Hemodynamic and blood biochemical profile during endotoxemia and after therapeutic intervention in buffalo calves.

JP Singh¹ and DV Singh²*
¹Post-graduate student
²Professor, Department of Vety. Physiology & Biochemistry, COVS, GADVASU, Ludhiana-141004
*Corresponding author: digvijay231@rediffmail.com

Abstract

Five apparently healthy male buffalo calves aged between 6-12 months were infused with Escherichia coli endotoxin @ 5 μg/kg BW/hr for 3 hours to induce the symptoms of endotoxemia like corneal opacity, increased respiration rate, hypoproteinemia, hypoalbuminemia, hypoglycemia, decrease in mean systolic, diastolic, pulse and mean arterial and central venous pressure along with inconsistent changes in heart rate in the present investigation. The endotoxemic animals were then treated with hypertonic saline solution (HSS) @ 4 ml/Kg BW, Dextran-40 @ 10 ml/Kg BW, Flunixin Meglumine 1.1 mg/Kg BW and blood @ 20 ml/Kg BW as a single infusion which raised the systolic, diastolic, pulse, mean arterial and central venous pressure along with hematocrit and hemoglobin to the levels either close or even higher than the normal pre-infusion levels. Respiration rate and body temperature showed non-significant alterations during endotoxin infusion and after therapeutic intervention. A non-significant increase in total protein was observed after treatment which reached close to pre-infusion level. Mean plasma fibrinogen showed non-significant rise throughout the period of observation while plasma albumin, globulin and creatinine varied non-significantly.

A significant increase was seen in plasma glucose level at 5th, 6th and 7th hour as compared to pre-infusion normal values. Overall, treatment given to the animals was found to be effective.

Keywords: Buffalo calves, Endotoxin, Flunixin meglumine, HSS, Dextran-40, Blood.

Introduction

Endotoxemia is a life threatening inflammatory condition which can lead to shock, multiple organ failure, suppression of immune system and wound-healing processes (Ng et al., 2008). Septic or endotoxic shock results from rapid liberation of endotoxins into circulation which leads to cardiovascular collapse accompanied by severe peripheral vasodilatation, pallor of mucosa, cool skin and extremities, diarrhea, decreased systemic blood pressure and muscle weakness (Radostits et al., 2000).

Therefore, the consequences of endotoxemia are either a considerable morbidity or mortality of animals leading to severe economic losses to the dairy farmers.

In view of this, the present investigation was undertaken to elucidate the haemodynamic and biochemical changes observed during endotoxemia and after therapeutic intervention.
Materials and Methods

Five apparently healthy male buffalo calves aged between 6-12 months with body weight range of 70-140 Kg were used in the present investigation. Jugular vein was exteriorized and catheterized under aseptic conditions using local anesthetic lignocaine for the infusion of endotoxin and therapeutic combination. Carotid artery was catheterized and attached to the mercury manometer for the record of blood pressure. Animals remained conscious throughout the experiment. Endotoxin was infused @ 5 μg/kg BW/hr for consecutive three hrs for the development of endotoxemia and subsequently intervenes for next 4 hrs. Animals were given HSS (7.2% NaClAcq.) @ 4 ml/Kg BW, Dextran-40 @ 10 ml/Kg BW, Flunixin Meglumine 1.1mg/Kg BW and blood @ 20 ml/Kg BW as a single infusion. The blood samples were collected before the start of experiment from healthy buffalo calves and immediately after 1,2,3,4,5,6 and 7 hrs of start of experiment. The cardiopulmonary and haemodynamic changes in buffalo calves were monitored through observation of general symptoms, recording of systolic, diastolic, pulse pressure, mean arterial pressure (MAP) from carotid artery, central venous pressure (CVP) from jugular vein, heart rate, respiration rate, body temperature and estimation of haematocrit and hemoglobin till 7 hrs. Biochemical profile in buffalo calves were monitored through estimation of total plasma proteins, albumin, globulin, fibrinogen, plasma glucose and plasma creatinine levels. The data generated in the present investigation were analysed with CRD Anova (Snedecor and Cochran, 1976) and compared with the normal preinfusion values within the group.

Results and Discussion

All the animals exhibited symptoms of restlessness, respiratory distress, diarrhea and profuse salivation. The animals closed their eyes and struggled intermittently with progression of endotoxin infusion. Corneal opacity was observed in three animals immediately after end of experiment, from which two were able to recover subsequently in four days. Disseminantive Intravascular Coagulation (DIC) was a major problem encountered throughout the observation period in all the animals. (Pictures. 1and 2)
But on treatment, all the animals remained calm, opened their eyes and profuse urination was observed one hour after infusion.

Cardiovascular Haemodynamic

The mean systolic pressures decreased immediately in all the animals following endotoxin infusion and decreased steadily thereafter till the end of endotoxin infusion. A significant (p<0.05) decline (145.20±33.24) in mean systolic pressure was observed at 3rd hour (Table 1), which increased (174.80±20.12) after treatment with Flunixin meglumine, HSS, Dextran-40 and Blood. Singh and Bansal (2008) observed a highly significant fall in mean systolic, diastolic, pulse pressure, MAP, CVP, hemoglobin till the end of the endotoxin infusion while respiratory rate was significantly increased along with a non-significant alteration in rectal temperature and hematocrit during infusion of the endotoxin. Non-significant changes were seen in mean diastolic pressure in experimental animals (Table 1). At the end of experiment, the mean diastolic pressure was higher (142.40±15.19) than normal values indicating that the treatment given to animals effectively elevated the mean diastolic pressure. Singh et.al., 2011 observed a highly significant fall in mean systolic, diastolic, pulse pressure, MAP, CVP and haemoglobin till the end of endotoxin infusion.

The changes in mean arterial pressure (MAP) were found to be non-significant throughout endotoxin infusion and attained near normal values in all the animals at 7th hour of the start of the endotoxin infusion. (Table 1). Singh et. al., (2005) reported sharp fall in MAP after endotoxin infusion but upon treatment with hypertonic saline solution, MAP again tried to return to near normal values. The fall in MAP during endotoxin infusion (non-significant during the present study) may be due to the release of prostaglandins (Margolis et al., 1987). The rise in MAP might be due to the fact that flunixime, one of the important components of the treatment, is a cyclo oxygenase inhibitor and prevents the formation of prostaglandin and hence improves tissue perfusion (Singh et al., 2011). Another reason could be that HSS infusion increases the plasma osmolality and osmotically draws intracellular and interstitial water into vascular system. The plasma volume expansion is three ml for every one ml of hypertonic saline solution (Jean et al., 1993).
ISSN: 2455-944X

There was non-significant fall in central venous pressure (CVP) during endotoxin infusion from 1st to 3rd hour in all the animals. However, after administering treatment combination, animals showed significant increase in CVP from 4th hour onwards (Table 1) which remained significantly high (20.10±2.94) till the end of the observation period. The fall in CVP in present study might be attributed to the peripheral pooling of blood (Singh et. al., 2005). According to Singh (1979), failure of capacitance changes due to lack of venous constriction may be one of the important contributing factors in reducing CVP in calves.

A significant (p<0.05) fall in pulse pressure was observed at 2nd and 3rd hour in the buffalo calves during endotoxin infusion. The administration of combination of Flunixin meglumine, HSS, Dextran-40 and Blood increased the mean pulse pressure non-significantly yet it was still lower than the normal pre-infusion values in all the animals. There was no significant change in heart rate during endotoxic shock and after therapeutic intervention (Table 1). However, there was a tendency of heart rate to be higher than the base values at the end of endotoxin infusion. In comparison to this, Reece and Whalstrom (1973) observed a decrease in heart rate through first 50 minutes after infusion of endotoxin with maximum decrease at 25 minutes after which increase in heart rate was observed which continued till the end of observation period of 24 hours. Waurick et al., (1997) also reported elevated heart rate, cardiac output and oxygen delivery at 24th hour of endotoxin infusion in unanesthetised sheep.

Hematology

Non-significant alterations in hemoglobin were observed in experimental animals which could be due to haemodilution caused by Dextran-40 that constituted an essential part of treatment given to animals. No significant changes in hematocrit were observed in animals in spite of blood transfusion which may be due to haemodilution caused by intravenous infusion of Dextran-40 to buffalo calves indicating that treatment given to animals was effective in restoring near normal PCV (38.76±4.38). Semrad (1993) reported decrease in hematocrit in endotoxemic neonatal calves at 48 to 96 hours of endotoxin infusion. Similar results have also been seen by Singh et al., (2003) in endotoxemic calves who were treated with hypertonic saline solution and plasmex D-40.

Biochemical Profile

Plasma total proteins, albumin, globulin, fibrinogen, plasma glucose and plasma creatinine levels were assessed to check the biochemical status of the body in the experimental animals. Total plasma proteins decreased non-significantly after endotoxemia but increased to 8.58 ±0.61 i.e., slight below pre-infusion levels after treatment with Flunixin meglumine, HSS, Dextran-40 and Blood transfusion (Table 2). Earlier Nagaraja et al., (1979) observed hypoproteinemia on E. coli endotoxin infusion in cow calves. Singh et al., (1997) reported a slight decrease in plasma proteins in endotoxemic buffalo calves. The hypoproteinemia as observed in present investigation was perhaps due to the increased protein breakdown and ability of the carbon skeleton of amino acids to enter kreb cycle. Additionally the decreased ability of anoxic liver to metabolize amino acids may also partially contribute to hypoproteinemia (Singh et al., 2004).

Non-significant alterations were found in plasma albumin and globulin levels during endotoxin infusion and after treatment, however, slight decrease in plasma albumin level (3.18 ±0.92) and increase in globulin level (4.74±0.93) was found at the end of experiment as compared to preinfusion levels (Table 2). Singh (2000) and Kaneko et al., (1997) also found the similar results in endotoxemic calves. Non-significant increase in plasma fibrinogen concentration was observed in the present investigation during endotoxemia well as after treatment (Table 2). This could be due to fact that endotoxin accelerates fibrinogen synthesis rate (Wycoff 1970).
Table 1: Hemodynamic profile during endotoxic shock and after treatment with HSS, Flunixin Meglumine, Dextran-40 and blood in buffalo calves.

Parameter	0 hr	1 hr	2 hr	3 hr	4 hr	5 hr	6 hr	7 hr
Systolic Pressure (m.m. Hg.)	180.80 ±11.71	166.40 ±16.08	152.80 ±22.29	**145.20±33.24** *	176.40 ±15.58	173.20 ±18.47	178.00 ±18.05	174.80 ±20.12
Diastolic Pressure (m.m. Hg.)	136.40 ±9.94	134.00 ±13.56	132.00 ±21.02	122.40 ±38.22	136.80 ±18.03	137.60 ±17.28	141.20 ±11.36	142.40 ±15.19
Pulse Pressure (m.m. Hg.)	44.40 ±15.90	29.20 ±11.88	**20.80 ±6.87** *	**20.80 ±4.6** *	39.60 ±13.95	35.60 ±5.89	36.80 ±10.73	32.40 ±10.43
MAP (m.m. Hg.)	151.19 ±7.44	147.13 ±15.94	138.93 ±21.21	131.33 ±38.03	150.00 ±15.95	149.46 ±17.47	153.46 ±13.00	153.20 ±16.35
CVP (Cm Saline)	9.60 ±0.89	7.4 ±1.81	8.30 ±3.15	7.70 ±3.34	**19.10 ±1.55** *	**21.30 ±2.70** *	**20.00 ±2.44** *	**20.10 ±2.94** *
HeartRate (Beats/min.)	41.92 ±8.07	42.96 ±6.59	41.46 ±7.31	43.37 ±9.38	43.02 ±3.85	44.93 ±3.85	54.16 ±8.61	56.44 ±7.15
Hb (Gm/dl)	13.31 ±0.85	13.00 ±0.74	12.77 ±0.67	12.40 ±0.63	12.09 ±0.57	12.39 ±0.35	13.35 ±0.20	13.53 ±0.97
PCV (%)	38.40 ±4.77	37.20 ±5.26	35.20 ±2.38	34.80 ±3.11	34.60 ±2.30	36.20 ±5.49	38.84 ±4.73	38.76 ±4.38
Respiration Rate (/ Min.)	9.20 ±3.96	10.40 ±4.72	10.00 ±3.00	9.80 ±4.32	9.80 ±5.76	10.40 ±6.18	11.40 ±4.39	11.80 ±4.65
Body Temperature(°F)	99.12 ±0.60	99.32 ±0.75	99.28 ±0.83	99.64 ±0.95	99.40 ±0.80	99.84 ±0.51	99.84 ±0.76	99.84 ±0.76

*Significant at 5% level
Each figure is a mean of 5 observations

Table 2: Blood biochemical profile during endotoxic shock and after treatment with HSS, Flunixin Meglumine, Dextran-40 and blood in buffalo calves.

Parameter	0 hr	1 hr	2 hr	3 hr	4 hr	5 hr	6 hr	7 hr
Plasma Total Proteins (gm/dl)	8.70 ±0.71	8.14 ±0.75	7.86 ±0.67	7.78 ±0.66	8.10 ±0.52	8.00 ±0.77	8.46 ±0.70	8.58 ±0.61
Plasma Albumin (gm/dl)	3.58 ±0.79	3.38 ±0.69	3.12 ±0.68	2.94 ±0.80	2.76 ±0.55	2.82 ±0.92	2.94 ±0.68	3.18 ±0.92
Plasma Globulin (gm/dl)	4.66 ±0.71	4.22 ±0.73	4.18 ±0.81	4.2 ±1.00	4.7 ±1.08	4.50 ±1.20	4.86 ±0.93	4.74 ±0.93
A/G ratio	0.76	0.80	0.74	0.70	0.58	0.62	0.60	0.67
Plasma Fibrinogen (gm/dl)	0.46 ±0.08	0.54 ±0.08	0.56 ±0.11	0.64 ±0.13	0.58 ±0.13	0.68 ±0.13	0.66 ±0.19	0.66 ±0.14
Plasma Glucose (mg/dl)	90.80 ±7.79	84.60 ±6.76	85.60 ±5.41	82.40 ±10.80	91.20 ±5.97	**104±7.96** *	**102.60±4.03** *	**103.60±11.16** *
Plasma Creatinine (mg/dl)	1.00 ±0.11	0.88 ±0.10	0.84 ±0.11	0.79 ±0.09	0.80 ±0.12	0.89 ±0.14	0.89 ±0.14	0.86 ±0.13

*Significant at 5% level
Each figure is a mean of 5 observations
Non-significant hypoglycemia was evident from the start of experiment till 4th hour followed by a significant (p < 0.05) increase in plasma glucose level at 5th, 6th and 7th hour of observation (Table 2). Singh et. al., (2004) observed significant hypoglycemia in buffalo calves after subjecting them to endotoxic shock with i/v infusion of E.coli endotoxin. Endotoxin induced alterations in glucose concentration are postulated to be caused by changes in cellular calcium utilization. Insulin like activity of endotoxin has also been implicated in causing the hypoglycemia during endotoxemia (Rose and Semrad 1993). Plasma glucose level significantly (p<0.05) increased after the treatment probably due to beneficial effect of Dextran–40 which gets converted into glucose with the passage of time through metabolism in liver.

The plasma creatinine level in endotoxemic buffalo calves showed non-significant alterations during the study period, however, remained slightly below (0.86 ±0.13) the normal pre-infusion values (Table 2). The haemodilution caused by i/v infusion of HSS and whole blood has probably significantly reduced the circulating plasma levels of creatinine.

It can be concluded from the results of present investigation, that the treatment with Flunixin meglumine, HSS, Dextran–40 and Blood transfusion was found to be effective against endotoxemia as it improved the general physiological conditions of animals at the end of observation period.

References

1. Dupe R, Bywater R J and Goddard M. 1993. A hypertonic saline infusion in treatment of experimental shock in calves and clinical shock in dogs and cats. Veterinary Record 133: 585-90.
2. Gerbino A J, Altemier W A, Schimmel C, Glenny R W. 2001. Endotoxemia increases relative perfusion to dorsal-caudal regions. Journal of Applied Physiology. 90: 1508-15.
3. Griel L C, Zarkower A and Eberhart R J. 1975. Clinicopathological effect of E. coli endotoxin in mature cattle. Canadian Journal of Comparative Medicine (39): 1-6.
4. Jean GS, Constable PD and Yorchok K. 1993. The clinical use of hypertonic saline solution in food animals with hemorrhagic and endotoxic shock. Agricultural Practice. 14 (7): 6-11.
5. Kaneko J J, Harvey J W, Bress M L. 1997. Clinical biochemistry of domestic animals, pp.126-134, 893, 5th edition, Academic press, New York.
6. Margolis J H, Buttons G D and Fesseler J F. 1987. The efficacy of dexamethasone and flunixin meglumine in treating endotoxin induced changes in calves. Veterinary Research Communications 11: 479-491.
7. Nagaraja T G, Bartley E E, Anthony H D, Leipold H W and Fina L R. 1979. Endotoxic shock in calves from intravenous injection of rumen bacterial endotoxin. Journal of Animal Sciences 49: 567-82.
8. Ng S W, Zhang H, Hedge A and Bhatia M. 2008. Role of preprotachykinin -A gene products on multiple organ injury in LPS-induced endotoxemia. Journal of Leukocyte Biology 83: 288-295.
9. Radostitis OM, Gay CG, Blood DC, Hinchcliff KW (2000) Textbook of diseases of Cattle, sheep, pigs, goats and Horses, pp. 41-47,410. Chapter II and IX, WB Saunders Company ltd.
10. Reece O J and Whalstrom J D. 1973. E.coli endotoxemia in conscious calves. American Journal of Veterinary Research 34: 765-69.
11. Rose M L and Semrad S D. 1993. Clinical efficacy of tirilazad mesylate for treatment of endotoxemia in neonatal calves. American Journal of Veterinary Research 53: 2305-10.
12. Semrad S D. 1993. Comparative efficacy of flunixin, ketoprofen, ketorolac for treating endotoxemic neonatal calves. American Journal of Veterinary Research. 54 (9): 1511-16
13. Singh D V. 2000. Physiological and pharmacological studies on bovine endotoxic shock and its treatment. Ph.D. thesis, Punjab Agricultural University, Ludhiana, India.
14. Singh D V, Singh R V and Sodhi S P S. 2003. Use of combination of hypertonic saline solution and plasmex D-40 to resuscitate endotoxemic buffalo calves. Buffalo Journal. 2: 169-78.
15. Singh D V, Singh R V and Sodhi S P S. 2004. Blood biochemical parameters during bovine endotoxemia and after i/v infusion of hypertonic saline solution and plasmex –D-40. Indian Journal of Animal Sciences 11: 1098-1101
16. Singh K, Krishnamurthy D and Peskin P K. 1997. Endotoxin shock with and without dexamethasone pretreatment in anaesthetized buffalo calves- II. Indian Journal of Veterinary Surgery 18: 8-11.
17. Singh D V, Singh R V and Sodhi S P S. 2005. Effect of blood transfusion in combination with Dextran-40 and hypertonic saline solution on
cardiopulmonary haemodynamics of endotoxic shock in buffalo calves: Veterinary Research Communications 29: 421-30.

18. Singh D V, Bansal S K. 2008. Hemodynamics during endotoxin administration and after i/v infusion of Flunixin meglumine in buffalo calves. Abstract published and paper presented at XXIV conference of ISSAR at KVASU, Hebbal, Bangalore.

19. Singh D.V., S.K. Bansal and G.S.Ghumman 2011 Effect of flunixin meglumine alone and in combination on haemodynamics during bovine endotoxic shock and after treatment. J. Biomedical Science and Engineering, 2011, 4, 29-33.

20. Singh J (1979) An investigation into pathophysiology and treatment of shock in bovines, Ph.D. dissertation, Punjab Agricultural University, Ludhiana, India

21. Snecdor GW and Cochran WG (1976) Statistical methods, Iowa state college press. Iowa, USA.

22. Waurick R, Boe G H, Meyer J, Booke M, Meibner A, Prien T and Aken H V. 1997. Haemodynamic effects of dopamine and nitric oxide synthase inhibition in healthy and endotoxaemic sheep. European Journal of Pharmacology. 333: 181-86.

23. Wycoff H D. 1970. Production of fibrinogen following the endotoxin injection. Proceedings of experimental biological medicine 133: 940-43.

Access this Article in Online

Website:
www.darshanpublishers.com

Subject:
Veterinary Sciences

Quick Response Code

How to cite this article:
JP Singh and DV Singh. (2017). Hemodynamic and blood biochemical profile during endotoxemia and after therapeutic intervention in buffalo calves. Int. J. Curr. Res. Biol. Med. 2(6): 13-19.
DOI: http://dx.doi.org/10.22192/ijcrbm.2017.02.06.003