CANONICAL DIMENSION OF PROJECTIVE
PGL₁(A)-HOMOGENEOUS VARIETIES

BRYANT MATHEWS

Abstract. Let \(A \) be a central division algebra over a field \(F \) with \(\text{ind} A = n \). For integers \(1 \leq d_1 < d_2 < \cdots < d_k \leq n - 1 \), let \(X_{d_1, d_2, \ldots, d_k}(A) \) be the variety of flags of right ideals \(I_1 \subset I_2 \subset \cdots \subset I_k \) of \(A \) with \(I_i \) of reduced dimension \(d_i \). In computing canonical \(p \)-dimension of such varieties, for \(p \) prime, we can reduce to the case of generalized Severi-Brauer varieties \(X_e(A) \) with \(\text{ind} A \) a power of \(p \) divisible by \(e \). We prove that canonical 2-dimension (and hence canonical dimension) equals dimension for all \(X_e(A) \) with \(\text{ind} A = 2 \) a power of 2.

1. Canonical \(p \)-dimension

We begin by recalling the definitions of canonical \(p \)-dimension, \(p \)-incompressibility, and equivalence.

Let \(X \) be a scheme over a field \(F \), and let \(p \) be a prime or zero. A field extension \(K \) of \(F \) is called a splitting field of \(X \) (or is said to split \(X \)) if \(X(K) \neq \emptyset \). A splitting field \(K \) is called \(p \)-generic if, for any splitting field \(L \) of \(X \), there is an \(F \)-place \(K \twoheadrightarrow L' \) for some finite extension \(L'/L \) of degree prime to \(p \). In particular, \(K \) is 0-generic if for any splitting field \(L \) there is an \(F \)-place \(K \twoheadrightarrow L \).

The canonical \(p \)-dimension of a scheme \(X \) over \(F \) was originally defined \([1, 7]\) as the minimal transcendence degree of a \(p \)-generic splitting field \(K \) of \(X \). When \(X \) is a smooth complete variety, the original algebraic definition is equivalent to the following geometric one \([7, 9]\).

Definition 1.1. Let \(X \) be a smooth complete variety over \(F \). The canonical \(p \)-dimension \(\text{cdim}_p(X) \) of \(X \) is the minimal dimension of the image of a morphism \(X' \to X \), where \(X' \) is a variety over \(F \) admitting a dominant morphism \(X' \to X \) with \(F(X')/F(X) \) finite of degree prime to \(p \). The canonical 0-dimension of \(X \) is thus the minimal dimension of the image of a rational morphism \(X \dashrightarrow X \).

In the case \(p = 0 \), we will drop the \(p \) and speak simply of generic splitting fields and canonical dimension \(\text{cdim}(X) \).

For a third definition of canonical \(p \)-dimension as the essential \(p \)-dimension of the detection functor of a scheme \(X \), we refer the reader to Merkurjev’s comprehensive exposition \([9]\) of essential dimension.

For a smooth complete variety \(X \), the inequalities

\[\text{cdim}_p(X) \leq \text{cdim}(X) \leq \dim(X) \]

are clear from Definition 1.1. Note also that if \(X \) has a rational point, then \(\text{cdim}(X) = 0 \) (though the converse is not true).

Definition 1.2. When a smooth complete variety \(X \) has canonical \(p \)-dimension as large as possible, namely \(\text{cdim}_p(X) = \dim(X) \), we say that \(X \) is \(p \)-incompressible.
It follows immediately that if X is p-incompressible, it is also incompressible (i.e. 0-incompressible).

When two schemes X and Y over a field F have the same class of splitting fields, we call them equivalent and write $X \sim Y$. In this case

$$\text{cdim}_p(X) = \text{cdim}_p(Y)$$

for all p. If X and Y are smooth complete varieties, then they are equivalent if and only if there exist rational maps $X \dashrightarrow Y$ and $Y \dashrightarrow X$.

2. Reductions

Let A be a central division algebra over a field F with $\text{ind } A = n$. We consider the problem of computing the canonical p-dimension of the following varieties.

Definition 2.1. For integers $1 \leq d_1 < d_2 < \cdots < d_k \leq n - 1$, define $X_{d_1,d_2,\ldots,d_k}(A)$ to be the variety of flags of right ideals $I_1 \subset I_2 \subset \cdots \subset I_k$ of A with I_i of reduced dimension d_i. When the algebra A is understood, we write simply X_{d_1,d_2,\ldots,d_k}.

When $k = 1$ we get the generalized Severi-Brauer varieties $X_d(A)$ of A. In particular, $X_1(A)$ is the Severi-Brauer variety of A.

It is known [8, Th. 1.17] that the generalized Severi-Brauer variety $X_d(A)$ has a rational point over an extension field K/F if and only if the index $\text{ind } A$ divides d_1. As a consequence, $X_{d_1}(A) \sim X_d(A)$, where $d := \gcd(\text{ind } A, d_1)$. We record the easy generalization of this fact to varieties $X_{d_1,d_2,\ldots,d_k}(A)$.

Proposition 2.2. If $d := \gcd(\text{ind } A, d_1, d_2, \ldots, d_k)$, then

$$X_{d_1,d_2,\ldots,d_k}(A) \sim X_d(A)$$

and thus, for any p,

$$\text{cdim}_p(X_{d_1,d_2,\ldots,d_k}(A)) = \text{cdim}_p(X_d(A)).$$

Proof. If $X_{d_1,d_2,\ldots,d_k}(A)$ has a rational point over an extension field K/F, then by definition A_K has right ideals of reduced dimensions d_1, d_2, \ldots, d_k. This is the case if and only if $\text{ind } A_K$ divides each of the d_i, or equivalently, $\text{ind } A_K$ divides d (since $\text{ind } A_K$ always divides $\text{ind } A$).

Reading the argument backwards, $\text{ind } A_K$ dividing d implies the existence of right ideals I_1, I_2, \ldots, I_k in A_K with reduced dimensions d_1, d_2, \ldots, d_k. In fact, the I_1, \ldots, I_k can be chosen to form a flag. Suppose $d_j = m_j \text{ ind } A_K$ and $A_K \cong M_{m_j}(D)$ for some division algebra D. Then we take I_i to be the set of matrices in $M_{m_j}(D)$ whose $t - m_i$ last rows are zero.

Hence it is enough to compute $\text{cdim}_p(X_d(A))$ for d dividing $\text{ind } A$.

If the index of A factors as $\text{ind } A = q_1 q_2 \cdots q_r$ with the q_j powers of distinct primes p_j, then there exist central division algebras A_j of index q_j for $j = 1, \ldots, r$ such that

$$A \cong A_1 \otimes A_2 \otimes \cdots \otimes A_r.$$

Proposition 2.3. Given a positive integer $1 \leq d \leq \text{ind } A - 1$, with q_j as above, define $e_j := \gcd(d,q_j)$ for $j = 1, \ldots, r$. Then

$$X_d(A) \sim X_{e_1}(A_1) \times X_{e_2}(A_2) \times \cdots \times X_{e_r}(A_r)$$
and thus, for any p,
\[
\text{cdim}_p(X_d(A)) = \text{cdim}_p(X_{e_1}(A_1) \times X_{e_2}(A_2) \times \cdots \times X_{e_r}(A_r)).
\]

Proof. The variety $X_d(A)$ has a rational point over an extension field K/F if and only if $\text{ind} A_K$ divides d. Because
\[
\text{ind} A_K = (\text{ind}(A_1)_K) \cdots (\text{ind}(A_r)_K),
\]
this condition is equivalent to $\text{ind}(A_j)_K$ dividing d for all j (since $\text{ind}(A_j)_K$ always divides $\text{ind} A_j = q_j$). This holds if and only if each $X_{e_j}(A_j)$ has a rational point over K, which is equivalent to the product of the $X_{e_j}(A_j)$ having a rational point over K. □

The proposition gives the following upper bound on canonical p-dimension:

(1) \[
\text{cdim}_p(X_d(A)) \leq \dim \prod_{j=1}^r X_{e_j}(A_j) = \sum_{j=1}^r \dim X_{e_j}(A_j) = \sum_{j=1}^r e_j(q_j - e_j).
\]

If p is prime, then there exists a finite, p-coprime extension K of F which splits the algebras A_j for all j with $p_j \neq p$. Since canonical p-dimension does not change under such an extension [9, Prop. 1.5 (2)], $\text{cdim}_p(X_d(A)) = 0$ unless some $p_s = p$, in which case
\[
\text{cdim}_p(X_d(A)) = \text{cdim}_p(X_{e_s}(A_s)).
\]

We see that it is enough, when p is prime, to compute the canonical p-dimension of varieties of the form $X_d(A)$ with $\text{ind} A$ a prime power divisible by e. When $p = 0$, it is enough to compute the canonical dimension of products of such varieties.

3. Known results for Severi-Brauer varieties

We now recall what is already known about the canonical p-dimension of Severi-Brauer varieties $X_1(A)$, the $d = 1$ case.

For any p, if $d = 1$ in (1) above, then all of the $e_j = 1$, and the upper bound becomes

(2) \[
\text{cdim}_p(X_1(A)) \leq \sum_{j=1}^r (q_j - 1).
\]

In the special case $r=1$ and $p = p_1$, it is shown in [1, Th. 11.4], based on Karpenko’s [6, Th. 2.1], that the inequality (2) is actually an equality. Thus, for general A, we have
\[
\text{cdim}_{p_j}(X_1(A)) = \text{cdim}_{p_j}(X_1(A_j)) = q_j - 1
\]
for $j = 1, 2, \ldots, r$, while $\text{cdim}_p(X_1(A)) = 0$ for all other primes p [7, Ex. 5.10].

Now let $p = 0$, $d = 1$. When $r = 1$, we again have equality in (2), since canonical dimension is bounded below by canonical p-dimension for every prime p. In [4, Th. 1.3], (2) is proven also to be an equality in the case $\text{ind} A = 6$ (i.e. $r = 2$, $q_1 = 2$, $q_2 = 3$) provided that $\text{char} F = 0$. The authors of [4] suggest that equality may indeed hold for any A when $p = 0$, $d = 1$.

4. 2-INCOMPRESSIBILITY OF $X_e(A)$ FOR $\text{ind} A = 2e$ A POWER OF 2

If A is a central division algebra with $\text{ind} A = 4$, the variety $X_2(A)$ is known to be 2-incompressible. Indeed, if the exponent of A is 2, then $X_2(A)$ is isomorphic to a 4-dimensional projective quadric hypersurface called the Albert quadric of A [10, §5.2]. Such a quadric has first Witt index 1 [13, p. 93], hence is 2-incompressible by [5, Th. 90.2]. If the exponent of A is 4, we can reduce to the exponent 2 case by extending to the function field of the Severi-Brauer variety of $A \otimes A$.

In what follows, we show 2-incompressibility for an infinite family of varieties which includes the varieties of the form $X_2(A)$ (with $\text{ind} A = 4$) mentioned above.

Theorem 4.1. Let $e = 2^a$, $a \geq 1$. For a central division algebra A with $\text{ind} A = 2e$, the variety $X_e := X_e(A)$ is 2-incompressible. Thus

$$\text{cdim}_2(X_e) = \text{cdim}(X_e) = \text{dim}(X_e) = e(2e - e) = e^2 = 4^a.$$

We briefly recall some terminology from [5, §62 and §75]. Let X and Y be schemes with $\text{dim} X = e$. A correspondence of degree zero $\delta : X \rightsquigarrow Y$ from X to Y is just a cycle $\delta \in \text{CH}_e(X \times Y)$. The multiplicity $\text{mult}(\delta)$ of such a δ is the integer satisfying $\text{mult}(\delta) \cdot [X] = p_*(\delta)$, where p_* is the push-forward homomorphism

$$p_* : \text{CH}_e(X \times Y) \to \text{CH}_e(X) = \mathbb{Z} : [X].$$

The exchange isomorphism $X \times Y \to Y \times X$ induces an isomorphism

$$\text{CH}_e(X \times Y) \to \text{CH}_e(Y \times X)$$

sending a cycle δ to its transpose δ^t.

To prove that a variety X is 2-incompressible, it suffices to show that for any correspondence $\delta : X \rightsquigarrow X$ of degree zero,

$$\text{mult}(\delta) \equiv \text{mult}(\delta^t) \pmod{2}. \quad (3)$$

Indeed, suppose we have $f : X' \to X$ and a dominant $g : X' \to X$ with $F(X')/F(X)$ finite of odd degree. Let $\delta \in \text{CH}(X \times X)$ be the pushforward of the class $[X']$ along the induced morphism $(g, f) : X' \to X \times X$. By assumption, $\text{mult}(\delta)$ is odd, so by (3) we have that $\text{mult}(\delta^t)$ is odd. It follows that $f_*(\delta^t)$ is an odd multiple of $[X]$ and in particular is nonzero, so f is dominant.

We will check that the condition (3) holds for the variety X_e. A correspondence of degree zero $\delta : X_e \rightsquigarrow X_e$ is just an element of $\text{CH}_e^2(X_e \times X_e)$. Using the method of Chernousov and Merkurjev described in [2], we can decompose the Chow motive of $X_e \times X_e$ as follows. See also [3] for examples of similar computations.

We first realize X_e as a projective homogeneous variety. Let $n := \text{ind} A = 2e = 2^{n+1}$. Let G denote the group $PGL_1(A)$, and let Π be a set of simple roots for the root system Σ of G. If $\varepsilon_1, \ldots, \varepsilon_n$ are the standard basis vectors of \mathbb{R}^n, we may take

$$\Pi = \{\alpha_1 := \varepsilon_1 - \varepsilon_2, \ldots, \alpha_{n-1} := \varepsilon_{n-1} - \varepsilon_n\}.$$

Then X_e is a projective G-homogeneous variety, namely the variety of all parabolic subgroups of G of type S_i for the subset $S = \Pi \setminus \{\alpha_e\}$ of the set of simple roots.

Let W denote the Weyl group of the root system Σ. There are $e+1$ double cosets $D \in W_P \setminus W/W_P$ with representatives w as follows, where w_{α_k} denotes the reflection induced by the root α_k.

The subset of Π associated to $w = 1$ is of course $S = \Pi \setminus \{ \alpha_e \}$. The general nontrivial representative

$$w = w^{-1} = (w_{\alpha_e} \cdots w_{\alpha_{i-1}}) \cdots (w_{\alpha_{e+i}} \cdots w_{\alpha_e}),$$

for $i \in \{ 0, \ldots, e-1 \}$, has the effect on \mathbb{R}^n of switching the tuple of standard basis vectors $(\varepsilon_{e-i}, \ldots, \varepsilon_e)$ with the tuple $(\varepsilon_{e+1}, \ldots, \varepsilon_{e+1+i})$. The resulting subset associated to w is therefore

$$\Pi \setminus \{ \alpha_{e-(i+1)}, \alpha_e, \alpha_{e+(i+1)} \}$$

for $i = 0, \ldots, e-2$ and $\Pi \setminus \{ \alpha_e \}$ for $i = e-1$.

From Theorem 6.3 of [2], we deduce the following decomposition of the Chow motive of $X_e \times X_e$, where the relation between the indices i above and l below is $l = i + 1$.

$$M(X_e \times X_e) \simeq M(X_e) \oplus \bigoplus_{l=1}^{e-1} M(X_{e-l,e+e+l}) (l^2) \oplus M(X_e)(e^2)$$

This in turn yields a decomposition of the middle-dimensional component of the Chow group of $X_e \times X_e$.

$$\text{CH}_{e^2}(X_e \times X_e) \simeq \text{CH}_{e^2}(X_e) \oplus \bigoplus_{l=1}^{e-1} \text{CH}_{(e-l)(e+l)}(X_{e-l,e+e+l}) \oplus \text{CH}_0(X_e)$$

It now suffices to check the congruence $\text{mult}(\delta) \equiv \text{mult}(\delta^l) \pmod{2}$ for δ in the image of any of these summands. We treat the first and last summands separately from the rest.

The embedding of the first summand $\text{CH}_{e^2}(X_e)$ is induced by the diagonal morphism $X_e \to X_e \times X_e$, so the multiplicities of δ and δ^l are equal by symmetry.

For the last summand $\text{CH}_0(X_e)$ we need the following fact.

Proposition 4.2. Any element of $\text{CH}_0(X_e)$ has even degree.

Proof. If $\text{CH}_0(X_e)$ has an element of odd degree, then there exists a field extension K/F of odd degree over which X_e has a rational point. By [8, Prop. 1.17], $\text{ind } A_K$ divides e. Since the degree of K over F is relatively prime to $\text{ind } A = 2e = 2^{n+1}$, extension by K does not reduce the index of A [11, Th. 3.15a]. Thus $\text{ind } A = \text{ind } A_K$ divides e, a contradiction. \hfill \Box

Let the element $\gamma \in \text{CH}_0(X_e)$ have image $\delta \in \text{CH}_{e^2}(X_e \times X_e)$. By the proposition, $\deg(\gamma)$ is even. For some field E/F over which X_e has a rational point, we set $X_e := (X_e)_E$. Since $\text{CH}_0(X_e)$ is generated by a single element of degree 1, the image of γ in $\text{CH}_0(X_e)$ is divisible by 2. It follows that $\delta \in \text{CH}_{e^2}(X_e \times X_e)$ is also divisible
by 2 and, since multiplicity does not change under field extension, \(\text{mult}(\delta) \) is even. The same argument can be applied to \(\delta' \), so \(\text{mult}(\delta) \equiv 0 \equiv \text{mult}(\delta') \pmod{2} \).

The remaining summands are dealt with by the following proposition.

Proposition 4.3. Let \(Fl := X_{d_1,d_2,\ldots,d_k}(A) \) with \(d := \gcd(e,d_1,d_2,\ldots,d_k) < e \), and let the correspondence \(\alpha : Fl \sim X_e \times X_e \) induce an embedding \(\alpha_* : \text{CH}_e(Fl) \hookrightarrow \text{CH}_{c,2}(X_e \times X_e) \).

Then for any \(\delta \) in the image of \(\alpha_* \), \(\text{mult}(\delta) \equiv 0 \equiv \text{mult}(\delta') \pmod{2} \).

Proof. Consider the diagram below of fiber products, where we select either of the projections \(p_i \) and choose the other morphisms accordingly.

\[
\begin{array}{c}
(Fl)_F(X_e) \\
(Fl \times X_e)_F(X_e) \quad (X_e)_F(X_e) \quad \text{Spec } F(X_e) \\
Fl \times X_e \times X_e \quad X_e \times X_e \quad X_e \\
Fl
\end{array}
\]

Taking push-forwards and pull-backs, we get the following diagram which commutes except for the triangle at the bottom. The push-forward by \(p_i \) takes a cycle \(\delta \in \text{CH}_{c,2}(X_e \times X_e) \) to \(\text{mult}(\delta) \) if we chose the first projection \(p_1 \) or to \(\text{mult}(\delta') \) if we chose the second projection \(p_2 \).

\[
\begin{array}{c}
\text{CH}_0 ((Fl)_F(X_e)) \\
\text{CH}_0 ((Fl \times X_e)_F(X_e)) \quad \text{deg} \quad \text{deg} \quad \mathbb{Z} \\
\text{CH}_{c,2} (Fl \times X_e \times X_e) \quad \text{CH}_{c,2} (X_e \times X_e) \quad \text{mult} \quad \text{(mult)} \circ \text{(transpose)} \quad \mathbb{Z} \\
\text{CH}_e(Fl) \quad \cdots \quad \alpha_* \quad \cdots \quad \cdots
\end{array}
\]

Any \(\delta \in \text{im}(\alpha_*) \) also lies in the image of \(\text{CH}_{c,2} (Fl \times X_e \times X_e) \), by the definition of the push-forward. Chasing through the diagram, one sees that \(\text{mult}(\delta) \) (and similarly \(\text{mult}(\delta') \)) must lie in \(\text{deg} \text{CH}_0 ((Fl)_F(X_e)) \). We will be done if we can show that no element of \(\text{CH}_0 ((Fl)_F(X_e)) \) has odd degree.

Note that \(Fl_{F(X_e)} = X_{d_1,d_2,\ldots,d_k}(A)^{F(X_e)} \cong X_{d_1,d_2,\ldots,d_k} (A_{F(X_e)}) \), where \(A_{F(X_e)} \) has index equal to \(\gcd(2e,e) = e \) [12, Th. 2.5]. If some element of \(\text{CH}_0 ((Fl)_F(X_e)) \) has odd degree, then there exists a field extension \(K/F(X_e) \) of odd
degree over which \((F^l)_e\) has a rational point. By Proposition 2.2, \(X_d(A^{F(X_e)})\) also has a rational point over \(K\). Thus \(\text{ind}_A\) divides \(d < e\), which contradicts \(\text{ind}_A = e\), since an odd degree extension cannot reduce the index of \(A^{F(X_e)}\) [11, Th. 3.15a].

This completes the proof of the theorem.

REFERENCES

[1] G. Berhuy and Z. Reichstein, *On the notion of canonical dimension for algebraic groups*, Adv. in Math. 198 (2005), no. 1, 128–171.
[2] V. Chernousov and A. Merkurjev, *Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem*, Transformation Groups, 11 (2006), no. 3, 371–386.
[3] V. Chernousov, S. Gille, and A. Merkurjev, *Motivic decomposition of isotropic projective homogeneous varieties*, Duke Math. J., 126 (2005), 137–159.
[4] J.-L. Colliot-Thélène, N. Karpenko, and A. Merkurjev, *Rational surfaces and canonical dimension of \(\text{PGL}_6\)*, Algebra i Analiz, 19 (2007), no. 5, 159–178.
[5] R. Elman, N. Karpenko, and A. Merkurjev, *The Algebraic and Geometric Theory of Quadratic Forms*, American Mathematical Society Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008.
[6] N. Karpenko, *On anisotropy of orthogonal involutions*, J. Ramanujan Math. Soc. 15 (2000), no. 1, 1–22.
[7] N. Karpenko and A. Merkurjev, *Canonical p-dimension of algebraic groups*, Adv. Math. 205 (2006), no. 2, 410–433.
[8] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, *The Book of Involutions*, Colloquium Publications, 44, Amer. Math. Soc., Providence, RI, 1998. With a preface in French by J. Tits.
[9] A. Merkurjev, *Essential dimension*, Contemporary Mathematics, to appear.
[10] A. Merkurjev, *Invariants of algebraic groups*, J. reine angew. Math., 508 (1999), 127–156.
[11] D. Saltman, *Lectures on Division Algebras*, Amer. Math. Soc., Providence, RI, 1999.
[12] A. Schofield and M. Van Den Bergh, *The index of a Brauer class on a Brauer-Severi variety*, Trans. Amer. Math. Soc., 133 (1992), no. 2, 729–739.
[13] A. Vishik, *Motives of quadrics with applications to the theory of quadratic forms*, in Geometric Methods in the Algebraic Theory of Quadratic Forms, Lecture Notes in Mathematics, 1835, Springer, Berlin, 2004, 25–101.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555
E-mail address: bmathews@math.ucla.edu