THE BOUNDED SPHERICAL FUNCTIONS ON THE CARTAN MOTION GROUP AND GENERALIZATIONS FOR THE EIGENSPACES OF THE LAPLACIAN ON \mathbb{R}^n

JINGZHE XU

Abstract. The bounded spherical functions are determined for a real Cartan Motion group which is a generalization for the case when the Cartan Motion group is complex written by Sigurdur Helgason [1]. Also, I will do a further step of the Laplacian on \mathbb{R}^n. I consider the case when K is transitive on the spheres about 0 in $\mathbb{R}^n, n > 1$.

1. Introduction

Consider a symmetric space $X = G/K$ of noncompact type, G being a connected noncompact semisimple lie group with finite center and K a maximal compact subgroup. Let $g = k + p$ be the corresponding Cartan decomposition, p being the orthocomplement of k relative to the killing form of g. Let $a \subset p$ be a maximal abelian subspace. Let G_0 be the Cartan Motion group. This group is defined as the semidirect product of K and p with respect to the adjoint action of K on p. The $X_0 = G_0/K$ is naturally identified with the Euclidean space p. The element $g_0 = (k, Y)$ actions on p by

$$g_0(Y') = Ad(k)Y' + Y \quad k \in K, Y, Y' \in p.$$

So the algebra $\mathbb{D}(X_0)$ of G_0-invariant differential operators on X_0 is identified with the algebra of $Ad(K)$-invariant constant coefficient differential operators on p. The corresponding spherical functions on X_0 are given by

$$\psi_\lambda(Y) = \int_k e^{i\lambda(Ad(k)Y)}dk \quad \lambda \in a_c^*$$

and $\psi_\lambda = \psi_\mu$ if and only if λ and μ are W-conjugate. See e.g. [2],IV§4. Again, the maximal ideal space of $L^2(G_0)$ is up to W-invariance identified with the set of λ in a_c^* for which ψ_λ is bounded. Since ρ is relative to the curvature of G/K it is natural to expect the bounded ψ_λ to come from replacing $c(\rho)$ by the origin, where $c(\rho)$ is for the semisimple case also proved by Sigurdur Helgason [3]. In the words, ψ_λ is would be expected to be bounded if and only if λ is real, that is $\lambda \in a^*$. In [1], Sigurdur Helgason proved when G is complex, the spherical function ψ_λ on G_0 is bounded if and only if λ is real, i.e. $\lambda \in a^*$ mainly by using two results proved by Harish-Chandra [4] and [5]. In this paper, I use a different way to prove

1991 Mathematics Subject Classification. 22E46, 22E47.

Key words and phrases. Cartan Motion Group, spherical functions, eigenspaces of the Laplacian on \mathbb{R}^n. 1
when G is real, the spherical function ψ_λ on G_0 is bounded also if and only if λ is real. In this way, we generalize Sigurdur Helgason’s results.

In Sigurdur Helgason’s another paper [6], he considered Eigenspaces of the Laplacian on \mathbb{R}^n. Let L denote the usual Laplacian on \mathbb{R}^n and for each $\lambda \in \mathbb{C}$ let $\mathcal{E}_\lambda(\mathbb{R}^n)$ denote the eigenspace $\mathcal{E}_\lambda(\mathbb{R}^n) = \{f \in \mathcal{E}(\mathbb{R}^n) \mid Lf = -\lambda^2 f\}$ with the topology induced by that of $\mathcal{E}(\mathbb{R}^n)$. Let G denote the group of all isometries of \mathbb{R}^n, and K the group of rotations $O(n)$. Sigurdur Helgason mainly proved the natural action of G on $\mathcal{E}_\lambda(\mathbb{R}^n)$ is irreducible if and only if $\lambda \neq 0$. I will prove when $K \subset O(n)$ is transitive on the spheres about 0 in \mathbb{R}^n, $n > 1$ instead of $O(n)$ and $G = K \times \mathbb{R}^n$, the same results holds. In this way, we do a further step of this kind of problem. Meanwhile, I will specific all the groups K which is transitive on the spheres about 0 in \mathbb{R}^n.

Finally, according to [7], we know when $K \subset O(n)$ is transitivity on the spheres about 0, the specific form of the spherical functions on $K \times \mathbb{R}^n/K \cong \mathbb{R}^n$. Then I will give a estimation for it when $r \to \infty$.

2. The main theorem

The notion of induced spherical function mirrors the notion of induced representation. Let $Q \subset G$ be a closed subgroup such that K is transitive on G/Q, i.e. $G = KQ$, i.e. $G = QK$, i.e. G is transitive on G/K. Let $\zeta: Q \to \mathbb{C}$ be spherical for $(Q, Q \cap K)$. The induced spherical function is $\text{Ind}_G^Q(\zeta)(g) = \int_K \tilde{\zeta}(kg) d\mu_K(k)$ where $\tilde{\zeta}(kq) = \zeta(q) \Delta_{G/Q}(q)^{-\frac{1}{2}}$

Here $\Delta_{G/Q}: Q \to \mathbb{R}^n$ is the quotient of modular functions, $\Delta_{G/Q}(q) = \Delta_G(q)/\Delta_Q(q) = \Delta_Q(q)^{-1}$

Theorem 2.1. Let $\lambda \in a_+^*$. Then $\psi_\lambda(Y)$ is the induced spherical function $\text{Ind}_G^Q(\varphi_\lambda)$, where $\varphi_\lambda(Y) = e^{i\lambda(Y)}$ for every $Y \in a \subset p$.

Proof. Apply above formula to φ_λ with $Q = P$. Since $G = K \times p$ and p are unimodular, it says that the induced spherical function is given by $\text{Ind}_G^Q(\varphi_\lambda)(k, Y) = \int_K \varphi_\lambda(Ad(k)Y) dk = \int_K e^{i\lambda(Ad(k)Y)} dk = \int_K e^{i\lambda(k,Y)} dk = \psi_\lambda(k, Y)$ for $Y \in p, k \in K$. Note that $(k_0,0)(k,Y) = (k_0 k, Ad(k_0) Y)$. \hfill \square

We apply the Mackey little group method to G relative to its normal subgroup p. If ψ is an irreducible unitary representation of G, then it can be constructed (up to unitary equivalence) as follows: If $\varphi_\lambda(Y) = e^{i\lambda(Y)}$, where $\lambda \in p^*, Y \in p$, let $K_{\varphi_\lambda} = \{k \in K \mid \varphi_\lambda(Ad(k)Y) = \varphi_\lambda(Y) \forall Y \in p\}$. K_{φ_λ} is a closed subgroup of K. Let $G_{\varphi_\lambda} = K_{\varphi_\lambda} \times p$. Write $\tilde{\varphi}$ for the extension of φ to G_{φ_λ} given by $\tilde{\varphi}((k, Y)) = \varphi_\lambda(Y)$. If γ is an irreducible unitary representation of K_{φ_λ}, let $\tilde{\gamma}$ denote its extension of G_{φ_λ} given by $\tilde{\gamma}((k, Y)) = \gamma(k)$. Denote $\psi_{\varphi_\lambda, \gamma} = \text{Ind}_G^Q(\varphi_\lambda)(\tilde{\varphi} \otimes \tilde{\gamma})$, then there exist choices of φ_λ and γ such that $\psi = \psi_{\varphi_\lambda, \gamma}$.

Theorem 2.2. In the notation above, $\psi_{\varphi_\lambda, \gamma}$ has a K-fixed vector is given (up to scalar multiple by $u((k, Y)) = e^{-i\lambda(Ad(k^{-1}) Y)}$, if $\varphi_\lambda = e^{i\lambda(Y)}$.

2
Proof. The representation space \(H_{\psi} \) of \(\psi = \psi_{\varphi,\gamma} \) consists of all \(L^2 \) functions \(f : G \to H_{\psi} \) such that \(f(g'(k',x')) = \gamma(k')^{-1}\varphi_{\lambda}(x')^{-1}f(g') \) for \(g' \in G, \ x' \in p, k' \in K_{\varphi_{\lambda}} \), and \(\psi \) acts by \((\psi(g)f)(g') = f(g^{-1}g')\).

Now suppose that \(0 \neq f \notin H_{\psi} \) is fixed under \(\psi(K) \). If \(k' \in K_{\varphi_{\lambda}} \), then \(\gamma(k')f(1) = f(1) \). If \(f(1) = 0 \), then \(f(G_{\varphi_{\lambda}}) = 0 \) and \(K \)-invariance says \(f = 0 \), contrary to the assumption. Thus \(f(1) \neq 0 \) and irreducibility of \(\gamma \) forces \(\gamma \) to be trivial.

Conversely, if \(\gamma \) is trivial, then \(u((k,Y)) = e^{-i\lambda(Ad(k^{-1})Y)} \) is a nonzero \(K \)-fixed vector in \(H_{\psi} \). And it is the only one, up to scalar multiple, because any two \(K \)-fixed vectors must be proportional. \(\square \)

Lemma 2.3. In the notation above, \(\text{Ind}_{G_{\varphi_{\lambda}}}^{G}(\varphi_{\lambda}) \) is unitary equivalent to the subrepresentation of \(\text{Ind}_{p}^{G}(\varphi_{\lambda}) \) generated by the \(K \)-fixed unit vector \(u((k,Y)) = e^{-i\lambda(Ad(k^{-1})Y)} \), if \(\varphi_{\lambda} = e^{i\lambda(Y)} \).

Theorem 2.4. Let \(\varphi \) be a \((G,K)\)-spherical function. Then \(\varphi \) is positive definite if and only if it is of the form \(u_{\lambda} \) for some \(\lambda \in a^{*} \). Further, if \(\lambda, \lambda' \in a^{*} \), then \(\psi_{\lambda} = \psi_{\lambda'} \) if and only if \(\lambda' \in Ad(k)\lambda \).

Proof. Let \(\lambda \in a^{*} \). \(\sum_{i,j} e^{i\lambda(Ad(k)(-Y_{j}+Y_{i}))}c_{i}c_{j} = \sum_{i,j} e^{-i\lambda(Ad(k)Y_{j})}c_{i}e^{i\lambda(Ad(k)Y_{i})}c_{j} = (\sum_{i} e^{i\lambda(Ad(k)Y_{i})}c_{i})(\sum_{j} e^{-i\lambda(Ad(k)Y_{j})}c_{j}) \geq 0. \)

Since \(\psi_{\lambda} \) is a limit of non-negative linear combinations of positive definite functions on \(\mathbb{R}^{n} \), so it is positive definite.

Now let \(\varphi \) be a positive definite \((G,K)\)-spherical function. Let \(\Pi_{\varphi} \) be the associated irreducible unitary representation, and \(H_{\varphi} \) the representation space, such that there is a \(K \)-fixed unit vector \(u_{\varphi} \in H_{\varphi} \) and let \(\varphi(g) = \langle u_{\varphi}, \Pi_{\varphi}(g)u_{\varphi} \rangle \) for all \(g \in G \). Following the discussion of the Mackey little group method, and Theorem 2.2, we have \(\varphi_{\lambda}(Y) \) for some \(\lambda \in a^{*}, Y \in p \), s.t. \(\Pi_{\varphi} \) is unitarily equivalent to \(\text{Ind}_{G_{\varphi_{\lambda}}}^{G}(\varphi_{\lambda}) \). Making the identification one, \(K \)-fixed unit vector in \(H_{\varphi} \) is given by \(u((k,Y)) = e^{-i\lambda(Ad(k^{-1})Y)} \).

We have \(\lambda \in a^{*} \) s.t. \(\varphi_{\lambda} = e^{i\lambda(Y)} \) and from above several Theorems and Lemma, we compute:

\[
\varphi(Y) = \langle u, \Pi_{\varphi}(Y)u \rangle = \varphi(Y) = \langle u, \text{Ind}_{G_{\varphi_{\lambda}}}^{G}(\varphi_{\lambda})(Y)u \rangle = \varphi(Y) = \langle u, \text{Ind}_{G_{p}}^{G}(\varphi_{\lambda})(Y)u \rangle = \text{Ind}_{G_{p}}^{G}(\varphi_{\lambda})(Y) = \psi_{\lambda}(Y) = \int_{K} e^{i\lambda(Ad(k)Y)}dk
\]

For the second, if \(\lambda' = Ad(k_{0})\lambda \) for some \(k_{0} \in K \), we have:

\[
\psi_{\lambda'}(Y) = \int_{K} e^{i\lambda'(Ad(k)Y)}dk = \int_{K} e^{i\lambda(Ad(k_{0})Ad(k)Y)}dk = \int_{K} e^{i\lambda(Ad(k_{0}^{-1})Ad(k)Y)}dk = \int_{K} e^{i\lambda(Ad(k)Y)}dk = \psi_{\lambda}(Y).
\]

Conversely, suppose that \(\lambda', \lambda \in a^{*} \) with \(\psi_{\lambda'} = \psi_{\lambda} \). Then (up to unitary equivalence) \(\text{Ind}_{G_{\varphi_{\lambda'}}}^{G}(\varphi_{\lambda'}) = \text{Ind}_{G_{\varphi_{\lambda}}}^{G}(\varphi_{\lambda}) \). That gives us direct integral decompositions.
\[
\int_{K}^{\oplus} \psi_{\text{Ad}(k)\lambda} dk = \text{Ind}_{G_{\phi\lambda}}^{G_{\phi\lambda'}} (\widetilde{\phi}_{\lambda}) \mid p = \text{Ind}_{G_{\phi\lambda'}}^{G_{\phi\lambda}} (\widetilde{\phi}_{\lambda'}) \mid p = \int_{K}^{\oplus} \psi_{\text{Ad}(k)\lambda'} dk \quad \Box
\]

Theorem 2.5. If \(N \) is an \(n \)-step group with \(n \geq 3 \), then there are no Gelfand pairs \((K, N)\), where \(K \in \text{Aut}(N) \).

Theorem 2.6. We first consider \(K \)-spherical functions associated to a Gelfand pair \((K, N)\).

Suppose \(\phi \) is a bounded \(K \)-spherical function on \(N \). Then there is a \(\pi \in \hat{N} \) and a unit vector \(\xi \in H_{\pi} \) such that

\[
(2.7) \quad \phi(x) = \int_{K} < \pi(k.x)\xi, \xi > dk
\]

for each \(x \in N \)

Proof. Let \(\lambda_{\phi} : L_{K}^{1}(N) \to \mathbb{C} \) be given by integration against \(\phi \).

Since \(L_{K}^{1}(N) \) is a symmetric Banach *-algebra,[8], there is a representation \(\pi_{\phi} \) of \(L_{K}^{1}(N) \) and a one-dimensional subspace \(H_{\phi} \) of \(H_{\pi} \) such that \((\pi_{\phi} |_{L_{K}^{1}(N)}, H_{\phi})\) is equivalent to \((\lambda_{\phi}, \mathbb{C})\). As \(\lambda_{\phi} \) is irreducible, the extension \(\pi_{\phi} \) is also irreducible(cf.[9]). Using approximate identities at each point of \(N \), one can show that \(\pi_{\phi} \) is the integrated version of some \(\pi \in \hat{N} \), with \(H_{\pi} = H_{\phi} \).

Choose \(\xi \in H_{\phi} \) with \(\|\xi\| = 1 \). Then for each \(f \in L_{K}^{1}(N) \), \(\pi(f)\xi = \lambda_{\phi}(f)\xi \), so that

\[
(2.8) \quad < \phi, f >= \lambda_{\phi}(f) = < \pi(f)\xi, \xi > = \int_{N} f(x) < \pi(x)\xi, \xi > dx = \int_{K} \int_{N} f(k^{-1}.x) < \pi(x)\xi, \xi > dx dk
\]
since \(f \) is \(K \)-invariant

\[
(2.9) \quad = \int_{K} \int_{N} f(k.x) < \pi(x)\xi, \xi > dx dk
\]

Since \(\phi \) is \(K \)-invariant, we change the order of integration and obtain

\[
(2.10) \quad \phi(x) = \int_{K} < \pi(x)\xi, \xi > dk
\]

\(\Box \)

A complex-valued continuous function \(\phi \) on a locally compact group \(G \) is called positive definite if \(\sum_{i,j=1}^{n} \phi(x^{-1}x)_{ij} \alpha_{i}\bar{\alpha}_{j} \geq 0 \) for all finite sets \(x_{1}, \ldots, x_{n} \) of elements in \(G \) and any complex numbers \(\alpha_{1}, \ldots, \alpha_{n} \).

Theorem 2.11. For Gelfand pair \((K, N)\), where \(N \) is at most 2-step nilpotent Lie group, if \(\phi \) is a bounded \(K \)-spherical function on \(N \) is and only if \(\phi \) is positive definite.
Proof. If ϕ is a bounded K-spherical function on N, for all finite sets \(x_1, \ldots, x_n \) of elements in G and any complex numbers \(a_1, \ldots, a_n \), we have:
\[
\sum_{i,j=1}^{n} \phi(x_i^{-1}x_j) = \int_K \pi(k(x_i^{-1}x_j))dk = \int_K \pi(k(x_i^{-1}k(x_j)))dk.
\]
Therefore, \(\sum_{i,j=1}^{n} \phi(x_i^{-1}x_j) a_i a_j = \sum_{i,j=1}^{n} \phi(x_i^{-1}x_j) a_i a_j \int_K \pi(k(x_i^{-1}k(x_j)))dk = \int_K \phi(x_i^{-1}x_j)dk = \int_K \phi(x_i^{-1}k(x_j))dk > 0.
\]

Conversely, if \(\phi \) is a bounded K-spherical function on N then \(\phi \) is positive definite. Let \(\varphi \) be a positive definite \((G, K)\)-spherical function. Let \(\Pi_{\varphi} \) be the associated irreducible unitary representation, and \(H_{\varphi} \) the representation space, such that there is a \(K \)-fixed unit vector \(u_{\varphi} \in H_{\varphi} \) and let \(\varphi(g) = \langle u_{\varphi}, \Pi_{\varphi}(g)u_{\varphi} \rangle \) for all \(g \in G \). Then we have \(|\varphi(g)| = |\langle u_{\varphi}, \Pi_{\varphi}(g)u_{\varphi} \rangle| \leq \langle u_{\varphi}, u_{\varphi} \rangle > \frac{1}{2} \times \langle \Pi_{\varphi}(g)u_{\varphi}, \Pi_{\varphi}(g)u_{\varphi} \rangle \leq |\langle u_{\varphi}, u_{\varphi} \rangle| = 1
\]
Therefore, \(\varphi \) is bounded.

\[\square\]

Theorem 2.12. In the notation just above, assume the group \(G \) real. The spherical function \(\psi_\lambda \) on \(G_0 \) is bounded if and only if \(\lambda \) is real, i.e. \(\lambda \in a^* \).

Proof. According to Theorem 2.4, we obtain The spherical function \(\psi_\lambda \) on \(G_0 \) is positive definite if and only if \(\lambda \) is real, i.e. \(\lambda \in a^* \). According to Theorem 2.11, since \(p \) is abelian, we know that \(\psi_\lambda \) is a bounded \(K \)-spherical function on \(p \) if and only if \(\psi_\lambda \) is positive definite. Therefore, \(\psi_\lambda \) on \(G_0 \) is bounded if and only if \(\lambda \) is real, i.e. \(\lambda \in a^* \).

\[\square\]

3. **Generalizations for the Eigenspaces of the Laplacian on \(\mathbb{R}^n \)**

Lemma 3.1. [7] Let \(K \) be any closed subgroup of \(O(n) \), if \(K \) is transitive on the spheres about 0 in \(\mathbb{R}^n \), then \(\mathcal{D}(G/K) = \mathbb{C}[\Delta] \), algebra of polynomials in the Laplace-Beltrami operator \(\Delta = -\sum \partial^2/\partial x_i^2 \).

Proof. It is clear that \(\mathbb{C}[\Delta] \subset \mathcal{D}(G/K) \). Now let \(D \in \mathcal{D}(G/K) \) be of order \(m \). Then the \(m \)th order symbol of \(D \) is a polynomial of degree \(m \) constant on spheres about 0 in \(\mathbb{R}^n \), in other words a multiple \(cr^m \) with \(m \) even and \(r^2 = \sum x_i^2 \). Now \(D - c(\Delta)^m/2 \in \mathcal{D}(G/K) \) and \(D - c(\Delta)^m/2 \) has order < \(m \). By induction on the order, \(D - c(\Delta)^m/2 \in \mathcal{D}(G/K) \), so we have \(D \in \mathcal{D}(G/K) \).

Let \(L \) denote the usual Laplacian on \(\mathbb{R}^n \) and for each \(\lambda \in \mathbb{C} \) let \(\mathcal{E}_\lambda(\mathbb{R}^n) \) denote the eigenspace

\[(3.2) \quad \mathcal{E}_\lambda(\mathbb{R}^n) = \{ f \in \mathcal{E}(\mathbb{R}^n) \mid Lf = -\lambda^2 f \}\]

with the topology induced by that of \(\mathcal{E}(\mathbb{R}^n) \). Let \(G = K \times \mathbb{R}^n \) and \(K \) is the closed subgroup of \(O(n) \) as well as acting transitive on the spheres about 0 in \(\mathbb{R}^n \).

Theorem 3.3. The natural action of \(G \) on \(\mathcal{E}_\lambda(\mathbb{R}^n) \) is irreducible if and only if \(\lambda \neq 0 \).
Proof. It is clear that each function

\[f(x) = \int_{S^{n-1}} e^{i\lambda(x,w)}F(w)dw, \quad F \in L^2(S^{n-1}), \]

lies in \(E_\lambda(\mathbb{R}^n) \); here \((,\)\) denotes the usual inner product on \(\mathbb{R}^n \) and \(dw \) the normalized volume element. \(\square \)

Lemma 3.5. Let \(\lambda \neq 0 \). Then the mapping \(F \to f \) defined by (3.4) is one-to-one.

Proof. Let \(p(\zeta) = p(\zeta_1, \cdots, \zeta_n) \) be a polynomial and \(D \) the corresponding constant coefficient differential operator on \(\mathbb{R}^n \) such that

\[\int_{\mathbb{R}^n} e^{i(x,\zeta)}D_x(e^{-\frac{1}{2}|x|^2}) = p(\zeta)e^{-\frac{1}{2}(\zeta_1^2 + \cdots + \zeta_n^2)} \]

for \(\zeta \in \mathbb{C}^n \). If \(f \equiv 0 \) in (1) we deduce from (3.6) that

\[\int_{S^{n-1}} p(\lambda w_1, \cdots, \lambda w_n)F(w)dw = 0 \]

Since \(\lambda \neq 0 \), this implies \(F \equiv 0 \). \(\square \)

Lemma 3.8. Let \(\lambda \neq 0 \). The \(K \)-finite solutions \(f \) of the equation \(Lf = -\lambda^2f \) are precisely

\[f(x) = \int_{S^{n-1}} e^{i\lambda(x,w)}F(w)dw \]

where \(F \) is a \(K \)-finite function on \(S^{n-1} \).

Proof. Let \(\delta \) be an irreducible representation of \(K \) and if \(\Sigma \) is any sphere in \(\mathbb{R}^n \) with center at 0 let \(E_\delta(\Sigma) \) denote the space of \(K \)-finite functions in \(E(\Sigma) \) of type \(\delta \). We know from Lemma 1.5 p.134 in [10] that if \(\Sigma \) is suitably chosen each function \(f \mid \Sigma \) to \(\Sigma \). With \(F \) and \(f \) as in (3.4) it follows that the maps

\[F \to f \mid \Sigma, \quad F \to f \quad F \in L^2(S^{n-1}) \]

are one-to-one and commute with the action of \(K \). For reasons of dimensionality, the first must therefore map \(E_\delta(S^{n-1}) \) onto \(E_\delta(\Sigma) \). The lemma now follows. \(\square \)

For \(\lambda \neq 0 \) let \(\mathcal{H}_\lambda \) denote the space of functions \(f \) as defined in (3.4); \(\mathcal{H}_\lambda \) is a Hilbert space if the norm of \(f \) is the \(L^2 \) norm of \(F \) on \(S^{n-1} \).

Lemma 3.10. Let \(\lambda \neq 0 \). Then the space \(\mathcal{H}_\lambda \) is dense in \(E_\lambda(\mathbb{R}^n) \).

Proof. Each eigenfunction of \(L \) can be expanded in a convergent series of \(K \)-finite eigenfunctions (cf. Sect. 5 [6]) so the lemma follows from Lemma 3.8. \(\square \)
We can now prove Theorem 3.3. We first prove that G acts irreducibly on \mathcal{H}_λ. Let $V \neq 0$ be a closed invariant subspace of \mathcal{H}_λ. Then there exists an $h \in V$ such that $h(0) = 1$. We write
\[
(3.11) \quad h(x) = \int_{S^{n-1}} e^{i\lambda(x,w)} H(w)dw
\]
and the average $h^2(x) = \int_K h(k.x)dk$ is then
\[
(3.12) \quad h^2(x) = \varphi_\lambda(x) = \int_{S^{n-1}} e^{i\lambda(x,w)}dw.
\]
If f in (3.4) lies in the annihilator V^0 of V the functions F and H are orthogonal on S^{n-1}. Since V^0 is K-invariant this remains true for H replaced by its integral over K, in other words φ_λ belongs to the double annihilator $(V^0)^0 = V$. Now, since V is invariant under translations it follows that for each $t \in \mathbb{R}$ the function
\[
(3.13) \quad x \rightarrow \int_{S^{n-1}} e^{i\lambda(x,w)} e^{i\lambda(t,w)}dw
\]
belongs to V. But then Lemma 3.5 shows that the annihilator of V in \mathcal{H}_λ is 0, whence the irreducibility of G on \mathcal{H}_λ.

Passing now to \mathcal{E}_λ let $V \subset \mathcal{E}_\lambda$ be a closed invariant subspace. Then $V \cap \mathcal{H}_\lambda$ is an invariant subspace of \mathcal{H}_λ; Schwartz’ inequality shows easily that it is closed. Thus, by the above, $V \subset \mathcal{E}_\lambda$ is $\{0\}$ or \mathcal{H}_λ. In the second case $V = \mathcal{E}_\lambda$ by Lemma 3.10. In the first case consider for each $f \in V$ the convergent expansion
\[
(3.14) \quad f = \sum_{\delta \in K} \alpha_\delta \ast f
\]
where $\alpha_\delta = d(\delta) \chi_\delta^*$ and
\[
(3.15) \quad (\alpha_\delta \ast f)(x) = \int_K \alpha_\delta(k)f(k^{-1}.x)dk
\]
χ_δ being the character of δ. Then $\alpha_\delta \ast f \in \mathcal{H}_\lambda$ by Lemma 3.8. Let $V^0 \subset \mathcal{E}'(\mathbb{R}^n)$ be the annihilator of V. Then V^0 is G-invariant and if $T \in V^0$,
\[
(3.16) \quad \int_{\mathbb{R}^n} (\alpha_\delta \ast f)(x)dT(x) = \int_K \alpha_\delta(k) \int_{\mathbb{R}^n} f(x)dT(k.x)dk
\]
so $\alpha_\delta \ast f$ belongs to the double annihilator $(V^0)^0 = V$. Thus $\alpha_\delta \ast f \in V \cap \mathcal{H}_\lambda = \{0\}$ so, by (3.6), $f = 0$. Thus $V = \{0\}$ so the proof is finished.

4. A ESTIMATION FOR SOME SPHERICAL FUNCTIONS AND THE GROUPS K

From [7], we know if K is transitive on the spheres about 0 in \mathbb{R}^n, then the spherical function on $K \times \mathbb{R}^n \simeq \mathbb{R}^n$ is of the form: $\varphi_s(r) = \varphi(r,s) = \int_{S^{n-1}} e^{is(\xi,x)}d\sigma(\xi) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n!}} \int_0^\pi e^{s\sqrt{\sin \theta}} \sin^{n-2} \theta d\theta$.

Where s is a complex number, and $r = \|x\| = \sqrt{x_1^2 + \ldots + x_n^2}$, S^{n-1} is the unit sphere in \mathbb{R}^n and σ the normalized surface measure on S^{n-1}.

7
If $\text{Res} = 0$ then it follows from above equation that $|\varphi_s(x)| \leq 1$ for all $x \in G$.

Clearly, $\varphi_s = \varphi_{-s}$. We just need to consider the case $\text{Res} \geq 0$.

Theorem 4.1. If $\text{Res} > 0$, we have $\varphi(r, s) \sim \frac{\Gamma\left(\frac{2}{s}
ight) \frac{2}{s}}{\sqrt{2\pi}} \frac{e^{sr}}{(sr)^{n+2}}$.

Proof. From above equation, we know that, by an elementary substitution,

$$\varphi_s(r) = \varphi(r, s) = \frac{\Gamma\left(\frac{2}{s}\right)}{\sqrt{2\pi} \frac{2}{s}} \int_{-1}^{1} e^{sr} (1 - t^2)^{-\frac{n}{2}} dt$$

and, setting $t = 1 - \frac{r}{s}$, we obtain

$$\varphi(r, s) = \frac{\Gamma\left(\frac{2}{s}\right)}{\sqrt{2\pi} \frac{2}{s}} \frac{e^{sr}}{r^2} \int_{0}^{2r} e^{-su} u^{\frac{n-3}{2}} (2 - u) \frac{n+3}{2} du$$

For $\text{Res} > 0$, we get, using Lebesgue’s dominated convergence theorem,

$$\lim_{r \to \infty} \int_{0}^{2r} e^{-su} u^{\frac{n-3}{2}} (2 - u) \frac{n+3}{2} du = \frac{\Gamma\left(\frac{2}{s}\right) \frac{2}{s}}{\sqrt{2\pi}}$$

\[\square \]

Finally, I will give all the possible K, which is transitive on the spheres about 0 on \mathbb{R}^n, $n > 1$. [11]

When K is transitive on the spheres about 0 in \mathbb{R}^n, $n > 1$, its identity component K^0 is also transitive, and $K = K^0F$ where F is a finite subgroup of the normalizer $N_{O(n)}(K^0)$. The possibilities for K^0 are as follows:

1. $n > 1$ and $K^0 = SO(n)$,
2. $n = 2m$ and (i) $K^0 = SU(m)$ or (ii) $U(m)$,
3. $n = 4m$ and (i) $K^0 = Sp(m)$ or (ii) $Sp(m).U(1)$ or $Sp(m)Sp(1)$,
4. $n = 7$ and K^0 is the exceptional group G_2,
5. $n = 8$ and $K^0 = Spin(7)$, and
6. $n = 16$ and $K^0 = Spin(9)$.

In case (1), $N_{O(n)}(K^0) = O(n)$, so the relevant choices for F are $\{I\}$ and $\{I, -I\}$, so K is either $SO(n)$ or $O(n)$.

In case (2)(i), $N_{O(n)}(K^0) = U(m) \cup \alpha U(m)$ where α is a complex conjugation of \mathbb{C}^n over \mathbb{R}^m. The relevant choices for F are the finite subgroups of $U(1) \cup \alpha U(1)$ where $U(1)$ consists of the unitary scalar matrices $e^{ix}I$, x real. Those are the cyclic groups $\mathbb{Z}_l = \{e^{2\pi ik/l}I\}$ of order $l \geq 1$ and the dihedral groups $D_l = \mathbb{Z}_l \cup \alpha \mathbb{Z}_l$, so K is a group $SU(m)\mathbb{Z}_l$ or $SU(m)D_l$. In the case (2)(ii) the relevant possibilities for F are $\{I\}$ and $\{\alpha, I\}$, so K is either $U(m)$ or $U(m) \cup \alpha U(m)$.

In case (3)(i),(3)(iii),(4),(5),(6), K^0 has no outer automorphism, so we may take F in the centralizer $Z_{O(n)}(K^0)$. Thus in the case (3)(i), F can be any subgroup of $Sp(1)$, in the other words, a cyclic group \mathbb{Z}_l of order l, a binary dihedral group D^*_l of order $4l$, a binary tetrahedral group T^* of order 24, a binary octahedral group O^* of order 48, or a binary icosahedral group I^* of order 60. Thus K is a group $Sp(m)\mathbb{Z}_l, Sp(m)D^*_l, Sp(m)T^*, Sp(m)O^*$ or $Sp(m)I^*$. In case (3)(ii) the relevant possibilities for F are $\{I\}$ and $\{\beta, I\}$, where the $U(1)$ factor of K^0 consists of all quaternion scalar multiplications by complex numbers e^{ix}, x is real, as in the case (2), and
$ß$ is quaternion scalar multiplication by j. Thus K is either $Sp(m)U(1)$ or $(Sp(m)U(1)) \cup (Sp(m)U(1))ß$. In case (3)(iii), K^0 is its own $O(n)$-centralizer so $F = \{I\}$ and $K = Sp(m)Sp(1)$.

In case (4),(5),(6), K^0 is absolutely irreducible on \mathbb{R}^n, so relevant F would have to consist of real scalars. As G_2 does not contain $-I$ we see that the relevant F for case (4) are $\{I\}$ and $\{I, -I\}$, resulting in $K = G_2$ and $K = G_2 \cup (-I)G_2$. Both $Spin(7)$ and $Spin(9)$ do contain $-I$, so F is trivial in case (5),(6). That gives $K = Spin(7)$ in case (5) and $K = Spin(9)$ for case (6).

References

[1] Helgason, Sigurdur The Bounded Spherical Functions on the Cartan motion group, Arxiv ID: 1503.07598.

[2] S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press. (1984).

[3] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces Adv. Math. 3 (1969), 586-593.

[4] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 241-310.

[5] Harish-Chandra Spherical functions on a semisimple Lie group I, Amer. J. Math. 80 (1958), 241-310.

[6] Helgason, Sigurdur, Eigenspaces of the Laplacian; integral representations and irreducibility, Journal of Functional Analysis, 1973, Vol.17(3), pp.328-353.

[7] Wolf, Joseph A, Spherical functions on Euclidean space., J. Funct. Anal. 239 (2006) No.1, 127-136.

[8] H. Leptin On group algebras of nilpotent groups, Studia Math. 47 (1973), 37-49.

[9] M. Naimark, Normed rings, Wolters-Noordhoff, 1970.

[10] Helgason, Sigurdur, A duality for symmetric spaces with applications to group representations., Advan. Math. 5 (1970), 1-154.