The effect of cement mortar composition on the pH value

P Shafigh1,2, S Yousuf3, J C Lee4,5 and Z Ibrahim3

1 Department of Building Surveying, Faculty of Built Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia
3 Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
4 Department of Civil Engineering, Faculty of Engineering, UCSI University, Cheras, 56000 Kuala Lumpur, Malaysia
5 E-mail: leejc@ucsiuniversity.edu.my

Abstract. Cement-based materials (CBMs) initially start their life at a high pH of about 12.5-13.5 due to the presence of portlandite (CH or Ca(OH)2) contents. The portlandite is by-product of cement hydration process and the main reason of high pH of CBMs [1,2]. The pH of CBMs does not remain constant and varies with time due to several factors. These factors include carbon dioxide, acid gases, chlorides and moisture that can penetrate into the embedded reinforcement through the process of infiltration, diffusion and capillary action [3,4]. The main processes involved in pH reduction of concrete are, carbonation, corrosion, chloride ingress, biodegradation and acid attack [5].

The durability, strength and service life of concrete structures is directly affected by their pH values. Czarnecki and Woyciechowski [6] stated that CH contents and other alkaline hydroxides present in the concrete maintain the durability of concrete structures. According to Alotaibi [7], the high pH of concrete offers the best safety to embedded reinforcement against destructive agents. The high pH of concrete can protect passive layer of reinforcement for hundreds of years from damaging.

Both, low and high pH than normal pH value of concrete are dangerous for the durability and long service life of concrete structures. The pH of concrete does not remain constant and it may change due to the penetration of carbon dioxide, chlorides and moisture. The main processes involved in pH reduction of concrete are, carbonation [8], corrosion [9], chloride ingress, biodegradation and acid attack [5]. However, high pH of concrete may also cause deterioration in concrete such as alkali silica reaction, porosity and moisture related damages [10].

1. Introduction

Cement-based materials (CBMs), such as concrete, mortar and paste, start their life at a high pH of about 12.5 to 13.5 due to the presence of portlandite (CH or Ca(OH)2) contents. The portlandite is by-product of cement hydration process and the main reason of high pH of CBMs [1,2]. The pH of CBMs does not remain constant and varies with time due to several factors. These factors include carbon dioxide, acid gases, chlorides and moisture that can penetrate into the embedded reinforcement through the process of infiltration, diffusion and capillary action [3,4]. The main processes involved in pH reduction of concrete are, carbonation, corrosion, chloride ingress, biodegradation and acid attack [5].

The durability, strength and service life of concrete structures is directly affected by their pH values. Czarnecki and Woyciechowski [6] stated that CH contents and other alkaline hydroxides present in the concrete maintain the durability of concrete structures. According to Alotaibi [7], the high pH of concrete offers the best safety to embedded reinforcement against destructive agents. The high pH of concrete can protect passive layer of reinforcement for hundreds of years from damaging.

Both, low and high pH than normal pH value of concrete are dangerous for the durability and long service life of concrete structures. The pH of concrete does not remain constant and it may change due to the penetration of carbon dioxide, chlorides and moisture. The main processes involved in pH reduction of concrete are, carbonation [8], corrosion [9], chloride ingress, biodegradation and acid attack [5]. However, high pH of concrete may also cause deterioration in concrete such as alkali silica reaction, porosity and moisture related damages [10].
Currently, the use of supplementary cementitious materials (SCMs) such as fly ash (FA) and ground granulated blast-furnace slag (GGBFS) as partial replacement of ordinary Portland cement (OPC) has been increasing due to commercial, environmental and sustainable issues [11,12]. The SCMs contain high amounts of alumina and amorphous silica. Therefore, they are used to improve the durability of CBMs through filler effect and pozzolanic reaction [13,14].

According to some researchers [15-17], the SCMs decrease pH of CBMs by consuming CH contents in their pozzolanic reaction and small amount of pure cement in the mixes. However, the values of reduction in pH of CBMs due to addition of SCMs has not been reported in the present literature. Therefore, the aim of this study is to investigate the influence of using high volumes of FA and GGBFS on the pH of cement mortars with passage of time up to 150 days. In addition, the effect of CH contents on the pH of mortars have been studied in detail.

2. Experimental program

2.1. Materials

Ordinary Portland cement (OPC) with a specific gravity of 3.12 was used in all the mixes. The specific surface area (SSA) of the OPC based on the Blaine and B.E.T. tests were determined to be 351 m²/kg and 2667.24 m²/kg, respectively. The class F fly ash (FA) had specific gravity of approximately 2.29. The color of FA was whitish grey. According to the B.E.T. test, the SSA of FA was determined to be 2858.6 m²/kg.

The ground granulated ballast furnace slag (GGBFS) had specific gravity of approximately 2.83. The color of GGBFS was off-white. According to the B.E.T. test, the SSA of GGBFS was determined to be 3197.2 m²/kg. Local mining sand having maximum grain size of 4.75 mm and specific gravity of 2.68 was used in this study. The water from the pipeline of the lab was used in all mixes and for curing of the samples. The chemical composition of OPC, FA, GGBFS was determined by “X-ray fluorescence spectrometry (XRF)” and shown in table 1.

Chemical composition	OPC	GGBFS	FA
CaO	60.68	40.88	12.78
SiO₂	20.46	35.98	40.10
Al₂O₃	3.86	13.47	17.05
Fe₂O₃	3.38	0.43	15.05
MgO	3.10	5.42	6.68
P₂O₅	0.06	0.01	0.20
TiO₂	0.17	0.63	0.88
K₂O	0.26	0.36	1.05
SO₃	2.20	1.75	0.63
SrO	0.03	0.05	0.07
MnO	0.15	0.20	0.21
LOI	2.23	0.72	0.70

*LOI = Loss on ignition

2.2. Mix proportions and mixing procedures

A total of three different mortar mixes were produced. In a control mortar having cement to sand ratio of 1:3 and water to cement ratio of 0.48, the OPC was replaced with 50% of FA and GGBFS by weight. Table 2 shows the mix proportions of all mortars in one batch. All mortars had a flow of 210±10 mm. However, for GGBFS mortar SP was needed to achieve the same flow.

For mixing, at first, binder and sand were dry mixed for 2 minutes. Afterwards, the mixture of SP and about 70% of the mixing water were added to mixture and mixing was done for further 3 minutes. Subsequently, the remaining water was added to mixture and mixing was done for further 5 min to get homogeneous mixing. Then, the workability was performed using flow table test.
Table 2. Mix proportions of mortars in one batch.

Mix	Binder	Water (kg)	w/b	Sand (kg)	SP (% of binder)
Control	12.50	-	-	6	0.48
FA-50	6.25	6.25	6	37.5	0.48
GGBFS-50	6.25	-	6	37.5	1.5

Fresh mortar was then cast into 50 mm cube steel molds in two layers. Each layer was compacted using vibrating table. One day after casting, all the cube specimens were demolded and cured under water curing at room temperature (WC), until the samples were used for compressive strength test at the ages of 2, 28 and 150 days.

2.3. Test methods

Flow table test was used to control the workability of mixtures. All mixtures were maintained in a good workability with a flow of 210±10 mm. The calculated compressive strength for each mix was the average of four tested samples. The compressive strength measurements were carried out by using ELE testing machine press with a capacity of 3000 kN and loading rate 0.5 kN/s. Compressive strength tests have been done according to BS [18].

For pH measurement, initially, the inner portions of the cube were taken after crushing the specimen with compression machine. Then, these portions were grinded using grinding machine [19]. The 20g of prepared powder was used for the pH measurement. This powder was mixed with 40 g water (dilution ratio of 1:2) as recommended by Grubb et al. [20]. This solution was stirred using magnetic stirrer for 15 minutes. Then, the solution was filtered using no. 40 filter paper with a 110mm diameter. Finally, three pH readings were taken by digital pH meter. The prepared solution was not stirred during the measurement process. For each time of the pH reading, the pH value was recorded after pH meter showed a stable reading.

Due to availability of buffer solutions for this experimental work, the calibration of pH meter was done by buffer solutions of pH 7.01 and 4.01. It should be noted that based on the different experimental results of various CBMs done by the authors, the difference due to calibration with buffer solutions of pH 7.01, 10.01 and pH 7.01,4.01 was about 0.6.

The thermal gravimetric analysis (TGA) test was used to determine the CH contents for all mortars at the age of 2, 28 and 150 days. The TGA testing is used to measure the weight changes in relation to temperature changes. It highlights the point at which the weight loss is the most apparent, provides the decomposition rate and is helpful for evaluating the mass loss steps accurately. The obtained curves consist of mass loss (%) and derivative weight (%/min). During testing, sample of around 100 mg was heated at 10°C/min from about 30-1000°C in the nitrogen atmosphere at constant rate of 20 ml/min. According to several reports [21-23], the CH content is determined from the percentage weight loss between around 300-550°C.

3. Results and discussion

3.1. Compressive strength

The compressive strength results of control, FA-50 and GGBFS-50 are shown in table 3. The results showed reduction in compressive strength of mortars due to incorporation of FA and GGBFS as described by the previous studies [24, 25]. There was improvement in compressive strength of SCMs blended cement mortars with time due to pozzolanic reaction of FA and GGBFS. The strength of GGBFS-50 mortar was comparable with control mix at the ages of 28 and 150 days.
Table 3. Compressive strength test results.

Mix Name	Compressive strength (MPa)		
	2-day	28-day	150-day
Control	24.3	46.9	62.7
FA-50	9.2	25.1	37.8
GGBFS-50	20.5	47.1	57.5

3.2. The pH measurements and CH quantity

The measured pH values of control, FA-50 and GGBFS-50 mortars at the ages of 2, 28 and 150 days are given in table 4. The CH quantities of all mortars obtained by TGA testing are given in table 5. The obtained results showed reduction in pH of blended cement mortars due to FA and GGBFS with age in accordance to the previous studies [15,26,27]. However, the TGA CH results showed increase in CH contents of FA-50 mix with time. It might be due to more dominant filler effect of FA than its pozzolanic effect [28]. The reduction in CH contents of GGBFS-50 mix showed pozzolanic reaction of GGBFS with passage of time [29]. It can be concluded from the obtained results that pH is not only dependent on the CH contents. Therefore, other factors affecting pH of SCMs-blended cement mortars should be investigated.

Table 4. The pH measurement results of mortars.

Mix Name	pH value at different ages		
	2-day	28-day	150-day
Control	12.5	12.3	12.1
FA-50	12.4	12.2	11.7
GGBFS-50	12.4	12.2	11.9

Table 5. The CH quantities of mortars.

Mix Name	Quantity of CH		
	2-day	28-day	150-day
Control	1.468	1.754	2.609
FA-50	1.163	1.423	1.572
GGBFS-50	1.360	1.252	1.223

4. Conclusions

This paper presents a detailed study on the pH of cement mortars containing 50% of fly ash (FA) and ground granulated ballast furnace slag (GGBFS) with passage of time. The following conclusions can be drawn from the study:

- There is reduction in pH of cement mortars due to incorporation of FA and GGBFS with passage of time. However, this reduction is not significant, and pH is in the safe range to avoid corrosion of rebars and any other durability related problems.
- The pH of blended cement mortars is not only dependent on the CH contents. Therefore, the other factors affecting pH of cement mortars should be investigated.

Acknowledgment

The authors would like to acknowledge to UCSI University Pioneer Scientist Incentive Fund, Malaysia (Project code: Proj-2019-In-FETBE-066) for providing research facilities and materials.

References

[1] Longuet P, Burglen L and Zelwer A 1973 The liquid phase of hydrated cement Rev. Matér. Constr. Trav. Publics 676 35-41
[2] Barneyback Jr R and Diamond S 1981 Expression and analysis of pore fluids from hardened cement pastes and mortars Cem. Concr. Res. 11 279-85
[3] Saetta A V, Schrefler B A and Vitaliani R V 1993 The carbonation of concrete and the mechanism
of moisture, heat and carbon dioxide flow through porous materials Cem. Concr. Res. 23 761-72

[4] Zivica V R and Bajza A 2001 Acidic attack of cement based materials-a review: Part 1. Principle of acidic attack Constr. Build. Mater. 15 331-40

[5] Monteny J et al. 2000 Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete Cem. Concr. Res. 30 623-34

[6] Czarnecki L and Woyciechowski P 2012 Concrete carbonation as a limited process and its relevance to concrete cover thickness ACI Mater. J. 109-M25 275-282

[7] Alotaibi A 2016 Is it better to renovate the dilapidated concrete structures than rebuilding them? Technical report DO: 10.13140/RG.2.2.14109.51681

[8] McPolin D, Basheer P and Long A 2009 Carbonation and pH in mortars manufactured with supplementary cementitious materials J. Mater. Civil Eng. 21 217-25

[9] Bertolini L, Elsener B, Pedferri P, Redaelli E and Polder RB 2013 Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, John Wiley & Sons: New York, NY, USA

[10] Shehata M H and Thomas M D A 2006 Alkali release characteristics of blended cements Cem. Concr. Res. 36 1166-75

[11] Johari M M et al 2011 Influence of supplementary cementitious materials on engineering properties of high strength concrete Constr. Build. Mater. 25 2639-48

[12] Han S-H, Kim J-K and Park Y-D 2003 Prediction of compressive strength of fly ash concrete by new apparent activation energy function Cem. Concr. Res. 33 965-71

[13] Sabir B, Wild S and Bai J 2001 Metakaolin and calcined clays as pozzolans for concrete: A review Cem. Concr. Comp. 23 441-54

[14] Owaid H M, Hamid R B and Taha M R 2012 A review of sustainable supplementary cementitious materials as an alternative to all-Portland cement mortar and concrete Aust. J. Basic Appl. Sci. 6 287-303

[15] Toutanji H et al 2004 Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete Cem. Concr. Res. 34 311-9

[16] Fraay A L A, Bijen J M and de Haan Y M 1989 The reaction of fly ash in concrete a critical examination Cem. Concr. Res. 19 235-46

[17] Elahi A et al 2010 Mechanical and durability properties of high performance concretes containing supplementary cementitious materials Constr. Build. Mater. 24 292-9

[18] British Standard Part-116 (1983) Method for Determination of Compressive Strength of Concrete Cubes (London 1881)

[19] Ahmad S 2003 Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review Cem. Concr. Comps. 25 459-71

[20] Grubb J A, Limaye H S and Kakade A M 2007 Testing pH of concrete Concr. Int. 29 78-83

[21] Alarcon-Ruiz L et al. 2005 The use of thermal analysis in assessing the effect of temperature on a cement paste Cem. Concr. Res. 35 609-13

[22] Mounanga P et al. 2004 Predicting Ca(OH)₂ content and chemical shrinkage of hydrating cement pastes using analytical approach Cem. Concr. Res. 34 255-65

[23] Younsi A et al. 2013 Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying Cem. Concr. Res. 43 25-33

[24] Kim J H et al. 2019 Mechanical properties and sulfate resistance of high volume fly ash cement mortars with air-cooled slag as fine aggregate and polypropylene fibers Materials (Basel, Switzerland) 12 469

[25] Humad A M et al 2019 The effect of blast furnace slag/fly ash ratio on setting, strength, and shrinkage of alkali-activated pastes and concretes Front. Mater. 6

[26] Rashad A M 2015 An investigation on very high volume slag pastes subjected to elevated temperatures Construction and Building Materials 74 249-58

[27] Elahi A et al. 2010 Mechanical and durability properties of high performance concretes containing supplementary cementitious materials Constr. Build. Mater. 24 292-9
[28] Chousidis N et al. 2016 Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes Constr. Build. Mater. 126 86-97
[29] Jeong J-Y et al. 2015 Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes J. Korea Concr. Inst. 27 115-25