C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets

Elise Chiffoleau1,2,3,4*

1Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France,
2Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France,
3IHU Cesti, Nantes, France,
4Labex Immunotherapy Graft Oncology (IGO), Nantes, France

Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.

Keywords: C-type lectin-like receptors, sterile inflammation, autoimmune diseases, tissue injury, cancer

INTRODUCTION

C-type lectin receptors (CLR)s are a large family of transmembrane and soluble receptors that contain one or more carbohydrate-recognition domain able to recognize a wide variety of glycans on pathogens or on self-proteins. The hallmark of classical CLRs is the dependence on Ca2+ for glycan recognition. However, many other CLRs lack the coordinated Ca2+ ions and are therefore referred as C-type lectin-like molecules. These C-type lectin-like receptors (CTLRs) are still able to recognize carbohydrates but independently of Ca2+ but also recognize more diverse ligands...
such as lipids and proteins (1). Of particular interest for their role in coupling both innate and adaptive immunity, are the CTLR genes of the “Dectin-1” and “Dectin-2” families localized on the telomeric region of the natural killer cluster of genes (2, 3). These two groups of CTLRs are expressed mostly by cells of myeloid lineage such as macrophages, dendritic cells (DCs), and neutrophils. CTLRs not only serve as antigen-uptake receptors for internalization and presentation to T cells but also trigger multiple signaling pathways leading to NF-κB, type I interferon (IFN), and/or inflammasome activation (1–4). This leads, in turn, to the production of pro- or anti-inflammatory cytokines and chemokines, subsequently fine tuning adaptive immune responses. CTLRs can signal either directly, through integral signaling domains, or indirectly, by associating with adaptor molecules. As illustrated in Figure 1, activation of immune-receptor tyrosine-based activation motif (ITAM) directly or via adaptor proteins such as FcγR, leads to the recruitment of SYK family kinases and the formation of the Card9/Bcl10/Malt1 complex that downstream activates NF-κB pathway and various cellular responses. By contrast, activation of immune-receptor tyrosine-based inhibition motif (ITIM) induces the recruitment and activation of protein tyrosine phosphatases such as SHP-1 and SHP-2 and the dephosphorylation of motifs (1). Consequently, ITIM signaling can inhibit cellular activation mediated by other immunoreceptors to tightly regulate immune response. Such checkpoints allow to prevent uncontrolled immune responses that may lead to harmful, or even fatal, consequences. In addition, some CTLRs were also reported to signal via SYK-independent pathway through the serine/threonine kinase RAF-1 to drive particular Th differentiation (5). Besides, by integrating simultaneous signals from other pattern recognition receptors (PRRs), CTLRs can exert synergistic or antagonistic response to achieve appropriate biological responses (6). This cross talk is regulated by the level and localization of their expression, by their interaction and by their collaborative or conflicting signaling (6, 7). To date,
CTLRs “Dectin” families were best known for their involvement in host defense as referred in these excellent reviews (1–4, 8, 9). However, over recent years, these receptors have gained growing interest for their ability to respond also to a wide variety of endogenous ligands (Figure 1). Identification of self-glycans, lipids, or proteins expressed or released by modified or damaged cells reinforced the hypothesis for their implication in sterile inflammation whose dysregulation foster the development of wide range of diseases (10). In this mini review, we aim to focus on some of the CTLRs of the “Dendritic cell-associated C-type lectin (Dectin)” families, discussing the recent discoveries on their implication in the control of tissue injury, autoimmune diseases, or tumorigenesis. In addition, we will underscore their therapeutic potential and impact on human health.

“(DECTIN-1)” FAMILY

DECTIN-1 (Alias CLEC7A, CLECSF12, CANDF4, CD369, BGR)

The CTLR, DECTIN-1 has been reported to be enhanced by pro-inflammatory conditions (11, 12) and to be a potent inducer of Th1 and/or Th17 responses in response to pathogens (2). Thereby, pathogenic ligands of DECTIN-1 are currently used to bolster immune responses notably in cancer. For example, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models in murine carcinoma models (13–15), in human melanoma, administration of β glucans was shown to inhibit tumor growth in murine carcinoma models (13–15), in human melanoma, neuroblastoma, mastocytosis, and lymphoma xenograft models.

LOX-1 (Alias OLR-1, CLEC8A)

The CTLR lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is particularly expressed by endothelial cells and platelets and is upregulated during inflammatory and pathological conditions (34–36). By recognizing oxidized and acetylated low-density lipoproteins, LOX-1 is largely described to play critical functions in vascular diseases, including atherosclerosis (37). However, recent investigations have revealed that LOX-1 is also expressed by human macrophages (38) and DCs (39), and its triggering increases secretion of IL-6 to potentiate B-cell class-switch (39). Moreover, LOX-1 enhances CCR10, APRIL, and BAFF secretion for plasma cell differentiation and migration to mucosal site. In line with these findings, targeting influenza histocompatibility antigen-1 to LOX-1 elicits antigen-specific protective antibody response to virus in macaques suggesting a good candidate for vaccine development (39). Besides, several studies have reported a high expression of LOX-1 in various tumors including gastric (40), colorectal (41), and prostate (42) cancers, which correlates with a poor prognosis in patients (40). Functionally, LOX-1 was shown to promote tumor angiogenesis (42), metastasis (43), and the migration and invasion of gastric cancer cells by notably driving epithelial–mesenchymal transition (40). Interestingly, LOX-1 was recently identified to be particularly expressed by potent polymorphonuclear myeloid-derived suppressor cells from blood and tumor of patients with non-small cell lung or head neck cancer and to be associated with worse survival (44).

In fact, LOX-1 expression seems to be upregulated following endoplasmatic reticulum stress that occurs during hypoxia or nutrient deprivation inside tumors. These data render this marker an attractive therapeutic target as well as a diagnostic tool for cancer screening (41).

CLEC-1 (Alias CLEC1, CLEC1A)

Although the C-type lectin-like receptor-1 (CLEC-1) was identified a long time ago (45, 46), the downstream signaling and ligand(s) remain uncharacterized (8, 47). We and others described CLEC-1 expression in human and rodent by myeloid cells such as monocytes, DC, and macrophages but also by endothelial cells (8, 9, 46, 48). CLEC-1 expression is decreased by pro-inflammatory stimuli and is enhanced by TGFβ (8, 9, 48). Interestingly, CLEC-1 was found to be expressed mostly intracellular particularly in human endothelial cells and neutrophils (8, 9), suggesting the requirement of particular conditions for cell-surface expression or for recycling from intracellular pools (7). Alternatively, CLEC-1 may play a role in intracellular organelles. Using CLEC-1-deficient rodents, we showed that disruption of CLEC-1 signaling enhances Il12p40 subunit expression in DCs and accordingly exacerbates downstream CD4+ Th1 and Th17 responses following in vivo immunization with exogeneous antigens (9, 48).

CLEC-2 (Alias CLEC2, CLEC2B, CLEC1B)

C-type lectin-like receptor 2 (CLEC-2) is found on platelets and DCs and is largely described for its interaction with its ligands, and of the complex signal network that integrates diverse engaged PRRs.
endogenous ligand podoplanin expressed by lymphatic endothelial cells, myeloid cells, and fibroblast reticular cells (2). The CLEC-2/Podoplanin axis was shown to be critical in platelet activation (49), lymph node microarchitecture (50, 51), reticular network (52), and vascular integrity. Besides, this interaction promotes tumor cell-induced platelet aggregation, tumor growth, and metastasis (53–56) in various types of cancer including brain, lung, and larynx (57–60). Furthermore, CLEC-2 is enhanced by inflammation, promotes DC migration (61) and together with LPS enhances the production of the anti-inflammatory cytokine IL-10 suggesting also a role in the resolution of inflammation (62).

MICL (Alias CLEC12A, DCAL-2, CLL1, CLL-1, KLR1L)

Myeloid inhibitory C-type lectin-like receptor (MICL) is expressed predominantly by granulocytes and monocytes, and its expression is downregulated by pro-inflammatory stimuli (63–65). MICL recruits inhibitory phosphatases and again seems to differently shape T-cell responses according to the cross talk with simultaneous PRR signals. Chen and colleagues demonstrated that co-engagement of MICL with TLR4 suppress IL-12 expression in human DCs and downstream Th1 polarization whereas co-engagement with CD40 does the opposite (66). Interestingly, putative endogenous ligands of MICL were identified on various mouse tissues in steady-state conditions, proposing a role for MICL in the control of homeostasis and self-tolerance (65). Corroborating this notion, an inhibitory function for MICL has been put in light in an *in vivo* model of induced rheumatoid arthritis (67). In an original way, MICL was proposed to modulate myeloid cell activation threshold by acting as an autoantigen during arthritis development (67).

CLEC9A (Alias DNGR1, DNGR-1, CD370)

CLEC9A is selectively expressed on the mouse subsets of CD8α+ and CD103+ DCs, and on their human BDCA3+ DCs counterparts (68). CLEC9A expression is lost further TLR-induced maturation. Importantly, CLEC9A by recognizing F-actin released by necrotic cells is capable of internalizing bound dead cell-associated antigens for cross-presentation to CD8+ T cells (69–71). Thereby, CLEC9A has been demonstrated to be a powerful target for peptide vaccination to boost antitumor immunity (72, 73). Interestingly, it has recently been shown that necrotic debris that accumulated during atherosclerosis development, trigger through CLEC9A, the downregulation of the anti-inflammatory cytokine IL-10 and the disease progression (74).

“DECTIN-2” FAMILY

DCIR (Alias CLEC4A, CLECSF6, CD367, LLIR)

DC immunoreceptor (DCIR) is expressed on monocytes, neutrophils, DC, and plasmacytoid DCs, and its expression is decreased by pro-inflammatory stimuli (75). The human genome encodes only a single DCIR gene, whereas the mouse genome presents four DCIR-like genes (DCIR1–4) (76). DCIR via its canonical ITIM domain is largely recognized to exert inhibitory cross talk with other PRRs to maintain immune homeostasis and prevent excessive detrimental inflammation and immunopathogenesis (77–79). DCIR inhibits TLR8-induced IL-12 and TNFα production in human moDCs following cross-linking with monoclonal antibody (79). Furthermore, DCIR1 KO mice develop a late spontaneous autoimmune disease associated with elevated levels of autoantibodies, are more susceptible to collagen-induced arthritis, and aggravated experimental autoimmune encephalomyelitis (80, 81). These effects were described to be mediated at least by unrestrained growth of DC population in these mice. However, in support for a role of DCIR in tempering DC activation, a recent study demonstrated that DCIR2 selectively expressed by mouse CD8α- DCs, strongly moderates pro-inflammatory and downstream T-cell responses (82). *In vivo*, DCIR-deficient mice are more susceptible to endotoxic shock and aggravate experimental autoimmune encephalomyelitis development by increasing both Th1 and Th17 differentiation. Authors demonstrated that putative endogenous ligands of DCIR are expressed also on cell surface of DCs. In line with these data, DCIR2 was described in DCs to sustain STAT-1 type I IFN signaling leading to a reduction of IL-12p70 production and Th1 differentiation in response to endogenous ligand(s) released during cell culture (83). Therefore, by regulating also the IFN responses, DCIR may be a critical player in the control of a number of inflammatory diseases. Interestingly, DCIR was also reported to bind to commensal intestinal microbes (84). However, DCIR-deficient mice only exhibit a slightly increased severity of colitis in a dextran sulfate sodium model (84).

DECTIN-2 (Alias CLEC6A, CLEC4N, CLECSF10)

Several studies suggest a role for DC-associated C-type lectin-2 (DECTIN-2) in the inhibition of sterile inflammation. DECTIN-2 is enhanced in pro-inflammatory conditions and was shown notably to bind to a putative ligand on regulatory CD4+CD25+ T cells to mediate ultraviolet radiation-induced tolerance (85, 86). In addition, DECTIN-2 recognizes glycan mannos on the lysosomal enzyme β-glucuronidase, known to moderate arthritis pathogenesis by preventing accumulation of pro-inflammatory glycosaminoglycans within inflamed joint tissue (87–90). Thus, β-glucuronidase released by dead myeloid cells following tissue damage may act *via* DECTIN-2 as an inhibitory loop in DCs to temper inflammation (91). Besides, polymorphism of this enzyme was reported to be associated with mucopolysaccharidoses characterized by a pro-inflammatory response (92). In addition, a role for DECTIN-2 in suppression of liver metastasis has been highlighted by its ability to phagocytose cancer cells *via* CD11b F4/80 Kupffer cells during extravasation step (93).

BDCA-2 (Alias CLEC4C, BDCA2, CD303, CLECSF11, CLECSF7)

Interestingly, blood DC antigen-2 (BDCA-2) is the most specific marker for human plasmacytoid DC but intriguingly is not
MINCLE (Alias CLEC4E, CLECSF9)

Macrophage-inducible C-type lectin (MINCLE) is an ITAM-coupled CTLR that forms a heterodimer with the macrophage C-type lectin (MCL). MINCLE expression is enhanced after exposure to pro-inflammatory stimuli or cellular stresses and is translocated to the cell surface via interaction with the stalk region of MCL (100–104). MINCLE was shown to activate in DCs both NF-κB and inflammasome to greatly enhance IL-1β expression in synergy with TLR7/8 (R848) or following in vivo immunization with Freund adjuvant (105, 106). MINCLE senses self-damage by recognizing “unfamiliar” glycolipids that are not present in the extracellular milieu under normal, healthy conditions. For example, MINCLE was reported to bind crystalline cholesterol present in atherosclerotic plaques that are associated with inflammation and macrophage infiltrates (107). Likewise, as depicted in Figure 2, MINCLE is enhanced on plasmacytoid DCs following skin damage and by recognizing cholesterol sulfate, induces IL-1α and β secretion, and promotes skin allergy and allergic contact dermatitis (108). Moreover, MINCLE was also reported to bind to the ubiquitous intracellular metabolite β-glucosylceramide released by damaged cells to promote production of pro-inflammatory cytokines by myeloid cells (109). In an opposite way, recent investigations have revealed that MINCLE rather than purely inducing pro-inflammatory responses can also promote the expression of the anti-inflammatory cytokines IL-10 (110). In addition, MINCLE was reported to counter regulate pro-inflammatory signaling pathways mediated by DECTIN-1 to temper IL12p35 production (6, 111). Therefore, MINCLE seems to also exert opposite role on immune responses depending of the ligands and PRR interference. This dual effect is illustrated by the recognition by MINCLE of the spliceosome-associated protein 130 (SAP130), a component of small nuclear ribonucleoprotein released during non homeostatic cell death. On one hand, MINCLE/SAP130 axis was reported to be involved in the pathogenesis of inflammation during tissue damages (112) or ischemia/reperfusion (113, 114) and to contribute to the development of experimental autoimmune uveoretinitis (115). This pro-inflammatory side of MINCLE is supported by a high expression of MINCLE in patients with rheumatoid arthritis (116) and by the link to arthritis of the rat chromosome 4q42 encoding Mincle (117).

On the other hand, in the context of cancer, MINCLE/SAP130 axis was reported to be pro-tumorigenic in mouse and human pancreatic ductal adenocarcinoma (118). Both MINCLE and SAP130 released by programmed necrosis are highly expressed in mouse and human carcinoma and as depicted in Figure 2, this interaction leads to an immunosuppressive reprogramming of infiltrating myeloid cells (118). Future research is required to provide insight as to how MINCLE needs to integrate with other PRR signals to differently define the type of immune response.

THERAPEUTIC POTENTIAL OF CTLRs

Therefore, by their capacity to present antigen and ensure the balance between cellular activation and suppression, CTLRs have emerged as challenging pharmacological targets to treat a wide variety of diseases governed by sterile inflammation including cancers, autoimmune diseases or allergy (1, 119). Ligands such as carbohydrate structures, antibodies, or mimetic peptides could be therapeutically exploited as agonists or antagonists of CTLR signaling. As previously mentioned, the DECTIN-1 agonist β-glucans is used to elicit of potent antitumor immune responses in various types of cancer (14, 16–24). Furthermore, CTLRs such as DEC-205 (120, 121) or CLEC9A (71) have been exploited for the in vivo delivery target of vaccine antigens in cancer (122). In addition, synthetic ligands of MINCLE were generated to specifically enhance immune response (102). Besides, several specific antibodies generated against cancer-specific highly glycosylated podoplanin were shown to efficiently block the CLEC-2/Podoplanin interaction, subsequent platelet aggregation and tumor metastasis (123–128). Importantly, a particular antibody that reacts with podoplanin-expressing cancer cells but not with the one from normal cells has been successfully generated and will be useful for molecular targeting therapy against podoplanin-expressing cancer cells only (126).
However, since CTLRs have overlapping ligands that induce distinct and even contrasting immune responses, antibodies targeting specific CTLRs could be more appropriate. Also, inhibitors such as recombinant peptide spanning the CTLR binding region and modulating the receptor–ligand interaction could be considered. Only a few drug-like molecules have been developed for the CTLR family (129) but studies indicate high in silico druggability scores as well as high experimental hit rates from peptide fragment screenings (130, 131).

To conclude, CTLR modulation seems to represent promising strategy for disease management although attempts at identifying endogenous ligands as well as efforts to elucidate their role in sterile inflammation are still warrant.

REFERENCES

1. Dambura IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol (2015) 32:21–7. doi:10.1016/j.coi.2014.12.002
2. Huygens C, Brown GD. The fungal pattern recognition receptor, dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol Lett (2009) 290(2):121–8. doi:10.1111/j.1574-6968.2008.01418.x
3. Kerscher B, Willment JA, Brown GD. The dectin-2 family of C-type lectin-like receptors: the true regulators of immune homeostasis. Blood Adv (2017) 1(9):557–68. doi:10.1152/japplphysiol.00252.2004

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.

FUNDING

The author is grateful to the support by the “CENTAURE” foundation, “Agence de la Biomédicine 2015–2016,” IHU-Cesti project, and the LabEX IGO program which received French government financial support managed by the National Research Agency via the investment of the future program ANR-10-IBHU-005 and ANR-11-LABX-0016-01.

15. Masuda Y, Inoue H, Ohta H, Miyake A, Konishi M, Nanba H. Oral administration of soluble beta-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice. Int J Cancer (2013) 133(1):108–19. doi:10.1002/ijc.27916
16. Modak S, Koehne G, Vickers A, O’Reilly RJ, Cheung NK. Rituximab therapy of lymphoma is enhanced by orally administered (1 → 3)(1 → 4)-D-beta-glucan. Leuk Res (2005) 29(6):679–83. doi:10.1016/j.leukres.2004.10.008

Chiffoleau

CTLRs Orchestrate Sterile Inflammation

6

February 2018 | Volume 9 | Article 227

Frontiers in Immunology | www.frontiersin.org
tumouricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol (2004) 173(2):797–806. doi:10.4049/jimmunol.173.2.797
29. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumor immunity through the induction of Th9 cells. Nat Commun (2016) 7:12368. doi:10.1038/ncomms12368
30. Seifert L, Deutsch M, Allohorn S, Alqanabiti D, Werba G, Parsani M, et al. Dectin-1 regulates hepatic fibrosis and hepatocarcinogenesis by suppressing TLR4 signaling pathways. Cell Rep (2015) 13(9):1909–21. doi:10.1016/j.celrep.2015.08.058
31. Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, et al. Dectin 1 regulates peritoneal neutrophil responses. J Immunol (2015) 195(4):1419–29. doi:10.4049/jimmunol.1401471
32. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, et al. Mucus coat remodels TLR4 signaling in murine airway epithelial cells. PLoS One (2015) 10(1):e0115820. doi:10.1371/journal.pone.0115820
33. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Identification of the lectin-like receptor for oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PGE2/Akt/GSKbeta activation. Sci Rep (2017) 7:45275. doi:10.1038/srep45275
34. Murodco M, Mango R, Pucci S, Biocca S, Testa B, Capurano R, et al. The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget (2016) 7(12):14765–80. doi:10.18632/oncotarget.7430
35. Gonzalez-Chavarria I, Cerrro RP, Parra NP, Sandoval FA, Zuniga FA, Ozmazabal VA, et al. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells. PLoS One (2014) 9(8):e106219. doi:10.1371/journal.pone.0106219
36. Liang M, Zhang P, Fu J. Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett (2007) 258(1):31–7. doi:10.1016/j.canlet.2007.08.003
37. Condamine T, Dominguez GA, Youn J-I, Kossenkov AV, Mony S, Alicea-Torres K, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of tumor angiogenesis in human prostate cancer cells. J Immunol (2014) 193(5):3099–108. doi:10.4049/jimmunol.1303767
38. Thoerriot P, Lhermitte N, Tilly G, Le Texier L, Quillard T, Heslan M, et al. The C-type lectin-like receptor CLEC-1, expressed by myeloid cells and endothelial cells, is up-regulated by immunomodulatory mediators and moderates T cell activation. J Immunol (2009) 183(5):3099–108. doi:10.4049/jimmunol.0803767
39. Suzuki-Inoue K, Inoue O, Ozaki Y. Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost (2011) 9(Suppl 1):44–55. doi:10.1111/j.1538-7836.2011.04335.x
40. Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature (2013) 502(7469):105–9. doi:10.1038/nature12501
41. Benezech C, Nayar S, Finney BA, Withers DR, Lowe K, Desanti GE, et al. CLEC-2 is required for development and maintenance of lymph nodes. Blood (2014) 123(20):3200–7. doi:10.1182/blood-2013-03-489286
42. Acton SE, Farragia AJ, Astarita JL, Mourao-Sa D, Jenkins RK, Nye E, et al. Dendritic cells control fibroelastic reticular network tension and lymph node expansion. Nature (2014) 514(7523):498–502. doi:10.1038/nature13814
43. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2 in podoplanin-mediated platelet activation by dendritic cells. J Biol Chem (2007) 282(36):25993–6001. doi:10.1074/jbc.M702327200
44. Christou SM, Pearce AC, Watson AA, Mistry AR, Pollitt AF, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J (2008) 411(1):133–40. doi:10.1042/BJ20071216
45. Kato Y, Kaneko MK, Kunita A, Ro H, Kameyama A, Ogasawara S, et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C type lectin-like receptor CLEC-2. Cancer Sci (2008) 99(1):54–61. doi:10.1111/j.1349-7006.2007.00634.x
46. Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res (2012) 129(Suppl 1):S30–7. doi:10.1016/j.thromres.2012.01.003
47. Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol (2006) 113(5):483–8. doi:10.1007/s00401-006-0663-y
48. Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, et al. Molecular identification of Aggrus/Talpalpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem (2003) 278(51):51599–605. doi:10.1074/jbc.M309935200
49. Rodrigo JP, Garcia-Carracedo D, Gonzalez MV, Mancebo G, Fresno MF, Garcia-Pedrojo J. Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas. Mol Cancer (2010) 9:48. doi:10.1186/1476-4598-9-48
50. Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M. Enhanced expression of Aggrus (Talpalpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biol (2005) 26(4):195–200. doi:10.1159/000086952
51. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Biochem J (2014) 465(4):592–604. doi:10.1042/BJ20140409
52. Acton SE, Farragia AJ, Astarita JL, Mourao-Sa D, Jenkins RP, Nye E, et al. Human MICL (CLEC12A) is differentially glycosylated and is down-regulated in colon cancer. Proc Natl Acad Sci U S A (2006) 103(22):8251–30. doi:10.1073/pnas.060251-010.0455-y
53. Acton SE, Farragia AJ, Astarita JL, Mourao-Sa D, Jenkins RP, Nye E, et al. Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation. Eur J Immunol (2006) 36(8):2159–69. doi:10.1002/eji.200535628
54. Poy E, Huyssen C, Marshall AS, Gordon S, Taylor PR, Brown GD. Characterization of murine MICL (CLEC12A) and evidence for an
endogenous ligand. *Eur J Immunol* (2008) 38(4):1157–63. doi:10.1002/eji.200738057

60. Escudier H, Floyd H, Olson NE, Magalotti D, Li C, Draves K, et al. Dendritic-cell-associated C-type lectin 2 (DC-CL2) alters dendritic-cell maturation and cytokine production. *Blood* (2006) 107(4):1459–67. doi:10.1182/blood-2005-08-3264

61. Redelinguys P, Whitehead L, Augello A, Drummond RA, Levesque JM, Vautier S, et al. MC1R controls inflammation in rheumatoid arthritis. *Ann Rheum Dis* (2016) 75(7):1386–91. doi:10.1136/annrheumdis-2014-206644

62. Schreiber G, Klinkenberg IJ, Cruz LJ, Tacken PJ, Tel J, Kremet M, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDC3+ myeloid dendritic cells. *Blood* (2012) 119(10):2284–92. doi:10.1182/blood-2011-08-373944

63. Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGL-1, a receptor for dead cells. *Immunity* (2012) 36(4):635–45. doi:10.1016/j.immuni.2012.03.008

64. Zhang JG, Czabotar PE, Policheni AN, Camischi I, Wan SS, Kitsoulis S, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. *Immunity* (2012) 36(4):466–57. doi:10.1016/j.immuni.2012.03.009

65. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Haddad Y, Lahoute C, Clement M, Laurans L, Metghalchi S, Zeboudj L, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. *J Exp Med* (2009) 206(9):2037–51. doi:10.1084/jem.20082818

66. Seno A, Maruhashi T, Kaifu T, Yabu R, Fujikado N, Ma G, et al. Exacerbation of autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor. *Proc Natl Acad Sci U S A* (2017) 114(4):E540–9. doi:10.1073/pnas.1613254114

67. Redelinguys P, Whitehead L, Augello A, Drummond RA, Levesque JM, Vautier S, et al. MC1R controls inflammation in rheumatoid arthritis. *Ann Rheum Dis* (2016) 75(7):1386–91. doi:10.1136/annrheumdis-2014-206644

68. Taylor PR, Reid DM, Heinsbroek SEM, Brown GD, Gordon S, Wong SY. Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. *Eur J Immunol* (2005) 35(7):2163–74. doi:10.1002/eji.200425785

69. Aragane Y, Maeda A, Schwarz A, Tenzuka A, Arizumi K, Schwarz T. Involvement of dectin-2 in ultraviolet radiation-induced tolerance. *J Immunol* (2003) 171(7):3801–7. doi:10.4049/jimmunol.171.7.3801

70. Depke M, Breitbach K, Dinh Hoang Dang K, Brinkmann L, Salazar MG, Dhoole VM, et al. Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. *J Proteomics* (2014) 103:72–86. doi:10.1016/j.jprot.2014.03.027

71. Mori D, Shibata K, Yamasaki S. C-type lectin receptor dectin-2 binds to an endogenous protein beta-glucuronidase on dendritic cells. *PLoS One* (2017) 12(1):e0169562. doi:10.1371/journal.pone.0169562

72. McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, et al. The carbohydrate-recognition domain of dectin-2 is a C-type lectin with specificity for high mannose. *Glycobiology* (2006) 16(5):422–30. doi:10.1093/glycob/ wcf077

73. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighofer E, Gross O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. *J Exp Med* (2009) 206(9):2037–51. doi:10.1084/jem.20082818

74. Bramwell KK, Ma Y, Weis JH, Chen X, Zachary JF, Teuscher C, et al. Lysosomal beta-gluconidase regulates Lyme and rheumatoid arthritis severity. *J Clin Invest* (2012) 124(1):311–20. doi:10.1172/JCI72339

75. Tomatsu S, Montano AM, Dung VC, Grubb JH, Sly WS. Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (sly syndrome). *Hum Mutat* (2009) 30(4):511–9. doi:10.1002/humu.20828

76. Kimura Y, Inoue A, Hangai S, Sajo S, Negishi H, Nishio J, et al. The innate immune receptor dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. *Proc Natl Acad Sci U S A* (2016) 113(49):14097–102. doi:10.1073/pnas.1617903113

77. Dzienek A, Sohma Y, Nagafune J, Cellia M, Colonna M, Facchetti F, et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. *J Exp Med* (2001) 194(12):1823–34. doi:10.1084/jem.194.12.1823

78. Dzienek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. *J Immunol* (2000) 165(11):6307–46. doi:10.4049/jimmunol.165.11.6307

79. Rock J, Schneider E, Grun JR, Grutzka A, Kuppers R, Schmitz J, et al. CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, SLP65 and PLCgamma2. *Eur J Immunol* (2007) 37(12):3564–75. doi:10.1002/eji.200737711

80. Riboldi E, Daniele R, Parola C, Inforzato A, Arnold PL, Bosisio D, et al. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. *J Biol Chem* (2011) 286(41):35329–33. doi:10.1074/jbc.C111.290494

81. Riboldi E, Daniele R, Cassatella MA, Sozzani S, Bosisio D. Engagement of BDCA-2 blocks TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells. *Immunobiology* (2009) 214(9–10):866–76. doi:10.1016/j.imbio.2009.06.016

82. Jegouzo SA, Feinberg H, Dungarwalla T, Drickamer K, Weiss WI, Taylor ME. A novel mechanism for binding of galactose-terminated glycans by the C-type carbohydrate recognition domain in blood dendritic cell antigen 2. *J Biol Chem* (2015) 290(27):16759–71. doi:10.1074/jbc.M115.660613

83. Matsumoto M, Tanaka T, Kaisoh T, Sanjo H, Copeland NG, Gilbert DJ, et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. *J Immunol* (1999) 163(9):5039–48.

84. Hütter J, Eriksson M, Johannsson T, Klopfleisch R, von Smolinski D, Gruber AD, et al. Role of the C-type lectin receptors MCL and DCIR in experimental colitis. *PLoS One* (2014) 9(7):e103281. doi:10.1371/journal.pone.0103281

85. Depke M, Breitbach K, Dinh Hoang Dang K, Brinkmann L, Salazar MG, Dhoole VM, et al. Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. *J Proteomics* (2014) 103:72–86. doi:10.1016/j.jprot.2014.03.027

86. Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, et al. Contribution of MINCLE-SYK signaling to activation of primary
human APCs by mycobacterial cord factor and the novel adjuvant TDR. *J Immunol* (2015) 195(5):2417–28. doi:10.4049/jimmunol.1500102

103. Hupfer T, Schick J, Jezowski K, Voehringer D, Ostrop J, Lang R. Stat6-dependent inhibition of MINCLE expression in mouse and human antigen-presenting cells by the Th2 cytokine IL-4. *Front Immunol* (2016) 7:423. doi:10.3389/fimmu.2016.00423

104. Miyake Y, Masatsugu OH, Yamasaki S. C-type lectin receptor MCL facilitates MINCLE expression and signaling through complex formation. *J Immunol* (2015) 194(11):5366–74. doi:10.4049/jimmunol.1404299

105. van Haren SD, Dowling DJ, Poppen W, Christensen D, Andersen P, Reed SG, et al. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. *J Immunol* (2013) 190(11):5722–30. doi:10.4049/jimmunol.1203343

106. Kostarnoy AV, Gancheva PG, Lepenies B, Tukhvatinul AV, Deharullaveela AS, Poharakon NB, et al. Receptor MINCLE promotes skin allergies and is capable of recognizing cholesterol sulfate. *Proc Natl Acad Sci U S A* (2017) 114(13):E2758–65. doi:10.1073/pnas.1611665114

107. Nagata M, Izumi Y, Ishikawa E, Yano H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-type lectin receptors by vaccine adjuvants: findings, implications and open questions. *Oncotarget* (2015) 6(40):42733–48. doi:10.18632/oncotarget.5811

108. Shirai T, Inoue O, Tamura S, Tsukiji N, Sasaki T, Endo H, et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. *J Thromb Haemost* (2017) 15(3):513–25. doi:10.1111/jth.13604

109. Lang R, Schoenen H, Desel C. Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: findings, implications and open questions. *Immunobiology* (2011) 216(11):1184–91. doi:10.1016/j.imbio.2011.06.005

110. Chang Y-W, Hsieh P-W, Chang Y-T, Lu M-H, Huang T-F, Chong K-Y, et al. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. *Oncotarget* (2015) 6(40):42733–48. doi:10.18632/oncotarget.5811

111. Aretz J, Wamhoff EC, Hanske J, Heymann D, Rademacher C. Computational evolution and characterization of regulated phenotypes. *PLoS One* (2013) 8(8):e73609. doi:10.1371/journal.pone.0073609

112. Patin EC, Willcocks S, Orr S, Ward TH, Lang R, Schable UE. Mincle-dependent inhibition of MINCLE expression in mouse and human antigen-presenting cells by the Th2 cytokine IL-4. *Front Immunol* (2016) 7:423. doi:10.3389/fimmu.2016.00423

113. Suzuki Y, Nakano Y, Mishiro K, Takagi T, Tsuruma K, Nakamura M, et al. Intracellular metabolite beta-glucosylceramide is an endogenous MINCLE ligand capable of recognizing cholesterol sulfate. *J Biol Chem* (2017) 292(43):25322–32. doi:10.1074/jbc.M117.813820

114. Kaneko MK, Nakamura T, Honma R, Ogasawara S, Fujii Y, Abe S, et al. Development and characterization of anti-glycopeptide monoclonal antibody against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN. *Cancer Med* (2017) 6(2):382–96. doi:10.1002/cam4.954

115. Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioh K, Kunita A, et al. Antitumor activity of chlpMab-2, a human-mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. *Cancer Med* (2017) 6(4):768–77. doi:10.1002/cam4.1049

116. Yano H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-type lectin receptors by vaccine adjuvants: findings, implications and open questions. *Oncotarget* (2015) 6(40):42733–48. doi:10.18632/oncotarget.5811

117. Ribbhemmar U, Flornes L, Backdahl L, Luthman H, Fossum S, Lorentzen JC. Involvement of MINCLE and Syk in the changes to innate immunity after ischemic stroke. *Innate Immun* (2008) 13(4):169–83. doi:10.1093/innimm/dxm006

118. Seifert L, Werba G, Tiwari S, Giao Ly NN, Alqunaibit D, et al. The necosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. *Nature* (2016) 532(7598):245–9. doi:10.1038/nature17403

119. Yan H, Kamiya T, Saabjakyong P, Tsuji NM. Targeting C-type lectin receptors for cancer immunity. *Front Immunol* (2015) 6:408. doi:10.3389/fimmu.2015.00408

120. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzwieg MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. *J Exp Med* (2002) 196(12):1627–38. doi:10.1084/jem.20021598

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Chiffoleau. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.