Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes

Zhijie Wang,†a Yanyan Wang,†a Chao Wu,a Wei Kong Pang,a Jianfeng Mao,†ab and Zaiping Guo †ab

Traditional Li ion batteries (LIBs) have been shaping many aspects of our modern life.1–4 Nevertheless, the traditional graphite-based LIBs have nearly reached their theoretical limit in energy density (~250 W h kg⁻¹), which hinders the development of portable electrical devices and electric vehicles.5–8 Li metal has the lowest electrochemical potential (~3.04 V vs. the standard hydrogen electrode (SHE)) among the alkali metals and a much higher theoretical specific capacity of 3860 mAh g⁻¹ (which is 10 times that of graphite) (Fig. 1a).9–15 When paired with high-voltage cathode materials, Li metal batteries (LMBs) are able to provide a 5 V-class output voltage and a 500 Wh kg⁻¹-class energy density (Fig. 1a).16–19 Therefore, reviving LMBs is an effective strategy to break the performance limitation of LIBs.20–21 The main challenge is that all liquid electrolytes are thermodynamically unstable at 0 V vs. Li/Li⁺, because the lowest unoccupied molecular orbital (LUMO) of the electrolyte is lower than the Fermi level of Li metal (Fig. 1b).22–24 Thus, the electrolyte accepts electrons from Li metal and reductively decomposes on the surface of the Li electrode to form a solid-electrolyte interphase (SEI).25,26–28 The inner layer of the SEI (close to Li metal) consists of inorganic components such as lithium oxide (Li₂O), lithium fluoride (LiF), and lithium carbonate (Li₂CO₃), while the outer layer of the SEI (close to the electrolyte) mainly consists of organic components such as polyolefins and semicarbonates (Fig. 1c).29–31 The SEI layer is electrically non-conductive but ionically conductive, so that it can block the electron transport at the Li/electrolyte interface and stop the further decomposition of the electrolyte while Li⁺ diffuses through the layer.32,33

Unlike graphite which stores Li⁺ in its lattice with acceptable volumetric changes (~12%), the Li metal anode accommodates Li⁺ at the Li/electrolyte interface, leading to unlimited volumetric changes during Li plating/stripping processes.34–36 Unfortunately, the native SEI formed on Li is brittle, so it fails to tolerate the stress caused by the volumetric changes of Li metal electrodes.37,38–40 In addition, Li⁺ is preferentially deposited on the protuberant tips with stronger electrical fields on the substrate, leading to the formation and growth of dendritic Li.35,36 An Li dendrite has a high Young’s modulus of ~5 GPa,47 so it can easily pierce the SEI. Once the SEI is damaged, the newly exposed Li would immediately react with the electrolyte to form a new SEI.48 Meanwhile, the cracked SEI layer may also expose defects and in turn accelerate the deposition of Li on the defects and form new Li dendrites. Furthermore, Li stripping from the roots of the dendrite would break the electrical contact and produce porous “dead” Li.49 With battery cycling and continuous SEI build-up, the above problems lead to electrolyte depletion, loss of electrochemically active Li, Li electrode pulverization, and battery performance decay (Fig. 1d).50–52 Even more troubling, the Li dendrites could lead to

1. Introduction

Rechargeable lithium (Li) ion batteries (LIBs) have been shaping many aspects of our modern life.1–4 Nevertheless, the traditional graphite-based LIBs have nearly reached their theoretical limit in energy density (~250 W h kg⁻¹), which hinders the development of portable electrical devices and electric vehicles.5–8 Li metal has the lowest electrochemical potential (~3.04 V vs. the standard hydrogen electrode (SHE)) among the alkali metals and a much higher theoretical specific capacity of 3860 mAh g⁻¹ (which is 10 times that of graphite) (Fig. 1a).9–15 When paired with high-voltage cathode materials, Li metal batteries (LMBs) are able to provide a 5 V-class output voltage and a 500 W h kg⁻¹-class energy density (Fig. 1a).16–19 Therefore, reviving LMBs is an effective strategy to break the performance limitation of LIBs.20–21 The main challenge is that all liquid electrolytes are thermodynamically unstable at 0 V vs. Li/Li⁺, because the lowest unoccupied molecular orbital (LUMO) of the electrolyte is lower than the Fermi level of Li metal (Fig. 1b).22–24 Thus, the electrolyte accepts electrons from Li metal and reductively decomposes on the surface of the Li electrode to form a solid-electrolyte interphase (SEI).25,26–28 The inner layer of the SEI (close to Li metal) consists of inorganic components such as lithium oxide (Li₂O), lithium fluoride (LiF), and lithium carbonate (Li₂CO₃), while the outer layer of the SEI (close to the electrolyte) mainly consists of organic components such as polyolefins and semicarbonates (Fig. 1c).29–31 The SEI layer is electrically non-conductive but ionically conductive, so that it can block the electron transport at the Li/electrolyte interface and stop the further decomposition of the electrolyte while Li⁺ diffuses through the layer.32,33

Unlike graphite which stores Li⁺ in its lattice with acceptable volumetric changes (~12%), the Li metal anode accommodates Li⁺ at the Li/electrolyte interface, leading to unlimited volumetric changes during Li plating/stripping processes.34–36 Unfortunately, the native SEI formed on Li is brittle, so it fails to tolerate the stress caused by the volumetric changes of Li metal electrodes.37,38–40 In addition, Li⁺ is preferentially deposited on the protuberant tips with stronger electrical fields on the substrate, leading to the formation and growth of dendritic Li.35,36 An Li dendrite has a high Young’s modulus of ~5 GPa,47 so it can easily pierce the SEI. Once the SEI is damaged, the newly exposed Li would immediately react with the electrolyte to form a new SEI.48 Meanwhile, the cracked SEI layer may also expose defects and in turn accelerate the deposition of Li on the defects and form new Li dendrites. Furthermore, Li stripping from the roots of the dendrite would break the electrical contact and produce porous “dead” Li.49 With battery cycling and continuous SEI build-up, the above problems lead to electrolyte depletion, loss of electrochemically active Li, Li electrode pulverization, and battery performance decay (Fig. 1d).50–52 Even more troubling, the Li dendrites could lead to
internal short-circuits or even safety hazards in working batteries (Fig. 1d). Interfacial engineering is critical to stabilize Li metal electrodes.\textsuperscript{16,20,43} Constructing nitrided interfaces on the surface of Li electrodes or current collectors has been proved to be effective to suppress Li dendrite formation and growth, as well as protecting Li from electrolyte erosion. The nitrided interfaces can regulate Li$^+$ flux distribution near the Li electrode surface or current collectors and thus guide Li$^+$ uniform deposition.

2. Advantages of nitrided interfaces

2.1. Functions of nitrided interfaces

2.1.1. Regulating the Li$^+$ flux distribution. Practical Li metal electrodes or current collectors are rough and uneven. The protuberant tips on the substrate (Li or current collector) have stronger electrical fields. Li$^+$ is preferentially deposited on these protuberant tips, leading to the formation and growth of dendritic Li.\textsuperscript{12,36} Regulating the uniform deposition of Li$^+$ is an important step to eliminate the safety risks and performance decay caused by Li dendrites. Nitrogen (N) has lone-pair electrons and can act as a Lewis base site to adsorb positively charged Li$^+$ (Lewis acidic site), thus creating a lithiophilic surface on the Li metal electrode and decreasing the overpotential for Li plating. In addition, N has a high electronegativity ($\chi$) of 3.04, and when bonded with atoms with lower electronegativity, such as boron (B) ($\chi = 2.04$) and carbon (C) ($\chi = 2.55$), the electron cloud in N–Co or N–B polar covalent bonds will migrate to the N side. The increased charge density around N can further improve the interaction between N and Li$^+$. Therefore, the nitrided interface is able to regulate the Li$^+$ flux distribution near the Li electrode surface or current collectors and thus guide Li$^+$ uniform deposition.

2.1.2. Facilitating Li$^+$ diffusion through the SEI. In general, Li$^+$ is solvated with four to six solvent molecules in the electrolyte.\textsuperscript{44,67} Before plating onto the substrate (the Li anode or current collector), the solvated Li$^+$ is firstly de-solvated near the SEI, and then the naked Li$^+$ ions migrate across the SEI.\textsuperscript{46–47} The migration speed is the rate-determining step in the Li deposition process.\textsuperscript{48} The high Li$^+$ ionic conductivity of the SEI helps to improve the kinetics of the Li plating process and thus helps to enhance the electrochemical performance of Li metal electrodes. The diffusion mechanism of Li$^+$ through the SEI is complicated and controversial. It was proved that LiF, Li$_3$O, and Li$_2$CO$_3$ in the native SEI diffuse Li$^+$
via grain boundaries, as their intrinsic ionic conductivity is relatively low (up to $10^{-3}$ S cm$^{-1}$). Nitrides such as lithium nitride (Li$_3$N) and LiN$_x$O$_y$ have much higher ionic conductivity (up to $10^{-3}$ S cm$^{-1}$), and they can provide faster Li$^+$ migration channels in the SEI. Therefore, the nitrided SEI can facilitate Li$^+$ diffusion and improve the kinetics of the Li plating process.

2.1.3. Passivating the active surface of Li metal electrodes.

As mentioned, the formation of the SEI blocks the electron tunneling at the Li/electrolyte interface and thus stops the decomposition of the electrolyte. The thickness of the SEI is related to its electrical conductivity. Nitrides such as Li$_3$N, LiN$_x$O$_y$, carbon nitrides (C$_x$N$_y$), and nitrided polymers all have an ultralow electrical conductivity. When used to modify the surface of the Li metal electrode, they can physically and electrically isolated Li from the electrolyte and thus passivate the reductive surface of the Li metal electrode, which helps to reduce the thickness of the SEI.

2.2. Comparison of nitride interfaces with other strategies

Besides nitride interfaces, metal oxides (such as MgO$^,$25 phosphates (such as Li$_3$PO$_4$)$^{26,27}$, some lithium halides (such as LiCl and LiI)$^{28,29}$, and lithium chalcogenides (such as Li$_2$S and Li$_2$Se$^{30,31}$) have also been introduced as modification layers on Li metal. Generally, their precursors are hardly soluble in non-aqueous electrolytes, and as a consequence, these layers are usually fabricated by ex situ methods, serving as artificial SEI layers. These modification layers play a positive role in protecting the Li metal, but they may be damaged by the interfacial stress during Li plating/stripping processes and therefore lose their functions. In contrast, in the case of nitride interfaces, some of their precursors (such as nitrates, amides, N-containing ionic liquids, and nitrocellulose) are soluble in certain non-aqueous solvents, which enables continuous repair of nitride interfaces during battery cycling when these precursors are introduced into the electrolyte as solvents or additives.

Fluorinated interfaces, which feature LiF-rich SEI layers, are widely acclaimed for their outstanding effects on Li metal protection, which is based on their high Young’s modulus and the high interfacial energy of LiF$^{49,62}$. Although fluorinated interfaces are excellent for inhibiting side reactions between Li metal and the electrolyte, nitride interfaces still show advantages over them in some aspects, especially in bulk ionic conductivity. The transport of Li ions in LiF is much more difficult than in Li$_3$N or LiN$_x$O$_y$, obviously limiting the grain growth of deposited Li during the plating process. According to the morphologies, deposited Li with a nitrided interface has a larger grain size but smaller microstructural tortuosity compared with Li with a fluorinated interface, contributing to higher reversibility of the active Li during battery cycling.

3. Constructing a nitrided artificial SEI on Li metal electrodes

3.1. Methods to construct a nitrided SEI on Li metal electrodes

Since the formation of the SEI is a key factor in controlling the surface properties of Li, one of the effective approaches to stabilize the Li metal electrode is to construct functional artificial SEI layers on its surfaces$^{28,29,42,63,64}$. According to the preparation mechanism, the strategies to develop a nitrided artificial SEI can be divided into physical methods and chemical methods.

3.1.1. Physical methods. Physical pre-coating methods, such as doctor blading, physical pressing, drop coating, atomic layer deposition (ALD), etc., are simple approaches to easily prepare nitrided interfaces on Li metal electrodes. For instance, a polyurea thin layer was coated on Li metal via the ALD method$^{65}$. The abundant N-containing polar groups in the polyurea were believed to be able to redistribute the Li$^+$ flux and

Fig. 2 Constructing artificial SEI layers on Li metal electrodes via physical methods. (a) Schematic illustration of “polyurea” deposited on Li to guide Li uniform deposition$^{66}$ reproduced with permission. Copyright 2019, John Wiley and Sons. (b) Illustration of P(BMA-AN-St) cladding regulating Li$^+$ flux$^{66}$ reproduced with permission. Copyright 2019, American Chemical Society. (c) Fabrication of a Cu$_3$N layer on Li foil via physical rolling and printing method$^{67}$ reproduced with permission. Copyright 2020, John Wiley and Sons. (d) Schematic illustration of coating the PPN layer on Li metal in the battery assembly process$^{68}$ Reproduced with permission. Copyright 2019, Royal Society of Chemistry.
lead to a uniform plating/striping process (Fig. 2a). A poly(butylmethacrylate-acrylonitrile-styrene) (P(BMA-AN-St)) cladding was drop coated on the Li surface. Benefiting from the affinity of the polar groups (C==N and C==O) in the polymer chains with both Li\(^+\) and Li metal, the P(BMA-AN-St) cladding provided channels for regulating the Li\(^+\) (Fig. 2b), so that a dendrite-free surface and improved electrochemical performance of Li metal electrodes were realized, even with deep cycling. Paik et al. modified copper nitride nanowires (Cu\(_3\)N NWs) on Li foil through one-step roll pressing. The Cu\(_3\)N NWs could be conformally printed onto the Li metal and form a Li\(_x\)N@Cu NW layer on the Li electrode (Fig. 2c). Yu et al. synthesized a polymer network (PPN) layer and coated it on a Li metal electrode during battery assembly. The C==N groups of polyacrylonitrile polymer chains in the PPN could reduce the high reactivity of the \(\text{C}==\text{O}\) groups of carbonate solvents and promote the decomposition of salt anions (PF\(_6\) and bis(trifluoromethane)sulfonimide (TFSI\^\text{−})), forming a stable SEI (Fig. 2d). In addition to these artificial SEI layers, other different inorganic artificial SEIs were also prepared via physical methods on Li metal electrodes. For instance, a Li\(_3\)N layer can be coated on the Li metal electrode via pressing and rubbing Li\(_3\)N powder to suppress Li dendrite formation. Yang et al. coated a layer of acid-treated graphitic (g)-C\(_3\)N\(_4\) on Li, and its N-containing groups were able to rearrange the concentration of Li\(^+\) and enhance the transfer of Li\(^+\). It should be pointed out that the thickness of the nitrided artificial SEI developed via physical methods is normally more than a few micrometres (as summarized in Table 1), which would certainly impose a sacrifice on the overall volumetric energy density of Li metal electrodes. In addition, the physical methods could not well control the homogeneity of the artificial SEI on Li metal electrodes, and the adhesion between the SEI and the Li metal would not be strong enough, which may lead to the exfoliation of the artificial SEI during battery cycling. Besides, the organic artificial SEI layers modified by physical methods have poor ionic conductivity, so they normally lead to high electrochemical polarization for Li metal electrodes.

3.1.2. Chemical methods. By using chemical reactions between Li and N-containing precursors, more dense and homogeneous artificial SEI layers can be prepared. The most common nitrided artificial SEI developed by a chemical method is Li\(_3\)N. The first reported chemical method to develop a Li\(_3\)N layer was using a N\(_2\) gas flow to treat Li in a desiccator. It was proved that an electrochemically stable Li\(_3\)N protective layer had been coated on Li metal by this method. Furthermore, Tu et al. heated Li chips in a tube furnace under a N\(_2\) flow (Fig. 3a), and the formation of Li\(_3\)N on Li metal was confirmed from the X-ray diffraction patterns (Fig. 3b). They revealed that the Li\(_3\)N layer could efficiently prevent contact between Li and the electrolyte and reduce the side reactions. Similarly, Zhou et al. grew a highly [001] oriented, flower-like Li\(_3\)N film on Li metal by an N\(_2\) plasma activation method. Because of its high Young’s

| Artificial SEI          | Thickness Fabrication method          | Electrolyte                | Current density (mA cm\(^{-2}\)) | Capacity (mA h cm\(^{-2}\)) | Lifespan (h) | Polarization (mV) | Ref. |
|-------------------------|---------------------------------------|----------------------------|----------------------------------|-----------------------------|-------------|-------------------|-----|
| Polar polymer network   | N/A                                   | Physical pressing in battery assembly | LiTFSI : EC = 1 : 10          | 10                          | 200            | ~300              | 68  |
| Polyurea                | ~4 nm                                 | Atomic layer deposition    | 1 M LiPF\(_6\) in EC/DEC/DMC  | 1                          | 400            | ~170              | 65  |
| P(BMA-AN-St)            | ~4 µm                                 | Drop coating               | 1 M LiPF\(_6\) in EC/DEC/DMC  | 0.5                        | 800            | ~200              | 66  |
| Acid-treated g-C\(_3\)N\(_4\) | ~5 µm                                 | Physical pressing          | 1 M LiTFSI in DOL/DME with Li\(_3\)N | 1                          | 400            | ~240              | 70  |
| Li\(_3\)N               | N/A                                   | Pressing and rubbing       | 1 M LiPF\(_6\) in EC/DEC      | 1                          | 360            | ~240              | 69  |
| Cu\(_3\)N nanowires     | ~3 µm                                 | Roll-printing              | 1.3 M LiPF\(_6\) in EC/DEC with 5% Li\(_3\)N | 3                          | 250            | ~240              | 67  |
| AgNO\(_3\)              | N/A                                   | Drop coating               | 1 M LiTFSI in DOL/DME with Li\(_3\)N | 5                          | 50             | ~400              | 83  |
| PEO–Upy                 | 70 nm                                 | Drop coating               | 1 M LiTFSI in DOL/DME with 2 wt% Li\(_3\)N | 10                         | 1000           | 300              | 80  |
| CTF + LiI               | ~20 µm                                | Drop coating               | 1 M LiPF\(_6\) in EC/DEC      | 10                         | 500            | 500              | 77  |
| Li\(_3\)N               | N/A                                   | N\(_2\) flow treatment     | 1 M LiPF\(_6\) in EC/DMC      | N/A                        | N/A            | N/A               | 71  |
| Li\(_3\)N               | 8.25 µm                               | N\(_2\) flow treatment     | 1 M LiPF\(_6\) in EC/DMC      | N/A                        | N/A            | N/A               | 72  |
| Pinhole-free Li\(_3\)N  | 50–400 nm                             | N\(_2\) based reaction     | 1 M LiTFSI in DOL/DME with 1 wt% Li\(_3\)N | 0.5                        | 500            | ~250              | 73  |
| Li\(_3\)N               | ~8 µm                                 | Plasma activation under N\(_2\) | 1 M LiPF\(_6\) in EC/DMC      | 3                          | 600            | ~160              | 75  |
| LiPO\(_4\)              | 250 nm                                | N\(_2\) plasma-assisted deposition | 1 M LiTFSI in DOL/DME with 1 wt% Li\(_3\)N | 1                          | 1100           | ~80               | 78  |
| N-organic@Li\(_3\)N     | 950 nm                                | C\(_3\)N based surface reaction | 1 M LiTFSI in DOL/DME with 1 wt% Li\(_3\)N | 1                          | 200            | ~160              | 79  |
| PECALi\(_3\)N/LiNO\(_3\) | ~4 µm                                 | In situ polymerization of ECA with a LiNO\(_3\) additive | 1 M LiPF\(_6\) and EC/DMC | 1                          | 700            | 204               | 82  |
modulus and high ionic conductivity, the Li$_3$N film can physically block direct contact between the reactive Li metal and the liquid organic electrolyte.

Despite these achievements, the effect of Li$_3$N is limited to some extent by its small grain size (<160 nm), which leads to weak interconnections between the Li$_3$N particles. To solve this challenge, Cui et al. heated Li metal in a N$_2$ atmosphere at a high temperature to develop a pinhole-free Li$_3$N layer on the Li metal surface (Fig. 3c).$^{74}$ The dense, large, and strongly interconnected grains of Li$_3$N in the film reduced the defects in the artificial SEI and effectively improved the stability of the Li metal electrode during battery cycling.

Apart from forming Li$_3$N, Xie et al. also dropped AgNO$_3$/tetrahydrofuran (THF) solution on the Li surface, and the AgNO$_3$ particles would further react with Li to form LiNO$_3$, which is useful for regulating Li$^+$ plating behaviour and suppressing Li dendrite growth. A lithium phosphorus oxynitride layer on a Li metal anode with high ionic conductivity and chemical stability was developed via a nitrogen plasma-assisted deposition method to suppress the corrosion from the electrolyte and promote uniform Li plating/stripping.$^{75}$

As summarized in Table 1, the nitrided artificial SEI layers prepared via chemical methods are generally inorganic, and most of them are thinner as well as having higher ionic conductivity, so they could reduce the polarization of Li metal electrodes. These inorganic artificial SEI layers are normally brittle, however, so the integrity of the SEI would be damaged by the interfacial stress changes caused by Li plating/stripping processes, which would shorten the lifespan of Li metal electrodes.

### 3.2. Building nitrided organic–inorganic composite artificial SEIs

Building nitrided organic–inorganic composite interfaces is a good idea that takes advantage of the merits of both individual components and overcome their disadvantages. In this regard, Cui et al. developed a reactive interface constructed from Cu$_3$N nanoparticles joined together by styrene butadiene rubber (SBR) as an artificial SEI for Li metal electrodes.$^{76}$ The inorganic Cu$_3$N has high ionic conductivity, and the organic SBR has high mechanical strength and high flexibility (Fig. 4a). The Cu$_3$N further reacted with Li and a composite artificial SEI composed of Li$_3$N/SBR/Cu was formed on the surface of the Li metal electrode. The Li$_3$N particles provided ionically conductive paths, while the SBR confined the Li$_3$N particles and buffered the volume changes of the Li anode. Zheng et al. coated a covalent triazine framework (CTF)-LiI hybrid artificial SEI on Li by the doctor blade method (Fig. 4b).$^{77}$ The N in CTF could

---

**Fig. 3** Constructing artificial SEI layers on Li metal electrodes via chemical methods. (a) Preparation of a Li$_3$N film on an Li surface by utilizing the reaction between N$_2$ gas and Li metal; (b) characterization of the Li$_3$N film by X-ray diffraction (XRD);$^{72}$ reproduced with permission. Copyright 2015, Elsevier. (c) Preparation of a pinhole-free Li$_3$N layer to protect the Li metal electrode, and optical and scanning electron microscope (SEM) images of the pinhole-free Li$_3$N layer.$^{74}$ Reproduced with permission. Copyright 2018, American Chemical Society.
bind with Li\(^+\) from the electrolyte to form Li–N bonds and thus facilitate uniform Li deposition. The uniformly distributed LiI particles could help to improve the mechanical stress to suppress Li dendrite growth. Yu et al. reported a composite artificial SEI consisting of an N-containing organic phase (N-organic) and an inorganic Li\(_3\)N phase by utilizing the hyperthermal reduction of Li and g-C\(_3\)N\(_4\) (Fig. 4c).\(^{78}\) The obtained N-organic phase could link with the Li\(_3\)N phase and form a conformal and compact coating on Li. The authors believed that the C–N=C and N–(C)\(_3\) groups realized the homogeneous distribution of Li\(^+\) and provided nucleation sites for Li deposition, while the Li\(_3\)N reduced the resistance to Li\(^+\) transfer across the Li/electrolyte interfaces. Besides, a dual-layer artificial SEI was constructed via in situ polymerization of ethyl \(\alpha\)-cyanoacrylate (ECA) monomers on the Li metal surface, in which LiNO\(_3\) was introduced with the ECA monomers as an additive (Fig. 4d).\(^{79}\) The CN\(^-\) groups in ECA and the LiNO\(_3\) additive reacted with Li to form a nitrided inorganic interface on Li during battery cycling. Poly(ethyl \(\alpha\)-cyanoacrylate) (PECA) was used to cover the outer surface to accommodate the volume changes and buffer the interfacial stress during the Li plating/stripping processes. Xiong et al. modified a self-healing supramolecular copolymer, which consisted of pendant poly(ethylene oxide) (PEO) segments and ureido-pyrimidinone (UPy) quadruple-hydrogen-bonding moieties, on a Li metal electrode.\(^{80}\) During the following drying process, the amide and heterocyclic amine groups in PEO–UPy polymer reacted with Li metal and formed a stable artificial SEI (LiPEO–UPy) layer on the Li metal electrode. The developed LiPEO–UPy layer could protect the electrolyte from side reactions and homogenize the fast Li\(^+\) flux to the surface of the Li metal. Lee et al. developed hybrid polyion complex micelles and coated them on Li foil, in which ionized LiNO\(_3\) combined with block copolymer micelles, polystyrene-block-poly(2-vinyl...
It was believed that the S2VP polymer could isolate the active Li from carbonates so as to reduce the side reaction between them, and meanwhile, the introduced LiNO₃ could further dissolve into the electrolyte during battery cycling. As a result, a composite N-rich SEI with a multilayered structure could be formed on the Li electrode (Fig. 4f). With the designed protective layer, Li metal full cells with a high voltage cathode (LiNi₀.₈Co₀.₁Mn₀.₁O₂) delivered superior performance, even under harsh test conditions (thin Li anode, high areal-capacity of 4.0 mA h cm⁻², and high current density of 4.0 mA cm⁻²).

Despite the advantages of organic/inorganic composite artificial SEIs, it is challenging to control the homogeneous distribution of organic and inorganic phases. To overcome this, our group synthesized a multi-functional [LiNBH]ₙ layer as an artificial SEI for Li metal anodes by utilizing a two-step dehydrogenation reaction between Li and ammonia borane (Fig. 5a–c), which features the properties of both organic and inorganic SEIs. The obtained ASEI is composed of [LiNBH]ₙ chains, which are cross-linked and self-reinforced by their intermolecular Li–N ionic bonds, and thus give rise to a flexible nature (Fig. 5d). Because of the higher charge density of N in the polar [LiNBH]ₙ chain, Li⁺ from the electrolyte will be absorbed by the N to form additional Li–N ionic bonds, which helps to regulate the homogeneous distribution of the Li⁺ flux on Li electrodes (Fig. 5e). In addition, the [LiNBH]ₙ layer is electrically isolated but has high ionic conductivity, thus facilitating Li⁺ diffusion and deposition beneath the artificial SEI layer. Therefore, with the protection of the [LiNBH]ₙ layer, Li dendrite growth has been successfully suppressed and a denser and flatter surface was achieved after Li plating/stripping cycles (Fig. 5f and g).

In a short summary, inorganic nitrided artificial SEI layers have high ionic conductivity and relatively low thickness, but they suffer from low integrity and mechanical flexibility. Organic nitrided artificial SEI layers (normally prepared via physical methods) can regulate the Li⁺ flux distribution and buffer the volume changes of Li metal electrodes, while their...
poor ionic conductivity and high thickness usually lead to high electrochemical polarization. Building nitrided inorganic–organic composite artificial SEI layers is useful to take advantage of the individual components. Most of the composite artificial SEI layers delivered enhanced lifespan compared with pure organic or pure inorganic artificial SEIs. Unfortunately, it is still difficult to control the homogeneous distribution of organic and inorganic components in the SEI. In addition, the thickness of artificial SEI layers varies from a few nanometres to tens of micrometres. To avoid the sacrifice of the volumetric energy density, the thickness of the artificial SEI should be lower than one micrometre, especially considering that the anodes in practical LMBs are thin foils with a thickness of <50 μm. Another big challenge to artificial SEI layers is their stability during battery cycling. With continuous Li plating/stripping cycles, the structure and the integrity of artificial SEI layers would be destroyed by the interfacial mechanical strength, particularly during long-term cycling. Therefore, improving the stability, reducing the thickness, and increasing the flexibility are critical to boost the practical applications of nitrided artificial SEI layers in LMBs.

4. Electrolyte engineering

The deposition behaviour of Li⁺ is strongly related to the physical and chemical properties of the electrolyte. Electrolyte engineering, including introducing functional additives, using new solvents, regulating the Li⁺ solvation structure, etc., is useful to stabilize Li metal electrodes. The most efficient method to evaluate the effects of these electrolytes is to test Li plating/stripping reversibility in Li–Cu cells.

4.1. LiNO₃ additive

LiNO₃ is a practical and economical additive to improve the electrochemical performance of LMBs. It was first used in an ether-based electrolyte to suppress the shuttle effect of Li metal.
polysulphides in Li–S batteries by Aurbach et al. They studied the surface of the Li anode cycled in the LiNO3-containing ether electrolyte and proposed that the LiNO3 additive was decomposed on Li to form Li2O2 and LiO2. Wen et al. further proved that LiNO3 is able to improve the coulombic efficiency (CE) of the Li plating/stripping processes in Li–Cu cells (Fig. 6a), as well as suppressing Li dendrite growth. A smoother surface of the Li metal anode was obtained after adding 0.4 M LiNO3 into the ether-based electrolyte (Fig. 6b and c). By using the more accurate and sensitive X-ray photoelectron spectroscopy (XPS) depth profile method, Xiong et al. revealed that LiNO3 in the ether electrolyte is reduced on the Li metal surface and forms a complex product consisting of Li3N, Li2O2, and RCH2NO2 (Fig. 6d). Brezesinski et al. also demonstrated that LiNO3 can form a protective layer on the Li metal anode and suppress gas evolution in the Li–S battery in conjunction with a diglyme-based electrolyte. In particular, the amount of flammable CH4 and H2 is dramatically decreased, and either very little or no H2 is generated during discharge (Fig. 6e). Even though LiNO3 has achieved a big success in ether-based electrolytes and it also has good solubility in ether-based electrolytes (up to ~5 wt%), its application in high-voltage carbonate-based electrolytes is limited due to its ultralow solubility in carbonate solvents (lower than 10–5 g mL−1). To boost the application of the LiNO3 additive in carbonate-based electrolytes, various solubilizers have been utilized to promote its dissolution in carbonate solvents. It was initially reported that 2% vinylene carbonate (VC) can promote the dissolution of 0.1 M LiNO3 in an ethylene carbonate/dimethyl carbonate (EC/DMC)-based electrolyte and effectively improve the reversibility of Li plating/stripping processes in Li–Cu cells (Fig. 7a). By analysing the surface of the cycled Li metal electrode with XPS, the existence of Li3N in the SEI was confirmed (Fig. 7b). Huang et al. further used a trace amount of CuF2 to promote the dissolution of 1 wt% LiNO3 in an EC/diethyl carbonate (DEC)-based electrolyte, and proved that LiNO3 was reduced on Li and formed a nitrided SEI (Fig. 7c).

Increasing the concentration of LiNO3 in carbonate-based electrolytes could improve the electrochemical performance of LMBs. In this regard, Lu et al. used 0.5 wt% Sn(OTf)2, where OTf is trifluoromethanesulfonate, as a solubilizer to increase the solubility of LiNO3 in carbonate electrolytes to as high as 5 wt%.[35] Tin(II), which is a Lewis acid, can effectively coordinate NO3– and promote complete dissociation between ion pairs without decomposing the solvent molecules (Fig. 7d). By using high-resolution transmission electron microscopy (TEM, Fig. 7e) and XPS depth profiling (Fig. 7f), they confirmed that N-containing species, such as Li3N and LiN2O2, were formed in the SEI of the Li metal electrode. With the benefits of the nitrided SEI, the CE in Li–Cu cells was improved to 98.14% at a high capacity of 3 mA h cm−2 over 150 cycles, and the cycling performance of Li||NCM811 full cells delivered superior electrochemical performance under practical conditions. Similarly, they also used In(OTf)3 to dissolve 3 wt% LiNO3 in a carbonate-based electrolyte and achieved a high CE of >98% in Li–Cu cells at a high plating capacity of 4 mA h cm−2.[32] They demonstrated that, because of the presence of In3+, the reactivity of the EC molecule was reduced, and the NO3− anions were more likely to

Fig. 7 The use of the LiNO3 additive in carbonate-based electrolytes. (a) CE of a Li–Cu cell in a carbonate electrolyte with and without VC–LiNO3 as the additive and (b) N 1s XPS spectrum of the cycled Li,[30] reproduced with permission. Copyright 2015, Elsevier. (c) Cyclic voltammetry (CV) curves of Li–Cu cells with and without CuF2–LiNO3 co-additives, where an additional peak belonging to LiNO3 decomposition at ~1.1 V can be observed,[31] reproduced with permission. Copyright 2018, John Wiley and Sons. (d) Structural illustration of the Sn5+ solvated sheath; (e) high-resolution TEM (HRTEM) image of the SEI formed in the carbonate electrolyte with Sn(OTf)2–LiNO3 additives, with the corresponding selected area electron diffraction pattern in the inset; (f) N 1s XPS depth profiles for the SEI formed in the electrolyte with Sn(OTf)2–LiNO3 additives,[32] reproduced with permission. Copyright 2020, John Wiley and Sons. (g) Electrostatic potential (ESP) images for the solvated EC and DEC molecules in the electrolyte with and without In(OTf)3–LiNO3 as an additive; (h) schematic illustration of the formation of an inorganic wavy SEI; (i) cryo-TEM image of the inorganic wavy SEI showing the presence of Li3N.[32] Reproduced with permission. Copyright 2020, John Wiley and Sons.
undergo a site-selective reaction at the inner Helmholtz plane and form an N and O-rich inorganic wavy SEI (Fig. 7g and h), which was experimentally proved by cryo-TEM results (Fig. 7i).

The use of extra solubilizers has improved the solubility of LiNO$_3$ in a carbonate-based electrolyte, but they also increase the cost of the electrolyte. In addition, the solubilizers could be reduced on Li, so that they may destabilize the SEI. Sulfones (such as dimethyl sulfoxide (DMSO), sulfolane, etc.) have high solvability towards LiNO$_3$, so they can replace the extra solubilizers and be used as solvents in the electrolyte to dissolve LiNO$_3$. In this aspect, Wang et al. used DMSO solvent to dissolve LiNO$_3$ and prepared a 4 M LiNO$_3$/DMSO solution as an additive. They added 5 wt% of this additive into a carbonate-based electrolyte and achieved an ultrahigh CE of 99.55% in Li–Cu cells. It was indicated that distinct NO$_3^-$ anions were involved in the Li$^+$ solvation sheath, and a small number of DMSO molecules were also found in the Li$^+$ solvation sheath (Fig. 8a and b). The NO$_3^-$ in the solvation sheath could be reduced on the Li surface and formed a nitrified inorganic-rich SEI, which was more stable than the SEI formed in the LiNO$_3$-free electrolyte (Fig. 8c and d), while the DMSO molecules could not be decomposed. Therefore, denser and more compact plated Li was obtained on the Cu substrate (Fig. 8e and f). Wang et al. also used pure sulfolane as the solvent in their electrolyte for LMBs, which contained 3.25 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a salt and 0.1 M LiNO$_3$ as an additive. By using molecular dynamics (MD) simulations, they pointed out that the NO$_3^-$ anions in the Li$^+$ solvation sheath could promote the coordination of TFSI$^-$ anions with Li$^+$ (Fig. 8e). During battery cycling, these anions in the Li$^+$ solvation sheath would be reduced and formed an inorganic SEI. It should be emphasized that LiNO$_3$ is strongly oxidizing, so it will increase the safety risk of the battery after being added into the electrolyte, although most of the reported work failed to mention this safety issue. To address this problem, Guo et al. used triethyl phosphate as a solvent to dissolve 1 M LiNO$_3$ into the electrolyte as well as an extinguishant to eliminate fire risk. The developed electrolyte not only generated a nitrified SEI that could suppress Li dendrite growth (Fig. 8f), but also improved the safety of the resultant LMBs. The CE for Li plating/stripping processes only reached ~97%, however, which was not high enough for practical LMBs.

In short, the use of LiNO$_3$ as an additive has effectively optimized the SEI and improved the Li plating/stripping reversibility. The application of LiNO$_3$ in high-voltage and more practical carbonate-based electrolytes for LMBs is limited, however, due to its low solubility. Different solubilizers were used to increase the solubility of LiNO$_3$ in carbonate-based electrolytes, although these solubilizers increase the cost of the electrolyte and their decomposition on Li would destabilize the SEI. LiNO$_3$ has high solubility in organic phosphate esters, sulfones, and amides, and they can be used as solvents or liquid

Fig. 8 The use of the LiNO$_3$ additive in other ester-based electrolytes. (a) MD simulation of a carbonate electrolyte with LiNO$_3$/DMSO as the additive; (b) structure of the Li$^+$ solvated sheath; schematic illustration of the SEI and Li deposition in the electrolyte without the LiNO$_3$/DMSO additive (c) and with the LiNO$_3$/DMSO additive (d); SEM images and corresponding optical images of deposited Li from the electrolyte without the LiNO$_3$/DMSO additive (e) and with the LiNO$_3$/DMSO additive (f); reproduced with permission. Copyright 2020, John Wiley and Sons. (g) MD simulations and the Li$^+$ solvation sheath of a sulfolane electrolyte with and without LiNO$_3$; reproduced with permission. Copyright 2020, John Wiley and Sons. (h) Schematic illustration of building a nitrated interface on a Li metal electrode by adding LiNO$_3$ into a triethyl phosphate-based electrolyte. Reproduced with permission. Copyright 2019, John Wiley and Sons.
solubilizers to dissolve LiNO₃ in the electrolyte. The thermodynamic stability of these solvents is poorer than that of carbonate solvents, however, which increases the undesirable side reactions between the electrolyte and the Li metal electrode. Furthermore, for the development of safe and practical LMBs, the fire risk caused by the oxidizing properties of LiNO₃ should be carefully considered.

4.2. Other N-containing additives

Apart from LiNO₃, some other N-containing additives can also be used to build a nitrided SEI on Li metal electrodes. In this regard, Sun et al. reported that Mg(NO₃)₂ can be dissolved in a carbonate-based electrolyte as an additive. They suggested that Mg(NO₃)₂ can be dissolved directly as Mg²⁺ and NO₃⁻ ions in the electrolyte even at a concentration of 0.1 M, which was quite different from the situation for LiNO₃ (Fig. 9a). The NO₃⁻ in the electrolyte could also form a LiNO₃-based SEI and improve the performance of both Li-Cu cells and Li-metal full cells. Wu et al. used metal-organic frameworks (MOF-808) as nanocapsules to load LiNO₃, and used the MOF-808/LiNO₃ composite as an additive for LMBs (Fig. 9b). The MOF-808 has an internal diameter of 18.4 Å and a pore window of 14 Å, which can efficiently encapsulate and diffuse LiNO₃. During battery cycling, the LiNO₃ will be released to react with Li and form a nitrided-rich SEI. Xie et al. introduced nitrofullerene (nitro-C₆₀) as a bifunctional electrolyte additive to smooth the Li surface. The nitro-C₆₀ in the electrolyte was designed to gather on the protuberances of the Li metal electrode and decompose to NOₓ⁻ and insoluble C₆₀. After that, NOₓ⁻ further reacted with Li metal and formed a compact and stable Li₃N/LiNO₃ protective layer. The C₆₀ was anchored on the uneven grooves of the Li surface and resulted in a homogeneous distribution of Li⁺ (Fig. 9c). Similarly, a paradigmatic N-rich polyether, nitrocellulose (NC), was used as an electrolyte additive to stabilize the Li metal electrode (Fig. 9d). The NC additive has low LUMO energy so that it reacts with Li to form an endogenous symbiotic Li₃N/cellulose double SEI. However, the Li plating/stripping CE only reached ~92%, even though the base electrolyte used ethers as the solvents.

The use of these N-containing additives also introduces extra cations and organic components into the electrolyte. Their influence on the SEI composition and the performance of LMBs has not been clearly revealed, however. In addition, as shown in Table 2, the CE for Li plating/stripping in most of these electrolytes is lower than 98%, suggesting that they are not promising for practical applications at the current stage. Also, the stability of these N-containing additives has not been studied.

4.3. N-Containing ionic liquids

The decomposition of normal organic solvents on Li metal electrodes leads to the formation of organic components such as ROCOOLi or the inorganic component Li₂CO₃ in the SEI, both of which have ultralow Li⁺ ionic conductivity and limit the kinetics of Li plating. N-Containing ionic liquids can be used to optimize the SEI composition and generate more effective species for conducting Li⁺. Due to the high viscosity of ionic liquids, however, they are normally used in mixed solvents. For example, Guo et al. developed an electrolyte with a mixed solvent consisting of N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) and normal ether solvents 1,3-dioxolane/1,2-dimethoxyethane (DOL/DME) for LMBs. The Py13TFSI was reduced to form N⁺[Py13] and N⁻(TFSI) species in the SEI, which was able to passivate the active surface of the Li electrode (Fig. 10a). In addition, more ionically conductive Li₃N was generated on the Li surface during battery cycling. Peng et al. developed an electrolyte that used a mixture of N-propyl-N-methylpyrrolidinium bis(trifluorosulfonyl)imide (Py13FSI) and DOL as the solvent and Li [(CF₃SO₂)(n-C₄F₉SO₂)N] (LiTNFSI) as the salt. The ionic liquid and the salt decomposed on the surface of the Li metal anode to

Fig. 9 The use of other electrolyte additives for constructing nitrided interfaces on Li metal electrodes. (a) The use of Mg(NO₃)₂ as an additive in a carbonate electrolyte; reproduced with permission. Copyright 2020, John Wiley and Sons. (b) Schematic illustration of the use of MOF-808/LiNO₃ as an electrolyte additive for LMBs; reproduced with permission. Copyright 2020, Springer Nature. (c) Schematic illustration of nitro-C₆₀ as a bifunctional electrolyte additive for LMBs; reproduced with permission. Copyright 2019, American Chemical Society. (d) Illustration of the endogenous symbiotic Li₃N/cellulose double SEI using nitrocellulose. Reproduced with permission. Copyright 2021, John Wiley and Sons.
form an Li$_3$N-containing SEI that was highly ionically conductive and flexible (Fig. 10b), and a CE of 98.2% was achieved in Li–Cu cells, even at a high current density of 10 mA cm$^{-2}$. Choi et al. reported the use of 1-dodecyl-1-methylpyrrolidinium (Pyr1(12)$^+$) bis(fluorosulfonyl)imide (FSI$^-$) in ordinary electrolyte solutions.$^{102}$ The Pyr1(12)$^+$ cation with a long aliphatic chain mitigated dendrite growth via the synergistic effects of electrostatic shielding and lithiophobicity, and the FSI$^-$ anion induced the generation of a rigid nitrided SEI (Fig. 10c).

### Table 2: Summary of electrolyte engineering for constructing nitrided interfaces on Li metal electrodes

| Electrolyte | N-Containing precursor | N-Containing SEI components | Current density (mA cm$^{-2}$) | Capacity (mA h cm$^{-2}$) | Lifespan (cycles) | Coulombic efficiency (%) | Ref. |
|-------------|------------------------|----------------------------|-------------------------------|--------------------------|-------------------|--------------------------|-----|
| 0.38 M LiTFSI + 0.31 M LiNO$_3$ + 0.23 M Li$_2$S$_6$ in DOL | LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | N/A | N/A | 87 |
| 0.5 M Li$_2$CF$_2$SO$_3$ + 0.4 M LiNO$_3$ | LiNO$_3$ | Li$_3$N | N/A | N/A | 100 | 90 | 84 |
| 0.1 M LiNO$_3$ + 0.1 M Li$_2$S$_6$ in DOL/ DME | Li$_2$S$_6$ + 5 wt% LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | N/A | N/A | 85 |
| 0.5 M LiNO$_3$ in DOL/DME | LiNO$_3$ | Li$_3$N, LiN$_x$O$_y$ | N/A | N/A | N/A | N/A | 110 |
| 1 M LiTFSI in DOL/DME + 0.18 M LiNO$_3$ | Li$_2$S$_6$ + 5 wt% LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | 400 | 99.1 | 111 |
| 2.3 M LiF in DME + 20 mM CuF$_2$ | Li$_2$S$_6$ + 5 wt% LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | 1 | 1 | 500 | 99.5 | 112 |

| Electrolyte | N-Containing precursor | N-Containing SEI components | Current density (mA cm$^{-2}$) | Capacity (mA h cm$^{-2}$) | Lifespan (cycles) | Coulombic efficiency (%) | Ref. |
|-------------|------------------------|----------------------------|-------------------------------|--------------------------|-------------------|--------------------------|-----|
| 0.5 M LiNO$_3$ in DOL/DME | LiNO$_3$ | Li$_3$N | N/A | N/A | 100 | ~98 | 90 |
| 1 M LiPF$_6$ in EC/DEC with 2 v% VC + 0.1 M LiNO$_3$ | LiNO$_3$ | Li$_3$N | 0.5 | 0.5 | 20 | 98.1 | 91 |
| 1 M LiPF$_6$ in EC/DEC with 0.2 wt% LiNO$_3$ CuF$_2$ and 1 wt% LiNO$_3$ | LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | N/A | N/A | 103 |
| 1 M LiPF$_6$ in FEC/DME/DMF with LiNO$_3$ | LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | 100 | ~95 | 113 |
| 1 M LiPF$_6$ in FEC/EMC with 1 wt% LiNO$_3$ TPFPB and 3 wt% LiNO$_3$ | LiNO$_3$ | Li$_3$N | 1 | 1 | 300 | 98.5 | 105 |
| 1 M LiPF$_6$ in FEC/EMC with 0.5 wt% Sn(OTf)$_2$ and 5 wt% LiNO$_3$ | LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | N/A | N/A | 100 | 99 | 107 |
| 1 M LiPF$_6$ in FDMA/FEC | LiNO$_3$ | Li$_3$N | 0.5 | 1 | 170 | 94.68 | 115 |
| 1 M LiTFSI in DOL/DME with 1 wt% LiNO$_3$ with 0.5 mg mL$^{-1}$ TiN | Mainly TiN | Li$_3$N | 2 | 1 | 170 | 94.68 | 114 |
| 1 M LiTFSI in FDMA/FEC | LiNO$_3$ | Li$_3$N | 0.5 | 1 | 170 | 94.68 | 115 |

| Electrolyte | N-Containing precursor | N-Containing SEI components | Current density (mA cm$^{-2}$) | Capacity (mA h cm$^{-2}$) | Lifespan (cycles) | Coulombic efficiency (%) | Ref. |
|-------------|------------------------|----------------------------|-------------------------------|--------------------------|-------------------|--------------------------|-----|
| 1 M LiPF$_6$ in EC/DEC with 10 mM In(OTf)$_3$ and 0.5 M LiNO$_3$ | LiNO$_3$ | Li$_3$N and LiN$_x$O$_y$ | 1 | 4 | 100 | 98.2 | 92 |
| 1 M LiF in FEC/GBL with 0.3 M LiNO$_3$ | LiNO$_3$ | Li$_3$N and N–S groups | 0.5 | 1 | 200 | 98.8 | 89 |
| 0.3 M LiF in SL with 0.1 M LiNO$_3$ | LiNO$_3$ | Li$_3$N and N–S groups | 0.5 | 1 | 100 | 98.5 | 93 |
| 0.8 M LiPF$_6$ FEC/DME | LiNO$_3$ | LiN$_x$O$_y$ | 1 | 1 | 100 | 99.42 | 94 |
| 1 M LiPF$_6$ EC/DEC with a 50 mg mL$^{-1}$ LiNO$_3$–MOF composite | LiNO$_2$-MOF | Li$_3$N and LiN$_x$O$_y$ | 0.5 | 0.5 | 20 | 98.8 | 97 |
| 0.8 M LiF + 0.2 M LiDFOB + 0.05 M LiPF$_6$ with 0.1 M Mg(NO$_3$)$_2$ in EMC/DEC | Mg(NO$_3$)$_2$ | Li$_3$N and N–S groups | 2 | 2 | 100 | ~94 | 96 |
| 1 M LiPF$_6$ EC/DEC with a 5 M nitro-C$_60$ derivative | Nitro-C$_{60}$ | Li$_3$N and LiN$_x$O$_y$ | 0.1 | 0.5 | 150 | ~92 | 98 |
| 1 M LiTFSI in DOL/DME with 1 wt% LiNO$_3$ and ~10 wt% TiN | Mainly TiN | Li$_3$N and N–S groups | 1 | 1 | 270 | 97.19 | 114 |
| 1 M LiTFSI in DOL/DME with 2% Nitrocellulose | Li$_3$N and LiN$_x$O$_y$ | 1 | 1 | 150 | 92 | 99 |
| 1 M LiTFSI in DOL/DME with 1 wt% LiNO$_3$ with 0.5 mg mL$^{-1}$ AlN | AlN | Li$_3$N | 2 | 1 | 170 | 94.68 | 115 |
| 2 M LiTFSI in Py$_{13}$TFSI/DOL/DME | LiN$_x$O$_y$ | 1 | 3 | 50 | 99.1 | 100 |
| 1 M LiTFSI in DOL/DME with 1 M Pyr1(4) FSI | LiN$_x$O$_y$ | 1 | 1 | 50 | 97.7 | 102 |
| 1 M LiTFSI in FEC/EMC | LiN$_x$O$_y$ | 0.5 | N/A | 300 | 98.7 | 101 |
| 1 M LiTFSI in FDMA/FEC | LiN$_x$O$_y$ | 0.5 | N/A | 100 | ~99.3 | 107 |
Even the ether solvents reduce the viscosity of N-containing ionic liquid-based electrolytes, and they also limit the voltage window of the electrolyte. In addition, the high volatility and flammability of ether solvents diminish the safety advantages of ionic liquids in the electrolyte. The high price of ionic liquids is another problem that should be addressed before large-scale applications.

4.4. Constructing F-rich and N-rich composite interfaces

LiF has an ultra-high Young’s modulus, so it can suppress Li dendrite growth.\textsuperscript{49} Although its bulk ionic conductivity is poor, it could form a compact structure and conduct Li\textsuperscript{+} via grain boundaries because of the high grain boundary energy. Inorganic nitrides such as Li\textsubscript{3}N have much higher bulk ionic conductivity, but their particle size is larger than that of LiF, and the connections between the nitride grains are not as compact as that between LiF grains. The F-rich (LiF) and N-rich (Li\textsubscript{3}N and Li\textsubscript{2}N\textsubscript{2}O\textsubscript{5}) composite interface is more effective for stabilizing the Li metal anode. The most common approach to introduce the LiF species on the surface of Li is using F-containing solvents. In this regard, Zhang et al. designed an electrolyte with a mixed carbonate ester containing fluoroethylene carbonate (FEC) as the solvent and LiNO\textsubscript{3} as an additive.\textsuperscript{104} The FEC and LiNO\textsubscript{3} in the electrolyte altered the solvation sheath of Li\textsuperscript{+} (Fig. 11a), and formed a uniform SEI with an abundance of LiF and Li\textsubscript{2}N\textsubscript{2}O\textsubscript{5} on the Li metal anode. Wang et al. pointed out that the simultaneous use of LiNO\textsubscript{3} and FEC in a carbonate-based electrolyte reduced the reactivity of the electrolyte and formed a more compact SEI, thus shortening the diffusion paths of Li\textsuperscript{+} through the SEI and improving the CE of the resultant LMBs (Fig. 11b).\textsuperscript{105} Lu et al. dissolved 3 wt% LiNO\textsubscript{3} with the aid of 1 wt% tris(pentafluorophenyl)borane as a solubilizer in FEC-based carbonate solvents and produced an nitrided and fluorinated composite SEI.\textsuperscript{106} The co-existence of LiF and Li\textsubscript{3}N in the SEI on Li was verified with a cryo-TEM (Fig. 11c). Zhang et al. proved that under the protection of this F- and N-rich SEI, LMBs delivered much superior electrochemical performance and a prolonged lifespan (Fig. 11d).\textsuperscript{107} Li et al. designed an electrolyte with a mixed solvent consisting of fluoro-amide (2,2,2-trifluoro-N,N-dimethylacetamide (FDMA)) and FEC.\textsuperscript{108} The FDMA would react with Li via a three-step decomposition mechanism and finally form Li\textsubscript{3}N (Fig. 11e), while FEC would react with Li to generate LiF on the surface of the Li metal electrode. Benefiting from the composite SEI, the plated Li was much denser and the stripping of Li was much more homogeneous. Zeng et al. also formulated an electrolyte with a mixture of fluorine-rich carbonate and cyclophosphonitrile as the solvent, and formed a fluoride-nitride ion-conducting interphase to suppress Li dendrite growth.\textsuperscript{109} Optimizing the solvation structure of the electrolyte is another approach to generate a composite SEI. For instance, Zhang et al. proposed that the presence of NO\textsubscript{3}\textsuperscript{−} in the electrolyte could alter the structure of the Li\textsuperscript{+} solvation sheath and promote the decomposition of the FSI\textsuperscript{−} anion, so that an SEI containing LiF and Li\textsubscript{2}N\textsubscript{2}O\textsubscript{5} was formed on the Li surface (Fig. 11f).\textsuperscript{109}

As summarized in Table 2, the reported ether-based electrolytes normally deliver higher CE than ester-based electrolytes, because ether solvents are more stable against Li metal than ester solvents, although the low anodic decomposition voltage (<4 V) of ether-based electrolytes limits their application potential in high-voltage LMBs. In addition, although these reported electrolytes have improved the reversibility of the Li plating/stripping process, most of their CEs were still lower than 99.5%, which is not high enough for long-term and high-volumetric-energy-density LMBs. Furthermore, in most of the published results, the CE of the electrolytes was evaluated under a current density and an areal capacity lower than required for practical applications (higher than 3 mA cm\textsuperscript{−2} and 3 mA h cm\textsuperscript{−2}, respectively).

To maintain reasonable viscosity and stability of the electrolyte, the amount of LiNO\textsubscript{3} or other additives has been limited.
5. Substrate modification

The Li plating behaviours on the surfaces of metallic Li anodes and current collectors are quite different. The lithiophilicity of the substrate determines the over-potential for Li plating and the size of the nuclei at the initial stage of Li deposition. Moreover, most substrates, such as Cu, are lithiophobic. In addition, a practical current collector substrate is uneven with some protuberant tips on the surface, which induce a non-uniform distribution of the electric field and inhomogeneous charge distribution near the substrate, which eventually leads to the formation and growth of Li dendrites. Constructing nitrided interfaces on current collector substrates is important to improve their lithiophilicity and adjust the local electric field, thus regulating the uniform deposition of Li$^+$.

5.1. Cu substrate

Cu is the most popular substrate/current collector for negative electrodes in LMBs or anode-free batteries. Nitrided interfaces are able to guide Li$^+$ homogeneous plating and improve the Li plating/stripping reversibility on a Cu substrate. Cui et al. synthesized an adaptive polymer with abundant N–H hydrogen bonding sites and applied it for Cu foil modification, where they achieved a much more uniform morphology of plated Li and a lower nucleation over-potential. In addition, Song et al. reported that the pyridinic nitrogen of g-C$_3$N$_4$ can serve as a Li$^+$ affinity centre and help to improve the lithiophobicity of Cu foil via a reactive thermal evaporation method. By depositing the g-C$_3$N$_4$ layer on Cu foil, Song et al. achieved a much more uniform morphology of plated Li and a lower nucleation over-potential. The g-C$_3$N$_4$ layer can also facilitate Li$^+$ conduction at the SEI through a site-to-site hopping mechanism. In addition, defect engineering of a C–N polymer was proposed to construct an N-deficient ultrathin layer on Cu foil via reactive thermal evaporation. The lithiophilicity of the defective C–N layer triggered a space charge effect in the SEI and enhanced its charge-transfer capability, leading to a lower nucleation over-potential. In addition, a three-dimensional (3D) porous poly-melamine-
formaldehyde (PMF) framework was developed to modify Cu foil and prepare a PMF/Li composite anode. The amine and triazine groups in the PMF can homogenize Li\(^+\) concentration near the Cu surface and regulate the uniform deposition of Li\(^+\) (Fig. 12e).\(^{127}\)

Decorating LiNO\(_3\) on Cu foil is also effective for forming nitrided interfaces, but the main problem is that LiNO\(_3\) consists of inorganic particles so that it cannot closely adhere to the Cu foil. To solve this issue, with the aid of a polymeric matrix of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), Cui et al. coated a thin layer of LiNO\(_3\) on the surface of rough Cu.\(^{128}\) In this design, NO\(_3^-\) can be continuously released from the layer into the carbonate-based electrolyte during the Li plating process to maintain an appreciable local NO\(_3^-\) concentration at the anode surface (Fig. 12f). In addition, Xie et al. immersed commercially available Cu foam into LiNO\(_3\) aqueous solution to load LiNO\(_3\) particles into the pores and inner surface of the Cu foam.\(^{129}\) When operating in a carbonate-based electrolyte, the LiNO\(_3\) was reduced and formed an N-rich SEI on the outer and inner surfaces of the Cu foam. The authors believe that this facile method can be applied in large-scale production.

Apart from these advances, polyanionitrile (PAN) or PAN-based materials were used as interfacial functional layers to guide the uniform deposition of Li\(^+\) ions.\(^{130,131}\) AlN interlayers, which simultaneously possessed high Li affinity and an insulating nature, were also used as a surface stabilizer for Li metal anodes.\(^{132}\) Metal–organic framework (MOF) or MOF-derived materials could increase the affinity of Li\(^+\) to the Cu substrate, so they were also reported to suppress Li dendrite growth.\(^{131}\)

### 5.2. Other substrates

3D nickel (Ni) foam can also be used as a substrate to accommodate Li. Similar to Cu, the lithiophobic and uneven surface of Ni leads to uniform deposition of Li. Compared with two-dimensional (2D) planar Cu, the 3D porous structure of Ni foam offers space to alleviate the volume changes of Li during plating/stripping processes, so it could accommodate high capacity Li plating. To improve the surface lithiophobicity of Ni, Nan et al. decorated cobalt nitride (Co\(_3\)N) nanobrushes on Ni foam.\(^{133}\) The Co\(_3\)N enabled a low over-potential for nucleation, leading to homogeneous plating of dendrite-free Li. Yang et al. used experimental results and theoretical simulations to prove that a micro-electric field can be formed by the tri-s-triazine units of g-C\(_3\)N\(_4\) that were used to modify Ni foam, which induced numerous Li nuclei during the initial plating and guided the uniform growth of Li on the substrate (Fig. 13a and b).\(^{134}\) Sun et al. decorated Ni\(_3\)N on the surface of Ni foam, which improved the specific surface area to reduce the local current density and promoted the uniform plating of Li by the formation of Li\(_3\)N.\(^{135}\)

3D carbon is also a good scaffold to host Li. The modification achieved by nitrided materials can help to increase the affinity of Li\(^+\) to the carbon matrix and thus decrease the over-potential for Li plating. For example, Li et al. prepared TiN-decorated 3D carbon fibres as a scaffold for Li metal anodes (Fig. 13c).\(^{136}\) The
The TiN sheath on the carbon fibre could absorb Li\(^+\) and reduce the diffusion energy barrier, thus providing uniform nucleation sites for Li and suppressing the formation of Li dendrites (Fig. 13d and e). Gong et al. decorated g-C\(_3\)N\(_4\) on 3D graphene to develop a g-C\(_3\)N\(_4\)/graphene/g-C\(_3\)N\(_4\) architecture, which can be used as an electrode to accommodate the Li metal anode (Fig. 13f).\(^{137}\) The sandwiched structure can guide uniform Li plating/stripping in the van der Waals gap between the graphene and the g-C\(_3\)N\(_4\). The g-C\(_3\)N\(_4\) can be regarded as an artificial SEI to prevent Li deposition on its surface and prevent the direct contact of the electrolyte with the Li metal because of its isolating nature. Other polar nitrides, such as AlN and Mg\(_3\)N\(_2\), were also reported to modify 3D carbon hosts to regulate the Li plating behaviour and suppress Li dendrite growth.\(^{115,138,139}\)

In a brief summary, nitrided interface modification has improved the lithiophilicity and adjusted the local charge distribution at the surface of substrates/current collectors. As summarized in Table 3, with the functionalization of nitrided interfaces, the Li plating/stripping efficiency on Cu substrates or other substrates has been effectively enhanced to 96–99%. Nevertheless, for real LMBs, especially for anode-free LMBs (without excess Li), the CE should reach a level of 99.9%. This means that the effects of nitrided interfaces need to be further improved. Furthermore, most of the reported results were obtained in ether-based electrolytes, which can undoubtedly improve the CE. As discussed above, evaluating the electrochemical performance with a high-voltage ester-based electrolyte is more practically significant. Besides, most of the reported results did not mention anode-free battery testing, while one of the most important aims of modifying substrates/current collectors is to build anode-free batteries.

It is worth noting that 3D Cu, Ni foam and 3D carbon hosts are all electronically conductive, so Li\(^+\) from the electrolyte may accept electrons and be plated on their upper surfaces (separator side). Once this occurs, the effects of the 3D structure towards accommodating Li will be greatly weakened, while the volumetric energy density of the Li anode will be sacrificed. As modified nitrides normally have poor electronic conductivity, they could decrease the surface electronic conductivity of the host and thus force Li\(^+\) diffusion into the pores and lead to Li deposition on the inner surface of the 3D scaffolds.
6. Separator functionalization

Separators play a key role in all batteries. In LIBs and LMBs, the separator is a porous membrane placed between the positive electrode and negative electrode, which is permeable to ionic transport but prevents electric contact between the electrodes.** Previous results proved that coating a polypropylene (PP)-based separator with BN nanosheets was useful for suppressing Li dendrite growth and prolonging the lifespan of LMBs.** The separator can also be used to support N-containing materials to regulate the Li+ flux distribution, and the SF-PVA layer can form a nitrided protective layer, which could suppress the formation of Li dendrites and “dead” Li. Li et al. proposed a similar concept for sustainably releasing NO3− in a carbonate electrolyte by intercalating superfluous LiNO3 particles between bi-layer polypropylene membranes (PP/LiNO3/PP).** Wu et al. developed a composite separator coated with polyacrylamide-grafted graphene oxide molecular brushes (GO-PAM) (Fig. 14a and b).** The polyacrylamide chains contained abundant N–H and C=O groups and thus enabled a molecular-level homogeneous and fast Li+ flux on the surface of Li. Besides, a layer of g-C3N4 on commercially available PP separators was prepared (Fig. 14d and e), and the g-C3N4 on the PP film was grafted to the Li metal surface after cell assembly.** It was proposed that the g-C3N4 can form transient Li–N bonds at the electrode/electrolyte interface to effectively stabilize the Li+ flux and thus enable smooth Li deposition at high current densities and capacities (Fig. 14f and g). Besides, Huang et al. modified a hybrid layer of silk fibroin and polyvinyl alcohol (SF-PVA) on a PP separator via a freeze drying method. The SF-PVA layer will auto-transferred from the PP separator to the Li surface (Fig. 14h).** The N–H and C=O groups in SF are able to regulate the Li+ flux distribution, and the SF–PVA layer can form

| Substrate | Modification | Electrolyte | Current density (mA cm⁻²) | Capacity (mA h cm⁻²) | Lifespan (cycles) | Coulombic efficiency (%) | Ref. |
|-----------|--------------|-------------|---------------------------|----------------------|------------------|-------------------------|------|
| 2D Cu     | Adaptive polymer | 1 M LiTFSI in DOL/DME with 1 wt% LiNO3 | 1 | 1 | 180 | 97 | 123 |
| 2D Cu     | Cu₃N        | 1 M LiPF₆ in EC/DMC | 0.5 | 1 | 130 | ~90 | 124 |
| 2D Cu     | SBR + Cu₃N | 1 M LiPF₆ in EC/DEC | 1 | 1 | 100 | 97.4 | 76 |
| 2D Cu     | g-C₃N₄     | 1 M LiTFSI in DOL/DME | 1 | 1 | 350 | ~99 | 125 |
| 2D Cu     | g-C₃N₄     | 1 M LiTFSI in DOL/DME with 0.2 M LiNO₃ | 3 | 1 | 450 | ~96 | 126 |
| 2D Cu     | Polyacrylonitrile | 1 M LiTFSI in DOL/DME with 2 wt% LiNO₃ | 0.5 | 1 | 250 | 97.4 | 131 |
| 2D Cu     | Aluminum nitride | 1 M LiPF₆ in EC/DEC with 5 v% FEC | 0.5 | 1 | 125 | ~97 | 132 |
| 2D Cu     | Metal-organic framework | 1 M LiTFSI in DOL/DME with 1 wt% LiNO₃ | 1 | 1 | 300 | 99.1 | 121 |
| 2D Cu     | MOF comprising bipyridinic nitrogen linker | 1 M LiTFSI in DOL/DME with 2 wt% LiNO₃ | 1 | 1 | 600 | ~96 | 114 |
| 2D Cu     | Carbon@PVDF@LiNO₃ | 1 M LiPF₆ in EC/DEC with 5 wt% VC | 1 | 1 | 200 | 97.9 | 140 |
| 2D Cu     | Polyethylene terephthalate | 1 M LiTFSI in DOL/DME with 2 wt% LiNO₃ | 1 | 1 | 100 | 98 | 120 |
| 2D Cu     | Polyacrylonitrile/polyimide | 1 M LiTFSI in DOL/DME with 2 wt% LiNO₃ | 2 | 2 | 130 | 97.3 | 130 |
| Rough Cu  | PVDF-HFP + LiNO₃ | 0.5 M LiPF₆ in EC/DEC | 2 | 2 | 140 | 97 | 134 |
| Ni foam   | g-C₃N₄     | 1 M LiTFSI in DOL/DME with 1 wt% LiNO₃ | 10 | 1 | 50 | 94.7 | 127 |
| Carbon nanofiber mat | TiN | 1 M LiTFSI in DOL/DME with 2 wt% LiNO₃ | 2 | 1 | 250 | 97.5 | 136 |
| Ni foam   | Co₃N₄ nanobrush | 1 M LiTFSI in DOL/DME with 1 wt% LiNO₃ | 1 | 1 | 120 | 96.9 | 133 |
| 3D carbon paper | Mg₃N₂ | 1 M LiTFSI in DOL/DME with 0.5 wt% LiNO₃ | 0.5 | 0.5 | 240 | 98.2 | 139 |
| Ni foam   | Ni₃N (x = 3, 4) | 1 M LiTFSI in DOL/DME with 1 wt% LiNO₃ | 1 | 1 | 300 | 97 | 135 |
| Cu foam   | LiNO₃      | 1 M LiPF₆ in EC/DEC with 10% FEC | 1 | 1 | 300 | 95.5 | 129 |
| 3D graphene | g-C₃N₄ | 1 M LiTFSI in DOL/DME with 1 wt% LiNO₃ | 1 | 1 | 500 | 99.1 | 137 |
a Li$_3$N rich SEI. Therefore, uniform Li nuclei deposition was achieved.

The separator functionalization strategies can remarkably improve the lifespan and the electrochemical performance of Li metal electrodes, even under high current density and high capacity conditions. These strategies are also convenient for large-scale production. Unfortunately, the introduction of N-containing materials increases the overall thickness of the separator, which will certainly sacrifice the volumetric energy density of LMBs.

7. Prospects and outlook

Nitrided interfaces have effectively stabilized Li metal electrodes and improved their electrochemical performance as well as lifespan of LMBs. Despite this success, many critical issues and challenges remain to be carefully considered in the future. They are summarized below.

7.1. Investigating how nitrided interfaces affect the stripping process

The majority of research has only focused on the plating process, while the stripping process, deciding the utilization of deposited Li, was rarely noticed. There is no doubt that a uniform stripping step will lead to less pulverization and depletion of active Li during each cycle, which is a significant factor in promoting the lifespan and electrochemical performance of LMBs. The course of Li dissolution with and without nitrided interfaces during the stripping step deserves to be carefully studied.

7.2. Understanding how nitrided interfaces affect the components and microstructure of the final SEI layer

The introduction of nitrogenous additives will definitely influence the solvent structure of the electrolyte, changing the final decomposition products, while for nitrided interfaces
fabricated ex situ, their existence also alters the decomposition of the electrolyte. In short, the final SEI layer is composed of nitrogenous compounds and other components, and these products and their distributions have a direct correlation with the Li ion transport. If we only target nitrogenous compounds, we cannot achieve a comprehensive outlook with respect to the interfaces. A better knowledge of the interaction between nitrogenous compounds and other components will help to understand the differences in performance among the various nitrided interfaces.

7.3. Developing high-voltage N-containing electrolytes
The application of LiNO₃ and other N-containing additives is mainly confined to low-voltage electrolytes due to their low solubility in most high-voltage non-aqueous solvents. Increasing their solubility in high-voltage electrolytes is of great importance.

7.4. Controlling the thickness of nitrided interfaces
The thickness of reported nitrided or nitride-based composite interfaces varies from a few nanometres to more than 20 μm. To avoid the sacrifice of the volumetric-energy-density of the Li metal battery, the thickness of the modification layers should be much thinner than that of the Li foil, especially considering that the Li foil used in the practical batteries is only 50 μm in thickness.

7.5. Improving the lifespan of the nitrided artificial SEI
The reported nitrided artificial SEI layers do exhibit positive effects towards suppressing Li dendrite growth and passivating the active Li surface, but their stability is far from satisfactory. They may be destroyed by the interfacial stress resulting from the huge volume changes of the Li metal electrode, so the real effects of nitrided artificial SEI layers would be sacrificed. Developing flexible and robust nitrided artificial SEI layers with longer lifespans is critical to promoting their practical effects.

7.6. Evaluating the effects of nitrided interfaces under practical conditions
According to the reported designs, most of the electrochemical performance was tested under mild conditions different from the real application situation. To make it more objective, the electrolyte and Li metal should be well quantified, while the cathode capacity should reach the commercial scale. In consideration of the mass energy density and the cost, the amount of electrolyte should be limited to less than 10 μL mAh⁻¹ (lean electrolyte). Meanwhile, the areal capacity of the cathode should be higher than 3 mA cm⁻², and the thickness of the Li metal anode should be less than 50 μm (~10 μA h cm⁻²), with the capacity ratio of the negative electrode (Li) to the positive electrode (n/p ratio) lower than 3. In addition, the current density and areal capacity in coulombic efficiency and symmetric cell tests should be increased to higher than 3 mA cm⁻² and 3 mA h cm⁻², respectively.

Data availability
There is no original experimental or computational data associated with this article, as it is a Perspective.

Author contributions
Z. Wang and Y. Wang wrote the manuscript. Z. Guo supervised this project. All the authors discussed and polished the manuscript.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
Financial support provided by the Australian Research Council (ARC) (LP160101629, LE120100104, DP200101862, DP210101486, and LE180100141) is gratefully acknowledged. Y. W. and Z. W. acknowledge the China Scholarship Council for scholarship support (No. 201808440447 and 201706340049). The authors thank Dr Tania Silver at UOW for critical reading and polishing of the manuscript.

References

1 M. Winter, B. Barnett and K. Xu, Chem. Rev., 2018, 118, 11433–11456.
2 J. M. Tarascon and M. Armand, Nature, 2001, 414, 359–367.
3 J. B. Goodenough and Y. Kim, Chem. Mater., 2010, 22, 587–603.
4 M. Armand and J. M. Tarascon, Nature, 2008, 451, 652–657.
5 Q. Wang, H. Wang, J. Wu, M. Zhou, W. Liu and H. Zhou, Nano Energy, 2021, 80, 105516.
6 Y. Ding, Z. P. Cano, A. Yu, J. Lu and Z. Chen, Electrochem. Energy Rev., 2019, 2, 1–28.
7 J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei and Y. Huang, Electrochem. Energy Rev., 2020, 3, 1–42.
8 X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu and K. Amine, Adv. Energy Mater., 2019, 9, 1900161.
9 B. Liu, J.-G. Zhang and W. Xu, Joule, 2018, 2, 833–845.
10 H. Ye, Y. Zhang, Y.-X. Yin, F.-F. Cao and Y.-G. Guo, ACS Cent. Sci., 2020, 6, 661–671.
11 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Energy Environ. Sci., 2014, 7, 513–537.
12 X.-B. Cheng, R. Zhang, C.-Z. Zhao and Q. Zhang, Chem. Rev., 2017, 117, 10403–10473.
13 Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng, S. Liu, W. K. Pang, Y.-B. He and Z. Guo, Adv. Mater., 2021, 33, 2008133.
14 Z.-J. Zheng, H. Ye and Z.-P. Guo, Adv. Sci., 2020, 7, 2002212.
15 C.-Y. Wang, Z.-J. Zheng, Y.-Q. Feng, H. Ye, F.-F. Cao and Z.-P. Guo, Nano Energy, 2020, 74, 104817.
16 L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li and J. Li, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 1156.
