J-PAS: forecasts on interacting vacuum energy models

V. Salzano, C. Pigozzo, M. Benetti, H.A. Borges, R. von Marttens, S. Carneiro, J.S. Alcaniz, J.C. Fabris, S. Tsujikawa, N. Benítez, S. Bonoli, A.J. Cenarro, D. Cristóbal-Hornillos, R.A. Dupke, A. Ederoclite, C. López-Sanjuan, A. Marín-Franch, V. Marra, M. Moles, C. Mendes de Oliveira, L. Sodré Jr, K. Taylor, J. Varela and H. Vázquez Ramió

© 2021 IOP Publishing Ltd and Sissa Medialab

https://doi.org/10.1088/1475-7516/2021/09/033
Abstract. The next generation of galaxy surveys will allow us to test some fundamental aspects of the standard cosmological model, including the assumption of a minimal coupling between the components of the dark sector. In this paper, we present the Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) forecasts on a class of unified models where cold dark matter interacts with a vacuum energy, considering future observations of baryon acoustic oscillations, redshift-space distortions, and the matter power spectrum. After providing a general framework to study the background and linear perturbations, we focus on a concrete interacting model without momentum exchange by taking into account the contribution of baryons. We compare the J-PAS results with those expected for DESI and Euclid surveys and show that J-PAS is competitive to them, especially at low redshifts. Indeed, the predicted errors for the interaction parameter, which measures the departure from a ΛCDM model, can be comparable to the actual errors derived from the current data of cosmic microwave background temperature anisotropies.

Keywords: cosmological parameters from LSS, dark energy theory, galaxy surveys

ArXiv ePrint: 2102.06417
1 Introduction

The quest to uncover the origin of the underlying cause of late-time cosmic acceleration is one of the most important topics in cosmology [1–4]. In the context of the Λ-Cold-Dark-Matter (ΛCDM) model [5, 6], gravity is described by Einstein’s General Relativity in the presence of the cosmological constant Λ and non-relativistic dark matter. Although the ΛCDM model is treated as a standard cosmological paradigm, the origins of the dark sector are largely unknown. Moreover, the recent observations have shown that, in the ΛCDM model, there are tensions for today’s Hubble constant H_0 between the measurements of Cosmic Microwave Background (CMB) temperature anisotropies [7] and its direct measurements at low redshifts [8, 9].
Additionally, a basic hypothesis of standard cosmology is that non-relativistic matter, which forms galaxies and clusters, obeys the continuity equation by its own. This conserved property holds if dark energy, the mechanism behind the late-time acceleration, is a non-interacting vacuum energy Λ. If CDM interacts with Λ, the vacuum energy can be time-dependent [10–22]. Although the presence of Λ does not give rise to any dynamical degrees of freedom, the modified background evolution induced by the coupling with CDM changes the cosmic distance to sources. Hence the interacting vacuum energy scenario can be observationally distinguished from the uncoupled ΛCDM model [23].

In interacting vacuum energy models where the coupling is phenomenologically chosen to realize a desired background evolution with late-time cosmic acceleration, it is non-trivial to deal with the dynamics of inhomogeneous perturbations in a consistent way. [19] addressed this issue by considering the vacuum-energy perturbation $\delta \Lambda$ induced by the energy or momentum exchanges with CDM. Reflecting the fact that the four velocity of vacuum energy is undetermined, we need to make an assumption that $\delta \Lambda$ is related to other perturbations. One way is to assume that Λ depends on the CDM density ρ_c [19], in which case $\delta \Lambda$ has a relation with the CDM perturbation $\delta \rho_c$. The other possible way is to consider the case in which either energy or momentum exchange between Λ and CDM is absent [24]. In this paper we will provide a general theoretical framework of interacting vacuum energy with CDM by taking into account baryons, but for the purpose of the J-PAS forecast, we will choose a concrete model in which the momentum exchange is absent.

Without restricting the origin of late-time cosmic acceleration to the cosmological constant, there are also other phenomenological approaches to dynamical dark energy models coupled to CDM in which the dark energy equation of state w_{DE} deviates from -1 [25–45]. Numerous observational data including CMB, supernovae type Ia (SNeIa), and Baryon Acoustic Oscillations (BAO) have been used to place constraints on such interacting models (see e.g., [46] and references therein). In particular, it was shown that the presence of couplings between dark energy and CDM can alleviate the observational tension of H_0 present in the ΛCDM model [47–56]. There are also dynamical interacting models of dark energy with some concrete Lagrangians of scalar fields or vector fields [57–72], in which case it is possible to reduce observational tensions of σ_8. In interacting models of dark perfect fluids with a momentum exchange, it was recently shown that the observational tension of the ΛCDM model can be also eased [73–75].

To place observational constraints on interacting models of dark energy, the next generation of galaxy surveys, such as DESI [76], Euclid [77], SKA [78] and Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) [79, 80], will play major roles. In these models, not only the background evolution but also the dynamics of cosmological perturbations is modified in comparison to the ΛCDM. With high-precision observational data, there will be a chance of detecting the signature of dark sector interactions, in spite of dark degeneracy mentioned in refs. [81–86]. In this paper, we consider the simple interacting vacuum energy model mentioned above and discuss expected cosmological impacts extracted from J-PAS [79, 80] measurements. It is straightforward to extend the analysis to more general dynamical coupled dark energy models, but we will leave it for future work due to their complexities.

Our purpose in this paper is twofold. First, we study the implications of J-PAS on a concrete interacting model characterized by a coupling constant α (defined in section 5). Second, we compare the J-PAS forecast results with those expected from the DESI [76] and Euclid [77] surveys. For two configurations of area, i.e., 4000 deg2 and 8500 deg2, we
consider the J-PAS information on BAO, Redshift-Space Distortions (RSD), and the full matter power spectrum (PS), and perform a Fisher matrix forecast on the parameter α, which also quantifies a possible deviation from the ΛCDM cosmology ($\alpha = 0$). In order to improve the accuracy of estimates, we also perform a multi-tracer analysis and compare all J-PAS forecasts with those expected by the DESI and Euclid surveys. We find that J-PAS will be able to measure the interaction parameter with good sensitivity, and will provide the best constraints on interaction in the redshift range $z \lesssim 0.5$, thanks to the large number of emission line galaxies detectable in that redshift range. The results of this paper extend the J-PAS forecast analyses on alternative cosmologies discussed in [87, 88] by: (i) analysing a large class of dark matter-dark energy coupling not considered earlier; (ii) considering the case where dark energy has the equation of state of vacuum; (iii) explicitly considering baryonic density fluctuations; and (iv) including the complete matter power spectrum, not only BAO and RSD as in previous forecasts. In particular, our analysis shows a good agreement with the results for modified gravity cosmologies discussed in [87] in what concerns the constraining power of J-PAS at low-z. Although very general (see section 5), the parameterization of the dark sector interaction adopted here does not encompasses the class of interacting models discussed in [88].

The outline of this paper is as follows. Section 2 briefly introduces the main characteristics of the J-PAS. General aspects of interacting vacuum energy including the background equations of motion are discussed in section 3. In section 4, we derive the perturbation equations in a gauge-ready form and discuss different choices of gauges. In section 5, we present a concrete model of interacting vacuum energy and study the background and perturbation dynamics taking into account baryon perturbations. Section 6 presents our Fisher matrix analysis, whereas section 7 discusses our main results, including a comparison with forecasts for the DESI and Euclid surveys. We summarize our main conclusions in section 8.

2 J-PAS

The J-PAS [79, 80] is a spectro-photometric, ground-based imaging survey that will observe 8500deg^2 of the northern sky. The survey will be conducted at the Observatorio Astrofísico de Javalambre, a site on top of Pico del Buitre, a summit about ~ 2000 m high above sea level at the Sierra de Javalambre (Spain).

The survey will be carried out in a seven-year observing program at a dedicated 2.5 m telescope, the Javalambre Survey Telescope (JST/T250), equipped with a 1.2 Gigapixel camera (JPCam) with a large field of view of 4.2deg^2, and will incorporate a 54 narrow- and 4 broad-band filter set covering the optical range. J-PAS will measure positions and redshifts for dozens of millions of Luminous Red Galaxies (LRG), Emission Line Galaxies (ELG) and millions of Quasars (QSO), with an expected photometric redshift precision of $\sigma(z) = 0.003(1 + z)$, where z is the redshift. Moreover, given its high photo-z precision, J-PAS will detect nearly a hundred thousand clusters of galaxies up to the redshift $z \sim 1$ and several times more groups of galaxies. They can be used to improve the constraints on cosmological parameters not just through the mass function but also through high-precision definition of the cosmic web. The J-PAS main specifications used in our forecast analysis are displayed in table 1 whereas the J-PAS galaxy number densities are shown in table 3 of appendix B. For more details on J-PAS, we refer the reader to [79, 80].
3 General aspects of interacting vacuum energy

We consider cold dark matter interacting with a vacuum energy \(\Lambda \) \cite{10-21}. The CDM is described by a pressureless perfect fluid given by the energy-momentum tensor

\[T_{\mu\nu}^c = \rho_c u^\mu u^\nu, \]

where \(\rho_c \) is the CDM density, and \(u^\mu \) is the four velocity obeying the relation \(u_\mu u^\mu = -1 \).

The energy-momentum tensor of vacuum is given by

\[T_{\mu\nu}^\Lambda = -\Lambda g_{\mu\nu}, \]

where \(g_{\mu\nu} \) is the metric tensor. The vacuum energy density \(\hat{\rho} \) and pressure \(\hat{P} \) satisfy

\[\hat{\rho} = -\hat{P} = \Lambda, \]

i.e., \(\hat{\rho} + \hat{P} = 0 \), so its four velocity \(\hat{u}_\mu \) is undefined. Unlike CDM, the vacuum energy does not act as a dynamical degree of freedom.

Taking the covariant derivative of eq. (3.2), it follows that

\[T_{\mu\nu}^\Lambda ;\nu = -Q^\mu, \]

where

\[Q^\mu = \Lambda_{\rho\nu} g^{\mu\nu}. \]

The semicolon and colon represent the covariant and partial derivatives, respectively. If there is the energy or momentum transfer between CDM and vacuum energy, we have \(Q^\mu \neq 0 \) and hence the vacuum energy becomes inhomogeneous in spacetime \cite{19}.

We assume that the total energy-momentum tensor \(T_{\mu\nu} = T_{\mu\nu}^c + T_{\mu\nu}^\Lambda \) satisfies the continuity equation \(T_{\mu\nu} ;\nu = 0 \). On using eq. (3.3), the CDM sector obeys

\[T_{\mu\nu}^c ;\nu = +Q^\mu. \]

We decompose \(Q^\mu \) in the form

\[Q^\mu = Q u^\mu + q^\mu, \]

where \(q^\mu \) satisfies

\[q^\mu u_\mu = 0. \]

Substituting eq. (3.6) into eq. (3.4) and multiplying it by \(u_\mu \), it follows that

\[Q = -\Lambda_{\rho\nu} u^\nu. \]

On using eqs. (3.4), (3.6), and (3.8), we obtain

\[q^\mu = \Lambda_{\rho\nu} (u^\rho u^\nu + g^{\mu\nu}). \]

The quantities \(Q \) and \(q^\mu \) represent the energy transfer and momentum transfer, respectively. Indeed, the energy exchange between two dark components is explicit by taking the products of \(u_\mu \) in eqs. (3.3) and (3.5) \cite{70, 71}, such that

\[u_\mu T_{\mu\nu}^\Lambda = +Q, \]

\[u_\mu T_{\mu\nu}^c = -Q. \]
Let us consider the spatially flat Friedmann-Lamaître-Robertson-Walker (FLRW) space-time given by the line element

$$\text{d}s^2 = -\text{d}t^2 + a^2(t)\delta_{ij}\text{d}x^i\text{d}x^j,$$

(3.12)

where a is the scale factor which depends on the cosmic time t. On this background, the CDM four velocity can be chosen as $u^\mu = (1, 0, 0, 0)$ and hence the momentum transfer (3.9) vanishes. Then, from eqs. (3.10) and (3.11), it follows that

$$\dot{\Lambda} = -Q,$$

(3.13)

$$\dot{\rho}_c + 3H\rho_c = Q,$$

(3.14)

where a dot represents a derivative with respect to t, and $H \equiv \dot{a}/a$ is the Hubble expansion rate. In the gravity sector we consider general relativity with the Einstein equation

$$G^{\mu\nu} = 8\pi G (T^{\mu\nu}_c + T^{\mu\nu}_\Lambda),$$

(3.15)

where $G^{\mu\nu}$ is the Einstein tensor, and G is the gravitational constant. We neglect the contribution of baryons to the right hand-side of eq. (3.15), but we will include it in sections 5.1–5.3. The background equations of motion following from eq. (3.15) are

$$3H^2 = 8\pi G (\rho_c + \Lambda),$$

(3.16)

$$\dot{H} = -4\pi G\rho_c,$$

(3.17)

where eq. (3.17) can be also derived by taking the time derivative of eq. (3.16) and employing eqs. (3.13) and (3.14).

4 Cosmological perturbations

Let us consider scalar perturbations on the flat FLRW background (3.12). The perturbed line element, which contains four metric perturbations A, B, ψ, and E, is given by [89]

$$\text{d}s^2 = -(1 + 2A)\text{d}t^2 + 2a\partial_iB\text{d}td\text{d}x^i + a^2 [(1 - 2\psi)\delta_{ij} + 2\partial_i\partial_jE]\text{d}x^i\text{d}x^j,$$

(4.1)

where we used the notation $\partial_i \equiv \partial/\partial x^i$. Since we are interested in the evolution of linear perturbations, we neglect the terms higher than the first order in the following discussion. We note that the perturbation equations of motion for the metric (4.1) were first derived in ref. [19]. We review them by the end of section 4.1 and proceed to two particular choices of gauges in sections 4.2 and 4.3.

For CDM, the energy density is decomposed into the background and perturbed parts, as $\rho_c = \bar{\rho}_c + \delta\rho_c$. The CDM four velocity is defined by $u^\mu = \text{d}x^\mu/\text{d}\tau$, where τ is the proper time satisfying $d\tau = (1 + A)d\tau$ for the perturbed line element (4.1). We express the spatial component of u^μ as $u^i = a^{-1}\partial^i v$, where v is the scalar velocity potential. Then, the CDM four velocities with upper and lower indices are expressed as

$$u^\mu = (1 - A, a^{-1}\partial^i v), \quad u_\mu = (-1 - A, \partial_i\theta),$$

(4.2)

where

$$\theta \equiv a(v + B).$$

(4.3)
The four velocity of vacuum energy, \(\hat{u}_\mu \), can be defined by using the energy-momentum flow (3.4), such that

\[
\hat{u}_\mu = -\frac{\Lambda_{\mu}}{|\Lambda_{\rho}\Lambda_{\nu}|^{1/2}},
\tag{4.4}
\]

which obeys the relation \(\hat{u}_\mu \hat{u}^\mu = -1 \) for the time-like flow \((\Lambda_{\rho}\Lambda_{\nu} < 0) \). By introducing the vacuum energy velocity potentials \(\hat{v} \) and \(\hat{\theta} \), as \(\hat{u}^i = a^{-1}\partial^i\hat{v} \) and \(\hat{\theta} = a(\hat{v} + B) \), we can express \(\hat{u}_\mu \) in a fashion analogous to eq. (4.2):

\[
\hat{u}_\mu = \left(1 - A, a^{-1}\partial^i\hat{v}\right), \quad \hat{u}_\mu = \left(-1 - A, \partial_i\hat{\theta}\right). \tag{4.5}
\]

The vacuum energy has a perturbation \(\delta\Lambda \), which is induced by the interaction with CDM. From eq. (4.4) the spatial component of \(\hat{u}_\mu \) is \(\hat{u}_i = -\partial_i\delta\Lambda/\dot{\Lambda} \), so the comparison with the second of eq. (4.5) gives

\[
\delta\Lambda = -\dot{\Lambda}\hat{\theta} = Q\hat{\theta}, \tag{4.6}
\]

where we used eq. (3.13). This shows that \(\delta\Lambda \) is directly related to the velocity potential of vacuum energy.

4.1 Perturbation equations

We split the scalar quantity \(Q \) into the background and perturbed parts, as \(Q = \bar{Q} + \delta Q \). In the following, we omit a bar from the background quantities. Then, the linear perturbation equations following from eqs. (3.10) and (3.11) are given, respectively, by [19]

\[
\dot{\delta\Lambda} = -\delta Q - \Lambda A, \tag{4.7}
\]

\[
\dot{\delta\rho} + 3H\delta\rho - 3\rho\dot{\rho} + \rho\nabla^2 \left(\theta + a^2\dot{E} - aB\right) = \delta Q + \Lambda A, \tag{4.8}
\]

where \(\nabla^2 \) is the three-dimensional Laplacian. The perturbation of spatial components of \(Q^\mu \) in eq. (3.6) is expressed as

\[
\delta Q^i = Qu^i + \delta q^i = \partial^i \left(a^{-1}Qv + a^{-2}f\right), \tag{4.9}
\]

where a scalar function \(f \) is related to the perturbation of \(q_i \) in the form

\[
\delta q_i = \partial_i f. \tag{4.10}
\]

The \(\mu = i \) components of eqs. (3.3) and (3.5) give the Euler equations

\[
\delta\Lambda = f + Q\theta, \tag{4.11}
\]

\[
\rho_c\dot{\theta} + \rho_c A = f. \tag{4.12}
\]

Equation (4.12) means that the CDM feels the force \(f \) through the interaction with vacuum energy. From eqs. (4.6) and (4.11), we obtain

\[
f = Q \left(\dot{\theta} - \theta\right), \tag{4.13}
\]

which does not vanish for \(\dot{\theta} \neq \theta \). If there is the difference between the four velocities of CDM and vacuum energy, there is the momentum transfer which affects the evolution of CDM velocity potential.
We define the CDM density contrast, as
\[\delta_c \equiv \frac{\delta \rho_c}{\rho_c}. \]
(4.14)

From eqs. (4.7)–(4.8) and (4.11)–(4.12), the two variables \(\delta_c \) and \(\theta \) satisfy the first-order differential equations
\[\dot{\delta}_c - 3\dot{\psi} + \frac{\nabla^2}{a^2} (\theta + a\sigma) = -\frac{\delta \Lambda - \dot{\Lambda} \delta_c}{\rho_c}, \]
(4.15)
\[\dot{\theta} + A = \frac{\delta \Lambda + \dot{\Lambda} \theta}{\rho_c}, \]
(4.16)
where
\[\sigma \equiv a \dot{E} - B. \]
(4.17)

The linearly perturbed Einstein equations are given by \(\delta G^{\mu\nu} = 8\pi G (\delta T^{\mu\nu}_m + \delta T^{\mu\nu}_\Lambda) \), whose \((00), (0i), \) and \((ij) \ (i \neq j)\) components lead to
\[3H (\dot{\psi} + HA) - \frac{\nabla^2}{a^2} (\psi + aH\sigma) = -4\pi G (\rho_c \delta_c + \delta \Lambda), \]
(4.18)
\[\dot{\psi} + HA = -4\pi G \rho_c \theta, \]
(4.19)
\[a (\dot{\sigma} + 2H\sigma) - A + \psi = 0. \]
(4.20)

Thus, we derived the full set of linear perturbation equations (4.15)–(4.16) and (4.18)–(4.20) without choosing particular gauges. The vacuum fluctuation \(\delta \Lambda \), which is related to its four velocity \(\dot{\theta} \) as eq. (4.6), can be determined by specifying a model of interacting vacuum energy [19]. If \(\dot{\theta} = \theta \), i.e., \(\delta \Lambda = -\dot{\Lambda} \theta \), the right hand-side of eq. (4.16) vanishes, with \(-\delta \Lambda = \ddot{\Lambda} \theta + \dot{\Lambda} \dot{\theta} \) on the right hand-side of eq. (4.15). In this case, there is no momentum transfer \((\delta q_i = 0) \) between CDM and vacuum energy. This is an example where the perturbation equations of motion are closed.

We introduce the following gauge-invariant gravitational potentials [89],
\[\Psi = A - \frac{d}{dt} (a\sigma), \quad \Phi = \psi + aH\sigma. \]
(4.21)
Then, from eq. (4.20), we obtain
\[\Psi = \Phi, \]
(4.22)
which shows the absence of an anisotropic stress.

Although we have not chosen particular gauges so far, there are residual gauge degrees of freedom to be fixed. In the following, we will consider two different gauge choices.

4.2 Newtonian gauge

Let us first choose the Newtonian gauge satisfying
\[B = 0, \quad E = 0, \]
(4.23)
under which \(\sigma = 0 \). In this case, the gravitational potentials (4.21) are given by
\[\Psi = A, \quad \Phi = \psi. \]
(4.24)
On using the relation (4.22), eqs. (4.15), (4.16), (4.18), and (4.19) reduce, respectively, to

\[\dot{\delta}_c - 3\dot{\Phi} + \frac{\nabla^2}{a^2} \theta = -\frac{\delta\Lambda - \dot{\Lambda}\delta_c}{\rho_c}, \]
(4.25)

\[\dot{\theta} + \Phi = \frac{\delta\Lambda + \dot{\Lambda}\theta}{\rho_c}, \]
(4.26)

\[3H \left(\dot{\Phi} + H \Phi \right) - \frac{\nabla^2}{a^2} \Phi = -4\pi G \left(\rho_c \delta_c + \delta\Lambda \right), \]
(4.27)

\[\dot{\Phi} + H \Phi = -\frac{4}{3} \pi G \rho_c \theta. \]
(4.28)

For a given physical model relating \(\delta\Lambda\) with other perturbations, these equations can be solved for \(\delta_c, \theta, \Phi,\) and \(\delta\Lambda.\)

4.3 Synchronous gauge

The synchronous gauge is characterized by the conditions

\[A = 0, \quad B = 0, \]
(4.29)

under which \(\sigma = a\dot{E}.\) The gravitational potentials reduce to

\[\Psi = -\frac{d}{dt} \left(a^2 \dot{E} \right), \quad \Phi = \psi + a^2 H \dot{E}. \]
(4.30)

We introduce the following combination

\[h \equiv 2\nabla^2 E - 6\psi. \]
(4.31)

Then, eqs. (4.15), (4.16), (4.18), and (4.19) yield

\[\delta_c + H \frac{\dot{h}}{2} + \frac{\nabla^2}{a^2} \theta = -\frac{\delta\Lambda - \dot{\Lambda}\delta_c}{\rho_c}, \]
(4.32)

\[\dot{\theta} = \frac{\delta\Lambda + \dot{\Lambda}\theta}{\rho_c}, \]
(4.33)

\[\frac{\nabla^2}{a^2} \psi + H \frac{\dot{h}}{2} = 4\pi G \left(\rho_c \delta_c + \delta\Lambda \right), \]
(4.34)

\[\dot{\psi} = -4\pi G \rho_c \theta. \]
(4.35)

Equation (4.20), which is equivalent to eq. (4.22), gives the differential equation for \(E,\) as

\[a^2 \left(\ddot{E} + 3H \dot{E} \right) + \psi = 0. \]
(4.36)

Exerting the operator \(\nabla^2\) on eq. (4.36) and using eqs. (4.31), (4.34), and (4.35), the perturbation \(h\) obeys

\[\ddot{h} + 2H \dot{h} + 8\pi G \left(\rho_c \delta_c - 3\rho_c \dot{\theta} + \delta\Lambda + 3\dot{\Lambda}\theta \right) = 0. \]
(4.37)

For a given relation of \(\delta\Lambda\) with other perturbations, we can integrate eqs. (4.32), (4.33), (4.35), (4.36), and (4.37) to solve for \(\delta_c, \theta, \psi, E,\) and \(h.\)
5 Concrete interacting model

Let us consider a concrete interacting model of vacuum energy and dark matter. For perturbations, this amounts to giving an explicit relation between $\delta \Lambda$ and other perturbations. We study the case in which there is no momentum transfer to the CDM perturbation, i.e., $q^\mu = 0$, so the force $f = Q(\dot{\theta} - \theta)$ exerting on the CDM perturbation vanishes, i.e., $\dot{\theta} = \theta$. Then, from eq. (4.6), the perturbation $\delta \Lambda$ is related to θ, as

$$\delta \Lambda = -\dot{\Lambda} \theta = Q \theta.$$

(5.2)

Under this condition the right hand side of the Euler eq. (4.16) is zero, while this is not the case for the terms on the right hand side of the continuity eq. (4.15).

Let us derive the perturbation equation of motion for δc in the synchronous gauge. From eq. (4.33), we obtain

$$\dot{\theta} = 0,$$

(5.3)

which means that θ does not depend on time. In Fourier space with the comoving wavenumber k, we can write eq. (4.32) in the form

$$\ddot{\delta}_c + \frac{1}{2} \dot{h} - \frac{k^2}{a^2} \theta = -\frac{\dot{Q} \theta + Q \delta_c}{\rho_c},$$

(5.4)

where we used eq. (5.2). We take the time derivative of eq. (5.4) and eliminate the term $2H(k^2/a^2)\theta$ on account of eq. (5.4). On using eq. (4.37), the CDM density contrast obeys

$$\ddot{\delta}_c + \left(2H + \frac{Q}{\rho_c}\right) \dot{\delta}_c - \left[4\pi G \rho_c + \frac{Q^2 - (Q + 5HQ)\rho_c}{\rho_c^2}\right] \delta_c + \left[8\pi GQ + \frac{(\dot{Q} + 5HQ)\rho_c - \dot{Q}Q}{\rho_c^2}\right] \theta = 0.$$

(5.5)

From eq. (5.4), the term $(k^2/a^2)\theta$ is at most of the order $\dot{\delta}_c \lesssim H \delta_c$, and hence $\theta \lesssim a^2 H \delta_c/k^2$. Moreover, from eq. (3.14), the coupling Q should be of order $Q \lesssim 3H \rho_c$. Then, the ratio between the terms $8\pi GQ \theta$ and $4\pi G \rho_c \delta_c$ can be estimated as

$$r \equiv \frac{8\pi GQ \theta}{4\pi G \rho_c \delta_c} \lesssim \left(\frac{aH}{k}\right)^2.$$

(5.6)

For perturbations deep inside the Hubble radius ($k \gg aH$), it follows that $r \ll 1$. Similarly, the other terms appearing as coefficients of θ in eq. (5.5) are suppressed relative to the terms proportional to δ_c. Then, for the modes $k \gg aH$, eq. (5.5) is approximately given by

$$\ddot{\delta}_c + \left(2H + \frac{Q}{\rho_c}\right) \dot{\delta}_c - \left[4\pi G \rho_c + \frac{Q^2 - (Q + 5HQ)\rho_c}{\rho_c^2}\right] \delta_c \simeq 0.$$

(5.7)

\(^1\)The assumption of no momentum exchange is crucial for having a non-perturbed vacuum component, which assures that only baryons and dark matter can be identified with clustering matter. The inclusion of momentum exchange is possible [73, 74], and a forecast for models with momentum exchange has been presented in [75].
Actually, in view of the time independence of θ in the synchronous gauge, we can always set it zero, which turns eq. (5.7) an exact result. Note, however, that the sub-horizon approximation is necessary to obtain the same equation in the Newtonian gauge. Although we have chosen the synchronous gauge, the analysis in the Newtonian gauge gives rise to the same equation as (5.7) for the modes deep inside the Hubble radius. Introducing the variables

$$\Gamma_c \equiv \frac{Q}{\rho_c}, \quad \eta \equiv \int a^{-1} dt,$$

we can rewrite eq. (5.7) in the form

$$\delta_c'' + a(H + \Gamma_c)\delta'_c - \left[4\pi G a^2 \rho_c - (a\Gamma_c)' - a^2 \Gamma_c H\right] \delta_c \simeq 0,$$

where a prime represents the derivative with respect to η. The coupling Γ_c modifies the growth rate of δ_c in comparison to the uncoupled case.

As discussed in details in [39], large scale instabilities appear when one imposes a sound speed $c_s^2 = 1$ to a dark energy interacting component in order to avoid its clustering at small scales. In our case this imposition is not needed, as the dark energy component is adiabatic, with the EoS parameter $w = -1$. Therefore, the vacuum term is not perturbed at the observed scales and, at the same time, there is no large scale instability. The effective sound speed is zero, because pressureless matter is the only perturbed component.

5.1 Inclusion of baryons

So far, we have ignored the perturbation of baryons, but we would like to take it into account for the J-PAS forecast. We assume that baryons are coupled to neither vacuum energy nor dark matter. Then, the background baryon density ρ_b obeys the continuity equation

$$\dot{\rho}_b + 3H\rho_b = 0,$$

with a vanishing pressure ($p_b = 0$).

Let us consider the synchronous gauge with the additional baryon density contrast δ_b and velocity field θ_b. Then, the resulting continuity and Euler equations are given, respectively, by

$$\delta_b + \frac{1}{2} \dot{h} + \nabla^2 \frac{a^2}{\eta^2} \theta_b = 0,$$

$$\dot{\theta}_b = 0,$$

besides the perturbation eqs. (4.32) and (4.33) for CDM. The perturbed Einstein eqs. (4.34) and (4.35) are modified to

$$\nabla^2 \frac{a^2}{\eta^2} \psi + \frac{1}{2} H \dot{h} = 4\pi G (\rho_m \delta_m + \delta \Lambda),$$

$$\dot{\psi} = -4\pi G (\rho_c \theta + \rho_b \theta_b),$$

where

$$\rho_m \delta_m \equiv \rho_c \delta_c + \rho_b \delta_b, \quad \rho_m \equiv \rho_c + \rho_b,$$

while eq. (4.36) is unchanged. Following the same procedure as that explained in section 4.3 and using eq. (5.12), the perturbation h, which is defined in eq. (4.31), obeys

$$\ddot{h} + 2H \dot{h} + 8\pi G \left(\rho_m \delta_m - 3\rho_c \dot{\theta} + \delta \Lambda + 3 \Lambda \theta\right) = 0.$$
Now, we focus on the case in which there is no momentum exchange between vacuum energy and dark matter. Since the condition (5.3) holds, we have $\dot{\theta} = 0$ in eq. (5.16). For perturbations deep inside the Hubble radius, the terms $\delta \Lambda = Q \theta$ and $3 \dot{\Lambda} \theta = - 3 Q \theta$ in eq. (5.16) are neglected relative to $\rho_c \delta_c$, see eq. (5.6). Then, eq. (5.16) approximately reduces to
\[
\ddot{\delta} + 2 H \dot{\delta} + 8 \pi G \rho_m \delta \simeq 0,
\]
(5.17)
Differentiating eqs. (4.32) and (5.11) with respect to t and taking the similar procedure to that explained in section 4.3, the CDM and baryon density contrasts in Fourier space obey the following differential equations
\[
\ddot{\delta}_c + \left(2 H + \frac{Q}{\rho_c} \right) \dot{\delta}_c - 4 \pi G \rho_m \delta_c - \frac{Q^2 - (\dot{Q} + 5 HQ) \rho_c}{\rho_c^2} \delta_c \simeq 0,
\]
(5.18)
\[
\ddot{\delta}_b + 2 H \dot{\delta}_b - 4 \pi G \rho_m \delta_b \simeq 0,
\]
(5.19)
which are valid for the modes $k \gg aH$. By using the variables Γ_c and η defined in eq. (5.8), these equations can be expressed as
\[
\ddot{\delta}_c'' + a \left(H + \Gamma_c \right) \dot{\delta}_c' - 4 \pi G a^2 \rho_m \delta_c + \left[(a \Gamma_c)' + a^2 \Gamma_c H \right] \delta_c \simeq 0,
\]
(5.20)
\[
\ddot{\delta}_b'' + a H \dot{\delta}_b' - 4 \pi G a^2 \rho_m \delta_b \simeq 0,
\]
(5.21)
Since $|\rho_c \delta_c| \gg |\rho_b \delta_b|$, the baryon density contrast grows under the influence of gravitational potentials sourced mostly by the CDM density perturbation. There is no scale-dependence in eqs. (5.20) and (5.21) governing the evolution of perturbations on sub-horizon scales, whose property is attributed to the absence of pressures for CDM and baryons. In our interacting theory, the dark energy pressure does not affect the sound speeds of CDM and baryons either.

We can also derive the perturbation equations of motion for the total density matter contrast δ_m defined in eq. (5.15). On using the approximation similar to eq. (5.6) for the modes deep inside the Hubble radius, we obtain
\[
\ddot{\delta}_m + \left(2 H + \frac{Q}{\rho_m} \right) \dot{\delta}_m - \left[4 \pi G \rho_m + \frac{Q^2 - (\dot{Q} + 5 HQ) \rho_c}{\rho_c^2} \right] \delta_m \simeq Q \frac{k^2}{a^2} \frac{\rho_b}{\rho_m^2} (\theta - \theta_b).
\]
(5.22)
In terms of the conformal time η, this can be expressed as
\[
\ddot{\delta}_m'' + a \left(H + \Gamma \right) \dot{\delta}_m' - \left[4 \pi G a^2 \rho_m - (a \Gamma)' - a^2 \Gamma H \right] \delta_m \simeq Q k^2 \frac{\rho_b}{\rho_m^2} (\theta - \theta_b),
\]
(5.23)
where
\[
\Gamma \equiv \frac{Q}{\rho_m}.
\]
(5.24)
The right hand side of eq. (5.23) does not vanish for $\theta \neq \theta_b$. This means that the momentum exchange between CDM and baryons can affect the dynamics of δ_m. Since both θ and θ_b are constants in time, this term vanishes for the initial condition $\theta = \theta_b$. In this case, eq. (5.23) reduces to the second-order differential equation of δ_m.

5.2 Background

Let us consider a possible choice of the interacting function Q to study the background cosmological evolution. We take into account the baryons whose background density ρ_b obeys the continuity eq. (5.10). The densities of vacuum energy and CDM satisfy eqs. (3.13) and (3.14). In the presence of baryons, eqs. (3.16) and (3.17) are modified to

$$3H^2 = 8\pi G (\rho_m + \Lambda), \quad \text{(5.25)}$$
$$\dot{H} = -4\pi G \rho_m, \quad \text{(5.26)}$$

where $\rho_m = \rho_c + \rho_b$. For the interacting vacuum energy, we choose a function of the form \[90\]

$$\Lambda = \frac{\sigma H^{-2\alpha}}{8\pi G}, \quad \text{(5.27)}$$

where $\sigma (> 0)$ and $\alpha (> -1)$ are constants. From eq. (5.25), there is the relation

$$\sigma = 3 (1 - \Omega_m) H_0^{2(\alpha+1)}, \quad \text{(5.28)}$$

where $\Omega_m = 8\pi G \rho_{m0}/(3H_0^2)$ is today’s density parameter of total non-relativistic matter (the subscript “0” represents today’s values). On using eqs. (5.25), (5.26), and (5.27), the Hubble parameter obeys the differential equation

$$\frac{dH}{dz} = \frac{3H}{2(1+z)} \left[1 - (1 - \Omega_m) \left(\frac{H}{H_0} \right)^{-2(\alpha+1)} \right], \quad \text{(5.29)}$$

where $z = 1/a - 1$ is the redshift, and we used the relation $dz/dt = -(1+z)H$. Integrating eq. (5.29) with respect to z, we obtain

$$H(z) = H_0 \left[1 - \Omega_m + \Omega_m (1 + z)^{3(\alpha+1)} \right]^{1/[2(\alpha+1)]}, \quad \text{(5.30)}$$

which satisfies $H = H_0$ at $z = 0$. The decay rate (5.24) is given by

$$\Gamma = -\frac{\dot{\Lambda}}{\rho_m} = \frac{\alpha \sigma H^{-2\alpha-1}}{4\pi G} \frac{\dot{H}}{\rho_m} = -\alpha \sigma H^{-2\alpha-1}. \quad \text{(5.31)}$$

The above (one-parameter) parameterization is general enough to include the standard model and dark matter creation at a constant rate or at a rate proportional to the Hubble flux H. It also includes the case of dark matter annihilation ($\alpha > 0$). The non-interacting cosmological constant corresponds to $\alpha = 0$, in which case $\Gamma = 0$. For $\alpha < 0$, the creation of CDM occurs through the positive coupling Γ. In particular, Γ is constant for $\alpha = -1/2$. From (5.30) we observe that the ansatz (5.27) corresponds to a decomposed, non-adiabatic generalised Chaplygin gas \[91–98\], which behaves like conserved matter at high redshifts and approaches a cosmological constant in the asymptotic future. The late-time non-adiabaticity prevents oscillations and instabilities in the power spectrum, contrary to what happens in adiabatic versions of the generalised Chaplygin gas \[99–107\]. This parametrization does not encompass all possible forms of interactions, but it can be used to search for signatures of the interacting vacuum energy in current and future observations.

The baryon density has the following redshift dependence,

$$\rho_b(z) = \frac{3H_0^2}{8\pi G} \Omega_b (1 + z)^3, \quad \text{(5.32)}$$
where $\Omega_b = 8\pi G\rho_b/(3H_0^2)$. On using eqs. (5.26), (5.30), and eq. (5.32), the CDM density
\[\rho_c = \rho_m - \rho_b \]
is given by the form
\[\rho_c(z) = \frac{3H_0^2}{8\pi G} (1+z)^3 \left[(1+z)^{3\alpha} \Omega_m \left\{ 1 - \Omega_m + \Omega_m (1+z)^{3(\alpha+1)} \right\} - \Omega_b \right]. \quad (5.33) \]

At high redshifts ($z \gg 1$), it follows that
\[\rho_c(z) \simeq \frac{3H_0^2}{8\pi G} (1+z)^3 \left[\Omega_m^{1/(\alpha+1)} - \Omega_b \right]. \quad (5.34) \]

To avoid a negative CDM density, we require that $\rho_c(z) > 0$. This condition translates to
\[\alpha > \alpha_c \equiv -1 + \frac{\ln \Omega_m}{\ln \Omega_b}. \quad (5.35) \]

When $\Omega_m = 0.32$ and $\Omega_b = 0.05$, for example, we have $\alpha_c = -0.62$. At low redshifts around $z = 0$, the expansion of eq. (5.33) shows that, as long as $\Omega_m > \Omega_b$, the leading-order term of $\rho_c(z)$ is positive. For theoretical consistency, α should be in the range (5.35).

5.3 Growth rate of perturbations

We define the functions describing the growth rates of CDM, baryons, and total matter, as
\[f_i(a) \equiv \frac{d\ln \delta_i(a)}{d\ln a} = \frac{\dot{\delta}_i}{H\delta_i}, \quad (5.36) \]

where $i = b, c, m$, respectively. For sub-horizon perturbations, these functions are known by integrating eqs. (5.20) and (5.21) together with the relation (5.15). In figure 1, we plot the evolution of f_b, f_c, and f_m for $\alpha = 0.1$ (left) and $\alpha = -0.1$ (right). We choose the initial conditions of density contrasts same as those in the ΛCDM model ($\alpha = 0$), i.e., $f_b = 1$ and $f_c = 1$ at $a = 0.05$. For the purpose of showing the evolution of f_i, it is sufficient to choose an arbitrary amplitude satisfying $\delta_b = \delta_c$.

In figure 1, the evolution of growth rates in the ΛCDM model is also shown, in which case $f_b = f_c = f_m$ due to the absence of interactions and the choice of same initial conditions for δ_b and δ_c. At late times, the interacting vacuum energy model with $\alpha > 0$ leads to the value of f_c larger than in the $\alpha = 0$ case, while for $\alpha < 0$, f_c is subject to suppression. This behavior can be understood by expressing eq. (5.20) in the form
\[\delta_c'' + a(H + \Gamma_c)\delta_c' - 4\pi a^2 (G_c \rho_c \delta_c + G \rho_b \delta_b) \simeq 0, \quad (5.37) \]

where G_c is the effective gravitational coupling for δ_c defined by
\[G_c \equiv G - \frac{\Gamma_c + 2H\Gamma_c}{4\pi \rho_c}. \quad (5.38) \]

Assuming that $|\alpha| \ll 1$ and expanding G_c around $\alpha = 0$, we obtain
\[G_c = G \left[1 + \alpha (1 - \Omega_m) \frac{\Omega_m (3\Omega_m + 4) H_0^2}{\Omega_c^2 H^2} + \mathcal{O}(\alpha^2) \right], \quad (5.39) \]

where $\Omega_m = 8\pi G\rho_m/(3H^2)$ and $\Omega_c = 8\pi G\rho_c/(3H^2)$. For $\alpha > 0$, we have $G_c > G$ and hence the growth of δ_c is enhanced in comparison to the ΛCDM model. For $\Omega_m = 0.32$ and
Figure 1. Evolution of f_b, f_c, and f_m versus the scale factor a for $\alpha = 0.1$ (left) and $\alpha = -0.1$ (right), respectively. We also plot the evolution of f_b ($= f_c = f_m$) in the ΛCDM model as a dashed curve. Today’s values of the density parameters are chosen to be $\Omega_b = 0.05$ and $\Omega_m = 0.32$.

$\Omega_c = 0.27$, today’s value of G_c is given by $G_c \simeq G(1 + 14.8\alpha)$. This means that, even for $|\alpha| = \mathcal{O}(0.1)$, G_c is significantly modified relative to the $\alpha = 0$ case. For $\alpha > 0$, the term $a\Gamma_c$ in front of δ'_c in eq. (5.37) is negative, so this also works to enhance the growth rate of δ_c. The enhancement of δ_c also leads to the larger baryon growth rate f_b through eq. (5.21) in comparison to the $\alpha = 0$ case. As we see in the left panel of figure 1, f_c is larger than f_b (see ref. [108] for a related work). The evolution of total matter growth function is similar to that of CDM, but f_m is slightly smaller than f_c due to the presence of baryons.

For $\alpha < 0$, the growth of CDM density contrast is suppressed in comparison to the $\alpha = 0$ case. As we observe in the right panel of figure 1, the suppression of f_c also gives rise to the values of f_b and f_m smaller than those in the ΛCDM model. Thus, the large or small cosmic growth rates can be realized in the interacting vacuum energy scenario, depending on the sign of α. This allows us to probe the signature of interactions observationally.

In RSD measurements, the matter velocity potential is used to quantify the galaxy distortion in redshift space. In eq. (5.4) the term $-\dot{Q}\theta/\rho_c$ is neglected relative to the other terms for sub-horizon perturbations, so using the CDM growth rate f_c leads to

$$H(f_c + g_c)\delta_c = \frac{k^2}{a^2}\theta - \frac{1}{2}\dot{h},$$

where $g_c \equiv Q/(H\rho_c)$. This means that the CDM growth rate associated with the velocity potential θ corresponds to [109, 110]

$$f_{c,\text{RSD}} = f_c + g_c.$$

Hence there is the additional contribution to f_c from the coupling Q. From eq. (5.11), the growth rate of baryon density contrast relevant to RSD measurements is simply given by f_b. As our tracers are luminous baryonic matter, we mostly use δ_b in our forecast analysis. However, the late-time enhancement or suppression in δ_m can lead to tight observational
constraints on the interaction between vacuum energy and CDM, so we will also discuss the case of total matter density contrast.

6 Matter power spectrum

To confront the interacting vacuum energy model with the observations of luminous galaxies, we define the matter power spectrum in Fourier space at a redshift \(z \), as

\[
\mathcal{P}_L(k, z) = \mathcal{P}_{L,0}(k) \left(\frac{\delta_{b,m}(a)}{\delta_{b,m}(1)} \right)^2,
\]

where we exploited the fact that eq. (5.21) does not contain the \(k \) dependence, and the suffices \(b \) and \(m \) refer to the baryonic and total matter scenarios which we consider separately in this work. The scale-dependent part \(\mathcal{P}_{L,0}(k) \) is today’s matter power spectrum, which is given by

\[
\mathcal{P}_{L,0}(k) = \mathcal{P}_0 k^{n_s} T^2(k),
\]

where the scaling constant \(\mathcal{P}_0 \) is found using the usual normalization of \(\sigma_8 \), i.e.,

\[
\sigma_{8,0}^2 = \frac{1}{2\pi^2} \int_0^\infty k^2 W^2(k, R) \mathcal{P}_{L,0}(k) \, dk,
\]

with the window function

\[
W(k, R) = \frac{3}{k^3 R^5} [\sin(kR) - kR \cos(kR)],
\]

at the comoving scale \(R = 8 \, h^{-1} \text{Mpc} \). In eq. (6.2), the scale dependence is present in the spectral index \(n_s \) of primordial scalar perturbations and the transfer function \(T \). The latter accommodates the evolution of gravitational potentials from the radiation dominance to the matter era.

The galaxy linear power spectrum is defined as

\[
\mathcal{P}_g(k, z, \mu) = \left[b_s(z) + f_s(z) \mu \right]^2 \frac{\mathcal{P}_{L,0}(k)}{\sigma_{8,0}^2} \exp \left[-k^2 \mu^2 \Sigma_z^2(z) \right],
\]

where \(b_s(z) = b_g(z) \sigma_8(z) \) and \(f_s(z) = f_b(z) \sigma_8(z) \), with \(b_g \) and \(f_b \) being the galaxy bias and the baryonic growth rate, respectively. The cosine of the angle of unit wavevector \(k \) with respect to the line-of-sight direction is written as \(\mu = k \cdot r/r \). In eq. (6.5), we have inserted the damping factor \(\exp \left[-k^2 \mu^2 \Sigma_z^2(z) \right] \) to account for redshift uncertainties \(\sigma_z(z) \), weighed by \(\Sigma_z(z) = \sigma_z(z)/H(z) \). Finally, the observed matter power spectrum can be written as

\[
\mathcal{P}_{\text{obs}}(k, z, \mu) = \mathcal{P}_g(k, z, \mu) + \mathcal{P}_{\text{shot}}(z),
\]

where the shot noise is defined by \(\mathcal{P}_{\text{shot}}(z) = 1/n(z) \), with \(n \) being the comoving galaxy density per redshift bin.

For the damping of non-linear evolution of the matter power spectrum, we follow the approach given in refs. [111–113]. On scales larger than \(100 \, h^{-1} \text{Mpc} \), i.e., \(k \lesssim 0.06 \, h \, \text{Mpc}^{-1} \), which is our range of interest, the non-linear evolution leads to a damping/suppression of

\[2\] As we showed in eq. (5.41), the CDM power spectrum can be derived by performing the concomitant substitution \(f_b \rightarrow f_e + g_e \) in eq. (6.5).
all linear theory information, as shown in the left panel of figure 1 of ref. [114] and discussed extensively in refs. [111–116]. Such damping can be modelled by the non-linear power spectrum [111–113, 116]

\[P_{NL}(k, z, \mu) = P_{\text{obs}}(k, z, \mu) \exp \left(-\frac{k^2}{2} \left(1 - \mu^2 \right) \Sigma_\perp^2(z) - \frac{k^2}{2} \mu^2 \Sigma_\parallel^2(z) \right) \]

(6.7)

where the damping factors are needed to take into account the smearing due to non-linear structure formation along \((\Sigma_\parallel)\) and across \((\Sigma_\perp)\) the line of sight [111, 112]. The damping factors are given by

\[\Sigma_\perp(z) = 0.785 \Sigma_0 \frac{\delta_{b,m}(z)}{\delta_{b,m}(0)} \]

(6.8)

\[\Sigma_\parallel(z) = [1 + f_b(z)] \Sigma_\perp(z) \]

(6.9)

where \(\Sigma_0 = 11 h^{-1} \text{Mpc}\). One should point out that the numerical factors which appear in the previous expressions are technically model dependent, i.e. for the interacting vacuum energy models they might be different from the case of a standard \(\Lambda\)CDM. Although, it is generally assumed in the literature that their impact on the final Fisher analysis is mild, for they do not enter in the derivatives of the power spectrum with respect to the model parameters, thus effectively resulting in a sort of marginalization procedure [112].

7 Forecasts

We exploit a Fisher Matrix to compute errors in the J-PAS forecast. In the case of a single tracer, a generic Fisher Matrix element, \(F_{ij}\), can be calculated as [117]

\[F_{ij}(z) = \frac{1}{4\pi^2} \int_{-1}^{1} d\mu' \int_{k_{\text{min}}}^{k_{\text{max}}} dk' k'^2 \frac{\partial P_{\text{eff}}(k', z, \mu')}{\partial p_i} \frac{\partial \ln P_{\text{obs}}(k', z, \mu')}{\partial p_j} \]

(7.1)

\[\times \exp \left(-k'^2 \left(1 - \mu'^2 \right) \Sigma_\perp^2(z) - k'^2 \mu'^2 \Sigma_\parallel^2(z) \right) , \]

where \(k_{\text{min}} = 0.007 h \text{Mpc}^{-1}\) and \(k_{\text{max}} = 5 h \text{Mpc}^{-1}\) [118]. The effective volume of the survey is

\[V_{\text{eff}}(k, z, \mu) = V_a(z) \left[\frac{n(z) P_g(k, z, \mu)}{n(z) P_g(k, z, \mu) + 1} \right]^2 \]

(7.2)

where

\[V_a(z) = \frac{4\pi f_{\text{sky}}}{3} \left[\chi(\bar{z}_a)^3 - \chi(\bar{z}_{a-1})^3 \right] \]

(7.3)

is the volume span by the survey in each redshift bin, and

\[\chi(z) = \int_0^z \frac{dz'}{H(z')} \]

(7.4)

is the comoving distance with \(\bar{z}_a\) being the upper limit of \(a\)-th redshift bin.

Since the surveys considered in our analysis will have more than one tracer with different biases used to probe the same patch of the sky at the same redshift range, we also take into
\begin{tabular}{|l|c|c|c|c|}
\hline
\,(\mathit{z}_{\min}, \mathit{z}_{\max}) & \Delta \mathit{z} & \mathit{A}_{\text{survey}} & \mathit{\sigma}_z & \mathit{b}_g \\
\hline
DESI-BCG & (0.05, 0.6) & 14000 & 0.0005 (1 + \mathit{z}) & 1.34 \frac{\delta_{m,(0)}}{\delta_{m,(z)}} \\
DESI-LRG & (0.6, 1.2) & 0.2 & 1.7 \frac{\delta_{m,(0)}}{\delta_{m,(z)}} \\
DESI-ELG & (0.6, 1.8) & 0.2 & 0.84 \frac{\delta_{m,(0)}}{\delta_{m,(z)}} \\
DESI-QSO & (0.6, 1.8) & 0.001 (1 + \mathit{z}) & 0.53 + 0.289(1 + \mathit{z})^2 \\
\hline
Euclid & (0.9, 1.8) & 15000 & 0.001 (1 + \mathit{z}) & \text{table 3 in [119]} \\
J-PAS-LRG & (0.2, 1.2) & 1.7 \frac{\delta_{m,(0)}}{\delta_{m,(z)}} \\
J-PAS-ELG & (0.2, 1.4) & 0.2 & 4000–8500 & 0.003 (1 + \mathit{z}) & 1.34 \frac{\delta_{m,(0)}}{\delta_{m,(z)}} \\
J-PAS-QSO & (0.2, 4) & 0.53 + 0.289(1 + \mathit{z})^2 \\
\hline
\end{tabular}

Table 1. Surveys specifications for J-PAS [79, 80], DESI [76] and Euclid [119]. Column 1: name of the survey; column 2: redshift range; column 3: redshift bin width; column 4: survey area in sq. deg.; column 5: redshift error; column 6: galaxy bias functions.\footnote{Note that the provided galaxy bias functions should be considered model dependent, thus for our interacting vacuum energy model they might be different. But the impact on the final Fisher analysis is smeared out by performing a marginalization over these functions, as described in the following pages.}

account the cross correlation and define a generalized Fisher Matrix as [120, 121]

\begin{equation}
\mathbf{F}_{ij}(\mathit{z}) = \sum_{\mathit{X}, \mathit{Y} = 1}^{\Lambda} \frac{1}{4\pi^2} \int_{-1}^{1} d\mu' \int_{k_{\min}}^{k_{\max}} dk' k'^2 V_\mathit{a}(\mathit{z}) \frac{d \ln \hat{\mathit{P}}_{\mathit{X},\text{obs}}(k', \mathit{z}, \mu')}{dp_i} \frac{d \ln \hat{\mathit{P}}_{Y,\text{obs}}(k', \mathit{z}, \mu')}{dp_j} \times \exp \left[-k'^2 (1 - \mu'^2) \Sigma_\perp^2 (\mathit{z}) - k'^2 \mu'^2 \Sigma_\parallel^2 (\mathit{z}) \right],
\end{equation}

where the indices \((\mathit{X}, \mathit{Y})\) run over the galactic tracers, i.e., LRG, ELG, and QSO, and \(\Lambda = 2\) or 3 depending on the tracer (see table 1 for survey specifications). Also, the dimensionless effective power \(\hat{\mathit{P}}_{\mathit{X},\text{obs}}\) is defined as

\begin{equation}
\hat{\mathit{P}}_{\mathit{X},\text{obs}} = \mathit{n}_\mathit{X} \mathit{P}_{\mathit{X},\text{obs}},
\end{equation}

where \(\mathit{n}_\mathit{X}\) is the comoving galaxy density per redshift bin per galaxy population and the Fisher information density \(\hat{F}_{XY}\) is written as

\begin{equation}
\hat{F}_{XY} = \frac{1}{4} \left[\delta_{X,Y} \hat{\mathit{P}}_{\mathit{X},\text{obs}} \hat{\mathit{P}}_{\text{obs}} + \hat{\mathit{P}}_{\mathit{X},\text{obs}} \hat{\mathit{P}}_{\mathit{Y},\text{obs}} (1 - \hat{\mathit{P}}_{\text{obs}}) \right] (1 + \hat{\mathit{P}}_{\text{obs}})^{-2}
\end{equation}

with \(\hat{\mathit{P}}_{\text{obs}} = \sum_\mathit{X} \hat{\mathit{P}}_{\mathit{X},\text{obs}}\). Clearly, for the single-tracer case, eq. (7.5) reduces to eq. (7.1).

Adopting the nomenclature of ref. [122], we consider the following combinations in our analysis (also summarised in table 2):

- “\(\mathcal{P}(k)\)-marginalised-over-shape” Fisher Matrix, where only BAO information is taken into account (henceforth “BAO”);
Table 2. Fisher Matrix scenarios. Column 1: step in Fisher Matrix calculation; column 2: name of Fisher Matrix; column 3: parameters of the Fisher Matrix; column 4: comments.

- “$P(k)$-marginalised-over-shape” Fisher Matrix, with both BAO and RSD included (henceforth “BAO+RSD”);
- “full $P(k)$ method with growth information included” Fisher Matrix, where the power spectrum broadband “shape-parameters” are added to BAO and RSD (henceforth “BAO+RSD+PS”).

In order to avoid numerical instabilities, we follow the procedure reported in ref. [123] for marginalisation.\(^4\)

In table 2 we define: the general Fisher matrix in each redshift bin, F^{bin}; its marginalization over the uninformative parameters,\(^5\) depending on the considered scenario, $F^{\text{bin}}_{\text{marg}}$; the projection of $F^{\text{bin}}_{\text{marg}}$ onto the relevant two-dimensional parameter space related to the

\(^4\)Note that the shot noise P_{shot} makes the matrix ill-conditioned. After applying the check as in eq. (14) of ref. [123], we have effectively verified that the corresponding eigenvalue is much smaller than those related to the other parameters, and that the corresponding row is near zero. Thus, the shot noise component is uncorrelated with the parameters we are interested in, and we can safely ignore its contribution by cutting the corresponding rows and columns from the starting Fisher matrix.

\(^5\)Note the marginalization over the bias.
interacting model ($\mathcal{F}_{\text{bin}}^{\text{cosmo}}$) in each redshift bin; and $\mathcal{F}_{\text{cosmo}}^{\text{tot}}$, the total Fisher onto these two parameters obtained summing up contribution from each redshift bin. The values reported in our tables are derived from $\mathcal{F}_{\text{bin}}^{\text{cosmo}}$ and $\mathcal{F}_{\text{cosmo}}^{\text{tot}}$ after inversion, i.e., the errors on a given parameter are obtained from $\sigma_p = \sqrt{\mathcal{F}_{ii}^{-1}}$.

In this analysis, we generate the transfer function with the Boltzmann code CLASS [124] adapted to our perturbation equations. Our fiducial cosmology is a flat ΛCDM model with the following parameters: $\Omega_m = 0.31$, $h = 0.68$, $n_s = 0.96$, $\sigma_8 = 0.82$ and $N_{\text{eff}} = 3.046$ (with massless neutrinos). As mentioned earlier, the surveys considered in this analysis are J-PAS [79, 80], DESI [76], and Euclid [77]. The surveys specifications used in our forecast analysis can be found in table 1 (see also refs. [87, 119]), and in table 3 in appendix B, where we show the galaxy number densities for each survey. Note that for Euclid we use the most updated estimates available, different from those ones used in [87]. Moreover, for completeness, all the quantities used to obtain the Fisher matrices elements are shown in the appendix A.

8 Results

In this section we summarize the main results of the present work. In figures 2–7, we plot the J-PAS forecasted errors on Ω_m and α as functions of the redshift. In appendices C, D and E we present the errors at different redshifts derived from the analysis of BAO, BAO+RSD, and BAO+RSD+PS, respectively. In tables 4–15, we also show the errors found when we use δ_m instead of δ_b in eq. (6.5) for the sake of completeness and comparison, together with those for DESI and Euclid.

In figures 2 and 3, the errors on the parameters Ω_m and α are larger when only baryonic tracers are considered in most of the redshift range. This is attributed to the fact that δ_m is subject to stronger enhancement or suppression in comparison to δ_b (see figure 1), so the analysis based on the total matter contrast gives rise to tighter bounds on the coupling α. In figure 4 the difference between baryonic and total matter is particularly clear for ELGs and LRGs at low redshifts, where BAO and RSD are used with single tracers. As we observe in figure 5, constraining the whole power spectrum leads to more accurate results as compared to the case where only BAO and RSD are fitted.

In figures 6 and 7, we plot the estimated errors for Ω_m and α derived by using multi-tracers for both total matter and baryons. Besides J-PAS, we also show estimations of the DESI and Euclid surveys for comparison. We see from our results that J-PAS is competitive to DESI and Euclid for $z < 0.6$, which confirms the results of a previous J-PAS forecast on non-interacting dark energy models and modified gravity theories. The reader can compare, for example, our figures 6 and 7 to figures 3, 6 and 7 in [87]. More generally, our forecast also confirms the relative constraining power found between the different tracers of the three surveys analysed, and their same dependence on the redshift (compare e.g. our figures 4 and 5 to figure 3 of [87]).

Finally, we show in figures 8 and 9 the confidence regions in the $\{\Omega_m, \alpha\}$ plane for BAO+RSD and BAO+RSD+PS, respectively. We see that J-PAS with 8500 deg2 is very competitive to the other two surveys considered in our analysis, which confirms previous results shown, for example, in figure 14 of [75]. At low redshifts ($z < 0.6$), when the presence of dark energy and the dark sector interaction is more relevant, J-PAS provides the best constraints on the parameters thanks to its high galaxy densities detectable in that redshift range. In the BAO+RSD+PS case, the J-PAS predicted errors are comparable to the actual
Figure 2. Comparison of the J-PAS estimated errors for the interaction parameter α and the matter density parameter Ω_m with the BAO+RSD data. The red and black lines correspond to the case in which the baryonic and total matter growing functions are used in the analysis, respectively. Thin and thick lines are the plots for J-PAS 4000 deg2 and 8500 deg2, respectively.

Figure 3. The same as figure 2, but with the analysis based on BAO + RSD + PS.

errors derived from JLA SN Ia + Planck CMB data [21]. The full tables, showing all the results derived in our analysis, are shown in appendices C, D and E.

9 Conclusions

The goal of the analysis performed in this paper is to report the J-PAS forecasts for the parameter estimation in a class of interacting vacuum energy models. The vacuum energy does not give rise to an additional dynamical degree of freedom, but the interaction between vacuum energy and CDM modifies the background cosmological dynamics through an energy exchange. At the level of perturbations, there are in general contributions to the interacting four vector Q^μ arising from energy and momentum transfers, which are weighed by $Q \mu$ and q^μ respectively. We focused on the case where the momentum transfer is absent ($q^\mu = 0$), under which the four velocities of vacuum energy and CDM are equivalent to each other. Then the vacuum energy perturbation $\delta \Lambda$ is related to the CDM four velocity potential θ as $\delta \Lambda = Q \theta$, so the system of perturbation equations of motion is closed.

The interacting vacuum energy is chosen to be of the form (5.27) with σ given by (5.28), in which case $Q = -\alpha \sigma H^{-2\alpha - 1} \rho_m$. Then, the Hubble parameter is analytically known as a function of the redshift, see eq. (5.30). The coupling constant α is the only additional
parameter to those appearing in the ΛCDM model ($\alpha = 0$). For $\alpha > 0$, the growth rate of CDM density contrast δ_c is enhanced in comparison to the ΛCDM. This also leads to the larger growth rates of baryon and total matter density contrasts. For $\alpha < 0$, the evolution of δ_c, δ_b, and δ_m is suppressed relative to the $\alpha = 0$ case. These properties manifest themselves in the observations of the galaxy power spectrum including BAO and RSD.

We carried out the J-PAS forecasts for the matter density parameter Ω_m and the coupling α. J-PAS will cover a region of 8500 deg2 in the northern sky. We extended the analysis for a smaller covering of 4000 deg2 with a more conservative estimation of the impact of the data. For a 8500 deg2 covering, it has been shown that J-PAS will lead to parameter estimations comparable to those obtained from DESI and Euclid for the same class of interacting models. In particular, for the redshift range $z < 0.6$, the error bars in J-PAS measurements can be even smaller than those provided by DESI and Euclid — see figures 6 and 7. In general, the J-PAS constraints will tighten considerably the estimations of those parameters with respect to previous large-scale structure data, with precision comparable to that we have with actual CMB data. We conclude that confirming or ruling out the ΛCDM model by finding an interaction signature in a joint analysis of SN Ia, CMB, and large-scale structure data, with any of the three surveys considered in our analysis or by combining them, is a real and promising possibility.
Figure 5. The same as figure 4, but with the analysis based on BAO + RSD + PS.

Acknowledgments

We are thankful to our colleagues of J-PAS Theory Working Group for helpful discussions. MB acknowledges Istituto Nazionale di Fisica Nucleare (INFN), sezione di Napoli, iniziativa specifica QGSKY. RvM acknowledges support from the Programa de Capacitação Institucional do Observatorio Nacional PCI/ON/MCTI. SC is supported by CNPq (Grants No. 307467/2017-1 and 420641/2018-1). JA is supported by CNPq (Grants No. 310790/2014-0 and 400471/2014-0) and FAPERJ (Grant No. 233906). JCF is supported by CNPq (Grant No. 304521/2015-9) and FAPES (Grant No. 78/2017). ST is supported by the Grant-in-Aid for Scientific Research Fund of the JSPS No. 19K03854. VM thanks CNPq (Brazil) and FAPES (Brazil) for partial financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 888258.

This paper has gone through internal review by the J-PAS collaboration. Funding for the J-PAS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversión de Teruel, European FEDER funding and the MINECO and by the Brazilian agencies FINEP, FAPESP, FAPERJ and by the National Observatory of Brazil.

A Fisher matrices derivatives

The elements of the Fisher Matrices are better visualized if we rewrite the observed matter power spectrum considering the mapping between the fiducial cosmology and the real
Figure 6. Estimated error for Ω_m and α as a function of z with the BAO+RSD data. We show estimations from multi-tracers for Euclid (dotted), DESI (dashed; BGS at lower redshifts; LRG+ELG+QSO at higher redshifts), and for J-PAS survey in both 4000 deg2 (thin solid) and 8500 deg2 (thick solid) regions.

unknown cosmological background:

$$P_{\text{obs}}(k_{\perp}^{\text{fid}}, k_{\parallel}^{\text{fid}}, z) = \alpha_{\perp}^2 \alpha_{\parallel} \left[b_s(z) + f_s(z) \left(\frac{\sqrt{k_{\parallel}^{2,\text{fid}} \alpha_{\parallel}^2 + k_{\perp}^{2,\text{fid}} \alpha_{\perp}^2}}{\sqrt{k_{\parallel}^{2,\text{fid}} \alpha_{\parallel}^2 + k_{\perp}^{2,\text{fid}} \alpha_{\perp}^2}} \right) \right]^2 \frac{P_L(k = \sqrt{k_{\parallel}^{2,\text{fid}} \alpha_{\parallel}^2 + k_{\perp}^{2,\text{fid}} \alpha_{\perp}^2})}{\sigma_{8,0}^2} \cdot \exp \left(-k^2 \mu^2 \frac{\sigma_z^2}{\alpha^2 H_z^{2,\text{fid}}} \right) + P_{\text{shot}},$$

where, following BAO literature, we have defined the tangential and radial BAO modes as

$$\alpha_{\perp}(z) \equiv \frac{r_{\perp}(z)}{r_{\parallel}(z)} = \frac{D_{\perp}(z)}{D_{\parallel}(z)},$$

$$\alpha_{\parallel}(z) \equiv \frac{r_{\parallel}(z)}{r_{\parallel}(z)} = \frac{H(z)}{H_{\parallel}(z)},$$

where

$$r_{\parallel}(z) = \frac{c}{H(z) r_s(z_d)},$$

$$r_{\perp}(z) = \frac{D_{\parallel}(z)}{r_s(z_d)},$$
Figure 7. The same as figure 6, but with the analysis based on BAO + RSD + PS.

Figure 8. 1σ contour error around $\alpha = 0$ and $\Omega_m = 0.31$ using multi-tracers for J-PAS 4000 deg2 (thin solid), J-PAS 8500 deg2 (thick solid), DESI (dashed) and Euclid (dotted) surveys, with the BAO+RSD data.

where we explicitly wrote the speed of light c. The angular diameter distance is related to the comoving distance defined in eq. (7.4) by $D_A(z) \equiv \chi/(1 + z)$ and r_s is the sound horizon at dragging epoch, z_d. Note that we are interested in errors on $\ln D_A$ and $\ln H$ which, by
previous definitions, are given by

$$\frac{\sigma_{\alpha_\perp}}{\alpha_\perp} = \frac{\sigma_D}{D} = \sigma_{\ln D},$$ \hspace{1cm} (A.6)

$$\frac{\sigma_{\alpha_\parallel}}{\alpha_\parallel} = \frac{\sigma_H}{H} = \sigma_{\ln H},$$ \hspace{1cm} (A.7)

and considering that the Fisher Matrices have to be evaluated at the fiducial cosmology, for which we have $\alpha_\perp = 1$ and $\alpha_\parallel = 1$. We have also used the definitions

$$k^2 = k_\parallel^2 + k_\perp^2,$$ \hspace{1cm} (A.8)

$$\mu^2 = \frac{k_\parallel^2}{k^2},$$ \hspace{1cm} (A.9)

and the transformation rules

$$k_\perp = k_{\perp,\text{fid}} \alpha_\perp,$$ \hspace{1cm} (A.10)

$$k_\parallel = k_{\parallel,\text{fid}} \alpha_\parallel.$$ \hspace{1cm} (A.11)

In the following, we report the expressions of all the functions which are needed to calculate the Fisher matrices:

- Derivatives of the power spectrum, $\ln P_{\text{obs}}$, with respect to α_\perp:

$$\frac{\partial \ln P_{\text{obs}}}{\partial \alpha_\perp} = \left[\frac{2}{\alpha_\perp} + \frac{2f_s}{b_s + f_s \mu^2} \frac{\partial \mu^2}{\partial \alpha_\perp} + \frac{\partial \ln P_{L,0}}{\partial k} \frac{\partial k}{\partial \alpha_\perp} \right] \frac{P_g}{P_{\text{obs}}} - \frac{k \sigma_c^2}{\alpha_\parallel^2 H_\text{fid}^2} \left(\frac{\partial k}{\partial \alpha_\perp} + k \frac{\partial \mu^2}{\partial \alpha_\perp} \right),$$ \hspace{1cm} (A.12)
with

\[
\frac{d\mu^2}{d\alpha_\perp} = -\frac{2}{\alpha_\perp} \mu^2(1 - \mu^2),
\]
(A.13)

\[
\frac{dk}{d\alpha_\perp} = \frac{k}{\alpha_\perp} (1 - \mu^2).
\]
(A.14)

- Derivatives of the power spectrum, \(\ln P_{\text{obs}}\), with respect to \(\alpha_||\), when we consider the baryonic matter linear contrast, \(\delta_b\):

\[
\frac{d \ln P_{\text{obs}}}{d \alpha_||} = \frac{1}{\alpha_||} + \frac{2 f_s}{b_s + f_s \mu^2} \frac{d\mu^2}{d\alpha_||} + \frac{d \ln P_{L,0}}{d \alpha_||} \frac{dk}{d \alpha_||} + \frac{k \sigma_z^2}{\alpha_||^2 H^2_{\text{fid}}} \left(-2 \mu^2 \frac{\partial k}{\partial \alpha_||} - k \frac{\partial \mu^2}{\partial \alpha_||} + 2 k \mu^2 \right) \frac{\mathcal{P}_g}{\mathcal{P}_{\text{obs}}},
\]
(A.15)

and when we consider the total (dark plus baryonic) matter linear contrast, \(\delta_m\):

\[
\frac{d \ln P_{\text{obs}}}{d \alpha_||} = \frac{1}{\alpha_||} + \frac{2}{b_s + f_s \mu^2} \left(f_s \frac{d\mu^2}{d\alpha_||} + \frac{\partial f_s}{\partial \alpha_||} \mu^2 \right) + \frac{d \ln P_{L,0}}{d \alpha_||} \frac{dk}{d \alpha_||} - \frac{k \sigma_z^2}{\alpha_||^2 H^2_{\text{fid}}} \left(2 \mu^2 \frac{\partial f_s}{\partial \alpha_||} + k \frac{\partial \mu^2}{\partial \alpha_||} - 2 k \mu^2 \right) \frac{\mathcal{P}_g}{\mathcal{P}_{\text{obs}}},
\]
(A.16)

with

\[
\frac{d\mu^2}{d\alpha_||} = \frac{2}{\alpha_||} \mu^2(1 - \mu^2),
\]
(A.17)

\[
\frac{dk}{d\alpha_||} = \frac{k}{\alpha_||} \mu^2.
\]
(A.18)

The growth rate of total matter relevant to the RSD measurements is given by \(f_s = (f_m + g_m) \sigma_8\), where

\[
g_m \equiv \frac{Q}{H \rho_m} = \frac{\Gamma}{H} = -3 \alpha(1 - \Omega_m) \left(\frac{H_0}{H} \right)^{2(\alpha + 1)} = -3 \alpha(1 - \Omega_m) \left(\frac{H_0}{\alpha_|| H_{\text{fid}}} \right)^{2(\alpha + 1)}.
\]
(A.19)

Then, we have

\[
\frac{\partial f_s}{\partial \alpha_||} = \frac{\partial g_m}{\partial \alpha_||} \sigma_8,
\]
(A.20)

\[
\frac{\partial g_m}{\partial \alpha_||} = 3 \alpha(1 - \Omega_m) \frac{2(\alpha + 1)}{\alpha_||^{2\alpha + 3}} \left(\frac{H_0}{H_{\text{fid}}} \right)^{2(\alpha + 1)}.
\]
(A.21)

- Derivatives of the power spectrum, \(\ln P_{\text{obs}}\), with respect to the growth rate, \(f_s\):

\[
\frac{d \ln P_{\text{obs}}}{df_s} = \frac{2 \mu^2}{b_s + f_s \mu^2} \frac{\mathcal{P}_g}{\mathcal{P}_{\text{obs}}}.
\]
(A.22)
• Derivatives of the power spectrum, \(\ln P_{\text{obs}} \), with respect to the galaxy bias, \(b_s \):

\[
\frac{d \ln P_{\text{obs}}}{db_s} = \frac{2}{b_s + f_s \mu^2} \frac{P_g}{P_{\text{obs}}}.
\] (A.23)

• Derivatives of the power spectrum, \(\ln P_{\text{obs}} \), with respect to the shot noise, \(P_{\text{shot}} \):

\[
\frac{d \ln P_{\text{obs}}}{dP_{\text{shot}}} = \frac{1}{P_{\text{obs}}},
\] (A.24)

and we have assumed \(P_{\text{fid}}^{\text{shot}} = 0 \) for the fiducial model.

• Derivatives of the power spectrum, \(\ln P_{\text{obs}} \), with respect to \(\Omega_m \):

\[
\frac{\partial \ln P_{\text{obs}}}{\partial \Omega_m} = \frac{P_g}{P_{\text{obs}}} \left[\frac{2 \partial \alpha_{\perp}}{\alpha_{\perp} \partial \Omega_m} + \frac{1}{\alpha_{\parallel} \partial \Omega_m} + \frac{2}{b_s + f_s \mu^2} \left(\frac{\partial b_s}{\partial \Omega_m} + \frac{\partial f_s \mu^2}{\partial \Omega_m} + f_s \frac{\partial \mu^2}{\partial \Omega_m} \right) \right] + \frac{1}{P_{L,0} \partial \Omega_m} \frac{k \sigma_0^2}{\alpha_{\parallel} H^{2, \text{fid}}} \left(2 \mu^2 \frac{\partial k}{\partial \Omega_m} + k \frac{\partial \mu^2}{\partial \Omega_m} - \frac{2 k \mu^2}{\alpha_{\parallel} \partial \Omega_m} \right),
\] (A.25)

with

\[
\frac{\partial k}{\partial \Omega_m} = \frac{\partial k}{\partial \alpha_{\perp} \partial \Omega_m} + \frac{\partial k}{\partial \alpha_{\parallel} \partial \Omega_m},
\] (A.26)

\[
\frac{\partial \mu^2}{\partial \Omega_m} = \frac{\partial \mu^2}{\partial \alpha_{\perp} \partial \Omega_m} + \frac{\partial \mu^2}{\partial \alpha_{\parallel} \partial \Omega_m}.
\] (A.27)

• Derivatives of the radial mode, \(\alpha_{\parallel} \), with respect to \(\Omega_m \):

\[
\frac{\partial \alpha_{\parallel}}{\partial \Omega_m} = \frac{1}{E^{\text{fid}}} \frac{\partial E}{\partial \Omega_m},
\] (A.28)

\[
\frac{\partial E}{\partial \Omega_m} = \frac{\alpha^{-3(\alpha+1)} - 1}{2(\alpha + 1)} \frac{[\Omega_m (\alpha^{-3(\alpha+1)} - 1) + 1]^{-\alpha/(\alpha+1)}}{\sqrt{[\Omega_m (\alpha^{-3(\alpha+1)} - 1) + 1]^{1/(\alpha+1)}}},
\] (A.29)

where \(E \equiv H/H_0 \).

• Derivatives of the tangential mode, \(\alpha_{\perp} \), with respect to \(\Omega_m \):

\[
\frac{\partial \alpha_{\perp}}{\partial \Omega_m} = -\frac{1}{d_C \partial \Omega_m} \frac{1}{\partial \Omega_m},
\] (A.30)

\[
d_C(z) = \int_0^z dz' \frac{1}{E(z')},
\] (A.31)

\[
\frac{\partial d_C}{\partial \Omega_m} = -\int_0^z \frac{dz'}{E^2(z') \partial \Omega_m}.
\] (A.32)

• Derivatives of the linear power spectrum, \(P_{L,0} \), with respect to \(\Omega_m \):

\[
\frac{\partial P_{L,0}}{\partial \Omega_m} = P_0 n_s k^{n_s-1} \left(\frac{\partial k}{\partial \Omega_m} \right) T^2 + P_0 k^{n_s} \frac{\partial T^2}{\partial \Omega_m},
\] (A.33)

where derivatives of the transfer function are calculated numerically.
• Derivatives of the growth rate, \(f_s = f_b \sigma_8 \), with respect to \(\Omega_m \): when considering only baryonic matter,

\[
\frac{\partial f_s}{\partial \Omega_m} = \left(\frac{\partial f_b}{\partial \Omega_m} \right) \sigma_8 + f_b \left(\frac{\partial \sigma_8}{\partial \Omega_m} \right). \tag{A.34}
\]

For total matter, the growth rate relevant to the RSD measurements is given by \(f_s = (f_m + g_m) \sigma_8 \), where \(g_m = Q / (H \rho_m) \). Then, it follows that

\[
\frac{\partial f_s}{\partial \Omega_m} = \left(\frac{\partial f_m}{\partial \Omega_m} + \frac{\partial g_m}{\partial \Omega_m} \right) \sigma_8 + (f_m + g_m) \left(\frac{\partial \sigma_8}{\partial \Omega_m} \right), \tag{A.35}
\]

where

\[
\frac{\partial g_m}{\partial \Omega_m} = 3\alpha \left(\frac{H_0}{\alpha || H_{\text{fid}}^\alpha} \right)^{2(\alpha+1)} \left[1 + \frac{2(1 - \Omega_m)(1 + \alpha) \frac{\partial \alpha ||}{\partial \Omega_m}}{\alpha ||} \right], \tag{A.36}
\]

and

\[
\frac{\partial \sigma_8}{\partial \Omega_m} = \frac{\sigma_{8,0}}{\delta_{m,0}} \left(\frac{\partial \delta_m}{\partial \Omega_m} \right) + \frac{\sigma_{8,0} \delta_{m,0}^2}{\delta_{m,0}} \left(\frac{\partial \delta_{m,0}}{\partial \Omega_m} \right). \tag{A.37}
\]

Note that derivatives of the density contrasts \(\delta_{b,m} \) and of the growth rates \(f_{b,m} \) are calculated numerically.

• Derivatives of the bias factor, \(b_s \), with respect to \(\Omega_m \):

\[
\frac{\partial b_s}{\partial \Omega_m} = \left(\frac{\partial b_g}{\partial \Omega_m} \right) \sigma_8 + b_g \left(\frac{\partial \sigma_8}{\partial \Omega_m} \right). \tag{A.38}
\]

Given the different definition of the galaxy bias for the tracers we have used in this work, in order to treat each of them in the same way, we have set all \(\partial b_g / \partial \Omega_m = 0 \).

• Derivatives of the power spectrum, \(\ln P_{\text{obs}} \), with respect to \(\alpha \): the same equations hold, but with

\[
\frac{\partial E}{\partial \alpha} = -\sqrt{\Omega_m \left(a^{-3(\alpha+1)} - 1 \right) + 1} \frac{1}{2(\alpha+1)^2} \left[\frac{3(\alpha + 1) \Omega_m a^{-3(\alpha+1)} \log(a)}{\Omega m \left(a^{-3(\alpha+1)} - 1 \right) + 1} + \log \left(\frac{\Omega m \left(a^{-3(\alpha+1)} - 1 \right) + 1}{\Omega m} \right) \right] \tag{A.39}
\]

\[
\frac{\partial g_m}{\partial \alpha} = -3(1 - \Omega_m) \left(\frac{H_0}{\alpha || H_{\text{fid}}^\alpha} \right)^{2(\alpha+1)} \left[1 + 2\alpha \ln \left(\frac{H_0}{\alpha || H_{\text{fid}}^\alpha} \right) - \frac{2\alpha(\alpha + 1) \frac{\partial \alpha ||}{\partial \alpha}}{\alpha ||} \right]. \tag{A.40}
\]

• Derivatives of the power spectrum, \(\ln P_{\text{obs}} \), with respect to \(h \): the same equations hold, except for:

\[
\frac{\partial \alpha ||}{\partial h} = \frac{\alpha ||}{h}, \tag{A.41}
\]

\[
\frac{\partial \alpha_\perp}{\partial h} = \frac{\alpha_\perp}{h}, \tag{A.42}
\]

\[
\frac{\partial \delta_{b,m}}{\partial h} = \frac{\partial \sigma_8}{\partial h} = \frac{\partial f_{b,m}}{\partial h} = \frac{\partial g_m}{\partial h} = 0. \tag{A.43}
\]
• Derivatives of the power spectrum, $\ln P_{\text{obs}}$, with respect to n_s: all derivatives are zero, except for:

$$\frac{\partial P_{L,0}}{\partial n_s} = P_{L,0} \ln k,$$

(A.44)

$$\frac{\partial \ln P_{\text{obs}}}{\partial n_s} = \frac{P_g}{P_{\text{obs}}} \ln k.$$

(A.45)

B Table for galaxy number densities

z	Euclid	DESI	JPAS					
	ELG	BCG	LRG	ELG	QSO	LRG	ELG	QSO
0.1	—	2240	0	0	0	—	—	—
0.3	—	240	0	0	0	226.58	2958.55	0.45
0.5	—	6.3	0	0	0	156.33	1181.13	1.14
0.7	—	0	48.7	69.1	2.75	68.8	502.13	1.61
0.9	—	0	19.1	81.9	2.60	11.98	137.95	2.27
1.0	67.0	—	—	—	0	2	15.33	1181.13
1.1	—	0	1.18	47.7	2.55	0.9	41.20	2.86
1.2	54.4	—	—	—	—	—	—	—
1.3	—	0	0	28.2	2.50	0	6.73	3.60
1.4	41.0	—	—	—	—	—	—	—
1.5	—	0	0	11.2	2.40	0	0	3.60
1.65	25.4	—	—	—	—	—	—	—
1.7	—	0	0	1.68	2.30	0	0	3.21
1.9	—	—	—	—	—	0	0	2.86
2.1	—	—	—	—	—	0	0	2.55
2.3	—	—	—	—	—	0	0	2.27
2.5	—	—	—	—	—	0	0	2.03
2.7	—	—	—	—	—	0	0	1.81
2.9	—	—	—	—	—	0	0	1.61
3.1	—	—	—	—	—	0	0	1.43
3.3	—	—	—	—	—	0	0	1.28
3.5	—	—	—	—	—	0	0	1.14
3.7	—	—	—	—	—	0	0	0.91
3.9	—	—	—	—	—	0	0	0.72

Table 3. Number densities of bright galaxies, luminous red galaxies, emission line galaxies and quasars for Euclid [119], DESI [76] and J-PAS [79, 80], in units of $10^{-5} \ h^3 \ Mpc^{-3}$. Note that for Euclid the original estimates in table 3 of [119] have been converted to our fiducial cosmological background.
C Tables for BAO

BAO	ELG	
z	σ_{Ω_m}	σ_α
1.00	0.128	0.503
1.20	0.105	0.376
1.40	0.097	0.321
1.65	0.085	0.260
Total	0.044	0.148

Table 4. Errors for Euclid using baryons and total matter. As we are focusing only on geometrical cosmological quantities, there is no difference between the baryons and the total matter scenario in this case.

BAO	Multi-tracers	
z	σ_{Ω_m}	σ_α
0.1	6.101	163.976
0.3	0.804	7.875
0.5	0.893	5.533
0.7	0.160	0.754
0.9	0.114	0.461
1.1	0.123	0.455
1.3	0.191	0.944
1.5	0.222	0.920
1.7	0.356	1.302
Total	0.051	0.211

Table 5. Errors for DESI using baryons and total matter. As we are focusing only on geometrical cosmological quantities, there is no difference between the baryons and the total matter scenario in this case.
Table 6. Errors for J-PAS 4000 deg2 using baryons and total matter. As we are focusing only on geometrical cosmological quantities, there is no difference between the baryons and the total matter scenario in this case.
Table 7. Errors for J-PAS 8500 deg2 using baryons and total matter. As we are focusing only on geometrical cosmological quantities, there is no difference between the baryons and the total matter scenario in this case.
D Tables for BAO + RSD

BAO+RSD	ELG			
	tot. m.	bar. m.		
z	σ_{Ω_m}	σ_α	σ_{Ω_m}	σ_α
1.00	0.040	0.119	0.10	0.404
1.20	0.037	0.104	0.095	0.346
1.40	0.038	0.099	0.093	0.312
1.65	0.036	0.087	0.083	0.258
Total	0.019	0.087	0.041	0.138

Table 8. Errors for Euclid using baryons and total matter.

BAO+RSD	Multi-tracers			
	tot. m.	bar. m.		
z	σ_{Ω_m}	σ_α	σ_{Ω_m}	σ_α
0.1	1.013	4.683	1.289	3.369
0.3	0.137	0.470	0.183	0.632
0.5	0.155	0.511	0.201	1.069
0.7	0.038	0.145	0.084	0.387
0.9	0.034	0.114	0.083	0.338
1.1	0.041	0.120	0.104	0.392
1.3	0.040	0.126	0.076	0.384
1.5	0.054	0.154	0.132	0.570
1.7	0.100	0.252	0.267	1.019
Total	0.017	0.054	0.036	0.150

Table 9. Errors for DESI using baryons and total matter.
z	σ_{Ω_m}	σ_{α}										
0.3	0.124 0.753	0.185 1.030	0.286 0.894	0.369 1.198	0.208 0.836	0.291 1.126	0.602 26.666	9.364 30.166				
0.5	0.078 0.383	0.144 0.784	0.139 0.420	0.178 0.911	0.105 0.393	0.159 0.831	1.532 5.510	2.251 11.465				
0.7	0.064 0.253	0.144 0.668	0.105 0.301	0.176 0.928	0.079 0.266	0.155 0.769	0.856 2.754	1.590 7.691				
0.9	0.071 0.227	0.166 0.692	0.139 0.368	0.283 1.291	0.081 0.246	0.186 0.809	0.547 1.587	1.238 5.272				
1.1	0.099 0.279	0.238 0.913	0.565 1.375	1.307 5.107	0.107 0.300	0.260 0.998	0.406 1.081	1.001 3.820				
1.3	0.184 0.474	0.451 1.572	—	—	0.269 0.701	0.687 2.378	0.310 0.772	0.769 2.693				
1.5	0.282 0.663	0.679 2.225	—	—	—	—	0.282 0.663	0.679 2.225				
1.7	0.280 0.626	0.649 2.013	—	—	—	—	0.280 0.626	0.649 2.013				
1.9	0.280 0.601	0.621 1.847	—	—	—	—	0.280 0.601	0.621 1.847				
2.1	0.281 0.581	0.599 1.718	—	—	—	—	0.281 0.581	0.599 1.718				
2.3	0.285 0.573	0.584 1.625	—	—	—	—	0.285 0.573	0.584 1.625				
2.5	0.288 0.566	0.571 1.548	—	—	—	—	0.288 0.566	0.571 1.548				
2.7	0.293 0.564	0.563 1.490	—	—	—	—	0.293 0.564	0.563 1.490				
2.9	0.301 0.569	0.562 1.456	—	—	—	—	0.301 0.569	0.562 1.456				
3.1	0.310 0.577	0.563 1.430	—	—	—	—	0.310 0.577	0.563 1.430				
3.3	0.319 0.586	0.564 1.408	—	—	—	—	0.319 0.586	0.564 1.408				
3.5	0.330 0.601	0.570 1.401	—	—	—	—	0.330 0.601	0.570 1.401				
3.7	0.377 0.681	0.639 1.545	—	—	—	—	0.377 0.681	0.639 1.545				
3.9	0.434 0.776	0.720 1.718	—	—	—	—	0.434 0.776	0.720 1.718				
Total	0.030 0.082	0.049 0.176	0.068 0.189	0.104 0.499	0.043 0.132	0.081 0.345	0.077 0.154	0.134 0.570				

Table 10. Errors for J-PAS 4000 deg2 using baryons and total matter.
BAO+RSD

| tot. m. bar. m. |
|----------------|----------------|----------------|----------------|----------------|
| 0.3 | 0.196 0.643 | 0.253 0.822 | 0.143 0.574 | 0.200 0.772 |
| 0.5 | 0.096 0.288 | 0.122 0.625 | 0.072 0.270 | 0.109 0.570 |
| 0.7 | 0.072 0.206 | 0.121 0.637 | 0.054 0.182 | 0.106 0.527 |
| 0.9 | 0.096 0.252 | 0.194 0.886 | 0.055 0.169 | 0.128 0.555 |
| 1.1 | 0.068 0.191 | 0.164 0.626 | 0.073 0.206 | 0.178 0.685 |
| 1.3 | 0.096 0.258 | 0.308 1.078 | 0.184 0.481 | 0.471 1.632 |
| 1.5 | 0.096 0.252 | 0.194 0.886 | 0.055 0.169 | 0.128 0.555 |
| 1.7 | 0.096 0.252 | 0.194 0.886 | 0.055 0.169 | 0.128 0.555 |
| 1.9 | 0.192 0.412 | 0.426 1.267 | 0.192 0.412 | 0.426 1.267 |
| 2.1 | 0.193 0.399 | 0.411 1.179 | 0.193 0.419 | 0.411 1.179 |
| 2.3 | 0.195 0.393 | 0.401 1.114 | 0.195 0.393 | 0.401 1.114 |
| 2.5 | 0.198 0.388 | 0.392 1.062 | 0.198 0.388 | 0.392 1.062 |
| 2.7 | 0.201 0.387 | 0.386 1.022 | 0.201 0.387 | 0.386 1.022 |
| 2.9 | 0.207 0.390 | 0.386 0.999 | 0.207 0.390 | 0.386 0.999 |
| 3.1 | 0.213 0.396 | 0.386 0.981 | 0.213 0.396 | 0.386 0.981 |
| 3.3 | 0.219 0.402 | 0.387 0.966 | 0.219 0.402 | 0.387 0.966 |
| 3.5 | 0.227 0.412 | 0.391 0.961 | 0.227 0.412 | 0.391 0.961 |
| 3.7 | 0.259 0.467 | 0.438 1.060 | 0.259 0.467 | 0.438 1.060 |
| 3.9 | 0.298 0.533 | 0.494 1.178 | 0.298 0.533 | 0.494 1.178 |
| Total | 0.046 0.129 | 0.071 0.342 | 0.030 0.090 | 0.055 0.236 |

Table 11. Errors for J-PAS 8500 deg2 using baryons and total matter.

E Tables for BAO + RSD + PS

tot. m. bar. m.	tot. m. bar. m.
1.00	0.0029 0.018
1.20	0.0027 0.014
1.40	0.0027 0.013
1.65	0.0025 0.011
Total	0.001 0.007

Table 12. Errors for Euclid using baryons and total matter.
Table 13. Errors for DESI using baryons and total matter.

z	σ_{Ω_m}	σ_α	σ_{Ω_m}	σ_α
0.1	0.014	0.354	0.014	0.194
0.3	0.006	0.102	0.005	0.084
0.5	0.008	0.101	0.007	0.127
0.7	0.003	0.027	0.002	0.040
0.9	0.003	0.019	0.002	0.034
1.1	0.003	0.017	0.002	0.036
1.3	0.003	0.021	0.002	0.039
1.5	0.004	0.023	0.003	0.057
1.7	0.006	0.036	0.007	0.101
Total	0.001	0.009	0.001	0.016

Table 14. Errors for J-PAS 4000 deg2 using baryons and total matter.

z	σ_{Ω_m}	σ_α	σ_{Ω_m}	σ_α
0.3	0.010	0.141	0.011	0.188
0.5	0.006	0.073	0.007	0.147
0.7	0.005	0.047	0.006	0.139
0.9	0.005	0.039	0.007	0.166
1.1	0.007	0.041	0.026	0.589
1.3	0.011	0.063	0.016	0.201
1.5	0.015	0.093	0.006	0.267
1.7	0.014	0.088	0.007	0.147
1.9	0.014	0.086	0.006	0.159
2.1	0.014	0.084	0.006	0.145
2.3	0.014	0.084	0.006	0.135
2.5	0.014	0.085	0.006	0.128
2.7	0.014	0.086	0.006	0.124
2.9	0.015	0.087	0.006	0.121
3.1	0.015	0.090	0.006	0.120
3.3	0.015	0.092	0.006	0.119
3.5	0.016	0.095	0.006	0.120
3.7	0.018	0.108	0.006	0.134
3.9	0.020	0.124	0.006	0.150
Total	0.002	0.016	0.004	0.038
Table 15. Errors for J-PAS 8500 deg2 using baryons and total matter.

References

[1] E.J. Copeland, M. Sami and S. Tsujikawa, *Dynamics of dark energy*, *Int. J. Mod. Phys. D* 15 (2006) 1753 [hep-th/0603057] [SPIRE]

[2] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, *Modified Gravity and Cosmology*, *Phys. Rept.* 513 (2012) 1 [arXiv:1106.2476] [SPIRE]

[3] A. Joyce, B. Jain, J. Khoury and M. Trodden, *Beyond the Cosmological Standard Model*, *Phys. Rept.* 568 (2015) 1 [arXiv:1407.0059] [SPIRE]

[4] R. Kase and S. Tsujikawa, *Dark energy in Horndeski theories after GW170817: A review*, *Int. J. Mod. Phys. D* 28 (2019) 1942005 [arXiv:1809.08735] [SPIRE]

[5] P.J.E. Peebles, *Tests of Cosmological Models Constrained by Inflation*, *Astrophys. J.* 284 (1984) 439 [SPIRE]

[6] P.J.E. Peebles, *Large scale background temperature and mass fluctuations due to scale invariant primordial perturbations*, *Astrophys. J. Lett.* 263 (1982) L1 [SPIRE]

[7] PLANCK collaboration, *Planck 2018 results. VI. Cosmological parameters*, *Astron. Astrophys.* 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [SPIRE]

[8] A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, *Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM*, *Astrophys. J.* 876 (2019) 85 [arXiv:1903.07603] [SPIRE]

[9] W.L. Freedman et al., *The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch*, *Astrophys. J.* 882 (2019) 34 [arXiv:1907.05922] [SPIRE]

[10] M. Ozer and M.O. Taha, *A Model of the Universe with Time Dependent Cosmological Constant Free of Cosmological Problems*, *Nucl. Phys. B* 287 (1987) 776 [SPIRE]
[11] K. Freese, F.C. Adams, J.A. Frieman and E. Mottola, Cosmology with Decaying Vacuum Energy, *Nucl. Phys. B* **287** (1987) 797 [insPIRE].

[12] M.S. Berman, Cosmological models with a variable cosmological term, *Phys. Rev. D* **43** (1991) 1075 [insPIRE].

[13] D. Pavon, Nonequilibrium fluctuations in cosmic vacuum decay, *Phys. Rev. D* **43** (1991) 375 [insPIRE].

[14] J.C. Carvalho, J.A.S. Lima and I. Waga, On the cosmological consequences of a time dependent lambda term, *Phys. Rev. D* **46** (1992) 2404 [insPIRE].

[15] I.L. Shapiro and J. Solà, Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology, *JHEP* **02** (2002) 006 [hep-th/0012227] [insPIRE].

[16] J.S. Alcaniz, H.A. Borges, S. Carneiro, J.C. Fabris, C. Pigozzo and W. Zimdahl, A cosmological concordance model with dynamical vacuum term, *Phys. Lett. B* **716** (2012) 165 [arXiv:1201.5919] [insPIRE].

[17] N.C. Devi, H.A. Borges, S. Carneiro and J.S. Alcaniz, Number Counts and Dynamical Vacuum Cosmologies, *Mon. Not. Roy. Astron. Soc.* **448** (2015) 37 [arXiv:1407.1821] [insPIRE].

[18] W. Zimdahl, H.A. Borges, S. Carneiro, J.C. Fabris and W.S. Hipolito-Ricaldi, Non-adiabatic perturbations in decaying vacuum cosmology, *JCAP* **04** (2011) 028 [arXiv:1009.0672] [insPIRE].

[19] D. Wands, J. De-Santiago and Y. Wang, Inhomogeneous vacuum energy, *Class. Quant. Grav.* **29** (2012) 145017 [arXiv:1203.6776] [insPIRE].

[20] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri and D. Wands, Indications of a late-time interaction in the dark sector, *Phys. Rev. Lett.* **113** (2014) 181301 [arXiv:1406.7297] [insPIRE].

[21] M. Benetti, W. Miranda, H.A. Borges, C. Pigozzo, S. Carneiro and J.S. Alcaniz, Looking for interactions in the cosmological dark sector, *JCAP* **12** (2019) 023 [arXiv:1908.07213] [insPIRE].

[22] R. von Marttens, L. Casarini, D.F. Mota and W. Zimdahl, Cosmological constraints on parametrized interacting dark energy, *Phys. Dark Univ.* **23** (2019) 100248 [arXiv:1807.11380] [insPIRE].

[23] L. Xu, Y. Wang, M. Tong and H. Noh, CMB Temperature and Matter Power Spectrum in a Decay Vacuum Dark Energy Model, *Phys. Rev. D* **84** (2011) 123004 [arXiv:1112.5216] [insPIRE].

[24] K. Koyama, R. Maartens and Y.-S. Song, Velocities as a probe of dark sector interactions, *JCAP* **10** (2009) 017 [arXiv:0907.2126] [insPIRE].

[25] N. Dalal, K. Abazajian, E.E. Jenkins and A.V. Manohar, Testing the cosmic coincidence problem and the nature of dark energy, *Phys. Rev. Lett.* **87** (2001) 141302 [astro-ph/0105317] [insPIRE].

[26] W. Zimdahl and D. Pavon, Interacting quintessence, *Phys. Lett. B* **521** (2001) 133 [astro-ph/0105479] [insPIRE].

[27] W. Zimdahl, D.J. Schwarz, A.B. Balakin and D. Pavon, Cosmic anti-friction and accelerated expansion, *Phys. Rev. D* **64** (2001) 063501 [astro-ph/0009353] [insPIRE].

[28] L.P. Chimento, A.S. Jakubi, D. Pavon and W. Zimdahl, Interacting quintessence solution to the coincidence problem, *Phys. Rev. D* **67** (2003) 083513 [astro-ph/0303145] [insPIRE].

[29] G.R. Farrar and P.J.E. Peebles, Interacting dark matter and dark energy, *Astrophys. J.* **604** (2004) 1 [astro-ph/0307316] [insPIRE].
[30] H.A. Borges and S. Carneiro, Friedmann cosmology with decaying vacuum density, *Gen. Rel. Grav.* **37** (2005) 1385 [gr-qc/0503037] [inSPIRE].

[31] J.S. Alcaniz and J.A.S. Lima, Interpreting cosmological vacuum decay, *Phys. Rev. D* **72** (2005) 063516 [astro-ph/0507372] [inSPIRE].

[32] L. Amendola, G. Camargo Campos and R. Rosenfeld, Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data, *Phys. Rev. D* **75** (2007) 083506 [astro-ph/0610806] [inSPIRE].

[33] H. Wei and S.N. Zhang, Observational $H(z)$ Data and Cosmological Models, *Phys. Lett. B* **644** (2007) 7 [astro-ph/0609597] [inSPIRE].

[34] M.R. Setare, Interacting holographic dark energy model in non-flat universe, *Phys. Lett. B* **642** (2006) 1 [hep-th/0609069] [inSPIRE].

[35] H.M. Sadjadi and M. Alimohammadi, Cosmological coincidence problem in interactive dark energy models, *Phys. Rev. D* **74** (2006) 103007 [gr-qc/0610080] [inSPIRE].

[36] S. Das, P.S. Corasaniti and J. Khoury, Super-acceleration as signature of dark sector interaction, *Phys. Rev. D* **73** (2006) 083509 [astro-ph/0510628] [inSPIRE].

[37] Z.-K. Guo, N. Ohta and S. Tsujikawa, Probing the Coupling between Dark Components of the Universe, *Phys. Rev. D* **76** (2007) 023508 [astro-ph/0702021] [inSPIRE].

[38] O. Bertolami, F. Gil Pedro and M. Le Delliou, Dark Energy-Dark Matter Interaction and the Violation of the Equivalence Principle from the Abell Cluster A586, *Phys. Lett. B* **654** (2007) 165 [astro-ph/0703462] [inSPIRE].

[39] J. Valiviita, E. Majerotto and R. Maartens, Instability in interacting dark energy and dark matter fluids, *JCAP* **07** (2008) 020 [arXiv:0812.2210] [inSPIRE].

[40] M.B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena and S. Rigolin, Dark coupling, *JCAP* **07** (2009) 034 [Erratum ibid. 05 (2010) E01] [arXiv:0901.1611] [inSPIRE].

[41] S. del Campo, R. Herrera and D. Pavon, Interacting models may be key to solve the cosmic coincidence problem, *JCAP* **01** (2009) 020 [arXiv:0812.2210] [inSPIRE].

[42] I.L. Shapiro and J. Solà, On the possible running of the cosmological ‘constant’, *Phys. Lett. B* **682** (2009) 105 [arXiv:0910.4925] [inSPIRE].

[43] L.P. Chimento, Linear and nonlinear interactions in the dark sector, *Phys. Rev. D* **81** (2010) 043525 [arXiv:0911.5687] [inSPIRE].

[44] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens and J. Valiviita, Interacting Dark Energy: Constraints and degeneracies, *Phys. Rev. D* **85** (2012) 043007 [arXiv:1109.6234] [inSPIRE].

[45] B. Wang, E. Abdalla, F. Atrio-Barandela and D. Pavon, Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures, *Rept. Prog. Phys.* **79** (2016) 096901 [arXiv:1603.08299] [inSPIRE].

[46] A. Cid, B. Santos, C. Piggozzo, T. Ferreira and J. Alcaniz, Bayesian Comparison of Interacting Scenarios, *JCAP* **03** (2019) 030 [arXiv:1805.02107] [inSPIRE].

[47] S. Kumar and R.C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, *Phys. Rev. D* **94** (2016) 123511 [arXiv:1608.02454] [inSPIRE].

[48] R. Murgia, S. Gariazzo and N. Fornengo, Constraints on the Coupling between Dark Energy and Dark Matter from CMB data, *JCAP* **04** (2016) 014 [arXiv:1602.01765] [inSPIRE].

[49] E. Di Valentino, A. Melchiorri and O. Mena, Can interacting dark energy solve the H_0 tension?, *Phys. Rev. D* **96** (2017) 043503 [arXiv:1704.08342] [inSPIRE].

– 39 –
[50] R. An, C. Feng and B. Wang, Relieving the Tension between Weak Lensing and Cosmic Microwave Background with Interacting Dark Matter and Dark Energy Models, JCAP 02 (2018) 038 [arXiv:1711.06799] [inSPIRE].

[51] W. Yang, S. Pan, E. Di Valentino, R.C. Nunes, S. Vagnozzi and D.F. Mota, Tale of stable interacting dark energy, observational signatures, and the H_0 tension, JCAP 09 (2018) 019 [arXiv:1805.08252] [inSPIRE].

[52] S. Pan, W. Yang, E. Di Valentino, E.N. Saridakis and S. Chakraborty, Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the H_0 tension, Phys. Rev. D 100 (2019) 103520 [arXiv:1907.07540] [inSPIRE].

[53] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Interacting dark energy in the early 2020s: A promising solution to the H_0 and cosmic shear tensions, Phys. Dark Univ. 30 (2020) 100666 [arXiv:1908.04281] [inSPIRE].

[54] W. Yang, S. Pan, R.C. Nunes and D.F. Mota, Dark calling Dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release, JCAP 04 (2020) 008 [arXiv:1910.08821] [inSPIRE].

[55] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Nonminimal dark sector physics and cosmological tensions, Phys. Rev. D 101 (2020) 063502 [arXiv:1910.09853] [inSPIRE].

[56] S. Vagnozzi, L. Visinelli, O. Mena and D.F. Mota, Do we have any hope of detecting scattering between dark energy and baryons through cosmology?, Mon. Not. Roy. Astron. Soc. 493 (2020) 1139 [arXiv:1911.12374] [inSPIRE].

[57] C. Wetterich, The Cosmon model for an asymptotically vanishing time dependent cosmological ‘constant’, Astron. Astrophys. 301 (1995) 321 [hep-th/9408025] [inSPIRE].

[58] L. Amendola, Coupled quintessence, Phys. Rev. D 62 (2000) 043511 [astro-ph/9908023] [inSPIRE].

[59] A. Pourtsidou, C. Skordis and E.J. Copeland, Models of dark matter coupled to dark energy, Phys. Rev. D 88 (2013) 083505 [arXiv:1307.0458] [inSPIRE].

[60] C.G. Boehmer, N. Tamanini and M. Wright, Interacting quintessence from a variational approach Part I: algebraic couplings, Phys. Rev. D 91 (2015) 123002 [arXiv:1501.06540] [inSPIRE].

[61] C.G. Boehmer, N. Tamanini and M. Wright, Interacting quintessence from a variational approach Part II: derivative couplings, Phys. Rev. D 91 (2015) 123003 [arXiv:1502.04030] [inSPIRE].

[62] C. Skordis, A. Pourtsidou and E.J. Copeland, Parametrized post-Friedmannian framework for interacting dark energy theories, Phys. Rev. D 91 (2015) 083537 [arXiv:1502.07297] [inSPIRE].

[63] T.S. Koivisto, E.N. Saridakis and N. Tamanini, Scalar-Fluid theories: cosmological perturbations and large-scale structure, JCAP 09 (2015) 047 [arXiv:1505.07556] [inSPIRE].

[64] A. Pourtsidou and T. Tran, Reconciling CMB and structure growth measurements with dark energy interactions, Phys. Rev. D 94 (2016) 043518 [arXiv:1604.04222] [inSPIRE].

[65] J. Dutta, W. Khyllep and N. Tamanini, Scalar-Fluid interacting dark energy: cosmological dynamics beyond the exponential potential, Phys. Rev. D 95 (2017) 023515 [arXiv:1701.00744] [inSPIRE].

[66] M.S. Linton, A. Pourtsidou, R. Crittenden and R. Maartens, Variable sound speed in interacting dark energy models, JCAP 04 (2018) 043 [arXiv:1711.05196] [inSPIRE].

[67] R. Kase and S. Tsujikawa, Scalar-Field Dark Energy Nonminimally and Kinetically Coupled to Dark Matter, Phys. Rev. D 101 (2020) 063511 [arXiv:1910.02699] [inSPIRE].
[68] R. Kase and S. Tsujikawa, *Weak cosmic growth in coupled dark energy with a Lagrangian formulation*, Phys. Lett. B 804 (2020) 135400 [arXiv:1911.02179] [inSPIRE].

[69] F.N. Chamings, A. Avgoustidis, E.J. Copeland, A.M. Green and A. Pourtsidou, *Understanding the suppression of structure formation from dark matter-dark energy momentum coupling*, Phys. Rev. D 101 (2020) 043531 [arXiv:1912.09858] [inSPIRE].

[70] L. Amendola and S. Tsujikawa, *Scaling solutions and weak gravity in dark energy with energy and momentum couplings*, JCAP 06 (2020) 020 [arXiv:2003.02686] [inSPIRE].

[71] R. Kase and S. Tsujikawa, *General formulation of cosmological perturbations in scalar-tensor dark energy coupled to dark matter*, JCAP 11 (2020) 032 [arXiv:2005.13809] [inSPIRE].

[72] A. De Felice, S. Nakamura and S. Tsujikawa, *Suppressed cosmic growth in coupled vector-tensor theories*, Phys. Rev. D 102 (2020) 063531 [arXiv:2004.09384] [inSPIRE].

[73] M. Asghari, J. Beltrán Jiménez, S. Khosravi and D.F. Mota, *On structure formation from a small-scales-interacting dark sector*, JCAP 04 (2019) 042 [arXiv:1902.05532] [inSPIRE].

[74] J.B. Jiménez, D. Bettoni, D. Figueruelo and F.A. Teppa Pannia, *On cosmological signatures of baryons-dark energy elastic couplings*, JCAP 08 (2020) 020 [arXiv:2004.14661] [inSPIRE].

[75] D. Figueruelo et al., *J-PAS: Forecasts for dark matter-dark energy elastic couplings*, JCAP 07 (2021) 022 [arXiv:2103.01571] [inSPIRE].

[76] DESI collaboration, *The DESI Experiment Part I: Science,Targeting, and Survey Design*, arXiv:1611.00036 [inSPIRE].

[77] R. Laureijs et al., *Euclid Definition Study Report*, arXiv:1110.3193 [inSPIRE].

[78] SKA COSMOLOGY SWG collaboration, *Overview of Cosmology with the SKA*, PoS AASKA14 (2015) 016 [arXiv:1501.04076] [inSPIRE].

[79] N. Benitez et al., *J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey*, arXiv:1403.5237 [inSPIRE].

[80] S. Carneiro and H.A. Borges, *On dark degeneracy and interacting models*, JCAP 06 (2014) 010 [arXiv:1402.2316] [inSPIRE].

[81] R. von Marttens, L. Lombriser, M. Kunz, V. Marra, L. Casarini and J. Alcaniz, *Dark degeneracy I: Dynamical or interacting dark energy?*, Phys. Dark Univ. 28 (2020) 100490 [arXiv:1911.02618] [inSPIRE].

[82] R. von Marttens, J.E. Gonzalez, J. Alcaniz, V. Marra and L. Casarini, *Model-independent reconstruction of dark sector interactions*, Phys. Rev. D 104 (2021) 043515 [arXiv:2011.10846] [inSPIRE].

[83] M. Aparicio Resco et al., *J-PAS: Forecasts on dark energy and modified gravity theories*, Mon. Not. Roy. Astron. Soc. 493 (2020) 3616 [arXiv:1910.02694] [inSPIRE].

[84] A.A. Costa et al., *J-PAS: Forecasts on interacting dark energy from baryon acoustic oscillations and redshift-space distortions*, Mon. Not. Roy. Astron. Soc. 488 (2019) 78 [arXiv:1901.02540] [inSPIRE].
[89] J.M. Bardeen, *Gauge Invariant Cosmological Perturbations*, *Phys. Rev. D* **22** (1980) 1882 [arXiv:0807.1411] [SPIRE].

[90] C. Pigozzo, S. Carneiro, J.S. Alcaniz, H.A. Borges and J.C. Fabris, *Evidence for cosmological particle creation?*, *JCAP* **05** (2016) 022 [arXiv:1510.01794] [SPIRE].

[91] R.R.R. Reis, I. Waga, M.O. Calvao and S.E. Joras, *Entropy perturbations in quartessence Chaplygin gas models*, *Phys. Rev. D* **68** (2003) 063502 [astro-ph/0308004] [SPIRE].

[92] M.C. Bento, O. Bertolami and A.A. Sen, *The Revival of the unified dark energy-dark matter model?*, *Phys. Rev. D* **70** (2004) 083519 [astro-ph/0407239] [SPIRE].

[93] H. Velten, H.A. Borges, S. Carneiro, R. Fazolo and S. Gomes, *Large-scale structure and integrated Sachs-Wolfe effect in decaying vacuum cosmology*, *Mon. Not. Roy. Astron. Soc.* **452** (2015) 2220 [arXiv:1504.02416] [SPIRE].
[110] S. Carneiro and H.A. Borges, _Dynamical system analysis of interacting models_, *Gen. Rel. Grav.* **50** (2018) 129 [arXiv:1704.07825] [inSPIRE].

[111] D.J. Eisenstein, H.-J. Seo and M.J. White, _On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter_, *Astrophys. J.* **664** (2007) 660 [astro-ph/0604361] [inSPIRE].

[112] H.-J. Seo and D.J. Eisenstein, _Improved forecasts for the baryon acoustic oscillations and cosmological distance scale_, *Astrophys. J.* **665** (2007) 14 [astro-ph/0701079] [inSPIRE].

[113] A. Font-Ribera, P. McDonald, N. Mostek, B.A. Reid, H.-J. Seo and A. Slosar, _DESI and other dark energy experiments in the era of neutrino mass measurements_, *JCAP* **05** (2014) 023 [arXiv:1308.4164] [inSPIRE].

[114] M. Crocce and R. Scoccimarro, _Nonlinear Evolution of Baryon Acoustic Oscillations_, *Phys. Rev. D* **77** (2008) 023533 [arXiv:0704.2783] [inSPIRE].

[115] M. White, _Shot noise and reconstruction of the acoustic peak_, arXiv:1004.0250 [inSPIRE].

[116] L. Amendola et al., _Cosmology and fundamental physics with the Euclid satellite_, *Living Rev. Rel.* **21** (2018) 2 [arXiv:1606.00180] [inSPIRE].

[117] L. Amendola and S. Tsujikawa, _Dark Energy: Theory and Observations_, Cambridge University Press (2010) [http://doi.org/10.1017/CBO9780511750823].

[118] L. Amendola, S. Fogli, A. Guarnizo, M. Kunz and A. Vollmer, _Model-independent constraints on the cosmological anisotropic stress_, *Phys. Rev. D* **89** (2014) 063538 [arXiv:1311.4765] [inSPIRE].

[119] Euclid collaboration, _Euclid preparation: VII. Forecast validation for Euclid cosmological probes_, *Astron. Astrophys.* **642** (2020) A191 [arXiv:1910.09273] [inSPIRE].

[120] L.R. Abramo and K.E. Leonard, _Why multi-tracer surveys beat cosmic variance_, *Mon. Not. Roy. Astron. Soc.* **432** (2013) 318 [arXiv:1302.5444] [inSPIRE].

[121] G.-B. Zhao et al., _The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast_, *Mon. Not. Roy. Astron. Soc.* **457** (2016) 2377 [arXiv:1510.08216] [inSPIRE].

[122] Y. Wang et al., _Designing a space-based galaxy redshift survey to probe dark energy_, *Mon. Not. Roy. Astron. Soc.* **409** (2010) 737 [arXiv:1006.3517] [inSPIRE].

[123] A. Albrecht et al., _Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group_, arXiv:0901.0721 [inSPIRE].

[124] D. Blas, J. Lesgourgues and T. Tram, _The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes_, *JCAP* **07** (2011) 034 [arXiv:1104.2933] [inSPIRE].