RIBBON-MOVES FOR 2-KNOTS WITH 1-HANDLES ATTACHED
AND KOHVANOV-JACOBSSON NUMBERS

J. SCOTT CARTER, MASAHICO SAITO, AND SHIN SATOH

Abstract. We prove that a crossing change along a double point circle on
a 2-knot is realized by ribbon-moves for a knotted torus obtained from the
2-knot by attaching a 1-handle. It follows that any 2-knots for which the
crossing change is an unknotting operation, such as ribbon 2-knots and twist-
spun knots, have trivial Khovanov-Jacobsson number.

A surface-knot or -link is a closed surface embedded in 4-space \mathbb{R}^4 locally flatly.
Throughout this note, we always assume that all surface-knots are oriented. A
ribbon-move (cf. [10]) is a local operation for (a diagram of) a surface-knot as
shown in Figure 1. We say that surface-knots F and F' are ribbon-move equivalent,
denoted by $F \sim F'$, if F' is obtained from F by a finite sequence of ribbon-moves.

The ribbon-move is a special case of the crossing change: Assume that a surface-
knot F has a double point circle L in a diagram such that (i) L has no self-
intersection, and (ii) at every triple point on L, the sheet transverse to L is either
top or bottom (not middle). The condition (i) means that L does not go through
the same triple point twice. When L satisfies these conditions, we can perform
a crossing change along L by exchanging the roles of over- and under-sheets as
indicated in Figure 2 (cf. [10]). See [4] for details on diagrams of surface-knots.

For a 2-knot K (a knotted sphere in \mathbb{R}^4), a crossing change is not necessarily
realized by ribbon-moves; indeed, a ribbon-move does not change the Farber-Levine
pairing of K but a crossing change might (cf. [10]). On the other hand, when we
consider the T^2-knot (knotted torus in \mathbb{R}^4) $K + h$ obtained from K by attaching a
1-handle h on K, we obtain the following.

2000 Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.
Key words and phrases. Khovanov homology, 2-knot, ribbon-move, twist-spun knot, crossing
change.
Theorem 1. Let K and K' be 2-knots such that K' is obtained from K by a crossing change. Then for any 1-handles h and h' on K and K', respectively, the T^2-knot $K + h$ is ribbon-move equivalent to $K' + h'$.

Proof. Along the double point circle L for which we perform the crossing change, there is a neighborhood N identified with $(B^3, t) \times S^1$, where (B^3, t) is a tangle with two strings as shown in the left of Figure 3. In the figure, the orientations of tangles are induced from that of K, and all bands are attached in an orientation-compatible manner. For an interval I in S^1, we take a 1-handle $h_1 = b_1 \times I$ on K, where b_1 is a band as indicated in the figure.

We observe that $K + h_1$ is ambient isotopic to $(K' \cup T) + h_2$ (cf. [12]), where $T = m \times S^1$ is a T^2-knot linking with K', and the 1-handle $h_2 = b_2 \times I$ connects between K' and T. See the center of Figure 3.

Consider a 1-handle $h_3 = b_3 \times I$ on $K' \cup T$. Since both of h_2 and h_3 connect between K' and T, the T^2-knot $(K' \cup T) + h_2$ is ribbon-move equivalent to $(K' \cup T) + h_3$.

Finally we see that $(K' \cup T) + h_3$ is ambient isotopic to $K' + h_4$, where $h_4 = b_4 \times I$ is the 1-handle on K' as shown in the right of the figure. Thus we obtain

$$K + h \sim K + h_1 = (K' \cup T) + h_2 \sim (K' \cup T) + h_3 = K' + h_4 \sim K' + h'.$$

This completes the proof.

We say that the crossing change is an unknotting operation for a surface-knot F if the trivial surface-knot is obtained from F by a finite sequence of crossing changes. It is still unknown whether the crossing change is an unknotting operation for any surface-knot.

Khovanov [8] introduced a categorification of the Jones polynomial, that is, a chain complex for a given classical knot diagram such that its graded Euler characteristic is the Jones polynomial. Khovanov [9] and Jacobsson [5] proved that...
it defines an invariant for cobordisms (relative to boundary diagrams). Specifically, a cobordism between two knot diagrams gives rise to a chain map (we call it a Khovanov-Jacobsson homomorphism) between corresponding chain complexes, that is invariant under equivalence of cobordisms of diagrams. See also [2]. In particular, a diagram of a \mathbb{T}^2-knot is a cobordism between empty diagrams, giving rise to a homomorphism $\mathbb{Z} \to \mathbb{Z}$ defined up to sign, a multiplication by a constant. We call this constant the Khovanov-Jacobsson number.

Theorem 2. Let K be a 2-knot for which the crossing change is an unknotting operation. Then for any 1-handle h on K, the \mathbb{T}^2-knot $K + h$ has the trivial Khovanov-Jacobsson number.

Proof. Let K_0 be the trivial 2-knot and h_0 the trivial 1-handle on K_0. By assumption and Theorem 1, the \mathbb{T}^2-knot $K + h$ is ribbon-move equivalent to $K_0 + h_0$, which is the trivial \mathbb{T}^2-knot.

Consider two movies as shown in Figure 4. It is seen from the definitions [2] [5] that the corresponding Khovanov-Jacobsson homomorphisms $H^*(\emptyset) \to H^*(\emptyset)$ are the same for these movies. This implies that a ribbon-move does not change the Khovanov-Jacobsson number. Hence the \mathbb{T}^2-knot $K + h$ has the same number as that of the trivial \mathbb{T}^2-knot $K_0 + h_0$. □

Figure 4.

By Theorem 2, if there is a 2-knot K such that the Khovanov-Jacobsson number of $K + h$ is non-trivial, then the crossing change is not an unknotting operation for K. However, we have no such examples at present.

Corollary 3. Let K be a ribbon 2-knot or twist-spun knot. Then for any 1-handle h on K, the \mathbb{T}^2-knot $K + h$ has trivial Khovanov-Jacobsson number.

Proof. This follows from Theorem 2 and the fact that the crossing change is an unknotting operation for every ribbon 2-knot or twist-spun knot (cf. [1] [11]). □

We say that a surface-knot is pseudo-ribbon [7] if it has a diagram without triple points. The notions of ribbon and pseudo-ribbon 2-knots are the same [15] (see also [6]). On the other hand, for \mathbb{T}^2-knots, they are not coincident in the sense that the family of pseudo-ribbon \mathbb{T}^2-knots properly contains that of ribbon \mathbb{T}^2-knots.

Proposition 4. Any pseudo-ribbon \mathbb{T}^2-knot has trivial Khovanov-Jacobsson number.

Proof. By the results of Teragaito [14] and Shima [13], every pseudo-ribbon \mathbb{T}^2-knot T is (i) a ribbon \mathbb{T}^2-knot, or (ii) a \mathbb{T}^2-knot obtained from a split union of a Boyle’s turned \mathbb{T}^2-knot T' [3] and a trivial 2-link $U = U_1 \cup U_2 \cup \cdots \cup U_n$ by surgery along 1-handles h_1, h_2, \ldots, h_n for some $n \geq 0$, where each h_i connects between T' and h_i $(i = 1, 2, \ldots, n)$.
For the case (i), there is a ribbon 2-knot K and a 1-handle h such that $T = K + h$. Hence the conclusion follows from Corollary 3.

For the case (ii), we see that $T = (T' \cup U) + (\bigcup_{i=1}^n h_i)$ is ribbon-move equivalent to T'. We consider two movies for a classical knot diagram D in a plane, one of which keep D still and the other twists D by a 2π-rotation of the plane. Then it follows from the definitions \[2, 5, 9\] that the corresponding Khovanov-Jacobsson homomorphisms $H^*(D) \to H^*(D)$ are the same for these movies. This implies that T' has the same Khovanov-Jacobsson number as that of a non-turned (that is, just spun) T^2-knot, which is ribbon. Hence this case reduces to (i). □

Acknowledgments

The first, second, and third authors are partially supported by NSF Grant DMS #0301095, NSF Grant DMS #0301089, and JSPS Postdoctoral Fellowships for Research Abroad, respectively. The third author expresses his gratitude for the hospitality of the University of South Florida and the University of South Alabama.

References

[1] S. Asami and S. Satoh, An infinite family of non-invertible surfaces in 4-space, to appear in Bull. London Math. Soc.
[2] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms, preprint available at: http://www.math.toronto.edu/~drorbn/papers/Cobordism/
[3] J. Boyle, The turned torus knot in S^4, J. Knot Theory Ramifications 2 (1993), 239–249.
[4] J.S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI. 1998.
[5] M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, preprint available at: http://xxx.lanl.gov/abs/math.GT/0206303
[6] T. Kanenobu and A. Shima, Two filtrations of ribbon 2-knots, Topology Appl. 121 (2002), 143–168.
[7] A. Kawauchi, On pseudo-ribbon surface-links, J. Knot Theory Ramifications 11 (2002), 1043–1062.
[8] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101(3) (1999), 359–426.
[9] An invariant of tangle cobordisms, preprint available at: http://xxx.lanl.gov/abs/math.GT/0207264
[10] E. Ogasu, Ribbon-moves of 2-knots: the Farber-Levine pairing and the Atiyah-Patodi-Singer-Casson-Gordon-Ruberman $\tilde{\eta}$-invariants of 2-knots, preprint available at: http://xxx.lanl.gov/abs/math.GT/0004007
[11] S. Satoh, Surface diagrams of twist-spun 2-knots, J. Knot Theory Ramifications 11 (2002), 413–430.
[12] A note on unknotting numbers of twist-spun knots, preprint.
[13] A. Shima, On simply knotted tori in S^4, II, Knots ’96 (Tokyo), 551–568, World Sci. Publishing, River Edge, NJ, 1997.
[14] M. Teragaito, Symmetry-spun tori in the four-sphere, Knots 90 (Osaka, 1990), 163–171, de Gruyter, Berlin, 1992.
[15] T. Yajima, On simply knotted spheres in R^4, Osaka J. Math. 1 (1964), 133–152.
[16] T. Yashiro, Deformations of surface diagrams, talk at First KOOK Seminar International Knot Theory and Related Topics, July 2004.
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH ALABAMA, MOBILE, AL 36688, U.S.A.
E-mail address: carter@jaguar1.usouthal.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FL 33620, U.S.A.
E-mail address: saito@math.usf.edu

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, CHIBA UNIVERSITY, YAYOI-CHO 1-33,
INAGE-KU, CHIBA, 263-8522, JAPAN (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH
FLORIDA, APRIL 2003–MARCH 2005)
E-mail address: satoh@math.s.chiba-u.ac.jp