SOME REMARKS ON TOROIDAL MORPHISMS

JAN DENEF

1. Introduction

This note contains some results related to the definition of toroidal morphisms over a field k of characteristic zero. In [2] this notion was defined by requiring that the base change of the morphism to an algebraic closure of k is toroidal. The notion of a toroidal morphism f over an algebraically closed field was introduced long before by several authors, see e.g. [1] and [5]. Roughly the definition requires that for each closed point x of the source of f one can choose formal toric coordinates at x and formal toric coordinates at $f(x)$, such that in these coordinates the morphism is given by monomials. When k is not algebraically closed, there is the natural question whether this remains true over the base field k itself instead of over an algebraic closure of k. In this note we show that the answer is yes for toroidal morphisms between strict toroidal embeddings if the residue field $k(x)$ of x equals k or if $k(x)$ is algebraically closed. This is implied by Proposition 3.3 below which is actually a stronger statement. An easy counterexample (Remark 3.4) shows that the condition on $k(x)$ cannot be omitted. Proposition 3.3 can be proved using Kato’s paper [10], adapting the argument in section 3.13 of [10]. However we preferred to provide a self-contained proof which does not use logarithmic geometry. Proposition 3.3 in the special case of nonsingular toroidal embeddings is used in [7] for applications of toroidalization to model theory. Proposition 3.3 also implies that in the definition of toroidal morphisms, as formulated in [2], we can replace the completions by henselizations. This also holds for the definition of toroidal embeddings, see Remark 2.4 below.

We will use without further mentioning the terminology and notation of [2], in particular we refer to [2] for the notions of toroidal embeddings, strict toroidal embeddings, and toroidal morphisms. Moreover, k will always denote a field of characteristic zero, except that the material in 1.1 up to 2.5 remains valid for any field k.

Date: February 6, 2014.
2. Toroidal Embeddings

In [2] an open embedding of algebraic varieties \(U \subset X \) over \(k \) is defined to be toroidal if its base change to an algebraic closure of \(k \) is a toroidal embedding. Nevertheless we have the following proposition.

Proposition 2.1. Let \(U \subset X \) be a strict toroidal embedding of varieties over \(k \), and \(x \) a closed point of \(X \). Then there exists an affine toric variety \(V \) over \(k \) and an étale \(k \)-morphism \(\varphi \) from an open neighborhood of \(x \) in \(X \) to \(V \), such that locally at \(x \) (for the Zariski topology) we have \(U = \varphi^{-1}(T) \), where \(T \) is the big torus of \(V \).

This is proved in [12], page 195, when \(k \) is algebraically closed. However the proof remains valid in the general case due to Lemma 2.3 below.

Definition 2.2. We call \((V,\varphi)\), with \(V \) and \(\varphi \) as in Proposition 2.1, an étale chart for \(U \subset X \) at \(x \). Note that there always exists an étale chart for \(U \subset X \) at \(x \) such that \(\varphi(x) \) belongs to the closed orbit of \(V \).

Lemma 2.3. Let \(X \) be a normal algebraic variety over \(k \) and \(D \) a strict Weil divisor on \(X \), i.e. the irreducible components of \(D \) are normal. Let \(x \) be a closed point of \(X \) and \(\tilde{O}_{X,x} \) the completion of a strict henselization of \(O_{X,x} \). Let \(y \in \tilde{O}_{X,x} \) and assume that the Weil divisor \(\text{div}(y) \) of \(y \) on \(\text{Spec}(\tilde{O}_{X,x}) \) is supported on the preimage \(\tilde{D} \) of \(D \) in \(\text{Spec}(\tilde{O}_{X,x}) \). Then there exists \(z \in O_{X,x} \) such that \(y/z \) is a unit in \(\tilde{O}_{X,x} \).

Proof. This is well known. Since we could not find a good reference, we include a proof. Because the natural morphism \(\text{Spec}(\tilde{O}_{X,x}) \to \text{Spec}(O_{X,x}) \) is flat, it induces a morphism \(\tau \) from the group of Weil divisors on \(\text{Spec}(O_{X,x}) \) to the group of Weil divisors on \(\text{Spec}(\tilde{O}_{X,x}) \), cf. [1] Proposition 21.10.6. Moreover \(\tau \) restricts to a bijection between the divisors supported on \(D \) and those supported on \(\tilde{D} \), because the ideal in \(O_{X,x} \) of any irreducible component of \(D \) containing \(x \) generates a prime ideal in \(\tilde{O}_{X,x} \), since these components are normal. Thus there exists a Weil divisor \(W \) on \(\text{Spec}(O_{X,x}) \) such that \(\tau(W) = \text{div}(y) \). The morphism \(\tau \) induces an injection on the groups of divisor classes, indeed this follows easily by adapting the proof of Proposition 16 in section 1.10 of [4]. Hence there exists \(z \in O_{X,x} \) such that \(\text{div}(z) = W \). Thus \(\tau(\text{div}(z)) = \text{div}(y) \) and \(y/z \) is a unit in \(\tilde{O}_{X,x} \).

Remark 2.4. Proposition 2.1 directly implies that in the definition of strict toroidal embeddings of varieties over \(k \), as formulated in [2], we can replace the completions by henselizations. Hence this also holds
for toroidal embeddings that are not necessarily strict. Indeed, for any toroidal embedding $U_X \subset X$ over k, and any closed point x of X, there exists an étale morphism $f : X' \to X$ onto a neighborhood of x such that $f^{-1}(U) \subset X'$ is a strict toroidal embedding. This assertion follows from Lemma 2.5 below with A the strict henselization of $\mathcal{O}_{X,x}$.

Lemma 2.5. Let A be an excellent normal henselian local ring, and P a prime ideal of height 1 in A. Let \hat{A} be the completion of A. Assume for each height one prime ideal P' of \hat{A}, with P contained in P', that \hat{A}/P is normal. Then A/P is normal.

Proof. Because A/P is excellent, henselian and integral, its completion is also integral, by Corrolaire 18.9.2 in [9] (or by Artin’s Approximation Theorem [3] if A is moreover the strict henselization of the local ring of a closed point on a variety over k). Thus PA is a prime ideal of \hat{A}. Since PA has height one (because A and \hat{A} are catenary), our assumption implies that \hat{A}/PA is normal. Thus the completion of A/P is normal. By faithfully flat descent this implies that A/P is normal (see e.g. Remark 2.24 in chapter 1 of [13]). □

Definition 2.6. Let $U_X \subset X$ be a strict toroidal embedding of varieties over k. Denote by $D := X \setminus U_X$ the toroidal divisor. The sheaf of logarithmic differential 1-forms on X is defined as the sheaf of \mathcal{O}_X-modules $\Omega^1_X(\log D) := j_*(\Omega^1_{X_0}(\log D \cap X_0))$, where $j : X_0 \to X$ is any nonsingular open subscheme of X with codimension ≥ 2 such that $D \cap X_0$ is nonsingular.

The sheaf $\Omega^1_X(\log D)$ of \mathcal{O}_X-modules is locally free: as basis in a neighborhood of a closed point x of X one can take $\frac{dx_1}{x_1}, \ldots, \frac{dx_m}{x_m}$, where x_1, \ldots, x_m are the pullbacks, to the function field $K(X)$ of X, of the elements of a basis for the \mathbb{Z}-module of characters of the big torus of V, for any étale chart (V, φ) for $U_X \subset X$ at x. Indeed, this follows from Proposition 15.5 in [6] (the assumption there that $k = \mathbb{C}$ is not necessary).

3. Logarithmically smooth morphisms

Definition 3.1. Let $U_X \subset X$ and $U_B \subset B$ be strict toroidal embeddings of varieties over k, and x a closed point of X. Denote the toroidal divisors by $D_X := X \setminus U_X$, $D_B := B \setminus U_B$. Let $f : X \to B$ be a dominant k-morphism mapping U_X into U_B. The morphism f is called logarithmically smooth at x (with respect to $U_X \subset X$ and $U_B \subset B$) if the sheaf of \mathcal{O}_X-modules

$$\Omega^1_X(\log D_X)/f^*(\Omega^1_B(\log D_B))$$
is locally free at \(x \). This is equivalent with the condition that the fiber at \(x \) of this sheaf has dimension \(\dim X - \dim B \) as vector space over the residue field \(k(x) \) of \(X \) at \(x \). (Note that we required \(f \) to be dominant.)

Remark 3.2. Clearly, if \(f : X \to B \) is toroidal with respect to \(U_X \subset X \) and \(U_B \subset B \), then \(f \) is logarithmically smooth at each closed point of \(X \). The converse is also true, this follows from Theorem 3.5 and Proposition 3.12 in [10], and section 8.1 of [11]. However this converse is also implied by Proposition 3.3 below, which is a stronger assertion. Proposition 3.3 can be proved, adapting the argument in section 3.13 of [10]. Because this argument is phrased in the framework of logarithmic structures on schemes, we give below an elementary self-contained proof of Proposition 3.3 which does not use logarithmic geometry.

Proposition 3.3. Let \(U_X \subset X \) and \(U_B \subset B \) be strict toroidal embeddings of varieties over \(k \), and \(x \) a closed point of \(X \). Let \(f : X \to B \) be a dominant \(k \)-morphism mapping \(U_X \) into \(U_B \). Set \(b := f(x) \). Let \((V_B, \varphi_B)\) be an étale chart for \(U_B \subset B \) at \(b \). Assume that \(f \) is logarithmically smooth at \(x \) with respect to \(U_X \subset X \) and \(U_B \subset B \). Assume also that \(k(x) = k \) or that \(k(x) \) is algebraically closed.

Then there exist

1. an étale \(k \)-morphism \(\pi : X' \to X \),
2. a closed point \(x' \) on \(X' \) with \(\pi(x') = x \) and \(k(x') = k(x) \),
3. an étale chart \((V_{X'}, \varphi_{X'})\) for \(U_{X'} := \pi^{-1}(U_X) \subset X' \) at \(x' \),
4. a toric morphism \(g : V_{X'} \to V_B \),
5. a translation \(t : V_B \to V_B \) by a \(k \)-rational point on the big torus of \(V_B \),

such that the following diagram of rational maps commutes

\[
\begin{array}{ccc}
X' & \xrightarrow{\varphi_{X'}} & V_{X'} \\
\downarrow \pi & & \downarrow g \\
X & \xrightarrow{f} & V_B \\
\end{array}
\]

If \((V_X, \varphi_X)\) is any étale chart for \(U_X \subset X \) at \(x \) such that \(\varphi_X(x) \) belongs to the closed orbit of \(V_X \), then we can choose \(V_{X'} = V_X \), with \(\varphi_{X'}(x') \) in the orbit of \(\varphi_X(x) \). And when \(k(x) \) is algebraically closed we can moreover take for \(t \) the identity.

Proof. The proof consists of several steps.

Some reductions. Let \((V_X, \varphi_X)\) be an étale chart for \(U_X \subset X \) at \(x \) such that \(\varphi_X(x) \) belongs to the closed orbit of \(V_X \). Replacing \(B \) and \(X \) by suitable open subvarieties we may suppose that \(\varphi_B \) and \(\varphi_X \) are
defined and étale everywhere. We can assume that \(\dim B = \dim X \)
by replacing \(f : X \rightarrow B \) by \(f \times (h \circ \varphi_X) : X \rightarrow B \times \mathbb{A}^{\dim X - \dim B} \),
with \(h : V_X \rightarrow \mathbb{A}^{\dim X - \dim B} \) a general enough toric morphism so that \(f \times (h \circ \varphi_X) \) is still dominant and logarithmically smooth at \(x \).

Choose a basis \(c_1, \ldots, c_n \) for the \(\mathbb{Z} \)-module of characters on the big torus \(T_B \) of \(V_B \). We will denote \(\varphi_B^*(c_i) \) again by \(c_i \), for \(i = 1, \ldots, n \).

Choosing character bases. Choose a basis \(z_1, \ldots, z_r, z_{r+1}, \ldots, z_m \)
for the \(\mathbb{Z} \)-module of characters on the big torus \(T_X \) of \(V_X \) such that \(z_{r+1}, \ldots, z_m \) form a basis for the \(\mathbb{Z} \)-module of characters on \(T_X \) that are defined and not vanishing at \(\varphi_X(x) \). We will denote \(\varphi_X^*(z_i) \) again by \(z_i \), for \(i = 1, \ldots, m \). Because \(\dim B = \dim X \) we have \(m = n \).

From Lemma 3.6 below it follows that for \(j = 1, \ldots, n = m \) we can write
\[
(1) \quad f^*(c_j) = u_j z_1^{e_{j,1}} z_2^{e_{j,2}} \cdots z_n^{e_{j,n}},
\]
with the \(u_j \) suitable units in \(\mathcal{O}_{X,x} \). Moreover we can choose \(e_{j,r+1}, \ldots, e_{j,n} \)
arbitrarily if we adapt the \(u_j \) to these choices, since \(z_{r+1}, \ldots, z_n \) are units in \(\mathcal{O}_{X,x} \).

Changing coordinates by Hensel’s Lemma. Let \(J \) be the logarithmic jacobian matrix of \(f \), i.e. the square matrix consisting of the coefficients expressing \(f^*(\frac{dx}{c_j}) \), \(j = 1, \ldots, n \), as \(\mathcal{O}_{X,x} \)-linear combinations of \(\frac{dx}{z_i} \), \(i = 1, \ldots, n \). We denote by \(J(x) \) the square matrix over \(k(x) \) obtained from \(J \) by evaluation at \(x \in X \). Because \(f \) is logarithmically smooth at \(x \) we have \(\det J(x) \neq 0 \). From (1) and Lemma 3.6 it follows that the first \(r \) columns of \(J(x) \) equal the first \(r \) columns of the matrix \(E := (e_{j,i})_{j,i=1,\ldots,n} \). Thus the first \(r \) columns of \(E \) are linearly independent. Since the last \(n-r \) columns of \(E \) can be chosen arbitrarily, we can choose these such that \(\det(E) \neq 0 \).

For \(j = 1, \ldots, n \) we set \(\lambda_j := 1 \) if \(k(x) \) is algebraically closed. Otherwise \(k(x) = k \), by our assumption on \(k(x) \), and then we set \(\lambda_j := u_j(x) \in k \).

Hence for \(j = 1, \ldots, n \) we can write
\[
(2) \quad f^*(c_j) = \lambda_j w_j z_1^{e_{j,1}} z_2^{e_{j,2}} \cdots z_n^{e_{j,n}},
\]
with the \(w_j \) suitable units in \(\mathcal{O}_{X,x} \). Moreover \(w_j(x) = 1 \) when \(k \) is not algebraically closed.

Since \(\det(E) \neq 0 \), it follows from Hensel’s Lemma that there exist units \(\epsilon_1, \ldots, \epsilon_n \) in the henselization of \(\mathcal{O}_{X,x} \) such that for \(j = 1, \ldots, n \)
\[
(3) \quad w_j = \epsilon_1^{e_{j,1}} \epsilon_2^{e_{j,2}} \cdots \epsilon_n^{e_{j,n}}.
\]

We will use the change of coordinates \(z_i \leftarrow \epsilon_i z_i \), but to make this precise we have to go to an étale extension \(X' \) of \(X \) and use a new étale chart \((V_{X'}, \varphi_{X'}) \).
Construction of $\pi : X' \to X$. There exists an étale morphism $\pi : X' \to X$ and a closed point x' on X', with $\pi(x') = x$ and $k(x') = k(x)$, such that $\epsilon_1, \ldots, \epsilon_n$ are units in $\mathcal{O}_{X', x'}$. We may even assume that X' is affine and that $\epsilon_1, \ldots, \epsilon_n$ are units in the coordinate ring of X'. Note that $(V_X, \varphi_X \circ \pi)$ is an étale chart at x' for the toroidal embedding $U_{X'} := \pi^{-1}(U_X) \subset X'$, but we will need another chart $(V_{X'}, \varphi_{X'})$.

Construction of the chart $(V_{X'}, \varphi_{X'})$. By multiplicativity, the assignment $z_i \mapsto \epsilon_i$ extends uniquely to a homomorphism ϵ from to group of characters of T_X to $\Gamma(\mathcal{O}_{X'}, X')^\times$. Set $V_{X'} := V_X$ and let $\varphi_{X'} : X' \to V_{X'} = V_X$ be the unique k-morphism with
\begin{equation}
\varphi_{X'}^*(z) = \epsilon(z)(\varphi_X \circ \pi)^*(z),
\end{equation}
for each character z of T_X (note that the characters of T_X that are regular on V_X generate the coordinate ring of V_X). Note that $\varphi_{X'}(x')$ belongs to the orbit of $\varphi_X(x)$ under the action of T_X. We show below that the pair $(V_{X'}, \varphi_{X'})$ is an étale chart at x' for $U_{X'} \subset X'$.

Construction of translation t and toric morphism g. Let $t : V_B \to V_B$ be the translation by the k-rational point of T_B on which the character c_j takes the value λ_j^{-1}, for $j = 1, \ldots, n$.

Finally, let $g : V_{X'} \to V_B$ be the toric rational map defined by
\begin{equation}
g^*(c_j) = z_1^{e_{j,1}} z_2^{e_{j,2}} \cdots z_n^{e_{j,n}},
\end{equation}
for $j = 1, \ldots, n$. We show below that g is regular at each point of $V_{X'}$, i.e. g is a morphism. From (4), (3), and (2) it follows that
\begin{equation}
(t \circ \varphi_B) \circ f \circ \pi = g \circ \varphi_{X'}.
\end{equation}
Thus the diagram in 3.3 is indeed commutative.

The rational map g is regular on $V_{X'}$. To prove this it suffices to show that $g^*(c)$ is regular on $V_{X'}$, for each character c of T_B that is regular on V_B. From (6) it follows that $(g \circ \varphi_{X'})^*(c)$ is regular on X', hence by (4) also $(\varphi_X \circ \pi)^*(g^*(c))$ is regular on X'. Thus $g^*(c) \in \mathcal{O}_{V_{X'}, \varphi_{X}(x)}$ because the homomorphism $\mathcal{O}_{V_{X'}, \varphi_{X}(x)} \to \mathcal{O}_{X', x'}$ induced by $\varphi_X \circ \pi : X' \to V_{X'} = V_X$ is faithfully flat, since $\varphi_X \circ \pi$ is étale. Moreover $g^*(c)$ is a character of T_X, hence its divisor on V_X is supported on $V_X \setminus T_X$. Because $\varphi_X(x)$ belongs to the closed orbit of V_X, all irreducible components of $V_X \setminus T_X$ contain $\varphi_X(x)$. Since we know already that $g^*(c)$ is regular at $\varphi_X(x)$, we conclude that $g^*(c)$ is regular at each point of $V_{X'}$.

The pair $(V_{X'}, \varphi_{X'})$ is an étale chart at x' for $U_{X'} \subset X'$. For this it suffices to show that $\varphi_{X'} : X' \to V_{X'} = V_X$ is étale at x', because $\epsilon(z)$ in formula (4) is a unit in $\Gamma(\mathcal{O}_{X'}, X')$. Since f is logarithmically smooth at
Lemma 3.5. Let x, formula (6) implies that $g \circ \varphi_{X'}$ is logarithmically smooth at x'. Since $\dim V_B = \dim V_{X'}$, this implies (by the definition of logarithmically smooth) that $\varphi_{X'}$ is logarithmically smooth at x' with respect to $U_{X'} \subset X'$ and $T_X \subset V_X$. Hence Lemma 3.8 below (with X, ρ, ψ replaced by $X', \varphi_X \circ \pi, \varphi_{X'}$) implies that $\varphi_{X'}$ is étale at x'.

This terminates the proof of Proposition 3.3. □

Remark 3.4. Note that the assumption on $k(x)$ in the statement of Proposition 3.3 is always satisfied if $k = \mathbb{R}$. The following counterexample shows that we cannot omit this assumption in Proposition 3.3.

Let $X = \text{Spec}(\mathbb{Q}[x, y, y^{-1}]/(y^2 - x + 1))$, $U_X = X \setminus V(x)$, where $V(x)$ denotes the locus of $x = 0$, $B = \text{Spec}(\mathbb{Q}[z])$, $U_B = B \setminus V(z)$, and let $f : X \rightarrow B$ be given by $z = yx^4$. Let $b = (0) \in B$ and a the unique point in X with $f(a) = b$. The morphism f is logarithmically smooth at a with respect to $U_X \subset X$ and $U_B \subset B$. However the conclusion in Proposition 3.3 (with x replaced by a) does not hold. Indeed, there does not exist a unit u in the henselization of $\mathcal{O}_{B, b}$, and a unit v in the henselization of $\mathcal{O}_{X, a}$, such that $zu = (xv)^4$. Otherwise $yu = v^4$, and taking values at a we see that then $\sqrt{-1}$ could be written as $\alpha \beta^4$, with $\alpha \in \mathbb{Q}$ and $\beta \in \mathbb{Q}(\sqrt{-1})$. However, this is impossible.

Lemma 3.5. Let $U_X \subset X$ be a strict toroidal embedding of varieties over k and let x be a closed point of X. Let (V, φ) be an étale chart for $U_X \subset X$ at x. Let $y \in \mathcal{O}_{X,x}$ and assume that the divisor of y is supported on $X \setminus U_X$ in some Zariski neighborhood of x in X. Then there exists a character c of the big torus T of V such that $y/\varphi^*(z)$ is a unit in $\mathcal{O}_{X,x}$.

Proof. This is very well known. From Lemma 2.3 with X, D replaced by $V, V \setminus T$, it follows that there exists a unit z in $\mathcal{O}_{V, \varphi(x)}$ such that $y/\varphi^*(z)$ is a unit in $\mathcal{O}_{X,x}$. The ideal generated by z in $\mathcal{O}_{V, \varphi(x)}$ is invariant under the action of T, hence it is generated by characters of T. Since it is principal, Nakayama’s Lemma yields that it is generated by one of these characters (cf. section 3.3 of [8]). □

Lemma 3.6. Let $U_X \subset X$ be a strict toroidal embedding of varieties over k, and x a closed point of X. Let (V, φ) be an étale chart of $U_X \subset X$ at x, and set $v := \varphi(x)$. Denote by T the big torus of V, and set $D_V := V \setminus T, D_X := X \setminus U_X$. Choose a basis $z_1, \ldots, z_r, z_{r+1}, \ldots, z_m$ for the \mathbb{Z}-module of characters on T, such that z_{r+1}, \ldots, z_m form a basis for the \mathbb{Z}-module of characters on T that are defined and not vanishing at v. Let $y \in \mathcal{O}_{X,x}$. Consider dy and $\frac{dz_i}{z_i}$, for $i = 1, \ldots, m$, as elements...
af \((\Omega^1_X(\log D_X))_x \), and write
\[
dy = \sum_{i=1}^m a_i \frac{dz_i}{z_i},
\]
with \(a_i \in \mathcal{O}_{X,x} \), for \(i = 1, \ldots, m \). Then \(a_i(x) = 0 \), for \(i = 1, \ldots, r \).

Proof. Since \(\varphi \) is étale at \(x \), the \(\mathcal{O}_{X,x} \)-module \(\Omega^1_{X,x} \) is generated by the pullbacks under \(\varphi \) of the elements of \(\Omega^1_{V,v} \). Thus we may suppose that \(X = V \), \(\varphi = \text{id} \), and \(x = v \). We may also assume that \(y \) is a character of \(T \) that is regular on \(V \), since these generate the coordinate ring of \(V \). Moreover, replacing \(V \) by a suitable open toric subvariety (on which \(z_{r+1}, \ldots, z_m \) are regular), we may also suppose that \(v \) belongs to the closed orbit of \(V \).

Let \(A \) be the set of characters of \(T \) that belong to the group generated by \(z_1, \ldots, z_r \) and are regular on \(V \). Let \(B \) be the group generated by \(z_{r+1}, \ldots, z_m \). Then \(V_0 := \text{Spec} \, k[A] \) is toric and \(T_0 := \text{Spec} \, k[B] \cong (\mathbb{G}_m)^{m-r} \). Moreover, since \(v \) belongs to the closed orbit of \(V_0 \), we have an isomorphism \(V \cong V_0 \times T_0 \) induced by \(a \otimes b \mapsto \text{ab} \) for \(a \in A, b \in B \), and the closed orbit of \(V_0 \) consists of only one point.

Because the lemma is trivial when \(V \) is a torus, we may assume that \(r = m \), and hence that the closed orbit of \(V \) consists of only one point, namely \(v \). This implies that each nontrivial character of \(T \), that is regular on \(V \), vanishes at \(v \). Thus \(y(v) = 0 \), because we may assume that \(y \) is such a character. Writing \(y = z_1^{e_1} z_2^{e_2} \cdots z_m^{e_m} \), with \(e_1, \ldots, e_m \in \mathbb{Z} \), we have \(\frac{dy}{y} = \sum_{i=1}^m e_i \frac{dz_i}{z_i} \). This terminates the proof of the lemma. \(\square \)

Remark 3.7. Assume the notation of Lemma 3.6 and denote by \(C \) the orbit of \(v \) under the action of \(T \). Then in \(\Omega^1_{\varphi^{-1}(C),x} \) we have the equality \(dy = \sum_{i=r+1}^m a_i \frac{dz_i}{z_i} \). This follows e.g. from the argument in the proof of Lemma 3.6.

The following lemma is (modulo the terminology of logarithmic geometry) a special case of Proposition 3.8 in [10].

Lemma 3.8. Let \(V \) be an affine toric variety over \(k \) and denote its big torus by \(T \). Let \(X \) be an algebraic variety over \(k \), \(x \) a closed point of \(X \), and \(\rho : X \to V \) an étale \(k \)-morphism. In particular, \((V, \rho) \) is an étale chart at \(x \) of the toroidal embedding \(U_X := \rho^{-1}(T) \subset X \).

Let \(\psi : X \to V \) be a dominant \(k \)-morphism from \(X \) to \(V \), mapping \(U_X \) into \(T \). Assume the following two conditions.

1. For each character \(c \) of \(T \), we have that \(\rho^*(c)/\psi^*(c) \) is a unit in \(\mathcal{O}_{X,x} \).
The morphism \(\psi \) is logarithmically smooth at \(x \) with respect to \(U_X \subset X \) and \(T \subset V \).

Then \(\psi \) is étale at \(x \).

Proof. Instead of relying on Proposition 3.8 in [10], we give a self-contained proof that does not use logarithmic geometry. Condition (1) implies that \(\psi(x) \) belongs to the \(T \)-orbit of \(\rho(x) \) in \(V \). Hence, replacing \(V \) by a suitable open toric subvariety and \(X \) by a suitable open subvariety, we may assume that \(\rho(x) \) and \(\psi(x) \) belong to the closed orbit of \(V \). We denote the closed orbit of \(V \) by \(C \) and set \(v := \rho(x) \in C, w := \psi(x) \in C \).

To show that \(\psi \) is étale at \(x \), it suffices to prove that \(\psi \) is unramified at \(x \), because \(\psi \) is dominant with integral source and normal target (see e.g. Theorem 3.20 in chapter 1 of [13]). Hence it suffices to prove the following two claims.

- **Claim 1.** The ideal of \(\psi^{-1}(C) \) in \(\mathcal{O}_{X,x} \) is generated by elements \(\psi^*(c) \) with \(c \) in the ideal of \(C \) in \(\mathcal{O}_{V,w} \).

- **Claim 2.** The morphism \(\psi|_{\psi^{-1}(C)} : \psi^{-1}(C) \to V \) is unramified at \(x \).

Proof of Claim 1. The ideal of \(C \) in the coordinate ring of \(V \) is generated by the characters of \(T \) that are defined and vanishing at \(v \) (or equivalently at \(w \), because \(w \) belongs to the orbit of \(v \)). Hence condition (1) implies that \(\psi^{-1}(C) = \rho^{-1}(C) \) locally at \(x \). Thus, again by condition (1), in order to prove Claim 1, it suffices to show that the ideal of \(\rho^{-1}(C) \) in \(\mathcal{O}_{X,x} \) is generated by the elements \(\rho^*(c) \) with \(c \) running over all characters of \(T \) that are defined and vanishing at \(v \). But this follows directly from the fact that \(\rho \) is étale at \(x \), because these characters generate the ideal \(I \) of \(C \) in \(\mathcal{O}_{V,v} \), and because \(\mathcal{O}_{V,v}/I \) is normal and hence \(\rho^*(I) \) is prime.

Proof of Claim 2. Clearly it suffices to show that the morphism \(\psi^{-1}(C) \to C \) induced by \(\psi \) is étale at \(x \). We will show this by using the jacobian criterium. Note that \(C \) is smooth, and that \(\psi^{-1}(C) \) is smooth at \(x \), because \(\psi^{-1}(C) = \rho^{-1}(C) \) locally at \(x \) (as we saw in the proof of Claim (1)). Choose a basis \(z_1, \ldots, z_r, z_{r+1}, \ldots, z_m \) for the \(\mathbb{Z} \)-module of characters on \(T \), such that \(z_{r+1}, \ldots, z_m \) form a basis for the \(\mathbb{Z} \)-module of characters on \(T \) that are defined and not vanishing at \(v \) (or equivalently at \(w \)). Note that \(z_{r+1}, \ldots, z_m \) are uniformizing parameters for \(C \) at \(v \), and also at \(w \). Put

\[
x_i = \rho^*(z_i), \quad x'_i = \psi^*(z_i),
\]

for \(i = 1, \ldots, m \). Note that \(x_{r+1}, \ldots, x_m \) are uniformizing parameters for \(\psi^{-1}(C) \) at \(x \), because \(\psi^{-1}(C) = \rho^{-1}(C) \) locally at \(x \), and because \(\rho \)
is étale. Thus, by the jacobian criterium, we have to prove that
\[
\det \left(\frac{\partial x'_i}{\partial x_j}(x) \right)_{i,j=r+1,...,m} \neq 0.
\]

From condition (1) it follows that there are units ϵ_i in $\mathcal{O}_{X,x}$ such that for $i = 1, \ldots, m$
\[
x'_i = \epsilon_i x_i.
\]
Hence
\[
\psi^* \left(\frac{dz_i}{z_i} \right) = \frac{d(\epsilon_i x_i)}{\epsilon_i x_i} = \frac{d\epsilon_i}{\epsilon_i} + \frac{dx_i}{x_i}.
\]

Let J be the logarithmic jacobian matrix of ψ, i.e. the square matrix of the coefficients expressing $\psi^* \left(\frac{dz_i}{z_i} \right)$, $i = 1, \ldots, m$, as $\mathcal{O}_{X,x}$-linear combinations of $\frac{dx_j}{x_j}$, $j = 1, \ldots, m$. We denote by $J(x)$ the square matrix over $k(x)$ obtained from J by evaluation at $x \in X$. Because of condition (2), we have that det $J(x) \neq 0$. Applying Lemma 3.6 (with y replaced by ϵ_i) and using the fact that the ϵ_i are units, together with (5), we see that the matrix formed by the last $m - r$ rows and the first r columns of $J(x)$ is zero. Hence the submatrix J_0 of J, formed by the last $m - r$ rows and the last $m - r$ columns, satisfies det($J_0(x)$) $\neq 0$. Note that for $i = r + 1, \ldots, m$, the x_i, and hence also the x'_i, are units in $\mathcal{O}_{X,x}$.

Hence $\left(\frac{\partial x'_i}{\partial x_j}(x) \right)_{i,j=r+1,...,m}$ can be obtained from $J_0(x)$ by multiplying the i-th row of $J_0(x)$ by $x'_i(x) \neq 0$ and dividing the j-th column of $J_0(x)$ by $x_j(x) \neq 0$ (see Remark 3.7). This yields (3) and terminates the proof of the lemma. □

REFERENCES

[1] D. Abramovich and K. Karu. Weak semistable reduction in characteristic 0. Invent. Math., 139(2):241–273, 2000.
[2] Dan Abramovich, Jan Denef, and Kalle Karu. Weak toroidalization over non-closed fields. Preprint, ArXiv: 1010.6171, 2010.
[3] M. Artin. Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math., (36):23–58, 1969.
[4] N. Bourbaki. Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs. Actualités Scientifiques et Industrielles, No. 1314. Hermann, Paris, 1965.
[5] Steven Dale Cutkosky. Toroidalization of dominant morphisms of 3-folds. Mem. Amer. Math. Soc., 190(890):vi+222, 2007.
[6] V. I. Danilov. The geometry of toric varieties. Uspekhi Mat. Nauk, 33(2(200)):85–134, 247, 1978.
[7] Jan Denef. Monomialization of morphisms and p-adic quantifier elimination. Proc. Amer. Math. Soc., To appear, ArXiv:1108.6237.
[8] W. Fulton. *Introduction to toric varieties*, volume 131 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.

[9] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. *Inst. Hautes Études Sci. Publ. Math.*, (32):361, 1967.

[10] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In *Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988)*, pages 191–224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.

[11] Kazuya Kato. Toric singularities. *Amer. J. Math.*, 116(5):1073–1099, 1994.

[12] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat. *Toroidal embeddings. I*. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973.

[13] James S. Milne. *Étale cohomology*, volume 33 of *Princeton Mathematical Series*. Princeton University Press, Princeton, N.J., 1980.

(Denef) UNIVERSITY OF LEUVEN, DEPARTMENT OF MATHEMATICS, CELESTIJNENLAAN 200 B, B-3001 LEUVEN (HEVERLEE), BELGIUM.

E-mail address: jan.denef@wis.kuleuven.be