I analytically study the plateau of the magnetization curve at $M/M_S = 1/3$ (where M_S is the saturation magnetization) of the one-dimensional $S = 1/2$ trimerized Heisenberg spin system with ferromagnetic (J_F)-ferromagnetic (J_F)-antiferromagnetic (J_A) interactions at $T = 0$. I use the bosonization technique for the fermion representation of the spin Hamiltonian through the Jordan-Wigner transformation. The plateau appears when $\gamma \equiv J_F/J_A < \gamma_C$, and vanishes when $\gamma > \gamma_C$, where the critical value γ_C is estimated as $\gamma_C = 5 \sim 6$. The behavior of the width of the plateau near γ_C is of the Kosterlitz-Thouless type. The present theory well explains the numerical result by Hida.
Recently Hida\(^1\) numerically studied the \(S = 1/2\) spin chain system in which the interaction between neighboring spins changes as ferromagnetic-ferromagnetic-antiferromagnetic (Fig.1). The Hamiltonian of this model is written by

\[
\mathcal{H} = J_A \sum_j (h_{3j-1,3j}^+ + \Delta h_{3j-1,3j}^z) - J_F \sum_j (h_{3j,3j+1}^+ + \Delta h_{3j,3j+1}^z + h_{3j+1,3j+2}^z + \Delta h_{3j+1,3j+2}^z),
\]

where \(J_A > 0\) and \(J_F > 0\) are the magnitudes of the antiferromagnetic and ferromagnetic couplings, respectively. I have introduced the anisotropy parameter \(\Delta > 0\) for later convenience, although Hida investigated only the \(\Delta = 1\) case. This model is not too artificial nor a theoretical toy, as noticed by Hida. In fact, the substance \(3\text{CuCl}_2 \cdot \text{dioxane}\), of which magnetization is measured by Ajiro \textit{et al.}\(^2\) in strong magnetic fields, is known to be a (quasi-)one dimensional magnet to which this model is applied.

Hida\(^1\) investigated this model (only the \(\Delta = 1\) case) by the numerical diagonalization method for finite systems (up to 24 spins) to find that there was a plateau in the magnetization curve as far as \(\gamma = J_F/J_A\) is small, and the width of the plateau decreases as the parameter \(\gamma\) increases (Fig.2). The location of the plateau was \(M_S/3\), where \(M_S\) is the saturation magnetization. He could not obtain a definite conclusion about the existence of the plateau for large \(\gamma\) case, because the magnetization varied stepwise for the finite systems. Since this model becomes \(S = 3/2\) antiferromagnetic chain model when \(\Delta = 1\) and \(\gamma \rightarrow \infty\) due to the formation of an \(S = 3/2\) quartet by spins \(S_{3j}, S_{3j+1}\) and \(S_{3j+2}\), it is expected that there is no plateau in this limit. It is believed that all the half-odd spin chains with antiferromagnetic nearest-neighbor interactions belong to the same universality class as that of \(S = 1/2\).

There arise several questions:

(i) Why does the plateau appear at \(M/M_S = 1/3\)? (ii) Does the plateau vanish at a finite value of \(\gamma\) or persist to \(\gamma = \infty\)? (iii) If the plateau vanishes at \(\gamma_C\), what is the behavior of the plateau near \(\gamma_C\)?

They are interesting questions not only from the standpoint of the statistical physics but also from that of explaining the properties of the existing materials. I note that the plateau was not observed in the report of Ajiro \textit{et al.}\(^2\).

In this paper I will analytically study the mechanism for the appearance of the plateau and also discuss whether the critical value \(\gamma_C\) exists or not.

Performing the spin rotation around the \(z\)-axis for the spins located at the sites \(3j\)

\[
S_{3j}^x \Rightarrow -S_{3j}^x, \quad S_{3j}^y \Rightarrow -S_{3j}^y, \quad S_{3j}^z \Rightarrow S_{3j}^z,
\]

Hamiltonian (1) is transformed into the form of a generalized version of the trimerized antiferromagnetic chain:

\[
\mathcal{H} = J_0(1 - 2\delta_\perp) \sum_j h_{3j-1,3j}^+ + J_0(1 + \delta_\perp) \sum_j (h_{3j,3j+1}^+ + h_{3j+1,3j+2}^+) + J_0(\Delta_0 - 2\delta_z) \sum_j h_{3j-1,3j}^z + J_0(\Delta_0 + \delta_z) \sum_j (h_{3j,3j+1}^z + h_{3j+1,3j+2}^z),
\]

where \(J_0 > 0\) and \(\Delta_0 > 0\) are the magnitudes of the antiferromagnetic and ferromagnetic couplings, respectively. I have introduced the anisotropy parameter \(\Delta > 0\) for later convenience, although Hida investigated only the \(\Delta = 1\) case. This model is not too artificial nor a theoretical toy, as noticed by Hida. In fact, the substance \(3\text{CuCl}_2 \cdot \text{dioxane}\), of which magnetization is measured by Ajiro \textit{et al.}\(^2\) in strong magnetic fields, is known to be a (quasi-)one dimensional magnet to which this model is applied.

Hida\(^1\) investigated this model (only the \(\Delta = 1\) case) by the numerical diagonalization method for finite systems (up to 24 spins) to find that there was a plateau in the magnetization curve as far as \(\gamma = J_F/J_A\) is small, and the width of the plateau decreases as the parameter \(\gamma\) increases (Fig.2). The location of the plateau was \(M_S/3\), where \(M_S\) is the saturation magnetization. He could not obtain a definite conclusion about the existence of the plateau for large \(\gamma\) case, because the magnetization varied stepwise for the finite systems. Since this model becomes \(S = 3/2\) antiferromagnetic chain model when \(\Delta = 1\) and \(\gamma \rightarrow \infty\) due to the formation of an \(S = 3/2\) quartet by spins \(S_{3j}, S_{3j+1}\) and \(S_{3j+2}\), it is expected that there is no plateau in this limit. It is believed that all the half-odd spin chains with antiferromagnetic nearest-neighbor interactions belong to the same universality class as that of \(S = 1/2\).

There arise several questions:

(i) Why does the plateau appear at \(M/M_S = 1/3\)? (ii) Does the plateau vanish at a finite value of \(\gamma\) or persist to \(\gamma = \infty\)? (iii) If the plateau vanishes at \(\gamma_C\), what is the behavior of the plateau near \(\gamma_C\)?

They are interesting questions not only from the standpoint of the statistical physics but also from that of explaining the properties of the existing materials. I note that the plateau was not observed in the report of Ajiro \textit{et al.}\(^2\).

In this paper I will analytically study the mechanism for the appearance of the plateau and also discuss whether the critical value \(\gamma_C\) exists or not.

Performing the spin rotation around the \(z\)-axis for the spins located at the sites \(3j\)

\[
S_{3j}^x \Rightarrow -S_{3j}^x, \quad S_{3j}^y \Rightarrow -S_{3j}^y, \quad S_{3j}^z \Rightarrow S_{3j}^z,
\]

Hamiltonian (1) is transformed into the form of a generalized version of the trimerized antiferromagnetic chain:

\[
\mathcal{H} = J_0(1 - 2\delta_\perp) \sum_j h_{3j-1,3j}^+ + J_0(1 + \delta_\perp) \sum_j (h_{3j,3j+1}^+ + h_{3j+1,3j+2}^+) + J_0(\Delta_0 - 2\delta_z) \sum_j h_{3j-1,3j}^z + J_0(\Delta_0 + \delta_z) \sum_j (h_{3j,3j+1}^z + h_{3j+1,3j+2}^z),
\]
In case of the XY model where \(\Delta = 0 \), we can solve Hamiltonian (4) by the use of the fermion representation through the Jordan-Wigner transformation. The dispersion relation is shown in Fig.3. When the magnetic field is applied, the dispersion curve shifts along the \(\omega \)-axis, which explains the existence of the plateau as well as its location \(M/M_S = 1/3 \). Note that the magnetization \(M \) is related to the number of occupied states as

\[
\frac{M}{N} = \frac{1}{2} - \frac{\text{occupied states}}{N},
\]

where \(N \) is the total number of spins.

This is a simple explanation for the question why the plateau appears at \(M/M_S = 1/3 \). However, there still remains questions. Why is there no plateau in the experimental results on 3CuCl\(_2\)·2dioxane? Is there any essential difference between the XY case (\(\Delta = 0 \)) and the isotropic Heisenberg case (\(\Delta = 1 \))? How can we explain Hida’s result, especially in \(\gamma \geq 5 \) case? To answer these questions, we have to consider the interactions between fermions when \(\Delta \neq 0 \).

To consider the effect of the trimerization and that of the interaction between fermions simultaneously, I use the method of the bosonization. The bosonization is one of the powerful methods in one-dimensional quantum problems. Here I do not enter into the details of the bosonization procedure. I note that the bosonization is usually done in case of no magnetization (half-filled in the language of the fermion), but in the present case, we have to perform the bosonization near \(M/M_S = 1/3 \) (1/3-filled in the language of the fermion).

After the bosonization, Hamiltonian (3) is transformed into a generalized sine-Gordon Hamiltonian:

\[
\tilde{H} = \frac{\sqrt{3}J_0a}{2} \int dx \left\{ A(\nabla \theta)^2 + CP^2 \right. \\
- B_\perp \cos \theta - B_z(\nabla \theta)^2 \cos \theta \left. \right\},
\]

\[
A = \frac{1}{8\pi} \left(1 + \frac{2\sqrt{3}\Delta_0}{\pi} \right), \quad C = 2\pi \left(1 - \frac{2\Delta_0}{\sqrt{3}\pi} \right),
\]

\[
B_\perp = \frac{2\delta_\perp}{\sqrt{3}a^2}, \quad B_z = \delta_z/\pi,
\]

\[
[\theta(x), \ P(x')] = i\delta(x - x'),
\]

where \(a \) is the distance between neighboring spins. The effect of the trimerization appears in the \(B_\perp \) and \(B_z \) terms. If the \(B_\perp \) term and/or the \(B_z \) term are relevant in the sense of the renormalization group, the spectrum of \(\tilde{H} \) has a gap, which brings about the plateau in the magnetization curve. If both of them are irrelevant, the spectrum of \(\tilde{H} \) is gapless, which results in no plateau. Which case is realized? — It depends on the magnitudes of \(B_\perp \) and \(B_z \) and also on the parameter

\[
\eta = 2\pi^{-1}\sqrt{C/A}.
\]

The renormalization group calculation shows that the \(B_\perp \) term and/or the \(B_z \) term are relevant as far as \(\eta < 4 \).

The value of \(\eta \) is slightly shifted through the bosonization procedure. The expressions of \(A \) and \(B \) in eq.(8) is considered to be the lowest order expansions with respect to \(\Delta_0 \). When \(\Delta_0 \to -1 \) (i.e. \(\gamma \to \infty \)),

\[
J_0 = \frac{2J_F + J_A}{3}, \quad \Delta_0 = \frac{-2\gamma + 1}{2\gamma + 1} \Delta,
\]

\[
\delta_\perp = \frac{\gamma - 1}{2\gamma + 1}, \quad \delta_z = -\frac{\gamma + 1}{2\gamma + 1} \Delta.
\]

\[
\Delta_0 = -\frac{2\gamma + 1}{2\gamma + 1} \Delta.
\]
the system becomes ferromagnetic. Therefore η should diverge to $+\infty$ when $\Delta_0 \to -1$, although it seems to diverge at $\Delta_0 \to -\pi/2\sqrt{3} = -0.907$ from eq.(8).

The bosonized Hamiltonian (7) has the same form as that of the generalized version of the dimerized XXZ model.

$$H^{(d)} = J \sum_l \left\{ (1 + (-1)^l)\delta_\perp^{(d)} h^{(d)}_l + \Delta^{(d)} \right\} H^{(d)}_{l,l+1} + J \sum_l \left\{ \delta_\perp^{(d)} + (1)^l\delta_z^{(d)} \right\} h^{(d)}_{l,l+1}, \quad J > 0,$$

(12)

In fact, if we perform the bosonization for Hamiltonian (12), we obtain

$$\tilde{H}^{(d)} = Ja \int dx \left\{ A^{(d)} (\nabla \theta)^2 + C^{(d)} p^2 - B_\perp^{(d)} \cos \theta - B_z^{(d)} (\nabla \theta)^2 \cos \theta \right\},$$

(13)

where

$$A^{(d)} = \frac{a}{\delta_\pi} \left(1 + \frac{3\Delta^{(d)}}{\pi} \right), \quad C^{(d)} = 2\pi a \left(1 - \frac{\Delta^{(d)}}{\pi} \right).$$

(14)

$$B_\perp^{(d)} = \delta_\perp^{(d)}/a^2, \quad B_z^{(d)} = \delta_z^{(d)}/\pi.$$

(15)

Also in this case, the expression of $A^{(d)}$ and $C^{(d)}$ should be considered to be the lowest order expansions near $\Delta^{(d)} = 0$. In fact, in the absence of the dimerization, the exact form of $\eta^{(d)} \equiv (2\pi)^{-1}\sqrt{C^{(d)}/A^{(d)}}$ is obtained from the application of the exact solution of the eight-vertex model as

$$\eta^{(d)} = 2/[1 + (2/\pi) \sin^{-1} \Delta^{(d)}].$$

(16)

If we expand eq.(16) near $\Delta^{(d)} = 0$, we can see that it agrees with the expression of $\eta^{(d)}$ from eq.(11) and (14).

\tilde{H} has the same form as $\tilde{H}^{(d)}$ with the identification of the parameters

$$\Delta^{(d)} = \frac{2\Delta_0}{\sqrt{3}}, \quad \delta_\perp^{(d)} = \frac{2\delta_\perp}{\sqrt{3}}, \quad \delta_z^{(d)} = \delta_z.$$

(18)

Then we can use the knowledge on the dimerized XXZ model. The phase diagram$^{6-8}$ of the dimerized XXZ model when $\delta_\perp^{(d)} = \delta_z^{(d)} = \delta^{(d)}$ is shown in Fig.4. This phase diagram was obtained by the renormalization group calculation,6 by the high temperature series expansion after mapping $H^{(d)}$ onto the finite-temperature classical 2D model (modified Ashkin-Teller model),7 and by the numerical diagonalization of the original spin Hamiltonian for finite systems.8 When $\delta_\perp^{(d)} = \delta_z^{(d)}$, a naive consideration leads to the effective dimerization parameter

$$\delta^{(d)}_{\text{eff}} = (2\delta_\perp^{(d)} + \delta_z^{(d)})/3,$$

(18)

because $\delta_\perp^{(d)}$ is related to S^x and S^y, whereas $\delta_z^{(d)}$ to S^z. However, the renormalization group method and the variational method bring about

$$\delta^{(d)}_{\text{eff}} = (2\delta_\perp^{(d)} + \eta \delta_z^{(d)})/(2 + \eta).$$

(19)

From eqs.(5), (17) and (19), we obtain the mapping of the present model onto the dimerized XXZ model, as shown in Fig.4. The case $\gamma = 1$ of the present model corresponds to the case $\Delta^{(d)} = -2/3\sqrt{3} = -0.385$, $\delta^{(d)} = 0.374$ of the dimerized model, and the case $\gamma = \infty$ to the case $\Delta^{(d)} = -1$, $\delta^{(d)} = 1/2$. Therefore there exists
the critical value γ_C, where the transition from the plateau state to the no-plateau state. This transition is of the Kosterlitz-Thouless type, as known from the critical properties of the sine-Gordon Hamiltonian.9

The above discussion is based on the bosonization method, which make it difficult to estimate the value of γ_C itself. It is because the parameters are slightly shifted through the bosonization procedure, as already explained. A rough estimation of the value of γ_C is

$$\gamma_C = 4 \sim 5 .$$ (20)

I have analytically investigated the plateau in the magnetization curve of the $S = 1/2$ ferromagnetic-ferromagnetic-antiferromagnetic spin chain, which is first pointed out by Hida3 by the use of the numerical diagonalization. The present analytical study semi-qualitatively explains the numerical result of Hida.
References

1. K. Hida, *J. Phys. Soc. Jpn.* **63**, 2359 (1994).
2. Y. Ajiro, T. Asano, T. Inami, H. Araña-Katori and T. Goto, *J. Phys. Soc. Jpn.* **63**, 859 (1994).
3. for instance, E. Fradkin, *Field Theories of Condensed Matter Systems*, Chap.4, Addison Wesley, Redwood City (1991).
4. K. Okamoto, D. Nishino and Y. Saika, *J. Phys. Soc. Jpn.* **62**, 2587 (1993).
5. J. D. Johnson, S. Krinsky and B. McCoy, *Phys. Rev. A* **8**, 2526 (1973).
6. K. Okamoto and T. Sugiyama, *J. Phys. Soc. Jpn.* **57**, 1610 (1988).
7. M. Kohmoto, M. den Nijs and L. P. Kadanoff, *Phys. Rev. B* **24**, 5229 (1981).
8. S. Yoshida and K. Okamoto, *J. Phys. Soc. Jpn.* **58**, 4367 (1989).
9. for instance, J. B. Kogut, *Rev. Mod. Phys.* **51**, 659 (1979).
Figure Captions:

Fig.1. Ferromagnetic-ferromagnetic-antiferromagnetic spin chain. Solid lines and dotted lines represent ferromagnetic couplings J_F and antiferromagnetic couplings J_A, respectively. Three spins in an ellipse make an $S = 3/2$ quartet when $\Delta = 1$ and $\gamma \rightarrow \infty$.

Fig.2. Sketch of Hida’s numerical result for the magnetization curve. The case (a) is for smaller γ and (b) for larger γ.

Fig.3. Dispersion relation of H of eq.(4) in case of $\Delta = 0$. (a): $\delta > 0$ case. (b): $\delta = 0$ case.

Fig.4. Mapping of the present model onto the dimerized XXZ chain. The open circle corresponds to the $\gamma = 1$ case and the closed circle to the $\gamma = \infty$ case.