The critical Casimir force in the superfluid phase: effect of fluctuations

Shyamal Biswas1,7, J K Bhattacharjee2, Himadri S Samanta3, Saugata Bhattacharyya4 and Bambi Hu5,6

1Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700 009, India
2SN Bose National Centre for Basic Sciences, Sector 3, JD Block, Salt Lake, Kolkata-700 098, India
3Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK
4Department of Physics, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata-700 006, India
5Centre for Nonlinear Studies, and BHKS Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong
6Department of Physics, University of Houston, Houston, TX 77204, USA

E-mail: sbiswas.phys.cu@gmail.com

\textit{New Journal of Physics} \textbf{12} (2010) 063039 (10pp)
Received 15 March 2010
Published 30 June 2010
Online at \url{http://www.njp.org/}
doi:10.1088/1367-2630/12/6/063039

Abstract. We have considered the critical Casimir force on a 4He film below and above the bulk λ point. We have explored the role of fluctuations around the mean field theory in a perturbative manner, and have substantially improved the mean field result of Zandi \textit{et al} (2007 \textit{Phys. Rev. E} \textbf{76} 030601(R)). The Casimir scaling function obtained by us approaches a universal constant ($-\zeta(3)/8\pi$) for $T \lesssim 2.13$ K.

7Author to whom any correspondence should be addressed.
1. Introduction

Recently, Garcia and Chan [1] and Ganshin et al [2] measured the Casimir force-induced thinning of the liquid 4He film near the bulk λ point ($T_\lambda = 2.1768 \, \text{K}$). They obtained a universal scaling function (ϑ) for the critical Casimir force below and above the λ point, and observed a dip minimum and a non-vanishing constant tail in the ϑ below the λ point. This experiment challenges our understanding of the finite size effects of the films near their bulk critical points. On this issue, the Casimir effects on different critical films have been the subject of a number of experimental [1]–[7] and theoretical [8]–[16] works within the last few years.

Although the scaling function was appreciably obtained by the Monte Carlo simulations of Hucht [10] and Vasilyev et al [11], yet this problem is still unsolved analytically. That the confinement of the critical fluctuations may give rise to a (classical) Casimir force was first proposed by Nightingale and Indekeu [17]. Thereafter, a renormalization group calculation for the ϑ above the T_λ was presented by Krech and Dietrich [18]. For $T < T_\lambda$, a mean field theory with the Ginzburg–Landau (G–L) model was recently presented by Zandi et al [9]. They obtained an analytic expression for the ϑ in terms of the maximum of the superfluid order parameter. By proposing that their mean field calculation could be improved by the confinement of the critical fluctuations (at the Gaussian level), they nicely improved their result only at the λ point.

We analytically improve the mean field result of Zandi et al [9] as proposed by them for $T < T_\lambda$. The improvement for $T > T_\lambda$ was already done by Krech and Dietrich [18] even beyond the Gaussian level. However, we present a physically motivated regularization technique for obtaining the critical Casimir force above the λ point. Thus we build a unified picture for the theory of critical Casimir force acting on a 4He film below and above the λ point. Our theory interestingly predicts the non-vanishing constant tail of ϑ as -0.0478, which agrees well with the numerical result of Hucht [10] but differs by a factor of 5 from the experimental value (-0.24) [2]. Nonetheless, it is a considerable improvement over the mean field calculation, which predicts it to be zero [9].

We start from the G–L model. For $T > T_\lambda$, we obtain the free energy in terms of the discrete Fourier modes. The Casimir force is then obtained in the Fisher–de Gennes form [19] by
applying the Poisson summation formula \cite{20}. The use of this summation formula distinguishes our approach from that of Krech and Dietrich \cite{18}. For \(T < T_\lambda \), we transform the critical fields by introducing the superfluid order parameter, and express the G–L free energy in a decoupled form of the mean field and fluctuating parts. The fluctuating part is treated as we do for \(T > T_\lambda \), and the mean field part is treated in the manner of Zandi \textit{et al} \cite{9}. It is necessary to know the maximum of the order parameter for plotting the mean field part of the Casimir force. Although the graphical solutions of the maximum of the order parameter are exact, yet the solutions do not appear in a closed form. We predict a closed form of the maximum of the order parameter from asymptotic analyses, and obtain an approximate mean field Casimir force that matches very well with the exact mean field result \cite{9}. Finally, we improve the mean field result by adding the contribution of the fluctuating part.

2. Free energy of the critical fluctuations for \(T > T_\lambda \)

According to the experimental setup, \(^4\)He vapor comes in contact with a plate, and upon liquefaction it forms a film of 238–340 Å thickness \cite{1, 2}. We consider the plate to be along the \(x–y \) plane of the co-ordinate system, the area of the film to be \(A \) and the thickness of the film to be \(L \) along the \(z \)-direction. Near the \(\lambda \) point \(^4\)He behaves critically, and its local free energy can be written in the G–L framework as

\[
F_l = \int d^3r \left[\frac{1}{2} |\nabla \phi(\mathbf{r})|^2 + \frac{a}{2} |\phi(\mathbf{r})|^2 + \frac{b}{4} |\phi(\mathbf{r})|^4 \right],
\]

(1)

where \(\phi(\mathbf{r}) = \phi_1(\mathbf{r}) + i\phi_2(\mathbf{r}) \) is a complex scalar critical field at the position vector \(\mathbf{r} = x\hat{i} + y\hat{j} + z\hat{k} \), \(a \) is the inverse square of the correlation length (\(\xi = \xi_0 t^{-\nu} \)), \(t = T/T_\lambda - 1 \) is the reduced temperature, \(\nu \) is the correlation length exponent and \(b \) is a positive coupling constant \cite{21, 22}. The quartic term in equation (1) is neglected in the Gaussian approximation.

Let us first calculate the Casimir force for \(T > T_\lambda \). In conformity with the Dirichlet boundary conditions, the Fourier expansion of the critical fields is given by \(\phi_{1,2}(\mathbf{r}) = \sqrt{2/L} \sum_{n=1}^{\infty} \phi_{1,2,n}(\mathbf{k}) \sin(n\pi z/L)e^{ik(x+yj)}(2\pi)^2. \) In the basis of the Fourier modes, we obtain the partition function \((Z = \int D[\phi_1]D[\phi_2]e^{-F_l/k_BT}) \) within the Gaussian approximation, and get the standard form of the free energy \(-k_BT \ln Z\) of the critical fluctuations of the film as \cite{18}

\[
F = 2 \times \frac{k_BT A}{2} \sum_{n=1}^{\infty} \int_0^{\infty} \ln\left(k^2 + a + \frac{n^2 \pi^2}{L^2} \right) \frac{k dk}{2\pi}.
\]

(2)

The factor 2 of the above equation comes from the fact that \(\phi \) has two components.

3. Critical Casimir force for \(T > T_\lambda \)

From equation (2) we get the force acting on the film as

\[
f_L = -\frac{\partial F}{\partial L} = 2 \frac{\pi^2 k_BT A}{L^3} S,
\]

(3)
where $S = \sum_{n=1}^{\infty} \int_{0}^{\infty} [n^2/(k^2 + a + (n^2 \pi^2 / L^2))] k \, dk/2\pi$. This expression can be recast as

$$S = \sum_{n=1}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} n^2 e^{-(k^2 + a + (n^2 \pi^2 / L^2)) t_1} \, dt_1 \, \frac{k \, dk}{2\pi}$$

$$= -\frac{1}{4\pi} \int_{0}^{\infty} t_1^{-1} e^{-\alpha t_1} \frac{\partial}{\partial \tau_1} \sum_{n=1}^{\infty} e^{-n^2 \tau_1} \, dt_1,$$

(4)

where $\tau_1 = t_1 \pi^2 / L^2$. Using the Poisson summation formula in equation (4), we recast equation (3) as

$$f_L = 2 \times \frac{A k_B T_\pi}{4L^3} \int_{0}^{\infty} \frac{1}{t_1} e^{-\alpha t_1} \left(\frac{\sqrt{\pi}}{4} \sum_{n=1}^{\infty} \frac{n^2 \pi^2}{\tau_1} e^{-n^2 \tau_2 / \tau_1} - \frac{\sqrt{\pi}}{\tau_1} \sum_{n=1}^{\infty} \frac{n^2 \pi^2}{\tau_1^2} e^{-n^2 \tau_2 / \tau_1} \right).$$

(5)

As $L \to \infty$, only the first term of the parentheses of equation (5) survives. This is the bulk force acting on the film. By the standard analytic continuation technique we get the expression of this bulk force as $f_{\infty} = 2 \times (A k_B T / 16) (a/\pi)^{3/2} \Gamma(-3/2)$. Subtracting this bulk part from f_L we get the Casimir force in the Fisher–de Gennes form [19] $f_C[L, t] = (A k_B T_\lambda / L^3) \vartheta(t)$, where $\vartheta(t)$ is the Casimir scaling function, which can be expressed in terms of a scaled temperature $\tau = L^{1/3} t$

$$\vartheta(\tau) = -2 \times \frac{1}{8\pi} \sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{2\pi^\nu}{\xi_0 n^2} + \frac{2\pi^2}{\nu n^3} \right) e^{-2\pi n^2 / \xi_0}.$$

(6)

We have $\nu = 1/2$ in the Gaussian as well as in the mean field approximations [22]. However, if we want to include the effect of the $|\phi|^4$ term within the above prescription, we must put $\nu = 0.67016$ ($\approx 2/3$) in equation (6) [1, 2, 22]. From equation (6) we get the value of $\vartheta(\tau)$ at the λ point as $-\xi(3)/4\pi = -0.0956$, which matches well with the experimental data obtained by Garcia and Chan [1]. The same number at the λ point was also obtained in [9, 18] with different regularization techniques. We need to know the value of ξ_0 for plotting the $\vartheta(\tau)$ against τ. The experimental value of ξ_0 for $T > T_\lambda$ varies from 1.2 to 1.43 Å [23–25]. With no a priori reason, we take $\xi_0 = 1.3$ Å for $T > T_\lambda$ [24].

4. Free energy of the critical fluctuations for $T < T_\lambda$

In addressing the situation below the λ point we note that the Casimir scaling function looks qualitatively similar to the ultrasonic attenuation and finite size specific heat (i.e. both have a peak below T_λ) [26, 27]. We anticipate that the Casimir effect for $T < T_\lambda$ can be thought of as coming from mean field and fluctuating parts. Splitting the ultrasonic attenuation into a sum of mean field and fluctuating parts was the original contribution of Landau and Khalatnikov, and it gives a good account of the ultrasonic attenuation below the λ point [28]. Here we show how a similar approach for the critical Casimir effect can be adopted below the λ point.

We return to equation (1) and note that for $T < T_\lambda$, a becomes negative, and accordingly we write $a = -|a|$. This leads to a broken symmetry, and we handle it by transforming the fields ϕ_2 and ϕ_1 to $\psi_2 = \phi_2$ and $\psi_1 = \phi_1 - m(z)$, where $m(z)$ is the superfluid order parameter. The expectation value $\langle \phi_1 \rangle$ is now z dependent because we are considering a finite size system in the z-direction and, consequently, we expect an inhomogeneity in the superfluid density ($\sim m^2(z)$).
The fields \(\psi_1, \psi_2 \) are such that \(\langle \psi_i \rangle = 0 \) \((i = 1, 2) \), and the local free energy in equation (1) in terms of \(\psi_1, \psi_2 \) becomes

\[
F_l = \int d^3(r) \left[\frac{1}{2} \left(\frac{d m}{d z} \right)^2 - \frac{|a|m^2}{2} + \frac{b m^4}{4} \right] \psi_1 + \frac{1}{2} \left(3m^2 - |a| \right) \psi_1^2 + \left(\nabla \psi_1 \right)^2 + \frac{1}{2} \left((bm^2 - |a|) \psi_2^2 + (\nabla \psi_2)^2 \right) + \left[bm \psi_1 (\psi_1^2 + \psi_2^2) + \frac{b}{4} (\psi_1^2 + \psi_2^2)^2 \right].
\]

(7)

The free energy can be minimized from the condition that \(\langle \delta F_l / \delta \psi_1 \rangle = 0 \), and can be recast from equation (7) as \(\left[- \frac{d^2 m}{dz^2} - |a|m + bm^3 \right] \psi_1 \) on average dominate over the higher order terms because \(|a|/b \approx m^2 \gg \langle \psi_i^2 \rangle \). Evaluation of the partition function from the extremized local free energy in equation (9) leads to

\[
Z = e^{\langle F_{int}/k_B T \rangle} Z_o \left[1 - \left(\frac{F_{int}}{k_B T} \right)_o + \frac{1}{2} \left(\frac{F_{int}}{k_B T} \right)_o^2 - \cdots \right]
\]

\[
\approx e^{\langle F_{int}/k_B T \rangle} Z_o e^{-\frac{1}{2} \langle (F_{int}/k_B T)_o \rangle - \langle (F_{int}/k_B T)_o^2 \rangle}.
\]

(10)

where \(Z_o = \int D[\psi_1] D[\psi_2] e^{-F_{cf}/k_B T} \) is the partition function for the (Gaussian) fluctuating part, and the expectation value \(\langle \cdots \rangle_o \) is taken with respect to \(F_o \). The free energy obtained from equation (10) is given by

\[
F = F_{int} + F_{cf} + k_B T \left[\frac{F_{int}}{k_B T}_o - \frac{1}{2} \left(\frac{F_{int}}{k_B T} \right)_o^2 + \cdots \right],
\]

(11)

where \(F_{cf} = -k_B T \ln Z_o \) is the (Gaussian) fluctuating part of the free energy for \(T < T_\lambda \).
5. Critical Casimir force for $T < T_\lambda$

5.1. Fluctuating contribution

The fluctuating part of the free energy in equation (11) can be recast in a special form of equation (2) as $F_{cf} = \frac{1}{2} k_B T \sum_{n=1}^{\infty} \int_0^\infty \left[\ln[k^2 + 2|a| + n^2 \pi^2 / L^2] + \ln[k^2 + n^2 \pi^2 / L^2] \right] dk / 2\pi$, which gives the Casimir scaling function

$$\vartheta_{cf}(\tau) = -\frac{1}{8\pi} \sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{2^{3/2} |\tau|^v}{\xi_0 n^2} + \frac{4|\tau|^{2v}}{n \xi_0^2} \right) e^{-\left(2^{3/2} n |\tau|^v\right)/\xi_0} - \frac{\zeta(3)}{8\pi}$$

by following the steps from equation (2) to (6).

Since $|a|/b \approx m^2 \gg \langle \psi^2 \rangle$ we can easily check from equation (11) that $F_{mf} \gg F_{cf} \gg \langle F_{int} \rangle_0$. Thus we can ignore the $\langle F_{int} \rangle_0$ terms in equation (11), and can expect that the Casimir force obtained from the fluctuating part would be much smaller than that obtained from the mean field part.

5.2. Mean field contribution

Let us now evaluate the Casimir scaling function from the mean field part (F_{mf}) in equation (11). From the consideration that the order parameter $m(z)$ is smooth and obeys the Dirichlet boundary conditions $m(0) = m(L) = 0$, $m(z)$ must be symmetric about $z = L/2$ and there would be a single maximum of $m(z)$ at $z = L/2$ for the lowest possible value of the mean field free energy. An analytical expression of the Casimir force ($-\partial F_{mf}/\partial L - \partial F_{mf}/\partial L|_{L \to \infty}$) from the mean field part F_{mf} (and from equation (8)) was nicely obtained in [9] in terms of $\eta = (b/2|a|)(m(L/2))^2$ as

$$f_{mf} = -\frac{A|a|^2}{b} \left[\frac{1}{4} - \eta(1 - \eta) \right].$$

In equation (13), η as well as the maximum of the order parameter is restricted by [9, 29]

$$L \sqrt{|a|} = \frac{2K(\eta/(1-\eta))}{\sqrt{1-\eta}},$$

where $K(x) = (\pi/2)[1 + x/4 + (9/64)x^2 + (25/256)x^3 + \cdots]$ is the complete elliptic integral of the first kind. Equation (14) gives the allowed range $0 \leq \eta < \frac{1}{2}$ for the corresponding domain $\pi \leq L \sqrt{|a|} < \infty$, and it can be exactly solved by the graphical method [29]. Although the graphical method does not provide η in a closed form of $L \sqrt{|a|}$, yet we can do so by the asymptotic analyses near $\eta \to 0$ and $\eta \to \frac{1}{2}$. For $L \sqrt{|a|} \to \infty$, the asymptotic solution of η in equation (14) is $\eta \to \frac{1}{2} \tanh^2(L \sqrt{|a|}/2)$ [29]. On the other hand, for $L \sqrt{|a|} \to \pi$, the asymptotic solution (up to the third order in η in equation (14)) is $\eta \to (2/3)(L \sqrt{\bar{a}}/\pi)^2(1 - (25/24)(L \sqrt{\bar{a}}/\pi)^2 + 1.04514(L \sqrt{\bar{a}}/\pi)^4 + \cdots)$, where $\bar{a} = |a| - \pi^2 / L^2$ [29]. Corresponding to

\footnote{For $L \sqrt{|a|} \to \infty$, the asymptotic solution in [29] was given as $\frac{1}{2} \coth^2$ instead of $\frac{1}{2} \tanh^2$. The asymptotic behavior of coth and tanh are the same.}
the above asymptotic solutions we can take a fitting function for the domain $\pi \leq L\sqrt{|a|} < \infty$ as [16, 29]

$$\eta(L\sqrt{|a|}) = \frac{1}{2} \tanh^2 \left(\frac{\sqrt{(L^2|a| - \pi^2)/2}}{2} \right).$$ \hspace{1cm} (15)

We see in figure 1 that all the asymptotic and graphical solutions match very well with equation (15). Hence, we consider equation (15) as an approximate solution for the rest of this paper.

With the consideration of equation (15), and that $\eta = 0$ [9] for $0 \leq L\sqrt{|a|} \leq \pi$, one can recast equation (13) in terms of the reduced temperature and the mean field correlation length as

$$f_{mf} = \begin{cases}
- \frac{A|\tau|^2}{4b\xi_0^4} & \text{for } \pi \geq L/\xi \geq 0, \\
- \frac{A|\tau|^2}{4b\xi_0^4} \text{sech}^4 \left(\frac{\sqrt{(L/\xi)^2 - \pi^2}}{8} \right) & \text{for } L/\xi \geq \pi.
\end{cases}$$ \hspace{1cm} (16)

From equation (16), a dip minimum with discontinuous slope is expected to occur at $L\sqrt{|a|} = \pi$. This point is fitted to the experimental dip at $\tau = -9.7$ [2]. The modifications to equation (16) would come from the higher-order fluctuating terms, and the primary correction would be to keep the form of the f_{mf} unaltered with the mean field ξ replaced by $\xi = \xi_0|\tau|^{-\nu}$, where ν to the lowest order in b is $\frac{1}{2} + \frac{1}{2}b(n + 2)$ [22]. Using the fixed point value of b we can get the usual ν at one loop order. We can safely assume that the effect of the different loops will be to make $\xi = \xi_0|\tau|^{-\nu}$ with ν acquiring the value 0.670 16 ($\approx 2/3$) correct to all orders [2, 22]. From equation (16) we get the modified mean field Casimir scaling function in terms of $\tau = L^{1/\nu} t$ as

$$\vartheta_{mf}(\tau) = \begin{cases}
- \frac{|\tau|^2}{4b\xi_0^4k_B T_\lambda} & \text{for } -9.7 \leq \tau \leq 0, \\
- \frac{|\tau|^2}{4b\xi_0^4k_B T_\lambda} \text{sech}^4 \left(\frac{\sqrt{|\tau|^{2\nu}/\xi_0^2 - \pi^2}}{8} \right) & \text{for } \tau \leq -9.7.
\end{cases}$$ \hspace{1cm} (17)
Figure 2. The continuous line for $\tau > 0$ follows equation (6) with $\xi_0 = 1.3 \, \text{Å}$ [24] and that for $\tau < 0$ follows equation (18) with $\xi_0 = 1.4593 \, \text{Å}$, $\frac{1}{4} b \xi_0^4 k_B T_\lambda = 0.013 \, 3547$ and $\nu = 0.670 \, 16$. The dashed line represents the exact mean field calculation of Zandi et al [9] with $\xi_0 = 1.4593 \, \text{Å}$, $\frac{1}{4} b \xi_0^4 k_B T_\lambda = 0.013 \, 8166$ and $\nu = 0.670 \, 16$. A few experimental points are taken from [1] for $\tau > 0$ and from [2] for $\tau < 0$.

If we plot equation (17) we must get almost the same result as obtained by Zandi et al [9]. However, we need to improve the mean field result (in equation (17)) by the confinement of the critical fluctuations as proposed by them.

5.3. Improvement of the mean field result

The net Casimir scaling function for $T < T_\lambda$ is obtained from equations (12) and (17), and is given by

$$\vartheta(\tau) = \vartheta_{\text{mf}}(\tau) + \vartheta_{\text{cf}}(\tau).$$

We plot the right-hand sides of equations (6) and (18) in figure 2. For $T > T_\lambda$, our theory matches very well with the experimental data of Garcia and Chan [1]. From figure 2 we also see that the ϑ approaches a constant $(-\zeta(3)/8\pi = -0.0478)$ for $\tau \lesssim -75.6 \, \text{Å}^{1/\nu}$ (with $L = 238 \, \text{Å}$) and for $T \lesssim 2.13 \, \text{K}$ as well. Although our theory for $T < T_\lambda$ does not match very well with the experimental data, yet it predicts the basic nature of the critical Casimir force, which is characterized by a non-vanishing constant tail [2]. It is of course clear from figure 2 that inclusion of the effect of the critical fluctuations substantially improves the exact mean field result of Zandi et al [9].

6. Conclusion

Complementing the numerical [10, 11, 14] and analytical [9, 12, 13, 15, 16, 18] works, we have given a unified theory for the critical Casimir force below and above the λ point in a single framework. In particular, we have explored the effect of the critical fluctuations in the Gaussian level over the mean field contribution [9].

The tail of the scaling function approaches a non-vanishing constant $-\zeta(3)/8\pi = -0.0478$ owing to the consideration of the two-component (ψ_1, ψ_2) critical fluctuations. Although this constant is closer to the numerical simulation result obtained by Hucht [10], yet it is nearly...
one-fifth of that obtained by the experimentalists [2]. On the other hand, this constant is zero in the mean field level [9]. Hence, our calculation of the Casimir scaling function goes beyond that of Zandi et al [9], and compares favorably with the numerical simulation of Hucht [10] and the experimental data of Garcia and Chan [1] and Ganshin et al [2].

It should be mentioned that the theory of the Casimir force for $T < T_{\lambda}$ was also improved by Zandi et al [30] with consideration of the confinement of the Goldstone modes and surface fluctuations, and that the thinning of the liquid ^4He film was first (but admittedly not very precisely) observed by Dionne and Hallock [31].

While the Casimir force for the quantum fluctuations of the electromagnetic field is observed within 10^{-12}N [32], the critical Casimir force considered by us is observed within 10^{-3}N [1, 2]. The confinement of the classical (critical) fluctuations of course is much stronger than that of the quantum (vacuum) fluctuations.

The experimental dip of the ϑ has been adjusted with the value of b, which nobody has determined (for the film) so far from the theoretical point of view. How to determine the parameter b for the film and how to calculate the Casimir force by considering the coupling between the mean field and fluctuating parts remain, to this day, as open problems.

Acknowledgments

S Biswas acknowledges the hospitality and financial support of the Department of Theoretical Physics of IACS and the CNS of Hong Kong Baptist University, where he did integral parts of the research work of this paper. The final part of his research work was sponsored by the University Grants Commission (UGC) under the UGC-Dr D S Kothari Postdoctoral Fellowship Scheme (no. F.4-2/2006(BSR)13-280/2008(BSR)).

References

[1] Garcia R and Chan M H W 1999 Phys. Rev. Lett. 83 1187
[2] Ganshin A, Scheidemantel S, Garcia R and Chan M H W 2006 Phys. Rev. Lett. 97 075301
[3] Mukhopadhyay A and Law B M 1999 Phys. Rev. Lett. 83 772
[4] Garcia R and Chan M H W 2002 Phys. Rev. Lett. 88 086101
[5] Fukuto M, Yano Y F and Pershan P S 2005 Phys. Rev. Lett. 94 135702
[6] Rafai S, Bonn D and Meunier J 2007 Physica A 386 31
[7] Hertlein C, Helden L, Gambassi A, Dietrich S and Bechinger C 2008 Nature 451 172
[8] Maciolek A and Dietrich S 2006 Europhys. Lett. 74 22
[9] Zandi R, Shackell A, Rudnick J, Kardar M and Chayes L P 2007 Phys. Rev. E 76 030601(R)
[10] Hucht A 2007 Phys. Rev. Lett. 99 185301
[11] Vasilyev O, Gambassi A, Maciolek A and Dietrich S 2007 Europhys. Lett. 80 60009
[12] Maciolek A, Gambassi A and Dietrich S 2007 Phys. Rev. E 76 031124
[13] Gruneberg D and Diehl H W 2008 Phys. Rev. B 77 115409
[14] Hasenbusch M 2009 J. Stat. Mech.: Theory Exp. P07031
[15] Dohm V 2009 Europhys. Lett. 86 20001
[16] Biswas S 2010 Physica A 389 2541
[17] Nightingale M P and Indekeu J O 1985 Phys. Rev. Lett. 54 1824
[18] Krech M and Dietrich S 1992 Phys. Rev. A 46 1886
[19] Fisher M E and de Gennes P G 1978 C. R. Acad. Sci. (Paris) B 287 207

New Journal of Physics 12 (2010) 063039 (http://www.njp.org/)
[20] Biswas S 2007 J. Phys. A: Math. Theor. 40 9969
 Biswas S 2007 Eur. Phys. J. D 42 109
[21] Bhattacharyya S and Bhattacharjee J K 1999 Phys. Rev. B 60 R746
[22] Barber M N 1977 Phys. Rep. 29 2
[23] Ihas G G and Pobell F 1974 Phys. Rev. A 9 1278
[24] Avenel O and Varoquaux E 1985 Phys. Rev. Lett. 55 2704
[25] Gasparini F M, Kimball M O, Mooney K P and Avila M D 2008 Rev. Mod. Phys. 80 1009
[26] Ferrell R A and Bhattacharjee J K 1981 Phys. Rev. B 23 2434(R)
[27] Rhee I, Gasparini F M and Bishop D J 1989 Phys. Rev. Lett. 63 410
[28] Landau L D and Khalatnikov I M 1951 Sov. Phys.—Dokl. 96 469
 Landau L D and Khalatnikov I M 1965 Collected Papers of L D Landau ed D ter Haar (New York: Gordon
 and Breach) p 626 (Engl. Transl.)
[29] Biswas S, Bhattacharjee J K, Majumder D, Saha K and Chakravarty N 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085305
[30] Zandi R, Rudnick J and Kardar M 2004 Phys. Rev. Lett. 93 155302
[31] Dionne R J and Hallock R B 1989 AIP Conf. Proc. 194 199
[32] Mohideen U and Roy A 1998 Phys. Rev. Lett. 81 4549
 Bressi G, Carugno G, Onofrio R and Ruoso G 2002 Phys. Rev. Lett. 88 041804

New Journal of Physics 12 (2010) 063039 (http://www.njp.org/)