Management of the Ecological-Economic System of the Russian Arctic Zone

V A Tsukerman¹, S V Ivanov¹, E S Goryachevskaya¹

¹Luzin Institute for Economic Studies – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia

E-mail: tsukerman@iep.kolasc.net.ru

Abstract. It is shown that the relevance of the problems of managing the ecological-economic system of the Russian Arctic regions is caused by a number of aspects, including increased costs for production and life support, the uncertainty of the economic situation and the need to minimize the man-made impact on the vulnerable Arctic environment.

The study showed the negative trends in the ecological-economic system management of the Russian Arctic regions. Atmospheric pollutant emissions have increased by an average of 2.7% in the Arctic regions, share of captured and neutralized air pollutants have not changed, discharge of polluted wastewater have decreased by 3%. These small changes in the sphere of the ecological-economic system management are achieved within the framework of close attention to the environment and the adoption of a large number of regulatory and strategic documents aimed at environmental planning and of the territorial development management.

Following proposals to improve the ecological-economic system management of the Russian Arctic regions was developed.

1. Introduction
Management of the ecological-economic system has an impact on industrial development. Industrial activities in the Arctic related mainly to the mineral resources exploitation directly influence the ecological-economic system of the territories. Unsustainable consumption of non-renewable natural resources results in depletion, negative environmental impact, and additional environmental costs.

The relevance of ecological-economic system management problems of the Russian Arctic regions is caused by a number of aspects including increased production costs and life support, uncertainty of the economy and the need to minimize man-made impact on the vulnerable Arctic environment.

It should be noted that the leading countries implement the concept of transition to environmentally efficient economic development, which is considered as socio-economic growth with meeting the needs of the current generation provided the livelihood provision of future generations [1].

2. Materials and methods
Problems associated with the management of ecological-economic system including climate change, pollution of air, surface and groundwater as well as the marine environment, damage from natural and man-made disasters recently have been significantly increased. These and other causes determine the need to ensure the management of ecological-economic system under modernization and innovative development of the economy of the Arctic and the Russian Federation.
Management of ecological-economic system is carried out in accordance with the Constitution, federal and regional laws and other governmental documents [2, 3].

Ecological-economic system of the Russian Arctic regions is characterized by a high level of man-made impact on the environment and significant negative consequences of economic activities [4, 5]. In this regard development of objective indicators and evaluation methods of environmental economy for making science-based management decisions and ensuring sustainable development in the long term becomes relevant. In Russia the scientific community and public organizations pay much attention to ecological-economic system management issues [6-12]. However, scientists and specialists pay insufficient attention to the objective assessment of the ecological-economic system.

3. Results

Studies of the impact of economic and industrial activities on the efficiency of the ecological-economic system management of the regions completely related to the Arctic zone of the Russian Federation were carried out [13]. Correlation analysis was used for an objective assessment (table 1).

Correlation coefficient of the gross regional product and the pollutant emissions volume	2010	2012	2014	2015	2016	2017
Correlation coefficient of the gross regional product and the pollutant emissions volume	0.99	0.99	0.94	0.96	0.97	0.99

Correlation coefficient for Arctic regions ranges from 0.95 to 0.99 that characterizes the presence of the close relationship between industrial development and ecological-economic system.

A study to determine the specific environmental load that shows the impact of industrial activity on the ecological-economic system was carried out (figure 1).

Figure 1. Specific environmental load of the Arctic regions.

It should be noted that environmental load of the Arctic regions is higher than in the Russian Federation that also determines the increased negative impact of economic activities on the environment.

The analysis showed the ecological-economic system management level of the Arctic regions stipulated by the basic state documents. It can be stated that not all target indicators are fully implemented on time (table 2).
Table 2. Air emissions in the Arctic regions in relation to 2007 [14, 15].

	2013 plan	2013 fact	2015 plan	2015 fact	2017 plan	2017 fact
Nenets Autonomous District	50.3	50.2	70.2	70.2	60.0	69.1
Murmansk region	91.4	91.3	93.4	93.4	89.1	82.3
Yamalo-Nenets Autonomous District	68.6	68.6	57.8	57.8	76.2	71.8
Chukotka Autonomous District	77.2	77.2	80.0	80.0	82.1	75.2

In the Nenets Autonomous District and the Yamalo-Nenets Autonomous District target indicators are not fulfilled. In the Murmansk Region and Chukotka Autonomous District air emissions have reduced what allows fulfilling the target indicators of the state program on environmental protection.

At the same time the level of the specific weight of captured and neutralized air pollutants in the total amount of pollutants from stationary sources was investigated (table 3).

Table 3. Share of captured and neutralized air pollutants in the total amount of outgoing pollutants from stationary sources, percent [14].

	2013	2014	2015	2016	2017
Nenets Autonomous District	6.8	8.7	10.6	9.4	11.0
Murmansk region	85.5	86.7	86.6	88.8	84.8
Yamalo-Nenets Autonomous District	0.0	0.1	0.1	0.0	0.0
Chukotka Autonomous District	59.5	60.2	58.8	55.1	56.3

The planned target indicators of the state program on environmental protection are not fulfilled in the Murmansk Region, the Yamalo-Nenets Autonomous District and the Chukotka Autonomous District.

It is shown that the Arctic regions are characterized by multidirectional dynamics in the discharge of polluted wastewater to surface water bodies (table 4).

Table 4. Discharge of polluted wastewater to surface water bodies, million cubic meters [14].

	2013	2014	2015	2016	2017
Nenets Autonomous District	0.1	0.0	0.0	0.4	0.3
Murmansk region	334.0	331.0	328.0	312.0	318.0
Yamalo-Nenets Autonomous District	25.0	22.0	23.0	32.0	31.0
Chukotka Autonomous District	5.0	5.0	4.0	3.0	3.0

In the Nenets Autonomous District and the Yamalo-Nenets Autonomous District volume of polluted wastewater discharge to surface water bodies for the period of 2013-2017 increased. For the Nenets Autonomous District there was a 2 times increase.

In the Murmansk Region and the Chukotka Autonomous District volume of wastewater discharges decreased.

4. Conclusions

The study showed the negative trends in the ecological-economic system management of the Russian Arctic regions. Atmospheric pollutant emissions have increased by an average of 2.7% in the Arctic regions, share of captured and neutralized air pollutants have not changed, discharge of polluted wastewater have decreased by 3%. These small changes in the sphere of the ecological-economic system management are achieved within the framework of close attention to the environment and the
adoption of a large number of regulatory and strategic documents aimed at environmental planning and of the territorial development management.

Following proposals to improve the ecological-economic system management of the Russian Arctic regions was developed:

– the need to improve the methodology for an objective assessment of the state of the environment;
– further research aimed at increase of management efficiency of the ecological-economic system of the regions;
– improvement of the regulatory framework;
– ensuring the monitoring of the ratio of financial costs for environmental protection and environmental policy results.

5. References

[1] Komkov N I, Selin V S, Tsukerman V A 2012 Innovative Economy: Encyclopedic Reference Dictionary M.: MAKs Press 544
[2] Tsukerman V A, Gudkov A V, Ivanov S V 2013 Northern regions of Russia as alternative sources of pure water for sustainable development REWAS 2013: Enabling Materials Resource Sustainability 295-301
[3] Tsukerman V A, Ivanov S V 2013 Scenarios for the development and improvement of the life support systems of the Arctic zone of Russia REWAS 2013: Enabling Materials Resource Sustainability - TMS 2013 Annual Meeting and Exhibition San Antonio, TX (United States) 404-410
[4] Komkov N I, Selin V S, Tsukerman V A, Goryachevskaya E S 2017 Problems and perspectives of innovative development of the industrial system in Russian Arctic regions Studies on Russian Economic Development vol 28 1 31-38 DOI 10.1134/S1075700717010051
[5] Tsukerman V, Ivanova L and Selin V 2016 System of State Regulation of Sustainable Ore Processing and Production Waste Treatment in the Russian Arctic Rewas 2016: Towards Materials Resource Sustainability Nashville, Tennessee John Wiley & Sons, Inc., Hoboken (NJ, USA) doi: 10.1002/9781119275039.ch31. 215-231 DOI 10.1007/978-3-319-48768-7_31
[6] Shaiderman A V 2016 Analysis of the impact of economic growth on the ecosystem of Russia Online journal Naukovedenie 8 5(36) https://e-library.ru/item.asp?id=27440752
[7] Yusupova G F 2018 Environmental innovations as a factor of sustainable development of territories in an innovative economy Socio-economic and technical systems: research, design, optimization 1(77) 63-70https://e-library.ru/item.asp?id=32637823
[8] Arefieva N Y 2018 The role of environmental innovations in ensuring sustainable development of regional entities in Russian federation Eurasian Journal of BioSciences 12-2 263-269 https://www.scopus.com(record/display.uri?eid=2-s2.0-85058184891&origin=resultslist&sort=pl-first&src=s&sst1=The+role+of+environmental+innovations+in+sustainable+development+of+regional+entities+in+Russian+federation+&st2=&sid=216d7e2a861b04c2cf1afdf822394c7a9&sort=b&src=b&sl=1&sf=TITLE-ABS-KEY%28The+role+of+environmental+innovations%29&relpos=0&citenr=2&searchTerm=
[9] Egorova N, Zaruba N, Jurzina T, Tumin V 2018 Ecological Management as a factor of Mining Region Development 3rd International Innovative Mining Symposium IIMS 2018 T F Gorbachev Kuzbass State Technical University650000 Vesennyaya st.Kemerovo (Russian Federation) vol 41 02001 DOI 10.1051/e3sconf/20184102001 https://www.scopus.com(record/display.uri?eid=2-s2.0-85049730922&origin=resultslist&sort=pl-first&src=s&sst1=ecological+economy+as+a+factor+of+sustainable+development&nlo=&nlr=&nls =&sid=9b8da1a773f204bb9f7620f5ab595c3&sort=b&src=b&sl=72&sf=TITLE-ABS-KEY%28ecological+economy+as+a+factor+of+sustainable+development%29&relpos=33&citenr=2
[10] Hu Y, Peng J, Liu Y, Wang M, Wang Y. 2018. Review on regional eco-efficiency research. Shengtai Xuebao Acta Ecologica Sinica vol 38-23 8277-8284 DOI 10.5846/stxb201806211356. https://www.scopus.com/record/display.uri?eid=2-s2.0-85058898955&origin=resultslist&sort=pltf&src=s&st1=ecological+economy+as+a+factor+of+sustainable+development&st2=&sid=9b8da773f2040bb9fd7620f5ab595c3&sot=b&sd=b&sl=72&s=TITLE-ABS-KEY%28ecological+economy+as+a+factor+of+sustainable+development%29&relpos=11&cite=Cnt=0&searchTerm=

[11] Baboshkina A A, Savina N P, Morozov I V. 2018. Management processes in the development of the socio-economic environment of the region. Journal of Advanced Research in Law and Economics vol 9-2 376-385 DOI 10.14505/jarle.v92(32).02. https://www.scopus.com/record/display.uri?eid=2-s2.0-85060388795&origin=resultslist&sort=pltf&src=s&st1=ecological+economy+as+a+factor+of+sustainable+development&nlo=&nlnr=&nls=&sid=9b8da773f2040bb9fd7620f5ab595c3&sot=b&sd=b&sl=72&s=TITLE-ABS-KEY%28ecological+economy+as+a+factor+of+sustainable+development%29&relpos=44&cite=Cnt=0&searchTerm=

[12] Porfir'ev B N. 2016. Green trends in the global financial system. World Economy and International Relations vol 60-9 5-16 DOI 10.20542/0131-2227-2016-60-9-5-16. https://www.scopus.com/record/display.uri?eid=2-s2.0-85002897674&origin=resultslist&sort=pltf&src=s&sid=78e37f20e4590e9eda9df09d0588550&sot=autdocs&sd=autdocs&sl=18&s=AU-ID%283836477811600%29&relpos=0&cite=Cnt=5&searchTerm=

[13] Presidential Decree of May 2 2014 No 296 "On the land territories of the Arctic zone of the Russian Federation" (in ed of Presidential Decree on 27/06/2017 No 287) http://pravo.gov.ru

[14] Regions of Russia Socio-economic indicators 2018 Statistical compilation Rosstat 1162 http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/publications/catalog/doc_1138623506156

[15] Resolution of the Government of the Russian Federation of 15/04/2014 No 326 “On the approval of the state program of the Russian Federation “Environmental Protection” for 2012 – 2020” (as amended by the Government of the Russian Federation from 13/08/2016 No 790 from 31/03/2017 No 397, from 06/07/2017 No 802, from 12/02/2018 No 147)