Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.
Atom interferometers measure inertial forces\(^1\text{–}\text{3}\), atomic properties, and quantities like the photon recoil\(^4\) or the gravitational constant\(^5\) with high precision and accuracy. Modern fields of application comprise navigation and observation of Earth’s gravity and rotation, as well as terrestrial and space-borne gravitational-wave detection in the infrasound domain\(^6\text{–}\text{11}\). Achieving interferometers with the needed space-time areas on the order of one m·s remains challenging, though.

The sensitivity of atom interferometers towards inertial forces\(^12\) and gravitational waves increases linearly with the differential kinetic momentum, and, hence, the latter is exploited as a lever. Benchmark experiments have so far realized asymmetric and symmetric momentum transfer with Raman diffraction\(^13\text{–}\text{15}\) and sequential and higher-order Bragg transitions\(^16\text{–}\text{19}\), as well as Bloch oscillations (BOs)\(^20\text{–}\text{22}\). Other experiments, where both interferometer arms were equally accelerated and, thus, the relative momentum in the interferometer remained unaffected, involve even higher numbers in photon transfer\(^23\).

Large momentum transfer is especially of interest for increasing the sensitivity of Sagnac interferometers, which scales with the enclosed area. Compared to laser gyroscopes exhibiting resolutions of up to \(10^{-11}\) rad (s\(\sqrt{\text{Hz}}\))\(^{-1}\), in matter-wave interferometers\(^14\text{,}25\text{–}\text{28}\) smaller areas suffice to reach high sensitivities. However, forming the required loop size is still challenging and drives the dimensions of the apparatus.

Here, we present twin-lattice interferometry as a method to form symmetric interferometers featuring matter waves with large relative momentum. By employing two counterpropagating optical lattices\(^29\), we create from a Bose–Einstein condensate (BEC) a Mach–Zehnder-type interferometer, made of wave packets with a differential momentum of \(>400\) photon recoils, the largest reported so far. In this way, we realize a Sagnac loop with an area of \(A = 7.6\) mm\(^2\) on a baseline of only 2.43 mm. Compared to previous approaches twin-lattice interferometry with BECs displays several advantages: (i) It enables large and symmetric momentum transfer, and, hence, large space-time areas in a simple and efficient way by combining double Bragg diffraction (DBD)\(^18\text{,}30\) with symmetric BOs\(^31\). (ii) The symmetry of our geometry will suppress systematic effects such as diffraction phases, a common challenge in current implementations\(^4\text{,}19\text{,}32\). (iii) Combined with a delta-kick–collimated BEC source, we achieve high scalability marked by low atom and contrast loss. According to our theoretical model, the interference contrast achieved with this method so far is solely limited by technical features of our device. Consequently, twin-lattice interferometry provides the perspective to create large Sagnac loops in a swift manner in compact devices outperforming today’s approaches\(^1\text{,}28\text{,}33\). Furthermore, the method brings within reach the momentum transfer of thousands of photon recoils and opens up exciting perspectives for many applications, in particular gravitational-wave detectors\(^5\text{,}8\text{,}10\text{,}11\).

Results

Experimental setup. The setup for our twin-lattice interferometer is shown in Fig. 1. The twin lattice is formed by retroreflecting a laser beam featuring two frequencies with linear orthogonal polarization through a quarter-wave plate (Supplementary section 1). The beam of 3.75 mm waist and up to 1.2 W power travels below and parallel to the horizontally aligned surface of an atom chip.

The latter serves to generate BECs of up to \(1.5\times\text{10}^{14}\) \(^{87}\text{Rb}\) atoms in the magnetic state \(F = 2\), \(m_F = 2\) in a Ioffe–Pritchard trap with frequencies of (43, 344, 343) Hz as detailed in ref. \(^34\). The BECs are released from the trap into free fall by switching off the magnetic field and are, after a free expansion of 5.4 ms, again exposed to the same field for 0.3 ms. In this way, they experience a delta kick, which acts as a collimating lens and results in a narrow momentum distribution\(^35\), that is, a residual expansion rate along the lattice of \(\sigma_v = 0.18\) mm s\(^{-1}\) or 0.03\(\text{h}\)\(\text{k}\), corresponding to an effective 1D temperature of 340 pK. The collimation is crucial for efficient manipulation of the BECs via DBD in combination with momentum transfer through BOs\(^36\). Immediately after the delta kick, an adiabatic rapid passage of 9 ms duration transfers 90–95% of the BEC to the non-magnetic state \(F = 2\), \(m_F = 0\) by coupling the Zeeman levels with a chirped radio-frequency pulse. This state is separated from the others by temporarily applying a vertical magnetic field gradient. The effect of such a Stern–Gerlach-type experiment on the atomic expansion rate is negligible. Atoms are detected by absorption imaging with a CCD camera at a maximum observable free-fall time of 35.5 ms.

Interferometer sequence. The interferometer is generated by a sequence of DBD processes and BOs in the twin lattice. Figure 2 shows the resulting space-time trajectories of the wave packets exemplary for momentum transfers of \(K = (24, 128, 208\), and 408) \(\text{h}\)\(\text{k}\) together with the corresponding temporal sequence of lattice power and change in relative momentum.

First, the twin lattice is exploited to induce two successive first-order DBD processes\(^18\) so that the BEC is split into two wave packets separating with a mean momentum of \(\pm 4\text{h}\)\(\text{k}\), respectively. The light pulses driving DBD have a Gaussian-shaped temporal envelope of 37.5\(\mu\)s width. Owing to the use of delta-kick–collimated BECs, we achieve a transfer efficiency of 98.8% per recoil in these processes. Hereafter, the BECs are loaded into the counterpropagating lattices. During this process, the lattice intensity is linearly increased within 200\(\mu\)s and the velocity adjusted to the comoving BECs\(^37\). Each wave packet is accelerated by its copropagating lattice via BOs during 2 ms and gains additional momentum of up to 200\(\text{h}\)\(\text{k}\). For the release from the lattices, the intensity is lowered again linearly. In this way, we obtain an efficiency of up to 99.93% per recoil for BOs in our interferometers. In addition, we have realized a single beam...
Contrast analysis. We evaluate the contrast of our interferometer statistically as described in “Methods.” As illustrated in Fig. 3, the measured interference contrast C (black dots) clearly decreases with an increasing number of transferred momenta. Confirmed by simulations, we attribute the contrast loss to two main effects.

The first effect stems from atom losses arising during DBD and BOs. On the one hand, atoms that have not been Bragg diffracted to the desired momentum states, and therefore have not performed BOs, still give rise to an offset signal in the number of detected atoms. On the other hand, losses during BOs remove atoms from the interferometer and reduce the number of coherent atoms. To increase the relative momentum K, we apply larger accelerations during BOs causing increased Landau–Zener losses. Both loss mechanisms lead to a reduced contrast of about $C = 0.35$ for $K = 408\, \hbar k$ (green diamonds, Supplementary sections 2 and 3).

The second cause for the contrast reduction is dephasing due to an imperfect Gaussian beam profile (Supplementary Fig. 1 and section 4). Such perturbations result, for example, from light diffraction on an edge of the atom chip and induce spatially variable dipole forces along the two interferometer arms. Different atomic trajectories according to the ensemble’s spatial distribution in combination with path-dependent dipole forces lead to a spatially varying phase across the wave packets, and give rise to a loss of contrast (red triangles). Combining the models for atom loss and dephasing processes (orange pentagons) enables us to match the observed contrast. We base our analysis of the beam profile on a model assuming a mere clipping of the twin-lattice beams at one edge of the chip. Hereby, the relative magnitude of the intensity perturbations represents the only free fitting parameter. The results in Fig. 3 have been obtained with a value equal to 9% of the twin-lattice depth, which is compatible with the measured beam profile. The effect of wavefront errors on the contrast loss is expected to be smaller by a factor of ten.

In our simulation, the loss of contrast critically depends on the wave packet size (Supplementary Fig. 2). The twin-lattice interferometer, therefore, benefits from the small spatial extent of our delta-kick-collimated BEC, exhibiting Thomas–Fermi radii...
of \(R = (32, 39, 30) \mu m \) at the end of the interferometer. In the absence of delta-kick collimation, these radii increase by a factor of three in \(y \)- and \(z \)-direction. Since a larger ensemble samples over more light field distortions and, hence, suffers from stronger dephasing, it leads to a significant contrast reduction (open violet circles). Our calculation even overestimates the contrast of the non-collimated BEC, since it is performed assuming the same efficiencies for DBD and B0s as in the case of delta-kick-collimated BECs.

To experimentally verify the impact of the spatial profile of the light field on the interferometric contrast, we have reduced the beam diameter by roughly a factor of two compared to our original setup. The smaller diameter lowers light beam diameter by roughly a factor of two compared to our loss as the benchmark experiment in ref.16. Moreover, diffraction separation in an interferometer reported so far. In comparison to a maximum splitting of \(\approx 5\% \) due to multiple diffractions. contrast, mainly determined by atom loss (green line in Fig.3). The remaining discrepancy can be explained by the fact that the measured beam profile (\(w = 1.65 \text{ mm} \)) still features distortions in the order of \(5\% \) due to multiple diffractions.

Discussion

We have employed twin-lattice interferometry for large symmetric momentum transfer and observed spatial coherence up to a maximum splitting of \(K = 408 h\kappa \), the largest momentum separation in an interferometer reported so far. In comparison to previous results, our method is not as strongly limited by atom loss as the benchmark experiment in ref.16. Moreover, diffraction phases should be greatly suppressed as in ref.29; however, the inertial noise in our current setup prevents us from confirming this experimentally. Given the use of two instead of three light fields, our geometry is even more symmetric than29. Indeed, for ideal mode overlap, our twin-lattice interferometer should be construction not susceptible to light shifts that were reported in ref.21.

Our symmetric geometry also relaxes laser power requirements compared to an asymmetric scheme. For the same momentum transfer, the acceleration of only a single interferometer arm would require larger lattice depths causing not only higher atom losses due to spontaneous scattering but also an even lower contrast due to the light field distortions.

Compared to former symmetric schemes, we significantly exceed the contrast observed in the double Raman interferometer13 and our own double Bragg interferometer18. Our experimental studies, as well as theoretical simulations, reveal that only technical reasons, in particular spatial distortions of the twin lattice, limit the current beam splitter efficiency and generally the scaling of our method.

In fact, our theoretical model for Gaussian-shaped beams and experimental results show that in the ideal case of an undisturbed lattice, neither the Landau–Zener losses nor the differential dipole force arising due to the Gaussian waist will be critical. For a twin lattice featuring spatial intensity fluctuations in the order of 0.5% of \(V_0 \), the model predicts a contrast of \(>90\% \) at \(K = 408h\kappa \). An additional absolute Stark shift compensation may help to reduce the effect of residual local inhomogeneities and maintain a high contrast by adding a light field of opposite detuning4,17.

Twin-lattice interferometry allows to efficiently create large Sagnac areas in comparably short time and space. To evaluate the level of miniaturization and to compare the geometry obtained with our method to other sensors, we introduce a compactness factor \((\tau \cdot L)^{-1} \), which is the inverse product of interferometer time \(\tau \) and baseline \(L \).

![Fig. 4 Sensor comparison.](image)

Methods

Twin-lattice laser system. For interferometry, we employ a frequency-doubled fiber laser system49 (NKT Photonics Koheras Boostik and Topica Photonics SHG pro) 100 GHz blue-detuned from the \(^87\text{Rb} \) D2 line to reduce spontaneous emission. To create the twin lattice, we use two light fields with orthogonal linear polarizations, which are merged to a single beam on a polarizing beam splitter. Their frequencies and amplitudes are controlled independently by acousto-optical...
as the detuning from the standing lattice increases. The inset shows the theoretical efficiency for ideal polarization, that is, a perfect twin lattice, of the transfer $\pm 2\hbar k \rightarrow \pm 4\hbar k$. In all cases, a larger τ_{acc} corresponds to a lower acceleration and reduces nonadiabatic losses as expected from Landau–Zener theory. Our experimental results (symbols) are well reproduced by theoretical simulations (lines) assuming an additional standing lattice of depth 0.37V_0, arising from polarization imperfections (Supplementary Eq. (2)). The losses by the latter decrease with a larger initial splitting K and from (a) to (c) as the detuning from the standing lattice increases. The inset shows the theoretical efficiency for ideal polarization, that is, a perfect twin lattice, of the transfer $\pm 2\hbar k \rightarrow \pm 4\hbar k$.

Evaluation of spatial coherence

We analyze the spatial coherence of our twin-lattice interferometers statistically by measuring the interference amplitude in dependence of a spatial separation of the wave packet trajectories at the moment of the last DBD pulse. The displacement between the wave packets is modified by varying the free-evolution time in the second half of the interferometer by δT as indicated in Fig. 2. The statistical analysis allows evaluating the spatial coherence in the presence of large vibrational noise. In our setup, the losses can be overcome by increasing the initial momentum separation and also exhibits a pronounced optimum. We substitute the atom number N by N_{diss}, namely the atom number N_{diss} diminished by spontaneous emission losses in a twin lattice of depth V_0 (Supplementary section 2 for details). For example, in case of the $K = 408\hbar k$ interferometer, the required lattice depth $V_0 = 25\hbar k$ leads to a

Fig. 5 Bloch transfer efficiency in the twin lattice. Efficiency of one BO exerted by our twin lattice in dependence of the initial state. A superposition of BECs with momenta $\pm 2\hbar k$, $\pm 4\hbar k$, or $\pm 6\hbar k$ created via first-order DBD and sequential Bragg pulses is accelerated via BO acquiring an additional momentum of $\pm 2\hbar k$. The efficiency is recorded for different times τ_{acc} and in dependence of the lattice depth V_0 in units of recoil energy $E_r = \hbar^2 k^2/(2m)$. In all cases, a larger τ_{acc} corresponds to a lower acceleration and reduces nonadiabatic losses as expected from Landau–Zener theory. Our experimental results (symbols) are well reproduced by theoretical simulations (lines) assuming an additional standing lattice of depth 0.37V_0 arising from polarization imperfections (Supplementary Eq. (2)). The losses by the latter decrease with a larger initial splitting K and from (a) to (c) as the detuning from the standing lattice increases. The inset shows the theoretical efficiency for ideal polarization, that is, a perfect twin lattice, of the transfer $\pm 2\hbar k \rightarrow \pm 4\hbar k$.

Fig. 2 depicts the temporal sequence regarding laser power and relative momentum for the combination of DBD with BOs in our twin lattice. For acceleration and deceleration of the BECs via BOs, the frequency difference of the twin lattice is linearly ramped up or down, respectively. For relative momenta of $K = (24, 48, 88)\hbar k$, a single linear frequency ramp of 2 ms is employed. If the momentum transfer K in the interferometer is larger, the frequency ramp is split into two parts. For acceleration (deceleration) to relative momenta of $K = (128, 208, 308, 408)\hbar k$, a momentum of $12\hbar k$ is transferred during the first (final) $0.5, 0.4, 0.3, 0.3$ ms and the rest in the remaining $1.5, 1.6, 1.7, 1.7$ ms.

Bloch transfer efficiency in the twin lattice. High efficiencies in the transfer of photon recoils are crucial for generating symmetric interferometers employing large momentum separation. Since, in case of a twin lattice, one lattice might disturb the effect of the other, we compare the efficiency of BO for different initial momentum separations of the BEC. Ideally, they should be equal to the ones of the individual lattices. Figure 5 illustrates nonadiabatic losses during BO in a twin lattice. We first prepare a superposition of symmetric momenta states $\pm 2\hbar k$ (a), $\pm 4\hbar k$ (b), or $\pm 6\hbar k$ (c) by performing first-order DBD and a respective number of sequential first-order Bragg pulses. Subsequently, an additional momentum of $\pm 2\hbar k$ is imparted via BO and the number of atoms in the final momentum states is measured. In particular, we compare the experimentally achieved (symbols) and the matching theoretically simulated efficiency (lines) for different durations $\tau_{\text{acc}} = (100, 200, 400, 800)$ ms as varying different accelerations in dependence of the lattice depth V_0. In general, the transfer efficiency η created for an increasing τ_{acc}. Indeed, slower accelerations lower the rate of nonadiabatic interband transitions, and, hence, reduce atom losses in the final momentum state as expected from Landau–Zener theory.

Figure 5a–c clearly shows the importance of the initial momentum separation prepared by DBD for an efficient transfer by the subsequent BO in our setup. While the efficiency for larger initial separations equals almost 100%, it is lower for smaller separations and also exhibits a pronounced optimum.

To explain the observed atom losses associated with the initial state, our simulations, based on a 1D-reduced Gross–Pitaevskii model, had to take into account imperfections of our optical setup creating the twin lattice (Supplementary section 1). Neither the Landau–Zener theory describing an ideal single lattice nor our simulations of an ideal twin lattice, as shown in the inset (Fig. 5a) for the process $\pm 2\hbar k \rightarrow \pm 4\hbar k$, could reproduce the experimental data. Indeed, these losses result from an imperfect polarization of the light fields giving rise to unwanted standing waves. Adding a standing lattice of $0.37\hbar k$ depth, which is compatible with our experimental setup, the theoretical curves agree with the experimental data. Fortunately, the losses can be overcome by increasing the initial momentum splitting of the BEC in our setup, which corresponds to a larger detuning to standing waves. In consequence, we start our interferometers with a beam splitter creating a superposition of $\pm 4\hbar k$ (as in Fig. 5b), being the best trade-off between the losses caused by parasitic standing waves and the lower efficiency of Bragg processes.

Input parameters for contrast simulation. In our case, the experimentally determined values of the lattice depth V_0 during BO and the total atom number N detected in the output ports serve as input parameters for our simulation of the interference contrast in the twin lattice (Supplementary sections 3 and 4). We measure N relative to $N_{\text{exp}} = N(88\hbar k)$ obtained in an interferometer exclusively based on DBD (Fig. 6b). The fraction N/N_{exp} declines with relative momentum K to about 35% for $K = 408\hbar k$ since nonadiabatic and spontaneous emission losses rise with increasing accelerations that require deeper lattices (Fig. 6c). We calculate N_{diss}, namely the atom number N_{diss} diminished by spontaneous emission losses in a twin lattice of depth V_0 (Supplementary section 2 for details). For example, in case of the $K = 408\hbar k$ interferometer, the required lattice depth $V_0 = 25\hbar k$ leads to a
spontaneous emission rate of 22 s\(^{-1}\) causing an atom loss of 1 - N_{a0}/N_0 = 18\%. In our model, spontaneous scattering equally affects atoms contributing to the signal and to the offset, and, hence, does not influence the contrast. The confidence intervals result from a 10% error in \(V_0\) and an absolute error of 0.05 regarding N/N_0.

Data availability

The data used in this manuscript are available from the corresponding authors upon reasonable request.

Code availability

The simulation code is available from the corresponding authors upon reasonable request.

Received: 16 October 2020; Accepted: 31 March 2021; Published online: 05 May 2021

References

1. Savoie, D. et al. Interleaved atom interferometer for high-sensitivity inertial measurements. *Sci. Adv.*, 4, eaau7948 (2018).
2. Freier, C. et al. Mobile quantum gravity sensor with unprecedented stability. *J. Phys. Conf. Ser.*, 723, 012050 (2016).
3. Asenbaum, P. et al. Phase shift in an atom interferometer due to space-time curvature across its wave function. *Phys. Rev. Lett.*, 118, 183602 (2017).
4. Parker, B. H., Yu, C., Zhong, W., Esteve, R. & Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. *Science*, 360, 191–195 (2018).
5. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. Precision measurement of the neutron gravitational constant using cold atoms. *Nature*, 510, 518 (2014).
6. Canuel, B. et al. Exploring gravity with the MIGA large scale atom interferometer. *Scientific Rep.*, 8, 14064 (2018).
7. Schubert, C. et al. Scalable, symmetric atom interferometer for infrasound gravitational wave detection. Preprint at http://arxiv.org/abs/1909.01951 (2019).
8. Canuel, B. et al. ELGAR—a European laboratory for gravitation and atom-interferometric research. *Class. Quantum Gravity*, 37, 225017 (2020).
9. Hogan, J. M. et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). *Gen. Relativ. Gravit.*, 43, 1953–2009 (2011).
10. Zhan, M.-S. et al. Zaiga: Zhaooshan long-baseline atom interferometer gravitation antenna. *Int. J. Mod. Phys. D*, 29, 1940005 (2020).
11. Radurina, L. et al. AION: an atom interferometer observatory and network. *J. Cosmol. Astropart. Phys.*, 2020, 011–011 (2020).
12. Geiger, R., Landragin, A., Merlet, S. & Pereira Dos Santos, F. High-accuracy inertial measurements with cold-atom sensors. *AVS Quant. Sci.*, 2, 024702 (2020).
13. Lévéque, T., Gauguet, A., Michaud, F., Pereira Dos Santos, F. & Landragin, A. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. *Phys. Rev. Lett.*, 103, 080405 (2009).
14. Berg, P. et al. Composite-light-pulse technique for high-precision atom interferometry. *Phys. Rev. Lett.*, 114, 063002 (2015).
15. Jaffe, M., Xu, V., Haslinger, P., Müller, H. & Hamilton, P. Efficient adiabatic spin-dependent kicks in an atom interferometer. *Phys. Rev. Lett.*, 121, 040402 (2018).
16. Chiow, S.-w., Kovachy, T., Chien, H.-C. & Kasevich, M. A. 102\(^h\)k large area atom interferometers. *Phys. Rev. Lett.*, 107, 130403 (2011).
17. Kovachy, T. et al. Quantum superposition at the half-metre scale. *Nature*, 528, 530–533 (2015).
18. Ablers, H. et al. Double Bragg interferometry. *Phys. Rev. Lett.*, 116, 173601 (2016).
19. Plotkin-Swingle, B. et al. Three-path atom interferometer with large momentum separation. *Phys. Rev. Lett.*, 121, 133201 (2018).
20. Müller, H., Chiow, S.-w., Herrmann, S. & Chou, S. Atom interferometers with scalable enclosed area. *Phys. Rev. Lett.*, 102, 240403 (2009).
21. Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. Large momentum beam splitter using Bloch oscillations. *Phys. Rev. Lett.*, 102, 240402 (2009).
22. McDonald, G. D. et al. 80 kHz momentum separation with Bloch oscillations in an optically guided atom interferometer. *Phys. Rev. A*, 88, 053620 (2013).
23. Xu, V. et al. Probing gravity by holding atoms for 20 seconds. *Science*, 366, 745–749 (2019).
24. Schreiber, K. U. & Wells, J.-P. R. Invited review article: Large ring lasers for rotation sensing. *Rev. Sci. Instrum.*, 84, 041101 (2013).
25. Canuel, B. et al. Six-axis inertial sensor using cold-atom interferometry. *Phys. Rev. Lett.*, 97, 010402 (2006).
26. Stockton, J., Takase, K. & Kasevich, M. A. Absolute geodetic rotation measurement using atom interferometry. *Phys. Rev. Lett.*, 107, 133001 (2011).
27. Wu, S., Su, E. & Prentiss, M. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing. *Phys. Rev. Lett.*, 99, 173201 (2007).
28. Moan, E. R. et al. Quantum rotation sensing with dual Sagnac interferometers in an atom-optical waveguide. *Phys. Rev. Lett.*, 124, 120403 (2020).
29. Pagel, Z. et al. Symmetric bloch oscillations of matter waves. *Phys. Rev. A*, 102, 053120 (2020).
30. Hartmann, S. et al. Regimes of atomic diffraction: Raman versus Bragg diffraction in retroreflective geometries. *Phys. Rev. A*, 101, 053610 (2020).
31. Peik, E., Ben Dahan, M., Bouchoule, L., Castin, Y. & Salomon, C. Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. *Phys. Rev. A*, 55, 2989–3001 (1997).
32. Büchner, M. et al. Diffraction phases in atom interferometers. *Phys. Rev. A*, 68, 013607 (2003).
33. Pandey, S. et al. Hypersonic Bose-Einstein condensates in accelerator rings. *Nature*, 570, 205–209 (2019).
34. van Zoest, T. et al. Bose-Einstein condensation in microgravity. *Science*, 328, 1540 (2010).
35. Müntinga, H. et al. Interferometry with Bose-Einstein condensates in microgravity. *Phys. Rev. Lett.*, 110, 093602 (2013).
36. Szigeti, S. S., Debs, J. E., Hope, J. J., Robins, N. P. & Close, J. D. Why
momentum width matters for atom interferometry with Bragg pulses. N. J.
Phys. 14, 023009 (2012).
37. Denschlag, J. H. et al. A Bose-Einstein condensate in an optical lattice. J. Phys.
B 35, 3095–3110 (2002).
38. Charrière, R., Cadoret, M., Zahzam, N., Bidel, Y. & Bresson, A. Local gravity
measurement with the combination of atom interferometry and Bloch
oscillations. Phys. Rev. A 85, 013639 (2012).
39. Roura, A., Zeller, W. & Schleich, W. P. Overcoming loss of contrast in
atom interferometry due to gravity gradients. N. J. Phys. 16, 123012
(2014).
40. Bade, S., Djadaojee, L., Andia, M., Cladé, P. & Guellati-Khelifa, S. Observation
of extra photon recoil in a distorted optical field. Phys. Rev. Lett. 121, 073603
(2018).
41. Rudolph, J. et al. A high-flux BEC source for mobile atom interferometers. N.
J. Phys. 17, 065001 (2015).
42. Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing
and entanglement in a Bose-Einstein condensate. Nature 455, 1216–1219
(2008).
43. Lange, K. et al. Entanglement between two spatially separated atomic modes.
Science 360, 416–418 (2018).
44. Xu, W.-J., Zhou, M.-K., Zhao, M.-M., Zhang, K. & Hu, Z.-K. Quantum
tiltmeter with atom interferometry. Phys. Rev. A 96, 063606 (2017).
45. Abend, S. et al. Atom-chip fountain gravimeter. Phys. Rev. Lett. 117, 203003
(2016).
46. Salasnich, L., Parola, A. & Reatto, L. Effective wave equations for the dynamics
of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A 65, 043614
(2002).

Acknowledgements

We thank E. Giese, A. Friedrich, J. Jenewein, A. Roura, Z. Pagel, M. Jaffe, P. Haslinger,
and H. Müller for fruitful discussions. This work is funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy—EXC-2123 QuantumFrontiers—390837967 within research units B02 and B05
and through the CRC 1227 (DQ-mat) within Project Nos. A05, B07, and B09, as well as
through the CRC 1128 (geo-Q) within the Project Nos. A01 and A02. We also
acknowledge support from the QUEST-LFS, the German Space Agency (DLR) with
funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to
an enactment of the German Bundestag under Grant Nos. DLR 50WM1952 and
50WM1955 (QUANTUS-V-Fallturm), 50WM1642 (PRIMUS-III), 50WM1861 (CAL),
50WP1700 (BECCAL), 50RK1957 (QGYRO), and the Verein Deutscher Ingenieure
(VDI) with funds provided by the Federal Ministry of Education and Research (BMBF)
under Grant No. VDI 13N14838 (TAIOL). We acknowledge financial support from
“Niedersächsisches Vorab” through the “Quantum- and Nano-Metrology (QUANO-
MET)” initiative within the project QT3 and through “Förderung von Wissenschaft und
Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI
Institute.

Author contributions

M.Gebbe and J.-N.S. contributed equally to this work. M.Gebbe, M.Gersemann, and S.A.
performed the experiments and analyzed the data. J.-N.S. and N.G. developed the the-
oretical model. H.M., S.H., H.A., and C.S. contributed to the scientific discussions.
M.Gebbe, J.-N.S., S.A., and E.M.R. prepared the manuscript, with contributions from all
authors. K.H., C.L., and E.M.R. supervised the project.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22823-8.

Correspondence and requests for materials should be addressed to M.G., J.-N.S. or S.A.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021