Effects of Vacancies on Properties of Relaxor Ferroelectrics: a First-Principles Study

L. Bellaiche¹, Jorge Íñiguez², Eric Cockayne³ and B.P. Burton³

¹ Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA
² Institut de Ciencia de Materials de Barcelona (ICMAB–CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain
³ Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520, USA

(Dated: April 17, 2018)

Abstract

A first-principles-based model is developed to investigate the influence of lead vacancies on the properties of relaxor ferroelectric Pb(Sc₁/₂Nb₁/₂)O₃ (PSN). Lead vacancies generate large, inhomogeneous, electric fields that reduce barriers between energy minima for different polarization directions. This naturally explains why relaxors with significant lead vacancy concentrations have broadened dielectric peaks at lower temperatures, and why lead vacancies smear properties in the neighborhood of the ferroelectric transition in PSN. We also reconsider the conventional wisdom that lead vacancies reduce the magnitude of dielectric response.
I. INTRODUCTION

Relaxor ferroelectrics are intriguing materials that characteristically exhibit a broad frequency-dependent dielectric response \[1\]. Although relaxors were discovered more than fifty years ago \[2\], the precise origin of their peculiar dielectricity remains controversial. Various models have been proposed (e.g., Refs. \[3\]–\[9\] and references therein) all of which include quenched, randomly distributed, internal electric fields and/or interacting polar microregions.

Experimentally, the introduction of vacancies into relaxors induces greater broadening of the dielectric response; i.e. it enhances relaxor character \[10\]–\[12\]. Other Pb-vacancy induced effects include: shifting of the dielectric peak to lower temperature; a decrease in the magnitude of the dielectric response; and a more “diffuse” phase transition \[10\]–\[12\].

The mechanisms responsible for vacancy-induced characteristics are mostly unknown, but understanding them would illuminate the fundamentals of relaxor behavior, especially because defects are always present in real samples. One reason for this paucity of knowledge is that first-principles studies of (point) defects in ferroelectrics are scarce \[13\]–\[16\].

In this manuscript, we investigate the effects of Pb-vacancies on the properties of a relaxor ferroelectric from first principles. Our model system is Pb(Sc\(_{1/2}\)Nb\(_{1/2}\))O\(_3\) (PSN) rather than the prototype relaxor Pb(Mg\(_{1/3}\)Nb\(_{2/3}\))O\(_3\) (PMN), because the former is easier to model – i.e. finite-temperature first-principles-based models already exist for PSN \[8\], \[17\] but not for PMN. Note that, unlike PMN which retains relaxor character down to 0K (i.e. exhibits no ferroelectric phase transition), chemically disordered PSN exhibits relaxor behavior between ~400K and ~368K, then transforms to a rhombohedral ferroelectric phase \[10\], \[11\]. We focus on static properties, because studying the dynamics of relaxors from first-principles is not currently feasible. Our study clarifies the origin(s) of the vacancy-induced effects mentioned above, and suggests that the common wisdom that Pb-vacancies reduce the magnitude of dielectric response should be reconsidered.

This manuscript is organized as follows: Section II describes the method. Section III presents and discusses results. Section IV is a brief summary.
II. METHOD

Our method is a generalization of the first-principles-derived effective Hamiltonian of Refs. [17, 18, 19] to investigate perovskites with chemical disorder on their B-sites and Pb-vacancies on their A-sites, by writing the total energy as a sum of two terms:

\[E_{\text{PSN-DV}}(\{u_i\}, \eta_H, \{\eta_I\}, \{\sigma_j\}, \{s_k\}) = E_{\text{PSN-D}}(\{u_i\}, \eta_H, \{\eta_I\}, \{\sigma_j\}) + E_{\text{vac}}(\{u_i\}, \{s_k\}), \quad (1) \]

where \(E_{\text{PSN-DV}} \) is the total energy of the \(\text{Pb}_{1-x} \square_x (\text{Sc}_{1/2} \text{Nb}_{1/2})_3 \) alloy (PSN-DV), \(\square \) representing a vacant A-site; \(E_{\text{PSN-D}} \) is the total energy of chemically disordered PSN solid solutions (PSN-D); \(E_{\text{vac}} \) gathers the explicit energetics associated with Pb-vacancies; \(u_i \) is the (B-centered) local polar distortion in unit cell \(i \) (proportional to the local dipole moment); \(\eta_H \) and \(\{\eta_I\} \) are the homogeneous and inhomogeneous strain tensors [20], respectively; \(\sigma_j = -1 \) or +1 if there is a Sc or Nb cation, respectively, at the B-lattice site \(j \) of the \(\text{Pb}_{1-x} \square_x (\text{Sc}_{1/2} \text{Nb}_{1/2})_3 \) alloy. Finally, \(\{s_k\} \) characterizes the amount and distribution of A-site vacancies, i.e. \(s_k = 0 \) or 1 if the \(k' \)th A-site is occupied by a lead atom or vacant, respectively.

For \(E_{\text{PSN-D}} \), we use the analytical expression proposed in Ref. [17], which includes a term of the form \(-\sum_i Z^* u_i \cdot \epsilon_i(\{\sigma_j\}) \), where \(Z^* \) is the Born effective charge associated with the local distortion, and \(\epsilon_i \) is the internal field at cell \(i \) that is caused by the surrounding B-site cation distribution [21].

For \(E_{\text{vac}} \), we use the following perturbative expression (first-order in \(u_i \)):

\[E_{\text{vac}}(\{u_i\}, \{s_k\}) = \sum_k \sum_i S_{k,i} s_k g_{ki} \cdot u_i \quad (2) \]

where the sum over \(k \) runs over A-sites, and the sum over \(i \) runs over B-sites. The \(S_{k,i} \) parameters quantify how vacancies perturb the local distortions. \(g_{ki} \) is the unit vector joining the A-site \(k \) to the B-site-center of \(u_i \). We truncated \(S_{k,i} \) at the first-neighbor shell. All the parameters of Eqs. (1) and (2) are derived from first-principles calculations [22, 23, 24] performed on relatively small supercells (i.e., up to 40 atoms), including one (to obtain \(S_{k,i} \)) that exhibits a lead vacancy and a background charge of \(-2\).
We solve this effective Hamiltonian by the Monte Carlo (MC) technique to simulate properties of two different systems: 1) disordered Pb(Sc\(_{1/2}\)Nb\(_{1/2}\))O\(_3\) without any Pb-vacancies, PSN-D; 2) disordered Pb\(_{0.95}\)\(\square_{0.05}\)(Sc\(_{1/2}\)Nb\(_{1/2}\))O\(_3\), PSN-DV, which has a realistic 5\% vacancy concentration on its A-sites. A 12 × 12 × 12 supercell (8640 atoms, 48 Å lateral size) is used for both systems. The variables \(\sigma_j\) and \(s_k\) are randomly chosen, and remain constant during the simulation. Temperature, \(T\), is decreased in small steps from high \(T\). We found it unusually difficult to get good statistics and, therefore, performed 10 MC runs of 4 million sweeps each, at every temperature. We collect the supercell-average \(\mathbf{u}\) of the local distortion at each sweep and classify it as visiting one of the eight rhombohedral, twelve orthorhombic, or six tetragonal energy minima by computing its projection onto each of these twenty-six high-symmetry directions. The visiting rate of a particular minimum is defined as the ratio between the number of sweeps in which that minimum is visited and the total number of sweeps. The \(\chi_{\alpha\beta}\) dielectric susceptibility tensor is computed as in Refs. \[26, 27\], that is by using the polarization fluctuation formula:

\[
\chi_{\alpha\beta} = \frac{(N Z^*)^2}{V \epsilon_o k_B T} \left[< u_{\alpha} u_{\beta} > - < u_{\alpha} > < u_{\beta} > \right]
\]

(3)

where \(< u_{\alpha} u_{\beta} >\) denotes the statistical average of the product between the \(\alpha\) and \(\beta\) components of the supercell average of the local mode vectors, and where \(< u_{\alpha} >\) (respectively, \(< u_{\beta} >\)) is the statistical average of the \(\alpha\)- (respectively, \(\beta\)-) component of the supercell average of the local mode vectors. \(N\) is the number of sites in the supercell while \(V\) is its volume. \(k_B\) is the Boltzmann’s constant and \(\epsilon_o\) is the permittivity of the vacuum. Note that a detailed derivation of Eq.(3) is provided in Ref. \[27\].

III. RESULTS

The simulated temperature at which the dielectric response is maximized, \(T_m\), is about 850K for PSN-D and 794K for PSN-DV. Thus, our model qualitatively reproduces the previous finding that Pb-vacancies reduce \(T_m\). Our quantitative prediction of a 6.5 \% reduction in \(T_m\), from the introduction of 5\% Pb-vacancies agrees rather well with the corresponding experimental reduction of 8.5\% \[11\], and is also consistent with the \(\simeq 2.6\%\) reduction of \(T_m\) associated with 1.7\% Pb-vacancies \[10\]; establishing the accuracy of simulations based on Eqs. (1) and (2). Note that Eq.(2) can be rewritten as
$E_{\text{vac}}(\{\mathbf{u}_i\}, \{s_k\}) = - \sum_i Z^* \mathbf{u}_i \cdot \epsilon_{\text{vac},i}[\{s_k\}]$, with $\epsilon_{\text{vac},i} = -\frac{1}{Z} \sum_k s_k \mathbf{g}_{ki}$; that is, $\epsilon_{\text{vac},i}$ has the dimensions and physical meaning of an internal electric field arising from the Pb-vacancies. Our first-principles-derived values for the fields around a Pb-vacancy are of the order of 1.4×10^9 V/m at each neighboring B-site i. These fields are oriented towards the vacancy because $S_{k,i}$ is positive and $\epsilon_{\text{vac},i}$ depends on the directional \mathbf{g}_{ki} vectors; $\epsilon_{\text{vac},i}$ is therefore rather large and inhomogeneous, and thus significantly opposes homogeneous ferroelectric ordering, which explains the vacancy-induced reduction of T_m.

Figure 1a displays the (u_x, u_y, u_z) supercell averages of local distortions as functions of the reduced temperature T/T_m; (u_x, u_y, u_z) is directly proportional to the spontaneous polarization, where the x, y, and z axes are chosen along the pseudo-cubic [100], [010], and [001] directions, respectively. Both PSN-D and PSN-DV are predicted to have a low-T rhombohedral ferroelectric phase in which $u_x \approx u_y \approx u_z$, in agreement with experiment [10, 11]. Therefore, only the average component, $\langle \bar{u} \rangle = 1/3 \langle u_x + u_y + u_z \rangle$, is plotted in Fig. 1a. Also shown in Fig. 1a is $\langle|u|\rangle_R/\sqrt{3}$, where $\langle|u|\rangle_R$ is the mean magnitude of the supercell average of local distortions calculated from sweeps in which the system visits rhombohedral minima. Figure 1b shows χ – which corresponds to one third of the trace of the $\chi_{\alpha\beta}$ dielectric susceptibility tensor – versus T/T_m. In other words, and according to Eq. (3) and the definition of χ, Fig. 1b displays:

$$\chi = \frac{(N Z^*)^2}{V \epsilon_o k_B T} \frac{1}{3} \left[<u_x^2 + u_y^2 + u_z^2> - (<u_x^2> + <u_y^2> + <u_z^2>) \right]$$

(4)

Predictions for $\langle \bar{u} \rangle$ and χ are quite scattered around T_m, which reflects our difficulties in obtaining good statistics for either PSN-D or PSN-DV, as expected for systems with complex energy landscapes [5]. We smoothed the results for $\langle \bar{u} \rangle$ by fitting them to a 7th-order polynomial in the region around T_m (lines in Fig. 1a). We denote the result by $\langle \bar{u} \rangle_{\text{fit}}$ and recompute the susceptibility as

$$\chi_{\text{fit}} = \frac{N (Z^*)^2}{a_0^3 \epsilon_o k_B T} \frac{1}{3} \left[\langle |u| \rangle_R^2 - \langle \bar{u} \rangle_{\text{fit}}^2 \right]$$

(5)

where a_0 is the 0K cubic lattice constant. We obtain Eq. (5) from Eq. (4), by approximating V as Na_o^3, and the averages as follows: $1/3 <u_x^2 + u_y^2 + u_z^2> \sim 1/3 \langle |u| \rangle_R^2$ and $1/3(<u_x^2> + <u_y^2> + <u_z^2>) \sim \langle \bar{u} \rangle_{\text{fit}}^2$. The “smoothed” χ_{fit}’s are depicted with lines in Fig. 1b, and will be used in combination with $\langle \bar{u} \rangle_{\text{fit}}$, to illuminate the effects of Pb-vacancies in relaxors.
Interestingly, Fig. 1b indicates that, contrary to common wisdom and previously reported observations \[10, 11\], our predicted maximum value of the dielectric response does not decrease when Pb-vacancies are introduced: our simulations indicate that χ_{fit} is slightly larger in PSN-DV than in PSN-D at $T = T_m$, because T_m is smaller and $\langle \vec{u} \rangle_{\text{fit}}$ is further away from $\langle |u| \rangle_R / \sqrt{3}$ in PSN-DV, see Fig. 1a and Eq. (5). Our predicted maximum values for χ_{fit} are about 34,000 and 38,500 for PSN-D and PSN-DV, respectively, which is close to the measured value $\simeq 40,000$ of Ref. \[10\] for PSN-D. This result, which appears to be at odds with measurements, is explained by the experimental observation of Ref. \[30\] that Pb-vacancies in Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$ favor the simultaneous formation of pyrochlore phases (Pb$_{2.31}$Nb$_2$O$_7$, Pb$_3$Nb$_4$O$_{13}$). Thus, dielectric measurements on a PSN-DV sample at $T = T_m$ should yield a smaller response than those on PSN-D: because, while the majority of the PSN-DV sample is perovskite, with a dielectric response that is at least as large as that for PSN-D, a smaller fraction is pyrochlore, which has a much smaller dielectric response \[30\].

Figure 1b also shows that our simulations successfully reproduce two experimental observations: (i) the broadened dielectric peaks in PSN-D and PSN-DV, which are characteristic of relaxors \[1\], and according to Eq. (5) and Fig 1a, arise from the diffuse phase transition associated with $\langle \vec{u} \rangle_{\text{fit}}$; (ii) Pb-vacancy induced dielectric broadening \[10, 11, 12\]. Half-maximum width of the χ_{fit} peak is about 0.19 in PSN-D versus 0.22 in PSN-DV (in reduced units) \[c.f. the corresponding predicted value of 0.13 reported in Ref. \[9\] for the “normal” ferroelectric system Pb(Zr$_{0.6}$Ti$_{0.4}$)O$_3]\]. Note that vacancy-induced dielectric broadening only occurs below T_m. This is particularly clear in the Fig. 1b inset, in which the χ_{fit} of PSN-DV is rescaled by a T-independent constant to match the χ_{fit} dielectric response of PSN-D at $T = T_m$.

To clarify how PSN-DV differs from PSN-D only at temperatures below T_m, Table I lists the internal energies of rhombohedral and orthorhombic minima (calculated at 5 K); plus the visiting rates of these minima in both PSN-D and PSN-DV at $T/T_m \simeq 0.93$. The energy landscape of PSN-D is rather anisotropic; e.g. the energy difference between the ground state and the highest-lying rhombohedral minimum is 0.68 meV. Reference \[9\] demonstrated that such local symmetry breaking is caused by the anisotropy of the large internal ϵ_i electric fields (which have an average magnitude $\simeq 2 \times 10^9$ V/m; determined numerically) that arise from the charge-difference between Sc$^{3+}$ and Nb$^{5+}$ ions. This anisotropy results from our nanometric periodic PSN-D supercell being too small to contain a perfectly random B-site configuration \[9\]. Results in Table I also indicate that, at $T/T_m \simeq 0.93$, PSN-D
preferentially visits the rhombohedral [-111] and [111] minima, i.e. the minima that have lowest energies, and that are connected by one of the lowest-in-energy orthorhombic minima (specifically, [011]). Such fluctuations lead to a $\langle u \rangle_{\text{fit}}$ that is smaller than $\langle |u| \rangle_R / \sqrt{3}$, and thus [Eq. (5)], to a large dielectric response relative to normal ferroelectrics (which are already stuck in a single minimum at $T/T_m \approx 0.93$ [9]). As indicated by Table I, the $\epsilon_{\text{vac,i}}$ electric field associated with Pb-vacancies (see rewriting of Eq (2) above) brings the orthorhombic and rhombohedral minima closer to each other; similar to the finding of Ref. [9] that ϵ_i in PSN-D reduces barriers between energy minima. Thus, PSN-DV fluctuates more and/or visits more minima than PSN-D at temperatures below T_m. This implies a smaller $\langle u \rangle_{\text{fit}}$ (Fig. 1a) and therefore naturally explains two vacancy-induced effects that have been observed experimentally [10, 11, 12]: a broader PSN-DV dielectric response (Fig. 1b and Eq. (5)); and a more diffuse PSN-DV phase transition (PSN-DV “only” begins to stick in a single rhombohedral minimum at $T/T_m \approx 0.85$ as indicated by the equality $\langle u \rangle_{\text{fit}} = \langle |u| \rangle_R / \sqrt{3}$ at and below this temperature, Fig 1a, whereas, freezing in of PSN-D occurs at $T/T_m \approx 0.90$).

Results in Table I also indicate that the most frequently visited rhombohedral minima in PSN-DV are not the lowest-energy minima; rather they are those with small-in-energy rhombohedral-to-orthorhombic barriers (e.g., the [1-1-1] and [-1-1-1] minima that are connected by the [0-1-1] minimum, over an energy barrier of about 2.5 meV). This strongly suggests that relaxors with Pb-vacancies can be thought of as non-ergodic systems [31].

IV. SUMMARY

In summary, first-principles-based calculations predict that the introduction of Pb-vacancies in Pb(Sc$_{1/2}$Nb$_{1/2}$)O$_3$: (i) reduces the temperature at which the dielectric response peaks, T_m, consistent with experiment [10, 11, 12]; (ii) does not intrinsically decrease the magnitude of the dielectric peak, contrary to common wisdom [10, 11, 12]; (iii) broadens the dielectric response and enhances the diffuse character of the ferroelectric transition, consistent with measurements [10, 11, 12] (but only at temperatures below T_m). Item (i) above is the direct consequence of the relatively large internal inhomogeneous electric fields generated by the Pb-vacancies. We suggest that our disagreement with experiments in item (ii) is caused by parasitic pyrochlore phases in the experimental samples. Item (iii) originates from the decrease in energy barriers that are caused by Pb-vacancies, which promote
enhanced fluctuations between different energy-minima below T_m. Interestingly, our results regarding the effect of defects on energy landscape may also be relevant for modeling (and understanding) dynamical properties of relaxors.

Acknowledgment

We thank J.M. Kiat, B. Dkhil, and C. Malibert for useful discussions. This work is supported by ONR grants N00014-01-1-0365, N00014-04-1-0413 and N00014-01-1-0600, by NSF grant DMR-0404335, and by DOE grant DE-FG02-05ER46188. JI thanks financial support from the Spanish Ministry of Science and Education ("Ramón y Cajal" program and grant BFM2003-03372-C03-01), the Catalan Government grant SGR-2005-683, and FAME-NoE.

[1] L.E. Cross, Ferroelectrics 151, 305 (1994).
[2] G.A. Smolenskii and V.A. Isupov, Dokl. Akad. Nauk. SSR 97, 653 (1954).
[3] V. Westphal and W. Kleemann and M.D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).
[4] A.K. Tagantsev and A.E. Glazounov, Phys. Rev. B 57, 18 (1998).
[5] D. Viehland, S.J. Jang, L.E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990); Phys. Rev. B 46, 8003 (1992).
[6] E.V. Colla, E. Yu Koroleva, N.M. Okuneva and S.B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995).
[7] R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).
[8] B.P. Burton, E. Cockayne and U.V. Waghmare, Phys. Rev. B 72, 064113 (2005).
[9] J. Íñiguez and L. Bellaiche, Phys. Rev. B 73, 144109 (2006).
[10] F. Chu, I.M. Reaney and N. Setter, J. Appl. Phys. 77, 1671 (1995).
[11] C. Malibert, B. Dkhil, J.M. Kiat, D. Durand, J.F. Berar and A. Spasojevic-de Bire, J. Phys.: Condens. Matter 9, 7485 (1997).
[12] F. Chu, N. Setter and A.K. Tagantsev, J. Appl. Phys. 74, 5129 (1993).
[13] E. Cockayne and B.P. Burton, Phys. Rev. B 69, 144116 (2004).
[14] S. Poykko and D.J. Chadi, Phys. Rev. Lett. 83, 1231 (1999).
[15] B.P. Burton, E. Cockayne, S. Tinte, U.V. Waghmare, Phase Transitions 79, 91 (2006).
[16] H. Crogman and L. Bellaiche, Phys. Rev. B 66, 220103(R) (2002).
[17] R. Hemphill, L. Bellaiche, A. García and D. Vanderbilt, Appl. Phys. Lett. 77, 3642 (2000).
[18] L. Bellaiche, A. García and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000).
[19] L. Bellaiche, A. García and D. Vanderbilt, Ferroelectrics 266, 41-56 (2002).
[20] W. Zhong, D. Vanderbilt and K.M. Rabe, Phys. Rev. Lett. 73, 1861 (1994); Phys. Rev. B 52, 6301 (1995).
[21] A.M. George, J. Íñiguez and L. Bellaiche, Nature 413, 54 (2001); J. Íñiguez and L. Bellaiche, Phys. Rev. Lett. 87, 095503 (2001).
[22] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[23] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, ibid. 140, A1133 (1965).
[24] L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).
[25] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chem. 21, 1087 (1953).
[26] A. García and D. Vanderbilt, in First-Principles Calculations for Ferroelectrics: Fifth Williamsburg Workshop, R.E. Cohen, ed. (AIP, Woodbury, New York, 1998), p. 53; Appl. Phys. Lett. 72, 2981 (1998).
[27] K.M. Rabe and E. Cokayne in First-Principles Calculations for Ferroelectrics: Fifth Williamsburg Workshop, R.E. Cohen, ed. (AIP, Woodbury, New York, 1998), p. 61.
[28] Note that the experimental values of T_m are lower than our predictions, e.g. the observed temperature is ~ 380 K in PSN-D\[10\,11\]. Preliminary results (derived from the development of a numerical scheme incorporating ferroelectric and antiferrodistortive degrees of freedom in the effective Hamiltonian scheme) strongly suggest that this discrepancy is due to the neglect of oxygen-octahedra rotation in our models.
[29] Note that we numerically checked that (i) $1/3 < u_x^2 + u_y^2 + u_z^2 >$ is very well approximated by $1/3 \langle |u| \rangle^2_R$; (ii) $1/3(< u_x >^2 + < u_y >^2 + < u_z >^2)$ is also well approximated by $\langle \bar{u} \rangle^2_{fit}$; and (iii) the polarization fluctuation formula [see Eq. (3)] provides the same dielectric constant than the one (directly) obtained by computing the electric-field-induced change in polarization.
[30] F. Guibert, Thesis, Université Paris-Sud XI (2002).
[31] I. A. Kornev and L. Bellaiche, Phys. Rev. Lett. 91, 116103 (2003).
TABLE I: Total energy per five-atom cell E, at 5K, and visiting rate v_r at $T/T_m \simeq 0.93$ associated with the different rhombohedral $\langle 111 \rangle$ and orthorhombic $\langle 110 \rangle$ minima in PSN-D and PSN-DV. The zero of energy corresponds to the ground-state. The uncertainty is lower than 0.01 meV and 0.1% for E and v_r, respectively.

Minimum	E (meV) in PSN-D	E (meV) in PSN-DV	v_r in PSN-D (%)	v_r in PSN-DV (%)
[-1-11]	0.38	0.41	6.3	0.0
[-111]	0.00	0.23	72.9	0.0
[111]	0.07	0.00	20.0	0.0
[1-11]	0.68	0.58	0.0	0.0
[1-1-1]	0.00	0.28	0.0	37.2
[11-1]	0.67	0.33	0.0	17.3
[-11-1]	0.65	0.38	0.0	5.8
[-1-1-1]	0.20	0.32	0.0	37.5
[-101]	3.05	2.90	0.3	0.0
[011]	3.05	2.80	0.5	0.0
[101]	3.45	2.85	0.0	0.0
[1-10]	3.42	3.42	0.0	0.0
[10-1]	3.48	2.93	0.0	0.7
[01-1]	3.85	2.99	0.0	0.2
[-10-1]	3.60	3.12	0.0	0.2
[0-1-1]	3.05	2.85	0.0	1.1
[0-11]	3.71	3.29	0.0	0.0
[110]	3.69	3.34	0.0	0.0
[-110]	3.54	3.31	0.0	0.0
[-1-10]	3.58	3.53	0.0	0.0
FIG. 1: Properties of PSN-DV (open dots, dashed lines) and PSN-D (filled dots, solid lines) as functions of T/T_m. Dots in panel (a) show the supercell-averaged mean component of the local distortions ($\langle \bar{u} \rangle$). Lines represent fits to a 7th order polynomial ($\langle \bar{u} \rangle_{\text{fit}}$). In panel (a), we also show (squares) the magnitudes of the local distortions, $\langle |u| \rangle_R$, divided by $\sqrt{3}$. Panel (b) displays one third of the trace of the dielectric susceptibility tensor directly obtained from MC simulations. The lines represent the χ_{fit} results obtained from Eq. (5). The inset of Panel (b) displays χ_{fit} results that were rescaled to match χ_{fit} of PSN-D at $T = T_m$.

11
