A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs

Li Hea,b, Yilin Fana, Jerôme Bellettrea, Jun Yue\textsuperscript{b,**}, Lingai Luoa,*

a Université de Nantes, CNRS, Laboratoire de thermique et energie de Nantes, LTeN, UMR 6607, F-44000, Nantes, France
b Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, 9747 AG Groningen, the Netherlands

1. Introduction

One of the major concerns over economic growth and social development nowadays is the constantly increasing energy demand [1]. The study of U.S. Energy Information Administration has forecasted an increase of 28% in the world’s energy consumption from 2015 to 2040 [2]. While there is a constant progress year by year for the development of sustainable energy, the use of fossil resources (petroleum, coal and natural gas) is still dominant, and remains indispensable in the near future [3].

Among the fossil energy resources, the natural gas presents a particular interest because of its higher energy content (55.7 kJ g-1) if fully based on methane as its main component) than coal (39.3 kJ g-1) and petroleum (43.6 kJ g-1) as well as its reduced CO\textsubscript{2} emission (50% less than coal and 30% less than petroleum). Moreover, the proven natural gas reserves worldwide are abundant, reaching about 193.5 trillion cubic meters at the end of 2017 [4]. As a result, natural gas has accounted for the largest increment (24%) in the main energy consumption in the past decade until 2017, and has been suggested as a substitute for oil and coal as a future leading energy source for the next 20 years [5]. In response to this, there is a rapidly growing number of research & development efforts yearly on the deployment of natural gas for their use in various sectors including industrial, residential, power, transport and many others [6].

Besides the natural gas fields, the synthetic natural gas (SNG) can also be derived from coal gasification, CO\textsubscript{2} methanation and biomass gasification/digestion [7,8]. Fig. 1 shows the main reaction network of SNG in the industry. Biomass is particularly promising as a substitute for fossil resources owing to its benefits of energy security and environmental friendliness. On one hand, the SNG can be obtained from...
upgrading biogas that is generated from biomass digestion (e.g. manure) and/or from carbohydrate fermentation by bacteria in an anaerobic environment [9–11]. On the other hand, the SNG can be produced via gasification of biomass (e.g. wood, straw and crops) followed by the process of methanation [12,13]. The syngas and methanol can be synthesized by partial oxidation and steam reforming reaction, producing consequently synthetic fuels and hydrogen. Meanwhile, the combustion of methane can provide the heat and electricity due to the strongly exothermic nature of the reaction.

The conventional flame combustion of (synthetic) natural gas occurs typically at above 1400 °C and releases harmful pollutants (such as NOx, CO and hydrocarbon). The impact of NOx on human health (respiratory diseases) has been widely recognized [14]. Its emission also has harmful environmental impacts including the formation of photochemical smog and acid rain [15]. More and more stringent regulations are thus applicable over European countries. For example, in September 2018, the maximum NOx emission level has been reduced from 70 mg kWh−1 (class 5) to 56 mg kWh−1 for all domestic boilers sold in Europe [16]. As a result, the complete oxidation of natural gas in the presence of catalysts (i.e. the catalytic combustion) appears as one of the most promising alternative solutions for the rational and clean use of fossil energies. The activation energy is reduced from 100–200 kJ mol−1 (conventional combustion) to 40–80 kJ mol−1 (catalytic combustion), leading to a lower working temperature (<600 °C). In this regard, less pollutant emissions could be reached (~5 ppm compared with 150–200 ppm for conventional combustion). Hence, the catalytic combustion of methane or natural gas as a clean technology has received increasing research attention [17], indicated by the significantly increasing number of yearly publications over the past two decades (Fig. 2).

Various application areas of catalytic methane combustion (CMC) have been proposed and attempted, as illustrated in Fig. 3 and briefly described below.

(i) Natural gas vehicles (NGVs) [18–21] (ca. 300–700 °C): NGVs have the advantages in the abatement of greenhouse gas emissions and smog emissions compared to gasoline or diesel-driven vehicles. Three-way catalysts are applied on NGVs mainly for exhaust purification in practice.

(ii) Gas turbine [22–27] (ca. 700–1400 °C): Methane combustion is widely used as the fuel on the gas turbine. The combusted gas is used to drive a turbine for power generation. For example, 25 kW electricity output can be obtained with 0.8 vol% methane in the air [24].

(iii) Solid oxide fuel cells (SOFCs) [28] (ca. 500–1000 °C): The pre-heated compressed air passes into the cathode of the battery while the compressed methane mixed with the overheated steam enters into the anode of the fuel cell. The methane electrochemical conversion in SOFCs, if properly controlled, could obtain a high conversion efficiency and an environmental benefit due to a significant decrease in pollutant emissions.

(iv) Domestic heating systems [29–32] (ca. 300–700 °C): the heat released from the exothermic CMC reaction is utilized to drive the domestic heating systems, such as the central boilers or gas stoves. A high energy conversion efficiency and eco-friendly water boiler prototype with a hot water yield of 11.5 kg min−1 has been reported [33].

(v) Coupling with endothermic reaction (ca. 300–700 °C): the reaction heat from CMC is commonly used to drive an endothermic reaction so as to maintain the continuous autothermal operation [34]. Novel reactor designs have been proposed for coupling the CMC with an endothermic reaction (methane steam reforming [35,36], dehydrogenation of propane to propylene [37], dehydrogenation of ethane to ethylene [38,39], etc.), owing to the optimized energy integration and the process intensification.

It may be discovered that compared to the conventional flame combustion, the presence of catalysts enables a decrease of the working temperature (<1400 °C). Depending on the target application, the operational temperature for CMC can be further divided into a relatively lower range (about 300–700 °C) and a relatively higher one (about 700–1400 °C). The low-temperature CMC becomes more attractive due to the remarkable abatement of pollutant emissions and the prolonged catalyst lifetime. For instance, the reusability and the reproducibility of catalysts, especially for noble metal catalysts, are shortened at high temperatures. In this field, developing catalysts with high catalytic activity, low light-off temperature and good thermal stability even for such low temperature operations is still a challenging issue.

A great number of researches have been devoted to catalyst development [18,40,41] and reactor design [42–44] for CMC. Noble metal catalysts (e.g. Pt, Pd and Rh) have been widely investigated owing to their high catalytic activity. Hexaaluminate and perovskite catalysts,
due to their relatively lower catalytic activity and high thermal stability, are commonly used for high temperature applications (600–1400 °C). Optimization of reaction conditions over various catalysts has been broadly investigated [19], such as the effect of light-off temperature, reactant concentration, oxygen to methane molar ratio, residence time, etc. Moreover, the mechanistic studies mainly focusing on kinetic models for various catalysts have been well elaborated in earlier literatures [45–48]. The reactor designs (e.g. micro/mini-structured reactor)
Reference	Main contents
Gelin & Primet 2002 [18]	Noble metal catalysts for methane complete oxidation at low temperatures
(1) Pd, Pt-based catalysts with silica and alumina support	
(2) Kinetics, active sites nature (Pd, Pt), mechanism	
(3) Particle size effect	
(4) Sulfur poisoning effect	
(5) Improved support: ZrO2, SnO2, CeO2, Co3O4, etc.	
(6) Bimetallic system: Pd–Pt catalyst	
Choudhary et al. 2002 [40]	Catalysts for oxidation of methane and lower alkanes
(1) Noble metal-based catalysts: Pd, Pt, Rh, Au	
(2) Metal oxide catalysts	
Single metal oxides: CuO, MgO, Co3O4, etc.	
Mixed metal oxides: perovskites, hexaaluminate, doped metal oxides	
Ciuparu et al. 2002 [57]	CMC over Pd-based catalysts
(1) Catalyst characterization, deactivation, reaction conditions, etc.	
(2) Transformation of Pd and PdO phases	
(3) Catalytic mechanism	
Li & Hoflund 2003 [41]	Complete oxidation of methane at low temperatures over noble/non-noble metal catalysts
(1) Kinetics and mechanism over Pd/Al2O3	
(2) Effect of Ce additives on the activity	
(3) Effect of CO2 and H2O on the activity	
(4) Perovskite-type oxides	
Rahimpou et al. 2012 [34]	Coupling exothermic and endothermic catalytic reactions
(1) Reactor type: fixed bed, fluidized bed, etc.	
(2) Various alternatives for thermal coupling	
(3) Various coupling catalytic reactions, including:	
CMC reaction coupled with:	
methane steam reforming (with H2O or CO2) or	
dehydrogenation of propane to propylene or	
dehydrogenation of ethane to ethylene or	
methane partial oxidation coupled with methane steam reforming, etc.	
Zhu et al. 2014 [53]	Perovskite preparation and application in heterogeneous catalysis
(1) Structure and properties, characterizations	
(2) Synthesis with morphologies: bulk, nanosized, porous, nanospheres, etc.	
(3) Applications: NO decomposition; NO reduction; NO oxidation; N2O decomposition	
CH4 combustion; CO oxidation; oxidative reforming of hydrocarbon; volatile organic compound combustion	
Chen et al. 2015 [17]	Catalysts for methane combustion
(1) Noble metal catalyst:	
Pd-based catalyst: active nature, support effect, additive effect, sulfur poisoning	
Pt-based catalyst: chlorine effect, particle size, SO2, H2/propane addition	
Au-based catalyst: Au state, different preparation methods effects	
Bimetallic system: Pt–Pd, Pd–Rh, Pd–Au, etc.	
(2) Metal oxide catalyst:	
Single metal oxide-based catalysts: CuO, Co3O4, MnOx, CeO2	
Perovskite catalysts: substitution effect, sulfur poisoning, and preparation methods	
Spine catalysts: catalytic activity, cation substitution, etc.	
Hexaaluminate catalyst: preparation methods, cation substitution, etc.	
Kinetics and reaction mechanism over metal oxide catalysts	
Tian et al. 2016 [52]	Hexaaluminate structure and catalytic performance
(1) Structure: β-Al2O3 and magnetoplumbite structures, prosperities	
(2) Synthesis: sol-gel, co-precipitation, reverse microemulsion, etc.	
(3) Catalytic performances: methane combustion, methane partial oxidation, N2O decomposition	
Gür 2016 [28]	Methane conversion in SOFCs:
(1) Catalytic methane oxidation	
(2) Electrochemical conversion of methane	
(3) Major challenges for methane conversion on catalytic anodes	
Cruellas et al. 2017 [58]	Advanced reactor concepts for oxidative coupling of methane
(1) Concept and type of reactors for methane oxidative coupling	
(2) Heat management system	
(3) Applications	
Yang & Guo 2018 [59]	Nanostructured perovskite oxides
(1) CMC reaction mechanism	
(2) Properties and structure design of perovskite	
(3) Recent advances of perovskite for CMC	
Current review	Various aspects on CMC
(1) Catalysts: hexaaluminates, perovskite, noble metal
(2) Reaction mechanism and kinetics
(3) Reaction operational conditions: effect of temperature, ratio of oxygen to methane, space velocity, natural gas composition, pressure
(4) Reactor types: fixed-bed reactor, wall-coated reactor (folded plate-type, tube-coated type, monolithic, microchannel plate-type), membrane bed, fluidized bed |
with coupled endothermic reaction have become a hotspot direction in recent decade [49–51]. Reviews papers related to CMC have also been published, as summarized in Table 1. Nevertheless, most of them primarily focus on the improvement of catalytic activity (e.g. noble metal-based catalysts [17,18,40,41], hexaaluminates/perovskite catalysts [52,53]). Other review papers may involve the CMC in one or several sub-sections, but they are mainly devoted to a specific topic, e.g. heating system [54,55], SOFCs [28], coupling exothermic/endothermic reactions [34], SNGs [9,56], etc.

The present review on CMC aims at filling the literature gap by providing a comprehensive and combined understanding of catalysts, mechanisms, reaction conditions and reactor designs. In particular, the present paper has the following objectives:

A brief introduction of the catalyst types, their advantages/disadvantages, associated reaction mechanisms and kinetic characteristics.
A complete survey on the effects of various operational factors on the performance of CMC, including temperature, space velocity, \(\text{O}_2/\text{CH}_4 \) ratio, natural gas composition and pressure. A review on different reactor types used for CMC, with a special focus on microchannel reactor-heat exchangers.

This paper may serve as an essential reference that contributes to the development of well-designed reactors, equipped with appropriate catalysts and under well-handled operating conditions, towards realizing their favorable (kinetic) performance and for their future application and propagation in different industrial sectors.

2. Catalysts for methane combustion

2.1. Catalyst category

Catalysts play an important role in terms of catalytic activity and reaction rate on the CMC, and are mainly categorized into metal oxide catalysts (e.g. hexaaluminate, perovskites, and single-metal oxides) and noble metal-based catalysts. The research interests on perovskites and noble metal catalysts are remarkably increasing over the years, with the latter being the most popular. The main advantages and disadvantages of catalysts are summarized in Table 2.

2.1.1. Mixed oxide catalysts

(1) **Hexaaluminate** [52,60–63] possesses a typical lamellar structure consisting of alternatively packed spinel blocks and conduction layers (mirror symmetry plane), as shown in Fig. 4a. It can be represented by the formula \(\text{AB}_x\text{Al}_{(12-x)}\text{O}_{19} \) (x = 1, 3, 6, 9, 12), wherein A is a large cation (e.g., of Na, K, Ba, La) residing in the conduction layer and B is the transition metal ion (e.g., of Mn, Fe, Co, Cu or Ni) or noble metal ion (e. g., of Ir, Ru, Pd or Rh) which substitutes A cation in both the spinel block and the conduction layer. Magnetoplumbite and \(\beta \)-alumina are two common structures for hexaaluminate in terms of the different arrangement, charge and radius of ions in the conduction layer [64]. Magnetoplumbite structure consists of \(\alpha \) cation, O, \(\beta \) in the conduction layers, while \(\beta \)-alumina consists of \(\alpha \) cation and O. Importantly, the cation-substituted hexaaluminate with high sintering resistance greatly improves the catalytic activity in methane combustion due to the availability of the valent variation of transition metals (e.g. Mn, Ba, La, etc.) in the crystal lattice [65–67].

Hexaaluminate has been applied for CMC since 1987, owing to its exceptionally high thermal stability and strong resistance to thermal shock [71]. Thus, hexaaluminate is considered as the most suitable catalyst for high temperature applications (e.g. for gas turbines). Other main applications include the methane partial oxidation, the dry reforming of methane and the decomposition of \(\text{N}_2\text{O} \). Although a great improvement of specific surface has been achieved, efforts are still required so as to synthesize hexaaluminate with simple procedures, as well as an excellent catalytic activity.

(2) **Perovskites** [72–74] are represented by a standard formula as \(\text{ABO}_3 \) (or more complicated as \(\text{AIBVO}_3 \), \(\text{AIIBIVO}_3 \) or \(\text{AIIIBIIIO}_3 \)). A as a larger cation is commonly composed of alkaline/rare earth elements (e. g. of La, Sr, Bi, etc.), residing on the edge of the structure for its stabilization with less effect on the catalytic activity. B as a smaller cation consists of transition metal that is surrounded by octahedral of oxygen anions, functioning as the main catalytic center. Their structure is schematically shown in Fig. 4b. The microstructure of mixed oxide catalyst is beneficial for their oxygen mobility and catalytic activity [75]. The presence of defect structure in oxygen vacancies, the existence of unusual valence and the availability of reversibly released oxygen have been considered relevant to the enhanced catalytic activity, even comparable to that of noble metal catalysts [76,77]. It can be explained by the fact that the oxygen vacancies are directly relevant to the adsorbed oxygen species over the catalyst surface. The more oxygen vacancies, the more adsorbed oxygen formed over the surface, leading to the higher catalytic activities in methane oxidation. A recent work reported by Miao et al. [78] reveals that more active oxygen species could be obtained using \(\text{La(Mn, Fe)O}_3 \); perovskite catalyst, and the catalytic
activity of CMC thereby was significantly improved. The cation-substitution of perovskites effectively increases the oxygen vacancies by varying the distribution of B oxidation state [79,80]. Different aspects of perovskites have been addressed in several review papers, including the structure, synthesis and applications [53,59,81], the acid-base catalytic properties of perovskites [82], and the lanthanum-based perovskites [83]. The mechanism and kinetics may be found in the book of Granger et al. [84].

A lower calcination temperature is required for the perovskite phase than the hexaaluminate phase [85]. Perovskite catalysts are featured by their high thermal stability as well as the improved specific surface area, displaying a better catalytic activity in CMC. The higher catalytic performance is mainly ascribed to the foreign-cation substitution, the produced oxygen lattice and the deficiency over catalyst surface. A promising direction of improvement is designing perovskite catalysts with featured morphologies (e.g., nano-sized, porous, hollow), favoring their potential industrial applications.

2.1.2. Noble metal catalysts

Noble metal catalysts have been most intensively investigated for CMC, owing to their high catalytic activity at low temperatures [57, 86–88]. Their basic structure is shown in Fig. 4c. Pd, Pt, Rh, Au and Co as the active component have been widely studied in the literature. Among them, Pd and Pt-based catalysts were reported as the most active one by far. Various support materials, such as ZrO2, CeO2, Al2O3, SnO2, TiO2, were considered. The base/acid properties of the support affect the catalytic activity by interacting with the oxidized/metallized state of noble metals. It was reported that the decreased acidity strength of Al2O3 support (with Pd as the active component) could enhance the performance of CMC [89]. Moreover, the introduction of additives (e.g. of La, Mn, Ce, Mg, V) could stabilize the catalyst support and active sites, and prolong the catalyst life. It has been reported by Farrauto et al. [90, 91] that the CeO2 addition is favorable to prevent the catalyst deactivation. The PdO species on the catalyst surface thereby are stabilized due to the increased temperature of PdO decomposition. Moreover, the improved storage and exchange of oxygen species in the presence of CeO2 effectively promote the Pd reoxidation, resulting in a higher catalytic performance [92]. The recent study by Toso et al. [93] illustrated that the stability of Pd/CeO2,75ZrO2,25O2 catalyst exposure to the water was improved by well-dispersed small Pd nanoparticles. More detailed reviews can be found in the literature [17,18,41].

The formation of active sites is mainly dependent on the support
composition, properties, and the preparation method. With respect to Pd and Pt-based catalysts, Pd is supposed to be superior to Pt, not only for the CMC but also for the oxidation of higher alkanes and olefins [94]. It is commonly considered that Pd in the oxidized state (PdO) is the most active and stable (up to 800°C) [95]. Farrauto et al. [90] proposed that at least two different PdO species were present on the Al₂O₃ support. Dispersed PdO decomposed in a temperature range between 750 and 800°C, whereas crystalline PdO decomposed from 800 to 850°C. Hicks et al. [96] identified at least two different phases by infrared spectra. The crystalline palladium with a smaller size presented 10 to 100 higher catalytic activity than dispersed PdO phase. Similarly, the Pt crystalline phase has a higher catalytic activity than that in the dispersed PtO₂ phase due to the formation of chemisorbed oxygen in the crystalline phase [96].

Moreover, bi- or trimetallic catalysts have been reported to have higher catalytic activity and stability compared to monometallic ones [97–101]. For example, Pd–Pt/Al₂O₃ catalyst is more active and stable than Pd/Al₂O₃ [102,103]. It has been reported that Pt–Pd catalysts showed a higher activity even than Pd–Ag, Pd–Co, Pd–Ni and Pd–Rh over the Al₂O₃ support [97]. A better synergetic effect and the formation of bi-metal structure have proved to improve the catalyst activity and life-time. Other factors such as the support structure, the particle size and the surface morphology also have significant influence on the catalytic performance. More details on the influence of these factors can be found in the references [19,104–106].

The electrochemical field-assisted CMC is a relatively novel direction in recent years owing to the synergetic effect. Electrocatalysis process commonly involves the oxidation and reduction reactions via direct electrons transformation (i.e. the produced electrical current). Electrocatalysts as promoting species can modify the electronic properties of the catalyst surface via the formation of favorable bonds between reactants and the electrodes. The decrease of the activation energy through the synergetic effect between electric field and catalysis results in the enhancement of reaction rate for CMC [107–109]. Li et al. [109] reported that the reaction rate of CMC over the Mn₆Co₉ catalyst was remarkably accelerated by the improved reducibility of Co³⁺ in the electric field, promoting the methane activation at low temperature. The light-off temperature (T5₀ > 255°C) over PdCe₀.₇γZr₀.₃O₂ catalyst can be significantly reduced because of the enhanced reducibility of PdOₓ species in electric field (e.g. 3 mA current) [110]. More details on the electrochemical-assisted CMC may be found in a recent reference [111].

Although noble metal catalysts present advantages such as high specific surface area, high dispersion of active component and mild reaction conditions, the catalyst deactivation (due to sintering, particle size growth, poisoning, etc.) and the high cost are the main limitations for their large-scale application in the industry.

2.2. Shaping of catalyst

The shaping of catalysts could significantly affect the pressure drop and the reactant-catalyst mass transfer in the reactor. Fig. 5 shows a variety of catalyst shapes used for CMC. Fine powders are more suitable for being incorporated into minireactors or microreactors with higher catalyst surface area. However, powder catalysts (Fig. 5a) could lead to a high pressure drop if packed in a long (e.g., several meters) fixed-bed reactor, or possibly be blown out when used in a fluidized-bed reactor. To decrease the pressure drop, the catalyst is commonly shaped into larger bodies, e.g. pellet, round ball, cylindrical shape (Fig. 5b–d). Moreover, a sufficient mechanical strength of the catalyst support is essential for the catalyst’s long-term structural durability.

Washcoated catalysts have received an increasing attention owing to its high surface area, low pressure drop and better usage of catalyst. This type of catalyst is usually used in monolithic reactors (Fig. 5e) [112,116], foam reactors (Fig. 5f) [113,117], multichannel microreactors (Fig. 5g) [118–120] and tube reactors (Fig. 5h) [121,122]. The recent progress of washcoated and packed-bed microreactors is reviewed in the reference [50]. The washcoated catalyst is commonly deposited as a thin layer on structured surfaces using typically a dip-coating method [122]. Other methods, such as suspension method [120,123–125], sol-gel technique [126,127], chemical vapor deposition [128,129], physical vapor deposition [130,131] are also widely used. In our previous work [120], the preparation of a well-adhered Pt/γ-Al₂O₃ catalytic coating in microreactors has been elaborated by applying various binders, particle size, pH conditions, etc. The preparation of the suspension and the pretreatment of the substrate hosting the catalytic layer have to be adapted to obtain a high thermal stability and a well dispersion of the coating [118,120,132].

Table 3

Reference	Catalyst	Reactant	Temperature (°C)	Conversion (%)	Eₐ (kJ mol⁻¹)	Reaction rates (µmol g⁻¹ min⁻¹)
[19]	0.5% Pt/Al₂O₃	O₂/CH₄ 2:1	350-425	1.8-13.7	101	10
	1% Pt/Al₂O₃				91.4	5
	2% Pt/Al₂O₃				98.1	11
	4% Pt/Al₂O₃				105.9	10
	0.5% Pt/Al₂O₃	O₂/CH₄ 5:1	350-500	0-28	121	10
	1% Pt/Al₂O₃				100	5
	2% Pt/Al₂O₃				80.8	5
[175]	NiFe₂O₄	O₂/CH₄ 3 vol%	350-400	–2-13	210.8	
[176]	Co₀.₈γZrO₂	O₂/7.2 vol%	750-800	23	11 880	
	Co₁.₉γZrO₂		750-800	26	18 000	
	Co₁.₉γZrO₂	O₂/CH₄ 3 vol%	770-820	29	52 200	
[177]	Ru₁γ/Al₂O₃	O₂/CH₄ 0.8 vol%	361	10%	116	2.53
	Ru₁γ/Al₂O₃	O₂/CH₄ 22 vol%	337	10%	104	5.17
	Ru₁γ/Al₂O₃	O₂/CH₄ 78 vol%	359	10%	117	2.00
[178]	γ-Al₂O₃	CH₄ 0.5-3 vol%	21 200	50%	1.11	10¹³
	Cu₁γ/Al₂O₃	CH₄ 50%	525	50%	21 330 Cal mol⁻¹	
	Cu₁γ/Al₂O₃	CH₄ 50%	540	50%	10¹³	
	Cu₁γ/Al₂O₃	CH₄ 50%	21 330 Cal mol⁻¹	10¹³	21 330 Cal mol⁻¹	
[179]	AuPd₀.₅γCo₂CrO₄	CH₄ 2.5 vol%	305	10%	60	
	O₂/20 vol%	353	50%			
	N₂/77.5 vol%	394	90%			
[180]	ZrO₂/LaMnO₃	CH₄ 3 vol%	417	10%	19.3	3.30
	O₂/10 vol%	539	50%			
	N₂/ balance	632	90%			
[181]	Cu–Cr/Co₂CrO₄	CH₄ 30	550	105.9	118.2	0.6

[1] L. He et al. [179–181]
the methane adsorption (CH$_4$) generally decreased with the increasing temperature and the reaction of and dissociated to the adsorbed methyl (CH$_3$) formaldehyde (HCHO) as the intermediate \[148,149\]. The adsorbed CO converted through the proposed reaction (CH$_4$ + O$_2$ \rightarrow CO$_2$ + H$_2$O) at high oxygen atom coverages, methane is additionally due to the competitive adsorption of oxygen that inhibits the adsorbed 18O atom in the gas phase. This conclusion is in line with the in-situ technology of isotopically labeled reaction. It was found that the 16O atom in PdO was responsible to oxidize methane rather than the 18O atom in PdO was bounded to two Pd atoms, using the gaseous methane. Veldsink et al. \[164\] illustrated that the Eley-Rideal mechanism was adequate to describe the experiment data, and the reaction rate equation over CuO/γ-Al$_2$O$_3$ catalyst was proposed without the limitation of heat and mass transfer.

The Mars-van Krevelen mechanism is widely supported by a large amount of experimental results on CMC \[165,166\]. Different from the above two mechanisms, the Mars-van Krevelen mechanism suggests that the adsorbing surface is an active participant. Firstly, one of the reactants in the gas phase forms a chemical bond with the catalyst surface in the form of a thin layer (e.g. of metal oxide). Then, the remaining gas phase reactant can interact with the chemically bonded reactant, leaving behind a vacancy upon desorption of the products. However, it is not easy to distinguish between Mars-van Krevelen and Eley-Rideal mechanisms because of the existence of both the lattice and adsorbed oxygen species on the catalyst surface. Pfefferle et al. \[160\] further reported that one 16O atom (lattice phase) in PdO was bounded to two Pd atoms, using the in-situ technology of isotopically labeled reaction. It was found that the 16O atom in PdO was responsible to oxidize methane rather than the adsorbed 18O atom in the gas phase. This conclusion is in line with the findings of Au-Yeung et al. \[167\]. In addition, the variation in the oxidation valence of Pd plays an important role in the reaction, indicating that the Mars-van Krevelen mechanism is more adequate to be used for the CMC \[57,168,169\]. Similarly for NiCo$_2$O$_4$ perovskite catalyst, Tao et al. \[77\] reported that the chemisorbed lattice oxygen played an important role. The oxidized products (CO$_2$ and H$_2$O) were generated

\[
\begin{align*}
\text{CH}_4(g) & \quad \text{Decomposition} \\
\text{CH}_3 \cdot (a) & \quad +O(a) \\
\text{CH}_2 \cdot (a) & \quad \text{Direct oxidation} \\
\text{CH}_2 & \quad \text{H}_2\text{O(g)}
\end{align*}
\]

Fig. 6. Reaction routes of methane catalytic oxidation over noble metal catalysts. The bracket (a) indicates the adsorbed state and (g) the gas phase \[147\].

3. Mechanism and kinetic study of CMC

Compared to other higher alkanes, methane is the most stable alkane molecule with high ionization potential (12.5 eV), low electron affinity (4.4 eV) and high C-H bond energy (434 kJ mol$^{-1}$), rendering it extremely difficult to be activated under mild conditions. A high reaction temperature (>1400 °C) is often required for carrying out conventional methane flame combustion. Hence, mechanistic and kinetic studies are important for guiding the catalyst design and the process optimization in order to achieve an efficient combustion at relative low temperature levels (<600 °C) \[133-135\]. The reaction has been reported to be zero order in oxygen and first order in methane \[136\]. The kinetic model and the elementary steps were elaborated in the literature \[137-143\], and the main kinetics parameters are summarized in Table 3.

Regarding the noble metal catalyst, a great number of studies have been devoted to revealing the mechanism of catalytic methane oxidation \[48,144-146\]. The classic reaction routes over noble metal catalysts are shown in Fig. 6 \[147\]. CH$_4$ molecules are first adsorbed on the catalyst and dissociated to the adsorbed methyl (CH$_3$) or methylene (CH$_2$) species, which further interact with the adsorbed oxygen, either to directly produce CO and H$_2$O, or to form the adsorbed CO and H$_2$ via formaldehyde (HCHO) as the intermediate \[148,149\]. The adsorbed CO and H$_2$ further interact with the adsorbed oxygen to form the final product (CO$_2$ and H$_2$O) based on the reactant ratios (theoretically, partial oxidation occurs at O$_2$/CH$_4$ molar ratio < 2). The adsorbed CO is predominant with the increasing methane coverage, whereas CO$_2$ formation is more favorable at high oxygen coverages. However, due to the swift dissociation of CO, the variation of the surface concentrations of methane and oxygen is negligible. Experimental measurements over Pt/Al$_2$O$_3$ catalysts have indicated that the reaction rate determining step was shifted from the oxygen desorption to the methane adsorption with the increasing catalyst surface temperature \[141\]. Given the higher methane adsorption energy than oxygen \[150-152\], at the beginning the oxygen adsorption reaction (O$_2$ + 2 Pt* \rightarrow 2O*) 2 Pt* is the molecule adsorbed on the surface), this rate determining step may be additionally due to the competitive adsorption of oxygen that inhibits the methane oxidation by excluding the weakly adsorbed methane on the active sites \[147\]. At high oxygen atom coverages, methane is converted through the proposed reaction (CH$_4$ + O* + Pt* \rightarrow CH$_3$OH*) Pt). As a result, the surface temperature increases due to the release of the reaction heat. The number of the adsorbed oxygen atoms is generally decreased with the increasing temperature and the reaction of the methane adsorption (CH$_4$ + 2 Pt* \rightarrow CH$_3$H* + H*) 2 Pt* becomes more prominent. The light-off phenomenon thus happens once the favorable coverage of methane and oxygen on the catalyst surface is reached \[133,153\].

Three types of mechanism and the corresponding kinetic models have been proposed for CMC in the literature, including the Langmuir-Hinselwood mechanism \[154-156\], the Eley-Rideal mechanism \[157\] and the Mars-van Krevelen mechanism \[158-161\]. The rate-determining step for both the Langmuir-Hinselwood and Eley-Rideal mechanisms is commonly considered as the superficial reaction. The reaction rate is associated to the electronic properties of transition ions over the catalyst surface. On the contrary, the CMC is considered as the interfacial reaction by the Mars-van Krevelen mechanism; the reaction rate is mainly correlated to the lattice oxygen vacancies.

Regarding the Langmuir-Hinselwood mechanism, the molecules of both gas phase reactants are adsorbed on the catalyst surface and react via surface diffusion. The formed products are then desorbed from the catalyst surface to complete the reaction. The kinetic models of CMC over Pt/Al$_2$O$_3$ catalyst proposed by Trimm and Lam \[162\] well fit the Langmuir-Hinselwood mechanism, indicating that both the adsorbed methane and oxygen were involved in the reaction. Their study confirmed that the temperature increase was mainly to change the reaction path from the oxygen adsorption to methane adsorption \[162\]. However, Jodlowski et al. \[163\] observed that methane over Co-Pd/γ-Al$_2$O$_3$ catalyst was only adsorbed with pre-adsorbed oxygen over the surface (under oxygen-rich conditions) by using the DRIFT (diffuse reflectance infrared spectroscopy), suggesting that the Langmuir-Hinselwood mechanism should not be recommended.

The Eley-Rideal mechanism suggests that only one gas phase reactant has to be adsorbed onto the catalyst surface. The adsorbed reactant then interacts with the other reactant which is still in the gas phase. Subsequently, the formed products are desorbed from the catalyst surface. Seimaniades and Stoukides \[157\] reported that this mechanism could well predict the CMC over Pd/ZrO$_2$ catalyst in the range of 450–600 °C. It is likely to be the only adsorbed atomic oxygen that reacts with the gaseous methane. Veldsink et al. \[164\] illustrated that the Eley-Rideal mechanism was adequate to describe the experiment data, and the reaction rate equation over CuO/γ-Al$_2$O$_3$ catalyst was proposed without the limitation of heat and mass transfer.
Reference/ year	Catalyst	Preparation method	BET surface area (m2 g$^{-1}$)	Reactor (material, size)	Reactant	Total flow rate (mL min$^{-1}$)	Space velocity TX_{10} (°C)b	T_{50} (°C)b	T_{90} (°C)b	T_{X} (°C)b	Remarks		
[65] 1989	BaAl$_{11}$O$_{19}$ & BaCr$_{11}$O$_{19}$ & BaMn$_{11}$O$_{19}$ & BaFeAl$_{11}$O$_{19}$ & BaCoAl$_{11}$O$_{19}$ & BaNiAl$_{11}$O$_{19}$	Hydrolysis of metal alkoxides	15.3 (quartz)	CH$_4$: 1 vol%	In air	800	48000 h1	710	730	- Mn-substituted catalyst presented the best catalytic performance			
[209] 2000	BHA	Sol-gel	-20	Flow reactor	CH$_4$: 1 vol%	60000 h1	710	-750	-750	-750	- Reverse microemulsions method presented a higher surface area and an excellent catalytic activity		
[210] 2007	CeO$_2$-BHA	Reverse-micro emulsion	40–160	Fixed-bed	CH$_4$: 1 vol%	15000 h1	630	750	841	- Introduction of CeO$_2$ increased the surface area and enhanced the catalytic activity			
[211] 2005	0 wt %Pd/ LaMnO$_3$ \cdot 2ZrO$_2$	Incipient wetness impregnation	29.82	Fixed-bed	CH$_4$: 2 vol%	50	520	- ZrO$_2$ introduction increased the support thermal resistance - Incipient wetness impregnation exhibited a higher catalytic performance					
	0.5 wt%Pd/ LaMnO$_3$ \cdot 2ZrO$_2$		28.88	(quartz, i.d. 4 mm)	O$_2$: 4 vol%	He: balance	509	509	509	509			
	1 wt %Pd/ LaMnO$_3$ \cdot 2ZrO$_2$		29.30		O$_2$: 4 vol%	He: balance	485	485	485	485			
	1 wt %Pd/LaMnO$_3$ \cdot 2ZrO$_2$		28.64		O$_2$: 4 vol%	He: balance	432	432	432	432			
	3 wt %Pd/ LaMnO$_3$ \cdot 2ZrO$_2$		27.43		O$_2$: 4 vol%	He: balance	461	461	461	461			
	5 wt %Pd/LaMnO$_3$ \cdot 2ZrO$_2$		27.30		O$_2$: 4 vol%	He: balance	531	531	531	531			
[212] 2010	La$_2$CuO$_4$ -260	Co-precipitation	50000 mL g$^{-1}$ h$^{-1}$	Fixed-bed	CH$_4$: 2 vol%	548	662	739	- An enhanced activity of La$_2$CuO$_4$ due to the Sr$^2+$ doping - Excellent performance are attributed to more adsorbed oxygen species, better reducibility and single crystallinity.				
	La$_2$CuO$_4$ \cdot 220		518	(quartz, i.d. 4 mm)	O$_2$: 20 vol%	N$_2$ balance	476	476	476	476			
	La$_2$CuO$_4$ \cdot 180		498		O$_2$: 20 vol%	N$_2$ balance	587	587	587	587			
	La$_2$CuO$_4$ \cdot 260		518		O$_2$: 20 vol%	N$_2$ balance	625	625	625	625			
[213] 2012	Ba$_2$Zr$_{0.7}$Me$_0.3$	Modified citrate method	150000 mL g$^{-1}$ h$^{-1}$	Fixed-bed	CH$_4$: 0.5 vol	625	730	730	730	- Catalytic performance of substituted transition metals: Pd, Ru > Rh > Co > Mn > Ni			
	Me 5% Rh	5% Pd	15% Rh	20% Rh	2.73% Mn	2.91% Ni	5.92% Ni	4.91% Ru	1% Pt	2.93% Co	5.86% Co	6.3	
	Me 5% Rh	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 15% Rh	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 20% Rh	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 2.73% Mn	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 2.91% Ni	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 5.92% Ni	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 4.91% Ru	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 1% Pt	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 2.93% Co	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	
	Me 5.86% Co	18.3	7.3	13.1	10.7	n.a.	n.a.	5.6	3.1	13.8	38.5	6.3	

(continued on next page)
Reference/ year	Catalyst	Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant	Total flow rate (mL min⁻¹)	Space velocity	T₁₀ (°C)b	T₅₀ (°C)b	T₉₀ (°C)b	Tₓ (°C)b	Remarks	
[214] 2014	MgCr₂O₄	Sol-gel	1.1	Fixed-bed	CH₄: 1 vol%	48 000 mL g⁻¹ h⁻¹	400	684	684	684		-MgCr₂O₄ exhibited a higher activity than CoCr₂O₄ due to the presence of Cr⁶⁺ and bulk structure	
[77] 2015	NiCo₂O₄	Co-deposition precipitation	218.7 (calculated surface area with average size of 4.5 nm)	Fixed-bed (quartz, i.d. 6 mm)	CH₄: 5 vol%, O₂: 25 vol%, Ar: balance	200 24 000 mL g⁻¹ h⁻¹	-230 -262	Tₚ₀ 350	Tₚ₀ 425	Tₚ₀ 475		-NiCo₂O₄ showed a higher catalytic performance than Pd/Al₂O₃ under the same conditions	
[215] 2016	La₆Sr₄MnO₃Au/3DOM	Templating method	32.4	Fixed-bed (quartz, i.d. 6 mm)	CH₄: 5 vol%, O₂: 30 vol%, Ar: balance	42.8 50000 mL g⁻¹ h⁻¹	344 384 508	338 375 402			-Au addition weakened the bond between intermediates and Pd atoms, and enriched the adsorbed oxygen species over the catalyst surface, thus enhancing the reaction rate		
[216] 2016	LaFeO₃	Nitrate-citrate combustion synthesis	Fixed-bed (quartz)	CH₄: 5 vol%, O₂: 50 vol%, N₂: 45 vol%	1000 240 000 h⁻¹		-650	Tₚ₉₀ 600	Tₚ₉₀ 600	Tₚ₉₀ 600		- Perovskite nanopowder synthesized by solution combustion	
[217] 2018	La₆Sr₄MnO₃	Sol-gel	11	Fixed-bed (quartz, no size reported)	CH₄: 0.6 vol%	133 40 000 h⁻¹	313 379 443	270 333 397	237 351 375	266 329 389	269 331 392		- Catalytic activity of different methods: CoO₂ (Plasma treatment) > CoAlO₃/CoO₂ (Impregnation combustion) > CoAlO₃/CoO₂ (Microwave in-situ grown)
[76] 2018	LaMnO₃	Sol-gel	11	Fixed-bed (quartz, no size reported)	CH₄: 0.6 vol%	133 40 000 h⁻¹	313 379 443	270 333 397	237 351 375	266 329 389	269 331 392		- Catalytic performance: Chemical combustion Solvothermal > Sol-gel > Spray-pyrolysis

(continued on next page)
Reference/ year	Catalyst	Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant	Total flow rate (mL min⁻¹)	Space velocity	T₁₀ (°C)	T₅₀ (°C)	T₉₀ (°C)	Tₓ (°C)	X	Remarks	
[218] 2018	1 wt% Pd/Al₂O₃	Bulk LaMn₁₁₂₉O₁₉, 0.44AuPd/3DOM	205	Fixed-bed (quartz, i.d. 8 mm)	CH₄: 2.5 vol %, O₂: 20 vol %, N₂: balance	20 000 mL g⁻¹ h⁻¹	1.91AuPd₁.80/3DOM LaMn₁₁₂₉O₁₉ > 0.94AuPd₁.86/3DOM LaMn₁₁₂₉O₁₉ > 0.44AuPd₁.86/3DOM LaMn₁₁₂₉O₁₉ > Bulk LaMn₁₁₂₉O₁₉	475	615	651	510	432	432	Strong interaction between Pd and CeO₂ prepared by DP method
[219] 2018	CeO₂	Ce₀.₆Fe₀.₄O₂−δ	27.7	Fixed-bed (quartz)	CH₄: 1 vol %, O₂: 20 vol %, N₂: balance	100	-	1475	615	443	-	Catalytic activity: Ce₀.₆Fe₀.₄O₂−δ > Ce₀.₆₅Fe₀.₃₅O₂−δ > Ce₀.₇Fe₀.₃O₂−δ > Ce₀.₈Fe₀.₂O₂−δ > Ce₀.₉Fe₀.₁O₂−δ > Ce₀.₉₅Fe₀.₀₅O₂−δ > CeO₂	0.44AuPd₁.86/3DOM LaMn₁₁₂₉O₁₉ > Bulk LaMn₁₁₂₉O₁₉	
[220] 2004	Pd/Al₂O₃	PdO/Al₂O₃ Washcoated monolith	334	Fixed-bed (quartz, i.d. 2 mm)	CH₄: 1 vol % in air	5800 h⁻¹	300	367	497	360	415	-	Catalytic activity: Pd/ZSM-5 > Pd/Al₂O₃, Cu/CeO₂/Al₂O₃-impregnated monolith	
[221] 2004	Pd/Al₂O₃	Pd–Al₂O₃–ZrSiO₄ Sol-gel	356	Fixed-bed (quartz, i.d. 26 mm)	CH₄: 1 vol % in air	285	360	415	285	360	447	-	Catalytic activity and thermal resistance increased by introducing SiO₂ and ZrSiO₄	
[222] 2005	2 wt% Pd/CeO₂	Deposition-precipitation Impregnation	58.8	Fixed-bed (quartz)	CH₄: 1 vol % in air	50 000 h⁻¹	224	257	T₉₀C: 300	485	557	-	Highest catalytic activity with 2 wt % Pd/CeO₂ prepared by DP method	

(continued on next page)
Table 4 (continued)

Reference/ year	Catalyst	Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant	Total flow rate (mL min⁻¹)	Space velocity T₁₀ (°C)	T₅₀ (°C)	T₉₀ (°C)	Tₓ (°C) X conv%	Remarks
[103] 2005	Pd/Al₂O₃	Deposition-precipitation Incipient wetness impregnation	193	102 Flow reactor	CH₄: 2 vol%, O₂: 8 vol%, N₂ balance	48 000 h⁻¹	317	351	T₁₀₀: 351	CeO₂ produced a large amount of active oxygen	
										- Effect of pressure on catalytic performance: 5 bar: ~5.8% conversion 7.5 bar: ~3.5% 10 bar: ~2.5% 12.5 bar: ~2.2% 15 bar: ~1.3% 5 bar: ~7.2% 7.5 bar: ~5.2% 10 bar: ~4% 12.5 bar: ~3.6% 15 bar: ~3.5%	
	Pd/Pt/Al₂O₃		91								
[184] 2007	Pd/HZSM-5	Precipitation	498.1	Fixed-bed (quartz)	CH₄: 1 vol%	51 000 h⁻¹	410	496	T₉₀: 565	- The highest catalytic activity with Pd-Ce/HZSM-5	
	Pd-Ce/HZSM-5		493.5							- The addition of CeO₂ promoted the catalytic activity	
	Pd-La/HZSM-5		438.4								
	Pd-Sm/HZSM-5		455.0								
	Pd-Nd/HZSM-5		462.2								
	Pd-Tb/HZSM-5		419.1								
	Pd/SiO₂	Deposition-precipitation	33	Fixed-bed (quartz)	CH₄: 1 vol%	51 000 h⁻¹	410	496	T₉₀: 565	- Catalyst prepared by HDP method showed a higher catalytic activity than DP method for methane combustion	
	Au/Fe₂O₃	Homogeneous deposition precipitation	24		In air						
	Fe₂O₃		51								
[223] 2008	Co₅Mn₅	Co-precipitation	62.55	Fixed-bed (quartz i.d. 8 mm)	CH₄: 1 vol%	150	36 000 h⁻¹	297	T₃₀: 265	- Appropriate Mn addition led to disorders in the spinel structure, and thus increased crystal defects and increased activity	
	Co₅Mn₁		147.65					293	T₃₀: 280		
	Co₅Mn₆		158.46					306	T₃₀: 282		
	Co₅Mn₁₀		154.49					350	T₃₀: 323		
	Co₅Mn₁₅		183.94					351	T₃₀: 323		
[224] 2009	Pd/SiO₂	Sol-gel	688	Fixed-bed (quartz, i.d. 12 mm)	CH₄: 0.3 vol%	50	60 000 mL g⁻¹ h⁻¹	355	T₈₀: 355	- The combination of TiO₂ and SiO₂ promoted the catalytic performance - TiO₂ and SiO₂ increased the catalyst SO₂ poisoning tolerance	
	Pd/TiO₂		328					332			
	Pd/Ti10Si		284					321			
	Pd/Ti15Si		243					326			
	Pd/Ti20Si		170					337			
[225] 2009	Pd/SiO₂	Washcoated	214 Microchannel	CH₄: 9.1 mol%	107	74 000 h⁻¹	399	T₁₀₀: 600	- Pt-W/γ-Al₂O₃ showed 100% methane combustion and 99% CO₂ formation at 600 °C for 60 h test, 98% CH₄ conversion after 100 h		
	Pt/W/γ-Al₂O₃	commercial									
	Pt-W/γ-Al₂O₃	homemade									
	Pt-W/Mn/γ-Al₂O₃	commercial									
	Pt-W/γ-Al₂O₃	homemade									
	2 wt% Pd/γ-Al₂O₃	commercial									
	Pd/CeO₂/2ZrO₂	Washcoated	214 Microchannel	CH₄: 9.1 mol%	107	74 000 h⁻¹	399	T₁₀₀: 600	- Pt-W/γ-Al₂O₃ showed 100% methane combustion and 99% CO₂ formation at 600 °C for 60 h test, 98% CH₄ conversion after 100 h		
	Pt-W/γ-Al₂O₃	homemade									
	Pt-Mn/γ-Al₂O₃	commercial									
	Pt-Mn/γ-Al₂O₃	homemade									
	2 wt% Pd/γ-Al₂O₃	commercial									
	Pd/CeO₂/2ZrO₂	Washcoated	214 Microchannel	CH₄: 9.1 mol%	107	74 000 h⁻¹	399	T₁₀₀: 600	- Pt-W/γ-Al₂O₃ showed 100% methane combustion and 99% CO₂ formation at 600 °C for 60 h test, 98% CH₄ conversion after 100 h		
	Pt-W/γ-Al₂O₃	homemade									
	Pt-Mn/γ-Al₂O₃	commercial									
	Pt-Mn/γ-Al₂O₃	homemade									
	2 wt% Pd/γ-Al₂O₃	commercial									
	Pd/CeO₂/2ZrO₂	Washcoated	214 Microchannel	CH₄: 9.1 mol%	107	74 000 h⁻¹	399	T₁₀₀: 600	- Pt-W/γ-Al₂O₃ showed 100% methane combustion and 99% CO₂ formation at 600 °C for 60 h test, 98% CH₄ conversion after 100 h		

(continued on next page)
Table 4 (continued)

Reference/year	Catalyst Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant	Total flow rate (mL min⁻¹)	Space velocity T₁₀ (°C)	T₉₀ (°C)	Tₓ (°C) X conv%	Remarks
[226] 2010	Fresh Solution	74.6	Fixed-bed	CH₄: 2 vol%,	340	382	429		- Lower catalytic activity with catalyst aging time: Pd/LaMnO₃⋅2ZrO₂
	1 week aged			O₂: 16 vol%,	336	383	419		- Increased catalytic activity with catalyst aging time: Pd/LaMnO₃⋅2ZrO₂
	2 weeks aged			He: balance	345	421	498		
	2 wt% Pd/LaMnO₃⋅2ZrO₂	132.5			450	570	645		
	Fresh	69.8			500	625	690		
	1 week aged				360	450	550		
	2 weeks aged				34.8	345	421		
	2 wt% Pd/BaCeO₃⋅2ZrO₂				132.5	471	562		
	Fresh	26.4			414	512	592		
	1 week aged				22.7	628	694		
[86] 2010	Pd(1.0)/Al₂O₃ Impregnation	88.6	Fixed-bed	CH₄: 0.1 vol%,	462	538	618		- Trimetallic catalytic activity depending on noble metal composition: PtPdRh/Al₂O₃ > PtRh/Al₂O₃ > Pd/Al₂O₃
	Pt(1.5)Rh(0.3)/Al₂O₃ (molar ratio)	262.6	(quartz, i.d. 8 mm)	O₂:16.74 vol, N₂:83.16 vol	471	562	629		
	Pt(1.0)Pd(0.75)Rh(0.25)/Al₂O₃	29.1	(quartz, i.d. 6 mm)	O₂:16.74 vol, N₂:83.16 vol	477	585	656		
	2 weeks aged				15.4	330	443		
[227] 2015	CoAlO-500 C Deposition	262.6	Fixed-bed	CH₄: 2 vol%,	462	538	618		- Catalytic activity: CoAlO-600 C < CoAlO-700 C < CoAlO-500 C < Ag-CoAlO-600 C < Ag-CoAlO-700 C < Ag-CoAlO-600 C < Ag-CoAlO-600 C due to abundant Co³⁺ and adsorbed oxygen
	CoAlO-600 C			O₂: 20 vol%,	471	562	629		
	CoAlO-700 C			N₂: 78 vol%	477	585	656		
	2.94Au0.50Pd/meso-Co₃O₄	262.6	Fixed-bed	CH₄: 2 vol%,	462	538	618		- The highest catalytic activity with Ag-CoAlO-600 C due to abundant Co³⁺ and adsorbed oxygen
	114.5			O₂:16.74 vol, N₂:83.16 vol	471	562	629		
	2.5 vol% CO₂ addition				371	475	555		
	5 vol% CO₂ addition				371	475	555		
	10 vol% CO₂ addition				371	475	555		
[113] 2015	Fe-Ni Washcoated	Tubular	Fixed-bed	CH₄: 5 vol%,	263	312	378		- Catalyst activity vs. Pd loading: 4.8% > 3.2%
	3.2 wt% Pd/Al₂O₃	14.5		CH₄: 5 vol%,	242	288	334		- CH₄ conversion decreased with the increasing flow rate
	Fe-Ni				269	321	397		

(continued on next page)
Reference/year^a	Catalyst	Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant	Total flow rate (ml min⁻¹)	Space velocity	Temperature^b	Remarks			
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 5 vol%	50				T₁₀: 350	400	T₉₅: 550	CH₄ conversion slightly increased with the increasing CH₄ concentration			
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 5 vol%	100				T₁₀: 400	500	T₉₅: 550				
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 5 vol%	150				T₁₀: 400	500	T₉₅: 550				
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 5 vol%	200				T₁₀: 400	500	T₉₅: 550				
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 2 vol%	50				T₁₀: 350	450	T₉₅: 500				
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 3 vol%	50				T₁₀: 350	450	T₉₅: 500				
4.8 wt% Pd/Al₂O₃/Fe-Ni	CH₄: 4 vol%	50				T₁₀: 350	450	T₉₅: 500				
[177]	3 wt% Re/γ-Al₂O₃	Wet impregnation	316	Fixed bed (i.d. 8 mm)	CH₄: 0.8 vol%	100	60 000 h^{−1}	535	650	T₉₅: 800	Pretreatment of catalyst greatly affected the activity	
2016	5 wt% Pd/γ-Al₂O₃ (Degussa)	Wet impregnation	90					386	436	T₉₅: 555	Re addition improved the activity	
5 wt% Ru/γ-Al₂O₃								361	407	T₉₅: 525		
Ru₂₀–Re₈₀/γ-Al₂O₃								337	391	T₉₅: 506		
Ru₂₀–Re₈₀/γ-Al₂O₃								359	411	T₉₅: 538		
[228]	0.5 wt% Pd/γ-Al₂O₃	Fluidized bed (i.d. 102 mm)	183	Fixed-bed (quartz, i.d. 6 mm)	CH₄: 0.15 vol%		velocity 0.1 m s^{−1}	535	650	T₉₅: 800		
2016												
Co₃O₄ - 200 C								136.2	41.5	7.4		
Co₃O₄ - 400 C								136.2	41.5	7.4		
Co₃O₄ - 600 C								136.2	41.5	7.4		
[179]	3DOM CoCr₂O₄ (Three-dimensionally ordered macroporous)								33.2	77.5	77.5	
0.98AuPd_{0.1}/3DOM								35.6	77.5	77.5		
CoCr₂O₄								35.6	77.5	77.5		
1.93AuPd_{0.1}/3DOM								34.9	77.5	77.5		
CoCr₂O₄								34.9	77.5	77.5		
1.98AuPd_{0.1}/bulk								35.6	77.5	77.5		
CoCr₂O₄								35.6	77.5	77.5		
Bulk CoCr₂O₄								7.2	77.5	77.5		
1.93AuPd_{0.1}/3DOM								34.9	77.5	77.5		
CoCr₂O₄								34.9	77.5	77.5		
1.93AuPd_{0.1}/3DOM								34.9	77.5	77.5		
[230]	Pd/CoAl₂O₄/Al₂O₃	Galvanic deposition (Pyrex glass, i.d. 4 mm)		Fixed-bed	CH₄: 0.4 vol%							
2017								300 000 mL g^{−1} h^{−1}	266	−295		
Pd/ZrO₂								24.23	2000 ppm in air	285	−335	
[231]	Co/ZrO₂	Sonoechemically aided impregnation synthesis		Fixed-bed	CH₄: 2000 ppm in air							
2017								150 000 mL g^{−1} h^{−1}	T₉₅: 300			

(continued on next page)
by the competitive adsorption, and surface vacancies subsequently left behind by the fast re-oxidation on the catalyst surface. Note that the DRIFT associated with Raman and X-ray fluorescence spectroscopies has been applied as important in-situ technologies by Jodłowski et al. [163] for the CMC over Co–Pd/Al₂O₃ catalyst. The proposed mechanism is slightly different from the Mars-van Krevelen mechanism, in that only the adsorbed active oxygen species on the catalyst surface was responsible to oxidize methane instead of the bulk oxygen atoms. Furthermore, the presence of –OCH₃ species was detected, rather than HCHO and H₂ in the gas phase. These results are also supported by other studies [170, 171].

Therefore, there is no unanimous mechanism so far to fully elaborate the CMC, given the whole processes being rather complex and strongly dependent on the reaction conditions and used catalysts [172, 173]. The Mars-van Krevelen mechanism seems to be more widely accepted than the Langmuir-Hinselwood and Eley-Rideal mechanisms. In this respect, more in-depth understanding is still needed to better elucidate the reaction pathway [174]. More details on the reaction mechanisms may be found in the literature [138–143].

4. Effect of operational conditions on CMC

In this section, main factors that should be carefully assessed are reviewed so as to determine the appropriate working conditions for

Table 4 (continued)

Reference/year	Catalyst Preparation method	BET surface area (m² g⁻¹)	Reactor (material, size)	Reactant Total flow rate (mL min⁻¹)	Space velocity T 10⁻¹	T₉₀⁻¹	T₅₀⁻¹	Space velocity	Remarks
[133] 2019	Cr/ZrO₂/SiO₂/SiB: sodium dodecyl sulfate	389	Fixed-bed (quartz)	CH₄: 2 vol%, O₂: 20 vol%, N₂: balance	15 000 mL h⁻¹			250	GHSV 2000 h⁻¹

Fig. 7. Reaction rate as a function of temperature [186].

Fig. 8. Temperature distribution along the reactor length.
Renewable and Sustainable Energy Reviews 119 (2020) 109589

CMC, including the temperature, the ratio of methane to oxygen, the flow rate, the reactant composition and the pressure. The reaction behavior addressed in this section, unless otherwise specified, is assumed to be intrinsic. A summary of the studies over various catalysts and the key influential factors can be found in Table 4.

4.1. Effect of temperature

In general, the intrinsic reaction rate for CMC is correlated to temperature and activation energy according to the Arrhenius equation [182,183]. The reaction rate presents a great increase with the increasing reaction temperature.

Light-off temperature is one of the most crucial parameters used to indicate the catalyst activity [118,184,185]. Fig. 7 shows the reaction regime as a function of the temperature. At the beginning, the temperature over the catalyst has no significant change and the reaction rate is limited by the intrinsic kinetics (regime A-B). The light-off is commonly defined by the regime where the temperature has no significant change when the conversion is increased from 10% to 50% (regime B-C) [186]. As light-off happens at comparatively high temperature levels, the intrinsic reaction rate rapidly increases but gradually the mass transfer rate cannot keep up with (regime B-C). Hence, the overall reaction rate tends to be limited more by the mass transfer rate. Upon further increase of the reaction temperature, the intrinsic reaction rate is increased so fast that the reaction falls in the mass transfer controlled regime (regime C-D). In this regime, the rate of increase in the overall reaction rate becomes slower. Eventually at substantially high temperature levels, the homogeneous combustion of methane dominates (regime D). The latter two regimes impose high requirements on the reactor design in terms of maintaining the catalyst stability and enhancing the mass and heat transfer rates. The effect of high working temperatures on the shortened lifetime due to the catalyst sintering should be considered, especially for noble metal catalysts.

As for wall-coated plate-type/microchannel reactor, the temperature distribution along the catalytic reactor commonly displays a rapid increase at the entrance region, and a smooth decrease along the reactor length thereafter, as shown in Fig. 8. This is because that methane is mainly converted at the front section of the reactor [187]. However, the peak temperature region moves slowly towards the downstream with the increasing oxygen/methane ratio. The variation of temperature along the reactor mainly depends on the reactant flow pattern and the reactor structure, which will be elaborated in the following section 5.

Moreover, the pollutant emission could be significantly affected by the operational temperature. With the presence of N₂ in the reactant feed, it was reported that NOX emission showed a growing trend with the increasing temperature [188]. The formation of CO is often due to the incomplete methane combustion under low temperatures and/or with a methane rich mixture.

In addition, it is worth noting that the catalyst deactivation is significantly influenced by the operational temperature. For instance, the active PdO phase is decomposed to the less active metallic palladium (PdO → Pd) at above 800 °C, followed by the agglomeration and deactivation of catalysts [95]. It is thus essential to maintain the operational temperature below the thermal decomposition temperature of PdO. Another solution is to increase the decomposing temperature by optimizing the catalyst, e.g. by introducing metal oxides [189]. Farrauto et al. [90] pointed out that the addition of ZrO₂ into PdO/Al₂O₃ catalyst exhibited a superior synergistic effect between the temperature hysteresis and the active site reformation. The decomposition temperature of PdO was thus increased to ca. 900 °C. In order to regenerate the catalyst, Farrauto et al. [90] suggested that the reoxidation temperature of metallic Pd occurred at ca. 650 °C, and methane conversion increased after reoxidation process [90]. Another reason causing the catalyst deactivation at low temperatures (e.g. below 450 °C) may be the overwhelming accumulation of hydroxyl group over the catalyst surface [190]. It hinders the migration and exchange of the active oxygen species between the catalyst support and active sites (PdO/Pd), resulting in the catalyst sintering. This is further confirmed by the water vapor effect on the methane conversion to be discussed in the section 4.4.

4.2. Effect of space velocity and residence time

Theoretically, the methane conversion presents an inverse proportion to the space velocity, as shown in Fig. 9. It was observed that the methane conversion at 400 °C increased from 72% to 100% over Au–Pd catalyst when decreasing the space velocity of reactants from 40 000 to 10 000 mL g⁻¹ h⁻¹ [179] (cf. the detailed experimental data in Table 4). A similar tendency over various catalysts has also been reported by other researchers [88,113]. This can be theoretically explained by the fact that the more accessibility of reactants (at longer residence times) over the active sites of catalyst favors the conversion of the adsorbed methane molecules. However, the side reactions and coke deposition are more likely to occur under long residence times [191].

The methane conversion is directly relevant to the intrinsic reaction kinetics and mass transfer. The internal mass transfer mostly depends on the catalyst properties (e.g. diffusion in the pore structure, size and volume). The external mass transfer from gas phase to the catalyst surface is limited by the residence time (i.e., the flow rate of reactants). As for the exothermic reaction, the effect of the temperature gradient on the
between the space velocity and the methane conversion should be reached for a certain application.

4.3. Effect of oxygen to methane molar ratio

The selectivity variation of products strongly depends on the molar ratio of oxygen to methane. Mouaddib et al. [193] investigated the effect of oxygen to methane molar ratio in the range of 4 to 0.66 over Pd/Al2O3 catalyst. It was observed that CO was formed under oxygen deficient conditions (O2/CH4 < 2) due to the side reaction of methane steam reforming. And CO became a main product when O2/CH4 molar ratio reached 0.66 [193]. Similarly, Lee et al. [186] reported that CO was formed over Pt/Al2O3, Pd/Al2O3 and Rh/Al2O3 catalysts in the presence of oxygen deficient mixtures as feedstock. The selectivity of CO also depended on the reaction temperature. With the increasing reaction temperature, the CO selectivity constantly increased and became a main product under low O2/CH4 molar ratio. But the methane conversion was independent to the presence of CO in the feedstock [186].

Burch et al. [19] investigated the effect of different molar ratios of oxygen to methane on Pt/Al2O3 and Pd/Al2O3 catalysts. Pt/Al2O3 catalyst became more active from the oxygen-rich (O2/CH4 5:1) condition to methane rich (O2/CH4 1:1) condition, because the less oxidized platinum was more active than the oxidized platinum. As for Pd-based catalyst, Drozdov et al. [194] further explained that a weaker bond existed between oxygen and metallic palladium than that with platinum oxides. Thus, Pt-based catalyst is less active in oxygen-rich mixtures. On the contrary, as for Pd-based catalyst, it has been found that the oxygen is weakly bound to palladium oxides compared with metallic palladium [194]. Thus, the Pd-based catalyst is more active in oxygen-rich mixture [19,195].

The methane conversion at different oxygen-to-methane molar ratios does not display the same augmentation as the reaction temperature increases. More interestingly, the light-off phenomenon was observed to be significantly influenced by the oxygen to methane molar ratio and the resulted degree of reactant surface coverages [19]. It was found that the methane conversion over Pt/Al2O3 increased with the decreasing oxygen-to-methane molar ratio (e.g., from 5:1 to 1:1 as shown in Fig. 10; cf. detailed experimental results listed in Table 4) at lower temperatures (ca. 300–425 °C, in terms of different Pt loading) [19]. At higher temperatures (ca. 450–550 °C), the methane conversion at such a molar ratio of 1:1 became lower than that at 2:1, due to the insufficient oxygen supply, and the light-off was observed in the latter case. This phenomenon could be explained by the fact that the favorable concentration of CH4 and O2 over the catalyst surface and/or the more significant local heat release greatly accelerate the reaction rate. However, no light-off was found under an oxygen-to-methane molar ratio of 5:1 because the excessively adsorbed oxygen resulted in a non-optimized surface coverage of methane, eventually hindering the light-off. The competitive adsorption between the adsorbed methane and oxygen species could affect the methane conversion. The lower methane conversion at the case of 5:1 ratio (Fig. 10) could be explained by the fact that more adsorbed oxygen species over the catalytic surface suppress the methane absorption due to the high methane adsorption energy [147,150].

Regarding the pollutant emissions, a lean reactant mixture is preferred in order to lower the emissions of CO, NOx and the unburned hydrocarbon [196]. It has been reported that CO was detected at a methane concentration higher than 9.5 vol% and carbon deposition occurred on catalyst surfaces at a methane concentration above 26.5 vol % [197].

4.4. Effect of (synthetic) natural gas composition

Besides methane, natural gas is commonly composed of varying amounts of higher alkanes (e.g., ethane, propane) and other species depending on the resources. In this section, the effect of H2S, H2O, NO and CO2 on the catalytic methane conversion is discussed, more details...
Table 5
Summary of thermal parameters for various reactors.

Reference	Reactor	Catalyst	Reactant	Tx (°C)	Heat transfer	Heat released	Heat recovery efficiency	Input power	Gas exhaust	Remarks
[25] 1999	Monolith (Fig. 1(b))	One monolith	Air/CH₄	1.1–1.5	15–40 W cm²	~90%	NOₓ: 5 ppm	CO: 0 ppm	NOₓ: 0 ppm	Long coating → CO emission
		Two monoliths				~100%	CO: 0 ppm	CH₄: 0 ppm		Short coating → NOₓ emission
[283] 2007	Fixed-bed	Pd/						10–25 kW		Great improvement of catalytic performance was
[282] 2006	Monolith (450 700 mm)	Pt-based						5.2 kW		High combustion efficiency and near-zero emission
						~99%	NOₓ: 22 ppm	CO: 0.01%	O₂: 5.6%	Eₜ: 2.08, 6.68% heat loss at an exhaust temperature of 114 C
[281] 2007	Fixed-bed	MnO₂	(natural gas flow rate)	99.9%		1.89 MW²	63.3%			
		Pd								
[282] 2006	Monolith (450 700 mm)	Pt-based						5.2 kW		High combustion efficiency and near-zero emission
						~99.5%	NOₓ: 0 ppm	CO: 0 ppm	O₂: 0 ppm	Eₜ: 2.08, 6.68% heat loss at an exhaust temperature of 114 C
[281] 2007	Fixed-bed	MnO₂						2.85 MW	95.5%	
		Pd								
[281] 2007	Fixed-bed	MnO₂						2.16 MW	72.0%	
		Pd								
[281] 2007	Fixed-bed	MnO₂						1.89 MW²	63.3%	
		Pd								
[282] 2006	Monolith (450 700 mm)	Pt-based						5.2 kW		High combustion efficiency and near-zero emission
						~99.5%	NOₓ: 0 ppm	CO: 0 ppm	O₂: 0 ppm	Eₜ: 2.08, 6.68% heat loss at an exhaust temperature of 114 C
[281] 2007	Fixed-bed	MnO₂						2.85 MW	95.5%	
		Pd								
can be found in the references [179,198].

Noble metal catalysts are easily poisoned when exposed to natural gas containing sulfur compounds (Fig. 11a). For instance, the irreversible deactivation by SO$_2$ might be attributed to its occupation of the active sites, and/or the transformation of the highly active compound PdO on the catalyst surface to less active PdSO$_3$ or PdSO$_4$. Similar results were also reported in the literature [199,200]. The highly challenging issue of the resistance to poisoning by sulfur containing compounds present in trace amounts in the natural gas (odorizer) should be fully addressed. Developing catalysts with improved resistance to sulfur poisoning and possible desulfurization pretreatment are possible measures.

The presence of water vapor acts as an inhibitor for CMC [165,202]. It was observed that the methane conversion over the Au-Pd/Co$_3$O$_4$ catalyst dropped remarkably when water vapor was introduced, but this process is reversible when the water vapor is removed (Fig. 11b) [201]. Specifically, the hydroxyl group was formed by reaction of the chemisorbed oxygen species with the water vapor over the catalyst surface, preventing thereby the exchange of the oxygen species between the isorbed oxygen species with the water vapor over the catalyst surface, stopping thereby the exchange of the oxygen species between the isorbed oxygen species with the water vapor over the catalyst surface.

Reference	Reactor	Catalyst	Reactant	ΔX	ΔX_{conv}	$\Delta X_{\text{transferred}}$	$\Delta X_{\text{release}}$	$\Delta X_{\text{recovery}}$	Input power	Gas exhaust	Remarks

- Stability: withdrawal hot gas at bed end > withdrawal hot gas at center; no returning cold gas > returning cold gas.
- At the end of bed without returning cold gas showed the best conversion and heat recovery efficiency.
- NO increased at low input power.
- NO decreased at high air excess.

Note:

a. Amount of heat flux withdrawal.
b. E_c: air excess.
c. Q_{surface}: heat release rate transferred via combustor surface.
in water also decreased from 0.72 to 0.95 with the increasing water concentration. Thus, improving the catalyst stability in the presence of water vapor becomes one important challenge to deal with wet CMC. Recently, Toso et al. [93] reported that the solution combustion synthesis could improve the stability and water resistance of Pd-ceria and Pd-ceria-zirconia catalysts compared to the traditional impregnation method. Ciuparu et al. [204] also suggested that the influence of water vapor became insignificant at above 723 K.

Sadokhina et al. [205] observed the enhanced activity with NO addition under wet conditions. This can be explained by the reaction between NO and hydroxyl species to form HNO$_3$ on the catalyst surface, compensating the inhibition effect of water addition.

The reversible inhibition effect of CO$_2$ addition is depicted in Fig. 11c. The negative influence of CO$_2$ addition on the methane conversion is ascribed to the accumulation of carbonate species on the catalyst surface, thus preventing a further adsorption of CH$_4$ and O$_2$ over the surface [201] (cf. detailed experimental data in Table 4).

4.5. Effect of operating pressure

Most published studies have performed the CMC at the atmospheric pressure. High working pressure conditions (up to 30 bar or higher) are primarily applied for gas turbine purpose.

The methane conversion decreased (from ~7.2% to ~3.5%) with the increasing pressure (from 5 bar to 15 bar) over Pd–Pt/Al$_2$O$_3$ catalyst (cf. more details listed in Table 4) [183]. Moreover, it was reported that the effect of working pressure varied with the temperature [206]. At lower temperatures (500–600 °C), an increase in the pressure led to the decreased methane conversion and the lower combustion efficiency. In this case, the higher specific surface area was commonly required at high pressures so as to obtain a higher conversion. At higher temperatures (>700 °C), homogeneous combustion takes place. A higher combustion efficiency could thereby be obtained with an increasing pressure [206, 207], probably due to the increasing mass throughputs [208].

5. Types of catalytic reactors

In this section, some representative types of reactor used for CMC are discussed. Special focuses are laid on the geometry, the way of reaction heat recovery and the improvement of thermal efficiency by the enhancement of heat and mass transfer. Table 5 recapitulates some key facts of the relevant studies reported in the literature and Table 6 provides a comparison on the advantages and disadvantages of these reactors.

5.1. Fixed-bed reactor

A fixed-bed catalytic reactor is commonly made up of a cylindrical
tube with a certain amount of catalysts being fixed in certain locations inside the tube. The shapes of catalyst can be powder, spherical, cylindrical or randomly shaped pellets. This type of reactor is the most commonly used, suitable not only for catalyst activity test and kinetic study, but also for practical applications in the chemical and process industries. The advantages of fixed-bed reactors include easy operation, low cost, high catalyst spatial density, etc. Poor temperature distribution, low surface area, and high-pressure drop are their main disadvantages.

Besides being used individually as a single-stage reactor, several fixed-bed reactor modules may be combined to form a multi-stage reactor system. Different catalysts may be used for each stage. A two-stage combustor combining a conventional flame reactor with a catalytic reactor has been proposed by Sadamori et al. [206,233], with the purpose of improving the combustion efficiency and further reducing the gas exhaust emission. In their study, three monolithic catalysts with Pd and/or Pt based catalysts were loaded in the catalytic stage. Combustion efficiency higher than 99.5% and the NOx emission less than 2 ppm (80% reduction) could be achieved by controlling the inlet temperature between 500 and 700 °C. In terms of thermal behavior, the conventional stationary fixed-bed reactor with a separated heat exchanger (Fig. 12a) has the problem such that the reaction heat is difficult to be fully utilized. Multifunctional or extended autothermal reactors having higher interfacial surface areas and more efficient heat transfer thus become more attractive, especially for strongly or moderately exothermic reactions [234]. This concept combines catalytic reaction with an effective thermal management (i.e. heat removal or addition) in an integrated and compact device (Fig. 12b), so as to largely reduce the heat losses. Compared to the ex-situ configuration, lower CO and NOx emissions and higher heat power could be achieved for the multifunctional reactor with an integrated heat exchanger [31]. Detailed information about the autothermal fixed-bed reactor can be found in the literature [235–237].

In order to further enhance the heat transfer capability, the fixed-bed reactor can be operated in the reversal flow mode [238,239], where the feeds are alternately introduced from either end of the reactor (Fig. 12c). The continuous heat extraction is a viable way to provide necessary amount of heat in the reactor, and to maintain the catalyst activity without overheating. A high amount of heat withdrawal could result in a high instability of the reaction due to a remarkably decreased temperature of the reactor. Moreover, a periodic steady state in temperature can be achieved by switching the direction of reactant flow. The reversal time is one of the significant factors not only to stabilize the reactor and the heat exchanger but also to maintain a stable temperature in the catalytic section. A longer reversal time is commonly accompanied with a higher heat loss. On the contrary, a shorter reversal time can result in a lower heat generation and a reduced methane conversion [240,241]. Many simulations studied the relative position of the catalyst bed and the heat exchanger as well as the flow pattern in order to find out the most efficient way to recover heat from reversal-flow reactors [242–244]. Gosiewski et al. [242] found that a higher heat recovery efficiency can be approached by the hot gas withdrawal (Fig. 12d) than by the central heat exchange (Fig. 12c). Detail experimental data are listed in Table 5. Their results showed that more than 70% of heat can be recovered when withdrawing only around 30% of the hot gas. Furthermore, Hunter et al. [245] studied different patterns of heat recovery with respect to the heat withdrawal location (central or end) and the possibilities of returning the cooled gas to exchange heat. It was
found that a higher heat recovery efficiency could be obtained by positioning the heat exchanger at the two side ends of the catalytic bed without any returned cold gas (Fig. 12e). Hence, a high thermal recovery efficiency and the best methane conversion may be achieved by considering both the flow reversal mode (e.g. the hot gas withdrawal at the end of the catalyst bed) and the reversal time. More description of the flow-reversal reactors can be found in the references [236, 242–248].

5.2. Wall-coated reactor

Conventional fixed-bed reactors have the drawback of limited heat transfer rate due to the low surface-to-volume ratio. On the contrary, the wall-coated reactors have features like lower pressure drop and higher surface area by depositing the catalyst layer on the reactor wall surface, so as to augment the catalyst contact area and to enhance the mass/heat transfer. Hence, this type of reactor is more suitable to be employed for coupling exothermic reactions with endothermic reactions. A lower temperature difference and a shorter distance between the heat source (exothermic reaction) and heat sink (endothermic reaction) are beneficial to increase the heat exchange efficiency. The so-called wall-coated reactor could be further divided into (folded) plate-type, tubular-type, micro/mini channel plate-type and monolithic reactors.

5.2.1. (Folded) plate-type reactor

Fig. 13a shows a basic plate-type reactor coupling CMC with methane steam reforming reaction. The two reactions happen on the opposite sides of the same plate with overlapped temperature profiles. The two flow modes (i.e., co-current and counter-current) were intensively investigated [249]. The hot spots could be avoided by optimizing the overlapping zone of reactions with the proper co-current arrangement. However, the complete overlapping is not able to be achieved by utilizing the counter-current flow mode. Regarding the distance between plates (thickness: 0.5 mm), it has been reported that no significant effect on the catalytic performance was observed when the plate distance varied between 1 and 4 mm [250].

A folded sheet structure reactor for the coupled CMC and steam reforming reaction was investigated by Polman et al. [251]. A relatively simple design with two separated chambers was formed by the folded metal sheet, as shown in Fig. 13b. In order to avoid the high heat loss and to enhance the heat transfer, a novel folded sheet reactor with rectangular adjacent channels was proposed by Kolios et al. [44]. The spacers with rectangular ducts in between are responsible to support the whole structure, providing additional effective heat exchange areas as well (increased by a factor of 3). The gas distributor with channels is located on the right side of the entire reactor, as shown in Fig. 13c [44]. Fig. 13d shows a pilot-scale multifunctional folded sheet reactor combining methane combustion with methanol reforming [252].

5.2.2. Coated tubular reactor

A novel tube-type reactor (i.d. 25 mm, o.d. 38.5 mm) with external fins (fin height 14.3 mm) was proposed by Seo et al. (Fig. 14a) [32]. The external surfaces of tube with fins were coated with Pd/ZrO₂ catalysts for CMC while the cold air as the heat transfer fluid (HTF) was circulated inside the tube to remove the released reaction heat. From practical point of view, this compact design with a high surface area is capable of achieving 100% methane conversion and a high heat transfer rate under high methane flow rate conditions. Moreover, nearly 100% methane conversion could be obtained by 16 finned-tube reactors even under high gas velocity conditions (0.12–0.31 m s⁻¹). However, the same conversion for 10 finned-tube reactors is required under a much lower velocity (<0.11 m s⁻¹). Moreover, it has been reported that the conversion at 400 °C decreased from 88% to 70% with the increasing
catalyst thickness from 1 mm to 3 mm (cf. more details shown in Table 5). A washcoated finned tubular reactors with thinner catalyst thickness (e.g., <1 mm) was more favorable to reach a high conversion.

Ismagilov et al. [121] investigated a tubular reactor (i.d. 18 mm, o.d. 20 mm) with coated metal foams both on the external (Ni–Cr) and internal (Ni) tube surfaces (Fig. 14b). A stable catalytic performance and uniform temperature distribution in the reactor could be obtained by optimizing the gas mixture composition and the catalyst thickness. Moreover, the thickness of catalytic layer in the range of 4–5 mm was favorable to reach a more stable combustion than that of 2.5 mm. Thus, a suitable surface area and catalyst thickness are required not only for increasing the diffusion rate of reactants, but also for higher catalytic combustion efficiency.

Unlike the traditional straight combustor, Yan et al. [253] numerically investigated three different designs of the micro tube combustors for CMC. The improved combustion efficiency can be obtained from the design of multi-step separated baffles (two groups of three separated zones). One of the key advantages of this design is that the separated baffles provided chances for the premixed methane and air to enter the reaction zone from different locations, which enhanced the combustion efficiency and heat recirculation.

5.2.3. Micro/mini channel plate-type reactor

Micro/mini channel reactor has attracted more attention in the past several decades [254–256]. The high surface area of microchannel reactors as well as excellent mass/heat transfer presents great benefits for the catalytic performance [257–259]. Thus, highly exothermic reactions are better handled in the microchannel reactor, due to the suppression of the hot spot formation. However, it is worth noting that the high surface area may also result in the thermal quenching problem due to the high
Renewable and Sustainable Energy Reviews 119 (2020) 109589

24

heat loss if the reactor is not properly insulated. An extra heat source may have to be provided to the microchannel reactor when the released heat from CMC is insufficient to compensate the heat loss to maintain a continuous combustion in practice [258,260,261].

Fig. 15a shows a basic geometry of microreactor with washcoated catalyst on multiple straight channels, where the CMC reaction takes place. O’Connell et al. [118] investigated methane combustion on a microstructured reactor (51 cm length 14 cm width) with the microchannels (500 μm 250 μm, 14 channels in total) over washcoated Pt-W/Mo–Al2O3 catalyst, as shown in Fig. 15b. A methane conversion of 50% has been obtained at 493 °C under the total flow rate of 107 mL min⁻¹. The CMC was experimentally investigated by He et al. [261] in a parallel microchannels reactor (317.5 mm length 50 mm width 3 mm thickness) over washcoat Pt/γ-Al2O3 catalyst, as shown in Fig. 15c. A methane conversion of 95.75% could be obtained at 450 °C and 110 mL min⁻¹ (at a residence time of 14.41 s). A compact microchannel reactor (15 cm 3.9 cm 1.5 cm) was used for the coupled CMC with methane steam reforming, as shown in Fig. 15d [262]. Each plate consists of 5 parallel straight channels (10 cm 0.5 cm 0.5 cm). The methane catalytic reactor with Pt-Sn/Al2O3 catalyst is located on the two sides of the steam reforming reactor with Ni/CA2O4 catalyst. The heat released from the CMC was provided for steam reforming reaction to produce hydrogen. The improved heat efficiency of 67% and methane conversion of 96% were obtained under optimized feed ratio (1.5) of combustion to reforming and at 700 °C. Enough hydrogen was expected to be generated to operate a 30 W fuel cell. Mundhwa et al. [119,263] proposed a microstructured reactor design (Fig. 15e) composed of two methane combustion reactors with segmented channels (1 mm 5 mm 20 μm, 20 channels) and two reforming reactor without channels. The plates were stacked alternatively one above another to form the autothermal microstructured reactor. Washcoated Pt/Al2O3 catalysts were applied in methane combustion microchannels while Ni/Al2O3 catalysts were coated on the steam reforming side. Based on this design, about 7–8% less reactants and 70% less catalysts were required for methane combustion to power a 1 kW fuel cell. A better methane conversion and heat transfer efficiency (in terms of better temperature distribution) could be obtained under the co-current flow mode (Fig. 15e). Contrarily, the counter-current flow mode generated undesirable high temperatures, resulting in the degraded catalyst life-time.

In order to improve the stability of methane combustion, Nui et al. [264] proposed different trapezoidal bluff bodies in the microchannel reactor. The numerical results presented that the combustion recirculation zone was broadened due to the formation of vortex by increasing the blockage ratio of bluff bodies.

The thickness of the catalyst layer has a significant impact on the catalytic performance. The increased thickness of the catalyst layer usually results in a decrease in the methane conversion due to the increased internal mass transfer limitation [121]. However, Rodrigues et al. [261] reported that a higher catalytic activity could be obtained by the thicker catalyst film. The porous catalyst prepared by the electrodeposited method offered the reactants easier access to the inner surface.

5.2.4. Monolithic reactor

Monolithic reactors with open structures present a low pressure drop, high surface-to-volume ratio, high mass/heat transfer rates and high thermal stability. Thus, this type of reactor is widely applied to gas turbines and automobiles for power generation and/or for pollutant emission purification [265,266]. Numerous types of interconnected channels (e.g. square/round/triangle, as shown in Fig. 16a) and various types of substrate (e.g., honeycombs, foams or fibers) are oriented to different applications [267,268]. A higher monolithic surface area can be obtained by triangular interconnected channels. It was reported that monolith with a high specific surface area (400 cells-cm⁻²) presented enhanced mass and heat transfer characteristics compared to the lower one (60 cells-cm⁻²) [269]. Ceramic and metallic substrates are the most common materials used in studies due to the high mechanical stability and the low thermal expansion.

Usually, the catalyst was loaded on the upper section of the reactor and the heat exchanger was located on the bottom. The thermal efficiency was found to be between 20% and 30% for such system [270]. In order to better utilize the heat released from reaction, a two-stage monolith prototype with two heat exchangers was designed. This compact design of premixed burner comprises two honeycombs in between the two heat exchangers on the opposite side, similar model as shown in Fig. 16b [29]. The thermal efficiency for this design could reach 101.1%, implying an effective way to satisfactorily recover the released reaction heat [33]. Fig. 16c shows a monolith and folded wall reactor [35] for the CMC coupled with the steam reforming reaction, the inner pipe for CMC reaction and the annular part for steam reforming
reaction (co-flow model). The temperature difference can be managed by adjusting the feed ratio of methane steam reforming to combustion. Furthermore, the heat transfer can be obviously improved by proper channel arrangement or catalyst distribution.

5.3. Membrane reactor

A membrane reactor commonly comprises a membrane coated with catalysts or as a barrier that only allows certain component(s) to pass through. Lanthanum cobaltite perovskite ceramic is one of the most widely used materials for membranes. Other materials with improved properties, such as thin dual-phase membranes, ceramic metal dual-phase membranes and ion transport membranes are also very promising for enhanced oxygen permeation [271]. The increasing motivation for their industrial applications is the reduction of CO2 emissions from methane combustion.

The basic principle of membrane reactor for CMC is shown in Fig. 17a. CH4 and air pass through the membrane, and the permeated O2 reacts with CH4. CO2 in the products can be successfully separated and captured. It has been reported that the nitrogen with a purity of 98–99% could be produced and the system remained stable over 120 h [272]. The membrane reactor used for CMC could achieve a high methane conversion mainly by varying the partial pressure of oxygen permeation. However, the high costs of membrane reactors potentially limit their industrial applications.

The membrane reaction efficiency is affected by the feed flow rate, the temperature, and the permeability of oxygen. Fig. 17b depicts the oxygen transport over the membrane reactor [273]. The oxygen is firstly adsorbed on the surface of the membrane. The charged oxygen vacancy (O2-) is diffused to the other side, due to the formation of the chemical potential gradient across the membrane. The electrons on the other side are transferred in a reversed-direction so as to compensate for the oxygen vacancies. The results of Falkenstein et al. [273] present that the oxygen permeation flux increased with the increasing methane flow rate and reaction temperature. However, the oxygen permeation flux remained fairly constant at high methane flow rates (e.g. >20 mL min⁻¹), probably due to the limitation of the effective membrane surface area. CO2 selectivity was thus not significantly varied under higher flow rates in this case. This is in agreement with the results reported by Tan et al. [276], that is, the high methane and air flow rates resulted in a lower oxygen permeation and reaction rate over La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membrane reactor. Moreover, the membrane, coated with
platinum catalyst, showed that the membrane reactor effectively facilitated the oxygen permeation and improved the methane conversion, owing to the reduced oxygen permeation resistance [276].

Habib et al. [274] proposed a two-pass ion transport membrane reactor (ITM) for CMC, as shown in Fig. 17c. The first pass is responsible for oxygen permeation, where methane combustion and partial heat exchange between the mixture gas and the water also happened. The second pass is for further permeation. Moreover, the counter-current flow configuration in this ITM provided high methane conversion than that with the co-current flow configuration, owing to the higher oxygen permeation in the first case. In fact, the increased oxygen partial pressure and the accumulated oxygen flux may lead to the reduced oxygen permeation under the co-current flow mode. Moreover, the membrane reactors have also been applied for coupling with steam reforming [277] (Fig. 17d) or ammonia decomposition [278] reactions. An effective way to improve the performance for this system is to increase the membrane effectiveness and to reduce the membrane thickness.

5.4. Fluidized bed reactor

Fluidized bed reactor is a kind of typical catalytic reactors in which solid catalysts (frequently with a diameter of 10–300 μm) are fluidized during the reaction. It is capable of handling a larger amount of reactants or catalysts owing to the large reactor size, and the feed flow rate is required to suspend the catalysts. A porous plate as gas distributor is responsible for supporting the material in the fluidized bed, as shown in Fig. 18. The high gas flow results in an efficient contact between the reactants and the catalysts, leading to the enhanced heat and mass transfer rates on the catalyst surfaces. As a result, the non-uniform temperature distribution that commonly exists in fixed-bed reactor could be avoided. One of its main disadvantages is the great mass loss of the catalyst due to the in-bed attrition after long-term operation.

The experiment measurement by Yang et al. [279] illustrated that the methane conversion increased with the increasing temperature in the fluidized bed reactor, and decreased with the increasing methane inlet concentration. The methane conversion was also reported to decrease with the increasing gas velocity [280]. The fluctuation of temperature and the variation of mixture concentration may occur, due to the intensive motion of solid particles rising up and falling back [280]. Meanwhile, the enhanced mass and heat transfer can be realized between the reactants and the catalyst particles, due to the strong oscillations in the fluidized bed. Furthermore, the kinetic experiments conducted by Yang et al. [279] in the fluidized bed confirmed that the reaction was only controlled by the kinetics at a bed temperature below 450 °C, and by the mass transfer and kinetics together at temperatures above. Dubinin et al. [281] reported CuO/Al2O3MgO–Cr2O3 catalyst to be the one of the most promising catalysts in the fluidized bed reactor for CMC.

6. Summary and prospect

This work provides an extensive review on the CMC. Different catalysts, mechanisms, effect of operational parameters and reactor types are discussed. The main conclusions may be summarized as follows.

Noble metal catalysts with high activity are favorable for CMC at low temperatures (<700 °C). The bi-metallic catalysts have a better catalytic activity due to the more active sites and electronic synergy effects. The hexaaluminate and perovskite mixed metal-oxide catalysts with different microstructured features exhibit a high thermal stability, thus more suitable for high temperature applications (700–1300 °C). The Mars-van Krevelen mechanism is more widely accepted than the Langmuir-Hinselewod and Eley-Rideal mechanisms. It has been observed by in-situ (spectroscopic) technologies that the adsorbed oxygen species in PdO catalyst are responsible for the methane oxidation, rather than oxygen in gas phase. The light-off temperature is mainly influenced by the operating temperature and the oxygen to methane molar ratio. It varies depending on different catalyst properties. The optimized O2/CH4 molar ratio is beneficial for a full methane conversion due to the optimized coverage of the adsorbed mixtures over the surface. The natural gas containing the sulfur compound, carbon dioxide and water vapor can suppress the catalytic activity due to the competitive adsorption and the blockage of active sites. The deactivation due to water and carbon dioxide is reversible whereas the sulfur poisoning is irreversible.

The reversal flow mode for fixed-bed reactors with hot gas withdrawal at the end of the bed and without the return of cold gas is highly recommended in order to maximize the heat recovery and methane conversion.

The recent development of mini/microstructured reactor with compact design has been broadly investigated for coupling the CMC with endothermic reaction (methane steam reforming) at different flow modes. The co-current flow mode presents a better thermal efficiency than the counter-current flow one.

Some scientific and technological barriers remain to be overcome for the widespread industrial application of CMC, which are also the key issues and challenges of the current research and development:

To improve the thermal stability and to prolong the lifetime of noble metal catalysts by avoiding the possible sintering at high temperature levels.

To improve the current understanding into CMC reaction mechanisms and the corresponding kinetic models, including the deactivation mechanism (e.g. CMC with the presence of water and sulfides etc.).

To lower the light-off temperature and to maintain the long-term high catalytic activity of hexaaluminate and perovskite catalysts.

To develop effective desulfurization pre-treatment and measures in order to extend the catalyst lifetime.

To improve mechanical and chemical stabilities of the catalyst coating, and to cope with the deactivation issue by proposing replacement and/or regeneration methods.

To further enhance the heat and mass transfer in compact and integrated catalytic reactor-heat exchangers.

Declaration of competing interest

None.

Acknowledgement

This work was supported by the Region Pays de la Loire (Chaire Connect Talent ODE) from French side; and the Ubbo-Emmius Fund 2015 from University of Groningen and the start-up package in the area of green chemistry and technology (for Jun Yue) from the Netherlands' side. For their permission to reproduce the figures, we thank the ACS (Figs. 4a and 6), John Wiley and Sons (Figs. 4b and 15c) and Elsevier (Figs. 4c, 5f and 5g, h, 7 and 11 and 12a and b, 13b and c, Figs. 13d, 14a and 14b, 15b, 15c and 15d, 16b and 16c, 17b and 17c, d).

References

1. Karavalakis G, Durbin TD, Villela M, Miller JW. Air pollutant emissions of light-duty vehicles operating on various natural gas compositions. J Nat Gas Sci Eng 2012;4:8-16.

2. U.S. Energy Information Administration. International energy outlook. http://www.eia.gov/todayinenergy/detail.php?id=32912. (Accessed 22 September 2014).
[3] Durand B. Petroleum, natural gas and coal: nature, formation mechanisms, future prospects in the energy transition. EDP Sciences 2019:101-52.

[4] Centre for Ener M. Economics Research and policy. UK. BP Statistical review of world energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy. [Accessed 19 April 2019].

[5] Zou C, Zhao Q, Zhang G, Xiong B. Energy revolution: from a fossil energy era to a new energy era. Nat Commun 2018;9(1):1-11.

[6] Petrov AW, Ferri D, Krumeich F, Nachtegaal M, van Bokhoven JA, et al. Stable complete methane oxidation over palladium based zeolite catalysts. Nat Commun 2018;9(1):1-5.

[7] Mebrzoopya M, Khalili M, Sharifzadeh M.M. Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources). Renew Sustain Energy Rev 2018:81:869-87.

[8] Ahmad F, Silva EL, Varesche MBA. Hydrothermal processing of biomass for production of synthetic natural gas (SNG). Energy Convers Manag 2015;100:212-25.

[9] Ahmad F, Silva EL, Varesche MBA. Hydrothermal processing of biomass for production of synthetic natural gas (SNG). Energy Convers Manag 2015;100:212-25.

[10] Van Sint Annaland M, Scholts HAR, Kuipers JAM, Van Swaaij WPM. A novel reverse flow reactor coupling endothermic and exothermic reactions: part II: sequential reactor configuration for reversible endothermic reactions. Chem Eng Sci 2002;57(13):655-72.

[11] Venkataraman K, Redusius JM, Schmidt LD. Millisecond catalytic wall reactors: dehydrogenation of ethane. Chem Eng Sci 2002;57(13):2335-43.

[12] Zanfar M, Gaviolilis A. Modelling of a catalytic plate reactor for dehydrogenation-combustion coupling. Chem Eng Sci 2001;56(8):671-83.

[13] Choudhary TV, B S, Choudhary VR. Catalyst for combustion of methane and lower alkanes review. Appl Catal A 2002:234:1-23.

[14] Li Z, Hoflund GB. A review on complete oxidation of methane at low temperatures. J Nat Gas Chem 2003;12(3):153-60.

[15] Quick LM, Kamitiadis S. Catalytic combustion reactor design and test results. Catal Today 1995;26(3-4):303-8.

[16] Amianzazz A, Casabass M, Gourdon C, Teychen P. Heat exchanger/reactors: concepts, technologies: state-of-the-art. Chem Eng Process 2008;47(12):2099-50.

[17] Kolios G, Gritsch A, Morilou A, Tuttles J, Bernnat J, et al. Heat-integrated reactor concepts for catalytic reforming and automobile exhaust purification. Appl Catal B, 2007;79(1):11-30.

[18]McCarty J. Kinetics of PdO combustion catalysis. Catal Today 1995;26(3):283-93.

[19] Norrish RGW, Foord SG. The kinetics of the combustion of methane. Proc R Soc London Ser A 1936;157(989):503-25.

[20] Otto K. Methane oxidation over Pt over gamma-alumina: kinetics and structure sensitivity. Langmuir 1989;5(1):1364-9.

[21] Dugast P, Boettner JC, Cathomen M. Methane oxidation: experimental and kinetic modeling study. Combust Sci Technol 1991;77(3):1-127.

[22] Seo YS, Yu SP, Cho SJ, Song KS. The catalytic heat exchanger using catalytic fin combustors for low temperature air combustion. Appl Catal A 2003;255(2):279-86.

[23] Lyubovsky M, Smith LL, Castaldi M, Karim H, Nentwick B, et al. Catalytic combustion: physico-chemical characterization and catalytic activity. Catal Today 2003;83(1-2):255-64.

[24] Cruellas A, Melchiori T, Gallucci F, van Sint Annaland M. Advanced reactor concepts for oxidative coupling of methane. Catal Rev 2017;59(3):234-94.

[25] Ishaq A, Kozikawa T, Helminen A. Nanorobots for catalytic combustion: fuel-lean versus fuel-rich operation. Catal Today 2003;83(1-2):151-60.

[26] Giorno S, de Groote P, Castaldi M, Castaldi M. Binary O2/Ar and Ar/O2 atmospheres: effects on the catalytic performance. 1984-2004 Catal Sci Technol 2016;6(7).

[27] Groppi G, Cristiani C, Forzatti P. BaFe xAl(12-x)O19 hexaaluminates: a review of the structure, synthesis and catalytic performance. 1984-2004 Catal Sci Technol 2016(6):7.

[28] Burch R, Loader PK. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the dehydrogenation-combustion coupling. Catal Today 2001;56(1):551-64.

[29] Gür TM. Comprehensive review of methane combustion on granulated catalysts for environmentally sensitive. Langmuir 1989;5(6):1364-7.

[30] Ishaq A, Kozikawa T, Helminen A. Nanorobots for catalytic combustion: fuel-lean versus fuel-rich operation. Catal Today 2003;83(1-2):151-60.

[31] Chen J, Arandiyan H, Gao X, Li J. Recent advances in catalysts for methane combustion. Renew Sustain Energy Rev 2015;43:67-71.

[32] Najjar YS. Gaseous pollutants formation and their harmful effects on health and the respiratory system. Physiol Rev 2004;84(3):731-87.

[33] Su S, Yu XA. 25 kWe low concentration methane catalytic combustion gas turbine technology of methane combustion on granulated catalysts for environmentally sensitive. Langmuir 1989;5(6):1364-7.

[34] Hau H, Liu Z, Zhao F, Li W. Natural gas as vehicle fuel in China: a review. Renew Sustain Energy Rev 2017;80:23-43.

[35] Forzatti P. Status and perspectives of catalytic combustion for gas turbines. Catal Today 2003;83(1-2):255-64.

[36] Lyubovsky M, Smith LL, Castaldi M, Karim H, Nentwick B, et al. Catalytic combustion over platinum group catalysts: fuel-lean versus fuel-rich operation. Catal Today 2003;83(1-2):71-84.

[37] Gelin P, Urefis P, Zieml J, Egenthal B, Faubert G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004;84(3):731-65.

[38] Ricciardo PL, Steck J, Alston P, Gustavks J. Oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fueled vehicles emissions: influence of water and sulphur containing compounds. Catal Today 2003;83(1-2):415-57.

[39] Hao H, Liu Z, Zhao F, Li W. Natural gas as vehicle fuel in China: a review. Renew Sustain Energy Rev 2016;62:521-33.

[40] Forzatti P. Status and perspectives of catalytic combustion for gas turbines. Catal Today 2003;83(1-2):415-57.

[41] Lyubovsky M, Smith LL, Castaldi M, Karim H, Nentwick B, et al. Catalytic combustion over platinum group catalysts: fuel-lean versus fuel-rich operation. Catal Today 2003;83(1-2):71-84.

[42] Su X, Yu YA. 25 kWe low concentration methane catalytic combustion gas turbine prototype unit. Energy 2015;79:428-38.

[43] Igamovizh ZR, Shimina NV, Yashnik M, Zaoronko AN, Kurchetseva MA, et al. Technology of methane combustion on granulated catalysts for environmentally friendly gas turbines in natural gas plants. Catal Today 2010;155(1-2):15-25.

[44] Badamoti H. Application concepts and evaluation of small-scale catalytic combustors for natural gas. Catal Today 1999;47(1):325-38.

[45] Khris K, Eldrany YA, EL-Kasabiy MM. Toward lower gas turbine emissions: flameless distributed combustion. Renew Sustain Energy Rev 2017;67:1237-66.

[46] Gür TM. Comprehensive review of methane combustion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas. Prog Energy Combust Sci 2016;54:1-64.

[47] Vaillant SR, Gaster AS. Catalytic combustion in a domestic natural gas burner. Catal Today 1999;47(1):415-20.

[48] Jugaiga S, Rungsinsmungart N. High efficiency heat-recirculating domestic gas burners. Exp Therm Fluid Sci 2002;26(5):581-92.

[49] Specchia S, Tomasini G. Natural gas combustion catalysts for environmental-friendly domestic burners. Catal Today 2009;147:99-106.

[50] Niu L, Hoflund GB. A review on complete oxidation of methane at low temperatures. Appl Energy 2012;99:496-512.

[51] Mei H, Li J, Li S. Liu H. Modeling of a metal monolith catalytic reactor for methane steam reforming-combustion coupling. Chem Eng Sci 2007;62(16):4294-303.

[52] Chen Y, Xu H, Jin X, Xiong G. Integration of gasohle preforming into autothermal reforming for hydrogen production. Catal Today 2006;116(3):334-40.

[53] Van Sint Annaland M, Kuipers AM, Van Swaaij WPM. A novel reverse flow reactor coupling endothermic and exothermic reactions, part II:
Persson K, Ersson A, Carrera AM, Jayasuriya J, Fakhrai R, et al. Supported
persovskites for lean methane combustion: effect of synthesis method. Adv Mater Phys Chem 2018;8(4):193.

Cimino S, Lisi I, Pirone R, Russo G, Turco M. Methane combustion on persovskites-based structured catalysts. Catal Today 2020;35(1):1–31.

Lassini S, Ioin N, Duprez D, Royer S, Almeida R. Microstructure, performance relationships in Mn-containing persovskite and hexaluminate compounds prepared by activated reactive synthesis. Phys Chem Chem Phys 2014;16(49):4050–6.

Minajlik N, Travezcylni J, Zawadowski M, Tylus W. LaMnO3 (La2O3 s, MgO3 s) persovskites for lean methane combustion: effect of synthesis method. Adv Mater Phys Chem 2018;8(4):193.

Persson K, Jansson K, Jaras S. Characterisation and microstructure of Pd and
Pd-Co bimetallic catalysts for total oxidation of methane. J Catal 2019;374:127–35.

Hajar YM, Venkatesh B, Houache MS, Liu H, Safari R, et al. Electrochemical promotion of Bi metallic NiO core double-shell nanoparticles for complete methane oxidation. J Catal 2015;258:470–80.

Hajar YM, Venkatesh B, Houache MS, Liu H, Safari R, et al. Electrochemical promotion of Bi metallic NiO core double-shell nanoparticles for complete methane oxidation. J Catal 2015;258:470–80.

Li K, Xu D, Liu K, Ni H, Shen F, et al. Catalytic combustion of lean methane assisted by an electric field for MeOx catalytic. J Phys Chem C 2019;123:10311–18.

Toso A, Colussi S, Padigapaty S, de Leitenburg C, Trovarelli A. High stability and
high-pressure reactor. Catal Today 2003;83(1–2):78–26.

Drozdov VA, Tsyrulnikov PG, Popovskii VV, Bulgakov NN, Moroz EM, et al. Development of active and stable Pd-Co/Al2O3 catalysts for complete oxidation of methane. Proc Natl Acad Sci U S A 2015;112(52):15809–14.

Granger P, Parvulescu VI, Kaliaguine S, Prellier W. Perovskites and related mixed
oxides: concepts and applications. Wiley; 2015.

Ersson A, Persson K, Jansson K, Sanchez JM. Influence of chlorine ions in Pt/
MgOx catalysts for methane total oxidation. Catal Today 2019;281(9–10):145–9.

Greenpinger AT, Pereira da Carvalho HW, Popescu R, Grunwaldt J, Deutschmann O. Influence of gas composition on activity and durability of bimetallic Pd-Pt/ Al2O3 catalysts for total oxidation of methane. Catal Today 2015;258:470–80.

Persson K, Ersson A, Jansson K, Jaras S. Microstructure, performance relationships in Mn-containing persovskite and hexaluminate compounds prepared by activated reactive synthesis. Phys Chem Chem Phys 2014;16(49):4050–60.

28
Renewable and Sustainable Energy Reviews 119 (2020) 109589

[137] Duprat F. Light-off curve of catalytic reaction and kinetics. Chem Eng Sci 2002;57(6):901–11.

[138] Qi W, Ran J, Wang R, Du X, Shi J, et al. Kinetic consequences of methane combustion on Pd, Pt and Pt-Pd catalysts. RSC Adv 2016;6(111):108934–45.

[139] Chin YH, Iglesia E. Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH$_4$/O$_2$ reactions on palladium. J Phys Chem C 2015;119(15):8061–71.

[140] Ma L, Trimmel DL, Jiang C. The design and testing of an autotrophic reactor for the conversion of light hydrocarbons to hydrogen I. The catalytic conversion of light hydrocarbons. Appl Catal A 1996;138(2):275–83.

[141] Trimmel D, Lam CW. The combustion of methane on platinum-alumina fibre catalysts II-design and testing of a convective-diffusive type catalytic combustor. Chem Eng Sci 1980;35(58):1731–9.

[142] Giesowski K, Pawlak J, Wurmuzinski K, Jusczyk M. A study on thermal combustion of lean methane-air mixtures: simplified reaction mechanism and kinetic equations. Chem Eng J 2009;154(1):3–9.

[143] Pawlaczak A, Giesowski K. Combustion of lean methane-air mixtures in monolith bed catalytic kinetic study and high temperature. Chem Eng J 2015;282:29–36.

[144] Tsang W, Huang R. Chemical kinetic data base for combustion chemistry. Part 36. CRC Press; 1996. p. 1771.

[145] Trimm D, Lam C-W. The combustion of methane on platinum-alumina fibre catalysts. J Catal 1999;188(1):132.

[146] Muller CA, Maciejewski M, Koeppel RA, Tschan R, Baiker A. Role of lattice oxygen in the combustion of methane over PdO/ZrO$_2$: combined pulse TG/DTA and MS spectroscopic studies of methane catalytic combustion over palladium oxide catalysts; support effects. Appl Catal B 1995;6(3):263.

[147] Feng S, Yang W, Wang Z. Synthesis of porous NiFe$_2$O$_4$ microparticles and its catalytic properties for methane combustion. Mater Sci Eng B 2002;95(1–2):96–97.

[148] Oh SH, Mitchell PJ, Siewert RM. Methane oxidation over alumina-supported noble metal catalysts and with without cerium additives. J Catal 1991;132(2):199–201.

[149] MVd Bosch, Gronbeck H. Methane oxidation over PdO (101) revealed by first-principles kinetic modeling. J Am Chem Soc 2015;137(17):12035–44.

[150] Aghalayam P, Park YK, Fernandez N, Papavassiliou V, Mhadhebhor AB, et al. A Cl model mechanism for methane combustion over PtN$_2$O$_5$: high temperature catalytic activity. J Catal 2002;215(3):253–8.

[151] Chrzan M, Chlebda D, Jodkowski P, Salomon E, Kolodziej A, et al. Towards methane combustion mechanism on metal oxides supported catalysts: ceria supported palladium catalysts. Top Catal 2019;62(4):403–53.

[152] Druzhinin V, Kovalenko D, Georgieva E. Temperature and time dependence of the water inhibition effect on supported palladium catalyst for methane combustion. Appl Catal A 2001;216(1–2):209–15.

[153] Qi W, Ran J, Wang R, Du X, Shi J, et al. Kinetic consequences of methane combustion on Pd, Pt and Pt-Pd catalysts. RSC Adv 2016;6(111):108934–45.
Dupont V, Moallemi F, Williams A, Zhang SH. Combustion of methane in catalytic honeycomb monolith burners. Int J Energy Res 2000;24(13):1181–201.

Lin Y. Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 2001;25(1):39–55.

Hu T, Zhou H, Peng H, Jiang H. Nitrogen production by efficiently removing oxygen from air using a perovskite hollow-fiber membrane with porous catalytic layer. Front Chem 2018;6.

Falkenstein Smith R, Zeng P, Ahn J. Investigation of oxygen transport membrane reactors for oxy-fuel combustion and carbon capture purposes. Proc Combust Inst 2017;2017(3):3969–76.

Habib MA, Nemitallah MA. Design of an ion transport membrane reactor for application in fire tube boilers. Energy 2015;81:787–801.

Vigneault A, Grace JR. Hydrogen production in multi-channel membrane reactor via steam methane reforming and methane catalytic combustion. Int J Hydrogen Energy 2015;40(1):233–43.

Tan X, Li K, Thursfield A, Metcalfe IS. Oxyfuel combustion using a catalytic ceramic membrane reactor. Catal Today 2008;131(1–4):292–304.

Simakov DS, Sheintuch M. Experimental optimization of an autonomous scaled-down methane membrane reformer for hydrogen generation. Ind Eng Chem Res 2009;49(3):1123–9.

Chen J, Yan L. Ammonia decomposition coupled with methane combustion in catalytic microreactors for hydrogen production. Chem Biomol Eng 1994;2(1):19–26.

Yang Z, Yang P, Zhang L, Guo M, Yan Y. Investigation of low concentration methane combustion in a fluidized bed with Pd/Al2O3 as catalytic particles. RSC Adv 2014;4(103):59418–26.

Zukowski W. The role of two-stage combustion in the development of oscillations during fluidized bed combustion of gases. Fuel 2000;79(14):1757–65.

Dubinai VV, Tsereshko N, Sarraev A, Bulavchenko O, Yakovlev V. Studying the effect of magnesium on the activity of a deep oxidation catalyst for a fluidized bed in methane and CO oxidation reactions. Catal Ind 2018;10(3):237–43.

Dong Q, Zhang S, Duan Z, Zhou Q. An energy analysis of the catalytic combustion burner. Heat Technol Energy Eff 2006(3).

Specchia S, Ahumada Irribarra MA, Palmisano P, Saracco G, Specchia V. Aging of premixed metal fiber burners for natural gas combustion catalyzed with Pd/LaMnO3·2ZrO2. Ind Eng Chem Res 2007;46(21):6666–73.

Deng C, Yang W, Zhou J, Liu Z, Wang Y, et al. Catalytic combustion of methane, methanol, and ethanol in microscale combustors with Pt/ZSM-5 packed beds. Fuel 2015;150:339–46.