Characterization of circular RNAs and their role in wilt stress tolerance in soybean

Tanwy Dasmandal, AR Rao and Sarika Sahu

DOI: https://doi.org/10.22271/chemi.2020.v8.i2a.8747

Abstract

Soybean (Glycine max) is an important oil seed crop and widely grown legume in India as well as in the world. The yield of soybean is severely affected by Wilt disease caused by a fungus Fusarium oxysporum. Several coding and non-coding RNAs in plant cells may directly or indirectly play a role in exhibiting stress tolerance to wilt. Here, an attempt has been made to identify the role of circular RNAs (circRNAs), a type of non-coding RNAs, in wilt stress tolerance mechanism. The study also aims at identification of circRNAs that act as endogenous target mimics (eTMs) or as sponges to miRNAs that may regulate the genes involved in wilt stress tolerance. The study reveals the presence of 24 differentially expressed circRNAs (DEcircRNAs) between the transcriptomes of wilt affected and control samples out of which 18 were acted as eTMs for 10 microRNAs (miRNAs). These miRNAs in turn found to regulate 275 genes that fall under 14 Gene Ontology (GO) based functional categories. The GO analysis further shown the annotation term ‘stimulus response’ for most of the DEcircRNAs, which were found in various vital activities like polygalacturonase activity, carbohydrate metabolic process. Hence, it is predicted that the identified miRNAs got absorbed by the circRNAs that acted as sponges or eTMs and the miRNA regulated genes are likely to be freed up in cell to exhibit wilt stress tolerance mechanism in soybean.

Keywords: Circular RNAs, wilt stress, soybean, miRNAs, eTMs

Introduction

Soybean is one of the largest grown legume crops worldwide (Singh et al. 1992) [17] and is also important for oil extraction. The crop contains about 23% oil and is also rich in protein content to an extent of 42% (Dornbos et al. 1992) [5]. However, the productivity of the crop has been found to drastically reduce due to the effect of Fusarium blight or wilt. Studies on the regulatory roles of non-coding RNAs on wilt stress tolerance have been made in the past in various leguminous crops. Kohli et al. (2014) [8] identified and characterized wilt stress responsive miRNAs in chickpea and found that a number of miRNAs were highly up-regulated in response to fungal infection. It has also been observed that lncRNAs are important components of the antifungal networks in A. thaliana (Zhu et al. 2014) [21]. Several studies have been made in the recent past on the function of non-coding RNAs for a variety of stresses in soybean. Panda et al. (2018) [14] reported that circular RNAs might have played significant roles in regulating genes responsible for different stress tolerance mechanisms in plants. These circRNAs are a class of non-coding RNAs formed by a covalent linkage between the 5’ and 3’ ends of an RNA molecule. Ebbesen et al. (2016) [6] reported that circRNAs might have originated from exons, introns or intergenic regions. Chu et al. (2018) [3] found that the circRNAs may have a variable length ranging from 100 nucleotides to several kilobases and may act as sponges to miRNAs. This may prevent the miRNAs from regulating the miRNAs. Differentially expressed circRNAs may act as functional regulators to biological processes specific to stress responses in plants (Li et al. 2018) [12]. Zhao et al. (2017) [20] identified 5,367 circRNAs associated with resistance to defoliating insects in soybean leaves. However, studies are yet to be fully explored on characterization of circRNAs in soybean for wilt stress tolerance. Hence, in this study, the circRNAs were identified from wilt affected soybean crop using RNA-Seq data and their role as eTMs in regulating genes responsible for wilt stress tolerance was studied in silico through bioinformatic approaches.
Materials and Methods
RNA-seq data for wilt under control and wilt affected soybean were downloaded from https://www.ncbi.nlm.nih.gov/ having accession numbers: SRR4095539 (control), SRR4095541 (wilt affected)
Soybean whole genome data and miRNAs present in soybean were downloaded from http://plants.ensembl.org/index.html and http://www.mirbase.org/ respectively.

Data preparation
FastQC (Andrews, 2010) [1] was used for processing the raw data to get quality reads and Trimmomatic tool (Bolger et al. 2014) [2] was used to trim the poor quality segments of the reads. Finally quality reads were subjected to further downstream analysis.

Circular RNAs identification and differential expression pattern analysis
Mapping of the trimmed reads onto the reference genome was done using BWA MEM (Li, 2013) [9] and the resulted SAM file and reference genome were used for identifying circRNAs by using CircRNA Identifier (CIRI) (Gao et al. 2015) [10]. For the analysis of differential expression pattern of the identified circRNAs, expression levels were initially calculated using RSEM (Li and Dewey, 2011) [10] and finally the differentially expressed circRNAs were detected using the R package DESeq2 (Love et al. 2014) [13].

CircRNA-miRNA-mRNA interaction
Initially, prediction of miRNAs that target the differentially expressed circRNAs was done by Target Finder (http://www.bioit.org.cn/ao/targetfinder.html). Subsequently, these miRNAs were subjected to psRNA Target (http://plantgrn.noble.org/psRNATarget/) (Dai and Zhao 2018) [4] to identify their target genes or mRNA targets. These two steps indicate that miRNAs instead of targeting the mRNAs might target the circRNAs that may mimic the mRNAs and hence may not target the genes or mRNAs. Finally, annotation of the targeted miRNAs was done using BLAST2GO (https://www.blast2go.com/).

Results and Discussion
Identification of circular RNAs under wilt stress condition
A total of 48 circular RNAs were identified under control condition (CT), out of which 31 (64%), 15 (32%) and 2 (4%) were of intergenic type, exonic type and intronic type respectively (Fig 1a). Whereas, 75 circular RNAs were identified under wilt stress condition, out of which 53 (71%), 18 (24%) and 3 (4%) were found to be of intergenic, exonic and intronic types respectively (Fig 1b).

Expression pattern of circular RNAs under wilt stress condition
The expression patterns of circRNAs between control and wilt affected plants were compared in order to investigate whether they are expressed in specific manner under wilt stress condition. A total of 24 differentially expressed circular RNAs were detected between wilt stress and control conditions. Among them 12 were found to be downregulated (log2FoldChange<0) (Table 1), and 12 were found to be upregulated (log2FoldChange>0) (Table 2).

Table 1: List of downregulated circRNAs

circRNA ID	Base Mean	log2FC	SE(log2FC)	Wald Statistic
11_dna:chromosome_chromosome: Glycine_max_v2:11:1:347666867:1	2666.467	-0.26914	0.354095	-0.76009
17_dna:chromosome_chromosome: Glycine_max_v2:17:1:446306461:1	709.3314	-2.29063	1.350556	-1.69606
KZ847214_dna:supercontig_supercontig: Glycine_max_v2:1:KZ847214:1:64:745:1	38.78359	-1.34509	1.109218	-1.21264
11_dna:chromosome_chromosome: Glycine_max_v2:11:1:347666867:1	356.1966	0.87585	0.757436	-1.15633
2_dna:chromosome_chromosome: Glycine_max_v2:12:1:48577505:1	710.5561	-0.7436	0.670172	-1.10956
9_dna:chromosome_chromosome: Glycine_max_v2:19:1:50189764:1	319.6854	-0.57223	1.069754	-0.53583
16_dna:chromosome_chromosome: Glycine_max_v2:16:1:37887014:1	130.0271	-0.44501	0.531682	-0.83699
18_dna:chromosome_chromosome: Glycine_max_v2:18:1:50081841:1	145.7446	-0.40209	0.409557	-0.8049
8_dna:chromosome_chromosome: Glycine_max_v2:8:1:78319740:1	52.8615	-0.37559	0.580686	-0.6468
7_dna:chromosome_chromosome: Glycine_max_v2:7:1:446306461:1	58.78775	-0.23515	0.510527	-0.45668
13_dna:chromosome_chromosome: Glycine_max_v2:13:1:45874162:1	42.2537	-0.2012	0.559047	-0.3599
2_dna:chromosome_chromosome: Glycine_max_v2:2:1:48577505:1	234.5386	-0.0819	0.312221	-0.26232
Table 2: List of upregulated circRNAs

circRNA_ID	Base Mean	log2FC	SE (log2FC)	Wald Statistic
12_dna:chromosome_chromosome: Glycine_max_v2.1:1:40091314:1	41.64133	5.29E-08	0.540154	9.79E-08
6_dna:chromosome_chromosome: Glycine_max_v2.1:6:1:51416486:1	48.37742	0.035332	0.511331	0.194195
4_dna:chromosome_chromosome: Glycine_max_v2.1:4:1:52389146:1	1509.702	0.071321	0.588745	0.305426
3_dna:chromosome_chromosome: Glycine_max_v2.1:3:1:45779781:1	34.49698	0.114331	0.588745	0.173271
14_dna:chromosome_chromosome: Glycine_max_v2.1:14:1:49042192:1	9.185587	0.167549	0.966981	0.173271
12_dna:chromosome_chromosome: Glycine_max_v2.1:12:1:40091314:1	445.8071	0.281126	0.382938	0.73413
14_dna:chromosome_chromosome: Glycine_max_v2.1:14:1:49042192:1	433.5597	0.368008	0.440086	0.836218
3_dna:chromosome_chromosome: Glycine_max_v2.1:3:1:45779781:1	82.46615	0.387959	0.536982	0.72248
6_dna:chromosome_chromosome: Glycine_max_v2.1:6:1:51416486:1	2620.342	0.511998	0.518077	0.988266
3_dna:chromosome_chromosome: Glycine_max_v2.1:3:1:45779781:1	740.1542	0.866811	0.736806	1.176443
8_dna:chromosome_chromosome: Glycine_max_v2.1:8:1:47837940:1	1900.396	1.843349	1.436851	1.282908

In our present study the expression patterns were found to be significantly different for 24 circRNAs suggesting that they might play a role in responding to the stress condition. Interestingly we found one down-regulated circRNA “7_dna:chromosome_chromosome: Glycine_max_v2.1:7:1:44630646:1” with significant p-value (<0.09). Thus to understand the potential roles of the predicted differentially expressed circRNAs, their probable binding with the miRNAs and their regulatory functions were detected.

Circ RNAs-miRNAs-mRNAs interactions for wilt stress tolerance

The miRNAs targeting the differentially expressed circRNAs are given in Supplementary Table1, which shows that there are in total 10 unique miRNAs targeting 18 differentially expressed circRNAs. It was found that majority of the circular RNAs have more than one miRNA binding sites. The miRNAs that are regulated by the identified miRNAs are presented in Supplementary Table2 which shows that there are 275 genes regulated by the miRNAs. It was also found that the interaction between miRNA and mRNA are of types: translation inhibition and cleavage inhibition. The targeted miRNAs were subjected to BLAST2GO and the gene ontology (GO) functional categorization generated 14 annotations which are presented in Fig 2, Fig 3, Fig 4 and Fig 5.

Fig 2: Differentially expressed circRNAs of soybean under wilt stress condition in GO terms of biological processes, cellular components and molecular functions

Fig 3: Classification of biological processes for mRNAs
Prediction of eTMs

The circRNAs identified in this study have been found to be targeted by miRNAs of families like MIR1533, MIR166a-5p, MIR4415, etc (Supplementary Table1). Among these families MIR4415 (Kulcheski et al. 2013) [11] and MIR166-5p (Ramesh et al. 2019) [15] had been reported earlier to be involved in fungal infection in soybean indicating their chance of involvement in Fusarium wilt infection. It has also been found that MIR1533 is one of the largest miRNA families that are involved in plant stress responses (Ren et al. 2014) [16]. It was reported that MIR4415 remains downregulated in fungus affected soybean crops (Ramesh et al. 2019) [15], i.e., the miRNAs regulated by these miRNAs remain free which increase the tolerance of the crop against the fungus. Thus, when these miRNAs get bound to the circRNAs, they become unavailable to regulate the mRNAs which leaves the mRNAs free. This may be a possible reason for inducing the disease tolerance to the crop. Moreover, when the functions of the mRNAs were observed, it was found that they are mainly involved in structural constituent of cell wall, in polygalacturonase activity, carbohydrate metabolic process, MAP kinase activity, carbonate dehydratase activity etc. Thus, when the eTM circRNAs are targeted by the miRNAs, probably the genes mentioned above may help the plant in tolerating the stress condition due to their non-regulation by miRNAs. Hence, due to such interaction, the differentially expressed circRNAs may be indirectly involved in regulating the genes responsible for wilt stress tolerance in soybean and thus can be considered as probable eTMs of mRNAs with regard to miRNAs.

Table 1: Supplementary

miRNA_ID	circRNA_ID	Target_start	Target_end	miRNA_aligned_fragment	circRNA_aligned_fragment
gma-miR4415a-3p	11_dna:chromosome_chromosome:Glycine_max_v2:1:1:34766867:1	11402	11422	UUGAUUCUCAGCAGCAUUAG	UGAUGUGUCUGAUGAAUUU
gma-miR4415b-3p	11_dna:chromosome_chromosome:Glycine_max_v2:1:1:34766867:1	11402	11422	UUGAUUCUCACACAGCAUUG	UGAUGUCUGAUGAAUUUAA
gma-miR10196	8_dna:chromosome_chromosome:Glycine_max_v2:1:8:1:47837940:1	12408	12429	UGAUGUGUGGGAGAGCAUUUCAU	UCAAAGUGCCUCUCUUUACAAU
gma-miR10407a	3_dna:chromosome_chromosome:Glycine_max_v2:1:3:1:45797981:1	16858	16881	AGUUAACGGAGAUGAUGAUAG	GAUAAUUUAAUUAUUAUCAGU
Table 2: Supplementary

miRNA_ID	mRNA_ID	PFE	miRNA_st	miRNA_end	Target_st	Target_end	miRNA_aligned_fragment	Target_aligned_fragment	Inhibition																
gma-miR10407a	Glyma.11G18070	0.1	-1	1	24	2605	2628	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407a	Glyma.11G18070	0.2	-1	1	24	2624	2647	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407a	Glyma.11G18070	0.1	-1	1	24	2669	2692	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407a	Glyma.11G18070	0.3	-1	1	24	3258	3281	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407b	Glyma.11G18070	0.1	-1	1	24	2605	2628	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407b	Glyma.11G18070	0.2	-1	1	24	2624	2647	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407b	Glyma.11G18070	0.1	-1	1	24	2669	2692	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR10407b	Glyma.11G18070	0.4	-1	1	24	3258	3281	AGUUACCGGAGAUAAGAAAU	UACCUUUAUCUUUCU	Cleavage															
gma-miR1513a	Glyma.14G01660	0.1	-1	1	19	267	285	AUAAUAUAAUAUAUUGA	UACAUAAUAUAUAUAUAA	Cleavage															
gma-miR1513a	Glyma.14G01660	0.2	-1	1	19	267	285	AUAAUAUAAUAUAUUGA	UACAUAAUAUAUAUAUAA	Cleavage															
gma-miR1513a	Glyma.14G01660	0.4	-1	1	19	267	285	AUAAUAUAAUAUAUUGA	UACAUAAUAUAUAUAUAA	Cleavage															
gma-miR1513a	Glyma.14G01660	0.3	-1	1	19	267	285	AUAAUAUAAUAUAUUGA	UACAUAAUAUAUAUAUAA	Cleavage															
gma-miR1513a	Glyma.07G18720	0.1	-1	1	21	104	124	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G18720	0.2	-1	1	21	89	109	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G18720	0.3	-1	1	21	104	124	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G1830	0.1	-1	1	21	89	109	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G1830	0.2	-1	1	21	104	124	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G1830	0.3	-1	1	21	89	109	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G1830	0.4	-1	1	21	104	124	UAGGAGAAAACCAUGACU	AC	Cleavage															
gma-miR1513a	Glyma.07G1830	0.5	-1	1	21	89	109	UAGGAGAAAACCAUGACU	AC	Cleavage															
miR	Glyma.01G23270	-1	I	21	107	127	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
-----	----------------	----	---	----	-----	-----	-----------------------	--------------------------	-----------																
miR	Glyma.16G20260	-1	I	21	107	127	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20260	-1	I	21	107	127	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.07G19700	-1	I	21	113	133	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G28740	-1	I	19	19	37	AUUAUUAAUAUAUAUAAG	UUGGUAUUUUUUUUAAUC	Cleavage																
miR	Glyma.08G28740	-1	I	19	19	37	AUUAUUAAUAUAUAUAAG	UUGGUAUUUUUUUUAAUC	Cleavage																
miR	Glyma.13G08330	-1	I	19	2756	2774	AUUAUUAAUAUAUAUAAG	UCAACAUUUUUUUUUAAUC	Cleavage																
miR	Glyma.13G08330	-1	I	19	2756	2774	AUUAUUAAUAUAUAUAAG	UCAACAUUUUUUUUUAAUC	Cleavage																
miR	Glyma.13G16170	-1	I	19	162	180	AUUAUUAAUAUAUAUAAG	UAAUUUUUUUUUUUUAAUC	Cleavage																
miR	Glyma.17G01830	-1	I	21	125	145	UGAGAAGGCUAGCUUCCUCA	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.06G19710	-1	I	21	92	112	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.06G20280	-1	I	21	65	85	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20300	-1	I	21	98	118	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20290	-1	I	21	107	127	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.06G19720	-1	I	21	86	106	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25180	-1	I	21	89	109	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.17G01760	-1	I	21	254	274	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25230	-1	I	21	179	199	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25230	-1	I	21	179	199	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25230	-1	I	21	183	203	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25220	-1	I	21	161	181	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25160	-1	I	21	121	141	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.07G25560	-1	I	21	231	251	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25230	-1	I	21	183	203	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25230	-1	I	21	179	199	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.17G01760	-1	I	21	254	274	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.08G25180	-1	I	21	89	109	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.06G19720	-1	I	21	86	106	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20290	-1	I	21	107	127	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20300	-1	I	21	98	118	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.16G20290	-1	I	21	65	85	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.07G25560	-1	I	21	121	141	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.07G25560	-1	I	21	161	181	GGAACAGAGGCUAGACUUAC	GUAAGCUACUGGUUUCUCCUCAC	Cleavage																
miR	Glyma.09G16800	-1	I	19	84	102	AUUAUUAAUAUAUAUAAG	UAAUUUUUUUUUUUUAAUC	Cleavage																
miR	Glyma.09G16800	-1	I	19	84	102	AUUAUUAAUAUAUAUAAG	UAAUUUUUUUUUUUUAAUC	Cleavage																
	miR4415b	miR6299	miR1533																						
-------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
Glyma.04G23170	0.3																								
Glyma.06G09320	0.1																								
Glyma.09G67430	0.2																								
Glyma.11G21270	0.1																								
Glyma.10G15370	0.1																								
Glyma.01G07110	0.1																								
Glyma.17G13250	0.1																								
Glyma.19G10640	0.1																								
Glyma.15G19200	0.1																								
Glyma.13G12480	0.1																								
Glyma.13G12480	0.6																								
Glyma.02G28000	0.1																								
Glyma.07G15900	0.1																								
Glyma.08G25680	0.1																								
Glyma.20G05160	0.1																								
Glyma.20G05190	0.2																								
Glyma.08G32610	0.1																								
Glyma.20G05190	0.1																								
Glyma.08G32610	0.1																								
Glyma.14G04130	0.1																								
Glyma.13G07690	0.1																								
Glyma.06G08560	0.1																								
Glyma.06G20190	0.1																								
0.1	Glyma.11G10980 0.4	-1	1	19	262	280	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G10980 0.3	-1	1	19	262	280	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.08G26960 0.1	-1	1	19	368	386	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G2810 0.1	-1	1	19	182	200	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G10110 0.1	-1	1	19	4585	4603	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G10110 0.1	-1	1	19	4606	4624	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G10110 0.1	-1	1	19	4627	4645	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G10110 0.1	-1	1	19	4648	4666	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.09G2810 0.2	-1	1	19	182	200	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.17G19730 0.1	-1	1	19	3839	3857	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.17G19730 0.1	-1	1	19	3860	3878	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.17G19730 0.1	-1	1	19	1892	1910	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.17G19730 0.2	-1	1	19	3714	3732	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.17G19730 0.2	-1	1	19	3735	3753	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.07G23350 0.1	-1	1	19	3542	3560	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G07350 0.6	-1	1	19	37	55	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G07350 0.6	-1	1	19	58	76	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G2870 0.2	-1	1	19	3979	3997	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.8	-1	1	19	1709	1727	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.06G26700 0.1	-1	1	19	234	252	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.5	-1	1	19	1709	1727	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.11	-1	1	19	1709	1727	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.12G13600 0.1	-1	1	19	236	254	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.9	-1	1	19	1709	1727	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.6	-1	1	19	1709	1727	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G2870 0.1	-1	1	19	3806	3824	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.11G25130 0.16	-1	1	19	1892	1910	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G11460 0.3	-1	1	19	3524	3542	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G11460 0.2	-1	1	19	3521	3539	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G11460 0.1	-1	1	19	3533	3551	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.13G11460 0.4	-1	1	19	3530	3548	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.16G21780 0.1	-1	1	19	3652	3670	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.06G05640 0.1	-1	1	19	329	347	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.06G05640 0.3	-1	1	19	329	347	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.04G12550 0.1	-1	1	19	2785	2803	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.04G12550 0.1	-1	1	19	2806	2824	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.04G12550 0.1	-1	1	19	2827	2845	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.18G22580 0.1	-1	1	19	2881	2899	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
0.1	Glyma.20G01430 0.1	-1	1	19	2935	2953	AUAAUAAAAAAUAUAUGA	AUAAUAAAAAAUAUAUUAAUUAAU	Cleavage																
miR1533 Glyma.20G01430 0.1 -1 1 19 2956 2974 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.3 -1 1 19 214 232 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.3 -1 1 19 235 253 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.2 -1 1 19 214 232 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.2 -1 1 19 235 253 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.20G01430 0.2 -1 1 19 2950 2988 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.5 -1 1 19 214 232 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.5 -1 1 19 235 253 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.4 -1 1 19 235 253 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.1 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.06G05640 0.2 -1 1 19 329 347 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.12G01940 0.1 -1 1 19 2793 2811 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.10G24390 0.2 -1 1 19 2519 2537 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.19G22580 0.2 -1 1 19 2821 2839 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.1 -1 1 19 146 164 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.1 -1 1 19 167 185 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.8 -1 1 19 146 164 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.8 -1 1 19 167 185 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.8 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.6 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.16G11600 0.1 -1 1 19 261 279 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.16G11600 0.1 -1 1 19 282 300 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.2 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.16G17990 0.1 -1 1 19 2721 2739 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.10 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.16G22580 0.3 -1 1 19 2751 2769 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.7 -1 1 19 169 187 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.7 -1 1 19 190 208 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.6 -1 1 19 169 187 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.13G03250 0.6 -1 1 19 190 208 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.9 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.5 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.7 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.4 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.08G18340 0.3 -1 1 19 178 196 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.09G19510 0.2 -1 1 19 193 211 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.06G23040 0.1 -1 1 19 2998 3016 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

miR1533 Glyma.09G08520 -1 1 19 70 88 AUAAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU

AUAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU AUAAUAAAAUAUAUGA UUAUUUAUUUAUUUAUUU
miR1533	Glyma.08G16730	0.1	-1	1	19	2114	2132	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G19510	0.1	-1	1	19	193	211	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.07G13050	0.1	-1	1	19	206	224	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G17310	0.1	-1	1	19	194	212	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.13G27450	0.1	-1	1	19	2797	2815	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.20G04780	0.5	-1	1	19	112	130	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.15G26960	0.2	-1	1	19	2618	2636	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.15G14520	0.1	-1	1	19	130	148	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.06G29990	0.1	-1	1	19	217	235	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G17310	0.2	-1	1	19	194	212	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G13470	0.1	-1	1	19	2523	2541	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G13470	0.1	-1	1	19	2555	2573	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.15G26960	0.1	-1	1	19	2517	2535	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G92720	0.1	-1	1	19	52	70	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G92720	0.1	-1	1	19	73	91	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.09G92720	0.1	-1	1	19	94	112	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.10G15880	0.1	-1	1	19	554	572	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.02G03940	0.1	-1	1	19	118	136	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.15G21360	0.2	-1	1	19	2696	2714	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.02G23700	0.1	-1	1	19	30	48	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.08G94400	0.2	-1	1	19	1730	1748	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.06G31600	0.1	-1	1	19	503	521	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.04G11740	0.1	-1	1	19	2611	2629	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.13G27450	0.2	-1	1	19	2441	2459	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.13G27450	0.2	-1	1	19	2462	2480	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.16G01710	0.1	-1	1	19	2601	2619	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.02G29700	0.1	-1	1	19	194	212	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.04G11740	0.4	-1	1	19	2578	2596	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.04G11740	0.3	-1	1	19	2575	2593	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR1533	Glyma.16G00570	0.3	-1	1	19	2375	2393	AUAAUAAAAAUAAUGA	UUAUUAAUUUAAUAUAUAU
miR	Glyma.16G00570 0.2	Glyma.07G10770 0.1	Glyma.04G11740 0.5	Glyma.16G00570 0.2	Glyma.16G00570 0.2	Glyma.04G11740 0.2	Glyma.16G00570 0.2	Glyma.16G00570 0.2	Glyma.04G11740 0.2	Glyma.16G00570 0.2	Glyma.04G11740 0.2																													
gma-miR1533	-1 I 19 2396 2414 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2531 2549 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2543 2561 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2363 2381 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2384 2402 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2542 2560 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2360 2378 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2381 2399 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2359 2377 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2380 2398 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 130 148 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 151 169 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2348 2366 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2369 2387 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 192 210 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2394 2412 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 172 190 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2084 2102 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2114 2132 AUAUUUAAUAUAUUGA AUCGUAAUAUAUUGA	-1 I 19 1160 1178 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2272 2290 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2293 2311 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2260 2278 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2281 2299 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 130 148 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 151 169 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 192 210 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 257 275 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 104 122 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2210 2228 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2231 2249 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2391 2409 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 162 180 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 183 201 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 204 222 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2377 2395 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 25 43 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 2367 2385 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	-1 I 19 1160 1178 AUAUUUAAUAUAUUGA AUAUUUAAUAUAUUGA	Cleavage
miR	Gene ID	Exp. Ratio	Length	Seed Sequence																																				
-------	------------------	------------	--------	---------------																																				
gma-miR1533	Glyma.16G01710	-1	19	AUAAUAAAAAAUAAUGA																																				
	Glyma.14G05920	-1	19	2117																																				
	Glyma.18G06520	-1	19	2035																																				
	Glyma.17G05130	-1	19	2182																																				
	Glyma.08G21870	-1	19	466																																				
	Glyma.20G02350	-1	19	2222																																				
	Glyma.01G11190	-1	19	2232																																				
	Glyma.14G05920	-1	19	2034																																				
	Glyma.16G01710	-1	19	1601																																				
	Glyma.16G13500	-1	19	25																																				
	Glyma.13G18450	-1	19	255																																				
	Glyma.01G08300	-1	19	2131																																				
	Glyma.10G20660	-1	19	249																																				
	Glyma.16G01710	-1	19	249																																				
	Glyma.16G01710	-1	19	2140																																				
	Glyma.16G01710	-1	19	1854																																				
	Glyma.13G18450	-1	19	255																																				
	Glyma.16G01710	-1	19	55																																				
	Glyma.12G21200	-1	19	13																																				
	Glyma.03G09010	-1	19	68																																				
	Glyma.09G19790	-1	19	239																																				
	Glyma.16G01710	-1	19	2160																																				
	Glyma.03G25600	-1	19	2033																																				
	Glyma.05G16820	-1	19	168																																				
	Glyma.14G05990	-1	19	1758																																				
	Glyma.16G01710	-1	19	10																																				
	Glyma.09G09830	-1	19	1990																																				
	Glyma.08G03530	-1	19	90																																				
	Glyma.02U18000	-1	19	1714																																				
Conclusion

The analysis carried out in the present paper on RNA Seq data of soybean under control and wilt stress conditions resulted in the prediction of circRNAs and their wilt stress specific expression patterns. Functional enrichment analysis of the circRNA-host genes also revealed the indirect involvement of the circRNAs in regulating stress condition by acting as sponges for miRNAs, which may fail to regulate the genes associated with wilt stress tolerance mechanism in soybean.

Acknowledgement

Authors are thankful to PG School, IARI and ICAR-IASRI for providing computational facilities and support for conducting the study. Authors also acknowledge the ICAR-JRF fellowship received from ICAR, New Delhi.

References

1. Andrews S. Fast QC: A Quality Control Tool for High Throughput Sequence Data. 2010.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
2. Bolger AM, Lohse M, Usadel B. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-2120.
3. Chu Q, Shen E, Ye CY, Fan L, Zhuo QH. Emerging roles of plant circular RNAs. J. Plant Cell Develop. 2018; 1(1):1-14.
4. Dai X, Zhuang Z, Zhao PX. psRNA Target: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018; 46(1):49-54.
5. Dornbos DL, Mullen RE. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. Journal of the American Oil Chemists Society. 1992; 69(3):228-231.
6. Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. Biochim. Biophys. Acta Gene Regul. Mech. 2016; 1859(1):163-168.
7. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015; 16(1):4-20.
8. Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S et al. Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PloS one. 2014; 9(10):e108851.
9. Kulcheski F, Manavella P, Weigel D, Margis R. The role of MIR4415 in soybean response to asian soybean rust infection. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology. 2013; 94(2).
10. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12(1):323.
11. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013; arXiv preprint arXiv: 13033997.
12. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell. 2018; 71(3):428-442.
13. Love M, Anders S, Huber W. Differential analysis of count data—the DESeq2 package. Genome Biol. 2014; 15(550): 10-1186.
14. Panda AC, Gorospe M. Identifying intronic circRNAs: progress and challenges. Noncoding RNA Investig. 2018; 2:34-36.
15. Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. Planta. 2019; 249(5):1267-1284.
16. Ren J, Zhou JJ, Duan WK, Song XM, Liu TK, Hou XL, et al. Copper stress induces the differential expression of microRNAs in non-heading Chinese cabbage. Biologia plantarum. 2014; 58(3):491-498.
17. Singh U, Singh B. Tropical grain legumes as important human foods. Econ. Bot. 1992; 46(3): 310-321.
18. Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front. Plant Sci. 2017; 7:2024-2034.
19. Ye CY, Chen L, Liu C, Zhu QH, Fan L. Widespread noncoding circular RNAs in plants. New Phytol. 2015; 208(1):88-95.
20. Zhao W, Zhang C, Shen X, Xiao L, Lu J, Zhang Y et al. Characterization of circRNAs associated with resistance to defoliating insects in soybean. Oil Crop Sci. 2017; 2:23-37.
21. Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB. Long noncoding RNA s responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytologist. 2014; 201(2):574-584.
22. Zuo J, Wang Q, Zhu B, Luo Y, Gao L. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem. Biophy. Res. Commun. 2016; 479(2):132-138.