This article presents the experimental data supporting the study to obtain the mean strain/stress effects on the fatigue behavior of Ti–6Al–4V ELI. A series of strain-controlled fatigue experiments on Ti–6Al–4V ELI were performed at four strain ratios (−1, −0.5, 0, and 0.5). Two types of data are included for each specimen. These are the hysteresis stress–strain responses for the cycle in a log_{10} increment, and the maximum and minimum stress–strain responses for each cycle. Fatigue lives are also reported for all the experiments.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Fatigue specimens were machined from a wrought Ti–6Al–4V ELI bar that was annealed for 1 h at 1300 °F. The round specimens with reduced uniform gage section were further polished to 4000 FEPA surface finish. M-coat D was used as a protective coating on the gage section to prevent extensometer blades from causing any damage on the specimen during testing.

Strain-controlled fatigue tests were performed according to ASTM E606-04 [1]. Test Frequencies were adjusted to eliminate any temperature and strain rate effects. All test were conducted at room temperature with an average relative humidity of 41%.

Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Mississippi State, MS, USA

Data is within this article.
2. Experimental design, materials and methods

Fatigue specimens were machined from Ti–6Al–4V ELI Grade 5 round bar with 12.7 mm diameter to create round-shaped specimens with a reduced uniform gage section. The geometry and dimensions of the specimens, as illustrated in Fig. 1, were designed to comply with ASTM standard E606/E606M–12 [1]. Fatigue tests were performed at four strain ratios, including $R_\varepsilon = -1$ (fully-reversed), $R_\varepsilon = -0.5$ (tension–compression), $R_\varepsilon = 0$ (tension-release), and $R_\varepsilon = 0.5$ (tension–tension). For each strain amplitude, a minimum of two fatigue experiments were conducted to ensure that the test data

Table 1
Ti-6Al-4 V ELI summary of strain-controlled fatigue tests.

Specimen ID	R_ε	ε_a (mm/mm)	$2N_f$ (Reversal)
Fully-Reversed Tests			
sa 0.012 (1)	-1	0.012	2202
sa 0.012 (4)	-1	0.012	2336
sa 0.012 (5)	-1	0.012	3164
sa 0.010 (2)	-1	0.010	3986
sa 0.010 (4)	-1	0.010	4540
sa 0.010 (5)	-1	0.010	3760
sa 0.008 (1)	-1	0.008	14,338
sa 0.008 (2)	-1	0.008	12,914
sa 0.007 (3)	-1	0.007	49,812
sa 0.006 (3)	-1	0.006	124,952
sa 0.006 (5)	-1	0.006	207,610
sa 0.006 (6)	-1	0.006	128,050
sa 0.005 (1)	-1	0.005	> 2,713,156
sa 0.004 (1)	-1	0.004	> 4,431,694
sa 0.004 (2)	-1	0.004	> 2,337,270

Mean Strain Tests			
sa 0.010 (1) R0	0	0.010	5464
sa 0.010 (2) R0	0	0.010	6724
sa 0.008 (1) R0	0	0.008	13,992
sa 0.008 (2) R0	0	0.008	11,398
sa 0.006 (1) R0	0	0.006	57,292
sa 0.006 (2) R0	0	0.006	65,472
sa 0.004 (1) R0	0	0.004	> 2,506,668
sa 0.009 (1) R -0.5	-0.5	0.0090	11,546
sa 0.009 (2) R -0.5	-0.5	0.0090	10,516
sa 0.0075 (1) R -0.5	-0.5	0.0075	22,700
sa 0.0075 (2) R -0.5	-0.5	0.0075	22,992
sa 0.006 (3) R -0.5	-0.5	0.0060	128,248
sa 0.0045 (1) R -0.5	-0.5	0.0045	> 2,371,298
sa 0.0045 (4) R0.5	0.5	0.0045	64,066
sa 0.0045 (6) R0.5	0.5	0.0045	98,788
sa 0.004 (3) R0.5	0.5	0.0040	230,884
sa 0.004 (4) R0.5	0.5	0.0040	129,922
sa 0.003 (2) R0.5	0.5	0.0030	> 2,370,558
sa 0.003 (3) R0.5	0.5	0.0030	> 2,104,146
sa 0.0025 (4) R0.5	0.5	0.0025	> 2,319,500
sa 0.0020 (1) R0.5	0.5	0.0020	> 2,047,510
sa 0.0015 (5) R0.5	0.5	0.0015	> 2,048,000

reported for all the experiments. All the data has been deposited to the Data in Brief (DiB) Dataverse: http://dx.doi.org/10.7910/DVN/EXS3F5.
was consistent. The strain amplitudes, \(\varepsilon_a \), ranged from 0.0015 to 0.012 mm/mm depending on the applied \(R_e \). All tests were conducted at room temperature with an average 41\% relative humidity, and using a servohydraulic test machine with a sinusoidal waveform input. The test frequency was adjusted for each strain amplitude to eliminate any temperature and strain rate effects on the cyclic behavior. Experiments that reached over \(10^6 \) cycles were determined to be a run-out and no duplicate test was performed. For some long life tests in the fully elastic region where the cyclic stress response was constant, the control mode was switched to load-control and the test frequency was increased to reduce the testing time. Table 1 summarizes the compiled data information for all strain-controlled fatigue tests, which were organized by the strain ratio, \(R_e \), and the strain amplitude, \(\varepsilon_a \).

Acknowledgments

This effort was sponsored by the U.S. Government under other transaction number W15QKN-13-9-0001 between the Consortium for Energy, Environment and Demilitarization, and the Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.02.014.

References

[1] ASTM Standard E606/E606M – 12, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, 2012.

[2] R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in Engineering, John Wiley & Sons, 2000.