A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening

Peter McAtee1,2, Siti Karim1,2, Robert Schafer1,2 and Karine David1*

1 School of Biological Sciences, The University of Auckland, Auckland, New Zealand
2 The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand

Plant species that bear fruit often utilize expansion of an ovary (carpel) or accessory tissue as a vehicle for seed dispersal. While the seed(s) develop, the tissue(s) of the fruit follow a common progression of cell division and cell expansion, promoting growth of the fruit. Once the seed is fully developed, the fruit matures and the surrounding tissue either dries or ripens promoting the dissemination of the seed. As with many developmental processes in plants, plant hormones play an important role in the synchronization of signals between the developing seed and its surrounding fruit tissue(s), regulating each phase of fruit development. Following pollination, fruit set is achieved through a de-repression of growth and an activation of cell division via the action of auxin and/or cytokinin and/or gibberellin. Following fruit set, growth of the fruit is facilitated through a relatively poorly studied period of cell expansion and endoreduplication that is likely regulated by similar hormones as in fruit set. Once the seeds reach maturity, fruit become ready to undergo ripening and during this period there is a major switch in relative hormone levels of the fruit, involving an overall decrease in auxin, gibberellin, and cytokinin and a simultaneous increase in abscisic acid and ethylene. While the role of hormones in fruit set and ripening is well documented, the knowledge of the roles of other hormones during growth, maturation, and some individual ripening components is sketchy.

Keywords: fruit development, ripening, hormonal regulation

BACKGROUND

The fruiting body of flowering (angiosperm) plants has evolved to best aid seed protection and dispersal. A diverse range of fruit types within angiosperm exists and these variations are exemplified between fleshy fruits, that have evolved with an enlargement of the tissue surrounding the seed to create attractive flesh for seed dispersing animals, and “dry” fruit that split open (dehisce) to release the seed via anisotic dispersal mechanisms. Evolutionary studies have revealed that plant species producing fleshy fruit have evolved from ancestral dry fruit producing species, suggesting common mechanisms between dry and fleshy fruit (Knapp, 2002). Pulling upon the literature from across different species, we have revealed common trends in the hormonal regulation of the different stages of fruit development (Figure 1). In all cases, dry or fleshy fruit undergo a progression of specific steps including: fruit set, fruit growth, maturation, and ripening/senescence. The crosstalk between hormones that occurs during most of these steps is scarce, nevertheless with the advent of genomic and high throughput technologies there has been significant progress in characterizing hormones and the expression of associated downstream genes in both model and non-model organisms. In this review, we aim to give an overview of the way plant hormones interact to control these different developmental steps and the switch(es) between them as well as highlight areas that require further research to understand these complex processes.

FRUIT SET

FRUIT SET is the first step in fruit development; it is established during and soon after fertilization. Seed bearing plants have a unique double fertilization event with two pollen nuclei fertilizing the embryo and the endosperm (Dumas et al., 1998; Raghavan, 2003; Hamamura et al., 2012). The role of hormones during embryo development and seed maturation has been well reviewed (for example: Gutierrez et al., 2007; Sun et al., 2010). The fertilization event leads to the development of the seed that de-represses cell division and fruit growth in a synchronized manner (review: Fuentes and Vivian-Smith, 2009). Fruit set has traditionally been attributed to the action of three hormones, auxin, and/or gibberellin, and/or cytokinin (Mariotti et al., 2011). Application of these hormones alone can trigger fruit development to a certain extent and, in many plant species, application in combination will induce normal fruit growth even in the absence of fertilization (parthenocarpy; Nitsch, 1950; Blumenfeld and Gazit, 1976; Varga and Bruinsma, 1979; Yang et al., 2002; Devogele et al., 2012) and in pea, removal of the seed leads to reduced gibberellin biosynthesis in the pericarp (Garcia-Martinez and Carbonell, 1980; Ozga et al., 1992). These observations led...
FIGURE 1 | (A) Hormonal changes that occur in a generic fruit during development and ripening. Differential hormone concentrations occur in the seed and the surrounding tissue with the developing seed influencing its environment. Multiple studies have shown that increases in auxin, cytokinin, gibberellin, and brassinosteroid at fruit set, and an involvement of auxin, gibberellin, and brassinosteroid at fruit growth. For fruit maturation there is an inhibition of auxin transport from the seed and increase in ABA. This triggers the ripening/degreening program which leads to an increase in ABA and/or ethylene biosynthesis and response in the surrounding tissue. (B) The spectrum of ripening dependencies to ABA and ethylene. All fruit appear to respond to ABA and ethylene. In historically considered “climacteric fruit,” ABA indirectly regulates ripening through ethylene. In “non-climacteric” fruit, the ABA has a more dominant role but the fruit still have ethylene-dependent ripening characters.
to the “seed control” hypothesis by which the seeds communicate through hormones to the surrounding tissue(s) to promote fruit growth through firstly cell division and later on cell expansion (Ozga et al., 2012). At the molecular level, the main advances have been on how gibberellin and auxin pathways interact to promote fruit set in both dry fruit, such as Arabidopsis thaliana (Arabidopsis), and fleshy fruit, such as tomato (de Jong et al., 2009a; Carrera et al., 2012; Ruan et al., 2012). Early studies showed that elevated levels of gibberellins and auxin are present in fruits from plants that exhibit parthenocarpy (Talon et al., 1990) and auxin levels increase during seed development while gibberellin levels increase in the ovaries following fertilization (Champagnier et al., 2007; Hu et al., 2008). In Arabidopsis, fruit development induced by auxin occurs solely through activation of gibberellin signaling and the current, simplified model, of auxin and gibberellin action is the following: auxin, synthesized in the ovules on fertilization is transported to the pericarp where it induces gibberellin biosynthesis (Zhao, 2010). In turn, the newly synthesized gibberellin will lead to the release of growth repression (Fuentes et al., 2012). There are additional layers of regulation, for example, it has been shown that a threshold level of gibberellins in the gynoecium is required to initiate auxin biosynthesis, providing a feedback loop (Vivian-Smith and Koltunow, 1999). Tomato fruit set can be achieved by application of auxin or gibberellin. Auxin appears to act partly through gibberellin, as it can induce gibberellin biosynthesis early during fruit development (Serreni et al., 2008), but each hormone seems to also play a specific role on its own. Auxin-induced fruit contain many more cells compared to gibberellin-induced fruits, which contain fewer larger cells (Bungerkibler and Bangerth, 1983). One of the key players in gibberellin–auxin crosstalk is an auxin response factor (ARF), SlARF7, which when mutated causes parthenocarpic fruit development. The mutated fruit display a thick pericarp with large cells having a similar increase in turgor pressure (Cosgrove, 2005). While auxin mostly controls cell division during fruit set, it is thought to play an important role during the growth phase by influencing cell enlargement together with gibberellins (Cukkaski et al., 2011). In tomato, the maintenance of auxin gradients, through the precise localization of auxin transporters, such as the PIN transporters, will be essential for fruit growth (Pattison and Catala, 2012). A transcriptomic approach focusing on the cell expansion phase revealed that in the growing exocarp and locular tissues, a range of cell wall-related proteins are up-regulated during the expansion stage of the fruit, as well as sugar transport proteins and various glycolytic enzymes. Some genes belonging to the expansins, endo-xyloglucan transferase and pectate lyases families have been shown to be regulated by either auxin, gibberellin, or both in tomato (de Jong et al., 2011; Carrera et al., 2012). A genome-wide approach in apple, focusing on the role of auxin during cell expansion, showed that auxin action potentially involves an ARF gene, which is linked to FRUIT GROWTH

The developing seed continually sends signals to the surrounding tissue to expand and there is usually a positive correlation between seed number and fruit size (Nitsch, 1979). The developing fruit must also signal back to the rest of the plant so that it is provided with enough nutrients and does not abort. The extent of growth of the fruit from anthesis to maturity is extremely variable; in some species the fruit enlarge relatively little while in others they may increase in volume many thousand times. Unique to fleshy fruit, concomitant with cell expansion, there is an accumulation of storage products and an increase in sugar accumulation (Coombe, 1976). While fruit expansion is a key event, there is little literature covering the role of hormones in the transition for the division to the expansion phases and to the sustained growth of the fruit. Drawing on literature outside the fruit environment it is clear that cell expansion is regulated by auxin, gibberellin, and brassinosteroid (Davies, 2010; Pattison and Catala, 2012).

Cell enlargement depends on both cell wall loosening and increases in turgor pressure (Cosgrove, 2005). While auxin mostly controls cell division during fruit set, it is thought to play an important role during the growth phase by influencing cell enlargement through gibberellin action (Cukkaski et al., 2011). In tomato, the maintenance of auxin gradients, through the precise localization of auxin transporters, such as the PIN transporters, will be essential for fruit growth (Pattison and Catala, 2012). A transcriptomic approach focusing on the cell expansion phase revealed that in the growing exocarp and locular tissues, a range of cell wall-related proteins are up-regulated during the expansion stage of the fruit, as well as sugar transport proteins and various glycolytic enzymes. Some genes belonging to the expansins, endo-xyloglucan transferase and pectate lyases families have been shown to be regulated by either auxin, gibberellin, or both in tomato (de Jong et al., 2011; Carrera et al., 2012). A genome-wide approach in apple, focusing on the role of auxin during cell expansion, showed that auxin action potentially involves an ARF gene, which is linked to...
Auxin and maybe cytokinin appear to be key regulators of fruit ripening (Chauvaux et al., 1997; Sorefan et al., 2009). A mutation in Arabidopsis thaliana (Chism, 1989) resulted in a maintenance of high auxin concentration during fruit maturation and fruit that did not ripen (Ireland et al., 2013; Schaffer et al., 2013). In Arabidopsis and Brassica napus, a low auxin is required for seed dehiscence (pod shatter) to occur (Chauvaux et al., 1997; Sorefan et al., 2009). A mutation in ENDEHISCENT (NDI) results in high levels of auxin within the valve margins of the dehiscence zone compared to wild-type controls and it has been postulated that this high intracellular auxin at least partially inhibits dehiscence (Sorefan et al., 2009). In tomato, reduction of auxin by the over-expression of a Capsicum chinense auxin-conjugating enzyme (GHA) leads to decreased auxin and an increased sensitivity to ethylene at an earlier stage of development (Liu et al., 2005). In strawberry, when achenes are removed from immature fruit, precocious ripening of the receptacle occurs (Given et al., 1988), this ripening can be stopped by the application of exogenous auxin. During fruit growth, auxin levels in the seed are higher than in the surrounding fruit tissue (Devoghelare et al., 2012) and this suggests as the seeds become dormant, auxin biosynthesis or transport to the rest of the fruit is inhibited, allowing the mature fruit to ripen. This appears to be supported across fruit species as addition of auxin to mature fruit invariably delays ripening (Vendrell, 1985; Manning, 1994; Davies et al., 1997; Aharoni et al., 2002). It should also be noted that although seeds have a strong influence on maturity, parthenocarpic fruit still ripen suggesting a developmental regulation may also be involved.

The role of cytokinin during fruit maturation is less well documented but cytokinin-deficient Arabidopsis fruit show non-synchronous ripening with fewer viable seeds compared to controls suggesting cytokinin also has a role in the regulation of siliqua maturation and ripening (Werner et al., 2003). Finally decreases in free cytokinin and auxin levels are also observed before ripening in orange and grape (Minana et al., 1989; Bottcher et al., 2011). One of the challenges in future work will be to better understand the molecular mechanisms underlying fruit maturation and interaction between these hormones.

FRUIT RIPENING/SENVESCENCE

The progression of fruit ripening or senescence is a complex process involving changes to the metabolic and physiological traits of a fruit. In all fruit, in the tissue surrounding the seed, there is a color change and a change in cell wall composition causing either a dehiscence or a softening (Klee and Giovannoni, 2011). Unique to fleshy fruit there is often a breakdown of stored carbohydrates to sugars and a decrease in acidity along with an increase in flavor and aroma volatiles (Klee and Giovannoni, 2011). The control of ripening appears to be achieved predominantly through the ripening hormones ABA and ethylene (reviews: Fedoroff, 2002; Giovannoni, 2004; Setha, 2012), ethylene being the most studied. Fruit types that have a strong requirement for ethylene to ripen such as tomatoes, peaches, bananas, apples, and melon have previously been labeled climacteric and the role of ethylene in both these fruit types has been extensively reviewed (for example, Bapat et al., 2010; Paul et al., 2012). In peaches and tomato, indole-3-acetic acid (IAA) has also been reported to have some crosstalk with ethylene during ripening as (i) production of ethylene can be concomitant with an increase of IAA and (ii) auxin-signaling components can be up-regulated by ethylene and vice versa (Jones et al., 2002; Trainotti et al., 2007). In fruit that have a lower requirement of ethylene to ripen (referred as non-climacteric fruit such as grape and citrus), ABA appears to have a stronger role (Setha, 2012). It has been shown that in the climacteric fruits tomato and banana, there is an increase in ABA preceding an increase in ethylene. Exogenous application of ABA induces ethylene through the biosynthesis genes (Jiang et al., 2008; Zhang et al., 2009), while a suppression of ABA leads to a delay in fruit ripening (Figure 1B, Sun et al., 2012a). In the dry dehiscence or non-ripening phenotype, an ABA increase with siliqua maturation (Kanno et al., 2010) and has been linked with the promotion of dehiscence, an ethylene mediated event (Child et al., 1998; Kou et al., 2012).

While there is a considerable amount of literature on fruit ripening, researchers have often only focused on a small number of physiological changes to document the ripening process. For example color change and/or fruit firmness are often used as a surrogate for ripening, with other ripening characters completely overlooked. It is becoming clear that some ripening traits are independently controlled from each other (Johnson et al., 2009; Ireland et al., 2013). The use of single physiological marker(s) may hence lead to a misrepresentation of this complex process. Here we have summarized the literature based on how different traits respond to hormones rather than considering ripening as one simple process.

SUGAR ACCUMULATION

There is little literature on the hormonal control of starch hydrolysis and the resulting sugar accumulation. There have been a number of studies that have documented the metabolic changes that occur during maturation and ripening (Fadl et al., 2008, Osorio et al., 2011, 2012), though the link between hormonal control and metabolite accumulation is limited; however, Johnston et al. (2009) observed in apple that, while this could progress independently of ethylene, it was highly sensitive to ethylene. In melon, the application of exogenous ABA was shown to promote starch hydrolysis (Sun et al., 2012b), different from growth section, however, this was confounded by the fact that the ABA also increased the ethylene levels.
COLOR CHANGE
Much of the literature documents the control of color change during fruit ripening. This is achieved by a combination chlorenchyma loss (degreening) and production of secondary color metabolites such as carotenoids and anthocyanins. Color change in many fruit species is associated with an increase of ABA and/or ethylene. In apple, the degreening occurs independently of ethylene but ethylene can accelerate the process (Johnston et al., 2009). Citrus and melon also both require ethylene for the degreening of the skin. The production of secondary color metabolites is strongly ethylene regulated in tomato, though some intermediates can be produced in the absence of ethylene. Application of ABA to tomato fruit results in an enhanced onset of breaker stage compared to controls, further implicating ABA as being positive regulator of ripening in tomato (Buta and Spaulding, 1994). In grape and strawberry, the color change is strongly regulated by ABA (Detrytieux et al., 2000; Liu et al., 2011), though application of 1-methylcylopropene (1-MCP), an inhibitor of ethylene response can delay this process, suggesting that ethylene may play a role (Chervin et al., 2004). There are also reports of color change being inhibited by brassinosteroids in grape and strawberry (Symons et al., 2006; Chai et al., 2013).

CELL WALL HYDROLYSIS
There is a considerable set of literature covering ripening related changes in the cell wall (review: Brummiell, 2006). Depending on the fruit type these can manifest as a formation of a dehiscent zone, or through the softening of the flesh tissue. In each case there is a suite of cell wall-related genes that are up-regulated, and in many instances each is differentially regulated. In the case of fruit softening, loss of a single gene can be compensated by other gene action (Powell et al., 2003). In apple and melon, there are both ethylene-independent and ethylene-dependent softening which can be observed in the differential regulation of cell wall-related genes. In banana, it has been shown that ABA can act synergistically with ethylene to promote softening (Lohani et al., 2004) and in grape ABA has been shown to cause fruit softening (Cantin et al., 2007).

Studies of Arabidopsis silique dehiscence indicate that ethylene, jasmonic acid, and ABA work in conjunction with each other to promote normal floral organ abscission via the up-regulation of genes like POLYGALACTURONASE (ADPGl; Ogawa et al., 2009). In Arabidopsis, a delayed dehiscence phenotype is associated with reduction in the ability of Arabidopsis to produce ethylene and that a wild-type type to dehiscence can be restored with treatment of exogenous ethylene (Child et al., 1998; Patterson, 2001). Finally salicylic acid has been shown to delay softening in banana (Srivastava and Dwivedi, 2000).

FLAVOR AND AROMA PRODUCTION
In apple, aroma volatiles are the least ethylene sensitive, and most ethylene-dependant of the ripening traits. Consistent with this, there are a significant number of publications linking the production of aroma with ethylene (Flores et al., 2002; Botondi et al., 2003; Delliapi et al., 2003; Schaffner et al., 2007). There is, however, remarkably little literature examining if other hormones contribute to the regulation of volatile production in fruit.

SUMMARY
It is clear that there is still considerable work needed to better understand the way that hormones interact during fruit development. While there are areas that have been quite extensively covered such as fruit set and the role of ethylene in fruit ripening, there are considerable gaps in our understanding of the hormonal control and crosstalk of other areas, such as fruit expansion, endoreduplication, starch hydrolysis, and flavor development. While much of the physiology is now documented there are considerable opportunities to further our molecular understanding of these complex processes.

REFERENCES
Aharoni, A., Kanter, L. C. P., Van den Broeck, H. C., Blanco-Portales, R., Munoz-Blanco, J., Rois, G., et al. (2002). Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol. 129, 1029-1033.
Bapat, V. A., T rivedi, P. K., Ghosh, A., Sany, V. A., Garupathi, T. R., and Nath, P. (2010). Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol. Adv. 28, 96–107.
Bartina, I., Otto, E., Strnad, M., Werner, T., and Schmulling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69–80.
Bieman, K., O. E., Strnad, M., Werner, T., and Schmulling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69–80.
Blumenfeld, A., and Gazit, S. (1970). Cytokinin activity in avocado seeds during fruit development. Plant Physiol. 46, 331–333.
Botondi, R., DeSantis, D., Bellincontro, A., Vizovitis, K., and Mencarelli, F. (2010). Influence of ethylene inhibition by 1-methylcyclopropene on apricot quality, volatile production, and physiological activity of low- and high-aroma varieties of apricots. J. Agric. Food Chem. 58, 1199–1200.
Bottcher, C., Harvey, K., Forde, C. G., Ross, P. F., and Davies, C. (2011). Auxin treatment of pre-eclosion grape (Vitis vinifera L.) berries during days ripening and increases the synchronicity of sugar accumulation. Aust. J. Grape Wine Res. 17, 1–8.
Brunelli, D. A. (2006). Cell wall disassembly in ripening fruit. Funct. Plant Biol. 33, 103–119.
Buluk, M. E., and Bangert, F. (1983). Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycopersicum esculentum Mill.) and those induced parthenocarpically by the application of plant growth regulators. Plant Growth Regul. 1, 143–154.
Buta, J. G., and Spaulding, D. W. (1994). Changes in indole-3-acetic acid and abscissic acid levels during tomato (Lycopersicum esculentum Mill) fruit development and ripening. J. Plant Growth Regul. 13, 165–168.
Cantin, C. M., Fiksdahl, M. W., and Cisovski, C. H. (2007). Application of abscisic acid (ABA) at ripening advanced red color development and maintained postharvest quality of ‘Crimson Sweet’ grapes. Postharv. Sci. Technol. 46, 237–241.
Carrera, L., Baut-Rivero, O., Pena, L. E., Atarés, A., and Garcia-Martín, J. L. (2012). Characterization of the presena tomato mutant shows novel functions of the SIDELLA protein in the control of flower morphol., cell division and expansion, and the auxin-signaling pathway during fruit-skin and development. Plant Physiol. 160, 1581–1596.
Chai, Y.-M., Zhang, G., Tian, L., Li, C.-L., Xing, Y., Qin, L., et al. (2013). Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul. 69, 65–69.
Child, R., John, K., Ubrok, F., Bochkhardt, B., Prinson, E., et al. (1997). The role of auxin in cell separation in the developing zone of coloured rape pods. J. Zool. 8, 1423–1429.
Chervin, C., El-Kessany, A., Roustan, J. P., Lutich, A., Lamon, I., and Brunzesse, M. (2004). Ethylene scums required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 167, 1301–1305.
Child, R. D., Chauvaux, N., John, K., Ubrok, F., and Van Onckelen, H. A. (1998). Ethylene biosynthesis in coloured rape pods in relation
to pod shatter. J. Exp. Bot. 49, 829–838.
Cossons, R. (1976). The development of flashy fruits. Annu. Rev. Plant Physiol. 27, 267–288.
Congreve, D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861.
Crane, J. C. (1964). Growth substances in fruit setting and development. Annu. Rev. Plant Physiol. 15, 303–322.
Cauvain, F., Oosterhuis, S., Guitton, J. R., Kázmára, J., Guisante, P., Nakatani, M., et al. (2011). Gibberellin biosynthesis and signaling during the development of the tomato receptor: New insights. J. Exp. Bot. 57, 376–389.
Dawry, I., and Van Staden, J. (1967). Endogenous cytokinins in the fruits of opening and non-opening tomatoes. Plant Sci. Lett. 11, 359–364.
Davis, C., Boss, P. K., and Robinson, S. P. (1997). Treatment of grape berries, a non-climacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115, 1153–1161.
Davies, F. J. (2010). Plant Hormones: Cytokinin, Signal Transduction, Action! Dordrecht: Springer.
Dellapé, B. G., Dandekar, A. M., and Davies, P. J. (2010). Plant Hormones: Biosynthesis, Signal Transduction, Action! Dordrecht: Springer.
Davey, J., and van Staden, J. (1984). Concentration of ethylene in the biosynthetic pathways of aliphatic and aromatic volatiles in Citrus Fragrans melons. J. Exp. Bot. 35, 201–206.
Fu, F. Q., Mao, W. H., Shi, K., Zhou, Y. H., Aamou, T., and Yu, Q. (2008). A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot. 59, 2299–2308.
Fuortes, V., Liang, K., Soodan, K., Aboy, E., Harford, N. P., and Oomen, L. (2012). Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24, 3982–3996.
Fuortes, V., and Vivian-Smith, A. (2009). “Fertilization and fruit initiation”, in Fruit Development and Seed Development, ed. L. Oonberg (Berlin: Oxford: Wiley Blackwell Publishing), 107–171.
García-Martínez, J. L., and Carbonell, J. F. (1990). Fruit-set of unipollinated ovaries of Pisum sativum L. – influence of plant-growth regulators. Planta 178, 451–458.
Gillaspie, G., Ben-Dor, H., and Gorenson, W. (1995). Fruits: a developmental perspective. Plant Cell 7, 1439–1451.
Giannouli, J. S. (2006). Genetic regulation of fruit development and ripening. Plant Cell 18, 175–180.
Gross, N. K., Verma, M. A., and Gusev, D. (1998). Hormonal regulation of opening in the strawberry, a non-climacteric fruit. Planta 174, 432–440.
Gutiérrez, L., Van Wykewski, O., Cuello, M., and Bellini, C. (2007) Combined networks regulating seed maturation. Trends Plant Sci. 12, 294–306.
Hamamura, Y., Nagahara, S., and Higashiyama, T. (2012). Double fertilization. Annu. Rev. Plant Biol. 15, 70–77.
He, M. B., Brunet, M. L., and Brown, W. A. (1984). Concentrations of abscisic acid and indole-3-acetic acid in sorbem seeds during development. Plant Physiol. 76, 951–954.
Hui, J., Mitchum, M. G., Ramaty, N., Ayala, B. T., Ogawa, M., Nuri, E., et al. (2008). Potential sites of brassica gibberellin production during reproductive growth in Brassica. Plant Cell 20, 320–336.
Irish, H. S., Yan, J. L., Tomas, S., Sutherland, P. W., Niewoehnert, N., Gunawan, K., et al. (2011). Apple SEPALLATA1-like genes control fruit flesh development and ripening. Plant J. 70, 1044–1056.
In, H. F., Chiu, Y. M., Li, C. L., Lu, D., Jiao, J. J., Qiu, L., et al. (2011). Abscise acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157, 180–194.
Jiang, Y., Joyce, D. C., and Macnair, A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J. Plant Growth Regul. 19, 106–111.
Johnston, W. J., Gunawan, K., Paladka, F. W., and Schlueter, R. B. (2009). Coordination of early and late ripening events in apples is regulated through differential sensitivity to ethylene. J. Exp. Bot. 60, 2699–2709.
Jones, B., Franz, P., Olsson, E., Zagrou, H., Li, Z. G., Latch, A., et al. (2012). Down-regulation of DRI2, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and fusaroid fruit with a delayed ripening. Plant J. 68, 405–413.
Kanno, Y., Jikumaru, Y., Hanada, A., Mokuno, Y., Takahama, T., and Fusao, K. (1993). Distribution of abscisic-acid in different parts of the reproductive-organ of tomato. Sci. Hirosh. 56, 25–30.
Kos, X. H., Watkins, C. R., and Gan, S. S. (2012). Arabidopsis AnRAP regulates fruit senescence. J. Exp. Bot. 63, 6139–6147.
Lindsay, D. L., Swainnby, V. K., and Bonham-Smith, P. C. (2006). Cytokinin-induced changes in CLE/EXE1 and WUSCHEL expression temporally coincide with aborted floral development in Arabidopsis. Plant Sci. 170, 1111–1117.
Liu, K. D., Kang, B. C., Jiang, H., More, S. L., Li, H. X., Watkins, C. B., et al. (2005). A GIN-like gene, GASG1 isolated from Capsicum chileno- nse L. fruit is regulated by auxin and ethylene. Plant Mol. Biol. 58, 447–464.
Lokshin, S., Tovari, P. K., and Nain, P. (2006). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biol. Technol. 31, 119–126.
Manning, K. (1994). Changes in gene expression during strawberry fruit ripening and their regulation by auxin. Planta 194, 62–66.
Martell, L., Picciarelli, P., Lombardi, L., and Cascadella, N. (2011). Fruit-set and early fruit growth in tomatoes are associated with increases in melatonin and ethylene, cytokinin and bioactive gibberellin contents. J. Plant Growth Regul. 30, 405–415.
Marsch-Martinez, M., Ramos-Cruz, D., Inzunza-Ayala, J., Lorenzo-Sotomayor, F., Zamuna-Mayo, V. M., and de Felton, S. (2012). The role of cytokinins during drug-induced fruit ripening of tomato. Plant Cell 24, 6590–6597.
Matsuoka, S., Kikuchi, K., Fukushima, M., Honda, L., and Imamato, S. (2012). Roles and regulation of auxin in tomato fruit development. J. Exp. Bot. 63, 5693–5701.
Miyata, M. F. H., Primomello, E., and Primomello, J. (1998). Isolation and characterization of cytokinins from developing citrus-fruits. Circassica 1–3, 365–378.
Murray, J. A., Jones, A., Godin, C., and Tran, J. (2012). Systematic analysis of shoot apical meristem growth and development integrating hormonal and mechanical signaling. Plant Physiol. 158, 3907–3918.
Nisius, J. J. (1955). Growth and morphogenesis of the strawberry as related to auxin. Annu. Rev. Plant Physiol. 6, 213–230.
Nisius, J. P. (1992). Plant hormones in the development of fruits. Q. Rev. Biol. 67, 55–57.
Nisius, J. P. (1970). “Hormonal factors in growth and development”, in*fps-04-00079* — 2013/4/16 — 12:52 — page 6 — #6 Frontiers in Plant Science | Plant Cell Biology April 2013 | Volume 4 | Article 70 | 6
The Biochemistry of Fruits and Their Products, ed. A. Hulme (London: Academic Press), 427–472.

Nimmo, L., Kohen, W., Oplaat, C., Marinova, T., Chevalier, S., Michoud, P., et al. (2012). ABA detoxification in reduced plant and fruit size in tomato. Plant Physiol. 160, 878–883.

Ongenae, M., Kay, P., Wilson, S., and Sams, S. M. (2009). ARABIDOPSIS DEFICIENS/ENCODED PHORALAL-
TURINASES (AP2/ERF). ADP2, and QUARTET2 are pacemaker-
ones required for cell separa- 	ion during reproductive develop-
ment in Arabidopsis. Plant Cell 21, 250–263.

Oliparni, N., Sylgma, F., Cecin, H., Marini, L., Casarini, N., Seneris, G. P., et al. (2007). Tomato fruit set driven by pollution or by the
parthenocarpic fruit allele are medi-
ated by transcriptionally regulated gibberellin biosynthesis. Plant Sci. 173, 877–888.

Osorio, S., Alba, R., Damassa, M. C. B., Lopez-Casado, G., Lohse, M., Zanor, M. I., et al. (2011). Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato tran-
scription factor (nor, rin) and ethy-
lene receptor (Nr) mutants reveals
new regulatory interactions. Plant Physiol. 159, 405–425.

Owens, A., Alba, R., Nikulski, Z., Kuschevitzky, A., Fornier, A. R., and Guerrieri, J. J. (2012). Integrative
comparative analyses of tran-
script and metabolite profiles from
non-climacteric and climacteric
ripening development stages uncovers species-

differentiation of network regu-
lationary behavior. Plant Physiol. 159,
1713–1720.

Patterson, S. E. (2001). Cutting loose. Abscisic acid and desiccation in Ara- bidopsis. Plant Physiol. 126, 498–500.

Pattridge, B. J., and Carada, C. (2012). Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AXLAX gene families. Plant J. 70, 585–598.

Paul, V., Pauley, R., and Srivastava, G. C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene – an overview. J. Food Sci. Technol. 49, 1–25.

Pelloux, A. L., Kataoka, M. S., Kieron, P. A., Guerritz, S., and Bennett, A. B. (2005). Simultaneous transcriptional suppression of LePG and LeEPR influences fruit texture and juice visi-
cosity in a fresh market tomato vari-
ety. J. Agric. Food Chem. 53, 7490–
7495.

Raghavan, V. (2005). Some reflections on double fertilization, from its dis-
cover in the present. New Phytol. 169, 505–583.

Roll, R. S., and Clow, G. W. (1949). Kinetic comparison of cytoplasmic malecydase activity iso-
tated from normally ripening and
mutant tomato varieties. Plant Physiol. 39, 148–150.

Ramon, Y. L., Patrick, J. W., Bournazou, M., Osorio, S., and Fornier, A. R. (2012). Molecular regulation of seed and fruit set. Trends Plant Sci. 17, 656–665.

Sadikov, R., Fird, E. N., Scalenghe, E. J. F. P., Bolden, T., Thody, K., Lodger, S., et al. (2007). A genome approach reveals that aroma production in apple is controlled by ethy-
lene-promotedsenescence at the final step in each biosynthetic pathway. Plant Physiol. 144, 1989–1992.

Schafer, R. J., Ireland, H. S., Ross, J. J., Long, T. J., and David, K. M. (2013). SEPAL/PEDALIUM-regulated mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. J. Appl. Plant Sci. 5, plf047.

Schafer, R. J., Rincon-Benítez, O., Foss, M., and Garcia-Martínez, J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant Physiol. 146, 932–944.

Setha, S. (2012). Roles of auxin in plant growth. Wadsworth J. Sci. Technol. 9, 297–319.

Sorohan, E., Gerin, T., Lépigeon, S. J., Jiang, K., Kohlen, P., Galan, J., and Garcia-Martínez, J. L. (2008). A regulated auxin minimum is required for seed development in Arabidopsis. Nature 459, 585–589.

Srivastava, A., and Henda, A. K. (2005). Hormonal regulation of tomato fruit development: a molecular perspec-
tive. J. Plant Growth Regul. 24, 87–92.

Todini, M. K., and Destrup, U. N. (2000). Deliberate ripening of banana fruit by salicylic acid. Plant Sci. 158, 87–96.

Tou, S., Sun, Y., Zhang, M., Wang, L., Ren, J., Cui, M., et al. (2012a). Sup-
pression of 9-oxo-9-epoxyoctadecenoic acid, which encodes a key enzyme in abscisic acid biosynthe-
sis, alters fruit texture in transgenic tomato. Plant Physiol. 159, 263–284.

Tou, S., Chen, P., Duan, C., Tao, P., Wang, Y. K., et al. (2012b). Transcriptional regulation of genes encoding key enzymes of abscisic acid and metabolism during melons (Cucumis melo L.) fruit development and ripening. J. Plant Growth Regul. doi: 10.1007/s00344-012-9250-5

Tou, X., Shanghara, D., Kang, X., and Ni, M. (2010). Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr. Opin. Plant Biol. 13, 611–620.

Tolón, M., Zacarías, L., and Premolín, E. (1998). Hormonal changes asso-
ciated with fruit-set and develop-
ment in mandarins differing in their
parthenocarpic ability. Physiol. Plant. 79, 400–409.

Truong, L., Tailleu, A., and Cassader, G. (2007). The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 58, 3299–3308.

Varga, A., and Brunna, J. (1978). Roles of auxin and auxins in tomato fruit growth. Z. Pflanzenphysiol. 89, 95–104.

Vendrell, M. (1985). Dual effect of 2,4-D on ethylene production and ripening of tomato fruit. J. Food Sci. Technol. 42, 283–298.

Véron, S. M. (2009). ARABIDOPSIS DEHISCENCE ZONE POLYGALAC-
TURINASES 1 (PGL1) and 2 (PGL2) are required for the transition from single to multiple stages of development in Arabidopsis thaliana. Plant J. 58, 297–308.

Veraart, J., and Kohlmann, A. M. (1999). Genetic analysis of growth-
regulation-induced parthenocarpy in Arabidopsis. Plant Physiol. 121, 437–441.

Veraart, W., Foron, F., Maroton, F., Koiman, J., and Mariani, C. (2008). Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 177, 460–76.

Weimer, T., Merhah, V., Lescure, V., Smets, R., Van Onckelen, H., and Schmulling, T. (2005). Cryphonkin-
deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite func-
tions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2552–2563.

Weiner, T., Enkerli, J. T. A., and Elfring, D. C. (1995). Benzylationene affects cell division and cell-size dur-
ing apple fruit thinning. J. Am. Soc. Hortic. Sci. 120, 802–807.

Wen, J., Zhang, J., Zhang, X., Wang, Z., Zhe, Q., and Liu, L. (2002). Correlation of cytokinin levels in the endosperms and roots with cell num-
ber and cell division activity during endosperm development in rice. Ann. Bot. 90, 369–377.

Zhao, M., Yuan, B., and Long, P. (2009). The role of ABA in trigem-
ning ethylene biosynthesis and ripen-
ing of tomato fruit. J. Exp. Bot. 60, 1579–1588.

Conflict of Interest Statement. The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential con-
flict of interest.

Received: 15 January 2013; accepted: 19 March 2013; published online: 17 April 2013.

Citation: McAtee, Karim, Schaffer and David. This is an open-access article published in Frontiers in Plant Science.

Copyright © 2013 McAtee, Karim, Schaffer and David. This is an open-access article published in Frontiers in Plant Science.

April 2013 | Volume 4 | Article 79 | 7

This article is submitted to Frontiers in Plant Cell Biology, a specialty of Frontiers in Plant Science.