Numerical iteration for nonlinear oscillators by Elzaki transform

Naveed Anjum, Muhammad Suleman, Dianchen Lu, Ji-Huan He and Muhammad Ramzan

Abstract
Iteration methods are widely used in numerical simulation. This paper suggests the Elzaki transform in the variational iteration method for simple identification of the Lagrange multiplier. The Elzaki transform is a modification of the Laplace transform, and it is extremely useful for treating with nonlinear oscillators as illustrated in this paper; a single iteration leads to a high accuracy of the solution.

Keywords
Variational iteration method, Lagrange multiplier, Laplace transform, Elzaki transform, nonlinear oscillator

Introduction
Iteration methods are widely used to deal with nonlinear problems, the most used one is the well-known Newton’s iteration method for weak nonlinear problems, while for strong nonlinear problems the variational iteration method has been widely applied, which has been proved to be accurate and efficient and it is also efficient for fractal differential equations. In this paper, we will introduce the Elzaki transform to simplify the identification of the Lagrange multiplier involved in the variational iteration algorithm. The Elzaki transform which was introduced by Tarig Elzaki in 2011 is a modification of the Laplace transform. This transformation can be used to solve ordinary, partial, and integral equations in the time domain. Many authors combined this transformation with the homotopy perturbation method, the Adomian decomposition method, and the variational iteration method to solve nonlinear problems in a convenient way.

In this manuscript, there are two basic objectives of coupling of the variational iteration method with the Elzaki transform. Initially is to identify the Lagrange multiplier and then to find amplitude–frequency relationship of a nonlinear oscillatory system. To achieve these objectives, we will use an oscillator with coordinate-dependent mass in the form

\[(1 + ax^2)x'' + axx' - x(1 - x^2) = 0\] (1)

with initial conditions
\[x(0) = A, \quad x'(0) = 0\] (2)

1 School of Mathematical Sciences, Soochow University, Suzhou, China
2 National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
3 Department of Mathematics, Government College University, Faisalabad, Pakistan
4 Faculty of Science, Jiangsu University, Zhenjiang, China
5 Department of Mathematics, Comsats University, Islamabad, Pakistan
6 Department of Mathematics, Bahria University, Islamabad, Pakistan

Corresponding author:
Ji-Huan He, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China.
Email: hejihuan@suda.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Equation (1) can define phase transition in physics and takes significant part in field theory to describe the new phase formation, cosmos logical model, quark confinement, and spinodal decomposition.32

Equation (1) can be expressed as

\[x'' - x + 2xx'' + 2xx^2 + x^3 = 0 \]

(3)

This nonlinear oscillator is difficult to solve as it involves a linear term with negative coefficient. Wu and He32 applied the homotopy perturbation method with an expanding parameter to overcome the difficulty. Anjum and He33 hybridized the variational iteration method and Laplace transform to propose a fairly accurate solution of equation (1). This paper shows the Elzaki transform works for the negative coefficient of the linear term for a nonlinear oscillator.

Identification of variation iteration method’s Lagrange multiplier by the Elzaki transform

Consider a general nonlinear oscillator in the form

\[x''(t) + f(x) = 0 \]

(4)

\[x(0) = A, \quad x'(0) = 0 \]

(5)

We can rewrite equation (4) as

\[x'' + \Omega^2 x + g(x) = 0 \]

(6)

where \(g(x) = f(x) - \Omega^2 x \).

According to the variation iteration method, the correction functional for equation (6) is given as

\[x_{m+1}(t) = x_m(t) + \int_0^t \lambda(\xi) \left[x''_m(\xi) + \Omega^2 x_m(\xi) + \bar{g}_m(x) \right] d\xi, \quad m = 0, 1, 2, \ldots \]

(7)

where \(\lambda \) is the general Lagrange multiplier and can be calculated optimally using the variational theory. The subscript \(m \) represents the \(m^{th} \) approximation and \(\bar{g}_m \) is the restricted variation, i.e. \(\bar{g}_m = 0 \). There are many researchers discussing how to find the multiplier effectively but we will propose an alternative way for the identification of the multiplier. According to He1–4 and He and Wu,5 the general form of multiplier is

\[\lambda = \tilde{\lambda}(t - \xi) \]

The integration in equation (7) is basically the convolution; hence, we can use convolution theorem of Elzaki transform easily. Applying Elzaki transform on both sides of equation (7) the correction functional will be transformed in the following manner

\[E[x_{m+1}(t)] = E[x_m(t)] + E \left[\int_0^t \lambda(\xi) \left[x''_m(\xi) + \Omega^2 x_m(\xi) + \bar{g}_m(x) \right] d\xi \right], \quad m = 0, 1, 2, \ldots \]

(8)

Thus

\[E[x_{m+1}(t)] = E[x_m(t)] + E[\tilde{\lambda}(t) * (x''_m(t) + \Omega^2 x_m(t) + \bar{g}_m(x))] \]

\[E[x_{m+1}(t)] = E[x_m(t)] + \frac{1}{w} E[\tilde{\lambda}(t)] E[x''_m(t) + \Omega^2 x_m(t) + \bar{g}_m(x)] \]
\[E[x_{m+1}(t)] = E[x_m(t)] + \frac{1}{w} E[\lambda(t)] \left[\left(\frac{1}{w^2} + \Omega^2 \right) E[x_m(t)] - x_m(0) - vx_m'(0) + E[g_m(x)] \right] \]

The optimal value of \(\lambda \) can be obtained to take the variation with respect to \(x_m(t) \). So

\[
\frac{\delta}{\delta x_m} E[x_{m+1}(t)] = \frac{\delta}{\delta x_m} E[x_m(t)] + \frac{\delta}{\delta x_m} \frac{1}{w} E[\lambda(t)] \\
\times \left(\left(\frac{1}{w^2} + \Omega^2 \right) E[x_m(t)] - x_m(0) - vx_m'(0) + E[g_m(x)] \right)
\]

and hence equation (9) can be simplified upon applying the variation to

\[
E[\delta x_{m+1}] = E[\delta x_m] + \frac{1}{w} E[\lambda] \left(\frac{1}{w^2} + \Omega^2 \right) E[\delta x_m]
\]

By applying the extremum condition, we have the stationary condition as

\[
E[\delta x_m] + \frac{1}{w} E[\lambda] \left(\frac{1}{w^2} + \Omega^2 \right) E[\delta x_m] = 0
\]

\[
E[\lambda] = - \frac{w^3}{(1 + \Omega^2 w^2)}
\]

By applying the Elzaki inverse on the last equation yields the optimal Lagrange multiplier \(\lambda \)

\[
\lambda(t) = - \frac{1}{\Omega} \sin \Omega t
\]

which is same as obtained in Anjum and He. 33

Using equation (8), the iterative formula has the form

\[
E[x_{m+1}(t)] = E[x_m(t)] - \frac{1}{\Omega} E \left[\int_0^t \sin \Omega(t - \xi) \left(x''_m(\xi) + \Omega^2 x_m(\xi) + g_m(\xi) \right) d\xi \right], \quad m = 0, 1, 2, \ldots
\]

Example

To apply the variational iteration method with Elzaki transform on equation (1), we can write it in the form

\[
x'' + \Omega^2 x + g(x) = 0
\]

where \(g(x) = -(1 + \Omega^2)x + 2xx'' + xx' + x = 0 \).

Using equation (13), the iterative formula is developed as

\[
E[x_{m+1}(t)] = E[x_m(t)] - E \left[\int_0^t \frac{1}{\Omega} \sin \Omega(t - \xi) \left(x''_m(\xi) + \Omega^2 x_m(\xi) + g(x_m) \right) d\xi \right]
\]

\[
E[x_{m+1}(t)] = E[x_m(t)] - \frac{1}{\Omega} E[\sin \Omega t] E \left[x''_m(t) + \Omega^2 x_m(t) + g(x_m) \right]
\]
\[E[x_{m+1}] = E[x_m] - \frac{1}{\Omega} E[\sin\Omega t]E[x''_m - x_m + \alpha x_m^2 x'_m + \alpha x_m x'_m + x'_m] \]

Assuming

\[x_0(t) = A\cos\Omega t \] (15)

\[E[x_1(t)] = E[A\cos\Omega t] - \frac{1}{\Omega} \left(-A\Omega^2 - A + \frac{3}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) E[\sin\Omega t] E[\cos\Omega t] \]

\[- \frac{1}{\Omega} \left(\frac{1}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) E[\sin\Omega t] E[\cos\Omega t] \] (16)

After applying Elzaki and inverse Elzaki transform in equation (16), we have

\[x_1(t) = A\cos\Omega t - \frac{1}{\Omega} \left(-A\Omega^2 - A + \frac{3}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) \left(\frac{1}{2\Omega^2} \sin\Omega t - \frac{1}{2\Omega} \cos\Omega t \right) \]

\[- \frac{1}{\Omega} \left(\frac{1}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) \left(\frac{1}{8\Omega^2} \sin\Omega t - \frac{1}{24\Omega^2} \sin\Omega t \right) \]

\[= A\cos\Omega t - \frac{1}{2\Omega^2} \left(-A\Omega^2 - A + \frac{13}{16} A^3 - \frac{5}{8} \alpha A^3 \Omega^2 \right) \sin\Omega t \]

\[+ \frac{1}{24\Omega^2} \left(\frac{1}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) \sin\Omega t + \frac{1}{2\Omega^2} \left(-A\Omega^2 - A + \frac{3}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) \cos\Omega t \] (17)

No secular-term in \(x_1 \) requires that

\[\frac{1}{2\Omega^2} \left(-A\Omega^2 - A + \frac{3}{4} A^3 - \frac{1}{2} \alpha A^3 \Omega^2 \right) = 0 \] (18)

\[\Omega = \sqrt{\frac{3}{4} A^2 - \frac{1}{1 + \frac{1}{2} \alpha A^2}} \] (19)

Equation (19) is valid when

\[A > \frac{2}{\sqrt{3}} \] (20)

Equations (19) and (20) are the same as obtained in Wu and He\(^{32}\) and Anjum and He,\(^{33}\) showing the correctness of the solution.

Conclusion

This paper, for the first time ever, applies the Elzaki transform to the variational iteration algorithm with great success, the identification of Lagrange multiplier, which was identified by the variational theory, becomes simpler.\(^{34,35}\) An optimal variational iteration algorithm is obtained by the Elzaki transform, and the iteration algorithm converges fast and only one iteration results in a high accurate solution.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Muhammad Suleman https://orcid.org/0000-0001-7810-7877
Ji-Huan He https://orcid.org/0000-0002-1636-0559

References
1. He JH. Variational iteration method – a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 1999; 34: 699–708.
2. He JH. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 1998; 167: 57–68.
3. He JH. Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 2006; 10: 1141–1199.
4. He JH. Variational iteration method – some recent results and new interpretations. J Comput Appl Math 2007; 207: 3–17.
5. He JH and Wu XH. Variational iteration method: new development and applications. Comput Math Appl 2007; 54: 881–894.
6. Ganji DD and Sadighi A. Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J Comput Appl Math 2007; 207: 24–34.
7. Noor MA and Mohyud-Din ST. Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials. Int J Nonlinear Sci Numer Simul 2008; 9: 141–156.
8. He JH. Generalized equilibrium equations for shell derived from a generalized variational principle. Appl Math Lett 2017; 64: 94–100.
9. Baleanu D, Jassim HK and Khan H. A modification fractional variational iteration method for solving non-Linear gas dynamic and coupled Kdv equations involving local fractional operators. Therm Sci 2018; 22: S165–S175.
10. Durgun DD and Konuralp A. Fractional variational iteration method for time-fractional non-linear functional partial differential equation having proportional delays. Therm Sci 2018; 22: S33–S46.
11. He JH. A short remark on fractional variational iteration method. Phys Lett A 2011; 375: 3362–3364.
12. He JH. Fractal calculus and its geometrical explanation. Results Phys 2018; 10: 272–276.
13. Li XX, Tian D, He CH, et al. A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochim Acta 2019; 296: 491–493.
14. Suleman M, Lu D, He JH, et al. Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation. Fractals 2018; 26: 1850041.
15. Wang QL, Shi XY, He JH, et al. Fractal calculus and its application to explanation of biomechanism of polar bear hairs. Fractals 2018; 26: 1850086.
16. He JH and Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. Therm Sci 2019; 23: 2131–2133. DOI: 10.2298/TSCI1904131H
17. Alderremy AA, Elzaki TM and Chamekh M. New transform iterative method for solving some Klein–Gordon equations. Results Phys 2018; 10: 655–659.
18. Elzaki TM, Elzaki SM and Elnour EA. On the new integral transform ‘Elzaki transform’ fundamental properties investigations and applications. Global J Math Sci Theory Pract 2012; 4: 1–13.
19. Elzaki TM and Elzaki SM. On the connections between Laplace and Elzaki transforms. Adv Theor Appl Math 2011; 6: 1–10.
20. Yang XJ. New integral transform for solving a steady heat transfer problem. Therm Sci 2017; 21: S79–S87.
21. Bougoffa L. Comments on the paper: new transform iterative method for solving some Klein–Gordon equations by Aisha Abdullah Alderremy and et al. Results in Physics 10 (2018) 655–659. Results Phys 2018; 11: 510–511.
22. Elzaki TM and Chamekh M. Solving nonlinear fractional differential equations using a new decomposition method. Univ J Appl Math Comput 2018; 6: 27–35.
23. Elzaki TM, Elzaki SM and Hilal EMA. Elzaki and Sumudu transforms for solving some differential equations. Global J Pure Appl Math 2012; 8: 67–73.
24. Suleman M, Wu Q and Abbas G. Approximate analytic solution of (2 + 1), dimensional coupled differential Burgers equation using Elzaki homotopy perturbation method. Alex Eng J 2016; 55: 1817–1826.
25. Turkyilmazoglu M. Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Mediterr J Math 2016; 13: 4019–4037.
26. Chamekh M and Elzaki TM. Explicit solution for some generalized fluids in laminar flow with slip boundary conditions. J Math Computer Sci 2018; 18: 272–281.
27. Mokhtar R and Mohammadi M. Some remarks on the variational iteration method. Int J Nonlinear Sci Numer Simul 2009; 10: 67–74.
28. Li Y, Li Y, Chen CL, et al. New interpretation to variational iteration method: convolution iteration method based on Duhaml’s principle for system dynamic analysis. *Comput Model Eng Sci* 2010; 58: 1–13.

29. He JH and Ji FY. Taylor series solution for Lane-Emden equation. *J Math Chem*. 2019; 57(8): 1932–1934. DOI: 10.1007/s10910-019-01048-7.

30. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546. DOI:10.1016/j.rinp.2019.102546.

31. Li XX and He JH. Nanoscale adhesion and attachment oscillation under the geometric potential Part 1: the formation mechanism of nanofiber membrane in the electrospinning. *Results Phys* 2019; 12: 1405–1410.

32. Wu Y and He JH. Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass. *Results Phys* 2018; 10: 270–271.

33. Anjum N and He JH. Laplace transform: making the variational iteration method easier. *Appl Math Lett* 2019; 92: 134–138.

34. He JH. Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow. *International Journal of Numerical Methods for Heat and Fluid Flow* 2019. DOI: 10.1108/HFF-07-2019-0577.

35. He JH. A modified Li-He’s variational principle for plasma. *International Journal of Numerical Methods for Heat and Fluid Flow*. 2019. DOI: 10.1108/HFF-06-2019-0523.