The zeta function of a finite category and the series Euler characteristic

Kazunori Noguchi

Abstract
We prove that a certain conjecture holds true and the conjecture states a relationship between the zeta function of a finite category and the Euler characteristic of a finite category.

1 Introduction
In [NogA], the zeta function of a finite category was defined and one conjecture was proposed. The zeta function of a finite category I is the formal power series defined by

$$\zeta_I(z) = \exp\left(\sum_{m=1}^{\infty} \frac{\#N_m(I)}{m} z^m\right)$$

where

$$N_m(I) = \{ (x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots \xrightarrow{f_m} x_m) \text{ in } I \}.$$

The conjecture states a relationship between the zeta function of a finite category and the Euler characteristic of a finite category, called series Euler characteristic [BL08].

Conjecture 1.1. Suppose I is a finite category which has series Euler characteristic. Then, we have

(C1) the zeta function of I is a finite product of the following form

$$\zeta_I(z) = \prod \frac{1}{(1 - \alpha_i z)^{\beta_i}} \exp\left(\sum \frac{\gamma_j z^j}{j(1 - \delta_j z)^j}\right)$$

for some complex numbers $\alpha_i, \beta_i, \gamma_j, \delta_j$.

(C2) $\sum \beta_i$ is the number of objects of I.

(C3) each α_i is an eigen value of A_I. Hence, α_i is an algebraic integer.

Kazunori Noguchi

Key words and phrases: the zeta function of a finite category, the Euler characteristic of categories.

2010 Mathematics Subject Classification: 18G30
\[
\sum_{i} \frac{\beta_i}{\alpha_i} + \sum (-1)^j \frac{\gamma_j}{\delta_j + 1} = \chi_{\Sigma}(I).
\]

It was verified this conjecture holds true under certain additional conditions in [NogA] and [NogB].

In [NogA], it was verified the conjecture holds true in concrete cases, that is, when a finite category is a groupoid, an acyclic category and has two objects and so on. An acyclic category is a small category in which all endomorphisms and isomorphisms are identity morphisms. In [NogB], it was verified the conjecture holds true when a finite category has Möbius inversion. A finite category \(I \) has Möbius inversion if its adjacency matrix \(A_I \) has an inverse matrix where \(A_I \) is an \(N \times N \)-matrix whose \((i, j)\)-entry is the number of morphisms of \(I \) from \(x_i \) to \(x_j \) when the set of objects of \(I \) is

\[
\text{Ob}(I) = \{x_1, x_2, \ldots, x_N\}
\]

(see [Lei08] and [Lei]). In the sense of Leinster, this is called coarse Möbius inversion [Lei]. The class of finite categories which has coarse Möbius inversion is large and very important to consider the Euler characteristic of a finite category. Euler characteristic for categories is defined by various ways, the series Euler characteristic \(\chi \sum \) [BL08], the \(L^2 \)-Euler characteristic \(\chi^{(2)} \) [FLS11], the extended \(L^2 \)-Euler characteristic \(\chi^{(2)} \) [Nog], the Euler characteristic of an \(\mathbb{N} \)-filtered acyclic category \(\chi_{\text{fil}} \) [Nog11] and so on. If a finite category \(I \) has the coarse Möbius inversion, then \(I \) has Leinster’s Euler characteristic and series Euler characteristic and they coincide, \(\chi_{\text{fil}}(I) = \chi_{\Sigma}(I) \). A finite acyclic category \(A \) has the coarse Möbius inversion and all of the Euler characteristic above for \(A \) coincide.

In this paper, we prove the conjecture holds true without any additional conditions. The following is our main theorem.

Main Theorem. Suppose \(I \) has series Euler characteristic and

\[
\deg(|E - A_I z|) = N - r
\]

and

\[
\deg(\text{sum(adj}(E - A_I z))) = N - 1 - s
\]

and the polynomial \(|E - A_I z|\) is factored to the following form

\[
|E - A_I z| = d_{N-r}(z - \theta_1)^{e_1} \cdots (z - \theta_n)^{e_n}
\]

where each \(e_i \geq 1 \) and \(\theta_i \neq \theta_j \) if \(i \neq j \). Then the rational function

\[
\frac{\text{sum(adj}(E - A_I z)A_I)}{|E - A_I z|}
\]

has a partial fraction decomposition to the following form

\[
\frac{\text{sum(adj}(E - A_I z)A_I)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j}
\]

for some complex numbers \(A_{k,j} \). Moreover,
1. Then the zeta function of I is

$$
\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{A_{k,1} d_{N-r}}} \times \exp \left(\frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{z^j}{j(1 - \frac{1}{\theta_k} z)} \left(\sum_{i=j}^{e_k-1} \frac{(i-1)(-1)^{i+1}}{(\frac{1}{\theta_k})^{i+j}} A_{k,i+1} \right) \right)
$$

2. \(\frac{A_{k,1}}{d_{N-r}} = N \)

3. Each $\frac{1}{\theta_k}$ is an eigen value of A_I. In particular, $\frac{1}{\theta_k}$ is an algebraic integer.

4. \(\sum_{k=1}^{n} \frac{A_{k,1}}{d_{N-r}} \theta_k \)

\[
+ \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} (-1)^{j-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1} = \chi \Sigma(I).
\]

If we do not assume the condition that I has series Euler characteristic, the part 1 is given by the following.

Theorem 1.2 (Theorem 3.1). Let I be a finite category. Suppose the polynomial $|E - A_I z|$ is factored to the following form:

$$
|E - A_I z| = d_{N-r}(z - \theta_1)^{e_1} \ldots (z - \theta_n)^{e_n}
$$

where $1 \leq r \leq N - 1$ each $e_i \geq 1$ and $\theta_i \neq \theta_j$ if $i \neq j$. Suppose

$$
\text{sum(adj}(E - A_I z)A_I) = q(z)|E - A_I z| + r(z)
$$

where

$$
deg(r(z)) < deg |E - A_I z|
$$

and \(\frac{r(z)}{|E - A_I z|} \) has a partial fraction decomposition to the following form

$$
\frac{r(z)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j}
$$

Then the zeta function of I is

$$
\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{A_{k,1} d_{N-r}}} \times \exp \left(Q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{z^j}{j(1 - \frac{1}{\theta_k} z)^j} \left(\sum_{i=j}^{e_k-1} \frac{(i-1)(-1)^{i+1}}{(\frac{1}{\theta_k})^{i+j}} A_{k,i+1} \right) \right)
$$

where $Q(z) = \int q(z)dz$ is a polynomial whose constant term is 0.
It is very important to study about behavior of singular points and zeros of a zeta function. By the following corollary, the problem is reduced to investigate properties of roots of $|E - A_I z|$.

Corollary 1.3. Let I be a finite category. A complex number z is a singular point or zero of ζ_I if and only if z is a root of $|E - A_I z|$.

This paper is organized as follows.
In section 2, we prove some lemmas for a proof of our main theorem.
In section 3, we prove our main theorem.

2 Preparations for our main theorem

2.1 Notation

Throughout this paper, we will use the following notations.

1. We mean I is a finite category which has N-objects.

2. The three polynomials $|E - A_I z|$, $\text{sum}(\text{adj}(E - A_I z))$ and $\text{sum}(\text{adj}(E - A_I z)A_I)$ which will be often used later are expressed by the following form

 $|E - A_I z| = d_0 + d_1 z + \cdots + d_N z^N,$

 $\text{sum}(\text{adj}(E - A_I z)) = k_0 + k_1 z + \cdots + k_{N-1} z^{N-1}$

 and

 $\text{sum}(\text{adj}(E - A_I z)A_I) = m_0 + m_1 z + \cdots + m_{N-1} z^{N-1}.$

By Lemma 2.2 of NogB, the degree of the third polynomial is less than or equal to $N - 1$. The coefficients d_0, d_1 and d_N are $1, (-1)^N \text{tr}(A_I)$ and $(-1)^N |A_I|$, respectively. Hence, the degree of $|E - A_I z|$ is larger or equal to 1 if I is not an empty category since $\text{tr}(A_I) \geq N$.

2.2 Some lemmas

In this subsection, we investigate the three polynomials above.

Lemma 2.1. The degree of $|E - A_I z|$ is $N - r$ if and only if $|A_I - Ez|$ can be divided by z^r, but can not be divided by z^{r+1}.

Proof. We have

$$|A_I - Ez| = (-1)^N (d_0 z^N + d_1 z^{N-1} + \cdots + d_{N-1} z + d_N).$$

Indeed, if we write

$$|A_I - Ez| = a_0 + a_1 z + \cdots + a_N z^N,$$

then we have

$$|E - A_I z| = (-1)^N z^N |A_I - E \frac{1}{z}||
$$

$$= (-1)^N z^N \left(a_0 + \frac{1}{z} + \cdots + \frac{1}{z^N} \right)$$

$$= (-1)^N (a_0 z^N + a_1 z^{N-1} + \cdots + a_N)$$

$$= d_0 + d_1 z + \cdots + d_N z^N.$$
Hence, we have $a_0 = (-1)^N d_N, a_1 = (-1)^N d_{N-1}, \ldots, a_N = (-1)^N d_0$.
Suppose $\deg(|E - A_I z|) = N - r$. Then, $d_N = d_{N-1} = \cdots = d_{N-r+1} = 0$, but $d_{N-r} \neq 0$. Hence, we have

$$|A - Ez| = (-1)^N d_0 z^N + \cdots + (-1)^N d_{N-r} z^r.$$

So $|A - Ez|$ can be divided by z^r, but can not be divided by z^{r+1}.

Conversely, if the polynomial $|A_I - Ez|$ can be divided by z^r, but can not be divided by z^{r+1}, then $d_N = d_{N-1} = \cdots = d_{N-r+1} = 0$ and $d_{N-r} \neq 0$. Hence, $\deg(|E - A_I z|) = N - r$.

Lemma 2.2. The degree of $\sum(\text{adj}(E - A_I z))$ is $N - 1 - s$ if and only if $\sum(\text{adj}(E - A_I z))$ can be divided by z^s, but can not be divided by z^{s+1}.

Proof. We have

$$\sum(\text{adj}(A_I - Ez)) = (-1)^{N-1} (k_0 z^{N-1} + k_1 z^{N-2} + \cdots + k_{N-1}).$$

Indeed, if we write

$$\sum(\text{adj}(A_I - Ez)) = b_0 + b_1 z + \cdots + b_{N-1} z^{N-1},$$

then we have

$$\begin{align*}
\sum(\text{adj}(E - A_I z)) &= (-z)^{N-1} \sum \left(\text{adj} \left(A_I - E \frac{1}{z} \right) \right) \\
&= (-z)^{N-1} \left(b_0 + b_1 \frac{1}{z} + \cdots + b_{N-1} \frac{1}{z^{N-1}} \right) \\
&= (-1)^{N-1} b_0 z^{N-1} + \cdots + (-1)^{N-1} b_{N-1} \\
&= k_0 + k_1 z + \cdots + k_{N-1} z^{N-1}.
\end{align*}$$

Hence, we have $b_0 = (-1)^{N-1} k_{N-1}, b_1 = (-1)^{N-1} k_{N-2}, \ldots, b_{N-1} = (-1)^{N-1} k_0$.

Suppose $\deg(\sum(\text{adj}(E - A_I z))) = N - 1 - s$. Then, $k_{N-1} = k_{N-2} = \cdots = k_{N-s} = 0$, but $k_{N-s-1} \neq 0$. Hence, we have

$$\sum(\text{adj}(E - A_I z)) = (-1)^{N-1} k_0 z^{N-1} + \cdots + (-1)^{N-1} k_{N-1-s} z^s.$$

So $\sum(\text{adj}(E - A_I z))$ can be divided by z^s, but can not be divided by z^{s+1}.

Conversely, if the polynomial $\sum(\text{adj}(E - A_I z))$ can be divided by z^s, but can not be divided by z^{s+1}, then $k_{N-1} = k_{N-2} = \cdots = k_{N-s} = 0$ and $k_{N-s} - 1 \neq 0$. Hence, $\deg(\sum(\text{adj}(E - A_I z))) = N - 1 - s$.

Lemma 2.3. Suppose the degree of $|E - A_I z|$ is $N - r$ and the degree of $\sum(\text{adj}(E - A_I z))$ is $N - 1 - s$. Then, I has series Euler characteristic if and only if $s \geq r$. In this case, we have

$$\chi(I) = \begin{cases} 0 & \text{if } s > r \\ - \frac{k_{N-1-s}}{d_{N-r}} & \text{if } s = r. \end{cases}$$
Proof. The finite category I has series Euler characteristic if and only if the rational function

$$\frac{\sum(\text{adj}(E - (A_I - E)t))}{|E - (A_I - E)t|}$$

can be substituted -1 to t if and only if the rational function

$$\frac{\sum(\text{adj}(A_I - Ez))}{|A_I - Ez|}$$

can be substituted 0 to z (page 45 of [BL08]). Lemma 2.1 and Lemma 2.2 imply

$$\sum(\text{adj}(A_I - Ez)) \bigg|_{A_I - Ez} = z^s h(z) \bigg|_{A_I - Ez}$$

for some polynomials $g(z)$ and $h(z)$ of $\mathbb{Z}[z]$ such that $g(z)$ and $h(z)$ can not divided by z. Hence, the rational function

$$\frac{\sum(\text{adj}(A_I - Ez))}{|A_I - Ez|}$$

can be substituted 0 to z if and only if $s \geq r$. So the first claim is proved.

Suppose I has series Euler characteristic. Then, we have $s \geq r$. If $s > r$, then it is clear $\chi_{\Sigma}(I) = 0$. If $s = r$, then we have

$$\frac{\sum(\text{adj}(A_I - Ez))}{|A_I - Ez|} = \frac{(-1)^N \sum (k_0 z^{N-1} + k_1 z^{N-2} + \cdots + k_{N-1-s} z^s)}{(-1)^N \sum (d_0 z^N + d_1 z^{N-1} + \cdots + d_{N-r} z^r)}$$

$$= \frac{k_0 z^{N-1-s} + \cdots + k_{N-1-s}}{d_0 z^{N-r} + \cdots + d_{N-r}}.$$

Hence, we obtain $\chi_{\Sigma}(I) = \frac{k_{N-1-s}}{d_{N-r}}$.

\[\Box\]

Lemma 2.4. If I has series Euler characteristic, then we have

$$\deg \left(\sum(\text{adj}(E - A_I z) A_I) \right) = \deg(|E - A_I z|) - 1.$$

Proof. Lemma 2.2 of [NogB] implies

$$\sum(\text{adj}(E - A_I z) A_I) = \frac{1}{z} \left(\sum(\text{adj}(E - A_I z)) - N |E - A_I z| \right).$$

Note that the polynomial

$$\sum(\text{adj}(E - A_I z)) - N |E - A_I z|$$

has no constant term since $k_0 = N$ and $d_0 = 1$. Hence, we have

$$\deg \left(\sum(\text{adj}(E - A_I z) A_I) \right) = \deg \left(\sum(\text{adj}(E - A_I z)) - N |E - A_I z| \right) - 1.$$

Since I has series Euler characteristic, Lemma 2.2 implies $s \geq r$. Hence, we have the inequality

$$\deg(\sum(\text{adj}(E - A_I z))) = N - 1 - s < N - r = \deg(|E - A_I z|).$$

So we obtain

$$\deg \left(\sum(\text{adj}(E - A_I z) A_I) \right) = \deg(|E - A_I z|) - 1.$$
Lemma 2.5. If \(I \) has series Euler characteristic and \(\deg(|E - A_I z|) = N - r \) and
\[
\deg(\sum(\text{adj}(E - A_I z))) = N - 1 - s,
\]
then for the polynomial
\[
\sum(\text{adj}(E - A_I z)A_I) = m_0 + m_1 z + \cdots + m_{N-1-r} z^{N-1-r},
\]
we have \(m_{N-1-r} = -Nd_{N-r} \) and
\[
m_{N-2-r} = \begin{cases}
-Nd_{N-1-r} & \text{if } s > r \\
-Nd_{N-1-r} + k_{N-1-r} & \text{if } s = r.
\end{cases}
\]

Proof. Lemma 2.2 of \([\text{NogB}]\) implies
\[
\sum(\text{adj}(E - A_I z)A_I) = \sum(\text{adj}(E - A_I z)) = m_0 + m_1 z + \cdots + m_{N-1-r} z^{N-1-r}
\]
\[
= \frac{1}{z} \left(\sum(\text{adj}(E - A_I z)) - N |E - A_I z| \right)
\]
\[
= \frac{1}{z} \left(k_0 + k_1 z + \cdots + k_{N-1-s} z^{N-1-s} - N (d_0 + d_1 z + \cdots + d_{N-r} z^{N-r}) \right)
\]
\[
= (k_1 - Nd_1) + (k_2 - Nd_2) z + \cdots + (k_{N-1-s} - Nd_{N-1-s}) z^{N-2-s} - Nd_{N-s} z^{N-1-s} + \cdots - Nd_{N-r} z^{N-1-r}.
\]

Since \(I \) has series Euler characteristic, Lemma 2.4 implies \(s \geq r \). Hence,
\[
N - 1 - s < N - r,
\]
so that \(m_{N-1-r} = -Nd_{N-r} \).
If \(s > r \), then \(N - 1 - s < N - 1 - r \), so that \(m_{N-2-r} = -Nd_{N-1-r} \).
If \(s = r \), then \(m_{N-2-r} = -Nd_{N-1-r} + k_{N-1-r} \).

3 A proof of main theorem

Theorem 3.1. Let \(I \) be a finite category. Suppose the polynomial \(|E - A_I z| \) is factored to the following form:
\[
|E - A_I z| = d_{N-r}(z - \theta_1)^{e_1} \cdots (z - \theta_n)^{e_n}
\]
where \(1 \leq r \leq N - 1 \) each \(e_i \geq 1 \) and \(\theta_i \neq \theta_j \) if \(i \neq j \). Suppose
\[
\sum(\text{adj}(E - A_I z)A_I) = q(z)|E - A_I z| + r(z)
\]
where
\[
\deg(r(z)) < \deg |E - A_I z|
\]
and \(\frac{r(z)}{|E - A_I z|} \) has a partial fraction decomposition to the following form

\[
\frac{r(z)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j}
\]

Then the zeta function of \(I \) is

\[
\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{d_{N-r}}} \times \exp \left(Q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{z^j}{j(1 - \frac{1}{\theta_k} z)^j} \left(\sum_{i=j}^{e_k-1} (-1)^{i-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1} \right) \right)
\]

where \(Q(z) = \int q(z) dz \) is a polynomial whose constant term is 0.

Proof. Since \(\deg(r(z)) < \deg |E - A_I z| \), we can have a partial fraction decomposition of the following form

\[
\frac{r(z)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j}
\]

for some complex numbers \(A_{k,j} \). Hence, we have

\[
\frac{\text{sum}(\text{adj}(E - A_I z)A_I)}{|E - A_I z|} = q(z) + \frac{r(z)}{|E - A_I z|}
\]

\[
= q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j}
\]

8
Proposition 2.1 of [NogB] implies
\[\zeta_I(z) = \exp \left(\int q(z) dz + \int \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} A_{k,j} (z - \theta_k)^j dz \right) \]
\[= \exp \left(\int q(z) dz + \frac{1}{d_{N-r}} \int \sum_{k=1}^{n} A_{k,1} (z - \theta_k) dz + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=2}^{e_k} A_{k,j} (z - \theta_k)^j dz \right) \]
\[= \exp \left(Q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} A_{k,1} \log(z - \theta_k) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=2}^{e_k} -A_{k,j} \frac{1}{(j-1)(z - \theta_k)^{j-1}} + C \right) \]
\[= \prod_{k=1}^{n} \frac{1}{(z - \theta_k)^{\frac{A_{k,1}}{d_{N-r}}}} \times \]
\[\exp \left(Q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} -A_{k,j+1} \frac{1}{j} \frac{1}{(z - \theta_k)^j} \right) \exp C \]
\[= \prod_{k=1}^{n} \frac{1}{(z - \theta_k)^{\frac{A_{k,1}}{d_{N-r}}}} \times \]
\[\exp \left(Q(z) + \frac{-1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} A_{k,j+1} \frac{1}{j} \frac{1}{(z - \theta_k)^j} \right) C'' \]
where we did and will replace the constant term as \(C, C' \) and \(C'' \) . . . Lemma 2.7 of [NogB] implies
\[\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{\frac{A_{k,1}}{d_{N-r}}}} \times \]
\[\exp \left(Q(z) + \frac{-1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} A_{k,j+1} \frac{1}{j} \frac{1}{(z - \theta_k)^j} \right) C''' \]
Here, we use the boundary condition \(\zeta_I(0) = 1 \). This condition is directly implied by the definition of the zeta function. Hence, we obtain \(C''' = 1 \). By
exchanging \sum_i and \sum_j, we have

$$\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{A_{k,1}}}$$

$$\times \exp \left(Q(z) + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_{k}-1} \frac{z^j}{j(1 - \frac{1}{\theta_k} z)} \left(\sum_{i=j}^{e_{k}-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1} \right) \right)$$

Hence, we obtain the result.

It is very important to study about behavior of singular points and zeros of a zeta function. By the following corollary, the problem is reduced to investigate properties of roots of $|E - A_I z|$.

Corollary 3.2. Let I be a finite category. A complex number z is a singular point or a zero of ζ_I if and only if z is a root of $|E - A_I z|$.

Proof. Theorem 3.1 directly implies all of the singular points and zeros are roots of $|E - A_I z|$. Conversely, suppose z is a root of $|E - A_I z|$ but z is not a singular point and a zero. Then, $z = \theta_\ell$ for some ℓ. The index $\frac{A_{k,1}}{d_{N-r}}$ must be 0. Namely, we have $A_{k,e_k} = 0$. For $j = e_\ell - 1$,

$$\sum_{i=e_\ell-1}^{e_\ell-1} -A_{e_\ell+1} \left(\frac{1}{\theta_\ell} \right)^{j-1} \left(\frac{1}{\theta_\ell} \right)^{-1}$$

must be 0 since $\zeta_I(z)$ is defined. Hence, we have $A_{k,e_k} = 0$. As this, we can show each $A_{k,j} = 0$ by the descent from $j = e_\ell - 1$. Hence, we have

$$\frac{r(z)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} A_{k,j} \prod_{i=1}^{e_k} \frac{z - \theta_{i}}{(z - \theta_\ell)^j}$$

$$= \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{z - \theta_{\ell}}{(z - \theta_\ell)^j}$$

Hence, we obtain

$$|E - A_I z| = d_{N-r} (z - \theta_{1})^{e_1} \ldots (z - \theta_{n})^{e_n}$$

$$= d_{N-r} (z - \theta_{e_\ell - 1})^{e_1} \ldots (z - \theta_{e_\ell - 1})^{e_\ell - 1} (z - \theta_{e_\ell})^{e_\ell + 1} \ldots (z - \theta_{n})^{e_n}$$

The polynomial $|E - A_I z|$ has two different degrees since each $e_k \geq 1$. This contradiction implies $z = \theta_\ell$ is a singular point or a zero of ζ_I.

Theorem 3.3. Suppose I has series Euler characteristic and

$$\deg(|E - A_I z|) = N - r$$

and

$$\deg(\text{sum(adj}(E - A_I z))) = N - 1 - s$$
and the polynomial \(|E - A_I z|\) is factored to the following form

\[|E - A_I z| = d_{N-r}(z - \theta_1)^{e_1} \cdots (z - \theta_n)^{e_n}\]

where each \(e_i \geq 1\) and \(\theta_i \neq \theta_j\) if \(i \neq j\). Then the rational function

\[
\frac{\text{sum}(\text{adj}(E - A_I z)A_I)}{|E - A_I z|}
\]

has a partial fraction decomposition to the following form

\[
\frac{\text{sum}(\text{adj}(E - A_I z)A_I)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} A_{k,j} (z - \theta_k)^j
\]

for some complex numbers \(A_{k,j}\). Moreover,

1. the zeta function of \(I\) is

\[
\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - \frac{1}{\theta_k} z)^{\frac{A_{k,1}}{d_{N-r}}} - \frac{A_{k,1}}{d_{N-r}}}
\]

\[
\times \exp \left(\frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{z^j}{j(1 - \frac{1}{\theta_k} z)} \left(\sum_{i=j}^{e_k-1} \binom{i-1}{j-1} (-1)^{i-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1} \right) \right)
\]

2. the sum of all the indexes are the number of objects of \(I\), that is,

\[
\sum_{k=1}^{n} \frac{-A_{k,1}}{d_{N-r}} = N
\]

3. Each \(\frac{1}{\theta_k}\) is an eigen value of \(A_I\). In particular, \(\frac{1}{\theta_k}\) is an algebraic integer

4.

\[
\sum_{k=1}^{n} \frac{-A_{k,1}}{d_{N-r}} \frac{1}{\theta_k} + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} (-1)^j \sum_{i=j}^{e_k-1} \binom{i-1}{j-1} (-1)^{i-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1} = \chi \Sigma(I).
\]

We give a simple interpretation of the part \(\Box\). Put \(\alpha_k = \frac{1}{\theta_k}\), \(\beta_{k,0} = -\frac{A_{k,1}}{d_{N-r}}\) and

\[
\beta_{k,j} = \sum_{i=j}^{e_k-1} \binom{i-1}{j-1} (-1)^{i-1} \left(\frac{1}{\theta_k} \right)^{i+j} A_{k,i+1}.
\]

Then, the equation \(\Box\) is

\[
\sum_{k=1}^{n} \sum_{j=0}^{e_k-1} (-1)^j \frac{\beta_{k,j}}{\alpha_k} = \chi \Sigma(I).
\]

This theorem claims that this alternating sum is always a rational number and it is the series Euler characteristic \(\chi \Sigma(I)\) of \(I\).
Proof of Theorem 3.3. Lemma 2.4 implies
\[\deg(\text{sum(adj}(E - A_I z)A_I)) < \deg(|E - A_I z|). \]

Hence, we have a partial fraction decomposition
\[\frac{\text{sum(adj}(E - A_I z)A_I)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} A_{k,j} (z - \theta_k)^j \]
for some complex numbers \(A_{k,j} \).

The part 1 is directly implied by Theorem 3.1 as \(Q(z) = 0 \).

Next we show the part 2. We observe the numerators of both sides
\[\frac{\text{sum(adj}(E - A_I z)A_I)}{|E - A_I z|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} A_{k,j} (z - \theta_k)^j. \]

For the right hand side, when it is transformed to the left hand side by a reduction to common denominator, the coefficient of \(z^{N-1-r} \) of the numerator is \(\sum_{k=1}^{n} A_{k,1} \). Lemma 2.5 implies \(\sum_{k=1}^{n} A_{k,1} = m_{N-1-r} = d_{N-r} \). Thus, we obtain
\[\sum_{k=1}^{n} \frac{A_{k,1}}{d_{N-r}} = N. \]

We show the part 3. Since each \(\theta_k \) is a root of the polynomial \(|E - A_I z| \), we obtain
\[|E - A_I \theta_k| = 0 \]
\[(\theta_k)^N \left| \frac{1}{\theta_k} - A_I \right| = 0. \]
Hence, \(\frac{1}{\theta_k} \) is an eigen value of \(A_I \). Note that \(\theta_k \neq 0 \). Moreover, since \(|E\lambda - A_I| \) is a monic polynomial with coefficients in \(\mathbb{Z} \), \(\frac{1}{\theta_k} \) is an algebraic integer.
Finally, we show the part [4]. The equation (1) is

\[
(1) = \sum_{k=1}^{n} -\frac{A_{k,1}}{\theta_k} + \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} (-1)^j \frac{\sum_{i=j}^{e_k-1} (i-j)(-1)^{i-1} \left(\frac{1}{\theta_i} \right)^{i+j} A_{k,i+1}}{\left(\frac{1}{\theta_i} \right)^{j+1}}
\]

\[
= \sum_{k=1}^{n} \left(-\frac{\theta_k A_{k,1}}{d_{N-r}} \right) + \frac{1}{d_{N-r}} \sum_{j=1}^{e_k-1} \sum_{i=j}^{e_k-1} (-1)^j \left(-\frac{1}{\theta_k} \right)^{i-1} \left(\frac{i-1}{j-1} \right) A_{k,i+1}
\]

\[
= \sum_{k=1}^{n} \left(-\frac{\theta_k A_{k,1}}{d_{N-r}} \right) + \frac{1}{d_{N-r}} \sum_{i=1}^{e_k-1} (-1)^{i-1} A_{k,i+1} \left(\sum_{j=1}^{i} (-1)^j \left(\frac{i-1}{j-1} \right) \right)
\]

\[
= \frac{1}{d_{N-r}} \sum_{k=1}^{n} (-\theta_k A_{k,1} - A_{k,2}).
\]

So it is enough to show

\[
\frac{1}{d_{N-r}} \left(\sum_{k=1}^{n} -\theta_k A_{k,1} - A_{k,2} \right) = \chi \sum(I).
\]

(2)

By comparison of the numerators of both sides

\[
\frac{\text{sum}(\text{adj}(E - A_{1z}))}{|E - A_{1z}|} = \frac{1}{d_{N-r}} \sum_{k=1}^{n} \sum_{j=1}^{e_k} \frac{A_{k,j}}{(z - \theta_k)^j},
\]

we have

\[
m_{N-2-r} = \sum_{k=1}^{n} A_{k,2} - \sum_{k=1}^{n} A_{k,1} (\theta_1 e_1 + \cdots + \theta_k (e_k - 1) + \cdots \theta_n e_n).
\]

Hence, the left hand side of (2) is

\[
\frac{1}{d_{N-r}} \left(\sum_{k=1}^{n} -\theta_k A_{k,1} - A_{k,2} \right) = \frac{1}{d_{N-r}} \left(\sum_{k=1}^{n} -\theta_k A_{k,1} - m_{N-2-r} - A_{k,1} (\theta_1 e_1 + \theta_k (e_k - 1) + \cdots + \theta_n e_n) \right)
\]

\[
= \frac{1}{d_{N-r}} \left(- \left(\sum_{k=1}^{n} A_{k,1} \right) \left(\sum_{k=1}^{n} \theta_k e_k \right) - m_{N-2-r} \right).
\]

(3)
We have
\[|E - A_I z| = d_0 + d_1 z + \cdots + d_{N-r} z^{N-r} = d_{N-r}(z - \theta_1)^{e_1} \cdots (z - \theta_n)^{e_n} = d_{N-r} z^{N-r} - \left(\sum_{k=1}^{n} \theta_k e_k \right) z^{N-1-r} + \cdots .\]

Hence, we obtain \(-d_{N-r} (\sum_{k=1}^{n} \theta_k e_k) = d_{N-1-r},\) so that
\[-\sum_{k=1}^{n} \theta_k e_k = \frac{d_{N-1-r}}{d_{N-r}} .\]

We have already seen \(\sum_{k=1}^{n} A_{k,1} = -Nd_{N-r}.\) Therefore, the equation (3) is
\[\frac{1}{d_{N-r}} \left(-\left(\sum_{k=1}^{n} A_{k,1} \right) \left(\sum_{k=1}^{n} \theta_k e_k \right) - m_{N-2-r} \right) = \frac{1}{d_{N-r}} \left(-Nd_{N-1-r} - m_{N-2-r} \right) .\] (4)

Here we have to consider two cases
\[\chi_{\Sigma}(I) = \begin{cases} 0 & \text{if } s > r \\ -\frac{k_{N-1-r}}{d_{N-r}} & \text{if } s = r \end{cases} \]
(see Lemma 2.3).

If \(s > r,\) Lemma 2.3 implies \(m_{N-2-r} = -Nd_{N-1-r},\) so that the equation (4) is
\[\frac{1}{d_{N-r}} \left(-Nd_{N-1-r} - m_{N-2-r} \right) = \frac{1}{d_{N-r}} \left(-Nd_{N-1-r} + Nd_{N-1-r} \right) = 0 \]
\[= \chi_{\Sigma}(I). \]

If \(r = s,\) Lemma 2.3 implies \(m_{N-r-2} = k_{N-1-r} - Nd_{N-1-r}.\) Hence, the equation (4) is
\[\frac{1}{d_{N-r}} \left(-Nd_{N-1-r} - m_{N-2-r} \right) = \frac{1}{d_{N-r}} \left(-Nd_{N-1-r} - k_{N-1-r} + Nd_{N-1-r} \right) \]
\[= \frac{k_{N-1-r}}{d_{N-r}} \]
\[= \chi_{\Sigma}(I). \]

Hence, we obtain the results. \(\square\)

References

[BL08] C. Berger and T. Leinster. The Euler characteristic of a category as the sum of a divergent series, Homology, Homotopy Appl., 10(1):41-51, 2008.
[FLS11] T. M. Fiore, W. Lück and R. Sauer. Finiteness obstructions and Euler characteristics of categories, *Adv. Math.*, Vol. 226, Number 3, (2011), 2371–2469.

[Lei08] T. Leinster. The Euler characteristic of a category, *Doc. Math.*, 13:21-49, 2008, arXiv:math.CT/0610260

[Lei] T. Leinster. Notions of Möbius inversion. arXiv:1201.0413

[Nog11] K. Noguchi. The Euler characteristic of acyclic categories. Kyushu Journal of Mathematics, vol. 65 No.1 (2011), 85-99.

[Nog] K. Noguchi. Euler characteristics of categories and barycentric subdivision. arXiv:1104.3630

[NogA] K. Noguchi. The zeta function of a finite category. arXiv:1203.6133

[NogB] K. Noguchi. The zeta function of a finite category which has Möbius inversion. arXiv:1205.4380v2