Loss of heterozygosity of Kras2 gene on 12p12-13 in Chinese colon carcinoma patients

Jun Wan, Hong Li, Yuan Li, Mei-Ling Zhu, Po Zhao

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

MATERIALS AND METHODS

Specimens
Ten specimens of primary carcinoma tissue, 10 specimens of adjacent tissue, and 10 specimens of normal tissue at the distal incision margin were taken respectively from patients with pathologically confirmed colon carcinoma before and after surgery at the Department of Surgery, General Hospital of the Chinese PLA from January to December 2003. The patients did not receive radiotherapy and chemotherapy before surgery.

DNA extraction from genome
Specimens of carcinoma and its adjacent tissues as well as normal tissue at the distal incision margin were suspended respectively in 50μL DNA lysate containing 50 mmol/L Tris- HCl, 1mmol/L EDTA, 0.1% Tween 20, 200 mg/L protease K, pH8.0, and digested overnight at 50°C. Protease K was denatured and inactivated at 95°C. Then the supernatant was centrifuged and stored at -20°C for use.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.

INTRODUCTION

Clinical and experimental studies have shown that point mutation of Kras2 gene plays an important role in the development and progression of tumors [1-4]. However, it has been reported that wild type Kras2 gene has inhibitory effects on tumor growth and proliferation [5]. Inactivation of cancer suppressor gene is a frequently encountered early event in the development of tumors, leading to loss of heterozygosity (LOH) [6-10]. This study was to investigate the possible genetic variation of wild type Kras2 gene in the carcinogenesis of colon carcinoma by analyzing LOH in tumor and its adjacent tissues.
Table 1 Primer sequences on 12p12-13 microsatellite markers

Markers	Primer sequences	Length (bp)
D12S89	D12S89-F: 5'-ATTAGAGCCGACGTGTTT-3'	254-288
	D12S89-R: 5'-CCATATGGGACTGCGG-3'	
D12x358	D12x358-F: 5'-GGGGACAGGAAAACTTG-3'	238-270
	D12x358-R: 5'-AAGACGCTTTTATTTTCTC-3'	
D12x310	D12x310-F: 5'-GAAGACTTGGTTAATC-3'	243-253
	D12x310-R: 5'-TTTGAATCTCCAAATGGC-3'	
D12S1057	D12S1057-F: 5'-GAAGACTTGGTTAATC-3'	204-222
	D12S1057-R: 5'-TTTGAATCTCCAAATGGC-3'	
D12s1592	D12s1592-F: 5'-AGGGTTCAAAAAGTGTGACG-3'	215-261
	D12s1592-R: 5'-AGGGTTCAAAAAGTGTGACG-3'	
D12S1596	D12S1596-F: 5'-CACTGTTCGCGGTAGGTT-3'	280-302
	D12S1596-R: 5'-GCTGAGTGTGGTGGTCA-3'	
D12S1035	D12S1035-F: 5'-CACTGTTCGCGGTAGGTT-3'	234-276
	D12S1035-R: 5'-GCTGAGTGTGGTGGTCA-3'	
D12S1606	D12S1606-F: 5'-CACTGTTCGCGGTAGGTT-3'	119
	D12S1606-R: 5'-GCTGAGTGTGGTGGTCA-3'	
D12s310	D12s310-F: 5'-TCTTCTTGGTGGCTGG-3'	243-253
	D12s310-R: 5'-TCTTCTTGGTGGCTGG-3'	
D12s358	D12s358-F: 5'-GGGGACAGGAAAACTTG-3'	238-270
	D12s358-R: 5'-GGGGACAGGAAAACTTG-3'	
D12S89	D12S89-F: 5'-ATGTATGATGTTATGATGTT-3'	254-288
	D12S89-R: 5'-ATGTATGATGTTATGATGTT-3'	
D12S1591	D12S1591-F: 5'-CACTGTTCGCGGTAGGTT-3'	280-302
	D12S1591-R: 5'-GCTGAGTGTGGTGGTCA-3'	

Polymerase chain reaction (PCR)

One μL 10xPCR buffer, 0.5 mmol/L magnesium ion, 0.2 mmol/L 4xDNTP, 0.4 μmol/L upstream primer, 0.4 μmol/L downstream primer, 1U Taq DNA polymerase/reaction and 0.5 μL DNA template were added into 10 μL PCR system at 94°C for 5 min. Fourteen PCR cycles of amplification were performed at 94°C for 30 s, at 55°C for 30 s, at 72°C for 30 s, followed by 16 cycles at 94°C for 30 s, at 55°C for 30 s, at 72°C for 30 s, and a final extension at 72°C for 5 min.

Denaturing polyacrylamide gel electrophoresis

PCR products (0.3μL) were added to the loading buffer containing GENESCAN-500 molecular weight as internal control and mixed with formamide, then denatured at 72°C for 2-3 min and electrophoresed by the AB1377 fluorescence sequencer. The standard sequencing PAGE 64-well denaturing polyacrylamide gel was used for electrophoresis. The electrophoresis was performed at the temperature higher than 42°C for 2.5-3 h. The electrophoresis channels were analyzed using GENESCAN version 3.1 Software. The types and intensity of fluorescence were collected for each channel, the size of amplified PCR products was determined using the molecular weight as internal control. Data of the type, intensity and molecular weight of the amplified microsatellite DNA fluorescence were obtained using GENOTYPE version 2.0 Software. The fluorescence intensity could indicate the amplified DNA within the linearity (relative fluorescence intensity was 200-300).

LOH analysis

Based on the principles of fluorescence labeling of primers, a fluorescence labeled primer group-matched sequence was linked to the 5' end of a specific primer, so that the PCR products were labeled with the fluorescence group in the process of PCR. The fluorescence labeled PCR products were electrophoresed using the AB 1377 fluorescence sequencer. Data collected by the electrophoresis were analyzed using the GENESCAN and GENOTYPE Softwares to obtain the peak and size of the map. Gene typing was performed. The peak was found in 2 allelic gene segments and compared to the normal value of the adjacent channels. The allelic ratio was calculated according to the following formula: allelic ratio=peak ratio of carcinoma tissue/peak ratio of normal tissue. LOH was considered when the allelic ratio was higher than 1.5 or lower than 0.67. Microsatellite instability (MSI) was considered when no abnormal peak point was found in DNA of carcinoma tissue compared to normal tissue.

Statistical analysis

The correlation between LOH and clinical and pathological parameters was evaluated by chi-square test. All statistical analyses were carried out by SPSS 10.0. P < 0.05 was considered statistically significant.

RESULTS

Frequency of LOH in carcinoma adjacent tissue

No LOH was detected in 70 (7/10) of adjacent tissue specimens (1, 2, 4-6, 8, 9) on all markers. LOH was detected in 30% (3/10) of adjacent tissue specimens (3, 7, 10) at least on one marker, 28.5% (2/7) of adjacent tissue specimens on D12S1034, 25% (1/4) on D12S1617, 14.29% (1/7) on D12S1596, 12.5% (1/8) on D12S89, and 0% on other markers (Table 2 and Table 3, Figure 1).

Frequency of LOH in carcinoma tissue

No LOH was detected in 40% (4/10) of primary colon carcinoma tissue specimens (1, 4-6) on all markers.
was detected in 60% (6/10) of colon carcinoma tissue specimens (2, 3, 7–10) at least on one marker, 42.86% (3/7) on D12S1034 and D12S1591, 33.33% (1/3) on D12S310, and 0% (0/4) on D12S1592 (Tables 2 and 3).

Correlation between LOH on 12p12-13 and clinicopathological parameters
Chi-square test was used to evaluate the correlation between LOH and clinicopathological parameters. The results showed that LOH did not correlate with age, sex, tumor size and lymph node metastasis (Table 4).

DISCUSSION
RASp21 consisting of Hras1, Nras and Kras2, is a GTP-coupled protein and can transfer signals from cell surface into cells. Its normal expression is necessary to maintain the normal physiological activities of cells. Activated Ras proto-oncogenes, especially Kras2, play an important role in the carcinogenesis of human and rodent tumors. Mutations of Kras2 gene have been found in tumor tissues of human organs, including bladder[11], breast[12], rectum[13], kidney[14], liver[15], lung[16], ovary[17], pancreas[18], stomach[19] and hematopoietic system[20]. In general, about 30% cancers display ras gene mutations, while the highest mutation rate is found in colonic and pancreatic cancer[21–23]. In samples of mutated ras gene, most mutations occur in Kras2 gene. Mutation and activation of ras gene usually occur at codons 12 and 13 or 61, leading to the transformation of proto-oncogene to oncogene[24]. This kind of activation can up-regulate the expression of ras/ErK signal channel in the absence of external stimuli and further increase the abnormality of associated signal channels, leading to malignant transformation of cells. Activated ras gene is usually considered as the dominant oncogene because of the existing expression of wild type ras and malignant transformation of activated ras[25]. However, is still controversial the effect of the dominant gene-ras is still controversial since wild type ras has been found in human and mouse pulmonary adenocarcinomas[26,27].

In vivo and in vitro experiments[28] have shown that tumors are found more frequently in normal mice with 2 wild type Kras2 copies than in those with LOH of one wild type Kras2 copy after they are treated with 2 carcinogens. The occurrence of tumor is 50-fold higher in mice with LOH of one wild type Kras2 copy than in normal mice with 2 wild type Kras2 copies. The tumor in the former group of mice is poorly-differentiated adenocarcinoma, while the tumor in the later group of mice is adenoma. Zhang et al[28] reported that wild type Kras2 gene can inhibit cell growth, formation of clones, and induce tumors in naked mice. In addition, LOH has

Table 2 Frequency of LOH on the 11 markers of 12p12-13 in colon carcinoma and its adjacent tissues

Markers	LOH (%)	Signal (%)	Frequency of LOH (%)	Heterozygosity (%)	Tumor tissue
D12S823	0	5	0	50	20
D12S1034	2	7	28.57	70	42.88
D12S1596	1	4	25	40	25
D12S1591	1	7	14.29	70	42.88
D12S358	0	8	0	80	25
D12S310	0	3	0	30	33.33
D12S358	0	4	0	40	0
D12S89	1	8	12.5	80	12.5
D12S1617	1	7	14.29	70	14.29
D12S1037	0	7	0	70	28.57
D12S1606	0	6	0	60	16.67

Table 3 Distribution of LOH on 12p12-13 in microsatellite-labeled primers

Biomarker	1	2	3	4	5	6	7	8	9	10
D12S823	○	○	○	○	○	○	○	○	○	○
D12S1034	○	○	○	○	○	○	○	○	○	○
D12S1596	○	○	○	○	○	○	○	○	○	○
D12S1591	○	○	○	○	○	○	○	○	○	○
D12S358	○	○	○	○	○	○	○	○	○	○
D12S310	○	○	○	○	○	○	○	○	○	○
D12S1592	○	○	○	○	○	○	○	○	○	○
D12S89	○	○	○	○	○	○	○	○	○	○
D12S1617	○	○	○	○	○	○	○	○	○	○
D12S1037	○	○	○	○	○	○	○	○	○	○
D12S1606	○	○	○	○	○	○	○	○	○	○

○: Normal; ○: No signal; ●: LOH; A: adjacent tissue; T: cancer tissue

www.wjgnet.com
been found in pulmonary adenocarcinoma induced by various chemical carcinogens. Point mutation of Kras2 gene is detected in 67-100% mice with LOH of wild type Kras 2 gene. These important findings will certainly query the established carcinogenesis of dominant Kras2 gene.

It was reported that the development and progression of colon carcinoma are a process involving multiple genes and factors, and characterized by its stages: normal mucosa → atypical hyperplasia including intestinal metaplasia → adenoma → adenocarcinoma [10]. Kras2 gene as a dominant oncogene due to its point mutation plays an important role in the progression of carcinoma, which is one of the reasons why the inhibitory effect of wild type kras2 gene on cancer is concealed. Since cancer suppressor gene can be inactivated by deleting mutation, we studied LOH of Kras 2 gene on 12p12-13 in primary colon carcinoma. These important findings will certainly query the established carcinogenesis of dominant Kras2 gene.

In conclusion, Kras2 gene can exert inhibitory effects on the proliferation of colon carcinoma cells. LOH on 12p12-13 does not correlate with the clinical and pathological parameters obtained from colon carcinoma.

Table 4 Correlation between LOH on chromosome 12p12-13 and clinical pathologic factors

Clinical character	LOH		Total	Ratio (%)	P
Tissue class					
Adjacent Tumor	3	7	10	30	0.17753
Tumor	6	4	10	60	0.77816
Age (yr)					
≤50	4	3	7	70	0.77816
>50	2	1	3	30	0.57816
Sex					
Male	5	2	7	70	0.77816
Female	1	2	3	30	0.57816
Tumor size (cm)					
<5	3	1	4	40	0.42919
≥5	3	3	6	60	0.57816
Lymph node metastasis					
Yes	4	2	6	60	0.59816
No	2	2	4	40	0.59816

REFERENCES

1. Rapallo A, Sciuatto A, Geido E, Occhioni R, Infusini E, Pujic N, d’Amore ES, Monaco R, Risio M, Rossini FP, Giaretti W. K-ras2 activation and genome instability increase proliferation and size of FAP adenomas. *Anal Cell Pathol* 1999; 19: 39-46
2. Spandidos DA, Sourvinos G, Tsatsanis C, Zafiropoulos A. Normal ras genes: their onco-suppressor and pro-apoptotic functions (review). *Int J Oncol* 2002; 21: 237-241
3. Geido E, Sciuatto A, Rubagotti A, Oliani C, Monaco R, Risio M, Giaretti W. Combined DNA flow cytometry and sorting with k-ras2 mutation spectrum analysis and the prognosis of human sporadic colorectal cancer. *Cytometry* 2002; 50: 216-224
4. Sommerer F, Vieth M, Markwarth A, Röhrich K, Vomschloss S, May A, Eli C, Stolte M, Hengge UR, Wittekind C, Tannapfel A. Mutations of BRAF and Kras2 in the development of Barrett’s adenocarcinoma. *Oncogene* 2004; 23: 554-558
5. Li J, Zhang Z, Dai Z, Plass C, Morrison C, Wang Y, Wiest JS, Anderson MW, You M. LOH of chromosome 12p correlates with Kras2 mutation in non-small cell lung cancer. *Oncogene* 2003; 22: 1243-1246
6. Hirayama R, Sawai S, Takagi Y, Mishima Y, Kimura N, Shimada N, Esaki Y, Kurashima C, Usuyama M, Hirokawa K. Positive relationship between expression of anti-metastatic factor (nm23 gene product or nucleoside diphosphate kinase) and good prognosis in human breast cancer. *J Natl Cancer Inst* 1991; 83: 1249-1250
7. Rollins LA, Leone-Kabler S, O’Sullivan MG, Miller MS. Role of tumor suppressor genes in transplacental lung carcinogenesis. *Mol Carcinog* 1998; 21: 177-184
8. Fodde R. The APC gene in colorectal cancer. *Eur J Cancer* 2002; 38: 867-871
9. Bruweer M, Schmid KW, Kriegstein CF, Senninger N, Schuermann G. Metallothionein: early marker in the carcinogenesis of ulcerative colitis-associated colorectal carcinoma. *World J Surg* 2002; 26: 726-731
10. Nagothu KK, Jaszewski R, Moragoda L, Rishi AK, Finkenauer R, Tobi M, Naumoff JA, Dhar R, Ehrinpreis M, Kucuk O, Majumdar AP. Folic acid mediated attenuation of loss of heterozygosity of DCC tumor suppressor gene in the colonic mucosa of patients with colorectal adenomas. *Cancer Detect Prev* 2003; 27: 297-304
11. Ayan S, Gökçe G, Kiliçarslan İ, Ozdenir O, Yildiz E, Gultekín F. K-RAS mutation in transitional cell carcinoma of urinary bladder. *Int Urol Nephrol* 2001; 33: 363-367
12. Hulit J, Di Vizio D, Pestell RG. Inducible transgensics. New lessons on events governing the induction and commitment in mammary tumorigenesis. *Breast Cancer Res* 2001; 3: 209-212
13. Frattini M, Balestra D, Suardi S, Oggiomoni M, Alberici P, Radice P, Costa A, Daidone MG, Leo E, Pilotti S, Bertario L, Pierotti MA. Different genetic features associated with colon carcinogenesis and rectal carcinogenesis. *Clin Cancer Res* 2004; 10: 4015-4021
14. Kozma L, Kiss I, Nagy A, Szakall S, Ember I. Investigation of c-myc and K-ras amplification in renal clear cell adenocarcinoma. *Cancer Lett* 1997; 111: 127-131
15. Bai F, Nakashin Y, Takayama K, Pei XH, Inoue K, Harada T, Izumi M, Hara N. Codon 64 of K-ras gene mutation pattern in hepatocellular carcinomas induced by bleomycin and 1-nitropyrene in A/J mice. *Teratog Carcinog Mutagen* 2003; Suppl 1: 161-170
16. Mascaux C, Iannino N, Martin B, Paemasens M, Berghmans T, Dusart M, Haller A, Lothaire P, Meert AP, Noel S, Lafitte JY, Sculler JP. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. *Br J Cancer* 2005; 92: 131-139
17. Semczuk A, Postawski K, Przadka D, Rozynska K, Wrobel A, Korobowicz E. K-ras gene point mutations and p21ras immunostaining in human ovarian tumors. *Eur J Gynaecol Oncol* 2004; 25: 484-488
18. Zheng M, Liu LX, Zhu AL, Qi SY, Jiang HC, Xiao ZY. K-ras gene mutation in the diagnosis of ultrasound guided fine-needle biopsy of pancreatic masses. *World J Gastroenterol* 2003; 9: 188-191
Yashiro M, Nishioka N, Hirakawa K. K-ras mutation influences macroscopic features of gastric carcinoma. *J Surg Res* 2005; 124: 74-78

Barletta E, Gorini G, Vineis P, Milligi L, Davico L, Mugnai G, Ciolli S, Leoni F, Bertini M, Matullo G, Costantini AS. Ras gene mutations in patients with acute myeloid leukaemia and exposure to chemical agents. *Carcinogenesis* 2004; 25: 749-755

Maire F, Micard S, Hammel P, Voitot H, Lévy P, Cugnenc PH, Ruszniewski P, Puig PL. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. *Br J Cancer* 2002; 87: 551-554

Feng D, Han T, Jiang Y, Yuan Z, Wang X, Jiang Z, Zhang S. Detection of K-ras gene mutations in DNA extracted from the plasma of patients with pancreatic cancer. *Zhonghua Waike ZaZhi* 2000; 38: 767-770

Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Strzelczyk J, Janiak A, Kulig A, Malecka-Panas E. Clinical significance of K-ras and c-erbB-2 mutations in pancreatic adenocarcinoma and chronic pancreatitis. *Int J Gastrointest Cancer* 2005; 35: 33-41

Wan J, Zhang ZQ, You WD, Sun HK, Zhang JP, Wang YH, Fu YH. Detection of K-ras gene mutation in fecal samples from elderly large intestinal cancer patients and its diagnostic significance. *World J Gastroenterol* 2004; 10: 743-746

Higashidani Y, Tamura S, Morita T, Tadokoro T, Yokoyama Y, Miyazaki J, Yang Y, Takeuchi S, Taguchi H, Onishi S. Analysis of K-ras codon 12 mutation in flat and nodular variants of serrated adenoma in the colon. *Dis Colon Rectum* 2003; 46: 327-332

Barbacid M. ras genes. *Annu Rev Biochem* 1987; 56: 779-827

Bos JL. ras oncogenes in human cancer: a review. *Cancer Res.* 1989; 49: 4682-4689

Zhang Z, Wang Y, Vikis HG., Johnson L, Liu G, Li J, Anderson MW, Sills RC, Hong HL, Devereux TR, Jacks T, Guan KL, You M. Wildtype Kras2 can inhibit lung carcinogenesis in mice. *Nat Genet* 2001; 29: 25-33

De Gregorio L, Manenti G, Incarbone M, Pilotti S, Pastorino U, Pierotti MA< Dragani TA. Prognostic value of loss of heterozygosity and KRAS2 mutations in lung adenocarcinoma. *Int J Cancer* 1998; 79: 269-272

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell* 1990; 61: 759-767

S- Editor Guo SY L- Editor Wang XL E- Editor Cao L