Efficacy and Safety of Elbasvir/Grazoprevir in Hepatitis C Virus GT1- and GT4-Infected People Aged 65 Years or Older

Steven Flamm, MD1, Cheng-Yuan Peng, MD2, Oren Shibolet, MD3, Ronald Nahass, MD4, Peggy Hwang, PhD5, Eliav Barr, MD5, Michael N. Robertson, MD5, and Barbara A. Haber, MD5

Background: In elderly individuals aged ≥65 years with hepatitis C virus (HCV) infection, efficacious and safe HCV therapy is complicated by frequent comorbidities and concomitant medications. The aim of this analysis was to evaluate the efficacy and safety of elbasvir/grazoprevir (EBR/GZR) in people aged ≥65 years. Methods: This is an integrated retrospective analysis of EBR/GZR administered for 12 weeks in participants with HCV genotype 1 or 4 infection enrolled in 12 Phase 2/3 clinical trials. The primary end point was sustained virologic response 12 weeks after completing therapy (SVR12; HCV RNA below the lower limit of quantification). Results: Most participants aged ≥65 years were receiving ≥1 concomitant medication (322/339; 95.0%) and had ≥1 comorbidity (334/339; 99%). SVR12 rates were 95.3% (323/339) in participants aged ≥65 years and 95.4% (2,041/2,139) in those aged <65 years. Rates of adverse events, drug-related adverse events, serious adverse events, and discontinuations were similar in participants aged ≥65 years and those aged <65 years. In participants aged ≥65 years, median estimated glomerular filtration rate was similar at baseline and at the end of treatment. Conclusion: The efficacy and safety of EBR/GZR were similar in participants with HCV infection aged ≥65 years and those aged <65 years.

Keywords
therapy, veterans, quality of life, mortality

Manuscript received: July 26, 2018; final revision received: November 13, 2018; accepted: November 13, 2018.
protease inhibitor, have demonstrated high in vitro potency against most HCV genotypes (Asante-Appiah et al., 2017; Coburn et al., 2013; Harper et al., 2012; Lahser et al., 2016; Summa et al., 2012). Among treatment-naïve and treatment-experienced participants with HCV GT1 or GT4 monoinfection or HIV/HCV coinfection, a once-daily, 12-week regimen of EBR/GZR has consistently shown high rates of sustained virologic response (SVR) and was generally well tolerated (Jacobson et al., 2017; Kwo et al., 2016; Rockstroh et al., 2015; Roth et al., 2015; Zeuzem et al., 2015).

Elderly individuals who are receiving treatment for HCV infection may have frequent comorbidities, may be taking concomitant medications, or may have other age-related physiological changes such as declining renal function. In addition, compliance rates may vary in the elderly, and collectively, differences in comorbid conditions, concomitant medications, and age-related changes in drug metabolism or renal function may potentially impact the pharmacokinetics, efficacy, and tolerability of HCV therapies in this population. It is therefore important to evaluate the efficacy and safety of commonly used treatments for HCV infection, such as EBR/GZR, in an elderly population. The objective of this pooled integrated analysis was to determine the efficacy and safety of 12 weeks of EBR/GZR in individuals aged 65 years or older who were enrolled in Phase 2 or Phase 3 clinical trials.

Methods

This is an integrated retrospective analysis of pooled safety and efficacy data from 12 international Phase 2 and 3 clinical trials from the EBR/GZR clinical development program (Table 1). The detailed methodology and primary outcomes from these studies have been published or presented previously (C-WORTHY [NCT01717326, Protocol PN035], Lawitz et al., 2015; Sulkowski et al., 2015; C-SCAPE [NCT01932762, Protocol PN047], Brown et al., 2018; C-SURFER [NCT02092350, Protocol 052], Bruchfeld et al., 2017; Roth et al., 2015; Japanese participants [NCT02203149, Protocol PN058], Kumada et al., 2017; C-SALT [NCT02115321, Protocol PN059], Jacobson et al., 2015; C-EDGE Treatment-naïve [NCT02105467, Protocol PN060], Zeuzem et al., 2015; C-EDGE CO-INFECTION [NCT02105662, Protocol PN061], Rockstroh et al., 2015; C-EDGE CO-STAR [NCT02105688, Protocol PN062], Dore et al., 2016; C-EDGE Inherited Blood Disorders [NCT02252016, Protocol PN065], Hezode et al., 2017; C-CORAL [NCT02251990, Protocol PN067], Wei et al., 2017; C-EDGE Treatment-experienced [NCT02105701, Protocol PN068], Kwo et al., 2016; C-EDGE Head-2-Head [NCT02358044, Protocol PN077], Sperl et al., 2016). All studies were carried out in accordance with the Declaration of Helsinki, current guidelines on Good Clinical Practices, and local ethical and legal requirements. For each of these 12 clinical studies, independent institutional review boards or ethics committees reviewed and approved the protocol and applicable amendments for each participating institution. All participants provided voluntary written informed consent before trial entry. All studies included in this integrated analysis were funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ.

Participants

Participants with HCV GT1 or GT4 infection enrolled in previous Phase 2 or 3 clinical trials of EBR/GZR were included in this analysis. All participants were aged 18 years or older and had baseline HCV RNA ≥10,000 IU/mL. Participants were either treatment-naïve or had previously failed treatment with pegylated interferon–based HCV therapy. Individuals who had previously received treatment with a DAA-containing regimen were not included. The study population included participants with a number of different comorbidities including HIV coinfection (Rockstroh et al., 2015), advanced chronic kidney disease (CKD) (hemodialysis or CKD Stage 4/5) (Bruchfeld et al., 2017; Roth et al., 2015), and inherited blood disorders (hemophilia, sickle cell disease, or thalassemia) (Hezode et al., 2017), and participants receiving opiate agonist therapy (Dore et al., 2016). Participants were noncirrhotic or had Child–Turcott–Pugh (CTP) A cirrhosis defined as liver biopsy consistent with META VIR F4 at any time prior to entry into the study; FibroScan >12.5 kPa within 12 months of study entry; or aspartate aminotransferase (AST)-to-platelet ratio >2.0 and FibroTest >0.75 within 12 months of study entry. Individuals with decompensated liver disease (presence or history of ascites, esophageal or gastric variceal bleeding, hepatic encephalopathy, or other signs of advanced liver disease) or with evidence of hepatocellular carcinoma were excluded.

Treatment

All participants received EBR (50 mg/day)/GZR (100 mg/day) administered either as a fixed-dose combination tablet or as separate entities for 12 weeks. The primary end point in this pooled analysis was sustained virologic response 12 weeks after the end of therapy (SVR12), defined as HCV RNA less than the lower limit of quantification. HCV RNA was measured by COBAS® AmpliPrep/COBAS® Taqman® HCV test (v. 2.0). Efficacy and safety were analyzed according to participant age (≥65 years vs. <65 years).

Analyses

Efficacy analyses are based on the full analysis set (FAS) population, which included all participants who received at least one dose of study drug, and the modified FAS (mFAS) population, which excluded participants who...
Table 1. Clinical Studies Included in the Integrated Analysis.

Study name (protocol number / clinical trials.gov identifier)	Participant population/HCV genotype	Participants aged <65 years (n = 2,139)	Participants aged ≥65 years (n = 339)	Total participants (N = 2,478)
C-WORTHY (PN035 / NCT01717326) (Lawitz et al., 2015; Sulkowski et al., 2015)	Cirrhotic and noncirrhotic, treatment-naïve, and treatment-experienced/GT1	124	11	135
C-SCAPE (PN047 / NCT01932762) (Brown et al., 2018)	Treatment-naïve/GT4	10	0	10
C-SURFER (PN052 / NCT02092350) (Roth et al., 2015)	CKD; treatment-naïve, cirrhotic, and noncirrhotic/GT1	187	37	224
Japan Phase 3 (PN058 / NCT02203149) (Kumada et al., 2017)	Japanese participants; cirrhotic and noncirrhotic, treatment-naïve, and treatment-experienced/GT1	199	167	366
C-SALT (PN059 / NCT02115321) (Jacobson et al., 2015)	Noncirrhotic, treatment-naïve, and treatment-experienced/GT1	8	2	10
C-EDGE Treatment-naïve (PN060 / NCT02105467) (Zeuzem et al., 2015)	Treatment-naïve/GT1 or GT4	360	46	406
C-EDGE CO-INFECTION (PN061 / NCT02105662) (Rockstroh et al., 2015)	HIV/HCV coinfected, HCV treatment-naïve/GT1 or GT4	210	6	216
C-EDGE CO-STAR (PN062 / NCT02105688) (Dore et al., 2016)	Treatment-naïve, on opioid agonist therapy/GT1 or GT4	284	3	287
C-EDGE-Inherited Blood Disorders (PN065 / NCT02252016) (Hezode et al., 2017)	Treatment-naïve and treatment-experienced/GT1 or GT4	150	5	155
C-CORAL (PN067 / NCT02251990) (Wei et al., 2017)	Asia-Pacific countries, treatment-naïve/GT1 or GT4	399	36	435
C-EDGE Treatment-Experienced (PN068 / NCT02105701) (Kwo et al., 2016)	Treatment-experienced participants/GT1 or GT4	88	17	105
C-EDGE Head-to-Head (PN077 / NCT02358044) (Sperl et al., 2016)	Treatment-naïve and treatment-experienced/GT1 or GT4	120	9	129

Note. HCV = hepatitis C virus; GT = genotype; CKD = chronic kidney disease; HIV = human immunodeficiency virus.

failed to achieve SVR12 for reasons unrelated to the treatment regimen or who had reinfection.

Results

Participant Demographics

A total of 2,139 participants aged <65 years and 339 participants aged ≥65 years were included in this analysis. Most demographic and baseline characteristics were similar between the two age groups; however, the proportion of Asian participants and those with HCV GT1b infection was lower among those aged <65 years compared with those aged ≥65 years (26% vs. 61% and 51% vs. 83%, respectively) (Table 2). Almost all participants aged ≥65 years had at least one medical history condition (334/339 [99%]), and the proportions of participants with hypertension, diabetes, and gastritis were lower in those aged <65 years compared with those aged ≥65 years. Fewer participants <65 years of age had platelets <100,000/μL compared with participants ≥65 years of age (15% vs. 54%).

Concomitant Medications

The proportion of participants receiving concomitant medications was lower among those aged <65 years than in those aged ≥65 years (83% vs. 95%) (Table 2). The most common concomitant medications were treatments for acid-related disorders (used by 19.7% of participants aged <65 years and 43.7% of those aged ≥65 years), agents acting on the renin-angiotensin system (17.4% in participants <65 years of age; 41.9% in those ≥65 years of age), agents acting on the hepatobiliary system (6.5% in participants <65 years of age; 37.2% in those ≥65 years of age), and calcium channel blockers (11.3% in <65 years of age; 32.7% in ≥65 years of age). The proportion of participants taking ursodiol was lower among those aged <65 years compared with those aged ≥65 years (6.1% vs. 36.6%).

Efficacy

Overall, the SVR12 rates in the FAS populations were 95.4% (2,041/2,139) in participants with HCV GT1 or
Table 2. Participant Demographics and Baseline Characteristics.

Characteristic	Participants aged <65 years (n = 2,139)	Participants aged ≥65 years (n = 339)
Sex, n (%)		
Male	1,307 (61)	149 (44)
Female	832 (39)	190 (56)
Age		
M (SD), years	48.8 (10.4)	69.9 (4.1)
Median (range), years	51 (18-64)	69 (65-82)
Race, n (%)		
White	1,264 (59)	89 (26)
Black or African American	278 (13)	39 (12)
Asian	564 (26)	208 (61)
Other or missing	33 (2)	3 (1)
Ethnicity, n (%)		
Non-Hispanic	1,979 (93)	331 (98)
Hispanic	129 (6)	8 (2)
HCV genotype and subtype, n (%)		
GT1	2,026 (95)	334 (99)
GT1a	929 (43)	52 (15)
GT1b or GT1-othera	1,097 (51)	282 (83)
GT4	113 (5)	5 (1)
HCV RNA, n (%)		
≤800,000 IU/mL	674 (32)	84 (25)
>800,000 IU/mL	1,465 (68)	255 (75)
≤2 million IU/mL	1,227 (57)	182 (54)
>2 million IU/mL	912 (43)	157 (46)
Geometric mean log10, IU/mL (SD)	6.1 (0.6)	6.2 (0.5)
Fibrosis stage, n (%)		
Cirrhosis	386 (18)	66 (19)
No cirrhosis	1,742 (81)	263 (78)
Unknown	11 (1)	10 (3)
Prior treatment, n (%)		
Treatment-naive	1,812 (85)	243 (72)
Treatment-experienced	327 (15)	96 (28)
Body mass index, n (%)		
<30 kg/m²	1,824 (85)	299 (88)
≥30 kg/m²	315 (15)	40 (12)
M, kg/m², (SD)	25.5 (4.8)	24.6 (4.1)
Baseline eGFRb, n (%)		
<30 mL/min/1.73 m²	183 (9)	36 (11)
<60 to ≥30 mL/min/1.73 m²	31 (1)	9 (3)
≥60 mL/min/1.73 m²	1,923 (90)	294 (87)
Medical history conditions, n (%)		
One or more condition	1,956 (91)	334 (99)
Hypertension	556 (26)	194 (57)
Diabetes mellitus	135 (6)	43 (13)
Gastroesophageal reflux disease	212 (10)	60 (18)
Chronic gastritis	54 (3)	39 (12)
Baseline albumin, n (%)		
<3.5 g/dL	32 (1)	9 (3)
≥3.5 g/dL	2,107 (99)	330 (97)
M, g/dL (SD)	4.4 (0.4)	4.2 (0.3)
Baseline ALT, mean, IU/L (SD)	65.5 (54.5)	50.9 (39.4)
Baseline AST, mean, IU/L (SD)	54.8 (40.7)	51.6 (39.4)
Baseline total bilirubin, mean, mg/dL (SD)	0.61 (0.57)	0.61 (0.36)
Baseline platelets		
<100,000/μL	312 (15)	182 (54)
≥100,000/μL	1,822 (85)	156 (46)

(continued)
GT4 infection aged <65 years and 95.3% (323/339) in those aged ≥65 years (Figure 1). Sixteen participants aged ≥65 years failed to achieve SVR12: 12 relapsed and four had nonvirologic failure.

Among the population with HCV GT1a infection, SVR12 was achieved by 92.9% (863/929) and 92.3% (48/52) of participants aged <65 years and ≥65 years, respectively. SVR12 rates in participants aged <65 and ≥65 years.
≥65 years were also similar in the populations with HCV GT1b/1-other infection (97.6% [1,071/1,097] and 95.7% [270/282]) and those with GT4 infection (94.7% [107/113] and 100% [5/5]). SVR12 rates were also similar in participants aged <65 years and those aged ≥65 years as well as across all other participant subgroups examined regardless of baseline viral load, estimated glomerular filtration rate (eGFR), race, HCV genotype, or the presence of cirrhosis (Figure 2).

Changes in eGFR Values
Among participants <65 years of age, the median eGFR values were 104.0 mL/min/1.73 m² at baseline, 101.1 mL/min/1.73 m² at 12 weeks after the end of treatment, and 93.8 mL/min/1.73 m² at FW12.

SVR, % (95% CI)

Subgroup	n/N	95% CI
All participants	323/339	95.3 (92.4, 97.3)
Cirrhotic ≥65 y	64/66	97.0 (96.5, 99.6)
Cirrhotic <65 y	204/2139	95.4 (94.6, 96.3)
Noncirrhotic ≥65 y	368/386	95.3 (92.7, 97.2)
Noncirrhotic <65 y	1662/1742	95.4 (94.3, 96.3)
Female ≥65 y	178/190	93.7 (89.2, 96.7)
Female <65 y	805/832	96.8 (95.3, 97.9)
Male ≥65 y	145/149	97.3 (93.3, 99.3)
Male <65 y	1236/1307	94.6 (93.2, 95.7)
Baseline viral load ≥800,000 IU/mL ≥65 y	81/84	96.4 (89.9, 99.3)
Baseline viral load <65 y	655/674	97.2 (95.6, 98.3)
Baseline viral load >800,000 IU/mL ≥65 y	242/255	94.9 (91.4, 97.3)
Baseline viral load <65 y	1386/1465	94.6 (93.3, 95.7)
CKD Stage 1-2a ≥65 y	281/294	95.8 (92.6, 97.6)
CKD Stage 1-2a <65 y	1835/1923	95.4 (94.4, 96.3)
CKD Stage 3a ≥65 y	9/9	100.0 (88.4, 100.0)
CKD Stage 4-5a ≥65 y	33/36	91.7 (77.5, 98.2)
CKD Stage 4-5a <65 y	175/183	95.6 (91.6, 98.1)
Asian ≥65 y	198/208	95.2 (91.3, 97.7)
Asian <65 y	550/564	97.5 (95.9, 98.6)
Black/African American ≥65 y	38/39	97.4 (86.5, 99.9)
Black/African American <65 y	259/278	93.2 (89.5, 95.8)
White ≥65 y	84/89	94.4 (87.4, 98.2)
White <65 y	1202/1264	95.1 (93.8, 96.2)
GT1b / 1-other ≥65 y	270/282	95.7 (92.7, 97.8)
GT1b / 1-other <65 y	1071/1097	97.6 (96.5, 98.4)
GT1a ≥65 y	48/52	92.3 (81.5, 97.9)
GT1a <65 y	863/929	92.9 (91.0, 94.5)

Figure 2. Efficacy rates in subgroups of participants.
Note: Stages 1 and 2 CKD were defined as eGFR ≥60 mL/min/1.73 m²; Stage 3 CKD was defined as eGFR ≥30 to <60 mL/min/1.73 m²; Stages 4 and 5 CKD were defined as eGFR <60 mL/min/1.73 m². CI = confidence interval; CKD = chronic kidney disease; GT = genotype; eGFR = estimated glomerular filtration rate; HCV = hepatitis C virus.
*eGFR was assessed using the Modification of Diet in Renal Disease–4 equation: eGFR (mL/min/1.73 m²) = 175 × (Scr)–1.154 × (age)–0.203 × (0.742 if female) × (1.212 if African American) (conventional units, where Scr represents serum creatinine in mg/dL).
participants ≥65 years of age than in those <65 years of age (Table 3). Grade 4 ALT elevations were reported in 10 (0.5%) participants aged <65 years and in 4 (1.2%) of those aged ≥65 years. Grade 4 AST elevations were reported in 4 (0.2%) participants aged <65 years and in 2 (0.6%) participants aged ≥65 years.
Discussion

The clinical management of HCV infection in elderly individuals should take into account the important characteristics of this population. Elderly participants aged ≥65 years in this integrated analysis had a high proportion of comorbidities (99%). Most elderly participants (95%) were taking at least one concomitant medication, consistent with previous reports suggesting that elderly HCV-infected individuals have an increased risk of drug−drug interactions when treated with DAA regimens (Vermehren et al., 2016). Despite these special considerations in elderly individuals, rates of SVR12 were similar in participants aged <65 and those aged ≥65 years with HCV GT1 and GT4 infection receiving EBR/GZR for 12 weeks. Despite the higher frequency of comorbidities and concomitant medications, safety and tolerability observations from this analysis indicate a safety profile of EBR/GZR that is similar in both older and younger populations.

Consistent with the findings of the present analysis, other studies have also reported that treatment of HCV-infected persons aged ≥65 years with DAA regimens is safe and effective. In a retrospective analysis of clinical trial data in participants receiving ledipasvir/sofosbuvir with or without ribavirin for 8 to 24 weeks, SVR12 rates were similar in those aged ≥65 and those aged <65 years (98% vs. 97%), and all 24 participants aged ≥75 years also achieved SVR12 (Saab et al., 2016). In a real-world VA study of 17,487 participants with HCV GT1, 2, 3, or 4 infection receiving a VA-approved DAA regimen, SVR12 rates were 91.2%, 89.8%, 90.8%, 91.1%, 90.0%, and 93.8% in the subgroups aged <55 years, 55 to 59 years, 60 to 64 years, 65 to 69 years, 70 to 74 years, and ≥75 years of age, respectively (Su, Beste, Green, Berry, & Ioannou, 2017). Furthermore, age was not predictive of SVR in multivariate analysis after adjusting for baseline characteristics, either in the overall study population or in genotype-specific analyses (Su et al., 2017). In another real-world study of individuals with HCV infection and advanced fibrosis/cirrhosis, conducted in Italy, SVR12 rates in participants treated with DAAAs were similar in those aged ≥65 years and those aged <65 years (94.7% vs. 90.5%) (Conti et al., 2017). In this analysis, among cirrhotic participants aged ≥65 years, SVR12 rates were lower in participants with a CTP score of CTP-B compared with those with a score of CTP-A (80.8% vs. 95.4%) and also lower in those with a Model for End-Stage Liver Disease (MELD) score ≥10 compared with those with a MELD score <10 (89.4% vs. 95.5%) (Conti et al., 2017). Finally, in another pooled analysis of clinical trial data, SVR12 rates were similar in participants receiving glecaprevir/pibrentasvir for 8 to 16 weeks aged ≥65 years and those aged <65 years (97.9% vs. 97.3%) (Foster, Kopecky-Bromberg, Lei, Trinh, & Mensa, 2017).

Although several studies have reported that treatment of individuals ≥65 years old with DAAs was generally safe, to our knowledge, no other study has examined the effects of treatment with DAA regimens on renal function in individuals with HCV infection aged ≥65 years. In this integrated retrospective analysis of participants ≥65 years of age receiving EBR/GZR for 12 weeks, we found that median eGFR values were similar at the end of treatment and at 12 weeks after the end of treatment compared with baseline. These observations are consistent with previous reports indicating that EBR/GZR does not worsen renal function in HCV-infected individuals with preexisting CKD Stage 3 or CKD Stage 4/5 (Reddy et al., 2017; Roth et al., 2015). Overall tolerability was also similar in the older and younger participant populations. The rates of AEs were similar in participants aged <65 years and in those aged ≥65 with respect to AEs, serious AEs, discontinuations due to AEs, discontinuations due to drug-related AEs, drug-related serious AEs, deaths, and common AEs. The safety of EBR/GZR in participants aged ≥65 years is reassuring considering that a high proportion of these participants had at least one comorbidity and were receiving at least one concomitant medication.

One limitation of this pooled analysis is the retrospective and nonrandomized nature of the study populations, resulting in notable differences in the demographics of the participants aged <65 years and ≥65 years. For example, the proportions of Asian participants and those with GT1b infection were higher among the older participant group than those aged <65 years. The proportion of female participants was also higher among those aged ≥65 years compared with those aged <65 years. Older participants also had a higher frequency of concomitant medical conditions and concomitant medications compared with younger participants. These differences in the study populations should be taken into consideration when making comparisons between the younger and older populations, although it is also noteworthy that in subgroup analyses, SVR12 rates were similar in Asian and HCV GT1b-infected participants aged ≥65 and <65 years.

These data indicate that advanced age should not be a barrier for initiating HCV treatment with DAAs such as EBR/GZR. Elderly HCV-infected individuals who achieve SVR12 have a reduced rate of progression to liver cirrhosis, improved quality of life, and overall significantly improved life expectancy compared with untreated age-matched individuals (Maor, Malnick, Melzer, & Leshno, 2016; Tseng et al., 2016; Younossi et al., 2016). Treatment of elderly individuals with chronic HCV infection with DAA regimens has been shown to be cost-effective (Ciaccio et al., 2017).

Conclusion

In this integrated analysis, the efficacy of 12 weeks of EBR/GZR was similar in HCV GT1- and GT4-infected participants aged 65 years or older and in participants younger than 65 years of age. EBR/GZR for 12 weeks
was safe and well tolerated in the participants aged 65 years or older.

Acknowledgments

The authors extend their gratitude to the participants, their families, investigators, and site personnel who participated in this study. Medical writing and editorial assistance were provided by Frank Dutko, PhD, of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, and Tim Ibbotson, PhD, of ApotheCom, Yardley, PA, and funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: S.F. is a consultant for and has served on speakers’ bureaus for AbbVie, Gilead, and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. R.N. received fees from Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., for the conduct of this study and has received fees from Gilead and Janssen for the conduct of clinical trials. C.Y.P. has served as an advisory committee member for AbbVie, BMS, Gilead, and MSD. O.S. has received grants from Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., and AbbVie and has received personal fees from Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., AbbVie, Gilead, and Neopharm. P.H., B.H., M.N.R., and E.B. are employees of and hold stock in Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: All studies included in this integrated analysis were funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., AbbVie, BMS, Gilead, and MSD. O.S. has received grants from Gilead and Janssen for the conduct of clinical trials. C-Y.P. has served as an advisory committee member for AbbVie, BMS, Gilead, and MSD. O.S. has received grants from Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., and AbbVie and has received personal fees from Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., AbbVie, Gilead, and Neopharm. P.H., B.H., M.N.R., and E.B. are employees of and hold stock in Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.

ORCID iD

Cheng-Yuan Peng https://orcid.org/0000-0001-9030-6086

References

American Association for the Study of Liver Diseases (AASLD)/Infectious Diseases Society of America (IDSA), Hepatitis C Virus (HCV) & Panel. (2015). Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. *Hepatology*, 62, 932-954.

Alvarez, K. J., Smaldone, A., & Larson, E. L. (2016). Burden of hepatitis C virus infection among older adults in long-term care settings: A systematic review of the literature and meta-analysis. *Current Infectious Disease Reports*, 18, 13.

Asante-Appiah, E., Curry, S., Monconagle, P., Ingravallo, P., Chase, R., Nickle, D., … Lahser, F. C. (2017). Antiviral activity and resistance analysis of NS3/4A protease inhibitor grazoprevir and NS5A inhibitor elbasvir in hepatitis C virus GT4 replicons. *Antimicrobial Agents and Chemotherapy*, 61, e00363-17.

Backus, L. I., Belperio, P. S., Shahoumian, T. A., & Mole, L. A. (2017). Impact of sustained virologic response with direct-acting antiviral treatment on mortality in patients with advanced liver disease. *Hepatology*. Advance online publication. doi:10.1002/hep.29408.

Brown, A., Hezode, C., Zuckerman, E., Foster, G. R., Zekry, A., Roberts, S. K., … Haber, B. (2018). Efficacy and safety of 12 weeks of elbasvir +/- grazoprevir +/- ribavirin in participants with hepatitis C virus genotype 2, 4, 5 or 6 infection: The C-SCAPE study. *Journal of Viral Hepatitis*, 25, 457-464.

Bruchfeld, A., Roth, D., Martin, P., Nelson, D. R., Pol, S., Londono, M. C., … Greaves, W. (2017). Elbasvir plus grazoprevir in patients with hepatitis C virus infection and stage 4-5 chronic kidney disease: Clinical, virological, and health-related quality-of-life outcomes from a phase 3, multicentre, randomised, double-blind, placebo-controlled trial. *The Lancet Gastroenterology & Hepatology*, 2, 585-594.

Ciaccio, A., Cortesi, P. A., Bellelli, G., Rota, M., Conti, S., Okolicsanyi, S., … Strazzabosco, M. (2017). Direct-acting antivirals combination for elderly patients with chronic hepatitis C: A cost-effectiveness analysis. *Liver International*, 37, 982-994.

Coburn, C. A., Meinke, P. T., Chang, W., Fandozzi, C. M., Graham, D. J., Hu, B., … Ludmerer, S. W. (2013). Discovery of MK-8742: An HCV NS5A inhibitor with broad genotype activity. *ChemMedChem*, 8, 1930-1940.

Conti, F., Brilliart, S., Buonfiglioli, F., Vukotic, R., Morelli, M. C., Lalanne, C., … Andreone, P. (2017). Safety and efficacy of direct-acting antivirals for the treatment of chronic hepatitis C in a real-world population aged 65 years and older. *Journal of Viral Hepatitis*, 24, 454-463.

Dore, G. J., Altice, F., Litwin, A. H., Dalgaard, O., Gane, E. J., Shibolet, O., … Platt, H. L. (2016). Elbasvir-grazoprevir to treat hepatitis C virus infection in persons receiving opioid agonist therapy: A randomized trial. *Annals of Internal Medicine*, 165, 625-634.

European Medicines Agency. (2016). Zepatier elbasvir/grazoprevir. EPAR summary for the public. Retrieved from https://www.ema.europa.eu/medicines/human/EPAR/zepatier.

Foster, G. R., Kopecky-Bromberg, S., Lei, Y., Trinh, R., & Mensa, F. (2017). Safety and efficacy of glecaprevir/pibrentasvir in patients aged 65 years or older with chronic hepatitis C: A pooled analysis of phase 2 and 3 clinical trials. *Hepatology*, 66, 640A-641A.

Harper, S., McCaulay, J. A., Rudd, M. T., Ferrara, M., DiFilippo, M., Crescenzi, B., … Liverton, N. J. (2012). Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4A protease inhibitor. *ACS Medicinal Chemistry Letters*, 3, 332-336.

Hezode, C., Colombo, M., Bourliere, M., Spengler, U., Ben-Ari, Z., Strasser, S. I., … Marco, V. D. (2017). Elbasvir/ grazoprevir for patients with hepatitis C virus infection and inherited blood disorders: A phase III study. *Hepatology*, 66, 736-745.

Jacobson, I. M., Lawitz, E., Kwo, P. Y., Hezode, C., Peng, C. Y., Howe, A. Y., … Haber, B. A. (2017). Safety and efficacy of elbasvir/grazoprevir in patients with hepatitis C virus infection and compensated cirrhosis: An integrated analysis. *Gastroenterology*, 152, 1372-1382.

Jacobson, I. M., Poordad, F., Filipe-Morell, R., Everson, G. T., Verna, E. C., Banja, S., … Charles, E. D. (2015). Efficacy and safety of grazoprevir and elbasvir in hepato-
tis C genotype 1-infected patients with Child–Pugh class B cirrhosis (C-SALT part A). Journal of Hepatology, 62, S193-S194.

Kumada, H., Suzuki, Y., Karino, Y., Chayama, K., Kawada, N., Okanoue, T., . . . Wahl, J. (2017). The combination of elbasvir and grazoprevir for the treatment of chronic HCV infection in Japanese patients: A randomized phase II/III study. Journal of Gastroenterology, 52, 520-533.

Kwo, P., Gane, E., Peng, C. Y., Pearlman, B., Vierling, J. M., Serfaty, D., . . . Haber, B. (2016). Effectiveness of elbasvir and grazoprevir combination, with or without ribavirin, for treatment-experienced patients with chronic hepatitis C infection. Gastroenterology, 152, 164-175.

Lahser, F. C., Bystol, K., Curry, S., McMonagle, P., Xie, E., Ingravallo, P., . . . Asante-Appiah, E. (2016). The combination of grazoprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor, demonstrates a high genetic barrier to resistance in HCV genotype 1a replicons. Antimicrobial Agents and Chemotherapy, 60, 2954-2964.

Lawitz, E., Gane, E., Pearlman, B., Tam, E., Ghesquiere, W., Guyader, D., . . . Haber, B. (2015). Efficacy and safety of 12 weeks versus 18 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin for hepatitis C virus genotype 1 infection in previously untreated patients with cirrhosis and patients with previous null response with or without cirrhosis (C-WORTHY): A randomised, open-label phase 2 trial. The Lancet, 385, 1075-1086.

Maor, Y., Malnick, S. D., Melzer, E., & Leshno, M. (2016). Treatment of chronic hepatitis C in the aged—Does it impact life expectancy? A decision analysis. PLoS ONE, 11, e0157832.

Merck & Co., Inc. (2017). Zepatier (package insert). Kenilworth, NJ: Merck & Co., Inc.

Reddy, K. R., Roth, D., Bruchfeld, A., Hwang, P., Haber, B., Robertson, M. N., . . . Greaves, W. (2017). Elbasvir/ grazoprevir does not worsen renal function in patients with hepatitis C virus infection and pre-existing renal disease. Hepatology Research, 47, 1340-1345.

Rockstroh, J. K., Nelson, M., Katlama, C., Lalzari, J., Mallolas, J., Bloch, M., . . . Sulkowski, M. (2015). Efficacy and safety of grazoprevir (MK-5172) and elbasvir (MK-8742) in patients with hepatitis C virus and HIV co-infection (C-EDGE CO-INFECTION): A non-randomised, open-label trial. The Lancet HIV, 2, e319-e327.

Roth, D., Nelson, D. R., Bruchfeld, A., Liapakis, A., Silva, M., Monsour, H., Jr., . . . Greaves, W. (2015). Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4-5 chronic kidney disease (the C-SURFER study): A combination phase 3 study. The Lancet, 386, 1537-1545.

Saab, S., Park, S. H., Mizokami, M., Omata, M., Mangia, A., Eggleton, E., . . . Afzal, N. H. (2016). Safety and efficacy of ledipasvir/sofosbuvir for the treatment of genotype 1 hepatitis C in subjects aged 65 years or older. Hepatology, 63, 1112-1119.

Sperl, J., Horvath, G., Halota, W., Ruiz-Tapiador, J. A., Streinu-Cercel, A., Jancorieni, L., . . . Platt, H. L. (2016). Efficacy and safety of elbasvir/grazoprevir and sofosbuvir/pegylated interferon/ribavirin: A phase III randomized controlled trial. Journal of Hepatology, 65, 1112-1119.

Su, F., Beste, L. A., Green, P. K., Berry, K., & Ioannou, G. N. (2017). Direct-acting antivirals are effective for chronic hepatitis C treatment in elderly patients: A real-world study of 17 487 patients. European Journal of Gastroenterology & Hepatology, 29, 686-693.

Sulkowski, M., Hezode, C., Gerstoft, J., Vierling, J. M., Mallolas, J., Pol, S., . . . Haber, B. (2015). Efficacy and safety of 8 weeks versus 12 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin in patients with hepatitis C virus genotype 1 mono-infection and HIV/hepatitis C virus co-infection (C-WORTHY): A randomised, open-label phase 2 trial. The Lancet, 385, 1087-1097.

Summa, V., Ludmerer, S. W., McCauley, J. A., Fandozzi, C., Burlein, C., Claudio, G., . . . Carroll, S. S. (2012). MK-5172, a selective inhibitor of hepatitis C virus NS3/4A protease with broad activity across genotypes and resistant variants. Antimicrobial Agents and Chemotherapy, 56, 4161-4167.

Tseng, C. W., Chang, T. T., Tzeng, S. J., Hsieh, Y. H., Hung, T. H., Huang, H. T., . . . Tseng, K. C. (2016). Association of sustained virologic response with reduced progression to liver cirrhosis in elderly patients with chronic hepatitis C. Clinical Interventions in Aging, 11, 327-334.

Vermeiren, J., Peiffer, K. H., Welsch, C., Grammatikos, G., Welker, M. W., Weiler, N., . . . Sarrazin, C. (2016). The efficacy and safety of direct acting antiviral treatment and clinical significance of drug-drug interactions in elderly patients with chronic hepatitis C virus infection. Alimentary Pharmacology and Therapeutics, 44, 856-865.

Wei, L., Zhadanov, K., Burnevich, E., Sheen, I. S., Heo, J., Nguyen, V. K., . . . George, J. (2017). Efficacy and safety of elbasvir/grazoprevir in treatment-naive patients with chronic HCV GT 1, GT 4 and GT 6 infection (C-CORAL): A phase III randomized multinational clinical trial. Journal of Hepatology, 66, S529.

Younossi, Z. M., Stepanova, M., Nader, F., & Henry, L. (2016). Patient-reported outcomes of elderly adults with chronic hepatitis C treated with interferon- and ribavirin-free regimens. Journal of the American Geriatrics Society, 64, 386-393.

Zeuzem, S., Ghalib, R., Reddy, K. R., Pockros, P. J., Ben, A. Z., Zhao, Y., . . . Butterton, J. R. (2015). Grazoprevir-elbasvir combination therapy for treatment-naive cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection: A randomized trial. Annals of Internal Medicine, 163, 1-13.