HIERARCHIES OF SIMPLICIAL COMPLEXES VIA THE
BGG-CORRESPONDENCE

GUNNAR FLOYSTAD

Abstract. Via the BGG-correspondence a simplicial complex Δ on $[n]$ is transformed into a complex of coherent sheaves $\mathcal{L}(\Delta)$ on the projective space \mathbb{P}^{n-1}. In general we compute the support of each of its cohomology sheaves.

When the Alexander dual Δ^* is Cohen-Macaulay there is only one such non-zero cohomology sheaf. We investigate when this sheaf can be an ath syzygy sheaf in a locally free resolution and show that this corresponds exactly to the case of Δ^* being $a + 1$-Cohen-Macaulay as defined by K.Baclawski [4].

By putting further conditions on the sheaves we get nice subclasses of $a + 1$-Cohen-Macaulay simplicial complexes whose f-vector depends only on a and the invariants $n, d,$ and c. When $a = 0$ these are the bi-Cohen-Macaulay simplicial complexes, when $a = 1$ and $d = 2c$ cyclic polytopes are examples, and when $a = c$ we get Alexander duals of the Steiner systems $S(c, d, n)$.

We also show that Δ^* is Gorenstein* iff the associated coherent sheaf of Δ is an ideal sheaf.

Introduction

A simplicial complex Δ on $\{1, \ldots, n\}$ corresponds to a monomial ideal in the exterior algebra. Via the BGG-correspondence such an ideal transforms to a complex of coherent sheaves $\mathcal{L}(\Delta)$ on the projective space \mathbb{P}^{n-1}. In a recent paper, [12], J.E.Vatne and the author studied when the BGG-correspondence applied to a simplicial complex Δ gives rise to a complex $\mathcal{L}(\Delta)$ with at most one non-zero cohomology sheaf $\mathcal{S}(\Delta)$. We showed that this happens exactly when the Alexander dual Δ^* is a Cohen-Macaulay simplicial complex. We then singled out a particularly nice class of coherent sheaves, the locally Cohen-Macaulay sheaves and asked when $\mathcal{S}(\Delta)$ belonged to this class. This turned out to happen when both Δ and Δ^* are Cohen-Macaulay.

In this paper we study this further in several directions. Firstly we develop in Section 3 criteria for telling which cohomology sheaves of $\mathcal{L}(\Delta)$ are non-zero and if so, what their support is. We also describe the multigraded Hilbert functions of these cohomology sheaves. This is related to the cellular complexes of [6].

Secondly, we again single out nice classes of coherent sheaves and ask when a simplicial complex Δ is such that $\mathcal{S}(\Delta)$ is in such a class. This time
we consider the class of coherent sheaves \mathcal{S}_{a} which can occur as a'th syzygy sheaf in a locally free resolution of a coherent sheaf. Thus when a is 1 we have the torsion free sheaves, when a is 2 the reflexive sheaves and when a is $n - 1$ the vector bundles. In Section 4 we consider the class $\mathcal{C}\mathcal{L}_{a}$ of simplicial complexes Δ such that $S(\Delta)$ is in \mathcal{S}_{a}, giving us a "hierarchy" $\mathcal{C}\mathcal{L} = \mathcal{C}\mathcal{L}_{0} \supset \mathcal{C}\mathcal{L}_{1} \supset \cdots$ of simplicial complexes. Note that $\mathcal{C}\mathcal{L}$ is the class of Alexander duals of Cohen-Macaulay simplicial complexes. There turns out to be nice, compact criteria for membership in the classes $\mathcal{C}\mathcal{L}_{a}$ and when taking restrictions and links of a Δ in $\mathcal{C}\mathcal{L}_{a}$ these are predictably in $\mathcal{C}\mathcal{L}_{a}$ and $\mathcal{C}\mathcal{L}_{a-1}$ respectively. (Via Alexander duals this generalizes the fact that the link of a Cohen-Macaulay simplicial complex is Cohen-Macaulay.)

The three most important invariants of a simplicial complex Δ is n, its dimension $d - 1$ and c, the largest integer such that all c-sets are in Δ. Via certain nice additional properties which one may put on sheaves in \mathcal{S}_{a} we further single out a particular nice subclass of $\mathcal{C}\mathcal{L}_{a}$. When a is 0 this subclass turns out to be the class studied in [12], the bi-Cohen-Macaulay simplicial complexes. When a is c, the maximal interesting value for a, it turns out that we get exactly the Steiner systems $S(c, d, n)$. In general for each a, the simplicial complexes of this nice subclass of $\mathcal{C}\mathcal{L}_{a}$ will have f-vectors depending only on c, d and n.

Now taking Alexander duals of the classes $\mathcal{C}\mathcal{L}_{a}$ we get in Section 5 a "hierarchy" of Cohen-Macaulay simplicial complexes $\mathcal{C}\mathcal{M} = \mathcal{C}\mathcal{M}_{0} \supset \mathcal{C}\mathcal{M}_{1} \supset \cdots$. The simplicial complexes in $\mathcal{C}\mathcal{M}_{a}$ turn out to be exactly the $a + 1$-Cohen-Macaulay simplicial complexes as defined by K. Baclawski [4]. (Thus the simplicial complexes in $\mathcal{C}\mathcal{L}_{a}$ are the Alexander duals of the $a + 1$-Cohen-Macaulay simplicial complexes.) After translating most of the results for the classes $\mathcal{C}\mathcal{L}_{a}$ and its subclasses to the classes $\mathcal{C}\mathcal{M}_{a}$ and its subclasses, we consider the subclass of $\mathcal{C}\mathcal{M}$ consisting of Gorenstein* simplicial complexes Δ. This class corresponds exactly to the subclass of $\mathcal{C}\mathcal{M}_{1}$ with $\tilde{H}_{d-1}(\Delta) = k$ and is the class of Cohen-Macaulay simplicial complexes Δ such that $S(\Delta^*)$ is a torsion free rank one coherent sheaf. Moreover we show that this sheaf may be naturally identified with the associated coherent sheaf of the ideal defining the Stanley-Reisner ring of Δ^*.

Having described the contents of Sections 3, 4, and 5 we inform that Section 1 contains preliminaries and techniques for dealing with simplicial complexes. Section 2 describes the BGG-correspondence and the classes of coherent sheaves we single out for study, namely the classes of sheaves which can be a'th syzygy sheaves in a locally free resolution. In the last section, Section 6, we pose some problems for further study.

1. Simplicial complexes.

Denote by $[n]$ the set of integers $\{1, \ldots, n\}$. A simplicial complex Δ on $[n]$ is a family of subsets of $[n]$ such that if $Y \subseteq X \subseteq [n]$ and X is in Δ then Y is in Δ.
1.1. **Notions.** We recall some notions for simplicial complexes. An element in \(\Delta \) is called a **face** of \(\Delta \), and a maximal face is a **facet**. If \(d \) is the maximal cardinality of a face of \(\Delta \), the **dimension** of \(\Delta \) is \(d - 1 \). If \(c \) is the largest integer such that all \(c \)-sets in \([n]\) are in \(\Delta \), we call \(c - 1 \) the **frame dimension** of \(\Delta \). By convention the empty simplex \(\emptyset \) has \(c = -1 \) (while \(\{\emptyset\} \) has \(c = 0 \)).

The **Alexander dual** simplicial complex \(\Delta^* \) is the simplicial complex on \([n]\) consisting of all \(F \) in \([n]\) such that the complement \(F^c = [n] \setminus F \) is not in \(\Delta \). Let \(d^* - 1 \) and \(c^* - 1 \) be the dimension and frame dimension of \(\Delta^* \). It is easily seen that

\[
 n = d + c^* + 1, \quad n = d^* + c + 1.
\]

Now we introduce the following notation. Let \(R \cup S \cup T \) be a partition of \([n]\) into three disjoint subsets, and let

\[
 \Delta_{R,S,T} = \{ F \subseteq R \mid F \cup S \in \Delta \}
\]

which is a simplicial complex on \(R \). Note that \(\Delta_{S,\emptyset} \) is the link \(\text{lk}_\Delta S \), and that \(\Delta_{R,\emptyset} \) is the restriction \(\Delta_R \) to \(R \). Also note that \(\Delta_{R,S,T} \) is \(\emptyset \) iff \(S \) is not a face of \(\Delta \).

Lemma 1.1.

\[
 (\Delta_{R,S,T})^* = (\Delta^*)_{R,S}. \quad (\Delta_{R,S,T})^* = (\Delta^*)_{R,S}.
\]

Proof. Let \(F \) be a subset of \(R \). That \(F \) is in \((\Delta_{R,S,T})^* \) means that \(R \setminus F \) is not in \(\Delta_{R,S,T} \) or \((R \setminus F) \cup S \) not in \(\Delta \).

That \(F \) is in \((\Delta^*)_{R,S} \) means that \(F \cup T \) is in \(\Delta^* \) or \([n]\setminus(F \cup T) \) not in \(\Delta \). But the latter is \((R \setminus F) \cup S \). \(\square \)

1.2. **Homology.** Let \(V \) be a vector space over a field \(k \) with basis \(e_1, \ldots, e_n \) and \(E = E(V) \) the exterior algebra \(\oplus_0^\infty V \wedge^i V \). Let \(W = V^* \) be the dual space with dual basis \(x_1, \ldots, x_n \). Consider the monomials \(e_{i_1} \cdots e_{i_r} \) in \(E \) such that \(\{i_1, \ldots, i_r\} \) is not in \(\Delta \). They form a basis for an ideal \(J_\Delta \) in \(E \).

Dualizing the inclusion \(J_\Delta \subseteq E \) we get an exact sequence of \(E \)-modules

\[
 0 \to C_\Delta \to E(W) \to (J_\Delta)^* \to 0.
\]

where \(C_\Delta \) is the kernel. A basis for \(C_\Delta \) consist of all monomials \(x_{i_1} \cdots x_{i_r} \) such that \(\{i_1, \ldots, i_r\} \) are in \(\Delta \). Left multiplication with \(u = e_1 + e_2 + \cdots + e_n \) gives a differential \(d \) on \(C_\Delta \) and the reduced homology of \(\Delta \) is defined by \((W \) has degree \(-1)\)

\[
 \tilde{H}_p(\Delta) = H^{-p-1}(C_\Delta, d).
\]

Note that via the isomorphism of \(E \)-modules between \(E(V) \) and \(E(W)(-n) \), the ideal \(J_\Delta \) gets identified with the submodule \(C_{\Delta^*}(-n) \) of \(E(W)(-n) \). We therefore get an exact sequence

\[
 0 \to C_\Delta \to E(W) \to (C_{\Delta^*})^*(n) \to 0.
\]

Lemma 1.2. \(\tilde{H}_{n-3-p}(\Delta^*) \cong \tilde{H}_p(\Delta)^* \).
Proof. Since the differential on \(E(W) \) is acyclic we get from (2)
\[
H^{-p-1}(C_\Delta) \cong H^{n-2-p}((C_\Delta^*)^*) = H^{p+2-n}(C_\Delta^*)^*.
\]

\[\square \]

1.3. Reducing. Now if \([n]\) is partitioned as \(R \cup \{x\} \) we get a short exact sequence of \(E \)-modules
\[
0 \to C_{\Delta_R} \to C_\Delta \to C_{lk_\Delta(x)}(1) \to 0.
\]
The following is a basic kind of general deduction from this type of exact sequence.

Proposition 1.3. Let \(R \cup S \cup T \) be a partition of \([n]\) and suppose \(\tilde{H}_p(\Delta_R^{ST}) \) is non-zero.

a) (Reducing \(S \).) Given \(S' \subseteq S \). Then there are \(R' \supseteq R \) and \(T' \supseteq T \) such that \(\tilde{H}_p'(\Delta_R^{ST}) \) is non-zero, where \(p' - p \) is the cardinality of \(R' \setminus R \).

b) (Reducing \(T \).) Given \(T' \subseteq T \). Then there are \(R' \supseteq R \) and \(S' \supseteq S \) such that \(\tilde{H}_p'(\Delta_R^{ST'}) \) is non-zero.

c) (Reducing \(R \).) Given \(R' \subseteq R \). Then there are \(S' \supseteq S \) and \(T' \supseteq T \) such that \(\tilde{H}_p'(\Delta_R^{S'T}) \) is non-zero where \(p - p' \) is the cardinality of \(S' \setminus S \).

Proof. All of these just follow from the exact sequence
\[
0 \to C_{\Delta_R^{ST \cup \{x\}}} \to C_{\Delta_R^{S \cup \{x\}}} \to C_{\Delta_R^{S \cup \{x\}, T}}(1) \to 0
\]
where \(R \cup S \cup T \cup \{x\} \) is a partition of \([n]\), by running long exact cohomology sequences. \[\square \]

Remark 1.4. This proposition generalizes Corollary 4.4 of [1].

Notation 1.5. We shall usually write \(\Delta_\cdot \) for \(\Delta_{\cdot \setminus R} \) (in which case \(R = S \cup T \)). Often we shall also drop the \(T \) and write this simply as \(\Delta_\cdot \). In general when \(Y \) is a set we shall use the lower case letter \(y \) to denote the cardinality of \(Y \). For instance given \(\Delta_\cdot \) then \(r \) and \(s \) will be the cardinalities of \(R \) and \(S \) respectively.

Corollary 1.6. Suppose \(\tilde{H}_p(\Delta_R^{ST}) \) is non-zero. Then \(c - 1 \leq p + s \leq d - 1 \) and the following holds.

a) If \(p + s = c - 1 \) and \(S' \subseteq S \) then \(\tilde{H}_p'(\Delta_{\cdot \cup \{x\}}) \) is non-zero, where \(p' + s' = c - 1 \).

b) If \(p + s = d - 1 \) and \(T' \subseteq T \) then \(\tilde{H}_p(\Delta_{\cdot \cup \{y\}}) \) is non-zero.

c) If \(p \geq 0 \) then \(\tilde{H}_{p-1}(lk_\Delta S') \) is non-zero for some \(S' \) strictly containing \(S \).

d) \(\tilde{H}_{p'}(\Delta_R) \) is non-zero for some \(R \) and \(p' \geq p \).

e) \(\tilde{H}_p(\Delta) \) is non-zero for some \(\Delta \) containing \(S \).
Proof. The frame dimension of Δ_{ST}^{R} is $\geq c - s - 1$. If therefore $p < c - s - 1$ then $\tilde{\tilde{H}}(\Delta_{ST}^{R})$ is zero. Similarly the dimension of lk_S is $\leq d - s - 1$ and so if $p \geq d - s$ then $\tilde{\tilde{H}}(\Delta_{ST}^{R})$ is zero.

a) Reduce S to S' and get $\tilde{\tilde{H}}(\Delta_{ST}^{R'})$ non-zero. First note we must have $p' + s' \geq c - 1$. Also we have $p' - p = s + t - s' - t'$. Since $t' \geq t$ we must have $T = T'$ and $p' + s' = c - 1$. Part b) is shown similarly as a).

c) We have $\tilde{\tilde{H}}(\Delta_{ST}^{R})$ non-zero. Now reduce R. Sooner or later S increases to $\tilde{S} = S \cup \{x\}$ such that

\[(3)\quad \tilde{\tilde{H}}_{p-1}(\Delta_{\tilde{S},T}^{R}) \neq 0.\]

This is so since otherwise we would get $\tilde{\tilde{H}}(\Delta_{st}^{R})$ non-zero which is impossible. Now reducing T in (3) to \emptyset we get $\tilde{\tilde{H}}_{p-1}(\Delta_{S,T}^{R})$ non-zero.

d) and e) follow by reducing S, respectively T, to the empty set. \(\square\)

For later we need the following.

Lemma 1.7. If Δ is not the $n - 1$-simplex or the empty simplex, then $H_{c-1}(\mathrm{lk}_S\Delta)$ is non-zero for some S.

Proof. Let R be a $c + 1$-set which is not a face of Δ. Then clearly $H_{c-1}(\Delta_R)$ is non-zero. Now reduce $T(=R^c)$ to \emptyset, and get $H_{c-1}(\mathrm{lk}_S\Delta)$ non-zero. \(\square\)

1.4. CLeray and Cohen-Macaulay simplicial complexes. For an integer e, a simplicial complex Δ is called e-Leray, [15] p.12], if $H_p(\Delta_R) = 0$ for all $p \geq e$ and subsets R of $[n]$. Motivated by this we make the following definition.

Definition 1.8. A simplicial complex Δ is CLeray if $\tilde{\tilde{H}}(\Delta_R) = 0$ for all $p \geq c$, that is for all p greater than the frame dimension of Δ, and subsets R of $[n]$. (Note that we do not speak of a complex being say, 3Leray or 2Leray. One can speak of a complex being CLeray or 3-Leray.)

Note that when $c = 0$ this gives that Δ is a simplex on the vertices it contains.

Recall that Δ is Cohen-Macaulay if $\tilde{\tilde{H}}(\mathrm{lk}_S\Delta) = 0$ when $p + s \leq d - 2$. The class of CLeray and Cohen-Macaulay simplicial complexes are now seen to be Alexander dual.

Proposition 1.9. Δ is CLeray iff Δ^* is Cohen-Macaulay.

Proof. By Lemmata 1.1 and 1.2

\[\tilde{\tilde{H}}(\Delta_R) = \tilde{\tilde{H}}_{p-3-p}(\Delta_{\emptyset}^{R,p,c}) = \tilde{\tilde{H}}_{p-3-p}(\Delta_{\emptyset}^{R,c}) = \tilde{\tilde{H}}_{p-3-p}(\mathrm{lk}_S\Delta_{p,c}).\]

The condition that $p \geq c$ is equivalent to $n - 3 - p \leq d^* - 2$ and so we get the statement. \(\square\)

Another description of Δ being CLeray is the following.

Proposition 1.10. Δ is CLeray iff $\tilde{\tilde{H}}(\mathrm{lk}_S\Delta) = 0$ for all S in Δ.

Proof. Suppose Δ is not CLeray. Then $\tilde{H}_p(\Delta_R)$ is non-zero for some R and $p \geq c$. By Corollary 1.6 e), we get $\tilde{H}_p(\text{lk}_S \Delta)$ non-zero for some S and so $\tilde{H}_c(\text{lk}_S \Delta')$ non-zero for some S' in Δ by 1.6 c).

Conversely, if $\tilde{H}_c(\text{lk}_S \Delta)$ is non-zero, then by Corollary 1.6 d), $\tilde{H}_p(\Delta_R)$ is non-zero for some $p \geq c$ and so Δ is not CLeray. □

Corollary 1.11. Δ is Cohen-Macaulay iff $\tilde{H}_p(\Delta - R)$ is zero for $p + r = d - 2$.

Proof. Using Lemma 1.2 this follows from the above. □

2. The BGG-correspondence and a hierarchy of coherent sheaves

Recall that $W = V^*$ is the dual space of V and let $S = S(W)$ be the symmetric algebra on W. If $M = \oplus_{i \in \mathbb{Z}} M_i$ is a graded module over E we can form the complex

$$L(M) : \cdots \to S(i) \otimes_k M_i \xrightarrow{d^i} S(i + 1) \otimes_k M_{i+1} \to \cdots$$

with differential given by

$$d^i(s \otimes m) = \sum_{\alpha=1}^{n} sx_\alpha \otimes e_\alpha m.$$

Sheafifying this we get a complex of coherent sheaves

$$\tilde{L}(M) : \cdots \to \mathcal{O}_{\mathbb{P}^{n-1}}(i) \otimes_k M_i \xrightarrow{d^i} \mathcal{O}_{\mathbb{P}^{n-1}}(i + 1) \otimes_k M_{i+1} \to \cdots$$

on the projective space \mathbb{P}^{n-1}. This, in short, is the BGG-correspondence between graded modules over the exterior algebra and complexes of coherent sheaves on \mathbb{P}^{n-1}, originally from [3]. Our main reference for this will be [10].

Let us give some properties of this correspondence.

2.1. Restriction to linear subspaces. Let V' be a subspace of V so $W' = V'^*$ is a quotient space of W. Via $E(V') \to E(V)$, the module M may be restricted to a module $\text{res} \ M$ over $E(V')$. Also via $S(W) \to S(W')$ we may form the quotient complex $L(M) \otimes_S S(W')$. These are related by

$$L'(\text{res} M) = L(M) \otimes_S S(W')$$

where L' is the corresponding functor for $E(V')$-modules.

2.2. Duals of complexes. Now we consider $\wedge^n W$ to be a module over E in degree $-n$.

Let $M' = \text{Hom}_k(M, \wedge^n W)$. Then we have canonically

$$L(M') = \text{Hom}_S(L(M), S(-n) \otimes_k \wedge^n W)[n].$$

Sheafifying this, note that the canonical sheaf $\omega_{\mathbb{P}^{n-1}}$ naturally identifies with the sheafification of $S(-n) \otimes_k \wedge^n W$, we get

$$(4) \quad \tilde{L}(M') = \text{Hom}_{\mathcal{O}_{\mathbb{P}^{n-1}}}(\tilde{L}(M), \omega_{\mathbb{P}^{n-1}})[n].$$
In particular if the only nonzero cohomology of $\tilde{L}(M)$ is $F = H^{-a}\tilde{L}(M)$, a coherent sheaf, we see that

$$\text{Ext}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^p(F, \omega_{\mathbb{P}^{n-1}}) = H^{a+r-n}(M^\vee).$$

2.3. Calculating Tor’s. For a graded module M over $E(V)$ and v an element of V, let $H^p(M, v)$ be the cohomology of the complex

$$M_{p-1} \xrightarrow{v} M_p \xrightarrow{v} M_{p+1}.$$

Letting $k(v)$ be $\mathcal{O}_{\mathbb{P}^{n-1}}/I_v$ where I_v is the ideal sheaf of the point v in \mathbb{P}^{n-1} we have, due to [11],

$$H^p(M, v) = H^p(\tilde{L}(M) \otimes_{\mathcal{O}_{\mathbb{P}^{n-1}}} k(v)).$$

In particular, if $F = H^0\tilde{L}(M)$ is the only non-zero cohomology

$$H^{-p}(M, v) = \text{Tor}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^p(F, k(v)).$$

This is what will be needed about the BGG-correspondence. Now we turn to describing some classes of coherent sheaves.

2.4. A hierarchy of coherent sheaves.

Definition 2.1. A coherent sheaf F on \mathbb{P}^{n-1} is an \textit{a}'th syzygy sheaf if there is a locally free resolution of some coherent sheaf M

$$M \leftarrow \mathcal{E}_0 \leftarrow \ldots \leftarrow \mathcal{E}_{i-1} \leftarrow d_i \mathcal{E}_i \leftarrow \ldots$$

such that F is the kernel of d_{i-1}.

Now let $\text{Sh} = \text{Sh}^0$ be the category of all coherent sheaves on \mathbb{P}^{n-1}. For $a \geq 1$ let Sh_a be the full subcategory of Sh consisting of the sheaves which can occur as an \textit{a}'th syzygy sheaves. There is then a filtration into “nicer and nicer” classes of coherent sheaves

$$\text{Sh}_0 \supseteq \text{Sh}_1 \supseteq \ldots \supseteq \text{Sh}_{n-1}.$$

Note that Sh_1 are the torsion free sheaves, Sh_2 are the reflexive sheaves, i.e. sheaves F such that the natural map $F \rightarrow F^\vee$ is an isomorphism (here F^\vee is $\text{Hom}_{\mathcal{O}_{\mathbb{P}^{n-1}}} (F, \omega_{\mathbb{P}^{n-1}})$), and Sh_{n-1} are the vector bundles.

Proposition 2.2. F is in Sh_a if and only if the codimension of the support of $\text{Ext}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^i(F, \omega_{\mathbb{P}^{n-1}})$ is greater or equal to $i + a$ for all $i > 0$.

Proof. If F is in Sh_a, then with the notation in (6), $\text{Ext}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^i(F, \omega_{\mathbb{P}^{n-1}})$ is equal to $\text{Ext}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^{i+\alpha}(M, \omega_{\mathbb{P}^{n-1}})$ for $i > 0$ and the statement follows by [8, 20.9].

For later use note the following.

Fact. If F is a coherent sheaf with support in codimension r, then the sheaf $\text{Ext}_{\mathcal{O}_{\mathbb{P}^{n-1}}}^i(F, \omega_{\mathbb{P}^{n-1}})$ has codimension r when $i = r$ and is zero when $0 < i < r$. This follows for instance from [8, 18.4] and its proof.
Now assume $\mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}^{n-1}})$ has codimension greater or equal to $i + a$ for $i \geq 1$. If $a \geq 1$ it follows from the above fact that \mathcal{F} cannot have a torsion subsheaf, and so \mathcal{F} is in $\mathcal{S}h_1$.

Now let $a \geq 2$. Since \mathcal{F} is in $\mathcal{S}h_1$, there is an exact sequence

$$0 \to \mathcal{F} \to \mathcal{F}^\vee \to \mathcal{P} \to 0$$

where \mathcal{P} is the cokernel. Let $1 + r$ be the codimension of \mathcal{P}. Since any torsion free sheaf is locally free outside a codimension 2 subset, $1 + r \geq 2$. Now we get a long exact sequence

$$\mathcal{E}xt^i(\mathcal{F}^\vee, \omega_{\mathbb{P}^{n-1}}) \to \mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}^{n-1}}) \to \mathcal{E}xt^{i+1}(\mathcal{P}, \omega_{\mathbb{P}^{n-1}})$$

$$\to \mathcal{E}xt^{i+1}(\mathcal{F}^\vee, \omega_{\mathbb{P}^{n-1}}).$$

Hence if \mathcal{P} is non-zero, that is \mathcal{F} is not in $\mathcal{S}h_2$, then $\mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}^{n-1}})$ has codimension $1 + r$, which is against our assumption. Hence \mathcal{P} is zero and so \mathcal{F} is in $\mathcal{S}h_2$.

Now we look at the situation when $a \geq 3$. We know then that \mathcal{F} is reflexive. Let

$$\mathcal{F} \leftarrow \mathcal{E}_0 \leftarrow \cdots \leftarrow \mathcal{E}_m$$

be a locally free resolution of \mathcal{F}. Dualizing we get

$$\mathcal{F}^\vee \to \mathcal{E}_0^\vee \to \cdots \to \mathcal{E}_m^\vee$$

with cohomology $\mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}^{n-1}})$ at \mathcal{E}_i^\vee. Now we claim that $\mathcal{E}xt^i(\mathcal{F}^\vee, \omega_{\mathbb{P}^{n-1}})$ is zero for $0 < i < a - 1$. More generally, if \mathcal{K}_r is the kernel of $\mathcal{E}_r^\vee \to \mathcal{E}_{r+1}^\vee$, then $\mathcal{E}xt^i(\mathcal{K}_r, \omega_{\mathbb{P}^{n-1}})$ is zero for $0 < i < r + a - 1$. This follows easily by breaking the complex \mathcal{E} into short exact sequences and using the fact noted above. If we take a locally free resolution \mathcal{D} of \mathcal{F}^\vee and dualize this we get a complex

$$\mathcal{F}^\vee \to \mathcal{D}_{a-1}^\vee \to \cdots \to \mathcal{D}_0^\vee \to \mathcal{D}_1^\vee \to \cdots$$

which is exact at all \mathcal{D}_i^\vee when $i > 0$. Hence \mathcal{F} which is equal to \mathcal{F}^\vee is in $\mathcal{S}h_a$.

To obtain even nicer classes of coherent sheaves, we can consider the subcategory $\mathcal{S}h^+_{a}$ of $\mathcal{S}h_a$ consisting of \mathcal{F} such that there exist $r > 0$ with $\mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}^{n-1}})$ zero except possibly when i is 0 or r.

3. **Simplicial complexes via the BGG-correspondence**

Given a simplicial complex Δ over $[n]$, recall the module C_Δ over $E(V)$. Using the BGG-correspondence, we may form the complex $\tilde{L}(C_\Delta)$ of coherent sheaves on \mathbb{P}^{n-1}. Of interest then is the cohomology sheaves of $\tilde{L}(C_\Delta)$. The following basic result was established in [12].

Theorem 3.1. a) $\tilde{L}(C_\Delta)$ has at most one non-zero cohomology group \mathcal{F} if and only if Δ is CLeray. In this case $\mathcal{F} = H^{-c}\tilde{L}(C_\Delta)$.

b) The cohomology sheaf \mathcal{F} is locally Cohen-Macaulay sheaf if and only if Δ is both CLeray and Cohen-Macaulay.
Notation 3.2. We write \(L(\Delta) \) for \(L(C_\Delta) \) and \(S^a(\Delta) \) and \(S^a(\Delta) \) for the \(a \)'th cohomology groups of \(L(\Delta) \) and \(\tilde{L}(\Delta) \) respectively. In case \(\Delta \) is CLeray we simply write \(S(\Delta) \) for \(S^c(\Delta) \). If \(\Delta \) is both CLeray and Cohen-Macaulay we call \(\Delta \) bi-Cohen-Macaulay.

We shall now establish a more general result, namely determine for any \(\Delta \) which cohomology sheaves of \(\tilde{L}(\Delta) \) are non-zero. We first establish some other results.

Lemma 3.3. The associated primes of each cohomology group \(H^{-p}L(\Delta) \) are of the form \((x_i)_{i \in R}\) where \(R \) is a subset of \([n]\).

Proof. \(H^{-p}L(\Delta) \) is graded by \(\mathbb{Z}^{n+1} \). By [8, Exc. 35] an associated prime is also graded by \(\mathbb{Z}^{n+1} \). But the only such prime ideals are of the above form. \(\square \)

3.1. Local ranks. The following Proposition and Corollary is due to T. Ekedahl. Let \(v = \sum \lambda_i e_i \) be a linear form in \(E(V) \). It can also be considered as a point in \(\mathbb{P}^{n-1} \). We call the set \(R = \{i \mid \lambda_i \neq 0\} \) the support of \(v \).

Proposition 3.4. Let \(v = \sum \lambda_i e_i \) be a point in \(\mathbb{P}^{n-1} \) with support \(R \). Then
\[
H^{-p}(\tilde{L}(\Delta) \otimes_{\mathcal{O}_{\mathbb{P}^{n-1}}} k(v)) = \bigoplus_{S \subseteq R} \tilde{H}_{p-s}(\Delta_S^{S,T}).
\]

Proof. First note the following general fact. If \(v = \sum \lambda_i e_i \) where all \(\lambda_i \) are non-zero, let \(u = \sum_{i=1}^{n} e_i \). Then
\[
H^{-p}(C_\Delta, v) = H^{-p}(C_\Delta, u) = \tilde{H}_{p-1}(\Delta).
\]
This is because the map \(C_\Delta \to C_\Delta \) defined by \(x_i \mapsto \lambda_i x_i \) gives an isomorphism between the complexes \((C_\Delta, v) \) and \((C_\Delta, u) \).

Now by Paragraph 2.3
\[
H^{-p}(\tilde{L}(\Delta) \otimes_{\mathcal{O}_{\mathbb{P}^{n-1}}} k(v)) = H^{-p}(C_\Delta, v).
\]
Let \(V_R \) be the subspace of \(V \) spanned by the \(e_i \) where \(i \) is in \(R \). Restricting \(C_\Delta \) via \(E(V_R) \to E(V) \) we get
\[
\text{res} C_\Delta = \bigoplus_{S \subseteq R} C_{\Delta_S^{S,T}}(s).
\]
Therefore
\[
H^{-p}(C_\Delta, v) = \bigoplus_{S \subseteq R} H^{-p+s}(C_{\Delta_S^{S,T}, v}) = \bigoplus_{S \subseteq R} \tilde{H}_{p-s-1}(\Delta_{R}^{S,T}).
\]
\(\square \)

Corollary 3.5. a) The rank of \(H^{-p}L(\Delta) \) is the dimension of \(\tilde{H}_{p-1}(\Delta) \).

b) Let \(\Delta \) be CLeray and \(v \) a point in \(\mathbb{P}^{n-1} \) with support \(R \). Then
\[
\text{Tor}_p^{\mathcal{O}_{\mathbb{P}^{n-1}}}(S(\Delta), k(v)) = \bigoplus_{S \subseteq R} \tilde{H}_{p+c-1-s}(\Delta_{R}^{S,T}).
\]

Proof. Immediate. \(\square \)
Example 3.6. Let the dimension of Δ be 1, so Δ is a graph and suppose $c = 1$. Then Δ is CLeray iff Δ is a forest, Δ is Cohen-Macaulay iff Δ is connected and Δ is bi-Cohen-Macaulay iff Δ is a tree.

We can compute the rank of $S(\Delta)$ at a point v with support R as follows. (We use lower case letters to denote the dimension of a cohomology group.)

$$\text{rank } S(\Delta)_v = \tilde{h}_0(\Delta_R) + \sum_{x \in R^c} \tilde{h}_{-1}(\Delta_R^{\{x\}}).$$

Note that $\tilde{h}_{-1}(\Delta_R^{\{x\}})$ is non-zero iff $\Delta_R^{\{x\}}$ is $\{\emptyset\}$ and this holds iff $R \cap \text{lk}_\Delta \{x\}$ is \emptyset. Thus

$$\text{rank } S(\Delta)_v = \tilde{h}_0(\Delta_R) + \# \{ x \mid R \cap \text{lk}_\Delta \{x\} = \emptyset \}.$$

3.2. Cohomology modules. Now we shall investigate the cohomology modules of $L(\Delta)$. Note that the complex $L(\Delta)$ is simply the cellular complex, see [6], obtained by associating to vertex i in Δ the monomial variable x_i. For a in \mathbb{N}^n let $\Delta_{\leq a}$ be the subcomplex of Δ on the vertices i for which $a_i > 0$, and call the set of such i the support of a. The following observation is part of the proof of [6, Prop.1.2] and gives the multigraded Hilbert functions of the cohomology modules.

Proposition 3.7. a) $H^{-p}L(\Delta)_a$ is isomorphic to $\tilde{H}_{p-1}(\Delta_{\leq a})$.

b) Let m be a monomial and $b = a + \deg_Z m$. There is then a commutative diagram

$$\begin{array}{ccc}
\tilde{H}_{p-1}(\Delta_{\leq a}) & \longrightarrow & \tilde{H}_{p-1}(\Delta_{\leq b}) \\
\downarrow & & \downarrow \\
H^{-p}L(\Delta)_a & \xrightarrow{m} & H^{-p}L(\Delta)_b
\end{array}$$

Proof. The graded part $L(\Delta)_a$ identifies naturally with the complex $(C_{\Delta_{\leq a}}, d)$ as follows. Let M be the monomial corresponding to a. Now $L^{-p}(\Delta) = S(-p) \otimes_k (C_{\Delta})_{-p} = \oplus_I Su_I$ where $u_I = 1 \otimes_k x_I$. There is a natural map

$$(C_{\Delta_{\leq a}})_p \rightarrow L^{-p}(\Delta)_a$$

given by

$$x_I \mapsto M/x_I \cdot u_I.$$

We verify easily that this is an isomorphism and commutes with the differentials in $C_{\Delta_{\leq a}}$ and $L(\Delta)_a$. This gives a) and b). □

Corollary 3.8. $H^{-p}L(\Delta)$ is zero iff $\tilde{H}_{p-1}(\Delta_R)$ is zero for all $R \subseteq [n]$.

Now we look closer at the cohomology modules of $L(\Delta)$. For a subset R of $[n]$ let $P(R)$ be the homogeneous prime ideal in the polynomial ring S defining the linear subspace P^{n-1} spanned by the e_i where i is in R. That is $P(R) = (x_i)_{i \notin R}$.

The last statement, let M be the ith graded \mathbb{Z}-module of the resolution L, we find that $\rho_{\triangledown}(\Delta)$ is zero. The first statement follow from $a)$ and $c)$ of Theorem 3.9. To prove $\rho_{\triangledown}(\Delta)$ is non-zero. Hence the length $\rho_{\triangledown}(\Delta)$ is zero since $\rho_{\triangledown}(\Delta)$ is non-zero. Let $\rho_{\triangledown}(\Delta)$ be in \mathbb{N} have 1 in position i if i is not in R and 0 otherwise. Since $H^{-p}L(\Delta)_{\delta(R)}$ is isomorphic to $H^{p-1}(\Delta)$ there is a sequence

$$0 \to (S/P(R))(-r)^{\rho} \to H^{-p}L(\Delta) \to Q \to 0$$

where ρ is the k-dimension of $\tilde{H}_{p-1}(\Delta)$ and Q is the cokernel. Now localization we find that $Q_{(P(R))}$ is zero since $\Pi_{R}x_i \cdot 0$ is zero.

Corollary 3.10. a) The sheaf $H^{-p}L(\Delta)$ has no embedded linear subspaces and is supported on a reduced union of coordinate linear subspaces of \mathbb{P}^{n-1}. b) For $p \geq 1$, $H^{-p}L(\Delta)$ is the graded global sections of the sheaf $H^{-p}L(\Delta)$.

Proof. The first statement follow from $a)$ and $c)$ of Theorem 3.9. To prove the last statement, let $M = H^{-p}L(\Delta)$. By b) of Theorem 3.9 the local cohomology groups $H^0_M(M)$ and $H^1_M(M)$ are zero, [8, Thm. A4.3]. That $\oplus_{k \in \mathbb{Z}} \Gamma(\mathbb{P}^{n-1}, \widetilde{M}(k))$ is equal to M now follows by [8, Thm. A4.1].

4. Hierarchies of CLEary complexes

We consider the various hierarchies of coherent sheaves S_{Δ} and subclasses of them and investigate simplicial complexes Δ such that $S(\Delta)$ is in such a class.
4.1. \(a+1\)-CLeray simplicial complexes. Let \(\mathcal{CL}_a\) be the class of CLeray simplicial complexes \(\Delta\) such that \(S(\Delta)\) is in \(\mathfrak{Sh}_a\). Note that if \(\Delta\) is the \(c-1\)-skeleton of the \(n-1\)-simplex then \(S(\Delta)\) is the vector bundle \(\Omega_{p_{n-1}}^c\) and so \(\Delta\) is in \(\mathcal{CL}_a\) for all \(a\). We shall however make the convention that the \(c-1\)-skeleton of the \(n-1\)-simplex is in \(\mathcal{CL}_a\) iff \(c \geq a - 1\). Thus for instance \(\mathcal{CL}_a\) contains the 1-simpleton but not the 0-simpleton, \(\emptyset\), or \(\emptyset\). The simplicial complexes in \(\mathcal{CL}_a\) are now called \(a+1\)-CLeray. The following gives a criterion for \(\Delta\) to be \(a+1\)-CLeray.

Theorem 4.1. \(\Delta\) is \(a+1\)-CLeray iff \(c \geq a - 1\) and
\[
\tilde{H}_{c-a}(lk_\Delta S) = 0, \quad \text{for } s \geq a.
\]
In particular, if \(\Delta\) is not the \(a-2\)-skeleton of the \(n-1\)-simplex then \(c \geq a\).

Proof. a) That \(\Delta\) is in \(\mathcal{CL}_a\) means that \(\mathcal{E}xt^i(S(\Delta), \omega_{p_{n-1}})\) has codimension \(\geq i + a\) for all \(i \geq 1\). By \([5]\) this sheaf is the cohomology sheaf
\[
H^{c+i-n}(C_\Delta)^{\vee},
\]
Now by \([2]\) there is an exact sequence
\[
0 \to C_{\Delta^*} \to E(W) \to (C_\Delta)^{\vee} \to 0
\]
and so we get \(\mathcal{E}xt^i(S(\Delta), \omega_{p_{n-1}})\) equal to \(H^{c+i-n+1}(\Delta^*)\). That this is a sheaf with support in codimension \(\geq i + a\) means that
\[
\tilde{H}_{n-i-2-c}(\Delta^*)_{-s} = 0
\]
when \(s < i + a\). By Lemma \([1, 1]\) \((\Delta^*)_{-s} = (lk_\Delta S)^*\). And so by Lemma \([1, 2]\) \(7\) is the same as
\[
\tilde{H}_{c+i-s-1}(lk_\Delta S) = 0
\]
for \(s < i + a\). Now put \(s = i + a - 1 - p\) where \(p \geq 0\). Then this becomes
\[
\tilde{H}_{c-a+p}(lk_\Delta S) = 0
\]
for \(s \geq a - p\). By Corollary \([1, 6]\) \(c\) if \(c \geq a\) then \(\tilde{H}_{c-a}(lk_\Delta S)\) zero for \(s \geq a\) implies \(9\), so this latter is the condition that \(\Delta\) is in \(a+1\)-CLeray when \(c \geq a\). When \(c < a\), then again by Corollary \([1, 6] c\), \(9\) is implied by \(\tilde{H}_{-1}(lk_\Delta S)\) zero for \(s \geq c + 1\) and this means that \(\Delta\) has no faces of dimension \(c\). Hence it is the \(c-1\)-skeleton of the \(n-1\)-simplex and by our convention we have \(c = a - 1\). \(\Box\)

Corollary 4.2. a) \(\Delta\) is \(a+1\)-CLeray iff \(\tilde{H}_p(\Delta^S_R)\) is zero for \(p + s \geq c\) and \(p \geq c - a\).

b) If \(\Delta\) is \(a+1\)-CLeray, then \(\Delta_R\) is \(a+1\)-CLeray.

Proof. a) Suppose \(\tilde{H}_p(\Delta^S_R)\) is nonzero where \(p + s \geq c\) and \(p \geq c - a\) where \(c \geq a\). By Corollary \([1, 6] c\) \(\tilde{H}_p(lk_\Delta S)\) is nonzero for some \(S'\) containing \(S\) and
by Corollary 1.6(c) we get $\tilde{H}_{c-a}(lk_\Delta S''')$ is nonzero where $s'' - s' \geq p - (c-a)$. But then

$$s'' \geq p + s' - (c-a) \geq c - (c-a) = a$$

and this is against assumption.

b) This is clear since the frame dimension of Δ_R is greater or equal to that of Δ. □

As stated after Definition 1.8 when Δ is 1-CLeray with $c = 0$, then Δ is a simplex on its vertices. In view of Theorem 4.1 it is of interest to investigate the $a + 1$-CLeray Δ's with minimal interesting frame dimension which is $a - 1$ (when the frame dimension is $a - 2$ it is the $a - 2$-skeleton of the $n-1$-simplex).

Proposition 4.3. Δ is $c + 1$-CLeray iff any two distinct facets intersect in a subset of cardinality less than c. (If $c = 0$ this means that there is only one facet.)

Proof. Suppose Δ is $c + 1$-CLeray. Let F and G be two distinct facets such that the cardinality of $S = F \cap G$ is maximal. Now we claim that $lk_\Delta S$ is disconnected. Suppose not and let $F = F_1 \cup S$ and $G = G_1 \cup S$ where $F_1 \cap G_1$ is empty. Then there would be a path from some vertex f_1 in F_1 to some vertex g_1 in G_1 in $lk_\Delta S$. Say the path starts with \{f_1, x\} where x is not a vertex in F_1. Then $H = S \cup \{f_1, x\}$ is a face of Δ, H is not contained in F and $F \cap H$ has cardinality larger than S which goes against our assumptions. Hence $H_0(lk_\Delta S)$ is non-zero. By Theorem 1.1(a) we get that $s < c$.

In the other direction, given that distinct facets always intersect in cardinality $< c$, we see that $lk_\Delta S$ when $s \geq c$ is always a simplex. Hence $H_0(lk_\Delta S)$ is zero and so Δ is $c + 1$-CLeray. □

By Corollary 4.6 if $p + s \leq c - 2$ then $\tilde{H}_p(lk_\Delta S)$ is zero and Corollary 4.2 gives conditions on homology when $p + s \geq c$. It is therefore of interest to investigate what happens when $p + s = c - 1$. The following is motivating for the classes studied in Subsection 4.3.

Proposition 4.4. $(p + s = c - 1)$

a) If $\tilde{H}_{c-s-1}(lk_\Delta S)$ is zero and S' contains S then $\tilde{H}_{c-s'-1}(lk_\Delta S')$ is zero.

b) Suppose Δ is $a + 1$-CLeray. Then $H_{c-a}(lk_\Delta S)$ is nonzero for any face S with $s = a - 1$.

Proof. a) follows form Corollary 1.6(a) by contraposition.

b) Let S' be a facet containing S where s is $a - 1$. Then $\tilde{H}_{-1}(\Delta_{S', S''})$ is non-zero. Reduce S' to S and get $\tilde{H}_p(\Delta_{R, S''})$ non-zero and so $p + s \geq c - 1$. Now reduce T to \emptyset and get $\tilde{H}_p(lk_\Delta S)$ non-zero where $\hat{S} \supseteq S$. Since Δ is in $C\Delta_0$, $\tilde{H}_p(lk_\Delta S)$ is zero when $p + \hat{s} \geq c$ and $p \geq c - a$. Hence either $p + \hat{s} \leq c - 1$ or $p \leq c - a - 1$. The latter is impossible since $p + a - 1$ which
is $p + s$ is $\geq c - 1$ and the former gives $s = s = a - 1$ and so $\tilde{H}_p(\text{lk}_\Delta S)$ is non-zero.

We now give a somewhat more conceptual description of what it means for a complex to be $a + 1$-CLeray. First a lemma.

Lemma 4.5. If Δ is 2-CLeray, the frame dimension of $lk_\Delta \{x\}$ is one less than that of Δ.

Proof. Since Δ is 2-CLeray, $c \geq 0$. If $c = 0$ this holds, so assume $c \geq 1$. We have $\tilde{H}_p(\text{lk}_\Delta \{x\} \cup S)$ zero for $p + s + 1 \geq c$ and $p \geq c - 1$, which reduces simply to the condition $p \geq c - 1$. Thus by Lemma 4.5 the frame dimension of $\text{lk}_\Delta \{x\}$ is $\leq c - 2$ and must be equal to $c - 2$. \square

Theorem 4.6. Δ is a $a + 1$-CLeray iff every link $\text{lk}_\Delta S$ with $s = a$ is CLeray with frame dimension $c - a - 1$.

Proof. We may assume $c \geq a \geq 1$. If Δ is $a + 1$-CLeray then

$$\tilde{H}_{c-a}(\text{lk}_\Delta (S \cup T) = 0, \text{ when } s = a \text{ and } t \geq 0.$$

Since by Lemma 4.5 the frame dimension of $\text{lk}_\Delta S$ is $c - a - 1$, we get that $\text{lk}_\Delta S$ is CLeray. Conversely, if each $\text{lk}_\Delta S$ is CLeray of frame dimension $c - a - 1$ then (4.1) holds and so Δ is $a + 1$-CLeray. \square

4.2. The classes $\mathcal{C}L^+_a$. Let $\mathcal{C}L^+_a$ be the class of CLeray simplicial complexes Δ such that $S(\Delta)$ is in \mathcal{SH}^+_a. The following gives a criterion for Δ to be in $\mathcal{C}L^+_a$.

Theorem 4.7. Δ is in $\mathcal{C}L^+_a$ iff $\tilde{H}_p(\text{lk}_\Delta S)$ is zero for all p and s in the range $c \leq p + s \leq d - 2$

and also when p, s are in the range $p + s = d - 1, p \geq c - a$.

In this case every facet has dimension $c - 1$ or $d - 1$.

Proof. For $S(\Delta)$ to be in $\mathcal{C}L^+_a$, there is some r such that $\text{Ext}^i(S(\Delta), \omega_{P_{n-1}})$ is zero except possibly when i is 0 or r, and in the latter case it has codimension $\geq r + a$. By the argument of Theorem 4.1 this means that

(10) $H_{c+i-s-1}(\text{lk}_\Delta S) = 0$ for all s when $i \neq 0, r$

$H_{c+r-s-1}(\text{lk}_\Delta S) = 0$ for $s < a + r$.

Letting $p = c + i - s - 1$ this gives $H_p(\text{lk}_\Delta S)$ zero when $p + s \geq c$ and $p + s \neq c + r - 1$ or when $p + s = c + r - 1$ and $p \geq c - a$. But let S be a facet. Then $\text{lk}_\Delta S$ is $\{\emptyset\}$ so $\tilde{H}_{-1}(\text{lk}_\Delta S)$ is non-zero. Hence if $s \geq c + 1$, letting $s = c + i$, we see from (10) that we must have $i = r$ and so $s = c + r$. So all facets S with $s \geq c + 1$ must have $s = c + r$ which is then equal to d. \square
Corollary 4.8. a) \(\Delta \) is in \(\mathcal{CL}_a^\dagger \) iff \(\tilde{H}_p(\Delta^S_R) \) is zero when \(p, s \) (and \(r \)) are in the range
\[
c \leq p + s \leq d - 2
\]
and also when \(p \) and \(s \) are in the range
\[
p + s = d - 1, \quad p \geq c - a.
\]
b) If \(\Delta \) is in \(\mathcal{CL}_a^\dagger \) then \(\Delta^\ast \) is in \(\mathcal{CL}_a^\dagger \).

Proof. The proofs are analogous to those of Corollary 4.2.

Theorem 4.9. \(\Delta \) is in \(\mathcal{CL}_a^\dagger \) iff every link \(\text{lk}_S \Delta \) with \(s = a \) is in \(\mathcal{CL}_0^\dagger \) with dimension \(d - a - 1 \) and frame dimension \(c - a - 1 \) or is the \(c - a - 1 \) skeleton of the simplex on \([n] \setminus S \).

Proof. We can assume \(c \geq a \geq 1 \). If now \(\Delta \) is in \(\mathcal{CL}_a^\dagger \), the facets have dimension \(c - 1 \) or \(d - 1 \). In view of Lemma 1.7 the statement follows immediately from Theorem 4.6.

Remark 4.10. The if direction is not true unless we assume the links to be of dimension \(d - a - 1 \) or \(c - a - 1 \). If one simply assume the links are of frame dimension \(c - a - 1 \) and are in \(\mathcal{CL}_a^\dagger \), then a counterexample is given by starting with the disjoint union of a 2-simplex and a 3-simplex and then adding all line segments between pairs of vertices of them.

4.3. The classes \(\mathcal{CL}_a^\circ \). By Proposition 4.4 the nicest behaviour one can expect for the homology groups \(\tilde{H}_p(\text{lk}_S \Delta) \) when \(p + s = c - 1 \) and \(\Delta \) is in \(\mathcal{CL}_a^\dagger \) is
\[
\tilde{H}_{c-a-1}(\text{lk}_S \Delta) = 0, \quad \text{when } s = a.
\]
We now let \(\mathcal{CL}_a^\circ \) be the complexes \(\Delta \) such that \(\Delta \) is in \(\mathcal{CL}_a^\dagger \) and fulfills the condition (11).

(Note that when \(\Delta \) is in \(\mathcal{CL}_{a+1} \) then by Proposition 4.4 \(\tilde{H}_{c-a-1}(\text{lk}_S \Delta) \) is nonzero for \(s = a \), so if \(\Delta \) is in \(\mathcal{CL}_a \) and fulfills (11) then it is not in \(\mathcal{CL}_{a+1} \).)

Two special cases are interesting to take note of.

Example 4.11. If \(\Delta \) in \(\mathcal{CL}_0^\circ \) has \(c = a \), the lowest interesting value for \(c \), then the condition (11) says that \(H_{-1}(\text{lk}_S \Delta) \) is zero for \(s = c = a \). Hence by Theorem 4.7 all facets of \(\Delta \) have dimension \(d - 1 \), and by Proposition 4.3 any two facets intersect in a face of dimension \(\leq c - 2 \). Hence we get precisely the Steiner systems \(S(c, d, n) \). In particular the \(f \)-vector only depends on \(c, d, \) and \(n \).

Example 4.12. When \(\Delta \) is in \(\mathcal{CL}_0^\circ \) the condition (11) says \(\tilde{H}_{c-1}(\Delta) \) is zero and so \(S(\Delta) \) is a torsion sheaf. Then \(\mathcal{E}xt^i(S(\Delta), \omega_{\mathbb{P}^{n-1}}) \) is nonzero only for \(i = d - c \) and so \(S(\Delta) \) is a locally Cohen-Macaulay sheaf. By [12] such \(\Delta \) are bi-Cohen-Macaulay, i.e. both \(\Delta \) and \(\Delta^* \) are Cohen-Macaulay and we
showed that the f-vector of such Δ again only depends on $n, d,$ and c. In fact we showed that the f-polynomial $f_\Delta(t) = \sum_i f_{i-1} t^i$ is

$$f_\Delta(t) = (1 + t)^{d-c}(1 + (n - d + c)t + \cdots + \left(\frac{n - d + c}{c}\right) t^c).$$

By the following theorem and its corollary this generalizes.

Theorem 4.13. Δ is in \mathcal{CL}^0_a iff each $\mathrm{lk}_\Delta S$ with $s = a$ is bi-Cohen-Macaulay with invariants $n - a$, $d - a$, and $c - a$.

Proof. Suppose Δ is in \mathcal{CL}^0_a. The condition \[(\ref{eqn:condition})\] together with Proposition 4.3(a) gives $H_{d-1}(\mathrm{lk}_\Delta S)$ zero when $s = c$. Hence by Proposition 4.3 all facets of Δ have dimension $d - 1$. This shows that $\mathrm{lk}_\Delta S$ has invariants $n - a, d - a,$ and $c - a$. It is now immediate that $\mathrm{lk}_\Delta S$ fulfills the condition to be in \mathcal{CL}^0_a and this means that $\mathrm{lk}_\Delta S$ is bi-Cohen-Macaulay. In the converse direction it is immediate to see that Δ fulfills the condition to be in \mathcal{CL}^0_a. \[\square\]

Corollary 4.14. Suppose Δ in \mathcal{CL}^0_a has invariants $n, d,$ and $c \geq a$. Then $f_\Delta(t)$ is a polynomial $f_a(n,d,c;t)$ depending only on $a, n, d,$ and $c,$ and is given inductively as follows.

1) $f'_a(n,d,c;t)/n = f_{a-1}(n-1,d-1,c-1;t)$

2) $f_0(n,d,c;t) = (1 + t)^{d-c}(1 + (n - d + c)t + \cdots + \left(\frac{n - d + c}{c}\right) t^c).$

Proof. We may assume $a \geq 1$ and assume first that $c \geq 2$. By induction the f-polynomial of $\mathrm{lk}_\Delta \{x\}$ is

$$g(t) = f_{a-1}(n-1,d-1,c-1;t)$$

and is independent of x. Now if F is any i-dimensional face of Δ, then $F \setminus \{x\}$ is an $i - 1$-dimensional face of $\mathrm{lk}_\Delta \{x\}$ for each x in F. Therefore ng_{i-1} counts all pairs (F,x) where x is in F. But this is also equal to to $f_i(i+1)$ and so

$$ng_{i-1} = f_i(i+1)$$

$$ng(t) = f'_\Delta(t).$$

In case $c = 1$ then $a = 1$ and Δ is a disjoint union of n/d simplexes of dimension $d - 1$ and so

$$f_\Delta(t) = (n/d)(1 + t)^{d-1} - n/d$$

and so 1) also holds in this case since

$$f_0(n-1,d-1,0;t) = (1 + t)^{d-1},$$

\[\square\]

Remark 4.15. The Δ in \mathcal{CL}^0_a are a-(n,d,λ) block designs (see [5, Chap.14]), where λ is the number of facets of $\mathrm{lk}_\Delta S$ for S any face of cardinality a. One may see that λ is $\left(\frac{n - d + c - a}{c - a}\right)$.
The following generalizes the fact that when Δ is in \mathcal{CL}_0 then $S(\Delta)$ is a locally Cohen-Macaulay sheaf of codimension $d-c$ and so $\mathcal{E}xt^{d-c}(S(\Delta), \omega_{P^{n-1}})$ is a locally Cohen-Macaulay sheaf.

Proposition 4.16. If Δ is in \mathcal{CL}_a, then the only non-vanishing higher $\mathcal{E}xt$-sheaf, $\mathcal{E}xt^{d-c}(S(\Delta), \omega_{P^{n-1}})$, is a locally Cohen-Macaulay sheaf.

Proof. For short write E for $\mathcal{E}xt^{d-c}(S(\Delta), \omega_{P^{n-1}})$. The sequence $0 \to C_{\Delta^*} \to E(W) \to (C_{\Delta})^\vee \to 0$ gives an exact sequence $0 \to \tilde{L}(\Delta^*) \to \tilde{L}(E(W)) \to \tilde{L}((C_{\Delta})^\vee) \to 0$.

Hence by (4) and (5), $\tilde{L}(\Delta^*)$ only has possibly non-zero cohomology sheaves E in degree $c + (d - c) - n + 1$ which is $-c^*$, and $H^{-d^*} \tilde{L}(\Delta^*)$ in degree $-d^*$. The condition (11) for Δ, when translated to Δ^*, see (13) and the paranthetical remark after, gives that all generators of $H^{-d^*}L(\Delta^*)$ have degree $\geq n - a + 1$. Since they are of characteristic type (see the proof of Theorem 3.9) a free resolution has length $\leq a - 1$.

Hence E has a locally free resolution of length $\leq d^* - c^* + a$ which is equal to $d - c + a$. By the Auslander-Buchsbaum theorem [3], Thm. 19.9, E then has local depth $\geq (n - 1) - (d - c + a)$. But Δ being in \mathcal{CL}_a, this sheaf has local dimension $\leq (n - 1) - (d - c + a)$. Since local dimension is greater or equal to local depth we must have equalities everywhere and so E is locally Cohen-Macaulay. \Box

5. **Hierarchies of Cohen-Macaulay simplicial complexes**

The Alexander duals of CLeray simplicial complexes are the Cohen-Macaulay simplicial complexes. Therefore by taking Alexander duals of the various hierarchies of CLeray complexes, we get hierarchies of Cohen-Macaulay simplicial complexes. This section will contain the Alexander dual versions of most of the statements in Section 4. But we shall also give a description of what it means for a simplicial complex Δ to be Gorenstein* in terms of the associated coherent sheaf $S(\Delta^*)$. We prove that Δ is Gorenstein* iff $S(\Delta^*)$ is an ideal sheaf, i.e. a subsheaf of $\mathcal{O}_{P^{n-1}}$. In fact it turns out to be the associated sheaf of the ideal defining the Stanley-Reisner ring of Δ^*.

5.1. **a+1-Cohen-Macaulay simplicial complexes.** Let \mathcal{CM}_a be the class of Cohen-Macaulay simplicial complexes which are Alexander duals of the simplicial complexes in the class \mathcal{CL}_a. We shall show that this is exactly the class of $a+1$-Cohen-Macaulay simplicial complexes as defined by Baclawski [4].

Theorem 5.1. Δ is in \mathcal{CM}_a iff $d \leq n - a$ and $\tilde{H}_p(\Delta_{-R})$ is zero when $p + r = d + a - 2$ and $p \leq d - 2$. In particular, if Δ is not the $n - a - 1$-skeleton of the $n - 1$-simplex, then $d \leq n - a - 1$.

Proof. By Theorem 4.1 Δ^* is in \mathcal{L}_a means that $d \leq n - a$ and

\[(12) \quad H_{c^* - a}((\Delta^*)^S_S) = 0 \quad \text{for } s \geq a.\]

Now $(\Delta^*)^S_S$ is equal to $(\Delta_S)^*$ and so by Lemma 1.2 (12) is equivalent to

\[\tilde{H}_{(n-s)+a-c^*+3}(\Delta_S) = 0 \quad \text{for } s \geq a.\]

Since $n - 1 - c^* = d$ we get the statement.

\[\square\]

Corollary 5.2. a) Δ is in \mathcal{C}_a iff $\tilde{H}_p(\Delta^S_R)$ is zero when $p + s \leq d - 2$ and $p + r \leq d + a - 2$.

b) If Δ is in \mathcal{C}_a, then $\text{lk}_a \Delta S$ is also in \mathcal{C}_a.

Proof. This is just the Alexander dual versions of Corollary 4.2 using Lemma 1.2.

\[\square\]

Corollary 5.3. Suppose Δ has dimension one, i.e. Δ is a graph. Then Δ is in \mathcal{C}_a if and only if Δ contains at least $a + 2$ vertices and is $a + 1$-connected.

Proof. Δ is in \mathcal{C}_a iff $\tilde{H}_{r-1}(\Delta_S)$ is zero for $r = a + 1$ and $\tilde{H}_0(\Delta_S)$ is zero for $r = a$. This translates precisely to the above.

The following describes the objects of \mathcal{C}_a with upper extremal values for d. Recall that a subset F of $[n]$ is a missing face of Δ if F is not in Δ.

Now if Δ is in \mathcal{C}_a and not the $n - a - 1$-skeleton of the $n - 1$-simplex then $d \leq n - a - 1$ or equivalently $a \leq n - d - 1$.

Proposition 5.4. Δ is in \mathcal{C}_{n-d-1} iff the cardinality of $F \cup G$ is $\geq d + 2$ for all distinct missing faces F and G.

Proof. Δ is in \mathcal{C}_{n-d-1} iff Δ^* is $c^* + 1$-CLeray. If F and G are two distinct missing faces then the complements F^c and G^c are faces of Δ^* and so the cardinality of $F^c \cap G^c$ is $\leq c^* - 1$. But then the cardinality of $F \cup G$ is $\geq n - c^* + 1$ and this is $d + 2$.

The following shows that Δ is in \mathcal{C}_a iff Δ is $a + 1$-Cohen-Macaulay ($a + 1$-CM) as defined by Baclawski.

Theorem 5.5. Δ is in \mathcal{C}_a iff every restriction Δ_{-R} with $r = a$ is Cohen-Macaulay of the same dimension as Δ.

Proof. This is just the Alexander dual version of Theorem 4.6.

\[\square\]

From [1] we have the following means of constructing $a + 1$-CM simplicial complexes.

Theorem 5.6 ([1]). If Δ and Δ' are $a + 1$-CM simplicial complexes, then the join $\Delta \ast \Delta'$ is also $a + 1$-CM.

In particular, the Δ' consisting of $m \geq a + 1$ vertices is $a + 1$-CM and so the m-point suspension of Δ will be $a + 1$-CM.

Remark 5.7. If F_* is a free resolution of the Stanley-Reisner ring of Δ, it follows from Theorem 5.4 and Hochsters description of $\text{Tor}_i^S(k[\Delta], k)$, see [17]
II.4.8], that Δ is $(a + 1)$-CM iff it is Cohen-Macaulay and $F_i = S(-i - d)^{e_i}$ for $n - d \geq i > n - d - a$.

5.2. The classes \mathcal{CM}_a^\dagger. Let \mathcal{CM}_a^\dagger be the class of simplicial complexes which are Alexander duals of the simplicial complexes in \mathcal{CL}_a^\dagger.

Theorem 5.8. Δ is in \mathcal{CM}_a^\dagger iff $\mathcal{H}_p(\Delta_{-R})$ is zero for all r when p is in the range $c \leq p \leq d - 2$ and also when $p = c - 1$ and $r < d + a - c$.

Proof. This is the Alexander dual version of Theorem

Corollary 5.9. a) Δ is in \mathcal{CM}_a^\dagger iff $\mathcal{H}_p(\Delta_{-R})$ is zero for p, s (and r) in the range $c \leq p + s \leq d - 2$ and also when $p + s = c - 1$ and $s + r < d + a - c$.

b) If Δ is in \mathcal{CM}_a^\dagger then $lk_{\Delta} S$ is in \mathcal{CM}_a^\dagger.

Proof. This is the Alexander dual version of Corollary

Theorem 5.10. Δ is in \mathcal{CM}_a^\dagger iff each restriction Δ_{-R} with $r = a$ is either in \mathcal{CM}_a^\dagger with the same dimension and frame dimension as Δ or is the $d - 1$-skeleton of the simplex on $[n]\setminus R$.

Proof. This is the Alexander dual version of Theorem

5.3. The classes \mathcal{CM}_a°. We let \mathcal{CM}_a° be the class of simplicial complexes which are Alexander duals of the simplicial complexes in \mathcal{CL}_a°. If Δ is in \mathcal{CM}_a° so Δ^* is in \mathcal{CL}_a° the condition (1) is equivalent to the condition

$$\mathcal{H}_{d-1}(\Delta_{-R}) = 0 \quad \text{when } r = a.$$ (13)

(It then follows by Proposition 4.4 that $\mathcal{H}_{d-1}(\Delta_{-R}) = 0$ for $r \geq a$.) Thus Δ is in \mathcal{CM}_a° iff it is in \mathcal{CM}_a^\dagger and fulfills (13).

Example 5.11. If Δ is a cyclic polytope of odd dimension, then Δ is in \mathcal{CM}_1°. To see this, note that by Alexander duality for Gorenstein* simplicial complexes [17, p.66]

$$\mathcal{H}_p(\Delta_{-R}) = \mathcal{H}_{d-2-p}(\Delta_R)^*.$$ (14)

Now we can apply Theorem 5.8. For a cyclic polytope of odd dimension, $d = 2c$ and we see that if $c \leq p \leq d - 2$ then $0 \leq d - 2 - p \leq c - 2$ and so (14) is zero. Also $p = c - 1$ gives $d - 2 - p = c - 1$ and $r \leq d + a - c - 1$ is the same as $r \leq c$. Thus (14) is zero and so Δ is in \mathcal{CM}_1^\dagger. That (13) holds is immediate from (14) and so Δ is in \mathcal{CM}_1°.

Theorem 5.12. Δ is in \mathcal{CM}_a° iff every restriction Δ_{-R} where $r = a$, is bi-Cohen-Macaulay of the same dimension and frame dimension as Δ.

Proof. This is the Alexander dual version of Theorem

Corollary 5.13. If Δ is in \mathcal{CM}_a° and $r \leq a$, then Δ_{-R} is in \mathcal{CM}_{a-r}°.

5.4. Gorenstein* simplicial complexes. We shall now describe where Gorenstein* complexes fit in our scheme. Recall that Δ is Gorenstein* if $\tilde{H}_p(\operatorname{lk}_x \Delta) = k$ when $p + s = d - 1$ and S a face of Δ, and zero otherwise. The following theorem is certainly well known (except the last statement). It follows for instance from [1 4.7].

Theorem 5.14. Δ is Gorenstein* iff Δ is 2-CM and $\tilde{H}_{d - 1}(\Delta) = k$, i.e. iff $S(\Delta^*)$ is a torsion free rank one sheaf.

Proof. Suppose Δ is Gorenstein*. By Theorem 5.1 we must show that $\tilde{H}_p(\Delta_{-R})$ is zero when $p + r = d - 1$ and $p \leq d - 2$. By the Alexander duality theorem for Gorenstein* simplicial complexes [17, p.66], $\tilde{H}_p(\Delta_{-R})$ is equal to $\tilde{H}_{d - 2 - p}(\Delta_R)^*$. Hence we need to show that $\tilde{H}_{d - 2 - p}(\Delta_R)^*$ is zero when $r = p + 1$. But this is true simply because the homology of any simplicial complex on n elements always vanishes in degrees $\geq n - 1$.

Now suppose Δ is in $\mathbb{C}M_1$ with $\tilde{H}_{d - 1}(\Delta)$ equal to k. By Corollary 5.2 a) then $\tilde{H}_p(\operatorname{lk}_x \Delta)$ is zero for $p + s \leq d - 2$. We must therefore show in addition that $\tilde{H}_p(\operatorname{lk}_x \Delta)$ is k when $p + s = d - 1$ and S a face of Δ. Since $\operatorname{lk}_x \{x\}$ is in $\mathbb{C}M_1$ it is enough by induction to show that $\tilde{H}_{d - 2}(\operatorname{lk}_x \{x\})$ is k when $\{x\}$ is a face of Δ. But there is a sequence

$$\tilde{H}_{d - 1}(\Delta_{-\{x\}}) \to \tilde{H}_{d - 1}(\Delta) \to \tilde{H}_{d - 2}(\operatorname{lk}_x \{x\}) \to \tilde{H}_{d - 2}(\Delta_{-\{x\}}).$$

Since Δ is in $\mathbb{C}M_1$, $\tilde{H}_{d - 2}(\Delta_{-\{x\}})$ is zero. Since $\operatorname{lk}_x \{x\}$ is in $\mathbb{C}M_1$, applying Proposition 4.3 b) we get that $\tilde{H}_{d - 2}(\operatorname{lk}_x \{x\})$ is non-zero. And so we must have $\tilde{H}_{d - 2}(\operatorname{lk}_x \{x\})$ equal to k. \hfill \Box

Proposition 5.15. When Δ is Gorenstein* there is a natural identification of $S(\Delta^*)$ with the ideal defining the Stanley-Reisner ring of the simplicial complex Δ^*. (And so this ideal defines a subscheme of codimension $c + 1$ in $\mathbb{P}^{n - 1}$.)

Proof. The paranathetical remark is because the codimension of the subscheme defined by the ideal of the Stanley-Reisner ring of Δ^* is $n - d^*$ which is $c + 1$.

First we shall suppose $c \geq 1$. Then $\tilde{H}_{d - 1}(\Delta_{-\{x\}})$ by Alexander duality is equal to $\tilde{H}_{-1}(\Delta_{\{x\}})$ which is zero. Hence Δ fulfills condition [13] and by the last remark in Subsection 5.3 $H^{-d} \tilde{L}(\Delta)$ is equal to $\mathcal{O}_{\mathbb{P}^{n - 1}}(-n)$.

Now by [5] and the sequence

$$0 \to C_\Delta \to E(W) \to (C_{\Delta^*})^\vee \to 0$$

we get

$$\mathcal{H}om(S(\Delta^*), \omega_{\mathbb{P}^{n - 1}}) = H^{-d} \tilde{L}(\Delta) = \mathcal{O}_{\mathbb{P}^{n - 1}}(-n) = \omega_{\mathbb{P}^{n - 1}}.$$

Since $S(\Delta^*)$ is torsion free

$$S(\Delta^*) \hookrightarrow S(\Delta^*)^{\vee\vee} = \mathcal{H}om(\omega_{\mathbb{P}^{n - 1}}, \omega_{\mathbb{P}^{n - 1}}) = \mathcal{O}_{\mathbb{P}^{n - 1}}.$$
Taking graded global sections
\[S(\Delta^*) = \oplus_{m \in \mathbb{Z}} \Gamma(\mathbb{P}^{n-1}, S(\Delta^*)(m)) \hookrightarrow \oplus_{m \in \mathbb{Z}} \Gamma(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(m)) = S \]
we get \(S(\Delta^*) \) as an ideal in \(S \).

If \(c = 0 \), let \(R \) consist of the \(x \) such that \(\{ x \} \) is a face in \(\Delta \). Let \(r \) be the cardinality of \(R \). In this case \(H^{-d}L(\Delta) \) is \(\mathcal{O}_{\mathbb{P}^{n-1}}(-r) \). Hence \(S(\Delta^*)^{\wedge} \) is \(\mathcal{O}_{\mathbb{P}^{n-1}}(r-n) \). By the inclusion \(\mathcal{O}_{\mathbb{P}^{n-1}}(r-n) \xrightarrow{\Pi_{ig \in R^*}} \mathcal{O}_{\mathbb{P}^{n-1}} \)
we also get \(S(\Delta^*) \) as an ideal sheaf in \(\mathcal{O}_{\mathbb{P}^{n-1}} \) and taking graded global sections we get \(S(\Delta^*) \) as an ideal in \(S \).

Now we want to identify this ideal as the ideal of the Stanley-Reisner ring associated to \(\Delta^* \). By the sequence
\[0 \to C_{\Delta^*} \to E(W) \to (C_{\Delta})^\vee \to 0 \]
we get (using (4)) a sequence of complexes
\[0 \to L(\Delta^*) \to L(E(W)) \to \text{Hom}_S(L(\Delta), S(-n))[n] \to 0. \]
Now the latter complex is
\[S(d-n)^{f_{d-1}} \leftarrow S(d-1-n)^{f_{d-2}} \leftarrow \cdots \leftarrow S(-n) \]
where the cohomological degree of the first term is \(d-n \). Taking the long exact cohomology sequence of (15) we get that the only cohomology of (16) is in cohomological degree \(d-n \) and is
\[H^{d-n+1}L(\Delta^*) = H^{-c^*}L(\Delta^*) = S(\Delta^*). \]
Hence (16) is a resolution of the ideal \(S(\Delta^*) \) in \(S \). Since it is a multi-graded resolution the generators of \(S(\Delta^*) \) in \(S \) will have multidegrees the multidegrees of the indices \(J \) when writing
\[S(d-n)^{f_{d-1}} = \oplus J S(d-n)u_J. \]
But by the BGG-correspondence we recognise the \(J \)'s as the multidegrees of the facets of \(\Delta \). But this means exactly that \(S(\Delta^*) \) is the ideal of the Stanley-Reisner ring of \(\Delta^* \).

Remark 5.16. By the result of [9] the Stanley-Reisner ideal \(I_{\Delta^*} \) in \(S \) of a simplicial complex \(\Delta^* \) has a linear resolution iff \(\Delta \) is Cohen-Macaulay. The same is valid for the the analog \(J_{\Delta^*} \) of the Stanley-Reisner ideal in the exterior algebra \(E \). But this is the same as saying that the ideal \(J_{\Delta^*} \) is a Koszul module over \(E \) (see [10]). The algebras \(E \) and \(S \) are Koszul duals. Via the functors relating (complexes of) modules over them, \(J_{\Delta^*} \) then transfers to a Koszul module over \(S \). The above Proposition 5.15 then shows that this transformed module is an ideal in \(S \) exactly when \(\Delta \) is Gorenstein*.

Summing up, \(\Delta \) is Cohen-Macaulay iff \(J_{\Delta^*} \) in \(E \) is a Koszul ideal (which transfers to a Koszul module), and \(\Delta \) is Gorenstein* iff \(J_{\Delta^*} \) in \(E \) is a Koszul ideal transforming to a Koszul ideal in \(S \).
Remark 5.17. If Δ is in \CM_a then the link $lk_{\Delta}S$ is also in \CM_a. Hence if S is of dimension $d-2$, then $lk_{\Delta}S$ consists of a set of vertices of, being in \CM_a, cardinality $\geq a+1$.

The subclass G_a of \CM_a such that this cardinality is always the minimum possible, namely $a+1$, might be a reasonable generalization of Gorenstein* complexes, since G_1 would be exactly this class. If Δ and Δ' are in G_a then the join $\Delta \ast \Delta'$ is also in G_a, in particular the $a+1$-point suspension of Δ is in G_a.

In contrast to the case for Gorenstein* simplicial complexes there does however not seem to be any formula for $\tilde{H}_{d-1}(\Delta)$ for Δ in G_a for instance in terms of n and d.

6. Problems

We pose the following two problems.

Problem 1. What are the possible f-vectors (or h-vectors) of the simplicial complexes in the classes \CL_a and \CM_a.

This is likely to be a very difficult problem since any answer also would include an answer to what the h-vectors of Gorenstein* simplicial complexes are. However, any conjecture about this would be highly interesting since it would contain as a subconjecture what the h-vectors of Gorenstein* simplicial complexes are.

Problem 2. Construct simplicial complexes in the classes \CL_a° and \CM_a° for various parameters of n, d, c, and a.

As has been pointed out this has been done in a number of particular cases. When $a = 0$ we have the bi-Cohen-Maculay simplicial complexes constructed in [12]. When $a = 1$ and $d = 2c$ we have the cyclic polytopes in \CM_1°, and when $a = c$, many Steiner systems $S(c, d, n)$ have been constructed, which give simplicial complexes in \CL_a°.

References

[1] A.Aramova and L.L.Avramov and J.Herzog Resolutions of monomial ideals and cohomology over exterior algebras Trans. AMS 352 (1999) nr.2, pp. 579-594.

[2] D.Bayer, H.Charalambous, S.Popescu Extremal Betti numbers and applications to monomial ideals Journal of Algebra 221 (1999) pp.497-512.

[3] I.N.Bernstein and I.M.Gelfand and S.I.Gelfand Algebraic bundles over \mathbb{P}^n and problems of linear algebra Funct. Anal. and its Appl. 12 (1978) pp.212-214.

[4] K.Baclawski Cohen-Macaulay Connectivity and Geometric Lattices Europ. J. Combinatorics 3 (1982), pp.293-305.

[5] A.E.Brouwer, in Handbook of combinatorics North-Holland, Elsevier Science B.V. (1995).

[6] D.Bayer, B.Sturmfels Cellular resolutions of monomial ideals J. Reine Angew. Math. 102 (1998) pp. 123-140.

[7] D.Bayer, I.Peeva, B.Sturmfels Monomial resolutions Math.Res.Lett. 5 (1998) no.1-2, pp. 31-46.
HIERARCHIES OF SIMPLICIAL COMPLEXES

[8] D.Eisenbud *Commutative algebra with a view towards algebraic geometry* GTM 150, Springer-Verlag, 1995.

[9] J.A.Eagon and V.Reiner *Resolutions of Stanley-Reisner rings and Alexander duality* Journal of Pure and Applied Algebra 130 (1998) pp.265-275.

[10] D.Eisenbud and G.Fløystad and F.-O. Schreyer *Sheaf Cohomology and Free Resolutions over Exterior Algebras* Trans. Am. Math. Soc. 335 (2003) no. 11, pp.4397-4426.

[11] D.Eisenbud, S.Popescu, and S.Yuzvinski *Hyperplane arrangement cohomology and monomials in the exterior algebra* Trans. Am. Math. Soc. 335 (2003) no.11, pp.4365-4383.

[12] G.Fløystad and J.E.Vatne *(Bt)-Cohen-Macaulay simplicial complexes and their associated coherent sheaves* preprint [math.AG/0209061]

[13] G.Fløystad *Describing coherent sheaves on projective spaces via Koszul duality* preprint [math.AG/0012263]

[14] R.Harthorne *Stable reflexive sheaves* Mathematische Annalen, 254 (1980), no.2, pp.121-176.

[15] N.Alon, G.Kalai, J.Matousek, R.Meshulam *Transversal numbers for hypergraphs arising in geometry* Advances in Appl. Math. 29 (2002), no.1, p. 79 - 101.

[16] E. Green, R. Martinez Villas *Koszul and Yoneda algebras*. Canadian Mathematical Society Conference Proceedings 18 (1996), 247-297.

[17] R.Stanley *Combinatorics and Commutative Algebra* Second Edition, Birkhäuser 1996.

MATEMATISK INSTITUTT, JOHS. BRUNSGT. 12, 5008 BERGEN, NORWAY

E-mail address: gunnar@mi.uib.no