Four Subunit α Isoforms of Caenorhabditis elegans Vacuolar H^+-ATPase

CELL-SPECIFIC EXPRESSION DURING DEVELOPMENT*

Received for publication, February 22, 2001, and in revised form, June 19, 2001
Published, JBC Papers in Press, July 5, 2001, DOI 10.1074/jbc.M101652200

Toshikiko Oka, Takao Toyomura, Kenta Honjo, Yoh Wada, and Masamitsu Futai‡

From the Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, and Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation, Osaka

We have identified four genes (vha-5, vha-6, vha-7, and unc-32) coding for vacuolar-type proton-translocating ATPase (V-ATPase) subunit α in Caenorhabditis elegans, the first example of four distinct isoforms in eukaryotes. Their products had nine putative transmembrane regions, exhibited 42–80% identity and 62–84% similarity with the bovine subunit α1 isoform, and retained 11 amino acid residues essential for yeast V-ATPase activity (Leng, X. H., Manolson, M. F., and Forgac, M. (1998) J. Biol. Chem. 273, 6717–6723). The similarities, together with the results of immunoprecipitation, suggest that these isoforms are components of V-ATPase. Transgenic and immunofluorescence analyses revealed that these genes were strongly expressed in distinct cells; vha-5 was strongly expressed in an H-shaped excretory cell, vha-6 was strongly expressed in intestine, and unc-32 was strongly expressed in nerve cells. Furthermore, the vha-7 and unc-32 genes were also expressed in the uteri of hermaphrodites. RNA interference analysis showed that the double-stranded RNA for unc-32 caused embryonic lethality similar to that seen with other subunit genes (vha-1, vha-4, and vha-11) (Oka, T., and Futai, M. (2000) J. Biol. Chem. 275, 29556–29561). The progenies of worms injected with the vha-5 or vha-6 double-stranded RNA became died at a specific larval stage, whereas the vha-7 double-stranded RNA showed no effect on development. These results suggest that V-ATPases with these isoforms generate acidic compartments essential for worm development in a cell-specific manner.

Vacuolar-type proton-translocating ATPases (V-ATPases) are large complex enzymes consisting of at least 13 subunits. The structure and catalytic mechanism of V-ATPases are similar to those of FoF1-ATPases. They pump protons across membranes coupled with ATP hydrolysis. Acidification caused by V-ATPases is responsible for intracellular processes such as activation of zymogen, release of ligands from receptors, degradation of macromolecules, accumulation of neurotransmitters in secretory vesicles, and sorting of nascent polypeptides (5, 6). These enzymes are also found in the plasma membranes of osteoclasts (7), renal intercalated cells (8), and epithelial cells of seminal ducts (9).

V-ATPases have a peripheral sector (V₁) for ATP hydrolysis and an integral sector (Vo) for proton translocation across membranes. Vo consists of at least five different subunits (a, d, c, c', and c′). Subunits c, c’, and c″ are often called proteolipids and function mainly to form a proton pathway (4). Subunit d is peripheral associated with other integral subunits (1). Subunit a is the largest protein (116 kDa) among the V-ATPase subunits and has been reported to have organelle- or cell-specific isoforms responsible for cellular processes (7, 10–16). In yeast, two a isoforms (Vph1p and Stv1p) have been found in vacuolar and Golgi/endosomal membranes, respectively (10). In mammals, three a isoforms (a1, a2, and a3) exhibit cell- and tissue-specific expressions (7, 14). In particular, the a3 isoform is highly expressed in osteoclasts and specifically localized in their plasma membranes for bone resorption (7, 17). Furthermore, mutations of the a3 gene have been shown to cause severe osteopetrosis (17–21). However, functions of the a1 and a2 isoforms remain unclear.

We have focused on V-ATPase in Caenorhabditis elegans to elucidate the functional roles of acidic compartments in development and cellular processes. Analysis involving RNA interference indicated that V-ATPase is indispensable for early embryogenesis of the worm (22). In this study, we identified four genes (vha-5, vha-6, vha-7, and unc-32) for subunit α isoforms, the first example of four distinct subunit α isoforms in higher eukaryotes. These genes are expressed in a cell-specific manner during worm development. The unc-32 gene is essential for embryogenesis, and vha-5 and vha-6 are required for larval development, whereas vha-7 is dispensable. The results suggest that V-ATPases with these isoforms generate specific acidic compartments required for development.

EXPERIMENTAL PROCEDURES

Maintenance of Worm Strains and Preparation of Total Lysate and Membranes—The strain used in this study, wild-type Bristol N2, was cultured and maintained as described previously (23). Transgenic worms were obtained by microinjection with the selectable marker gene rol-6 (su1006) (24).

Mixed stage worms (5 g, wet weight) were suspended at 4 °C in 25 ml of 10 mM HEPES-KOH (pH 7.4) containing 0.25 mM sucrose, 10 mM KCl, 5 mM MgCl₂, 1 mM EDTA, and 1 mM dithiothreitol. The suspension was passed through a French Press (1200 kg/cm²), and the total lysate was centrifuged at 10,000 × g for 15 min. The supernatant was further
centrifuged at 100,000 \times g for 30 min. The precipitate was suspended in 50 mM Tris-HCl (pH 7.5) and used for membrane fraction.

Sequencing of cDNA Clones—Four *C. elegans* expressed sequence tag (EST) clones (yk4568a (vha-5), yk17e5 (vha-6), yk287c7 (vha-7), and yk421b11 (unc-32)) were kindly provided by Y. Kohara and converted to plasmids with a Rapid Excision Kit (Stratagene). The nucleotide sequences of the clones were determined with a Dye Terminator DNA Sequencing Kit (Applied Biosystems). The nucleotide sequence data was deposited by Pujol et al. (Ref. 25; accession number AF320901; GenBank/DDBJ/EMBL).

PCR Amplification of the 5′-terminal Regions—Total RNA extraction and first-strand cDNA synthesis were carried out as described previously (26). PCR was performed under the following conditions: 30 s at 94°C, 30 s at 61°C, and 2 min at 68°C for 30 cycles using SL primers (SL1 or SL2, equivalent to the *C. elegans* spliced leader sequences) and gene-specific primers (vha-5; 5′-CTCAATTTCCGTGAAGTTCCCTT-3′; vha-6; 5′-AGAGGTGACATGCCTCCGAAAC-3′; vha-7, 5′-TAGAATCTCGGGCGACAAACC-3′; and unc-32, 5′-GCTTCTTATTAGCCTGGAAG-3′). The resulting PCR products were cloned, and their sequences were determined.

Construction of GFP Reporter Plasmids—To create fusion plasmids (vha-5::GFP, vha-7::GFP, and unc-32::GFP), genomic fragments including the upstream region and a part of the exons of each gene were subcloned from the corresponding cosmid into GFP reporter vectors (27): the 3.0-kb BglII fragment from F35H10 was cloned into pPD95.69 to create vha-5::GFP plasmid (pHJ-V5P01), the 10-kb BamHI fragment from C26H9 was cloned into pPD95.67 to create the vha-7::GFP plasmid (pHJ-V7P01), and the 2.0-kb NcoI/BglII fragment from ZK637 was cloned into pPD95.67 to create the unc-32::GFP plasmid (pHJ-U32P01). The 2.9-kb MluI/EciI fragment was amplified by PCR from *C. elegans* genomic DNA and cloned into pPD95.67 to create the vha-6::GFP plasmid (pHJ-V6P03).

Double-stranded RNA Preparation for RNA Interference—A specific segment of each cDNA was subcloned to prepare double-stranded RNA (dsRNA): a 1.1-kb CDNA fragment (Met-1 to Asn-371) was subcloned to prepare vha-5 dsRNA, a 1.0-kb fragment (Glu-69 to Trp-405) was subcloned to prepare vha-6 dsRNA, a 1.0-kb fragment (Ser-134 to Tyr-449) was subcloned to prepare vha-7 dsRNA, and a 1.2-kb fragment (Gly-2 to Ala-405) was subcloned to prepare unc-32 dsRNA. In vitro transcription and dsRNA injection were carried out as described previously (22).

Preparation of Antibodies against VHA-5, VHA-6, and UNC-32 and Immunostaining—A 510-bp (Met-1 to Val-170 of VHA-5), 350-bp (Ser-134 to Tyr-449) of VHA-6, and 485-bp (Ser-134 to Val-240) of UNC-32 cDNA fragment was inserted into pGEX-6P-2, pGEX-5X-1, and pGEX-4T-3 (Amersham Pharmacia Biotech), respectively. The recombinant proteins expressed in *Escherichia coli* were used to immunize rabbits, and the antisera were affinity-purified using the same recombinant proteins. Immunoblot analysis was carried out as described previously (22). Immunostaining of embryos (22) and larval and adult worms (28) was carried out as described previously. Fluorescence images were acquired with a LSM 510 confocal microscope (Carl Zeiss).

RESULTS

Identification of Four Isosforms of *C. elegans* V-ATPase Subunit a—We found that four putative genes (C26H9A.1, F35H10.4, VW02B12L.1, and ZK637.8) homologous to the bovine V-ATPase subunit a gene were present in the *C. elegans* genome (29). We determined the DNA sequences of the corresponding EST clones and found that they lacked the spliced leaders (SL1 or SL2) that are attached to the 5′ end of almost all trans-spliced transcripts (30).

Using spliced leader and gene-specific primers, reverse transcription-PCR was carried out to obtain the 5′-terminal regions of the cDNA clones. All amplified products had the SL1 sequence exclusively, implying that the corresponding genes are localized upstream of polycistronic units because SL1 is not found in the downstream genes of the units (30, 31). By combining the EST clones and PCR products, the entire cDNA sequences of these genes were determined. The cDNAs corresponding to C26H9A.1, F35H10.4, VW02B12L.1, and ZK637.8 comprised 3518, 2764, 2719, and 3158 bp (not including polyadenylation), respectively. Because these cDNAs exhibited high similarity with the mammalian counterparts, the corresponding genes were named vha-5 (F35H10.4), vha-6 (VW02B12L.1), vha-7 (C26H9A.1), and vha-8 (ZK637.8) coding for *C. elegans* subunit a isoforms (vha, vacuolar-type H⁺-ATPase). Pujol et al. (25) reported recently that unc-32 mutations were found in the coding region of ZK637.8. Therefore, we named the corresponding gene unc-32.

Sequence comparison of these cDNAs with the *C. elegans* genome showed that these genes had different numbers of exons (vha-5, 5 exons; vha-6, 6 exons; vha-7, 22 exons; and unc-32, 10 exons; Fig. 1), indicating that gene duplication was not enough to generate these isoform genes.

Amino Acid Sequence Comparison of *C. elegans* V-ATPase Subunit a Isoforms with Other Sources—cDNA analysis indicated that the vha-5, vha-6, vha-7, and unc-32 genes coded for isoforms with 873, 865, 966, and 894 amino acid residues, respectively (Fig. 2). Unexpectedly, VHA-7 (966 amino acids) was larger than the other isoforms and subunit a of different origins (7, 10–13, 15, 16). Forty-seven amino acid residues (Met-1 to Ser-47) seemed to have been additionally attached to the amino-terminal region of the ancestral protein (Fig. 2). The *C. elegans* isoforms exhibited 34.0–48.9% overall sequence identity with nine highly conserved transmembrane segments in their carboxy-terminal halves (Fig. 2, I–IX). These isoforms also exhibited 43.4–60.4% identity with bovine subunit a1, with UNC-32 showing the highest identity (60.4%) (Table I). VHA-5, VHA-6, VHA-7, and UNC-32 are 62%, 78%, 78%, and 84% similar to bovine subunit a, respectively, as estimated by DNAStar. Mutation analysis of yeast subunit a (Vph1p) revealed 11 amino acid residues important for activity, assembly, or intracellular sorting (32). These residues were completely conserved in the *C. elegans* isoforms (Fig. 2, boxes), supporting their functioning as V-ATPase subunit a.

RNA Interference of the vha-5, vha-6, vha-7, and unc-32 Genes—It is of interest to determine whether or not the four
subunit \(\alpha\) isoforms are expressed in the same cells and which isoforms are important for worm development. We addressed these questions by means of RNA interference, a powerful tool for silencing gene expression (33). We introduced dsRNAs of the isoform genes into adult worms to disrupt the expression of the corresponding genes in progenies. Introduction of \(\text{unc-32}\) dsRNA arrested almost all progenies at an embryonic stage \((H11011)\) \(\approx 100\) cells) (Table II), indicating that the \(\text{unc-32}\) gene is required for a specific process during embryogenesis.

The progenies of worms injected with \(\text{vha-5}\) dsRNA were able to develop normally up to the larval 2 (L2) stage, but most of them died at this stage (Table II). In contrast, the progenies of worms injected with \(\text{vha-6}\) dsRNA remained at the L1 stage for several days and finally died without further development. On the other hand, \(\text{vha-7}\) dsRNA had no effect on the development, morphology, or behavior of the resulting progenies or the injected worms (Table II; data not shown). These findings indicate that V-ATPases with these subunit \(\alpha\) isoforms may have critical functions at distinct developmental stages.

Table I

Amino acid sequence comparison of the four \(C.\) elegans and bovine subunit \(\alpha\) proteins

Subunit \(\alpha\)	VHA-5	VHA-6	VHA-7	UNC-32
VHA-5	47.7			
VHA-6	51.5	47.9		
VHA-7	52.5	54.5	48.5	
UNC-32	54.8	49.4	43.4	60.4

Table II

RNA interference with the four \(\alpha\) isoform genes

Each dsRNA (0.2 mg/ml) was injected into hermaphrodites. To exclude prefertilized eggs, the injected worms were transferred to new plates at 8 h after injection. They were incubated for an additional 16 h and then eggs were collected. Progenies (embryos and larvae (L1, L2, or L3)) were identified and counted at 48 or 72 h after injection, and developmental arrest was scored.

dsRNA Injected	Progeny Developmental arrest (%)			
	48 h (embryo/L1)	72 h (L1/L2/L3)	48 h	72 h
\(\text{vha-5}\)	5/268	5/248	98.9	
\(\text{vha-6}\)	3/277	202/100	95.3	
\(\text{vha-7}\)	5/379	2/10352	3.3	
\(\text{unc-32}\)	12/402	N.D.	98.8	

* Almost all progenies had finally died at the indicated developmental stages.

Cell-specific Expression of V-ATPase Subunit \(\alpha\) Isoforms in \(C.\) elegans—We visualized the expression of these genes using GFP reporter genes. The genomic organization around these genes supports the argument that a promoter region for a polycistronic unit is present in front of the corresponding gene (Fig. 1). Based on this observation, the upstream region and a part of the exons for each isoform were inserted in front of the GFP gene.

In transgenic worms carrying the \(vha-5:\)GFP construct, a fluorescent signal was strongly detected in an H-shaped excre-
The GFP gene was also detectable in the uteri of adult worms but not in embryos. (Hypodermal cells were clearly detectable because the GFP fusion had a nuclear localization signal. The GFP fusion was also expressed in the hypodermis around the vulva (C, arrow). E–H, L1 (E and F) and adult (G and H) worms harboring the vha-6::GFP plasmid (pHJ-V6P03). The vha-6::GFP fusion gene was expressed exclusively in intestinal cells (E and G, arrowheads). I–L, L1 (I and J) and adult (K and L) worms carrying the vha-7::GFP plasmid (pHJ-V7P01). The vha-7 promoter region was highly active in hypodermal cells. Nuclei (I, arrowheads) of the hypodermal cells were clearly detectable because the GFP fusion had a nuclear localization signal. The GFP signal was also detectable in the uteri of adult worms but not in embryos. M–P, L1 (M and N) and adult (O and P) worms harboring the unc-32::GFP plasmid (pHJ-U32P01). In L1 larvae, the unc-32::GFP gene was highly expressed in the nerve ring (M, arrow) and the ventral nerve cord (M, arrowhead). The signal was clearly observed in the spermathecal-uterine valve, which is located between the uterus and the spermatheca (O, arrowhead). Ph, pharynx; EC, H-shaped excretory cell canal; Vu, vulva; In, intestine; Hy, hypodermal cell; Ut, uterus; NR, nerve ring; VNC, ventral nerve cord; SUV, spermathecal-uterine valve; Sp, spermatheca. Scale bars, 50 μm.

Fig. 3. Expression of the GFP reporter gene in transgenic worms. Transgenic worms carrying different expression plasmids were fixed with 4% paraformaldehyde in phosphate-buffered saline. Fluorescence confocal images (A, C, E, G, I, K, M, and O) and merged images with phase contrast (B, D, F, H, J, L, N, and P) were acquired. A–D, L2 (A and B) and adult (C and D) worms carrying the vha-5::GFP plasmid (pHJ-V5P01). The GFP signal was detectable in an H-shaped excretory cell (A and C, white arrowheads) and in the pharynx (A and C, open arrowheads). In adult worms, the GFP fusion gene was also expressed in the hypodermis around the vulva (C, arrow). E–H, L1 (E and F) and adult (G and H) worms harboring the vha-6::GFP plasmid (pHJ-V6P03). The vha-6::GFP fusion gene was expressed exclusively in intestinal cells (E and G, arrowheads). I–L, L1 (I and J) and adult (K and L) worms carrying the vha-7::GFP plasmid (pHJ-V7P01). The vha-7 promoter region was highly active in hypodermal cells. Nuclei (I, arrowheads) of the hypodermal cells were clearly detectable because the GFP fusion had a nuclear localization signal. The GFP signal was also detectable in the uteri of adult worms but not in embryos. M–P, L1 (M and N) and adult (O and P) worms harboring the unc-32::GFP plasmid (pHJ-U32P01). In L1 larvae, the unc-32::GFP gene was highly expressed in the nerve ring (M, arrow) and the ventral nerve cord (M, arrowhead). The signal was clearly observed in the spermathecal-uterine valve, which is located between the uterus and the spermatheca (O, arrowhead). Ph, pharynx; EC, H-shaped excretory cell canal; Vu, vulva; In, intestine; Hy, hypodermal cell; Ut, uterus; NR, nerve ring; VNC, ventral nerve cord; SUV, spermathecal-uterine valve; Sp, spermatheca. Scale bars, 50 μm.

Immunodetection of the vha-5 and vha-6 Gene Products— Reporter gene analysis revealed that the four isoforms were expressed in distinctly different cells. Thus, it became of interest to determine their intracellular localization during development. Of these genes, the vha-5 and vha-6 genes were essential for larval development, whereas the unc-32 (Table II), proteolipid, and C subunit genes (22) were required for embryogenesis. We focused on VHA-5 and VHA-6 because analysis of their locations may provide clues with regard to acidic compartments or cells required for larval development. Affinity-purified antibodies against VHA-5 clearly recognized a single band (106 kDa) for a lysate of a mixed-stage population (Fig. 4A, lane 1). Anti-VHA-6 antibodies bound specifically to a 100-kDa band exhibiting slight smearing (~106 kDa) (Fig. 4A, lane 2). These molecular masses were larger than the calculated molecular weights (99,311, VHA-5; 98,538, VHA-6), suggesting that VHA-5 and VHA-6 were posttranslationally modified. Because bovine subunit α is known to be an N-linked glycosylated protein (36), the two isoforms may also be N-linked glycosylated.

Immunoprecipitation of a Isoforms with Other V-ATPase Subunits— The membrane fraction of a mixed-stage population was incubated with octylglucoside, the solubilized fraction was treated with antibodies against each isoform, and 12% polyacrylamide gel electrophoresis was performed on the immunoprecipitate in the presence of sodium dodecyl sulfate. As shown by immunoblot (Fig. 4B), the immunoprecipitate obtained with antibodies against VHA-5, VHA-6, and UNC-32 contained subunit C of the membrane extrinsic V1 sector. These results, together with high similarities to the bovine a1 isoform, suggest that the VHA-5, VHA-6, and UNC-32 isoforms were as-
Four Subunit a Isoforms of C. elegans V-ATPase

33083

section pattern of VHA-6 was similar to the cell-specific distribution of P granules, which are passed onto a germ line cell lineage from P2 cells (37).

After the comma stage in embryos, expression of VHA-6 changed. In 2-fold embryos, VHA-6 was limited to the intestine (Fig. 6F, arrowheads). Such intestinal expression was also observed in larvae (L1, Fig. 6G; L3, Fig. 6H) and adults (data not shown). The C. elegans intestine comprises a tube formed from 20 cells with microvilli on their apical surface (38). VHA-6 was clearly detectable on the apical surface of intestinal cells, forming two lines along the worm body (Fig. 6, G and I, arrowheads). Furthermore, VHA-6 was clearly found at the junction between the pharynx and the intestine (Fig. 6, H and I, arrows). These results indicate that VHA-6 on the apical surface of intestinal cells may function by taking up nutrients through microvilli.

DISCUSSION

We have identified four genes (vha-5, vha-6, vha-7, and unc-32) encoding subunit a isoforms of C. elegans V-ATPase. These gene products exhibit high identity and completely retain 11 amino acid residues essential for the activity, assembly, or intracellular sorting of yeast V-ATPase (32). We have found no homologues in the C. elegans genome except for these genes. These results indicate that this is the first example of four distinct isoforms of V-ATPase subunit a being identified in higher eukaryotes. Pujol et al. (25) reported that the unc-32 gene gives rise to six different transcripts through alternative splicing. However, no alternatively spliced transcript for vha-5, vha-6, or vha-7 has been found in the EST data base. Subunit a isoforms have been identified in human (11–13), mouse (7, 14), cow (15), chicken (16), and yeast (10). We recently found a fourth isoform (a4) of mouse subunit a, similar to the case of C. elegans, implying that at least four a isoforms are required in higher eukaryotic cells.

Transgenic analysis involving the GFP reporter gene showed that the four isoforms were expressed in a cell-specific manner. The vha-5, vha-6, vha-7, and unc-32 promoters were highly active in the H-shaped excretory cells, intestine, hypodermis, and nerve cells, respectively. It is noteworthy that the vha-7 and unc-32 genes were strongly expressed in the uteri of hermaphrodites. Thus, the two gene products may have maternal roles in embryonic development.

VHA-5 was expressed predominantly in H-shaped excretory cells in adult worms. The excretory cells are thought to function in osmoregulation and the excretion of toxic and metabolic waste (39–42). We found that the cells preferentially express the genes for the 16-kDa proteolipid (vha-1, vha-2, and vha-3), the 23-kDa proteolipid (vha-4), and the C (vha-11) subunits of V-ATPase (22, 26, 34). These findings suggest that VHA-5 may be a critical isoform of V-ATPase with regard to its function in the H-shaped excretory cells. Furthermore, RNA interference analysis of the vha-5 gene showed that the progenies of worms injected with vha-5 dsRNA died specifically at the L2 stage. These results imply that further development of L2 larvae requires excretory functions driven by V-ATPase with the VHA-5 isoform.

V-ATPases localized on plasma membranes are known to generate an acidic environment outside the cells. They are found in osteoclasts (7), renal intercalated cells (8), epithelial cells of seminal ducts (9), and the bladder (43). Toyomura et al. (7) have clearly shown that the mouse subunit a3 isoform plays important roles in determining the V-ATPase localization in the plasma membrane. We have shown that VHA-6 is distrib-

2 T. Oka and M. Futai, unpublished data.
3 T. Oka and M. Futai, manuscript in preparation.
uted specifically on the apical surface of intestinal cells in larval and adult worms. The amino-terminal region (1–140 amino acid residues) of VHA-6 was sufficient for localization on the apical surface (data not shown). We speculate that VHA-6 is a key subunit for the sorting of V-ATPase to the plasma membrane to acidify the intestinal lumen.

RNA interference analysis showed that vha-6 dsRNA arrested larval development at the L1 stage. The L1 larvae did not die immediately but remained alive for up to a week. This phenotype is similar to that of L1 larvae starved after hatching. The L1 larvae of the vha-6 dsRNA-injected worms took up a fluorescence dye, DiO, into their intestinal lumen (data not shown), indicating that vha-6 dsRNA did not affect the food intake ability of the worms. Thus, it is reasonable to assume...
that defective proton transport into the intestinal lumen due to
the lack of VHA-6 arrested worm development at the L1 stage.
These results suggest that luminal proton transport by V-
ATPase with the VHA-6 isomorph may be essential for the di-
gestion of food or uptake through microvilli. In this regard,
V-ATPase localized on the plasma membrane in the larval
midgut of the tobacco hornworm, Manduca sexta, is important
to generate a proton gradient (44).

In contrast to the intestinal expression during postembry-
onic development, VHA-6 was found predominantly in P2 cells
in 4-cell embryos. The expression continued to a germ line cell
lineage (P3, P4, Z2, and Z3 cells) until the comma stage. Intro-
duction of vha-6 dsRNA abolished this embryonic expression
(data not shown). Although Z2 and Z3 cells finally proliferate
to germ cells (45), VHA-6 was not observed in the gonads or
spermatheca of adult worms. It should be noted that the ex-
pression of VHA-5 and VHA-6 changed dramatically between
the embryonic and larval stages. As described above, expres-
sion of VHA-5 and VHA-6 was observed in germ line cells during
the embryonic stage but was observed in intestinal cells in larvae
and adults. This suggests the requirement of different acidic
compartments during development.

Acknowledgments—We thank Dr. Andy Fire for the GFP reporter
plasmids, Dr. Alan Coulson for the C29H9, F35H10, and ZK637 cosmid
drugs, and Dr. Yuji Kohara for the C. elegans
plasmids, Dr. Alan Coulson for the C29H9, F35H10, and ZK637 cosmid

REFERENCES
1. Graham, L. A., Powell, B., and Stevens, T. H. (2000) J. Exp. Biol. 203, 61–70
2. Boekema, E. J., van Bremeren, J. F. L., Brisson, A., Ubbink-Kok, T., Konings,
W. N., and Lolkema, J. S. (1999) Nature 401, 37–38
3. Futai, M., Oka, T., Sun-Wada, G. H., Moriysama, Y., Kanazawa, H., and Wada,
Y. (2000) J. Exp. Biol. 203, 107–116
4. Powell, B., Graham, L. A., and Stevens, T. H. (2000) J. Biol. Chem. 275,
22654–22660
5. Anraku, Y. (1996) in Handbook of Biological Physics (Konings, W. N., Kahback,
H. R., and Lolkema, J. S., eds) Vol. 2, pp. 93–109, Elsevier Science Publish-
ing Co., Inc., New York
6. Nelson, N., and Harvey, W. R. (1999) Physiol. Rev. 79, 361–385
7. Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., and Futai, M. (2000) J. Biol.
Chem. 275, 8760–8765
8. Brown, D., and Breton, S. (2000) J. Exp. Biol. 203, 137–145
9. Breton, S., Smith, P. J. S., Liu, B., and Brown, D. (1996) Nat. Med. 2, 470–472
10. Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A.,
and Jones, W. K. (1994) J. Biol. Chem. 269, 14064–14074
11. Lee, C., Ghoshal, K., and Beier, D. R. (1999) Mol. Immunol. 35, 1137–1144
12. Peng, S. B., Crider, B. P., Xie, X. S., and Stone, D. K. (1994) J. Biol. Chem.
269, 17262–17266
13. Li, Y. P., Chen, W., and Stashenko, P. (1996) Biochem. Biophys. Res. Commun.
218, 813–821
14. Nishi, T., and Forgac, M. (2000) J. Biol. Chem. 275, 6824–6830
15. Fire, A., Li, X., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello,
C. C. (1998) EMBO J. 17, 4253–4262
16. Castagna, M., Shayakul, C., Trotti, D., Sacchi, V. F., Harvey, W. R., and
Hediger, M. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5395–5400
17. Schedl, T. (1997) in Caenorhabditis elegans II (Riddle, D. L., Blumenthal, T.,
Meyer, B. J., and Priess, J. R., eds) pp. 241–270, Cold Spring Harbor Labora-
tory Press, Cold Spring Harbor, NY

Four Subunit a Isoforms of C. elegans V-ATPase

33085

by guest on July 27, 2018
http://www.jbc.org/ Downloaded from

Downloaded from http://www.jbc.org/
Four Subunit a Isoforms of Caenorhabditis elegans Vacuolar H⁺-ATPase: CELL-SPECIFIC EXPRESSION DURING DEVELOPMENT
Toshihiko Oka, Takao Toyomura, Kenta Honjo, Yoh Wada and Masamitsu Futai

J. Biol. Chem. 2001, 276:33079-33085.
doi: 10.1074/jbc.M101652200 originally published online July 5, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M101652200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 42 references, 19 of which can be accessed free at
http://www.jbc.org/content/276/35/33079.full.html#ref-list-1