One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment

Xue Yang1,2, Jing Hou1, Zhipeng Han1, Ying Wang2, Chong Hao1, Lixin Wei1* and Yufang Shi2*

Abstract

The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.

Keywords: Mesenchymal stem cells (MSCs), Tumor microenvironment, Tumor growth, Metastasis

Introduction

Mesenchymal stem cells (MSCs, also called as mesenchymal stromal cells) is a subset of non-hematopoietic adult stem cells which originate from mesoderm. They possess self-renew ability and multilineage differentiation into not only mesoderm-lineage, such as chondrocytes, osteocytes and adipocytes, but also ectodermic cells and endodermic cells [1-5]. MSCs exist in almost all tissues. They can be easily isolated from bone marrow, adipose, umbilical cord, fetal liver, muscle, lung and etc, and can be successfully expanded in vitro [6-10]. Due to lack of specific markers to define MSCs, their identification was depended on the plastic adhesion property, a panel of surface markers, including CD31, CD34, CD45, CD29, CD90, and CD105, as well as multiple differentiation potential. Together with immunosuppressive properties endowed by the inflammation in the damaged tissues, MSCs can display their tissue reparative function. Above is observed in MSC-based therapy in vigorous inflammatory diseases, however, with chronic and insufficient inflammation, MSCs cannot rescue the tissue damage, even worsening the disease. Inflammation is always associated with tumor development where tissue suffers from chronic injury. Based on the property of MSCs being recruited to injured tissues, MSCs are used to deliver anti-tumor reagent directly to tumors for cell based therapy [11-13]. However, the role of MSCs in constructing tumor microenvironment and its potential mechanisms are still controversial. Here, we will focus on the effects of MSCs on the tumorigenesis and tumor metastasis.

The “seed and soil” hypothesis was proposed by Paget in the late nineteenth century, so we can imagine how important the tumor microenvironment is. Tumor microenvironment is very complicated, and includes various cell types, lots of soluble factors, extensive neovasculature [14] and excessive extracellular matrix (ECM) deposition. The network orchestrated by tumor cells, stroma cells [15] and the soluble factors contribute to tumorigenesis, progression, metastases and reoccurrence [16].

MSCs and other components in tumor microenvironment

Tumor microenvironment always provides essential conditions to maintain cancer stem cells/cancer initiating
cells, as well as to boost the cancer cell metastasis. Distinct types of cells, including fibroblast stromal cells (also known as tumor-associated fibroblasts, TAFs) [15,17], immune cells, endothelial cells, adipocytes, and mesenchymal stem cells (MSCs) [17] contribute to tumor progression through crosstalk with each other in either direct or indirect manners. Once tumor develops, TAFs are activated to repair the never healing wound [18]. TAFs play roles in tumor stroma organization by producing plentiful ECM, meanwhile, they contribute to angiogenesis together with endothelial cells and macrophages by producing growth factors, cytokines, chemokines, matrix-degrading enzymes [19]. A growing number of researches demonstrated that blood vessels formed by endothelial cells are responsible for supplying nutrients and transporting metabolic and biological waste [20], thus tumor angiogenesis is important in many types of tumors [21]. In addition, adipocytes, another component of energy supplier, are reported to promote homing, migration and invasion of tumor cells by secreting adipokines including interleukin-8 (IL-8) and also make tumors grow rapidly by providing fatty acids [22]. Meanwhile, the immune surveillance built up by tumor-associated macrophage (TAM), NK cells, T cells, B cells, polymorphonuclear leukocytes (PMN), and dendritic cells (DCs) [1] in the tumor sites should not be ignored. They can shift the tumor immune microenvironment, thereby favoring the tumor progression, invasion, malignancy and relapse [17]. With the advent of tissue repair and immune regulatory function of MSCs, MSCs has attracted more attention to their roles in regulating tumor environment [1,23]. MSCs are recruited from remote sites into the tumor sites, therein influencing tumor microenvironment by interacting with other cell types or secreting soluble factors. In addition, MSCs are able to differentiate into several stromal cells, such as adipocytes and TAFs [1,7], which was reported in an induced gastric cancer model [24]. Striking evidence also indicated that MSCs played a critical role in tumor vasculogenesis by

Table 1 Cytokines in tumor microenvironment and effects on tumor progression

Cytokines	Cellular sources	Tumor growth	Metastasis	Immune response	References
IL-1	macrophages, DCs, B cells, NK cells, keratinocytes, tumor cells	+	+	[25,26]	
IL-2	Th1 lymphocytes	-	+	[26,27]	
IL-4	Th2 lymphocytes	-	+	[28]	
IL-6	T (mainly Th2) and B cells, keratinocytes and macrophages. tumor cell, fibroblast, endothelial cells	+ (low concentration)	-(high concentration)	+ [25,26,29-31]	
IL-8	tumor cells	+		[26]	
IL-10	Th cells, B cells, activated monocytes, macrophages, thymocytes, keratinocytes, and tumor cells.	+	+	[29,32,33]	
IL-11	APC: monocytes, macrophages, and DCs, tumor cells, neutrophils	-	-	+ [26,34-38]	
IL-12	macrophages, DCs	-		+ [39]	
IL-18	-	-	+ [26]		
IFN-α	-	-	+ [40]		
IFN-β	-	-	+ [40]		
IFN-γ	T (mainly Th1) and B cells, NK cells, NKT cells, CTL macrophages, mast cells, DCs	-	+	[25,26]	
TNF-α	activated macrophages, T and B cells, NK cells, tumor cells, neutrophils, fibroblasts, keratinocytes	+ (low concentration)	-(high concentration)	[25,29]	
TGF-β	T and B cells, macrophages, platelets, bone-marrow stroma, tumor cells	-	+	[25,41]	
M-CSF	macrophages, endothelial cells, fibroblasts, bone-marrow stroma	+	+	[25]	
GM-CSF	respiratory epithelial cells, T cells, NK cells, NKT cells, macrophages, eosinophils, endothelial cells, fibroblasts	-		[25]	
MIF	macrophages, T cells, eosinophils, fibroblasts, keratinocytes, pituitary	+		[25]	

Abbreviations: +, promote; —, inhibit.
differentiating into pericytes and endothelial-like cells [1]. Together with cytokines [Table 1], chemokines [Table 2] and condition where they resided in, MSCs played the indispensable role in regulating different stages of tumor progression.

Table 2 Chemokines in tumor microenvironment and effects on tumor progression

Chemokines	Chemokine receptors	Cellular sources	Tumor growth	Metastasis	Immune response	References
CCL2	CCR2	tumor cells, macrophages, endothelial cells, TAFs	+ (low concentration)	+	-	[42-46]
CCL3	CCR1,4,5	endothelial cells	+	+	+	[42,47]
CCL4	CCR5	macrophages	+	+	-	[42]
CCL5	CCR1,3,5	MSCs, tumor cells, TAFs	+	+	-	[42,48]
CCL7	CCR1,2,3	+	+			[42]
CCL8	CCR2,3,5	+	+			[42]
CCL11	CCR3	+	+			[42]
CCL12	CCR2	+	+			[42]
CCL16	CCR1	-	-			[49]
CCL17	CCR4	tumor cells, macrophages	-	+	+	[42,50]
CCL18	unknown	TAM	-	+		[42,51]
CCL19	CCR7,11	tumor cells, DCs	-	+	+	[42,52]
CCL20	CCR6	tumor cells	-	+	+	[53-56]
CCL21	CCR7,11	lymph nodes, tumor cells, endothelial cells	-	+	+	[57-64]
CCL22	CCR4	tumor cells, macrophages	-	+	+	[42,50,65]
CCL23	CCR1	+	+			[42]
CCL24	CCR3	+	+			[42]
CCL25	CCR9,11	+	+			[42]
CCL26	CCR3	+	+			[42]
CCL27	CCR2,3,10	+	+			[66]
CXCL1	CXCR1,2	tumor cells, TAFs	+	-		[59,67,68]
CXCL2	CXCR2	tumor cells, TAFs	+	+		[42,67-70]
CXCL3(GRO-α,β,γ)	CXCR2	tumor cells, TAFs	+	-		[67,68,71]
CXCL5(ENA-78)	CXCR1,2	+	+		[42,71,72]	
CXCL6	CXCR1,2	+	+			[42]
CXCL7(NAP2)	CXCR1,2	+	+			[42]
CXCL8	CXCR1,2	TAFs,endothelial cells, tumor cells, macrophages	+	+		[19,42,59,73-76]
CXCL9	CXCR3	-	-			[77,78]
CXCL10	CXCR3	tumor cells	-			[59,78]
CXCL11	CXCR3	-	-			[61,79-82]
CXCL12	CXCR4	tumor cells, astrocytes, fibroblasts, microglia cells	+	+		[61,83-86]
CXCL13	CXCR5	tumor cells, macrophages, TAFs	+	+		[42,87-89]
CXCL14	unknown	-	-		+	[90]
CX3CL1	CX3CR1	+	+			[91-95]
PF4	-		-			[96,97]
IP-10	CXCR3	-	-			[38,71,80,98]
MIG	CXCR3	-	-			[71,99]

Abbreviations: +, promote; —, inhibit.
MSCs home to injury sites induced by inflammation without organ specificity [100-105]. MSCs migration to tumors is due to the tumor microenvironment accompanied by soluble factors produced by inflammatory and tumor cells and chemokine receptors on MSCs. Those soluble inflammation-associated factors include growth factors, chemokines and cytokines [17], such as epidermal growth factor (EGF), vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), hematopoietic growth factor (HGF), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) [106-108], stromal cell-derived factor-1α (SDF-1α), IL-8, IL-6, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF) [101], monocyte chemoattractant protein-1 (MCP-1), urokinase-type plasminogen activator (uPA) [109].

Chemokine receptors expressed on MSCs such as CCR1, CCR4, CCR7, CCR9, CCR10, CXCR4, CXCR5, CXCR6, CX3CR1, and c-met lead to their tumor-homing process, too. Recent data implicate the hypoxia status, maintaining the chronic inflammation in tumor; also contribute to MSCs mobilization [110].

Based on the tumor-tropism property of MSCs, they can be used for tumor therapy as delivery vehicles of specific therapeutic genes. Transfering of IFN-β, IFN-γ, IL-2, IL-3, IL-12, CCL5, suicide gene cytochrome deaminase (CD), adenovirus type 5 early-region 1A (Ad5.E1A) gene, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) into MSCs have been demonstrated to be anticancer, and transferring of other genes like CX3CL1 and NK4 also can inhibit metastases of tumors [11,111-124]. In addition, gene-enhanced MSCs are more effective for tissue repair and genetic disease treatment than unmodified MSCs [125-133].

MSCs promote angiogenesis in tumor

Blood Vessels are very important in tumor growth, especially at late stage of tumor progression. Current data suggested that MSCs promoting tumor angiogenesis was mainly dependent on their differentiation potential into endothelial-like cells or pericytes and secreting pro-angiogenic factors like vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and CXCL12, thereby facilitating angiogenesis [1]. In addition, TAF, a critical component of tumor microenvironment, partly can be derived from MSCs that may be mobilized from local sites or circulation. In immunodeficiency mice, TAFs obtained from human tumor facilitate the growth of human breast and ovarian cancers via inhibiting tumor cell apoptosis, enhancing cell proliferation, as well as promoting angiogenesis [136].

MSCs suppress immune responses

Extensive investigations have shown that MSCs can exert immunosuppressive function to multiple types of immune cells from either innate immunity or adaptive immunity, such as T cells, B cells, DCs, NK cells and etc. [139]. For T cells, MSCs implemented inhibitory function through secreting high levels of chemokines and inhibitory factor, followed by decreasing T cell activity locally [91,140]. Moreover, MSCs were reported to suppress B cell function via inhibiting chemokine receptors expression [141], to prevent the maturation and cytokine production of DCs and to decrease IL-2-induced proliferation, cytokine production and cytotoxic activity of NK cells. Furthermore, MSCs can promote generation of T regulatory (Treg) cells [1,142]. The factors, such as prostaglandin E2 (PGE2), nitric oxide (NO), indoleamine 2,3-dioxigenase (IDO), PD-L1 and soluble HLA-G5, more or less, are involved in mediating MSC-based suppressive function directly or indirectly [1]. However, it is noteworthy that the immunosuppressive function of MSCs was, not innate, elicited by the synergy effect of interferon-γ (IFNγ) and any of three other proinflammatory cytokines, TNFα, IL-1α, or IL-1β [140].

MSCs inhibit apoptosis of tumor cells

Recent report has shown that serum-deprived MSCs could facilitate tumor growth and survival by autophagy [143] in both breast cancer animal model and in vitro assay. Tumor progression is accompanied with hypoxia and starvation, because solid tumors with size beyond 2 mm will limit tumor cells to uptake sufficient nutrient and oxygen due to less vasculature. Under hypoxia and starvation status, MSCs maintain their self-survival via autophagy, meanwhile, they release a lot of anti-apoptotic or pro-survival factors, such as VEGF, bFGF, PDGF, SDF-1α, insulin-like growth factor 1, 2 (IGF-1,2), transforming
growth factor-β (TGF-β) and insulin-like factor binding protein-2 (IGFBP-2) [144-146] to prevent tumor cells from apoptosis and support their proliferation, while normal MSCs do not take this properties. VEGF can increase the Bcl-2/Bax ratio [147,148], bFGF can upregulate Bcl-2 expression [149], PDGF and TGF-β can induce the expression of VEGF and bFGF [150]. SDF-1α was repored to protect chronic lymphocytic leukemia (CLL) cells from apoptosis induced by drug [151]. Nitric oxide (NO), as another important molecule secreted by MSCs, was considered as a bifunctional regulator of apoptosis, proapoptotic at high dose and antiapoptotic at low [152]. Another essential chemokine IL-6 produced by tumor cells and MSCs inhibit apoptosis by upregulating the expression of Bcl-xl [153].

Another perspective also indicated that MSCs are the guardians of tumors, since they can mediate the chemotherapy resistance of tumor cells. Drug resistance was classified into environment mediated-drug resistance (EM-DR), cell adhesion mediated-drug resistance (CAM-DR) and soluble factor mediated-drug resistance (SM-DR), the latter two are associated with MSCs [154].

MSCs can promote tumor metastasis
Metastasis is the major cause of cancer patient death. With more and more potential mechanisms of tumor metastasis are discovered, evidences from in vitro and in vivo studies both pointed out that MSCs have a close relationship with cancer metastasis [155-157]. MSCs induced metastasis only occurs in close proximity to tumor sites while the effect will be reversed when MSCs are inoculated in separate sites, even in nearby sites [156]. Other mechanisms, including epithelial-mesenchymal transition (EMT) induction, regulation of cancer stem cells (CSCs) and mesenchymal niches shifting, are also involved.

MSCs induce EMT of tumor cells
EMT was first identified as the characteristics of embryogenesis which was described as loss of cell adhesion, repression of E-cadherin expression, and increased cell mobility. The concept of EMT then was extended to tumor metastasis. In breast cancer, when tumor cells were co-cultured with MSCs or MSCs-conditioned medium, tumor cells and MSCs both can be induced to expressed EMT associated molecules [158,159]. Additional researches indicated that EMT appeared to be partly dependent on TGFβ and VEGF which are associated with MSCs [160,161].

MSCs regulate CSCs proliferation
Due to CSCs less sensitive to chemotherapy and toxins, they indeed play crucial roles in tumor metastasis [162]. MSCs can enhance CSCs proliferation by secreting cytokines, IL-6 and CXCL7, thereby facilitating the tumor growth [163-165].

MSCs shift mesenchymal niche
Another mechanism may be pointed to the mesenchymal niche. Growing evidences showed that MSCs can migrate not only to primary tumor sites but also to pre-metastatic sites [166-168]. Factors produced by primary tumors may diffuse to other tissues [167,168] and attract MSCs to be there, which will set up the mesenchymal niche for tumor cell migration. Further researches gave the indication that CCL5 produced by tumor cell-stimulated MSCs, through binding with CCR5, lead the tumor metastasis [156].

Conclusion
This review draws attention to the complex of MSCs interaction with tumor microenvironment and highlights the fact that both tumor growth and tumor metastasis can be influenced by MSCs directly or indirectly. The effects of MSCs in tumor are varied: the notion that MSCs promoting tumor growth and metastasis has been supported from distinct aspects involved in angiogenesis, tumor cell survival, immunosuppressive microenvironment shape, as well as CSC maintenance and mesenchymal niche construction. However, the controversial results also exist. That can be attributing to the different microenvironment where they reside, the dose employed and their heterogeneity. Therefore, we should pay more attention to MSC-based therapy, especially the potential risk when it works as gene carriers. Nevertheless, it is important to understand the principles and mechanisms of MSCs regulating tumor progression that will give the indication how to employ MSCs to treat tumor.

Abbreviations
MSCs: Mesenchymal stem cells; TAFs: Tumor-associated fibroblasts; TAM: Tumor-associated macrophage; CSCs: Cancer stem cells; PMN: Polymorphonuclear leukocytes; PG2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase; NO: Nitric oxide; TGF-β: Transforming growth factor-β; TNF-α: Tumor necrosis factor-α; IFN-γ: Interferon-γ; IL-8: Interleukin-8; IGF-1,2: Insulin-like growth factor-1,2; IGFBP-2: Insulin-like growth factor binding protein-2; VEGF: Vascular endothelial growth factor; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; SDF-1α: Stroma-derived factor-1α; CD: Cytocine deaminase; Ad5.E1A gene: Adenovirus type 5 early-region 1A gene; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; EGF: Epidermal growth factor; CSF: Granulocyte colony-stimulating factor; GM-CSF: Granulocyte-macrophage colony-stimulating factor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
X.Y., J.H., Z.P.H., Y.W., C.H., L.X.W. and Y.F.S. planned the manuscript outline. X.Y wrote the draft manuscript, J.H., Z.P.H., Y.W. and C.H. revised the manuscript, L.X.W. and Y.F.S finalized the manuscript. All authors read and approve the final manuscript.

Acknowledgements
This project was supported by Key project of National Natural Science Foundation of China(Grant NO: 81030041); Key Basic Research Project of China (Grant NO: 2010CB945600, 2011CB966200); National Natural Science Foundation of China (Grant NO: 30870974, 30810347, 30901722, 31171321, 81000970, 81101622, 30973433, 3081094); Special Funds for National key Sci-Tech Sepecial Project of China (Grant NO: 2008ZX10002-019,
46. Mizukami Y, Kono K, Kawaguchi Y, Aikahi K, Kamimura K, Suzaki H, Fuji H; CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008, 122(10):2286–2293.

47. Okada N, Gao JQ, Sasaki A, Niwa M, Okada Y, Nakayama T, Yoshie O; Mzaluzhi H, Hayakawa T, Fujita T, et al. Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host’s immune system: implications for chemokine-based cancer immunotherapy. Biochem Biophys Res Commun 2004, 317(1):68–76.

48. Zhao M, Mueller BM, D’Scipio RG, Schauffartt UA: Akt plays an important role in breast cancer cell chemotaxis to CCK12, Breast Cancer Res Treat 2003, 110(2):211–222.

49. Guiducci C, Di Carlo E, Parenta M, Hitt M, Giovarelli M, Musiani P, Colombo MP: Intraluminal injection of adenovirus encoding CC chemokine ligand 16 inhibits mammary tumor growth and prevents metastasis-induced death after surgical removal of the treated primary tumor. J Immunol 2004, 172(7):4026–4036.

50. Gough M, Crittenden M, Thanaratjadingam U, Sanchez-Perez L, Thompson J, Jennevoit D, Ville R; Gene therapy to manipulate effector T cell trafficking to tumors for immunotherapy. J Immunol 2005, 174(5):5766–5773.

51. Bonecchi R, Locati M, Mantovani A; Chemokines and cancer: a fatal attraction. Cancer Cell 2004, 19(4):434–435.

52. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH, Broxmeyer HE, Riddell SR, Hitt M, Hitt M,
null
126. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hira S, Uchida H, Sasaki K, Ito Y, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. *Mol Ther* 2005, 11(1):96–104.

127. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hira S, Uchida H, Sasaki K, Ito Y, Kato K, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. *Mol Ther* 2004, 9(2):189–197.

128. Ishikawa T, Terai S, Urata Y, Marumoto Y, Aoyama K, Sakaida I, Murata T, Nishina H, Shinoda K, Uchimura K, et al. Fibroblast growth factor 2 facilitates the differentiation of transplanted bone marrow cells into hepatocytes. *Cell Tissue Res* 2006, 323(2):221–231.

129. Lu Z, Hu X, Zhu C, Wang D, Zheng X, Liu Q. Overexpression of CTNF in Mesenchymal Stem Cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. *J Neuroimmunol* 2009, 206(1):258–9.

130. Lu ZQ, Hu XQ, Zhu CS, Zheng XP, Wan DJ, Liu RY, Huang BJ, Huang WL: Bone marrow stromal cells transferred with ciliary neurotrophic factor gene ameliorates the symptoms and inflammation in C57BL/6 mice with experimental allergic encephalomyelitis. *Nan Fang Yi Ke Da Xue Xue Bao* 2009, 29(12):2355–2361.

131. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, Funakoshi H, Kajimoto Y, Nakamura T, Dezaux M, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV1-vector. *J Cereb Blood Flow Metab* 2006, 26(9):176–188.

132. Aquino JB, Bolontrade MF, Garcia MG, Podhajcer OL, Mazzolini G: Mesenchymal stem cells as therapeutic tools and gene carriers in mesenchymal stem cells. *Stem Cells* 2006, 24(3):213–217.

133. Doering CB: Retroviral modification of mesenchymal stem cells for gene therapy of hemophilia. *Methods Mol Biol* 2008, 433:203–212.

134. Xu WT, Bian ZY, Fan QM, Li G, Tang TT: Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. *Cancer Lett* 2009, 281(1):32–41.

135. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y: Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. *Exp Mol Pathol* 2006, 80(3):267–274.

136. Spreafico F, Deneen JS, Ganger AK, Watson K, Kopp A, Hall B, Andreff M, Marin F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. *PLoS One* 2009, 4(4):e49992.

137. Khakoo AY, Pati S, Anderson SA, Reid W, Elbash MH, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. *J Exp Med* 2006, 203(7):1457–1467.

138. Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D: Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. *Blood* 2002, 99(6):2179–2184.

139. Dias S, Shmelkov SV, Lam G, Rali S: Vascular endothelial growth factor (VEGF) signaling in pathological angiogenesis. *Blood* 2002, 99(7):2532–2540.

140. Konig A, Menzel T, Lynen S, Wrazen R, Al-Katib A, Raveche E, Gabrilove J: Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. *Leukemia* 1997, 11(2):258–265.

141. Brogi E, Wu T, Namaki A, Isner JH: Indirect angiogenic cytokines upregulate VEGF and BFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. *Circulation* 1994, 90:649–652.

142. Burger JA, Tsukada N, Burger M, Zvalleri NI, Dell’Aquila M, Kipp TJ: Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. *Blood* 2000, 96(2):1655–1663.

143. Stamler JS: Redox signaling: nitrosylation and related target interactions of nitric oxide. *Cell* 1994, 78(6):931–936.

144. Catlett-Falcone R, Landowski TH, Ohshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Neuzet G, et al: Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. *Blood* 2004, 104(12):3757–3767.

145. Li ZW, Dalton WS: Tumor microenvironment and drug resistance in hematologic malignancies. *Blood Rev* 2006, 20(6):333–342.

146. Tsukamoto S, Honoki K, Fujii H, Tohama Y, Kido A, Mori T, Tsujiuchi T, Tanaka Y: Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. *Int J Oncol* 2009, 41(1):163–169.

147. Karcoub AE, Dash AR, Vo AP, Sullivan A, Brooks RM, Richard AL, Poyak K, Rubo T, Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. *Nature* 2007, 449(7162):557–563.

148. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K: Mesenchymal stem cells enhance growth and metastasis of colon cancer. *Int J Cancer* 2009, 124(10):2332–2333.

149. Martin FT, Dywer RM, Kelly J, Khan S, Murphy JM, Cunard C, Miller N, Hennessy E, Dockery P, Barry FP, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). *Breast Cancer Res Treat* 2008, 112(2):317–326.

150. Yoo YK, Kang MH, Kim BS, Kim JS, Seo JH: Sustained co-cultivation with human placenta-derived MSCs enhances ALK5/Smad3 signaling in human breast epithelial cells, leading to EMT and differentiation. *Differentiation* 2005, 77(5):450–461.

151. Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. *Nat Genet* 2001, 29(2):117–129.

152. Wamani LS, Chen HY, Pezo S, Garcia de Heremos A, Bacherel RE: Vascular endothelial growth factor A stimulates SNAI2 expression in breast tumor cells: implications for tumor progression. *Exp Cell Res* 2008, 313(13):2448–2453.

153. Jing Y, Han Z, Zhang S, Liu Y, Wei L: Mesenchymal stem cells promote colorectal cancer growth through TGF-beta pathway. *Cell Biosci* 2011, 1:18.

154. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AJ, Zhao RC, Shy N: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. *Cell Stem Cell* 2008, 2(2):141–150.

155. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso DJ: Mesenchymal stem cell transition to tumor-associated fibroblasts provides tumor stromal support. *Carcinogenesis* 32(7):964–973.

156. Sanchez C, Oskowitz A, Pachympallal RR: Epigenetic reprogramming of IGFl and leptin genes by serum deprivation in multipotential mesenchymal stem cells. *Stem Cells* 2009, 27(2):375–382.

157. Huang SC, Pachympallal RR, Hsu SC, Sanchez C, Chen SC, Spies J, Prokop DJ: Short-term exposure of multipotent mesenchymal stem cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. *Plos One* 2007, 2(5):e1416.
166. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. *Nature* 2005, 438(7069):820–827.

167. Bergfeld SA, DeClerck YA: Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. *Cancer Metastasis Rev* 2010, 29(2):249–261.

168. Chantrain CF, Feron O, Marbaix E, DeClerck YA: Bone marrow microenvironment and tumor progression. *Cancer Microenviron* 2008, 1(1):23–35.

doi:10.1186/2045-3701-3-5

Cite this article as: Yang et al. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. *Cell & Bioscience* 2013 3:5.