RESEARCH ARTICLE

Association of the Glutathione S-transferase T1 Null Genotype with Risk of Gastric Cancer: a Meta-analysis in Asian Populations

Yan Zeng1&, Jian Bai2&, Li-Cong Deng3&, Yu-Ping Xie2, Fen Zhao2, Ying Huang1*

Abstract

Background: A large number of studies have been published to investigate the association between the null genotype of glutathione S-transferase T1 (GSTT1) with gastric cancer. However, the results were inconsistent and conflicting. The aim of this study was to estimate the relationship between this polymorphism in the GSTT1 gene and gastric cancer risk in Asian populations by meta-analysis. Materials and Methods: A literature search was performed in PubMed, Embase, Chinese Biomedical database (CBM), Weipu database, Wanfang database, and China National Knowledge Infrastructure database (CNKI). Statistical analysis was conducted by using Review Manager 5.3. Results: Thirty-nine studies with a total of 7,737 gastric cancer cases and 10,823 controls were included in this meta-analysis. The meta-analysis of total studies showed that the null genotype in GSTT1 was associated with increased risk of gastric cancer in Asians (OR=1.19, 95% CI=1.08-1.31, p=0.0002). Subgroup analysis showed a significant relationship between GSTT1 null genotype and gastric cancer in East-Asians, as well as in subgroup analysis of hospital-based design. On subgroup analysis by smoking status, alcohol status, Helicobacter pylori infection status, and histology type, no significant association of this polymorphism with susceptibility to gastric cancer was found. Conclusions: In conclusion, the results showed that the null genotype of GSTT1 is significantly associated with an increased risk in gastric cancer in Asian populations.

Keywords: GSTT1 - polymorphism - gastric cancer - meta-analysis - Asia

Asian Pac J Cancer Prev, 17 (3), 1141-1148

Introduction

It is estimated that by 2020, more than 15 million cases of cancer will occur in the world, with deaths increasing to 12 million (Kanavos, 2006). According to the report, gastric cancer is the fourth most common malignancy among worldwide and the second leading cause of global cancer death, which has a high incidence in Asia, especially in Eastern Asia (Jemal et al., 2011). Identifying risk factors for gastric cancer development is essential to prevent this deadly disease. Numbers of studies have been shown that gastric cancer is a disease of multiple etiologic factors involving infectious, nutritional and environmental factors (Setiawan et al., 2000; Tripathi et al., 2011; Shi et al., 2014). However, the regional differences in the incidence of gastric cancer worldwide might imply that variants in various genetic factors also influence the susceptibility to this disease (Jing et al., 2012).

Human glutathione S-transferases T1 (GSTT1) is phase II metabolizing enzyme protecting against cancer by detoxifying numerous potentially cytotoxic/genotoxic compounds, which has been implicated in the carcinogenic process in many cancers, such as lung cancer, laryngeal cancer and esophageal cancer (Acar et al., 2006; Sreeja et al., 2008; Liu et al., 2010). Polymorphisms in this gene affect the enzymatic activities and the ability to metabolize carcinogenic compounds (Nebert et al., 1999). The most common variant of GSTT1 gene is homozygous deletion (null genotype), which has been reported to be associated with gastric cancer (Hayes and Strange, 2000). However, the sparseness of data or disagreements among the reported investigations results in the available evidence weakly. To assess the effect of GSTT1 null genotype on gastric cancer risk in Asian population more precisely, we conducted most of the related studies and performed this meta-analysis of published data investigating whether the null genotype of GSTT1 gene was associated with the risk of gastric cancer.

Materials and Methods

Publication search
A literature search of PubMed, Embase, Chinese Biomedical database (CBM), Weipu database, Wanfang

1West China School of Preclinical and Forensic Medicine, Sichuan University, South Renmin Road, 2Department of Oncology, Chengdu First People’s Hospital, Chengdu, 3Department of Oncology, First People’s Hospital of Ziyang, Ziyang, Sichuan Province, China 4Equal contributors *For correspondence: huangying68@163.com
database and Chinese National Knowledge Infrastructure (CNKI) was conducted using combinations of the following keywords: “gastric cancer or gastric carcinoma or gastric neoplasm” and “polymorphism or variant or mutation” and “GSTT1 or glutathione S-transferase T1”. The language was limited to Chinese and English. All studies that evaluate the relationship between polymorphisms in GSTT1 gene and gastric cancer risk were retrieved. Studies included in the meta-analysis had to meet all of the following criteria: (1) evaluation of the polymorphisms in GSTT1 gene and gastric cancer risk, (2) use of a case-control design, (3) published in a journal, (4) sufficient genotype data for estimating the odds ratio (OR) with 95% confidence intervals (CI). The exclusion criteria were: (1) abstracts and reviews, (2) studies that did not offer genotype frequency. Additionally, in studies with overlapping or repeating data, the most recent or complete studies with the largest sample size were recruited into the meta-analysis.

Data extraction
Two of the authors extracted all data independently (YZ and LCD), compiled with the selection criteria, and must reach a consensus on all items. In case of conflicting evaluations, a third author (JB) assessed the articles. The following information were collected: first author’s name, year of publication, country of origin, cancer type, infection status, histology type (Diffuse and Intestinal), smoking status (Smoking and Non-smoking), alcohol status (Alcohol and Non-alcohol), subregion group (East-Asia, South-Asia, Southeast-Asia and West-Asia), study design (Hospital-based study and Population-based study), smoking status (Smoking and Non-smoking), alcohol status (Alcohol and Non-alcohol), H. pylori infection status (Infection and Non-infection), and histology type (Diffuse and Intestinal). Sensitivity analysis was conducted by sequentially excluding each study to check the stability of the result. Inverted funnel plots was utilized to provide a diagnosis of publication bias and the degree of asymmetry was tested by Egger’s test (p<0.05 was considered significant).

Statistical analysis
Statistical analysis was conducted by using Review Manager 5.3 and STATA 12.0. The strength of association between GSTT1 null polymorphism and gastric cancer risk was assessed as OR with corresponding 95% CI. The significance of the pooled OR was evaluated by using a Z-test and p<0.05 was considered statistically significant.

Heterogeneity among studies was valued by Chi-square test, which was considered significant for p≤0.10.

Results
Study selection and study characteristics
As shown in Figure 1, a total of 214 results relevant to the search terms in the selected databases were identified. In the first selection, 114 were included to more careful screening, 100 were excluded for not involving polymorphisms in GSTT1 gene and risk of gastric cancer. After reading the titles and abstracts, 52 articles were included for full-text view, 62 articles were excluded for not investigating the association between GSTT1 and gastric cancer in Asians. 13 articles were excluded after reading the full text. Six were not Asians studies (Gonzalez et al., 2004; Martínez et al., 2006; Ruzzo et al., 2007; Wideroff et al., 2007; Zendehdel et al., 2009; García-Gonzalez et al., 2012), and seven were repeating or overlapping publications (Cai et al., 1999; Setiawan et al., 2001; Gao et al., 2002b; Qian et al., 2003; Sheng et al., 2004; Nan et al., 2005b; Tripathi et al., 2008). Finally, 39 articles that report on the effects of GSTT1 polymorphisms on gastric cancer in Asia covering in total of 7,737 gastric cancer cases and 10,823 controls were remained for data extraction. 11 of them were Chinese (Qian et al., 2001; Sheng and Wang, 2002; Zheng et al., 2002; Liu et al., 2003; Ye et al., 2003; Zhang et al., 2003; Zhou et al., 2003; Xie et al., 2008; Peng et al., 2010; Liu et al., 2013; Shi et al., 2014), and 28 were English (Katoh et al., 1996; Setiawan et al., 2000; Cai et al., 2001; Saadat and Saadat, 2001; Gao et al., 2002a; Wu et al., 2002; Choi et al., 2003; Roth et al., 2004; Mu et al., 2005; Nan et al., 2005a; Sheng et al., 2005; Tamer et al., 2005; Hong et al., 2006; Al-Moundhri et al., 2009; Malik et al., 2009; Masoudi et al., 2009; Moy et al., 2009; Piao et al., 2009; Nguyen et al., 2010; Yadav et al., 2010; Luo et al., 2011; Tripathi et al., 2011; Yadav et al., 2011; Zhang et al., 2011; Jing et al., 2012; Malakar et al., 2012; Eom et al., 2013; Haholu et al., 2013). The characteristics of included studies were summarized in Table 1. The distribution of GSTT1 genotypes in the subgroups were shown in Table 2.

Meta-analysis results
The heterogeneity was analyzed for all 39 studies and the value of Chi-square test was 65.85 with 38 degrees of freedom and p=0.003 in a random-effects model. Overall,
The GSTT1 Polymorphism and Gastric Cancer Risk: a Meta-analysis in Asia

Table 1. Characteristics of Case-Control Studies in the Meta-Analyses

Study	Country	Subregion	Cancer type	Study design	Sample size (case/ control)	Genotype frequency of GSTT1	Case age (year)	Genotyping method
Al-Moundhri 2009	Oman	West-Asia	GC	PB	107/107	Null: 19 Non-Null: 88 Control: 20	NA	Multiplex-PCR
Cai 2001	China	East-Asia	GC	PB	95/94	Null: 41 Non-Null: 54 Control: 47	59	PCR
Choi 2003	Korea	East-Asia	GAC	HB	80/177	Null: 43 Non-Null: 37 Control: 94	NA	PCR
Eom 2013	Korea	East-Asia	GC	HB	477/477	Null: 210 Non-Null: 267 Control: 211	57.8	Multiplex-PCR
Feng 2010	China	East-Asia	GC	HB	585/585	Null: 259 Non-Null: 326 Control: 247	61.7	PCR
Gao 2002	China	East-Asia	GC	PB	153/223	Null: 71 Non-Null: 82 Control: 119	60.8	Multiplex-PCR
Haholu 2013	Turkey	West-Asia	GC	HB	50/57	Null: 10 Non-Null: 40 Control: 16	41	Duplex-PCR
Hong 2006	Korea	East-Asia	GAC	PB	108/238	Null: 45 Non-Null: 63 Control: 119	62	Multiplex-PCR
Jing 2012	China	East-Asia	GC	HB	410/410	Null: 236 Non-Null: 174 Control: 202	49.5	PCR-CTPP
Katoh 1996	Japan	East-Asia	GAC	PB	139/126	Null: 66 Non-Null: 73 Control: 56	70	Multiplex-PCR
Liu 2003	China	East-Asia	GAC	HB	127/114	Null: 76 Non-Null: 51 Control: 55	59	Multiplex-PCR
Liu 2013	China	East-Asia	GC	PB	110/220	Null: 49 Non-Null: 61 Control: 73	56.2	PCR
Luo 2011	China	East-Asia	GC	PB	123/129	Null: 77 Non-Null: 46 Control: 63	66	Multiplex-PCR
Malakar 2012	India	South-Asia	GC	PB	102/204	Null: 37 Non-Null: 65 Control: 93	111	PCR
Malik 2009	India	South-Asia	GC	PB	108/195	Null: 33 Non-Null: 75 Control: 49	146	Multiplex-PCR
Masoudi 2009	Iran	West-Asia	GC	HB	92/134	Null: 50 Non-Null: 42 Control: 38	96	PCR
Moy 2009	China	East-Asia	GC	PB	170/735	Null: 97 Non-Null: 73 Control: 415	520	TaqMan-PCR
Mu 2005	China	East-Asia	GC	PB	196/393	Null: 93 Non-Null: 103 Control: 192	201	NA
Nan 2005	Korea	East-Asia	GC	HB	400/614	Null: 171 Non-Null: 229 Control: 247	367	Multiplex-PCR
Nguyen 2010	Vietnam	Southeast-Asia	GC	HB	59/100	Null: 25 Non-Null: 34 Control: 38	62	Multiplex-PCR
Piao 2009	China	East-Asia	GC	PB	2212/1699	Null: 1172 Non-Null: 1041 Control: 858	841	60.2
Qian 2001	China	East-Asia	GC	PB	89/94	Null: 51 Non-Null: 38 Control: 46	48	62
Rot 2004	China	East-Asia	GC	PB	90/454	Null: 43 Non-Null: 47 Control: 243	211	TaqMan-PCR
Saadat 2001	Iran	West-Asia	GC	NA	42/131	Null: 15 Non-Null: 27 Control: 41	90	NA
Setiaowan 2000	China	East-Asia	GAC	PB	73/417	Null: 44 Non-Null: 37 Control: 190	228	NA
Sheng 2002	China	East-Asia	GC	PB	110/675	Null: 43 Non-Null: 67 Control: 309	366	59.3
Sheng 2005	China	East-Asia	GAC	PB	121/121	Null: 64 Non-Null: 57 Control: 54	67	59.7
Shi 2014	China	East-Asia	GC	PB	60/83	Null: 34 Non-Null: 26 Control: 33	50	55.6
Tamer 2005	Turkey	West-Asia	GC	PB	70/204	Null: 21 Non-Null: 49 Control: 53	151	57.7
Tripathi 2011	India	South-Asia	GC	NA	82/89	Null: 29 Non-Null: 53 Control: 19	70	54.3
Wu 2002	China	East-Asia	GAC	HB	356/278	Null: 181 Non-Null: 175 Control: 130	148	62
Xie 2008	China	East-Asia	GAC	HB	70/100	Null: 48 Non-Null: 22 Control: 50	50	56.6
Yadav 2010	India	South-Asia	GAC	PB	133/270	Null: 50 Non-Null: 83 Control: 85	185	NA
Yadav 2011	India	South-Asia	GAC	PB	41/130	Null: 6 Non-Null: 35 Control: 14	116	51.9
Ye 2003	China	East-Asia	GAC	HB	56/56	Null: 34 Non-Null: 22 Control: 26	30	57.6
Zhang 2003	China	East-Asia	GAC	HB	127/114	Null: 76 Non-Null: 51 Control: 55	59	Multiplex-PCR
Zhang 2011	China	East-Asia	GC	HB	194/412	Null: 114 Non-Null: 80 Control: 198	214	46.4
Zheng 2002	China	East-Asia	GC	PB	92/92	Null: 49 Non-Null: 43 Control: 38	54	53.2
Zhou 2003	China	East-Asia	GAC	HB	19/72	Null: 10 Non-Null: 9 Control: 28	44	54.5

GC: gastric cancer; GAC: gastric adenocarcinoma; HB: hospital-based study; PB: population-based study; NA: not available; PCR: polymerase chain reaction; RFLP-PCR: polymerase chain reaction-restriction fragment length polymorphism; Multiplex-PCR: multiplex polymerase chain reaction; Null, null genotype in GSTT1; Non-null, non-null genotype in GSTT1

In subgroup analysis by region, there was a significant association between GSTT1 null genotype and gastric cancer risk in East-Asia population (OR=1.16, 95% CI=1.06-1.27, p=0.002), but no significant association was found in South-Asia population (OR=1.21, 95% CI=0.84-1.75, p=0.3), Southeast-Asia population (OR=1.20, 95% CI=0.62-2.31, p=0.59) and West-Asia population (OR=1.28, 95% CI=0.76-2.16, p=0.35) (Figure 3). In
subgroup analysis of study design, for population-based study (OR=1.09, 95% CI=0.97-1.23, p=0.16), for hospital-based study (OR=1.32, 95% CI=1.14-1.52, p=0.003) (Figure 4). Additionally, no significant associations were found between GSTT1 null genotype and gastric cancer both in the subgroup analysis of smoking status (Smoking, OR=1.03, 95% CI=0.79-1.34, p=0.83; Non-smoking, OR=0.83, 95% CI=0.60-1.15, p=0.25), alcohol status (Alcohol, OR=0.79, 95% CI=0.51-1.23, p=0.3; Non-alcohol, OR=0.95, 95% CI=0.7-1.13, p=0.77), H. pylori infection (Infection, OR=1.27, 95% CI=0.95-1.71, p=0.10; Non-infection, OR=0.88, 95% CI=0.64-1.24, p=0.47), and histology type (Diffuse, OR=1.32, 95% CI=0.98-1.78, p=0.07; Intestinal, OR=0.85, 95% CI=0.65-1.11, p=0.23).
The GSTT1 Polymorphism and Gastric Cancer Risk: a Meta-analysis in Asia

infection status (Infection, OR=1.29, 95% CI=0.68-2.44, \(p = 0.43 \); Non-infection, OR=1.17, 95% CI=0.50-2.75, \(p = 0.72 \)) and histology type (Diffuse, OR=0.92, 95% CI=0.66-1.29, \(p = 0.64 \); Intestinal, OR=1.30, 95% CI=0.96-1.77, \(p = 0.09 \)). The detailed data were listed in Table 3.

Publication bias

Inverted funnel plot and Egger’s test were used to evaluate the potential publication bias in this meta-analysis. As shown in Figure 5, the shape of the funnel plots seemed approximately symmetrical for total studies analysis. Additionally, in the subgroup analyses by subregion the funnel plots also did not show any evidence of publication bias. In Egger’s test the result also revealed the absence of publication bias in the GSTT1 (\(p > 0.05 \) for Null vs. Non-null model). Briefly, there was no risk of publication bias in this meta-analysis.

Sensitivity analysis

Sensitivity analysis was analyzed by sequentially excluding individual case-control study. The statistically similar results were obtained, which suggest the results of this meta-analysis are stable (Data were not shown).

Discussion

Gastric cancer is a multistage process caused by...
multifarious factors that environmental and genetic factors may all contribute to the etiology of this carcinoma (Al-Moundhi et al., 2009). The relationship between polymorphisms in genes which encode proteins involving in carcinogens metabolism and individual susceptibility to carcinogenic impacts of the specific chemical compound is a new and concern field of research. \textit{GSTT1} is one class of glutathione S-transferases (GSTs)-one type of biotransformation enzymes, which is appear in most epithelial tissues of the human gastrointestinal tract. The presumptive function of \textit{GSTT1} is to protect tissues resist toxic or carcinogenic compounds that may enter to human body through the digestive tract or respiratory system (Qian et al., 2001). At present, the association between the \textit{GSTT1} genetic polymorphisms and susceptibility to gastric cancer has been conflicting. Accordingly, we performed a meta-analysis, a quantitative research method increasing sample size and statistical significance, to estimate whether null genotype in \textit{GSTT1} gene associated with gastric cancer risk. Finally, we conducted 39 published studies including 7737 cases and 10823 controls, which met the inclusion criteria for the meta-analyses. In overall combination studies, the results indicated that null polymorphism of \textit{GSTT1} is associated with a significant increase in the risk of gastric cancer. In the subgroup analysis by subregion, the \textit{GSTT1} null genotype was associated with an increased risk of gastric cancer in East Asian population but not in South Asian, Southeast Asian and West Asian population, which consistent with the statistical result performed by Jemal in 2011 (Jemal et al., 2011). Possible explanation to these different results may be that different genetic backgrounds and environmental exposures might play a key role in the development of gastric cancer. Furthermore, significantly increased gastric cancer risk was found in hospital-based design but not in population-based design. Such result may due to the biases in hospital-based design, the genotype distributions in hospital-based design could not represent the general population very well. In the subgroup analysis of smoking status and alcohol status, it is worthy to mention the inconsonant results which differ with a previous meta-analysis performed by Wang et al (Wang et al., 2014). In Wang’s study, \textit{GSTT1} null genotype has a significantly increased gastric cancer risk among smokers and alcohol drinkers. Inversely, results of our study indicated the lack of association between \textit{GSTT1} null genotype and gastric cancer among smoker and alcohol drinker. The controversial results might due to the huge difference in simple size mainly. The other explanation to these different results may be that the difference or uniform definition of smoking and alcohol drinking in each study suggesting uncertain influence among smoker and alcohol drinker. Previous study suggested that \textit{H. pylori} infection plays a central role in the gastric cancer carcinogenesis (Trajkov et al., 2007). Although \textit{H. pylori} infection is independent risk factor for gastric cancer, there was no evidence to suggest an interaction between \textit{GSTT1} null polymorphism and this risk factor in the present study. Possible explanation to such result may be the limitation of studies because studies with small sample had insufficient statistical power to detect a slight effect. In this meta-analysis, only three studies involving 259 cases and 720 controls examined the interaction of the \textit{GSTT1} null genotype and the \textit{H. pylori} infection status in gastric cancer patients. Considering the limited studies, our result should be interpreted with caution. Therefore, more relevant data are needed to confirm this finding.

Some issues which may affect the results should be addressed when performing meta-analysis, such as heterogeneity, sensitivity analysis and publication bias. In our study, heterogeneity existed in overall comparisons. After carrying out sensitivity analysis by sequentially excluding individual studies, we found that the results of our meta-analysis are stable. Hence a random effect model was performed to pooling data. Publication bias is another important issue that may influence the results of meta-analysis, which also be discussed in the present study. In this meta-analysis, both examination results of Inverted funnel plot and Egger’s test were indicated that there was no risk of publication bias in this meta-analysis (Inverted funnel plot seemed approximately symmetrical and $p=0.675$ for Egger’s test).

To our knowledge, there was a recently published study by Zhang in 2013 (Zhang et al., 2013). They also focus on the correlation of \textit{GSTT1} genetic polymorphisms with gastric cancer risk in the Asian population. But there are differences between these two studies. First, the present meta-analysis updates the recent data for this polymorphism and gastric cancer risk and includes more studies than Zhang’s study, which possibly providing more reliable conclusions; Second, more subgroups of meta-analysis were addressed in our study, such as subregion group, smoking status, alcohol status, \textit{H. pylori} infection status and histology type. Although these differences, our study also indicated the null genotype of \textit{GSTT1} might contribute to the risk of gastric cancer, which is consistent with Zhang’s study results.

In summary, the present meta-analysis suggested that null variant in the \textit{GSTT1} gene may contribute to gastric cancer risk. However, we have to mention several limitations of this study. First, a literature search just carried out in the selected databases; second, only published studies in Chinese and English were included for data analysis. For these reasons, some potential studies included by other databases or published in other languages or unpublished could be missed. In addition, due to lack of available data, the possible interaction of gene-environment could not be evaluated accurately. Accordingly, larger well-designed studies are warranted to verify these results. Moreover, gastric cancer carcinogenesis undergoes a complex progression from the development of chronic inflammation to acute neoplasias (Macarthur et al., 2004). Thus, further studies investigating \textit{GSTT1} polymorphisms for gastritis should be performed.

References

Acar H, Ozturk K, Muslumanoglu MH, et al (2006). Relation of glutathione S-transferase genotypes (GSTM1 and \textit{GSTT1}) to laryngeal squamous cell carcinoma risk. \textit{Cancer Genet Cytogenet}, 169, 89-93.
Combined polymorphism analysis of glutathione S-transferase M1/G1 and interleukin-1B (IL-1B)/interleukin 1-receptor antagonist (IL-1RN) and gastric cancer risk in an Omani Arab Population. J Clin Gastroenterol, 43, 152-6.

Cai L, Yu SZ, Chen J S, (1999). Relationship between Glutathione S-transferase M1 , T1 Genotype and Susceptibility to Gastric Cancer. Chinese J Prev Med, 6, 331-333.

Cai L, Yu SZ, Peng ZF (2001). Glutathione S-transferases M1, T1 genotypes and the risk of gastric cancer: a case-control study. World J Gastroenterol, 7, 506-9.

Choi SC, Yun KJ, Kim TH, et al (2003). Prognostic potential of glutathione S-transferase M1 and T1 null genotypes for gastric cancer progression. Cancer Lett, 195, 169-75.

Eom SY, Yim DH, Zhang Y, et al (2013). Dietary aflatoxin B1 intake, genetic polymorphisms of CYP1A2, CYP2E1, EPHX1, GSTM1, and GSTT1, and gastric cancer risk in Korean. Cancer Causes Control, 24, 1963-72.

Feng JY, Sheng XB, Yan YY (2010). Multi-genre risk analysis of susceptibility genes on primary gastric cancer. Chinese J Public Health, 6, 688-9.

Gao CM, Takekazi T, Wu JZ, et al (2002a). Glutathione-S-transferases M1 (GSTM1) and GSTT1 genotype, smoking, consumption of alcohol and tea and risk of esophageal and stomach cancers: a case-control study of a high-incidence area in Jiangsu Province, China. Cancer Lett, 188, 95-102.

Gao CM, Toshiro T, Wu JZ, et al (2002b). Effects of GSTT1 and GSTM1 Genotypes, Lifestyle f Factors and Their Interactions on Risk of Esophageal and Stomach Cancers. China J Cancer Prev Treat, 2, 113-7.

Garcia-Gonzalez MA, Quintero E, Bujanda L, et al (2012). Relevance of GSTM1, GSTT1, and GSTP1 gene polymorphisms to gastric cancer susceptibility and phenotype. Mutagenesis, 27, 771-7.

Gonzalez A, Ramirez V, Cuenca P, et al (2004). [Polymorphisms in detoxification genases CYP1A1, CYP2E1, GSTT1 and GSTM1 in gastric cancer susceptibility]. Rev Biol Trop, 52, 591-600.

Haholou A, Berber U, Karagöz B, et al (2013). Is there any association of glutathione S-transferase T1 (GSTT1) and glutathione S-transferase M1 (GSTM1) gene polymorphism with gastric cancers? Pol J Pathol, 64, 247-52.

Hayes JD, Strange RC (2000). Glutathione S-transferase polymorphisms and their biological consequences. Pharmacol, 61, 154-66.

Hong SH, Kim JW, Kim HG, et al (2006). [Glutathione S-transferases (GSTM1, GSTT1 and GSTP1) and N-acetyltransferase 2 polymorphisms and the risk of gastric cancer]. J Prev Med Public Health, 39, 135-40.

Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90.

Jing C, Huang ZJ, Duan YQ, et al (2012). Glutathione-S-transferases gene polymorphism in prediction of gastric cancer risk by smoking and Helicobacter pylori infection status. Asian Pac J Cancer Prev, 13, 3325-8.

Kanavos P (2006). The rising burden of cancer in the developing world. Ann Oncol, 17, 15-23.

Katoh T, Nagata N, Kuroda Y, et al (1996). Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis, 17, 1855-9.

Liu J, Zhang WY, Wei Y (2003). GSTM1 and GSTT1 genetic polymorphisms and helicobacter pylori infection in gastric adenocarcinoma. J Mathematical Med, 1, 26-8.

Liu L, Zhang D, Fan H (2013). GSTT1, GSTP1 gene polymorphism and genetic susceptibility to Nigeria hui cardiac cancer research. J Ningxia Medical University, 30, 53-5.

Liu R, Yin L, Pu Y, et al (2010). Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A, 73, 471-82.

Luo YP, Chen HC, Khan MA, et al (2011). Genetic polymorphisms of metabolic enzymes-CYP1A1, CYP2D6, GSTM1, and GSTT1, and gastric carcinoma susceptibility. Tumour Biol, 32, 215-22.

Macfarlane M, Hold GL, El-Omar EM (2004). Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol, 286, 515-20.

Malakar M, Devi KR, Phukan RK, et al (2012). Genetic polymorphism of glutathione S-transferases M1 and T1, tobacco habits and risk of stomach cancer in Mizoram, India. Asian Pac J Cancer Prev, 13, 4725-32.

Malik MA, Upadhyay R, Mittal RD, et al (2009). Role of xenobiotic-metabolizing enzyme gene polymorphisms and interactions with environmental factors in susceptibility to gastric cancer in Kashmir Valley. J Gastroenterol Cancer, 40, 26-32.

Martinez C, Martin F, Fernandez JM, et al (2006). Glutathione S-transferases mu 1, theta 1, pi 1, alpha 1 and mu 3 genetic polymorphisms and the risk of colorectal and gastric cancers in humans. Pharmacogenomics, 7, 711-8.

Masoudi M, Saadat I, Omidvari S, et al (2009). Genetic polymorphisms of GSTO2, GSTM1, and GSTT1 and risk of gastric cancer. Mol Biol Rep, 36, 781-4.

Moy KA, Yuan JM, Chung FL, et al (2009). Isobiocyanates, glutathione S-transferase M1 and T1 polymorphisms and gastric cancer risk: a prospective study of men in Shanghai, China. Int J Cancer, 125, 2652-9.

Mu LN, Lu QY, Yu SZ, et al (2005). Green tea drinking and multigenic index on the risk of stomach cancer in a Chinese population. Int J Cancer, 116, 972-83.

Nan HM, Park JW, Song YJ, et al (2005a). Kimchi and soybean pastes are risk factors of gastric cancer. World J Gastroenterol, 11, 3175-81.

Nan HM, Song YJ, Yun HY, et al (2005b). Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer. World J Gastroenterol, 11, 3834-41.

Nebert DW, Ingelman-Sundberg M, Daly AK (1999). Genetic epidemiology of environmental toxicity and cancer susceptibility: human allelic polymorphisms in drug-metabolizing enzyme genes, their functional importance, and nomenclature issues. Drug Metab Rev, 31, 467-87.

Nguyen TV, Janssen MJ, van Oijen MG, et al (2010). Genetic polymorphisms in GSTA1, GSTP1, GSTT1, and GSTM1 and gastric cancer risk in a Vietnamese population. Oncol Res, 18, 349-55.

Piao JM, Shin MH, Kweon SS, et al (2009). Glutathione-S-transferase (GSTM1, GSTT1) and the risk of gastrointestinal cancer in a Korean population. World J Gastroenterol, 15, 5716-21.

Qian Y, Xu YC, Sheng HB (2001). A molecular epidemiological study on the relationship between glutathione s-transferase m1, t1 genetic polymorphism and susceptibility to gastric cancer. China Public Health, 2, 101-3.

Qian Y, Xu YC, Sheng HB (2003). Relationship Between CYP2E1, GSTT1 Genetic Polymorphisms and Susceptibility to Gas tric Cancer. Chin J Prev Oncol Chron Non-commun Dis, 3, 107-9.

Roth MJ, Abnet CC, Johnson LL, et al (2004). Polymorphic variation of Cyp1A1 is associated with the risk of gastric cancer: a prospective case-cohort study of cytochrome
Polymorphisms of glutathione-S-transferase genes and the risk of aerodigestive tract cancers in the Northeast Indian population.

Yadav DS, Devi TR, Ihsan R, et al (2011). Glutathione-S-transferase M1 and T1 null genotypes and the risk of gastric and colorectal cancers. Cancer Causes Control, 20, 2031-8.

Zhang AP, Liu BH, Wang L, et al (2011). Glutathione S-transferase gene polymorphisms and risk of gastric cancer in a Chinese population. Asian Pac J Cancer Prev, 12, 3421-5.

Zheng TR, Zheng QH, Gong FS (2002). Gene deletion polymorphisms of GSTT1 and GSTM1 and susceptibility to stomach neoplasm. Shi Yong Zhong Liu Za Zhi, 3, 155-7.

Zhou Q, Zheng ZY, Wang LD, et al (2003). Prevalence of genetic polymorphisms of GSTM1, GSTT1 and GSTP1 in subjects with gastric cardia adenocarcinoma at Linzhou, Henan. J Henan Med University, 3, 327-9.

Ye M, Liu JY, Deng CJ (2003). Relationship between xenobiotic metabolizing enzyme gene polymorphisms and genetic susceptibility of gastric cancer. World Chin J Digestol, 9, 1314-7.

Widemel K, Bahmanyar S, McCarthy S, et al (2009). Genetic polymorphisms of glutathione S-transferase genes GSTP1, GSTM1, and GSTT1 and risk of esophageal and gastric cardia cancers. Cancer Causes Control, 20, 2031-8.

Shen J, Wang RT (2002). Case-control study of the polymorphisms of phase II metabolic genes and stomach cancer susceptibility. Tumor Jan, 1, 9-12.

Shen XB, Pu YP, Zhang J (2005). Influence of GSTT1 and GSTM1 genotypes and smoking on the occurrence of gastric cancer: case-control study from Nanjing, China. J Environ Occup Med, 4, 325-9.

Shen XB, Zhang J, Zha L (2004). Relationship between glutathione S-transferase M1, T1 genetic polymorphisms, smoking and alcohol consumption and susceptibility and stomach cancer. School Public Health, 4, 2010-4.

Shi JQ, Luo BJ, Liu RY (2014). Relationship of GSTT1 gene polymorphism and smoking on the susceptibility to gastric cancer. China Medical Herald, 2, 63-66.

Sreeja L, Syamala V, Hariharan S, et al (2008). Glutathione S-transferase M1, T1 and P1 polymorphisms: susceptibility and outcome in lung cancer patients. J Exp Ther Oncol, 7, 73-85.

Tamer L, Ates NA, Ates C, et al (2005). Glutathione S-transferase M1, T1 and P1 genetic polymorphisms, cigarette smoking and gastric cancer risk. Cell Biochem Funct, 23, 267-72.

Trajkov D, Starelova K, Dimitrova M, et al (2007). Helicobacter pylori and gastric carcinoma. Prilozi, 28, 39-46.

Tripathi S, Ghoshal U, Ghoshal UC, et al (2008). Gastric carcinogenesis: Possible role of polymorphisms of GSTM1, GSTT1, and GSTP1 genes. Scand J Gastroenterol, 43, 431-9.

Tripathi S, Ghoshal U, Mittal B, et al (2011). Association between gastric mucosal glutathione-S-transferase activity, glutathione-S-transferase gene polymorphisms and Helicobacter pylori infection in gastric cancer. Indian J Gastroenterol, 30, 257-63.

Wang Q, Chen Y, Zhang Y, et al (2014). Quantitative assessment of the influence of glutathione S-transferase T1 null variant on gastric cancer risk. Tumour Biol, 35, 849-58.

Wideroff L, Vaughan TL, Farin FM, et al (2007). GST, NAT1, CYP1A1 polymorphisms and risk of esophageal and gastric adenocarcinomas. Cancer Detect Prev, 31, 233-6.

Wu MS, Chen CJ, Lin MT, et al (2002). Genetic polymorphisms of cytochrome p450 2E1, glutathione S-transferase M1 and T1, and susceptibility to gastric carcinoma in Taiwan. Int J Colorectal Dis, 17, 338-43.

Xie SQ, Huang X, Lu YF (2008). Glutathione sulfur transferase t1, m1 gene deletion and wine and tobacco habit and gastric cancer susceptibility in the Guangxi people. Clinical Focus, 19, 1393-5.

Yadav D, Chandra R, Saxena R, et al (2011). Glutathione-S-transferase M1 and T1 genes and gastric cancer: a case control study in North Indian population. Gene, 487, 166-9.

Yadav DS, Devi TR, Ihsan R, et al (2010). Polymorphisms of glutathione-S-transferase genes and the risk of aerodigestive tract cancers in the Northeast Indian population. Genet Test Mol Biomarkers, 14, 715-23.