Turbulent diffusion with rotation or magnetic fields

Axel Brandenburg1, Andreas Svedin2 and Geoffrey M. Vasil3

1NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE - 106 91 Stockholm, Sweden
2Astronomy Department, Columbia University, New York 10027, USA
3JILA, University of Colorado, Boulder, CO 80309-0440, USA

ABSTRACT

The turbulent diffusion tensor describing the evolution of the mean concentration of a passive scalar is investigated for non-helically forced turbulence in the presence of rotation or a magnetic field. With rotation, the Coriolis force causes a sideways deflection of the flux of mean concentration. Within the magnetohydrodynamics approximation there is no analogous effect from the magnetic field because the effects on the flow do not depend on the sign of the field. Both rotation and magnetic fields tend to suppress turbulent transport, but this suppression is weaker in the direction along the magnetic field. Turbulent transport along the rotation axis is not strongly affected by rotation, except on shorter length scales, i.e., when the scale of the variation of the mean field becomes comparable with the scale of the energy-carrying eddies. These results are discussed in the context of anisotropic convective energy transport in the Sun.

Key words: magnetic fields — MHD — hydrodynamics — turbulence

1 INTRODUCTION

In the outer 30\% of the sun, energy is transported mainly by convection through the exchange of fluid parcels. This process tends to smear out entropy gradients by making the gas nearly isentropic on the average. Any remaining entropy gradients lead to a mean entropy flux whose negative divergence leads to a local change in the entropy. This entropy flux is equal to the negative gradient of the mean entropy multiplied by some turbulent diffusivity coefficient. Using mixing length theory, this turbulent diffusion coefficient is found to be of the order of the turbulent velocity times some mixing length, which is often taken as a free parameter (Vitense 1953).

With rotation, the smearing out of entropy gradients is significantly reduced due to lateral mixing generated by Coriolis deflections (Julien et al. 1996). Such deflections cause fluid parcels to lose their heat content to the sides before they can ascend or descend and transport heat vertically. This additional mixing explains why the smearing out of entropy gradients is heavily reduced by rotation. Rotational effects on the turbulent diffusivity were already studied by Weiss (1965) and Durney & Roxburgh (1971) who found that the turbulent diffusion tensor becomes anisotropic with respect to the direction of the rotation axis. The components of the anisotropic diffusion tensor can be computed using the first-order smoothing approximation (Rüdiger 1989, Kitchatinov et al. 1994). These calculations show that the enhancement of turbulent diffusion along the direction of rotation corresponds to a latitudinal heat flux toward the pole, making it slightly hotter. Turbulent convection simulations by Rüdiger et al. (2005) confirm this, but they also show that the radial heat flux is slightly smaller near the poles, which is explained by the effect of stratificational anisotropy. This agrees with earlier results of Rieutord et al. (1994) and Käpylä et al. (2004). Rüdiger et al. (2005) also established the presence of an azimuthal turbulent heat flux and found it to be negative, i.e., in the westward direction. This was surprising in view of the result of Kitchatinov et al. (1994) who found it to be either zero (for a simple mixing length model) or positive (for a turbulence model with finite-time correlation effects). However, their result was based on a sign error (Rüdiger, private communication). Furthermore, if there is also stratification, the simple mixing length model of Kitchatinov et al. (1994) predicts that the sign of the flux should agree with that of the corresponding component of the Reynolds stress tensor and hence negative, which is then in agreement with the convection simulations of Rüdiger et al. (2005).

Diffusive processes also play a role in the evolution of the mean magnetic field and the mean momentum. In recent years it has become possible to compute the relevant diffusion coefficients together with other (e.g. non-diffusive) turbulent transport coefficients using turbulence simulations. In the case of magnetic fields, a fairly accurate method is the test field method in which one solves an additional set of passive evolution equations for the departures from the corresponding set of prescribed mean fields (Schrinner et al. 2005, 2007; Brandenburg 2005, Brandenburg et al. 2008a).

In cases of poor scale separation, i.e., when the scale of the mean field is only a few times larger than the typical scale of the turbulence, the multiplication with a diffusion coefficient must be replaced by a convolution with an integral kernel. A similar situa-
tion also applies to cases where the timescale of the variation of the mean fields becomes comparable with the turnover time. In such cases, the test field method has also been used to determine the integral kernels (Brandenburg et al. 2008a, Hubbard & Brandenburg 2008). If the turbulence is anisotropic and/or inhomogeneous, the diffusion coefficients or kernels are replaced by tensors. Again, the test field method allows an accurate determination of all relevant tensor components.

In this paper, we apply the test field method to the turbulent diffusion of entropy in cases where the turbulence is homogeneous, but anisotropic due to the presence of rotation or a magnetic field. The former problem has recently been addressed by Rüdiger et al. (2005), who evaluated the actual fluxes in stratified turbulent convection. However, convection necessarily imposes an additional anisotropy in the direction of gravity, so it becomes harder to disentangle the effects of gravity and rotation. Here, we focus on the case of forced turbulence in the absence of gravity; using an isothermal equation of state. In that case, the evolution equation of entropy is similar to that of a passive scalar.

The effect of rotation on turbulent diffusion is important for modeling the possibility of latitudinal entropy gradients in rotating stars, i.e. perpendicular to the radial direction of the energy flux. Latitudinal entropy gradients could be important for producing a significant baroclinic term that would balance the curl of the Coriolis force and could therefore be important for explaining the observation that the contours of constant angular velocity in the Sun are not parallel to the rotation axis (Kitchatinov & Rüdiger 1995; Thompson et al. 2003). The effect of a magnetic field on turbulent heat diffusion is important in the theory of sunspots (e.g. Kitchatinov, & Mazur 2000) where the energy transport is suppressed in an anisotropic fashion (Rüdiger & Hollerbach 2004). Furthermore, anisotropic passive scalar transport is important in connection with understanding the partial lithium depletion in the Sun (Rüdiger & Pipin 2001).

2 PRELIMINARY CONSIDERATIONS

We make use of the fact that in the absence of gravity, and with an isothermal equation of state the evolution of entropy is passive, i.e. there is no feedback on the momentum equation. We can therefore consider the evolution equation for a passive scalar concentration per unit volume C, which obeys

$$\frac{\partial C}{\partial t} = -\nabla \cdot (UC) + \kappa \nabla^2 C,$$

where κ is the diffusivity and U is the velocity. We note that in the compressible case there is an extra term $-\kappa \nabla \cdot (C \nabla \ln \rho)$ on the right hand side of equation (1) where ρ is the density.

The evolution of the mean concentration \bar{C} is obtained by averaging equation (1), which yields

$$\frac{\partial \bar{C}}{\partial t} = -\nabla \cdot (\bar{U} \bar{C} + \bar{w} \bar{c}) + \kappa \nabla^2 \bar{C},$$

where $\bar{w} \bar{c} \equiv \bar{F}$ is the mean flux of the concentration density. Under the assumption that the spatial and temporal scales of the mean field are well separated from those of the turbulence, one can make a generalized Fickian diffusion ansatz of the form

$$\bar{F} = -\kappa C \nabla \bar{C},$$

where κC is the turbulent diffusion tensor. In the absence of good scale separation the multiplication with a diffusion tensor must be replaced by a convolution with an integral kernel. We discuss this case near the end of the paper, but ignore this for now.

The turbulent diffusion tensor is a proper tensor, so in the presence of rotation and in the absence of helicity it has only even powers of the pseudo vector Ω and odd powers of Ω combined with odd powers of the Levi-Civita tensor. It must therefore have the general form (Kitchatinov et al. 1994)

$$\kappa_{ij} = \kappa_0 \delta_{ij} + \kappa_1 \epsilon_{ijk} \hat{\Omega} k + \kappa_2 \epsilon_{ijk} \hat{\Omega} i \hat{\Omega} j,$$

where $\Omega = \Omega/|\Omega|$ is the unit vector along the rotation axis and $\kappa_0, \kappa_1, \kappa_2$ and κ_3 are functions of the Coriolis, Pelet, and Schmidt numbers, that are defined by

$$\text{Co} = \frac{2\Omega}{u_{\text{rms}} \kappa_0}, \quad \text{Pe} = \frac{u_{\text{rms}}}{\kappa_1 \kappa_0} \quad \text{and} \quad \text{Sc} = \frac{\nu}{\kappa_0},$$

respectively. Incidentally, we note that κ_1 contributes an anti-symmetric component to the turbulent diffusion tensor, which does not contribute to divergence of flux. Similarly, in the presence of a magnetic field B with unit vector $\hat{B} = B/|B|$, the diffusion tensor must have the form

$$\kappa_{ij} = \kappa_3 \delta_{ij} + \kappa_B \epsilon_{ijk} \hat{B} k + \kappa_{BB} \hat{B} i \hat{B} j,$$

but here $\kappa_B = 0$, because the diffusion tensor can only depend on the Lorentz force which is quadratic in B, so κ_{ij} must be invariant under a change of sign of B (Kitchatinov et al. 1994). Thus, we have only κ_3 and κ_{BB} that are functions of $|B|/B_{\text{eq}}$, Pe, and Sc, where

$$B_{\text{eq}} = (\mu_0 \rho U^2)^{1/2},$$

is the equipartition field strength, and μ_0 is the vacuum permeability.

By adding rotation or by imposing a magnetic field, the flow becomes anisotropic. The degree of anisotropy is characterized by the parameter

$$\varepsilon = 1 - \frac{u_\perp^2}{u_\parallel^2},$$

where u_\perp^2 and u_\parallel^2 are the velocity dispersions perpendicular and parallel to the direction of anisotropy, Ω or \hat{B}. In practice, we take these directions to be the z direction, in which case $u_\perp^2 = u_\perp^2$ and u_\parallel^2 is calculated as $\frac{1}{2}(u_\perp^2 + u_\perp^2)$. Isotropy implies $\varepsilon = 0$.

3 METHOD

We simulate turbulence by solving the compressible hydromagnetic equations with an imposed random forcing term and an isothermal equation of state, so that the pressure p is related to ρ via $p = \rho c_s^2$, where c_s is the isothermal sound speed. We consider a periodic cartesian domain of size L^3. In the presence of an imposed field B_0, we write the total field as $B = B_0 + \nabla \times A$, where A is the magnetic vector potential. In the nonmagnetic case, we put $B_0 = 0$, and with $A = 0$ initially, we have $B = 0$ for all times, and the hydromagnetic equations reduce to the Navier-Stokes equations for ρ and U,

$$\frac{D \ln \rho}{Dt} = -\nabla \cdot U,$$

$$\frac{D U}{Dt} = -2\Omega \times U - c_s^2 \nabla \ln \rho + f + F_{\text{visc}} + F_{\text{Lorentz}},$$

where $F_{\text{Lorentz}} = 0$ in the non-magnetic case, i.e. there is no Lorentz force, $D/Dt = \partial/\partial t + U \cdot \nabla$ is the advective derivative, Ω is
the background angular velocity, \(F_{\text{visc}} = \rho^{-1} \nabla : 2\nu \mathbf{S} \) is the viscous force, \(\nu \) is the kinematic viscosity, \(S_{ij} = \frac{1}{2}(U_{i,j} + U_{j,i}) - \frac{1}{2}\delta_{ij} \nabla \cdot \mathbf{U} \) is the traceless rate of strain tensor, and \(\mathbf{f} \) is a random forcing function consisting of plane transversal waves with random wavevectors \(\mathbf{k} \) such that \(|\mathbf{k}| \) lies in a band around a given forcing wavenumber \(k_1 \). The vector \(k \) changes randomly from one timestep to the next. This method is described for example in Haugen et al. (2004). The forcing amplitude is chosen such that the Mach number \(M = u_{\text{rms}} / c_0 \) is about 0.1. In the magnetic case, we have a finite Lorentz force \(\mathbf{F}_{\text{Lor}} = J \times \mathbf{B} / \rho \), where \(J = \nabla \times \mathbf{B} / \mu_0 \) is the current density, \(\mu_0 \) is the vacuum permeability, and we solve the uncurred induction equation in the form

\[
\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A},
\]

where \(\eta \) is the magnetic diffusivity, which is assumed constant.

The test scalar equation is obtained by subtracting equation (2) from equation (1), which yields

\[
\frac{\partial c}{\partial t} = -\nabla \cdot (\mathbf{U} c + u_c \mathbf{C} - \nabla c) + \kappa \nabla^2 c,
\]

where \(c = C - \mathbf{C} \) and \(\mathbf{u} = \mathbf{U} - \mathbf{U} \) are the fluctuating values of concentration and velocity and \(\nabla c \) is the mean flux of concentration density.

We restrict ourselves to the case of two-dimensional mean fields, \(\mathbf{C} = \mathbf{C}(x, z, t) \), that are obtained by averaging over the \(y \) direction. In the spirit of the test field method, we solve equation (12) for a predetermined set of four different mean fields,

\[
\begin{align*}
\mathbf{C}^{00} &= C_0 \cos kx, \\
\mathbf{C}^{-00} &= C_0 \sin kx, \\
\mathbf{C}^{00} &= C_0 \cos kz, \\
\mathbf{C}^{-00} &= C_0 \sin kz,
\end{align*}
\]

where \(C_0 \) is a normalization factor, that will drop out in the determination of \(\kappa_i \) since equation (3) is linear. For each of these mean fields \(\mathbf{C}^{pq} \) we obtain a separate evolution equation for \(c^{pq} \),

\[
\frac{\partial c^{pq}}{\partial t} = -\nabla \cdot (\mathbf{U} c^{pq} + u^{pq} - \nabla c^{pq}) + \kappa \nabla^2 c^{pq},
\]

where \(p, q = c, s, 0 \) or 0. In this way, we calculate four different fluxes, \(\mathbf{F}^{pq} = \mathbf{u} c^{pq} \), and compute the 6 relevant components of \(\kappa_{ij} \)

\[
\kappa_{ii} = -\left(\cos kx \mathbf{F}^{ii} \right) / k, \\
\kappa_{i3} = \left(\cos kx \mathbf{F}^{i3} \right) / k,
\]

for \(i = 1, \ldots, 3 \). Here, angular brackets denote volume averages. The expressions for \(\kappa_{ii} \) and \(\kappa_{i3} \) in equations (16) and (17) differ in that the superscripts \(s0 \) and \(00 \) are replaced by \(0s \) and \(0c \), respectively. Note that the components of \(\kappa_{ij} \) for \(j = 2 \) are irrelevant for mean fields that are independent of \(y \).

The method provides the functions \(\kappa_{ii}, \kappa_{ii}, \) and \(\kappa_{i3} \) (or \(\kappa_{ii} \) and \(\kappa_{i3} \)) as functions of \(z \) and \(t \). Unless otherwise specified, we quote averages over \(z \) and \(t \). Error bars are calculated by averaging the results first over \(z \) and then over subsequent time intervals \(\Delta t \) whose length corresponds to one correlation time, i.e., \(\Delta t u_{\text{rms}} k_1 = 1 \). This results in a number of independent measurements from which we calculate the standard deviation, which is what we quote as the error.

The simulations have been carried out using the PENCIL CODE\(^1\) which is a high-order finite-difference code (sixth order in space and third order in time) for solving the compressible hydro-magnetic equations. As of revision \(\text{r10245} \), the test scalar equations are implemented into the public-domain code similar to the way described above and are invoked by compiling with \text{TESTSCALAR=TESTSCALAR} \(^2\). The numerical resolution used in the simulations depends on the Peclet number and reaches 256\(^3\) meshpoints for our runs with \(Pe \approx 200 \).

4 RESULTS

As in earlier work on determining the turbulent magnetic diffusivity using the test field method, we present our results for the relevant components of \(\kappa_{ij} \) by normalizing them with respect to the reference value

\[
\kappa_{00} = \frac{u_{\text{rms}}}{\Omega} k_1^{-1}.
\]

This is motivated by the first order smoothing result \(\kappa_{ii} = \frac{1}{2} \tau u_{\text{rms}} k_1 \) and the assumption that the Strouhal number \(S_\Omega = \tau u_{\text{rms}} k_1 \) is about unity (Brandenburg et al. 2004). We focus on the case \(k_1 / k_2 \approx 3 \), which is a compromise of having enough wavenumbers between \(k_1 \) and the dissipation wavenumber (which is where an inertial range can develop), and leaving some room for scales larger than that of the energy-carrying eddies corresponding to wavenumber \(k_1 \). On a few occasions we also consider other values of \(k_1 / k_2 \).

We begin by considering the case with rotation and no magnetic field. In Fig. [1] we compare the dependence of \(\kappa_i, \kappa_{ii}, \) and \(\kappa_{i3} \) on \(Co \) for fixed values of \(Pe = 1.8 \) and 120, using \(Sc = 1 \) in all cases. Note that \(\kappa_i \) shows a mild decline with \(Co \) while both \(\kappa_{ii} \) and \(\kappa_{i3} \) are positive and increase with \(Co \). For \(Pe = 1.8 \) the results can be fitted to expressions of the form \(\kappa_i \approx 0.7/[1 + (0.3 Co)^2] \), \(\kappa_{ii} \approx 0.25 Co/[1 + (0.5 Co)^2] \), and \(\kappa_{i3} \approx 0.05 Co/[1 + (0.05 Co)^2] \). For larger values of \(Pe \) the dependence of \(\kappa_i, \kappa_{ii}, \) and \(\kappa_{i3} \) on \(Co \) is qualitatively similar, but the dependence of \(\kappa_{ii} \) on \(Co \) now shows indications of a sign change for larger values of \(Co \). A positive \(\kappa_{ii} \) would agree with the result of Rüdiger et al. (2005), although their result was explained to be due to the additional effect of stratification.

The dependence of \(\kappa_i, \kappa_{ii}, \) and \(\kappa_{i3} \) on \(Pe = 0.5 \) and \(Sc = 1 \) is shown in Fig. [2]. As expected, for very small values of \(Pe \) all three functions go to zero like \(\kappa_i / (0 \kappa_{ii} / k) \approx 0.4 Pe \) and \(\kappa_{ii} / \kappa_{ii} \approx 0.05 Pe^2 \), while \(\kappa_{ii} \) is close to zero and, within error bars, essentially compatible with zero. For large values of \(Pe \), both \(\kappa_i \) and \(\kappa_{ii} \) seem to reach asymptotic values, while for \(\kappa_{ii} \) there is no clear trend. An asymptotic value of \(\kappa_i \) was expected based on the analogy with the magnetic case where the magnetic diffusivity was also found to reach an asymptotic value for large Reynolds numbers (Sur et al. 2008).

In all our cases we find that \(\kappa_{ii} \) is positive. This result is in agreement with that of Rüdiger et al. (2005), who define a quantity \(\chi \) such that \(\chi \Omega = -\kappa_{ii} \). They point out that in spherical coordinates \((r, \theta, \phi) \) a finite \(\kappa_{ii} \) corresponds to a finite \(\kappa_{ii} \) which, in turn, leads to a finite azimuthal heat flux. Its astrophysical importance is limited, because the azimuthal average of its divergence vanishes. However, Rüdiger et al. (2005) stress that the sign and magnitude of \(\kappa_{ii} \) provides an important test of mean-field theory. Their result was motivated using a result from the mixing-length model of Kitichatinov et al. (1994) that \(\kappa_{ij} \) should be proportional to the Reynolds-stress tensor \(\mathbf{\tau} \). A positive \(\kappa_{ii} \) would correspond to a

\(^1\) http://www.nordita.org/software/pencil-code

\(^2\) http://pencil-code.googlecode.com/
negative $\kappa_{r\phi}$, which could be explained by a negative $u_r u_\phi$ that is expected for stratified turbulence with dominant vertical turbulent velocities. This argument, which is originally due to Gough (1978), does not apply in our case. However, a positive value of κ_Ω is an immediate consequence of the Coriolis force producing systematic sideway motions; see Fig. 3. That is, suppose there exists a mean concentration gradient in, say, the positive x-direction, i.e., $\nabla C \sim \hat{x}$. Then a small fluid parcel that is moving in the downgradient direction, $u \sim -\nabla C$, would experience, via the Coriolis acceleration, a deflection into the positive y-direction. The mean effect of such deflections would be to produce a positive coherent flux in the direction given by $-\nabla C \times \hat{\Omega}$, and thus κ_Ω must be positive. A positive value of κ_Ω can also be explained using the pressureless τ approximation which predicts $\kappa_\Omega/\kappa_t = C_0$; see Appendix A. This underlines the potential usefulness of the τ approximation in mean-field theory, even if this approach is used in its most rudimentary form.

The simple treatment of the τ approximation in Appendix A predicts that κ_t declines with increasing values of C_0, while both κ_Ω and $\kappa_{\Omega\Omega}$ increase and are positive. This is in agreement with

Figure 1. Co dependence of κ_t, κ_Ω, and $\kappa_{\Omega\Omega}$ for $Pe = 1.8$ and 120. For $Pe = 1.8$, the results can be fitted to expressions described in the text, while for larger values of Pe the dependences tend to be more complicated. The dashed lines indicate the behavior expected from the simple treatment of the τ approximation in Appendix A. The slope of the dashed lines in the middle and last panel is therefore 1. For these runs the anisotropy parameter ε varies between 0 and 0.04.

Figure 2. Pe dependence for $C_0 = 0.5$ keeping $Sc = 1$ in all cases. The resolution is increased with increasing values of Pe and reaches 256^3 for the run with the largest value of Pe.

Figure 3. Sketch illustrating the systematic sideway motion caused by the Coriolis force and its effect on the flux and hence the sign of κ_Ω.
Turbulent diffusion with rotation or magnetic fields

Figure 4. Dependence on the magnetic field strength for $\text{Pe} = 1.8$ (dashed) and for Pe in the range 12–15 (solid). For these runs the anisotropy parameter ε varies between 0 and 0.04.

The dependence of κ_t and κ_{BB} on Pe is shown in Fig. 5. Both functions increase with Pe as long as Pe is below about 10, and then seem to level off, although it would be desirable to confirm this for larger values of Pe. The Pe dependence of κ_t is similar to that for $B_0 = 0$ and $\text{Co} = 0.6$ where κ_t goes to zero with decreasing Pe like 0.4Pe, and $\kappa_{BB} \approx 0.05 \text{Pe}^2$, which is reminiscent of the behavior of $\kappa_{t\Omega}$ for $B_0 = 0$ and $\text{Co} = 0.6$.

Finally, we consider the dependence of κ_{ij} on the wavenumber k of the test scalar in equations (16) and (17). A dependence of κ_{ij} on k reflects the fact that there is poor scale separation, i.e. k/k_f is not very small. In such a case (as already discussed in §2), the multiplication with a turbulent diffusivity in equation (3) must be replaced by a convolution with an integral kernel, as in Brandenburg et al. (2008b) for the case of magnetic diffusion and α effect. In Fourier space the convolution corresponds to a multiplication. As long as we consider monochromatic mean fields (proportional to $e^{ik \cdot x}$ for a single wavevector) the values of the numerically determined components of κ_{ij} correspond to the value of the Fourier transform $\tilde{\kappa}_{ij}$ at wavevector k. The full integral kernel can then be assembled by determining the full k dependence and then Fourier transforming back into real space.

In Fig. 6 we show the resulting dependences $\tilde{\kappa}_t(k)$, $\tilde{\kappa}_{t\Omega}(k)$, and $\tilde{\kappa}_{t\Omega\Omega}(k)$, similar to earlier work on turbulent magnetic diffusion.
with $Pe = 17$ parameter and k for the isotropic case (Brandenburg et al. 2008b) and Figure 6. However, the coefficients the anisotropic case with shear, but no rotation (Mitra et al. 2009). where a_k/k_1 fitted reasonably well to a Lorentzian, $\kappa_f \approx t_0/k_f$, and κ_{Q0} depend on value of k_f/k_1. For $k_f/k_1 = 3$ we find $\kappa_{Q0}/\kappa_{Q0} = 1.4$ and $\kappa_{Q0} \approx 0.3$, while for $k_f/k_1 = 8$ we find $\kappa_{Q0}/\kappa_{Q0} = 1.5$ and $\kappa_{Q0}/\kappa_{Q0} \approx 0.5$. To make the curves for different values of k_1 and Pe more nearly overlap, we have scaled κ_1 by a factor $s_1 = k_f/k_1$, κ_{Q0} by a factor $s_{Q0} = (k_f/k_1)^{-1}$, and $\kappa_{Q0} = \kappa_{Q0}$ by a factor $s_{\Omega0} = (k_f/k_1)^{-0.5}$.

A surprising result occurs for $\kappa_{Q0}(k)$ which takes large negative values for $k/k_f \approx 1$, but tends to vanish for $k \rightarrow 0$. This means that the diffusion of mean fields along the axis of rotation is strongly suppressed once its typical length scale becomes comparable with the scale of the energy-carrying eddies.

\begin{equation}
\kappa_i = \frac{\kappa_{Q0}}{1 + (ak/k_f)^2}.
\end{equation}

where $a \approx 0.62$. This value of a is close to the corresponding value for turbulent magnetic diffusion where $a \approx 0.5$ was found for the isotropic case (Brandenburg et al. 2008b) and $a \approx 0.7$ in the anisotropic case with shear, but no rotation (Mitra et al. 2009). However, the coefficients κ_{Q0} and κ_{Q0} depend on value of k_f/k_1. For $k_f/k_1 = 3$ we find $\kappa_{Q0}/\kappa_{Q0} = 1.4$ and $\kappa_{Q0} \approx 0.3$, while for $k_f/k_1 = 8$ we find $\kappa_{Q0}/\kappa_{Q0} = 1.5$ and $\kappa_{Q0}/\kappa_{Q0} \approx 0.5$. To make the curves for different values of k_1 and Pe more nearly overlap, we have scaled κ_1 by a factor $s_1 = k_f/k_1$, κ_{Q0} by a factor $s_{Q0} = (k_f/k_1)^{-1}$, and κ_{Q0} by a factor $s_{\Omega0} = (k_f/k_1)^{-0.5}$.

A surprising result occurs for $\kappa_{Q0}(k)$ which takes large negative values for $k/k_f \approx 1$, but tends to vanish for $k \rightarrow 0$. This means that the diffusion of mean fields along the axis of rotation is strongly suppressed once its typical length scale becomes comparable with the scale of the energy-carrying eddies.

The two cases shown in Fig. 6 differ not only in the value of k_f/k_1 (3 and 8), but also in the value of Pe (17 and 70). In order to show that the dependence of the scaling coefficients κ_{Q0} and κ_{Q0} is primarily due to the change in k_f/k_1 we plot in Fig. 7 the dependence of κ_1, κ_{Q0}, and κ_{Q0} on the forcing wavenumber k_f/k_1 for $k = 0$ with $Co = 0.6$ and $Pe \approx 17$. It turns out that both κ_1 and κ_{Q0} decrease with k_f like k_f^{-1}, while κ_{Q0} is essentially compatible with zero.

In order to illustrate the meaning of the error bars, we show in Fig. 8 time series of κ_1, κ_{Q0}, and κ_{Q0} for a run in Fig. 6 with $k = 0$, $k_f/k_1 = 8$, $Co = 0.6$, and $Pe = 70$. Time is given in turnover times and covers nearly 200 in those units. This results in nearly 200 independent measurements, whose standard deviation yields the one-sigma probability range of finding measurements to lie in that interval.

In Fig. 9 we show the k dependence of the transport coefficients in the presence of a magnetic field and without rotation. The k dependence of κ_1 is about that found in Fig. 6, but now κ_{BB} shows a marked dependence with a sign change at $k/k_f \approx 0.5$ about values of κ_{BB} of opposite sign with extrema of similar modulus, $\kappa_{BB}/\kappa_{Q0} \approx +0.3$ at $k/k_f \approx 0$ and $\kappa_{BB}/\kappa_{Q0} \approx -0.3$ at $k/k_f \approx 1$. Furthermore, for $k \rightarrow 0$ and $k \rightarrow \infty$ the values of κ_{BB} are small.
Figure 8. Time series of κ_t, κ_Ω, and $\kappa_{\Omega\Omega}$ for a run in Fig. 6 with $k = 0$, $k_f/k_t = 8$, $\mathcal{C}_o = 0.6$, and $\text{Pe} = 70$. The average values are shown as straight solid lines and the error margin is indicated by dashed lines.

5 CONCLUSIONS

The test scalar formalism described above proves to be a useful tool for calculating the components of the turbulent diffusion tensor for the mean passive scalar concentration. Here the mean passive scalar concentration is defined as a two-dimensional field obtained by averaging over one coordinate direction. Therefore the diffusion tensor has 6 relevant components. In the present investigation, we have only looked at the case of homogeneous turbulence where anisotropy is produced either by rotation or by a magnetic field. Another interesting alternative would be to look at the effects of a linear shear flows of the form $\mathbf{U}^S = (0, Sx, 0)$. Investigations of the corresponding magnetic case with the test field method have already been carried out (Brandenburg et al. 2008a), and they confirmed the similarity between cases with shear and rotation. The application of the test scalar method to cases with shear would therefore be straightforward.

The test scalar method is analogous to the test field method for obtaining turbulent transport coefficients for the evolution of the mean magnetic field. Therefore, many of the questions raised in that case carry over to the present case. An example is the dependence of the transport coefficients on the length and time scales of the mean field. Usually, rapid spatial and temporal variations are less efficiently diffused by turbulence whose correlation length and time are no longer small compared with the corresponding scale of variation of the mean field.

A surprising result of the present work is the fact that turbulent transport along the rotation axis is not strongly reduced unless the length scale of the mean field becomes comparable with the correlation length of the turbulence, i.e. when $k \approx k_t$. In that case, there is significant suppression of the turbulence along the direction of rotation. A similar result also applies if anisotropy is produced by an applied magnetic field.

The present investigation is restricted to the case when the scalar field is passive. This applies to the evolution of the entropy density in situations where an isothermal equation of state applies and where gravitational stratification is negligible. However, once gravitational stratification or non-isothermal effects become important, the test scalar formalism can only be used to describe small departures from a given reference state. It would be worthwhile exploring this case further.

Our work has shown that for non-helically forced isotropic turbulence, i.e. without rotation or magnetic fields, the turbulent diffusivity of a passive scalar is similar to the value of the turbulent diffusivity of the magnetic field in the kinematic limit. While this was expected based on results from the first-order smoothing approximation, the situation is less clear for turbulent kinematic...
ACKNOWLEDGMENTS

We thank Günther Rüdiger for detailed discussions regarding the sign of κ_{Ω}, and for telling us about a sign error in the corresponding expression in Kitchatinov et al. (1994). The computations have been carried out at the National Supercomputer Centre in Linköping and at the Center for Parallel Computers at the Royal Institute of Technology in Sweden. This work was supported in part by the Swedish Research Council, grant 621-2007-4064 (AB) and the Sweden America Foundation through the Borggrättsfonderna, administered by the Office of Marshall of the Realm of Sweden (AS).

REFERENCES

Blackman, E. G., & Field, G. B. 2003, Phys. Fluids, 15, L73
Brandenburg, A. 2005, Astron. Nachr., 326, 787
Brandenburg, A., Küpylä, P., & Mohammed, A. 2004, Phys. Fluids, 16, 1020
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Küpylä, P. J. 2008a, ApJ, 676, 740
Brandenburg, A., Rädler, K.-H., & Schrinner, M. 2008b, A&A, 482, 739
Durney, B. R., Roxburgh, I. W. 1971, Solar Phys., 16, 320
Durney, B. R., Roxburgh, I. W. 1971, Solar Phys., 16, 320
Gough, D. O. 1978, in Proc. EPS Workshop on Solar Rotation, ed. G.
Belvedere & L. Paternò (Catania University Press, Catania), 337
Haugen, N. E. L., Brandenburg, A., & Dobler, W. 2004, Phys. Rev. E, 70, 016308
Hubbard, A., & Brandenburg, A. 2008, ApJ, submitted, arXiv:0811.2561
Julien, K., Legg, S., McWilliams, J., & Werne, J. 1996, J. Fluid Mech., 322, 243
Küpylä, P. J., Korpi, M. J., & Tuominen, I. 2004, A&A, 422, 793
Kitchatinov, L. L., & Mazur, M. V. 2000, Solar Phys., 191, 325
Kitchatinov, L. L., Rüdiger, G., & Pipin, V. V. 1994, Astron. Nachr., 315, 157
Kitchatinov, L. L., & Rüdiger, G. 1995, A&A, 299, 446
Kleeroen, N. I., Rogachevskii, I. V., Ruzmaikin, A. A. 1990, Sov. Phys. JETP, 70, 878
Mitra, D., Küpylä, P. J., Tavakol, R., & Brandenburg, A. 2009, A&A, 495, 1
Rüdiger, G. 1989, Differential rotation and stellar convection: Sun and solar-type stars (Gordon & Breach, New York)
Rüdiger, G., & Hollerbach, R. 2004, The magnetic universe (Wiley-VCH, New York)
Rüdiger, G., & Pipin, V. V. 2001, A&A, 375, 149
Rüdiger, G., Egorov, P., Kitchatinov, L. L., & Küker, M. 2005, A&A, 431, 345
Schramm, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U. 2005, Astron. Nachr., 326, 245
Schramm, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U. R. 2007, Geophys. Astrophys. Fluid Dyn., 101, 81
Sur, S., Subramanian, K., & Brandenburg, A. 2007, MNRAS, 376, 1228
Sur, S., Brandenburg, A., & Subramanian, K. 2008, MNRAS, 385, L15
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., & Toomre, J. 2003, ARA&A, 41, 599

APPENDIX A: THE POSITIVE SIGN OF κ_{Ω}

In this appendix we motivate the origin of the positive sign of κ_{Ω} using the pressureless τ approximation. In this approach one considers the evolution equation for \mathbf{F},

$$\frac{\partial \mathbf{F}}{\partial t} = u_i c + u_i c,$$ \hspace{1cm} (A1)

where dots denote time derivatives (Blackman & Field 2003, Brandenburg et al. 2004). We use equations (10) and (12), assume that $u = U$, i.e. that $\nabla \mathbf{U} = 0$, ignore the pressure term and magnetic fields, assume $\mathbf{F} = 0$, and obtain

$$u_i c = -2\Omega j \epsilon_{ijk} u_j c + \text{triple correlations},$$ \hspace{1cm} (A2)

$$u_i c = -2\Omega j \epsilon_{ijk} u_j c + \text{triple correlations}.$$ \hspace{1cm} (A3)

The triple correlation terms result from the nonlinearities in the evolution equations equations (10) and (12). In the τ approximation we substitute the sum of the triple correlations by quadratic correlations, i.e. by $-\nabla \mathbf{u}^2 / \tau$ in the present case (Vainshtein & Kitchatinov 1983, Kleeroen et al. 1990). We write the resulting equation in matrix form,

$$\frac{\tau}{\partial t} \mathbf{F} = -\mathbf{L}_{ik} \mathbf{F}_k - \tau \mathbf{u}_i \mathbf{u}_j \nabla_j \mathbf{F}_i,$$ \hspace{1cm} (A4)

where $\mathbf{L}_{ik} = \delta_{ik} + 2\Omega j \epsilon_{ijk}$. We solve this equation for \mathbf{F} and obtain

$$\mathbf{F}_i = -\left(\mathbf{L}^{-1}\right)_{ij} \left(\tau \mathbf{u}_i \mathbf{u}_j \nabla_j \mathbf{F}_i + \tau \frac{\partial \mathbf{F}_i}{\partial t}\right),$$ \hspace{1cm} (A5)

where

$$\mathbf{L}^{-1} = \frac{1}{1 + \cos^2 \left(\frac{1}{\tau} \mathbf{u}_i \mathbf{u}_j \nabla_j \mathbf{u}_i \right)} \hspace{1cm} \left(\begin{array}{ccc}
-\cos \theta & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 + \cos^2 \theta
\end{array}\right).$$ \hspace{1cm} (A6)

and

$$w_i w_k = \text{diag} \left(\mathbf{u}_i^2, \mathbf{u}_i^2, \mathbf{u}_i^2\right).$$ \hspace{1cm} (A7)

In the stationary state we may ignore the time derivative and recover equations (3) and (4) with

$$\kappa_{\tau} = \frac{\tau \mathbf{u}_i^2}{1 + \cos^2 \left(\frac{1}{\tau} \mathbf{u}_i \mathbf{u}_j \nabla_j \mathbf{u}_i \right)}, \hspace{1cm} \frac{\kappa_{\Omega}}{\kappa_{\tau}} = \cos \theta, \hspace{1cm} \frac{\kappa_{\Omega \Omega}}{\kappa_{\tau}} = \frac{\cos^2 \theta + \varepsilon}{1 - \varepsilon}, \hspace{1cm}$$ \hspace{1cm} (A8)

where $\varepsilon = 1 - \mathbf{u}_i^2 / \mathbf{u}_i^2$ was defined in equation (8). In the cases reported here the value of ε was never found to be negative. Note also that $1 - \varepsilon = \mathbf{u}_i^2 / \mathbf{u}_i^2$ in the denominator of equation (A8) is always positive. Therefore, in addition to κ_{Ω} being positive, also $\kappa_{\Omega \Omega}$ should be positive.