In Vivo Detection of Hetero-association of Glycophorin-A and Its Mutants within the Membrane*

Doron Gerber and Yechiel Shai‡

From the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel

Protein recognition within the membrane is a crucial process for numerous biological activities. Detection of such interaction is limited because of difficulties that arise from the hydrophobic environment of the membrane. We detected direct hetero-oligomerization of the glycophorin-A (GPA) transmembrane segments in vivo through inhibition of ToxR transcription activator dimer formation. We investigated the amino acids important for hetero-oligomerization within the membrane, using peptide analogs of the transmembrane domain of glycophorin A. The wild type ([WT]GPA) and alanine mutant ([A]GPA) were able to interfere with and inhibit the proper dimerization of the ToxR-GPA transcription factor. Conversely, a second alanine mutant ([A2]GPA), a glycine mutant ([G]GPA), and a scrambled analog ([SC]GPA) were virtually inactive. Binding studies reveal similar membrane partitions for [WT]GPA, [G]GPA, and [SC]GPA, whereas membrane partition of [A]GPA and [A2]GPA are lower. Spectral analysis of fluorescent-labeled analogs revealed a significant blue shift, indicating membrane insertion. Our results suggest that the GXXXG motif, found in homo-oligomerization, is not sufficient for hetero-oligomerization in a biological membrane, whereas an extended motif, LIXXGXXGXXXT, is sufficient. Interfering with hetero-oligomerization within the membrane can be a useful strategy for characterizing such interactions and possibly modulating membrane protein activity.

Experimental Procedures

Peptide Synthesis and Purification—The peptides were synthesized by a standard solid phase method on PAM-resin as described (24, 25). The peptides were cleaved from the resin by HF treatment and purified by reverse phase-HPLC. Purity (>99%) was confirmed by analytical HPLC. The peptide compositions were determined by Platform LCZ electrospray mass spectrometry.

Fluorescent Labeling of Peptides—The boc protecting group was removed from the N terminus of the peptides by incubation with trifluoroacetic acid, whereas all the other reactive amine groups of the attached peptides were kept protected. The acidity was neutralized with 5% (v/v) N,N-diisopropylethylamine (DIEA 5%). The resin-bound peptides were then treated with 4-chloro-7-nitrobenz-2-oxa-1,3-diazole their transmembrane domains. This includes the viral fusion proteins influenza hemagglutinin and hepatitis E1/E2, and the cellular fusion protein synaptobrevin (3, 15, 16). Other examples of biologically important membrane proteins include the M13 major coat protein (17), phospholamban (18), and glycophorin A (GPA) (1). Uncovering the mechanisms that drive these kind of interactions is critical for understanding how these proteins work.

GPA (1), a well documented example of transmembrane homophilic interactions, was previously shown to create α-helical right-handed dimers with a specific homo-association motif (1, 2, 5, 19–21). A part of this motif, GXXXG, was shown to be crucial for the homo-oligomerization process. Furthermore, protein data base studies as well as transmembrane domain bacterial libraries suggest that this motif plays a general role in membrane protein–protein homo-association (19, 22).

We chose GPA as a model protein to investigate hetero-association of different transmembrane segments. GPA has a known homo-oligomerization motif, which was implicated in hetero-oligomerization in vitro (2, 19, 21, 22). Until now, detection of hetero-association between proteins in the membrane was mostly restricted to in vitro methods. In the case of GPA, SDS-polyacrylamide gel electrophoresis experiments suggested hetero-oligomerization of a wild type transmembrane domain linked to staphylococcal nuclease with mutant peptides through the homo-oligomerization motif (19, 23). We devised a scheme to detect direct interaction between hetero-proteins in a biological membrane. We then applied this method to wild type GPA ([WT]GPA) and peptide analogs to study their hetero-association.

Our results suggest the importance of an extended motif for hetero-association of GPA within the membrane of Escherichia coli. This study emphasizes the significance of using such displacement strategies in the investigation of membrane complexes. In turn, these strategies may prove useful in modulation of membrane protein activity.
flouride (NBD-F) (2 eq) in dry dimethylformamide (DMF), leading to the formation of resin-bound N-NBD peptides, respectively. After 1 h, the resins were washed thoroughly with DMF and then with methylene chloride. The labeled peptides were cleaved from the resin and purified as described previously.

Preparation of Small Unilamellar Vesicles (SUVs)—Lipid films were prepared at a ratio of phosphatidylethanolamine (PE) : phosphatidylglycerol (PG) (7:3, w/w) as previously described (26). Lipids were resuspended by vigorous vortexing. SUVs were obtained by sonication of the lipid suspensions for 2 min in a water bath-type sonicator.

In Vivo Detection of Hetero-association of Proteins within the Membrane—The ToxR transcription activator can be used successfully to assess weak protein interactions within the E. coli membrane. A GPA transmembrane-encoding DNA cassette was previously inserted between the maltose-binding protein and the ToxR transcription activator (2). Transcription activation is mediated by expressing the construct, ToxR-GPA, in the indicator strain FHK12. After transforming FHK12 cells, 1-ml cultures (8 repeats) were grown in the presence of chloramphenicol and 0.1 μM IPTG. After 4 h, plasmid DNA was isolated and introduced into E. coli/BL21(DE3) [pLysS] cells, 1-ml cultures (8 repeats) were grown in the presence of chloramphenicol and 0.1 μM IPTG. Hetero-association was detected using ToxR-GPA grown in the presence of an exogenous peptide. The fluorescence intensity was measured in Miller units (2). Hetero-association was detected by applying non-linear fitting of our results and found the IC50 of [A]GPA to be 2.18 ± 0.01 μM.

RESULTS

A series of five peptides corresponding to the transmembrane domain of GPA were synthesized (Table I) using tert-boc strategies. To overcome solubility problems and to deliver the hydrophobic transmembrane segments into the bacterial membrane, a host sequence of two consecutive lysines was used (29). These peptides were tested for their ability to inhibit the formation of a ToxR-GPA transcription activator complex in the inner membrane of E. coli as described in the model depicted in Fig. 1 (2). Briefly, the ToxR-GPA is a transcription factor that activates a lacZ reporter gene as a consequence of dimerization. The dimerization is solely through the transmembrane segment, namely the GPA transmembrane segment (13 amino acids long) (2). Hetero-association of an exogenous peptide with the ToxR-GPA transcription factor will result in a decrease in the lacZ signal.

Inhibition of the ToxR Transcription Activator Dimer—ToxR-GPA transcription levels were monitored in the presence of the different exogenous GPA analogs. The [WT]GPA and alanine mutant ([A]GPA) were able to interfere with the proper dimerization of ToxR-GPA, thereby inhibiting reporter gene transcription (Fig. 2). Conversely, glycine ([G]GPA), scrambled ([SC]GPA), and [A2]GPA analogs were virtually inactive. In the [A]GPA peptide, we used the [A]GPA mutant as a backbone, and introduced alanine and glycine mutations. These mutations eliminated the entire “extended motif” and left only the GXXG motif.

Using a simple equilibrium model (Equations 2 and 3), we performed non-linear fitting of our results and found the IC50 of [WT]GPA and [A]GPA to be 2.18 and 6.68 μM, respectively (Table I). A more complex equilibrium is possible, although it is unlikely because the transcription activator homodimer demands a spatial proximity of the two transcription domains for its activity. For example, inhibition of the dimer through complexes such as heterotrimization with the peptide is probably not sufficient to prevent the cytoplasmic domains from dimerization (Fig. 1).

Weak Membrane Binding Is Not the Reason for Peptide Inactivity—To eliminate the possibility that the inactivity of [SC]GPA, [G]GPA and [A]GPA were because of poor membrane binding, we compared peptide affinity to bacterial-mimetic membranes (PE/PG 7:3) (26, 30, 31). We found the inactive peptides ([SC]GPA, [G]GPA) and the active [WT]GPA to have similar membrane partitions; both being higher than the

TABLE I

Peptide designations, sequences, and biophysical properties

Peptide	Sequence	K_p x 10^-4 M^-1	ΔG (kcal/mol)	IC50 μM
[WT]GPA	KIKLITFLGVMAGVIGT	15.0 ± 0.4	-8.60	2.18 ± 0.01
[A]GPA	KIKLITFLGVMAGVIAAT	3.9 ± 0.3	-7.91	6.68 ± 0.45
[A2]GPA	KIKLITFLGVMAGVIAA	3.6 ± 2.5	-7.87	>95 ± 12.0
[SC]GPA	KIKLITFLGVMAGVIAAT	19.6 ± 8.0	-8.79	>200
[G]GPA	KIKLITFLGVMAGVIGT	23.0 ± 4.0	-8.88	>200
membrane partition of the active [A]GPA and inactive [A2]GPA (Fig. 3A). The free energy of binding and partition coefficient of all the peptides is within the range reported for known membrane binding peptides (25, 29, 32, 33) (Table I).

DISCUSSION

This study sets a precedent for the detection of direct in vivo-specific hetero-oligimerization. We found that the homo-oligimerization motif (GXXXG) (19) is not enough for hetero-association within bacterial membranes, although an extended motif (LIYXGXXXXGXXXT) (19, 21) is essential for hetero-association. In fact, [A]GPA retains wild type oligimerization capability despite multiple alanine mutations, suggesting that the extended motif alone is enough for hetero-association. Moreover, when comparing the partition coefficients of the [WT]GPA to that of [A]GPA one can see that [A]GPA has about four times weaker binding, and consequently the IC50 is around three times higher (Table I). This indicates that the specificity of [A]GPA is very similar to that of [WT]GPA. In contrast, the [A2]GPA peptide, containing only a GXXXG motif, had very low affinity toward the wild type transmembrane domain. This implies a crucial role for the extended homo-oligimerization motif. Moreover, the [G]GPA peptide, having mutations in the extended homo-oligimerization motif, completely loses its affinity toward the wild type transmembrane domain. This reduction in its membrane binding affinity. A possible explanation for the loss of hetero-assembly is that the glycine mutations interfere with the helical packing. Statistical analysis has previously shown that β-branched amino acids in positions I and I + 4 are favorable for packing two transmembrane domains, especially when next to the GXXXG motif (19, 22). Mutating two such pairs may have lowered the packing energy of the oligomer.

It is worth noting that GXXXG is the most common motif found in oligomeric transmembrane domains (19, 22). By creating a second GXXXG motif in [G]GPA, situated on a different helical face than the original, we allowed further freedom. However, this motif did not contribute to oligimerization. The comparison of the extended motif on the [A]GPA peptide with the GXXXG motif on the [A2]GPA peptide further confirms the importance of the extended motif for hetero-oligimerization.

Polarity is the major characteristic implicated in determining the specificity of membrane interactions (37). Additionally, hydrophobic amino acids and especially β-branched amino acid...
pairs are also characteristic of transmembrane segments. The
\(\beta \)-branched amino acid pairs were previously suggested to be
structurally important for helical packing (19, 22). We have
challenged these characteristics by introducing multiple alanine
mutations in hydrophobic and \(\beta \)-branched positions, leaving
the polar amino acids alone. It is logical to assume that
these drastic structural changes are bound to interfere with the
helical packing. Still, the specificity of [A]GPA remains similar
to that of the wild type, suggesting that in this case the polar
interactions play a larger role than the structure and helical
packing.

In contrast, [G]GPA lost its ability to hetero-associate
with the wild type transmembrane domain, despite the
presence of the polar amino acids, supporting the notion that hy-
drophobic interactions are sufficient for assembly. Other hints
to this end can be found in the literature where all-hydrophobic
transmembrane segments were shown to specifically interact
with each other in a biological membrane (38).

Protein-protein recognition and cross-talk in the membrane
remains a largely uncharted field. Nevertheless, structural
data of membrane proteins is scarce (39). The method pre-
sent in this paper can directly detect the interaction between two
different transmembrane domains provided that one of the
helices can also homo-oligomerize. Thus, this method can ad-
vance structural and functional research of a broad range of
such membrane proteins. In the case of the T cell receptor, for
example, exogenous addition of a peptide corresponding to the
transmembrane segment is known to modulate the activity of
the receptor (40). Our method can clarify whether this is due
to direct displacement of the corresponding helix from the recep-
tor complex. Characterization of the mechanism by which the
transmembrane domain affects receptor activity is highly im-
portant both in terms of the basic understanding of receptor
mechanics and from a therapeutic perspective. Our results
indicate that interfering with hetero-oligomerization within
the membrane can be a useful strategy to characterize such
interactions, as well as to modulate membrane protein activity.

Acknowledgments—We thank Batya Zarni for contributing the ex-
pertise in peptide synthesis and purification and Sara Weiss for her
help with the preparation of competent cells. We thank Dr. Langosch
from Heidelberg University, who provided the ToxR-GPA plasmid and
the FHK12 E. coli strain.

REFERENCES
1. Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J.,
Dempsey, C. E., and Engelman, D. M. (1992) J. Biol. Chem. 267, 7683–7689
2. Langosch, D., Briosi, B., Kolmar, H., and Fritz, H. J. (1996) J. Mol. Biol. 263,
525–530
3. Laage, R., and Langosch, D. (1997) Eur. J. Biochem. 249, 549–546
4. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, H., and Schwartz, J. L.
(1999) J. Biol. Chem. 274, 31996–32000
5. Adair, B. D., and Engelman, D. M. (1994) Biochemistry 33, 5539–5544
6. Gaziz, E., and Shai, Y. (1995) J. Biol. Chem. 270, 2571–2578
7. Gaziz, E., La Roche, P., Sansen, M. S., and Shai, Y. (1996) Proc. Natl. Acad.
Sci. U. S. A. 93, 12289–12294
8. Shai, Y. (1995) Trends Biochem. Sci. 20, 469–464
9. Kahn, T. W., and Engelman, D. M. (1992) Biochemistry 31, 6144–6151
10. Marti, T. (1998) J. Biol. Chem. 273, 9312–9322
11. Bibi, E., Verner, G., Chang, C. Y., and Kaback, H. R. (1996) Proc. Natl. Acad.
Sci. U. S. A. 93, 7271–7275
12. Manolios, N., Bonifacino, J. S., and Klausner, R. D. (1996) Science 274,
274–277
13. Rutledge, T., Cosson, P., Manolios, N., Bonifacino, J. S., and Klausner, R. D.
(1992) EMBO J. 11, 3245–3254
14. Cosson, P., and Bonifacino, J. S. (1992) Science 258, 659–662
15. Op De Beeck, A., Montserret, R., Duvet, S., Cocquerel, L., Cacan, R., Barberot,
B., Le Maire, M., Penin, F., and Dubuisson, J. (2000) J. Biol. Chem. 275,
31428–31437
16. Kemble, G. W., Danieli, T., and White, J. M. (1994) Cell 76, 383–391
17. Deber, C. M., Khan, A. R., Li, Z., Jonsson, C., Gilbowick, M., and Wang, J.
(1993) Proc. Natl. Acad. Sci. U. S. A. 90, 11648–11652
18. Arkin, I. T., Adams, P. D., MacKenzie, K. R., Lemmon, M. A., Brunger, A. T.,
and Engelman, D. M. (1994) EMBO J. 13, 4757–4764
19. Russ, W. P., and Engelman, D. M. (2000) J. Mol. Biol. 296, 911–918
20. Treutlein, H. R., Lemmon, M. A., Engelman, D. M., and Brunger, A. T. (1992)
Biochemistry 31, 12726–12732
21. Briosi, B., and Langosch, D. (1998) Protein Sci. 7, 1052–1056
22. Senes, A., Gerstein, M., and Engelman, D. M. (2000) J. Mol. Biol. 296, 921–936
23. Russ, W. P., and Engelman, D. M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96,
863–868
24. Merrifield, R. B., Vizioli, L. D., and Boman, H. G. (1982) Biochemistry 21,
5020–5021
25. Gerber, D., and Shai, Y. (2000) J. Biol. Chem. 275, 23602–23607
26. Hetru, C., Letellier, L., Oren, Z., Hoffmann, J. A., and Shai, Y. (2000) Biochem.
J. 345, 653–664
27. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A., and Kim, P. S.
(1999) Cell 99, 103–115
28. Rajarathnam, K., Hochman, J., Schindler, M., and Ferguson-Miller, S. (1989)
Anal. Biochem. 189, 235–245
29. Laskin, A. S., Jayasinghe, S., and White, S. H. (2000) Anal. Biochem. 285,
512–516
30. Murray, D., Arbozova, A., Hangyas-Mihalyne, G., Gambhir, A., Ben-Tal, N.,
Honig, B., and McLaughlin, S. (1999) Biophys. J. 77, 3176–3188
31. Wilmley, W. C., and White, S. H. (2000) Biochemistry 39, 4432–4442
32. Frey, S., and Tamm, L. K. (1996) Biochem. J. 322, 713–719
33. Beschaichvili, G., and Seelig, J. (1991) Biochem. Biophys. Acta 1061, 78–84
34. Rapaport, D., Danin, M., Gazit, E., and Shai, Y. (1992) Biochemistry 31,
8875–8881
35. Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T., and Engelman, D. M.
(2000) Nat. Struct. Biol. 7, 154–160
36. Laage, R., Rohde, J., Briosi, B., and Langosch, D. (2000) J. Biol. Chem. 275,
17481–17487
37. Bowie, J. U. (2000) Curr. Opin. Struct. Biol. 10, 435–437
38. Manolios, N., Collier, S., Taylor, J., Pollard, J., Harrison, L. C., and Bender, V.
(1997) Nat. Med. 3, 84–88

31232
In Vivo Detection of Hetero-association of Glycophorin-A and Its Mutants within the Membrane
Doron Gerber and Yechiel Shai

J. Biol. Chem. 2001, 276:31229-31232.
doi: 10.1074/jbc.M101889200 originally published online June 11, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M101889200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 40 references, 17 of which can be accessed free at http://www.jbc.org/content/276/33/31229.full.html#ref-list-1