Integration of TiO$_2$ into the diatom *Thalassiosira weissflogii* during frustule synthesis

Yvonne Lang1,3,4, Francisco del Monte6, Brian J. Rodriguez5, Peter Dockery2, David P. Finn3,4 & Abhay Pandit1

1Network of Excellence for Functional Biomaterials, 2Anatomy, School of Medicine, 3Pharmacology & Therapeutics, School of Medicine, 4Centre for Pain Research, National Centre for Biomedical Engineering Science National University of Ireland, Galway, Ireland, 5Conway Institute of Biomolecular and Biomedical Research and School of Physics University College Dublin, Belfield, Dublin 4, Ireland, 6Instituto de Ciencia de Materiales de Madrid-ICMM Consejo Superior de Investigaciones Científicas-CSIC Campus de Cantoblanco 28049-Madrid, Spain.

Nature has inspired the design of complex hierarchical structures in the field of material science. Diatoms, unicellular algae with a hallmark intricate siliceous cell wall, have provided such a stimulus. Altering the chemistry of the diatom frustule has been explored to expand on the potential application of diatoms. The ability to modify the diatom in vivo opens the possibility to tailor the diatom to the end application. Herein, we report the chemical modification of the living diatom *T. weissflogii* using a titania precursor, titanium (IV) bis-(ammonium lactato)-dihydroxide (TiBALDH). Incorporation of Ti into the diatom is achieved via repeated treatment of cultures with non-toxic concentrations of TiBALDH. The characteristic architectural features of the diatom are unaltered following chemical modification. Transformation of the living diatom provides opportunity to confer novel structural, chemical or functional properties upon the diatom. We report on a photocatalytic ability imparted upon the TiBALDH-modified diatom.

Diatoms are ubiquitous in seawater and freshwater environments, with the number of species estimated to be between 10^4–10^5. The complexity and the precision at which the cell wall, the frustule, is synthesised, at both the micro- and nano-scale, is a paradigm among material chemists for the controlled assembly of nanostructured materials. Over the past decade there has been a surge of interest in altering the chemistry of the diatom frustule while preserving the intricate architecture. A number of processes have described the use of frustules as sacrificial templates for the generation of non-siliceous diatom replicas. Despite the successful use of these processes, an emerging area of particular interest is the alteration of both diatom structure and chemical composition in culture.

Advances in chemical manipulation of the living diatom require an understanding of the biomineralization processes that underlie the formation of the intricate valve architecture. The first biomolecules indicated in diatom silica formation are the silaffins and long-chain polyamines, proteins shown to induce *in-vitro* precipitation of silica from silicic acid. More recently, TiO$_2$ precipitation has also been induced by silaffins over a wide range of pHs using TiBALDH as a precursor. It was hypothesized that substitution of the natural silica source of diatoms, Na$_2$SiO$_3$, with the Ti-based precursor, TiBALDH, will allow incorporation of Ti into the frustule of the centric diatom *Thalassiosira weissflogii* (*T. weissflogii*).

The range of proposed applications for the diatom frustule spans across many disciplines including; catalysis, separation science, optics, and drug delivery. It is always the cleaned harvested diatom that attracts attention and the possibility of harnessing the living diatom has not yet been fully explored.

This manuscript describes a method to alter the chemical composition of the living diatom *T. weissflogii* via Ti substitution. A high level of Ti incorporation is achieved via multiple dosing of cultures with concentrations of TiBALDH that satisfy the criteria of non-cytotoxicity and solubility. The chemical modification is not associated with alterations to the pore architecture of the diatom. However, minor changes to the rib structure are observed. Finally, irradiation of TiBALDH-modified diatoms with UV light led to the decay of *Escherichia coli* (*E. coli*) in co-culture demonstrating a novel photocatalytic activity. This property was also indicated when degradation of the photodegradable dye was observed following incubation with cleaned TiBALDH-modified *T. weissflogii* exposed to UV light.
Results

T. weissflogii growth profiles in the presence of TiBALDH. In this study design it was essential that the concentration of TiBALDH added to the culture medium meets the following balance; (i) it does not adversely affect the growth profile of *T. weissflogii*, and (ii) it does not precipitate in the culture medium. A series of cultures were supplemented with TiBALDH at concentrations ranging from 0.2 mM to 2 mM. Cell density and precipitate formation were monitored daily. TiBALDH concentrations lower than 1 mM resulted in the formation of precipitate in the culture medium over time. A comparison of the growth profile of *T. weissflogii* cultured in the presence of 200 μM Na2SiO3 versus 200 μM TiBALDH shows a similar pattern (Figure 1b) indicating that TiBALDH is not detrimental to *T. weissflogii* growth.

Nutrient depletion of either Na2SiO3 or TiBALDH in the culture media leads to a prolonged stationary phase (Figure 1b). Hence; a multiple dosing strategy of adding either Na2SiO3 or TiBALDH at 48 hour intervals was investigated to prolong the increased growth. The growth profile of *T. weissflogii* was similar using either precursor; furthermore an extension of increased growth is observed (Figure 1c).

A complete understanding of TiBALDH-associated growth of *T. weissflogii* is limited as the genetic manipulations required to fully investigate the mechanistic pathways are not developed. A specific inhibitor of Ti uptake by *T. weissflogii* or any diatom does not currently exist. Thus, an indirect method of investigating TiBALDH-associated growth involved monitoring growth in the presence of sodium azide, a respiratory inhibitor, that has been shown to inhibit silica uptake and arrest cell division25,26. Increases in cell density were reduced significantly when either *T. weissflogii* or TiBALDH-modified *T. weissflogii* were cultured in the presence of 10 mM sodium azide (Figure 1d).

Ti content of *T. weissflogii* frustule. EDX-SEM analysis confirmed that Ti was incorporated into the frustule of TiBALDH-modified *T. weissflogii*.**
weissflogii (Figure 2). The Ti content was dependent on the number of TiBALDH doses that the culture received. A single addition of TiBALDH at the time of inoculation resulted in a maximum of 8.8 pg Ti/valve at 48 hours and then decreased to ca. 3 pg Ti/valve in the stationary phase (Figure 2a). The replenishment of the TiBALDH precursor in the culture media every 48 hours revealed consistency of Ti content over the period of culturing with maximum content of 13.8 pg Ti/valve after 192 hours following multiple addition of

![Box plots showing Ti content over time for single and multiple additions.](image)

Figure 2 | Investigation of the effect of TiBALDH dosing on Ti content in frustule reveals increases in Ti content is achieved by multiple dosing of cultures every 48 hours. EDX-SEM analysis was performed on the valve of *T. weissflogii* to quantify the ratio of Ti:Si allowing the Ti content per valve to be calculated. Cultures were treated with (a) a single addition or (b) multiple additions of TiBALDH. Data are presented as median and IQR with minimum and maximum values (*n* = 12). EDX-SEM spectra of (c) *T. weissflogii* showing a Si signal and (d) TiBALDH-modified *T. weissflogii* showing both a Si and Ti signal. (e) Incorporation of titanium into the frustule of *T. weissflogii* results in a gradient of titanium content across the girdle view. Data are represented as mean ± sem (*n* = 9). t-test revealed a statistical difference between Girdle 1 and Girdle 2. (f) Schematic illustrating the division of upper and lower girdle for analysis of Ti gradient across the girdle view by EDX-SEM analysis.
TiBALDH (Figure 2b). ICP-MS analysis corroborates this result revealing a Ti content of 14.2 ± 5.1 pg Ti per valve. In addition, the quantity of biogenic silica in the TiBALDH-modified *T. weissflogii* frustule is reduced in comparison to the unmodified diatom, with values of SiO$_2$ per frustule of 28 pg and 51 pg respectively.

EDX-SEM measurements across the girdle band revealed the existence of a gradient in Ti content (Figure 2e). The weight ratio of Ti:Si gave values of 0.24 : 1 compared 0.34 : 1 between bands. The distinction between bands is illustrated schematically in Figure 2f. EDX-TEM analysis of 90 nm thick cross sections of *T. weissflogii* and TiBALDH-modified *T. weissflogii* further confirmed the presence of Ti within the frustule of the modified diatom (Figure 3a & 3c). These observations suggest that Ti incorporation is growth associated as depicted in Figure 4. Furthermore, EDX-SEM analysis confirmed the absence of Ti in the frustule of *T. weissflogii* cultured in the presence of TiBALDH and sodium azide (Supplementary Figure 1). XPS analysis performed on a bulk sample of the TiBALDH-modified diatom confirmed the chemical form of Si and Ti present as SiO$_2$ and TiO$_2$ (Figure 3b & 3d).

Architectural parameters of TiBALDH-modified *T. weissflogii*. *T. weissflogii* is a centric diatom measuring 10–15 μm in diameter with a central ring of fultoportulae and ribs that radiate to the periphery of the diatom (Figure 5). The valve surface is decorated with pores, with an average perimeter of 125 nm, that increase in density from the centre of the diatom to the periphery (Figure 6). Conversely, the rib-like structures become less dense at the periphery. Scanning electron microscopy (SEM) micrographs revealed that the overall frustule morphology of *T. weissflogii* was preserved under multiple additions of TiBALDH over 192 hours (Figure 5). The resemblance observed by SEM was supported by images generated by transmission electron microscopy (TEM) with the pores decorating the valve face appearing unaltered (Figure 6a & 6b). However, further analysis was required to elucidate whether the architecture of the TiBALDH-modified frustules were completely analogous to the morphology described for the *T. weissflogii* cultured in Na$_2$SiO$_3$. For this purpose, the valve surface was subdivided into four concentric regions and extensive characterization of the pore size and radial pore distribution using TEM images was performed. Neither the pore size nor the pore density across the valve of TiBALDH-modified frustules were significantly different to those treated with Na$_2$SiO$_3$ (Figure 6c & 6d). The architectural parameters were further analysed using atomic force microscopy (AFM) analysis (Figure 7 & 8). The density of pores within Regions 2 and 3 of the valve surface were not statistically different between Na$_2$SiO$_3$ and TiBALDH diatoms (Figure 6b). A preliminary investigation comparing data generated by TEM and AFM was performed to ensure the accuracy of the data collected by AFM. The spacing from pore edge-to-edge from three separate sections of a TiBALDH-modified diatom in Regions 2 and 3 quantified from TEM data was 72 ± 3 nm, 73 ± 3 nm, and 68 ± 3 nm (Supplementary Figure 1). The average spacing from pore valley-to-valley in the same regions quantified from AFM data was 68 ± 3 nm (Supplementary Figure 2) in agreement with data from TEM. Further AFM analysis revealed that TiBALDH-modified diatoms did not differ from diatoms cultured in Na$_2$SiO$_3$ in parameters of pore valley-to-valley distance, pore depth, ironed surface area, spacing of the ribs, or rib height (Figure 8a–8e). However, there was an increase in the rib width (Figure 8f) in TiBALDH-modified diatoms as compared to those cultured in Na$_2$SiO$_3$. Previous studies have reported that the morphology of the precipitates obtained in

![Figure 3](https://www.nature.com/scientificreports) Qualitative analysis of titanium in TiBALDH-modified *T. weissflogii*. (a & c) EDX-TEM spectra and micrograph of 90 nm cross sections of fixed *T. weissflogii* and TiBALDH-modified *T. weissflogii*. Arrows indicate cell organelles encased within the frustule (b & d) XPS spectra of *T. weissflogii* and TiBALDH-modified *T. weissflogii*. The chemical form of Si and Ti present is SiO$_2$ and TiO$_2$.

www.nature.com/scientificreports
vitreous exhibit significant differences depending on whether Na$_2$SiO$_3$ or TiBALDH was used as a precursor. The type of silaffin involved in the precipitation, the secondary structure of the silaffin, the amino acid sequence of the long-chain polyamine, and the peptide sequence are hypothesized to play a role in the morphologies of the precipitates obtained in vitro. Whether these factors influence the rib morphology of the frustules obtained in the culture medium that contains TiBALDH is unclear and further investigation will be required to elucidate this issue.

Novel properties of TiBALDH-modified T. weissflogii. In the present study, co-cultivation of TiBALDH-modified *T. weissflogii* in the presence of *Escherichia coli* (*E. coli*) provided interesting results. The model bacterial strain of choice *E. coli* was used in this...
study. Cultures were inoculated in sterile de-ionised water so as to provide no nutrients to either diatom or bacteria. The abundance of either bacteria or diatom present was quantified over the time frame of the experiment. Co-cultures of (i) *T. weissflogii* with *E. coli* or (ii) TiBALDH-modified *T. weissflogii* with *E. coli* were studied with or without illumination over a 24-hour period. Axenic cultures of (i) *T. weissflogii*, (ii) TiBALDH-modified *T. weissflogii*, and (iii) *E. coli* were studied under identical experimental conditions to serve as a control.

Both unmodified and TiBALDH-modified diatoms were capable of preserving the number of bacteria over the first six hours irrespective of exposure to UV light (Figure 9). These results are in agreement with what is known in the field, that diatoms tend to promote the growth of bacteria⁴⁰–⁴³. A close inspection of the changes after the first six hours revealed that there was a significant decay in the number of colonies in co-cultures of *E. coli* with TiBALDH-modified *T. weissflogii* following exposure to UV light. Any decay of *E. coli* in the presence of TiBALDH-modified diatoms disappeared when maintained in the dark. The profile of *E. coli* colony counts in the presence of unmodified *T. weissflogii* did not change under either light or dark settings demonstrating a slight decrease between 12 and 24 hours post inoculation. The decay of *E. coli* in co-cultures with diatoms has no precedent, and this is the first such observation reported to date. The decay of *E. coli* in the presence of TiBALDH-modified diatoms was

Figure 5 | The characteristic hierarchical architecture of the diatom is conserved in TiBALDH-modified *T. weissflogii*. Scanning electron microscopy images of *T. weissflogii* show that *T. weissflogii* is a centric diatom with highly intricate protrusions on the valve surface. Ribs radiate from the centre of the structure, underneath which the valve is decorated with openings. The images shown here are diatoms grown in the presence of (a) Na₂SiO₃ or (b) & (c) TiBALDH collected at 192 hours post inoculation following multiple addition of Na₂SiO₃ or TiBALDH at 48 hour intervals.
expected to be due to the photocatalytic activity of TiO$_2$ as it is absent in cultures maintained under dark settings.

The photocatalytic ability of cleaned TiBALDH-modified *T. weissflogii* frustules was also investigated. Degradation of methylene blue under UV light in the presence of either unmodified or modified diatoms was monitored. A decrease in the absorbance of the methylene blue solution at 656 nm was observed only in the presence of TiBALDH-modified diatoms following exposure to UV light (Supplementary Figure 3).

Discussion

The conservation of the diatom growth pattern upon the chemical modification of the culture medium is an aspect of paramount importance. Exposure of diatoms to sub-lethal doses of alternative precursors results in alterations to the architecture of the diatom, explained in part by interruptions to the processes within the silica deposition vesicle (SDV) and modification of cell organelles34,35. Accordingly, the threshold concentration of chemical entities that can be incorporated into the culture medium to modify the diatom morphology and/or composition must fulfill a delicate balance: sufficiently high that any modification is detectable, yet sufficiently low to avoid cytotoxic concentrations that alter diatom growth patterns. In this study, TiBALDH added to the culture at a final concentration of 200 μM met these criteria.

The increase in cell density observed in the presence of TiBALDH not only confirms that the presence of Ti does not adversely affect the growth pattern of *T. weissflogii*, but also suggests that Ti is capable of being incorporated into the diatom frustule by a metabolically

Figure 6 The architectural properties related to the pores on the valve surface of *T. weissflogii* are unaltered in TiBALDH-modified diatoms. Transmission electron microscopy images of (a) *T. weissflogii* and (b) TiBALDH-modified *T. weissflogii*. Scale bar represents 2 μm. (c) Pore parameters of perimeter, width, length and area were not significantly different between Na$_2$SiO$_3$ and TiBALDH treated diatoms. (d) The pore distribution decreases in density from the periphery of the diatom to the centre of the diatom similarly for Na$_2$SiO$_3$ and TiBALDH treated diatoms. The schematic illustrates regions analyzed on the valve surface with Region 4 represented in the centre of the valve. All data was generated from diatoms collected at 192 hours post inoculation following multiple addition of Na$_2$SiO$_3$ or TiBALDH at 0, 48, 96 and 144 hours post inoculation ($n = 3$ diatoms per culture, 3 cultures per treatment).
Figure 7 | Fine nodular features decorate the rib structure on the valve of *T. weissflogii*. The surface topography of (a) *T. weissflogii* and (b) TiBALDH modified *T. weissflogii* imaged by AFM reveals the fine structural details of the valve surface showing nodes decorating the ribs and the textured surface underneath the ribs. Images were generated from diatoms collected at 192 hours post inoculation following multiple addition of Na$_2$SiO$_3$ or TiBALDH at 0, 48, 96 and 144 hours post inoculation. (c) Measurements were collected in Regions 2 and 3 as defined in Figure 6d. The panel of graphs represent profiles taken on the valve surface depicting criteria for measurements of (i) valley-to-valley distance (ii) pore depth (iii) rib-to-rib distance (iv) rib width (green) and height (red).
associated process. Further, exploration of the exact mechanism is required but is hampered by the lack of Ti specific inhibitors.

This Ti content achieved using TiBALDH is enhanced compared to that seen with TiOSO₄. However; the TiBALDH treatment was insufficient to create a fully SiO₂–depleted valve. Figure 4b illustrates the formation of new valves within the silica deposition vesicle in the parent diatom. Incorporation of the precursor requires uptake of the precursor into the parent diatom, deposition of the precursor within the SDV, followed by division of the parent diatom into two daughter diatoms. The daughter diatom consists of an epitheca composed of original material from the parent diatom and a hypotheca composed of material from the precursor. Incorporation of the precursor into both valves of the frustule requires a minimum of two cell cycles (Figure 4c). As additional Na₂SiO₃ was not added to TiBALDH treated cultures, one would expect the formation of six fully SiO₂–depleted frustules after three cell cycles from one parent SiO₂–diatom (Figure 4c). However, this was not observed experimentally.

Titanium dioxide particles have been shown to have bactericidal properties when irradiated with UV light, however this mechanism is a matter for discussion and possible suggestions including oxidation of intracellular enzymes leading to decreases in bacterial cell respiration and death, or disruption of the bacterial cell membrane leading to cell death. Nonetheless, the generation of free radicals is the root cause of the bactericidal properties of TiO₂ particles. Irradiation of TiBALDH-modified T. weissflogii in co-culture with E. coli leads to a decrease in bacteria abundance. This behaviour is not observed in co-cultures of T. weissflogii and E. coli, and is expected to be due to photocatalysis of TiO₂. As an alternative to photocatalysis, it can be postulated that the difference between E. coli colony numbers in the presence of either unmodified or TiBALDH-modified diatoms under illumination is due to metabolic differences. However, the lack of an observed difference between the co-culture systems under dark conditions (Figure 9) does not support this idea, and indicates a photocatalytic mechanism underlying the differences observed under UV irradiation.

In summary, the use of TiBALDH as a precursor in diatom cultures allowed for a metabolic insertion of up to 14.2 ± 5.1 pg Ti per diatom valve. TiBALDH was chosen because of its stability in the culture medium, which is one of the critical issues that favours precursor uptake. Enhanced metabolic insertions were found with experimental conditions (e.g. multiple precursor additions) that prolong the exponential growth phase of the culture. The resemblance (in terms of both the pore size and distribution across the valve) between TiO₂-modified diatoms and regular diatoms suggests that, in vivo, silaffins and polyamines are determinants of TiBALDH precipitation into the patterned structure that characterizes diatom frustules. It is worth noting that the modification of the chemical composition of living diatoms has several implications. For
instance, results generated in this work revealed how the suppression of T. weissflogii in co-cultures with E. coli depended upon chemical composition. Moreover, co-cultures of TiBALDH-modified T. weissflogii diatoms exhibited an unprecedented decay of E. coli under illumination but not in dark conditions indicative of a certain photocatalytic activity originating from TiO₂ incorporated into the diatom frustules. While further investigation is clearly warranted to fully explore the potential of these features, the photocatalytic activity of living cultures of TiBALDH-modified T. weissflogii opens exciting possibilities in a number of applications. For instance, TiBALDH-modified diatoms can exert bactericidal effects. In this context it is worth noting that the TiO₂ concentration in the diatoms studied herein is nearly 1000-fold below that used in previous reports on photocatalytic TiO₂ particles exhibiting bactericidal effects.

Methods

Axenic Thalassiosira weissflogii cultures were grown in artificial seawater (ASW) prepared according to Berges et al. enriched with Guillard’s f/2 marine enrichment media without silicates (Sigma Aldrich) according to manufacturer recommendations. Cultures were silica depleted according to the procedure detailed by Hildebrand et al. for a minimum of 24 hours before inoculation with the precursor. Following silica depletion cultures were inoculated at 1 × 10⁸ cells/mL or 5 × 10⁸ cells/mL in a final volume of 200 ml. Cultures were grown in polystyrene tissue culture flasks.

Sodium metasilicate nonhydrate (Na₂SiO₃) or titanium bis(ammoniumlactacodi-hydroxide) (TiBALDH) were added to cultures at a final concentration of 200 μM and grown at a 14 hour light-dark cycle at a light intensity of 3000 lux and temperature range of 16–22°C. Multiple addition cultures received further additions of Na₂SO₄ or TiBALDH at a final concentration of 200 μM at 48, 96, and 144 hours. Cultures were collected at 192 hours post inoculation and diatoms cleaned according to procedure detailed in Supplementary Information. Cell density was monitored using a haemocytometer.

Determination of Ti content in cleaned frustules. SEM-EDX analysis was performed using Hitachi S-4700 SEM with INCA software (Oxford Instruments) to determine the Si and Ti content. Cleaned diatoms suspended in methanol were allowed to air dry on a carbon stub and were subsequently gold coated. Diatoms were cleaned using a high pressure microwave, model ETHOS SEL, Milestone using equal part solution of HNO₃ and HF. XPS analysis was performed using the Kratos AXIS 165 spectrometer. Binding energies were referenced to the C 1 s line at 284.5 eV and 284.8 eV. Cleaned diatom samples were dried at 60°C for 48 hours. The dried sample was ground to a fine powder and dusted on to double sided adhesive tape for analysis.

Quantification of architectural parameters. Quantification of architectural parameters was performed on cleaned frustules grown in the presence of either Na₂SO₄ or TiBALDH collected at 192 hours post inoculation following multiple addition of Na₂SO₄ or TiBALDH at 48 hour intervals. TEM images of frustules were collected using Hitachi H-7500 TEM with AMT image capture software. Cleaned diatoms suspended in methanol were allowed to air dry on a copper grid. Pore parameters (perimeter, width, length and area) were quantified using ImageJ software. Five sections per diatom and five diatoms per culture were analysed. A minimum of three cultures per treatment group were analysed. Pore parameters were calculated as the mean ± sem per treatment (n = 3). Pore distribution across the valve surface was analysed using ImageJ software. The valve surface was divided into four discrete regions as illustrated in the schematic in Figure 6d. A minimum of eight sections measuring 0.5 μm² per region were analysed. Pore distribution was calculated as the mean ± sem per treatment (n = 3). AFM measurements were performed under ambient conditions in intermittent contact mode using a commercial AFM system (NanoWizard-II, JPK Instruments, Germany) coupled with an inverted optical microscope (Eclipse Ti-E, Nikon, Japan). Silicon cantilevers (spring constant, k ~ 2.8 N m⁻¹ and resonance frequency, f ~ 75 kHz) with high aspect ratio (1:10 aspect ratio, tip radius < 3 nm), high density, diamond like carbon tips were used (MSS-FMR-13, Nanotools, Germany). Analysis of AFM images was performed using WSXM Software. Sections within regions 2 and 3 as outlined in the schematic in Figure 7c were analysed. The criteria for measurements of valley-to-valley distance, pore depth, rib-to-rib distance, and rib width and rib height is illustrated in Figure 6c. t-tests were performed to determine statistical difference between Na₂SO₄ and TiBALDH treated cultures regarding architectural parameters.

Investigating the relationship between T. weissflogii/TiBALDH-modified T. weissflogii and E.coli. Escherichia coli, T. weissflogii and TiBALDH-modified T. weissflogii were prepared for the co-culture study as detailed in Supplementary Information. Six treatment groups were prepared to a final volume of 200 ml in sterile de-ionised water: (i) Water, (ii) E. coli, (iii) T. weissflogii, (iv) TiBALDH-modified T. weissflogii, (v) T. weissflogii + E. coli, (vi) TiBALDH-modified T. weissflogii + E. coli. Flasks were inoculated at diatom cell density of ca. 3 × 10⁸ cells/mL and E. coli density of ca. 10⁶ cfu/mL. Flasks were placed on a shaker and exposed to light (HALOLINE ECO 64695 from Osram) or covered with black cloth to eliminate exposure to light. 200 μl aliquots were removed at 0, 1.5, 3, 6, 12 and 24 hours post inoculation. Diatom cell counts were performed using a haemocytometer. Serial dilutions in sterile PBS were performed before plating 100 μl on LB agar plates. Plates were incubated at 37°C for 24 hours and colony counts recorded.

Investigating the degradation of methylene blue in the presence of T. weissflogii or TiBALDH-modified T. weissflogii. Cleaned T. weissflogii and TiBALDH-modified T. weissflogii were suspended in de-ionised water. Methylene blue dissolved in de-ionised water was added at a weight ratio of 0.1 mg dye:100 mg diatom. Six samples were prepared for both modified and unmodified diatoms. All samples were placed in
the dark for 1 hour after which they were centrifuged at 2500 g for 20 minutes. The absorbance of the supernatant at 656 nm was measured to ensure that there was no difference between samples before the incubation period. Three samples for each unmodified and modified diatom were placed in the dark for 24 hours. The remaining samples were exposed to UV light at 365 nm. The absorbance of the supernatant was measured at 656 nm following the 24 hour incubation period.

1. Round, F. E., Crawford, R. M. & Mann, D. G. The Diatoms: Biology and Morphology of the Genera. (Cambridge University Press, New York, 1990).
2. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, New York, 2001).
3. Nassif, N. & Livage, J. From diatoms to silica-based biohybrids. Chem. Soc. Rev. 40, 849–859 (2011).
4. Sandhage, K. H. et al. Novel, Biostatic Route to Self-Assembled, 3D, Chemically Tailored Mesoscale/ Nanostuctures: Shape-Preserving Reactive Conversion of Bioactive (Diatom) Microshells. Adv. Mater. 14, 429–433 (2002).
5. Sandhage, K. H. et al. Merging Biological Self-Assembly with Synthetic Chemical Tailoring: The Potential for 3-D Genetically Engineered Nano/MICRO-Devices (3-D GENMs). Int. J. Appl. Ceram. Technol. 2, 317–326 (2005).
6. Holmes, S. M. et al. A novel porous carbon based on diatomaceous earth. Chem. Commun. 2662–2663 (2006).
7. Perez-Cabero, M., Puchol, V., Beltran, D. & Amoros, P. Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon 46, 297–304 (2008).
8. Vrieling, E. G. et al. Brazil and Vrieling. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, New York, 2001).
9. Davis, A. K. & Hildebrand, M. A self-propagating system for Ge incorporation into nanostructured silica. J. Electrochem. Soc. 152, H237–H242 (2005).
10. Kroger, N. et al. Layer-by-layer dendritic growth of hyperbranched thin films for optical and electronic applications. Adv. Mater. 20, 2911–2914 (2008).
11. Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-Assembly of Highly Phosphorylated Silafins and Their Function in Biosilicified Morphogenesis. Science 298, 584–586 (2002).
12. Kroger, N., De Luca, S., Ivo, R., De Mario, S., Alfredo, B. & Pasqualino, M. Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 87, 233902 (2005).
13. Weatherspoon, M. R. et al. Phosphor microparticles of controlled three-dimensional shape from phytoplankton. J. Electrochem. Soc. 153, H34–H37 (2006).
14. Locci, D. et al. Surface functionalisation of diatoms with dopamine modified iron oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46, 6323–6325 (2010).
15. Leunig, J. & Simovic, S. Production and stability of silica micro- and nanospheres from diatoms as new carrier for delivery of therapeutics. Nanomedicine 6, 1159–1173 (2011).
16. Leunig, J. & Simovic, S. Production and stability of silica micro- and nanospheres from diatoms as new carrier for delivery of therapeutics. Nanomedicine 6, 1159–1173 (2011).
17. Azam, F., Henningsen, B. & Volkens, R. E. Role of Silicon Diatom Metabolism in the Heterotrophic Diatom Nitzschia alba. Arch. Microbiol. 97, 103–114 (1974).