Long-term PM$_{2.5}$ exposure and depressive symptoms in China: a quasi-experimental study

Tao Xue1,* Tianjia Guan2, Yixuan Zheng3, Guannan Geng4, Qiang Zhang5, Yao Yao6 and Tong Zhu7*

1. Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China, 100191
2. School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730
3. Center for Regional Air Quality Simulation and Control, Chinese Academy for Environmental Planning, Beijing, China, 100012
4. School of Environment, Tsinghua University, Beijing China, 100086
5. Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing China, 100086
6. Center for Healthy Aging and Development Studies, Raioss Institute for Advanced Studies, National School of Development, Peking University, Beijing, China
7. BIC-ESAT and SKL-ESPC, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871

* Corresponding authors: Tong Zhu (tzhu@pku.edu.cn) and Tao Xue (txue@hs.pku.edu.cn)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background
Air pollutants, particularly fine particulate matters (PM$_{2.5}$) have been associated with mental disorder such as depression. Clean air policy (CAP, i.e., a series of emission-control actions) has been shown to reduce the public health burden of air pollutants. There were few studies on the health effects of CAP on mental health, particularly, in low-income and middle-income countries (LMICs). We investigated the association between a stringent CAP and depressive symptoms among general adults in China.

Methods
We used three waves (2011, 2013 and 2015) of the China Health and Retirement Longitudinal Study (CHARLS), a prospective nationwide cohort of the middle-aged and older population in China. We assessed exposure to PM$_{2.5}$ through a satellite-retrieved dataset. We implemented a difference-in-differences (DID) approach, under the quasi-experimental framework of the temporal contrast between 2011 (before the CAP) and 2015 (after the CAP), to evaluate the effect of CAP on depressive symptoms. The association was further explored using a mixed-effects model of the three waves. To increase the interpretability, the estimated impact of PM$_{2.5}$ was compared to that of aging, an established risk factor for depression.

Findings
Our analysis included 15,954 participants. In the DID model, we found a 10-μg/m3 reduction of PM$_{2.5}$ concentration was associated with a 4.14% (95% CI: 0.41–8.00%) decrement in the depressive score. The estimate was similar to that from the mixed-effects model (3.63% [95% CI, 2.00–5.27%]). We also found improved air quality during 2011-2015 offset the negative impact from 5-years’ aging.

Interpretation
The findings suggest that implementing CAP may improve mental wellbeing of adults in China and other LMICs.

Funding
National Natural Science Foundation and Ministry of Science and Technology of China, and Energy Foundation.
Introduction

Mental disorders have contributed to a large proportion of the global burden of diseases by causing either non-fatal (e.g., disability) or fatal outcomes (e.g., suicide). Mental illness is the leading cause of years lived with disability (YLD), and the related disease burden increased by 37.6% from 1990 to 2010. The increased burden of mental illness may be caused by both demographic dynamics, and changes in relevant risk factors, such as inactive lifestyles and environmental pollutants. For instance, 37.5% of the increase in depression-associated YLDs during 1990-2010 were attributable to population growth and ageing. Recent epidemiological evidence suggests that air pollution may adversely affect mental health and thus increase the disability burden. Due to the ubiquitous and prolonged exposure to ambient pollutants, particularly in low-income and middle-income countries (LMICs), air quality can be a major contributor to mental illness, such as depression. In addition, some LMICs, such as China, started to implement a series of emission-control policies, which are usually known as the clean air policy (CAP). However, few studies examined the effects of CAP on mental health, particularly in LMICs.

To address severe air pollution issues and protect public health, the State Council of China promulgated the toughest-ever air pollution control on September 10, 2013, including optimization of the industrial structure, improvements in end-of-pipe control, and reductions in residential usage of unclean fuels. The policy is officially named as Air Pollution Prevention and Control Action Plan. It is comparable with similar policies in developed countries (e.g., United States), and is thus referred as CAP for short, hereafter. The long-term concentrations of fine particulate matter less than 2.5 μm in diameter (PM$_{2.5}$), the major air pollutant in China, decreased rapidly nationwide from 67.4 μg/m3 in 2013 to 45.5 μg/m3 in 2017. This dramatic change in air quality provides an opportunity to study the mental effect of PM$_{2.5}$ under a quasi-experimental scenario. A quasi-experiment can result in a shape contrast of air pollution levels during a relatively short period, which is advantageous to indicate causal by controlling unmeasured and omitted confounders.

In this study, we evaluated the association between long-term PM$_{2.5}$ exposure and depressive symptoms, under the quasi-experimental framework of the temporal contrast between 2011 (before the actions) and 2015 (after the actions). We made use of the China Health and Retirement Longitudinal Study (CHARLS), which repeatedly measured the depressive score (CES-D-10, 10-item of Center for Epidemiologic Studies Depression Scale) of a representative sample of middle-aged and older Chinese adults in 2011, 2013, and 2015. Due to the overlap between the CHARLS study period and the duration of China’s clean air actions, we were able to associate the reduction of concentrations of PM$_{2.5}$ to depressive score changes at the individual level, and to quantify the impact of improved air quality on
adult mental health. Because the CES-D-10 is not clinically indicative, interpreting the impact of air quality is difficult. To increase interpretability, we further compared the effect of PM$_{2.5}$ concentrations to that of human aging, an established risk factor for poor mental health.12,20

Methods

Study population

The studied adults were obtained from the China Health and Retirement Longitudinal Study (CHARLS).19,21 CHARLS is an ongoing nationwide longitudinal survey on the health and socioeconomic status of middle-aged and older Chinese adults. Using a four-stage and well-established sample design, CHARLS researchers recruited a representative sample of ~20,000 Chinese adults from ~150 county-level units in 2011 (Figure 1). Subsequently, well-trained fieldworkers regularly visited the respondents every 2 years (Figure S1), and thus surveyed a national-scale cohort of Chinese adults. In each survey wave, all subjects were visited by well-trained interviewers in a face-to-face computer-assisted personal interview, which gathered data on demographic characteristics, behavioral risk factors, the residential city, and housing conditions. Details of the study design and the purpose of the CHARLS are provided elsewhere.19 All procedures involving human subjects/patients were approved by the Ethics Review Committee of Peking University (IRB00001052–11015). CHARLS has supported studies on mental health risk factors22 and the effects of air pollution on other outcomes.23 This study utilized the open-accessed CHARLS data, which is publicly available from the website: http://opendata.pku.edu.cn/. All analyses in this study adhered to the data usage guidelines.

This study was based on currently available data from CHARLS surveys in 2011, 2013, and 2015, which involved a sample of 24,805 individual adults. To conduct a longitudinal analysis, we focused on the valid records of older adults (\geq 40 years old), who were visited at least twice. A total of 16,151 adults remained after excluding subjects who were only observed once. We further excluded the adults without age data (which was derived from the time of the survey and the birthdate) and adults <40 years old at survey time. Finally, this study involved 41,031 observations of 15,954 individual adults distributed across 447 communities in 126 cities and counties (Figure 1). The data cleaning diagram is displayed in Figure S1.

Environmental exposure

The ambient exposure assessment was based on the PM$_{2.5}$ Hindcast Database for China (2000–2016) introduced in our previous work.24 The database can be accessed from the website: http://www.meicmodel.org/dataset-phd.html. Due to the lack of nationwide
monitoring data on PM$_{2.5}$ concentrations in China before 2013, historical PM$_{2.5}$ concentrations were estimated from satellite remote-sensing measurements and outputs from a chemical transport model (CTM) of air pollution emission inventories. Satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer, retrieve the column concentrations of aerosols from the earth’s surface to the top of the atmosphere by measuring electromagnetic signals. Satellite-based annual estimates of PM$_{2.5}$ have been applied in many health-related studies at the national and global scales.13,25 The CTM simulations were based on the multi-resolution emission inventory for China (http://www.meicmodel.org/index.html). The results provide a complete characterization of the spatiotemporal variations in PM$_{2.5}$ concentrations and have been applied to support studies on health risk assessments and relevant policy analyses in China.16,26 In a previous study,24 we developed a machine-learning model to bring the satellite measurements and CTM simulations together by relating them to the nationwide monitoring concentrations of PM$_{2.5}$ from 2013 to 2016, and then applied the model to hindcast the PM$_{2.5}$ values before 2013. The estimator was in good agreement with the in-situ observations on monthly ($R^2 = 0.71$) and yearly scales ($R^2 = 0.77$) and has been utilized in other epidemiological studies. Please refer to our previous study for more details on the PM$_{2.5}$ estimator.24

The original PM$_{2.5}$ data have a spatial resolution of 0.1° × 0.1° and daily concentrations across the mainland of China, during 2000–2016. For consistency, exposure assessments before and after 2013 were based on the estimated PM$_{2.5}$ concentrations. The subjects in the CHARLS could only be geo-coded to each participant’s regionalization code due to confidential reason. Therefore, we first pooled the PM$_{2.5}$ data into city-level averages by matching the pixels of a regular grid with a map of China’s prefectures (Figure 1), and further calculated the monthly averages. We utilized the PM$_{2.5}$ concentration averages during the 12 months preceding the surveyed months as the exposure values (Figure S1).

We also obtained gridded estimates of temperature with an original resolution of 0.1° × 0.1° by fusing the satellite measurements of land surface temperatures, in-situ observations, and simulations from a weather-forecast research model.3 The three types of temperature values were assembled by day using a universal kriging approach. Random cross-validations indicated that the fused estimates were in good agreement with the monitored values ($R^2 = 0.96$). Details of the temperature data assembly are documented in our previous study.3 City-level monthly averages for temperature data were also calculated for each record before the regression analyses.

Measurement of depressive symptoms
The mental health status of the subjects was measured using the 10-item Center for Epidemiologic Studies Depression scale (CES-D-10). The validity of the CES-D-10 has been examined among Chinese adults. Each question measures the frequency of a specific type of negative mood (e.g., fearful or depressed) using a score of 0 (rarely or none), 1 (some days), 2 (occasionally), or 3 (most of the time). The CES-D-10 questions were included into the standard CHARLS questionnaires, which were collected during a computer-assisted interview by fieldworkers. We calculated the sum of all question-specific scores as the depressive score (CES-D-10) to indicate the general status of depressive symptoms for each subject. The depressive score ranges from 0 to 30, with a higher score indicating a higher severity of depressive symptoms.

Statistical analyses

We applied multiple methods to evaluate the effect of CAP and to derive the association between PM$_{2.5}$ and CES-D-10. Relationships of the methods and their different properties are presented in Figure S1.

First, we utilized the difference-in-difference (DID) approach, the typical model in quasi-experiments. The conventional DID model was designed for binary exposure (as illustrated in the preliminary analysis, Figure S2). Because PM$_{2.5}$ is a continuous variable, a regression analysis of the association between changes in PM$_{2.5}$ and CES-D-10 score was performed in our DID analysis. More details on the DID model are documented in Supplemental text (S1).

Next, to make full use of the data, we conducted a longitudinal analysis of the repeated measurements on CES-D-10 score and PM$_{2.5}$ exposure using a mixed-effects model. Therefore, the modelling results were referred as longitudinal associations hereafter. The aim of the longitudinal analysis was to clarify the impact of PM$_{2.5}$ exposure by comparing it with the impact of other risk factors.

Additionally, the fixed-effects model is a generalized version of the DID method that can incorporate more than two repeated measurements. It is also identical to the random-effects model, except for modelling subject-specific effects with a batch of dummy variables instead of random terms (Figure S1). A longitudinal regression with fixed effects is considered less biased, but also less efficient, than a comparable regression with random effects. The fixed-effects model was utilized to examine the robustness of the longitudinal associations.

Finally, the hypothesis test on whether CAP affected depression was relied on the DID model, because it directly mimics the scenarios with and without CAP (Figure S2), and thus...
is the canonical method to evaluate the effect of the policy. For the quantitative association between PM_{2.5} and CES-D-10 score, we relied on the mixed-effects model due to its efficacy and reliability. The overall conclusion was relied on the consistency between estimates from different models, by examining whether (1) the direction of association or its significance level was changed between models and (2) the estimated confidential intervals were overlapped with each other.

Longitudinal association analyses

The mixed-effects model was specified as follows:

\[
\log(\text{score}_{i,j}) = \beta_0 + \beta_1 \text{PM}_{2.5,i,j} + \beta_2 \text{age}_{i,j} + \beta_3 (\text{PM}_{2.5,i,j} \times \text{age}_{i,j}) + \mathbf{z}_{i,j} \gamma + \text{city}_i + \eta(\text{community}_i) + \lambda(i) \ldots (1)
\]

where \(i\) denotes the subject index; \(j\) denotes the visit index; \(\beta\) denotes the intercept; \(\beta_{-3}\) denote the regression coefficients for PM_{2.5}, age, and their interaction term, respectively; \(\mathbf{z}_{i,j}\) denotes a set of adjusted covariates and \(\gamma\) denotes the corresponding coefficients; \(\text{city}_i\) denotes a fixed effect to control the unmeasured city-specific risk factors of depression, such as traditional culture \(^3\); and \(\lambda\) and \(\eta\) denote two random slopes to model the correlations between records from the same subject or the same community, respectively. The adjusted covariates (\(\mathbf{z}_{i,j}\)) included (1) annual temperature; (2) demographic characteristics (urban/rural residency, sex, education level, and marriage status); (3) lifestyle risk factors (smoking and drinking); (4) housing conditions (cooking energy type, building type, residential rent payment, presence of an in-house telephone, and indoor temperature maintenance). The regression incorporating all the above covariates was termed the fully adjusted model. The model might be too complex to produce a stable estimator, and a large fraction of the regressed samples involved the imputed missing values, which increased the uncertainty of the model. To examine whether the estimated associations were sensitive to these limitations, besides the full adjustment, we also applied a standard adjustment, which involved only the first three sets of covariates, demographic characteristics, and lifestyle risk factors. The association was also evaluated by ER, similar to the DID model.

Sensitivity analyses

In sensitivity analyses of the longitudinal model, we explored how the estimated association between PM_{2.5} concentration and the CES-D-10 score varied with (1) sub-regions of the study domain (Figure 1), (2) demographic sub-groups, and (3) exposure levels. Considering the balanced sample sizes (Figure 1), we divided the study domain into three sub-regions: Midwest (\(n = 13,886\)), North (\(n = 11,488\)) and Southeast (\(n = 15,657\)) China. We utilized
interaction analyses to explore the modifications on the effect of PM$_{2.5}$ concentrations by a sub-region indicator or demographic characteristic (e.g., sex), and replaced the linear term of PM$_{2.5}$ concentration in the regression model with a penalized spline term to examine the linearity of the effect. We also conducted parallel analyses for the association between age and the CES-D-10 score to compare the effect of PM$_{2.5}$ concentration to that of population aging. Finally, we also utilized a bootstrap method to evaluate how the lack of geographic addresses impacted the estimated association. To protect confidentiality, CHARLS only released the city-level geographic information, which could introduce exposure measurement errors into the association estimation. We applied a bootstrap method to incorporate uncertainty embedded in the data-generation procedure into the model estimation. Details of the bootstrap method were documented in supplemental text (S2).

Assessment of impact of PM$_{2.5}$

To illustrate the impact of the changes in air quality on depression, we conducted a post-hoc analysis based on the 9,123 adults who participated in all three CHARLS waves. We first calculated the change in one risk factor ($\Delta x_i = x_{i,2011} - x_{i,2015}$, $x =$ PM$_{2.5}$, age, or z) from 2011 to 2015, and quantified its impact on CES-D-10 score as $[\exp(\Delta x_i \beta_i) - 1] \times 100\%$. We compared the impact of the risk factors in the association model with standard adjustment, and focused on the combined impact of PM$_{2.5}$ reduction and population aging in a group of adults.

All statistical analyses were performed using R (version 3.3.2; R Foundation for Statistical Computing, Vienna, Austria). The linear mixed-effects and fixed-effects models were inferred using the lme4 package and the plm package, respectively. Imputation was performed using the mice package. Inverse probability weights were calculated using the ipw package. Penalized spline functions were parameterized using the mgcv package, and inference of the nonlinear mixed-effects models was done using the gamm4 package. The relevant R codes are documented in the Supplementary materials.

Role of the funding source

The funding source of the study had no role in the study design, data collection, data analysis, data interpretation, or drafting of the manuscript. The corresponding authors had full access to all study data and are responsible for the decision to submit for publication.

Results

Descriptive summary
This study involved 15,954 adults, and each was visited an average of 2.6 times. In 2011, the mean age of the adults was 58.4 years (standard deviation: 9.4 years). In the 2011, 2013, or 2015 CHARLS wave, the mean CES-D-10 score was 8.3, 7.8 or 8.1, and the corresponding concentration of PM$_{2.5}$ was 61.6, 60.3 or 53.1 μg/m3, respectively. A summary of the demographic information of the adults in our study is presented in Table 1. The longitudinal variables, including environmental exposures, are summarized in Table 2. More detailed descriptions on the studied adults are documented in supplemental text (S3).

Effect of clean air policy on depression

A DID model of the 10,725 adults who participated in CHARLS 2011 and 2015 showed that the PM$_{2.5}$ reduction after CAP was associated with decreased risk of depression. Figure 2 presents the estimated effect of PM$_{2.5}$ on the CES-D-10 score, with the adjusted covariates of the DID models. The results of the different models were statistically comparable, considering uncertainties. The estimates consistently suggested that long-term exposure to PM$_{2.5}$ was significantly related to the CES-D-10 score. Based on the estimated ER from the standard model (Figure 2), a 10 μg/m3 reduction in PM$_{2.5}$ concentration was associated with a 4.14% (95% confidence interval [CI]: 0.41–8.00%) decrease in the CES-D-10 score. In sensitivity analyses of DID model, the results were not significantly changed if we changed the settings to control for the effect of clustering of the samples, or did not weigh the samples according to the probability of the reduction in PM$_{2.5}$ (Figure S3). However, the estimated effects in the unweighted models were slightly weaker than the weighted results. For instance, after removing the inverse probability weights, the standard DID model yielded an ER of 2.80% (95% CI: -0.59%, 6.48%). Because the samples were not optimally randomized (Figure S4), the unweighted estimates (Figure S3) could be slightly biased. To improve the interpretation of the DID model, we also conducted a preliminary analysis based on a binary PM$_{2.5}$ variable, which is documented in supplemental text (S4).

Longitudinal association between PM$_{2.5}$ and depression score

Based on the 41,031 samples from the three CHARLS waves, we quantified the association between PM$_{2.5}$ and CES-D-10 score using a longitudinal model (Figure 2). Although the point-estimates from the longitudinal models were slightly lower than those from the DID models, the two types of models reported comparable effects of PM$_{2.5}$ on the CES-D-10 score. Additionally, because the longitudinal models incorporated more samples, they had narrower CIs than the DID models. Adjusting for confounders, except age, did not significantly change the longitudinal results. As the studied population ages, a model that does not control for the effect of aging could yield a biased result. According to the model with standard adjustments, a 10 μg/m3 change in PM$_{2.5}$ concentration was positive...
associated with a 3.63% (95% CI: 2.00–5.27%) change in the CES-D-10 score (Figure 2 and Table S2). The results of the longitudinal models are listed in Table S2.

In sensitivity analyses, we showed that the association between PM$_{2.5}$ concentration and the CES-D-10 score did not vary significantly between sub-populations (Figure S5). The sub-region analysis, which displayed a weak association in the north but strong associations in the Midwest and southeast ($P = 0.04$; likelihood ratio test). The weak association may have been caused by the small sample size in the north (Table 1) or a higher fraction of natural particles (e.g., dust in the northwest), which are known to be less toxic than anthropogenic particles. The nonlinear analysis showed an approximately linear exposure-response function of PM$_{2.5}$ concentration without a no-effect threshold (Figure 3a), which was consistent with estimates from the other models (Table S2). Additionally, we examined the interaction between PM$_{2.5}$ concentration and age, and found that the effect of PM$_{2.5}$ concentration was weaker in older adults (Table S2). Furthermore, the estimated effect of PM$_{2.5}$ was not affected by use of random- or fixed-effects models (Table S3). However, the mixed-effects model, which could be more efficient, but also more biased, than the fixed-effects model 29 was used only to enhance the interpretability of the estimates. Finally, the bootstrap analysis (Figure S6) indicated the measurement error caused by using city-level PM$_{2.5}$ didn't significantly change the estimated association. Within a city, where air quality was affected by the same emission-control polices, the temporal trends in PM$_{2.5}$ could be similar at different locations. We only ignored 11.75% of total variance in PM$_{2.5}$ reductions by using the city-level values (Table S5). Therefore, the measurement error might not undermine our main findings. However, according to the bootstrap analysis, the estimated association became slightly weaker (i.e., a smaller point-estimate with a larger variance) after correcting for the measurement error, which suggested the effect of PM$_{2.5}$ might be underestimated.

Evaluating the impact of PM$_{2.5}$

A comparison between the effect of PM$_{2.5}$ concentration and that of age showed that they were statistically comparable (Figure 3b). Based on the standard model, the effect of 1 year was of equivalent magnitude to the effect of a PM$_{2.5}$ concentration increase of 2.1 μg/m3 (95% CI: 1.1–4.2 μg/m3). More details on the association between aging and the CES-D-10 score are documented in supplemental text (S5).

The impact of a risk factor on the CES-D-10 score is determined by its effect magnitude and temporal changes. Based on the 9,123 adults who participated in all three waves of the CHARLS, we quantified the impacts of air quality improvement and aging on their mental
health status from 2011 to 2015 (Figure 4). According to the results, aging and PM$_{2.5}$ reduction were the major drivers of changes in CES-D-10 score. Using the CES-D-10 score obtained before implementation of the CAP (by CHARLS 2011) as the reference, we found that a decreased concentration of PM$_{2.5}$ resulted in a relative reduction in the score of 0.27% (95% CI: 0.15–0.40%) and 2.87% (95% CI: 1.61–4.21%) in 2013 and 2015, respectively; in contrast, aging resulted in a relative increase of 1.53% (95% CI: 0.87–2.13%) and 3.08% (95% CI: 1.74–4.31%), respectively (Figure 4). Analysis of the combined impact of age and PM$_{2.5}$ (including their interactions), which together resulted in a small reduction in the CES-D-10 score of 0.25% (95% CI: -0.78–1.30%) from 2011 to 2015, showed that the benefit of reducing the PM$_{2.5}$ concentration offset the negative effect of aging. Because the impact evaluation was based on a fixed population, we quantified the impact of individual-level aging, which was faster than the aging of the population (Figure S1).

Discussion

Based on the CHARLS surveys, we found a robust exposure-response function between air pollution and depression, during a quasi-experimental scenario under CAP. Our results also indicate that the effect of PM$_{2.5}$ concentration reduction was comparable with that of aging. Although aging partially offset the benefits from reducing PM$_{2.5}$ concentrations, the rapidly improved air quality since 2013 could still bring a net positive impact.

An increasing number of studies have reported on the association between air pollution and mental disorders, including depression, cognitive functions, and other indicators of mental health. For instance, Fan et al. (2020) conducted a meta-analysis of 637,397 subjects and reported that a 10 µg/m3 increase in PM$_{2.5}$ concentration is potentially associated with a 12% (95% CI: -3–29%) ER of depression. They also reported that the pooled estimate was sensitive to a cross-sectional study (which reported an extremely large ER as 1,818%, 95%CI: 189–12,669%), and was changed to 12% (95% CI: 2–23%) after exclusion. Many of these studies examined the association between air pollution and mental illness among residents in China. However, most of them were cross-sectional studies, which contributed to the low confidence level in the meta-analysis and led to an inclusive association between PM$_{2.5}$ exposure and depression. Comparing to them, our quasi-experiment is advantageous in controlling for potential confounders, and thus enriches the high-quality evidences. Detailed discussions on the comparison are documented in a supplemental text (S6).

The central government carried out an action plan of air pollution control and prevention from 2013 to 2017 to tackle severe air pollution in China. Based on a chemical-transport
The present study also examined the effect of aging on depression and compared it to the effect of PM$_{2.5}$ concentration. Such an analysis improved the interpretability of the association between PM$_{2.5}$ concentration and the depression and has policy implications. The Chinese population is expected to age rapidly because of a low fertility rate. According to the world population projection for the total population of China (Figure S7) (http://dataexplorer.wittgensteincentre.org/wcde-v2/), the mean age of all Chinese adults ≥ 40 years old will increase from 55 years in 2010 to 62–65 years in 2050. Based on our model (Table S2), population aging could offset the benefits from a 14.9–21.3 μg/m3 reduction in PM$_{2.5}$ concentration. Assuming that air quality meets the current national standard (annual mean PM$_{2.5}$ < 35 μg/m3) in 2050, the population-weighted concentration of PM$_{2.5}$ would decrease by 26 μg/m3 (from 61 μg/m3 in 2010 to 35 μg/m3 in 2017). Therefore, the positive impact of PM$_{2.5}$ concentration reduction on depression is comparable to the negative impact of population aging. This rough analysis suggests that the older population requires more stringent air quality standards to protect their mental health. However, notably, the estimated association between age and depression not only reflects the underlying physiological effects (e.g., increased oxidative stress) but also the socioeconomic effects (e.g., decreased income) attributable to aging, and thus it may not be representative of the future population. Therefore, exactly quantifying the combined impacts of a change in air quality and population aging is beyond the capacity of this study. Further prospective studies of the effects of changes in societal and cultural factors on the mental health of an aging population, and air quality, are warranted.

This study was subjected to the following limitations. First, exposure to ambient PM$_{2.5}$ was assessed at the city-level due to the lack of specific addresses, which resulted in misclassification of exposure by ignoring the within-city variation in PM$_{2.5}$ concentrations. Although such an ignorance might not change the direction of the association between PM$_{2.5}$ and depression, it still introduced bias into point-estimate of the association and amplified its uncertainty range (Figure S6). The misclassification might be also caused by falsely specifying the exposure time-window, as well. Because detailed survey dates were unavailable in the open-access CHARLS data, the long-term exposure to PM$_{2.5}$ was evaluated using annual means based on monthly scale time-series. Additionally, uncertainties in the PM$_{2.5}$ concentration hinderestimator are another source of exposure misclassification, which usually leads to an underestimated association. To derive an unbiased association
between PM$_{2.5}$ and depression, advanced assessment techniques, such as personal monitors, should utilized in future studies to reduce exposure misclassifications. Second, the modifiable area unit problem (e.g., ecological fallacy) due to the city-level aggregation, might also cause bias. Although the subjects screened by the community-based fieldworkers were less likely to change their residential city during the study period, exposure levels of some individuals (e.g., the residents near city boundaries) might be different from the mean level. Urban and rural residents might have different degrees of modifiable-area-unit problem, but their effect estimates were similar (Figure S5), which suggests a weak impact on our results from the issue. Third, although this study controlled for temporally invariant confounders (e.g., bullying victimization and childhood sexual abuse) and a few longitudinal covariates (including marriage, aging, and alcohol drinking), it may have missed some risk factors for depression. Although the estimates are unlikely to be confounded by some of them (e.g., drug abuse), failure to adjust for all potential confounders could have biased our results. Fourth, this study utilized PM$_{2.5}$ mass concentration as a general indicator of ambient air quality, which may have underestimated the complexities of air pollution toxicity. For instance, PM$_{2.5}$ is a mixture of particles of different chemical species and sizes, and between-component variations in toxicity have been shown for PM$_{2.5}$ (Han and Zhu, 2015, Han et al., 2016). Additionally, the estimated association between PM$_{2.5}$ and depression might not be attributable to only itself, but also to other air pollutants, such as ozone, that co-vary with PM$_{2.5}$. Therefore, further studies on the effects on mental health of other air pollutants are warranted. Finally, some CHARLS subjects dropped out of the study for various reasons, which may have biased the results. Also, the limited information on missing data from the publicly available CHARLS datasets hampered the derivation of sampling weights for the statistical models, reducing the national representativeness of the findings. Although the analysed samples were comparable to the baseline representative population recruited in CHARLS 2011, there were still slightly differences in some aspects, such as the geographic distribution (Figure S9). Given the potential heterogeneity in the association between PM$_{2.5}$ and depression (Figure S5), the estimates from a less representative sample might be biased away from the average effect of target population. Given the above limitations, the causality of our findings should be interpreted cautiously.

In conclusion, we found a robust association between an increase in PM$_{2.5}$ concentration and depression risk in a nationwide sample of adults in China. Due to CAP, the exposure concentrations of PM$_{2.5}$ were decreased rapidly, which subsequently improved mental health. This study not only enriched the epidemiological evidence on the adverse effects of air pollution on mental health, but also indicated implementing CAP could improve mental wellbeing of adults.
Contributor:

T.X. & T.Z. designed this study; T.X., Y.Z., G.G. & Q.Z. prepared and analysed the data; T.X., T.G. & T.Z. drafted the manuscript; Y.Y. & T.X. designed and performed the bootstrap analysis; all co-authors revised the manuscript together.

Declaration of interests:
The authors declare no competing interests.

Acknowledgements
Thanks to the China Center for Economic Research, National School of Development, Peking University for providing the CHARLS data. This work was supported by National Natural Science Foundation of China (41701591, 8157130100, 81903392, and 41421064), Ministry of Science and Technology of China (2015CB553401 and 2018YFC2000400) and Energy Foundation (G-1811-28843). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Date sharing statement
This study is based on publicly-available datasets. The health data can be accessed from the website: http://opendata.pku.edu.cn/, and the environmental data can be accessed from the websites: http://www.meicmodel.org/dataset-phd.html.

Editor note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.
References

1. Ferrari AJ, Norman RE, Freedman G, et al. The Burden Attributable to Mental and Substance Use Disorders as Risk Factors for Suicide: Findings from the Global Burden of Disease Study 2010. *Plos One* 2014; *9*(4).

2. Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. 2013; *10*(11): e1001547.

3. Xue T, Zhu T, Zheng YX, Zhang Q. Declines in mental health associated with air pollution and temperature variability in China. *Nat Commun* 2019; *10*.

4. Chen H, Kwong JC, Copes R, et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. *Lancet* 2017; *389*(10070): 718-26.

5. Zheng SQ, Wang JH, Sun C, Zhang XN, Kahn ME. Air pollution lowers Chinese urbanites' expressed happiness on social media. *Nat Hum Behav* 2019; *3*(3): 237-43.

6. Zhang X, Chen X, Zhang XB. The impact of exposure to air pollution on cognitive performance. *PNatl Acad Sci USA* 2018; *115*(37): 9193-7.

7. Li Z, Chen L, Li M, Cohen J. Prenatal exposure to sand and dust storms and children's cognitive function in China: a quasi-experimental study. *The Lancet Planetary Health* 2018; *2*(5): e214-e22.

8. Pun VC, Manjourides J, Suh H. Association of Ambient Air Pollution with Depressive and Anxiety Symptoms in Older Adults: Results from the NSHAP Study. *Environ Health Persp* 2017; *125*(3): 342-8.

9. Generaal E, Hoogendijk EO, Stam M, et al. Neighbourhood characteristics and prevalence and severity of depression: pooled analysis of eight Dutch cohort studies. *Br J Psychiatry* 2019; 1-8.

10. Roberts S, Arsenault L, Barratt B, et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. *Psychiat Res* 2019; *272*: 8-17.

11. Lv Y, Zhou J, Kraus VB, et al. Long-term exposure to PM2.5 and incidence of disability in activities of daily living among oldest old. *Environ Pollut* 2020; *259*: 113910.

12. Braithwaite I, Zhang S, Kirkbride JB, Osborn DPJ, Hayes JF. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. *Environ Health Perspect* 2019; *127*(12): 126002.

13. Zheng YX, Xue T, Zhang Q, et al. Air quality improvements and health benefits from China’s clean air action since 2013. *Environ Res Lett* 2017; *12*(11).

14. Huang J, Pan X, Guo X, Li G. Health impact of China’s Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data. *The Lancet Planetary Health* 2018; *2*(7): e313-e23.

15. Xue T, Liu J, Zhang Q, et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013-2017. *SCIENCE CHINA Earth Sciences* 2019; *62*(12):1847-56.

16. Cheng J, Su JP, Cui T, et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017: a model-based decomposition analysis. *Atmos Chem Phys* 2019; *19*(9): 6125-46.

17. Rich DQ, Kipen HM, Huang W, et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. *Jama* 2012; *307*(19): 2068-78.

18. Chen Y, Ebenstein A, Greenstone M, Li H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. *Proceedings of the National Academy of Sciences* 2013; *110*(32): 12936-41.

19. Zhao YH, Hu YS, Smith JP, Strauss J, Yang GH. Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). *Int J Epidemiol* 2014; *43*(1): 61-8.
20. Zhao K-X, Huang C-Q, Xiao Q, et al. Age and risk for depression among the elderly: a meta-analysis of the published literature. CNS Spectra 2012; 17(3): 142-54.

21. Zhao Y, Strauss J, Yang G, et al. China health and retirement longitudinal study–2011–2012 national baseline users’ guide. Beijing: National School of Development, Peking University 2013: 1-56.

22. Hu YY, Li P, Martikainen P. Rural-urban disparities in age trajectories of depression caseness in later life: The China Health and Retirement Longitudinal Study. Plos One 2019; 14(4).

23. Liu C, Yang CY, Zhao YH, et al. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environ Int 2016; 92-93: 416-21.

24. Xie T, Zheng YY, Tong D, et al. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000-2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ Int 2019; 123: 345-57.

25. Goyal N, Karr M, Canning D. Early-life exposure to ambient fine particulate air pollution and infant mortality: pooled evidence from 43 low- and middle-income countries. Int J Epidemiol 2019.

26. Zhang Q, Jiang XJ, Tong D, et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017; 543(7647): 705-14.

27. Boey KW. Cross-validation of a short form of the CES-D in Chinese elderly. Int J Geriatr Psych 1999; 14(8): 608-17.

28. Deschenes O, Meng KC. Quasi-experimental methods in environmental economics: and challenges! Opportunities. Handbook of Environmental Economics 2018; 4: 285.

29. Gunasekara H, Richardson K, Carter K, Blakely T. Fixed effects analysis of repeated measures data. Int J Epidemiol 2014; 43(1): 204-9.

30. Ng CH. The stigma of mental illness in Asian cultures. Australian & New Zealand Journal of Psychiatry 1997; 31(3): 382-90.

31. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:14065823 2014.

32. Croissant Y, Millo G. Panel Data Econometrics in R: The plm Package. Journal of Statistical Software 2008; 27(2): 1-43.

33. Buuren Sv, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. Journal of statistical software 2010: 1-68.

34. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 2011; 73: 3-36.

35. Wood S, Scheipl F. gamm4: Generalized additive mixed models using mgcv and lme4. URL http://CRAN R-project.org/package= gamm4 2014.

36. Lin HL, Guo YF, Kowal P, et al. Exposure to air pollution and tobacco smoking and their combined effects on depression in six low- and middle-income countries. Brit J Psychiat 2017; 211(3): 157.

37. Vert C, Sanchez-Benavides G, Martinez D, et al. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study. Int J Hgy Envir Heal 2017; 220(6): 1074-86.

38. Zijlman WL, Wolf K, Emeny R, et al. The association of air pollution and depressed mood in 70,928 individuals from four European cohorts. Int J Hgy Envir Heal 2016; 219(2): 212-9.

39. Tian T, Chen YH, Zhu J, Liu PL. Effect of Air Pollution and Rural-Urban Difference on Mental Health of the Elderly in China. Iran J Public Health 2015; 44(8): 1084-94.

40. Wang RY, Xue DS, Liu Y, Liu PH, Chen HS. The Relationship between Air Pollution and Depression in China: Is Neighbourhood Social Capital Protective? Int J Env Res Pub He 2018; 15(6).

41. Wang RY, Liu Y, Xue DS, Yao Y, Liu PH, Helbich M. Cross-sectional associations between long-term exposure to particulate matter and depression in China: The mediating effects of sunlight, physical activity, and neighborly reciprocity. J Affect Disorders 2019; 249: 8-14.
42. Pun VC, Manjourides J, Suh HH. Close proximity to roadway and urbanicity associated with mental ill-health in older adults. *Sci Total Environ* 2019; **658**: 854-60.

43. Tallon LA, Manjourides J, Pun VC, Salhi C, Suh H. Cognitive impacts of ambient air pollution in the National Social Health and Aging Project (NSHAP) cohort. *Environ Int* 2017; **104**: 102-9.

44. Oudin A, Braback L, Astrom DO, Stromgren M, Forsberg B. Association between neighbourhood air pollution concentrations and dispensed medication for psychiatric disorders in a large longitudinal cohort of Swedish children and adolescents. *Bmj Open* 2016; **6**(6).

45. Sui GY, Liu GC, Jia LQ, Wang L, Yang GL. The association between ambient air pollution exposure and mental health status in Chinese female college students: a cross-sectional study. *Environ Sci Pollut R* 2018; **25**(28): 28517-24.

46. Shin J, Park JY, Choi J. Long-term exposure to ambient air pollutants and mental health status: A nationwide population-based cross-sectional study. *Plos One* 2018; **13**(4).

47. Zhang X, Zhang XB, Chen X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? *J Environ Econ Manag* 2017; **85**: 81-94.

48. Klompmaker JO, Hoek G, Bloemsma LD, et al. Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. *Environ Int* 2019; **129**: 525-37.

49. Sun X, Yang WT, Sun T, Wang YP. Negative Emotion under Haze: An Investigation Based on the Microblog and Weather Records of Tianjin, China. *Int J Env Res Pub He* 2019; **16**(1).

50. Fan S-J, Heinrich J, Bloom MS, et al. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. 2020; **701**: 134721.

51. Vert C, Sánchez-Benavides G, Martínez D, et al. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study. 2017; **220**(6): 1074-80.

52. Zhao T, Markevych I, Romanos M, Nowak D, Heinrich J. Ambient ozone exposure and mental health: A systematic review of epidemiological studies. *Environ Res* 2018; **165**: 459-72.

53. Chen X, Smith J, Strauss J, Wang Y, Zhao Y. China Health and Retirement Longitudinal Study (CHARLS); *Encyclopedia of Gerontology and Population* 2019; Springer, Cham. https://doi.org/10.1007/978-3-319-69892-2_333-1.
Figure Legends

Figure 1. Map of study region with long-term averages of PM$_{2.5}$ concentrations (2010–2015).
Figure 2. Estimated associations between the depression score and PM$_{2.5}$ concentration. In the difference-in-difference (DID) analysis, the model adjusted for age incorporated age at 2011 as a covariate; the standard adjustment also involved the fixed variables of urban/rural residence, sex, and education, as well as the longitudinal variables of ambient temperature, marriage status, smoking, and drinking. The full adjustment also considered longitudinal changes in cooking energy type, building type, residential rent payment, presence of an in-house telephone, and indoor temperature maintenance. The longitudinal models adjusted for the constant variables in a similar manner as in the DID models; however, adjustment of the longitudinal variables was based on the values recorded in each survey wave, rather than their between-wave changes therein.
Figure 3. Nonlinear effects of (a) PM$_{2.5}$ concentration and (b) age on the CES-D-10 score. Dashed lines, pointwise 95% confidence intervals. The histograms show the distribution of PM$_{2.5}$ exposure and age.
Figure 4. Impacts of reducing PM$_{2.5}$ concentration, aging, and changes in other factors on the CES-D-10 score. The changes in risk factors (Δx) were evaluated using a fixed group of subjects who participated in all three China Health and Retirement Longitudinal Study (CHARLS) waves; the corresponding coefficients were estimated from the longitudinal model with standard adjustment (Figure 2) and presented in Table S3; for each variable, the value in 2011 was acted the reference to evaluate the impact attributable to its temporal changes.
Tables

Table 1. Constant variables of the studied subjects.

Variable	Subgroup	Number of subjects (percentage of the total)		
		All subjects	Subjects with three measurements	
		Total number of subjects	15,954 (100%)	9,123 (100%)
Education	Below elementary	6,133 (38.44%)	3,786 (41.50%)	
	Elementary and middle	6,099 (38.23%)	4,220 (46.26%)	
	Above middle	1,712 (10.73%)	1,117 (12.24%)	
	Unknown	2,010 (12.60%)	0	
Sex	Female	8,331 (52.22%)	4,702 (51.54%)	
	Male	7,621 (47.77%)	4,421 (48.46%)	
	Unknown	2 (0.01%)	0	
Place of residence	Rural	9,765 (61.21%)	5,748 (63.01%)	
	Urban	6,189 (38.79%)	3,375 (36.99%)	
Region	Midwest	5,367 (33.64%)	3,152 (34.55%)	
	North	4,451 (27.90%)	2,586 (28.34%)	
	Southeast	6,136 (38.46%)	3,385 (37.10%)	

Table 2. Longitudinal variables of the studied subjects.

Variable	Total	2011 CHARLS*	2013 CHARLS	2015 CHARLS
Depression score	8.1 (6.2)	8.3 (6.3)	7.8 (5.8)	8.1 (6.4)
PM$_{2.5}$ concentration (μg/m3)	58.2 (19.8)	61.6 (18.9)	60.3 (22.2)	53.1 (16.7)
Temperature (°C)	14.0 (5.3)	13.6 (5.2)	13.9 (5.6)	14.4 (5.0)
Age (years)	60.5 (9.3)	59.2 (9.2)	60.3 (9.4)	61.9 (9.2)

Variable	Subgroup	Number of visits (percentage of the total)			
Total number of visits	41,031 (100%)	12,658 (100%)	14,352 (100%)	14,021 (100%)	
Married	No	6,727 (16.39%)	1964 (15.52%)	2,276 (15.86%)	2,487 (17.74%)
	Yes	34,304 (83.60%)	10,694 (84.48%)	12,076 (84.14%)	11,534 (82.26%)
	Unknown	No	Yes	Unknown	
--------------------------	---------	-------------	--------------	---------	
Smoking	1 (0.00%)	28422 (69.27%)	12608 (30.73%)	1 (0.01%)	
Drinking	1 (0.00%)	10944 (26.67%)	3312 (8.07%)	17 (0.04%)	
Cooking energy type	1 (0.00%)	21257 (51.81%)	19292 (47.02%)	482 (1.17%)	
Building type	1 (0.00%)	23683 (57.72%)	17159 (41.82%)	189 (0.46%)	
Rent payment for residence	1 (0.00%)	39353 (95.91%)	1200 (2.92%)	478 (1.16%)	
In-house telephone	1 (0.00%)	24798 (60.44%)	16122 (39.29%)	111 (0.27%)	
Indoor temperature maintenance	n	(1.00%)	(2.01%)	(0.52%)	(0.60%)
-------------------------------	---------	---------	---------	---------	---------
Very hot	412	254	74	84	
Hot	3573	1345	1134	1094	
Bearable	34561	10491	12189	11881	
Cold	1342	436	516	390	
Very cold	102	63	23	16	
Unknown	1041	69	416	556	

* CHARLS, China Health and Retirement Longitudinal Study*
