontaine, A., Lagarde, P., Marcelli, A., Katayamayoshida, H., Kotani, A., Jun. 1988. Determination of the symmetry of the 3d^0 L states by polarized Cu L_3 XAS spectra of single crystal $YBa_2Cu_3O_6.9$. Physica C: Superconductivity 153-155, 1760-1761. URL http://dx.doi.org/10.1016/0921-4534(88)90469-8

[69] Bianconi, A., Marcelli, A. (Eds.), 1989. High T_c superconductors electronic structure, Proceedings of the International Symposium on the Electronic Structure of High T_c Superconductors, Rome, 5-7 October 1988. (Pergamon Press, Oxford 1989) http://www.worldcat.org/isbn/9780080375427

[70] Sarma, D. D., Rao, C. N. R., Jan. 1988. Nature of the copper species in superconducting $YBa_2Cu_3O_7$. Solid State Communications 65 (1), 47-49. http://dx.doi.org/10.1016/0038-1098(88)90585-6

[71] Nucker, N., Fink, J., Fuggle, J. C., Durham, P. J., Temmerman, W. M., Apr. 1988. Evidence for holes on oxygen sites in the high-T_c superconductors $La_{2-x}Sr_xCuO_4$ and $YBa_2Cu_3O_7-y$. Physical Review B 37 (10), 5158-5163. http://dx.doi.org/10.1103/physrevb.37.5158

[72] Sarma, D. D., Strebel, O., Simmons, C. T., Neukirch, U., Kaindl, G., Hoppe, R., Muller, H. P., Jun. 1988. Electronic structure of high-T_c superconductors from soft-x-ray absorption. Physical Review B 37 (16), 9784-9787. http://dx.doi.org/10.1103/physrevb.37.9784

[73] Balzarotti, A., De Crescenzii, M., Motta, N., Patella, F., Sgarlata, A., Oct. 1988. Energy loss study of the electronic structure of $YBa_2Cu_3O_7$ high T_c superconductor. Solid State Communications 68 (4), 381-386. http://dx.doi.org/10.1016/0038-1098(88)90299-2

[74] Balzarotti, A., De Crescenzii, M., Motta, N., Patella, F., Sgarlata, A., Oct. 1988. Valence charge fluctuations in $YBa_2Cu_3O_7$ from core-level spectroscopies. Physical Review B 38 (10), 6461-6469. http://dx.doi.org/10.1103/physrevb.38.6461

[75] Fujimori, A., Jan. 1989. Character of doped oxygen holes in high-T_c Cu oxides. Physical Review B 39 (1), 793-796. http://dx.doi.org/10.1103/physrevb.39.793

[76] de Groot, F. M. F., Grioni, M., Fuggle, J. C., Ghijsen, J., Sawatzky, G. A., Petersen, H., Sep. 1989. Oxygen $1s$ x-ray-absorption edges of transition-metal oxides. Physical Review B 40 (8), 5715-5723. http://dx.doi.org/10.1103/physrevb.40.5715

[77] Eskes, H., Tjeng, L. H., Sawatzky, G. A., Jan. 1990. Cluster-model calculation of the electronic structure of CuO: A model material for the high-T_c superconductors. Physical Review B 41 (1), 288-299. http://dx.doi.org/10.1103/physrevb.41.288

[78] Bianconi, A. in High Temperature Superconductivity, C. Ferdeghini, A. S. Siri editors, (Proceedings of the third Italian national meeting on High Temperature Superconductivity Genova 12-14 Feb 1990) (World Scientific Publisher, Singapore, July 1990) isbn 9814611670, 9789814611671

[79] Ronay, M., Santoni, A., Schrott, A. G., Terminello, L. J., Kowalczyk, S. P., Himpsel, F. J., Mar. 1991. A new correlation for T_c from Cu 2p absorption. Solid State Communications 77 (9), 699-702. http://dx.doi.org/10.1016/0038-1098(91)90772-n

[80] Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A. M., Lagarde, P., Nov. 1991. Linearly polarized Cu L_3-edge x-ray-absorption near-edge structure of $Bi_2CaSr_2Cu_3O_8$. Physical Review B 44 (18), 10126-10138. http://dx.doi.org/10.1103/physrevb.44.10126

[81] Pompa, M., Li, C., Bianconi, A., Congiu-Castellano, A., della Longa, S., Flank, A. M., Lagarde, P., Udron, D., Dec. 1991. Full multiple scattering analysis of linearly polarized Cu L_3-edge XANES of La_2CuO_4. Physica C: Superconductivity 184 (1-3), 51-54. http://dx.doi.org/10.1016/0921-4534(91)91950-4

[82] Chen, C. T., Tjeng, L. H., Kwo, J., Hao, K. L., Rudolf, P., Sette, F., Fleming, R. M., Apr. 1992. Out-of-plane orbital characters of intrinsic and doped holes in $La_{2-y}Sr_yCuO_4$. Physical Review Letters 68 (16), 2543-2546. http://dx.doi.org/10.1103/physrevlett.68.2543

[83] Bocquet, A. E., Mizokawa, T., Saitoh, T., Namatame, H., Fujimori, A., Aug. 1992. Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. Physical Review B 46 (7), 3771-3784. http://dx.doi.org/10.1103/physrevb.46.3771

[84] van Veenendaal, M. A., Eske, H., Sawatzky, G. A., May 1993. Strong nonlocal contributions to Cu 2p photoelectron spectroscopy. Physical Review B 47 (17), 11462-11469. http://dx.doi.org/10.1103/physrevb.47.11462

[85] Pellegrin, E., Nucker, N., Fink, J., Simmons, C. T., Kaindl, G., Bernhard, J., Renk, K. F., Kumm, G., Winzer, K., Oct. 1993. Polarized x-ray-absorption study of $Tl_2Ba_2Ca_2Cu_3O_{8+}$ and $Tl_2Ba_2Cu_3O_{7+}$. Physical Review B 48 (14), 10520-10523. http://dx.doi.org/10.1103/physrevb.48.10520

[86] Nucker, N., Pellegrin, E., Schweiss, P., Söhnmen, E., Fink, J., Molodtsov, S. L., Simmons, C. T., Domke, M., Kaindl, G., Frintrop, W., Chen, C. T., Erb, A., Miller-Vogt, G., Apr. 1995. Site specific and doping dependent electronic structure of $YBa_2Cu_3O_y$ probed by O(1s) and Cu(2p) x-ray absorption spectroscopy. Synthetic Metals 71 (1-3), 1563-1566. http://dx.doi.org/10.1016/0379-6779(94)02951-t

[87] Merz, M., Nucker, N., Pellegrin, E., Schweiss, P., Schuppler, S., Kielwien, M., Knupfer, M., Golden, M. S., Fink, J., Chen, C. T., Chakarian, V., Iderzer, Y. U., Erb, A., Apr. 1997. X-ray absorption spectroscopy of detwinned $Pr_1-yBa_2Cu_3O_7$ – y single crystals: Electronic structure and hole distribution. Physical Review B 55 (14), 9160. http://dx.doi.org/10.1103/physrevb.55.9160

[88] Ghiringhelli, G., Brookes, N. B., Dallera, C., Tagliaferri, A., Braicovich, L., Aug. 2007. Sensitiv-
ity to hole doping of Cu L_3 resonant spectroscopies: Inelastic x-ray scattering and photoemission of $La_{2-x}Sr_xCuO_4$. Physical Review B 76 (8), 085116. [89] Ugenti, S., Cini, M., Sebold, G., Lorenzana, J., Peretto, E., Stefanucci, G., Aug. 2010. Particle-particle response function as a probe for electronic correlations in the p-d Hubbard model. Physical Review B 82 (7), 075137. [90] Chainani, A., Sicot, M., Fagot-Revurat, Y., Vasseur, G., Granet, J., Kierren, B., Moreau, L., Oura, M., Yamamoto, A., Tokura, Y., Malterre, D., Jul. 2017. Evidence for weakly correlated oxygen holes in the highest-T_c cuprate superconductor $HgBa_2Cu_3O_8$. Physical Review Letters 119 (5), 057001. [91] Valletta, A., Bardelloni, G., Brunelli, M., Lanzara, A., Bianconi, A., Saini, N. L., Aug. 1997. Electronic and superconducting properties of a superlattice of quantum stripes at the atomic limit. Zeitschrift fur Physik B Condensed Matter 104 (4), 707-713. [92] Bianconi, A., Valletta, A., Perali, A., Saini, N. L., Jan. 1999. Superconductivity of a striped phase at the atomic limit. Physica C: Superconductivity 396 (3-4), 269-280. [93] Bianconi, A., Nov. 2005. Feshbach shape resonance in multiband superconductivity in heterostructures. Journal of Superconductivity 18 (5-6), 625-636. [94] Bianconi, A., Jan. 2006. Multiband superconductivity in high T_c cuprates and dibilites. Journal of Physics and Chemistry of Solids 67 (1-3), 567-570. [95] Perali, A., Innocenti, D., Valletta, A., Bianconi, A., Sep. 2012. Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Superconductor Science and Technology 25 (12), 124002. [96] Innocenti, D., Poccia, N., Ricci, A., Valletta, A., Caparra, S., Perali, A., Bianconi, A., Nov. 2010. Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Physical Review B 82 (18), 184528. [97] Innocenti, D., Caparra, S., Poccia, N., Ricci, A., Valletta, A., Bianconi, A., Jan. 2011. Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers. Superconductor Science and Technology 24 (1), 015012. [98] Bianconi, A., Jul. 2013. Shape resonances in multi-condensate granular superconductors formed by networks of nanoscale-striped puddles. Journal of Physics: Conference Series 449 (1), 012002. [99] Mazziotti, M. V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A., May 2017. Possible Fano resonance for high T_c multi-gap superconductivity in p-Terphenyl doped by k at the Lifshitz transition. EPL (Europhysics Letters) 118 (3), 37003. [100] Moskvitch, F., Valletta, A., Bianconi, G., Bianconi, A., 2000, Physics Letters A 275,118.
sive gauge fields and anomalous angle-resolved photoemission spectra in High-T_c cuprates. J. Supercond. Nov. Magn. https://dx.doi.org/10.1007/s10948-017-4363-3 (2017).

[117] Zhao, H., Mou, Y., Feng, S., 2017. Correlation between charge order and second-neighbor hopping in cuprate superconductors. J. Supercond. Nov. Magn. https://dx.doi.org/10.1007/s10948-017-4327-7 (2017).

[118] Ptok, A., Cichy, A., Rodriguez, K., Kapcia, K. J., 2017. Phase transitions in Quasi-One-dimensional system with unconventional superconductivity. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4366-0 (2017).

[119] Barba, L., Chita, G., Campi, G., Suber, L., Bauer, E., Marcelli, A., Bianconi, A., Oct. 2017. Anisotropic thermal expansion of p-Terphenyl: a Self-Assembled supramolecular array of poly-p-phenyl nanoribbons. J. Supercond. Nov. Magn. https://dx.doi.org/10.1007/s10948-017-4407-8 (2017).

[120] Alarco, J., Talbot, P., Mackinnon, I., 2017. A complete and accurate description of superconductivity of AlB_2-type structures from phonon dispersion calculations. J. Supercond. Nov. Magn. http://doi.org/10.1007/s10948-017-4328-6 (2017).

[121] Pudalov, V. M., Gershenson, M. E., 2017. Temperature dependence of renormalized spin susceptibility for interacting 2D electrons in silicon. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4329-5 (2017).

[122] Duan, C., Louca, D., 2017. Fe vacancy order and domain distribution in $A_xFe_{2-y}Se_2$. J. Supercond. Nov. Magn. http://doi.org/10.1007/s10948-017-4381-1 (2017).

[123] Ummarino, G. A., Daghero, D., Tortello, M., Gonnelli, R. S., 2017. Superconductivity on the verge of a Pressure-Induced Lifshitz transition in CaFe$_2$As$_2$: an interpretation within the Eliashberg theory. J. Supercond. Nov. Magn. (2017). http://doi.org/10.1007/s10948-017-4319-7

[124] Shylin, S., Ksenofontov, V., Naumov, P., Medvedev, S., Felser, C., 2017. Interplay between superconductivity and magnetism in Cu-Doped FeSe under pressure. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4317-9 (2017).

[125] Toda, Y., Mochizuki, H., Tsuchiya, S., Kurosawa, T., Oda, M., Mertelj, T., Mihailovic, D., 2017. Nonequilibrium quasiparticle dynamics in Bi-Based superconductors measured by modulation photoexcitation spectroscopy. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4325-9 (2017).

[126] Grochala, W., 2017. Silverland: the realm of compounds of divalent silver and why they are interesting. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4326-8 (2017).

[127] Moshe, A., Bachar, N., Lerer, S., Lereah, Y., Deutscher, G., 2017. Multi-Level Kondo effect and enhanced critical temperature in nanoscale granular Al. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4330-z (2017).

[128] Semenov, A. G., Zaikin, A. D., 2017. Voltage noise in a superconducting wire with a constriction. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4316-x (2017).

[129] Galaktionov, A., Golubev, D., Zaikin, A., 2017. Intrinsic quantum dissipation in superconducting weak links. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4318-8 (2017).

[130] Marcelli, A., Coreno, M., Stredansky, M., Xu, W., Zou, C., Fan, L., Chu, W., Wei, S., Cossaro, A., Ricci, A., Bianconi, A., D Elia, A., Dec. 2017. Nanoscale phase separation and lattice complexity in VO_2: The Metal-Insulator Transition investigated by XANES via Auger electron yield at the vanadium $L_{2,3}$-edge and resonant photoemission. Condensed Matter 2 (4), 38. http://dx.doi.org/10.3390/condmat2040038