Search for heavy Majorana neutrinos in $\mu^±\mu^± + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A search is performed for heavy Majorana neutrinos ($N$) using an event signature defined by two muons of the same charge and two jets ($\mu^±\mu^±jj$). The data correspond to an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No excess of events is observed beyond the expected standard model background and upper limits are set on $|V_{\mu N}|^2$ as a function of Majorana neutrino mass $m_N$ for masses in the range of 40–500 GeV, where $V_{\mu N}$ is the mixing element of the heavy neutrino with the standard model muon neutrino. The limits obtained are $|V_{\mu N}|^2 < 0.00470$ for $m_N = 90$ GeV, $|V_{\mu N}|^2 < 0.0123$ for $m_N = 200$ GeV, and $|V_{\mu N}|^2 < 0.583$ for $m_N = 500$ GeV. These results extend considerably the regions excluded by previous direct searches.

Submitted to Physics Letters B
1 Introduction

The non-zero masses of neutrinos and mixing between flavors have been well established by neutrino oscillation experiments and provide evidence for physics beyond the standard model (SM) [1]. The most compelling way of explaining the smallness of the neutrino masses is the “seesaw” mechanism, which can be realized in several different schemes [2–11]. In the simplest model, the SM neutrino mass is given by \( m_\nu \approx y_\nu v^2 / m_N \), where \( y_\nu \) is a Yukawa coupling of \( \nu \) to the Higgs field, \( v \) is the Higgs vacuum expectation value in the SM, and \( m_N \) is the mass of a new heavy neutrino state (N). In this scheme, N is a Majorana particle (which is its own antiparticle), so processes that violate lepton number conservation by two units are possible.

In this paper we describe a search for heavy Majorana neutrinos using a phenomenological approach [12–19]. We follow the studies in Refs. [17–19] and consider a heavy neutrino that mixes with the SM muon neutrino, with \( m_N \) and \( V_{\mu N} \) as free parameters of the model. Here \( V_{\mu N} \) is a mixing element describing the mixing between the heavy Majorana neutrino and the SM muon neutrino.

Early direct searches for heavy Majorana neutrinos based on this model were reported by the L3 [20] and DELPHI [21] experiments at LEP. They searched for \( Z \to \nu\bar{\nu}N \) decays, where \( \nu_\ell \) is any SM neutrino (\( \ell = e, \mu, \) or \( \tau \)), from which limits on \( |V_{\mu N}|^2 \) as a function of \( m_N \) can be derived for Majorana neutrino masses up to approximately 90 GeV. More recently, the CMS experiment at the CERN LHC extended the search region up to about 200 GeV [22]. Several experiments have obtained limits in the low mass region (\( m_N < 5 \) GeV), including LHCb [23] at the LHC. The searches by L3, DELPHI, and LHCb allow for a finite heavy-neutrino lifetime such that it decays with a vertex displaced from the interaction point, while in the search reported here it is assumed that the N decays with no significant displacement of the vertex. Precision electroweak measurements can be used to constrain the mixing elements, resulting in indirect 90% confidence level limits of \( |V_{\mu N}|^2 < 0.0032 \) independent of heavy neutrino mass [24]. Other models with heavy neutrinos have also been examined. ATLAS and CMS at the LHC have reported limits on heavy Majorana neutrino production [25, 26] in the context of the Left-Right Symmetric Model. ATLAS have also set limits based on an effective Lagrangian approach [26].

We report on an updated search for the production of a heavy Majorana neutrino in proton-proton (pp) collisions at a center-of-mass energy of \( \sqrt{s} = 8 \) TeV at the LHC with a data set corresponding to an integrated luminosity of 19.7 fb\(^{-1}\) collected with the CMS detector. We assume that the heavy Majorana neutrino is produced by s-channel production of a W boson, which decays via \( W^+ \to N\mu^+ \). The N is assumed to be a Majorana particle, so it can decay via N \( \to W^-\mu^+ \) with \( W^- \to q\bar{q}' \), resulting in a \( \mu^+\mu^-\bar{q}q' \) final state. The principal Feynman diagram for this process is shown in Fig. 1. The charge-conjugate decay chain also contributes and results in a \( \mu^-\mu^-\bar{q}q' \) final state. The lowest order cross section for pp \( \to (W^\pm)^* \to N\mu^\pm \) at a center of mass energy \( \sqrt{s} \) is given by

\[
\sigma(s) = \int dx \int dy \sum_{q,q'} \left[ f_q^p(x, Q^2) f_{q'}^p(y, Q^2) \right] \hat{\sigma}(s)
\]

(1)

where \( f_q^p \) are the parton distribution functions for quark \( q \) at \( Q^2 = s = xy\), and \( x \) and \( y \) are the fractions of the proton momentum carried by the interacting quarks. The parton subprocess cross section \( \hat{\sigma}(s) \) is given by [27]:

\[
\hat{\sigma}(s) = \frac{\pi a_W^2}{72\sqrt{2}(s - m_W^2)^2} |V_{\mu N}|^2 (s - m_N^2)^2 (2s + m_N^2)
\]

(2)

where \( a_W \) is the weak coupling constant and \( m_W \) is the W-boson mass.
Figure 1: The lowest order Feynman diagram for production of a heavy Majorana neutrino $N$. The charge-conjugate diagram also contributes and results in a $\ell^- \ell^- q\bar{q}'$ final state.

We search for events with two isolated muons of the same sign of electric charge and at least two accompanying jets. The backgrounds to such dimuon final states originate from SM processes that contain isolated prompt same-sign (SS) dimuons in the final state (e.g. $WZ$ production), and from processes such as multijet production in which muons from $b$-quark decays, or from jets, are misidentified as isolated prompt muons. The misidentified muon background is more significant for low masses ($m_N < 90 \text{ GeV}$), while at higher masses the SM prompt dimuon background becomes more important.

2 Detector, signal simulation, and data selection

The CMS detector is described in detail in Ref. [28]. Its central feature is a superconducting solenoid, which provides a magnetic field of 3.8 T along the direction of the counterclockwise rotating beam, taken as the $z$ axis of the detector coordinate system, with the center of the detector defined to be at $z = 0$. The azimuthal angle $\phi$ is measured in the plane perpendicular to the $z$ axis, while the polar angle $\theta$ is measured with respect to this axis. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A two-level trigger system selects the most interesting events for analysis.

Muons are measured in the pseudorapidity range $|\eta| < 2.4$, defined as $\eta = -\ln[\tan(\theta/2)]$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Charged-particle trajectories are measured in a silicon pixel and strip tracker covering $0 \leq \phi \leq 2\pi$ in azimuth and $|\eta| < 2.5$. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution for muons with $20 < p_T < 100 \text{ GeV}$ of 1.3–2.0% in the barrel and better than 6% in the endcaps. The $p_T$ resolution in the barrel is better than 10% for muons with $p_T$ up to 1 TeV [29].

The heavy Majorana neutrino production and decay process are simulated using the leading-order (LO) event generator described in Ref. [18] and implemented in ALPGEN v2.14 [30]. The LO cross section at $\sqrt{s} = 8 \text{ TeV}$ for $pp \to N\mu^\pm \to \mu^\pm \mu^\pm q\bar{q}'$ with $|V_{\mu N}|^2 = 1$ has a value of 1515 pb for $m_N = 40 \text{ GeV}$, dropping to 3.56 pb for $m_N = 100 \text{ GeV}$, and to 2.15 pb for $m_N = 500 \text{ GeV}$ [18]. The cross section is proportional to $|V_{\mu N}|^2$. We scale the leading order cross section by a factor of 1.34 to account for higher-order corrections, based on the next-
to-next-to-leading-order calculation in Refs. [31, 32] for s-channel $W'$ production that has the same production kinematics as the signal. We use the CTEQ6M parton distribution functions (PDFs) [33]. Parton showering and hadronization are simulated using PYTHIA v6.4.22 [34]. The Monte Carlo (MC) event generator is interfaced with CMS software, where GEANT4 [35] detector simulation, digitization of simulated electronic signals, and event reconstruction are performed. To ensure correct simulation of the number of additional interactions per bunch crossing (pileup), Monte Carlo simulated events are mixed with multiple minimum bias events with weights chosen using the distribution of the number of reconstructed pp interaction vertices observed in data.

A dimuon trigger is used to select the signal sample. This trigger requires the presence of one muon reconstructed from matching tracks in the muon system and tracker with transverse momentum ($p_T$) above 17 GeV and a second muon with $p_T > 8$ GeV formed from a track in the tracker matched to hits in one of the muon detectors. The trigger efficiency for the signal sample is measured using $Z \rightarrow \mu^+ \mu^-$ events selected in data, and is found to be in the range 85–95%, varying with $p_T$ and $\eta$.

Additional selections are performed to ensure the presence of well-identified muons and jets. Events are first required to have a well-reconstructed pp interaction vertex (primary vertex) identified as the reconstructed vertex with the largest value of $\sum p_T^2$ for its associated charged tracks reconstructed in the tracking detectors [36].

Leptons, jets, and missing transverse energy ($E_T$) in the event are reconstructed using the standard CMS particle-flow techniques [37, 38]. The missing transverse momentum vector is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed particles in an event. Its magnitude is referred to as $E_T$. Jets are formed from clusters based on the anti-$k_T$ algorithm [39], with a distance parameter of 0.5, and are required to be within the pseudorapidity range $|\eta| < 2.5$. Muon candidates are required to have $|\eta| < 2.4$ and to be consistent with originating from the primary vertex. Muon candidates are reconstructed by matching tracks in the silicon tracker to hits in the outer muon system, and are also required to satisfy specific track quality and calorimeter deposition requirements [29]. Muon candidates must be isolated from other activity in the event, which is insured by requiring their relative isolation parameter ($I_{rel}$) to be less than 0.05. Here $I_{rel}$ is defined as the scalar sum of transverse energy present within $\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} < 0.3$ of the candidate’s direction, excluding the candidate itself, divided by the muon candidate’s transverse momentum. The muon selection criteria are the same as those used in Ref. [40] except for the more stringent requirement on $I_{rel}$ used here.

Events are required to contain two same-sign muons, one with $p_T > 20$ GeV and the other with $p_T > 15$ GeV, and at least two jets with $p_T > 20$ GeV. Events with a third muon are rejected to suppress diboson events such as WZ. To reduce backgrounds from top-quark decays, events in which at least one jet is identified as originating from a b quark are rejected, where the medium working point of the combined secondary vertex tagger [41] has been used.

Further selection requirements are made based on two Majorana neutrino mass search regions. In the low-mass search region ($m_N \lesssim 80$ GeV) the W-boson propagator is on-shell and the final state system of $\mu^+ \mu^- q \bar{q}$ should have an invariant mass close to $m_W$. In this region the following selections are imposed: missing transverse energy $<30$ GeV; $\mu^+ \mu^- jj$ invariant mass $<200$ GeV, where the two jets chosen are those which result in $m(\mu^+ \mu^- jj)$ closest to $m_W$; and dijet invariant mass of these two jets $m(jj) > 120$ GeV. In the low-mass region the transverse momenta of the muons and jets are relatively low and the overall efficiency is considerably smaller than at higher masses. Therefore, the invariant mass requirements in this region are
chosen to be relatively loose.

In the high-mass search region \( (m_N \gtrsim 80 \text{ GeV}) \) the W-boson propagator is off-shell but the W boson from the N decay is on-shell, so the \( W \to q\bar{q}' \) decay should result in a dijet invariant mass close to \( m_W \). As the decay particles are more energetic in this region, the following selections are imposed: missing transverse energy less than 35 GeV (relaxed to increase signal efficiency); dijet invariant mass \( 50 < m(jj) < 110 \text{ GeV} \), where the two jets with the invariant mass closest to \( m_W \) are chosen. In both the low-mass and high-mass search regions, the upper cutoff on the missing transverse energy suppresses SM background processes in which a W boson decays leptonically \( (W \to \mu\nu) \), including \( W + \text{jet} \) and \( t\bar{t} \) production.

The low-mass selection gives the best sensitivity for masses below 90 GeV, while for \( m_N \gtrsim 90 \text{ GeV} \) the high-mass selection gives the best sensitivity. Therefore, we use the low-mass selection for \( 40 < m_N < 90 \text{ GeV} \) and the high-mass selection for \( m_N \gtrsim 90 \text{ GeV} \). For masses less than 40 GeV the overall acceptance for the Majorana neutrino signal is less than 1% and we do not search in this region.

After applying all the selection criteria above, a final selection is applied based on optimizing the signal significance using a figure of merit \([42]\) defined by \( \epsilon_S/(a/2 + \delta B) \) with the number of standard deviations \( a = 2 \) and where \( \epsilon_S \) is the signal selection efficiency and \( \delta B \) is the uncertainty in the estimated background.

At each Majorana neutrino mass point, the optimization is performed by varying the lower bound of three selections: the transverse momentum \( p_{T1} \) of the highest \( p_T \) muon (or “leading” muon), the transverse momentum \( p_{T2} \) of the second muon (or “trailing” muon), and the invariant mass \( m(\mu^+\mu^-jj) \). The two jets used in this optimization are those selected as described above for the low- and high-mass regions.

The overall signal acceptance includes trigger efficiency, geometrical acceptance, and efficiencies of all selection criteria. The overall acceptance for heavy Majorana neutrino events ranges between 0.69% for \( m_N = 40 \text{ GeV} \) to 12% for \( m_N = 500 \text{ GeV} \). The lower acceptance at low \( m_N \) is due to the smaller average \( p_T \) of the jets and muons in these events. The acceptance dips when \( m_N \) approaches \( m_W \) because the muon \( p_T \) becomes small. Above the W-boson mass the acceptance increases again up to 400–500 GeV at which point the boosted decay products of the Majorana neutrino begin to overlap.

## 3 Background estimation

There are three potential sources of same-sign dimuon backgrounds: SM sources such as WZ production, events resulting from misidentified muons, and opposite-sign dimuon events (e.g. from \( Z \to \mu^+\mu^- \)) in which the charge of one of the muons is mismeasured. The latter source is found to be negligible for muons with \( p_T \) in the range of interest for this analysis, based on MC studies and studies with cosmic ray muons. Estimation of the remaining two sources of background is discussed below.

An important background source is the irreducible background from SM production of two genuine isolated muons of the same sign, which can originate from sources such as WZ and ZZ diboson production, double W-strahlung \( W^\pm W^\pm qq \) processes, WH production, \( t\bar{t}W \) production, double parton scattering (two \( qq' \to W \)), and triboson production. These processes have relatively small cross sections, and are consequently estimated using MC simulations. We use \textsc{Pythia} to simulate ZZ and WZ production and \textsc{MadGraph v5.1.3.30} \([43]\) for the remaining processes.
The second significant background source originates from events containing objects misidentified as prompt muons. These “prompt muons” originate from b-quark decays or light-quark or gluon jets. Examples of this background include: multijet production in which two jets are misidentified as muons; \( W(\rightarrow \mu\nu) + \text{jets} \) events in which one of the jets is misidentified as a muon; and \( t\bar{t} \) decays in which one of the top-quark decays yields a prompt isolated muon (\( t \rightarrow Wb \rightarrow \mu\nu b \)), and the other muon of same charge arises from a b-quark decay or a jet misidentified as an isolated prompt muon. These backgrounds are estimated using control samples from collision data as described below.

To estimate the misidentified muon background we use the method described in Ref. \[22\]. An independent data sample enriched in multijet events is used to calculate the probability for a jet that passes minimal muon selection requirements (“loose muons”) to also pass the more stringent requirements used to define muons selected in the heavy Majorana neutrino signal selection (“tight muons”). This probability is binned in \( p_T \) and \( \eta \) and is used as a weight in the calculation of the background in events that pass all the signal selections except that one or both muons fail the tight criteria, but pass the loose ones.

The sample enriched in multijet production is selected by requiring a loose muon and a jet, resulting in events that are mostly dijet events with one jet containing a muon. Only one muon is allowed and upper cutoffs on missing transverse energy (\( E_T < 20 \text{ GeV} \)) and the transverse mass (\( m_T < 25 \text{ GeV} \)) are applied, where \( m_T \) is calculated using the muon \( p_T \) and \( E_T \). These requirements suppress contamination from \( W \) and \( Z \) boson decays. We also require the loose muon and jet to be separated in azimuth by \( \Delta\phi > 2.5 \). This away-side jet is used as a tag and the loose muon is a probe used to determine the misidentification probability. The transverse energy of the tag jet is an essential ingredient to calibrate the characteristics of the probe (loose muon).

Loose muons are defined by relaxing the identification requirements (used to select signal events) as follows: the isolation requirement is relaxed from \( I_{\text{rel}} < 0.05 \) to \( I_{\text{rel}} < 0.4 \); the transverse impact parameter of the muon track is relaxed from \( \lesssim 0.05 \text{ mm} \) to \( <2 \text{ mm} \); the chi squared per degree of freedom of the muon track fit is relaxed from 10 to 50.

The overall systematic uncertainty in the misidentified muon background is determined from the variation of the background estimate with respect to the isolation requirement for the loose muons and the \( p_T \) requirement for the tagging jet. Increasing and decreasing the \( p_T \) requirement for the tag jet changes the \( p_T \) spectrum of the recoiling muon in the event and is found to have the largest impact on the background level. The misidentified muon rate is comparatively stable with respect to variations in loose muon isolation requirements. As a result, the 28\% overall systematic uncertainty in the misidentified muon background estimate is dominated by the \( p_T \) requirement on the tag jet.

We evaluate the method used to estimate the background from misidentified muons by checking the procedure using MC simulated event samples in which the true origin of the muons, either from \( W \) or \( Z \) boson decays or from a quark decay, is known. The misidentification probabilities are obtained from multijet events and are used to estimate the misidentified muon backgrounds in \( t\bar{t} \), \( W + \text{jets} \), and independent multijet events by applying the background estimation method described above. The predicted backgrounds agree with the expectations within the systematic uncertainties.

In addition, to test the validity of the background estimation method, we define two signal-free control regions in data. We apply the background estimation method in these regions and compare the result with the observed yields. The control regions in the two mass ranges are
Systematic uncertainties defined as follows. In both the low-mass range \((40 < m_N < 90 \text{ GeV})\) and the high-mass range \((m_N > 90 \text{ GeV})\) the control region is the same as the signal selection, without the final optimized selections but with either missing transverse energy greater than 50 GeV or one or more jets that are tagged as originating from a b quark. In the low-mass control region we predict a total background of \(51.4 \pm 1.9 \text{ (stat)} \pm 8.3 \text{ (syst)}\) events compared to an observed yield of 45 events, while in the high mass control region we predict a total background of \(87.6 \pm 2.5 \text{ (stat)} \pm 12.3 \text{ (syst)}\) compared to the observed yield of 81 events. The misidentified muon background accounts for about 2/3 of the total background in both regions. The remaining backgrounds originate mainly from diboson production (approximately 25% of the total background) and Higgs boson production (approximately 4%). In both regions the predictions are in agreement with the observations and well within the systematic uncertainty, which is dominated by the 28% uncertainty in the misidentified muon background. The observed distributions of all relevant observables also agree with the predictions, within uncertainties.

4 Systematic uncertainties

The main sources of systematic uncertainties are associated with the background estimates. As described above, the overall systematic uncertainty in the misidentified muon background is 28%. The systematic uncertainties in the normalizations of irreducible SM backgrounds are 12% for WZ and 9% for ZZ [44]. For the other processes the uncertainty is 25%, determined by varying the renormalization and factorization scales from the nominal value of \(Q^2\) to 4\(Q^2\) and \(Q^2/4\), and following the PDF4LHC recommendations [45, 46] to estimate the uncertainty due to the choice of PDFs. After combining all the SM backgrounds with their respective uncertainties, the overall systematic uncertainty in the SM irreducible background estimate, including those discussed below, is 19%.

Sources of systematic uncertainty associated with the estimates of the heavy Majorana neutrino signal and of the SM irreducible background are summarized in Table 1. To evaluate the uncertainty due to imperfect knowledge of the integrated luminosity [47], jet energy scale [48], jet energy resolution [48], b-tagging [41], muon trigger and selection efficiency, and the cross section for minimum bias production used in the pileup reweighting procedure in simulation, the input value of each parameter is changed by \(\pm 1\) standard deviation from its central value.

| Source                              | Signal (%) | SM Bkgd. (%) | Misid. Bkgd. (%) |
|-------------------------------------|------------|--------------|-----------------|
| Background estimate from data       | —          | —            | 28 [28]         |
| SM cross section                    | —          | 9–25 [9–25]  | —               |
| Jet energy scale                    | 5–12 [1–3] | 3 [5]        | —               |
| Jet energy resolution               | 6–12 [2–3] | 7 [10]       | —               |
| Event pileup                        | 6–7 [3–6]  | 7 [4]        | —               |
| Unclustered energy                  | 2 [1]      | 3 [1]        | —               |
| Integrated luminosity               | 2.6 [2.6]  | 2.6 [2.6]    | —               |
| Muon trigger and selection          | 2 [2]      | 2 [2]        | —               |
| b-tagging                           | 1 [1]      | 1.5 [1]      | —               |
| PDF                                 | 3.5 [3.5]  | —            | —               |
| Renormalization/Factorization scales| 8–10 [1–6]| —            | —               |
| Signal MC statistics                | 3–9 [1–4]  | —            | —               |
Energy not clustered in the detector affects the overall missing transverse energy scale resulting in an uncertainty in the event yield due to the upper cutoff on $E_T$. Additional uncertainties in the heavy Majorana neutrino signal estimate arise from the choice of PDFs and renormalization and factorization scales used in the ALPGEN MC event generator.

5 Results and discussion

The selections determined by the optimization for each Majorana neutrino mass point are shown in Table 2 together with the overall signal acceptance. Figure 2 shows the transverse momentum distributions of the two muons, $p_{T1}$ and $p_{T2}$, and the invariant mass $m(\mu^+\mu^-jj)$ for the low-mass region after all selections are applied except for the final optimization requirements. The corresponding distributions for the high-mass region are shown in Fig. 3.

Table 2: Minimum thresholds on discriminating variables determined by the optimization and overall signal acceptance for each Majorana neutrino mass point ($m_N$). As discussed in the text, the search was divided into low-mass ($m_N \leq 80$ GeV) and high-mass ($m_N > 80$ GeV) regions, and different selection criteria were used in the two regions.

| $m_N$ (GeV) | $m(\mu^+\mu^-jj)$ (GeV) | $p_{T1}$ (GeV) | $p_{T2}$ (GeV) | Acceptance (%) |
|------------|--------------------------|----------------|----------------|----------------|
| 40         | 80                       | 20             | 15             | 0.69           |
| 50         | 80                       | 20             | 15             | 0.80           |
| 60         | 80                       | 20             | 15             | 0.64           |
| 70         | 80                       | 20             | 15             | 0.26           |
| 80         | 80                       | 20             | 15             | 1.2            |
| 90         | 110                      | 20             | 15             | 1.2            |
| 100        | 120                      | 20             | 15             | 4.7            |
| 125        | 140                      | 25             | 20             | 11             |
| 150        | 160                      | 35             | 25             | 13             |
| 175        | 200                      | 45             | 30             | 15             |
| 200        | 220                      | 50             | 35             | 16             |
| 250        | 270                      | 75             | 35             | 17             |
| 300        | 290                      | 100            | 45             | 15             |
| 350        | 290                      | 100            | 45             | 16             |
| 400        | 290                      | 100            | 45             | 15             |
| 500        | 290                      | 100            | 45             | 12             |

After applying all the final optimized selections we obtain the results shown in Table 3. The expected signal depends on $m_N$ and $|V_{\mu N}|^2$. For $m_N = 50$ GeV and $|V_{\mu N}|^2 = 1 \times 10^{-3}$ the expected number of events is 226. For $m_N = 100$ GeV and $|V_{\mu N}|^2 = 1 \times 10^{-3}$ the expected number of events is 4.4, while for $m_N = 500$ GeV and $|V_{\mu N}|^2 = 1$ it is 6.9.

We see no evidence for a significant excess in data beyond the backgrounds predicted from the SM and we set 95% confidence level (CL) exclusion limits on the cross section times branching fraction for $pp \rightarrow N\mu^+ \rightarrow \mu^+\mu^-qq'$ as a function of $m_N$, using the CLs method [49–51] based on the event yields shown in Table 3. We use Poisson distributions for the signal and log-normal distributions for the nuisance parameters. The limits obtained are shown in Fig. 4. We do not consider the mass range below $m_N = 40$ GeV because of the very low selection efficiency for the signal in this mass region.

The behavior of the limit around $m_N = 80$ GeV is caused by the fact that as the heavy Majorana
Figure 2: Kinematic distributions for the low-mass region after all selections are applied except for the final optimization requirements: leading muon $p_T$ (top), trailing muon $p_T$ (middle), and $\mu^+\mu^-jj$ invariant mass (bottom). The plots show the data, backgrounds, and two choices for the heavy Majorana neutrino signal: $m_N = 40\text{ GeV}$, $|V_{\mu N}|^2 = 5 \times 10^{-5}$ and $m_N = 80\text{ GeV}$, $|V_{\mu N}|^2 = 1 \times 10^{-3}$. The backgrounds shown are from misidentified muons and from diboson (VV), Higgs boson, triboson (VVV), and tW production.
Table 3: Observed event yields and estimated backgrounds for each Majorana neutrino mass point ($m_N$). The background predictions from the irreducible SM backgrounds (SM Bkgd.), misidentified muon background (Misid. Bkgd.) and total background (Total Bkgd.) are shown in columns 2–4, while column 5 shows the number of events observed in data. The uncertainties shown are respectively the statistical and systematic components. As discussed in the text, the search was divided into low-mass ($m_N \leq 80$ GeV) and high-mass ($m_N > 80$ GeV) regions, and different selection criteria were used in the two regions.

| $m_N$ (GeV) | SM Bkgd. | Misid. Bkgd. | Total Bkgd. | $N_{\text{obs}}$ |
|------------|-----------|--------------|-------------|-----------------|
| 40         | 3.0 ± 0.4 ± 0.6 | 6.7 ± 0.9 ± 1.9 | 9.8 ± 1.0 ± 2.0 | 7               |
| 50         | 3.0 ± 0.4 ± 0.6 | 6.7 ± 0.9 ± 1.9 | 9.8 ± 1.0 ± 2.0 | 7               |
| 60         | 3.0 ± 0.4 ± 0.6 | 6.7 ± 0.9 ± 1.9 | 9.8 ± 1.0 ± 2.0 | 7               |
| 70         | 3.0 ± 0.4 ± 0.6 | 6.7 ± 0.9 ± 1.9 | 9.8 ± 1.0 ± 2.0 | 7               |
| 80         | 3.0 ± 0.4 ± 0.6 | 6.7 ± 0.9 ± 1.9 | 9.8 ± 1.0 ± 2.0 | 7               |
| 90         | 8.7 ± 0.7 ± 1.7 | 12.6 ± 1.1 ± 3.5 | 21.3 ± 1.3 ± 3.9 | 19              |
| 100        | 8.7 ± 0.7 ± 1.7 | 11.7 ± 1.0 ± 3.3 | 20.4 ± 1.2 ± 3.7 | 19              |
| 125        | 7.9 ± 0.6 ± 1.5 | 5.9 ± 0.7 ± 1.6 | 13.8 ± 0.9 ± 2.2 | 8               |
| 150        | 6.4 ± 0.5 ± 1.2 | 3.6 ± 0.6 ± 1.0 | 9.9 ± 0.8 ± 1.6 | 7               |
| 175        | 4.4 ± 0.4 ± 0.8 | 1.6 ± 0.4 ± 0.5 | 6.0 ± 0.6 ± 1.0 | 7               |
| 200        | 3.4 ± 0.4 ± 0.7 | 0.8 ± 0.3 ± 0.2 | 4.2 ± 0.5 ± 0.7 | 5               |
| 250        | 1.9 ± 0.3 ± 0.3 | 0.6 ± 0.2 ± 0.2 | 2.5 ± 0.3 ± 0.4 | 3               |
| 300        | 0.9 ± 0.2 ± 0.2 | 0.1 ± 0.2 ± 0.0 | 1.0 ± 0.3 ± 0.2 | 1               |
| 350        | 0.9 ± 0.2 ± 0.2 | 0.1 ± 0.2 ± 0.0 | 1.0 ± 0.3 ± 0.2 | 1               |
| 400        | 0.9 ± 0.2 ± 0.2 | 0.1 ± 0.2 ± 0.0 | 1.0 ± 0.3 ± 0.2 | 1               |
| 500        | 0.9 ± 0.2 ± 0.2 | 0.1 ± 0.2 ± 0.0 | 1.0 ± 0.3 ± 0.2 | 1               |

neutrino gets close to the W-boson mass from below or above, the muon produced together with the N or the muon from the N decay have low $p_T$, respectively. We also set limits on the square of the heavy Majorana neutrino mixing parameter times branching fraction of the N to a W boson and a muon, $|V_{\nu N}|^2 B(N \to W^\pm \mu^\mp)$, as a function of $m_N$. Figure 5 shows the resulting upper limits on $|V_{\nu N}|^2 B(N \to W^\pm \mu^\mp)$ as a function of $m_N$. Assuming the theoretical prediction for the branching fraction for $N \to W^\pm \mu^\mp$, we can extract limits on $|V_{\nu N}|^2$. These limits are shown in Fig. 6.

6 Summary

A search for heavy Majorana neutrinos in $\mu^\pm \mu^\pm jj$ events has been performed in proton-proton collisions at a center-of-mass energy of 8 TeV, using a data set corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No excess of events beyond the standard model background prediction is found. Upper limits at 95% CL are set on $|V_{\nu N}|^2$, as a function of heavy Majorana neutrino mass $m_N$, where $V_{\nu N}$ is the mixing element of the heavy neutrino N with the standard model muon neutrino.

These are the first direct upper limits on the heavy Majorana neutrino mixing for $m_N > 200$ GeV. The limits for $m_N$ between 45 GeV and 90 GeV are comparable to the best limits from LEP [20, 21], which are derived from $Z \to \nu\bar{\nu}N$ and are restricted to masses below approximately 90 GeV. The limits reported here extend well beyond this mass and are significantly better than previous LHC limits obtained at a center-of-mass energy of 7 TeV. For $m_N = 90$ GeV we find $|V_{\nu N}|^2 < 0.00470$. Furthermore, the direct limits on $|V_{\nu N}|$ have been extended from
Summary

$m_N \approx 200\text{ GeV}$ up to $m_N \approx 500\text{ GeV}$. At $m_N = 200\text{ GeV}$ the limit is $|V_{\mu N}|^2 < 0.0123$, and at $m_N = 500\text{ GeV}$ the limit is $|V_{\mu N}|^2 < 0.583$.

Acknowledgments

We would like to thank Juan Antonio Aguilar-Saavedra, Francisco del Aguila, and Tao Han for assistance with Monte Carlo generators and calculations of the heavy neutrino branching fractions, as well as for advice on the theoretical interpretations of our results.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.
Figure 3: Kinematic distributions for the high-mass region after all selections are applied except for the final optimization requirements: leading muon $p_T$ (top), trailing muon $p_T$ (middle), and $\mu^+\mu^-jj$ invariant mass (bottom). The plots show the data, backgrounds, and two choices for the heavy Majorana neutrino signal: $m_N = 100\text{ GeV}$, $|V_{\mu N}|^2 = 0.001$ and $m_N = 300\text{ GeV}$, $|V_{\mu N}|^2 = 0.05$. The backgrounds shown are from misidentified muons and from diboson (VV), Higgs boson, triboson (VVV), and $t\bar{t}W$ production.
Figure 4: Exclusion region at 95% CL in the cross section times branching fraction, as a function of the heavy Majorana neutrino mass. The long-dashed black curve is the expected upper limit, with one and two standard deviation bands shown in dark green and light yellow, respectively. The solid black curve is the observed upper limit. The region above the exclusion curves is ruled out.
Figure 5: Exclusion region at 95% CL in the square of the heavy Majorana neutrino mixing parameter times branching fraction of the N to a W boson and a muon, as a function of the heavy Majorana neutrino mass: $(|V_{\mu N}|^2 B(N \rightarrow W^\pm \mu^\mp)$ vs. $m_N$). The long-dashed black curve is the expected upper limit, with one and two standard deviation bands shown in dark green and light yellow, respectively. The solid black curve is the observed upper limit. The regions above the exclusion curves are ruled out. The lower panel shows an expanded view of the region $40 \text{ GeV} < m_N < 250 \text{ GeV}$. 

- CL $s$ Expected
- CL $s$ Expected ± 1σ
- CL $s$ Expected ± 2σ
- CL $s$ Observed
Figure 6: Exclusion region at 95% CL in the square of the heavy Majorana neutrino mixing parameter as a function of the heavy Majorana neutrino mass: $(|V_{\mu N}|^2$ vs. $m_N$). The long-dashed black curve is the expected upper limit, with one and two standard deviation bands shown in dark green and light yellow, respectively. The solid black curve is the observed upper limit. Also shown are the upper limits from other direct searches: L3 [20], DELPHI [21], and the upper limits from CMS obtained with the 2011 LHC data at $\sqrt{s} = 7$ TeV [22]. The regions above the exclusion curves are ruled out. The lower panel shows an expanded view of the region $40\text{GeV} < m_N < 250\text{GeV}$. 
References

[1] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, Phys. Rev. D 86 (2012) 010001, doi:10.1103/PhysRevD.86.010001. See the review section on Neutrino Mass, Mixing, and Oscillations, and references therein.

[2] P. Minkowski, “µ → eγ at a rate of one out of 10^9 muon decays?”, Phys. Lett. B 67 (1977) 421, doi:10.1016/0370-2693(77)90435-X

[3] M. Gell-Mann, P. Ramond, and R. Slansky in Supergravity: proceedings of the Supergravity Workshop at Stony Brook, P. Nieuwenhuizen and D. Freedman, eds., p. 315. North-Holland, 1979.

[4] T. Yanagida, “Horizontal symmetry and masses of neutrinos”, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto, eds., p. 95. National Laboratory for High Energy Physics (KEK), 1979.

[5] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Violation”, Phys. Rev. Lett. 44 (1980) 912, doi:10.1103/PhysRevLett.44.912

[6] M. Magg and C. Wetterich, “Neutrino mass problem and gauge hierarchy”, Phys. Lett. B 94 (1980) 61, doi:10.1016/0370-2693(80)90825-4

[7] R. N. Mohapatra and G. Senjanovic, “Neutrino masses and mixings in gauge models with spontaneous parity violation”, Phys. Rev. D 23 (1981) 165, doi:10.1103/PhysRevD.23.165

[8] E. Ma and U. Sarkar, “Neutrino masses and leptogenesis with heavy Higgs triplets”, Phys. Rev. Lett. 80 (1998) 5716, doi:10.1103/PhysRevLett.80.5716, arXiv:hep-ph/9802445

[9] R. Foot, H. Lew, X.-G. He, and G. C. Joshi, “See-saw neutrino masses induced by a triplet of leptons”, Z. Phys. C 44 (1989) 441, doi:10.1007/BF01415558

[10] R. N. Mohapatra, “Mechanism for Understanding Small Neutrino Mass in Superstring Theories”, Phys. Rev. Lett. 56 (1986) 561, doi:10.1103/PhysRevLett.56.561

[11] R. N. Mohapatra and J. W. F. Valle, “Neutrino mass and baryon number nonconservation in superstring models”, Phys. Rev. D 34 (1986) 1642, doi:10.1103/PhysRevD.34.1642

[12] W.-Y. Keung and G. Senjanovic, “Majorana Neutrinos and the Production of the Right-Handed Charged Gauge Boson”, Phys. Rev. Lett. 50 (1983) 1427, doi:10.1103/PhysRevLett.50.1427

[13] D. A. Dicus, D. D. Karatas, and P. Roy, “Lepton nonconservation at supercollider energies”, Phys. Rev. D 44 (1991) 2033, doi:10.1103/PhysRevD.44.2033

[14] A. Datta, M. Guchait, and A. Pilaftsis, “Probing lepton number violation via majorana neutrinos at hadron supercolliders”, Phys. Rev. D 50 (1994) 3195, doi:10.1103/PhysRevD.50.3195, arXiv:hep-ph/9311257

[15] F. M. L. Almeida Jr., Y. A. Coutinho, J. A. Martins Simões, and M. A. B. do Vale, “On a signature for heavy Majorana neutrinos in hadronic collisions”, Phys. Rev. D 62 (2000) 075004, doi:10.1103/PhysRevD.62.075004, arXiv:hep-ph/0002024
[16] O. Panella, M. Cannoni, C. Carimalo, and Y. N. Srivastava, “Signals of heavy Majorana neutrinos at hadron colliders”, Phys. Rev. D 65 (2002) 035005, doi:10.1103/PhysRevD.65.035005, arXiv:hep-ph/0107308.

[17] T. Han and B. Zhang, “Signatures for Majorana Neutrinos at Hadron Colliders”, Phys. Rev. Lett. 97 (2006) 171804, doi:10.1103/PhysRevLett.97.171804, arXiv:hep-ph/0604064.

[18] F. del Aguila, J. A. Aguilar-Saavedra, and R. Pittau, “Heavy neutrino signals at large hadron colliders”, JHEP 10 (2007) 047, doi:10.1088/1126-6708/2007/10/047, arXiv:hep-ph/0703261.

[19] A. Atre, T. Han, S. Pascoli, and B. Zhang, “The search for heavy Majorana neutrinos”, JHEP 05 (2009) 030, doi:10.1088/1126-6708/2009/05/030, arXiv:0901.3589.

[20] L3 Collaboration, “Search for isosinglet neutral heavy leptons in Z0 decays”, Phys. Lett. B 295 (1992) 371, doi:10.1016/0370-2693(92)91579-X.

[21] DELPHI Collaboration, “Search for neutral heavy leptons produced in Z decays”, Z. Phys. C 74 (1997) 57, doi:10.1007/s002880050370.

[22] CMS Collaboration, “Search for heavy Majorana neutrinos in $\mu^+\mu^-\mu^-\mu^-$ and $e^+e^-\mu^-\mu^-$ events in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 717 (2012) 109, doi:10.1016/j.physletb.2012.09.012, arXiv:1207.6079.

[23] LHCb Collaboration, “Search for Majorana Neutrinos in $B^-\to\pi^+\mu^-\mu^-$ Decays”, Phys. Rev. Lett. 112 (2014) 131802, doi:10.1103/PhysRevLett.112.131802, arXiv:1401.5361.

[24] F. del Aguila, J. de Blas, and M. Pérez-Victoria, “Effects of new leptons in electroweak precision data”, Phys. Rev. D 78 (2008) 013010, doi:10.1103/PhysRevD.78.013010, arXiv:0803.4008.

[25] CMS Collaboration, “Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at $\sqrt{s} = 8$ TeV”, Eur. Phys. J. C 74 (2014) 3149, doi:10.1140/epjc/s10052-014-3149-z, arXiv:1407.3683.

[26] ATLAS Collaboration, “Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”, Eur. Phys. J. C 72 (2012) 2056, doi:10.1140/epjc/s10052-012-2056-4, arXiv:1203.5420.

[27] A. Pilaftsis, “Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields”, Z. Phys. C 55 (1992) 275, doi:10.1007/BF01482590, arXiv:hep-ph/9901206.

[28] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[29] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
17

[30] M. L. Mangano et al., “ALPGEN, a generator for hard multiparton processes in hadronic collisions”, *JHEP* 07 (2003) 001, [doi:10.1088/1126-6708/2003/07/001](https://doi.org/10.1088/1126-6708/2003/07/001), arXiv:hep-ph/0206293.

[31] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order”, *Comput. Phys. Commun.* 182 (2011) 2388, [doi:10.1016/j.cpc.2011.06.008](https://doi.org/10.1016/j.cpc.2011.06.008), arXiv:1011.3540.

[32] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “W Physics at the LHC with FEWZ 2.1”, *Comput. Phys. Commun.* 184 (2013) 208, [doi:10.1016/j.cpc.2012.09.005](https://doi.org/10.1016/j.cpc.2012.09.005), arXiv:1201.5896.

[33] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, *JHEP* 07 (2002) 012, [doi:10.1088/1126-6708/2002/07/012](https://doi.org/10.1088/1126-6708/2002/07/012), arXiv:hep-ph/0201195.

[34] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* 05 (2006) 026, [doi:10.1088/1126-6708/2006/05/026](https://doi.org/10.1088/1126-6708/2006/05/026), arXiv:hep-ph/0603175.

[35] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, [doi:10.1016/S0168-9002(03)01368-8](https://doi.org/10.1016/S0168-9002(03)01368-8).

[36] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* 9 (2014) P10009, [doi:10.1088/1748-0221/9/10/P10009](https://doi.org/10.1088/1748-0221/9/10/P10009), arXiv:1405.6569.

[37] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $E_T^{miss}$”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[38] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[39] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-$k_t$ jet clustering algorithm”, *JHEP* 04 (2008) 063, [doi:10.1088/1126-6708/2008/04/063](https://doi.org/10.1088/1126-6708/2008/04/063), arXiv:0802.1189.

[40] CMS Collaboration, “Search for new physics in events with same-sign dileptons and jets in pp collisions at $\sqrt{s} = 8$ TeV”, *JHEP* 01 (2014) 163, [doi:10.1007/JHEP01(2014)163](https://doi.org/10.1007/JHEP01(2014)163), arXiv:1311.6736.

[41] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* 8 (2013) P04013, [doi:10.1088/1748-0221/8/04/P04013](https://doi.org/10.1088/1748-0221/8/04/P04013), arXiv:1211.4462.

[42] G. Punzi, “Sensitivity of searches for new signals and its optimization”, (2003). arXiv:physics/0308063.

[43] J. Alwall et al., “MadGraph 5: going beyond”, *JHEP* 06 (2011) 128, [doi:10.1007/JHEP06(2011)128](https://doi.org/10.1007/JHEP06(2011)128), arXiv:1106.0522.

[44] CMS Collaboration, “Measurement of the $W^+W^−$ and ZZ production cross sections in pp collisions at $\sqrt{s} = 8$ TeV”, *Phys. Lett. B* 721 (2013) 190, [doi:10.1016/j.physletb.2013.03.027](https://doi.org/10.1016/j.physletb.2013.03.027).

[45] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536.
[46] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011).
  \texttt{arXiv:1101.0538}

[47] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013.

[48] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, \textit{JINST} \textbf{6} (2011) P11002,
doi:10.1088/1748-0221/6/11/P11002.

[49] A. L. Read, “Presentation of search results: the $CL_s$ technique”, \textit{J. Phys. G} \textbf{28} (2002) 2693,
doi:10.1088/0954-3899/28/10/313.

[50] T. Junk, “Confidence level computation for combining searches with small statistics”, 
\textit{Nucl. Instrum. Meth. A} \textbf{434} (1999) 435,
doi:10.1016/S0168-9002(99)00498-2, 
\texttt{arXiv:hep-ex/9902006}.

[51] ATLAS and CMS Collaborations, “Procedure for the LHC Higgs boson search combination in Summer 2011”, ATLAS PUB/CMS NOTE ATL-PHYS-PUB-2011-011, CMS-NOTE-2011-005, 2011.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Kräschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schönbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Keroucleux, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenuyk, A. Léonard, A. Mohammadi, L. Pernié, A. Randle-conde, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Cruci, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, J. Molina, C. Mora Herrera, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, A. Vilela Pereira
Universidade Estadual Paulista $a$, Universidade Federal do ABC $b$, São Paulo, Brazil
C.A. Bernardes$^{a}$, S. Dogra$^{a}$, T.R. Fernandez Perez Tomei$^{a}$, E.M. Gregores$^{b}$, P.G. Mercadante$^{b}$, S.F. Novaes$^{a}$, Sandra S. Padula$^{a}$

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev$^{2}$, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina$^{7}$, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang$^{8}$, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.$^{9}$

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran$^{10}$, S. Elgammal$^{11}$, A. Ellithi Kamel$^{12}$, A. Radi$^{11,13}$

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besançon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, T. Dahms, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Pagani, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, C. Bernet, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, U. Behrens, A.J. Bell, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol,
D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann\textsuperscript{15}, B. Lutz, R. Mankel, I. Marfin\textsuperscript{15}, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, H. Kirschenmann, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Fresch, M. Giffels, A. Gilbert, F. Hartmann\textsuperscript{2}, T. Hauth, U. Husemann, I. Katkov\textsuperscript{5}, A. Kornmayer\textsuperscript{2}, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris, E. Tziaferi

University of Ioánina, Ioánina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Parasas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath\textsuperscript{16}, F. Sikler, V. Veszpremi, G. Vesztergombi\textsuperscript{17}, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\textsuperscript{18}, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma
Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, V. Kumar, A.K. Mohanty\textsuperscript{a}, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik\textsuperscript{19}, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu\textsuperscript{20}, G. Kole, S. Kumar, M. Maity\textsuperscript{19}, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, D. Pedrini, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, H. Bakhshiansohi, H. Behnamian, S. Sharma, S. Srivastava, S. Kaur, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, S.M. Etesami, H. Bakhshiansohi, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh\textsuperscript{24}, M. Zarei, M. Zargary, M. Abbrescia

Indian Institute of Science Education and Research (IISER), Pune, India
S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami\textsuperscript{22}, A. Fahim\textsuperscript{23}, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh\textsuperscript{24}, M. Zarei, M. Zargary

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari \textsuperscript{a}, Universitè di Bari \textsuperscript{b}, Politecnico di Bari \textsuperscript{c}, Bari, Italy
M. Abbrescia\textsuperscript{a, b}, C. Calabria\textsuperscript{a, b}, S.S. Chhibra\textsuperscript{a, b}, A. Colaleo\textsuperscript{a}, D. Creanza\textsuperscript{a, c}, L. Cristella\textsuperscript{a, b}, N. De Filippis\textsuperscript{a, c}, M. De Palma\textsuperscript{a, b}, L. Fiore\textsuperscript{a}, G. Iaselli\textsuperscript{a, c}, G. Maggi\textsuperscript{a, c}, M. Maggi\textsuperscript{a}, S. My\textsuperscript{a, c}, S. Nuzzo\textsuperscript{a, b}, A. Pompili\textsuperscript{a, b}, G. Pugliese\textsuperscript{a, c}, R. Radogna\textsuperscript{a, b, 2}, G. Selvaggi\textsuperscript{a, b}, A. Sharma\textsuperscript{a}, L. Silvestris\textsuperscript{a, 2}, R. Venditti\textsuperscript{a, b}, P. Verwilligen\textsuperscript{a}

INFN Sezione di Bologna \textsuperscript{a}, Universitè di Bologna \textsuperscript{b}, Bologna, Italy
G. Abbiendi\textsuperscript{a}, A.C. Benvenuti\textsuperscript{a}, D. Bonacorsi\textsuperscript{a, b}, S. Braibant-Giacomelli\textsuperscript{a, b}, L. Brigliadori\textsuperscript{a, b}, R. Campanini\textsuperscript{a, b}, P. Capiluppi\textsuperscript{a, b}, A. Castro\textsuperscript{a, b}, F.R. Cavallo\textsuperscript{a}, G. Codispoti\textsuperscript{a, b}, M. Cuffiani\textsuperscript{a, b}, G.M. Dallavalle\textsuperscript{a}, F. Fabbri\textsuperscript{a}, A. Fanfani\textsuperscript{a, b}, D. Fasanella\textsuperscript{a, b}, P. Giacomelli\textsuperscript{a}, C. Grandi\textsuperscript{a}, L. Guiducci\textsuperscript{a, b}, S. Marcellini\textsuperscript{a}, G. Masetti\textsuperscript{a}, A. Montanari\textsuperscript{a}, F.L. Navarria\textsuperscript{a, b}, A. Perrotta\textsuperscript{a}, A.M. Rossi\textsuperscript{a, b}, T. Rovelli\textsuperscript{a, b}, G.P. Sironi\textsuperscript{a, b}, N. Tosi\textsuperscript{a, b}, R. Travaglini\textsuperscript{a, b}

INFN Sezione di Catania \textsuperscript{a}, Universitè di Catania \textsuperscript{b}, CSFNSM \textsuperscript{c}, Catania, Italy
S. Albergo\textsuperscript{a, b}, G. Cappello\textsuperscript{a}, M. Chiorboli\textsuperscript{a, b}, S. Costa\textsuperscript{a, b}, F. Giordano\textsuperscript{a, 2}, R. Potenza\textsuperscript{a, b}, A. Tricomi\textsuperscript{a, b}, C. Tuve\textsuperscript{a, b}

INFN Sezione di Firenze \textsuperscript{a}, Universitè di Firenze \textsuperscript{b}, Firenze, Italy
G. Barbagli\textsuperscript{a}, V. Ciulli\textsuperscript{a, b}, C. Civinini\textsuperscript{a}, R. D’Alessandro\textsuperscript{a, b}, E. Focardi\textsuperscript{a, b}, E. Gallo\textsuperscript{a}, S. Gonzi\textsuperscript{a, b}, V. Gori\textsuperscript{a, b}, P. Lenzi\textsuperscript{a, b}, M. Meschini\textsuperscript{a}, S. Paolletti\textsuperscript{a}, G. Sguazzoni\textsuperscript{a}, A. Tropiano\textsuperscript{a, b}

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova \textsuperscript{a}, Universitè di Genova \textsuperscript{b}, Genova, Italy
R. Ferretti\textsuperscript{a, b}, F. Ferro\textsuperscript{a}, M. Lo Vetere\textsuperscript{a, b}, E. Robutti\textsuperscript{a}, S. Tosi\textsuperscript{a, b}

INFN Sezione di Milano-Bicocca \textsuperscript{a}, Universitè di Milano-Bicocca \textsuperscript{b}, Milano, Italy
M.E. Dinardo\textsuperscript{a, b}, S. Fiorendi\textsuperscript{a, b}, S. Gennai\textsuperscript{a, b}, R. Gerosa\textsuperscript{a, b, 2}, A. Ghezzi\textsuperscript{a, b}, P. Govoni\textsuperscript{a, b}, M.T. Lucchini\textsuperscript{a, 2}, S. Malvezzi\textsuperscript{a, b}, R.A. Manzoni\textsuperscript{a, b}, A. Martelli\textsuperscript{a, b}, B. Marzocchi\textsuperscript{a, b, 2}, D. Menasce\textsuperscript{a, b}, L. Moroni\textsuperscript{a, b}, M. Paganoni\textsuperscript{a, b}, D. Pedrini\textsuperscript{a}, S. Ragazzi\textsuperscript{a, b}, N. Redaelli\textsuperscript{a}, T. Tabarelli de Fatis\textsuperscript{a, b}
INFN Sezione di Napoli $^a$, Università di Napoli ‘Federico II’ $^b$, Università della Basilicata (Potenza) $^c$, Università G. Marconi (Roma) $^d$, Napoli, Italy
S. Buontempo$^a$, N. Cavallo$^{a,c}$, S. Di Guida$^{a,d,2}$, F. Fabozzi$^{a,c}$, A.O.M. Iorio$^{a,b}$, L. Lista$^a$, S. Meola$^{a,d,2}$, M. Merola$^a$, P. Paolucci$^{a,2}$

INFN Sezione di Padova $^a$, Università di Padova $^b$, Università di Trento (Trento) $^c$, Padova, Italy
P. Azzi$^a$, N. Bacchetta$^a$, D. Bisello$^{a,b}$, R. Carlini$^{a,b}$, P. Checchia$^a$, M. Dall’Osso$^{a,b}$, T. Dorigo$^a$, F. Gasparini$^{a,b}$, U. Gasparini$^{a,b}$, A. Gozzelino$^a$, S. Lacaprara$^a$, M. Margoni$^{a,b}$, G. Maron$^{a,25}$, A.T. Meneguzzo$^{a,b}$, M. Michelotto$^a$, J. Pazzini$^{a,b}$, N. Pozzobon$^{a,b}$, P. Ronchese$^{a,b}$, F. Simonetto$^{a,b}$, E. Torassa$^a$, M. Tosi$^{a,b}$, S. Vanini$^{a,b}$, P. Zotto$^{a,b}$, A. Zucchetta$^{a,b}$, G. Zumerle$^a$.

INFN Sezione di Pavia $^a$, Università di Pavia $^b$, Pavia, Italy
M. Gabusi$^{a,b}$, S.P. Ratti$^{a,b}$, V. Re$^a$, C. Riccardi$^{a,b}$, P. Salvini$^a$, P. Vitulo$^{a,b}$

INFN Sezione di Perugia $^a$, Università di Perugia $^b$, Perugia, Italy
M. Biasini$^{a,b}$, G.M. Bilei$^a$, D. Ciangottini$^{a,b,2}$, L. Fano$^{a,b}$, P. Lariccia$^{a,b}$, G. Mantovani$^{a,b}$, M. Menichelli$^a$, A. Saha$^a$, A. Santocchia$^a$, A. Spiezia$^{a,b}$.

INFIN Sezione di Pisa $^a$, Università di Pisa $^b$, Scuola Normale Superiore di Pisa $^c$, Pisa, Italy
K. Androsov$^{a,26}$, P. Azzurri$^a$, G. Bagliesi$^a$, J. Bernardini$^a$, T. Boccali$^a$, G. Broccolo$^{a,c}$, R. Castaldi$^a$, M.A. Ciocci$^{a,26}$, R. Dell’Orso$^a$, S. Donato$^{a,c,2}$, G. Fedi$^a$, F. Fiori$^{a,c}$, L. Foa$^{a,c}$, A. Giassi$^a$, M.T. Grippo$^{a,26}$, F. Ligabue$^{a,c}$, T. Lomtadze$^a$, L. Martini$^{a,b}$, A. Messineo$^{a,b}$, C.S. Moon$^{a,27}$, F. Pallia$^{a,2}$, A. Rizzi$^{a,b}$, A. Savoy-Navarro$^{a,28}$, A.T. Serban$^a$, P. Spagnolo$^a$, P. Squillacioti$^{a,26}$, R. Tencini$^a$, G. Tonelli$^{a,b}$, A. Venturi$^a$, P.G. Verdini$^a$, C. Vernieri$^{a,b}$.

INFIN Sezione di Roma $^a$, Università di Roma $^b$, Roma, Italy
L. Barone$^{a,b}$, F. Cavallari$^a$, G. D’imperio$^{a,b}$, D. Del Re$^{a,b}$, M. Diemoz$^a$, C. Jordi$^a$, E. Longo$^{a,b}$, F. Margaroli$^{a,b}$, P. Meridiani$^a$, F. Michel$^{a,b,2}$, G. Organtini$^{a,b}$, R. Paramatti$^a$, S. Rahatlou$^a$, B. Gobbo$^a$, C. Ronchese$^a$, P. Traczyk$^{a,b,2}$

INFIN Sezione di Torino $^a$, Università di Torino $^b$, Università del Piemonte Orientale (Novara) $^c$, Torino, Italy
N. Amapane$^{a,b}$, R. Arcidiacono$^{a,c}$, S. Argiro$^{a,b}$, M. Arneodo$^{a,c}$, R. Bellan$^{a,b}$, C. Biino$^a$, N. Cartiglia$^a$, S. Casasso$^{a,b,2}$, M. Costa$^{a,b}$, R. Covarelli, A. Degano$^{a,b}$, N. Demaria$^a$, L. Fincito$^{a,b}$, C. Mariotti$^a$, S. Maselli$^a$, E. Migliore$^{a,b}$, V. Monaco$^{a,b}$, M. Musich$^a$, M.M. Obertino$^{a,c}$, L. Pacher$^{a,b}$, N. Pastrone$^a$, M. Pelliccioni$^a$, G.L. Pinna Angioni$^{a,b}$, A. Potenza$^{a,b}$, A. Romero$^{a,b}$, M. Ruspa$^{a,c}$, R. Scachetti$^{a,b}$, A. Solano$^{a,b}$, A. Staiano$^{a}$, U. Tamponi$^a$

INFIN Sezione di Trieste $^a$, Università di Trieste $^b$, Trieste, Italy
S. Belforte$^a$, V. Candelise$^{a,b,2}$, M. Casarsa$^a$, F. Cosutti$^a$, G. Della Ricca$^{a,b}$, B. Gobbo$^a$, C. La Licata$^{a,b}$, M. Marone$^{a,b}$, A. Schizzi$^{a,b}$, T. Umer$^{a,b}$, A. Zanetti$^a$

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song
Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
J. Almond, S. Seo, U.K. Yang, H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali, W.A.T. Wan Abdullah

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorni, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Biała, M. Bluj, B. Boimska, T. Fruboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisen, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Dominguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martin, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson,
M. Dordevic, B. Dorney, N. Dupont-Sagorin, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajčar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijs, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, S. Orfanelli, L. Orsini, L. Pape, E. Perez, A. Petrelli, G. Petrucciani, A. Pfeiffer, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohé

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M. Meister, N. Mohr, P. Musella, C. Négeli, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, S. Taroni, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.F. Tsai, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerçi, C. Dozen, I. Dumanoglu, E. Eskiç, S. Giris, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerçi, B. Tali, H. Topaklı, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, B. Isildak, G. Karapinar, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin
University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika, T. Scarborough, Z. Wu

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta
University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, M. Krohn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Chihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahm, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovani, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, H. Mei, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov,
L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, Y. Lu, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, K. Bierwagen, W. Busza, I.A. Cali, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, S. Nourbakhsh, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chas, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B.Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won
University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, Y. Musienko, T. Pearson, M. Planer, R. Ruchti, G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonard, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zabolocki

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzwieg, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, S. Korjenevski, G. Petrillo, M. Verzetti, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggool, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev
Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmit, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, C. Vuosalo, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Université Libre de Bruxelles, Bruxelles, Belgium
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Also at University of Tebrun, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhr, Matar, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at National Research Nuclear University "Moscow Engineering Physics Institute", Moscow, Russia
33: Also at California Institute of Technology, Pasadena, USA
34: Also at National Research Nuclear University "Moscow Engineering Physics Institute", Moscow, Russia
35: Also at Facoltà di Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Piri Reis University, Istanbul, Turkey
46: Also at Anadolu University, Eskisehir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Izmir Institute of Technology, Izmir, Turkey
49: Also at Necmettin Erbakan University, Konya, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Marmara University, Istanbul, Turkey
52: Also at Kafkas University, Kars, Turkey
53: Also at Yildiz Technical University, Istanbul, Turkey
54: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
55: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Texas A&M University at Qatar, Doha, Qatar
60: Also at Kyungpook National University, Daegu, Korea