COVID-19-Related Brain Injury: The Potential Role of Ferroptosis

Ruoyu Zhang, Chen Sun, Xuemei Chen, Yunze Han, Weidong Zang, Chao Jiang, Junmin Wang, Jian Wang

Introduction

Coronavirus disease 2019 (COVID-19), triggered by the coronavirus-2 virus of the severe acute respiratory syndrome (SARS-CoV-2), is a critical health concern worldwide. By January 2022, over 349 million cases of COVID-19 and over 5.5 million people have died worldwide. Central nervous system (CNS) involvement is one possible cause of death among patients with COVID-19. Analysis of clinical data for 214 patients with COVID-19 indicated that 36% had CNS manifestations, including acute cerebrovascular disease with disturbances in consciousness. Furthermore, SARS-CoV-2 infection has been shown to affect the CNS and cause a series of neuropsychiatric symptoms (eg, anosmia, headache, cognitive and attention deficits, disturbances in consciousness, anxiety, depression, delirium, and suicidal behavior) and diseases (eg, acute necrotizing encephalopathy, encephalitis, hypoxic brain injury, strokes, myelitis, tonic epilepsy, neurogenic respiratory failure, generalized myoclonus, and Kawasaki syndrome). This wide range of symptoms and diseases suggests that various underlying mechanisms cause and promote brain injury in patients with COVID-19. Therefore, exploring possible underlying mechanisms can help guide the development of treatment for brain injuries with subsequent neuropsychiatric symptoms in patients with COVID-19.

Among these mechanisms, ferroptosis may contribute to the pathogenesis of COVID-19-related brain injuries. First described in 2012, ferroptosis is an iron-dependent programmed nonapoptotic cell death with unique biological processes and pathophysiologic characteristics. The pathogenic processes of ferroptosis involve an excessive iron metabolism that produces iron-dependent oxidative stress and causes damage to nucleic acids, proteins, and lipids that eventually induce cell death. Ferroptosis has recently gained considerable attention in brain research.
and has significant implications for several neurologic diseases, such as ischemic stroke, intracerebral hemorrhage (ICH), Alzheimer’s disease, and Parkinson’s disease.12–16 In addition, emerging evidence indicates that ferroptosis is a nexus between metabolism, redox biology, and human diseases such as COVID-19.17 However, the specific underlying mechanisms of ferroptosis remain unclear. Exploring the role of ferroptosis in COVID-19 infection and COVID-19-related brain injury, in particular, could be valuable for identifying therapeutic targets to prevent or lessen brain complications of COVID-19 and improve prognosis. In this regard, brain-permeable ferroptosis inhibitors or iron-chelating agents could be tested to assess whether they affect neuropsychiatric symptoms caused by COVID-19-related brain injuries.17

Brain Injuries Caused by COVID-19

Neuropsychiatric Symptoms and Brain Injuries in Some Patients with COVID-19

COVID-19, mainly described as acute pneumonia, is increasingly recognized as a disease involving multiple organ dysfunction, including brain microbleeds.18 All the results of different groups indicated the presence of neuropsychiatric symptoms in some patients infected with SARS-CoV-2 (Table 1). Two studies conducted in Germany and the United Kingdom showed that post-COVID neuropsychiatric symptoms were observed in 20% to 70% of patients, respectively. These symptoms lasted months after the resolution of respiratory symptoms.8 A systematic review concluded that the average prevalence of headaches among COVID-19 patients was 8%.19 An analysis of the clinical characteristics of 138 hospitalized patients with COVID-19 showed that the incidence of dizziness was between 7% and 9.4%.20 A study of 31 patients with COVID-19 showed that 45% experienced anosmia, 29% had hyposmia, and 6% had dysosmia,21 indicating that COVID-19 can damage the olfactory bulb. A review of the neurologic manifestations of COVID-19 showed that an average of 25% of the patients had CNS dysfunction, 7.5% had disturbances in consciousness, 3% had acute cerebrovascular disease, and 0.5% had ataxia.22

Furthermore, COVID-19 may cause cognitive impairment, such as confusion, inattention, anxiety, and disorientation.23,24 Neuropsychological evaluation of 57 patients with COVID-19 who had recovered showed that 81% of the cases had cognitive impairment ranging from mild to severe.25 In addition, there have been case reports of seizures in some patients with COVID-19. The severity of the disease was affected by systemic inflammation, which differs from ‘common seizures’ that have specific cortical, thalamic, or posterior fossa involvement.26 Together, these neuropsychiatric symptoms may be related to COVID-19-related brain damage to particular regions of the brain.

Brain injuries (eg, cerebral vascular pathology, arteriosclerosis, ischemic strokes, and ICH) have been discovered in COVID-19. A magnetic resonance imaging study of 13 patients with COVID-19 showed that 11 (85%) had bilateral frontotemporal hypoperfusion, 3 (23%) had acute or subacute strokes, and 8 (62%) had enlargement of the papillary space.24 Another study with high-resolution magnetic resonance imaging of 13 patients who died of COVID-19 showed abnormalities in the brains of 10 patients (76.9%).27 The incidence of brain injury in critically ill and dead patients is higher than in noncritically ill patients.22 A systematic review of patients with COVID-19 indicated that 35.6% had inflammation and activation of astrocytes and microglia in the brain, and 28.1% had hypoxic-ischemic injury.28 Of these patients, 29.5% had arteriosclerosis, 12.4% had ICH, and 2.7% had infarcts in the cerebral cortex and subcortex.28 COVID-19 is now an independent risk factor for acute stroke.29 As an important but under-recognized complication of COVID-19,30 acute stroke affects approximately 1–3% of hospitalized patients and 6% of ICU patients; male patients with COVID-19 have a higher incidence of strokes (62%) compared to female patients.31 In a retrospective study of 219 hospitalized COVID-19 patients in China, 11 patients (5%) had an acute stroke (10 cases of ischemic stroke, 1 case of hemorrhagic stroke).32 All of the above data indicate the presence of different brain injuries among COVID-19 patients.

SARS-CoV-2 Invasion with Subsequent Brain Injuries

Like SARS-CoV and the Middle East Respiratory Syndrome Coronavirus,33 SARS-CoV-2 can also invade and spread throughout the brain.34,35 Increasing numbers of studies provide direct evidence for the neuroinvasiveness of SARS-CoV-2 (Table 2). However, the mechanism by which the virus infects the specific regions of the brain has not been fully elucidated. In this review, we speculated and concluded that SARS-CoV-2 infection could cause brain damage through three routes.
(Figure 1). The SARS-CoV-2 viral particles can invade the brain through the vascular pathway once the blood-brain barrier (BBB) is broken, or through peripheral nerves such as the vagus nerve and reverse transneuronal transport of axonal transport, or through the cerebral spinal flow (CSF) pathway.

SARS-CoV-2 can infect the brain through compromised vasculature. Cytokine storms can severely damage the BBB, allowing viral particles from SARS-CoV-2 to circulate in the bloodstream to enter the brain. The serum level of S100B, an astrocyte marker, increased when symptoms of the CNS appeared and reflected destruction of the BBB, which is conducive to invasion by SARS-CoV-2 and opens a vasculature path for the virus with inflammatory cytokines.

References	Country	Study Design	Sample Size	Age	Male (%)	Female (%)	Symptoms or Diseases
Helms et al	France	Case series	58	63 years (median)	NR	NR	Symptoms: Agitation (69%); confusion (65%); dysexecutive syndrome (36%)
Varatharaj et al	UK	Case report	125	NR	NR	NR	Diseases: Ischemic stroke (46%); intracerebral hemorrhage (7%); encephalopathy (7%); encephalitis (6%)
Paterson et al	UK	Case report	43	24 (56%)	19 (44%)		Symptoms: Delirium (23%); confusion (23%); disorientation (23%); psychosis (2%); seizures (2%) Diseases: Encephalopathy (23%)
Hao et al	China	Case-control study	10	37.4±12.6 years	6 (60%)	4 (40%)	Symptoms: Impulsivity (50%); insomnia (50%); depression (40%); anxiety (30%) Diseases: Dysosmia (20%); dysgeusia (10%); posttraumatic stress disorder (50%)
Li et al	China	Retrospective study	219	53.3±15.9 years	130 (59.4%)	89 (40.6%)	Diseases: Ischemic stroke (4.6%); intracerebral hemorrhage (0.5%)
Zhang et al	China	Cross-sectional study	57	46.9±15.37 years	29 (50.9%)	28 (49.1%)	Symptoms: Depression (29%); anxiety (21%); depression comorbid with anxiety (21%)
Giacomelli et al	Italy	Cross-sectional study	59	60 years (median)	40 (67.8%)	19 (32.2%)	Disease: Olfactory and taste disorders (33.9%)
Nalleballe et al	USA	Cohort study	40469	18–50 years (48.7%); 51–80 years (41.8%)	22063 (55%)	18364 (45%)	Symptoms: Headache (3.7%); sleep disorder (3.4%) Diseases: Encephalopathy (2.3%); Olfactory and taste disorders (1.2%); stroke and transient ischemic attack (1.0%); dizziness (0.9%); extrapyramidal and movement disorder (0.7%); seizures (0.6%); polyneuropathy (0.6%); nerve root and plexus disorder (0.4%)

Abbreviation: NR, not reported.
Neuroinvasion of the virus can cause severe brain edema and seizures due to a cerebrovascular event resulting from the hypercoagulable state of blood in COVID-19 patients. Cerebral endothelial cells damaged by the SARS-CoV-2 virus produce thrombin, a key coagulation factor that leads to the formation of microthrombi within blood vessels. Changes in blood components, such as increased thrombin and D-dimer levels and thrombocytopenia caused by COVID-19, can promote mini-strokes or microbleeds. Neuropsychiatric symptoms of COVID-19 may develop due to damage to brain tissue caused by these mini-strokes or microbleeds.

SARS-CoV-2 can enter the brain by crossing the neural-mucosal interface in the olfactory mucosa, conjunctiva, or taste buds and invades the brain by retrograde axonal transport. The invasion of SARS-CoV-2 through peripheral nerve terminals (eg, olfactory nerve, trigeminal nerve, glossopharyngeal nerve, or vagus nerve) could be a reasonable route to brain infection, leading to hyposmia, hypoplasia, and hypogeusia in patients with COVID-19. Anosmia is a unique symptom of COVID-19 and may represent a neural invasion of the virus through the olfactory bulb during the early or chronic stages. SARS-CoV-2 may directly infect olfactory sensory neurons through the nerve-mucosal interface in the olfactory epithelium and then enter the CNS through the olfactory nerve. The SARS-CoV-2 virus spreads primarily

Table 2 Evidence Supporting the Invasion of SARS-CoV-2 into the Central Nervous System

Researchers	Study Design	Main Findings	References
Moriguchi et al	Case report	The first case of COVID-19-related meningitis was reported, and SARS-CoV-2 RNA was detected in cerebrospinal fluid.	[165]
Dinkin et al	Case report	On MRI, two patients who developed cranial neuropathy associated with SARS-CoV-2 infection and had perineural or cranial nerve abnormalities were reported.	[166]
Kadono et al	Case report	Reported a COVID-19 patient with anosmia and transient cerebral edema, suggesting a neurological invasion of SARS-CoV-2.	[39]
Chiu et al	Case report	A case of COVID-19-related anosmia with definite atrophy of the olfactory bulb, indicating a possible neurological marker of coronavirus infection.	[44]
Jiang et al	Original research	SARS-CoV-2 RNA was isolated from lung and brain tissue from the mouse model transgenic for SARS-CoV-2 hACE2.	[167]
Chen et al	Original research	ACE2 is relatively highly expressed in certain locations in the brain, such as the choroid plexus and the paraventricular nucleus of the thalamus.	[168]
Qi et al	Original research	The substantia nigra and cortex are predicted to be high-risk tissues for SARS-CoV-2 infection.	[169]
Buzhdygan et al	Original research	The SARS-CoV-2 spike protein altered the barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier.	[170]
Song et al	Original research	Using mice overexpressing human ACE2, the neuroinvasion of SARS-CoV-2 in vivo was demonstrated.	[171]
Paniz-Mondolfi et al	Autopsy research	The ultrastructure of the SARS-CoV-2 viral particles was found in the neural and capillary endothelial cells.	[172]
Puelles et al	Autopsy research	The genetic material SARS-CoV-2 was quantitatively detectable in brain tissue samples from 8 (36%) of 22 patients who died from COVID-19.	[173]
Meinhardt et al	Autopsy research	Demonstrated the presence of SARS-CoV-2 RNA and protein in the nasopharynx and brain of patients who died from COVID-19.	[42]
Martin et al	Autopsy research	Pathological features confirmed signs of hypoxia and SARS-CoV-2 brain invasion.	[174]

Abbreviations: COVID-19, coronavirus disease 2019; hACE2, human angiotensin-converting enzyme-2; MRI, magnetic resonance imaging; SARS-CoV-2, coronavirus-2 virus of the severe acute respiratory syndrome.

Neuroinvasion of the virus can cause severe brain edema and seizures due to a cerebrovascular event resulting from the hypercoagulable state of blood in COVID-19 patients. Cerebral endothelial cells damaged by the SARS-CoV-2 virus produce thrombin, a key coagulation factor that leads to the formation of microthrombi within blood vessels. Changes in blood components, such as increased thrombin and D-dimer levels and thrombocytopenia caused by COVID-19, can promote mini-strokes or microbleeds. Neuropsychiatric symptoms of COVID-19 may develop due to damage to brain tissue caused by these mini-strokes or microbleeds.
through respiratory droplets that enter the respiratory tract. However, a small fraction of viruses remain in the nose, conjunctiva, and oral cavity, rich in angiotensin-converting enzyme-2 (ACE2).34,45 One report indicated the presence of SARS-CoV-2 RNA in conjunctival swabs and tear samples from some patients with COVID-19.45 Conjunctival contact with droplets containing SARS-CoV-2 can result in the retrograde neuronal transmission of the virus to infect the brain and impair vision.46 In addition, SARS-CoV-2 can enter the brain through the glossopharyngeal nerve or the vagus nerve that connects the nucleus of the solitary tract through the sensory neurons of the tongue.46 Once the peripheral nerve, the nucleus of the solitary tract, the thalamus, or other pathways related to taste conduction are invaded and damaged by SARS-CoV-2, hypogeusia occurs in patients.43 Furthermore, the solitary tract nucleus is located in the brainstem, close to the respiratory and cardiovascular control centers.42 After SARS-CoV-2 infects the solitary nucleus along the nerve, it can infect this nucleus, resulting in refractory dyspnea.47

Although the frequency of SARS-CoV-2 RNA in the CSF of COVID-19 patients is low (~1.3%),3 it cannot exclude the CSF as a potential route for the invasion of SARS-CoV-2 into the brain.48 The brain has its lymphatic drainage system, in which the CSF plays a primary role. A new study showed that SARS-CoV-2 could invade peripheral lymphatic vessels connected to the brain’s lymphatic system.49 SARS-CoV-2 can invade the CSF and damage the brain through this anatomical connection. Furthermore, when the BBB is damaged, SARS-CoV-2 overflows from blood vessels and invades brain tissue and the CSF, resulting in brain edema and dysfunction.34 SARS-CoV-2 antibodies have been detected in the CSF of patients with COVID-19 encephalopathy.50 These antibodies may stimulate glial cells leading to neuroinflammation and other cytokine storm and oxidative stress that cause immune-mediated neurological damage.51
Furthermore, infiltration of the SARS-CoV-2 virus into the brain stem or limbic system can result in dysfunction of the autonomic nervous system and emotional dysfunction, respectively, in some patients with COVID-19. In short, the COVID-19 virus can invade the brain via the routes above, resulting in brain damage with neuropsychiatric symptoms. These specific neuropsychiatric symptoms can vary in patients according to the location these pathologic events occur in the brain.

After invasion into the brain, SARS-CoV-2 invades brain cells through the ACE2 receptor, which is an identified receptor for SARS-CoV-2 infection. ACE2 is present mainly in mucosal epithelial cells of the lung and arteries but is also highly expressed in brain cells such as neurons, oligodendrocytes, and astrocytes. The serine 4 transmembrane protease protein, which facilitates the fusion of SARS-CoV-2 and cellular membranes, is detectable in the cerebral cortex, caudate nucleus, and hippocampus and determines virus tropism. Animal studies showed that SARS-CoV-2 damages the cerebral vascular endothelium and infects the brain parenchyma; ACE2 was a key mediator of neuronal damage. Furthermore, the SARS-CoV-2 virus spike binds to ACE2 receptors to generate excessive cytokines and promote the formation of blood clots, leading to cell apoptosis, necrosis, ferroptosis, and eventually brain tissue damage.

Infection with SARS-CoV-2 can cause cytokine storms and large amounts of inflammatory factors produced during a cytokine storm can damage brain tissues. High levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) induce a neuroinflammatory response in the brain. Besides, COVID-19 infection activates various inflammatory pathways, such as that for tryptophan-kynurenine metabolism, which is an immunoregulatory pathway. 2,3-dioxygenase-1 (IDO1) is located in the critical branch of kynurenine metabolism and is activated by inflammatory factors such as TNF-α and IL-6. Activating IDO1 in COVID-19 can convert tryptophan to kynurenine and deprive T lymphocytes of tryptophan to inhibit T lymphocyte activation, thus limiting the host immune response. Furthermore, the IDO1-kynurenine-aryl hydrocarbon receptor pathway is activated, leading to the lethal consequences of SARS-CoV-2 infection and immune evasion. IDO1 activation increases kynurenine metabolism in COVID-19, and kynurenine produces large amounts of chemokines and neurotoxic substances that cause neuronal damage and long-term brain impairment. In addition, enhanced inflammation decreases the synthesis of monoamines and trophic factors, thus inhibiting neurotransmitters and neuronal growth. Therefore, cerebral inflammation and hypoxic brain injury result in short- and long-term neuropsychiatric symptoms.

Ferroptosis and Its Underlying Mechanism

Ferroptosis is a programmed non-apoptotic cell death associated with an increase in the liable ferrous iron pool (LIP) caused by iron overload. The accumulation of lethal levels of iron-dependent lipid peroxides and reactive oxygen species (ROS) due to the inactivation of glutathione peroxidase 4 (GPX4) and the depletion of glutathione (GSH) are the core mechanisms of ferroptosis. At the molecular level, ferroptosis is characterized by changes in GSH, GPX4, and ROS levels and the expression of genes that regulate iron homeostasis and lipid peroxidation. Changes in intracellular organelle microstructure are also a feature of ferroptosis. For example, during ferroptosis, mitochondria condense and become small, and the lipid bilayer membrane thickens and contracts with the outer membrane rupture. These features can be visualized by deep staining. Additionally, decreased or absent mitochondrial cristae are accompanied by a reduction in cell size and cell connections that lead to cell separation, although the nuclear and cell membranes remain intact. F4-hydroxynonenal, cytotoxic malondialdehyde, and other products of lipid peroxide degradation are the primary biomarkers of ferroptosis.

Ferroptosis is closely related to several pathologic processes, including inflammation, T-cell immunity, acute renal failure, blood disorders, ischemia/reperfusion injury, and CNS diseases. Key regulatory targets of ferroptosis include system Xc- activity, intracellular LIP, GPX4 activity, GSH production, lipid ROS production, and phosphatidy-lethanolamine (PE) biosynthesis, detailed below.

1. System Xc- activity regulation: The cell membrane system Xc-, a cystine/glutamate antitransporter comprising heterodimers SLC3A2 and SLC7A11, is involved in GSH synthesis to protect cells from oxidative damage. Beclin 1 regulates antioxidant capacity by directly blocking the activity of the Xc-system by binding to its core component SLC7A11 to promote ferroptosis. Furthermore, inhibition of Beclin 1 expression decreases lipid peroxidation, thus mitigating brain disorders.
Therefore, iron is the most abundant trace metal in the brain and is needed for normal cell metabolism and contributes to physiologic processes such as oxygen transport, energy production, and transmission of ions. Thus, iron must be tightly regulated to avoid overaccumulation or deficiency.

The availability of NADPH, a cell reducing agent, is critical for the detoxification of ROS. "NADPH can protect the brain against iron toxicity and improve neurologic recovery after ICH."

Iron chelators (eg, deferoxamine and deferiprone) can bind to free iron to inactivate iron-containing enzymes and inhibit Fenton reactions, as well as down-regulate hepcidin expression. The iron chelator PBT434 [5,7-dichloro-2-((ethylamino)methyl)-8-hydroxy-3-methylquinazolin-4(3H)-one] chelates interstitial iron to inhibit iron uptake and stimulate iron efflux in brain microvascular endothelial cells and other cells of the neurovascular unit. In addition, the tetracycline class antibiotic minocycline, an iron-chelating agent, has an anti-inflammatory effect. Various iron chelators exhibit cerebral protection against acute traumatic and non-traumatic brain injuries.

The brains of patients with COVID-19 could be susceptible to ferroptosis. Ferroptosis involves the following three factors: iron, amino acids, and unsaturated fatty acids. Iron is the most abundant trace metal in the brain and is needed for normal cell metabolism and contributes to physiologic processes such as oxygen transport, energy production, and transmission of ions. Thus, iron must be tightly regulated to avoid overaccumulation or deficiency.
neurotransmitters. The brain is sensitive to oxidative stress and lipid peroxidation due to its high level of PUFAs. PUFA phospholipids are constituents of the cell membrane and carry out various physiologic functions (eg, neuronal synaptic connection, neuronal plasticity, and network development, as well as neurotransmitter release). They are also involved in the pathogenesis of ferroptosis. The neuron cell membranes are rich in PUFAs and cholesterol that are susceptible to ROS-mediated oxidation caused by a cytokine storm in COVID-19. The enzyme activity of GPX4 and superoxide dismutase is much lower in brain tissues compared to other tissues, indicating that neurons could be highly susceptible to iron overload. SLC7A11 (also known as system Xc-) expressed in glial cells enhances glutamate release, thus inducing neuronal ferroptosis. Astrocytes can store iron and prevent iron overload in neuronal synapses. Nrf2 overexpression in astrocytes inhibits ferroptosis, probably due to the outward release of GSH from astrocytes. Meanwhile, inducible loss of GPX4 expression in neurons can induce ferroptosis.

Neuronal death and the resultant neurologic dysfunction occur in patients with brain injuries, and ferroptosis is one of the death mechanisms. Ferroptosis is pathogenic in aging, tissue repair, tumor development, cerebral ischemia and ICH, and is involved in the pathogenesis of spinal cord injury, subarachnoid hemorrhage, traumatic brain injury, epilepsy, Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative diseases. In addition, the disruption of iron homeostasis is present in almost all neuropathological specimens of neurological disorders, including COVID-19-related brain injuries. Therefore, like other brain diseases, ferroptosis may also exist in COVID-19 brain injury and plays a vital role in the process of brain injuries.

The pathogenesis of various complications of COVID-19 and brain injury, in particular, may be closely related to an imbalance of intracellular iron homeostasis that leads to ferroptosis. Ferritin stores large amounts of iron within a cell. The level of ferritin in the CSF may reflect the level of iron in the brain. Two recent studies revealed elevated serum levels of iron and ferritin associated with cerebral ischemia or disease severity in COVID-19 patients. A cohort study with 39 COVID-19 patients demonstrated that serum ferritin levels are correlated with the severity of COVID-19 disease and are related to hyperferritinemia syndrome. Since iron and ferritin levels are associated with ferroptosis, we speculated that the severity of COVID-19 is also related to the occurrence of ferroptosis. Another study of 6 patients with COVID-19 complicated with ischemic stroke revealed that all 6 patients were in a high-grade prethrombotic state, with high blood levels of D-dimer and ferritin. Patients with COVID-19 and stroke have higher ferritin levels than patients with stroke alone, and ICH patients have higher serum ferritin levels than patients with ischemic stroke. Although, to date, no reports have directly linked ferroptosis and COVID-19-related brain injury, these biomarkers of ferroptosis are altered in COVID-19-related brain injury, suggesting that ferroptosis may exist and indeed play an underlying role in disease progression.

Three contributing factors may cause ferroptosis in COVID-19-related brain injury according to recent studies: i) hepcidin release, the principal regulator of systemic iron homeostasis; ii) excessive iron influx through the transferrin receptor during SARS-CoV-2 replication; and iii) SARS-CoV-2 attack on hemoglobin and release of free iron into the circulation. IL-6 can initially stimulate the synthesis of ferritin and hepcidin in a COVID-19-related cytokine storm. The amino acid sequence at the distal end of the cytoplasmic tail of the SARS-CoV-2 spike glycoprotein has highly similar to that of the hepcidin protein. Heparin and heparin-like proteins bind to ferroportin, the cellular iron exporter, causing its degradation, thus preventing iron outflow and increasing intracellular ferritin. In addition, iron is required for SARS-CoV-2 replication and enters cells through transferrin receptors. Excess intracellular iron interacts with molecular oxygen to trigger the Fenton reaction and induce ferroptosis when GPX4 does not eliminate excess lipid ROS.

Furthermore, hemoglobin, attacked by SARS-CoV-2, dissociates porphyrin from iron and releases free iron into the circulation, resulting in iron overload. Dysfunctional iron metabolism in COVID-19 finally leads to ferroptosis, releasing intracellular ferritin and causing ferritinemia. Together, this current evidence suggests that ferroptosis may exist in COVID-19-related brain injury and that ferroptosis plays a role in brain complications in COVID-19.

The Potential Role of Ferroptosis Underlies COVID-19-Related Brain Injury

Ferroptosis can induce the release of pathogen-associated molecular patterns and damage-associated molecular patterns, together with excessive oxidative stress. Ferroptosis can cause local brain damage, leading to neuronal death and neural network damage. Additionally, the sensitivity of oligodendrocytes to iron can cause axonal damage through
Ferroptosis can also induce tau phosphorylation and form neurofibrillary tangles, leading to cognitive impairment. Ferroptosis is also immunogenic and proinflammatory and creates a positive feedback loop. As a result, ferroptosis may be one of the causes of COVID-19-related enhanced inflammatory reaction and multiple organ failure syndromes involving the brain with CNS symptoms (Figure 2). COVID-19-related brain injury contains many kinds of brain disease, such as stroke. Our previous studies have shown that stroke can cause ferroptosis. Iron toxicity contributes to stroke-induced early brain damage, and ferroptosis plays a significant role in the secondary brain injury from stroke. Therefore, ferroptosis may be the effect of COVID-19-related stroke, but in turn, it plays a vital cause in the secondary brain injury of COVID-19-related stroke and further aggravate brain damage.

After SARS-CoV-2 infection, transferrin receptors recognize transferrin that carries excess Fe\(^{3+}\) into cells. The metal reductase Steap3 in the endoplasmatic reticulum reduces Fe\(^{3+}\), and ferric iron enters the cytoplasm to form LIP. Under conditions of intracellular iron overload, the interaction between excess intracellular iron and molecular oxygen induces a Fenton reaction, producing excessive hydroxyl radicals. Phospholipid hydroperoxide is produced by lipoxygenase/arachidonic acid lipoygenase-mediated peroxidation of PE phospholipids containing PUFA. When GPX4 activity is inhibited, phospholipid hydroperoxide enhances lipid peroxidation of plasma membranes, nucleic acids, and proteins, causing oxidative damage and ferroptosis. Finally, damage-associated molecular patterns and alarmins (HMGB1, IL-33, and TNF) are released, exacerbating inflammation, cell death, and neurodegeneration.

Figure 2 The potential role of ferroptosis in COVID-19-related brain injury. After SARS-CoV-2 infection, transferrin receptors recognize transferrin that carries Fe\(^{3+}\), which enters cells through endocytosis to form endosomes. IL-6 promotes ferritin synthesis, which stores Fe\(^{3+}\) and releases Fe\(^{2+}\) through ferritinophagy; after that, the endoplasmic reticulum metal reductase Steap3 reduces Fe\(^{3+}\) into Fe\(^{2+}\) to form LIP. GPX4 protects the cell against lipid peroxidation and inhibits ferroptosis. Under iron overload conditions combined with GPX4 depletion or inhibition, mitochondria generate large amounts of ROS, leading to lipid peroxidation, cell membrane damage, and ferroptosis. Excess ROS depletes intracellular GSH, and this depletion forms a positive feedback loop and aggravates lipid peroxidation. During this peroxidation, damage-associated molecular patterns and alarmins (e.g., HMGB1, IL-33, TNF-\(\alpha\), IL-1\(\beta\), and IL-6) are released that activate NF-\(\kappa\)B and other proinflammatory signaling pathways, eventually leading to neuroinflammation and cell death. SARS-CoV-2 infection can damage the brain, resulting in BBB disruption and bleeding accompanied by a cytokine storm.
During the cytokine storm in COVID-19, levels of proinflammatory mediators (eg, NF-κB, TNF-α, and IL-1β) are increased in the brain, leading to increased expression of AQP4 that promotes brain edema. The iron accumulation in the area surrounding the edema can cause secondary brain damage. The formation and enlargement of edema in the brain can cause a compressive effect and increased intracranial pressure, leading to brain herniation and death. GPX4 overexpression reduces cerebral edema, while treatment with Fer-1, an inhibitor of lipid peroxidation, reduces the proinflammatory cytokine levels (eg, NF-κB, TNF-α, and IL-1β) in the brain and reduces cerebral edema.

As discussed in SARS-CoV-2 Invasion with Subsequent Brain Injuries, the cytokine storm can cause BBB dysfunction, which, together with inflammation in the injured brain of COVID-19 patients, allows more iron to enter the brain. Ferritin transported to the brain must pass through the BBB under the control of DMT1. However, the gene that encodes DMT1 has binding sites for AP-1 and NF-κB, both of which are potent inflammatory factors. Since COVID-19-induced cytokine storm produces numerous proinflammatory factors, including AP-1 and NF-κB, it can lead to increased DMT1 expression, thus in turn, more iron is transported to the brain, causing iron accumulation or overload, thereby causing neuronal death and aggravated brain damage. Previous studies have shown that intracellular iron influx and increased DMT1 expression are early downstream responses of NF-κB activation that accelerate neuronal damage in the brain. A study involving four COVID-19 patients revealed that three patients had an elevated CSF/serum albumin index, indicating BBB dysfunction; simultaneously, the CSF level of the inflammatory cytokine IL-6 was increased in two patients, indicating a proinflammatory response in the brain. The cytokine storm in COVID-19 produces substantial oxidative stress, which inactivates transferrin. Releasing a large amount of “free iron” increases serum iron levels, leading to ferritinemia. Elevated iron levels in the brains of COVID-19 patients can damage brain tissue. The toxic effects of iron overload on carbohydrates, lipids, proteins, and nucleic acids in the brain have been established. Iron deposition leads to lipid peroxidation, the most effective inducer of ferroptosis. During the severe cytokine storm of COVID-19, excessive increases in the circulating “free iron” will aggravate the proinflammatory response and induce morphological changes in red blood cells and fibrin. The resulting production of hydroxyl free radicals causes oxidative stress. It generates a remarkable procoagulation state that promotes the formation of dense clots in the brain and leads to ischemic stroke.

A recent study documented the formation of cerebral thrombosis and the appearance of stroke in patients with COVID-19. The cerebral blood vessels rupture after a hemorrhagic stroke in COVID-19 patients, allowing blood to accumulate within the brain parenchyma. Heme oxygenase degrades hemoglobin metabolites into ferrous iron, biliverdin, and carbon monoxide in the brain. This metabolic pathway modulates secondary brain injury. Iron released into the extracellular space can generate free radicals and ROS through the Fenton reaction, causing oxidative damage to molecules such as PUFAs, DNA, and proteins, thus further aggravating tissue damage. ROS activates microglia and astrocytes to release proinflammatory cytokines and increase the release of Fe²⁺ from LIP, leading to iron-dependent oxidative damage and neuronal cell death, exacerbating secondary brain injuries. Compared to controls, mice with ischemic stroke had lower GPX4 activity and GSH levels. A subsequent increase in iron deposition and lipid peroxidation eventually resulted in ferroptosis. In ICH, hemoglobin breaks down and releases large amounts of ferrous iron and mitochondrial atrophy; both are features of ferroptosis. Furthermore, lipid peroxidation inhibitors such as Fer-1 protect against damage caused by ischemic and hemorrhagic stroke.

Potential Therapeutic Targets for COVID-19-Related Brain Injury

Investigating the potential role of ferroptosis in COVID-19-related brain injury is an emerging research direction and may yield therapeutic targets (Table 3). Regulation of iron and ROS, Nrf2/KEAP1 pathway, GPX4-GSH pathway, as primary targets, can make a difference through antimalarial drugs, antioxidants, iron chelators, (-)-epicatechin, etc. These ferroptosis inhibitors may serve as a potential intervention to protect neurons against various brain injuries and patients with COVID-19-related brain injuries. Antimalarial drugs inhibit the expression of iron transporters and the activity of Fe²⁺/H⁺ cotransporters, thus reducing iron and iron-catalyzed free radicals in brain tissues. Tocotrienol, a component of vitamin E, inhibits ferroptosis of neurons. Nrf2 is also a promising target for reducing ferroptosis.
and treating brain injuries.143 In this sense, we have shown that (-)-epicatechin, a brain-permeable flavanol, protects against ICH by activating the Nrf2-dependent and Nrf2-independent pathways and may serve as a potential intervention for patients with ICH88,144 or patients with COVID-19-related brain injuries.

Concluding Remarks

The SARS-CoV-2 vaccines are essential to prevent further morbidity and mortality from COVID-19.145 Although studies have found an increased risk of neurological complications in individuals who have been vaccinated against COVID-19, the risk of these complications is greater after testing positive for SARS-CoV-2.146 Expert opinions indicate that it is advisable to correct the iron deficiency before administering the COVID-19 vaccine.147 Iron is a nutrient required for immunity, and iron deficiency reduces the efficacy of vaccines.147 However, no studies have investigated the role of the COVID-19 vaccine on ferroptosis. In theory, vaccination against COVID-19 would reduce the risk of COVID-19 infection, therefore reducing ferroptosis-mediated brain damage. We could only speculate that COVID-19 vaccines may reduce the occurrence of ferroptosis and may help recover from the disease on ferroptosis. This is an excellent direction for us to further research COVID-19.

Due to inflammation, iron and vitamin deficiencies, anemia is a common manifestation in COVID-19.148 Studies have shown that serum iron levels are abnormally low in severe infections, but iron overload is high in pulmonary fibrotic tissue and the brain.118,149 Similarly, a significant serum iron deficiency can be detected in patients with COVID-19.122,150 Anemic patients with COVID-19 had elevated levels of inflammation markers (IL-6 levels and C-reactive protein) compared to those without anemia and survived a more severe course of COVID-19,151,152 but did not directly influence mortality.148 Various evidence indicates that anemia and low serum iron concentration are independent risk factors associated with severe illness and poor outcomes in hospitalized patients and death from COVID-19.150,153,154 A case report showed an 8.2 times greater chance of developing severe pneumonia in patients with anemia.148,151 In a cohort study, patients with anemia were more likely to have one or more comorbidities and severe COVID-19 illness compared to patients without anemia.153

Furthermore, previous studies showed a significant association between prior iron deficiency anemia and ischemic stroke.155 Transfusions have remained a considerable way to manage stroke so far.156 Since no articles report the relationship, we could only speculate that anemia may be associated with COVID-19-related brain injury. Thus, immune-mediated disruption of iron homeostasis and ferroptosis, releasing intracellular ferritin and causing ferriminemia in

Table 3: Potential Therapeutic Targets for COVID-19-Related Brain Injury

Potential Therapeutic Targets	Molecular Mechanisms	Potential Drugs	References
Iron uptake	Inhibits the expression of iron transporters and the activity of Fe2+/H+ cotransporters	Antimalarial drugs	[135]
ROS	Inhibits lipid peroxidation and decreases lipid ROS in cellular membranes	Antioxidants (eg, tocotrienol, vitamin E, Fer-1, liprostatin-1, zileuton)	[71,83,84,108,110,175]
LIP	Binds to free iron to inactivate iron-containing enzymes and decreases iron accumulation to inhibit Fenton reaction	Iron chelators (eg, deferoxamine, deferiprone, PBT434, minocycline, VK28,2,2'-dipyridyl)	[71,94–98,128]
Nrf2/KEAP1 pathway	Activates the Nrf2-dependent and Nrf2-independent pathways	(-)-Epicatechin (a brain-permeable flavanol)	[88,143,144]
GPX4-GSH pathway	Enhances GPX4 activity by upregulating its transcription	Se	[79]

Abbreviations: Fer-1, ferrostatin-1; GPX4, glutathione peroxidase 4; GSH, glutathione; KEAP1, Kelch-like ECH-associated protein 1; Nrf2, nuclear factor E2-related factor 2; LIP, liable ferrous iron pool; ROS, reactive oxygen species.
patients with COVID-19, with a strong possibility of progressing to severe CNS disease. The effects of anemia and iron deficiency severity on subsequent CNS manifestations will be worthwhile exploration.

The epidemiological survey showed that the median time from the onset of the first symptom to dyspnea was 5.0 days, 7.0 days to hospital admission, and 8.0 days to the intensive care unit. The incubation period may be long enough for the virus to enter and destroy medulla neurons, leading to brain damage. However, there have been no experiments or studies that investigate the time frame of ferroptosis in COVID-19. Changes in biomarkers of ferroptosis (eg, transferrin receptor, transferrin, and hepcidin) have not been reported in COVID-19. Based on the hypothesis we put forward that ferroptosis occurs and aggravates brain injuries in COVID-19, ferroptosis can occur early or late after COVID-19 infection. Whether it is associated with neuropsychiatric disturbances in COVID-19 depends on whether it affects neuropsychiatric pathways, which needs further research. The effect of inhibiting ferroptosis by iron chelation on COVID-19-related injury may be an excellent direction worth exploring in depth.

Increasing evidence indicates that SARS-CoV-2 infection can cause various brain injuries with neuropsychiatric symptoms. Ferroptosis may be the basis for the pathogenic mechanisms of various brain injuries associated with the COVID-19 virus. BBB dysfunction and neuroinflammation in COVID-19 allow more iron to flow into brain tissues. Free iron released into the extracellular space generates free radicals, causing oxidative damage to molecules such as PUFAs, DNA, and proteins. Ferroptosis can also be induced by free iron and further aggravates brain tissue damage. Although there is no direct evidence linking ferroptosis with brain injuries from COVID-19, the rationale exists. Now we hypothesize that ferroptosis occurs and aggravates brain injuries in COVID-19. The potential role of ferroptosis in COVID-19-related brain injuries warrants careful study to identify promising therapeutic targets to combat SARS-CoV-2-induced brain injuries with neuropsychiatric symptoms.

Abbreviations
BBB, blood-brain barrier; CNS, central nervous system; GPX4, glutathione peroxidase 4; GSH, glutathione; Hb, hemoglobin; HMGB1, high mobility group box-1; HO-1, heme oxygenase-1; IL, interleukin; LIP, labile iron pool; NCOA4, nuclear receptor coactivator 4; NF-kB, nuclear factor kappa B; RNS, reactive nitrogen species; ROS, reactive oxygen species; Se, selenocysteine; Steap3, prostate 6 transmembrane epithelial antigen 3; TNF, tumor necrosis factor; VitE, vitamin E.

Acknowledgements
Ruoyu Zhang, Chen Sun, and Yunze Han are undergraduate students.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding
Junmin Wang was supported by Education and Teaching Reform Research and Practice project of Zhengzhou University (2021ZZUJGLX219).

Disclosure
The authors declare no conflicts of interest in this work.

References
1. Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. *Biomed Pharmacother*. 2021;136:111228. doi:10.1016/j.biopha.2021.111228
2. World Health Organization. Coronavirus (COVID-19) dashboard data table. Available from: https://covid19.who.int/. Accessed March 16, 2022.
23. Zhou Y, Xu J, Hou Y, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in
21. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot
20. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi:10.1001/jamanetworkneurol.2020.1127
19. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: a systematic
18. Fitsiori A, Pugin D, Thieffry C, Lalive P, Vargas MI. COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill
17. Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? Trends Neurosci. 2020;43(6):355–357. doi:10.1016/j.tins.2020.04.004
16. Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol. 2021;196:101890. doi:10.1016/j.pneurobio.2020.1811894
15. Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with Covid-19. Cell Death Discov. 2020;6(3):120. doi:10.1038/s41420-020-00369-w
14. Qu XF, Liang TY, Wu DG, et al. Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci Ther. 2021;27(4):449–463. doi:10.1111/cns.13548
13. Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of
dementia-like cognitive impairment. J Neuropsychiatry Clin Neurosci. 2020;32(7):60. doi:10.1007/s12035-020-01079-7
12. Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol. 2020;4(2):93–95. doi:10.1136/svn-2018-000205
11. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
10. Weiland A, Wang Y, Wu W, et al. Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 2019;56(7):4880–4893. doi:10.1007/s12055-018-1403-3
9. Boldrini M, Canoll PD, Klein RS. How COVID-19 affects the brain. Neuropsychopharmacology. 2020;35(7–8):1498–1514. doi:10.1038/s41328-020-00868-7
8. Boldrini M, Canoll PD, Klein RS. How COVID-19 affects the brain. Neuropsychopharmacology. 2020;35(7–8):1498–1514. doi:10.1038/s41328-020-00868-7
7. Di Felice FG, Tovar-Moll F, Moll J, Munoz DP, Ferreira ST. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends Neurosci. 2020;43(6):355–357. doi:10.1016/j.tins.2020.04.004
6. Divani AA, Aandalib S, Biller J, et al. Central nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep. 2020;20(12):60. doi:10.1007/s11910-020-01079-7
5. Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of
dementia-like cognitive impairment. J Neuropsychiatry Clin Neurosci. 2020;32(7):60. doi:10.1007/s12035-020-01079-7
4. Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19 infection to brain microvascular injury and neuroinflammation in
3. Liu JM, Tan BH, Wu S, et al. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol. 2021;93(3):1304–1313. doi:10.1002/jmv.26570
2. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi:10.1001/jamanetworkneurol.2020.1127
1. Liu JM, Tan BH, Wu S, et al. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol. 2021;93(3):1304–1313. doi:10.1002/jmv.26570
37. Guadarrama-Ortiz P, Chorého-Parra JA, Sánchez-Martínez CM, et al. Neurological aspects of SARS-CoV-2 infection: mechanisms and manifestations. Front Neurol. 2020;11:1039. doi:10.3389/fneur.2020.01039
38. Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187. doi:10.1111/jnec.14574
39. Kadono Y, Nakamura Y, Ogawa Y, et al. A case of COVID-19 infection presenting with a seizure following severe brain edema. Seizure. 2020;80:53–55. doi:10.1016/j.seizure.2020.06.015
40. Vinayagam S, Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 2020;260:118431. doi:10.1016/j.lfs.2020.118431
41. Al Saiegh F, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020;91(8):846–848. doi:10.1136/jnnp-2020-325522
42. Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. doi:10.1038/s41593-020-00758-5
43. Mahalaxmi I, Kaayya J, Mohana Devi S, Balachandar V. COVID-19 and olfactory dysfunction: a possible associative approach towards neurodegenerative diseases. J Cell Physiol. 2021;236(2):763–770. doi:10.1002/jcp.29937
44. Chiu A, Fischbein N, Winterrink M, et al. COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology. 2021;63(1):147–148. doi:10.1007/s00234-020-02554-1
45. Zhou L, Xu Z, Castiglione GM, et al. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf. 2020;18(4):537–544. doi:10.1016/j.jtos.2020.06.007
46. Panariello F, Cellini L, Speciani M, De Ronchi D, Atti AR. How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Front Sci. 2020;11:582345. doi:10.3389/fspsy.2020.582345
47. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–557. doi:10.1002/jmv.25728
48. Virhammar J, Kumlien E, Fällmar D, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95(10):445–449. doi:10.1212/WN1.0000000000010250
49. BostancıKlohn M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm Bowel Dis. 2020;26(8):e89–e91. doi:10.1093/ibd/iaza131
50. Andrůta D, Roger PA, Thibault W, et al. COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF. J Neurol. 2020;267(10):2810–2811. doi:10.1007/s00415-020-09975-1
51. Satarker S, Nampoothiri M. Involvement of the nervous system in COVID-19: the bell should toll in the brain. Life Sci. 2020;262:118568. doi:10.1016/j.lfs.2020.118568
52. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131:110678. doi:10.1016/j.biopharm.2020.110678
53. Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020;16(11):636–644. doi:10.1038/s41582-020-0398-3
54. Aghagoli G, Gallo Marin B, Katchur NJ, et al. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit Care. 2021;34(3):1062–1071. doi:10.1007/s12028-020-01049-4
55. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–847. doi:10.1002/ajh.25729
56. Loganathan S, Kuppasamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283:103548. doi:10.1016/j.rln.2020.103548
57. Girija ASS, Shankar EM, Larson M. Could SARS-CoV-2-induced hyperinflammation magnify the severity of coronavirus disease (CoViD-19) leading to acute respiratory distress syndrome? Front Immunol. 2020;11:1206. doi:10.3389/fimmu.2020.01206
58. Zhu H, Wang Z, Yu J, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019;178:101610. doi:10.1016/j.pneurobio.2019.03.003
59. De Santis G. SARS-CoV-2: a new virus but a familiar inflammation brain pattern. Brain Behav Immun. 2020;87:95–96. doi:10.1016/j.bbi.2020.04.066
60. Grohmann U, Mondanelli G, Belladonna ML, et al. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017;28(5–6):357–358. doi:10.1016/j.cytogfr.2017.05.004
61. Bouças AP, Rheinheimer J, Lagopoulos J. Why severe COVID-19 patients are at greater risk of developing depression: a molecular perspective. Neurosciencist. 2020;2020:1073586297892. doi:10.1016/j.niesc.2020.1073586297892
62. Turski WA, Wnorowski A, Turski CA, Turski GN, Turski L. AhR and IDO1 in pathogenesis of Covid-19 and the “Systemic AhR Activation Syndrome”: a translational review and therapeutic perspectives. Restor Neurol Neurosci. 2020;38(4):334–354. doi:10.3233/RNN-201042
63. Engin AB, Turski W, Engin A. The effect of environmental pollution on immune evasion checkpoints of SARS-CoV-2. Environ Toxicol Pharmacol. 2021;81:103520. doi:10.1016/j.etap.2020.103520
64. Ng J, Papandreu A, Heales SJ, Karian MA. Monoamine neurotransmitter disorders – clinical advances and future perspectives. Nat Rev Neurosci. 2015;16(11):567–584. doi:10.1038/nrneurol.2015.172
65. Li J, Cao F, Yin HL, et al. Ferropotis: past, present and future. Cell Death Dis. 2020;11(2):88. doi:10.1038/s41419-020-2298-2
66. Aamaral EP, Costa DL, Namasiyavam S, et al. A major role for ferropotosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med. 2019;216(3):556–570. doi:10.1084/jem.20181776
67. Conrad M, Kagan VE, Bayir H, et al. Regulation of lipid peroxidation and ferropotis in diverse species. Genes Dev. 2018;32(9–10):602–619. doi:10.1101/gad.314674.118
68. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41(3):274–286. doi:10.1016/j.tibs.2015.11.012
69. Gao M, Yi J, Zhu J, et al. Role of mitochondrial fission. Mol Cell. 2019;73(2):354–363.e5. doi:10.1016/j.molcel.2018.10.042
70. Ibrahim WH, Habib HM, Kamal H, St clair DK, Chow CK. Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria. Free Radic Biol Med. 2013;65:143–149. doi:10.1016/j.freeradbiomed.2013.06.026
71. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. *Cell Death Differ.* 2016;23(3):369–379. doi:10.1038/cdd.2015.158

72. Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation. *Biomed Pharmacother.* 2020;127:110108. doi:10.1016/j.biopha.2020.110108

73. Song X, Zhu S, Chen P, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system X(c)(-) activity. *Curr Biol.* 2018;28(15):2388–2399.e5. doi:10.1016/j.cub.2018.05.094

74. Guo Y, Liu X, Liu D, et al. Inhibition of BECN1 suppresses lipid peroxidation by increasing system X(c)(-) activity in early brain injury after subarachnoid hemorrhage. *J Mol Neurosci.* 2019;67(4):622–631. doi:10.1007/s12031-019-01272-5

75. Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. *Proteomics.* 2019;19(18):e1800311. doi:10.1002/ pmic.201800311

76. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. *Cell.* 2017;171(2):273–285. doi:10.1016/j.cell.2017.09.021

77. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. *Cell.* 2014;156(1–2):317–331. doi:10.1016/j.cell.2013.12.010

78. Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. *Front Pharmacol.* 2018;9:1371. doi:10.3389/fphar.2018.01371

79. Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stress. *Cell.* 2019;177(5):1262–1279.e25. doi:10.1016/j.cell.2019.03.032

80. Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. *J Clin Invest.* 2018;128(8):3341–3355. doi:10.1172/JCI99032

81. Wen X, Wu J, Wang F, et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. *Free Radic Biol Med.* 2013;65:402–410. doi:10.1016/j.freeradbiomed.2013.07.013

82. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. *Biomed Pharmacother.* 2017;1861(8):1893–1900. doi:10.1016/j.biopha.2017.05.019

83. Shah R, Margison K, Pratt DA. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. *ACS Chem Biol.* 2017;12(10):2538–2545. doi:10.1021/acschembio.7b00730

84. Feng H, Stockwell BR. Unresolved mysteries: how does lipid peroxidation cause ferroptosis? *PLoS Biol.* 2018;16(5):e2006203. doi:10.1371/journal.pbio.2006203

85. Shen L, Lin D, Li X, et al. Ferroptosis in acute central nervous system injuries: the future direction? *Front Cell Dev Biol.* 2020;8:594. doi:10.3389/fcell.2020.00594

86. Li Q, Han X, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. *JCI Insight.* 2017;2(7):e90777. doi:10.1172/jci.insight.90777

87. Li Q, Weiland A, Chen X, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. *Front Neurol.* 2018;9:581. doi:10.3389/fneur.2018.00581

88. Chang CF, Cho S, Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. *Ann Clin Transl Neurol.* 2014;1(4):258–271. doi:10.1002/acn3.54

89. Qin D, Wang J, Le A, et al. Traumatic brain injury: ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. *Cells.* 2021;10:5. doi:10.3390/cells10051009

90. Tang S, Gao P, Chen H, et al. The role of iron, its metabolism and ferroptosis in traumatic brain injury. *Front Cell Neurosci.* 2020;14:590789. doi:10.3389/fncel.2020.590789

91. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. *J Cell Biochem.* 2017;118(10):1169–1177. doi:10.1002/jcb.27222

92. DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T. Deciphering the iron side of stroke: neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. *Front Neurol.* 2020;11:594. doi:10.3389/fneur.2019.01385

93. Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. *Semin Cancer Biol.* 2020;66:89–100. doi:10.1016/j.semcancer.2019.03.002

94. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. *Clin Pract.* 2020;10(2):1271. doi:10.4081/cp.2020.1271

95. Liu W, Zhang S, Nekhai S, Liu S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. *Curr Clin Microbiol Rep.* 2020;7:13–19.

96. Bailey DK, Clark W, Kosman DJ. The iron chelator, PBT243, modulates transcellular iron trafficking in brain microvascular endothelial cells. *PLoS One.* 2021;16(7):e2054794. doi:10.1371/journal.pone.02054794

97. Dai S, Hua Y, Keep RF, et al. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. *Neurobiol Dis.* 2019;126:76–84. doi:10.1016/j.nbd.2018.06.001

98. Li Q, Wan J, Lan X, et al. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. *J Cereb Blood Flow Metab.* 2017;37(9):3103–3123. doi:10.1177/0271678X17709186

99. Hua W, Chen X, Wang J, et al. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. *Brain Hemorrhages.* 2020;1(2):99–104. doi:10.1016/j.brainhem.2020.02.002

100. Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/ reperfusion. *Cell Death Differ.* 2019;26(11):2284–2299. doi:10.1038/s41418-019-0299-4

101. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. *J Diabetes Res.* 2021;2021:9999612. doi:10.1155/2021/9999612

102. Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. *Nat Cell Biol.* 2020;22(2):225–234. doi:10.1038/s41556-020-0461-8

103. Ren JX, Sun X, Yan XL, Guo ZN, Yang Y. Ferroptosis in neurological diseases. *Front Cell Neurosci.* 2020;14:218. doi:10.3389/fncel.2020.00218
104. Huang S, Li S, Feng H, Chen Y. Iron metabolism disorders for cognitive dysfunction after mild traumatic brain injury. *Front Neurosci.* 2021;15:587197. doi:10.3389/fnins.2021.587197

105. Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. *Cell.* 2018;172(3):409–422.e21. doi:10.1016/j.cell.2017.11.048

106. Chen D, Fan Z, Rauh M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. *Oncogene.* 2017;36(40):5593–5608. doi:10.1038/onc.2017.146

107. Codazzi F, Felizionti I, Zacchetti D, Grohovaz F. Iron entry in neurons and astrocytes: a link with synaptic activity. *Front Mol Neurosci.* 2015;8:18. doi:10.3389/fnmol.2015.00018

108. Ratan RR. The chemical biology of ferroptosis in the central nervous system. *Cell Chem Biol.* 2020;27(5):479–498. doi:10.1016/j.chembiol.2020.03.007

109. Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. *Mol Psychiatry.* 2017;22(11):1520–1530. doi:10.1038/mp.2017.171

110. Chen J, Wang Y, Wu J, et al. The potential value of targeting ferroptosis in early brain injury after acute CNS disease. *Front Mol Neurosci.* 2020;13:110. doi:10.3389/fnmol.2020.00110

111. Chen Y, Liu S, Li J, et al. The latest view on the mechanism of ferroptosis and its research progress in spinal cord injury. *Oxid Med Cell Longev.* 2020;2020:6375938. doi:10.1155/2020/6375938

112. Xie BS, Wang YQ, Lin Y, et al. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. *CNS Neurosci Ther.* 2019;25(4):465–475. doi:10.1111/cns.13069

113. Chen S, Chen Y, Zhang Y, et al. Iron metabolism and ferroptosis in epilepsy. *Front Neurosci.* 2020;14:601193. doi:10.3389/fnins.2020.601193

114. Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. *Front Neurosci.* 2019;13:1443. doi:10.3389/ fnins.2019.01443

115. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. *J Neurol Neurosurg Psychiatry.* 2020;91(8):889–891. doi:10.1136/jnnp-2020-323586

116. Danan S, Segal G, Katz I, et al. Ferritin as a marker of severity in COVID-19 patients: a fatal correlation. *Isr Med Assoc J.* 2020;22(8):494–500.

117. Colafrancesco S, Alessi C, Conti P, Priori R. COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome? *Autoimmun Rev.* 2020;19(7):102573. doi:10.1016/j.autrev.2020.102573

118. Edeas M, Saleh J, Peyssonaux C. Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? *Int J Infect Dis.* 2020;97:303–305. doi:10.1016/j.ijid.2020.05.110

119. Hernández-Fernández F, Sandoval Valencia H, Barbella-Aponte RA, et al. Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. *Brain.* 2020;143(10):3089–3103. doi:10.1093/brain/awaa239

120. Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. *Presse Med.* 2017;46(12 Pt 2):e272–e278. doi:10.1016/j.lpm.2017.10.006

121. Bessman NJ, Mathieu JRR, Renassia C, et al. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. *Science.* 2020;368(6487):186–189. doi:10.1126/science.aau6481

122. Ehlsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. *Biol Direct.* 2020;15(1):19. doi:10.1186/s13062-020-00275-2

123. Ganz T. Iron and infection. *Int J Hematol.* 2018;107(1):7–15. doi:10.1007/s12185-017-2366-2

124. Frazer DM, Anderson GJ. The regulation of iron transport. *Biofactors.* 2014;40(2):206–214. doi:10.1002/biof.1148

125. Wang J, Doré S. Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. *Neuroscience.* 2008;155(4):1133–1141. doi:10.1016/j.neuroscience.2008.07.004

126. Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. *Brain.* 2007;130(Pt 6):1643–1652. doi:10.1093/brain/awm095

127. Linkermann A, Stockwell BR, Krautwald S, Anders HJ. Regulated cell death: an auto-amplification loop causes organ failure. *Nat Rev Immunol.* 2014;14(11):759–767. doi:10.1038/nri3743

128. Wu H, Wu T, Li M, Wang J. Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. *Neurobiol Dis.* 2012;45(1):388–394. doi:10.1016/j.nbd.2011.08.028

129. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipooxygenases in the initiation and execution of ferroptosis. *ACS Cent Sci.* 2018;4(3):387–396. doi:10.1021/acscente.7b00589

130. Rao KV, Reddy PV, Curtis KM, Norenberg MD. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. *J Neurotrauma.* 2011;28(3):371–381. doi:10.1089/neu.2010.1705

131. Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. *Transl Stroke Res.* 2014;5(4):429–441. doi:10.1007/s12975-013-0317-7

132. Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. *Brain Res.* 2018;1701:112–125. doi:10.1016/j.brainres.2018.09.012

133. Ingassria R, Lanzillotta A, Samico I, et al. 1B(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/ReLA acetylation at Lys310. *PLoS One.* 2012;7(5):e38019. doi:10.1371/journal.pone.0038019

134. Chen Z, Hua S. Transcription factor-mediated signaling pathways’ contribution to the pathology of acute lung injury and acute respiratory distress syndrome. *Am J Transl Res.* 2020;12(9):5608–5618.

135. Ong WY, Go ML, Wang DY, Cheah IK, Halliwell B. Effects of antimalarial drugs on neuroinflammation-potential use for treatment of COVID-19-related neurological complications. *Mol Neurobiol.* 2021;58(1):106–117. doi:10.1007/s12052-020-02093-z

136. Raz E, Jensen JH, Ge Y, et al. Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. *AJNR Am J Neuroradiol.* 2011;32(10):1851–1856. doi:10.3174/ajnr.A2637

137. Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. *Nat Chem Biol.* 2017;13(1):81–90. doi:10.1038/nchembio.2238

138. Fifi JT, Mocco J. COVID-19 related stroke in young individuals. *Lancet Neurol.* 2020;19(9):713–715. doi:10.1016/S1474-4422(20)30272-6
Dovepress

139. Wang J, Jiang C, Zhang K, et al. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med. 2019;131:345–355. doi:10.1016/j.freeradbiomed.2018.12.014

140. Magtanong L, Dixon SJ. Ferroptosis and brain injury. Dev Neurosci. 2018;40(5–6):382–395. doi:10.1159/000496922

141. Wu Y, Song J, Wang Y, et al. The potential role of ferroptosis in neonatal brain injury. Front Neurosci. 2019;13:115. doi:10.3389/fnins.2019.00115

142. Wu JR, Tuo QZ, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197–206. doi:10.1007/s12031-018-1155-6

143. Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol. 2021;36(4):383–397. doi:10.14670/HH-18-286

144. Patone M, Handunnetthi L, Saatci D, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–2153. doi:10.1038/s41591-021-01556-7

145. Lan X, Han X, Li Q, Wang J. (-)-Epicatechin, a natural flavonoid compound, protects astrocytes against hemoglobin toxicity via Nrf2 and AP-1 signaling pathways. Mol Neurobiol. 2017;54(7):7898–7907. doi:10.1007/s12035-016-2711-y

146. Magtanong L, Dixon SJ. Ferroptosis and brain injury. Dev Neurosci. 2018;40(5–6):382–395. doi:10.1159/000496922

147. Patone M, Handunnetthi L, Saatci D, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–2153. doi:10.1038/s41591-021-01556-7

148. Bergamaschi G, Borrelli de Andreis F, Aronico N, et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med. 2021;21(2):239–246. doi:10.1007/s10238-020-00679-4

149. Gupta Y, Maciorowski D, Mederna B, et al. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: natura nihil frustra fact. J Cell Biochem. 2022. doi:10.1002/jcb.30207

150. Zhao K, Huang J, Dai D, et al. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: a retrospective study. PLoS Forum Infect Dis. 2020;7(7):ofaa250. doi:10.1093/ofid/ofaa250

151. Chen C, Zhou W, Fan W, et al. Association of anemia and COVID-19 in hospitalized patients. Future Virol. 2021;16(7):459–466. doi:10.2217/fv-2021-0044

152. Sonnweber T, Boehm A, Sahanie S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. doi:10.1186/s12931-020-01546-2

153. Ao X, Xu J, Chen W, et al. Anemia is associated with severe illness in COVID-19: a retrospective cohort study. J Med Virol. 2021;93(3):1478–1488. doi:10.1002/jmv.26444

154. Faghii Dinevari M, Somi MH, Sadegh Majd E, Abbasalizad Farhangi M, Nikniaz Z. Anemia predicts poor outcomes of COVID-19 in hospitalized patients: a prospective study. Int J Environ Res Public Health. 2020;17(12):4888. doi:10.3390/ijerph17121189

155. Chang YL, Hung SH, Ling W, et al. Association between ischemic stroke and iron-deficiency anemia: a population-based study. Stroke. 2021;52(12):e789–e792. doi:10.1161/STROKEAHA.121.033137

156. Faghih Dinevari M, Somi MH, Sadeghi Majd E, Abbasalizad Farhangi M, Nikniaz Z. Anemia predicts poor outcomes of COVID-19 in hospitalized patients: a prospective study. Int J Environ Res Public Health. 2020;17(12):4888. doi:10.3390/ijerph17121189

157. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–143. doi:10.1016/j.freeradbiomed.2018.09.043

158. Wang J, Jiang C, Zhang K, et al. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med. 2019;131:345–355. doi:10.1016/j.freeradbiomed.2018.12.014

159. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7(10):875–882. doi:10.1016/S2215-396X(20)30070-8

160. Paterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10):3104–3120. doi:10.1093/brain/awaa240

161. Hao F, Tam W, Hu X, et al. A quantitative and qualitative study on the neuropsychiatric sequelae of acutely ill COVID-19 inpatients in isolation facilities. Transl Psychiatry. 2020;10(1):365. doi:10.1038/s41398-020-01039-2

162. Zhang J, Lu H, Zeng H, et al. The differential psychological distress of populations affected by the COVID-19 pandemic. Brain Behav Immun. 2020;87:49–50. doi:10.1016/j.bbi.2020.04.031

163. Giacomelli A, Pezzati L, Conti F, et al. Self-report bullying and violence among school children: the role of a school-based intervention. J Med Virol. 2020;92(5):746–751. doi:10.1002/jmv.25925

164. Nalleballe K, Reddy Onteddu S, Sharma R, et al. Spectrum of neuropsychiatric manifestations in COVID-19. Brain Behav Immun. 2020;88:71–84. doi:10.1016/j.bbi.2020.03.062

165. Dinkin M, Gao Y, Kahan J, et al. COVID-19 presenting with ophthalmoplegia from cranial nerve palsy. Neurology. 2020;95(5):221–223. doi:10.1212/01.wnl.0000600000009705

166. Jiang RD, Liu M, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182(1):50–58.e8. doi:10.1016/j.cell.2020.05.027

167. Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 2020;11:573095. doi:10.3389/fneur.2020.573095

168. Qi J, Zhou Y, Hua J, et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int J Environ Res Public Health. 2021;18(1):284. doi:10.3390/ijerph18010284

169. Qiu Q, Zhou Y, Hua J, et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int J Environ Res Public Health. 2021;18(1):284. doi:10.3390/ijerph18010284

170. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv. 2020. doi:10.1101/2020.05.15.209512

171. Song E, Zhang C, Israelov B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3). doi:10.1084/jem.20202135
172. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). *J Med Virol*. 2020;92(7):699–702. doi:10.1002/jmv.25915

173. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. *N Engl J Med*. 2020;383(6):590–592. doi:10.1056/NEJMc2011400

174. Martin M, Paes VR, Cardoso EF, et al. Postmortem brain 7T MRI with minimally invasive pathological correlation in deceased COVID-19 subjects. *Insights Imaging*. 2022;13(1):7. doi:10.1186/s13244-021-01144-w

175. Shintoku R, Takigawa Y, Yamada K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. *Cancer Sci*. 2017;108(11):2187–2194. doi:10.1111/cas.13380