Electrophysiological assessment of retinal functions by ERG in Ischemia/Reperfusion (I/R) Allium cepa pre-treated mice

Saurabh Kumar, Richa Shri, Sushmita Kaushik, Varinder Singh, Akshay Anand*

Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.

*Corresponding author
Akshay Anand, PhD
Neuroscience Research Lab
Department of Neurology
Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
Contact no: +91-9914209090
E-mail: akshay1anand@rediffmail.com

ABSTRACT
Retinal disorders are the one of the most challenging and complex degenerative diseases that need to be addressed because of rapid increase in the number of affected individuals. Most of the available treatments strategies are inadequate to exert permanent solution to the patients. Therefore, as an alternative approach we wanted to test the efficacy of Allium cepa (A. cepa) in an Ischemia/Reperfusion (I/R) mouse model. We orally administered the aqueous extract of A. cepa at different dosages 100 mg/kg, 200 mg/kg, 300 mg/kg 24 hrs prior to the surgery. Electroretinogram (ERG) analysis was carried out at 7 day, 21 day, and 28 day after the surgery. ERG recording depicted that A. cepa administration is able to increase the implicit time but not at the statistically significant level for which larger sample size and deeper analysis is required.

doi: 10.38205/imcr.010118

KEY WORDS
Allium cepa
pretreatment
ERG
PPA
Retina

Introduction
Repeated failure in treating different neurodegenerative diseases have left no option for the researchers to think about the alternative approaches. Fruits and vegetables are the excellent alternative source to treat such disorders (1). Different studies suggest the potential role of fruits and vegetables in reducing the risk of degenerative diseases (2, 3). Flavonoids, a polyphenolic secondary metabolite are known to have antioxidant, anti-inflammatory, and anti-microbial properties. These flavonoids have been used in different in vitro and in vivo models and several studies suggests its protective role in degenerative diseases (4, 5).

Eye related disorders are most common degenerative disorders and have very limited scope of permanent cure. However, to overcome this, various traditional approaches like herbal remedy and homeopathy have been employed by ophthalmologist (6). Scientific studies have reported preventive role of onion on different eye related disorders like; Cata ract (7, 8), Age-related Macular Degeneration (AMD) (9).

Onion bulbs (Allium cepa L.) are the rich source of flavonoid, especially in quercetin. Different groups have elucidated the potential biological activity of A. cepa as neuroprotective, antioxidant, antiallergic, and anti-inflammatory (5, 10, 11). Published literature explains that onion extract (OE) lowers the total cholesterol content in rabbits (12) and in rats (13) fed with high cholesterol diet. Protective role of ethanolic extract of A. cepa was found in case of cognition impairments in streptozotocin induced rat diabetes model (14). The neuroprotective effect of flavonoid is known to exert by two processes: First, by interacting with lipid kinase thereby leading to the inhibition of the apoptosis. Second, by benefiting the vascular system (15).

Retinal ischemia which is a leading cause of blindness, results due to insufficient supply of blood to the retina and is known to be associated with several eye related disorders like glaucoma, diabetic retinopathy, and optic retinopathy (16). There have not been many studies on neuroprotective role of onion in rescuing the retinal ganglion cell death resulting due to retinal ischemia. Therefore, in the present study we have investigated the efficacy of aqueous extract of Allium cepa in rescuing the retinal functions depicted by electroretinogram (ERG) analysis. Ischemia/Reperfusion (I/R) induced retina injured mouse model was used to alter the retinal functions thereby affecting the vision.

ERG is a non-invasive technique used to depict the retinal functions. The ability of ERG to detect and isolate various signals from a different set of retinal neurons makes it a important tool for electrophysiological measures and this can be achieved by controlling/changing the stimulus, light intensity or adaptation, and parameters for data processing (17). Data acquisition in the form of wave pattern is a means to represent and distinguish different retinal cells activity. The wave pattern generally starts in the following pattern: “a-wave” is the first negative deflection and represents the primary retinal neurons (photoreceptors: rods and cones); “b-wave” is the...
positive peak which represents the bipolar cells (17); c-wave originates from retinal pigment epithelium (RPE) cells; oscillatory potentials (OP) originates from inner retina/amacrine cells (18). We used scotopic ERG (dark-adapted mice) for this purpose.

Methods

Animals

A C-57BL/6J male 8- to 10-week-old mouse was used for the experimentation purpose. The weight of the mice ranges from 25 g–30 g. Ethical approval was obtained from animal ethical committee (IAEC) of Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India. The animals were kept in the sterile cages and temperature and humidity controlled facility of PGIMER animal house with no restriction to food and water. A 12 hr light/dark cycle was followed. The animals were divided into 4 groups (Figure 1).

Experimental groups

The complete experiment was carried according to the GLP guidelines at Neuroscience Research Laboratory (19, 20). The *A. cepa* extract preparation is detailed in our previous publication (21). Different dosages of *A. cepa* (100 mg/kg, 200 mg/kg, 300 mg/kg) was administered 24 hours prior to the surgery. Animals were divided into 4 different groups: group 1 (Injury alone), group 2 (Injury + 100 mg/kg *A. cepa* pretreatment), group 3 (Injury + 200 mg/kg *A. cepa* pretreatment), and group 4 (Injury + 300 mg/kg *A. cepa* pretreatment).

Surgery

Combination of Xylazine (50 mg/ml) / Ketamine (1:4 ratio) was used to anesthetize the mice. Intraperitoneal injection (IP) was administrated. Approximately 1.5 cm incision was made around the neck region. Initially, the CCA was exposed by retracting the muscles. The bifurcation was exposed and ECA was ligated with a fine suture. Further, the bifurcation of ICA was traced down and PPA was ligated with a 7.0 mm ethicon suture. The ligation was maintained for 2 hrs after that the ligated sutures were removed and mice was allowed to reperfuse (7 day, 21 day, and 28 day) under the sterile condition. The surgery was carried out under the Leica Stereozoom microscope.

Electroretinography recordings

Scotopic electroretinography (ERG) was performed to evaluate the function of retina caused due to 2 hrs of ischemia. The experiment was carried out using iWork ERG instrument (Dover, USA). The ERG data was recorded and evaluated using Labscribe software. ERG was done for all the 4 groups. This experiment was performed once the 24 hrs dark adaptation completed. Anesthesia was administrated intraperitoneally and the animals were kept on heating pad. Tropicamide and methylcellulose eye drops were used to dilate the pupils. Ground electrode was placed on tail, negative electrode in between the ears, and positive electrode was connected to the cornea (19). The readings were taken with flashes of light.
Results

Table 1 represents the implicit time and amplitude of both a- and b-waves depicted by ERG. Scotopic ERG was performed on 24 hr dark adapted mice. We recorded four important parameters, i.e., implicit time to a-wave, implicit time to b-wave, amplitude of a-wave, and amplitude of b-wave. At 7 day, the implicit time to a-wave was found to be 45 ± 5.78 for Injury alone, 35 ± 8.01 for 100 mg/kg pretreated, 44.85 ± 2.86 for 200 mg/kg pretreated, and 45.45 ± 1.72 for 300 mg/kg pretreated group. For injury alone group, the implicit time to a-wave was highest 43.55 ± 1.72 for 200 mg/kg, whereas for injury alone it was 42.25 ± 4.51 for 100 mg/kg group; 42.27 ± 1.62 for 200 mg/kg; and 36.95 ± 6.75 for 300 mg/kg group. For injury alone it was 42.25 ± 4.51, for 100 mg/kg it was 42.27 ± 1.62 and for 300 mg/kg it was 36.95 ± 6.75. With the increase in time points the we observed that at 28 day the implicit time to a wave also increased i.e. 51.13 ± 3.12, 43.33 ± 0.85, 44.33 ± 1.84, 46.2 ± 0.76 for injury alone, 100 mg/kg, 200 mg/kg, and 300 mg/kg, respectively. Positive wave i.e. the b-wave implicit time was found to be 88.27 ± 9.26 for injury alone at 7 day, whereas for 21 day it was 77.25 ± 7.67, and for 28 day it recorded 102.27 ± 5.72. For A. cepa pretreatment group's implicit time to b wave at 7 day was 88.8 ± 7.17 for 100 mg/kg, 90.8 ± 2.19 for 200 mg/kg and 92.3 ± 1.45 for 300 mg/kg.

Table 1: Electrotoretinogram (ERG) analysis for Injury alone, and A. cepa pretreated groups (100 mg/kg, 200 mg/kg, 300 mg/kg) at different time points (7 day, 21 day, 28 day) (A). a-wave implicit time; b-wave implicit time (B). a-wave amplitude; b-wave amplitude. The data is represented as mean ± SE. For Injury alone group sample size was (7 day (n = 3); 21 day (n = 4); 28 day (n = 3)); for 100 mg/kg pretreated group (7 day (n = 4); 21 day (n = 3); 28 day (n = 3)); for 200 mg/kg pretreated group (7 day (n = 4); 21 day (n = 4); 28 day (n = 3)); for 300 mg/kg pretreated group (7 day (n = 4); 21 day (n = 4); 28 day (n = 4)).

Time/Groups	Implicit Time a (Time in ms ± SE)	Implicit Time b (Time in ms ± SE)
7 day	Injury 45 ± 5.78	Injury 88.27 ± 9.26
	100 mg/kg 35 ± 8.01	100 mg/kg 88.8 ± 2.19
	200 mg/kg 44.85 ± 2.86	200 mg/kg 90.8 ± 2.19
	300 mg/kg 45.45 ± 1.72	300 mg/kg 92.3 ± 1.46
21 day	Injury 42.25 ± 4.51	Injury 77.25 ± 7.67
	100 mg/kg 42.27 ± 1.62	100 mg/kg 88.8 ± 3.89
	200 mg/kg 43.55 ± 1.72	200 mg/kg 88.3 ± 8.09
	300 mg/kg 44.33 ± 1.84	300 mg/kg 89.3 ± 8.09
28 day	Injury 51.13 ± 3.12	Injury 102.27 ± 5.72
	100 mg/kg 43.33 ± 0.85	100 mg/kg 79 ± 4.06
	200 mg/kg 44.33 ± 1.84	200 mg/kg 82 ± 4.56
	300 mg/kg 46.2 ± 0.76	300 mg/kg 89.6 ± 5.09

for 300 mg/kg. At 21 day we found slight decrease in the implicit time to b-wave i.e. 87.2 ± 8.25 (100 mg/kg), 86.4 ± 3.89 (200 mg/kg), 88.3 ± 8.09 (300 mg/kg). Similar trends where observed for 28 day where mean implicit time to b-wave was recorded as follows: 79 ± 4.06, 82 ± 4.56, and 89.6 ± 5.09 for 100 mg/kg, 200 mg/kg, 300 mg/kg respectively.

Further, the amplitude for both the waves was recorded. The amplitude of a-wave for injury alone was -0.198 ± 0.031 (7 day), -0.1025 ± 0.048 (21 day), -0.124 ± 0.017 (28 day); for 100 mg/kg pretreatment group it was -0.192 ± 0.045 (7 day), -0.363 ± 0.05 (21 day), -0.188 ± 0.026 (28 day); for 200 mg/kg pretreatment group it was -0.339 ± 0.071 (7 day), -0.205 ± 0.031 (21 day), -0.302 ± 0.029 (28 day); and for 300 mg/kg pretreatment group it was -0.595 ± 0.013 (7 day), -0.407 ± 0.024 (21 day), -0.356 ± 0.062 (28 day). Similarly, the mean amplitude of b-wave was as follows: 0.0163 ± 0.016, 0.0295 ± 0.024, 0.004 ± 0.038 as for injury alone group; 0.021 ± 0.03, 0.0673 ± 0.026, 0.0163 ± 0.006 for 100 mg/kg group; 0.007 ± 0.02, 0.0617 ± 0.012, 0.1076 ± 0.035 for 200 mg/kg group; 0.086 ± 0.007, 0.078 ± 0.020, 0.074 ± 0.044 for 300 mg/kg A. cepa pretreated group at 7, 21, and 28 day time points respectively. The details of significance level have been incorporated in the supplementary file (Supplementary Table 1).

Discussion

Retinal ischemia is a serious complication associated with glaucoma, diabetic retinopathy, and optic retinopathy (16). The associated condition may lead to blindness if appropriate and adequate treatments are not given on time. We have established a retinal ischemia mouse model by ligating two important arteries i.e. ophthalmic artery (PPA) and ECA (20). It's a 2 hr occlusion model followed by reperfusion for 3 different time points: 7, 21, and 28-day. Because of the repeated failure (24) and side effects (25) of the available commercial drugs, we wanted to test the alternative approach of testing
A. cepa (onion) as the pretreatment strategy to explore if it is able to improve the vision or not. Apart from its many biological benefits in the form of antioxidant, anti-inflammatory, and neuroprotective activity (as shown by previous studies) its common availability makes it an important biological product to be tested for its efficacy (5, 10, 11). For this, 3 different concentrations of aqueous extract of commonly used red onion was tested i.e. 100 mg/kg, 200 mg/kg and 300 mg/kg. The functional efficacy of A. cepa in the form of retinal wave analysis is very important in retinal degeneration cases and to the best of our knowledge it has not been previously reported in such models. According to standardized protocols the ERG recordings are depicted by three important factors: the instrument setup, intensity of the light stimulus, and animal state (26).

ERG recording depicted that implicit time to a-wave decreased in all the A. cepa administered groups except for slight increase in 300 mg/kg in comparison to the injury alone group for 7-day, however, this decrease was not statistically significant. Similarly, the implicit time to b-wave for both 21-day and 28-day increased throughout the A. cepa administered groups in comparison to the injury alone group. However, for 28-day, the implicit time to b-wave was highest for injury alone group followed by 300 mg/kg. From this, it can be said that A.capa administration is able to increase the implicit time but not at the statistically significant level for which larger sample size and deeper analysis is required. Delay in implicit time a-wave have previously been reported in diseased cases (27). Similarly, reduction in a-wave amplitude has also been reported in certain cases. Mixed results were obtained in case of both amplitude a- and b-wave. Amplitude a-wave was recorded to be decreased in most of the A. cepa administered groups with respect to the injury alone group. Further, b-wave amplitude was highest at 7 day for 100 mg/kg; at 21 day for 300 mg/kg, and at 28 day for 200 mg/kg. So, from this data it can be concluded that A. cepa may able to improve the retinal functions depicted by ERG analysis.

Limitations of the study

Though we have tried to minimise the limitation, factors such as intensity of light stimulus, temperature/humidity, anesthesia, ocular environment, adaptive state, and other technical difficulties affecting the ERG recordings cannot be ruled out. Large sample size and more group like: Injury+ PBS/solvent comparison is needed.

Acknowledgments

Authors would like to acknowledge the Ministry of AYUSH, Govt. of India for providing the funding (Z.28015/106/2014-HPC (EMR)-AYUSH-A).

Authors Contribution

SK: Experimentation, data analysis, original writing
AA: Conceptualization, editing of the manuscript, securing funding
RS: Co-conceptualization
SK: Co-conceptualization
VS: Experimentation

Ethical statement

All experiments were performed after getting the approval from Institutional Animal Ethical Committee (IAEC) via approval no: 67/IAEC/390R.

Conflicts of interests

The authors declare that they have no conflict of interest.

Source of funding

Thanks to ministry of AYUSH file No. (Z.28015/106/2014-EMR-AYUSH-A) Government of India

Received Date: 10-02-20; Revised Date: 12-02-20
Accepted Date: 26-02-20

References

1. Essa MM, Akbar M, Guillemin G. The Benefits of Natural Products for Neurodegenerative Diseases: Springer; 2016.
2. Sofi F, Dinu MR. Nutrition and prevention of chronic-degenerative diseases. Agriculture and agricultural science procedia. 2016;8: 713–7.
3. Jiang X, Huang J, Song D, Deng R, Wei J, Zhang Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Cognitive Impairment and Dementia: Meta-Analysis. Frontiers in aging neuroscience. 2017:9:18.
4. Sarchielli E, Morelli A, Guarnieri G, Iorizzi M, Sgambati E. Neuroprotective effects of quercetin 4’-O-b-d-glucoside on human striatal precursor cells in nutrient deprivation condition. Acta histochemica. 2018;120(2):122-8.
5. Shri R, Bora KS. Neuroprotective effect of methanolic extracts of Allium cepa on ischemia and reperfusion-induced cerebral injury. Fitoterapia. 2008;79(2):86–96.
6. Nejabat M, Salehi A, Noorani Azad P, Ashrafi MJ. Effects of onion juice on the normal flora of eyelids and conjunctiva in an animal model. Indian journal of ophthalmology. 2009;57(3):185.
7. Javadzadeh A, Ghorbaniahgiji A, Baydadi S, Rashidi MR, Mengari M, Rashtchizadeh N, et al. Preventive effect of onion juice on selenite-induced experimental cataract. Indian journal of ophthalmology. 2017;65(5):967–8.
8. Stek M, Karaus C. Eye lens in aging and diabetes: effect of quercetin. Rejuvenation research. 2011;14(5):525–34.
9. Agte V, Tarwadi K. The importance of nutrition in the prevention of ocular disease with special reference to cataract. Ophthalmic research. 2010;44(3):166–72.
10. Sato A, Zhang T, Yonekura L, Tamura H. Antiallergic activities of eleven onions (Allium cepa) were attributed to quercetin 4’-glucoside using QuEChERS method and Pearson’s correlation coefficient. Journal of Functional Foods. 2015;14:581–9.
11. Singh T, Goel RK. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology. 2015;49:1-7.
12. Movahedian A, Sadeghi H, Ghanadi A, Gharavi M, Azarpajooh S. Hypolipidemic activity of Allium porrum L. in cholestrol-fed rabbits. Journal of medicinal foods. 2006;9(1):98–101.
13. Kumari K, Augusti K. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. Journal of ethnopharmacology. 2007;109(3):367-71.
14. Tamtaji OR, Hosseinzadeh H, Talaei SA, Behnam M, Firoozeh SMT, Taghizadeh M, et al. Protective Effects of Red Onion (Allium cepa) Ethanolic Extract on Learning and Memory Impairments in Animal Models of Diabetes. Galen Medical Journal. 2017;6(3):249–57.

15. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes & Nutrition. 2008;3(3-4):115–26.

16. Minhas G, Morishita R, Anand A. Preclinical models to investigate retinal ischemia: advances and drawbacks. Frontiers in neurology. 2012;3:75.

17. Tomiyama Y, Fujita K, Nishiguchi KM, Tokashiki N, Daigaku R, Tabata K, et al. Measurement of electroretinograms and visually evoked potentials in awake moving mice. PloS one. 2016;11(6).

18. Hema L, Ramkumar KDE, Koushik Tripathy, Peter A. Karth, Usha Rajapuram Kumar, and Vinay A. Shah. Electroretinogram: EyeWiki; [updated 15 November 2019. Available from: https://eyewiki.aao.org/Electroretinogram.

19. Neuroscience Research Lab DoN, Post Graduate Institute of Medical Education and Research, Chandigarh. Redefining Quality Standards in Basic Research Investigations by Broadening the Purview of GLP: Quality Council of India.

20. Bammidi S, Sharma KV, Tyagi R, Sharma NK, Anand A. Eye Genetics: The Road Ahead to Quality Standards. Advances in Vision Research, Volume 1: Springer; 2017. p. 473–80.

21. Kumar S, Modgil S, Bammidi S, Minhas G, Shri R, Kaushik S, et al. Allium cepa exerts neuroprotective effect on retinal ganglion cells of pterygopalatine artery (PPA) ligated mice. J Ayurveda Integr Med. 2020.

22. Modgil S, Cameotra SS, Sharma VL, Anand A. Early Life Pb Exposure and its Effect on Later Life Retinal Degeneration. Journal of cellular biochemistry. 2017.

23. Minhas G, Prabhakar S, Morishita R, Shimamura M, Bansal R, Anand A. Transplantation of lineage-negative stem cells in pterygopalatine artery ligation induced retinal ischemia-reperfusion injury in mice. Molecular and cellular biochemistry. 2017;429(1-2):123–36.

24. Kumar S, Modgil S, Bammidi S, Minhas G, Shri R, Kaushik S, et al. Allium cepa exerts neuroprotective effect on retinal ganglion cells of pterygopalatine artery (PPA) ligated mice. Journal of Ayurveda and Integrative Medicine. 2020.

25. Barkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clinical Ophthalmology (Auckland, NZ). 2016;10:2433.

26. Brandli A, Stone J. Using the electroretinogram to assess function in the rodent retina and the protective effects of remote limb ischemic preconditioning. JoVE (Journal of Visualized Experiments). 2015(100):e52658.

27. Hancock HA, Kraft TW. Oscillatory potential analysis and ERGs of normal and diabetic rats. Investigative ophthalmology & visual science. 2004;45(3):1002-8.
Supplementary Table 1

POST HOC TESTS

1. IMPLICIT TIME A-WAVE

Multiple Comparisons

7 Day	(I) Group	(J) Group	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	Lower Bound	Upper Bound
Scheffe	Injury	Hundred	10.0000	7.6475	.646		-15.089	35.089
	Two Hundred	.1500	7.6475	1.000			-24.939	25.239
	Three Hundred	-4500	7.6475	1.000			-25.539	24.639
	Hundred	Injury	-10.0000	7.6475	.646		-35.089	15.089
	Two Hundred	-9.8500	7.0803	.602			-33.077	13.377
	Three Hundred	-10.4500	7.0803	.557			-33.677	12.777
	Two Hundred	Injury	-1.5000	7.6475	1.000		-25.239	24.939
	Hundred	.98500	7.0803	.602			-13.377	33.077
	Three Hundred	-6000	7.0803	1.000			-23.827	22.627
	Three Hundred	Injury	.45000	7.6475	1.000		-24.639	25.539
	Hundred	10.4500	7.0803	.557			-12.777	33.677
	Two Hundred	.60000	7.0803	1.000			-22.627	23.827
	Three Hundred	Injury	-10.4500	7.0803	.364		-29.735	8.835
	Hundred	.98500	7.0803	.602			-23.200	20.633
	Three Hundred	-6000	7.0803	1.000			-19.885	18.685

1.2. Dependent Variable: Implicit Time A-Wave: 21 Day

21 Day	(I) Group	(J) Group	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	Lower Bound	Upper Bound
Scheffe	Injury	Hundred	-.01667	6.68074	1.000		-21.9335	21.9001
	Two Hundred	-1.30000	6.18516	.997			-18.9910	18.9910
	Three Hundred	5.30000	6.18516	.863			-14.9910	25.5910
	Hundred	Injury	.91667	6.68074	1.000		-21.9001	21.9335
	Two Hundred	-1.28333	6.68074	.998			-23.2001	20.6335
	Three Hundred	5.31667	6.68074	.887			-16.6001	27.2335
	Two Hundred	Injury	1.30000	6.18516	.997		-18.9910	21.9510
	Hundred	1.28333	6.68074	.998			-20.6335	23.2001
	Three Hundred	6.60000	6.18516	.770			-13.6910	26.8910
	Three Hundred	Injury	-5.30000	6.18516	.863		-25.5910	14.9910
	Hundred	-5.31667	6.68074	.887			-27.2335	16.6001
	Two Hundred	-6.60000	6.18516	.770			-26.8910	13.6910
	Three Hundred	Injury	5.30000	6.18516	.736		-11.5473	22.1473
	Hundred	5.31667	6.68074	.774			-12.8805	23.5138
	Two Hundred	6.60000	6.18516	.601			-10.2473	23.4473
1.3. Dependent Variable: Implicit Time A-Wave: 28 Day

28 Day	(I) Group3	(J) Group3	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
			Lower Bound	Upper Bound			
Scheffe	Injury	Hundred	7.80000	2.58314	.085	~0.9932	16.5932
	Two Hundred		6.80000	2.58314	.145	~1.9932	15.5932
	Three Hundred		4.93333	2.41630	.308	~3.2919	13.1586
	Hundred		~7.80000	2.58314	.085	~16.5932	9.932
	Two Hundred		~1.00000	2.58314	.984	~9.7932	7.7932
	Three Hundred		~2.86667	2.41630	.711	~11.0919	5.3586
	Two Hundred		~6.80000	2.58314	.145	~15.5932	1.9932
	Hundred		1.00000	2.58314	.984	~7.7932	9.7932
	Three Hundred		~1.86667	2.41630	.895	~10.0919	6.3586
	Three Hundred		~4.93333	2.41630	.171	~1.9099	11.7766
Dunnett t (2-sided)*	Injury	Three Hundred	4.93333	2.41630	.500	~9.0999	3.9766
	Three Hundred		~2.86667	2.41630	.540	~9.0999	3.9766
	Two Hundred		~1.86667	2.41630	.796	~8.7099	4.9766

2. IMPLICIT TIME B-WAVE

2.1. Dependent Variable: Implicit Time B-Wave: 7 Day

7 Day	(I) Group1	(J) Group1	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
			Lower Bound	Upper Bound			
Scheffe	Injury	Hundred	~5.3333	8.02095	1.000	~26.8468	25.7802
	Two Hundred		~2.5333	8.02095	.991	~28.8468	23.7802
	Three Hundred		~4.03333	8.02095	.967	~30.3468	22.8802
	Hundred		~5.3333	8.02095	1.000	~25.7802	26.8468
	Two Hundred		~2.00000	7.42596	.995	~26.3616	22.3616
	Three Hundred		~3.50000	7.42596	.973	~27.8616	20.8616
	Two Hundred		~2.53333	8.02095	.991	~23.7802	28.8468
	Hundred		~2.00000	7.42596	.995	~22.3616	26.3616
	Three Hundred		~1.50000	7.42596	.998	~25.8616	22.8616
	Three Hundred		~4.03333	8.02095	.967	~22.2802	30.3468
	Hundred		3.50000	7.42596	.973	~20.8616	27.8616
	Two Hundred		1.50000	7.42596	.998	~22.8616	25.8616
Dunnett t (2-sided)*	Injury	Three Hundred	~4.03333	8.02095	.924	~25.8810	17.8143
	Three Hundred		~3.50000	7.42596	.936	~23.7270	16.7270
	Two Hundred		~1.50000	7.42596	.994	~21.7270	18.7270
2.2. Dependent Variable: Implicit Time B-Wave: 21 Day

21 Day	(I) Group2	(J) Group 2	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval
			Upper Bound	Lower Bound		
Scheffe	Injury	Hundred	-9.95000	10.50654	.826	-44.4177
		Two Hundred	-9.15000	10.50654	.828	-41.0609
		Three Hundred	-11.05000	9.72716	.736	-42.9609
	Hundred	Injury	9.95000	10.50654	1.000	-33.6677
		Two Hundred	8.00000	10.50654	1.000	-35.5677
		Three Hundred	-1.10000	10.50654	1.000	33.5677
	Two Hundred	Injury	9.15000	9.72716	.828	-22.5177
		Hundred	-8.00000	10.50654	1.000	-35.2677
		Three Hundred	-1.90000	9.72716	.998	-33.8109
	Three Hundred	Injury	11.05000	9.72716	.736	-20.8609
		Hundred	1.10000	10.50654	1.000	-33.3677
		Two Hundred	1.90000	9.72716	.998	-30.0109
Dunnett t (2-sided)a	Injury	Three Hundred	-11.05000	9.72716	.557	-37.5451
		Hundred	-1.10000	10.50654	.999	-29.7180
		Two Hundred	-1.90000	9.72716	.995	-28.3951

2.3. Dependent Variable: Implicit Time B-Wave: 28 Day

28 Day	(I) Group3	(J) Group 3	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval
			Upper Bound	Lower Bound		
Scheffe	Injury	Hundred	232.6667	7.36009	.070	-1.7875
		Two Hundred	202.6667	7.36009	.123	-4.7875
		Three Hundred	126.6667	6.88473	.388	-10.7694
	Hundred	Injury	-23.2667	7.36009	.070	-48.3209
		Two Hundred	-3.00000	7.36009	.982	-28.0542
		Three Hundred	-10.60000	6.88473	.529	-34.0361
	Two Hundred	Injury	-20.2667	7.36009	.123	-45.3209
		Hundred	-3.00000	7.36009	.982	-22.0542
		Three Hundred	-7.60000	6.88473	.752	-31.0361
	Three Hundred	Injury	-12.6667	6.88473	.388	-36.1027
		Hundred	10.60000	6.88473	.529	-12.8361
		Two Hundred	7.60000	6.88473	.752	-15.8361
Dunnett t (2-sided)a	Injury	Three Hundred	12.6667	6.88473	.230	-6.8318
		Hundred	-10.60000	6.88473	.349	-30.0984
		Two Hundred	-7.60000	6.88473	.591	-27.0984
3. AMPLITUDE a-WAVE

3.1. Dependent Variable: Amplitude a-Wave: 7 Day

7 Day	(I) Group 1	(J) Group 1	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval
Injury	Hundred	-.0062500	.0701467	1.00		-.236373
	Two Hundred	.1410000	.0701467	.310		-.089123
	Three Hundred	.3965000*	.0701467	.001		.166377
						.266623
Scheffe	Injury	.0062500	.0701467	1.00		-.233873
	Two Hundred	.4725000	.0649432	.222		-.065802
	Three Hundred	.4027500*	.0649432	.001		.189698
						.615802
Two Hundred	Injury	-.1410000	.0701467	.310		-.371123
	Two Hundred	.1472500	.0649432	.222		-.360302
	Three Hundred	.3965000*	.0649432	.001		.189698
						.615802
Three Hundred	Injury	-.4027500*	.0649432	.018		-.468552
	Two Hundred	.3965000*	.0649432	.000		.205433
						.587657
Dunnett t	Injury	.0062500	.0701467	1.00		-.236373
	Two Hundred	.1032500	.0528513	.332		-.070134
	Three Hundred	.3055000*	.0528513	.001		.132116
						.478884
(2-sided)^a	Injury	-.3965000*	.0701467	.310		-.626623
	Two Hundred	.1472500	.0649432	.222		-.360302
	Three Hundred	.3965000*	.0649432	.001		.189698
						.615802
Three Hundred	Injury	-.4027500*	.0649432	.018		-.468552
	Two Hundred	.3965000*	.0649432	.000		.205433
						.587657
						.587657

*. The mean difference is significant at the 0.05 level.

3.2. Dependent Variable: Amplitude a-Wave: 21 Day

21 Day	(I) Group 2	(J) Group 2	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval
Injury	Hundred	.2615000*	.0570859	.007		.074224
	Two Hundred	.1032500	.0528513	.332		.276634
	Three Hundred	.3055000*	.0528513	.001		.132116
						.478884
Scheffe	Injury	-.2615000*	.0570859	.007		-.448776
	Two Hundred	.1032500	.0528513	.332		-.070134
	Three Hundred	.3055000*	.0528513	.001		.132116
						.478884
Hundred	Injury	-.1582500	.0570859	.108		-.345526
	Two Hundred	.0440000	.0570859	.896		.143276
	Three Hundred	.1582500	.0570859	.332		.276634
						.70134
Two Hundred	Injury	-.1032500	.0528513	.332		-.276634
	Two Hundred	.1582500	.0570859	.108		-.029026
	Three Hundred	.2022500*	.0528513	.021		.028866
						.375634
Three Hundred	Injury	-.3055000*	.0528513	.001		-.478884
	Two Hundred	.0440000	.0570859	.896		-.231276
						.143276
Dunnett t	Injury	.3055000*	.0528513	.000		.161542
(2-sided)^a	Two Hundred	.0440000	.0570859	.789		-.111492
	Three Hundred	.2022500*	.0528513	.007		.058292
						.346208

*. The mean difference is significant at the 0.05 level.
3.3. Dependent Variable: Amplitude a-Wave: 28 Day

28 Day	(I) Group 3	(J) Group 3	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	Lower Bound	Upper Bound
Injury	Hundred	.0640000	.0637237	.800			−.152920	.280920
	Two Hundred	.1776667	.0637237	.117			−.039253	.394586
	Three Hundred	.2315000*	.0596081	.026			.028590	.434410
Scheffe	Hundred	−.0640000	.0637237	.800			−.280920	.152920
	Two Hundred	.1136667	.0637237	.413			−.103253	.330586
	Three Hundred	.1675000	.0596081	.114			−.035410	.370410
	Injury	−.1776667	.0637237	.117			−.394586	.039253
	Two Hundred	−.1136667	.0637237	.413			−.330586	.103253
	Three Hundred	.0538333	.0596081	.844		−.149076	.256743	.434410
	Hundred	.2315000*	.0596081	.026		−.001318	.336318	.725651
Dunnett t (2-sided)	Injury	Three Hundred	.2315000*	.0596081	.010	.062682	.400318	
	Hundred Three Hundred	.1675000	.0596081	.052	−.001318	.336318		
	Two Hundred Three Hundred	.0538333	.0596081	.717	−.114985	.222651		

* The mean difference is significant at the 0.05 level.

4. AMPLITUDE b-WAVE

4.1. Dependent Variable: Amplitude b-Wave: 7 Day

7 Day	(I) Group 1	(J) Group 1	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	Lower Bound	Upper Bound
Injury	Hundred	−.0046667	.0343660	.999		−.117407	.108074	.100778
	Two Hundred	.0093333	.0343660	.994		−.103407	.122074	.120047
	Three Hundred	−.0696667	.0343660	.303		−.182407	.043074	.150578
scheffe	Hundred	.0046667	.0343660	.999		−.108074	.117407	.100778
	Two Hundred	.0140000	.0318167	.978		−.090378	.118378	.039378
	Three Hundred	−.0650000	.0318167	.297		−.169378	.039378	.103407
	Injury	−.0093333	.0343660	.994		−.122074	.103407	.100778
	Two Hundred	−.0140000	.0318167	.978		−.118378	.090378	.039378
	Three Hundred	−.0790000	.0318167	.165		−.183378	.025378	.181378
Dunnett t (2-sided)	Injury	Three Hundred	.0093333	.0343660	.160	.063274	.23940	
	Hundred Three Hundred	−.0650000	.0318167	.156	−.151663	.021663		
	Two Hundred Three Hundred	−.0790000	.0318167	.075	−.165663	.007663		
4.3. Dependent Variable: Amplitude b-Wave: 21 Day

21 Day	(I) Group 2	(J) Group 2	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
						Lower Bound	Upper Bound
Scheffe	Injury	Hundred	-.0378333	.0306341	.685	-1.38331	.062665
		Two Hundred	-.0322500	.0283616	.735	-.125293	.060793
		Three Hundred	-.0405000	.0283616	.439	-.141543	.044543
	Hundred	Injury	.0378333	.0306341	.685	-.062665	.138331
		Two Hundred	.0055833	.0306341	.998	-.094915	1.06081
		Three Hundred	-.0106667	.0306341	.989	-.111165	.089831
	Two Hundred	Injury	.0322500	.0283616	.735	-.060793	.125293
		Hundred	-.0055833	.0306341	.998	-.106081	.094915
		Three Hundred	-.0162500	.0283616	.953	-.109293	.076793
	Three Hundred	Injury	.0485000	.0283616	.439	-.044543	.141543
		Hundred	.0106667	.0306341	.972	-.094109	.072775
		Two Hundred	.0162500	.0283616	.972	-.093502	.061002
Dunnett t (2-sided)*	Injury	Three Hundred	-.0485000	.0283616	.261	-.125752	.028752
		Hundred	-.0106667	.0306341	.972	-.094109	.072775
		Two Hundred	-.0162500	.0283616	.972	-.093502	.061002

* Dunnett t-tests treat one group as a control, and compare all other groups against it.