COMPARATIVE STUDY OF IN SILEO AND IN VITRO ANTICANCER ACTIVITY OF TRADITIONAL INDIAN MEDICINAL PLANTS-A REVERSE PHARMACOLOGICAL APPROACH

RADHIKA RAMASWAMY1*, J. SRIKANTH2, C. UMAMAHESWARA REDDY2

1SRM College of Pharmacy, SRM University, Chennai, 2Faculty of Pharmacy, Sri Ramachandra University, Chennai

Received: 26 Jan 2017, Revised and Accepted: 20 Apr 2017

INTRODUCTION

India is rightly called as the “home” to all the medicinal plants. Colon, lung, breast, liver and stomach cancers are the most cause of deaths reported every year and the estimate is said to be around 7.9 million [1]. Use of tobacco and other drug abuses are the commonly occurring deaths worldwide [2]. Death due to cancer is projected to rise continually with an estimate of 13.1 million deaths in 2030 [3].

The consumption of these medicinal plants will promote the resistance to the host against any infection by conditioning the body tissues and by re-stabilizing body equilibrium [1]. Novel cancer drug discovery is mainly focussing on some of the better strategies for targeting cancer, which includes the discovery and condition of agents that would inhibit or kill cancer cells. The sensitivity of MCF-7, HT-29 and A549 cells to tamoxifen, vinblastine and fluorouracil [10-13].

In vitro colorimetric cell metabolic activity assay is performed for the standardized extracts of these plants in various cell lines using the standards.

RESULTS:
The phytoconstituents in the plants, Withania somnifera and Phyllanthus emblica revealed good binding affinity towards thymidylate synthase and p-glycoprotein respectively as compared to that of the standards.

Conclusion: Phyllanthus emblica showed a maximal antiproliferative effect on breast cancer cell lines (MCF-7) when compared to the other plant extracts. Zingiber officinalis was found to inhibit HT-29 cell lines to a greater extent and Withania somnifera resulted in highest A549 cell death. A combination of these extracts in any dosage form could be used in the therapeutic efficacy in cancer.

Keywords: Molegro Virtual docker, MCF-7, HT-29, A549, MTT assay

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.22159/ijcpr.2017v9i4.20761
treated cells served as control. The cells were then treated with MTT reagent (20μl/well) for 4 h at 37°C and then DMSO (200μl) was added to each well to dissolve the formazan crystals. The optical density was recorded at 540 nm in a microplate reader. The percentage of cell inhibition was determined as [1- (OD of treated cells/OD of control cells)]*100 [19-21].

RESULTS

In silico docking analysis

The ability of the phytoconstituents to bind with the targets is given in terms of Mol Dock Score. The Mol Dock Score is used as the parameter for analyzing the docking results. The phytoconstituents are ranked according to their Mol Dock Score. The ligand possessing the highest Mol Dock Score shows a strong affinity towards its target.

The top 5 ligands for the target p-glycoprotein are ellagic acid (-60.7406); gallic acid (-57.7957); Curcumene (-57.1762); Phyllemblin (-54.874); alpha-farnesene (-49.0781). The constituents of Phyllanthus emblica was found to have a moderate affinity to p-glycoprotein when compared to that of the standard, raltitrexed (-141.817) and tamoxifen (-115.666). Refer table 1.

The top 5 ligands which were found to have a greater affinity to thymidylate synthase were withaferin A (-140.681); curcumene (-140.656); withanolide A (-109.302); withanolide E (-106.49); withanolide B (-102.595). The constituents of Withania somnifera were found to have a maximum affinity to thymidylate synthase when compared with standards, raltitrexed (-151.264) and tamoxifen (-129.451). Refer table 2.

Mol dock score	Ligand	Name
-141.817	raltitrexed	raltitrexed
-115.666	tamoxifen	tamoxifen
-101.516	vinblastine	vinblastine
-60.7406	ellagic acid	ellagic acid
-57.7957	gallic acid	gallic acid
-57.1762	curcumene	curcumene
-54.874	phyllemblin	phyllemblin
-54.6759	fluorouracil	fluorouracil
-49.0781	alpha farnesene	alpha farnesene
-44.6231	phyllantidine	phyllantidine
-44.5979	withaferin A	withaferin A
-37.4563	withanolide A	withanolide A
-33.4113	withanolide E	withanolide E
-32.6451	withanine	withanine
-21.8885	ascorbic acid	ascorbic acid
-15.5545	sesquiphellandrene	sesquiphellandrene
10.5933	withanolide B	withanolide B
54.6561	gingerol	gingerol
71.3498	alpha zingiberin	alpha zingiberin

In vitro MTT assay

Screening of extracts of Withania somnifera, Phyllanthus emblica, Zingiber officinale resulted in impotent anticancer activities against A-549, MCF-7 and HT-29 cell lines. The inhibitory properties of these extracts are compared with the standards, tamoxifen for MCF-7 and A549 cell lines and 5-flourouracil for the HT-29 cell. The percentage cancer cell inhibition profiles were found to be concentration dependent. The maximum concentration (μg/ml) used in the study was 1000μg/ml.

The inhibitory properties of plant extracts are compared with standard 5-Fluorouracil for HT-29 cell line and tamoxifen for A-549 and MCF-7 cell lines and are represented in the tables 3, 4 and 5 respectively.

HT-29 cancer cell line, when subjected to various concentrations of fluorouracil, resulted in 87.2% of cell death. A maximum cell inhibition of 76.1% was observed with Zingiber officinale at a concentration of 1000 μg/ml. Withania somnifera and Phyllanthus emblica extracts resulted in 71.1% and 64.7% of HT-29 cell inhibition respectively. Refer fig. 5 and table 3.

Fig. 1 and 2 represent the 3d view of the protein 3G61 docked with raltitrexed and the ligand having the highest affinity respectively.
Table 2: Thymidylate synthase-1HVY- Ranking based on MolDock Score

MolDockScore	Ligand	Name
-151.264	raltrexed	[01]raltrexed
-140.681	withaferin A	[00]withaferin A
-140.656	curcumene	[00]curcumene
-129.451	tamoxifen	[00]tamoxifen
-106.49	withanolide A	[00]withanolide A
-102.595	withanolide E	[01]withanolide E
-101.426	gingerol	[00]gingerol
-95.4284	vinblastine	[00]vinblastine
-95.0899	ellagic acid	[00]ellagic acid
-88.4583	withanolone	[00]withanolone
-88.0655	alpha farnasene	[00]alpha farnasene
-86.0758	phyllembalin	[00]phyllembalin
-85.5623	alpha zingiberene	[00]alpha zingiberene
-84.6785	sesquiphellandrene	[00]sesquiphellandrene
-77.1248	phyllantidine	[00]phyllantidine
-75.5379	ascorbic acid	[00]ascorbic acid
-70.5988	gallic acid	[02]gallic acid
-69.0146	florouracil	[00]florouracil

Fig. 3 and 4 shows the 3d view of the protein 1HVY docked with raltitrexed and the ligand having the highest affinity respectively.

Fig. 3: 3D view of 1HVY docked with raltitrexed

Fig. 4-3D: View of 1HVY docked with the ligand having the highest affinity, withaferin a

Table 3: Percentage cell inhibition of plant extracts on HT-29 cell lines

Concentration (µg/ml)	5-Florouracil	Phyllanthus emblica	Zingiber officinale	Withaniasomnifera
7.8	23.2	0.9	12.8	4
15.6	26.4	15.4	25.5	21.7
31.2	36.2	17.9	38.2	45.5
62.5	49.3	31.8	43.2	34.4
125	54.9	43.2	55.9	53.3
250	66.4	60.9	66	60.9
500	77.8	64.7	76.1	71.1
1000	87.2			

A-549 cell lines, when subjected to different concentrations of Withaniasomnifera extract resulted in 87.3% inhibition at a concentration of 1000µg/ml. Similarly, Zingiber officinale and Phyllanthus emblica resulted in 85.5% and 80% of A-549 cell death respectively. Comparison with tamoxifen showed 96.4% of cell inhibition at the maximum concentration. Refer fig 6 and table 4.
The present work aimed towards the evaluation of the cytotoxic and antiproliferative effects of the phytoconstituents in Phyllanthus emblica, Zingiber officinalis, and Withania somnifera, Phyllanthus emblica, Zingiber officinalis by docking analysis and MTT assay.

The phytoconstituents in the plant, Withania somnifera and Phyllanthus emblica revealed good binding affinity towards thymidylate synthase and p-glycoprotein respectively as compared to that of the standards.

From the results of MTT analysis, it is concluded that Phyllanthus emblica showed a maximal antiproliferative effect on breast cancer cell lines (MCF-7) when compared to the other plant extracts. Zingiber officinalis was found to inhibit HT-29 cell lines to a greater extent and Withania somnifera resulted in highest A549 cell death. Almost all the extracts were found to produce an excellent antiproliferative effect on breast cancer cell lines (MCF-7) when compared to the other plant extracts. Similarly, Zingiber officinalis and Withania somnifera resulted in 83.9% and 82.4% of MCF-7 cell death respectively. On the other hand, comparison with tamoxifen showed that 95.6% MCF-7 cell line inhibition at the same tested dose (1000 µg/ml).

Refer fig. 7 and table 5.

Table 4: Percentage cell inhibition of plant extracts on A-549 cell lines

Concentration (µg/ml)	Tamoxifen	Phyllanthus emblica	Zingiber officinalis	Withania somnifera
2.5	31.2	15.6	7.8	
5	31.2	15.6	7.8	
25	31.2	15.6	7.8	
500	31.2	15.6	7.8	
1000	31.2	15.6	7.8	

Table 5: Percentage cell inhibition of plant extracts on MCF-7 cell lines

Concentration (µg/ml)	Tamoxifen	Phyllanthus emblica	Zingiber officinalis	Withania somnifera
2.5	31.2	15.6	7.8	
5	31.2	15.6	7.8	
25	31.2	15.6	7.8	
500	31.2	15.6	7.8	
1000	31.2	15.6	7.8	

ACKNOWLEDGEMENT

I would like to extend my heartfelt thanks to my guide, Mr. J. Srikanth for providing constant encouragement and timely help in the completion of this project. I would also like to thank my HOD, Dr. C. Uma Maheswara Reddy for his support. I am highly indebted to my institution, Sri Ramachandra University, Porur, Chennai. I am also grateful to the Tamil Nadu Pharmaceutical Sciences Welfare Trust for providing the financial aid and for the scholarship given for the successful completion of my project without any hindrance. I would like to thank the International Pharmaceutical Federation for accepting this research for the presentation during the PSWC, 2014 held in Melbourne. Lastly I would like to thank my parents and other staff in my department for supporting me.

CONFLICT OF INTERESTS

Declare none

REFERENCES

1. M Umadevi, KP Sampath Kumar, Debjit Bhowmik, S Duraivel. Traditionally used anticancer herbs in India. J Med Plants Studies 2013;1:56-74.
2. Michael J Thun, John Oliver De Lancey, Melissa M Center, Ahmedin Jemal, Elizabeth M Ward. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31:100–110.
3. WHO. World Cancer Report; 2014.
4. Mahbuba Rahman and Mohammad Rubayet Hasan. Cancer metabolism and drug resistance. Metabolites 2015;5:571–600.
5. Rose MG, Farrell MP, Schnitz JC. Thymidylate synthase: a critical target for cancer chemotherapy. Clin Colorectal Cancer 2002;1:220-9.
6. Van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Tellman F, Schoenmakers PS, et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for...
folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 1999;5:643-54.

7. B Yadav, A Bajaj, M Saxena, AK Saxena. In vitro anticancer activity of the root, stem and leaves of Withania somnifera against various human cancer cell lines. Indian J Pharm Sci 2010;72:659–63.

8. K Talezawa, I Okamoto, S Tsukioka, J Uchida, M Kiniwa, M Fukuoka, et al. Identification of thymidylate synthase as a potential therapeutic target for lung cancer. Br J Cancer 2010;103:354–61.

9. Bidgoli SA, Azi E, Zavarhei MD. Association between p53 expression and Bcl-2, P-glycoprotein, topoisomerase II alpha, thymidylate synthase and thymidine phosphorylase as potential therapeutic targets in colorectal cancer patients. Pak J Biol Sci 2007;10:3:350–5.

10. Molegro Virtual Docker User Manual. Available from: http://www.clcbio.com/wp-content/uploads/2012/09/MVD_Manual.pdf. [Last accessed on 20 Dec 2016]

11. Susi Kusumaningrum, Emil Budianto, Soleh Kosela, Wahono Sumaryono, Fifit Juniarti. The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of Polo-like kinase 1 using molegro virtual docker. J Appl Pharm Sci 2014;4:47-53.

12. Naeeem S, Hylands P, Barlow D. Docking studies of chlorogenic acid against aldose reductase using molegro virtual docker software. J Appl Pharm Sci 2013;3:13-20.

13. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006;49:3315-21.

14. In silico molecular docking studies and in vitro correlation. Available from: http://shodhganga.inflibnet.ac.in/bitstream/10603/66868/14/15.chapter-V. In silico molecular docking studies.pdf. [Last accessed on 20 Dec 2016].

15. C Vinodhini, K Chitra. Neat synthesis and in silico screening of pyrazole α-amino phosphonates as potent inhibitors of cancer targets. J Chem Pharm Sci 2015;8:584-92.

16. R-Florence, S Jeeva. In vitro anticancer activity of Gmelina arborea L. Leaf against human breast cancer cell line (MCF-7). Int J Pharm Sci Res 2016;7:2116-21.

17. Tahir Bashir, Mandar Patgaonkar, Selvaa Kumar C, Achhelal Pasi, Kudumula Venkata Rami Reddy. HbAHP-25, an in silico designed peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor. PLoS One 2015;10:e0124839.

18. Katarina Kostrikova, Miriam Jelovickova, Jan Kerestec, Helena Gabelcovova, Zdenka Durackova, Ingrid Zitanova. Anticancer effect of black tea extract in human cancer cell lines. Springerplus 2015;4:127.

19. Vikas Sharma, Shabir Hussain, Moni Gupta, Ajit Kumar Saxena. In vitro anticancer activity of extracts of Mentha spp. against human cancer cells. Indian J Biochem Biophysics 2014;51:416-9.

20. N Srivastava, Rumana Ahmad, Mohsin Ali Khan. Evaluation and comparison of the in vitro cytotoxic activity of Withania somnifera methanolic and ethanolic extracts against MDA-MB-231 and vero cell lines. Sci Pharm 2016;84:41-9.

21. VSPK Sankara Aditya J, Naresh Kumar L, Animisha Mokkapati. In vitro anticancer activities of few plant extracts against MCF-7 and HT-29 cell lines. Int J Pharma Sci 2013;3:185-8.

How to cite this article
• Radhika Ramaswamy, J Srikanth, C Umamaheswara Reddy. Comparative study of in silico and in vitro anticancer activity of traditional Indian medicinal plants a reverse pharmacological approach. Int J Curr Pharm Res 2017;9(4):42-46.