BOHR RADIUS FOR CERTAIN CLOSE-TO-CONVEX HARMONIC MAPPINGS

MOLLA BASIR AHAMED, VASUDEVARAO ALLU, AND HIMADRI HALDER

Abstract. Let \(H \) be the class of harmonic functions \(f = h + \bar{g} \) in the unit disk \(D := \{ z \in \mathbb{C} : |z| < 1 \} \), where \(h \) and \(g \) are analytic in \(D \). Let

\[P_0^H(\alpha) = \{ f = h + \bar{g} \in H : \text{Re}(h'(z) - \alpha) > |g'(z)| \text{ with } 0 \leq \alpha < 1, \ g'(0) = 0, \ z \in \mathbb{D} \} \]

be the class of close-to-convex mappings defined by Li and Ponnusamy [34]. In this paper, we obtain the sharp Bohr-Rogosinski radius, improved Bohr radius and refined Bohr radius for the class \(P_0^H(\alpha) \).

1. Introduction

The classical inequality of Bohr says that if \(f \) is an analytic function in the unit disk \(D := \{ z \in \mathbb{C} : |z| < 1 \} \) with the following Taylor series expansion

\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]

such that \(|f(z)| < 1 \) in \(\mathbb{D} \), then the majorant series \(M_f(r) \) associated with \(f \) satisfies the following inequality

\[M_f(r) := \sum_{n=0}^{\infty} |a_n| r^n \leq 1 \text{ for } |z| = r \leq 1/3, \]

and the constant 1/3, known as Bohr radius, cannot be improved. In 1914, H. Bohr [17] obtained the inequality (1.2) for \(r \leq 1/6 \) and subsequently improved by 1/3 later, Weiner, Riesz and Schur independently obtained the constant 1/3. An observation shows that the quantity \(1 - |a_0| \) is equal to \(d(f(0), \partial f(\mathbb{D})) \). Therefore, the inequality (1.2) is called Bohr inequality, can be written in the following form

\[\sum_{n=1}^{\infty} |a_n z^n| \leq 1 - |a_0| = d(f(0), \partial f(\mathbb{D})) \]

for \(|z| = r \leq 1/3 \), where \(d \) is the Euclidean distance. It is important to note that the constant 1/3 is independent of the coefficients of the Taylor series (1.1). This fact can be elucidated by saying that Bohr inequality occurs in the class \(B \) of analytic self maps of the unit disk \(\mathbb{D} \). Analytic functions \(f \in B \) of the form (1.1) satisfying the inequality (1.2) for \(|z| = r \leq 1/3 \), are sometimes said to satisfy the classical...
Bohr phenomenon. The notion of the Bohr phenomenon can be generalized to the class F consisting of analytic functions f from D to a given domain $\Omega \subseteq \mathbb{C}$ such that $f(D) \subseteq \Omega$ and the class F is said to satisfy the Bohr phenomenon if there exists largest radius $r_\Omega \in (0, 1)$ such that the inequality (1.3) holds for $|z| = r \leq r_\Omega$ and for all functions $f \in F$. We say the largest radius r_Ω is the Bohr radius for the class F. The Bohr radius has been obtained for the class F when Ω is convex domain [8], simply connected domain [1], the exterior of the closed unit disk, the punctured unit disk, and concave wedge domain (see [9]). In 1997, Boas and Khavinson [15] generalized the Bohr inequality in several complex variables by finding multidimensional Bohr radius. In 2020, Liu and Ponnusamy [36] obtained multidimensional analogues of refined Bohr inequality.

There are many improved versions of Bohr’s inequality (1.2) in various forms obtained by several authors. In 2020, Kayumov and Ponnusamy [33] obtained several interesting improved versions of Bohr inequality. For more results on this, we refer the reader to glance through the articles (see [22, 23, 27, 32, 33, 35, 38, 40]). In 2017, Kayumov and Ponnusamy [27] introduced Bohr-Rogosinski radius motivated by Rogosinski radius for bounded analytic functions in D. Rogosinski radius is defined as follows: Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in D and its corresponding partial sum of f is defined by $S_N(z) := \sum_{n=0}^{N-1} a_n z^n$. Then, for every $N \geq 1$, we have $|\sum_{n=0}^{N-1} a_n z^n| < 1$ in the disk $|z| < 1/2$ and the radius $1/2$ is sharp. Motivated by Rogosinski radius, Kayumov and Ponnusamy have considered the Bohr-Rogosinski sum $R_N^f(z)$ which is defined by

$$R_N^f(z) := |f(z)| + \sum_{n=N}^{\infty} |a_n||z|^n.$$

It is worth to point out that $|S_N(z)| = |f(z) - \sum_{n=N}^{\infty} a_n z^n| \leq |R_N^f(z)|$. Therefore, it is easy to see that the validity of Bohr-type radius for $R_N^f(z)$, which is related to the classical Bohr sum (Majorant series) in which $f(0)$ is replaced by $f(z)$, gives Rogosinski radius in the case of bounded analytic functions in D. We have the following interesting results by Kayumov and Ponnusamy [27].

Theorem 1.5. [27] Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in D and $|f(z)| \leq 1$. Then

$$|f(z)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq 1$$

for $|z| = r \leq R_N$, where R_N is the positive root of the equation $\psi_N(r) = 0$, $\psi_N(r) = 2(1 + r)r^N - (1 - r)^2$. The radius R_N is the best possible. Moreover,

$$|f(z)|^2 + \sum_{n=N}^{\infty} (|a_n| + |b_n|)|z|^n \leq 1$$

for R'_N, where R'_N is the positive root of the equation $(1 + r)r^N - (1 - r)^2$. The radius R_N is the best possible.
Recently, Kayumov and Ponnusamy [27] have proved the following improved version of Bohr’s inequality.

Theorem 1.8. [27] Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be analytic in \(\mathbb{D} \), \(|f(z)| \leq 1 \) and \(S_r \) denote the image of the subdisk \(|z| < r \) under mapping \(f \). Then

\[
B_1(r) := \sum_{n=0}^{\infty} |a_n| r^n + \frac{16}{9} \left(\frac{S_r}{\pi} \right) \leq 1 \quad \text{for} \quad r \leq \frac{1}{3}
\]

and the numbers \(1/3, 16/9 \) cannot be improved. Moreover,

\[
B_2(r) := |a_0|^2 + \sum_{n=1}^{\infty} |a_n| r^n + \frac{9}{8} \left(\frac{S_r}{\pi} \right) \leq 1 \quad \text{for} \quad r \leq \frac{1}{2}
\]

and the numbers \(1/2, 9/8 \) cannot be improved.

Bohr’s phenomenon for the complex-valued harmonic mappings have been studied extensively by many authors (see [1, 8, 13, 12]). Improved Bohr inequality for locally univalent harmonic mappings have been discussed by Evdoridis et al. [21].

A complex-valued function \(f = u + iv \) is harmonic if \(u \) and \(v \) are real-harmonic in \(\mathbb{D} \). Every harmonic function \(f \) has the canonical representation \(f = h + \overline{g} \), where \(h \) and \(g \) are analytic in \(\mathbb{D} \) known respectively as the analytic and co-analytic parts of \(f \). A locally univalent harmonic function \(f \) is said to be sense-preserving if the Jacobian of \(f \), defined by \(J_f(z) := |h'(z)|^2 - |g'(z)|^2 \), is positive in \(\mathbb{D} \) and sense-reversing if \(J_f(z) \) is negative in \(\mathbb{D} \). Let \(\mathcal{H} \) be the class of all complex-valued harmonic functions \(f = h + \overline{g} \) defined in \(\mathbb{D} \), where \(h \) and \(g \) are analytic in \(\mathbb{D} \) such that \(h(0) = h'(0) - 1 = 0 \) and \(g(0) = 0 \). A function \(f \in \mathcal{H} \) is said to be in \(\mathcal{H}_0 \) if \(g'(0) = 0 \). Thus, every \(f = h + \overline{g} \in \mathcal{H}_0 \) has the following form

\[
f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=2}^{\infty} b_n z^n.
\]

In 2013, Ponnusamy et al. [39] considered the following classes

\[
\mathcal{P}_H^0 = \{ f = h + \overline{g} \in \mathcal{H} : \Re h'(z) > |g'(z)| \quad \text{with} \quad g'(0) = 0 \quad \text{for} \quad z \in \mathbb{D} \}.
\]

Motivated by the class \(\mathcal{P}_H^0 \), Li and Ponnusamy [34] have studied the following class \(\mathcal{P}_H^0(\alpha) \) defined by

\[
\mathcal{P}_H^0(\alpha) = \{ f = h + \overline{g} \in \mathcal{H} : \Re (h'(z) - \alpha) > |g'(z)| \quad \text{with} \quad 0 \leq \alpha < 1, \quad g'(0) = 0 \quad \text{for} \quad z \in \mathbb{D} \}.
\]

We have the following coefficient bounds and growth estimates for the class \(\mathcal{P}_H^0(\alpha) \).

Lemma 1.12. [34] Let \(f \in \mathcal{P}_H^0(\alpha) \) and be given by (1.11). Then for any \(n \geq 2 \),

(i) \(|a_n| + |b_n| \leq \frac{2(1-\alpha)}{n} \);

(ii) \(||a_n| - |b_n|| \leq \frac{2(1-\alpha)}{n} \);
(iii) $|a_n| \leq \frac{2(1-\alpha)}{n}$.

All the inequalities are sharp, with extremal function $f(z) = (1-\alpha)(-z - 2 \log(1-z)) + \alpha z$.

Lemma 1.13. [13] Let $f = h + g \in \mathcal{P}_h^0(\alpha)$ with $0 \leq \alpha < 1$. Then

$$|z| + \sum_{n=2}^{\infty} \frac{2(1-\alpha)(-1)^{n-1}}{n} |z|^n \leq |f(z)| \leq |z| + \sum_{n=2}^{\infty} \frac{2(1-\alpha)}{n} |z|^n.$$

Both inequalities are sharp.

The organization of this paper is follows: In section 2 we obtain sharp Bohr-Rogosinski radius for the class $\mathcal{P}_h^0(\alpha)$ of close-to-convex harmonic mappings. In section 3, we establish interesting sharp improved-Bohr radius $\mathcal{P}_h^0(\alpha)$. In section 4, we prove sharp refined-Bohr radius as well as Bohr-type inequality for the class $\mathcal{P}_h^0(\alpha)$. Section 6 is devoted for the proofs of main the results.

2. **Bohr-Rogosinski Radius for the class $\mathcal{P}_h^0(\alpha)$**

We first prove the following Bohr-Rogosinski radius for the class $\mathcal{P}_h^0(\alpha)$.

Theorem 2.1. Let $f \in \mathcal{P}_h^0(\alpha)$ be given by (1.11). Then, for $N \geq 2$,

$$|f(z)| + \sum_{n=N}^{\infty} (|a_n| + |b_n|)|z|^n \leq d(f(0), \partial f(D))$$

for $|z| = r \leq r_N(\alpha)$, where $r_N(\alpha)$ is the smallest root of the equation

$$r - 1 - 2(1-\alpha) \left(r - 1 + \ln(2(1-r)^2) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right) = 0 \text{ in } (0, 1).$$

The constant $r_N(\alpha)$ is the best possible.

![Figure 1. The graph of $r_3(\alpha)$ and $r_{10}(\alpha)$ in (0, 1).](image-url)
Bohr radius for certain close-to-convex harmonic mappings

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\(r_2(\alpha)\)	0.2771	0.3115	0.3477	0.3866	0.4296	0.4785	0.5367	0.6109	0.7187
\(r_3(\alpha)\)	0.3121	0.3493	0.3877	0.4281	0.4717	0.5201	0.5764	0.6463	0.7453
\(r_6(\alpha)\)	0.3248	0.3653	0.4070	0.4508	0.4978	0.5493	0.6080	0.6786	0.7736
\(r_{10}(\alpha)\)	0.3251	0.3657	0.4078	0.4522	0.4999	0.5527	0.6130	0.6859	0.7832

Table 1. This table shows the value of the roots \(r_N(\alpha)\) for different values of \(\alpha\) in \([0,1)\) and \(N = 2,3,6,10\).

Theorem 2.4. Let \(f \in \mathcal{P}^0_H(\alpha)\) be given by (1.11). Then, \(N \geq 2\),

\[
|f(z)|^2 + \sum_{n=N}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(D))
\]

for \(|z| = r \leq r_N(\alpha)\), where \(r_N(\alpha) \in (0,1)\) is the smallest root of the equation

\[
\left(r - 2(1-\alpha)(r+\ln (1-r)) \right)^2 - 2(1-\alpha) \left(\ln (2-2r) - 1 + \sum_{n=2}^{N-1} \frac{r^n}{n} \right) - 1 = 0.
\]

The constant \(r_N(\alpha)\) is the best possible.

Figure 2. The graph of \(r_3(\alpha)\) and \(r_8(\alpha)\) of the equation (2.6).

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\(r_3(\alpha)\)	0.4102	0.4399	0.4708	0.5038	0.5399	0.5807	0.6291	0.6903	0.7783
\(r_8(\alpha)\)	0.4304	0.4613	0.4933	0.5273	0.5644	0.6060	0.6547	0.7152	0.7994

Table 2. Values of \(r_N(\alpha)\) for \(N = 3\) and \(8\) when \(\alpha \in [0,1)\).

Theorem 2.7. Let \(f \in \mathcal{P}^0_H(\alpha)\) be given by (1.11). Then for a positive integer \(N \geq 2\),

\[
|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq d(f(0), \partial f(D))
\]
for $|z| = r \leq r_{m,N}(\alpha)$, where $r_{m,N}(\alpha) \in (0, 1)$ is the smallest root of the equation

$$r^m - 1 - 2(1 - \alpha) \left(r^m - 1 + \ln \left((1 - r^m)(2 - 2r) \right) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right) = 0.$$

The constant $r_{m,N}(\alpha)$ is the best possible.

Figure 3. The graphs $r_{2,2}(\alpha)$, $r_{3,2}(\alpha)$ and $r_{7,2}(\alpha)$ of the equation (2.9).

Figure 4. The graphs $r_{25,2}(\alpha)$, $r_{150,2}(\alpha)$ and $r_{5,3}(\alpha)$ of the equation (2.9).

Figure 5. The graphs $r_{15,3}(\alpha)$, $r_{25,3}(\alpha)$ and $r_{180,3}(\alpha)$ of the equation (2.9).

Figure 6. The graphs $r_{5,5}(\alpha)$, $r_{15,5}(\alpha)$ and $r_{35,5}(\alpha)$ of the equation (2.9).

For different values of α, m and N, in above the corresponding radii are represented on x-axis cut by the increasing curves all have asymptotes at $x = 1$ have been shown in Figures 3-6.
Theorem 2.10. Let $f \in \mathcal{P}_N^h(\alpha)$ be given by (1.11). Then
\begin{equation}
 r + |h(r)|^p + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n \leq d \left(f(0), \partial f(\mathbb{D}) \right), \text{ for } r \leq r_p(\alpha),
\end{equation}

where $r_p(\alpha)$ is the smallest root of the equation
\begin{equation}
 r^p + r - 1 - 2(1 - \alpha) (r - 1 + \ln (2 - 2r)) = 0 \text{ in } (0, 1).
\end{equation}

The radius $r_p(\alpha)$ is the best possible.
Figure 7. The roots $r_7(\alpha)$ and $r_{35}(\alpha)$ of the equation $r^p + r - 1 - 2(1 - \alpha) (r - 1 + \ln (2 - 2r)) = 0$ in $(0, 1)$.

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$r_7(\alpha)$	0.3249	0.3653	0.4069	0.4503	0.4963	0.5456	0.5992	0.6579	0.7231
$r_{35}(\alpha)$	0.3251	0.3657	0.4078	0.4522	0.5000	0.5529	0.6136	0.6872	0.7867

Table 5. The roots $r_7(\alpha)$ and $r_{35}(\alpha)$ of the equation $r^p + r - 1 - 2(1 - \alpha) (r - 1 + \ln (2 - 2r)) = 0$ for $\alpha \in [0, 1)$.

3. Improved Bohr Radius for the class $P_0^\alpha_H$

In 2020, Kayumov and Ponnusamy have obtained several improved versions of Bohr inequality for analytic functions.

Theorem 3.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in \mathbb{D}, $|f(z)| \leq 1$ and S_r denotes the image of the subdisk $|z| < r$ under mapping f. Then

$$B_1(r) := \sum_{n=0}^{\infty} |a_n| r^n + \frac{16}{9} \left(\frac{S_r}{\pi} \right) \leq 1 \quad \text{for} \quad r \leq \frac{1}{3}$$

and the numbers $1/3$, $16/9$ cannot be improved. Moreover,

$$B_2(r) := |a_0|^2 + \sum_{n=1}^{\infty} |a_n| r^n + \frac{9}{8} \left(\frac{S_r}{\pi} \right) \leq 1 \quad \text{for} \quad r \leq \frac{1}{2}$$

and the numbers $1/2$ and $9/8$ cannot be improved.

Theorem 3.4. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in \mathbb{D} and $|f(z)| \leq 1$. Then

$$|a_0| + \sum_{n=1}^{\infty} \left(|a_n| + \frac{1}{2} |a_n|^2 \right) r^n \leq 1 \quad \text{for} \quad r \leq \frac{1}{3}$$

and the numbers $1/3$ and $1/2$ cannot be improved.

The primary object of this section is to generalize the harmonic versions of Theorem 3.1 and Theorem 3.4 for the class $P_0^\alpha_H(\alpha)$. It is interesting to investigate Theorem 3.1 when S_r/π has certain power. Therefore in order to generalize Theorem 3.1, we consider a N^{th} degree polynomial in S_r/π of the form

$$P \left(\frac{S_r}{\pi} \right) = \left(\frac{S_r}{\pi} \right)^N + \left(\frac{S_r}{\pi} \right)^{N-1} + \cdots + \frac{S_r}{\pi}.$$
Theorem 3.6. Let $f \in \mathcal{P}_H^0(\alpha)$ be given by (1.11). Then

$$r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n + P \left(\frac{S_r}{\pi} \right) \leq d(f(0), \partial f(D)) \tag{3.7}$$

for $r \leq r_N(\alpha)$, where $P(w) = w^N + w^{N-1} + \cdots + w$, a polynomial in w of degree $N - 1$, and $r_N(\alpha) \in (0, 1)$ is the smallest root of the equation

$$r - 1 - 2(1-\alpha) (r - 1 + \ln (2 - 2r)) + P \left(r^2 - 4(1-\alpha)^2(r^2 + \ln (1 - r^2)) \right) = 0. \tag{3.8}$$

The constant $r_N(\alpha)$ is the best possible.

α	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$r_2(\alpha)$	0.2734	0.3027	0.3320	0.3618	0.3923	0.4241	0.4574	0.4927	0.5303
$r_3(\alpha)$	0.2732	0.3023	0.3314	0.3607	0.3907	0.4217	0.4540	0.4878	0.5230
$r_4(\alpha)$	0.2732	0.3023	0.3313	0.3606	0.3905	0.4213	0.4533	0.4867	0.5212
$r_5(\alpha)$	0.2732	0.3023	0.3313	0.3606	0.3904	0.4213	0.4532	0.4864	0.5208

Table 6. The roots $r_N(\alpha)$ of equation (3.8) when $N = 2, 3, 4, 5$ and $\alpha \in [0, 1)$.

As a consequence of Theorem 3.6, we obtain the following interesting corollary.

Corollary 3.9. Let $f \in \mathcal{P}_H^0(\alpha)$ be given by (1.11). Then

$$r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n + \left(\frac{S_r}{\pi} \right) \leq d(f(0), \partial f(D)) \tag{3.10}$$

for $r \leq r_\alpha$, where $r_\alpha \in (0, 1)$ is the smallest root of the equation

$$r^2 + r - 1 - 2(1-\alpha)(3 - 2\alpha)(r + \ln (1 - r)) - 2(1-\alpha)(\ln 2 - 1) = 0. \tag{3.11}$$

The radius r_α is the best possible.

![Figure 8](image-url)
The polylogarithm function is defined by a power series in \(z \), which is also a Dirichlet series in \(s \). That is
\[
Li_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s} = z + \frac{z^2}{2^s} + \frac{z^3}{3^s} + \cdots,
\]
is valid for arbitrary complex order \(s \) and for all complex arguments \(z \) with \(|z| < 1 \). Therefore, the dilogarithm function is denoted by \(Li_2(z) \), is a particular case of the polylogarithm. The following theorem is the generalization of the harmonic version of Theorem 3.4 by considering the right hand side \(d(f(0), \partial f(\mathbb{D})) \) instead of 1.

Theorem 3.12. Let \(f \in \mathcal{P}_H^0(\alpha) \) be given by (1.11). Then
\[
(3.13) \quad r + \sum_{n=2}^{\infty} \left(|a_n| + |b_n| + (|a_n| + |b_n|)^2 \right) r^n \leq d(f(0), \partial f(\mathbb{D})) \quad \text{for} \quad r \leq r_\alpha,
\]
where \(r_\alpha \in (0, 1) \) is the smallest root of the equation
\[
(3.14) \quad r - 1 - 2(1-\alpha)(r - 1 + \ln(2-2r)) + 4(1-\alpha^2)(Li_2(r) - r) = 0,
\]
where \(Li_2(z) \) is a dilogarithm. The constant \(r_\alpha \) is best possible.

4. Refined Bohr Radius for the Class \(\mathcal{P}_H^0(\alpha) \)

In 2020, Ponnusamy et al. [38] established the following refined Bohr inequality by applying a refined version of the coefficient inequalities.

Theorem 4.1. [38] Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be analytic in \(\mathbb{D} \) and \(|f(z)| \leq 1 \). Then
\[
\sum_{n=0}^{\infty} |a_n| r^n + \left(\frac{1}{1 + |a_0|} + \frac{r}{1 - r} \right) \sum_{n=1}^{\infty} |a_n|^2 r^{2n} \leq 1
\]
for \(r \leq 1/(2 + |a_0|) \) and the numbers \(1/(1 + |a_0|) \) and \(1/(2 + |a_0|) \) cannot be improved. Moreover,
\[
|a_0|^2 + \sum_{n=1}^{\infty} |a_n| r^n + \left(\frac{1}{1 + |a_0|} + \frac{r}{1 - r} \right) \sum_{n=1}^{\infty} |a_n|^2 r^{2n} \leq 1
\]
for \(r \leq 1/2 \) and the numbers \(1/(1 + |a_0|) \) and \(1/2 \) cannot be improved.

Next we prove the harmonic analogue of Theorem 4.1.

Theorem 4.2. Let \(f \in \mathcal{P}_H^0(\alpha) \) be given by (1.11). Then
\[
(4.3) \quad r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + \frac{1}{1 - r^N} \sum_{n=2}^{\infty} n(|a_n| + |b_n|)^2 r^{2n} \leq d(f(0), \partial f(\mathbb{D})) \quad \text{for} \quad r \leq r_N(\alpha),
\]
where \(r_N(\alpha) \in (0, 1) \) is the smallest root of the equation

\[
(4.4) \quad r - 1 - 2(1 - \alpha)\left(r - 1 + \ln (2 - 2r) + \frac{2(1 - \alpha)}{1 - r^N}(r^2 + \ln (1 - r^2))\right) = 0.
\]

Here \(r_N(\alpha) \) is the best possible.

Here is a table showing the roots of \(r_2(\alpha) \) and \(r_{25}(\alpha) \) when \(\alpha \in [0, 1) \):

\(\alpha \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\(r_2(\alpha) \)	0.3148	0.3527	0.3920	0.4338	0.4793	0.5304	0.5904	0.6651	0.7693
\(r_{25}(\alpha) \)	0.3158	0.3542	0.3942	0.4368	0.4835	0.5361	0.5977	0.6741	0.7792

Table 8. In this table, we obtained the roots of \(r_N(\alpha) \) for \(N = 2 \) and 25 when \(\alpha \in [0, 1) \).

In the following, we prove two interesting results which are harmonic analogue of refined Bohr inequality.

Theorem 4.5. Let \(f \in \mathcal{P}_{H}^0(\alpha) \) be given by (1.11). Then

\[
(4.6) \quad r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r_m}{1 - r_m}\right) \sum_{n=3}^{\infty} n^{m-1}(|a_n| + |b_n|)^m r^{mn} \leq d(f(0), \partial f(\mathbb{D})), \text{ for } r \leq r_m(\alpha),
\]

where \(r_m(\alpha) \in (0, 1) \) is the smallest root of the equation

\[
(4.7) \quad r - 1 - 2(1 - \alpha)(r - 1 + \ln (2 - 2r)) - 2^m(1 - \alpha)^m \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r_m}{1 - r_m}\right) \left(r^m + \frac{r^{2m}}{2} + \ln (1 - r^m)\right) = 0.
\]

The constant \(r_m(\alpha) \) is the best possible.
Theorem 4.8. Let $f \in \mathcal{P}_H^0(\alpha)$ be given by (1.11). Then
\[\begin{align*}
 (4.9) & \quad r + \frac{(1 - (1 + |a_2| + |b_2| - (|a_2| + |b_2|)^2)) r}{1 - (|a_2| + |b_2|)r} + \sum_{n=3}^{\infty} (|a_n| + |b_n|) r^n \\
 & \quad \leq d(f(0), \partial f(D)) \text{ for } r \leq r_{\alpha},
\end{align*} \]
where $r_{\alpha} \in (0, 1)$ is the smallest root of the equation
\[(4.10) \quad r - \frac{(1 - (|a_2| + |b_2|)^2) r}{1 - (|a_2| + |b_2|)r} - 2(1 - \alpha) \left(r + \frac{r^2}{2} - 1 + \ln (2 - 2r) \right) = 0. \]
The constant r_{α} is the best possible.

5. Bohr-Type Inequality for the class $\mathcal{P}_H^0(\alpha)$

We now prove the following Bohr-type inequality for the class of functions $\mathcal{P}_H^0(\alpha)$.

Theorem 5.1. Let $f \in \mathcal{P}_H^0(\alpha)$ be given by (1.11). Then
\[\begin{align*}
 (5.2) & \quad |f(z)| + \sqrt{|J_f(z)|} r + \sum_{n=N}^{\infty} (|a_n| + |b_n|) r^n \leq d(f(0), \partial f(D)) \text{ for } r \leq r_N(\alpha),
\end{align*} \]
where $r_N(\alpha) \in (0, 1)$ is the smallest root of the equation
\[(5.3) \quad r - 1 - 2(1 - \alpha) \left(2r - 1 + \frac{r^2}{2} + \cdots + \frac{r^{N-1}}{N-1} + \ln 2 + 2 \ln(1 - r) \right) + \left(\alpha + (1 - \alpha) \left(\frac{1 + r}{1 - r} \right) \right) r = 0. \]
The radius $r_N(\alpha)$ is the best possible.

6. Proof of the main results

Proof of Theorem 2.1. Let $f \in \mathcal{P}_H^0(\alpha)$ be given by (1.11). Then from Theorem 2.1 we have
\[(6.1) \quad |f(z)| \geq |z| + (1 - \alpha) \sum_{n=2}^{\infty} \frac{2(-1)^{n-1}}{n} |z|^n \text{ for } |z| < 1. \]
The Euclidean distance between $f(0)$ and the boundary of $f(D)$ is given by
\[(6.2) \quad d(f(0), \partial f(D)) = \liminf_{|z| \to 1} |f(z) - f(0)|. \]
Since $f(0) = 0$, from (1.14) and (6.2) we obtain
\[(6.3) \quad d(f(0), \partial f(D)) \geq 1 + \sum_{n=2}^{\infty} 2(1 - \alpha) \frac{(-1)^{n-1}}{n}. \]
Using Lemmas 1.12 and 1.13, for $|z| = r_N(\alpha)$, we obtain

\begin{equation}
|f(z)| + \sum_{n=N}^{\infty} (|a_n| + |b_n|)r^n
\leq r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + \sum_{n=N}^{\infty} \frac{2(1 - \alpha)r^n}{n}
= r - 2(1 - \alpha)(r + \ln(1 - r)) - 2(1 - \alpha) \left(\ln(1 - r) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right)
= r - 2(1 - \alpha) \left(r + \ln((1 - r)^2) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right).
\end{equation}

It is easy to see that

\begin{equation}
r - 2(1 - \alpha) \left(r + \ln((1 - r)^2) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right) \leq 1 + 2(1 - \alpha)(\ln 2 - 1)
\end{equation}

for $r \leq r_N(\alpha)$, where $r_N(\alpha)$ is the smallest root of

\[r - 1 - 2(1 - \alpha) \left(r - 1 + \ln(2(1 - r)^2) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right) = 0 \]

in $(0,1)$. Let $H_1 : [0,1) \rightarrow \mathbb{R}$ be defined by

\[H_1(r) := r - 1 - 2(1 - \alpha) \left(r - 1 + \ln(2(1 - r)^2) + \sum_{n=1}^{N-1} \frac{r^n}{n} \right). \]

The existence of a root $r_N(\alpha)$ is ensured by the following fact that H_1 is a continuous function with the properties $H_1(0) = -1 - 2(1 - \alpha)(\ln 2 - 1) < 0$ and $\lim_{r \rightarrow 1} H_1(r) = +\infty$. Let $r_N(\alpha)$ to be the smallest root of $H_1(r) = 0$ in $(0,1)$. Therefore, we have $H_1(r_N(\alpha)) = 0$. That is

\begin{equation}
r_N(\alpha) - 1 - 2(1 - \alpha) \left(r_N(\alpha) - 1 + \ln(2(1 - r_N(\alpha))^2) + \sum_{n=1}^{N-1} \frac{r_n^{r_N(\alpha)}}{n} \right) = 0.
\end{equation}

In view of (6.3), (6.4) and (6.5) for $|z| = r \leq r_N(\alpha)$, it follows that

\[|f(z)| + \sum_{n=N}^{\infty} (|a_n| + |b_n|)r^n \leq d(f(0), \partial f(\mathbb{D})). \]

In order to show that the constant $r_N(\alpha)$ is the best possible constant, we consider the following function $f = f_\alpha$ by

\begin{equation}
f_\alpha(z) = z + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)z^n}{n}.
\end{equation}

It is easy to show that $f_\alpha \in P^0_{r_N(\alpha)}$. For $f = f_\alpha$, it can be seen that

\begin{equation}
d(f(0), \partial f(\mathbb{D})) = 1 + 2(1 - \alpha)(\ln 2 - 1).
\end{equation}
For $f = f_\alpha$ and $|z| = r_N(\alpha)$, a simple computation using (6.6) and (6.8) shows that

$$
|f(z)| + \sum_{n=N}^{\infty} (|a_n| + |b_n|)r^n = r_N(\alpha) + \sum_{n=2}^{\infty} \frac{2(1-\alpha)r_N(\alpha)}{n} + \sum_{n=N}^{\infty} \frac{2(1-\alpha)r_N(\alpha)}{n}
$$

$$
= r_N(\alpha) - 2(1-\alpha) \left(r_N(\alpha) + \ln((1-r_N(\alpha))^2) + \sum_{n=1}^{N-1} \frac{r_n(\alpha)}{n} \right)
$$

$$
= 1 + 2(1-\alpha)(\ln 2 - 1)
$$

$$
= d(f(0), \partial f(\mathbb{D})).
$$

Therefore, the radius $r_N(\alpha)$ is the best possible. This completes the proof. □

Proof of Theorem 2.4. Let $f \in P_0^0(\alpha)$ be given by (1.11). Then in view of Lemmas 1.12 and 1.13 for $|z| = r$, we obtain

$$
|f(z)|^2 + \sum_{n=N}^{\infty} |a_n|r^n \leq \left(r + \sum_{n=2}^{\infty} \frac{2(1-\alpha)r^n}{n} \right)^2 + \sum_{n=N}^{\infty} \frac{2(1-\alpha)r^n}{n}.
$$

A simple computation shows that

$$
\left(r + \sum_{n=2}^{\infty} \frac{2(1-\alpha)r^n}{n} \right)^2 + \sum_{n=N}^{\infty} \frac{2(1-\alpha)r^n}{n} \leq 1 + 2(1-\alpha)(\ln 2 - 1)
$$

for $r \leq r_N(\alpha)$, where $r_N(\alpha)$ is the smallest root of $H_2(r) = 0$ in $(0, 1)$, where $H_2 : [0, 1) \rightarrow \mathbb{R}$ is defined by

$$
H_2(r) = \left(r - 2(1-\alpha)(r + \ln(1-r)) \right)^2 - 2(1-\alpha) \left(\ln(2-2r) - 1 + \sum_{n=1}^{N-1} \frac{r^n}{n} \right) - 1.
$$

Then H_2 is a continuous function with $H_2(0) = -1 - 2(1-\alpha)(\ln 2 - 1) < 0$ and $\lim_{r \to 1} H_2(r) = +\infty$. Therefore, $H_2(r) = 0$ has a root in $(0, 1)$ and we choose the smallest root to be $r_N(\alpha)$. Therefore, we have $H_2(r_N(\alpha)) = 0$. That is

$$
\left(r_N(\alpha) - 2(1-\alpha)(r_N(\alpha) + \ln(1-r_N(\alpha))) \right)^2 - 2(1-\alpha) \left(\ln(2-2r_N(\alpha)) - 1 + \sum_{n=1}^{N-1} \frac{r_n(\alpha)}{n} \right) - 1 = 0.
$$

Using (6.3), (6.9) and (6.10) for $|z| = r \leq r_N(\alpha)$, we obtain

$$
|f(z)|^2 + \sum_{n=N}^{\infty} |a_n|r^n \leq d(f(0), \partial f(\mathbb{D})).
$$
In order to show that \(r_N(\alpha) \) is the best possible, we consider the function \(f = f_\alpha \) defined by (6.7). For \(f = f_\alpha \) and \(|z| = r_N(\alpha) \), a simple computation using (6.8) and (6.11) shows that
\[
|f(z)|^2 + \sum_{n=N}^{\infty} |a_n| r^n = \left(r_N(\alpha) + \sum_{n=2}^{\infty} \frac{2(1-\alpha)(r_N(\alpha))^n}{n} \right)^2 + \sum_{n=N}^{\infty} \frac{2(1-\alpha)(r_N(\alpha))^n}{n}
\]
\[
= 1 + 2(1-\alpha)(\ln 2 - 1)
\]
\[
= d(f(0), \partial f(D)).
\]
Therefore, the radius \(r_N(\alpha) \) is the best possible. \(\square \)

Proof of Theorem 2.7. Let \(f \in \mathcal{P}_H(\alpha) \) be given by (1.11). Using Lemmas 1.12 and 1.13 for \(|z| = r \), we obtain
\[
|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq r^m + \sum_{n=2}^{\infty} \frac{2(1-\alpha)r^m n}{n} + \sum_{n=N}^{\infty} \frac{2(1-\alpha)r^n}{n}. \tag{6.12}
\]
A simple computation shows that
\[
r^m + \sum_{n=2}^{\infty} \frac{2(1-\alpha)r^m n}{n} + \sum_{n=N}^{\infty} \frac{2(1-\alpha)r^n}{n}
\]
\[
= r^m - 2(1-\alpha)(r^m + \ln(1-r^m)) - 2(1-\alpha) \left(r + \ln(1-r) + \sum_{n=2}^{N-1} \frac{r^n}{n} \right)
\]
\[
= r^m - 2(1-\alpha) \left(r^m + r + \ln(1-r)(1-r^m) + \sum_{n=2}^{N-1} \frac{r^n}{n} \right)
\]
\[
\leq 1 + 2(1-\alpha)(\ln 2 - 1)
\]
for \(r \leq r_{m,N}(\alpha) \), where \(r_{m,N}(\alpha) \) is the smallest root of \(H_3(r) = 0 \) in \((0,1)\), where \(H_3 : [0,1) \to \mathbb{R} \) is defined by
\[
H_3(r) := r^m - 1 - 2(1-\alpha) \left(r^m + r - 1 + \ln(2-2r)(1-r^m) + \sum_{n=2}^{N-1} \frac{r^n}{n} \right).
\]
In view of the same line of argument as in the proof of Theorem 2.1, we can show that \(H_3(r) = 0 \) has a root in \((0,1)\) and we choose \(r_{m,N}(\alpha) \) to be the smallest root of \(H_3(r) \). Therefore, we have \(H_3(r_{m,N}(\alpha)) = 0 \). That is
\[
r_{m,N}(\alpha) - 1 - 2(1-\alpha)G_{m,N}(r) = 0, \tag{6.14}
\]
where
\[
G_{m,N} = \left(r_{m,N}(\alpha) + r_N(\alpha) - 1 + \ln \left((2-2r_N(\alpha))(1-r_{m,N}(\alpha)) \right) + \sum_{n=2}^{N-1} \frac{r^n}{n} \right).
\]
In view of (6.3), (6.12) and (6.13) for \(|z| = r_{m,N}(\alpha)\), we obtain

\[|f(z^m)| + \sum_{n=N}^{\infty} |a_n|r^n \leq d(f(0), \partial f(D)). \]

To show that the radius \(r_{m,N}(\alpha)\) is the best possible, we consider the function \(f = f(\alpha)\) defined by (6.7). For \(f = f_\alpha\) and \(|z| = r_{m,N}(\alpha)\), a simple calculation using (6.8) and (6.14) shows that

\[|f(z^m)| + \sum_{n=N}^{\infty} |a_n|r^n \]
\[= r^m_{m,N}(\alpha) - 2(1 - \alpha) \left(r^m_{m,N}(\alpha) + r + \ln \left((1 - r_{m,N}(\alpha))(1 - r^m_{m,N}(\alpha)) \right) + \sum_{n=2}^{N-1} \frac{r^m_{m,N}(\alpha)}{n} \right) \]
\[= 1 + 2(1 - \alpha)(\ln 2 - 1) = d(f(0), \partial f(D)). \]

Hence, the radius \(r_{m,N}(\alpha)\) is the best possible. This completes the proof.

Proof of Theorem 2.10. Let \(f \in \mathcal{P}_H^0(\alpha)\) be given by (1.11). Applying Lemmas 1.12 and 1.13 for \(|z| = r\), we obtain

\[(6.15) \quad r + |h(r)|^p + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n \leq r + |h(r)|^p + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n}. \]

It is not difficult to show that

\[(6.16) \quad r + |h(r)|^p + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} = r^p + r - 2(1 - \alpha)(r + \ln(1 - r)) \]
\[\leq 1 + 2(1 - \alpha)(\ln 2 - 1) \]

for \(r \leq r_p(\alpha)\), where \(r_p(\alpha)\) is the smallest root of \(H_4(r) = 0\) in \((0, 1)\) and \(H_4 : [0, 1] \to \mathbb{R}\) is defined by

\[H_4(r) := r^p + r - 1 - 2(1 - \alpha)(r - 1 + \ln(2 - 2r)). \]

By the same argument used in the proof of Theorem 2.1, we can show that \(H_4(r)\) has a root in \((0, 1)\) and we choose \(r_p(\alpha)\) to be the smallest root of \(H_4(r)\). Therefore, \(H_4(r_p(\alpha)) = 0\). That is

\[(6.17) \quad r^p_p(\alpha) + r_p(\alpha) - 1 - 2(1 - \alpha)(r_p(\alpha) - 1 + \ln(2 - 2r_p(\alpha))) = 0, \]

Using (6.3), (6.15) and (6.16) for \(|z| = r \leq r_p(\alpha)\), we obtain

\[r + |h(r)|^p + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n \leq d(f(0), \partial f(D)). \]

In order to show that \(r_p(\alpha)\) is the best possible, we consider the function \(f = f_\alpha\) defined by (6.7). For \(f = f_\alpha\) and \(|z| = r_p(\alpha)\), a simple calculation using (6.8) and (6.17) shows that
Bohr radius for certain close-to-convex harmonic mappings 17

\[r_p(\alpha) + |h(r_p(\alpha))|^p + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n \]

\[= r_p^p(\alpha) + r_p(\alpha) - 2(1 - \alpha)(r_p(\alpha) + \ln(1 - r_p(\alpha))) \]

\[= 1 + 2(1 - \alpha)(\ln 2 - 1) \]

Therefore, the radius \(r_p(\alpha) \) is the best possible. This completes the proof. \(\square \)

Proof of Theorem 3.6. Let \(f \in P_0^H(\alpha) \) be given by (1.11). For the analytic functions \(h \) and \(g \), the area of the disk \(|z| < r \) under the harmonic map \(f \) is \(S_r \) is given by

\[S_r = \frac{1}{\pi} \int_{D_r} (|h'(z)|^2 - |g'(z)|^2) \, dx \, dy, \]

\[\frac{1}{\pi} \int_{D_r} |h'(z)|^2 \, dx \, dy = \sum_{n=1}^{\infty} n|a_n|^2 r^{2n}, \]

\[\frac{1}{\pi} \int_{D_r} |g'(z)|^2 \, dx \, dy = \sum_{n=2}^{\infty} n|b_n|^2 r^{2n}. \]

Therefore, in view of (6.18), (6.19) and (6.20) and Lemma 1.12 we obtain

\[\frac{S_r}{\pi} = \frac{1}{\pi} \int_{D_r} (|h'(z)|^2 - |g'(z)|^2) \, dx \, dy \]

\[= r^2 + \sum_{n=2}^{\infty} |a_n|^2 r^{2n} - \sum_{n=2}^{\infty} n|b_n|^2 r^{2n} \]

\[= r^2 + \sum_{n=2}^{\infty} n (|a_n| + |b_n|) (|a_n| - |b_n|) r^{2n} \]

\[\leq r^2 + \sum_{n=2}^{\infty} \frac{4(1 - \alpha)^2 r^{2n}}{n^2} \]

\[= r^2 - 4(1 - \alpha)^2 (r^2 + \ln(1 - r^2)). \]

Using Lemmas 1.12 and 1.13 for \(|z| = r \), we obtain

\[r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + P \left(\frac{S_r}{\pi} \right) \]

\[\leq r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + P(r^2 - 4(1 - \alpha)^2 (r^2 + \ln(1 - r^2))) \]

\[= r - 2(1 - \alpha)(r + \ln(1 - r)) + P(r^2 - 4(1 - \alpha)^2 (r^2 + \ln(1 - r^2))) \]

\[\leq 1 + 2(1 - \alpha)(\ln 2 - 1) \]
for \(r \leq r(\alpha) \), where \(r(\alpha) \) is the smallest root of \(H_5(r) = 0 \) in \((0, 1)\) where \(H_5 : [0, 1) \to \mathbb{R} \) be defined by
\[
H_5(r) := r - 1 - 2(1 - \alpha)(r - 1 + \ln(2 - 2r)) + P(r^2 - 4(1 - \alpha)^2 (r^2 + \ln(1 - r^2)))
\]
Clearly, \(H_5(r(\alpha)) = 0 \). That is
\[
(6.22) \quad r(\alpha) - 1 - 2(1 - \alpha)(r(\alpha) - 1 + \ln(2 - 2r(\alpha))) + P(G(r, \alpha)) = 0,
\]
where
\[
G(r, \alpha) = r(\alpha)^2 - 4(1 - \alpha)^2 (r(\alpha)^2 + \ln(1 - r(\alpha)^2)).
\]
From (6.3), (6.21) and (6.22), \(|z| = r(\alpha)\), we obtain
\[
r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + P \left(\frac{S_r}{\pi} \right) \leq d(f(0), \partial f(\mathbb{D})).
\]
To show that the radius \(r(\alpha) \) is the best possible, we consider the function defined by (6.7). For \(f = f_\alpha \) and \(|z| = r(\alpha)\), a simple computation using (6.8) and (6.22) shows that
\[
r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + P \left(\frac{S_r}{\pi} \right) = r - 2(1 - \alpha)(r + \ln(1 - r)) + P(G(r, \alpha))
\]
\[
= 1 + 2(1 - \alpha)(\ln 2 - 1) = d(f(0), \partial f(\mathbb{D})).
\]
Thus, the radius \(r(\alpha) \) is the best possible. This completes the proof. \(\square\)

Proof of Theorem 3.12. Let \(f \in P^0_{H_6}(\alpha) \) be given by (1.11). Using Lemmas 1.12 and 1.13, for \(|z| = r\), we obtain
\[
(6.23) \quad r + \sum_{n=2}^{\infty} (|a_n| + |b_n| + (|a_n| + |b_n|)^2) r^n \leq r + \sum_{n=2}^{\infty} \left(\frac{2(1 - \alpha)}{n} + \frac{4(1 - \alpha)^2}{n^2} \right) r^n.
\]
An easy computation shows that
\[
(6.24) \quad r + \sum_{n=2}^{\infty} \left(\frac{2(1 - \alpha)}{n} + \frac{4(1 - \alpha)^2}{n^2} \right) r^n
\]
\[
= r - 2(1 - \alpha)(r + \ln(1 - r)) + 4(1 - \alpha)^2 (Li_2(r) - r)
\]
\[
\leq 1 + 2(1 - \alpha)(\ln 2 - 1)
\]
for \(r \leq r(\alpha) \), where \(r(\alpha) \) is the smallest root of \(H_6(r) = 0 \) in \((0, 1)\) and \(H_6 : [0, 1) \to \mathbb{R} \) be defined by
\[
H_6(r) := r - 2(1 - \alpha)(r - 1 + \ln(2 - 2r)) + 4(1 - \alpha)^2 (Li_2(r) - r) - 1.
\]
Thus, we have \(H_6(r(\alpha)) = 0 \). That is
\[
(6.25) \quad r(\alpha) - 2(1 - \alpha)(r(\alpha) - 1 + \ln(2 - 2r(\alpha))) + 4(1 - \alpha)^2 (Li_2(r(\alpha)) - r(\alpha)) - 1 = 0.
\]
Using (6.3), (6.23) and (6.24) for $|z| = r \leq r(\alpha)$, we obtain

$$r + \sum_{n=2}^{\infty} \left(|a_n| + |b_n| + (|a_n| + |b_n|)^2 \right) r^n \leq d(f(0), \partial f(\mathbb{D})).$$

In order to show that $r(\alpha)$ is the best possible, we consider the function defined by (6.7). For $f = f_\alpha$ and $|z| = r(\alpha)$, a simple computation using (6.8) and (6.25) shows that

$$r(\alpha) + \sum_{n=2}^{\infty} \left(|a_n| + |b_n| + (|a_n| + |b_n|)^2 \right) r^n(\alpha)$$

$$= r(\alpha) - 2(1 - \alpha)(r(\alpha) + \ln(1 - r(\alpha))) + 4(1 - \alpha)^2(Li_2(r(\alpha)) - r(\alpha))$$

$$= 1 + 2(1 - \alpha)(\ln 2 - 1)$$

$$= d(f(0), \partial f(\mathbb{D})).$$

Therefore, the radius $r(\alpha)$ is the best possible. This completes the proof.

Proof of Theorem 4.2. Let $f \in \mathcal{P}_\mathcal{H}(\alpha)$ be given by (1.11). In view of Lemmas 1.12 and 1.13 for $|z| = r$, we obtain

$$r + \sum_{n=2}^{\infty} \left| |a_n| + |b_n| + (|a_n| + |b_n|)^2 \right| r^n + \frac{1}{1 - r^N} \sum_{n=2}^{\infty} n(|a_n| + |b_n|)^2 r^{2n}$$

$$\leq r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + \frac{1}{1 - r^N} \sum_{n=2}^{\infty} \frac{4(1 - \alpha)^2 r^{2n}}{n}.$$

A simple computation shows that

$$r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + \frac{1}{1 - r^N} \sum_{n=2}^{\infty} \frac{4(1 - \alpha)^2 r^{2n}}{n}$$

$$= r - 2(1 - \alpha)(r + \ln(1 - r)) - \frac{4(1 - \alpha)^2}{1 - r^N}(r^2 + \ln(1 - r^2))$$

$$\leq 1 + 2(1 - \alpha)(\ln 2 - 1)$$

for $r \leq r(\alpha)$, where $r(\alpha)$ is the smallest root of $H_7(r) = 0$ in $(0, 1)$ and $H_7 : [0, 1) \rightarrow \mathbb{R}$ be defined by

$$H_7(r) := r - 2(1 - \alpha)(r - 1 + \ln(2 - 2r)) - \frac{4(1 - \alpha)^2}{1 - r^N}(r^2 + \ln(1 - r^2)) - 1.$$

Thus, we have $H_7(r(\alpha)) = 0$. That is

$$r(\alpha) - 2(1 - \alpha)(r - 1 + \ln(2 - 2r(\alpha)))$$

$$- \frac{4(1 - \alpha)^2}{1 - r^N(\alpha)} \left(r^2(\alpha) + \ln(1 - r^2(\alpha)) \right) - 1 = 0.$$
Using (6.3), (6.26) and (6.27) for $|z| = r \leq r(\alpha)$, we obtain
\[
r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n + \frac{1}{1 - rN} \sum_{n=2}^{\infty} n(|a_n| + |b_n|)^2 r^{2n} \leq d(f(0), \partial f(D)).
\]
In order to show that $r(\alpha)$ is the best possible, we consider the function $f = f_\alpha$ defined by (6.7). For $f = f_\alpha$ and $|z| = r(\alpha)$, a simple calculation using (6.8) and (6.28) shows that
\[
r(\alpha) + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n(\alpha) + \frac{1}{1 - rN(\alpha)} \sum_{n=2}^{\infty} n(|a_n| + |b_n|)^2 r^{2n}(\alpha)
\]
\[
= r(\alpha) - 2(1 - \alpha)(r(\alpha) + \ln(1 - r(\alpha))) - \frac{4(1 - \alpha)^2}{1 - rN(\alpha)}(\alpha^2 + \ln(1 - \alpha^2))
\]
\[
= 1 + 2(1 - \alpha)(\ln 2 - 1)
\]
\[
= d(f(0), \partial f(D)).
\]
Hence the radius $r(\alpha)$ is the best possible. This completes the proof. \qed

Proof of Theorem 4.5. Let $f \in \mathcal{P}_h^\theta(\alpha)$ be given by (1.11). Using Lemmas 1.12 and 1.13 for $|z| = r$, we obtain
\[
(6.29)
\]
\[
r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)r^n + \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r^m}{1 - r^m} \right) \sum_{n=3}^{\infty} n^{m-1}(|a_n| + |b_n|)^m r^{mn}
\]
\[
\leq r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r^m}{1 - r^m} \right) \sum_{n=3}^{\infty} \frac{2^{m-1}(1 - \alpha)^m n^{m-1}r^{mn}}{n}.
\]
Let
\[
Q_m(r) := \frac{1}{1 + |a_2| + |b_2|} + \frac{r^m}{1 - r^m}.
\]
A computation using $Q_m(r)$ shows that
\[
(6.30)
\]
\[
r + \sum_{n=2}^{\infty} \frac{2(1 - \alpha)r^n}{n} + Q_m(r) \sum_{n=3}^{\infty} \frac{2^{m}(1 - \alpha)^m n^{m-1}r^{mn}}{n}
\]
\[
= r - 2(1 - \alpha)(r + \ln(1 - r)) - 2^{m}(1 - \alpha)^m Q_m(r) \left(r^m + \frac{r^{2m}}{2} + \ln(1 - r^m) \right)
\]
\[
\leq 1 + 2(1 - \alpha)(\ln 2 - 1)
\]
for $r \leq r_m(\alpha)$, where $r_m(\alpha)$ is the smallest root of of $H_s(r)$ in $(0, 1)$ and $H_s(r) :=
\[
r - 1 - 2(1 - \alpha)(r - 1 + \ln(2 - 2r)) - 2^{m}(1 - \alpha)^m Q_m(r) \left(r^m + \frac{r^{2m}}{2} + \ln(1 - r^m) \right).
\]
Then we have $H_8(r_m(\alpha)) = 0$. That is
\begin{equation}
(6.31) \quad r_m(\alpha) - 1 - 2(1 - \alpha) \left(r_m(\alpha) - 1 + \ln(2 - 2r_m(\alpha)) \right) - 2^m(1 - \alpha)^m Q_m(r) \left(r_m(\alpha) + \frac{r^{2m}(\alpha)}{2} + \ln(1 - r_m^m(\alpha)) \right) = 0.
\end{equation}

With the help of (6.3), (6.29) and (6.30) for $|z| = r_m(\alpha)$, we obtain
\[
r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n + \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r^m}{1 - r_m} \right) \sum_{n=3}^{\infty} n^{m-1} (|a_n| + |b_n|)^n r^{mn} \leq d(f(0), \partial f(D)).
\]

To show that $r_m(\alpha)$ is the best possible, we consider the function $f = f_\alpha$ defined by (6.7). For the function $f = f_\alpha$ and $|z| = r_m(\alpha)$, an simple computation using (6.8) and (6.31) shows that
\[
\begin{align*}
 r_m(\alpha) + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n(\alpha) + \left(\frac{1}{1 + |a_2| + |b_2|} + \frac{r^m}{1 - r_m} \right) \\
 \times \sum_{n=3}^{\infty} n^{m-1} (|a_n| + |b_n|)^n r_m(\alpha) \\
 = r_m(\alpha) - 2(1 - \alpha) \left(r_m(\alpha) + \ln(1 - r_m(\alpha)) \right) \\
 - 2^m(1 - \alpha)^m Q_m(r_m(\alpha)) \left(r_m(\alpha) + \frac{r^{2m}(\alpha)}{2} + \ln(1 - r_m(\alpha)) \right) \\
 = 1 + 2(1 - \alpha)(\ln 2 - 1) \\
 = d(f(0), \partial f(D)).
\end{align*}
\]

Therefore, the radius $r_m(\alpha)$ is the best possible. This completes the proof. \qed

Proof of Theorem 4.8 Let $f \in P^0_H(\alpha)$ be given by (1.11). By using Lemmas 1.12 and 1.13 for $|z| = r$, we obtain
\begin{equation}
(6.32) \quad r + \frac{[1 - (1 + |a_2| + |b_2|) - (|a_2| + |b_2|)^2] r}{1 - (|a_2| + |b_2|) r} + \sum_{n=3}^{\infty} (|a_n| + |b_n|) r^n \leq r + \frac{[1 - (1 + |a_2| + |b_2|) - (|a_2| + |b_2|)^2] r}{1 - (|a_2| + |b_2|) r} + \sum_{n=3}^{\infty} 2(1 - \alpha)r^n.
\end{equation}

Let $R(r)$ be defined
\[
R(r) = \frac{[1 - (1 + |a_2| + |b_2|) - (|a_2| + |b_2|)^2] r}{1 - (|a_2| + |b_2|) r}.
\]
A simple computation shows that
\[
(6.33) \quad r + R(r) + \sum_{n=3}^{\infty} \frac{2(1-\alpha)r^n}{n} = r + R(r) - 2(1-\alpha) \left(r + \frac{r^2}{2} + \ln(1-r) \right) \\
\leq 1 + 2(1-\alpha)(\ln 2 - 1)
\]
for \(r \leq r(\alpha) \), where \(r(\alpha) \) is the smallest root of \(H_\alpha(r) \) in \((0,1)\) and \(H_\alpha : [0,1) \to \mathbb{R} \) be defined by
\[
H_\alpha(r) := r + R(r) - 2(1-\alpha) \left(r + \frac{r^2}{2} - 1 + \ln(2-2r) \right) - 1.
\]
Then we have \(H_\alpha(r(\alpha)) = 0 \). That is
\[
(6.34) \quad r(\alpha) + R(r(\alpha)) - 2(1-\alpha) \left(r(\alpha) + \frac{r^2(\alpha)}{2} - 1 + \ln(2-2r(\alpha)) \right) - 1 = 0.
\]
From \((6.3), (6.32)\) and \((6.33)\) for \(|z| = r \leq r(\alpha) \), we obtain
\[
r + \frac{1 - (1 + |a_2| + |b_2| - (|a_2| + |b_2|)^2)r}{1 - (|a_2| + |b_2|)r} + \sum_{n=3}^{\infty} (|a_n| + |b_n|)r^n \leq d(f(0), \partial f(\mathbb{D})).
\]
To show that the radius \(r(\alpha) \) is the best possible, we consider the function \(f = f_\alpha \) defined in \((6.7)\). For \(f = f_\alpha \) and \(|z| = r(\alpha) \), a simple calculation using \((6.8)\) and \((6.34)\) shows that
\[
r(\alpha) + \frac{1 - (1 + |a_2| + |b_2| - (|a_2| + |b_2|)^2)r(\alpha)}{1 - (|a_2| + |b_2|)r(\alpha)} + \sum_{n=3}^{\infty} (|a_n| + |b_n|)r^n(\alpha) \\
= r(\alpha) + R(r(\alpha)) - 2(1-\alpha) \left(r(\alpha) + \frac{r^2(\alpha)}{2} + \ln(1-r(\alpha)) \right) \\
= 1 + 2(1-\alpha)(\ln 2 - 1) \\
= d(f(0), \partial f(\mathbb{D})).
\]
Hence the radius \(r(\alpha) \) is the best possible. This comples the proof. \(\square \)

Proof of Theorem 5.1. Let \(f \in \mathcal{P}_\mathcal{H}(\alpha) \) be given by \((1.11)\). It is not difficult to show that
\[
|h'(z)| \leq \alpha + (1-\alpha) \left(\frac{1 + r}{1 - r} \right).
\]
Therefore, we have
\[
|J_f(z)| = |h'(z)|^2 - |g'(z)|^2 \leq |h'(z)|^2.
\]
Using Lemmas 1.12 and 1.13 for \(|z| = r_N(\alpha)|\), we obtain

\begin{align}
|f(z)| & + \sqrt{J_f(z)}r + \sum_{n=N}^\infty (|a_n| + |b_n|)r^n \\
& \leq r + 2(1 - \alpha)(-r - \ln(1 - r)) + \left(\alpha + (1 - \alpha)\left(\frac{1 + r}{1 - r}\right)\right) r \\
& + 2(1 - \alpha)\left(-r - r^2/2 - \cdots - \frac{r^{N-1}}{N-1} - \ln(1 - r)\right) \\
& = r - 2(1 - \alpha)\left(2r + \frac{r^2}{2} + \cdots + \frac{r^{N-1}}{N-1} + 2\ln(1 - r)\right) + \left(\alpha + (1 - \alpha)\left(\frac{1 + r}{1 - r}\right)\right) r.
\end{align}

A simple calculations shows that

\begin{align}
r - 2(1 - \alpha)\left(2r + \frac{r^2}{2} + \cdots + \frac{r^{N-1}}{N-1} + 2\ln(1 - r)\right) + \left(\alpha + (1 - \alpha)\left(\frac{1 + r}{1 - r}\right)\right) r \\
& \leq 1 + 2(1 - \alpha)(\ln 2 - 1)
\end{align}

for \(r \leq r(\alpha)\), where \(r(\alpha)\) is the smallest root of \(H_{10}(r)\) in \((0, 1)\). Here \(H_{10} : [0, 1) \to \mathbb{R}\) defined by

\begin{align}
H_{10}(r) : = r - 1 - 2(1 - \alpha)\left(2r - 1 + \frac{r^2}{2} + \cdots + \frac{r^{N-1}}{N-1} + \ln 2 + 2\ln(1 - r)\right) \\
& + \left(\alpha + (1 - \alpha)\left(\frac{1 + r}{1 - r}\right)\right) r.
\end{align}

Therefore, we have \(H_{10}(r_N(\alpha)) = 0\), which shows that

\begin{align}
r_N(\alpha) - 1 - 2(1 - \alpha)\left(2r_N(\alpha) - 1 + \frac{r_N^2(\alpha)}{2} + \cdots + \frac{r_N^{N-1}(\alpha)}{N-1} + \ln 2 + 2\ln(1 - r_N(\alpha))\right) \\
& + \left(\alpha + (1 - \alpha)\left(\frac{1 + r_N(\alpha)}{1 - r_N(\alpha)}\right)\right)^2 = 0,
\end{align}

Using (6.3), (6.35) and (6.36) for \(|z| = r \leq r_N(\alpha)|\), we obtain

\begin{align}
|f(z)| + |J_f(z)| + \sum_{n=N}^\infty (|a_n| + |b_n|)r^n & \leq d(f(0), \partial f(\mathbb{D})).
\end{align}

In order to show that \(r_N(\alpha)|\) is sharp, we consider the function \(f = f_\alpha\) defined by (6.7). For \(f = f_\alpha\) and \(|z| = r_N(\alpha)|\), a simple calculation using (6.8) and (6.37) shows
that

\[
|f(z)| + \sqrt{|Jf(z)|}r + \sum_{n=N}^{\infty} (|a_n| + |b_n|) r_n^\alpha
\]

\[
= r_N^\alpha - 2(1 - \alpha) \left(2r_N^\alpha + \frac{r_N^2\alpha}{2} + \cdots + \frac{r_N^{N-1}\alpha}{N-1} + 2\ln(1 - r_N^\alpha) \right)
\]

\[
+ \left(\alpha + (1 - \alpha) \left(\frac{1 + r_N^\alpha}{1 - r_N^\alpha} \right) \right) r
\]

\[
= 1 + 2(1 - \alpha)(\ln 2 - 1)
\]

\[
= d(f(0), \partial f(D)).
\]

Therefore, the radius \(r_N^\alpha \) is the best possible. This completes the proof. \(\square \)

Acknowledgment: The first author is supported by the Institute Post Doctoral Fellowship of IIT Bhubaneswar, India, the second author is supported by SERB-MATRICS, and third author is supported by CSIR, India.

REFERENCES

[1] Y. Abu-Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, *Complex Var. Elliptic Equ.* **55** (2010), 1071–1078.

[2] Y. Abu-Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions into the exterior of a compact convex body, *J. Math. Anal. Appl.* **379** (2011), 512–517.

[3] Y. Abu Muhanna, R. M. Ali, Z. C. Ng and S. F. M Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, *J. Math. Anal. Appl.* **420** (2014), 124–136.

[4] L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, *J. Math. Anal. Appl.* **258** (2001), 429–447.

[5] M. B. Ahamed, Vasudevarao Allu and Himadri Halder, The Bohr phenomenon for analytic functions on simply connected domains, https://arxiv.org/pdf/2011.13890.pdf.

[6] L. Aizenberg, A. Aytuna and P. Djakov, An abstract approach to Bohr’s phenomenon, *Proc. Amer. Math. Soc.* **128** (9) (2000), 2611–2619.

[7] L. Aizenberg and N. Tarkhanov, A Bohr phenomenon for elliptic equations, *Proc. Lond. Math. Soc.* **82**(2) (2001), 385–401.

[8] L. Aizenberg, Generalization of results about the Bohr radius for power series, *Stud. Math.* **180** (2007), 161–168.

[9] R. M. Ali, R.W. Barnard and A.Yu. Solynin, A note on Bohr’s phenomenon for power series, *J. Math. Anal. Appl.* **449** (2017), 154-167.

[10] R. M. Ali, R.W. Barnard and A.Yu. Solynin, A note on Bohr’s phenomenon for power series, *J. Math. Anal. Appl.* **449** (2017), 154-167.

[11] S. A. Alkhaleefah, I.R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, *Proc. Amer. Math. Soc.* **147** (2019) 5263-5274.

[12] Vasudevarao Allu and Himadri Halder, Bohr inequality for certain harmonic mappings, see https://arxiv.org/pdf/2009.08683.pdf.

[13] Vasudevarao Allu and Himadri Halder, Bohr phenomenon for certain subclasses of Harmonic Mappings, see https://arxiv.org/pdf/2006.11622.pdf.

[14] C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, *Comput. Methods Funct. Theory*, **4** (1) (2004), 1–19.
Bohr radius for certain close-to-convex harmonic mappings

[15] H.P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (10) (1997), 2975–2979.

[16] B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl. 462 (2018), 1087-1098.

[17] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. s2-13 (1914), 1–5.

[18] A. Defant and L. Frerick, A logarithmic lower bound for multi-dimensional bohr radii, Israel J. Math. 152 (1) (2006), 17–28.

[19] P. L. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo) Springer-Verlag, 1983.

[20] P.L. Duren, Harmonic mapping in the plan, Cambridge University Press, (2004).

[21] S. Evdoridis, S. Ponnusamy and A. Rasila, Improved Bohr’s inequality for locally univalent harmonic mappings, Indag. Math. (N.S.) 30 (1) (2019), 201–213.

[22] Y. Huang, M.-S. Liu and S. Ponnusamy, Refined Bohr-type inequalities with area measure for bounded analytic functions, Anal. Math. Phys. 10, 50 (2020), 21 pages; https://doi.org/10.1007/s13324-020-000393-0.

[23] A. Ismagilov, I. R. Kayumov and S. Ponnusamy, Sharp Bohr type inequality, J. Math. Anal. Appl. 489 (2020), 124–147.

[24] Nirupam Ghosh and A. Vasudevarao, Some basic properties of certain subclass of harmonic univalent functions, Complex Var. Elliptic Equ. 63 (2018), 1687–1703.

[25] NIRUPAM GHOSH and A. VASUDEVARAO, On a subclass of harmonic close-to-convex mappings, Monatsh. Math. 188 (2019), 247-267.

[26] Nirupam Ghosh and A. Vasudevarao, On some subclasses of harmonic mappings, Bull. Aust. Math. Soc. 101 (2020), 130–140.

[27] I.R. Kayumov and S. Ponnusamy, Bohr-Rogosinski radius for analytic functions, preprint, see https://arxiv.org/abs/1708.05585.

[28] I.R. Kayumov and S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory, 17 (2017) 679–688.

[29] I.R. Kayumov, S. Ponnusamy and N. Shakhrov, Bohr radius for locally univalent harmonic mappings, Math. Nachr. 291 (2018), 1757-1768.

[30] A. Kayumova, I. R. Kayumov and S. Ponnusamy, Bohr’s inequality for harmonic mappings and beyond, Mathematics and computing, 245–256, Commun. Comput. Inf. Sci., 834, Springer, Singapore, 2018.

[31] I. R. Kayumov and S. Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl. 465(2018), 857–871.

[32] I.R. Kayumov and S. Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Math. 44 (2019) 301-310.

[33] I. R. Kayumov and S. Ponnusamy, Improved version of Bohr’s inequalities, C. R. Math. Acad. Sci. Paris 358 (5) (2020), 615–620.

[34] L. Li and S. Ponnusamy, Injectivity of sections of univalent harmonic mappings, Nonlinear Analysis 89 (2020), 276–283.

[35] G. Liu, Z. Liu and S. Ponnusamy, Refined Bohr inequality for bounded analytic functions, preprint, see https://arxiv.org/pdf/2006.08930.

[36] M. S. Liu and S. Ponnusamy, Multidimensional analogues of refined Bohr’s inequality, Proc. Amer. Math. Soc., (to appear).

[37] Vern I. Paulsen, Gelu Popescu and Dinesh Singh, On Bohr’s inequality, Proc. Lond. Math. Soc. s3-85 (2002), 493–512.

[38] S. Ponnusamy, R. Vijayakumar and K-J Wirths, New inequalities for the coefficients of unimodular bounded functions, Results Math (2020) 75 : 107.

[39] S. Ponnusamy, H. Yamamoto and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58 (1) (2013), 23–34.

[40] S. Ponnusamy and K-J Wirths, Bohr Type Inequalities for Functions with a Multiple Zero at the Origin, Compt. Method Funct. Theory, 20(2020), 550–570.
[41] G. Popescu, Multivariable Bohr inequalities, *Trans. Amer. Math. Soc.* **359**(11)(2007), 5283–5317.

[42] Derek K. Thomas, Nikola Tuneski and Allu Vasudevarao, Univalent functions. A primer, De Gruyter Studies in Mathematics, **69**. De Gruyter, Berlin, 2018.

Molla Basir Ahamed, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

Email address: mba15@iitbbs.ac.in

Vasudevarao Allu, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

Email address: avrao@iitbbs.ac.in

Himadri Halder, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

Email address: hh11@iitbbs.ac.in