Single Nucleotide Polymorphisms (SNPs) of \textit{RAD51}-G172T and \textit{XRCC2}-41657C/T Homologous Recombination Repair Genes and the Risk of Triple- Negative Breast Cancer in Polish Women

Magdalena M. Michalska · Dariusz Samulak · Hanna Romanowicz · Beata Smolarz

Received: 26 October 2013 / Accepted: 20 February 2015 / Published online: 7 March 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Double strand DNA breaks are the most dangerous DNA damage which, if non-repaired or misrepaired, may result in genomic instability, cancer transformation or cell death. \textit{RAD51} and \textit{XRCC2} encode proteins that are important for the repair of double-strand DNA breaks by homologous recombination. Therefore, genetic variability in these genes may contribute to the occurrence and progression of triple-negative breast cancer. The polymorphisms of the \textit{XRCC2} gene -41657C/T (rs718282) and of the \textit{RAD51} gene, −172G/T (rs1801321), were investigated by PCR-RFLP in 70 patients with triple-negative breast cancer and 70 age- and sex matched non-cancer controls. The obtained results demonstrated a significant positive association between the \textit{RAD51} T/T genotype and TNBC, with an adjusted odds ratio (OR) of 4.94 (\textit{p}=0.001). The homozygous T/T genotype was found in 60 \% of TNBC cases and in 14 \% of the used controls. Variant 172 T allele of \textit{RAD51} increased cancer risk (OR=2.81 (1.72–4.58), \textit{p}<0.0001). No significant associations were observed between -41657C/T genotype of \textit{XRCC2} and the incidence of TNBC. There were no significant differences between the distribution of \textit{XRCC2} -41657C/T genotypes in the subgroups assigned to histological grades. The obtained results indicate that the polymorphism of \textit{RAD51}, but not of \textit{XRCC2} gene, may be positively associated with the incidence of triple-negative breast carcinoma in the population of Polish women.

Keywords \textit{RAD51} · \textit{XRCC2} · Triple negative breast cancer · Gene polymorphism

Introduction

Triple-negative breast cancer (TNBC) is a subtype of breast cancer defined by the lack of expression of estrogen, progesterone and HER-2 (human epidermal receptor-2) receptors. TNBC refers to about 15–20 \% of all breast cancer cases. It is characterised by worse clinical outcome, poor prognosis and absence of prognostic indicators [1–5].

Mutations in DNA of double-strand breaks (DSB) repair genes are involved in the pathogenesis of tumours, however, it is still unclear whether any defects in this pathway may play any role in the aetiology of triple-negative breast cancer.

DSB in DNA may be rectified either by homologous recombination (HR) or non-homologous end joining (NHEJ) [6, 7].

\textit{RAD51} is involved in the homologous recombination and repair of double-strand breaks in DNA and DNA cross-links and is responsible for the maintenance of chromosome stability [8].

\textit{RAD51} gene has been mapped to chromosome 15q14-15 and is polymorphic in nature. The involvement of \textit{RAD51} in the DNA repair determines its potential role in maintaining genetic stability, which is disturbed in cancer. Therefore the
problem of genetic variability of the RAD51 gene in cancer is worthy studying. A substitution G/T at position 172 in 5' untranslated region of the RAD51 gene (the 172G/T 5'UTR polymorphism) has been reported as a possible factor to affect the RAD51 mRNA stability [8, 9]. 172G/T polymorphism of RAD51 is located in the regulatory element of the RAD51 promoter and is suggested to be associated with messenger RNA expression [8, 9].

In literature, many of researches suggest that 5'UTR polymorphism of RAD51 gene may contribute to mammary carcinogenesis. However, the reported results have rather been inconsistent [10–16].

XRCC2 gene, located in 7q36.1, is an essential part of the homologous recombination repair pathway and a functional candidate for involvement in cancer progression [17].

It is known that polymorphisms in XRCC2 may modify individual susceptibility to breast cancers [13, 14, 18–20]. Common variants within XRCC2, particularly a coding single nucleotide polymorphism (SNP) in exon 3 (Arg188His, R188H, rs3218536), have in recent studies been identified may be associated with a significantly increased risk of breast cancer [13, 14, 18–20].

Unfortunately, it is difficult to find in the literature reports directly binding -41657C/T SNP in DNA repair gene XRCC2 with breast cancer occurrence.

Because little is known on the association between RAD51-172G/T and XRCC2-41657C/T polymorphisms and TNBC, it was studied whether the polymorphisms in the two genes, being involved in the homologous recombination of double-strand breaks, could have been linked with the risk for triple-negative breast cancer in that Polish population.

Materials and Methods

Patients with Triple- Negative Breast Cancer

A total of 70 patients with histologically-proven diagnosis of TNBC were included in the reported study. The distributions of sociodemographic characteristics, lifestyle risk factors and clinical characteristics of the patients are shown in Tables 1 and 2, respectively. Paraffin embedded tumour tissue specimens were obtained from women with triple-negative breast carcinoma, treated at the Department of Oncology, Institute of Polish Mothers Memorial Hospital, between 2000–2013. The age of the patients ranged in from 36 to 68 years (the mean age 46.2±10.12). The median follow-up of patients at the time of analysis was 38 months (the range: 2–70 months). The average tumor size was 20 mm (the range 17–32 mm). All the diagnosed tumours were graded by criteria of the Scarf-Bloom-Richardson. DNA from non-cancerous breast tissue (n=70) served as control (mean age 45.41±

| Table 1 Characteristics of breast cancer patientsa with questionnaire data |
|------------------------|------------------|
| Characteristics | Number of cases (%) |
| Age (years) | |
| <45 | 27 (39) |
| 45–54 | 15 (21) |
| 55–64 | 18 (26) |
| >64 | 10 (14) |
| Family history of breast cancerb | |
| Yes | 25 (36) |
| No | 45 (64) |
| BMI (body mass index) (kg/m²) | |
| <24.9 | 25 (36) |
| 25–29.9 | 20 (28) |
| >30 | 25 (36) |
| Smoking statusc | |
| Never | 23 (33) |
| Ever | 27 (39) |
| Moderate | 10 (14) |
| Heavy | 10 (14) |
| Alcohol intakeed | |
| Never/rare | 22 (31) |
| Light | 18 (26) |
| Moderate | 10 (14) |
| Heavy | 9 (13) |
| Ex-drinker | 11 (16) |
| Menarche (years) | |
| 10 | 5 (7) |
| 11 | 18 (26) |
| 12 | 19 (27) |
| 13 | 13 (19) |
| 14 | 10 (14) |
| ≥15 | 5 (7) |
| Parity | |
| Nulliparous | 25 (36) |
| 1 | 15 (21) |
| 2 | 16 (23) |
| 3 | 9 (13) |
| 5 | 7 (7) |
| Menopause status | |
| Premenopausal | 30 (43) |
| Postmenopausal | 40 (57) |
| Use of menopausal hormonesf | |
| Never | 37 (53) |
| Estrogen | 33 (57) |

a n=70
b Family history defined as self-reporting of at least one first-degree relative with known breast cancer
c Non-smoking patients (never), patients smoking 10 cigarettes per day for 10 years (ever), patients smoking 20 cigarettes per day for 20 years (moderate) and patients smoking 20 cigarettes per day for thirty years (heavy)
d Never/rare, <1 U/week; light, 1–8.9 U/week; moderate, 9–17.9 U/week; heavy, ≥18 U/week; where 1 U=22 g ethanol
The Local Ethical Committee approved the study and each patient gave a written consent for participation in the study.

Breast tissue samples (cancerous and non-cancerous) were routinely fixed in formaldehyde, embedded in paraffin, cut into thin slices and stained with haematoxylin/eosin for pathological examination. DNA for analysis was obtained from archival pathological paraffin-embedded tumour specimens and from samples of non-cancerous breast tissue, which were deparaffinised in xylene and rehydrated in ethanol and distilled water. In order to ensure that the chosen histological material was representative for cancerous and non-cancerous tissue, each tissue sample, qualified for DNA extraction, was initially checked by a pathologist. DNA was extracted from the material, using a commercially available QIAmp DNA purification kit (Qiagen GmbH, Hilden, Germany), according to the manufacturer’s instruction.

Genotype Determination

The PCR-restriction fragment length polymorphism method (PCR-RFLP) was used to detect the genotypes of the -41657C/T and -172G/T polymorphisms as described previously [21–23].

Statistical Analysis

For each polymorphism, departure of the genotype distribution from that expected from Hardy-Weinberg equilibrium was assessed using the standard χ^2-test. Genotype frequencies in the study cases and the controls were compared by χ^2-test. Genotype specific risks were estimated as odds ratios (ORs) with associated 95% intervals (CIs) by unconditional logistic regression. P-values < 0.05 were considered significant. All the statistical analyses were performed, using the STATISTICA 6.0 software (Statsoft, Tulsa, Oklahoma, USA).

Results

Table 3 shows genotype distribution of RAD51 polymorphism, illustrating the difference between the patients with TNBC and the controls. The Table clearly indicates significant differences ($p<0.05$) between the two investigated groups. A weak association was observed between the occurrence of triple-negative breast carcinoma and the presence of G/T and T/T genotypes. A stronger association was observed for T/T homozygotes than for G/T heterozygotes. Variant 172 T allele of RAD51 increased cancer risk. The frequencies of G/G, G/T and T/T genotypes, observed in the study patients, differed significantly ($p<0.05$) from the distribution values, as expected from the Hardy-Weinberg equilibrium.

Table 3 Distribution of RAD51 genotype and allele frequencies in patients with triple-negative breast cancer and in control groups

172G/T	Patients with TNBC n=70	Controls n=70	OR (95% CI)	p<0.05
G/G	17 (24%)	20 (29%)	1.00 Ref	
G/T	11 (16%)	40 (57%)	0.32 (0.13–0.82)	0.028
T/T	42 (60%)	10 (14%)	4.94 (1.91–12.71)	0.001

Data in bold font are statistically significant

a Crude odds ratio (OR), 95% CI=confidence interval at 95%

b Chi square
No statistically significant differences were observed between the control group and the patients with triple-negative breast cancer, regarding either allele or genotype frequencies of \(XRCC2 \, -41657C/T \) gene polymorphism (see Table 4).

Scarf-Bloom-Richardson grading was related to \(RAD51 \) and \(XRCC2 \) polymorphisms. Histological grade was evaluated in all the cases \((n=70)\), where 20 cases were of grade I, 45 of grade II and 5 of grade III. Grade II and III were grouped together for the purposes of statistical analysis (see Table 5). No differences were observed in those groups between \(RAD51 \) and \(XRCC2 \) genotype distributions, while a lack of correlation was demonstrated between genotypes of the identified polymorphisms and TNBC invasiveness.

We did not find any association of the \(XRCC2 \) and \(RAD51 \) polymorphisms in patients group with cancer progression assessed by breast cancer with \((N+)\) and without \((N-)\) lymph node metastases \((p>0.05)\). Our data did not demonstrate any statistically significant correlation between \(RAD51 \) and \(XRCC2 \) polymorphisms and the risk factors for breast cancer, such as BMI (body mass index), smoking status, alcohol consumption, menarche, menopause status, reproductive histories, exogenous hormone use and medical history (data not shown).

Discussion

Breast cancer classification is in constant evolution, as advances in molecular pathology as well as immunohistochemical staining allow researchers to define the molecular heterogeneity of different disease subtypes and to guide the selection of appropriate treatment. The triple negative phenotype, defined as the lack of estrogen receptor, progesterone receptor and HER-2 expression, represents approximately 15-20 % of breast cancer cases and has a worse clinical outcome and prognosis than other breast cancer subtypes [1–5].

As it has already been mentioned above, little is known on the association between the homologous recombination repair \(RAD51 \) and \(XRCC2 \) SNPs and triple-negative breast cancer.

Therefore, it was attempted to investigate the role of genetic variation in homologous recombination repair genes and the risk of TNBC.

As mentioned in Introduction mutations in DNA double-strand breaks repair genes are involved in the pathogenesis of tumours. Defects in this pathway may play a role in development and progression of breast cancer [24, 25].

In the literature, many reports confirm the significance \(RAD51 \) gene polymorphisms in the 5'UTR, regarding the risk of breast carcinoma [16, 26–28]. However, the reported results have rather been inconsistent [10–16].

No significant associations were observed between the 172G/T and breast cancer in Korean women. The genotype distributions of \(RAD51 \) SNP did not differ significantly from Hardy-Weinberg equilibrium \((P>0.05)\) and the frequencies of minor alleles were 0.13 for \(RAD51 \) 135C and 0.05 for \(RAD51 \) 172 T. When the two loci in the same gene were evaluated for Table 4 Distribution of \(XRCC2 \) genotype and allele frequencies in patients with triple-negative breast cancer and in control groups

\(-41657C/T \)	Patients with TNBC \(n=70 \)	Controls \(n=70 \)
\(C/C \)	18 (26 %)	17 (24 %)
\(C/T \)	35 (50 %)	37 (53 %)
\(T/T \)	17 (24 %)	16 (23 %)
\(C \)	71 (51 %)	71 (51 %)
\(T \)	69 (49 %)	69 (49 %)

\(a \)Crude odds ratio (OR), 95 % CI confidence interval at 95 %

\(b \) Chi square
linkage disequilibrium, two loci in RAD51 gene (135G/C and 171G/T) were in negative linkage disequilibrium [15].

Shin et al. examined the role of SNPs in RAD51 repair genes and the risk of breast cancer. In the reported study, the 135G/C but not 172G/T polymorphism, of RAD51 gene, was associated with breast carcinoma occurrence [16].

Other experimental study confirms the significance RAD51 gene G135C polymorphism, regarding the risk of breast carcinoma [10–14].

The role of -41657C/T variation of XRCC2 in breast cancer is still unknown. Some reports documented that the XRCC2 -41657C/T genotype was related to increased esophageal squamous cell carcinoma (ESCC), gastric cardia adenocarcinoma (GCA) and in smoking-drinking-related laryngeal cancer risk [22, 29].

It appears from literature review that RAD51 and XRCC2 polymorphisms have been investigated in various types of malignancy. A large number of studies confirm a significant role of the influence of specific genetic variants on repair phenotype and cancer risk [29–34].

Unfortunately, it is difficult to find reports in the available literature, which would directly bind RAD51 and XRCC2 SNP in DNA repair gene by HR with clinical-pathological features of breast tumour. Only in single studies the researchers suggest that the homologous recombination repair gene polymorphism may play some role in the development of breast carcinoma [13].

Two single nucleotide polymorphisms of XRCC2-41657C/T, and RAD51-172G/T were investigated in the reported study, as well as their association with human triple-negative breast cancer.

In literature, neither XRCC2-41657C/T nor RAD51-172G/T polymorphism is correlated with risk of breast cancer [15, 16]. What are important, recent reports introduce the role of RAD51 135G/C polymorphism in the development of triple-negative breast cancer [27].

In the recent studies, 135G/C polymorphism of RAD51 may be associated with an elevated tumour risk in the Polish populations, regarding TNBC [28], while there are still no data, which would be illustrating the significance of RAD51 polymorphism for triple-negative breast cancer development in other populations.

The obtained results confirm the important role of RAD51 G172T polymorphism for TNBC occurrence in Poland. In the reported study, RAD51 T/T genotype increased the risk of breast cancer in the Polish population. There was a 4.94-fold increased risk of breast carcinoma for RAD51 T/T genotype carriers, compared with subjects with RAD51 G/G, G/T genotype. The 172 T allele increased the risk of TNBC. RAD51 G172T polymorphism was not related to cancer grade. It is possible that the presence of the 172 T allele is in some disequilibrium with another, so far unknown, mutation, located outside the coding region in RAD51 gene, which may be of importance for RAD51 concentration in plasma.

No significant associations were observed between -41657C/T genotype of XRCC2 and the incidence of TNBC in the Polish women.

In conclusion, the obtained data confirm the important role of RAD51 172G/T - but not of -41657C/T of XRCC2 gene polymorphism in triple-negative breast cancer aetiology.

Finally, we suggest that RAD51 172G/T may be used as a prognostic factor of precancerous lesions, predicting TNBC in the Polish population. Further studies are required, regarding the role of these genes in the aetiology of triple-negative breast cancer.

Conflict of Interests The authors declare that there are no conflicts of interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer 109:1721–1728
2. Chacón RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12:S3
3. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244
4. Dawson SJ, Provenzano E, Caldas C (2009) Triple negative breast cancers: clinical and prognostic implications. Eur J Cancer 45:27–40
5. de Ruiter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC (2011) Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 137:183–192
6. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696
7. Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115
8. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135
9. Hasselbach L, Haase S, Fischer D, Kolberg HC, Stürzbecher HW (2005) Characterisation of the promoter region of the human DNA-repair gene RAD51. Eur J Gynaecol Oncol 26:589–598
10. Antoniou AC, Sinilnikova OM, Simard J et al (2007) RAD51 135G>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200
11. Krivokuca AM, Malisic EJ, Dobricic JD, Brotto KV, Cavic MR, Jankovic RN, Tomasevic ZL, Brankovic-Magic MV (2014) RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women. Fam Cancer 13:173–80
12. Wang W, Li JL, He XF, Li AP, Cai YL, Xu N, Sun SM, Wu BY (2013) Association between the RAD51 135 G>C polymorphism and risk of cancer: a meta-analysis of 19,068 cases and 22,630 controls. PLoS ONE 8:e75153
13. Romanowicz-Makowska H, Smolarz B, Zadrozyñ M, Westfa B, Baszczyñski J, Kokolazwili G, Burzyñski M, Polañ I, Sporny S (2012) The association between polymorphisms of the RAD51-G135C, XRCC2-Arg188His and XRCC3-Thr241Met genes and clinicopathologic features in breast cancer in Poland. Eur J Gynaecol Oncol 33:145–150

14. Romanowicz-Makowska H, Smolarz B, Zadrozyñ M, Westfa B, Baszczyñski J, Polañ I, Sporny S (2011) Single nucleotide polymorphisms in the homologous recombination repair genes and breast cancer risk in Polish women. Tohoku J Exp Med 224:201–208

15. Lee KM, Choi JY, Kang C, Kang CP, Park SK, Cho H, Cho DY, Yoo M.M. Michalska et al. (2012) Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 11: 4620–4626

16. Shin A, Lee KM, Ahn B, Park CG, Noh SK, Park DY, Ahn SH, Yoo Kang D (2008) 5′ untranslated region of DNA repair gene genetic polymorphisms and DNA repair capacity. Asian Pac J Cancer Prev 9:501–505

17. Kuschel B, Auranen A, McBride S (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–40722

18. Thacker J, Zdzienicka MZ (2004) The XRCC genes: expanding roles in DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. DNA Repair (Amst) 3:1081–1090

19. Silva SN, Tomar M, Paulo C, Gomes BC, Azevedo AP, Teixeira V, Pina JE, Rueff J, Gaspar JF (2010) Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol 34:85–92

20. Lin WY, Camp NJ, Cannon-Albright LA et al (2011) A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet 48:477–484

21. Sliwinski T, Krupa R, Majsterek I et al (2005) Polymorphisms of the BRCa2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94:105–109

22. Wang N, Xiu-juan D, Rong-miao Z, Wei G, Xiao-juan Z, Yan L (2009) An investigation on the polymorphisms of two DNA repair genes and susceptibility to ESCC and GCA of high-incidence region in northern China. Mol Biol Rep 36:357–364

23. Lu J, Wang LE, Xiong P, Sturgis EM, Spitz MR, Wei Q (2007) 172G–T variant in the 5′ untranslated region of DNA repair gene RAD51 reduces risk of squamous cell carcinoma of the head and neck and interacts with a P53 codon 72 variant. Carcinogenesis 28: 988–994

24. Davidson JM, Gorrinne KL, Chin SF, Orsetti B, Besret C, Courtayan-Cahen C, Roberts I, Theillet C, Caldas C, Edwards PA (2000) Molecular cytogenetic analysis of breast cancer cell lines. Br J Cancer 83:1309–1317

25. Loveday RL, Greenman J, Simcox DL, Speirs V, Drew PJ, Monson JR, Kerin MJ (2000) Genetic changes in breast cancer detected by comparative genomic hybridisation. Int J Cancer 86:494–500

26. Zhao M, Chen P, Dong Y, Zhu X, Zhang X (2014) Relationship between RAD51 G135C and G172T variants and the susceptibility to cancer: a meta-analysis involving 54 case-control studies. PLoS ONE 9:e87259

27. Smolarz B, Zadrozyñ M, Duda-Szymañska J, Makowska M, Samulak D, Michalska MM, Mojs E, Bрыş M, Forra E, Romanowicz-Makowska H (2013) RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol 64:39–43

28. Hosseini M, Houshandmand M, Ebrahimim A (2013) RAD51 polymorphisms and breast cancer risk. Mol Biol Rep 40:665–668

29. Romanowicz-Makowska H, Smolarz B, Gajacka M, Kiefer K, Rydzanicz M, Kaczmarczyk D, Olszewski J, Szyfter K, Baslajk J, Morawiec-Sztandera A (2012) Polymorphism of the DNA repair genes RAD51 and XRCC2 in smoking- and drinking-related laryngeal cancer in a Polish population. Arch Med Sci 8:1065–1075

30. Improta G, Sgambato A, Bianchino G, Zupa A, Grieco V, La Torre G, Traficante A, cittadini A (2008) Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Res 28:2941–2946

31. Lu PH, Li C, Zhou HY, Wang T, Chu CQ, Shen W, Tao GQ (2011) Same data sources, different pooled analysis result: the ongoing uncertainty in the subgroup analysis of RAD51 135G/C polymorphism and breast cancer risk. Breast Cancer Res Treat 125:299–300

32. Sliwinski T, Walczak A, Magdewski K et al (2010) Polymorphisms of the XRCC3 C722T and the RAD51 G135C genes and the risk of head and neck cancer in a polish population. Exp Mol Pathol 89:358–366

33. Li F, Li C, Zeng Z, Ma N, Gao X (2011) XRCC3 T241M polymorphism and bladder cancer risk: a meta-analysis. Urology 77:511–515

34. Smolarz B, Samulak D, Michalska M, Gόralczyk B, Szyfter K, Lewy J, Sporny S, Kokolazwili G, Burzyñski M, Romanowicz-Makowska H (2011) 135G>C and 172G>T polymorphism in the 5′ untranslated region of RAD51 and sporadic endometrial cancer risk in Polish women. Pol J Pathol 62:157–162