Gaussian Polynomials and
Restricted Partition Functions with Constraints

Leonid G. Fel
Department of Civil Engineering, Technion – Israel Institute of Technology,
Haifa 32000, Israel
lfel@technion.ac.il

Abstract
We derive an explicit formula for a restricted partition function \(P_{mn}(s) \) with constraints making use of known expression for a restricted partition function \(W_m(s) \) without constraints.

Keywords: restricted partition function, triangular Toeplitz matrix
2010 Mathematics Subject Classification: 05A17, 11P82.

Consider the linear Diophantine equation with constraints
\[
a) \sum_{r=1}^{n} r x_r = s, \quad b) \sum_{r=1}^{n} x_r \leq m.
\] (1)

Denote by \(P_{mn}(s) \) a number of the non-negative integer solutions \(X = \{x_r\} \) of the linear system (1a,b).

The following theorem dates back to Sylvester [7] and Schur [5],

Theorem 1. Let \(P_{n}(s) \) be generated by the Gaussian polynomial \(G(n, m; t) \) of the finite order \(mn \)
\[
G(n, m; t) = \frac{\prod_{i=1}^{n+m}(1 - t^i) \cdot \prod_{u=1}^{n}(1 - t^u) \cdot \prod_{v=1}^{m}(1 - t^v)}{\prod_{s=1}^{mn} t^s} = \sum_{s \geq 0} P_{n}(s) \cdot t^s.
\] (2)

Then the partition function \(P_{mn}(s) \) has the following properties:
\[
P_{n}(s) = 0 \quad \text{if} \quad s > nm, \quad P_{n}(0) = P_{n}(nm) = 1,
P_{n}(s) = P_{n}(m) = P_{n}(nm - s), \quad P_{n} \left(\frac{mn}{2} - s \right) = P_{n} \left(\frac{mn}{2} + s \right), \quad P_{n}(s) - P_{n}(s - 1) \geq 0 \quad \text{for} \quad 0 < s \leq \frac{mn}{2}.
\] (3)

A most comprehensive introduction to the Gaussian polynomials \(G(n, m; t) \) and partition function \(P_{n}(s) \) with constraints (1b) is given in [1]. But nowhere an explicit expression for \(P_{mn}(s) \) was derived.

A situation is similar to the study of restricted partition function \(W_m(s) \) without constraints (see its definition in (4) and following paragraphs) up to the last decade, when its explicit expression was finally found [4].
In this paper we derive such formula for $P_n^m(s)$ making use of strong relationship of the Gaussian polynomials with the Molien generating function for restricted partition function $W_m(s)$ without constraints (1b).

Following [2, 4], recall the basic facts from the partition theory and consider the linear Diophantine equation $\sum_{r=1}^n d_r x_r = s$ without constraints (1b). Then the Molien function $M(d^m; t)$ reads,

$$M(d^m; t) = \prod_{i=1}^m \frac{1}{1 - t^{d_i}} = \sum_{s=0}^\infty W(s, d^m) t^s, \quad d^m = \{d_1, \ldots, d_m\}. \quad (4)$$

It generates a restricted partition function $W(s, d^m)$ which gives a number of partitions of $s \geq 0$ into positive integers $\{d_1, \ldots, d_m\}$, each not exceeding s, and vanishes, if such partition does not exist. According to Proposition 4.4.1, [6] and Schur’s theorem (see [8], Theorem 3.15.2), the function $W(s, d^m)$ is a quasi-polynomial of degree $m - 1$,

$$W(s, d^m) = \sum_{r=0}^{m-1} K_r(s, d^m) s^r, \quad K_{m-1}(s, d^m) = \frac{1}{(m - 1)! \pi_m}, \quad \pi_m = \prod_{i=1}^m d_i, \quad (5)$$

where coefficients $K_r(s, d^m)$ are periodic functions with periods dividing lcm(d_1, \ldots, d_m). The explicit expressions for $W(s, d^m)$ were derived in [4] in a form of a finite sum over Bernoulli and Euler polynomials of higher order with periodic coefficients. Note that $W(0, d^m) = 1$.

In a special case, when d^m is a tuple of consecutive natural numbers $\{1, \ldots, m\}$, the expression for such partition function looks much more simple (see [4], formula (46)), and its straightforward calculations for $m = 1, \ldots, 12$ were presented in [2], section 6.1. For short, we denote it by $W_m(s)$. In particular, if m is arbitrary large, we arrive at unrestricted partition function $W_\infty(s)$ known due to the Hardy-Ramanujan asymptotic formula and Rademacher explicit expression [1]. By definition of a restricted partition function the following equality holds,

$$W_m(s) = W_\infty(s), \quad \text{if} \quad s \leq m. \quad (6)$$

By comparison of two generating function in (2) and (4) we obtain,

$$G(n, m; t)M(m + n; t) = M(m; t)M(n; t), \quad M(m; t) = \prod_{i=1}^m \frac{1}{1 - t^{d_i}} = \sum_{s=0}^\infty W_m(s) t^s. \quad (7)$$

Substituting into (7) the polynomial representations (2) and (4) we arrive at

$$\sum_{s_1, s_2=0}^\infty P_n^m(s_1)W_{m+n}(s_2) t^{s_1+s_2} = \sum_{s_1, s_2=0}^\infty W_n(s_1)W_m(s_2) t^{s_1+s_2}. \quad (8)$$

Equating in (8) the terms with different $s_1 + s_2 = g$ we obtain for every g a linear equation in $P_n^m(s)$,

$$\Delta = \sum_{s=0}^g [P_n^m(s)W_{m+n}(g - s) - W_n(s)W_m(g - s)] = 0. \quad (9)$$

For small s equation (9) may be resolved easily.
Theorem 2. Let $P_n^m(g)$ be generated by the Gaussian polynomial $G(n, m; t)$, $n \leq m$, then

$$P_n^m(g) = W_\infty(g), \quad 0 \leq g \leq n,$$ \hspace{1cm} (10)

$$P_n^m(g) = W_n(g), \quad n \leq g \leq m,$$ \hspace{1cm} (11)

$$P_n^m(g) = W_n(g) + W_m(g) - W_\infty(g), \quad m \leq g \leq m + n.$$ \hspace{1cm} (12)

Proof. If $0 \leq s \leq g \leq n$, then due to (6) we have $W_n(s) = W_\infty(s)$ and $W_m(g - s) = W_{m+n}(g - s) = W_\infty(g - s)$ since $0 \leq g - s \leq n$. Substitute the above equalities into (9) and obtain (10).

If $n \leq g \leq m$, then due to (6) we have $W_m(s) = W_{m+n}(s) = W_\infty(s)$ for all $0 \leq s \leq g$. Substitute the last equalities into (9) and obtain (13).

If $m \leq g \leq m + n$ and $g = m + r$, $1 \leq r \leq n$, let us represent the l.h.s. of (9) as follows, $\Delta = \Delta_1 + \Delta_2$.

$$\Delta_1 = \left(\sum_{r=0}^{r} + \sum_{s=m}^{m+r} \right) [P_n^m(s)W_{m+n}(m + r - s) - W_n(s)W_m(m + r - s)] = \sum_{s=0}^{r} F_1(s),$$

$$F_1(s) = P_n^m(s)W_{m+n}(m + r - s) - W_n(s)W_m(m + r - s) + P_n^m(m + r - s)W_{m+n}(s) - W_n(m + r - s)W_m(s),$$

$$\Delta_2 = \sum_{s=r+1}^{m-1} [P_n^m(s)W_{m+n}(m + r - s) - W_n(s)W_m(m + r - s)], \quad \text{i.e.,}$$

$$\Delta_2 = \sum_{s=r+1}^{k} F_1(s), \quad \text{if} \quad g = 2k + 1; \quad \Delta_2 = \sum_{s=r+1}^{k-1} F_1(s) + F_2(k), \quad \text{if} \quad g = 2k,$$ \hspace{1cm} (14)

$$F_2(s) = P_n^m(s)W_{m+n}(s) - W_n(s)W_m(s).$$ \hspace{1cm} (15)

Prove that the term Δ_2 vanishes and start with $F_2(k)$. Since $n \leq m$ then $(m + 1)/2 \leq k \leq m$, that implies two equalities: first, by (6) $W_{m+n}(k) = W_m(k) = W_\infty(k)$ and next, by (13) $P_n^m(k) = W_n(k)$ either $k \leq n$ or $n \leq k \leq m$. Substitute these equalities into (15) and obtain $F_2(k) = 0$.

Consider the term Δ_2 with $g = 2k$ in (14), where $1 \leq r < s < k \leq m$ and $n \leq m + r - s \leq m$, and write four equalities:

$$W_{m+n}(m + r - s) = W_m(m + r - s), \quad W_{m+n}(s) = W_m(s),$$

$$P_n^m(m + r - s) = W_n(m + r - s), \quad P_n^m(s) = W_n(s).$$ \hspace{1cm} (16)

which implies $\Delta_2 = 0$. The term Δ_2 with $g = 2k + 1$ in (14) vanishes also by the same reasons (16).

Thus, instead of (9), we arrive at equation $\sum_{s=0}^{r} F_1(s) = 0$ where $0 \leq s \leq r \leq n$. However, according to (10) we have $W_{m+n}(s) = W_m(s) = W_n(s) = W_\infty(s)$, so we obtain

$$\sum_{s=0}^{r} W_\infty(s) [W_{m+n}(m + r - s) - W_m(m + r - s) + P_n^m(m + r - s) - W_n(m + r - s)] = 0,$$

where $m < m + r - s \leq m + n$. Denote $g = m + r - s$ and arrive at (14) that proves Theorem. \qed
Corollary 1.
\[\lim_{m \to \infty} P^m_n(s) = W_n(s), \quad \lim_{n \to \infty} P^m_n(s) = W_m(s). \]

Further extension of Theorem 2 on higher \(s \geq m + n \) loses its generality, that indicates a necessity to develop another approach. Equations (9) with different \(g \) represent the linear convolution equations with a triangular Toeplitz matrix. They can be solved using the inversion of the Toeplitz matrix (see [3], Chapt. 3). We will give another representation of a general solution of (9) which can be found due to triangularity of the Toeplitz matrix.

Theorem 3. Let \(P^m_n(s) \) be generated by the Gaussian polynomial \(G(n, m; t) \), then
\[P^m_n(g) = \sum_{r=0}^{g-1} \left(\sum_{s=0}^{g-r} W_n(s) W_m(g - r - s) - W_{m+n}(g - r) \right) \Phi_r(m + n), \quad (17) \]
where coefficients \(\Phi_r(m + n) \) are related to \(W_{m+n}(s) \) and defined as follows,
\[\Phi_r(m + n) = \sum_{q_1=1}^{r} \sum_{q_r=1}^{q_1} \frac{q!}{q_1! \cdots q_r!} \prod_{k=1}^{r} (-1)^{q_k} W_{m+n}(k), \quad \sum_{k=1}^{r} kq_k = r, \quad \sum_{k=1}^{r} q_k = q. \quad (18) \]

Proof. Consider linear convolution equations with a triangular Toeplitz matrix
\[P(g) = T(g) + \sum_{s=0}^{g-1} P(s) U(g - s), \quad P(0) = T(0) = 1, \quad (19) \]
where two known functions \(T(g), \ U(g) \) and unknown function \(P(g) \) are considered only on the non-negative integers. The successive recursion of (19) gives
\[P(g) = T(g) + T(g - 1) U(1) + \sum_{s=0}^{g-2} P(s) \cdot \left[U(g - s) + U(1) U(g - 1 - s) \right] \]
\[= T(g) + T(g - 1) U(1) + T(g - 2) \left[U(2) + U^2(1) \right] + \]
\[\sum_{s=0}^{g-3} P(s) \left[U(g - s) + U(1) U(g - 1 - s) + \left[U(2) + U^2(1) \right] U(g - 2 - s) \right]. \]

By induction we can arrive at
\[P(g) = \sum_{r=0}^{k-1} T(g - r) \Phi_r(U) + \sum_{s=0}^{g-k} P(s) \sum_{r=0}^{k-1} U(g - r - s) \Phi_r(U), \quad 1 \leq k \leq g, \quad (20) \]
where polynomials \(\Phi_r(U) \) are related to the restricted partition number \(W_g(r) \) of positive integer \(r \) into non-negative parts, none of which exceeds \(g, \)
\[\Phi_r(U) = \sum_{q_1=1}^{r} \sum_{q_r=1}^{q_1} \frac{q!}{q_1! \cdots q_r!} \prod_{k=1}^{r} U^{q_k}(k), \quad \sum_{k=1}^{r} kq_k = r, \quad \sum_{k=1}^{r} q_k = q. \quad (21) \]
A sum \(\sum_{q_1, \ldots, q_r} \) in (21) is taken over all distinct solutions \(\{q_1, \ldots, q_r\} \) of the two Diophantine equations (21) with fixed \(q \). Below we present expressions for the four first polynomials \(\Phi_r(U) \),

\[
\begin{align*}
\Phi_0(U) &= 1, \\
\Phi_1(U) &= U(1), \\
\Phi_2(U) &= U(2) + U^2(1), \\
\Phi_3(U) &= U(3) + 2U(2)U(1) + U^3(1),
\end{align*}
\]

and in (27) for the other two. The total number of algebraically independent terms, contributing to the polynomial \(\Phi_r(U) \), is equal \(W_r(r) \), while the sum of coefficients at these terms is equal \(2^{r-1} \), e.g.,\(W_3(3) = 3, 1 + 2 + 1 = 2^2 \). The terms comprising \(\Phi_r(U) \) may be calculated with Mathematica Software using \textit{IntegerPartitions}[r].

Put \(k = g \) into (20) and obtain finally,

\[
P(g) = \sum_{r=0}^{g-1} [T(g - r) + U(g - r)] \cdot \Phi_r(U).
\]

Comparing (19) and (8) we conclude,

\[
T(g) = \sum_{s=0}^{g} W_n(s) W_m(g - s), \quad U(s) = -W_{m+n}(s).
\]

Substituting (24) into (23) we immediately arrive at (13, 14).

Illustrate the usage of formulas (17,18) and apply them to calculate the partition function \(P_{m,n}(s) \) with small \(m, n \), e.g., \(m = 2, n = 3 \).

\[
P_3^2(g) = \sum_{r=0}^{g-1} \sum_{s=0}^{g-r} [W_3(s)W_2(g - r - s) - W_5(g - r)] \Phi_r(5).
\]

For this aim we need expressions for \(W_2(s), W_3(s) \) and \(W_5(s) \), found in [2], section 6.1,

\[
\begin{align*}
W_2(s) &= \frac{s}{2} + \frac{3}{4} + \frac{1}{4} \cos \pi s, \\
W_3(s) &= \frac{s^2}{12} + \frac{s}{2} + \frac{47}{72} + \frac{2}{9} \cos \frac{2\pi s}{3} + \frac{1}{8} \cos \pi s, \\
W_5(s) &= \frac{s^4}{2880} + \frac{s^3}{96} + \frac{31s^2}{288} + \frac{85s}{192} + \frac{s}{64} \cos \pi s + \frac{50651}{86400} + \frac{1}{16} \left(\cos \frac{\pi s}{2} + \sin \frac{\pi s}{2} \right) + \\
&\quad \frac{2}{27} \cos \frac{2\pi s}{3} + \frac{2}{25} \cos \frac{4\pi s}{5} + \frac{15}{128} \cos \pi s,
\end{align*}
\]

and polynomials \(\Phi_r(U), 0 \leq r \leq 5 \), presented in (22) and also given below,

\[
\begin{align*}
\Phi_4(U) &= U(4) + 2U(3)U(1) + U^2(2) + 3U(2)U^2(1) + U^4(1), \\
\Phi_5(U) &= U(5) + 2U(4)U(1) + 2U(3)U(2) + 3U(3)U^2(1) + 3U^2(2)U(1) + \\
&\quad 4U(2)U^3(1) + U^5(1).
\end{align*}
\]

Making use of (26), calculate \(W_2(r), W_3(r), W_5(r), 0 \leq r \leq 5 \), and find

\[
\Phi_0(5) = \Phi_5(5) = 1, \quad \Phi_1(5) = \Phi_2(5) = -1, \quad \Phi_3(5) = \Phi_4(5) = 0.
\]
Substitute the values for $W_k(r), k = 2, 3, 5,$ and $\Phi(r), 0 \leq r \leq 5,$ into (25) and obtain

$$
P_3^2(0) = P_3^2(1) = P_3^2(5) = P_3^2(6) = 1, \quad P_3^2(2) = P_3^2(3) = P_3^2(4) = 2,
$$

that satisfies the straightforward calculation of the Gaussian polynomial $G(3, 2; t),$

$$
G(3, 2; t) = 1 + t + 2t^2 + 2t^3 + 2t^4 + t^5 + t^6.
$$

It is easy to verify that the values in (28) satisfy also Theorem 2.

Acknowledgement

The useful discussions with the late Prof. I. Gohberg are highly appreciated. The research was supported by the Kamea Fellowship.

References

[1] G.E. Andrews, *The Theory of Partitions*, Addison-Wesley Publ., Reading, 1976, (Theorem 3.1. (p.33) and theorem 3.10. (p.47)).

[2] L.G. Fel and B.Y. Rubinstein, *Sylvester Waves in the Coxeter Groups*, The Ramanujan J., 6 (2002), 307-329.

[3] I. C. Gohberg and I. A. Feldman, *Convolution Equations and Projection Methods for Their Solution*, American Math. Soc., Providence, RI, 1974

[4] B.Y. Rubinstein and L.G. Fel, *Restricted Partition Functions as Bernoulli and Euler Polynomials of Higher Order*, The Ramanujan J., 11, # 3, 331-347 (2006)

[5] I.J. Schur, *Vorlesungen über Invariantentheorie*, Satzen 2.22 and 2.23, p. 76, *Grundlehren der Mathematischen Wissenschaften*, 143, Springer-Verlag, Berlin, 1968

[6] R.P. Stanley, *Enumerative Combinatorics*, 1, Monterey, Calif.: Wadsworth & Brooks/Cole, 1986.

[7] J.J. Sylvester, *Amer. Jour. Math.*, 5, (1882), 251–330; 6, (1883), 334–336 (or pp. 1–83 of the Coll. Math. Papers of J.J. Sylvester, 4, Cambridge Univ. Press, London and New York, 1912; reprinted by Chelsea, New York, 1974).

[8] H. Wilf, *Generatingfunctionology*, Wellesley, Mass.: A.K. Peters, 2006.