Gut Bacterial Inhabitants of Open Nested Honey Bee, Apis Florea

D.N. Ganeshprasad
Mangalore University

Kunal Jani
National Centre for Cell Science

Yogesh S. Shouche
National Centre for Cell Science

A H Sneharani (✉ sneharaniah@gmail.com)
Mangalore University https://orcid.org/0000-0001-7209-7540

Research Article

Keywords: dwarf honey bee, Apis florea, gut microbiota, MALDI-TOF MS, 16S rRNA, next generation sequencing

DOI: https://doi.org/10.21203/rs.3.rs-225332/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Honey bees are complex social system, which are highly dynamic having close interactions with their surrounding environment. Gut microbiota of honey bees has a major role in interaction behavior with its environment and health. *Apis florea* is the primitive among all the honey bees and are indigenous to Indian subcontinent. The study reports the identification and analysis of bacteria in the gut of wild species of honey bee, *Apis florea*, by culture-based and culture-independent methods. Cultured bacteria were identified and characterized by MALDI-TOF MS and 16S rRNA sequencing. A comprehensive analysis and identification of non-culturables bacteria were performed by 16S rRNA amplicon next generation sequencing. The sequence analysis approach classified gut bacteria into 5 bacterial phyla, 8 families and 10 genera in major. The dominant bacterial taxa identified in *Apis florea* belonged to Prevotellaceae (52.1%), Enterobacteriaceae (42.7%) and Halobacteriaceae (1.3%). The dominant bacteria belonged to genera of *Prevotella*, *Escherichia-Shigella*, *Natronomonas*, *Methylobacterium*, *Pantoea*, *Bifidobacterium*, *Enterobacter*, *Klebsiella*, *Lactobacillus* and *Nitrobacter* belonging to phyla Bacteroidetes, Proteobacteria, Euryarchaeota, Actinobacteria, and Firmicutes. Many of these bacteria identified herewith are not reported for their occurrence in others species of *Apis* genus making this study of highly relevance with respect to bee microbiome.

Introduction

Honey bees are complex social system, which are highly dynamic having close interactions with their surrounding environment making them superorganisms. Fossil records indicate that among all other living species of *Apis*, *Apis florea* is the most primitive. This is substantiated by their colony size, open nest and behavioral pattern (Kaspi and Shafir 2013; Radloff et al. 2005). The evolutionary divergence of *Apis florea* from the common ancestor is much earlier from the remaining *Apis* clades (Biewer et al. 2016). *Apis florea* is prevalent and restricted to south and southeastern part of Asia. It is commonly known as dwarf bee or little bee and survives temperature up to 50 °C (Biewer et al. 2016). The honey production by these little bees is less in quantity and often consumed by them hence, not reared for commercial purpose. Contribution of *Apis florea* towards pollination is agriculturally and ecologically significant rather than role in producing honey. Depending upon the forage availability, *A. florea* often migrates between plains and adjacent low hills during seasonal variations. The species prefer warmer climate for their foraging activity (Balachandra et al. 1999). *A. florea* species functions as an important pollinator and recent times have experienced a drastic decline in the population. Various reasons for extreme honey bee losses have been proposed, which include indiscriminate use of toxic pesticides, poor nourishment, genetic diversity, parasites and microbial pathogens (Anjum et al. 2018).

Accumulating evidence suggests a crucial role between the host-microbe interactions (Saraithong et al. 2015). Microbes contribute to functional capabilities to the host by providing essential nutrients and immunological defense to the honey bee health. The diversity and sociality affect an organism's physiological and behavioral adaptations. Gut microbiome in the honey bee gut help to protect against attacking pathogens (Kwong and Moran 2016). Some studies showed that relative abundance of core gut species is having a direct impact on the susceptibility to various pathogens (Raymann and Moran 2018). The delineation of functions attributed by the gut bacteria to the host are addressed by studying the interactions between gut bacteria and the host. Gut bacterial diversity in honey bee belonging to *A. mellifera* (Western honey bee) is well demonstrated. Different social corbiculate bees possess highly characteristic gut communities. These distinct gut communities in the host are largely independent of the geographical occurrence of the host (Kwong and Moran 2017; Moran et al. 2012; Martinson et al. 2011). However, high strain level diversity in the gut microbiota of *A. mellifera* and *A. cerana* are reported, opening insights into the adaptability of honey bees to local conditions (Ellegaard et al. 2020).
For majority of the wild bee species, composition and function of microbiome is largely unknown and remains to be elucidated (Engel et al. 2016). The need of such study arises as the gut microbiome has key roles in host health which will extricate the relationship between host fitness in both managed and wild pollinator bees (Engel et al. 2016). Reports on exploring the gut microbiota are surging linearly; however, there is lack of information on the gut microbiota of A. florea. A. florea being an important contributor for crop pollination, the aim of the study was to explore and characterize the gut microbiota in the whole alimentary canal of wild species of A. florea. For the culture dependent method, isolates were subjected to MALDI-TOF-MS and 16S rRNA sequencing analysis and to characterize the non-culturable organisms, high throughput sequencing techniques were used. The study provides insights about this primitive clade of Apis whose composition can be compared with the core bacteria reported for other Apis species. This study adds on to the knowledge of Bee microbiome which is associated to unravel the evolution and ecology of host-microbiome interactions (Engel et al. 2016).

Methods

Sample collection and dissection of the bees

To study the cultivable and uncultivable honey bee gut bacteria, a total of eighty two worker honey bees (A. florea) were collected from Mavina Halla Forest, Karnataka, located in Western Ghats forest of India (Latitude:12.55821DMS N 12° 33' 29.556", Longitude:75.95338DMS E 75° 57' 12.167°). On the same day, live bees were transported to the laboratory in small cages; whole bees were cold anesthetized and were surface-sterilized with 7% sodium hypochlorite and 70% ethanol in sterile falcon tubes (Inglis et al. 2012), followed by four times wash with sterile 1xphosphate-buffered saline (PBS), followed by dissection. The whole alimentary canal of bees was aseptically dissected on slides using normal saline (0.9%) by clipping the stinger with sterile forceps. The dissected guts were transferred to 1 ml of PBS and immediately stored at -20 °C until further experiments.

Culturing of bacteria

The bee gut samples (20) were homogenized using micropestle. Different dilutions (i.e., 1/10, 1/100 and 1/1000) of this composite homogenate were made and 100 µl aliquots each of the diluted sample were inoculated into six different media procured from HiMedia, Mumbai, India: Nutrient Agar (NA), MRS Agar (MRS), Brain Heart Infusion Agar (BHI), Eosin-methylene blue (EMB), Luria Bertani (LB) and Gluconobacter agar (GB) and incubated for 24–72 h at 30 °C. The bacterial colonies grown on the plates were enumerated and selected, based on different morphologies. The separated colonies in master plates were repetitively sub-cultured to obtain pure colonies of bacteria.

Culture-Based methods

MALDI-TOF MS Based Characterization

A simple extraction protocol was employed to analyze the bacterial sample. Loopful of bacterial cultures were mixed thoroughly with ethanol (70% v/v) and the suspended cells were centrifuged at 12,000 rpm for 5 min. The pellet was recovered by discarding the supernatant carefully. The pellet was air dried at room temperature and resuspended in formic acid (70% v/v) by vigorous mixing followed by the addition of acetonitrile. The mixture was centrifuged at 12,000 rpm to separate the pellet and 1 µl of clear supernatant was placed on a MALDI target plate. The bacterial smear was overlaid with 1 ml saturated solution of alpha-cyano-4-hydroxycinnamic acid (HCCA) matrix prepared in acetonitrile (50%) and trifluoroacetic acid (2.5%) and allowed to dry at room temperature. The extracted samples were analyzed using Autoflex speed system (Bruker Daltonik GmbH, Germany). Mass spectra were obtained in a mode of linear positive ion extraction at a laser frequency of 1000 Hz within a mass range from 2k to 20kDa. The ion source 1
voltage was 19.5 kV, ion source 2 voltage was maintained at 18.2 kV, lens voltage at 7 kV, and the extraction delay time was 240 ns. Calibration of spectra was done externally by using the standard calibration mixture (E.coli extracts including RNase A and myoglobin as additional proteins, Bruker Daltonics). The MALDI Biotyper software 3.0 (Bruker Daltonik) was used to identify the bacterial isolates and to visualize the mass spectra. Species-level identity has been considered for the isolates with biotyper score value ≥2.0, while the analysis for the isolates with score value ranging from 1.7 to 1.99 was repeated to achieve the higher score values (Kurli et al. 2018). The isolates which were not identified up to species level and with biotyper score value <2.0 were subjected for 16S rRNA sequencing.

Colony PCR and 16S rRNA sequencing

The 16S rRNA gene sequence was amplified using universal primers (8F: 5’-AGAGTTTGATCCTG GCTCAG -3’ and 1391R: 5’-GACGGGCGGTGTGTRCA -3’) according to the method described by Turner et al. (1999). These primers are specific for conserved regions of bacterial 16S ribosomal RNA. PCR conditions are as follows; Step.1: pre-denaturation-94 °C, 5 min; denaturation-94°C, 5 min; annealing-55 °C, 1 min; extension-72 °C, 1.30 min; Step.2: final extension – 72°C, 7 min; stored at 4 °C. PCR products (3 µl) were subjected to electrophoresis and 22 µl was purified by PEG-NaCl method. The purified PCR products were sequenced using ABI PRISM Big Dye Terminator v3.1 Cycle Sequencing kit on a 3730xl Genetic Analyzer (Thermo Fisher Scientific®, UK).

Sequence analysis

The sequence data obtained were assembled and analyzed using DNA sequence assembling software Lasergene SeqMan Pro (DNASTAR Inc.). The 16S rRNA sequence of each bacterial isolate was compared using BLAST (Camacho et al. 2009) against 16S ribosomal RNA sequences (Bacteria and Archaea) database (a subdivision of GenBank).

Culture- Independent methods

Next generation sequencing

Community DNA extraction

The honey bees were surface sterilized and, the alimentary tract of worker honey bees (60) were collected in 1.5 mL of phosphate buffered saline. To this 200 µL of cell lysis buffer (ATL buffer, Genomic DNA extraction, Qiagen Tissue kit) was added and subjected to homogenization in the presence of glass beads using the temperature controlled (~22 °C) vortex shaker for 30 min. Twenty microlitre of proteinase K was added and further steps followed were according to manufacturer's protocol. The concentration of DNA was measured using Qubit HS DNA kit (Invitrogen, USA) and stored at −20 °C till further processing.

Amplicon sequencing

To investigate bacterial diversity of honey bee gut, NGS library preparation was carried out by targeting V4 region of 16S rRNA gene using primers 515F (F515: 5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (806R: 5’-GGACTACHVGGGTWTCTAAT-3’) (Kumbhare et al. 2015; Caporaso et al. 2010a). The resultant libraries were purified, pooled in equimolar concentration and sequences using 2 x 250bp v2 Chemistry on Illumina MiSeq platform.

Bioinformatics analysis

The raw reads obtained from the high-throughput sequencing were analyzed using QIIME1 pipeline (Caporaso et al. 2010b). The OTU picking was carried out by reference based OTU picking method against the SILVA (v132) (Edgar
The taxonomic assignment was performed using SILVA (v132) raw taxonomy. Alpha diversity indices were assessed by richness like Chao1, ACE and diversity (Shannon) were calculated via QIIME, which predisposes sample rarefaction to the same sequencing depth (Bokulich 2012).

Results And Discussion

The global decline in the population of pollinator bees (Potts et al. 2010) has attracted the researchers for a comprehensive study of host microbiome community. As major contributors in pollination, honey bees are very crucial organisms in securing the agricultural produce and the maintaining ecosystem. Unlike western bees, *A. florea* are not reared for commercial honey or wax; rather they occur in wild functioning as major pollinators (Balachandra et al. 1999). These little dwarf bees differ from western bees in their defense against pathogens (Suwannapong et al. 2011). In the present study, Asiatic bees, *A. florea* were selected to study and analyze the gut microbiome. The bee symbionts are likely to play a vital role in self defense and metabolism. *Apis florea*, (dwarf bee) is naturally distributed in Indian subcontinent throughout south-east Asia. The most important contribution of this honeybee is its valuable pollination of many fruit plants and diversified flora in tropical ecosystems (Soman and Chawda 1996).

The defensive and metabolic capabilities of bees are highly correlated with gut microbiome interaction and to further add knowledge on role and interaction of microbial community with host, the analysis of gut bacteria of *Apis florea* honey bees was carried out. Healthy bees were obtained directly from single hive across Western Ghats forest area of Kodagu district, which is recognised as a global biodiversity hotspot, India. The entire thorax and abdomen was processed for analysis, thus including gut microbes and organisms attached to hemolymph or tissues. The analysis of gut bacteria was performed by culture dependent and culture-independent technique from a total of 80 worker dwarf honey bees.

In culture dependent method, the identification and characterization of culturable diversity of bee gut bacteria was done by MALDI-TOF-MS and 16S rRNA gene sequencing analysis. A total of 91 aerobic and facultative anaerobic bacteria were isolated from guts of worker *A. florea* bees. Based on colony characteristics, the bacterial isolates were initially subjected to MALDI-TOF-MS. Fifty six isolates were identified up to species level. The isolates with biotyper score value <2.0 could not be identified up to species level. Remaining thirty-five such isolates which were not identified up to species level from MALDI-TOF-MS were further subjected to 16S rRNA sequencing. Collectively from both MALDI-TOF-MS and 16S rRNA sequencing of culture dependent analysis, the gut bacterial isolates belonging to three bacterial phyla/classes were identified; alpha-Proteobacteria (1%), Firmicutes (19%) and Gamma-Proteobacteria (80%) (Fig. 1). The percentage of isolates belonging to genera, *Klebsiella*, *Enterobacter*, *Bacillus*, *Citrobacter*, *Staphylococcus* and *Lactobacillus* are represented in Fig. 2. These isolates were found to be common in *Apis* clade as reported in previous work (Martinson et al. 2012; Yoshiyama and Kimura 2009; Khan et al. 2017). The presence of a diverse group of bacteria including the phyla Firmicutes, alpha and beta-Proteobacteria suggests their ecological importance (Kwong and Moran 2017). Most of these bacteria belonging to these phyla are facultative anaerobes, ferment sugars and tolerant to acidic environment. The bacterial isolates identified are common in soil, water and few of them are organisms of clinical relevance in humans. The occurrence of such bacteria in insect gut is not unusual and is described before. *Staphylococcus*, *Enterobacter* and *Klebsiella* found in abundance in gut of dwarf bee are typical inhabitants in human. These bacteria are considered as beneficial healthy gut microbiota in humans, insects and other animals as they are the fermenters of sugar and involved in the host defense mechanism (Anderson et al. 2011). *Klebsiella oxytoca*, a prominent organism considered as probiotic, positively affects the health of host by suppressing parasite colonization (Engel et al. 2013). In termite, the role of *Staphylococcus* probably is involved in degradation of cellulose (Sarkar et al. 1986). *Klebsiella* spp (*K. oxytoca*) and *Pantoea agglomerans* were predominantly found in our analysis. *Pantoea agglomerans* is significantly present in desert locust, *Schistocerca*
gregaria, and are involved in breakdown of dietary components leading to synthesis of aggregation pheromones that function in swarming behaviour of locusts (Dillon et al. 2002). It is reported that these organisms gain entry into the bee gut during foraging activity (Loncaric et al. 2009). Bacillus safensis, B. kochii and B. halotolerans were identified in the gut of dwarf bee. Bacillus safensis, B. kochii and B. halotolerans are reported to exist and survive in extreme environment and under stress conditions (Lateef et al. 2013, Zhang et al. 2018, Seiler et al. 2012). In two separate studies on profiling of bacterial community carried out in the gut of flesh flies and floral nectar, Bacillus safensis was identified and isolated (Gupta et al. 2014, Fridman et al. 2012). Desert locust Schistocerca gregaria, inhabits Bacillus safensis which possess high cellulolytic activity indicating the metabolic significance of this bacteria (Nelson et al. 2021). Strains of Bacillus safensis is reported to produce many industrially relevant enzymes, such as amylase, protease, lipase, inulinase and chitinase. The occurrence of Brevundimonas nasdae was prominent in our study. The pH of honey bee midgut is around 8 and this pH favors the optimal growth of Bacillus species and Brevundimonas nasdae and these may aid in degrading of carbohydrate fed by the bees. In addition to Brevundimonas nasdae (Phylum: Proteobacteria), Bacillus species and, Solibacillus silvestris (Phylum: Firmicutes) were predominant in the gut of A. florea. These bacterial species are rarely or no where reported in the available literature on the Apis gut microbiota of other species, whereas interestingly occur in Apis mellifera. The differences in the occurrence of these bacteria might be due to geographical location or existing characteristics of the environment or may be due to the feature of A. florea species itself, which requires further studies.

In culture-independent studies, a comprehensive microbial diversity analysis using high throughput sequencing approach was carried out. Bacterial community profile of honey bee gut as revealed by 16S rRNA gene amplicon sequencing, yielded 15 bacterial phyla representing collective phyla in the gut of A. florea (Fig. 3a). Bacterial phyla distributions were as follows; Bacteroidetes (51.3%), Proteobacteria (45.1%), Euryarchaeota (1.3%), Actinobacteria (1.1%), Firmicutes (0.9%) and the rest (0.3%) constituted the minor phyla. The abundance of ten minor phyla (Acidobacteria, Tectomicrobia, Chloroflexi, Lentisphaerae, Verrucomicrobia, Cyanobacteria, Planctomycetes, Nitrospirae, Tenericutes and Saccharibacteria) was very less; hence the percentage of composition is not shown in Fig. 3a. At family level, OTUs with ≥ 0.3% abundance were filtered (Fig. 3b). The family level distribution of bacteria in the gut of A. florea were Prevotellaceae (52.1%), Enterobacteriaceae (42.7%), Halobacteriaceae (1.3%), Methylobacteriaceae (1.2%), Bifidobacteriaceae (0.9%), Orbaceae (0.4%), Lactobacillaceae (0.4%) and Halomonadaceae (0.4%). Composition percentage of bacterial family which was less than 0.9% is not shown in Fig. 3b.

At the genus level, OTUs with ≥ 0.3% abundance were filtered and distribution of bacterial genera in the gut of A. florea is represented as diagram in Fig. 4 and are as follows; Prevotella (59.3%), Escherichia-Shigella (33.3%), Natronomonas (1.5%), Methylobacterium (1.4%), Pantoea (1.1%), Bifidobacterium (1%), Enterobacter (0.9%), Klebsiella (0.6%), Lactobacillus (0.5%) and Nitrobacter (<0.3%). The composition percentage of bacterial genera which was less than 0.3% was not shown in Fig. 4. Amongst these, Bacteroidetes and Proteobacteria were the predominant phyla. Euryarchaeota are highly diverse and are often found in intestine, which are rarely mentioned in literature on bee gut microbiota. Along with Euryarchaeota, Tectomicrobia, Chloroflexi, Lentisphaerae and Verrucomicrobia are few of the gut symbionts, which are found in A. florea, unmentioned elsewhere in the literature on honey bee gut microbiota.

Prevotella, Escherichia-Shigella, Natronomonas, Methylobacterium, Pantoea, Bifidobacterium, Enterobacter, Klebsiella and Lactobacillus are the dominant genera found in the gut of A. florea worker bees. The bacterial genera Prevotella, Natronomonas etc. are uncultivable under typical laboratory conditions as they require strict anaerobic conditions or haloalkaliphilic conditions. Prevotella, Natronomonas and Methylobacterium are not reported in the available literature of honey bee gut microbiota, however, Methylobacterium and Prevotella are the predominant inhabitants of...
gut in bark beetle, (*Dendroctonus rhizophagus*) (Briones-Roblero et al. 2017). Species of *Prevotella*, are non-cellulolytic carbohydrate degrading bacteria, which bring about digestion of cell wall polysaccharides like xylan (Flint et al. 2012). A relatively lower proportion of *Brevundimonas, Staphylococcus, Streptococcus, Gluconobacter* and *Gilliamella* genera was observed in our culture independent studies, whereas many of these are predominant in *Apis mellifera* (Kwong and Moran 2016). Functional redundancy and crosstalk among the microbes, and host has huge metabolic and physiological impact and, the significance of the presence of these bacterial communities can be untangled by further metagenomic and metatranscriptomic studies.

High throughput sequencing and quality trimming of 16S rRNA gene yielded ~0.118 million quality reads which were used for subsequent analysis. Taxonomic assignment of sequences with the reference database resulted in 589 operational taxonomic units (OTUs). Alpha diversity estimation of gut of *A. florea* using species richness and non-parametric Shannon index suggested higher bacterial diversity in *A. florea* worker bees. The alpha diversity index which is an indicator of bacterial diversity, were calculated for *A. florea* and is given in Table 1. Shannon index for bacterial communities was 3.121 and this observation is suggestive of richness in bacterial diversity in the gut of *A. florea*.

16S rRNA gene sequences of the bacterial isolates of *A. florea* was used to construct the phylogenetic tree showing relationship among the bacteria with reference strains of GenBank (Fig. 5). The bacterial populations in the gut were diverse among forager bees of *A. florea* which belonged to phyla Firmicutes, alpha and beta-Proteobacteria. A plethora of bacterial abundance in any niche suggests their significance in ecological diversity; in *A. florea, Prevotella* was a significant member accounting for 59% of the total gut microbe indicating the possible ecological importance.

Dominant gut inhabitants of *A. mellifera* belong to phyla Firmicutes, Actinobacteria and Proteobacteria (Kwong and Moran 2016; Romero et al. 2019; Ahn et al. 2012). The bee gut microbial communities in *A. mellifera* are specific and are dominated by nine bacterial species clusters viz., *Bartonella apis, Parasaccharibacter apium, Frischella perrara, S. alvi, Gilliamella apicola, Bifidobacterium* spp., *Lactobacillus* Firm-4, *Lactobacillus* Firm-5 and these are believed to impart social behavior among individuals (Kwong and Moran 2016). *Snodgrassella alvi* and *Gilliamella apicola* are ubiquitous in the gut of *A. mellifera* (Kwong and Moran 2012). In our study, *Snodgrassella alvi* was not detected whereas, *Gilliamella apicola* were found in traces. *Acinetobacter* was found in our study similar to the reports of Kim et al (2014). *Acinetobacter apis* spp. nov., was isolated from the intestinal tract of a honey bee, *A. mellifera* (Kim et al. 2014). In the metagenomic survey, the class Alpha Proteobacteria and Gamma Proteobacteria dominated the gut environment of *A. mellifera* (Engel and Moran 2013a). In *A. florea*, Bacteriodetes, Proteobacteria, Euryarcheota, Actinobacteria, Firmicutes and Acidobacteria were the predominant phyla in our study. *Citrobacter* spp., *Providencia vermicola, Planomicrobiu m keanokoites* and *Exiguobacterium acetylicum* were reported for the first time in the genus *Apis* by culture dependent 16S rRNA sequencing (Khan et al. 2017). Pyrosequencing analysis of the bacterial community structure in the midguts and hindguts of the adult honeybees of *A. cerana* and *A. mellifera* were studied. Higher frequencies of *Enterobacteriaceae, Lactococcus, Bartonella, Spiroplasma*, and *Flavobacteriaceae*-related OTUs were found in the guts of *A. cerana* while *Bifidobacterium* and *Lachnospiraceae*-related OTUs were more abundant in guts of *A. mellifera* (Ahn et al. 2012). Anjum et al. (2018) reported Firmicutes (60%), Proteobacteria (26%) and Actinobacteria (14%) in *A. mellifera* gut by 16S rDNA sequencing.

The dominant phyla, Proteobacteria and Firmicutes are reported in eusocial wasps (Order: Hymenoptera) inhabiting eastern and southern Asian region (Suenami et al. 2019). A variety of bacterial phyla are commonly present in insect guts, including Gammaproteobacteria, Alpha-Proteobacteria, Beta-Proteobacteria, Bacteroidetes, Firmicutes including Lactobacillus, and Bacillus species, Clostridia, Actinomycetes, Spirochetes, Verrucomicrobia, Actinobacteria, and others (Colman et al. 2012). Numerous non-culture-based studies show that dominant taxa in *Drosophila*
melanogaster are influenced by diet and vary among laboratories however, certain taxa recur (Broderick and Lemaitre 2012). The gut inhabitants of honey bees are coevolved with bumble bees and comprise a distinctive gut community (Martinson et al. 2011). The wild flies have distinct bacterial communities and more diversification from those of reared species (Chandler et al. 2011), including bee gut bacteria (Kwong and Moran 2016; Engel et al. 2013). In major, gut flora of insects, contribute to metabolism, nutrition, immune modulation and protection against foreign entities (Engel and Moran 2013b). Understanding the bacterial network offers knowledge into bee pathology, host-microbe interaction and aid in improving honey bee health and to discover new sources of biotechnologically potential molecules and enzymes (Romero et al. 2019).

Conclusion

In conclusion, the gut communities of A. florea are more diverse in composition and the sequence analysis approach classified gut bacteria into Bacteroidetes, Proteobacteria, Euryarchaeota, Actinobacteria, and Firmicutes as the major phyla. Most of the isolates found are opportunistic and beneficial gut inhabitants. Prevalence of members of genera Prevotella (59%) is observed in our study which is different in abundance against other species of Apis clade. Sequencing the whole gut using NGS has allowed us to analyze the importance of microbiome role in A. florea host to some extent. Likewise, with other microbiome project (human, animal and insects), this work provides additional information and data pertaining to the microbiome of A. florea, a primitive clade of honey bee, revealing some of the bacterial cobionts not found in earlier reports on honey bee microbiome project. However, further genomic studies are required to study the relevance for diversified microbial occurrence and a comparative analysis of managed and wild species may offer insight about host-microbe interaction.

Declarations

Acknowledgement

Authors are thankful to National Centre for Microbial Resource, Pune, India for providing laboratory facility to carry out the research work and also thank Mr. Sunil Kumar Dhar for his assistance.

Funding

Not Applicable

Conflicts of interest

The authors declare no conflicts of interest.

Ethics statement

Honey bees are invertebrates; hence no ethics approval is required.

Data availability

The sequences obtained from Sanger sequencing is submitted to NCBI, which are available under Bio Project SUB6349615, MN512276:MN512310[accn].

References
1. Ahn JH, Hong IP, Bok JI, Kim BY et al (2012) Pyrosequencing analysis of the bacterial communities in the guts of honey bees *Apis cerana* and *Apis mellifera* in Korea. J Microbiol 50:735–745. https://doi.org/10.1007/s12275-012-2188-0

2. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM et al (2011) An emerging paradigm of colony health: Microbial balance of the honey bee and hive (*Apis mellifera*). Insectes Soc 58:431–444. https://doi.org/10.1007/s00040-011-0194-6

3. Anjum SI, Shah AH, Aurongzeb M, Kori J et al (2018) Characterization of gut bacterial flora of *Apis mellifera* from north-west Pakistan. Saudi J Biol Sci 25:388–392. https://doi.org/10.1016/j.sjbs.2017.05.008

4. Balachandra C, Subash Chandran MD, Ramachandra TV. Honeybee Diversity, Role in Pollination and Beekeeping Scenario in South Indian Western Ghats, 1999

5. Biewer M, Lechner S, Hasselmann M (2016) Similar but not the same: Insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee *Apis florea*. Heredity (Edinb) 116:12–22. https://doi.org/10.1038/hdy.2015.60

6. Bokulich NA, Lucy Joseph CM, Allen G, Benson AK et al. Next-generation sequencing reveals significant bacterial diversity of Botrytized wine. *PLoS ONE* 2012:7, e36357

7. Briones-Roblero CI, Hernández-García JA, Gonzalez-Escobedo R, Soto-Robles LV et al (2017) Structure and dynamics of the gut bacterial microbiota of the bark beetle, *Dendroctonus rhiophagus* (Curculionidae: Scolytinae) across their life stages. PLoS One 12:1–16. https://doi.org/10.1371/journal.pone.0175470

8. Broderick NA, Lemaitre B. Gut-associated microbes of *Drosophila melanogaster*. Landes Bioscience 2012; 3: 307–321. https://doi.org/10.4161/gmic.19896

9. Camacho C, Coulouris G, Avagyan V, Ma Net al.BLAST +: architecture and applications 2009; 9: 1–9. https://doi.org/10.1186/1471-2105-10-421

10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K et al (2010b) CorrespondEnce QiIME allows analysis of high-throughput community sequencing data. Intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr 7:335–336. https://doi.org/10.1038/nmeth0510-335

11. Caporaso JG, Lauber CL, Walters WA, Berg-lyons D et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, 2010a, https://doi.org/10.1073/pnas.1000080107//DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1000080107

12. Chandler JA, Lang JM, Bhatnagar S, Eisen JA et al (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272

13. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21(20):5124–5137. doi:10.1111/j.1365-294X.2012.05752.x

14. Dillon R, Charnley K (2002) Mutualism between the desert locust *Schistocerca Gregaria* and its gut microbiota. Res Microbiol 153(8):503–509

15. Edgar RC. Search and clustering orders of magnitude faster than BLAST 2010; 26: 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

16. Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020: 1–12. https://doi.org/10.1016/j.cub.2020.04.070

17. Engel P, Kwong WK, McFrederick Q, Anderson KE et al. *The bee microbiome. impact on bee health and model for evolution and ecology of host-microbe interactions*. *mBio* 2016;7(2):e02164-15, doi:10.1128/mBio.02164-15.

18. Engel P, Kwong WK, Moran NA (2013) *Frischella perrara* gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honey bee, *Apis mellifera*. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.049569-0
19. Engel P, Moran NA (2013a) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4:60–65. https://doi.org/10.4161/gmic.22517

20. Engel P, Moran NA (2013b) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025

21. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306. doi:10.4161/gmic.19897

22. Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol. Report 2012: 4; 97–104

23. Gupta AK, Rastogi G, Naydutch D, Sawant SS, Bhonde RR, Shouche YS (2014) Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. MedVet Entomol 28:345–354

24. Inglis GD, Enkerli J, Goettel MS (2012) Laboratory techniques used for entomopathogenic fungi. Hypocreales., Second Edi. ed, Manual of Techniques in Invertebrate Pathology. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-386899-2.00007-5

25. Kaspi R, Shafir S (2013) Associative olfactory learning of the red dwarf honey bee Apis florea. Apidologie 44:100–109

26. Khan KA, Ansari MJ, Al-Ghamdi A, Nuru A et al (2017) Investigation of gut microbial communities associated with indigenous honey bee (Apis mellifera jemenitica) from two different eco-regions of Saudi Arabia. Saudi J Biol Sci 24:1061–1068. https://doi.org/10.1016/j.sjbs.2017.01.055

27. Khatoon Z, McTieman CD, Suuronen EJ, Mah TF et al (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

28. Kim PS, Shin NR, Kim JY, Yun JH et al (2014) Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera. J Microbiol 52:639–645. https://doi.org/10.1007/s12275-014-4078-0

29. Kumbhare SV, Dhotre DP, Dhar SK, Jani K et al. Communities in the Continental Shelf of Agatti Island. Insights into Diversity and Imputed Metabolic Potential of Bacterial Communities in the Continental Shelf of Agatti Island, 2015, https://doi.org/10.1371/journal.pone.0129864

30. Kurli R, Chaudhari D, Pansare AN, Khairnar M et al (2018) Cultivable Microbial Diversity Associated With Cellular Phones 9:1–10. https://doi.org/10.3389/fmicb.2018.01229

31. Kwong W, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: Snodgrassella alvi gen. nov., sp. nov., a member of the Neisseriaceae family of the Betaproteobacteria; and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the Enterobacteriales order of the Gammaproteobacteria. Intl J Syst Evol Microbiol 2012

32. Kwong WK, Medina LA, Koch H, Sing KW et al (2017) Dynamic microbiome evolution in social bees. Sci Adv 3:1–17. https://doi.org/10.1126/sciadv.1600513

33. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

34. Lateef A, Adelere I, Gueguim-Kana EB (2015) The biology and potential biotechnological applications of Bacillus safensis. Biologia 70(4):411–419

35. Loncaric I, Heigl H, Licek E, Moosbeckhofer R et al (2009) Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 40:40–54. https://doi.org/10.1051/apido/2008062
36. Martinson VG, Danforth BN, Minckley RL, Ruepell O et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628

37. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. https://doi.org/10.1128/AEM.07810-11

38. Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees. PLoS One 7:e36393

39. Nelson K, Muge E, Wamalwa B (2021) Cellulolytic Bacillus species isolated from the gut of the desert locust Schistocerca gregaria. Scientific African 11:e00665

40. Paul J, Sarkar A, Varma A (1986) In vitro studies of cellulose digesting properties of Staphylococcus-saprophyticus isolated from termite gut. Curr Sci India 55(15):710–714

41. Potts SG, Biesmeijer JC, Kremen C, Neumann Pet al (2010) Global pollinator declines: impacts and drivers. Trends Ecol Evol 25:345–353. http://dx.doi.org/10.1016/j.tree.2010.01.007

42. Radloff S, Hepburn H, Hepburn C et al (2005) Multivariate morphometric analysis of Apis cerana of southern mainland Asia. Apidologie 36(1):127–139. doi:10.1051/apido:2004077

43. Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci 26:97–104. https://doi.org/10.1016/j.cois.2018.02.012

44. Romero S, Nastasa A, Chapman A, Kwong W et al (2019) The honey bee gut microbiota: strategies for study and characterization. Insect Mol Biol 28(4):455–472

45. Saraithong P, Li Y, Saenphet K, ChenZ et al (2015) Bacterial community structure in Apis florea larvae analyzed by denaturing gradient gel electrophoresis and 16S rRNA gene sequencing. Insect Sci 22:606–618. https://doi.org/10.1111/1744-7917.12155

46. Seiler H, Schmidt V, Wenning M, Scherer S (2012) Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site. Int J Syst Evol Microbiol 62:1092–1097

47. Soman AG, Chawda SS. A contribution to the biology and behavior of the dwarf bee, A. floreaF and its economic importance in Kutch, Gujarat, India. Indian Bee Journal 1996; 58: 81–88

48. Suenami S, Konishi Nobu M, Miyazaki R (2019) Community analysis of gut microbiota in hornets, the largest eusocial wasps, Vespa mandarinia and V. simillima. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-46388-1

49. Suwannapong G, Eric M, Nieh JC (2011) Biology of Thai Honeybees: Natural History and Threats. Science. https://doi.org/10.1016/j.biocon.2004.03.030

50. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

51. Tamura K, Stecher G, Peterson D, Filipski A et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

52. Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

53. Yoshiyama M, Kimura K (2009) Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol 102:91–96. https://doi.org/10.1016/j.jip.2009.07.005

54. Zhang Z, Yin L, Li X, Zhang C, Liu C, Wu Z (2018) The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil. Mic Pathogenesis 123:246–249
Table

Table 1. Alpha diversity estimation. Non-parametric alpha diversity was calculated for *A. florea* gut bacteria.

	Chao1	Observed OTUs	Shannon	ACE
Gut bacteria of *A. florea*	850.84	589	3.121	858.48

Figures

Figure 1

Phyla-wise classification of culturable gut bacterial flora of *A. florea*. The gut bacterial isolates were classified based on MALDI-TOF-MS and 16S rRNA gene sequencing data.
Genera-wise classification of culturable gut bacterial flora of A. florea. The gut bacterial isolates were classified based on MALDI-TOF-MS and 16S rRNA gene sequencing data.
Figure 3

Next generation sequencing of culture independent gut bacterial flora of A. florea. Taxa distributions of (a) phylum and (b) family at different phylogenetic level of honey bee gut bacterial flora.
Figure 4

Next generation sequencing of culture independent gut bacterial flora of A. florea. Taxa distribution of genus at different phylogenetic level of honey bee gut bacterial flora

Figure 5

Molecular Phylogenetic analysis by Maximum Likelihood method The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest log likelihood (-5509.8000) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The analysis involved 39 nucleotide
sequences. All positions containing gaps and missing data were eliminated. There were a total of 805 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013).