Effectiveness of Electronic Learning Module in Implementing Ventilator-Associated Pneumonia Prevention Measures of Intensive Care Unit Nurses

Taghreed Hamza Hawsawi1*, Elham Al-Naghshabandi2, Samah Mahmoud Sofar3

1Master of Nursing Medical Surgical Department KAU, JDH, Saudi Arabia.
2Associate Professor, Medical Surgical Nursing KAU, JDH, Saudi Arabia.
3Lecturer, Medical Surgical Nursing Department, Faculty of Nursing, Alexandria University, Egypt.

*Correspondence: Taghreed Hamza Hawsawi, Master of Nursing Medical Surgical Department KAU, JDH, Saudi Arabia, E-mail: taghreed.edu@hotmail.com.

Received: 30 March 2018; Accepted: 29 April 2018

Citation: Taghreed Hamza Hawsawi, Elham Al-Naghshabandi, Samah Mahmoud Sofar. Effectiveness of Electronic Learning Module in Implementing Ventilator-Associated Pneumonia Prevention Measures of Intensive Care Unit Nurses. Nur Primary Care. 2018; 2(2):

ABSTRACT

Background: One of the vital principles for preventing ventilator associated pneumonia (VAP) in the hospital is equipping healthcare worker by adequate knowledge regarding VAP prevention measures. Integration of electronic education into nursing education flowing growing awareness all-over the world help ICU nurses to incorporate evidence-based practice into daily care for critical ill patient.

Study Aimed to evaluate the effectiveness of electronic learning module in implementation of ventilator-associated-pneumonia prevention measures of intensive care unit nurses.

Methodology: this study was quasi experimental design used two tools; knowledge assessment tool and VAP bundle checklist. Convenience sample of 109 ICU nurses was recruited from Al-Noor specialist hospital in Makkah.

Result: It was founded that nurses’ knowledge before they were exposed to educational module was graded as average 72.66% while scores were improved after the exposure to learning module to be high 96.2% meaning that their knowledge has been noticeably improved. However, differences in ICU nurses knowledge in pre and post test was highly significant (P<0.005). ICU nurses poor practice was apparent before exposure to module (61.73%), while ICU nurses practice showed tremendous improvement (>99%) in the last observation. The difference between pre- and post test observation was highly significant (P>0.005).

Conclusion: The study revealed that e-learning module in educating ICU nurses about VAP prevention were considerably effective. This was highlighted by high mean scores for VAP knowledge and practice after exposure to module.

Recommendation: Integrate orientation program for VAP prevention measures to new staff and continues professional development program for senior staff.

Introduction

Ventilator-associated pneumonia (VAP) is one of the most common hospital-acquired infections world-wide. It's the second most common nosocomial infection in ICUs and the first most common in patients receiving mechanical ventilation for longer than 48 hours. (Villar et al. 2016) Furthermore a study conducted in American Association of Critical-Care Nurses reported that VAP rates in USA range from 1 to 4 cases per 1000 ventilator days in industrialized countries and up to 13 cases per 1000 ventilator days in developing countries. Despite advances in preventive strategies and treatment modalities, ventilator-associated pneumonia (VAP) remains the most common infectious complication of patients admitted to intensive care units (ICUs). It results in high morbidity and mortality rate , prolonged hospital lengths, and increased cost of hospitalization as well as affected patient safety (Ali Khan et al. 2016).
Lack of knowledge on preventive measures of the nursing staff and their competency deficiency is considered as an obstacle to effectively exercising CDC VAP prevention guidelines (Ha et al. 2016). The preventive measures to combat against VAP must be given utmost importance in the critical care practice. The internationally recognized Stepwise approach in clinical best practice guidelines has been identified five elements if VAP care bundle. Which included head-of-bed elevation, daily sedation vacation, readiness-to-wean assessment, peptic ulcer disease prophylaxis and deep vein thrombosis prophylaxis as the basis for VAP prevention. It is incorporated as ventilator care bundle (VCP) which achieves best care for ICU-ventilated patients [1].

Staff knowledge is considered as the first step on the ladder of guideline implementation and adherence, so that, staff education intervention should be applied in the multimodal policy (Labeau et al. 2009).

The progressive development in information and communication technology (ICT) enables the capability to virtually touch every aspect of life including teaching and learning [2]. Primarily, it was reported that computer-based learning of the ICU nursing employees prompted higher results compared to those receiving conventional learning [3]. E-learning is considered as a by-product of such development and application of the new techniques of teaching and learning on the clinical field of nursing [4]. Button et al. indicated that, nurses' background of the modern technology has a great deal of influence on the integration and incorporation of e-learning in the teaching process. The healthcare practitioner faces strenuous challenges in clinical practice. These challenges are represented in a shortage of resources, the escalation of patient illness severity in ICU patients for instance, and a high turnover of responsible staff.

To overcome such challenges and met the needs required, the healthcare educators, as well as the nurses are in need of developing innovative tools which provide efficient methods for successful educational outcome, which helping in the advancement and improvement of the clinical nurse skills [5]. Integration of nursing education about VAP prevention measures with proper implementation of VAP bundle, provide a significant reduction of VAP incidence of intensive care unit patient and marked improvement of staff nurses knowledge and awareness of VAP prevention measures.

Significance of the Study
Teaching and learning are no longer confined to the classroom or the school day. There are many technologies that can offer a great deal of flexibility in when, where, and how education is delivered. Accordingly the researcher believe that ICU nurses electronic training for VAP prevention measure training will have major affect rather than traditional training. A reduction of VAP in ICU should be done through an active guideline implementation strategy and measuring the baseline level of knowledge provides to identify the specific educational needs of a target group and to tailor educational interventions to the group’s exact requirements (Labeau et al. 2009).

Bangert & Easterby [6], stated that, the problem is lack of sufficient evidence supporting the use of ICT in the teaching and learning processes of the nursing staff. Moreover, there is a great deal of conflict between the advantages of using the e-learning and its associated disadvantages [7].

Material and Method
Study aim
This study aimed to evaluate the effectiveness of electronic learning module in implementation of ventilator-associated-pneumonia prevention measures of intensive care unit nurses.

Study Design
Quantitative quasi experimental design was used to conduct this study.

Study Setting
The current study was conducted in intensive care unit of Al Noor Specialist Hospital in Makkah. Total bed capacity of the hospital is 500 beads and 24 ICU beds.

Sample size
The total number of ICU nurses (150) The estimated sample size was 109 nurses by using Epi-info software (version 7), at the assumption of 95% confidence interval, 5% margins of error and 50% prevalence of adequate nursing knowledge [8].

Study Sample
Convenience sample of nurses working in ICU were involved in the study according to following criteria.

Inclusion criteria
Nurses have at least three-month experience in ICU.

Study Tools
Two tools were used in the study.

Tool I: VAP knowledge assessment
This tool was developed by the researcher in English language; it aimed to assess the ICU nurses sociodemographic characteristic and knowledge regarding VAP prevention measures. It consisted of two parts.

Part I: Socio-demographic characteristic
This part aimed to assess Socio-demographic characteristic for ICU nurses, includes age, sex, marital status, level of education, working experience and attending training courses rerated to VAP.

Part II: Nurses VAP prevention knowledge questionnaire
This part aimed to assess ICU nurse's knowledge regarding VAP prevention measures. It was developed according to mainly tharra literatures as [9-12]. Consisted of 32 multiple choice questions which are covered VAP definition (1), risk factors (4), pathophysiology (2), clinical manifestation (3), classification
and causes (2), bundle prevention element (12) and nursing management to prevent VAP (8). Likert scale from 0-2 was used in which 0 indicated wrong answer, 1 indicated I don’t know, while 2 indicated correct answer.

Scoring system
The tool consisted of 32 questions each question 5% scoring with total of 100% by the use of the following equation: accredited result of the nurse \(\times 10 \div 32 \) (total questions number)

Tool II: VAP bundle observational check-list
Constructed by the researcher in English language according to reviewing relevant literatures related to VAP prevention measures, based on (CDC 2015) guideline for VAP bundle [8]. It aimed to assess nurses’ practice before and after E-learning module of VAP prevention measures, which included preparing equipment, positioning, ability of spontaneous breathing, hand washing, moth care, DVT and PUD prophylaxis's finally documentation.

Scoring system
This tool was consisting of 10 items, in which each item counted by 10%. Item 2 consist of 6 sub-items each one counted by 1.67%, Item 3 consist of 5 sub-item each one counted by 2% and item 5 consist of 4 sub-item each one counted by 2.5% while item 6 consist of 3 sub-item each one counted by 3.34%.

Regarding follow-up observation result the researcher was sum the total of the follow-up and divided by 3 to get the main of the total.

Data collection process
The researcher was initiated data collection process by conduct meeting with head nurse working in intensive care units to explain the purpose of the study and process of work in order to facilitate the work procedures. The researcher was met 6 nurses each day to conduct the pre-test and observation checklist for period of one month to complete the target sample 109, in which each shift includes 25-27 nurses. Collecting post-test was consumed 3 month in which the researcher met the participated nurses at different shift due to nurse’s rote changes. Data collection includes four phases.

Phase I: Observation phase
The researcher observed 6 nurses daily prior exposing to module by the use of tool II to collect bassline data for nurse’s practice. Direct observation for the 6 nurses was started at the beginning of each shift. Each nurse consumes at least 10-15 min during VAP bundle technique implementation.

Phase II: Introductory phase
- The researcher was gathered observed nurses in the conference room for period of one hour in ordered to introduce the module, explain an instructional guideline and answer the questions relevant to module usage.
- Nurses was started by entering demographic data-using tool I part I.
- After that nurses performed pre-test for VAP prevention knowledge by using tool I part II which was consumed 10-15 min for each one of them.
- The researcher developed VAP E-learning module in English language based on ADDIE module which consisted of five stages: analysis, design, development, implementation and evaluation. The module includes illustrated images, video and algorithm. It aimed to deliver the knowledge of VAP prevention measures to ICU nurses. It's consisted of 8 items, definition of VAP, pathophysiology of disease, five clinical manifestations, categorize, risk factors according to host related factors and finally VAP prevention measures. The nurses read the E-learning module which demonstrated in nursing lap of education center in the hospital each nurse use a separated computer, in which each nurse expend 25-30 min maxim in this part.
- The nurses after exposing to E-learning module in computer moved to immediate post-test which was similar structure to pre-test using tool I part II.

Phase III: Post observation phase
The researcher replicated observation checklist to observe nurses practice post exposure to module using tool II.

Phase IV: Follow-up phase
Follow up of nurse's practice was implemented by repeating observation checklist three times for sequence three days. Two weeks after immediate post-test the researcher conducted post-test 1 by using tool I part II to assess the nurse’s knowledge retention. followed by 2nd post-test 2 week after 1st post-test.

Reliability
The reliability of the developed tools was tested by using Cronbach's alpha test Reliability coefficient value was 0.82 for knowledge assessment tool and 0.71 for observation checklist.

Validity
The content of the constructed tools was revised by a jury of 5 experts in the field of Medical Surgical Department Faculty of Nursing at King Abdul Aziz University to test content validity, completeness, and clarity of items. Comments and suggestion of jury was considered and the tool was modified accordingly.

Pilot Study
A pilot study was conducted on 10% (20 nurses) to test clarity, feasibility, and applicability of the study. Necessary modifications were done, nurses included in the pilot study was excluded from the main sample study.

Ethical Consideration
Ethical approval was obtained from Makkah region ministry of health Institutional Review Board department. The researcher was also assured the administration of the study sitting that conducting of the study will not affect the work at the study setting. Witten consent was obtained from the nurses with clear explanation for the right of refusing and withdrawing from the participation. The digital data was not included name or identifying personal data.

Nur Primary Care, 2018

Volume 2 | Issue 2 | 3 of 9
Results

Table 1: Show the frequency distribution of sociodemographic data of ICU nurses for VAP prevention measures.

Variable	Nurse participant (n=109)	Frequency	Percent %
Age			
25-29 years old	62	56.9%	
30-34 years old	26	23.9%	
35-49 years old	17	15.6%	
50-69 years old	5	4.6%	
Marital status			
Single	47	43.1%	
Married	60	55.0%	
Divorced	2	1.8%	
Level of education			
Diploma	6	5.5%	
high diploma	7	6.4%	
BSN	94	86.2%	
MSN	2	1.8%	
Critical care experience			
3-11 month	4	3.7%	
1-3 years	17	15.6%	
more than 3 years	78	71.6%	
Attending of VAP lecture			
E-learning	17	15.6%	
traditional course	12	11.0%	
in service education	24	21.9%	
not attended	16	14.7%	
Time of last attended VAP lecture			
6 months: ago	43	39.4%	
1 year ago	13	11.9%	
more than 1 year	8	7.3%	

Table 2: Show the frequency distribution of pre/posttest of ICU nurses for VAP prevention measures before and after exposure to VAP prevention module.

Second and third post-test combined in one table because both test result were identical. Clustering of question were done according to the VAP prevention knowledge module content: VAP definition, VAP pathophysiology, risk factors of VAP, VAP prevention measures, classification and causes of VAP, clinical manifestation of VAP and nursing care of VAP. Concerning VAP prevention measures definition, the majority (88%) of the ICU nurses answered it correctly in pre-test, while all (100%) of ICU nurses answered it correctly in 2nd & 3rd post-test. Regarding Pathophysiology questions it was observed that three quarter (75%) of ICU nurses answered question correctly in the pre-test, while all (100%) of ICU nurses answered question correctly in immediate posttest, 2nd & 3rd posttest. Concerning risk factors of VAP, pre-test score showed that more than half (65.8%) of the ICU nurses answered the question correctly, while in immediate post-test all (100%) of ICU nurses answered question correctly as well as almost (99%) of the ICU nurses answered question correctly in the 2nd & 3rd post-test. Concerning VAP prevention measures, pre-test result showed that more than two third (72.4%) of the ICU nurses answered the question correctly, while immediate post-test more than half (51.60%) of ICU nurses answered question correctly, in which 2nd & 3rd post-test showed the majority (86.9%) of the ICU nurses answered question correctly. Concerning classification and causes of VAP, pre-test result showed that nearly half (47.24%) of the ICU nurses answered question correctly, while half (50%) of the ICU nurses answered question correctly.

Concerning nursing care intervention questions, the majority (88.41%) of ICU nurses answered question correctly in pre-test, while more than half (51.6%) of the ICU nurses answered question correctly, as well as 2nd & 3rd post-test the majority (85.7%) of the ICU nurses. As it’s comes to clinical manifestation of VAP prevention measures, pre-test result showed that more than half (52.9%) of the ICU nurses answered question correctly, while in immediate post-test only (11%) of the ICU nurses answered the questions correctly, in which 2nd & 3rd post-test result showed less than half (44.34%) of the ICU nurses answered question correctly. Finally it was noticeable, that there is statistically significant difference regarding all items of VAP prevention measures between pre-test and post-test of ICU nurses (P-value =.000*).

Table 3: Shows Knowledge assessment of pre/posttest of ICU nurses for VAP prevention measures before and after exposure to VAP prevention module.

Concerning nursing care intervention questions, the majority (88.41%) of ICU nurses answered question correctly in pre-test, while more than half (51.6%) of the ICU nurses answered question correctly, as well as 2nd & 3rd post-test the majority (85.7%) of the ICU nurses. As it’s comes to clinical manifestation of VAP prevention measures, pre-test result showed that more than half (52.9%) of the ICU nurses answered question correctly, while in immediate post-test only (11%) of the ICU nurses answered the questions correctly, in which 2nd & 3rd post-test result showed less than half (44.34%) of the ICU nurses answered question correctly. Finally it was noticeable, that there is statistically significant difference regarding all items of VAP prevention measures between pre-test and post-test of ICU nurses (P-value =.000*).
VAP prevention measures before and after exposure to VAP prevention module.

There was statistically significant difference between pre-test knowledge and immediate post-test, 2nd & 3rd (P-value ≤ .000*). However, it was observed that, ICU nurses knowledge mean score (72.66 ± 12), while it's improved after module to be in the high level (96.2 ± 2.15), meaning that nurses knowledge has been noticeably improved. A slight drop being noticed in ICU nurse’s knowledge in 2nd & 3rd post-test to reach (91.32 ± 2.8).

Table 4.4: Shows frequency distribution for level of knowledge of ICU nurse's for VAP prevention measures before and after exposure to VAP prevention module.

Score of level of Knowledge	Before exposure to module	After exposure to module	X²	P-Value 0.05						
	N	%	N	%	N	%	N	%		
High (90%-100%)	13	11.9%	103	94%	82	74.3%			284.38	.000*
Moderate (80%-89%)	17	15.6%	6	5.5%	27	25%				
Average (70%-79%)	36	33%	0	0%	0	0%				
Poor (less than 70%)	43	39.81%	0	0%	0	0%				

* Test of Sig. = P-Value 0.003 * X² = chi-square test * 2nd & 3rd post-test = were combined in one table were both test initial and final. 2 weeks after immediate post-test 1 conducted. 2 weeks after post-test 1 post-test 2 conducted.

It was observed that, less than half 40.4% of the ICU nurses had poor level of knowledge in the pre-test, while nearly three quarter 74.3% of the ICU nurses had high level of knowledge in the 2nd & 3rd post-test. Almost 93% of the ICU nurses had high level of knowledge in immediate post-test. There was highly statistical significant difference regarding level of knowledge between pre-test and post-test of ICU nurses for VAP prevention measures (P-value= .000*).

Table 4.5: Shows frequency distribution of practice assessment of ICU nurses for VAP prevention measures before and after exposure to VAP prevention module.

It was observed that all 100% of ICU nurses performed hand washing, preparing the required equipment and proper positioning before and after exposure to VAP prevention module. Regarding physical assessment of respiratory tract, it was founded that majority of ICU nurses did not perform inspection, percussion and auscultation (95%), (93%) and (90%) respectively. While after exposure to module the highest majority of nurses performed inspection, percussion and auscultation (99%), (95.4%) and (100%) respectively.

All 100% of ICU nurses assessing patient prior weaning from ventilator by checking oxygen status, discontinued sedation and measuring vital signs before and after exposure to VAP prevention module while, there was improvement after exposure to module, in which highest percentage of ICU nurses (93.5%), (94.5%) and (94.5%) measure central venous line during 1st, 2nd and 3rd observation respectively.

Table 4.6: Shows frequency distribution of practice assessment of ICU nurses for VAP prevention measures before and after exposure to VAP prevention module.

Regarding mouth cleaning before exposure to module (58.33%), (60.1%) of the ICU nurses did not performed mouth rinse, tooth brushing, while almost 98% of ICU nurses performed oral suctioning. In addition, after exposure to module all 100% of ICU nurses performed mouth cleaning items. Finally, All 100% of ICU nurses performed peptic ulcer prophylaxis, DVT prophylaxis and documentation items.

Table 4.7: Shows level of practice of ICU nurse’s for VAP prevention measures.

It was observed that, there was statically significant difference between ICU nurses practice before and after exposure to VAP prevention module with (P-value ≤ 000*). While it observed that, ICU nurses practice improved from 61.73 ± 5.97 before exposure to VAP prevention module to 99.52 ± 100 after exposure to VAP prevention module.

Table 4.8: Shows level of practice of ICU nurse’s for VAP prevention measures.

Table 4.9: Shows level of practice of ICU nurse’s for VAP prevention measures.
measures.

It was observed that majority 94.5% of ICU nurses had poor practice regarding VAP prevention measures before exposure to module, while almost 99.1% of the ICU nurses had high level of practice after exposure to VAP prevention module in 1st observation. Moreover, all 100% of ICU nurses had high level of practice in the 2nd & 3rd observation after exposure to VAP prevention module. Finally, there was statistically significance difference between baseline practice before exposure to module and 1st, 2nd and 3rd observation after exposure to VAP prevention module for ICU nurses levels of practice, (P.value ≤ 0.000*).

Table 4.8: Shows relation between sociodemographic data of ICU nurse and VAP prevention measures pre/post-test knowledge.

Sociodemographic	Knowledge of ICU nurses before exposure to VAP prevention module	Knowledge of ICU nurses after exposure to module				
Age	Mean ± SD	F	Sig.	Mean ± SD	F	Sig.
25-29	72 ± 3.15	0.120	0.887	91 ± 1.9	1.14	0.33
30-34	72 ± 3.15	0.120	0.887	92 ± 2.1	1.14	0.33
35-49	73 ± 3.15	0.120	0.887	91 ± 1.8	1.14	0.33
50-60	83 ± 3.15	0.120	0.887	92 ± 2.2	1.14	0.33

Marital status

Married: 73 ± 3.15
Divorced: 72 ± 3.15

Educational Level

Bachelor: 65 ± 3.15
High diploma: 75 ± 3.15
BSN: 73 ± 3.15
MSN: 65 ± 3.15

Year of clinical experience

1-3 months: 60 ± 3.15
3-6 months: 72 ± 3.15
1-3 years: 79 ± 3.15
>3 years: 82 ± 3.15

Type of training program

e-learning: 73 ± 3.15
Traditional course: 72 ± 3.15
In-service Education: 76 ± 3.15

Not attended: 60 ± 3.15

Last time attend training program

Not attended: 60 ± 3.15
<6 months: 73 ± 3.15
6 months ago: 70 ± 3.15
1 year ago: 73 ± 3.15
>1 year ago: 73 ± 3.15

Discussion

VAP is one of the major side effects for the patients on ventilator, all over the world VAP costs burden of billions on the healthcare system in both developing and developed world. It consider as a leading cause of morbidity and mortality in ICU. Therefore the study aimed to evaluate the effectiveness of electronic learning module in implementation of ventilator-associated-pneumonia prevention measures of intensive care unit nurses.

Sociodemographic characteristic of ICU nurse's for VAP prevention measures

All ICU nurses were female like the study of Hart et al., (2008) who stated that 90.9% of the participant were female. The present study elaborated that, more than half of the ICU nurses were in the age group from (25-29) year old this result was in congruent with Kapucu et al., [13] who emphasized that nearly half of the participant for preventing VAP were 25–29 years old. Regarding level of education present study showed that, majority of ICU nurses were BSN while only few were MSN. Tolentino et al. [14] mentioned that nearly half of nurse’s participant in VAP prevention had baccalaureate degrees in nursing. As well as Tabaeian et al., [15] evaluated the nurses compliance with the standards for
The present study showed that there was statistically significant difference regarding ICU nurses' knowledge of VAP definition, pathophysiology, risk factors, prevention measures, classification, clinical manifestation and nursing care of VAP between pre-test and post-test of ICU nurses. The result reflects the effect of E-learning module of ICU nurses after exposure to VAP prevention module. This result compatible with Subramanian et al., [17] who conduct a study for the impact of education on ventilator-associated pneumonia in the intensive care unit, revealed that the nurses educational intervention had a significant effect on the nurses’ knowledge of VAP. Another study conducted by Meherali et al., [18] mentioned that The 5-hour training module significantly enhanced nurses’ knowledge towards evidence based guidelines for the prevention of VAP.

In addition ICU nurses' knowledge means score was improved after implementation of VAP prevention module. A slight drop being noticed in ICU nurse's knowledge in 2nd & 3rd post-test. This result in line with Blot et al., [19] who revealed that an educational initiative increased the average level of knowledge from 53% in a pretest to 77% following an educational course in post test. Moreover present study results is congruent with a result of Meherali et al., [18] who found that there was a difference in mean score from baseline (7.8) to post-test 1 mean score (10.8) and finally in post-test 2 mean score (9.8) who show a slight drop in knowledge level during 2nd and 3rd post-test as it's appear in the current study. Ahmed & Abosamra [20] stated that a principle being identified that knowledge retention generally falls to 75-89% of its original level after a relatively short 2-3 weeks' time. Moreover the current study reported that, less than half of the ICU nurses had poor level of knowledge in the pre-test, while nearly three quarter of the ICU nurses had high level of knowledge in the 2nd & 3rd post-test. Almost of the ICU nurses had high level of knowledge in immediate post-test. This result is in congruent with Meherali et al., [18] who revealed that, knowledge scores of nurses increased significantly after the educational intervention in the first post-test; however, there was a decline in the score in second post-test. Under the light of previous studies with integration of current, one, we can say that ICU nurses needed for such education module with appropriate and content approach to gain their knowledge and improve the practice regarding VAP prevention measures.

Practice of ICU nurse's for VAP prevention measures
The current study showed that all ICU nurses performed hand washing and proper positioning before and after exposure to VAP prevention module. A similar study conducted by Saber [21], who stated that, ICU nurses practice for hand washing and elevation head of bed showed significant improvement from 12% to 28% and 60% to 80% after implementation of care bundle education respectively.

Regarding physical assessment of respiratory tract, the present study revealed that majority of ICU nurses did not perform inspection, percussion and auscultation. While after exposure to module the highest majority of nurses performed all assessment appropriately. in this regards Abbasinia et al., [22] conducted a study about the effect of a designed respiratory care program on the incidence of ventilator associated pneumonia, and concluded that a designed upper respiratory cares program can reduce the incidence of VAP.

The current study revealed that, all ICU nurses assessing patient prior weaning from ventilator by checking oxygen status, discontinued sedation and measuring vital signs before and after exposure to VAP prevention module, while all ICU nurses did not assess hemodynamic status before exposure to VAP prevention module. This may be related to ICU nurses believed that assessing hemodynamic status is not nurses responsibility and it's a doctors or respiratory therapist job. However after the researcher introduced VAP prevention measures module, ICU nurse's practice regarding all aspect of assessing patient prior weaning from ventilator was improved including hemodynamic status. This result is in line with Bird et al., [23] who conducted a study about adherence to ventilator associated pneumonia bundle in ICU, revealed that practice of ICU nurses with sedation break, and assessment for extubating were excellent before implementing program and remained higher than 92% after implementing the program. Additionally Mclean et al., [24] who conducted a study about improving adherence to mechanical ventilation weaning protocol for critically ill adults stated that, there was improvement in critical area regarding assessing patient readiness to wean from mechanical ventilator from 1.2 before intervention to 3.78 after the intervention with noticeable significant statically difference before and after the intervention.

Regarding mouth cleaning before exposure to module the present study revealed that, more than half of the ICU nurses did not perform mouth rinse and tooth brushing. This behavior was attributed to nurse’s reliance that night shift staff will perform
and night shift are relied on morning staff. While almost all ICU nurses performed oral suctioning appropriately. Surprisal, after exposure to module all ICU nurses performed mouth cleaning items appropriately. This result similar to Hui Qing et al., [25] who mentioned that less than half percent of the registered nurses not used the oral cleaning or decontaminant for the mechanically ventilated patients before intervention while ninety-seven percent of the RNs used an oral cleaning after the intervention.

Moreover, the current study emphasized that, all ICU nurses administered peptic ulcer disease (PUD) and deep vein thrombosis (DVT) prophylaxis before and after exposure to VAP prevention module, in which the commitment to those prophylaxis is due to routinely including them in the medication sheet. This result congruent with Lance-smith & Nardi, [26] who stated that ICU nurses responses at the first month after education of staff members, showed 100% compliance for PUD prophylaxis and DVT prophylaxis, while the practice rate remained greater than 98% for several months. In addition this result in line with Subramanian et al., [17] who concluded that, ICU nurses’ practice regarding PUD and DVT prophylaxis was 81.8% before interduce the intervention, while 100% of the ICU nurses implement PUD and DVT prophylaxis after intervention.

Moreover, the present study concluded that all ICU nurses practice improved after introducing of VAP prevention measures module, in which the percentage improved from 0% at the baseline to 100% at the final observation. These scores increased to 100% in three subsequent observations after exposure to module. Notably, the above-mentioned result was related to the effects of the facilitator of education programs in developing suitable protocols to address the use of VAP prevention approaches. Moreover, this education module increased the nurses confidence about their ability and skills as well as improved practices toward utilization of VAP prevention mechanisms in intensive care unit. This result is in line with Subramanian et al., [17] who revealed that nurses educational intervention had a significant effect on the nurses practice regarding Ventilator care bundle, as reflected in their test scores preintervention was 63.17 and post intervention was 95.

Relationship between Knowledge and sociodemographic data
The present study showed that there was statically significant difference between ICU nurse's knowledge after exposure to VAP prevention module and level of education. In which ICU nurses level of education with master nursing certificate improved after exposure to VAP prevention module. This result is in line with van de Steeg, et al. [27] who revealed that, there was more improvement after E-Learning in the nurses who already had a master degree with high statistically significant difference . Additionally this result in congruent with Akin Korhan, et al. [28] who stated that the differences between nurses' educational levels regarding VAP prevention knowledge was found to be statistically significant.

However, it was observed that, there were no statistically significant difference between other sociodemographic data of ICU nurse and knowledge before and after exposure to VAP prevention module. This result disagreed with Ahmed & Abosamra [20] who stated that there is strong relationship between years of experiences and previous training and knowledge of nurses for prevention of VAP.

Relationship between practice and sociodemographic data
The current study revealed that, there was statistically significant difference between ICU nurses age with practice before and after exposure to VAP prevention module. The study result contradicted with Albaqawi, et al. [29] who sated that no significant difference between nurses age and holistic nursing care. On other hand Feldman et al., stated that middle age was positively related to productivity measures of job practice. Furthermore a study conducted by Choi & Cho revealed that there were significance differences regarding nurses practice with age, marital status, total number of years in the career and the length of employment in the present department.

Moreover, the present study manifested that, there were no statistically significant difference between other sociodemographic data of ICU nurse and practice before and after exposure to VAP prevention module. The result of this study is in congregant with Said, [30] who conducted a similar study about knowledge and practice of intensive care nurses on prevention of ventilator associated pneumonia, and found that there is no statistically significant difference in ICU nurses practice with demographic characteristic. Moreover this result of the study is in line with Albaqawi et al., [29] in Saudi Arabia who reported that there were no significant differences between1 holistic care and ICU nurse practice when demographic variables were taken as test factor.

Conclusion
The study concluded that, there is statistically significant difference regarding ICU nurses knowledge between pre-test and immediate post-test, 2nd& 3rd. Furthermore, it was observed that less than half of the ICU nurses had poor level of knowledge in the pre-test, while nearly three quarter of the ICU nurses had high level of knowledge in the 2nd & 3rd post-test. Although almost of the ICU nurses had high level of knowledge in immediate post-test. Regarding ICU nurses practice it was concluded that, there is statistically significant difference between ICU nurses practice before and after exposure to VAP prevention module. Moreover majority of ICU nurses had poor practice for VAP prevention bundle before exposure to VAP module, while after exposure to VAP prevention module ICU nurses practice improved to had high level in 1st, 2nd & 3rd observation. The present study concluded that, there is statically difference between ICU nurse's knowledge after exposure to module and level of education. As well as there is statistically significant difference between ICU nurses age with practice before and after exposure to VAP prevention module for middle age group.

Recommendation for Research
• Encourage a collaboration channel between infection control department and nursing administration, to control the incidence of VAP of ventilated patient and recruit a qualified nurse in the ICU.
• Activate utilization of E-learning program for other care bundle as central related bloodstream infection (CRBSI) or catheter associated urinary tract infection (CAUTI) to provide nurses with evidence based practice.

References

1. Al-Tawfiq J, Abed M. Decreasing ventilator-associated pneumonia in adult intensive care units using the Institute for Healthcare Improvement bundle. American Journal of Infection Control. 2010; 38: 552-556.

2. Abdelaziz M, Samer Kamel S, Karam O, et al. Evaluation of E-learning program versus traditional lecture instruction for undergraduate nursing students in a faculty of nursing. Teaching and Learning in Nursing. 2011; 6: 50-58.

3. Jeffries P. Computer Versus Lecture A Comparison of Two Methods of Teaching Oral Medication Administration in a Nursing Skills Laboratory. Journal of Nursing Education. 2001; 40: 323-329.

4. Halverson L, Graham C, Spring K, et al. A thematic analysis of the most highly cited scholarship in the first decade of blended learning research. The Internet and Higher Education. 2014; 20: 20-34.

5. Traynor M, Gallagher A, Martin L, et al. From novice to expert using simulators to enhance practical skill. British Journal of Nursing. 2010; 19: 1422-1426.

6. Bangert A, Easterby L. Designing and Delivering Effective Online Nursing Courses With the Evolve Medication Electronic Classroom. CIN: Computers, Informatics, Nursing. 2008; 26: 99-105.

7. Dabbagh N, Kitsantas A. Personal Learning Environments social media and self-regulated learning A natural formula for connecting formal and informal learning. The Internet and Higher Education. 2012; 15: 3-8.

8. ftp://ftp.cdc.gov/pub/software/epi_info/7/Epi_Info_7_User_Guide-V1.0_cleared.pdf

9. Galal YS. Ventilator-Associated Pneumonia Incidence, Risk Factors and Outcome in Paediatric Intensive Care Units at Cairo University Hospital. Journal of Clinical and Diagnostic Research. 2016; 10: 6-11.

10. Module D. Pneumonia Ventilator-associated VAP and non-ventilator-associated Pneumonia PNEU Event. 2016.

11. Programs DQ. 10 Steps for Planning Educational Programs. 1-7.

12. Uruno JONPF, Hu JIZ, Eterson DANEP, et al. The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics. 2006; 16-23.

13. Kapucu S, Özden G. Yoğunbakımda Ventilator İlişkili Pnömoninin Önlenmesine Yönelik Hemşirelik Girişimleri. Konuralp Tıp Dergisi. 2017; 9: 35-40.

14. Tolentino-DelosReyes AF, Ruppert SD, Shiao SYPK. Evidence-based practice: use of the ventilator-bundle to prevent ventilator-associated pneumonia. Am. J. Crit. Care. 2007; 16: 20-28.

15. Tabaesian S, Yazdannik A, Abbasi S. Compliance with the standards for prevention of ventilator-associated pneumonia by nurses in the intensive care units. Iranian Journal of Nursing and Midwifery Research. 2017; 22: 31.

16. El Nabawy Ahmed G, Mostafa Abosamra O. Knowledge of Pediatric Critical Care Nurses Regarding Evidence Based Guidelines for Prevention of Ventilator Associated Pneumonia VAP. Journal of Education and Practice. 2015; 6: 94-102.

17. Subramanian P, Choy KL, Gobal SV, et al. Impact of education on ventilator-associated pneumonia in the intensive care unit. Singapore Medical Journal. 2013a; 54: 281-284.

18. Meherali SM, Parpio Y, Ali TS, et al. Nurses’ Knowledge of Evidence-Based Guidelines for Prevention of Ventilator-Associated Pneumonia in Critical Care Areas a Pre and Post Test Design. J Ayub Med Coll Abbottabad. 2010; 23: 146-149.

19. Blot S, Koulenti D, Labeau S. Optimizing educational initiatives to prevent ventilator-associated complications. American Journal of Infection Control. 2017; 45: 102-103.

20. Ahmed GELN, Abosamra OM. Knowledge of Pediatric Critical Care Nurses Regarding Evidence Based Guidelines for Prevention of Ventilator Associated Pneumonia VAP. Journal of Education and Practice. 2015; 6: 94-101.

21. Saber SM. Models and Methods and Clinical Research. 2011; 6.

22. Abbasinia M, Bahrami N, Bakhtiari S, et al. The Effect of a Designed Respiratory Care Program on the Incidence of Ventilator-Associated Pneumonia A Clinical Trial. Journal of Caring Sciences. 2016; 5: 161-167.

23. Bird D, Zambuto A, O’Donnell C, et al. Adherence to ventilator-associated pneumonia bundle and incidence of ventilator-associated pneumonia in the surgical intensive care unit. Archives of Surgery. 2010; 145:465-470.

24. Mclean SE, Jensen LA, Schroeder DG, et al. Improving A Dherence To A M Echanical V Entilation. 2006; 15: 299-310.

25. Hui Qing N, Ting KC, Tho PC. Reduce Ventilator-Associated Pneumonia Rate in the Coronary Care Unit-An Evidence Based Implementation Project. Singapore Nursing Journal. 2016; 43: 28-34.

26. Lance-smith M, Nardi J. Using Evidence-Based Practice to Prevent Ventilator-Associated Pneumonia. Critical Care Nurse. 2012; 32: 41-51.

27. Steeg L. Van De, Ijkema R, et al. Can an e-learning course improve nursing care for older people at risk of delirium a stepped wedge cluster randomized trial. BMC Geriatrics. 2014; 14: 1-8.

28. Akin Korhan E, Hakverdioğlu Yönt G, Parlar Kiliç S, et al. Knowledge levels of intensive care nurses on prevention of ventilator-associated pneumonia. Nursing in Critical Care. 2014; 19: 26-33.

29. Albaqawi HM, Butcon VR, Molina RR. Awareness of holistic care practices by intensive care nurses in north-western Saudi Arabia. Saudi Medical Journal. 2017; 38: 826-831.

30. Said AT. Knowledge and practice of intensive care nurses on prevention of Ventilator Associated Pneumonia At Muhimbili National Hospital ,Dar ES Salaam Tanzania: MSc Nursing Critical Care and Trauma Dissertation, Muhimbili University of Health. MSc Nursing Critical Care and Trauma Dissertation. 2012; 23-30.