Application of hybrid Taguchi-Grey relational analysis (HTGRA) multi-optimization technique to minimize surface roughness and tool wear in turning AISI4340 steel

Prashant D Kamble 1, Atul C Waghmare 2, Ramesh D Askhedkar 3, Shilpa B Sahare 4, Brij R Singh 5

1, 4 Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Wanadongri 441110, Nagpur, India
2 Department of Mechanical Engineering, Umrer College of Engineering, Umrer, Dist. Nagpur, India
3 Department of Mechanical Engineering, KDK College of Engineering, Nagpur, India
5 Professor, Dept. of Anatomy, Datta Meghe Medical College Wanadongri, Hingana, Nagpur MS India

E-mail: drpdkamble@gmail.com 1, dratulcwaghmare@rediffmail.com 2, r.askhedkar@rediffmail.com 3, ssahare83@yahoo.com 4

Abstract. In this paper, an attempt is made to optimize the turning process by minimizing Surface Roughness and Tool Wear. The independent factors used are Environmental Condition, Feed Rate, Depth of Cut, Nose Radius and Tool Types. The dependent factors are Surface Roughness and Tool Wear. Experimentations are conducted on CNC Spinner Lathe machine. AISI 4340 steel is selected as workpiece material. Three different types of Cutting tool are considered for the study. Grey Relational Analysis and Taguchi Philosophy together are used to optimize the process. As per the Taguchi method L27, Orthogonal Array (OA) is finalized for the experimentation. For the computation of the response table and ANOVA table, the Taguchi based data Analysis is used. The Variance Analysis (ANOVA) and S/N ratio (SRN) are employed to find the contribution and ranking of contribution parameters to optimize multiple output parameters.

Keywords: Multi-Optimization Technique, Taguchi Method, Grey Relational Analysis, Turning Process, ANOVA, Surface Roughness, Tool wear

1. Introduction

‘Customer satisfaction’ is a very important term which helps the company to rule in the market. Customers can be satisfied if they get the product with less cost and in the said time but also without sacrificing the product quality. This can be attained successfully with the help of the Optimization Method. Various optimization methods are available to find an optimal setting for one output parameter of the particular process. But these methods are not applicable for multiple output parameters. It is obvious that the same optimal setting obtained for one output factor is not suitable for multiple output factors as their nature may be different. So, it becomes crucial to obtain one optimal machining condition for all responses so that all objectives could be optimized simultaneously. This can be achieved by a multi-objective optimization technique. In this perspective, it is important to translate all the objectives into an corresponding single objective function to meet up preferred multi-quality features of the multi responses. For that, the specialized multi-objective optimizations (MOO) should be useful.
Vikas et al [1] (2014), this paper investigated that GRA is response factors. The parameters used were Voltage, Discharge Current, ON and OFF time for Pulse. The material used was “EN-41”. Combined Taguchi and GRA were implemented to investigate the effect on output. It was revealed that the current is the most significant factor in achieving surface roughness.”

Shreemoy Kumar Nayak et al [2] (2014), in this paper GRA is utilised to optimize the more responses to test the effect on output factors. The material used was AISI-304. L-27 orthogonal array design of experiments was adopted for material removal rate, cutting force and surface roughness.”

J.B.Saedon et al [3] (2014), Zahid A.Khan et al [4] (2014, in these papers, researchers used latest multi-objective optimization method like GRA-TAGUCHI in wire EDM machining for material titanium alloy. The effect of the process parameters multiple objectives was investigated. Hybrid TGRA is used for multi-objective optimization.

Milan Kumar Das et al [5] (2014), this paper deals with the best setting of different parameters like surface roughness and Material Removal Rate in Electro-Chemical Machining of EN-31n, voltage, feed rate and inter-electrode gap.

S.J. Raykar et al [6] (2015), this paper combined multi-objective optimization technique GRA along with Taguchi method was used to find the effect on output parameters. Prashant D. Kamble et al [7] [2015], in this paper use of Hybrid Fuzzy logic with Taguchi is used to optimize the process parameters for turning process.

2. Grey Relational Analysis (GRA)

In the grey relational analysis, [9] includes following steps

a) Normalization (Grey Generation)
b) Calculation of grey relational coefficient
c) Calculation of overall grey relational grade

2.1 Coefficient Grey Relational [9]

It is calculated by following equation:

\[\gamma_i = \frac{\Delta_{\min} + \varsigma \Delta_{\max}}{\Delta_i(k) + \varsigma \Delta_{\max}} \] \hspace{1cm} (1)

2.2 Grade of Grey Relational

[9] It is calculated by following equation:
3. Experimentation

The conduction of experimentations was done in MINAR Hydro ltd., MIDC, Nagpur. CNC lathe machine (SPINNER15) was used for experiments (Fig. 2.). Taguchi Orthogonal Array (OA) L-27 was used for number of observations. Three different levels of Spindle vibration as a noise factor were considered. Total 27 x 3 = 81 experiments are performed. The measurement of Surface Roughness was done by MITECH MDT310 Portable Surface Roughness Tester and Material Removal rate was computed by formula:-

\[MRR = \frac{W_i - W_f}{\rho \cdot \tau} \text{ mm}^3/\text{sec.} \]

Table 1 shows Independent parameters and their levels and Table 3 shows Observation Table and S/N ratio.
4. Data Analysis

Analysis is done by the Taguchi-GRA as following.

1. Experimentation is performed as orthogonal Array L_{27} OA and responses are noted. After that S/N ratio of every response is evaluated (Table 3).
2. First normalization of Experimental data is done (Table 3) this is Grey relational generation.
3. Evaluation of Δ0i (K) and estimation of grey relational coefficients for separate responses (Table 3).
4. Calculation of total mean grey relational grade. This represents MPCI GRA.
5. The MPCI GRA (Table 4) is optimized with help of Taguchi method. The predicted optimal setting is evaluated from Mean (S/N ratio) Response Plot of Multiple Characteristics Index (Fig. 2). The setting is A_3B_3C_3D_1E_3.

Table 3. S/N ratio of Surface Roughness and Tool Wear and Grey relational generation

Sr. No.	S/N ratio	Grey Relational Generation
1	7.40	3.820
2	5.79	10.700
3	6.27	8.680
4	4.83	10.760
5	2.93	5.960
6	4.96	8.830
7	3.52	4.430
8	2.07	11.540
9	6.67	3.650
10	5.23	10.200
11	3.78	12.760
12	5.50	8.330
13	4.21	10.290
14	2.31	5.630
15	4.35	8.490
16	2.90	4.220
17	1.46	10.990
18	6.20	3.490
19	4.61	9.750
20	3.16	12.130
21	5.04	8.010
22	3.60	9.860
23	1.70	5.340
24	3.73	8.180
25	2.13	4.040
26	0.96	10.490

Sr. No	Surface Roughness	Tool Wear	GRADE	S/N ratio
1	-18.3834	16.5912	0.00	0.80
2	-15.8636	19.7259	0.86	0.54
3	-13.7044	16.2009	0.74	0.83
4	-16.9452	18.3176	0.92	0.66
5	-14.2887	15.5590	0.77	0.89
6	-9.9410	22.9192	0.53	0.27
7	-14.1991	15.2281	0.77	0.92
8	-11.6875	24.2507	0.63	0.16
9	-6.9513	22.1032	0.37	0.34
10	-17.0969	15.4207	0.93	0.90
11	-14.9780	18.1235	0.81	0.67
12	-12.1633	15.1231	0.66	0.92
13	-14.7814	16.9645	0.80	0.77
14	-12.6739	14.5329	0.69	0.97
15	-7.8905	20.6475	0.42	0.40
16	-13.3826	14.2181	0.72	1.00
17	-9.8784	21.7015	0.53	0.37
18	-3.8945	20.0913	0.20	0.51
19	-15.4989	17.5603	0.84	0.74
20	-13.1956	20.8517	0.71	0.44
21	-10.6198	16.9347	0.57	0.77
22	-14.6686	19.2653	0.80	0.58
23	-11.7326	16.2385	0.63	0.83
24	-5.2012	24.5961	0.27	0.13
25	-12.6813	15.8569	0.69	0.86
26	-9.2782	26.1409	0.89	0.00
27	-0.2554	23.6159	0.18	0.21

Table 4. GRA coefficients and Grades with S/N ratio
4.1 Mean S/N ratio for MPCI_GRA

The average S/N ratio for every independent parameter at each level is computed. This is done by taking mean of S/N ratios at respective level. This ratio is used to identify most favourable level for every parameter. Fig. 3 shows the S/N response graph for MPCI_GRA.

	Parameter 1	Parameter 2	Parameter 3	S/N Ratio
10	0.152	0.157	0.1545	-16.22143
11	0.171	0.199	0.185	-14.656565
12	0.203	0.153	0.178	-14.9916
13	0.172	0.178	0.175	-15.139239
14	0.196	0.146	0.171	-15.340078
15	0.284	0.266	0.275	-11.213346
16	0.187	0.143	0.165	-15.650321
17	0.239	0.31	0.2745	-11.229153
18	0.454	0.248	0.351	-9.0938577
19	0.166	0.185	0.1755	-15.114458
20	0.19	0.273	0.2315	-12.70898
21	0.226	0.178	0.202	-13.892973
22	0.174	0.225	0.1995	-14.001142
23	0.209	0.167	0.188	-14.516843
24	0.38	0.563	0.4715	-6.5303661
25	0.196	0.162	0.179	-14.942939
26	0.251	1	0.6255	-4.0754537
27	1	0.441	0.7205	-2.8473203

4.2 Prediction of Optimal Setting

The prediction of optimal setting is identified from fig.2. In this fig., the max value of S/N is -8.582 DB of cutting environment which is at third level. Therefore, it is the optimal level. In the same way, the optimal levels of remaining parameters are identified and it comes as A3 B3 C3 D1 and E3.
5. RESULTS

The Analysis of Variance for MPCI revealed that the most significant machining parameter is DOC (depth of cut) and least significant parameter is NR (nose radius). The intermediate significant parameters are tool type, feed rate and cutting environment. Optimal parameter setting obtained is shown as follows:-

Cutting Environment	Minimum Quantity Lubrication
Nose Radius	1.2 mm
Feed Rate	0.35 mm/rev
Depth Of Cut	0.5 mm
Tool Type	Chemical Vapor Deposition

6. CONCLUSION

The application of Hybrid Taguchi-GRA method is done successfully to obtain better values of responses. The conclusions are noted as follows:-

1. The problem of multiple responses is solved by Hybrid Taguchi GRA method.
2. Quality characteristic Surface Roughness and Tool Wear are optimized to 0.958 um and 0.0401 mm respectively.
3. Optimal parameter setting obtained is shown in table 4

7. REFERENCES

[1] Vikas, Apurba Kumar Roy, Kaushik Kumar, “Effect and Optimization of various Machine Process Parameters on the Surface Roughness in EDM for an EN41 Material using Grey-Taguchi”, 3rd International Conference on Materials Processing and Characterisation, Elsevier, 2014, pp. 383 – 390.
[2] Shreemoy Kumar Nayak, Jatin Kumar Patro, Shailesh Dewangan, Soumya Gangopadhyay, “Multi-Objective Optimization of Machining Parameters During Dry Turning of AISI 304 Austenitic Stainless Steel Using Grey Relational Analysis”, 3rd International Conference on Materials Processing and Characterisation, Elsevier 2014, pp. 701 – 708.
[3] J.B. Saedon, Norkamal Haafar, Mohd Azman Yahaya, Nor Hayati Saad, Mohd Shahir Kasim, “Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM”, 2nd International Conference on System-Integrated Intelligence: Challenges for Product and Production Engineering, 2014, pp. 832 – 840.
[4] Zahid A. Khan, Arshad N. Siddiquee, Noor Zaman Khan, Urfi Khan, G. A. Quadir, “Multi response optimization of Wire electrical discharge machining process parameters using Taguchi based Grey Relational Analysis”, 3rd International Conference on Materials Processing and Characterisation, Elsevier, 2014, pp. 1683 – 1695.
[5] Milan Kumar Das, Kaushik Kumar, Tapam Kr. Barman, Prasanta Sahoo, “Optimization of Surface Roughness and MRR in Electrochemical Machining of EN31 Tool Steel using Grey-Taguchi Approach”, 3rd International Conference on Materials Processing and Characterisation, Elsevier, 2014, pp. 729 – 740.
[6] S.J. Raykar, D.M. D’Addona, A.M. Mane, “Multi-objective optimization of high speed turning of Al 7075 using grey relational analysis”, 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 2015, pp. 729 – 740.
[7] Prashant D. Kamble, Atul C. Waghmare, Ramesh D. Ashkedkar, Shilpa B. Sahare, “Multi objective optimization of turning AISI 4340 steel considering spindle vibration using Taguchi- Fuzzy Inference system”, Elsevier Publication, Materials Today: Proceedings 2 (2015) 3318 – 3326.
[8] Prashant D. Kamble, Atul C. Waghmare, Ramesh D. Ashkedkar, Shilpa B. Sahare. "Multi objective optimization of turning parameters considering spindle vibration by Hybrid Taguchi Principal component analysis (HTPCA)" , Materials Today: Proceedings, 2017.

Website
[9] ethesis.nitrkl.ac.in