Cryopreservation of farm animal gametes and embryos: recent updates and progress

Zhengyuan HUANG1, Lei GAO1, Yunpeng HOU2, Shien ZHU1, Xiangwei FU (✉1)

1 National Engineering Laboratory for Animal Breeding/Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture/College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
2 State Key Laboratory of Agrobiotechnology/College of Biological Sciences, China Agricultural University, Beijing 100193, China

Abstract

Cryopreservation has undergone tremendous advances and is widely used in animal production based on decades of study of cellular permeability, freezability and empirical generalization. Several improvement are particularly important: the cryopreservation protocol has been continuously refined over the years to achieve greater reproductive performance; cryoprotective agents are more effective and less toxic than previously; there has been significant innovation in advanced cryopreservation systems and carriers. Despite this, there are still problems that urgently require practical solutions, such as remedies for cryodamage and encouraging the use of frozen–thawed porcine sperm in pig production.

Keywords

vitrification, gametes, embryo, animal production, cryoprotective agent, freezability

1 Introduction

Because of its important contribution to animal production, genetic resource preservation, embryo biotechnology and human assisted reproduction technology, there has been much progress in cryopreservation over a long period, which has been driven predominantly by research in humans, cows, sheep, pigs and mice[1]. Cryopreservation protocols have evolved substantially for gametes, embryos and reproductive tissues (ovarian and testicular tissue), resulting in a significant increase in the proportion of fertilizable sperm, viable oocytes and transferable embryos.

The cattle industry has benefited the most from the application of cryopreserved semen or embryos over past decades. International exchange of high quality breeder bull resources has accelerated with semen cryopreservation. Cryopreserved semen allows the mating of female cattle that is neither bound by time nor place, while minimizing the risk of disease transmission[2]. The USDA indicated that frozen bovine sperm and artificial insemination contributed 97% to the genetic improvement of cow herds in 2008. Cryopreservation enabled embryo transport to be more practical and cost effective; remarkably, 30 years of international trade with frozen embryos has not resulted in the transmission of a single infectious disease agent[3]. According to the census from the International Embryo Technology Society, in 2015, more than 60% of bovine embryo transfer was conducted using frozen–thawed embryos[4].

There are two strategies that may fulfill the requirements for successful cryopreservation of mammalian gametes and embryos: slow freezing (programed) and vitrification. A typical cooling rate of slow freezing is about 1 °C·min⁻¹ which is appropriate for many mammalian cells after treatment with cryoprotective agents (CPAs) such as glycerol or dimethyl sulphoxide (DMSO), and this rate can be achieved by using devices such as a rate-controlled freezer or a benchtop portable freezing container[5]. Vitrification is an ultrarapid cooling technique, for which the protocols are simple, allowing cells and tissue to be placed directly into CPAs and then plunged directly into liquid nitrogen. In vitrification, ice crystal formation is prevented by using high concentrations of CPAs and high cooling and warming rates[6]. Although vitrification as a method of cryopreserving embryos was developed in the mid-1980s as an alternative to the then standard slow freezing, its suggested advantages (simplicity, cost and speed) have had little impact on commercial embryo transfer operations and its application has remained largely confined to research studies[7]. In comparison to slow-freezing, which requires more than 2h, vitrification only requires a few minutes, minimizing the time of exposure to subphysiological conditions[8]. Vitrification also has the attraction of avoiding the need for expensive equipment required for cryopreservation by
slow freezing (Fig. 1). It is notable that the literature on cryopreservation technology makes a distinction between ‘thawing’ as applied to embryos and oocytes preserved by slow freezing and ‘warming’, which is the term used in bringing embryos back to ambient temperature after vitrification.

In this review, the major updates and progress in the development of cryopreservation technologies are summarized in order to highlight aspects that still require improvement and to encourage further developments in this field.

2 A short overview of the basic principles of cryopreservation

2.1 The physical chemistry of cryopreservation and warming

Although the cytosol of gametes or embryos contains a high proportion of water[^10], it is still feasible for them to be vitrified. Water is not very viscous and it can be vitrified only by an extremely rapid flash-freezing of a small sample[^11], about $3 \times 10^6 \, \text{g} \cdot \text{s}^{-1}$ from room temperature to $-135^\circ \text{C}[^12]$, consequently, dehydration of the sample is critical, and is achieved by exposure to high concentrations ($\geq 6 \, \text{mol} \cdot \text{L}^{-1}$) of CPA as pretreatment, followed by plunging the sample into liquid nitrogen. Under such a rapid cooling rate, water molecules do not have time to arrange themselves into a crystalline lattice structure[^13] and the physiological structure of gamete or embryo can be maintained[^14]. Using the standard French mini-straw as an embryo container, vitrification enabled a maximum cooling rate of about $2 \times 10^3 \, \text{C} \cdot \text{min}^{-1}$, while Vajta’s OPS method permits much higher cooling and warming rates ($> 2 \times 10^4 \, \text{C} \cdot \text{min}^{-1}$).

Shrinkage occurs during vitrification (Fig. 2), so during warming the gamete or embryo is placed into solution at lower concentration and the CPAs are replaced with water and gradually swell to its original size. Thawing solution contains sucrose, which does not penetrate through the cell membrane because of its size, but it does control the rate of swelling[^16], striking a balance between swelling and shrinkage.

2.2 Cryoprotective agents

Some amphibians have freezing resistance due to glycerol manufactured by their livers[^17]. Glycerol is an antifreeze, like ethylene glycol (EG) used as an automobile antifreeze, and reduces ice formation and lowers the freezing point, which can make frozen water look like glass — with no crystal formation — a process called vitrification. In 1959, DMSO was demonstrated to be useful as a CPA owing to its high penetrating rate[^18], though it can be more toxic at higher temperatures[^19]. In 1972, eight cell mouse embryos were cryopreserved to liquid nitrogen temperature and rewarmed to obtain live mice, by slow cooling and skillful combination of DMSO with glycerol[^20]. The higher the concentration of CPA, the higher the glass transition temperature, thus lowering the chance of ice nucleation and crystallization[^21].

Some non-permeating CPAs like trehalose, sucrose and ficoll, are also added because they can increase the osmotic pressure which is conducive to both dehydration and penetration of EG and DMSO. It was also demonstrated that trehalose could improve the freezing tolerance of oocytes[^22–24]. Then during thawing, an appropriate
concentration of sucrose can be used to remove the permeated CPAs by establishing a proper osmotic pressure and this process is called detoxification.

2.3 Volume

Smaller volumes allow more efficient heat transfer, thus facilitating rapid cooling rates. Furthermore, the smaller the volume, the higher the probability of vitrification\(^{25}\). Compared to freezing in 0.25-mL straws, the cooling rate is enhanced two to six times when freezing occurs in a more refined device, such as open-pulled straw or electron microscope grid\(^{26}\). Decreasing the vitrified volume and increasing the cooling rate allow a moderate decrease in CPA concentration so as to minimize its toxic and hazardous osmotic effects\(^{27}\). It was shown for oocytes and embryos that increasing the cooling rate improves survival rates by up to 37%\(^{1}\).

3 Cryopreservation of mammalian preimplantation embryos

Embryo cryopreservation has been widely used in animal reproduction since a calf was born from frozen–thawed embryos for the first time in 1973\(^{28,29}\). Vitrification of embryos was invented in 1985\(^{30}\) and successive breakthroughs have been achieved for farm animals including cattle\(^{31}\), goats\(^{32}\), sheep\(^{33}\) and pigs\(^{34}\) (Table 1).

There are several important characteristics for embryo cryopreservation, for example, the permeability of the plasma membrane of embryos varies during developmental stages, because permeation velocity improves along with the formation of blastomeres\(^{35}\). Different farm animals have distinct responses to freezing, i.e., freezability, for example, porcine embryos are particularly sensitive to low temperature due to their high lipid content\(^{36,37}\), and the freezability of ovine embryos increases along with their development\(^{38}\). Studies indicate an increased survival rate, development potential and freezability with development after vitrification of ovine four cell embryos, eight cell embryos, 16-cell embryos, morulae and blastocysts\(^{39,40}\).

As the most widely used embryo biotechnology, cryopreservation of bovine embryos has developed rapidly and according to the data from the International Embryo Technology Society, more than 300000 frozen–thawed embryo transfers were conducted around the world in 2015\(^{4}\). Studies indicated that use of conjugated linoleic acid\(^{41}\) or lipolysis agents\(^{42}\) during bovine embryo culture and cryopreservation could enhance the post-warming survival rate. Embryo culture in medium with

Year	Species	Researcher
1985	Mouse	Rall and Fahy
1986	Cow	Massip et al.
1986	Hamster	Critser et al.
1988	Rat	Kono et al.
1989	Rabbit	Smorag et al.
1990	Sheep/goat	Scieve et al.
1994	Horse	Hochi et al.
1998	Pig	Kobayashi et al.
lower concentrations of serum and metabolism regulator, which could inhibit lipogenesis, also led to a higher post-warming survival rate. \cite{45} Similar outcomes have been obtained by adding cytochalasin or using centrifugation to decrease lipid content \cite{44}, and addition of caspase inhibitor Z-VAD-FMK could improve freezability of in vitro derived bovine embryos \cite{45}. To improve embryo thawing, the one-step method for direct nonsurgical transfer of frozen–thawed bovine embryos \cite{16} has proven to be efficient for the cattle industry because it simplifies the thawing procedures and prevents embryo loss during thawing.

Vitrification of ovine embryos has become common practice in animal production for nearly 30 years since the first success in 1990. Pregnancy rate and lambing percentage were significantly higher in vitrified-warmed blastocyst transfer using open-pulled straw (OPS) vitrification compared to slow freezing \cite{46}. It was demonstrated that DMSO could lead to a lower development rate after ovine embryo vitrification compared to EG \cite{47}. To improve culture systems, a growing number of studies have shown that adding an antioxidant such as melatonin \cite{48, 49}, or lipid lowering agent, such as conjugated linoleic acid \cite{50}, can improve the outcome after vitrification. Adding cathepsin B to in vitro cultures cannot only improve quality and quantity of ovine blastocysts but also improve the cryo-survival of in vitro derived blastocysts \cite{51}. Also, vitamin K2 can improve the developmental competency and freezability of in vitro derived ovine blastocyst \cite{52}.

Progress in porcine embryo vitrification has been slow compared to other farm animals and there was no successful frozen-warmed porcine embryo transfer until 1989, probably because of its high intracellular lipid content \cite{53}. Neither mechanical methods like centrifugation \cite{54, 55} nor adding chemicals into the culture medium \cite{56} to lower the lipid content within blastocysts was able to improve the freezability or the post-warming survival rate. The application of hydrostatic pressure before vitrification has improved blastocyst survival rates after warming, to over 10% \cite{57}. Disrupting the lipid bilayers by micromanipulation and then centrifuging embryos before vitrification has improved post-warming survival, and using this approach, vitrification in a closed system was as successful as using open-pulled straws, which was a major step forward in porcine embryo cryopreservation \cite{58}. Carboxylated ε-poly-L-lysine is an effective CPA for porcine embryo vitrification and it can improve the developmental ability of pig embryos vitrified at the pronuclear stage \cite{59}. Vitrification of expanding blastocysts using cryotop has given a higher survival rate and a piglet was successfully born after blastocyst transfer \cite{60}.

4 Cryopreservation of mammalian oocytes

Recent researches have focused on refinement of oocyte vitrification, specifically, screening optimal CPAs, selecting cryopreservation carriers, and refining the timing of pretreatment and vitrification procedures. Apart from empirical generalization, cryopreservation protocols need to be specialized based on the biological characteristics of oocytes of different species.

One particular challenge pertaining to mammalian oocyte cryopreservation is their extremely high cellular volume compared with other cell types, making them particularly sensitive and even more susceptible to intracellular ice formation during the process of cryopreservation due to a lower surface-to-volume ratio \cite{61}. Also, the elasticity of oocyte membrane is inferior to that of the embryo, which could explain why it is easily injured during freezing \cite{62}. Moreover, CPAs can induce an increase of cytosolic calcium concentration in oocytes during vitrification and warming. For instance, DMSO stimulates the release of cytosolic calcium and EG improves calcium influx; the increase of cytosolic calcium concentration induces zona hardening and affects the penetration of sperm and fertilization \cite{63}. Cytosolic lipids are critical to oocyte maturation and development, but are the biggest obstacle to cryopreservation by increasing freezing sensitivity \cite{64}, especially in porcine oocytes, which contain 6.8 times as much lipid as mouse oocytes \cite{65}. From the perspective of developmental stage, under the same treatment, MII oocytes have a higher post-warming survival rate than germinal vesicle (GV) oocytes but there is no obvious difference in their subsequent development \cite{66}. One study indicated that GV breakdown oocytes have a better development compared to GV or MII oocytes after vitrification \cite{67}.

Given the particular biological characteristics of bovine oocytes, they have better freezability than porcine or ovine oocytes \cite{68}, consequently, the frozen–thawed bovine oocytes are more likely to develop into blastocysts after in vitro fertilization. The first calf from a frozen-thawed oocyte was born in 1992 \cite{59} and the first successful vitrification of a bovine oocyte by OPS was in 1998 \cite{13}. Vitrified-warmed bovine oocytes produced by the OPS method can be used for somatic cell cloning, and a cloned calf was successfully born after embryo transfer \cite{70}. Improvements of bovine oocyte cryopreservation have been made over the years, for example, using macro-molecule polymers as CPAs to lessen toxicity \cite{71}, using cryotop can lead to a better outcome of vitrified bovine GV and MII oocytes \cite{72}, and using solid-surface vitrification reduces the ultrastructural injuries \cite{73}. Docetaxel treatment before vitrification can significantly decrease injury to the cytoskeleton of bovine oocytes, thereby improving their post-warming survival rate and development potential \cite{74}. Other chemicals, such as conjugated linoleic acid \cite{75}, L-carnitine \cite{76}, glutathione \cite{77} and a cAMP agonist \cite{78} have also improved outcomes. Cholesterol, coenzyme Q10, BAPTA-AM (Ca\(^{2+}\) chelator) and ruthenium red have also improved the freezability of in vitro matured bovine...
oocytes. Liquid helium vitrification of immature bovine oocytes had better outcomes for reducing injury to the cytoskeleton structure and improving the viability compared with liquid nitrogen vitrification.

Progress in ovine oocyte research has lagged far behind that carried out with bovine oocytes. Most studies have focused on optimizing the oocytes stage, cryopreservation carriers and specialized drugs. The first successful vitrification (using a cryoloop) of ovine GV oocytes was reported in 2013; vitrified oocytes had the ability to mature, to be fertilized and to subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes. Also GV oocytes vitrified by cryotop had a higher polar body extrusion rate. Open vitrification carriers like cryotop and cryoloop have proven to have better outcomes on ovine MII oocyte vitrification compared to closed or half-closed systems, having higher percentage of survival, cleavage and in vitro maturation, but there was no significant difference between OPS and cryoloop with respect to the rate of blastocyst formation. The addition of angiotensin II to the in vitro maturation and in vitro culture media could improve blastocysts formation in vitrified sheep oocytes. To maintain the oocyte cytoskeleton of MII carriers and specialized drugs. The most successful vitrification (using a cryoloop) of ovine GV oocytes was reported in 2013; vitrified oocytes had the ability to mature, to be fertilized and to subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.

During decades of study, vitrified-warmed porcine GV and MII oocytes can now be developed to healthy embryos after in vitro maturation and fertilization, and piglets were successfully born in 2014. Studies on permeating CPAs indicated that EG + DMSO and EG + propylene glycol are both efficient in improving post-warming survival after vitrification. For non-permeating CPAs, adding Lycium barbarum polysaccharides is beneficial for GV oocyte vitrification. Before vitrification, taxol treatment can maintain spindle integrity, spatial distribution of mitochondria and lipid droplets. It also increases the percentage of vitrified-warmed MII oocytes that develop into blastocysts after parthenogenetic activation. It has been demonstrated that the cytosolic lipid content of porcine oocyte can be lowered by adding Forskolin (stimulator of lipolysis) to improve the freezability of in vitro fertilized porcine oocytes. The addition of antioxidants, such as glutathione, taurine, vitamin E and resveratrol, minimizes oxidative damage and reduces the rate of apoptosis. Thioglycol can counter the increase in reactive oxygen species level induced by vitrification. During in vitro maturation of vitrified-warmed porcine GV oocytes, adding cyclosporine A and BAPTA-AM to the culture medium can decrease mitochondria calcium concentration, and increase survival and maturation rate.

5 Cryopreservation of mammalian semen

Sperm cryopreservation has the longest history and is the most widely used in animal production and human reproductive medicine, due to high freezability, large numbers and straightforward protocols. Successful sperm cryopreservation is based on the peculiar structure of sperm. The head of the sperm contains lipoprotein and enzymes used for penetrating the oocyte, with weaker freezability. The midpiece has a central filamentous core with many mitochondria spiraled around it for ATP production. The tail or flagellum executes the lashing movements, and had stronger freezability than the head because of their solid structure and lower water content.

Bovine sperm is not sensitive to low temperature, while porcine and ovine sperm are quite sensitive to temperature changes, and more likely to suffer from cold shock between 5 and 22°C leading to rapid loss of vitality. Compared to bovine sperm, the porcine sperm membrane contains less lecithin, which is necessary for maintaining membrane fluidity. Anti-oxidase is easily lost during cryopreservation, combined with high content of unsaturated fatty acid in farm animal sperm, resulting in their vulnerability to oxidant damage. It was reported that the expression of heat shock protein 90 in porcine sperm was significantly downregulated after cryopreservation and decreased to 64% compared to fresh sperm, which might be related to the vitality loss after thawing. In general, freezing-thawing of mammalian sperm harms the cell, the extent of that damage varies across species and depends heavily upon the sperm resilience to withstand cryopreservation procedures.

Egg yolk-sodium citrate diluent (EYC) was the first extender used for bovine sperm preservation, and was gradually replaced with tris-buffered egg yolk (TRIS-EY) or tris-fructose yolk-glycerol. Accordingly, tris and citrate are now used as the major components of bovine sperm extender for cryopreservation and widely used in industry. Bovine sperm cryopreservation was developed in the 20th century, when glycerol was used as a CPA for mammalian sperm. Glycerol has been demonstrated to be the best CPA with an optimal concentration that ranges from 2% to 3%. Glycerol has been shown to have better efficacy than trehalose. Low density lipoprotein can be substituted...
for egg yolk because it can counter the injuries induced by cold shock, as well as maintaining the physiological structure of sperm, resulting in higher vitality after thawing\cite{125,126}. Other additives such as vitamin E or melatonin, have been found to increase the integrity of acrosome, improve vitality, decrease abnormality rate and prevent oxidative damage\cite{127–129}.

The earliest report of ovine sperm cryopreservation was in 1937\cite{130} and later, Smirnov successfully cryopreserved EY-lactose\cite{148}, or unbuffered type, such as Beltsville F5. It turned out that the development of ovine sperm cryopreservation was not as fast as for bovine sperm. In the 1960s, the conception rate from frozen–thawed ovine sperm was 37.9%–66.2%\cite{135,136}, but improvements in cryopreservation have been made over the decades. Trehalose was introduced as an efficient non-permeating CPA to cryopreserve ovine sperm, leading to a higher vitality along with increasing concentration of trehalose, reaching more than 60%\cite{137}. Similarly, sucrose was proved to be capable of effectively preserving sperm morphology and DNA integrity\cite{138}. This was explained by studies which demonstrated that hypertonic extender was more suitable for ovine sperm cryopreservation since it can withstand twice the osmotic pressure of an isotonic glucose solution\cite{139}. Centrifugation was introduced to remove seminal plasma, resulting in higher post-warming survival rates and integrity of acrosome\cite{134,140}. However, the conception rate of frozen–thawed ovine sperm could not be stabilized at more than 60%\cite{141}. Granule frozen and straw frozen sperm are commonly used in sheep production, but there is no study on frozen ovine sperm thawing, and the diluents for thawing are basically 2.9% sodium citrate, inositol-citrate, glucose-citrate or fructose-citrate.

Piglets from frozen–thawed sperm were first born in 1957. The 1970s represented a significant period of advancement for porcine sperm cryopreservation with the establishment of two methods. The Beltsville method\cite{142} used carbonic ice and the Westendorf method\cite{143} used liquid nitrogen vapors, however, cryopreservation success was further increased through the introduction of controlled-rate freezers, which gave better results (i.e., sperm quality at post-warming) than the standard method (i.e., nitrogen vapors in a polystyrene box containing liquid nitrogen)\cite{144,145}. Porcine sperm cryopreservation extenders including the buffered type, such as EY-Glucose\cite{146}, EY-Sucrose-EDTA-calcium or magnesium salts\cite{147} and EY-lactose\cite{148}, or unbuffered type, such as Beltsville F5 (BFS)\cite{142}, EY-glucose-citrate-EDTA-potassium-untiol-urea\cite{149} and tris-glucose-EDTA-EY\cite{150}. Studies on CPAs indicated that using 0.09 g·mL\(^{-1}\) low density lipoprotein to substitute EY\cite{151} can lead to better post-warming sperm quality and glycerol combined with acid amides was better than glycerol alone\cite{152}. Also, adding hyaluronan\cite{153}, cholesteral\cite{154} or butylated hydroxyto-

\[\text{amides was better than glycerol alone}.\]

While there has been considerable success with cryopre-
servation of oocytes, embryos and semen in farm animals, this technology still requires refinement and further studies of the basic principles is needed so that greater success and higher efficiency can be achieved.

Oocyte and embryo cryopreservation are applied across many areas of animal production, and cryopreservation protocols are established according to different objectives because cellular characteristics vary among different species, and even within a species at different developmental stages. For example, for porcine oocyte or embryo cryopreservation, high hydrostatic pressure application may be worthy of further development as a potential way to improve results, in combination with the use of improved vitrification solutions and possibly delipidation of the cytoplasm, it could yield better and more consistent results\cite{57}. The prominence of cryodamage in this species deserves further investigation as a possible limiting factor for successful vitrification. For ovine oocytes, further attention to the effects of vitrification on transcription factors could be fruitful for overcoming the developmental blocks seen in this species. Furthermore, the interaction between cytoplasmic calcium and extracellular fetal calf serum with transcription factor expression warrants further study\cite{86,157,158}. Generally speaking, studies on molecular and biochemical evaluation of CPAs and careful selection of less toxic CPAs, close monitoring of their temperature, time of exposure, concentration, and their stepwise addition and removal from cells\cite{9} are needed.

The use of frozen–thawed porcine sperm is still considered suboptimal\cite{159} because of the specific features of the sperm cryopreservation protocols and pig breeding\cite{160}. Future studies on cryodamage (Fig. 3) should focus on physiological structures (integrity of sperm membrane, sperm chromatin and mitochondria function), factors that influence ejaculate freezeability (season, diet, genetic differences, spermatogenesis and epididymal maturation), and identification of effective additives and freezeability markers.

Acknowledgements This study was supported by National Natural Science Foundation of China (31101714) and National Transgenic Creature Breeding Grand Project (2016ZX08008-003).

Compliance with ethics guidelines Zhengyuan Huang, Lei Gao, Yunpeng
Hou, Shien Zhu, and Xiangwei Fu declare that they have no conflicts of interest or financial conflicts to disclose.

This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

References

1. Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. *Reproduction*, 2011, **141**(1): 1–19
2. Roca J, Parrilla I, Gil M A, Cuello C, Martinez E A, Rodriguez-Martinez H. Non-viable sperm in the ejaculate: lethal escorts for contemporary viable sperm. *Animal Reproduction Science*, 2016, **169**: 24–31
3. Gordon I. Reproductive technologies in farm Animals. In: Gordon I. *In vitro* embryo production. 2nd ed. Cambridge: CABI Pub, 2017, 100–101
4. George P. 2015 statistics of embryo collection and transfer in domestic farm animals. *IETS Data Retrieval Committee*, 2015
5. Thompson M, Nemits M, Ehrhardt R. Rate-controlled cryopreservation and thawing of mammalian cells. *Protocol Exchange* 2011. doi: 10.1038/protex.2011.224
6. Day J G, Stacey G N, Gefriertrocknen. Cryopreservation and freeze-drying protocols. *FEBS Letters*, 2007, **377**(2): 281–282
7. Arav A. Cryopreservation of oocytes and embryos. *Theriogenology*, 2014, **81**(1): 96–102
8. Brambillasca F, Guglielmo M C, Coticchio G, Mignini Renzini M, Dal Canto M, Fadini R. The current challenges to efficient immature oocyte cryopreservation. *Journal of Assisted Reproduction and Genetics*, 2013, **30**(12): 1531–1539
9. Moussa M, Shu J, Zhang X, Zeng F. Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. *Science China Life Sciences*, 2014, **57**(9): 903–914
10. Shepherd V A. The cytomatrix as a cooperative system of macromolecular and water networks. *Current Topics in Developmental Biology*, 2006, **75**: 171–223
11. Pessarakli M. Handbook of plant and crop stress. 3rd ed. Boca Raton: CRC Press, 2011, 1215
12. Yavin S, Arav A. Measurement of essential physical properties of vitrification solutions. *Theriogenology*, 2007, **67**(1): 81–89
13. Vajta G, Holm P, Kuwayama M, Booth P J, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. *Molecular Reproduction and Development*, 1998, **51**(1): 53–58
14. Rall W F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. *Cryobiology*, 1987, **24**(5): 387–402
15. Varghese A C, Nagy Z P, Agarwal A. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation. *Reproductive Biomedicine Online*, 2009, **19**(1): 126–140
16. Leibo S P. A one-step method for direct nonsurgical transfer of frozen-thawed bovine embryos. *Theriogenology*, 1984, **21**(5): 767–790
17. Rexer-Huber K M J, Bishop P J, Wharton D A. Skin ice nucleators and glycerol in the freezing-tolerant frog *Litoria ewingii*. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology*, 2011, **181**(6): 781–792
18. Saha S, Otoi T, Takagi M, Boediono A, Sumantri C, Suzuki T. Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol, trehalose, and polyvinylpyrrolidone. *Cryobiology*, 1996, **33**(3): 291–299
19. Kasai M, Niwa K, Iritani A. Effects of various cryoprotective agents on the survival of unfrozen and frozen mouse embryos. *Journal of Reproduction and Fertility*, 1981, 63(1): 175–180

20. Whittingham D G, Leibo S P, Mazur P. Survival of mouse embryos frozen to –196 degrees and –269 degrees C. *Science*, 1972, 178 (4059): 411–414

21. Arav A, Saragusty J. Directional freezing of spermatozoa and embryos. *Reproduction, Fertility, and Development*, 2013, 26(1): 83–90

22. Chen S U, Lien Y R, Cheng Y Y, Chen H F, Ho H N, Yang Y S. Vitritication of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. *Human Reproduction*, 2001, 16(11): 2350–2356

23. Puhlev I, Guo N, Brown D R, Levine F. Desiccation tolerance in human cells. *Cryobiology*, 2001, 42(3): 207–217

24. Guo N, Puhlev I, Brown D R, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. *Nature Biotechnology*, 2000, 18(2): 168–171

25. Arav A, Yavin S, Zeron Y, Natan D, Dekel I, Gacitua H. New trends in gamete’s cryopreservation. *Molecular and Cellular Endocrinology*, 2002, 187(1–2): 77–81

26. Arav A, Zeron Y. Vitritication of bovine oocytes using modified minimum drop size technique (MDS) is effected by the composition and the concentration of the vitrification solution and by the cooling conditions. *Theriogenology*, 1997, 47(1): 341

27. Yavin S, Aroyo A, Roth Z, Arav A. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. *Human Reproduction*, 2009, 24(4): 797–804

28. Wilmut I, Rowson L E. Experiments on the low-temperature preservation of cow embryos. *Veterinary Record*, 1973, 92(26): 686–690

29. Wilmut I, Rowson L E. The successful low-temperature preservation of mouse and cow embryos. *Journal of Reproduction and Fertility*, 1973, 33(2): 352–353

30. Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification. *Nature*, 1985, 313(6003): 573–575

31. Massip A, Zwalmen P V D, Scheffen B, Ectors F. Pregnancies following transfer of cattle embryos preserved by vitrification. *Cryo Letters*, 1986, 7: 270–273

32. Yuswiati E, Holtz W. Work in progress: successful transfer of vitrified goat embryos. *Theriogenology*, 1990, 34(4): 629–632

33. Széll A, Zhang J, Hudson R. Rapid cryopreservation of sheep embryos by direct transfer into liquid nitrogen vapour at ~180 degrees C. *Reproduction, Fertility, and Development*, 1990, 2(6): 613–618

34. Dobrinsky J R. Cellular approach to cryopreservation of embryos. *Theriogenology*, 1996, 45(45): 17–26

35. Pedro P B, Yokoyama E, Zhu S E, Yoshida N, Valdez D M Jr, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. *Journal of Reproduction and Development*, 2005, 51(2): 235–246

36. Lonergan P, Rizos D, Gutiérrez-Adán A, Fair T, Boland M P. Effect of culture environment on embryo quality and gene expression-experience from animal studies. *Reproductive Biomedicine Online*, 2003, 7(6): 657–663

37. McEvoy T G, Robinson J J, Sinclair K D. Developmental consequences of embryo and cell manipulation in mice and farm animals. *Reproduction*, 2001, 122(4): 507–518

38. Abdalla H, Shimoda M, Hara H, Morita H, Kuwayama M, Hirabayashi M, Hochi S. Vitrification of ICSI- and IVF-derived bovine blastocysts by minimum volume cooling procedure: effect of developmental stage and age. *Theriogenology*, 2010, 74(6): 1028–1035

39. Dos Santos Neto P C, Vilarinho M, Barrera N, Cuadro F, Crispo M, Menchaca A. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryokit or Sputula methods. *Cryobiology*, 2015, 70(1): 17–22

40. Shirazi A, Shams-Esfandabadi N, Ahmadi E, Heidari B. Effects of growth hormone on nuclear maturation of ovine oocytes and subsequent embryo development. *Reproduction in Domestic Animals*, 2010, 45(3): 530–536

41. Pereira R M, Baptista M C, Vasques M I, Horta A E, Portugal P V, Bessa R J, Silva J C, Pereira M S, Marques C C. Cryosurvival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t12c CLA). *Animal Reproduction Science*, 2007, 98(3–4): 293–301

42. Barceló-Fimbres M, Seidel G E Jr. Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. *Molecular Reproduction and Development*, 2007, 74(11): 1406–1418

43. Sudano M J, Paschoal D M, Rascado T S, Magalhães L C, Crocomo L F, de Lima-Neto J F, Landim-Alvarenga F C. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. *Theriogenology*, 2011, 75(7): 1211–1220

44. Pryor J H, Looney C R, Romo S, Kraemer D C, Long C R. Cryopreservation of in vitro produced bovine embryos: effects of lipid segregation and post-thaw laser assisted hatching. *Theriogenology*, 2011, 75(1): 24–33

45. Pero M E, Zallo G, Esposito L, Lombardi P, De Canditiis C, Neglia G, Gasparini B. Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos. *Theriogenology*, 2018, 108: 127–135

46. Yacoub A N A, Gauy M, Holtz W. Open pulled straw vitrification of goat embryos at various stages of development. *Theriogenology*, 2010, 73(8): 1018–1023

47. Varago F C, Moutacas V S, Serapião R V, Vieira F, Chiarini-Garcia H, Brandão F Z, Camargo L S, Henry M, Lagares Canditiis C, Neglia G, Gasparrini B. Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos. *Theriogenology*, 2011, 75(7): 1211–1220

48. Mara L, Sanna D, Dattena M, Mayorga Muñoz I M. Different in vitro culture systems affect the birth weight of lambs from vitrified ovine embryos. *Zygote*, 2015, 23(1): 53–57

49. Succu S, Pasciu V, Manca M E, Chelucci S, Torres-Rovira L, Leoni G Z, Zinellu A, Carni C, Naitana S, Berlinguer F. Dose-dependent effect of melatonin on postwarming development of
vitriﬁed ovine embryos. Theriogenology, 2014, 81(8): 1058–1066.

50. Romão R, Marques C C, Baptista M C, Barbas J P, Horta A E M, Carolino N, Bettencourt E, Pereira R M. Cryopreservation of in vitro-produced sheep embryos: effects of different protocols of lipid reduction. Theriogenology, 2015, 84(1): 118–126.

51. Perzhan M, Hosseini S M, Ostadhosseini S, Rouhollahi Varnosofaderani S, Seﬁd F, Nasr-Esfahani M H. Cathepsin B inhibitor improves developmental competency and cryo-tolerance of in vitro ovine embryos. BMC Developmental Biology, 2017, 17(1): 10.

52. Seﬁd F, Ostadhosseini S, Hosseini S M, Ghazvini Zadegan F, Perzhan M, Nasr-Esfahani M H. Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology, 2017, 77: 34–40.

53. Polge C, Willadsen S M. Freezing eggs and embryos of farm animals. Cryobiology, 1978, 15(3): 370–373.

54. Dobrinsky J R, Nagashima H, Pursel V G, Long C R, Johnson L A. Cryopreservation of swine embryos with reduced lipid content. Theriogenology, 1999, 51(1): 164–164.

55. Nagashima H, Kashiwazaki N, Ashman R, Gruppen C, Seamark R F, Notte M. Recent advances in cryopreservation of porcine embryos. Theriogenology, 1994, 41(1): 113–118.

56. Men H, Agca Y, Riley L K, Crisler J K. Improved survival of vitriﬁed porcine embryos after partial delipidation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology, 2006, 66(8): 2008–2016.

57. Mullen S F, Fahy G M. A chronologic review of mature oocyte vitriﬁcation research in cattle, pigs, and sheep. Theriogenology, 2012, 78(8): 1709–1719.

58. Men H, Zhao C, Si W, Murphy C N, Spate L, Liu Y, Walters E M, Samuel M S, Prather R S, Crisler J K. Birth of piglets from in vitro-produced, zona-intact porcine embryos vitriﬁed in a closed system. Theriogenology, 2011, 76(2): 280–289.

59. Kamoshita M, Kato T, Fujiwara K, Namiki T, Matsumura K, Hyon S H, Ito J, Kashiwazaki N. Successful vitriﬁcation of pronuclear-stage pig embryos with a novel cryoprotective agent, carboxylated ε-poly-L-lysine. PLoS One, 2017, 12(4): e0176711.

60. Mito T, Yoshioka K, Noguchi M, Yamashita S, Misumi K, Hoshi T, Hoshi H. Birth of piglets from in vitro-produced porcine blastocysts vitriﬁed and warmed in a chemically deﬁned medium. Theriogenology, 2015, 84(8): 1314–1320.

61. Toner M, Cravalho E G, Karel M. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. Journal of Applied Physics, 1990, 67(3): 1582–1593.

62. Gook D A, Osborn S M, Johnston W J H. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the conjugation of the meiotic spindle. Human Reproduction, 1993, 8(7): 1101–1109.

63. Larman M G, Sheehan C B, Gardner D K. Calcium-free vitriﬁcation reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction, 2006, 131(1): 53–61.

64. Ruffling N A, Steponkus P L, Pitt R E, Parks J E. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology, 1993, 30(6): 562–580.

65. Genicot G, Leroy J L, Soom A V, Donnay I. The use of a ﬂuorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 2005, 63(4): 1181–1194.

66. Wu G, Jia B, Mo X, Liu C, Fu X, Zhu S, Hou Y. Nuclear maturation and embryo development of porcine oocytes vitriﬁed by cryotop: effect of different stages of in vitro maturation. Cryobiology, 2013, 67(1): 95–101.

67. Khosravi-Farsani S, Sobhani A, Amidi F, Mahmoudi R. Mouse oocyte vitriﬁcation: the effects of two methods on maturing germinal vesicle breakdown oocytes. Journal of Assisted Reproduction and Genetics, 2010, 27(5): 233–238.

68. Isachenko E F, Ostashko F I, Isachenko V V. Culture of bull semen in heat-inactivated and non-inactivated bovine estrual serum. Theriogenology, 1992, 37(1): 226–226.

69. Fuku E, Kojima T, Shioya Y, Marcus G J, Downey B R. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology, 1992, 29(4): 485–492.

70. Hou Y P, Dai Y P, Zhu S E, Zhu H B, Wu T Y, Gong G C, Wang H P, Wang L L, Liu Y, Li R, Wan R, Li N. Bovine oocytes vitriﬁed by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology, 2005, 64(6): 1381–1391.

71. Checura C M, Seidel G E Jr. Effect of macromolecules in solutions for vitriﬁcation of mature bovine oocytes. Theriogenology, 2007, 67(5): 919–930.

72. Prentice J R, Singh J, Dochi O, Anzar M. Factors affecting nuclear maturation, cleavage and embryo development of vitriﬁed bovine cumulus-oocyte complexes. Theriogenology, 2011, 75(4): 602–609.

73. Boonkosol D, Faisaikarn T, Dimyes A, Kitiyanant Y. Effects of vitriﬁcation procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes. Reproduction, Fertility, and Development, 2007, 19(2): 383–391.

74. Chasombat J, Nagai T, Pampai R, Vongprahub T. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitriﬁcation: effects on cytoskeleton integrity and developmental ability after warming. Cryobiology, 2015, 71(2): 216–223.

75. Matos J E, Marques C C, Moura T F, Baptista M C, Horta A E, Soveral G, Pereira R M. Conjugated linoleic acid improves oocyte cryosurvival through modulation of the cryoprotectants inﬂux rate. Reproductive Biology and Endocrinology, 2015, 13(1): 60.

76. Chankitsakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology, 2013, 79(4): 590–598.

77. Haru H, Yamane I, Noto I, Kagawa N, Kuwayama M, Hirabayashi M, Hoshi H. Birth of piglets from vitriﬁed bovine embryos with increased intracellular glutathione level prior to vitriﬁcation and in vitro fertilization. Zygote, 2014, 22(4): 476–482.

78. Ezoe K, Yabuuchi A, Tani T, Mori C, Miﬁ K, Takayama Y, Beyhan Z, Kato Y, Okuno T, Kobayashi T, Kato K. Developmental competence of vitriﬁed-warmed bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine monophosphate modulators during in vitro maturation. PLoS One, 2015, 10.
79. Arcaorons N, Morató R, Vendrell M, Yeste M, López-Bejar M, Rajapaksha K, Anzar M, Mogas T. Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro matured bovine oocytes. *PLoS One*, 2017, 12(9): e0184714

80. Ruiz-Conca M, Vendrell M, Sabés-Alsina M, Mogas T, López-Bejar M. Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (*Bos taurus*) helps to preserve oocyte integrity after vitrification. *Reproduction in Domestic Animals*, 2017, 52(S4): 52–54

81. Wang N, Hao H S, Li C Y, Zhao Y H, Wang H Y, Yan C L, Du W H, Wang D, Liu Y, Pang Y W, Zhu H B, Zhao X M. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. *Scientific Reports*, 2017, 7(1): 10652

82. Guo X F, Yu X L, Zhang F, Wu H, Pei X Z, Li X X, Li Y H. Effect of liquid helium vitrification on cytoskeleton of immature cattle oocytes. *Animal Reproduction Science*, 2017, 187: 91–99

83. Moavad A R, Zhu J, Choi I, Amarnath D, Chen W, Campbell K H. Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop. *Reproduction, Fertility, and Development*, 2013, 25(8): 1204–1215

84. Rao B S, Mahesh Y U, Charan K V, Suman K, Sekhar N, Shivaji S. Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes. *Cryobiology*, 2012, 64(3): 176–184

85. Begin I, Bhatia B, Baldassarre H, Dinnyes A, Keefer C L. Cryopreservation of goat oocytes and in vitro derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification. *Cryopreservation of goat oocytes and molecular reproductive genes in immature goat cumulus-oocyte complexes. Effect of vitrification on developmental competence of ovine embryos vitrified using the cryoloop (CLV) and solid-surface vitrification. *Molecular Reproduction and Development*, 2012, 79(7): 434–444

86. Somfai T, Yoshioka K, Tanihara F, Kaneko H, Noguchi J, Kashiwazaki N, Nagai T, Kikuchi K. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. *PLoS One*, 2014, 9(5): e97731

87. Gajda B, Skrzypczak-Zielińska M, Gawrońska B, Slomski R, Smorag Z. Successful production of live piglets derived from mature oocytes vitrified using OPS method. *Cryo Letters*, 2015, 36(1): 8–18

88. Fujihira T, Nagai H, Fukui Y. Relationship between equilibration times and the presence of cumulus cells, and effect of taxol treatment for vitrification of in vitro matured porcine oocytes. *Cryobiology*, 2005, 51(3): 339–343

89. Liu Y, Du Y, Lin L, Li J, Kragh P M, Kuwayama M, Bolund L, Yang H, Vajta G. Comparison of efficiency of open pulled straw (OPS) and Cryotop vitrification for cryopreservation of in vitro matured pig oocytes. *Cryo Letters*, 2008, 29(4): 315–320

90. Somfai T, Nakai M, Tanihara F, Noguchi J, Kaneko H, Kashiwazaki N, Egerszegi I, Nagai T, Kikuchi K. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. *Journal of Reproduction and Development*, 2013, 59(4): 378–384

91. Nohalez A, Martinez C A, Gil M A, Almiñana C, Roca J, Martinez E A, Cuello C. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes. *Theriogenology*, 2015, 84(4): 545–552

92. Huang J, Li Q, Zhao R, Li W, Han Z, Chen X, Xiao B, Wu S, Jiang Z, Hu J, Liu L. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. *Animal Reproduction Science*, 2008, 106(1–2): 25–35

93. Shi W Q, Zhu S E, Zhang D, Wang W H, Tang G L, Hou Y P, Tian S J. Improved development by Taxol pretreatment after vitrification of in vitro matured porcine oocytes. *Reproduction*, 2006, 131(4): 795–804

94. Fu X W, Shi W Q, Zhang Q J, Zhao X M, Yan C L, Hou Y P, Zhou G B, Fan Z Q, Suo L, Wusiman A, Wang Y P, Zhu S E. Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes. *Animal Reproduction Science*, 2009, 115(1–4): 158–168

95. Ogawa B, Ueno S, Nakayama N, Matsunari H, Nakano K, Fujiwara T, Ikezawa Y, Nagashima H. Developmental ability of porcine in vitro matured oocytes at the meiosis II stage after vitrification. *Journal of Reproduction and Development*, 2010, 56(3): 356–361

96. Fu X W, Wu G Q, Li J J, Hou Y P, Zhou G B, Lun-Suo , Wang Y P, Zhu S E. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes. *Theriogenology*, 2011, 75(2): 268–275

97. de Matos D G, Gasparinni B, Pasqualini S R, Thompson J G. Effect of glutathione synthesis stimulation during in vitro maturation of...
ovine oocytes on embryo development and intracellular peroxide content. *Theriogenology*, 2002, 57(5): 1443–1451

105. Reis A, Rook J A, McCallum G J, Staines M E, Ewen M, Lomax M A, McEvoy T G. Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. *Reproduction, Fertility, and Development*, 2003, 15(5): 275–284

106. Feugang J M, de Roover R, Moens A, Léonard S, Dessy F, Donny I. Addition of beta-mercaptoethanol or Trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. *Theriogenology*, 2004, 61(1): 71–90

107. Giaretta E, Spinaci M, Bucci D, Tamanini C, Galeati G. Effects of resveratrol on vitrified porcine oocytes. *Oxidative Medicine and Cellular Longevity*, 2013, 2013(7): 920257

108. Santos E, Appeltant R, Dang-Nguyen T Q, Noguchi J, Kaneko H, Feugang J M, de Roover R, Moens A, Léonard S, Dessy F, Donny I. Addition of beta-mercaptoethanol or Trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. *Theriogenology*, 2004, 61(1): 71–90

109. Gupta M K, Uhm S J, Lee H T. Effect of vitri

110. Nakagawa S, Yoneda A, Hayakawa K, Watanabe T. Improvement in human spermatozoa that lack central pair microtubules. *Animal Reproduction Science*, 2015, 21(3): 135–138

111. Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the development competence of porcine oocytes vitrified at germinal vesicle stage. *Reproduction in Domestic Animals*, 2018,53(2): 304–312

112. Ishijima S, Iwamoto T, Nozawa S, Matsushita K. Motor apparatus permeability transition inhibitor. *Cryobiology*, 2014, 68(3): 395–404

113. Johnson L A, Weitze K F, Fiser P, Maxwell W M. Storage of boar spermatozoa in yolk-citrate diluent and citrate-buffered yolk extenders. *Journal of Dairy Science*, 1963, 46(1): 57–60

114. Steinbach J, Foote R H. Effect of catalase and anaerobic conditions upon the post-thawing survival of bovine spermatozoa frozen in citrate- and tris-buffered yolk extenders 1. *Journal of Dairy Science*, 1964, 47(7): 812–815

115. Gupta M K, Uhm S J, Lee H T. Effect of vitri

116. Steinbach J, Foote R H. Effect of catalase and anaerobic conditions upon the post-thawing survival of bovine spermatozoa frozen in citrate- and tris-buffered yolk extenders 1. *Journal of Dairy Science*, 1964, 47(7): 812–815

117. Mazur P, Leibo S P, Seidel G E Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. *Biology of Reproduction*, 2008, 78(1): 2–12

118. Salisbury G W, Fuller H K, Willett E L. Preservation of bovine spermatozoa in yolk-citrate diluent and field results from its use. *Journal of Dairy Science*, 1941, 24(11): 905–910

119. Davis I S, Bratton R W, Foote R H. Livability of bovine spermatozoa at 5 C in tris-buffered and citrate-buffered yolk-glycerol extenders. *Journal of Dairy Science*, 1963, 46(1): 57–60

120. Steinbach J, Foote R H. Effect of catalase and anaerobic conditions upon the post-thawing survival of bovine spermatozoa frozen in citrate- and tris-buffered yolk extenders 1. *Journal of Dairy Science*, 1964, 47(7): 812–815

121. Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures. *Nature*, 1949, 164(4172): 666

122. Zeng C, Tang K, He L, Peng W, Ding L, Fang D, Zhang Y. Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation. *Cryobiology*, 2014, 68(3): 395–404

123. De Leeuw F E, De Leeuw A M, Den Daas J H, Colenbrander B, Verkleij A J. Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. *Cryobiology*, 1993, 30(1): 32–44

124. Woelders H. Fundamentals and recent development in cryopreservation of bull and boar semen. *Veterinary Quarterly*, 1997, 19(3): 135–138

125. Moussa M, Marinet V, Trimeche A, Tainturier D, Anton M. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen. *Theriogenology*, 2002, 57(6): 1695–1706

126. Amirat L, Tainturier D, Jeanneau L, Thorin C, Gérard O, Courtens I, Kohram H, Ardabili F F. Antioxidative effects of Melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. *Animal Reproduction Science*, 2013, 139(1–4): 25–30

127. Zhao X L, Li Y K, Cao S J, Hu J H, Wang W H, Hao R J, Gui L S, Zan L S. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls. *Genetics & Molecular Research*, 2015, 14(1): 2572–2581

128. Ashrafii I, Kohram H, Ardabili F F. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. *Animal Reproduction Science*, 2013, 139(1–4): 25–30

129. Martin-Hidalgo D, Barón F J, Bragado M J, Carmona P, Robina A, García-Marín L J, Gil M C. The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. *Theriogenology*, 2011, 75(8): 1550–1560

130. Bernstein A D, Petropavlovsky V V. Effect of non-electrolytes on viability of spermatozoa. Biulleten’ Eksperimental’Noi Biologii i Meditsiny, 2013, 3: 41–43 (in Russian)

131. Sminov I V. Preservation of domestic animals’ semen by deep cooling. *Sov Zootech*, 1949, 4: 63–65

132. Sminov I V. Deep freezing of semen of farm animals. *Journal Obsej Biologii*, 1950, 11(3): 185

133. Youngquist R S, Threlfall W R. Current therapy in large animal theriogenology. 2nd ed. St. Louis, Mo.: Saunders Elsevier, 2007, 1061

134. Purdy P H. The post-thaw quality of ram sperm held for 0 to 48 h at 5 degrees C prior to cryopreservation. *Animal Reproduction Science*, 2006, 93(1–2): 114–123

135. Mackepladze I B, Gugusvili K F, Bregadze M A, Haratisvili G. Storage and use of frozen bull and ram semen. *Zhivotnovodstvo*, 1960: 77–78

136. Feredean T, Bragaru F L. Studies on conservation of ram semen by
freezing to -79°C. *Lurc Stint Inst Cert Czer Zooteh*, 1964, 21: 357–368 (in Rumanian)

137. Aboagla E M, Terada T. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. *Biology of Reproduction*, 2003, 69(4): 1245–1250

138. Arando A, Gonzalez A, Delgado J V, Arrebola F A, Perez-Marín C. Storage temperature and sucrose concentrations affect ram sperm quality after vitrification. *Animal Reproduction Science*, 2017, 181: 175–185

139. John Morris G, Acton E, Murray B J, Fonseca F. Freezing injury: the special case of the sperm cell. *Cryobiology*, 2012, 64(2): 71–80

140. Ritar A J, Salamon S. Effects of seminal plasma and of its removal and of egg yolk in the diluent on the survival of fresh and frozen-thawed spermatozoa of the Angora goat. *Australian Journal of Biological Sciences*, 1982, 35(3): 305–312

141. Yang J. The research to protecting effect of frozen semen in sheep semen diluent with supplement of PUFA. Dissertation for the Doctoral Degree. Hohhot: *Inner Mongolia Agricultural University*, 2006 (in Chinese)

142. Pursel V G, Johnson L A. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. *Journal of Animal Science*, 1975, 40(1): 99–102

143. Westendorp P, Richter L, Treu H. Zur Tiefgefrierung von Ebersperma. Labor- und Besamungsergebnisse mit dem Hulsenberger Pailletten-Verfahren. *Dtv Dtsch Tierarztl Wochenschr*, 1975, 82(7): 261–267 (in German)

144. Didion B A, Braun G D, Duggan M V. Field fertility of frozen boar semen: a retrospective report comprising over 2600 AI services spanning a four year period. *Animal Reproduction Science*, 2013, 137(3-4): 189–196

145. Baishya S K, Biswas R K, Kadirvel G, Deka B C, Sinha S, Dutta D J, Saikia G K. Effect of conventional and controlled freezing method on the post thaw characteristics of boar spermatozoa. *Animal Reproduction Science*, 2014, 149(3-4): 231–237

146. Polge C, Salamon S, Wilmut I. Fertilizing capacity of frozen boar semen following surgical insemination. *Veterinary Record*, 1970, 87(15): 424–429

147. Milovanov V K, Baranov F A, Qhil'Tsova L S, Oivadis R N. Developing methods for freezing boar semen. *Zhivotnovodstvo*, 1974

148. Richter L, Romeny E, Weitzer K F, Zimmermann F. Zur Tiefgefrierung von Ebersperma. VII. Weitere Labor- und Besamungsversuche mit dem Verdunner Hulsenberg VIII. *Dtv Dtsch Tierarztl Wochenschr*, 1975, 82(4): 155–162 (in German)

149. Shapiev I S, Moroz L G, Korban N V. Problem of technology of freezing boar semen. *Zhivotnovodstvo*, 1976

150. Park H K, Kim S H, Kim K J, Choi K M. Studies on the frozen boar semen. I. Studies on the development of diluents for freezing of boar semen. *Han’guk Ch’uksan Hakhoe chi* (Korean journal of animal sciences), 1977

151. Wang P, Wang Y F, Wang C W, Bu S H, Hu J H, Li Q W, Pang W J, Yang G S. Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing-thawing. *Zygote*, 2014, 22(2): 175–181

152. Pinho R O, Lima D M, Shiomi H H, Siqueira J B, Silva H T, Lopes P S, Guimarães S E, Guimarães J D. Effect of different cryoprotectants on the viability of frozen/thawed semen from boars of the Piau breed. *Animal Reproduction Science*, 2014, 146(3–4): 187–192

153. Peña F J, Johannisson A, Wallgren M, Rodriguez-Martinez H. Effect of hyaluronan supplementation on boar sperm motility and membrane lipid architecture status after cryopreservation. *Theriogenology*, 2004, 61(1): 63–70

154. Lee Y S, Lee S, Lee S H, Yang B K, Park C K. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. *Animal Reproduction Science*, 2015, 159: 124–130

155. Trzcińska M, Bryła M, Gajda B, Gogol P. Fertility of boar semen cryopreserved in extender supplemented with butylated hydroxytoluene. *Theriogenology*, 2015, 83(3): 307–313

156. Tomas C, Gómez-Fernandez J, Gómez-Izquierdo E, Gómez-Fidalgo E, Sánchez-Sánchez R, González-Bulnes A, de Mecado E. Effect of the pH pre-adjustment in the freezing extender on post-thaw boar sperm quality. *Cryo Letters*, 2015, 36(2): 97–103

157. Han’guk Ch'uksan Hakhoe chi (Korean journal of animal sciences), 1977

158. Succu S, Bebbere D, Bogliolo L, Arin F, Fois S, Leoni G G, Berlinguer F, Naitana S, Ledda S. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. *Theriogenology*, 2016, 85(1): 47–64