Immunization with recombinant *Salmonella* expressing SspH2-EscI protects mice against wild type *Salmonella* infection

Maozhi Hu¹2*, Weixin Zhao³, Hongying Li², Jie Gu², Qixiang Yan¹, Xiaohui Zhou¹24, Zhiming Pan¹2, Guiyou Cui³ and Xinan Jiao¹2

Abstract

Background: Enhancing caspase-1 activation in macrophages is helpful for the clearance of intracellular bacteria in mice. Our previous studies have shown that EscI, an inner rod protein of type III system in *E. coli* can enhance caspase-1 activation. The purpose of this study was to further analyze the prospect of EscI in the vaccine design.

Results: A recombinant *Salmonella* expressing SspH2-EscI fusion protein using the promotor of *Salmonella* effector SspH2, X4550(pYA3334-P-SspH2-EscI), was constructed. A control recombinant *Salmonella* expressing SspH2 only X4550(pYA3334-P-SspH2) was also constructed. In the early stage of in vitro infection of mouse peritoneal macrophages, X4550(pYA3334-P-SspH2-EscI) could significantly (*P* < 0.05) enhance intracellular caspase-1 activation and pyroptotic cell death of macrophages, when compared with X4550(pYA3334-P-SspH2). Except for the intracellular pH value, the levels of reactive oxygen species, intracellular concentration of calcium ions, nitric oxide and mitochondrial membrane potential in macrophages were not significantly different between the cells infected with X4550(pYA3334-P-SspH2-EscI) and those infected with X4550(pYA3334-P-SspH2). Besides, only lower inflammatory cytokines secretion was induced by X4550(pYA3334-P-SspH2-EscI) than X4550(pYA3334-P-SspH2). After intravenous immunization of mice (1 × 10⁸ cfu/mouse), the colonization of X4550(pYA3334-P-SspH2-EscI) in mice was significantly limited at one week post immunization (wpi), when compared with X4550(pYA3334-P-SspH2) (*P* < 0.05). The population of activated CD8⁺T lymphocytes in mouse spleens induced by X4550(pYA3334-P-SspH2-EscI) in mice was significantly lower than that induced by X4550(pYA3334-P-SspH2) at 2–3 wpi, and the ratio of CD4⁺T cells to CD8⁺T cells decreased. The blood coagulation assay indicated that no significant difference was found between X4550(pYA3334-P-SspH2-EscI) and uninfected control, while X4550(pYA3334-P-SspH2) could induce quick coagulation. Notably, immunization of X4550(pYA3334-P-SspH2-EscI) could limit the colonization of challenged *Salmonella* strains in the early stage of infection and provide more effective protection.

Conclusion: The activation of caspase-1 in macrophages by EscI can be used in the design of live attenuated *Salmonella* vaccine candidate.

Keywords: *Salmonella*, Caspase-1, SspH2-EscI, Mice, Protection
Background
Salmonella is a facultative intracellular bacterium and common cause of foodborne illness, causing decreased breeding potential and increased fatality in host. During the early stage of infection, Salmonella can regulate the host cells’ defense mechanisms to ensure the survival of the invading bacteria by selectively secreting effectors through its type III secretion system (T3SS) [1–3]. Carriers of the bacteria contribute greatly to the propagation of the disease. Thus, the resistance of bacterial intracellular survival using innate immunity is a good choice to defend against Salmonella early infection [4, 5].

Macrophages play a critical role in defense against infection, whereas they are also the predominant host cells in the process of Salmonella infection [4]. Therefore, targeting the interaction of Salmonella and macrophages will help us explore the mechanism of resisting bacterial colonization in host cells. In innate immunity, intracellular nucleotide binding domain leucine-rich repeat-containing receptor (NLR) can recognize microbial components and then activate inflammasome signaling in macrophages [6]. During this process, the intracellular pro-caspase-1 is cleaved into the activated caspase-1 and subsequently triggers macrophage pyroptotic death [7, 8]. This pathway is beneficial for the defense against the colonization of intracellular bacteria in vivo [9, 10].

Studies have shown that many proteins of Salmonella can activate intracellular NLRC4 (NLR family, CARD domain containing-4) inflammasome response, but Salmonella can escape the inflammasome response during the process of infection [10]. The Salmonella strain that can enhance activation of inflammasome would inhibit their intracellular survival [11, 12]. As reported, recombinant Salmonella expressing protein between the N-terminus of Salmonella SspH2 (SspH2 can be recognized by T3SS2) and the C-terminus of E. coli Escl (Escl can activate the NLRC4 inflammasome) (SspH2-Escl) can enhance the activation of inflammasome and limit its colonization in mice [5]. However, the function of SspH2-Escl as vaccine candidate in defense against Salmonella early infection is unclear. In the present study, a recombinant Salmonella expressing fusion protein SspH2-Escl using the promoter of SspH2 was constructed. The recombinant strain was tested for its ability to induce immune responses and defense against Salmonella infection in mouse.

Methods
Animals, plasmids and bacteria
Six-week-old female C57BL/6 mice with the average weight of 17 g per mouse were obtained from the Comparative Medicine Center of Yangzhou University (Yangzhou, China). This study was carried out in accordance with the regulations established by the Chinese Ministry of Science and Technology. The animal experiment protocol was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (Permit Number: 2007–0005). All surgery was performed under anesthesia intraperitoneally injected with sodium pentobarbital, 40 mg per kilogram mouse weight, and all efforts were made to minimize suffering.

Plasmid pYA3334, recombinant plasmid pYA3334-SspH2-Escl, E. coli X6212, attenuated S. Typhimurium strains X3730 and X4550 were used for the construction of recombinant bacteria as previously described [5]. Recombinant X4550(pYA3334) was used as control and wild type S. Typhimurium strain D6 isolated from the pig carcass in Yangzhou slaughterhouse was used to challenge mice for the protection assay. Bacterial strains were grown in Luria broth (LB) medium.

Construction of recombinant Salmonella X4550(pYA3334-P-SspH2-Escl)
The genomic DNA of bacteria D6 were extracted using the high pure polymerase chain reaction (PCR) template preparation kit (Takara, Dalian, China) according to the manufacturer’s instructions. The P-SspH2 sequence containing 5'-terminal sequence (1–453 bp) of the sspH2 gene and its promoter sequence was amplified from the D6 strain using the following primers: SspH2-F5 (5'-CCATGGAGTTGCCTGATACGGATGAAAACC-3’, forward) and SspH2-R3 (5'-GTCGACACCGCCACCTGTCCCGGATGCCCT-3’, reverse). The purified PCR products of P-SspH2 and the recombinant plasmid pYA3334-SspH2-Escl were mixed for the overlap PCR splicing using the following primers: SspH2-F5 (forward) and Escl-R2 (5'-GAAACAGTGACCTACTTATGGCTGTCATCCTTG-3’, reverse). In the primers used in this study, the underlined segments indicate the restriction sites and the bold segments indicate the linker for overlap PCR. All PCR products were subsequently identified via agarose gel electrophoresis.

The construction of the recombinant bacteria was performed as previously described [5]. The recombinant bacteria were designated as X4550(pYA3334-P-SspH2-Escl). The PCR product P-sspH2 amplified from the D6 strain using the primers SspH2-F5 (forward) and SspH2-R4 (5'-GTCGACCTACTTATGGCTGTCATCCTTG-3’, reverse) was cloned into the plasmid pYA3334. The recombinant plasmid was named as pYA3334-P-SspH2 and the corresponding recombinant bacteria was named as X4550(pYA3334-P-SspH2).

In vitro infection of mouse peritoneal macrophages
The in vitro infection experiment was performed as previously described [5, 13, 14]. Briefly, Peritoneal cells were collected and seeded on 96-well plates for culturing. Three hours later. The density of adherent cells was
intracellular concentration of Calcium ions ([Ca\(^{2+}\)]_i), reassay of mitochondrial membrane potential (MMP), (Beyotime Institute of Biotechnology, China) for the Fluo-3 AM, DCFH-DA, DAF-FM DA and BCECF AM collected and stained with rhodamine 123 (Rh123), described \[5, 15\].

hydrogenase (LDH) release was measured as previously described. To examine the protective efficacy of the above bacteria, the immunized mice were intra-peritoneally challenged with \textit{Salmonella} strain D6 at 1 wpi. The bacterial colonization in spleen and liver of mice challenged with 1 \times 10^5 cfu/mouse were counted by coating on the LB agar plate for culturing. After challenged with 5 \times 10^6 cfu/mouse, surviving mice were counted for 15 days and the daily clinical signs including anorexia, diarrhea, depression, and mortality were recorded. Nine mice for each treatment were analyzed.

Statistical analysis

Within each experiment, three to four replicate experiments were conducted for each treatment and the average value was calculated for final statistical comparisons. All statistical analyses were performed by \(t \)-tests using SPSS software (Version 13.0 for Windows, Chicago, IL). A value of \(P \leq 0.05 \) was considered to be statistically significant.

Results

Escl enhanced caspase-1 activation in macrophages

After in vitro infection of mouse peritoneal macrophages, flow cytometric assay indicated that all bacteria could induce the activation of intracellular caspase-1 at 1, 3, 5 h post infection (hpi), when compared with the uninfected control (\(P < 0.05 \)). Notably, X4550(pYA3334-P-SspH2-Escl) induced more caspase-1 activation at 5 hpi than X4550(pYA3334-P-SspH2-Escl) or X4550(pYA3334) (\(P < 0.05 \), Fig. 1a). LDH release assay showed that X4550(pYA3334-P-SspH2-Escl) induced higher cytotoxicity than X4550(pYA3334-P-SspH2) and X4550(pYA3334) at 5 hpi (\(P < 0.05 \), Fig. 1b). Cell morphological observation showed that more pyroptotic cells were found after infection with X4550(pYA3334-P-SspH2-Escl) at 5 hpi than in infection with X4550(pYA3334-P-SspH2) and X4550(pYA3334) (Fig. 1c). No significant difference was found between X4550(pYA3334-P-SspH2) and X4550(pYA3334). These results suggested that the difference may be due to the expression of Escl, but not SspH2.

Escl regulates [pH]i, but not ROS, [Ca\(^{2+}\)]_i, NO and MMP in macrophages

Cells were analyzed after being stained with different fluorescent dyes at 1, 3, 5 hpi. The levels of ROS, NO, [Ca\(^{2+}\)]_i and MMP are proportional to the intensity of intracellular DCF, DAF, Fluo-3 and Rh123. Flow cytometric assay showed similar changing trends of them among different infection groups, indicating that there were similar functional cellular responses of ROS, [Ca\(^{2+}\)]_i, NO and MMP in the early stage of infection (Fig. 1d). The ratio of fluorescence intensity (520 nm/640 nm) of BCECF-staining cells showed no difference between X4550(pYA3334-P-SspH2-Escl) infection and uninfected...
control, while it was lower for X4550(pYA3334-P-SspH2) and X4550(pYA3334) infection than X4550(pYA3334-P-SspH2-EscI) infection at 5 hpi (Fig. 1e) indicating that X4550(pYA3334-P-SspH2) and X4550(pYA3334) regulate the [pH]i of macrophages, but not X4550(pYA3334-P-SspH2-EscI). In this experiment, no significant difference was found between X4550(pYA3334-P-SspH2) and X4550(pYA3334).

EscI inhibits inflammatory cytokines secretion in macrophages

Flow cytometric assay showed that the cytokines secretion induced by X4550(pYA3334-P-SspH2-EscI) were different from that induced by X4550(pYA3334-P-SspH2) or X4550(pYA3334) in the early stage of infection. At 1 hpi, all bacteria could induce the secretion of TNF, when compared with uninfected control. Notably, X4550(pYA3334-P-SspH2-EscI) induced higher level of IL-10 than X4550(pYA3334-P-SspH2) or X4550(pYA3334). With the time extension, the levels of IL-6, IL-10, IFN-γ, MCP-1 and TNF increased when infected with X4550(pYA3334-P-SspH2) or X4550(pYA3334), while that for X4550(pYA3334-P-SspH2-EscI) decreased (Fig. 1f). No significant difference was found between X4550(pYA3334-P-SspH2) and X4550(pYA3334) in this experiment.

Immune responses induced by recombinant Salmonella expressing SspH2-EscI

At 1 wpi with 1 × 10⁶ cfu per mouse, the spleen of mice infected with X4550(pYA3334-P-SspH2) or X4550(pYA3334) showed swelling and dark color, when compared with...
uninfected control. No significant difference was found between X4550(pYA3334-P-SspH2-EscI) and uninfected control.

Large amounts of bacteria were recovered from the spleen and liver of mice infected with X4550(pYA3334-P-SspH2) or X4550(pYA3334) at one day post infection (dpi), while only few was observed when infected with X4550(pYA3334-P-SspH2-EscI) (Fig. 2a). With the time extension, the colonization of X4550(pYA3334-P-SspH2) or X4550(pYA3334) increased, while colonization of X4550(pYA3334-P-SspH2-EscI) decreased. No X4550(pYA3334-P-SspH2-EscI) was observed in the spleen at 6 dpi.

At 2 and 3 wpi, flow cytometry was used to analyze the activation and differentiation of T lymphocytes in mouse spleens. The results showed that all bacteria could induce the activation of CD4⁺ and CD8⁺ T lymphocytes ($P < 0.05$), when compared with uninfected

Fig. 2 In vivo infection of mice. Six-week-old C57BL/6 mice were intravenously injected with either freshly collected X4550(pYA3334), X4550(pYA3334-P-SspH2) or X4550(pYA3334-P-SspH2-EscI), 1x 10^6 cfu/mouse. The uninfected mice were used as control. Several weeks later, the bacterial counts (a) in mouse spleens and livers, the activation of splenic T lymphocyte subsets (b), the ratio of splenic CD4⁺/CD8⁺ T cells (c) were analyzed. Five mice were used in each treatment. One-week post immunization, the immunized mice were challenged intraperitoneally with wild-type Salmonella strain D6. The bacterial colonization (d) in mouse spleens and livers challenged with 1x 10^5 cfu/mouse and the survival of mice challenged with 5x 10^6 cfu/mouse were counted (e) for immune protection assay. Nine mice were used for each treatment.
control. Notably, the population of activated CD8^+T cells infected with X4550(pYA3334-P-SspH2-EscI) was significantly lower than that infected with X4550(pYA3334-P-SspH2) or X4550(pYA3334) (P < 0.05, Fig. 2b). The ratio of CD4^+T cells to CD8^+T cells decreased for X4550(pYA3334-P-SspH2-EscI) infection (P < 0.05, Fig. 2c), when compared with uninfected control.

At 1–3 wpi, the blood of mouse was collected for coagulation assay. X4550(pYA3334-P-SspH2) and X4550(pYA3334) could induce the quick coagulation, when compared with uninfected control. No significant difference of coagulation was found between that for X4550(pYA3334-P-SspH2-EscI) and uninfected control.

Protective efficacy of recombinant *Salmonella* expressing SspH2-EscI

LD50 of *Salmonella* strain D6 was about 1 × 10^5 cfu per mouse after intraperitoneal infection. One week after intravenous immunization (1 × 10^6 cfu/mouse) with the above recombinant bacteria, the D6 strain was intraperitoneally injected to challenge the mice (1 × 10^5 cfu/mouse). No significant clinical symptom was found for all mice. The amount of bacteria in the spleen and liver of mouse immunized with X4550(pYA3334-P-SspH2) or X4550(pYA3334) was about 14-fold and 35-fold greater than that immunized with X4550(pYA3334-P-SspH2-EscI) at 3 dpi, respectively (Fig. 2d). These result indicated that the immunization of X4550(pYA3334-P-SspH2-EscI) can limit the colonization of D6 strain.

When challenged with the dose of 5 × 10^6 cfu per mouse, the X4550(pYA3334-P-SspH2-EscI)-immunized mice all survive, though some showed anorexia, diarrhea or depression. While about half of mice died for X4550(pYA3334-P-SspH2) or X4550(pYA3334) was about 14-fold and 35-fold greater than that immunized with X4550(pYA3334-P-SspH2-EscI) at 3 dpi, respectively (Fig. 2d). This indicated that X4550(pYA3334-P-SspH2-EscI) immunization can provide more effective protection against *Salmonella* challenge in the early stage of infection than that immunized with X4550(pYA3334-P-SspH2) or X4550(pYA3334).

Discussion

In 2002, Jürg Tschopp proposed the inflammasome complex as a molecular platform for caspase-1 activation [19]. The activation of caspase-1 can then induce pyroptotic cell death of macrophages [20]. Reports have shown that pyroptosis is a defense mechanism to clear intracellular bacteria [12, 21, 22]. Thus, the mechanism of inflammasome responses could be potentially used in the design of live vaccine candidates [12, 23]. In the past decade, a handful of inflammasomes that detect specific microbial challenges have been reported [20]. For example, in the early stage of *Salmonella* infection, NLRC4 inflammasome can be activated by *Salmonella* proteins PrgJ or flagellin [15, 24, 25]. However, *Salmonella* can escape the NLRC4 detection in the late stage of infection for its survival in macrophages. It is suggested that the *Salmonella* strain with the ability to enhance caspase-1 activation can strengthen the cell's defense against *Salmonella* infection [23]. Our previous studies have shown that the recombinant *Salmonella* expressing fusion protein SspH2-EscI under the plasmid promoter Ptrc can enhance NLRC4 inflammasome signaling and be completely cleared in vivo [5]. This will be beneficial for the live *Salmonella* vaccine design based on the inflammasome mechanism.

Salmonella strain X4550 is attenuated and usually used as a vector to transport exogenous antigen to promote immunity [5]. In this study, X4550(pYA3334-P-SspH2) and X4550(pYA3334) was selected as control to analyze the activation of caspase-1 in macrophages. In order to survive in the host cells, *Salmonella* can selectively secrete cytoplasmic effectors through its type III secretion system (T3SS) to regulate cell function [2]. Accordingly, the expression of effector proteins may be regulated by the promoter of itself [26]. Thus, in this experiment, the SspH2 promoter PsppH2 was inserted into the 5’-terminus of sspH2-escl for the construction of recombinant plasmid pYA3334-P-SspH2-EscI and the recombinant *Salmonella* strain X4550(pYA3334-P-SspH2-EscI) was used to infect macrophages. The assay of caspase-1 activation, LDH release and cell morphological observation indicated that PsppH2 can initiate the expression of SspH2-EscI, which enhance the activation of caspase-1 in macrophages and then induce the pyroptotic cell death of macrophages. After intravenous infection of mice, the colonization of X4550(pYA3334-P-SspH2-EscI) in mouse spleens and livers was significantly decreased and no bacteria was found one-week later, in contrast colonization of X4550(pYA3334-P-SspH2) and X4550(pYA3334) was increased. Besides, the recombinant bacteria X4550(pYA3334-P-SspH2) and X4550(pYA3334) could induce low level of caspase-1 activation and no significant difference was found between them in all experiments of this study. These indicated that the enhanced activation of caspase-1 in macrophages is due to the expression of Escl.

Pyroptosis is a form of programmed necrosis which is different from apoptosis. It is lytic, featuring cell swelling and large bubbles blowing from the plasma membrane. In the process of pyroptosis, the pathogen replication niche is disrupted and the intracellular bacteria is directly killed through pore-induced intracellular traps [20, 22, 25, 27]. The pyroptotic cell death process may be accompanied with some changes of physiological function in host cells [28–30]. However, the impacts of pyroptosis on cell function, such as MMP, [Ca^{2+}]i, ROS, NO and [pH]i, are rarely reported. In this experiment, we found that the changing trends of MMP, [Ca^{2+}]i, ROS and NO in host cells induced by X4550(pYA3334-
effective immunity [31]. It is less immunogenic for CD8+ T cells and inflammasome is severely attenuated and cannot induce adaptive immunity in the process of Salmonella infection [4]. In this experiment, X4550(pYA3334-P-SspH2) and X4550(pYA3334) induced lower level of [pHi], when compared with uninfected control. No significant difference was found between X4550(pYA3334-P-SspH2-EscI) and uninfected control. This may be due to EscI-activated pyroptosis, which limited the colonization of bacteria in host cells.

The secretion of inflammatory cytokines in the early stage of infection are beneficial for the defense against bacteria. In the process of Salmonella infection, on one hand, the host cells will secret inflammatory cytokines to control infection, on the other hand, Salmonella has evolved to survive in the inflammatory microenvironment [4]. In this study, the low level of IL-6, IL-10, IFN-γ, MCP-1 and TNF secretion induced by X4550(pYA3334-P-SspH2-EscI) may be due to the clearance of bacteria induced by EscI-activated pyroptosis.

The clearance of bacteria induced by pyroptosis occurs in the early stage of infection and no effective adaptive immune responses are produced at this time [5]. Early clearance of bacteria may influence the production of subsequent immunity. It is shown that the Listeria monocytogenes strain engineered to activate the NLRC4 inflammasome is severely attenuated and cannot induce effective immunity [31]. It is less immunogenic for CD8+ T cell responses than wild type L. monocytogenes [32]. In this study, at 2 and 3 weeks post intravenous infection of mice, we also found that all bacteria could induce the activation of CD4+ and CD8+ T lymphocytes, but X4550(pYA3334-P-SspH2-EscI) induced significantly lower level of CD8+ T cell activation than X4550(pYA3334-P-SspH2) or X4550(pYA3334). Besides, the ratio of CD4+ T cells to CD8+ T cells decreased for X4550(pYA3334-P-SspH2-EscI) infection. These results verified that the enhanced activation of inflammasome can decrease the production of adaptive immunity due to the clearance of bacteria in the early stage of infection. The detailed mechanism needs to be further explored in the future.

Systemic bacterial infections are often associated with hemostatic changes that disrupt the coagulant/anticoagulant balance [33]. We showed that X4550(pYA3334-P-SspH2) and X4550(pYA3334) could induce the quick coagulation, while no difference was found between that for X4550(pYA3334-P-SspH2-EscI) and uninfected control. This may be associated with the quickly clearance of bacteria in mice.

Due to the clearance of bacteria, the inflammasome pathway has been hypothesized to be used in the design of live attenuated vaccine [11, 12]. NLRC4 can be activated by flagellin and L. monocytogenes can evade NLRC4 by repressing flagellin expression. The recombinant L. monocytogenes strain with forced expression of flagellin in the host cell cytosol can hyperactivate caspase-1 and is preferentially cleared via NLRC4 detection. The recombinant strain can confer protective immunity in mice against lethal challenge with L. monocytogenes [12]. We similarly showed that the recombinant Salmonella expressing SspH2-EscI could enhance the activation of caspase-1 and pyroptosis. One week post intravenous immunization, we found more effective protective immunity against lethal challenge with Salmonella when immunized with X4550(pYA3334-P-SspH2-EscI) than X4550(pYA3334) or X4550(pYA3334-P-SspH2). This indicated that the inflammasome pathway can be used in the design of live attenuated Salmonella vaccine, though the adaptive immune responses is decreased.

In this study, intravenous infection pathway was used to analyze the function of caspase-1 activation enhanced by EscI on the protection of mice against Salmonella infection. The inflammasome signaling is mainly studied in macrophages. Salmonella can colonize in different cells, such as B cells, T cells, neutrophilic granulocytes, monocytes and dendritic cells [34]. Different immune pathway may induce different responses in the early stage of infection due to the different cell types. Thus, whether the other immune pathways, such as oral or intraperitoneal injection, also produce the similar protection against Salmonella infection need to be further studied.

Conclusions
A recombinant Salmonella expressing SspH2-EscI fusion protein using the promotor of SspH2 could enhance the activation of caspase-1 in macrophages and protect mice against Salmonella challenge. This indicated that the inflammasome pathway can be used in the design of live attenuated Salmonella vaccine.

Abbreviations
[Ca2+]: intracellular concentration of Calcium ions; [pHi]: intracellular pH value; CBA: Cytometric bead array system; dpi: day post infection; hpi: hour post infection; LB: Luria broth; LD50: 50% lethal dose; LDH: Lactate dehydrogenase; MMP: mitochondrial membrane potential; MOI: multiplicity of infection; NLR: Nucleotide binding domain leucine-rich repeat-containing receptor; NLRC4: NLR family, CARD domain containing-4; NO: nitric oxide; PBS: Phosphate buffer saline; PCR: Polymerase chain reaction; Rh123: rhodamine 123; ROS: reactive oxygen species; TSSS: Type III secretion system; wpi: week post immunization

Acknowledgements
Not applicable.

Funding
This work was supported by the National Natural Science Foundation of China (31320103907, 31372414, 31372415) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Availability of data and materials
The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
This study was designed by XJ, MH, ZP and GC. Data collection and statistical analysis were performed by MH, WZ, HL, JG, QY, XZ and ZP. QY, WZ, HL and JG were managed subject infection studies. WZ wrote the first draft and MH, XZ, GC and XJ contributed to the final manuscript. All authors read and approved the final manuscript.

Ethics approval
This study was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (Permit Number: 2007–0005). This study does not involve the use of human data or tissue.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1. Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China. 2. Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China. 3. College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, Jiangsu 225009, China. 4. Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA.

Received: 14 November 2017 Accepted: 1 March 2018
Published online: 09 March 2018

References
1. Jennings E, Thurston TLM, Holden DW. Salmonella SP-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe. 2017;22(2):217–31.
2. Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. A sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2010;328(5981):1040–3.
3. Hu M, Yang Y, Meng C, Pan Z, Jiao X. Responses of macrophages against Salmonella infection compared with phagocytosis. In Vitro Cell Dev-An. 2013;49(10):778–84.
4. Hu M, Zhao W, Gao W, Li W, Meng C, Yan Q, et al. Recombinant Salmonella expressing Sphoid-Ecd fusion protein limits its colonization in mice. BMC Immunol. 2017;18(1):21.
5. Khameneh HJ, Mortelaro A. NLRC4 gets out of control. Nat Genet. 2014;46(10):1048–9.
6. Chen X, He W, Hu L, Li J, Fang Y, Wang X, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016;26(9):1007–20.
7. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 2010;207(8):1745–55.
8. Carvalho FA, Nalbantoglu I, Atken JD, Uchiyama R, Su Y, Doho GH, et al. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 2012;5(3):288–98.
9. Mao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, et al. Innate immune detection of the type II secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107(7):3076–80.
10. Mao EA, Rajan JV. Salmonella and caspase-1: a complex interplay of detection and evasion. Front Microbiol. 2011;2:85.