A Study on Multiplication Operation on Triangular Fuzzy Numbers
Mohamed Ali A, Maanvizhi P

Received: 16 October 2021/ Accepted: 04 December 2021/ Published online: 21 December 2021
©Sacred Heart Research Publications 2017

Abstract

The arithmetic operations on fuzzy number are basic content in fuzzy mathematics. But still the operations of fuzzy arithmetic operations are not established. There are some arithmetic operations for computing fuzzy number. Certain are analytical methods and further are approximation methods. In this paper we, compare the multiplication operation on triangular fuzzy number between \(\alpha \)-cut method and standard approximation method and give some examples.

Key words: Fuzzy number, Triangular fuzzy number, \(\alpha \)-cut method, Standard approximation method.

AMS classification: 47S40.

1.Introduction

Fuzzy sets have been introduced by Lotfi.A.Zadeh(1965). Since its inception 50 years ago, the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found, for example, in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, and robotics. Theoretical advances have been made in many directions. In application fuzzy set theory fuzzy number plays an important role. Arithmetic operations on fuzzy numbers have also been developed, and are based mainly on the extension principle or interval arithmetic. When operating with fuzzy numbers, the result of our calculations strongly depend on the shape of the membership functions of these numbers. Less consistent membership functions lead to more complicated calculations. Moreover, fuzzy numbers with simpler shape of membership functions often have more intuitive and more natural interpretation. Considering the
interval arithmetic-based arithmetic operations on triangular fuzzy numbers, the product of two such fuzzy numbers is not of the same kind: the shape of these fuzzy numbers is not preserved. In many situations this problem is solved by approximation multiplication by a triangular or trapezoidal fuzzy number. In this paper we mentioned interval arithmetic operation as \(\alpha \)-cut method and approximation multiplication as standard approximation and compare them over triangular fuzzy number.

2. Preliminaries

Definition 2.1 Fuzzy set

A fuzzy set \(\tilde{A} \) is defined by \(\tilde{A} = \{(x, \mu_A(x)) : x \in A, \mu_A(x) \in [0, 1]\} \). In the pair \((x, \mu_A(x)) \), the first element \(x \) belong to the classical set \(A \), the second element \(\mu_A(x) \), belong to the interval \([0, 1]\), called Membership function.

Definition 2.2 Support of Fuzzy Set

The support of fuzzy set \(\tilde{A} \) is the set of all points \(x \) in \(X \) such that \(\mu_{\tilde{A}} > 0 \). That is Support \((\tilde{A}) = \{x \mid \mu_{\tilde{A}}(x) > 0\} \)

Definition 2.3 \(\alpha \)-cut The \(\alpha \)-cut of \(\alpha \)-level set of fuzzy set \(\tilde{A} \) is a set consisting of those elements of the universe \(X \) whose membership values exceed the threshold level \(\alpha \).

That is \(\tilde{A}_\alpha = \{x \mid \mu_{\tilde{A}}(x) \geq \alpha\} \).

Definition 2.4 Fuzzy Number A fuzzy set \(\tilde{A} \) on \(R \) must possess at least the following three properties to qualify as a fuzzy number,

(i) \(\tilde{A} \) must be a normal fuzzy set;
(ii) \(\tilde{A}_\alpha \) must be closed interval for every \(\alpha \in [0, 1] \)
(iii) the support of \(\tilde{A}, \tilde{A}_{0+} \), must be bounded.

Definition 2.5 Triangular Fuzzy Number It is a fuzzy number represented with three points as follows: \(\tilde{A} = (a_1, a_2, a_3) \). This representation is interpreted as membership functions and holds the following conditions

(i) \(a_1 \) and \(a_2 \) is increasing function
(ii) \(a_2\) and to \(a_3\) is decreasing function

(iii) \(a_1 \leq a_2 \leq a_3\).

\[
\mu_{\tilde{A}}(x) = \begin{cases}
0, & x < a_1 \\
\frac{x-a_1}{a_2-a_1}, & a_1 \leq x \leq a_2 \\
\frac{a_3-x}{a_3-a_2}, & a_2 \leq x \leq a_3 \\
0, & x > a_3
\end{cases}
\]

Figure 1: Triangular fuzzy number

Definition 2.6 α - cut of a triangular fuzzy number We get a crisp interval by \(\alpha\)-cut operation; interval \(A_\alpha\) shall be obtained as follows \(\forall \alpha \in [0,1]\). Thus

\[
A_\alpha = [a_1^\alpha, a_3^\alpha] = [(a_2 - a_1) \alpha + a_1, -(a_3 - a_2) \alpha + a_3]
\] (1)

Definition 2.7 Positive triangular fuzzy number A positive triangular fuzzy number \(\tilde{A}\) is denoted as \(\tilde{A} = (a_1, a_2, a_3)\), where all \(a_i\)'s > 0 for all \(i = 1, 2, 3\)

Definition 2.8 Negative triangular fuzzy number A negative triangular fuzzy number \(\tilde{A}\) is denoted as \(\tilde{A} = (a_1, a_2, a_3)\), where all \(a_i\)'s < 0 for all \(i = 1, 2, 3\).

Definition 2.9 Partial Negative triangular fuzzy number A Partial Negative triangular fuzzy number \(\tilde{A}\) is denoted as \(\tilde{A} = (a_1, a_2, a_3)\), where at least one \(a_i\) is negative for all \(i = 1, 2, 3\).
3. \(\alpha\)– cut Method

The actual result is found by rewriting the membership function to define a set of closed intervals as in expression [1]. Then the expressions defining the closed intervals are operated on using interval arithmetic.

Case (i): For two positive fuzzy numbers

\[
\tilde{A} = \langle a_1, b_1, c_1 \rangle \rightarrow [(b_1 - a_1) \alpha + a_1, (c_1 - b_1) \alpha + c_2]
\]

\[
= [s_1, \bar{s}_1] \quad [\text{Say}]
\]

\[
\tilde{B} = < a_2, b_2, c_2 \rangle \rightarrow [(b_2 - a_2) \alpha + a_2, (c_2 - b_2) \alpha + c_2]
\]

\[
= [s_2, \bar{s}_2] \quad [\text{Say}]
\]

The product can be calculated,

\[
\tilde{C} = \tilde{A} \otimes \tilde{B}
\]

\[
= [\min (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2), \max (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2)] \quad \text{for } \alpha \in (0, 1] \quad (2)
\]

Case (ii): When any \(\tilde{A}\) and \(\tilde{B}\) is partial negative and other is positive fuzzy number, the product of \(\tilde{A} \otimes \tilde{B}\) can't obtain according to the expression (2). The interval of \(\alpha \in (0, 1]\) will be divided into two parts, according to the intersection point of the two minimum expression in the \(\alpha\)– cut of \(\tilde{C}\). Let us this intersection point is \(\alpha_s\). Then

\[
\tilde{C} = \tilde{A} \otimes \tilde{B} = \left[\begin{array}{c}
\min (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2), \max (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2) \quad \text{for } \alpha \in (0, \alpha_s]
\min (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2), \max (s_1s_2, s_1\bar{s}_2, \bar{s}_1s_2, \bar{s}_1\bar{s}_2) \quad \text{for } \alpha \in (\alpha_s, 1]
\end{array} \right]
\] \quad (3)

Case (iii): When \(\tilde{A}\) is negative and \(\tilde{B}\) is positive fuzzy number. Then the multiplication of \(\tilde{A}\) and \(\tilde{B}\) can be found as expression (2).

Case (iv): When \(\tilde{A}\) and \(\tilde{B}\) both are negative fuzzy number. Then the multiplication of \(\tilde{A}\) and \(\tilde{B}\) can also be found as expression (2). The expression (2) and (3) are known as analytical method for fuzzy arithmetic operation. The standard approximation and actual results are shown in figure (1, 2, 3, and 4). In actual product the lines connecting the ends points are parabolic and in standard approximation lines connecting the ends points are triangular form.
4. Error analysis for α– cut Method

The error is the difference at a given α - level, between the approximated membership function and exact results in the expression (2) and (3). Each TFN can be separated into left and right segments in accordance with the LR parametered representation. The actual product of (2) and (3) will have the value x at a given α defined as T_L for the left segment, and T_R for the right segment. The standard approximation (1) will have a value x, at a given α defined as P_L and P_R for the left and right segments respectively.

This follows us to separately analyses the left and right portions of the membership curve. The left and right segment error are then.

$$E_L = P_L - T_L \quad \text{and} \quad E_R = P_R - T_R$$

Graphically this is the horizontal distance between the two curves as shown in Figure (1, 2, 3, and 4) and numerical error is shown in table (2, 3, 4 and 5).

5. Numerical Experiment

We consider two positive TFNs as

$$\tilde{A}(x) = \begin{cases} x - 2, & 2 \leq x \leq 3 \\ \smash{x/2 + \frac{5}{2}}, & 3 \leq x \leq 5 \end{cases}$$

$$\tilde{B}(y) = \begin{cases} y/2 - \frac{3}{2}, & 3 \leq y \leq 5 \\ -y + 6, & 5 \leq y \leq 6 \end{cases}$$

Here,

$$A_\alpha = [2 + \alpha, 5 - 2\alpha], \quad B_\alpha = [2\alpha + 3, -\alpha + 6]$$

$$(\tilde{A} \otimes \tilde{B})_\alpha = [2\alpha^2 + 7\alpha + 6, 2\alpha^2 - 17\alpha + 30]$$
The membership functions of $\tilde{A} \otimes \tilde{B}$ in $\alpha -$ cut method as follows:

$$\tilde{A} \otimes \tilde{B}(z) = \begin{cases} \frac{z^2}{4} + \frac{\sqrt{1+8z}}{4}, & 6 \leq z \leq 15 \\ \frac{z^2}{15} + 2, & 15 \leq z \leq 30 \end{cases}$$

The membership functions in standard approximation are:

$$\tilde{A} \otimes \tilde{B}(z) = \begin{cases} \frac{z}{9} - \frac{2}{3}, & 6 \leq z \leq 15 \\ \frac{z}{15} + 2, & 15 \leq z \leq 30 \end{cases}$$

Value of α	Actual Product	Standard Approximation	Error			
	Left	Right	Left	Right	Left	Right
1	15	15	15	15	0	0
0.9	13.92	16.32	14.1	16.5	0.18	0.18
0.8	12.88	17.68	13.2	18	0.32	0.32
0.7	11.88	19.08	12.3	19.5	0.42	0.42
0.6	10.92	20.52	11.4	21	0.48	0.48
0.5	10	22	15.5	22.5	0.5	0.5
0.4	9.12	23.52	9.6	24	0.48	0.48
0.3	8.28	25.08	8.7	25.5	0.42	0.42
0.2	7.48	26.68	7.8	27	0.32	0.32
0.1	6.72	28.32	6.9	28.58	0.18	0.18
0	6	30	6	30	0	0

Comparison of $\alpha -$ cut Method and Standard Approximation when both are positive TFNs:

Example 5.1 When one is partial negative and another is positive TFNs as:

$$\tilde{A}(x) = \begin{cases} \frac{x}{2} + \frac{1}{2}, & -1 \leq x \leq 1 \\
\frac{3}{2} - \frac{x}{2}, & 1 \leq x \leq 3 \end{cases}$$

$$\tilde{B}(y) = \begin{cases} \frac{y}{2} - \frac{1}{2}, & 1 \leq y \leq 3 \\
\frac{5}{2} - \frac{y}{2}, & 3 \leq y \leq 5 \end{cases}$$

Here,

$$A_\alpha = [2\alpha - 1, 3 - 2\alpha]$$

$$B_\alpha = [2\alpha + 1, -2\alpha + 5]$$

$$(\tilde{A} \otimes \tilde{B})_\alpha = \begin{cases} [-4\alpha^2 + 12\alpha - 5, 4\alpha^2 - 16\alpha + 15] & \text{for } \alpha \in (0, 0.5) \\
[4\alpha^2 - 1, 4\alpha^2 - 16\alpha + 15] & \text{for } \alpha \in (0.5, 1) \end{cases}$$

The membership functions of $\tilde{A} \otimes \tilde{B}$ in $\alpha -$ cut method as follows:
The membership functions in standard approximation are:

\[
\hat{A} \otimes \hat{B}(z) = \begin{cases}
\frac{3- (4-z)^\frac{1}{2}}{2}, & -5 \leq z < 0 \\
\frac{1+(z)^\frac{1}{2}}{2}, & 0 \leq z < 3 \\
\frac{4-(1+z)^\frac{1}{2}}{2}, & 3 \leq z \leq 15
\end{cases}
\]

The membership functions in standard approximation are:

\[
\hat{A} \otimes \hat{B}(z) = \begin{cases}
\frac{z}{8} + \frac{5}{8}, & -5 \leq z \leq 3 \\
\frac{-z}{15} + \frac{5}{4}, & 3 \leq z \leq 15
\end{cases}
\]

Value of α	Actual Product	Standard Approximation	Error					
	Left	Right	Left	Right	Left	Right		
1	3	3	3	3	0	0		
0.9	2.24	3.84	2.2	4.2	-0.04	0.36		
0.8	1.36	4.76	1.4	5.4	-0.16	0.64		
0.7	0.96	5.76	0.6	6.6	-0.36	0.84		
0.6	0.44	6.84	-0.2	7.8	-0.46	0.96		
0.5	0	8	-1	9	-1	1		
0.4	-0.84	9.24	-1.8	10.2	-0.96	0.96		
0.3	-1.76	10.56	-2.6	11.4	-0.84	0.84		
0.2	-2.76	11.96	-3.4	12.6	-0.64	0.64		
0.1	-3.84	13.44	-4.2	13.8	-0.36	0.36		
0	-5	15	-5	15	0	0		

Comparison when \hat{A} is partial negative and \hat{B} is positive triangular fuzzy numbers

Conclusion

In this paper, we studied about the Product-sum of triangular fuzzy numbers and also calculated the membership function of the product-sum $\hat{a}_1 + \hat{a}_2 + \cdots + \hat{a}_n + \cdots$ where $\hat{a}_i, i \in N$ are fuzzy numbers of triangular form.

References

[1] Dubois D, Prade H, Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613-626 (1978).

[2] Kaufmann A and Gupta MM, Introduction to fuzzy arithmetic, theory and applications, Van Nostrand Reinhold Company, New York, (1985).

[3] Moore RE, Methods and Applications of Interval Analysis, SIAM, Philadelphia, (1979).

[4] NagoorGani A, Mohamed Assarudeen SN, Solving Fuzzy Linear Programming Problem, Applied Mathematical Sciences, Vol 6, no. 11, 525-532 (2012).
[5] Rogers F, Jun Y, Fuzzy Nonlinear Optimization for the Linear Fuzzy Real Number System, International Mathematical Forum, 4(12), 587-596(2019).

[6] Zadeh LA, Fuzzy sets. Inf. Control, 8, 338-353(1965).