Partition-then-Overlap Method for Labeling Cyber Threat Intelligence Reports by Topics over Time

Ryusei NAGASAWA†, Nonmember, Keisuke FURUMOTO††, Makoto TAKITA†††, Members, Yoshiaki SHIRAISHI††††, Senior Member, Takeshi TAKAHASHI†††, Member, Masami MOHRI††††, Senior Member, Yasuhiro TAKANO†, Member, and Masakatu MORII††, Fellow

SUMMARY The Topics over Time (TOT) model allows users to be aware of changes in certain topics over time. The proposed method inputs the divided dataset of security blog posts based on a fixed period using an overlap period to the TOT. The results suggest the extraction of topics that include malware and attack campaign names that are appropriate for the multi-labeling of cyber threat intelligence reports.

key words: topic model, cyber threat intelligence, text mining, multi-labeling, security blog posts

1. Introduction

Security blog posts published by security vendors include an analysis of threat information and alerts. Security blog posts are useful because they suggest methods to prevent and respond to cyberattacks.

However, the number of posts continues to increase day by day, and their contents change over time. It is not easy to find security blog posts that contain the desired content under such circumstances.

Security blog posts are occasionally labeled to aid in information retrieval, although the criteria for labeling are not standardized and vary from publisher to publisher. In addition, some posts do not have labels. In summary, there are no unified methods to search for desired information from a wide range of security blog posts.

It is necessary to assign appropriate multi-labels depending on their content to make it easy for security operators to obtain information from the security blog posts, which are increasing in number every day.

The goal of our study is to assign appropriate labels to security blog posts. This labeling is intended to allow security operators to collect relevant information associated with the subject of a search. Therefore, it is necessary to assign key phrases contained in a document to other documents as labels. Typical keyword extraction methods [1]–[3] cannot be used when attempting to achieve this goal because they extract keywords from the words in a document; thus, it is impossible to assign keywords that are not included in the document as labels. Named entity extraction [4], [5] cannot be used because it extracts key phrases from a document, whether it is supervised or unsupervised. In addition, when we extract named entities using supervised machine learning, labeled training data are required. However, publicly available trained models do not support security domain-specific key phrases (e.g., malware and attack campaign names). Thus, we cannot extract named entities appropriate for the labels.

Topic models are proposed as a statistical modeling method to obtain information from a large and heterogeneous set of documents. In addition to the LDA [6], which is a representative topic model, keyword extraction models based on LDA [7] and entity topic models (ETM) [8] have been developed. The multiple labels that meet the purpose of our study can be assigned to a document by understanding its topic.

The tendency of certain topics to occur in numerous document sets, including security blog posts, changes over time. However, the general topic model may result in unclear and suboptimal topics because it does not consider topic estimation.

The topics over time (TOT) model [9], which is a topic model that explicitly models time, is proposed to grasp topics in dynamic documents. The topics occurring in each document can be mapped in a time series using the TOT model.

The goal of this study is to assign appropriate labels to security blog posts. Our approach to meet this goal is as follows. First, we apply the security blog posts to the TOT model and generate time-sensitive topics. Next, we extract words with high compositional proportions from the generated topics and determine appropriate labels to be assigned to the posts.

However, it is unlikely that key phrases suitable as labels can be extracted when a dataset is entered as a batch into the above topic model, which includes TOT. Although multi labeling for security blog posts expects labels to include malware and attack campaign names, many of these named entities are not included in the documents. Therefore, to achieve the goal of this study, the extraction of a...
security domain-specific vocabulary that appears locally is a problem to be solved.

Another difficulty with this problem is that common phrases in the security domain remain, even after preprocessing security blog posts with common natural language processing tools such as NLTK [10] to remove frequent words and stop words. These common phrases are widely distributed across the entire document set, whereas malware names and attack campaign names are distributed locally. It is therefore necessary to find phrases with a high frequency of occurrence locally, and not only phrases that are widely distributed throughout the document set. Partitioning of the dataset is expected to increase the likelihood that locally frequent phrases will be used in the organization of topics.

When a dataset is partitioned without an overlap period, if there is a concentration of important words near the partitioning points, these words will be divided. If we input the segmented data into the TOT, there is a possibility that important words will not be captured, and the topics related to these words will not be formed. The proposed method therefore divides the dataset by a fixed period with an overlap period and inputs it to TOT. It prevents malware names and attack campaign names from being buried by common phrases.

2. Proposed Method: Partition-then-Overlap for Labeling by TOT

2.1 Topics Over Time (TOT)

Before introducing the TOT model [9], our notations are summarized in Table 1; the graphical model representation of the TOT models is shown in Fig. 1. The TOT model is a topic model based on LDA [6]. The TOT model considers not only the co-occurrence information of words but also information on the document’s published time in estimating topics. In other words, TOT prevents confusion with co-occurrence patterns and the occurrence of ambiguous and suboptimal topics by mapping the topics in a document to the time series.

TOT is a generative model of timestamps and words in timestamped documents. The TOT generative process is as follows. First, T multinomials Φ, are drawn from a Dirichlet prior β for each topic z. For each document d, a multinomial θ_d is drawn from a Dirichlet prior α. Next, for each word w_{di} in document d, a topic z_{di} is drawn from a multinomial θ_d, a word w_{di} is drawn from a multinomial z_{di}, and a timestamp t_{di} is drawn from Beta ψ_{zd}.

2.2 Partition-then-Overlap TOT

In the set of M documents to be analyzed, we define a dataset with an ordered time set, $T = \{t_1, t_2, \ldots, t_M\}$, and an ordered document set, $D = \{d_1, d_2, \ldots, d_M\}$, the lists of which are ordered by their publication dates. Here, $f: T \to D$ is an order-preserving bijection. With the proposed method, we divide the ordered set T, D into N pieces by specifying a fixed division period and overlap period.

For $i = 1, 2, \ldots, N$, we denote p_1, p_2, \ldots, p_2N as the dates at both ends of the partition period. We then denote by $T_{PI} = \{t_i \in T | t_{2i-1} < t_i \leq t_{2i}\}$ as the set of publication dates of documents that exist in the partitioning period (p_{2i-1}, p_{2i}). Here, T_{PI} is a subset of T and is an ordered set. We denote $P = \{(p_1, p_2), (p_3, p_4), \ldots, (2N-1, 2N)\}$ as the set of partition periods. We denote by D_P, the set of documents d_i in D corresponding one-to-one to t_i in T_{PI}, during each partitioning period. If $P_{i+1} < P_{2i}$, partitioning periods (p_{2i-1}, p_{2i}) and (p_{2i+1}, p_{2i+2}) have overlapping dates during the period (p_{2i}, p_{2i+1}). That is, partitioned datasets have fixed overlap periods. Figure 2 shows an idea of the partition-then-overlap method.

We denote the ordered set families of the partitioned time set T_{PI} and partitioned document set D_P, as $T_P = \{T_{P1}, T_{P2}, \ldots, T_{PN}\}$, and $D_P = \{D_{P1}, D_{P2}, \ldots, D_{PN}\}$, respectively.

We preprocess the elements of the ordered set family D_P as

![Fig. 1 TOT graphical model](image1)

![Fig. 2 Idea of the Partition-then-Overlap method](image2)

Symbol	Description
γ	number of topics
M	number of documents
N_d	number of word tokens in document d
θ_d	multinomial distribution of topics specific to document d
Φ	multinomial distribution of words specific to topic z
ψ_z	beta distribution of time specific to topic z
z_{di}	topic associated with ith token in document d
w_{di}	ith token in document d
t_{di}	timestamp associated with ith token in document d
• Extract compound terms using TermExtract [11]
• Remove stop words
• Remove words with an occurrence rate of above 50%
• Remove words containing numbers, symbols, and quotation marks
• Remove words with less than four appearances

We denote by \(W_i = \{ w_1, w_2, \ldots, w_N \} \) the set of words made up of the remaining words and compound words after the preprocessing in a single document. We define the set of partitioned documents after preprocessing \(D_{P_i} \) as \(\Delta P_i = \{ W_1, W_2, \ldots, W_N \} \), and then the ordered set family of \(\Delta P_i \) is \(\Delta P = (\Delta P_1, \Delta P_2, \ldots, \Delta P_N) \). Combining the ordered set families \(\Delta P \) and \(T_P \), we construct the input set family as

\[
(\{\Delta P_1, T_P\}, \{\Delta P_2, T_P\}, \ldots, \{\Delta P_N, T_P\}).
\]

The input set families are inputted into TOT by specifying the number of topics \(\gamma \), the hyperparameters \(\alpha \) and \(\beta \), and the number of iterations \(\delta \). TOT outputs \(\theta \), \(\phi \), and \(\psi \) for \(\{\Delta P, T_P\} \). For an input set family, we obtain the output set family \((\{\theta_1, \phi_1, \psi_1\}, \{\theta_2, \phi_2, \psi_2\}, \ldots, \{\theta_N, \phi_N, \psi_N\}) \).

From the topics obtained for each partitioning period, we estimate the characteristic topics containing key phrases that can be labeled. For topic estimation, we extract keywords with a high probability of belonging to topics using \(\phi \) from the set of outputs of a partitioned period, \(\{\theta_i, \phi_i, \psi_i\} \).

Defining \(K \) as the total number of words in the partitioned word set \(\Delta P \), \(\phi_i \) can be expressed as

\[
\phi_i = \begin{bmatrix}
 h_{11} & h_{12} & \ldots & h_{1\gamma} \\
 h_{21} & h_{22} & \ldots & h_{2\gamma} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{K1} & h_{K2} & \ldots & h_{K\gamma}
\end{bmatrix}
\]

(0 < i ≤ N)

The columns of the two-dimensional array \(\phi_i \) represent the multinomial distribution of topics specific to words, and the rows represent the multinomial distribution of words specific to a topic. Here, \(h_{kj} \) (0 < \(k \leq K \)) represents the probability that word \(k \) belongs to a topic \(j \). For each column vector of \(\phi_i \), Z words with the highest value of \(h_{kj} \) are extracted as the key phrases representing the topic. Appropriate labels were manually selected from the words that constitute the topics. In our study, we use malware names and attack campaign names as the leading labels.

3. Applying TOT to Security Blog Posts

The dataset consists of 2386 security blog posts from January 1, 2017 to December 31, 2019, collected from the blog pages of eight security vendors (Netscout, Barracuda, Cisco, Druva, FireEye, Paloalto, NortonLifeLock, and TrendMicro).

The implementation of the proposed method is based on Python3 with pandas, numpy, and scipy using a TOT code [12]. The experimental environment was Ubuntu 18.04 in Intel Core i7-7820X and 64 GB of memory.

The dataset was divided into a division period of 6 months and an overlap period of 3 months. As the initial setting, the number of topics \(\gamma = 8 \); the Dirichlet prior distribution hyperparameters \(\alpha \) and \(\beta \) were set to 50/\(\gamma \) and 0.1, respectively; and the iteration number \(\delta = 500 \). The ordered set families \(\Delta P \) and \(T_P \) defined in Sect. 2.2 were entered into TOT. Table 1 shows the results.

In Table 2, we extracted the five words with a high proportion of topics for the number of topics specified for each partitioning period. Malware names and attack campaign names were underlined, and topics containing the words were enclosed in a bold frame.

From Table 2, we were able to grasp malware names and attack campaign names that can be labeled for each partition period. Malware names such as “wannacry” have long appeared, and malware names such as “bad rabbit” and “samsam” appeared only during a single partitioning period.

We examined the relationship between the labels obtained in our experiments and the malware and attack campaigns that were prevalent at the same time. First, Meltdown and Spectre are both CPU vulnerabilities, and the article was published in November 2017 [13]. Since then, security updates for Meltdown and Spectre were made by Apple, Google, Microsoft, and other companies in March of 2018.

The experimental results in Table 1 show that the Meltdown and Spectre labels appeared during the periods of “October 2017 to March 2018” and “January to June 2018.” In addition, “mirai” is a malware that emerged around November 2016, and mirai variants have been active since December 2017 [14], [15]. The experimental results in Table 2 show that the mirai label appeared during the periods of “October 2017 to March 2018,” “January to June 2018,” and “April to September 2018.” As shown in the above examples, the labels that appeared in the experimental results in Table 2 are thought to capture the malware and attack campaigns that were prevalent during the same period.

4. Evaluation of Partition-then-Overlap Method

We addressed the comparative results of the proposed method against the approach (batch method) in which the original dataset is entered into the TOT [9] and LDA [6] models in a batch. LDA was implemented using Gensim [16], an open-source library for unsupervised topic modeling and natural language processing. In the batch method, we set the number of topics to 46; the number of topics was derived using three ratings: KL divergence, pairwise cosine distance, and coherence. For hyperparameters \(\alpha \) and \(\beta \), we used the same values as in the proposed method applied to TOT and the default values of Gensim in LDA. The results when entering the datasets into TOT and LDA in batches are shown in Tables 3 and 4.

We compared the extracted malware names and attack campaign names from the results of the proposed method when applying the TOT (with the batch method) and LDA (with the batch method). Malware names and attack campaign names are useful as labels for security blog posts and significantly affect the accuracy of the labels. Therefore, we
As indicated in Tables 2, 3, and 4, we extracted 12 malware and attack campaign names when applying the proposed method, 10 names when applying TOT (with the batch method), and 6 names when applying LDA (with the batch method). The proposed method extracted the greatest number of malware and attack campaign names because it could extract the names of the malware and attack campaigns that appear locally in the document set. In particular, “bad rabbit,” “samsam,” “notpetya,” and “meltdown” are only extracted by the proposed method. Documents containing them were published within a short period of time. Using the proposed method, we extracted the names that appeared locally in the document set. Thus, we could extract more key phrases as label candidates than either the TOT (with the batch method) or LDA (with the batch method) models. The proposed method is effective in appropriately labeling security blog posts, which is the objective of our study.

However, with the batch method, we extracted the malware and attack campaign names that were not extracted using the proposed method, i.e., “emotet,” “trick-

Table 2 Result of entering partitioned datasets into TOT ($\gamma = 8$, $\alpha = 50/\gamma$, and $\beta = 0.1$)

2017/1-6	2017/4-9	2017/7-12	2017/10-2018/3	2018/1-6	2018/4-9	2018/7-12	2018/10-2019/3	2019/1-6	2019/4-9	2019/7-12
wanney	**wanney**	iot device	**wanney**	ise	**wanney**	classifier	com	threat hunting	tec	
exploit kit	tcp	packet	threat grid	smbs	iot	threat grid	rdp	threat detection	directory	
botnet	petya	nist cf	bitcoin	**wanney**	healthcare organization	umbrella	smbh	registry	modr	disaster recovery
cser	smbh	**wanney**	bad rabbit	healthcare device	medical device	threat hunting	certificate	scam	cybersecurity team	vms
com	steal data	worm	dashboard	transparent	healthcare industry	imperative	**samsam**	smbh	active directory	ciso
thamos	security vendor	ise	cash	federal agency	carrier	blockchain	federal agency	iot device	cash	xdr
shellcode	cloud ready	non-profit	cloud apps	vms	apple	carrier	devops	federal agency	dlp	backup system
hitrust	map	identity theft	equifax	salesforce	installation	transaction	endpoint detection	threat hunting	business unit	siem
middle east	maps	iot device	disclose	cloud environment	china	byte	cdm	threat response	workforce	magecart
python	hybrid environment	trustsec	dropbox	saas	iot device	middle east	macro	disclose	disclose	prevention
wanney	linux	petya	shopper	threat grid	google play	federal agency	small business	red team	tweet	volatility
petya	exploit kit	bitcoin	uber	appdata	phone supplier	maps ai model	accuracy	iran	dlp	
fbi	petya	**wanney**	cio	javascript	mobile security	prevention	cybersecurity team	iot	com	aps
smbh	ukraine	ddos attack	holiday season	sep	social network	cio	law	tax	dataset	webinar
kudr	kit	notpetya	etc	ciso	threat detection	attendee	germany	maps	align	workforce
certificate	macro	linux	sep	macro	appdata	atm	scam	malware ati	dsa	shellcode
dip	india	bot	federal agency	iot device	hash	small business	scanner	mean time	maps	binary
online safety	proxy	security vendor	javascript	vmsware	javascript	installation	botnet	fraud	webinar	utility
proxy	align	webinar	ise	binary	macro	apple	chinese	cloud device	backup system	byte
confidential data	legacy	likelihood	mobile security	rdp	dli	ciso	bot	promem	cot	cloud grid
medical device	nst cf	drmac	iot device	**mirai**	blockchain	scam	atm	cash	email thread	threat hunting
apple	healthcare organization	google play	**mirai**	iot device	**mirai**	exploit kit	theft	rto	query	workplace
ciso	cser	sender	dss	dss	transaction	tax	emea	saas	response team	ise
trump administration	congress	smbh	vms	ddos attack	crypocurrency mining	japan	steal data	ciso	downtime	local government
wmi	hitrust	console	default password	connect device	tax	governance	transaction	security program	conjunction	dao
keem lab	bot	saaf	dmec	scanner	threat grid	ise	ise	active directory	red team	maps
team sniper	android device	shopper	meltdown	meltdown	binary	vmsware	tax	malware analysis	devops	pillar
incident security	ddos attack	invoice	controller	google play	com	api	maps	destination	ciso	meantime
uaf	dip	implementation	healthcare organization	**spectre**	ciso	cwp	api	sensor	tips	it team
bot	google play	redirect	spectre	shellcode	saas	saas	api	dip	appliance	professional
conference	medical device	controller	bot	blockchain	**hec**	**hec**	iot device	devops	scam	scam
india	shellcode	kit	directory	hash	maps	dlp	rdp	china	**hec**	scanner
threat grid	iot device	cloud apps	temp	bitcoin	scam	devops	com	bot	scanner	**hec**
amp	endpoint protection	it organization	folder	minor	smbs	iot	registry	login credential	fraud	dsa
api	worm	business leader	packet	transaction	map	entity	**hec**	guidance	gmail	potential victim
dpu	bitcoin	equifax	scanner	folder	federal agency	iot device	iot	source code	source code	cybersecurity team
cif	authority	south korea	google play	cloud apps	dip	com	umbrella	carbon	xdr	threat detection
macro	cloudsec	com	middle east	cash	ymlfiter	**samsam**	persistent threat	scanner	carbon	linux
tcp	non-profit	cloudsec	transparency	apple	simulation	bot	threat hunting	scam	siem	google play
mist cf	threat grid	neasm	transparent	mobile security	ise	binary	threat response	binary	ciso	modr
Table 3
Result of entering the dataset into TOT in a batch ($\gamma = 46, \alpha = 50/\gamma$, and $\beta = 0.1$)

salesforce	persistence	small	macro	byte	word	vmware	dme	api					
trend	ad	admission	threats	cio	ciso	team	cloud	security patch	source code	epr	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api

Table 4
Result of entering the dataset into LDA in a batch ($\gamma = 46, \alpha = 1/\gamma$, and $\beta = 1/\gamma$)

apif	federal	certificate	box	comobject	redteam	security	manage	iran	maps				
salesforce	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
threat	cloud	security	team	cloud	security	patch	source	code	epr	api	apif	dme	api
bot,” and “triton” because the documentation on these malware names was widely distributed over a five-part period (1.5 years). Moreover, unlike the documents on “wannacry” and “bec,” which are also widely distributed, there are few documents on these types of malware. Therefore, the proposed method, which is a partitioning approach for extracting local key phrases, could not capture “emotet,” “trickbot,” or “triton.”

5. Conclusions

In this paper, we proposed a method for constructing data into TOT that allows us to extract distinctive labels from security blog posts. The key idea is to not enter the datasets into TOT in batches (using a batch method), but to instead enter the partitioned dataset into TOT with a fixed period of overlap. Our proposed method captures malware and attack campaign names that appear locally and extracts key phrases that can be more useful labels than when applying the batch method. In addition, by adding overlaps, we could extract malware names such as “bad rabbit,” which had been buried when using the partitioning method. Therefore, we can state that the partition-then-overlap method is useful for extracting key phrases that can be used as labels. By using the results of both the batch method and the partition-then-overlap method, we obtain more appropriate search results. It is a future task to confirm the usability of a search system of the security blog post with these labels through user experiments.

Acknowledgments

This research was conducted under a contract of “Research and development on IoT malware removal/make it non-functional technologies for effective use of the radio spectrum” among “Research and Development for Expansion of Radio Wave Resources (JPJ000254),” which was supported by the Ministry of Internal Affairs and Communications, Japan.

References

[1] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic key-word extraction from individual documents,” in Text Mining: Applications and Theory, eds. M.W. Berry and J. Kogan, Wiley Online, pp.1–20, 2010.
[2] R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” Proc. 2004 Conference on Empirical Methods in Natural Language Processing, pp.404–411, 2004.
[3] I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin, and C.G. Neville-Manning, “KEA: Practical automatic keyphrase extraction,” Proc. Fourth ACM Conference on Digital Libraries, pp.254–255, 1999.
[4] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and A. Yates, “Unsupervised named-entity extraction from the web: An experimental study,” Artificial Intelligence, vol.165, no.1, pp.91–134, 2005.
[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” Proc. NAACL-HLT 2019, pp.4171–4186, 2019.
[6] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent dirichlet allocation,” Journal of Machine Learning Research, vol.3, pp.993–1022, 2003.
[7] J. Park, J. Kim, and J.-H. Lee, “Keyword extraction for blogs based on content richness,” Journal of Information Science, vol.40, no.1 pp.38–49, 2014.
[8] H. Kim, Y. Sun, J. Hockenmaier, and J. Han, “Etm: Entity topic models for mining documents associated with entities,” Proc. 2012 IEEE 12th International Conference on Data Mining, pp.349–358, 2012.
[9] X. Wang and A. McCallum, “Topics over Time: A non-Markov continuous-time model of topical trends,” Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.424–433, 2006.
[10] Natural Language Toolkit, https://www.nltk.org/.
[11] pytermextract, http://gensen.dl.itc.u-tokyo.ac.jp/pytermextract/. (in Japanese).
[12] Topics Over Time, https://github.com/ahmaurya/topics_over_time
[13] Kernel index [LWN.net] - Meltdown and Spectre, https://lwn.net/Kernel/Index/#Security-Meltdown_and_Spectre.
[14] Rise of One More Mirai Worm Variant, https://www.fortinet.com/blog/threat-research/rise-of-one-more-mirai-variant.
[15] Warning: Satori, a Mirai Branch is Spreading in Worm Style on Port 37215 and 52869, http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/.
[16] Gensim - PyPI, https://pypi.org/project/gensim/.