Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe$_2$O$_3$

Hariom Jani1,2,3,*, Jiajun Linghu3,13, Sonu Hooda1, Rajesh V. Chopdekar4, Changjian Li1,5, Ganesh Ji Omar1,3, Saurav Prakash1,2, Yonghua Du6,14, Ping Yang7, Agnieszka Banas7, Krzysztof Banas7, Siddhartha Ghosh1,15, Sunil Ojha8, G. R. Umapathy8, Dinakar Kanjilal8, A. Ariando1,2,3, Stephen J. Pennycook1,2,5, Elke Arenholz4,16, Paolo G. Radaelli9, J. M. D. Coey10,11, Yuan Ping Feng2,3 & T. Venkatesan1,2,3,5,12,*

Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe$_2$O$_3$ (haematite) – now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe$_2$O$_3$ thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe$_2$O$_3$.
Antiferromagnets (AFM) exhibit long-range magnetic order with two or more sublattices aligned so that they produce no net magnetization. There has recently been a surge of interest in AFMs as they have the potential to replace ferromagnets in various spin-based devices. Among them, insulators promise efficient magnon-based spin transport with the absence of charge-related Joule losses. They also host attractive functionalities like spin colossal-magnetoresistance, ultra-fast dynamics, high domain-wall propagation velocities and spin-superfluidity. Despite all these advantages, they have so far played only an auxiliary role as pinning or exchange bias layers in thin film spintronic devices as their magnetic order is difficult to detect and hard to control. Although many recent reports demonstrating clear detection of the AFM-state in insulators by spin-Hall or anisotropic magneto-transport have emerged, control of the ground-state continues to be a challenge.

In this work, we focus on α-Fe₂O₃, which is a well-known antiferromagnetic insulator with a bulk Dzyaloshinskii–Moriya interaction (DMI) that undergoes a spin-reorientation Morin transition between the in-plane and out-of-plane states (at $T_{M_{\text{bulk}}} \sim 260$ K). Controlling antiferromagnetism in α-Fe₂O₃ is important as it would open prospects for both magnonics and real-space topological spintronics. This is because the material exhibits an ultra-low Gilbert damping, has exceptionally-long and tunable spin diffusion (in the microns range) sizable spin-Hall magnetoresistance, and also hosts a wide family of topological AFM textures. However, lack of reversibility and scalability makes these approaches difficult to exploit in practical applications.

In the literature, coherent optical techniques have enjoyed success in manipulating antiferromagnetic insulators, but they require table-top lasers and large interaction volumes. Secondly, electric-field control of the AFM-state, which is possible in multiferroics and magnetoelectric oxides, cannot be replicated in a vast majority of functional materials, where magnetic and electrical degrees of freedom are not coupled. Alternatively, electric-field control via strain coupling to piezoelectric substrates, which has been quite successful in tuning antiferromagnetic metal-torques is also quite useful, but is limited to materials with strong spin–orbit coupling that break local inversion-symmetry in a specific manner. Finally, spin-Hall effect based spin–orbit torques injected from a heavy-metal overlayer are also quite promising in controlling the AFM-state via Néel spin–orbit interactions. We present a new method of hydrogen (H)-doping to tailor antiferromagnetism in epitaxial α-Fe₂O₃ thin films by using spillover. We draw inspiration from pioneering ionic studies, where doping light ions (e.g. H, Li, O etc.) was used to control anisotropy in ferromagnetic systems, or transport in strongly correlated-oxides and conventional insulators, although the crystal physics and chemistry underpinning our implementation is completely different. By incorporating or removing hydrogen, we demonstrate a hitherto unexplored ionic approach to control a wide range of antiferromagnetic properties in a reversible and stable manner. H-doping can drive these pronounced changes by delicately tuning the competing contributions to the magnetic anisotropy, as a result of local electron injection and ensuing local distortions. Lastly, we show reversible control of the room-temperature Morin transition by hydrogenation of α-Fe₁₋ₓRhₓO₃ films.

Results and discussion

α-Fe₂O₃ has the trigonal corundum structure, with antiparallel sublattices (with magnetizations $\mathbf{M}_{1,2}$) stacked alternately along the hexagonal c-axis, as shown in Fig. 1a. At room temperature, Fe spins lie in the basal planes with the Néel vector, $\mathbf{L} \equiv \mathbf{M}_1 - \mathbf{M}_2$, perpendicular to the c-axis. Presence of the bulk DMI causes canting of the sublattices within the basal planes, resulting in a weak macroscopic in-plane canting (Supplementary-S1). Upon cooling, α-Fe₂O₃ undergoes the Morin transition, where the sublattices reorient to the c-axis—a Néel-state where the canted moment ideally vanishes by symmetry. The Morin transition results from a delicate temperature-controlled crossover between magnetic-dipolar and single-ion magnetic anisotropy contributions.

Reversible spin reorientation by H-doping. Highly-oriented epitaxial thin films of α-Fe₂O₃ were grown on (0001)-oriented α-Al₂O₃ single crystals by pulsed laser deposition (‘Methods’, Supplementary-S2). These films exhibited a clear Morin transition in temperature-dependent magnetometry, $M(T)$, with hysteretic appearance/disappearance of the in-plane canted moment, Fig. 1b. The T_{M_1}, defined as the Morin transition temperature of the as-grown sample prior to H-doping, is lower than the bulk value $T_{M_{\text{bulk}}}$ because of substrate strain. To confirm the magnetic origin of the transition, we performed X-ray linear dichroism (XLD) spectroscopy at the Fe L_2 edge, which is a good element-specific approach to identify the direction of the sublattice magnetization in α-Fe₂O₃ (‘Methods’) 51. The dichroism reverses sign across T_{M_0} (Fig. 1c), due to the 90° reorientation of \mathbf{L} to the basal plane from the c-axis. We also performed X-ray magnetic circular dichroism (XMCD) spectroscopy but saw no signal from the weak canted moment (Supplementary-S6). Field-dependent magnetometry, $M(H)$, revealed a hysteretic evolution due to in-plane realignment of antiferromagnetic domains driven by the magnetic field coupling to the canted moment, at $T > T_{M_0}$ (Supplementary-S10). The hysteretic response significantly suppresses when $T < T_{M_0}$. These results establish that the magnetization signals in our samples are intrinsic, and do not arise from any spurious ferro-or ferromagnetic iron-oxide phases.

To achieve hydrogenation of α-Fe₂O₃, catalytic spillover of hydrogen into our films was performed through sputtered platinum nano-structures (Fig. 1e inset, ‘Methods’ and Supplementary-S3). Films were annealed in forming gas (H₂/Ar ratio of 5%/95%) at low temperatures (150–270 °C, Supplementary-S4). In this process, H₂ gas dissociates into reactive H atoms at the gas-catalyst-oxide triple-phase boundary, and protons and electrons together enter the film. The protons then diffuse in the bulk of the oxide and have a propensity to bond with O-anions to form OH^-, while the electrons are added to the d-shells of neighbouring Fe cations, causing local valence-reduction. To confirm that hydrogen is incorporated into our films, elastic recoil detection analysis (ERDA) was used (see ‘Methods’). The
hydrogen concentration in the H-doped films was found to be in the range \(\sim 1.57 \pm 0.14 \) at.\% to \(2.47 \pm 0.14 \) at.\% depending on the H-spillover temperature (Supplementary-S7). One plausible hypothesis relating spillover temperature to H-concentration is the modification of bulk-diffusion via thermodynamic activation \(^{54}\). By contrast, oxygen resonant Rutherford backscattering spectrometry (RRBS) performed in tandem with ERDA, which is resonantly sensitive to the O-content of films (rather than O-content of the substrate, Supplementary-S7), revealed that Fe–O stoichiometry remains similar after H incorporation. Structural studies performed by high-resolution X-ray diffraction (HR-XRD), reciprocal space mapping (RSM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) showed that our catalytic approach slightly expands the lattice constants, while leaving the film coherence and crystal structure effectively unchanged (see Supplementary-S8). This result distinguishes our catalytic method from other high-temperature hydrogenation experiments\(^{55}\), which completely changed the oxide phase (Supplementary-S4). In particular, absence of resonant features in Fe L\(_{2}\) XMCD or spurious superparamagnetic or ferrimagnetic signals further suggests that the presence of magnetite in the H-doped samples should be negligible (see Supplementary-S6, S10).

Magnetometry of the H-doped samples prepared by spillover at 250 °C showed no Morin transition down to cryogenic temperatures (Fig. 1e). The XLD of hydrogenated samples at room and low temperatures exhibited similar Fe L\(_{2}\) dichroic signatures (Fig. 1f), suggesting that the film retains the in-plane orientation of the \(\alpha \)-Fe\(_{2}\)O\(_{3}\) sample after restoration step in 100% \(O_2 \) atmosphere, exhibited the out-of-plane to in-plane \(\alpha \)-Fe\(_{2}\)O\(_{3}\) with in-plane \(\mathbf{L} \) orientation throughout the temperature range (d), deduced from the transition-less \(M(T) \) curve (e), and XLD showing the same asymmetry at 80 K and 300 K (f). g–i Unit cell of H-doped \(\alpha \)-Fe\(_{2}\)O\(_{3}\) sample after restoration step in 100% \(O_2 \) atmosphere, exhibited the out-of-plane to in-plane \(\alpha \)-Fe\(_{2}\)O\(_{3}\) with in-plane \(\mathbf{L} \) orientation throughout the temperature range (d), deduced from the transition-less \(M(T) \) curve (e), and XLD showing the same asymmetry at 80 K and 300 K (f). h–i Unit cell of H-doped \(\alpha \)-Fe\(_{2}\)O\(_{3}\) sample after restoration step in 100% \(O_2 \) atmosphere, exhibited the out-of-plane to in-plane \(\alpha \)-Fe\(_{2}\)O\(_{3}\) with in-plane \(\mathbf{L} \) orientation throughout the temperature range (d), deduced from the transition-less \(M(T) \) curve (e), and XLD showing the same asymmetry at 80 K and 300 K (f). The restored state can also be obtained by annealing the H-doped films in 100% Ar atmosphere (see Supplementary-S5). Insets in (b, e, h) correspond to the sample structure of (b) undoped, (e) H-doped, (h) restored \(\alpha \)-Fe\(_{2}\)O\(_{3}\) films in corresponding environments. The discontinuous Pt nano-structures (NSs) are also indicated.
Furthermore, the H-concentration in the oxide can be modified by the choice of spillover temperature (Supplementary-S7). At low spillover temperatures (~150–180 °C, see Fig. 2a inset), instead of complete suppression of the Morin transition, we observed its gradual reduction with respect to the undoped counterpart, T_{M0}. This modified Morin temperature after H-spillover is termed as $T_{M spillover}$, differently from $T_{M spillover}$ and $T_{M spillover}$ is displayed in Fig. 2a (upper abscissa). At intermediate spillover temperatures both T_{M} and the transition height of the canted moment were reduced, presumably due to the presence of small remnant in-plane fractions at low temperatures, as is well-known in the α-Fe$_2$O$_3$ doping literature. Finally, above a threshold spillover temperature value of ~200 °C, the Morin transition, and in-plane orientations, respectively. The Morin transition temperature as a function of doping, $T_{M spillover}$, obtained by solving $K(x = const, T)$, is plotted as the red line in the main panel of (a). c Evolution of the total anisotropy change as a function of H-doping at 0 K, $\Delta K(x, T = 0)$, obtained as a percentage from the phenomenological model is given as the red line (left ordinate). The DFT calculated maximum value of the total anisotropy change, $\Delta K_{max}(x)$, for H-containing α-Fe$_2$O$_3$ cells of three sizes is represented as blue spheres (right ordinate).

Electron injection driven by H-doping. To understand the effect of H-doping we performed X-ray absorption near-edge structure (XANES) in a bulk-sensitive fluorescence mode at the Fe K edge. A systematic chemical shift of the Fe K edge and shoulder to lower binding energies was evident in the normalized spectrum and its derivative, of the H-doped samples with respect to the undoped counterparts (Fig. 3a, b). However, in the extended-edge region, the spectra only differed slightly (Supplementary-S9). This suggests that hydrogenation leads to electron injection at Fe$^3^+$-cation sites, without inducing large average changes in the Fe–O molecular bonding framework. For H-doped films (prepared at 250 °C, Fig. 1e, f) the fraction of reduced Fe species was estimated to be ~2.4 ± 0.5 at.% (see Supplementary-S9), which closely matched the H-concentration observed by ERDA (~2.47 ±
Fig. 3 Localised electron injection at Fe cations driven by H-doping. a, b Normalized Fe K edge XANES spectra (a) and their derivatives (b) of the H-doped (green solid line) and undoped (blue dashed line) α-Fe₂O₃ films, respectively. The main-edge of H-doped samples is red-shifted relative to the undoped counterparts (see Supplementary-S9 for complete Fe K edge spectrum). Inset in (a) shows difference spectrum (H-doped - Undoped) with a sharp positive peak at the near-edge and negligible changes in the extended-edge regions. Inset in (b) shows a red-shift of the pre-edge shoulder after H-doping. c, d Normalized XANES spectra (c) and their derivatives (d) of the Ar-annealed (red solid line) control and undoped α-Fe₂O₃ films, respectively. Spectrum of the Ar-annealed samples shows no energy shift relative to the undoped counterpart. Inset in (c) shows the difference spectrum (Ar-annealed – Undoped) with negligible changes in all regions. Inset in (d) reveals the absence of a shift in the pre-edge shoulder. e 2 × 2 × 1 hexagonal supercell of α-Fe₂O₃ with Fe (blue) and O (orange) atoms (120 in total). Specific Fe or O-sites demarcated as C/D (cyan) or A/B (red), respectively, that receive neutral and charge-doped regimes of α-Fe₂O₃ are obtained by modifying the quantum of the extra electronic charge added to the super-cell (see ‘Methods’ and Supplementary-S15). The O and Fe sites are labelled 1-72 and 73-120, respectively.

This observation supports the role of H-dopants as electron donors, consistent with previous reports in other oxides, which also exhibit chemical red-shifts concomitant with H-doping. By contrast, XAS spectrum of control undoped samples annealed in 100% Ar did not exhibit any chemical shifts at the near- and extended-edge regions (Fig. 3c, d), unequivocally establishing that it is not an O-deficient condition but the H incorporation from spillover that is responsible for electron injection.

To understand this charge transfer’s origin, we performed density functional theory (DFT) calculations of defect formation and charge transfer in a 2 × 2 × 1 super-cell (hexagonal) of α-Fe₂O₃ containing different types of point defects (interstitial H—Hᵢ; substitutional-H occupying an O-vacancy site—H_O⁰, or O-vacancy—V_O), see ‘Methods’. In addition, we manually introduced or removed electrons to or from this defect-containing super-cell, to mimic charge-doped regimes of α-Fe₂O₃. We found, firstly, that H-dopants prefer to be interstitials, with the formation energy of Hᵢ markedly lower than H_O⁰/V_O in all charge-doped regimes (see Supplementary-S15). This underscores the negligible role of the latter defects and primary role of the former. Further, these Hᵢ are theoretically predicted to form O–H bonds in the lattice, which were experimentally confirmed via Fourier transform infra-red (FTIR) spectroscopy of H-doped α-Fe₂O₃ (see Supplementary-S8). Consequently, incorporation of Hᵢ results in small non-uniform local distortions of the Fe–O bonding network, manifesting as localized Fe–O bond-length deviations as well as FeO₆ octahedral distortions in our DFT calculations (see Supplementary-S16).

Secondly, we calculated the Bader-charge, employing zero-flux surfaces to partition the electronic charge in a super-cell, to understand charge redistribution upon H-doping. The change of the Bader-charge at every atom after addition of Hᵢ corresponds to the Hᵢ-driven charge transfer. In the neutral and negatively-charged cases, we observed that only a small fraction of Bader-charge is transferred to the Fe sites (labelled A, B in Fig. 3e) to form OH bonds, while most of the Bader-charge is donated to the Fe sites (labelled C, D) to form locally reduced Fe cations, see Fig. 3f. In the positive-charged condition, OH bond still exists, while the Bader-charge transferred to Fe sites presumably compensates the cationic-charge withdrawn due to acceptors. Experimentally, the negative-charged/neutral regimes are most relevant for our films, as high-temperature growth conditions could cause extremely trace amounts of electron-donating O-vacancies. Hence, according to Fig. 3f (upper and central panels), we conclude that the electrons donated by H-dopants in α-Fe₂O₃ should be centred at Fe sites in the immediate vicinity of Hᵢ. This suggests that the charge transfer observed in our XANES red-shifts (Fig. 3a, b) actually corresponds to localized excess charge transferred to the Fe cations, after H-doping. This is reasonable given that any excess electrons donated in α-Fe₂O₃ usually form small polarons57,58, which are self-trapped at the localized potential wells at the Fe cations, due to the strongly polar nature of the lattice. The dynamics of phonon-
driven polarons is significantly slower than that of magnetic interactions relevant for our work here. Hence, we surmise that H-dopants reduce the neighbouring Fe3+-cations to behave effectively like Fe2+-cations. We now use this understanding to build a magnetic model.

Effect of electron injection on magnetic anisotropy. To understand the observed change of anisotropy and Morin transition, we built a phenomenological model describing their evolution as a function of temperature and H-doping. Based on the discussion in the previous section, the model consists of a matrix of Fe3+-cations (in magnetic sublattices \(M_{\alpha,2}\)) interspersed with sparsely distributed Fe2+-cations, proportional to the H-concentration. The evolution of the anisotropy in \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} is described primarily by the axial term in the free energy density: \(F = K\sin^2\theta\), where \(\theta\) is the angle between \(M_{\alpha,2}\) and the \(c\)-axis (see Supplementary-S11). \(K\) originates from two competing contributions19,26,50: (i) the classical magnetic-dipolar anisotropy, following a \(K_{\text{MD}} \propto (\hat{S}_i \cdot \hat{S}_j)^2\) spin dependence and favouring an easy-plane orientation, and (ii) the cooperative action of crystal-field-splitting and spin-orbit-coupling Hamiltonians, termed single-ion anisotropy, following a \(K_{\text{SI}} \propto \langle \hat{S}_i \rangle^2\) spin dependence and supporting an easy-axis orientation. In \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3}, these interactions are opposite in sign but similar in magnitude (differing by only \(\sim 2\%\) in bulk at 0 K), with \(K_{\text{SI}}\) (\(K_{\text{MD}}\)) dominating below (above) \(T_{M}\), respectively, due to their slightly different temperature dependences19,50. Hence, the total anisotropy, \(K(\text{T}) = K_{\text{MD}}(\text{T}) + K_{\text{SI}}(\text{T})\), undergoes a sign reversal at \(T_{M}\), resulting in the Morin transition (see Fig. 1a). Essentially, the role of H-dopants is then to modify the temperature evolution of the total anisotropy by delicately tuning the relative strengths of the magnetic-dipolar and single-ion terms via the aforementioned electron injection.

Quantitatively, in our experimental range of small H-doping, \(K\) would evolve approximately linearly19,26 with the H-concentration, \(x\), as per the relation (see Supplementary-S11, S12 for details):

\[
K(x, T) \approx K_{\text{MD}}(T)[1 - 2ax] + K_{\text{SI}}^{\text{Fe}^{2+}}(T)[1 - ax] + K_{\text{SI}}^{\text{Fe}^{3+}}(T)[ax].
\] (1)

Here, the first term is the magnetic-dipolar anisotropy contributed by the spins, exhibiting the usual temperature dependence governed by the Brillouin function50, \(K_{\text{MD}}(T) = K_{\text{MD}}(T = 0)B_2^i(Z_i^2(T))\) (see Supplementary-S11). The proportionality factor \(a\) simply converts the atomic H (or Fe2+) concentration \((x)\) into the ratio of Fe2+-species per total Fe cations. The first term in Eq. (1) describes the weakening of the effective magnetic-dipolar interaction upon H-doping due to the reduced spin contribution from the Fe3+ cations.

The second and third terms in Eq. (1) describe the single-ion anisotropy of the Fe3+ and Fe2+-cations, respectively, which have temperature dependences of the form50:

\[
K_{\text{SI}}^{\text{Fe}^{3+}}(T = 0) = 2\left(\frac{(\hat{S}_i + 1) - 3B_2^i\cosh(Z_i)}{2\hat{S}_i}\right),
\] (2)

where \(i\) represents the cations (Fe3+ or Fe2+), and \(Z_i\) is the cation-dependent functions. The latter are obtained from a modified two-sublattice mean-field model (Supplementary-S11, S12), which describes the coupling of Fe2+-cations with a ‘bath’ of Fe3+-cations. Here, H-doping reduces the original Fe3+-cation single-ion interaction, accompanied by an enhancement of the Fe2+ term. The underlying physics is that the Fe2+-cations are in an effective D state with partially unquenched angular-momentum. This allows a first-order coupling which is significantly stronger19,26 than its counterpart in Fe2+-cations, which are in an S state. Further, \(K_{\text{SI}}^{\text{Fe}^{2+}}(T = 0)\) is opposite in sign to \(K_{\text{SI}}^{\text{Fe}^{3+}}(T = 0)\) and favors spins to lie in the plane (see Supplementary-S13). Hence, a few percent of Fe2+-cations can sizably decrease the combined single-ion contribution of the Fe cations. In our phenomenological model, the single-ion factor of the Fe2+-cation (labelled \(D_{\text{SI}}^{\text{Fe}^{2+}}\) and discussed in Supplementary-S11, S13), which depends on the splitting between ground and excited states of Fe2+ in H-doped \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} lattice, is not defined in the literature and is therefore treated as an adjustable parameter to best fit the experimental results.

Hence, the overall effect of hydrogenation is to reduce the single-ion contribution more than the magnetic dipolar counterpart, thereby suppressing the Morin transition. The temperature dependence of the total anisotropy \(K(T)\), calculated from our phenomenological model for different \(x\) values, is shown in Fig. 2b, while Fig. 2c shows the change in the total anisotropy at 0 K as a function of \(x\) (see Supplementary-S14). The evolution of \(\Delta K_{\text{DFT}}\) for each case is outlined in Supplementary-S17. The configuration giving maximum anisotropy change for each cell-size (i.e. H-concentration), \(\Delta K_{\text{DFT}}^{\text{max}}(x)\), was then chosen for Fig. 2c. Our DFT calculations only provide the information about the ground state at \(T = 0\) K. We find that the evolution of \(\Delta K_{\text{DFT}}^{\text{max}}(x)\) closely follows that of \(\Delta K(x, T = 0)\), obtained from our magnetic model, though the scaling factor is off by about half (see Supplementary-S17). Nonetheless, this qualitative equivalence validates the phenomenological model and confirms the anisotropy changes which govern the antiferromagnetic evolution in \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} under H-doping.

Reversible control of room-temperature spin orientation. Lastly, we demonstrate that catalytic H-spillover can achieve reversible control of the room-temperature AFM-state as well. Key to this result is the observation that substituting a small fraction of Fe sites in \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} with a heavy transition metal increases its total anisotropy, thereby increasing the Morin transition temperature19,27,30. Here, we used \(\alpha\)-Fe\textsubscript{3}Rh\textsubscript{0.03}O\textsubscript{3} films which have an elevated Morin transition near room temperature (Fig. 4a and Supplementary-S2). Given that Rh3+ cations are iso-electronic with Fe3+-cations, this enhancement of \(T_M\) in the as-grown sample is not an electronic doping effect. Rather, the presence of Rh3+ enhances the single-ion anisotropy relative to the magnetic-dipolar term19, resulting in a higher \(T_M\).

Catalytic spillover of hydrogen into these Rh-substituted films, using the same annealing process as before (see Supplementary-S4), lowers the transition systematically. Moreover, in the temperature range demarcated orange in Fig. 4a, we observed a complete reorientation of L as identified by Fe L\textsubscript{2,3} edge XLD, Fig. 4b. It should be noted that, unlike the case of \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3} (Fig. 1e), we did not observe a complete suppression of the Morin transition in \(\alpha\)-Fe\textsubscript{2}O\textsubscript{3}.
Summary and outlook. In conclusion, we have demonstrated reversible control of antiferromagnetic properties up to room temperature in epitaxial thin films of insulating \(\alpha\)-Fe\(_{2}\)O\(_3\) and \(\alpha\)-Fe\(_{1.97}\)Rh\(_{0.03}\)O\(_3\) by H-doping. Hydrogenation leads to electron injection, strongly influencing the delicate balance between magnetic-dipolar and single-ion anisotropy terms. Hence, a little hydrogen can dramatically change the Morin transition and hence the Néel vector direction. Although the spillover approach of ion control shown here is a diffusive process, limiting direct device implementations, it serves as a scientific proof-of-principle opening multiple avenues for future exploration. Firstly, it may inspire investigations of ion-based reversible control of antiferromagnetism in broad families of transition-metal oxides that may be able to absorb small amounts of hydrogen\(^{59,60}\), such as orthoferrites\(^{61-63}\), orthochromites\(^{64}\) and layered iron-perovskites\(^{65}\), which host first- or second-order Morin transitions\(^{61,63-65}\). Secondly, the ionic control could also be used for on-demand patterning of magnetic anisotropy. Thirdly, driving ionic motion with electric-fields, emulating state-of-art magno-ionic proton-pumps\(^{45,66}\), that exhibit ms-timescale ionic switching\(^{66}\), may enable practical, non-volatile and reversible control over magnons\(^{6,20,21}\) or topological AFM textures\(^{22}\) in \(\alpha\)-Fe\(_2\)O\(_3\) and related systems. Lastly, given our observation that anisotropy modulation here originates essentially from electron-transfer, it would be interesting to control the AFM-state by ferroelectric gating at room temperature, which could operate at significantly faster timescales.

Methods

Film growth and H-spillover treatment. \(\alpha\)-Fe\(_2\)O\(_3\) and \(\alpha\)-Fe\(_{1.97}\)Rh\(_{0.03}\)O\(_3\) epitaxial thin films were grown by pulsed laser deposition (PLD) from stoichiometric targets on single crystalline \(\alpha\)-Al\(_2\)O\(_3\) substrates (CrysTec GmbH), using KrF excimer laser (248 nm). Substrates were cleaned by ultra-sonication in high purity acetone, alcohol and DI Water prior to deposition. The growth was performed at 700 °C, in oxygen partial pressure of 2/20 mTorr with a laser repetition rate of 3 Hz. Subsequently, in situ high oxygen pressure annealing was performed to minimize oxygen vacancies formed during growth. The films were cooled at 10 °C/min.

Nano-sized Pt islands used for catalytic H-spillover were grown by sputtering in an Ar atmosphere from a high purity Pt target. The deposition current was 10 mA and duration was 5 s. HAADF mode in STEM identified that Pt formed small and discontinuous nano-structures (NSs) (see Supplementary-S3). Hydrogenation and various control annealing treatments were carried out in a custom-built gas flow system containing mass-flow-controllers and an internal heating stage. For hydrogenation, Pt NS-covered samples were annealed in high purity forming gas (H\(_2/\)Ar ratio of 5%/95%) at annealing temperatures in the range 150–270 °C. Control annealing experiments were carried in high purity 100% Ar or O\(_2\) atmospheres under the same temperature conditions.

Materials characterization. Structural characterization of epitaxial films included high-resolution synchrotron X-ray diffractometry (HR-XRD) involving 2\(\theta\) scans, rocking curves (\(\omega\)-scans), reciprocal space mapping (RSM) and \(\phi\)-scans, and thickness measurements via X-ray reflectivity (XRR) at a four-circle diffractometer in the XDD beamline at the Singapore Synchrotron Light Source (SSLS), see Supplementary-S2, S8. Accurate lattice constants were obtained from the transformation of reciprocal space vectors (Supplementary-S8). Films for XAS dichroism and magnetometry experiments were in the thickness range of \(20–45\) nm (unless specified otherwise) to ensure that they were structurally relaxed. Film thickness was measured for sample batches to allow volumetric normalization and comparison. Thicker films in the range \(45–60\) nm were used for XAFS and ion-beam experiments as they required higher sample interaction volume to improve the signal to noise ratios.

Atomic positions in the films and the quality of the film-substrate interface were determined through atomic-resolution STEM in a JEOL-ARM200F (with ASCOR aberration corrector and cold-field emission at 200 kV), in HAADF and annular bright field (ABF) acquisition modes. The HAADF and ABF images were acquired with a probe-forming aperture of 30 mrad and collection inner and outer semi-angles in the range 68–280 mrad and 12–24 mrad, respectively. While HAADF shows the positions of the heavier elements Fe and Al, ABF shows the positions of O better. For the Fourier transform infrared (FTIR) spectroscopy experiments, MIrae ATR sampling accessory for analysis of solids was used. MIrae was placed in the sample chamber of Vertex 80 v Bruker spectrometer. \(\alpha\)-Fe\(_2\)O\(_3\) (H-doped and undoped) fine powder samples were placed directly on the crystal for data collection. The spectra were obtained by averaging multiple curves collected using a DTGS detector, with a spectral resolution of 4 cm\(^{-1}\), scan velocity 10 kHz and sampling time of 1 min (68 scans). The bench of the spectrometer was evacuated down to Fe\(_{1.97}\)Rh\(_{0.03}\)O\(_3\) even after hydrogenation at 250 °C, most likely due to the fact that baseline single-ion anisotropy is much higher upon Rh-substitution\(^{19}\). By all evidence, the additional in-plane anisotropy induced by H-doping counteracts the effect of Rh, weakening the overall single-ion anisotropy as outlined by our magnetic model (Fig. 2). As in \(\alpha\)-Fe\(_2\)O\(_3\), the original room temperature state of \(\alpha\)-Fe\(_{1.97}\)Rh\(_{0.03}\)O\(_3\) was restored by annealing H-doped samples in 100% Ar or O\(_2\) atmospheres, as seen in Fig. 4b and Supplementary-S4. This shows that magnetic anisotropy at room temperature is controllable and reversible through H-doping, which is important for potential applications.
X-ray absorption fine structure (XAFS). Evolution of Fe-valence87 and molecular bonding changes in α-Fe\textsubscript{2}O\textsubscript{3} before and after H-doping, were measured by employing Fe K edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), respectively, at the XAFCA beamline in SLS. The measurement was performed in fluorescence geometry and was sensitive to the Fe-signal throughout the films. Normalization, background correction, and analysis were performed in the Athena software. Following the approach in iron-oxide literature, the fraction of reduced Fe2+ species with respect to Fe3+ species in H-doped and control Ar-annealed samples relative to undoped α-Fe\textsubscript{2}O\textsubscript{3} samples, was estimated by analyzing the chemical shifts of Fe K XANES (see Supplementary-S9).

X-ray magnetic dichroism. Soft X-ray dichroism measurements with radiation polarised linearly (XLD) and circularly (XMCD) were carried out at the FE I edge at BL4.0.2 of the Advanced Light Source (ALS). The measurement was performed in a transmission geometry with the detection in the luminescence-yield mode (which is a transmission measurement using sapphire as a scintillator and is thus sensitive to X-ray absorption through the entire film) in an open-flow liquid nitrogen cryostat which allowed dichroism measurements in the range 80–325 K. X-rays were incident with a grazing angle of 30° relative to the surface. For the XLD asymmetry, defined as (I\textsubscript{UV}−I\textsubscript{IL})/(I\textsubscript{UV}+I\textsubscript{IL}), the linear horizontal polarization (LHP) was parallel to basal planes. X-ray incidence was kept fixed with respect to in-plane notch direction for all samples, to eliminate any structural dichroism variations among the samples. We can observe the spin reorientation across the Morin transition directly through the XLD experiment, as discussed above. A 90° change in the antiferromagnetic spin-orientation of α-Fe\textsubscript{2}O\textsubscript{3} across the Morin transition causes a sign reversal of the dichroic signal at the Fe L\textsubscript{3} and L\textsubscript{2} edges. This is consistent with the dichroic reversal previously observed41 in a Fe\textsubscript{2}O\textsubscript{3} literature across the Morin transition. It should be noted that in α-Fe\textsubscript{2}O\textsubscript{3} literature55,56, the XLD is attributed to magnetic and not structural contributions (see Supplementary-S6 for details).

Temperature- and field-dependent magnetometry. Magnetic characterization was performed in a superconducting quantum interference device (SQUID) magnetometer of Quantum Design MPMS. M(T) curves were measured after field-cooling the samples with an applied in-plane field of 500 or 5000 Oe, and a measurement temperature range of 10 to 300 K was performed during the subsequent warming and cooling scans. Changing the cooling-field magnitude had no discernible effect on the temperature transition. M(H) curves were carried out at a series of temperatures. The diamagnetic α-Al\textsubscript{2}O\textsubscript{3} substrates contribute a background in the raw M(H, T) data. This background is removed to extract the final magnetometry curves of the thin films.

Ion-beam analysis techniques (RRBS, ERDA). The quantitative analysis of H-dopant concentration in samples was performed using elastic recoil detection analysis (ERDA) whereby He ions incident on the sample lead to selective forward recoil scattering of H atoms from the sample. ERDA experiments were performed in tandem with oxygen resonant Rutherford backscattering spectrometry (RRBS) at Intermountain Accelerator Centre (IAC), using 1.7 MV pelletron tandem accelerator. The ERDA and RRBS measurements facilitated a direct quantitative determination of Fe/O/H concentrations simultaneously in the samples. RRBS experiments were performed with a resonant energy for oxygen reaction 16O(a, a)16O\textsubscript{i}, to accurately measure the O-content in the α-Fe\textsubscript{2}O\textsubscript{3} films (see Supplementary-S7). Thin films were mounted on a 4-axis goniometer and the chamber was maintained at a pressure \(\sim 10^{-6} \) Torr. The He ions were incident at an angle of 75°. Backscattered He (for RRBS) and recoiled H (for ERDA) were collected in surface-barrier detectors placed at 165° and 30° with respect to the incident ions, respectively. A 14-µm-thick Al absorber-foil was used to stop the forward-scattered He and only allow recoiled H toward the ERDA detector. Both ERDA and RRBS spectra were fit using the SIMNRA software. For RRBS experiments, the energy calibration was performed by using a standard tungsten silicide sample. To calibrate the yield and energy of ERDA measurements, a quantitative analysis of H density was obtained by using an H-implanted Si standard and by performing ERDA measurements at two energies in the range \(\sim 2.80-3.04 \) MeV. Lastly, to analyse charge transfer between atoms in H-doped α-Fe\textsubscript{2}O\textsubscript{3}, we adopted the Bader-charge calculations as it considers not only the core charge but also the valence charge, serving as a good approximation of the total electronic charge.

Data availability The data that support the findings of this study are available within the article and its Supplementary Information file. Materials are available from the corresponding authors upon reasonable request.

Received: 26 May 2020; Accepted: 4 February 2021;
Published online: 12 March 2021

References

1. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

2. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

3. Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

4. Železny, J., Wadley, P., Olejnik, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

5. Chumak, A. V., Vasyuchka, V. I., Serga, A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

6. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

7. Qiu, Z. et al. Spin colloidal magnetoresistance in an antiferromagnetic insulator. Nat. Mater. 17, 577–580 (2018).

8. Duong, N. P., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

9. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO\textsubscript{3}. Nature 429, 850 (2004).

10. Thiel, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photonics 10, 715 (2016).

11. Galkina, E. G., Galkin, A. Y., Ivanov, B. A. & Nori, F. Magnetic vortex as a ground state for micron-scale antiferromagnetic samples. Phys. Rev. B 81, 184413 (2010).

12. Avcı, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

13. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).
magnetometry and experimental discussions. S.P. assisted H.J. with metal growth and surface characterization. P.Y. guided H.J. for diffractometry and its analysis. S.G. participated in experimental discussions. A.B. and K.B. performed and analysed FTIR experiments. J.M.D.C. and P.G.R. provided guidance to H.J. to understand the results and suggested ideas for modelling. J.M.D.C. also suggested Rh-cationic substitution. T.V. supervised the entire programme. H.J. wrote the manuscript along with T.V., P.G.R. and J.M.D.C. and received inputs from all authors.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21807-y.

Correspondence and requests for materials should be addressed to H.J. or T.V.

Peer review information Nature Communications thanks Christian Binek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021