Impact of Health Education on KAP towards Malaria among Basic Schools Pupils in Taiz Governorate. Republic of Yemen 2013: Pre and Post Intervention Study

Belquis A. Farea¹, Abdullah A. Muharram², Nahid A. Baktayan³, Ali M. Assabri², Arwa A. Farea⁴, Methaq A. Alsada¹

¹National Malaria Control Program, Ministry of Public Health & Population, Sana’a, Yemen
²Community Medicine, Faculty of Medicine & Health Sciences, Sana’a University, Sana’a, Yemen
³Community Medicine, Faculty of Medicine & Health Sciences, Aden University, Aden, Yemen
⁴Pharmacy Faculty, University of Science and Technology, Sana’a, Yemen

Email: *belqius13@yahoo.com

Abstract

Background: Malaria is one of the main health problems in Yemen. School-age children represent 25% of Yemen’s population and an increased proportion of these children are going to school. Schools provide a good entry point for community malaria prevention and control. Aim: To assess the impact of HE campaign towards malaria prevention and control. Methods: We conducted a community-based trial (pre-post intervention study), in two randomly selected districts (rural and urban) of Taiz governorate. The sample size was calculated using Epi Info version7 to be 1065 pupils from 6th - 8th grades in randomly selected basic schools. Data was collected using questionnaire before and after the intervention (three months apart). $\chi^2$ was used to analyze differences. Results: Health education activities in schools were associated with the increased knowledge of malaria symptoms and methods of prevention from 24.5% to be 60.2% among pre and post intervention respectively, with statistically significant difference ($p < 0.001$), also an increase in the positive attitude and practice toward malaria from 45% to be 60% among pre and post intervention. The rate of having bed-nets increased from 10.1% to 16.7% pre and post intervention respectively. Conclusions and Recommendation: Health education intervention in schools had a positive impact on the knowledge and attitude of pupils. We recommend conducting health education activities to improve the role of school pupils in malaria prevention.
1. Introduction

Malaria is endemic in 109 countries and territories in tropical and sub-tropical zones, spanning all continents of the world except Antarctica and Australia, with intensities of transmission that vary from very low to extremely high [1]. Every 45 seconds, a child dies from malaria; these deaths are avoidable [2]. In 2008, there were an estimated 243 million cases of malaria worldwide. The vast majority of cases (85%) were in the African Region, followed by the South-East Asia (10%) and Eastern Mediterranean Regions [3].

In the Eastern Mediterranean Region, there are six countries with areas of high malaria transmission (Afghanistan, Djibouti, Pakistan, Somalia, Sudan and Yemen), and three countries with low malaria transmission and effective malaria programs (Islamic Republic of Iran, Iraq and Saudi Arabia) [4].

Malaria is considered as one of the main health problems in the Republic of Yemen [5]. The first National Malaria Indicators Survey (MIS 2009) revealed nationwide malaria prevalence of 1.5% and 4.5% in Tehama region in Yemen [6], while the second Malaria Indicators Survey (MIS 2013) revealed that the nationwide malaria prevalence of 1.4% [7].

In some settings in Yemen, it is estimated that up to 40% of severe pediatric admissions can be due to malaria during the malaria transmission season, with appreciable mortality [8].

Female sex is a risk factor for mortality from malaria in Yemen [9]. A study conducted in Hadhra-mout-Yemen revealed that prevalence of malaria among school children was 12.8%, it was higher among school children aged 10 - 11 years (15.5%) than children aged 8 - 9 years and 6 - 7 years (13.9% and 8.3%) respectively [10].

School children in Yemen form about 25% of the total population. There are about 5,000,000 schoolchildren. This huge number of educated groups can convey correct information easily to their community; these lead to increase awareness of community about risk of malaria and how to control the prevention of malaria [11].

2. Methodology/Subjects and Methods

Community-based trial (pre-post intervention) was conducted in Taiz governorate, Yemen. The sample size was calculated using Epi Info. version 3.5.1(August 2008) to be 1065 pupils.

A sample was calculated using epi-info version 3.5.1(August 2008), according to the following criteria:
The population size of Taiz basic school children = 593,246 pupils.

The expected prevalence = 50% (since we don’t have previous study that showed behavior change, so select 50% to give us maximum sample size).

The worst acceptable results = 3% (percent that we can accept the division of the study result (sample statistics) from population parameters. (Corresponds to the level of significance 95%).

Based on that, calculated sample size was found to be 1065 pupils. Multistage sampling technique was used. Random selection of one urban (Al-Qaherah) and one rural (Attaezzeiah) districts Figure 1, along with random selection of 2 schools (one male and one female schools) from each district was performed.

-Specially designed Arabic questionnaire was prepared, includes demographic, knowledge, attitudes and practice data, the same questionnaire was used in pre and post intervention by the same trained data collection team.

The completed questionnaires were checked for completeness, the data was coded and entered to the computer. Quality control of the data was ensured by rechecking 25% of entered data.

The statistical analysis was performed using the Statistical Package for Social sciences (SPSS) program V.17.0, chi-square test was used to analyze categorical variables, P value < 0.05 was considered as statistical significant difference. T-test was used to analyze variables that have mean scores. Informed consent was obtained from parents/caretakers along with the children’s assets. Institutional approval was obtained from the Ministry of Education Office in Taiz Governorate, district education offices, and headmasters of targeted schools before the start of data collection.

3. Result

In our study 1065, pupils were included; half of them from urban (Al-Qaherah district) and another half from rural (Attaezzeiah district). Females constituted 50%, and males constituted 50%. The mean age of the included pupils was 12.9 ± 1.4 years. It was differed according to sex; the mean age of females was 12.8 ± 1.4 and 13.1 ± 1.4 for males.

According to the level of schooling 360, 360, 345 pupils were from 6th, 7th, and 8th schooling levels respectively.

Regarding the knowledge of malaria mode of transmission, only less than half of pupils mentioned the correct mode of transmission (mosquito bit) in the pre intervention 513 (48.2%), while the remaining mentioned incorrect modes of transmission, after the intervention the number and percent of correct answer was higher compared with pre intervention, it was 918 (86.2%) with statistical significant difference (p value < 0.001).

Table 1 Knowledge of pupils about the signs and symptoms of malaria pre and post intervention.

From the above table, it is clear that the statistical significant difference was observed in all symptoms, the highest difference occurred in mentioning the
Figure 1. Map: Taiz Governorate. Republic of Yemen-Study area.
Table 1. Knowledge of malaria symptoms among pupils Pre and Post Health Education activities.

| Symptoms | Pre Intervention | Post Intervention | P value |
|----------|------------------|-------------------|---------|
|          | Freq. | %    | Freq. | %    |         |
| Fever    | 539   | 50.6 | 963   | 90.4 | <0.001  |
| Vomiting | 216   | 20.3 | 700   | 65.7 | <0.001  |
| Sweating | 165   | 15.5 | 466   | 48.3 | <0.001  |
| Shivering| 200   | 18.8 | 396   | 37.2 | <0.001  |
| Headache | 271   | 25.4 | 709   | 66.6 | <0.001  |
| Arthralgia| 105  | 9.9  | 377   | 35.4 | <0.001  |
| Anemia   | 22    | 2.1  | 399   | 37.5 | <0.001  |

Table 2. Knowledge of malaria complications among pupils Pre and Post Health Education activities.

| Complications | Pre Intervention | Post Intervention | P value |
|---------------|------------------|-------------------|---------|
|               | Freq. | %    | Freq. | %    |         |
| High fever    | 548   | 51.5 | 952   | 89.4 | <0.001  |
| Convulsion    | 177   | 16.6 | 691   | 64.9 | <0.001  |
| Coma          | 154   | 14.5 | 368   | 34.6 | <0.001  |
| Renal failure | 38    | 3.6  | 313   | 29.4 | <0.001  |
| Cerebral malaria | 285 | 26.8 | 544   | 51.1 | <0.001  |
| Low birth weight | 138 | 13   | 618   | 58   | <0.001  |
| Abortion      | 113   | 10.6 | 363   | 32.9 | <0.001  |
| Don’t know    | 345   | 32.4 | 27    | 2.5  | <0.001  |

cardinal symptoms of malaria like fever, headache, anemia, and vomiting.

Knowledge of malaria complications varied during pre and post intervention, details are presented in Table 2.

After introducing malaria education campaign (the intervention) the knowledge of malaria protection increased with statistical significant difference for all items. Details are illustrated in Table 3.

The attitudes of pupils have been improved after our intervention (health education), comparing numbers and percent of those pupils who mentioned strongly agree of some attitudes towards malaria pre and post intervention is presented in Table 4.

Almost all items were with statically significant differences except using indoor residual spray (IRS).

The pupils who have bed nets (BN) increased from 108 (10.1%) to 179 (16.8%) before and after the intervention respectively. The number of pregnant women and children who slept under BN increased but without statistically significant difference. Details about sleeping of pregnancy and children are presented in Figure 2.
Table 3. Knowledge of the malaria protection among pupils Pre and Post Health Education activities.

| Protection methods          | Pre Intervention | Post Intervention | P. Value |
|-----------------------------|------------------|-------------------|----------|
|                             | Freq. | %    | Freq. | %    |          |
| Cover tank                  | 609   | 57.2 | 924   | 86.8 | <0.001   |
| Fill up pond                | 303   | 28.5 | 702   | 65.9 | <0.001   |
| Dealing water               | 254   | 23   | 590   | 55.4 | <0.001   |
| Using bed nets              | 407   | 38.2 | 957   | 89.9 | <0.001   |
| Using nets on window        | 434   | 40.8 | 900   | 84.5 | <0.001   |
| IRS                         | 75    | 7.0  | 512   | 48.1 | <0.001   |
| Repellent                   | 187   | 17.6 | 515   | 48.4 | <0.001   |
| Don’t know                  | 196   | 18.4 | 23    | 2.2  | <0.001   |

Table 4. Change in attitudes of pupils towards malaria among Pre and post Intervention.

| Strongly believe that                  | Pre Intervention | Post Intervention | P. Value |
|----------------------------------------|------------------|-------------------|----------|
|                                        | Freq. | %    | Freq. | %    |
| Fever is the important symptom         | 407   | 38.2%| 592   | 55.6%| <0.001 |
| Health education is important          | 511   | 48%  | 771   | 72.4%| <0.001 |
| Usefulness of BNs                      | 305   | 28.6%| 585   | 54.9%| <0.001 |
| Usefulness of IRS                      | 276   | 25.9%| 311   | 29.2%|=0.089  |
| Usefulness of appropriate use of anti-malaria drugs | 428 | 40.2% | 502 | 47.1% | =0.001 |

Figure 2. Utilization of Bed nets by categories Pre and Post Intervention.
4. Discussion

These data demonstrate that implementation of the Health Education activities in schools were associated with an increase in the knowledge from 24.5% to be 60.2%, the difference was statistically significant (p < 0.001).

Before the intervention, we observed that pupils believed that not only mosquito bites, but also some mentioned that drinking dirty water and eating dirty food cause of malaria. This misconception among our study population was similar to the misconceptions observed in previous studies conducted in Nigeria [12].

Tanzania [13]. These misconceptions among our study population was more than the misconceptions observed in previous studies conducted in India [14], Zimbabwe [15] and in Nigeria [16] where the misconceptions were (32.8%), (19.2%) and (42.7%) respectively.

In our study the knowledge of correct mode of transmission was improved significantly after intervention, it was 48.2% and 86.2% during pre and post intervention respectively, the difference was statistically significant P value < 0.001. This positive impact of intervention was in agreement with studies conducted in Thailand in which the improvement was from 42.7% during pre-intervention to be 62.1% post intervention [17], and in Ghana where the positive change was from 76.2% during pre-intervention to 99% post intervention [18].

Good knowledge of the symptoms of Malaria is crucial to recognizing the disease and to seek appropriate health care [19].

Comparing our baseline data regarding the cardinal symptoms, mentioning fever among our study population was higher than in findings of a study conducted in Nigeria 49.2% and 22.3% respectively, while mentioning headache was higher in the Nigerian study than in our study 49.6% and 18% respectively [16], The initial knowledge of symptoms in our study population was less than the findings of a study conducted in southeastern Iran which obtained that (80% - 90%) of the respondents were aware about signs and symptoms of malaria [20].

The percent of pre intervention knowledge in our study findings is less than the findings of a study conducted in Lagos in Nigeria [12], where fever was the most recognized symptom (85%) among of respondents. Our results in this regard also are much less than of other study conducted in Uganda where the knowledge of fever was (91.3%) [21].

In our study the knowledge of fever as a cardinal symptom of malaria increased from (49.2%) pre intervention to be (90.4%) post intervention, the difference was statistically significant (P value < 0.001), this is in agreement with the study conducted in Thailand, where the knowledge of fever as a symptom of malaria was increased with statistical significant difference from (36%) [17] to be (56%).

We observed before the intervention that, 55.3% of pupils mentioned the cover of the water tank was a protective method, while 4.9%, 29.2% and 12.3% for IRS, BN and used repellent respectively. This result was nearly similar to a result
in the MIS (Malaria Indicator Survey in 2009) in Yemen, where one third of respondents (34.2%) identified sleeping under the bed net as a malaria preventive method and 9.5% for used repellent. The result of our study was similar to a study conducted in Zimbabwe which revealed that the knowledge of malaria preventive methods was high to residual house spraying, and low to mosquito nets and repellents.

Pre intervention survey revealed that 48.6% agreed that health education was useful in malaria prevention, this was less than a study conducted in India which confirmed that 76.26% of the respondents affirmed that health education is the best way to promote the prevention of malaria [22].

After the intervention survey, the knowledge of mode of transmission was significantly improved from 48.2% pre intervention to be 86.2% post intervention, with statistical significant difference P value < 0.001. This agrees with studies conducted in Thailand the improvement was from 42.7% pre intervention to be 62.1% post intervention [17], and in Ghana where the positive change was from 76.2% pre intervention to be 99% post intervention [18] while in Rural Areas in China the improvement was from 49% pre intervention to be 76.31% post intervention [23].

5. Conclusion and Recommendation

This study concludes that health education intervention in schools had a positive impact on the knowledge attitude and preventive practices of pupils towards malaria. We recommend periodically conducting health education activities to improve the role of school pupils in prevention from and control of malaria.

Acknowledgements

This study was partially supported by WHO, authors would like to appreciate facilitation made by the education office in Taiz Governorate, targeted districts, and headmasters of targeted schools, thanks to all participants (school children) and their caretakers for their cooperation in conducted this study.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] World Health Organization (2008) Global Malaria Control and Elimination Reports. Geneva.
[2] (2012) The Global Malaria Action Plan. World Malaria Day. Internet Communication. http://www.rollbackmalaria.org/worldmaliariday/background.html
[3] World Health Organization (2009) World Malaria Report. Geneva.
[4] World Health Organization (2011) World Malaria Report. Geneva.
[5] Republic of Yemen, Ministry of Public Health and Population. National Malaria Control Program. The National Plan for Monitoring & Evaluation Impact, Out-
come and Output Indicators 2009-2013.

[6] Republic of Yemen, Ministry of Public Health and Population (MOPH&P). National Malaria Control Program (NMCP). The First National Malaria Indicators Survey (MIS 2009).

[7] Republic of Yemen, Ministry of Public Health and Population (MOPH&P). National Malaria Control Program (NMCP).

[8] Al-Taier, A., Chandler, C., Al Eryani, S. and Whitty, C.J.M. (2009) Knowledge and Practices for Preventing Severe Malaria in Yemen. The Importance of Gender in Planning Policy. *Health Policy and Planning*, 24, 428-437. https://doi.org/10.1093/heapol/czp034

[9] Al-Taier, A., Jaffar, S., Assabri, A., Al-Habori, M., Azazy, A., Al-Mahdi, N., Ameen, K., Greenwood, B.M. and Whitty, C.J.M. (2006) Severe Malaria in Children in Yemen: Tow Site Observational Study. *BMJ*, 333, 827. https://doi.org/10.1136/bmj.38959.368819.BE

[10] Bin Mohanna, M.A., Bin Ghouth, A.S. and Raja’a, Y.A. (2007) Malaria Signs and Infection Rate among Asymptomatic Schoolchildren in Haij Valley, Yemen. *Eastern Mediterranean Health Journal*, 13, 35-40.

[11] Republic of Yemen, MOPH&P and WHO (2007) Round 7 Proposal. Final Report (School Health Program), Sana’a, 99.

[12] Okwa, O.O., Bello, B.A. and Simbiat, O. (2011) A Social Aspects of Malaria among Students in Two Tertiary Institutions in Lagos, Nigeria. *Sierra Leone Journal of Biomedical Research*, 3, 97-103. https://doi.org/10.4314/sljb.v3i2.71810

[13] Edson, F. and Kayombo, E.J. (2007) Knowledge on Malaria Transmission and Its Prevention among Schoolchildren in Kyela District, South-Western Tanzania. *Tanzania Health Research Bulletin*, 9, 207-210. https://doi.org/10.4314/thrb.v9i3.14332

[14] Dambhare, D.G., Nimgade, S.D. and Dudhe, J.Y. (2012) Knowledge, Attitude and Practice of Malaria Transmission and Its Prevention among the School Going Adolescents in Wardha District, Central India. *Global Journal of Health Science*, 4, 76-82. https://doi.org/10.5539/gjhs.v4n4p76

[15] Midzi, N., Mtapuri-Zinyowera, S., Mapingure, M.P., et al. (2011) Knowledge Attitudes and Practices of Grade Three Primary Schoolchildren in Relation to Schistosomiasis, Soil Transmitted Helminthiasis and Malaria in Zimbabwe. *BMJ Infectious Diseases*, 11, Article No. 169. https://doi.org/10.1186/1471-2334-11-169 http://www.biomedcentral.com/1471-2334/11/169

[16] Madani (2012) Knowledge, Attitude and Practice about Malaria and Acceptability of Insecticide Impregnated Bed Net in a Malarious Area, Southeastern Iran. *Acta Medica Iranica*, 50, 279-287.

[17] Okwa, O.O. and Ibibdapo, A.C. (2010) The Malaria Situation, Perception of Cause and Treatment in a Nigerian University. *Journal of Medicine and Medical Sciences*, 1, 213-222. http://www.interesjournals.org/JMMS

[18] Okabayashi, H., Thongthien, P. and Singhasvanon, P. (2006) Keys to Success for a School-Based Malaria Control Program in Primary Schools in Thailand. *Parasitology International*, 55, 121-126. http://eurpubmed.com/article/med/16406685 https://doi.org/10.1016/j.parint.2005.11.056

[19] Ayi, I., Nonaka, D., Adjovu, J.K., et al. (2010) Schools-Based Participatory Health Education for Malaria Control in Ghana. Engaging Children as Health Messengers. *Malaria Journal*, 9, Article No. 98. http://www.malariajournal.com/content/9/1/98 https://doi.org/10.1186/1475-2875-9-98
[20] Adongo, P.B., Kirkwood, B. and Kendall, C. (2005) How Local Community Knowledge about Malaria Affects Insecticide-Treated Net Use in Northern Ghana. *Tropical Medicine & International Health*, 10, 366-378. https://doi.org/10.1111/j.1365-3156.2005.01361.x

[21] Akello, R.R., Emilio, O., Rwabukwali, C.B., Kabonesa, C. and Richters, A. () Primary School Children’s Perspectives on Common Diseases and Medicines Used: Implications for School Healthcare Programs and Priority Setting in Uganda Grace. *African Health Sciences*, 7.

[22] Bhati, P.G., Kant, R., Srivastava, H.C., Malaviya, V.S. and Pujara, P.K. (1995) Role of Health Education in School-Children with Particular Reference to Malaria. *Indian Journal of Malariology*, 32, 93-98.

[23] Diouf, G., Xu, Y.H., Kpanyen, P.N. and Cai, L. (2010) Evaluation of the Effectiveness of Intervention for Malaria Control in Rural Areas in China. *Global Journal of Health Science*, 2, 41-50. https://doi.org/10.5539/gjhs.v2n2p41