Quantum nonlocality through entanglement plays a key role as a resource in quantum teleportation, cryptography and error-correcting codes. There exists, however, another nonlocal phenomenon: quantum nonlocality without entanglement [1]. It is connected with certain unentangled states (UOB) in n letter we analyze the set of orthonormal bases consisting of unextendible product basis [1–3]. In this work is involved with the criteria for recognizing such states are determined up to phase, to think about them unambiguously we must consider them to be elements of Hilbert spaces is an Unentangled Orthogonal Basis (UOB). Bennett et al, in their study of quantum nonlocality without entanglement, noted the lack of LOCC (local operations and classical communication) distinguishability for a specific 3 qubit UOB. In general, for n qubits, we prove that in its natural structure as a real variety, the space of UOB is a bouquet of products of Riemann spheres parametrized by a class of edge colorings of hypercubes. Its irreducible components of maximum dimension are products of $2^n - 1$ two-spheres. Using a theorem of Walgate and Hardy, we observe that the LOCC distinguishable UOB are exactly those in the maximum dimensional components.

Up to phase, the element $v_1 \otimes v_2 \cdots \otimes v_n$ is considered to be $[v_1] \otimes [v_2] \otimes \cdots \otimes [v_n]$. On \mathbb{P}^1 we define a real analytic fixed point free involution:

$$[v] \mapsto [\bar{v}],$$

which assigns to $[v]$ the line $[\bar{v}]$ perpendicular to it (i.e. $\langle v, \bar{v} \rangle = 0$). If S is a set of elements of \mathbb{P}^1 then \hat{S} denotes the set of $[s]$ for $[s]$ in S.

Our first goal is to turn the determination of all UOB into a combinatorial problem on the hypercube Q_n. We think of the vertices of the hypercube as the vectors in \mathbb{R}^n with coordinates in the set $\{0, 1\}^n$, and consider this to be binary expansions of numbers $0, 1, \ldots, 2^n - 1$. We also view Q_n as a graph with vertices 0, 1, ..., $2^n - 1$; its edges are the pairs of numbers whose binary expansions differ in exactly one digit (i.e. pairs with Hamming distance 1).

Let $u_0, u_1, \ldots, u_{2^n - 1}$ be a UOB, and write its states as

$$[u_j] = [u_{j1}] \otimes [u_{j2}] \otimes \cdots \otimes [u_{jn}].$$

As observed above, if $i \neq j$ then at least one pair $\{[u_{ki}], [u_{kj}]\}$ must be of the form $\{[v], [\bar{v}]\}$. We consider the subset of \mathbb{P}^1 that is the set $\mathcal{T} = \{[u_{kj}] | k = 1, \ldots, n, j = 0, \ldots, 2^n - 1\}$. We divide \mathcal{T} into two disjoint pieces \mathcal{T}_0 and \mathcal{T}_1 such that $\mathcal{T}_i \cap \mathcal{T}_j = \emptyset$, $i = 0, 1$. This implies that if $[\bar{t}] \in \mathcal{T}_0$ and if $[\bar{t}] \in \mathcal{T}$ then $[\bar{t}] \in \mathcal{T}_1$ and vice-versa. To each $[u_j]$ we assign a vector $s_j = (s_{j1}, s_{j2}, \ldots, s_{jn})$ distinct such that its k–th coordinate is 0 if $[u_{kj}] \in \mathcal{T}_0$ or 1 if $[u_{kj}] \in \mathcal{T}_1$. We note that if we assign to s_j the corresponding element

$$[s_j] = (s_{j1}s_{j2} \cdots s_{jn}),$$

then by its very definition $\{[s_j] | j = 0, \ldots, 2^n - 1\}$ is an orthonormal set. This implies that the two sets \mathcal{T}_0 and \mathcal{T}_1 each consist of exactly half of the elements of \mathcal{T} and that $\mathcal{T}_i = \mathcal{T}_{\bar{i}}$. Reordering \mathcal{T}, let $\mathcal{T}_0 = \{t_1, \ldots, t_r\}$, such that s_j is just the binary expansion of j. Assume a palette of colors c_1, c_2, \ldots, c_r is available. From this palette, we assign to each vertex of Q_n an n–tuple of colors taken
from c_j with $1 \leq j \leq r$, such that if the i-factor of u_j is t_j or t_j^*, we assign to it the color c_j. This is equivalent to coloring the edges of Q_n. Indeed, let $a\rightarrow b$ be an edge, so a and b differ in exactly one component, which, by orthonormality, has the same color in both a and b. We give the edge $a\rightarrow b$ that color. Conversely, given an edge-coloring of Q_n, we can assign an n-tuple of colors to each vertex as follows. For the vertex a and component i, let a^i be the unique vertex with all its components the same as those of a except for the i-th which is opposite. We assign the i-th component of vertex a the color of edge $a\rightarrow a^i$.

Definition 1 A coloring of Q_n is said to be admissible if for every pair of vertices there is a component, i, so that one vertex has a 0 in the i-th position and the other has a 1 and both are assigned the same color in that position.

If we have a coloring of Q_n with colors c_1, ..., c_k and $[u_1], ..., [u_k]$ are elements of \mathbb{P}^1 then we assign to each vertex $s = s_1s_2...s_n$ a product state (up to phase): if the i-component has color c_i and $s_i = 0$ then put $[u_i]$ in the i-th position; if $s_i = 1$ put $[\hat{u}_i]$ in the i-th position. For example, for $n = 3$ we have the admissible coloring:

```
\begin{tabular}{ccc}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11 \\
\end{tabular}
```

Here $c_1 = \text{green}$, $c_2 = \text{blue}$, $c_3 = \text{red}$, $c_4 = \text{orange}$, $c_5 = \text{purple}$, $c_6 = \text{cyan}$ and $c_7 = \text{brown}$. The procedure assigns the UOB:

$$[u_3] \otimes [u_2] \otimes [u_1], [u_3] \otimes [u_2] \otimes [\hat{u}_1],$$

$$[u_3] \otimes [\hat{u}_2] \otimes [u_4], [u_3] \otimes [\hat{u}_2] \otimes [\hat{u}_4],$$

$$[\hat{u}_3] \otimes [u_5] \otimes [u_6], [\hat{u}_3] \otimes [u_5] \otimes [\hat{u}_6],$$

$$[\hat{u}_3] \otimes [\hat{u}_5] \otimes [u_1], [\hat{u}_3] \otimes [\hat{u}_5] \otimes [\hat{u}_7].$$

(1)

We give the set of UOB of H_n, U_n, its subspace topology in the set of 2^n–tuples of elements of the projective space on H_n, $\mathbb{P}(H_n)$.

Proposition 2 Fix a palette of colors c_1, ..., c_k, ... To each admissible coloring, C, of Q_n with k colors the procedure above yields an injective, continuous mapping

$$\Phi_C : (\mathbb{P}^1)^k \rightarrow U_n.$$

The union of the images of Φ_C running through all admissible colorings is all of U_n.

For each coloring C the map Φ_C is a homeomorphism onto its image. Thus U_n is a finite union of smooth manifolds diffeomorphic with $(\mathbb{P}^1)^k$ for k running through the cardinalities of admissible colorings of Q_n. We introduce a partial order on the set of colorings of Q_n.

Definition 3 If C_1, C_2 are colorings of Q_n then $C_1 \lessdot C_2$ if the colors used in C_1 form a subset, S, of those used in C_2 and the set of edges that were colored in C_2 by color $c \notin S$ all have their color replaced by a color in S.

Lemma 4 Up to changing the names of the admissible colors $C_1 \lessdot C_2$ if and only if the image of Φ_{C_1} is contained in that of Φ_{C_2}.

We make some observations about this ordering. If C is a coloring of Q_n let $C(i)$ denote the colors of the edges with vertices that differ in the i-th position. We change the colors of each $C(i)$ so that $C(i) \cap C(j) = \emptyset$ if $i \neq j$. Thus in a maximal coloring every vertex has n distinct colors. There is a unique minimal coloring (up to changing the names of the colors): the coloring with one color. This coloring yields the tensor product of the standard orthogonal bases of \mathbb{C}^2.

Theorem 6 implies that the admissible coloring of Q_3 above is maximal and has the maximum number of colors, 7. This implies that U_n can be thought of as a bouquet of some fourteen dimensional real manifolds and some lower dimensional ones corresponding to maximal colorings with less than 7 colors. Here is an example of a maximal coloring of Q_3 with 6 colors:

In preparation for our main theorem we give a recursive algorithm for admissibly coloring Q_n with $2^n - 1$ colors, which the theorem asserts is the maximum number. Also Theorem 6 implies this is the only way, up to permuting indices, to color Q_n admissibly with $2^n - 1$ colors.

Lemma 5 Let C_0 and C_1 be admissible colorings of Q_{n-1}. Writing Q_n as $0 \times Q_{n-1} \cup 1 \times Q_{n-1}$ and choosing a new color c then we color Q_n as follows: all first coordinates are colored with color c if the first index is 0 (respectively 1) then the rest of the indices are colored as in C_0 (resp. C_1). This recipe yields an admissible coloring. In particular, if C_0 and C_1 both use $2^{n-1} - 1$ colors without any repetitions between the colors, then the number of colors is $2^n - 1$ for the coloring of Q_n.

Below is an example of this method for Q_5 (it uses the algorithm starting with the Q_3 example above with 7 colors to get a Q_4 coloring with 15 colors and then another application to get 31 colors).

![Diagram of a 5-dimensional hypercube]

In the proof of the following result we will only use the admissibility of every 2-face of an admissible coloring.

Theorem 6 (i) Let Q_n be admissibly colored. Then there exists a subforest F (i.e. a subgraph with no circuits) of Q_n that has edges of every possible color in Q_n.

(ii) The maximum number of colors in an admissible coloring of Q_n is $2^n - 1$.

(iii) Q_n is admissibly colored with $2^n - 1$ colors if and only if some forest in Q_n containing all of its colors each exactly once is a tree that contains all the vertices of Q_n.

(iv) If Q_n is admissibly colored with $2^n - 1$ colors then every subcube Q_m where $m < n$ is also admissibly colored with $2^m - 1$ colors.

Proof. We first show how one can derive (ii) and (iii) from (i). To prove (ii) we note that if a forest consists of k disjoint trees and m vertices then the number of edges is at most $m - k$. Thus if F is the forest asserted in (i) then $m \leq 2^n$. As the number of colors is at most the number of its edges, we have that the number of colors is at most $2^n - k$, with k the number of connected components (disjoint trees). This proves (ii).

To prove (iii) consider F, a subforest of Q_n containing $2^n - 1$ edges. Then it must contain at least 2^n vertices and the number of connected components is 1. If Q_n is admissibly colored and if F is a tree containing all of its colors each exactly once and all of the vertices of Q_n then since the number of edges is $2^n - 1$, that must be the number of colors.

We now prove (i) by induction on n. If $n = 1, 2$, the result is obvious. So we assume (i) for $n - 1 \geq 2$ and prove the result for n. Let Q_n' be the set of elements of Q_n with first coordinate j with $j = 0$ or 1. We take each to be an $n - 1$ subcube and give each the coloring that it inherits from Q_n. The inductive hypothesis implies that for each of these cubes there is respectively a sub-forest $F \subset Q_n'$ and $G \subset Q_n'$ as in (i). From G we delete all the edges with colors that are in F. We now take H to be $F \cup G$ with a subset of edges not in the Q_n' (we call such edges vertical) adjoined that contain all of the colors of Q_n not contained in $F \cup G$ each exactly once. If we show that H has no cycles then (i) is proved. Suppose on the contrary there is a cycle in H. Then it cannot stay in F and vertical edges or in G and vertical edges. Thus we may assume that it starts in F at p_1 immediately goes vertical along v_1 then passes through q_1, q_2, \ldots, q_k in G and then goes vertical along the edge v_2 which connects to $q \in F$. The circuit may not be as yet closed but we now show that this is enough for a contradiction. In fact, we show that v_1 and v_2 must have the same color. Indeed, consider the following diagram:

\[
\begin{align*}
q_1 &\to q_2 \to q_3 \cdots \to q_{k-1} \to q_k \\
v_1 &\uparrow w_1 \uparrow w_2 \uparrow \cdots \uparrow w_{k-2} \uparrow v_2 \uparrow \\
p_1 &\to p_2 \to p_3 \cdots \cdots \to p_{k-1} \to q
\end{align*}
\]

In this diagram only the q_i, p_1, q_1 are guaranteed to be vertices in H and only v_1 and v_2 are vertical edges in H. However, each of the

\[
q_i \to q_{i+1} \\
v_i \uparrow w_i \uparrow w_{i+1} \\
p_i \to p_{i+1}
\]

is a 2 dimensional subcube of Q_n. Since the edge $q_i \to q_{i+1}$ is in G and $p_i \to p_{i+1}$ is an edge of Q_n^0, the two edges have different colors. This implies that w_i and w_{i+1} have the same color (by admissibility). The argument applies to the first and last square also so we see that v_1 and v_2 have the same color contrary to the choice of edges to include.

Before we prove (iv) we recall a property of the forest T that was found in the proof of (iii). There is no path in T that starts in F continues in G and returns to F. We now prove (iv). We note that it is enough to prove this for codimension one subcubes with the inherited coloring. If we choose one such subcube we rotate it so that it is Q_n^0. We now consider the forests T and F. Since Q_n has $2^n - 1$ colors T must be connected. According to (iii) we will be done if we show that F is connected. To prove this we consider x, y vertices in F. Since T is connected there must be a path from x to y in T. This path cannot leave F and return to F. Thus it stays in F.

Theorem 7 Let Q_n be admissibly colored with $2^n - 1$ distinct colors. Then there exists a direction for which all 2^{n-1} edges in that direction have the same color.

Proof. We first note that the theorem can be proved directly for $n = 2, 3$. We also observe that if Q_3 is colored admissibly with 7 colors then if 3 out of 4 of the edges in the same direction have the same color then so does the fourth. The proof is by induction. Suppose $n \geq 4$ and the lemma is true for Q_{n-1}. We suppose that we have a
maximal coloring of Q_n with $2^n - 1$ distinct colors. As before, let us split the Q_n into two $n - 1$ dimensional subcubes, the top and the bottom. Let us call them $Q^{(0)}$ for the bottom and $Q^{(1)}$ for the top. The edges between them we call vertical. If all the vertical edges are of the same color, we are done. So suppose that there are at least two distinct colors on the vertical edges. Let us call the vertical direction the x_n-direction, taking the naming convention as if the cube was embedded in \mathbb{R}^n with vertices $\{0,1\}^n$.

The inductive hypothesis implies that there exists some direction, let us call it the x_1-direction, in which all the edges in $Q^{(0)}$ are of the same color, let us say the color red. We wish to show that all the edges in the x_1-direction in $Q^{(1)}$ are also red. Since not all vertical edges are of the same color, there must exist some 3 dimensional subcube Q' of Q_n, which has edges in the x_1-direction, the vertical x_n-direction, and some other third direction x_j, such that not all vertical edges in Q' are of the same color. The cube Q' has the maximum, 7, colors, therefore one of its directions has all edges of the same color. It cannot be the x_j-direction because the x_1-direction bottom edges are red, so we cannot have the two bottom x_j-direction edges also of the same color by Theorem 6(iv) (we would have a face with only 2 colors on a maximally colored 3-cube). Our choice of Q' implies that it is not the vertical x_n-direction that has all the same color. Hence all the x_1-direction edges in Q' are of the same color, and so they are all red.

Next pick an “adjacent” cube Q'' with edges in the x_1-direction, x_n-direction and x_k-direction for some k, such that Q'' and Q' share an (x_1, x_n)-face. The two bottom edges in the x_1-direction in Q'' are red, and also the two edges in the x_1-direction on the face it shares with Q' are red. So Q'' has at least 3 red edges in the x_1-direction, and as it is colored with the maximum, 7, colors, all edges in the x_1-direction in Q'' are red. We repeat this procedure until we have shown that all edges in the x_1-direction in the top cube $Q^{(1)}$ are red completing the proof.

At this point we see that up to permuting the components of Q_n (and then putting them back in order of the algorithm), Lemma 4 yields all colorings with a maximum number of colors. Thus in our description of the set of all UOB as a bouquet of products of \mathbb{P}^1 given by the maps Φ_C for an admissible coloring of Q_n, the components of highest dimension $(2n+1) - 2$ are described up to permutation of factors and order as the images of Φ_C with C given by the algorithm. Thus we have

Theorem 8 The irreducible components of maximum dimension of the variety of UOB are up to permutation of factors the images of Φ_C with C given by the algorithm in Lemma 4. In fact, after reordering factors we can write such a component as

$$B = \{[a] \otimes B_1, [\bar{a}] \otimes B_2\},$$

where $B_i, i = 1, 2$ are images of $\Phi_{C,i=1,2}$ respectively with C_1, C_2 colorings of Q_{n-1} given by the algorithm in Lemma 4.

We now consider LOCC distinguishability of elements of an n-qubit UOB. We are given an unknown n-qubit state in a UOB, and allowed a protocol in which we can perform a sequence of local unitary transformations and local measurements on qubits (local operations), where the choice of which qubit to measure at each step can depend on the outcomes of the previous measurements (classical communication). We ask if this LOCC information can determine with certainty which basis element was presented. Let us consider the two families of UOB in three qubits corresponding to the first two displayed colorings above. The first is an example of a coloring, C, with the maximum, 7, colors. We consider the corresponding bases, of the form $\Phi_C([u_1], \ldots, [u_7])$, as in eq. $[1]$, and look at the basis state $[u_3] \otimes [u_2] \otimes [u_4]$. We note that if the first measurement is in the first qubit (after applying the local unitary transformation taking $[0]$ and $[1]$ to $[u_3]$ and $[\bar{u}_2]$ respectively), then the outcome is $[u_3]$ with certainty. From a second measurement in the second qubit (after applying the local unitary transformation taking $[0]$ and $[1]$ to $[u_2]$ and $[\bar{u}_2]$ respectively), the outcome is $[u_2]$ with certainty. Similarly the measurement in the third qubit must be $[u_4]$ with certainty. We therefore have the correct state with certainty. Notice that the order of measurement is critical. We now consider the second example which is a maximal coloring of Q_3 using 6 colors. This examples appears in $[1]$, where it is shown that there is no ordered set of local transformations and measurements for the UOB of the form $\Phi_C([u_1], \ldots, [u_6])$, with $[u_i] \neq [u_j]$, that will determine a basis element with certainty.

Theorem 5 implies that the discussion above for $\Phi_C([u_1], \ldots, [u_{2n-1}])$ for an admissible coloring of Q_n with $2^n - 1$ colors will work as long as the order is adapted to the algorithm, in Lemma 4 that is used to construct the coloring. Theorem 1 of Walgate and Hardy $[2]$ has the immediate implication that if C is a maximal coloring of Q_n with $k < 2^n - 1$ colors then there is no such ordered set of measurements that will identify with certainty a specific state in $\Phi_C([u_1], \ldots, [u_k])$, if all of the u_i that appear in a given factor are distinct. This can also be seen as a direct consequence of Theorem 6 in $[3]$ and substantiates our claims.

The authors thank Gilad Gour for pointing out the work of $[1]$ and $[3]$ on nonlocality without entanglement and for his patient explanation of LOCC to the third named author.

* Jiří Lebl was partially supported by NSF grant DMS-1362337 and Oklahoma State University’s DIG and ASR
grants.

† lebl@math.okstate.edu
‡ Asif Shakeel was partially supported by NSF award PHY-0955518.
§ Nolan Wallach was partially supported by NSF grant DMS-0963035.
¶ ashakeel@ucsd.edu, nwallach@ucsd.edu

[1] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999).
[2] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Communications in Mathematical Physics 238, 379 (2003).
[3] B. Somshubhro, A. Cosentino, N. Johnston, V. Russo, J. Watrous, and Y. Nengkun, arXiv:1408.6981 [quant-ph] (2014).
[4] J. Walgate and L. Hardy, Phys. Rev. Lett. 89, 147901 (2002).
[5] J. Lebl, A. Shakeel, and N. R. Wallach, to appear.
[6] N. R. Wallach, Contemp. Math. 305, 291 (2002).