Modules over group rings of locally soluble groups with a certain condition of minimality

O. YU. Dashkova
MODULES OVER GROUP RINGS OF LOCALLY SOLUBLE GROUPS WITH A CERTAIN CONDITION OF MINIMALITY

O. YU. DASHKOVA

Received 10 May, 2014

Abstract. Let A be a RG-module, where R is an associative ring, $A/C_A(G)$ is an infinite R-module, $C_A(A) = 1$, G is a locally soluble group. Let $L_{nf}(G)$ be the system of all subgroups $H \leq G$ such that quotient modules $A/C_A(H)$ are infinite R-modules. The author studies an RG-module A such that $L_{nf}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group G with these conditions is soluble. The structure of G is described.

2010 Mathematics Subject Classification: 20F19; 20H25

Keywords: group ring, locally soluble group, module

1. INTRODUCTION

Let A be a vector space over a field F. The subgroups of the group $GL(F, A)$ of all automorphisms of A are called linear groups. If A has a finite dimension over F then $GL(F, A)$ can be considered as the group of non-singular $(n \times n)$-matrices, where $n = dim_F A$. Finite dimensional linear groups have played an important role in various fields of mathematics, physics and natural sciences, and have been studied many times. When A is infinite dimensional over F, the situation is totally different. Infinite dimensional linear groups have been investigated little. The study of this class of groups requires additional restrictions. In [5] it was introduced the definition of the central dimension of an infinite dimensional linear group. Let H be a subgroup of $GL(F, A)$. H acts on the quotient space $A/C_A(H)$ in a natural way. The authors define $centdim_H$ to be $dim_F (A/C_A(H))$. The subgroup H is said to have a finite central dimension if $centdim_H$ is finite and H has infinite central dimension otherwise. Let $G \leq GL(F, A)$. In [5] it was considered the system $L_{id}(G)$ of all subgroups of G of infinite central dimension. In order to investigate infinite dimensional linear groups that are close to finite dimensional, it is natural to consider the case where the system $L_{id}(G)$ is “very small”. The authors have studied locally soluble infinite dimensional linear groups such that $L_{id}(G)$ satisfies the minimal condition as an ordered set [5].

© 2014 Miskolc University Press
If $G \leq GL(F, A)$ then A can be considered as an FG-module. The natural generalization of this case is the consideration of an RG-module A, where R is a ring whose structure is near to a field. At this point the generalization of the notion of the central dimension of a subgroup of a linear group is the notion of the cocentralizer of a subgroup. This notion was introduced in [8]. Let A be an RG-module, R be an associative ring, G be a group. If $H \leq G$ then the quotient module $A/C_A(H)$ considered as an R-module is called the cocentralizer of H in the module A.

Modules over group rings of finite groups have been considered by many authors. Recently this class of modules was investigated in [6]. Study of modules over group rings of infinite groups requires some additional restrictions as in the case of infinite dimensional linear groups. In [2] it was investigated an RG-module A such that R is a dedekind domain and the cocentralizer of G in the module A is not an artinian R-module. It was considered the system $L_{nad}(G)$ of all subgroups of G such that their cocentralizers in the module A are not artinian R-modules which is ordered by the usual inclusion. It is investigated an RG-module A such that the system $L_{nad}(G)$ satisfies the minimal condition as an ordered set, G is a locally soluble group, $C_G(A) = 1$. The analogous problem for the ring of integers R was investigated in [3].

In [1] we have studied an RG-module A such that R is the ring of integers, the cocentralizer of G in the module A is not a noetherian R-module and $C_G(A) = 1$. Let $L_{nd}(G)$ be the system of all subgroups of G such that their cocentralizers in the module A are noetherian R-modules. It was investigated an RG-module A such that $L_{nd}(G)$ satisfies the minimal condition as an ordered set and G is locally soluble.

In [4] we have considered the similar problem where R is the ring of integers and the noetherian condition is replaced by the minimax condition.

In this paper we investigate RG-module, where R is an associative ring, $A/C_A(G)$ is an infinite R-module, $C_G(A) = 1$, G is a locally soluble group. Let $L_{nf}(G)$ be the system of all subgroups $H \leq G$ such that $A/C_A(H)$ are infinite R-modules. We study an RG-module A such that $L_{nf}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group G with these conditions is soluble and the structure of G is described.

The main results of this paper are Theorems 2 and 3.

2. PRELIMINARY RESULTS

We reduce some elementary facts about RG-modules.

Later on it is considered an RG-module A such that $C_G(A) = 1$.

Let A be an RG-module where G is a group, R is an associative ring. Recall that if $K \leq H \leq G$ and the cocentralizer of H in the module A is a finite R-module then the cocentralizer of K in the module A is a finite R-module also. If U, V are
subgroups of G such that their cocentralizers in the module A are finite \mathbb{R}-modules, then $A/(C_A(U) \cap C_A(V))$ is a finite \mathbb{R}-module also.

Suppose that a group G satisfies the condition $mn - nf$. If $H_1 > H_2 > H_3 > \cdots$ is an infinite strictly descending chain of subgroups of G then there is the natural number n such that the cocentralizer of H_n in the module A is a finite \mathbb{R}-module. Moreover, if N is a normal subgroup of G and the cocentralizer of N in the module A is an infinite \mathbb{R}-module then G/N satisfies the minimal condition on subgroups.

Lemma 1. Let A be an $\mathbb{R}G$-module, G be a group, \mathbb{R} be an associative ring. Suppose that G satisfies the condition $mn - nf$, X, H are subgroups of G and Λ is an index set such that

1. $X = Dr_{\lambda \in \Lambda}X_\lambda$, where $1 \neq X_\lambda$ is an H-invariant subgroup of X, for each $\lambda \in \Lambda$.
2. $H \cap X \leq Dr_{\lambda \in \Gamma}X_\lambda$ for some subset Γ of Λ.

If the set $\Omega = \Lambda \setminus \Gamma$ is infinite, then the cocentralizer of H in the module A is a finite \mathbb{R}-module.

Proof. Suppose that the set Ω is infinite and let $\Omega_1 \supset \Omega_2 \supset \cdots$ be a strictly descending chain of subsets of the set Ω. Since $H \cap Dr_{\lambda \in \Omega}X_\lambda = 1$, the chain of subgroups $\langle H, X_\lambda | \lambda \in \Omega_1 \rangle > \langle H, X_\lambda | \lambda \in \Omega_2 \rangle > \cdots$ is strictly descending. It follows that for some natural number d the cocentralizer of the subgroup $\langle H, X_\lambda | \lambda \in \Omega_d \rangle$ in the module A is a finite \mathbb{R}-module. Therefore the cocentralizer of H in the module A is a finite \mathbb{R}-module also. \qed

Lemma 2. Let A be an $\mathbb{R}G$-module, G be a group, \mathbb{R} be an associative ring, G satisfy the condition $mn - nf$, H, K be subgroups of G such that K is a normal subgroup of H. Suppose that there exists an index set Λ and subgroups H_λ of G such that $K \leq H_\lambda$ for all $\lambda \in \Lambda$, $H/K = Dr_{\lambda \in \Lambda}H_\lambda/K$, and the set Λ is infinite. Then the cocentralizer of H in the module A is a finite \mathbb{R}-module.

Proof. Let Γ and Ω be infinite disjoint subsets of the set Λ such that $\Lambda = \Gamma \cup \Omega$. Let $U/K = Dr_{\lambda \in \Gamma}H_\lambda/K$, let $V/K = Dr_{\lambda \in \Omega}H_\lambda/K$, and let $\Gamma_1 \supset \Gamma_2 \supset \cdots$ be a strictly descending chain of subsets of the set Γ. Then we construct an infinite strictly descending chain of subgroups

$$\langle V, H_\lambda | \lambda \in \Gamma_1 \rangle > \langle V, H_\lambda | \lambda \in \Gamma_2 \rangle > \cdots .$$

It follows from the condition $mn - nf$ that the cocentralizer of V in the module A is a finite \mathbb{R}-module. Likewise, we obtain that the cocentralizer of U in the module A is a finite \mathbb{R}-module. Since $H = UV$, it follows that the cocentralizer of H in the module A is a finite \mathbb{R}-module. \qed

Lemma 3. Let A be an $\mathbb{R}G$-module, G be a group, \mathbb{R} be an associative ring, G satisfy the condition $mn - nf$. If an element $g \in G$ has infinite order then the cocentralizer of $\langle g \rangle$ in the module A is a finite \mathbb{R}-module.
Proof. Let \(p, q \) are distinct primes greater than 3 and let \(u = g^p, v = g^q \). Then there is an infinite descending chain of subgroups \(\langle u \rangle > \langle u^2 \rangle > \langle u^4 \rangle > \cdots \). It follows from the condition \(\min - nf \) that there exists the natural number \(k \) such that the cocentralizer of the subgroup \(\langle u^{2k} \rangle \) in the module \(A \) is a finite \(R \)-module. Similarly, there exists a natural number \(l \) such that the cocentralizer of the subgroup \(\langle v^{3l} \rangle \) in the module \(A \) is a finite \(R \)-module. Therefore the cocentralizer of the subgroup \(\langle g \rangle = \langle u^{2k} \rangle \langle v^{3l} \rangle \) in the module \(A \) is a finite \(R \)-module.

\[\square \]

The following result gives an important information about the derived quotient group under the condition \(\min - nf \).

Lemma 4. Let \(A \) be an \(RG \)-module, \(G \) be a group, \(R \) be an associative ring. Suppose that the cocentralizer of \(G \) in the module \(A \) is an infinite \(R \)-module, and \(G \) satisfies the condition \(\min - nf \). Then the quotient group \(G' / G'' \) is Chernikov.

Proof. Suppose that the quotient group \(G / G' \) is not Chernikov group. Let \(\mathfrak{S} \) be the family of all subgroups \(H \leq G \) such that \(H / H' \) is not Chernikov and the cocentralizer of \(H \) in the module \(A \) is an infinite \(R \)-module. Since \(G \in \mathfrak{S} \) then \(\mathfrak{S} \neq \emptyset \). Since the set \(\mathfrak{S} \) satisfies the minimal condition, then it has a minimal element. Let \(D \) be this minimal element. If \(U, V \) are proper subgroups of the group \(D \) such that \(D = UV \) and \(U \cap V = D' \), then at least one of these subgroups, \(U \) say, such that its cocentralizer in the module \(A \) is an infinite \(R \)-module. The choice of \(D \) implies that \(U / U' \) is Chernikov. It follows with regard to the isomorphism \(U / D' \simeq (U / U') / (D' / U') \) that \(U / D' \) is also Chernikov. Since the cocentralizer of \(U \) in the module \(A \) is an infinite \(R \)-module it follows that the abelian quotient group \(D / U \) is also Chernikov. Hence the quotient group \(D / D' \) is Chernikov. Contrary to the choice of \(D \). Therefore \(D / D' \) is indecomposable. Hence \(D / D' \) is isomorphic to a subgroup of quasi-cyclic group \(C_{q^\infty} \), for some prime \(q \). Contradiction.

\[\square \]

Let \(A \) be an \(RG \)-module, \(G \) be a group, \(R \) be an associative ring. Let \(FFD(G) \) be the set of all elements \(x \in G \) such that the cocentralizer of \(\langle x \rangle \) in the module \(A \) is a finite \(R \)-module. Since \(C_A(x^g) = C_A(x)g \) for all \(x, g \in G \), it follows that \(FFD(G) \) is a normal subgroup of \(G \).

Lemma 5. Let \(A \) be an \(RG \)-module, \(G \) be a group, \(R \) be an associative ring. Suppose that the cocentralizer of \(G \) in the module \(A \) is an infinite \(R \)-module, and \(G \) satisfies the condition \(\min - nf \). Then \(G \) is either periodic or \(G \neq FFD(G) \).

Proof. We suppose to the contrary that \(G \) is neither periodic nor \(G \neq FFD(G) \). Let \(\mathfrak{S} \) be the family of all subgroups \(H \leq G \) such that \(H \) is not periodic and \(H \neq FFD(H) \). \(\mathfrak{S} \) is non-empty. If \(H \neq FFD(H) \) then there is an element \(h \in H \) such that the quotient module \(A / C_A(h) \) is an infinite \(R \)-module. Hence \(\mathfrak{S} \subseteq L_{nf}(G) \), and
therefore \mathcal{G} satisfies the minimal condition. Let D be the minimal element of \mathcal{G}, let $L = FFD(D)$. Note that $L \neq 1$, since D is not a periodic group. If $L \leq S \leq D$ and $S \neq D$, then $S = FFD(S)$ so $S \leq L$. Hence D/L has order q for some prime q. Let $x \in D \setminus L$. If an element a has infinite order, then the choice of D implies that $(x,a) = D$. It follows that L is finitely generated and since $L = FFD(L)$, the quotient module $A/C_A(L)$ is a finite R-module. Since the subgroup L is normal in D, then $C = C_A(L)$ is an RD-submodule of A. It follows that A has the finite series of RD-submodules

$$\langle 0 \rangle \leq C \leq A,$$

such that A/C is a finite R-module. Since A/C is a finite R-module then $D/C_B(A/C)$ is finite. As $C = C_A(L)$ then $L \leq C_B(C)$. It follows that $D/C_B(C)$ is finite too.

Let $W = C_B(C) \cap C_B(A/C)$. By Remak theorem

$$D/W \leq D/C_B(C) \times D/C_B(A/C).$$

It follows that the quotient group D/W is finite. W acts trivially on each factor of the series $\langle 0 \rangle \leq C \leq A$. Therefore W is abelian.

Let U be a normal subgroup of finite index of D. The subgroup U is not periodic and so $\langle U,x \rangle$ is neither periodic nor $\langle U,x \rangle \neq FFD(\langle U,x \rangle)$. The choice of D implies that $D = \langle U,x \rangle$ and hence the quotient group D/U is abelian. If E is the finite residual of D, it follows that the quotient group D/E is abelian. Since $E \leq W$ then D/W is also abelian. It follows that $D/(W \cap L)$ is abelian. Since $W \cap L \leq W$, then the subgroup $W \cap L$ is abelian, and so D is a finitely generated metabelian subgroup. By theorem of P.Hall (Theorem 9.51 [9]) D is residually finite. As above, D is therefore abelian. Since $D = U(x)$ for every subgroup U of finite index, it follows that the group D is infinite cyclic. By Lemma 3 $D = FFD(D)$. We have the contradiction with the choice of D.

\[\square \]

3. Locally soluble groups with the condition $\text{min} - n f$

Lemma 6. Let A be an RG-module, G be a periodic locally soluble group, R be an associative ring. Suppose that the cocentralizer of G in the module A is an infinite R-module and G satisfies the condition $\text{min} - n f$. Then G either satisfies the minimal condition on subgroups or $G = FFD(G)$.

Proof. We suppose to the contrary that G is neither satisfies the minimal condition on subgroups nor $G \neq FFD(G)$. Let \mathcal{G} be the family of all subgroups $H \leq G$ such that H does not satisfy the minimal condition on subgroups and $H \neq FFD(H)$. Then $\mathcal{G} \neq \emptyset$. If $H \neq FFD(H)$ then the cocentralizer of H in the module A is an infinite R-module and hence $\mathcal{G} \subseteq L_{nf}(G)$. Therefore \mathcal{G} satisfies the minimal condition. Let D be the minimal element and let $L = FFD(D)$. There exists an infinite strictly descending chain of subgroups of D:
Since D satisfies the condition $\min -nf$ then there exists the natural number k such that the cocentralizer of H_k in the module A is a finite R-module. Therefore $H_k \leq L$, and hence L does not satisfy the minimal condition. If $x \in D \setminus L$ then it follows from the choice of the subgroup D that $\langle x, L \rangle = D$. Hence the quotient group D/L has the order q for prime q. If it is necessary we replace x by the suitable power and obtain that x has the order q^r for some natural number r. Since the group D is not Chernikov then by D.I.Zaicev’s theorem [10], D contains $\langle x \rangle$-invariant abelian subgroup $B = Dr_{n\in\mathbb{N}}(b_n)$ and we may assume that the elements b_n have prime orders for all $n \in \mathbb{N}$. Let $1 \neq c_1 \in B$ and $C_1 = \langle c_1 \rangle^{\langle x \rangle}$. Then C_1 is finite and there is the subgroup E_1 such that $B = C_1 \times E_1$. Let $U_1 = core_{\langle x \rangle}E_1$. Therefore U_1 has finite index in B. If $1 \neq c_2 \in U_1$ and $C_2 = \langle c_2 \rangle^{\langle x \rangle}$ then C_2 is a finite $\langle x \rangle$-invariant subgroup and $\langle C_1, C_2 \rangle = C_1 \times C_2$. Continuing in this manner, we can construct a family of subgroups $\{C_n | n \in \mathbb{N}\}$ for which $\langle C_n | n \in \mathbb{N} \rangle = Dr_{n\in\mathbb{N}}C_n$. By Lemma 1 $x \in L$. Contradiction.

From Lemmas 5 and 6 it follows the theorem.

Theorem 1. Let A be an RG-module, G be a locally soluble group, R be an associative ring. Suppose that the cocentralizer of G in the module A is an infinite R-module, and G satisfies the condition $\min -nf$. Then G either satisfies the minimal condition on subgroups or $G = FFD(G)$.

Lemma 7. Let A be an RG-module, G be a locally soluble group. Suppose that the cocentralizer of G in the module A is a finite R-module. Then G is almost abelian.

Proof. Let $C = C_A(G)$. Then A has the series of RG-submodules $\langle 0 \rangle \leq C \leq A$, where A/C is a finite R-module. Since $G \leq C_G(C)$ then $G/C_G(C)$ is trivial. As A/C is a finite R-module then $G/C_G(A/C)$ is finite.

Let $H = C_G(C) \cap C_G(A/C)$. Each element of H acts trivially on every factor of the series $\langle 0 \rangle \leq C \leq A/C$. By Kaluzhnin Theorem (p. 144 [7]) H is abelian. By Remak’s Theorem

$$G/H \leq G/C_G(C) \times G/C_G(A/C).$$

It follows that G/H is finite. Then G is an almost abelian group.

Lemma 8. Let A be an RG-module, G be a locally soluble group, R be an associative ring, and if the cocentralizer of G in the module A is an infinite R-module then G satisfies the condition $\min -nf$. Then either G is soluble or G has an ascending series of normal subgroups $1 = W_0 \leq W_1 \leq \cdots \leq W_n \leq \cdots \leq W_0 = \cup_{n\in\mathbb{N}}W_n \leq G$.

$$H_1 > H_2 > H_3 > \cdots$$
such that the cocentralizer of each subgroup \(W_n\) in the module \(A\) is a finite \(R\)-module, the factors \(W_{n+1}/W_n\) are abelian for \(n = 1, 2, \cdots\), and \(G/W_\omega\) is a Chernikov group.

Proof. If the quotient module \(A/C_A(G)\) is a finite \(R\)-module then \(G\) is soluble by Lemma 7. Therefore it seemed reasonable to study locally soluble groups \(G\) such that \(A/C_A(G)\) is an infinite \(R\)-module.

Later we consider the case when the cocentralizer of \(G\) in the module \(A\) is an infinite \(R\)-module. At first we prove that \(G\) is hyperabelian. To accomplish this we show that every non-trivial image of \(G\) contains a non-trivial normal abelian subgroup.

Let \(H\) be a proper normal subgroup of \(G\). Suppose that the cocentralizer of \(H\) in the module \(A\) is an infinite \(R\)-module. Then \(G/H\) satisfies the minimal condition on subgroups. Therefore \(G/H\) is a Chernikov group, and contains a non-trivial normal abelian subgroup. Now we suppose that the the cocentralizer of \(H\) in the module \(A\) is a finite \(R\)-module. Let \(\Sigma = \{M_\sigma/H | \sigma \in \Sigma\}\) be the family of all non-trivial normal abelian subgroups of the quotient group \(G/H\). At first we consider the case when for all \(\sigma \in \Sigma\) the cocentralizer of \(M_\sigma\) in the module \(A\) is an infinite \(R\)-module. We shall prove that the quotient group \(G/H\) satisfies the minimal condition on normal subgroups. Let \(\{M_\delta/H\}\) be a non-empty subset of \(\Sigma\). The cocentralizer of a subgroup \(M_\delta\) in the module \(A\) is an infinite \(R\)-module for all \(\delta\). By the condition \(min(n - \eta)\) the set \(\{M_\delta\}\) has the minimal element \(M\). Then \(M/H\) is the minimal element of subset \(\{M_\delta/H\}\). Therefore \(G/H\) satisfies the minimal condition on normal subgroups. It follows that the quotient group \(G/H\) is hyperabelian and contains a non-trivial normal abelian subgroup. In the case when for some \(\gamma \in \Sigma\) the cocentralizer of \(M_\gamma\) in the module \(A\) is a finite \(R\)-module, the subgroup \(M_\gamma\) is soluble. Then \(M_\gamma/H\) is a non-trivial normal soluble subgroup of \(G/H\). Therefore the quotient group \(G/H\) contains a non-trivial normal abelian subgroup and so \(G\) is hyperabelian.

Let \(1 = H_0 \leq H_1 \leq \cdots \leq H_\alpha \leq \cdots \leq G\) be a normal ascending series with abelian factors and let \(\alpha\) be the least ordinal such that the cocentralizer of \(H_\alpha\) in the module \(A\) is an infinite \(R\)-module. Then, as above, the subgroup \(H_\beta\) is soluble for all \(\beta < \alpha\). Moreover, the quotient group \(G/H_\alpha\) satisfies the minimal condition on subgroups, and so is a soluble Chernikov group.

At first we suppose that \(\alpha\) is not a limit ordinal. Then the subgroup \(H_\alpha\) is soluble and it follows that \(G\) is soluble also. Now we consider the case when \(\alpha\) is a limit ordinal, and \(G\) is not soluble. For all natural numbers \(k\) there exists an ordinal \(\beta_k\) such that \(\beta_k < \alpha\), \(H_{\beta_k}\) has derived length at least \(k\). Moreover, we may assume that \(\beta_i < \beta_{i+1}\) for all natural numbers \(i\). Let \(T_i = H_{\beta_i}\) for all natural numbers \(i\). It follows that \(G\) has an ascending series of normal soluble subgroups \(1 = T_0 \leq T_1 \leq \cdots \leq T_\omega\). Then the subgroup \(T_\omega = \cup_{n \in N} T_n\) is not soluble and so \(T_\omega = H_\alpha\). A series \(1 = W_0 \leq W_1 \leq \cdots \leq W_n \leq \cdots \leq W_\omega = \cup_{n \in N} W_n \leq G\) with the properties referred in the theorem can be obtained from the series \(1 = T_0 \leq T_1 \leq \cdots \leq T_\omega \leq G\). \(\square\)
Lemma 9. Let A be an RG-module, G be a group, R be an associative ring. Suppose that the cocentralizer of G in the module A is an infinite R-module, G satisfies the condition $\min -nf$ and $G = FFD(G)$. Then the quotient group G/G^3 is finite.

Proof. We suppose for a contradiction that the quotient group G/G^3 is infinite. Then G has an infinite strictly descending series of normal subgroups $G > N_1 > N_2 > \cdots$, such that the quotient groups G/N_i are finite for each i. Therefore there exists k for which the quotient group G/N_k is finite and the cocentralizer of N_k in the module A is a finite R-module. Since $G = FFD(G)$, there is the subgroup H such that its cocentralizer in the module A is a finite R-module and $G = H \tilde{N}_k$. Hence the cocentralizer of G in the module A is a finite R-module. Contradiction.

Lemma 10. Let A be an RG-module, G be a locally soluble group, R be an associative ring. Suppose that the cocentralizer of G in the module A is an infinite R-module and G satisfies the condition $\min -nf$. If G has an ascending series of normal subgroups $1 = W_0 \leq W_1 \leq \cdots \leq W_n \leq \cdots \leq \cup_{n \geq 1} W_n = G$, in which the cocentralizer of each subgroup W_n in the module A is a finite R-module, and each factor W_{n+1}/W_n is abelian, then G is soluble.

Proof. Since the quotient module $A/C_A(W_k)$ is a finite R-module for each $k \in \mathbb{N}$ then there is the series of RG-submodules $A = A_0 \geq A_1 \geq A_2 \geq \cdots \geq A_k \geq \cdots \geq A_\omega = C_A(G)$, such that $A_k = C_A(W_k)$ and each factor A_k/A_{k+1} is a finite RG-module. Let $H = \bigcap_{j \geq 0} C_G(A_j/A_{j+1})$. Then $G/C_G(A_j/A_{j+1})$ is finite for each $j \in \mathbb{N}$. Since G/H embeds in the Cartesian product of the quotient groups $G/C_G(A_j/A_{j+1})$, it follows that G/H is residually finite. Moreover, G is a union of subgroups such that their cocentralizers in the module A are finite R-modules. Hence $G = FFD(G)$. By Lemma 9 the quotient group G/H is finite.

Since $G = FFD(G)$ then the cocentralizer of H in the module A is an infinite R-module. We shall prove that H is soluble. Let $L_j = C_H(A/A_j)$, $j = 1, 2, \cdots$. Let $H \neq L_j$ for some j. The quotient group H/L_j is finite for each $j = 1, 2, \cdots$. We suppose that there is the number j such that the cocentralizer of L_j in the module A is a finite R-module. Let j be the least number with this property. It follows that the cocentralizer of L_{j-1} in the module A is an infinite R-module. On the other hand since the quotient group L_{j-1}/L_j is finite and $G = FFD(G)$, then the cocentralizer of L_{j-1} in the module A is a finite R-module. We have contradiction. Therefore the cocentralizer of each subgroup L_j in the module A is an infinite R-module. Since H satisfies the condition $\min -nf$ then there exists the number m such that $L_j = L_m$ for all $j \geq m$. From this fact and from the choice of subgroup L_j it follows that the subgroup L_m is soluble. Since the quotient group H/L_m is finite then H is also soluble. Then G is soluble.
From the obtained results it follows Theorem 2.

Theorem 2. Let A be an \mathbf{RG}-module, G be a locally soluble group, \mathbf{R} be an associative ring. Suppose that if the cocentralizer of G in the module A is an infinite \mathbf{R}-module, G satisfies the condition $\min nf$. Then G is soluble.

Theorem 3. Let A be an \mathbf{RG}-module, G be a locally soluble group, \mathbf{R} be an associative ring. Suppose that the cocentralizer of G in the module A is an infinite \mathbf{R}-module and G satisfies the condition $\min nf$. Then G has the normal abelian subgroup H such that G/H is Chernikov.

Proof. It should be noted that by Theorem 2 the group G is soluble. To accomplish this proof we consider the case when G is not Chernikov.

Let $G = D_0 \supseteq D_1 \supseteq D_2 \supseteq \cdots \supseteq D_n = 1$ be the derived series of G. There exists the number m such that the cocentralizer of D_m in the module A is an infinite \mathbf{R}-module but the cocentralizer of D_{m+1} in the module A is a finite \mathbf{R}-module. By Lemma 4 the quotient groups D_i/D_{i+1}, $i = 0, 1, \ldots, m$, are Chernikov. Let $U = D_{m+1}$. Then the quotient group G/U is Chernikov. Let $C = C_A(U)$. C is an \mathbf{RG}-submodule of A. Therefore there exists the series of $-submodules

$$\{0\} \subseteq C \subseteq A,$$

such that A/C is a finite \mathbf{R}-module. Then $G/C_G(A/C)$ is finite.

Let $H = C_G(C) \cap C_G(A/C)$. The subgroup H acts trivially on each factor of the series $\{0\} \subseteq C \subseteq A$. Therefore H is abelian. Since the quotient group G/U is Chernikov and $U \subseteq C_G(C)$ then the quotient group $G/C_G(C)$ is also Chernikov. By Remak theorem $G/H \leq G/C_G(C) \times G/C_G(A/C)$. It follows that G/H is Chernikov. Therefore G contains the normal abelian subgroup H such that G/H is Chernikov. \(\square\)

In the paper the author have used the methods of the proofs of [5].

REFERENCES

[1] O. Dashkova, “Modules over integer group rings of locally solvable groups with the restrictions on some systems of subgroups. (Russian),” *Dopov. Nats. Akad. Nauk Ukr.*, no. 2, pp. 14–19, 2009.

[2] O. Dashkova, “On a class of modules over group rings of locally soluble groups. (Russian),” *Trudy Inst. Mat. i Mech. Ural Otd. Ros. Akad. Nauk*, vol. 15, no. 2, pp. 94–98, 2009. [Online]. Available: http://dx.doi.org/10.1134/S0081543809070062

[3] O. Dashkova, “On one class of modules over integer group rings of locally soluble groups. (Russian),” *Ukrainian Math. J.*, vol. 61, no. 1, pp. 44–51, 2009. [Online]. Available: http://dx.doi.org/10.1007/s11253-009-0197-x

[4] O. Dashkova, “Modules over integer group rings of locally soluble groups with minimax restriction. (Russian),” *Fundam. Prikl. Mat.*, vol. 17, no. 3, pp. 25–37, 2011/2012. [Online]. Available: http://dx.doi.org/10.1007/s10958-012-1055-1

[5] M. Dixon, M. Evans, and L. Kurdachenko, “Linear groups with the minimal condition on subgroups of infinite central dimension,” *J. Algebra*, vol. 277, no. 1, pp. 172–186, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.jalgebra.2004.02.029
[6] P. M. Gudivok, V. P. Rud’ko, and V. A. Bovdi, *Crystallographic groups* (Ukrainian). Uzhgorod: Uzhgorods’ki˘ı Natsional’ni˘ı Universitet, 2006.

[7] M. Kargapolov and Y. Merzlyakov, *Fundamentals of group theory* (Russian). Moscow: Izdat. “Nauka”, 1972.

[8] L. Kurdachenko, “On groups with minimax classes of conjugate elements,” *Infinite groups and adjoining algebraic structures*, pp. 160–177, 1993.

[9] D. Robinson, *Finiteness Conditions and Generalized Soluble Groups*, ser. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin, Heidelberg, New York: Springer-Verlag, 1972, vol. 1,2.

[10] D. Zaicev, “Solvable subgroups of locally solvable groups,” *Dokl. Akad. Nauk SSSR*, vol. 214, no. 6, pp. 1250–1253, 1974.

Author’s address

O. Yu. Dashkova

The Branch of Moscow state university in Sevastopol, Department of Mathematics, 7 Sevastopol heroes street, 99001 Sevastopol, Russia

E-mail address: odashkova@yandex.ru