Super-strong Magnetic Field in Sunspots

Takenori J. Okamoto and Takashi Sakurai
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan; joten.okamoto@nao.ac.jp
Received 2017 August 1; revised 2017 December 12; accepted 2017 December 22; published 2018 January 4

Abstract

Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

Key words: Sun: magnetic fields – Sun: photosphere – sunspots

1. Introduction

Sunspots are concentrations of magnetic fields on the solar surface. Their strong magnetic field controls the physical conditions in and around sunspots and produces various kinds of structures. For example, a sunspot usually consists of the umbra with a vertical magnetic field and the penumbra with a horizontal field (Rempel et al. 2009; Borrero & Ichimoto 2011). The penumbra harbors an outward flow of gas along the horizontal threads with a speed of several kilometers per second, which is called the Evershed flow (Evershed 1909). In mature umbrae, we can see bright cracks (light bridges), which have weaker fields than the surrounding umbrae. The light bridges are considered to be convective cells penetrating from below the umbrae (Vazquez 1973; Jurčák et al. 2006) that finally break up the sunspots (Bray & Loughhead 1964). This assertion is also supported by the values of the filling factor representing the ratio of a magnetized component in each observed pixel. Umbrae and penumbrae generally have large filling factors (i.e., close to unity), which means that the magnetized component almost entirely covers the pixels. On the other hand, granules outside sunspots show small filling factors (Orozco Suárez et al. 2007), because of the dominance of non-magnetized gas. Light bridges also show smaller values than the surrounding umbrae (Leka 1997), thus light bridges include a significant fraction of non-magnetized gas.

The darkness of umbrae is generally correlated with their magnetic field strength (King 1934; Schad 2014). Hence, the strongest magnetic field in each sunspot is located in the umbra in most cases (Solanki 2003). A typical field strength in sunspots is around 3000 G (Rezaei et al. 2012; Livingston & Watson 2015), while Livingston et al. (2006) reported 6100 G among statistical data taken from 1917 through 2004. However, some exceptions have also been found outside umbrae. Tanaka (1991) and Zirin & Wang (1993) found a strength of 4300 G in complex sunspots with light bridges that separated opposite-polarity umbrae. Interestingly, such strong fields are nearly parallel to the solar surface, which is as strong as or much stronger than vertical umbral fields (Jaeggli 2016).

As the strongest magnetic field ever reported, van Noort et al. (2013) showed \(\sim7500 \) G in a sunspot penumbra with the complex inversion technique. Although the proper motion of sunspots or flows in light bridges and penumbrae might contribute to the enhancement of horizontal fields, there is no convincing explanation about the formation mechanism of these strong fields. The origin and behavior of strong fields are also important for understanding various solar activities such as flares, mass ejections, flux ropes, and coronal heating.

Here we report an extremely strong magnetic field in a sunspot. Using the Solar Optical Telescope (SOT) on board Hinode (Kosugi et al. 2007; Ichimoto et al. 2008; Shimizu et al. 2008; Suematsu et al. 2008; Tsuneta et al. 2008), we performed continuous observations of an active region to take full Stokes profiles (polarization profiles) by the Spectro-Polarimeter (SP; Lites & Ichimoto 2013) of the SOT. We investigated the time evolution and the spatial structure of the sunspot. We present the properties and discuss the formation mechanism of the strong field in this Letter.

2. Observations and Data Reduction

The Hinode satellite observed an active region NOAA 11967 from 2014 February 1 to 6. We had 31 raster scans with the SP to obtain maps of the active region. The scanning was mainly performed with the Fast Mapping mode, which has an integration time of 3.2 s at each slit position and a pixel sampling of 0″.32. The field of view was 280″ by 130″ (200 Mm by 90 Mm on the Sun). The SP simultaneously measured the full Stokes profiles of the Fe I lines at 6301.5 and 6302.5 Å with a sampling of 21.6 mÅ and with polarization sensitivity of \(10^{-3} \) relative to the continuum intensity. Vector magnetic field, Doppler velocity, and filling factor were derived from the calibrated Stokes profiles under the assumption of a Milne–Eddington (ME) atmosphere. The inversion\(^1\) was performed with the MERLIN code (Lites et al. 2007) developed under the Community Spectropolarimetric Analysis Center at the High Altitude Observatory (CSAC/\(^2\)).

1. NAOI fellow.
2. Level 1 Hinode/SP data, doi:10.5065/D6T151QF.
3. Level 2 Hinode/SP data, doi:10.5065/D6JH3J8D.
The inversion operations are limited to a maximum field strength of 5000 G and we found numerous pixels with 5000 G in most of the raster scans. Hence, we also applied the MEKSY code4 developed at the National Astronomical Observatory of Japan to such pixels to derive the actual field strength beyond 5000 G. The 180° azimuth ambiguity was resolved by the AZAM utility1, where the basic premise is minimization of spatial discontinuities in the field orientation.

3. Analysis

The sunspot had a light bridge that divided the umbra into northern and southern parts. An example of spectra along the white line (the slit position of SOT) in Figure 1(a) is shown in Figure 1(b). The magnetic field strength in the northern umbra was 3500–4500 G derived from the Zeeman splitting of the spectra, while the splitting drastically widens in the light bridge to exceed 6000 G. We selected two locations indicated by arrows in Figure 1(a) and compared the full Stokes profiles (black lines and crosses in Figures 1(c)–(d)). The Zeeman splitting at Location 1 is clear enough to measure the field strength easily without the need for any inversion techniques2 (Landi Degl’Innocenti \\& Landolfi 2004). However, some profiles outside the light bridge include molecular lines formed in lower temperature regions, in particular, around the center of the umbra (e.g., Location 2 in Figure 1). Hence, we used the ME inversion of Stokes profiles for derivation of field strength in the entire field of view to reduce human biases and obtain other physical information as described in the previous section. The best-fit profiles by MEKSY are shown by red lines in Figure 1. The maximum field strength in our observations was 6250 G at Location 1, which consisted of 6190 and 860 G as horizontal and vertical components on the local frame, respectively. We note that the Stokes I, Q, U, and V profiles at Location 1 indicate two magnetic components of the same polarity, one of which is strongly redshifted. The best-fit profiles by the ME inversion do not produce the extended component, but we can be sure that the fitted profiles present the existence of the superstrong fields in the sunspot.

We investigated the time evolution and the spatial structure of the strong field region. Magnetic fields exceeding 4000 G were located almost only in the northern part of the light bridge
at the beginning of our observations (frames 1–4 of Figure 2). Moreover, those exceeding 5000 G (yellow contours) existed only at the boundary between the northern umbra and the light bridge. The light bridge apparently had no clear structures, but it had an elongated thread-like pattern running from northwest to southeast.
The strong field region gradually decayed (frames 5–6) and the elongated structure also changed and ended up like the penumbral threads running in the north–south direction. However, a new region with extremely strong fields exceeding 5000 G appeared to the south of the preexisting strong region (frames 7–8). It was also on the light bridge but was widely spread in area. The region with field strength exceeding 6000 G (red contour) was located at the southern boundary of the light bridge (frame 8). Then the field strength in the light bridge returned (frames 9–10) nearly to the level of the initial state.

We took a closer look at the strong field region to study the relationship between vector magnetic fields and Doppler velocity in and around the light bridge, and found five crucial features as follows. First, the two umbrae divided by the light bridge (Figure 3(a)) had opposite polarities (orange and green in Figure 3(b)). The polarity inversion line was located at the central axis of the light bridge, as expected for a delta spot. Second, the light bridge was filled with strong horizontal magnetic fields (Figure 3(b), black bars). Third, the Doppler velocities showed blueshift along the horizontal fields in the light bridge (Figure 3(c)). Fourth, strong redshifted motions were detected only at the locations where the horizontal fields and the umbral boundary crossed perpendicular (Figures 3(c) —(f)). Last, in the regions of strong redshift, the inclination of the magnetic field was much larger than the field inclination in the blueshift regions, as was the magnetic field strength (Figure 3(g)).

Figure 4 shows the magnetic filling factor distributions in the sunspot region. The light bridge that we focused on here shows large filling factors. The values are unity over a large area of the region as shown in red. On the other hand, we can see another bright structure in the southern umbra, which shows smaller filling factors than the surrounding umbra. Hence, the southern bright structure is considered to be a typical light bridge, while the region we focused on in this Letter is not a light bridge.

4. Discussion

4.1. The Strongest Field

We observed super-strong fields in sunspots with clear Zeeman splitting in Stokes I profiles. The strongest field in our observations was 6250 G, which was located in the bright region sandwiched between two opposite-polarity umbrae. This is one of the strongest magnetic fields ever observed after the discovery of the magnetic field on the Sun in 1908 (Hale 1908). In particular, we can conclude that the horizontal component (6190 G) of the field is the largest transverse magnetic field observed on the Sun. Livingston et al. (2006) reported an umbral field with more than 6000 G by measuring the Zeeman splitting only in Stokes I spectra. We are aware that a recent observation with complex inversion techniques inferred a strong magnetic field (∼7500 G) in a sunspot (van Noort et al. 2013). The observed Stokes I spectra, however, did not show clear Zeeman splitting, but broad absorption profiles. They interpreted that the very high values of the magnetic field strength are predominantly based on the very broad wings of the Stokes V profiles, which can only be produced by a strong magnetic field near optical depth unity. Our case also shows a redshift excess in Stokes V/I that was not fitted by the ME inversion as well as an absorption feature in the red wing in Stokes I (Figure 1). This indicates the potential existence of a component with much larger strength. However, the profiles may consist of multiple components of differing Doppler velocities along the line of sight. We note that we are careful about the derivation of such a component in further analyses.

4.2. Formation Mechanism of the Super-strong Field

Here we discuss the mechanism to form the super-strong field in the sunspot. A straightforward interpretation is an emerging flux, since sunspots and active regions are always formed by emerging magnetic flux coming from the solar interior (Zwaan 1985). In the early phase of emergence, horizontal fields appear on the photosphere first as a blueshifted structure with a rising speed of about 1 km s$^{-1}$ (Lites et al. 1998; Cheung et al. 2010). Then both ends of the horizontal fields migrate away from the emergence zone to form two magnetic concentrations with opposite polarities such as plages and umbrae. During the emergence, the mass inside the flux flows down along the inclined flux tube and goes back to the photosphere at both footpoints of the flux (Bruzek 1969; Kawaguchi & Kitai 1976). At this moment, a redshift is observed. This is a common phenomenon on the Sun. That is, if a new flux emerges in between the two opposite-polarity umbrae, the apparent features would be similar to those described in the previous section. In this scenario, if the overlying magnetic fields of the active region impeded the
ascent of the emerging flux without causing a flaring activity (Kusano et al. 2012), gradual compression of the field lines in the photosphere could explain the strong fields.

However, we show two inconsistencies of the appearance in a typical flux emergence and our observations. The first one is about the duration of the blueshift in the penumbra. We see the coherent blueshifted structure along the penumbra with a line-of-sight velocity of 1–3 km s^{-1}. It always existed for five days from the start to the end of our observations. Therefore, we cannot support a theory that the continuous blueshift is caused by a rising motion of a single magnetic flux, because of the too-long duration for the compact area (∼30,000 km). Multiple emergence may be another solution, but we can exclude this possibility as well, since the configuration of the penumbra did not change drastically in a short time. The second inconsistency is about the center-to-limb variation of the Doppler velocity. We point out that the velocity was larger when the sunspot was far from the disk center, and smaller when close to the disk center on February 3 (Figure 3). In the case of flux emergence, the apparent rising velocity must have been larger at the location close to the disk center, because of the projection effect.

Hence, we suggest an alternative scenario to interpret the observed phenomena as follows. The bright region filled with strong horizontal fields was actually part of the penumbra of the southern umbra rather than belonging to the light bridge. This assertion is also supported by a high filling factor (almost unity) in the bright region, derived from the ME inversion; the light bridges usually show low filling factors (Leka 1997). The blueshifted motions occupying the bright region can be considered as the line-of-sight component of the horizontal (northward) flow along the penumbral threads, since the sunspot was located in the southern hemisphere (about 7° to the south from the disk center). Under this assumption, the speed of the field-aligned horizontal flow was estimated to be 7.2 km s^{-1}, which is consistent with a typical speed of the Evershed flow (Bellot Rubio et al. 2007). Both the northern and southern umbrae were supposed to have attempted to form their own penumbras in the buffer area, but the southern one dominated at the beginning of our observations. The flow prevented the northern umbra from forming its penumbra on its southern side. The strength of the horizontal field was not large compared to that of the umbra fields, as long as the orientations of the field and the horizontal\(^5\) flow were parallel to the umbral boundaries (Figure 3(b)). However, the front of the penumbra from the southern umbra eventually reached the northern umbra and the northward horizontal flow pushed up on the umbral fields. At this moment, the umbral fields and nearby horizontal fields were compressed by the flow and enhanced at the boundary of the northern umbra, and the flow went downward there showing redshift, which reminds us of subduction of the crust in the Earth’s plate tectonics (Figure 5).

Combining these presumed steps with the observed time evolution of the spatial distribution of the strong fields (Figure 2), we arrive at a comprehensive scenario on how the strongest field was formed. First, the umbral fields with 4000 G were enhanced to 5000 G by the process mentioned above (path P in Figure 3(g)). Next, the enhanced field region gradually moved eastward, and the spatial configurations of the

\(^{5}\) The referee has suggested another explanation, as follows. The blueshifts might be caused by a siphon flow mechanism. The strong field was generated due to magnetic reconnection between the two umbrae. The phenomena associated with the reconnection combined with flux emergence may work toward increasing the field strength to the observed values, by compressing the fields.

\(^{6}\) The referee has claimed that the flows are not Evershed flows, although we prefer to call them Evershed flows. Thus we avoid the wording here.
two umbrae also slightly changed. As a result, the penumbra from the southern umbra could not go toward the northeast, but went toward the northeast, which was the direction in which the enhanced region existed. Hence, the enhanced umbral fields and related horizontal fields were further intensified to 5500 G (path R in Figure 3(g)). In addition, the northern umbra with the enhanced fields also got a chance to have its penumbra extend toward south at this moment, and finally the enhanced field was compressed (like in Figure 5 but now with the southern umbra) enough in the narrow region to have a strength of beyond 6000 G (path U in Figure 3(g)).

We examine the feasibility of the generation of the strong fields as a result of compression by the horizontal flow. Now let us compare the pressure balance between the flow and the magnetic pressure of the umbral fields. Using the mass density in sunspot umbrae $(1.1 \times 10^{-6} \text{g cm}^{-3}$ in the model M of Maltby et al. 1986), the magnetic field strength (5000G), and the flow speed (7km s^{-1}), we estimate that the magnetic pressure is comparable to the flow. A more precise analysis based on a realistic numerical simulation setup is needed to confirm or refute the results of the simple calculations.

Our proposed scenario provides a hint to understand complex motions and configuration changes in the penumbrae between two opposite-polarity umbrae reported so far. A single pixel of ground-based instruments such as the Advanced Stokes Polarimeter (ASP; Elmore et al. 1992) may have included two or more components, which were interpreted as a mixture of horizontal flows and downward motions (Lites et al. 2002), but the 1st spatial resolution of the ASP may have been insufficient to distinguish them. Our high-resolution observations support this interpretation.

We thank B. W. Lites, J. W. Harvey, W. Livingston, and an anonymous referee for their useful comments. We also thank T. Yokoyama, M. Kubo, Y. Katsukawa, M. Shimojo, and M. L. DeRosa for their technical support. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). This work was supported by JSPS KAKENHI Grant Number 16K17663 (PI: T.J.O.) and 25220703 (PI: S. Tsuneta) and partly carried out on the Solar Data Analysis System operated by the Astronomy Data Center in cooperation with the Hinode Science Center of NAOJ.

References

Bellot Rubio, L. R., Tsuneta, S., Ichimoto, K., et al. 2007, ApJL, 668, L91
Borriero, J. M., & Ichimoto, K. 2011, LRSF, 8, 4
Bray, R. J., & Loughhead, R. E. 1964, Sunsprots (London: Chapman and Hall)
Bruzek, A. 1969, SoPh, 8, 29
Cheung, M. C. M., Rempel, M., Title, A. M., & Schüssler, M. 2010, ApJ, 720, 233
Elmore, D. F., Lites, B. W., Tomczyk, S., et al. 1992, Proc. SPIE, 1746, 22
Evershed, J. 1909, MNJAS, 69, 454
Hale, G. E. 1908, ApJ, 28, 315
Ichimoto, K., Lites, B., Elmore, D., et al. 2008, SoPh, 249, 233
Jaeggli, S. A. 2016, ApJ, 818, 81
Jurčák, J., Martínez Pillet, V., & Sobotta, M. 2006, A&A, 453, 1079
Kawaguchi, L., & Kita, R. 1976, SoPh, 46, 125
King, R. B. 1934, ApJ, 80, 136
Kosugi, T., Matsuzaki, K., Sakao, T., et al. 2007, SoPh, 243, 3
Kusano, K., Bamba, Y., Yamamoto, T. T., et al. 2012, ApJ, 760, 31
Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines (Dordrecht: Kluwer), 307
Leka, K. D. 1997, ApJ, 484, 900
Lites, B., Casini, R., Garcia, J., & Socras-Navarro, H. 2007, MmSAI, 78, 148
Lites, B. W., & Ichimoto, K. 2013, SoPh, 283, 601
Lites, B. W., Low, B. C., Martínez Pillet, V., et al. 1995, ApJ, 446, 877
Lites, B. W., Skumanich, A., & Martínez Pillet, V. 1998, A&A, 333, 1053
Lites, B. W., Socras-Navarro, H., Skumanich, A., & Shimizu, T. 2002, ApJ, 575, 1131
Livingston, W., Harvey, J. W., Malanushenko, O. V., & Webster, L. 2006, SoPh, 239, 41
Livingston, W., & Watson, F. 2015, GeoRL, 42, 9185
Maltby, P., Avrett, E. H., Carlsson, M., et al. 1986, ApJL, 306, 284
Orozco Suárez, D., Bellot Rubio, L. R., del Toro Iniesta, J. C., et al. 2007, ApJL, 670, L61
Rempel, M., Schüssler, M., Cameron, R. H., & Knölker, M. 2009, Sci, 325, 171
Rezaei, R., Beck, C., & Schmidt, W. 2012, A&A, 541, A60
Schad, T. A. 2014, SoPh, 289, 1477
Shimizu, T., Nagata, S., Tsuneta, S., et al. 2008, SoPh, 249, 221
Solanki, S. K. 2003, A&AReV, 11, 153
Saematsu, Y., Tsuneta, S., Ichimoto, K., et al. 2008, SoPh, 249, 197
Tanaka, K. 1991, SoPh, 136, 133
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al. 2008, SoPh, 249, 167
van Noort, M., Lagg, A., Tiwari, S. K., & Solanki, S. K. 2013, A&A, 557 A24
Vazquez, M. 1973, SoPh, 31, 377
Zirin, H., & Wang, H. 1993, SoPh, 144, 37
Zwaan, C. 1985, SoPh, 100, 397

ORCID iDs

Okamoto J. Okamoto https://orcid.org/0000-0003-3765-1774
Takashi Sakurai https://orcid.org/0000-0002-6019-5167