Dataset for the model of a municipality competitiveness in relation to the geothermal resources exploitation in Poland

Katarzyna A. Kurek1,*, Wim Heijman1, Johan van Ophem1, Stanisław Gędék2, Jacek Strojny2

1 Wageningen University and Research, The Netherlands
2 Rzeszów University of Technology, Poland

ABSTRACT

This dataset corresponds with the manuscript “The impact of geothermal resources on the competitiveness of municipalities: evidence from Poland” [1]. In the paper, the geothermal resources are assumed as a local competitive advantage for the municipalities that exploit them. In order to examine the relation between the exploitation of the geothermal resources and local competitiveness we determine a model of municipality competitiveness in Poland. Concept of the local competitiveness is referred to place-based measures (Lovering [2], Mytelka and Farinelli [3], Plummer and Taylor [4], Kitson et al. [5]) and it is related to the management of local resources (Malecki [6], Turok [7]). Literature review suggests that the local competitiveness is best reflected in the indicators of economic welfare and sustainability (Meyer-Stamer [8], Audretsch et al. [9]). Therefore, we use an expert method to build the model of a municipality competitiveness indicators on the example of Poland. Throughout the Analytical Hierarchy Process (AHP) method engaged experts select the 24 indicators of local competitiveness. This method serves in situations of a problem complexity (Kamenetzky [10], Saaty [11]) and as a multicriteria method in the regional studies (Dinc et al. [12]). Aggregation of the AHP selected indicators yields a synthetic competitiveness index for each of the

* Corresponding author.
E-mail address: katarzyna.kurek@wur.nl (K.A. Kurek).

https://doi.org/10.1016/j.dib.2020.105687
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
municipalities that we examine. This index constitutes the model dependent variable in the related research article. This procedure of building municipality competitiveness model sets an example of approaching a complex phenomenon such as the local competitiveness definition. The versatility of this method enables its application into related research cases.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications table

Subject	Renewable Energy, Sustainability and the Environment
Specific subject area	Social sciences in the context of renewable energy exploitation. Development of the local competitiveness concept determined by the endogenous indicators.
Type of data	Table (continued on next page)
How data were acquired	Figure
Data format	Raw
Parameters for data collection	Filtered
	Aggregated
	Analysed
Raw data contains 3024 records that are further used to build 24 socioeconomic indicators for 63 municipalities for the time frame 1999-2017 years. Raw data is collected from one source, the Local Data Bank. The procedure of the AHP determines the indicators model including the weight assessment for each model component. As a result, we obtain a synthetic index of competitiveness for each municipality. The essence of the AHP method is an experts questionnaire. The biggest constrain about the AHP method is the experts selection and building a questionnaire that assures the consistency of replies. The method requires a number of experts to determine the local competitiveness data model. We reached personally to the experts’ group and monitored the process of filling each AHP questionnaire. The geothermal exploitation data constitutes a primary collected data, and since it is restricted information, offered by the courtesy of the geothermal enterprises, it had to be processed anonymously in the model.	
Value of the Data

- The dataset proposes a conceptualization of local competitiveness that is unobserved in existing literature. Since the local competitiveness definitions vary among scholars, we provide an approach that bases in the local experts and local data assessment. Our approach presents a method to develop a single measure of the local competitiveness i.e. the competitiveness index.
- The development of the index allows for a transparent comparison and analysis of the competitiveness level for the selected municipalities.
- The data selected for describing the local competitiveness phenomenon represents a spectrum of municipality performance measures. The socioeconomic indicators grouped in six categories of: demographic dynamics, local economy references, state of public finances, tourism activities, infrastructure development and level of life standards illustrate a complex and practical overview of a municipality competitive condition.
- The choice of the socioeconomic data is determined by the availability of the data in the Polish Central Statistical Office database.
- Moreover, the group of experts have indicated the data structure of the local competitiveness model. It is additionally justifying the choice of the socioeconomic indicators that refer to the local competitiveness concept.
- The data in such set is available for any municipality in Poland; therefore the model is replicable for other, related studies and disciplines. It allows observing the competitiveness indicators for an examined municipality as well as for comparisons of municipalities. The selection of socioeconomic indicators can be as well adjusted to examine regional or national competitiveness, not limited to Poland. Moreover, application of the proposed data and competitiveness index serves for any other research that requires local competitiveness measures.
- The given dataset reveals relevant simplicity in collection procedure and broad availabilities for interpretation. It is as well a non-costs generating method because the raw data in case
of the Central Statistical Office in Poland on this level of availability is free of charge and located online.

- This type of data composition is not found in the existing literature or in the data repositories. Yet, we provide an example for conceptualising a new research problem using available and affordable sources. This data is planned to be used in the next research projects related to the concept of competitiveness on the municipalities level.

- The additional value of this data is the uncommon approach i.e. the use of the Analytical Hierarchy Process in the development of the local competitiveness model, a method taken from the management sciences and project appraisal. Moreover, we introduce the role of benchmarking to the local competitiveness measuring procedure.

1. **Data Description**

The main assumption about the geothermal resources impact on local competitiveness in Poland (Kurek et al. [1]) requires appropriate data. Hence, the data selection is a decision-making process. It mainly concerns the dataset that is available and comparable at the given level and in the same time reflects on the competitiveness performance. In case of our research problem, the dataset had to reflect on the local competitiveness indicators on a municipality level. We operationalize the problem of local competitiveness by the help of experts using the Analytical Hierarchy Process (AHP). Based on a hierarchical structure, this method developed by Saaty [11] serves for managing qualitative and quantitative multi-criteria elements involving in decision-making behaviour. The decision about the structure of the data model boils down to the pairwise comparisons delivering the matrix of experts answers. The model of 24 socioeconomic indicators determining the local competitiveness is included in the example of the AHP expert questionnaire in the Figure 2 below. The raw data extracted from the Local Data Bank online source that served to design the socioeconomic indicators model is available in the data repository, accessible by the dedicated data article (Kurek [13]). The data in the Local Data Bank allows for collection of systematized values in the selected sections. Therefore, a risk of unclassified data or sources is eliminated. Included in the Figure 2, the matrix of 24 diagnostic socioeconomic indicators grouped in six categories and related four subcategories are determined by the experts. It sizes a municipality competitiveness on the level of local demographic structure, entrepreneurship, condition of public finance, expansion of local infrastructure and level of life measures. The period of data collection regards to years 1999-2017, since the year 1999 brought the administrate reform in Poland that introduced a poviat unit. The poviat is a superior administrative area to a municipality in Poland, and two control variables of the main model in the related research article refer to the data collected on the poviat levels (Table 1 at Kurek et al. [11]). The same source of the Local Data Bank was used for these poviat variables.

Since the related research article (Kurek et al. [1]) aims to compare the local competitiveness index among the municipalities that use the geothermal resources and municipalities without the geothermal activities, the selection of Polish municipalities refers to 11 geothermal municipalities in Poland and additional 55 municipalities that were matched according to the benchmark principle (Strojny [14]). Therefore, each of the geothermal municipality receives a group of five benchmark municipalities. The condition of the benchmarks selection required: the same administrative classification of a municipality, location within the same poviat, comparable size of inhabitants and economic condition. The data for the benchmarked municipalities is as well sourced in the same Local Data Bank database, and it is presented in the dataset (Kurek [13]). The selection of the geothermal locations is limited to the municipalities that exploit the geothermal resources for a minimum of 5 years and captured in the Table 2 at Kurek et al. [1]. Therefore, the socioeconomic data is collected for the selection of 63 municipalities. The following Figure 1 presents the map of geothermal activities in Poland with the location of the geothermal municipalities.

The Analytical Hierarchy Process experts comparisons in pairs yield weights assessment for each of the indicators (Table 4 at Kurek et al. [1]). This procedure of generating the weights is
possible by using a specially designed questionnaire, which is further distributed to experts (Figure 2). Each decision maker fills in questionnaire and then all the individual expert judgments are converted into the group judgments (for each one of the pair comparison) using their geometrical average. The scale ranges from 1 to 9, where 1 implies that the two elements are the same or are equally important. On the other hand, 9 implies that one element is extremely more important than the other one in a pairwise matrix. The pairwise scale and the importance value attributed to each number are explained in the Figure 2.

By the aggregation procedure (Formula 2 at Kurek et al. [1]) the indicators weighted by the AHP method generate the synthetic local competitiveness index. This procedure repeats for each of the examined municipalities. As a result of the aggregation computations, each of the geothermal municipalities and the benchmark municipalities receive the competitiveness index (CI), a singular indicator of competitiveness for each of the observed years 1999-2017. The CI places in the 0-1 range, where 1 represents the highest score of the municipality competitiveness throughout the observed time period. The CI determines the level of the municipality competitiveness and is used to build the dependent (y) and the independent model variable (x3) in the description of model variables in the Table 1 at Kurek et al. [1]. Furthermore, the other independent model variables x4 and x5 are sourced in the Local Data Bank, whereas the variables x1 and x2 are obtained directly from the listed in the Table 2 at Kurek et al. [1] geothermal enterprises. These two have a non-public character. The scores of the local competitiveness indexes for the observation of selected geothermal municipalities and the assembled score for the benchmark municipalities are presented in the Table 5 at Kurek et al. [1].

This selection of the local competitiveness data on the example of Polish municipalities is originally presented in our study. Nevertheless, it is not limited to the subject of the related research article. It as well reveals a potential of application into analysis that require definition of a local competitiveness in Poland.
2. Experimental Design, Materials, and Methods

The Analytical Hierarchy Process tool i.e. the questionnaire distributed to the 20 experts is elaborated by the dedicated software Super Decisions (version 3.2). The attention is paid to the important element of the AHP analysis i.e. the Consistency Ratio (CR) coefficient that verifies the internal consistency of experts' judgements in pairs (Saaty [16]). The acceptable CR score should be lower than 0.10 to justify the outcomes of the experts' judgements. It therefore indicates the significance of the responses.

Example of the questionnaire distributed among the experts is presented as the Figure 2. It starts with the introduction section that is meant to explain the tool, and purpose of acquiring an expert opinion. The experts were approached beforehand the questionnaires distribution and invited to participate in the AHP research. The local competitiveness indicators matrix that is to be assessed by the experts initiates the questionnaire. Thereafter, the questionnaire is designed in seven sections that each contains the corresponding decisive problem related to the local competitiveness model structure represented by the Table 3 at Kurek et al. [1]. The experts evaluate each of the section giving a judgement to each pair of given indicators. The method generates the weights model (Table 4 at Kurek et al. [1]) for each of the socioeconomic indicators that are set to describe the local competitiveness (Table 3 at Kurek et al. [1]). This AHP questionnaire is not presented in the accompanying research article.

Figure 2: Expert questionnaire: Defining indicators of local competitiveness.

Introduction: Part of the AHP method is this expert questionnaire. We believe that you are an expert in the field of regional economics and that is why your answers are crucial for the study. Based on the experts’ answers, we set a hierarchy of indicators that, according to respondents, reflect the potential of local competitiveness and should be taken into account when investigating the impact of the geothermal resources. Six categories have been identified representing the general level of a municipality competitiveness in Poland. Each group consists of four building indicators (subcategories). These indicators are based on a data collected from the Central Statistical Office in Poland (https://stat.gov.pl). The table of municipality competitiveness indicators represents the indicators model based in the six competitiveness categories with four indicators each. Below, tables 1-7 are the matrixes of competitiveness’ indicators questions allowing to assess your opinion. We kindly ask you to answer each of them according to a nine-point scale (the Saaty scale). In the Legend section attached to the table of municipality competitiveness indicators you find instructions for answering the 1-9 scale. Answering every question is a choice between two indicators. Please specify in the given pairs which indicator is more important or equal from your point of view on the local competitiveness. Your contribution to this study is very valuable and we thank you in advance for your cooperation.
Indicators of Municipality Competitiveness

Model of the synthetic competitiveness indicator (CI) categories

Subcategories	Population \((C_p)\)	Economy \((C_e)\)	Local government \((C_g)\)	Tourism \((C_t)\)	Infrastructure \((C_i)\)	Level of life \((C_l)\)
Internal migration/10,000 inhabitants \((C_p1)\)	% of employed inhabitants \((C_e1)\)	Own municipality income/inhabitant \((C_g1)\)	Polish tourists accommodated/1000 inhabitants \((C_t1)\)	Industrial and domestic water consumption/inhabitant \((C_i1)\)	Out-Patient health care facilities/10,000 inhabitants \((C_l1)\)	
Natural increase/10,000 inhabitants \((C_p2)\)	No of private economic activities \((C_e2)\)	Municipality investment expenses/inhabitant \((C_g2)\)	Foreign tourists accommodated/1000 inhabitants \((C_t2)\)	Cubic volume of delivered buildings/inhabitant \((C_i2)\)	Environmental protection investment/inhabitant \((C_l2)\)	
% of population in productive age \((C_p3)\)	No of national commercial companies \((C_e3)\)	PIT income/employed inhabitant \((C_g3)\)	Tourism accommodation establishments/1000 inhabitants \((C_t3)\)	Km of water-supply and sanitation networks/inhabitant \((C_i3)\)	Primary and lower secondary education expenses/pupil \((C_l3)\)	
Birth rate \((C_p4)\)	No of commercial companies with foreign capital \((C_e4)\)	Budget deficit/inhabitant \((C_g4)\)	Overnights spent \((C_t4)\)	Residential water system connections/inhabitant \((C_i4)\)	% of population connected to wastewater treatment plants \((C_l4)\)	

Legend

1 – Both criteria have the same impact on the choice
3 – One criterion is slightly more important than the other
5 – One criterion is more important than the other, but the advantage is at an average level
7 – One criterion is clearly more important than the other
9 – One criterion is much more important than the other
1. Which dimensions of the endogenous potential of a municipality is the most important from the point of view of its competitiveness? (mark the value of your choice)

Factor	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Population (C_p)	9	7	5	3	1	3	5	7	9
Economy (C_e)	9	7	5	3	1	3	5	7	9
Economy (C_e)	9	7	5	3	1	3	5	7	9
Economy (C_e)	9	7	5	3	1	3	5	7	9
Economy (C_e)	9	7	5	3	1	3	5	7	9
Local government (C_g)	9	7	5	3	1	3	5	7	9
Local government (C_g)	9	7	5	3	1	3	5	7	9
Local government (C_g)	9	7	5	3	1	3	5	7	9
Local government (C_g)	9	7	5	3	1	3	5	7	9
Tourism (C_t)	9	7	5	3	1	3	5	7	9
Tourism (C_t)	9	7	5	3	1	3	5	7	9
Tourism (C_t)	9	7	5	3	1	3	5	7	9
Tourism (C_t)	9	7	5	3	1	3	5	7	9
Infrastructure (C_i)	9	7	5	3	1	3	5	7	9
Infrastructure (C_i)	9	7	5	3	1	3	5	7	9
Infrastructure (C_i)	9	7	5	3	1	3	5	7	9
Infrastructure (C_i)	9	7	5	3	1	3	5	7	9

(continued on next page)
2. Which social potential parameters (dimension: Population) are the most important from the point of the municipalities’ competitiveness? (mark the value of your choice)

Factor	9	7	5	3	1	3	5	7	9
Internal migration/ 10.000 inhabitants (C_p1)	9	7	5	3	1	3	5	7	9
Internal migration/ 10.000 inhabitants (C_p1)	9	7	5	3	1	3	5	7	9
Internal migration/ 10.000 inhabitants (C_p1)	9	7	5	3	1	3	5	7	9
Natural increase/ 10.000 inhabitants (C_p1)	9	7	5	3	1	3	5	7	9
Natural increase/ 10.000 inhabitants (C_p2)	9	7	5	3	1	3	5	7	9
Natural increase/ 10.000 inhabitants (C_p3)	9	7	5	3	1	3	5	7	9

3. Which parameters of the economic potential (dimension: Economy) are the most important from the point of the municipalities’ competitiveness? (mark the value of your choice)

Factor	9	7	5	3	1	3	5	7	9
The percentage of employed inhabitants (C_e1)	9	7	5	3	1	3	5	7	9
The percentage of employed inhabitants (C_e1)	9	7	5	3	1	3	5	7	9
The percentage of employed inhabitants (C_e1)	9	7	5	3	1	3	5	7	9
No of private economic activities (C_e2)	9	7	5	3	1	3	5	7	9

(continued on next page)
No of private economic activities (C_e^2) & 9 & 7 & 5 & 3 & 1 & 3 & 5 & 7 & 9 & No of commercial companies with foreign capital (C_e^4)
No of national commercial companies (C_e^3) & 9 & 7 & 5 & 3 & 1 & 3 & 5 & 7 & 9 & No of commercial companies with foreign capital (C_e^4)

4. Which parameters of the institutional capacity of local government (dimension: Local government) are the most important from the point of the municipalities’ competitiveness? (mark the value of your choice)

Factor	9	7	5	3	1	3	5	7	9
Own municipality income/inhabitant (C_g^1)	9	7	5	3	1	3	5	7	9
Own municipality	9	7	5	3	1	3	5	7	9
Own municipality income/inhabitant (C_g^1)	9	7	5	3	1	3	5	7	9
Own municipality income/inhabitant (C_g^1)	9	7	5	3	1	3	5	7	9
Municipality investment expenses/inhabitant (C_g^2)	9	7	5	3	1	3	5	7	9
Municipality investment expenses/inhabitant (C_g^2)	9	7	5	3	1	3	5	7	9
PIT income/employed inhabitant (C_g^3)	9	7	5	3	1	3	5	7	9
PIT income/employed inhabitant (C_g^3)	9	7	5	3	1	3	5	7	9

5. Which tourism potential parameters (dimensions: Tourism) are the most important from the point of the municipalities’ competitiveness? (mark the value of your choice)

Factor	9	7	5	3	1	3	5	7	9
Municipality investment expenses/inhabitant (C_g^2)	9	7	5	3	1	3	5	7	9
Municipality investment expenses/inhabitant (C_g^2)	9	7	5	3	1	3	5	7	9
PIT income/employed inhabitant (C_g^3)	9	7	5	3	1	3	5	7	9
PIT income/employed inhabitant (C_g^3)	9	7	5	3	1	3	5	7	9

(continued on next page)
	1	2	3	4	5	6	7	8	9
Polish tourists accommodated/1000	9	7	5	3	1	3	5	7	9
inhabitants (C1)									
Polish tourists accommodated/1000	9	7	5	3	1	3	5	7	9
inhabitants (C2)									
Polish tourists accommodated/1000	9	7	5	3	1	3	5	7	9
inhabitants (C3)									
Foreign tourists accommodated/1000	9	7	5	3	1	3	5	7	9
tourists/1000 inhabitants (C3)									
Tourism accommodation establishments/1000	9	7	5	3	1	3	5	7	9
tourists/1000 inhabitants (C4)									
Overnights spent (C4)									

6. Which infrastructure potential parameters (dimensions: Infrastructure) are the most important from the point of municipalities' competitiveness?
(mark the value of your choice)

Factor	1	2	3	4	5	6	7	8	9
Industrial and domestic water consumption	9	7	5	3	1	3	5	7	9
/inhabitant (C1)									
Cubic volume of delivered	9	7	5	3	1	3	5	7	9
buildings / inhabitant (C2)									

(continued on next page)
Parameter	Value							
Industrial and domestic water consumption /inhabitant (C,1)	9	7	5	3	1	3	5	7
Industrial and domestic water consumption /inhabitant (C,3)	9	7	5	3	1	3	5	7
Km of water-supply and sanitation network/inhabitant (C,3)	9	7	5	3	1	3	5	7
Residential water system connections /inhabitant (C,4)	9	7	5	3	1	3	5	7
Km of water-supply and sanitation network/inhabitant (C,3)	9	7	5	3	1	3	5	7
Residential water system connections /inhabitant (C,3)	9	7	5	3	1	3	5	7

7. Which level of life increase potential parameters (dimensions: Level of Life) are the most important from the point of the municipalities' competitiveness? (mark the value of your choice)
| Factor | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
|--------|---|---|---|---|---|---|---|---|---|
| Out-Patient health care facilities/10,000 inhabitants (C1) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Out-Patient health care facilities/10,000 inhabitants (C1) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Out-Patient health care facilities/10,000 inhabitants (C1) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Environmental protection investment/inhabitant (C2) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Environmental protection investment/inhabitant (C2) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Primary and lower secondary education expenses/pupil (C3) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Primary and lower secondary education expenses/pupil (C3) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Population connected to wastewater treatment plants (C4) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |
| Population connected to wastewater treatment plants (C4) | 9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 |

Thank you for completing the questionnaire!
Acknowledgments

The data selection and model is consulted with the regional economics experts of the Rzeszów University of Technology in Poland, the Department of Economy.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.dib.2020.105687.

References

[1] K.A. Kurek, W. Heijman, J. van Ophem, S. Gędek, J. Strojny. The impact of geothermal resources on the competitiveness of municipalities: evidence from Poland, Renewable Energy 151 (2020) 1230–1239. https://doi.org/10.1016/j.renene.2019.11.126.
[2] J. Lovering. Theory led by policy: the inadequacies of the ‘new regionalism’ (illustrated from the case of Wales), International journal of urban and regional research 23 (2) (1999) 379–395 https://doi.org/10.1111/1468-2427.00202.
[3] Mytelka, L., & Farinelli, F. (2000). Local clusters, innovation systems and sustained competitiveness. UNU/INTECH Discussion Paper. (2005).
[4] P. Plummer, M. Taylor, Theories of local economic growth (part 1): concepts, models, and measurement, Environment and Planning A 33 (2) (2001) 219–236, doi: 10.1068/a339a.
[5] M. Kitson, R. Martin, P. Tyler, Regional competitiveness: an elusive yet key concept? Regional studies 38 (9) (2004) 991–999. https://doi.org/10.1080/0034340042000320816.
[6] E. Malecki, Jockeying for position: what it means and why it matters to regional development policy when places compete. Regional studies 38 (9) (2004) 1101–1120. https://doi.org/10.1080/0034340042000292665.
[7] I. Turok, Cities, regions and competitiveness, Regional studies 38 (9) (2004) 1069–1083. https://doi.org/10.1080/0034340042000292647.
[8] Meyer-Steamer, J. (2008). Systemic Competitiveness and Local Economic Development, in: Bodhanya, S. (ed.), Large Scale Systemic Change: Theories, Modelling and Practices, Duisburg, Germany.
[9] D.B. Audretsch, A.N. Link, M.L. Walshok (Eds.), The Oxford handbook of local competitiveness, Oxford University Press, 2015.
[10] R.D. Kamenetzky, The relationship between the analytic hierarchy process and the additive value function, Decision Sciences 13 (4) (1982) 702–713. https://doi.org/10.1111/j.1540-5915.1982.tb0900.x.
[11] T.L. Saaty, Decision making with the analytic hierarchy process, International journal of services sciences 1 (1) (2008) 83–98.
[12] M. Dinc, K.E. Haynes, M. Tarimcilar, Integrating models for regional development decisions: A policy perspective, The Annals of Regional Science 37 (1) (2003) 31–53. https://doi.org/10.1007/s001680200093.
[13] Kurek, A. Katarzyna, W. Heijman, J. van Ophem, S. Gędek, J. Strojny, “Dataset for the model of municipality competitiveness in relation to the geothermal resources exploitation in Poland, 2020. 10.17632/zfndmn3f55.2.
[14] J. Strojny, Implementation of the AHP and benchmarking in Strategic Analysis of Polish Regions, Procedia-Social and Behavioral Sciences 213 (2015) 229–236.
[15] W. Görecki, A. Sowiżdżał, M. Hajto, A. Wachowicz-Pyzik, Atlases of geothermal waters and energy resources in Poland, Environmental Earth Sciences 74 (12) (2015) 7487–7495. https://doi.org/10.1007/s12665-014-3832-2.
[16] T.L. Saaty, How to make a decision: the analytic hierarchy process, European journal of operational research 48 (1) (1990) 9–26.