STABILITY OF SOME FUNCTIONAL EQUATIONS ON BOUNDED DOMAINS

B. NOORI, M. B. MOGHIMI, B. KHOSRAVI AND CHOONKIL PARK *

(Communicated by J. Pečarić)

Abstract. In this paper, we investigate the Hyers-Ulam stability of the functional equations

\[f(x+y) + f(x-y) = 2f(x), \]
\[f(x+y) + f(x-y) = 2f(x) + f(y) + f(-y), \]
\[f(px + (1-p)y) + f((1-p)x + py) = f(x) + f(y) \]

for \(p = \frac{1}{3} \) and \(p = \frac{1}{4} \), where \(f \) is a mapping from a bounded subset of \(\mathbb{R}^{N>1} \) into a Banach space \(E \).

1. Introduction

It is well-known that the Hyers-Ulam stability problems of functional equations originated from a question of Ulam [12] in 1940, concerning the stability of group homomorphisms. In other words, the concept of stability for functional equations arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Hyers [1] gave a first affirmative partial answer to the question of Ulam for Banach spaces. It is interesting to consider a functional equation satisfying on a bounded domain or satisfying under a restricted condition. Skof [9] was the first author to solve Ulam problem for additive mapping on a bounded domain. Indeed, Skof proved that if a function \(f \) from \([0,c) \) into a Banach space \(E \) satisfies the functional inequality \(\| f(x+y) - f(x) - f(y) \| \leq \delta \) for all \(x, y \in [0,c) \) with \(x+y \in [0,c) \), then there exists an additive function \(A : \mathbb{R} \to E \) such that \(\| f(x) - A(x) \| \leq 3\delta \) for all \(x \in [0,c) \). Z. Kominek [5] extended this result on a bounded domain \([0,c)^N \) of \(\mathbb{R}^N \) for any positive integer \(N \). He also proved a more generalized theorem concerning the stability of the additive Cauchy equation and Jensen equation on a bounded domain of \(\mathbb{R}^N \). Skof [331] also proved the Hyers–Ulam stability of the additive Cauchy equation on an unbounded and restricted domain. She applied this result and obtained an interesting asymptotic behavior of additive functions: The function \(f : \mathbb{R} \to \mathbb{R} \) is additive if and only if \(f(x+y) - f(x) - f(y) \to 0 \) as \(|x| + |y| \to +\infty \). F. Skof and S. Terracini [11] investigated the problem of stability of the quadratic functional equations for functions defined on bounded real domains with values in a Banach space. For more general information on this subject, we refer the reader to [3, 6, 8].

Mathematics subject classification (2010): 39B82.

Keywords and phrases: Additive mapping, quadratic mapping, Hyers-Ulam stability, restricted domain.

* Corresponding author.
2. Stability of \(f(x+y) + f(x-y) = 2f(x) \) on bounded subsets of \(\mathbb{R} \)

In this section \(r > 0 \) and \(\delta \geq 0 \) are real numbers and we assume that \(E \) is a Banach space.

Theorem 1. Let \(f : [0, r) \to E \) be a function with \(f(0) = 0 \) and satisfy

\[
\|f(x+y) + f(x-y) - 2f(x)\| \leq \delta, \tag{1}
\]

for some \(\delta > 0 \) and all \((x,y) \in T(r) \), where

\[
T(r) = \{(x,y) \in [0,r) \times [0,r) : 0 \leq x \pm y < r\}.
\]

Then there exists an additive function \(A : \mathbb{R} \to E \) such that

\[
\|f(x) - A(x)\| \leq 11\delta, \quad x \in [0, r). \tag{2}
\]

Proof. Let \(u, v \in [0, r) \). We can choose \(x, y \in [0, r) \) such that \(x \pm y \in [0, r) \), \(x + y = u \) and \(x - y = v \). Then it follows from (1) that

\[
\|f(u) + f(v) - 2f\left(\frac{u+v}{2}\right)\| \leq \delta. \tag{3}
\]

Letting \(v = 0 \) in (3), we get

\[
\|f(u) - 2f\left(\frac{u}{2}\right)\| \leq \delta, \quad u \in [0, r). \tag{4}
\]

We extend the function \(f \) to \([0, +\infty)\). For this we represent an arbitrary \(x \geq 0 \) by \(x = n(r/2) + \alpha \), where \(n \) is an integer and \(0 \leq \alpha < r/2 \). Then we define a function \(\phi : [0, +\infty) \to E \) by \(\phi(x) = nf(r/2) + f(\alpha) \). It is clear that \(\phi(x) = f(x) \) for all \(x \in [0, r/2) \). If \(x \in [r/2, r) \), then \(\phi(x) = f(r/2) + f(x - r/2) \), and we get from (3) and (4) that

\[
\|\phi(x) - f(x)\| = \|f\left(\frac{r}{2}\right) + f\left(x - \frac{r}{2}\right) - f(x)\|
\leq \|f\left(\frac{r}{2}\right) + f\left(x - \frac{r}{2}\right) - 2f\left(\frac{x}{2}\right)\| + \|2f\left(\frac{x}{2}\right) - f(x)\|
\leq 2\delta.
\]

So

\[
\|\phi(x) - f(x)\| \leq 2\delta, \quad x \in [0, r). \tag{5}
\]

We now show that \(\phi \) satisfies

\[
\|\phi(x) + \phi(y) - 2\phi\left(\frac{x+y}{2}\right)\| \leq 3\delta, \quad x, y \in [0, +\infty). \tag{6}
\]
For given \(x, y \geq 0 \), let \(x = n(r/2) + \alpha \) and \(y = m(r/2) + \beta \), where \(m \) and \(n \) are integers and \(0 \leq \alpha, \beta < r/2 \). Then

\[
\frac{x+y}{2} = \frac{m+n}{2} \left(\frac{r}{2} \right) + \frac{\alpha + \beta}{2}, \quad m+n \text{ is even};
\]

\[
\frac{x+y}{2} = \frac{m+n+1}{2} \left(\frac{r}{2} \right) + \frac{\alpha + \beta}{2} - \frac{r}{4}, \quad m+n \text{ is odd and } \alpha + \beta \geq \frac{r}{2};
\]

\[
\frac{x+y}{2} = \frac{m+n-1}{2} \left(\frac{r}{2} \right) + \frac{\alpha + \beta}{2} + \frac{r}{4}, \quad m+n \text{ is odd and } \alpha + \beta < \frac{r}{2}.
\]

Therefore we have

\[
\varphi \left(\frac{x+y}{2} \right) = \frac{m+n}{2} f \left(\frac{r}{2} \right) + f \left(\frac{\alpha + \beta}{2} \right), \quad m+n \text{ is even};
\]

\[
\varphi \left(\frac{x+y}{2} \right) = \frac{m+n+1}{2} f \left(\frac{r}{2} \right) + f \left(\frac{\alpha + \beta}{2} - \frac{r}{4} \right), \quad m+n \text{ is odd and } \alpha + \beta \geq \frac{r}{2};
\]

\[
\varphi \left(\frac{x+y}{2} \right) = \frac{m+n-1}{2} f \left(\frac{r}{2} \right) + f \left(\frac{\alpha + \beta}{2} + \frac{r}{4} \right), \quad m+n \text{ is odd and } \alpha + \beta < \frac{r}{2}.
\]

To prove (6) we have the following cases.

(i) If \(m+n \) is even, then

\[
\left\| \varphi(x) + \varphi(y) - 2 \varphi \left(\frac{x+y}{2} \right) \right\| = \left\| f(\alpha) + f(\beta) - 2 f \left(\frac{\alpha + \beta}{2} \right) \right\| \leq \delta.
\]

(ii) If \(m+n \) is odd and \(\alpha + \beta \geq \frac{r}{2} \), then

\[
\left\| \varphi(x) + \varphi(y) - 2 \varphi \left(\frac{x+y}{2} \right) \right\| = \left\| f(\alpha) + f(\beta) - f \left(\frac{r}{2} \right) - 2 f \left(\frac{\alpha + \beta}{2} - \frac{r}{4} \right) \right\|
\leq \left\| f(\alpha) + f(\beta) - 2 f \left(\frac{\alpha + \beta}{2} \right) \right\|
+ \left\| f \left(\alpha + \beta - \frac{r}{2} \right) - 2 f \left(\frac{\alpha + \beta}{2} - \frac{r}{4} \right) \right\|
+ \left\| 2 f \left(\frac{\alpha + \beta}{2} \right) - f \left(\frac{r}{2} \right) - f \left(\alpha + \beta - \frac{r}{2} \right) \right\|
\leq 3\delta.
\]

(iii) If \(m+n \) is odd and \(\alpha + \beta < \frac{r}{2} \), then

\[
\left\| \varphi(x) + \varphi(y) - 2 \varphi \left(\frac{x+y}{2} \right) \right\| = \left\| f(\alpha) + f(\beta) + f \left(\frac{r}{2} \right) - 2 f \left(\frac{\alpha + \beta}{2} + \frac{r}{4} \right) \right\|
\leq \left\| f(\alpha) + f(\beta) - 2 f \left(\frac{\alpha + \beta}{2} \right) \right\|
+ \left\| 2 f \left(\frac{\alpha + \beta}{2} \right) - f(\alpha + \beta) \right\|
+ \left\| f(\alpha + \beta) + f \left(\frac{r}{2} \right) - 2 f \left(\frac{\alpha + \beta}{2} + \frac{r}{4} \right) \right\|
\leq 3\delta.
\]
We show that if $\epsilon > 0$, then there exists an additive function ϵ such that $h^{(e)} \geq \|h(\epsilon) \epsilon - (x)\|$. Hence

Corollary 1. Let be a function with $(\epsilon) > 0$. If $h^{(e)} \geq \|h(\epsilon) \epsilon - (x)\| + \|h(\epsilon) \epsilon - (x)\| \geq \|h(\epsilon) \epsilon - (x)\|$

Therefore satisfies and then according to (5), there exist an additive function ϵ, such that $\epsilon \geq (0, \epsilon) _x$. Since $\epsilon \geq (0, \epsilon) _x$ for all $x \geq (0, \epsilon) _x$. Therefore satisfies and then according to (7), there exist an additive function ϵ, such that $\epsilon \geq (0, \epsilon) _x$
Corollary 2. Let \(f : (-r, r) \to E \) be a function with \(f(0) = 0 \) and satisfy
\[
\|f(x+y) + f(x-y) - 2f(x)\| \leq \delta,
\]
(8)
for some \(\delta > 0 \) and all \((x, y) \in T(r)\). Then there exists an additive function \(A : \mathbb{R} \to E \) such that
\[
\|f(x) - A(x)\| \leq 12\delta, \quad x \in (-r, r).
\]

Proof. Letting \(x = 0 \) in (8), we get \(\|f(y) + f(-y)\| \leq \delta \) for all \(y \in (-r, r) \). By Theorem 1, there exists an additive function \(A : \mathbb{R} \to E \) such that \(\|f(x) - A(x)\| \leq 11\delta \) for all \(x \in [0, r) \). If \(x \in (-r, 0) \), then
\[
\|f(x) - A(x)\| \leq \|f(x) + f(-x)\| + \|A(-x) - f(-x)\| \leq 12\delta.
\]
This completes the proof.

Theorem 2. Let \(f : (-r\sqrt{2}, r\sqrt{2}) \to E \) be a function with \(f(0) = 0 \) and satisfy
\[
\|f(x+y) + f(x-y) - 2f(x)\| \leq \delta,
\]
(9)
for some \(\delta > 0 \) and all \((x, y) \in \mathbb{R}^2\), where \(x^2 + y^2 \leq r^2 \). Then there exists an additive function \(A : \mathbb{R} \to E \) such that
\[
\|f(x) - A(x)\| \leq 19\delta, \quad x \in (-r\sqrt{2}, r\sqrt{2}).
\]

Proof. It is clear that if \(|x\pm y| \leq r \), then \(x^2 + y^2 \leq r^2 \). Therefore \(f \) satisfies (1) for all \((x, y) \in T(r)\). By Theorem 1, there exist an additive function \(A : \mathbb{R} \to E \) satisfying (2) for all \(x \in [0, r) \). Let \(\varphi \) and \(g \) be given as in the proof of Theorem 1. Then
\[
\varphi(x) = g(x), \quad \|\varphi(x) - f(x)\| \leq 2\delta, \quad x \in [0, r).
\]
(11)
If \(r \leq x < r\sqrt{2} \), then \((x/2)^2 + (x/2)^2 < r^2 \), and we infer from (9) that
\[
\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| \leq \delta, \quad x \in \left[r, r\sqrt{2}\right).
\]
Since \(\varphi(x) = g(x) \) for all \(x \geq 0 \), we get from (6) that
\[
\left\| g(x) - 2g\left(\frac{x}{2}\right) \right\| \leq 3\delta, \quad x \in [0, +\infty).
\]
Therefore from the above inequalities, we have
\[
\|f(x) - g(x)\| \leq \left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| + \left\| 2g\left(\frac{x}{2}\right) - g(x) \right\| + 2\left\| f\left(\frac{x}{2}\right) - g\left(\frac{x}{2}\right) \right\|
\leq 8\delta, \quad x \in \left[r, r\sqrt{2}\right).
\]
For the case \(-r\sqrt{2} < x < 0\), from the definition of \(g\), (9) and (11), we have
\[
\|f(x) - g(x)\| = \|f(x) + \varphi(-x)\|
\leq \left\|f(x) - 2f\left(\frac{x}{2}\right)\right\| + 2\left\|f\left(\frac{x}{2}\right) + f\left(-\frac{x}{2}\right)\right\|
+ 2\left\|\varphi\left(-\frac{x}{2}\right) - f\left(-\frac{x}{2}\right)\right\| + \left\|\varphi(-x) - 2\varphi\left(-\frac{x}{2}\right)\right\|
\leq 10\delta.
\]

Hence we get
\[
\|f(x) - g(x)\| \leq 10\delta, \quad x \in \left(-r\sqrt{2}, r\sqrt{2}\right).
\]
Since \(\|g(x) - A(x)\| \leq 9\delta\) for all \(x \in \mathbb{R}\) (see the proof of Theorem 1), it follows from the last inequality that
\[
\|f(x) - A(x)\| \leq \|f(x) - g(x)\| + \|g(x) - A(x)\| \leq 19\delta, \quad x \in \left(-r\sqrt{2}, r\sqrt{2}\right),
\]
which ends the proof.

THEOREM 3. Let \(f : (-r, r) \rightarrow E\) be a function with \(f(0) = 0\) and satisfy
\[
\|f(x + y) + f(x - y) - 2f(x)\| \leq \delta,
\]
for some \(\delta > 0\) and all \((x, y) \in D(r)\), where
\[
D(r) = \{(x, y) \in (-r, r) \times (-r, r) : |x \pm y| < r\}.
\]
Then there exists an additive function \(A : \mathbb{R} \rightarrow E\) such that
\[
\|f(x) - A(x)\| \leq 5\delta, \quad x \in (-r, r).
\]

Proof. Letting \(y = x\) and \(x = 0\) in (12), respectively, we get
\[
\|f(2x) - 2f(x)\| \leq \delta, \quad \|f(y) + f(-y)\| \leq \delta, \quad |2x|, |y| < r.
\]
For an arbitrary \(x \in \mathbb{R}\), we set \(x = n(r/2) + \mu\), where \(n\) is an integer and \(0 \leq \mu < r/2\). Hence we can define a function \(g : \mathbb{R} \rightarrow E\) by \(g(x) = nf(r/2) + f(\mu)\). We show that \(\|g(x) - f(x)\| \leq 2\delta\) for all \(x \in (-r, r)\). For this we have the following cases:

1. For \(0 \leq x < r/2\), we have \(g(x) = f(x)\).
2. For \(r/2 \leq x < r\), we have \(x = r/2 + \mu\). Then it follows from (12) and (14) that
\[
\|g(x) - f(x)\| = \left\|f\left(\frac{r}{2}\right) + f(\mu) - f(x)\right\|
\leq \left\|f\left(\frac{r}{2}\right) + f(\mu) - 2f\left(\frac{x}{2}\right)\right\| + \left\|2f\left(\frac{x}{2}\right) - f(x)\right\|
\leq \delta + \delta = 2\delta.
\]
3. For \(-r/2 \leq x < 0\), we have \(x = -(r/2) + \mu\). Then
\[
\|g(x) - f(x)\| = \left\| -f\left(\frac{r}{2}\right) + f(\mu) - f(x) \right\| \\
\leq \left\| f(x) + f\left(\frac{r}{2}\right) - 2f\left(\frac{\mu}{2}\right) \right\| + \left\| 2f\left(\frac{\mu}{2}\right) - f(\mu) \right\| \\
\leq \delta + \delta = 2\delta.
\]

4. For \(-r < x < -(r/2)\), we have \(x = -2(r/2) + \mu\). Then
\[
\|g(x) - f(x)\| = \left\| -2f\left(\frac{r}{2}\right) + f(\mu) - f(x) \right\| \\
\leq \left\| f(\mu) + f(-x) - 2f\left(\frac{r}{2}\right) \right\| + \|f(-x) + f(x)\| \\
\leq \delta + \delta = 2\delta.
\]

We now show that \(g\) satisfies
\[
\|g(x + y) + g(x - y) - 2g(x)\| \leq 3\delta, \quad x, y \in \mathbb{R}.
\] (15)

For given \(x, y \in \mathbb{R}\), let \(x = n(r/2) + \alpha\) and \(y = m(r/2) + \beta\), where \(n\) and \(m\) are integers and \(\alpha, \beta \in [0, r/2)\). Therefore
\[
x + y = (n + m)\frac{r}{2} + (\alpha + \beta), \quad 0 \leq \alpha + \beta < r,
\]
\[
x - y = (n - m)\frac{r}{2} + (\alpha - \beta), \quad -\frac{r}{2} \leq \alpha - \beta < \frac{r}{2}.
\]

We consider following cases:

1. If \(0 \leq \alpha \pm \beta < r/2\), then
\[
\|g(x + y) + g(x - y) - 2g(x)\| = \|f(\alpha + \beta) + f(\alpha - \beta) - 2f(\alpha)\| \leq \delta.
\]

2. If \(0 \leq \alpha + \beta < r/2\) and \(-r/2 \leq \alpha - \beta < 0\), then
\[
\|g(x + y) + g(x - y) - 2g(x)\| = \left\| f(\alpha + \beta) + f\left(\alpha - \beta + \frac{r}{2}\right) - f\left(\frac{r}{2}\right) - 2f(\alpha) \right\| \\
\leq \left\| f(\alpha + \beta) + f(\alpha - \beta) - 2f(\alpha) \right\| \\
+ \left\| f(\alpha - \beta) + f\left(\frac{r}{2}\right) - f\left(\alpha - \beta + \frac{r}{2}\right) \right\| \\
= \|f(\alpha + \beta) + f(\alpha - \beta) - 2f(\alpha)\| \\
+ \|f(\alpha - \beta) - g(\alpha - \beta)\| \\
\leq \delta + 2\delta = 3\delta.
\]
3. If \(r/2 \leq \alpha + \beta < r \) and \(0 \leq \alpha - \beta < r/2 \), then

\[
\|g(x+y) + g(x-y) - 2g(x)\| = \left\| f\left(\frac{r}{2}\right) + f\left(\alpha + \beta - \frac{r}{2}\right) + f(\alpha - \beta) - 2f(\alpha) \right\|
\leq \|f(\alpha + \beta) + f(\alpha - \beta) - 2f(\alpha)\|
+ \left\| f\left(\frac{r}{2}\right) + f\left(\alpha + \beta - \frac{r}{2}\right) - f(\alpha + \beta) \right\|
= \|f(\alpha + \beta) + f(\alpha - \beta) - 2f(\alpha)\|
+ \|g(\alpha + \beta) - f(\alpha + \beta)\|
\leq \delta + 2\delta = 3\delta.
\]

4. If \(r/2 \leq \alpha + \beta < r \) and \(-r/2 \leq \alpha - \beta < 0\), then

\[
\|g(x+y) + g(x-y) - 2g(x)\| = \left\| f\left(\frac{r}{2}\right) + f\left(\alpha - \beta + \frac{r}{2}\right) - 2f(\alpha) \right\| \leq \delta.
\]

Therefore \(g \) satisfies (15). It is easy to show that

\[
\left\| \frac{g(2^n x)}{2^n} - \frac{g(2^m x)}{2^m} \right\| \leq \sum_{i=m+1}^{n} \frac{3\delta}{2_i}, \quad n > m, \ x \in \mathbb{R}.
\]

Hence \(\{2^{-n}g(2^n x)\} \) is a Cauchy sequence for every \(x \in \mathbb{R} \). Since \(E \) is a Banach space, we can define a function \(A : \mathbb{R} \to E \) by

\[
A(x) = \lim_{n \to \infty} \frac{g(2^n x)}{2^n}.
\]

Letting \(m = 0 \) and taking the limit as \(n \to \infty \) in (16), we obtain

\[
\|A(x) - g(x)\| \leq 3\delta, \quad x \in \mathbb{R}.
\]

Since \(\|g(x) - f(x)\| \leq 2\delta \) on \((-r, r) \), we get

\[
\|f(x) - A(x)\| = \|f(x) - g(x)\| + \|g(x) - A(x)\| \leq 5\delta, \quad x \in (-r, r).
\]

It follows from (15) that

\[
\|g(2^n x + 2^n y) + g(2^n x - 2^n y) - 2g(2^n x)\| \leq 3\delta, \quad x, y \in \mathbb{R}, \ n \geq 1.
\]

Dividing by \(2^n \) and letting \(n \to \infty \) in this inequality, we infer that \(A \) is an additive function.

3. Stability of Drygas functional equation on bounded subsets of \(\mathbb{R} \)

We now prove the stability of Drygas functional equation on a restricted domain. First, we introduce a theorem of Skof and Terracini [11].
Theorem 4. [11] Let E be a Banach space and let a function $f : (-r, r) \to E$ satisfy the inequality
\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \delta,
\]
for some $\delta > 0$ and all $x, y \in \mathbb{R}$ with $|x \pm y| < r$. Then there exists a quadratic function $Q : \mathbb{R} \to E$ such that
\[
\|f(x) - Q(x)\| \leq \frac{81}{2} \delta, \quad x \in (-r, r).
\]

Using ideas from [5], we can state the following proposition which is a generalization of Theorem 4.

Proposition 1. Let E be a Banach space and let D be a bounded subset of \mathbb{R}. Assume, moreover, that there exist a non-negative integer n and a positive number $c > 0$ such that
\begin{enumerate}[(i)]
 \item $D \subseteq 2D$,
 \item $(-c, c) \subseteq D$,
 \item $D \subseteq (-2^n c, 2^n c)$.
\end{enumerate}
If a function $f : D \to E$ satisfies the functional inequality (17) for some $\delta \geq 0$ and for all $x, y \in D$ with $x \pm y \in D$, then there exists a quadratic function $Q : \mathbb{R} \to E$ such that
\[
\|f(x) - Q(x)\| \leq \frac{82.4^n - 1}{2} \delta, \quad x \in D.
\]

Proof. By Theorem 4, there exists a quadratic function $Q : \mathbb{R} \to E$ such that
\[
\|f(x) - Q(x)\| \leq \frac{81}{2} \delta, \quad x \in (-c, c).
\]

For $x \in D$, the conditions (i) and (iii) imply that $2^{-k}x \in D$ for $k = 1, 2, \ldots, n$ and $2^{-n}x \in (-c, c)$. It follows from (17) that for each $x \in D$
\[
\left\|4^{k-1}f\left(\frac{x}{2^{k-1}}\right) - 4^kf\left(\frac{x}{2^k}\right) + 4^{k-1}f(0)\right\| \leq 4^{k-1} \delta, \quad k = 1, 2, \ldots, n.
\]

Therefore
\[
\left\|f(x) - 4^n f\left(\frac{x}{2^n}\right) + \frac{4^n - 1}{3} f(0)\right\| \leq \frac{4^n - 1}{3} \delta.
\]

Using the above inequalities and $2\|f(0)\| \leq \delta$, we get
\[
\|f(x) - Q(x)\| \leq \left\|f(x) - 4^n f\left(\frac{x}{2^n}\right) + \frac{4^n - 1}{3} f(0)\right\| + \left\|4^n f\left(\frac{x}{2^n}\right) - Q(x)\right\| + \frac{4^n - 1}{3} \|f(0)\|
\leq \frac{82.4^n - 1}{2} \delta, \quad x \in D.
\]

This completes the proof.
THEOREM 5. Let $f : (-r, r) \to E$ be a function with $f(0) = 0$ and satisfy
\[
\|f(x+y) + f(x-y) - 2f(x) - f(y) - f(-y)\| \leq \delta, \quad (18)
\]
for some $\delta > 0$ and all $(x, y) \in D(r)$, where
\[
D(r) = \{(x, y) \in (-r, r) \times (-r, r) : |x \pm y| < r\}.
\]
Then there exist a quadratic function $Q : \mathbb{R} \to E$ and an additive function $A : \mathbb{R} \to E$ such that
\[
\|f(x) - A(x) - Q(x)\| \leq \frac{91}{2} \delta, \quad x \in (-r, r). \quad (19)
\]

Proof. We denote by g and h the even and odd part of f, respectively, i.e.,
\[
g, h : (-r, r) \to E, \quad g(x) = \frac{f(x) + f(-x)}{2}, \quad h(x) = \frac{f(x) - f(-x)}{2}.
\]
It is clear that g and h satisfy in (18) for all $(x, y) \in D(r)$. Since g is even and h is odd, we have
\[
\|g(x+y) + g(x-y) - 2g(x) - 2g(y)\| \leq \delta, \quad x, y \in D(r), \quad (20)
\]
\[
\|h(x+y) + h(x-y) - 2h(x)\| \leq \delta, \quad x, y \in D(r). \quad (21)
\]
By Theorems 3 and 4, there exist an additive function $A : \mathbb{R} \to E$ and a quadratic function $Q : \mathbb{R} \to E$ such that
\[
\|g(x) - Q(x)\| \leq \frac{81}{2} \delta, \quad \|h(x) - A(x)\| \leq 5\delta, \quad x \in (-r, r).
\]
Since $f = g + h$, we get (19).

PROPOSITION 2. Let E be a Banach space and let D be a symmetric bounded subset of \mathbb{R}. Assume, moreover, that there exist a non-negative integer n and a positive number $c > 0$ such that
\[
(i) \quad D \subseteq 2D,
\]
\[
(ii) \quad (-c, c) \subseteq D,
\]
\[
(iii) \quad D \subseteq (-2^n c, 2^n c).
\]
If a function $f : D \to E$ satisfies the functional inequality (18) for some $\delta > 0$ and for all $x, y \in D$ with $x \pm y \in D$, then there exist a quadratic function $Q : \mathbb{R} \to E$ and an additive function $A : \mathbb{R} \to E$ such that
\[
\|f(x) - A(x) - Q(x)\| \leq \left[6.2^n + 41.4^n - \frac{3}{2}\right] \delta, \quad x \in D.
\]
Proof. Let \(g \) and \(h \) be the even and odd part of \(f \), respectively. Since \(D \) is symmetric, \(g \) satisfies (20) and \(h \) satisfies (21) for all \(x, y \in D \) with \(x \pm y \in D \). By Proposition 1, there exists a quadratic function \(Q : \mathbb{R} \to E \) such that

\[
\|g(x) - Q(x)\| \leq \frac{8.4^n - 1}{2} \delta, \quad x \in D. \tag{22}
\]

Similarly, as in the proof of Proposition 1, it follows from (21) that for each \(x \in D \)

\[
\left\| 2^{k-1}h\left(\frac{x}{2^{k-1}}\right) - 2^k h\left(\frac{x}{2^k}\right) \right\| \leq 2^{k-1} \delta, \quad k = 1, 2, \ldots, n.
\]

Therefore

\[
\left\| h(x) - 2^{n}h\left(\frac{x}{2^n}\right) \right\| \leq (2^n - 1) \delta, \quad x \in D. \tag{23}
\]

On the other hand, by Theorem 3, there exists an additive function \(A : \mathbb{R} \to E \) such that \(\| h(x) - A(x) \| \leq 5 \delta \) for all \(x \in (-c, c) \). Using the above inequalities, we get

\[
\| h(x) - A(x) \| \leq \left(h(x) - 2^n h\left(\frac{x}{2^n}\right) \right) + \left(2^n h\left(\frac{x}{2^n}\right) - A(x) \right) \leq (6.2^n - 1) \delta, \quad x \in D.
\]

Since \(f = g + h \), the result follows from (22) and (23). Theorem 4 was generalized by Jung and Kim [4]. They proved the following result:

Theorem 6. Let \(E \) be a Banach space and let \(r, \delta > 0 \) be given constants. If a function \(f : [-r, r]^n \to E \) satisfies the inequality

\[
\| f(x + y) + f(x - y) - 2f(x) - 2f(y) \| \leq \delta
\]

for all \(x, y \in [-r, r]^n \) with \(x \pm y \in [-r, r]^n \), then there exists a quadratic function \(Q : \mathbb{R}^n \to E \) such that

\[
\| f(x) - Q(x) \| \leq (2912n^2 + 1872n + 334) \delta,
\]

for any \(x \in [-r, r]^n \).

4. **Stability of** \(f(px + (1 - p)y) + f((1 - p)x + py) = f(x) + f(y) \) **on bounded subsets of** \(\mathbb{R}^{N \geq 1} \) **for** \(p = \frac{1}{3} \) **and** \(p = \frac{1}{4} \)

In this section \(r > 0 \) and \(\delta \geq 0 \) are real numbers and we assume that \(E \) is a normed space. We will now start this section with the following lemma presented by Kominek [5] (see also [3]).

Lemma 1. Let \(E \) be a Banach space and let \(N \) be a positive integer. Suppose \(D \) is a bounded subset of \(\mathbb{R}^N \) containing zero in its interior. Assume, moreover, that there exist a nonnegative integer \(n \) and a positive number \(c > 0 \) such that

(i) \(D \subseteq 2D \),
(ii) \((-c, c)^N \subseteq D\),

(iii) \(D \subseteq (-2^n c, 2^n c)^N\).

If a function \(f : D \to E\) satisfies the functional inequality

\[
\|f(x + y) - f(x) - f(y)\| \leq \delta
\]

for some \(\delta \geq 0\) and for all \(x, y \in D\) with \(x + y \in D\), then there exists an additive function \(A : \mathbb{R}^N \to E\) such that

\[
\|f(x) - A(x)\| \leq (2^n 5N - 1)\delta, \quad x \in D.
\]

Theorem 7. Let \(f : (-r, r) \to E\) be a function with \(f(0) = 0\) and satisfy

\[
\left\|f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) - f(x) - f(y)\right\| \leq \delta, \quad x, y \in (-r, r).
\]

Then

\[
\left\|f(x + y) - f(x) - f(y)\right\| \leq 9\delta, \quad x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right).
\]

Proof. Replacing \(x\) by \(3x\) and \(y\) by \(3y\) in (24), we have

\[
\|f(x + 2y) + f(2x + y) - f(3x) - f(3y)\| \leq \delta, \quad x, y \in \left(-\frac{r}{3}, \frac{r}{3}\right).
\]

By replacing \(x\) by \(\frac{2y - x}{3}\) and \(y\) by \(\frac{2x - y}{3}\) in (25), we get

\[
\|f(x) + f(y) - f(2x - y) - f(2y - x)\| \leq \delta, \quad x, y \in \left(-\frac{r}{3}, \frac{r}{3}\right).
\]

Replacing \(y\) by \(-y\) in (26), we have

\[
\|f(2x + y) + f(-2y - x) - f(x) - f(-y)\| \leq \delta, \quad x, y \in \left(-\frac{r}{3}, \frac{r}{3}\right).
\]

Replacing \(y = 0\) in (25), we infer

\[
\|f(x) + f(2x) - f(3x)\| \leq \delta, \quad x \in \left(-\frac{r}{3}, \frac{r}{3}\right),
\]

and replacing \(x\) by \(-x\) in (28), we have

\[
\|f(-x) + f(-2x) - f(-3x)\| \leq \delta, \quad x \in \left(-\frac{r}{3}, \frac{r}{3}\right).
\]

Letting \(y = -x\) in (25), we have

\[
\|f(-x) + f(x) - f(3x) - f(-3x)\| \leq \delta, \quad x \in \left(-\frac{r}{3}, \frac{r}{3}\right).
\]
Using (28), (29) and (30), we have \(\|f(2x) + f(-2x)\| \leq 3\delta \), for all \(x \in \left(-\frac{r}{3}, \frac{r}{3}\right) \). Therefore
\[
\|f(x) + f(-x)\| \leq 3\delta, \quad x \in \left(-\frac{2r}{3}, \frac{2r}{3}\right).
\] (31)
Putting \(y = -2x \) in (25), we get
\[
\|f(-3x) - f(3x) - f(-6x)\| \leq \delta, \quad x \in \left(-\frac{r}{6}, \frac{r}{6}\right). \] (32)
Using the triangle inequality, it follows from (31) and (32) that
\[
\|2f(-3x) - f(-6x)\| \leq 4\delta, \quad x \in \left(-\frac{r}{6}, \frac{r}{6}\right).
\]
Then
\[
\|2f(x) - f(2x)\| \leq 4\delta, \quad x \in \left(-\frac{r}{2}, \frac{r}{2}\right). \] (33)
It follows from (31) that \(\|f(-2y - x) + f(2y + x)\| \leq 3\delta \) for all \(x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right) \). Hence (25), (27) and (28) imply
\[
\|2f(2x + y) - f(2x) - 2f(x) - f(2y) - f(y) - f(-y)\| \leq 7\delta, \quad x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right). \]
Using this inequality and applying (31) and (33), we obtain
\[
\|f(2x + y) - f(2x) - f(y)\| \leq 9\delta, \quad x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right). \] (34)
Then we have
\[
\|f(x + y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right). \]
A similar argument as in the proof of Theorem 7 yields the following results in the case of functions defined on certain subsets of \(\mathbb{R}^N \) (\(N \) is a positive integer) with values in a normed space.

Theorem 8. Suppose that \(D \) is a symmetric and bounded subset of \(\mathbb{R}^N \) containing zero. Let \(f : D \to E \) be a function with \(f(0) = 0 \) and satisfy
\[
\|f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) - f(x) - f(y)\| \leq \delta, \] (35)
for some \(\delta \geq 0 \) and for all \(x, y \in D \) with \(2x + y \in 3D \). Then
\[
\|f(x + y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in (2/9)D.
\]
COROLLARY 3. Let \(f : (-r, r)^N \rightarrow E \) be a function with \(f(0) = 0 \) and satisfy
\[
\|f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) - f(x) - f(y)\| \leq \delta, \quad x, y \in (-r, r)^N.
\]
Then
\[
\|f(x + y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in \left(-\frac{2r}{9}, \frac{2r}{9}\right)^N.
\]

Using Lemma 1 and Theorem 8 we prove the stability of the functional equation
\[
f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) = f(x) + f(y)
\]
on a restricted domain.

THEOREM 9. Let \(E \) be a Banach space and let \(f : (-r, r)^N \rightarrow E \) be a function with \(f(0) = 0 \) and satisfy (35) for all \(x, y \in (-r, r)^N \). Then there exists an additive function \(A : \mathbb{R}^N \rightarrow E \) such that
\[
\|f(x) - A(x)\| \leq 9(5N - 1)\delta, \quad x \in \left(-\frac{2r}{9}, \frac{2r}{9}\right)^N.
\]

THEOREM 10. Let \(E \) be a Banach space and let \(N \) be a positive integer. Suppose \(D \) is a symmetric and bounded subset of \(\mathbb{R}^N \) containing zero in its interior. Assume, moreover, that there exist a nonnegative integer \(n \) and a positive number \(c > 0 \) such that
\[
\begin{align*}
(i) & \quad D \subseteq 2D, \\
(ii) & \quad (-c, c)^N \subseteq D, \\
(iii) & \quad D \subseteq (-2^nc, 2^nc)^N.
\end{align*}
\]
If a function \(f : D \rightarrow E \) satisfies \(f(0) = 0 \) and the functional inequality
\[
\|f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) - f(x) - f(y)\| \leq \delta,
\]
for some \(\delta \geq 0 \) and for all \(x, y \in D \) with \(2x + y \in 3D \), then there exists an additive function \(A : \mathbb{R}^N \rightarrow E \) such that
\[
\|f(x) - A(x)\| \leq 9(2^nN - 1)\delta, \quad x \in (2/9)D.
\]

Proof. Let \(G = (2/9)D \) and \(r = (2/9)c \). Then \(G \subseteq 2G, \ (-r, r)^N \subseteq G \) and \(D \subseteq (-2^nr, 2^nr)^N \). By Theorem 8, \(f \) satisfies
\[
\|f(x + y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in G.
\]
Therefore on account of Lemma 1, we get the result.
THEOREM 11. Let \(f : (-r, r) \to E \) be a function with \(f(0) = 0 \) and satisfy

\[
\left\| f\left(\frac{1}{4}x + \frac{3}{4}y\right) + f\left(\frac{3}{4}x + \frac{1}{4}y\right) - f(x) - f(y)\right\| \leq \delta, \quad x, y \in (-r, r).
\]

Then

\[
\left\| f(x+y) - f(x) - f(y)\right\| \leq 9\delta, \quad x, y \in \left(\frac{-3r}{16}, \frac{3r}{16}\right).
\]

Proof. Replacing \(x \) by 4\(x \) and \(y \) by 4\(y \) in (36), we have

\[
\left\| f(x+3y) + f(3x+y) - f(4x) - f(4y)\right\| \leq \delta, \quad x, y \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

By replacing \(x \) by \(\frac{3y-x}{4} \) and \(y \) by \(\frac{3x-y}{4} \) in (37), we have

\[
\left\| f(2x) + f(2y) - f(3x-y) - f(3y-x)\right\| \leq \delta, \quad x, y \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

If we replace \(y \) by \(-y \) in the last inequality, we obtain

\[
\left\| f(3x+y) + f(-3y-x) - f(2x) - f(-2y)\right\| \leq \delta, \quad x, y \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

Putting \(x = 0 \) in (38), we get

\[
\left\| f(y) + f(-3y) - f(-2y)\right\| \leq \delta, \quad y \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

Putting \(y = 0 \) in (37), we have

\[
\left\| f(x) + f(3x) - f(4x)\right\| \leq \delta, \quad x \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

If we put \(y = -x \) in (37), we obtain

\[
\left\| f(-2x) + f(2x) - f(-4x) - f(4x)\right\| \leq \delta, \quad x \in \left(-\frac{r}{4}, \frac{r}{4}\right),
\]

and then

\[
\left\| f(-x) + f(x) - f(-2x) - f(2x)\right\| \leq \delta, \quad x \in \left(-\frac{r}{2}, \frac{r}{2}\right).
\]

It follows from (40) that

\[
\left\| f(-x) + f(x) + f(-3x) + f(3x) - f(-4x) - f(4x)\right\| \leq 2\delta, \quad x \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]

Hence we get from (42) and (43) that

\[
\left\| f(-2x) + f(2x) + f(-3x) + f(3x) - f(-4x) - f(4x)\right\| \leq 3\delta, \quad x \in \left(-\frac{r}{4}, \frac{r}{4}\right).
\]
Using the triangle inequality for (41) and (44), we obtain
\[\|f(-3x) + f(3x)\| \leq 4\delta, \quad x \in \left(-\frac{r}{4}, \frac{r}{4}\right). \]
\[(45)\]

Therefore
\[\|f(-x) + f(x)\| \leq 4\delta, \quad x \in \left(-\frac{3r}{4}, \frac{3r}{4}\right), \]
\[\|f(-3y-x) + f(3y+x)\| \leq 4\delta, \quad x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right). \]
\[(46)\]

Using the last inequality (46) and inequalities (37) and (38), we get
\[\|2f(3x+y) - f(4x) - f(4y) - f(2x) - f(2y)\| \leq 6\delta, \quad x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right). \]
\[(47)\]

If we consider (40) with \(x\) and \(y\), then it follows by (47) that
\[\|2f(3x+y) - f(3x) - f(3y) - f(x) - f(2x) - f(-2y)\| \leq 8\delta, \]
for all \(x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right)\). Consider the inequality (39) for \(y\) and \(-x\), and using the above inequality, we obtain
\[\|2f(3x+y) - 2f(3x) - f(3y) - f(-3y) - f(x) - f(-x) - 2f(y)\| \leq 10\delta, \]
for all \(x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right)\). Hence this inequality with the inequalities (45) and (46) imply
\[\|2f(3x+y) - 2f(3x) - 2f(y)\| \leq 18\delta, \quad x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right). \]

Therefore
\[\|f(x+y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in \left(-\frac{3r}{16}, \frac{3r}{16}\right). \]

By a similar way as in the proof of Theorem 11 we obtain the following results on restricted domains of \(\mathbb{R}^N\).

Theorem 12. Suppose that \(D\) is a symmetric and bounded subset of \(\mathbb{R}^N\) containing zero. Let \(f : D \to E\) be a function with \(f(0) = 0\) and satisfy
\[\left\|f\left(\frac{1}{4}x + \frac{3}{4}y\right) + f\left(\frac{3}{4}x + \frac{1}{4}y\right) - f(x) - f(y)\right\| \leq \delta, \]

for some \(\delta \geq 0\) and for all \(x, y \in D\) with \(3x+y \in 4D\). Then
\[\|f(x+y) - f(x) - f(y)\| \leq 9\delta, \quad x, y \in (3/16)D. \]
Let $f : (-r,r)^N \to E$ be a function with $f(0) = 0$ and satisfy
\[
\left\| f\left(\frac{1}{4}x + \frac{3}{4}y\right) + f\left(\frac{3}{4}x + \frac{1}{4}y\right) - f(x) - f(y) \right\| \leq \delta, \quad x, y \in (-r,r)^N. \tag{48}
\]
Then
\[
\left\| f(x+y) - f(x) - f(y) \right\| \leq 9\delta, \quad x, y \in \left(\frac{-3r}{16}, \frac{3r}{16}\right)^N.
\]

Using Lemma 1 and Theorem 13 we prove the stability of the functional equation
\[
f\left(\frac{1}{3}x + \frac{2}{3}y\right) + f\left(\frac{2}{3}x + \frac{1}{3}y\right) = f(x) + f(y)
\]
on a restricted domain.

Theorem 14. Let E be a Banach space and let $f : (-r,r)^N \to E$ be a function with $f(0) = 0$ and satisfy (48) for all $x, y \in (-r,r)^N$. Then there exists an additive function $A : \mathbb{R}^N \to E$ such that
\[
\left\| f(x) - A(x) \right\| \leq 9(5N-1)\delta, \quad x, y \in \left(\frac{-3r}{16}, \frac{3r}{16}\right)^N.
\]

References

[1] D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222–224.
[2] S. Jung, *Hyers-Ulam-Rassias stability of Jensen’s equation and its application*, Proc. Am. Math. Soc. 126 (1998), 3137–3143.
[3] S. Jung, *Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis*, Springer, New York, Dordrecht, Heidelberg, London, 2011.
[4] S. Jung and B. Kim, *On the stability of the quadratic functional equation on bounded domains*, Abh. Math. Sem. Univ. Hamburg 69 (1999), 293–308.
[5] Z. Kominek, *On a local stability of the Jensen functional equation*, Demonstratio Math. 22 (1989), 499–507.
[6] D. Molaei and A. Najati, *Hyperstability of the general linear equation on restricted domains*, Acta Math. Hungar. 149 (2016), 238–253.
[7] A. Najati and Th. M. Rassias, *Stability of the Pexiderized Cauchy and Jensen’s equations on restricted domains*, Commun. Math. Anal. 8 (2010), 125–135.
[8] A. Najati and S. Jung, *Approximately quadratic mappings on restricted domains*, J. Inequal. Appl. 2010, Art. ID 503458, 10 pp. (2010).
[9] F. Skof, *Sullapprossimazione delle applicazioni localmente δ-aditive*, Atti Accad. Sci. Torino 117 (1983), 377–389.
[10] F. Skof, *Proprietà locali e approssimazione di operatori*, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
[11] F. Skof and S. Terracini, *Sulla stabilità dell’equazione funzionale quadratica su un dominio ristretto*, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 121 (1987), 153–167.

[12] S. M. Ulam, *A Collection of the Mathematical Problems*, Interscience Publication, New York, 1960.

(Received September 2, 2019)

B. Noori
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: noori.batool@yahoo.com

M. B. Moghimi
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: mbfmoghimi@yahoo.com

B. Khosravi
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: b.khosravi88@yahoo.com

Choonkil Park
Research Institute for Natural Sciences
Hanyang University
Seoul 04763, Korea
e-mail: baak@hanyang.ac.kr