ON THE ATKIN AND SWINNERTON-DYER TYPE CONGRUENCES FOR SOME TRUNCATED HYPERGEOMETRIC $1F_0$ SERIES

YONG ZHANG AND HAO PAN

ABSTRACT. Let p be an odd prime and let n be a positive integer. For any positive integer α and $m \in \{1, 2, 3\}$, we have

$$p^{\alpha n - 1} \sum_{k=0}^{p^{\alpha n - 1} \left(\frac{1}{2} \right)_k \cdot (-4)^k \equiv \left(\frac{m(m-4)}{p} \right)^{\alpha n - 1} \sum_{k=0}^{p^{\alpha n - 1} \left(\frac{1}{2} \right)_k \cdot (-4)^k \pmod{p^{2\alpha}}},$$

where $(x)_k = x(x+1)\cdots(x+k-1)$ and (\cdot) denotes the Legendre symbol. Also, when $m = 4$,

$$p^{\alpha n - 1} \sum_{k=0}^{p^{\alpha n - 1} (-1)^k \cdot \left(\frac{1}{2} \right)_k \equiv p^{\alpha n - 1} \sum_{k=0}^{p^{\alpha n - 1} (-1)^k \cdot \left(\frac{1}{2} \right)_k \pmod{p^{2\alpha}}},$$

1. Introduction

In [2], Aktin and Swinnerton-Dyer systematically investigated the arithmetic properties of the Fourier coefficients of noncongruence modular forms. They observed that if Γ is a noncongruence subgroup of $SL_2(\mathbb{Z})$ with a finite index and $k \geq 2$ is even, then for some good primes p, there exists a basis $\{f_i\}_{1\leq i \leq d}$ of $S_k(\Gamma)$, where $d = \dim S_k(\Gamma)$, such that for each $1 \leq i \leq d$ and $\alpha \geq 1$,

$$a_{np^n}(f_i) - \lambda_{p,i} \cdot a_{np^{\alpha-1}}(f_i) + p^{k-1} a_{np^{\alpha-2}}(f_i) \pmod{p^{(k-1)\alpha}}, \quad \forall n \geq 1,$$

where $\lambda_{p,i}$ is an algebraic integer with $|\lambda_{p,i}| \leq 2p^{-\frac{1}{3}}$, $a_n(f)$ denotes the n-th coefficients in the Fourier expansion of $f(z)$ and $a_x(f) = 0$ if $x \notin \mathbb{Z}$. Subsequently, the work of Aktin and Swinnerton-Dyer was greatly developed by Scholl in [9].

Nowadays, for a sequence $\{a_n\}_{n \geq 0}$ of integers, the congruence of the form

$$a_{np^n} \equiv \lambda_p \cdot a_{np^{\alpha-1}} \pmod{p^{k^{\alpha}}}, \quad \forall n \geq 1,$$

is also often called Atkin and Swinnerton-Dyer type congruence, where p is a prime and $k, r \geq 1$. The Atkin and Swinnerton-Dyer type congruences have been established for many combinatorial sequences. For examples, Beukers [5] proved that
the Apéry number
\[A_n := \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2, \]
which was used to prove the irrationality of \(\zeta(3) = \sum_{n \geq 1} n^{-3} \) by Apéry, satisfies the Atkin and Swinnerton-Dyer type congruence
\[A_{np^{\alpha-1}} \equiv A_{np^{\alpha-1} - 1} \pmod{p^{3\alpha}}, \quad \forall n \geq 1, \quad (1.1) \]
where \(p \geq 5 \) is prime and \(\alpha \geq 1 \). Another example due to Coster and Hamme is concerning the Legendre polynomial
\[P_n(z) := \sum_{k=0}^{n} \binom{n}{k}(-n-1)_k \cdot \left(\frac{1-z}{2} \right)^k. \]
Coster and Hamme \[4\] proved that if the elliptic curve \(y^2 = x(x^2 + Ax + B) \) has the complex multiplication, then the sequence \(\{P_n(z)\}_{n \geq 0} \), where \(z = (1 - A/\sqrt{A^2 - 4B})/2 \), obeys some Atkin and Swinnerton-Dyer type congruences. In \[6\], Li and Long gave a nice survey on the Atkin and Swinnerton-Dyer congruences. For more related results, the reader may refer to \[10, 8\]. In particular, recently Sun \[13\] proposed many conjectured Atkin and Swinnerton-Dyer type congruences.

On the other hand, define the truncated hypergeometric function
\[_{m+1}F_m \left[\begin{array}{c} a_0 \ a_1 \ \ldots \ a_m \\ b_1 \ \ldots \ b_m \end{array} \right] z_n := \sum_{k=0}^{n} \frac{(a_0)_k(a_1)_k \ldots (a_m)_k}{(b_1)_k \ldots (b_m)_k} \cdot \frac{z^k}{k!}, \]
where
\[(a)_k = \begin{cases} a(a+1) \cdots (a+k-1), & \text{if } k \geq 1, \\ 1, & \text{if } k = 0. \end{cases} \]
Clearly the truncated hypergeometric function is just a finite analogue of the original hypergeometric function. Recently the arithmetic properties of the truncated hypergeometric functions are widely studied. In this paper, we shall consider the simplest truncated hypergeometric function
\[_1F_0 \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right] z_n = \sum_{k=0}^{n} \frac{(\frac{1}{2})_k}{k!} \cdot z^k. \]
For each non-zero integer \(m \), as a consequence of \(\), for each odd prime \(p \) we have
\[_1F_0 \left[\begin{array}{c} \frac{1}{2} \\ - \frac{4}{m} \end{array} \right] \equiv \left(\frac{m(m-4)}{2} \right) \pmod{p}, \quad (1.2) \]
where \((\cdot)\) denotes the Legendre symbol. In fact, (1.2) also easily follows from that
\[
\begin{align*}
1F_0 \left[\frac{1}{2} \right] - \frac{4}{m} \right]_{p-1} & \equiv 1F_0 \left[\frac{1-p}{2} \right] - \frac{4}{m} \right]_{p-1} = \sum_{k=0}^{p-1} \left(\frac{p-1}{2} \right) k \cdot \left(-\frac{4}{m} \right)^k \\
& = \left(1 - \frac{4}{m} \right)^{p-1} \equiv \left(\frac{m(m-4)}{p} \right) \pmod{p}.
\end{align*}
\]

In [11], Sun extended (1.2) to
\[
\begin{align*}
1F_0 \left[\frac{1}{2} \right] - \frac{4}{m} \right]_{p-1} & \equiv \left(\frac{m(m-4)}{p} \right) + u_{p-\left(\frac{m(m-4)}{p}\right)}(m-2,1) \pmod{p^2}, \tag{1.3}
\end{align*}
\]
where the Lucas sequence \(\{u_n(A, B)\}_{n \geq 0}\) is given by
\[
u_0(A, B) = 0, \quad u_1(A, B) = 1, \quad u_n(A, B) = Au_{n-1}(A, B) - Bu_{n-2}(A, B), \quad \forall n \geq 2.
\]
Recently, Sun [13] also obtained an Atkin and Swinnerton-Dyer type generalization of (1.3):
\[
\begin{align*}
1F_0 \left[\frac{1}{2} \right] - \frac{4}{m} \right]_{np^\alpha-1} & \equiv \left(\frac{m(m-4)}{p} \right) + u_{p-\left(\frac{m(m-4)}{p}\right)}(m-2,1) \pmod{p^{\alpha+1}}. \tag{1.4}
\end{align*}
\]
Clearly (1.3) easily follows from (1.4) by substituting \(\alpha = 1\) and \(n = 1\).

It is natural to ask whether in (1.4) modulo \(p^{\alpha+1}\) can be replaced by \(p^{2\alpha}\). Unfortunately, seemingly it is not easy to get such an extension for general \(m\). However, in this paper, for \(m = 1, 2, 3\), we shall prove that

Theorem 1.1. Let \(p\) be an odd prime and \(n\) be a positive integer. If \(m \in \{1, 2, 3\}\), then for any positive integer \(\alpha\),
\[
1F_0 \left[\frac{1}{2} \right] - \frac{4}{m} \right]_{np^\alpha-1} \equiv \left(\frac{m(m-4)}{p} \right) 1F_0 \left[\frac{1}{2} \right] - \frac{4}{m} \right]_{np^\alpha-1} \pmod{p^{2\alpha}}. \tag{1.5}
\]
Furthermore, when \(m = 4\),
\[
1F_0 \left[\frac{1}{2} \right] - 1 \right]_{np^\alpha-1} \equiv p \cdot 1F_0 \left[\frac{1}{2} \right] - 1 \right]_{np^\alpha-1} \pmod{p^{2\alpha}}. \tag{1.6}
\]

We mention that the special case \(m = \alpha = 1\) of (1.5) was also conjectured by Apagodu and Zeilberger[11] and proved by Liu [7].

Let us give an explanation on (1.5) from the viewpoint of convergent series. We know that
\[
\sum_{k=0}^{n} \frac{(\frac{1}{2})^k}{k!} \cdot z^k = \sqrt{1-z} \tag{1.7}
\]
for any \(z \in \mathbb{C} \) with \(|z| \leq 1 \). However, since \((\frac{1}{2})_k/k! \) is not divisible by \(p \) for infinitely many \(k \), the series \((1.7)\) can't be convergent in the sense of \(p \)-adic norm. Let

\[
S_n = \sum_{k=0}^{n-1} \frac{\left(\frac{1}{2}\right)_k}{k!} \cdot \frac{(-4)^k}{m^k}.
\]

Then \((1.5)\) says that for each \(n \geq 1 \), both \(\{S_{np^2}\}_{\alpha \geq 0} \) and \(\{S_{np^{2\alpha-1}}\}_{\alpha \geq 1} \) are rapidly convergent subsequences of \(\{S_m\}_{m \geq 0} \) in the sense of \(p \)-adic norm.

Throughout this paper, we will show several lemmas in Sections 2. Theorem 1.1 will be proved in Sections 3.

2. SOME LEMMAS

Lemma 2.1. For any nonnegative integer \(k, n \) and \(\alpha \), we have

(i) If \(p \mid k \), then

\[
\binom{p^\alpha n}{k} \equiv \binom{p^{\alpha-1} n}{k/p} \pmod{p^{2\alpha}}.
\]

(ii) If \(p \nmid k \), then

\[
\binom{p^\alpha n}{k} \equiv \frac{p^\alpha n}{k} \binom{p^{\alpha-1} n - 1}{\left\lfloor \frac{k-1}{p} \right\rfloor} (-1)^{k-1-\left\lfloor \frac{k-1}{p} \right\rfloor} \pmod{p^{2\alpha}}.
\]

(iii)

\[
\binom{p^\alpha n - 1}{k} \equiv \binom{p^{\alpha-1} n - 1}{\left\lfloor k/p \right\rfloor} (-1)^{k-\left\lfloor k/p \right\rfloor} \pmod{p^\alpha},
\]

here \((2.3)\) is the Lemma2(i) in F. Beukers’ paper\[3\]. The following curious identity is due to Sun and Taurso:

Lemma 2.2 (\[14\] (2.1)). For any nonzero integer \(m \) and positive integer \(n \), we have

\[
m^{n-1} \sum_{k=0}^{n-1} \frac{1}{m^k} \binom{2k}{k} = \sum_{k=0}^{n-1} \binom{2n}{k} u_{n-k}(m-2, 1).
\]

Lemma 2.3. Let \(p > 2 \) be a prime. For any nonnegative integer \(\alpha \), \(s \) with \(\alpha \geq s \), then we have

\[
\frac{(mp^\alpha - p^{\alpha-1} - 1)}{2p^\alpha} \equiv \frac{(m^s - p^{s-1} - 1)}{4p^s} \pmod{p^s}.
\]
Proof.

\[
\frac{(m^{p^s-p^s-1} - 1)}{2p^s} = \sum_{k=1}^{\lfloor \frac{m}{p} \rfloor} \binom{p^s-1}{k} (m^{p^s-p^s-1} - 1)^k = \frac{(m^{p^s-p^s-1} - 1)}{2p^s}
\]

\[
\frac{(m^{p^s-p^s-1} - 1)}{2p^s} \left(\sum_{k=2}^{p^s-1} \binom{p^s-1}{k} (m^{p^s-p^s-1} - 1)^{k-1} + \sum_{k=1}^{p^s-1} \binom{p^s-1}{p^s-k} (m^{p^s-p^s-1} - 1)^{p^s-k-1} \right)
\]

\[
\equiv \frac{(m^{p^s-p^s-1} - 1)}{2p^s} \pmod{p^s}.
\]

\[\square\]

Lemma 2.4. Let \(p > 2 \) be a prime. For any nonnegative integer \(n, l, \alpha, s \) and \(\alpha \geq s \). If \(m = 1, 2, 3 \), then we have

\[
\sum_{|k/p^s| = l} \binom{p^s-1}{k} u_{p^s n-k} (m-2, 1) \equiv \frac{(m(m-4))^{s}(-m^{p^s-p^s-1} + 1)(-1)^l}{2p^s} (u_{p^s n-l} (m-2, 1) + u_{p^s n-l-1} (m-2, 1)) \pmod{p^s},
\]

here \(\sum_{|k/p^s| = l} \) denotes the sum of \(k \) with \(p \nmid k \).

Proof. Let \(m \) be an integer. We first assume that the following congruence is right.

\[
\sum_{k=1}^{p^s-1} \frac{(-1)^k u_{p^s n-k} (m-2, 1)}{k} \equiv \frac{(m(m-4))^{s}(-m^{p^s-p^s-1} + 1)}{2p^s} (u_{p^s n-l} (m-2, 1) + u_{p^s n-l-1} (m-2, 1)) \pmod{p^s}.
\]

Note that \(u_{-k} (m-2, 1) = -u_k (m-2, 1) \), then

\[
\sum_{|k/p^s| = l} \frac{(-1)^k u_{p^s n-k} (m-2, 1)}{k} = \sum_{k=1}^{p^s-1} \frac{(-1)^{p^s l + k} u_{p^s n-p^s l-k} (m-2, 1)}{p^s l + k}
\]

\[
\equiv (-1)^{p^s l} \sum_{k=1}^{p^s-1} \frac{(-1)^k u_{p^s n-k-p^s l} (m-2, 1)}{k} \pmod{p^s}
\]

\[
= (-1)^{p^s l+1} \sum_{k=1}^{p^s-1} \frac{(-1)^k u_{p^s (l+1-p^s n)-k} (m-2, 1)}{k}.
\]
Here we take \(s, (l + 1 - p^s - n) \) instead of \(\alpha, n \) in (2.5), then (2.4) is done.

\[
\sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) = \sum_{k=0}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) - \sum_{l=0}^{p^s-1} \binom{p^s}{pl} u_{p^s-1(n-l)}(m-2,1),
\]

(2.6)

Next we will prove (2.5). On the one hand, we split the sum into a sum with \(p \nmid k \) and one with \(k = lp \),

\[
\sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) = \sum_{k=0}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) - \sum_{l=0}^{p^s-1} \binom{p^s}{pl} u_{p^s-1(n-l)}(m-2,1),
\]

with the help of Lemma 2.1(i) and \(u_{pl}(m-2,1) = \left(\frac{m(m-4)}{p}\right) u_{l}(m-2,1) \), then

\[
\sum_{l=0}^{p^s-1} \binom{p^s}{pl} u_{p^s-1(n-l)}(m-2,1) \equiv \left(\frac{m(m-4)}{p}\right) \sum_{k=0}^{p^s-1} \binom{p^s-1}{k} u_{p^s-1(n-k)}(m-2,1) \pmod{p^{2s}}.
\]

(2.7)

On the other hand, with the help of Lemma 2.1(iii), then we get

\[
\sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) \equiv \sum_{k=1}^{p^s-1} \binom{p^s}{k} \left(\frac{p^s-1}{k} \right) u_{p^s(n-k)}(m-2,1)(-1)^{k-1-\left\lfloor \frac{m-4}{p} \right\rfloor}
\]

\[
= p^s \sum_{t=0}^{p^s-1} \binom{p^s-1}{t} (-1)^t \sum_{\left\lfloor \frac{m-4}{p} \right\rfloor = t} \frac{(-1)^{k-1}}{k} u_{p^s(n-k)}(m-2,1) \pmod{p^{2s}},
\]

(2.8)

we may assume \(s \geq 1 \) in Lemma 2.4. Clearly, we proceed by induction, that for \(s = 1, 2, \ldots, r-1 \), (2.4) is right.

\[
\frac{1}{p^s} \sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{p^s(n-k)}(m-2,1) \equiv \sum_{t=0}^{p^s-1} \binom{p^s-1}{t} (-1)^t \left(\sum_{\left\lfloor \frac{k}{p} \right\rfloor = t} \frac{(-1)^{k-1}}{k} u_{p^s(n-k)}(m-2,1)
\]

\[- \left(\frac{m(m-4)}{p}\right) \left(-m^{p^s-p^s-1} + 1\right) \frac{(-1)^t}{2p^s} (u_{p^s-1(n-t)}(m-2,1) + u_{p^s-1(n-t-1)}(m-2,1))
\]

\[+ \left(\frac{m(m-4)}{p}\right) \left(-m^{p^s-p^s-1} + 1\right) p^{s-1} \sum_{k=0}^{p^s-1} \binom{p^s-1}{k} u_{p^s-1(n-k)}(m-2,1) \pmod{p^s}.
\]

(2.9)
We apply Lemma 2.1 with \(s - 1, 1 \) instead of \(\alpha, n, \) then

\[
\frac{1}{p^s} \sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{\rho^n, k}(m - 2, 1) \equiv \sum_{n_1=0}^{p^s-2} \binom{p^s-2}{n_1} (-1)^{n_1} \left(\sum_{[k/p^s]=n_1} (-1)^{k-1} \frac{k}{p^s} u_{\rho^n, k} \right)
\]

\[
(2.9)
\]

\[
- \sum_{t=0}^{p-1} \left(\frac{m(m-4)}{p} \right) \frac{(-m^{p^s-p^s-1}+1)(-1)^m_{1+t}}{2p^s} (u_{\rho^n, 1-p, t}(m - 2, 1) + u_{\rho^n, 1-p, t-1}(m - 2, 1))
\]

\[
+ \left(\frac{m(m-4)}{p} \right) \frac{(-m^{p^s-p^s-1}+1)}{2p^s} \sum_{k=0}^{p^s-1} \frac{1}{k} f_{p^s-1-k}(m - 2, 1) \mod p^s,
\]

here

\[
\sum_{t=0}^{p-1} (-1)^{m_{1+t}} (u_{\rho^n, 1-p, t}(m - 2, 1) + u_{\rho^n, 1-p, t-1}(m - 2, 1))
\]

\[
= (-1)^{n_1} (u_{\rho^n, 1-p, 1}(m - 2, 1) + u_{\rho^n, 1-p, 1-1}(m - 2, 1))
\]

\[
= (-1)^{n_1} \left(\frac{m(m-4)}{p} \right) (u_{\rho^n, 1-p, 1}(m - 2, 1) + u_{\rho^n, 1-p, 1-1}(m - 2, 1)),
\]

Repeat this process \(s - 1 \) times as (2.9), then

\[
\frac{1}{p^s} \sum_{k=1}^{p^s-1} \binom{p^s}{k} u_{\rho^n, k}(m - 2, 1)
\]

\[
\equiv \ldots \equiv \sum_{n_1=0}^{p-1} \frac{(p-1)}{n_1} (-1)^{n_1} \left(\sum_{[k/p^s]=n_1} (-1)^{k-1} \frac{k}{p^s} u_{\rho^n, k}(m - 2, 1) \right)
\]

\[
- \left(\frac{m(m-4)}{p} \right)^{s-1} \frac{(-m^{p^s-p^s-1}+1)(-1)^{m_1}}{2p^s} (u_{\rho^n, s+1-n, 1}(m - 2, 1) + u_{\rho^n, s+1-n, 1-1}(m - 2, 1))
\]

\[
+ \left(\frac{m(m-4)}{p} \right) \frac{(-m^{p^s-p^s-1}+1)}{2p^s} \sum_{k=0}^{p^s-1} \frac{1}{k} u_{\rho^n, s-n}(m - 2, 1)
\]

\[
\equiv \sum_{k=1}^{p^s-1} \frac{(-1)^{k-1}}{k} u_{\rho^n, k}(m - 2, 1) - \left(\frac{m(m-4)}{p} \right)^{s} \frac{(-m^{p^s-p^s-1}+1)}{2p^s} (u_{\rho^n, s-n}(m - 2, 1)
\]

\[
+ u_{\rho^n, s-n-1}(m - 2, 1) + \left(\frac{m(m-4)}{p} \right) \frac{(-m^{p^s-p^s-1}+1)}{2p^s} \sum_{k=0}^{p^s-1} \frac{1}{k} u_{\rho^n, s-n}(m - 2, 1) \mod p^s,
\]

\[
(2.10)
\]
from (2.6), (2.7) and (2.10), then we only need to prove that

\[
\frac{1}{p^s} \sum_{k=0}^{p^s} \binom{p^s}{k} u_{p^s n-k} \equiv \frac{1}{p^s} \left(\frac{m(m-4)}{p} \right) \sum_{k=0}^{p^s-1} \binom{p^s-1}{k} u_{p^s n-k} \quad (\text{mod } p^s).
\]

Substitute \(m = 1 \) in (2.11). Then

\[
\sum_{k=0}^{p^s-1} \binom{p^s-1}{k} u_{p^s n-k}(-1, 1) = (1 + i)^{p^s} \nu_{p^s-1}(-1, 1) - (1 - i)^{p^s} \nu_{p^s-1}(-1, 1) = 0,
\]

we are done. Because

\[
\sum_{k=0}^{p^s-1} \binom{p^s-1}{k} u_{k-p^s n}(0, 1) = \frac{(1 + i)^{p^s} \nu_{p^s-1} - (1 - i)^{p^s} \nu_{p^s-1}}{2i}.
\]

Next we will take \(m = 2 \) in (2.11). By (2.12), then it suffices to show that

\[
\frac{2p^s - p^s - 1}{2p^s - 1} \equiv \left(\left(\frac{-1}{p} \right)^{2p^s - 1} \right) \times \left(\frac{u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) + (\frac{1}{p})^{s-1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1)}{u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) + (\frac{1}{p})^{s-1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1)} - 1 \right).
\]

Here

\[
(\frac{-1}{p})^{2p^s - 1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) = u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) = (\frac{-1}{p})^{2p^s - 1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1)
\]

and

\[
(\frac{-1}{p})^{2p^s - 1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) = u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1) = (\frac{-1}{p})^{2p^s - 1} u_{p^s - (\frac{1}{2} p)^{s-1}}(0, 1).
\]
At last, with the help of Lemma 2.3 and the following congruence

\[\frac{2^{p^s-p^s-1}}{2p^s} = 1 \frac{2^{p^s-p^s-1}}{2p^s} \left(-1 \frac{p^s}{4} - 1 \right)^2 + 2 \left(-1 \frac{p^s}{4} - 1 \right) \]

\[\equiv 1 \frac{2^{p^s-p^s-1}}{2p^s} \left(-1 \frac{p^s}{4} - 1 \right) \pmod{p^s}, \] \hspace{1cm} (2.14)

Lemma 2.4 with \(m = 2 \) is concluded because

\[2^{p^s-p^s-1} \equiv \left(\frac{2}{p} \right) = (-1)^{2^{s-1}} = (-1) \frac{p^s-1}{4} \pmod{p^s}. \]

When \(m = 3 \), (2.11) can be proved similarly, with the help of Lemma 2.3, then we have

\[\left(-3 \right) \frac{3^{p^s-p^s-1}}{2p^s} = \left(\frac{3}{p} \right) - 1 \frac{3^{p^s-p^s-1}}{2p^s} \equiv 1 \pmod{p^s}, \] \hspace{1cm} (2.15)

where

\[\frac{\left(\frac{1+\sqrt{3}}{2} p^s - 1 \right)}{2} \left(\frac{1-\sqrt{3}}{2} p^s - 1 \right) \equiv 1 \pmod{p^s}. \]

(2.15) is proved when \(m = 3 \).

Lemma 2.5. Let \(a_k \in \mathbb{Z}_p (k = 0, 1, \ldots) \) be such that

\[\sum_{|k/p^s|=l} a_k \equiv 0 \pmod{p^s}, \]

for any nonnegative integer \(m, n, \alpha \) and \(s \). Then

\[\sum_{|k/p^s|=l} a_k \binom{mp^s n - 1}{k} (-1)^k \equiv 0 \pmod{p^\alpha}. \] \hspace{1cm} (2.16)
Proof. We prove it by induction on α. The above congruence is trivial when $\alpha = 0, 1$. Suppose that we have show it for $0, 1, \ldots, \alpha - 1$.

\[
\sum_{[k/p^\alpha] = l} a_k \binom{mp^\alpha n - 1}{k} (-1)^k \equiv \sum_{[k/p^\alpha] = l} a_k \binom{mp^{\alpha - 1}n - 1}{[k/p]} (-1)^{[k/p]} \quad (2.17)
\]

we now apply the induction hypothesis for $\alpha - 1$ with the new coefficients

\[
p\hat{a}_t = \sum_{[k/p] = t} a_k \equiv 0 \pmod{p},
\]

and

\[
\sum_{[t/p^{\alpha - 1}] = l} \hat{a}_t = \frac{1}{p} \sum_{[k/p^\alpha] = l} a_k \equiv 0 \pmod{p^{\alpha - 1}}.
\]

So we obtain

\[
\sum_{[k/p^\alpha] = l} a_k \binom{mp^\alpha n - 1}{k} (-1)^k \equiv p \sum_{[t/p^{\alpha - 1}] = l} a_t \binom{mp^{\alpha - 1}n - 1}{t} (-1)^t \equiv 0 \pmod{p^\alpha}.
\]

3. Proofs of Theorem 1.1

Proof. According to Lemma 2.1(i) and 2.2 so (1.5) can be rewritten as

\[
n \sum_{k=1}^{p^{\alpha - 1} - 1} \binom{2p^\alpha n - 1}{k - 1} u_{p^\alpha n - k} \binom{m - 2, 1}{k} \equiv \binom{m(m - 4)}{p} \binom{m(p^\alpha - p^{\alpha - 1})n - 1}{2p^\alpha} \sum_{k=0}^{p^{\alpha - 1} - 1} \binom{2p^{\alpha - 1}n}{k} u_{p^{\alpha - 1}n - k} \binom{m - 2, 1}{k} \pmod{p^\alpha}.
\]

(3.1)

(i) When $m = 1$, we need only to prove

\[
\sum_{k=1}^{p^{\alpha - 1} - 1} \binom{2p^\alpha n - 1}{k - 1} u_{p^\alpha n - k} \binom{-1, 1}{k} \equiv 0 \pmod{p^\alpha}.
\]

(3.2)

However

\[
\sum_{k=1}^{p^{\alpha - 1} - 1} \binom{2p^\alpha n - 1}{k - 1} u_{p^\alpha n - k} \binom{-1, 1}{k} \equiv \sum_{k=1}^{p^{\alpha - 1} - 1} \binom{2p^\alpha n - 1}{k} (-1)^k \binom{-1}{k} u_{p^\alpha n - k} \binom{-1, 1}{k} \pmod{p^\alpha}.
\]

We set $m = 2$ and $a_k = \binom{-1}{k} u_{p^\alpha n - k} \binom{-1, 1}{k}$ if $p \nmid k$, $a_k = 0$ otherwise in Lemma 2.5

Thus (1.5) with $m = 1$ immediately follows from Lemma 2.4.
(ii) Next we will prove it when $m = 2, 3$. It suffices to prove that

\[
\sum_{k=0}^{p^{\alpha-1}n-1} \left(\binom{p^{\alpha-1}n-1}{k} + \binom{2p^{\alpha-1}n-1}{k} \right) u_{p^{\alpha-1}n-k}(m-2,1) \equiv n \left(\frac{m(m-4)}{p} \right) \mod p^{\alpha},
\]

where

\[
\frac{m(p^{\alpha-p^{\alpha-1}}-1)}{2p^{\alpha}} = \frac{1}{2p^{\alpha}} \sum_{k=1}^{n} \left(\binom{n}{k} (m^{p^{\alpha}-p^{\alpha-1}}-1)^k \right) \equiv n \left(\frac{m^{p^{\alpha}-p^{\alpha-1}}-1}{2p^{\alpha}} \right) \mod p^{\alpha}.
\]

By Lemma 2.1, then

\[
\sum_{n_1=0}^{p^{\alpha-2}n-1} \left(\binom{2p^{\alpha-2}n-1}{n_1} \right) (-1)^{n_1} \left(\sum_{[k/p] = n_1}^{1} \binom{-1}{k} u_{k-p^{\alpha}n}(m-2,1) \right) \equiv 0 \mod p^{\alpha}.
\]

With the help of Lemma 2.4 with $s = 1$, we have

\[
\sum_{n_1=0}^{p^{\alpha-2}n-1} \left(\binom{2p^{\alpha-2}n-1}{n_1} \right) (-1)^{n_1} \left(\sum_{[k/p^2] = n_1}^{1} \binom{-1}{k} u_{k-p^{\alpha}n}(m-2,1) \right) \equiv 0 \mod p^{\alpha},
\]

then

\[
\sum_{n_1=0}^{p^{\alpha-2}n-1} \left(\binom{2p^{\alpha-2}n-1}{n_1} \right) (-1)^{n_1} \left(\sum_{[k/p^2] = n_1}^{1} \binom{-1}{k} u_{k-p^{\alpha}n}(m-2,1) \right) \equiv 0 \mod p^{\alpha},
\]
repeat this process α times, then we obtain
\[
\sum_{t=0}^{n-1} \binom{2n-1}{t} (-1)^t \left(\sum_{\lfloor k/p^\alpha \rfloor = 0}^{m-1} \frac{(-1)^{t+k} u_{k-p^\alpha} (m-1)}{k} - \left(\frac{m(m-4)}{p} \right)^{\alpha-1} \right) \equiv 0 \pmod{p^\alpha},
\]
where the last step we used Lemma 2.4 with $l = 0$.

\[\square\]

Acknowledgment. We are grateful to Professor Zhi-Wei Sun for his helpful discussions on this paper.

References

[1] M. Apagodu and D. Zeilberger, Using the Freshman’s Dream to prove combinatorial congruences, arXiv:1606.03351v2.

[2] A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc., Providence, R.I., (1971), 125.

[3] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory 25(1985), 14155.

[4] M. J. Coster and L. Van Hamme, Supercongruences of Atkin and Swinnerton-Dyer type for Legendre polynomials, J. Number Theory 38 (1991), 265-286.

[5] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory, 21(1985), 141-155.

[6] W.-C. Li and L. Long, Atkin and Swinnerton-Dyer congruences and noncongruence modular forms, Algebraic number theory and related topics 2012, 269-299, RIMS Kôkyûroku Bessatsu, B51, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014.

[7] J.-C. Liu, Congruences for truncated hypergeometric series $2F_1$, Bulletin of the Australian Mathematical Society, 96(2017), 1423.

[8] R. Osburn, B. Sahu and A. Straub, Supercongruences for sporadic sequences, Proc. Edinb. Math. Soc., 59(2016), 503-518.

[9] A. J. Scholl, Modular forms and de Rham cohomology: Atkin-Swinnerton-Dyer congruences, Invent. Math., 79(1985), 4977.

[10] A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, 8(2014), 1985-2007.

[11] Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math., 53(2010), 24732488.

[12] Z. W. Sun, p-adic valuations of some sums of multinomial coefficients, Acta Arith., 148(2011), 63-76.

[13] Z. W. Sun, Supercongruences involving Lucas sequences, preprint, 2016, arXiv:1610.03384.

[14] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math., 45(2010), 125-148.
E-mail address: yongzhang1982@163.com

Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China

E-mail address: haopan79@zoho.com

School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, People’s Republic of China