Uptake and Incorporation of Amino Acids and Peptides by *Bacteroides amylophilus*

W. A. HULLAH AND T. H. BLACKBURN

Department of Microbiology, The University of British Columbia, Vancouver 8, British Columbia, Canada

Received for publication 12 October 1970

Bacteroides amylophilus H-18 demonstrated a higher growth yield, a slightly higher growth rate, and a diminished lag period when Tryptose was added to the basal medium. This uptake of labeled amino acids was concentration-dependent, as the contribution of exogenous amino acid to the cell protein increased from 15.4 to 24.1% when the concentration of Casamino Acids in the medium was increased from 1.4 to 2.8 mg/ml. There was considerable redistribution of 14C-label to other amino acids. Tryptic peptides of casein competed effectively with the amino acids for uptake. The 14C-label from a protein was incorporated into *B. amylophilus* H-18 cells presumably after breakdown of the protein by the *B. amylophilus* H-18 protease.

The well established requirement of *Bacteroides amylophilus* H-18 for NH$_4^+$ (1, 3, 5, 7) and the evidence that 15N-NH$_4^+$ contributed to 93% of the cell nitrogen when grown in a Tryptose medium (6) indicated that this bacterium probably incorporated insignificant amounts of organic nitrogen. This dependence on NH$_4^+$ raised the question of the real function of the protease produced by *B. amylophilus* H-18, since the protease was probably not produced for the hydrolysis of proteins, so that the products might be taken up by the cells. In the present investigation the growth characteristics of *B. amylophilus* H-18 were studied in minimal and supplemented media, and the incorporation of 14C-amino acids was followed. The results indicated that organic nitrogen compounds were incorporated to a limited extent.

MATERIALS AND METHODS

The growth medium was based on that of Hungate (8) and contained (grams per liter) K$_2$HPO$_4$, 0.45; KH$_2$PO$_4$, 0.45; (NH$_4$)$_2$SO$_4$, 0.9; NaCl, 0.9; MgSO$_4$, 0.09; CaCl$_2$, 0.09; resazurin, 0.001; Na$_2$S-9H$_2$O, 0.25; ascorbic acid, 0.50; and NaHCO$_3$, 5.0. The mineral and resazurin solutions plus any other additions to the medium were placed in a liter bottle, the volume made up to 900 ml with distilled water. The medium was autoclaved at 120 C for 15 min; the top was tightly closed immediately upon removal from the autoclave to maintain anaerobic conditions. The solutions of sodium bicarbonate (10.0%), sodium sulfide (1.0%), and ascorbic acid (2.0%) were filtered through a membrane filter (pore size, 0.45 μm; Millipore Corp., Bedford, Mass.); these solutions were added to the medium under a stream of oxygen-free CO$_2$. The medium was dispensed into smaller tubes and used for bacterial growth. In the experiments shown in Fig. 1 and 2, L-cysteine-·HCl (0.5 g/liter) was used to lower the E_0 instead of ascorbic acid and sodium sulfide. All inoculations were made in an atmosphere of CO$_2$. Two media were used: medium M contained the basal salts plus 0.3% (w/v) maltose, and medium MT contained in addition 0.1% (w/v) Tryptose (Difco, Detroit, Mich.). Amino acids were obtained from Nutritional Biochemical Corp., Cleveland, Ohio. 14C-L-tryptophan was obtained from Nuclear-Chicago Corp., Des Plaines, Ill., whereas other radioactive amino acids and 14C-maltose were purchased from Schwarz BioResearch Inc., Orangeburg, N.Y., as the uniformly labeled 14C-product. The radioactive amino acids were checked for purity by thin-layer chromatography (9).

B. amylophilus strain H-18 is a gram-negative, anaerobic, proteolytic microorganism isolated from a sheep rumen (2). Stock cultures were maintained in semisol MD medium at 4 C for 3-week periods.

Cell density was measured at 660 nm in a Spectronic 20 colorimeter (Bausch & Lomb, Inc., Rochester, N.Y.). Since the bacterium died rapidly after entering the stationary phase, care was taken to make inoculations from log phase cultures. In the uptake experiments one drop of a log phase culture was inoculated into 6.0 ml of medium.

The uptake of 14C-amino acids and peptides was studied in 6.0-ml amounts of MT medium. One-milliter samples were filtered through membrane filters (pore size, 0.45 μm; Millipore Corp.) and were washed once with 2.0 ml of medium M. Radioactivity in the cells was counted in a model 72 scintillation counter (Nuclear-Chicago Corp.) after placing the dried filters in scintillation fluid.

The distribution of 14C-label in the cell protein was determined by thin layer chromatography (9). The
cells from 6.0 ml of MT medium were harvested by centrifugation at 9,000 × g for 10 min in a refrigerated centrifuge (Ivan Sorvall, Inc., Norwalk, Conn.). They were washed in mineral medium and were suspended in 3.0 ml of 6.0 n HCl. The protein was hydrolyzed for 18 hr at 110 C in sealed evacuated glass vials. The HCl was then removed under vacuum, and the residue was dissolved in distilled water. Samples were quantitatively applied to cellulose thin-layer plates (Cellulose Powder MN300, Macherey Nagel and Co., Germany). The amino acids were separated by a two-dimensional technique (9) using 2-propanol:formic acid:water (40:20:10, v/v) and 2-butanol:methyl ethyl ketone: ammonia:water (50:30:10:10, v/v) solvents. The chromatograms were exposed for 1 to 2 weeks to medical X-ray film (Eastman Kodak Co., Rochester, N.Y.). The films were developed, and the radioactive areas on the chromatogram were located. These areas were loosened and were drawn by vacuum into scintillation fluid, and the radioactivity was counted. The addition of 5 to 60 mg of cellulose caused no increase in quenching under these conditions. Duplicate thin-layer plates were sprayed with ninhydrin-colidine chromagenic reagent (9) to locate and identify the amino acids. Ten μl of standard solutions of amino acids [2 μg/ml in aqueous 10% (v/v) 2-propanol] were run to verify the positions of the amino acids.

14C-protein was prepared from B. amylophilus H-18 cells grown in 100 ml of MT medium containing 0.5 μCi of 14C-maltose per ml. The log-phase cells were harvested and heated at 80 C for 15 min in 10% trichloracetic acid to remove nucleic acid and were washed in three volumes of acetone. The protein was extracted in 2% Na2CO3. The solution contained 1.4 mg of protein, 0.02 μCi of label/ml. The cells from a 50-ml mid-log phase in M medium were sedimented at 9,000 × g for 10 min. They were washed twice with distilled water and resuspended in 5.0 ml of distilled water. One-milliliter samples were taken for dry weight, protein determination (10), and amino acid analysis (11) by using a Beckman model 120 C amino acid analyzer (Beckman Instruments, Inc., Fullerton, Calif.). The results are presented in Table 1 and were used in calculating the contribution of exogenous amino acid to cell proteins.

RESULTS

Effect of organic nutrient on growth. Preliminary experiments demonstrated that although the addition of casein hydrolysate (0.65 to 3.3 mg/ml) to the basal M medium only slightly increased the growth rate, there was a decrease in the lag phase and a slight increase in cell yield. The addition of Tryptose had the same effect. This effect was further investigated by shift-up and shift-down growth conditions (Fig. 1). Again, it was demonstrated that higher cell yields were attained in the Tryptose medium; there was also an indication that slightly higher growth rates were possible in the Tryptose medium. The length of the lag period was less for cells grown initially in MT medium, even when growth was

![Fig. 1. Shift-up and shift-down growth conditions. Cultures of Bacteroides amylophilus H-18 were grown in maltose (M) and maltose Tryptose (MT) media to an OD₆₆₀ of 0.6. The cells were centrifuged at 9,000 × g for 10 min, washed in M medium, and resuspended to the original volume of 7.0 ml in M medium. From these suspensions, 1.0 ml was added to each of three 4.0-ml amounts of both M and MT media. The average OD₆₆₀ for each of the four series was plotted against time of incubation. The mean generation times in minutes are in brackets. The inset shows growth over the first 50 min.](image)

Table 1. Amino acid composition of Bacteroides amylophilus H-18 protein*
Amino acids

Alanine
Arginine
Aspartic acid
Cysteine
Glutamic acid
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Throneine
Tyrosine
Valine

* The results are the average of two analyses. An OD₆₆₀ of 1.0 corresponded to 0.98 mg (dry weight) and 0.44 mg of protein per ml.
continued in M medium, than it was for cells grown initially in M medium and then inoculated into MT medium. These observations suggested that Tryptose supplied greater amino acid pools or maintained beneficial intracellular conditions which allowed the cells to adjust more rapidly to a new environment and that organic nitrogen compounds played a role in the nutrition of B. amylophilus H-18, so its capacity to take up amino acids was investigated.

Uptake of 14C-label from an amino acid mixture. The first questions to be answered were whether B. amylophilus H-18 was permeable to amino acids and to see if intracellular pools might be established. Five minutes after the addition of 14C-amino acids (Fig. 2), 14% of the label in the amino acids was taken up by the cells. The cell volume in 1.0 ml of culture was calculated from the dry weight of cells multiplied by five to get the wet weight of cells. This figure of 25×10^{-4} ml, when divided into the ratio of label inside to that outside the cells (14/86) gave the degree of concentration as 65-fold. A total cell volume of 5×10^{-4} ml was also calculated from the individual volume of a cell (10^{-12} ml) and the number of cells present (5×10^8). This represents a 326-fold concentration.

Uptake of individual 14C-amino acids. The amino acid concentration in the medium was in-

![Graph](image_url)

Fig. 2. Uptake of 14C-mixed amino acids. Bacteroides amylophilus H-18 was grown to mid-log phase in maltose (M) medium. The cells were centrifuged at 9,000 X g and resuspended in medium M to which was added 14C-amino acids to give a concentration at zero time of 0.63 μmoles (1.4 nCi of 14C) per ml. The uptake of 14C-amino acids was followed by the rapid filtration method of Britten and McClure (4). The percent uptake was plotted against time.

Amino acids	Casein hydrolysate, 1.4 mg/ml	Casein hydrolysate, 2.8 mg/ml			
	14C-label incorporated (%)	Incorporationb (μg/100 μg of protein)	14C-label incorporated (%)	Incorporationb (μg/100 μg of protein)	
Arginine	8.1	4.7	4.3	5.0	2.3
Aspartic acid	3.0	3.2	2.9	6.2	2.8
Glutamic acid	2.0	6.6	1.3	8.6	3.9
Histidine	3.2	1.6	2.6	2.6	1.2
Isoleucine	2.9	2.4	3.4	5.7	2.6
Leucine	2.5	3.5	1.9	5.3	2.4
Methionine	1.9	0.9	1.7	1.6	0.7
Phenylalanine	3.0	2.5	2.8	4.7	2.1
Proline	1.0	1.6	1.2	3.9	1.8
Serine	3.7	3.1	2.9	4.8	2.2
Tyrosine	2.4	2.2	2.1	3.9	1.8
Valine	1.8	1.9	1.4	2.9	1.3
Total	**15.4**				24.1

a One-tenth milliliter of a log-phase culture of Bacteroides amylophilus H-18 was inoculated into tubes of 6.0 ml of medium M, containing either 1.4 or 2.8 mg of casein hydrolysate/ml and in addition 0.018 μCi of individual 14C-amino acids. The cultures were grown to an OD$_{660}$ of 0.5, and the radioactivity in the cells was counted.

b Calculated from the known content of each amino acid in casein hydrolysate.

c Calculated from the known cell protein content and the amount of exogenous amino acid incorporated.
creased by adding 1.4 or 2.8 mg of casein hydrolysate/ml to medium M (Table 2). Individual \(^{14}\)C-amino acids were added to tubes of these media, and the percentage of uptake of that \(^{14}\)C-amino acid was determined. There was a significant uptake and incorporation of each of the amino acids tested. The calculated total contribution by the twelve amino acids tested to the bacterial protein was 15.4 and 24.1% in the 1.4 and 2.8 mg of casein hydrolysate/ml of media, which indicated that the uptake was concentration-dependent and possibly due to simple diffusion.

Uptake and conversion of amino acids. Preliminary experiments were performed by growing cells in \(^{14}\)C-maltose medium M (reduced by cysteine) to confirm that radioautography could locate \(^{14}\)C-labeled amino acids in protein hydrolysates. All the amino acids, with the excep-

Table 3. Uptake and conversion of amino acids\(^\text{a}\)

Amino acids	Incorporated directly (%)	In other amino acids (%)
Alanine	11	89% Unknown
Arginine	45	45% Glu; 4% Orn; 6% unknown
Aspartic acid	7	93% Unknown
Cysteine	0	0
Glutamic acid	60	15% Pro; 15% Arg; 1% Lys; 8% unknown
Glycine	2	4% Glu, Thr, Ser; 94% unknown
Histidine	100	100% Unknown (3)
Isoleucine	0	0
Leucine	100	3% Leu, Ile, Val; 95% unknown
Methionine	2	0
Phenylalanine	0	99% Unknown (4)
Proline	100	42% Gly; 20% Ileu; 20% Tyr
Serine	1	82% Unknown (6); Asp and Trp
Threonine	18	24% Unknown (2)
Tryptophan	18	15% Met, Leu
Tyrosine	76	0
Valine	85	0

\(^\text{a}\) One-tenth milliliter of log-phase culture of *Bacteroides amylophilus* H-18 was inoculated into 6.0-ml amounts of medium M, each containing 0.1 mg of an individual \(^{14}\)C-amino acid (0.1 μCi/ml). The cultures were grown to OD\(_{660}\) of 0.5. The cells were sedimented at 9,000 × g and acid hydrolyzed, and the amino acids were separated by thin-layer chromatography. The \(^{14}\)C-amino acids were detected by autoradiography, removed to scintillation fluid, and counted. Radioactive spots which did not correspond to the common amino acids were classified as \(^{14}\)C-unknowns.

Table 4. Uptake of \(^{14}\)C-amino acids in the presence of Tryptose\(^\text{a}\)

Amino acids	External concn (mg/ml)	\(^{14}\)C-label incorporated from medium M (%)	\(^{14}\)C-label incorporated from medium MT (%)
Alanine	.082	16.0	3.0
Arginine	.084	16.2	2.3
Glutamic acid	.074	16.7	NR\(^\text{b}\)
Glycine	.090	10.0	14.5
Histidine	.042	9.2	3.3
Leucine	.064	20.1	4.4
Lysine	.061	3.3	1.4
Methionine	.110	23.4	11.4
Phenylalanine	.038	17.6	8.3
Proline	.048	20.0	3.3
Serine	.072	5.5	1.0
Threonine	.076	2.9	1.7
Tyrosine	.040	5.3	NR\(^\text{b}\)
Valine	.074	16.0	2.9

Average:

13.4 \(\%\) \(\text{NR}\)

\(^\text{a}\) One-tenth milliliter of log-phase culture of *Bacteroides amylophilus* H-18 was inoculated into 6.0-ml amounts of medium M containing 0.083 μCi/ml of individual amino acids at the concentration specified in column one. Tryptose (1.5 mg/ml) was added to a duplicate set of cultures. The cultures were grown to OD\(_{660}\) of 0.6, and the radioactivity in the cells was counted.

\(^\text{b}\) No result.

...tion of cysteine, were found to be labeled. Cysteine was labeled in a medium reduced by ascorbic acid and sodium sulfide. The redistribution of \(^{14}\)C-label from individual amino acids was examined (Table 3). The concentration of the amino acid was low (0.1 mg/ml) so that the specific activity was high enough to label other amino acids derived from it. Histidine, leucine, and proline were incorporated without any interconversion to other amino acids. Quite large amounts of arginine, glutamic acid, tyrosine, and valine were incorporated directly. The major portion of alanine, aspartic acid, glycine, isoleucine, methionine, serine, threonine, and tryptophan was converted to other products, often unidentified. We anticipated that those amino acids which were extensively converted to amino acids and other products within the cell would be taken up in greater quantities. There was, however, no correlation between the degree of interconversion and the amount incorporated, as seen in Table 2. No explanation can be offered for the pathways by which some of the derivatives arose.

Uptake of individual \(^{14}\)C-amino acids in the presence of Tryptose. Individual \(^{14}\)C-amino acids were added at a high specific activity and low...
concentration to media with and without Tryptose (Table 4). The incorporation of each amino acid, with the exception of glycine, was inhibited by Tryptose. The average incorporation was reduced from 13.4 to 4.8%. The contribution of the amino acids to the bacterial protein, at this low concentration in the medium, was small and did not exceed 1.0%. It was, therefore, impossible to deduce to what extent the Tryptose peptides contributed to the cell protein. The experiment clearly demonstrated, however, that competition between the peptides and amino acids occurred.

Uptake of 14C-peptides. To determine 14C-peptide uptake by *B. amylophilus* H-18, 0.1 ml of log-phase cells was inoculated into 6 ml of medium M containing 0.14 mg of 14C-protein (0.002 µCi) per ml. The culture was grown to OD660 of 0.6, and the radioactivity in the cells was counted. The 14C-protein peptides contributed to 17% of the protein synthesized by *B. amylophilus* H-18 in this supplemented medium. The 14C label incorporated was 24%, protein incorporated was 34 µg/ml (calculated from 24% of 140 µg of protein), and protein incorporated was 17 µg/100 µg of cell protein (calculated from the protein incorporated and the known protein content of the cells).

DISCUSSION

Contrary to expectations that NH₄⁺ would be the sole source of cell nitrogen (6), we found that some incorporation of 14C-amino acids occurred. The degree of concentration of 14C-label within the cell was indicative of active transport. The possibility of nonspecific adsorption to the cell surface cannot be discounted. Subsequent experiments (Table 2) failed to demonstrate that any individual amino acid contributed to more than a small portion of the total cell protein. The kinetics of the uptake were not studied, but the total contribution of exogenous amino acids to cellular protein was increased from 15.4% to 24.1% when the concentration of the added hydrolysate was increased from 1.4 to 2.8 mg/ml. There was a considerable degree of interconversion to other amino acids before incorporation into protein occurred. The role of the protease in the nutrition of *B. amylophilus* H-18 is still in doubt. There was evidence that tryptic peptides competed with 14C-amino acids for incorporation and the protease of *B. amylophilus* H-18 has a tryptic-type specificity (2). There was also evidence that 14C-protein in the growth medium was incorporated into cell protein and contributed to 17% of the cell protein. It is presumed that the protease played some role in hydrolyzing the protein before its uptake and incorporation. This would indicate that the protease can play a part in the nutrition of the microorganism. The total contribution (17%) to the cell protein was, however, small, and there is the possibility that 14C-protein or 14C-peptides adhered to the outer cell surface. The obligate NH₄⁺ requirement was not replaced by other forms of nitrogen.

ACKNOWLEDGMENT

This investigation was supported by a grant from the National Research Council of Canada.

LITERATURE CITED

1. Abou Akkada, A. R., and T. H. Blackburn. 1963. Some observations on the nitrogen metabolism of rumen proteolytic bacteria. J. Gen. Microbiol. 31:461-469.
2. Blackburn, T. H. 1968. The protease liberated from *Bacteroides amylophilus* strain H18 by mechanical disintegration. J. Gen. Microbiol. 53:37-51.
3. Blackburn, T. H., and P. N. Hobson. 1962. Further studies on the isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol. 29:69-81.
4. Britten, R. J., and F. T. McClure. 1962. The amino acid pool in *Escherichia coli*. Bacteriol. Rev. 26:292-335.
5. Hamlin, L. J., and R. E. Hungate. 1956. Culture and physiology of a starch-digesting bacterium (*Bacteroides amylophilus* n.sp.) from the bovine rumen. J. Bacteriol. 72:548-554.
6. Hobson, P. N., I. J. McDougall, and R. Summers. 1967. The nitrogen sources of *Bacteroides amylophilus*. J. Gen. Microbiol. 58:1.
7. Hobson, P. N., and R. Summers. 1967. The continuous culture of anaerobic bacteria. J. Gen. Microbiol. 47:53-65.
8. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1-49.
9. Jones, K., and J. G. Heathcote. 1966. The rapid resolution of naturally occurring amino acids by thin-layer chromatography. J. Chromatog. 24:106-111.
10. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
11. Spackman, D. H., W. H. Stein, and S. Moore. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:1190-1206.