Title
Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO3/SrIrO3 heterostructures.

Permalink
https://escholarship.org/uc/item/54j398bp

Journal
Science advances, 6(27)

ISSN
2375-2548

Authors
Skoropata, Elizabeth
Nichols, John
Ok, Jong Mok
et al.

Publication Date
2020-07-03

DOI
10.1126/sciadv.aaz3902

Peer reviewed
Chiral interactions in magnetic systems can give rise to rich physics manifested, for example, as nontrivial spin textures. The foremost interaction responsible for chiral magnetism is the Dzyaloshinskii-Moriya interaction (DMI), resulting from inversion symmetry breaking in the presence of strong spin-orbit coupling. However, the atomistic origin of DMIs and their relationship to emergent electrodynamic phenomena, such as topological Hall effect (THE), remain unclear. Here, we investigate the role of interfacial DMIs in 3d–5d transition metal–oxide-based LaMnO$_3$/SrIrO$_3$ superlattices on THE from a chiral spin texture. By additively engineering the interfacial inversion symmetry with atomic-scale precision, we directly link the competition between interfacial collinear ferromagnetic interactions and DMIs to an enhanced THE. The ability to control the DMI and resulting THE points to a pathway for harnessing interfacial structures to maximize the density of chiral spin textures useful for developing high-density information storage and quantum magnets for quantum information science.

INTRODUCTION

Magnetic chirality is fundamentally linked to broken inversion symmetry, but it is rarely found in nature because only a few bulk materials have crystal structures that violate this symmetry (1, 2).

By contrast, inversion symmetry can be readily broken at interfaces within epitaxial heterostructures and superlattices. Moreover, inversion symmetry breaking combined with strong spin–orbit coupling (SOC) can lead to a large chiral Dzyaloshinskii-Moriya interaction (DMI), $H_{DMI} = D_{ij} \cdot (S_i \times S_j)$, which imparts a handedness to the magnetic exchange interaction between adjacent spins S_i and S_j with the strength and direction expressed by the DMI vector D_{ij} (3, 4).

At a thin-film interface, D_{ij} lies in the plane and drives the formation of chiral Néel-type domain walls (5) or spin textures like the magnetic skyrmion, as depicted in Fig. 1 (A and B) (6).

Furthermore, the Berry phase associated with the interaction between charge carriers and a chiral spin texture i.e., with scalar spin chirality $\chi_{ijk} = S_i \cdot S_j \times S_k$ gives rise to an emergent magnetic field and topological Hall effect (THE) (7, 8) that links the local magnetic spin texture to an electrical response. Altogether, these effects are promising phenomena that must be understood for future devices based on the electrical detection and manipulation of magnetic information (7, 9–19).

The discovery that DMI can be tuned using different material combinations, structures, and film architectures has led to an explosion of interest in the study of thin films with 3d ferromagnet and heavy (i.e., 4d and 5d) element layers. In all-metal multilayers, skyrmion phases were observed within a range of temperatures and applied fields that extended well beyond the narrow phase stability regions that were first found in bulk noncentrosymmetric systems (2, 5, 14, 15, 18, 20–22).

Most recently, magnetic superlattices and multilayers with cooperative DMI from multiple interfaces enabled the study of current-induced skyrmion motion and stability up to room temperature (14, 15, 23, 24).

Despite remarkable recent advancements, it also remains a challenge to control chiral magnetic interactions to meet the size and stability requirements of spin textures for practical applications in high-density memory devices, and there is a lack of understanding of the connection between electronic transport phenomena and chiral magnetism (7, 11, 19, 25).

Recently, it was found that the addition of oxide layers into metal multilayers could strongly enhance the strength of DMIs through interfacial electrostatics and charge transfer (26), while strong electronic correlations could enable exceptionally large THEs in oxide thin films (27).

In particular, owing to the large SOC of the 5d element Ir and the layer–by-layer stacking and atomic control of growth achievable in epitaxial oxides, SrIrO$_3$-based heterostructures provide an excellent avenue to study the origin of interfacial DMI and the associated Hall response (28–31).

Here, we show the emergence of a highly robust chiral magnetic phase exhibiting a large THE in LaMnO$_3$/SrIrO$_3$ superlattices. By controlling the film architecture and interface structures, we determine that the THE originates from DMI created at the 3d–5d interface. A key observation is our ability to modulate the THE by nearly an order of magnitude through engineering of the interface symmetry with the nonmagnetic A-site layers. We discuss the relationship between THE and the role of atomic interface structure to drive the competition between interfacial collinear ferromagnetic (FM) interactions and chiral DMI as a strategy to miniaturize chiral spin textures emerging from interfaces.
Epitaxial [(LaMnO$_3$)$_n$/SrIrO$_3$]$_m$ superlattices were grown on (001) SrTiO$_3$ substrates using pulsed laser deposition (PLD). Superlattices with $n = 1$ to 12 unit cells (u.c.) were created with the layer repetition (m) chosen to create a total thickness of \sim50 nm. X-ray diffraction scans (fig. S1) showed that all samples were phase pure and coherently strained. The natural AO-BO$_2$-AO-BO$_2$ layered structure of the perovskite ABO$_3$ shown in Fig. 1C (i.e., A = La or Sr, B = Mn or Ir, respectively, for LaMnO$_3$ and SrIrO$_3$) can enable systematic control over inversion symmetry of the structure by carefully tuning the layer stacking at individual interfaces. This control of the interface structure is illustrated in Fig. 1 (D and E) for three examples of [(LaMnO$_3$)$_n$/SrIrO$_3$]$_m$ superlattices with n and m fixed, which are either inversion symmetric or asymmetric depending on the arrangement of the interfacial A-site layers. The atomic-scale control of PLD enables each of these structures to be systematically constructed, as discussed in Materials and Methods, and verified using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging as shown in fig. S2. This interfacial control is of central importance to identifying the competing effects between interfacial magnetic coupling and DMI.

The impact of interfacial coupling between the 3d and 5d oxide layers is reflected in the variation of field- and temperature-dependent magnetic properties with the layer thickness n (figs. S3 and S4). Compared to a single LaMnO$_3$ layer that is FM when grown using PLD (32), LaMnO$_3$/SrIrO$_3$ superlattices with $n = 1$ to 3 u.c. had a lower Curie temperature (T_C) and saturation magnetization (M_S) and a larger magnetic coercivity (H_C). We found a nonmonotonic relationship between M_S and n, with the largest M_S observed when $n = 5$. This result is consistent with the overall magnetization depending on bulk and interface magnetizations with contributions from Ir and Mn, as observed in other manganite/iridate systems (30, 33, 34) (see further consideration of the interface magnetism in Discussion). Furthermore, interfacial octahedral rotations influence the B-O-B bond angle, and interfacial charge transfer and redistribution alter the orbital occupancy, both of which modify the interfacial exchange interactions and magnetization in perovskite heterostructures (35–37). These phenomena, which act typically on short (0.4 to 2 nm) length scales (35), may account for the nonmonotonic relationship between layer thickness and M_S in LaMnO$_3$/SrIrO$_3$, as has been observed for other manganite superlattices (38). An increase in T_C with increasing n up to \sim150 K and a decrease in H_C were observed for $n = 5$ to 12 u.c. All films had an easy-plane magnetic anisotropy. However, the difference in H_C measured for H applied in-plane and out-of-plane was sizeable only for $n \leq 3$ u.c. (fig. S4C). The large H_C enhancement for $n \leq 3$ u.c. resembles that of SrMnO$_3$/SrIrO$_3$ and La$_{x}$Sr$_{1-x}$MnO$_3$/SrIrO$_3$ superlattices with magnetism dominated by charge transfer–driven interfacial collinear FM interactions (30, 33). By contrast, the magnetism of superlattices with large LaMnO$_3$ thicknesses ($n = 12$ u.c.) was similar to that of single LaMnO$_3$ layers. Thus, the overall dependence on layer thickness suggests a competition between the interfacial interactions and intrinsic ferromagnetism of LaMnO$_3$.

To understand the influence of the interface-induced emergent magnetism on electronic transport, we measured the Hall resistivity (ρ_{xy}) as a function of H at 10 K, which is well below T_C for all superlattices. The Hall resistivity of a typical collinear ferromagnet is described by the relationship $\rho_{xy} = \rho_{OHE} + \rho_{AHE} = R_H + R_S M$, where the ordinary ($\rho_{OHE}$) and anomalous ($\rho_{AHE}$) Hall resistivities are linear responses of the applied field (H) and magnetization (M), with respective scale factors R_H and R_S (8). As shown in Fig. 2A, for short- or long-period superlattices (i.e., $n = 3$ and 12 u.c., respectively), the Hall resistivity is satisfactorily described by the combination of an ordinary Hall effect (OHE) and anomalous Hall effect (AHE), indicating a collinear FM state. For example, the Hall effect of $n = 3$ is similar to that of SrMnO$_3$/SrIrO$_3$ superlattices that are dominated
by collinear interfacial FM interactions (30). This result is also consistent with the known minimum critical thickness rule for the heavy layer, below which any DMI may be too weak to establish chiral domain walls (39). Furthermore, the FM state becomes energetically favorable even in the presence of DMI when the magnetic anisotropy is large (40), consistent with FM coinciding with an Hc enhancement for n ≤ 3 LaMnO3/SrIrO3 superlattices. For long-period superlattices (i.e., n = 12 u.c.), the AHE due to ferromagnetism can be understood as a dominating effect of the intrinsic ferromagnetism of the thick layer over a diminishing (i.e., volume averaged) effect of interfacial DMI (41).

For intermediate n = 4 to 6 u.c. superlattices, however, a strongly enhanced Hall response with a dramatically different behavior emerges. In particular, a large nonmonotonic dependence on the magnetic field and a clear hysteretic behavior were observed in magnetic fields as large as 9 T, the maximum magnetic field used in Fig. 2A. Whereas the magnetization saturates for H > 2 T (Fig. 2B and fig. S3), the hysteresis observed in the Hall resistivity does not follow the net M or H. We noted that while multiple decoupled FM layers with opposite signs of AHE may induce field-dependent anomalies in the Hall resistivity (42, 43), we observed no features in the magnetization that indicate the distinct formation of two FM layers in LaMnO3/SrIrO3. This additional Hall component for n = 4 to 6 u.c. superlattices can be attributed to a chiral magnetic phase induced by interfacial DMI leading to a THE (discussed in further detail below) (1, 7). This is described by an additional term, \(\rho_{\text{THE}} \), in the Hall effect (i.e., \(\rho_{xy} = \rho_{\text{OHE}} + \rho_{\text{AHE}} + \rho_{\text{THE}} \)). To understand the origin of the chiral magnetism and its relationship to the observed THE, we further investigated the temperature-dependent Hall effect with the n = 5 u.c. superlattice in magnetic fields up to 30 T. At \(T = 300 \) K, well above \(T_C \), a clear linear response was observed, as shown in Fig. 2C, which is indicative of the n-type behavior. For temperatures below \(T_C \sim 150 \) K, an AHE due to collinear FM develops with \(R_S \) similar in magnitude to the short-period \(n = 3 \) u.c. superlattice. Below 50 K, the strong enhancement in \(\rho_{xy} \) was observed as a pronounced curvature, followed by the onset of hysteresis in large H.

The THE was isolated from \(\rho_{\text{OHE}} \) and \(\rho_{\text{AHE}} \) using the standard approach. The OHE was taken to be the slope of \(\rho_{xy} \) at 30 T, and the AHE was determined by extrapolating the measured magnetization to 30 T to intersect the linear \(H \) region of \(\rho_{xy} \), as shown in Fig. 2D. The resulting THE is shown as a function of \(T \) and \(H \) in Fig. 2E, which was measured on sweeping \(H \) from +30 to −30 T. The circles and dotted line provide an estimate of the phase stability region with \(|\rho_{xy}| < 1 \mu\Omega\cdot\text{cm} \), which is wide compared to previous reports for systems with interfacial DMI. The maximum THE at each temperature shown in Fig. 2F is quite large compared to layered oxides or bulk materials with strong DMI that are typically on the order of a few \(n\Omega \cdot \text{cm} \) to 1 \(\mu\Omega \cdot \text{cm} \). Recent theoretical investigations have also identified the possibility of strong DMI and THE originating at the iridate/manganite interface, consistent with our experimental observations [see fig. S5, section S2, and (44)]. These results point to a highly robust chiral phase stabilized in the intermediate-period LaMnO3/SrIrO3 superlattices with \(n = 4 \) to 6 u.c.

The relationships among inversion symmetry, DMI, and the THE were further tested by examining \(n = 5 \) u.c. superlattices grown with the different interface layer structures D12, D22, and D13 that are shown schematically in Fig. 1 (D and E). The hypothesis is that the extent of inversion symmetry breaking with respect to the LaMnO3 layer should be reflected in the strength of the total DMI that is created additively from multiple interfaces in the superlattice. Because of the THE results from the interaction between charge carriers and a spatially varying magnetic spin texture, the magnitude of the THE depends on the winding number and density of the chiral spin features that establish the total topological charge \(n_t \) of the system (7, 8). For Néel-type skyrmions, in the adiabatic limit of the Berry phase description, \(\rho_{\text{THE}} \) is proportional to the skyrmion density, \(n_{sk} = n_t \), and inversely proportional to the skyrmion size, \(D_{sk} \sim n_{sk}^{-1/2} \), for a close packed arrangement of the spin texture (2, 20, 45). Note that the skyrmion density and thus THE is determined by the competition between DMI, FM exchange, and magnetic anisotropy energy terms governing the magnetic system. For our LaMnO3/SrIrO3 superlattices with different A-site layer structures,

![Fig. 2. The Hall effect in LaMnO3/SrIrO3 superlattices](image-url)

(A) The Hall effect \(\rho_{xy} \) measured at 10 K and shown for superlattices \(n = 3 \) to 12 u.c. D12-type superlattices. (B) The magnetization measured for the \(n = 5 \) u.c. superlattice, which is similar for all \(n \) on the scale shown. (C) Temperature dependence of the Hall resistivity \(\rho_{xy} \) for the \(n = 5 \) u.c. superlattice measured in fields up to 30 T. (D) Determination of the topological Hall resistivity \(\rho_{\text{THE}} \) of \(n = 5 \) u.c. at several temperatures obtained for the decreasing (+H to −H) applied magnetic field measurements. (E) The topological Hall resistivity \(\rho_{\text{THE}} \) shown as functions of temperature and applied field. (F) Temperature dependence of the maximum value of \(\rho_{\text{THE}} \) taken from (D) and (E). Data in (A) to (D) are shown with a vertical offset for clarity.
the Hall effect is shown in Fig. 3 (A and B). We observe that the amplitude of \(\rho_{\text{THE}} \) measured at \(T = 10 \) K for \(\text{D13} \) is \(\sim 75 \) \(\mu \Omega \cdot \text{cm} \), which is near an order of magnitude larger than \(\text{D22} \) and a factor of 3 larger than \(\text{D12} \). The enhanced THE is independent of the conventional magnetic properties (e.g., \(T_C \), \(H_C \), or \(M_S \)), which is consistent with the THE being directly linked to the interface structure and DMI. We note that the global inversion symmetry breaking due to the surface and substrate are unavoidable and that other magnetic interactions existing in the superlattice (e.g., dipolar interactions) may help to stabilize chiral structures even with weakened DMI that may contribute to a persistent THE in even the most symmetric superlattice structure. Relative to the naturally occurring superlattice \(\text{D12} \), we attribute the suppressed \(\rho_{\text{THE}} \) of \(\text{D22} \) to the symmetric interface structure creating a weakened total DMI, and we attribute the large enhancement of \(\rho_{\text{THE}} \) in \(\text{D13} \) to the largest total DMI from fully different top and bottom interface layer structures.

Because the enhanced Hall effect created by the controlled film architecture and interface structures of our 3d-5d system is consistent with effects of interfacial DMI, we consider the relationship between DMI, THE, and real-space spin texture. In thin films, the interface geometry necessarily sets the spin rotation direction induced by DMI to favor chiral Néel-type domain walls (5). For this reason, although we do not have a direct image of a chiral spin texture in \(\text{LaMnO}_3/\text{SrIrO}_3 \), we propose that the \(\text{LaMnO}_3/\text{SrIrO}_3 \) system may host a spatial map of the dominant in-plane projection of the Mn magnetization. Images of an \(n = 5 \) u.c. superlattice measured while cooling from 100 to 32 K are shown in Fig. 4A. These images reveal a dense domain structure formed at temperatures near the onset \(T \sim 90 \) K of the THE. The \(\text{LaMnO}_3/\text{SrIrO}_3 \) superlattice showed essentially no fluctuations in shape or domain coalescence upon decreasing temperature; this contrasts with the typical behavior of collinear FM phases (see section S4 and fig. S6 for further analysis and interpretation of PEEM images). This result suggests a highly energetically favorable domain structure formed in \(\text{LaMnO}_3/\text{SrIrO}_3 \) that is strongly affected by an energy term that is not typical of FM systems but that is consistent with strong DMI.

Because XMCD-PEEM allows the direct imaging of nanoscale magnetic features, it is well suited to identify chiral domain wall and skyrmion textures (16). To examine the impact of DMI on the domain structure in \(\text{LaMnO}_3/\text{SrIrO}_3 \) superlattices, we performed micromagnetic simulations of the spontaneous domain structure of a simple manganite layer with interfacial DMI using Object Oriented Micromagnetic Framework (48). We found that the structures observed with XMCD-PEEM closely resemble the mixed stripe and bubble features that can evolve into a skyrmion phase in a sizable applied magnetic field and which are only observed when a DMI term is included in the magnetic simulation parameters (see section S3 and figs. S5 to S7 for detailed comparison of XMCD-PEEM images and micromagnetic simulations).

To examine the element-specific electronic and magnetic details to understand the origin of the magnetism of the \(\text{LaMnO}_3/\text{SrIrO}_3 \) system, we conducted x-ray absorption spectroscopy (XAS) and XMCD measurements of Mn and Ir L-edges of \(n = 5 \) u.c. \(\text{LaMnO}_3/\text{SrIrO}_3 \) superlattice, as shown in Fig. 4 (B and C). The magnetism originates predominantly from the \(\text{LaMnO}_3 \) layer, as revealed by a large Mn XMCD signal, consistent with FM \(\text{LaMnO}_3 \) films grown by PLD (32). We observed null \(\text{L}_3 \)-edge and weak \(\text{L}_2 \)-edge Ir XMCD signal that indicates a small Ir magnetization in the \(n = 5 \) u.c. \(\text{LaMnO}_3/\text{SrIrO}_3 \) superlattice. By comparison, the Ir and Mn XMCD of short-period \(\text{SrMnO}_3/\text{SrIrO}_3 \) and \(\text{La}_{2/3}\text{Sr}_{1/3}\text{MnO}_3/\text{SrIrO}_3 \) superlattices with strong interfacial FM interactions showed clear XMCD at both the \(\text{L}_3 \)- and \(\text{L}_2 \)-edges (30, 33), indicating a much larger Ir magnetization in those systems. Our lack of observed \(\text{L}_3 \)-edge XMCD indicates change in the element-specific magnetism, with a possible canting of the Ir moment away from the applied field direction for the \(n = 5 \) \(\text{LaMnO}_3/\text{SrIrO}_3 \) superlattice, compared to previously studied FM iridate/manganite systems. These observations are
consistent with the Ir-Mn interfacial coupling modified by weakened collinear interfacial interactions and strong DMI in the $n = 5$ u.c. LaMnO$_3$/SrIrO$_3$ superlattice versus a predominance of strong collinear interfacial exchange interactions in short-period ($n = 1$ to 3 u.c.) superlattices that qualitatively agrees with the layer thickness–dependent onset of THE in LaMnO$_3$/SrIrO$_3$ superlattices.

DISCUSSION

Because the DMI is determined by magnetic interactions within a single atomic layer of the interface, local interface structures are expected to have a critical role in the emergence of THEs. To understand the mechanism responsible for the THE of LaMnO$_3$/SrIrO$_3$ superlattices, we consider the importance of interfacial chemistry and symmetry that drive the Mn valence and exchange interactions that govern the magnetism of artificially engineered manganite superlattices (36, 37). Specifically, because of charge leakage that is effective over 1 to 2 u.c., short-period ($n \leq 3$ u.c.) [(LaMnO$_3$)$_2$/SrIrO$_3$] superlattices display double exchange–driven ferromagnetism and conductivity that are similar to those of the La$_{0.66}$Sr$_{0.33}$MnO$_3$ alloy instead of insulating antiferromagnetism intrinsic to the constituent materials. We propose that the presence of both interfacial LaO and SrO layers can promote a mixed Mn valence and a similar charge leakage in short-period LaMnO$_3$/SrIrO$_3$ superlattices. This phenomenon can lead to a strengthened interfacial FM double exchange that directly competes with DMI and thus result in the appearance of an AHE due to an FM ground state in our $n = 5$ u.c. LaMnO$_3$/SrIrO$_3$ superlattices. This behavior is in agreement with conventional understanding that the stabilization of chiral phases depends critically on the competition between DMI, collinear FM interactions, and magnetic anisotropy of a system (19, 39, 40). It is also likely that the distinct local Mn environment and magnetism at the polar-nonpolar interface bridged by LaO and SrO layers differ from the uniform LaO-MnO$_2$-LaO environment of the bulk. This difference in interface and bulk environments likely contributes to the strong influence of interface versus intrinsic properties in the intermediate n systems, such as nonmonotonic n and THE dependence. Furthermore, our ability to modulate the magnitude of the THE for the $n = 5$ u.c. superlattice reveals that control of the interface structure driven by interfacial A-site layers can be a highly effective method for tuning DMI.

In summary, the interfacial inversion symmetry of 3d-5d LaMnO$_3$/SrIrO$_3$ superlattices is deliberately controlled to modify the competition between chiral DMI and intrinsic collinear ferromagnetism. This interfacial symmetry control led to a large THE, which originates from a highly robust chiral magnetic phase, potentially hosting skyrmions. Our findings shed light on development of novel pathways to stabilize ultrahigh-density chiral spin textures important for developing topologically protected quantum magnets.

MATERIALS AND METHODS

Sample synthesis and structural characterization

All samples were synthesized by pulsed laser epitaxy with a substrate temperature, oxygen partial pressure, and laser fluence of 700°C, 100 mTorr, and 1.0 J/cm2, respectively, on atomically flat TiO$_2$-terminated (001) SrTiO$_3$ substrates with a KrF excimer laser ($\lambda = 248$ nm). The crystal structure, phase purity, and orientation of these films and superlattices were confirmed by x-ray reflectivity and diffraction measurements using a four-circle x-ray diffractometer. Superlattices with $n = 1$ to 12 u.c. thick layers were prepared using a typical two-target growth alternating LaMnO$_3$ and SrIrO$_3$ to produce the structure type $D12$. For superlattices with $n = 5$ u.c., two additional superlattice structures were created by controlling the interface growth by replacing either the bottom or top 1 u.c. of LaMnO$_3$ with SrMnO$_3$; this resulted in the structures $D22$ or $D13$, respectively.

HAADF-STEM imaging was carried out in Nion UltraSTEM200 operated at 200 kV. The microscope is equipped with a cold field-emission gun and an aberration corrector for subangstrom resolution.

Fig. 4. Domain structure and element-specific magnetism of a LaMnO$_3$/SrIrO$_3$ superlattice. (A) XMCD-PEEM images at various temperatures for an $n = 5$ u.c. $D12$ superlattice and (B) XAS and (C) XMCD measured at 10 K and 5 T for the Mn and Ir L-edges for $n = 5$ u.c.
An inner angle of 78 mrad was used for HAADF imaging. The convergence semiangle for the electron probe was set to 30 mrad.

Physical properties characterization

The magnetization was determined with a 7 T Quantum Design MPMS3, measured using conventional techniques from hysteresis loop measurements at 10 K and up to 7 T, after subtracting a linear background to correct for the diamagnetic response of the SrTiO$_3$ substrate. The electronic transport measurements were performed with a 14 T Quantum Design Physical Property Measurement System with custom electronics. The electrical contacts were made by ultrasonic soldering Au wires with In solder in a van der Pauw configuration. Magnetotransport properties of thin films under high magnetic field up to 30 T were measured at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee.

X-ray absorption experiments

X-ray absorption, magnetic circular dichroism, and linear dichroism X-ray absorption experiments at the 5d, 5p, 3d, 3p, 2p, and 2s edges were done in total electron yield and fluorescence yield modes at a grazing angle to the sample surface. The XMCD at 10 K was obtained from the average of ±5 T magnetic fields applied in the film plane to correct for possible nonmagnetic artifacts. All spectra were normalized to a maximum XAS intensity at the L$_3$ edge to facilitate direct comparison between the Ir and Mn L$_3$-edges. Variable-temperature XMC-PEEM images were measured at the Advanced Light Source at Lawrence Berkeley National Laboratory at sector 11.0.1 using the PEEM-3 endstation. Images were collected on films grown on a conducting Nb-doped (0.05%) SrTiO$_3$ substrate and were measured using the Mn L$_3$-edge XMCD in zero applied magnetic field at a grazing angle of 30% to the film surface, which provides a predominant (86.6%) contrast for the in-plane magnetization versus 50% for the out-of-plane magnetization.

SUPPLEMENTARY MATERIALS

Supplemental material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/27/eaaz3902/DC1

REFERENCES AND NOTES

1. K. Ogushi, S. Murakami, N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).
2. S. Müllerhauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni, Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
3. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism. J. Phys. Chem. Solid 4, 241–255 (1958).
4. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).
5. M. Bode, M. Heide, K. von Bergmann, P. Ferrarini, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).
6. U. K. Rößler, A. N. Bogdanov, C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
7. P. Brun, V. K. Dugaev, M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).
8. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
9. A. N. Bogdanov, U. K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).
10. S. S. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190 (2008).
11. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
44. N. Mohanta, E. Dagotto, S. Okamoto, Topological Hall effect and emergent skyrmion.

47. M. Raju, A. Yagil, A. Soumyanarayanan, A. K. C. Tan, A. Almoalem, F. Ma, O. M. Auslaender, J. Matsuno, K. Ihara, S. Yamamura, H. Wadati, K. Ishii, V. V. Shankar, H.-Y. Kee, H. Liu, L. J. Heydman, F. Nolting, Strain-dependent magnetic configurations in manganite-

53. Z. T. Liu, M. Y. Li, Q. F. Li, J. S. Liu, W. Li, H. F. Yang, Q. Yao, C. C. Fan, X. G. Wan, Z. Wang, J. Matsuno, K. Ihara, S. Yamamura, H. Wadati, K. Ishii, V. V. Shankar, H.-Y. Kee, H. Liu, L. J. Heydman, F. Nolting, Strain-dependent magnetic configurations in manganite-

54. J. Matsuno, K. Ihara, S. Yamamura, H. Wadati, K. Ishii, V. V. Shankar, H.-Y. Kee, H. Takagi, Engineering a spin-orbital magnetic insulator by tailoring superlattices.

Acknowledgments: We thank M. R. Fitzsimmons, T. Z. Ward, and G. Eres for feedback on an early version of this manuscript. We also thank H. Liu, L. Yin, and J. Shen from Fudan University for assistance with magnetic force microscopy experiments and L. Debeer-Schmitt of the High Flux Isotope Reactor at Oak Ridge National Laboratory for assistance with small-angle neutron scattering experiments. Funding: This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Advanced Photon Source and the Advanced Light Source, which are DOE Office of Science User Facilities, was supported by DOE's Office of Science under contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively. The Hall effect measurements in high magnetic fields were performed at the NHMFL, which is supported by NSF cooperative agreement no. DMR-1644779 and the state of Florida. Author contributions: E.S., J.N., and H.N.L. designed the experiment and wrote the manuscript with input from all authors. E.S. and J.N. performed sample growth, Hall effect, and magnetometry measurements. J.M.O., E.S., and J.N. performed high magnetic field measurements at the NHMFL with the support of E.S.C. R.V.C. performed XMCD-PEEM measurements and analysis at the ALS. A.R. and C.S. provided support for sample growth and electronic transport measurements. E.S., J.N., C.S., and R.D.D. performed hard and soft x-ray absorption experiments and analysis with the support of Y.C., D.H., and J.W.F. at the APS. X.G. and S.Y. were responsible for STEM measurements and analysis. T.F. and J.N. carried out micromagnetic simulations, and S.O. carried out theoretical simulations. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 5 September 2019
Accepted 22 May 2020
Published 3 July 2020
10.1126/sciadv.aaz3902

Citation: E. Skoropata, J. Nichols, J. M. Ok, R. V. Chopdekar, E. S. Choi, A. Rastogi, C. Sohn, X. Gao, S. Yoon, T. Farmer, R. D. Desautels, Y. Choi, D. Hasek, J. W. Freeland, S. Okamoto, M. Brehlik, H. N. Lee, Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO3/SrO thin heterostructures. Sci. Adv. 6, eaaz3902 (2020).