Structural Stability on the Boundary Coefficient of the Thermoelastic Equations of Type III

Xuejiao Chen and Yuanfei Li *

School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China; cxjsky@gdhsc.edu.cn
* Correspondence: 201610104816@mail.scut.edu.cn

Abstract: This paper investigates the spatial behavior of the solutions of thermoelastic equations of type III in a semi-infinite cylinder by using the partial differential inequalities. By setting an arbitrary positive constant in the energy expression, the fast decay rate of the solutions is obtained. Based on the results of decay, the continuous dependence and the convergence results on the boundary coefficient are established by using the differential inequality technique and the energy analysis method. The main work of this paper is to extend the study of continuous dependence to a semi-infinite cylinder, which can be used as a reference for the study of other types of partial differential equations.

Keywords: spatial decay estimates; thermoelastic equations of type III; structural stability

1. Introduction

Since Hirsch and Smale [1] put forward the concept of structural stability in 1974, this type of structural stability research has attracted a lot of attention. Liu and Zheng [2] considered the exponential stability of the thermoelastic plate model

\begin{align*}
    u_{tt} - h \Delta u_{tt} + \Delta^2 u + \alpha \Delta \theta &= 0, \quad x \in \Omega, \quad t > 0, \quad (1) \\
    \theta_t - \mu \Delta \theta + \sigma \theta - \alpha \Delta u_t &= 0, \quad x \in \Omega, \quad t > 0, \quad (2) \\
    u &= \frac{\partial u}{\partial n} = 0, \quad x \in \Gamma_0, \quad t > 0, \quad (3) \\
    u &= \Delta u + (1 - \mu_1) B_1 u + a \theta, \quad x \in \Gamma_1, \quad t > 0, \quad (4) \\
    u &= u_0(x, t), \quad u_t(x, t) = u_1(x, t), \quad \theta(x, 0) = \theta_0(x, t), \quad x \in \Omega, \quad t > 0, \quad (5)
\end{align*}

where \( \Omega \) is a bounded region in \( \mathbb{R}^n \) with smooth boundary \( \Gamma \) and \( \Gamma = \Gamma_0 \cup \Gamma_1, \Gamma_0 \cup \Gamma_1 \neq \emptyset \). \( h, \alpha, \sigma, \mu, \mu_1 \) are positive constants, and \( u_0(x, t), u_1(x, t), \theta_0(x, t) \) are given functions. \( u \) and \( \theta \) are unknown functions that represent the vertical deflection and the temperature of the plate, respectively.

In another paper [3], Avalos and Lasiecka proved that the solution of the Equations (1)–(5) decayed exponentially as \( t \to \infty \) under the boundary conditions

\begin{align*}
    u &= (1 - k) \frac{\partial u}{\partial n} = 0, \quad x \in \Gamma, \quad t > 0, \quad (6) \\
    \frac{\partial \theta}{\partial n} + \lambda \theta &= 0, \quad x \in \Gamma, \quad t > 0, \quad (7) \\
    k(u + (1 - \mu) B_1 u + a \theta) &= 0, \quad x \in \Gamma, \quad t > 0. \quad (8)
\end{align*}

Here, \( k \) is either 0 or 1. Meyvacı [4] obtained the continuous dependence on coefficients \( h \) and \( \beta \), in the case of \( \sigma = 0 \) in Equations (1) and (2) under the boundary conditions

\begin{align*}
    u &= \frac{\partial u}{\partial n} = \theta = 0, \quad x \in \Gamma, \quad t > 0,
\end{align*}
where \( F(x,t) \) is a known function. This type of boundary condition can be thought of as expressing Newton’s law of cooling with inhomogeneous outside temperature. \( \beta \) is the cooling coefficient. For more papers of the type, one can refer to [5–18].

However, these results above only considered the case of the bounded region. In recent years, structural stability on the solutions of partial differential equations in semi-infinite cylinders has also attracted some attention (see [19–24]). In this paper, we continue their work. We define a semi-infinite cylindrical pipe named \( R \). The cylindrical pipe’s generator parallels to the \( x_3 \)-axis e.g.,

\[
R = \left\{ (x_1,x_2,x_3) \mid (x_1,x_2) \in D, \ x_3 > 0 \right\},
\]

where \( D \) is a bounded simply-connected region in \( (x_1,x_2) \)-plane with piecewise smooth boundary \( \partial D \). We consider the following thermoelastic equations of type III

\[
\begin{align*}
\mathbf{u}_t - \mu \Delta \mathbf{u} + (\mu + \lambda) \nabla (\text{div} \mathbf{u}) + \kappa \nabla \theta &= 0, \ x \in R, \ t > 0, \\
\theta_t - \kappa \Delta \theta - \delta \partial_3 \theta + a \text{div} \mathbf{u}_t &= 0, \ x \in R, \ t > 0, \\
\mathbf{u}, \nabla \mathbf{u}, \theta, \nabla \theta &\to 0, \text{as} \ x_3 \to \infty,
\end{align*}
\]

with the initial-boundary conditions

\[
\begin{align*}
\mathbf{u}(x,0) &= \mathbf{u}_i(x,0) = 0, x \in R, \ t > 0, \\
\theta(x,0) &= \theta_i(x,0) = 0, x \in R, \ t > 0, \\
\mathbf{u}(x_1,x_2,0,t) &= g(x_1,x_2,t), \theta(x_1,x_2,0,t) = h(x_1,x_2,t), (x_1,x_2) \in D, \ t > 0, \\
\mathbf{u} &= 0, \frac{\partial \theta}{\partial n} + \beta \theta = F(x,t), x \in \partial D \times \{ x_3 \geq 0 \}, t > 0,
\end{align*}
\]

where \( \mu, \lambda, \delta, \kappa, a, \) and \( \beta \) are positive constants. By the end of the 20th century, Green and Naghdi [25–27] introduced three types of thermoelastic theories. They were respectively called thermoelasticity type I, type II, and type III based on different constitutive assumptions. Since then, thermoelastic equations of type III have attracted a lot of attention. Quintanilla [28] obtained the existence in thermoelasticity without energy dissipation. Ding and Zhou [29] proved the global existence and finite time blow-up for the solutions of the thermoelastic system with p-Laplacian. Zhang and Zuazua [30] have studied the long-time behavior of the solutions of the system. Quintanilla [31] proved that solutions of thermoelasticity of type III converged to solutions of the classical thermoelasticity and to the solution of thermoelasticity without energy dissipation. Quintanilla [32] obtained the structural stability results on the coupling coefficients and the external data in thermoelasticity of type III in a bounded domain. Yan et al. [33] further extended the convergence result of thermoelasticity of type III to a semi-infinite pipe, but in the lateral of the pipe, they assumed that the solutions satisfied

\[
\mathbf{u} = 0, \theta = 0, x \in \partial D \times \{ x_3 \geq 0 \}, t > 0.
\]

This paper studies the structural stability on the coefficient \( \beta \) of system (9)–(15). Different from the continuous dependence on the initial data, the so-called structural stability studies the continuous dependence and convergence of the solutions of the equations on the coefficients in the equations, the parameters in the boundary conditions, and the equations themselves. In the process of model building, simplification, and numerical cal-
calculation, some errors will inevitably appear. Different from mistakes, the errors will not be completely avoided with the progress of measurement methods. Therefore, it is important for us to study the influence of these errors on the solution of the equations (see [34]). In this paper, we first derive the spatial decay bounds of the solutions by using the partial differential inequalities, and then, we study the effect of the coefficient \( \beta \) by using the total energy bounds obtained in the derivation of spatial decay. By setting an arbitrary positive constant, we also obtain the fast decay rate of the solutions. Obviously, our research is a generalization of [32,33]. Our innovation is to extend the study of continuous dependence to a semi-infinite cylinder. This type of study can be used as a reference for the study of other types of partial differential equations and has not received sufficient attention. Therefore, the research of this paper is very meaningful.

2. Preliminary

In this section, we give some preliminary work, which will be used frequently.

Lemma 1. Assume that \( p > 0, \frac{1}{p} + \frac{1}{q} = 1 \), \( f \in L^p(\Omega) \), \( g \in L^q(\Omega) \), then
\[
\int_{\Omega} fg \, dx \leq \left( \int_{\Omega} |f|^p \, dx \right)^{\frac{1}{p}} \left( \int_{\Omega} |g|^q \, dx \right)^{\frac{1}{q}}.
\]
This inequality is usually named as the Hölder inequality.

Lemma 2. Assume that \( a, b > 0, \frac{1}{p} + \frac{1}{q} = 1 \), then
\[
a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{1}{p} a + \frac{1}{q} b.
\]
This inequality is usually named as the Young inequality.

Lemma 3. Assume that \( n \) is a positive integer and \( x_i > 0 \) (\( i = 1, 2, \ldots, n \)), then
\[
\sqrt[n]{\prod_{i=1}^{n} x_i} \leq \frac{1}{n} \sum_{i=1}^{n} x_i.
\]
This inequality is usually named as the arithmetic–geometric mean inequality.

Lemma 4. Assume that \( u \) is a vector function in a bounded region \( \Omega \), then
\[
\int_{\Omega} \text{div} \, u \, dx = \int_{\partial \Omega} u \cdot n \, dA,
\]
where \( \partial \Omega \) is the boundary surface of \( \Omega \) and \( n \) is the outward facing unit normal vector on \( \partial \Omega \). This inequality is usually named as the divergence theorem.

3. The Decay Results

We first give the notations
\[
R_z = \left\{ (x_1, x_2, x_3) \mid (x_1, x_2) \in D, \ x_3 = z > 0 \right\},
\]
\[
D_z = \left\{ (x_1, x_2, x_3) \mid (x_1, x_2) \in D, \ x_3 = z > 0 \right\},
\]
where \( z \) is a moving point on the coordinate axis \( x_3 \) and \( 0 \leq z < \infty \).
To get the decay result of the solutions to (9)–(15), using (9), we begin with the following identities
\begin{align}
\int_0^t \int_{\mathbb{R}_+^n} e^{-\omega \eta} \left[ u_{i,\eta \eta \eta \eta} - \mu \Delta u_{i,\eta} + \left( \mu + \lambda \right) u_{i,\eta \eta} + \kappa \theta_{i,\eta} \right] u_{i,\eta \eta} \, d\eta \, dx = 0, \\
\int_0^t \int_{\mathbb{R}_+^n} e^{-\omega \eta} \left[ \theta_{i,\eta} - \kappa \Delta \theta - \delta \Delta \theta_{j,\eta} + \alpha u_{i,\eta \eta} \right] \theta_{i,\eta} \, d\eta \, dx = 0,
\end{align}
where $\omega$ is a positive constant. In (16) and in the following, we use commas for derivation, repeated English subscripts for summation from 1 to 3, and repeated Greek subscripts for summation from 1 to 2, e.g., $u_{i,jk} u_{i,j} = \sum_{j=1}^3 \left( \frac{\partial u_{i,jk}}{\partial x_j} \right)^2$, $u_{k,\beta} u_{\alpha,\beta} = \sum_{\alpha,\beta=1}^2 \left( \frac{\partial u_{i,jk}}{\partial x_j} \right)^2$.

Using the divergence theorem and Equations (9)–(15) in (16) and (17), we have
\begin{align}
\frac{1}{2} e^{-\omega t} \int_{\mathbb{R}_+^n} \left[ \theta_{i,\eta}^2 + \kappa \theta_{i,j} \theta_{j,\eta} \right] dx + \int_0^t \int_{\mathbb{R}_+^n} e^{-\omega \eta} \left[ \frac{1}{2} \omega \theta_{i,\eta}^2 + \frac{1}{2} \omega \kappa \theta_{i,j} \theta_{j,\eta} + \delta \theta_{i,\eta} \theta_{j,\eta} \right] dx \, d\eta \\
+ \left( \frac{1}{2} \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{i,\eta} \xi_{i,\eta} \, d\eta + \delta \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta \right) \int_{\mathbb{D}_\xi} e^{-\omega \eta} \theta_{i,\eta} \xi_{i,\eta} \, d\eta \\
+ \frac{\beta \kappa}{2} \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{i,\eta} \xi_{i,\eta} \, d\eta + \frac{\beta \kappa}{2} \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta \\
- \frac{\delta \kappa}{2} \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta + \delta \beta \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{i,\eta} \xi_{i,\eta} \, d\eta + \delta \beta \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta \, d\xi = 0.
\end{align}

If we define
\begin{align}
E(z, t) = \frac{1}{2} e^{-\omega t} \int_{\mathbb{R}_+^n} \left[ u_{i,jk} u_{i,jk} + \mu u_{i,\eta \eta} u_{i,\eta \eta} + \left( \mu + \lambda \right) \left( u_{i,j} \right)^2 + \theta_{i,j}^2 + \kappa \theta_{i,j} \theta_{j,\eta} \right] dx \\
+ \int_0^t \int_{\mathbb{R}_+^n} e^{-\omega \eta} \left[ \frac{1}{2} \omega u_{i,jk} u_{i,jk} + \frac{1}{2} \omega \mu u_{i,\eta \eta} u_{i,\eta \eta} + \frac{1}{2} \omega \left( \mu + \lambda \right) \left( u_{i,j} \right)^2 \right] dx \, d\eta \\
+ \frac{1}{2} \omega \theta_{i,\eta}^2 + \frac{1}{2} \omega \kappa \theta_{i,j} \theta_{j,\eta} + \delta \theta_{i,\eta} \theta_{j,\eta} \right] dx \, d\eta \\
+ \frac{\beta \kappa}{2} \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta + \frac{1}{2} \delta \beta \int_{\mathbb{R}_+^n} e^{-\omega \eta} \theta_{3,\eta} \xi_{3,\eta} \, d\eta, \end{align}
then from (18) and (19), we have

\[
E(z, t) = -\frac{1}{2} \delta \beta \int_0^t \int_z \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\zeta d\eta - \frac{\beta \kappa}{2} \int_0^t \int_z \int_{\partial D} \theta^2 d\sigma d\zeta

- \mu \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta - (\mu + \lambda) \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta

- \alpha \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_j \eta \eta d\sigma d\eta - \lambda \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_j \eta \eta d\sigma d\eta - \delta \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_j \eta \eta d\sigma d\eta

+ \kappa \beta \int_0^t \int_z \int_{\partial D} e^{-\omega \eta} \theta \eta F d\sigma d\zeta d\eta + \delta \beta \int_0^t \int_z \int_{\partial D} e^{-\omega \eta} \theta_\eta d\sigma d\zeta d\eta

\approx \sum_{i=1}^n A_i.

From (20), we also have

\[
-\frac{\partial}{\partial z} E(z, t) = \frac{1}{2} e^{-\omega t} \int_{\partial D} \left[ \mu (u_{i1}\eta u_{i1}\eta + \mu u_{i1}\eta u_{i1}\eta + (\mu + \lambda) \left( u_{i1}\eta \right)^2 + \theta_\eta^2 + \kappa \theta_j \eta \eta \right] d\sigma

+ \frac{1}{\omega} \mu \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta + \frac{1}{\omega} \mu \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta

+ \frac{\beta \kappa}{2} \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta + \frac{1}{\omega} \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta.

Using the Hölder inequality and the Young inequality, we have

\[
A_3 \leq \mu \left[ \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right]^{\frac{1}{2}} \leq \frac{\sqrt{R}}{\omega} \left[ \frac{1}{2} \omega \mu \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta + \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right], \tag{23}
\]

\[
A_4 \leq (\mu + \lambda) \left[ \int_0^t \int_{\partial D} e^{-\omega \eta} (u_{i1}\eta)^2 d\sigma d\eta \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right]^\frac{1}{2} \leq \frac{\sqrt{\mu + \lambda}}{\omega} \left[ \frac{1}{2} \omega (\mu + \lambda) \int_0^t \int_{\partial D} e^{-\omega \eta} (u_{i1}\eta)^2 d\sigma d\eta + \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right], \tag{24}
\]

\[
A_5 \leq \alpha \left[ \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right]^{\frac{1}{2}} \leq \frac{\alpha}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta + \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} u_{i1}\eta u_{i1}\eta d\sigma d\eta \right], \tag{25}
\]

\[
A_6 \leq \kappa \left[ \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \right] \leq \frac{\kappa}{\omega} \left[ \frac{1}{2} \kappa \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta + \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \right], \tag{26}
\]

\[
A_7 \leq \delta \left[ \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \right] \leq \frac{\delta}{\sqrt{2} \omega} \left[ \delta \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta + \frac{1}{2} \omega \int_0^t \int_{\partial D} e^{-\omega \eta} \theta_\eta^2 d\sigma d\eta \right]. \tag{27}
\]
where \(\delta_1, \delta_2\) are positive constants. Inserting (23)–(29) into (21), choosing \(\delta_1 = \delta_2 = 1\) and combining (22), we have
\[
E(z, t) \leq \frac{1}{m_1 \sqrt{\omega}} \left[ -\frac{\partial}{\partial z} E(z, t) \right] + Q_1(z, t),
\]
where \(\frac{1}{m_1} = \max \left\{ \frac{\sqrt{\kappa}}{\sqrt{\omega}} + \frac{\beta}{\sqrt{\omega}} + \frac{\eta}{\sqrt{\omega}} + \frac{\beta + \lambda}{\sqrt{\omega}} \right\}, Q_1(z, t) = \int_0^t \int_{\partial D_x} e^{-\omega t} \omega \eta d\xi d\eta.
\]
From (30), we have
\[
\frac{\partial}{\partial z} \left\{ E(z, t) e^{m_1 \sqrt{\omega} z} \right\} \leq m_1 \sqrt{\omega} Q_1(z, t) e^{m_1 \sqrt{\omega} z}.
\]
Integrating (31) from 0 to \(z\), we have
\[
E(z, t) \leq E(0, t) e^{-m_1 \sqrt{\omega} z} + m_1 \sqrt{\omega} \int_0^z Q_1(\xi, t) e^{m_1 \sqrt{\omega} (\xi - z)} d\xi.
\]
Combining (20) and (32), we can obtain the following theorem.

**Theorem 1.** Let \((u, \theta)\) be the solutions of Equations (9)–(15) with \(F, F_\eta \in C(\partial D \times [0, \infty))\). Then, the following inequality holds.
\[
\frac{1}{2} e^{-\omega t} \int_{\mathbb{R}_x} \left[ \frac{1}{2} \left( H_{i,j} u_{i,j} + 2H_{i,j} u_{i,j} + (\mu + \lambda) \right) u_{i,j}^2 + \theta_{i,j}^2 + \kappa \theta_{i,j} \right] dx
\]
\[
+ \frac{1}{2} \int_0^t \int_{\mathbb{R}_x} e^{-\omega t} \left[ \frac{1}{2} \omega u_{\xi,\eta} u_{\xi,\eta} + \frac{1}{2} \omega u_{\xi,\eta} u_{\xi,\eta} + \frac{1}{2} \omega (\mu + \lambda) u_{\xi,\eta}^2 \right] dx d\eta
\]
\[
+ \frac{1}{2} \omega \theta_{\xi,j}^2 + \frac{1}{2} \omega \kappa \theta_{\xi,j} \theta_{\xi,j} + \omega \theta_{\xi,j} \theta_{\xi,j} \right] dx d\eta
\]
\[
+ \frac{\beta \kappa \omega}{2} \int_0^1 \int_0^\infty \int_{\partial D_\xi} e^{-\omega t} \omega^2 d\xi d\eta + \frac{1}{2} \omega \theta_{\xi,j}^2 + \frac{1}{2} \omega \kappa \theta_{\xi,j} + \omega \theta_{\xi,j} \theta_{\xi,j} \right] dx d\eta
\]
\[
\leq E(0, t) e^{-m_1 \sqrt{\omega} z} + m_1 \sqrt{\omega} \int_0^z Q_1(\xi, t) e^{m_1 \sqrt{\omega} (\xi - z)} d\xi.
\]

**Remark 1.** Since \(E(0, t) e^{-m_1 \sqrt{\omega} z} + \int_0^z Q_1(\xi, t) e^{m_1 \sqrt{\omega} (\xi - z)} d\xi \to 0\) as \(z \to \infty\), we can conclude that the solutions of Equations (9)–(15) decay exponentially. Since \(\omega\) is an arbitrary positive constant, the decay rate can be large enough.

**Remark 2.** Obviously, the decay bound in Theorem 1 depends on the total energy \(E(0, t)\). To make the decay bound explicit, we have to derive the bound for \(E(0, t)\). We write the result in the following theorem.
Theorem 2. Let \((u, \theta)\) be solutions of Equations (9)–(15) in \(R\), then, for fixed \(t\),

\[
E(0, t) = \frac{1}{2} e^{-\omega t} \int_R \left[ u_{i,j} u_{i,j} + \mu u_{i,j} u_{i,j} + (\mu + \lambda) \left( u_{i,j} \right)^2 + \theta_{i,j}^2 + \kappa \theta_{i,j} \right] dx
\]

\[
+ \int_0^t \int_R e^{-\omega \eta} \left[ \frac{1}{2} \omega u_{i,j} u_{i,j} + \frac{1}{2} \omega u_{i,j} + \frac{1}{2} \omega (\mu + \lambda) \left( u_{i,j} \right)^2 \right] d\eta d\eta
\]

\[
+ \frac{1}{2} \omega \theta_{j,j}^2 + \frac{1}{2} \omega \theta_{i,j} + \delta \theta_{i,j} \theta_{j,j} \right] dx d\eta
\]

\[
+ \frac{\beta \kappa \omega}{2} \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j}^2 dsd\xi d\eta + \frac{1}{2} \delta \beta \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j}^2 dsd\xi d\eta,
\]

and

\[
E(0, t) = -\frac{1}{2} \delta \beta \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j}^2 dsd\xi d\eta - \frac{\beta \kappa}{2} e^{-\omega t} \int_0^\infty \int_{\partial \Omega} \theta_{i,j}^2 dsd\xi
\]

\[
- \mu \int_0^t \int_D e^{-\omega \eta} u_{i,j} u_{i,j} d\eta - (\mu + \lambda) \int_0^t \int_D e^{-\omega \eta} u_{i,j} u_{i,j} d\eta d\eta
\]

\[
- \alpha \int_0^t \int_D e^{-\omega \eta} \theta_{i,j} \theta_{i,j} d\eta - \kappa \int_0^t \int_D e^{-\omega \eta} \theta_{i,j} \theta_{j,j} d\eta - \delta \int_0^t \int_D e^{-\omega \eta} \theta_{i,j} \theta_{j,j} d\eta d\eta
\]

\[
+ \kappa \beta \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j} F dsd\xi d\eta + \delta \beta \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j} F dsd\xi d\eta.
\]

Proof. We choose \(z = 0\) in (20) and (21) to have

\[
E(0, t) = \frac{1}{2} e^{-\omega t} \int_R \left[ u_{i,j} u_{i,j} + \mu u_{i,j} u_{i,j} + (\mu + \lambda) \left( u_{i,j} \right)^2 + \theta_{i,j}^2 + \kappa \theta_{i,j} \right] dx
\]

\[
+ \int_0^t \int_R e^{-\omega \eta} \left[ \frac{1}{2} \omega u_{i,j} u_{i,j} + \frac{1}{2} \omega u_{i,j} + \frac{1}{2} \omega (\mu + \lambda) \left( u_{i,j} \right)^2 \right] d\eta d\eta
\]

\[
+ \frac{1}{2} \omega \theta_{j,j}^2 + \frac{1}{2} \omega \theta_{i,j} + \delta \theta_{i,j} \theta_{j,j} \right] dx d\eta
\]

\[
+ \frac{\beta \kappa \omega}{2} \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j}^2 dsd\xi d\eta + \frac{1}{2} \delta \beta \int_0^t \int_0^\infty \int_{\partial \Omega} e^{-\omega \eta} \theta_{i,j}^2 dsd\xi d\eta,
\]

where \(Q_2(0, t)\) is a positive function, which will be defined in (53).

\[
\square
\]

Now, we define two new auxiliary functions

\[
G_i(x_1, x_2, x_3, t) = g_i(x_1, x_2, t) e^{-\sigma_1 x_3}, H(x_1, x_2, x_3, t) = h(x_1, x_2, t) e^{-\sigma_2 x_3},
\]

where \(\sigma_1, \sigma_2\) are positive constants. Obviously, \(G_i\) and \(H\) have the same boundary conditions with \(u_i\) and \(\theta\), respectively.
Using Equation (9) and the divergence theorem, we have

\[-\mu \int_D e^{-\omega t} u_{i,3\eta} u_{i,\eta} dAd\eta - (\mu + \lambda) \int_D e^{-\omega t} u_{i,\eta} u_{3,\eta} dAd\eta = -\mu \int_D e^{-\omega t} u_{i,j\eta} G_{i,j\eta} dAd\eta - (\mu + \lambda) \int_D e^{-\omega t} u_{i,\eta} G_{3,\eta} dAd\eta \]

\[= \mu \int_R e^{-\omega t} (u_{i,j\eta} G_{i,j\eta}) dxd\eta + (\mu + \lambda) \int_R e^{-\omega t} (u_{i,\eta} G_{3,\eta}) dxd\eta \]

\[= \mu \int_R e^{-\omega t} u_{i,j\eta} G_{i,j\eta} dxd\eta + (\mu + \lambda) \int_R e^{-\omega t} u_{i,\eta} G_{3,\eta} dxd\eta \]

\[\quad + \mu \int_R e^{-\omega t} [u_{i,\eta\eta} + a\theta_j\eta] G_{i,j\eta} dxd\eta \]

\[= \mu \int_R e^{-\omega t} u_{i,j\eta} G_{i,j\eta} dxd\eta + (\mu + \lambda) \int_R e^{-\omega t} u_{i,\eta} G_{3,\eta} dxd\eta \]

\[+ e^{-\omega t} \int_R u_{i,j} G_{i,j\eta} + \omega \int_R e^{-\omega t} u_{i,\eta} G_{3,\eta\eta} dxd\eta + \alpha \int_R e^{-\omega t} \theta_{i,\eta} G_{i,j\eta} dxd\eta \]

\[\geq \sum_{i=1}^{5} B_i. \]

Using the Hölder inequality and the Young inequality in (36), we have

\[B_1 \leq \frac{1}{2} \mu \epsilon_1 \int_0^t \int_R e^{-\omega t} u_{i,j\eta} u_{i,j\eta} dxd\eta + \frac{1}{2\epsilon_1} \mu \int_0^t \int_R e^{-\omega t} G_{i,j\eta} G_{i,j\eta} dxd\eta, \]

\[B_2 \leq \frac{1}{2} (\mu + \lambda) \epsilon_2 \int_0^t \int_R e^{-\omega t} (u_{i,j\eta})^2 dxd\eta + \frac{1}{2\epsilon_2} (\mu + \lambda) \int_0^t \int_R e^{-\omega t} (G_{i,j\eta})^2 dxd\eta, \]

\[B_3 \leq \frac{1}{2} \epsilon_3 e^{-\omega t} \int_0^t \int_R u_{i,\eta} u_{j,\eta} dxd\eta + \frac{1}{2\epsilon_3} \int_0^t \int_R G_{i,\eta} G_{j,\eta} dxd\eta, \]

\[B_4 \leq \frac{1}{2} \epsilon_4 \omega \int_0^t \int_R e^{-\omega t} u_{i,j\eta} u_{i,j\eta} dxd\eta + \frac{1}{2\epsilon_4} \omega \int_0^t \int_R e^{-\omega t} G_{ij\eta} G_{ij\eta} dxd\eta, \]

\[B_5 \leq \frac{1}{2} \epsilon_5 \alpha \int_0^t \int_R e^{-\omega t} \theta_{i,\eta} \theta_{j,\eta} dxd\eta + \frac{1}{2\epsilon_5} \alpha \int_0^t \int_R e^{-\omega t} G_{i,\eta} G_{i,\eta} dxd\eta, \]

where \(\epsilon_i (i = 1, 2, \ldots, 5)\) are positive constants. Using Equation (10) and the divergence theorem, we have

\[-\kappa \int_0^t \int_D e^{-\omega t} \theta_{3i,\eta} dAd\eta - \delta \int_0^t \int_D e^{-\omega t} \theta_{3\eta} \theta_{i,\eta} dAd\eta - \alpha \int_0^t \int_D e^{-\omega t} \theta_{i,\eta} u_{3,\eta} dAd\eta \]

\[= -\kappa \int_0^t \int_D e^{-\omega t} \theta_{3H,\eta} dAd\eta - \delta \int_0^t \int_D e^{-\omega t} \theta_{3\eta} H_{\eta,\eta} dAd\eta - \alpha \int_0^t \int_D e^{-\omega t} \theta_{\eta} u_{3,\eta} dAd\eta \]

\[= \kappa \int_0^t \int_D e^{-\omega t} (\theta_{3H,\eta}) dxd\eta + \delta \int_0^t \int_D e^{-\omega t} (\theta_{3\eta} H_{\eta,\eta}) dxd\eta \]

\[-\kappa \int_0^t \int_D e^{-\omega t} [\theta_{3H} + F] dAd\eta \]

\[-\delta \int_0^t \int_0^t \int_D e^{-\omega t} (-\theta_{\eta} + F_{\eta}) H_{\eta} dxd\eta \]

\[= e^{-\omega t} \int_0^t \int_D \theta_{3H} ddx + \omega \int_0^t \int_D e^{-\omega t} \theta_{\eta} H_{\eta,\eta} dxd\eta - \alpha \int_0^t \int_D e^{-\omega t} u_{3,\eta} H_{\eta,\eta} dxd\eta \]

\[\quad - \kappa \beta \int_0^t \int_D e^{-\omega t} \theta_{3H} dsd\xi d\eta - \delta \int_0^t \int_D e^{-\omega t} F_{\eta} dsd\xi d\eta \]

\[+ \beta \delta \int_0^t \int_D e^{-\omega t} \theta_{3H} dsd\xi d\eta - \delta \int_0^t \int_D e^{-\omega t} F_{\eta} dsd\xi d\eta \]
Using the Hölder inequality and the Young inequality in (42), we have

\begin{align*}
  C_1 &\leq \frac{1}{2} \varepsilon_6 e^{-\omega t} \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon \\
  C_2 &\leq \frac{1}{2} \varepsilon_7 \omega \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon + \frac{1}{2\varepsilon_7} \omega \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} H_{\eta}^2 d\eta d\epsilon \\
  C_3 &\leq \frac{1}{2} \varepsilon_8 \omega \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} u_{\epsilon \eta} u_{\epsilon \eta} d\eta d\epsilon + \frac{1}{2\varepsilon_8} \omega \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} H_{\epsilon \eta} H_{\epsilon \eta} d\eta d\epsilon \\
  C_4 &\leq \frac{1}{2} \varepsilon_9 \int_{0}^{t} \int_{0}^{t} \int_{\mathbb{R}^2} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon d\epsilon \\
  C_5 &\leq \frac{1}{2} \varepsilon_{10} \int_{0}^{t} \int_{0}^{t} \int_{\mathbb{R}^2} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon d\epsilon \\
  C_6 &\leq \frac{1}{2} \varepsilon_{11} \int_{0}^{t} \int_{0}^{t} \int_{\mathbb{R}^2} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon d\epsilon \\
  C_7 &\leq \frac{1}{2} \varepsilon_{12} \int_{0}^{t} \int_{0}^{t} \int_{\mathbb{R}^2} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon d\epsilon \\
\end{align*}

where $\varepsilon_i$ ($i = 6, 7, \ldots, 12$) are positive constants. For the last two terms on the right of (34), we can refer to the results that have been derived in (28) and (29), and we have the following inequalities

\begin{align*}
  \kappa \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 F d\epsilon d\eta &
  \leq \frac{1}{2} \varepsilon_6 \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon \\
  \delta \beta \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon &
  \leq \frac{1}{2} \varepsilon_6 \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon \\
\end{align*}

Inserting (37)–(41) and (43)–(49) into (36) and (42) respectively, combining (33), (34), (50) and (51) and choosing

\begin{align*}
  \varepsilon_1 = \varepsilon_2 = \varepsilon_6 = \varepsilon_7 = \varepsilon_{10} = \delta_1 = \delta_2 = \varepsilon_1 = \varepsilon_6 = \varepsilon_9 = \frac{1}{2} , \varepsilon_4 = \varepsilon_9 = \frac{1}{4} , \delta = \frac{2}{3} , \varepsilon_8 = \frac{\omega}{2\delta} , \varepsilon_{11} = \frac{1}{2} \kappa \omega ,
\end{align*}

We have

\begin{align*}
  E(0, t) &\leq \frac{1}{2} E(0, t) + Q_2(0, t) ,
\end{align*}

where

\begin{align*}
  Q_2(0, t) &\leq \frac{1}{2\varepsilon_6} \mu \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} e_{\epsilon}^2 d\eta d\epsilon + \frac{1}{2\varepsilon_6} (\mu + \lambda) \int_{0}^{t} \int_{\mathbb{R}} e^{-\omega \eta} (e_{\epsilon \eta})^2 d\eta d\epsilon
\end{align*}
Theorem 3. Let \((u, \theta)\) be the solutions of Equations (9)—(15) with \(F, F_\eta \in C(\partial D \times [0, \infty))\). Then, the following inequality

\[
\frac{\beta \kappa \omega}{2} \int_0^t \int_0^{\xi(z)} e^{-\omega(\theta^2 - \theta^2)} dsd\xi d\eta + \frac{1}{2} \delta \beta \int_0^t \int_{\partial D_z} e^{-\omega(\theta^2 - \theta^2)} dsd\xi d\eta \leq Q_3(z, t) e^{-m_1 \sqrt{\omega z}},
\]

where

\[
Q_3(z, t) = 2Q_2(0, t) + m_1 \sqrt{\omega} \int_0^z Q_1(\xi, t) e^{m_1 \sqrt{\omega \xi}} d\xi.
\]

4. Continuous Dependence on the Boundary Coefficient

We will use the results obtained in Section 2 to investigate the effect of the small change on the coefficient \(\beta\) in Equations (9)—(15). To do this, we let \(u^*\) and \(\theta^*\) be the solutions of (9)—(15) with the boundary coefficient \(\beta^*\) replaced by the constant \(\beta^*\) and allow \(u\) and \(u^*\) to satisfy same conditions on the entrance \(D\). It is worth noting that if \(u\) and \(u^*\) satisfy different boundary conditions at the entrance, our results are still valid because our problem is linear, and we can decompose and deal with the two effects, respectively. If we let \(v_i\) and \(\Pi\) be the differences between \(u_i\), \(p\) and \(u_i^*\), \(\Pi\) respectively, i.e.,

\[
v = u - u^*, \quad \Pi = \theta - \theta^*, \quad \tilde{\beta} = \beta - \beta^*,
\]

then \(v\) and \(\Pi\) satisfy the following equations

\[
v_{tt} - \mu \Delta v + (\mu + \lambda) \nabla (\text{div} v) + a \nabla \Pi = 0, \ x \in R, \ t > 0,
\]

\[
\Pi_{tt} - \kappa \Delta \Pi - \delta \Delta \Pi_t + a \text{div} v_t = 0, \ x \in R, \ t > 0,
\]

\[
v, \nabla v, \Pi, \nabla \Pi \to 0, \text{ as } x_3 \to \infty,
\]

with the initial boundary conditions

\[
v(x, 0) = v_1(x, 0) = 0, x \in R, t > 0,
\]

\[
\Pi(x, 0) = \Pi_1(x, 0) = 0, x \in R, t > 0,
\]

\[
v(x_1, x_2, 0, t) = 0, \theta(x_1, x_2, 0, t) = 0, (x_1, x_2) \in D, t > 0,
\]

\[
v = 0, \frac{\partial \Pi}{\partial n} + \tilde{\beta} \theta + \beta^* \Pi = 0, x \in \partial D \times \{x_3 \geq 0\}, t > 0.
\]

We have the following theorem.
Theorem 4. Let \((u, \theta)\) be the solutions of Equations (9)–(15) and \((u^*, \theta^*)\) be the solutions of Equations (9)–(15) with \(\beta = \beta^*\). The functions \(v\) and \(\Pi\) are defined in (54). If \(F, F_\eta \in C(\partial D \times [0, \infty))\) and \(\int_D f_\eta dA = 0\), then

\[
\frac{1}{2} e^{-\omega t} \int_{R^2} \left[ v_{i,j} + \mu v_{i,j} v_{i,j} + (\mu + \lambda)(v_{i,j})^2 + \Pi^2 + \kappa \Pi \right] dx \\
+ \int_0^t \int_{R^2} e^{-\omega t} \left[ \frac{1}{2} \omega^2 v_{i,j} v_{i,j} + \frac{1}{2} \omega \mu v_{i,j} v_{i,j} + \frac{1}{2} \omega (\mu + \lambda)(v_{i,j})^2 + \frac{1}{2} \omega \Pi^2 \right] dx d\eta \\
+ \frac{1}{2} \omega \kappa \int_{D} dA \\
+ \frac{1}{2} \int_0^t \int_{D} e^{-\omega t} \left[ \omega \beta^* \kappa \Pi^2 + \delta \beta^* \Pi^2 \right] dsd\xi d\eta \\
\leq 2 b_2 \beta^2 Q_2(0, t)e^{-b_1 \omega_2} + b_1 b_2 \sqrt{\omega} \beta^2 e^{-b_1 \omega_2} \int_0^t Q_3(\xi, t) e^{(b_1 - m_1) \sqrt{\omega}} dsd\xi,
\]

where \(b_1, b_2\) are positive constants. This demonstrates continuous dependence of \((u, \theta)\) on the parameter \(\beta\).

Proof. We began from the following identities

\[
\int_0^t \int_{R^2} e^{-\omega t} \left[ v_{i,j} - \mu \Delta v_{i,j} + (\mu + \lambda)v_{i,j} + \alpha \Pi_{,i,j} \right] v_{i,j} dxd\eta = 0, \quad (62)
\]
\[
\int_0^t \int_{R^2} e^{-\omega t} \left[ \Pi_{,i,j} - \kappa \Delta \Pi - \delta \Delta \Pi + \alpha v_{i,j} \right] \Pi_{,i,j} dxd\eta = 0. \quad (63)
\]

Applying the divergence theorem and using (57)–(61), we have from (62) and (63)

\[
\frac{1}{2} e^{-\omega t} \int_{R^2} \left[ v_{i,j} + \mu v_{i,j} v_{i,j} + (\mu + \lambda)(v_{i,j})^2 \right] dx \\
+ \frac{1}{2} \omega \int_0^t \int_{R^2} e^{-\omega t} \left[ v_{i,j} + \mu v_{i,j} v_{i,j} + (\mu + \lambda)(v_{i,j})^2 \right] dxd\eta \\
= -\mu \int_0^t \int_{D} e^{-\omega t} v_{i,j} \Pi_{,i,j} dA d\eta - (\mu + \lambda) \int_0^t \int_{D} e^{-\omega t} v_{i,j} \Pi_{,i,j} dA d\eta \\
- \alpha \int_0^t \int_{D} e^{-\omega t} \Pi_{,i,j} \Pi_{,i,j} dA d\eta + \alpha \int_0^t \int_{R^2} e^{-\omega t} \Pi_{,i,j} v_{i,j} dxd\eta,
\]

and

\[
\frac{1}{2} e^{-\omega t} \int_{R^2} \left[ \Pi^2 + \kappa \Pi \right] dx + \frac{1}{2} e^{-\omega t} \beta^* \kappa \int_0^t \int_{D} \Pi d\xi d\eta \\
+ \int_0^t \int_{D} e^{-\omega t} \left[ \frac{1}{2} \omega^2 \Pi^2 + \frac{1}{2} \omega \kappa \Pi \right] dsd\xi d\eta \\
\leq -\kappa \int_0^t \int_{D} e^{-\omega t} \Pi_{,i,j} dA d\eta \quad (65)
\]
Now, if we define
\[
\Gamma(z, t) = \frac{1}{2} e^{-\omega t} \int_{R_c} \left[ \tilde{v}_{ij} \tilde{v}_{ij} + \mu \tilde{v}_{ij} \tilde{v}_{ij} + (\mu + \lambda) (v_{ij})^2 + \Pi^2_j + k \Pi_j \Pi_j \right] dx \\
+ \int_0^t \int_{R_c} e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{ij} v_{ij} + \frac{1}{2} \omega (\mu v_{ij} v_{ij} + \frac{1}{2} \omega (\mu + \lambda) (v_{ij})^2 + \frac{1}{2} \omega \Pi^2_j \right] d\eta \\
+ \frac{1}{2} \omega k \Pi_j \Pi_j + \delta \Pi_j \Pi_j \right] dx + \int_0^\infty \int_{D_z} \Pi^2 d\eta d\xi \\
+ \frac{1}{2} \int_0^t \int_{D_z} e^{-\omega \eta} \left[ \omega \beta^2 + \delta \beta^2 \Pi^2 \right] dx d\eta,
\]
then we have
\[
- \frac{\partial}{\partial z} \Gamma(z, t) = \frac{1}{2} e^{-\omega t} \int_{D_z} \left[ \tilde{v}_{ij} \tilde{v}_{ij} + \mu \tilde{v}_{ij} \tilde{v}_{ij} + (\mu + \lambda) (v_{ij})^2 + \Pi^2_j + k \Pi_j \Pi_j \right] dA \\
+ \int_0^t \int_{D_z} e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{ij} v_{ij} + \frac{1}{2} \omega (\mu v_{ij} v_{ij} + \frac{1}{2} \omega (\mu + \lambda) (v_{ij})^2 + \frac{1}{2} \omega \Pi^2_j \right] d\eta \\
+ \frac{1}{2} \omega k \Pi_j \Pi_j + \delta \Pi_j \Pi_j \right] dA d\eta + \int_0^t \int_{D_z} \Pi^2 d\eta \\
+ \frac{1}{2} \int_0^t \int_{D_z} e^{-\omega \eta} \left[ \omega \beta^2 + \delta \beta^2 \Pi^2 \right] d\eta.
\]
Combining (64) and (65), we have
\[
\Gamma(z, t) = -\frac{1}{2} \beta^2 \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\xi d\eta - \mu \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta \\
- (\mu + \lambda) \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta - \alpha \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta \\
- \kappa \int_0^t \int_{D_z} e^{-\omega \eta} \Pi_j \Pi_j d\eta d\eta - \delta \int_0^t \int_{D_z} e^{-\omega \eta} \Pi_j \Pi_j d\eta d\eta \\
- \tilde{\beta} \int_0^t \int_{D_z} e^{-\omega \eta} \left[ k \Pi_j \theta + \delta \Pi_j \theta \right] d\eta d\eta \\
\leq -\frac{1}{2} \beta^2 \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta + \sum_{i=1}^6 l_i.
\]
By using the Hölder inequality and the arithmetic–geometric mean inequality, we have
\[
l_1 \leq \mu \left[ \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta \right]^{\frac{1}{2}} \left[ \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta \right] \leq \frac{\sqrt{\mu}}{\omega} \left[ \frac{1}{2} \omega \mu \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta + \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} v_{ij} v_{ij} d\eta d\eta \right] \leq \frac{\sqrt{\mu + \lambda}}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} (v_{ij})^2 d\eta d\eta + \frac{1}{2} \omega (\mu + \lambda) \int_0^t \int_{D_z} e^{-\omega \eta} (v_{ij})^2 d\eta d\eta \right],
\]
\[
l_2 \leq \alpha \left[ \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta \right] \leq \frac{\alpha}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta + \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta \right],
\]
\[
l_3 \leq \frac{\sqrt{\mu + \lambda}}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} (v_{ij})^2 d\eta d\eta + \frac{1}{2} \omega (\mu + \lambda) \int_0^t \int_{D_z} e^{-\omega \eta} (v_{ij})^2 d\eta d\eta \right],
\]
\[
l_4 \leq \frac{\alpha}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta + \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta \right],
\]
\[
l_5 \leq \frac{\sqrt{\mu + \lambda}}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta + \frac{1}{2} \omega (\mu + \lambda) \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta \right],
\]
\[
l_6 \leq \frac{\alpha}{\omega} \left[ \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta + \frac{1}{2} \omega \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2 d\eta d\eta \right],
\]
\[
I_4 \leq \kappa \left[ \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right]^{\frac{1}{2}} \\
\leq \sqrt{\frac{\kappa}{\omega}} \left[ \frac{1}{2 \omega} \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta + \frac{1}{2 \omega} \kappa \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right], \\
I_5 \leq \delta \left[ \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right]^{\frac{1}{2}} \\
\leq \sqrt{\frac{\delta}{\omega}} \left[ \delta \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta + \frac{1}{2 \omega} \kappa \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right], \\
\text{and} \\
I_6 \leq \kappa \beta \left[ \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right]^{\frac{1}{2}} \\
+ \delta \beta \left[ \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right]^{\frac{1}{2}} \\
\leq \frac{1}{2} \delta \beta \left[ \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right]^{\frac{1}{2}}.
\]

Inserting (69)–(74) into (68), we have
\[
\Gamma(z, t) \leq \frac{1}{b_1} \sqrt{\omega} \left[ -\frac{\partial}{\partial z} \Gamma(z, t) \right] + \max \left\{ \frac{2 \kappa \omega \beta^2}{\beta^2}, \frac{2}{\beta^2} \right\} \left[ \kappa \beta \sqrt{\omega} \sqrt{\Gamma \left( \frac{1}{b_1} \sqrt{\omega} \right)} \int_0^t \int_{D_z} e^{-\omega \eta \Gamma_z^2} dAd\eta \right] \\
+ \frac{\delta \beta^2}{\beta^2} \left[ \int_0^t \int_{D_z} \int_{D_z} e^{-\omega \eta \Gamma_\eta^2} dAd\eta \right],
\]
where
\[
\frac{1}{b_1} = \sqrt{\frac{\mu}{\omega}} + \sqrt{\frac{\mu + \lambda}{\omega}} + \frac{\kappa}{\omega} + \sqrt{\frac{\delta}{\omega}}.
\]

Using the Theorem 3 in (75), we obtain
\[
\Gamma(z, t) \leq \frac{1}{b_1} \sqrt{\omega} \left[ -\frac{\partial}{\partial z} \Gamma(z, t) \right] + b_2 \beta^2 Q_3(z, t)e^{-m_1 \sqrt{\omega} z},
\]
where \( b_2 = \max \left\{ \frac{2 \kappa \omega}{\omega \beta^2} \right\} \). From (76) it follows that
\[
\frac{\partial}{\partial z} \left\{ \Gamma(z, t)e^{b_1 \sqrt{\omega} z} \right\} \leq b_1 b_2 \sqrt{\omega} \beta^2 Q_3(z, t)e^{(b_1 - m_1) \sqrt{\omega} z}.
\]

Integrating (77) from 0 to \( z \), we have
\[
\Gamma(z, t) \leq \Gamma(0, t)e^{-b_1 \sqrt{\omega} z} + b_1 b_2 \sqrt{\omega} \beta^2 e^{-b_1 \sqrt{\omega} z} \int_0^z Q_3(z, t)e^{(b_1 - m_1) \sqrt{\omega} \zeta} d\zeta.
\]
To obtain Theorem 4, we have to derive bound for $\Gamma(0, t)$. To do this, we choose $z = 0$ in (66) and (68) and use the boundary conditions (39)-(61) in (68) to have
\[
\Gamma(0, t) = \frac{1}{2} e^{-\omega t} \int_R \left[ v_{i,H} v_{i,H} + \mu v_{i,H} v_{i,H} + (\mu + \lambda)(v_{i,H})^2 + \Pi^2 + \kappa \Pi \Pi_j \right] dx
\]
\[
+ \int_0^t \int_R e^{-\omega \eta \int_0^\eta} \left[ \frac{1}{2} \omega v_{i,H} v_{i,H} + \frac{1}{2} \omega v_{i,H} v_{i,H} + \frac{1}{2} \omega (\mu + \lambda)(v_{i,H})^2 + \frac{1}{2} \omega \Pi^2 \eta \right] dxd\eta
\]
\[
+ \frac{1}{2} \omega \kappa \Pi \Pi_j + \delta \Pi \eta \Pi_j \right] dxd\eta + \frac{1}{2} e^{-\omega t} \beta^* \kappa \int_0^\infty \int_{\partial D_x} \Pi^2 dsd\xi
\]
\[
+ \frac{1}{2} \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \left[ \omega \beta^* \kappa \Pi^2 + \delta \beta^* \Pi^2 \right] dsd\xi d\eta,
\]
and
\[
\Gamma(0, t) = -\frac{1}{2} \delta \beta^* \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \Pi^2 dsd\xi d\eta
\]
\[
+ \tilde{\beta} \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \left[ \kappa \Pi \theta + \delta \Pi \theta \Pi \right] dsd\xi d\eta.
\]
Choosing $z = 0$ in (74) and using the Theorem 2, we have
\[
-\tilde{\beta} \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \left[ \kappa \Pi \theta + \delta \Pi \theta \Pi \right] dsd\xi d\eta
\]
\[
\leq \frac{1}{2} \delta \beta^* \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \Pi^2 dsd\xi d\eta
\]
\[
+ \frac{\kappa^2 \beta^2}{\delta \beta^*} \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \theta^2 dsd\xi d\eta + \frac{\delta \beta^2}{\beta^*} \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \theta^2 dsd\xi d\eta
\]
\[
\leq \frac{1}{2} \delta \beta^* \int_0^t \int_0^\infty \int_{\partial D_x} e^{-\omega \eta} \Pi^2 dsd\xi d\eta + 2b_2^2 \beta^2 Q_2(0, t).
\]
Inserting (81) into (80), we have
\[
\Gamma(0, t) \leq 2b_2^2 \beta^2 Q_2(0, t).
\]
Combining (66), (78) and (82), we can obtain the Theorem 4.

5. Convergence on the Boundary Coefficient

In this section, we derive the convergence result on the boundary coefficient which is different from the continuous dependence result. We let $u^*$ and $\theta^*$ be the solutions of (9)-(15) with the boundary coefficient $\beta = 0$ and $v$ and $\Pi$ are also defined as (54). So, $v$ and $\Pi$ also satisfy (55)-(60), but the condition (61) can be replaced by
\[
v = 0, \quad \frac{\partial \Pi}{\partial n} + \beta \theta = 0, \quad x \in \partial D \times \{ x_3 \geq 0 \}, \quad t > 0.
\]

To get our main result, we will use the following lemma.

Lemma 5 (see [35]). Let $D$ be a bounded star region in $\mathbb{R}^2$. If $w \in C^1(D)$, then
\[
\int_{\partial D} w^2 ds \leq \frac{2}{p_0} \int_D w^2 dA + \frac{2d}{p_0} \left( \int_D w^2 dA \int_D w_i w_i dA \right)^\frac{1}{2},
\]
where $p_0 = \min_{\partial D} (x \cdot n), d = \max_{\partial D} |x|$. 


We define
\[
F(z, t) = \frac{1}{2} e^{-\omega t} \int_{D_x} \left[ v_{i,j}v_{i,j} + \mu v_{i,j}v_{i,j} + (\mu + \lambda) (v_{i,j})^2 + \Pi^2_j + \kappa \Pi_j \Pi_j \right] dx
+ \int_0^t \int_{D_x} e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{i,j}v_{i,j} + \frac{1}{2} \omega \mu v_{i,j}v_{i,j} + \frac{1}{2} \omega (\mu + \lambda) (v_{i,j})^2 + \frac{1}{2} \omega \Pi^2_j \right] dx d\eta,
\]
from which it follows that
\[
-\frac{\partial}{\partial z} F(z, t) = \frac{1}{2} e^{-\omega t} \int_{D_z} \left[ v_{i,j}v_{i,j} + \mu v_{i,j}v_{i,j} + (\mu + \lambda) (v_{i,j})^2 + \Pi^2_j + \kappa \Pi_j \Pi_j \right] dA
+ \int_0^t \int_{D_z} e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{i,j}v_{i,j} + \frac{1}{2} \omega \mu v_{i,j}v_{i,j} + \frac{1}{2} \omega (\mu + \lambda) (v_{i,j})^2 + \frac{1}{2} \omega \Pi^2_j \right] dAd\eta.
\]
Taking calculations similar to those in Section 3, we can get
\[
F(z, t) = -\mu \int_0^t \int_{D_z} e^{-\omega \eta} v_{i,j}v_{i,j} dAd\eta
- (\mu + \lambda) \int_0^t \int_{D_z} e^{-\omega \eta} v_{i,j}v_{i,j} dAd\eta - \alpha \int_0^t \int_{D_z} e^{-\omega \eta} \Pi_{3,\eta} dAd\eta
- \kappa \int_0^t \int_{D_z} e^{-\omega \eta} \Pi_3 \Pi_\eta dAd\eta - \delta \int_0^t \int_{D_z} e^{-\omega \eta} \Pi_3 \Pi_\eta dAd\eta
- \beta \int_0^t \int_{D_z} e^{-\omega \eta} [\kappa \Pi_\eta \theta + \delta \Pi_\eta \theta] dAd\eta.
\]
By using the Hölder inequality, the arithmetic–geometric mean inequality, we have
\[
-\beta \int_0^t \int_{D_z} e^{-\omega \eta} [\kappa \Pi_\eta \theta + \delta \Pi_\eta \theta] dAd\eta
\leq \kappa \beta \left[ \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2_\eta dAd\eta \int_0^t \int_{D_z} e^{-\omega \eta} \theta^2 dAd\eta \right]^{\frac{1}{2}}
+ \delta \beta \left[ \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2_\eta dAd\eta \int_0^t \int_{D_z} e^{-\omega \eta} \theta^2 dAd\eta \right]^{\frac{1}{2}}
\leq \frac{1}{2} \kappa \beta \int_0^t \int_{D_z} e^{-\omega \eta} \Pi^2_\eta dAd\eta
+ \frac{\delta^2 \beta^2}{\epsilon_1} \int_0^t \int_{D_z} e^{-\omega \eta} \theta^2 dAd\eta + \frac{\delta^2 \beta^2}{\epsilon_1} \int_0^t \int_{D_z} e^{-\omega \eta} \theta^2 dAd\eta,
\]
where \( \epsilon_1 \) is a positive constant.

By the arithmetic–geometric mean inequality and Lemma 5, we have
\[
\int_{D_\xi} \Pi^2_\eta ds \leq \frac{2}{p_0} \int_{D_\xi} \Pi^2_\eta dA + \frac{2d}{p_0} \left[ \int_{D_\xi} \Pi^2_\eta dA \int_{D_\eta} \Pi_{\eta} \Pi_{\eta} dA \right]^{\frac{1}{2}}
\leq \frac{2 + d}{p_0} \int_{D_\xi} \Pi^2_\eta dA + \frac{d}{p_0} \int_{D_\eta} \Pi_{\eta} \Pi_{\eta} dA.
\]
Inserting (89) into (88), we have

$$-\beta \int_0^t \int_{\partial D_z} e^{-\omega \eta} \left[ \kappa \Pi_y \theta + \delta \Pi_y \theta \right] d\mathcal{C} d\eta$$

\begin{align*}
&\leq \frac{2 + d}{2p_0} e_1 \int_0^t \int_{R_z} e^{-\omega \eta} \Pi^2_{y} dxd\eta + \frac{d}{2p_0} e_1 \int_0^t \int_{R_z} e^{-\omega \eta} \Pi_{y} \Pi_{y} dxd\eta \\
&\quad + \frac{\sqrt{\kappa} \omega^2}{e_1} \int_0^t \int_{z_0}^z \int_{\partial D_z} e^{-\omega \eta} \theta^2 d\mathcal{C} d\eta + \frac{\delta \sqrt{\kappa} \omega^2}{e_1} \int_0^t \int_{z_0}^z \int_{\partial D_z} e^{-\omega \eta} \theta_{y}^2 d\mathcal{C} d\eta. 
\end{align*}

(90)

Inserting (69)–(73) and (90) into (87), choosing $e_1 \leq \min\left\{ \frac{\rho_0 \omega}{2(2+r)}, \frac{\rho_0 \delta}{2} \right\}$ and using the Theorem 3, we have

$$F(z, t) \leq \frac{1}{2} F(z, t) + \frac{1}{b_1 \sqrt{\omega}} \left[ -\frac{}{\mathcal{C}} \Gamma(z, t) \right] + b_3 \beta Q_3(z, t) e^{-m_1 \sqrt{\omega} z},$$

or

$$F(z, t) \leq \frac{2}{b_1 \sqrt{\omega}} \left[ -\frac{}{\mathcal{C}} \Gamma(z, t) \right] + 2b_3 \beta Q_3(z, t) e^{-m_1 \sqrt{\omega} z},$$

(91)

where $b_3 = \max\left\{ \frac{2\sqrt{\omega}}{\omega^2}, \frac{\delta}{e_1} \right\}$. Integrating (91) from 0 to $z$, we have

$$F(z, t) \leq F(0, t) e^{-b_1 \sqrt{\omega} z} + b_1 b_3 \sqrt{\omega} \beta e^{-b_1 \sqrt{\omega} z} \int_0^z Q_3(\xi, t) e^{\frac{b_1}{2} \sqrt{\omega} \xi} d\xi.$$

(92)

To bound $F(0, t)$, choosing $z = 0$ in (85) and (87) and in view of (59), (60) and (83), we have

$$F(0, t) = \frac{1}{2} e^{-\omega t} \int_R \left[ v_{i,t} v_{i,t} + \mu v_{i,j} v_{i,j} + (\mu + \lambda) (v_{i,j})^2 + \kappa \Pi_{j} \Pi_{j} \right] dx$$

$$+ \int_0^t \int_R e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{i,j} v_{i,j} + \frac{1}{2} \omega \mu v_{i,j} v_{i,j} + \frac{1}{2} \omega (\mu + \lambda) (v_{i,j})^2 + \frac{1}{2} \omega \Pi^2_{j} \eta \right] dx d\eta,$$

(93)

and

$$F(0, t) = -\beta \int_0^t \int_{\partial D_z} e^{-\omega \eta} \left[ \kappa \Pi_y \theta + \delta \Pi_y \theta \right] d\mathcal{C} d\eta.$$

(94)

In view of (90) and (93), and the Theorem 2, we have

$$F(0, t) \leq \frac{1}{2} F(0, t) + 2b_3 Q_2(0, t) \beta,$$

or

$$F(0, t) \leq 4b_3 Q_2(0, t) \beta.$$

(95)

Inserting (95) into (92) and in view of (86), we can have the following theorem.

**Theorem 5.** Let $(u, \theta)$ be the solutions of Equations (9)–(15) and $(u^*, \theta^*)$ be the solutions of Equations (9)–(15) with $\beta = 0$. The functions $v$ and $\Pi$ are defined in (54). If $F, F_\eta \in C(\partial D \times [0, \infty))$ and $\int_D f_3 dA = 0$, then

$$(u, \theta) \to (u^*, \theta^*), \text{ as } \beta \to 0.$$
Specifically,

\[
\frac{1}{2} e^{-\omega t} \int_R \left[ v_{i,i} v_{j,j} + \mu v_{i,i} v_{j,j} + (\mu + \lambda)(v_{i,i})^2 + \Pi_{i,j}^2 + \kappa \Pi_i \Pi_j \right] dx \\
+ \int_0^t \int_R e^{-\omega \eta} \left[ \frac{1}{2} \omega v_{i,j} v_{i,j} + \frac{1}{2} \omega \mu v_{i,j} v_{j,i} + \frac{1}{2} \omega (\mu + \lambda)(v_{i,i})^2 + \frac{1}{2} \omega \Pi_{i,j}^2 \right] dx d\eta \\
+ \frac{1}{2} \omega \kappa \Pi_i \Pi_j + \delta \Pi_{i,j} \Pi_{j,i} dx d\eta \\
\leq 4b_3 Q_2(0, t) \beta e^{-\frac{b_1 \sqrt{x}}{2}} + b_1 b_3 \sqrt{\omega} \beta e^{-\frac{b_1 \sqrt{x}}{2}} \int_0^z Q_3(\xi, t) e^{(\frac{b_1}{2} - m_1) \sqrt{\omega} \eta d\xi},
\]

where \(b_1, b_3\) are positive constants. This demonstrates convergence of \((u, \theta)\) on the parameter \(\beta\).

6. Conclusions

In this paper, Equations (9)–(15) are reconsidered in a new semi-infinite cylinder. The structural stability of the solution is obtained by using the differential inequality technique and energy analysis method. In a two-dimensional pipe, Payne and Schaefer [36] obtained Phragmén–Lindelöf alternative results of biharmonic equation. As far as we know, there are a few results in this type of three-dimensional cylinder region. Therefore, it is very interesting to replace the pipe \(R\) by

\[
\left\{ (x_1, x_2, x_3) | (x_1, x_2) \in D_x, x_3 > 0 \right\},
\]

where \(D_x\) can be defined as

\[
\left\{ (x_1, x_2, x_3) \mid \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = x_3^2, x_3 > m > 0, 0 < \gamma \leq 1 \right\}.
\]

On the other hand, if the boundary conditions (13)–(15) are replaced by (3), (4) and (6)–(8), how to obtain the continuous dependence of Equations (9)–(15) is also an interesting topic.

**Author Contributions:** Conceptualization and validation, X.C.; formal analysis and investigation, Y.L. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042) and the Research team project of Guangzhou Huashang College(2021HSKT01).

**Institutional Review Board Statement:** Not applicable.

**Informed Consent Statement:** Not applicable.

**Data Availability Statement:** Not applicable.

**Acknowledgments:** The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

**Conflicts of Interest:** The authors declare no conflict of interest.

**References**

1. Hirsch, M.W.; Smale, S. *Differential Equations, Dynamical Systems, and Linear Algebra*; Academic Press: New York, NY, USA, 1974.
2. Liu, Z.; Zheng, S. Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping. *Q. Appl. Math.* 1997, 3, 551–564. [CrossRef]
3. Avalos, G.; Lasiecka, I. Exponential stability of an uncontrolled thermoelastic system with varying boundary conditions. *Appl. Anal.* 1998, 68, 31–49.
4. Meyvaci, M. Structural stability for a linear system of thermoelastic plate equations. *Appl. Math. Comput.* **2014**, *242*, 664–668. [CrossRef]

5. Ames, K.A.; Straughan, B. Stability and Newton’s Law of Cooling in Double Diffusive Flow. *J. Math. Anal. Appl.* 1999, 230, 57–69. [CrossRef]

6. Hameed, A.A.; Harfash, A.J. Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. *Basrah J. Sci.* **2019**, *37*, 1–15.

7. Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. *Appl. Math. Comput.* 2017, *308*, 18–30.

8. Liu, Y.; Xiao, S.Z.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. *Math. Comput. Simul.* 2018, *150*, 66–82. [CrossRef]

9. Scott, N.L. Continuous dependence on boundary reaction terms in a porous medium Darcy type. *J. Math. Anal. Appl.* 2013, *399*, 667–675. [CrossRef]

10. Scott, N.L.; Straughan, B. Continuous dependence on the reaction terms in porous convection with surface reactions. *Q. Appl. Math.* 2013, *71*, 501–508. [CrossRef]

11. Li, Y.F.; Zeng, P. Continuous dependence on the heat source of 2D large-scale primitive equations in oceanic dynamics. *Symmetry* 2021, *13*, 1961. [CrossRef]

12. Liu, Y.; Qin, X.L.; Shi, J.C.; Zhi, W.J. Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\mathbb{R}^2$. *Appl. Math. Comput.* 2021, *411*, 126488. [CrossRef]

13. Li, Y.F.; Chen, X.J.; Shi, J.C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. *Appl. Math. Optim.* 2021, *84*, 979–999. [CrossRef]

14. Chen, W.H. Cauchy problem for thermoelastic plate equations with different damping mechanisms. *Commun. Math. Sci.* 2020, *18*, 429–457. [CrossRef]

15. Li, Y.F.; Xiao, S.Z.; Zeng, P. The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. *J. Math. Inequal.* 2021, *15*, 293–304. [CrossRef]

16. Ciarletta, M.; Straughan, B.; Tibullo, V. Structural stability for a thermal convection model with temperature-dependent solubility. *Nonlinear Anal. Real World Appl.* 2015, *22*, 34–43. [CrossRef]

17. Franchi, F.; Straughan, B. Continuous dependence and decay for the Forchheimer equations. *Proc. R. Soc. Lond. A* 2003, *459*, 3195–3202. [CrossRef]

18. Straughan, B. Continuous dependence and convergence for a Kelvin-Voigt fluid of order one. *Ann. Univ. Ferrara* 2021. [CrossRef]

19. Song, J.C.; Yoon, D.S. Phragmén-Lindelöf type and continuous dependence results in generalized dissipative heat conduction. *J. Korean Math. Soc.* 1998, *35*, 945–960.

20. Song, J.C. Phragmén–Lindelöf and continuous dependence type results in a Stokes flow. *Appl. Math. Mech.* 2010, *31*, 875–882. [CrossRef]

21. Li, Y.F.; Lin, Y.W.; Li, Y.F. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition. *II. Nonlinear Anal.* 2010, *73*, 971–978. [CrossRef]

22. Payne, L.E.; Schaefer, P.W. Some Phragmén-Lindelöf type results for the biharmonic equation. *Z. Angew. Math. Phys.* *ZAMP* 1994, *45*, 414–432. [CrossRef]