The fundamental form of almost-quaternionic Hermitian manifolds

Liana David

November 2, 2009

Author’s address: Institute of Mathematics ”Simion Stoilow” of the Romanian Academy, Calea Grivitei nr 21, Sector 1, Bucharest, Romania; tel. 0040-21-3196531; fax 0040-21-3196505; e-mail address: liana.david@imar.ro and liana.r.david@gmail.com

Abstract: We prove that if the fundamental 4-form Ω of an almost-quaternionic Hermitian manifold (M,Q,g) of dimension $4n \geq 8$ satisfies the conformal-Killing equation, then (M,Q,g) is quaternionic-Kähler.

MSC: 51H25, 53C26.

Subject Classification: Real and complex differential geometry; Geometric theory of differential equations.

Key words: Almost-quaternionic Hermitian manifolds; Quaternionic-Kähler manifolds; Fundamental form; Conformal-Killing equation.

1 Introduction

Conformal-Killing (respectively, Killing) 1-forms are dual to conformal-Killing (respectively, Killing) vector fields. More generally, a p-form ψ ($p \geq 1$) on a Riemannian manifold (M^n, g) is conformal-Killing, if it satisfies the conformal-Killing equation

$$\nabla_X \psi = \frac{1}{p+1} i_X d\psi - \frac{1}{m-p+1} X \wedge \delta \psi, \quad \forall X \in TM,$$

(1)
where ∇ is the Levi-Civita connection and (like everywhere in this note) we identify tangent vectors with 1-forms by means of the Riemannian duality. Co-closed conformal-Killing forms are called Killing. Note that ψ is Killing if and only if its covariant derivative is totally skew, or, equivalently, $(\nabla_X \psi)(X, \cdot) = 0$ for any vector field X.

Conformal-Killing forms exist on spaces of constant curvature, on Sasaki manifolds \cite{6} and on some classes of Kähler manifolds, like Bochner-flat Kähler manifolds and conformally-Einstein Kähler manifolds \cite{1, 4}. On compact quaternionic-Kähler manifolds of dimension at least eight, there are no non-parallel conformal-Killing 2-forms, unless the quaternionic-Kähler manifold is isomorphic to the standard quaternionic projective space, in which case the space of conformal-Killing 2-forms is naturally isomorphic to the space of Killing vector fields \cite{3}.

Conformal-Killing forms exist also on manifolds which admit twistor spinors \cite{6}. Recall that a twistor spinor on a Riemannian spin manifold (M^m, g) is a section ρ of the spinor bundle, which satisfies the equation $\nabla_X \rho = -\frac{1}{m} X \cdot D\rho$, where X is any vector field, D is the Dirac operator and "$\cdot\cdot\cdot$" denotes the Clifford multiplication. If ρ_1 and ρ_2 are twistor spinors, then the p-form

$$\omega_p(X_1, \cdots, X_p) = \langle (X_1 \wedge \cdots \wedge X_p) \cdot \rho_1, \rho_2 \rangle$$

is conformal-Killing (for any $p \geq 1$). For a survey on conformal-Killing forms, see for example \cite{6}.

The starting point of this note is a result proved in \cite{6}, which states that if the Kähler form of an almost-Hermitian manifold is conformal-Killing, then the almost-Hermitian manifold is nearly Kähler. Our main Theorem is an analogue of this result in quaternionic geometry and is stated as follows:

Theorem 1. Let (M^{4n}, Q, g) be an almost-quaternionic Hermitian manifold, of dimension $4n \geq 8$. Suppose that the fundamental 4-form Ω of (M, Q, g) is conformal-Killing. Then (M, Q, g) is quaternionic-Kähler.

Theorem \cite{1} generalizes a result proved in \cite{8}, namely that in dimension at least eight, a nearly quaternionic-Kähler manifold (i.e. an almost-quaternionic Hermitian manifold for which the fundamental 4-form is a Killing form) is necessarily quaternionic-Kähler.

The paper is organized as follows: in Section \cite{2} we recall basic facts on quaternionic Hermitian geometry. Section \cite{3} is devoted to the proof of our main result, which is based on a representation theoretic argument. Similar arguments were already employed in \cite{7} and \cite{8}.
2 Quaternionic Hermitian geometry

Let M be a manifold of dimension $4n \geq 8$ (in all our considerations the dimension of the manifold will be at least eight). An almost-quaternionic structure on M is a rank-three vector sub-bundle $Q \subset \text{End}(TM)$, locally generated by three anti-commuting almost complex structures $\{J_1, J_2, J_3\}$ which satisfy $J_1 \circ J_2 = J_3$. Such a triple of almost complex structures is usually called a (local) admissible basis of Q. An almost-quaternionic Hermitian structure on M consists of an almost-quaternionic structure Q and a Riemannian metric g compatible with Q, which means that

$$g(JX, JY) = g(X, Y), \quad \forall J \in Q, \quad J^2 = -\text{Id}, \quad \forall X, Y \in TM.$$

In the language of G-structures, an almost-quaternionic Hermitian structure on a $4n$-dimensional manifold is an $Sp(n)Sp(1)$-structure. Therefore, on an almost-quaternionic Hermitian manifold (M^{4n}, g, Q) there are two locally defined complex vector bundles E and H, of rank $2n$ and 2 respectively, associated to the standard representations of $Sp(n)$ and $Sp(1)$ on $E = \mathbb{C}^{2n}$ and $\mathbb{H} = \mathbb{C}^2$. Let $\omega_E \in \Lambda^2(E^*)$ and $j_E : E \to E$ be the standard symplectic form and quaternionic structure of the bundle E, defined by the $Sp(n)$-invariant complex symplectic form and quaternionic structure of E. We shall often identify E with E^* by means of the map $e \to \omega_E(e, \cdot)$, so that ω_E will sometimes be considered as a bivector on E. For any $r \geq 2$ we shall denote by $\Lambda^r_0 E \subset \Lambda^r E$ the kernel of the natural contraction

$$\omega_E \bullet : \Lambda^r E \to \Lambda^{r-2} E$$

with the symplectic form ω_E, defined by

$$\omega_E \bullet (e_1 \wedge \cdots \wedge e_r) = \sum_{i<j} (-1)^{i+j+1} \omega_E(e_i, e_j) e_1 \wedge \cdots \wedge \hat{e}_i \wedge \cdots \wedge \hat{e}_j \wedge \cdots \wedge e_r$$

where the hat denotes that the term is omitted. By means of contraction and wedge product with ω_E we can decompose $\Lambda^r E$ as

$$\Lambda^r E = \Lambda^r_0 E \oplus \omega_E \wedge \Lambda^{r-2}_0 E \oplus \omega^2_E \wedge \Lambda^{r-4}_0 E \oplus \cdots$$

(3)

The map j_E is complex anti-linear and

$$j_E^2 = -\text{Id}, \quad \omega_E(j_Eu, j_Ev) = \overline{\omega_E(u, v)}, \quad \omega_E(e, j_Ee) > 0,$$

for any $u, v \in E$ and $e \in E \setminus \{0\}$. To simplify notations, for a vector $e \in E$ we shall often denote $\tilde{e} := j_E(e)$ its image through the quaternionic structure of E. Similar conventions will be used for the standard symplectic form...
\[\omega_H \in \Lambda^2(H^*) \] and quaternionic structure \(j_H : H \to H \) of the bundle \(H \).

The bundles \(E \) and \(H \) play the role of spin bundles from conformal geometry. In particular,

\[T_{\mathbb{C}}M = E \otimes_{\mathbb{C}} H \quad (4) \]

and the complex bilinear extension of the Riemannian metric \(g \) to \(T_{\mathbb{C}}M \) is the tensor product \(\omega_E \otimes \omega_H \). Decomposition \([\text{H}]\) induces decompositions of the form bundles in any degree. In particular, the bundles of 2 and 3-forms decompose as (see [5])

\[
\Lambda^2(T_{\mathbb{C}}M) = S^2H \oplus S^2E \oplus S^2H \Lambda_0^2E \quad (5)
\]

\[
\Lambda^3(T_{\mathbb{C}}M) = H(E \oplus K) \oplus S^3H(\Lambda_0^3E \oplus E). \quad (6)
\]

(In (5) and (6), and often in this note, we omit the tensor product signs). In (5) \(S^2H \) and \(S^2E \) are complexifications of the bundle \(Q \) and, respectively, of the bundle of \(Q \)-Hermitian 2-forms, i.e. 2-forms \(\psi \in \Lambda^2(T^*M) \) which satisfy

\[
\psi(JX, JY) = \psi(X, Y), \quad \forall J \in Q, \quad J^2 = -\text{Id}, \quad \forall X, Y \in TM.
\]

In (6) \(K \) denotes the vector bundle associated to the \(Sp(n) \)-module \(K \), which arises into the irreducible decomposition

\[
E \otimes \Lambda_0^2E \cong \Lambda_0^2E \oplus \Lambda_0^2E \oplus K \quad (7)
\]

under the action of \(Sp(n) \). A vector from \(E \otimes \Lambda_0^2E \) has non-trivial component on \(K \) if and only if it is not totally skew.

Notations 2. We shall identify bundles with their complexification, without additional explanations. For example, in (5) \(S^2H \Lambda_0^2E \) is a complex sub-bundle of \(\Lambda^2(T_{\mathbb{C}}M) \). We shall use the same notation for its real part, which is a sub-bundle of \(\Lambda^2(TM) \).

An almost-quaternionic Hermitian manifold \((M, g, Q)\) has a canonical 4-form, defined, in terms of an arbitrary admissible basis \(\{J_1, J_2, J_3\} \) of \(Q \), by

\[
\Omega = \omega_1 \wedge \omega_1 + \omega_2 \wedge \omega_2 + \omega_3 \wedge \omega_3,
\]

where \(\omega_i := g(J_i \cdot, \cdot) \) are the Kähler forms corresponding to \((g, J_i)\). As proved in [7] and [8], the covariant derivative \(\nabla \Omega \) with respect to the Levi-Civita connection \(\nabla \) of \(g \) is a section of \(T^*M \otimes (S^2H \Lambda_0^2E) \), where \(S^2H \Lambda_0^2E \) is embedded into \(\Lambda^2(T^*M) \) (identified with \(\Lambda^2(TM) \) using the Riemannian metric), in the following way. Note first that \(\Lambda^2(S^2H) \) is canonically isomorphic to \(S^2H \) (this is because \(S^2H \) is the complexification of \(Q \), which has a natural metric
and orientation, for which any admissible basis \(\{J_1, J_2, J_3\} \) is orthonormal and positively oriented). The map
\[
S^2 H \Lambda_0^3 E \cong \Lambda^2(S^2 H) \Lambda_0^3 E \to \Lambda^4_C(TM)
\]
defined by
\[
(s_1 \wedge s_2)\beta \to s_1\beta \wedge s_2\omega_E - s_2\beta \wedge s_1\omega_E, \quad \forall s_1, s_2 \in S^2 H, \quad \forall \beta \in \Lambda_0^2 E
\]
is the promised embedding of \(S^2 H \Lambda_0^3 E \) into \(\Lambda^4(TM) \).

An almost-quaternionic Hermitian manifold \((M, Q, g)\) is quaternion-Kähler if the Levi-Civita connection \(\nabla \) of \(g \) preserves the bundle \(Q \), or, equivalently, the fundamental 4-form \(\Omega \) is parallel with respect to \(\nabla \). In fact, as already mentioned in the Introduction, according to Theorem 1.2 of [8] the weaker condition \((\nabla_X \Omega)(X, \cdot) = 0 \), for any vector field \(X \), implies that \((M, Q, g)\) is quaternionic-Kähler.

3 Proof of the main result

In this Section we prove our main result. Let \((M, Q, g)\) be an almost-quaternionic Hermitian manifold, whose fundamental 4-form \(\Omega \) is conformal-Killing. In order to prove that \(\Omega \) is parallel with respect to the Levi-Civita connection \(\nabla \), it is enough to show that it is co-closed (being conformal-Killing, \(\Omega \) is co-closed if and only if it is Killing, if and only if it is parallel, by Theorem 1.2 of [8] already mentioned before). Recall now that \(\nabla \Omega \) is a section of \(T^* M \otimes (S^2 H \Lambda_0^3 E) \), which decomposes into irreducible sub-bundles as
\[
T^*_C M \otimes (S^2 H \Lambda_0^3 E) = HE \oplus H \Lambda_0^3 E \oplus HK \oplus (S^3 H)E \oplus S^3 H \Lambda_0^3 E \oplus (S^3 H)K.
\]
Decomposition (10) follows from (7), together with the irreducible decomposition
\[
\mathbb{H} \otimes S^2 \mathbb{H} \cong S^3 \mathbb{H} \oplus \mathbb{H}
\]
of \(\mathbb{H} \otimes S^2 \mathbb{H} \) under \(Sp(1) \). While \(H \Lambda_0^3 E \) and \((S^3 H)K \) are irreducible sub-bundles of \(T^*_C M \otimes (S^2 H \Lambda_0^3 E) \), see (10), they are not irreducible sub-bundles of \(\Lambda^3(T_C M) \), see (6). These observations readily imply that if \(\nabla \Omega \) is a section of \(H \Lambda_0^3 E \oplus (S^3 H)K \), then \(\Omega \) is co-closed: just write \(\delta \Omega = - \sum_i (\nabla_{E_i} \Omega)(E_i, \cdot) \), where \(\{E_i\} \) is a local orthonormal frame of \(TM \), and use the fact that an invariant linear map between non-isomorphic irreducible representations is identically zero. (Actually, by Theorem 2.3 of [8], also the converse is true: if \(\delta \Omega = 0 \) then \(\nabla \Omega \) is a section of \(H \Lambda_0^3 E \oplus (S^3 H)K \).
Therefore, we aim to show that $\nabla \Omega$ is a section of $H\Lambda^3_0 E \oplus (S^3 H)K$. For this, we define the algebraic conformal-Killing operator

$$\mathcal{T} : T^* M \otimes \Lambda^4(TM) \to T^* M \otimes \Lambda^4(TM),$$

by

$$\mathcal{T}(\gamma \otimes \alpha)(X) = \frac{4}{5} \gamma(X)\alpha + \frac{1}{5} \gamma \wedge i_X \alpha - \frac{1}{4n-3} X \wedge i_\gamma \alpha$$ \quad \text{(11)}$$

where $\gamma \in T^* M$ (is identified with a vector using the Riemannian metric), $\alpha \in \Lambda^4(TM)$ and $X \in TM$. Note that, for any 4-form $\psi \in \Omega^4(M)$,

$$\mathcal{T}(\nabla \psi)(X) = \nabla_X \psi - \frac{1}{5} i_X d\psi + \frac{1}{4n-3} X \wedge \delta \psi, \quad \forall X \in TM.$$ \quad \text{(12)}$$

In particular, since Ω is conformal-Killing,

$$\mathcal{T}(\nabla \Omega) = 0.$$ \quad \text{(13)}$$

The operator \mathcal{T} is $Sp(n)Sp(1)$-invariant and we extend it, by complex linearity, to $T^*_C M \otimes \Lambda^4(T_C M)$. Define

$$S := T^*_C M \otimes (S^2 H\Lambda^2_0 E) \oplus (H\Lambda^3_0 E \oplus (S^3 H)K).$$

From (10), the irreducible sub-bundles of S are

$$HE, \quad HK, \quad (S^3 H)E, \quad S^3 H\Lambda^3_0 E.$$ \quad \text{(14)}$$

For any irreducible sub-bundle W of S, we will determine an $Sp(n)Sp(1)$-invariant linear map

$$T_W : T^*_C M \otimes \Lambda^4(T_C M) \to W$$

which factors through \mathcal{T} (i.e. $T_W = \text{pr}_W \circ \mathcal{T}$ is the composition of \mathcal{T} with an $Sp(n)Sp(1)$-invariant linear map pr_W from $T^*_C M \otimes \Lambda^4(T_C M)$ to W) such that the restriction of T_W to $T^*_C M \otimes (S^2 H\Lambda^2_0 E)$ is non-zero. An easy argument which uses (13), Schur’s Lemma and the fact that irreducible sub-bundles of $T^*_C M \otimes (S^2 H\Lambda^2_0 E)$ are pairwise non-isomorphic, would then imply that $\nabla \Omega$ has trivial component on W and therefore that $\nabla \Omega$ is a section of $H\Lambda^3_0 E \oplus (S^3 H)K$, as needed.

In order to define the maps T_W, we apply several suitable contractions to the algebraic conformal-Killing operator \mathcal{T}. We first define T_{HE} and T_{HK} as follows. For a section η of $T^*_C M \otimes \Lambda^4(T_C M)$, define $\omega_E \bullet T(\eta)$, a 1-form with values in $(S^2 H)\Lambda^2(T_C M)$, by

$$\omega_E \bullet (T(\eta))(X) := \omega_E \bullet (T(\eta)(X)), \quad \forall X \in TM,$$ \quad \text{(15)}$$

where ω_E is a 1-form with values in $(S^2 H)\Lambda^2(T_C M)$, defined by

$$\omega_E(X) := \frac{1}{5} \nabla_X \psi - \frac{1}{5} i_X d\psi + \frac{1}{4n-3} X \wedge \delta \psi, \quad \forall X \in TM,$$ \quad \text{(16)}$$

and ψ is a 4-form with values in $(S^2 H)\Lambda^2(T_C M)$, defined by

$$\psi(X) := \frac{1}{5} \nabla_X \psi - \frac{1}{5} i_X d\psi + \frac{1}{4n-3} X \wedge \delta \psi, \quad \forall X \in TM.$$ \quad \text{(17)}$$

For any irreducible sub-bundle W of S, we will determine an $Sp(n)Sp(1)$-invariant linear map

$$T_W : T^*_C M \otimes \Lambda^4(T_C M) \to W$$

which factors through \mathcal{T} (i.e. $T_W = \text{pr}_W \circ \mathcal{T}$ is the composition of \mathcal{T} with an $Sp(n)Sp(1)$-invariant linear map pr_W from $T^*_C M \otimes \Lambda^4(T_C M)$ to W) such that the restriction of T_W to $T^*_C M \otimes (S^2 H\Lambda^2_0 E)$ is non-zero. An easy argument which uses (13), Schur’s Lemma and the fact that irreducible sub-bundles of $T^*_C M \otimes (S^2 H\Lambda^2_0 E)$ are pairwise non-isomorphic, would then imply that $\nabla \Omega$ has trivial component on W and therefore that $\nabla \Omega$ is a section of $H\Lambda^3_0 E \oplus (S^3 H)K$, as needed.
where in (15) $T(\eta)(X)$ belongs to $\Lambda^4(T_C M)$ (is the value of the $\Lambda^4(T_C M)$-valued 1-form $T(\eta)$ on $X \in T_C M$) and

$$\omega_E \cdot : \Lambda^4(T_C M) \to (S^2 H) \Lambda^2(T_C M)$$

(16)
denotes the contraction with ω_E, which on decomposable multi-vectors takes value

$$\beta = h_1 e_1 \wedge \cdots \wedge h_4 e_4 \in \Lambda^4(T_C M)$$

takes value

$$\omega_E(\beta) = \sum_{i<j} (-1)^{i+j+1} \omega_E(e_i, e_j)(h_i h_j + h_j h_i) h_1 e_1 \wedge \cdots \wedge \hat{h}_i e_i \wedge \cdots \wedge \hat{h}_j e_j \wedge \cdots \wedge h_4 e_4.$$

Next, we define $\omega_H \cdot \omega_E \cdot T(\eta)$, by contracting $\omega_E \cdot T(\eta)$, which is a section of $HE \otimes (S^2 H) \Lambda^2(T_C M)$, with ω_H in the first two H-variables. Therefore, $\omega_H \cdot \omega_E \cdot T(\eta)$ is a section of $EH \Lambda^2(T_C M)$. Considering $EH \Lambda^2(T_C M)$ naturally embedded into $EH(HHEE)$, we contract further $\omega_H \cdot \omega_E \cdot T(\eta)$ with ω_H again in the first two H-variables. The result is a section $\omega_H^2 \cdot \omega_E \cdot T(\eta)$ of $HHEE$. Applying suitable projections to $\omega_H^2 \cdot \omega_E \cdot T(\eta)$ we finally obtain $T_{HE}(\eta)$ and $T_{HK}(\eta)$, as follows.

The contraction of $\omega_H^2 \cdot \omega_E \cdot T(\eta)$ with ω_E in the first two E-variables defines

$$T_{HE}(\eta) := \omega_E \cdot \omega_H^2 \cdot \omega_E \cdot T(\eta).$$

(17)

Similarly, we can project $\omega_H^2 \cdot \omega_E \cdot T(\eta)$ to $H \otimes E \Lambda^2 E$ and then to HK, by means of the decomposition (7) (translated to vector bundles). The result of this projection is the value of T_{HK} on η. More precisely,

$$T_{HK}(\eta) := \text{pr}_{HK} \left(\omega_H^2 \cdot \omega_E \cdot T(\eta) \right).$$

(18)

Proposition 3. The operators T_{HE} and T_{HK} defined by (17) and (18) are non-trivial on $\tau_{C M}^* \otimes (S^2 H \Lambda^2 E)$.

In order to prove Proposition 3 we will show that T_{HE} and T_{HK} take non-zero value on $\gamma_0 \alpha_0$, where

$$\gamma_0 := \hat{e}_1 h, \quad \alpha_0 := e_1 h \wedge e_2 h \wedge \hat{e}_i \hat{h} \wedge \hat{e}_i \hat{h} = e_1 h \wedge e_2 h \wedge e_i h \wedge \hat{e}_i h$$

(19)

was already considered in [8]. In (19) $\{e_1, \cdots, e_{2n}\}$ is a unitary basis of (local) sections of E, with respect to the (positive definite) Hermitian metric $g_E := \omega_E(\cdot, j_E \cdot)$, chosen such that $e_{n+j} = \hat{e}_j$ for any $1 \leq j \leq n$, and $\{h, \hat{h}\}$ is a unitary basis of (local) sections of H, with respect to $g_H := \omega_H(\cdot, j_H \cdot)$. In
order to simplify notations, in (19) and below we omit the summation sign over $1 \leq i \leq 2n$. The symplectic forms of E and H can be written as

$$
\omega_E = \frac{1}{2} \hat{e}_i \wedge \hat{e}_i \in \Lambda^2 E, \quad \omega_H = h \wedge
hat{h} \in \Lambda^2 H.
$$

(20)

From (9) and (20), α_0 is a section of the sub-bundle $S^2H\Lambda^3_0E$ of $\Lambda^4(T^*_C M)$ and $\gamma_0\alpha_0$ is a section of $T^*_C M \otimes (S^2H\Lambda^3_0E)$.

We divide the proof of Proposition 3 into the following two Lemmas.

Lemma 4. The section $\text{pr}_{H\Lambda^3_0E}(\omega_H^2 \bullet \omega_E \bullet T(\gamma_0\alpha_0))$ is not totally skew in the E-variables. In particular, $T_{HK}(\gamma_0\alpha_0) \neq 0$.

Proof. A straightforward computation shows that

$$
i_{\gamma_0}\alpha_0 = e_i h \wedge \hat{e}_i h \wedge e_2 \hat{h} - 2e_1 h \wedge e_2 h \wedge \hat{e}_1 \hat{h}.
$$

Therefore, using (11), we can write

$$
T(\gamma_0\alpha_0) = \frac{4}{5} \gamma_0\alpha_0 + \frac{1}{5} \gamma_0 \wedge \alpha_0(\cdot) - \frac{1}{4n - 3}(F - 2G),
$$

(21)

where $\gamma_0 \wedge \alpha_0(\cdot)$ is a 1-form with values in $\Lambda^4(T^*_C M)$, whose natural contraction with a vector $X \in T^*_C M$ is $\gamma_0 \wedge i_X \alpha_0$. Similarly, F and G are defined by

$$
F(X) := X \wedge e_i h \wedge \hat{e}_i h \wedge e_2 \hat{h}
$$

and

$$
G(X) := X \wedge e_1 h \wedge e_2 h \wedge \hat{e}_1 \hat{h}.
$$

Now, it is straightforward to check that

$$
\omega_H^2 \bullet \omega_E \bullet (\gamma_0\alpha_0) = -4\eta h(\hat{e}_1 e_1 e_2 - \hat{e}_1 e_2 e_1)
$$

$$
\omega_H^2 \bullet \omega_E \bullet (\gamma_0 \wedge \alpha_0(\cdot)) = 2h(-e_i \hat{e}_i e_1 e_2 - \hat{e}_i e_1 e_2 - \hat{e}_2 e_1 e_2 + e_i e_2 e_1)
$$

$$
+ h(-e_2 e_i \hat{e}_i + e_2 \hat{e}_i e_1 + e_i e_2 \hat{e}_1 - \hat{e}_i e_2 e_1)
$$

$$
+ (4n + 2)h(e_2 \hat{e}_1 e_1 - e_1 \hat{e}_1 e_2)
$$

$$
+ 4h(e_1 e_2 \hat{e}_1 - e_2 e_1 \hat{e}_1)
$$

and also

$$
\omega_H^2 \bullet \omega_E \bullet F = -(4n - 4)he_i e_2 \hat{e}_i + 3h(e_2 e_i \hat{e}_i - e_2 e_i \hat{e}_i)
$$

$$
\omega_H^2 \bullet \omega_E \bullet G = 3h(e_1 \hat{e}_1 e_2 - e_2 \hat{e}_1 e_1 - \hat{e}_1 e_2 e_1 + \hat{e}_1 e_2 e_1) - he_i e_2 \hat{e}_i.
$$
These relations combined with \((21)\) readily imply that
\[
\omega^2_H \cdot \omega_E \cdot T(\gamma_0 \alpha_0) = \lambda_1 h \tilde{e}_1(e_1 \wedge e_2) + \lambda_2 h(e_2 \tilde{e}_1e_1 - e_1 \tilde{e}_1e_2) + \lambda_3 h e_2 \tilde{e}_i + \lambda_4 h e_i \tilde{e}_2 e_1 + \frac{h}{5} (4(e_1 \wedge e_2) \tilde{e}_1 + 2(e_i \wedge e_i) e_2 - \tilde{e}_1 e_2 e_i),
\]
with constants
\[
\lambda_1 = \frac{8(-8n^2 + 7n + 3)}{5(4n - 3)}, \quad \lambda_2 = \frac{4(4n^2 - n - 9)}{5(4n - 3)}, \quad \lambda_3 = -\frac{4(n + 3)}{5(4n - 3)}
\]
and
\[
\lambda_4 = \frac{24n - 33}{5(4n - 3)}.
\]
Projecting the expression for \(\omega^2_H \cdot \omega_E \cdot T(\gamma_0 \alpha_0)\) obtained above onto \(HE\Lambda^2_0 E\) we get
\[
\text{pr}_{HE\Lambda^2_0 E} \left(\omega^2_H \cdot \omega_E \cdot T(\gamma_0 \alpha_0) \right) = 2\lambda_1 h \tilde{e}_1(e_1 \wedge e_2) + \left(\lambda_2 + \frac{4}{5} \right) h e_2(\tilde{e}_1 \wedge e_1) - \left(\lambda_2 + \frac{4}{5} \right) h e_1(\tilde{e}_1 \wedge e_2) + \left(\lambda_4 + \frac{2}{5} \right) h e_i(\tilde{e}_1 \wedge e_2) + \frac{3}{5} h \tilde{e}_i(e_1 \wedge e_2) + \frac{1}{2n} \left(\lambda_2 - \lambda_4 - \frac{1}{5} \right) h e_2(e_i \wedge \tilde{e}_i),
\]
which is not totally skew in the \(E\)-variables. Our claim follows.

\begin{lemma}
The value of \(T_{HE}\) on \(\gamma_0 \alpha_0\) is
\[
T_{HE}(\gamma_0 \alpha_0) = \frac{8n(2n + 1)}{5(4n - 3)} h e_2.
\]
\end{lemma}

In particular, \(T_{HE}(\gamma_0 \alpha_0)\) is non-zero.

\begin{proof}
The claim follows from a straightforward calculation, using the expression of \(\omega^2_H \cdot \omega_E \cdot T(\gamma_0 \alpha_0)\) determined in the proof of Lemma 4 and the definition of the operator \(T_{HE}\).
\end{proof}

Lemma 4 and Lemma 5 conclude the proof of Proposition 3.

We now define the maps \(T_{(S^3H)E}\) and \(T_{S^3H\Lambda^2_0 E}\). For a section \(\eta\) of \(T^* C M \otimes \Lambda^4(T C M)\), \(T(\eta)\) is a section of \(EH \otimes \Lambda^4(T C M)\). We consider \(\omega_H \cdot T(\eta)\), the contraction of \(T(\eta)\) with \(\omega_H\) in the first two \(H\)-variables, which is a section.
of $EE \otimes \Lambda^3(T_C M)$. Its total symmetrization $\text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))$ in the H-variables is a section of $EE(S^3 H)\Lambda^3 E$. Leaving the first two E-variables of $\text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))$ unchanged and contracting $\text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))$ with ω_E on $\Lambda^3 E$, as in (2), we get a section $\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))$ of $EE(S^3 H)E$.

To define $\mathcal{T}_{(S^3 H)\Lambda^3 E}(\eta)$ and $\mathcal{T}_{(S^3 H)E}(\eta)$ we project $\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))$ on $(S^3 H)\Lambda^3 E$ and then we project the result on $(S^3 H)\Lambda^3 E$ and $(S^3 H)E$ respectively, using the decomposition (3), with $r = 3$. Therefore,

$$\mathcal{T}_{(S^3 H)\Lambda^3 E}(\eta) := \text{pr}_{(S^3 H)\Lambda^3 E}(\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))). \tag{23}$$

Similarly,

$$\mathcal{T}_{(S^3 H)E}(\eta) := \omega_E \bullet \text{pr}_{(S^3 H)\Lambda^3 E}(\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\eta))) \tag{24}$$

is the contraction of $\text{pr}_{(S^3 H)\Lambda^3 E}(\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\eta)))$ with the symplectic form ω_E.

Proposition 6. The operators $\mathcal{T}_{(S^3 H)\Lambda^3 E}$ and $\mathcal{T}_{(S^3 H)E}$ defined by (23) and (24) are non-trivial on $T^*_\mathcal{C} M \otimes (S^2 H)\Lambda^3 E$.

Like in the proof of Proposition 3 we will show that $\mathcal{T}_{(S^3 H)\Lambda^3 E}(\gamma_0 \alpha_0)$ and $\mathcal{T}_{(S^3 H)E}(\gamma_0 \alpha_0)$ are non-zero. This is a consequence of the next Lemma.

Lemma 7. The following fact holds:

$$\text{pr}_{S^3 H\Lambda^3 E}(\omega_E \bullet \text{sym}^H(\omega_H \bullet \mathcal{T}(\gamma_0 \alpha_0))) = -\frac{6(n-1)}{4n-3} \text{sym}^H(\mathcal{Hh})(e_i \wedge \tilde{e}_i \wedge e_2) - \frac{4(4n^2 - 3n + 3)}{4n-3} \text{sym}^H(\mathcal{Hh})(e_1 \wedge e_2 \wedge \tilde{e}_1).$$

Proof. The proof goes as in Lemma 4. Applying definitions, we get:

$$\omega_E \bullet \text{sym}^H(\omega_H \bullet (\gamma_0 \alpha_0)) = 2n \text{sym}^H(\mathcal{Hh})(\tilde{e}_1 e_2 e_1 - \tilde{e}_1 e_1 e_2)$$

$$\omega_E \bullet \text{sym}^H(\omega_H \bullet (\gamma_0 \land \alpha_0(\cdot))) = (2n-4) \text{sym}^H(\mathcal{Hh})(e_1 \tilde{e}_1 e_2 - e_2 \tilde{e}_1 e_1)$$

$$+ 4 \text{sym}^H(\mathcal{Hh})(\tilde{e}_1 e_2 e_1 - \tilde{e}_1 e_1 e_2)$$

$$- 2 \text{sym}^H(\mathcal{Hh})(\tilde{e}_1 e_2 e_1 + e_2 \tilde{e}_1 e_1)$$

$$+ 2 \text{sym}^H(\mathcal{Hh})(e_2 e_1 \tilde{e}_1 + e_1 e_2 \tilde{e}_1)$$

$$\omega_E \bullet \text{sym}^H(\omega_H \bullet F) = \text{sym}^H(\mathcal{Hh})((4n-5)e_1 e_2 e_1 - (2n-3)e_1 e_2 e_1)$$

$$+ \text{sym}^H(\mathcal{Hh})(\tilde{e}_1 e_2 e_1 - 2e_2 e_1 \tilde{e}_1 + e_2 \tilde{e}_1 e_1 - \tilde{e}_2 \tilde{e}_1 e_1)$$

$$\omega_E \bullet \text{sym}^H(\omega_H \bullet G) = \text{sym}^H(\mathcal{Hh})(-2e_1 \tilde{e}_2 e_2 + e_2 e_1 \tilde{e}_1 - \tilde{e}_1 e_2 e_1 - e_1 e_2 \tilde{e}_1)$$

$$+ \text{sym}^H(\mathcal{Hh})(\tilde{e}_1 e_2 e_1 + e_2 \tilde{e}_1 e_1 + e_1 e_2 e_2 - e_2 \tilde{e}_1 e_1).$$
Combining (21) with these relations we get
\[
\omega_E \cdot \text{sym}^H (\omega_H \cdot T(\gamma_0 \alpha_0)) = \text{sym}^H (hh\tilde{h})(\beta_1 \tilde{e}_1 (e_1 \wedge e_2) + \beta_2 \tilde{e}_i e_2 e_i) \\
+ \text{sym}^H (hh\tilde{h})(\beta_3 e_2 (\tilde{e}_i \wedge e_i) + \beta_4 e_1 e_2 \tilde{e}_i) \\
+ \beta_5 \text{sym}^H (hh\tilde{h})(e_2 \tilde{e}_1 e_1 - e_1 \tilde{e}_1 e_2) \\
- \frac{\text{sym}^H (hh\tilde{h})}{4n-3}((4n-1)e_1 \tilde{e}_i e_2 + \tilde{e}_i e_1 e_2) \\
- \frac{2\text{sym}^H (hh\tilde{h})}{4n-3}(e_1 \wedge e_2)\tilde{e}_1,
\]
where the constants β_i are defined by
\[
\beta_1 = -\frac{2(16n^2 - 4n - 1)}{5(4n-3)}, \quad \beta_2 = -\frac{8n - 11}{5(4n-3)}, \quad \beta_3 = -\frac{8n - 1}{5(4n-3)}, \quad \beta_4 = \frac{18n - 11}{5(4n-3)}
\]
and
\[
\beta_5 = -\frac{2(4n^2 - 11n + 11)}{5(4n-3)}.
\]
Skew-symmetrizing $\omega_E \cdot \text{sym}^H (\omega_H \cdot (\gamma_0 \alpha_0))$ in the E-variables we obtain our claim.

\[\square\]

Corollary 8. Both $T_{(S^3H)\Lambda^3E}(\gamma_0 \alpha_0)$ and $T_{(S^3H)E}(\gamma_0 \alpha_0)$ are non-zero.

Proof. Since $\text{pr}_{S^3H \Lambda^3E} (\omega_E \cdot \text{sym}^H (\omega_H \cdot T(\gamma_0 \alpha_0)))$ is not a multiple of ω_E, $T_{(S^3H)\Lambda^3E}(\gamma_0 \alpha_0)$ is non-zero. On the other hand, using Lemma 7, it is easy to check that
\[
T_{(S^3H)E}(\gamma_0 \alpha_0) = \frac{4n(n+3)}{4n-3} \text{sym}^H (hh\tilde{h}) e_2.
\]

\[\square\]

Corollary 8 implies Proposition 6. Proposition 3 and Proposition 6 conclude the proof of our main result.

4 Acknowledgements

I am grateful to Paul Gauduchon for many useful discussions about conformal-Killing forms and to Uwe Semmelmann for his interest in this work. This work was supported by Consiliul National al Cercetarii Stiintifice din Invatamantul Superior, through a CNCSIS grant IDEI ”Structuri geometrice pe varietati diferentiabile”, [code 1187/2008].
References

[1] V. Apostolov, D. M. J. Calderbank, P. Gauduchon: *Hamiltonian 2-forms in Kähler geometry, I General Theory*, J. Diff. Geom., vol. 73, no 3 (2006), p. 359-412.

[2] R. Bryant: *Metrics with exceptional holonomy*, Ann. of Math., vol. 126, no. 2 (1987), p. 525-576.

[3] L. David, M. Pontecorvo: *A characterization of quaternionic-projective space by the conformal-Killing equation*, J. London Math. Soc., vol. 80 no. 2 (2009), p. 326-340.

[4] A. Moroianu, U. Semmelmann: *Twistor forms on Kähler manifolds*, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (5) 2 (2003), no. 4, p. 823-845.

[5] S. M. Salamon: *Quaternionic-Kähler manifolds*, Invent. Math. 67, no. 1 (1982), p. 143-171.

[6] U. Semmelmann: *Conformal-Killing forms in Riemannian geometry*, Math. Z. 245 no. 3 (2003), p. 503-527.

[7] A. Swann: *Aspects symplectiques de la geometrie quaternionique*, C. R. Acad. Paris, t. 308, Serie I, 1989, p. 225-228,

[8] A. Swann: *Some remarks on quaternion-Hermitian manifolds*, Archivum Math., vol. 33, no. 4 (1997), p. 349-354.