Automated image analysis and improvisations to manage palm oil plantation (Conference Paper) (Open Access)

Akhtar, M.N.¹, Khan, S.A.², Mohamed, M.³, Janvekar, A.A.⁴

¹School of Aerospace Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, 14300, Malaysia
²Department of Mechanical Engineering, Faculty of Engineering, International Islamic University, Kuala Lumpur, 50728, Malaysia
³Advances Material Research Cluster, Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan Jeli Campus, Jeli, Kelantan, 17600, Malaysia

Abstract

Palm oil industry plays an essential role in South-East Asian agricultural commodity sector as it contributes to the substantial gross domestic product of the country. However, with the advent of climate change and massive deforestation, the disease and malfunctioning in growth of palm tree has increased. Therefore, it has become essential to detect any form of disease in palm oil plantation which can hamper its productivity as it can cause a serious problem to the countries whose economic conditions are primarily dependent upon palm oil plantations. Hence, early detection of disease from the initial stage is crucial to the production of palm oil. In this regard, the proposed manuscript highlights the importance of image processing in detecting early disease in palm oil plantation using image segmentation and also proposes some improvisations in palm oil plantation which will be helpful in managing the palm oil commodity business. © 2020 IOP Conference Series: Materials Science and Engineering.

SciVal Topic Prominence

Topic: Palm Oil Mills | Elaeis Guineensis | Crude Oil
Prominence percentile: 90.789

ISSN: 17578981
Source Type: Conference Proceeding
Original language: English

DOI: 10.1088/1757-899X/1007/1/012082
Document Type: Conference Paper
Publisher: IOP Publishing Ltd

References (26)

View in search results format

View all related documents based on references
1. Torres, G.A., Sarria, G.A., Martinez, G., Varon, F., Drenth, A., Guest, D.I.

 Bud rot caused by phytophthora palmivora: A destructive emerging disease of oil palm
 (Open Access)

 (2016) Phytopathology, 106 (4), pp. 320-329. Cited 34 times.
 http://aesjournals.apsnet.org/doi/pdf/10.1094/PHYTO-09-15-0243-RVW
 doi: 10.1094/PHYTO-09-15-0243-RVW

 View at Publisher

2. De Assis Costa, O.Y., Tupinambá, D.D., Bergmann, J.C., Barreto, C.C., Quirino, B.F.

 Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease
 (Open Access)

 (2018) PLoS ONE, 13 (1), art. no. e0191884. Cited 4 times.
 http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191884&type=printable
 doi: 10.1371/journal.pone.0191884

 View at Publisher

3. Khaled, A.Y., Abd Aziz, S., Bejo, S.K., Nawi, N.M., Abu Seman, I.

 Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy
 (Open Access)

 (2018) Computers and Electronics in Agriculture, 144, pp. 297-309. Cited 13 times.
 www.elsevier.com/inca/publications/store/5/0/3/3/0/4
 doi: 10.1016/j.compag.2017.11.012

 View at Publisher

4. Nurdiansyah, F, Wiegand, Y, Tscharntke, K, Local, T

 Landscape Management Effects on Pests, Diseases, Weeds and Biocontrol in Oil Palm Plantations-A Review
 (2016) Local and Landscape Management of Biological Pest Control in Oil Palm Plantations, 14.

5. Izzuddin, M.A., Nisfariza, M.N., Ezzati, B., Idris, A.S., Steven, M.D., Boyd, D.

 Analysis of airborne hyperspectral image using vegetation indices, red edge position and continuum removal for detection of ganoderma disease in oil palm
 (Open Access)

 (2018) Journal of Oil Palm Research, 30 (3), pp. 416-428. Cited 7 times.
 http://jopr.mpob.gov.my/analysis-of-airborne-hyperspectral-image-using-vegetation-indices-red-edge-position-and-continuum-removal-for-detection-of-ganoderma-disease-in-oil-palm/?v=true
 doi: 10.21894/jopr.2018.0037

 View at Publisher

6. Olafisoye, O.B., Oguntibeju, O.O., Osibote, O.A.

 Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review
 (2017) Critical Reviews in Food Science and Nutrition, 57 (7), pp. 1295-1315. Cited 8 times.
 www.tandf.co.uk/journals/titles/10408398.asp
 doi: 10.1080/10408398.2014.886032

 View at Publisher

7. Smith, T.E.L., Evers, S., Yule, C.M., Gan, J.Y.

 In Situ Tropical Peatland Fire Emission Factors and Their Variability, as Determined by Field Measurements in Peninsula Malaysia
 (Open Access)

 (2018) Global Biogeochemical Cycles, 32 (1), pp. 18-31. Cited 18 times.
 http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9224
 doi: 10.1002/2017GB005709

 View at Publisher
8. Woittiez, L.S., van Wijk, M.T., Slingerland, M., van Noordwijk, M., Giller, K.E.
Yield gaps in oil palm: A quantitative review of contributing factors (Open Access)
(2017) European Journal of Agronomy, 83, pp. 57-77. Cited 113 times.
www.elsevier.com/inca/publications/store/6/0/0/1/0/8
doi: 10.1016/j.eja.2016.11.002
View at Publisher

9. Singh, V., Misra, A.K.
Detection of plant leaf diseases using image segmentation and soft computing techiniques (Open Access)
(2017) Information Processing in Agriculture, 4 (1), pp. 41-49. Cited 272 times.
http://www.elsevier.com/journals/information-processing-in-agriculture/2214-3173#
doi: 10.1016/j.inpa.2016.10.005
View at Publisher

10. Arya, M.S., Anjali, K., Unni, D.
Detection of unhealthy plant leaves using image processing and genetic algorithm with Arduino
(2018) EPSCICON 2018 - 4th International Conference on Power, Signals, Control and Computation, pp. 1-5. Cited 11 times.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8369618
ISBN: 978-153864208-5
doi: 10.1109/EPSCICON.2018.8379584
View at Publisher

11. Sahoo, R.K, Panda, R, Barik, R,C, Panda, S.N
Automatic Dead Zone Detection in 2-D Leaf Image Using Clustering and Segmentation Technique
International Journal of Image, Graphics & Signal Processing, 10. Cited 4 times.

12. Bai, X., Li, X., Fu, Z., Lv, X., Zhang, L.
A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images
(2017) Computers and Electronics in Agriculture, 136, pp. 157-165. Cited 40 times.
www.elsevier.com/inca/publications/store/5/0/3/3/0/4
doi: 10.1016/j.compag.2017.03.004
View at Publisher

13. Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z.
A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network
(2018) Computers and Electronics in Agriculture, 154, pp. 18-24. Cited 83 times.
www.elsevier.com/inca/publications/store/5/0/3/3/0/4
doi: 10.1016/j.compag.2018.08.048
View at Publisher

14. Jollife, I.T., Cadima, J.
Principal component analysis: A review and recent developments (Open Access)
(2016) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), art. no. 20150202. Cited 1112 times.
http://rsta.royalsocietypublishing.org/content/rstaa/374/2065/20150202.full.pdf
doi: 10.1098/rsta.2015.0202
View at Publisher
Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A.S., McLoone, S.
Principal Component Analysis on Spatial Data: An Overview (Open Access)
(2013) *Annals of the Association of American Geographers*, 103 (1), pp. 106-128. Cited 165 times.
doi: 10.1080/00045608.2012.689236

Firdousi, R, Parveen, S
Local Thresholding Techniques in Image Binarization
(2014) *International Journal Of Engineering And Computer Science*, 3. Cited 20 times.

Wang, W., Duan, L., Wang, Y.
Fast Image Segmentation Using Two-Dimensional Otsu Based on Estimation of Distribution Algorithm (Open Access)
(2017) *Journal of Electrical and Computer Engineering*, 2017, art. no. 1735176. Cited 16 times.
http://www.hindawi.com/journals/eece/
doi: 10.1155/2017/1735176

Ali, M., Siarry, P., Pant, M.
Multi-level Image Thresholding Based on Hybrid Differential Evolution Algorithm. Application on Medical Images
(2017) *Studies in Computational Intelligence*, 704, pp. 23-36. Cited 10 times.
http://www.springer.com/series/7092
doi: 10.1007/978-3-662-54428-0_2

Akhtar, M.N., Saleh, J.M., Awais, H., Bakar, E.A.
Map-Reduce based tipping point scheduler for parallel image processing
(2020) *Expert Systems with Applications*, 139, art. no. 112848. Cited 6 times.
https://www.journals.elsevier.com/expert-systems-with-applications
doi: 10.1016/j.eswa.2019.112848

Hancock, P.J.B., Baddeley, R.J., Smith, L.S.
The principal components of natural images (Open Access)
(1992) *Network: Computation in Neural Systems*, 3 (1), pp. 61-70. Cited 170 times.
doi: 10.1088/0954-898X_3_1_008

Tremeau, A., Borel, N.
A region growing and merging algorithm to color segmentation
(1997) *Pattern Recognition*, 30 (7), pp. 1191-1203. Cited 231 times.
www.elsevier.com/inca/publications/store/3/2/8/
doi: 10.1016/S0031-3203(96)00147-1

Yin, P.-Y., Wu, T.-H.
Multi-objective and multi-level image thresholding based on dominance and diversity criteria
(2017) *Applied Soft Computing Journal*, 54, pp. 62-73. Cited 16 times.
http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description
doi: 10.1016/j.asoc.2017.01.019

View at Publisher
Prasetyo, E., Adityo, R.D., Suciati, N., Fatichah, C. (2017) Proceedings - 2017 3rd International Conference on Science and Technology-Computer, ICST 2017, art. no. 8011860, pp. 99-103. Cited 15 times.
ISBN: 978-153861874-5
doi: 10.1109/ICSTC.2017.8011860

Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X., Zhang, L. (2015) Proceedings of the IEEE International Conference on Computer Vision, 2015 International Conference on Computer Vision, ICCV 2015, art. no. 7410569, pp. 1823-1831. Cited 200 times.
ISBN: 978-146738391-2
doi: 10.1109/ICCV.2015.212

Gedraite, E.S., Hadad, M. (2011) Proceedings Elmar - International Symposium Electronics in Marine, art. no. 6044249, pp. 393-396. Cited 41 times.
ISBN: 978-953704412-1

Georgi, C., Spengler, D., Itzerott, S., Kleinschmit, B. (2018) Precision Agriculture, 19 (4), pp. 684-707. Cited 21 times.
www.wkap.nl/journalhome.htm/1385-2256
doi: 10.1007/s11119-017-9549-y

Janvekar, A.A.; School of Mechanical Engineering, VIT-Chennai Campus, Chennai, TN, India;
email:ayubahmed.janvekar@vit.ac.in
© Copyright 2021 Elsevier B.V., All rights reserved.