The novel continuous bilateral parascapular sub-iliocostalis plane block for thoracic spinal surgery

Carlos Rodrigues Almeida, Lígia S. Vieira, Emília M. Francisco, Pedro F. Antunes

Department of Anesthesiology, Tondela-Viseu Hospital Center, Viseu, Portugal

During major thoracic spinal surgery, available regional anesthetic techniques may impinge on the surgical site [1,2] and interfere with postoperative neurological evaluation [1,2]. With this letter, we aim to propose the use of the continuous bilateral parascapular sub-iliocostalis plane (PSIP) block, which has been recently evaluated for posterior rib fractures [3], for thoracic spinal surgery given its safer profile [4]. The patient authorized the publication of this letter with anonymized details. The study was conducted in accordance with the 2013 Helsinki Declaration.

A 25-year-old male with no past medical history presented with thoracic vertebral fractures (spinous processes and laminae of T5 and T6) caused by a motorcycle crash. He was 179 cm tall and weighed 73 kg. He underwent percutaneous transpedicular fixation of the thoracic spine (from T4 to T7) (Fig. 1A) in the prone position under general anesthesia. The intraoperative period was uneventful. Since postoperative pain was anticipated, multimodal intravenous (IV) analgesia (paracetamol 1,000 mg, metamizole 1,000 mg, parecoxib 40 mg, tramadol 150 mg, and morphine 6 mg) was administered 30–45 min before emergence from anesthesia. Nevertheless, in the post-anesthesia care unit, his pain was 9/10 on the numeric pain rating scale [NPRS] despite the administration of rescue analgesia (total of 10 mg of IV morphine boluses). In this context, contralateral decubitus PSIP blocks were performed. A high-frequency linear ultrasound probe (Acuson P300®; Siemens®, Germany) was placed in a parasagittal plane orientation 2 cm from the medial scapular border at the level of the edge of the scapular spine (fourth rib level) under sterile conditions. From the superficial to deep muscular layers, the trapezius, rhomboid major, iliocostalis, and intercostal muscles were visualized (Figs. 1B and 1C). A sonovisible 100 mm 18 G needle (SonoLong Echo NanoLine®; Pajunk®, Germany) was inserted in a caudal-to-cranial orientation using the in-plane technique and advanced in the iliocostal-intercostal plane to the vicinity of the fourth rib. The needle location was confirmed using a 2 ml saline solution, after which 25 ml of 0.375% ropivacaine (Kabi-Fresenius®, Portugal) was administered. A catheter was then inserted 6 cm beyond the needle tip and tunneled under the skin. Fifteen minutes after the local anesthetic (LA) was administered, a catheter was then inserted 6 cm beyond the needle tip and tunneled under the skin. Fifteen minutes after the local anesthetic (LA) was administered, the patient reported 2/10 pain on the NPRS. The techniques were performed laterally to the surgical dressing/draperies. The patient did not report any sensory or motor changes after receiving the blocks. The analgesic protocol consisted of 0.2% ropivacaine (20 ml boluses) administered through each PSIP catheter every 6 h, and IV paracetamol (1 g every 8 h), IV metamizole (1 g every 12 h), IV parecoxib (40 mg every 12 h), and IV tramadol (100 mg every 8 h), with IV morphine (3 mg every 6 h) prescribed for rescue analgesia. The patient was discharged to the intermediate care unit in the same day, where significant pain control was maintained (NPRS 1–2/10 at rest and 1–3/10 during movement) and no rescue analgesia was necessary. The patient did not report any ther-
The posterior components of the vertebrae, namely the laminae and pedicles, to a large extent, are innervated by the branches of the posterior rami of the spinal nerves [1,2,5]. Safe regional analgesia depends on the ability to block these branches and minimize the impact on the ventral rami of the spinal nerves [5]. The most commonly implemented techniques for thoracic spinal surgery to date are epidural analgesia or intrathecal morphine, but these may be associated with significant adverse effects [1]. In the last decade, retroperitoneal blocks, erector spinae plane (ESP) blocks, and different types of paraspinal intra-fascial blocks have been evaluated for lumbar spinal surgery [3]. While ESP blocks may theoretically provide good quality analgesia at the thoracic level, they may also cause several undesirable effects. These effects, which include weakness of the chest wall and risk of falls during ambulation, are particularly evident during bilateral techniques (such as a central sympathetic blockade) since thoracic ESP blocks may spread easily toward the paravertebral space through the costotransverse foramina [5]. Notably, a frequent concern with laminectomies or trauma patients is the disruption of the epidural space. This means that the risk of spreading large volumes of anesthetics into the paravertebral space and epidural space may outweigh the benefits of ESP blocks during thoracic spinal surgery [2]. Thoracolumbar or paraspinal inter-fascial plane blocks have only been assessed for lumbar spinal surgery. Since their primary target is specific to the dorsal spinal ramus and its branches, they may be safer than ESP blocks; however, they are still performed in close proximity to the retroperitoneal plane adjacent to the surgical site [2].

During a PSIP block, the LA will primarily spread medially, because the costal insertions of the iliocostalis muscle, which is often a barrier for the dispersion of rhomboid intercostal block, will limit the lateral dispersion of the LA [4]. We propose the use of bilateral PSIP blocks for patients with thoracic vertebral fractures or those undergoing thoracic spinal surgery for the following reasons: it does not compete with the surgical site; the risk of involving the anterior rami of the spinal nerves is dramatically reduced (leading to less of a motor and/or sensation block); the risk of masking epidural hematoma symptoms is lowered; and it allows for rapid ambulation post-operation, reducing the risk of falls compared to the thoracic ESP block. Additionally, compared to other regional analgesia techniques, it is associated with less of a sympathetic block, fewer epidural-like effects, and less thoracic wall weakness [3]. However, anatomical studies are needed to prove confirm its advantages and clinical applicability.
Funding

None.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Carlos Rodrigues Almeida (Conceptualization; Formal analysis; Investigation; Methodology; Writing – original draft; Writing – review & editing)
Lígia S. Vieira (Conceptualization; Formal analysis; Investigation; Writing – original draft; Writing – review & editing)
Emília M. Francisco (Conceptualization; Formal analysis; Investigation; Methodology; Writing – original draft; Writing – review & editing)
Pedro F. Antunes (Conceptualization; Formal analysis; Investigation; Methodology; Writing – original draft; Writing – review & editing)

ORCID

Carlos Rodrigues Almeida, https://orcid.org/0000-0001-6980-841X
Lígia S. Vieira, https://orcid.org/0000-0003-2264-2795
Emilia M. Francisco, https://orcid.org/0000-0003-1412-5624
Pedro F. Antunes, https://orcid.org/0000-0002-1541-6469

References

1. Bajwa SJ, Haldar R. Pain management following spinal surgeries: an appraisal of the available options. J Craniovertebr Junction Spine 2015; 6: 105-10.
2. Spivak A, Xu JL. Ultrasound guided paraspinal intrafascial plane blocks for postoperative analgesic on spine surgery. J Spine Surg 2019; 5: 601-2.
3. Almeida CR. Parascapular sub-iliocostalis plane block: comparative description of a novel technique for posterior rib fractures. Pain Pract 2021; 21: 708-14.
4. Elsharkawy H, Maniker R, Bolash R, Kalasbail P, Drake RL, Elkassabany N. Rhomboid intercostal and subserratus plane block: a cadaveric and clinical evaluation. Reg Anesth Pain Med 2018; 43: 745-51.
5. Almeida CR, Oliveira AR, Cunha P. Continuous bilateral erector of spine plane block at T8 for extensive lumbar spine fusion surgery: case report. Pain Pract 2019; 19: 536-40.