Anomalous Subcritical Crack Growth in Silica

T. Fett*, K. G. Schell*, E. C. Bucharsky*, and M. J. Hoffmann*

* Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe, 76131 Germany
*e-mail: g.schell@kit.edu

Received May 18, 2021; revised July 30, 2021; accepted August 6, 2021

Abstract—Silica shows the effect of subcritical crack growth in humid environments. Measurements in liquid water show increasing subcritical crack growth velocities when the temperature is increased as was shown by Wiederhorn and Bolz. Since this has been generally found for glasses, this effect is called normal subcritical crack growth. For measurements on silica in water vapour environment the astonishing effect of decreasing crack-growth rate \(\nu \) at an increased temperature was observed for constant partial water pressure in the humid environment. This surprising result observed in \(\nu - K \) experiments by Suratwala and Steele is called anomalous subcritical crack growth behavior. In the present report we consider the effects of reduced water solubility at silica surfaces and crack-tip shielding as the reasons for anomalous subcritical crack growth. Three influences were found, namely the water vapour pressure, the temperature-dependent surface solubility of water, and crack-tip shielding. From our computation, we can conclude that silica shows normal subcritical crack growth, when it is taken into account that the real physical stress intensity factor \(K_I \) is used that describes the stresses in the singular crack-tip field, i.e. when crack growth velocity \(\nu \) is plotted vs. \(K_{\text{tip}} \).

Keywords: subcritical crack growth, \(\nu(K) \)-curves, silica, stress intensity factor
DOI: 10.1134/S1087659621060092

INTRODUCTION

Subcritical crack growth behavior of silica is usually presented in form of \(\nu(K) \)-curves where \(\nu \) is the crack-growth rate and \(K \) the externally applied stress intensity factor. Results are reported as a function of relative humidity and temperature in [1–3]. They show an increase of subcritical crack growth rates at constant \(K \) with increasing temperatures. For silica the astonishing effect of decreasing crack-growth rate \(\nu \) at an increased temperature was observed for constant partial water pressure in the humid environment. This surprising result observed in \(\nu(K) \) experiments by Suratwala and Steele [4] is called anomalous subcritical crack growth behavior. In [5] we discussed the apparently incompatible temperature trends qualitatively. In this paper quantitative computations will be carried out.

EXPERIMENTAL CRACK GROWTH RESULTS FROM LITERATURE

In order to discuss anomalous crack growth, some basic results from literature are compiled. In Fig. 1a \(\nu(K) \)-curves for constant vapour pressure of \(p = 2100–2200 \) Pa are plotted [4]. There is a clear decrease of crack velocity with increasing temperature \(\theta \) visible that is the reason for the notation “anomalous” subcritical crack growth.

Measurements on silica in liquid water were published by Wiederhorn and Bolz [1] as shown in Fig. 1b for the temperature region \(2^\circ \text{C} \leq \theta \leq 90^\circ \text{C} \). From this figure it is evident that the crack-growth rates increase with increasing temperature. At first glance, this seems to be in contrast to the results of Suratwala and Steele [4].

In this report it will be shown that the main difference between these contrary results is the fact of strongly different water vapour pressure in the two tests. Whereas in the tests of Fig. 1a the pressure was kept constant at 2.1–2.2 kPa, the saturation pressure varies in the water tests of Fig. 1b strongly, namely a factor of >100 (0.6 kPa at \(2^\circ \text{C} \) and 70 kPa at \(90^\circ \text{C} \)).

Consequently, the water concentrations at the glass surface and at the crack tip are clearly different. This will be outlined in the following theoretical considerations.

EXPECTATION FROM REACTION RATE THEORY

In [6] Wiederhorn et al. suggest for the subcritical crack growth rate \(\nu \) as a function of stress intensity factor \(K \), and absolute temperature \(T = 273^\circ \text{K} \)

\[
\nu = A_{\nu}C(T) \exp \left[\frac{-Q + bK}{RT} \right],
\]

where \(C \) is the concentration of molecular water [H\(_2\)O], \(T \) the temperature, \(R \) the gas constant, \(Q \) the activation energy and \(A_{\nu} \) and \(b \) are proportionality
constants. In Eq. (1) the quantity $k_r(T)$ is the rate coefficient for the single-step reaction showing the temperature dependency

$$k_r(T) \propto T \exp \left[\frac{-\Delta G}{RT} \right],$$

with ΔG as the free energy of activation. From Eqs. (1) and (2) we get with $Q_1 = Q + \Delta G$

$$v = A_e C T \exp \left[\frac{-Q_1 + bK}{RT} \right].$$

Under a water vapour pressure p, and the solubility for molecular water at the surface, C_{1kPa}, the water concentration reads

$$C = p C_{1kPa},$$

and equation (3) results in

$$v = A_e p C_{1kPa} T \exp \left[\frac{-Q_1 + bK}{RT} \right].$$

When evaluating the temperature dependence, it should be noted that both pressure and solubility also vary with temperature. These influencing factors will be considered here.

EFFECT OF VAPOUR PRESSURE

The crack-growth rates from Fig. 1b are transformed by Eq. (3a) to a constant vapour pressure of $p = 3.2$ kPa (saturation pressure at 25°C), Fig. 2, exhibiting clearly the same temperature trend as found by Suratwala and Steele [4]. It should be noted that in the plot only the ordinate has been reduced to constant pressure and the abscissa values remain unaffected. From this plot one could claim that even in liquid water anomalous subcritical crack growth is present.

EFFECT OF WATER SOLUBILITY

Since the $v-K$-curves should depend on the water concentrations at the glass surface, Eq. (1), results of water concentrations are shown in Fig. 3a as a function of temperature. These data represent the concentra-
ANOMALOUS SUBCRITICAL CRACK GROWTH IN SILICA

GLASS PHYSICS AND CHEMISTRY Vol. 47 No. 6 2021

Fig. 3. Solubility of water species at silica surfaces under saturation pressure derived from data by Zouine et al. (a), water concentrations normalized on the saturation pressure (b).

Equations of the molecular and hydroxyl water species obtained from measurements by Zouine et al. [7] under saturation pressure. Silica reacts with the silica network according to

$$\text{Si-O-Si} + \text{H}_2\text{O} \leftrightarrow \text{SiOH} + \text{HOSi}$$

with the concentration of the hydroxyl $S = [\equiv\text{SiOH}]$ and that of the molecular water $C = [\text{H}_2\text{O}]$. In molar units, the total water concentration C_w is given by

$$C_w = C + \frac{1}{2} S = C \left(1 + \frac{1}{2} k\right),$$

where k is the equilibrium constant describing the ratio of $k = S/C$.

A relation for the ratio S/C of the two water species, where S stands for the hydroxyl concentration and C for the concentration of molecular water, was given by Wiederhorn et al. [8]. For the temperature range of $90^\circ\text{C} \leq \theta \leq 350^\circ\text{C}$ ($T = 273^\circ\text{C} + \theta$), the data are fitted by the straight line

$$k = \frac{S}{C} = A \exp\left(-\frac{Q}{RT}\right),$$

with $A = 32.3$ and $Q = 10.75 \text{ kJ/mol}$. Equations (6) and (7) result in

$$C = \frac{C_w}{\frac{1}{2} + \frac{1}{2} k},$$

$$S = \frac{C_w}{\left(\frac{1}{2} + \frac{1}{2} k\right)},$$

and in mass units

$$S = \frac{17}{18} \frac{C_w}{\frac{1}{2} + \frac{1}{2} k}.$$

Note: the ratio $17/18$ reflects the different mole masses of water and hydroxyl.

Figure 3a shows the concentrations of the two water species under saturation pressure. In Fig. 3b the water concentrations $S \propto \rho$ and $C \propto \rho$ are normalized on the water vapour pressure of $\rho = 1 \text{ kPa}$. The straight lines can be expressed by

$$C_{\text{KPa}} \equiv \exp\left[-22.79 + \frac{35.84 \text{ kJ/mol}}{RT}\right],$$

$$S_{\text{KPa}} \equiv \exp\left[-19.41 + \frac{25.09 \text{ kJ/mol}}{RT}\right].$$

The crack velocities of Fig. 1 are plotted in Fig. 4 in the normalized representation as $v/(C \times T)$ vs. applied K for the partial water vapour pressure of $\rho = 3.2 \text{ kPa}$ (i.e. the saturation pressure at 25°C). It can be seen that the temperature tendency of Fig. 4b is now again as normal crack-growth behaviour. This makes clear that even for constant vapour pressure the anomalous crack-growth behaviour is at least partially caused by the reduced surface water concentration with increasing temperature.

EFFECT OF SHIELDING STRESS INTENSITY FACTOR

Constant Shielding

In our opinion, at least a part of the observed trend is caused by crack-tip shielding. In the preceding considerations we implicitly identified the externally...
applied stress intensity factor K_{appl} with the K-value acting at the crack tip, K_{tip}. It was early outlined in [9, 10] that a shielding stress intensity factor must develop as a consequence of volume increase by the hydroxyl generation (for references see e.g. [11]). Computations by McMeeking and Evans [12] result in a shielding stress intensity factor K_{sh} for a grown crack which is surrounded by a zone of thickness ω undergoing a volume strain ε_v with $\psi = 0.22$ [12]. E is Young’s modulus and ν Poisson’s ratio. In case of glass, ω is the thickness of the water diffusion zone around the crack tip.

It has been shown in [13] that water-induced swelling at crack tips generates an intrinsic stress intensity factor $K_{\text{sh}} < 0$ that shields a crack from an externally applied loading K_{appl} so that the stress intensity factor K_{tip} at the crack tip is reduced. The effective stress intensity factor acting at the crack tip, K_{tip}, represents the singular stress field at the tip. From the principle of superposition, K_{tip} is given by

$$K_{\text{tip}} = K_{\text{appl}} + K_{\text{sh}}, \quad K_{\text{sh}} < 0 \quad \Rightarrow \quad K_{\text{tip}} < K_{\text{appl}}. \quad (13)$$

The effect of the shielding stress intensity factor on the $v(K)$-curves was outlined in [13]. The volume strain ε_v is related to the hydroxyl concentration S by the proportionality

$$\varepsilon_v = \kappa S, \quad (14)$$

with $\kappa \cong 0.97$ at least at low hydroxyl concentrations S as could be concluded from the density decrease reported by Shelby [11]. Consequently, it holds

$$K_{\text{sh}} = -\psi \frac{\kappa S E \sqrt{\omega}}{1 - \nu}. \quad (12b)$$

The hydroxyl concentration S in the crack-tip stress field is thermally activated as Eq. (7) implies. Since also the diffusivity is thermally activated, the water diffusion zone, $\omega = f(\sqrt{D} t)$, increases with temperature due to the increase of the diffusivity. Consequently, the shielding stress intensity factor $K_{\text{sh}} = f(S, \omega)$ must become stronger with increasing temperature via an Arrhenius equation. When in a subcritical crack growth test the shielding stress intensity factor equals $-K_{\text{appl}}$, the total stress intensity factor K_{tip} disappears followed by abruptly decreasing crack rates, i.e. the threshold values K_{th} of the $v(K)$-curve is reached. This is equivalent to

$$K_{\text{th}} = -K_{\text{sh}}. \quad (15)$$

Threshold values for silica were evaluated by Sglavo et al. [14] on the basis of literature results, [15, 16]. The threshold stress intensity factor as a function of temperature at ≈ 2 kPa partial water pressure was described by an Arrhenius temperature dependency

$$K_{\text{th}} \approx K_{\text{th,0}} \exp \left[-\frac{q}{RT} \right], \quad (16)$$

with $K_{\text{th,0}} = 0.638$ MPa\(\sqrt{m}\) and $q = 1.83$ kJ/mol.

The value $K_{\text{th,0}}$ in Eq. (16) depends on the water partial pressure, for which unfortunately no measurements are currently available. For this reason, the procedure described here is not suitable for real predictions, but may be suitable for qualitative interpretations.

Equations (15) and (16) make it possible to calculate the shielding stress intensity factor K_{sh} and via Eq. (13) the total stress intensity factor K_{tip} acting at the crack tip. This value is responsible for the crack-tip stresses and subcritical crack growth rates.
Basically, the steepness of the $v(K_{\text{appl}})$-curve is influenced by two opposite effects. On the one hand, an increase of K_{appl} causes an increase of the shielding-stress intensity factor \[12\]. On the other hand, the increase in K_{appl} and thus in the crack velocity v greatly shortens the time available for diffusion in the crack tip region and reduces the size of the shielding zone. Since there are no model calculations on the steepness of the $v(K_{\text{appl}})$-curve in the literature, it remains unclear which influence dominates. An influence of the applied stress intensity factor on the shielding term is illustrated here by two arbitrarily assumed behaviours, namely constant and decreasing shielding with increasing stress intensity factor.

Finally, Fig. 5 gives the curves of Fig. 4 vs. the difference $K_{\text{appl}}-K_{\text{th}}$. Under the assumption that $K_{\text{sh}} \neq f(K_{\text{appl}})$, the curves in Fig. 5 agree with the $v(K_{\text{tip}})$-curves.

The diagrams of Fig. 5 show that, for the same water concentration, plotting against the stress intensity factor K_{tip} (actually prevailing at the crack tip) leads to normal subcritical crack growth in both cases, namely increasing crack rates with increasing temperature.

Variable Shielding

Deviations from the assumption of a constant shielding stress intensity factor K_{sh} have to be expected. With increasing crack-growth rates the time for the water entrance via diffusion decreases and, consequently, the zone height ω in Eq. (12b) becomes smaller. This causes a decreasing shielding stress intensity factor K_{sh} with increasing v or increasing load. A computation of $K_{\text{sh}}(K_{\text{appl}}, T)$ was performed in \[5\] resulting in rather complicated equations and should not be duplicated here. An approximate method may be suggested to estimate K_{sh} or, equivalently, K_{tip} as a function of K_{appl}. For this purpose some basic results may be used.

(1) According to the derivation by Wiederhorn, the stress intensity factor K in Eq. (1) is the physically active total stress intensity factor K_{tip} governing the singular crack-tip stress field. In a log(v)-K_{tip}-plot this must result in a straight line:

$$\log(v/v_0) = a_i + b_i K_{\text{tip}}.$$ \hspace{1cm} (17a)

(2) As the subcritical crack growth curve for silica in liquid water at 25°C (Wiederhorn and Bolz \[1\]) shows, the crack velocity as a function of the applied stress intensity factor is also very straight over a large region of crack rates, Fig. 6a. This can be expressed as

$$\log(v/v_0) = a_2 + b_2 K_{\text{appl}}.$$ \hspace{1cm} (17b)

Equation (13) requires that even the shielding stress intensity factor must fulfil a similar relation, namely,

$$\log(v/v_0) = a_3 + b_3 K_{\text{sh}}.$$ \hspace{1cm} (17c)

If K_{sh} depends on v there must occur an intersection of the straight lines according to (17a) and (17b).

(3) When K_{tip} reaches fracture toughness K_{fc}, the crack extension becomes very fast. Velocities in the order of sound velocity occur. Consequently, diffusion effects of surface water into the crack-tip region will disappear as well as the related shielding term, i.e. $K_{\text{sh}}(K_{\text{fc}}) \to 0$. This situation is indicated by the circle in Fig. 6b.

From the points (1)–(3) we obtain in terms of K_{tip}

$$K_{\text{sh}} \approx 1 - \left(\frac{K_{\text{tip}}}{K_{\text{fc}}} \right) K_{\text{th}},$$ \hspace{1cm} (18)

and in terms of K_{appl}
Figure 7 represents the v-K results for the data in Figs. 4a, 4b. Even from these plots normal subcritical crack growth can be stated. With increasing temperature, the crack growth rates for identical water concentrations at the glass surfaces increase, too. This holds for tests in liquid water as well as tests in humid air.

Figure 8 shows the stress intensity factor K_{tip} necessary for reaching a constant normalized crack velocity. There seems to exist a discontinuity in Fig. 8 between 75 and 150°C. A possible reason might be capillary condensation at crack tips. A zone of liquid water can be identified at a crack tip at low temperatures in humid air as had been shown by Ciccotti et al. [17], Grimaldi et al. [18], and Pallares et al. [19]. At the high temperatures this is no longer possible. So, one would expect a discontinuity for tests in “water” to tests in humid air.

From the subcritical crack growth rates of Fig. 7 the slopes, B, were determined. Additionally the parameter B for a representation by $\log v \propto B K_{\text{appl}}$ is introduced for the data by Wiederhorn and Bolz [1]. For the slopes B one would expect from the theoretical analysis by Wiederhorn et al. [6] according to Eq. (1)

$$K_{\text{sh}} = \frac{K_{\text{lc}} - K_{\text{appl}}}{K_{\text{lc}} - K_{\text{th}}} K_{\text{th}},$$ \hspace{1cm} (19)

or

$$K_{\text{tip}} \approx \frac{K_{\text{appl}} - K_{\text{th}}}{K_{\text{lc}} - K_{\text{th}}} K_{\text{lc}}.$$ \hspace{1cm} (20)
i.e. a decrease of B with increasing reciprocal absolute temperature T. The result is illustrated in Fig. 9a where the parameter B from Eq. (21) is plotted. The values of B increase with decreasing temperature. This applies to all results with the exception of the data by Suratwala and Steele [4] for temperatures below 150°C, see also the jump in Fig. 8. Below this temperature, the effect seems to be slightly reversed. In Fig. 9b the parameter b defined in Eq. (1) is shown.

The parameter b is for the representation via K_{tip} a constant. This holds for the data from [1] and the data above $\approx 100^0\text{C}$ from [4] but decreases for lower temperatures as is included in Fig. 9b as the dashed line. The representation by (21) yields (Standard Deviations in brackets)

$$b = 0.112[0.0017]\text{[m}^{5/2}\text{/mol]}, \quad (22a)$$

for the data given in [1] and

$$b = 0.158[0.0073]\text{[m}^{5/2}\text{/mol]}, \quad (22b)$$

for the data given in [4] and $\geq 150^0\text{C}$.

Expectations for Other Glasses

In the previous considerations, only silica was considered. In this Section, we will look on other glasses, too. Density measurements on several glass compositions were reported by Scholze [20]. The materials were: (B) B_2O_3–glass, (K) $\text{K}_2\text{O}–\text{SiO}_2$–glass (20–80 mol %), (Ca) $\text{Na}_2\text{O}–\text{CaO}–\text{SiO}_2$–glass (16–10–74 mol %), (Al) $\text{Li}_2\text{O}–\text{Al}_2\text{O}_3–\text{SiO}_2$–glass (20–5–75 mol %), and (Si) silica. The relative density changes due to water content C_w are given in Fig. 10a. Whereas for silica a non-linear behaviour $\Delta \rho(C_w)$ is reported in [20], for all other glasses straight-line behaviour was found. It has to be taken into account that the data scatter for silica is rather large as the data reported by Shelby [11] show which are introduced in red. The straight line represents the average of data for as-
received water in silica measured by several authors and quoted by Shelby [11]. The circles are results by Brückner [21] measured by water removal (also quoted in [11]). Whereas silica shows a density decrease with increasing water content, the densities of the other glasses increased with increasing \(C_w \).

The relative density changes \(\Delta \rho / \rho_0 \) were transformed into volume strains \(\varepsilon_v \) via

\[
V = \frac{m}{\rho} \Rightarrow \varepsilon_v = \frac{\Delta V}{V} = \frac{\Delta m}{m} \frac{\Delta \rho}{\rho},
\]

with the results plotted in Fig. 10b and compiled in Table 1.

Whereas the \(\text{B}_2\text{O}_3 \)--glass shows strong volume shrinking due to water uptake, silica shows clear volume expansion. The effects on the other glasses are rather small. Materials Ca and Al also swell. \(K \) shrinks slightly.

In contrast to the crack-tip shielding for silica, it has to be expected that the \(\text{B}_2\text{O}_3 \)--glass B should exhibit an increase of total stress intensity factors. Slight shielding effects may occur in the soda-lime glass as well as in the Al--glass.

CONCLUSION

We studied subcritical crack growth results on silica measured in both, water vapour and in liquid water under saturation pressure. From the results shown before, the anomalous subcritical crack growth in the experiments by Suratwala and Steele is a consequence of the decreasing surface water solubility with increasing temperature and the plotting against the applied stress intensity factor \(K_{\text{appl}} \) instead of the physically acting value \(K_{\text{tip}} \) that governs the singular stress field at crack tips. With other words: Subcritical crack growth in silica is normal since for constant water concentra-

Table 1. Swelling and shrinking strains derived from density curves given by Scholze [20]

Glass	Composition (in mol %)	(in wt %)	\(\rho_0, \text{g/cm}^3 \)	\(\Delta \rho / (\rho_0 C_w) \)	\(\varepsilon_v / C_w \)
B	\(\text{B}_2\text{O}_3 \)--glass	–	1.83	6.3	–5.3
K	\(\text{K}_2\text{O}--\text{SiO}_2 \)--glass (20–80)	(28.2–71.8)	2.38	1.41	0.41
Ca	\(\text{Na}_2\text{O}--\text{CaO}--\text{SiO}_2 \)--glass (16–10–74)	(16.6–9.4–74.1)	2.49	0.46	0.54
Al	\(\text{Li}_2\text{O}--\text{Al}_2\text{O}_3--\text{SiO}_2 \)--glass (20–5–75)	(10.7–9.1–80.2)	2.33	0.37	0.63
Si	\(\text{SiO}_2 \)	–	2.2	-0.84	1.84
tion at crack tips the crack-growth rate at constant K_{tip} increases with increasing temperature.

It is also noteworthy that if the temperature dependence of the saturation pressure is eliminated exclusively in the tests in liquid water, anomalous crack growth behaviour would appear (Fig. 2).

This suggests that the representation of $v(K)$-curves for constant pressure instead of constant water concentration in the glass and by plotting the crack-growth rates vs. the applied stress intensity factor (instead of the physically relevant crack-tip stress intensity factor, K_{tip}) is responsible for the apparently anomalous behaviour of silica.

REFERENCES

1. Wiederhorn, S.M. and Bolz, L.H., Stress corrosion and static fatigue of glass, *J. Am. Ceram. Soc.*, 1970, vol. 53, pp. 543–548.
2. Wiederhorn, S.M., Johnson, H., Diness, A.M., and Heuer, A.H., Fracture of glass in vacuum, *J. Am. Ceram. Soc.*, 1974, vol. 57, pp. 336–341.
3. Wiederhorn, S.M., Influence of water vapor on crack propagation in soda-lime glass, *J. Am. Ceram. Soc.*, 1967, vol. 50, pp. 407–414.
4. Suratwala, T.I. and Steele, R.A., Anomalous temperature dependence of sub-critical crack growth in silica glass, *J. Non-Cryst. Solids*, 2003, vol. 316, pp. 174–182.
5. Fett, T., Bucharsky, E.C., and Schell, K.G., Anomalous temperature behaviour of subcritical crack growth in silica, in *KIT Scientific Working Papers*, Karlsruhe: Karlsruhe Inst. Technol., 2019, vol. 131, pp. 1–15.
6. Wiederhorn, S.M., Fuller, E.R., and Thomson, R., Micromechanisms of crack growth in ceramics and glasses in corrosive environments, *Met. Sci.*, 1980, vol. 14, pp. 450–458.
7. Zouine, A., Dersch, O., Walter, G., and Rauch, F., Diffusivity and solubility of water in silica glass in the temperature range 23–200°C, *Eur. J. Glas. Sci. Technol., Part B*, 2007, vol. 48, pp. 85–91.
8. Wiederhorn, S.M., Yi, F., LaVan, D., Richter, L.J., Fett, T., and Hoffmann, M.J., Volume expansion caused by water penetration into silica glass, *J. Am. Ceram. Soc.*, 2015, vol. 98, pp. 78–87.
9. Wiederhorn, S.M., Fett, T., Rizzi, G., Fünfschilling, S., Hoffmann, M.J., and Guin, J.-P., Effect of water penetration on the strength and toughness of silica glass, *J. Am. Ceram. Soc.*, 2011, vol. 94, pp. S196–S203.
10. Wiederhorn, S.M., Fett, T., Rizzi, G., Hoffmann, M.J., and Guin, J.-P., Water penetration—its effect on the strength and toughness of silica glass, *Metall. Mater. Trans. A*, 2013, vol. 44, pp. 1164–1174.
11. Shelby, J.E., Density of vitreous silica, *J. Non-Cryst. Solids*, 2004, vol. 349, pp. 331–336.
12. McMeeking, R.M. and Evans, A.G., Mechanics of transformation-toughening in brittle materials, *J. Am. Ceram. Soc.*, 1982, vol. 65, pp. 242–246.
13. Wiederhorn, S.M., Rizzi, G., Hoffmann, M.J., and Guin, J.-P., The effect of water penetration on crack growth in silica glass, *Eng. Fract. Mech.*, 2013, vol. 100, pp. 3–16.
14. Sglavo, V.M., Fett, T., Schell, K.G., Hoffmann, M.J., and Wiederhorn, S.M., V–K-data for silica from interrupted lifetime measurements, in *KIT Scientific Working Papers*, Karlsruhe: Karlsruhe Inst. Technol., 2020, vol. 144, pp. 1–7.
15. Sglavo, V.M. and Green, D.J., Fatigue limit in fused silica, *J. Eur. Ceram. Soc.*, 2001, vol. 21, pp. 561–567.
16. Aaldenberg, J.S. and Lezzi, P.J., Measurement of the silica glass fatigue limit, *J. Am. Ceram. Soc.*, 2020, vol. 103, pp. 3097–3103.
17. Ciccotti, M., George, M., Ranieri, V., Wondraczek, L., and Marliere, C., Dynamic condensation of water at crack tips in fused silica glass, *J. Non-Cryst. Solids*, 2008, vol. 354, pp. 564–568.
18. Grimaldi, A., George, M., Pallares, G., Marliere, C., and Ciccotti, M., The crack tip: A nanolab for studying confined liquids, *Phys. Rev. Lett.*, 2008, vol. 100, p. 165505.
19. Pallares, G., Grimaldi, A., George, M., Ponson, L., and Ciccotti, M., Quantitative analysis of crack closure driven by Laplace pressure in silica glass, *J. Am. Ceram. Soc.*, 2011, vol. 94, pp. 2613–2618.
20. Scholze, H., *Glas: Natur, Struktur und Eigenschaften*, Berlin: Springer, 1988.
21. Brückner, R., Metastable equilibrium density of hydroxyl-free synthetic vitreous silica, *J. Non-Cryst. Solids*, 1971, vol. 5, pp. 281–285.