Using System Dynamic Model for Predicting Inventory of Rice Necessity

A Andriansyah1*, A Rahmi2, and I Ilyas2

1Laboratory of Industrial Computation and Optimization, Industrial Engineering, Universitas Syiah Kuala, Jl. Tgk. Syech Abdul Rauf No.7 Banda Aceh 23111 Aceh, Indonesia
2Industrial Engineering, Universitas Syiah Kuala, Jl. Tgk. Syech Abdul Rauf No.7 Banda Aceh 23111 Aceh, Indonesia

*andriansyah@unsyiah.ac.id

Abstract. Indonesian government has an organization that aims to manage basic necessity nationally, especially for rice commodity. The organization runs in the form of a business entity and has a program making welfare of the poor people by providing rice assistance. There is still over stock and out of stock in inventory while organization distributes this relief. That matter creates unbalance between commodity in inventory and commodity in distribution incurring a large cost. Prediction model using system dynamic in this study was needed to control the inventory and reduce over stock or out of stock. Causal loop diagram was used to describe the relationship between variables in the system and simulation was run with stock and flow diagram. Simulation was done by benchmarking the actual and the simulation results. The model that was built, tested using the Mean Absolute Percentage Error (MAPE). Based on the simulation results, the values of MAPE are below 5%. This indicates that the model can represent the real system and can use to predict variable for the future.

Keyword: Causal Loop Diagram, Flow and Stock Diagram MAPE, Rice Necessity, System Dynamic

1. Introduction

Proper inventory control is one of the factors that is essential for company to continue and survive in increasingly fierce market competition. Company is required to analyse the inventory for zero over stock and out of stock because the value is fluctuating and not the same every time period [1]. According to [2], inventory is a resource stored and used to fulfil the present and future need [3]. Less optimal control of inventory used by company often results in over stock and out of stock in inventory.

Inventory planning is important to minimize over stock and out of stock in inventory. There are several approaches used. [4] had done with parametrising forecasting models and consider the appropriate metric of inventory. A novel quantitative decision-making had been developed by [5] in single period inventory planning for perishable product. [6] completed with monte carlo simulation to make decision-making in inventory system. Describing the relationship of variables contained in a system can build an alternative inventory planning in the future, especially for a complex system providing information about state of system from time to time uses system dynamic [1].

System dynamic is methods to improve learning in complex systems [7]. Understanding of system dynamic is based on non-linear dynamics theory and feedback developed in the disciplines of mathematics, physics and engineering. System dynamic known and proven in strategic decision making.
widely used in business management, policy design, manufacturing strategies, determination of raw materials [8]. System dynamic is used to determine behaviour policies that can be modelled and able to simulate complex system behaviour. The results of the simulation in system dynamic depend on the variables and the relationships that are formed [9]. [10] researched about system dynamic in modelling and simulating complex system of energy supply and designed energy policies more efficient. [11–14] also research using this method. [15] uses system thinking which is part of system dynamic in tourism and [16–18]. This is indicating that system dynamic can use by all of field and has high flexibility. The study related the topic of this study is [19].

The problem faced by the company’s program in this study is the difficulties of minimizing over stock and out of stock. The program is rice subsidy for low-income households as an effort from the government to improve food guarantee and provide social protection. The success of the program is measured based on the level of achievement: right on target, right amount, right price, right time, right quality, and right administration. There was out of stock about two hundred kilograms of the total inventory in 2016 because the rice supply for the program was not in accordance. The demand was regulated by the government. This regulation was not synchronized with stock in the refineries because of some phenomena such as production affected by rice growth, unfixed of beneficiaries’ families, low monitoring of rice quality and inability of refineries to fulfil the demand. To avoid over stock and out of stock of this program, this study designs a model based on historical data from 2017 and below using system dynamic. This model considered many variables influencing inventory and validated by mean absolute percentage error (MAPE).

2. Methods
Causal loop diagram (CLD) is the first step in building in system dynamic model. [20] is main reference to build CLD in this study. [20] has analysed the rice supply policy using system dynamic and builds its model. CLD model is verified by stakeholder confirmation from government agency and refineries staff. It can be known quantitatively the relationship and impact that occur between sub-systems. If the model runs according to the logic, it is accepted and goes to the stock and flow diagram (SFD) for simulation, but if it is rejected, then the CLD model must be changed again until the model is accepted. CLD and SFD were completed by Stella Architect software. Model validation is carried out to determine whether the model is able to present the actual conditions. This test is referred to as Mean Absolute Percentage Error (MAPE) in table 1, if invalid (MAPE > 10%), simulation process must be repeated again.

Table 1. MAPE value for validation
Value
< 5%
5% - 10%
> 10%

3. Result
Completed CLD is reference to create the SFD. It will be an output to make policy related over stock and out of stock. Positive marker in CLD shows same direction relationships, otherwise for negative marker. Explanation of loop in CLD is shown in table 2. SFD shows more detailed description of the CLD. SFD is necessary to build several sub-models and facilitate understanding of the model. The sub-model will be divided into four parts, number of productions, inventory, rice demand and population. The linkage between sub-models is shown by main system model consisted of each sub-model. The formulation in SFD is based on general formulation, actual conditions and related data.

There are four stocks in SFD become the main indicator to prediction, the area of agricultural land, the production stock refined, the stock of rice, and the population. Stock (on SFD) selection is based on research constraints. Stock is a quantitative variable and has dynamic values which can increase or decrease in a certain period of time. The SFD model was built using components of stock, flow,
converter and entered values. These can provide information on factors affecting the occurrence of overstock and out of stock in this study.

Figure 1. Completed causal loop diagram

Table 2. Loop explanation of CLD

Loop	Symbol	Variables	Keywords
Reinforcing	R1	Population and rate of birth	Population growth
	R2	Inventory, rate of overstock	Rate of overstock
	B1	Rice production, stock, inventory, buying level	Rice production
Balancing	B2	Inventory, price	Inventory
	B3	Population and rate of death	Population growth

Model validation is done by evaluating the representation of the real conditions of the model had been built. The validation process using MAPE formula is needed to know the model can be run. From table 2, 3, 4, and 5, MAPE formula in determined variables show below 0.05, then if < 5% or very precise, exactly. The results from table 7 in 2017 show over stock and out of stock in 2016 are accordance with historical data obtained at the company. Over stock level occurred very high in 2017 proving the simulation in this study is in accordance with the real system. The results of the system simulation show that the high level of overstock because demand is only 289,569 kg/year while inventory reaches 6,318,848 kg/year. In 2016 the out of stock was caused by the inventory being less than demand with an inventory value of 124,669 kg/year and demand of 309.86 kg/year. The results of running simulation have shown that the behaviour of the system is in accordance with the real system This model for simulation is be able to analyse what happen each year based on historical data entered into the model.
Table 3. Validation for rice production

Year	Simulation (kg)	Actual (kg)
2013	2.000.000,00	2.000.000
2014	1.936.191,54	1.930.333
2015	1.903.850,67	1.908.000
2016	1.903.848,84	1.922.960
2017	2.370.036,43	2.360.000
Average	2.022.693,00	2.024.259
Total	10.113.463,48	10.121.293
MAPE	0,015%	

Table 4. Validation for demand

Year	Simulation (kg)	Actual (kg)
2013	2.000.000,00	2.000.000
2014	1.936.191,54	1.930.333
2015	1.903.850,67	1.908.000
2016	1.903.848,84	1.922.960
2017	2.370.036,43	2.360.000
Average	2.022.693,00	2.024.259
Total	10.113.463,48	10.121.293
MAPE	0,015%	

Table 5. Validation for inventory

Year	Simulation (kg)	Actual (kg)
2013	2.000.000,00	2.000.000
2014	1.936.191,54	1.930.333
2015	1.903.850,67	1.908.000
2016	1.903.848,84	1.922.960
2017	2.370.036,43	2.360.000
Average	2.022.693,00	2.024.259
Total	10.113.463,48	10.121.293
MAPE	0,021%	

Table 6. Validation for population

Year	Simulation (kg)	Actual (kg)
2013	2.000.000,00	2.000.000
2014	1.936.191,54	1.930.333
2015	1.903.850,67	1.908.000
2016	1.903.848,84	1.922.960
2017	2.370.036,43	2.360.000
Average	2.022.693,00	2.024.259
Total	10.113.463,48	10.121.293
MAPE	0,046%	

Table 7. Simulation results

Years	Inventory	Demand	Out of stock	Overstock
2013	1.108,800,00	329,570,20	0,00	779,229,80
2014	779,229,80	329,219,31	0,00	450,010,49
2015	450,010,49	325,340,68	0,00	124,669,82
2016	124,669,82	309,846,93	185,177,11	0,00

Figure 2. Completed stock and flow diagram
4. Conclusion
This study builds a system dynamic model to predict the rice necessity and avoid large over stock or out of stock. The design model is presented in the CLD and SFD models. There are 5 relationships between variables such as loop, namely loop R1 as population growth, loop R2 as overstock level, loop B1 as rice production, and loop B2 inventory and B3 population growth. There are SFD sub-models, namely production, inventory, demand, and population. After validation for simulation, the model shows good results. Validation is done by benchmarking real system and simulation. The results show all variable are in MAPE less than 5%. Future work can design scenario based on this simulation. The scenario needed is minimize the overstock and out of stock for this government program.

Acknowledgments
Universitas Syiah Kuala, Ministry of Research, Technology, and Education of Indonesia support this research, in accordance with the Letter of Appointment Agreement of Laboratory Grant of Fiscal Year 2019 Number: 305/UN11.2/PP/PNBP/SP3/2019 Date May 3, 2019. Thanks, and high appreciation to Rector, Head of Integrated Laboratory and Head of LPPM Universitas Syiah Kuala.

References
[1] Japa F, Napitupulu H L and Ikhsan Siregar 2014 Jurnal Teknik Industri USU 3
[2] Hartini S and Larasati I 2009 J@TI UNDIP IV 202–13
[3] Bahagia S N 2006 Sistem Inventori (Bandung: Penerbit ITB)
[4] Kourentzes N, Trapero J R and Barrow D K 2019 (Rochester, NY: Social Science Research Network)
[5] Mallidis I, Vlachos D, Yakavenka V and Eleni Z 2018 Ann Oper Res
[6] Andriansyah A, Denny Sentia P, Elia S and Prasanti N 2018 International Journal of Conceptions on Computing and Information Technology 6 3
[7] Sterman J 2000 Business Dynamics: Systems Thinking and Modeling for a Complex World (Irwin/McGraw-Hill)
[8] Vlachos D, Georgiadis P and Iakovou E 2007 Computers & Operations Research 34 367–94
[9] Mukti E T, Sjafruddin A and Kusumawati A 2014 Prosiding Forum Studi Transportasi Antar Perguruan Tinggi 1045–53
[10] Mutungu M, Mbohwa C and Kommula V P 2017 S Energy Procedia 141 532–9
[11] Anderson E G, Lewis K and Ozer G T 2018 System Dynamics Review 34 527–74
[12] Kumar M and Dutt V 2018 System Dynamics Review 34 503–26
[13] Gooyert V de and Größler A 2018 System Dynamics Review 34 575–83
[14] Sentia P D, Mulyati T, Suhendrianto and Zuela N 2019 IOP Conf. Ser.: Mater. Sci. Eng. 506
[15] Mai T and Smith C 2015 Vietnam Journal of Sustainable Tourism 23 1504–28
[16] Mula J, Campuzano-Bolarín F, Díaz-Madroño M and Carpio K M 2013 International Journal of Production Research 51 4087–104
[17] Barnabè F 2011 International Journal of Productivity and Performance Management
[18] Anon Supply Chain Simulation - A System Dynamics Approach for Improving Performance | Francisco Campuzano | Springer
[19] Wibowo A D, Moeis A O, Wiguna C B and Chaulan T A C 2015 Agriculture and Agricultural Science Procedia 3 266–73
[20] Budiawan W, Arvianto A, Hadi M N, Soedarto J H and Semarang S 2017 Seminar dan Konferensi Nasional IDEC 11