Clinical application of comprehensive genomic profiling panel to thoracic malignancies: A single-center retrospective study

Kei Kunimasa1,2 | Naotoshi Sugimoto2,3 | Takahisa Kawamura1,2 | Tomoyuki Yamasaki2,4 | Keiichiro Honma5 | Shigenori Nagata5 | Yoji Kukita2,6 | Fumie Fujisawa2,3 | Tazuko Inoue2 | Yuko Yamaguchi2 | Mitsuko Kitasaka2 | Toru Wakamatsu2,7 | Taku Yamai2,8 | Sachiko Yamamoto2,9 | Takuji Hayashi2,10 | Takako Inoue1 | Motohiro Tamiya1 | Fumio Imamura2 | Kazuo Nishimura2,10 | Kazumi Nishino1

1Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
2Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
3Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
4Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute, Osaka, Japan
5Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
6Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
7Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
8Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
9Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
10Department of Urology, Osaka International Cancer Institute, Osaka, Japan

Correspondence
Kei Kunimasa, Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuo-ku, Osaka City, Osaka, 541-8567, Japan.
Email: kei.kunimasa@oici.jp

Abstract
Background: The usefulness of comprehensive genomic profiling (CGP) panels for thoracic malignancies after completion of the standard treatment is unclear.

Methods: The results of CGP panels for malignant thoracic diseases performed at our hospital between December 2019 and June 2022 were collected. We examined whether CGP panel results led to new treatment, correlated with the effectiveness of immune checkpoint inhibitors (ICIs), or revealed secondary findings related to hereditary tumors.

Results: A total of 60 patients were enrolled, of which 52 (86.6%) had lung cancer. In six (10%) patients, the panel results led to treatment with insurance-listed molecular-targeted agents; four patients had EGFR mutations not detected by the real-time polymerase chain reaction assay and two had MET ex.14 skipping mutations. In small-cell lung cancer, the tumor mutation burden was high in 4/6 (66.7%) patients and pembrolizumab was available. Another MET ex.14 skipping mutation was detected in two cases with EGFR-tyrosine kinase inhibitor resistance. ICI efficacy was ≤1 year in patients with STK-11, KEAP1, and NEF2L2 mutations. A BRCA2 mutation with a high probability of germline mutation was detected in one patient. A thymic carcinoma with no detectable oncogenic mutation responded to second-line treatment with Tegafur-Gimeracil-Oteracil Potassium (TS-1) for ≥9 years.

Conclusions: CGP panels are useful in thoracic malignancies, especially lung cancer, because they can detect overlooked driver mutations and genetic alterations. We believe that the significance of conducting a CGP panel prior to treatment may also exist, as it may lead to the prediction of ICI treatment efficacy.

KEYWORDS
comprehensive genomic profiling, lung cancer, next-generation sequencing, thoracic malignancy

INTRODUCTION

A genetic test in which multiple regions of multiple genes are simultaneously analyzed using next-generation sequencing (NGS) is called a cancer gene panel test.1–3 Conventional genetic testing can analyze a limited area at a time, but NGS allows the analysis of several to several hundred genes at a time. The cancer gene panel test can simultaneously detect base substitution/insertion/deletion mutations, gene amplification/deletion, and gene fusion in all or part of the carried genes. In addition, there are gene panel tests that can estimate tumor mutation burden (TMB) and microsatellite
The number of target genes and type of nucleic acids (DNA and RNA) used for analysis are different for each cancer gene panel test. Furthermore, some tests use only tumor-derived nucleic acids, while others use nucleic acids derived from normal specimens, such as peripheral blood, as controls.\(^3\)\(^5\) In addition, a test method that analyses tumor-derived free DNA in blood using peripheral blood is under development.\(^5\)\(^7\) This test is expected to be implemented in clinical practice in the future because of its low invasiveness for specimen collection.

Similar to conventional gene tests, gene panel tests include a companion-diagnosis function to determine the appropriateness of administering molecular-targeting drugs.\(^8\)\(^9\) In addition to comprehensive genomic profiling (CGP) to determine the genetic abnormalities involved for appropriate treatment selection. The former does not require interpretation of the results because the results obtained are positive/negative for a specific genetic biomarker. However, the latter requires decisions regarding the pathological significance of the genetic abnormality detected and the availability of the corresponding candidate drug. Therefore, a review by an “expert panel” or “molecular tumor board” is required for insurance purposes.\(^10\) Although cancer gene panel tests have been used for >2 years in Japan, many problems persist, including how to make the best use of gene panel test results for treatment. According to domestic and international reports, the percentage of patients who receive treatment after a gene panel test is currently about 10–20%.\(^1\)

Lung cancer is a malignant disease with a poor prognosis and is the leading and second leading cause of death among men and women in Japan, respectively.\(^1\)\(^1\) However, among solid tumors, lung cancer has the highest number of identified druggable driver mutations.\(^12\) In advanced-stage lung cancer, it is recommended to identify epidermal growth factor receptor (EGFR), ALK fusion, ROSI fusion, BRAF, RET fusion, and MET ex.14 skipping mutations before starting treatment.\(^13\) To identify these mutations simultaneously, an NGS-based gene panel (Oncomine Dx target test) is recommended.\(^13\)\(^14\) Lung cancer is the second most likely solid tumor after malignant melanoma to respond to immune checkpoint inhibitors (ICIs),\(^15\) and genetic mutations associated with ICI efficacy are being identified.\(^16\)\(^17\) However, the usefulness of CGP panel tests in advanced-stage lung cancer after standard treatment has been completed is unclear.

In Japan, CGP panels are covered by health insurance only after completion of the standard treatment defined by each guideline. Therefore, this study aimed to examine the impact of CGP panels conducted after the completion of standard treatment on actual clinical practice at our center for malignant thoracic diseases and the current usefulness of such panels.

PATIENTS AND METHODS

Patients and analysis procedure for CGP panels

All patients with malignant thoracic disease who underwent CGP panel tests at the Osaka International Cancer Institute between December 2019, when the CGP panel was approved for reimbursement in Japan, and June 2022 were included in this study. Patients’ age, sex, disease, and number of lines of treatment at the time of CGP panel evaluation were collected. All participants were asked whether they wished to disclose the results of CGP panel analysis to parties other than themselves and whether they wished to disclose information related to any hereditary tumors prior to test submission. When tumor tissue was used, the attending physician decided whether to perform a Foundation One panel (F1 panel) or an OncoGuide NCC oncopanel (NCC panel). When tissue specimens were used, after obtaining consent, a pathologist determined whether they could be submitted for CGP panel testing based on the tumor area, tumor content, and specimen storage period. The percentage of patients whose specimens could not be submitted because of the pathologist’s decision and whether these patients subsequently underwent re-examination were investigated. The sampling method of tumor specimens was also investigated. For patients treated after August 2021, when F1 liquid was introduced, if tissue specimens were not available, we proposed the use of F1 liquid, and CGP panel testing was performed using F1 liquid for consenting patients. The time between obtaining consent and disclosing the CGP panel results after expert panel review to the patient was calculated as the turnaround time.

Expert panel for CGP panels

The results of all CGP panel analyses were reviewed by an expert panel within the Osaka International Cancer Institute and then explained to the patients. The expert panel consisted of an oncologist for each organ, a clinical geneticist, a genetic counselor, a pathologist, a clinical trial coordinator, and a pharmacist. For detected alterations, oncogenicity was annotated based on the reports of each gene panel and approved by the expert panel within the Osaka International Cancer Institute. The results of all CGP panel analyses were reviewed by an expert panel within the Osaka International Cancer Institute and then explained to the patients. The expert panel consisted of an oncologist for each organ, a clinical geneticist, a genetic counselor, a pathologist, a clinical trial coordinator, and a pharmacist. For detected alterations, oncogenicity was annotated based on the reports of each gene panel and approved by the expert panel within the Osaka International Cancer Institute. The results of all CGP panel analyses were reviewed by an expert panel within the Osaka International Cancer Institute and then explained to the patients. The expert panel consisted of an oncologist for each organ, a clinical geneticist, a genetic counselor, a pathologist, a clinical trial coordinator, and a pharmacist. For detected alterations, oncogenicity was annotated based on the reports of each gene panel and approved by the expert panel within the Osaka International Cancer Institute.

Heat map of reported oncogenic mutations

Reported oncogenic alterations with a frequency of >5% in the cohort were included in the heatmap. The heat map was created using custom R programming scripts with graphics modules of ggplot2 v.3.3.6 and cowplot v.1.1.1. Cluster classification was performed for each malignant thoracic disease.
Correlation of STK11, KEAP1, and NEF2L2 mutations with effects of ICI

Cases with STK11, KEAP1, and NEF2L2 mutations were extracted based on the results of the CGP panel, and in patients with a history of ICI administration the effect was evaluated in terms of progression-free survival (PFS). PFS was defined as the point from the start of ICI administration to its discontinuation due to tumor progression or toxicity, based on medical records.

RESULTS

Patient characteristics

During the study period, 63 patients consented to CGP panel testing, of whom eight (8/63, 12.7%) were determined to have insufficient specimens; of these, four (50%) patients underwent re-biopsy for CGP panel, one (12.5%) specimen was submitted in F1 liquid, and three (37.5%) patients declined to resubmit tests. Finally, 60 (95.2%) results were available for analysis (Figure 1). The clinical characteristics of the patients are shown in Table 1. The participants included 38 (63.3%) men and 22 (36.7%) women, with a median age of 69 (range 44–82) years. Histopathologically, there were 33 (55.0%) lung adenocarcinomas, 10 (16.6%) lung squamous cell carcinomas, three (5.0%) nonsmall-cell lung carcinomas (NSCLC)-not otherwise specified, six (10.0%) small-cell lung carcinomas (SCLC), six (10.0%) thymic carcinomas, one (1.7%) thymoma, and one (1.7%) malignant pleural mesothelioma. The median number of treatment lines at the time of CGP panel submission was three. Submitted specimens included 21 (35.0%) surgical biopsies, 12 (20.0%) computed tomography-guided biopsies, two (3.3%) pleural biopsies, nine (15.0%) bronchoscopic specimens, six (10.0%) endobronchial ultrasound-guided transbronchial needle aspiration specimens, and 10 (16.7%) plasma samples. The F1 panel, NCC panel, and F1 liquid were used to analyze 47, three, and 10 specimens, respectively. The median turnaround time from obtaining consent to explaining the results was 48 (range 33–118) days. Eight (13.3%) patients did not want the results of the CGP panel to be disclosed to anyone other than themselves and three (5.0%) did not want the results of inherited tumor-associated mutations to be disclosed. No case could be registered in a clinical trial, based on the genetic alterations detected in the CGP panel.

Landscape of genomic alterations in 60 patients

Of the mutations detected in the gene-panel analyses of 60 cases, only those mutations or copy-number alterations that were considered oncogenic mutations in the report and found in >5% of cases are shown in the heatmap image (Figure 2). The top 10 alterations detected were TP53 (30%),

TABLE 1	Patient characteristics
Age	Median (range) 69 (44–82)
Sex, n (%)	Male 38 (63.3)
	Female 22 (36.7)
Disease	LDA 33 (55.0)
	LSq 10 (16.6)
	NSCLC-NOS 3 (5.0)
	SCLC 6 (10.0)
	Thymic carcinoma 6 (10.0)
	Thymoma 1 (1.7)
	MPM 1 (1.7)
Treatment lines	Median (range) 3 (1–12)
Sampling methods	Surgical 21 (35.0)
	CT-guided 12 (20.0)
	Pleural biopsy 2 (3.3)
	TBB 9 (15.0)
	EBUS-TBNA 6 (10.0)
	Liquid 10 (16.7)
CGP panel	Foundation One 47 (78.3)
	NCC oncopanel 3 (5.0)
	Foundation One Liquid 10 (16.7)

Turn around time, days from obtaining consent to result explanation
| Median (range) | 48 (33–118) |

Abbreviations: CGP, comprehensive genome profiling; CT, computed tomography; EBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration; LDA, lung adenocarcinoma, LSq, lung squamous carcinoma; MPM, malignant pleural mesothelioma; NCC, national cancer center; NOS, not other specified; NSCLC, non-small-cell lung carcinoma; SCLC, small-cell lung carcinoma; TBB, transbronchial biopsy.
CDKN2A (27.3%), EGFR (23.6%), RB1 (23.6%), CDKN2B (16.4%), MTAP (14.5%), ERBB2 (12.7%), ARID1A (9.1%), NEF2L2 (9.1%), and MET (7.3%). In six (10%) cases, genetic mutations that were indications for insurance-approved molecularly targeted drugs (Evidence level A) were first detected using CGP panel testing. Of these, four patients had major activating EGFR mutations and two had MET ex.14 skipping mutations. The median TMB was 4/Mb (range 0–24). Except for six cases with microsatellite instability, all tumors were stable. Notably, high TMB (≥10/Mb) was observed in four of six (66.7%) patients with SCLC. HER2 mutations eligible for trastuzumab deruxtecan therapy included three cases of A775_G776insYVMA and one case each of G776>VC and S310F.

FIGURE 2 Heatmap of CGP panel in 60 cases. Heatmap of the mutation pattern of oncogenic alterations with frequency >5%. Each row represents a gene and each column represents a case. On the left side of the heatmap oncogenic alterations are listed in order of frequency, with gray bars representing the frequency. The heatmap shows oncogenic alterations in different colors. The horizontal axis shows clinical data for each case, including sex, histological type, and tumor mutation burden.

TABLE 2 Patient list of EGFR mutations detected by the CGP panel

Case no.	Case 1	Case 2	Case 3	Case 4
EGFR mutation	E746_A750 del	L858R	Ex.20 ins A763_Y764 ins FQEA	Ex.20 S768_V769 > IL
Age at CGP panel	76 years	71 years	71 years	66 years
Sex	Female	Female	Female	Male
Smoking history	Light	Never	Never	Never
Treatment line at CGP panel	6th line	8th line	3rd line	12th line
Years of treatment at the time of CGP panel	3 years	8 years	2 years	8 years

Abbreviations: CGP, comprehensive genome profiling; EGFR, epithelial growth factor receptor.

FIGURE 3 A case of EGFR L858R mutation caused by two-base substitution. A two-base substitution changes the codon encoding amino acid 858th L from “CFG” to “AGG”. “AGG” codes R.

EGFR mutation cases not detected by the first RT-PCR test but detected by the CGP panel

All four patients with major activating EGFR mutations detected using the CGP panel had undergone RT-PCR EGFR-detection tests at diagnosis, but no EGFR mutation was detected and they were treated as EGFR-mutation-negative cases. The clinical courses and characteristics of the four cases are presented in Table 2. In all cases, CGP panels were performed after at least 2 years of chemotherapy. In case 1, the RT-PCR test for EGFR gene mutation was submitted using bronchoscopy-forceps washout. In case 2, RT-PCR was performed using a section from a paraffin-embedded block of tumor-tissue specimen from a bronchial biopsy. EGFR L858R in case 2 was a two-base substitution mutation of EGFR c.2572 _ 2573 CT>AG (Figure 3). EGFR gene mutations detected in cases 3 and 4 (Ex.20 ins A763_Y764 ins FQEA and Ex.20 S768_V769 > IL,
respectively) were likely not detected because they were variants not covered by RT-PCR testing.

CGP panel testing for resistance mutations after treatment with tyrosine kinase inhibitor

A total of six patients underwent CGP panel testing to search for resistance mutations after tyrosine-kinase inhibitor (TKI) treatment. Four patients had major EGFR mutations and two had ALK fusion; all six patients underwent TKI therapy for each mutation. MET ex.14 skipping mutation was detected as a resistance mutation in two of the four patients with EGFR mutations. In one patient, G724S mutation was detected as a compound mutation in addition to the original Ex.19 deletion, leading to a change in TKI, based on EGFR structure. In one case of ALK fusion, after first-, second-, third-, and fourth-line treatment with alectinib, lorlatinib, ceritinib, and a combination of CBDCA, paclitaxel, bevacizumab, and atezolizumab, respectively, and a fifth-line lorlatinib rechallenge, CGP panel was performed, and BRAF-KIAA1549 fusion was detected in addition to multiple ALK-resistant mutations of ALK G1269A, L1196M and F1174C.

ICI-resistant mutations

We studied STK11, KEAP1, and NEF2L2 mutations as ICI-resistant gene mutations and the effect of ICIs on tumors with these mutations. Of the 60 patients, eight had oncogenic mutations of these three genes and seven had received ICI treatment. The age, sex, TMB, PD-L1 tumor proportion score (%), and ICI and ICI treatment line administered were evaluated, and their correlation with PFS in these patients is summarized in Table 3. PFS was <1 year in all patients receiving ICIs, and in patients with KEAP1 and NEF2L2 mutations, PFS was <3 months despite administration of the first-line therapy, indicating primary resistance to ICI.

Secondary finding associated with hereditary tumor

One of the 60 patients had BRCA2 Q1361* mutation as a secondary finding associated with hereditary breast and ovarian cancer, after checking the family history of neoplastic diseases. The patient was a 70-year-old woman with squamous cell carcinoma of the lung who had undergone

TABLE 3 List of patients with STK11, KEAP1, and NEF2L2 mutations who received ICI

Age (years)	Sex	TMB (/Mb)	PD-L1 TPS (%)	STK11, KEAP1, NEF2L2 Mutation or alteration	ICI treatment line	ICI treatment	PFS
80	F	10	0%	STK11 Q100fs*63	2nd	Atezolizumab	6 months
63	F	8	90%	STK11 loss	1st	Pembrolizumab	11 months
73	M	3	30%	KEAP1 Q92*	1st	Pembrolizumab	2 months
66	F	1	60%	KEAP1 W252*	2nd	Pembrolizumab	3 months
48	M	3	80%	NEF2L2 D29H	3rd	Pembrolizumab	2 months
55	M	4	1%	NEF2L2 E79K	1st	CBDCA + PTX + Niv + Ipi	2 months
53	M	21.7	1%	NEF2L2 G31R	1st	CBDCA + PEM + Pembrolizumab	2 months
76	F	CBD	20%	NEF2L2 G81S	NA	NA	NA

FIGURE 4 Pedigree of a family with strong hereditary breast and ovarian cancer history. Red arrows point to the lung cancer case that underwent CGP panel analysis. The case received the operation for the left breast cancer in a 48-year-old. The younger sister had breast cancer at the age of 55. Her father had lung cancer at age 70 and colorectal cancer at age 72, and her paternal aunt had a history of uterine cancer.
surgical treatment for left breast cancer at age 48. Her sister was diagnosed with breast cancer at age 55 and her paternal aunt was diagnosed with uterine cancer at age 75. The prevalence of tumor diseases in her family tree is shown in (Figure 4). The BRAC2 Q1361* mutation was considered to be associated with hereditary breast and ovarian cancer in the analysis of tumor tissue alone, but the patient did not wish to receive genetic counseling and her germline mutation of BRAC2 Q1361* was not examined using normal tissue.

No oncogenic mutation in thymic cancer exhibiting exceptional response to TS-1

Seven of the 60 patients had thymic tumors. Among them, in one case no genetic alterations were detected in the CGP panel. The patient received CBDCA plus paclitaxel as the first-line treatment, but the disease progressed after 7 months, therefore he received tegafur + gimeracil + oteracil as the second-line treatment and currently his disease has been in remission for 9 years.

DISCUSSION

Among patients with malignant thoracic diseases, mainly lung cancer, six (10%) patients with an insurance-approved indication at evidence level A, based on CGP panel results, received molecularly targeted drugs. In addition, high TMB was detected in 4/6 (66.7%) small-cell carcinomas, making pembrolizumab a new treatment option for TMB-high small-cell carcinomas where treatment is limited. In five cases, HER2 mutations eligible for trastuzumab deruxtecan treatment at evidence level B were detected. MET ex.14 skipping mutation was detected as a new driver mutation in specimens with EGFR-TKI resistance, leading to the introduction of a new therapeutic agent. Compared to other cancer types, CGP panel testing has a higher probability of leading to promising treatments in lung cancer and CGP panels may be more useful for lung cancer. In this study, we clarified the significance of multiple NGS panels because a CGP panel in clinical practice has a high probability of detecting TMB-high in SCLC, and also because a druggable driver mutation can be detected in cases with EGFR mutations that were previously screened by assays other than NGS.

Of the six cases that led to molecularly targeted agents at evidence level A, two cases of MET ex.14 skipping mutations were detected by the CGP panel because the same mutation had not been searched for using RT-PCR. As pre-treatment NGS-based gene panels become more prevalent in the future, such cases are expected to become less frequent. All four cases in which EGFR mutations were detected had undergone RT-PCR-based EGFR testing at least once. Cases 1 and 2 demonstrated Ex.19 deletion and L858R mutation, respectively, which were major activating EGFR mutations and therefore variants covered by RT-PCR. Case 1 results may have been false negative because the specimen used was the biopsy-forceps washing fluid, which probably contained a low percentage of cancer cells. In case 2, the mutation was caused by a two-base substitution, therefore it is possible that the primers specific for the L858R mutation could not bind and RT-PCR was not successful.

The availability of specimen volume is an issue in CGP panel testing in patients with advanced-stage lung cancer who have had an NGS panel performed at the time of initial diagnosis. At diagnosis, physicians rely on bronchoscopic biopsy specimens in nearly 60% of patients with advanced-stage lung cancer. F1 CDx requires at least 1 mm³ of tissue and the NCC OncoPanel requires 10 unstained slides.
with a minimum size of 4 mm2 (16 mm2 is recommended). These tumor volumes are often difficult to obtain from bronchoscopic biopsy specimens, and the possibility of obtaining specimens that can withstand two NGS panels is much lesser. Surgical biopsy specimens accounted for 35% of specimens in this study, while bronchoscopic biopsy specimens accounted for only 25% (Table 1). In eight cases, a re-biopsy for gene panel evaluation was required, suggesting that specimen collection is an important issue in thoracic malignancies. In addition, a surgical biopsy specimen may be able to withstand multiple gene panels, and it is important to consider a genomic biopsy policy that aims not only at diagnosis but also at genomic analysis.

This study had several limitations. First, this was a single-center, retrospective, controlled study with a limited number of cases, therefore the statistical significance of mutations as a factor for poor treatment response to ICIs could not be fully investigated. Second, the sample predominantly included cases with lung cancer, and the significance of CGP panels in other malignant thoracic diseases could not be adequately studied. Third, since this was a retrospective study, there was a selection bias for cases in which a CGP panel was performed. To examine the usefulness of the CGP panel, it would be helpful to examine the impact of the CGP panel on clinical practice by prospectively examining all cases with thoracic malignant diseases over a period of time. Fourth, the reach rate for clinical trials based on CGP panel results is likely to be influenced by region. Since clinical trials for cancer drugs are more common in Tokyo than in other parts of Japan, it is conceivable that the reach rate for clinical trials may also be higher in Tokyo.

CONCLUSION

In the present study, the CGP panel detected favorable genetic alterations, including druggable mutations, in 12 (20%) of 60 patients. TMB-high SCLC responded to pembrolizumab, whereas MET ex.14 skipping mutation was resistant to EGFR-TKI. Compared with other cancer types, lung cancer is rich in molecular-targeted agents, therefore the usefulness of a CGP panel may be greater. Mutations in STK-11, KEAP1, and NEF2L2 may be useful for predicting the effect of ICIs, and the importance of conducting a CGP panel before the start of treatment in clinical practice was suggested.

ACKNOWLEDGMENTS

We would like to acknowledge to all patients with thoracic malignancies who received CGP panels in our hospital. The study was approved by the ethics committee of the Osaka International Cancer Center (#22046).

AUTHORS’ CONTRIBUTIONS

K.K., N.S., T.K., T.Y., K.H., S.N., Y.K., F.F., T.I., Y.Y., M.K., T.W., T.Y., S.Y., T.H., T.I., M.T., F.I., and K. Nishimura made substantial contributions to the study conception, study design, study protocol, data interpretation, and writing or critically reviewing the manuscript for important intellectual content. Material preparation, data collection, and analysis were performed by K.K. The first draft of the manuscript was written by K.K., N.S., T.K., T.Y., K.H., S.N., Y.K., F.F., T.I., Y.Y., T.W., T.Y., S.Y., T.H., T.I., M.T., F.I., K. Nishimura, and K. Nishino commented on the manuscript. All authors read and approved the final manuscript.

CONFLICT OF INTEREST STATEMENT

Dr. Kunimasa reports honoraria for lecture from AstraZeneca, Chugai Pharma, Novartis, Ono Pharmaceutical, Eli Lilly, and Pfizer Merk. Dr. Sugimoto reports honoraria for lecture from MSD, Eli Lilly, Chugai Pharma, Taiho Pharmaceutical, Dai-ichi Sankyo, and Ono Pharmaceutical. Dr. Tamiya reports grants from Ono Pharmaceutical, Bristol-Myers Squibb, and Boehringer Ingelheim, and honoraria for lectures from Taiho Pharmaceutical, Eli Lilly, Asahi Kasei Pharmaceutical, MSD, Boehringer Ingelheim, AstraZeneca, Chugai Pharmaceutical, Ono Pharmaceutical, and Bristol-Myers Squibb. Dr. Nishimura reports honoraria for a lecture from AstraZeneca. Dr. Nishino reports a grant from Nippon Boehringer Ingelheim and honoraria for lectures from Chugai Pharma, AstraZeneca, Nippon Boehringer Ingelheim, Eli Lilly Japan, Roche Diagnostics, Novartis, and Pfizer Merk. The other authors have no conflict of interest.

ORCID

Kei Kunimasa https://orcid.org/0000-0002-5241-3486
Keiichiro Honma https://orcid.org/0000-0001-5193-5891
Shigenori Nagata https://orcid.org/0000-0002-5455-6886
Fumie Fujisawa https://orcid.org/0000-0001-8436-9072
Takuji Hayashi https://orcid.org/0000-0003-2030-3087

REFERENCES

1. Kohno T. Implementation of “clinical sequencing” in cancer genome medicine in Japan. Cancer Sci. 2018;109(3):307–12.
2. Kou T, Kanai M, Yamamoto Y, Kamada M, Nakatsui M, Sakuma T, et al. Clinical sequencing using a next-generation sequencing-based multiplex gene assay in patients with advanced solid tumors. Cancer Sci. 2017;108(7):1440–6.
3. Sunami K, Ichikawa H, Kubo T, Kato M, Fujiwara Y, Shimomura A, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci. 2019;110(4):1480–90.
4. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.
5. Takeda M, Takahama T, Sakai K, Shimizu S, Watanabe S, Kawakami H, et al. Clinical application of the FoundationOne CDx assay to therapeutic decision-making for patients with advanced solid tumors. Oncologist. 2021;26(4):e588–e96.
6. Woodhouse R, Li M, Hughes J, Delfosse D, Skoletsky J, Ma P, et al. Clinical and analytical validation of FoundationOne liquid CDx, a novel 324-gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS One. 2020;15(9):e0237802.
7. Sunami K, Bando H, Yatabe Y, Naito Y, Takahashi H, Tsuchihara K, et al. Appropriate use of cancer comprehensive genome profiling assay using circulating tumor DNA. Cancer Sci. 2021;112(9):3911–7.
8. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23.

9. Leibensperger J, Horak P, Kreutzfeldt S, Heining C, Christopoulos P, Volckmar AL, et al. Variant classification in precision oncology. Int J Cancer. 2019;145(11):2966–3010.

10. Luchini C, Lawlor RT, Milella M, Scarp a A. Molecular tumor boards in clinical practice. Trends Cancer. 2020;6(9):738–44.

11. Yamaguchi T, Nishiura H. Predicting the epidemiological dynamics of lung cancer in Japan. J Clin Med. 2019;8(3):326.

12. Middleton G, Fletcher P, Popat S, Savage J, Summers Y, Greystoke A, et al. The National Lung Matrix Trial of personalized therapy in lung cancer. Nature. 2020;583(7818):807–12.

13. Akamatsu H, Ninomiya K, K enmoto H, Morise M, Daga H, Goto Y, et al. The Japanese lung cancer society guideline for non-small cell lung cancer, stage IV. Int J Clin Oncol. 2019;24(7):731–70.

14. Yata be Y, Sunami K, Goto K, Nishio K, Aragane N, Ikeda S, et al. Multiplex gene-panel testing for lung cancer patients. Pathol Int. 2020;70(12):921–31.

15. Johnson DB, Nebhan CA, Mosleh i JJ, Bal k o JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–67.

16. Marinelli D, Mazzotta M, Scalera S, Terenato I, Sperati F, D’Ambrosio L, et al. KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Ann Oncol. 2020;31(12):1746–54.

17. Cristescu R, Mogg R, A yers M, Albright A, Murphy E, Year le J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411):eaar5593.

18. Mukai Y, Ueno H. Establishment and implementation of cancer genomic medicine in Japan. Cancer Sci. 2021;112(3):970–7.

19. Kunimasa K, Sugimoto N, Tamiya M, Inoue T, Kawamura T, Kuhara H, et al. How to cite this article: Kunimasa K, Sugimoto N, Tamiya M, Inoue T, Kawamura T, Yamasaki T, Honma K, Nagata S, et al. Clinical application of comprehensive genomic profiling panel to thoracic malignancies: A single-center retrospective study. Thorac Cancer. 2022;13(21):2970–7. https://doi.org/10.1111/1759-7714.14643