The Importance of Registries in the Postmarketing Surveillance of Surgical Meshes

Ferdinand Köckerling, MD, * Thomas Simon, MD, † Martin Hukauf, MSc, ‡ Achim Hellinger, MD, § Rene Fortelny, MD, ¶ Wolfgang Reinpold, MD, || and Reinhard Bittner, MD**

ORIGINAL ARTICLE

Objective: To assess the role of registries in the postmarketing surveillance of surgical meshes.

Background: To date, surgical meshes are classified as group II medical devices. Class II devices do not require premarket clearance by clinical studies. Ethicon initiated a voluntary market withdrawal of Physiomesh for laparoscopic use after an analysis of unpublished data from 2 large independent hernia registries—Herniated German Registry and Danish Hernia Database. This paper now presents the relevant data from the Herniated Registry.

Methods: The present analysis compares the prospective perioperative and 1-year follow-up data collected for all patients with incisional hernia who had undergone elective laparoscopic intraperitoneal onlay mesh repair either with Physiomesh (n = 1380) or with other meshes recommended in the guidelines (n = 3834).

Results: Patients with Physiomesh repair had a markedly higher recurrence rate compared with the other recommended meshes (12.0% vs 5.0%; P < 0.001). In the multivariable analysis, the recurrence rate was highly significantly influenced by the mesh type used (P < 0.001). If Physiomesh was used, that led to a highly significant increase in the recurrence rate on 1-year follow-up (odds ratio 2.570, 95% CI 2.057, 3.210). The mesh type used also had a significant influence on chronic pain rates.

Conclusions: The importance of real-world data for postmarketing surveillance of surgical meshes has been demonstrated in this registry-based study. Randomized controlled trials are needed for premarket approval of new devices. The role of sponsorship of device studies by the manufacturing company must be taken into account.

Keywords: hernia mesh, hernia registries, incisional hernia, laparoscopic IPOM, postmarketing surveillance

(Ann Surg 2017;xx:xxx–xxx)

From the Department of Surgery and Center for Minimally Invasive Surgery, Academic Teaching Hospital of Charité Medical School, Vivantes Hospital, Neue Bergstrasse 6, Berlin, Germany; | Department of General and Visceral Surgery, GRN-Hospital Weinheim, Röntgenstrasse 1, Weinheim, Germany; | StatConsult GmbH, Habersträßer Straße 40 a, Magdeburg, Germany; | Department of General and Visceral Surgery, Medical Campus University of Marburg, Clinic Fulda, Pacelliallee 4, Fulda, Germany; | Wilhelminen Hospital, Department of General, Visceral and Oncologic Surgery, Montelkartstrasse 37, Vienna, Austria; | Department of Surgery and Hernia Center, Wilhelmsburg Hospital Gross-Sand, Gross-Sand 3, Hamburg, Germany; and | Winghofer Medium, Hernia Center, Winghofer Straße 42, Rottenburg am Neckar, Germany.

The authors report no conflicts of interest.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Reprints: Ferdinand Köckerling, MD, Department of Surgery and Center for Minimally Invasive Surgery, Academic Teaching Hospital of Charité Medical School, Vivantes Hospital, Neue Bergstrasse 6, D-13585 Berlin, Germany. E-mail: Ferdinand.Koekerling@vivantes.de.

Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc.

ISSN: 0003-4922/16/XXXX-0001
DOI: 10.1097/SLA.0000000000002326

Annals of Surgery • Volume XX, Number XX, Month 2017 www.annalsofsurgery.com | 1

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
FIGURE 1. Flowchart of patient inclusion.

recurrences or chronic pain were reported by the general practitioner or patient, patients could be requested to attend clinical examination or radiologic tests. A recent publication has provided impressive evidence of the role of patient-reported outcomes for both recurrence and chronic pain.19

The present analysis compares the prospective data collected for all patients with incisional hernias who had undergone elective laparoscopic IPOM either with Physiomesh or other meshes recommended in the guidelines. Inclusion criteria were minimum age of 18 years, incisional hernia, elective operation, mesh fixation with sutures, tacks or sutures and tacks, and availability of data on 1-year follow-up (Fig. 1). In all, 5214 patients were enrolled between September 1, 2009 and September 1, 2015 (Fig. 1). Of these patients, 1380 (26.5%) had a laparoscopic IPOM repair with Physiomesh and 3834 (73.5%) with other meshes. The other most commonly used meshes (≥1.8%) were Parietex Composite (n = 1460/5214; 28.0%), Parietene Composite (n = 399/5214; 7.7%), Symbotex Composite (n = 93/5214; 1.8%), Dynamesh IPOM (n = 808/5214; 15.5%), TiMesh (n = 201/5214; 3.9%), Ventralight ST (n = 241/5214; 4.6%), and other meshes (n = 632/5214; 12.0%).

The demographic and patient-related parameters included age (years), sex, American Society of Anesthesiologist (ASA) score (I, II, III, IV), World Health Organization (WHO) obesity classification (body mass index (BMI) <18.5 = underweight, 18.5–24.9 = normal weight, 25.0–29.9 = overweight, ≥30 = obesity),20 and risk factors (chronic obstructive pulmonary disease, diabetes, aneurysms, corticosteroid, immunosuppression, etc).

The second group of surgery-related categorical variables influencing the outcome included the hernia defect size based on European Hernia Society (EHS) classification (W1 <4 cm, W2 ≥4–10 cm, W3 >10 cm),21 hernia localization, fixation technique, defect closure, mesh type, recurrent operation, preoperative pain, and mesh size. Hernia width was recorded during surgery based on intraoperative measurements.

The dependent variables were intraoperative and postoperative, and general complication rates, complication-related reoperation rates, recurrence rates and rates of pain at rest, pain on exertion, and chronic pain requiring treatment.

All analyses were performed with the software SAS 9.4 (SAS Institute Inc. Cary, NC) and intentionally calculated to a full significance level of 5%, that is, they were not corrected in respect to multiple tests, and each P value ≤0.05 represents a significant result. To discern differences between the groups in unadjusted analyses, Fisher’s exact test was used for categorical outcome variables, and the robust t test (Satterthwaite) for continuous variables. For mesh size (cm²), a logarithmic transformation was applied, and re-transformed mean and range of dispersion were given. In an attempt to rule out confounding of data caused by different patient characteristics, the results of univariable analyses were verified via multivariable analyses in which, in addition to mesh type, other influence parameters were simultaneously reviewed.

To access influence factors in multivariable analyses, the binary logistic regression model for dichotomous outcome variables was used. Estimates for odds ratio (OR) and the corresponding 95% confidence interval (CI) based on the Wald test are given. In addition, all pair-wise ORs with a corresponding 95% confidence interval are given. For age (years), the 10-year OR estimate, and for mesh size, the 10-point OR estimate are given. The results are presented in tabular form, sorted by descending impact.

RESULTS

Univariable Analyses

Univariable analysis merely provides a first hint of the heterogeneity between the mesh groups used, which is then taken into
TABLE 1. Demographic, Patient and Procedure-related Parameters, Risk Factors, and Mesh Type

	PhysioMesh	Other Meshes	P
Sex Male	671	1945	0.179
Sex Female	709	1889	0.203
BMI Underweight	10	16	0.42
BMI Normal weight	231	697	0.286
BMI Overweight	517	1472	0.385
BMI Obesity	620	1633	0.477
Defect size W1 (<4 cm)	474	1366	0.177
Defect size W2 (4–10 cm)	723	1904	0.466
Defect size W3 (≥10 cm)	183	564	0.471
ASA score I	111	424	0.004
ASA score II	829	2177	0.567
ASA score III/IV	440	1233	0.316
Defect closure Suture	364	841	<0.001
Defect closure Nonabsorbable tacks	69	181	0.472
Defect closure Absorbable + suture	53	175	0.564
Defect closure Absorbable	813	2009	0.540
Recurrent operation	289	802	0.985
EHS classification	132	365	0.724
EHS Combined	208	613	0.599
EHS Lateral	1040	2856	0.749
Preoperative pain Yes	781	2188	0.534
Preoperative pain No	468	1320	0.762
Risk factors Total	551	1574	0.465
Risk factors COPD	149	416	0.957
Risk factors Diabetes	194	550	0.794
Risk factors Aortic aneurysm	20	56	0.976
Risk factors Immunosuppression	23	74	0.535
Risk factors Corticoids	22	80	0.257
Risk factors Smoking	152	460	0.330
Risk factors Coagulopathy	25	62	0.629
Risk factors Antiplatelet medication	152	382	0.269
Risk factors Anticoagulation therapy	36	113	0.517

ASA indicates American Society of Anesthesiologist; COPD, chronic obstructive pulmonary disease; EHS, European Hernia Society.

account in the models. Thus, the focus is on the appropriate multivariable models.

The descriptive statistics, and also the results for the continuous variables age (mean) (Physiomesh: 62.4 vs other meshes: 62.6) and mesh size (cm²) (Physiomesh: 319.6 vs other meshes: 279.1) identified only a significant difference in the mesh size (P = 0.001).

The descriptive statistics, and also the results for the categorical variables, are given in Table 1. Significant differences between the meshes used were identified for defect closure (P < 0.001), fixation technique (P < 0.001), and ASA score (P = 0.004). As regards the recurrent operations, no significant difference was detected between the 2 groups in respect of the proportion of recurrent operations, number of prior surgeries, or the repair technique used for the most recent previous operation. Overall assessment of the risk factors, that is, presence of at least 1 risk factor, did not reveal any significant difference between the 2 groups.

As regards the outcome parameters (Table 2), only for the recurrences, pain on exertion and chronic pain requiring treatment was a significant difference identified between the patient groups using Physiomes versus other meshes for repair. For example, patients with Physiomesh repair had a markedly higher recurrence rate (12.0% vs 5.0%; P < 0.001). To discount the possibility that the significant difference in the recurrence rate to the advantage of the comparator meshes was due to the high performance of 1 of the meshes, the recurrence rates of meshes accounting for a proportion of at least 1.8% of all meshes were also calculated. This revealed that for all other meshes recommended in the guidelines, a highly significantly (P < 0.001) lower recurrence rate was identified compared with Physiomesh (Fig. 2). Likewise, the rate of pain on exertion (22.1% vs 19.0%; P = 0.013) and chronic pain requiring treatment (9.7% vs 7.3%; P = 0.005) were significantly higher in patients with Physiomesh repair.

Multivariable Analyses

The results of the model fit used to investigate the influence exerted by patient and procedure-related variables (mesh type, sex, age, WHO obesity classification, ASA score, defect size, defect localization, defect closure, mesh size, fixation technique, recurrent operation, preoperative pain, and risk factors) on the outcome variables are presented. The multivariable analyses of intraoperative, postoperative surgical, and postoperative general complications, and also complication-related re-operations and pain at rest, showed no influence of the mesh type on the outcome.

Recurrence

Table 3 shows the multivariable analysis results of the factors impacting onset of recurrences on 1-year follow-up (model fit: P < 0.001). The recurrence rate was highly significantly influenced by the mesh type used (P < 0.001). If Physiomesh was used, it led to an increase in the recurrence rate on 1-year follow-up (OR 2.570,
A recurrent operation (OR 1.499, 95% CI 1.166, 1.926, \(P = 0.002 \)), and also larger defect sizes (W3 vs W1: OR 1.831, 95% CI 1.245; 2.692, \(P = 0.002 \); W2 vs W1: OR 1.471, 95% CI 1.117, 1.937, \(P = 0.006 \)) were significantly associated with a higher recurrence risk. Differences were also observed with regard to the EHS classification, with the majority of recurrences found for lateral hernias (lateral vs combined: OR 1.657, 95% CI 1.070, 2.567, \(P = 0.024 \); lateral vs medial: OR 1.546, 95% CI 1.166, 2.051, \(P = 0.007 \)). Likewise, a larger mesh (10-point: OR 1.006, 95% CI 1.000, 1.011, \(P = 0.040 \)) was conducive to recurrence and obesity versus normal weight (OR 1.621, 95% CI 1.138, 2.309, \(P = 0.007 \)) was also associated with a higher recurrence risk although BMI classification was not be found to be a significant predictor of recurrence.

Pain on Exertion

The multivariable analysis results of pain on exertion on 1-year follow-up are shown in Table 4 (model fit: \(P < 0.001 \)). Likewise, pain on exertion was primarily and negatively influenced by preoperative pain (preoperative pain yes vs no: OR 1.808, 95% CI 1.531, 2.133, \(P < 0.001 \)). Female sex (female vs male: OR 1.557, 95% CI 1.345, 1.801, \(P < 0.001 \)), lateral EHS classification (lateral vs combined: OR 1.657, 95% CI 1.070, 2.567, \(P = 0.024 \); lateral vs medial: OR 1.546, 95% CI 1.166, 2.051, \(P = 0.007 \)) was also associated with a higher recurrence risk although BMI classification was not be found to be a significant predictor of recurrence.

FIGURE 2. Recurrence rate and mesh type (\(P < 0.001 \)).
Registries in Postmarketing Surveillance of Surgical Meshes

TABLE 3. Multivariable Analysis of Recurrences on 1-year Follow-up

Parameter	P	Category	P Paired	OR Estimate	95% CI	
Mesh type	<0.001	PhysioMesh vs other meshes	2.570	2.057	3.210	
Recurrent operation	0.002	Yes vs no	1.499	1.166	1.926	
Defect size	0.005	W3 (>10 cm) vs W2 (≥4–10 cm)	0.173	1.244	0.909	
		W3 (≥10 cm) vs W1 (<4 cm)	0.002	1.831	1.245	
		W2 (≥4–10 cm) vs W1 (<4 cm)	0.006	1.471	1.117	
EHS classification	0.007	Lateral vs combined	0.024	1.657	1.070	
		Lateral vs medial	0.002	1.546	1.166	
		Combined vs medial	0.724	0.933	0.636	
Mesh size [10-point OR]	0.040	Obesity vs overweight	0.117	1.220	0.951	
		Obesity vs normal weight	0.007	1.621	1.138	
		Obesity vs underweight	0.949			
		Overweight vs normal weight	0.122	1.329	0.927	
		Overweight vs underweight	0.950			
		Normal weight vs underweight	0.952			
ASA score	0.076	III/IV vs II	0.100	1.235	0.960	
Fixation	0.103	Suture vs nonabsorbable tacks + suture	0.524	0.797	0.396	1.604
		Suture vs absorbable tacks + suture	0.251	1.401	0.788	
		Suture vs nonabsorbable tacks	0.759	1.121	0.539	
		Suture vs absorbable tacks	0.920	1.029	0.392	
		Nonabsorbable tacks + suture vs absorbable tacks	0.028	1.759	1.064	
		Nonabsorbable tacks + suture vs nonabsorbable tacks	0.321	1.408	0.716	
		Nonabsorbable tacks + suture vs absorbable tacks	0.292	1.291	0.802	
		Absorbable tacks + suture vs nonabsorbable tacks	0.426	0.800	0.462	
		Absorbable tacks + suture vs absorbable tacks	0.020	0.734	0.566	
Age [10-yr OR]	0.337					
Sex	0.379	Female vs male	0.904	0.721	1.133	
Defect closure	0.508	Yes vs no	0.912	0.696	1.197	
Risk factors	0.664	Yes vs no	0.949	0.750	1.201	

ASA indicates American Society of Anesthesiologist; EHS, European Hernia Society; WHO, World Health Organization.

vs medial: OR 1.587, 95% CI 1.319, 1.908, P < 0.001), the use of Physiomesh (Physiomesh vs other meshes: OR 1.194, 95% CI 1.022, 1.395, P = 0.026), mesh size (10-point: OR 1.004, 95% CI 1.000, 1.008, P = 0.037), and recurrent operation (yes vs no: OR 1.187, 95% CI 1.004, 1.002, P = 0.044) were also associated with a higher risk of pain on exertion. A higher age increased the risk of pain on exertion (10-year: OR 0.787, 0.742, 0.835, P < 0.001).

Chronic Pain Requiring Treatment

The multivariable results of pain requiring treatment are illustrated in Table 5 (model fit: P < 0.001). Chronic pain requiring treatment was primarily influenced by female sex (female vs male: OR 1.706, 95% CI 1.374, 2.118, P < 0.001). Likewise, preoperative pain (yes vs no: OR 1.651, 95% CI 1.272, 2.067, P < 0.001), the use of Physiomesh (Physiomesh vs other meshes: OR 1.321, 95% CI 1.060, 1.648, P = 0.013), lateral vs medial EHS classification (lateral vs medial: OR 1.410, 95% CI 1.083, 1.837, P = 0.011), and the mesh size (10-point: OR 1.005, 95% CI 1.000, 1.011, P = 0.045) increased the risk of chronic pain requiring treatment. By contrast, a higher age reduced the risk of chronic pain requiring treatment (10-year: OR 0.818, 95% CI 0.751, 0.890, P < 0.001).

DISCUSSION

Univariable and multivariable analyses of the Herniamed data showed that the mesh used in laparoscopic IPOM had no detectable impact on the intraoperative, postoperative surgical, and postoperative general complications, complications related reoperations, and pain at rest, but did have an influence on recurrence, pain on exertion, and chronic pain requiring treatment.

Furthermore, multivariable analysis of the recurrence rate revealed that Physiomesh compared with the other meshes recommended in the guidelines did present a highly significantly higher risk of onset of a recurrence on 1-year follow-up, with a P value <0.001 and an OR of 2.570. Other variables revealed by multivariable analysis to have had a significant influence on the recurrence rate were recurrent operation, larger defect size, lateral EHS classification, obesity, and larger mesh size. Whereas there was evidence that the use of Physiomesh impacted the risk of pain on exertion and of chronic pain requiring treatment, with an OR of 1.194 and 1.321, respectively, this was lower than the influence exerted by preoperative pain, female sex, and lateral EHS classification.

The Laparoscopic Intraperitoneal Onlay Mesh Augmentation trial, sponsored by Ethicon, was designed to standardize surgical technique for laparoscopic IPOM, that is, mesh fixation with absorbable tacks in double crown technique and transfascial sutures at the edges of mesh, along with the use of Physiomesh alone in incisional hernia repair. Compliance with specified criteria by the participating study sites was strictly monitored. Using this standard operative procedure, the recurrence rate after 1 year in 85 enrolled patients, of whom 75 presented for 1-year follow-up examination, was 4.1% (95% CI 0.9–11.9).

A single-arm observational study by the International Hernia Mesh Registry sponsored by Ethicon did not find any evidence of an increased recurrence rate for laparoscopic IPOM repair of ventral hernias with Physiomesh. The role of the sponsor must, however,
be taken into account with regard to that finding since both studies were sponsored by Ethicon and this may have impacted the findings. A Cochrane review suggests the existence of an industry bias that cannot be explained by standard "risk of bias" assessment. Sponsorship of device studies by the manufacturing company merely leads to favorable efficacy results.26

One possible explanation for the significantly higher recurrence rate associated with Physiomesh could be its burst strength. Measurements of the burst strength of the nonabsorbable portion of the Physiomesh yielded the sufficient value of 696 mm Hg.27-29 To design the ideal mesh for intraperitoneal placement, the paradoxical requirements of tissue separation on the visceral surface and tissue integration on the parietal surface need to be addressed.30 Physiomesh is a composite mesh consisting of a macroporous, warp-knitted polypropylene sandwiched between 2 tissue-separating layers of a bioabsorbable coating (poliglecaprone 25). Polydioxanone is used as glue to keep all layers together.30 The poliglecaprone-25 layers are comprised of a copolymer of ecaprolactone and glycolide which degrade through hydrolysis and are expected to be fully absorbed within approximately 240 days.31

In a preclinical porcine model, Deeken and Matthews32 found for Ventralight ST/Sorbafix more favorable strength of tissue ingrowth and histologic response, and similar mesh contracture and adhesion characteristics compared with Physiomesh/Securestrap over a short-term 14-day implantation period. Vogels et al33 also reported in an experimental study in rats after 90 days significantly lower incorporation strengths for Physiomesh compared with all other mesh groups. They hypothesized that the reason for this delay of tissue integration was the application of an anti-adhesive coating on both sides of the mesh.33

Another important risk factor for recurrence after Physiomesh implantation could be the significant loss of cranio-caudal mesh size up to 30% after 90 days.33

In yet another experimental study, seroma was often observed with Physiomesh, whereby seromas were found trapped between the 2 poliglecaprone films.34

In a preclinical study conducted by Ethicon using rabbits as experimental models, Physiomesh was found to be superior to other composite meshes in preventing adhesions.35 The tissue integration, migration, and contraction characteristics of Physiomesh were also evaluated in another preclinical porcine study.36 At 28, 56, and 91 days postimplantation, Physiomesh had adequate tissue fixation and excellent tissue integration.

In 2017, the Medical Device Regulation (MDR) will replace the EU's current Medical Device Directive. Under the MDR, surgical meshes will, in future, be classified as risk class III medical devices. This means that clinical data will have to be gathered and evaluated before new meshes are placed on the market. The most appropriate means of doing so is likely to be RCTs. Through patient selection on the basis of exclusion and inclusion criteria, the quality of a medical device can be evaluated relatively quickly in not too large patient groups. This has been demonstrated in the RCT by Pawlak et al.16

Parameter	P Category	P Paired OR Estimate 95% CI
Age [10-yr OR]	<0.001	0.787 0.742 0.835
Preoperative pain	<0.001	0.542 1.077 0.848 1.367
Unknown vs yes	0.845 0.537 1.329	
Unknown vs no	<0.001	1.947 1.499 2.528
Sex	<0.001	1.808 1.531 2.133
Female vs male	1.557 1.345 1.801	
EHS classification	<0.001	0.003 1.537 1.156 2.042
Lateral vs combined	0.001	1.587 1.319 1.908
Lateral vs medial	0.003 1.537 1.156 2.042	
Combined vs medial	0.799 1.033 0.807 1.322	
Mesh type	0.026	PhysioMesh vs other meshes
0.037	1.194 1.072 1.395	
Mesh size [10-point OR]	0.044	Yes vs no
0.044	Suture vs nonabsorbable tacks + suture	
0.466	0.845 0.537 1.329	
Suture vs absorbable tacks + suture	0.549	1.113 0.785 1.578
0.199	1.361 0.850 2.177	
Suture vs absorbable tacks	0.285	1.204 0.857 1.691
Nonabsorbable tacks + suture vs absorbable tacks + suture	0.111	1.317 0.939 1.847
Nonabsorbable tacks + suture vs nonabsorbable tacks	0.043	1.611 1.015 2.556
Nonabsorbable tacks vs absorbable tacks	0.003	1.425 1.026 1.979
Absorbable tacks + suture vs nonabsorbable tacks	0.278	1.223 0.850 1.759
Absorbable tacks vs absorbable tacks	0.327	1.082 0.924 1.266
Defect size	0.442	W3 (≥10 cm) vs W2 (≥4–10 cm)
0.605	1.061 0.848 1.326	
W3 (≥10 cm) vs W1 (<4 cm)	0.255	1.162 0.897 1.504
W2 (≥4–10 cm) vs W1 (<4 cm)	0.278	1.095 0.929 1.291
ASA score	0.538	III/IV vs II
0.677	1.036 0.877 1.224	
III/IV vs I	0.270	1.170 0.885 1.547
WHO obesity classification	0.800	Obesity vs overweight
0.688	1.034 0.879 1.216	
Obesity vs normal weight	0.828	1.023 0.836 1.250
Obesity vs underweight	0.348	1.694 0.563 5.102
Normal weight vs overweight	0.918	0.989 0.805 1.215
Nonabsorbable tacks + suture vs absorbable tacks	0.381	1.639 0.543 4.552
Normal weight vs underweight	0.373	1.657 0.546 5.032
Defect closure	0.853	Yes vs no
0.984	0.831 1.165	
Risk factors	0.984	Yes vs no
1.002	0.861 1.164	

ASA indicates American Society of Anesthesiologist; EHS, European Hernia Society; WHO, World Health Organization.

In 2017, the Medical Device Regulation (MDR) will replace the EU’s current Medical Device Directive. Under the MDR, surgical meshes will, in future, be classified as risk class III medical devices. This means that clinical data will have to be gathered and evaluated before new meshes are placed on the market. The most appropriate means of doing so is likely to be RCTs. Through patient selection on the basis of exclusion and inclusion criteria, the quality of a medical device can be evaluated relatively quickly in not too large patient groups. This has been demonstrated in the RCT by Pawlak et al.16

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
In the present case of Physiomesh, the data showed that the recurrence rate to the disadvantage of Physiomesh (9.9% vs 6.9%; significant difference) was doubled for the non-Physiomesh group, that is, 10% instead of 5%. Even given that assumption, there was still a highly significant difference in the recurrence rate to the disadvantage of Physiomesh (9.9% vs 6.9%; P = 0.001). Apart from data completeness, another principal concern with registries is that of making inferences without regard to the quality of the data. The best safeguard is to match the data against another registry, if possible, and literature data.\footnote{In the present case of Physiomesh, the data from the Herniamed and Danish Hernia Registries and a RCT showed comparable results and led to the voluntary recall by the manufacturer.}

The lack of follow-up for 3105 out of 8319 patients (37.3%), and hence their exclusion from analysis, represents the main limitation of the present study. In a best-case, worst-case scenario, we assumed that the recurrence rate was halved for the patients with no follow-up in the Physiomesh group, that is, 6% instead of 12%, and that this was doubled for the non-Physiomesh group, that is, 10% instead of 5%. Even given that assumption, there was still a highly significant difference in the recurrence rate to the disadvantage of Physiomesh (9.9% vs 6.9%; P < 0.001). Apart from data completeness, another principal concern with registries is that of making inferences without regard to the quality of the data. The best safeguard is to match the data against another registry, if possible, and literature data.\footnote{In the present case of Physiomesh, the data from the Herniamed and Danish Hernia Registries and a RCT showed comparable results and led to the voluntary recall by the manufacturer.}

Furthermore, once new surgical meshes have been placed on the market, manufacturers must submit, on a yearly basis, clinical data on the safety of their products. Registries can play a crucial role in determining the safety, another principal concern with registries is that of making inferences without regard to the quality of the data. The best safeguard is to match the data against another registry, if possible, and literature data.\footnote{In the present case of Physiomesh, the data from the Herniamed and Danish Hernia Registries and a RCT showed comparable results and led to the voluntary recall by the manufacturer.}

TABLE 5. Multivariable Analysis of Pain Requiring Treatment on 1-year Follow-up

Parameter	Category	P	OR Estimate	95% CI		
Sex	<0.001	Female vs male	1.706	1.374	2.118	
Age [10-yr OR]	<0.001		0.818	0.751	0.890	
Preoperative pain	<0.001	Unknown vs yes	0.145	0.753	0.314	1.103
		Unknown vs no	0.344	1.221	0.807	1.848
		Yes vs no	<0.001	1.621	1.272	2.067
Mesh type	0.013	PhysioMesh vs other meshes	0.427	1.130	0.828	1.560
EHS classification	0.019	Lateral vs combined	0.222	1.651	1.076	2.533
		Lateral vs medial	0.011	1.410	1.083	1.837
		Combined vs medial	0.341	0.854	0.836	1.247
Mesh size [10-point OR]	0.045					
Fixation	0.169	Suture vs nonabsorbable tacks + suture	0.650	0.867	0.468	1.606
		Suture vs absorbable tacks + suture	0.175	1.399	0.862	2.273
		Suture vs nonabsorbable tacks	0.196	1.566	0.794	3.088
		Suture vs absorbable tacks	0.179	1.379	0.863	2.202
		Nonabsorbable tacks + suture vs absorbable tacks + suture	0.043	1.614	1.016	2.565
		Nonabsorbable tacks + suture vs nonabsorbable tacks	0.081	1.806	0.930	3.509
		Nonabsorbable tacks + suture vs absorbable tacks	0.042	1.591	1.018	2.486
		Absorbable tacks + suture vs nonabsorbable tacks	0.668	1.199	0.647	2.203
		Absorbable tacks + suture vs absorbable tacks	0.901	0.985	0.781	1.243
		Nonabsorbable tacks vs absorbable tacks	0.604	0.881	0.517	1.499
ASA score	0.285	III/IV vs II	0.330	1.127	0.886	1.432
		III/IV vs I	0.118	1.397	0.919	2.124
		I vs III	0.256	1.240	0.856	1.797
Recurrent operation	0.333	Yes vs no	0.127	1.127	0.885	1.435
Defect closure	0.645	Yes vs no	0.105	0.830	1.351	
WHO obesity classification	0.709	Obesity vs overweight	0.319	1.130	0.889	1.436
		Obesity vs normal weight	0.916	0.985	0.738	1.313
		Obesity vs underweight	0.681	1.362	0.312	5.944
		Overweight vs normal weight	0.371	0.872	0.645	1.177
		Overweight vs underweight	0.804	1.206	0.275	5.296
		Normal weight vs underweight	0.669	1.384	0.313	6.116
Defect size	0.711	W3 (≥10 cm) vs W2 (≥4–10 cm)	0.427	1.137	0.828	1.560
		W3 (≥10 cm) vs W1 (≤4 cm)	0.451	1.150	0.799	1.655
		W2 (≥4–10 cm) vs W1 (≤4 cm)	0.922	1.012	0.797	1.284
Risk factors	0.767	Yes vs no	0.967	0.777	1.204	

ASA indicates American Society of Anesthesiologist; EHS, European Hernia Society; WHO, World Health Organization.

CONCLUSIONS

In summary, the present multivariable analysis of data from the Herniamed Registry in laparoscopic IPOM revealed a significantly higher recurrence and pain rate when using Physiomesh compared with the other composite meshes recommended in the guidelines. The different findings obtained from animal experimental and clinical studies suggest that the Physiomesh product characteristics, and also patient and procedure-related factors, may have had a potential effect. Since, to date, the reasons have not been fully ascertained, the manufacturer initiated voluntary recall of Physiomesh from the market because the Danish Hernia Database had also revealed similar clinical findings. The importance of real-world data (registry-based, population-based) for postmarketing surveillance of surgical meshes has been demonstrated in this registry-based study, with similar findings in the Danish Hernia Database. Together, this has led to the decision taken by the manufacturer of Physiomesh. The experiences gathered over the years since the placement of Physiomesh on the market and the amount of validated data now collected in registries for evaluation of the quality of this mesh demonstrate...
that registries tend to be more suitable for long-term evaluation of surgical meshes for all patients operated on with this medical device. This is due to the fact that no patient with other factors that could impact the outcome is excluded from registries. Therefore, large sample sizes are needed for multivariable analysis. The sample size can be smaller in prospective randomized trials since several potential influence factors can be controlled on the basis of inclusion and exclusion criteria. Therefore, based on the new marketing authorization procedures, before surgical meshes are first placed on the market in the future, it is likely that RCTs will be carried out, whereas registry studies will be used to collect clinical data for postmarketing surveillance of surgical meshes.

REFERENCES

1. Sauerland S, Walgenbach M, Habermalz B, et al. Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. Cochrane Database Syst Rev. 2011;CD007781.

2. Zhang Y, Zhou H, Chai Y, et al. Laparoscopic versus open incisional and ventral hernia repair: a systematic review and meta-analysis. World J Surg. 2014;38:2233–2240.

3. Al Chalabi H, Larkin J, Mehiagn B, et al. A systematic review of laparoscopic versus open abdominal incisional hernia repair, with meta-analysis of randomized controlled trials. Int J Surg. 2015;20:65–74.

4. Awais A, Rahman F, Hossain MB, et al. Meta-analysis and systematic review of laparoscopic versus open mesh repair for elective incisional hernia. Hernia. 2015;19:449–463.

5. Jensen KK, Jorgensen LN. Comment to: Meta-analysis and systematic review of laparoscopic versus open mesh repair for elective incisional hernia [Awais A et al. Hernia 2015; 19: 449–463]. Hernia. 2015;19:1025–1026.

6. Awais A, Rahman F, Hossain MB, et al. Reply to comment to Meta-analysis and systematic review of laparoscopic versus open mesh repair for elective incisional hernia. Jensen K, Jorgensen LN. Hernia. 2015;19:1027–1029.

7. Earle D, Roth JE, Sahar A, et al. SAGES guidelines for laparoscopic ventral hernia repair. Surg Endosc. 2016;30:3163–3183.

8. Bittner R, Bingener-Casey J, Dietz U, et al. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias (International Endohernia Society [IEHS]): part 1. Surg Endosc. 2014;28:2–29.

9. Bittner R, Bingener-Casey J, Dietz U, et al. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias (International Endohernia Society [IEHS]): part 2. Surg Endosc. 2014;28:353–379.

10. Bittner R, Bingener-Casey J, Dietz U, et al. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias (International Endohernia Society [IEHS]): part III. Surg Endosc. 2014;28:380–404.

11. Christoffersen MW, Brandt E, Helgstrand F, et al. Recurrence rate after absorbable tack fixation of mesh in laparoscopic incisional hernia repair. RIG. 2015;102:541–547.

12. Tandon A, Pathak S, Lyons NJR, et al. Meta-analysis of closure of the fascial defect during laparoscopic incisional and ventral hernia repair. Br J Surg. 2016;103:1598–1607.

13. LeBlanc K. Proper mesh overlap is a key determinant in hernia recurrence following laparoscopic ventral and incisional hernia repair. Hernia. 2016;20:85–99.

14. Silecchia G, Campanile FC, Sanchez L, et al. Laparoscopic ventral/incisional hernia repair: updated guidelines from the EAES and EHS endorsed Consensus Development Conference. Surg Endosc. 2015;29:2463–2484.

15. Moreno-Egea A, Carrillo-Alcaraz A, Soria-Aledo V. Randomized clinical trial of laparoscopic hernia repair comparing titanium-coated lightweight mesh and medium-weight composite mesh. Surg Endosc. 2015;27:231–239.

16. Pawlik M, Hilgers RD, Bury K, et al. Comparison of two different concepts of mesh and fixation technique in laparoscopic ventral hernia repair: a randomised controlled trial. Surgery. 2016;159:1188–1197.

17. Voluntary Product Recall of Ethicon Physiomesh™ Flexible Composite Mesh. Available at: www.swissmedic.ch/recallists Durham/217790V4_2016OS52_11_e1..pdf. Accessed May 25, 2016.

18. Stechmesser B, Jacob DA, Schug-Pall C, et al. Herniated: an Internet-based registry for outcome research in hernia surgery. Hernia. 2012;16:269–276.

19. Baucom RB, Osley J, Feider UD, et al. Patient reported outcomes after incisional hernia repair: establishing the ventral hernia recurrence inventory. Am J Surg. 2016;212:81–88.

20. WHO Technical Report Series 894. Obesity: Preventing and Managing the Global Epidemic. Geneva: World Health Organization; 2000, ISBN 92 4 120894 5.

21. Myoums FE, Miserez M, Berrevoet F, et al. Classification of primary and incisional abdominal wall hernias. Hernia. 2009;13:407–414.

22. Hellinger A, Wotzlaf F, Fackeldey V, et al. Development of an open prospective observational multicentre cohort study to determine the impact of standardization of laparoscopic intraoperative onlay mesh repair (iPOM) for incisional hernia on clinical outcome and quality of life (LIPOM-Trial). Contemp Clin Trials Commun. 2016;4:118–123.

23. Hellinger A, Wotzlaf F, Fackeldey V, et al. Results of LipOM-Trial 2016 (data on file).

24. International Hernia Mesh Registry (IHMRR). Clinical Trials.gov Identifier: NCT00622583. Study ID Numbers: 200-06-007. https://clinicaltrials.gov/ct2/show/NCT00622583.

25. Bradley JF, Williams KB, Wormer BA, et al. Preliminary results of surgical and quality of life outcomes of Physiomesh in an international, prospective study. Surg Technol Int. 2012;22:113–119.

26. Lundh A, Lexchin J, Mintzes B, et al. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2017;2:MR000023.

27. Cobbs WS, Burns JM, Kercher KW, et al. Normal intra-abdominal pressure in healthy adults. J Surg Res. 2009;29:231–235.

28. Iqbal A, Haider M, Staudhuber RJ, et al. A study of intragastric and intravesical pressure changes during rest, coughing, weight lifting, retching, and vomiting. Surg Endosc. 2008;22:2571–2575.

29. Ethicon Inc. Design Comparison of Physiomesh to leading Competitors: Burst Strength (mmHg) Paritex vs Symbotex vs Physiomesh (data on file).

30. Pollens T, Maxime E, Anthony B, et al. Retrospective study on the use of a composite mesh [Physiomesh[TM]] in laparoscopic ventral hernia repair. Surg Technol Int. 2012;22:141–145.

31. Deeken CR, Faucher KM, Matthews BD. A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surg Endosc. 2012;26:556–575.

32. Deeken CR, Matthews BD. Ventralight ST and SorbaFix versus Physiomesh for incisional hernia on clinical outcome and quality of life. Hernia. 2015;19:85–99.

33. Vogels RRM, van Beersveld KNY, Bosmans JWAM, et al. Long-term evaluation of adhesion formation and foreign body response to three new meshes. Surg Endosc. 2015;29:2251–2259.

34. Ethicon Inc. Holste JL, Muench TJ, Shnoda P, et al. An evaluation of Ethicon Physiomesh™ Flexible composite mesh in the prevention of adhesions in a rabbit model of abdominal hernia repair: a comparative study. PHYSM-335-10 (data on file).

35. Hannan EL, Cozzens K, King SB, et al. The New York State Cardiac Registries: history, contributions, limitations, and lessons for future efforts to assess and publicly report healthcare outcomes. JACC. 2012;59:2309–2316.