Peripheral mechanism of a carbonyl hydrosilylation catalysed by an SiNSi iron pincer complex

Toni T. Metsänen, Daniel Gallego, Tibor Szilvási, Matthias Driess,* and Martin Oestreich*

Institut für Chemie, Technische Universität Berlin,
Straße des 17. Juni 115, 10623 Berlin, Germany
and
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
martin.oestreich@tu-berlin.de;
matthias.driess@tu-berlin.de

Electronic Supplementary Information

Table of Contents

1 General Information S4
1.1 Experimental Details S4
1.2 Single-Crystal X-ray Structure Determinations S4
1.3 Computational Details S5
2 General Procedure for the Hydrosilylation of Ketones with Iron(0) Complex 2 (GP 1) S6
2.1 Optimisation with 4-Methoxyacetophenone (3a) S6
2.2 Substrate Scope S7
3 Identification of the Active Iron(II) Complex 7 S8
3.1 General Procedure for the Stoichiometric Reaction of Iron(0) Complex 2 with Hydrosilanes 4 S8
3.1.1 Si = (EtO)₃Si (7a) S8
3.1.2 Si = Me₂PhSi (7b) S9
3.1.3 Si = MePh₂Si (7c) S9
3.2 Crystallographic Data for 7b S10
4 Mechanistic Experiments S14
4.1 Kinetics: Iron(0) complex 2 vs. Iron(II) complex 7a S14
4.1.1 Iron(0) complex 2 S14
4.1.2 Iron(II) complex 7a S14
4.2 Scrambling at the Si–H Bond
4.2.1 Hydrosilane Si–D/Fe–H Scrambling Using \(\text{Me}_2\text{PhSi–D} \) (4b–d)
4.2.2 Deuteration Studies with \(\text{Me}_2\text{PhSi–D} \) (4b–d)
4.3 Scrambling at the C–H Bond
4.3.1 Scrambling Experiment with Deuterated Silyl Ether 8eb–d
4.3.2 Racemisation Experiment with Enantiopure Silyl Ether (S)-8eb
4.4 Phosphine Scrambling
4.4.1 Synthesis of Trimethylphosphine-\(\text{d}_9 \) (6–d)
4.4.2 Scrambling between Complex 7b and Trimethylphosphine-\(\text{d}_9 \) (6–d)
4.5 Phosphine Dissociation
4.5.1 Phosphine Dissociation in the Presence of Acetophenone (3e)
4.6 Silyl Scrambling
4.7 Silane Cross-over Experiment
4.8 Hydrosilylation with Silicon-Stereogenic Hydrosilane
4.8.1 Catalytic Reaction between Acetophenone (3e) with Enantioenriched Acyclic Hydrosilane (H–\(\text{Si}^{-}(\text{S})\text{-4d} \)
4.8.2 Reductive Si–O Bond Cleavage of Silyl Ether 8ed
4.9 Competition Experiment
5 Cartesian Geometries at \(\omega \)B97X-D/6-31G(d)[Fe:cc-pVTZ] in Ångstrom [Å]
5.1 Iron(II) Complex 7a
5.2 Acetone (3o)
5.3 Triethoxysilane (4a)
5.4 Silyl Ether 8oa
5.5 Tetrahydrofuran
5.6 Benzene
5.7 Transition State 9a\(^\ddagger\)
5.8 Transition State 10oa\(^\ddagger\)
5.9 Transition State 13a\(^\ddagger\)
5.10 Intermediate \(\text{cis-14a} \)
5.11 Transition State 15a\(^\ddagger\)
5.12 Intermediate 11a
5.13 Transition State 16a\(^\ddagger\)
5.14 Intermediate 17a
5.15 Transition State 18oa\(^\ddagger\)
5.16 Intermediate 19oa
5.17 Transition State 20oa\(^\ddagger\)
5.18 Transition State 21a\(^\ddagger\)
5.19 Intermediate $trans$-14a S90
5.20 Transition State 22oa‡ S94
5.21 Intermediate 23oa S98
5.22 Transition State 24oa‡ S102
5.23 Intermediate 25oa S107
5.24 Transition State 26oa‡ S111
5.25 Transition State 27oa‡ S116
5.26 Intermediate 28 S120
5.27 Intermediate 29 S124
5.28 Transition State 30oa‡ S128
5.29 Intermediate 31oa S133
5.30 Transition State 32oa‡ S137
6 NMR Spectra S143
7 Gibbs Free Energy Profile S162
8 References S163
1 General Information

1.1 Experimental Details

All experiments and manipulations were conducted under dry oxygen-free nitrogen using standard Schlenk techniques or in an MBraun glovebox with an atmosphere of purified nitrogen or argon. Solvents were dried by standard methods and freshly distilled prior use. C₆D₆ and toluene-d₈ were dried over sodium and benzophenone, distilled and stored on 4 Å molecular sieves prior to use. Liquid ketones were degassed and stored on 4 Å molecular sieves prior to use. Triethoxysilane 4a, dimethylphenylsilane 4b, methylidiphenylsilane 4c, triethylsilane 4e, phenylsilane 4f, and diphenylsilane 4g were obtained from commercial sources and degassed, distilled, and stored under nitrogen atmosphere. PMHS 4h was obtained from commercial sources and used without further purification. Iron(0) complex 2, enantiomerically enriched hydrosilane (S-Si)-4d, silyl ether (S)-8eb, and tris(pentafluorophenyl)borane were prepared according to reported procedures. ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectra were recorded on Bruker AV700, AV500, or AV400 instruments. The NMR chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as internal standard (¹H, C₆D₅H, 7.15 ppm; toluene-d₈, 2.09 ppm; CHCl₃, 7.26 ppm; ¹³C, C₆D₆, 128.0 ppm; toluene-d₈, 20.4 ppm; CDCl₃, 77.16 ppm) or an external standard (³¹P, 85% H₃PO₄, 0.0 ppm; ²⁹Si, TMS, 0.0 ppm). All signals were unambiguously assigned by a combination of 2D NMR ¹H−¹H COSY, HSQC, HMBC correlation spectroscopy. Data are reported as follows: chemical shift, multiplicity (br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet), coupling constants (Hz), and integration. Mass spectra were recorded using APCI or ESI as ionization source and a LTQ Orbitrap XL as analyser. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR. GC−MS measurements were conducted on a Shimadzu GC-2010 gas chromatograph (30 m Rxi-5ms column) linked to a Shimadzu GCMA-QP 2010 Plus mass spectrometer. Enantiomeric excesses were determined by analytical high pressure liquid chromatography (HPLC) analysis on an Agilent Technologies 1290 Infinity or an Agilent Technologies 1200 Infinity instrument with a chiral stationary phase using a Daicel Chiralcel OJ-RH column (MeCN/H₂O mixtures as solvent), a Daicel Chiralcel OJ-H column (n-heptane/iPrOH mixtures as solvent), or a Daicel Chiralpak IB column (n-heptane/iPrOH mixtures as solvent).

1.2 Single-Crystal X-ray Structure Determinations

The crystal was mounted on a glass capillary in perfluorinated oil and measured in a cold nitrogen flow. The data were collected on an Agilent Technologies SuperNova (single source) at 150 K (Cu Kα radiation, λ= 1.5418 Å). The structure was solved by direct methods...
and refined on F_2 with the SHELX-97 software package.[55] The positions of the hydrogen atoms were calculated and considered isotropically according to a riding model except the hydride on the iron centre which could be defined from the Fourier electron density map.

1.3 Computational Details

Due to the possible importance of zwitterionic and charge transfer resonance structures we intended to choose long-range corrected density functional which can correctly describe the physical interactions in such systems. Dispersion correction seemed necessary to provide realistic description of the problem, because of the large size of the reactants and the catalyst (over 100 atoms all together). Therefore, we chose ωB97X-D density functional[56] which satisfied these conditions and benchmark calculations showed that it had been able to provide accurate results for reaction energies, kinetics, as well as noncovalent interactions.[57] For iron atoms, we employed the all-electron triple-ζ cc-pVTZ basis set[58] which allows flexible description. For other atoms (H, C, N, O, Si, and P), we applied 6-31G(d) basis set.[59] Frequency calculations (temperature = 343 K) were carried out to evaluate stationary points; minima no imaginary frequency, transition states with one imaginary frequency. All calculations were carried out with GAUSSIAN 09 program package.[60] The structures were drawn using CYLview 1.0b.
2 General Procedure for the Hydrosilylation of Ketones with Iron(0) Complex 2 (GP 1)

A Schlenk flask equipped with a magnetic stirrer is charged with solution of ketone 3 (0.10 mmol, 1.0 equiv), hydrosilane 4, and iron(0) complex 2 in the indicated solvent (2 mL). The mixture is maintained at indicated temperature for 22 h and then quenched with 2 mL of a KOH solution (5% in H$_2$O). The reaction mixture is maintained for further 2 h at room temperature and subsequently extracted with diethyl ether (3 × 5.0 mL). The combined organic layers are dried over Na$_2$SO$_4$ and filtered. Anisole (internal standard) is added, and an aliquot is taken for GC-MS analysis.

2.1 Optimisation with 4-Methoxyacetophenone (3a)

According to GP 1, 4-methoxyacetophenone (3a, 15 mg, 0.10 mmol, 1.0 equiv) was hydrosilylated under various conditions (Table S1).

Table S1. Hydrosilylation of 4-methoxyacetophenone (3a) using iron(0) complex 2 as precatalyst.

entry	solvent	temp. (°C)	hydrosilane 4 (equiv)	catalyst loading (mol %)	yield of 5a (%)
1	hexanes	70	(EtO)$_3$SiH (3)	2.5	89
2	toluene	70	(EtO)$_3$SiH (3)	2.5	92
3	THF	70	(EtO)$_3$SiH (3)	2.5	96
4	dioxane	70	(EtO)$_3$SiH (3)	2.5	85
5	DMA	70	(EtO)$_3$SiH (3)	2.5	95
6	THF	40	(EtO)$_3$SiH (3)	2.5	68
7	THF	50	(EtO)$_3$SiH (3)	2.5	86
8	THF	60	(EtO)$_3$SiH (3)	2.5	91
9	THF	80	(EtO)$_3$SiH (3)	2.5	99
10	THF	40	PhSiH$_3$ (3)	2.5	48
11	THF	40	Ph$_2$SiH$_2$ (3)	2.5	40
12	THF	40	Me$_2$PhSiH (3)	2.5	26
13	THF	40	Et$_3$SiH (3)	2.5	1
14	THF	40	PMHS (3)	2.5	62
15	THF	70	PMHS (3)	2.5	43
16	THF	70	(EtO)$_3$SiH (1.1)	2.5	73
17	THF	70	(EtO)$_3$SiH (1.5)	2.5	>99
18	THF	70	(EtO)$_3$SiH (2)	2.5	>99
19	THF	70	(EtO)$_3$SiH (2.5)	2.5	>99
20	THF	70	(EtO)$_3$SiH (4)	2.5	98
21	THF	70	(EtO)$_3$SiH (1.5)	0	0
22	THF	70	(EtO)$_3$SiH (1.5)	0.5	77
23	THF	70	(EtO)$_3$SiH (1.5)	1.0	88
2.2 Substrate Scope

According to GP 1, various ketones 3 (0.10 mmol, 1.0 equiv) were hydrosilylated with triethoxysilane (4a, 25 mg, 0.15 mmol, 1.5 equiv), and iron(0) complex 2 (2.2 mg, 2.5 µmol, 2.5 mol %).

Removal of diethyl ether and dissolution in CDCl₃ permitted the control also by NMR spectroscopy. The NMR spectra of the corresponding products were in accordance with the reported alcohols in the corresponding references (Table S2).

Table S2. Substrate scope for the hydrosilylation of ketones using iron(0) complex 2 as precatalyst.

entry	3	R¹	R²	yield of 5 (%)	ref.
1	3a	X = OMe	Me	>99 (5a)	S1,S11
2	3b	X = Et₂N	Me	40 (5b)	S13
3	3c	X = Me	Me	82 (5c)	S1,S14
4	3d	X = Br	Me	>99 (5d)	S1,S15
5	3e	X = H	Me	93 (5e)	S1,S11
6	3f	X = CF₃	Me	95 (5f)	S1,S11
7	3g	X = OMe	Me	70 (5g)	S14
8	3h	X = Me	Me	70 (5h)	S16
9	3i	X = Cl	Me	49 (5i)	S14
10	3j	Mes	Me	0 (5j)	S14
11	3k	Ph	Ph	60 (5k)	S16
12	3l	Ph	Et	18 (5l)	S14
13	3m	Ph	i-Pr	16 (5m)	S14
14	3n	c-Pr	Me	>99 (5n)	S20
15	3p	4-pyridyl	Me	92 (5p)	S17
16	3q	2-tolyl	Ph	41 (5q)	S14
17	3r	4-Br-C₆H₄	Ph	72 (5r)	S18
18	3s	2-furanyl	Me	84 (5s)	S19
19	3t	2,6-Me₂-4-t-Bu-C₆H₂	Me	3 (5t)	S3
20	3u	4-t-Bu-cyclohexanone	Me	25 (cis-5u) (d.r. > 20:1)	S21

*In the presence of 25 mol % of PMe₃ (6).
3 Identification of the Active Iron(II) Complex 7

3.1 General Procedure for the Stoichiometric Reaction of Iron(0) complex 2 with Hydrosilanes 4

Complex 2 (44.5 mg, 50.0 µmol, 1.00 equiv) was weighed in a Schlenk flask with a magnetic stirrer. The hydrosilane 4 (0.15 mmol, 3 equiv) was weighed in a vial and dissolved in 2.0 mL of toluene (0.5 mL of C₆D₆ for NMR studies) and added into the Schlenk flask. The reaction mixture was heated in an oil bath at 70 °C changing the colour from dark purple to dark red. The time for completion (100% conversion by NMR) varied depending on the hydrosilane used: (EtO)₃SiH 12 h, Me₂PhSiH 6 days, and MePh₂SiH reached 90% conversion after 6 days. The reaction mixture was concentrated, and the product was obtained as a crude red oil. The crude product was dissolved in C₆H₆ and cold sublimation of the solvent in vacuo afforded the desired product as a red powder.

3.1.1 Si = (EtO)₃Si (7a)

¹H NMR (500 MHz, C₆D₆, 298 K): δ(ppm) = –14.83 (d, ²J,H-P = 3.2 Hz, ²J,H-Si = 19.3 Hz, 1H, Fe–H), 1.19 (s, 18H, NC(CH₃)₃), 1.41 (t, ³J,H-H = 7.0 Hz, 6H, NCH'H-CH₃), 1.47 (s, 18H, NC(CH₃)₃), 1.48 (d, ²J,H-P = 6.2 Hz, 9H, P(CH₃)₃), 1.58 (t, ³J,H-H = 7.1 Hz, 9H, SiOCH₂CH₃), 3.38 (dq, ²J,H-H = 14.0 Hz, ³J,H-H = 7.0 Hz, 2H, NCH'H–CH₃), 3.57 (dq, ²J,H-H = 14.0 Hz, ³J,H-H = 7.0 Hz, 2H, NCH'H–CH₃), 4.33 (q, ³J,H-H = 6.9 Hz, 6H, SiOCH₂CH₃), 5.91 (d, ³J,H-H = 8.1 Hz, 2H, 3,5-H py), 6.96-7.08 (m, 6H, C arom.H), 7.24 (t, ³J,H-H = 8.0 Hz, 1H, 4-H py), 7.23 (d, ³J,H-H = 7.2 Hz, 2H, C arom.H), 7.72 (d, ³J,H-H = 7.6 Hz, 2H, arom. CH). ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ(ppm) = 15.3 (NCH₂–CH₃), 19.8 (SiOCH₂CH₃), 25.9 (d, ¹J,C-P = 18.2 Hz, P(CH₃)₃), 31.9 (NC(CH₃)₃), 32.6 (NC(CH₃)₃), 38.9 (NCH₂–CH₃), 53.7 (NC(CH₃)₃), 54.1 (NC(CH₃)₃), 56.9 (SiOCH₂CH₃), 94.2 (3,5-C arom. py), 127.1(C arom.), 128.5 (C arom.), 129.0 (C arom.), 131.0 (4-C arom. py), 132.7 (C arom. quaternary Ph), 133.9 (C arom.), 168.1 (2,6-C arom. py), 171.7 (NCN). ²⁹Si{¹H} NMR (80 MHz, C₆D₆, 298 K): δ(ppm) = 33.7 (d, ²J,Si-P = 58.8 Hz, Si(OEt)₃), 79.2 (d, ²J,Si-P = 24.3 Hz, Si:→Fe). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): δ(ppm) = 16.8.
3.1.2 Si = Me$_2$PhSi (7b)

1H NMR (500 MHz, C$_6$D$_6$, 298 K): δ(ppm) = –13.95 (d, 2J$_{H-P}$ = 1.4 Hz, 2J$_{H-Si}$ = 19.7 Hz, 1H, Fe–H), 1.06 (s, 18H, NC(CH$_3$)$_2$), 1.08 (s, 6H, Si(CH$_3$)$_2$Ph), 1.28 (s, 18H, NC(CH$_3$)$_2$), 1.38 (t, 3J$_{H-H}$ = 7.0 Hz, 6H, NCH’H-CH$_3$), 1.44 (d, 2J$_{H-P}$ = 6.3 Hz, 9H, P(CH$_3$)$_3$), 3.33 (dq, 2J$_{H-H}$ = 13.2 Hz, 3J$_{H-H}$ = 6.6 Hz, 2H, NCH’H-CH$_3$), 5.90 (d, 3J$_{H-H}$ = 7.6 Hz, 2H, 3,5-H py), 6.93–7.02 (m, 8H, C arom.), 7.24 (t, 3J$_{H-H}$ = 7.6 Hz, 1H, 4-H py), 7.33 (t, 3J$_{H-H}$ = 7.1 Hz, 1H, 3-C arom. SiPh), 7.45 (m, 1H, C arom. SiPh), 7.50 (m, 2H, Carom. H SiPh), 7.76 (m, 2H, Carom. H Ph). 8.57 (d, 3J$_{H-H}$ = 7.1 Hz, 1H, 2-C arom. SiPh).

13C{1H} NMR (126 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 15.1 (NCH$_2$-C$_3$H$_3$), 16.3 (Si(CH$_3$)$_2$), 25.7 (d, 1J$_{C-P}$ = 16.5 Hz, P(CH$_3$)$_3$), 31.7 (NC(CH$_3$)$_3$), 32.5 (NC(CH$_3$)$_3$), 38.8 (NCH$_2$-CH$_3$), 53.6 (NC(CH$_3$)$_3$), 54.0 (NC(CH$_3$)$_3$), 94.3 (3,5-Carom. py), 125.0 (Carom. SiPh), 126.0 (Carom.), 126.1 (Carom. SiPh), 126.9 (Carom.), 128.4 (Carom.), 128.6 (Carom.), 129.6 (Carom.), 130.9 (Carom.), 132.8 (4-Carom. py), 133.3 (Carom.), 134.3 (Carom.), 136.4 (o-Carom. SiPh), 160.5 (Carom. quaternary SiPh) 168.3 (2,6-Carom. py), 171.8 (NCN). 29Si NMR, 1H–29Si HMQC NMR (500 MHz / 99 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 31.1 (SiMe$_2$Ph), 77.2 (Si–→Fe). 31P{1H} NMR (202 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 14.7.

IR (KBr pellet, cm$^{-1}$): ν/cm$^{-1}$ = 2020. ESI-MS (m/z): calcd for [C$_{50}$H$_{79}$FeN$_7$PSi$_3$]$^+$ (M – H)$^+$ 948.47863; found 948.54423.

3.1.3 Si = MePh$_2$Si (7c)

1H NMR (500 MHz, C$_6$D$_6$, 298 K): δ(ppm) = –13.69 (br s, 1H, Fe–H), 1.06 (s, 18H, NC(CH$_3$)$_2$), 1.24 (s, 18H, NC(CH$_3$)$_2$), 1.34 (m, 6H, NCH’H-CH$_3$), 1.36 (m, 9H, P(CH$_3$)$_3$), 1.37 (m, 3H, SiCH$_2$Ph$_2$), 3.33 (dq, 2J$_{H-H}$ = 13.0 Hz, 3J$_{H-H}$ = 6.0 Hz, 2H, NCH’H-CH$_3$), 5.86 (d, 3J$_{H-H}$ = 7.8 Hz, 2H, 3,5-H py), 6.90–7.05 (m, 10H, C arom.), 7.24 (t, 3J$_{H-H}$ = 7.8 Hz, 1H, 4-H py), 7.34 (t, 3J$_{H-H}$ = 7.2 Hz, 4H, 3-Carom. H SiPh), 7.71 (d, 3J$_{H-H}$ = 6.7 Hz, 2H, Carom.H SiPh). 8.22 (d, 3J$_{H-H}$ = 6.7 Hz, 4H, 2-Carom.H SiPh).

13C{1H} NMR (126 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 15.0 (NCH$_2$-CH$_3$), 25.8 (d, 1J$_{C-P}$ = 16.7 Hz, P(CH$_3$)$_3$), 29.2 (SiCH$_2$Ph$_2$), 31.7 (NC(CH$_3$)$_3$), 32.4 (NC(CH$_3$)$_3$), 38.7 (NCH$_2$-CH$_3$), 53.7 (NC(CH$_3$)$_3$), 54.1 (NC(CH$_3$)$_3$), 94.3 (3,5-Carom. py), 125.0 (Carom. SiPh), 126.2 (Carom. SiPh), 126.8 (Carom.), 128.3 (Carom.), 129.1 (2xCarom. SiPh), 129.8 (Carom.), 130.7 (4-Carom. py), 133.2 (Carom.), 135.6 (Carom.), 136.4 (o-Carom. SiPh), 137.2 (Carom.), 159.8 (Carom. quaternary SiPh), 168.5 (2,6-Carom. py), 172.3 (NCN). 29Si NMR, 1H–29Si HMQC (500 MHz / 99 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 34.4 (SiMePh$_2$), 76.3 (Si–→Fe). 31P{1H} NMR (202 MHz, C$_6$D$_6$, 298 K): δ(ppm) = 16.8.
3.2 Crystallographic Data for 7b

![Crystal structure diagram]

Table S3. Crystallographic data for compound 7b.

Property	Value
Empirical formula	2×(C₅₀H₈₀FeN₇PSi₃) • C₇H₈
Mr	1992.73
Space group	P-1
Crystal system	Triclinic
a [Å]	11.5288(5)
b [Å]	12.5203(5)
c [Å]	21.1550(11)
α [°]	73.555(4)
β [°]	75.604(4)
γ [°]	74.650(4)
V [Å³]	2774.0(2)
Z	1
ρ_{calc} [mg m⁻³]	1.193
Wavelength [Å]	1.54184
μ (MoKα) [mm⁻¹]	3.379
crystal size [mm³]	0.45 × 0.12 × 0.04
Θ limits [°]	3.76 to 67.50
completeness to Θ = 67.50° [%]	99.9
reflns measured^[a]	18617
independent reflns	9988 [R(int) = 0.0490]
parameters	645
R₁ (R₁ all data)^[b]	0.0452 (0.0635)
wR₂ (wR₂ all data)^[c]	0.1026 (0.1162)
GOF	1.020
max., min. peaks [eÅ⁻³]	0.475 and -0.389

^[a] Observation criterion: I>2σ(I).
^[b] R₁ = Σ | |F₁| - |F₂| | / Σ |F₁|.
^[c] wR₂ = {Σ[w(F₁² - F₂²)²] / Σ[w(F₁²)]}¹/²
Table S4. Bond lengths [Å] and angles [°] for compound 7b.

Bond	Length/Distance	Angle			
Fe(1)-N(1)	2.063(2)		1.489(3)		
Fe(1)-Si(1)	2.1509(7)		1.523(4)		
Fe(1)-Si(2)	2.1715(7)		1.500(3)		
Fe(1)-P(1)	2.1975(8)		1.515(4)		
Fe(1)-Si(3)	2.2986(8)		1.528(4)		
Si(1)-N(2)	1.786(2)		1.532(4)		
Si(1)-N(5)	1.893(2)		1.523(4)		
Si(1)-N(4)	1.927(2)		1.529(4)		
Si(1)-C(10)	2.364(2)		1.536(4)		
Si(2)-N(3)	1.794(2)		1.389(4)		
Si(2)-N(6)	1.892(2)		1.397(4)		
Si(2)-N(7)	1.916(2)		1.392(4)		
Si(2)-C(25)	2.356(3)		1.382(4)		
Si(3)-C(43)	1.921(3)		1.375(4)		
Si(3)-C(44)	1.925(3)		1.385(4)		
Si(3)-C(45)	1.938(3)		1.498(4)		
P(1)-C(40)	1.839(3)		1.519(4)		
P(1)-C(41)	1.839(3)		1.526(4)		
P(1)-C(42)	1.839(3)		1.531(4)		
N(1)-C(1)	1.371(3)		1.516(4)		
N(1)-C(5)	1.376(3)		1.519(5)		
C(1)-N(2)	1.374(3)		1.532(4)		
C(1)-C(2)	1.402(4)		1.379(4)		
N(2)-C(6)	1.463(3)		1.394(4)		
C(2)-C(3)	1.371(4)		1.390(4)		
N(3)-C(5)	1.375(3)		1.380(5)		
N(3)-C(8)	1.467(3)		1.372(5)		
C(3)-C(4)	1.380(4)		1.394(4)		
N(4)-C(10)	1.321(3)		1.385(4)		
N(4)-C(11)	1.485(3)		1.408(4)		
C(4)-C(5)	1.401(4)		1.393(4)		
N(5)-C(10)	1.339(3)		1.382(5)		
N(5)-C(15)	1.489(3)		1.379(5)		
N(6)-C(25)	1.337(4)		1.385(5)		
N(6)-C(30)	1.488(3)		1.525(18)		
C(6)-C(7)	1.528(4)		1.374(9)		
N(7)-C(25)	1.327(3)		1.389(10)		
Bond	Distance (Å)	Bond	Distance (Å)		
----------------------	--------------	----------------------	--------------		
C(53)-C(54)	1.386(10)	C(44)-Si(3)-Fe(1)	116.23(9)		
C(54)-C(55)	1.362(10)	C(45)-Si(3)-Fe(1)	117.61(10)		
C(55)-C(56)	1.373(9)	C(40)-P(1)-C(41)	96.02(15)		
C(56)-C(57)	1.370(10)	C(40)-P(1)-C(42)	95.81(15)		
		C(41)-P(1)-C(42)	99.13(15)		
N(1)-Fe(1)-Si(1)	82.72(6)	C(40)-P(1)-Fe(1)	125.45(10)		
N(1)-Fe(1)-Si(2)	78.76(6)	C(41)-P(1)-Fe(1)	120.69(11)		
Si(1)-Fe(1)-Si(2)	144.54(3)	C(42)-P(1)-Fe(1)	114.18(10)		
N(1)-Fe(1)-P(1)	89.22(6)	C(1)-N(1)-C(5)	117.8(2)		
Si(1)-Fe(1)-P(1)	105.82(3)	C(1)-N(1)-Fe(1)	121.12(16)		
Si(2)-Fe(1)-P(1)	103.90(3)	C(5)-N(1)-Fe(1)	120.92(16)		
N(1)-Fe(1)-Si(3)	176.87(6)	N(1)-C(1)-N(2)	115.6(2)		
Si(1)-Fe(1)-Si(3)	95.53(3)	N(1)-C(1)-C(2)	121.4(2)		
Si(2)-Fe(1)-Si(3)	101.41(3)	N(2)-C(1)-C(2)	123.0(2)		
P(1)-Fe(1)-Si(3)	93.76(3)	C(1)-N(2)-C(6)	118.7(2)		
N(2)-Si(1)-N(5)	102.79(10)	C(1)-N(2)-Si(1)	115.61(16)		
N(2)-Si(1)-N(4)	98.58(9)	C(6)-N(2)-Si(1)	125.60(17)		
N(5)-Si(1)-N(4)	68.26(9)	C(3)-C(2)-C(1)	119.0(2)		
N(2)-Si(1)-Fe(1)	103.33(7)	C(5)-N(3)-C(8)	118.1(2)		
N(5)-Si(1)-Fe(1)	133.05(7)	C(5)-N(3)-Si(2)	112.63(17)		
N(4)-Si(1)-Fe(1)	142.90(8)	C(8)-N(3)-Si(2)	125.58(18)		
N(2)-Si(1)-C(10)	105.36(9)	C(2)-C(3)-C(4)	120.4(3)		
N(5)-Si(1)-C(10)	34.47(9)	C(10)-N(4)-C(11)	130.2(2)		
N(4)-Si(1)-C(10)	33.94(9)	C(10)-N(4)-Si(1)	91.49(16)		
Fe(1)-Si(1)-C(10)	151.06(7)	C(11)-N(4)-Si(1)	138.31(17)		
N(3)-Si(2)-N(6)	103.59(10)	C(3)-C(4)-C(5)	119.1(2)		
N(3)-Si(2)-N(7)	98.86(11)	C(10)-N(5)-C(15)	127.9(2)		
N(6)-Si(2)-N(7)	68.64(9)	C(10)-N(5)-Si(1)	92.40(17)		
N(3)-Si(2)-Fe(1)	102.13(7)	C(15)-N(5)-Si(1)	137.99(16)		
N(6)-Si(2)-Fe(1)	145.31(8)	N(3)-C(5)-N(1)	115.0(2)		
N(7)-Si(2)-Fe(1)	129.19(7)	N(3)-C(5)-C(4)	123.9(2)		
N(3)-Si(2)-C(25)	106.27(10)	N(1)-C(5)-C(4)	121.1(2)		
N(6)-Si(2)-C(25)	34.55(10)	C(25)-N(6)-C(30)	128.0(2)		
N(7)-Si(2)-C(25)	34.28(9)	C(25)-N(6)-Si(2)	92.07(16)		
Fe(1)-Si(2)-C(25)	149.13(7)	C(30)-N(6)-Si(2)	137.62(18)		
C(43)-Si(3)-C(44)	98.63(14)	N(2)-C(6)-C(7)	113.4(2)		
C(43)-Si(3)-C(45)	99.22(13)	C(25)-N(7)-C(26)	129.5(2)		
C(44)-Si(3)-C(45)	99.58(13)	C(25)-N(7)-Si(2)	91.35(17)		
C(43)-Si(3)-Fe(1)	121.55(10)	C(26)-N(7)-Si(2)	138.81(17)		
Bond	Angle (°) 1	Bond	Angle (°) 2	Bond	Angle (°) 3
-----------------------	------------	-----------------------	------------	-----------------------	------------
N(3)-C(8)-C(9)	113.4(3)	C(27)-C(26)-C(29)	109.6(2)		
N(4)-C(10)-N(5)	107.4(2)	N(7)-C(26)-C(28)	111.1(2)		
N(4)-C(10)-C(19)	125.1(2)	C(27)-C(26)-C(28)	110.7(3)		
N(5)-C(10)-C(19)	127.5(2)	C(29)-C(26)-C(28)	108.5(3)		
N(4)-C(10)-Si(1)	54.57(12)	N(6)-C(30)-C(33)	105.4(2)		
N(5)-C(10)-Si(1)	53.13(13)	N(6)-C(30)-C(31)	111.8(2)		
C(19)-C(10)-Si(1)	174.43(19)	C(33)-C(30)-C(31)	109.5(3)		
N(4)-C(11)-C(13)	106.6(2)	N(6)-C(30)-C(32)	110.3(2)		
N(4)-C(11)-C(14)	112.7(2)	C(33)-C(30)-C(32)	108.4(3)		
C(13)-C(11)-C(14)	108.2(2)	C(31)-C(30)-C(32)	111.3(3)		
N(4)-C(11)-C(12)	110.5(2)	C(35)-C(34)-C(39)	119.7(3)		
C(13)-C(11)-C(12)	110.0(2)	C(35)-C(34)-C(25)	119.0(3)		
C(14)-C(11)-C(12)	108.8(2)	C(39)-C(34)-C(25)	121.2(3)		
N(5)-C(15)-C(17)	110.4(2)	C(34)-C(35)-C(36)	120.5(3)		
N(5)-C(15)-C(16)	107.9(2)	C(37)-C(36)-C(35)	119.4(3)		
C(17)-C(15)-C(16)	109.7(2)	C(38)-C(37)-C(36)	120.7(3)		
N(5)-C(15)-C(18)	111.4(2)	C(37)-C(38)-C(39)	120.2(3)		
C(17)-C(15)-C(18)	110.5(3)	C(34)-C(39)-C(38)	119.5(3)		
C(16)-C(15)-C(18)	106.8(3)	C(46)-C(45)-C(50)	115.3(3)		
C(20)-C(19)-C(24)	119.4(2)	C(46)-C(45)-Si(3)	123.7(2)		
C(20)-C(19)-C(10)	120.3(2)	C(50)-C(45)-Si(3)	121.0(2)		
C(24)-C(19)-C(10)	120.2(2)	C(45)-C(46)-C(47)	123.2(3)		
C(19)-C(20)-C(21)	119.8(3)	C(48)-C(47)-C(46)	119.6(3)		
C(22)-C(21)-C(20)	120.3(3)	C(49)-C(48)-C(47)	119.2(3)		
C(23)-C(22)-C(21)	120.0(3)	C(48)-C(49)-C(50)	120.2(3)		
C(22)-C(23)-C(24)	120.3(3)	C(49)-C(50)-C(45)	122.4(3)		
C(23)-C(24)-C(19)	120.1(3)	C(53)-C(52)-C(57)	119.3(7)		
N(7)-C(25)-N(6)	107.4(2)	C(53)-C(52)-C(51)	123.4(11)		
N(7)-C(25)-C(34)	126.8(3)	C(57)-C(52)-C(51)	117.2(11)		
N(6)-C(25)-C(34)	125.7(2)	C(52)-C(53)-C(54)	120.1(7)		
N(7)-C(25)-Si(2)	54.37(14)	C(55)-C(54)-C(53)	120.3(7)		
N(6)-C(25)-Si(2)	53.39(13)	C(54)-C(55)-C(56)	119.6(7)		
C(34)-C(25)-Si(2)	172.0(2)	C(57)-C(56)-C(55)	120.9(7)		
N(7)-C(26)-C(27)	111.1(2)	C(56)-C(57)-C(52)	119.7(7)		
N(7)-C(26)-C(29)	105.7(2)				
4 Mechanistic Experiments

4.1 Kinetics: Iron(0) complex 2 vs. Iron(II) complex 7a

4.1.1 Iron(0) complex 2

Iron(0) complex 2 (5 mg, 0.005 mmol, 2 mol%) was weighed in a Schlenk flask together with silane 4a (55 mg, 0.33 mmol, 1.5 equiv) and ketone 3a (34 mg, 0.22 mmol, 1.0 equiv). 2.0 mL of THF were added through a syringe and the mixture was heated to 70 °C. Aliquots were taken during the course of the reaction, hydrolysed and analysed by GC-MS (red squares).

4.1.2 Iron(II) complex 7a

Iron(0) complex 2 (5 mg, 0.005 mmol, 2 mol%) was weighed in a Schlenk flask together with silane 4a (55 mg, 0.33 mmol, 1.5 equiv). 2.0 mL of THF was added through a syringe and the mixture was heated to 70 °C for 30 min while the colour changed from dark purple to clear orange. Ketone 3a (34 mg, 0.22 mmol, 1.0 equiv) was added into the reaction mixture and the heating was continued at 70 °C. Aliquots were taken during the course of the reaction, hydrolysed and analysed by GC-MS (blue diamonds).
4.2 Scrambling at the Si–H Bond

4.2.1 Hydrosilane Si–D/Fe–H Scrambling Using Me₂PhSi–D (4b-d₁)

Complex 7b (54 mg, 0.057 mmol, 1.0 equiv) was mixed in a Schlenk flask with deuterated dimethylphenylsilane (4b-d₁, 9.5 mg, 0.069 mmol, 1.2 equiv) in 2.0 mL of THF. The reaction mixture was heated at 70 °C in an oil bath. The course of the reaction was followed by analysis of an aliquot (0.1 mL) by GC-MS. The deuterated dimethylphenylsilane/dimethylphenylsilane ratio (Si–D/Si–H, blue diamonds) was calculated according to the intensity of peaks at 122/121 [M–CH₃]⁺ in the mass spectrum for the GC peak corresponding to the dimethylphenylsilane 4b.

![Diagram](image-url)

- DH ratio of 4b vs. Time (min)
4.2.2 Deuteration Studies with Me₂PhSi–D (4b-d₁)

Complex 7b (49 mg, 0.051 mmol, 0.88 equiv) was mixed in a Schlenk flask with acetophenone (3e, 9.2 mg, 0.077 mmol, 1.3 equiv) and deuterated dimethylphenylsilane (4b-d₁, 8.0 mg, 0.058 mmol, 1.0 equiv) in 2.0 mL of THF. The reaction mixture was heated at 70 °C in an oil bath. The course of the reaction was followed by analysis of aliquots (0.1 mL) by GC-MS. The D/H ratio on the product was calculated according to the intensity of peaks at 242/241 [M–CH₃]+ in the mass spectrum for the GC peak corresponding to the silyl ether product 8eb.

![Diagram of reaction]

4.3 Scrambling at the C–H Bond

4.3.1 Scrambling Experiment with Deuterated Silyl Ether (8eb-d₁)

According to a literature procedure,[S21] a 2-mL vial was charged with acetophenone (3e, 100 mg, 0.84 mmol, 1.0 equiv), deuterated dimethylphenylsilane (4b-d₁, 120 mg, 0.87 mmol, 1.0 equiv), and B(C₆F₅)₃ (2 mg, 3 µmol, 0.5 mol %) in toluene (0.5 mL). The reaction mixture was stirred at room temperature for 2 h and then subjected directly to flash column chromatography on silica gel using cyclohexane/ethyl acetate (30:1) as eluent, yielding the silyl ether 8eb-d₁ (180 mg, 0.71 mmol, 84%, >95% D) as a colourless oil.
\[\text{H NMR (500 MHz, CDCl}_3, 298 \text{ K): } \delta (\text{ppm}) = 0.29 (s, 3H, Si-Me), 0.34 (s, 3H, Si-Me), 1.42 (s, 3H, C-Me), 7.21-7.39 (m, 8H, Ar), 7.55-7.57 (m, 2H, Ar). \]
\[\text{C^{13}(H) NMR (126 MHz, CDCl}_3, 298 \text{ K): } \delta (\text{ppm}) = -1.2, -0.7, 26.8, 70.8 \ (t, J_{C-D} = 21.7 \text{ Hz}), 127.9, 129.7, 133.1, 138.3, 146.3. \]

\[\text{Si DEPT NMR (99 MHz, CDCl}_3, 298 \text{ K): } \delta (\text{ppm}) = 6.6. \]

\[\text{R}_f = 0.5 \ \text{(cyclohexane:ethyl acetate 30:1).} \]
\[\text{IR (ATR): } \tilde{\nu}/\text{cm}^{-1}= 3066 \ \text{(w)}, 3023 \ \text{(w)}, 2970 \ \text{(m)}, 2924 \ \text{(w)}, 2130 \ \text{(w)}, 1427 \ \text{(m)}, 1368 \ \text{(m)}, 1251 \ \text{(s)}, 1137 \ \text{(s)}, 1115 \ \text{(s)}, 1095 \ \text{(m)}, 1010 \ \text{(s)}, 861 \ \text{(m)}, 820 \ \text{(s)}, 783 \ \text{(s)}, 695 \ \text{(s).} \]
\[\text{HRMS (APCI) for C}_{16}\text{H}_{20}\text{DOSi \ [(M+H)^+]: calcd}} 258.1419, \ \text{found} 258.1462. \]

Deuterated silyl ether 8eb-d$_1$ (13 mg, 0.049 mmol, 1.1 equiv) and iron hydride complex 7b (43 mg, 0.045 mmol, 1.0 equiv) were dissolved in THF (2.0 mL), stirred at 70 °C, and the reaction was followed by analysis of an aliquot (0.1 mL) by GC-MS. The H/D ratio on the product was calculated according to the intensity of peaks at 242/241 [M–CH$_3$]$^+$ in the mass spectrum for the GC peak corresponding to the silyl ether product 8eb.
4.3.2 Racemisation Experiment with Enantiopure Silyl Ether (S)-8eb

The enantiomerically enriched silyl ether product (S)-8eb (49 mg, 0.19 mmol, 1.0 equiv, e.r. > 99:1) was subjected to the catalytic conditions in the presence of the dimethylphenylsilane (4b, 13 mg, 90 µmol, 0.47 equiv) and the iron hydride complex 7b (4.8 mg, 5.0 µmol, 2.5 mol %). The reaction mixture was heated up for 6 days at 70 °C, and aliquots passed through a short plug of silica gel and analysed by chiral HPLC analysis showed no racemization during the course of the reaction.

4.4 Phosphine Scrambling

4.4.1 Synthesis of Trimethylphosphine-d₉ (6-d₉)

According to a literature procedure,[S23] in a 100 mL Schlenk flask magnesium turnings (2.3 g, 90 mmol, 3.8 equiv) were thermally and mechanically activated under vacuum. Freshly degassed di-n-butyl ether (15 mL) was added followed by rapid addition of methyl iodide-d₃ (0.36 mL, 5.6 mmol, 0.30 equiv) under nitrogen atmosphere at room temperature. After the initiation of the reaction (colour change to dark brown and heat formation), the solution was cooled to 0 °C and the rest of methyl iodide-d₃ (3.3 mL, 50 mmol, 3.0 equiv) was added dropwise. The solution was allowed to warm to rt and stirred for additional 3 h. The solution was cooled to 0 °C and a solution of triphenylphosphite (5.0 g, 15 mmol, 1.0 equiv) in di-n-butyl ether (40 mL) was added slowly over 2 h. The solution was warmed to rt and stirred for 30 min. The dropping funnel was replaced by a distillation apparatus equipped with a Vigreux column (10 cm) and the desired deuterated phosphine 6-d₉ (560 mg, 6.6 mmol, 44%) was distilled at 160 °C (oil bath).

bp 38 °C. ²H NMR (77 MHz, C₆D₆/C₆H₆, 298 K): δ(ppm) = 0.72. ¹³C{¹H} NMR (176 MHz, C₆D₆/C₆H₆, 298 K): δ(ppm) = 15.4 (dsept, J_{C-P} = 6.7, J_{C-D} = 16.4 Hz). ³¹P NMR (202 MHz, C₆D₆/C₆H₆, 298 K): δ(ppm) = -65.5.
4.4.2 Scrambling between Complex 7b and Trimethylphosphine-\textit{d}_9 (6-\textit{d}_9)

Complex \textit{7b} (10 mg, 0.011 mmol 1.0 equiv) was mixed with trimethylphosphine-\textit{d}_9 (6-\textit{d}_9, 2.5 mg, 0.029 mmol, 2.7 equiv) in C_6D_6. The sample was closed under nitrogen in a Young NMR tube, heated to 70 °C, and monitored by 1H and 2H NMR spectroscopy. Slow formation of 7b-\textit{d}_9 was observed.

Selected NMR data for 7b-\textit{d}_9

\textbf{1H,31P HMQC NMR} (500 MHz / 203 MHz, C_6H_6/C_6D_6, 298 K): \(\delta(1H) = -13.9 / \delta(31P) = 12.4 \) ppm.

4.5 Phosphine Dissociation

Complex \textit{7b} (5 mg, 0.005 mmol) was dissolved in THF (2.0 mL). The closed system was heated up to 70 °C for a period of 2 h. The sample was frozen and the gas phase was changed by 3 purge-cycles with N\textsubscript{2} while thawing the sample. This procedure was repeated 3 times with the same period of time between each other. After 8 h, all volatiles were removed \textit{in vacuo} and the sample was dissolved in 0.5 mL of C_6D_6 for 1H and 31P(1H) NMR analyses.
4.5.1 Phosphine Dissociation in the Presence of Acetophenone (3e)

Complex 7b (5 mg, 0.005 mmol, 1 equiv) was dissolved in THF (2.0 mL). Acetophenone (3e, 2.0 mg, 0.02 mmol, 4 equiv) was added and the closed system was heated up to 70 °C for a period of 2 h. The sample was frozen and the gas phase was changed by 3 purge-cycles with N₂ while thawing the sample. This procedure was repeated 3 times with the same period of time between each other. After 8 h, all volatiles were removed in vacuo and the sample was dissolved in 0.5 mL of C₆D₆ for ¹H and ³¹P{¹H} NMR analyses.
4.6 Silyl Scrambling

Complex 7b (10 mg, 0.011 mmol 1.0 equiv) was mixed with methyldiphenylsilane 4c (4.0 mg, 0.020 mmol, 1.8 equiv) in C₆D₆. The sample was closed under nitrogen in a Young NMR tube, heated to 70 °C, and monitored by ¹H spectroscopy.

Selected NMR data for 11b-d₆:

¹H NMR (500 MHz, C₆D₆, 298 K): δ = –15.69 (s, ²J_H-Si = 23.8 Hz, 1H, Fe–H) ppm. ¹H-²⁹Si HMQC NMR (500 MHz / 99 MHz, C₆D₆, 298 K): δ(¹H) = –15.7 / δ(²⁹Si) = 22.2 (SiMe₂Ph), δ(¹H) = –15.7 / δ(²⁹Si) = 84.5 (Si→Fe) ppm.

Selected NMR data for 11c-d₆:

¹H NMR (500 MHz, C₆D₆, 298 K): δ = –15.50 (s, ²J_H-Si = 23.7 Hz, 1H, Fe–H) ppm. ¹H-²⁹Si HMQC NMR (500 MHz / 99 MHz, C₆D₆, 298 K): δ(¹H) = –15.5 / δ(²⁹Si) = 27.7 (SiMe₂Ph), δ(¹H) = –15.5 / δ(²⁹Si) = 83.0 (Si→Fe) ppm.
Iron Hydride Product Distribution

Time (h)	7b	7c	11c-\(d_6\)	11b-\(d_6\)
0	96	-	-	4
1	91	-	-	9
2	85	1	<1	13
4	79	3	2	16
8	68	10	5	17
24	44	25	12	19

4.7 Silane Cross-over Experiment

Complex 7b (48 mg, 0.050 mmol, 1.00 equiv) was mixed in a Schlenk flask with acetophenone (3e, 8.8 mg, 0.073 mmol, 1.5 equiv), and methyldiphenylsilane (4c, 11 mg, 0.053 mmol, 1.1 equiv) in 2.0 mL of THF. The reaction mixture was heated at 70 °C with an oil bath. The course of the reaction was followed by analysis of aliquots (0.1 mL) by GC-MS.
4.8 Hydrosilylation with Silicon-Stereogenic Hydrosilane

4.8.1 Catalytic Reaction between Acetophenone (3e) with Enantioenriched Acyclic Hydrosilane $^{(SiS)}$-4d

Acetophenone (3e, 60 mg, 0.50 mmol, 1.0 equiv), $^{(SiS)}$-isopropylmethylphenylsilane [$^{(SiS)}$-4d, 82 mg, 0.50 mmol, 1.0 equiv, e.r. > 95:5], and the iron hydride complex 7b (49 mg, 0.052 mmol, 10 mol %) were dissolved in 3 mL of toluene. The reaction mixture was maintained at 70 °C in an oil bath for 6 days reaching ca. 60% conversion. Purification by flash column chromatography using n-pentane:diethyl ether (100:1) as eluting solvent mixture gave silyl ether 8ed (44 mg, 0.15 mmol, 31% yield, d.r. = 56:44) and unreacted hydrosilane $^{(SiS)}$-4d (10 mg, 0.07 mmol, 15%, e.r. > 95:5). [S24]
4.8.2 Reductive Si–O Bond Cleavage of Silyl Ether 8ed

A Schlenk tube equipped with a magnetic stirrer and a reflux condenser was charged with a solution of the silyl ether 8ed (25 mg, 0.089 mmol, 1.0 equiv) in n-heptane (1.0 mL). DIBAL−H (0.5 mL, 0.5 mmol, 6 equiv, 1.0 M in n-hexane) was added in one portion at room temperature, and the resulting reaction mixture was heated to reflux and maintained at this temperature for 20 h. The reaction mixture was allowed to cool to room temperature and quenched by careful addition of aqueous HCl (1 M, 5 mL). The organic layer was separated, and the aqueous phase was extracted with tert-butyl methyl ether (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, filtered, and the volatiles were evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using n-pentane/diethyl ether mixtures (100:0→10:1) as eluent affording the analytically pure hydrosilane (SiS)-4d (9.3 mg, 0.057 mmol, 64%, e.r. > 95:5) as colourless oil.[S24]

4.9 Competition Experiment

In a nitrogen-filled glove box, iron(0) complex 2 (4.4 mg, 2.5 mol %, 5.0 μmol), 4-methoxyacetophenone (3a, 30 mg, 0.20 mmol, 1.0 equiv, red square), 4-trifluoromethylacetophenone (3f, 38 mg, 0.20 mmol, 1.0 equiv, blue diamond), and triethoxysilane (4a, 53 mg, 0.32 mmol, 1.6 equiv) were weighed in a Schlenk flask containing a magnetic stirrer and dissolved in 4 mL of THF. A sample (ca. 0.3 mL) was taken after mixing the reaction mixture (2 min) and quenched with a KOH solution (5% in H₂O). The flask was taken out of the glove box, stirred and heated to 70 °C with an oil bath. Samples of ca. 0.3 mL were taken every 5 minutes, quenched, and hydrolysed with 1 mL of KOH solution (5% in H₂O) for 1 h. The mixture was extracted with diethyl ether (2 × 1 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and filtered. The sample was analysed by GC-MS. Integration of the peaks for the ketones and the respective alcohols permitted the evaluation of the conversion for each ketone.
Conversion (%) vs Time (min)

X = OMe (3a)
CF₃ (3f)

X = OMe (5a, ●)
CF₃ (6f, ▲)

2 (2.5 mol %)
4a (1.5 equiv)
THF, 70 °C
then
KOH (5% in H₂O)
5 Cartesian Geometries at ωB97X-D/6-31G(d)[Fe:cc-pVTZ] in Ångström [Å]

5.1 Iron(II) Complex 7a

C 5.078283 -2.422990 -1.821078
C 5.170447 -1.740584 -0.595460
C 6.344834 -1.833764 0.168246
C 7.418988 -2.602213 -0.290359
C 7.329255 -3.278457 -1.516092
C 6.157654 -3.187787 -2.279384
C 4.025198 -0.914503 -0.128438
N 2.988076 -1.343686 0.594893
C 2.790386 -2.604194 1.332259
C 1.545203 -2.394496 2.219895
Si 2.059498 0.340764 0.439762
N 3.825089 0.397898 -0.377674
C 4.592059 1.333048 -1.230328
C 3.931620 2.714602 -1.026920
Fe -0.028991 0.769723 0.196241
P -0.116212 2.937611 0.482472
C -1.302226 3.986007 -0.521396
Si -1.959808 -0.012548 0.588097
N -1.966958 -0.330477 2.389113
C -3.033567 -1.008387 3.130094
C -2.615741 -2.390280 3.656950
N -2.911095 -1.555775 -0.072287
C -2.587349 -2.837279 -0.736440
C -3.569926 -3.968682 -0.355002
C -4.078999 -0.886507 -0.108913
C 3.992802 -2.919593 2.249193
H 6.548538 2.265035 -1.300100
H 4.434355 3.466468 -1.658794
H -0.180292 -0.725658 -0.127063
H -1.708262 -0.052781 5.089284
H 0.348919 0.811099 6.198117
H 2.372675 1.336450 4.822463
H -3.885730 -1.126290 2.448935
H -3.392247 -0.372181 3.962044
H -2.329803 -3.033199 2.811773
H -3.450028 -2.869545 4.200127
H -1.753534 -2.303064 4.335894
H 4.523955 0.643151 2.036253
H 3.828882 0.410796 3.651675
H 4.223345 3.110321 2.196200
H 5.202789 2.507755 3.568967
H 3.478327 2.939337 3.805500
H -3.822709 1.697125 2.735798
H -0.438901 -2.501523 -0.544903
H -0.912955 -4.207803 -0.801178
H -1.146242 -3.439249 0.795242
H -2.298802 -3.545771 -2.788343
H -1.842071 -1.825876 -2.516051
H -3.674328 -4.032235 0.740231
H -3.158102 -4.924209 -0.721678
H -4.563037 -3.831579 -0.805706
H 1.727601 -3.541242 -0.328310
H 2.302893 -4.689020 0.916436
H 3.462859 -3.969409 -0.243253
H 4.876657 -3.232781 1.673535
H 3.717455 -3.738814 2.935642
H 4.245117 -2.031918 2.850898
H 1.768229 -1.685994 3.032553
H 1.248560 -3.358923 2.663073
H 0.711224 -1.987451 1.636052
H 5.082338 0.067525 -2.964041
H 4.873419 1.802627 -3.33712
H	3.438139	0.795779	-3.004554
	6.136964	1.569263	0.295735
	6.627906	0.498960	-1.058150
	2.864282	2.673529	-1.300121
	4.014880	3.031824	0.022312
	4.163173	-2.343162	-2.412939
	6.410593	-1.299602	1.119465
	1.782677	4.121694	-0.578273
	2.157497	3.601857	1.100970
	1.137947	5.060439	0.819669
	0.183179	3.211954	2.911635
	-1.511535	2.870956	2.553072
	-0.860297	4.525362	2.260927
	-4.447643	2.667223	-0.840022
	-5.993078	3.006425	-0.001018
	-5.860787	1.592775	-1.093933
	-3.213251	2.645717	1.346948
	-6.756461	0.226550	0.819148
	-5.781079	0.022967	2.309703
	-3.571281	-2.294406	-2.612059
	-5.135730	-0.352437	-2.539068
	-7.384234	-1.034270	-3.382997
	-8.885787	-2.438382	-1.960261
	-8.125610	-3.167542	0.309938
	-5.884750	-2.469686	1.154321
	-1.249224	5.047193	-0.212927
	-2.328575	3.614798	-0.370173
	-1.039669	3.883624	-1.584948
	6.079623	-3.714425	-3.234689
	8.173089	-3.872432	-1.876263
	8.329158	-2.672937	0.311114
	-4.761310	3.098578	2.113332
	-6.658754	1.550797	2.010321
	-3.949111	1.004072	-2.635445
	-3.045484	0.478648	-4.061213
	1.658698	2.773667	-4.370631
	0.140315	3.631125	-4.014973
5.2 Acetone (3o)

	Atom	X	Y	Z
H	2.355894	-0.997935	-2.146663	
H	1.020233	-1.820593	-1.348902	
H	2.229941	-3.404713	-2.835088	
H	0.568630	-3.140084	-3.424859	
H	1.933712	-2.330266	-4.241387	
H	-3.822072	2.794201	-4.348713	
H	-2.981742	3.305076	-2.850834	
H	-2.035783	2.779478	-4.262469	
H	2.045317	5.125846	-3.768440	
H	1.241140	4.896955	-2.186728	
H	2.789659	4.070428	-2.530040	

	Atom	X	Y	Z
C	1.274692	-0.180094	2.058339	
C	0.006395	-0.005077	1.245844	
C	-1.277322	0.160314	2.035841	
O	0.018038	0.002181	0.034788	
H	1.149945	-0.962026	2.815510	
H	2.107293	-0.428140	1.398141	
H	1.501620	0.750993	2.591501	
H	-1.167230	0.933023	2.804659	
H	-2.097063	0.416455	1.362766	
H	-1.514415	-0.777113	2.553228	
5.3 Triethoxysilane (4a)

C 1.863680 0.000020 3.481743
C 3.053391 -0.487545 2.671877
O 2.739214 -1.701827 2.007982
Si 2.365361 -1.767664 0.402031
O 1.564050 -3.180525 0.175913
C 0.626388 -3.755539 1.074126
C 0.685087 -5.267091 0.953073
H 1.604863 -0.560434 0.015863
O 3.682417 -1.765679 -0.574082
C 4.666593 -2.793097 -0.544440
C 5.731804 -2.482395 -1.577896
H 3.909104 -0.684372 3.326703
H 3.367023 0.285710 1.955920
H 0.846885 -3.445991 2.102850
H -0.377797 -3.922874 0.818770
H 5.109703 -2.849020 0.458885
H 4.193893 -3.760157 -0.755925
H -0.052873 -5.732080 1.615464
H 0.474894 -5.575334 -0.075383
H 1.679423 -5.632343 1.227278
H 6.504097 -3.258805 -1.575727
H 5.289097 -2.433477 -2.577078
H 6.203705 -1.518904 -1.363273
H 2.119982 0.905999 4.041367
H 1.018630 0.227049 2.823267
H 1.548331 -0.771269 4.190898
5.4 Silyl Ether 8oa

C 0.131313 -0.235600 0.113836
H -0.107137 -0.781265 1.041523
O 1.507446 -0.422557 -0.214361
C -0.733010 -0.784265 -1.013598
C -0.087724 1.249087 0.359710
H -0.505231 -0.256303 -1.945301
H -0.528324 -1.848658 -1.163351
H -1.796977 -0.656117 -0.787026
H 0.171967 1.816946 -0.539530
H -1.133560 1.450843 0.613685
H 0.545244 1.598502 1.181349
Si 2.341701 -1.727121 0.319473
O 3.698579 -1.742600 -0.588607
O 2.627229 -1.601979 1.937515
O 1.553287 -3.150641 0.119672
C 2.897139 -0.370115 2.590792
C 0.672742 -3.763000 1.048624
C 4.679201 -2.763446 -0.455442
C 1.828415 -0.924332 3.633702
H 3.881956 -0.448617 3.065093
H 2.939078 0.453381 1.866628
C 0.771799 -5.270194 0.904988
H 0.924723 -3.454869 2.070071
H -0.352580 -3.428382 0.837663
C 5.694191 -2.617133 -1.572524
H 5.169955 -2.676966 0.523279
H 4.197312 -3.748478 -0.503106
5.5 Tetrahydrofuran
5.6 Benzene

C -1.498017 2.748940 2.920399
C -0.517801 1.759962 2.954130
C 0.801580 2.075912 2.638759
C 1.140564 3.381164 2.289622
C 0.160329 4.369941 2.255701
C -1.159073 4.053921 2.571011
H 2.169575 3.627407 2.043678
H 0.424586 5.387751 1.983164
H -1.923777 4.824789 2.544491
H -2.527059 2.502746 3.166228
H -0.782401 0.742062 3.226236
H 1.566177 1.304908 2.664720

5.7 Transition State 9a‡

C 7.096135 -0.429482 0.964932
C 6.148857 -0.223079 -0.054233
C 6.591801 0.064400 -1.359750
C 7.960599 0.178793 -1.633256
C 8.903184 -0.015425 -0.608791
C 4.681179 -0.283614 0.235431
N 3.960527 0.671588 0.801627
C 4.442415 2.056800 1.097504
C 5.420268 2.658673 0.048029
N 3.892057 -1.323535 -0.141236
C 4.390441 -2.718436 -0.424415
C 3.147916 -3.618793 -0.545190
Si 2.152888 -0.540733 0.303245
N 1.798069 -1.745960 1.687290
C 2.777816 -1.980930 2.759456
C 2.284452 -1.528236 4.140303
C 0.709957 -2.574728 1.557999
N -0.215683 -2.238928 0.585568
C -1.188196 -3.168061 0.275062
C -1.183099 -4.473528 0.812697
C -0.312029 -4.744618 1.872730
C 0.597509 -3.779920 2.300236
N -2.195737 -2.697903 -0.541857
Si -2.152500 -0.883451 -0.603054
N -3.795694 -0.405015 -1.393541
C -4.479359 -0.399953 -0.211346
C -5.925582 -0.078546 -0.060490
C -6.914364 -1.016879 -0.416138
C -8.270281 -0.715281 -0.238177
C -8.652017 0.530760 0.289041
C -7.669547 1.470561 0.640893
C -6.310932 1.165643 0.472871
Fe -0.009533 -0.390451 -0.508865
P 0.517043 -1.465889 -2.417727
C 0.250193 -3.328945 -2.517393
Si 0.240060 1.525100 -1.733846
O 1.583469 1.741034 -2.803564
C 2.897081 1.999654 -2.341348
C 3.831302 2.183732 -3.541859
H	-0.348083	-5.715014	2.373426
H	-1.905965	-5.213150	0.478725
H	3.688761	-1.429120	2.494007
H	3.051890	-3.050367	2.798184
H	2.091258	-0.449078	4.149902
H	3.045378	-1.762667	4.905042
H	1.343041	-2.021880	4.415161
H	-4.201085	-2.869542	-1.064703
H	-3.652574	-4.088479	0.099525
H	-3.005210	-3.979378	-2.918222
H	-4.029896	-5.182167	-2.081417
H	-2.262553	-5.151445	-1.798422
H	2.645216	-3.757611	0.418810
H	2.594006	2.912311	0.257643
H	3.568858	4.029401	1.257804
H	2.589787	2.759582	2.023514
H	5.457855	3.750467	0.189886
H	5.066407	2.459638	-0.972642
H	4.446345	1.603226	3.235096
H	5.353163	3.082154	2.795608
H	6.060910	1.476006	2.463692
H	-3.744083	0.739055	3.060093
H	-4.660651	-0.414699	4.038649
H	-5.455453	0.379460	2.654362
H	-6.177544	-1.810061	1.878488
H	-5.258470	-2.734476	3.086913
H	-4.997044	-3.047519	1.351519
H	-2.624446	-2.867753	2.279430
H	-3.002058	-2.058996	3.820680
H	-1.928583	-1.263344	2.657046
H	-5.085622	2.063952	-1.626652
H	-4.562328	2.357740	-3.302411
H	-3.332920	2.205832	-2.014207
H	-5.626075	-1.292092	-3.162174
H	-6.447635	0.192766	-2.592404
H	-2.193144	0.319218	-3.343240
H	-3.188349	-1.064052	-3.927580
Atom	X	Y	Z
------	----------	----------	----------
H	-5.542882	1.886729	0.753867
H	-6.612473	-1.981676	-0.824812
H	-0.263271	-0.032988	-4.297101
H	-1.185828	-1.567633	-4.245556
H	0.479362	-1.553056	-4.879046
H	-0.802881	-3.500236	-2.769811
H	0.455484	-3.839356	-1.569515
H	0.888433	-3.756440	-3.308163
H	4.654604	-2.348901	-2.592581
H	5.317981	-3.889344	-1.997601
H	6.183304	-2.374361	-1.671552
H	2.445069	-3.176533	-1.253001
H	6.307374	-2.824967	0.656491
H	4.877393	-3.102832	1.689276
H	6.442944	2.275528	0.148068
H	5.857614	0.208879	-2.151124
H	8.292696	0.415783	-2.646256
H	9.970533	0.071923	-0.822284
H	9.194624	-0.490502	1.488154
H	6.753559	-0.674473	1.971201
H	2.539337	-2.187500	-3.674735
H	3.012455	-1.228775	-2.230710
H	2.333362	-0.402887	-3.646786
H	-7.958974	2.440284	1.050850
H	-9.709371	0.766660	0.425205
H	-9.028936	-1.451653	-0.511021
H	3.447396	-4.607195	-0.926067
H	5.417511	-4.359395	0.548680
H	-1.144882	1.678695	-4.898877
H	0.167771	2.760590	-4.366466
H	1.342714	4.606288	-0.891046
H	0.201165	4.305389	-2.225493
H	2.909310	2.911180	-1.716184
H	3.264101	1.168416	-1.710556
H	4.856372	2.414221	-3.204779
H	3.860092	1.268995	-4.155277
H	3.476275	3.012150	-4.175984
Atoms	x	y	z
-------	------	------	------
H	-1.735937	4.054099	-5.373379
H	-2.851602	3.382289	-4.144472
H	-1.533714	4.472302	-3.642576
H	-0.601068	6.147975	-0.656249
H	-1.735304	4.755984	-0.694515
H	-0.611420	4.956751	0.680491
H	-1.194788	2.103652	4.540576
H	-2.103818	0.638300	4.101402
H	-1.882707	3.359320	3.186247
H	-1.777941	3.669871	1.440208
H	-0.528644	3.603896	3.357169
H	0.984182	2.742559	3.694685
H	-1.533367	0.651268	6.446071
H	-0.720516	-0.675643	5.581751
H	0.191761	0.784611	6.030298
H	-3.864754	4.467868	2.362740
H	-4.119857	3.152809	1.191564
H	-4.238964	2.825941	2.936430
H	1.304298	5.136659	3.734123
H	2.226136	4.373930	2.417446
H	0.717894	5.245745	2.057473
Si	-0.494112	1.293582	1.978123
5.8 Transition State 10oa2

![Diagram of molecular structure]

Element	X	Y	Z
C	-6.738987	-1.357006	0.088629
C	-6.227574	-0.087057	-0.241705
C	-7.120846	0.962220	-0.522114
C	-8.506596	0.750859	-0.458676
C	-9.010324	-0.512462	-0.108491
C	-8.121564	-1.566596	0.164383
C	-4.744760	0.132408	-0.249102
N	-4.056330	0.724896	0.712145
C	-4.611384	1.124690	2.046263
C	-5.659529	0.148722	2.654430
Si	-2.185011	-0.009503	-0.459534
N	-3.947991	-0.331525	-1.252267
C	-4.430229	-0.617163	-2.654293
C	-3.179800	-0.865033	-3.516309
Fe	-0.111024	-1.000386	-2.530205
Si	-0.510646	-2.110346	1.702501
O	-1.915380	-3.105891	1.900999
C	-3.209099	-2.549058	2.067318
C	-4.227224	-3.676495	2.268320
N	0.223189	-0.045017	-2.164813
C	-0.601950	1.006519	-2.530205
C	-0.406971	1.680795	-3.765503
C	0.459835	1.126043	-4.705058
Element	X	Y	Z
---------	-------	-------	-------
C	1.222595	-0.003197	-4.388358
C	1.168577	-0.487105	-3.063487
N	-1.665623	1.289981	-1.701196
C	-2.517719	2.452902	-1.992310
C	-1.870968	3.783747	-1.588192
N	2.088866	-1.374148	-2.541873
Si	2.035469	-1.342407	-0.724786
N	3.679893	-0.126223	-0.644670
C	4.232278	1.149148	-1.212061
C	5.388598	0.918306	-2.217392
P	-0.791765	-2.919249	-1.234170
C	-0.501336	-3.156340	-3.080681
C	-2.616639	-3.372199	-1.111175
C	-0.253993	-4.663463	-0.759707
C	3.236487	-1.792092	-3.350957
C	2.925113	-2.970317	-4.290862
N	3.589799	-2.262871	-0.185494
C	4.390601	-1.157747	-0.237555
C	5.842314	-1.137611	0.095278
C	6.270726	-0.573273	1.312296
C	7.636484	-0.528171	1.627856
C	8.585623	-1.033930	0.724671
C	8.162408	-1.591260	-0.494662
C	6.798164	-1.646542	-0.806115
C	3.891703	-3.492303	0.614116
C	5.192737	-4.194724	0.149313
C	2.734746	-4.458621	0.365320
C	3.990594	-3.147719	2.114872
C	3.086859	1.845819	1.970654
C	4.748952	2.070122	-0.087778
O	0.661723	-3.245075	2.223216
C	0.452420	-4.522552	2.827223
C	1.309740	-4.667570	4.089360
O	-0.662110	-1.033952	3.030318
C	-0.870017	-1.448140	4.376414
C	0.083431	-0.675722	5.294830
C	-5.225808	0.562553	-3.267081
Atom	X	Y	Z
------	---------	---------	---------
C	-5.338487	-1.876651	-2.753184
C	-5.233540	2.536002	1.912346
C	-3.446650	1.220568	3.056415
H	0.358492	0.813087	-0.091722
H	5.192598	-5.218373	0.557812
H	2.866694	-5.365223	0.975697
H	1.383774	-0.793818	0.644390
H	-0.980937	2.569896	-4.008369
H	0.549948	1.581911	-5.693811
H	1.914638	-0.433323	-5.107663
H	-3.451657	2.315550	-1.431719
H	-2.786372	2.472570	-3.063455
H	-1.685666	3.811197	-0.507912
H	-2.536223	4.622003	-1.859126
H	-0.900118	3.929361	-2.079220
H	4.037781	-2.088922	-2.661323
H	3.612924	-0.936136	-3.938189
H	2.688488	-3.873145	-3.706600
H	3.798392	-3.188042	-4.929020
H	2.064506	-2.743759	-4.937624
H	-2.596922	0.050006	-3.668557
H	-2.851372	0.298090	3.076936
H	-3.859780	1.404108	4.061156
H	-2.790430	2.059203	2.808973
H	-5.755572	0.363484	3.730775
H	-5.329878	-0.893810	2.542611
H	-4.501696	3.229558	1.468377
H	-5.514684	2.914886	2.909563
H	-6.135529	2.513457	1.285217
H	3.978813	2.261057	0.663714
H	5.017562	3.041000	-0.527897
H	5.643763	1.643347	0.386631
H	6.326453	0.635078	-1.724136
H	5.562011	1.864402	-2.754789
H	5.122136	0.148695	-2.954819
H	2.869810	1.327380	-2.913387
H	3.391737	2.876952	-2.206244
---	---	---	
H	2.178487	1.900982	-1.365048
H	4.844963	-2.483208	2.305938
H	4.146075	-4.073714	2.692640
H	3.061383	-2.673111	2.455028
H	5.226073	-4.262534	-0.949915
H	6.099864	-3.692561	0.504415
H	1.789772	-3.981745	0.638244
H	2.721730	-4.751726	-0.695866
H	5.529849	-0.171571	2.004351
H	6.465187	-2.076953	-1.750995
H	-0.226555	-4.772161	0.331340
H	0.726263	-4.908610	-1.182029
H	-0.991544	-5.372402	-1.170257
H	0.526463	-3.513811	-3.211425
H	-0.607690	-2.226025	-3.649998
H	-1.201636	-3.909960	-3.476337
H	-4.902725	-2.744426	-2.243528
H	-5.456444	-2.131771	-3.819276
H	-6.338365	-1.690569	-2.344017
H	-2.548746	-1.613882	-3.035658
H	-6.239054	0.626382	-2.850563
H	-4.714598	1.519048	-3.111119
H	-6.654544	0.255239	2.206515
H	-6.046669	-2.170455	0.299818
H	-8.506149	-2.552377	0.434690
H	-10.088592	-0.675521	-0.051453
H	-9.190697	1.572314	-0.681655
H	-6.726241	1.942251	-0.792914
H	-2.896729	-4.030762	-1.950464
H	-3.263722	-2.493209	-1.096009
H	-2.740874	-3.912124	-0.166066
H	7.958117	-0.093526	2.576420
H	9.649249	-0.993722	0.968080
H	8.895553	-1.982886	-1.202753
H	-3.484338	-1.248804	-4.502043
H	-5.319347	0.393807	-4.352653
H	0.732508	-5.304723	2.094744
H -0.611444 -4.664804 3.073855
H -1.919126 -1.230840 4.657793
H -0.717528 -2.535510 4.493871
H -3.224876 -1.872946 2.941777
H -3.493487 -1.941561 1.188162
H -5.237987 -3.264033 2.428776
H -4.253959 -4.339265 1.388718
H -3.952706 -4.283020 3.146557
H 1.173060 -5.672743 4.524989
H 2.374869 -4.525275 3.857466
H 1.018551 -3.915439 4.839615
H -0.124445 -0.894536 6.356749
H 1.127887 -0.946616 5.072271
H -0.036181 0.407465 5.127560
C 0.513390 1.512988 0.837410
O 0.917098 2.785284 0.155185
C -0.761810 1.800194 1.586817
C 1.634917 1.132464 1.806896
Si 1.269803 4.274204 0.713920
H -0.587384 2.607189 2.312051
H -1.563827 2.128123 0.909360
H -1.063953 0.900917 2.117513
H 1.833594 2.004989 2.452592
H 1.325769 0.300369 2.450646
H 2.553707 0.859650 1.274989
O 0.548305 5.371749 -0.307320
O 0.722706 4.644095 2.249401
O 2.927304 4.459300 0.703484
C 0.176067 6.694283 0.106176
C 3.548340 5.739676 0.877213
C 1.512577 4.553508 3.444207
C -0.627801 7.351143 -1.015423
H -0.415338 6.645653 1.036049
H 1.083048 7.292759 0.315541
C 0.751121 3.789626 4.529922
H 2.480828 4.065003 3.236929
H 1.728492 5.581512 3.783633
5.9 Transition State 13a‡

\[
\begin{aligned}
\text{C} & : 3.832835 \quad 6.397607 \quad -0.476426 \\
\text{H} & : 2.923943 \quad 6.409472 \quad 1.498341 \\
\text{H} & : 4.489965 \quad 5.564939 \quad 1.425360 \\
\text{H} & : 4.356380 \quad 7.358653 \quad -0.335911 \\
\text{H} & : 4.464335 \quad 5.737198 \quad -1.091216 \\
\text{H} & : 2.891753 \quad 6.755595 \quad -1.016605 \\
\text{H} & : 1.321484 \quad 3.808366 \quad 5.473854 \\
\text{H} & : -0.232825 \quad 4.253205 \quad 4.701883 \\
\text{H} & : 0.595912 \quad 2.741669 \quad 4.233769 \\
\text{H} & : -0.911076 \quad 8.377527 \quad -0.728405 \\
\text{H} & : -0.029777 \quad 7.394517 \quad -1.939524 \\
\text{H} & : -1.540697 \quad 6.771922 \quad -1.219979 \\
\end{aligned}
\]

\[
\begin{aligned}
\text{C} & : 0.844488 \quad 3.289843 \quad -0.260515 \\
\text{C} & : 0.751075 \quad 4.695657 \quad -0.417166 \\
\text{C} & : -0.426784 \quad 5.337769 \quad -0.040257 \\
\text{C} & : -1.524384 \quad 4.599170 \quad 0.411350 \\
\text{Fe} & : 0.043763 \quad 0.518826 \quad 0.696527 \\
\text{Si} & : 0.296858 \quad -1.667728 \quad 1.044809 \\
\text{O} & : -0.149950 \quad -2.801952 \quad -0.189135 \\
\end{aligned}
\]
Element	X	Y	Z
C	6.253475	-0.362367	-2.076218
C	7.414548	-1.102532	-2.341198
C	7.588386	-2.371264	-1.762947
C	6.598325	-2.896510	-0.916891
C	5.438983	-2.155532	-0.645002
C	2.536925	-0.813049	-2.821128
C	2.475177	-2.321669	-2.498184
C	3.534193	-0.546729	-3.974561
C	1.144876	-0.346737	-3.284806
C	6.121236	1.510587	0.748669
C	5.109300	-0.311961	2.184747
O	1.947196	-2.162650	1.229030
C	2.334490	-3.477061	1.605277
C	2.498486	-3.586245	3.128821
O	-0.552168	-2.283468	2.435656
C	-0.988753	-3.637580	2.560057
C	-1.648525	-3.838693	3.927711
H	-6.408715	-0.986529	2.616501
H	-4.230506	-1.326703	3.722356
H	0.074637	0.118764	-0.772491
H	1.587353	5.266676	-0.812372
H	-0.501234	6.424861	-0.122080
H	-2.456762	5.094751	0.667492
H	3.959591	2.586200	-1.218038
H	3.355319	4.182330	-0.770332
H	2.584422	2.567306	-3.289441
H	3.613756	4.033225	-3.264471
H	1.870933	4.149767	-2.870055
H	-4.533107	2.088435	0.547949
H	-3.981673	3.698287	0.052542
H	-4.119432	2.595138	2.941305
H	-5.194171	3.847008	2.244390
H	-3.461035	4.198105	2.526837
H	3.906479	2.908140	1.543751
H	0.387204	-0.606886	-2.538330
H	0.896009	-0.849176	-4.232487
H	1.122608	0.741473	-3.445188
H	2.094067	-2.866064	-3.379027
-------	----------	-----------	-----------
H	1.805725	-2.502854	-1.646104
H	3.660446	0.536888	-4.132135
H	3.133518	-0.989007	-4.901252
H	4.515459	-0.997484	-3.781457
H	-1.656314	-0.663922	-3.441142
H	-2.386917	0.342235	-4.723306
H	-3.400189	-0.805630	-3.807060
H	-4.982621	1.104960	-3.294536
H	-3.931121	2.318124	-4.069891
H	-4.401521	2.517863	-2.356609
H	-1.936521	2.887834	-2.053718
H	-1.462826	2.351255	-3.690468
H	-0.787297	1.542640	-2.238488
H	-5.035649	-2.795829	0.383483
H	-4.992075	-3.073089	2.144696
H	-3.463517	-2.923503	1.237485
H	-5.946542	0.575241	1.879886
H	-6.552119	-0.763599	0.854173
H	-2.701438	-1.126314	2.809364
H	-3.741748	0.292075	3.148650
H	-3.919047	-2.629128	-2.052132
H	-6.532329	0.674450	-1.120480
H	-1.424271	0.001570	4.761062
H	-1.944677	1.639464	4.248237
H	-0.789701	1.447636	5.609721
H	-0.074260	3.527434	3.527267
H	1.619596	3.213014	3.101446
H	1.083164	3.038653	4.810790
H	4.179724	-0.831594	2.453608
H	5.636224	-0.001885	3.102489
H	5.751779	-1.017284	1.639497
H	3.163482	1.647657	2.557468
H	6.717812	0.749180	0.229883
H	5.907067	2.336391	0.051471
H	3.474147	-2.714541	-2.264699
H	4.660469	-2.547757	0.007563
H	6.726611	-3.883178	-0.467040
---------	----------	-----------	-----------
H	8.492258	-2.947366	-1.971701
H	8.182543	-0.689401	-2.998418
H	6.110950	0.622902	-2.522630
H	1.640961	0.609180	5.463590
H	2.500942	0.053789	3.984551
H	1.112486	-0.870168	4.581461
H	-5.771742	-3.753147	-3.293128
H	-8.013334	-2.655104	-3.452594
H	-8.390745	-0.435972	-2.364192
H	4.763734	2.303614	2.997378
H	6.721160	1.907186	1.583738
H	3.306040	-3.700566	1.123619
H	1.622875	-4.232686	1.225169
H	-1.706828	-3.882386	1.754543
H	-0.147611	-4.344432	2.456554
H	-2.205151	-2.798842	-0.540977
H	-1.276829	-1.572250	-1.421355
H	-1.968631	-3.446862	-2.944440
H	-0.187232	-3.378251	-2.801659
H	-1.100621	-4.619741	-1.901637
H	2.807199	-4.606769	3.415855
H	3.264348	-2.873854	3.477124
H	1.552341	-3.336650	3.630554
H	-1.995754	-4.880001	4.044103
H	-0.930075	-3.616127	4.733097
H	-2.511467	-3.165273	4.040181
5.10 Intermediate *cis*-14a

Element	X	Y	Z
C	-4.959676	-2.107994	-1.269533
C	-5.255469	-0.787792	-0.879638
C	-6.573973	-0.305068	-0.959465
C	-7.595818	-1.140784	-1.435315
C	-7.302628	-2.457346	-1.827498
C	-5.985072	-2.39462	-1.740757
C	-4.146769	0.081155	-0.406222
N	-3.260894	0.728699	-1.177748
C	-3.095408	0.820573	-2.640954
C	-2.149190	2.018650	-2.883772
Si	-2.133957	1.032882	0.295678
N	-3.781949	0.305999	0.872068
C	-4.293278	-0.287817	2.128605
C	-3.309584	0.145639	3.236247
Fe	-0.037443	0.638077	0.486048
N	0.045055	2.743072	0.472877
C	1.242397	3.407500	0.270365
C	1.326030	4.820517	0.319759
C	0.164923	5.559552	0.545692
C	-1.065946	4.915337	0.676073
C	-1.107777	3.503904	0.595996
N	2.347553	2.611745	0.013919
C	3.628212	3.231198	-0.341580
C	3.651920	3.760123	-1.787457
N	-2.302217	2.800974	0.590822
C	-3.583103	3.515469	0.557997
C	-4.043549	3.994018	1.947259
Si	2.071781	0.820628	0.092849
N 3.736639 0.304873 0.885381			
C 4.360000 0.429027 2.217882			
C 5.766207 1.064194 2.133634			
C 4.206678 -0.146884 -0.284217			
N 3.289127 0.163697 -1.225795			
C 3.137855 -0.407629 -1.020530			
C 4.335831 -0.019511 -3.486833			
C 5.497499 -0.859179 -0.491867			
C 6.601898 -0.162407 -1.83728			
C 7.965764 -2.166965 -0.827942			
C 6.864299 -2.864836 -0.306453			
C 5.634208 -2.213197 -0.133418			
C 1.853706 0.203641 -3.187155			
C 2.990116 -1.944931 -2.522292			
C 4.442983 -0.951906 2.908268			
C 3.432598 1.351681 3.040203			
Si -0.347308 -1.569794 0.545651			
O -1.571276 -2.194447 -0.503445			
C -1.446044 -3.332053 -1.35596			
O 0.878263 -2.748975 0.191345			
C 2.009819 -2.870936 1.031245			
O -0.821621 -1.995889 2.150369			
C -1.025260 -3.331633 2.603937			
C -4.320577 -1.831194 2.061765			
C -5.702072 0.270567 2.427744			
C -2.445047 -0.474141 -3.177006			
C -4.440901 1.085366 -3.348996			
H -6.048849 -0.105840 3.404042			
H -3.685637 -0.197227 4.213075			
H -0.131441 0.549337 -0.990858			
H 2.276494 5.326939 0.175244			
H 0.217355 6.649501 0.602051			
H -1.977893 5.488546 0.819186			
H 4.405182 2.464002 -0.224848			
H 3.880597 4.035586 0.373401			
H 3.463173 2.928138 -2.482737			
---	----	----	----
H	4.633206	4.205944	-2.025020
H	2.872926	4.522127	-1.939260
H	-4.329483	2.819060	0.147370
H	-3.520645	4.368804	-0.142223
H	-4.182755	3.129574	2.613556
H	-5.000155	4.538982	1.873346
H	-3.295028	4.659030	2.403758
H	3.359616	2.345902	2.575537
H	0.974038	-0.090237	-2.598854
H	1.730718	-0.153141	-4.221707
H	1.912730	1.303586	-3.195683
H	2.756459	-2.337536	-3.525895
H	2.180696	-2.221567	-1.830436
H	4.487711	1.071607	-3.475687
H	4.123577	-0.331907	-4.522049
H	5.262216	-0.512358	-3.164012
H	-1.553399	-0.716013	-2.583356
H	-2.168520	-0.342458	-4.236505
H	-3.149912	-1.314772	-3.099317
H	-5.118096	0.224120	-3.272948
H	-4.248032	1.280910	-4.416038
H	-4.936741	1.969146	-2.915572
H	-2.597929	2.948325	-2.499868
H	-1.967871	2.128610	-3.964628
H	-1.186946	1.856454	-2.374603
H	-5.103589	-2.192088	1.380897
H	-4.525232	-2.233750	3.067526
H	-3.343349	-2.195457	1.721738
H	-5.680441	1.371395	2.463054
H	-6.421476	-0.049286	1.659560
H	-2.323097	-0.305532	3.055410
H	-3.212286	1.242676	3.261760
H	-3.936138	-2.464100	-1.168755
H	-6.790755	0.722422	-0.662082
H	3.444736	-1.409714	2.962851
H	4.834792	-0.829022	3.931362
H	5.115796	-1.624842	2.357642
H 2.419723 0.921509 3.097793
H 6.477591 0.404564 1.618348
H 5.721244 2.027233 1.601546
H 3.927643 -2.410853 -2.183330
H 4.775635 -2.750494 0.265317
H 6.959569 -3.917904 -0.033951
H 8.923646 -2.674455 -0.958185
H 8.685471 -0.266725 -1.589744
H 6.489043 0.886782 -1.297846
H -5.755404 -3.965401 -2.036401
H -8.099289 -3.106514 -2.196981
H -8.618380 -0.763319 -1.500970
H 3.830449 1.457611 4.061217
H 6.140474 1.247112 3.153655
H 2.725522 -2.055079 0.828884
H 1.727046 -2.781218 2.098947
C 2.672319 -4.231802 0.789673
C -1.277260 -3.315730 4.114447
H -1.891238 -3.782723 2.084483
H -0.145967 -3.961937 2.370379
H -2.141789 -3.180247 -2.202125
H -0.426910 -3.400116 -1.771673
C -1.788644 -4.640544 -0.633023
H -1.442083 -4.339462 4.492667
H -0.414200 -2.877506 4.641627
H -2.165784 -2.706435 4.343820
H 3.558412 -4.356614 1.436962
H 1.961886 -5.044605 1.009627
H 2.983778 -4.324702 -0.263477
H -1.769047 -5.490077 -1.338946
H -1.056914 -4.825853 0.165923
H -2.793512 -4.580982 -0.181667
5.11 Transition State 15a‡

C -0.527473 1.861621 2.868683
C 0.775473 2.233001 2.522584
C 1.054831 3.577897 2.196099
C 0.055253 4.525048 2.204899
C -1.247789 4.163771 2.582904
C -1.526768 2.856414 2.917030
Fe -0.017688 0.790118 0.546070
Si -2.108398 0.762741 0.044985
N -2.897341 0.013512 -1.486726
C -2.721066 0.068260 -2.945292
C -2.348778 -1.308284 -3.514767
N -0.165516 2.548601 -0.509389
C 0.913423 3.022479 -1.185282
C 0.894510 4.301474 -1.770616
C -0.270847 5.042811 -1.700655
C -1.417947 4.511704 -1.134193
C -1.352734 3.217101 -0.594336
N 2.007046 2.186081 -1.279381
Si 1.962126 0.699853 -0.261671
N 2.826391 -0.664328 -1.276150
C 3.990233 -0.477710 -0.643561
C 5.207174 -1.335143 -0.739654
C 5.436826 -2.317536 0.224094
C 6.580306 -3.106603 0.160338
Atom	X	Y	Z
C	7.504287	-2.915181	-0.863426
C	7.279285	-1.934593	-1.826576
C	6.133369	-1.147440	-1.766410
N	-2.470860	2.506513	-0.219375
C	-3.794251	3.047203	-0.473249
C	-4.285258	4.001072	0.614783
Si	-0.162932	-1.282614	1.383123
O	1.178588	-2.323696	1.692872
C	2.264948	-1.855442	2.438889
C	2.988832	-3.028370	3.082357
O	-0.941410	-1.324441	2.918474
C	-0.890958	-2.356646	3.867883
C	-0.495022	-1.796045	5.226981
O	-1.030627	-2.378826	0.381464
C	-0.802995	-3.759414	0.225858
C	-1.730173	-4.611352	1.085300
C	3.039175	2.474214	-2.262808
C	2.571377	2.248166	-3.700576
N	3.866918	0.589742	0.132269
C	4.887883	1.297424	0.922135
C	5.325679	0.480222	2.148088
C	4.225374	2.583201	1.416684
C	6.112540	1.674476	0.073100
C	2.443813	-1.835645	-2.099905
C	0.979349	-1.674007	-2.506670
C	2.577772	-3.148301	-1.310787
C	3.289004	-1.878882	-3.383219
N	-3.757964	-0.052543	0.481516
C	-3.846964	-0.554997	-0.757507
C	-4.736057	-1.653995	-1.217193
C	-4.177449	-2.931649	-1.289970
C	-4.953680	-4.004001	-1.712331
C	-6.283343	-3.799970	-2.077226
C	-6.835936	-2.523223	-2.016170
C	-6.064122	-1.447652	-1.583544
C	-4.440755	-0.515255	1.707141
C	-4.150098	-1.990036	2.010821
Atom	X	Y	Z
------	---------	---------	---------
C	-5.951648	-0.264631	1.591937
C	-3.891889	0.337484	2.849038
C	-4.004177	0.590788	-3.610249
C	-1.592206	1.071225	-3.223656
H	-6.426866	-0.435992	2.563931
H	-4.379727	0.060295	3.789218
H	0.101839	0.104659	-0.798753
H	1.769695	4.697936	-2.267718
H	-0.297354	6.041629	-2.128392
H	-2.344338	5.069366	-1.138383
H	3.875811	1.803077	-2.053222
H	3.434327	3.492263	-2.136513
H	2.228071	1.214773	-3.814657
H	3.387599	2.425229	-4.410252
H	1.739504	2.910063	-3.959554
H	-4.483160	2.198155	-0.532574
H	-3.826377	3.541021	-1.456168
H	-4.308112	3.488461	1.581532
H	-5.294788	4.361474	0.387194
H	-3.623992	4.866625	0.716009
H	3.791702	3.145792	0.584271
H	0.312219	-1.744278	-1.644100
H	0.720472	-2.468707	-3.214838
H	0.810479	-0.712440	-3.001559
H	2.057175	-3.951534	-1.844572
H	2.120816	-3.035785	-0.321703
H	3.226675	-0.923360	-3.915709
H	2.909356	-2.664807	-4.045165
H	4.338612	-2.099513	-3.179386
H	-1.545799	-1.754148	-2.924396
H	-2.008685	-1.205421	-4.551167
H	-3.202696	-1.990771	-3.506691
H	-4.827345	-0.123763	-3.520247
H	-3.825164	0.761753	-4.677548
H	-4.307512	1.540346	-3.155777
H	-1.895759	2.089172	-2.958520
H	-1.346008	1.059247	-4.290610
Atom	X	Y	Z
------	---------	---------	---------
H	-0.694288	0.828701	-2.650646
H	-4.595957	-2.656540	1.268116
H	-4.571337	-2.250534	2.988601
H	-3.070360	-2.152577	2.035117
H	-6.146053	0.772056	1.293536
H	-6.423851	-0.935339	0.870240
H	-2.816335	0.175313	2.958677
H	-4.096861	1.394989	2.656689
H	-3.138792	-3.060062	-0.999695
H	-6.491551	-0.450555	-1.531619
H	4.453632	0.190648	2.743371
H	5.985205	1.086570	2.779207
H	5.870527	-0.422913	1.862727
H	3.432861	2.337931	2.124616
H	6.694471	0.800266	-0.225223
H	5.806470	2.219179	-0.826490
H	3.620709	-3.453406	-1.193153
H	4.711002	-2.470144	1.015761
H	6.746735	-3.871160	0.912765
H	8.398640	-3.528880	-0.911558
H	7.997320	-1.780127	-2.626014
H	5.957255	-0.378800	-2.513446
H	-4.518116	-4.997300	-1.759054
H	-6.889763	-4.636948	-2.410164
H	-7.870775	-2.362278	-2.301953
H	4.956440	3.213872	1.932548
H	6.770440	2.327306	0.656745
H	2.955425	-1.294273	1.790918
H	1.943878	-1.149114	3.222798
H	-1.883035	-2.830541	3.942335
H	-0.177758	-3.134405	3.562102
H	-0.965346	-4.002256	-0.836964
H	0.237088	-4.009696	0.460221
H	-0.490422	-2.580002	5.993336
H	0.504438	-1.350308	5.178173
H	-1.198695	-1.014434	5.533053
H	3.893925	-2.695243	3.605100
5.12 Intermediate 11a			
Atoms	X	Y	Z
-------	----------	----------	----------
N	-2.501781	2.517138	-0.123082
C	-3.848515	3.042898	-0.350445
C	-4.341991	3.951328	0.790445
N	2.041763	2.344794	-1.080363
C	3.124311	2.717266	-1.999170
C	2.718353	2.588068	-3.479432
Si	1.968000	0.767667	-0.195556
N	3.869146	0.535324	0.236474
C	4.945247	1.168023	1.041081
C	4.327635	2.416181	1.688324
N	2.821159	-0.520181	-1.350560
C	2.406976	-1.618365	-2.275691
C	2.562800	-3.013964	-1.624827
C	3.980493	-0.446314	-0.670041
C	5.167180	-1.334826	-0.837302
C	5.379726	-2.388721	0.071700
C	6.497636	-3.223345	-0.066048
C	7.416135	-3.006703	-1.106727
C	7.210199	-1.953137	-2.012345
C	6.088406	-1.121283	-1.879894
C	3.220815	-1.538302	-3.589459
C	0.923289	-1.413774	-2.621320
C	6.138813	1.612039	0.161619
C	5.451590	0.235467	2.166808
Si	-2.099869	0.766951	0.118670
N	-3.776757	-0.072919	0.542582
C	-4.418634	-0.635616	1.762814
C	-5.949981	-0.434527	1.699042
N	-2.903106	0.041052	-1.438556
C	-3.875358	-0.533713	-0.724285
C	-4.784408	-1.598350	-1.230436
C	-4.236504	-2.882294	-1.421975
C	-5.043904	-3.922189	-1.902546
C	-6.393761	-3.681273	-2.211675
C	-6.936340	-2.397961	-2.033991
C	-6.134884	-1.357578	-1.538766
C	-2.782395	0.217922	-2.902908
Electronic Supplementary Information (ESI) for Chemical Science

C -4.099896 0.777047 -3.488879
C -1.663465 1.258761 -3.136341
C -2.428108 -1.117884 -3.595190
C -3.870453 0.168754 2.952336
C -4.069862 -2.126668 1.955503
O -0.978070 -2.341555 0.233998
C -0.772127 -3.730308 -0.018431
C -1.712735 -4.626292 0.800760
O 1.289797 -2.338462 1.522020
C 2.313456 -1.972558 2.432266
C 3.007953 -3.236160 2.953134
C 0.804430 2.007590 2.486441
H -6.386273 -0.698774 2.676060
H -4.319109 -0.207679 3.884696
H 0.132958 0.176361 -0.721463
H 1.756925 4.897992 -1.998604
H -0.360868 6.201867 -1.863631
H -2.423097 5.126021 -0.951703
H 3.963306 2.039903 -1.793927
H 3.485703 3.739374 -1.781829
H 2.418928 1.549141 -3.685820
H 3.561046 2.853196 -4.140573
H 1.867550 3.245934 -3.710648
H -4.522490 2.177782 -0.438303
H -3.889442 3.583778 -1.315269
H -4.354420 3.389694 1.736938
H -5.361557 4.316895 0.580233
H -3.675488 4.816456 0.919258
H 3.887427 3.068039 0.920332
H 0.281265 -1.584557 -1.747359
H 0.648397 -2.133574 -3.408180
H 0.745393 -0.400208 -3.006357
H 2.008446 -3.753230 -2.226019
H 2.145862 -2.996009 -0.607863
H 3.138904 -0.534224 -4.034418
H 2.816049 -2.271554 -4.305283
H 4.280054 -1.773724 -3.425550
H -1.578191	-1.593556	-3.091378	
H -2.160313	-0.927303	-4.647416	
H -3.282123	-1.809121	-3.575349	
H -4.917113	0.046952	-3.402338	
H -3.954293	1.008634	-4.556594	
H -4.384002	1.702899	-2.964797	
H -1.994095	2.260746	-2.828358	
H -1.409587	1.286668	-4.207550	
H -0.766173	1.008934	-2.556168	
H -4.545992	-2.749962	1.186211	
H -4.433258	-2.460497	2.941650	
H -2.982656	-2.258201	1.908668	
H -6.189100	0.619549	1.482615	
H -6.413110	-1.073269	0.935733	
H -2.781380	0.056556	3.013987	
H -4.138286	1.230486	2.840899	
H -3.187025	-3.044096	-1.179089	
H -6.550014	-0.359249	-1.393220	
H 4.612039	-0.096039	2.795542	
H 6.164007	0.789860	2.799683	
H 5.966314	-0.645119	1.760879	
H 3.544530	2.121910	2.398397	
H 6.673493	0.754605	-0.265684	
H 5.796569	2.267819	-0.653265	
H 3.613425	-3.331367	-1.585506	
H 4.659629	-2.556817	0.871148	
H 6.648918	-4.043030	0.639236	
H 8.288013	-3.655540	-1.211892	
H 7.921686	-1.777239	-2.821660	
H 5.925958	-0.297851	-2.576755	
H -4.618108	-4.918560	-2.037710	
H -7.020836	-4.490776	-2.591137	
H -7.983243	-2.206177	-2.277742	
H 5.103116	2.973715	2.235408	
H 6.847427	2.179035	0.786516	
H 3.045734	-1.315936	1.927841	
H 1.905177	-1.400518	3.288899	
	X	Y	Z
---	--------	--------	---------
H	-1.826785	-3.121505	3.704527
H	-0.103004	-3.387618	3.325448
H	-0.957744	-3.895564	-1.098362
H	0.272406	-4.015848	0.184532
H	-0.477028	-3.120040	5.814447
H	0.564011	-1.814595	5.162608
H	-1.153763	-1.486181	5.520446
H	3.864105	-2.975952	3.599664
H	2.301224	-3.850839	3.532717
H	3.372364	-3.846604	2.109961
H	-1.548113	-5.686736	0.538866
H	-1.524063	-4.499693	1.876588
H	-2.767356	-4.376683	0.607894
C	1.139890	3.382075	2.244351
C	0.174043	4.370243	2.256961
C	-1.175371	4.046674	2.572344
C	-1.518788	2.735615	2.843651
C	-0.554452	1.679915	2.782126
H	2.170232	3.665034	2.049220
H	0.451079	5.406348	2.050323
H	-1.928725	4.835282	2.622825
H	-2.539382	2.497709	3.136247
H	-0.783680	0.724725	3.245944
H	1.588582	1.303885	2.761529
5.13 Transition State 16a‡

Electronic Supplementary Information (ESI) for Chemical Science
Element	X	Y	Z
N	-2.325153	2.576435	-0.627990
C	-3.600168	3.259315	-0.762545
C	-3.956744	4.111846	0.455971
N	3.115968	-0.584189	-1.809160
C	2.923637	-1.581943	-2.882703
C	1.554992	-1.301941	-3.511616
C	4.109897	-0.504063	-0.911107
N	3.734439	0.370209	0.010221
C	4.417460	0.955275	1.166953
C	4.497905	-0.054780	2.321288
C	5.403080	-1.242682	-0.921197
C	5.596479	-2.348166	-0.093964
C	6.825610	-2.999082	-0.076516
C	7.869373	-2.544104	-0.878147
C	7.680123	-1.438015	-1.703464
C	6.449663	-0.789578	-1.726993
C	2.908413	-3.011631	-2.322562
C	4.008742	-1.426379	-3.958356
C	3.564698	2.160451	1.594523
C	5.828647	1.448546	0.812869
C	3.410442	2.599723	-2.166772
C	3.250559	2.649544	-3.685959
Si	-0.398897	-1.648176	0.319741
O	0.858792	-2.842127	0.373268
C	1.912922	-2.699995	1.277137
C	2.623827	-4.036429	1.441423
O	-1.107499	-1.905219	1.864764
C	-1.293169	-3.158009	2.469733
C	-1.607446	-2.958679	3.945195
O	-1.441746	-2.535336	-0.726204
C	-1.120752	-3.714755	-1.421582
C	-1.378840	-4.967955	-0.595803
N	-3.777373	0.183015	0.140780
C	-4.339881	-0.095724	1.469392
C	-4.502924	-1.598995	1.732630
C	-5.688590	0.624788	1.605080
C	-3.339514	0.478877	2.480431
Atom	X	Y	Z
------	--------	--------	--------
C	-3.058	0.042	-3.374
C	-2.385	-1.297	-3.689
C	-4.404	0.160	-4.102
C	-2.146	1.196	-3.819
H	-6.093	0.487	2.614
H	-3.749	0.367	3.496
H	-0.042	0.138	-1.658
H	2.138	4.788	-2.139
H	0.120	6.189	-1.984
H	-2.029	5.195	-1.281
H	4.203	1.890	-1.917
H	3.749	3.571	-1.780
H	2.979	1.657	-0.459
H	4.185	2.959	-4.166
H	2.462	3.348	-3.982
H	-4.367	2.489	-0.891
H	-3.619	3.867	-1.678
H	-4.032	3.479	1.347
H	-4.918	4.617	0.312
H	-3.194	4.872	0.652
H	3.577	2.934	0.824
H	0.758	-1.472	-2.785
H	1.402	-1.967	-4.368
H	1.474	-0.264	-3.856
H	2.637	-3.714	-3.119
H	2.165	-3.090	-1.521
H	4.058	-0.391	-4.318
H	3.774	-2.069	-4.813
H	4.994	-1.716	-3.587
H	-1.461	-1.390	-3.115
H	-2.158	-1.362	-4.759
H	-3.041	-2.132	-3.425
H	-5.057	-0.692	-3.897
H	-4.231	0.199	-5.183
H	-4.923	1.078	-3.805
H	-2.608	2.165	-3.590
H	-1.967	1.133	-4.897
Atom	X	Y	Z
------	-----------	-----------	-----------
H	-1.181640	1.147940	-3.302271
H	-5.347363	-2.023158	1.184008
H	-4.680217	-1.765289	2.801245
H	-3.586039	-2.117730	1.445032
H	-5.571464	1.698531	1.421822
H	-6.419949	0.226915	0.894122
H	-2.388173	-0.056112	2.409592
H	-3.169985	1.546040	2.295103
H	-3.687838	-2.892817	-1.191003
H	-6.772477	0.056112	-1.555568
H	3.504335	-0.438201	2.572048
H	4.920661	0.425134	3.210860
H	5.137249	-0.902434	2.057849
H	2.522014	1.866275	1.750175
H	6.512293	0.621754	0.603809
H	5.799684	2.108522	-0.060831
H	3.888518	-3.311264	-1.939009
H	4.780081	-2.704062	0.523869
H	6.965038	-3.864221	0.564235
H	8.829870	-3.049902	-0.859619
H	8.490732	-1.079271	-2.330181
H	6.296896	0.076032	-2.365189
H	-5.350972	-4.694027	-1.702636
H	-7.727020	-4.095253	-2.112658
H	-8.438276	-1.722511	-2.030731
H	3.955449	2.585173	2.525492
H	6.237855	2.018208	1.654350
H	2.621202	-1.924907	0.938173
H	1.548231	-2.369267	2.265876
H	-2.118674	-3.701498	1.983645
H	-0.398229	-3.786841	2.357929
H	-1.743718	-3.743717	-2.327904
H	-0.074403	-3.703959	-1.752247
H	-1.797440	-3.917113	4.442034
H	-0.768668	-2.466982	4.451065
H	-2.492962	-2.324162	4.059195
H	3.447025	-3.960486	2.163905
5.14 Intermediate 17a

Atom	X	Y	Z
H	1.920196	-4.793611	1.801902
H	3.025480	-4.383967	0.482702
H	-1.210268	-5.870079	-1.196951
H	-0.709034	-4.991261	0.267749
H	-2.413608	-4.982279	-0.232071
H	0.412886	3.452094	2.248415
H	-1.287517	2.944186	2.159622
H	-1.355185	2.368838	4.499987
H	-0.188064	3.704696	4.585288
H	0.572712	1.240511	5.487337
H	1.699005	2.143921	4.452106
H	-0.229379	-0.091199	3.612884
H	1.442002	0.154316	3.083525

Atom	X	Y	Z
C	5.603242	-2.186979	0.340851
C	5.412895	-1.087083	-0.495755
C	6.458482	-0.646325	-1.308731
C	7.685436	-1.301256	-1.283539
C	7.872314	-2.401023	-0.449171
C	6.829500	-2.843844	0.360302
Element	X	Y	Z
---------	-----------	-----------	-----------
C	4.118228	-0.351884	-0.493906
N	3.119954	-0.465070	-1.381980
C	2.940949	-1.468338	-2.451074
C	3.013065	-2.897255	-1.893448
N	3.742883	0.547339	0.403191
C	4.434749	1.177307	1.529998
C	3.552319	2.361089	1.956076
Si	1.999511	0.662944	-0.365641
N	2.205827	2.281949	-1.140093
C	3.395726	2.701309	-1.861026
C	3.191726	2.757082	-3.374934
C	1.148982	3.149565	-1.008978
N	0.002977	2.641286	-0.476996
C	-1.133327	3.397482	-0.510805
C	-1.099590	4.754602	-0.869823
C	0.104404	5.291186	-1.294562
C	1.233036	4.500617	-1.398827
Fe	-0.041905	0.668844	0.240095
Si	-0.356291	-1.501847	0.689506
O	-1.099421	-1.793040	2.217847
C	-1.287990	-3.046125	2.818096
C	-1.569410	-2.851755	4.300697
N	-2.306548	2.738772	-0.214567
C	-3.579840	3.426788	-0.344135
C	-3.936949	4.264676	0.883785
Si	-2.129030	0.948396	-0.116525
N	-3.777683	0.349169	0.540806
C	-4.328401	0.039084	1.867699
C	-5.690029	0.731206	2.019643
N	-3.197125	0.354628	-1.518585
C	-3.024083	0.227744	-2.969094
C	-4.368895	0.350805	-3.696500
C	-4.079430	-0.150861	-0.664757
C	-5.097721	-1.186404	-0.967385
C	-4.661224	-2.510203	-1.058248
C	-5.580076	-3.515938	-1.334440
C	-6.925408	-3.203421	-1.524132
Element	X	Y	Z
---------	------	------	------
C	-7.35577	-1.881777	-1.432996
C	-6.441835	-0.869767	-1.151613
C	-2.118783	1.397705	-3.385275
C	-2.336770	-1.098477	-3.313655
C	-3.334888	0.618121	2.883199
C	-4.461022	-1.470659	2.111729
C	5.816167	1.711244	1.123970
C	4.576808	0.194121	2.701564
C	3.989081	-1.264383	-3.55375
C	1.544668	-1.252412	-3.043285
O	-1.349321	-2.369090	0.415845
C	-1.043110	-3.574817	-1.070166
C	-1.406274	-4.803714	-0.246515
O	0.918901	-2.677085	0.754080
C	1.934025	-2.546634	1.704152
C	2.643510	-3.882180	1.878181
H	-6.084533	0.574436	3.029910
H	-3.726396	0.490500	3.898661
H	-0.042743	0.242465	1.234220
H	2.156385	4.915576	-1.778743
H	0.156363	6.340130	-1.574553
H	-1.992504	5.363484	-0.841080
H	4.181929	1.975086	-1.639762
H	3.767472	3.664617	-1.482293
H	2.864988	1.776704	-3.736096
H	4.124616	3.023864	-3.884709
H	2.425810	3.487449	-3.651749
H	-4.348188	2.660396	-0.486426
H	-3.593734	4.047634	-1.251362
H	-4.006529	3.622604	1.768194
H	-4.900951	4.767648	0.747328
H	-3.176400	5.026347	1.084066
H	3.509076	3.119289	1.167817
H	0.772500	-1.460199	-2.299757
H	1.402464	-1.925097	-3.895638
H	1.409074	-0.220743	-3.386508
H	2.743880	-3.612553	-2.679154
H 2.306234 -3.006641 -1.064214			
H 3.980207 -0.228333 -3.911050			
H 3.762016 -1.920123 -4.403037			
H 4.997108 -1.507151 -3.209700			
H -1.429729 -1.208653 -2.715569			
H -2.080345 -1.124847 -4.379170			
H -2.995402 -1.945247 -3.097919			
H -5.017950 -0.508179 -3.507919			
H -4.193911 0.409252 -4.776136			
H -4.893176 1.261588 -3.384782			
H -2.585798 2.358267 -3.141166			
H -1.940530 1.362568 -4.465314			
H -1.153707 1.340815 -2.871054			
H -5.291490 -1.907723 1.551464			
H -4.643585 -1.652649 3.176849			
H -3.530369 -1.967274 1.827879			
H -5.596082 1.809055 1.847288			
H -6.417809 0.326797 1.308666			
H -2.374889 0.099466 2.803716			
H -3.182559 1.689563 2.707265			
H -3.610209 -2.723014 -0.877580			
H -6.767798 0.164593 -1.089746			
H 3.601071 -0.210120 2.986645			
H 5.009526 0.701619 3.571071			
H 5.232263 -0.640741 2.436895			
H 2.527627 2.031908 2.154813			
H 6.522044 0.904871 0.909230			
H 5.734106 2.350617 0.238328			
H 4.020125 -3.149817 -1.548345			
H 4.786073 -2.534158 0.964130			
H 6.967425 -3.703359 1.008894			
H 8.829783 -2.912544 -0.431155			
H 8.495310 -0.952089 -1.916394			
H 6.309042 0.214458 -1.954109			
H -5.244070 -4.546499 -1.399480			
H -7.640676 -3.990827 -1.742379			
H -8.402890 -1.638100 -1.582898			
Atom	X	Y	Z
------	----	----	----
H	3.958568	2.823045	2.862263
H	6.231137	2.311858	1.940841
H	2.654446	-1.768861	1.399774
H	1.528900	-2.225735	2.678940
H	-2.130614	-3.576278	2.346835
H	-0.402584	-3.685276	2.685481
H	-1.610585	-3.587808	-2.013012
H	0.020807	-3.620774	-1.334807
H	-1.753071	-3.810960	4.798385
H	-0.716858	-2.365758	4.788926
H	-2.448587	-2.212801	4.437731
H	3.447619	-3.808546	2.621529
H	1.933188	-4.644999	2.213680
H	3.071532	-4.219909	0.927730
H	-1.253093	-5.720585	-0.829037
H	-0.781818	-4.851866	0.649396
H	-2.457022	-4.762836	0.065896
O	0.089515	1.412537	2.253367
C	-0.323389	2.717808	2.657467
C	-0.411359	2.657332	4.178247
C	0.685615	1.643133	4.516323
C	0.549160	0.645889	3.370776
H	0.423039	3.447506	2.316079
H	-1.274678	2.940028	2.169454
H	-1.389825	2.269825	4.483843
H	-0.263102	3.634214	4.646355
H	0.553830	1.171932	5.494007
H	1.669520	2.126346	4.495548
H	-0.180811	-0.142282	3.573470
H	1.489458	0.173294	3.075087
5.15 Transition State 18oa²

Element	X	Y	Z	Coordinates
C	5.637070	-2.130804	0.453906	
C	5.380239	-1.148907	-0.522687	
C	6.367896	-0.841336	-1.478576	
C	7.599600	-1.511465	-1.458915	
C	7.850032	-2.496700	-0.489160	
C	6.865663	-2.806328	0.464384	
C	4.096815	-0.398551	-0.507549	
N	3.061707	-0.514757	-1.369485	
C	2.807280	-1.597410	-2.359294	
C	3.756965	-1.441761	-3.569489	
Si	1.983658	0.668233	-0.330136	
N	3.746789	0.517522	0.401009	
C	4.515971	1.249595	1.418893	
C	5.891215	1.708907	0.889051	
Fe	-0.037479	0.683675	0.342271	
O	0.073599	1.310063	2.791788	
C	0.015352	2.254485	3.577385	
C	-0.020278	3.697899	3.110257	
Si	-2.118255	0.957664	-0.077362	
N	-2.331193	2.750479	-0.224206	
C	-3.622214	3.420112	-0.408089	
C -4.003530 4.310121 0.789407				
N -3.114267 0.287762 -1.535597				
C -2.887905 0.102739 -2.981585				
C -1.835071 1.160895 -3.382274				
C -4.051423 -0.193876 -0.711031				
N -3.809782 0.345072 0.502181				
C -4.397036 0.027459 1.819213				
C -3.468277 0.706042 2.842319				
C -5.055403 -1.241038 -1.031785				
C -4.614613 -2.578463 -1.089420				
C -5.532766 -3.599923 -1.368082				
C -6.885351 -3.292328 -1.597467				
C -7.321079 -1.958180 -1.543032				
C -6.408145 -0.931099 -1.256243				
C -2.338134 -1.312103 -3.275295				
C -4.190727 0.357008 -3.770303				
C -4.430524 -1.492726 2.093862				
C -5.817514 0.627433 1.905214				
Si -0.319672 -1.464973 0.884268				
O -1.232195 -2.371027 -0.271606				
C -0.969417 -3.689157 -0.744181				
C -1.523996 -4.772096 0.190836				
N -0.007541 2.654959 -0.446906				
C -1.157769 3.417738 -0.526761				
C -1.128201 4.771723 -0.927987				
C 0.080772 5.306960 -1.381466				
C 1.214931 4.499858 -1.474598				
C 1.136277 3.154870 -1.033915				
N 2.190410 2.266893 -1.162325				
C 3.385332 2.659739 -1.914229				
C 3.142097 2.694534 -3.434286				
O 1.007856 -2.574772 1.064338				
C 2.012288 -2.305462 2.028230				
C 2.789226 -3.595366 2.316237				
O -1.117559 -1.645226 2.399893				
C -1.221397 -2.848430 3.147500				
C -1.410456 -2.502137 4.628953				
C	4.695289	0.381647	2.686658	
-----	----------	----------	----------	
C	3.654826	2.480182	1.773380	
C	1.351676	-1.439787	-2.842502	
C	2.968339	-2.996148	-1.722495	
C	0.005521	1.989855	5.073956	
H	-6.223677	0.472402	2.918326	
H	-3.829368	0.508211	3.863637	
H	-0.000999	0.167590	-1.065102	
H	2.138477	4.893915	-1.891140	
H	0.129487	6.352346	-1.695724	
H	-2.031373	5.375916	-0.910784	
H	4.168330	1.922693	-1.692588	
H	3.767865	3.634991	-1.558402	
H	2.835028	1.694953	-3.778635	
H	4.060604	2.988134	-3.970936	
H	2.342525	3.406982	-3.685790	
H	-4.381603	2.634495	-0.532271	
H	-3.614432	4.014510	-1.340886	
H	-4.110780	3.693509	1.695275	
H	-4.958844	4.829694	0.602464	
H	-3.225417	5.065385	0.979481	
H	3.564805	3.159485	0.914511	
H	0.644296	-1.617601	-2.023799	
H	1.159962	-2.169086	-3.644917	
H	1.174724	-0.426873	-3.236752	
H	2.649606	-3.762371	-2.448467	
H	2.336626	-3.067736	-0.825010	
H	3.691626	-0.422654	-3.982617	
H	3.465248	-2.158227	-4.354588	
H	4.798788	-1.649198	-3.289701	
H	-1.523642	-1.540606	-2.577516	
H	-1.966974	-1.357363	-4.312781	
H	-3.126154	-2.070015	-3.155997	
H	-4.955832	-0.396332	-3.535824	
H	-3.975497	0.310571	-4.850120	
H	-4.589498	1.357191	-3.534610	
H	-2.209038	2.175503	-3.173943	
Atom	X	Y	Z	
------	--------	--------	--------	
H	-1.619728	1.073830	-4.458920	
H	-0.905185	1.009424	-2.814243	
H	-5.192739	-1.997464	1.484475	
H	-4.671043	-1.662097	3.156282	
H	-3.442262	-1.918539	1.881006	
H	-5.790159	1.709411	1.698350	
H	-6.492276	0.141030	1.184775	
H	-2.449693	0.305340	2.726614	
H	-3.448635	1.795281	2.675116	
H	-3.565353	-2.791246	-0.884601	
H	-6.738089	0.108470	-1.216359	
H	3.715983	0.030696	3.044808	
H	5.171180	0.979925	3.481286	
H	5.333349	-0.489432	2.478692	
H	2.647740	2.131198	2.045431	
H	6.553810	0.857121	0.684274	
H	5.767126	2.295892	-0.034395	
H	4.015280	-3.197330	-1.453653	
H	4.865251	-2.373153	1.182815	
H	7.052463	-3.575414	1.216713	
H	8.808086	-3.020430	-0.476794	
H	8.363238	-1.263005	-2.198853	
H	6.169837	-0.067339	-2.221264	
H	-5.191864	-4.637013	-1.402229	
H	-7.598237	-4.090204	-1.816432	
H	-8.370654	-1.715976	-1.722655	
H	4.102674	3.019288	2.622576	
H	6.372011	2.348286	1.647040	
H	2.698607	-1.520668	1.658547	
H	1.568090	-1.923746	2.969103	
H	-2.084968	-3.443743	2.790616	
H	-0.318572	-3.472909	3.014137	
H	-1.451862	-3.773278	-1.736767	
H	0.113711	-3.844746	-0.882723	
H	-1.518110	-3.417823	5.236156	
H	-0.542993	-1.930807	4.998508	
H	-2.311591	-1.881934	4.761048	
Element	X	Y	Z	
---------	------------	------------	------------	
H	3.598106	-3.410535	3.045418	
H	2.115735	-4.364569	2.726958	
H	3.232102	-3.991678	1.388062	
H	-1.391711	-5.773777	-0.255690	
H	-0.998500	-4.743843	1.155679	
H	-2.598877	-4.608557	0.376736	
H	1.008895	4.024864	2.875670	
H	-0.600826	3.779481	2.183657	
H	-0.427724	4.369192	3.882486	
H	-0.913960	2.405920	5.523932	
H	0.053305	0.909653	5.266849	
H	0.855230	2.500956	5.563479	

5.16 Intermediate 19oa

Element	X	Y	Z
C	6.330101	-0.674130	-1.561784
C	5.344812	-1.052253	-0.629287
C	5.576026	-2.153109	0.217969
C	6.770014	-2.880246	0.118478
C	7.749752	-2.503495	-0.815424
C	7.529449	-1.395977	-1.650964
C	4.074593	-0.286072	-0.522905
N	3.723703	0.511393	0.495285
C	4.523645	1.125518	1.575255
C	5.833779	1.737589	1.029374
N	3.047189	-0.285880	-1.402864
C 2.796032 -1.232330 -2.527240			
C 3.697210 -0.868351 -3.729280			
Si 1.968711 0.769036 -0.238497			
N 2.180900 2.459620 -0.868912			
C 3.372533 2.940601 -1.572684			
C 3.118501 3.175761 -3.073309			
Fe -0.062174 0.711388 0.395009			
Si -0.301773 -1.472968 0.756866			
O -1.263654 -2.264979 -0.449278			
C -0.996024 -3.482489 -1.136219			
C -1.623329 -4.699507 -0.438822			
Si -2.155314 1.023377 0.034980			
N -2.350762 2.817594 0.129009			
C -3.639190 3.513976 0.079320			
C -3.983470 4.218776 1.404912			
N -3.190718 0.529502 -1.452072			
C -2.969190 0.494098 -2.910378			
C -1.989093 1.651376 -3.210904			
C -4.095718 -0.062988 -0.661192			
N -3.821848 0.334234 0.601611			
C -4.378658 -0.141537 1.889106			
C -3.439740 0.400414 2.989011			
C -5.088358 -1.085120 -1.081573			
C -6.453520 -0.785324 -1.227147			
C -7.349130 -1.790399 -1.625400			
C -6.883259 -3.092518 -1.872054			
C -5.518021 -3.390562 -1.720693			
C -4.618249 -2.390459 -1.329071			
C -2.324431 -0.847858 -3.324274			
C -4.288941 0.730079 -3.673339			
C -4.415471 -1.685114 1.970479			
C -5.794962 0.446533 2.078486			
O -0.086697 1.490864 2.216275			
C 0.244739 1.325878 3.406783			
C -0.007983 2.443209 4.405415			
N -0.034806 2.755245 -0.168402			
C 1.119511 3.325997 -0.644159			
C 1.203733 4.720724 -0.884493			
C 0.070222 5.506767 -0.668173			
C -1.137372 4.922453 -0.278054			
C -1.175049 3.520736 -0.082712			
C 1.321163 -1.069951 -2.943460			
C 3.021437 -2.703352 -2.108748			
C 4.850546 0.093508 2.680242			
C 3.650648 2.251127 2.175580			
O 1.022315 -2.609801 0.737363			
C 2.029531 -2.579975 1.730791			
C 2.799240 -3.908355 1.721915			
O -1.051901 -1.876736 2.268697			
C -1.223851 -3.207060 2.745175			
C -1.396826 -3.184706 4.268822			
C 0.918853 0.059452 3.863034			
H -6.189695 0.148196 3.063706			
H -3.863039 0.157197 3.976791			
H -0.018733 0.348861 -1.071415			
H 2.131026 5.171601 -1.229204			
H 0.122459 6.586648 -0.828037			
H -2.033352 5.525615 -0.154783			
H 4.150730 2.174600 -1.456552			
H 3.765031 3.859396 -1.097166			
H 2.782519 2.236275 -3.538588			
H 4.039793 3.513285 -3.578489			
H 2.335246 3.933575 -3.223268			
H -4.407849 2.758770 -0.141512			
H -3.647192 4.241028 -0.754510			
H -4.066776 3.476448 2.213510			
H -4.941434 4.760278 1.323144			
H -3.195566 4.936065 1.680964			
H 3.422003 3.012909 1.416731			
H 0.651743 -1.380829 -2.133311			
H 1.129640 -1.695733 -3.829181			
H 1.091942 -0.022809 -3.193325			
H 2.683788 -3.360923 -2.926810			
H 2.431446 -2.925343 -1.207714			
H	3.569686	0.191820	-3.998720
H	3.413104	-1.486579	-4.596387
H	4.756144	-1.057667	-3.507688
H	-1.495385	-1.078338	-2.644798
H	-1.951844	-0.778127	-4.359442
H	-3.059668	-1.664616	-3.272779
H	-4.997012	-0.096564	-3.522815
H	-4.071663	0.810353	-4.751093
H	-4.759237	1.669388	-3.339772
H	-2.429522	2.616474	-2.915490
H	-1.769453	1.675066	-4.290023
H	-1.049531	1.511154	-2.654925
H	-5.208319	-2.107265	1.337704
H	-4.607849	-1.988764	3.013097
H	-3.443307	-2.085408	1.658203
H	-5.765782	1.547176	2.028934
H	-6.480742	0.070271	1.304648
H	-2.448011	-0.062346	2.897299
H	-3.340634	1.493822	2.906771
H	-3.559603	-2.599047	-1.180169
H	-6.806761	0.230555	-1.041082
H	3.928671	-0.384928	3.042972
H	5.338793	0.604006	3.526885
H	5.531343	-0.683370	2.305304
H	2.698826	1.846128	2.546808
H	6.501311	0.963419	0.627057
H	5.611621	2.466687	0.236098
H	4.082435	-2.916418	-1.918679
H	4.808049	-2.445178	0.931058
H	6.931715	-3.743050	0.767982
H	8.680096	-3.069903	-0.891644
H	8.290404	-1.094165	-2.373469
H	6.154638	0.189200	-2.204874
H	-5.152401	-4.403373	-1.904401
H	-7.582431	-3.872956	-2.180163
H	-8.408859	-1.556168	-1.743023
H	4.187378	2.723386	3.013258
	6.359416	2.258024	1.845974
H	2.722899	-1.726896	1.547366
H	1.593161	-2.426257	2.734179
H	-2.120207	-3.661304	2.275754
H	-0.356272	-3.837333	2.465020
H	-1.423683	-3.380169	-2.153689
H	0.090993	-3.644893	-1.244123
H	-1.587000	-4.203376	4.652105
H	-0.494129	-2.788007	4.757156
H	-2.247053	-2.543912	4.541466
H	3.601836	-3.900424	2.481220
H	2.117603	-4.734867	1.945014
H	3.245914	-4.086423	0.731661
H	-1.479639	-5.609058	-1.049622
H	-1.155880	-4.857458	0.544982
H	-2.706332	-4.545938	-0.287010
H	0.224686	-0.784439	3.733478
H	1.766686	-0.139168	3.194381
H	1.260173	0.121353	4.903586
H	0.935189	2.733881	4.902938
H	-0.441657	3.317155	3.894202
H	-0.696353	2.106684	5.204754
5.17 Transition State 20oa2

C -6.163049 0.601169 1.620953
C -5.796482 0.813869 0.278216
C -6.756737 1.296092 -0.632774
C -8.062034 1.575490 -0.204152
C -8.420747 1.370200 1.138469
C -7.467588 0.884935 2.049313
C -4.438951 0.440282 -0.210422
N -3.414513 1.277172 -0.474501
C -3.353533 2.725856 -0.112424
C -3.763518 2.965406 1.361521
N -4.041488 -0.807709 -0.484213
C -4.833535 -2.062042 -0.505713
C -3.984210 -3.108625 -1.249235
N -4.165959 -0.260561 -3.488687
C -3.146740 1.024511 -4.327335
C -0.906263 -0.814205 -3.112022
N 0.163595 -0.735888 -2.250904
C 1.441510 -0.895498 -2.749537
C 1.657900 -1.421173 -4.044113
C 0.548748 -1.603062 -4.879529
Atom	X	Y	Z					
C	-0.732139	-1.254523	-4.448335					
Fe	-0.110979	-0.281385	-0.270132					
Si	-0.307292	0.235336	1.891930					
O	0.598838	-0.739137	3.005367					
C	0.957958	-0.222668	4.285904					
C	1.009841	-1.363532	5.305375					
N	2.459648	-0.385279	-1.949802					
C	3.791260	-0.210083	-2.541102					
C	4.652968	-1.480203	-2.441673					
Si	1.769852	0.674955	-0.621985					
N	3.284351	1.538233	0.184447					
C	4.035826	1.371570	1.460839					
C	5.547168	1.544122	1.184947					
N	2.031581	2.419993	-1.354453					
C	1.611319	3.183112	-2.550617					
C	2.825579	3.415617	-3.481707					
C	2.995511	2.685206	-0.464315					
C	3.567986	4.032403	-0.187827					
C	2.821163	4.940618	0.588305					
C	3.338007	6.211830	0.870494					
C	4.596550	6.588703	0.370091					
C	5.340136	5.686839	-0.407866					
C	4.830248	4.407765	-0.681126					
C	0.580908	2.306771	-3.294678					
C	0.964913	4.536532	-2.172407					
C	3.773954	-0.65622	1.931271					
C	3.562124	2.344274	2.560154					
C	-6.178016	-1.910080	-1.259210					
C	-5.092469	-2.598738	0.921086					
C	-4.257042	3.544141	-1.066027					
C	-1.906757	3.225090	-0.290034					
O	0.196909	1.858416	2.276203					
C	-0.477190	2.776398	3.129839					
C	0.517636	3.799839	3.691003					
O	-1.879775	0.264768	2.649445					
C	-2.398254	-0.746710	3.494117					
C	-2.797215	-0.149920	4.852111					
	H	H	H					
-----	-----	-----	-----					
H	6.115924	1.272848	2.089484					
H	4.342993	-0.254477	2.856170					
H	-0.670128	1.057664	-0.645894					
H	-1.581762	-1.339634	-5.121979					
H	0.692587	-1.983401	-5.893962					
H	2.665659	-1.618466	-4.401552					
H	-4.178198	-0.203944	-2.865187					
H	-3.405815	-1.140757	-4.145932					
H	-3.070324	1.892018	-3.654015					
H	-4.025123	1.157679	-4.982269					
H	-2.241371	0.991167	-4.951987					
H	4.288812	0.597356	-1.982683					
H	3.702530	0.125744	-3.592950					
H	4.784429	-1.733942	-1.382607					
H	5.642776	-1.320671	-2.903319					
H	4.161793	-2.333961	-2.932999					
H	-3.682138	-2.742765	-2.240967					
H	-1.214161	2.734619	0.405155					
H	-1.893383	4.311409	-0.102799					
H	-1.558654	3.045697	-1.316907					
H	-3.493825	3.995931	1.645843					
H	-3.230884	2.260035	2.014905					
H	-3.973768	3.359120	-2.114437					
H	-4.129085	4.618450	-0.853650					
H	-5.317988	3.296959	-0.932301					
H	0.186643	4.390745	-1.410505					
H	0.501274	4.977692	-3.069962					
H	1.711206	5.244702	-1.787988					
H	3.559347	4.087993	-3.013579					
H	2.485654	3.876544	-4.423752					
H	3.312173	2.455874	-3.715553					
H	1.060550	1.410599	-3.711892					
H	0.145719	2.886350	-4.123671					
H	-0.219953	1.979172	-2.618874					
H	3.855428	3.382211	2.354326					
H	4.018660	2.045805	3.518621					
H	2.469956	2.279824	2.651140					
---	---	---	---					
H	5.862932	0.882548	0.361556					
H	5.791248	2.583816	0.923730					
H	2.705804	-0.229082	2.130837					
H	4.099384	-0.782365	1.170872					
H	1.847719	4.633604	0.972303					
H	5.404857	3.698239	-1.278472					
H	-4.139080	-2.714403	1.455492					
H	-5.579852	-3.586489	0.859016					
H	-5.748384	-1.927229	1.490061					
H	-3.087058	-3.342734	-0.669579					
H	-6.902686	-1.304478	-0.702821					
H	-6.016594	-1.455580	-2.249666					
H	-4.845306	2.851375	1.509260					
H	-5.413559	0.237540	2.324913					
H	-7.738356	0.727703	3.095464					
H	-9.437471	1.586393	1.472982					
H	-8.799375	1.945682	-0.919464					
H	-6.478563	1.429213	-1.679050					
H	2.759222	6.907815	1.481194					
H	4.996468	7.581309	0.587534					
H	6.317433	5.975726	-0.799968					
H	-4.569389	-4.034010	-1.368384					
H	-6.613265	-2.911865	-1.405544					
H	-3.288662	-1.196161	3.015501					
H	-1.661131	-1.553441	3.651455					
H	1.950697	0.264066	4.220013					
H	0.245051	0.547450	4.631015					
H	-1.269856	3.299384	2.564979					
H	-0.976500	2.252705	3.964676					
H	1.359199	-0.995467	6.285928					
H	0.010596	-1.809009	5.431876					
H	1.697576	-2.151387	4.960307					
H	-3.307120	-0.900538	5.482106					
H	-1.901376	0.207728	5.386052					
H	-3.473539	0.709061	4.706078					
H	0.001873	4.511956	4.358695					
H	1.307613	3.287031	4.262723					
---	----	----	----	----	----	----	----	----
H	1.000678	4.368345	2.879917					
O	0.639809	-2.298313	0.032803					
C	-0.155108	-3.291225	-0.000863					
C	-0.717999	-3.625196	-1.395473					
C	-1.150127	-3.397624	1.157801					
H	-0.607271	-3.321889	2.109016					
H	-1.836358	-2.541744	1.080612					
H	-1.716038	-4.341705	1.114836					
H	-1.266271	-4.580602	-1.386650					
H	-1.393749	-2.826605	-1.712641					
H	0.114077	-3.669497	-2.110904					
Si	2.197824	-3.546001	0.358074					
O	3.708409	-2.902122	0.623433					
O	1.867419	-4.359038	1.778895					
O	2.445205	-4.386962	-1.058744					
C	4.875647	-3.712499	0.374540					
C	1.946744	-5.693636	-1.395363					
C	2.676940	-4.192719	2.968485					
C	6.077085	-3.023442	1.015765					
H	4.739472	-4.719715	0.811266					
H	5.012445	-3.831244	-0.711034					
C	2.151247	-5.907154	-2.892962					
H	2.494261	-6.448260	-0.803690					
H	0.876646	-5.770904	-1.140954					
C	1.966842	-4.903880	4.116717					
H	3.679682	-4.620276	2.795873					
H	2.794294	-3.120880	3.188566					
H	6.983248	-3.633067	0.865150					
H	6.238309	-2.032265	0.564716					
H	5.910244	-2.889534	2.095409					
H	2.550791	-4.793987	5.045470					
H	0.970963	-4.464391	4.273660					
H	1.850000	-5.976470	3.895267					
H	1.787900	-6.905648	-3.186476					
H	1.597465	-5.143221	-3.460212					
H	3.219009	-5.828239	-3.150561					
H	0.687009	-4.161136	0.164993					
5.18 Transition State 21a‡

	X	Y	Z
C	-0.777444	-2.291954	2.169251
N	0.257393	-1.439901	1.793272
C	1.454936	-1.541156	2.502303
C	1.568979	-2.354404	3.653414
C	0.496035	-3.157893	4.037092
C	-0.677468	-3.151693	3.283218
Fe	0.026602	-0.107321	0.312586
Si	-0.452028	2.218692	0.515451
O	0.363080	3.134313	-0.665342
C	0.192279	4.521889	-0.942466
C	-0.469730	4.691409	-2.315135
N	2.531956	-0.852385	1.977159
C	3.880468	-1.120061	2.496112
C	4.244077	-0.274116	3.728309
N	-1.927311	-2.226166	1.397616
C	-2.949601	-3.273238	1.492771
C	-2.469162	-4.621000	0.924471
Si	-1.971354	-0.867984	0.236281
N	-3.739402	-0.232138	0.411220
C	-4.587092	0.276962	1.514028
C	-5.652850	-0.767390	1.910161
N	-3.057712	-1.499502	-1.221428
C	-2.685631	-1.729453	-2.649905
Element	X	Y	Z
---------	-----------	-----------	-----------
C	-3.857866	-2.28405	-3.48376
C	-4.080479	-0.713810	-0.788694
C	-5.314417	-0.342384	-1.529170
C	-5.434471	0.960608	-2.045338
C	-6.591104	1.334547	-2.744244
C	-7.641249	0.416076	-2.909503
C	-7.530228	-0.880589	-2.379062
C	-6.366193	-1.262941	-1.697103
C	-1.559990	-2.784736	-2.649273
C	-2.158096	-0.409158	-3.252967
C	-5.276031	1.60607	1.124798
C	-3.626799	0.527954	2.693087
Si	2.196579	-0.072350	0.377333
N	3.853045	0.834687	0.044762
C	4.188196	2.284544	-0.042193
C	3.516151	2.953388	1.174442
N	3.343058	-1.125248	-0.733280
C	3.348250	-2.523281	-1.211344
C	2.467896	-3.332319	-0.228737
C	4.244949	-0.144797	-0.809584
C	5.445414	-0.144106	-1.686594
C	5.302426	0.000838	-3.079305
C	6.431968	-0.050026	-3.909604
C	7.705111	-0.260317	-3.354946
C	7.848346	-0.410133	-1.964841
C	6.723444	-0.346932	-1.132225
O	-2.099077	2.777942	0.481915
C	-2.574611	3.902901	1.229264
C	-3.386376	4.879960	0.373483
O	0.113432	2.866730	2.005985
C	-0.053082	2.111373	3.206611
C	1.243265	2.161463	4.019242
C	3.625463	2.870422	-1.353750
C	5.713066	2.532556	0.040137
C	2.719262	-2.565315	-2.622430
C	4.762275	-3.143938	-1.230048
H	5.880660	3.604313	0.234205
-----	---------	---------	----------
H	3.607455	4.047316	1.081176
H	0.158888	-1.269892	-0.619846
H	-1.515321	-3.789159	3.553670
H	0.579061	-3.798004	4.918135
H	2.496793	-2.375090	4.217798
H	-3.811468	-2.924554	0.908254
H	-3.296060	-3.392017	2.536218
H	-2.253732	-4.509175	-0.148820
H	-3.242070	-5.397175	1.055139
H	-1.549641	-4.948558	1.431965
H	4.593423	-0.886936	1.693831
H	3.989911	-2.197936	2.716585
H	4.268837	0.791136	3.453996
H	5.238797	-0.561302	4.110302
H	3.506336	-0.399856	4.534504
H	-3.070350	-0.388482	2.943050
H	-0.688109	-2.416426	-2.095409
H	-1.258615	-2.997389	-3.686886
H	-1.904792	-3.721770	-2.184439
H	-1.857859	-0.558463	-4.303706
H	-1.285338	-0.059577	-2.677283
H	-4.350176	-3.115738	-2.952577
H	-3.450006	-2.682197	-4.433023
H	-4.603506	-1.524497	-3.736588
H	1.709568	-2.128358	-2.592460
H	2.646881	-3.608852	-2.970977
H	3.335481	-1.997815	-3.336819
H	5.409572	-2.690018	-1.991888
H	4.667393	-4.218869	-1.452657
H	5.241805	-3.033850	-0.244162
H	2.922770	-3.350844	0.772917
H	2.376731	-4.367008	-0.595834
H	1.465450	-2.888384	-0.150281
H	4.062083	2.346289	-2.219281
H	3.892985	3.937709	-1.431010
H	2.531713	2.768330	-1.368265
H	6.156124	1.959595	0.870030
---	---	---	---
H	6.231538	2.270704	-0.891413
H	2.446381	2.713111	1.235178
H	4.010684	2.642147	2.109952
H	4.308566	0.151860	-3.503210
H	6.826410	-0.450376	-0.051176
H	-4.549093	2.256196	0.619548
H	-5.632374	2.108877	2.038675
H	-6.141793	1.436353	0.467663
H	-2.907233	1.306663	2.409371
H	-6.345733	-0.948346	1.073947
H	-5.182846	-1.715765	2.205308
H	-2.939996	0.365315	-3.219785
H	-4.624034	1.669564	-1.876021
H	-6.675092	2.344561	-3.150321
H	-8.546688	0.710034	-3.447815
H	-8.346709	-1.595181	-2.501310
H	-6.259700	-2.274125	-1.301127
H	6.316736	0.070479	-4.988687
H	8.582733	-0.306536	-4.002911
H	8.836495	-0.573209	-1.529912
H	-4.199083	0.850259	3.576275
H	-6.234062	-0.386216	2.765446
H	1.192144	4.994178	-0.940143
H	-0.407854	5.026768	-0.166097
H	-3.220296	3.526212	2.049440
H	-1.740463	4.440730	1.713684
H	-0.895699	2.525627	3.794487
H	-0.293245	1.056082	2.970863
H	1.105423	1.690787	5.008138
H	2.036067	1.626773	3.478366
H	1.556527	3.208601	4.164504
H	-0.583065	5.758910	-2.575269
H	0.143986	4.202181	-3.088757
H	-1.460594	4.213538	-2.307040
H	-3.894760	5.611053	1.026077
H	-2.742784	5.431048	-0.325746
H	-4.150958	4.348911	-0.211728
5.19 Intermediate *trans*-14a

Atom	X	Y	Z	
C	-6.406478	-2.243592	-0.160531	
C	-5.217966	-1.984222	-0.867832	
C	-5.080758	-2.430875	-2.195505	
C	-6.125530	-3.138502	-2.808362	
C	-7.312986	-3.393134	-2.102419	
C	-7.451530	-2.943575	-0.778111	
C	-4.116847	-1.213417	-0.232281	
N	-3.189062	-1.684884	0.620296	
C	-2.809752	-3.089970	0.910493	
C	-1.790709	-3.036083	2.070470	
N	-3.25948	-1.684884	0.620296	
C	-4.507725	1.113986	-1.276883	
C	-3.903200	1.094525	-2.699716	
Si	-2.130761	-0.092400	0.373184	
Fe	-0.027128	0.121680	-0.067272	
Si	2.100816	-0.058542	0.175564	
N	3.759973	-0.056756	-0.800786	
C	4.197362	0.667981	-2.028704	
C	3.002542	0.719426	-3.011752	
N	0.049990	0.891577	1.795332	
C	-1.108379	1.151617	2.521590	
C	-1.069754	1.801943	3.775039	
C	0.157361	2.197774	4.303219	
C	1.335243	1.912352	3.613955	
C	1.269297	1.230537	2.377707	
Element	X	Y	Z	
---------	-----------	-----------	-----------	
N	-2.298121	0.745570	1.943051	
C	-3.569025	0.884598	2.665217	
C	-3.760725	-0.163899	3.776180	
N	2.403927	0.835936	1.697252	
C	3.726265	0.991216	2.310621	
C	4.306814	2.407885	2.154951	
Si	-0.014859	2.231024	-0.895784	
O	1.520068	3.028584	-0.821959	
C	1.733240	4.410484	-1.111646	
C	2.531849	5.069122	0.019615	
O	-1.059912	3.477933	-0.326721	
C	-0.839461	4.126994	0.925638	
C	-2.179162	4.407228	1.611526	
O	-0.446212	2.139232	-2.550310	
C	-0.269513	3.225006	-3.461791	
C	-0.937964	2.879607	-4.795370	
N	3.098408	-1.637994	0.524027	
C	4.033506	-1.312287	-0.372086	
C	5.156796	-2.194980	-0.784360	
C	6.460600	-1.929354	-0.326811	
C	7.511023	-2.795290	-0.660240	
C	7.266075	-3.923122	-1.461569	
C	5.966052	-4.185223	-1.925590	
C	4.911007	-3.327198	-1.582853	
C	2.932645	-2.782344	1.442767	
C	2.140102	-3.892625	0.713274	
C	4.276639	-3.328922	1.971428	
C	2.096911	-2.270719	2.641037	
C	5.403281	0.035745	-2.751290	
C	4.572788	2.099705	-1.592196	
C	-2.137047	-3.707023	-0.338138	
C	-4.016438	-3.947629	1.349546	
C	-4.205105	2.468782	-0.604960	
C	-6.038800	0.920457	-1.337644	
H	5.637738	0.672763	-3.618514	
H	4.816399	2.706135	-2.479834	
H	0.066906	-1.426928	0.201156	
	H	5.452297	2.077101	-0.928227
---	-------	----------	----------	-----------
H	3.897799	-3.524634	-1.936286	
H	6.640438	-1.050124	0.294592	
H	-2.819017	1.274890	-2.655736	
H	-4.368120	1.885720	-3.311689	
H	-4.095520	0.122796	-3.182701	
H	-3.124828	2.644235	-0.517100	
H	-6.332490	0.053923	-1.944125	
H	-6.459182	0.803305	-0.325881	
H	-2.853463	-3.758530	-1.173323	
H	-4.159902	-2.18409	-2.740597	
H	-6.013614	-3.486021	-3.837408	
H	-8.127875	-3.938923	-2.582299	
H	-8.373776	-3.138181	-0.226914	
H	-6.504138	-1.893468	0.868221	
H	5.773274	-5.058425	-2.552174	
H	8.085456	-4.595597	-1.723636	
H	8.519859	-2.589897	-0.296637	
H	-4.637476	3.278563	-1.214330	
H	-6.477260	1.822787	-1.792168	
H	2.295364	4.493757	-2.062715	
H	0.772684	4.938023	-1.248132	
H	-0.206551	3.518345	1.594499	
H	-0.304294	5.080128	0.750299	
H	-0.710774	4.149624	-3.044317	
H	0.810054	3.412983	-3.619267	
H	-2.016785	4.940859	2.563449	
H	-2.822603	5.022339	0.961653	
H	-2.696224	3.460591	1.819322	
H	2.706626	6.137442	-0.197746	
H	1.980216	4.984291	0.968449	
H	3.506406	4.572740	0.144846	
H	-0.795259	3.696136	-5.524205	
H	-0.503336	1.955527	-5.210343	
H	-2.018057	2.719063	-4.650835	
5.20 Transition State 22oa

Element	X	Y	Z
C	4.834674	-3.321014	-1.157686
C	5.149101	-2.204585	-0.359981
C	6.453064	-2.056846	0.149553
C	7.433185	-3.016773	-0.136676
C	7.118663	-4.128580	-0.936894
C	5.819092	-4.277815	-1.448033
C	4.093035	-1.210998	-0.019066
N	3.159604	-1.351749	0.915679
C	2.891163	-2.425392	1.888989
C	1.970471	-1.809619	2.967081
Si	2.167291	0.167791	0.237276
N	2.482468	1.370694	1.540684
C	3.770434	1.996049	1.848229
C	3.765410	3.504290	1.535528
Fe	0.012427	0.247554	0.005280
O	-0.338995	-0.829760	-2.279528
C	-0.150755	-0.588895	-3.483083
C	-0.658271	-1.574310	-4.523929
Si	-1.937357	-0.294686	0.705524
N	-1.974160	0.259727	2.400645
C	-3.132707	0.121117	3.290199
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
---------	--------------	--------------	--------------
C	-2.917385	-0.912648	4.411147
N	-2.820199	-1.993451	0.678273
C	-2.302974	-3.382749	0.617660
C	-3.412239	-4.455862	0.684479
C	-3.913562	-1.451143	0.101356
N	-3.776740	-0.122128	0.169588
C	-4.668247	0.974309	-0.262111
C	-6.157992	0.672401	0.012482
C	-5.017561	-2.181513	-0.576887
C	-6.105921	-2.687838	0.156938
C	-7.138827	-3.368978	-0.500232
C	-7.088243	-3.551097	-1.892984
C	-6.001292	-3.048098	-2.626739
C	-4.967522	-2.361489	-1.971809
C	-1.393260	-3.569960	1.852081
C	-1.486391	-3.562116	-0.683764
C	-4.446467	1.225722	-1.770906
C	-4.259865	2.215909	0.561187
N	0.212640	0.977350	1.938137
C	-0.848284	0.943829	2.822076
C	-0.783044	1.573743	4.087829
C	0.385051	2.238060	4.455349
C	1.488624	2.235863	3.603057
C	1.396167	1.558116	2.365605
Si	-0.301517	2.398786	-0.653527
O	-1.360541	2.650966	-2.012954
C	-2.190744	3.799980	-2.157799
C	-2.673072	3.887004	-3.609135
N	3.865522	-0.023728	-0.639877
C	4.395839	0.430695	-1.946578
C	3.916024	1.883660	-2.122906
C	3.838222	-0.470322	-3.075502
C	5.941369	0.428334	-1.988630
O	1.097431	3.333767	-1.097860
C	1.034233	4.518028	-1.884250
C	2.432262	5.132503	-2.018239
O	-1.040329	3.340434	0.578538
----	--------	--------	--------
C	-0.758718	4.681897	0.937656
C	-1.267636	4.937641	2.359960
C	2.148868	-3.575245	1.168025
C	4.177999	-2.948578	2.561797
C	0.522874	0.663511	-3.982966
H	6.268920	0.962254	-2.895513
H	4.172742	2.235157	-3.135068
H	-0.214906	-1.189832	0.638540
H	-1.637301	1.550200	4.758115
H	0.441713	2.747776	5.420116
H	2.419130	2.712740	3.897543
H	-3.983555	-0.188239	2.667070
H	-3.398726	1.106287	3.713901
H	-2.812014	-1.916836	3.975907
H	-3.776399	-0.914942	5.103910
H	-2.005520	-0.686215	4.983377
H	4.524101	1.495710	1.223775
H	4.050478	1.814011	2.903582
H	3.474728	3.657205	0.486808
H	4.762245	3.942891	1.714493
H	3.031143	4.031080	2.163610
H	-4.472197	2.048104	1.628749
H	-0.630828	-2.783389	1.903871
H	-0.889154	-4.547123	1.789747
H	-1.994826	-3.544149	2.773891
H	-1.044574	-4.572649	-0.714590
H	-0.689562	-2.808038	-0.742943
H	-4.082749	-4.274089	1.538863
H	-2.929792	-5.436676	0.824351
H	-4.011675	-4.499459	-0.233689
H	1.281635	-3.166398	0.630499
H	1.799895	-4.320814	1.901157
H	2.819832	-4.075001	0.452807
H	4.822404	-3.491544	1.857587
H	3.894299	-3.638477	3.372902
H	4.749509	-2.113653	2.998147
H	2.481737	-0.987746	3.490974
---	---	---	
H	1.697148	-2.585346	3.699932
H	1.056394	-1.411980	2.505367
H	4.262070	-1.483131	-3.002709
H	4.098578	-0.052528	-4.062157
H	2.745406	-0.538392	-2.991119
H	6.347652	0.955347	-1.110734
H	6.356885	-0.586852	-2.021372
H	2.835093	1.994647	-1.969303
H	4.416459	2.535609	-1.390812
H	3.821509	-3.433293	-1.545959
H	6.689057	-1.191051	0.770078
H	-3.378223	1.387125	-1.968864
H	-5.010574	2.116470	-2.092985
H	-4.802819	0.359546	-2.351296
H	-3.193388	2.452632	0.453174
H	-6.550096	-0.118998	-0.639009
H	-6.308704	0.377164	1.063818
H	-2.149120	-3.443593	-1.556440
H	-4.117516	-1.968830	-2.532208
H	-5.957982	-3.188919	-3.708775
H	-7.893485	-4.082754	-2.404048
H	-7.983208	-3.757587	0.072798
H	-6.137280	-2.540799	1.237597
H	5.569877	-5.139489	-2.070776
H	7.883209	-4.875576	-1.159917
H	8.441753	-2.897807	0.264425
H	-4.849026	3.082600	0.221299
H	-6.737825	1.590300	-0.175580
H	0.968224	0.520508	-4.979964
H	-0.233841	1.467255	-4.028407
H	1.277092	0.996864	-3.258912
H	0.171001	-1.924400	-5.163683
H	-1.139012	-2.432953	-4.034922
H	-1.383649	-1.075646	-5.193569
H	0.619520	4.290154	-2.885653
H	0.363921	5.265818	-1.418697
H	0.328522	4.878121	0.885411
5.21 Intermediate 23oa

H -1.251538 5.381723 0.229490
H -3.057839 3.728531 -1.477435
H -1.649701 4.725211 -1.892482
H -1.055859 5.976756 2.668132
H -2.356134 4.769191 2.410747
H -0.777687 4.242909 3.058049
H 2.387980 6.063855 -2.609040
H 2.838332 5.368070 -1.021387
H 3.122201 4.433896 -2.515047
H -3.348054 4.749472 -3.747267
H -1.814000 3.999859 -4.291244
H -3.215392 2.967842 -3.884490

C 6.461257 -1.964535 -0.089001
C 5.134794 -2.203880 -0.494359
C 4.829998 -3.367254 -1.225429
C 5.843806 -4.279434 -1.552356
C 7.165282 -4.038902 -1.143964
C 7.472017 -2.881582 -0.410788
C 4.047460 -1.251622 -0.128133
N 3.756364 -0.077201 -0.744156
C 4.252101 0.446965 -2.037854
C 3.581714 1.819721 -2.219366
N 3.147579 -1.418310 0.839409
C 3.048444 -2.387208 1.950976
C 1.979899 -1.837687 2.924159
Element	X	Y	Z
Si	2.134177	0.096734	0.232196
N	2.468352	1.249382	1.564388
C	3.795731	1.683126	1.999234
C	4.051518	3.172520	1.706836
Fe	0.000449	0.226310	-0.005842
O	-0.160337	-0.451318	-1.825975
C	0.110164	0.420179	0.059756
Si	-1.974248	-0.33891	0.653120
N	-2.938008	1.990124	0.650811
C	-2.587526	-3.428107	0.706858
C	-3.753832	-4.283408	1.255157
N	-3.782008	-0.083347	0.077176
C	-4.565859	1.069229	0.418811
C	-6.090878	0.828510	-0.384280
C	-3.994100	-1.403892	0.043583
C	-5.128648	-2.082116	-0.645346
C	-5.084620	-2.237664	-2.043807
C	-6.171221	-2.806248	-2.724058
C	-7.308774	-3.218497	-2.012380
C	-7.353368	-3.067869	-0.616805
C	-6.267124	-2.504549	0.065743
C	-4.097614	1.373817	1.860770
C	-4.229588	2.255443	0.511097
N	-2.025144	0.226355	2.346687
C	-0.904864	0.921911	2.767806
N	0.169953	0.932337	1.895753
C	1.357459	1.490577	2.351856
C	1.429710	2.201941	3.568685
C	0.301456	2.259009	4.387391
C	-0.862428	1.593333	4.011988
C	-3.187803	0.082961	3.227270
C	-2.966614	-0.926700	4.368019
Si	-0.164289	2.410064	-0.689345
O	-0.982703	2.716947	-2.196970
O	1.271965	3.377592	-0.795015
O	-1.092742	3.295443	0.455471
Element	U	V	W
---------	---	---	---
C	2.593849	-3.764066	1.415746
C	4.392244	-2.517012	2.702522
C	3.853395	-0.483911	-3.206860
C	5.784887	0.643144	-1.997798
C	-1.391567	-3.574605	1.670320
C	-2.173178	-3.922477	-0.695774
C	-0.006005	-2.157098	-3.480639
H	6.104638	1.167349	-2.911427
H	3.890819	2.259440	-3.178231
H	0.071012	-1.274908	0.428742
H	-1.732055	1.594633	4.661225
H	0.338680	2.803595	5.331918
H	2.356721	2.680770	3.866910
H	-4.029238	-0.249137	2.603456
H	-3.473059	1.068797	3.633962
H	-2.753520	-1.918915	3.945856
H	-3.866539	-0.997801	5.000031
H	-2.116517	-0.629287	4.997639
H	4.530312	1.071409	1.455212
H	3.931035	1.472970	3.075921
H	3.941749	3.359365	0.631170
H	5.062206	3.468346	2.032259
H	3.312389	3.800168	2.223550
H	-4.584896	2.048625	1.532223
H	-0.531555	-3.004865	1.300744
H	-1.118701	-4.637537	1.749511
H	-1.648914	-3.200639	2.671663
H	-1.847824	-4.973778	-0.648903
H	-1.339607	-3.304865	-1.055999
H	-4.132970	-3.850536	2.193064
H	-3.386608	-5.300182	1.463243
H	-4.578040	-4.359957	0.537067
H	1.645625	-3.656751	0.870649
H	2.440245	-4.454643	2.259538
H	3.350925	-4.193898	0.746067
H	5.159294	-2.997634	2.081997
H	4.243789	-3.128281	3.605795
H	4.749316	-1.522332	3.008986
H	2.320243	-0.899364	3.383458
H	1.800694	-2.577780	3.717865
H	1.039656	-1.639898	2.392615
H	4.375969	-1.447559	-3.145686
H	4.114554	-0.006915	-4.164165
H	2.767766	-0.662332	-3.191882
H	6.061762	1.256625	-1.127464
H	6.316999	-0.314686	-1.946189
H	2.489590	1.736443	-2.188188
H	3.865675	2.496220	-1.406098
H	3.802007	-3.548674	-1.537787
H	6.691905	-1.065005	0.480675
H	-3.007925	1.493584	-1.873706
H	-4.566660	2.297662	-2.232770
H	-4.378127	0.547318	-2.530234
H	-3.151808	2.459665	0.537358
H	-6.418717	0.096312	-1.131443
H	-6.408285	0.483358	0.611287
H	-3.015322	-3.844184	-1.397825
H	-4.201847	-1.907204	-2.590296
H	-6.130510	-2.923598	-3.807421
H	-8.155834	-3.655718	-2.541832
H	-8.236251	-3.385112	-0.060986
H	-6.299112	-2.379447	1.147383
H	5.601490	-5.176350	-2.123200
H	7.952086	-4.750958	-1.394623
H	8.496518	-2.692123	-0.089384
H	-4.742774	3.157294	0.141051
H	-6.592442	1.785626	-0.595913
H	0.165942	0.026932	-5.085909
H	-0.730658	1.120059	-3.948754
H	1.009410	1.019345	-3.848231
H	0.148307	-2.264377	-4.564483
H	0.800184	-2.688335	-2.943756
H	-0.951210	-2.649385	-3.203133
C	-0.913477	4.648942	0.827311
5.22 Transition State 24oa^2			
Elements	x	y	z
----------	---------	---------	---------
N	0.070437	1.054802	1.802996
C	1.259967	1.546769	2.323475
C	1.293146	2.426913	3.427478
C	0.095284	2.799591	4.032589
N	-2.277530	0.936209	1.889449
C	-3.573697	1.280037	2.490489
C	-3.869245	0.535615	3.806581
Fe	0.036409	0.160436	-0.176075
Si	-0.094448	2.311367	-0.793385
O	-1.367612	3.176508	-0.025604
C	-1.321139	4.546566	0.355895
C	-2.507463	4.861881	1.270664
N	2.418572	1.107835	1.719059
C	3.732716	1.382746	2.306041
C	4.312445	2.741395	1.877172
Si	2.181469	0.140276	0.250020
N	3.142554	-1.440126	0.767677
C	2.996919	-2.460659	1.823660
C	4.351589	-2.963595	2.369918
C	4.111851	-1.180182	-0.114158
N	3.868803	0.057049	-0.624393
C	4.341633	0.596034	-1.935222
C	5.856337	0.896857	-1.878976
C	5.212813	-2.107460	-0.482230
C	6.538461	-1.828376	-0.098518
C	7.559606	-2.749220	-0.372650
C	7.264656	-3.951801	-1.036040
C	5.943136	-4.232263	-1.423531
C	4.918272	-3.318729	-1.141001
C	3.582313	1.911853	-2.179192
C	4.018536	-0.376656	-3.089300
C	2.207614	-1.802166	2.980199
C	2.170339	-3.642912	1.267913
O	0.165669	-0.418955	-2.029469
C	0.020388	-1.710015	-1.597798
C	-1.275190	-2.337750	-2.158163
Si	-2.093294	0.046691	0.352628
Atom Type	x-Coordinate	y-Coordinate	z-Coordinate
-----------	--------------	--------------	--------------
N	-3.834471	0.044730	-0.441026
C	-4.029800	-1.244461	-0.081813
C	-5.120217	-2.149760	-0.532708
C	-4.863745	-3.132247	-1.507726
C	-5.891528	-3.994044	-1.919848
C	-7.173510	-3.884228	-1.356445
C	-7.429384	-2.904392	-0.381827
C	-6.407732	-2.036312	0.025923
C	1.232943	-2.607481	-1.943678
N	-3.014644	-1.580566	0.729203
C	-2.782870	-2.764601	1.583094
C	-2.191056	-3.932997	0.762716
C	-4.075057	-3.236732	2.285371
C	-1.738928	-2.337083	2.639214
C	-4.388351	0.839528	-1.570597
C	-4.395966	2.304056	-1.085064
C	-5.822758	0.433566	-1.966296
C	-3.456501	0.694619	-2.796559
O	-0.363700	2.520707	-2.461689
C	-1.226228	3.507259	-3.018739
C	-1.366877	3.247496	-4.521010
O	1.294941	3.257485	-0.444485
C	1.607020	4.439322	-1.178997
C	2.659678	5.247108	-0.415558
H	6.148435	1.442284	-2.790678
H	3.963079	2.377720	-3.101608
H	-0.060160	-1.736453	-0.419828
H	-2.047196	2.579890	4.025471
H	0.100879	3.483423	4.884538
H	2.240970	2.825870	3.777959
H	-4.346336	1.028208	1.751220
H	-3.631989	2.371371	2.641410
H	-3.974342	-0.542190	3.620026
H	-4.808775	0.905626	4.251368
H	-3.058299	0.677874	4.535527
H	4.410689	0.578038	1.980834
H	3.667327	1.318400	3.406561
---	---	---	---
H	4.427540	2.762322	0.784244
H	5.298225	2.909785	2.346433
H	3.637639	3.561826	2.159904
H	-5.086326	2.421093	-0.232894
H	-0.831794	-1.966967	2.136738
H	-1.471641	-3.203446	3.264516
H	-2.122835	-1.532062	3.280331
H	-2.031151	-4.801064	1.422888
H	-1.225737	-3.636357	0.331334
H	-4.573964	-2.399031	2.794991
H	-3.811365	-3.995923	3.039052
H	-4.781996	-3.685700	1.574908
H	1.201492	-3.279284	0.895317
H	1.990466	-4.381395	2.066598
H	2.702022	-4.138527	0.442735
H	4.895347	-3.575728	1.638499
H	4.161467	-3.579419	3.263500
H	4.987317	-2.112819	2.662379
H	2.797616	-1.004041	3.452193
H	1.969928	-2.567102	3.736239
H	1.269903	-1.362358	2.611513
H	4.555466	-1.329566	-2.977019
H	4.319484	0.079059	-4.047178
H	2.937199	-0.566875	-3.114877
H	6.087022	1.527830	-1.005216
H	6.454466	-0.022823	-1.825534
H	2.504629	1.733809	-2.292999
H	3.730197	2.604054	-1.339445
H	3.891184	-3.527609	-1.439622
H	6.757448	-0.896787	0.424938
H	-2.414738	0.943613	-2.548775
H	-3.802414	1.369111	-3.596975
H	-3.487052	-0.338378	-3.177428
H	-3.389238	2.617240	-0.775344
H	-5.865525	-0.569875	-2.411247
H	-6.505011	0.465702	-1.102709
H	-2.871750	-4.229668	-0.047669
---	---	---	---
H	-3.866951	-3.205394	-1.943364
H	-5.690217	-4.750014	-2.681698
H	-7.971509	-4.557372	-1.676625
H	-8.424806	-2.815971	0.058332
H	-6.595866	-1.273364	0.783091
H	5.710187	-5.163334	-1.944309
H	8.061111	-4.667614	-1.249738
H	8.584138	-2.529577	-0.065547
H	-4.735578	2.957005	-1.905125
H	-6.178323	1.157085	-2.716598
H	1.125903	-3.629619	-1.538429
H	1.314167	-2.668080	-3.041574
H	2.152151	-2.162471	-1.551264
H	-1.433614	-3.373457	-1.819523
H	-2.137642	-1.721678	-1.882559
H	-1.184531	-2.332386	-3.256831
H	1.985052	4.167420	-2.181822
H	0.711448	5.066857	-1.332637
H	-0.372690	4.758630	0.879962
H	-1.363690	5.197692	-0.540318
H	-2.217487	3.473730	-2.531886
H	-0.817448	4.524572	-2.855364
H	-2.502986	5.929549	1.549944
H	-3.458766	4.633437	0.763648
H	-2.439497	4.257053	2.187237
H	2.906211	6.174863	-0.959810
H	2.282322	5.510552	0.585792
H	3.579569	4.656219	-0.290614
H	-2.032127	3.997069	-4.984157
H	-0.380940	3.296618	-5.010086
H	-1.784871	2.243389	-4.690159
5.23 Intermediate 25oa

	X	Y	Z			
C	-6.055636	-2.627143	0.012786			
C	-4.677157	-2.486873	0.255436			
C	-3.965556	-3.524928	0.890249			
C	-4.634760	-4.691852	1.282503			
C	-6.012650	-4.831853	1.040350			
C	-4.399134	0.273863	1.816820			
N	-3.796241	-0.105928	0.510347			
C	-3.702667	1.574006	2.266314			
C	-3.143577	-1.179533	-1.247667			
C	-2.794693	-2.142824	-2.310451			
C	-2.128054	-1.302506	-3.424350			
Si	2.028930	0.257914	-0.480432			
N	2.995063	-1.239282	-1.171922			
C	2.656434	-2.374910	-2.055063			
C	3.879653	-2.819520	-2.885006			
N	3.729312	0.073377	0.377894			
C 4.382571 0.709928 1.547362						
C 5.824235 0.216775 1.796888						
C 3.914979 -1.132199 -0.199069						
C 4.837822 -2.200030 0.271606						
C 4.448741 -3.002472 1.362463						
C 5.314050 -3.994158 1.846045						
C 6.571924 -4.185418 1.249351						
C 6.960457 -3.385207 0.162110						
C 6.095682 -2.395334 -0.326632						
C 3.510751 0.461732 2.797596						
C 4.429016 2.221715 1.239587						
N 2.233411 1.487799 -1.756667						
C 1.072010 2.089064 -2.209812						
N -0.117891 1.602717 -1.682804						
C -1.304911 2.153115 -2.159051						
C -1.318575 3.214477 -3.088899						
C -0.108748 3.701552 -3.583051						
C 1.093116 3.132395 -3.163687						
C 3.534078 1.857442 -2.327978						
C 3.763906 1.299905 -3.745185						
Si -0.038319 2.096279 1.088502						
O 0.038320 1.823169 2.777887						
O -1.371421 3.152305 0.860159						
O 1.307126 3.121902 0.773381						
C -1.789804 -3.194612 -1.785772						
C -4.053619 -2.828766 -2.881548						
C -4.186674 -0.790089 2.920507						
C -5.899471 -3.543008 1.611800						
C 1.554209 -1.859398 -3.005193						
C 2.092509 -3.555208 -1.236974						
C 0.003931 -3.543008 1.742195						
H -6.343066 0.910127 2.549730						
H -4.201699 1.945305 3.175472						
H 2.038893 3.493480 -3.557549						
H -0.102113 4.524023 -4.301666						
H -2.262272 3.651229 -3.404682						
H 4.303111 1.460056 -1.651194						
Atom	X-Coordinate	Y-Coordinate	Z-Coordinate			
------	--------------	--------------	--------------			
H	3.648223	2.955824	-2.318721			
H	3.768996	0.200872	-3.716113			
H	4.733600	1.646110	-4.142120			
H	2.967965	1.623432	-4.432803			
H	-4.446213	1.070342	-2.111737			
H	-3.682367	2.065874	-3.360977			
H	-4.567314	3.001068	-0.548906			
H	-5.352611	3.442657	-2.097612			
H	-3.708926	4.043493	-1.702327			
H	5.071204	2.412282	0.364569			
H	0.691727	-1.506367	-2.421329			
H	1.223592	-2.676183	-3.665703			
H	1.919245	-1.023809	-3.620033			
H	1.779282	-4.366050	-1.915049			
H	1.221461	-3.210549	-0.668255			
H	4.318651	-1.958068	-3.413033			
H	3.557466	-3.561324	-3.633658			
H	4.650041	-3.281870	-2.253419			
H	-0.967181	-2.693188	-1.258468			
H	-1.387680	-3.780333	-2.628815			
H	-2.282729	-3.884752	-1.085860			
H	-4.523501	-3.495703	-2.146527			
H	-3.764907	-3.429126	-3.759212			
H	-4.790192	-2.073321	-3.200339			
H	-2.839900	-0.567498	-3.830245			
H	-1.794425	-1.965899	-4.237503			
H	-1.256286	-0.759885	-3.030938			
H	-4.710664	-1.727216	2.694751			
H	-4.603439	-0.391416	3.860527			
H	-3.118921	-1.003969	3.088760			
H	-6.048241	1.296797	0.826389			
H	-6.425586	-0.382993	1.322623			
H	-2.641136	1.403257	2.488496			
H	-3.766705	2.342614	1.484958			
H	-2.900709	-3.394397	1.085256			
H	-6.597333	-1.826695	-0.493381			
H	2.493159	0.837473	2.630003			
Element	X	Y	Z			
---------	-------	---------	-------			
H	3.944439	0.979422	3.669175			
H	3.455637	-0.616076	3.017517			
H	3.419419	2.600954	1.037813			
H	5.863081	-0.812605	2.175174			
H	6.424947	0.279663	0.875919			
H	2.844731	-3.953010	-0.540313			
H	3.471651	-2.841803	1.822494			
H	5.007240	-4.615795	2.689861			
H	7.246963	-4.954009	1.631259			
H	7.938145	-3.528208	-0.302566			
H	6.393327	-1.765271	-1.166326			
H	-4.081281	-5.490453	1.780991			
H	-6.531605	-5.742646	1.346184			
H	-7.790579	-3.904671	0.212677			
H	4.848187	2.759248	2.106017			
H	6.279012	0.876706	2.552511			
H	1.088156	-2.032640	3.790330			
H	0.737489	-0.414351	3.078304			
H	-0.600712	-1.504790	3.485811			
H	0.731445	-4.159378	2.299137			
H	-0.967437	-3.604369	2.262208			
H	-0.116994	-3.967054	0.734406			
C	1.274347	4.533194	0.576781			
C	-1.714521	4.154084	1.814082			
C	0.701816	2.691155	3.698772			
C	-2.717707	5.124990	1.186008			
H	-2.148404	3.682366	2.714670			
H	-0.821773	4.717993	2.142223			
C	2.451286	4.976556	-0.297716			
H	0.325822	4.828941	0.096739			
H	1.327431	5.046036	1.559218			
C	0.875986	1.962836	5.034574			
H	1.685122	2.995037	3.296213			
H	0.107838	3.612862	3.848063			
H	2.426022	6.071667	-0.433708			
H	3.412067	4.703725	0.165231			
H	2.382257	4.497129	-1.284637			
H -2.989195 5.918329 1.903388
H -2.280372 5.591498 0.288401
H -3.632515 4.593527 0.882943
H 1.363671 2.623045 5.772582
H -0.104401 1.652705 5.429990
H 1.494161 1.061711 4.901881
H 1.503306 -2.024774 1.301952

5.24 Transition State 26oa

C 6.879304 -1.303275 -1.004918
C 5.823161 -1.236969 -0.078443
C 5.980860 -1.792392 1.204167
C 7.186343 -2.418944 1.553872
C 8.241402 -2.481024 0.628651
C 8.086993 -1.918680 -0.649996
C 4.533624 -0.584094 -0.440173
N 3.544232 -1.143624 -1.173030
C 4.903703 1.771324 0.505304
C 4.267017 2.169438 1.847164
Si 2.301502 0.275778 -0.688522
Element	X	Y	Z
Fe	0.131993	0.276860	-0.064362
O	0.192691	-1.224573	1.430373
Si	-0.656295	-2.619548	0.498032
O	-0.653426	-3.515087	-0.959369
N	0.048447	1.649566	-1.740962
C	1.181058	1.977126	-3.422125
C	0.049898	3.799186	-3.585986
C	-1.101169	3.502302	-2.862587
C	-1.103541	2.376554	-2.003541
N	2.317877	1.243740	-2.193331
C	3.462284	1.317384	-3.113039
C	3.186257	0.633800	-4.462169
N	-2.269242	1.899196	-1.455888
Si	-2.102382	0.511911	-0.325158
N	-3.712820	0.495469	0.742123
C	-4.148960	0.911005	2.097568
C	-4.636117	-0.269245	2.973460
Si	0.276034	2.328932	1.020355
O	-1.092823	3.408149	0.932585
C	-1.287692	4.398807	1.948277
C	-2.527438	5.239828	1.641585
O	1.529368	3.352741	0.389662
C	1.347657	4.755848	0.159585
C	2.382624	5.326475	-0.813250
O	0.554698	2.292009	2.715658
C	1.302501	3.244969	3.471562
C	2.072288	2.548602	4.601933
C	-3.541282	2.457467	-1.932471
C	-3.884482	3.848570	-1.332846
N	-3.510849	-0.486919	-1.176897
C	-4.345389	-0.296739	-0.149161
C	-5.804444	-0.649314	-0.151041
C	-6.625790	0.088218	-1.032588
C	-8.007162	-0.139812	-1.090003
C	-8.596886	-1.108771	-0.263239
C	-7.794030	-1.832853	0.630620
Element	x	y	z
---------	---------	---------	---------
C	-6.4127	-1.5955	0.6961
C	-3.5902	-1.3560	-2.3807
C	-3.9364	-2.8222	-2.0307
C	-4.6354	-0.7977	-3.3815
C	-2.2029	-1.2895	-3.0563
C	-5.2653	1.9717	1.9669
H	-5.6119	2.2785	2.9674
O	0.1273	-3.7947	1.4727
O	-2.2874	-2.4558	0.8574
H	-5.6119	2.2785	2.9674
H	-3.2139	2.0119	3.7155
H	2.0869	3.2310	-3.9930
H	0.0611	4.6453	-4.2769
H	-1.9972	4.1019	-2.9831
H	4.3083	0.8229	-2.6227
H	3.7668	2.3679	-3.2612
H	2.9773	-0.4303	-4.2997
H	4.0615	0.7282	-5.1273
H	2.3158	1.0855	-4.9609
H	-4.3197	1.7385	-1.6670
H	-3.5149	2.5031	-3.0359
H	-4.7370	3.7833	-0.6393
H	-4.1416	4.5782	-2.1188
H	-3.0213	4.2257	-0.7734
H	5.2549	2.6645	-1.4546
H	1.2886	-2.2065	-1.9758
H	1.9169	-3.7955	-2.4682
H	2.4454	-2.3321	-3.3405
H	2.6826	-4.3169	-0.1898
H	2.3294	-2.7369	0.5463
H 4.920693 -2.670712 -2.921039			
H 4.287572 -4.263103 -2.418394			
H 5.431471 -3.398909 -1.367207			
H -3.029876 -3.334461 -1.691157			
H -4.325984 -3.329239 -2.929014			
H -4.705574 -2.879105 -1.245882			
H -5.661345 -0.934694 -3.014973			
H -4.539985 -1.339920 -4.336141			
H -4.456536 0.272380 -3.567533			
H -1.980277 -0.261822 -3.83571			
H -2.204141 -1.950332 -3.937635			
H -1.416898 -1.629242 -2.372792			
H -5.656433 -0.581674 2.722831			
H -4.638150 0.056457 4.026260			
H -3.946840 -1.120901 2.871636			
H -4.883287 2.858647 1.439442			
H -6.122371 1.566033 1.407134			
H -2.181754 0.725910 3.018393			
H -2.432437 2.229684 2.114762			
H -5.819872 -2.106508 1.451069			
H -6.176285 0.837327 -1.683013			
H 3.206818 2.398493 1.710672			
H 4.770999 3.070657 2.233516			
H 4.381383 1.359213 2.581295			
H 3.695915 3.112298 -0.698277			
H 6.598443 0.770083 1.512937			
H 6.917735 -3.383021 0.556661			
H 3.996635 -3.383021 0.556661			
H 5.158830 -1.730730 1.918981			
H 7.302773 -2.854346 2.548472			
H 9.181125 -2.964830 0.902865			
H 8.905660 -1.963528 -1.371129			
H 6.744869 -0.876463 -2.000162			
H -8.242636 -2.572703 1.296563			
H -9.672907 -1.288616 -0.306512			
H -8.620984 0.445815 -1.777348			
H 5.220096 3.841136 -0.106528			
----	----	----	----
C	-3.200439	-3.461313	1.295150
C	-0.350525	-3.936612	2.827565
C	-0.206495	-4.859560	-1.110320
H	-4.199275	-3.076481	1.081294
C	-3.073453	-4.858902	0.674558
H	-3.115613	-3.604122	2.383707
C	-0.594852	-5.356135	-2.504440
H	0.879880	-4.920963	-0.953572
H	-0.653254	-5.520454	-0.351593
C	0.741640	-4.492246	3.736403
H	-0.784761	-2.996653	3.179048
H	-1.195598	-4.647136	2.847416
H	0.347457	-4.636203	4.756343
5.25 Transition State 27oa²

H	1.080192	-5.465035	3.346409
H	1.616926	-3.827544	3.793444
H	-0.258357	-6.397504	-2.645873
H	-1.690062	-5.321442	-2.625030
H	-0.150183	-4.731039	-3.292647
H	-3.866229	-5.491270	1.112492
H	-3.188488	-4.853201	-0.414625
H	-2.110143	-5.322332	0.933435
C	4.795187	-2.652740	-2.058100
C	5.197294	-2.011293	-0.869722
C	6.508825	-2.184956	-0.391272
C	7.412699	-2.992761	-1.095940
C	7.011505	-3.630547	-2.281720
C	5.700984	-3.460720	-2.759963
C	4.226570	-1.134777	-0.161291
N	3.384042	-1.503336	0.815770
C	3.195666	-2.788844	1.508766
C	2.140746	-2.518686	2.606132
Si	2.282056	0.031806	0.489012
N	3.911388	0.139746	-0.480447
C	4.389763	1.003393	-1.586549
Element	X	Y	Z
---------	---------	---------	---------
C	4.262871	2.454425	-1.076396
Fe	0.080748	0.079980	0.157580
Si	-0.294312	2.116414	-0.598521
O	-1.518725	2.487084	-1.758052
C	-2.057174	3.804138	-1.842959
C	-2.609647	4.026906	-3.255263
Si	-2.010376	-0.160534	0.653156
N	-2.111111	0.083671	2.410735
C	-3.301485	-0.180894	3.226006
C	-3.142929	-1.396608	4.156905
N	-2.876758	-1.863397	0.334647
C	-2.355290	-3.219703	0.047154
C	-2.696681	-4.143577	1.239749
C	-3.977980	-1.235027	-0.119716
N	-3.804540	0.079689	0.104483
C	-4.759257	1.213006	0.038833
C	-6.148843	0.822753	0.588434
C	-5.145994	-1.878067	-0.766887
C	-5.967135	-2.739652	-0.013152
C	-7.060446	-3.375074	-0.617905
C	-7.330615	-3.163998	-1.980832
C	-6.506419	-2.311692	-2.735641
C	-5.418575	-1.665722	-2.132068
C	-0.817856	-3.088430	-0.059008
C	-2.884692	-3.856471	-1.259492
C	-4.881205	1.708539	-1.418588
C	-4.168731	2.339691	0.914017
N	0.192749	0.523858	2.205557
C	-0.944140	0.545721	3.001607
C	-0.933299	1.002292	4.337498
C	0.261240	1.451220	4.895708
C	1.421944	1.445088	4.124090
C	1.366571	0.992898	2.787517
N	2.507999	0.940997	1.999893
C	3.827046	1.223696	2.581319
C	4.129054	2.729000	2.701369
C	3.470849	0.770355	-2.805799
C 5.864522 0.750177 -1.968630			
O 1.076802 3.007665 -1.108285			
C 1.267913 3.576562 -2.398152			
C 1.577981 5.073613 -2.278261			
O -0.839065 3.069160 0.742318			
C -0.429170 4.387431 1.076997			
C 0.771476 4.378328 2.029951			
C 2.684840 -3.868602 0.528061			
C 4.505974 -3.254216 2.181658			
C -1.884647 -0.504682 -2.821200			
C -0.380225 -0.196661 -2.912935			
C -0.097316 0.694495 -4.137009			
H 6.174190 1.549953 -2.659974			
H 4.535515 3.152738 -1.883486			
H -1.849325 1.008179 4.921395			
H 0.288104 1.809139 5.927226			
H 2.358927 1.795905 4.544914			
H -4.131273 -0.361825 2.530235			
H -3.573848 0.718230 3.808747			
H -2.952278 -2.298758 3.558068			
H -4.062810 -1.551421 4.746211			
H -2.300936 -1.254052 4.850186			
H 4.575628 0.762868 1.920247			
H 3.920477 0.728925 3.566316			
H 4.073215 3.199952 1.710046			
H 5.142132 2.881341 3.111543			
H 3.404356 3.237003 3.352807			
H -4.142981 2.037822 1.970632			
H 0.530818 -2.484902 -0.934587			
H -0.364574 -4.088128 -0.146958			
H -0.414989 -2.602969 0.845157			
H -2.309220 -4.776763 -1.450118			
H -2.749323 -3.178758 -2.113776			
H -2.233641 -3.764759 2.163139			
H -2.319170 -5.161620 1.048993			
H -3.786873 -4.196000 1.384014			
H 1.814642 -3.485945 -0.024001			
	x	y	z
---	-------	-------	-------
H	2.381989	-4.771353	1.084038
H	3.469483	-4.145789	-0.191323
H	5.275800	-3.492695	1.435547
H	4.307803	-4.161683	2.774766
H	4.887055	-2.470339	2.855466
H	2.485351	-1.721610	3.282156
H	1.968467	-3.435405	3.191458
H	1.189622	-2.189327	2.161861
H	3.633804	-0.242655	-3.209251
H	3.699264	1.500589	-3.599676
H	2.415893	0.867694	-2.510948
H	6.513789	0.791266	-1.079548
H	6.014129	-0.212327	-2.473679
H	3.232992	2.669666	-0.760379
H	4.948650	2.612833	-0.229543
H	3.777080	-2.511818	-2.424593
H	6.816768	-1.676972	0.524000
H	-3.878362	1.879269	-1.827281
H	-5.447853	2.653714	-1.444426
H	-5.411318	0.971380	-2.038755
H	-3.145028	2.595254	0.606674
H	-6.641203	0.065867	-0.036681
H	-6.066356	0.437369	1.617450
H	-3.946381	-4.126445	-1.187883
H	-4.756642	-1.024832	-2.714390
H	-6.707380	-2.155099	-3.797436
H	-8.178643	-3.663875	-2.453345
H	-7.699281	-4.035286	-0.027723
H	-5.746944	-2.896658	1.044130
H	5.384736	-3.955602	-3.680556
H	7.717157	-4.256665	-2.831451
H	8.430732	-3.120081	-0.722265
H	-4.804323	3.234401	0.821145
H	-6.785300	1.721951	0.606887
H	-2.218982	-1.020951	-3.739348
H	-2.086686	-1.158581	-1.966202
H	-2.449294	0.427492	-2.697134
Electronic Supplementary Information (ESI) for Chemical Science

	X	Y	Z
H	-0.396152	0.180209	-5.067140
H	-0.668439	1.628719	-4.041187
H	2.121581	3.072824	-2.885531
H	0.973222	0.939536	-4.196468
H	-0.167387	4.968089	0.174286
H	-1.291985	4.888310	1.556953
H	-2.856433	3.941369	-1.092140
H	-1.285655	4.566232	-1.634499
H	1.039794	5.407269	2.331867
H	0.541524	3.787587	2.929512
H	1.632539	3.918665	1.525061
H	1.791508	5.503290	-3.272843
H	0.728913	5.618185	-1.835906
H	2.457017	5.227572	-1.631482
H	-3.052426	5.034031	-3.341839
H	-1.802681	3.931467	-3.999390
H	-3.384831	3.281639	-3.493443
H	0.149102	-1.165802	-3.058538
O	0.178435	0.417094	-1.761617

5.26 Intermediate 28

![Intermediate 28 molecule](image)

	X	Y	Z
C	-4.885009	-3.087245	0.140055
C	-5.190608	-1.708690	0.120317
C	-6.537398	-1.301456	0.014092
Atom	X	Y	Z
------	------------	------------	------------
C	-7.558751	-2.255820	-0.076906
C	-7.249567	-3.627774	-0.054456
C	-5.910025	-4.039378	0.059624
C	-4.099179	-0.708959	0.156747
N	-3.135848	-0.561405	-0.766674
N	-3.032547	-1.000956	-2.173613
C	-2.163850	0.050625	-2.903656
Si	-2.096535	0.548396	0.371227
N	-3.813167	0.171424	1.154756
C	-3.187579	0.063264	2.588385
C	-3.452141	1.207608	3.320039
Fe	0.004704	0.605883	0.857053
N	-0.005711	2.257905	-0.235451
C	1.180498	2.873238	-0.650048
C	1.188915	4.147062	-1.260057
C	-0.018522	4.801495	-1.505025
C	-1.223258	4.171692	-1.189832
C	-1.201886	2.891206	-0.594957
N	2.345786	2.152789	-0.43861
C	3.605886	2.590313	-1.047498
C	3.647865	2.374314	-2.572106
N	-2.359459	2.169117	-0.365244
C	-3.650691	2.658104	-0.850411
C	-4.309475	3.664989	0.110674
Si	2.101556	0.559749	0.365112
N	3.833868	0.217387	1.093401
C	4.628623	0.724920	2.228548
C	6.100742	0.971317	1.830549
C	4.105915	-0.708330	0.155967
N	3.123461	-0.625601	-0.765467
C	2.672229	-1.646120	-1.741580
C	3.779595	-1.995716	-2.759711
C	5.228685	-1.681351	0.182485
C	6.330455	-1.516495	-0.681414
C	7.398984	-2.422423	-0.642599
C	7.373487	-3.506169	0.252559
C	6.273711	-3.678974	1.109543
C	5.206952	-2.768794	1.078941
----	----------	-----------	----------
C	1.474022	-1.021561	-2.488676
C	2.199885	-2.919569	-1.002503
C	4.555901	-0.263112	3.416373
C	3.982381	2.064930	2.644293
C	-3.726808	-1.293612	3.169847
C	-5.707931	0.245990	2.797249
C	-2.319849	-2.372858	-2.237824
C	-4.411756	-1.079165	-2.862609
H	-5.914443	0.352484	3.874787
H	-3.676240	1.158385	4.397228
H	2.131181	4.609264	-1.542931
H	-0.021286	5.794943	-1.959332
H	-2.172302	4.655709	-1.404682
H	4.407124	2.004625	-0.574806
H	3.804338	3.648944	-0.790017
H	3.537980	1.301265	-2.787380
H	4.606338	2.726674	-2.990971
H	2.827105	2.917525	-3.064427
H	-4.307919	1.782581	-0.960711
H	-3.535690	3.100670	-1.857417
H	-4.504859	3.174529	1.076014
H	-5.266073	4.030906	-0.300849
H	-3.649416	4.527576	0.288581
H	4.018199	2.786532	1.815256
H	0.694893	-0.731637	-1.763348
H	1.055125	-1.755307	-3.195344
H	1.783396	-0.125016	-3.047612
H	1.798278	-3.649693	-1.724925
H	1.407469	-2.653383	-0.284331
H	4.194352	-1.077667	-3.205538
H	3.344054	-2.608511	-3.565774
H	4.595783	-2.566946	-2.297273
H	-1.353226	-2.317276	-1.715134
H	-2.141032	-2.651935	-3.289762
H	-2.937944	-3.154071	-1.771545
H	-5.033674	-1.884583	-2.449920
H	-4.260636	-1.271212	-3.937009
-----	----------	-----------	-----------
H	-4.949365	-0.123906	-2.751430
H	-2.672426	1.025011	-2.932992
H	-1.975550	-0.286124	-3.935416
H	-1.199139	0.178381	-2.390830
H	-4.247857	-2.127180	2.675163
H	-3.942660	-1.338402	4.250252
H	-2.641265	-1.411115	3.019680
H	-6.055973	1.156075	2.283193
H	-6.276408	-0.615557	2.423306
H	-2.361959	1.121879	3.177366
H	-3.775953	2.186640	2.934995
H	-3.844097	-3.399724	0.233499
H	-6.770447	-0.235993	-0.007693
H	3.502925	-0.471966	3.662651
H	5.047783	0.175549	4.300514
H	5.061761	-1.207759	3.170621
H	2.926790	1.910978	2.920137
H	6.615506	0.033988	1.579511
H	6.155941	1.649564	0.964171
H	3.037304	-3.388418	-0.462944
H	4.348345	-2.899182	1.739071
H	6.245110	-4.523176	1.801728
H	8.205481	-4.212760	0.280370
H	8.250809	-2.284094	-1.311740
H	6.340892	-0.676192	-1.377377
H	-5.664005	-5.103131	0.087373
H	-8.047064	-4.370261	-0.124515
H	-8.597105	-1.929951	-0.168044
H	4.520643	2.481480	3.509961
H	6.628560	1.442442	2.675381
5.27 Intermediate 29

![Chemical structure of Intermediate 29 with atom coordinates]

Atom	C (x)	C (y)	C (z)
C	4.816924	2.972828	-1.476562
C	5.025306	1.980192	-0.499246
C	6.240323	1.953793	0.214274
C	7.233376	2.907359	-0.047152
C	7.021200	3.897579	-1.022172
C	5.812058	3.927180	-1.736152
C	3.963281	0.983784	-0.187967
N	2.957910	1.146551	0.675490
C	2.521079	2.333670	1.434684
C	1.852035	3.348533	0.475984
N	3.800197	-0.232015	-0.760734
C	4.517998	-0.820599	-1.909601
C	4.024130	-2.75598	-2.028132
Si	2.017965	-0.422950	-0.041605
N	2.278387	-1.585672	1.341076
C	3.570919	-1.867878	1.972484
C	3.824879	-1.055742	3.257434
C	1.125299	-2.140865	1.854750
N	-0.046282	-1.821895	1.177905
C	-1.261434	-2.201921	1.743069
C	-1.311158	-3.078381	2.850763
C	-0.115867	-3.479020	3.453586
C	1.106464	-2.992014	2.984936
Element	X	Y	Z
---------	---------	---------	---------
Fe	0.012065	-0.996600	-0.638531
Si	-2.004629	-0.398483	-0.117378
N	-2.378591	-1.648902	1.159516
C	-3.707024	-1.908580	1.712607
C	-4.305431	-3.238638	1.219354
N	-2.985762	1.070860	0.704693
C	-2.849732	1.871758	1.937027
C	-4.208585	2.304230	2.530452
C	-3.928517	1.032676	-0.235674
N	-3.713089	-0.094033	-0.976658
C	-4.063848	-0.259104	-2.413725
C	-5.590303	-0.221980	-2.655048
C	-4.965636	2.070141	-0.458842
C	-4.591039	3.367285	-0.867490
C	-5.560326	4.369726	-1.012518
C	-6.910145	4.091357	-0.736928
C	-7.287568	2.800042	-0.327158
C	-6.322893	1.793426	-0.194055
C	-2.123251	0.979356	2.972603
C	-1.981489	3.116152	1.634248
C	-3.542330	-1.645703	-2.836754
C	-3.363800	0.829779	-3.260423
C	6.048584	-0.831302	-1.695421
C	4.164908	-0.062004	-3.211211
C	3.678902	3.007646	2.202681
C	1.464573	1.827401	2.440370
H	-5.796524	-0.556280	-3.685157
H	-3.746100	-1.807774	-3.907178
H	2.034069	-3.251739	3.488546
H	-0.139159	-4.151059	4.314636
H	-2.269750	-3.416048	3.236597
H	4.348014	-1.626255	1.232353
H	3.652867	-2.950063	2.180006
H	3.842745	0.015930	3.014594
H	4.793314	-1.334830	3.707835
H	3.029302	-1.232806	3.997245
H	-4.357584	-1.080486	1.396310
H	-3.677043	-1.887571	2.818565
-------	-----------	-----------	-----------
H	-4.392020	-3.220445	0.122416
H	-5.307178	-3.400320	1.653441
H	-3.661255	-4.086445	1.498066
H	4.268203	-2.840742	-1.115317
H	0.661473	1.311091	1.896290
H	1.034072	2.678516	2.990041
H	1.909396	1.123968	3.158582
H	1.418362	4.183084	1.051998
H	1.051518	2.845748	-0.088913
H	4.213752	2.269516	2.821090
H	3.261290	3.780756	2.868201
H	4.397760	3.488089	1.525660
H	-1.015957	2.809182	1.208956
H	-1.797778	3.681693	2.563236
H	-2.495920	3.776239	0.919601
H	-4.710788	3.060374	1.913018
H	-4.033663	2.732673	3.530543
H	-4.875645	1.434109	2.635559
H	-2.764821	0.142626	3.282459
H	-1.870749	1.581440	3.859817
H	-1.199288	0.561261	2.552726
H	-3.735266	1.829355	-2.986973
H	-3.558006	0.667529	-4.333861
H	-2.276540	0.793001	-3.083793
H	-6.102564	-0.904071	-1.958092
H	-6.003366	0.787116	-2.534052
H	-2.458858	-1.716977	-2.656054
H	-4.045715	-2.435360	-2.257164
H	-3.540783	3.577284	-1.074708
H	-6.608284	0.789263	0.123183
H	3.071183	-0.040536	-3.341476
H	4.617900	-0.566507	-4.081025
H	4.541483	0.970529	-3.174516
H	2.933408	-2.291456	-2.166119
H	6.475086	0.179550	-1.726479
H	6.294325	-1.290904	-0.724580
Atom	X	Y	Z
------	----	----	------
H	2.588965	3.760334	-0.230004
H	3.876130	2.991598	-2.028433
H	5.642473	4.693151	-2.495912
H	7.794367	4.641738	-1.224002
H	8.171401	2.880123	0.511333
H	6.395421	1.184789	0.972953
H	-5.262111	5.368592	-1.338433
H	-7.663542	4.874854	-0.841102
H	-8.334828	2.578756	-0.110446
H	4.505850	-2.764981	-2.889361
H	6.518738	-1.428950	-2.493373
P	0.008311	-3.029955	-1.423527
C	0.270552	-3.347128	-3.261837
C	1.250371	-4.233567	-0.682370
C	-1.494079	-4.124385	-1.127484
H	1.159391	-5.231582	-1.145909
H	2.275655	-3.862402	-0.797749
H	1.037590	-4.320570	0.394019
H	0.244684	-4.427373	-3.489131
H	-0.521711	-2.843707	-3.839827
H	1.243650	-2.938323	-3.577934
H	-1.313542	-5.160396	-1.465870
H	-1.700388	-4.130007	-0.047524
H	-2.373795	-3.719034	-1.642248
5.28 Transition State 30oa^2

Atom	X	Y	Z
C	-6.107929	-1.074556	-2.106190
C	-5.344975	-0.091666	-1.444509
C	-5.866994	1.206921	-1.306929
C	-7.135038	1.516924	-1.823662
C	-7.893487	0.532408	-2.474165
C	-7.374794	-0.765519	-2.616035
C	-4.025122	-0.469998	-0.856843
N	-2.852086	-0.566026	-1.509353
C	-2.520759	-0.058981	-2.860627
C	-1.113862	-0.573606	-3.222081
N	-3.812024	-0.804471	0.418334
C	-4.766925	-1.093986	1.506679
C	-5.230318	0.217955	2.181883
Si	-1.874169	-0.983052	0.108743
Fe	0.061049	-0.449193	0.824232
Si	-0.172912	1.945977	0.627896
O	0.703530	2.584878	1.960291
C	0.874835	3.868890	2.537892
C	1.567324	3.764295	3.903985
N	0.323585	-2.567848	0.861311
C	-0.719825	-3.407631	0.556614
C -0.639494 -4.801407 0.803209			
C 0.537187 -5.321639 1.337278			
C 1.641687 -4.494305 1.559180			
C 1.527770 -3.117832 1.249597			
N -1.842351 -2.809291 0.017348			
C -2.897814 -3.652324 -0.548160			
C -2.480906 -4.320900 -1.870445			
N 2.598197 -2.240197 1.272273			
Si 2.155976 -0.659753 0.437091			
N 3.895347 0.230934 0.379209			
C 4.628761 1.249837 1.155014			
C 4.466734 2.655460 0.524876			
P -0.078762 -0.453562 3.025668			
C 1.376153 -0.229931 4.186116			
C -0.576632 -2.123202 3.744065			
C -1.303071 0.676935 3.882686			
C 3.951661 -2.782642 1.423726			
C 4.355820 -2.977960 2.898112			
N 3.091948 -0.977201 -1.228833			
C 4.117624 -0.193761 -0.878438			
C 5.261652 0.193361 -1.751420			
C 6.459693 -0.44308 1.737986			
C 7.528040 -0.166911 -2.562849			
C 7.409973 0.952982 -3.402227			
C 6.218369 1.694769 -3.412682			
C 5.146423 1.317273 -2.590394			
C 2.908638 -1.852028 -2.406352			
C 2.663068 -1.004891 -3.676154			
C 4.129374 -2.777442 2.614848			
C 1.673752 -2.740349 -2.122474			
C 6.122608 0.886934 1.291973			
C 3.971290 1.270525 2.544423			
O 0.450919 2.452710 0.896126			
C 1.375668 1.790966 -1.729743			
C 1.432238 2.514480 -3.082981			
O -1.919082 2.036035 0.627184			
C -3.017417 2.901197 0.815515			
---	---	---	---
C	-3.076247	3.591187	2.186968
C	-2.490320	1.487790	-2.816545
C	-3.494077	-0.557297	-3.954523
C	-3.995723	-1.943237	2.535456
C	-5.997575	-1.899693	1.034057
O	-0.580260	4.140049	0.512194
C	-0.924018	5.094174	-0.188283
C	-1.189966	6.460655	0.447406
C	-1.122386	5.044214	-1.693615
H	6.587172	1.554971	2.036308
H	4.443215	2.040866	3.175643
H	-0.078355	-0.320815	-0.694919
H	-1.485177	-5.451687	0.591762
H	0.603752	-6.388285	1.567762
H	2.574438	-4.904639	1.936774
H	-3.769816	-3.011418	-0.729706
H	-3.224192	-4.414216	0.185681
H	-2.230402	-3.542896	-2.608043
H	-3.301738	-4.940241	-2.272505
H	-1.595603	-4.957721	-1.723016
H	4.644387	-2.065478	0.958776
H	4.050972	-3.737979	0.873761
H	4.317383	-2.014515	3.427421
H	5.382026	-3.377931	2.973045
H	3.669095	-3.670454	3.409154
H	-3.697559	-2.908001	2.098089
H	-0.380010	-0.233433	-2.485507
H	-0.835494	-0.184803	-4.214405
H	-1.090964	-1.673585	-3.255672
H	-2.193353	1.896120	-3.798145
H	-1.772788	1.810407	-2.049349
H	-3.616241	-1.650574	-3.890977
H	-3.062772	-0.312807	-4.939311
H	-4.480062	-0.080764	-3.890346
H	1.809977	-0.330093	-3.523084
H	2.437428	-1.667604	-4.528281
H	3.552442	-0.405022	-3.922573
H 5.007551 -2.225536 -2.977326			
H 3.874723 -3.550129 -3.359084			
H 4.381109 -3.279875 -1.667184			
H 1.902257 -3.471088 -1.333399			
H 1.402759 -3.286691 -3.039868			
H 0.818399 -2.138795 -1.788131			
H 5.022775 2.735794 -0.422234			
H 4.854545 3.417265 1.222010			
H 3.400879 2.861943 0.348868			
H 6.231319 -0.152085 1.641827			
H 6.658380 1.003640 0.339969			
H 2.905467 1.500271 2.428872			
H 4.074771 0.295709 3.039931			
H 4.219512 1.889494 -2.590324			
H 6.546379 -1.412260 -1.082318			
H 1.750669 0.798187 4.137807			
H 2.169215 -0.917697 3.860341			
H 1.089246 -0.464750 5.226382			
H 0.277651 -2.806065 3.637186			
H -1.411508 -2.558725 3.184326			
H -0.841157 -2.037670 4.813486			
H -4.360375 0.779873 2.547043			
H -5.888061 -0.016103 3.035093			
H -5.788872 0.845963 1.470869			
H -3.092753 -1.413434 2.849641			
H -6.685962 -1.292016 0.433998			
H -5.680553 -2.774082 0.444833			
H -3.484727 1.883147 -2.558158			
H -5.274039 1.974657 -0.812702			
H -7.528884 2.530235 -1.715758			
H -8.882255 0.773853 -2.870764			
H -7.957242 -1.537118 -3.124728			
H -5.698570 -2.080151 -2.213079			
H -1.296337 0.538160 4.978886			
H -2.314565 0.491471 3.499842			
H -1.021553 1.706300 3.628535			
H 6.119607 2.567963 -4.061861			
H	8.244852	1.247575	-4.041867
-------	---------	---------	-----------
H	8.453427	-0.747197	-2.549261
H	-4.624751	-2.122660	3.421419
H	-6.543122	-2.260877	1.921380
H	-3.909035	2.262498	0.727177
H	-3.102513	3.668550	0.012566
H	1.467450	4.525450	1.870179
H	-0.101261	4.363094	2.690215
H	2.380507	1.774586	-1.272720
H	1.086408	0.743083	-1.886679
H	2.127407	2.003411	-3.767507
H	0.434396	2.513437	-3.549106
H	1.753180	3.560569	-2.954964
H	-4.000542	4.189116	2.275489
H	-3.062604	2.837949	2.984868
H	-2.211071	4.253068	2.325825
H	1.672858	4.773297	4.340642
H	0.961102	3.152751	4.587279
H	2.567289	3.317385	3.816903
H	-1.030142	6.417539	1.531418
H	-0.520960	7.209588	2.007144
H	-2.220346	6.781144	0.225070
H	-0.913027	4.040567	-2.066692
H	-2.148774	5.369962	-1.927389
H	-0.442208	5.775709	-2.161038
5.29 Intermediate 31oa

Element	X	Y	Z
C	-1.535524	-3.013340	-1.399260
N	-0.330793	-2.481993	-0.989906
C	0.707922	-3.340297	-0.727645
C	0.631610	-4.714868	-1.062575
C	-0.544984	-5.204133	-1.625604
C	-1.651982	-4.366345	-1.789200
Fe	-0.054318	-0.355493	-0.824618
Si	0.201138	2.043950	0.535935
O	-0.514959	2.143989	1.053114
C	-1.583393	1.425708	1.609496
C	-1.680277	1.785149	3.098851
N	1.824361	-2.776690	-0.141775
C	2.872050	-3.658079	0.380871
C	2.440003	-4.414855	1.648939
N	-2.609103	-2.142571	-1.356546
C	-3.956935	-2.693664	-1.522074
C	-4.380871	-2.797973	-2.999034
Si	-2.158130	-0.614173	-0.432209
N	-3.897055	0.260257	-0.328310
C	-4.635688	1.318216	-1.049282
C	-6.125557	0.945000	-1.227891
N	-3.092216	-1.036950	1.205701
C	-2.913636	-1.983582	2.324474
C	-4.135230	-2.919912	2.472251
C	-4.123285	-0.242486	0.900763
C	-5.274297	0.082109	1.790228
C -5.180660 1.161857 2.686556			
C -6.265969 1.487235 3.512277			
C -7.448452 0.734812 3.450401			
C -7.542652 -0.345839 2.558673			
C -6.461591 -0.669701 1.729432			
C -1.680420 -2.849353 1.982560			
C -2.676692 -1.219550 3.647659			
C -3.966308 1.425968 -2.429926			
C -4.503502 2.685899 -0.337240			
P 0.052784 -0.260619 -3.025028			
C 0.546531 -1.900977 -3.815142			
Si 1.873878 -0.950584 -0.118479			
N 3.806099 -0.756350 -0.432728			
C 4.740541 -0.955845 -1.557369			
C 3.940907 -1.685066 -2.652986			
C 1.278518 0.874978 -3.876053			
C -1.429557 -0.054815 -4.152198			
N 2.863819 -0.657719 1.516161			
C 4.033508 -0.531813 0.862447			
C 5.355965 -0.201912 1.464653			
C 6.121915 -1.223716 2.060664			
C 7.398248 -0.949140 2.564725			
C 7.923507 0.351187 2.481266			
C 7.160965 1.373554 1.897202			
C 5.882690 1.099639 1.388907			
C 2.578156 -0.270924 2.916544			
C 2.608555 1.269851 3.022660			
C 3.566441 -0.911187 3.920138			
C 1.166349 -0.769256 3.273561			
C 5.969902 -1.812425 -1.180976			
C 5.212240 0.404806 -2.116539			
O 1.981480 2.027073 -0.535879			
C 3.074788 2.884201 -0.794489			
C 3.101537 3.480234 -2.208518			
O -0.785901 2.429274 -1.941522			
C -1.058489 3.607776 -2.694367			
C -1.797993 3.234524 -3.982670			
Element	X	Y	Z
---------	----------	----------	----------
O	0.607601	3.926938	-0.396113
C	0.970068	4.855575	0.359038
C	1.295830	6.218333	-0.229980
C	1.102160	4.734556	1.858601
H	-6.585597	1.648516	-1.942026
H	-4.441966	2.227905	-3.017925
H	0.092115	-0.301679	0.699391
H	1.479810	-5.374530	-0.894141
H	-0.608242	-6.253025	-1.926983
H	-2.588227	-4.750746	-2.186995
H	3.743084	-3.033113	0.613431
H	3.205842	-4.370498	-0.397507
H	2.179725	-3.691885	2.436348
H	3.257693	-5.059743	2.016315
H	1.558268	-5.041654	1.447049
H	-4.656885	-2.029744	-0.996409
H	-4.030483	-3.687594	-1.039351
H	-4.367639	-1.802431	-3.466932
H	-5.400065	-3.213764	-3.085374
H	-3.688775	-3.444617	-3.561465
H	3.632427	-2.687815	-2.318285
H	0.422563	-0.338469	2.596156
H	0.929585	-0.465585	4.305759
H	1.105714	-1.864756	3.206720
H	2.357868	1.590221	4.048830
H	1.875960	1.688721	2.317603
H	3.639321	-1.996689	3.746086
H	3.181854	-0.747407	4.940446
H	4.569834	-0.469110	3.861299
H	-1.831385	-0.526904	3.542412
H	-2.447071	-1.935112	4.455200
H	-3.573237	-0.647061	3.931338
H	-5.012224	-2.390855	2.871316
H	-3.879801	-3.737631	3.166771
H	-4.389639	-3.360404	1.495162
H	-1.908044	-3.528563	1.147944
H	-1.405732	-3.452940	2.862268
Atom	Coordinates		
------	---------------	---------	---------
	X	Y	Z
H	-0.828291	-2.224748	1.687667
H	-5.091864	2.711375	0.592644
H	-4.874226	3.481560	-1.004699
H	-3.446894	2.890678	-0.110613
H	-6.215268	-0.073832	-1.637551
H	-6.680296	1.003115	-0.281872
H	-2.900397	1.656732	-2.298771
H	-4.061879	0.482348	-2.983952
H	-4.261487	1.745879	2.724059
H	-6.531456	-1.504595	1.029630
H	-1.834240	0.961053	-4.066518
H	-2.194628	-0.780188	-3.841384
H	-1.146557	-0.246507	-5.202809
H	-0.296417	-2.600670	-3.726872
H	1.400959	-2.349293	-3.297484
H	0.789186	-1.762264	-4.885150
H	4.344070	1.009389	-2.408628
H	5.851913	0.243589	-3.00283
H	5.793612	0.953731	-1.359224
H	3.043646	-1.104104	-2.893449
H	6.674021	-1.266780	-0.539913
H	5.655215	-2.733895	-0.666174
H	3.609031	1.652849	2.767944
H	5.285432	1.897541	0.944821
H	7.560132	2.388755	1.834396
H	8.920814	0.565569	2.872411
H	7.983516	-1.750200	3.022574
H	5.712636	-2.234024	2.113619
H	1.236278	0.753715	-4.973915
H	2.294336	0.638689	-3.525105
H	1.041369	1.911858	-3.601968
H	-6.184660	2.328918	4.204383
H	-8.295217	0.990765	4.091278
H	-8.459756	-0.937331	2.507795
H	4.556003	-1.779206	-3.561489
H	6.495871	-2.094557	-2.107418
H	3.973199	2.258562	-0.673019
	x	y	z
---	-----	-----	-----
H	3.171503	3.707875	-0.052774
H	-1.644436	4.342240	-2.110682
H	-0.123859	4.109181	-3.003111
H	-2.533939	1.660288	1.102513
H	-1.436647	0.342661	1.504036
H	-2.490933	1.222120	3.587573
H	2.230303	4.127593	-2.374047
H	-0.736090	1.529703	3.604947
H	-1.861709	2.864179	3.228761
H	4.018899	4.077959	-2.350679
H	3.080018	2.679759	-2.960854
H	1.165248	6.200627	-1.317891
H	0.638510	6.982031	0.217158
H	2.329418	6.504514	0.023533
H	0.831888	3.725449	2.175987
H	2.130783	4.998110	2.152824
H	0.432812	5.467960	2.337795

5.30 Transition State 32oa$^+$

![Diagram of transition state 32oa]$^+$

	x	y	z
C	-0.537049	-4.180558	1.158485
N	-1.356764	-3.147759	0.747720
C -2.677758 -3.436257 0.495763			
C -3.227152 -4.717552 0.753310			
C -2.399125 -5.719379 1.258169			
C -1.039053 -5.468264 1.457711			
Fe -0.677397 -1.114019 0.758602			
Si 0.300400 1.399074 0.557193			
O 1.040333 1.406319 -1.023597			
C 1.670080 0.372147 -1.734806			
C 1.936528 0.864991 -3.162679			
N -3.428961 -2.401182 -0.037477			
C -4.722594 -2.704181 -0.654217			
C -4.579690 -3.503849 -1.963219			
N 0.806483 -3.867774 1.201550			
C 1.778048 -4.943595 1.401389			
C 1.994621 -5.275047 2.890775			
Si 1.138778 -2.224799 0.445070			
N 3.072898 -2.282405 0.478885			
C 4.161622 -1.798180 1.355163			
C 5.207725 -2.910495 1.600447			
N 1.885831 -2.907434 -1.221121			
C 1.372232 -3.594550 -2.424692			
C 2.080457 -4.953423 -2.635067			
C 3.134614 -2.681032 -0.808972			
C 4.366755 -2.810695 -1.641732			
C 4.733280 -1.765786 -2.512407			
C 5.881734 -1.879445 -3.309682			
C 6.669564 -3.040729 -3.249770			
C 6.305546 -4.086845 -2.385277			
C 5.160735 -3.971895 -1.583315			
C -0.128551 -3.862764 -2.172709			
C 1.528193 -2.715917 -3.686419			
C 3.511265 -1.416920 2.692150			
C 4.840257 -0.543326 0.780644			
P -0.901452 -1.083498 2.958678			
C -2.117168 -2.366994 3.621389			
Si -2.663806 -0.749566 0.042694			
N -4.340670 0.245128 0.377588			
C -5.377316 0.290557 1.433310			
C -5.036822 -0.843902 2.420459			
C -1.521256 0.452126 3.836162			
C 0.453708 -1.542534 4.174677			
N -3.403929 0.026173 -1.569397			
C -4.404604 0.633283 -0.903472			
C -5.410723 1.580184 -1.469018			
C -6.514507 1.089605 -2.195209			
C -7.490706 1.967452 -2.685097			
C -7.373815 3.349362 -2.459120			
C -6.274247 3.845681 -1.740538			
C -5.298493 2.966881 -1.246166			
C -2.954274 0.308053 -2.957129			
C -2.483761 1.773214 -3.056938			
C -4.074840 0.014186 -3.983048			
C -1.759223 -0.609812 -3.281522			
C -6.803780 0.037420 0.887104			
C -5.356319 1.642116 2.185668			
O -1.320436 1.978839 0.542814			
C -2.213856 2.993153 0.952393			
C -1.956292 3.534659 2.365916			
O 1.158784 1.293355 2.057837			
C 1.805889 2.256316 2.897828			
C 1.929414 1.741177 4.335958			
O 0.944966 3.231558 0.446833			
C 0.452074 4.284455 -0.292369			
C -0.171234 5.453108 0.530670			
C -0.214397 4.060413 -1.649382			
O 2.854404 4.674488 1.570599			
C 3.361877 5.982254 1.885434			
O 3.508437 2.537173 -0.183525			
C 4.659415 2.345700 -1.034372			
O 3.689067 5.078500 -0.873629			
C 3.340053 5.663846 -2.132282			
H 5.915504 -2.575617 2.376558			
H 4.280731 -1.020951 3.374291			
H -0.738845 -0.887564 -0.746234			
X	Y	Z	Value
--------	--------	--------	---------
-4.27890	-4.917060	0.562971	
-2.810246	-6.707320	1.480179	
-0.377182	-6.251125	1.819317	
-5.213727	-1.748742	-0.873106	
-5.385722	-3.234324	0.055329	
-3.995225	-2.914635	-2.686640	
-5.569077	-3.724935	-2.400127	
-4.052461	-4.452260	-1.783000	
2.732656	-4.614814	0.968580	
1.468580	-5.851706	0.849146	
2.395598	-4.392943	3.413885	
2.708115	-6.108964	3.009822	
1.045223	-5.552487	3.373461	
-5.072946	-1.819109	1.914316	
-0.906669	-0.375844	-2.635990	
-1.468664	-0.453660	-4.332907	
-2.023834	-1.668123	-3.142196	
-2.002429	1.956301	-4.032566	
-1.758885	1.951915	-2.254727	
-4.515399	-0.977779	-3.796581	
-3.642118	0.017977	-4.996801	
-4.869067	0.770779	-3.950253	
0.953427	-1.786417	-3.578636	
1.145870	-3.263871	-4.563709	
2.583817	-2.466392	-3.866246	
3.125789	-4.826770	-2.949063	
1.550566	-5.518969	-3.418907	
2.051509	-5.539229	-1.702825	
-0.259706	-4.626277	-1.392932	
-0.592874	-4.226828	-3.103279	
-0.637790	-2.949038	-1.839529	
5.310451	-0.749364	-0.190939	
5.626282	-0.204949	1.475924	
4.097770	0.257350	0.673714	
4.711587	-3.828040	1.954642	
5.780607	-3.139541	0.691792	
2.744466	-0.649302	2.526217	
---	---	---	---
H	3.047377	-2.294657	3.161890
H	4.115964	-0.868183	-2.554503
H	4.872264	-4.781812	-0.912182
H	1.253124	-0.796927	4.165747
H	0.861261	-2.515665	3.864581
H	0.048626	-1.628938	5.198617
H	-1.623535	-3.349903	3.594384
H	-3.017787	-2.432734	3.000488
H	-2.401292	-2.140596	4.663804
H	-4.385545	1.793992	2.679261
H	-6.145510	1.649164	2.956070
H	-5.540284	2.476370	1.493113
H	-4.029372	-0.711451	2.828357
H	-7.185124	0.890016	0.310976
H	-6.821290	-0.861016	0.251723
H	-3.327961	2.471125	-2.948688
H	-4.439945	3.351882	-0.698144
H	-6.174044	4.918868	-1.563813
H	-8.134324	4.033686	-2.840849
H	-8.342523	1.572600	-3.242873
H	-6.604741	0.016289	-2.365584
H	-1.574990	0.308591	4.929990
H	-2.515273	0.727597	3.458124
H	-0.827758	1.268383	3.599050
H	6.158160	-1.062208	-3.979597
H	7.561795	-3.130811	-3.872850
H	6.912526	-4.993227	-2.335107
H	-5.758632	-0.839497	3.252248
H	-7.481506	-0.128301	1.740235
H	-3.210388	2.530158	0.925834
H	-2.243317	3.817896	0.219102
H	2.820260	2.457271	2.518330
H	1.262049	3.214444	2.891228
H	2.626885	0.104541	-1.244992
H	1.050772	-0.535149	-1.743330
H	2.456557	0.096749	-3.758525
H	0.982662	1.102789	-3.662055
H 2.553349 1.779698 -3.142414
H -2.549845 4.447825 2.547185
H -2.233561 2.784102 3.116486
H -0.892652 3.772132 2.503261
H 2.408860 2.521057 4.954246
H 0.948913 1.502846 4.773095
H 2.556218 0.837762 4.378788
H 0.208938 5.411047 1.557781
H 0.133969 6.413674 0.080895
H -1.267846 5.434986 0.543494
H 0.157446 3.140673 -2.110240
H -1.303083 3.989803 -1.534172
H -0.003060 4.932357 -2.291682
H 1.435889 4.874563 -0.549750
C 3.168334 6.206126 3.385503
H 4.426626 6.052181 1.607115
H 2.814939 6.745437 1.303561
C 4.464325 6.610117 -2.555114
H 3.193884 4.874497 -2.894630
H 2.385387 6.218293 -2.042174
H 4.628195 1.291799 -1.338952
H 4.568732 2.972842 -1.935407
C 5.952278 2.682977 -0.292130
Si 2.781074 3.985425 0.069645
H 3.548620 7.200136 3.673428
H 2.100319 6.143715 3.646725
H 3.710071 5.436993 3.957473
H 4.221498 7.083070 -3.520540
H 4.602389 7.397032 -1.797248
H 5.409565 6.054755 -2.658441
H 6.826025 2.429811 -0.916381
H 5.979470 3.759838 -0.061940
H 6.011775 2.110567 0.644249
6 NMR Spectra

Iron(II) complex 7a

1H NMR (500 MHz, C$_6$D$_6$):
13C NMR (126 MHz, C$_6$D$_6$):
$^{31}\text{P}^{(1)\text{H}}$ NMR (202 MHz, C_{6}D_{6}):
\(^1\text{H},^{29}\text{Si} \text{HMQC (500 MHz/99 MHz, C}_6\text{D}_6):\)
Iron(II) complex 7b

1H NMR (500 MHz, C$_6$D$_6$):
13C NMR (126 MHz, C$_6$D$_6$):
31P(1H) NMR (202 MHz, C_6D_6):
1H, 29Si HMQC (500 MHz/99 MHz, C$_6$D$_6$):

H, Si-HMQC 20 Hz 300 K
Iron(II) complex 7c

1H NMR (500 MHz, C$_6$D$_6$):

![NMR Spectrum Diagram]
13C NMR (126 MHz, CD$_3$OD):
$^{31}\text{P}^{1}(\text{H})$ NMR (202 MHz, C$_6$D$_6$):
1H, 29Si HMQC (500 MHz/ 99 MHz, C₆D₆):
Trimethylphosphine-d_9 6-d_9

1H NMR (500 MHz, C$_6$D$_6$/C$_6$H$_6$):

P(CD$_3$)$_3$
2H NMR (77 MHz, CD$_3$OD/CD$_3$HOD):
13C NMR (176 MHz, C$_6$D$_6$/C$_6$H$_6$):
$^{31}\text{P NMR (202 MHz, C}_6\text{D}_6/C_6\text{H}_6)$:
Dimethyl(phenyl)(1-phenylethoxy-1-d) silane (8eb-d₁)

¹H NMR (500 MHz, CDCl₃):

- Me
- Me
- O
- Si
- Ph
- D
- Me

ppm

12 11 10 9 8 7 6 5 4 3 2 1

3.00 2.76 2.69 2.58 2.00 1.00
13C NMR (126 MHz, C$_6$D$_6$):
$^{29}\text{Si DEPT NMR (99 MHz, CDCl}_3)$:
7 Gibbs Free Energy Profile

Peripheral Mechanism

Outer and Inner Sphere Mechanisms

ΔG° (kcal/mol)

7a + 8oa

(-26.9)
8 References

[S1] D. Gallego, S. Inoue, B. Blom and M. Driess, *Organometallics*, 2014, **33**, 6885–6897.

[S2] (a) H. F. T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki and K. Tatsumi, *J. Am. Chem. Soc.*, 2011, **133**, 3312–3315; (b) H. F. T. Klare, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Germany, 2011; (c) For an alternative preparation of (SiS)4d, see: P. Jankowski, E. Schaumann, J. Wicha, A. Zarecki, G. Adiwidjaja and M. Asztemborska, *Chem. Commun.*, 2000, 1029–1030.

[S3] M. Mewald, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Germany, 2012.

[S4] C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Fröhlich, *Organometallics*, 2005, **24**, 4760–4773.

[S5] G. M. Sheldrick, *SHELX-97: Program for Crystal Structure Refinement*: University of Göttingen, Göttingen, Germany, 1997.

[S6] J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.

[S7] L. Goerigk and S. Grimme, *Phys. Chem. Chem. Phys.*, 2011, **13**, 6670–6688.

[S8] T. H. Dunning, *J. Chem. Phys.*, 1989, **90**, 1007–1023.

[S9] M. J. Frisch, J. A. Pople and J. S. Binkley, *J. Chem. Phys.*, 1984, **80**, 3265–3269.

[S10] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[S11] C. Y. Legault, CYLview 1.0b; Université de Sherbrook: Sherbrook, QC, Canada, 2009. http://www.cylview.org.

[S12] P. Bhattacharya, J. A. Krause and H. Guan, Organometallics, 2011, 30, 4720–4729.

[S13] A. M. Tondreau, E. Lobkovsky and P. J. Chirik, Org. Lett., 2008, 10, 2789–2792.

[S14] N. S. Shaikh, S. Enthaler, K. Junge and M. Beller, Angew. Chem. Int., Ed., 2008, 47, 2497–2501.

[S15] H. Nishiyama and A. Furuta, Chem. Commun., 2007, 760–762.

[S16] Z. Zuo, H. Sun, L. Wang and X. Li, Dalton Trans., 2014, 43, 11716–11722.

[S17] A. J. Ruddy, C. M. Kelly, S. M. Crawford, C. A. Wheaton, O. L. Sydora, B. L. Small, M. Stradiotto and L. Turculet, Organometallics, 2013, 32, 5581–5588.

[S18] S. E. Denmark and Y. Ueki, Organometallics, 2013, 32, 6631–6634.

[S19] S.-F. Hsu and B. Plietker, Chem. – Eur. J., 2014, 20, 4242–4245.

[S20] R. Lopes, J. M. S. Cardoso, L. Postigo and B. Royo, Catal. Lett., 2013, 143, 1061–1066.

[S21] T. Taniguchi and D. P. Curran, Org. Lett., 2012, 14, 4540–4543.

[S22] J. Mohr, M. Durmaz, E. Irran and M. Oestreich, Organometallics, 2014, 33, 1108–1111.

[S23] (a) T. T. Wenzel and R. G. Bergman, J. Am. Soc. Chem., 1986, 108, 4856–4867; (b) A. Kornath, F. Neumann and H. Oberhammer, Inorg. Chem., 2003, 42, 2894–2901.

[S24] T. T. Metsänen, P. Hrobářík, H. F. T. Klare, M. Kaupp and M. Oestreich, J. Am. Chem. Soc., 2014, 136, 6912–6915.