Light Guide Layer Thickness Optimization for Enhancement of the Light Extraction Efficiency of Ultraviolet Light–Emitting Diodes

Zhi Ting Ye ( imezty@ccu.edu.tw )
National Chung Cheng University College of Engineering  https://orcid.org/0000-0002-9224-6627

Yuan Heng Cheng
National Chung Cheng University

Li Wei Hung
EPILEDs

Kung Hsieh Hsu
EPILEDs

Yu Chang Hu
Harvatek coperation

Research Article

Keywords: Deep-ultraviolet light-emitting diode, light extraction efficiency, light guide layer, firstorder optical design

DOI: https://doi.org/10.21203/rs.3.rs-515794/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Light Guide Layer Thickness Optimization for Enhancement of the Light Extraction Efficiency of Ultraviolet Light–Emitting Diodes

Zhi Ting Ye1*, Cheng Yuan-Heng1, Li-Wei Hung2, Kung-Hsieh Hsu2, Yu Chang Hu3

1Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan.
2Department of Process Development Division, EPILEDS TECHNOLOGIES, No. 7, Kanxi Rd., Xinshi Dist., Tainan City 744092, Taiwan.
3Department of R&D Division, Harvatek corporation, No. 18, Ln. 522, Sec. 5, Zhonghua Rd., Xiangshan Dist., Hsinchu City 300066, Taiwan.

*Corresponding author: imezty@ccu.edu.tw
Received: date; Accepted: date; Published: date

Abstract: Challenges related to deep-ultraviolet light-emitting diode substrates include material costs and lattice mismatch. Sapphire substrates are commonly used, although their high refractive index can result in the total internal reflection of light whereby some light is absorbed, reducing light extraction efficiency (LEE). In this study, we proposed an optimal thickness value of a sapphire substrate light guide layer through first-order optical design and used the optical simulation software Ansys SPEOS to assess and refine its effect on LEE. AlGaN ultraviolet-C light-emitting diode (UV-C LED) wafers with a substrate thickness of 150–700 μm were used. The simulation proceeded under a UV-C LED center wavelength of 275 nm to determine the optimal thickness of the light guide layer. Finally, the experimental results demonstrated that a light guide layer thickness of 150 μm resulted in a reference output power of 13.53 mW, and an increased thickness of 600 μm resulted in output power of 20.58 mW. The LEE can therefore be increased by 1.52 times through light guide layer thickness optimization.

Keywords: Deep-ultraviolet light-emitting diode, light extraction efficiency, light guide layer, first-order optical design.

1. Introduction

The COVID-19 pandemic has led to an increase in the global mortality rate. Although traditional ultraviolet (UV)-C mercury lamps can be sterilized, their mercury content, dispersed spectral wavelength, bulkiness, and short lifetime limits their applicability. UV-C light-emitting diodes (LEDs) are environmentally friendly, mercury free, and nonpolluting. The sterilization wavelength is concentrated between 260 and 280 nm. Because the light source is small and has a long lifetime, it has gradually replaced UV-C mercury lamps as the primary sterilization light source. UV light
destroys bacterial DNA or RNA structures and has been widely used to decontaminate surfaces, air, and water. The UV-C waveband between 260 and 280 nm has the greatest bactericidal effect, preventing the regeneration of microbial cells to achieve disinfection and sterilization [1]–[3]. Studies have documented the wide use of UV-C LEDs in medical phototherapy and in the disinfection and sterilization of water, food, and medicine for safe consumption [4]–[7]. Traditional mercury UV lamps are disadvantaged by their long warm-up times, short lifetime, risk of exploding, and environmental pollution; UV-C LEDs are superior in all aforementioned aspects [8]–[10]. The UV-C wavelength range is 100–280 nm, and the UV-C LED wavelength falls between 260 and 280 nm. Because the emission wavelength of LEDs is more concentrated, their sterilization efficiency and long-term reliability are also better than those of mercury UV lamps [11]–[12]. However, the poor external quantum efficiency (EQE) and light extraction efficiency (LEE) of UV-C LEDs must be improved. The low EQE and LEE of AlGaN-based UV-C LEDs are attributable to electron leakage and total internal reflection (TIR), which cause photons to be absorbed by the sapphire substrate and the materials in the p-GaN contact layer [13]–[15].

Approaches toward LEE improvement have involved using a nanopatterned sapphire substrate as a substrate for manufacturing UV-C LEDs. The growth of InGaN-based LED mixed patterned sapphire substrates at the microscale and nanoscale was proposed by Wen Cheng Ke et al., who allowed the LED to embed nanoholes in the micropatterned sapphire substrate to improve its photoelectric characteristics [16]. Phillip Manley et al. employed a nanopatterned sapphire substrate in deep UV (DUV) LEDs, verifying the effects of such a nanopatterned structure on the LEE of sapphire [17]. Shao Hua Huang et al. employed wet-etching of a flip-chip structure to modify a sapphire substrate and give it bevel texture, improving the LEE of a nitride LED [18]. Dong Yeong Kim proposed an n-type GaN micromirror with an Al-coated slope barrier called a sidewall emission-enhanced DUV LED to improve the LEE of transverse magnetic polarization [19].

Some scholars have proposed changing the light path to improve LEE through the design of a secondary lens. For example, Renli Liang et al. used nanolens arrays to enhance the LEE of DUV LEDs through lithographic and wet-etching technology. Bin Xie et al. proposed a freeform lens with a brightness enhancement film to enhance the overall performance of a direct-illuminated LED backlight [20]–[21]. UV-C LEDs and their characteristics related to organic material absorption influence the choice of packaging materials. Nagasawa and Hirano promoted the use of p-type butyl vinyl ether with a trifluoromethyl end structure on AlGaN substrates as the encapsulated material to improve LEE [22]. Under long-term DUV irradiation, organic materials are subjected to severe molecular dissociation and destruction. To promote more efficient and reliable light extraction, a material with high resistance to UV light or inorganic materials is required. The airtightness of a package is also a key factor for evaluating packaging capability [23]–[24]. To account for both high penetration and long-term reliability, quartz glass is often used as the packaging material for UV LEDs. When the cavity is hollow, high interface reflections reduce LEE; the cavity can be filled with
liquid or organic glue with a low refractive index for LEE improvement. In this regard, Chieh-Yu Kang proposed a new type of DUV LED liquid packaging structure can achieve LEE improvements. Chien Chun Lu demonstrated the higher and more reliable LEE of UV-C LEDs with a quartz-based hermetic package [25]-[26].

Different packaging materials such as polydimethylsiloxane (PDMS) fluid doped with SiO$_2$ nanoparticles can improve the LEE of UV LEDs. Zhi Ting Ye proposed the nanoparticle-doped PDMS fluid enhanced the optical performance of AlGaN-based DUV LEDs [27]. Yang Peng employed this encapsulation material doped with fluoropolymer on an aluminum nitride substrate to enhance the LEE of a chip-on-board encapsulation structure [28]. Joosun Yun and Hideki Hirayama proposed different wafer structures in a comparative study with six different flip-chip structures, obtaining an AlGaN meta-surface for improved LEE [29].

Research into the refinement of UV-C LEDs has yet to examine the effects of light guide layer thickness on LEE. When sapphire is used as the light guide layer material, the absorption rate is relatively low in the general blue wavelength band of 450 nm but relatively high in the UV-C LED 260–280 nm wavelength band, demonstrating the influence of thickness on LEE. Therefore, in this paper, an optimal value for the thickness of the light guide layer for the LEE of UV-C LEDs is proposed.

2. Methods

2.1 TIR phenomenon in the light guide layer

TIR is an optical phenomenon whereby the refractive index changes when light enters different media. When the incident angle is less than the critical angle, the light is divided into two parts; one part of the light is reflected and the other is refracted. Conversely, when the incident angle is greater than the critical angle, all light is internally reflected without refraction. The refractive index of the internal medium is $n_1$, and the refractive index of the external medium is $n_2$. The critical angle $\theta_c$ can be calculated using Equation (1). When $n_1$ is 1.788, the critical angle $\theta_c$ of the TIR is 34.136°, as illustrated in Fig. 1. The red triangle cone represents the non-total reflection area that can penetrate the light guide layer and then exit it, and the remaining cyan area is the TIR area, wherein light bounces and is absorbed by the material, reducing the LEE.

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}$$ (1)
When the length \( L \) and width \( W \) of the light guide layer are fixed, the thickness of the light guide layer \( H_{LG} \) affects the TIR area. As depicted in Fig. 2, light exits from the light-emitting layer into the light guide layer and thus, the TIR phenomenon does not occur in the orange area. If the incident angle exceeds this area, TIR occurs in cyan area of Fig. 2. The width of this area can be defined as \( T_W \), as expressed in Equation (2).

\[
T_W = \tan\left(\sin^{-1}\frac{n_2}{n_1}\right) \times H_{LG}
\]  

2.2 Simulation and optimization of the light guide layer thickness to enhance the LEE of UV-C LEDs

We used Solidwork 3D drawing software and Ansys SPEOS optical simulation software to construct the optical system and to simulate and optimize the effects of light guide layer thickness on LEE using first-order optical design. With \( \text{Al}_2\text{O}_3 \) acting as the light guide layer material, we modified the thickness to reduce absorption problems caused by TIR.

The wavelength of the UV-C LED chip was 275 nm, the length \( L \) 1.524 mm, and the width \( W \) was 1.524 mm, as presented in Fig. 3.
The light guide layer was composed of Al₂O₃, the refractive index $N_{LGL}$ was 1.782, and the light guide layer thickness ($H_{LG}$) interval was 150–700 μm. The light-emitting layer (LEL) had a thickness $H_{LE}$ of 1.5 μm, the upper surface of the layer was a light-emitting surface, the lower surface was a partially absorbing and partially reflective layer, and the UV-C LED electrode thickness $H_{pd}$ was 1.5 μm; the material was set to partially absorb and partially reflect. Fig. 3(a) illustrates the structure of the UV-C LED chip, and Fig. 3(b) is a simplified simulation diagram of the chip. The parameter settings are listed in Table I.

**TABLE I**

| Layer                         | Material characteristics          |
|-------------------------------|----------------------------------|
| Light guide layer (LGL)       | Al₂O₃ $N_{LGL}$=1.782, ($H_{LG}$=150um–700um) |
| Light emitting layer (LEL)    | Al₂O₃ $N_{LEL}$=1.782 ($H_{LE}$=1.5 um) |
| P/N electrode layer           | Cr/Au/Sn ($H_{pd}$=1.5 um)       |

Fig. 4(a) presents a schematic of the UV-C LED three dimensional structure, and Fig. 4(b) is a schematic of the light trace of the simulated light-emitting surface.
This study analyzed the effects of light guide thickness from 150–700 μm on LEE; the simulated input radiant flux was 1 W, and the simulation result is presented in Fig. 5. When the thickness of the light guide was 150 μm, the relative radiant flux was 0.41 W, and when the thickness of the light guide was increased, the LEE increased in turn. At a 600-μm light guide thickness, the radiant flux was 0.62 W, a 1.512-fold increase. According to the simulation results, if the thickness is further increased, the LEE is close to saturation and does not increase. When the thickness of the light guide layer was 700 μm, the efficiency was only 2.2% higher than that of the layer at 600 μm, as presented in Fig. 6.

![Fig. 5. LEE diagram of the simulated UV-C LED light guide with a thickness of 150–700 μm.](image)

![Fig. 6. LEE growth trend of the simulated UV-C LED light guide layer with a thickness of 150–700 μm.](image)
Table II shows the relative radiant flux output and its magnification when the simulated radiant flux input was 1 W. The light guide layer with a thickness of 600 μm achieved the best LEE, magnification, and processing stability; however, at 700 μm, it resulted in processing and cutting difficulties and a consequent decrease in yield.

| thickness (μm) | Input radiation (Watt) | λ (nm) | (Relative radiant flux) mW | (Radiant flux magnification) |
|----------------|------------------------|--------|---------------------------|-----------------------------|
| 150            | 1                      | 275    | 0.41                      | 1                           |
| 300            | 1                      | 275    | 0.429                     | 1.046                       |
| 350            | 1                      | 275    | 0.5                       | 1.219                       |
| 400            | 1                      | 275    | 0.536                     | 1.307                       |
| 500            | 1                      | 275    | 0.594                     | 1.448                       |
| 600            | 1                      | 275    | 0.62                      | 1.512                       |
| 700            | 1                      | 275    | 0.634                     | 1.546                       |

### 3. Results and Discussion

Fig. 7 illustrates the UV-C LED prototypes with different light guide layer thicknesses (H_{LG}). Fig. 7(a) shows a H_{LG} value of 150 μm, the thickness parameter commonly used in industry settings that served as a reference measurement for this experiment. Fig. 7 (e) shows a H_{LG} of 600 μm, which is the optimal thickness for heightened LEE.

![Fig. 7](image)

**Fig. 7.** Side view of real UV-C LED samples with light guide layer thicknesses (H_{LG}) of (a) 150, (b) 300, (c) 400, (d) 500, (e) 600, and (f) 700 μm.
**Table III**

| H<sub>LG</sub> (μm) | λ (nm) | Relative radiant flux (mW) | Radiant flux magnification |
|---------------------|--------|----------------------------|-----------------------------|
| 150                 | 275    | 13.53                      | 1                          |
| 300                 | 274    | 14.1                       | 1.042                      |
| 350                 | 275    | 16.49                      | 1.218                      |
| 400                 | 274    | 17.76                      | 1.312                      |
| 500                 | 278    | 19.74                      | 1.458                      |
| 600                 | 277    | 20.58                      | 1.521                      |
| 700                 | 278    | 20.86                      | 1.541                      |

Table III lists the relative radiant flux of the different light guide layer thicknesses (H<sub>LG</sub>). With H<sub>LG</sub> of 600 μm, the radiant flux was 1.52 times higher than with a thickness of 150 μm. Fig. 8 illustrates the UV-C LED prototype–measured LEE growth trend with different light guide layer thicknesses (150–700 μm); at H<sub>LG</sub> of 700 μm, the growth rate was no longer obvious and had approached saturation.

**Fig. 8.** UV-C LED prototype–measured LEE growth trend with light guide layer thicknesses of 150–700 μm.
Table IV
DIFFERENCE BETWEEN SIMULATED AND MEASURED LEE OF UV-C LEDs WITH LIGHT GUIDE LAYER THICKNESSES OF 150–700 μM

| HLG (μm) | Simulation results | Measured results |
|----------|--------------------|------------------|
|          | Relative radiant flux (mW) | Radiant flux magnification | Relative radiant flux (mW) | Radiant flux magnification |
| 150      | 0.41               | 1                | 13.53                 | 1 |
| 300      | 0.429              | 1.046            | 14.1                 | 1.042 |
| 350      | 0.5                | 1.219            | 16.49                | 1.218 |
| 400      | 0.536              | 1.307            | 17.76                | 1.312 |
| 500      | 0.594              | 1.448            | 19.74                | 1.458 |
| 600      | 0.62               | 1.512            | 20.58                | 1.521 |
| 700      | 0.634              | 1.546            | 20.86                | 1.541 |

Table IV details the effects of the simulated UV-C LED on LEE under different light guide layer thicknesses; the results are similar to those in the actual sample test.

4. Conclusions

This paper proposes a first-order optical design using Al₂O₃ material as the light guide layer to reduce the absorption caused by TIR and optimize the LEE of UV-C LEDs. The effects of light guide layers of different thicknesses on the LEE of UV-C LEDs were simulated and analyzed using SPEOS optical simulation software. Compared with the standard layer thickness of 150 μm, an optimized thickness of 600 μm resulted in a 1.52-fold increase in LEE. This improved UV-C LED LEE is beneficial for the use of such LEDs in sterilization systems and other future applications.

References

1. Hideki Hirayama, Noritoshi Maeda, Sachie Fujikawa, Shiro Toyoda, and Norihiko Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes”, Japanese Journal of Applied Physics, 17 September 2014, DOI: 10.7567/JJAP.53.100209.

2. M Kneissl, T Kolbe, C Chua, V Kueller, N Lobo, J Stellmach, A Knauer, H Rodriguez, S Einfeldt, Z Yang, N M Johnson and MWeyers, “Advances in group III-nitride-based deep UV light-emitting diode technology”, Semiconductor Science and Technology, 15 December 2010, DOI: 10.1088/0268-1242/26/1/014036.
3. Suguru Murashita, Shuso Kawamura, And Shigenobu Koseki, “Inactivation of Nonpathogenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica Typhimurium, and Listeria monocytogenes in Ice Using a UVC Light-Emitting Diode”, Journal of Food Protection, 16 June 2017, DOI: 10.4315/0362-028X.JFP-17-036.

4. Max Shatalov, Wenhong Sun, Alex Lunev, Xuhong Hu, Alex Dobrinsky, Yuri Bilenko, Jinwei Yang, Michael Shur, Remis Gaska, Craig Moe, Gregory Garrett, and Michael Wraback, “AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%”, Applied Physics Express, 11 July 2012, DOI:10.1143/APEX.5.082101.

5. Mari’a V. Selma, Ana Allende, Francisco Lo’pez-Ga’vez, Mari’a A. Conesa, Mari’a I. Gil, “Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry”, Food Microbiology, 22 April 2008, DOI: 10.1016/j.fm.2008.04.005.

6. Andréia Tremarin, Teresa R.S. Brandão, Cristina L.M. Silva, “Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation”, Food Control, 1 July 2016 DOI: 10.1016/j.foodcont.2016.07.008.

7. Do Kyun Kim, Dong Hyun Kang, “Inactivation efficacy of a sixteen UV-C LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces”, LWT - Food Science and Technology, 05 May 2020, DOI: 10.1016/j.lwt.2020.109422.

8. Paul Onkundi Nyangaresi, Yi Qin, Guolong Chen, Baoping Zhang, Yinghua Lu, Liang Shen, “Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria”, Water Research, 15 June 2019, DOI: 10.1016/j.watres.2019.03.080.

9. Do Kyun Kim, Soo Ji Kim, Dong Hyun Kang, “Bactercidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts”, Food Research International, 25 April 2017, DOI: 10.1016/j.foodres.2017.04.009.

10. Shiou Yi Kuo, Chia Jui Chang, Zhen Ting Huang and Tien Chang Lu, “Improvement of Light Extraction in Deep Ultraviolet GaN Light Emitting Diodes with Mesh P-Contacts”, Applied Sciences, 21 August 2020, DOI:10.3390/app10175783.

11. Yung Min Pai, Chih Hao Lin, Chun Fu Lee, Chun Peng Lin, Cheng Huan, Chen Hao, Chung Kuo, and Zhi Ting Ye, “Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-ultraviolet Light-Emitting Diodes by Optimizing the Diameter and Tilt of the Aluminum Sidewall”, Crystals, 5 Nov 2018, DOI:10.3390/cryst8110420.

12. Shin ichiro Inoue, Tamari Naoki, Toru Kinoshita, Toshiyuki Obata, and Hiroyuki Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure”, Applied Physics Letters, 01 April 2015, DOI: 10.1063/1.4915255.

13. W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, and R. Gaska, “Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power,” Applied Physics Letters, 09 February 2010, doi.org/10.1063/1.3302466.

14. Barsha Jain, Ravi Teja Velpula, Moses Tumuna, Ha Quoc Thang Bui, Jeffrey Jude, Thi Tan Pham, Thang Van Le, Anh Viet Hoang, Renjie Wang, and Hieu Pham Trung Nguyen, “Enhancing the LEE of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures”, Optics Express, 20 July 2020,
doi.org/10.1364/OE.396788.

15. Ronghui Lin, Sergio Valdes Galan, Haiding Sun, Yangrui Hu, Mohd Sharizal Alias, Bilal Janjua, Tien Khee Ng, Boon S. Ooi, and Xiaohang Li, “Enhancing the LEE of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures,” Photonics Research, 23 April 2018, doi.org/10.1364/PRJ.6.000457.

16. Wen Cheng Ke, Fang-Wei Lee, Chih-Yung Chiang, Zhong-Yi Liang, Wei-Kuo Chen, and Tae-Yeon Seong, “InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate”, Applied Materials and Interfaces, 28 November 2016, DOI: 10.1021/acsami.6b10226.

17. Phillip Manley, Sebastian Walde, Sylvia Hagedorn, Martin Hammerschmidt, Sven Burger, And Christiane Becker, “Nanopatterned sapphire substrates in deep-UV LEDs: is there an optical benefit”, Optics Express, 27 January 2020, DOI: 10.1364/OE.379438.

18. Shao Hua Huang, Ray-Hua Horng, Kuo-Sheng Wen, Yi-Feng Lin, Kuo-Wei Yen, and Dong-Sing Wu, “Improved Light Extraction of Nitride-Based Flip-Chip Light-Emitting Diodes Via Sapphire Shaping and Texturing”, IEEE PHOTONICS TECHNOLOGY LETTERS, 15 December 2006, DOI: 10.1109/LPT.2006.886823.

19. Dong Yeong Kim, Jun Hyuk Park, Jong Won Lee, Sunyong Hwang, Seung Jae Oh, Jungsub Kim, Cheolsoo Sone, E. Fred Schubert and Jong Kyu Kim, “Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission,” Light: Science & Applications, 10 April 2015, doi:10.1038/lsa.2015.36.

20. Renli Liang, Jiangnan Dai, Linlin Xu, Ju He, Shuai Wang, Yang Peng, Hao Wang, Lei Ye, and Changqing Chen, “High LEE of Deep Ultraviolet LEDs Enhanced Using Nanolens Arrays”, IEEE Transactions on Electron Devices, 01 May 2018, DOI: 10.1109/TED.2018.2823742.

21. Bin Xie, Run Hu, Qi Chen, Xingjian Yu, Dan Wu, Kai Wang, and Xiaobing Luo, “Design of a brightness-enhancement-film-adaptive freeform lens to enhance overall performance in direct-lit light-emitting diode backlighting”, Applied Optics, 9 June 2015, DOI: 10.1364/AO.54.005542.

22. Yosuke Nagasawa and Akira Hirano, “Review of encapsulation materials for AlGaN-based deep-ultraviolet light-emitting diodes”, PHOTONICS RESEARCH, 1 Aug 2019, DOI: 10.1364/PRJ.7.000B55.

23. Jinglong Liu, Jiaxin Liu, Shuang Li, Hao Cheng, Zhenyu Lei, Yang Peng, Member, and Mingxiang Chen, “Deep-Ultraviolet LEDs With All-Inorganic and Hermetic Packaging by 3D Ceramic Substrate”, IEEE PHOTONICS TECHNOLOGY LETTERS, 15 February 2021, DOI: 10.1109/LPT.2020.3049000.

24. Kiho Yamada, Yuuta Furusawa, Shoko Nagai, Akira Hirano, Masamichi Ippomatsu, Ko Aosaki, Naoki Morishima, Hiroshi Amano, and Isamu Akasaki, “Development of underfilling and encapsulation for deep-ultraviolet LEDs”, Applied Physics Express, 5 December 2014, DOI: 10.7567/APEX.8.012101.

25. Chieh Yu Kang, Chih Hao Lin, Ting Zhu Wu, Po Tsung Lee, Zhong Chen and Hao Chung Kuo, “A Novel Liquid Packaging Structure of Deep-Ultraviolet Light-Emitting Diodes to Enhance the Light-Extraction Efficacy”, Crystals, 12 April 2019, DOI: 10.3390/cryst9040203.

26. Chien Chun Lu, Chien Ping Wang, Cheng Yi Liu, and Chen Peng Hsu, “The Efficiency and Reliability Improvement by Utilizing Quartz Airtight Packaging of UV-C LEDs”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 28 June 2016, DOI: 10.1109/TED.2016.2580707.

27. Zhi Ting Ye, Yung-Min Pai, Chih Hao Lin, Lung Chien Chen, Hong Thai Nguyen and Hsiang-Chen
Wang, “Nanoparticle-Doped Polydimethylsiloxane Fluid Enhances the Optical Performance of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes”, NANOSCALE RESEARCH LETTERS, 15 JUL 2019, DOI: 10.1186/s11671-019-3067-y.

28. Yang Peng, Xin Guo, Renli Liang, Hao Cheng, and Mingxiang Chen,” Enhanced Light Extraction From DUV-LEDs by AlN-Doped Fluoropolymer Encapsulation,” IEEE PHOTONICS TECHNOLOGY LETTERS, 15 JUL 2017, DOI: 10.1109/LPT.2017.2705722.

29. Joosun Yun, Hideki Hirayama,”Investigation of Light-Extraction Efficiency of Flip-Chip AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes Adopting AlGaN Metasurface”, IEEE Photonics Journal, 28 January 2021, DOI: 10.1109/JPHOT.2021.3054914.

Funding: This work was financially/partially supported by the Advanced Institute of Manufacturing with High-Tech Innovations from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

Acknowledgments: This research was supported by the Ministry of Science and Technology, the Republic of China (grant No. MOST 109-2622-E-194-008)

Competing interests: The authors declare no conflict of interests.

Authors’ contributions:
C.-Y.H., L.-W.H., K.-H.H., and Y.-C.H. carried out the experiments and designed the study and wrote the whole manuscript. Z.-T.Y. helped to analyze and interpret the data, and gave significant suggestions on writing the whole manuscript. All authors approved this manuscript.
Figures

Figure 1

Total reflection inside the light guide layer. (a) Flat diagrammatic sketch and (b) three dimensional diagrammatic sketch.

Figure 2
Figure 3

(a) Structural diagram of the UV-C LED chip, and (b) a simplified parameter diagram of UV-C LED chip simulation.

Figure 4

Structure of the UV-C LED; (a) three dimensional structure of the UV-C LED simulation, and (b) light trace simulation diagram.
Figure 5

LEE diagram of the simulated UV-C LED light guide with a thickness of 150–700 μm.
Figure 6

LEE growth trend of the simulated UV-C LED light guide layer with a thickness of 150–700 μm

(a) $H_{LG} = 150 \ \mu m$  (b) $H_{LG} = 300 \ \mu m$  (c) $H_{LG} = 400 \ \mu m$

(d) $H_{LG} = 500 \ \mu m$  (e) $H_{LG} = 600 \ \mu m$  (f) $H_{LG} = 700 \ \mu m$
Figure 7

Side view of real UV-C LED samples with light guide layer thicknesses (HLG) of (a) 150, (b) 300, (c) 400, (d) 500, (e) 600, and (f) 700 μm.

Figure 8

UV-C LED prototype–measured LEE growth trend with light guide layer thicknesses of 150–700 μm.