Comparative proteome analysis of *Picrorhiza kurrooa* Royle ex Benth. in response to drought

Sanjeeta K1†, Jai Parkash12†, Prakash Jyoti Kalita1, Manjula Devi1, Jyoti Pathania1, Robin Joshi1 and Som Dutt12*

Correspondence: sd_bio@yahoo.com
†These authors contributed equally to this work.
1Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.
2Academy of Scientific and Innovative Research, India.

Abstract

Picrorhiza (*Picrorhiza kurrooa* Royle ex Benth.) is an important medicinal herb of western Himalayan region and has been used to treat various diseases and disorders. Over-harvesting and lack of cultivation has led to its entry in Red Data Book as an endangered species. Its very restrictive and narrow habitat and the lesser biomass production are the main limitations for bringing it under commercial cultivation. Both these issues necessitate deeper insights into its growth and interaction with the environmental cues. Present study aimed at analysis of molecular response of *Picrorhiza* to drought stress. For the purpose comparative proteomics of *Picrorhiza* leaf and root under drought stress was performed. Denaturing two dimensional gel electrophoresis and mass spectrometry techniques were used to detect and identify differentially expressed proteins, respectively. Thirteen proteins from leaf and 18 proteins from root showed differential expression levels under drought condition. Among the differentially expressed proteins, majority were those involved in metabolism, photosynthetic process, transcription and protein synthesis. Other differentially expressed proteins were those involved in stress and defense response, transport, signaling and cytoskeleton development indicating that many different processes work together to establish a new cellular homeostasis in response to drought stress. Proteins found to be differentially expressed under drought condition suggested a range of biochemical pathways and processes being associated with response of plant to drought condition. The identified proteins and the associated biological processes may be utilized for developing strategies for improving *Picrorhiza* for drought tolerance.

Keywords: *Picrorhiza kurrooa*, proteomics, drought stress, MALDI-ToF/ToF, mass spectrometry

Introduction

Picrorhiza (*Picrorhiza kurrooa* Royle ex Benth.) is a small perennial herb (Family Plantaginaceae) and grows primarily in the north-western Himalayan region at an altitude of 3000-5000 m above mean sea level. Its underground parts, rhizomes and roots are widely used in traditional system of medicine due to its antioxidative, hepatoprotective, antiproliferative, immunomodulatory, antibacterial and antiviral activities [1]. The plant is self-regenerating but unregulated over-harvesting has caused it to be threatened to near extinction and thus *Picrorhiza* has been listed in the Red Data Book as an endangered plant species [2]. Medicinal importance of *Picrorhiza* on one side and its listing in Red Data Book on the other side presses urgent need for intensive R&D interventions towards ensuring its availability for the medicinal use, its sustainability and improvement. In line with this, recently we reported the differential spatio-temporal status of various components of antioxidant system of *Picrorhiza*. Ascorbic acid was found to be highest in leaves and lowest in roots. Interestingly, just opposite to that, glutathione was highest in roots and lowest in leaves [3]. Also, a translation initiation factor eIF5a transcript was found to be associated with leaf senescence as well as regulated by exogenous application of ABA [4]. Narrow range habitat of *Picrorhiza* i.e., limited only to certain niches of Himalayan region further demands detailed studies on its interaction with environmental factors. Among various environmental cues having adverse effects on plants growth and productivity, drought stress (i.e., insufficient availability of water) has become a major deleterious factor. Drought stress disturbs cellular homeostasis and can lead to severe retardation in growth and development [5]. Drought stress can also have a devastating effect on plant metabolism. The effect of drought stress can be manifested in many ways, as varied morphological, physiological and biochemical changes in plants. In addition to the physiological and biochemical responses of plants to water stress, dissection of molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. In the present work, we performed comparative analysis of proteome of *Picrorhiza* in response to drought stress. Two-dimensional (2D) gel electrophoresis was
firstly used to separate proteins expressed under drought condition and resulting proteomic patterns were compared. The differentially expressed proteins were identified by MALDI-ToF/ToF and searched for their biological functions.

Materials and methods
Picrorhiza (Picrorhiza kurrooa) plants used in the present study were collected from the naturally grown area of Rohtang pass (4100 m elevation, 32° 23' N, 77° 15' E, Kullu district of Himachal Pradesh, India). The plants were transplanted in plastic pots (25 cm height × 24 cm top diameter × 15 cm bottom diameter), containing soil, sand and FYM mixture in a ratio of 2:1:1. These plants were maintained and grown under polyhouse conditions at CSIR-Institute of Himalayan Bioresource Technology (1300 m elevation; 32° 06' N; 76° 33' E), Palampur, Himachal Pradesh, India as described by [3,4]. Plants were allowed to acclimatize for 2 months before start of the experiment.

Imposition of drought stress and harvesting of samples
Thirty plants of Picrorhiza (approximately 2 months old) were used for drought stress related experimentation. For imposition of drought stress, plants were divided into two sets of 15 plants each set. In one set, drought stress was imposed on the plants by withholding regular watering, whereas regular watering (200 ml each pot) on alternate days was done in one set of the plants (hereinafter will be referred to as control plants) during whole course of the experiment i.e., 10 days. Sampling for protein extraction was carried out on day 10 of the drought stress treatment. In case of control as well as drought stressed plants, leaves (without petiole) from 3 plants were excised, mixed and weighed 1g. This was referred to as one biological replicate. This way three independent biological replicates were collected for both, control and drought stressed plants. The collected samples were wrapped in labeled aluminum foil, immediately frozen in liquid nitrogen and stored at -80°C till further analysis. For sampling of roots, the plants were carefully uprooted from the pots. The roots were made soil free by gently removing soil with filter paper. Roots from 3 plants each from control and drought stressed plants were harvested, cut in small pieces and mixed thoroughly. One gram of the mixed roots were wrapped in labeled aluminum foil, immediately frozen in liquid nitrogen and stored at -80°C till further analysis. This was referred to as one biological replicate. In case of roots also, three independent biological replicates were collected for both, control and drought stressed plants. Hence, total 12 samples (6 leaf and 6 root samples) were harvested and used for 2 proteomics analysis.

Measurement of relative water content
The plants kept for drought stress experimentations were used for estimation of relative water content (RWC). Sampling of leaf tissue for RWC estimation was performed from the same plants used for measurement of photosynthesis, stomatal conductance and transpiration rate. Leaf disks of 1.5 cm diameter were cut from leaves at 3rd, 4th and 5th positions (starting from the top) of 3 plants each of control and those under drought stress. The cut disks were mixed and divided into 3 sets of 5 disks in each set. These cut disks were weighed to obtain the fresh weight and put in preweighed empty eppendorf tubes of 1.5 ml. The tubes were filled up with deionized water and incubated inside ice for a period of 4 h; this gave the turgid weight of the leaf. The tubes were then dried inside the oven at 60°C for a period of 72 h or till the constant weight was observed to obtain the dry weight. The RWC of the leaves was calculated from the following formulae:

\[
\text{RWC} (%) = \frac{\text{Fresh weight} - \text{Dry weight}}{\text{Turgid weight} - \text{Dry weight}} \times 100
\]

The data was subjected to statistical analysis for the significance using t-test as described by [6].

Measurement of photosynthesis, stomatal conductance and transpiration rate
Photosynthesis, stomatal conductance and transpiration rates were measured using a portable infra-red gas analyser (IRGA; model LI-6400; Li-Cor, Lincoln, USA). IRGA was zeroed for CO₂ and H₂O using a CO₂ scrubber and desiccant, respectively. The instrument computed the parameters by measuring the airflow rate, the incoming and chamber CO₂ concentrations, and leaf area. Observations were recorded on 3 plants both for control as well as water stressed plants.

Extraction of proteins from leaf and root samples
In leaf as well as root tissue extraction of protein was performed for the three independent biological replicates for control as well as drought stressed plants described under “Imposition of drought stress and harvesting of samples” section. Harvested leaf and root samples were put in liquid nitrogen for 10-15 min, followed by grinding to fine powder. Soluble proteins were extracted from the leaf and root samples by adding 25 ml of extraction buffer (10% trichloracetic acid (TCA) in chilled acetone with 0.07% β-mercaptoethanol) to one gram of fine powder, followed by 1 min of vortex agitation. The homogenate was kept at -20°C for 2-3 h, and then centrifuged at 12,000xg, 4°C for 15 min. The pellet was resuspended with 80% acetone containing 0.07% β-mercaptoethanol and 2 mM EDTA and kept at -20°C overnight [7]. In case of leaf samples this step was repeated until pellet obtained was completely free from chlorophyll. After centrifugation, the pellet was resuspended with 100% acetone containing 0.07% β-mercaptoethanol, 2mM EDTA and then centrifuged at 12000xg, at 4°C for 20 min and vacuum dried. The lyophilized powder was resuspended in 1-1.5 ml rehydration buffer (7 M Urea, 2M Thiourea, 2% CHAPS, 25mM DTT added fresh) and kept at 25°C for 4h. The insoluble precipitates were removed by centrifugation at
12,000×g for 30 min at 4°C. Protein concentration of the final supernatant was measured according to Bradford protein assay [8]. The protein concentration was expressed on tissue’s (leaf/root) fresh weight (fw) as well as dry weight (dw) basis. For estimation of dry weight, 200 mg of fresh tissue sample was kept at 60°C for 72 h and subsequently weighed at regular intervals until constant weight was achieved. The observed weight was taken as dry weight.

Two-dimensional gel electrophoresis

Protein extracted from three biological replicates for both leaf and root tissue of control as well as drought stressed plants were subjected to two-dimensional gel electrophoresis. Thus, total 12 gels were run. For two-dimensional (2 D) gel electrophoresis, extracted protein (50 µg) was dissolved in IEF rehydration buffer, 2 µl carrier ampholytes and loaded on to Immobilized pH gradient (IPG) strips (pH, 4–7; Length, 11 cm; Bio-Rad, USA). Isoelectric focusing (IEF) was performed with the parameters as follows: 250V for 15 min, 4000 V for 1 h, 8,000 V for 35,000 Vh and finally held at 500 V. On completion of IEF, strips were firstly equilibrated for 20 min in reducing solution [6 M urea, 375 mM Tris–HCl (pH 8.8), 20% v/v glycerol, 2% w/v SDS, 130 mM DTT] and subsequently placed for another 20 min in alkylating equilibration buffer containing 135 mM iodoacetamide according to [9]. Second dimension SDS-PAGE was run on 12% polyacrylamide gels according to [10]. Gels were fixed overnight in 40% methanol/1% glacial acetic acid solution and after overnight fixing, the gels were stained using a modified silver-staining method that is compatible with MS [11].

Image acquisition and analysis

2D gel images were acquired by using a GS-800 calibrated densitometer scanner (Bio-Rad). The twelve 2D gels obtained from leaf as well as root samples were analysed. Protein spot quantification was performed using PDQuest software (ver. 8.0.1, Bio-Rad) which allowed automatic spot detection, landmark identification and spot aligning/matching within gels and quantification of matched spots; manual gel inspection was performed to correct any error prior to final data analysis. Each spot present on the master gel met several criteria: it was present in at least two of the three gels and was qualitatively comparable in size and shape in the replicate gels. We classify “low-quality” spot as those with a quality score <30; these spots were eliminated from further analysis. The remaining high quality spot quantities were used to calculate the mean for a given spot, and this value was used as the spot quantity on the standard gel. The spot intensities were normalized against the total intensity of the gel image using the PDQuest software with local regression model normalization method. Intensities of differentially expressed proteins were determined by PDQuest software. Increasing and decreasing index (fold change) was calculated as the ratio of the spot intensities (relative volumes) in drought with respect to the control gels. Differentially expressed spots showing reproducibility were marked with PDQuest software and marked manually. The threshold of protein spot abundance ratios was set at ≥1.5-fold (treatment/control) or >−1.5 fold (control/treatment). A Student’s t-test was used for drawing comparison between drought stress protein expressions with respect to controls using the statistical software. Difference in protein expression was considered statistically significant for P values of ≤0.05. The molecular mass of each protein was estimated by comparing with those of standard marker proteins (Bio-Rad), and the isoelectric point (pI) was determined by the spot positions along the immobilized pH gradient strips.

In-gel protein digestion and mass spectrometry

Differentially expressed protein spots were manually selected and excised from silver-stained polyacrylamide gels. Those spot which were up regulated/down regulated/present only in response to drought were excised from 2D gels of samples from drought stressed plants whereas the spots which were absent in 2D gels of samples from drought stressed plants were excised from 2D gels of samples from control plants. Gel pieces were destained in mixture (1:1; v/v) of 30mM potassium ferricyanide and 100mM sodium thiosulfate at room temperature for 20 min. The immersed gel pieces were intermittently vortexed until destained, washed three times with 200µl of Milli-Q water (each time for 5 min) and dehydrated in 100µl of acetonitrile. The gel samples were swollen in 25 µl of a trypsin (Sigma, USA) solution (20µg/ml in 25 mmol/L NH₄HCO₃) for 30 min at 37°C and further incubated overnight at 37°C. For each digest, the peptides were extracted from the gels twice with 50% trifluoroacetic acid/50% acetonitrile, at room temperature. To the extracted peptide mixture was added 0.5 µl of α-Cyano-4-hydroxy-cinnamic acid (Bruker) (20mg/ml) in 0.1% trifluoroacetic/30% (v/v) acetonitrile (1:2) and dried at room temperature. The extracted peptides were subjected to MS using MALDI-ToF/ToF- Proteomics Analyzer (UltraflieXtreme™ mass spectrometer; Bruker Daltonics Inc. Germany). A mass standard starter kit (Bruker DaltonicsInc, Germany) and a standard trypsic BSA digest (Bruker DaltonicsInc, Germany) were used for MS and MS/MS calibrations of the system. A combined MS and LIFT-MS/MS were performed using BioTools 3.0 software (Bruker Daltonics Inc, Germany). The TOF spectra were recorded in positive ion reflector mode with a mass range from 700 to 3500 Da. Five hundred shots were accumulated for each spectra. Two most abundant peptide ions were then subjected to fragmentation analysis to determine the peptide sequence. Database search was performed using MASCOT search engine (Version 2.1, Matrix Science, London, U.K) and Swiss Prot database (Release date, 5th May, 2013; version 121; 540052 sequences). All peptide masses were assumed monoisotopic and [M+H]+. The other parameters used for search were as follows: taxonomy, Viridiplantae (green plants 33813 sequences); enzyme, trypsin; the fixed modification;
carbamidomethyl (C); the variable modification, Glu->pyro-Glu (N-term Q) and oxidation (M); parent ion mass tolerance at 100 ppm and MS/MS mass tolerance of 0.7 dalton; one missed cleavage allowed. The identified proteins had to meet three criteria: (1) be among the top hits on the search report; (2) individual ions scores > 44 indicate identity or extensive homology (p<0.05) as used by various workers [12-14]. Only proteins matched by a minimum of two peptide sequences were included in the results list. Also, to evaluate protein identification, the percentage of sequence coverage was considered. The confidence in the peptide mass fingerprinting matches was based on the score level and confirmed by the accurate overlapping of the matched peptides with the major peaks of the mass spectrum.

Functional categorization of identified proteins
The identified proteins were searched for their biological functions using UniProt database (http://www.uniprot.org), http://www.expasy.org. Three independent ontological sets in the Viridiplantae taxonomic database were used to annotate and group the proteins according to biological process, molecular function and cellular compartmentalization. Upon getting the relevant information about biological functions the identified differentially expressed proteins were classified in different groups.

Results

Protein content in Picrorhiza under drought vis-à-vis control
Total protein from leaf as well as root samples collected from plants under control and those under drought were extracted and quantified. In control plants the protein content was 1494±19 (μg/g leaf tissue) and 16444±162 (μg/g leaf tissue) on fresh weight and dry weight basis, respectively (Figure 1). In case of plants under drought stress, the protein content was 1130±127 (μg/g leaf tissue) and 10400±1192 (μg/g leaf tissue) on fresh weight and dry weight basis, respectively. In case of roots, in control plants the protein content was 789±14 (μg/g root tissue) and 7023±160 (μg/g root tissue) on fresh weight and dry weight basis, respectively (Figure 1). In case of drought stressed plants 881±31 (μg/g root tissue) and 6357±254 (μg/g root tissue) on fresh weight and dry weight basis, respectively. This way drought stress resulted in 24% and 37% decrease in leaf protein content on fresh weight and dry weight basis, respectively. In case of roots, drought stress resulted in 12% increase in protein content when calculated on fresh weight basis, whereas, 9% decrease in protein content was observed on dry weight basis (Figure 1).

Physiological parameters
Photosynthetic rate, stomatal conductance, transpiration and relative water content (RWC) was measured and compared. In control plants, photosynthesis rate on the 4th leaf was 8±1.0 μmolm² s⁻¹. In case of drought stressed plants 7±0.04 μmolm² s⁻¹ photosynthesis rate was recorded (Table 1). Likewise, stomatal conductance in control plants and drought stressed

Physiological parameter	Control	Stress	% Change w.r.t. control
Photosynthesis (μmolm⁻² s⁻¹)	8±1.0	7±0.04	(-)12.5*
Stomatal conductance (mmolm⁻³ s⁻¹)	0.12±0.01	0.09±0.01	(-)25.0
Transpiration (mmolm⁻³ s⁻¹)	4±0.4	3±0.2	(-)25.0*
Relative water content (%)	74±1.0	41±3.0	(-)44.6*

*Statistical significant difference (p<0.05).
plants were 0.12±0.01 mmolm⁻² s⁻¹ and 0.09±0.01 mmolm⁻² s⁻¹, respectively. Similarly, transpiration rate was found to be 4±0.4 nmolm⁻² s⁻¹ and 3±0.2 nmolm⁻² s⁻¹, respectively, in control plants and those under drought stress. RWC in control plants was detected to be 74±1.0%, whereas, in plants under drought, RWC was found to be only 41±3.0%. Thus, overall, drought stress resulted in 12.5%, 25.0%, 25.0% and 44.6% decrease in photosynthetic rate, stomatal conductance, transpiration rate and relative water content, respectively (Table 1). The decrease was found to be statistically significant for all the four measured parameters except for stomatal conductance.

Detection of differentially expressed proteins
Samples harvested on day 10 of the experimentation were analyzed for comparative proteomics. In case of leaf assembled first level matchset (master image) from three replicate 2 D gels 397 in control and 401 under drought stress were reproducibly detected (Supplement figure S1). The spots with quality value >30 (detected by PDQuest software) were considered as “high quality” spots. This way, 296 and 294 were classified as “high quality” spots detected in case of leaf from control and those from drought stressed plants (Table 2). Similarly, in roots, 398 in control and 391 under drought stress were re-producibly detected (Supplement figure S2). Of these, 359 and 352 were classified “high quality” spots, in case of root from control and those from drought stressed plants (Table 2).

Sample	Average no. of spots	Low quality spots	High quality spots	Reproducibility (%)
Leaf (control)	397	101	296	74.55
Leaf (drought stress)	401	107	294	73.31
Root (control)	398	39	359	90.20
Root (drought stress)	391	39	352	90.02

*Average no. of spots present in three replicate gels of each sample
**Spots having quality score more than 30 assigned by PDQuest (ver.8.0.1)

In case of leaf, 13 spots were found to be differentially expressed with ≥1.5 fold differences in spot intensity and having p values <0.05 (Figure 2). Of these, 8 spots increased and 3 spots decreased in relative abundance in plants under drought. Two new spots were present only in plants under drought condition (Figure 2). Mass spectrometry analysis revealed the identities of these proteins using peptide mass fingerprinting. Identity of the 6 spots was reconfirmed by MS/MS (Table 1). Similarly, in case of root, 18 spots were found to be differentially expressed with ≥1.5 fold differences in spot intensity and having p values <0.05 (Figure 3). Of the 18, 13 spots increased and 2 spots decreased in relative abundance in plants under drought. Three new spots were detected in plants kept under drought (Figure 3). Mass spectrometry analysis revealed the identities of these proteins using peptide mass fingerprinting. Identity of the 5 spots was reconfirmed by MS/MS (Table 4).
| New spot no | Maximum homology with (protein name) | Best protein match organism | Swiss prot accession no. | Expt. MW/Theor. MW (kDa) | Exp t.pl/Theor.pI | No. of peptides matched | MS Score | Sequence coverage (%) | Biological function | Cellular component | Molecular function | Expression status* | Relative fold change (vs control) | P value |
|-------------|------------------------------------|-----------------------------|-------------------------|--------------------------|----------------------|-----------------------|----------|----------------------|------------------|------------------|--------------------|------------------|-------------------|----------------|---------|
| 6 | Peptidyl-prolyl cis-trans isomerase | Brassica napus | CYPH_BRANA 80/18.7 | 5.5/8.5 | 5 | 62 | 42 | Protein folding | Cytoplasm | Peptide binding | URUD | 1.8 | 0.011 |
| 7 | ATP synthase subunit beta | Gossypium barbadense | ATPB_GOSBA 80/53.6 | 5.6/5.1 | 7 | 61 | 24 | Plasma membrane ATP synthesis coupled proton transport | Chloroplast thylakoid membrane | ATP binding | URUD | 2.0 | 0.006 |
| 10 | ATP synthase subunit beta | Medicago sativa | ATPB_MEDSA 66/52.7 | 5.5/5.1 | 13 | 153 | 38 | Plasma membrane ATP synthesis coupled proton transport | Chloroplast thylakoid membrane | ATP binding | URUD | 2.0 | 0.0036 |
| 11 | Endoglucanase 9 | Arabidopsis thaliana | GUN9_ARATH 40/53.6 | 6.2/8.7 | 11 | 68 | 33 | Carbohydrate metabolism | Golgi apparatus | Cel lulase activity | DRUD | 0.6 | 0.0204 |
| 16 | Phenylalanine ammonia-lyase G1 | Populus kiaukamenci | PAL1_POPKI 40/74.9 | 5.4/6.1 | 8 | 54 | 29 | L-phenylalanine catabolic process,cinnamic acid biosynthetic process | Cytoplasm | Phenylalanine ammonia-lyase activity | URUD | 7.3 | 0.0006 |
| 20 | Cytochrome b6-f complex subunit 6 | Scenedesmus obliquus | PETL_SCEOB 30/34.9 | 6.1/9.5 | 2 | 42 | 84 | Oxidation-reduction process, photosynthesis | Chloroplast thylakoid membrane | Transferring electrons within cytochrome b6/f complex of photosystem II activity | URUD | 4.0 | 0.003 |
| 21 | NAD(P) H-quinone oxidoreductase subunit 4L | Zea mays | NU4LC_MAIZE 29/11.4 | 6.2/9.6 | 5 | 58 | 52 | Photosynthesis | Chloroplast thylakoid membrane | Oxidoreductase activity | DRUD | 0.6 | 0.0042 |
| 22 | Hexokinase-1 | Oryza sativa subsp. japonica | HXK1_ORYSJ 25/52.1 | 6.4/4.8 | 10 | 52 | 22 | Glycolysis | Unknown | Hexokinase activity | POU D | 0 | 0 |
| 23 | Putative defensin-like protein 239 | Arabidopsis thaliana | DF239_ARATH 28/11.3 | 5.2/8.09 | 4 | 40 | 44 | Defense response to fungus | Extracellular region | Unknown | URUD | 3.4 | 0.0001 |
| 28 | 50S ribosomal protein L2 | Scenedesmus obliquus | RK2_SCEOB 20/30.7 | 6.8/11.2 | 5 | 52 | 24 | Translation | Chloroplast | rRNA binding | DRUD | 0.5 | 0.0034 |
| 32 | Auxin-responsive protein IAA13 | Arabidopsis thaliana | IAA13_ARATH 27/26.7 | 4.2/9.3 | 6 | 52 | 40 | Auxin-activated signaling pathway | Nucleus | Sequence-specific DNA binding transcription factor activity | URUD | 1.8 | 0.0055 |

Table 3. Differentially expressed proteins in leaves of Picrorhiza under drought stress identified using MALDI-ToF/ToF mass spectrometry.
New spot no.	Maximum homology with (protein name)	Best protein match organism	Swiss prot accession no.	Expt. MW/ Theor. MW (kDa)	Expt.pI/Theor.pI	No. of peptides matched	MS Score	Sequence coverage (%)	Biological function	Cellular component	Molecular function	Expression status*	Relative fold change (vs control)	P value
33	Zinc finger CCCH domain-containing protein 3	Oryza sativa	C3H32_ORYSj	30/80.7	4.8/5.3	5	57	12	transcription	unknown	DNA binding	URUD	8.6	0.0003
34	NAD(P)H-quinone oxidoreductase subunit 4L	Zea mays	NU4LC_MAIZE	45/11.4	6.4/9.6	4	45	52	photosynthesis	chloroplast thylakoid membrane	oxidoreductase activity	POUDD	0	0
Spot no	Maximum homology with (protein name)	Best protein match organism	Swiss prot accession no.	Expt. MW/Theor. MW(kD)	Expt.pl/Theor.pI	No. of peptides matched	MS Score	Sequence coverage (%)	Biological function	Cellular component	Molecular function	Expression status*	Relative fold change (Vs control)	P value
---------	----------------------------------	-----------------------------	--------------------------	------------------------	----------------------	---------------------	----------	---------------------	------------------	------------------	----------------	--------------------	-----------------	----------
6	Phosphatidyl inositol 4-phosphate 5-kinase 1	Arabidopsis thaliana	PI5K1_ARATH	66.0/86.5	5.6/9.0	9	50	20	response to stress	plasma membrane	1-phosphatidylinositol-4-phosphate 5-kinase activity	URUD	1.5	0.0372
7	Protein transport protein Sec61 subunit gamma-3	Arabidopsis thaliana	S61G3_ARATH	66.0/7.7	5.7/9.86	4	34	49	protein transmembrane transport	endoplasmic reticulum membrane	P-P-bond-hydrolysis-driven protein transmembrane transporter activity	URUD	3.9	0.0001
10	Clathrin light chain 3	Oryza sativa subsp japonica	CLC3_ORYSJ	66.0/37.7	6.3/5.14	4	42	23	vesicle-mediated transport	clathrin coat of coated pit	structural molecule activity	DRUD	0.5	0.0224
14	Actin-42	Solanum tuberosum	ACT1_SOLTU	50.0/37	5.4/5.4	9	80	35	involve in cytoplasmic streaming, cell shape determination, cell division translation	chloroplast envelope	ATP binding	POUĐ	0	0
21	50S ribosomal protein L36	Mesostigma viride	RK36_MESVI	44.0/4.6	6.7/11.40	2	30	39	translation	ribosome	structural constituent of ribosome	URUD	1.6	0.0206
22	HACA ribonuclease protein complex subunit 4	Arabidopsis thaliana	CBF5_ARATH	37.0/63.3	6.4/9.1	9	58	22	rRNA processing, pseudouridine synthesis	nucleolus	RNA binding	DRUD	0.5	0.0064
23	Caffeic acid 3-O-methyltransferase	Catharanthus roseus	COMT1_CATRO	40.0/40.2	5.9/5.7	8	54	33	lignin biosynthesis	unknown	caffeate O-methyl transferase activity	URUD	2.6	0.0033
24	Pentatricopeptide repeat-containing protein	Arabidopsis thaliana	PP326_ARATH	32.0/12.2	4.5/8.7	10	58	17	play a role in RNA editing	mitochondria	endoribonuclease activity	POUĐ	0	0
25	Uncharacterized mitochondrial protein	Arabidopsis thaliana	M240_ARATH	33/12.46	5.2/9.62	2	20	27	unknown	mitochondria	unknown	URUD	3.2	0.0002
26	Probable E3 ubiquitin-protein ligase ARIS	Arabidopsis thaliana	ARIS_ARATH	31/63.90	5.3/5.12	3	23	7	protein ubiquitination	unknown	ligase activity	URUD	1.8	0.0117
28	Maturase K	Marathrum schiedeanum	MATK_MARSC	30/61.5	6.0/9.5	6	43	11	RNA splicing, tRNA processing	chloroplast	RNA binding	URUD	3.6	0.009

Table 4. Differentially expressed proteins in root of Picrorhiza under drought stress identified using MALDI-ToF/ToF mass spectrometry. doi: 10.7243/2050-2773-3-2
Spot no	Maximum homology with (protein name)	Best protein match organism	Swiss prot accession no.	Expt. MW/ Theor. MW(kD)	Expt.pl/ Theor.pI	No. of peptides matched	MS Score	Sequence coverage (%)	Biological function	Cellular component	Molecular function	Expression status*	Relative fold change (Vs control)	P value
31	31 F-box protein At3g22350	Arabidopsis thaliana	FB174_ARATH	28/29.4	5.2/8.9	6	50	20	ubiquitin-mediated proteolysis, hormones signaling	unknown	unknown	URUD	1.6	0.0079
33	33 17.9 kDa class II heat shock protein	Helianthus annuus	HSP21_HELAN	28/17.9	5.8/7.7	6	59	41	response to stress	cytoplasm	unknown	URUD	1.5	0.0252
36	36 50S ribosomal protein L36	Mesostigma viride	RK36_MESVI	20.0/4.6	5.5/11.40	2	30	39	translation	ribosome	structural constituent of ribosome	URUD	2.2	0.0190
37	37 Beta-D-xylodiase 1	Arabidopsis thaliana	BXL1_ARATH	20/84.4	5.3/8.7	9	55	17	carbohydrate metabolic process	plant-type cell wall	unknown	URUD	1.5	0.0805
38	38 Pentatricopeptide repeat-containing protein At5g11310	Arabidopsis thaliana	PP375_ARATH	20.0/68.8	5.0/8.38	8	38	15	play a role in RNA editing	mitochondria	endoribonuclease activity	POU D	0	0
43	43 Maturase K	Aneura mirabilis	MATK_ANEMR	14.0/61.2	6.5/9.7	8	46	22	mRNA processing, tRNA processing	chloroplast	RNA binding	URUD	8.8	0.0001
46	46 Protein transport protein Sec61 subunit gamma-3	Arabidopsis thaliana	S61G3_ARATH	30.0/7.7	4.9/9.8	4	39	43	protein transport	endoplasmic reticulum membrane	P-P-bond hydrolysis-driven protein transmembrane transporter activity	URUD	12.2	0.0001
Identification and functional classification of the differentially expressed proteins

Identification of the proteins that are differentially expressed is an important step towards understanding the mechanisms underlying stress responses and adaptation in plants. To understand the molecular mechanism, we combined 2 D gel electrophoresis and MALDI-TOF MS/MS to identify the differentially expressed proteins. The identified differentially expressed proteins were searched and grouped according to their biological processes, cellular locations, and molecular functions using the Gene Ontology (GO) database. The 31 identified differential proteins from leaf and root were classified into 9 groups based on their biological functions (Figure 4). The largest group was energy metabolism (34% in leaf and 22% in root), the following groups were stress and defense (17% in leaf and 12% in root), photosynthesis (25% in leaf), transcription (8% in leaf and 28% in root), protein synthesis (8% in leaf and 11% in root), transport-associating proteins (17% in root), signal transduction associated proteins (8% in leaf), cell structure proteins (5% in root) and function unknown proteins (5% in root). This result suggests that proteins involved in

Figure 3. Two dimensional gel electrophoretic analysis of the protein profiles of Picrorhiza root proteome under control \((a)\) and drought \((b)\) condition. Total root proteins were extracted from the samples harvested on day 10 of the experimentation. The extracted proteins were separated by IEF/SDS-PAGE then stained with silver stain. An equal amount \((50 \mu g)\) of total proteins was loaded onto each gel strip. The numbers marked on the gels show differentially expressed proteins. \((c)\) Protein-expression patterns of differentially expressed protein spots under control and drought stress. Intensity of protein spots were determined by using PDQuest software. Each value represents mean \(\pm SE\) of intensity determined from gels of three biological replicates. The mean values were compared using the Student \(t\) test \((^*P<0.05)\). SE is denoted by error bars. White and gray columns are the control and drought stress conditions, respectively.

Figure 4. Functional classification of proteins of Picrorhiza observed to be differentially expressed in leaf \((a)\) and root \((b)\) in response to drought stress. Proteins groups are categorized based on their putative biological functions.
Proteins involved in photosynthesis

Photosynthesis is one of the processes that is most affected by abiotic stress [15]. Under drought condition, identified proteins like cytochrome b6-f complex subunit 6 (#20) and NAD(P)H-quinoneoxidoreductase subunit 4L (#21, 34) in leaf were involved in photosynthesis process. Cytochrome b6-f complex subunit 6 was up regulated and NAD(P) H-quinoneoxidoreductase subunit 4L was down regulated in drought stress.

Proteins involved in energy metabolism

The identified proteins in leaf; ATP synthase subunit beta, endoglucanase 9 and hexokinase-1 (#7, 10, 11, 22) were those involved in metabolics processes like ATP synthesis, carbohydrate metabolism, amino acid catabolism. ATP synthase subunit beta was up regulated only in drought stress whereas endoglucanase 9 and hexokinase-1 were found to be present in drought stress only. In case of root, proteins; caffeic acid 3-O-methyltransferase, E3 ubiquitin-protein ligase ARI5 and F-box protein were up regulated whereas beta-D-xylosidase was found to be present only in drought stress.

Proteins involved in transcription

The identified protein in leaf, zinc finger CCCH domain-containing protein 3 (#33) was involved in transcription process and found to be up regulated under drought stress. Other identified proteins; maturase K (#28, 43), pentatricopeptide repeat-containing protein (#24, 38) and H/ACA ribonucleoprotein complex subunit 4 (#22) in root were involved in transcription process. Maturase K and pentatricopeptide repeat-containing protein were up regulated and H/ACA ribonucleoprotein complex subunit was down regulated in drought stress.

Proteins involved in protein synthesis

Identified protein in leaf, 50S ribosomal protein L2 (#28) was involved in protein synthesis and found to be down regulated under drought stress. In case of root, 50S ribosomal protein L36 (#21, 36) were involved in protein synthesis. 50S ribosomal proteins L36 were found to be up regulated under drought stress.

Proteins involved in signal transduction

The identified protein in leaf, auxin responsive protein IAA13 (#32) was involved in auxin mediated signaling pathway and found to be up regulated under drought stress.

Proteins involved in transport

Under drought condition, the identified proteins in root; clathrin light chain 3 (#10) and protein transport protein Sec61 subunit gamma-3 (#7, 46) were involved in transport process. Clathrin light chain 3 and transport protein Sec61 subunit gamma-3 were up regulated under drought stress.

Proteins involved in cytoskeleton development

Cytoskeleton protein was also found to be differentially expressed. Identified protein in root, actin-42 involved in cytoplasmic streaming, cell shape determination, cell division and organelle movement was found to be present only in drought stress.

Discussion

Proteomics an important component of systems biology is contributing significantly to the understanding of complex metabolic networks of plants and their interactions with environmental factors. While understanding plants response to abiotic stresses, information at proteomics level may compliment genomics and metabolomics information. In the present study, response of leaf and root proteome of a medicinal plant Picrorhiza to drought stress was analysed. Drought stress resulted in 24% and 37% decrease in leaf protein
content on fresh weight and dry weight basis respectively, whereas in root, drought stress resulted in 12% increase in protein content when calculated on fresh weight basis and 9% decrease in protein content was observed on dry weight basis. The content of soluble proteins in roots and leaves of maize have been reported to be decreasing with increased drought stress [16]. Similarly, in chickpea decrease in soluble protein in response to drought stress has been observed [17].

Drought stress resulted in decrease in all the four measured parameters i.e., photosynthetic rate, stomatal conductance, transpiration and relative water content. These observations are in agreement with the findings of various researchers [18-20]. The decrease in photosynthesis had been attributed to the stomatal closure and the direct inhibition of photosynthetic capacity. Decrease in the transcription rate in response to drought stress has been reported in Phaseolus vulgaris [21]. In Cucumis melo decrease in stomatal conductance in response to drought stress has been observed [22]. Estimation of relative water content showed lesser relative water content in Picrorhiza plants exposed to drought stress as compared to control plants. Decrease relative water content in response to drought stress has earlier been reported in peach [23], Matricaria chamomilla [24] and maize [25].

2D gel electrophoresis analysis showed 13 proteins in leaf and 18 proteins in root to be differentially expressed in response to drought stress. In the present study the differentially expressed spots were derived upon assembling the first level matchset (master image) from three replicate 2D gels. The threshold of protein spot abundance ratios was set at ≥1.5-fold (treatment/control) or >−1.5 fold (control/treatment). For proteomic analysis of plant for which genome sequence information is not available. Using ≥1.5-fold change as threshold seems reasonable as has been used in various studies [13,14,26,27]. The spots with quality value >30 were considered as “high quality” spots. Among the “high quality” spots only those having p value <0.05 were analysed using mass spectrometry. Detection of differentially expressed spots using these parameters has been reported by many researchers [28,29].

Mass spectrometry analysis of the differentially expressed proteins revealed their identity. Functional categorization of the differentially expressed proteins put them in 8 functional groups. These proteins have been reported to influence the interaction of plants with various environmental cues. In our study, 5 energy metabolism-related proteins from leaf and 4 proteins from root were affected by drought stress. Increase in abundance of ATP synthase subunit beta in response to salt stress has been reported in wheat [30]. Identified protein endoglucanase has been reported to be involved in cell elongation [31,32]. Decrease in endoglucanase level has been suggested to be associated with lower tolerance to salt stress and inhibition of plant growth [32]. Induction of another identified protein, caffeic acid 3-O-methyltransferase caffeoyl-CoA in response to drought has been reported in watermelon and maize [33,34]. F-box proteins regulate diverse cellular processes, including in protein ubiquitination and cell cycle transition [35]. Protein beta-D-xylosidase 1 is a key enzyme involved in complete degradation of xylan present in cell wall [36]. The differentially expressed protein, cytochrome b6-f complex subunit 6 acts as the redox link between the photosynthetic reaction center complexes I and I [37]. The differentially expressed protein, NAD(P)H-quinone oxidoreductase subunit 4L has been reported to be up regulated in response to drought stress in Sunflower [27].

Transcription proteins including maturase K, pentatricopeptide repeat containing protein and zinc finger CCCH domain-containing protein 3 in root and leaf were found to be up regulated under drought stress. Maturase K catalyzes intron removal in RNA precursors and directly affects gene expression at the translation level [38]. Maturase K in response to acid rain stress in Taxus wallichiana has been reported [39]. Pentatricopeptide repeat containing protein (PPR) mediates organelle transcript processing and stability in a gene-specific manner through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs [40]. Other identified protein CCCH-type zinc finger protein 3 has essential function in various developmental processes in plants [41]. Stress and defense responsive proteins, phosphatidylinositol 4-phosphate 5-kinase 1 and 17.9 kDa class II heat shock protein in root were up regulated under drought condition while in case of leaf, putative defensin-like protein 239 was found to be up regulated. In general, HSPs are involved in various intracellular processes and play important role in protein-protein interactions, folding, assembly, intracellular localization, secretion, transport, prevention of protein aggregation and degradation and reactivation of damaged protein [42,43]. Other identified protein, phenylalanine ammonia-lyase has a crucial role in secondary phenylpropanoid metabolism [44,45] and in salicylic acid -dependent defense signalling to combat microbial pathogens [46].

Transport protein Sec61 subunit gamma-3 in root which was found to be upregulated under drought stress has role in clathrin-mediated protein trafficking, auxin signaling etc [47-49], cytokinesis [50,51], cell elongation [52] etc. 50S ribosomal protein L2 in leaf and 50S ribosomal protein L36 in root were found to be up regulated under drought stress. Functional implications of up regulation of these proteins in response to drought stress need further studies. The identified signaling protein, auxin responsive protein IAA13 in leaf has been reported to be involved in auxin activated signaling pathway [53] and was found to be up regulated under drought stress. Auxin-responsive protein has been found to be down regulated under acid rain stress [39]. Cell structure related protein, actin-42 in root was found to be up regulated under drought stress. Association of actin with drought stress has been reported by various workers [54-56]. Peptidyl-prolyl cis-trans isomerase was found to be up regulated under drought stress. It has been reported to be playing roles in various
processes such as protein folding, intracellular homeostasis and response to environmental [57].

Conclusion
In the present study drought responsive differentially expressed proteins in Picrorhiza were detected and identified. Further studies on these proteins may assist understand drought associated molecular mechanisms for developing strategies for improving adaptive behavior of Picrorhiza under drought condition.

List of abbreviations
2-D: Two-dimensional
pl: Isoelectric point
IEF: Isoelectric focusing
MALDI-ToF/ToF: Matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight
ABA: Abscisic acid
FYM: Farm yard manure
RWC: Relative water content

Supplement figure S1
Supplement figure S2

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

Authors' contributions	SK	JP1	PJK	MD	JP2	RJ	SD
Research concept and design	✓	✓	--	--	--	--	✓
Collection and/or assembly of data	✓	✓	✓	--	✓	--	--
Data analysis and interpretation	✓	✓	✓	✓	--	--	--
Writing the article	✓	✓	--	--	--	--	✓
Critical revision of the article	✓	✓	✓	✓	--	--	✓
Final approval of article	✓	✓	✓	✓	✓	✓	✓

Acknowledgement
We greatly acknowledge Dr. Paramvir Singh Ahuja, Director, CSIR-IHB, for providing overall guidance and infrastructural support to carry out the work. We thank Council of Scientific and Industrial Research (CSIR), New Delhi, India, for funding the network projects BSC-0111, BSC-0109 and BSC-0107. J.P thanks University Grant Commission (UGC), India, for award of Junior Research Fellowship. The manuscript represents IHB publication number 3655.

Publication history
Editors: Igor B. Rogozin, NCBII/NIH, USA.
Lars Malmstroem, ETH Zurich, Switzerland.
David Sheehan, University College Cork, Ireland.
Received: 16-Apr-2014 Final Revised: 04-Jun-2014
Accepted: 07-Jun-2014 Published: 18-Jun-2014

References
1. Banerjee D, Maity B, Nag SK, Bandyopadhyay SK and Chattopadhyay S. Healing potential of Picrorhiza kurroa (Scrophulariaceae) rhizomes against indomethacin-induced gastric ulceration: a mechanistic exploration. BMC Complement Altern Med. 2008; 8:3. | Article | PubMed
2. Kala CP. Status and conservation of rare and endangered medicinal plants in the Indian trans Himalaya. Biol. Conserv. 2000; 37:371-379. | Article
3. Gangopla MP, Parkash J, Ahuja PS and Dutt S. Components of antioxidant system of Picrorhiza kurrooa exhibit different spatio-temporal behavior. Mol Biol Rep. 2013; 40:659-603. | Article | PubMed
4. Parkash J, Vaidya T, Kirti S and Dutt S. Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid. Gene. 2014; 542:1-7. | Article | PubMed
5. Mahajan S and Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005; 444:139-58. | Article | PubMed
6. Flower J, Cohen L and Jarvis P. Practical Statistics for Field Biology. John Wiley, England, 2nd edn. 1998.
7. Damerval C, De Vienne D, Zivy M and Thiellement H. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedlings proteins. Electrophoresis. 1986; 7:52-54. | Article
8. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. | Article | PubMed
9. Gorg A, Postel W, Gunther S, Weser J, Strahler JR, Hanash SM, Somerlot L and Kuck R. Approach to stationary two-dimensional pattern: influence of focusing time and immobiline/carrier ampholytes concentrations. Electrophoresis. 1988; 9:37-46. | Article | PubMed
10. Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B and Hagemann M. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics. 2006; 6:2733-45. | Article | PubMed
11. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH and Dunn MJ. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis. 2000; 21:3666-72. | Article | PubMed
12. Li Q, Huang J, Liu S, Li Y, Yang X, Liu Y and Liu Z. Proteomic analysis of young leaves at three developmental stages in an albinato tea cultivar. Proteome Sci. 2011; 9:44. | Article | PubMed Abstract | Full Text
13. Zhang L, Li X, Zheng W, Fu Z, Li W, Ma L, Li K, Sun L and Tian J. Proteomics analysis of UV-irradiated Lonicerajaponica Thunb. with bioactive metabolites enhancement. Proteomics. 2013; 13:3508-22. | Article | PubMed
14. Zheng YS, Guo JX, Zhang JP, Gao AN, Yang XM, Li XQ, Liu WH and Li LH. A proteomic study of spike development inhibition in bread wheat. Proteomics. 2013; 13:2622-37. | Article | PubMed
15. Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ. Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000; 51:463-499. | Article | PubMed
16. Tida GE, Fanggong S, Liping B, Yinyan L and Guangsheng Z. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China. 2006; 5:101-105. | Pdf
17. Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC and Sohrabi Y. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Australian Journal of Crop Science. 2011; 5:1255-1260. | Pdf
18. Schapendonk AHCM, Spitters CJT and Groot PJ. Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato research. 1989; 32:17-32.
19. Angelo M, Alberto B and Francesco L. Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Australian Journal of Plant Physiology. 1996; 23:331-340. | Article
20. Abdellah A, Tahar B and Ali A. The rates of photosynthesis, chlorophyll content, dark respiration, proline and abscisic Acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of...
Agriculture and Biology. 2011; 13:215-221.

21. Arora R, Ferrante A, Vernieri P and Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot. 2006; 98:1301-10. | Article | PubMed Abstract | PubMed Full Text

22. Sebnem K. Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research. 2012; 7:775-781. | Pdf

23. Steinberg SL, McFarland MJ and Miller JC. Effect of water stress on leaf stomatal conductance and leaf water relations of leaves along current-year branches of peach. Australian Journal of Plant Physiology. 1989; 16:549-560. | Article

24. Alirez P, Mohammad RS, Saeed ZS, Seyed AM, Reza D and Abbas S. Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research. 2011; 5:2483-2488. | Pdf

25. Bai LP, Sui FG and Sun ZH. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere. 2006; 16:326-332. | Article

26. Grebosz J, Badowiec A and Weidner S. Changes in the root proteome of Triticosecale graminis germinating under osmotic stress. Acta Physiol Plant. 2014; 36:825-835. | Article

27. CASTILLOE MA, Maldonado AM, Oguesta S and Jorriin JV. Proteomic analysis of responses to drought stress in sun flower (L.) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteomics Journal. 2008; 1:59-71. | Pdf

28. Pandey A, Chakraborty S, Datta A and Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arrietinum L.). Mol Cell Proteomics. 2008; 7:88-107. | Article | PubMed

29. Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A and Roderml SR. A proteomic analysis of maize chloroplast biogenesis. Plant Physiol. 2004; 134:560-74. | Article | PubMed Abstract | PubMed Full Text

30. Gao L, Yan X, Li X, Guo G, Hu Y, Ma W and Yan Y. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry. 2011; 72:1180-91. | Article | PubMed

31. Biswas GGC, Ransom C and Sticklen M. Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci. 2007; 171:617–623. | Article

32. Geilfus CM, Zorb C, Neuhaus C, Hansen T, Luthen H and Muhlting KH. Differential transcript expression of wall-loosening candidates in leaves in maize cultivars differing in salt resistance. J Plant Growth Regul. 2011; 30:387–395. | Article

33. Yoshimura K, Masuda A, Kuwano M, Yokota A and Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 2008; 49:226-41. | Article | PubMed

34. Degenhardt B and Gimmler H. Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot. 2000; 51:595-603. | Plants Research | PubMed Abstract | PubMed Full Text

35. Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K and Matsu M. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol. 2002; 43:1073-85. | Article | PubMed

36. Minic Z, Riouhou C, Do CT, Lerouge P and Jouanin L. Purification and characterization of enzymes exhibiting beta-D-xylanase activities in stem tissues of Arabidopsis. Plant Physiol. 2004; 135:867-78. | Article | PubMed Abstract | PubMed Full Text

37. Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martínez SE and Smith JL. Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1996; 47:477-508. | Article

38. Zoschke R, Nakamura M, Liere K, Sugimura M, Borner T and Schmitz-Linneweber C. An organellar maturease associates with multiple group II introns. Proc Natl Acad Sci U S A. 2010; 107:3245-50. | Article | PubMed

39. Wu WJ, Chen J, Liu TW, Simon M, Wang WH, Wu FH, Liu X, Shen ZJ and Zheng HL. Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain. Int J Mol Sci. 2014; 15:4333-55. | Article | PubMed Abstract | PubMed Full Text

40. Yagi Y, Hayashi S, Kobayashi K, Hirayama T and Nakamura T. Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS One. 2013; 8:e57286. | Article | PubMed Abstract | PubMed Full Text

41. Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S and Cheng B. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One. 2012; 7:e40120. | Article | PubMed Abstract | PubMed Full Text

42. Parsell DA and Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993; 27:437-96. | Article | PubMed

43. Mahmod T, Safdar W, Abbasi BH and Naqvi SMS. An overview on the small heat shock proteins. African Journal of Biotechnology. 2010; 9:927-949.

44. Dixon RA and Paiva NL. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995; 7:1085-1097. | Article | PubMed Abstract | PubMed Full Text

45. MacDonald MJ and D’Cunha GB. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol. 2007; 85:273-82. | Article | PubMed

46. Kim DS and Hwang BK. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot. 2014; 65:2295-306. | Article | PubMed Abstract | PubMed Full Text

47. Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu L, Li C, Bednarek SY and Pan J. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell. 2013; 25:499-516. | Article | PubMed Abstract | PubMed Full Text

48. Dhonekuspe P, Tanaka H, Goh T, Ebine K, Mahonen AP, Prasad K, Bilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B and Friml J. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature. 2008; 456:962-6. | Article | PubMed Abstract | PubMed Full Text

49. Mrawe J, Petrasek J, Li N, Boeren S, Karlova R, Kitakura S, Pare佐v M, Naramoto S, Nodzynski T, Dhonekuspe P, Bednarek SY, Zazimalova E, de Vries S and Friml J. Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol. 2011; 21:1055-60. | Article | PubMed

50. Kang BH, Rancour DM and Bednarek SY. The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J. 2003; 35:1-15. | Article | PubMed

51. Van Damme D, Gadeyne A, Vantraeelen M, Inze D, Van Montagu MC, De Jaeger G, Rustinova E and Geelen D. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc Natl Acad Sci U S A. 2011; 108:615-20. | Article | PubMed Abstract | PubMed Full Text

52. Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y and Yang Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell. 2010; 22:4031-44. | Article | PubMed Abstract | PubMed Full Text

53. Tiwari SB, Wang XJ, Hagen G and Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell. 2001; 13:2809-22. | Article | PubMed Abstract | PubMed

54. Ali GM and Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res. 2006; 5:396-403. | Article | PubMed

55. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B and Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics. 2002; 2:1131-45. | Article | PubMed

56. Ouellet F, Carpenter E, Cope MJ, Monroy AF and Sarhan F. Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant
Physiol. 2001; 125:360-8. | Article | PubMed Abstract | PubMed Full Text
57. Bissoli G, Ninoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, Garcia-Sanchez MJ, Fernandez JA, Mulet JM and Serrano R. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. 2012; 70:704-16. | Article | PubMed

Citation:
K S, Parkash J, Kalita PJ, Devi M, Pathania J, Joshi R and Dutt S. Comparative proteome analysis of Picrorhiza kurrooa Royle ex Benth. in response to drought. J Proteome Sci Comput Biol. 2014; 3:2.
http://dx.doi.org/10.7243/2050-2273-3-2