Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa

Haitao Chen, Yan Zeng, Yongzhi Yang, Lingli Huang, Bolin Tang, He Zhang, Fei Hao, Wei Liu, Youhan Li, Yanbin Liu, Xiaoshuang Zhang, Ru Zhang, Yesheng Zhang, Yongxin Li, Kun Wang, Hua He, Zhongkai Wang, Guanyi Fan, Hui Yang, Aike Bao, Zhanhuan Shang, Jianghua Chen, Wen Wang, Qiang Qiu

Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.
Cultivated alfalfa (Medicago sativa L.) is a perennial herbaceous legume that has been cultivated since at least ancient Greek and Roman times. It is one of the world’s most important forage species, due to its high nutritional quality, yields, and adaptability. As a major forage protein source for livestock, alfalfa is cultivated over 80 countries with coverage exceeding 30 million hectares. It is the third most valuable (7.8–10.8 billion dollars) and the fourth most widely grown (8.7 million hectares) field crop in the USA, after corn, soybean, and wheat. Rapid increases in livestock production have also greatly increased demands for alfalfa forage in developing countries such as China in the last 50 years. In addition to its high value as fodder, alfalfa cultivation is important for improving soil quality in appropriate areas. Therefore, alfalfa has the potential to improve global food security as well as being a commercially valuable crop in its own right.

However, cultivated alfalfa is a self-incompatibly cross-pollinated autotetraploid (2n = 4x = 32) plant with tetrasomic inheritance in which bivalent pairing is random and not preferential, giving rise to a very complex genome that hinders efforts to decipher it genome and improve its traits. Previous exploration of genetic and genomic resources of alfalfa mostly relies on its close relative, the diploid Medicago truncatula (2n = 2x = 16 = 860 Mb) which has been sequenced. However, this has obvious limitations because they are different species and have different genomes. The assembly of autopolyploid genomes is severely hindered by the high similarity of their subgenomes and large genome size. So far, only five plant autopolyploid genomes have been reported. Of these, only the sugarcane Saccharum spontaneum genome was assembled de novo to the chromosome level using Hi-C data, and the sweet potato Ipomoea batatas genome to pseudo-chromosomes based on synteny with close species. Moreover, in both cases the N50 contig size was relatively low (45 and 5.6 kb, respectively).

Improvement of cultivated alfalfa might be accelerated if agronomically beneficial mutations, especially recessive ones, could be easily incorporated into modern varieties. Natural or mutagen-induced mutations occur randomly and inefficiently, so obtaining mutants of the autotetraploid and self-incompatible cultivated alfalfa through traditional phenotypic selection is challenging. However, revolutionary site-specific CRISPR/Cas9 nuclease technology has been successfully applied for simultaneously editing multiple alleles and creating (precisely and predictably) mutants of various polyploid plants, such as hexaploid bread wheat and tetraploid durum, allohexaploid Camelina sativa, and allohexaploid cotton. It also provides a feasible means to circumvent the inherent difficulties of introducing mutations into the autotetraploid cultivated alfalfa, but no mutant of the species has been previously reported using either CRISPR/Cas9 or other site-specific nucleases.

Here, we apply PacBio CCS (circular consensus sequencing) and Hi-C (High-throughput chromosome conformation capture) technology to generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa. An efficient CRISPR/Cas9-based genome editing protocol is also developed on the basis of this genome assembly, and used to create null mutants with clear phenotypes. Moreover, the mutated alleles and phenotypes can be stably inherited in a transgene-free manner, which may facilitate the commercial breeding of cultivated alfalfa.

Results

Assembly and annotation of the autotetraploid alfalfa

In total, 70 gigabases (Gb) of PacBio CCS long reads and approximately 126 Gb of Illumina short reads were obtained, using Sequel and HiSeq2000 platforms, respectively (Supplementary Tables 1 and 2). The Canu software package was used to initially assemble the cultivated alfalfa genome, yielding an initial contig set with N50 value of 459 Kb. The total length of this initial assembly was 3.15 Gb, consisting with the estimates of cultivated alfalfa genome size obtained using flow cytometry and K-mer based methods (2n = 4x, ~3 Gb and ~3.15 Gb, respectively) (Supplementary Figs. 1 and 2). The CCS long-reads and Illumina short-reads were mapped against the initial assembly to check the heterozygosity and reads depth distribution. We noticed that most 5 kb windows contain no identified SNPs, and the remaining 1.2% windows have an average heterozygosity close to 0.02%. The reads depth distribution of genomic regions also exhibits a similar pattern that most regions have an average depth of 22, and only 3.2% of 5 kb windows have a depth larger than 44 (Supplementary Fig. 3). These results indicate that the initial contig assemblies well resolved the haplotypes of the autotetraploid cultivated alfalfa.

We next used the ALLHIC algorithm, which is capable of building allele-aware, chromosome-level assembly for autopolyploid genomes using Hi-C paired-end reads, to scaffold the autotetraploid genome by integrating 1277 million read pairs of Hi-C data (Fig.1, Supplementary Tables 3-6 and Supplementary Data 1). The final assembly contains 2.738 Gb in 32 scaffolds and 419 Mb of unplaced unitigs, representing all the 32 chromosome comprising eight homologous groups. To validate the scaffolding of homologous group, we mapped a composite genetic linkage map of the cultivated alfalfa to our assembly and found the genetic map supports the chromosomal assignment (Supplementary Fig. 4). We further assessed the assembly quality by investigating the Hi-C contact matrix. The plotted Hi-C linkage shows that the chromosome groups are clear cut (Fig. 2a, b). We also sequenced 99 Gb ONT (Oxford Nanopore Technology) long reads with average reads length of 16 Kb (Supplementary Table 7). The top 200 longest ONT reads, ranged from 95 to 263 Kb were extracted and mapped against the chromosomes, and most of them (89%) could be mapped with one single chromosome with a length larger than 80% of its own length, indicating that most of the chromosomes were phased correctly. Accordingly, the four monoploid genomes (each consisting of eight chromosomes) contain 88.50, 88.30, 87.50, and 87.20% complete BUSCO genes, respectively, and a combined of 97.2% complete BUSCO genes as a whole (Supplementary Table 8). In addition, more than 90% of the assembled transcripts could be mapped to the genome (Supplementary Table 9). Based on the chromosome-level assembly, a total of 164,632 protein-coding genes were identified and more than 95.4% genes were functionally annotated via searches of NR, GO, KEGG, Swiss-Prot and TrEMBL databases (Supplementary Fig. 6, Supplementary Tables 10 and 11). Taken together, these results confirm the well-organized allele-aware chromosome-level assembly and gene annotation.

We found a low level of sequence divergence (~0.01) between any allelic chromosome pairs and the genetic linkage map could not distinguish homologous relationships (Supplementary Figs. 4 and 5), suggesting they have experienced abundant recombination, providing the molecular evidence for the conjecture that the cultivated alfalfa is a tetrasomic inherited autopolyploid plant in which bivalent pairing is random and not preferential. Therefore, it is conceivable that the four allelic chromosomes are mostly functionally equivalent, like the two allelic chromosomes in diploid species. To validate this hypothesis, we compared the four allelic chromosomes systematically. The results showed that the four allelic chromosomes were highly similar in terms of size, number of genes and contents of repeat elements (Supplementary Data 2). Plots of the synteny relationship and Ka/Ks ratio of each synteninc gene pair, clearly show a high degree of conserved synteny, with no substantial overall
Ka/Ks ratio difference between any two allelic chromosomes (Fig. 1). We also investigated expression levels of genes in each allelic chromosome group, and detected no significant overall allele dominance in the expression profiles of the cultivated alfalfa (Supplementary Fig. 7). All these results indicate that the autotetraploid alfalfa is a stable, random pairings autotetraploid species, unlike the more common situation of returning to diploid state accompanied with massive gene loss after whole genome duplication. This situation has hindered deciphering genome all the time. Fortunately, based on the most optimal technology available to date (accurate CCS reads, Hi-C data, and allele-aware assembly algorithm), we successfully assembled all allelic chromosomes for one plant of cultivated alfalfa, although there may exist some errors in phasing the four allelic chromosomes due to its essential features of tetrasomic inheritance. In addition, we have to point out that to correctly phase four homologous chromosomes is only meaningful for individual plant in such assembly algorithm, we successfully assembled all allelic chromosomes for one plant of cultivated alfalfa, although there may exist some errors in phasing the four allelic chromosomes due to its essential features of tetrasomic inheritance. In addition, we have to point out that to correctly phase four homologous chromosomes is only meaningful for individual plant in such tetrasomic and self-incompatible alfalfa, as the widespread recombination occurs in various cultivars and different individuals. Nevertheless, this well-organized chromosome-level assembly has sufficient quality for most genetic dissection and breeding research on cultivated alfalfa.
Whole genome duplication and bursts of transposable element. We next inferred the phylogeny position and divergence times between cultivated alfalfa and another ten legume species and grape (Vitis vinifera). Here we selected the first group (chr1.1–chr1.8) to represent monoploid alfalfa in this analysis. In total, 569 single copy genes were identified and used to construct the phylogenetic relationships, via the concatenated and multispecies coalescent approach (Supplementary Fig. 8). The results indicate that cultivated alfalfa and M. truncatula, the most closely related species, diverged ~5.3 (3.7–7.3) million years ago (Mya). As complex polyploidization events occurred in ancestral or speciﬁc legume species,26–28 we also used 980 conserved BUSCO genes and 5305 low copy genes (≤10 genes for each species) to infer the phylogeny, resulting in the same topology as that obtained using single copy genes (Supplementary Fig. 9). All the phylogeny analyses provided very high support (bootstrap values equal to 100% or posterior probability equal to 1) for each node, except the basal lineages Arachis and Lupinus. This may be due to the very recent divergence (~4.58 Mya) of the ancestral legume into Arachis and Lupinus (Supplementary Fig. 8), and incomplete lineage sorting and early gene flow may have inﬂuenced the robustness of this topology.29

The haploid size of the cultivated alfalfa genome (assembled 2738 Mb/4 = 685 Mb) is 295 Mb greater than that of the M. truncatula genome (published assembly is 390 Mb although the estimated size was 430 Mb).22 We analyzed whole-genome duplication (WGD) events and the transposable element (TE) content in these allelic chromosomes, which have profound effects on plant genome evolution.30 Distributions of synonymous substitutions per synonymous site (Ks) within genes in syntenic blocks clearly indicated that the same ancient WGD occurred in the evolutionary history of all 11 genome-sequenced legume species (Arachis duranensis, Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus, Lupinus angustifolius, M. sativa, M. truncatula, Phaseolus vulgaris, Trifolium pretense and Vigna angularis) compared in this study (Fig. 2c). The estimated date of this WGD (~58 Mya) and associated Ks values in the cultivated alfalfa genome (~0.63) indicated an average mutation rate (μ) of 5.43 × 10⁻⁹ per site per year in alfalfa, slightly lower than corresponding values in M. truncatula (Ks ~0.65, μ 5.60 × 10⁻⁹ per site per year) (Fig. 2c).

TEs account for 55% of the assembled cultivated alfalfa genome (Supplementary Table 12 and Supplementary Data 2). Long terminal repeat (LTR) retrotransposons are the most abundant TEs (account for 27.36% of the genome), and more abundant in the cultivated alfalfa genome than in M. truncatula (13.37%) (Supplementary Table 12). Among the LTR retrotransposons, the Ty3/Gypsy superfamily is more abundant than the Ty1/Copia superfamily in both cultivated alfalfa and M. truncatula (Supplementary Table 12 and Supplementary Data 2). The comparison of genomic contents of cultivated alfalfa and M. truncatula shows that Ty3/Gypsy elements contribute most to the inflated cultivated alfalfa genome, accounting for 31.93% ((123 – 29 Mb)/295 Mb) of its genome size increment. Non-repeat sequences, Ty1/copia, simple/tandem repeat, and DNA element
account for 26.57, 13.56, 9.93, and 6.87% of the total difference, respectively (Supplementary Table 12). We also found that LTR bursts occurred in both species recently (<2 Mya), after the two species diverged (Supplementary Fig. 11), but stronger in the cultivated alfalfa. Collectively, these results show that accumulation of TE insertions was the main reason for the enlarged cultivated alfalfa genome.

Establishment of the CRISPR/Cas9 genome editing protocol.

The allele-aware chromosome-level cultivated alfalfa genome assembly obtained in this study provides a necessary start point to accurately apply the CRISPR/Cas9 technology to help in screening candidate genes, decoding gene structural information and designing optimal guide sequences (Fig. 3b, detailed in “Methods”). Conversely, this genome editing technology could help efforts to convert the enormous amount of genome data into functionally relevant knowledge. A plant transformation binary vector named pMs-CRISPR/Cas9 (Fig. 3a) was constructed to stably transform alfalfa cultivars using Agrobacterium tumefaciens (Supplementary Fig. 12). In this vector, the CaMV 35S promoter is used to express hSpCas9 and the selectable marker gene Hygromycin phosphotransferase (Hpt), and the MtU6 polymerase III promoter is used to drive expression of sgRNAs.

The Phytoene desaturase (PDS) gene was selected for the first test of this CRISPR/Cas9 system’s efficacy, as null pds mutants generally have clearly visible albino and dwarf phenotypes during juvenile stages. Four nearly identical MsPDS alleles were identified by analyzing the alfalfa genome assembly and manually checking (Supplementary Fig. 13). A guide sequence located in the conserved region in exon 2 of MsPDS (Fig. 3c) was chosen, and was then synthesized and integrated into the pMs-CRISPR/Cas9 vector. After transformation, 50 plants were regenerated from 880 transformed calli, two of which (designated mspds-4 and mspds-5) exhibited the anticipated albino and dwarf phenotypes (Fig. 3d). All regenerated plants were initially screened for mutations by directly sequencing PCR amplicons (Fig. 3e). The PAM regions are shown in black and lowercase. Nucleotide deletions, insertions or substitutions are shown in red, with details given in the right panel.
and albino phenotypes. The results of editing MsPDS Importantly, null mutants can be created in the T0 generation. introducing mutations into the cultivated alfalfa genome. alfalfa products6. Breeding varieties with more leaf

Transgene-free and stably inherited mutations of MsPALM1. A high leaf/stem ratio is an important agronomic trait for cultivated alfalfa, as it is positively correlated to the nutritional value of alfalfa products6. Breeding varieties with more leaflets per leaf may improve the leaf/stem ratio of cultivated alfalfa and thus increase its yield and nutritional value. In diploid M. truncatula, PALM1 encodes a Cys(2)His(2) zinc finger transcription factor that plays a key role in compound leaf morphogenesis. Null palm1 mutants develop palmate-like pentalobed leaves rather than wild-type trifoliate leaves35. Thus, we hypothesized that disruption of PALM1 orthologs (MsPALM1) in cultivated alfalfa may enable it to express the palm1 phenotype. This would also provide another easily visible example to validate the stability of our protocol and its potential for generating multileaflet varieties. Four MsPALM1 alleles were identified and all MsPALM1 copies were found to have a single exon (Supplementary Fig. 15). To disrupt MsPALM1, we selected a specific guide sequence to guide Cas9 to disrupt a BstUI restriction endonuclease site, thereby enabling easy screening of mutants through PCR-Restriction enzyme (PCR-RE) assay (Fig. 4a).

In total, we identified 26 mutants from 1508 transformed calli (1.72%), including 12 palm1-type plants (0.80%) that developed pentalobed-like pentalobed leaves (Fig. 4b, c). Sanger sequencing of 20 clones of each mutant confirmed the presence of at least one mutated MsPALM1 allele in their genomes, and all four alleles were disrupted in the palm1-type plants (Fig. 4d and Supplementary Fig. 16). Notably, three palm1-type plants (paT0-1, paT0-19, and 29) were identified as chimeric mutants. Although the leaf morphology and sequencing results (Fig. 4b, d) show that all four MsPALM1 alleles in paT0-19 were mutated, dim digested bands were still detected in PCR-RE analysis of this mutant (Fig. 4c), indicating that wild-type alleles may persist in some of its cells. Furthermore, paT0-1 and -29 contain up to five mutation types (Supplementary Fig. 16), indicating that their cellular genotypes are not uniform, as reported in other T0 CRISPR/ Cas9-edited plants37,38. To comprehensively investigate the off-target effects, whole genomes of three palm1-type mutants (paT0-1, paT0-19, and paT0-46) were resequenced with 30-fold depth using Illumina sequencing technology. Global scanning of these mutants’ whole genomes detected no off-target mutations in protein-coding regions besides the targeted regions (Supplementary Table 14). This demonstrates that off-target effects of mutating cultivated alfalfa can be largely eliminated by using the developed CRISPR/Cas9-based genome editing protocol with the guidance from our high-quality genome.

Stable inheritance of agronomically beneficial mutations in cultivated alfalfa is hindered by its polyploidy and cross-pollination. To investigate whether the mutations and phenotypes of palm1-type mutants could be transmitted to the next generation, we harvested T1 seeds from paT0-19 and paT0-46 crosses (Supplementary Fig. 17). Twenty seeds were randomly chosen and sown in a greenhouse, and 14 of the plants that germinated from them were palm1-type plants (Fig. 4e). PCR-RE and sequencing analyses confirmed that each of these 14 palm1-type offspring contained four mutated MsPALM1 alleles originating from their parents. Each of the six plants with wild-type phenotypes had at least one unmutated allele (Fig. 4f, g and Supplementary Fig. 18), very possibly resulting from chimeric effects in paT0-19. We also detected transgene-free plants by PCR analysis with two primers specific for hSpCas9 and Hpt (Supplementary Table 15). The T-DNA fragment was found to be absent in 13 palm1-type progenies (Fig. 4h). Collectively, these results show that our CRISPR/Cas9-based genome editing protocol can rapidly introduce heritable mutations and phenotypes into cultivated alfalfa in a transgene-free manner. In addition, the generation of these transgene-free palm1-type progenies indicates that CRISPR/Cas9 technology may provide a shortcut for breeding multileaflet varieties which may have higher nutritional value, although further studies are required to test whether the increase in leaflet number is accompanied by improvements in leaf biomass and forage quality.

Discussion

This study provides two complementary contributions, the chromosome-level reference genome and CRISPR/Cas9-based genome editing protocol, with substantial potential for accelerating fundamental investigation and breeding of cultivated alfalfa. In summary, by exploiting new sequencing technology and Hi-C scaffolding, we are able to decode the complex autotetraploid cultivated alfalfa genome, reveal events that have apparently shaped it, and create foundations for further studies on legumes and complex genome assembly. The genome is also a valuable resource for studies of alfalfa biology, evolution, and genome-wide mapping of QTLs associated with agronomically relevant traits. Due to its tetrasomy and self-incompatibility, improvement of cultivated alfalfa through traditional breeding approaches requires long breeding cycles and screening of extremely large populations in order to accumulate randomly occurring natural or mutagen-induced mutations conferring desirable traits at high frequencies. By contrast, using our genome assembly, we establish a reliable CRISPR/Cas9-based genome editing protocol for cultivated alfalfa that can precisely and simultaneously disrupt all alleles of selected genes (here, MsPDS and MsPALM1), thereby creating null mutants in a single generation. Most importantly, the mutated alleles and phenotypes can be stably transmitted to progenies by cross-pollination between two mutants in a transgene-free manner, which may help to accelerate the breeding speed and mitigate concerns about transgene technology and its products. The results also provide robust foundations for further technical developments, such as precise knock-in, base editing, or regulation of expression. Thus, they could potentially raise global food security by reducing breeding periods and costs of improving key agronomic traits of this important crop.

Methods

Sources and sequencing of genomic DNA/RNA. Fresh leaves were plucked from a single cultivated alfalfa (cultivar XinjiangDyYe) plant cultivated in a greenhouse kept at 21–23°C, 16 h light per day (light intensity of 380–450 W per m²) and a relative humidity (RH) of 70%. DNA was extracted from these leaves using a DNeasy Plant Mini Kit (Qiagen). Portions of the DNA were sent to AnnoRoad (Ningbo, China) to construct circular consensus sequencing (CCS) libraries and sequence them using a PacBio Sequel platform, and other portions were sent to Nextomics (Wuhan, China) to construct libraries and sequence them using Nanopore ONT and Illumina Hiseq platforms. These sequencing efforts yielded...
Fig. 4 Genome editing of MsPALM1, and generating transgene-free and stably inherited palm1-type progenies.

(a) A guide sequence for MsPALM1. Dark blue box represents exon. PAM is shown in red. The BstUI site is underlined and shown in light blue.
(b) Leaf morphologies of three representative T0 plants. Scale bar, 1 cm.
(c) Results of PCR-RE analyses for identifying mutants among T0 plants. In the gel, wt and wt-dg lanes contain DNA samples from wild-type plants without and with digestion by the BstUI restriction endonuclease, respectively. Red arrowheads indicate bands used to identify mutations. Notably, paT0-19 (highlighted with a red rectangle) yields dim digested bands (indicated by white arrows), although it develops palmate-like pentafoliate leaves (b).
(d) Genotyping of the corresponding mutants in confirmed the presence of mutations at the target sites (light blue). The PAM regions are shown in black and lowercase. Nucleotide deletions, insertions, or substitutions are shown in red, with details in the right panel.
(e) Three representative T1 plants with two showing anticipated palm1-type leaf morphologies like their parents. Scale bar, 1 cm.
(f) Results of PCR-RE analyses (f) and sequencing analyses (g) confirmed the parental MsPALM1 mutations in corresponding T1 progenies in e.
(h) Outcome of tests for transgene-free mutants in 20 corresponding T1 progenies in f. Lanes without bands (indicated by red arrowheads) identify transgene-free mutants. Lanes labeled wt, paT0-19 and paT0-46 show PCR fragments amplified from a WT plant, and two T0 mutants (paT0-19 and paT0-46), respectively. Source data underlying Fig. 4c, f, h are provided as a Source Data file.
Discordant contigs were removed from scaffolds, and the 4.07b)46 was used to identify tandem repeats. RepeatProteinMask and RepeatMasker (Supplementary Table 6).

Two libraries (lib3 and lib4 in Supplementary Table 1), each from the plant used for whole genome sequencing, and then chromatin in the each organ) and four leaf samples using an RNeasy Plant Mini Kit (Qiagen). RNA was prepared by extracting from leaf and stem samples, and then treated with DNase I. RNA concentration and purity were calculated. RNA was then checked for integrity using an Agilent 2100 Bioanalyzer (Agilent Technologies). The RNA integrity number (RIN) was measured using the RNA6000 Nano LabChip Kit (Agilent)

Hi-C library construction and sequencing. Fresh leaves and shoots were plucked from the plant used for whole genome sequencing, and then chromatin in the samples was cross-linked to DNA and fixed48. Fixed samples were sent to RGI-Qingdao (Qingdao, China) for Hi-C library construction and sequencing. Two libraries were constructed using DpnII restriction endonuclease and 200 Bp of data were obtained (Supplementary Table 3).

Genome size estimation. Illumina data were cleaned using Trimmomatic (v. 0.36)49 with default parameters. Two libraries (lib3 and lib4 in Supplementary Table 1), each with about 56 Gb of reads, were used to estimate the cultivated alfalfa genome size by K-mer (K = 17) frequency-based methods with KmerFreq in the SOApecl (v. 2.01) package41. The estimated genome size was 1.578,294,649 bp, based on a frequency peak near 38× (Supplementary Fig. 1), in accordance with previous findings50. Two other visible peaks near 20× and 70× reflect the heterozygosity associated with out-crossing and repetitive nature of auto-polyplid genotypes. The heterozygosity rate is 3.7%, according to estimates obtained using a homemade script. The genome size of the sequenced individual was confirmed by flow cytometry52 (Supplementary Fig. 2), following SCAR (Simple Complementary ARMS) tests and RFLP (Restriction Fragment Length Polymorphism) analysis.

Genome assembly. The cultivated alfalfa genome was assembled as follows: (1) We assembled contigs from CCS clean reads using Canu22, with default parameters. The N50 values of the contig sets were 459 kb, with total lengths 3154 Mb. (2) Hi-C reads were aligned to contigs using HiC-Pro43, yielding an alignment rate of 80%. (3) Contigs were annotated with a solely homology-based strategy, using annotated Medicago truncatula proteins as references. 138,729 homologous genes were structurally annotated. MCScan in Ivcj (https://zenodo.org/record/31631#. XpkYUToeak) was used to identify synteny blocks between contigs and the reference genome. Contigs syntenic to M. truncatula were stacked and aligned to M. truncatula chromosomes. The syntenic contigs are summarized in Supplementary Table 4. (4) An in-house script was used to prune the BAM file and discard links between allelic contigs. Contigs syntenic to one chromosome of M. truncatula, e.g., chr1, were extracted, sub-clustered and reordered using ALLHIC44. (5) Groups of syntenic paralogous genes were created based on the protein alignment, using MUSCLE software58. A phylogenetic tree was reconstructed with RAxML software59 under the GTR+I model with the single-copy gene and the concatenated sequence. ASTRAL60 was used to construct a coalescent tree from the gene trees. We also extracted the most complete sequence for each BUSCO gene in each species, and then concatenated all the BUSCO gene sets (single-copy BUSCO genes for tree building). Finally, the low copy gene based (LCG) method61 was applied to avoid the limitations of single copy genes, using a total of 5305 LCGs shared among the 12 species with less than ten copies in each species. The gene family trees were constructed and STAG62 software was used to infer the species trees. To estimate divergence times, we used the PAML mamme program63 for approximate likelihood calculations, with the single copy genes identified by OrthoMCL, a correlated molecular clock model and a REV substitution model. After a burn-in of 5,000,000 iterations, the MCMC process was repeated 20,000 times with a sample frequency of 5000. Convergence was checked by Tracer v. 1.4 (http://beast. sanger.ac.uk/Tracer) and independent runs were sampled in time calibrations: 105–115 Mya for the V. vinifera—leguminous split, and 49–62 Mya for the Arachis duranensis—other leguminous species split.

Phylogenetic analysis. All protein sequences from 11 species (Arachis duranensis, Cajanus cajan, Cicer arietinum, G. max, Lotus japonicus, Lupinus angustifolius, M. truncatula, P. vulgaris, T. pretense, Vigna angularis, and Vitis vinifera) obtained from the NCBI database were used to generate clusters of genes families. As the alfalfa chromosomes have highly similar gene contents, the first all-locus chromosome group (chr1.1–chr1.8) was selected to represent monoploid alfalfa. Gene sets were filtered by selecting the longest ORF with the temperature stop codons, that were not multiples of three nucleotides long, or encoded less than 50 amino acids, were removed. Orthologous genes were identified by OrthoMCL. Single-copy genes (569) were identified, and subsequently used to build a phylogenetic tree. Coding DNA sequence (CDS) alignments of each single-copy family were based on the protein alignment, using MUSCLE software58. A phylogenetic tree was reconstructed with RAxML software59 under the GTR+I model with the single-copy gene and the concatenated sequence. ASTRAL60 was used to construct a coalescent tree from the gene trees. We also extracted the most complete sequence for each BUSCO gene in each species, and then concatenated all the BUSCO gene sets (single-copy BUSCO genes for tree building). Finally, the low copy gene based (LCG) method61 was applied to avoid the limitations of single copy genes, using a total of 5305 LCGs shared among the 12 species with less than ten copies in each species. The gene family trees were constructed and STAG62 software was used to infer the species trees. To estimate divergence times, we used the PAML mamme program63 for approximate likelihood calculations, with the single copy genes identified by OrthoMCL, a correlated molecular clock model and a REV substitution model. After a burn-in of 5,000,000 iterations, the MCMC process was repeated 20,000 times with a sample frequency of 5000. Convergence was checked by Tracer v. 1.4 (http://beast. sanger.ac.uk/Tracer) and independent runs were sampled in time calibrations: 105–115 Mya for the V. vinifera—leguminous split, and 49–62 Mya for the Arachis duranensis—other leguminous species split.

Target gene analysis and guide sequence design. To locate and clone candidate genes, homologs of query sequences (such as known CDSs of candidate genes or orthologs from other organisms) were sought by alignment with the alfalfa genome. At mapping whole genome sequencing (WGS) reads to the corresponding CDS, information of the candidate genes, such as copy number and gene structures, was deciphered and computational results were verified by experimental examination. Then, a series of guide sequences were extracted from candidate genes using home-made scripts (https://github.com/stanleyouth/-/blob/master/crispr.sgRNA.finder.pl). Guide sequences located in conserved coding exons were evaluated for potential off-target sites flanking protospacer adjacent motifs (PAMs: NNG and NAG) in the alfalfa genome using sgrNAcas9 (v 3.0.3.64), which allows off-target sites with no more than 5 nt mismatches. Guide sequences that overlapped cDNA were selected for the guide RNA (gRNA) to a start codon or in a functional conserved domain; had high GC content (which correlates with sgRNA efficacy); and started with a G at the 5′ end (required by the vector).

In this study, the mRNA sequences of the MrPDS gene of M. truncatula (accession code: XM_024777859.1) and CDS of the MsPALM1 gene of M. sativa (accession code: HM038483.1) were used as query sequences to search and decode information on MsPDS and MsPALM1, respectively. Both MsPDS and MsPALM1 were confirmed to have four alleles in the cultivated alfalfa genome. Series of guide sequences were extracted from exons of MsPDS and the single exon of MsPALM1 into Aragri-CrispR with T4 DNA Repair Enzyme (NER, Beijing, China). The MsPDS/Cas9 vector containing the guide sequence was transferred into competent Escherichia coli DH5a cells. Colony sequencing was used to confirm the

Construction of CRISPR/Cas9 binary vector. The pMs-CRISPR/Cas9 vector was assembled by combining the expression cassettes of hSpCas9 and sgRNA into the pCAMb1300 entry vector, which contains a Hpt expression cassette. Pairs of oligos including guide sequences were synthesized as primers, annealed and cloned into the pre-cloned pMs-CRISPR/Cas9 vector using T4 DNA Repair Enzyme (NER, Beijing, China). The pMs-CRISPR/Cas9 vector containing the guide sequence was transferred into competent Escherichia coli DH5a cells. Colony sequencing was used to confirm the
correct insertion with pT-F (Supplementary Table 15). A single colony was then propagated by cultivation in liquid LB medium containing 50 mg l\(^{-1}\) kanamycin, and the plasmid DNA was extracted using a TiANprep Mini Plasmid Kit (Tiangen, China) according to the manufacturer’s instructions. After that, plasmids of various CRISPR/Cas9 constructs were transferred into Agrobacterium tumefaciens strain EHA105 via electroporation for plant transformation experiments.

Plant materials, growth, and generation of transgenic plants. Plants of the cultivated alfalfa cultivar Aohan (other cultivars were also used, unpublished data) were used as hosts for Agrobacterium-mediated transformation with some modification. Briefly, surface-sterilized seeds were sown on MS semi-solid medium and grown under long-day (16 h light/8 h dark) conditions at 25 °C. Fully developed cotyledons of 7-day-old seedlings were excised and placed in Callus Induction Medium (SH basal salts and vitamins, 0.2 mg l\(^{-1}\) kinetin, 2 mg l\(^{-1}\) 2,4-D, 0.3 mg l\(^{-1}\) casein hydrolysate, 30 g l\(^{-1}\) sucrose, 8 g l\(^{-1}\) agar, pH 5.8). Agrobacterium tumefaciens strain EHA105 carrying binary vector was used to transform calli as follows. A suspension of the strain was prepared in MSH liquid medium containing 100 μM acetoxyringlycine, 0.025 mg l\(^{-1}\) kinetin and 2 mg l\(^{-1}\) 2,4-D. Calli were then subjected in the suspension in a covered conical flask, placed on a shaker and rotated at 100 rpm at room temperature for 10 min. The calli were placed on sterilized filter paper in a Petri dish, then transferred to Co-incubation Medium (MS basal salts and vitamins, 2 mg l\(^{-1}\) 2,4-D, 0.2 mg l\(^{-1}\) kinetin, 100 μM acetoxyringlycine, 30 g l\(^{-1}\) sucrose, 8 g l\(^{-1}\) agar, pH 5.8) in a growth chamber at 27 °C in the dark for 3 days. They were subsequently transferred onto Selection Medium (SH basal salts and vitamins, 0.2 mg l\(^{-1}\) kinetin, 2 mg l\(^{-1}\) 2,4-D, 250 mg l\(^{-1}\) cefotaxime, 15 mg l\(^{-1}\) hygromycin, 30 g l\(^{-1}\) sucrose, 8 g l\(^{-1}\) agar, pH 5.8) for 45 days. After selection cultivation, all calli were transferred to Shoot Induction Medium (SH basal salts and vitamins, 2 g l\(^{-1}\) casein hydrolysate, 0.4 mg l\(^{-1}\) kinetin, 250 mg l\(^{-1}\) cefotaxime, 5 mg l\(^{-1}\) hygromycin, 30 g l\(^{-1}\) sucrose, 8 g l\(^{-1}\) agar, pH 5.8) for more than 30 days, then regenerated shoots were transferred to Root Induction Medium (MS basal salts and vitamins, 250 mg l\(^{-1}\) cefotaxime, 1 mg l\(^{-1}\) BAP, 30 g l\(^{-1}\) sucrose, 8 g l\(^{-1}\) agar, pH 5.8). Finally, regenerated plants were transferred to soil and grown to maturity in a greenhouse.

Detecting mutations by PCR-RE assay and Sanger sequencing. Genomic DNA was extracted from alfalfa leaf tissues using a DNA quick Plant System (Tiangen, China) according to the manufacturer’s instructions. Genomic regions surrounding the MsPD5 and MsPALM1 target sites were amplified by PCR with gene-specific primers (Supplementary Table 15). For MsPD5 gene, PCR products of individual plants were directly sequenced for screening mutations, and mutations were confirmed by sequencing 30 clones after cloning the PCR amplicons into the T vector (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to evaluate the quality of the raw reads, then Trimomatic (0.36)\(^{66}\) was used, with default parameters, to exclude low quality reads. After that, the cleaned reads were mapped to the reference genome of cultivated alfalfa with Bwa (v. 0.7.12)\(^{67}\). Then the samtools (v1.1, https://broadinstitute.github.io/picard/) was used to convert the bam file to the cram format. Finally, the mutations were identified with suggested commands of the Genome Analysis Toolkit (GATK v. 3.5)\(^{68}\). After excluding the low quality mutations with suggested parameters, functional effects of the mutations were annotated with SnpEff\(^{69}\). These putative off-target mutations were manually examined to confirm whether they were indeed mutations and whether they were the targets themselves. According to previous report\(^{70}\), single nucleotide variations (SNVs) were excluded and only indel events at or near the ~3 position relative to the PAM sequence were considered as Cas9-induced off-target mutations.

PCR analysis for screening transgene-free progenies. Genomic DNA was extracted from leaf tissues of T0 parents and T1 progenies as mentioned above, and then subjected to PCR using primers listed in Supplementary Table 15.

Received: 13 August 2019; Accepted: 28 April 2020; Published online: 19 May 2020

References

1. Radović, J., Sokolović, D. & Marković, J. B. A. H. Alfalfa–most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 25, 465–475 (2009).
2. Miellmann, A. The utilisation of lucerne (Medicago sativa): a review. Br. Food J. 115, 590–600 (2013).
3. United States Department of Agriculture-National Agriculture Statistics Service. Crop Production Historical Track Records, April 2018. https://downloads.usda.library.cornell.edu/usda-ems/files/c534f929/6q182n624/v4050d56/httcp-04-12-2018.pdf. (2019).
4. Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar5534 (2018).
5. Li, X. & Brummer, E. C. Applied genetics and genomics in alfalfa breeding. Agronomy 2, 40–61 (2012).
6. Veronesi, F., Brummer, E. C. & Huyge, C. in Fodder Crops and Amenity Grasses. Vol. 5. (eds Boller, B. et al.) 395–437 (Springer, New York, 2010).
7. Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).
8. McCoy, T. & Bingham, E. Cytology and cytogenetics of alfalfa. Agronomy 29, 727–776 (1988).
9. Dilkova, M. & Bingham, E. Microsporogenesis of alfalfa cultivars and selected genotypes II. Medicago Genet. Rep. 17, 1–16 (2017).
10. Pecrix, Y. et al. Whole-genome landscape of Medicago truncatula symbiotic interactions. Nat. Plants 4, 1017–1025 (2018).
11. May, G. D. in Molecular Breeding of Forage and Turf. Vol. 11. (eds. Hopkins, A. et al.) 325–332 (Springer, Dordrecht, 2004).
12. Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).
13. Kyriakidou, M., Tai, H. H., Anghin, N. L., Ellis, D. & Strovimk, M. V. Current strategies of polyploid plant genome sequence assembly. Front. Plant. Sci. 9, 1660 (2018).
14. Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcaneSaccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018).
15. Yang, J. et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat. Plants 3, 696–703 (2017).
16. Voytas, D. F. & Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877 (2014).
17. Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9–cystidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).
18. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).
19. Jiang, W. Z. et al. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 15, 648–657 (2017).
20. Wang, P. et al. High efficient multistites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol. J. 16, 137–150 (2018).
21. Gao, R., Feyissa, B. A., Croft, M. & Hannahua, A. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247, 1043–1050 (2018).
22. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
23. Li, X. et al. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 4, 1971–1979 (2014).
