Chapter 30
Gene and Protein Expression Profiles in Rice Gametes and Zygotes: A Cue for Understanding the Mechanisms of Gametic and Early Zygotic Development in Angiosperms

Takashi Okamoto

Abstract In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes and zygotes in angiosperms. Cell type-specific transcriptomes were obtained by microarray analyses for egg cells, sperm cells and zygotes isolated from rice flowers, and up- or down-regulated genes in zygotes after fertilization were identified as well as genes enriched in male and female gametes. In addition to transcriptome, proteins expressing in egg and sperm cells were globally detected by highly sensitive liquid chromatography coupled with tandem mass spectroscopy technology, and proteins that are specifically or predominantly expressing in gametes were also identified by comparison of protein expression profiles between gametes and somatic cells/pollen grains. Several rice or Arabidopsis lines with mutations in genes identified by these proteome/transcriptome analyses showed clear phenotypic defects in seed set or seed development. These findings suggest that the cell type-specific proteome/transcriptome data for gametes/zygotes are foundational information toward understanding the mechanisms of gametic and early zygotic development in angiosperms.

Keywords Egg cell • Fertilization • Oryza sativa • Proteome • Sperm cell • Transcriptome • Zygote
30.1 Introduction

In angiosperms, the sporophytic generation is initiated by double fertilization, resulting in the formation of seeds (reviewed in Raghavan 2003). In double fertilization, one sperm cell from the pollen grain fuses with the egg cell, and the resultant zygote develops into an embryo that transmits genetic material from the parents to the next generation. The central cell fuses with the second sperm cell to form a triploid primary endosperm cell, which develops into the endosperm that nourishes the developing embryo/seedling (Nawaschin 1898; Guignard 1899; Russell 1992). The conversion of the egg cell into the zygote is completed by two serial gametic processes: plasmogamy, the fusion of the plasma membrane between male and female gametes, and karyogamy, fusion of the nuclei of the male and female gametes in the fused gamete. Thereafter, the zygotic genome switches on within hours of fertilization for subsequent development of zygotes (Meyer and Scholten 2007; Zhao et al. 2011; Nodine and Bartel 2012).

As for molecular players of plasmogamy, GENERATIVE CELL-SPECIFIC 1/HAPLESS 2 (GCS1/HAP2) and EGG CELL 1 (EC1) have been identified as putative fusigens for male and female gametes, respectively (Mori et al. 2006; von Besser et al. 2006; Sprunck et al. 2012). GCS1/HAP2 was identified as a key male membrane protein with a single transmembrane domain and a histidine-rich domain in the extracellular region. Recently, Sprunck et al. (2012) indicated that small cysteine-rich EC1 proteins accumulated in storage vesicles in the Arabidopsis egg cell are secreted via exocytosis upon sperm cell attachment to the egg cell, and that the secreted EC1 proteins function in redistribution of GCS1/HAP2 proteins to the sperm cell surface, resulting in successful gamete fusion. In addition to these two possible fusigens, other players should be identified to understand the mechanisms in plasmogamy.

Karyogamy is accompanied by the congression of the male nucleus to the female nucleus and subsequent nuclear fusion. Yeast mating is the most intensively investigated karyogamy event, and cytoskeleton-dependent nuclear congression and chaperone/ER-protein-dependent nuclear fusion have been well studied (Kurihara et al. 1994; Melloy et al. 2009; Tartakoff and Jaiswal 2009). However, in angiosperms, the mechanism in karyogamy is poorly understood, except that Bip, a chaperone in the lumen of endoplasmic reticulum, and NFD1, a component of the mitochondrial ribosome, function in polar nuclei fusion in Arabidopsis (Portereiko et al. 2006; Maruyama et al. 2010).

In contrast to animals and lower plants, which have free-living gametes, angiosperm fertilization and subsequent events, such as embryogenesis and endosperm development, occur in the embryo sac, which is deeply embedded in ovular tissue. Difficulties in directly researching the biology of the embedded female gametophyte, zygote, and early embryo have impeded investigations into the molecular mechanisms of fertilization and embryogenesis. Therefore, such studies have been conducted predominantly through analyses of Arabidopsis mutants or transformants coupled with live-imaging (Berger 2011; Hamamura et al. 2012). Alternatively, direct analyses using isolated gametes or zygotes are possible because procedures for isolating viable gametes have been established, and an in vitro fertilization (IVF)
system using the isolated gametes can be used to observe and analyze fertilization and postfertilization processes directly (Wang et al. 2006).

It has been supposed that genes specifically/predominantly expressing in gamete function in reproductive or developmental processes such as gamete differentiation, gamete fusion, and early zygotic development. Therefore, using isolated gametes or embryos, several studies have successfully identified genes specifically expressed in male gametes, female gametes, or early embryos (Kasahara et al. 2005; Márton et al. 2005; Sprunck et al. 2005; Ning et al. 2006; Yang et al. 2006; Steffen et al. 2007; Borges et al. 2008; Amien et al. 2010; Wang et al. 2010; Wuest et al. 2010; Ohnishi et al. 2011). Moreover, changes in gene expression from prefertilization to postfertilization phases were recently monitored using microarray-based transcriptome analyses of rice sperm cells, egg cells, and zygotes using the same experimental platform (Abiko et al. 2013b). In addition to gene expression profiles, single-cell-type proteomic approaches have been widely employed to dissect the functions of specific cells, because cellular-level information is diluted when organs or tissues, which comprise various differentiated cells, are used as starting materials (Dai and Chen 2012). However, such global proteomic analyses have not been conducted for plant gametes, possibly because of the difficulty in obtaining sufficient highly pure homogeneous cells, especially for egg cells. However, state-of-the-art proteomics technologies enable high-throughput and high-resolution analyses using such limited numbers of cells, and recently proteins expressing in the rice gamete were globally identified (Abiko et al. 2013a).

30.2 Isolation of Plant Gametes and IVF

Procedures for isolating viable gametes have been reported for a wide range of plant species, including maize, wheat, tobacco, rape, rice, barley, *Plumbago zeylanica*, *Alstroemeria*, and *Arabidopsis* (Kranz 1999; Okamoto 2011). IVF systems using isolated male and female gametes have been utilized to dissect fertilization-induced events. The IVF system used for angiosperms includes a combination of three basic microtechniques: (1) the isolation and selection of male and female gametes, (2) the fusion of pairs of gametes, and (3) single-cell culture (Kranz 1999). A complete IVF system was first developed by Kranz and Lörz (1993) using maize gametes and electrical fusion, and a rice IVF system was also established to take advantage of the abundant resources stemming from rice research, including the whole genome sequence and abundant mutant stocks (Fig. 30.1; Uchiumi et al. 2007b). These IVF systems have been successfully used to observe and analyze postfertilization events, such as karyogamy in zygotes (Faure et al. 1993), egg/zygote activation and development (Kranz et al. 1995), decondensation of paternal chromatin in zygotes (Scholten et al. 2002), changes in the microtubular architecture in zygotes (Hoshino et al. 2004), fertilization-induced/suppressed gene expression (Okamoto et al. 2005), epigenetic resetting in early embryos (Jahnke and Scholten 2009), positional relationship between gamete fusion point and zygotic development (Nakajima et al. 2010), and asymmetrical division of zygotes (Sato et al. 2010).
30.3 Gene Expression Profiles in Rice Gametes and Zygotes

30.3.1 Genes Enriched in Rice Gametes

Cell type-specific transcriptomes were obtained by microarray analyses using 33 to 111 egg cells (33, 34, and 111 egg cells; three biological replicates), 30 and 34 zygotes (two biological replicates), approximately 3,000 sperm cells (two biological replicates), and approximately 100 pollen grains (three biological replicates); subsequent
data processing resulted in identification of 14 and 19 genes with expression profiles specific to egg cells and sperm cells, respectively (Tables 30.1, 30.2).

A gene enriched in egg cells, Os11g0187600, encodes heat shock protein 70 (HSP70). In addition to HSP70, HSP90 was identified as a major protein component of rice egg cells by previous proteomic analysis (Uchiumi et al. 2007a). Interestingly, Calvert et al. (2003) revealed that mouse eggs contain molecular chaperones, including HSP90, HSP70, and protein disulfide isomerase (PDI), as major protein components. An abundance of HSP proteins may be a common characteristic of mammalian and plant eggs. Among pleiotropic functions of HSPs, it will be notable that they play a role in buffering the expression of genetic variation when divergent ecotypes are crossed and profoundly affect developmental plasticity in response to environmental cues (Queitsch et al. 2002; Sangster and Queitsch 2005). HSPs in egg cells may function following fertilization by a sperm cell, because conversion of an egg cell into a zygote represents major genetic and environmental changes. MADS-box proteins, the DNA-binding proteins that regulate their own transcription and that of target genes (West et al. 1998), act early in organ development (Riechmann and Meyerowitz 1997; Theissen et al. 2000). Os07g0108900, encoding MADS-box transcription factor 15 (OsMADS15), was egg enriched, and, ZmMADS3, which is orthologous gene to OsMADS15, was also strongly expressed in maize egg cells (Heuer et al. 2001). Although their function in egg cells is still unclear, MADS-box proteins that accumulate in female gametes may have roles in egg-cell differentiation during gametophytogenesis or zygotic development after fertilization.

Among 19 genes enriched in sperm cells, 9 were annotated as hypothetical proteins or genes (Table 30.2), being consistent with a previous report indicating

Table 30.1 Genes enriched in rice egg cells

Gene locus	Annotation	Expression in egg cell
Os03g0296600	Similar to ECA1 protein	8.82
Os05g0491400	Similar to LRR protein	6.25
Os07g0574500	Ubiquitin domain-containing protein	5.58
Os04g0289600	Allergen V5/Tpx-1-related family protein	4.65
Os01g0299700	3′-5′-Exonuclease domain-containing protein	4.45
Os06g0602400	Similar to DEAD-box protein 3, X-chromosomal	4.26
Os11g0187600	Similar to heat shock protein 70	3.65
Os07g0108900	Similar to MADS-box transcription factor 15	3.02
Os07g0136300	Conserved hypothetical protein	2.80
Os03g0679800	Similar to TPR domain-containing protein	2.95
Os10g0560200	Protein of unknown function Cys-rich family protein	2.93
Os01g0350500	Conserved hypothetical protein	2.66
Os11g0579900	Armadillo-like helical domain-containing protein	2.38
Os05g0153200	Region of unknown function XH domain-containing	2.28
	protein	

Values are average of binary log values of two biological replicates
Annotations are referred from The Rice Annotation Project Database (RAPDB)
Mean t test P values < 0.05
enrichment of genes encoding proteins with unknown function in sperm-specific genes (Russell et al. 2012). Os03g0661900 encodes a trypsin-like serine protease, and, in animals, serine proteases in the trypsin family can be expressed in sperm and involved in fertilization, although their molecular mechanisms during the fertilization process remain unknown (Sawada et al. 1984, 1996; Baba et al. 1994; Adham et al. 1997). Trypsin-like protease may be expressed in male gametes of both plants and animals and perhaps have similar roles in gamete attachment, recognition, or fusion, although the fertilization systems are largely divergent in the kingdoms.

30.3.2 Genes Down- or Up-Regulated in Rice Zygotes After Fertilization

Egg cells are developmentally quiescent, a state that is broken after fertilization and subsequent egg activation. Genes down-regulated after fertilization in zygotes were searched because the expression of genes involved in maintaining egg-cell quiescence should be suppressed in zygotes. Ninety-four genes that had threefold-lower

Gene locus	Annotation	Expression in sperm cell
Os01g0605400	Quinon protein alcohol dehydrogenase-like domain-containing protein	6.21
Os06g0715300	Similar to CEL5	5.72
Os02g0664400	Hypothetical conserved gene	5.04
Os01g0180900	Similar to oxidoreductase	5.08
Os07g0634100	Hypothetical conserved gene	4.60
Os10g0550400	Hypothetical conserved gene	4.13
Os03g0809200	Similar to transcription factor EmBP-1	4.22
Os01g0876100	Similar to chloride channel	3.61
Os01g0855600	Conserved hypothetical protein	3.47
Os03g0661900	Peptidase, trypsin-like serine, and cysteine domain-containing protein	3.18
Os11g0601600	Protein of unknown function DUF248	3.14
Os02g0177400	Conserved hypothetical protein	3.03
Os05g0393800	Protein of unknown function DUF221 domain-containing protein	2.45
Os08g0266700	Rad21/Rec8-like protein, C-terminal domain-containing protein	2.28
Os09g0483200	Similar to UBQ13 (ubiquitin 13)	2.12
Os09g0244200	Conserved hypothetical protein	1.96
Os11g0620800	Hypothetical conserved gene	1.46
Os02g0628100	Hypothetical gene	1.22
Os08g0474400	Hypothetical conserved gene	1.19

Values are average of binary log values of two biological replicates
Annotations are referred from The Rice Annotation Project Database (RAPDB)
Mean t test P values < 0.05
expression levels in zygotes than in egg cells were obtained, and most ontologies for these genes were related to metabolic or biosynthetic processes, including terpene, flavonoid, and amino-acid synthetic pathways (Abiko et al. 2013b).

Upon fertilization, the developmentally quiescent egg cell converts to an active zygote, and expression of genes involved in zygotic development should be induced. Comprehensive overviews of metabolism and regulation in zygotes, compared to egg cells, indicated that synthetic pathways for cell wall, auxin and ethylene and signal transduction pathways appeared to be activated via fertilization. A total of 325 genes whose expression levels in zygotes were threefold higher than those in egg cells were identified, and genes related to chromatin and DNA organization and assembly were well represented among these up-regulated genes (Table 30.3). The gene Os07g0182900, encoding DNA methyltransferase 1 (MET1), which functions in maintaining CG DNA methylation (Kankel et al. 2003), was identified among the highly up-regulated genes, and the specific inhibitor for the enzyme partly affected polarity or division asymmetry in rice zygotes (Abiko et al. 2013b). In addition, several genes encoding homeobox protein or transcription factors were strongly induced in zygotes. Os01g0840300 encodes a Wuschel-related homeobox (WOX) protein, the key regulator in determining cell fate in plants (Mayer et al. 1998; Haeker et al. 2004; Zhao et al. 2009), and 15 WOX genes, including *WUSCHEL*, have been identified in *Arabidopsis*. Interestingly, Os01g0840300 has been reported as the rice orthologue of *Arabidopsis* WOX2 (Deveaux et al. 2008), whose

Gene locus	Annotations	Fold change (zygote/egg)
Os01g0840300	Similar to WUSCHEL-related homebox 5	44.9
Os05g0571200	Similar to WRKY transcription factor 19	41.1
Os01g0841700	Similar to isoform ERG1b of elicitor-responsive protein 1	39.6
Os07g0182900	Similar to cytosine-5-DNA methyltransferase MET1	35.7
Os02g0258200	High-mobility group, HMG1/HMG2 domain-containing protein	35.2
Os02g0462800	WRKY transcription factor 42	29.9
Os01g0895600	Similar to calreticulin 3	29.1
Os03g0279200	Similar to histone H2A	27.5
Os10g0580900	Conserved hypothetical protein	24.8
Os05g0127300	Serine/threonine protein kinase domain-containing protein	23.0
Os08g0562800	Similar to transparent testa 12 protein	19.4
Os03g0214100	Replication protein A1	18.7
Os03g0188500	Glutelin family protein	18.6
Os01g0551000	Conserved hypothetical protein	16.3
Os02g0572600	Protein kinase PKN/PRK1, effector domain-containing protein	16.0

Annotations are referred from The Rice Annotation Project Database (RAPDB)
Mean t test P values < 0.05
transcripts accumulate in *Arabidopsis* zygotes and are restricted to the apical cell of two-celled proembryos (Haecker et al. 2004). In addition, WOX2 has been proposed to be the predominant regulator of apical patterning (Jeong et al. 2011), suggesting WOX proteins encoded by *Os01g0840300* may have a role in determining cell fate during early embryogenesis in rice.

30.4 Protein Expression Profiles in Rice Gametes

Lysates from 500 egg cells and 3×10^4 sperm cells were separated by one-dimensional polyacrylamide gel electrophoresis. Proteins in gel were digested with trypsin and identified by a direct nanoflow LC-MS system equipped with an Orbi Trap XL mass spectrometer. The proteins were judged as “identified” if at least two peptides were identified from the protein. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. By analyzing proteins from egg and sperm cell lysates, 1,276 and 1,076 proteins were identified, respectively. In callus, seedlings, and pollen grains, 1,641, 1,329, and 1,274 proteins were detected, respectively. Putative proteins specifically or predominantly expressing in egg or sperm cells were chosen on a basis of comparison of the number of matched peptides in egg or sperm cells with those in other cell types. In total, 102 and 73 putative proteins were identified as egg- or sperm-specific or predominant proteins, respectively (Abiko et al. 2013a). Table 30.4 presents putative gamete-specific/predominant proteins with more than five matched peptides. Notably, except for HSP 70 (HSP70), none of these proteins has been reported to play a role in reproductive or developmental processes, suggesting that investigating these proteins further may uncover novel molecular mechanisms during gametic development and fusion and early embryogenesis.

30.5 Conclusion

Functional defects in proteins, whose expressions are specific/predominant in gametes or up- or down-regulated after fertilization, are supposed to affect reproductive or developmental processes. In fact, several rice or *Arabidopsis* lines with mutations in genes encoding the putative gamete-specific or -predominant proteins showed clear phenotypic defects in seed set or seed development (Fig. 30.2), suggesting that the cell type-specific proteome and transcriptome data for gametes and zygotes are foundational information toward understanding the mechanisms of gametic and zygotic development in angiosperms.
Table 30.4 Proteins specifically or predominantly expressed in egg or sperm cells with more than five matched peptides

cDNA accession	Gene locus	Number of matched peptide	Annotations
AK106474	Os06g0602400	15 0 0 0 1	Similar to DEAD-box protein 3, X-chromosomal
AK101183	Os05g0168800	11 0 1 0 0	KIP1-like domain-containing protein
AK065887	Os03g0283100	11 0 1 0 0	Similar to In2-1 protein
AK063589	Os05g0115600	9 0 0 0 0	Protein of unknown function DUF674 family protein
AK106371	Os03g0276800	9 0 0 0 0	Heat shock protein Hsp70 family protein
AK063560	Os12g0600100	8 0 0 0 0	Tetra-tripeptide-like helical domain-containing protein
AK067215	Os01g0698000	8 0 0 0 0	Conserved hypothetical protein
AK121612	Os02g0717400	8 0 0 0 1	Tetra-tripeptide-like helical domain-containing protein
AK058611	Os01g0895100	7 0 0 0 0	Similar to membrane-associated 30-kDa protein, chloroplast
Os06t0706700-01	Os06g0706700	7 0 0 0 0	Similar to PsAD1
AK073477	Os01g0369200	7 0 0 0 0	Similar to cullin-1
AK106478	Os01g0771100	7 0 1 0 0	Mitochondrial glycoprotein family protein
AK107844	Os05g0143600	6 0 0 0 0	Similar to jasmonate-induced protein
AK072587	Os05g0164900	6 0 0 0 0	Galactose oxidase kelch, beta-propeller domain-containing protein
AK072334	Os03g0583900	5 0 0 0 0	DEAD-like helicase, N-terminal domain-containing protein
AK119521	Os06g0175800	5 0 0 0 0	Similar to cystathionine beta-lyase, chloroplast precursor
AK072719	Os10g0574800	5 0 0 0 0	Similar to ARF GAP-like zinc finger-containing protein ZIGA2
AK064995	Os12g0197500	5 0 0 0 0	Putative zinc finger, XS, and XH domain-containing protein
Os01t0267600-01	Os01g0267600	1 10 0 0 0	Sad1/UNC-like, C-terminal domain-containing protein
AK071495	Os11g0255300	0 9 0 0 0	Cysteine endopeptidase
AK071561	Os05g0163700	0 7 0 0 0	Similar to acyl-coenzyme A oxidase 4, peroxisomal
AK065231	Os01g0323100	0 7 0 0 0	Similar to Pto kinase interactor 1
AK107034	Os02g0185200	0 6 0 0 0	Cytochrome P450 family protein
AK065311	Os06g0174400	0 6 0 1 0	Similar to vesicle-associated membrane protein 712
Os040611200-00	Os04g0611200	0 6 0 1 0	Similar to OSGBa0152L12.11 protein
AK069025	Os04g0569000	1 6 0 0 0	Similar to activator 1 40-kDa subunit

(continued)
cDNA accession	Gene locus	Number of matched peptide	Annotations
AK066587	Os03g0220100	0 5 0 0 0	Similar to very long chain fatty acid-condensing enzyme CUT1
AK099178	Os02g0726000	0 5 0 0 0	FAS1 domain-containing protein
AK105867	Os02g0608900	0 5 0 0 0	Epstein–Barr virus U2-IR2 domain-encoding nuclear protein
AB087745	Os05g0595100	0 5 1 0 0	Similar to UDP-glucose-4-epimerase
AK069984	Os02g0775200	1 5 0 0 0	Similar to activator 1 36-kDa subunit

Matched peptides indicate the number of MS-identified tryptic peptides of the protein
Annotations are referred from The Rice Annotation Project Database (RAPDB)
E egg cell, S sperm cell, C callus, L seedling, P pollen grain
Acknowledgments I thank Drs. M. Abiko (Tokyo Metropolitan University), Y. Nagamura, and M. Motoyama (National Institute of Agrobiological Sciences, Tsukuba, Japan) for assistance with the microarray experiment, Ms. T. Mochizuki and H. Maeda (Tokyo Metropolitan University) for isolating rice egg cells, Drs. M. Abiko, T. Isobe, M. Taoka, Y. Yamauchi, and C. Fujita (Tokyo Metropolitan University) for proteome analyses, RIKEN Bio Resource Center (Tsukuba, Japan) for providing cultured rice cells (Oc line), NIAS Rice Genome Resource Center (Tsukuba, Japan) for providing rice Tos17 mutants, and ABRC for providing Arabidopsis mutants (Ohio State University, OH, USA). This work was supported, in part, by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 21112007 to T.O.) and from the Japan Society for the Promotion of Science (No. 20570206 to T.O.).

Fig. 30.2 Rice (a) and Arabidopsis (b) mutants showing defects in seed set or seed development. (a) Fertility of a rice TOS17 transposon insertional line (ND8460) for Os11g0143400, a sperm cell-enriched gene. In panicles of wild-type (Nipponbare), more than 95% of seeds developed fully with light brown color. In the mutants, undeveloped seeds were often observed. Two typical undeveloped seeds are indicated by arrowheads in each panel. (b) Dissected siliques of wild-type (Colombia 0) and T-DNA insertional lines (SALK_095847) for At4g02060, a gene orthologous to the rice gene (Os12g0560700) encoding a sperm-specific protein. Failed ovules or seeds arrested at early immature stages are visible in the mutant siliques.
Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Abiko M, Furuta K, Yamauchi Y et al (2013a) Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLoS One 8:e69578
Abiko M, Maeda H, Tamura K et al (2013b) Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. J Exp Bot 64:1927–1940
Adham IM, Nayernia K, Engel W (1997) Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 46:370–376
Amien S, Kliwer I, Márton ML et al (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388
Baba T, Azuma S, Kashiwabara S, Toyoda Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269:31845–31849
Berger F (2011) Imaging fertilization in flowering plants, not so abominable after all. J Exp Bot 62:1651–1658
Borges F, Gomes G, Gardner R et al (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181
Calvert ME, Digilio LC, Herr JC, Coonrod SA (2003) Oolemmal proteomics-identification of highly abundant heat shock proteins and molecular chaperons in the mature mouse egg and their localization on the plasma membrane. Reprod Biol Endocrinol 14:1–27
Dai S, Chen S (2012) Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 11:1122–1130
Deveaux Y, Toffano-Nioche C, Claisse G et al (2008) Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol 8:291
Faure JE, Mogensen HL, Dumas C et al (1993) Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5:747–755
Guignard ML (1899) Sur les antherozoides et la double copulation sexuelle chez les vegetaux angiosperms. Rev Gén Bot 11:129–135
Haecker A, Gross-Hardt R, Geiges B et al (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development (Camb) 131:657–668
Hamamura Y, Nagahara S, Higashiyama T (2012) Double fertilization on the move. Curr Opin Plant Biol 15:70–77
Heuer S, Hansen S, Bantin J et al (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol 127:33–45
Hoshino Y, Scholten S, von Wiegen P et al (2004) Fertilization induced changes in the microtubular architecture of the maize egg cell and zygote—an immunocytochemical approach adapted to single cells. Sex Plant Reprod 17:89–95
Jahnke S, Scholten S (2009) Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19:1677–1681
Jeong S, Bayer M, Lukowitz W (2011) Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. J Exp Bot 62:1687–1697
Kankel MW, Ramsey DE, Stokes TL et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122
Kasahara RD, Portereiko MF, Sandaklie-Nikolova L et al (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992
Kranz E (1999) In vitro fertilization with isolated single gametes. Methods Mol Biol 111:259–267
Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746
Kranz E, von Wiegen P, Lörz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8:9–23
Kurihara LJ, Beh CT, Latterich M, Schekman R, Rose MD (1994) Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J Cell Biol 126:911–923
Márton ML,CORDTS S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576
Maruyama D, Endo T, Nishikawa S (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684–1689
Mayer KF, Schoof H, Haecker A et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815
Melloy P, Shen S, White E, Rose MD (2009) Distinct roles for key karyogamy proteins during yeast nuclear fusion. Mol Biol Cell 20:3773–3782
Meyer S, Scholten S (2007) Equivalent parental contribution to early plant zygotic development. Curr Biol 17:1686–1691
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71
Nakajima K, Uchiyumi T, Okamoto T (2010) Positional relationship between the gamete fusion site and the first division plane in the rice zygote. J Exp Bot 61:3101–3105
Nawaschin S (1898) Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Sci Acad Imp Sci Saint Pétersbourg 9:377–382
Ning J, Peng X-B, Qu L-H et al (2006) Differential gene expression in egg cells and zygotes suggests that the transcriptome is restructured before the first zygotic division in tobacco. FEBS Lett 580:1747–1752
Nodine MD, Bartel DP (2012) Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature (Lond) 482:94–98
Ohnishi T, Takanashi H, Mogi M et al (2011) Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. Plant Physiol 155:881–891
Okamoto T (2011) In vitro fertilization with isolated rice gametes: production of zygotes and zygote and embryo culture. Methods Mol Biol 710:17–27
Okamoto T, Scholten S, Lörz H, Kranz E (2005) Identification of genes that are up- or down-regulated in the apical or basal cell of maize two-celled embryos and monitoring their expression during zygote development by a cell manipulation- and PCR-based approach. Plant Cell Physiol 46:332–338
Portereiko MF, Sandaklie-Nikolova L, Lloyd A et al (2006) NUCLEAR FUSION DEFECTIVE 1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization. Plant Physiol 141:957–965
Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature (Lond) 416:618–624
Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583
Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101
Russell SD (1992) Double fertilization. Int Rev Cytol 40:357–390
Russell SD, Gou X, Wong C et al (2012) Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytol 195:560–573
Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92
Sato A, Toyooka K, Okamoto T (2010) Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex Plant Reprod 23:211–217
Sawada H, Yokosawa H, Ishii S (1984) Purification and characterization of two types of trypsin-like enzymes from sperm of the ascidian (Prochordata) Halocynthia roretzi. Evidence for the presence of spermosin, a novel acrosin-like enzyme. J Biol Chem 259:2900–2904
Sawada H, Iwasaki K, Kihara-Negishi F et al (1996) Localization, expression, and the role in fertilization of spermosin, an ascidian sperm trypsin-like protease. Biochem Biophys Res Commun 222:499–504
Scholten S, Lörz H, Kranz E (2002) Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J 32:221–231
Sprunck S, Baumann U, Edwards K et al (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672
Sprunck S, Rademacher S, Vogler F et al (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097
Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292
Tartakoff AM, Jaiswal P (2009) Nuclear fusion and genome encounter during yeast zygote formation. Mol Biol Cell 20:2932–2942
Theissen G, Becker A, DiRosa A et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149
Uchiumi T, Shinkawa T, Isobe T, Okamoto T (2007a) Identification of the major protein components of rice egg cells. J Plant Res 120:575–579
Uchiumi T, Uemura I, Okamoto T (2007b) Establishment of an in vitro fertilization system in rice (Oryza sativa L.). Planta (Berl) 226:581–589
von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development (Camb) 133:4761–4769
Wang YY, Kuang A, Russell SD, Tian HQ (2006) In vitro fertilization as a tool for investigating sexual reproduction of angiosperms. Sex Plant Reprod 19:103–115
Wang D, Zhang CQ, Hearn DJ et al (2010) Identification of transcription factor genes expressed in the Arabidopsis female gametophyte. BMC Plant Biol 10:110
West AG, Causier BE, Davies B, Sharrocks AD (1998) DNA binding and dimerization determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res 26:5277–5287
Wuest SE, Vijverberg K, Schmidt A et al (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512
Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta (Berl) 224:1004–1014
Zhao Y, Hu Y, Dai M et al (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748
Zhao J, Xin H, Qu L et al (2011) Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition. Plant J 65:131–145