Amphibians and reptiles of the Parque Estadual Turístico do Alto Ribeira (PETAR), SP: an Atlantic Forest remnant of Southeastern Brazil

Araújo, C.O. et al.

Biota Neotrop. 2010, 10(4): 257-274.

On line version of this paper is available from:
http://www.biotaneotropica.org.br/v10n4/en/abstract?inventory+bn01710042010

A versão on-line completa deste artigo está disponível em:
http://www.biotaneotropica.org.br/v10n4/pt/abstract?inventory+bn01710042010

Received/ Recebido em 21/04/2010 - Revised/ Versão reformulada recebida em 23/09/2010 - Accepted/ Publicado em 13/10/2010

ISSN 1676-0603 (on-line)
Amphibians and reptiles of the Parque Estadual Turístico do Alto Ribeira (PETAR), SP: an Atlantic Forest remnant of Southeastern Brazil

Cybele de Oliveira Araujo¹,²,₅, Thais Helena Condez²,³, Rafael Parelli Bovo²,³,⁴, Fernanda da Cruz Centeno⁴,⁵ & Amom Mendes Luiz²

¹Seção de Animais Silvestres, Instituto Florestal, Rua do Horto, n. 931, Horto Florestal, CEP 02577-000, São Paulo, SP, Brasil
²Laboratório de Ecologia e Evolução, Instituto Butantan, Av. Dr. Vital Brazil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil
³Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Av. 24-A, n. 1515, Bela Vista, CEP 13506-900, Rio Claro, SP, Brasil
⁴Instituto Nacional de Ciência e Tecnologia em Fisiologia Comparada, Programa INCTs/CNPq, Ministério da Ciência e Tecnologia
⁵Corresponding author: Cybele de Oliveira Araujo, e-mail: cyaraujo@usp.br

ARAUJO, C.O., CONDEZ, T.H., BOVO, R.P., CENTENO, F.C. & LUIZ, A.M. Amphibians and reptiles of the Parque Estadual Turístico do Alto Ribeira (PETAR), SP: an Atlantic Forest remnant of Southeastern Brazil. Biota Neotrop. 10(4): http://www.biotaneotropica.org.br/v10n4/en/abstract?inventory+bn01710042010.

Abstract: The herpetofauna of São Paulo State, Brazil, can be characterized as the most well-known in the country. However, despite the large number of studies in this area, there are still many sampling gaps within biomes such as the Atlantic Forest that are considered global conservation priorities due to the high rate of endemism and human disturbance. As a result of political and historical pressure, this biome has been reduced to less than 12% of its original extent and, despite its importance for global biodiversity conservation, only a small percentage of its original vegetation cover (1%) has some form of legal protection. This is the case of the Parque Estadual Turístico do Alto Ribeira (PETAR) which, together with the Parque Estadual de Intervales, Parque Estadual Carlos Botelho and Mosaico de Unidades de Conservação de Jacupiranga, forms of an ombrophilous forest continuum of 360 thousand ha in the south of São Paulo State. This study presents a list of amphibians and reptiles from the PETAR, with information on the local distribution and habitat use of the species. The survey was conducted from October to December 2009, completing a total of 15 sampling days using four complementary methods of active sampling: visual encounters, auditory encounters, searches by car and incidental encounters. We recorded a total of 91 species belonging to 53 genera and 24 families. This high diversity can be attributed to the existence of a wide variety of habitats and microhabitats in this region, such as the various aquatic sites used by many species of anuran amphibians. Moreover, the PETAR features a large altitudinal gradient (80 - 1,160 m elevation) that gives a large climatic, geological and hydrological heterogeneity to the area. This inventory is an important contribution to the expansion of knowledge about these assemblages in the Atlantic Forest to the south of Serra de Paranapiacaba mountain range, and provides support for the conservation of these groups in São Paulo State. Keywords: herpetofauna, conservation, Atlantic Forest, Apiaí, Iporanga, Vale do Ribeira.

ARAUJO, C.O., CONDEZ, T.H., BOVO, R.P., CENTENO, F.C. & LUIZ, A.M. Anfíbios e répteis do Parque Estadual Turístico do Alto Ribeira (PETAR), SP: um remanescente de Mata Atlântica do Sudeste do Brasil. Biota Neotrop. 10(4): http://www.biotaneotropica.org.br/v10n4/pt/abstract?inventory+bn01710042010.

Resumo: Apesar do grande número de estudos realizados com a herpetofauna do Estado de São Paulo, que a caracteriza como a mais conhecida no país, ainda existem vazios amostrais dentro de biomas considerados mundialmente como prioritários para a conservação pelo elevado grau de endemismo e pressão antrópica, como é o caso da Mata Atlântica. Como resultado de pressões políticas e históricas, o bioma foi reduzido a menos de 12% de sua extensão original e apesar de sua importância para a conservação da biodiversidade mundial, apenas uma porcentagem mínima de sua cobertura vegetal original (1%) encontra-se protegida sob alguma forma legal de proteção. Este é o caso do Parque Estadual Turístico do Alto Ribeira (PETAR) que juntamente com o Parque Estadual de Intervales, Parque Estadual Carlos Botelho e Mosaico de Unidades de Conservação de Jacupiranga formam um extenso contínuo ecológico de 360 mil ha de floresta ombrófila no sul do estado. O presente estudo apresenta a lista de anfíbios e répteis do PETAR, com informações sobre a distribuição local e uso de hábitat destas espécies. O inventário foi realizado de outubro a dezembro 2009, totalizando 15 dias de amostragens que foram realizadas por meio de quatro métodos complementares de amostragem ativa: procura visual, procura auditiva, procura de carro e encontro ocasional. Foram registradas no total 91 espécies pertencentes a 53 gêneros e 24 famílias. Esta alta diversidade pode ser atribuída à existência de uma grande variedade de hábitats e
microhabitats in this locality, as do the various aquatic sites used by different amphibian species. Despite this, the PETAR presents a unique gradient alitudinal (80 - 1,160 m) that confers upon the Atlantic Forest a unique heterogeneity in climatic, geological and hydrological aspects. This is why the Atlantic Forest has been reduced due to land loss and fragmentation, resting less than 12% of its original 1.3 million km², which corresponded to about 15% of the Brazilian territory (Morellato & Haddad 2000, Fundação... & Instituto... 2008, Ribeiro et al. 2009). Despite its importance for global biodiversity conservation (Myers et al. 2000), only a small percentage of the original vegetation cover (1%) is safeguarded under some form of legal protection (Wilson 1997). Recent estimates indicate that this biome is made up of discontinuous fragments, most of which (80%) are smaller than 50 ha (Ribeiro et al. 2009).

Even with this drastic reduction in area, the Atlantic Forest is the biome in Brazil with the highest species richness of anuran amphibians, with more than 400 known species, and approximately 85% of these (about 340 species) are endemic to the biome, which also harbors a large number of undescribed species (Cruz & Feio & Haddad 2005). This biome also exhibits high species richness of snakes (134 species), although the species richness and endemism of lizards in the Atlantic Forest (40 endemic species) is much lower when compared to the Amazon Forest, with 81 endemic species (Ribeiro et al. 2009). This study is subdivided into four research and visitation centers (núcleos) in Iporanga municipality and two vigilance stations (bases) in Apiaí municipality (Figure 1c). The vegetation cover in the area is formed predominantly by dense ombrophilous forest (78%), with some patches of open ombrophilous forest (16%), which is dominated by species of Bambusoideae that replace the typical arboreal physiognomy of the dense forest. These two vegetation types are represented by montane formations between 400 and 1,000 m above sea level (Base Areado, Base Bulha d’água and Capinazal and Núcleo Cabocos) and submontane formations between 30 and 400 m above sea level (Núcleo Casa de Pedra, Núcleo Ouro Grosso and Núcleo Santana). The alluvial formation of the dense ombrophilous forest is found along the watercourses and corresponds to 1% of the area (N. M. Ivanauskas, unpublished data).

Methods

1. Study area

The Parque Estadual Turístico do Alto Ribeira (PETAR) is located in the region of the Alto Vale do Rio Ribeira de Iguape, where the Serra de Paranapiacaba mountain range retreats toward the Southwestern part of São Paulo State, close to the border with Paraná State (Kronka et al. 2005). The park is located between latitudes 24° 17' and 24° 38' and longitudes 48° 27' and 48° 44', including Apiaí (8,360 ha) and Iporanga (27,352 ha) municipalities (São Paulo 1958, 1997) (Figure 1). The PETAR lies in a mountainous area which has a rounded surface over intrusive granites and phyllites and a topographic roughness over the limestone areas, featuring residual karst topography (Instituto... 1987, Karmann 1994). As a result of the presence of large amounts of limestone, this remarkable conservation unit has about 300 caves showing great speleothem diversity (Fundação Florestal 2009b). The climate is classified as humid subtropical with no dry season and cool summers (Cfb; Köppen Geiger) (Peel et al. 2007). Mean annual temperatures are usually between 20 and 22°C, and the annual temperature range is relatively low (Nimer 1977). The site has a high pluviometric index, with an average annual rainfall ranging from 1,300 and 2,000 mm. The highest average monthly rainfall occurs in January and the lowest in August (Lepsch et al. 1990). Located on the left margin of the medium and upper course of the Ribeira river, the park is drained by the Betari, Iporanga and Pilões river basins, the sources of which are found on the border of the Guapiara plateau between 900 and 1,100 m elevation, reaching the Ribeira River between 80 and 70 m (Karmann & Ferrari 2002).

Introduction

The Atlantic Forest is highly diverse, showing high rates of endemism per unit area, which places it fifth amongst the 34 global conservation priority hotspots (Myers et al. 2000, Mittermeier et al. 2004, Fonseca et al. 2004). As a result of political and historical pressure, the Atlantic Forest has been reduced due to land loss and fragmentation, resting less than 12% of its original 1.3 million km², which corresponded to about 15% of the Brazilian territory (Morellato & Haddad 2000, Fundação... & Instituto... 2008, Ribeiro et al. 2009). Despite its importance for global biodiversity conservation (Myers et al. 2000), only a small percentage of the original vegetation cover (1%) is safeguarded under some form of legal protection (Wilson 1997). Recent estimates indicate that this biome is made up of discontinuous fragments, most of which (80%) are smaller than 50 ha (Ribeiro et al. 2009).

Even with this drastic reduction in area, the Atlantic Forest is the biome in Brazil with the highest species richness of anuran amphibians, with more than 400 known species, and approximately 85% of these (about 340 species) are endemic to the biome, which also harbors a large number of undescribed species (Cruz & Feio & Haddad 2005). This biome also exhibits high species richness of snakes (134 species), although the species richness and endemism of lizards in the Atlantic Forest (40 endemic species) is much lower when compared to the Amazon Forest, with 81 endemic species (Ribeiro et al. 2009).
2. Data collection

We conducted the survey of amphibian and reptile species between October and December 2009 during three field trips lasting six days each, totaling 15 sampling days in all centers (Caboclos, Casa de Pedra, Ouro Grosso and Santana) and stations (Areado, Bulha d’água and Capinzal) of this protected area (Figure 1c). Four complementary methods of active sampling were used: visual encounters, auditory encounters, searches by car and incidental encounters (Crump & Scott Jr. 1994, Sawaya 2004).

Visual Encounters (VE) and Auditory Encounters (AE) were made during the day and at night by a team of four or five people in pre-defined transects (13 forest trails and nine caves). All microhabitats that were visually accessible in forest trails, including anuran breeding sites (e.g., bromeliads, leaf litter, logs, temporary and permanent ponds, swamps, floodplains, streams and creeks) were examined. The duration of each sampling ranged between five and ten hours a day, resulting in a total effort of approximately 435 hours of active search. The sampling effort per person was 93 hours and 40 minutes of active search. Santana and Caboclos received greater sampling effort (120 and 105 hours, respectively), followed by Bulha d’água and Capinzal (72 hours), Areado (60 hours), Casa de Pedra (53 hours) and Ouro Grosso (25 hours). The searches by car (SC) method included individuals sighted on roads traveled within and in the immediate surroundings of the PETAR. The Incidental Encounters method (IE) consisted of a record of random specimens found during activities that were not part of the sampling methods described above. Although the sampling effort is not considered, this method is useful for records of species richness, more comprehensive species lists and for obtain data of species behavior (e.g., use of habitat, diet, reproductive activity) (Sawaya 2004).

For all the specimens captured we recorded the following information: location, geographic coordinates (from the GPS), date and time of collection, type of environment (open or forest), type of substrate (e.g., water, soil, vegetation, trunk), activity (e.g., calling, moving), weather conditions (e.g., temperature, humidity), and elevation. This inventory provided subsidies for the PETAR management plan so the specimens were collected with an authorization issued by the Fundação Florestal - Secretaria do Meio Ambiente do Estado de São Paulo and were deposited in the Coleção de Anfíbios do Departamento de Zoologia da Universidade...

Figure 1. Original cover of the Atlantic Forest (ombrophilous dense forest phytophysiognomy) in Brazil (a) (source: IBGE); original distribution of the Atlantic forest (ombrophilous dense forest) in São Paulo State and position of the main conservation units at the Vale do Ribeira (b): 1 = PETAR; 2 = P. E. Intervales; 3 = P. E. Carlos Botelho; 4 = Mosaico de Unidades de Conservação do Iacupiranga (source: Biota/FAPESP); and sampled sites in the PETAR (c): 1 = Base Areado; 2 = Base Bulha d’água and Capinzal; 3 = Núcleo Caboclos; 4 = Núcleo Casa de Pedra; 5 = Núcleo Ouro Grosso; 6 = Núcleo Santana.
In addition to the field samples, secondary records of species found in Apiaí and Iporanga municipalities were obtained from collection catalogs of the main scientific collections of amphibians and reptiles in São Paulo State: Coleção de Anfíbios do Departamento de Zoologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, campus de Rio Claro (CFBH), the Coleção Herpetológica “Alphonse Richard Hoge” do Instituto Butantan (IBSP and CRIB) and the Coleção Herpetológica do Museu de Zoologia da Universidade de São Paulo (MZUSP) (see Appendix 1).

During the field surveys in the PETAR (October to December 2009), we recorded 50 species of anuran amphibians and 20 reptiles (Figures 2 and 3). Of this total, 24 species of anuran amphibians and 11 reptiles were not found during this survey (Tables 1 and 2). It is possible that the snake *Corallus cropanii* occurs in this protected area, because the four individuals of the species that are deposited in research collections were collected in Eldorado, Miracatu, Pedro de Toledo and Sete Barras, all municipalities near to the PETAR (Franco et al. 2009). Because it is extremely rare, this species is classified as critically endangered in the Brazilian list of endangered species (Instituto... 2003).

2. Considerations on the use of habitat and altitudinal gradient

Of the 50 species of anuran amphibians sampled in this study, few were exclusively found in open environments, namely: *Aplastodiscus perviridis*, *Dendropsophus elegans*, *D. werneri*, *Hypsiboas albomarginatus*, *H. paralis*, *H. prasinus*, *Leptodactylus lator*, *L. mystacinus*, *Physalaemus cuvieri*, *P. spiniger* and *Snakes*.

During the field surveys in the PETAR (October to December 2009), we recorded 50 species of anuran amphibians and 20 reptiles (Figures 2 and 3). Of this total, 24 species of anuran amphibians and 11 reptiles were not found during this survey (Tables 1 and 2).

The reptiles captured in open environments were *Amphibian macrocephala*, *Hydromedusa tectifera*, *Liophis miliaris*, *Ophiodes striatus* and *Thamnodynastes nattereri*, and in forested areas, *Chironius bicarinatus*, *Dipsas alternans*, *Enyalius iheringii*, *Oxyrhopus clathratus*, *Tropidophis paucisquamis* and *Xenodon neuwiedii*.

The reptiles captured were found in both types of environment (Table 4). Additional information on the habitats used by species of anuran amphibians in this study can be found in Table 3.

Few studies on these assemblages try to associate the species with the altitudinal gradient present in the studied localities (e.g., Giaretta et al. 1999, Sawaya 1999, Guix et al. 2000, Araujo et al. 2009a, Centeno 2009, Forlani et al. 2010), although it is an essential component to help explain the patterns of geographic distribution of many species from the Atlantic Forest. Reportedly, this biome has a very complex topographical compartmentalization, with sub-areas that vary greatly between one another, such as the tropical slopes of the Serra do Mar and Mantiqueira mountain ranges and the Planalto Paulista (Ab Saber 2005). This very rugged relief provides a large number of habitats and microhabitats, which could be one of the factors responsible for the high species richness, high rates of endemism (Cruz & Feio 2007, Haddad et al. 2008) and diversity of reproductive modes found among the anuran amphibians in this biome (Haddad & Prado 2005).

In the study area, the highest altitudes were recorded in Areçado (850 to 980 m), mid-altitudes in Bulha d’água and Capinzal and Caboços (500 to 730 m) and the lowest altitudes in Casa de Pedra, Ouro Grosso and Santana (130 to 460 m) (Tables 3 and 4). According to this classification, the species of anuran amphibians in the PETAR were grouped into three categories. In the first, we allocated the species that were distributed widely throughout the altitudinal gradient present in the PETAR (most species), and sampled at the three altitude classes (high, mid-altitude and low). A total of 17 species occur in this category: *Bokermannohyla hylax*, *Dendrosophus elegans*, *D. microps*, *D. minutus*, *Hypsiboas bischoffi*, *H. faber*, *H. prasinus*, *H. faber*.
Table 1. Species composition of amphibians from the PETAR and surrounding areas (Apiaí and Iporanga municipalities, São Paulo State, Brazil) in the present study (primary data) and by consulting the catalogs of the main scientific collections of São Paulo State (secondary data): C = Coleção de Anfíbios do Departamento de Zoologia da Universidade Estadual Paulista, campus de Rio Claro (CFBH), M = Coleção Herpetológica do Museu de Zoologia da Universidade de São Paulo (MZUSP) and Z = Museu de História Natural da Universidade Estadual de Campinas (ZUEC).

Family	Species	Primary data	Secondary data
Ordem Anura			
Brachycephalidae	*Ischnocnema guenteri* (Steindachner, 1864)	●	-
	Ischnocnema parva (Girard, 1853)	●	-
	Ischnocnema sp. (aff. bolbodactyla)	●	-
Bufonidae	*Rhinella icterica* (Spix, 1824)	●	C; M
	Rhinella ornata (Spix, 1824)	●	C; M; Z
Centrolenidae	*Vitreorana uranoscopa* (Müller, 1924)	●	C
Ceratophryidae	*Ceratophrys aurita* (Raddi, 1823)	-	M
Craugastoridae	*Haddadus binotatus* (Spix, 1824)	●	-
Cycloramphidae	*Cycloramphus eleutherodactylus* (Miranda-Ribeiro, 1920)**	●	C; M
	Cycloramphus lutzorum Heyer, 1983**	●	C; M
	Macrogenioglotus alippoi Carvalho, 1946	●	-
	Proceratophrys boiei (Wied-Neuwied, 1825)	●	C; M; Z
Hemiphractidae	*Flectonotus fssilis* (Miranda Ribeiro, 1920)	●	-
	Flectonotus ohuasi (Wandolleck, 1907)	●	-
Hylidae	*Aplastodiscus callipygius* (Cruz & Peixoto, 1985)	●	-
	Aplastodiscus cf. ehrhardtii (Müller, 1924)*	●	-
	Aplastodiscus perviridis A. Lutz, 1950	●	-
	Bokermannohyla circumdata (Cope, 1871)	●	-
	Bokermannohyla hylax (Heyer, 1985)	●	C; M
	Dendropsophus berthalutzii (Bokermann, 1962)	-	C
	Dendropsophus elegans (Wied-Neuwied, 1824)	●	C; M
	Dendropsophus microps (Peter, 1872)	●	C; M
	Dendropsophus minutus (Peters, 1872)	●	C; M; Z
	Dendropsophus senicus (Cope, 1868)	●	C
	Dendropsophus werneri (Cochran, 1952)	●	C; Z
	Hypisboas albomarginatus (Spix, 1824)	●	C; M
	Hypisboas bischoffi (Boulenger, 1887)	●	C; M
	Hypisboas faber (Wied-Neuwied, 1821)	●	M
	Hypisboas pardalis (Spix, 1824)	●	-
	Hypisboas prasinus (Burmeister, 1856)	●	-
	Hypisboas semilineatus (Spix, 1824)	-	C; M
	Phyllomedusa distincta A. Lutz, 1950	●	C; M; Z
Scinax berthei (Barrio, 1962)		●	-
Scinax cf. perpusillus (A. Lutz & B. Lutz, 1939)	●	-	
Scinax crospedospilus (A. Lutz, 1925)	●	M	
Scinax fuscovarius (A. Lutz, 1925)	-	M	
Scinax hayii (Barbour, 1909)		-	Z
Scinax perereca Pombal, Haddad & Kasahara, 1995	●	C	
Scinax rizibilis (Bokermann, 1964)	●	Z	
Scinax sp. (gr. catharinae)		●	-
Sphaenorhynchus caramaschii Toledo, Garcia, Lingnau & Haddad, 2007	●	-	
	Sphaenorhynchus surdus (Cochran, 1953)	●	C
Hylodidae	*Crossodactylus caramaschii* Bastos & Pombal, 1995	●	C; M; Z
	Hylodes carolosoi Lingnau, Canedo & Pombal, 2008	●	-
	Hylodes cf. asper (Müller, 1924)	-	M

*Species classified as Data Deficient (DD) according to the list of endangered species in São Paulo State (São Paulo 2008); **Species classified as Data Deficient (DD) according to IUCN red list of threatened species (International... 2010).
Table 1. Continued...

Family	Species	Primary data	Secondary data
Leiuperidae	*Hyloides heyeri* Haddad, Pombal & Bastos, 1996**	•	C; M; Z
	Physalaemus cuvieri Fitzinger, 1826	•	
	Physalaemus maculiventris (Lutz, 1925)	•	
	Physalaemus olfersii (Lichtenstein & Martens, 1856)	•	C
	Physalaemus spiniger (Miranda-Ribeiro, 1926)	•	C
Leptodactylidae	*Leptodactylus cf. marmoratus* (Steindachner, 1867)	•	
	Leptodactylus flavoviticus Lutz, 1926	-	M
	Leptodactylus latrans (Steffen, 1815)	•	
	Leptodactylus mystacinus (Burmeister, 1861)	•	-
	Leptodactylus notoaktites Heyer, 1978	•	C; M; Z
	Paratetlamotobius sp. (aff. cardosoi)	•	-
Microhylidae	*Chiasmocleis leucosticta* (Boulenger, 1888)	•	
	Myersiela microps (Duméril & Bibron, 1841)	-	M

Ordem Gymnophiona

| Caeciliidae | *Laetkenophylius brasiliensis* (Lütken, 1852)** | - | M |
| | *Siphonops annulatus* (Mikan, 1820) | - | M |

*Species classified as Data Deficient (DD) according to the list of endangered species in São Paulo State (São Paulo 2008); **Species classified as Data Deficient (DD) according to IUCN red list of threatened species (International... 2010).

Ischnocnema guenteri, *Leptodactylus notoaktites*, *Physalaemus cuvieri*, Proceratophrys boiei, Rhinella icterica, Scinax pererica, *S. rizibilitis* and Scinax sp. (gr. cathariniae). Although *Leptodactylus latrans* and *Phyllolema distincta* were not observed in the mid-altitudes, these species were included in the category referred above since they probably occur throughout the gradient present in the park (Table 3).

The species recorded at high and mid-altitudes were placed in the second category (8 species), namely: *Aplastodiscus callipygus*, *A. perviridis*, *Bokermannohyla hylax*, *Cycloramphus eleutherodactylus*, *Dendropsophus seniculus*, *Hylodes heyeri*, *Phyllolema olfersii* and *Scinax croopedosilas* (Table 3).

Species observed in the mid-altitudes and low altitudes are part of the third category and include (10 species): *Aplastodiscus cf. ehrihardti*, *Cycloramphus eleutherodactylus*, *Dendropsophus werneri*, *Flectonotus fissilis*, *Hylodes heyeri*, *Leptodactylus cf. marmoratus*, *Physalaemus spiniger*, *Rhinella ornata*, *Scinax cf. perpusillus* and *Vitreorana uranoscopa* (Table 3).

Of the 15 remaining species, ten correspond to single records, and in these cases, any inference about the altitudinal distribution of these species would be hasty (Table 3).

With regard to the reptiles, only the most abundant species were considered for this classification (7 species). Only *Bothropoides jararaca* was observed widely distributed amongst the three altitudinal categories. *Tomodon dorsatus* was not sampled in mid-altitudes, although it is likely that the species also occurs throughout the altitudinal gradient present in the PETAR. The species *Sibynomorphus mikanii*, *Tropidophis paucisquama* and *Enyalius iheringii* may be included in the second category (high and mid-altitude). Only *Bothrops jararacussu* and *Micrurus corallinus* were recorded in the mid- and low altitudes of the park (third category). It was not possible to categorize the other 13 species into altitude classes due to the small number of records (Table 4).

The PETAR has specialized fauna that inhabit caves, with several adaptations such as depigmentation, reduced sight organs and well-developed tactile organs such as the classic case of the blind catfish *Pimelodella kronae*, restricted to the caves associated with the Iporanga river (Trajano 1991). During the sampling period we observed the following species of anuran amphibians inside caves: *Cycloramphus eleutherodactylus*, *Hyloides cardosoi*, *H. heyeri*, *Rhinella icterica* and *Bokermannohyla hylax* (Figure 4). *Cycloramphus eleutherodactylus* was the most frequent species of anuran associated to this type of habitat sampled in the Caboelós, Ouro Grosso and Santana centers. These observations may contribute to understand habitat use of this species. To date, there are two similar records for *C. eleutherodactylus* at the Parque Estadual de Intervales, Iporanga municipality, São Paulo State and in Sengés municipality, Paraná State (Araujo et al. 2009a). Regarding the composition of species of reptiles, there is also a similarity between the assemblages in the Parque Estadual de Intervales (Sazima 2001), Parque Estadual Carlos Botelho (Forlani et al. 2010) and Mosaico de Unidades de Conservação do Jacupiranga (Domenico 2008) which is located further south from this extensive dense forest (Figure 1b). The great similarity found between the anuran amphibian assemblages in Carlos Botelho and Intervales state parks and its relationships with other assemblages in Brazil had already been pointed out in previous studies (Araujo et al. 2009a). The composition of species of reptiles, there is also a similarity between the assemblages in the Parque Estadual de Intervales (Sazima 2001), Parque Estadual Carlos Botelho (Forlani et al. 2010) and Mosaico de Unidades de Conservação do Jacupiranga (Domenico 2008).

Comparing the species richness of the herpetofauna in these protected areas, we observed that the PETAR (60 species of amphibians and 31 reptiles) together with the Parque Estadual Carlos Botelho (65 amphibians and 59 reptiles) assume a prominent position, showing a high richness of species when compared to other protected areas in the region, such as the Parque Estadual

http://www.biotaneotropica.org.br
http://www.biotaneotropica.org.br/v10n4/en/abstract?inventory+bn01710042010
Figure 2. Amphibian species sampled at the Parque Estadual Turístico do Alto Ribeira (PETAR), São Paulo State, Brazil. a = *Ischnocnema guenteri*; b = *Ischnocnema parva*; c = *Ischnocnema* sp. (aff. bolbodactyla); d = *Rhinella icterica*; e = *Rhinella ornata*; f = *Vitreorana uranoscopa*; g = *Haddadus binotatus*; h = *Cyclorhaphus eleutherodactylus*; i = *Cyclorhaphus lutzorum*; j = *Macrogenioglotus alipioi*; k = *Proceratophrys boiei*; l = *Flectonotus fischeri*; m = *Flectonotus ohausi*; n = *Aplastodiscus callipygius*; o = *Aplastodiscus* cf. *ehardi*; p = *Aplastodiscus perviridis*; q = *Bokermannohyla circulata*; r = *Bokermannohyla hylax*; s = *Dendropsophus elegans*; t = *Dendropsophus microps*; u = *Dendropsophus minutus*; v = *Dendropsophus seniculus*; w = *Dendropsophus wernerii*; x = *Hypsiboas albomarginatus*; y = *Hypsiboas bischoffi*; z = *Hypsiboas faber*; a1 = *Hypsiboas pardalis*; b1 = *Hypsiboas prasinus*; c1 = *Phyllomedusa distincta*; d1 = *Scinax berthae*; e1 = *Scinax* cf. *perpusillus*; f1 = *Scinax cropepedopilus*; g1 = *Scinax perereca*; h1 = *Scinax rigibillis*; i1 = *Scinax* sp. (gr. *catharinus*); j1 = *Sphaenorhynchus caraschi*; k1 = *Sphaenorhynchus surdus*; l1 = *Crossodactylus caramaschi*; m1 = *Hylodes heyeri*; n1 = *Physalaemus caviei*; o1 = *Physalaemus maculiventris*; p1 = *Physalaemus offeri*; q1 = *Physalaemus spiniger*; r1 = *Leptodactylus cf. marmoratus*; s1 = *Leptodactylus latrans*; t1 = *Leptodactylus notaktites*; u1 = *Paratelmatobius* sp. (aff. *cardosoii*); v1 = *Chiasmocleis leucosticta*. All individuals were found at the study locality. Photos: Cybele O. Araujo; except c, e, h, s, t, v, k1, l1, o1, v1 (Thais H. Condez), a1, c1, f1, u1 (Amom M. Luiz), i (Mauricio C. Forlani), g1 (Fernanda C. Centeno).
Figure 2. Continued...
de Intervales (48 amphibians and 29 reptiles) and the Mosaico de Unidades de Conservação do Jacupiranga (39 amphibians and 49 reptiles) (Bertoluci 2001, Sazima 2001, Domenico 2008, Forlani et al. 2010).

Considering the small number of days devoted to the sampling of the assemblages in this study (15 days) and that only active search methods were used, it is likely that more species will be added to this list with the increase in sampling effort and the use of complementary methods such as passive collection (e.g., pitfall traps), ideal for sampling species that inhabit the leaf litter or with fossorial habits. Although the Parque Estadual Carlos Botelho shows the highest richness of amphibians and reptiles, this locality has been more intensively studied throughout several years and using various methods of capture (Guix et al. 2000, Bertoluci et al. 2007, Moraes et al. 2007, Forlani et al. 2010). Thus, it is likely that with increased sampling effort in other protected areas present in this forest continuum, greater similarity in species composition and richness will be found.
Figure 3. Reptile species sampled at the Parque Estadual Turístico do Alto Ribeira (PETAR), São Paulo State, Brazil. a = Ophiodes striatus; b = Hemidactylus mabouia; c = Placosoma corydilum champsonnotus; d = Enyalius iheringii; e = Tapinambis merianae; f = Chironius bicarinatus; g = Spilotes pullatus; h = Dipsas alternans; i = Liophis millarius; j = Oxyrhopus clathratus; k = Sibynomorphus neuwiedii; l = Thamnodynastes nattereri; m = Tomodon dorsalis; n = Xenodon neuwiedii; o = Micrurus corallinus; p = Tropidophis paucisquamis; q = Bothropoides jararaca; r = Bothrops jararacussu. All individuals were found at the study locality. Photos: Cybele O. Araujo; except e, n, o, r (Fernanda C. Centeno), g, q (Thais H. Condez).
Table 2. Species composition of reptiles from the PETAR and surrounding areas (Apiá and Iporanga municipalities, São Paulo State, Brazil) in the present study (primary data) and by consulting the catalogs of the main scientific collections of São Paulo State (secondary data): I = Coleção Herpetológica “Alphonse Richard Hoge” do Instituto Butantan (IBSP), M = Coleção Herpetológica do Museu de Zoologia da Universidade de São Paulo (MZUSP) and Z = Museu de História Natural da Universidade Estadual de Campinas (ZUEC).

Family	Species	Primary data	Secondary data
Ordem Squamata (Amphisbaenia)	**Amphisbaena microcephala** (Wagler, 1824)	●	-
Amphisbaenidae	**Amphisbaena microcephala** (Wagler, 1824)	●	-
Ordem Squamata (Lacertilia)	**Ophiodes striatus** (Spix, 1825)	●	-
Anguidae	**Ophiodes striatus** (Spix, 1825)	●	-
Gekkonidae	**Hemidactylus mabouia** (Moreau de Jonnès, 1818)	●	-
Gymnophthalmidae	**Colobodactylus taunayi** (Amaral, 1933)	-	M
Placosoma cordylinum champsonotus (Werner, 1910)*	●	-	
Placosoma glabellum (Peters, 1870)	-	M	
Leiosauridae	**Enyalius iheringii** Boulenger, 1885	●	-
Teiidae	**Tupinambis merianae** (Duméril & Bibron, 1839)	●	-
Ordem Squamata (Ophidia)	**Liotyphlops beui** (Amaral, 1924)	-	M
Anomalepididae	**Liotyphlops beui** (Amaral, 1924)	-	M
Colubridae	**Chironius foveatus** (Bailey, 1945)	-	I
Chironius bicarinatus (Wied, 1820)	●	-	
Spilotes pullatus (Linnaeus, 1758)	●	I; M	
Dipsadidae	**Dipsas alternans** (Fischer, 1885)	●	-
Echinnanthera undulata (Wied, 1824)	-	M	
Erythrolamprus aesculapii (Linnaeus, 1766)	-	Z	
Imantodes cenchoa (Linnaeus, 1758)	-	I	
Liophis miliaris (Linnaeus, 1758)	●	-	
Oxyrhops clathratus Duméril, Bibron & Duméril, 1854	●	I	
Elapidae	**Micrurus corallinus** (Merrem, 1820)	●	I; M; Z
Tropidophiidae	**Tropidophis paucisquamis** (Müller, 1901)	●	Z
Viperidae	**Bothropoides jararaca** (Wied, 1824)	●	M
Bothrops jararacussu Lacerda, 1884	●	I; M	
Crotalus durissus terrificus (Laurenti, 1768)	-	I	
Chelidae	**Hydromedusa tectifera** Cope, 1869	●	-

*Species classified as Data Deficient (DD) according to the list of endangered species in São Paulo State (São Paulo 2008).
Table 3. Altitudinal gradient, type of environment, and locality where amphibians were sampled in the PETAR, between October and December 2009. Type of environment (open): bromeliad at forest edge (brfe); creek (cr); creek at forest edge (crfe); dirt road (dr); lake (l); lake at forest edge (lfe); swamp (sw); swamp at forest edge (swfe); temporary pond on the road (tpr). Type of environment (forest): bamboo thicket (bt); bromeliad (br); bromeliad at riparian stream (brrs); cave (ca); inside forest (f); lake (l); leaf litter inside the forest (llf); leaf litter at riparian creek (llrc); leaf litter at riparian stream (llrs); riparian creek (rc); riparian stream (rs); rocks (r); stream (s); temporary pond inside the forest (tpf). Locality (centers and stations of the PETAR): Areado (A); Bulha d’água and Capinzal (B); Caboclos (C); Casa de Pedra (CP); Ouro Grosso (OG); Santana (S).

Species	Altitudinal gradient (m)	Type of environment Locality (centers and stations)			
B. hylax	246 - 851 swfe	ca; f; rs	A	B; C	S
D. elegans	190 - 891 sw		A	C	OG
D. microps	190 - 902 sw	l	A	B; C	OG; S
D. minutus	134 - 918 crfe; sw	l; rc; rs	A	B; C	CP; OG
H. bischoffi	155 - 901 crfe; swfe	f; l; rs	A	B; C	CP; OG; S
H. faber	141 - 891 crfe; sw	f; l; rs	A	B; C	CP; OG
H. prasinus	141 - 900 l		A	B	CP
I. guentheri	261 - 911 llf		A	B; C	CP; S
L. latrans	190 - 896 dr; l; sw		A		OG
L. notoaktites	190 - 904 cr; dr; sw llf; llrs		A	B; C	OG; S
P. distincta	134 - 918 crfe; swfe	f; rs	A		CP
P. cuvieri	190 - 900 dr; sw		A	B	OG
P. boiei	454 - 896 dr; sw llf; llrc; llrs		A	B; C	CP
R. icterica	134 - 900 dr; sw ca; llf		A	B; C	CP; S
S. perereca	190 - 918 sw	l; rc; rs	A	C	OG
S. rizibilis	190 - 902 sw	f; l	A	C	OG
Scinax sp. (gr. catharinae)	246 - 905 swfe	f	A	B	C
A. callipygius	606 - 918 swfe	f; rs	A	C	
A. perviridis	721 - 891 sw		A	B	
B. circumdata	620 - 906 f; rs		A	B; C	
D. seniculus	610 - 883 sw	l	A	C	
H. pardinis	569 - 894 llfe; sw		A	B; C	
I. parva	611 - 911 llf		A	C	
P. olfersii	569 - 911 sw	l; llf; llrs	A	B; C	
S. crospeodispilus	566 - 980 sw	bt	A	C	
A. cf. ehrhardtii	454 - 614 f		B		CP
C. eleutherodactylus	216 - 606 ca; r		C	CP; OG; S	
D. werneri	190 - 569 sw		C	OG	
F. fissilis	287 - 611 br; brrs		B; C	CP; OG; S	
H. heyeri	287 - 622 ca; s		C	S	
L. cf. marmoratus	280 - 697 llf; llrs		B; C	CP; S	
P. spiniger	190 - 620 sw; swfe; tpr		B; C	CP; OG	
R. ornata	216 - 620 sw; tpr llf		B; C	OG	
S. cf. perpusilus	246 - 697 brfe br; brrs		B; C	S	
V. uranoscopa	246 - 620 rs		B	S	
F. ohausi	905 f		A		
L. mystacinus	890 sw		A		

Species that occurred at altitudes below the predominant gradient of altitudes sampled at Núcleo Cabocos
Table 3. Continued...

Species	Altitudinal gradient (m)	Type of environment	Locality (centers and stations)
Species	Altitudinal gradient (m)	Type of environment	Locality (centers and stations)
---------	--------------------------	---------------------	-------------------------------
Paratelmatoebius sp. (aff. cardosoi) 915	tpf	A	
S. berthae 894	sw	A	
S. caramaschii 891 - 918	sw	rs	A
H. cardosoi 602 - 611	ca; s	C	
Ischnocnema sp. (aff. bolbodactyla) 602 - 611	llf	C	
C. leucosticta* 408	llf	C	
C. caramaschii 265	s	S	
C. lutzorum 265	s	S	
H. binotatus 454	llf	CP	
H. albomarginatus 190	sw	OG	
M. alipioi* 277 - 328	llf	C	
P. maculiventris 326	tpf	S	
S. surdus 190 - 198	sw	rs	OG

*Species that occurred at altitudes below the predominant gradient of altitudes sampled at Núcleo Caboclos

Table 4. Altitudinal gradient, type of environment, and locality where the reptiles were sampled in the PETAR, between October and December 2009. Type of environment (open): dirt road (dr); forest edge (fe); swamp (sw). Type of environment (forest): inside forest (f); lake (l); leaf litter inside the forest (llf); riparian stream (rs). Locality (centers and stations of the PETAR): Areado (A); Bulha dʼágua and Capinzal (B); Caboclos (C); Casa de Pedra (CP); Ouro Grosso (OG); Santana (S).

Species	Altitudinal gradient (m)	Type of environment	Locality (centers and stations)
B. jararaca 261 - 900	dr; sw	f; llf; rs	A
T. dorsatus 216 - 881	fe	llf	A
S. neuwiedii 603 - 896	dr	llf	A
T. paucisquamis 505 - 902	l; llf	A	
E. iheringii 530 - 915	f	A	
B. jararacussu 141 - 615	dr; sw	llf	A
M. corallinus 391 - 611	fe	llf	A
D. alternans 883	f	A	
H. testudinaria 896	sw	A	
T. nattereri 857 - 890	sw	A	
C. bicarinatus 614	f	A	
L. miliaris 566	sw	A	
O. striatus 620	fe	A	
A. microcephala 377	dr	S	
H. mabouia 246 - 283	fe	f	S
O. clathratus 243	llf	S	
P. cordylinum champsonotus 283 - 293	fe	f	S
S. pullatus 281 - 380	dr	llf	S
T. merianae 131 - 266	dr	llf	S
X. neuwiedii 312	llf	S	
to the area that is, to some extent, also responsible for the increased richness of the local herpetofauna. In evolutionary terms, this environmental heterogeneity, which is a reflection of the different historical processes that occurred across the Atlantic Forest, has led to the isolation among populations and consequently to the existence of high endemism and high rates of speciation within the assemblages found in this biome (Carnaval et al. 2009).

Considering that the Atlantic Forest biome has been reduced to less than 12% of its original extent (Ribeiro et al. 2009) and only a small percentage of its original forest cover (1%) is protected (Wilson 1997), it is essential to keep up the maintenance and management of the remaining forest fragments. The Parque Estadual Turístico do Alto Ribeira is characterized for harboring a great diversity of amphibians and reptiles (91 species), emphasizing the need for maintaining the natural characteristics of this important Atlantic Forest remnant in the South of São Paulo State. This diversity can be attributed to the existence of a large variety of habitats and microhabitats such as the many aquatic sites used by various species of anuran amphibians. Moreover, the PETAR features a large altitudinal gradient (80 - 1,160 m elevation), which confers a high degree of climatic, geological and hydrological heterogeneity.
of these scarce remnants in São Paulo State, such as the PETAR and other protected areas that make up the Vale do Ribeira, Serra de Paramapiacaba and Serra do Mar forest continuum.

Acknowledgements

We thank the management officer and staff of the PETAR, Fausto E. Barbo and Marco A. Senna for assistance in the field; Maurício C. Forlani for additional data on amphibian species; Célvio F. B. Haddad, Miguel T. U. Rodrigues, Valdir J. Germano and Bianca V. M. Berneck for assistance with species identification; two anonymous reviewers for helpful comments on the manuscript. Financial support was provided by the Fundação Florestal and Instituto Florestal.

References

AB’SABER, A.N. 2005. Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, São Paulo.

ARAÚJO, C.O., CONDEZ, T.H. & SAWAYA, R.J. 2009a. Anfíbios anuros do Parque Estadual das Furnas do Bom Jesus, sudeste do Brasil, e suas relações com outras taxocenoses no Brasil. Biota Neotrop. 9(2) http://www.biotaneotropica.org.br/v9n2/pb abstract?article-bnf01109022009 (último acesso em 13/02/2010).

ARAÚJO, O.G.S., TOLEDO, L.F., GARCIA, P.C.A. & HADDAD, C.F.B. 2009b. The amphibians of São Paulo State. Biota Neotrop. 9(4) http://www.biotaneotropica.org.br/v9n4/en abstract?inventory-bnf0310904209 (último acesso em 20/04/2010).

BÉRNILS, R.S. (org.) 2010. Brazilian reptiles - List of species. Sociedade Brasileira de Herpetologia http://www.sbherpetologia.org.br (último acesso em 11/06/2010).

BERTOLUCI, J.A. 2001. Anfíbios anuros. In Intervales: fundação para a conservação e produção florestal do Estado de São Paulo (C. Leonel, ed.). Secretaria do Meio Ambiente, Fundação Florestal, São Paulo, p.159-168.

BERTOLUCI, J.A., BRASSALOTI, R.A., RIBEIRO Jr., J.W., VILELA, V.M.F.N. & SAWAKUCHI, H.O. 2007. Species composition and similarities among anuran assemblages of four forest sites in southeastern Brazil. Sci. Agric. 64(4):364-374.

CARNVAL, A.C., HICKERSON, M.J., HADDAD, C.F.B., RODRIGUES, M.T. & MORITZ, C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest. Science 323:785-789.

CENTENO, F.C. 2009. Diversidade e uso do ambiente pelos anfíbios e répteis da ilha de São Sebastião, Ilhabela, SP. Dissertação de Mestrado, Universidade de São Paulo, São Paulo.

CHAPARRO, J.C., PRAMUK, J.B. & GLUESENKAMP, A.G. 2007. A new species of arboreal Rhinella (Anura: Bufonidae) from cloud forest of southeastern Peru. Herpetologica 63:203-212.

CICCHI, P.J.P., SENA, M.A., PECCININI-SAELE, D.M. & DUARTE, M.R. 2007. Serpentes das ilhas costeiras do Estado de São Paulo, Sudeste do Brasil. Biota Neotrop. 7(2): http://www.biotaneotropica.org.br/v7n2/pb abstract?article-bnf03907022007 (último acesso em 25/11/2009).

CONDEZ, T.H., SAWAYA, R.J. & DIXO, M. 2009. Herpetofauna dos remanescentes de Mata Atlântica da região de Tapiral e Piedade, SP. Sudeste do Brasil. Biota Neotrop. 9(1) http://www.biotaneotropica.org.br/v9n1/en abstract?inventory-bnf01809012009 (último acesso em 24/11/2009).

CRUMP, M.L. & SCOTT, N.J. 1994. Standard techniques for inventory and monitoring. In Measuring and monitoring biological diversity: standard methods for amphibians (W.R. Heyer, M.A. Donnelly, R.W. Mc Diarmid, L.C. Hayek & M.S Foster, ed.). Smithsonian Institution Press, Washington, p.84-92.

CRUZ, C.A.G. & FEIO, R.N. 2007. Endemismos em anfíbios em áreas de altitude na Mata Atlântica no Sudeste do Brasil. In Herpetologia no sudeste do Brasil (L.B. Nascimento & M.E. Oliveira, ed.). Sociedade Brasileira de Herpetologia, Belo Horizonte, p.117-126.

CURCIO, F.F., PIACENTINI, V.Q. & FERNANDES, D.S. 2009. On the status of the snake genera Erythrolamprus Boie, Liophis Wagler and Lygophis Fitzinger (Serpentes, Xenodontinae). Zootaxa 2173:66-68.

DOMENICO, E. 2008. Herpetofauna do Mosaico de Unidades de Conservação do Jacupiranga (SP). Dissertação de Mestrado, Universidade de São Paulo, São Paulo.

FAIVOVICH, J., HADDAD, C.F.B., GARCIA, P.C.A., FROST, D.R., CAMPBELL, J.A. & WHEELER, W.C. 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: a phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 294:1-240.

FENWICK, A.M., GUTBERLET Jr., R.L., EVANS, J.A. & PARKINSON, C.L. 2009. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). ZooJ. Lin. Soc. 156:617-640.

FERREIRA, A.S., OLIVEIRA, D.M., DONATO, C.R., ALMEIDA, E.A.B., SILVA, E.J., BARROS-NETO, H.M.C., SOUZA, S.S., SANTANA, M.E.V. & DANTAS, M.A.T. 2009. Levantamento da herpetofauna da Gruta Raposinha, Laranjeiras, Sergipe - dados preliminares. In Anais do XXX Congresso Brasileiro de Espeleologia. Sociedade Brasileira de Espeleologia, Montes Claros, p.63-68.

FONSECA, G.A.B., RYLANDS, A.B., PAGLIA, A. & MITTERMEIER, R.A. 2004. Atlantic Forest. In Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions (R.A. Mittermeier, P.R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C.G. Mittermeier, J. Lamoreux & G.A.B. Fonseca, ed.). CEMEX & Agrupacion Sierra Madre, Mexico City, p.84-88.

FORLANI, M.C., BERNARDO, P.H., HADDAD, C.F.B. & ZAHER, H. 2010. Herpetofauna do Caídos Botelho State Park, São Paulo State, Brazil. Biota Neotrop. 10(3) http://www.biotaneotropica.org.br/v10n3 en abstract?article-bnf021003210.

FRANCO, F.L., GAMBOA, L.F. Novos registros de Corallus cropanii (Hoge, 1954) (Boaidea, Boa). Araras, serpente endêmica do Vale do Ribeira, estado de São Paulo, Brasil. In Anais do IV Congresso Brasileiro de Herpetologia. Sociedade Brasileira de Herpetologia, Pirenópolis.

FROST, D. 2010. Amphibian Species of the World: an Online Reference. Version 5.4. Electronic Database. American Museum of Natural History, New York, USA. http://research.amnh.org/vz/herpetology/amphibia (último acesso em 03/06/2010).

FROST, D.R., ETHERIDGE, R.E., JANIES, D. & TITUS, T.A. 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Am. Mus. Novit. 3343:1-38.

FROST, F.D., GRANT, T., FAIVOVICH, J., BAIN, R.H., HAAS, A., HADDAD, C.F.B., DE SÁ, R.O., CHANNING, A., WILKINSON, M., DONNELLAN, S.C., RAXWORTHY, C.J., CAMPBELL, J.A., BLOTTO, B.L., MOIER, P., DREWES, R.C., NUSSEBAUM, R.A., LYNCH, J.D., GREEN, D.M. & WHEELER, W.C. 2006. The Amphibian Tree of Life. Bull. Am. Mus. Nat. Hist. 297:1-370.

FUNDAÇÃO PARA A CONSERVAÇÃO E A PRODUÇÃO FLORESTAL DO ESTADO DE SÃO PAULO - FUNDAÇÃO FLORESTAL. 2009a. Unidades de Conservação - Parques Estaduais. http://www.flforestal.sp.gov.br/parquesEstaduais.php (último acesso em 07/02/2010).

FUNDAÇÃO PARA A CONSERVAÇÃO E A PRODUÇÃO FLORESTAL DO ESTADO DE SÃO PAULO - FUNDAÇÃO FLORESTAL. 2009b. PETAR - informações gerais sobre o parque. http://www.flforestal.sp.gov.br/hotspots/hotspot/sobre.php (último acesso em 07/02/2010).

FUNDAÇÃO SOS MAPA ATLÂNTICA & INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. 2008. Atlas dos remanescentes florestais da Mata Atlântica, período de 2000 a 2005. http://www.sosmatatlantica.org.br (último acesso em: 10/11/2009).

GIARETTA, A.A., FACURE, K.G., SAWAYA, R.J., MEYER, J.H.D.M. & CHEMIN, C. 1999. Diversity and abundance of litter frogs in a montane forest of Southeastern Brazil: seasonal and altitudinal changes. Biotropica 31:669-674.
GRANT, T., FROST, D.R., CALDWELL, J.P., GAGLIARDO, R., HADDAD, C.F.B., KOK, P.J.R., MEANS, D.B., NOOAN, B.P., SCHARGE, W.E. & WHEELER, W.C. 2006. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athelphathura: Dendrobatidae). Bull. Am. Mus. Nat. Hist. 299:1-262.

GUAYASAMIN, J.M., CASTROVIEJO-FISHER, S., TRUEB, L., AYARZAGÜENA, J., RADA, M. & VILÁ, C. 2009. Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Alliphrynus ratuheni. Zootaxa 2100:1-97.

GUIX, J.C., LLORENTE, G., MONTORI, A., CARRETERO, M.A. & SANTOS, X. 2000. Uma nova área de elevada riqueza de anuros em o Bosque Lluvioso Atlântico de Brasil. Bol. Assoc. Herpetol. Esp. 11(2):100-105.

HADDAD, C.F.B. & PRADO, C.P.A. 2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55(3):207-217.

HADDAD, C.F.B. & PRADO, C.P.A. 2008. Anfibios da Mata Atlântica: guia dos anfibios anuros da Mata Atlântica. Neotropica, São Paulo.

HARTMANN, P.A., HARTMANN, M.T. & MARTINS, M. Ecologia e história natural de uma taxoceno de serpentes no Núcleo Santa Virginia do Parque Estadual da Serra do Mar, no sudeste do Brasil. Biota Neotrop. 9(3) http://www.biotaneotropica.org.br/v9n3/pt/abstract?article+bn03609032009. (último acesso em 11/06/2010).

HEDGES, S.B., DUELLMAN, W.E. & HENICKE, M.P. 2008. New World direct-developing frogs (Anura: Terrarama): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737:1-182.

HENICKE, M.P., DUELLMAN, W.E. & HEDGES, S.B. 2007. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Nat. Acad. Sci. 104:10902-10907.

HEYER, W.R., RAND, A.S., CRUZ, C.A.G., PEIXOTO, O.L. & NELSON, C.E. 1990. Frogs of Boracária. Arq. Zool. (São Paulo) 31(4):231-410.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. 1987. Carta Iporanga - SP, PR. Regiões Sudeste e Sul do Brasil. Secretaria de Planejamento da Presidência da República, Rio de Janeiro.

INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS - IBAMA. 2003. Lista nacional das espécies da fauna brasileira ameaçadas de extinção. http://www.mma.gov.br/sitiodoindex.php?ido=contento.monta&idEstrutura=179 (último acesso em 18/01/2010).

INTERNATIONAL UNION FOR CONSERVATION OF NATURE - IUCN. 2010. IUCN Red List of Threatened Species. Version 2010.1. http://www.iucnredlist.org (último acesso em 18/01/2010).
SAWAYA, R.J. 1999. Diversidade, densidade e distribuição altitudinal da anurofauna de serapilheira da Ilha de São Sebastião, SP. Dissertação de Mestrado, Universidade de São Paulo, São Paulo.

SAWAYA, R.J. 2004. História natural e ecologia das serpentes de Cerrado da região de Ibirapuera, SP. Tese de Doutorado, Universidade Estadual de Campinas, Campinas.

SAZIMA, I. & HADDAD, C.F.B. 1992. Répteis da Serra do Japi: notas sobre história natural. In História natural da Serra do Japi: ecologia e preservação de uma área florestal no sudeste do Brasil. (P. Morellato, org.). UNICAMP, Campinas, p.212-235.

SAZIMA, I. 2001. Répteis. In Intervales: fundação para a conservação e produção florestal do estado de São Paulo (C. Leonel, ed.). Secretaria do Meio Ambiente/Fundação Florestal, São Paulo, p.148-158.

SOCIEDADE BRASILEIRA DE HERPETOLOGIA - SBH. 2010. Brazilian amphibians - List of species. http://www.sbherpetologia.org.br (último acesso em 11/06/2010).

TRAJANO, E. 1991. Population ecology of Pimelodella kronei, troglobitic catfish from Southeastern Brazil (Siluriformes, Pimelodidae). Env. Biol. Fish. 30(4):407-421.

VERDADE, V.K., RODRIGUES, M.T. & PAVAN, D. 2009. Anfibios Anuros da região da Estação Biológica do Alto da Serra de Paranaipuacaba. In Patrimônio da Reserva Biológica do Alto da Serra de Paranaipuacaba. A antiga Estação Biológica do Alto da Serra (M.I.M.S. Lopes, M. Kirizawa e M.M.R.F. Melo, org.). Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, p.579-604.

WILKINSON, M. & NUSSBAUM, R.A. 2006. Caecilian phylogeny and classification. In: Reproductive Biology and Phylogeny of Gymnophiona: (Caecilians) (J.-M. Exbrayat, ed.). Science Publisher, Enfield, Jersey, and Plymouth, 39-78. Reproductive Biology and Phylogeny, 5.

WILSON, E.O. 1997. A Situação atual da diversidade biológica. In Biodiversidade (E.O. Wilson & F.M. Peter, ed.). Nova Fronteira, Rio de Janeiro, p.3-24.

ZAHER, H., GRAZZIOTIN, F.G., CADLE, J.E., MURPHY, R.W., MOURA-LEITE, J.C. & BONATTO, S.L. 2009. Molecular Phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Pap. Av. Zool. 49(11):115-153.
Appendix 1

Appendix 1. Amphibian and reptile species collected at the PETAR (Apiaí and Iporanga municipalities, São Paulo state, Brazil) and deposited in the Coleção de Anfíbios CFBH, Departamento de Zoologia, Instituto de Bionciências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, campus de Rio Claro, São Paulo State, Coleção Herpetológica “Alphonse Richard Hoge”, Instituto Butantan (IBSP and CRIB), São Paulo State and Coleção Herpetológica do Museu de Zoologia da Universidade de São Paulo, São Paulo State (MZUSP).

- Aplastodiscus callipygius (CFBH 25591, 25628); Aplastodiscus cf. ehrhardti (CFBH 25647); Aplastodiscus perviridis (CFBH 25648, 25592); Bokermannohyla circumdata (CFBH 25649-25651, 26707, 26757, 26773, 26774); Bokermannohyla hylax (CFBH 25652, 25593, 25675, 26723, 26724, 26775-26779); Chiasmocleis leucosticta (CFBH 25629); Crossodactylus caramaschii (CFBH 25676, 25677); Cycloramphus eleutherodactylus (CFBH 25678-25680); Dendropsophus elegans (CFBH 25597, 25598, 26708-26710, 26743-26747); Dendropsophus microps (CFBH 25594-25596, 26725, 26742, 26781-26785); Dendropsophus minutus (CFBH 25653, 25599, 26711-26714, 26734, 26735, 26790); Dendropsophus seniculus (CFBH 25600, 25630, 25631); Dendropsophus werneri (CFBH 25688-25690, 26750, 26791-26794); Flectonotus fissilis (CFBH 25632-25634); Flectonotus ohausi (CFBH 25601); Haddadus binotatus (CFBH 25698, 25699); Hyloides cardosoi (CFBH 25635-25637, 26795, 26796); Hylodes heyeri (CFBH 25638, 25681, 25682, 26797-26803); Hypsiboas albomarginatus (CFBH 25691); Hypsiboas bischoffi (CFBH 25655-25657, 26722, 26736, 26765-26769); Hypsiboas faber (CFBH 25658, 25602, 25692, 26715); Hypsiboas pardalis (CFBH 25659, 25603); Hypsiboas prasinus (CFBH 25660, 25604, 26715); Ischnocnema guenteri (CFBH 25661, 25606, 25617, 26716, 26727, 26737, 26809-26811); Ischnocnema parva (CFBH 25608-25610, 26717, 26812); Ischnocnema sp. (aff. bolbodactyla) (CFBH 25639-25641); Leptodactylus cf. marmoratus (CFBH 25662, 25633, 25634, 26738, 26739, 26770, 26771, 26813, 26814); Leptodactylus latrans (CFBH 25613-25615); Leptodactylus notoaktites (CFBH 25611, 25612, 25664, 26718, 26728, 26815-26818); Macrogenioglotus alipioi (CFBH 25643-25642); Paratelmatobius sp. (aff. cardosoi) (CFBH 25616); Phyllomedusa distincta (CFBH 25617, 25618, 25700, 26740); Physalaemus caviari (CFBH 25619, 25665, 25666); Physalaemus maculiventris (CFBH 25684, 25685, 26729-26732); Physalaemus olescii (CFBH 25620, 25667, 26719, 26772, 26819); Physalaemus spiniger (CFBH 25668, 25701, 26741, 26820); Proceratophrys boiei (CFBH 25643, 25669, 25702, 26821-26825); Rhinella icteric (CFBH 25621, 25670, 25671, 26826, 26827); Rhinella ornata (CFBH 25672, 25673, 25693); Scinax berthae (CFBH 25703); Scinax cf. perpusillus (CFBH 25644, 25674); Scinax crosopedospilus (CFBH 25622, 25645); Scinax perecore (CFBH 25623, 25694, 26720, 26721, 26753, 26828, 26829); Scinax rizibilis (CFBH 25624-25626, 26754, 26755, 26830, 26831); Scinax sp. (gr. cathariniae) (CFBH 25646, 25686); Sphaenorhynchus caramaschii (CFBH 25627); Sphaenorhynchus surdus (CFBH 25695-25697, 26756); Vitreorana uranoscopa (CFBH 25687); Bothrops jararacussu (IBSP 77841-77847); Bothrops jararacussu (IBSP 77841-77847); Chimnonius bicarinatus (IBSP 77855); Diplas alternans (IBSP 77856); Enyalius iheringii (CRIB 0718, MZUSP 100004-100009); Hemidactylus mabouia (CRIB 0718); Hydromedusa testifera (CRIB 0718); Erythrolamprus milaris (IBSP 77857); Micrurus corallinus (IBSP 77854); Ophiodips straitus (CRIB 0719, MZUSP 100010); Oxyrhopus clathratius (IBSP 77858); Placosoma corydlinum champsonotus (CRIB 0720, MZUSP 100011); Sibynomorphus neuwiedii (IBSP 77859, 77860); Spilotes pullatus (IBSP 77861, 77862); Thamnodynastes nattereri (IBSP 77864-77866); Tomodon dorsatus (IBSP 77867-77869); Tropidophis paucisquamis (IBSP 77870-77874); Xenodon neuwiedii (IBSP 77863).