1-RATIONAL SINGULARITIES AND QUOTIENTS BY REDUCTIVE GROUPS

DANIEL GREB

ABSTRACT. We prove that good quotients of algebraic varieties with 1-rational singularities also have 1-rational singularities. This refines a result of Boutot on rational singularities of good quotients.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Generalising the Hochster-Roberts theorem [HR74], Jean-François Boutot proved that the class of varieties with rational singularities is stable under taking good quotients by reductive groups, see [Bou87].

In this short note we study varieties with 1-rational singularities. This is the natural class of singular varieties to which projectivity results for Kähler Moishezon manifolds generalise, cf. [Nam02]. Our main result is:

Theorem 3.1. Let G be a complex reductive Lie group and let X be an algebraic G-variety such that the good quotient $\pi : X \to X//G$ exists. If X has 1-rational singularities, then $X//G$ has 1-rational singularities.

In our proof, which forms a part of the author’s thesis [Gre08a], we follow [Bou87] and we check that in Boutot’s arguments it is possible to separate the different cohomology degrees.

Theorem 3.1 has been used in [Gre08b] to prove projectivity of compact momentum map quotients of algebraic varieties.

Acknowledgements. The author wants to thank Miles Reid for kindly answering his questions via e-mail. The author gratefully acknowledges the financial support of the Mathematical Sciences Research Institute, Berkeley, by means of a postdoctoral fellowship during the 2009 "Algebraic Geometry" program.

2. PRELIMINARIES

2.1. **Singularities and resolution of singularities.** We work over the field \mathbb{C} of complex numbers. If X is an algebraic variety we denote by $\text{tdim}_x X$ the dimension of the Zariski tangent space at $x \in X$. I.e., if m_x denotes the maximal ideal in $\mathcal{O}_{X,x}$, then $\text{tdim}_x X := \dim_{\mathbb{C}} m_x/m_x^2$. A point x in an algebraic variety X is called *singular* if $\text{tdim}_x X > \dim X$. We denote the singular set of an algebraic variety X by X_{sing}. A variety X is called *smooth* if $X_{\text{sing}} = \emptyset$.

Date: 22nd January 2009.

Mathematical Subject Classification: 14L30, 14L24, 14B05.

Keywords: group actions on algebraic varieties, good quotient, singularities.
Definition 2.1. Let \(X \) be an algebraic variety. A resolution of \(X \) is a proper birational surjective morphism \(f : Y \to X \) from a smooth algebraic variety \(Y \) to \(X \).

If \(X \) is an algebraic variety, by a theorem of Hironaka [Hir64] there exists a resolution \(f : Y \to X \) by a projective morphism \(f \) such that the restriction \(f : f^{-1}(X \setminus X_{\text{sing}}) \to X \setminus X_{\text{sing}} \) is an isomorphism. See also [BM91], [EH02], and [Kol07] for later improvements and simplifications of Hironaka’s proof.

2.2. 1-rational singularities. In this section we introduce the class of singularities studied in this note.

Definition 2.2. An algebraic variety \(X \) is said to have 1-rational singularities, if the following two conditions are fulfilled:

1. \(X \) is normal,
2. for every resolution \(f : \tilde{X} \to X \) of \(\tilde{X} \), we have \(R^1 f_* \mathcal{O}_{\tilde{X}} = 0 \).

Proposition 2.3. Let \(X \) be a normal algebraic variety. If there exists one resolution \(f_0 : X_0 \to X \) such that \(R^1 (f_0)_* \mathcal{O}_{X_0} = 0 \), then \(X \) has 1-rational singularities.

Proof. Let \(f_1 : X_1 \to X \) be a second resolution of \(X \). By [Hir64], there exits a smooth algebraic variety \(Z \) and resolutions \(g_0 : Z \to X_0 \) and \(g_1 : Z \to X_1 \) such that the following diagram commutes

\[
\begin{array}{ccc}
Z & \xrightarrow{g_0} & \ \ \ X_0 \\
\downarrow & & \downarrow \ f_0 \\
X_1 & \xrightarrow{g_1} & \ \ \ X
\end{array}
\]

For \(j = 0, 1 \) there exists a spectral sequence (see [Wei94]) with lower terms

\[
0 \to R^1 (f_j)_* (g_j)_* \mathcal{O}_Z \to R^1 (f_j \circ g_j)_* \mathcal{O}_Z \to (f_j)_* (R^1 (g_j)_* \mathcal{O}_Z) \to \cdots .
\]

Since \(g_0 \) and \(g_1 \) are resolutions of smooth algebraic varieties, we have \(R^1 (g_j)_* \mathcal{O}_Z = 0 \) and \((g_j)_* \mathcal{O}_Z = \mathcal{O}_{X_j} \) for \(j = 0, 1 \) (see [Hir64] and [Uen75]). It follows that

\[
0 = R^1 (f_0)_* \mathcal{O}_{X_0} \cong R^1 (f_0 \circ g_0)_* \mathcal{O}_Z \cong R^1 (f_1 \circ g_0)_* \mathcal{O}_Z \cong R^1 (f_1)_* \mathcal{O}_{X_1} .
\]

Remark 2.4. The proof shows that, if \(f_1 : X_1 \to X \) and \(f_2 : X_2 \to X \) are two resolutions of \(X \), there is an isomorphism \(R^1 (f_1)_* \mathcal{O}_{X_1} \cong R^1 (f_2)_* \mathcal{O}_{X_2} \). From this, it follows that having 1-rational singularities is a local property. Furthermore, if \(X \) is an algebraic \(G \)-variety for an algebraic group \(G \), and \(f : \tilde{X} \to X \) is a resolution of \(X \), then the support of \(R^1 f_* \mathcal{O}_X \) is a \(G \)-invariant subvariety of \(X \).

2.2.1. Rational singularities. In this section we shortly discuss the relation of the notion “1-rational singularity” to the more commonly used notion of “rational singularity”.

Definition 2.5. An algebraic variety \(X \) is said to have rational singularities, if the following two conditions are fulfilled:

1. \(X \) is normal,
(2) for every resolution $f : \tilde{X} \to X$ of X we have $R^j f_* O_{\tilde{X}} = 0$ for all $j = 1, \ldots, \dim X$.

Remark 2.6. Again, the vanishing of the higher direct image sheaves is independent of the chosen resolution.

Due to a result of Malgrange [Mal57, p. 236] asserting that $R^{\dim X} f_* O_X = 0$ for every resolution $f : \tilde{X} \to X$ of an irreducible variety X, an algebraic surface has 1-rational singularities if and only if it has rational singularities. These notions differ in higher dimensions as is illustrated by the following example.

Example 2.7. Let Z be a smooth quartic hypersurface in \mathbb{P}^3 and let X be the affine cone over Z in \mathbb{C}^4. The variety X has an isolated singularity at the origin. Let L be the total space of the line bundle $O_Z(-1)$, i.e., the restriction of the dual of the hyperplane bundle of \mathbb{P}^3 to Z. Then, blowing down the zero section $Z_L \subset L$ and setting $\tilde{X} := L$, we obtain a map $f : \tilde{X} \to X$ which is a resolution of singularities, an isomorphism outside of the origin $0 \in X$ with $f^{-1}(0) = Z_L \cong Z$. We claim that $0 \in X$ is a 1-rational singularity which is not rational.

To see that the origin is a normal point of X it suffices to note that it is obtained as the blow-down of the maximal compact subvariety Z_L of the smooth variety L.

To compute $(R^j f_* O_{\tilde{X}})_0$, we use the Leray spectral sequence

$\cdots \to H^j(X, O_X) \to H^j(\tilde{X}, O_{\tilde{X}}) \to H^0(X, R^j f_* O_{\tilde{X}}) \to H^{j+1}(X, O_X) \to \cdots$

and the fact that X is affine to show that $H^j(\tilde{X}, O_{\tilde{X}}) \cong H^0(X, R^j f_* O_{\tilde{X}}) = (R^j f_* O_{\tilde{X}})_0$. Expanding cohomology classes into Taylor series along fibres of L, we get that $H^j(\tilde{X}, O_{\tilde{X}}) \cong \bigoplus_{k \geq 0} H^j(Z, O_Z(k))$. Hence, we have

$$
(1) \quad (R^j f_* O_{\tilde{X}})_0 \cong \bigoplus_{k \geq 0} H^j(Z, O_Z(k)) \quad \text{for all } j \geq 1.
$$

It follows from [1] and [Har77, Chap III, Ex 5.5] that $(R^1 f_* O_{\tilde{X}})_0 = 0$, and hence that $0 \in X$ is a 1-rational singularity. Since the canonical bundle K_Z of Z is trivial, it follows from Serre duality that $H^2(Z, O_Z(k)) \cong H^0(Z, O_Z(-k))$. As a consequence, we get

$$(2) \quad H^2(Z, O_Z(k)) = \begin{cases}
\mathbb{C} & \text{for } k = 0, \\
0 & \text{otherwise}.
\end{cases}$$

Together with (1) this implies that $(R^2 f_* O_{\tilde{X}})_0 = \mathbb{C}$. Consequently, the singular point $0 \in X$ is not a rational singularity.

2.3. Good quotients.

Definition 2.8. Let G be a complex reductive Lie group acting algebraically on an algebraic variety X. An algebraic variety Y together with a morphism $\pi : X \to Y$ is called **good quotient** of X by the action of G, if

1. π is G-invariant, surjective, and affine,
2. $(\pi, O_X)G = O_Y$.

Example 2.9. Let X be an affine G-variety. Then the algebra of invariants $\mathbb{C}[X]^G$ is finitely generated, and its inclusion into $\mathbb{C}[X]$ induces a regular map π from X to $Y := \text{Spec}(\mathbb{C}[X]^G)$ which fulfills (1) and (2) above, i.e., π is a good quotient.
3. Singularities of Good Quotients: Proof of the Main Result

Let G be a complex reductive Lie group and let X be an algebraic G-variety such that the good quotient $X//G$ exists. We study the singularities of $X//G$ relative to the singularities of X.

More precisely, we prove the following theorem, which is the main result of this note.

Theorem 3.1. Let G be a complex reductive Lie group and let X be an algebraic G-variety such that the good quotient $\pi : X \rightarrow X//G$ exists. If X has 1-rational singularities, then $X//G$ has 1-rational singularities.

Before proving the theorem we explain two technical lemmata. The first one discusses the relation between cohomology modules of X and of $X//G$.

Lemma 3.2. Let X be an algebraic G-variety with good quotient $\pi : X \rightarrow X//G$. Then the natural map $\pi^* : H^1(X//G, \mathcal{O}_{X//G}) \rightarrow H^1(X, \mathcal{O}_X)$ is injective.

Proof. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an affine open covering of $X//G$. We can compute the cohomology module $H^1(X//G, \mathcal{O}_{X//G})$ via Čech cohomology with respect to the covering \mathcal{U}. Since π is an affine map, $\pi^{-1}(\mathcal{U}) := \{\pi^{-1}(U_i)\}_{i \in I}$ is an affine open covering of X and we can compute the cohomology module $H^1(X, \mathcal{O}_X)$ via Čech cohomology with respect to the covering $\pi^{-1}(\mathcal{U})$.

Let $\eta = (\eta_{ij}) \in C^1(\mathcal{U}, \mathcal{O}_{X//G})$ be a Čech cocycle such that the pullback of the associated cohomology class $[\eta] \in H^1(X//G, \mathcal{O}_{X//G})$ fulfills $\pi^*([\eta]) = 0 \in H^1(X, \mathcal{O}_X)$. Then, there exists a cocycle $\nu = (\nu_i) \in C^0(\pi^{-1}(\mathcal{U}), \mathcal{O}_X)$ such that

$$\pi^*(\eta_{ij}) = \nu_i|_{\pi^{-1}(U_i)} - \nu_j|_{\pi^{-1}(U_j)} \in \mathcal{O}_X(\pi^{-1}(U_{ij})).$$

Averaging $\nu_i \in \mathcal{O}_X(\pi^{-1}(U_i))$ over a maximal compact subgroup K of G we obtain invariant functions $\bar{\nu}_i \in \mathcal{O}_X(\pi^{-1}(U_i))^G$. Since $\pi^*(\eta_{ij}) \in \mathcal{O}_X(\pi^{-1}(U_{ij}))^G$, the cocycle $\bar{\nu} = (\bar{\nu}_i) \in C^0(\pi^{-1}(\mathcal{U}), \mathcal{O}_X)$ fulfills

$$\pi^*(\eta_{ij}) = \bar{\nu}_i|_{\pi^{-1}(U_i)} - \bar{\nu}_j|_{\pi^{-1}(U_j)} \in \mathcal{O}_X(\pi^{-1}(U_{ij})).$$

For all i, there exist a uniquely determined function $\tilde{\nu}_i \in \mathcal{O}_{X//G}(U_i)$ with $\pi^*(\tilde{\nu}_i) = \bar{\nu}_i$. Consequently, we have

$$\eta_{ij} = \tilde{\nu}_i|_{U_{ij}} - \tilde{\nu}_j|_{U_{ij}} \in \mathcal{O}_{X//G}(U_{ij}).$$

Therefore, $[\eta] = 0 \in H^1(X//G, \mathcal{O}_{X//G})$ and π^* is injective, as claimed. \(\square \)

The second lemma will be used to obtain information about the singularities of an algebraic variety X from information about the singularities of a general hyperplane section H of X and vice versa.

Lemma 3.3. Let X be a normal affine variety with $\dim X \geq 2$ and let $f : \bar{X} \rightarrow X$ be a resolution of singularities. Let $\mathcal{L} \subset \mathcal{O}_X(X)$ be a finite-dimensional subspace, such that the associated linear system is base-point free, and such that the image of X under the associated map $\varphi_{\mathcal{L}} : X \rightarrow \mathbb{P}_H$ fulfills $\dim(\varphi_{\mathcal{L}}(X)) \geq 2$. If $h \in \mathcal{L}$ is a general element, then the following holds for the corresponding hyperplane section $H \subset X$:

1. The preimage $\bar{H} := f^{-1}(H)$ is smooth and $f|_{\bar{H}} : \bar{H} \rightarrow H$ is a resolution of H.
2. We have $R^if_*\mathcal{O}_H \cong R^if_*\mathcal{O}_{\bar{H}} \otimes \mathcal{O}_H$ for $j = 0, 1$.

\(\square \)
Proof. 1) This follows from Bertini’s theorem (see [Har77, Chap III, Cor 10.9]).

2) In the exact sequence

\[0 \to \mathcal{O}_X(-\tilde{H}) \overset{m_0}{\to} \mathcal{O}_X \to \mathcal{O}_{\tilde{H}} \to 0, \]

the map \(m \) is given by multiplication with the equation \(h \in \mathcal{O}_X(X) \) defining \(H \) and \(\tilde{H} \). Pushing forward the short exact sequence \((3)\) by \(f_* \) yields the long exact sequence \((4)\)

\[0 \to f_* \mathcal{O}_X(-\tilde{H}) \overset{m_0}{\to} f_* \mathcal{O}_X \to f_* \mathcal{O}_{\tilde{H}} \to \]

\[\to R^1f_* \mathcal{O}_X(-\tilde{H}) \overset{m_1}{\to} R^1f_* \mathcal{O}_X \to R^1f_* \mathcal{O}_{\tilde{H}} \to \]

\[\to R^2f_* \mathcal{O}_X(-\tilde{H}) \overset{m_2}{\to} R^2f_* \mathcal{O}_X \to R^2f_* \mathcal{O}_{\tilde{H}} \to \]

\[\to \ldots. \]

Since \(X \) is an affine variety, the exact sequence above is completely determined by the following sequence of finite \(\mathcal{O}_X(X) \)-modules:

\[0 \to \Gamma(\tilde{X}, \mathcal{O}_\tilde{X}(-\tilde{H})) \overset{m_0}{\to} \Gamma(\tilde{X}, \mathcal{O}_\tilde{X}) \to \Gamma(\tilde{X}, \mathcal{O}_{\tilde{H}}) \to \]

\[\to H^1(\tilde{X}, \mathcal{O}_\tilde{X}(-\tilde{H})) \overset{m_1}{\to} H^1(\tilde{X}, \mathcal{O}_\tilde{X}) \to H^1(\tilde{X}, \mathcal{O}_{\tilde{H}}) \to \]

\[\to H^2(\tilde{X}, \mathcal{O}_\tilde{X}(-\tilde{H})) \overset{m_2}{\to} H^2(\tilde{X}, \mathcal{O}_\tilde{X}) \to H^2(\tilde{X}, \mathcal{O}_{\tilde{H}}) \to \]

\[\to \ldots. \]

The maps \(m_j, j = 0, 1, 2 \) are given by multiplication with the element \(h \in \mathcal{O}_X(X) \). We claim that we can choose \(h \in \mathcal{L} \) in such a way that \(m_1 \) and \(m_2 \) are injective. Indeed, if \(R \) is a commutative Noetherian ring with unity, \(M \) is a finite \(R \)-module, and \(Z_R(M) \) denotes the set of zero-divisors for \(M \) in \(R \), we have

\[Z_R(M) = \bigcup_{P \in \text{Ass } M} P, \]

where \(\text{Ass } M \) is the finite set of assassins (or associated primes) of \(M \). Hence, the set of zero-divisors for \(H^1(\tilde{X}, \mathcal{O}_\tilde{X}(-\tilde{H})) \) and \(H^2(\tilde{X}, \mathcal{O}_\tilde{X}(-\tilde{H})) \) is a union of finitely many prime ideals \(P \) of \(\mathcal{O}_X(X) \). Since the linear system associated to \(\mathcal{L} \) is base-point free, the general element \(h \) of \(\mathcal{L} \) lies in \(\mathcal{L} \setminus \bigcup P \). For such a general \(h \in \mathcal{L} \setminus \bigcup P \), the maps \(m_1 \) and \(m_2 \) in the sequences \((5)\) and \((4)\) are injective.

Since \(\mathcal{O}_\tilde{X}(-\tilde{H}) \cong f^*(\mathcal{O}_X(-H)) \), the projection formula for locally free sheaves (see [Har77, Chap III, Ex 8.3]) yields

\[R^if_* \mathcal{O}_\tilde{X}(-\tilde{H}) \cong R^if_* \mathcal{O}_\tilde{X} \otimes \mathcal{O}_X(-H). \]

Furthermore, for \(j = 0, 1 \) the image of \(m_j \) coincides with the image \(\mathcal{B}_j \) of the natural map \(R^if_*, \mathcal{O}_\tilde{X} \otimes \mathcal{O}_X(-H) \to R^if_*, \mathcal{O}_\tilde{X} \). Since \(m_1 \) and \(m_2 \) are injective by the choice of \(H \), it follows that

\[R^if_*, \mathcal{O}_\tilde{H} \cong R^if_*, \mathcal{O}_\tilde{X} / \mathcal{B}_j \quad \text{for } j = 0, 1. \]

Tensoring with \(R^if_*, \mathcal{O}_\tilde{X} \) is right-exact, and hence the exact sequence

\[0 \to \mathcal{O}_X(-H) \to \mathcal{O}_X \to \mathcal{O}_H \to 0 \]

yields \(R^if_*, \mathcal{O}_\tilde{H} \cong R^if_*, \mathcal{O}_\tilde{X} \otimes \mathcal{O}_H \), as claimed. \(\square \)
Proof of Theorem 3.1. Since the claim is local and \(\pi \) is an affine map, we may assume that \(X//G \) and \(X \) are affine.

First, we prove that normality of \(X \) implies normality of \(X//G \). We have to show that \(C[X//G] \cong C[X]^G \) is a normal ring. So let \(\alpha \in \text{Quot}(C[X]^G) \subset C(X)^G \) be an element of the quotient field of \(C[X]^G \) and assume that \(\alpha \) fulfills a monic equation

\[
a^n + c_1 a^{n-1} + \cdots + c_n = 0
\]

with coefficients \(c_j \in C[X]^G \subset C[X] \). Since \(C[X] \) is normal by assumption, it follows that \(\alpha \in C(X)^G \cap C[X] = C[X]^G \). Hence, \(C[X]^G \) is normal. As a consequence, we can assume in the following that \(X \) is \(G \)-irreducible.

We prove the claim by induction on \(\dim X//G \). For \(\dim X//G = 0 \) there is nothing to show. For \(\dim X//G = 1 \) we notice that \(X//G \) is smooth. So, let \(\dim X//G \geq 2 \). Let \(\pi : X \to X//G \) denote the quotient map and let \(p_X : \tilde{X} \to X \) be a resolution of \(X \). First, we prove that a general hyperplane section \(H \subset X//G \) has 1-rational singularities. If \(H \) is a general hyperplane section in \(X//G \), Lemma 3.3 applied to \(\pi^{-1}(H) \) yields that \(p_X|_{\tilde{H}} : \tilde{H} \to \pi^{-1}(H) \) is a resolution, where \(\tilde{H} = p_X^{-1}(\pi^{-1}(H)) \), and that

\[
R^j(p_X)_\ast \mathcal{O}_{\tilde{X}} \otimes \mathcal{O}_{\pi^{-1}(H)} = R^j(p_X)_\ast \mathcal{O}_{\tilde{H}} \quad \text{for } j = 0, 1.
\]

Since \(f_\ast \mathcal{O}_{\tilde{X}} = \mathcal{O}_X \) by Zariski’s main theorem, it follows from the case \(j = 0 \) that \(\pi^{-1}(H) \) is normal. Alternatively, one could invoke Seidenberg’s Theorem (see e.g. [BS95, Thm. 1.7.1]). Together with the case \(j = 1 \), this implies that \(\pi^{-1}(H) \) has 1-rational singularities. By induction, it follows that \(H = \pi^{-1}(H)//G \) has 1-rational singularities.

Let \(p : Z \to X//G \) be a resolution of \(X//G \). As we have seen above, a general hyperplane section \(H \) of \(X//G \) has 1-rational singularities and the restriction of \(p \) to \(\tilde{H} := p^{-1}(H) \) is a resolution of \(H \). It follows that \(\mathcal{O}_H \otimes R^1 p_\ast \mathcal{O}_Z = R^1 p_\ast \mathcal{O}_{\tilde{H}} = 0 \). Consequently, the support of \(R^1 p_\ast \mathcal{O}_Z \) does not intersect \(H \) and hence, \(\text{supp}(R^1 p_\ast \mathcal{O}_Z) \) consists of isolated points.

Since the claim is local, we can assume in the following that \(R^1 p_\ast \mathcal{O}_Z \) is supported at a single point \(x_0 \in X//G \).

The group \(G \) acts on the fibre product \(Z \times_{X//G} X \) such that the map \(p_X : Z \times_{X//G} X \to X \) is equivariant. One of the \(G \)-irreducible components \(\tilde{X} \) of \(Z \times_{X//G} X \) is birational to \(X \), and, by passing to a resolution of \(\tilde{X} \) if necessary, we can assume that \(p_X : \tilde{X} \to X \) is a resolution of \(X \).

We obtain the following commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{p_X} & \tilde{X} \\
\pi \downarrow & & \downarrow p_Z \\
X//G & \leftarrow & Z.
\end{array}
\]

Since \(R^1 p_\ast \mathcal{O}_Z \) is supported only at \(x_0 \), we have \((R^1 p_\ast \mathcal{O}_Z)_{x_0} = H^0(X//G, R^1 p_\ast \mathcal{O}_Z) \). Recall that \(X//G \) is affine, hence, the Leray spectral sequence

\[
0 \to H^1(X//G, \mathcal{O}_{X//G}) \to H^1(Z, \mathcal{O}_Z) \to H^0(X//G, R^1 p_\ast \mathcal{O}_Z) \to H^2(X//G, \mathcal{O}_{X//G}) \to \cdots
\]

implies that it suffices to show that \(H^1(Z, \mathcal{O}_Z) = 0 \).

\[\square\]
Since X is affine and has 1-rational singularities, it follows from the Leray spectral sequence
\[0 \to H^1(X, \mathcal{O}_X) \to H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}) \to H^0(X, R^1f_*\mathcal{O}_{\tilde{X}}) \to \cdots \]
that $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}) \cong H^1(X, \mathcal{O}_X) = 0$. Consequently, it suffices to show that there exists an injective map $H^1(Z, \mathcal{O}_Z) \hookrightarrow H^1(\tilde{X}, \mathcal{O}_{\tilde{X}})$.

We introduce the following notation: $U = (X//G) \setminus \{x_0\}$, $U' = \pi^{-1}(U) \subset X$, $\tilde{U} = p_{\tilde{X}}^{-1}(U') \subset \tilde{X}$. Let \mathcal{O}_U be a resolution. Let $w \in W$ and $Y = p^{-1}(w)$. Then $H^i_Y(Z, \mathcal{O}_Z) = 0$ for all $i < \dim W$.

\textbf{Sketch of proof.} Set $n := \dim W$. As a first step, we compactify p. There exist projective completions \overline{Z} and \overline{W} of Z and W, respectively, and a resolution $\overline{p} : \overline{Z} \to \overline{W}$ such that $\overline{p}^{-1}(W) = Z$ and $\overline{p}|_Z = p$. Since Z is an open neighbourhood of Y in \overline{Z}, the Excision Theorem of Local Cohomology (see [Har77], Chap III, Ex 2.3) implies that $H^1_Y(\overline{Z}, \mathcal{O}_{\overline{Z}}) = H^1_Y(Z, \mathcal{O}_Z)$. Let $\mathcal{K}_{\overline{Z}}$ be the locally free sheaf associated to the canonical bundle of \overline{Z}. The Formal Duality Theorem (see [Har70]) implies that the dual $H^j_Y(\overline{Z}, \mathcal{O}_{\overline{Z}})^* \cong H^j_Y(\overline{Z}, \mathcal{O}_{\overline{Z}})$ is isomorphic to $(R^{n-j}/\overline{p}_*\mathcal{K}_{\overline{Z}})_w$, where $\mathcal{K}_{\overline{Z}}$ denotes completion with respect to the maximal ideal of $\mathcal{O}_{\overline{Z},w} = \mathcal{O}_{\overline{W},w}$. In summary, we have obtained an isomorphism
\[H^j_Y(Z, \mathcal{O}_Z)^* \cong (R^{n-j}/\overline{p}_*\mathcal{K}_{\overline{Z}})_w \quad \text{for all } j = 0, \ldots, n. \]

By Grauert-Riemenschneider vanishing (see e.g. [Laz04] Chap 4.3.B)), the term on the right hand side equals zero for $n-j \geq 1$. This proves the claim.

Since $\dim X//G \geq 2$, Proposition 3.4 yields $H^1_Y(Z, \mathcal{O}_Z) = 0$. As a consequence of (7), the map $h_{Z,V}$ is injective.

The restriction of p to $V = p^{-1}(U)$ is a resolution of U. Since the support of $R^1p_*\mathcal{O}_Z$ is concentrated at x_0, the variety U has 1-rational singularities, and the Leray spectral sequence
\[0 \to H^1(U, \mathcal{O}_U) \xrightarrow{h_{U,V}} H^1(V, \mathcal{O}_V) \to H^0(U, R^1p_*\mathcal{O}_U) \to \cdots \]
yields that $h_{U,V}$ is bijective. Similar arguments show that $h_{U',\tilde{U}}$ is bijective. Furthermore, Lemma 3.2 implies that $h_{U',U'}$ is injective.
By the considerations above, the map
\[h_{Z,\tilde{U}} := h_{U',\tilde{U}} \circ h_{U,\tilde{U}} \circ h_{U,V}^{-1} \circ h_{Z,V} \]
is injective. Diagram (6) implies \(h_{Z,\tilde{U}} = h_{\tilde{X},\tilde{U}} \circ h_{Z,\tilde{X}} \), and therefore \(h_{Z,\tilde{X}} \) is injective. Consequently, we have \(H^1(Z, \mathcal{O}_Z) = 0 \). This concludes the proof of Theorem 3.1. \(\square \)

REFERENCES

[BM91] Edward Bierstone and Pierre D. Milman, A simple constructive proof of canonical resolution of singularities, Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math., vol. 94, Birkhäuser, Boston, MA, 1991, pp. 11–30.

[Bou87] Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68.

[BS95] Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995.

[EH02] Santiago Encinas and Herwig Hauser, Strong resolution of singularities in characteristic zero, Comment. Math. Helv. 77 (2002), no. 4, 821–845.

[Gre08a] Daniel Greb, Projectivity of analytic Hilbert quotients, Dissertation, Ruhr-Universität Bochum, 2008, available at: http://www-ruhr-uni-bochum.de/ei/tree/diss/DissGrebDaniel/diss.pdf.

[Gre08b] Daniel Greb, Projectivity of analytic Hilbert quotients, arXiv.org/abs/0806.3973, 2008.

[Har70] Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, vol. 156, Springer-Verlag, Berlin, 1970.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.

[Hir64] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326.

[HO74] Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415–437.

[HR74] Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175.

[Kol07] János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007.

[Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 48, Springer-Verlag, Berlin, 2004.

[Mal57] Bernard Malgrange, Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France 85 (1957), 231–237.

[Nam02] Yoshinori Namikawa, Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Internat. J. Math. 13 (2002), no. 2, 125–135.

[Uen75] Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, vol. 439, Springer-Verlag, Berlin, 1975.

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.