Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak

Kai Zhu1,2, Anzhi Wang1, Jiabing Wu1, Fenghui Yuan1✉, Dexin Guan1✉, Changjie Jin1, Yushu Zhang3 & Chunjuan Gong1,2

The response of plant CO₂ diffusion conductances (mesophyll and stomatal conductances, g_m and g_{sc}) to soil drought has been widely studied, but few studies have investigated the effects of soil nitrogen addition levels on g_m and g_{sc}. In this study, we investigated the responses of g_m and g_{sc} of Manchurian ash and Mongolian oak to four soil nitrogen addition levels (control, low nitrogen, medium nitrogen and high nitrogen) and the changes in leaf anatomy and associated enzyme activities (aquaporin (AQP) and carbonic anhydrase (CA)). Both g_m and g_{sc} increased with the soil nitrogen addition levels for both species, but then decreased under the high nitrogen addition level, which primarily resulted from the enlargements in leaf and mesophyll cell thicknesses, mesophyll surface area exposed to intercellular space per unit leaf area and stomatal opening status with soil nitrogen addition. Additionally, the improvements in leaf N content and AQP and CA activities also significantly promoted g_m and g_{sc} increases. The addition of moderate levels of soil nitrogen had notably positive effects on CO₂ diffusion conductance in leaf anatomy and physiology in Manchurian ash and Mongolian oak, but these positive effects were weakened with the addition of high levels of soil nitrogen.

Nitrogen (N) is an important nutrient for plant photosynthesis because it alters N allocation between photosynthetic components1, but excessive nitrogen depositions break the soil nitrogen balance and have a strongly negative effect on photosynthesis2,3. With global climate change, nitrogen deposition has increased dramatically worldwide4,5, and its effects on CO₂ diffusion conductance (both mesophyll and stomatal conductances, g_m and g_{sc}) in photosynthesis have attracted considerable attention in global change, physiological ecology, plant physiology and other fields6–8. In contrast to g_{sc}, g_m has often been neglected in previous studies, with its supply being assumed to be unlimited9,10; the importance of g_m is only being highlighted in recent decades with the advent of advanced instruments and measuring technologies, and studies of g_m have also increased correspondingly1,11–14.

The relationship of g_{sc} with soil nitrogen has been widely explored; g_{sc} increased with soil nitrogen additions overall15–17, and g_m also showed a positive correlation with moderate soil nitrogen supplementation in general16,7. However, excessive nitrogen application resulted in a decrease in the ability to scavenge reactive oxygen species (ROS) in wheat18. Many changes under excessive nitrogen application may also occur in photosynthesis electron transport rate (J_f) or actual photochemical efficiency of photosystem II (Φ_{PSII}). In addition, several recent papers also reported that high N conditions reduced evapotranspiration, which resulted in constraining N uptake in almond trees19–20, and this seemed related to the slight decrease in g_{sc} and leaf N content under high nitrogen condition. Hence, it has not been determined how g_m and g_{sc} responded to excessive nitrogen additions (≥ 69 kg N ha$^{-1}$ a$^{-1}$). Besides, the changes in leaf anatomy and associated physiological traits were both considered to be important mechanisms in determining g_{sc} and g_m14,21–29.

Xiong et al.14 revealed that leaves with larger g_m in high nitrogen supplement had a larger leaf thickness (T_{leaf}) and mesophyll surface area exposed to intercellular space per unit leaf area (S_{mes}) than those in low nitrogen supplementation, and Zhu et al.30 also showed that T_{leaf} and mesophyll cell thickness (T_{mes}) both imposed a positive

1Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China. 2University of Chinese Academy of Sciences, Beijing, 100049, China. 3The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110166, China. ✉e-mail: fhyuan@iae.ac.cn; dxguan@iae.ac.cn
Figure 1. Changes of plant g_{m}, g_{sc} and A_{n} with soil N additions in Manchurian ash (I) and Mongolian oak (II) in July and August. Values were means ± SE (n = 5), and different lowercase letters (a–c) indicated significant difference at $P < 0.05$. CK, the control; LN, low nitrogen addition; MN, medium nitrogen addition; HN, high nitrogen addition.

Effect on g_{m} recovery in Manchurian ash and Mongolian oak, while S_{sc} had a negative effect on this parameter. In addition, Xiong et al.29 and Zhu et al.30 both revealed the determination of stomatal features (size and density) and opening status (SS) to g_{m}, and Zhu et al.30 suggested a positive correlation between SS and g_{m} in Manchurian ash and Mongolian oak, which was also supported by the study of Xu and Zhou (2008)31. Besides, the changes of g_{m} and g_{sc} would also be significantly affected by aquaporin (AQP) and carbonic anhydrase (CA) activities14,21. AQP mediates the genes in the plasma membrane intrinsic protein (PIP) aquaporin family, and its increase in activity strongly promotes the expression of PIPs and improves CO2 membrane permeability32–34. CA regulates g_{m} mainly by changing the dynamics of CO2 to HCO_{3}-28. However, it has not been determined how leaf anatomies and AQP and CA activities would change in the Changbai Mountains with the addition of various levels of soil nitrogen.

Manchurian ash (Fraxinus mandshurica Rupe.) and Mongolian oak (Quercus mongolica Fish. ex Ledeb.), two species in Oleaceae and Fagaceae, respectively, are widely distributed in the Changbai Mountains, China. Their responses of CO2 diffusion conductance to soil nitrogen additions have rarely been reported; and the mechanisms governing g_{m} and g_{sc} in leaf anatomy and physiology have not been determined. Hence, we measured both g_{m} and g_{sc} and their related anatomical and physiological traits, including leaf N content and AQP and CA activities, to explore the responses of CO2 diffusion conductance to the addition of various levels of soil nitrogen. The present study will advance our mechanistic understanding of global nitrogen deposition impacts on carbon cycling in tree species.

Results

Effects of soil nitrogen additions on g_{m}. Considerable changes in g_{m} were observed in both species after soil nitrogen addition compared with the control values (CK) (Fig. 1a,b). The g_{m} gradually increased with the addition of various levels of soil nitrogen, reaching the maximum with the medium level of 46 kg N ha$^{-1}$ a$^{-1}$ (MN) and then decreasing with the addition of 69 kg N ha$^{-1}$ a$^{-1}$ (HN) while remaining greater than the g_{m} observed for the CK group. Overall, g_{m} showed significant differences among the four nitrogen-addition treatments in both species, in which it was significantly larger in the MN treatment than in the other treatments ($P < 0.05$). In addition, the g_{m} in August was slightly lower than that in July in both species overall.

Effects of soil nitrogen additions on g_{sc}. Concurrently, soil nitrogen addition also resulted in a significant increase in g_{sc}, with a different trend being observed between Manchurian ash and Mongolian oak (Fig. 1c,d). In Manchurian ash, g_{sc} continued to increase with nitrogen addition in July and August, but it increased from low nitrogen (LN, 23 kg N ha$^{-1}$ a$^{-1}$) to MN and then decreased with the addition of HN in Mongolian oak. The g_{sc} with the nitrogen addition treatments was significantly larger than that of the control values in July and August in both species ($P < 0.05$). Overall, the g_{sc} in Manchurian ash was considerably larger than that in Mongolian oak. In addition, influenced by the changes in g_{m} and g_{sc}, leaf A_{n} also increased first and then decreased with the addition of progressively higher levels of soil nitrogen (Fig. 1e,f), indicating that plant photosynthetic capacities could also be considerably strengthened by soil nitrogen additions.

Effects of soil nitrogen addition on leaf anatomical characteristics. Effects on mesophyll anatomical traits. The addition of soil nitrogen caused some changes in mesophyll anatomical traits (Table 1), including leaf (T_{leaf}) and mesophyll cells (T_{mes}) thicknesses, the surface area of mesophyll cells exposed to intercellular space (S_{mes}) and the ratio of mesophyll surface (A_{mes}) to total leaf surface area (A_{T}) corrects for the actual area available for CO2 diffusion (A_{T}/A_{mes}). T_{leaf}, T_{mes}, S_{mes} and A_{T}/A_{mes} all increased after soil nitrogen addition in overall without T_{leaf} in HN and A_{T}/A_{mes} in LN treatment and were lower than the CK values. When nitrogen supplementation was no more than 69 kg N ha$^{-1}$ a$^{-1}$, T_{leaf} and S_{mes} increased with nitrogen addition in both species, and T_{mes} also showed increases with the addition of soil nitrogen in Manchurian ash and reached a maximum in the MN treatment, while it reached a maximum in the LN treatment in Mongolian oak. Significant differences between
Changes of leaf g_{\text{liq}} and g_{\text{m}}. Changes of T_{\text{mes}} and A_{\text{r}}/A_{\text{mes}} to soil nitrogen additions also directly caused changes in leaf gas-phase (g_{\text{liq}}) and liquid-phase CO₂ diffusion conductance (g_{\text{m}}) inside mesophyll cells (Table 1). Both g_{\text{liq}} and g_{\text{m}} gradually increased with MN and then decreased under HN treatment. A significant difference between nitrogen addition treatments was observed in g_{\text{liq}}, while g_{\text{m}} did not change significantly overall (P < 0.05).

Effects on stomatal parameters. Correspondingly, soil nitrogen addition also caused considerable changes in stomatal parameters, mainly including stomatal pore length and width at the centre of the stoma (PL and PW), stomatal opening status (SS) and density (Dₜ) (Table 2). As two important components to SS, PL and PW, both increased with the MN treatment and were similar in both species, but in the HN treatment, they both fell below the CK values. Consequently, leaf SS gradually increased with soil nitrogen addition and then significantly decreased to a minimum under HN treatment. Besides, significant increases also happened to leaf Dₜ after soil nitrogen additions (P < 0.05) (Table 2), in which Manchurian ash showed a gradually increased Dₜ with soil nitrogen addition, reaching the maximum under HN treatment, while Dₜ increased first then decreased in Mongolian oak, reaching its maximum under LN treatment.

Effects of soil nitrogen additions on leaf N content. Changes in leaf N content in both species during soil nitrogen additions are shown in Table 3. The leaf N content was enlarged by soil nitrogen addition and increased with medium nitrogen addition to MN and then decreased under HN treatment. Overall, no significant differences in leaf N content between soil nitrogen addition treatments were observed in both species.

Manchurian ash	Mongolian oak											
T_{\text{mes}} (μm)	T_{\text{mes}} (μm)	S_{\text{mes}} (μm²)	A_{\text{r}}/A_{\text{mes}}	Dₜ (10⁻³ N cm⁻²)	PL (μm)	PW (μm)	SS (μm²)	PL (μm)	PW (μm)	SS (μm²)	Dₜ (10⁻³ N cm⁻²)	
CK	130.1 ± 11.0²	116.3 ± 5.1²	12.1 ± 2.0³	1.91 ± 0.08³	4.47 ± 0.37³	1.08 ± 0.06³	206.8 ± 3.2³	158.1 ± 6.7³	12.9 ± 1.3³	1.81 ± 0.11³	5.41 ± 0.33³	1.14 ± 0.06³
LN	135.9 ± 5.1³	122.9 ± 4.2³	14.2 ± 3.8³	1.74 ± 0.11³	11.93 ± 0.79³	1.19 ± 0.14³	213.7 ± 3.7³	185.9 ± 3.5³	13.0 ± 1.5³	1.67 ± 0.40³	6.21 ± 0.62³	1.24 ± 0.12³
MN	148.2 ± 7.3³	150.2 ± 2.5³	15.2 ± 2.6³	2.35 ± 0.53³	10.13 ± 0.74³	1.28 ± 0.09³	227.4 ± 6.0³	171.2 ± 8.0³	16.0 ± 2.0³	1.85 ± 0.34³	7.22 ± 0.22³	1.32 ± 0.07³
HN	122.9 ± 3.6³	112.9 ± 3.3³	18.0 ± 5.0³	2.43 ± 0.16³	8.11 ± 1.0³	1.00 ± 0.07³	202.6 ± 2.4³	167.1 ± 4.1³	14.4 ± 1.7³	1.78 ± 0.22³	5.76 ± 0.59³	1.17 ± 0.04³

Table 1. Values of leaf anatomical characteristics for different nitrogen addition treatments in Manchurian ash and Mongolian oak. All data were means ± SE (n = 5). Different lowercase letters (a, b, c) indicated significant differences between nitrogen addition treatments at P < 0.05. CK, the control; LN, low nitrogen addition; MN, medium nitrogen addition; HN, high nitrogen addition.

PL (μm)	PW (μm)	SS (μm²)	Dₜ (10⁻³ N cm⁻²)					
CK	7.01 ± 0.70³	3.04 ± 0.97³	17.57 ± 1.72³	6.32 ± 0.45³	6.36 ± 0.52³	2.47 ± 0.58³	12.78 ± 1.15³	9.48 ± 0.45³
LN	7.26 ± 0.14³	3.18 ± 0.27³	18.10 ± 1.43³	8.28 ± 0.94³	6.53 ± 0.19³	2.54 ± 0.35³	13.06 ± 2.20³	11.89 ± 0.69³
MN	7.66 ± 0.19³	3.28 ± 0.27³	19.74 ± 2.11³	8.43 ± 1.14³	6.71 ± 0.30³	3.13 ± 0.12³	16.52 ± 1.42³	11.14 ± 0.26³
HN	7.35 ± 0.05³	2.73 ± 0.13³	15.74 ± 0.68³	9.93 ± 0.90³	6.25 ± 0.29³	2.40 ± 0.19³	11.81 ± 1.51³	9.63 ± 0.69³

Table 2. Values of stomatal parameters for different nitrogen addition treatments in Manchurian ash and Mongolian oak. All data were means ± SE (n = 64). Different lowercase letters (a, b, c) indicated significant differences between nitrogen addition treatments at P < 0.05. SS, stomatal opening status; PL and PW, stomatal pore length and width at the centre of the stoma; Dₜ, stomatal density. CK, the control; LN, low nitrogen addition; MN, medium nitrogen addition; HN, high nitrogen addition.

PL (μm)	PW (μm)	SS (μm²)	Dₜ (10⁻³ N cm⁻²)	
July	August	July	August	
CK	13.1 ± 0.88³	10.4 ± 0.31³	13.0 ± 1.22³	10.2 ± 0.93³
LN	14.4 ± 0.83³	11.8 ± 0.55³	16.4 ± 3.05³	15.7 ± 2.73³
MN	15.2 ± 0.46³	11.9 ± 0.32³	19.1 ± 1.12³	15.5 ± 0.47³
HN	15.0 ± 1.85³	11.1 ± 1.10³	16.0 ± 1.48³	12.8 ± 0.93³

Table 3. Values of leaf N content (g kg⁻¹) during soil nitrogen additions in July and August in both species. All values were means ± SE (n = 3). Different lowercase letters (a, b, c) indicated significant differences between nitrogen addition treatments at P < 0.05. CK, the control; LN, low nitrogen addition; MN, medium nitrogen addition; HN, high nitrogen addition.
P < 0.05), and Mongolian oak saplings maintained a higher leaf N content in nitrogen addition treatments than did Manchurian ash saplings.

Effects of soil nitrogen addition on AQP and CA activities. Soil nitrogen addition also had great effects on leaf AQP and CA activities in both species (Table 4). In this study, the activities of AQP and CA were both enlarged after soil nitrogen addition, and they also gradually strengthened with soil nitrogen added to MN and then weakened with the HN treatment. Similarly, the activities of these two enzymes also did not show significant differences between the four nitrogen addition treatments overall (P < 0.05).

Discussion

Increases in g_m and g_sc mostly resulted from the improvement of leaf N content. Our results showed that both g_m and g_sc were enlarged by soil nitrogen addition; specifically, these values increased with nitrogen addition from LN to MN and then decreased with the addition of HN. Concurrently, leaf N content also presented a similar change with soil nitrogen addition (See Table 3). We believed that the increases of g_m and g_sc were largely related to the enlargement of leaf N content in this study because the relationships between leaf N content and g_m and g_sc strongly supported the promotion of leaf N content to g_m and g_sc increases, in which g_m and g_sc both showed a positive correlation with leaf N content, even though they were highly significant in Mongolian oak (P < 0.01) (Fig. 2). This finding was supported by the positive links between leaf N content and CO2 diffusion conductance (both g_m and g_sc) in studies of Li et al. and Yamori et al.

Manchurian ash	Mongolian oak		
AQP (U g⁻¹)	CA (U g⁻¹)	AQP (U g⁻¹)	CA (U g⁻¹)
CK 5.57 ± 0.29p	1.54 ± 0.09p	5.57 ± 0.15e	1.42 ± 0.10e
LN 5.78 ± 0.09p	1.57 ± 0.05p	6.00 ± 0.13e	1.40 ± 0.03e
MN 5.92 ± 0.04p	1.64 ± 0.08p	6.80 ± 0.06e	1.51 ± 0.02e
HN 5.91 ± 0.13p	1.81 ± 0.09p	6.17 ± 0.31e	1.38 ± 0.03e

Table 4. Values of leaf AQP and CA activities during soil nitrogen additions in both species. All values were means ± SE (n = 3). Different lowercase letters (a, b, c) indicated significant differences between nitrogen addition treatments at P < 0.05. CK, the control; LN, low nitrogen addition; MN, medium nitrogen addition; HN, high nitrogen addition.

Figure 2. The correlations between g_m, g_sc and leaf N content in Manchurian ash (a,b) and Mongolian oak (c,d). The coefficient of correlation (r) and significant correlation were at P < 0.05 and **P < 0.01.
The positive correlation between leaf N content and \(g_{\text{m}} \) found in the current study supported earlier observations that if leaves were treated individually, leaf N content explained 32% of measured variability in \(A_i \), but only 11% of that in \(g_{\text{m}} \), while variation in \(g_{\text{m}} \) explained 33% of variation in \(A_i \). With three-quarters of leaf N associated with photosynthesis (mostly Rubisco and chlorophiphy), the relationship between N and \(g_{\text{m}} \) might simply reflect the relationship between \(A_i \) and \(g_{\text{m}} \). In this study, leaf N content increased under soil nitrogen addition conditions (Table 3), this made great improvements to leaf photosynthetic capacity and \(g_{\text{m}} \) (from CK to MN, see Fig. 1), but the excessive N supply (high N addition of 69 kg N ha\(^{-1}\) a\(^{-1}\), HN) would lower Rubisco activity and content, \(g_{\text{m}} \) and \(C_{\text{w}} \).

On the other hand, the release of photosynthetic CO\(_2\) occurred in the bundle-sheath mitochondria might make an enriched CO\(_2\) partial pressure in the bundle-sheath chloroplast in C\(_3\) species and result in an increased amount of CO\(_2\) to be refixed by Rubisco. The amount of (photo)respiratory CO\(_2\) that was refixed by Rubisco can be calculated from the diffusion resistances. The \(g_{\text{m}} \) as an apparent conductance, could also be strongly affected by respiratory and photosynthetic CO\(_2\) diffusing towards the chloroplasts from the mitochondria. In this study, both CO\(_2\) compensation point in the absence of respiration \((I^* \text{ } \Gamma) \) and the mitochondrial respiration in the light \((R_D) \) differed among nitrogen addition levels in Manchurian ash and Mongolian oak (Table S2). This difference might enrich CO\(_2\) partial pressure in the bundle-sheath chloroplast in Manchurian ash and Mongolian oak, and increase the amount of CO\(_2\) refixed by Rubisco, finally making large influences on \(g_{\text{m}} \) responding to soil nitrogen additions. However, \(I^* \) and \(R_D \) did not show significant declines under high nitrogen addition condition as other gas exchange parameters (Table S2). This might be due to the bias of the Laisk method in the estimation \(I^* \). The Laisk method was pointed out that what it estimated is the intercellular CO\(_2\) partial pressure \((C_i^* \text{ } \Gamma) \), rather than the true CO\(_2\) photocompensation point. In other words, the \(I^* \) measured in the current study might be the \(C_i^* \) actually, and this would lead to an enlarged CO\(_2\) high nitrogen addition condition, but this only held under the assumption of combined resistance of chloroplast envelope and stroma \((r_s) \) being negligible. If \(r_s \) made up a significant portion of mesophyll resistance \((r_m) \), the \(C_i^* \) would no longer necessarily smaller than the true \(I^* \); it might be equal to \(I^* \), or even greater. Hence, the \(I^* \) value estimated using the classical Laisk method and its response to soil N supplement might exist uncertainties under high or excessive nitrogen addition condition.

Since a positive relationship between leaf N content and CO\(_2\) assimilation was reported in numerous studies in which N increased Rubisco content and activity, the positive effect of leaf N content on \(g_{\text{m}} \) and \(g_{\text{m}} \) might also be achieved, as it improved the activities of related enzymes, such as AQP and CA. Furthermore, the diffusion of CO\(_2\) in mesophyll cells was not only a complexly affected by respiratory and photorespiratory CO\(_2\) diffusing towards the chloroplasts from the mitochondria. The Laisk method was pointed out that what it estimated is the intercellular CO\(_2\) partial pressure \((C_i^* \text{ } \Gamma) \), rather than the true CO\(_2\) photocompensation point. In other words, the \(I^* \) measured in the current study might be the \(C_i^* \) actually, and this would lead to an enlarged CO\(_2\) high nitrogen addition condition, but this only held under the assumption of combined resistance of chloroplast envelope and stroma \((r_s) \) being negligible. If \(r_s \) made up a significant portion of mesophyll resistance \((r_m) \), the \(C_i^* \) would no longer necessarily smaller than the true \(I^* \); it might be equal to \(I^* \), or even greater. Hence, the \(I^* \) value estimated using the classical Laisk method and its response to soil N supplement might exist uncertainties under high or excessive nitrogen addition condition.

Strong promotion of soil nitrogen addition on \(g_{\text{m}} \) and \(g_{\text{m}} \) as explained in leaf anatomy. In this study, leaf anatomical structures were adjusted by soil nitrogen additions from the changes in anatomical characteristics (See Tables 1 and 2), which exhibited notably positive effects on leaf anatomy.

In this study, both CO\(_2\) compensation point in the absence of respiration \((I^* \text{ } \Gamma) \) and the mitochondrial respiration in the light \((R_D) \) differed among nitrogen addition levels in Manchurian ash and Mongolian oak (Table S2). This difference might enrich CO\(_2\) partial pressure in the bundle-sheath chloroplast in Manchurian ash and Mongolian oak, and increase the amount of CO\(_2\) refixed by Rubisco, finally making large influences on \(g_{\text{m}} \) responding to soil nitrogen additions. However, \(I^* \) and \(R_D \) did not show significant declines under high nitrogen addition condition as other gas exchange parameters (Table S2). This might be due to the bias of the Laisk method in the estimation \(I^* \). The Laisk method was pointed out that what it estimated is the intercellular CO\(_2\) partial pressure \((C_i^* \text{ } \Gamma) \), rather than the true CO\(_2\) photocompensation point. In other words, the \(I^* \) measured in the current study might be the \(C_i^* \) actually, and this would lead to an enlarged CO\(_2\) high nitrogen addition condition, but this only held under the assumption of combined resistance of chloroplast envelope and stroma \((r_s) \) being negligible. If \(r_s \) made up a significant portion of mesophyll resistance \((r_m) \), the \(C_i^* \) would no longer necessarily smaller than the true \(I^* \); it might be equal to \(I^* \), or even greater. Hence, the \(I^* \) value estimated using the classical Laisk method and its response to soil N supplement might exist uncertainties under high or excessive nitrogen addition condition.

Both \(T_{\text{leaf}} \) and \(T_{\text{mes}} \) increased with soil nitrogen added to MN level and then decreased with the addition of HN (See Table 1); these treatments enlarged total leaf area \((A_l) \) and mesophyll surface areas \((A_{\text{mes}}) \) for the actual areas available for CO\(_2\) diffusion (data not shown), widened CO\(_2\) flow pathways, and correspondingly enlarged \(g_{\text{m}} \). However, \(g_{\text{m}} \) was often suggested to be the minor component to \(g_{\text{m}} \) while \(g_{\text{m}} \) was the major one. Hence, suggested by our previous conclusion that the recovery of \(g_{\text{m}} \) after soil rewatering was mainly resulted from the increase of \(g_{\text{m}} \) in Zhu et al., we believed the important promotion of soil nitrogen addition on \(g_{\text{m}} \) increase in this study would also be mainly resulted from the enlargement in \(g_{\text{m}} \). The \(g_{\text{m}} \) is tightly related to \(S_{\text{mes}} \), cell wall thickness \((T_{\text{cw}}) \) and the chloroplast surface facing the intercellular space per unit leaf area \((S_i) \). In this study, the \(S_{\text{mes}} \) in this study (See Table 1) enlarged the touching area between CO\(_2\) and mesophyll cells and then improved the efficiency of CO\(_2\) transmembrane diffusion. Although we did not measure \(T_{\text{cw}} \) and \(S_i \), the \(S_{\text{mes}} \) should be enlarged, while \(T_{\text{cw}} \) decreased, by soil nitrogen addition in this study, as \(S_i \) had been revealed to increase with nitrogen supply in rice, and \(T_{\text{cw}} \) was negative with both \(S_{\text{mes}} \) and \(g_{\text{m}} \). The changes in \(S_{\text{mes}} \) and \(T_{\text{cw}} \) would also strongly promote increased \(g_{\text{m}} \). Finally, the increase of \(A_l/A_{\text{mes}} \) caused by mesophyll anatomical changes directly resulted in the enlargement of \(g_{\text{m}} \). In addition, leaf PL and PW were enlarged by soil nitrogen additions in both species (See Table 2), which resulted in the improvement of stomatal opening status \((S) \) and broadened CO\(_2\) diffusion pathway from leaf surface to substomatal cavities. Since Xiong et al. suggested that the change of \(S \) would affect \(g_{\text{m}} \) in leaf anatomy, the enlargement of \(S \) in this study would largely promote the increase of \(g_{\text{m}} \) in both species.

In summary, our data showed a different effect of soil nitrogen addition levels on leaf anatomical characteristics in this study, which reached the maximum under MN treatment and decreased under the addition of HN, indicating a decreased positive effect from high soil nitrogen addition on plant metabolism. In addition, soil...
nitrogen addition could decrease the distance between the intercellular space and catalytic site of Rubisco (D_{r_b}) and markedly increase chloroplast size, finally facilitating CO$_2$ diffusion in the liquid phase of mesophyll cells26,28. This phenomenon would be another important aspect to explain the effect of leaf anatomy on g_m during soil nitrogen addition.

Conclusion

Soil nitrogen additions could enlarge CO$_2$ diffusion conductance (both g_m and g_c) markedly in Manchurian ash and Mongolian oak in Changbai Mountains, but its promotion was dependent on the addition levels. Moderate soil nitrogen additions (≤ 46 kg N ha$^{-1}$ a$^{-1}$) increased g_m and g_c, and they reached their maximum under the addition of 46 kg N ha$^{-1}$ a$^{-1}$, but this positive effect was weakened with the addition of high level of 69 kg N ha$^{-1}$ a$^{-1}$. The effects of soil nitrogen addition on g_m and g_c mostly resulted from improvements in physiological traits, such as leaf N content and the activities of AQP and CA, and adjustments in anatomical characteristics, including T_{leaf}, T_{mes}, S_{mes} and stomatal opening status.

Material and methods

Plant material and experimental design. Five-year-old potted saplings of similar size in Manchurian ash and Mongolian oak were selected as the materials at the National Research Station of Changbai Mountain Forest Ecosystems of the Chinese Academy of Sciences located in Jilin province of northeast China (128°06’E, 42°24’N), and they were transplanted into individual pots in 2015, filled with 271 soils collected from a broad-leaved Korean pine forest with a mean annual nitrogen forest deposition of 23 kg N ha$^{-1}$ a$^{-1}$. The volume of the pots was 29.28 L with a height of 30.0 cm and a diameter of 34.3 cm.

Four nitrogen addition levels were used to simulate nitrogen deposition intensities with the addition of no nitrogen (CK), low nitrogen (LN, 23 kg N ha$^{-1}$ a$^{-1}$), medium nitrogen (MN, 46 kg N ha$^{-1}$ a$^{-1}$) and high nitrogen (HN, 69 kg N ha$^{-1}$ a$^{-1}$). Urea solutions with different concentrations of nitrogen were sprayed into the pots once every other month from May to October in 2017. Five replicates were designed for each treatment, and all potted saplings were thoroughly watered daily to avoid water deficit. All measurements were carried out during summer growth season (July and August) to explore the changes in effects of soil nitrogen addition on g_m and g_c.

Simultaneous gas exchange and chlorophyll fluorescence measurements. We simultaneously measured gas exchange and chlorophyll fluorescence on newly and fully expanded, sun-exposed leaves using an open-flow gas exchange system (LI-6400XT; Li-Cor Inc., Lincoln, NE, USA) equipped with an integrated fluorescence leaf chamber (LI-6400-40; Li-Cor). Leaves were fully light adapted under a saturated photosynthetic active photon flux density (PPFD) of 1200 µmol m$^{-2}$ s$^{-1}$ provided by LI-6400 with a 10:90 blue: red light for 30 minutes, while leaf temperature and relative humidity and CO$_2$ concentration in the leaf chamber were maintained at 25 °C and 60 ± 5% and 400 µmol CO$_2$ mol$^{-1}$ with a CO$_2$ mixture, respectively. In addition, the gas flow rate was controlled at 300 µmol s$^{-1}$ to ensure the adequate gas exchange. After stabilization to a steady state, gas exchange parameters, steady-state fluorescence (F_s) and maximum fluorescence ($F_{m}’$) were recorded.

The actual photochemical efficiency of photosystem II (Φ_{PSII}) was calculated according to Genty et al.35:

$$\Phi_{PSII} = \frac{(F_m’-F_i)}{F_m’}$$

(1)

The photosynthesis electron transport rate (J_i) was calculated as follows:

$$J_i = \Phi_{PSII} \cdot \text{PPFD} \cdot \alpha \beta$$

(2)

where α is the total leaf absorptance and β is the partitioning of absorbed quantum between PS II and PS I.

In this study, light response curves (A_i-PPFD curve) for controlled and nitrogen-addition saplings were also measured under a low O$_2$ concentration ($<1\%$) condition to correct the $\alpha \beta$, as it was equal to the slope of the relationship between Φ_{PSII} and Φ_{CO2} (the quantum efficiency of CO$_2$ fixation)36. Values of $\alpha \beta$ for different nitrogen treatments were shown in Table S1.

The mesophyll conductance (g_m) was calculated using the ‘variable J method’ described in Harley et al.37:

$$g_m = \frac{A_i}{C_i - \frac{1}{\hbar} + \frac{\alpha \beta}{\hbar} - \frac{\alpha \beta}{\hbar} \frac{A_m + R_d}{A_m}}$$

(3)

where A_m is the net photosynthetic rate, C_i is the intercellular CO$_2$ concentration, and these values were directly obtained from gas exchange measurements; I_i represents the CO$_2$ compensation point in the absence of respiration and R_d represents the mitochondrial respiration in the light.

I_i and R_d were measured using the Laisk method, namely, 5 initial slopes of A_m-C_i curves under low light and low CO$_2$ concentrations were measured for I_i and R_d estimations in this study.38,39 In theory, three CO$_2$ response curves obtained by varying CO$_2$ concentrations from 150 to 40 µmol CO$_2$ mol$^{-1}$ under three PPFDs (150, 100 and 50 µmol m$^{-2}$ s$^{-1}$) would intersect with each other at a point, and the intersection point at x-axis and y-axis were considered to be I_i and R_d, respectively. But in practice, these three linear regressions of the intersected A_m-C_i curves formed a triangle range rather than a single point40 (Fig. S1), and the I_i and R_d were calculated as the barycenter of the triangle formed by the intersection of the three lines at x-axis and y-axis, respectively, according to our previous published method40. The values of I_i and R_d during soil nitrogen additions were shown in Table S2.

Stomatal conductance to CO$_2$ (g_{sc}, mol CO$_2$ m$^{-2}$ s$^{-1}$) was calculated from the ratio of stomatal conductance to water (g_{sw}, mol CO$_2$ m$^{-2}$ s$^{-1}$) to 1.6 (i.e., $g_{sc} = g_{sw}/1.6$), as g_{sw} was 1.6 times larger than g_{sc}.41
Measurement of leaf anatomical characteristics. After gas exchange measurements, we cut fifteen small leaf samples (4.0 mm × 1.5 mm) from five replicated leaves per treatment and fixed them in FAA (alcohol: glacial acetic acid: 90: 5: 5) to measure leaf anatomical characteristics, mainly including leaf thickness (Tmes, μm), mesophyll and stomatal anatomical characteristics, such as the thickness of mesophyll cells between the two epidermal layers (Tmes, μm) and the surface area of mesophyll cells exposed to intercellular space per unit leaf area (Smes, μm² μm⁻²) calculated using formula (4), stomatal pore length (PL, μm) and width (PW, μm) at the centre of the stomata, which were detailed described in Zhu et al.60. Besides, we counted the number of stomata per unit leaf area to calculate the stomatal density (Dn, N cm⁻²).

\[
S_{\text{mes}} = \frac{L_{\text{mes}}}{W} \cdot F
\]

where the length of mesophyll cells exposes to intercellular space (Lmes, μm) and the cross-sectional width (W, μm) are measured with Image J software. The curvature correction factor (F) was measured using the method described in the study of Evans et al.26 and Thain (1983)45, which was shown in Table S3.

We also calculated the gas- and liquid-phase CO₂ diffusion conductance in mesophyll cells (i.e., \(g_{\text{gas}}\) and \(g_{\text{liq}}\)) with leaf anatomical characteristics according to formulas (5) and (6) to assess their relationships with \(g_{\text{gas}}\).26

\[
g_{\text{gas}} = \frac{D_{\text{gas}}}{\Delta L_{\text{gas}}} S
\]

\[
\frac{1}{g_{\text{liq}}} = \left(\frac{1}{g_{\text{ct}}} + \frac{1}{g_{\text{pl}}} + \frac{1}{g_{\text{en}}} + \frac{1}{g_{\text{en}}} + \frac{1}{g_{\text{ct}}} \right) \cdot A_T
\]

where \(D_{\text{gas}}\) (m² s⁻¹) is the diffusion coefficient for CO₂ in the gas phase, \(\Delta L_{\text{gas}}\) (μm) is taken as half \(T_{\text{mes}}\), and \(S\) is the mesophyll surface area corrected for the actual area available for CO₂ diffusion. \(g_{\text{ct}}, g_{\text{pl}}, g_{\text{en}}, g_{\text{en}}\) and \(g_{\text{ct}}\) are the partial conductance for the cell wall, plasmalemma, cytosol, chloroplast envelope and chloroplast stroma (m⁻¹), respectively. We used an estimation of 0.0035 m s⁻¹ for the \(g_{\text{pl}}\) and \(g_{\text{en}}\) according to the previous studies42,43, and estimated \(g_{\text{ct}}, g_{\text{en}}\) and \(g_{\text{ct}}\) using the formula of \(g_{\text{ct}} = \frac{nD_{\text{gas}}}{3A}\) in the studies of Tomás et al.26 and Niinemets and Reichstein (2003)44, where \(g_{\text{ct}}\) is either \(g_{\text{ct}}\) or \(g_{\text{ct}}\), \(g_{\text{ct}}\) is the dimensionless coefficient, \(D_{\text{gas}}\) (m² s⁻¹) is the aqueous-phase volatile diffusion coefficient for CO₂ (1.79 × 10⁻⁹ m² s⁻¹ at 25°C), \(\Delta L_{\text{gas}}\) (m) is the diffusion path length, and \(p\) (m² m⁻³) is the effective porosity. According to the previous studies of Tomás et al.26 and Niinemets and Reichstein (2003)44, \(r_1\) was valued as 1 for cell wall, and an estimate of \(r_1\) of 0.294 for \(g_{\text{ct}}\) and \(g_{\text{ct}}\) in this study, \(p\) was taken as 1 for \(g_{\text{ct}}\) and \(g_{\text{ct}}\), and 0.3 for cell walls, \(\Delta L_{\text{gas}}\) was valued as 5.0 × 10⁻² (for cell wall, \(\Delta L_{\text{gas}}\), 9.7 × 10⁻⁸ (for cytosol, \(\Delta L_{\text{ct}}\)) and 1.65 × 10⁻⁹ (for chloroplast stroma, \(\Delta L_{\text{ct}}\)). \(A_{\text{mes}}\) (μm²) and \(A_T\) (μm²) are mesophyll surface area and total leaf surface area corrected for the actual area available for CO₂ diffusion, respectively, calculated from the light microscope.

Measurement of leaf N content. Leaves were picked and over-dried at 75 °C for 24 h to constant weight during gas exchange measuring periods and then ground using a mixer oscillating mill homogenizer (MM400, Retsch, Germany). Approximately 5.0 mg leaf samples were taken to measure leaf nitrogen content per area using a C N element analyser (Elementar vario MACRO, Element, Germany).

Measurements of leaf aquaporin and carbonic anhydrase activities. For analysing the physiological mechanism of \(g_{\text{gas}}\) and \(g_{\text{liq}}\) responses to soil nitrogen additions, we sampled fifteen fresh leaves per treatment to measure the activities of aquaporin (AQP) and carbonic anhydrase (CA) using enzyme-linked immunosorbent assay (ELISA)46.47. Solid-phase antibody was made using purified plant AQP (or CA) antibody. Then, combined with antibody labelled with horseradish peroxidase (HRP), AQP (or CA) was added to microtiter plate wells to become an antibody-antigen-enzyme-antibody complex. This complex became blue with 3,3’,5,5’-tetramethyl benzidine (TMB) substrate solution after complete washing. The optical density (OD) values were measured spectrophotometrically at a wavelength of 450 nm to compare with the standard curves to determine the activity of AQP (or CA) in the samples.

Statistical analysis. SPSS 17.0 (SPSS Inc., Chicago, IL, USA) was used for one-way statistical analysis of normality and homogeneity of variance between nitrogen addition treatments (one-way ANOVA). Furthermore, regression analysis between \(g_{\text{gas}}\) and leaf N content was also performed. Mean values were compared using the least significant difference (LSD) multiple comparison test at the 0.05 and 0.01 probability levels (P < 0.05 and P < 0.01) with Tukey’s honest significant difference (HSD) test.

Data availability
All data analysed during this study are included in this published article and its Supplementary Information files.

Received: 13 February 2020; Accepted: 28 May 2020; Published online: 22 June 2020

www.nature.com/scientificreports/
References
1. Yamori, W., Nagai, T. & Makino, A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C4 crop species. Plant Cell Environ. 34, 764–777 (2011).
2. Zhang, W. F. et al. Effect of nitrogen on canopy photosynthesis and yield formation in high-yielding cotton of Xinjiang. Acta Agronomica Sinica 28, 789–796 (2002).
3. Wang, D., Yu, Z. W., Li, Y. Q., Shi, G. P. Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20. Acta Agronomica Sinica 27, 903–908 (2001).
4. Holland, E. A., Dentener, F. J., Braswell, B. H. & Sulzman, J. M. Contemporary and pre-industrial global reactive nitrogen budget. Biogeochemistry 46, 7–43 (1999).
5. Dore, M. H. I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 31, 1167–81 (2005).
6. Li, Y. et al. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Exp. Bot. 58, 2351–2360 (2009).
7. Li, Y. et al. Chloroplast down-regulating under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L.) under drought conditions. Plant Cell Physiol. 53, 892–900 (2012).
8. Flexas, J. et al. Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant. Sci. 226, 41–48 (2014).
9. Centritto, M., Loreto, F. & Chartzoulakis, K. The use of low [CO2] to estimate diffusional and non-diffusion limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 26, 585–594 (2003).
10. Flexas, J. et al. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31, 602–621 (2008).
11. Oguchi, R., Hikosaka, K. & Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ. 29, 916–927 (2005).
12. Lundgren, C. Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fenn. 38, 95–106 (2004).
13. Muller, O. et al. The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Physiol. Plant. 136, 299–309 (2009).
14. Xiong, D. L. et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplies in rice plants. Plant Cell Environ. 38, 2541–2550 (2015).
15. Li, F. S., Kang, S. Z. & Zhang, J. H. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agr. Water Manage. 67, 221–233 (2004).
16. Liu, Z. & Dickmann, D. I. Effects of water and nitrogen interaction on net photosynthesis, stomatal conductance, and water use-efficiency in two hybrid poplar clones. Plant Physiol. 97, 307–312 (2006).
17. Eller, F., Jensen, K. & Reisdorff, C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. Tree Physiol. 37, 428–440 (2017).
18. Kong, L. A., Xie, Y., Hu, L., Si, J. S. & Wang, Z. S. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7, 43363 (2017).
19. Sperling, O. et al. Excessive nitrogen impairs hydraulic, limits photosynthesis, and alters the metabolic composition of almond trees. Plant. Physiol. Biochem. 143, 265–274 (2019).
20. Wang, D., Xu, Z., Zhao, J., Wang, Y. & Yu, Z. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Acta Agr. Scand. B – Soil Soil Sci. Rep. 61, 681–692 (2011).
21. Miyazawa, S. I. et al. Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct. Plant. Biol. 35, 553–564 (2008).
22. Uehlein, N. et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell Physiol. 20, 684–687 (2008).
23. Scafora, A. P., Von Caemmerer, S., Evans, J. R. & Atwell, B. I. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ. 34, 1999–2008 (2011).
24. Terashima, I., Hanba, Y. T., Tholen, D. & Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155, 108–116 (2011).
25. Peguero-Pina, J. J. et al. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ. 35, 2121–2129 (2012).
26. Tomás, M. et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J. Exp. Bot. 64, 2269–2281 (2013).
27. Muir, C. D., Hangarter, R. P., Moyle, L. C. & Davis, P. A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicum). Plant. Cell Physiol. 37, 1415–1436 (2014).
28. Perez-Martín, A. et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J. Exp. Bot. 65, 3143–3156 (2014).
29. Xiong, D. L. et al. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. N. Plant. Physiol. 213, 572–583 (2017).
30. Zhu, K. et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant. Physiol. Bioch. 144, 22–34 (2019).
31. Xu, Z. Z. & Zhou, G. S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3323 (2008).
32. Uehlein, N., Lovisolo, C., Siefritz, F. & Kaldenhoff, R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734–737 (2003).
33. Flexas, J. et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant. 127, 343–352 (2006).
34. Perez-Martín, A. et al. Physiological and genetic response of olive leaves to water stress and recovery: implications of mesophyll conductance and gene expression of aquaporins and carbonic anhydrase. Acta Horticulturae 922, 99–105 (2011).
35. Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et. Biophysica Acta 990, 87–92 (1989).
36. Valentinii, R. et al. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photosorption in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ. 18, 631–640 (1995).
37. Harley, P. C., Loretto, F., Marco, G. D. & Sharkey, T. D. Theoretical Considerations on the Estimation of the Mesophyll Conductance to CO2 Flux by Analysis of the Response to Photosynthesis in C3 Plants. Mccarthy (1977).
38. Walker, S. et al. Day and night respiration of three tree species in a temperate forest of northeastern China. iForest. 8, 25–32 (2015).
39. von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).
50. Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C., plants enhance rates of photosynthesis by re-assimilating photorespired and respired CO₂. *Plant. Cell Environ.* **36**, 201–212 (2013).

51. Tholen, D., Ethier, G., Genty, B., Pepin, S. & Zhu, X. G., Variable mesophyll conductance revisited: theoretical background and experimental implications. *Plant. Cell Environ.* **35**, 2087–2103 (2012).

52. Evans, J. R., von Caemmerer, S., Setchell, B. A. & Hudson, G. S., The relationship between CO₂ transfer conductance and leaf anatomy in tobacco transformed with a reduced content of Rubisco. *Aust. J. Plant. Physiol.* **21**, 475–495 (1994).

53. Niinemets, Ü., Reichstein, M., Controls on the emission of plant volatiles through stomata: a sensitivity analysis. *J. Geophys. Res.* **108**, 4211 (2003).

54. Makino, A., Nakano, H. & Mae, T., Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes to leaf nitrogen, and their relationships to photosynthesis. *Plant. Physiol.* **105**, 173–179 (1994).

55. Xiong, D. L. et al., Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus *Oryza*. *J. Exp. Bot.* **66**, 741–748 (2015).

56. Laza, R. C., Bergman, B. & Vergara, B. S., Cultivar differences in growth and chloroplast ultrastructure in rice as affected by nitrogen. *Tree Physiol.* **31**, 658–666 (2008).

57. Clarkston, D. T. et al., Root hydraulic conductance: Diurnal aquaporin expression and the effects of nutrient stress. *J. Exp. Bot.* **51**, 61–70 (2000).

58. Hacke, U. G. et al., Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. *Tree Physiol.* **30**, 1016–1025 (2010).

59. Niinemets, Ü. & Reichstein, M., Controls on the emission of plant volatiles through stomata: a sensitivity analysis. *J. Geophys. Res.* **108**, 4211 (2003).

60. Flexas, J. et al., Tobacco aquaporin NIAAQP1 is involved in mesophyll conductance to CO₂ in vivo. *Plant. J.* **48**, 427–439 (2006).

61. Chartzoulakis, K., Patakas, A. & Kofidis, G., Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. *Sci. Hortic.* **95**, 39–50 (2002).

62. Onoda, Y. et al., Physiological and structural tradeoffs underlying the leaf economics spectrum. *N. Phytol.* **214**, 1447–1463 (2017).

63. Han, J. M. et al., Mesophyll conductance in cotton bracts: anatomically determined internal CO₂ diffusion constraints on photosynthesis. *J. Exp. Bot.* **69**, 5433–5443 (2018).

64. Hanba, Y. T. et al., Overexpression of the barley aquaporin HvPIP 2:1 increases internal CO₂ conductance and CO₂ assimilation in the leaves of transgenic rice plants. *Plant. Cell Physiol.* **45**, 521–529 (2004).

65. Peguero-Pina, J. et al., Leaf morphological and physiological adaptations of a deciduous oak (*Quercus faginea*) to the Mediterranean climate: a comparison with a closely related temperate species (*Quercus robur* L.). *Tree Physiol.* **36**, 287–299 (2016).

66. Nadal, M., Flexas, J. & Gullias, J., Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops. *Agr. Water Manage.* **216**, 457–472 (2019).

67. Laza, R. C., Bergman, B. & Vergara, B. S., Cultivar differences in growth and chloroplast ultrastructure in rice as affected by nitrogen. *J. Exp. Bot.* **44**, 1643–1648 (1993).

Acknowledgements
This study was partially supported by the National Natural Science Foundation of China (Grant No. 41975150, 41675112, 31670707, 31870625) and Liaoning Provincial Natural Science Foundation (2020-MS-027). We acknowledged Prof. Jaume Flexas Sans from Universitat de les Illes Balears and two anonymous reviewers for their helpful comments and suggestions on this manuscript. We were grateful to the National Research Station of Changbai Mountain Forest Ecosystems of the Chinese Academy of Sciences Authority for permission to collect soil samples from the Korean Pine experimental Forest. We thanked the support and technical assistance from the research group of Eco-climatology, Institute of Applied Ecology, CAS.

Author contributions
F.Y., D.G. and C.J. conceived the project. K.Z., A.W. and Y.Z. performed the field experiments. K.Z., C.G. and J.W. contributed to lab work. K.Z., A.W. and J.W. interpreted the results. K.Z., F.Y. and D.G. wrote the manuscript with assistance from other coauthors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-66886-x.

Correspondence and requests for materials should be addressed to F.Y. or D.G.

Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020