Highly translucent nonlinear single crystals of L-Threoninum Sodium Bromide (LTSB) has been grown because of their rising need for everyday life and the XRD studies (PXRD and SXRD) solemnly affirmed the crystallinity and non-centrosymmetric space group of LTSB materials. The bonding nature and diverse functional groups in LTSB were demonstrated by FTIR analysis when they absorb infrared radiation. The optical behavior of LTSB crystals was explored through UV–Vis spectroscopy, which shows optical parameters depend on photon energy with band gap $E_g = 5.7$ eV which was suitable for optoelectronic devices. The electrical properties of LTSB crystals were measured by using dielectric measurement. The solid state parameters of LTSB crystal were calculated. An antibacterial activity developed by LTSB crystals against different pathogenic bacteria were examined using the Agar disk diffusion process. The antibacterial inhibitory activity of LTSB crystal revealed that it can be used to treat a variety of bacterial infections.

1. Introduction

Currently, NLO crystals play a key role in view of the growing demand for their potential application in everyday life such as laser and light diversification, interactions with materials, information technology, and so on (Uma and Rajendran, 2016). Materials used for the above application must be of high transparency, low dielectric loss, and high efficiency of SHG (Martin Britto Dhas and Natarajan, 2007). At presents amino acid-based materials are given preeminence in several NLO optical applications, for the reason that it comprises profusions of optically active atoms that show highly frequency doubling efficiency and are effective for NLO applications (Kanika Thukral et al., 2019). Amino acid possesses both acidic (–COOH) and basic (–NH$_2$) groups in the same molecule. These groups interact with each other and therefore amino acids possess double charge. This state is known as zwitterion or dipolar ion (Suresh and Sagadevan, 2014). In contrast to other amino acids, L threonine is an essential amino acid to treat various nervous system disorders. It is used as an additive in manufacturing or as a substrate for the biosynthesis of other chemicals (Xunyan Dong et al., 2012). Thus L-threonine (C$_4$H$_9$NO$_3$) deserves higher optical properties and any applications than that of other amino acids (Rodriguesjr et al., 2003; Ramasamy and Meenakshisundaram, 2014). Sodium bromide is the most useful inorganic bromide in industry also it is used in medicine, preparation of other bromine compounds, disinfectant, and petroleum industry (Ward et al., 1978).

In this present manuscript LTSB crystal synthesized by a familiar slow evaporation technique and described their physicochemical properties. The novelty of this article is that an antibacterial activity developed from LTSB crystal against various pathogenic...
bacteria has been studied using the Agar disk diffusion process. The zones for growth inhibition were measured in diameter (mm).

2. Synthesis, characterization and biological application

2.1. Material synthesis

Nonlinear single crystal of L-Threonine Sodium Bromide (LTSB) has been grown from the following highly purified chemicals given in the equation were purchased from Sigma-Aldrich and the solution was well stirred at 40 °C for nearly 3 h to obtain a saturated aqueous solution.

\[
\text{C}_4\text{H}_9\text{NO}_3 + \text{NaBr} \rightarrow [\text{C}_4\text{H}_9\text{NO}_3\text{Na}^+] \text{ Br}^-
\]

The prepared solution was filtered for extraction of impurities. The solution thus prepared was covered by porous perforated foil and kept undisturbed condition for evaporation. Extremely transparent nonlinear single LTSB crystal was harvested after 25–30 days as depicted in Fig. 1.

2.2. Characterization techniques

The unit cell parameters of the titular crystals were carried out using Bruker Kappa APEXII X-ray diffractometer. The crystallinity of LTSB crystal was checked by taking the Powder X-Ray diffraction using an XPERT-PRO diffractometer with Cu k\(_\alpha\) radiation (\(\lambda = 1.5406 \text{ Å}\)). The LTSB crystal’s FT-IR spectrum was taped by Thermo Nicolet Avatar 370 spectrometer in the frequency region 400–4000 cm\(^{-1}\). The UV–Vis spectrum of LTSB crystal was measured in the range of 200–800 nm by UV-1700 Series Spectrophotometer. The dielectric behavior is studied by using the Tonghui TH2826 Precision LCR Meter. The Agar disk diffusion method was employed to determine the antibacterial activities of grown LTSB crystal.

2.3. Biological application

An antibiotic resistance developed from LTSB crystal against 3 different pathogenic bacteria has been studied using the Agar disk diffusion process. The inhibitory activity produced by LTSB crystals were measured in diameter (mm).

3. Results and discussion

3.1. Single crystal X-ray diffraction analysis (SXRD)

To determine unit cell parameters, crystal system, and space group of the grown LTSB crystals were collected by using SXRD analysis with MoK\(_\alpha\) radiation of wavelength \(\lambda = 0.71073 \text{ Å}\). The space group which is required for SHG application is non-centrosymmetric space group P2\(_1\)2\(_1\)2\(_1\). This space group of LTSB crystal was confirmed by SXRD analysis. From the collected data LTSB single crystal having three unequal cell parameters \(a = 5.15 \text{ Å}, b = 7.74 \text{ Å}, c = 13.61 \text{ Å}\), holding angles of 90° between them and cell volume 543 Å\(^3\) confirms the LTSB crystal unambiguously the orthorhombic system, which shows a suitable concord with the reported literature (Allen Moses et al., 2019a, 2019b).

3.2. Powder X-ray diffraction analysis (PXRD)

PXRD analyses of LTSB crystal were carried out by crushing the defect free LTSB crystal into a fine powder. The LTSB samples were scanned for 2\(\theta\) values from 10-80° is shown in Fig. 2. The crystalline characters with phase purity of the grown LTSB crystal were confirmed by most intense Bragg's reflection peaks appear at specific 2\(\theta\) angles. The measured cell parameters from PXRD well agreed with single SXRD.

3.3. FTIR analysis

Vibrational spectroscopy employed to analyze the bonding structure and the diverse functional groups present in the unknown compound, reason that it is a nimble process without monotonous assessment methods. Moreover, the FTIR technique is beneficial in the identification of chemicals that are either organic or inorganic. Here FT-IR spectrum of LTSB sample in the 400–4000 cm\(^{-1}\) frequency region is shown in Fig. 3. To examine the received FTIR spectrum of LTSB crystal some amine and carboxylate groups are present, which confirms the zwitterionic nature of the LTSB crystal and it is a sinewy material for diverse applications. The wavenumbers observed and the proposed assignments of the LTSB crystal FTIR spectrum band are given in Table 1. FTIR assignment of LTSB crystal well agreed with the literature (Abila et al., 2020; Masilamani et al., 2017).

3.4. UV–Visible spectral analysis

UV–Vis spectroscopy analysis is a key factor for characterizing the feature of NLO. In order to examine the optical characteristics of the LTSB crystal, optical constants were playing a prominent role it is used for the application of optoelectronics and photonics (Hanumant Rao and Kalainathan, 2012). The high transparency nature of the material also provides various information about electronic optical transition (Karuppasamy et al., 2020; Subhashini et al., 2019).

The transmittance spectrum of LTSB crystal in Fig. 4a shows a wide translucency window from 235 to 800 nm with 83% transmittance and no absorbance in the entire wavelength. In the absence of strong conjugated bonds in amino acid generate lower cut-off wavelength (221 nm) and good optical transparency of the LTSB crystal, so that the title crystals were suitable for any applications.

![Fig. 1. Photograph of LTSB single crystal.](image)

![Fig. 2. Powder XRD pattern of the LTSB crystal.](image)
The optical absorption coefficient (α) and E_g according to Tauc's relationship is given in Eqs. (1) and (2):

$$\alpha = \frac{2.303}{l} \log \frac{1}{T}$$

$$\alpha \nu = A (\hbar \nu - E_g)^n$$

Where all the symbols have their own significance. For LTSB crystal $n = 1/2$ indicated the direct band gap nature of the material (Ramanathan et al., 2005). Fig. 4b shows the graph between $(\alpha \hbar \nu)^2$ and $\hbar \nu$ of LTSB crystal and the graph provides the value of energy gap of titular crystal. The extrapolation of the straight line to $(\alpha \hbar \nu)^2 = 0$ yielded the value of $E_g = 5.7$ eV suggests titular crystal possesses dielectric nature and can be polarized under the influence of powerful radiation which is suitable for optical fabrication. The reflectance (R) and refractive indices (n) were calculated by Eqs. (3) and (4): (Allen Moses et al., 2019a, 2019b; Ollaa et al., 2019).

$$R = 1 \pm \sqrt{1 - \exp(-2\alpha)} + \exp(2\alpha)$$

$$n = -\frac{(R + 1) \pm \sqrt{3R^2 + 10R - 3}}{2(R - 1)}$$

From Figs. 4c and 4d it is understood that the photon energy dependence of optical parameters (R and n) showing that these titular materials are apt for optoelectronic devices than the other crystals (Dillip et al., 2012). Fig. 4e suggests a small value of extinction coefficient in the lower energy region reveals the grown crystal permitting the free passage of electromagnetic radiation, while the high energy region indicates greater degrees of opacity. The coefficient of attenuation depends on the type of material and radiation intensity. A low extinction coefficient is apt for use as an optical material in processing devices. Skin depth is numerically define as,

$$\delta = \frac{1}{\alpha}$$

Where δ is skin depth.

Fig. 4f shows when the photon energy is increased the skin depth also decreases for LTSB crystal. This result suggests the use of grown crystal for large range of optoelectronic applications.

3.5. Dielectric studies

To scrutinize the electrical properties and lattice dynamics, the grown material is subjected to dielectric measurements, for that the grown LTSB crystal is coated with graphite on opposite surfaces for creating a good conductive layer (Elberin et al., 2016; Revathi, 2013; Chennakrishnan et al., 2017, 2017). The optical absorption coefficient (α) and E_g according to Tauc's relationship is given in Eqs. (1) and (2):
Herein the variation of capacitance and dissipation factor of the grown LTSB crystal measured in the frequency range of 100 Hz to 2 MHz and the temperatures from 313 to 433 K. The dielectric constant (ε_r) and dielectric loss ($\tan\delta$) were calculated by Eqs. (6) and (7) (Aneeba et al., 2020):

$$\varepsilon_r = \frac{Cd}{\varepsilon_0 A} \quad (6)$$

$$\tan\delta = \varepsilon_r D \quad (7)$$

Where all the symbols have their own significance.

Figs. 5a and 5b illustrates ε_r and $\tan\delta$ of LTSB crystal against the frequency. It was observed from the graph that $\tan\delta$ and ε_r decreased as the frequency increased and they being constant at higher frequencies due to predominant interfacial polarization near the grain boundary interfaces (Rao and Smakula, 1966) moreover, this predominant interfacial polarization mainly depends on three factors specifically pureness, flawless and high temperature resistivity (Evangelin et al., 2020; Harsh Yadav et al., 2015). In that respect there are fewer defects and impurities are present in the grown LTSB crystal, and is used for NLO applications (Murugesan et al., 2020; Manoj Gupta et al., 2011). The AC conductivity (σ_{ac}) is obtained by Eq. (8):

$$\sigma_{ac} = \omega\varepsilon_0\varepsilon_r\tan\delta \quad (8)$$

Fig. 5c illustrates the ac conductivity of titular material increases up to the logarithmic frequency of 5.78 Hz and also sharp increase was noted above 5.78 Hz that evidencing the conduction of the LTSB material.

3.6. Determination of solid state parameters

Electronic polarizability plays a decisive role in charge distribution of solids which, depending on some solid state parameters suchlike valence electron Plasma energy, Penn gap, Fermi energy,
and electronic polarizability are tabulated in Table 2. The valance electron plasma energy was evaluated by Eq. (9):

$$\hbar \omega_p = 28.8 \left(\frac{Z_p}{M} \right)^{1/2}$$ \hspace{1cm} (9)

Where all the symbols have their own significance.

The Pen gap energy (E_p) and Fermi energy (E_F) (Kalyanaraman et al., 2015) are expressed with the following relations:

$$E_p = \frac{\hbar \omega_p}{\sqrt{\varepsilon_r - 1}}$$ \hspace{1cm} (10)

$$E_F = 0.2948 (\hbar \omega_p)^{4/3}$$ \hspace{1cm} (11)

The polarizability α, from Penn gap analysis (Alexandar and Rameshkumar, 2018) is given by

$$\alpha = \frac{\left(\frac{\hbar \omega_p^2 S_0}{\left(\frac{\hbar \omega_p^2 S_0 + 3E_p^2}{\varepsilon_1 + 2\varepsilon_0} \right)^2} \right) \times \frac{M}{\rho} \times 0.396 \times 10^{-24}}{C_2}$$ \hspace{1cm} (12)

Where S_0 is the constant for given material

$$S_0 = 1 - \left[\frac{E_p}{4E_F} \right]^{\frac{1}{3}} \left[\frac{E_p}{4E_F} \right]^2$$ \hspace{1cm} (13)

The polarizability α is also be verified by using the Clausius-Mossotti relation (Umarani and Jagannathan, 2018) is given by

$$\alpha = \frac{3M}{4\pi N_A \rho} \left[\frac{\varepsilon_1 - 1}{\varepsilon_1 + 2} \right]$$ \hspace{1cm} (14)

The obtained polarizability value of LTSB crystal using Penn analysis and Clausius-Mossotti relation are evenly matched.

3.7. Antibacterial study

The Agar disk diffusion method was used in order to ensure the antibacterial activities of grown LTSB crystal with aminoglycoside antibiotics class of Amikacin as a control (Xiaoting Wang et al., 2019). The basic principle behind this method is to estimate the antibiotic resistance by measuring the growth inhibition zone around the powered sample (Mahboobeh Maghami et al., 2015). Fig. 6(a, b and c) shows the inhibitory activity produced by LTSB crystals against 3 different pathogenic bacteria. The growth inhibition zones of the titular compounds were measured in diameter (mm) and the results are given in Table 3. From the results of

Table 2	Theoretical solid state parameters of LTSB crystal.
Parameters	Value
Plasma energy (eV)	15.84
Fermi energy (eV)	11.72
Penn energy (eV)	5.01
Polarizability from Penn analysis (cm3)	6.07×10^{-23}
Polarizability from Clausius-Mossotti relation (cm3)	5.73×10^{-23}

Table 3	The growth inhibition zones of LTSB crystal.		
Bacterial strain	Control	Diameter of inhibition zone (mm)	
Gram-negative	Escherichia coli	Amikacin	15
	Pseudomonas aeruginosa	Amikacin	13
Gram-positive	Staphylococcus aureus	Amikacin	12

Fig. 6. (a) ZOI of Escherichia coli (b) ZOI of Pseudomonas aeruginosa (c) ZOI of Staphylococcus aureus.
antibacterial activity studies, it was found that the prepared LTSB crystals are more toxic to Escherichia coli having a ZOI of 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed 15 mm, and also the Gram-positive bacterial strains are less affected than gram-negative crystal. Thus LTSB crystal showed thermal and NLO behavior of γ-glycine crystals. Mater. Chem. Phys. 134, 371–376. Elberin Mary Theria, J., Kalavani, D., Mercina, M., Jayarajanan, D., Joseph, V., 2016. Characterization of L-threonine phthalate crystal for photonic and nonlinear optical applications. Optic. 127, 3402–3407. Evangelin Teresa, P., Sornamboli, M., Gower, S., Aarthi, J., Navina, M., 2020. Growth, spectral, dielectric, magnetic and antimicrobial studies on doped rochelle salt. Results Mater. Sci. 120, 100955. Yadav, Harish, Sinha, Indhi, Kumar, Binay, 2015. Growth and characterization of new semiconducting nonlinear optical and piezoelectric lithium sulfate monohydrate single crystal. Mater. Res. Bull. 64, 194–199. Kou, Huizi, Wang, Yang, Ding, Peipei, Cheng, Xianzhong, Zhou, Guoqing, 2020. Synthesis, crystal structure, phosphate hydrolysis activity and antibacterial activity of macrocyclic dinuclear Zn(II) complex with benzyl pendant-arms. J. Mol. Struct. 1218, 128299. Kalyanaraman, S., Shankush, P.M, Vijayalakshmi, S., 2015. Refractive index, band gap energy, dielectric constant and polarization calculations of ferroelectric Ethylenediaminium Tetrachlorocarbonate crystal. J. Phys. Chem. Solids. 86, 108–113. Thuikral, Kanika, Vijayan, N., Krishna, Anuj, Singh, Budhendra, Kant, Rajni, Jayaramakrishnan, V., Jayalakshmi, M.S., Kaur, Milanjpreet, 2019. In-depth behavioral study of L-Proline Trichloroacetate single crystal: An efficient candidate for NLO applications. Arab. J. Chem. 12, 4887–4896. Karuppasamy, P., Kamalesh, T., Anitha, K., Pandian, MuthuSanthil, Ramasamy, P., Verma, Sunil, 2020. Design and growth of novel organic molecular Quinoline 4-nitrophenol (QNP) single crystals: For Nonlinear (NLO) applications. J. Solid State Chem. 1210, 1208228. Maghimi, Mahboobeh, Farzaneh, Faezeh, Simp, Jim, Ghiasi, Mia, Azarkish, Mohammad, 2015. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(3,5-dimethylpyridyl)-1,5,7-triazaadamantane. CrystEngComm. 476, 1–7. Manoj Gupta, K., Sinha, Nidhi, Kumar, Binay, 2011. Growth and characterization of new semicrystalline i-proline stromium chloride monohydrate single crystals. Phys. B 406, 63–67. Martin Britto Dhas, S.A., Natarajan, S., 2007. Growth and characterization of L-proline tartarate–A new organic NLO material. Cryst. Res. Technol. 42, 471–476. Masilamani, S., Mohamed Mustafah, A., Krishnamurthi, P., 2017. Synthesis, growth and characterization of a semicrystalline nonlinear optical material: l-threonine cadmium chloride single crystals, Arab. J. Chem. 10, 3962–3966. Mayakannan, M., Gopinath, S., Vetivel, S., 2020. Synthesis and characterization of antibacterial activities nickel doped cobalt oxide nanoparticles. Mater. Chem. Phys. 242, 1222282. Murugesan, G., Nithya, R., Kalainathan, S., 2020. Colossal dielectric behaviour of SrTiMoO6 single crystals. J. Cryst. Growth. 530, 121579. Malloud, Oliaa M., Elsayed, Adly H., AbuEL Fetouh, H., Abu ELazm, A.H., 2019. Synthesis and characterization of paramagnetic isoctopic glycine manganese chloride single crystal with various dopant concentrations. Results Phys. 12, 325–331. Ramanathan Bairava Ganesh, Vasudevan Kannan, Meera, Narayana Perumal Rajesh, K., 2005. Synthesis, growth and characterization of a new nonlinear optical crystal sodium acid phthalate. J. Cryst. Growth. 282, 429–433. Ramasamy, G., Meenakshisundaram, Subbiah, S., 2014. Studies on amino acid picrates: Crystal growth, structure and characterization of a new nonlinear optical material l-isoleucine picrate. Optik. 125, 4422–4426. Rao, K.V., Smakula, A., 1966. Dielectric properties of alkaline earth fluoride single crystals. Int. J. Appl. Phys. 37, 319–323. Ramanathan Bairava Ganesh, Vasudevan Kannan, Meera, Narayana Perumal Rajesh, K., 2005. Synthesis, growth and characterization of a new nonlinear optical crystal sodium acid phthalate. J. Cryst. Growth. 282, 429–433. Ramasamy, G., Meenakshisundaram, Subbiah, S., 2014. Studies on amino acid picrates: Crystal growth, structure and characterization of a new nonlinear optical material l-isoleucine picrate. Optik. 125, 4422–4426. Subhashini, R., Arunan, S., Gunasekaran, B., 2019. Synthesis of metal coordinated amino acid based nonlinear single crystal, Bis(l-threonine)zinc(II) using the solution growth technique and its physicochemical properties. J. Phys. Chem. Solids. 135, 109077. Suresh, Sagadevan, 2014. Synthesis, growth and characterization of L-threonine zinc acetate (LTZA) NLO single crystal. Optik (Stuttgart.) 125, 4457–4455. Tauc, J., 1972. Optical Properties of Solids. J. Sci. Res. North Holland, Amsterdam, Uma, J., Rajendran, V., 2016. Growth and properties of semiorganic nonlinear optical single crystal L-Glutamic acid hydrochloride, J. Mol. Struct. 1093, 24–32. Umarm, P., Jagannathan, K., 2018. Growth, structural, thermal, dielectric and nonlinear optical properties of potassium hexachloro rocadate (IV) a novel single crystal. Phys. B 530, 213–218. Ward, D.L., Wei, K.T., Hoogerheide, J.G., Popov, A.I., 1978. The crystal and crystal growth of the sodium bromide complex of monensin, C_{12}H_{12}O_{8}N_{2}Br^{-}. Acta Crystallogr B. 34, 110–115. Wang, Xiaoting, Li, Ruiyuan, Liu, Aogang, Yue, Caipeng, Wang, Shimin, Cheng, Jiajia, Li, Jinping, Liu, Zhongyi, 2019. Syntheses, crystal structures, antibacterial activities of Cu(II) and Ni(II) complexes based on terpyridine polycarboxylic acid ligand. J. Mol. Struct. 1184, 503–511. Dong, Xunyan, Quinn, Peter J, Wang, Xiaoyuan, 2012. Microbial Metalorganic Design for L-Threonine Production. Subcell. Biochem. 60, 283–302.