Diversity of butterflies (Lepidoptera: Rhopalocera) in Bhubaneswar, Odisha, India

Sabindra K. SAMAL*, Aryjit SATAPATHY, Nivedita PATTANAIK

B.J.B. Autonomous College, Department of Zoology, B.J.B. Nagar, Bhubaneswar - 751014, Odisha, India; sabindra.kr.samal@gmail.com (*corresponding author); aryjit89@gmail.com; nivedita.p22@gmail.com
All authors contributed equally to the work

Abstract

The loss and fragmentation of habitat caused by rapid urbanization can have devastating effects, both at regional and global level. In this study, butterfly species diversity has been assessed in Bhubaneswar, India, as a model geographical region for understanding the biology of the local population and its dynamics. In total 107 butterfly species have been documented, with the highest number of species being recorded from the family Nymphalidae (31.77%), followed by Lycaenidae (25.23%), Hesperiidae (23.36%), Pieridae (11.21%) and Papilionidae (8.41%). Out of these, 17 species are new reports for the city and nine species are legally protected in India under the Wildlife (Protection) Act, 1972. Sørensen’s diversity index and one-way ANOVA have been used to establish the relation between species diversity and habitat. The present investigation provides baseline data for future research and conservation of species in places like the model city, which face rapid urbanization.

Keywords: Bhubaneswar; butterfly diversity; conservation; Lepidoptera; new reports; scheduled species

Introduction

Order Lepidoptera comprises butterflies and moths which belong to the class Insecta (Kunte, 2000; Kawahara and Breinholt, 2014). Butterflies occupy a vital position in the ecosystem, acting as pollinators, pollution indicators, good source of food, and have aesthetic importance (Klein et al., 2007; Syaripuddin et al., 2015). Their studies have made significant contributions towards the understanding of biogeography, behaviour, coevolution, conservation, development, ecological genetics, global warming, mimicry, population ecology, sexual selection, speciation, symbiotic associations, and systematics (Aduse-Poku et al., 2015; Kozak et al., 2015; Kronforst and Papa, 2015; Manesi et al., 2015; Wang Wei et al., 2016; van Bergen et al., 2017). Mature and immature individuals that have narrow niches often show specificity towards their host plants (Tiple et al., 2011; Salz and Fartmann, 2017; Nallu et al., 2018; Verspagen et al., 2020).

Therefore, butterflies are regarded as good indicators of the quality of microhabitat and the extent of associated anthropogenic disturbances (Rusczczak and Silva, 1997; Kehimkar, 2016). Approximately, 18,768 species of butterflies have been recorded worldwide (Van Nieuwerken et al., 2011) and recent findings suggest that India hosts 1318 species in its subcontinent, out of which 89 species belong to Papilionidae, 277 species belong to Hesperiidae, 92 species belong to Pieridae, 19 species belong to Riodinidae, 380 species belong to Lycaenidae, and 461 species belong to Nymphalidae (Cotton et al., 2015; Kehimkar, 2016). Butterfly works in
Indian subcontinent are pioneered by Horsfield and Moore (1857). Marshall and Nicéville (1882), Colonel Bingham (1905, 1907) and Talbot (1939, 1947) studied butterflies in India and documented them in ‘The Fauna of British India’.

The state Odisha is situated at latitudes 17°49’-22°33’ N and longitudes 81°27’-87°57’ E in the eastern peninsula and experiences a tropical savanna climate with an average annual rainfall of 1450 mm to 1600 mm and an average annual temperature of 24.4 °C to 32.7 °C (India Meteorological Department, 2018: https://metnet.imd.gov.in/indnews/ar2018.pdf; Forest & Environmental Department, 2020: http://www.orienvis.nic.in/). Presence of distinct phytogeographical regions such as the Eastern Ghats, the Deccan Plateau and the coastal plains with tropical forest cover and deciduous forests are appropriate habitats for faunal diversity (Reddy et al., 2014). The faunistic works on butterflies of the state were pioneered by Taylor and Nicéville, where they prepared a list of butterfly species from Puri and Khurda district in 1888, followed by Crawford in 1921 from Sambalpur district. Annandale and Dover also recorded the butterfly species of Barkuda Island of Ganjam district in 1921 (Mandal and Nandi, 1983).

Though literature related to the butterfly diversity and abundance is available for the state (Mishra et al., 2010; Mohapatra et al., 2013; Priyamvada and Mohapatra, 2016; Boruah et al., 2018; Payra et al., 2019; Singh et al., 2020), the species diversity and conservation in relation to their habitats in the rapidly urbanizing city of Bhubaneswar is yet to be explored. As part of long-term conservation strategies, local population dynamics as well as species diversity become extremely important since habitat fragmentation and loss of microhabitat pose threats to population persistence (Thomas et al., 1992; Roy et al., 2010; Fernandez-Chacon et al., 2014; MacDonald et al., 2018). In the past decade, topology and climate of the city have changed significantly due to increased urbanization, decreased vegetation, and a rise in temperature owing to the interplay of biotic and abiotic factors (Swain et al., 2016; Gogoi et al., 2019). The study aims to document the butterfly species diversity in relation to their habitats such as open scrub, garden habitat, urban habitat, urban park, urban forest, fragmented forest, and cropland in the city and its outskirts. The present study documented a list of 107 butterfly species out of which 17 species are new reports for this region and nine species are enlisted under the Wildlife (Protection) Act, 1972 (WPA, 1972).

Materials and Methods

Study site

The study was conducted in Bhubaneswar and its outskirts in Khordha district of Odisha, India, covering approximately 440 km². The study range was divided into 11 different study sites and maps indicating the same were created using ArcGIS software (version 10.3) and Google Earth (Figure 1). The detailed information about Global Positioning System (GPS) coordinates, elevation, and habitats for each study sites are provided (Table 1). The study range is predominated by seven types of habitats (Figure 2).

Survey and monitoring methods

A survey and documentation of the study sites were conducted from July 2018 to August 2020. For data collection, opportunistic survey and random sightings were used along with modified Pollard walk method (Pollard and Yates, 1992; Royer et al., 1998; Wood and Gillman, 1998; Pellet et al., 2012). All observations were carried out between 6:30 hrs to 11:30 hrs and 14:30 hrs to 17:30 hrs in good weathered conditions. During the study tenure, each study site was visited at least two times in each quarter of a year. Information about the coordinates and elevation of study sites were obtained by using Google’s location services. Butterflies were photographed using Nikon gears (D3500 and D5300 DSLR cameras mounted with 18-55 mm and 70-300 mm Nikkor lenses), identified using field guides, books and the butterflies of India website (Kunte, 2000; Kehimkar, 2016; Smetacek, 2018; Butterflies of India, 2021: https://www.ifoundbutterflies.org/). The WPA, 1972 status of the butterflies were obtained from the database available at ENVIS Center on Wildlife &
Protected Areas (Scheduled Insect species, 2014: http://wiienvis.nic.in/). An entomological net was occasionally used and the butterflies were released unharmed to their natural habitat as soon as they were photographed. In this study none of the butterfly species were collected, euthanized or killed by any means. The host plants were identified and recorded as per the literature available (Karmakar *et al*., 2018; Nitin *et al*., 2018).

Figure 1. Maps indicating study sites: (1) Map of India indicating the state Odisha; (2) Map of the state Odisha indicating Khordha district; (3) Khordha district indicating the study sites of Bhubaneswar and its outskirts; (4) Google map indicating the topology of the study range with marked study sites S1-S11 are the study sites
Table 1. Physiographic information about the study sites of Bhubaneswar and its outskirts

Sl. no.	Study site	Name of the study site	GPS coordinates	Elevation	Habitats
1	S1	B. J. B. College Campus	20.2506° N, 85.8411° E	35m/115ft	Open scrub, Garden habitat, Urban habitat, Urban park
2	S2	Old Town	20.2388° N, 85.8346° E	36m/118ft	Urban habitat having roadside plantation
3	S3	Dhauli Village	20.1972° N, 85.8419° E	40m/131ft	Open scrub, Urban forest with water bodies
4	S4	Saheed Nagar	20.2910° N, 85.8456° E	43m/141ft	Urban habitat having roadside plantation
5	S5	Vani Vihar	20.3040° N, 85.8397° E	41m/135ft	Open scrub, Garden habitat, Urban forest
6	S6	Nayapalli	20.2977° N, 85.8060° E	58m/190ft	Open scrub, Garden habitat, Urban forest
7	S7	Ghangapatana and Deulipatana Villages	20.3088° N, 85.7308° E	46m/151ft	Open scrub, Fragmented forest having bamboo patches, Cropland
8	S8	Chandaka Village	20.3489° N, 85.7346° E	107m/351ft	Fragmented forest having bamboo patches, Cropland
9	S9	Raghunathpur	20.3958° N, 85.8260° E	23m/75ft	Open scrub, Fragmented forest, Cropland
10	S10	Surya Nagar	20.2698° N, 85.8131° E	40m/131ft	Urban habitat having roadside plantation
11	S11	Barunei	20.1611° N, 85.6461° E	130m/427ft	Open scrub, Urban forest, Fragmented forest

Figure 2. Types of habitats in the study range: (1) Open scrub; (2) Garden habitat; (3) Urban habitat; (4) Urban park; (5) Urban forest; (6) Fragmented forest; (7) Cropland

Statistical analysis

Sørensen’s method was applied to find the similarity between number of species in different study sites and one-way Analysis of Variance (ANOVA) was used to analyse the dependence of relative distribution of species on habitat.

Sørensen’s similarity index (β)

The Sørensen index is an indicator of similarity between two communities based on the number of common species shared by them. β can be defined as:

$$\beta = \frac{2c}{s1 + s2}$$
where, $s_1 =$ total number of species recorded in the first community, $s_2 =$ number of species recorded in the second community, and $c =$ number of species common to both communities.

The value of β lies between 0 and 1, wherein as the value approaches 0, the species overlap between the communities decrease and as the value moves towards 1, both the communities start having a greater number of shared species (Christopher, 2020). All the calculations were performed using Microsoft Excel (version 2019).

One-way ANOVA

It is used to determine the differences in the means of three or more independent groups. One-way ANOVA has been used in this study to establish a substantial relation between the variation in habitat and the species diversity by considering a null hypothesis (H_0) that the mean of family wise species diversity of each site is the same. The alternative hypothesis (H_1) is that at least one of the means is different. A significance level (α) of 0.05 implies a 5% risk of concluding that a difference exists when there is no actual difference. The variance ratio, F statistic (F_{stat}), probability value (P-value), and critical value of F distribution (F_{crit}) in the ANOVA table serve as the base to conclude the analysis. If $P < 0.05$ and the value of F_{stat} is more than F_{crit}, then the null hypothesis is rejected whereas if $P > 0.05$ and F_{stat} is less than F_{crit}, then the null hypothesis is accepted (Kim, 2017). In this study, one-way ANOVA was calculated using GraphPad Prism Software (version 5.0) and Microsoft Excel (version 2019).

Results

A total of 107 species of butterflies, belonging to 76 genera and five families (Papilionidae, Hesperiidae, Pieridae, Lycaenidae, and Nymphalidae) were recorded in this study whereas no butterflies from the families Hedylidae and Riodinidae were encountered during this study (Table 2). Information about host plants of the recorded butterfly species were enlisted (Table 3). Butterfly hierarchy was represented showing the number of species observed from each family (Figure 3). Photographs of each species categorised into their respective families were represented (Figure 4-8). Out of the total number of species recorded, nine species are legally protected in India under WPA, 1972, and 17 species are new reports for the city (Table 3). The highest number of species have been observed in Nymphalidae (34 species, 31.77%), followed by Lycaenidae (27 species, 25.23%), Hesperiidae (25 species, 23.36%), Pieridae (12 species, 11.21%), and Papilionidae (nine species, 8.41%) as illustrated (Figure 9A). The species to genus ratio (S/G) determines distribution of species among genera, and is calculated to be 3.000, 1.316, 1.500, 1.125, and 1.545 for Papilionidae, Hesperiidae, Pieridae, Lycaenidae, and Nymphalidae respectively (Figure 9B, Table 4). The family wise species distribution in different study sites showed that the highest number is observed in S8 (88 species) followed by S7 (77 species), S9 (74 species), S5 (63 species), S6 (48 species), S11 (43 species), S10 (42 species), S1 (36 species), S3 (34 species), S2 (31 species), and the lowest number is observed in S4 (27 species) as illustrated (Figure 9C). The distribution range of species number is found to be more scattered for Hesperiidae, Lycaenidae, and Nymphalidae as compared to Papilionidae and Pieridae (Figure 9D). According to the Sørensen’s similarity index, a maximum value of 0.896 is observed between study sites S1 and S2 whereas a minimum value of 0.470 is observed between study sites S4 and S8 (Table 5). One-way ANOVA data shows that F_{stat} value is 13.92, value of F_{crit} is 2.55, and $P < 0.05$ for butterfly species in different families within the study range. Between the butterfly species among the study sites the result shows that F_{stat} value is 2.34, value of F_{crit} is 2.05, and $P < 0.05$. In both the cases $P < 0.05$ and the value of F_{stat} is greater than the F_{crit} value (Table 6).
Table 2. List of butterflies with detailed information recorded during this study

Sl. no.	Family/Sub Family	Common name	Scientific name	Authority	Adult wing span (in mm)	WPA, 1972
1	Sub Family: Papilioninae	Blue mormon	*Papilio polymnestor*	Cramer, 1775	120 - 150	
2	Sub Family: Papilioninae	Common banded peacock	*Papilio crino*	Fabricius, 1793	80 - 100	
3	Sub Family: Papilioninae	Common jay	*Graphium doson*	(C. & R. Felder, 1864)	70 - 80	
4	Sub Family: Papilioninae	Common mime	*Papilio clytia*	Linnaeus, 1758	90 - 100	Sch I
5	Sub Family: Papilioninae	Common mormon	*Papilio polytes*	Linnaeus, 1758	90 - 100	
6	Sub Family: Papilioninae	Common rose	*Pachliopta aristolochiae*	(Fabricius, 1775)	80 - 110	
7	Sub Family: Hedylinae	Crimson rose	*Pachliopta hector*	Linnaeus, 1758	90 - 120	Sch I
8	Sub Family: Hedylinae	Lime	*Papilio demoleus*	Linnaeus, 1758	80 - 100	
9	Sub Family: Hedylinae	Tailed jay	*Graphium agamemnon*	(Linnaeus, 1758)	85 - 100	
10	Sub Family: Coeliadinae	Common banded awl	*Hasora chromus*	(Cramer, [1780])	45 - 50	
11	Sub Family: Coeliadinae	Plain banded awl	*Hasora vitta*	(Butler, 1870)	45 - 55	Sch IV
12	Sub Family: Hesperiinae	Bush hopper	*Ampittia discorides*	(Fabricius, 1793)	22 - 28	
13	Sub Family: Hesperiinae	Chestnut bob	*Iambris salala*	(Moore, [1866])	26 - 30	
14	Sub Family: Hesperiinae	Common grass dart	*Taractrocera maevius*	(Fabricius, 1793)	22 - 28	
15	Sub Family: Hesperiinae	Common redeye	*Matapa aria*	(Moore, [1866])	40 - 55	
16	Sub Family: Hesperiinae	Continental swift	*Parara gansa*	(Evans, 1937)	30 - 32	
17	Sub Family: Hesperiinae	Dark palm dart	*Telicota ancella*	(Moore, 1878)	33 - 36	
18	Sub Family: Hesperiinae	Grass demon	*Udaspes folus*	(Cramer, [1775])	40 - 48	
19	Sub Family: Hesperiinae	Indian palm bob	*Suastus gremius*	(Fabricius, 1798)	32 - 45	
20	Sub Family: Hesperiinae	Large branded swift	*Pelopidas subochracea*	(Moore, 1878)	38 - 42	
21	Sub Family: Hesperiinae	Lesser rice swift	*Borbo bevari*	(Moore, 1878)	32 - 36	
22	Sub Family: Hesperiinae	Little branded swift	*Pelopidas agra*	(Moore, [1866])	30 - 38	
23	Sub Family: Hesperiinae	Pale palm dart	*Telicota colon*	(Fabricius, 1775)	30 - 36	
24	Sub Family: Hesperiinae	Plain palm dart	*Cephrenes acalle*	(Höpfner, 1874)	45	
25	Sub Family: Hesperiinae	Purple redeye	*Matapa purpurascens*	Elwes & Edwards, 1897	48 - 54	
26	Sub Family: Hesperiinae	Rice swift	*Borbo cinnara*	(Wallace, 1866)	30 - 36	
27	Sub Family: Pyrginae	Small branded swift	*Pelopidas mathias*	(Fabricius, 1798)	32 - 38	
28	Sub Family: Pyrginae	Tree flitter	*Hyaratris adrasus*	(Stoll, [1780])	38 - 48	
29	Sub Family: Pyrginae	Wax dart	*Cupitha purrea*	(Moore, 1877)	28 - 33	
30	Sub Family: Pyrginae	Common small flat	*Sarangesa dasahara*	(Fabricius, [1866])	26 - 35	
31	Sub Family: Pyrginae	Golden angle	*Caprona ransonnetti*	(R. Felder, 1868)	35 - 45	
32	Sub Family: Pyrginae	Indian skipper	*Spialia galba*	(Fabricius, 1793)	22 – 27	
---	---	---	---	---		
33	Tricolour pied flat	Coladenia indrani	(Moore, [1866])	40 – 46		
34	Water snow flat	Tagiades litigiosa	Moschler, 1878	37 – 44		

Family Pieridae: The whites and yellows

Sub Family:	Changeable grass yellow	Eurema simulatrix	(Staudinger, 1891)	40 - 50
35	Common emigrant	Catopsilia pomona	(Fabricius, 1775)	55 - 80
36	Common grass yellow	Eurema hecabe	(Linnaeus, 1758)	40 - 50
37	Mottled emigrant	Catopsilia pyranthe	(Linnaeus, 1758)	50 - 70
38	One-spot grass yellow	Eurema andersonii	(Moore, 1886)	38 - 45
39	Three-spot grass yellow	Eurema blanda	(Boisduval, 1836)	40 - 45
40	Black veined albatross	Appias olferna	Swinhoe, 1890	55 - 65
41	Common gull	Cepora nerissa	(Fabricius, 1775)	40 - 65
42	Common jezebel	Delias eucharis	(Drury, 1773)	66 - 83
43	Common wanderer	Pareronia hippia	(Fabricius, 1787)	65 - 80
44	Psyche	Leptosia nina	(Fabricius, 1793)	35 - 50
45	Yellow orange-tip	Ixias pyrene	(Linnaeus, 1764)	50 - 70

Family Riodinidae: The Metal-markers. No butterflies were recorded during this study

Family Lycaenidae: The gossamer-winged butterflies

Sub Family:	Sub Family:	Indian sunbeam	Curetis thetis	(Drury, [1773])	40 - 48
Curetinae	Curetinae	Black-spotted grass jewel	Freyeria putli	(Kollar, [1844])	12 - 18
47	Curetinae	Common cerulean	Jamides celeno	(Cramer, [1775])	27 - 40
48	Curetinae	Common hedge blue	Aegytolepis puspa	(Horsfield, [1828])	28 - 35
49	Curetinae	Common lineblue	Aegytolepis puspa	(Horsfield, [1828])	28 - 35
50	Curetinae	Common pierrot	Castalius rosinon	(Fabricius, 1775)	24 - 34
51	Curetinae	Dark cerulean	Jamides bochus	(Stoll, [1782])	25 - 34
52	Curetinae	Dark grass blue	Zizeeria karsandra	(Moore, 1865)	18 - 24
53	Curetinae	Forget-me-not	Catopyrolyca strabo	(Fabricius, 1793)	25 - 35
54	Curetinae	Gram blue	Euchrysops ceneus	(Fabricius, 1798)	25 - 33
55	Curetinae	Lesser grass blue	Zizina otis	(Fabricius, 1787)	19 - 26
56	Curetinae	Lime blue	Chilades laius	(Stoll, [1780])	26 - 30
57	Curetinae	Little tiger pierrot	Tarucus balkanica	(Freyer, 1844)	21 - 24
58	Curetinae	Pale grass blue	Pseudozizeeria maha	(Kollar, [1844])	26 - 30
59	Curetinae	Pea blue	Lampides boeticus	(Linnaeus, 1767)	24 - 36
60	Curetinae	Plains cupid	Luthrodes pandava	(Horsfield, 1829)	25 - 33
61	Curetinae	Pointed ciliate blue	Anthene lycaenina	(Felder, 1868)	24 - 29
62	Curetinae	Quaker	Neopithecops zalmora	(Burler, [1870])	16 - 30
63	Curetinae	Silver forget-me-not	Catopyrolyca strabo	(Fabricius, 1793)	25 - 35
	Sub Family	Common Name	Scientific Name	Author	Range
---	------------	------------------------------	--	-------------------	---------
66	Sub Family: Theclinae	Striped pierrot	*Tanucus nara* (Kollar, 1848)		16 - 28
67	Sub Family: Theclinae	Tiny grass blue	*Zizula hylax* (Fabricius, 1775)		16 - 24
68	Sub Family: Theclinae	Common silverline	*Spindasis vulcanus* (Fabricius, 1775)		26 - 34
69	Sub Family: Theclinae	Falcate oakblue	*Mahathala ameria* (Hewitson, 1862)		38 - 42 Sch II
70	Sub Family: Theclinae	Monkey puzzle	*Rathinda amor* (Fabricius, 1775)		26 - 28
71	Sub Family: Theclinae	Purple leaf blue	*Amblypodia anita* (Hewitson, 1862)		45 - 52
72	Sub Family: Theclinae	Slate flash	*Rapala manca* (Hewitson, 1863)		30 - 33
73	Sub Family: Theclinae	Yamfly	*Loxura azynius* (Stoll, 1780)		36 - 40

Family Nymphalidae: The brush-footed butterflies

	Sub Family: Biblidinae	Common Name	Scientific Name	Author	Range
74	Sub Family: Biblidinae	Angled castor	*Ariadne ariadne* (Moore, 1884)		45 - 60
75	Sub Family: Biblidinae	Common castor	*Ariadne merione* (Cramer, [1777])		45 - 60
76	Sub Family: Charaxinae	Common nawab	*Polyura athamas* (Drury, 1773)		60 - 75
77	Sub Family: Danaina	Common crow	*Euploea core* (Cramer, [1780])		85 - 95
78	Sub Family: Danaina	Blue tiger	*Tirumala linnaea* (Cramer, [1775])		90 - 100
79	Sub Family: Danaina	Glassy tiger	*Parantica aglea* (Stoll, [1782])		70 - 85
80	Sub Family: Danaina	Plain tiger	*Danaus chrysippus* (Linnaeus, 1758)		70 - 80
81	Sub Family: Danaina	Striped tiger	*Danaus genutia* (Cramer, [1779])		72 - 100
82	Sub Family: Heliconinae	Common leopard	*Phalanta phalantha* Drury, 1773		50 - 60
83	Sub Family: Heliconinae	Tawny coster	*Acrea terpsicore* (Linnaeus, 1758)		50 - 65
84	Sub Family: Limenitidinae	Baronet	*Symphaedra nais* (Forster, 1771)		60 - 70
85	Sub Family: Limenitidinae	Chestnut-streaked sailor	*Neptis jumbah* Moore, [1858]		60 - 70
86	Sub Family: Limenitidinae	Commander	*Moduza proctes* (Cramer, [1777])		60 - 75
87	Sub Family: Limenitidinae	Common baron	*Euthalia aconthea* (Cramer, [1777])		55 - 80
88	Sub Family: Limenitidinae	Common lascar	*Pantoporia hordonia* (Stoll, [1790])		45 - 50
89	Sub Family: Limenitidinae	Common sailor	*Neptis hylas* (Linnaeus, 1758)		50 - 60
90	Sub Family: Morphinae	Common duffer	*Discophora sondaica* Boisduval, 1836		80 - 90 Sch I
91	Sub Family: Morphinae	Blue pansy	*Junonia orithya* (Linnaeus, 1758)		45 - 60
92	Sub Family: Morphinae	Chocolate pansy	*Junonia iphita* (Cramer, [1779])		55 - 80
93	Sub Family: Nymphalinae	Danaid eggfly	*Hypolimnas misippus* (Linnaeus, 1764)		70 - 85
94	Sub Family: Nymphalinae	Great eggfly	*Hypolimnas bolina* (Linnaeus, 1758)		70 - 110
95	Sub Family: Nymphalinae	Grey pansy	*Junonia atlites* (Linnaeus, 1763)		55 - 60
96	Sub Family: Nymphalinae	Lemon pansy	*Junonia lemonias* (Linnaeus, 1758)		40 - 60
97	Sub Family: Nymphalinae	Painted lady	*Vanessa cardui* (Linnaeus, 1758)		55 - 70
98	Sub Family: Nymphalinae	Peacock pansy	*Junonia almana* (Linnaeus, 1758)		60 - 65
99	Sub Family: Nymphalinae	Bamboo tree brown	*Lethoe europa* (Fabricius, 1787)		65 - 75
100	Sub Family: Satyrinae	Common bushbrown	*Mycasis perseus* (Fabricius, 1775)		38 - 55
101	Sub Family: Satyrinae	Common evening brown	*Melanitis leda* (Linnaeus, 1758)		60 - 80
102	Sub Family: Satyrinae	Common four-ring	*Ypthima huchneri* Kirby, 1871		30 - 40
103 Common palmfly
Elymnias hypermnestra (Linnaeus, 1763) 60 - 80

104 Common three-ring
Ypthima asterope (Klug, 1832) 30 - 37

105 Dark-branded bushbrown
Mycalesis mineus (Linnaeus, 1858) 40 - 50

106 Dark evening brown
Melanitis phedima (Cramer, [1780]) 60 - 70

107 White four-ring
Ypthima ceylonica Hewitson, [1865] 30 - 35

Species marked with (^) reported for the first time from Bhubaneswar. Species marked with (d) is long range migratory species. mm, millimeter; Sch, Scheduled species; WPA, 1972, The Wildlife (Protection) Act, 1972.

Table 3. Host plant list of the recorded butterfly species

Sl. no.	Butterfly species	Family	Host plant	Scientific name
1	*Papilio polyestor*	Rubiaceae	i) Jungle geranium	
ii) Pomelo	i) *Ixora coccinea*			
i) *Citrus maxima*				
2	*Papilio crino*	Rutaceae	a) East Indian satinwood	
b) a) Lemon				
b) Champak/Champa	a) *Citrus limon*			
b) *Chloroxylon swietenia*				
3	*Graphium doson*	Annonaceae	i) Pond apple	
b) Hoom				
c) False Ashoka/Buddha tree				
d) Southern Magnolia/Him champa	i) *Annona glabra*			
b) *Milia tomentosa*				
c) *Polyalthia longifolia*				
d) *Magnolia grandiflora*				
4	*Papilio clytia*	Lauraceae	a) Camphor tree/Camphorwood	
b) Indian bay leaf	a) *Cinnamomum camphora*			
b) *Cinnamomum tamala*				
5	*Papilio polytes*	Rutaceae	a) Bael/Wood apple	
b) Curry leaf tree				
c) Citron/Galgal				
d) Persian lime	a) *Aegle marmelos*			
b) *Murraya koenigii*				
c) *Citrus medica*				
d) *Citrus latifolia*				
6	*Pachliopta aristolochiae*	Aristolochiaceae	a) Indian birthwort	
b) Calico flower/Pipe vine				
c) Chakrani	a) *Aristolochia indica*			
b) *Aristolochia littoralis*				
c) *Thotka siligoua*				
7	*Pachliopta hector*	Aristolochiaceae	a) Indian birthwort	
b) Calico flower/Pipe vine	a) *Aristolochia indica*			
b) *Aristolochia littoralis*				
8	*Papilio demoleus*	i) Fabaceae		
ii) Rhamnaceae				
iii) Rutaceae	i) Babchi/Kushranashini			
ii) Jujube/Indian plum				
iii) a) Bael/Wood apple				
b) East Indian Satinwood				
c) Citron/Galgal				
d) Elephant-apple/Kaith				
e) Curry leaf tree	i) *Psoralea corylifolia*			
i) *Ziziphus mauritiana*				
iii) *Aegle marmelos*				
ii) *Chloroxylon swietenia*				
c) *Citrus medica*				
d) *Limonia acidissima*				
e) *Murraya koenigii*				
9	*Graphium agamemnon*	i) Annonaceae		
ii) Magnoliaceae	i) Pond apple			
b) Hoom				
c) False Ashoka/Buddha tree				
d) Corky debbar tree				
e) Champak/Champa	i) *Annona glabra*			
b) *Milia tomentosa*				
c) *Polyalthia longifolia*				
d) *Polyalthia suberosa*				
e) *Michelia champaca*				
10	*Hasora chromus*	Fabaceae	Karanja/Indian beech	*Milletta pinnata*
11	*Hasora vitta*	Fabaceae	a) Arge-leaf pongam	
b) Ardhga/Swardhang	a) *Milletta exensa*			
b) *Endosanara racemose*				
12	*Ampittia dioscorides*	Poaceae	Asian rice	*Oryza sativa*
13	*Iambrix salala*	Poaceae	a) Indian thorny bamboo	
b) Para grass/Buffalo grass	a) *Bambusa arundinacea*			
b) *Brachia rautica*				
14	*Taractrocera maevius*	Poaceae	Asian rice	*Oryza sativa*
15	Matapa aria	Poaceae	Indian thorny bamboo	Bambusa arundinacceae
16	Parnara ganga	Poaceae	Asian rice	Oryza sativa
17	Telicota aneilla	Poaceae	a) Sugarcanes	a) Saccharum sp.
18	Udaspes fons	i) Costaceae	i) Crepe ginger	i) Costus speciosus
19	Suastus gremius	Arccaceae	a) Queen palm	a) Arecastrum romanziiflumum
20	Pelopidas subochracea	Poaceae	Carpet grass	Axonopus compressus
21	Borbo bevani	Poaceae	a) Sugarcanes	a) Saccharum sp.
22	Pelopidas agna	Poaceae	a) Carpet grass	a) Axonopus compressus
23	Telicota colon	Poaceae	Sugarcane	Saccharum officinarum
24	Cephrenes acalle	Arccaceae	a) Coconut tree	a) Cocos nucifera
25	Matapa purpurascens	Asteraceae	Siam weed/Tibra gandha	Chromolaena odorata
26	Borso cinnara	Poaceae	a) Para草/ Buffalo grass	a) Brachiaria mutica
27	Pelopidas mathias	Poaceae	a) Sugarcane	a) Saccharum officinarum
28	Hyarotis adrestus	Arccaceae	Rattan palms	Calamus sp.
29	Cupitha purrea	Combretaceae	a) Rangoon creeper	a) Combretum indicum
30	Sarangesa dasahara	Acanthaceae	a) Violet asystasia	a) Asystasia dalzelliana
31	Caprona ransonneti	Malvaceae	Indian screw tree	Helicteres isora
32	Spialia galba	i) Malvaceae	i) a) Common wireweed	i) a) Sida acuta
33	Coladenia indrani	ii) Malvaceae	ii) b) Chocolateweed	ii) Waltheria indica
34	Tagiades litigiosa	i) Dioscoreaceae	i) a) Bidi leaf tree	i) Buthinia racemosa
35	Eurema simulatrix	Fabaceae	Golden shower/Indian laburnum	Cassia fistula
36	Catopsilia pomona	i) Apocynaceae	i) Conkerberry/Bush plum	i) Carissa spinarum
37	Eurema hecabe	Fabaceae	a) Rain tree/ Monkey pod	a) Allistia saman
38	Catopsilia pyranthe	i) Apocynaceae	i) Conkerberry/Bush plum	i) Carissa spinarum
39	Eurema andersonii	Rhamnaceae	Toothed-leaf red creeper	Ventilago denticulata
40	Eurema blandia	Fabaceae	Purple orchid tree	Bauhinia purpurea
41	Appias olferna	Capparaceae	Fringed spider flower	Cleome rutidosperma
No.	Species	Family	Common Names
42	Cepora nerissa	Capparaceae	a) Caper shrubs/Caperbushes
b) Ceylon caper	a) Capparis sp.		
43	Delias eucharis	Lorantheaee/iii	i) Honey suckle mistletoe
ii) Neem	i) Dendrophthoe falkata		
		Melliaceae	
44	Pateronia hippia	Capparaceae	a) Caper shrubs/Caperbushes
b) Ceylon caper	a) Capparis sp.		
45	Leptosia nina	Capparaceae	a) Fringed spiderflower/Purple clemone
b) Asian spiderflower/Tick weed			
c) Caper shrubs/Caper bushes	a) Cleome rutidosperma		
46	Ixias pyrene	Capparaceae	a) Spreading caper
b) Wild caper bush	a) Capparis divaricata		
47	Curetis thetis	Fabaceae	a) Jequirity bean/Rosary pea
b) Flame-of-the-forest/Palash			
c) Karanja/Indian beech	a) Abrus precatorius		
48	Freyeria putli	i) Asteraceae	i) Tridax daisy
ii) Boraginaceae			
iii) Fabaceae	i) Tridax procumbens		
49	Jamides celeno	i) Fabaceae	i) a) Ashoka tree
b) Mung bean/Green gram			
ii) Green/True cardamom	i) a) Saraca asoca		
50	Acyroptis puspa	ii) Phyllanthaceae	i) Mexican lilac
ii) Spinosus kino tree			
iii) Kurpa	i) Gliricidia sepium		
		iii) Sapindaceae	
51	Prosotas nora	i) Euphorbiaceae	i) Kamala/Kumkum tree
ii) Twisted acacia			
iii) Indian alophylos/Tit berry	i) Mallotus philippensis		
		ii) Mimosaceae	
		iii) Sapindaceae	
52	Castulus rosinmon	Rhamnaceae	a) Jujube/Red date
b) Jhar beri	a) Ziziphus ziziba		
53	Jamides bochus	Fabaceae	a) Ashoka tree
b) Burma ironwood	a) Saraca asoca		
54	Zizeeria karsandra	i) Amaranthaceae	i) Spiny amaranthus
ii) Lotus sweetjuice			
iii) Common knotweed			
iv) Bindii	i) Amaranthus spinosus		
		ii) Molluginaceae	
		iii) Polygonaceae	
		iv) Zygophyllaceae	
55	Catohrysops strabo	i) Fabaceae	i) a) Asian tick trefoil
b) Karanja/Indian beech			
c) Common tephrosia			
ii) Indian Allophylus/Tit berry	i) a) Desmodium heterocarpum		
		ii) Sapindaceae	
56	Euchrysops cneaus	Fabaceae	a) Flame-of-the-forest/Palash
b) Sword bean	a) Butea monosperma		
57	Zizina otis	Fabaceae	a) Asian tick trefoil
b) Chinchani/Kansevari			
c) Three-leaf indigo	a) Desmodium heterophyllum		
58	Chilades lajus	Rutaceae	a) Sweet lemon
b) Lemon			
c) Pomelo			
ii) Kamini/Orange jasmine	a) Citrus limetta		
59	Tarucus balkanica	Rhamnaceae	a) Jujuba/Red date
b) Jhar beri	a) Ziziphus jujuba		
60	Pseudozizereria maha	Oxalidaceae	Creeping woodsorrel
62	Luthrodes pandava	i) Cycadaceae	
ii) Fabaceae	i) a) Queen sago		
b) Nepal cycas/Thaljimura			
ii) a) Malu creeper/Adda leaf			
b) Orchid tree			
c) Sword bean			
d) Ashoka tree	i) a) Cycas circinalis		
b) Cycas pectinata			
c) Cycas revoluta			
ii) a) Bauhinia vahlii			
b) Bauhinia variegata			
c) Canavalia gladiata			
d) Saraca asoca			
63	Anthene lycaenina	i) Anacardiaceae	
ii) Euphorbiaceae			
iii) Fabaceae	i) Chironji/Charoli		
ii) Putranjiva			
iii) a) Rosewood/Indian palisandre			
b) Shikakai	i) Buchanania lancea		
ii) Drypetes roxburghii			
iii) a) Dalbergia latifolia			
b) Acacia concinna			
64	Neopithecops zalmora	Rutaceae	
Orange berry/Gin berry	Glycosmis pentaphylla		
65	Catohrysops panormus	Fabaceae	
Large leaf fleminga	Flemingia macrophylla		
66	Tarucus nara	Rhamnaceae	a) Jujuba/Red date
b) Jhar beri	a) Ziziphus jujuba		
b) Ziziphus nummularia			
67	Zizula hylax	i) Acanthaceae	
ii) Verbenaceae	a) Temple plant/Marsh barbel		
b) Desert petunia			
ii) Raimuniya	a) Hygrophila auriculata		
b) Ruellia simplex			
c) Lantana camara			
68	Spindasis vulcanus	i) Apocynaceae	
ii) Dioscoreaceae			
iii) Fabaceae			
v) Rhamnaceae	a) Bengal currant/Karanda		
b) Bana alu/Pita alu			
iii) Golden shower/Indian laburnum			
v) Jujube/Red date	a) Carissa carandas		
b) Dioscorea wallichii			
c) Cassia fistula			
v) Ziziphus zuzuba			
69	Mahathala anergia	Euphorbiaceae	
Climbing liana	Mallotus repandus		
70	Rathinda amor	i) Anacardiaceae	
ii) Lecythidaceae			
iii) Rubiaceae			
iv) Sapindaceae	i) Mango		
ii) Wild guava			
iii) Jungle geranium			
v) Litchi	i) Mangifera indica		
ii) Carica papaya			
ii) Ixora coccinea			
v) Litchi chinensis			
71	Amblypodia anita	Olacaceae	
South Asian olax	Olax imbricata		
72	Rapala manea	i) Combretaceae	
ii) Lamiaceae			
iii) Verbenaceae	i) Rangoon creeper		
ii) Bhat/Hill glory flower			
iii) Raimuniya	i) Combretum indicum		
ii) Clerodendrum infortunatum			
iii) Lantana camara			
73	Loxura atymnus	i) Dioscoreaceae	
ii) Smilacaceae	i) Five-leaf yam		
b) Kumaria	i) Dioscorea pentaphylla		
b) Smilax zeylanica			
74	Ariadne ariadne	Euphorbiaceae	a) Castor bean/Castor
b) Indian stinging nettle	a) Ricinus communis		
b) Tragia involucrata			
75	Ariadne merione	Euphorbiaceae	a) Castor bean/Castor
b) Indian stinging nettle	a) Ricinus communis		
b) Tragia involucrata			
76	Polyura athamas	Fabaceae	a) Twisted acacia
b) Royal poinciana/Gulmohar			
c) Woman's tongue tree	a) Acacia torta		
b) Delonix regia			
c) Albizia lebbeck			
77	Euploea core	i) Apocynaceae	
ii) Moraceae			
iii) Sapotaceae	i) a) Desert rose		
b) Bengal currant/Karanda			
c) Oleander			
ii) a) Indian rock fig/Rock peepal			
b) Indian banyan			
c) Indian fig tree/Gular			
iii) Spanish cherry	i) Adenium obesum		
b) Carissa carandas			
c) Nerium oleander			
ii) a) Ficus arnottiana			
b) Ficus benghalensis			
c) Ficus racemosa			
iii) Mimusops elengi			
78	Tirumala limniace	Apocynaceae	a) Apple of sodom/Arak
b) Tropical milkweed/Bloodflower			
c) Bread flower	a) Calotropis procera		
b) Asclepias curassavica			
c) Vallaris solanacea			
79	Parantica aglea	Apocynaceae	a) Crown flower
b) Bulbous ceropegia	a) Calotropis gigantea		
b) Ceropegia bulbosa			
	Common Name	Family	Scientific Name
---	-------------	--------	-----------------
80	Danaus chrysippus	Apocynaceae	a) Crown flower b) Tropical milkweed/Bloodflower c) Balloon plant
81	Danaus genutia	Apocynaceae	Tropical milkweed/Bloodflower
82	Phalanta phalantha	Salicaceae	a) Governor's plum/Batoko plum b) Indian coffee plum c) Mountain sweet thorn
83	Acras terpsicore	a) Passifloraceae ii) Violaceae	i) a) Stinking passionflower b) White buttercup ii) Spade flower
84	Symphaedra nais	a) Ebenaceae ii) Malvaceae	i) a) Governor's plum/Batoko plum b) Indian coffee plum c) Mountain sweet thorn
85	Danaus genutia	Apocynaceae	Tropical milkweed/Bloodflower
86	Moduza prociris	i) Capparaceae ii) Rubiaceae	i) a) Ashanti blood/Red flag bush b) Dholi tree/Mussaenda c) Buffleflower-tree/Kadamb
87	Euthalia aconthea	Anacardiaceae	i) a) Cashew b) Mango
88	Pantophobia hordonia	Fabaceae	a) Golden shower/Indian laburnum b) Indian rosewood
89	Neptis jumbah	Fabaceae	a) Golden shower/Indian laburnum b) Indian rosewood
90	Discophora sondaica	Poaceae	a) Indian oak b) Indian willow
91	Junonia orithya	i) Acanthaceae ii) Moraceae	i) a) Philippine violet b) Water willow c) Roundleaf kariyat
92	Hypolimnas misippus	i) Acanthaceae ii) Malvaceae iii) Salicaceae	i) a) Cashew b) Mango c) Indian willow
93	Hypolimnas bolina	Urticaceae	a) Indian oak b) Indian willow
94	Hypolimnas bolina	Urticaceae	a) Indian oak b) Indian willow
95	Junonia almana	Acanthaceae	a) Philippine violet b) Marsh barbel/Kokilaksha
96	Junonia almana	Acanthaceae	a) Philippine violet b) Water willow c) Roundleaf kariyat
97	Vanessa cardui	i) Acanthaceae ii) Fabaceae iii) Papaveraceae	i) a) Coatbuttons/Tridax daisy b) Two-leaf zornia c) Mexican prickly poppy
98	Junonia almana	Acanthaceae	a) Philippine violet b) Marsh barbel/Kokilaksha
99	Lethe europa	Poaceae	a) Bamboo b) Running mountain grass
100	Mycalesis perseus	Poaceae	a) Running mountain grass b) Barnyard grass/Cockspur grass
101	Melanitis leda	Poaceae	a) Maize/Corn b) Indian thorny bamboo c) Indian goosegrass
102	Ypthima huebneri	Poaceae	a) Areca palm b) Golden cane palm c) Silver date palm/Indian date d) Macarthur palm
103	Elymnias hypermnestra	Arecales	a) Areca palm b) Golden cane palm c) Silver date palm/Indian date d) Macarthur palm
No.	Species	Family	Genus observed
-----	------------------------------	-------------	----------------
104	*Ypthima asterope*	Poaceae	
105	*Mycalesis mineus*	Poaceae	Bermuda grass/Duba ghasa
106	*Melanitis phedima*	Poaceae	a) Running mountain grass
			b) Palmgrass/Knotroot
107	*Ypthima ceylonica*	Poaceae	Corn grass

Figure 3. Hierarchy of butterfly indicating the number of species observed in this study
Adapted from Van Nieukerken et al. (2011)

Figure 4. Photographs of butterfly species belonging to the family Papilionidae recorded in this study: (1) *Papilio polymnestor*; (2) *Papilio crino*; (3) *Graphium doson*; (4) *Papilio clytia*; (5) *Papilio polytes*; (6) *Pachliopta aristolochiae*; (7) *Pachliopta hector*; (8) *Papilio demoleus*; (9) *Graphium agamemnon*
Figure 5. Photographs of butterfly species belonging to the family Hesperiidae recorded in this study: (1) Hasora chromus; (2) Hasora vitta; (3) Ampittia dioscorides; (4) Lambrux salsala; (5) Taractrocera maevius; (6) Matapa aria; (7) Parmara ganga; (8) Telicota aneilla; (9) Udaspes folus; (10) Suastus gremius; (11) Pelopidas subochracea; (12) Borbo bevanti; (13) Pelopidas agna; (14) Telicota colon; (15) Cephenes acalle; (16) Matapa purpurascens; (17) Borbo cinnara; (18) Pelopidas mathias; (19) Hyarotis adrastus; (20) Cupitha purrea; (21) Sarangesa dasahara; (22) Caprona ransonnetti; (23) Spialia galba; (24) Coladenia tindrani; (25) Tagiades litigiosa
Figure 6. Photographs of butterfly species belonging to the family Pieridae recorded in this study: (1) *Eurema simulatrix*; (2) *Catopsilia pomona*; (3) *Eurema hecabe*; (4) *Catopsilia pyranthe*; (5) *Eurema andersonii*; (6) *Eurema blanda*; (7) *Appias olferna*; (8) *Cepora ncalla*; (9) *Delias eucharis*; (10) *Parchonia hippia*; (11) *Leptosia nina*; (12) *Ixia pyrene*
Figure 7. Photographs of butterfly species belonging to the family Lycaenidae recorded in this study: (1) Curetis thetis; (2) Freyeria putli; (3) Jamides celeno; (4) Acyroplepis puspa; (5) Prosotas nora; (6) Castalus rosimon; (7) Jamides bochus; (8) Zizeeria karsandra; (9) Catochrysops strabo; (10) Euchrysops cneus; (11) Zizina otis; (12) Chilades laius; (13) Tarucus balkanica; (14) Pseudozizeeria maha; (15) Lampides boeticus; (16) Luthrodes pandava; (17) Anthene lycaenina; (18) Neopithecops zalmora; (19) Catochrysops panormus; (20) Tarucus nara; (21) Zizula hylax; (22) Spindasis vulcanus; (23) Mahathala ameria; (24) Rathinda amor; (25) Amblypodia anita; (26) Rapala manea; (27) Loxura aymnas
Figure 8. Photographs of butterfly species belonging to the family Nymphalidae recorded in this study: (1) Ariadne ariadne; (2) Ariadne merione; (3) Polyura athamas; (4) Euploea core; (5) Tirumala limniace; (6) Parantica aglea; (7) Danaus chrysippus; (8) Danaus genutia; (9) Phalanta phalantha; (10) Actaea terpsicore; (11) Symphaedra nais; (12) Neptis jumbah; (13) Moduza procris; (14) Euthalia aconthea; (15) Pantoporia hordonia; (16) Neptis hylas; (17) Discophora sondaica; (18) Junonia orithya; (19) Junonia iphita; (20) Hypolimnas misippus; (21) Hypolimnas bolina; (22) Junonia ataltes; (23) Junonia leonidas; (24) Vanessa cardui; (25) Junonia almana; (26) Lethe europa; (27) Mycalesis perseus; (28) Melanitis leda; (29) Ypthima huebneri; (30) Elymnias hypermnestra; (31) Ypthima asterope; (32) Mycalesis mineus; (33) Melanitis phedima; (34) Ypthima ceylonica
Figure 9. Butterfly species distribution reported in 11 different study sites: (A) Family wise distribution (%) of species; (B) Species to genus ratio (S/G) observed in this study; (C) Number of species distributed in each study site; (D) Cluster graph showing family wise distribution range of species number in 11 different study sites

S. Study sites; *, Lowest species distribution; **, Highest species distribution
Table 4. Species to genus ratio for the recorded species in this study

Sl. no	Family name	No. of Genus (G)	No. of Species (S)	S/G
1	Papilionidae	3	9	3.000
2	Hesperiidae	19	25	1.316
3	Pieridae	8	12	1.500
4	Lycaenidae	24	27	1.125
5	Nymphalidae	22	34	1.545

Table 5. Sørensen’s similarity index for butterfly species recorded in the study sites

Study site	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
S1		0.896 *	0.857	0.730	0.687	0.762	0.602	0.565	0.618	0.718	0.734
S2	0.896 *		0.862	0.793	0.617	0.734	0.556	0.521	0.571	0.712	0.703
S3	0.857	0.862		0.852	0.660	0.756	0.595	0.541	0.593	0.684	0.753
S4	0.730	0.793	0.852		0.578	0.693	0.500	0.535	0.580	0.657	
S5	0.687	0.617	0.660	0.578		0.775	0.743	0.689	0.745	0.667	0.623
S6	0.762	0.734	0.756	0.693	0.775		0.688	0.618	0.689	0.689	0.681
S7	0.602	0.556	0.595	0.500	0.743	0.688		0.824	0.848	0.639	0.650
S8	0.565	0.521	0.541	0.470 ^	0.689	0.618	0.824		0.852	0.600	0.611
S9	0.618	0.571	0.593	0.535	0.745	0.689	0.848	0.852		0.621	0.650
S10	0.718	0.712	0.684	0.580	0.667	0.689	0.639	0.600	0.621		0.588
S11	0.734	0.703	0.753	0.657	0.623	0.681	0.650	0.611	0.650	0.588	

Similarity index value marked (*) is highest and marked (^) is the lowest. S1-S11, study sites.

Table 6. Results of one-way ANOVA based on the site wise and family wise distribution of species number

Source of variation	SS	df	MS	F stat	P-value	F crit
Between groups	872.33	10	87.23	2.34	0.026 *	2.05
Within groups	1641.6	44	37.31			
Total	2513.9	54	47.54			

Source of variation	SS	df	MS	F stat	P-value	F crit
Between groups	1324.8	4	331.21	13.92	< 0.0001 **	2.55
Within groups	1189.1	50	23.78			
Total	2513.9	54	47.54			

ANOVA, analysis of variance; SS, sum of squares; df, degrees of freedom; MS, mean squares; F stat, F statistic; P-value, probable value; F crit, critical value of F distribution. F stat values are significant at p < 0.05.

Discussion

Out of the total 107 species documented, three species (Papilio clytia, Pachliopta hector and Hypolimnas misippus) are listed in Schedule I, four species (Euchrysops cnejus, Lampides boeticus, Anthene lycænina and Mahathala ameria) in Schedule II and two species (Hasora vitta and Hyarotis adrasus) in Schedule IV of WPA, 1972. The study shows highest S/G ratio for Papilionidae, probably due to their less genetic diversity as compared to other four families. Highest species diversity is observed in the study sites (S8, S7, and S9 respectively), which are mainly dominated by fragmented forest, open scrubs, and croplands having...
many host plants to sustain their lifecycle. Least number of butterfly species was recorded in the study sites S2 and S4 comprising urban habitat with continuous anthropogenic activities and less availability of host plants. 17 species are new additions to the existing butterfly data of Bhubaneswar. In this study, Painted Lady (Vanessa cardui) is reported only once in the month of April 2019, which could be a result of its well-known long-range migration (Stefanescu et al., 2016). The cluster is more scattered in case of Hesperiidae, Lycaenidae, and Nymphalidae as these families exhibit a greater number of species as compared to Papilionidae and Pieridae. Sørensen’s similarity index showed the highest value between the study sites S1 and S2 indicating the highest species overlap, perhaps because they are in close proximity and share a similar type of habitat. Least Sørensen’s similarity index has been recorded between the sites S4 and S8 which might be due to the presence of contrasting habitats. One-way ANOVA data suggest there is a significant variation between the butterfly species of different families within the study range. Moreover, a significant variation is observed between the butterfly species among the study sites. The ANOVA results show that the $P < 0.05$ and the value of F statistic is greater than the critical value of F distribution, thereby rejecting the null hypothesis. Butterflies are an integral part of our ecology and play an important role in maintaining the ecological balance. The present documentation provides a reference point and opens new ways of analytical research scopes. Researchers would find better sustainable approaches towards global conservation by understanding the biology of local populations and their dynamics pertaining to rapidly urbanizing geographical ranges. Studying species diversity has become more important in today’s world as it serves as a checkpoint for awareness and understanding of interspecific and intraspecific interactions.

Conclusions

The study range supports a rich diversity of butterflies with a wide variety of plants which provide them an ideal breeding habitat. An attempt is made in this study to show the importance of a local area as a model geographical region with diverse habitats, suggesting the importance of local population in long term biodiversity studies and conservation. Therefore, it is imperative to understand the relative dependence of the butterfly species on their habitat. Considering such correlations would help in putting a check on the decreasing number of butterflies due to rapid urbanization and habitat destruction. Further studies on local butterflies of this region, covering various other aspects would undoubtedly contribute a lot towards solving the global issue of conservation of nature and its depleting species.

Authors’ Contributions

The manuscript is conceptualized, drafted and supervised by SKS. AS and NP helped equally in data curation and all the authors analysed the data. All the authors contributed equally for the field work while review and editing were done by SKS. All the authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

In this study none of the butterfly species were collected, euthanized or killed by any means. Thus, the images of butterflies represented in the figures are the result of live photography. An entomological net was occasionally used and the butterflies were released unharmed to their natural habitat as soon as they were photographed.
Acknowledgements

The authors are thankful to the Principal, B.J.B. Autonomous College and H.O.D., Zoology, B.J.B. Autonomous College, Bhubaneswar, Odisha, India for necessary permissions to perform the initial observations. The authors are grateful to B. Swarup K. Subudhi for his support during field trip and Lohit S. Singh for sharing the photograph of Painted Lady butterfly. Authors are also thankful to Yagnya P. Samal, Mitsaha Samal, Swayam Siddha Swain and Shaswati S. Samal for giving constant encouragement. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Aduse-Poku K, Brattstrom O, Kodandaramaiah U, Lees DC, Brakefield PM, Wahlberg N (2015). Systematics and historical biogeography of the old-world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae). BMC Evolutionary Biology 15(1):15-167. https://doi.org/10.1186/s12862-015-0449-3

Bingham CT (1905). The Fauna of British India, including Ceylon and Burma: Butterflies. Vol. I. Taylor and Francis, London.

Bingham CT (1907). The Fauna of British India, including Ceylon and Burma: Butterflies. Vol. II. Taylor and Francis, London.

Boruah B, Das GN, Payra A, Gogoi MJ, Dash SK, Tamuly T, ... Rout SD (2018). Assessment of Butterfly (Lepidoptera, Rhopalocera) Diversity in Manchabandha and Budhikhamari Reserve Forest, Mayurbhanj, Odisha, India. Asian Journal of Conservation Biology 7(1):51-65. http://www.ajcb.in/archive_july_18.php

Butterflies of India (2021). Indian foundation for butterflies. National Centre for Biological Sciences. Titli Trust, India. Retrieved 2021 September 04 from https://www.ifoundbutterflies.org/

Christopher AO (2020). Comparative analyses of diversity and similarity indices of west bank forest and block a forest of the International Institute of Tropical Agriculture (IITA) Ibadan, Oyo State, Nigeria. International Journal of Forestry Research 2020:4865845. https://doi.org/10.1155/2020/4865845

Cotton A, Fric Z, Gupta I, Gasse P, Inayoshi Y, Khoon K, ... Smetacek P (2015). A synoptic catalogue of the butterflies of India. Indinov Publishing, New Delhi, Butterfly Research Centre, Bhimtal, India.

Fernandez-Chacon A, Stefanescu C, Genovart M, Nichols JD, Hines JE, Paramo F, ... Oro D (2014). Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features. Journal of Animal Ecology 83(1):276-285. https://doi.org/10.1111/1365-2656.12118

Forest & Environment Department (2020). Climatological Data of Orissa 2020. ENVIS Centre of Odisha’s State of Environment. Ministry of Environment, Forests & Climate Change, Forest & Environment Department, Orissa, Govt of India. Retrieved 2021 September 04 from http://www.orienvis.nic.in/index1.aspx?id=24&mid=1&langid=1&linkid=22

Gogoi PP, Vinoj V, Swain D, Roberts G, Dash J, Tripathy S (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific Reports 9:8859. https://doi.org/10.1038/s41598-019-45213-z

Horsfield T, Moore F (1857). A Catalogue of the Lepidopterous Insects in the Museum of the Hon. East-India Company: Vol. I. WM. H. Allen and Co., London.

India Meteorological Department (2018). Annual report 2018. Information Science & Knowledge Resource. India Meteorological Department, New Delhi, Ministry of Earth Sciences, Govt. of India. Retrieved 2021 September 04 from https://metnet.imd.gov.in/imdnews/ar2018.pdf

Karmakar T, Nitin R, Sarkar V, Baidya S, Mazumder S, Chandrasekharan V, ... Veino J (2018). Early stages and larval host plants of some northeastern Indian butterflies. Journal of Threatened Taxa 10(6):11780-11799. http://doi.org/10.11609/jott.3169.10.6.11780-11799
Kawahara AY, Breinholt JW (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings of Royal Society B: Biological Sciences 281(1788):20140970. https://doi.org/10.1098/rspb.2014.0970

Kehimkar I (2016). Butterflies of India (1st ed). Bombay Natural History Society. Mumbai, India.

Kim TK (2017). Understanding one-way ANOVA using conceptual figures. Korean Journal of Anesthesiology 70(1):22-26. https://doi.org/10.4097/kjac.2017.70.1.22

Klein AM, Vaisiere BE, Cane JH, Steffen-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608):303-313. https://doi.org/10.1098/rspb.2006.3721

Kozak KM, Wahlberg N, Neild AF, Dasmahapatra KK, Mallet J, Jiggins CD (2015). Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Society of Systematic Biologists 64(3):505-524. https://doi.org/10.1093/sysbio/syv007

Kronforst MR, Papa R (2015). The functional basis of wing pattering in Heliconius butterflies: the molecules behind mimicry. Genetics 200(1):1-19. https://doi.org/10.1534/genetics.114.172387

Kunte K (2000). India, a Lifescape: butterflies of peninsular India. Universities Press (1st ed). A.P. India.

MacDonald ZG, Anderson ID, Acorn JH, Nielsen SE (2018). Decoupling habitat fragmentation from habitat loss: butterfly species mobility obscures fragmentation effects in a naturally fragmented landscape of lake islands. Oecologia 186(1):11-27. https://doi.org/10.1007/s00442-017-4005-2

Mandal D, Nandi D (1983). On Collection of Papilionidae from Orissa, India. Records of the Zoological Survey of India 81(1/2):355-368. http://recordsofzsi.com/index.php/zsoi/article/view/161275

Manesi Z, Van Lange PA, Pollet TV (2015). Butterfly Eyespots: Their Potential Influence on Aesthetic Preferences and Conservation Attitudes. PLoS One 10(11):e0141433. https://doi.org/10.1371/journal.pone.0141433

Marshall GFL, Nicéville LD (1882). The butterflies of India, Burmah and Ceylon. The Calcutta Central Press Co., Ld., Calcutta.

Mishra S, Mahaputra PK, Sinha S, Nayak HP, Mishra AK, Nair MV, …Panda S (2010). Butterfly diversity of Nandankanan Wildlife Sanctuary, Orissa, India. E-planet 8(1):31-37. http://e-planet.co.in/images/Publication/EPLANE8.1.pdf

Mohaputra RK, Mishra AK, Mishra S, Parida SP (2013). A preliminary assessment of Butterfly diversity in Utkal University Campus, Odisha. Zoo’s Print 28(9):28-31. https://doi.org/10.14258/abs.v5i3.6593

Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C, …Kronforst MR (2018). The molecular genetic basis of herbivory between butterflies and their host plants. Nature Ecology & Evolution 2:1418-1427. https://doi.org/10.1038/s41559-018-0629-9

Nitin R, Balakrishnan V, Churi PV, Kalesh S, Prakash S, Kunte K (2018). Larval host plants of the butterflies of the Western Ghats, India. Journal of Threatened Taxa 10(4):11495-11550. http://doi.org/10.11609/jott.3104.10.4.11495-11550

Payra A, Dash SK, Das UP, Palai HS, Mishra AK (2019). Butterflies of Aghagar Forest Division, Odisha, Eastern India, with notes on some significant records. Acta Biologica Sibiriaca 5(3):188-198. https://doi.org/10.14258/abs.v5i3.6593

Pellet J, Bried JT, Parietti D, Gander A, Heer PO, Cherix D, Arletraz R (2012). Monitoring butterfly abundance: beyond Pollard walks. PLoS One 7(7):e41396-e41396. https://doi.org/10.1371/journal.pone.0041396

Pollard E, Yates TJ (1992). The extinction and foundation of local butterfly populations in relation to population variability and other factors. Ecological Entomology 17(3):249-254. https://doi.org/10.1111/j.1365-2311.1992.tb01055.x

Priyamvada, Mohapatra AK (2016). A preliminary study on diversity of butterflies (Lepidoptera: Macrolepidoptera) in Regional Institute of Education campus, Bhubaneswar, Odisha, India. Journal of Entomology and Zoology Studies 4(2):489-496.

Reddy CS, Khuroo AA, Krishna PH, Saranya KRL, Jha CS, Dadhwal VK (2014). Threat evaluation for biodiversity conservation of forest ecosystems using geospatial techniques: A case study of Odisha, India. Ecological Engineering 69:287-303. https://doi.org/10.1016/j.ecoleng.2014.05.006

Roy A, Devi BSS, Debnath B, Murthy MRS (2010). Geospatial Modelling for Identification of Potential Ecological Corridors in Orissa. Journal of the Indian Society of Remote Sensing 38(3):387-399. https://doi.org/10.1007/s12524-010-0042-6
Royer RA, Austin JE, Newton WE (1998). Checklist and “Pollard Walk” Butterfly Survey Methods on Public Lands. The American Midland Naturalist 140(2):358-371. https://doi.org/10.1674/0003-0031(1998)140[0358:CAPWBS]2.0.CO;2

Ruszczyk A, Silva CF (1997). Butterflies select microhabitats on building walls. Landscape and Urban Planning 38(1/2):119-127. https://doi.org/10.1016/S0169-2046(97)00039-X

Salz A, Fartmann T (2017). Larval habitat preferences of a threatened butterfly species in heavy-metal grasslands. Journal of Insect Conservation 21:129-136. https://doi.org/10.1007/s10841-017-9961-7

Scheduled Insect species (2014). ENVIS Centre on Wildlife & Protected Areas. Retrieved 2021 September 04 from http://wiienvis.nic.in/Database/ScheduleSpeciesDatabase_7969.aspx

Singh A, Mohanty LM, Tripathy A, Pradhan S (2020). Study of butterfly diversity in agronomy field, OUAT, Bhubaneswar, Odisha, India. Journal of Entomology and Zoology Studies 8(1):1028-1034.

Stefanescu C, Soto DX, Talavera G, Vila R, Hobson KA (2016). Long-distance autumn migration across the Sahara by painted lady butterflies: exploiting resource pulses in the tropical savannah. Biology Letters 12(10):20160561. https://doi.org/10.1098/rsbl.2016.0561

Swain D, Roberts GJ, Dash J, Vinoj V, Lekshmi K, Tripathy S (2016). Impact of rapid urbanization on the microclimate of Indian cities: a case study for the city of Bhubaneswar. Proceedings Volume 9877, Land Surface and Cryosphere Remote Sensing III. SPIE Asia-Pacific Remote Sensing, New Delhi, India pp 98772X-7. https://doi.org/10.1117/12.2228111

Syaripuddin K, Sing K-W, Wilson J-J (2015). Comparison of Butterflies, Bats and Beetles as Bioindicators Based on Four Key Criteria and DNA Barcodes. Tropical Conservation Science 8(1):138-149. https://doi.org/10.1177/194008291500800112

Talbot G (1939). The Fauna of British India, including Ceylon and Burma: Butterflies. Vol. I. Taylor and Francis, London.

Talbot G (1947). The Fauna of British of India, including Pakistan, Ceylon and Burma: Butterflies. Vol. II. Taylor and Francis, London.

Thomas CD, Thomas JA, Warren MS (1992). Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92(4):563-567. https://doi.org/10.1007/BF00317850

Tiple AD, Khurad AM, Dennis RLH (2011). Butterfly larval host plant use in a tropical urban context: life history associations, herbivory, and landscape factors. Journal of Insect Science 11(1):65. https://doi.org/10.1673/031.011.6501

van Bergen E, Osbaldeston D, Kodandaramaiah U, Brattstrom O, Aduse-Poku K, Brakefield PM (2017). Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies. BMC Evolutionary Biology 17:59. https://doi.org/10.1186/s12862-017-0907-1

Van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, ... Zwick A (2011). Order Lepidoptera. In: Zhang ZQ (Ed). Animal Biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:212-221. https://doi.org/10.11646/zootaxa.3148.1.141

Verspagen N, Ikonen S, Saastamoinen M, van Bergen E (2020). Multidimensional plasticity in the Glanville fritillary butterfly: larval performance is temperature, host and family specific. Proceedings of the Royal Society B: Biological Sciences 287(1941):20202577. https://doi.org/10.1098/rspb.2020.2577

Wang Wei J, Lee BPY-H, Bing Wen L (2016). Citizen Science and the Urban Ecology of Birds and Butterflies - A Systematic Review. PLoS One 11(6):e0156425. https://doi.org/10.1371/journal.pone.0156425

Wood B, Gillman MP (1998). The effects of disturbance on forest butterflies using two methods of sampling in Trinidad. Biodiversity & Conservation 7:597-616. https://doi.org/10.1023/A:1008800317279
The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Scientiae Biologicae* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.

© Articles by the authors; SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright to retain publishing rights without restriction.