Effects of green tea powder supplementation on egg production and egg quality in laying hens

Bing Xia, Yali Liu, Da Sun, Jun Liu, Yuejin Zhu and Lizhi Lu

Abstract
The aim of this study was to investigate the effects of green tea powder supplementation on egg production and egg quality in chickens. A total of 240 Xianju chickens (all aged 20 weeks) were randomly allotted to five treatments, control group T0, no diet supplements; test groups T1, T2 and T3 were supplemented with 1%, 2% and 3% green tea powder into basal diet, respectively; test group T4, 3% green tea powder and 1.5% peanut oil were added to the diet. After the rearing test, the eggs from each treatment were collected and later analysed for egg quality. Results suggest that 1% green tea powder supplementation had little effect on egg production and feed conversion, but high amounts of green tea powder (≥2%) treatment significantly decreased the egg production performance. Green tea powder treatment had some beneficial effects on egg quality, especially in the albumen height and Haugh unit. Additionally, green tea powder treatment significantly changed the nutritional composition of eggs.

Introduction
With the improvement of experimental research (Zeng et al. 2014) and production performance (Ren et al. 2009) over the past half century, the growth rate and feed conversion rate of animals have been speeded up and made a breakthrough along with the development of nutritional manipulation techniques (Gao et al. 2013) and genetic improvement (He et al. 2012; Zeng et al. 2013). But it also brought many negative impacts, such as reducing poultry meat quality, increasing fat deposits (Chen et al. 2015) and decreasing egg quality (Kojima and Yoshida 2008).

Egg is one kind of animal product mainly consumed, which contains lots of nutrients and is a very good source of protein and energy. But it also contains some risk materials, such as high amounts of cholesterol (200–300 mg/egg) and is bad for old people and hypercholesterolaemia patients (Hisashi et al. 1986), and excessive intake of cholesterol may result in some diseases, such as atherosclerosis and fatty liver (Chung et al. 2012). In order to improve the egg quality and egg nutrition, researchers have focused on improving the egg quality and changing the nutritional composition of eggs via the use of extra nutrient substances (Liu et al. 2017). In recent years, with constantly improve living standards of people, consumption concept updates of people, people focus more on their health and more people like to care healthy and high quality animal products.

China is the home of tea, especially green tea, attributes its long history and culture. Tea contains lots of functional activated compositions, such as tea polyphenol, alkaloid, polysaccharide, etc. Particularly, tea polyphenol plays roles such as anti-oxidizing (Gramza-Michalowska et al. 2016; Rodrigues et al. 2016), anti-bacterial (Nakayama et al. 2012; Kawarai et al. 2016), anti-aging (Li et al. 2016), anti-cancerous (Shih et al. 2016), etc. Current researches suggest that tea treatment could affect the egg quality (Kojima and Yoshida 2008; Wei et al. 2012) and egg production performance (Uuganbayar et al. 2005; Panja 2007), but the results were inconsistent and even very different from each other. In order to figure out the effects of tea on egg production, this study aims at evaluating and studying the effects of diet supplemented with green tea powder on egg production, egg quality and nutritional composition of eggs in chickens; besides, oil was used in this study to evaluate the effects of oil extra supplementation on egg production and egg quality when compared with the same green tea powder supplementation treatment because oil is an energy substance which is good for energy supply and anti-stress from environment and then provided some basal information for future researches on tea resources application in livestock production.

Material and Methods

Test materials and test facilities

Materials
Two hundred and forty healthy Xianju chickens (the average laying rate is 50%) were provided by Xianju Chicken Development Company. Green tea powder was provided by Xianju Green Tea development Company.
by the Institute of Animal Husbandry and Veterinary Science, and Emperor balance (Mettler Toledo pL203-IC) were provided by the Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310020.

Experimental design and feeding management

Experimental design

The 240 Xianju chickens (all aged 20 weeks) were randomly divided into five treatments, with 3 replicates per treatment and 16 chickens in each replicate, and all the animals were fed with the same basal diet, and fed separately: control group T0 received no diet supplements; test groups T1, T2 and T3 were supplemented with 1%, 2% and 3% green tea powder into basal diet, respectively; test group T4 received 3% green tea powder and 1.5% peanut oil added to the basal diet. Studies included 7 d for prefed and 67 d for the fed. Food and water were provided twice a day, at 8:00 and 15:00. The composition and nutrient analysis of the basal diet are shown in Table 1, the basal diet formulation was according to the National Standards of People’s Republic of China (NSPRC 2008a) and nutrients of the basal diet were analysed according to the standard method GB/T 18868–2003 of the National Standards of People’s Republic of China (NSPRC 2002). The composition of the green tea powder is shown in Table 2.

Sampling and handling

Ten eggs from each replicate at the end of this study were randomly selected and later analysed for egg quality (eggshell strength, eggshell thickness, egg shape index, albumen height, Haugh unit and relative yolk-to-egg ratio); this was completed within 12 h of sampling. The other three eggs from each replicate were randomly selected and later analysed for the content of cholesterol, crude fat, vitamin E, triglyceride, lecithin and malonaldehyde in eggs.

Measurement methods

Egg production performance

Daily feed provided, actual feed intake, number of eggs laid and individual egg weight were recorded. Average daily feed intake, average egg weight and feed-to-egg ratio were calculated at the end of the experiment.

Egg quality

The egg shape index was measured (in mm) with a caliper and vertical diameter-diameter−1 was calculated to determine the shape index. Eggshell thickness was measured with a digital micrometer (karl deutsch MODEL-1061); measurements at the blunt and sharp ends and the middle of egg were averaged to determine the overall eggshell thickness. Eggshell strength was measured using an eggshell force gauge (MODEL-T1). Albumen height, yolk colour and Haugh units were measured with an automatic egg analyser (Egg Multi Tester, EMT-5200). Egg weight and yolk weight were measured with an electronic balance (Mettler Toledo pL203-IC).

Statistical analysis

Data generated in the present study were subjected to statistical analysis using one-way ANOVA of SPSS17.0 in a randomized complete block design. All data were reported as mean ± SEM. When significant differences were identified among treatments, Duncan’s test was used for multiple comparisons. The replicate was used as the experimental unit for the analysis of egg production, egg quality and the cholesterol, vitamin E, crude fat, triglyceride, lecithin and malonaldehyde contents. P-values < .05 were considered significant.

Results and discussion

Egg production performance

Compared to group T0, the laying rate decreased by 6.51% (P < .05), 14.32% (P < .05) and 16.99% (P < .05) in groups T2, T3 and T4, respectively. The average egg weight increased by 2.07% (P < .05) in group T1, but decreased by 2.86% (P < .05), 3.84% (P < .05) in groups T3 and T4, respectively. The average

Ingredients	Content, %	Nutrient Content, g/kg
Maize grain	54.00	Metabolizable energy
Rice bran	5.00	165.0
Soybean meal	26.00	7.0
Fish meal	2.00	33.5
Shell powder	3.00	7.9
Calcium hydrophosphate	1.20	4.0
Calcium phosphate	6.50	Ether extract
Salt	0.30	
Premix		

Notes: C: Catechin; EC: Epicatechin; EGCG: Epigallocatechin gallate; EGC: Epigallocatechin gallate.

Nutritional composition of eggs

Three eggs from each replicate were randomly selected for detection of the nutritional indexes content of eggs. The contents of crude fat, cholesterol, vitamin E and malonaldehyde in eggs were respectively analysed according to the standard method GB/T 4772–2008a, GB/T 5009.128–2003a, GB/T 5009.82–2003b, GB 5009.181–2016a of the National Standards of People’s Republic of China (NSPRC 2003a, 2003b, 2008b, 2016). The contents of lecithin and triglyceride were detected according to the reference of Saunders and Perrin (1960), and Bao and Zhang (2013).

Table 2. Composition of the green tea powder.

Ingredients	Contents, %	Ingredients	Contents, %
Tea polyphenol	16.52 ± 0.21	Catechin	2.03 ± 0.03
Caffeine	2.59 ± 0.02	EC	0.13 ± 0.03
Crude fibre	13.58 ± 0.02	EGCG	4.29 ± 0.01
Total free amino acids	0.80 ± 0.01	EGC	1.31 ± 0.02
Total contents	8.59 ± 0.05	EGC: Epigallocatechin gallate	

Table 3. Effects of green tea powder on production performance of Xianju chickens.

Items	T0	T1	T2	T3	T4
Laying rate, %	69.92 ± 11.26 ^c	69.23 ± 12.57 ^c	65.37 ± 13.83 ^b	59.91 ± 15.99 ^a	58.04 ± 12.79
Average egg weight, g	44.02 ± 1.66 ^b	44.93 ± 1.74 ^a	44.24 ± 2.01 ^b	42.76 ± 2.51 ^a	42.33 ± 2.49
Average feed intake, g	110.92 ± 10.73 ^a	110.03 ± 8.38 ^a	110.48 ± 8.05 ^a	101.30 ± 11.16 ^b	96.87 ± 8.80
Feed-to-egg ratio, g/g	3.73 ± 0.74 ^a	3.68 ± 0.84 ^a	4.02 ± 0.99 ^b	4.23 ± 1.23 ^b	4.19 ± 1.27

Notes: control group T0, no diet supplements; test groups T1, T2 and T3 were supplemented with 1%, 2% and 3% green tea powder into basal diet, respectively; for test group T4, 3% green tea powder and 1.5% peanut oil were added to the diet. Values are expressed as Mean ± SEM. ^a represents significant differences (P < .05) were found between groups T3 and T4.

Table 4. Effects of green tea powder on egg quality of Xianju chickens.

Items	T0	T1	T2	T3	T4
Egg shape	1.31 ± 0.04^{bc}	1.27 ± 0.05^a	1.29 ± 0.08^{ab}	1.33 ± 0.09^c	1.31 ± 0.06
Eggshell thickness, cm	0.46 ± 0.04^a	0.44 ± 0.04^b	0.43 ± 0.05^{ab}	0.41 ± 0.06^c	0.41 ± 0.05
Eggshell strength, kg/cm²	4.66 ± 0.93^a	4.13 ± 0.69^b	3.57 ± 0.90^c	3.51 ± 0.92^a	3.18 ± 0.87
Egg weight, g	37.10 ± 3.36^b	38.83 ± 2.95^c	36.63 ± 3.60^b	34.83 ± 2.86^a	34.91 ± 2.39
Albumen height, mm	4.44 ± 0.77^a	5.72 ± 1.65^b	4.39 ± 1.80^c	5.63 ± 1.55^b	5.20 ± 1.08
Yolk colour	7.81 ± 1.08^{bc}	8.31 ± 0.64^a	7.08 ± 1.19^c	8.31 ± 0.82^b	7.67 ± 0.88^a
Haugh unit, HU	74.82 ± 5.81^a	80.50 ± 10.61^b	73.02 ± 12.55^c	82.07 ± 8.05^a	80.70 ± 6.87

Notes: control group T0, no diet supplements; test groups T1, T2 and T3 were supplemented with 1%, 2% and 3% green tea powder into basal diet, respectively; for test group T4, 3% green tea powder and 1.5% peanut oil were added to the diet. Values are expressed as Mean ± SEM for 30 eggs. ^a–^c Values with different lower case letters in the same row differ significantly (P < .05). ^a represents significant differences (P < .05) were found between groups T3 and T4.
weight. According to this phenomenon, the likely explanation is that green tea supplementation changed the balance of feed nutrition, which resulted in insufficient nutrient supply for egg production. Conversely, these results were not consistent with the studies of Panja et al. (2007) and Hisashi et al. (2011). Tea polyphenols is one of the most important biologically active components and the polyhydroxy mixture of phenolic compounds that tea contains. Matsumoto et al. (1998) have found that black tea polyphenols can decrease cholesterol in egg yolk and whole eggs. And this outcome was similar to the studies of Panja (2007) and Hisashi et al. (1986), which also suggested that green tea can significantly decrease the content of cholesterol, and a feasible amount of green tea was 1.0%–2.0%. Moreover, there is evidence that exterior nutrition matter could change the energy metabolism and material metabolism, and then alter the egg composition. Green tea powder can improve the egg quality, particularly by increasing the albumen height and Haugh unit. But this result was not consistent with Panja’s (2007) study, which concluded that Haugh unit, yolk color and albumen height were not significantly different with increasing amounts of tea supplementation.

Nutritional composition of eggs

There were no significant differences (P > 0.05) in levels of triglyceride and lecithin of egg yolk among the treatments (Table 5).

Compared to group T0, the vitamin E contents of egg yolk increased by 1.78% (P < 0.05), 3.86% (P < 0.05), 5.34% (P < 0.05) and 2.67% (P < 0.05) in groups T1, T2, T3 and T4, respectively. The cholesterol contents of egg yolk decreased by 5.56% (P < 0.05), 8.33% (P < 0.05), 11.11% (P < 0.05) and 27.8% (P < 0.05) in groups T1, T2, T3 and T4, respectively. The crude fat contents of egg yolk decreased by 0.90% (P < 0.05), 1.69% (P < 0.05), 1.31% (P < 0.05) and 0.49% (P < 0.05) in groups T1, T2, T3 and T4, respectively. The malonaldehyde contents of egg yolk decreased by 1.53% (P < 0.05), 2.28% (P < 0.05), 3.25% (P < 0.05) and 3.00% (P < 0.05) in groups T1, T2, T3 and T4, respectively (Table 5).

Compared to group T0, the vitamin E contents of whole eggs increased by 2.60% (P < 0.05), 5.39% (P < 0.05), 6.99% (P < 0.05) and 5.59% (P < 0.05) in groups T1, T2, T3 and T4, respectively. The cholesterol contents of whole eggs decreased by 6.25% (P < 0.05) and 12.50% (P < 0.05) in groups T2 and T3, respectively. The lecithin contents of whole eggs increased by 0.79% (P < 0.05), 3.18% (P < 0.05), 7.94% (P < 0.05) and 11.91% (P < 0.05) in groups T1, T2, T3 and T4, respectively. The malonaldehyde contents of whole eggs decreased by 2.27% (P < 0.05) in group T3 (Table 5).

There were no significant differences (P > 0.05) in levels of crude fat of whole eggs among the treatments (Table 5). The triglyceride content of whole eggs in group T4 were significantly (P < 0.05) higher than that in group T3 (Table 5).

The result of this study showed that green tea powder supplementation significantly decreased the content of cholesterol, crude fat, triglyceride and malonaldehyde, and increased the contents of vitamin E and lecithin of eggs, and show a dose-response effect. Moreover, extra oil supplementation increased the concentrations of cholesterol, triglyceride and lecithin. This result was consistent with the studies of Panja et al. (2012) study, which suggested that green tea powder could decrease the cholesterol content in egg yolk and whole eggs. And this outcome was similar to the studies of Panja (2007) and Hisashi et al. (1986), which also suggested that green tea can significantly decrease the content of cholesterol, and a feasible amount of green tea was 1.0%–2.0%. Moreover, there is evidence that exterior nutrition matter could change the energy metabolism and material metabolism, and then alter the egg composition. Green tea powder can improve the egg quality, particularly by increasing the albumen height and Haugh unit. But this result was not consistent with Panja’s (2007) study, which concluded that Haugh unit, yolk color and albumen height were not significantly different with increasing amounts of tea supplementation.

Table 5. Effects of green tea powder on nutritional composition of eggs.

Items	T0	T1	T2	T3	T4
Nutritional Composition of Egg Yolks					
Cholesterol, %	0.36 ± 0.02a	0.34 ± 0.02ab	0.33 ± 0.02ab	0.32 ± 0.01a	0.35 ± 0.01f
V₅, mg/100 g	3.37 ± 0.09a	3.43 ± 0.08ab	3.50 ± 0.08bc	3.55 ± 0.05c	3.46 ± 0.19
Crude fat, %	26.69 ± 0.37a	26.45 ± 0.29abc	26.24 ± 0.24a	26.34 ± 0.12ab	26.56 ± 0.08
Triglyceride, %	291.13 ± 8.65	292.39 ± 7.57	291.29 ± 9.19	284.54 ± 11.93	292.11 ± 11.24
Lecithin, %	4.34 ± 0.05a	4.40 ± 0.12a	4.42 ± 0.15a	4.43 ± 0.07a	4.40 ± 0.15a
Malonaldehyde, mmol/L	28.03 ± 0.48e	27.60 ± 0.27a	27.39 ± 0.22ab	27.12 ± 0.17a	27.19 ± 0.12a
Nutritional Composition of Whole Eggs					
Cholesterol, %	0.16 ± 0.01c	0.16 ± 0.01c	0.15 ± 0.01b	0.14 ± 0.01e	0.16 ± 0.01f
V₅, mg/100 g	5.01 ± 0.11a	5.14 ± 0.10c	5.28 ± 0.13c	5.36 ± 0.09f	5.29 ± 0.18
Crude fat, %	11.89 ± 0.32a	11.67 ± 0.37a	11.58 ± 0.30a	11.62 ± 0.36a	11.74 ± 0.10a
Triglyceride, %	193.75 ± 3.88ab	192.05 ± 8.53ab	189.67 ± 7.45ab	185.91 ± 8.99e	196.27 ± 9.35e
Lecithin, %	1.26 ± 0.054a	1.27 ± 0.055b	1.30 ± 0.045b	1.36 ± 0.044c	1.41 ± 0.035a
Malonaldehyde, mmol/L	14.99 ± 0.24ab	14.96 ± 0.20ab	14.81 ± 0.28ab	14.65 ± 0.37ab	14.73 ± 0.32

Notes: control group T0, no diet supplements; test groups T1, T2 and T3 were supplemented with 1%, 2% and 3% green tea powder into basal diet, respectively; for test group T4, 3% green tea powder and 1.5% peanut oil were added to the diet. Values are expressed as Mean ± SEM for 9 eggs.

- Values with different lower case letters in the same row differ significantly (P < 0.05).
- # represents significant differences (P < 0.05) between groups T3 and T4.
treatment significantly decreased the contents of cholesterol, crude fat and malonaldehyde, increased the content of vitamin E of eggs, and showed a dose-response effect.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Public Benefit Foundation of Zhejiang Province (grant number 2015C32109).

References

Bao FY, Zhang M. 2013. Determination of triglyceride content in oils and fats by thin layer chromatography. Food Sci., 34(4):125–128.

Çabuk M, Eratak S, Alçicek A, Bozkurt AM. 2014. Effects of herbal essential oil mixture as a dietary supplement on egg production in quail. Sci World J. 2014(1):573470.

Chen L, Luo J, Li JX, Li JJ, Wang DQ, Tian Y, Lu LZ. 2015. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts. Anim Genet. 46(3):299–307.

Chung MY, Park HJ, Manautou JE, Koo SI, Bruno RS. 2012. Green tea extract protects against nonalcoholic steatohepatitis in ob/ob, mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes. J Nutr Biochem. 23(4):361–367.

Gao H, Liu Z, Qu X, Zhao Y. 2013. Effects of yerba mate tea (Ilex paraguariensis) on vascular endothelial function and liver lipoprotein receptor gene expression in hyperlipidemic rats. Fitoterapia. 84(3):264–272.

Oliveira DDD, Baião NC, Cançado SDV, Oliveira BLD, Lana ÂMQ, Figueiredo TCD. 2011. Effects of the use of soybean oil and animal fat in the diet of laying hens on production performance and egg quality. Ciência E Agrotecnologia. 35(5):995–1001.

Panja P. 2007. The effects of China tea (Camellia sinensis) supplementation in laying hen diets on production, quality and cholesterol content of egg. Songklanakarin J Sci Technol. 29(6):636–638.

Perezbonilla A, Novoa S, Garcia J, Mohiti-Asli M, Frihka M, Mateos GG. 2012. Effects of energy concentration of the diet on productive performance and egg quality of brown egg-laying hens differing in initial body weight. Org Mass Spectrom. 91(12):3156–3166.

Ren J, Lu L, Liu X, Tao Z, Wang D, Li J, Li G, Shen J, Fu Y, Niu D. 2012. A novel snp of liver-type fatty acid-binding protein gene in duck and its associations with the intramuscular fat. Mol Biol Rep. 39(2):1073–1077.

Hisashi M, Takeda C, Yasuki K, Johji Y, Tokunosuke S, Hajiime F, Hitoshi K. 1986. Effects of crude drugs on experimental hypercholesterolemia: I. tea and its active principle. J Ethnopharmacol. 17(3):213–224.

Kawarai T, Narisawa N, Yoneda S, Tsutsumi Y, Ishikawa J, Hoshino Y, Senpuku M. 2012. Mechanism of the combined anti-bacterial effect of green tea extract and NaCl against Staphylococcus aureus, and Escherichia coli, o157:H7. Food Control. 25(1):225–232.

Ren J, Lu L, Liu X, Tao Z, Wang D, Shen J, Liu W, Tian Y, Zhu Z. 2009. Zeng T, Jiang X, Li J, Wang D, Li G, Lu L, Wang G. 2013. Comparative proteomic analysis of the hepatic response to heat stress in muscovy and pekin ducks: insight into thermal tolerance related to energy metabolism. Plos One. 8(10):1–17.

Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. 2016. Issued by Ministry of Health, People’s Republic of China (in Chinese).

Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. 2016. Issued by Ministry of Health, People’s Republic of China (in Chinese).

Nakayama M, Shigemune N, Tsugukuni T, Jun H, Matsushita T, Mekaya Y, Kurahachi M, Miyamoto T. 2012. Mechanism of the combined anti-bacterial effect of green tea extract and NaCl against Staphylococcus aureus, and Escherichia coli, o157:H7. Food Control. 25(1):225–232.

Neto MAT, Pacheco BHC, Albuquerque R, Schammass EA, Rodriguezlomopte JC. 2011. Dietary effects of chelated zinc supplementa-tion and lysine levels in ISA brown laying hens on early and late performance, and egg quality. Poult Sci. 90(12):2837–2844.

NSPRC. 2002. Method for determination of moisture, crude protein, crude fat, crude fibre, lysine and methionine in feeds—Near infrared reflectance spectroscopy GB/T 18868–2002. Issued by Ministry of Health, People’s Republic of China (in Chinese).

NSPRC. 2003a. Determination of cholesterol in foods GB/T 5009.128–2003. Issued by Ministry of Health, People’s Republic of China (in Chinese).

NSPRC. 2003b. Determination of retinol and tocopherol in foods GB/T 5009.82–2003. Issued by Ministry of Health, People’s Republic of China (in Chinese).

NSPRC. 2006b. Determination of crude fat in foods GB/T 4772–2008. Issued by Ministry of Health, People’s Republic of China (in Chinese).

NSPRC. 2016. Determination of propyldialdehyde in food GB 5009.181–2016. Issued by Ministry of Health, People’s Republic of China (in Chinese).

NSPRC. 2008a. Formula feeds for replacement pullets, layers, and broilers GB/T 5916–2008. Issued by Ministry of Health, People’s Republic of China (in Chinese).

Olgun O, Çufadar Y, Yıldız AO. 2009. Effects of boron supplementation fed with low calcium to diet on performance and egg quality in moulting laying hens. J Anim Vet Adv. 8(4):650–654.

Olgun O, Çufadar Y, Yıldız AO. 2009. Effects of boron supplementation fed with low calcium to diet on performance and egg quality in moulting laying hens. J Anim Vet Adv. 8(4):650–654.

Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. 2016. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells. Placenta. 41:1–9.

Shih LJ, Lin YR, Lin CK, Liu HS, Kao YH. 2016. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells. Placenta. 41:1–9.

Songklanakarin J Sci Technol. 29(6):636–638.

Saunders L, Perrin J. 1960. Detection of lyssolecithin in a sample of egg lecithin. J Pharm Pharmacol. 12(5):257T–259T.

Unganbayar D, Bae IH, Choi KS, Shin IS, Firman JD, Yang CJ. 2005. Effects of green tea powder on laying performance and egg quality in laying hens. Asian Austral J Anim. 18(12):1769–1774.

Weir Y, Yu Q, Cai C. 2012. Effects of green tea powder on performance, egg quality and yolk cholesterol of green shell laying hens. China Feed. 22:22–24.

Zeng T, Jiang X, Li J, Wang D, Li G, Lu L, Wang G. 2013. Comparative proteomic analysis of the hepatic response to heat stress in muscovy and pekin ducks: insight into thermal tolerance related to energy metabolism. Plos One. 8(10):1–17.

Zeng T, Li J, Wang DQ, Li QG, Wang GL, Lu LZ. 2014. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of muscovy and pekin ducks: evidence for differential thermal sensitivities. Cell Stress Chaperon. 19(6):895–901.