RADIUS OF CLOSE-TO-CONVEXITY OF HARMONIC FUNCTIONS

DAVID KALAJ, SAMLINATHAN PONNUSAMY, AND MATTI VUORINEN

Abstract. Let H denote the class of all normalized complex-valued harmonic functions $f = h + g$ in the unit disk D, and let $K = H + G$ denote the harmonic Koebe function. Let a_n, b_n, A_n, B_n denote the Maclaurin coefficients of h, g, H, G, and

$$F = \{ f = h + g \in H : |a_n| \leq A_n \text{ and } |b_n| \leq B_n \text{ for } n \geq 1 \}.$$

We show that the radius of univalence of the family F is 0. We also show that this number is also the radius of the starlikeness of F. Analogous results are proved for a subclass of the class of harmonic convex functions in H. These results are obtained as a consequence of a new coefficient inequality for certain class of harmonic close-to-convex functions. Surprisingly, the new coefficient condition helps to improve Bloch-Landau constant for bounded harmonic mappings.

1. Introduction and Main Results

Denote by H the class of all complex-valued harmonic functions f in the unit disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$ normalized by $f(0) = 0 = f_z(0) - 1$. Each f can be decomposed as $f = h + g$, where g and h are analytic in D so that

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$

Let S_H denote the class of univalent and orientation-preserving functions $f = h + g$ in H. Then the Jacobian of f is given by $J_f(z) = |h'(z)|^2 - |g'(z)|^2$. We note that if $f = h + g \in S_H$ and $g(z) \equiv 0$ in D, then $f = h \in S$, where S denotes the well-known class of normalized univalent analytic functions in D. A necessary and sufficient condition (see [4] or Lewy [10]) for a harmonic function f to be locally univalent in D is that $J_f(z) > 0$ in D. The function $\omega(z) = g'(z)/h'(z)$ denotes the complex dilatation of f. Thus, for $f = h + g \in S_H$ with $g(0) = b_1$ and $|b_1| < 1$ (because $J_f(0) = 1 - |b_1|^2 > 0$), the function

$$F = \frac{f - \overline{b_1}f}{1 - |b_1|^2}$$

is also in S_H. Thus, it is customary to restrict our attention to the subclass

$$S_H^0 = \{ f \in S_H : f_z(0) = 0 \}.$$
The family S^0_H is known to be compact. The uniqueness result of the Riemann mapping theorem does not extend to these classes of harmonic functions, [6, 8]. Several authors have studied the subclass of functions that map \mathbb{D} onto specific domains, e.g., starlike domains, convex and close-to-convex domains. Let $S^0_H (K_H, C_H \text{ resp.})$ consist of all sense-preserving harmonic mappings $f = h + \overline{g} \in \mathcal{H}$ of \mathbb{D} onto starlike (convex, close-to-convex, resp.) domains. Denote by $S^0_H (K^0_H, C^0_H \text{ resp.})$ the class consists of those functions f in $S^0_H (K_H, C_H \text{ resp.})$ for which $f(0) = 0$.

In [6] Lemma 5.15, Clunie and Sheil-Small proved the following result.

Lemma A. If h, g are analytic in \mathbb{D} with $|h'(0)| > |g'(0)|$ and $h + \epsilon g$ is close-to-convex for each ϵ, $|\epsilon| = 1$, then $f = h + \overline{g}$ is close-to-convex in \mathbb{D}.

This lemma has been used to obtain many important results. In the case of S^0_H, we have the harmonic Koebe function $K = H + \overline{G}$ in S^0_H, where

$$H(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3} \quad \text{and} \quad G(z) = \frac{\frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3}.$$

We see that the function K has the dilatation $\omega(z) = z$ and K maps the unit disk \mathbb{D} onto the slit plane $\mathbb{C}\{u + iv : u \leq -1/6, \ v = 0\}$. Moreover,

$$H(z) = \sum_{n=2}^{\infty} A_n z^n \quad \text{and} \quad G(z) = \sum_{n=2}^{\infty} B_n z^n,$$

where

$$A_n = \frac{1}{6}(2n + 1)(n + 1) \quad \text{and} \quad B_n = \frac{1}{6}(2n - 1)(n - 1), \quad n \geq 1.$$

A well-known coefficient conjecture of Clunie and Sheil-Small [6], is that if $f = h + \overline{g} \in S^0_H$ then the Taylor coefficients of the series of h and g satisfy the inequality

$$|a_n| \leq A_n \quad \text{and} \quad |b_n| \leq B_n \quad \text{for all} \quad n \geq 1.$$

Although, the coefficients conjecture remains an open problem for the full class S^0_H, the same has been verified for certain subclasses, namely, the class T_H (see [8 Section 6.6]) of harmonic univalent typically real functions, the class of harmonic convex functions in one direction, harmonic starlike functions in S^H (see [8 Section 6.7]), and the class of harmonic close-to-convex functions (see [17]).

It is interesting to know to what extent do the conditions (1.4) influence the univalency of the normalized harmonic function $f(z)$ and of all of its partial sums, namely, $f_n(z)$ and $f_{\overline{m}}(z)$, where

$$f_n(z) = h_n(z) + g_m(z) \quad \text{if} \quad n \geq m; \quad f_{\overline{m}}(z) = h_n(z) + \overline{g_m(z)} \quad \text{if} \quad m \geq n.$$

Here $h_n(z)$ and $g_m(z)$ represent the n-th section/partial sums of h and g given by

$$h_n(z) = z + \sum_{k=2}^{n} a_k z^k \quad \text{and} \quad g_m(z) = \sum_{k=1}^{m} b_k z^k,$$

respectively. According to our notation, the degree of the polynomials $f_n(z)$ and $f_{\overline{m}}(z)$ is n if $n = m$.

Theorem 1.5. Let h and g have the form (1.1) and the coefficients of the series satisfy the conditions (1.4). Then $f = h + \overline{g}$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 + \frac{\sqrt{2}}{4} - \sqrt{\frac{\sqrt{2}}{2} + \frac{1}{8}} \approx 0.112903$$

is the root of the quadratic equation

$$\sqrt{2}r^2 - (1 + 2\sqrt{2})r + \sqrt{2} - 1 = 0$$

in the interval $(0, 1)$. The result is sharp.

The radii problems for various subclasses of univalent harmonic mappings are open [2, Problem 3.3] (see also [6, 8, 15, 14]). However, Theorem 1.5 quickly yields Corollary 1.6. The radius of close-to-convexity and the radius of starlikeness for mappings in S_H^0 (resp. C_H^0 and T_H) is at least 0.112903.

Under the hypotheses of Theorem 1.5, all the partial sums of f are close-to-convex (univalent), and starlike in $|z| < r_S$. Similar comments apply to the next two results.

Another well-known result due to Clunie and Sheil-Small [6] states that the coefficients of the series of h and g of every convex function $f = h + \overline{g} \in K_H^0$ satisfy the inequalities

(1.7) $|a_n| \leq \frac{n+1}{2}$ and $|b_n| \leq \frac{n-1}{2}$ for all $n \geq 1$.

Equality occurs for the function $L = M + N \in K_H^0$, where

(1.8) $M(z) = \frac{1}{2} \left(\frac{z}{1-z} + \frac{z}{(1-z)^2} \right)$ and $N(z) = \frac{1}{2} \left(\frac{z}{1-z} - \frac{z}{(1-z)^2} \right)$.

We observe that

$$L(z) = \text{Re} \left(\frac{z}{1-z} \right) + \text{Im} \left(\frac{z}{(1-z)^2} \right) = z + \sum_{n=2}^{\infty} \frac{n+1}{2} z^n - \sum_{n=2}^{\infty} \frac{n-1}{2} z^n.$$

At this place it is worth recalling that the convexity (resp. starlikeness) property is not a hereditary property in the harmonic case, unlike the analytic case. For instance, the convex function L maps the subdisk $|z| < r$ onto a convex domain for $r \leq \sqrt{2} - 1$, but onto a non-convex domain for $\sqrt{2} - 1 < r < 1$.

Theorem 1.9. Let h and g have the form (1.1) and the coefficients of the series satisfy the conditions (1.7). Then $f = h + \overline{g}$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 + \frac{3\sqrt{-18 + \sqrt{330}}}{6^{2/3}} - \frac{1}{\sqrt[3]{6(-18 + \sqrt{330})}} \approx 0.164878$$

is the real root of the cubic equation

$$2r^3 - 6r^2 + 7r - 1 = 0$$

in the interval $(0, 1)$. The result is sharp.
Theorem 1.9 easily gives the following corollary although Theorem 1.9 is much more stronger.

Corollary 1.10. The radius of close-to-convexity and the radius of starlikeness for convex mappings in S^0_H is at least 0.164878.

Theorem 1.11. Let h and g have the form (1.1) with $|b_1| = |g'(0)| < 1$, and the coefficients of the series satisfy the conditions

$$|a_n| + |b_n| \leq c \quad \text{for all } n \geq 2.$$

Then $f = h + g$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 - \sqrt{\frac{c}{c + 1 - |b_1|}}.$$

The result is sharp.

Theorem 1.11 helps to improve the Bloch-Landau’s theorem for bounded harmonic functions. Consider the class B^M_H of a harmonic mapping f of the unit disk D with $f(0) = f_z(0) = f_z(0) - 1 = 0$, and $|f(z)| < M$ for $z \in D$. There are two important constants one is relative to the domain of the function while the other one, namely the Bloch constant, is defined relative to the range. In [3], authors proved that if $f \in B^M_H$ then f is univalent in $|z| < \rho_0$ and $f(|z| < \rho_0)$ contains a disk $|w| < R_0$, where

$$\rho_0 \approx \frac{1}{11.105M} \quad \text{and} \quad R_0 = \frac{\rho_0}{2} \approx \frac{1}{22.21M}.$$

Better estimates were given in [7, 9, 11, 12] and later in [5], see Table 1 in which the functions ϕ and ψ are explicitly given by

$$\phi(x) = \frac{x}{\sqrt{2(x^2 + x - 1)}} \quad \text{and} \quad \psi(x) = \frac{1}{\sqrt{2}} \left[1 + \left(\frac{x^2 - 1}{x} \right) \log \left(\frac{x^2 - 1}{x^2 + x - 1} \right) \right].$$

This result is the best known but not sharp.

The purpose the next theorem is to give a new proof of one of these results. Indeed our method of proof is simple and improves the best known result. In fact our distortion estimate for $f \in B^M_H$ provides the radius of close-to-convexity and the radius starlikeness of B^M_H.

Theorem 1.12. Let $f \in B^M_H$. Then $f = h + g$ is close-to-convex (univalent) in the disk $|z| < r_0$, where

$$r_S = 1 - \sqrt{\frac{4M}{4M + \pi}}$$

and $f(D_{r_0})$ contains a univalent disk of radius at least

$$R_S = r_S - \frac{4M}{\pi} \frac{r_S^2}{1 - r_S}.$$
Table 1. The left side columns refer to Theorem 4 in [5] and the right side columns refer to Theorem 1.12.

2. Useful Lemmas and their Proofs

We need the following two lemmas to prove our main results.

Lemma 2.1. Let \(h \) and \(g \) have the form (1.1) with \(|b_1| < 1 \), \(f = h + \overline{g} \), and satisfy the condition

\[
\sum_{n=2}^{\infty} n|a_n| + \sum_{n=1}^{\infty} n|b_n| \leq 1.
\]

Then \(f \in C^2_H \), where \(C^2_H = \{ f \in S_H : |f(z) - 1| < 1 - |f_{z}(z)| \text{ in } D \} \). The bound in (2.2) is sharp as the harmonic function

\[
f(z) = z + \sum_{n=2}^{\infty} \frac{\epsilon_n}{n} z^n + \sum_{n=1}^{\infty} \frac{\epsilon'_n}{n} \overline{z^n},
\]

for which \(\sum_{n=2}^{\infty} |\epsilon_n| + \sum_{n=1}^{\infty} |\epsilon'_n| = 1 \), shows.

Proof. In [13], it was shown that \(\text{Re } f_z(z) > |f_{\overline{z}}(z)| \) whenever (2.2) holds. The proof of this lemma follows from an easy modification of the proof of the corresponding result from [13]. For the sake of completeness, we include the detail. Note that the coefficient inequality implies that both \(h \) and \(g \) are analytic in \(D \). Thus, \(f = h + \overline{g} \) is harmonic in \(D \). Without loss of generality, we may assume that \(f \) is not affine. Then, as \(f_z = h' \) and \(f_{\overline{z}} = g' \), it follows from the hypotheses that

\[
|h'(z) - 1| \leq \sum_{n=2}^{\infty} n|a_n| \left|\frac{z^n}{n}\right|^{n-1} \leq \sum_{n=2}^{\infty} n|a_n| \leq 1 - \sum_{n=1}^{\infty} n|b_n| \leq 1 - |g'(z)|
\]

implying that \(f \in C^2_H \) (since strict inequality occurs either at the second or fourth inequality). In particular, \(\text{Re } h'(z) > |g'(z)| \) in \(D \) and hence, \(f \) is locally univalent in \(D \).

For example, the functions

\[
f_n(z) = z + \frac{n+1}{2n^2} z^n + \frac{n-1}{2n^2} \overline{z^n} \text{ for } n \geq 2
\]
satisfy the condition (2.2) and hence, belong to the class C^2_H. In the following lemma, we show that functions in C^2_H are indeed close-to-convex in \mathbb{D}.

Lemma 2.3. Let h and g have the form (1.1) with $|b_1| < 1$, $f = h + \overline{g}$. Suppose $f \in C^2_H$. Then, we have the following

(a) f is close-to-convex in \mathbb{D}.

(b) $|a_n| - |b_n| \leq 1/n$ for $n \geq 2$ whenever $b_1 = 0$. The equality occurs, for example, for the function

$$f(z) = z + \frac{e^{i\theta}}{n}z^n \quad \text{or} \quad f(z) = z + \frac{e^{i\theta}}{n\sqrt{n}}$$

for $n \geq 2$ and θ real.

(c) $\sum_{n=2}^{\infty} n^2(|a_n|^2 + |b_n|^2) \leq 1 - |b_1|^2$.

Proof. First we prove part (a). Let $f = h + \overline{g} \in C^2_H$ and $F = h + e\overline{g}$, where $|\epsilon| = 1$. Then,

$$|F'(z) - 1| < |h'(z) - 1| + |g'(z)| < 1$$

showing that F is analytic and close-to-convex in \mathbb{D}. According to Lemma A, it follows that the harmonic function f is also close-to-convex (and univalent) in \mathbb{D}.

Next, set $\omega(z) = F'(z) - 1$. Then, as $b_1 = g'(0) = 0$, we have $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in \mathbb{D}$. It is well-known property that the coefficients of such an analytic function ω satisfy the inequality $|\omega(n)(0)| \leq n!$ for each $n \geq 1$. This gives the estimate

$$|na_n + eb_n| \leq 1 \quad \text{for each} \quad n \geq 2.$$

As $|\epsilon| = 1$, triangle inequality gives the proof for part (b).

For the proof of part (c), we observe that

$$|F'(z) - 1| = \sum_{n=2}^{\infty} n|a_n|z^{n-1} + \epsilon \sum_{n=1}^{\infty} n|b_n|z^{n-1} < 1, \quad z \in \mathbb{D}.$$

Therefore, with $z = re^{i\theta}$ for $r \in (0, 1)$ and $0 \leq \theta \leq 2\pi$, the last inequality gives

$$\sum_{n=2}^{\infty} n^2(|a_n|^2 + |b_n|^2)r^{2(n-1)} + |b_1|^2 = \frac{1}{2\pi} \int_0^{2\pi} |F'(re^{i\theta}) - 1|^2 d\theta \leq 1.$$

Letting $r \to 1^-$, we obtain the inequality

$$\sum_{n=2}^{\infty} n^2(|a_n|^2 + |b_n|^2) \leq 1 - |b_1|^2$$

and the proof is complete. \qed

In [13], under the hypotheses of Lemma 2.1, it was actually shown that $f \in C^1_H$, where

$$C^1_H = \{f \in S_H : \text{Re} \ f_\omega(z) > |f_\omega(z)| \text{ in } \mathbb{D}\}.$$

Clearly, Lemma 2.1 improves this result because of the strict inclusion $C^2_H \subsetneq C^1_H$. Later, in [1], it was also shown that if $b_1 = g'(0) = 0$, then the coefficient condition
Harmonic Mappings

(2.2) ensures that $f \in S_H^0$ (see also [16]). In view of Lemma 2.1, the result of [11, 16] may be stated in an improved form.

Lemma 2.4. Let h and g have the form (1.1) with $b_1 = g'(0) = 0$, $f = h + \overline{g}$, and satisfy the condition

\[(2.5) \quad \sum_{n=2}^{\infty} n|a_n| + \sum_{n=2}^{\infty} n|b_n| \leq 1.\]

Then $f \in C_H^2 \cap S_H^0$.

The following generalization of Lemma 2.1 is easy to obtain and so we omit its details.

Corollary 2.6. Let h and g have the form (1.1) with $|b_1| < 1 - \beta$ for some $\beta \in [0, 1)$, and $f = h + \overline{g}$. Then we have the following:

(a) If the coefficients of h and g satisfy the condition

\[(2.7) \quad \sum_{n=2}^{\infty} n|a_n| + \sum_{n=1}^{\infty} n|b_n| \leq 1 - \beta,\]

then $f \in C_H^2(\beta)$, where

$$C_H^2(\beta) = \{ f \in S_H : |f_z(z) - 1| < 1 - \beta - |f_z(z)| \text{ in } \mathbb{D} \}.$$

In particular, f is close-to-convex in \mathbb{D}. The bound here is sharp as the harmonic function

\[f(z) = z + \sum_{n=2}^{\infty} \frac{\epsilon_n}{n} z^n + \sum_{n=1}^{\infty} \frac{\epsilon'_n}{n} \overline{z^n},\]

for which $\sum_{n=2}^{\infty} |\epsilon_n| + \sum_{n=1}^{\infty} |\epsilon'_n| = 1 - \beta$, shows.

(b) If $f \in C_H^2(\beta)$, then one has

$$|a_n| - |b_n| \leq (1 - \beta)/n \text{ for } n \geq 2 \text{ whenever } b_1 = 0.$$

The equality occurs, for example, for the function

\[f(z) = z + (1 - \beta)\frac{e^{i\theta}}{n} z^n \text{ or } f(z) = z + (1 - \beta)\frac{e^{i\theta}}{n} \overline{z^n} \text{ for } n \geq 2 \text{ and } \theta \text{ real.}\]

We also have

$$\sum_{n=2}^{\infty} n^2(|a_n|^2 + |b_n|^2) \leq (1 - \beta)^2 - |b_1|^2.$$

It is a matter of routine checking to see that the coefficient condition (2.7) is necessary for $f = h + \overline{g}$ to belong to $C_H^2(\beta)$ whenever the Taylor coefficients $a_n \leq 0$ for all $n \geq 2$, and $b_n \leq 0$ for all $n \geq 1$.

3. Proofs of Main Theorems

Proof of Theorem 1.5. Let \(h \) and \(g \) have the form (1.1) satisfying the coefficient conditions (1.4). First we observe that \(b_1 = g'(0) = 0 \). The conditions (1.4) implies that the series (1.1) are convergent in the unit disk \(|z| < 1 \), and hence, the sum \(h \) and \(g \) are analytic in \(\mathbb{D} \). Thus, \(f = h + g \) is harmonic in \(\mathbb{D} \). Let \(0 < r < 1 \), we let \(f_r(z) := r^{-1}f(rz) = r^{-1}h(rz) + r^{-1}g(rz) \) so that \(f_r(z) = h_r(z) + g_r(z) \) and

\[
f_r(z) = z + \sum_{n=2}^\infty a_n r^{n-1} z^n + \sum_{n=2}^\infty b_n r^{n-1} z^n, \quad z \in \mathbb{D}.
\]

By hypotheses, \(|a_n| \leq A_n \) and \(|b_n| \leq B_n \) for \(n \geq 2 \), where \(A_n \) and \(B_n \) are given by (1.3). Using these coefficient estimates, we obtain

\[
S = \sum_{n=2}^\infty n|a_n|r^{n-1} + \sum_{n=2}^\infty n|b_n|r^{n-1} \\
\leq \sum_{n=2}^\infty nA_n r^{n-1} + \sum_{n=2}^\infty nB_n r^{n-1}.
\]

We show that \(f_r \in C^2_H \cap S^0_H \). According to Lemma 2.4, it suffices to show that \(S \leq 1 \). By the last inequality, \(S \leq 1 \) if \(r \) satisfies the inequality

\[
\sum_{n=2}^\infty nA_n r^{n-1} \leq 1 - \sum_{n=2}^\infty nB_n r^{n-1},
\]

or equivalently (as \(A_n + B_n = (2n^2 + 1)/3 \)),

\[
2 \sum_{n=2}^\infty n^3 r^{n-1} + \sum_{n=2}^\infty nr^{n-1} \leq 3.
\]

As

\[
\frac{r}{(1-r)^2} = \sum_{n=1}^\infty nr^n \quad \text{and} \quad \frac{r(1+r)}{(1-r)^3} = \sum_{n=1}^\infty n^2 r^n,
\]

it follows that

\[
\frac{(1-r)(1+2r) + 3r(1+r)}{(1-r)^4} = \sum_{n=1}^\infty n^3 r^{n-1}
\]

and (3.1) reduces to the inequality,

\[
\frac{2(r^2 + 4r + 1)}{(1-r)^4} + \frac{1}{(1-r)^2} \leq 6, \quad \text{i.e.} \quad 2(1-r)^4 - (1+r)^2 \geq 0.
\]

This gives

\[
\sqrt{2}(1-r)^2 - (1+r) = \sqrt{2}r^2 - (1 + 2\sqrt{2})r + \sqrt{2} - 1 \geq 0.
\]
Thus, from Lemma 2.4, \(f_r \) is close-to-convex (univalent) in \(D \) and starlike in \(D \) for all \(0 < r \leq r_S \), where \(r_S \) is the root of the quadratic equation
\[
\sqrt{2} r^2 - (1 + 2\sqrt{2}) r + \sqrt{2} - 1 = 0
\]
in the interval \((0, 1)\). In particular, \(f \) is close-to-convex (univalent) and starlike in \(|z| < r_S \).

Next, to prove the sharpness part of the statement of the theorem, we consider the function
\[
F_0(z) = H_0(z) + \overline{G_0(z)}
\]
with
\[
H_0(z) = 2z - H(z) \quad \text{and} \quad G_0(z) = -\overline{G(z)}.
\]
Here \(H \) and \(G \) are defined by (1.2). We note that
\[
F_0(z) = z - \sum_{n=2}^{\infty} A_n z^n - \sum_{n=2}^{\infty} B_n z^n.
\]
As \(F_0 \) has real coefficients we obtain.
\[
J_{F_0}(r) = (H'_0(r) + G'_0(r))(H'_0(r) - G'_0(r))
\]
\[
= \left(1 - \sum_{n=2}^{\infty} nA_n r^{n-1} - \sum_{n=2}^{\infty} nB_n r^{n-1} \right) \left(1 - \sum_{n=2}^{\infty} n(A_n - B_n) r^{n-1} \right)
\]
\[
= \left(1 - \sum_{n=2}^{\infty} \frac{n(2n^2 + 1)}{3} r^{n-1} \right) \left(1 - \sum_{n=2}^{\infty} n^2 r^{n-1} \right)
\]
\[
= \left(1 - \frac{-4r^2 + 3r^3 - r^4}{(-1 + r)^3 r} \right) \left(1 + \frac{-6r^2 + 5r^3 - 4r^4 + r^5}{(-1 + r)^4 r} \right)
\]
\[
= \frac{(-1 + 7r - 6r^2 + 2r^3)(1 - 10r + 11r^2 - 8r^3 + 2r^4)}{(-1 + r)^7}.
\]
Thus \(J_{F_0}(r) = 0 \), \(0 < r < 1 \) if and only if
\[
r = r_S = \frac{1}{4} \left(4 + \sqrt{2} - \sqrt{2 + 16\sqrt{2}} \right) \approx 0.112903
\]
or
\[
r = r'_S = 1 + \left(-18 + \sqrt{330} \right)^{1/3} 6^{-2/3} - \left(6 \left(-18 + \sqrt{330} \right) \right)^{-1/3} \approx 0.164878.
\]
Moreover for \(r_S < r < r'_S \) we have \(J_{F_0}(r) < 0 \). The graph of the function \(J_{F_0}(r) \) for \(r \in (0, 0.25) \) is shown in Figure 1.

This observation together with Lewy’s theorem gives that (as the Jacobian changes sign), the function \(F_0(z) \) is not univalent in \(|z| < r \) if \(r > r_S \), and thus, \(r_S \) cannot be replaced by a larger number.

Proof of Theorem 1.9. Following the notation and the method of the proof of Theorem 1.5, it suffices to show that \(f_r \in \mathcal{C}_H^2 \cap \mathcal{S}_H^0 \). According to Lemma 2.4
Figure 1. The graph of the Jacobian $J_{F_0}(r)$ for $r \in (0, 0.25)$.

$f_r \in C_H^2 \cap \mathcal{S}_H^{s_0}$ whenever $S \leq 1$, where

$$S = \sum_{n=2}^{\infty} n|a_n|r^{n-1} + \sum_{n=2}^{\infty} n|b_n|r^{n-1}$$

when a_n and b_n satisfy the coefficient inequalities given by (1.7). Finally, using (1.7), we see that $S \leq 1$ if r satisfies the inequality

$$\sum_{n=2}^{\infty} \frac{n(n+1)}{2}r^{n-1} \leq 1 - \sum_{n=2}^{\infty} \frac{n(n-1)}{2}r^{n-1}.$$

The last inequality is easily seen to be equivalent to

$$\frac{1}{2} \left[\frac{1}{(1-r)^2} + \frac{1+r}{(1-r)^3} - 1 \right] \leq 1 + \frac{1}{2} \left[\frac{1}{(1-r)^2} - \frac{1+r}{(1-r)^3} - 1 \right]$$

which upon simplification reduces to

$$2(1-r)^3 - 1 - r = -(2r^3 - 6r^2 + 7r - 1) \geq 0.$$

The first part of the conclusion easily follows as in the proof of Theorem 1.5.

The sharpness part of the statement of Theorem 1.9 follows if we consider the function

$$L_0(z) = 2z - M(z) - N(z),$$

where M and N are defined by (1.8). We note that

$$L_0(z) = z - \sum_{n=2}^{\infty} \frac{n+1}{2}z^n + \sum_{n=2}^{\infty} \frac{n-1}{2}z^n.$$
Figure 2. The graph of the Jacobian \(J_{L_0}(r) \) for \(r \in (0, 0.35) \).

Again, as \(L_0 \) has real coefficients, we can easily obtain that for \(r \in (0, 1) \)
\[
J_{L_0}(r) = (2 - M'(r))^2 - (N'(r))^2 \\
= (2 - M'(r) + N'(r))((2 - M'(r) - N'(r)) \\
= \left(2 - \frac{1 + r}{(1 - r)^3}\right)\left(2 - \frac{1}{(1 - r)^2}\right) \\
= \frac{2}{(1 - r)^3} (2 - (1 + r)) \left(r - 1 - \frac{\sqrt{2}}{2}\right) \left(r - 1 + \frac{\sqrt{2}}{2}\right).
\]

We see that \(J_{L_0}(r_S) = 0, 0 < r < 1 \) if and only if
\[
r = r_s \approx 0.16487
\]
or
\[
r = r'_s = \frac{2 - \sqrt{2}}{2} \approx 0.292893.
\]

Moreover for \(r_S < r < r'_S \) we have \(J_{L_0}(r) < 0 \). The graph of the function \(J_{L_0}(r) \) for \(r \in (0, 0.35) \) is shown in Figure 2.

Thus, according to Lewy’s theorem, \(L_0(z) \) is not univalent in \(|z| < r \) if \(r > r_S \) and this observation shows that \(r_S \) cannot be replaced by a larger number.

Proof of Theorem 1.11. This time we apply Lemma 2.1 and show that \(f_r \) defined by \(f_r(z) := r^{-1}f(rz) = r^{-1}h(rz) + r^{-1}g(rz) \) belongs to \(C^2_H \).

As in the proof of previous two theorems, it suffices to show the corresponding coefficient inequality (2.2), namely,
\[
S = \sum_{n=2}^{\infty} n(|a_n| + |b_n|)r^{n-1} + |b_1| \leq 1.
\]
By the hypothesis, \(|a_n| + |b_n| \leq c\) for all \(n \geq 2\) and so, the last inequality \(S \leq 1\) clearly holds if \(r\) satisfies the inequality

\[
c \left(\frac{1}{(1-r)^2} - 1 \right) \leq 1 - |b_1|, \quad \text{i.e.} \quad r \leq r_S = 1 - \sqrt{\frac{c}{c+1-|b_1|}}.
\]

Thus, by Lemma 2.1

\[
|h'_r(z) - 1| < 1 - |g'_r(z)|
\]

holds for all \(z \in \mathbb{D}\) whenever \(r \leq r_S\). Thus, \(f \in C^2_H\).

The function \(f_0(z) = h_0(z) + g_0(z)\), where

\[
h_0(z) = z - \frac{c}{2} \left(\frac{z^2}{1-z} \right) \quad \text{and} \quad g_0(z) = -|b_1|z - \frac{c}{2} \left(\frac{z^2}{1-z} \right),
\]

shows that the result is sharp. Indeed, it is easy to compute that

\[
J_{f_0}(r) = |h'_r(r)|^2 - |g'_r(r)|^2 = (1 + |b_1|) \left(1 + c - |b_1| - \frac{c}{(1-r)^2} \right)
\]

which shows that \(J_{f_0}(r_S) = 0\) and \(J_{f_0}(r) < 0\) for \(r > r_S\). The proof of the theorem is complete. □

Proof of Theorem 1.12. Let \(f = h + \overline{g}\) be a harmonic mapping defined on the unit disk \(\mathbb{D}\) with \(f(0) = f_\overline{z}(0) = f_z(0) - 1 = 0\), and \(|f(z)| < M\) for \(z \in \mathbb{D}\), where \(h\) and \(g\) have the form (1.1) with \(b_1 = 0\). According to [4, Lemma 1] (see also [5]), we obtain the sharp estimates

(3.2) \[|a_n| + |b_n| \leq \frac{4M}{\pi} \quad \text{for any} \quad n \geq 1.\]

As \(b_1 = 0\) and \(a_1 = 1\), it follows that \(M \geq \pi/4 \approx 0.785398\). By Theorem 1.11 with \(c = 4M/\pi\), we conclude that \(f\) is close-to-convex and starlike (because \(b_1 = 0\)) for \(|z| < 1 - \sqrt{c/(c+1)} = r_S\).

In particular, \(f\) is univalent for \(|z| < r_S\) and furthermore, we have for \(|z| = r_S\),

\[
|f(z)| = \left| z + \sum_{n=2}^{\infty} (a_n z^n + \overline{b_n} z^n) \right| \\
\geq \quad |z| - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r_S^n \\
\geq \quad r_S - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r_S^n \\
\geq \quad r_S - \frac{4M}{\pi} \sum_{n=2}^{\infty} r_S^n \\
\geq \quad r_S - \frac{4M}{\pi} \frac{r_S^2}{1-r_S} = R_S
\]

and the proof is complete. □
REFERENCES

1. S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, Preprint
2. D. Bshouty and A. Lyzzaik, Problems and conjectures in planar harmonic mappings: in the Proceedings of the ICM2010 Satellite Conference: International Workshop on Harmonic and Quasiconformal Mappings (HQM2010) (edited by D. Minda, S. Ponnusamy, and N. Shanmugalingam); Special issue in: J. Analysis 18 (2010), 69–82
3. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000), 3231–3240.
4. Sh. Chen, S. Ponnusamy and X. Wang, Bloch and Landau’s theorems for planar p-harmonic mappings, J. Math. Anal. and Appl. 373 (2011), 102–110.
5. Sh. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch’s constant for planar harmonic mappings, Bull. Malaysian Math. Sciences Soc. (2) 34 (2011), 255–265.
6. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I. 9 (1984), 3–25.
7. M. Dorff and M. Nowak, Landau’s theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 151–158.
8. P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.
9. A. Grigoryan, Landau and Bloch theorems for planar harmonic mappings, Complex Var. Elliptic Equ. 51 (2006), 81–87.
10. H. Lewy, On the nonvanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692.
11. M. Sh. Liu, Landau’s theorem for biharmonic mappings, Complex Var. Elliptic Equ. 9 (2008), 843–855.
12. M. Sh. Liu, Estimates on Bloch constants for planar harmonic mappings, Sci. China Ser. A-Math. 52 (2009), 87–93.
13. S. Ponnusamy, H. Yamamoto and H. Yanagihara, Variability Regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. (2011), To appear. xxx–xxx.
14. S. Ruscheweyh and L. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A I Math., 14 (1989), 63–73.
15. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), 237–248.
16. H. Silverman, Univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283–289.
17. Xiao-Tian Wang and Xiang-Qian Liang, Precise coefficient estimates for Close-to-convex harmonic univalent mappings, J. Math. Anal. Appl. 263 (2001), 501–509.

David Kalaj, University of Montenegro, faculty of natural sciences and mathematics, Cetinjski put b.b. 81000, Podgorica, Montenegro
E-mail address: davidk@t-com.me

S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai–600 036, India.
E-mail address: samy@iitm.ac.in

Matti Vuorinen Department of Mathematics, University of Turku, FIN-20014 Turku, Finland.
E-mail address: vuorinen@utu.fi