Recovirus NS1-2 has viroporin activity that induces aberrant cellular calcium signaling to facilitate virus replication

Alicia C. Strtak1, Jacob L. Perry1, Mark N. Sharp1,4, Alexandra L. Chang-Graham1, Tibor Farkas2,3, and Joseph M. Hyser1*

1Alkek Center for Metagenomic and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77303. 2Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, and 3Louisiana Animal Disease Diagnostic Laboratory, Baton Rouge, LA 70803. 4Texas Medical Center Summer Research Internship Program, Augustana College, Rock Island, IL 61201.

Correspondence should be sent to:
Joseph M. Hyser
Alkek Center for Metagenomic and Microbiome Research
Department of Molecular Virology and Microbiology
MS: BCM385
Baylor College of Medicine
Houston, TX, 77303
PH: 713-798-4514
FAX: 713-798-3586
Joseph.Hyser@bcm.edu

No conflicts of interest exist.
Abstract

Enteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca\(^{2+}\)) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca\(^{2+}\) homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca\(^{2+}\) signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca\(^{2+}\) homeostasis. We found that TV disrupts increases Ca\(^{2+}\) signaling during infection and increased cytoplasmic Ca\(^{2+}\) levels is important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum (ER), the predominant intracellular Ca\(^{2+}\) store and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca\(^{2+}\) signaling when expressed in mammalian cells, but truncation of the VPD abrogated these functions. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and show that like many other enteric viruses, enteric caliciviruses also exploit host Ca\(^{2+}\) signaling to facilitate their replication.

Importance

Tulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and result in >65 billion...
dollars per year in treatment and healthcare-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cell, enteroid and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are largely still lacking. Here we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated in conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.
Introduction

The *Caliciviridae* family consists of small, non-enveloped single-stranded RNA viruses with five major genera: *Sapovirus, Lagovirus, Vesivirus, Nebovirus,* and *Norovirus* (1, 2). Caliciviruses infect a wide-array of hosts and have importance in medical, veterinary, and agricultural fields (3). Of particular importance are human noroviruses (HuNoVs) that are the leading cause of acute gastroenteritis (AGE) in every age group, and can cause life-threatening illness in the young, immunocompromised, and elderly subpopulations (4–7). Estimates show that every individual will experience at least five symptomatic norovirus infections in their life (8), which underlines the need for anti-viral drugs, vaccines, or anti-diarrheal therapies for HuNoV infection (9, 10). However, many aspects of calicivirus pathogenesis, including that of HuNoV, remain uncharacterized, which represents a challenge to developing effective therapies (4, 6, 9). One strategy to address this challenge is to study other enteric caliciviruses, such as porcine sapoviruses and rhesus enteric caliciviruses (*Recovirus*). Recoviruses are a new proposed genus of enteric CVs initially identified in the stool from rhesus macaques, of which Tulane virus (TV) is the prototype strain (11, 12). While Recoviruses constitute a separate genus, these viruses are most closely related to HuNoVs and studies of TV show that it retains both biologic and genetic similarities to HuNoVs, including genomic organization, tissue tropism (intestinal epithelia), and clinical presentation (self-limiting vomiting and diarrhea) (1, 11–13).

Furthermore, TV robustly replicates in cell culture in monkey kidney cell lines (e.g., LLC-MK2 cells), which facilitates investigation into the host pathways exploited by TV during infection. This makes TV an excellent model system to identify host signaling pathways broadly exploited by caliciviruses for replication and pathogenesis.
Like other caliciviruses, TV has 3 main open reading frames (ORFs), with ORF1 encoding the nonstructural proteins (NS1-7), and ORFs2-3 encoding the capsid proteins VP1 (ORF2) and VP2 (ORF3) (10, 14-15). During replication ORF1 is synthesized into the polyprotein, which is subsequently cleaved by the viral protease NS6 to produce six nonstructural proteins that orchestrate viral replication (4, 12, 14–16). In particular, the roles of the NS1-2 protein (N-terminal protein) plays in viral replication and pathogenesis are not well-characterized. Recent reports have identified that murine norovirus NS1, the N-terminal portion of NS1-2, antagonizes the interferon pathway, but studies of full-length NS1-2 or the NS2 domain remain limited (17–19). Recombinant expression of NS1-2 from feline calicivirus (FCV), murine norovirus (MNV), and HuNoV GII.4 shows that the protein traffics to the endoplasmic reticulum (ER), concentrates perinuclearly, colocalizes with the ER-resident protein calnexin, and contains C-terminal hydrophobic sequences (20–22). In contrast, Norwalk virus (GI.1) NS1-2 (p48) was primarily found in the Golgi apparatus and implicated in disrupting ER-to-Golgi trafficking (23, 24). The similarities in ER/Golgi membrane association and domain organization of NS1-2 from different viruses suggest that NS1-2 may have a conserved function among caliciviruses.

The ER, and to a lesser extent Golgi apparatus, are important intracellular calcium (Ca\(^{2+}\)) storage organelles, with the ER Ca\(^{2+}\) concentration being up to 1 mM (25, 26). As a ubiquitous secondary messenger, Ca\(^{2+}\) is at the epicenter of many cellular processes and host machinery tightly regulates Ca\(^{2+}\) levels to ensure low (nM) cytoplasmic Ca\(^{2+}\) concentrations at cellular rest (26–32). Importantly, Ca\(^{2+}\) signaling regulates several aspects of viral life cycles including entry, genome replication, and release (30, 33–35). To exploit Ca\(^{2+}\) signaling, many viruses express an ion channel (i.e., viroporin) to dysregulate Ca\(^{2+}\) homeostasis in order to usurp Ca\(^{2+}\)-dependent
host processes (30, 36–39). The best characterized Ca\(^{2+}\) disrupting viroporins are the nonstructural protein 4 (NSP4) from rotavirus (RV) and the 2B nonstructural protein of enteroviruses (EV) and some other picornaviruses (36, 37, 40–44). Like all bona fide viroporins, NSP4 and 2B have canonical biophysical motifs, including being oligomeric, having an amphipathic \(\alpha\)-helix that forms the pore, and a cluster of basic residues that facilitate membrane insertion (37–39, 42–44). While no study has specifically looked at whether caliciviruses dysregulate Ca\(^{2+}\) signaling or have a viroporin, they belong to the picornavirus-like superfamily of positive-sense RNA viruses, among which there is considerable positional homology of the cognate proteins of the nonstructural polyprotein (23, 45, 46). Within this rubric, the picornavirus 2AB region constitutes the positional homolog of the calicivirus NS1-2 protein, and several sequence motifs in the NS1 are conserved in the 2A protein of some picornaviruses (23). While no functional homology between EV 2B and the NS2 region of NS1-2 has been yet been identified, it is tempting to speculate that NS1-2 may have viroporin activity and dysregulate host Ca\(^{2+}\) signaling analogous to that of EV 2B proteins.

In this study, we investigated the role of Ca\(^{2+}\) signaling in TV replication and whether TV NS1-2 has viroporin activity that can dysregulate Ca\(^{2+}\) homeostasis. Using long-term live-cell Ca\(^{2+}\) imaging, we sought to determine whether TV infection causes aberrant Ca\(^{2+}\) signaling during infection and identify the cellular Ca\(^{2+}\) pools critical for the TV-induced Ca\(^{2+}\) signaling. Finally, we tested TV NS1-2 for viroporin activity and determined whether the putative NS1-2 viroporin domain caused aberrant Ca\(^{2+}\) signaling similar to TV infection.
Methods

Cell lines, GECI lentiviruses, and viruses: All experiments were performed in LLC-MK2 cells. Lentivirus packaging and recombinant protein expression for western blot lysate production was performed in HEK293FT cells (ATCC CRL-3216). Cell lines were grown in high-glucose DMEM (Sigma: D6429) containing 10% fetal bovine serum (FBS) (Corning lot no. 35010167) and antibiotic/antimycotic (Invitrogen), and maintained at 37°C with 5% CO₂. Lentivirus packaging in HEK293FT cells was performed as previously described (41). Briefly, LLC-MK2 cells were transduced with a lentivirus vector encoding GCaMP6s 1-day post-seeding (~85% confluence). We confirmed positive expression of GCaMP6s at 48-72 hours post-transduction, then passaged cells 1:2 and added hygromycin (100 μg/mL) for selection of the LLC-MK2-GCaMP6s cell lines, henceforth referred to as MK2- G6s. We determined GCaMP6s activity and dynamic range using thapsigargin (0.5μM). Tulane virus (TV) stocks were made in-house by infecting cells with MOI 0.01 and harvesting at ~95% cytopathic effect (CPE). Virus titer was determined by plaque assay. Irradiated virus controls were made by gamma-irradiating TV stocks for 19 hours.

Replication assays: LLC-MK2 cells were seeded at 125,000 cells/well in 24 well plates (Costar 3524, Corning) and inoculated next day with TV at MOI 1 for 1 hour. Inoculum was removed, and cell media was replaced containing different extracellular Ca²⁺ conditions (0 mM Ca²⁺, 4 mM Ca²⁺), intracellular Ca²⁺ chelator 50 μM BAPTA-AM, or the sarco/endoplasmic reticulum calcium ATPase (SERCA) blocker thapsigargin (TG). Ca²⁺-free DMEM was purchased from Gibco (Cat #21068-028). Standard high-glucose DMEM (Sigma) has 1.8 mM CaCl₂, which we refer to as “2 mM Ca²⁺, and media with 4 mM Ca²⁺ was made by adding 2 mM CaCl₂ to the
standard high-glucose DMEM (Sigma). We maintained TV-infected cells under these conditions until the positive control (normal media) had ~90% CPE. Progeny virus was harvested by 3 freeze/thaw cycles, the virus yield was determined by plaque assay. For plaque assays, cells are seeded at 75,000 cells/well in 24 well plates and 2-days post-seeding, the cells were inoculated for 1 hour with 10-fold serial dilutions of the sample. Then, we removed the inoculum and added the overlay. Overlays for plaque assays was made mixing equal parts 1.2% Avicel (FMC Corporation) and 2X DMEM (Gibco). Plaque assays were harvested at 72 hours; fixed and stained with crystal violet (3% solution) to visualize plaques. Titer is represented as plaque forming units per milliliter (PFU/mL).

One-step growth curves: One step growth curves for TV were performed using a modified protocol from previous reports (11, 15). Briefly, LLC-MK2 cells were inoculated with TV at MOI 1 in serum-free DMEM (0% FBS DMEM). At 1-hour post-infection (HPI), the inoculum was removed and replaced with 0% FBS DMEM. Cells were harvested at 0, 4, 6, 8, 10, 12, 16, 20, 24, and 28 HPI and virus yield determined by plaque assay. Each biological replicate was performed in duplicate.

Long-term Ca$^{2+}$ imaging experiments: Calcium imaging experiments were set up by adapting a protocol detailed in previous reports (47). MK2-G6s cells were seeded at 78,500 cells/well in 15 μ-slide 8 well chambers (Ibidi, Germany) and infected the next day with TV at the indicated MOI. After one hour, the inoculum was removed and replaced with FluoroBrite DMEM (Gibco). For studies involving pharmacological compounds, the FluoroBrite was mixed with DMSO (0.1%, vehicle control) or the indicated pharmacological compounds dissolved in DMSO. Then
the slide was mounted into a stage-top environmental chamber (Okolab H301-Mini) that
maintained 37°C with humidity control and 5% CO₂. Time lapse live-cell Ca²⁺ imaging
experiments were conducted from ~2 HPI until ~18-24 HPI on a Nikon TiE epifluorescence
microscope using a SPECTRAX LED light source (Lumencor) and a 20X Plan Apo (NA 0.75)
objective. Images were acquired at 1-2 images/minute. Images were acquired and analyzed using
the NIS elements advanced research software package (Nikon). Prior to image analysis,
background camera noise was subtracted from the images using an averaged file of 10 no-light
camera images. Cells that underwent division during the imaging run were excluded from
analysis. Intracellular Ca²⁺ signaling over time was quantified by calculating the number of Ca²⁺
spikes per cell. This was determined as follows: Raw fluorescence intensity values were
measured in Nikon software, then exported to Microsoft Excel to normalize the fluorescence to
the first image (F/F₀). The Ca²⁺ spikes were calculated by subtracting each normalized
fluorescence measurement from the previous measurement to determine the change in GCaMP6s
fluorescence (ΔF) between each timepoint. Ca²⁺ signals with a ΔF magnitude of >5% were
counted as Ca²⁺ spikes. For each condition testes, Ca²⁺ spikes in ≥30 cells were determined.

Heatmap generation: To generate heatmaps of the normalized GCaMP6s fluorescence over
time for long-term Ca²⁺ imaging experiments we used the TidyR (48) and ggplot2 (49) packages
available through R studio. Normalized GCaMP6s data from Excel was used to create a R-
compatible file (.csv) containing the normalized fluorescence and the acquisition time data for
the dataset, and imported the file into R. We used the TidyR package to organize data into a
format accessible by ggplot2. We then used ggplot2 to generate heatmaps.
Prediction of viroporin motifs in silico: We used the Hydropathy Analysis program at the Transporter Classification Database to generate Kyte & Doolittle Hydropathy and Amphipathic moment plots to identify putative viroporin motifs within full-length TV NS1-2 (50). Secondary structure, membrane topology, and membrane integration predictions were performed using PSIPred prediction analysis suite (website: http://bioinf.cs.ucl.ac.uk/introduction/) (51). Helical wheel plots to identify clustered basic residues within the putative viroporin domain were generated using the PepWheel analysis program at Heliquest (website: http://heliquest.ipmc.cnrs.fr/) (52).

Expression vectors: E. coli expression constructs for the lysis assay were generated via ligation-independent cloning (LIC) using the pET46-Ek/LIC kit (MilliporeSigma, Darmstadt, Germany). The pET46-Ek/LIC constructs all have an N-terminal 6x histidine tag. Mammalian expression vectors were generated by inserting c-myc tag and mRuby3 red fluorescent protein upstream of full length NS1-2 and then subcloning this into the pTagRFP-N vector in place of TagRFP (Epoch Life Sciences, Missouri City, TX). This construct will be referred to as RFP-NS1-2. The NS1-2(Δ176) and NS1-2(Δ157) truncation mutations in both bacterial and mammalian expression vectors were generated using the NEB Q5 site-directed mutagenesis kit (New England Biolabs, Ipswich, MA). All constructs were sequence-verified using universal primers specific to the construct backbone (GENEWIZ, South Plainfield, NJ). The mammalian expression vector for EV 2B was generated by cloning the 2B from enterovirus 71 upstream into pTagRFP-N and the construction of the NSP4-TagRFP expression vector was previously described (53).
Transfection experiments: MK2-G6s cells were seeded in 15 μ-slide 8 well chambers (Ibidi, Germany) and at 85% confluency transfected with mammalian expression constructs in Opti-MEM (ThermoFisher) and Lipofectamine 2000 (Invitrogen). Transfection was optimized so cells received 400 ng plasmid DNA and 0.5 μL of Lipofectamine 2000 per well. 10 μM trichostatin A (TSA) was added from 1-3 hours post-transfection. TSA is a histone deacetylase (HDAC) inhibitor used to increase expression from the vectors (54–56). Time-lapse Ca²⁺ imaging was performed beginning 8 hours post-transfection to capture expression kinetics, and up to 24 hours post-transfection to measure changes in Ca²⁺ signaling during expression of the RFP-tagged proteins.

Deconvolution microscopy: LLC-MK2 cells were seeded in 15 μ-slide 8 well chambers (Ibidi, Germany) and transfected one day prior to imaging. Cells were transfected with intracellular markers for the plasma membrane (LCK-GFP; Addgene plasmid #61099), endoplasmic reticulum (pLV-ER GFP; Addgene plasmid #80069), Golgi apparatus (pLV-Golgi GFP; Addgene plasmid #79809), and mitochondria (HyPer-dMito, Envrogen). Control wells received TagRFP (Envrogen), while experimental wells received either full length RFP-NS1-2, RFP-NS1-2(Δ157) or RFP-NS1-2(Δ176). Cells were imaged 24 hours post-transfection on the DeltaVision LIVE high resolution deconvolution microscope (GE Healthcare) using the 60X/1.4 Plan-Apo NA oil objective (Olympus), and acquired using a pco.edge sCMOS_5.5 camera. Images were acquired and deconvolved in SoftWoRx software. Upon deconvolving, images were further processed in FIJI (ImageJ) to adjust for brightness/contrast and pseudo-coloring (57).
E. coli Lysis Assay: E. coli Lysis assays were performed as previously described (41). Briefly, pET46-Ek/LIC constructs of the TV NS1-2 full-length and truncation mutants were transformed into BL21(DE3)pLysS cells. Transformations were plated on LB + 1% glucose + 100μg/mL ampicillin, + 35μg/mL chloramphenicol and grown at 37°C overnight. Isolated colonies were picked next day and cultured overnight in liquid LB + 1% glucose, + 100μg/mL ampicillin, + 35μg/mL chloramphenicol at 37°C in an orbital shaker at 250 rpm. The next day, overnight cultures were subcultured by 1:100 dilution into 200 mL LB + 1% glucose, + 100μg/mL ampicillin, + 35μg/mL chloramphenicol. Subcultures were grown at 37°C in an orbital shaker at 250 rpm for ~3 hours to an OD₆₃₀ between 0.3-0.5, then induced with 1mM IPTG. Absorbance measurements at 630 nm (OD₆₃₀) were taken every 10 minutes for 90 minutes and normalized to the induction OD₆₃₀ to determine the percent growth or lysis over time after induction. Each experiment was performed ≥3 times. Protein expression was determined by SDS-PAGE using a 4-20% Tris-glycine gel (Bio-RAD, Hercules, CA) and western blot for the 6x histidine tag. An uninduced culture served as the negative control for viroporin activity and NS1-2 synthesis.

Membrane association experiment: Membrane association experiments were performed using a modified protocol from previously reported experiments (36, 41). Lysed membranes from a 200 mL culture were centrifugated at 21,000 x g for 20 minutes and supernatants decanted. Pellets were resuspended in PBS and sonicated 3 times for 1 minute on ice. Total lysate was collected after sonication. Then membranes were pelleted by ultracentrifugation at 49,000 x g for 1 hour using a TLA-100.3 rotor in an Optima TL Ultracentrifuge (Beckman Coulter, Indianapolis, IN), and the supernatant was collected for the soluble fraction. Finally, the
membrane fraction pellet was resuspended in PBS + 1% SDS to solubilize membrane proteins.

Samples from the total lysate, soluble fraction, and membrane fraction analyzed by western blot.

Production of TV and Vpg antisera: For the anti-TV antisera to detect VP1, adult male and female CD-1 mice (purchased from Center for Comparative Medicine, Baylor College of Medicine) were immunized 5 times with CsCl2-gradient-purified TV at 10 μg/dose in AddaVax adjuvant (InvivoGen). Immunizations were given at 3-week intervals. For the anti-Vpg antisera, adult Balb/C were immunized 3 times with 10-20 μg/dose purified Vpg expressed in *E. coli*. The priming dose was given in Freund’s complete adjuvant and the subsequent boosts were given in Freund’s incomplete adjuvant. All experiments were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Immunoblot analysis: Samples were prepared using procedures adapted from (36). Briefly, samples were mixed with 5X sample buffer containing 2-mercaptoethanol and boiled for 10 minutes at 100°C. Samples were then run on a 4-20% Tris-glycine gel (Bio-RAD, Hercules CA) and transferred onto a nitrocellulose membrane using the Transblot Turbo transfer system (BIO-RAD, Hercules, CA). To detect the bacterial constructs of NS1-2 and NSP4, we used the mouse α-HIS Tag monoclonal antibody at 1:1000 (Genscript, Piscataway, NJ). To detect mammalian expression constructs of NS1-2, we used the mouse α-c-Myc monoclonal (clone 9E10) antibody at 1:1000 (R&D Systems, MN). To detect TV structural protein VP1, we used the mouse α-TV polyclonal we made in-house by hyperimmunizing CD1 mice with purified TV particles. To detect TV nonstructural protein Vpg, we used the mouse α-Vpg polyclonal antibody made by
hyperimmunizing mice with bacterially expressed and purified Vpg. For loading control of
mammalian cell lysates, we used the mouse α-GAPDH at 1:3000 (Novus Biologicals, CO). We
used alkaline phosphatase-conjugated goat α-mouse IgG at 1:2000 (Southern Biotech,
Birmingham, AL), and visualized using alkaline phosphatase substrate [Tris-base, nitro blue
tetrazolium (NBT), 5-bromo-4-chloro-3-indolyl phosphate (BCIP)].

Statistical analysis: Statistical analyses were completed using GraphPad Prism (ver. 7.03). Data
in this manuscript is presented as mean ± standard deviation. We performed columns statistics to
collect descriptive statistics and to determine the normality of the datasets. We then used the
unpaired Student’s t-test for datasets with a parametric distribution, or a Mann-Whitney test for
datasets with a nonparametric distribution. Differences were determined statistically significant
if the p < 0.05. Authors had access to the data for this manuscript, and all authors approved the
final manuscript.

Data availability: RConsole code for the heatmaps generated in this paper is available upon
request.
Results

TV infection disrupts host calcium signaling kinetics in LLC-MK2 cells. Ca\(^{2+}\) is a ubiquitous secondary messenger and many enteric viruses (e.g., RVs and EVs) require elevated cytosolic Ca\(^{2+}\) to facilitate replication (30, 36–39, 42, 43). To determine if TV causes aberrant Ca\(^{2+}\) signaling like other enteric viruses, we examined whether Ca\(^{2+}\) signaling dynamics changed during TV infection. We infected LLC-MK2 cells stably expressing GCaMP6s (MK2-G6s) with different infectious doses [multiplicity of infection (MOI) 1, 5, 10] or \(\gamma\)-irradiated inactivated TV and performed live-cell fluorescent microscopy during the infection. GCaMP6s is a GFP-based genetically encoded Ca\(^{2+}\) indicator that reports changes in cytosolic Ca\(^{2+}\) as an increase in fluorescence (58). TV-infected MK2-G6s cells show increased cytoplasmic Ca\(^{2+}\) levels (Fig. 1A) beginning at roughly 8 HPI (MOI 10) and progressing for the remainder of the infection (Supplemental Video S1). The observed increase in Ca\(^{2+}\) signaling coincides with the synthesis of TV nonstructural proteins, assessed by western blot using an \(\alpha\)-Vpg antisera (Fig. 1B) and TV structural proteins, assessed by western blot using an \(\alpha\)-TV antisera to detect VP1 (Fig. 1C), which show increased TV protein production between 8-12 HPI. Further, based on a one-step growth curve, the increased cytosolic Ca\(^{2+}\) also coincides with the onset of progeny virus production, which occurs between 6-8 HPI (Fig. 1D). The increases in cytosolic Ca\(^{2+}\) were dynamic during TV infection (Supplemental Video S2). In infected cells, we noted that changes in cytosolic Ca\(^{2+}\) occurred through an increased number of discrete Ca\(^{2+}\) signals, much like what we recently observed in RV-infected cells (Fig. 1E) (47). We refer to these high-amplitude, transient Ca\(^{2+}\) signals as “Ca\(^{2+}\) spikes” and quantitated the number of Ca\(^{2+}\) spikes per cell during infection. Compared to uninfected controls, TV-infected cells have significantly more Ca\(^{2+}\) spikes/cell, but cells inoculated with \(\gamma\)-irradiated TV did not exhibit increased Ca\(^{2+}\) signaling.
Together, these data indicate that increased Ca\(^{2+}\) signaling requires replication competent virus and occurs at later during infection, well after entry has occurred. Additionally, Ca\(^{2+}\) signaling in infected cells increases in an infectious dose-dependent manner, saturating at MOI=5 (Fig. 1F). To visualize the aberrant Ca\(^{2+}\) signaling induced by TV, we generated heatmaps plotting normalized GCaMP6s fluorescence over time (Fig. 1G). Heatmap data shows an increased number and magnitude of Ca\(^{2+}\) signals and that cytosolic Ca\(^{2+}\) levels change earlier and more frequently throughout infection as infectious dose increases (Fig. 1G). The heatmaps also show that MK2-G6s cells inoculated with \(\gamma\)-irradiated TV do not have increased Ca\(^{2+}\) signaling compared to mock-inoculated cells (Fig. 1G), consistent with the lack of increased Ca\(^{2+}\) spikes (Fig. 1F). Taken together, these data suggest that, like other enteric viruses, TV disrupts host Ca\(^{2+}\) signaling kinetics during infection.

Intracellular Ca\(^{2+}\) is critical for TV replication. Since we observed aberrant Ca\(^{2+}\) signaling during TV infection, we sought to determine whether Ca\(^{2+}\) was involved in TV replication. To test this, we manipulated extracellular and intracellular Ca\(^{2+}\) levels and determined their effect this had on TV yield. Doubling the extracellular Ca\(^{2+}\) concentration (~4 mM) did not affect TV yield (Fig. 2A, right). In contrast, TV propagated in Ca\(^{2+}\)-free media significantly reduced total yield (Fig. 2A, middle). Interestingly, plaques of TV propagated in Ca\(^{2+}\)-free media were substantially smaller than that propagated in normal media, even though the plaque assay titrations were performed in normal media (Fig. 2C). Next, to investigate the role of intracellular Ca\(^{2+}\) during infection, we treated LLC-MK2 cells with BAPTA-AM, which chelates cytosolic Ca\(^{2+}\) and therefore buffers cytosolic Ca\(^{2+}\) (59, 60). TV replication in Ca\(^{2+}\)-free media supplemented with BAPTA-AM (0Ca\(^{2+}\)/BAPTA) was reduced up to 4-log (Fig. 2B), which was
a greater inhibition than Ca2+-free media alone (Fig. 2A versus 2B). We next sought to determine
whether intracellular Ca2+ stores are important for TV replication by testing the effect of
thapsigargin (TG) on TV replication. TG is an inhibitor of sarco/endoplasmic reticulum Ca2+
ATPase (SERCA), which pumps cytosolic Ca2+ into the ER to help maintain ER Ca2+ stores. We
treated TV-infected cells with TG and measured TV yield as above and found that TV
replication is ~3-log less in TG-treated than in DMSO-treated cells (Fig. 2B). Finally, we tested
these different manipulations of extracellular or intracellular Ca2+ on TV yield a different time
points during infection (8, 16, 24 HPI) (Fig. 2D). These studies confirmed that reduction of
extracellular Ca2+ or treatment with TG significantly inhibited total virus replication; however,
the rate of progeny virus production was not substantially reduced. Together, the replication
assays demonstrate that intracellular Ca2+ levels facilitate TV replication, and that the ER Ca2+
store is particularly important for robust virus production.

TV-induced Ca2+ signaling requires ER Ca2+ stores. We next sought to determine the effect
that the manipulations to extracellular and intracellular Ca2+ had on the TV-induced Ca2+
signaling exhibited in Figure 1. We altered extracellular and intracellular Ca2+ concentrations as
above and performed live Ca2+ imaging of mock and TV-infected MK2-G6s cells. TV-infected
cells in 2 mM Ca2+ (normal media) exhibited increased Ca2+ signaling, as observed above (Fig.
3A). Supplementing media with additional extracellular Ca2+ (4 mM Ca2+ total) did not further
increase the Ca2+ spikes but removing extracellular Ca2+ abolished the TV-induced Ca2+ spikes
(Fig. 3A). Using heatmaps, we plotted the relative change in GCaMP6s fluorescence over time
and observed increased signaling starting at ~8 HPI in both the 2 mM Ca2+ and 4 mM Ca2+
conditions (Fig. 3B). Further, the heatmaps show that infected cells in Ca2+-free media have a
signaling profile that phenotypically mimics uninfected controls (Fig. 3B). Like the results obtained in replication assays, buffering cytoplasmic Ca\(^{2+}\) using BAPTA-AM reduced the number of Ca\(^{2+}\) spikes per cell to a level comparable to that of mock-infected cells (Fig. 3C) (Supplemental Video S2). Similarly, blocking the ER SERCA pump with TG significantly reduces TV-induced Ca\(^{2+}\) signaling (Fig. 3D), supporting replication data and demonstrating that ER Ca\(^{2+}\) stores are a critical source of Ca\(^{2+}\) for enhancing replication.

Tulane virus NS1-2 is targeted to the ER membrane. Our data indicates that TV activates aberrant Ca\(^{2+}\) signaling involving the ER Ca\(^{2+}\) store, much like the dysregulation of Ca\(^{2+}\) homeostasis by other enteric viruses observed in RV and EV infections. Both RV and EV encode a viroporin, or viral ion channel, that targets the ER Ca\(^{2+}\) store to activate aberrant Ca\(^{2+}\) signaling pathways that are critical for virus replication (35, 36, 38, 39, 42, 43). Viroporins are integral membrane proteins that have some common characteristics, including being oligomeric, having an amphipathic \(\alpha\)-helix that serves as the channel lumen through the membrane, and a cluster of basic amino acid residues that facilitate insertion into the membrane (24, 34, 35, 39, 61).

Previous work with NS1-2 from several different caliciviruses shows it is membrane-associated and primarily to the ER (17–20, 24) and/or Golgi (17, 20, 21, 23). Thus, we hypothesized that calicivirus NS1-2 could be a viroporin involved in the aberrant Ca\(^{2+}\) signaling we observed during TV infection. Notably, the calicivirus NS2 domain is the positional homolog of the EV 2B viroporin (Fig. S1). This is potentially significant because previous studies have found conserved functional characteristics between the positional homologs of the other nonstructural proteins (20, 21, 23, 46, 61–64), and functional homology between EV 2AB and human norovirus (HuNoV) GII.4 NS1-2 (20, 23). Additionally, when performing multiple sequence
alignments of other calicivirus NS1-2s, we found that the C-terminal domain (CTD) of this protein is highly conserved (Fig. S2). To determine whether TV NS1-2 has viroporin-like characteristics, we examined TV NS1-2 for viroporin motifs. First, we performed a Kyte-Doolittle plot to detect hydrophobic regions of NS1-2 and an amphipathicity plot to identify potential amphipathic domains (Fig. 4A). We found that aa195-215 (Fig. 4A, dark green box) in the CTD of NS1-2 has a high amphipathic moment. We then used PSIPred (51) to model NS1-2 predicted secondary structure (Fig. 4B). Output from this analysis suggested that the NS1-2 CTD was predominantly comprised of alpha-helices (Fig. 4B, pink residues), and accompanying confidence scores for prediction of these C-terminal helices were ≥75% (Fig. S3). Interestingly, the region of peak amphipathicity (Fig. 4A) was located within one of the PSIPred helix predictions of the CTD (Fig. 4B, dark green bar) and contained clustered basic residues (blue asterisks), two key features of viroporins. Additionally, NS1-2 topology modeling identified two putative transmembrane domains (TMD): the first (TMD1) from aa164-179, and the second (TMD2) from aa202-225 (Fig. 4C, top). The membrane topology schematic indicated that both TMD1 and TMD2 had predicted pore-lining regions within their helices (Fig. 4B bottom left). To explore this, we used HeliQuest (52) to generate a helical wheel diagram for TMD2 (aa198-215), since TMD2 had the clustered basic residues common among viroporins. The helical wheel shows that TMD2 is highly amphipathic with clear polar and non-polar faces to the helix (Fig. 4D). The calculated hydrophobic moment for TMD2 is 0.522, supporting the above amphipathicity predictions (Fig. 4A). Given the results of these computational studies, we predicted that NS1-2 TMD2 (aa195-215) is a viroporin domain and set out to test this prediction experimentally.
First, we tested whether TV NS1-2 was an integral membrane protein and whether it localized to the ER similar to NS1-2 from other caliciviruses. To do so, we generated bacterial and mammalian expression vectors of full-length NS1-2. For mammalian expression vectors, we N-terminally fused full-length NS1-2 to mRuby3 (henceforth referred to as RFP-NS1-2). From these constructs, we generated two truncation mutants of WT NS1-2 in both mammalian and bacterial expression vectors: the first, NS1-2 Δ176, was predicted to have TMD1 but lack the viroporin domain, and the second, NS1-2 Δ157, was predicted to lack both TMD1 and the VPD.

We then transfected wild-type, full-length (WT) RFP-NS1-2, RFP-NS1-2 Δ157, and RFP-NS1-2 Δ176 into HEK 293FT cells and harvested cell suspensions next day. Samples following cell lysis, sonication, and fractionation were collected for SDS/PAGE western blots. We found both Δ176 and WT TV NS1-2 in the total fraction (T) and membrane pellets (M), but not in the supernatant (S), suggesting that TMD1 mediates membrane association (Fig. 4E). Additionally, in the non-reducing, unboiled conditions used, oligomers of both Δ176 and WT RFP-NS1-2 were detected by western blot (Fig 4E, arrowheads). Similar results were obtained from membrane fractionation of analogous bacterially expressed NS1-2 constructs (Fig. S4). Using the mammalian expression vectors of RFP-NS1-2, we performed colocalization assays with fluorescent markers of the ER, Golgi apparatus, and mitochondria. RFP-NS1-2 showed no colocalization with the Golgi or mitochondria (Fig. 4F). In contrast, RFP-NS1-2 strongly colocalized with the ER-GFP marker (Fig. 4F), indicating that, like NS1-2 from other caliciviruses and EV 2B and RV NSP4, TV NS1-2 traffics to the ER membrane.

TV NS1-2 has viroporin activity that disrupts Ca^{2+} signaling. Since our predictive modeling suggested that NS1-2 met the biophysical requirements for a viroporin, and our live-cell Ca^{2+}
imaging data exhibited large changes in cytosolic Ca2+ during TV infection, we tested whether NS1-2 has viroporin activity. We performed the \textit{E. coli} lysis assay, which is a classical viroporin functional assay, wherein viroporin expression by BL21(DE3)pLysS \textit{E. coli} results in permeabilization of the inner membrane, resulting in T7 lysozyme-mediated cell lysis (41). This assay has been used to identify and initially characterize many viroporins (36, 65, 66). We expressed full-length HisNS1-2 in BL21(DE3)pLysS cells and measured optical density (OD) over time following protein induction with IPTG. For the lysis assay, strong viroporin activity is characterized by large decreases in OD over time, whereas no viroporin activity is characterized by increases in OD over time. Our results show that induced NS1-2 has strong viroporin activity, similar to that of RV NSP4, our positive control for viroporin activity (Fig. 5A). We see no changes in OD over time for uninduced NS1-2, indicating that HisNS1-2 viroporin activity correlated with protein expression, detected by immunoblot for the 6xHis-tag (Fig. 5B). We then asked whether recombinant expression of RFP-NS1-2 alone increases Ca2+ signaling in MK2-G6s cells. To test this, we transfected MK2-G6s cells with mammalian expression vectors for RFP-NS1-2 as well as RFP-NSP4 and RFP-EV 2B, our positive controls for viroporin-mediated Ca2+ signaling. Expressing RFP-tagged viroporins in MK2-G6s cells significantly increases both the number and amplitude of Ca2+ spikes. However, this was not observed in cells expressing RFP alone, as illustrated by the representative single-cell traces (Fig. 5C) (Supplemental Video S3). As above, we quantitated the number of Ca2+ spikes and confirmed that recombinant expression of RFP-NS1-2 increased the number of Ca2+ spikes per cell approximately 2-fold, similar to that of EV 2B and RV NSP4 (Fig. 5D). Taken together, our results demonstrate that TV NS1-2 has viroporin activity in the lysis assay, similar to \textit{bona fide} viroporins, and causes aberrant host Ca2+ signaling when expressed in mammalian cells.
NS1-2 viroporin activity maps to the putative viroporin domain. Our computational studies above identified a putative TV NS1-2 VPD from aa195-212. To determine whether the NS1-2 viroporin activity maps to this putative VPD, we generated C-terminal truncation mutants in bacterial expression vectors with deletions after aa212 (A212-Δ), after aa194 (W194-Δ), or after aa176 (D176-Δ) and characterized them in the lysis assay (Fig. 6A). We found that the A212-Δ truncation (red) had strong lysis activity comparable to full-length NS1-2 (black) (Fig. 6B). In contrast the D176-Δ truncation (blue) exhibited no lysis activity, comparable to uninduced NS1-2 (grey) (Fig. 6B). Immunoblot analysis confirm that protein expression correlated with viroporin activity, and that the impaired activity of W194-Δ was not due to lower expression levels, since the expression was comparable to that of full-length and A212-Δ (Fig 6C). Since the W194-Δ truncation (green) had impaired viroporin activity, this suggests that the VPD functionally extends to aa177-212.

Next, we characterized truncation mutants for their activation of aberrant Ca2+ signaling in MK2-G6s cells. Since recombinant expression of full-length RFP-NS1-2 induced aberrant Ca2+ signaling (Fig. 5D), we tested whether truncating the putative viroporin domain alone (Δ176) or both TMDs (Δ157) would compromise NS1-2-induced Ca2+ signaling (Fig. 6D). First, we examined the subcellular distribution and expression levels of the constructs. While the full-length and Δ176 truncation both appeared reticular, the Δ157 truncation had cytoplasmic distribution, consistent with it lacking both TMDs (Fig. 6E). Immunoblot analysis shows that the expression of both truncations was much greater than that of full-length NS1-2 (Fig. 6F, left blots) and by loading less lysate we can better resolve the 2 kDa size difference in the Δ157 and Δ176 truncations (Fig. 6F, right blots). Next, we examined whether these truncations could
induce Ca\(^{2+}\) signaling by long-term live Ca\(^{2+}\) imaging in MK2-G6s cells. Individual cell traces illustrate that neither the \(\Delta 157\) nor the \(\Delta 176\) truncation dramatically increased Ca\(^{2+}\) signaling similar to full-length RFP-NS1-2 (Fig. 6G). Quantitation of the Ca\(^{2+}\) spikes per cell showed that while both truncations exhibited higher Ca\(^{2+}\) signaling than RFP alone (Fig 6G), the amplitude of these spikes was significantly reduced compared to full-length RFP-NS1-2 (Fig. 6H). The significant reduction in the number and amplitude of Ca\(^{2+}\) spikes/cell for both mutants highlights the critical importance of an intact VPD for disrupting host Ca\(^{2+}\) signaling. Together this work demonstrates that TV NS1-2 is an ER-targeted viroporin that induces aberrant Ca\(^{2+}\) signaling.
Discussion

As obligate intracellular pathogens, viruses are adept at exploiting host pathways to facilitate replication. Viruses from many different taxonomic families activate aberrant Ca2+ signaling because Ca2+ signals are used by all cells to regulate a vast array of cellular functions. Therefore, this represents a powerful strategy to reconfigure host cell physiology via targeted disruption of host Ca2+ homeostasis. The overarching goal of this study was to determine whether dysregulation of Ca2+ signaling is a characteristic of caliciviruses and if this is due to the production of a viroporin protein similar to picornaviruses. To address these questions, we studied TV, as a model calicivirus, using a combination of live-cell Ca2+ imaging and other classical techniques. The major new findings of this study are as follows: (i) TV infection causes aberrant Ca2+ signaling that coincides with viral protein synthesis and replication, (ii) cellular Ca2+ is critical for TV replication and buffering of cytosolic Ca2+ severely reduced viral yield, (iii) TV NS1-2 has viroporin activity and dysregulates Ca2+ signaling in mammalian cells similar to TV infection, and (iv) NS1-2 viroporin activity maps to a C-terminal integral membrane viroporin domain and truncation of this domain abrogates the NS1-2-induced activation of Ca2+ signaling. To our knowledge, these results are the first to show exploitation of Ca2+ signaling by a calicivirus and identification of NS1-2 as a Ca2+-disrupting viroporin. These findings further extend the functional homology between the calicivirus nonstructural proteins and their picornavirus positional homologs.

The exploitation of host Ca2+ signaling to facilitate virus replication is a common feature of many viruses (30). Our finding that TV coopts Ca2+ signaling is consistent with previous studies showing that elevated Ca2+ levels are important for picornavirus replication, especially since caliciviruses and picornaviruses utilize a similar replication strategy (43). Similar to other
Ca2+-disrupting viruses, TV also induces aberrant Ca2+ signaling peak of virus replication, many hours after cell entry. This is consistent with the reduced virus yield in media with reduced extracellular Ca2+ or treatments to buffer cytosolic Ca2+ (BAPTA-AM) or block refilling of ER Ca2+ stores (TG). Further, as we recently reported for RV infection, the TV-induced increase in cytosolic Ca2+ manifests as many discrete Ca2+ signals rather than a monophasic increase in Ca2+ over the infection (47). This raises the question of what cellular pathways are activated by this Ca2+ signaling and how they benefit TV replication. Both RV and EV have been shown to exploit Ca2+ signaling to activate the biosynthetic early stages of autophagy, which facilitates virus replication through rearrangement of cellular membranes to form replication complexes (67). MNV infection of primary macrophages or RAW264.7 cell line activates autophagy, but, in contrast to RV and EV, autophagy limits MNV replication (68). Thus, it remains to be determined whether autophagy plays a role in calicivirus replication complex assembly or whether Ca2+ signaling regulates autophagy activation during calicivirus infection. Further, elevated Ca2+ signaling may serve to modulate cellular apoptotic responses. Strong monophasic increases in cytosolic Ca2+ activate apoptosis through mitochondrial Ca2+ overload, but transient and oscillatory Ca2+ fluxes serve as pro-survival signals (69). Activation of apoptosis has been seen in norovirus and feline calicivirus-infected cells, and caspase activation is critical for cleavage and release of MNV NS1 from NS1-2, which in turn modulates cellular innate immune responses (19, 22). Thus, increased transient Ca2+ signaling may serve to counteract apoptosis activation and help prolong cell viability to maximize virus replication.

Within the superfamily of picornavirus-like positive sense RNA viruses, there is positional homology between the ORF1 nonstructural proteins of caliciviruses (and likely astroviruses) and the P2-P3 nonstructural proteins of picornaviruses (23, 45, 46). We used this
framework to determine whether TV NS1-2 exhibited viroporin activity, since the positional homolog, the picornavirus 2B protein, is a well-established Ca\(^{2+}\)-conducting viroporin (34, 44).

We found that TV NS1-2 has viroporin activity, similar to 2B and RV NSP4, and the viroporin activity mapped to the integral membrane NS2 domains. Since both the N- and C-termini are likely oriented in the cytoplasm, NS1-2 is classified as a Class II\(^2\) viroporin, similar to the picornavirus 2B proteins (34, 44). This topology is supported by the cytosolic accessibility of the NS1 domain and the need for the C-terminus to also be localized in the cytosol to enable cleavage by the NS6 protease. This raises the question of whether NS1-2 viroporin activity is conserved throughout the *Caliciviridae* family. Though 2B and NS1-2 lack appreciable primary sequence homology, this is not surprising because viroporins, even from the same virus family, often only share the common viroporin motifs (*i.e.*, having [i] an amphipathic \(\alpha\)-helix, [ii] a cluster of basic residues, and [iii] being oligomeric) (33, 38, 39). Among NS1-2 from different caliciviruses, we found that these characteristic features are conserved, so we predict viroporin activity of NS1-2 is a common function. Furthermore, since blunting cytosolic Ca\(^{2+}\) signaling with BAPTA-AM reduced TV replication, blocking NS1-2 viroporin activity with mutations or drugs should also reduce replication. This is supported by a previous study showing that recombinant coxsackie B3 virus with mutations of the 2B viroporin exhibited significantly impaired replication or were completely replication deficient (70). Analogous studies can be done using the TV reverse genetics system once residues critical for viroporin activity can be identified through mutagenesis screens of the TV NS1-2 viroporin domain we mapped in this study.

The increased Ca\(^{2+}\) signaling observed in TV-infected cells is phenotypically similar to that induced by recombinant expression of full-length NS1-2, but the Ca\(^{2+}\) signaling is abrogated
by truncation of the viroporin domain. Further, NS1-2 primarily localized to the ER, which is a major intracellular Ca2+ storage organelle. Thus, our model predicts that NS1-2 directly releases Ca2+ from the ER; however, it is likely that both NS1-2 and activation of host Ca2+ signaling pathways contribute to the observed Ca2+ signals. Ca2+ signals from NS1-2 require it to directly conduct Ca2+ and have a high enough conductance that the ER Ca2+ release event can be detected by a fluorescent Ca2+ indicator, yet these unitary events are challenging to detect even for large channels like the IP3R (71). Future studies using patch clamp electrophysiology are needed to confirm that NS1-2 conducts Ca2+ and determine its conductivity. Nevertheless, based on the similarities between NS1-2 and other Ca2+-conducting viroporins, EV 2B and RV NSP4, NS1-2 viroporin activity would reduce ER Ca2+ levels and this in turn will activate host Ca2+ signaling pathways. First, the moderately increased steady-state cytosolic Ca2+ levels could foster more ER Ca2+ release by potentiating the IP3R Ca2+ release channel (72). Second, reduced ER Ca2+ levels activate the store-operated Ca2+ entry (SOCE) pathway, wherein decreased ER Ca2+ levels activate the ER Ca2+ sensing protein stromal interaction molecule 1 (STIM1). Activated STIM1 translocates to ER microdomains adjacent to the plasma membrane and opens Ca2+ influx channels, like Orai1, to elevate cytosolic Ca2+ (31, 32). This Ca2+ influx, in concert with SERCA, helps to refill ER stores for continued signaling.

HuNoV and human sapoviruses cause outbreaks of AGE and are a major cause of foodborne illnesses. However, the molecular mechanisms of how these caliciviruses cause vomiting and diarrhea, the chief symptoms of AGE, have not been characterized. The dysregulation of Ca2+ signaling by TV may provide insights into the pathophysiology of enteric caliciviruses. Both IP3-mediated ER Ca2+ release and SOCE have been shown to activate chloride secretion from epithelial cells (73, 74). Additionally, in studies of other viroporins, the
viroporin-induced elevated cytosolic Ca\(^{2+}\) induces cytoskeleton rearrangement, leading to disassembly of tight junctions and loss of barrier integrity (39). Hyperactivation of chloride secretion and loss of tight junctions would contribute to excess fluid secretion and diarrhea. In our study we have shown that dysregulated Ca\(^{2+}\) signaling is a feature of calicivirus infection using TV. Thus, future studies can further examine the role of aberrant Ca\(^{2+}\) signaling in calicivirus pathophysiology using human intestinal enteroid cultures that support the replication of many HuNoV strains (4).

In summary, we have shown that TV activates aberrant Ca\(^{2+}\) singling during infection, and cellular Ca\(^{2+}\) is critical for robust TV replication. Further, we found that the NS2 domain of the NS1-2 nonstructural protein is a viroporin that alone induces Ca\(^{2+}\) signaling similar to TV infection. Together, these results indicate that NS1-2 is functionally analogous to EV 2B and RV NSP4. While little is known about the function(s) of NS1-2, and particularly the NS2 domain of NS1-2, the similarity with other Ca\(^{2+}\) conducting viroporins may provide a broader insight for understanding NS1-2 functions. Finally, antiviral drugs against viroporins have been developed for influenza M2 and HIV Vpu (34). Thus, the NS1-2 viroporin may be a viable antiviral drug target against caliciviruses.

Acknowledgments: This work was supported in part by NIH grants R01DK115507 (PI: J. M. Hyser) and R21AI137710 (CoPI: J. M. Hyser and T. Farkas). Trainee support for A.C.G. was provided by NIH grants F30DK112563 (PI: A.Chang-Graham) and the BCM Medical Scientist Training Program and support for both A.C.G. and A.C.S was provided by the Integrative Molecular and Biomedical Sciences Graduate Program (T32GM008231, PI: D. Nelson). Funding support for the BCM Integrated Microscopy Core includes the NIH (DK56338, CA125123),
CPRIT (RP150578, RP170719), the Dan L. Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. We would like to thank Drs. Michael Mancini and Fabio Stossi for deconvolution microscopy assistance.
Primers:

Primer name	Sequence
pET-46 EK/LIC NS1-2 Fwd	GACGACGACAAGATGGATACGTCCATAGATTCTGTGTTATCTGAC ACCAGC
pET-46 EK/LIC NS1-2 Rev	GAGGAGAAGCCCGGTATTACTGTGGGATCAGTGATGAGGAAGAAA TGTGATCAAACCTGG
pET-46 EK/LIC NS1-2 D176 Rev	GACGACAAGCCCGGTAAATCTTTTGACAATAAGGTACACAGATCTCG AG
pET-46 EK/LIC NS1-2 W194 Rev	GAGGAGAAGCCCGTTACCAATTTGTGCCAAAGGTTC
pET-46 EK/LIC NS1-2 A212 Rev	GAGGAGAAGCCCGTTAGCAACCCTTGTCAGGAATG
pET-46 EK/LIC NS1-2 Truncations Fwd	GACGACGACAAGATGGATACGTCCATAGATTCTGTGTTATCTGAC
pET-46 EK/LIC NS1-2 Δ157 Rev	GAGGAGAAGCCCGGTATACTTGTCCTCCTCAGGAC
pET-46 EK/LIC NS1-2 Δ176 Rev	GAGGAGAAGCCCGTTAATTTGTGCAATCTCTCTGGAATG
pTagRFP-N mRuby3-NS1-2 Δ157 Q5 Mut. Fwd	CGGAGGGACCTAAAGCGGATGGAC
pTagRFP-N mRuby3-NS1-2 Δ157 Q5 Mut. Rev	GTCGTACCTATTTCTATTTCCCAATCTTTGGAATCATGTGTG
pTagRFP-N mRuby3-NS1-2 Δ176 Q5 Mut. Fwd	CAAAGATGTCTAATGGGAAAGAATTTG
pTagRFP-N mRuby3-NS1-2 Δ176 Q5 Mut. Rev	ACAATGAGGTACACAGATCTCGAG
Figure 1 TV infection disrupts host calcium signaling kinetics in LLC-MK2 cells.

A. Representative images at early (4 HPI), onset (8 HPI), and late (12 HPI) stages of mock (top) and TV-infected (bottom) LLC-MK2 GCaMP6s cells. B, C. Western blots for nonstructural protein Vpg (B) and structural protein VP1 (C) confirm that aberrant Ca\(^{2+}\) signaling in infected cells coincides with both structural and nonstructural protein synthesis. D. One-step growth curve for TV at a low MOI (1) shows that virus replication is concomitant with viral protein synthesis (1B, C) and with changes in Ca\(^{2+}\) signaling (1A). E. Still from overlay of α-Vpg staining (red) onto background.
short (10 minute) continuous imaging runs of TV-infected cells (MOI=5) 12 HPI. Accompanying
Ca²⁺ cell traces (right) shows the dynamic increases in cytosolic Ca²⁺ in infected cells F. Compared
to mock, TV-infected cells have an increased number of Ca²⁺ spikes per cell that increases in an
infectious dose-dependent manner, saturating at MOI=5. G. Heatmap data suggests that Ca²⁺
signaling increases with infectious dose, and that a higher MOI disrupts host Ca²⁺ signaling earlier
infection and sustains this aberrant Ca²⁺ signaling throughout. Mock and irradiated have similar
heatmap profiles, suggesting that replication competent virus is required to drive these changes in
Ca²⁺ signaling. Data shown as mean ± SD. **p<0.001, ****p<0.0001.
Figure 2: Intracellular calcium is critical for TV replication. A. Buffering out extracellular calcium hinders TV replication, significantly reducing the total plaque forming units (PFU). In contrast, excess extracellular Ca\(^{2+}\) (4 mM Ca\(^{2+}\), right) does not impact replication. B. Buffering intracellular calcium reduces replication. Depleting ER calcium stores with the SERCA-inhibitor thapsigargin and reducing cytoplasmic Ca\(^{2+}\) with BAPTA-AM significantly reduce TV infectious yield (PFU/mL). C. Representative images of plaques under normal (2mM) Ca\(^{2+}\) conditions (top, DMSO) and reduced Ca\(^{2+}\) (0 mM Ca\(^{2+}\)/Bapta-AM, TG), conditions (bottom). D. Partial one-step growth curve data altering free intracellular (IC) and extracellular (EC) Ca\(^{2+}\). TV replication is stunted in Ca\(^{2+}\) free IC and EC conditions (0 mM Ca\(^{2+}\), 0 mM Ca\(^{2+}\)/BAPTA-AM). Inhibiting ER Ca\(^{2+}\) replenishment with thapsigargin also blunts replication, suggesting that IC Ca\(^{2+}\) stores are critical for TV replication. Data shown as mean ± SD. *p<0.01, **p<0.001.
Figure 3: TV-induced Ca2+ signaling requires ER Ca2+ stores.

A. Ca2+-free media reduces Ca2+ signaling in TV-infected cells, suggesting Ca2+ signaling is activated during infection.

B. TV infection in 0 mM Ca2+ phenocopies mock Ca2+ traces in heatmap data, suggesting that EC Ca2+ facilitates TV infection.

C. Intracellular Ca2+ chelator BAPTA-AM abrogated TV-induced Ca2+ signaling. BAPTA-AM-treated TV-infected cells (light green) returns Ca2+ signaling to uninfected levels (grey).

D. Depleting ER Ca2+ with SERCA blocker thapsigargin (TG) significantly reduces TV-induced Ca2+ signaling (pink), suggesting that ER Ca2+ stores are a key source of Ca2+ leveraged during infection. Data shown as mean ± SD. ****p<0.0001.
Figure 4: Tulane virus NS1-2 is targeted to the ER membrane. A. Predictive modeling of TV NS1-2 reveals that it has essential features of bona fide viroporins. Kyte-Doolittle-hydraphathy plots predict an amphipathic moment from aa195-212 (dark green bar), consistent with alpha-helical structure required for channel formation. B. PSIPred secondary structure algorithms predict the C-terminus of NS1-2 is helical in nature, with the putative viroporin domain (VPD) contained to helices. C. PSIPred membrane topology predictions suggest that NS1-2 has two transmembrane helices (grey cubes, top figure). PSIPred algorithms predicting transmembrane helices suggest NS1-2 transmembrane domains are pore-lining (bottom left) and propose a model of membrane insertion and orientation where the putative VPD (aa195-212) comprises the pore-lining helix (bottom right). D. Helical wheel plot generated from the NS1-2 amphipathic segment (dark green bar) show clustered basic residues (green asterisks) and a hydrophobic moment of 0.522 from aa198-215, coinciding with the putative VPD. E. Mammalian expressed full-length RFP-NS1-2 and RFP NS1-2 Δ176 is membrane-associated, but RFP NS1-2 Δ157 is not. Both the total fraction (T) and membrane pellets (M) extracted with 1% SDS contain RFP-NS1-2 and Δ176, but centrifuged supernatant (S) does not, suggesting that RFP-NS1-2 and Δ176 are membrane-associated proteins. In contrast, the supernatant contains RFP-NS1-2 Δ157. Further, immunoblot assays run under non-reducing conditions show that full-length RFP-NS1-2 and Δ176 oligomerize (black arrowheads). F. Co-transfection experiments using intracellular markers for predominant intracellular Ca²⁺ stores mitochondria (mito), Golgi, and endoplasmic reticulum (ER) to determine whether TV NS1-2 associated with any intracellular organelle(s). Based on deconvolution microscopy data, RFP-NS1-2 localized to the ER (right), but not with the Golgi (middle). RFP-NS1-2 did not localize to the mitochondria (left) (N≥2).
Figure 5: V NS1-2 has viroporin activity that disrupts Ca\(^{2+}\) signaling in mammalian cells. A.
Inducing TV NS1-2 in the lysis assay strongly reduces optical density similar to rotavirus NSP4, the positive control for viroporin activity. B. Western blot data to verify protein expression during the lysis assay for TV NS1-2 (bottom) and RV NSP4 (top). C, D. Mammalian recombinant RFP-NS1-2 increases the number (B) and amplitude (C, top row, right) of Ca\(^{2+}\) spikes when transfected into cells similar to RV NSP4 and EV 2B, the viroporin controls for these experiments. Data shown as mean ± SD from ≥8 fields-of-view. *p<0.01, ****p<0.0001.
Figure 6: NS1-2 viroporins mutants do not increase cytoplasmic Ca^{2+}. A. Schematic of TV NS1-2 C-terminal truncation mutants to functionally map the viroporin domain. B. In the lysis assay, truncating the C-terminal domain to amino acid 212 (red) results in wild-type activity certified by peer review.
(black), but truncating to W194 (green) impairs activity. Truncating to D176 (blue) abrogates viroporin activity, suggesting the viroporin domain functionally spans from aa177-212. C.

Western blots verifying protein expression in the lysis assay. D. Schematic for the mammalian C-terminal truncation mutant constructs. E. IF data for truncation mutants. The Δ157 is cytoplasmic (far right), whereas the Δ176, which retains one transmembrane segment, is membrane localized (middle). F. Western blot data confirm the Δ157 and Δ176 mutant constructs. The left blot is run with 20 μL/well to visualize FL NS1-2, whereas the right blot is run with 5 μL/well to resolve the size difference between the Δ157 and 176 NS1-2 mutants. G. Both the Δ157 and Δ176 truncation mutants have significantly less Ca\(^{2+}\) spikes/cell compared to wild-type full length RFP-NS1-2. H. Compared to full length RFP-NS1-2, both the Δ157 and Δ176 truncation mutants have a significant reduced Ca\(^{2+}\) spike amplitudes, resulting in a change in cytosolic fluorescence (ΔF) that phenotypically mimics RFP alone. Data shown as mean ± SD from ≥8 fields-of-view. **p<0.001, ****p<0.0001.
References

1. Wobus CE, Cunha JB, Elftman M, Kolawole AO. 2016. Animal Models of Norovirus Infection, p. 397–415. In Svensson, L, Desselberger, U, Greenberg, HB, Estes, MK (eds.), Viral Gastroenteritis: Molecular Epidemiology and Pathogenesis. Academic Press, Cambridge, MA.

2. Kniel KE. 2014. The makings of a good human norovirus surrogate. Curr Opin Virol 4:85–90.

3. Desselberger U. 2019. Caliciviridae Other Than Noroviruses. Viruses 11:286.

4. Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW. 2014. Advances in norovirus biology. Cell Host Microbe 15:668–680.

5. Li J, Predmore A, Divers E, Lou F. 2012. New Interventions Against Human Norovirus: Progress, Opportunities, and Challenges. Annu Rev Food Sci Technol 3:331–352.

6. Pendu J Le, Rydell GE, Nasir W, Larson G. 2016. Chapter 3.3 - Human Norovirus Receptors, p. 379–396. In Svensson, L, Desselberger, U, Greenberg, HB, Estes, MK (eds.), Viral Gastroenteritis. Academic Press, Cambridge, MA.

7. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill FH, Blutt SE, Zeng X-L, Qu L, Kou B, Opekun AR, Burrin D, Graham DY, Ramani S, Atmar RL, Estes MK. 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science (80-) 353:1387–1393.

8. Bartnicki E, Cunha JB, Kolawole AO, Wobus CE. 2017. Recent advances in understanding noroviruses. F1000Research 6:79.

9. Richardson C, Bargatze RF, Goodwin R, Mendelman PM. 2013. Norovirus virus-like particle vaccines for the prevention of acute gastroenteritis. Expert Rev Vaccines 12:155–167.

10. Ramani S, Atmar RL, Estes MK. 2014. Epidemiology of human noroviruses and updates on vaccine development. Curr Opin Gastroenterol 30:25–33.

11. Farkas T, Sestak K, Wei C, Jiang X. 2008. Characterization of a Rhesus Monkey Calicivirus Representing a New Genus of Caliciviridae. J Virol 82:5408–5416.

12. Wei C, Farkas T, Sestak K, Jiang X. 2008. Recovery of Infectious Virus by Transfection of In Vitro-Generated RNA from Tulane Calicivirus cDNA. J Virol 82:11429–11436.

13. Smits SL, Rahman M, Schapendonk CME, van Leeuwen M, Faruque ASG, Haagmans BL, Endtz HP, Osterhaus ADME. 2012. Calicivirus from novel recovirus genogroup in human diarrhea, Bangladesh. Emerg Infect Dis 18:1192–1195.

14. Goodfellow IG, Taube S. 2016. Calicivirus Replication and Reverse Genetics, p. 355–378. In Svensson, L, Desselberger, U, Greenberg, HB, Estes, MK (eds.), Viral Gastroenteritis: Molecular Epidemiology and Pathogenesis. Academic Press, Cambridge, MA.

15. Farkas T. 2015. Rhesus enteric calicivirus surrogate model for human norovirus gastroenteritis. J Gen Virol 96:1504–1514.
16. Green KY. 2013. The Noroviruses, p. 949–979. In Knipe, D, Howley, P (eds.), Field’s Virology, 6th ed. Wolter Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA.

17. Bailey D, Kaiser WJ, Hollinshead M, Moffat K, Chaudhry Y, Wileman T, Sosnovtsev SV, Goodfellow IG. 2010. Feline calicivirus p32, p39 and p30 proteins localize to the endoplasmic reticulum to initiate replication complex formation. J Gen Virol 91:739–749.

18. Hyde JL, Mackenzie JM. 2010. Subcellular localization of the MNV-1 ORF1 proteins and their potential roles in the formation of the MNV-1 replication complex. Virology 406:138–148.

19. Lee S, Liu H, Wilen CB, Sychev ZE, Desai C, Hykes BL, Orchard RC, McCune BT, Kim K-W, Nice TJ, Handley SA, Baldridge MT, Amarasinghe GK, Virgin HW. 2019. A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host Microbe 1–13.

20. Urakova N, Frese M, Hall RN, Liu J, Matthaei M, Strive T. 2015. Expression and partial characterisation of rabbit haemorrhagic disease virus non-structural proteins. Virology 484:69–79.

21. Doerflinger SY, Cortese M, Romero-Brey I, Menne Z, Tubiana T, Schenk C, White PA, Bartenschlager R, Bressanelli S, Hansman GS, Lohmann V. 2017. Membrane alterations induced by nonstructural proteins of human norovirus PLoS Pathogens.

22. Lee S, Wilen CB, Orvedahl A, McCune BT, Kim KW, Orchard RC, Peterson ST, Nice TJ, Baldridge MT, Virgin HW. 2017. Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host Microbe 22:449-459.e4.

23. Fernandez-Vega V, Sosnovtsev SV, Belliot G, King AD, Mitra T, Gorbalenya A, Green KY. 2004. Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. J Virol 78:4827–37.

24. Ettayebi K, Hardy ME. 2003. Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. J Virol 77:11790–7.

25. Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong M-Q, Walker CL, Hogan PG, Wang Y, Zhou Y. 2015. Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx SUPPLEMENTARY. Nat Cell Biol 17:1339–1347.

26. Raffaello A, Mammucari C, Gherardi G, Rizzuto R. 2016. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 41:1035–1049.

27. Cui C, Merritt R, Fu L, Pan Z. 2017. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 7:3–17.

28. Carafoli E, Krebs J. 2016. Why calcium? How calcium became the best communicator. J Biol Chem 291:20849–20857.
29. Gudermann T, Mederos y Schnitzler M, Dietrich A. 2004. Receptor-Operated Cation Entry--More Than Esoteric Terminology? Sci Signal 2004:pe35–pe35.

30. Zhou Y, Frey TK, Yang JJ. 2009. Viral Calciomics: Interplays between Ca2+ and virus. Cell Calcium 46:1–17.

31. Bagur R, Hajnóczky G. 2017. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Mol Cell 66:780–788.

32. Dickson EJ, Jensen JB, Hille B. 2016. Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem Soc Trans 44:467–476.

33. Nieto-Torres JL, Verdiá-Báguena C, Castaño-Rodríguez C, Aguilella VM, Enjuanes L. 2015. Relevance of viroporin ion channel activity on viral replication and pathogenesis. Viruses 7:3552–3573.

34. Nieva JL, Madan V, Carrasco L. 2012. Viroporins: Structure and biological functions. Nat Rev Microbiol 10:563–574.

35. Sze CW, Tan YJ. 2015. Viral membrane channels: Role and function in the virus life cycle. Viruses 7:3261–3284.

36. Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. 2010. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio 1:1–12.

37. Van Kuppeveld FJM, De Jong AS, Melchers WJG, Willems PHGM. 2005. Enterovirus protein 2B po(u)res out the calcium: A viral strategy to survive? Trends Microbiol 13:41–44.

38. Wang K, Xie S, Sun B. 2011. Viral proteins function as ion channels. Biochim Biophys Acta - Biomembr 1808:510–515.

39. Hyser JM, Estes MK. 2015. Pathophysiologial Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2:473–496.

40. Hyser JM, Estes MK. 2009. Rotavirus Vaccines and Pathogenesis: 2008. Curr Opin Gastroenterol 25:36–43.

41. Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM. 2017. The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel. Sci Rep 7:1–11.

42. van Kuppeveld FJ, Galama JM, Zoll J, Melchers WJ. 1995. Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis. J Virol 69:7782–90.

43. de Jong AS, de Mattia F, Van Dommelen MM, Lanke K, Melchers WJG, Willems PHGM, van Kuppeveld FJM. 2008. Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking. J Virol 82:3782–3790.

44. Martinez-Gil L, Bano-Polo M, Redondo N, Sanchez-Martinez S, Nieva JL, Carrasco L, Mingarro I. 2011. Membrane Integration of Poliovirus 2B Viroporin. J Virol 85:11315–
45. Koonin E V, Dolja V V. 1993. Evolution and taxonomy of positive-strand viruses: Implications and analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430.

46. Zell R. 2017. Picornaviridae—the ever-growing virus family. Arch Virol 163:1–19.

47. Chang-Graham AL, Perry JL, Strtak AC, Ramachandran NK, Criglar JM, Philip AA, Patton JT, Estes MK, Hyser JM. 2019. Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. BioRxiv 1–19.

48. Hadley A, Henry L. 2019. Package “tidyr”: Easily Tidy Data with “spread()” and “gather()” Functions.

49. Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis, p. 1–16. In Valero-Mora, PM (ed.), UseR! Springer-Verlag, New York.

50. Saier MH. 2005. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186.

51. Buchan DWA, Jones DT. 2019. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 1–6.

52. Gautier R, Douguet D, Antonyn B, Drin G. 2008. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102.

53. Hyser JM, Utama B, Crawford SE, Broughman JR, Estes MK. 2013. Activation of the Endoplasmic Reticulum Calcium Sensor STIM1 and Store-Operated Calcium Entry by Rotavirus Requires NSP4 Viroporin Activity 87:13579–13588.

54. Nan X, Hyndman L, Agbi N, Porteous DJ, Boyd AC. 2004. Potent stimulation of gene expression by histone deacetylase inhibitors on transiently transfected DNA. Biochem Biophys Res Commun 324:348–354.

55. Lu HK, Gray LR, Wightman F, Ellenberg P, Khoury G, Cheng WJ, Mota TM, Wesselingh S, Gorry PR, Cameron PU, Churchill MJ, Lewin SR. 2014. Ex vivo response to histone deacetylase (HDAC) inhibitors of the HIV long terminal repeat (LTR) derived from HIV-infected patients on antiretroviral therapy. PLoS One 9.

56. Paszkiet BJ, Zhang J, Matukonis M, Kaleko M, Luo T. 2016. Histone Deacetylation Inhibitors Enhance Lentiviral Vector Production and Infectivity. Mol Ther 5:S308.

57. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–5.

58. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300.

59. Billman GE. 1993. Intracellular calcium chelator, BAPTA-AM, prevents cocaine-induced ventricular fibrillation. Am J Physiol Circ Physiol H1529–H1535.
60. Horvath B, Szentandrassy N, Veress R, Baranyai D, Kistamas K, Almassy J, Toth A, Magyar J, Banyasz T, Nanasi PP. 2018. Effect of the intracellular calcium concentration chelator BAPTA acetoxy-methylester on action potential duration in canine ventricular myocytes. J Physiol Pharmacol 69:99–107.

61. Gonzalez ME, Carrasco L. 2003. Viroporins. FEBS Lett 552:28–34.

62. Neil JD. 1990. Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 17:145–160.

63. Kuyumcu-Martinez M, Belliot G, Sosnovtsev S V., Chang K-O, Green KY, Lloyd RE. 2004. Calicivirus 3C-Like Protease Inhibits Cellular Translation by Cleavage of Poly(A)-Binding Protein. J Virol 78:8172–8182.

64. Venkataraman S, Prasad BVLS, Selvarajan R. 2018. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses 10:1–23.

65. Lama J, Carrasco L. 1992. Expression of poliovirus nonstructural proteins in Escherichia coli cells. J Biol Chem 267:15932–15937.

66. Guinea R, Carrasco L. 1994. Influenza virus M2 protein modifies membrane permeability in E. coli cells. FEBS Lett 343:242–246.

67. Crawford SE, Estes MK. 2013. Viroporin-mediated calcium-activated autophagy 797–798.

68. Furlong K, Hwang S. 2019. Autophagy and Noroviruses. Viruses 11:244.

69. Krebs J, Agellon LB, Michalak M. 2015. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun 460:114–121.

70. van Kuppeveld FJ, Galama JM, Zoll J, van den Hurk PJ, Melchers WJ. 1996. Coxsackie B3 virus protein 2B contains cationic amphipathic helix that is required for viral RNA replication. J Virol 70:3876–3886.

71. Lock JT, Alzayady KJ, Yule DI, Parker I. 2018. All three IP 3 receptor isoforms generate Ca2+ puffs that display similar characteristics. Sci Signal 11:eaau0344.

72. Taylor CW, Tovey SC. 2010. IP3 Receptors: Toward Understanding Their Activation. Cold Spring Harb Perspect Biol 1–23.

73. Jin X, Shah S, Du X, Zhang H, Gamper N. 2016. Activation of Ca2+-activated Cl-channel ANO1 by localized Ca2+ signals. J Physiol 594:19–30.

74. Concepcion AR, Vaeth M, Wagner LE, Eckstein M, Hecht L, Jun Y, Crottes D, Seidl M, Shin HP, Weidinger C, Cameron S, Turvey SE, Issekutz T, Meyts I, Laruez RS, Cuk M, Yule DI, Feske S. 2016. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. J Clin Invest 126:4303–4318.