Research article

Rhizospheric fungi of *Panax notoginseng*: diversity and antagonism to host phytopathogens

Cui-Ping Miao¹, Qi-Li Mi¹,², Xin-Guo Qiao¹, You-Kun Zheng¹, You-Wei Chen¹, Li-Hua Xu¹, Hui-Lin Guan³, Li-Xing Zhao¹,*

¹Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
²Technology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, China
³School of Energy and Environment Science, Yunnan Normal University, Kunming, China

ARTICLE INFO

Article history:
Received 12 January 2015
Received in Revised form 4 May 2015
Accepted 14 June 2015
Available online 19 June 2015

Keywords:
fungal diversity
Illumina MiSeq
Panax notoginseng
rhizosphere soil

ABSTRACT

Background: Rhizospheric fungi play an essential role in the plant–soil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy *Panax notoginseng* cultivated in Wenshan, China.

Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of *P. notoginseng*.

Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; *Mortierella* and unclassified *Mortierellales* accounted for a large proportion (44.9%) at genus level. The relative abundance of *Fusarium* and *Phoma* sequences was high, accounting for 12.9% and 5.5%, respectively. In total, 113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an *Incertae sedis*), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. *Fusarium* was the most isolated genus with six species (24 isolates, 21.2%). The abundance of *Phoma* was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus.

Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old *P. notoginseng* and that antagonistic isolates may be useful for biological control of pathogens.

Copyright 2015, The Korean Society of Ginseng, Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Soil microbial communities display high structural, genetic, and functional diversity, and play extremely complex roles in many aspects of soil ecosystems, such as biotic interactions and nutrient cycling [1]. Microbial diversity in soil is an important factor determining soil health and is considered one of the main drivers in soil suppressiveness [2]. The rhizosphere is one of the most complex environments that are influenced by plant roots and active microhabitat where plant roots and microbes interact [3,4]. Composition of the rhizosphere microbiota can negatively or positively influence plant traits such as stress tolerance, health, development, and productivity [5,6]. Conversely, host plants are able to shape their own rhizosphere microbiome by adjusting environmental factors such as pH, soil nutrients, and root architecture [5], and recent studies have shown that plant...
genotype also has a great influence on the structure of rhizosphere microbial communities [7–9]. Fungi and fungus-like organisms form one of the most diverse groups of the Eukarya, and represent an essential functional component of soil microbial communities [10]. Under unfavorable conditions, some fungi can cause plant diseases and sometimes even total loss of the crop yields. In many instances, these diseases are caused by a complex of fungal species. At the same time, other fungal groups can antagonize phytopathogens, decompose plant residues, supply nutrients for plants, and stimulate plant growth [11].

The culture-dependent approach has been applied to analyze the fungal diversity for several decades [12]. In the past 20 yrs, many molecular methods, such as terminal-restriction fragment length polymorphism (T-RFLP), random amplified polymorphic DNA (RAPD), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), and real-time quantitative PCR detecting system (Q-PCR), have widely been used to study the diversity and composition of soil microbial communities [13,14]. With methodological advances, high-throughput sequencing techniques, such as 454 pyrosequencing and MiSeq by Illumina (San Diego, CA, USA), have been considered more powerful tools for studying microbial communities [15,16]. Compared to the 454 pyrosequencing, MiSeq sequencing has a shorter time for generating good-quality paired-end reads and a much higher throughput at a low price [15–17]. The length of reads can reach 2 × 300 bp. Due to lower costs and greater throughput, Illumina MiSeq sequencing is increasingly being utilized to estimate the diversity and composition of microbial communities in various ecosystems.

Panax notoginseng (Burk.) F. H. Chen (Araliaceae), a well-known traditional Chinese medicinal plant mainly cultivated in the mountainous areas in Yunnan and Guangxi, is widely used for the treatment of cardiovascular diseases, inflammation, trauma, and internal and external bleeding due to injury, and has also been used as a tonic [18,19]. Grown under shaded conditions with high humidity for at least 3 yrs, cultivation of P. notoginseng is easily affected by the soil environment, and P. notoginseng is also susceptible to a number of soil-borne diseases [20]. Among the diseases, the root-rot disease complex caused by a single pathogen or a combination of pathogens is most destructive because it results in yield reduction, or no harvest, and a lower content of active ingredients [21]. The reported pathogens include Alternaria panax, Alternaria tenuissima, Cylindrocarpon destructans, Cylindrocarpon didymum, Fusarium oxysporum, Fusarium solani, Phytophthora cactorum, Phoma herbarum, and Rhizoctonia solani [22]. Fungal pathogens, endophytes, and rhizosphere microbes of Panax ginseng and Panax quinquefolius have been reported [23–27]. Investigation on fungi associated with P. notoginseng has been focused on pathogens, and few reports were about the diversity of fungal community in the rhizosphere soil of P. notoginseng.

In this study, the diversity of the rhizospheric fungal community of 2-yr-old healthy P. notoginseng plants was characterized using a MiSeq sequencing platform (2 × 300 bp). The culturable fungal community was also analyzed by culture-dependent methods, and the antagonistic activities of the fungal isolates were also challenged by the pathogens, A. panax, F. oxysporum, F. solani, and P. herbarum, isolated from rotten roots of P. notoginseng. The further purposes include the following: (1) finding antagonistic fungi for the development of biocontrol agents for soil-borne diseases of P. notoginseng; (2) exploring the active substances from antagonistic fungal strains; and (3) investigating the fungal structure for in-depth studies on microbial ecological functions.

2. Materials and methods

2.1. Site and sampling

Soil samples were collected in a P. notoginseng plantation (N 23′35′, E 103′40′) in Wenshan, Yunnan, in early June 2013. Soil adhering around the roots was gently taken off, put into a sterile plastic bag, and transported to the laboratory within 24 h. Soil samples were preserved at –80°C and 4°C before use.

2.2. Soil DNA extraction and MiSeq sequencing

DNA was extracted from 0.5 g frozen soil sample using the PowerSoil DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA, USA), according to the manufacturer’s instructions. The nuclear ribosomal internal transcribed spacer 2 (ITS2) region was amplified according to the newly developed primers fITS9 and ITS4 [28]. Amplifications were carried out in a total volume of 50 μL using 10 ng of DNA, 5 μL 10 × polymerase chain reaction (PCR) buffer, 5 μL deoxy-ribonucleoside triphosphate (dNTP) (10mM each), 2.5 unit Plantium Taq, and 0.5 μL each of Bar-PCR primer (50μM) and Primer R (50μM). PCR cycling conditions were as follows: 5 min at 94°C; 25 cycles of 30 s at 94°C, 30 s at 58°C, 30 s at 72°C; and 7 min at 72°C. The PCR products were purified and run using a MiSeq Benchtop for 2 × 300 bp paired-end sequencing (Illumina). The quality check was performed using PRINSEQ-lite 0.19.5. All sequences were aligned using Q-PRIMER v1.1.579 (http://www.drive5.com/uclust/downloads1_1_579.html), and complete linkage clustering was used to define operational taxonomic units (OTUs) with 97% identity as a cutoff. Rarefaction analysis was performed using MOTHUR v.1.22.2 [29]. Diversity in the sample was estimated using the Shannon–Weiner index and the species richness was expressed as the number of OTUs by the nonparametric indices abundance-based coverage estimate (ACE) and Chao1 [30]. In addition, taxonomy assignment was performed using the Ribosomal Database Project (RDP) classifier [31].

2.3. Isolation of fungi

Fungal isolation was carried out using the dilution method. Soil sample (10 g) was mixed with 90 mL sterile water in a conical flask, and the soil solution was diluted from 10−1 to 10−4 after shaking for 1 h in an oscillator. A volume of 0.1 mL soil solution (10−4) was coated evenly on potato dextrose agar with penicillin sodium salt (100 mg in 1 L medium) and kanamycin sulfate (50 mg in 1 L medium) to suppress bacterial growth. All plates were incubated at room temperature for 1 wk or until fungal growth was observed. Emergent hyphae were transferred and purified on sterile potato dextrose agar plates. Fungal isolates were grouped into morphotypes on the basis of their morphological differences.

2.4. Molecular identification and diversity analysis

Genomic DNA was extracted from pure cultures of a representative isolate of each fungal morphotype using the method of Guo et al [32]. The nuclear ribosomal internal transcribed spacer (ITS) regions including the 5.8S gene were subsequently amplified using the primer set ITS1 and ITS4 [33]. The amplification was performed in a total volume of 50 μL containing 10−50 ng of genomic DNA, 0.4μM of each primer, 0.2mM dNTP, 2.5 unit EasyTaq DNA polymerase, and 5 μL 10× EasyTaq buffer (TransGen Biotech Co., Ltd, Beijing, China). Conditions for amplification were as follows: an initial denaturation step of 4 min at 94°C, followed by 35 cycles of 45 s at 94°C, 45 s at 55°C, 2 min at 72°C, and a final extension at 72°C for 10 min. Purified PCR products were directly sequenced...
with primer pairs as mentioned above in the ABI 3730-XL DNA sequencer (Applied Biosystems, Inc., Foster City, CA, USA). DNA sequences were analyzed with DNASTAR version 5.03 software (DNASTAR, Inc., Madison, WI, USA), and fungal identification was performed using the NCBI database (http://www.ncbi.nlm.nih.gov) and BLAST searches.

2.5. Determination of antagonistic fungi against pathogens of root-rot disease

Antimicrobial activities of isolated fungi were determined by the agar diffusion method. The root-rot pathogens *A. panax, F. oxysporum, F. solani*, and *P. herbarum* were used as the targets for antagonistic determination. Selected isolates were inoculated into 250 ml conical flasks, each with 50 ml of potato dextrose broth, and incubated at 28°C on a shaker at 170 rpm for 7 d. Then, 200 µl of culture suspension was added into a well (diameter: 5 mm) of the potato dextrose agar plate with pathogens. After incubation at 28°C for 4 d, the activity was expressed as the diameter of the growth inhibition zone (in mm). Each treatment was performed in triplicate.

3. Results

3.1. Fungal diversity and relative abundance in the rhizosphere soil of 2-yr-old *P. notoginseng*

After quality filtering, a total of 16,130 paired-end reads were generated from 2-yr-old *P. notoginseng* rhizosphere soil sample using an Illumina MiSeq platform, and the sequencing coverage reached 0.98. The average length of these reads was 346 bp. All reads were clustered into 860 OTUs containing 564 non-singletons and 296 singletons at 97% sequence similarity. Rarefaction curves showed that the number of OTUs observed increased with the number of sequences sampled, and reached the near plateau region at 97% similarity level (Fig. 1A). The number of OTUs observed was still lower than the number of OTUs estimated with the nonparametric Chao1 (Fig. 1B) and ACE (Fig. 1C) indices (1,243 and 1,199, respectively) at 97% similarity. The Shannon diversity index (*H' = 4.44, Fig. 1D*) showed that the fungi were highly diverse in 2-yr-old *P. notoginseng* rhizosphere soil.

We assessed the distribution of fungal taxa at phylum and genus levels using the RDP classifier. They were assigned to five phyla and 79 genera. At phylum level, most fungal sequences were distributed in five phyla (Fig. 2A), Zygomycota (46.2%), Ascomycota (37.8%), Basidiomycota (5.9%), Chytridiomycota (1.6%), and Glomeromycota (1.2%), and others belonged to unclassified fungi. At genus level (Fig. 2B), Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%). It is noteworthy that the relative abundance of *Fusarium* and *Phoma* sequences was high, accounting for 12.9% and 5.5%, respectively. Nearly all the *Fusarium* sequences were identified to be *F. oxysporum*, which was considered the major pathogen of root rot in *P. notoginseng* [22]. The taxa below 0.7% were grouped together and represented as “other” in Fig. 2B.

3.2. Identification and diversity of isolated fungi

A total of 113 fungal isolates were obtained from the rhizosphere soil of *P. notoginseng*; among them 43 morphotypes were recognizable based on their morphological characteristics. One isolate of each morphotype was used for phylogenetic analysis. ITS sequences of the 43 isolates were sequenced and blasted in GenBank, and the closest matches, the accession number in GenBank (Nos. KP230805–KP230847), are listed in Table 1. The phylogenetic analysis was performed with MEGA 5 program (http://www.megasoftware.net/); the resulting phylogenetic tree of all sequences obtained in this study, together with selected GenBank sequences of close relatives, is shown in Fig. 3.

Based on the phylogenetic analysis of the 99 sequences (43 isolates and 56 sequences from GenBank), the isolates were distributed into two major groups. Forty-two isolates belonging to ascomycetes were grouped together in the first group, and the second group consisted of one zygomycete isolate (PH30042). Five different fungal subgroups were identified, with four corresponding to Ascomycota – Sordariomycetes, Eurotiomycetes, Chaetothyriomycetes, and Dothideomycetes; and one subgroup belonging

Fig. 1. Rarefaction curves showing the number of similarity-based OTUs at a cluster distance value of 0.03. Rarefaction analysis of (A) species richness, (B) Chao1 index, (C) ACE index, and (D) Shannon index. Four rarefaction curves reached the near plateau phase, representing good sampling depth.
Trichoderma in the rhizosphere soil of 2-yr-old Panax notoginseng, as revealed by MiSeq sequencing. “Other” in Fig. 2B represents all the taxa below 0.7%.

3.3. Distribution of fungi with antimicrobial activity

Thirty-five of the 43 fungal isolates were challenged by four pathogenic fungi causing root rot of P. notoginseng, excepting eight potential pathogenic fungi, PH30010, PH30011, PH30018, PH30026, PH30033, PH30038, PH30043, and PH30045. Thirteen isolates (37.1%) displayed antimicrobial activity against at least one pathogenic fungus (Table 2). The antagonists were distributed in nine genera, mainly in Pestalotiopsis (3 species), Cladosporium (2 species), Trichoderma (2 species), and Chaetomium (2 species) (Table 2). Of the 13 isolates, eight were active against A. panax, 10 demonstrated activity against F. oxysporum, five displayed activity against F. solani, and only one showed weak activity against P. herbarum. Isolate PH30019 exhibited antimicrobial activity against all pathogenic fungi tested. Four isolates (PH30007, PH30016, PH30019, and PH30035) exhibited moderate or strong antimicrobial activity against F. oxysporum and F. solani.

4. Discussion

Fungal diversity analysis using high-throughput sequencing techniques is becoming more common [34]. Compared to 454 pyrosequencing, Illumina sequencing has more advantages under the same effect [15,35]. Furthermore, the MiSeq platform can generate longer paired-end reads (2 x 300 bp). To our knowledge, a few studies have used MiSeq as a sequencing platform to study diversity and community composition of microbes [36–38]. Therefore, in this study, this new sequencing technique was employed to analyze the fungal diversity in the rhizosphere soil of P. notoginseng for the first time. A total of 16,978 raw reads were generated from the sequencer, and 16,130 sequences (95%) passed the quality filtering. A total of 860 OTUs were identified using a 97% cutoff during sequence clustering. The number of OTUs observed was lower than that of OTUs estimated with the nonparametric ACE and Chao1 indices at 97% similarity. Zygomycota was the dominant fungal phylum and represented 46.2% of all fungal DNA sequences, in which Mortierella accounted for a high relative abundance. Mortierella is ubiquitous in the bulk and rhizosphere soil from a range of temperate and tropical forests and agricultural habitats. A large number of Mortierella species exist in the rhizosphere soil of P. notoginseng, inferring that they play a potential role in keeping microecological balance as protective microbes to suppress soilborne pathogens by competing for nutrition, or assisting the host plants with the uptake of phosphorus and nitrogen. Curlews et al. [39] suggested that Mortierella spp. might be an important component of phosphorus cycling.

DNA barcoding is increasingly applied to catalogue and classify biodiversity [40]. Generally, in culture-independent researches, fungal diversity is studied based on the analysis of either the small subunit or the ITS region of the nuclear ribosomal RNA gene. Owing to its higher rate of evolution than the small subunit fragment, the ITS region has been selected as the universal barcode for fungal identification [41]. Due to length constraints of high-throughput metabarcoding, early metabarcoding studies were restricted to the use of either ITS1 or ITS2 [42,43]. However, because of the difference between the rates of evolution of ITS1 and ITS2, the composition of fungal communities characterized by ITS1 or ITS2 may be different. Bazzicalupo et al. [40] suggested that ITS2 may be more variable and recovers higher operational taxonomic units than ITS1, although both fragments performed equally well when evaluating community structures. Monard et al. [34] proposed that ITS1 appeared to be a better choice for sequencing, and analysis of both ITS regions were complementary. In addition, selection of the primer is very important to reduce the quantity of the out-targeted sequences and chimeras. Ihrmark et al [28] evaluated the new
primers—fITS7, gITS7, and fITS9—together with the ITS4 primer to amplify the ITS2 region by 454 sequencing. Primers fITS7 and fITS9 yielded a lower proportion of nonfungal sequences than gITS7. However, the fITS7 primer mismatched against most sequences of Mucorales. Mucoralean fungi are widely dispersed and occur in various habitats as saprobes in most ecosystems, such as soil, dung, dead plant material, and water [44]. Therefore, in this study, we analyzed the fungal diversity in the rhizosphere soil of P. notoginseng by amplifying the fungal ITS2 region using the fITS9f/ITS4 primer combination. The dataset obtained from the Illumina MiSeq platform was basically satisfactory and also supported the conclusion proposed by Ihrmark et al [28].

In pure-culture experiments, we isolated 113 fungal strains from the rhizosphere soil of 2-yr-old P. notoginseng. The analysis showed that the most abundant fungi were Mortierella alpina, Penicillium chrysogenum, and Chaetomium globosum. The Shannon diversity index (H') and species richness (S) of the rhizosphere fungi of P. notoginseng were 6.19 and 3.62, respectively.
phylogenetic analysis and morphological characteristics, the isolates were assigned to five classes, eight orders (except for an I. sedis), 26 genera, and 43 species (Table 1; Fig. 3). Chen et al. [27] reported that *Penicillium*, *Trichoderma*, and *Fusarium* were the dominant fungal populations in ginseng rhizosphere soil in northeastern China. The composition, quality, and diversity distribution of soil fungi showed great differences between ginseng and notoginseng, but the proportion of pathogens was high in both plant rhizosphere soils. As evident from the results of culture-independent experiments, the proportion of *Fusarium* and *Phoma* is high, suggesting that the plant is in danger of pathogen invasion, although it appears to be healthy at the sampling time (early in June). Root-rot diseases of *P. notoginseng* usually occur heavily in July and August, as environmental and weather conditions are optimal for the pathogens. The relatively high frequency of *Fusarium* and *Phoma* may give some interpretation. At the same time, antagonistic isolates were also detected and obtained during this study. The antagonists may be useful in inhibiting or suppressing

![Fig. 3. Neighbor-joining analysis of ITS sequences of 43 taxa from *Panax notoginseng* showing the relationships of culturable fungi with closest relatives. Bootstrap values are shown at the branches (1,000 replicates). The name of some groups is shown in bold letters: A, Sordariomycetes; B, Eurotiomycetes; C, Chaetothyriomycetes; D, Dothideomycetes; and E, Zygomycetes.](image-url)
the growth of potential root-rot pathogenic fungi in the soil ecological systems. In our previous work, we found a fungus *Aspergillus versicolor* (PH30001) from the rhizosphere soil of 1-yr-old healthy *P. notoginseng*, which produced antagonistic compounds against *F. solani* [45]. Further in-depth studies are needed to investigate the ecological effects of the antagonists. *Cylindrocarpon* species were the major pathogens causing root rot of *P. ginseng* and *P. quinquefolius* [46,47]. Miao et al [22] reported that *C. destructans* and *C. didymiun* caused root rot of *P. notoginseng* with weak pathogenicity but wide distribution. Two *Cylindrocarpon* isolates (PH30018 and PH30026) were also obtained during this study. However, *Cylindrocarpon* was not detected in high-throughput sequencing tests. For this case, it may be associated with primer design or various quality-control approaches or database selection. U’Ren et al [48] also confirmed that primer selection influenced pyrosequencing-based inferences of diversity and community composition. Most environmental microorganisms are unculturable in commonly used media and culture conditions. Rhizosphere is a unique environment, where beneficial microbes and pathogens have an important influence on the growth and health of plants [49]. Root exudates also play an important role in plant–microorganism interactions and functioning of the rhizosphere [50]. Moreover, fertilizers, fungicides, and other agrochemicals applied can also affect the composition and structure of soil microbial communities that may be closely linked with ecosystem functions [51–53]. These findings suggest that more attention should be devoted to changes in the microbial communities. Improving and combining pure-culture and culture-independent techniques can contribute to a better understanding of rhizosphere ecology. This will be helpful in improving the management of notoginseng planting.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (no.14361075), the Key Foundation Program of Yunnan Province of China (No. 2013FA015), the Major Program of Educational Commission of Yunnan Province of China (No. ZD2013008), and the Basic Research Foundation of Yunnan University (2013ZS204).

References

[1] Bouffaud ML, Kyselková M, Gouesnard B, Grunamann G, Muller D, Moënne-Loccoz Y. Is diversification history of maize influencing selection of soil bacteria by roots? Mol Ecol 2012;21:195–206.

[2] Xu L, Ravnklov S, Larsen J, Nilsson RH, Nilaisen M. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 2012;45:26–32.

[3] Mendes R, Carbeva P, Raajmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microbiomes. FEMS Microbiol Rev 2013;37:634–63.

[4] Singh AK, Singh M, Dubey SK. Rhizospheric fungal community structure of a *B. brinjal* and a near isogenic variety. J Appl Microbiol 2014;117:750–65.

[5] Krista A, Miranda H. The root microbiota—a fingerprint in the soil? Plant Soil 2013;370:671–86.

[6] Lakshmanan V, Selvaraj G, Bas H, BP. Functional soil microbiome: belogrround solutions to an aboveground problem. Plant Physiol 2014;166:689–700.

[7] Aira M, Gómez-Brandón M, Lazcano C, Bählé E, Domínguez J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 2010;42:2276–81.

[8] Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere and plant health. Trends Plant Sci 2012;17:478–86.

[9] Peiffer JA, Spor A, Koren O, Jui Z, Tringe SG, Dang JL, Buckler ES, Ley RE. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 2013;110:6548–53.

[10] Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 2009;184:449–55.

[11] Sugiyama A, Ueda Y, Takase H, Yazaki K. Pyrosequencing assessment of rhizospheric fungal communities from a soybean field. Can J Microbiol 2009;55:687–90.

[12] Comes NC, Faghola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Arumugam R, Chan XY, Yin WF, Choo SW, Chan KG. Metagenomic analysis of microbial diversity of tropical sea water of Georgetown Coast, Malaysia. Life Sci J 2013;1:2392–9.

[13] Fadrosh DW, Ma E, Cajper P, Sengamalay N, Ott S, Brotman RM, Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014;2:6.

[14] Sun HX, Ye YP, Pan HJ, Pan YJ. Adjuvant effect of *Panax notoginseng* saponins on the immune responses to ovalbumin in mice. Vaccine 2004;22:3882–9.

[15] Guo HB, Cui XM, An N, Cai GP. Sanchi ginseng (*Panax notoginseng*) Brit. F. H. Chen) in china: distribution, cultivation and varieties. Genet Resour Crop Ecol 2010;57:453–60.

[16] Chen X, Sun XD, Bi SY, Lu GZ. Phylogenic diversity of bacterial endophytes of *Panax notoginseng* with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwenhoek 2013;103:299–312.

[17] Sun Y, Ke J, Ma N, Chen Z, Wang C, Cui X. Effects of root rot on saponin content in *Panax notoginseng*. Zhong Yao Cai 2004;27:79–80.

[18] Miao ZQ, Li SD, Liu XZ, Chen ZY, Bai H, Zhang KQ. The causal microorganisms of *Panax notoginseng* root rot disease. Sci Agric Sin 2006;39:1371–8.

[19] Park YH, Kim SC, Park SU, Lim HS, Kim JB, Cho BK, Bae H. Age-dependent distribution of fungal endophytes in *Panax ginseng* roots cultivated in Korea. J Ginseng Res 2013;37:327–39.

Table 2

Solvent No.	Diameter of the growth inhibition zone (mm)			
	Alternaria panax	Fusarium oxysporum	Fusarium solani	Phoma herbarum
PH30004	10	8		
PH30007	7	10	11	
PH30014	9	8	8	
PH30015	12	9	12	
PH30016	11	13	14	
PH30017	9	13	15	7
PH30019	11	9	9	
PH30020	10	10	10	
PH30021	9	12	12	
PH30027	9	10	10	
PH30031	10	10	10	
PH30035	12	10	10	
Chao A, Chazdon RL, Colwell RK, Shen TJ. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 2005;8:148–58.

Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141–5.

Guo LD, Hyde KD, Liew ECY. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 2000;147:617–30.

White TJ, Bruns T, Lee J, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego, CA, USA: Academic Press; 1990. p. 315–22.

Luo C, Tsemendzi D, Kyripides N, Read T, Konstantinidis KT. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 2012;7:e30087.

Snelling TJ, Genc B, McKain N, Watson M, Waters SM, Creevey CJ, Wallace RJ. Diversity and community composition of methanogenic archaea in the rumen of Scottish upland sheep assessed by different methods. PLoS One 2014;9:e106491.

Wang Z, Yang Y, He T, Xie S. Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment. Appl Microbiol Biotechnol 2015;99:3259–65.

Monard C, Gantner S, Stenlid J. Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. FEMS Microbiol Ecol 2013;84:165–75.

Yu C, Hu XM, Deng W, Li Y, Xiong C, Ye CH, Han GM, Li X. Changes in soil microbial activity and microbial biomass. Chemosphere 2005;59:457–65.

chose CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012;109:6241–6.

Jumpponen A, Jones KL. Massively parallel 454 sequencing indicates hyper-diverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 2009;184:438–48.

Corder T, Robin C, Capdevieille X, Desgrez-Loustau ML, Vacher C. Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 2012;5:509–20.

De Azevedo Santiago AL, Dos Santos PJ, Maia LC. Mucorales from the semiarid of Pernambuco, Brazil. Braz J Microbiol 2013;44:299–305.

Liu K, Zheng YK, Miao CP, Xiong ZJ, Xu LH, Guan HL, Yang YB, Zhao LX. The antifungal metabolites obtained from the phyllospheric Aspergillus sp. YM PH30001 against pathogenic fungi of Panax notoginseng. Nat Prod Res 2014;28:2334–7.

Yan XR, Fu JF. A summary of researches on Cylindrocarpon and Panax root rust-rot. J Shenyang Agric Univ 2002;33:71–5.

Bai RL, Liu XM, Liu WC. The fungal species causing root rot of ginseng in Jilin Province. Acta Phytopathol Sin 1999;29:28–25.

U'Ren JM, Riddle JM, Monacell JT, Carbone I, Madiikowska J, Aronold AE. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol Ecol Resour 2014;14:1032–48.

Lynch J. The rhizosphere. London, UK: Wiley; 1990.

Haichar FZ, Sentailla C, Heullin T, Achouak W. Root exudates mediated interactions belowground. Soil Biol Biochem 2014;77:69–80.

Yi C, Hu XM, Deng W, Li Y, Xiong C, Ye CH, Han GM, Li X. Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl Soil Ecol 2014;86:30–40.

Schmitt H, Van Beelen P, Tolls J, Van Leeuwen CL. Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 2004;38:1148–53.

Thiele-Bruhn S, Beck IC. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 2005;59:457–65.