Cramming the causative mechanism of glycogen synthase kinase-3β mediated by ischemic preconditioning against ovariectomy challenged rat heart

Vishal Kumar Vishwakarma1, Tarique Mahmood Ansari2, Prabhat Kumar Upadhyay3, Ritesh Kumar Srivastav4, Farogh Ahsan2, Arshiya Shamim2

1 Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
2 Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh-226021, India
3 Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh-281406, India
4 Faculty of Pharmacy, Kamla Nehru Institute of Management and Technology, Sultanpur-228119, India

Article History:
Received on: 09 Dec 2020
Revised on: 07 Jan 2021
Accepted on: 18 Jan 2021

Keywords:
Glycogen synthase kinase-3β, Estrogens, Ischemic preconditioning, Mitochondria

ABSTRACT

High risks of cardiovascular diseases in women are associated with low estrogen levels. Ischemic preconditioning (IPC) exhibits protection in the heart by Glycogen synthase kinase-3β (GSK-3β) phosphorylation that inhibits the mPTP opening, and this protective action of IPC is attenuated by estrogen deficiency. An experiment was performed on female Wistar rats with/without ovariectomy (OVX). Isolated rat heart was attached with perfusion assembly. Infract size, coronary flow, LDH, CKMB and histopathology were estimated. Sham control group decreased the LDH, CKMB and infract size in normal rat heart. The IPC mediated protection of heart was attenuated in OVX rat heart. Inhibition of GSK-3β is found to enhance the threshold of mPTP opening during reperfusion. The treatment with atractyloside stuck significantly the protection of heart of IPC in normal and OVX rat heart. These observations show that downregulation of GSK-3β through an impaired opening of mPTP during reperfusion and GSK-3β might be potential adjuvant to IPC against cardiac injury in OVX challenged rats.

INTRODUCTION

The clinical effects of cardiovascular studies in post-menopausal women are disappointing and inconsistent yet. After menopause, the lower level of estrogens in females increases the risk of cardiovascular diseases. It creates new studies on the actions of 17β-estradiol on the heart. It has also been reported that estrogens have a protective role in animal models associated with cardiac complications like arrhythmia, atherosclerosis (Booth et al., 2008). Estrogen also reduces the episode of ischemia-reperfusion (IR) injury, myocardial infarct size, and also neutrophil infiltration in the cardiac muscles (Posa et al., 2017). The normal functioning of the myocardium is notably restored by reperfusion of ischemic heart (Topol et al., 1992). While sudden reperfusion of ischemic heart produced again injury of cardiac tissue termed as IR injury (Collard and Gelman, 2001). Ischemic preconditioning (IPC) is a useful protective phenomenon of heart against the short and long event of myocardial ischemia following reperfusion which also produces the protection against prolonged ischemia (Murry et al., 1986). It is reported, that IPC exhibited a protective effect against IR injury by reducing myocard-
Bilateral ovariectomy produced an estrogen level expressed as pg/ml, as described previously (Vishvakarma et al., 2018).

Isolated rat heart preparation

The Heart was rapidly excised from heparinized rats and directly suspended to Langendorff’s apparatus before starting the experiment. This isolated heart was now covered with the double-walled jacket by maintaining temperature to 37°C using hot water circulation. The heart was retrospectively perfused at a coronary flow rate of 7-9 mL/min by maintaining the pressure of 80 mmHg using KH buffer solution which comprised of composition (MgSO₄.7H₂O 1.2 mM; KCl 4.7 mM; NaCl 118 mM; glucose- 11 mM; KH₂PO₄ 1.2 mM, NaHCO₃ 25 mM; CaCl₂ 2.5 mM to get pH 7.4). The temperature was maintained to 37°C, and also passed the bubble of 5% CO₂ and 95% O₂ (Hosseini et al., 2020).

Experimental protocol and induction of IPC

The study was performed on nine groups of female Wistar rats, and each group contained six rats (n=6). The detailed set of groups for an experiment is shown in Figure 1 and described here,

1. Sham Control, where n = 6: Isolated heart was subjected to 10 min of stabilization and then perfused with KH buffer for 190 min continuously. At this stage, there is no global ischemia.

2. IR Control; where n = 6: After 10 min of stabilization, the isolated heart was exposed to global ischemia for 30 min followed by reperfusion with KH buffer for 120 min continuously.

3. IPC Control; where n=6: The heart was kept for 4 cycles of IPC after 10 min of stabilization. Each cycle of IPC consists of 5 min global ischemia following reperfusion of 5 min with KH buffer solution, which was further continued to global ischemia of 30 min and 120 min reperfusion.

4. IPC in OVX rat; where n = 6: Isolated OVX rat heart was kept for 4 cycles of IPC as reported earlier in group-3.

5. IPC in pretreated with TDTZ-8 (1mg/kg), surgery operated OVX rats; n = 6: Preparation of isolated pretreated OVX rat heart with TDTZ-8 (1 mg/kg dose was given, in abdominal cavity 30 min prior) OVX rat was kept for 4 cycles of IPC and rest protocol as described in group-3.

6. IPC in pretreated with TDTZ-8 (1mg/kg)and atractyloside (20 µM) perfused in surgery operated OVX rats; n = 6: Preparation of isolated pretreated OVX rat heart with TDTZ-8 (1 mg/kg...
dose was given, in abdominal cavity 30 min prior) and mPTP opener drug atractyloside (20 μMKH buffer) for each episode of 5 min reperfusion and rest protocol as described in group 3.

Evaluation of myocardial infarct area

Isolated hearts were stored at −80°C for 20 to 30 min. The slices were taken after cutting the frozen heart from apex to base. Each slide was measured by a thickness of 2 to 3 mm. The triphenyltetrazolium chloride solution (TTC; Sigma-Aldrich, USA) was used to stain prepared slices. The brick red color was stained for living myocardial tissues, while, the infarct area remained unstained. The per cent infarct area was measured using Image J-software in relation to a total area of the heart (NIH, Bethesda, MD, USA) (Pachauri et al., 2017).

Measurement of cellular injury

In the coronary effluent from heart preparation, the LDH and CKMB levels were determined for assessing the extent of cardiac injury in experimental. After an experiments, these levels have been estimated spectrophotometrically in the perfusate using commercial detection kits (Coral Clinical Systems Pvt. Ltd., India) (Pachauri et al., 2017).

Histopathological examination

Figure 1: Diagrammatic representation of an experimental protocol

Figure 2: Effect of ovariectomy on estrogen level

Figure 3: Effect of TDTZ-8 on the coronary flow
Generally, 10% buffered neutral formalin solution was used for tissue fixing in the histological experiment. After fixing, these tissues were placed in paraffin-wax, and then cut transverse mid-ventricular sections (about 5 μm thickness) using a microtome. These sections were stained using haematoxylin and eosin (Srivastav et al., 2013).

Statistically analysis

All data values were expressed as mean±SD. The data of groups were statistically measured using one way ANOVA followed by Tukey’s multiple comparisons test. The statistical significant value was considered as a p-value of less than 0.05.

RESULTS

Serum β-estradiol levels

The level of β-estradiol was significantly decreased in the OVX group. The level of β-estradiol did not show to zero because the ovary and adrenal gland secrete little amount female sex hormone (Figure 2).

Effect of TDTZ-8 on the coronary flow

Effect of TDTZ-8 (3 μM) on the coronary flow in OVX rat heart mediating IPC has been observed which depicted in Figure 3. There was no significant difference in coronary flow at a basal time among groups in all sets of experiments. IPC mediated decrease in the coronary flow noted in OVX challenged rat heart after 1 min to ischemia exposure while TDTZ-8 produced IPC-mediated increase in the coronary flow. Further, atractyloside was given with TDTZ-8, attenuates IPC-mediated and enhanced coronary flow in OVX challenged heart. The effect carried on up to the end of the experiment.

Effect of TDTZ-8 on LDH level

Figure 4 shows the effect of TDTZ-8 (3 μM) on IPC-mediated changes, including LDH activity in OVX-challenged rats. In this study, IPC attenuated the LDH level of coronary effluent in OVX-challenged rat heart noted at 1 min, while TDTZ-8 enhance IPC-mediated reduction in LDH level. Additionally, Atractyloside, along with TDTZ-8, diminish IPC mediated and decreased LDH level in coronary effluent in OVX challenged rat heart. The effect carried on up to the end of the experiment.

Effect of TDTZ-8 on CKMB level

Effects of TDTZ-8 (3 μM) on IPC-mediated alterations in the CKMB activity of the coronary effluent of OVX-challenged rats of the experimental design in Figure 5. In this study, IPC attenuated CKMB level of coronary effluent in OVX-challenged rat heart noted at 1 min, while TDTZ-8 enhance IPC-mediated
reduction in CKMB level. Additionally, Atractyloside, along with TDTZ-8, diminish IPC mediated
reduction in CKMB level in the coronary effluent of OVX challenged rat heart. These effects continued
up to 120 min in the experiment.

Effect of TDTZ-8 on infarct size

Effect of TDTZ-8 (3 μM) on IPC-induced alterations in infarct size in OVX rats of the experimental design
in Figure 6. It significantly reduces OVX rat heart infarct size in the all set of experiment. TDTZ-8
further increase the IPC mediated reduction in the infarct size in OVX rat heart. Additionally, Atracty-
oside, along with TDTZ-8 diminish IPC mediated decrease in infarct size in OVX heart.

Effect of TDTZ-8 on histological changes

In the Figure 7 a: Sham control rat heart shows the normal cytoarchitecture of the myocardium; Fig-
ure 7 b: IR control-treated heart shows the necrotic changes in cardiac tissue; Figure 7 c: IPC treated
heart exhibit regenerative changes in cardiac tissue; Figure 7 d: IPC+OVX treated rat heart shows less
regenerative changes in cardiac tissue as compared to IPC treated heart; Figure 7 e, IPC+OVX+TDTZ-
8 treated heart shows more regenerative changes in cardiac tissue as compare to IPC+OVX treated
rat heart; Figure 7 f, IPC+OVX+TDTZ-8+Atr treated rat heart shows less comparative same as group
IPC+OVX+TDTZ-8.

DISCUSSION

In this study, four-episode of ischemia for 5 min fol-
lowing reperfusion of 5 min with KH buffer which was further continued to global ischemia of 30 min
and reperfusion for 120 min in isolated Langen-dorff’s perfusion with OVX heart. When it was com-
pared with IR control group, it did not produce any significant effect. However, pretreated TDTZ-8
was given, produced significant cardioprotection against IR and IPC+OVX group. In addition, atracyloside,
an mPTP opener, breaks the potentiating action of TDTZ-8 on IPC-mediated cardioprotection in OVX-
challenged rats, in this research protocol. Atractyloside diminished IPC mediated cardioprotection in
OVX challenged rat heart perfused with pretreated TDTZ-8 preconditioning as well as normal rat heart.

The cardiac injury was examined in terms of increased CK-MB, LDH, infarct size. The treatment
with TDTZ-8 decreases the level of CK-MB, LDH enzyme in the coronary effluent and also myocar-
dial infarct size in OVX-challenged rats. The heart
was perfused with TDTZ-8 along with atracyloside
restricted the decrease in the level of CK-MB,
LDH enzyme and myocardial infarct size in the OVX-
challenged rats.

IPC-induced cardioprotection involves many
mechanisms, i.e. activation of PI3K/Akt path-
way (Hausenloy and Yellon, 2007), generation of
NO (Tong et al., 2000), inhibition of the mPTP opening
(Hausenloy, 2002) and activation of mitochon-
drial ATP-sensitive potassium channels (Oldenburg, 2002) in a normal heart. Moreover, several pharmacological interventions like an opioid receptor agonist (Gross et al., 2004), an adenosine receptor agonist (Park et al., 2006a), erythropoietin (Nishihara et al., 2007) and bradykinin (Park et al., 2006b), generate IPC like protection by consequent downregulation of GSK-3β and its phosphorylation.

The regenerative changes in myocardial tissue were attenuated by IPC in O VX-challenged rat heart. When pretreatment with TDTZ-8, it increases the effect of IPC against OVX-induced increase in histological change. Moreover, the cardioprotective effect gets attenuated in OVX rat heart when TDTZ-8 along with atracyloside. These observations support the role of GSK-3β signalling protein, which potentiates the cardioprotective effect of IPC in OVX-challenged rats. This confirms the argument of scientific data (Oldenburg, 2002) in which, GSK-3β signalling pathways inhibit mPTP opening during reperfusion.

The experimental data represented that GSK-3β inhibitors TDTZ-8 giving IPC cycle produced the cardioprotective effects on myocardium against OVX-induced cardiac injury. So, these results may have a better opportunity to treat postmenopausal females, undergoing bypass surgery. In open-heart surgery, the controlled reperfusion of pretreatment of TDTZ-8 could be a potential adjuvant for the cardioprotection.

CONCLUSIONS

The current study suggested that estrogen deficiency may cause cardiovascular risk by activating GSK-3β signalling pathway. The role of TDTZ-8 inactivates GSK-3β signalling protein through impairment of mPTP opening, which potentiates IPC mediated cardioprotective action in OVX-challenged rat heart. These signaling pathways would be used in a variety of experimental conditions associating with estrogen deficiency. Furthermore, such protective mechanisms and signaling pathways would be useful in different clinical settings in open-heart surgery and undergoing cardiopulmonary bypass surgery.

ACKNOWLEDGEMENT

The University for providing manuscript number (IU/R&D/2020-MCN000910).

Ethical Statement

This study was approved by the Institute Ethical Committee for Experimental Use of Animals (Permit Number: (PHAR/IAEC/18/01). The experiments were carried out in accordance with the principals and procedures of the Institute Ethical Committee for Experimental Use of Animals.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Abete, P., Ferrara, N., Cioppa, A., Ferrara, P., Bianco, S., Calabrese, C., Cacciare, F., Longobardi, G., Rengo, F. 1996. Preconditioning does not prevent postischemic dysfunction in aging heart. Journal of the American College of Cardiology, 27(7):1777–1786.

Ajmani, P., Yadav, H. N., Singh, M., Sharma, P. L. 2011. Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart. BMC Cardiovascular Disorders, 11(1):43–43.

Booth, E. A., Flint, R. R., Lucas, K. L., Knittel, A. K., Lucchesi, B. R. 2008. Estrogen Protects the Heart From Ischemia-Reperfusion Injury via COX-2-Derived PGI2. Journal of Cardiovascular Pharmacology, 52(3):228–228.

Collard, C. D., Gelman, S. 2001. Pathophysiology, Clinical Manifestations, and Prevention of Ischemia-Reperfusion Injury. Anesthesiology, 94(6):1133–1138.

Ferdinandy, P., Schulz, R., Baxter, G. F. 2007. Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning. Pharmacological Reviews, 59(4):418–458.

Ferdinandy, P., Szilvassy, Z., Baxter, G. F. 1998. Adaptation to myocardial stress in disease states: is preconditioning a healthy heart phenomenon? Trends in Pharmacological Sciences, 19(6):223–229.

Gross, E. R., Hsu, A. K., Gross, G. J. 2004. Opioid-Induced Cardioprotection Occurs via Glycogen Synthase Kinase β Inhibition During Reperfusion in Intact Rat Hearts. Circulation Research, 94(7):960–966.

Hausenloy, D. 2002. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovascular Research, 55(3):534–543.
Hausenloy, D. J., Yellon, D. M. 2007. Preconditioning and postconditioning: United at reperfusion. *Pharmacology & Therapeutics*, 116(2):173–191.

Hosseini, L., Vafaee, M. S., Badalzadeh, R. 2020. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemo-dynamic Parameters in Aged Rats. *Journal of Cardiovascular Pharmacology and Therapeutics*, 25(3):240–250.

Murry, C. E., Jennings, R. B., Reimer, K. A. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. *Circulation*, 74(5):1124–1136.

Nishihara, M., Miura, T., Miki, T., Tanno, M., Yano, T., Naitoh, K., Ohori, K., Hotta, H., Terashima, Y., Shimamoto, K. 2007. Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection. *Journal of Molecular and Cellular Cardiology*, 43(5):564–570.

Oldenburg, O. 2002. Acetylcholine leads to free radical production dependent on KATP channels, Gi proteins, phosphatidylinositol 3-kinase and tyrosine kinase. *Cardiovascular Research*, 55(3):544–552.

Pachauri, P., Garabadu, D., Goyal, A., Upadhayay, P. K. 2017. Angiotensin (1–7) facilitates cardioprotection of ischemic preconditioning on ischemia–reperfusion-challenged rat heart. *Molecular and Cellular Biochemistry*, 430(1-2):99–113.

Park, S. S., Zhao, H., Jang, Y., Xu, Z. 2006a. N6-(3-iodobenzyl)-adenosine-5’-N-methylcarboxamide confers cardioprotection at reperfusion by inhibiting mitochondrial permeability transition pore opening via glycogen synthase kinase 3 beta. *Journal of pharmacology and experimental therapeutics*, 318(1):124–131.

Park, S. S., Zhao, H., Mueller, R. A., Xu, Z. 2006b. Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. *Journal of molecular and cellular cardiology*, 40(5):708–716.

Posa, A., Szabó, R., Kupai, K., Varga, C. 2017. Cardioprotective Effect of Selective Estrogen Receptor ModulatorRaloxifene Are Mediated by Heme Oxygenase in Estrogen-Deficient Rat. *Oxidative medicine and cellular longevity*, pages 2176749–2176749.

Sharma, P. L., Garg, K., Yadav, H., Singh, M. 2010. Mechanism of cardioprotective effect of erythropoietin-induced preconditioning in rat heart. *Indian Journal of Pharmacology*, 42(4):219–219.