Evidence for horizontal gene transfer between *Chlamydophila pneumoniae* and Chlamydia phage

Anne G Rosenwald, Bradley Murray, Theodore Toth, Ramana Madupu, Alexandra Kyrillos & Gaurav Arora

To cite this article: Anne G Rosenwald, Bradley Murray, Theodore Toth, Ramana Madupu, Alexandra Kyrillos & Gaurav Arora (2014) Evidence for horizontal gene transfer between *Chlamydophila pneumoniae* and Chlamydia phage, Bacteriophage, 4:4, e965076, DOI: 10.4161/21597073.2014.965076

To link to this article: https://doi.org/10.4161/21597073.2014.965076

© 2014 The Author(s). Published with license by Taylor & Francis Group, LLC
Anne G Rosenwald, Bradley Murray, Theodore Toth, Ramana Madupu, Alexandra Kyrillos, and Gaurav Arora

Accepted author version posted online: 29 Oct 2014.
Published online: 15 Dec 2014.

Article views: 830

View related articles

View Crossmark data

Citing articles: 7 View citing articles
Evidence for horizontal gene transfer between *Chlamydophila pneumoniae* and Chlamydia phage

Anne G Rosenwald1,* , Bradley Murray1, Theodore Toth1, Ramana Madupu2, Alexandra Kyrillos1, and Gaurav Arora1

1Department of Biology; Georgetown University; Washington, DC USA; 2J. Craig Venter Institute; Rockville, MD USA

Keywords: gokushovirinae, horizontal gene transfer, microviridae, putative replication initiation protein (PRIP)

Abbreviations: BLAST, Basic Local Alignment Search Tool; EB, Elementary body; MEGA, Molecular Evolution Genetic Analysis; MUSCLE, Multiple Sequence Comparison by Log-Expectation; PRIP, Putative Replication Initiation Protein; POG, Phage Orthologous Group; RB, Reticulate body; WebACT, Web-based Artemis Comparison Tool.

Chlamydia-infecting bacteriophages, members of the Microviridae family, specifically the Gokushovirinae subfamily, are small (4.5–5 kb) single-stranded circles with 8–10 open-reading frames similar to *E. coli* phage øX174. Using sequence information found in GenBank, we examined related genes in *Chlamydophila pneumoniae* and Chlamydia-infecting bacteriophages. The 5 completely sequenced *C. pneumoniae* strains contain a gene orthologous to a phage gene annotated as the putative replication initiation protein (PRIP, also called VP4), which is not found in any other members of the Chlamydiaceae family sequenced to date. The *C. pneumoniae* strain infecting koalas, LPCoLN, in addition contains another region orthologous to phage sequences derived from the minor capsid protein gene, VP3. Phylogenetically, the phage PRIP sequences are more diverse than the bacterial PRIP sequences; nevertheless, the bacterial sequences and the phage sequences each cluster together in their own clade. Finally, we found evidence for another Microviridae phage-related gene, the major capsid protein gene, VP1 in a number of other bacterial species and 2 eukaryotes, the woodland strawberry and a nematode. Thus, we find considerable evidence for DNA sequences related to genes found in bacteriophages of the Microviridae family not only in a variety of prokaryotic but also eukaryotic species.

Introduction

Chlamydophila pneumoniae, an obligate intracellular Gram-negative bacterium, is a major cause of community-acquired pneumonia in humans.1 Mounting evidence suggests roles in several chronic diseases of humans as well, including atherosclerosis,2 osteoporosis,3 multiple sclerosis,4 and Alzheimer disease.5 *C. pneumoniae* has a wide host range, infecting reptiles, amphibians, birds, and a variety of mammals including horses, koalas, and bandicoots, in addition to humans.6 In mammals, *C. pneumoniae* infects a number of different tissues, including lung epithelia, peripheral blood mononuclear cells, and endothelial cells,6,7 which may account for the range of diseases with which it is associated.

Unfortunately, studies of *C. pneumoniae* are hampered by the fact that at present there are no routine methods to genetically manipulate the organism,8 although a recent paper demonstrated that *C. pneumoniae* can be transformed by dendrimer-mediated DNA delivery.9 However, with the advent of high-throughput next-generation sequencing techniques, more can be learned about the bacterium and its role in these diseases even in the absence of genetic methods. Specifically, in this paper, we examined the *C. pneumoniae* sequences currently available in GenBank.

C. pneumoniae is a member of the order Chlamydiales, specifically the Chlamydiaceae family.10,11 This family has 2 lineages: the Chlamydia lineage, which includes 3 species, *C. trachomatis*, *C. muridarum*, and *C. suis*; and the Chlamydophila lineage, which includes 6 species, *C. abortus*, *C. caviae*, *C. felis*, *C. pecorum*, and *C. psittaci*, in addition to *C. pneumoniae*.12,13 A number of different members of the Chlamydiaceae family have been completely sequenced and finished to a high level, including 5 *C. pneumoniae* isolates: 4 isolated from humans (strains AR39, CWL029, J138, and TW183) and one isolated from koala (strain LPCoLN). The human-infecting strains are closely related (though not identical, since there are major inversions and rearrangements observed...
among these 4 strains; for example, see ref. 12), but the LPCoLN genome is larger and includes a number of additional genes not found in the human-infecting strains.13

Six different Chlamydia-infecting bacteriophages have also been sequenced (φChp1 [refs. 14-16], φChp2 [refs. 14, 15, 17-19], φChp3 [refs. 20, 21], φChp4 [ref. 22], ICPAR39 [ref. 20], and φCPG1 [see ref. 15]). Members of the Microviridae family,23 specifically the sub-group infecting obligate intracellular parasites, the Gokushovirinae.24,25 these single-stranded DNA phages are distantly related to φX-174.19 Each of the phage genomes encodes ~8–10 open-reading frames (ORFs), but it is currently unclear whether all encode functional proteins; some are quite small and overlap other larger ORFs. However, the annotation information available suggests that each genome encodes several proteins that contribute to the structure of the phage capsid and a protein annotated as putative replication initiation protein or PRIP (also called VP4), represented by Phage Orthologous Group (POG) 2233.26

Horizontal gene transfer between bacteria and their phages is an important mechanism for generating bacterial diversity.27 Previous reports called attention to the fact that orthologs of Chlamydia phage genes are found in C. pneumoniae.13,15,28 With the availability of additional bacterial and phage sequences, we evaluated the extent to which horizontal gene transfer between Chlamydia bacteriophages and Chlamydia species might have occurred. Here we report findings from our bioinformatics analysis, which are consistent with the hypothesis that first, genes could have been acquired by C. pneumoniae from the phage; and second, that this transfer event may have occurred in the ancestor of the existing C. pneumoniae strains, since we find no evidence for the phage sequences in other Chlamydia or Chlamydomphiila species, however from this analysis we can’t rule out the possibility that the bacterial and the phage PRIP sequences evolved independently. In addition, we found that a different Chlamydia phage gene, the VP1 gene, encoding the major capsid protein (POG 2234) has orthologs in parasites, the family,23 specifically the sub-group infecting obligate intracellular pathogens, the Chlamydomphiila pneumoniae and Chlamydia-infecting bacteriophages.

Materials and Methods

All sequence data were gathered from the NCBI’s GenBank database (May 2014) (http://www.ncbi.nlm.nih.gov/genbank/; see Tables 1–3). Orthologs were identified using the Basic Local Alignment Search Tool (BLAST; ref. 29) at NCBI. For BLASTN, sequences were considered to be homologous if the expect- (e-) value was <1 × 10–5. For BLASTP, sequences were considered to be homologous if the e-value was <1 × 10–20.

Multiple sequence alignments were performed with Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (http://www.ebi.ac.uk/Tools/msa/muscle/; ref. 30). Phylogenies were constructed using Molecular Evolution Genetic Analysis, version 5.2.2 (MEGA 5; ref. 31). The best substitution models for both DNA and protein phylogenies were determined by calculation of the BIC statistic31 as described in the appropriate figure legends. Additionally, all trees were constructed using the maximum-likelihood tree building method with bootstrapping of 1000 iterations.

Comparison of synteny in regions where PRIP genes are found in the different bacterial strains was performed using the web-based version of the Artemis Comparison Tool, WebACT.32

Results and Discussion

Chlamydia species are difficult to study in vivo since they are intracellular pathogens and there is no system at present for genetic manipulations. Therefore, mining of data via bioinformatics may prove useful to enhance our understanding of these bacteria. In this study, we examined the relationship between genes found in Chlamydia family members, specifically in Chlamydomphiila pneumoniae and Chlamydia-infecting bacteriophages.

Table 1. Chlamydia pneumoniae sequences used in this study

Strain	Host	DNA Sequence	Accession Number
AR39	Human	NC_002179	ref. 28
CWL029	Human	NC_000922	ref. 44
J138	Human	NC_002491	ref. 12
TW-183	Human	NC_005043	(unpublished)
LPCoLN	Koala	CP001713	ref. 45

Name	Isolated From	DNA Sequence	Accession Number
φChp1	Chlamydia psittaci	NC_001741	ref. 16
φChp2	Chlamydia psittaci	NC_002194	ref. 14
φChp3	Chlamydia pecorum	NC_008355	ref. 21
φChp4	Chlamydomphiila abortus	NC_007461	ref. 22
φICPAR39	Chlamydomphiila pneumoniae AR39	NC_002180	ref. 15
φCPG1	Chlamydia psittaci	NC_001998	(unpublished)

Evolutionary relationships among the Chlamydia bacteriophages

Six Chlamydia phage genomes are currently available for study, although the number of other Microviridae family members in GenBank is increasing markedly.23-25 The Chlamydia phages include φCPAR39, which was isolated directly from a human-infecting strain of C. pneumoniae, AR39;20 φChp1, isolated from C. psittaci,14 φChp218 and φChp422 from C. abortus; φChp3 from C. pecorum,21 and φCPG1 from C. caviae.33 Several of the phages have host ranges that include more than the...
species from which they were isolated, including φCPAR39, which can infect C. abortus, C. caviae, and C. pecorum. From the literature currently available, it appears that none of these phages infect the Chlamydia lineage (i.e., C. muridarum, C. suis, or C. trachomatis) but only members of the Chlamydophila lineage (see Table 4).

We first examined the relatedness among the 6 bacteriophage genomes by constructing sequence alignments with MUSCLE. Percent sequence identity between pairs of phage is shown in Figure 1A. Subsequently, we constructed a phylogeny of these sequences with MEGA5 (Fig. 1B). Based on this tree, φChp1 is the most distantly related of the Chlamydia phages. However, in general these sequences are fairly divergent from one another, as shown by the relatively weak bootstrap support for this branching pattern.

C. pneumoniae strains contain an ortholog of Chlamydia bacteriophage PRIP

Each of the 6 phages contains a gene annotated “putative replication initiation protein” or PRIP (also called VP4, represented by POG 2233 \(^{26}\)), which matches a conserved domain, PHA00330 that only occurs in members of the bacteriophage Microviridae family. \(^{35}\) No structure or function has yet been associated with this domain.

In addition, each of the 5 sequenced C. pneumoniae strains also contains an open reading frame that is homologous to the core region of PRIP. \(^{13,15}\) PRIP from the 4 human-infecting strains is 100% identical at the DNA sequence level, while the one found in the koala-infecting LPCoLN strain is slightly different. It is thought DNA sequences shared between related organisms but absent in close relatives are likely acquired via horizontal gene transfer. \(^{36,37}\) Given that we found no evidence of PRIP or other genes orthologous to genes from Microviridae in any of the sister species of C. pneumoniae within the Chlamydiaceae family, this result is consistent with acquisition of PRIP through this mechanism but is not the only explanation for these results. However, given that these phages are not thought to be lyogenic or temperate, that is, do not insert themselves into the host genome as part of their life cycles as the E. coli phase 1 does, the mechanism by which transfer may have occurred is unclear. \(^{25}\) Nevertheless, it has been suggested that bacterial genes are usually quickly deleted \(^{32}\) unless retained for some specific purpose, \(^{38}\) although at present the function provided to C. pneumoniae by PRIP is unknown. Microarray data suggest that PRIP is expressed at low levels, but is not differentially expressed with time of infection. \(^{39}\) Similarly, RNA-Seq data also

Table 4. Host ranges of the six Chlamydia phages
Chp1

Chlamydia muridarum
Chlamydia suis
Chlamydia trachomatis
Chlamydophila abortus
Chlamydophila caviae
Chlamydophila felis
Chlamydophila pecorum
Chlamydophila pneumoniae

Information gleaned from the literature about host ranges of the 6 Chlamydia bacteriophages. YES indicates the species from which the phage was isolated; yes indicates that the phage can infect that species; no indicates that the phage does not infect that species; no entry means was no information available. Information about the following phages was obtained from: φChp1 \(^{16}\), φChp2 \(^{14,18}\), φChp3 \(^{20,21}\), φChp4 \(^{22}\), φCPAR39 \(^{15,20,28}\) and φCPG1 \(^{50}\).

Figure 1. Comparison among Chlamydia bacteriophages. (A) Matrix derived from MUSCLE analysis of the phage DNA sequences. The matrix shows the extent of identity between 2 phage sequences in pairwise alignment. (Chp1) shows ~60% identity to the other phages, whereas the others show >90% identity to one another. (B) Phylogenetic analysis of the 6 phage genomes. The evolutionary history was inferred by using the maximum likelihood method based on the Hasegawa-Kishino-Yano model using 1000 bootstraps. \(^{32}\) The tree with the highest log likelihood (−11567.9705) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically as follows. When the number of common sites was < 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIO neighbor joining method with maximum composite likelihood distance matrix was used. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 5.9605)). The analysis involved 6 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 3729 positions in the final dataset. Evolutionary analyses were conducted in MEGAS. \(^{31}\)
suggest that PRIP is expressed at low levels, but is not differentially expressed in elementary bodies (EBs) compared to reticulate bodies (RBs).40

We examined the 11 predicted PRIP proteins, from the 6 phages and the 5 \textit{C. pneumoniae} strains by phylogenetic analysis. By MUSCLE alignment, the phage PRIP proteins are more diverse, and are larger, having extensions on both the N- and C-termini compared to the orthologs found in the bacterial strains (Figure S1). When a phylogenetic tree based on the alignments was constructed (which only uses amino acids present in all 11 sequences, thus ignoring the N- and C-terminal extensions in the phage PRIP proteins), the phage-derived PRIPs fell into a single clade (with \textit{fChp1} PRIP as the most divergent protein) while the bacterially derived PRIP proteins clustered in another clade (Fig. 2). The PRIP proteins found in the bacterial strains are most closely related to phage \textit{fChp4} by BLASTP analysis, which was initially isolated from \textit{C. abortus}.22 BLASTP of the \textit{fChp4}-predicted PRIP protein identifies PRIP of the \textit{C. pneumoniae} strains as the top bacterial hits, while reverse BLASTP of the bacterial PRIP sequences identifies the \textit{Chlamydia} phages as the top hits, rather than other \textit{Microviridae} sequences currently in GenBank., We also compared the GC content of the phages, the phage-related sequences in the bacteria, and the rest of the bacterial chromosome, to examine the possibility of amelioration, a process that takes place over time on horizontally acquired DNA sequences, in which they lose the properties of the source, while becoming more similar to the new host.36 However, this particular analysis was unrevealing, as the GC content of all 3 DNA sequences was \(\approx 36\%\).
Table 5. VP1 homologs found in non-Chlamydia bacterial and plant species. The protein sequence corresponding to VP1 from Chp4 (YP_338238.1) was submitted for BLASTP analysis. The top hits with e-values \(<1\times10^{-50}\) are reported here. Hits to "uncultured bacteria" have been eliminated. Most bacteria are members of the Bacteroidetes family \(\text{(Parabacteroides and Elizabethkingia)}\) or the Firmicutes family \(\text{(Clostridium)}\) except for Richelia (a cyanobacterium). Surprisingly, 2 eukaryotes also had reasonably high e-values with \(>50\%\) query coverage: Fragaria vesca (woodland strawberry) and Necator americanus (a nematode).

Name	Max Score	Total Score	Query Cover	e-value	Max identity	Accession Number
capsid family protein \(\text{[Parabacteroides distasonis str. 3999B T(B) 4]}\)	336	336	97%	2e-104	37%	KD561824.1
PREDICTED: capsid protein VP1-like \(\text{[Fragaria vesca subsp. vesca]}\)	321	321	64%	3e-100	50%	XP_004309312.1
putative major coat protein \(\text{[Clostridium sp CAG:306]}\)	324	324	96%	5e-100	36%	WP_022246927.1
hypothetical protein \(\text{[Parabacteroides distasonis]}\)	313	313	97%	1e-95	38%	WP_005867318.1
capsid protein VP1 \(\text{[Parabacteroides merdae CAG:48]}\)	309	309	97%	4e-94	36%	WP_022322420.1
conserved hypothetical protein \(\text{[Elizabethkingia anophelis]}\)	293	293	96%	5e-88	34%	CDN73650.1
hypothetical protein \(\text{[Elizabethkingia anophelis]}\)	292	292	96%	9e-88	35%	WP_024568106.1
protein \(\text{[Richelia intracellularis]}\)	271	271	40%	1e-83	59%	WP_008233569.1
capsid family protein \(\text{[Parabacteroides distasonis str. 3999B T(B) 6]}\)	259	259	74%	8e-77	38%	KDS75238.1
capsid family protein \(\text{[Parabacteroides distasonis str. 3999B T(B) 4]}\)	206	206	46%	2e-58	42%	KDS63784.1
putative capsid protein \(\text{[Necator americanus]}\)	188	188	88%	2e-49	33%	ETN80368.1

The koala-infesting bacterial strain, LPCoLN, contains a larger region of phage-homologous sequence

In addition to PRIP-encoding sequences, it was previously found that a sequence related to a second phage-related gene, VP3, the minor capsid protein (POG 2232, ref. 26), is found in the LPCoLN strain. This gene CPK_0RF00730 (nucleotides 580833–581277) is annotated in GenBank as “scaffolding protein, authentic frameshift.” This region shows homology to the Chlamydia phage VP3 gene, but is missing 2 nucleotides, resulting in the frameshift (Fig. S2). In summary, overall, more phage-related sequences are found in the LPCoLN genome compared to the phage-related sequences found in the human-infecting C. pneumoniae strains (Fig. 3).

The local environment of PRIP in C. pneumoniae strains

In each of the 5 bacterial genomes, PRIP is found near the tgt gene, which encodes queuine tRNA-ribosyl transferase, an enzyme responsible for a post-transcriptional modification of some tRNAs. Additionally, this region contains a set of genes annotated as “hypothetical proteins” that are homologous to one another and are only found in Chlamydia species. According to Albrecht et al., the PRIP gene (annotated Cpn0222) in CWL029 is the 2nd gene in a 2-gene operon with Cpn0221. We compared this region among all 5 C. pneumoniae strains using WebACT (Artemis Comparison Tool) (Fig. 3). As can be seen, these regions are all highly syntenic with one another. The exception is the region in LPCoLN that corresponds to the additional phage sequences homologous to VP3, the minor capsid protein gene remnant. We also compared the region containing the tgt gene between C. pneumoniae AR39 and the other Chlamydiophila and Chlamydia species and saw little homology, save at tgt itself (data not shown). Thus the region containing PRIP and tgt appears to be unique in the C. pneumoniae lineage, again suggesting that since PRIP is uniquely present in C. pneumoniae, but not in other members of the Chlamydiaceae family, acquisition of these sequences by horizontal gene transfer is a reasonable hypothesis.

Orthologs of the major capsid protein are found in several other species

We next examined all of the ORFs in φChp4 by BLASTP against the non-redundant (nr) GenBank CDS translation database to determine whether we could uncover other instances of phage gene orthologs in bacteria. As expected, the minor capsid protein gene, VP3 identified an ortholog in the LPCoLN strain, while PRIP (VP4) identified orthologs in all 5 C. pneumoniae strains. For 5 of the other predicted proteins, the only hits were to other members of the Microviridae family. However, BLASTP with the major capsid protein (VP1, also called the Phage F protein, represented by POG 2234) identified proteins encoded by the genomes of several other bacterial species, members of the Bacteroidetes (Parabacteroides and Elizabethkingia spp.) and Firmicutes (Clostridium spp) families. Others have observed the presence of phage sequences in Bacteroidetes previously. Richelia intracellularis, a cyanobacterium, was also found to contain a gene encoding a homolog of VP1 (Table 5). Interestingly, we also found evidence for a VP1-like protein encoded by the genomes of the woodland strawberry and a nematode. Thus, we found phage gene orthologs in completely different bacterial clades as well as in eukaryotes. By reverse BLASTP, the closest phage homologs of some of the bacterial or eukaryotic genes are in fact the Chlamydia phages, but for others, the closest phage homologs are from uncultured marine Gokushoviruses (data not shown), raising questions as to the ultimate source of these sequences in some of these organisms. Interestingly, in exploring this aspect in more detail, we found nearly all of φX174 contained as a block within E. coli strain 0.1288.

Conclusions

The results presented here are consistent with the hypothesis that a block of Chlamydia phage sequence, containing the minor capsid protein gene (VP3) and the PRIP gene (VP4), was transferred into the ancestor of the C. pneumoniae strains, and the koala-infesting strain, LPCoLN retained a larger portion of the block, while the VP3 orthologous sequences were lost from the ancestor of the human-infecting strains. This
seems to be the most parsimonious explanation for the observed results, although this is not the only explanation. For example, it is possible that the PRIP sequences arose independently in the bacteria and the phages. At present, since there are no complete sequences for C. pneumoniae strains that infect animals other than mammals in GenBank, we cannot determine whether PRIP is found in C. pneumoniae strains that infect animals. Further, our analyses are consistent with the work demonstrating the existence of Microviridae-related genes in diverse bacterial families, in keeping with the notion that horizontal gene transfer between phages and their bacterial hosts is an important driver for bacterial evolution.27,37

References
1. Brown JS. Community-acquired pneumonia. Clin Med 2012; 12:538-43; PMID:23342408; http://dx.doi.org/10.7861/clinmedicine.12-5-538.
2. Joshi R, Khandelwal B, Joshi D, Gupta OP. Chlamydia pneumoniae infection and cardiovascular disease. North Am J Med Sci 2013; 5:169-81; PMID:23626952; http://dx.doi.org/10.4103/1171-2816.127141.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Amanda Zirzow for her review of the manuscript.

Funding
The research here was supported by a grant from the National Science Foundation (DUE 1123016) for the Genome Solver Project, a project to teach undergraduate faculty about the resources available for hands-on bioinformatics research with students. Our community of practice can be accessed at http://genomesolver.org.

10. Everett KD, Bush RM, Andersen AA. Emended definition of the Chlamydiaceae, proposal of Parachlamydiaceae fam. nov. and Simkaniacae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 1999; 49 Pt 2:415-40

11. Griffiths E, Ventresca MS, Gupta RS. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiaceae, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 2006; 7:14; PMID:16436211; http://dx.doi.org/10.1186/1471-2164-7-14.

12. Shirai M, Hirakawa H, Kimoto M, Tabuchi M, Kishi F, Ouchi K, Shiba T, Ijiku K, Hamori M, Kuhara S, et al. Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res 2000; 28:2311-4; PMID:10873162; http://dx.doi.org/10.1093/nar/28.12.2311.

13. Mitchell CM, Hovis KM, Bavoil PM, Myers GS, Caracco JA, Timms P. Comparison of koala LpCoLN and human strains of Chlamydia pneumoniae highlights extended genetic diversity in the species. BMC Genomics. 2010; 11:442; PMID:20646324; http://dx.doi.org/10.1186/1471-2164-11-442.

14. Liu BL, Everson JS, Fane B, Giannikopoulos P, Vrettou E, Lambden PR, Clarke IN. Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 2000; 74:3649-9; PMID:10729159; http://dx.doi.org/10.1128/JVI.74.11.3649-3650.2000.

15. Read TD, Fraser CM, Hsia RC, Bavoil PM. Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain. Microbial Comp Genomics 2000; 5:223-31; PMID:11471835; http://dx.doi.org/10.1098/svn.2000.0043.

16. Storey CC, Lusher M, Richmond SJ. Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 1999; 70 (Pt 12):3381-80; PMID:26073491; http://dx.doi.org/10.1099/0022-1317-70-12-3381.

17. Clarke IN, Cuncliffe LT, Everson JS, Garner SA, Lambden PR, Lead Pj, Pickett MA, Brenchlter KL, Fane BA. Chlamydiae chlaphage Chp2, a skeleton in the phix174 closter: scaffolding protein and procapsid identification. J Bacteriol 2004; 186:7571-4; PMID:15516569; http://dx.doi.org/10.1128/JB.184.15.7571-7574.2002.

18. Everson JS, Garner SA, Fane B, Liu BL, Lambden PR, Clarke IN. Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bac-

19. Ouchi K, Shiba T, Ishii K, Hattori M, Kuhara S, et al. Characterization of a bacteriophage (Chp3) from Chlamydo-

20. Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN. Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamy-

21. Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN. Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamy-

22. Sait M, Livingstone M, Graham R, Inglis NF, Wheel-

23. Read TD, Fraser CM, Hsia RC, Bavoil PM. Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain. Microbial Comp Genomics 2000; 5:223-31; PMID:11471835; http://dx.doi.org/10.1098/svn.2000.0043.

24. Storey CC, Lusher M, Richmond SJ. Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 1999; 70 (Pt 12):3381-80; PMID:26073491; http://dx.doi.org/10.1099/0022-1317-70-12-3381.

25. Read TD, Fraser CM, Hsia RC, Bavoil PM. Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain. Microbial Comp Genomics 2000; 5:223-31; PMID:11471835; http://dx.doi.org/10.1098/svn.2000.0043.

26. Storey CC, Lusher M, Richmond SJ. Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 1999; 70 (Pt 12):3381-80; PMID:26073491; http://dx.doi.org/10.1099/0022-1317-70-12-3381.

27. Clarke IN, Cuncliffe LT, Everson JS, Garner SA, Lambden PR, Lead Pj, Pickett MA, Brenchlter KL, Fane BA. Chlamydiae chlaphage Chp2, a skeleton in the phix174 closter: scaffolding protein and procapsid identification. J Bacteriol 2004; 186:7571-4; PMID:15516569; http://dx.doi.org/10.1128/JB.184.15.7571-7574.2002.

28. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Urreback T, Berry K, et al. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 2003; 28:1397-406; PMID:12157296; http://dx.doi.org/10.1093/nar/28.12.1397.

29. Autschel SF, Madden TL, Schäfer AA, Zhang J, Zhang J, Miller W, Lipman DJ. Gapped BLAST and PSI-

30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792-7; PMID:15034147; http://dx.doi.org/10.1093/nar/gkh340.

31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics
analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evolut 2011; 28:2731-9; PMID:21546533; http://dx.doi.org/10.1093/molbev/mqr121

32. Abbot JC, Antonensen DM, Bentley SD. WebACT: an online genome comparison suite. Methods Mol Biol 2007; 395:57-74; PMID:17993667; http://dx.doi.org/10.1007/978-1-59745-514-4_4

33. Richmond SJ, Stirling P, Ashley CR. Virus infecting the reticulate bodies of an avian strain of Chlamydia psittaci. FEMS Micro Lett 1982; 14:31-6; http://dx.doi.org/10.1111/j.1574-6968.1982.tb08629.x

34. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113; PMID:15318951; http://dx.doi.org/10.1186/1471-2105-5-113

35. Marchler-Bauer A, Zheng C, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DJ, Lanczycki CJ, et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013; 41:D348-52; PMID:23197659; http://dx.doi.org/10.1093/nar/gks1243

36. Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evolut 1997; 41:383-97; PMID:9089078; http://dx.doi.org/10.1007/s000370050507

37. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299-304; PMID:10830951; http://dx.doi.org/10.1038/35012500

38. Myers GS, Mathews SA, Eppinger M, Mitchell C, Myers GA, Rank RG. Strain and virulence genome sequence of the Chlamydia trachomatis type strain, 6BC. J Bacteriol 2011; 193:2662-3; PMID:2151992; http://dx.doi.org/10.1126/science.282.5389.754

39. Thomson NR, Holden MT, Carver C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertczak H, et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008; 18:161-71; PMID:18032721; http://dx.doi.org/10.1101/gr.7020108

40. Albrecht M, Sharma CM, Dittrich MT, Muller T, Reinhardt R, Vogel J, Rudel T. The transcriptional landscape of Chlamydia pneumoniae. Genomic Biol 2011; 12:R98; PMID:21989159; http://dx.doi.org/10.1186/gb-2011-12-10-r98

41. Maier CJ, Maier RH, Virot DP, Maas M, Hüntritter H, Bauer JW, Onder K. Construction of a highly flexible and comprehensive gene collection representing the ORFeome of the human pathogen Chlamydia pneumoniae: BMC Genomics 2012; 13:632; PMID:23157390; http://dx.doi.org/10.1186/1471-2164-13-632

42. Haisgawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evolut 1985; 22:160-74; PMID:3934395; http://dx.doi.org/10.1007/BF02101694

43. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evolut 2001; 18:691-9; PMID:11319253; http://dx.doi.org/10.1093/molbev/mq1243

44. Kalman S, Mitchell W, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 1999; 21:385-9; PMID:10192388; http://dx.doi.org/10.1038/77716

45. Myers GS, Mathews SA, Eppinger M, Mitchell C, O’Brien KK, White OR, Benahmed F, Brunham RC, Read TD, Ravel J, et al. Evidence that human Chlamydia pneumoniae was zoonotically acquired. J Bacteriol 2007; 189:2010-9; PMID:17317386; http://dx.doi.org/10.1128/JB.00746-09

46. Ramsey KH, Sigar IM, Schripsema JH, Denman CJ, Doggett J, Ormond D, et al. The Chlamydiophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 2005; 15:620-40; PMID:15837807; http://dx.doi.org/10.1101/gr.3684805

47. Thomson NR, Years C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdano-Tarraga AM, Harris B, Doggett J, Ormond D, et al. The Chlamydiophila abortus genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008; 18:161-71; PMID:18032721; http://dx.doi.org/10.1101/gr.7020108

48. Thomson NR, Holdens MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzack H, et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008; 18:161-71; PMID:18032721; http://dx.doi.org/10.1101/gr.7020108