1 Introduction - the origin of the problem.

We consider the heat equation in $[0, 1] \subset \mathbb{R}$:

\[
\begin{align*}
\frac{\partial u}{\partial t}(t, x) &= \Delta u(t, x) \quad t \geq 0, \quad x \in [0, 1], \\
u(0, x) &= u_0(x) \quad x \in [0, 1], \\
u(t, 0) &= u(t, 1) = 0 \quad t \geq 0,
\end{align*}
\]

where the initial condition $u_0(x)$ belongs to $L^2(0, 1) = H$. Let \{\textbf{e}_n\} be a complete orthonormal basis of $L^2(0, 1)$. Then, for the initial condition $u_0(x) = \sum_{n=1}^{\infty} a_n \textbf{e}_n$, the solution $u(t, x)$ is given by the semigroup \{\textbf{T}_t\}:

\[
\textbf{T}_t u_0(x) = \sum_{n=1}^{\infty} a_n \exp(-n^2 \pi^2 t) \textbf{e}_n,
\]

which traces out the trajectory of the solution of (1) on H.

If we go along the trajectories of solutions to the direction negative in time, we remark that there are two kinds of situations: (i) the trajectory which continues until $t = -\infty$; and (ii) the trajectory which continues backward only for finite period of time. The initial condition $u_0(x)$ of the latter
trajectory, which stops at finite \(t \leq 0 \) can be written \(u_0(x) = T_t u_1(x) \), where \(u_1(x) \) is the initial condition from which the backward trajectory does not exist. Thus, the case of (ii) can be studied by the initial value \(u_1 \), at which the solution trajectory is irreversible to the past. For the case of (ii), we can characterize the initial function \(u_0(x) = \sum_{n=1}^{\infty} a_n e_n \) from which the solution trajectory goes back to \(t = -\infty \), by:

\[
D = \{ \sum_{n=1}^{\infty} a_n e_n | \sum_{n=1}^{\infty} a_n^2 \exp(2n^2 \pi^2 t) < \infty \text{ for } \forall t \geq 0 \}.
\]

On the other hand, the initial function \(u_0(x) = \sum_{n=1}^{\infty} a_n e_n \) from which the solution trajectory cannot be defined for any \(t < 0 \) satisfies:

\[
Z = \{ \sum_{n=1}^{\infty} a_n e_n | \sum_{n=1}^{\infty} a_n^2 < \infty, \sum_{n=1}^{\infty} a_n^2 \exp(2n^2 \pi^2 t) = \infty \text{ for } \forall t \geq 0 \}.
\]

If \(u_0 \in D \), then

\[
T_{-t} u_0(x) = \sum_{n=1}^{\infty} a_n \exp(n^2 \pi^2 t) e_n \in H = L^2(0,1).
\]

For \(u_0 \in Z \), though we can formally write

\[
T_{-t} u_0(x) = \sum_{n=1}^{\infty} a_n \exp(n^2 \pi^2 t) e_n,
\]

\(T_{-t} u_0 \) is not in \(H \), and should belong to a functional space larger than \(H = L^2(0,1) \). For example, for the following Hilbert space

\[
H_t = \{ \sum_{n=1}^{\infty} a_n e_n | \sum_{n=1}^{\infty} a_n^2 \exp(-2n^2 \pi^2 t) < \infty \},
\]

equipped with the norm

\[
\| \sum_{n=1}^{\infty} a_n \exp(n^2 \pi^2 t) e_n \|_t = \| \sum_{n=1}^{\infty} a_n \exp(-n^2 \pi^2 t) e_n \|,
\]

where the \(\| \cdot \| \) is the norm in \(H \). We have

\[
H \subset H_t, \quad T_{-t} u_0(x) \in H_t \text{ if } u_0(x) \in Z.
\]
Thus, the solution trajectory which stops at a point in the Hilbert space H is extendable in the larger space H_t. Therefore, the heat semigroup T_t defined by (1), is extendable backward in time, by considering the larger functional spaces equipped with the above kind of norms $\| \cdot \|_t$. This construction of the sequence of spaces $\{H_t\}$ comes from the explicit expression:

$$T_tu_0(x) = \sum_{n=1}^{\infty} a_n \exp(\lambda_n t)e_n, \quad l_n < 0, \quad t < 0 \quad (u_0(x) = \sum_{n=1}^{\infty} a_ne_n),$$

where $\lambda_n = -(n\pi)^2$, eigenvalues of $-\Delta$:

$$-\Delta = \begin{pmatrix}
-\pi^2 & -(2\pi)^2 & \cdots \\
-(2\pi)^2 & \cdots \\
\cdots & \cdots & \cdots \\
-(n\pi)^2 & \cdots & \cdots
\end{pmatrix}.$$

The above consideration leads to the following question. If an infinitesimal generator A of a semigroup T_t in a functional space X does not have the spectrum decomposition as above, is there a larger functional space X_t in which any solution trajectory which starts from any point in X continues backward in time uniformly until $-t < 0$? Moreover, is there an extended space E of X, in which any solution trajectory starting from any point in E, can go back to the past until $t = -\infty$? In other words, we are interested in the following question.

Problem Is there an extended functional space in which a semigroup becomes a group? Find the condition for such an extension.

In this paper, under the following two conditions (I) and (II), we show the existence of the functional space E described in the above problem.

(I) The set

$$D = \{x \in X \mid \forall t > 0 \quad \exists y = y(t) \in X \quad \text{s.t.} \quad T_t y = x\}$$

is dense in X.

(II) The semigroup T_t has the backward uniqueness property, i.e.

if $T_t x = T_t y$ for some $t > 0$, then $x = y$.

3
The following is the plan of this paper: in §2, a sufficient condition such that D satisfies (1) is given, as well as some properties of D; in §3, we present the extended space E explicitly; and in §4, the structure of E and the relationship between E and D are investigated.

This paper was written in 1989 as my master’s thesis, by receiving valuable advises from Professor Yukio Komura.

2 The set of points from which trajectories continue negative in time until $t = -\infty$.

From this section, we denote

$$D = \{ x \in X | \forall t > 0 \exists y = y(t) \in X \text{ s.t. } T_t y = x \},$$

for the set of points from which trajectories continue negative in time until $t = -\infty$, and

$$D_t = \{ x \in X | \exists y \in X \text{ s.t. } T_t y = x \},$$

for the set of points from which trajectories continue negative in time at least until $-t < 0$.

The following is a sufficient condition such that D is dense in X.

Lemma 1.

Let $T_t (t \geq 0)$ be a linear semigroup defined on X. Then, the necessary and sufficient condition such that D is dense in X is:

$$\forall t > 0 \quad D_t = T_t X \text{ is dense in } \ X.$$

Proof. The necessary condition is clear. We only show the part of the sufficient condition. It is enough to prove for any $x_0 \in X$ and for any $\varepsilon_0 > 0$,

$$U_{\varepsilon_0}(x_0) \cap D \neq \emptyset.$$

4
Since D_1 is dense in X, there exists $x_1 \in X$ such that $T_1x_1 \in U_{\varepsilon_0}(x_0)$. By repeating this, for any $\varepsilon_k > 0$ there exists $x_{k+1} \in X$ such that $T_1x_{k+1} \in U_{\varepsilon_k}(x_k)$. In particular, we can take $\{\varepsilon_n\}_{n \in \mathbb{N}}$ such that the sequence $\{T_nx_n\}$ becomes a Cauchy sequence in X, since

$$||T_nx_n - T_{n-1}x_{n-1}|| \leq M_{n-1} ||T_1x_n - x_{n-1}|| \leq M_{n-1} \varepsilon_{n-1},$$

where $M_t > 0$ is a number such that $||T_t|| \leq M_t$, more precisely $M_t = Me^{wt}$ $(M > 0$ a constant$)$. For such a choice of $\{x_n\}$, there exists a limit

$$\lim_{n \to \infty} T_nx_n = \exists x_{\infty, 0}.$$

Moreover, for each k, since

$$||T_{n-k}x_n - T_{n-1-k}x_{n-1}|| \leq M_{n-1-k} ||T_1x_n - x_{n-1}|| \leq Me^{-kw}e^{(n-1)w} \varepsilon_n,$$

there exists a limit

$$\lim_{n \to \infty} T_{n-k}x_n = \exists x_{\infty,k}.$$

Thus,

$$T_kx_{\infty,k} = \lim_{n \to \infty} T_nx_n = x_{\infty,0},$$

and $x_{\infty,0} \in D$. Since

$$||x_{\infty,0} - x_0|| = \lim_{n \to \infty} ||T_nx_n - x_0||,$$

and

$$||T_nx_n - x_0|| \leq ||T_nx_n - T_{n-1}x_{n-1}|| + ||T_{n-1}x_{n-1} - T_{n-2}x_{n-2}|| + \cdots + ||T_1x_1 - x_0|| \leq \sum_n Me^{wt} \varepsilon_n,$$

by choosing $\varepsilon_n > 0$ appropriately, we have $||x_{\infty,0} - x_0|| < \varepsilon_0$, which proves the claim.

Lemma 1 holds also for the nonlinear semigroup T_1. Since, in general, the nonlinear semigroup is defined on $\overline{D(A)}$ (A is the infinitesimal generator of T_t), not necessarily on whole X, we rewrite the lemma as follows.

Lemma 2.

Let T_t be a semigroup (possibly nonlinear) defined on $\overline{D(A)}$, satisfying

$$||T_t x - T_t y|| \leq Me^{wt} ||x - y|| \quad \forall x, y \in \overline{D(A)},$$

5
where M, w are positive constants independent on $t > 0$. Then, the necessary and the sufficient condition that D is dense in $\overline{D(A)}$ is that D_t is dense in $\overline{D(A)}$ for any $t > 0$.

Proof. As before, it is enough to prove the part of the sufficient condition. As in the proof of Lemma 1, for any $x_0 \in \overline{D(A)}$ and for any $\varepsilon_0 > 0$, we can take inductively a sequence of numbers $\varepsilon_k > 0$ ($k \geq 1$), and a sequence of points $x_k \in \overline{D(A)}$ ($k \geq 1$) such that

$$T_1 x_{k+1} \in U_{\varepsilon_k}(x_k), \quad \lim_{n \to \infty} T_n x_n = \exists x_{\infty,0} \in D,$$

where $\|x_{\infty,0} - x_0\| \leq \varepsilon_0$. This proves the claim.

By using Lemmas 1 and 2, we can now give sufficient conditions such that D, the set of points in $\overline{D(A)}$ from which the trajectories continue until $t = -\infty$, is dense in $\overline{D(A)}$.

Proposition 1.

Let T_t be a linear holomorphic semigroup on a Banach space X. That is, for any $t_0 > 0$, there exists a neighborhood U of t_0, and the following Taylor development:

$$T_t = \sum_{k=0}^{\infty} (t - t_0)^k A_k \quad t \in U.$$

Then, the set

$$D = \{ x \in X \mid \forall t > 0 \exists y = y(t) \text{ s.t. } T_t y = x \}$$

is dense in X.

Proof. Put

$$D_{t_1} = \{ x \in X \mid \exists y \in X \quad T_{t_1} y = x \}.$$

We use the argument by contradiction. From Lemma 1, we assume that there exists $t_1 > 0$ such that D_{t_1} is not dense in X, and we shall lead to a contradiction. If $\overline{D_{t_1}}$, closed and convex, is not X, by the Hahn-Banach theorem there exists $f \in X'$ (dual space of X), such that

$$f \neq 0, \quad < x, f > = 0 \quad \forall x \in \overline{D_{t_1}}.$$
Since T_t is holomorphic, there exists a neighborhood U of t_1 such that

$$< T_t x, f >= < \sum_{k=0}^{\infty} (t - t_1)^k A_k x, f > = \sum_{k=0}^{\infty} (t - t_1)^k < A_k x, f >.$$ \hspace{1cm} (2)

For $t > t_1$, $T_t x \in D_{t_1}$, and $< T_t x, f >= 0$. Since the right-hand side of (2) is a holomorphic function, from the unique continuation theorem,

$$< T_t x, f >= 0 \hspace{1cm} \forall t \in U.$$

By repeating this argument, we have

$$< T_t x, f >= 0 \hspace{1cm} \forall t > 0, \hspace{1cm} \forall x \in X.$$

Moreover, from

$$< x, f >= \lim_{t \downarrow 0} < T_t x, f > = 0 \hspace{1cm} \forall x \in X,$$

we get $f = 0$. This contradicts to our previous assumption, and thus we have proved the claim.

Corollary 1.

Let A be an infinitesimal generator of a linear holomorphic semigroup. Consider the following evolution equation in X

$$\frac{dx}{dt} + Ax = f(t) \hspace{1cm} x(0) = x_0,$$

where f is a locally H"older continuous function from $(0, \infty)$ to X, such that

$$\int_0^\rho \|f(t)\|dt < +\infty \hspace{1cm} \text{for some} \hspace{1cm} \rho > 0,$$

and assume that there exists a global solution $x(t)$:

$$x(t) = T_t x_0 + \int_0^t T_{t-s} f(s)ds.$$

Let S_t be the semigroup

$$S_t x_0 = x(t).$$
Then, the set
\[D = \{ x \in X \mid \forall t > 0 \ \exists y = y(t) \text{ s.t. } S_t y = x \} \]
is dense in \(X \).

Proof. From Lemma 2, it is enough to show that for any \(t > 0 \), the set
\[D_t = \{ x \in X \mid \exists y \in X \text{ s.t. } T_t y + \int_0^t T_{t-s} f(s) ds = x \} \]
is dense in \(X \). However, it is clear, because
\[D_t = T_t X + \int_0^t T_{t-s} f(s) ds, \]
where \(+ \) is the parallel translation.

Remark. The example of the heat equation in §.1 is a special case of Corollary 1.

3 Other properties of the set D.

The next result will be used in §4, when we mention the relationship between the set \(D \) and the set \(E \) (the definition will be given in below).

Proposition 2.

Let \(T_t \) be a linear semigroup in a Banach space \(X \), and assume that it has the backward uniqueness property. Put
\[D = \{ x \in X \mid \forall t > 0 \ \exists y = y(t) \text{ s.t. } T_t y = x \}. \]
Then, \(D \) is a Fréchet space, equipped with the following countable norms.
\[\| x \|_0 = \| x \|, \cdots, \| x \|_n = \| T_{-n} x \|, \cdots \ n \in \mathbb{N} \cup \{0\}, \]
where \(\| \cdot \| \) denotes the norm in \(X \).
Proof. First, we see that \(\| \cdot \|_n \) \((n = 0, 1, \ldots)\) are seminorms. In fact,
\[
\| x \|_n \geq 0, \quad \| x + y \|_n = \| T_{-n}(x + y) \| = \| T_{-n}x + T_{-n}y \| \leq \| T_{-n}x \| + \| T_{-n}y \| = \| x \|_n + \| y \|_n.
\]
Next, we show that \(\| \cdot \|_n \) is separable, by a contradiction argument. Assume that there exists \(x \neq 0 \) such that \(\| x \|_n = \| T_{-n}x \| = 0 \). However, this reads \(T_{-n}x = 0 \), and \(x = T_n(T_{-n}x) = 0 \), which is a contradiction. Thus, \(\| x \|_n > 0 \) for any \(x \neq 0 \), and \(\| \cdot \|_n \) is separable.
Finally, we confirm that \(D \) is complete with this topology. Let \(\{ y_m \} \subset D \) be a Cauchy sequence with respect to the above locally compact topology. That is, for any \(n \),
\[
\| y_m - y_{m'} \|_n = \| T_{-n}y_m - T_{-n}y_{m'} \| \to 0 \quad \text{as} \quad m, m' \to \infty.
\]
Thus, there exists \(z_n \in D \) such that
\[
\lim_{m \to \infty} T_{-n}y_m = z_n \quad \text{in} \quad X.
\]
It is easy to see that
\[
z_{n+1} = T_{-n}z_n,
\]
for \(z_{n-1} = \lim_{m \to \infty} T_{-(n-1)}y_m = \lim_{m \to \infty} T_1T_{-n}y_m = T_1z_n \). This leads to
\[
T_{n+1}z_{n+1} = T_nT_1z_n = T_nz_n = z_0 \quad z_0 \in D.
\]
We have now \(\lim_{m \to \infty} T_{-n}y_m = T_{-n}z_0 \) in \(X \). Therefore, \(y_m \) converges to \(z_0 \in D \), and we have proved the claim.

If \(D \) is not dense in \(X \) (or \(D(A) \)), neither is \(D_t \) \((\forall t > 0)\) dense in \(X \) (or \(D(A) \)).

Proposition 3.

If there exists \(t > 0 \) such that
\[
D_t = \{ x \in X \mid \exists y \in X \quad \text{s.t.} \quad T_1y = x \}
\]
is not dense in \(D(A) \), then
\[
\inf \{ t \mid D_t \text{ is not dense in } D(A) \} = 0.
\]

9
Proof. We assume that
\[t_0 = \inf \{ t \mid D_t \text{ is not dense in } \overline{D(A)} \} \neq 0, \]
and we shall lead to a contradiction. For any \(x \in \overline{D(A)} \), and for any \(\varepsilon > 0 \), there exists \(y \in \overline{D(A)} \) such that \(T_{\frac{2t_0}{3}} y \in U_\varepsilon(x) \). For this \(y \), and for any \(\delta > 0 \), there exists \(z \in \overline{D(A)} \) such that \(T_{\frac{2t_0}{3}} z \in U_\delta(y) \). Since
\[
\| T_{\frac{t_0}{3}} z - x \| \leq \| T_{\frac{t_0}{3}} z - T_{\frac{2t_0}{3}} y \| + \| T_{\frac{2t_0}{3}} y - x \|
\leq \| T_{\frac{2t_0}{3}} \| \| T_{\frac{2t_0}{3}} z - y \| + \varepsilon \leq \| T_{\frac{2t_0}{3}} \| \delta + \varepsilon,
\]
by tending \(\delta \to 0 \), we get
\[
\| T_{\frac{t_0}{3}} z - x \| \leq \varepsilon.
\]
However, since \(x \) is an arbitrary point, this contradicts to the definition of \(t_0 \). And thus, \(t_0 = 0 \) must hold.

Proposition 4.

If there exists \(t > 0 \) such that
\[
D_t = \{ x \in \overline{D(A)} \mid \exists y \in \overline{D(A)} \text{ s.t. } T_t y = x \}
\]
is not dense in \(\overline{D(A)} \), then there exists an open set \(U \) in \(X \) such that
\[
U \cap \overline{D(A)} \neq \emptyset, \quad U \cap \overline{D(A)} \cap D_t = \emptyset,
\]
and
\[
\inf \{ t \mid U \cap D_t = \emptyset \} = \min \{ t \mid U \cap D_t = \emptyset \}. \tag{3}
\]

Proof. Assume that (3) does not hold, and put \(t_0 = \inf \{ t \mid U \cap D_t = \emptyset \} \). We have
\[
U \cap \overline{D(A)} \cap D_{t_0} \neq \emptyset,
\]
and for any \(\varepsilon > 0 \) \(U \cap \overline{D(A)} \cap D_{t_0+\varepsilon} = \emptyset \). \(T_{-t_0} U = \{ x \in \overline{D(A)} \mid T_{t_0} x \in U \} \neq \emptyset \) is an open set. Thus, there exists \(x \in T_{-t_0} U \) such that \(T_{t_0} x \in T_{-t_0} U \) for some \(\varepsilon > 0 \). However, this reads \(T_{t_0+\varepsilon} x \in U \), which is a contradiction to the definition of \(t_0 \). Therefore, (3) must be true.
4 The extended space E.

Assume that there exists a semigroup T_t on a Banach space X, and that it
defines solution trajectories in X. Assume also that
\[D = \{ x \in X \mid \forall t > 0 \ \exists y = y(t) \in X \ s.t. \ T_t y = x \} \]
is dense in X. Then, for an arbitrary point $z \in X$, we can take a sequence
of points $\{z_n\}$ in D, such that
\[\lim_{n \to \infty} z_n = z \text{ in } X. \]
Remark that the solution trajectory which passes z_n continues backward until
$t = -\infty$. In general, we cannot expect that the solution trajectory which
passes z continues until $t = -\infty$. For any $t > 0$, we know that $T_{-t} z_n$ exists,
but we do not know if the sequence $\{T_{-t} z_n\}$ is a Cauchy sequence or not.
Here, our idea is that we regard the sequence $\{T_{-t} z_n\}$ as ”a point” in an
extended space, and we define
\[T_{-t} z = \{ T_{-t} z_n \}. \]
This consideration leads us to define the following extended space E, on
which the semigroup is extendable to the group.
\[E = \{(z_n) \mid z_n \in D, \ \exists t > 0 \ \lim_{n \to \infty} T_t z_n \in X/\sim, \quad (4) \]where \sim represents the equivalence defined by :
\[(z_n) \sim (z_n') \text{ if and only if } \lim_{n \to \infty} T_t z_n = \lim_{n \to \infty} T_t z_n' \text{ for some } t > 0. \]

Theorem 1.

Let T_t be a semigroup defined in a Banach space X. Assume that the
following two conditions hold.

(I) The set
\[D = \{ x \in X \mid \forall t > 0 \ \exists y = y(t) \in X \ s.t. \ T_t y = x \} \]
is dense in X.
(II) T_t has the backward uniqueness property, i.e. if $T_t x = T_t y$ for some
$t > 0$, then $x = y$.

Let E be the set defined in (4). Then, the following holds.
• $X \subset E$.

• There exists a group \mathcal{T}_t ($t \in \mathbb{R}$) on E, such that

$$\mathcal{T}_t \mathcal{T}_s = \mathcal{T}_{t+s}, \quad \mathcal{T}_0 = I \quad (I \text{ identity map}).$$

•

$$\mathcal{T}_t x = T_t x \quad x \in X \quad (\text{whenever } T_t x \text{ exists}).$$

Proof. The relationship $X \subset E$ comes from the identification of $x \in X$ to $(x_n) \in E$, where the sequence $\{x_n\}$ in X satisfies $\lim_{n \to \infty} x_n = x$ in X. We define the group \mathcal{T}_t in the following way: for $(x_n) \in E$

$$\mathcal{T}_t(x_n) = (T_t x_n) \quad \forall t \in \mathbb{R},$$

where the right-hand side is well-defined from the boundedness of T_t. Then,

$$\mathcal{T}_{t+s}(x_n) = (T_{t+s} x_n) = (T_t T_s x_n) = \mathcal{T}_t \mathcal{T}_s(x_n);$$

$$\mathcal{T}_0(x_n) = (x_n), \quad \text{if} \quad \lim_{n \to \infty} x_n = x, \quad \text{then} \quad \mathcal{T}_t(x_n) = (T_t x).$$

The semigroup T_t on X is extended to the group \mathcal{T}_t on E, and the solution trajectory defined by T_t is extended to \mathcal{T}_t on E, backward in time until $t = -\infty$.

Remarks

1. For the case that T_t is a nonlinear semigroup, the above theorem holds by replacing X to $D(A)$, too.

2. Even if T_t does not have the backward uniqueness property, \mathcal{T}_t constructed as above has the backward uniqueness property on E defined by (i). This is the reason why we assumed the condition (ii).

3. If a semigroup T_t corresponds to a group \mathcal{T}_t by $\mathcal{T}_t(x_n) = (T_t x_n)$, the infinitesimal generator A of T_t corresponds to the infinitesimal generator A defined by

$$A(x_n) = (Ax_n) \quad \text{whenever the right-hand side exists.}$$
5 The relationship between E and D.

In this section, we study some structures of E introduced in §3, and the relationship between E and D, the set of initial points from which the solution trajectory continues until $t = -\infty$ in X.

The space E is not in general a Banach space, but the intermediate spaces between X and E are Banach spaces.

Proposition 5.

Let T_t ($t \geq 0$) be a semigroup on a Banach space. For $t > 0$, put

$$E_{-t} = \{(z_n) | \quad z_n \in D \lim_{n \to \infty} T_t z_n \in X\},$$

the set of points in X from which the solution trajectory exists backward in time at least for t. Then, E_{-t} is a Banach space equipped with the norm:

$$\| (z_n) \|_{-t} = \| \lim_{n \to \infty} T_t z_n \|.$$

Proof. It is clear that E_{-t} is a linear space. To see that E_{-t} is a normed space, we confirm the following.

$$\| (z_n) + (y_n) \|_{-t} = \| \lim_{n \to \infty} T_t (z_n + y_n) \| \leq \| \lim_{n \to \infty} T_t z_n \| + \| \lim_{n \to \infty} T_t y_n \| = \| (z_n) \|_{-t} + \| (y_n) \|_{-t}.$$

Also, it is obvious that $\| (z_n) \|_{-t} \geq 0$, and that if $\| (z_n) \|_{-t} = 0$, then $(z_n) = 0$, for $\| \lim_{n \to \infty} T_t z_n \| = 0$ implies $\lim_{n \to \infty} T_t z_n = 0$ and thus $(z_n) \sim (0)$.

Moreover, for any $\alpha \in \mathbb{R}$,

$$\| \alpha (z_n) \|_{-t} = \| (\alpha z_n) \|_{-t} = \| \lim_{n \to \infty} T_t (\alpha z_n) \| = |\alpha| \| (z_n) \|_{-t}.$$

Finally, to see that E_{-t} is complete with respect to the norm $\| \cdot \|_{-t}$, let $\{(z_n^m)\}_{m}$ be a Cauchy sequence with respect to the norm $\| \cdot \|_{-t}$, i.e.

$$\| (z_n^m) - (z_n^{m'}) \|_{-t} \to 0 \quad \text{as} \quad m, m' \to +\infty.$$
If we put \(c_m = \lim_{n \to \infty} T_t z_n^m = c_m \), then
\[
\|c_m - c_m'\| \to 0 \quad \text{as} \quad m, m' \to +\infty.
\]
Since \(\{c_m\} \) is a Cauchy sequence with respect to the norm \(\| \cdot \| \), there exists \(c_0 \in X \) such that \(\lim_{m \to \infty} c_m = c_0 \) in \(X \). Since \(D \) is dense in \(X \), there exists \(\{y_n\} \subset D \) such that \(\lim_{n \to \infty} y_n = c_0 \) in \(X \). Therefore,
\[
\|(z_n^m) - (T_{-t}y_n)\|_{-t} = \|c_m - c_0\| \to 0 \quad m \to \infty.
\]
From the above argument, we have shown that \(E_{-t} \) is a Banach space.

Remarks.

1. Similarly, we can see that the intermediate spaces between \(D \) and \(E \):
\[
D_t = T_t X = \{ x \in X \mid \exists y \in X, \ T_t y = x \}
\]
is also a Banach space with respect to the norm \(\|x\|_t = \|T_{-t}x\| \).

2. We have the following relationship:
\[
D \subset D_t \subset X \subset E_{-t} \subset E.
\]

3. Let \(S_t \) be the semigroup defined in Corollary 1 (§2.1), i.e.
\[
S_t x_0 = x(t) = T_t x_0 + \int_0^t T_{t-s} f(s) ds,
\]
where \(T_t = e^{-tA} \). Define the norm of \(E_{-t} \) by
\[
\|x\|_{-t} = \|S_t x - \int_0^t T_{t-s} f(s) ds\|.
\]
Then, \(E_{-t} \) is a Banach space with respect to the norm \(\| \cdot \|_{-t} \).

4. Let \(T_t \) be a non-expansive nonlinear semigroup defined on \(\overline{D(A)} \), a closed convex subset in a Banach space \(X \). Assume that the set
\[
D = \{ x \in \overline{D(A)} \mid \forall t > 0 \ \exists y = y(t) \ \text{s.t.} \ T_t y = x \}
\]
is dense in \(\overline{D(A)} \). Put
\[
\overline{D(A)}_{-t} = \{ (z_n) \mid \lim_{n \to \infty} T_t z_n \in \overline{D(A)}, \ z_n \in D \}.
\]
Then, \(\overline{D(A)}_{-t} \) is a complete metric set with respect to the norm :
\[
\|(z_n)\|_{-t} = \|\lim_{n \to \infty} T_t z_n\|.
\]
However, in general, we do not know whether it is possible to linearize $D(A)_{-t}$, and extend it to a larger Banach space containing the original space X. It is because, differently from the linear case, there is no longer the structure of a Banach space.

Next, by assuming that $X = H$ a Hilbert space, we consider the relationship between E and D.

Definition 1. We say that two linear vector spaces V and W are dual, with respect to $\langle \cdot , \cdot \rangle_{V \times W}$, when the following holds.

$$\langle x, y \rangle_{V \times W} = 0 \quad \forall y \in W \quad \text{implies} \quad x = 0.$$

Proposition 6.

The linear vector spaces V and W are dual, with respect to the following bilinear functional: for any $x \in D$ and any $(z_n) \in E$

$$\langle x, (z_n) \rangle_{D \times E} = (T_{-t}x, \lim_{n \to \infty} T_t z_n),$$

where (\cdot, \cdot) is the inner product of H, and

$$t = \inf \{ s \mid \lim_{n \to \infty} T_s z_n \in H \}. $$

Proof. For any $(z_n) \in E$, let $t = \inf \{ s \mid \lim_{n \to \infty} T_s z_n \in H \}$, and assume that

$$(T_{-t}x, \lim_{n \to \infty} T_t z_n) = 0.$$

In particular, if for any $(z) \in E$ such that $z \in D$ the above holds, then from the density of D in H, we get $x = 0$. Thus, we proved the claim.

Remark. In Proposition 2, we have seen that D is a Fréchet space with respect to the countable seminorms $\| \cdot \|_n (\|x\|_n = \|T_{-n}x\|)$. Concerning with this topology, the linear functional:

$$\langle \cdot , (z_n) \rangle_{D \times E} = (T_{-t} \cdot, \lim_{n \to \infty} T_t z_n)$$

is an element in D^*. This shows the existence of a one to one map from E to D^*.

15
Finally, let us introduce a topology by the countable number of norms : $\|x\|_n = \|T_n x\|_n$.

Proposition 7.

Let H be a Hilbert space, and $\{e_n\}$ be a complete orthonormal bases of H. If a semigroup T_t on H has the expression

$$T_t u_0 = \sum_{n=1}^{\infty} \exp(\lambda_n t) a_n e_n \quad t \geq 0, \quad u_0 = \sum_{n=1}^{\infty} a_n e_n,$$

then $D^* = E$.

Proof. It is clear that $E \subset D^*$. For $f \in D^*$, put $b_k = \langle e_k, f \rangle_{D \times D^*}$, and see

$$\sum_{n=1}^{\infty} a_n b_n < \infty \quad \text{if} \quad \sum_{n=1}^{\infty} a_n e_n \in D.$$

Since the sequence (a_n) satisfies $(a_n \exp \lambda t_e) \in (l^2)$ for any $t \in \mathbb{R}$, we can write

$$b_n = \beta_n \exp \lambda_n t \quad (\beta_n) \in (l^2),$$

where

$$t = \sup \{s \mid \exists (\beta_n) = (\beta_n(s)) \in (l^2) \quad \text{s.t.} \quad b_n = \beta_n \exp \lambda_n s\}.$$

Here, $(\sum_{k=1}^{n} \beta_k \exp \lambda_k t) \in E$. If $t \geq 0$,

$$\langle e_1, (\sum_{k=1}^{n} \beta_k \exp \lambda_k t e_k) \rangle_{D \times E} = \beta_1 \exp \lambda_1 t = b_1,$$

and if $t < 0$,

$$\langle e_1, (\sum_{k=1}^{n} \beta_k \exp \lambda_k t e_k) \rangle_{D \times E} = \langle \exp \lambda t e_1, \sum_{k=1}^{\infty} \beta_k e_k \rangle = \beta_1 \exp \lambda_1 t = b_1.$$

Thus,

$$f = (\sum_{k=1}^{n} \beta_k \exp \lambda_k t e_k) \in E,$$

and we proved the claim.
References

[1] H. Brezis. Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert. North Holland (1973).

[2] H. Brezis. Analyse fonctionnelle Theorie et applications. Masson (1987).

[3] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer. Lecture Notes in Mathematics. 840 (1981).

[4] M. Pierre. Enveloppe d’une famille de semi-groupes non lineaires et equations d’evolution. Seminaire d’analyse non lineaire. Universite de Besancon. (1976-1977).