Scientific Article

Patient-reported distress and survival among patients receiving definitive radiation therapy

Yacob Habboush MD a, Robert P. Shannon MD b, Shehzad K. Niazi MD c, Laetitia Hollant d, Megan Single d, Katherine Gaines d, Bridget Smart d, Nicolette T. Chimato MS e, Michael G. Heckman MS e, Steven J. Buskirk MD a, Laura A. Vallow MD a, Katherine S. Tzou MD a, Stephen J. Ko MD a, Jennifer L. Peterson MD a, Heather A. Biers RN a, Atiya B. Day LCSW a, Kimberly A. Nelson MSW LCSW f, Jeff A. Sloan PhD g, Michele Y. Halyard MD h, Robert C. Miller MD a, *

a Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
b Department of Family Medicine, Mayo Clinic, Jacksonville, Florida
c Division of Psychiatry, Mayo Clinic, Jacksonville, Florida
d Visiting students, Mayo School of Health Sciences, Mayo Clinic College of Medicine, Jacksonville, Florida
e Biostatistics Unit, Mayo Clinic, Jacksonville, Florida
f Division of Hematology/Oncology/Cancer Center/Breast Clinic, Mayo Clinic, Jacksonville, Florida
g Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
h Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona

Received 12 October 2016; received in revised form 9 March 2017; accepted 13 March 2017

Abstract

Objective: Patient-reported distress (PRD) has not been well assessed in association with survival after radiation therapy (RT). The aims of this study were to evaluate the association between PRD level and survival after definitive RT and to identify the main causes of distress in definitive RT patients.

Methods and materials: A total of 678 consecutive patients receiving definitive RT at our institution from April 2012 through May 2015 were included. All patients answered a PRD questionnaire that contained 30 items related to possible causes of distress, which could be rated from 1 (no distress) to 5 (high distress). Additionally, patients were asked to rate their overall distress level from 0 (no distress) to 10 (extreme distress). This overall distress level was our primary

Presented at the annual meeting of the American Society for Radiation Oncology (ASTRO), Boston, Massachusetts, September 25-28, 2016.

Sources of support: This study was funded by the Mayo Clinic College of Medicine, which had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the manuscript for publication.

Conflicts of interest: None.

* Corresponding author. Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224.
E-mail address: miller.robert@mayo.edu (R.C. Miller)

http://dx.doi.org/10.1016/j.adro.2017.03.004

2452-1094/© 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
patient-reported distress measure and was examined as a continuous variable and as a categorical variable with 3 PRD levels (low, 0-3 [n = 295]; moderate, 4-6 [n = 222]; and high, 7-10 [n = 161]).

Results: As a continuous variable in multivariable Cox regression analysis, a higher overall PRD level was associated with poorer survival after RT (hazard ratio [HR], 1.39; 95% confidence interval [95% CI], 1.14 to 1.69; P = .004). As a categorical variable, compared with patients with low distress, survival was poorer for patients with moderate distress (HR, 1.62; 95% CI, 1.30 to 2.01; P = .001) and high distress (HR, 1.49; 95% CI, 1.22 to 1.81; P = .001). When the moderate and high distress levels were combined, survival was significantly poorer compared with the low distress level (HR, 1.57; 95% CI, 1.27 to 1.95; P < .001). The top 5 specific causes of distress that patients mentioned were “How I feel during treatment,” “Fatigue,” “Out-of-pocket medical costs,” “Pain that affects my daily functioning,” and “Sleep difficulties.”

Conclusions: PRD before or during RT is a prognostic factor associated with decreased survival. Distress screening guidelines and interventions should be implemented for patients receiving definitive RT.

© 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Patient-reported distress (PRD) among patients receiving radiation therapy (RT) has not been well characterized. The Institute of Medicine (IOM) and the National Comprehensive Cancer Network (NCCN) consider identifying and addressing psychosocial needs of cancer patients an increasingly important part of the standard of care in oncology, and the Commission on Cancer considers it an accreditation standard. The NCCN uses the term distress to describe psychosocial concerns. Distress associated with cancer is defined as an unpleasant emotional experience that interferes with the coping abilities of cancer patients. It can be psychologic (cognitive, behavioral, or emotional), spiritual, or social.

Distress is not always recognized. In a study of 143 physicians who provided cancer care and established the psychologic status of 2297 patients at 34 cancer centers, the physicians’ mean (standard deviation [SD]) sensitivity for identifying psychologic comorbidity was 29% (25%), and mean (SD) specificity was 85% (17%); 35% (14%) were misclassified with the wrong assessment. At our center, we have successfully implemented a program of standardized screening for distress. The IOM recommends caring for the whole person, including the patient’s physical and psychologic well-being. Identifying PRD and decreasing it when possible can improve the patient’s quality of life (QOL) and is consistent with the NCCN and IOM guidelines.

The primary objective of this retrospective study was to assess the correlation of PRD to patients’ survival after definitive RT. The secondary objective was to identify the main causes of distress among these patients. According to the concept that overall well-being of patients depends on both physical health and psychologic health, our hypothesis was that among oncology patients receiving definitive RT, the patients with higher levels of psychosocial distress have poorer survival after RT.

Methods and materials

Study patients and data collection

A total of 678 consecutive patients who received definitive RT at our institution from April 2012 through May 2015 were included in this retrospective study. We included patients who had filled out a PRD questionnaire within 90 days before the start of RT and were at least 18 years old. Of the 678 patients, 637 (94.0%) completed the PRD questionnaire between 0 and 30 days before the start of RT, 24 (3.5%) completed the questionnaire between 31 and 60 days before the start of RT, and 17 (2.5%) completed the questionnaire between 61 and 90 days before the start of RT. We excluded 8 patients who had endocrine cancers because the number of patients was so small. Patients’ medical records were retrospectively assessed to extract information on age at RT, sex, primary cancer site and stage, RT dose, metastatic disease at the start of RT, chemotherapy at or before the start of RT, and surgery at or before the start of RT. There were no missing data, with the exception that data on metastatic disease at the start of RT were unavailable for 1 patient, and cancer stage was unavailable for a relatively large number of patients (167; 25%). The primary outcome measure of the study was overall survival after the start of RT.

PRD evaluation

Patients were asked to complete the PRD questionnaire, which contained 30 items related to possible causes
Distress Screening

1. Medical treatment can be challenging to all areas of a person's life. Please help us understand how we can best support you by sharing your current concerns. *I am concerned about...*

	Not at all	A little bit	Somewhat	Quite a bit	Very much
Housing during treatment	1	2	3	4	5
Transportation to treatment	1	2	3	4	5
Out-of-pocket medical costs	1	2	3	4	5
Finances	1	2	3	4	5
My job	1	2	3	4	5
Managing my medical care	1	2	3	4	5
Completing a medical power of attorney or living will	1	2	3	4	5
A loved one relying on me for their physical care	1	2	3	4	5
How I feel about my appearance related to treatment	1	2	3	4	5
Handling my own bathing, dressing, and daily care	1	2	3	4	5
Fatigue	1	2	3	4	5
Poor concentration or memory	1	2	3	4	5
Pain that affects my daily functioning	1	2	3	4	5
Sexuality	1	2	3	4	5
Irritability	1	2	3	4	5
Sleep difficulties	1	2	3	4	5
My relationship with my spouse/partner	1	2	3	4	5
Family communication about my illness	1	2	3	4	5
Having enough help (emotional and practical)	1	2	3	4	5
Feeling down or depressed	1	2	3	4	5
Loss of interest in my usual activities	1	2	3	4	5
Feeling out of control over important things	1	2	3	4	5
Panic attacks	1	2	3	4	5
Feeling nervous or anxious	1	2	3	4	5
Fear of medical procedures (needles, closed spaces, etc)	1	2	3	4	5
Controlling my anger	1	2	3	4	5
Questions about end of life	1	2	3	4	5
Spirituality	1	2	3	4	5
How I will feel during treatment	1	2	3	4	5
Other (specify)					

2. Do you live alone or with others? | Alone____ | With others____

3. Your diagnosis____

4. In general, how stressed have you felt in the last month? Please look at the thermometer and choose a number from 1 to 10 ____

Patient Signature

Date

Time

Official Use Only

Unique

Figure 1 Patient-reported distress form. (data from National Comprehensive Cancer Network and Jacobsen et al.)
of distress that might affect QOL (Fig 1). Each category was rated from 1 (no distress) to 5 (high distress). The PRD questionnaire was adapted from the Distress Thermometer and Problem List for clinical use at our institution in early 2012. The Distress Thermometer is a validated tool to assess psychosocial distress in cancer patients. Instead of using yes/no answers, our questionnaire used a scale from 1 to 5 for 30 possible causes of distress. It also included a drawing of a distress thermometer, as with the NCCN Distress Thermometer, to measure the patient’s overall distress level, with a range from 0 (no distress) to 10 (extreme distress). This 11-point scale provided our primary measure of PRD (called PRD level) and was the measure that we used for evaluating the association between patient distress level and survival after RT.

Statistical analysis

Continuous variables were summarized with the sample median and range. Categorical variables were summarized with the number and percentage of patients. Responses to the 30 possible causes of distress in the PRD questionnaire were summarized with the sample mean and with the number and percentage of patients for each response. PRD level was considered as a continuous variable to evaluate a linear trend and as a categorical variable with 3 PRD levels (low, 0-3; moderate, 4-6; and high, 7-10) to evaluate for a potential nonlinear association. Baseline characteristics were compared between patients with low, moderate, or high PRD levels with a Kruskal-Wallis rank sum test or the Fisher exact test. The Kaplan-Meier method was used to estimate survival after the start of RT, where censoring occurred on the date of latest follow-up. Associations between baseline patient characteristics and survival after the start of RT were evaluated with univariable (ie, unadjusted) and multivariable Cox proportional hazards regression models. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated. The association of PRD level (both as a continuous variable and as a categorical variable) with survival after the start of RT was evaluated with univariable and multivariable Cox proportional hazards regression models. Multivariable models were adjusted for all baseline variables that did not have large amounts of missing data, which included age, sex, primary cancer site, RT dose, metastatic disease at the start of RT, chemotherapy at or before the start of RT, and surgery at or before the start of RT. Stage was not adjusted for because of the extent of missing data. HRs and 95% CIs were estimated. P values of .05 or less were considered statistically significant. All statistical analyses were performed with SAS software (version 9.2; SAS Institute Inc) and R statistical software (version 2.14.0; R Foundation for Statistical Computing).

Results

Patient characteristics according to PRD level (low, moderate, or high) are compared in Table 1. Differences between the 3 distress level groups were significant for age (P = .003), sex (P = .011), and primary cancer site (P < .001). Specifically, patients with lower reported levels of distress tended to be older and male with a primary cancer site in the genitourinary tract or skin. Differences among the 3 distress level groups were not significant for stage (P = .19), dose (P = .86), metastatic disease (P = .14), chemotherapy (P = .65), or surgery (P = .56).

Median length of follow-up after the start of definitive RT was 14.1 months (range, 8 days to 39.2 months); 111 patients (16%) died. Kaplan-Meier estimated survival at 6 months, 1 year, and 2 years after the start of RT was 95% (95% CI, 93-97), 87% (95% CI, 85-90), and 78% (95% CI, 74-82), respectively. To better understand how the characteristics shown in Table 1 might act as confounding variables when assessing the relationship between PRD level and survival, we next examined the associations of these characteristics and survival after definitive RT (Table 2). The following associations with survival after RT were significant: age (HR [per 10-year increase], 1.26; P = .003); male sex (HR, 1.63; P = .012); chemotherapy at or before the start of RT (HR, 2.38; P < .001); and surgery at or before the start of RT (HR, 0.57; P = .004). Compared with survival for stage 0 or 1 patients, survival was significantly worse for patients with cancer in stage 2 (HR, 3.92; P = .001); stage 3 (HR, 5.73; P < .001); or stage 4 (HR, 4.37; P < .001). Survival after RT was significantly different according to primary cancer site (P < .001); compared with the most common site of head and neck, survival was significantly better for patients with breast cancer (HR, 0.06; P < .001) and genitourinary cancer (HR, 0.04; P = .002). No notable associations with survival after RT were noted for dose (P = .91) or metastatic disease (P = .58).

Associations between PRD and survival after definitive RT are shown in Table 3. PRD level as a continuous variable showed a significant association with survival in both univariable analysis (HR, 1.34; P = .007) and multivariable analysis after adjusting for age, sex, primary cancer site, dose, metastatic disease at the start of RT, chemotherapy at or before the start of RT, and surgery at or before the start of RT (HR, 1.39; P = .004). PRD level as a categorical variable in univariable analysis, in comparison to patients with a low-distress level, showed significantly poorer survival after RT for patients with moderate distress (HR, 1.58; P = .042) but not for patients in the smaller high-distress group (HR, 1.42; P = .15). These results were similar in multivariable analysis (Table 3); however, because the magnitude of difference in survival in comparison to the low-distress
patients was relatively similar between the moderate- and high-distress groups, as evidenced by the relatively similar HRs (1.58 and 1.42, respectively), we combined the moderate- and high-distress groups and examined the association with survival after RT. As shown in Table 3, patients with either a moderate or high distress level had significantly poorer survival than patients with low distress in both univariable analysis (HR, 1.51; \(P = .042 \)) and multivariable analysis (HR, 1.57; \(P = .034 \)). Survival after the start of RT is shown for the 3 distress level groups in Figure 2.

Figure 3 shows mean values for the 29 individual distress items from the PRD questionnaire (Fig 1; eTable 1, available as supplementary material online at www.practicalradonc.org). The top 5 causes of distress were “How I feel during treatment” (mean, 2.49); “Fatigue” (mean, 2.39); “Out-of-pocket medical costs” (mean, 2.25); “Pain that affects my daily functioning” (mean, 2.24); and “Sleep difficulties” (mean, 2.23). The least worrisome concerns were “Spirituality” (mean, 1.34); “Controlling my anger” (mean, 1.40); “Transportation to treatment” (mean, 1.40); “Housing during treatment” (mean, 1.41); and “A loved one relying on me for their physical care” (mean, 1.42).

Discussion

The results of this study provide the first evidence that a higher level of patient distress before and during RT is associated with a poorer outcome after RT. Specifically, patients who had a score of 4 or more on the overall PRD level questionnaire had a 1.5-fold increased risk of death after RT compared with patients with lower scores. This translated into a 2-year survival rate of 74%, which is about 10% less than that for patients with lower scores (83%). Importantly, this finding was independent of key characteristics, including age, sex, primary cancer site, RT dose, metastatic disease, chemotherapy, and surgery; however, the possibility that other unmeasured variables influenced these results must certainly be acknowledged.

Distress screening and interventions should be implemented in all oncology centers to assess, anticipate, and alleviate suffering of patients and to improve QOL and survival. At our institution, a distress screening consultation with a certified social worker is warranted if patients rate any of the 30 items as 4 or more or if they rate their overall distress as 8 or more. A lower distress screening threshold protocol should be implemented.

Psychosocial distress related to RT has been a well-established association since the early 1980s, when studies

Table 1: Patient characteristics according to distress level at the start of RT

Variable	Low distress, 0-3 (n = 295)	Moderate distress, 4-6 (n = 222)	High distress, 7-10 (n = 161)	P value
Age at start of RT, y	68 (29-97)	66 (27-90)	63 (23-93)	.003
Male	161 (54.6)	98 (44.1)	67 (41.6)	.011
Primary cancer site				<.001
Head and neck	53/147 (36.1)	60/147 (40.8)	34/147 (23.1)	
Breast	58/145 (40.0)	50/145 (34.5)	37/145 (25.5)	
GI tract	44/96 (45.8)	31/96 (32.3)	21/96 (21.9)	
Genitourinary tract	51/74 (68.9)	11/74 (14.9)	12/74 (16.2)	
Lung	28/62 (45.2)	17/62 (27.4)	17/62 (27.4)	
Brain or CNS	14/41 (34.2)	11/41 (26.8)	16/41 (39.0)	
Soft tissue or bone	11/37 (29.7)	15/37 (40.5)	11/37 (29.7)	
Gynecologic site	12/35 (34.3)	15/35 (42.9)	8/35 (22.9)	
Skin	19/26 (73.1)	5/26 (19.2)	2/26 (7.7)	
Lymph node	5/15 (33.3)	7/15 (46.7)	3/15 (20)	
Stage				.19
0 or 1	56/215 (26.0)	55/173 (31.8)	41/123 (33.3)	
2	69/215 (32.1)	39/173 (22.5)	27/123 (22.0)	
3	48/215 (22.3)	47/173 (27.2)	26/123 (21.1)	
4	42/215 (19.5)	32/173 (18.5)	29/123 (23.6)	
Dose, cGy	5040 (1000-7920)	5,82 (540-7920)	5040 (1400-7000)	.86
Metastatic at start of RT\(^d\)	25 (8.5)	28 (12.6)	11 (6.8)	.14
Chemotherapy at or before start of RT	156 (52.9)	126 (56.8)	90 (55.9)	.65
Surgery at or before start of RT	200 (67.8)	160 (72.1)	110 (68.3)	.56

CNS, central nervous system; GI, gastrointestinal; RT, radiation therapy.

\(^a\) Patients rated their distress level from 0 (no distress) to 10 (extreme distress).

\(^b\) Continuous data are presented as median (range). Categorical data are presented as number of patients (percentage of sample).

\(^c\) P values are from a Kruskal-Wallis rank sum test or the Fisher exact test.

\(^d\) Metastatic disease information was unavailable for 1 patient.
showed that cancer patients receiving RT are at more risk for distress and the complications that might arise from RT.8,9 Multiple studies have suggested that routine distress screening for patients undergoing RT is vital.10,11 The regular use of screening leads to improved communication between patients and their health care providers.12 However, PRD is not well appreciated by all medical providers: some consider it an inadequate and unfeasible screening tool, contrary to the patients’ perspectives, which have shown moderate satisfaction with the screening process.13-16 When cancer is diagnosed, psychosocial support should be initiated through an integrated medical collaboration.17,18 Distress might increase during multiple cancer treatments and might peak approximately 2 weeks after the start of RT.19 Another study suggested that other complications related to treatment, such as anxiety and depression, are highest before treatment and diminish with treatment, followed by an increase in distress symptoms up to 1 year after completion of RT.20 This suggests that longer follow-up is needed to monitor the psychosocial status of those patients.

Table 2

Variable	HR (95% CI)	P value
Age at start of RT (10-y increase)	1.26 (1.08-1.47)	.003
Male	1.63 (1.11-2.40)	.012
Primary cancer site	<.001	
Head and neck	1.00 (reference)	NA
Breast	0.06 (0.01-0.24)	<.001
GI tract	0.94 (0.56-1.59)	.83
Genitourinary tract	0.04 (0.01-0.32)	.002
Lung	1.47 (0.85-2.56)	.17
Brain or CNS	1.23 (0.63-2.43)	.55
Soft tissue or bone	0.44 (0.15-1.23)	.12
Gynecologic site	0.71 (0.30-1.69)	.44
Skin	1.51 (0.67-3.41)	.32
Lymph node	0.47 (0.11-1.98)	.31
Stage	<.001	
0 or 1	1.00 (reference)	NA
2	3.92 (1.69-9.06)	.001
3	5.73 (2.53-12.98)	<.001
4	4.37 (1.86-10.29)	<.001
Dose (1000-cGy increase)	1.01 (0.86-1.18)	.91
Metastatic at start of RT	1.19 (0.64-2.22)	.58
Chemotherapy at or before start of RT	2.38 (1.56-3.62)	<.001
Surgery at or before start of RT	0.57 (0.39-0.84)	.004

CI, confidence interval; CNS, central nervous system; GI, gastrointestinal; HR, hazard ratio; NA, not applicable; RT, radiation therapy.

Table 3

PRD level	Survival after RT (95% CI)	Univariable analysis	Multivariable analysis	
	1 y after RT	2 y after RT		
	NA	NA		
As a continuous variable	1.34 (1.08-1.65)	.007	1.39 (1.11-1.74)	.004
3-unit increase				
As a categorical variable				
Low distress, 0-3 (n = 295)	90% (86%-94%)	83% (77%-89%)	1.00 (reference)	NA
Moderate distress, 4-6 (n = 222)	84% (79%-90%)	73% (66%-81%)	1.58 (1.02-2.44)	.042
High distress, 7-10 (n = 161)	87% (81%-93%)	74% (65%-84%)	1.42 (0.88-2.30)	.15
Moderate or high distress, 4-10	85% (81%-89%)	74% (68%-80%)	1.51 (1.02-2.24)	.042
(n = 383)				

CI, confidence interval; HR, hazard ratio; NA, not applicable; PRD, patient-reported distress; RT, radiation therapy.

Figure 2

Survival after definitive radiation therapy according to patient-reported distress. Patients rated their distress level from 0 (no distress) to 10 (extreme distress). Low distress indicates ratings from 0 through 3; moderate distress, from 4 through 6; and high distress, from 7 through 10.
Psychosocial function usually decreases in about one-third of patients receiving RT who experience distress. Consequently, multiple studies have suggested that short-term RT complications such as fatigue subside to baseline by week 27 after RT, and management of the patients is indicated for boosting patient self-esteem and therefore QOL. The combination of distress screening and distress management resources availability are essential for mounting a good response to the psychosocial complications of cancer treatment.

Several studies recommended different approaches for managing distress while receiving RT. Methods such as mindfulness-based intervention, yoga, and listening to music have been shown to improve overall QOL by reducing stress level and hence cortisol level. Other techniques, such as Web-based cognitive behavioral therapy, may be more convenient for patients than traditional cognitive behavioral therapy.

The top 5 causes of distress in our sample were mostly related to RT short-term side effects that would subside with time (eg, fatigue, pain, sleeping difficulties) rather than long-term complications that would have a greater effect on QOL. Other studies have suggested that fatigue might persist and cause a chronic complication. Medical cost was 1 of the top 3 concerns of patients, indicating the need to evaluate this area proactively and, when possible, to inform patients of available additional resources (eg, identifying a more affordable pharmacy through an Internet site).

The 5 least distressing components in our sample were related to how patients dealt with the logistics of receiving RT, which included transportation and housing. Spirituality was identified as the least likely area to be affected by RT. Cancer patients use spirituality and faith to deal with the stress of coping with cancer. Sources of PRD likely vary in different patient populations.

The main limitation of the study is the retrospective design. Another noteworthy limitation is the lack of staging information for approximately 25% of the patients in our database. As a result, we could not adjust for stage in our multivariable analysis to directly address any confounding potential that it might have. As expected, survival was markedly worse for patients with higher stage cancer; however, stage did not differ significantly among the 3 distress level groups (P = .19), and therefore it has limited confounding potential and would likely not alter the results of the association analysis involving PRD level and survival after RT.

Conclusion

To the best of our knowledge, this is the first study to show that an elevated level of PRD in patients receiving
definitive RT is associated with poorer outcome in the form of lower survival after treatment. PRD and survival for patients who rated their overall distress level lower than 4 had better survival than patients with higher distress levels. Timely identification and early intervention may mitigate the consequences of distress. Distress screening guidelines should be implemented for patients receiving definitive RT. Interventions for those at higher levels of distress should be further evaluated and assessed for effectiveness in reducing PRD. Radiation oncologists and all cancer specialists need to develop targeted interventions to better meet the unique needs of each patient. Further studies are needed to assess whether targeted distress intervention would help to decrease the degree of PRD and improve survival.

Supplementary data

Supplementary material for this article (http://dx.doi.org/10.1016/j.prro.2017.03.004) can be found at www.practicalradonc.org.

References

1. Adler NE, Page AEK, eds. Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. Washington, DC: National Academies Press; 2008.
2. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology: distress management. Available at: http://oralcancerfoundation.org/treatment/pdf/distress.pdf. Accessed May 26, 2016.
3. Commission on Cancer. American College of Surgeons. Cancer program standards 2012: ensuring patient-centered care. Available at: https://www.facs.org/~media/files/quality%20programs/cancer/ccc/programstandards2012.aspx. Accessed July 5, 2016.
4. National Comprehensive Cancer Network (NCCN). National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology: Distress Management. 2016. Available at: www.nccn.org/professionals/physician_gls/pdf/distress.pdf.
5. Fallowfield L, Ratcliffe D, Jenkins V, Saul J. Psychiatric morbidity and its recognition by doctors in patients with cancer. Br J Cancer. 2001;84:1011-1105.
6. Gonzalez-Saenz de Tejada M, Bilbao A, Bare M, et al. Association of social support, functional status, and psychological variables with changes in health-related quality of life outcomes in patients with colorectal cancer. Psychooncology. 2016;25:891-897.
7. Jacobsen PB, Donovan KA, Trask PC, et al. Screening for psychologic distress in ambulatory cancer patients. Cancer. 2005;103:1494-1502.
8. Margolis GJ, Carabell SC, Goodman RL. Psychological aspects of primary radiation therapy for breast carcinoma. Am J Clin Oncol. 1983;6:533-538.
9. Silberfarb PM, Maurer LH, Crouthamel CS. Psychosocial aspects of neoplastic disease: I. Functional status of breast cancer patients during different treatment regimens. Am J Psychiatry. 1980;137:450-455.
10. Dinkel A, Berg P, Pirker C, et al. Routine psychosocial distress screening in radiotherapy: Implementation and evaluation of a computerized procedure. Br J Cancer. 2010;103:1489-1495.
11. Ahlberg K, Ekman T, Gaston-Johansson F. Fatigue, psychological distress, coping resources, and functional status during radiotherapy for uterine cancer. Oncol Nurs Forum. 2005;32:633-640.
12. Kirchheiner K, Czajka A, Ponocy-Seliger E, et al. Validation and practical implementation of a multidisciplinary cancer distress screening questionnaire. Strahlenther Onkol. 2013;189:573-578.
13. Braeken AP, Kempen GI, Eekers D, van Gils FC, Houben RM, Lechner L. The usefulness and feasibility of a screening instrument to identify psychosocial problems in patients receiving curative radiotherapy: A process evaluation. BMC Cancer. 2011;11:479.
14. Schofield P, Chambers S. Effective, clinically feasible and sustainable: Key design features of psycho-educational and supportive care interventions to promote individualised self-management in cancer care. Acta Oncol. 2015;54:805-812.
15. Timmermans LM, van Zauren FJ, van der Maazen RW, Leer JW, Kraaimaat FW. Monitoring and blunting in palliative and curative radiotherapy consultations. Psychooncology. 2007;16:1111-1120.
16. Lilleby W, Fossa SD, Waehre HR, Olsen DR. Long-term morbidity and quality of life in patients with localized prostate cancer undergoing definitive radiotherapy or radical prostatectomy. Int J Radiat Oncol Biol Phys. 1999;43:735-743.
17. American Society of Clinical Oncology. The state of cancer care in America, 2016: A report by the American Society of Clinical Oncology. J Oncol Pract. 2016;12:339-383.
18. Rouge Bugat ME, Omnes C, Delpiere C, et al. Primary care physicians and oncologists are partners in cancer announcement. Support Care Cancer. 2016;24:2473-2479.
19. Lewis S, Salins N, Kadam A, Rao R. Distress screening using distress thermometer in head and neck cancer patients undergoing radiotherapy and evaluation of causal factors predicting occurrence of distress. Indian J Palliat Care. 2013;19:88-92.
20. Neilson K, Pollard A, Boonzaier A, et al. A longitudinal study of distress (depression and anxiety) up to 18 months after radiotherapy for head and neck cancer. Psychooncology. 2013;22:1843-1848.
21. Hess CB, Chen AM. Measuring psychosocial functioning in the radiation oncology clinic: A systematic review. Psychooncology. 2014;23:841-854.
22. Kobayashi M, Ohno T, Noguchi W, et al. Psychological distress and quality of life in cervical cancer survivors after radiotherapy: Do treatment modalities, disease stage, and self-esteem influence outcomes? Int J Gynecol Cancer. 2009;19:1264-1268.
23. Brown P, Clark MM, Atherton P, et al. Will improvement in quality of life (QOL) impact fatigue in patients receiving radiation therapy for advanced cancer? Am J Clin Oncol. 2006;29:52-58.
24. Braeken AP, Kempen GI, Eekers DB, et al. Psychosocial screening effects on health-related outcomes in patients receiving radiotherapy: A cluster randomised controlled trial. Psychooncology. 2013;22:2736-2746.
25. Bower JE, Crosswell AD, Stanton AL, et al. Mindfulness meditation for younger breast cancer survivors: A randomized controlled trial [published correction in Cancer. 2015;121(11):1910] Cancer. 2015;121:1231-1240.
26. Clark M, Isaacks-Downton G, Wells N, et al. Use of preferred music to reduce emotional distress and symptom activity during radiation therapy. J Music Ther. 2006;43:247-265.
27. Vadiraja HS, Raghavendra RM, Nagarathna R, et al. Effects of a yoga program on cortisol rhythm and mood states in early breast cancer patients undergoing adjuvant radiotherapy: A randomized controlled trial [published correction in Integr Cancer Ther. 2009;8:195] Integr Cancer Ther. 2009;8:37-46.
28. Abrahams HJ, Giellissof MM, Goedendorp MM, et al. A randomized controlled trial of web-based cognitive behavioral therapy for severely fatigued breast cancer survivors (CHANGE-study): Study protocol. BMC Cancer. 2015;15:765.
29. Smets EM, Visser MR, Willems-Groot AF, et al. Fatigue and radiotherapy: (A) Experience in patients undergoing treatment. *Br J Cancer.* 1998;78:899-906.

30. Smets EM, Visser MR, Willems-Groot AF, Garssen B, Schuster-Uitterhoeve AL, de Haes JC. Fatigue and radiotherapy: (B) Experience in patients 9 months following treatment. *Br J Cancer.* 1998;78:907-912.

31. Daniels LA, Oerlemans S, Krol AD, Creutzberg CL, van de Poll-Franse LV. Chronic fatigue in Hodgkin lymphoma survivors and associations with anxiety, depression and comorbidity. *Br J Cancer.* 2014;110:868-874.

32. Martenson JA. Lowering the high cost of cancer drugs: IV. *Mayo Clin Proc.* 2016;91:400-401.

33. National Institutes of Health. National Cancer Institute. Spirituality in cancer care (PDQ®): Health professional version. Available at: www.cancer.gov/about-cancer/coping/day-to-day/faith-and-spirituality/spirituality-hp-pdq. Accessed July 17, 2015.