Refined normal approximations for the central and noncentral chi-square distributions and some applications

Frédéric Ouimet

California Institute of Technology, Pasadena, CA, USA; McGill University, Montreal, QC, Canada

ABSTRACT
In this paper, we prove a local limit theorem for the chi-square distribution with \(r > 0 \) degrees of freedom and noncentrality parameter \(\lambda \geq 0 \). We use it to develop refined normal approximations for the survival function. Our maximal errors go down to an order of \(r^{-2} \), which is significantly smaller than the maximal error bounds of order \(r^{-1/2} \) recently found by Horgan and Murphy [On the convergence of the chi square and noncentral chi square distributions to the normal distribution. IEEE Commun Lett. 2013;17(12):2233–2236. DOI:10.1109/LCOMM.2013.111113.131879] and Seri [A tight bound on the distance between a noncentral chi square and a normal distribution. IEEE Commun Lett. 2015;19(11):1877–1880. DOI:10.1109/LCOMM.2015.2461681]. Our results allow us to drastically reduce the number of observations required to obtain negligible errors in the energy detection problem, from 250, as recommended in the seminal work of Urkowitz [Energy detection of unknown deterministic signals. Proc IEEE. 1967;55(4):523–531. DOI:10.1109/PROC.1967.5573], to only 8 here with our new approximations. We also obtain an upper bound on several probability metrics between the central and noncentral chi-square distributions and the standard normal distribution, and we obtain an approximation for the median that improves the lower bound previously obtained by Robert [On some accurate bounds for the quantiles of a noncentral chi squared distribution. Stat Probab Lett. 1990;10(2):101–106. Available from: https://www.ams.org/mathscinet-getitem?mr=MR1072495].

1. Introduction
For any \(r > 0 \) and \(\lambda \geq 0 \), the density function of the central and noncentral chi-square distribution \(\chi^2_r(\lambda) \) is defined by

\[
f_{r,\lambda}(x) = \begin{cases}
(x/2)^{r/2-1} \exp(-(x+\lambda)/2), & \text{if } \lambda = 0 \ (\text{central}), \\
1/2 \exp(-(x+\lambda)/2) \left(\frac{x}{\lambda} \right)^{(r/2-1)/2} I_{r/2-1}^{(r/2-1)/2}(\sqrt{\lambda}x), & \text{if } \lambda > 0 \ (\text{noncentral}),
\end{cases}
\]

ARTICLE HISTORY
Received 19 January 2022
Accepted 25 May 2022

KEYWORDS
Asymptotic statistics; local limit theorem; Gaussian approximation; normal approximation; chi-square distribution; noncentrality; noncentral chi-square; error bound; survival function; percentage point; median; quantiles; detection theory

2020 MATHEMATICS SUBJECT CLASSIFICATIONS
Primary: 62E20; Secondary: 60F99
\[\frac{1}{2}e^{(x+\lambda)/2} \sum_{j=0}^{\infty} \frac{(\lambda/2)^j}{j! \Gamma(r/2+j)} x > 0, \quad (1) \]

using the convention \(0^0 := 1\), and where \(I_\nu\) denotes the modified Bessel function of the first kind of order \(\nu\). The special case \(\lambda = 0\) corresponds to the central chi-square distribution. Sometimes we refer to the chi-square distribution to include the central and noncentral cases all at once. When \(r = n \in \mathbb{N}\), the expression in (1) corresponds to the density function of \(X = \sum_{i=1}^{n} Z_i^2\), where \(Z_i \sim N(\mu_i, 1)\), and the noncentrality parameter \(\lambda\) satisfies \(\lambda = \sum_{i=1}^{n} \mu_i^2\). For all \(r > 0\), the mean and variance of \(X \sim \chi^2_r(\lambda)\) are well known to be

\[\mathbb{E}[X] = r + \lambda \quad \text{and} \quad \text{Var}(X) = 2(r + 2\lambda), \quad (2) \]

see, e.g., Johnson et al. [1, Chapter 29, Section 4].

The first goal of our paper (Lemma 3.1) is to establish a local asymptotic expansion for the ratio of the central and noncentral chi-square density (1) to the normal density with the same mean and variance, namely:

\[\frac{1}{\sqrt{2(r+2\lambda)}} \phi(\delta_x), \quad \text{where} \quad \phi(z) := \frac{e^{-z^2/2}}{\sqrt{2\pi}} \quad \text{and} \quad \delta_x := \frac{x - (r + \lambda)}{\sqrt{2(r+2\lambda)}}, \quad (3) \]

In Horgan and Murphy [2], Seri [3], the authors derived the following two uniform bounds on a basic approximation of the survival function of the \(\chi^2_r(\lambda)\) distribution using the survival function of the standard normal distribution, respectively,

\[\max_a \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_a^\infty \frac{1}{\sqrt{2(r+2\lambda)}} \phi(\delta_x) \, dx \right| \leq \frac{1}{\sqrt{9\pi r}} + \frac{\tilde{C}_0}{r}, \quad \text{as} \ r \to \infty, \quad (4) \]

\[\max_a \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_a^\infty \frac{1}{\sqrt{2(r+2\lambda)}} \phi(\delta_x) \, dx \right| \lesssim \frac{(r + 4\lambda)}{\pi W(1)(r + 2\lambda)^2} \left(1 + \frac{r^2}{32} \left(\frac{r}{8} \right)^{-1/4} \right) + \frac{(r + 3\lambda)}{2\sqrt{\pi}(r + 2\lambda)^{3/2}}, \quad \text{for} \ r \geq 8, \quad (5) \]

where \(\tilde{C}_0 > 0\) is a universal constant, and \(W(\cdot)\) is the Lambert \(W\)-function and \(W(1) \simeq 0.5671433\). A much older reference, Wallace [4], derived a similar approximation with a maximal error of order \(r^{-1/2}\) in the tails. The second goal in our paper is to refine those approximations significantly down to a maximal error of order \(r^{-2}\). As a corollary, we can obtain an expansion for the percentage points (or quantiles) of the central and noncentral chi-square distributions in terms of the percentage points of the standard normal distribution. We will do so for the median in Section 4.2, where we improve a previous approximation given by Robert [5].

Here is a brief outline of the paper. In Section 2, we survey the literature on approximations of the cumulative distribution function (henceforth abbreviated by the acronym c.d.f.) and percentage points of the central and noncentral chi-square distribution. In Section 3, we present our main results, which include a local limit theorem for the central and noncentral chi-square distribution and corresponding approximations for the survival function (which improves the results in Horgan and Murphy [2], Seri [3]). In Section 4,
we present two applications of our main results: distance measure bounds between the chi-square distribution and the standard normal distribution, and the asymptotics of the median of the chi-square distribution. As mentioned above, the latter improves some results by Robert [5]. The proofs of the main results are gathered in Appendix 1, and some technical moment calculations are gathered in Appendix 2.

Notation: Throughout the paper, \(u = O(v) \) means that \(\limsup_{r \to \infty} |u/v| < C \), where \(C > 0 \) is a universal constant. Whenever \(C \) might depend on some parameter, we add a subscript (for example, \(u = O_{\lambda}(v) \)). Similarly, \(u = o(v) \) means that \(\lim |u/v| = 0 \) as \(r \to \infty \), and subscripts indicate which parameters the convergence rate can depend on.

2. Related works

In addition to the papers of Wallace [4], Horgan and Murphy [2], Seri [3], several other works have discussed normal approximations to the central and/or noncentral chi-square distributions. We briefly mention some of them below. For a general reference, some of these approximations are surveyed in Johnson et al. [1, Chapter 29, Section 8]. For the remainder of this section, \(\Xi_n \) and \(\Xi_{n,\lambda} \) (with \(n \in \mathbb{N} \)) will denote random variables distributed according to \(\chi^2_n(0) \) and \(\chi^2_n(\lambda) \), respectively.

Fisher [6] shows the approximate normality of a properly translated square root of a central chi-squared random variable, i.e.,

\[
\sqrt{\Xi_n} - \sqrt{n-1} \text{ is close in law to } \mathcal{N}(0,1), \text{ as } n \to \infty. \tag{6}
\]

In a similar fashion, Wilson and Hilferty [7] show the approximate normality of properly translated third roots of central chi-squared random variables, i.e.,

\[
\sqrt[3]{\Xi_n} - \sqrt[3]{n-2/3} \text{ is close in law to } \mathcal{N} \left(0, \frac{2}{9} \sqrt[3]{\frac{1}{n-2/3}} \right), \text{ as } n \to \infty, \tag{7}
\]

\[
\sqrt[3]{\Xi_n}/n - \left(1 - \frac{2}{9n} \right) \text{ is close in law to } \mathcal{N} \left(0, \frac{2}{9n} \right), \text{ as } n \to \infty. \tag{8}
\]

Merrington [8] compares numerically the percentage point approximations derived from the square root transformation of Fisher [6] and the third root transformation of Wilson and Hilferty [7], and he concludes that the latter is significantly more accurate. Germond and Hastings [9] develop various approximations for the c.d.f. of the noncentral chi-square distribution with two degrees of freedom, see Johnson et al. [1, p.466]. Berkson [10] uses a method of ‘probits’ and ‘logits’ to approximate the chi-square distribution, showing the better approximation obtained by the logits. Patnaik [11] gives the following representation of the c.d.f. of the noncentral chi-square distribution:

\[
P(\Xi_{n,\lambda} \leq a) \leq \int_0^a \frac{e^{-(x+\lambda)/2}}{2^{n/2}} \sum_{j=0}^{\infty} \frac{x^{n/2+j-1} \lambda^j}{\Gamma(n/2+j)2^{2j}j!} \, dx. \tag{9}
\]

Patnaik presents many approximations for the c.d.f. One line of investigation suggests to approximate the above c.d.f. in terms of the central chi-square c.d.f. and to combine
Robertson [22] gives the following formula

\[\int_a^\infty f_{r,0}(x) \, dx \approx \frac{e^{-(a-r)/2}}{(a/2 - r/2 + 1)\sqrt{2\pi}} \left(\frac{a}{r} \right)^{r/2} \left(1 - \frac{r/2 - 1}{(a/2 - r/2 + 1)^2 + a} \right) \left(\frac{12(r/2)^{3/2}}{6r + 1} \right). \] (10)

Robertson [22] gives the following formula

\[\int_a^\infty f_{r,\lambda}(x) \, dx \approx \frac{1}{\Gamma(r/2)} \left\{ \frac{\Gamma(r/2, a/2) + (\lambda/2) \Gamma(r/2, a/2) + (a/2) e^{-a/2}}{1!} \right\} + \frac{(\lambda/2)^2}{2!} \left\{ \frac{\Gamma(r/2, a/2) + (a/2) e^{-a/2}}{1!} \right\} + \frac{(\lambda/2)^3}{3!} \left\{ \frac{\Gamma(r/2, a/2) + (a/2) e^{-a/2}}{1!} \right\} + \ldots \] (11)

for ‘accurate’ approximations of the c.d.f. of the noncentral chi-square distribution over a wide range of degrees of freedom (even over 10,000).
In the same vein as Fisher and Wilson and Hilferty, Cressie and Hawkins [23] and Hawkins and Wixley [24] show the approximate normality of a properly translated fourth root of a chi-squared random variable. Chou et al. [25] derive many new integral representations for the c.d.f. of the noncentral chi-square distribution; the numerical usefulness remains unclear. Bock and Govindarajulu [26] approximate the density and c.d.f. of a noncentral chi-square distribution using a table of modified Bessel functions. They give an exact expression when the degrees of freedom are odd. Dinges [27] presents two formulas to approximate the c.d.f. of the noncentral chi-square distribution, namely the following first and second order Wiener germ approximations:

\[
\Pr(\Xi_{r,\lambda} \leq a) \approx \Phi \left(\pm \sqrt{r(s-1)^2 \left(\frac{1}{2s} + \frac{\mu^2 - \frac{1}{s}h(1-s)}{s} \right) - \log \left(\frac{1}{s} - \frac{2}{s} \cdot \frac{h(1-s)}{(1+2\mu^2s)} \right) + \frac{2(1+3\mu^2)^2}{9r(1+2\mu^2)^3}} \right), \tag{12}
\]

\[
\Pr(\Xi_{r,\lambda} \leq a) \approx \Phi \left(\pm \sqrt{r(s-1)^2 \left(\frac{1}{2s} + \frac{\mu^2 - \frac{1}{s}h(1-s)}{s} \right) - \log \left(\frac{1}{s} - \frac{2}{s} \cdot \frac{h(1-s)}{(1+2\mu^2s)} \right) + \frac{2}{r}B(s)} \right), \tag{13}
\]

where

\[
B(s) = -\frac{3}{2} \cdot \frac{(1+4\mu^2s)}{(1+2\mu^2s)^2} + \frac{5}{3} \cdot \frac{(1+3\mu^2s)^2}{(1+2\mu^2s)^3} + \frac{2(1+3\mu^2)^2}{(s-1)(1+2\mu^2s)^2} + \frac{3\eta}{(s-1)^2(1+2\mu^2s)} - \frac{(1+2h(\eta))\eta^2}{2(s-1)^2(1+2\mu^2s)}. \tag{14}
\]

and

\[
h(y) = \begin{cases}
\frac{1}{y^2} \left((1-y) \log(1-y) + y - \frac{y^2}{2} \right), & \text{if } h \in (0, 1), \\
0, & \text{if } h = 0,
\end{cases}
\]

\[
\mu = \frac{\lambda}{r}, \quad s = -1 + \sqrt{1 + (4x\mu^2)/r} \quad \text{for some } x > 0,
\]

\[
\eta = -\frac{2h(1-s) - s - 2\mu^2s^2}{1 + 2\mu^2s - 2h(1-s)}.
\tag{15}
\]

The numerical implementation of these formulas is given by Penev and Raykov [28]. Ashour and Abdel-Samad [29] give two computational approximations to the c.d.f. of the noncentral chi-square distribution of any degree of freedom and odd degrees of freedom respectively, using truncated infinite sums:

\[
\Pr(\Xi_{n,\lambda} \leq a) = \frac{e^{-(a+\lambda)/2} (a/2)^{n/2}}{\Gamma(n/2 + 1)} \sum_{i=0}^{\infty} \frac{1}{i!} C_i(\lambda a/4, n/2) \sum_{s=0}^{\infty} C_s(a/2, n/2 + i), \tag{16}
\]
where

\[C_i(\lambda a/4, n/2) = \frac{\lambda a/4}{n/2 + i} C_{i-1}(\lambda a/4, n/2), \]

for \(i = 1, 2, 3, \ldots \) and \(C_0(\lambda a/4, n/2) = 1, \)

\[P(\Xi_{2n+1, \lambda} > a) = P(\Xi_{2n+1} > a) + \sqrt{\frac{2}{\pi}} e^{-n/2} \sum_{k=n+1}^{\infty} \frac{a^{k-1}}{(2k-1)!!} P(\Xi_{2k-2n} \leq \lambda). \] (17)

Robert [5] gives bounds on the quantiles of the noncentral chi-square distribution in terms of the noncentrality parameter. Increasing the accuracy requires shortening the range of the noncentrality parameter. Ding [30] gives an algorithm to compute the noncentral chi-square c.d.f. using a series representation based on a Poisson weighted sum of central chi-square c.d.f.s. Temme [31] gives two asymptotic expansions for the survival function of the noncentral chi-square distribution involving the survival function of the standard normal distribution, namely

\[\int_a^\infty f_{r, \lambda}(x) \, dx \sim 1 - \left(\frac{a}{\lambda} \right)^{r/4-1/4} \Psi\left(\sqrt{r/2} - \sqrt{\lambda/2}\right), \]

\[\int_a^\infty f_{r, \lambda}(x) \, dx \sim \Psi\left(-u_0 \sqrt{\lambda a}/2\right) + \phi\left(\frac{u_0}{\sqrt{\lambda a}}\right) \sum_{k=0}^{\infty} c_{2k} \frac{\Gamma(k+1/2)}{\Gamma(1/2)} \left(\frac{2}{\lambda a}\right)^k, \ \lambda a \to \infty, \] (18)

for specific constants \(u_0, c_0, c_2, \ldots \) given in Temme [31, p.60]. Chattamvelli and Shanmugam [32] obtain an alternative error bound on Ruben’s algorithm (Ruben [33]) for the computation of the noncentral chi-square c.d.f. They also compare finite algorithms (such as Patnaik [11] and others) with the algorithms proposed by Ashour and Abdel-Samad [29] for such computation and they discuss the rates of convergence of two different series representations for the c.d.f. Fraser et al. [34] uses third order asymptotic methods that only requires evaluation of the standard normal to approximate the c.d.f. of the noncentral chi-square distribution.

Canal [35] approximates the c.d.f. of a central chi-square distribution by considering a linear combination of fractional powers of a chi-squared random variable. The mean absolute error is shown to be lower than other power transformations (two of the most well known are the square root transformation by Fisher [36] and the third root transformation by Wilson and Hilferty [7]) for degrees of freedom \(1 \leq r \leq 1000. \) Gaunt et al. [37] uses Stein’s method to obtain an order \(n^{-1} \) bound on the distributional distance over smooth test functions between Pearson’s statistics and its limiting chi-square distribution. Maširević [38] gives three formulas for the c.d.f. of the noncentral chi-square distribution in terms of modified Bessel functions, leaky aquifer functions, and generalized incomplete gamma functions, respectively. Okagbue et al. [39] uses quantile mechanics methods to approximate the quantile density function (the derivative of the quantile function) and the corresponding quartiles of the chi-square distribution. The result of the method is a power series solution to an ordinary differential equation. Baricz et al. [40] give various representations of the noncentral chi-square c.d.f. in terms of modified Bessel functions of the first kind, derived from two mean value theorems for definite integrals. Gaunt and
Reinert [41] uses Stein’s method to obtain an order n^{-1} bound on the distributional distance over smooth test functions between Friedman’s statistics and its limiting chi-square distribution.

For a discussion on the estimation of quadratic forms or the noncentrality parameter for a noncentral chi-square distribution, we refer the reader to de Waal [42], Perlman and Rasmussen [43], Neff and Strawderman [44], Anderson [45], Saxena and Alam [46], Spruill [47], Chow [48], Kubokawa et al. [49], Shao and Strawderman [50], Johnstone [51], Johnstone [52], Liu et al. [53], Kubokawa et al. [54].

3. Main results

First, we need local approximations for the ratio of the noncentral chi-square density to the normal density function with the same mean and variance.

Lemma 3.1 (Local approximation): For any $r > 0$, $0 \leq \lambda = o(\sqrt{r})$ and $\eta \in (0, 1)$, define

$$D_{r,\lambda} := \frac{r + \lambda}{\sqrt{2(r + 2\lambda)}},$$

and let

$$B_{r,\lambda}(\eta) := \{x \in (0, \infty) : \left|\frac{\delta_x}{D_{r,\lambda}}\right| \leq \eta r^{-1/3}\},$$

denote the bulk of the noncentral chi-square distribution. Then, uniformly for $k \in B_{r,\lambda}(\eta)$, we have, as $r \to \infty$,

$$\log \left(\frac{f_{r,\lambda}(x)}{\frac{1}{\sqrt{2(r+2\lambda)}} \phi(\delta_x)}\right) = r^{-1/2} \left\{\frac{\sqrt{2}}{3} \delta_x^3 - \sqrt{2} \delta_x\right\} + r^{-1} \left\{-\frac{1}{2} \delta_x^4 + \delta_x^2 - \frac{1}{6}\right\} + r^{-3/2} \left\{\frac{2^{3/2}}{5} \delta_x^5 - \frac{2^{3/2}}{3} \delta_x^3\right\} + O \left(\frac{(1 \lor \lambda^4) + \lambda^2 |\delta_x|^2}{r^2}\right),$$

Furthermore,

$$\frac{f_{r,\lambda}(x)}{\frac{1}{\sqrt{2(r+2\lambda)}} \phi(\delta_x)} = 1 + r^{-1/2} \left\{\frac{\sqrt{2}}{3} \delta_x^3 - \sqrt{2} \delta_x\right\} + r^{-1} \left\{\frac{1}{9} \delta_x^6 - \frac{7}{6} \delta_x^4 + 2 \delta_x^2 - \frac{1}{6}\right\} + r^{-3/2} \left\{\frac{\sqrt{2}}{81} \delta_x^9 - \frac{5}{9\sqrt{2}} \delta_x^7 + \frac{47}{15\sqrt{2}} \delta_x^5 - \frac{37}{9\sqrt{2}} \delta_x^3 + \frac{1}{3\sqrt{2}} \delta_x\right\} + O_{\eta} \left(\frac{(1 \lor \lambda^4) + |\delta_x|^{10}}{r^2}\right).$$

For the interested reader, local approximations akin to Lemma 3.1 were derived for the Poisson, binomial, negative binomial, multinomial, Dirichlet, Wishart and multivariate hypergeometric distributions in Ouimet [55, Lemma 2.1], Ouimet [56, Lemma 3.1], Ouimet [57, Lemma 2.1], Ouimet [58, Theorem 2.1], Ouimet [59, Theorem 1], Ouimet
[60, Theorem 1], Ouimet [61, Theorem 1], respectively. See also earlier references such as Govindarajulu [62] (based on Fourier analysis results from Esseen [63]) for the Poisson, binomial and negative binomial distributions, and Cressie [64] for the binomial distribution.

By integrating the second local approximation in Lemma 3.1, we can approximate the survival function of the $\chi^2_r(\lambda)$ distribution, i.e.,

$$S_{r,\lambda}(a) := \int_a^\infty f_{r,\lambda}(x) \, dx, \quad a \in \mathbb{R},$$

using the survival function of the normal distribution with the same mean and variance.

Theorem 3.2 (Survival function approximations): For any $0 \leq \lambda = o(\sqrt{r})$, we have, as $r \to \infty$,

Order 0 approximation:

$$E_0 := \max_{a \in \mathbb{R}} \left| S_{r,\lambda}(a) - \Psi(\delta_a) \right| \leq \frac{M_0}{r^{1/2}} + \frac{C_0}{r},$$

Order 1 approximation:

$$E_1 := \max_{a \in \mathbb{R}} \left| S_{r,\lambda}(a) - \Psi(\delta_a - d_1) \right| \leq \frac{M_1}{r} + \frac{C_1 (1 \lor \lambda)}{r^{3/2}},$$

Order 2 approximation:

$$E_2 := \max_{a \in \mathbb{R}} \left| S_{r,\lambda}(a) - \Psi \left(\delta_a - (d_1 + d_2) \right) \right| \leq \frac{M_2}{r^{3/2}} + \frac{C_2 (1 \lor \lambda^4)}{r^2},$$

Order 3 approximation:

$$E_3 := \max_{a \in \mathbb{R}} \left| S_{r,\lambda}(a) - \Psi \left(\delta_a - (d_1 + d_2 + d_3) \right) \right| \leq \frac{C_3 (1 \lor \lambda^4)}{r^2},$$

where Ψ denotes the survival function of the standard normal distribution, $C_i, 0 \leq i \leq 3,$ are universal constants, and

$$d_1 := \frac{2}{3} (\delta_a^2 - 1), \quad d_2 := \frac{1}{9 \sqrt{2}} (\delta_a - 7 \delta_a^3),$$

$$d_3 := \frac{1}{405} \left(219 \delta_a^4 + (270 \lambda - 14) \delta_a^2 - (270 \lambda + 13) \right),$$

$$M_0 := \max_{y \in \mathbb{R}} \sqrt{\frac{2}{3}} |y|^2 - 1 |\phi(y) = \frac{1}{\sqrt{9 \pi}} = 0.188063 \ldots ,$$

$$M_1 := \max_{y \in \mathbb{R}} \frac{1}{18} |7 y^3 - y |\phi(y) = 0.171448 \ldots ,$$

$$M_2 := \max_{y \in \mathbb{R}} \frac{1}{405 \sqrt{2}} \left| 219 y^4 + (270 \lambda - 14) y^2 - (270 \lambda + 13) \right| \phi(y),$$

(M_2 is equal to 0.326258 when $\lambda = 0$).
Figure 1. Numerical illustration of the asymptotic constants M_0, M_1 and M_2, for each $\lambda \in \{0, 2, 4, 6, 8, 10\}$. (a) $\lambda = 0$ (b) $\lambda = 2$ (c) $\lambda = 4$ (d) $\lambda = 6$ (e) $\lambda = 8$ (f) $\lambda = 10$.

The constants M_0, M_1, M_2 are illustrated numerically in Figure 1, for multiple values of λ. The maximal errors are plotted as a function of r in Figure 2.

In Seri [3], it is mentioned that when using the $r = 250$ recommendation of Urkowitz [65] for the energy detection problem, the maximal error is 0.01516183 in (5) for $\lambda = 0$ (the central chi-square approximation). When using the Order 1 and 2 approximations in Theorem 3.2 and ignoring the error terms of order $r^{-3/2}$ and r^{-2}, we would only need $r = 12$ and $r = 8$, respectively, to achieve a smaller maximal error, which is a significant improvement (although we have to keep in mind that the error bounds are asymptotic).

4. Applications

4.1. Probability metrics upper bounds between chi-square and normal distributions

For our first application, we use Lemma 3.1 to compute an upper bound on the total variation between the probability measures induced by (1) and (3). Given the relation there is between the total variation and other probability metrics such as the Hellinger distance (see, e.g., Gibbs and Su [66, p.421]), we obtain upper bounds on other distance measures automatically.

Theorem 4.1 (Probability metrics bounds): Let $r > 0$ and $0 \leq \lambda = o(\sqrt{r})$. Let $P_{r,\lambda}$ be the law of the $\chi^2_r(\lambda)$ distribution. Let $Q_{r,\lambda}$ be the law of the Normal$(r + \lambda, 2(r + 2\lambda))$
distribution. Then, as \(r \to \infty \), we have

\[
\text{dist}(\mathbb{P}_{r,\lambda}, \mathbb{Q}_{r,\lambda}) \leq \frac{C}{\sqrt{r}} \quad \text{and} \quad \mathcal{H}(\mathbb{P}_{r,\lambda}, \mathbb{Q}_{r,\lambda}) \leq \sqrt{\frac{2C}{r}}, \tag{29}
\]

where \(C > 0 \) is a universal constant, \(\mathcal{H}(\cdot, \cdot) \) denotes the Hellinger distance, and \(\text{dist}(\cdot, \cdot) \) can be replaced by any of the following probability metrics: Total variation, Kolmogorov (or Uniform) metric, Lévy metric, Discrepancy metric, Prokhorov metric.

Proof of Theorem 4.1: Let \(X \sim \mathbb{P}_{r,\lambda} \). By the comparison of the total variation norm \(\| \cdot \| \) with the Hellinger distance on page 726 of Carter [67], we already know that

\[
\| \mathbb{P}_{r,\lambda} - \mathbb{Q}_{r,\lambda} \| \leq \sqrt{2 \mathbb{P}(X \in B_{r,\lambda}^c(1/2)) + \mathbb{E} \left[\log \left(\frac{d\mathbb{P}_{r,\lambda}}{d\mathbb{Q}_{r,\lambda}}(X) \right) \mathbb{1}_{\{X \in B_{r,\lambda}(1/2)\}} \right]} . \tag{30}
\]

Then, by applying a large deviation bound for the noncentral chi-square distribution (for example combine the Order 0 approximation in Theorem 3.2 with a Mills ratio Gaussian tail inequality), we get, for \(r \) large enough,

\[
\mathbb{P}(X \in B_{r,\lambda}^c(1/2)) \leq 100 \exp \left(-\frac{1}{100} r^{1/3} \right) . \tag{31}
\]
By Lemma 3.1, we have

\[\mathbb{E} \left[\log \left(\frac{dP_{r,\lambda}}{dQ_{r,\lambda}}(X) \right) 1_{\{X \in B_{r,\lambda}(1/2)\}} \right] \]

\[= r^{-1/2} \cdot \mathbb{E} \left[\left\{ \frac{\sqrt{2}}{3} \cdot \frac{(X - (r + \lambda))^3}{(2(r + 2\lambda))^{3/2}} - \frac{\sqrt{2}}{2(r + 2\lambda)} \right\} 1_{\{X \in B_{r,\lambda}(1/2)\}} \right] \]

\[+ r^{-1} \cdot \mathcal{O} \left(\frac{\mathbb{E}[(X - (r + \lambda))^4]}{(2(r + 2\lambda))^2} + \frac{\mathbb{E}[(X - (r + \lambda))^2]}{2(r + 2\lambda)} + 1 \right) \]

\[+ \mathcal{O}(r^{-3/2}). \]

(32)

By Lemma A.1 and Corollary A.2, we get

\[\mathbb{E} \left[\log \left(\frac{dP_{r,\lambda}}{dQ_{r,\lambda}}(X) \right) 1_{\{X \in B_{r,\lambda}(1/2)\}} \right] \]

\[= r^{-1/2} \cdot (\mathbb{P}(X \in B_{r,\lambda}(1/2)))^{1/2} + r^{-1} \cdot \mathcal{O}(1) + \mathcal{O}(r^{-3/2}) \]

\[= \mathcal{O}(r^{-1}). \]

(33)

This ends the proof. ■

4.2. Asymptotics of the median

For our second application, we improve the lower bound for the median of the noncentral chi-square distribution found in Proposition 4.1 of Robert [5] (the upper bounds are comparable). The proof relies on the refined normal approximation in Theorem 3.2, a Taylor expansion for the c.d.f. of the standard normal distribution, and solving a quadratic equation involving the normalized (via \(\delta \)) median.

Theorem 4.2: Let \(r > 0 \) and \(0 \leq \lambda = o(\sqrt{r}) \), and let \(X \sim \chi^2_r(\lambda) \). Then, we have

\[\text{Median}(X) = r + \lambda - \frac{2}{3} + \mathcal{O} \left(\frac{1}{r^{1/2}} \right) + \mathcal{O} \left(\frac{1 \lor \lambda}{r} \right), \quad \text{as } r \to \infty. \]

(34)

Proof of Theorem 4.2: By definition, the median of the \(\chi^2_r(\lambda) \) distribution is the point \(a^* > 0 \) that satisfies \(S_{r,\lambda}(a^*) = 1/2 \). By the Order 1 approximation in Theorem 3.2, we want to find \(a^* \) such that

\[\left| \Psi(\delta_{a^* - d_1}) - \frac{1}{2} \right| \leq \frac{M_1}{r} + \frac{C_1(1 \lor \lambda)}{r^{3/2}}. \]

(35)

A Taylor expansion for \(\Psi \) at 0 yields

\[\Psi(x) = \frac{1}{2} - \frac{x}{\sqrt{2\pi}} + \mathcal{O}(x^3), \quad \text{as } x \to 0. \]

(36)

Equation (35) then becomes

\[\left| a^* - d_1 - (r + \lambda) + \mathcal{O}(r^{-1}) \right| \leq \frac{\tilde{M}_1}{r^{1/2}} + \frac{\tilde{C}_1(1 \lor \lambda)}{r}, \]

(37)
for appropriate universal constants $\tilde{M}_1, \tilde{C}_1 > 0$. The error $O(r^{-1})$ in (37) does not depend on λ because $\delta_{a^* - d_1} = O(r^{-1/2})$ by the a priori bounds we have from Proposition 4.1 in Robert [5]. From (37) and the expression for d_1 (at $a = a^*$) in (28), we deduce

$$\delta_{a^*} = \frac{2}{3}(\delta_{a^*}^2 - 1) + O\left(\frac{1}{r}\right) + O\left(\frac{1 + \lambda}{r^{3/2}}\right).$$

(38)

This quadratic equation in the variable δ_{a^*} yields the following two solutions (with the notation $\varepsilon_{r,\lambda} := 1/\sqrt{2(r + 2\lambda)}$):

$$\delta_{a^*}^{1,2} = -1 \pm \sqrt{1 - 4 \cdot \frac{2}{3} \varepsilon_{r,\lambda} \cdot \left[\frac{2}{3} \varepsilon_{r,\lambda} - O\left(\frac{1}{r}\right) + O\left(\frac{1 + \lambda}{r^{3/2}}\right)\right]} \frac{2 \cdot \frac{2}{3} \varepsilon_{r,\lambda}}{2 \cdot \frac{2}{3} \varepsilon_{r,\lambda}}.$$

(39)

Because of the a priori bounds on the median in Proposition 4.1 of Robert [5], the unique solution must be the one with the minus in (38). Therefore, the median a^* satisfies

$$a^* - (r + \lambda) = \frac{1 - \sqrt{1 + \frac{16}{9} \varepsilon_{r,\lambda}^2 + O\left(\frac{1}{r^{3/2}}\right) + O\left(\frac{1 + \lambda}{r^2}\right)}}{\frac{4}{3} \varepsilon_{r,\lambda}^2}. (40)$$

Using the Taylor expansion $\sqrt{1 + y} = 1 + \frac{y}{2} + O(y^2)$, as $y \to 0$, we have

$$a^* - (r + \lambda) = -\frac{2}{3} + O\left(\frac{1}{r^{1/2}}\right) + O\left(\frac{1 + \lambda}{r}\right). (41)$$

This ends the proof. ■

Remark 4.3: It is possible to use the higher order approximations from Theorem 3.2 and apply the same logic in the proof of Theorem 4.2 to derive an expression for the median which is asymptotically more precise, but the algebra becomes much uglier. In particular, the degree of the polynomial equation to solve in (39) will increase.

Acknowledgements

We thank Robert Ferydouni (University of California – Santa Cruz) for collecting some of the references in Section 2 and helping us use the \texttt{latex2exp} package in R.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

F. Ouimet is supported by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada and the Fond québécois de la recherche – Nature et technologies (B3X supplement and B3XR).

ORCID

Frédéric Ouimet \(\text{http://orcid.org/0000-0001-7933-5265} \)
References

[1] Johnson NL, Kotz S, Balakrishnan N. Continuous univariate distributions. 2nd ed. New York: John Wiley & Sons, Inc.; 1995. (Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, vol. 2). Available from: https://www.ams.org/mathscinet-getitem?mr = MR1326603.

[2] Horgan D, Murphy CC. On the convergence of the chi square and noncentral chi square distributions to the normal distribution. IEEE Commun Lett. 2013;17(12):2233–2236. DOI:10.1109/LCOMM.2013.111113.131879

[3] Seri R. A tight bound on the distance between a noncentral chi square and a normal distribution. IEEE Commun Lett. 2015;19(11):1877–1880. DOI:10.1109/LCOMM.2015.2461681

[4] Wallace DL. Bounds on normal approximations to Student’s and the chi-square distributions. Ann Math Stat. 1959;30:1121–1130. Available from: https://www.ams.org/mathscinet-getitem?mr = MR125669

[5] Robert C. On some accurate bounds for the quantiles of a noncentral chi squared distribution. Stat Probab Lett. 1990;10(2):101–106. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1072495

[6] Fisher RA. Statistical methods for research workers. 2nd ed. Edinburgh: Oliver and Boyd; 1928.

[7] Wilson EB, Hilferty MM. The distribution of chi-square. PNAS USA. 1931;17(12):684–688. DOI:10.1073/pnas.17.12.684

[8] Merrington M. Numerical approximations to the percentage points of the χ^2 distribution. Biometrika. 1941;32:200–202. Available from: https://www.ams.org/mathscinet-getitem?mr = MR5588

[9] Germond HH, Hastings C. Scatter bombing of a circular target. Technical Report – Bombing Research Group – Columbia University; 1944. p. 95. Available from: https://www.informs.org/content/download/302982/2898490/file/BombDispersalANalysis.pdf.

[10] Berkson J. Approximation of chi-square by 'probits' and by 'logits'. J Amer Stat Assoc. 1946;41:70–74. Available from: https://www.ams.org/mathscinet-getitem?mr = MR15734

[11] Patnaik PB. The non-central χ^2 and F-distributions and their applications. Biometrika. 1949;36:202–232. Available from: https://www.ams.org/mathscinet-getitem?mr = MR34564

[12] Abdel-Aty SH. Approximate formulae for the percentage points and the probability integral of the non-central χ^2 distribution. Biometrika. 1954;41(3/4):538–540. DOI:10.2307/2332731

[13] Sankaran M. On the non-central chi-square distribution. Biometrika. 1959;46(1–2):235–237. Available from: https://www.ams.org/mathscinet-getitem?mr = MR101581

[14] Tukey JW. Approximations to the upper 5% points of Fisher’s B distribution and non-central χ^2. Biometrika. 1957;44(3–4):528–530. DOI:10.1093/biomet/44.3-4.528

[15] Johnson NL. On an extension of the connexion between Poisson and χ^2 distributions. Biometrika. 1959;46:352–363. Available from: https://www.ams.org/mathscinet-getitem?mr = MR109379

[16] Pearson ES. Note on an approximation to the distribution of non-central χ^2. Biometrika. 1959;46:364. Available from: https://www.ams.org/mathscinet-getitem?mr = MR109380

[17] Severo NC, Zelen M. Normal approximation to the chi-square and non-central F probability functions. Biometrika. 1960;47(3/4):411–416. Available from: https://www.ams.org/mathscinet-getitem?mr = MR119270

[18] Sankaran M. Approximations to the non-central chi-square distribution. Biometrika. 1963;50:199–204. Available from: https://www.ams.org/mathscinet-getitem?mr = MR156397

[19] Roy J, Mohamad J. An approximation to the non-central chi-square distribution. Sankhya Ser A. 1964;26:81–84. Available from: https://www.ams.org/mathscinet-getitem?mr = MR172370

[20] Tiku ML. Laguerre series forms of non-central χ^2 and F distributions. Biometrika. 1965;52:415–427. Available from: https://www.ams.org/mathscinet-getitem?mr = MR216616

[21] Gray HL, Thompson RW, McWilliams GV. A new approximation for the chi-square integral. Math Comp. 1969;23:85–89. Available from: https://www.ams.org/mathscinet-getitem?mr = MR238470
[22] Robertson GH. Computation of the noncentral chi-square distribution. Bell Syst Tech J. 1969;48(1):201–207. DOI:10.1002/j.1538-7305.1969.tb01111.x
[23] Cressie N, Hawkins DM. Robust estimation of the variogram. I. J Int Assoc Math Geol. 1980;12(2):115–125. Available from: https://www.ams.org/mathscinet-getitem?mr = MR595404
[24] Hawkins DM, Wixley RAJ. A note on the transformation of chi-squared variables to normality. Amer Statist. 1986;40(4):296–298. DOI:10.2307/2684608
[25] Chou Y-M, Arthur KH, Rosenstein RB, et al. New representations of the noncentral chi-square density and cumulative. Comm Stat A – Theory Methods. 1984;13(21):2673–2678. Available from: https://www.ams.org/mathscinet-getitem?mr = MR759243
[26] Bock ME, Govindarajulu Z. A note on the noncentral chi-square distribution. Stat Probab Lett. 1988;7(2):127–129. Available from: https://www.ams.org/mathscinet-getitem?mr = MR980908
[27] Dinges H. Special cases of second order Wiener germ approximations. Probab Theory Related Fields. 1989;83(1-2):5–57. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1012493
[28] Penev S, Raykov T. A Wiener germ approximation of the noncentral chi square distribution and of its quantiles. Comput Stat. 2000;15:219–228. DOI:10.1007/s001800000029
[29] Ashour SK, Abdel-Samad AI. On the computation of noncentral chi-square distribution function. Comm Stat Simulation Comput. 1990;19(4):1279–1291. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1097704
[30] Ding CG. Algorithm AS 275: computing the non-central χ^2 distribution function. J R Stat Soc C-App. 1992;41(2):478–482. DOI:10.2307/2347584
[31] Temme NM. Asymptotic and numerical aspects of the noncentral chi-square distribution. Comput Math Appl. 1993;25(5):55–63. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1199912
[32] Chattamvelli R, Shanmugam R. Efficient computation of the noncentral χ^2 distribution. Commun Stat – Simul Comput. 1995;24(3):675–689. DOI:10.1080/03610919508813266
[33] Ruben H. A new result on the probability integral of non-central chi-square with even degrees of freedom. Comm Stat. 1974;3:473–476. Available from: https://www.ams.org/mathscinet-getitem?mr = MR418308
[34] Fraser DAS, Wong ACM, Wu J. An approximation for the noncentral chi-squared distribution. Comm Stat Simulation Comput. 1998;27(2):275–287. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1625949
[35] Canal L. A normal approximation for the chi-square distribution. Comput Stat Data Anal. 2005;48(4):803–808. Available from: https://www.ams.org/mathscinet-getitem?mr = MR2133578
[36] Fisher RA. On the interpretation of χ^2 from contingency tables, and the calculation of P. J R Stat Soc. 1922;85(1):87–94. DOI:10.2307/2340521
[37] Gaunt RE, Pickett AM, Reinert G. Chi-square approximation by Stein’s method with application to Pearson’s statistic. Ann Appl Probab. 2017;27(2):720–756. Available from: https://www.ams.org/mathscinet-getitem?mr = MR3655852
[38] Maširević DJ. On new formulas for the cumulative distribution function of the noncentral chi-square distribution. Mediterr J Math. 2017;14(2):1–13. Paper No. 66. https://www.ams.org/mathscinet-getitem?mr = MR3619428.
[39] Okagbue HI, Adamu MO, Anake TA. Quantile approximation of the chi-square distribution using the quantile mechanics. In: Proceedings of the World Congress on Engineering and Computer Science, Vol. 1. WCECS 2017, 2017 Oct 25-27, San Francisco, USA; 2017. Available from: https://eprints.covenantuniversity.edu.ng/9668/1/WCECS2017_pp477-483.pdf.
[40] Baricz A, Jankov MD, Pogány TK. Approximation of CDF of non-central chi-square distribution by mean-value theorems for integrals. Mathematics. 2021;9(2):129. DOI:10.3390/math9020129
[41] Gaunt RE, Reinert G. Bounds for the chi-square approximation of Friedman’s statistic by Stein’s method. Preprint, 1–38. 2021. Available from: https://www.arxiv.org/2111.00949.
[42] de Waal DJ. Bayes estimate of the noncentrality parameter in multivariate analysis. Comm Stat. 1974;3:73–79. Available from: https://www.ams.org/mathscinet-getitem?mr = MR331611
[43] Perlman MD, Rasmussen UA. Some remarks on estimating a noncentrality parameter. Comm Stat. 1975;4:455–468. Available from: https://www.ams.org/mathscinet-getitem?mr = MR378217
[44] Neff N, Strawderman WE. Further remarks on estimating the parameter of a noncentral chi-square distribution. Comm Stat–Theory Methods. 1976;A5(1):65–76. Available from: https://www.ams.org/mathscinet-getitem?mr = MR0397966
[45] Anderson DA. Maximum likelihood estimation in the noncentral chi distribution with unknown scale parameter. Sankhyā Ser B. 1981;43(1):58–67. Available from: https://www.ams.org/mathscinet-getitem?mr = MR661020
[46] Saxena KML, Alam K. Estimation of the noncentrality parameter of a chi squared distribution. Ann Stat. 1982;10(3):1012–1016. Available from: https://www.ams.org/mathscinet-getitem?mr = MR663453
[47] Spruill MC. Computation of the maximum likelihood estimate of a noncentrality parameter. J Multivariate Anal. 1986;18(2):216–224. Available from: https://www.ams.org/mathscinet-getitem?mr = MR832996
[48] Chow MS. A complete class theorem for estimating a noncentrality parameter. Ann Stat. 1987;15(2):800–804. Available from: https://www.ams.org/mathscinet-getitem?mr = MR888440
[49] Kubokawa T, Robert CP, Saleh AKM.E. Estimation of noncentrality parameters. Canad J Stat. 1993;21(1):45–57. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1221856
[50] Shao PY-S, Strawderman WE. Improving on the positive part of the UMVUE of a noncentrality parameter of a noncentral chi-square distribution. J Multivariate Anal. 1995;53(1):52–66. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1333127
[51] Johnstone IM. Chi-square oracle inequalities. Pages 399–418 of: State of the art in probability and statistics (Leiden, 1999). IMS Lecture Notes Monogr. Ser., vol. 36. Inst. Math. Statist., Beachwood, OH: 2001. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1836572.
[52] Johnstone I. Thresholding for weighted χ^2. Stat Sinica. 2001;11(3):691–704. Available from: https://www.ams.org/mathscinet-getitem?mr = MR1863157
[53] Liu H, Tang Y, Zhang HH. A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comput Stat Data Anal. 2009;53(4):853–856. Available from: https://www.ams.org/mathscinet-getitem?mr = MR2657050
[54] Kubokawa T, Marchand É, Strawderman WE. A unified approach to estimation of noncentrality parameters, the multiple correlation coefficient, and mixture models. Math Methods Stat. 2017;26(2):134–148. Available from: https://www.ams.org/mathscinet-getitem?mr = MR3667406
[55] Ouimet F. On the Le Cam distance between Poisson and Gaussian experiments and the asymptotic properties of Szasz estimators. J Math Anal Appl. 2021;499(1):1–18. Paper No. 125033. https://www.ams.org/mathscinet-getitem?mr = MR4213687.
[56] Ouimet F. An improvement of Tusnády’s inequality in the bulk. Adv Appl Math. 2022;133:1–24. Paper No. 102270. https://www.ams.org/mathscinet-getitem?mr = MR4340237.
[57] Ouimet F. A refined continuity correction for the negative binomial distribution and asymptotics of the median. Preprint, 1–18. 2021. Available from: https://arxiv.org/abs/2103.08846.
[58] Ouimet F. A precise local limit theorem for the multinomial distribution and some applications. J Stat Plann Inference. 2021;215:218–233. Available from: https://www.ams.org/mathscinet-getitem?mr = MR4249129
[59] Ouimet F. A multivariate normal approximation for the Dirichlet density and some applications. Stat. 2022;11(1):1–13. Paper No. e410. Available from: https://arxiv.org/abs/2103.02853.
[60] Ouimet F. A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications. J Multivariate Anal. 2022;189:1–17. Paper No. 104923. https://www.ams.org/mathscinet-getitem?mr = MR4358612.
Appendix 1. Proofs

Proof of Lemma 3.1: By taking the logarithm in (1), we have

$$\log(f_{r,\lambda}(x)) = -\log 2 - \frac{x + \lambda}{2} + \left(\frac{r}{2} - 1\right)\log\left(\frac{x}{2}\right) + \log \sum_{j=0}^{\infty} \frac{(\lambda x/4)^j}{j! \Gamma(r/2 + j)}. \quad (A1)$$

Since

$$x = (r + \lambda) \left(1 + \frac{\delta_x}{D_{r,\lambda}}\right), \quad (A2)$$

we can rewrite (A1) as

$$\log(f_{r,\lambda}(x)) = -\log 2 - \frac{r + \lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}}\right) - \frac{\lambda}{2} + \left(\frac{r}{2} - 1\right)\log\left(\frac{r + \lambda}{2}\right)$$

$$+ \left(\frac{r}{2} - 1\right)\log\left(1 + \frac{\delta_x}{D_{r,\lambda}}\right) - \log \Gamma\left(\frac{r}{2}\right)$$

$$+ \log \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{\lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}}\right)\right)^j \frac{2^{-j}(r + \lambda)\Gamma(r/2)}{\Gamma(r/2 + j)}. \quad (A3)$$

Using the expansions

$$\left(\frac{r}{2} - 1\right)\log\left(\frac{r + \lambda}{2}\right) = \left(\frac{r}{2} - 1\right)\log\left(\frac{r}{2}\right) + \frac{\lambda + \lambda^2/4}{r} + O\left(\frac{1}{r^2}\right), \quad (A4)$$

and

$$\log \Gamma\left(\frac{r}{2}\right) = \left(\frac{r}{2} - \frac{1}{2}\right)\log\left(\frac{r}{2}\right) - \frac{r}{2} + \frac{1}{2} \log(2\pi) + \frac{1}{6r} + O(r^{-3}), \quad (A5)$$
(the first one is just a Taylor expansion for \(r^{-1} \) at 0, and the second one can be found, for example, in Abramowitz and Stegun [68, p.257]) we can rewrite (A3) as

\[
\log (f_{r,\lambda}(x)) = -\frac{1}{2} \log(2\pi 2r) - \frac{r}{2} \frac{\delta_x}{D_{r,\lambda}} - \frac{\lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) \\
+ \left(\frac{r}{2} - 1 \right) \log \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) - \frac{\frac{1}{6} + \lambda + \frac{\lambda^2}{4}}{r} + O \left(\frac{1 \lor \lambda^3}{r^2} \right) \\
+ \log \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{\lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) \right)^j \frac{2^{-j/(r + \lambda)/\Gamma(r/2)}}{\Gamma(r/2 + j)}. \tag{A6}
\]

Now,

\[
\frac{2^{-j/(r + \lambda)/\Gamma(r/2)}}{\Gamma(r/2 + j)} = 1 + \frac{j(\lambda + 1) - j^2}{r} \\
+ O \left(\frac{(1 \lor \lambda^2)(j + j^2) + (1 \lor \lambda)j^3 + j^4}{r^2} \right), \tag{A7}
\]

and, for any \(a \in \mathbb{R} \),

\[
\log \left(\sum_{j=0}^{\infty} \frac{a^j}{j!} \left\{ 1 + \frac{j(\lambda + 1) - j^2}{r} + O \left(\frac{(1 \lor \lambda^2)(j + j^2) + (1 \lor \lambda)j^3 + j^4}{r^2} \right) \right\} \right) \\
= a + \log \left(1 + \frac{a(\lambda - a)}{r} \right) + O \left(\frac{|a|^2 \cdot \left\{ (1 \lor \lambda^2)(1 + |a|) + (1 \lor \lambda)(1 + |a|^2) + (1 + |a|^3) \right\}}{r^2} \right), \tag{A8}
\]

so if we take

\[
a = \frac{\lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right), \tag{A9}
\]

we can rewrite (A6) as

\[
\log (f_{r,\lambda}(x)) = -\frac{1}{2} \log(2\pi 2r) - \frac{r}{2} \frac{\delta_x}{D_{r,\lambda}} \\
+ \left(\frac{r}{2} - 1 \right) \log \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) - \frac{\frac{1}{6} + \lambda + \frac{\lambda^2}{4}}{r} + O \left(\frac{1 \lor \lambda^3}{r^2} \right) \\
+ \log \left(1 + \frac{\lambda}{2r} \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) \left[\lambda - \frac{\lambda}{2} \left(1 + \frac{\delta_x}{D_{r,\lambda}} \right) \right] \right) + O \left(\frac{1 \lor \lambda^4}{r^2} \right). \tag{A10}
\]

Using the Taylor expansion

\[
\log(1 + y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + \frac{y^5}{5} + O(y^6), \tag{A11}
\]
valid for $|y| \leq \eta < 1$, we have

$$\log (f_{r,r}(x)) = -\frac{1}{2} \log(2\pi 2r) - \frac{r}{2} \frac{\delta_x}{D_{r,r}} - \frac{1}{6} \frac{\lambda}{r} + \mathcal{O}\left(\frac{(1 \lor \lambda^4) + \lambda^2|\delta_x|^2}{r^2}\right)$$

$$+ \left(\frac{r}{2} - 1\right) \left\{ \frac{\delta_x}{D_{r,r}} - \frac{1}{2} \left(\frac{\delta_x}{D_{r,r}}\right)^2 + \frac{1}{3} \left(\frac{\delta_x}{D_{r,r}}\right)^3 - \frac{1}{4} \left(\frac{\delta_x}{D_{r,r}}\right)^4 \right\}$$

$$= -\frac{1}{2} \log(2\pi 2r) - \frac{1}{6} \frac{\lambda}{r} + \mathcal{O}\left(\frac{(1 \lor \lambda^4) + \lambda^2|\delta_x|^2}{r^2}\right)$$

$$- \sqrt{2(2 + 2\lambda)} \frac{\delta_x}{r + \lambda} = -\frac{\sqrt{2}}{r^{1/2}} + \mathcal{O}\left(\frac{1 \lor \lambda^2}{r^{5/2}}\right),$$

$$- \frac{1}{2} + \frac{1}{r} + \mathcal{O}\left(\frac{1 \lor \lambda^2}{r^2}\right),$$

$$\frac{(r - 2)(r + 2\lambda)}{2(r + \lambda)^2} = \frac{\sqrt{2/3}}{r^{1/2}} - \frac{2^{3/2}/3}{r^{3/2}} + \mathcal{O}\left(\frac{1 \lor \lambda^2}{r^{5/2}}\right),$$

$$- \frac{1}{2r} + \mathcal{O}\left(\frac{1}{r^2}\right),$$

$$\frac{(r - 2)(r + 2\lambda)^2}{5(r + \lambda)^5} = \frac{2^{3/2}/5}{r^{3/2}} + \mathcal{O}\left(\frac{1}{r^{5/2}}\right),$$

and

$$-\frac{1}{2} \log(2\pi 2r) = -\frac{1}{2} \log(2\pi 2(r + 2\lambda)) + \frac{\lambda}{r} + \mathcal{O}\left(\frac{1 \lor \lambda^2}{r^2}\right),$$

we can rewrite (A12) as

$$\log \left(\frac{f_{r,r}(x)}{\sqrt{2(r + 2\lambda)}} \phi(\delta_x)\right) = \frac{1}{r^{1/2}} \left\{ \frac{\sqrt{2}}{3} \delta_x^3 - \sqrt{2} \delta_x \right\} + \frac{1}{r^{1/2}} \left\{ -\frac{1}{2} \delta_x^4 + \delta_x^2 - \frac{1}{6} \right\}$$

$$+ r^{-3/2} \left\{ \frac{23/2}{5} \delta_x^5 - \frac{23/2}{3} \delta_x^3 \right\} + \mathcal{O}\left(\frac{(1 \lor \lambda^4) + \lambda^2|\delta_x|^2}{r^2}\right),$$

which proves (21). To obtain (22) and conclude the proof, we take the exponential on both sides of the last equation and we expand the right-hand side with

$$e^y = 1 + y + \frac{y^2}{2} + \frac{y^3}{6} + \mathcal{O}(e^\eta y^4), \quad -\infty < y \leq \eta.$$

For r large enough and uniformly for $x \in B_{r,r}(\eta)$, the right-hand side of (A15) is $O_\lambda(1)$. When this bound is taken as y in (A16), it explains the error in (22).

\textbf{Proof of Theorem 3.2:} Let

$$c = d_1 + \frac{d_2}{\sqrt{r}} + \frac{d_3}{r}.$$

(A17)
where \(d_1, d_2, d_3 \in \mathbb{R}\) are to be chosen later, then we have the Taylor expansion

\[
\int_{\delta_a-c}^{\delta_a} \phi(y) \, dy = \phi(\delta_a) \int_{\delta_a-c}^{\delta_a} dy + \phi'(\delta_a) \int_{\delta_a-c}^{\delta_a} (y - \delta_a) \, dy + \phi''(\delta_a) \frac{1}{2} \int_{\delta_a-c}^{\delta_a} (y - \delta_a)^2 \, dy
\]

\[
+ O \left(\frac{\phi'''(\delta_a)}{6} \int_{\delta_a-c}^{\delta_a} (y - \delta_a)^3 \, dy \right)
\]

\[
= \phi(\delta_a) \left\{ \frac{c}{\sqrt{2(r + 2\lambda)}} + \frac{\delta_a}{r^2 (r + 2\lambda)^2} + O \left(\frac{1}{r^2} \right) \right\}
\]

\[
= \phi(\delta_a) \left\{ \frac{r^{-1/2}}{\sqrt{2}} d_1 + r^{-1} \left(\frac{\delta_a}{4} d_1 + \frac{1}{\sqrt{2}} d_2 \right) \right\}
\]

\[
= \phi(\delta_a) \left\{ \frac{r^{-3/2}}{2} d_1 \frac{\delta_a - 1}{(\lambda^2 + \frac{1}{\sqrt{2}})} \left(\frac{d_1}{2} d_2 + \frac{1}{\sqrt{2}} d_3 \right) + O \left(\frac{1 + |\delta_a|^3}{r^3} \right) \right\}
\]

(A18)

We also have the straightforward large deviation bounds

\[
\int_{[a, \infty) \cap B_{\delta_a}^{\lambda}(1/2)} f_{r, \lambda}(x) \, dx = O(e^{-\beta r^{1/3}}),
\]

(A19)

\[
\int_{[a, \infty) \cap B_{\delta_a}^{\lambda}(1/2)} \phi(y) \, dy = O(e^{-\beta r^{1/3}}),
\]

where \(\beta = \beta(\lambda) > 0\) is a small enough constant, and the local approximation in Lemma 3.1 yields

\[
\int_{a}^{\infty} f_{r, \lambda}(x) \, dx - \int_{\delta_a}^{\infty} \phi(y) \, dy = r^{-1/2} \left\{ \frac{\sqrt{2}}{3} \Psi_3(\delta_a) - \sqrt{2} \Psi_1(\delta_a) \right\}
\]

\[
+ r^{-1} \left\{ \frac{1}{9} \Psi_6(\delta_a) - \frac{7}{6} \Psi_4(\delta_a) + 2 \Psi_2(\delta_a) - \frac{1}{6} \Psi(\delta_a) \right\}
\]

\[
+ r^{-3/2} \left\{ \frac{\sqrt{2}}{81} \Psi_9(\delta_a) - \frac{5}{9\sqrt{2}} \Psi_7(\delta_a) + \frac{47}{15\sqrt{2}} \Psi_5(\delta_a) \right\}
\]

\[
+ \frac{37}{9\sqrt{2}} \Psi_3(\delta_a) + \frac{1}{3\sqrt{2}} \Psi_1(\delta_a) \right\}
\]

\[
+ O \left(\frac{1 + \sqrt{\lambda^4}}{r^2} \right),
\]

(A20)

where \(\Psi_k(\delta_a) := \int_{\delta_a}^{\gamma} y^k \phi(y) \, dy.\) Now, using the fact that

\[
\Psi_9(\delta_a) = (384 + 192\delta_a^2 + 48\delta_a^4 + 8\delta_a^6 + \delta_a^8) \phi(\delta_a),
\]

\[
\Psi_7(\delta_a) = (48 + 24\delta_a^2 + 6\delta_a^4 + \delta_a^6) \phi(\delta_a),
\]

\[
\Psi_6(\delta_a) = (15\delta_a + 5\delta_a^3 + \delta_a^5) \phi(\delta_a) + 15\Psi(\delta_a),
\]

\[
\Psi_5(\delta_a) = (8 + 4\delta_a^2 + \delta_a^4) \phi(\delta_a),
\]

\[
\Psi_4(\delta_a) = (3\delta_a + \delta_a^3) \phi(\delta_a) + 3\Psi(\delta_a),
\]

\[
\Psi_3(\delta_a) = (2 + \delta_a^2) \phi(\delta_a),
\]

\[
\Psi_2(\delta_a) = \delta_a \phi(\delta_a) + \Psi(\delta_a),
\]

\[
\Psi_1(\delta_a) = \phi(\delta_a),
\]

(A21)
where Ψ denotes the survival function of the standard normal distribution, Equations (A18), (A19) and (A20) together yield

\[
\int_a^\infty f_{r,\lambda}(x) \, dx - \int_{\delta_a-c}^\infty \phi(y) \, dy
\]

\[
= r^{-1/2} \left\{ \frac{\sqrt{2}}{3} (\delta_a^2 - 1) - \frac{1}{\sqrt{2}} d_1 \right\} \phi(\delta_a)
\]

\[
+ r^{-1} \left\{ \frac{\delta_a}{18} (2\delta_a^4 - 11\delta_a^2 + 3) - \left(\frac{\delta_a^4}{4} d_1^2 + \frac{1}{\sqrt{2}} d_2 \right) \right\} \phi(\delta_a)
\]

\[
+ r^{-3/2} \left\{ \frac{\sqrt{2}}{81} \delta_a^6 - \frac{29}{81\sqrt{2}} \delta_a^6 + \frac{133}{135\sqrt{2}} \delta_a^4 - \frac{23}{135\sqrt{2}} \delta_a^6 - \frac{1}{135\sqrt{2}} \right\} \phi(\delta_a)
\]

\[
+ \mathcal{O} \left(\frac{1 \vee \lambda^4}{r^2} \right).
\]

(A22)

If we select $d_1 = d_2 = d_3 = 0$, then

\[
\max_{a \in \mathbb{R}} \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_{\delta_a-c}^\infty \phi(y) \, dy \right|
\]

\[
\leq r^{-1/2} \max_{a \in \mathbb{R}} \frac{\sqrt{2}}{3} |\delta_a^2 - 1| \phi(\delta_a) + \mathcal{O}(r^{-1}).
\]

(A23)

Since $\max_{y \in \mathbb{R}} \frac{\sqrt{2}}{3} |y^2 - 1| \phi(y) = \frac{1}{9\sqrt{\pi}}$, this proves (24). If we select $d_1 = \frac{2}{3} (\delta_a^2 - 1)$ and $d_2 = d_3 = 0$ to cancel the first brace in (A22), then

\[
\max_{a \in \mathbb{R}} \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_{\delta_a-c}^\infty \phi(y) \, dy \right|
\]

\[
\leq r^{-1} \max_{a \in \mathbb{R}} \frac{1}{18} |7\delta_a^4 - \delta_a| \phi(\delta_a) + \mathcal{O} \left(\frac{1 \vee \lambda}{r^{3/2}} \right),
\]

(A24)

which proves (25). If we select $d_1 = \frac{2}{3} (\delta_a^2 - 1)$, $d_2 = \frac{1}{9\sqrt{2}} (\delta_a - 7\delta_a^3)$ and $d_3 = 0$ to cancel the first two braces in (A22), then

\[
\max_{a \in \mathbb{R}} \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_{\delta_a-c}^\infty \phi(y) \, dy \right|
\]

\[
\leq r^{-3/2} \max_{a \in \mathbb{R}} \frac{1}{405\sqrt{2}} |219\delta_a^4 + (270\lambda - 14)\delta_a^2 - (270\lambda + 13)| \phi(\delta_a)
\]

\[
+ \mathcal{O} \left(\frac{1 \vee \lambda^4}{r^2} \right),
\]

(A25)

which proves (26). If we select $d_1 = \frac{2}{3} (\delta_a^2 - 1)$, $d_2 = \frac{1}{9\sqrt{2}} (\delta_a - 7\delta_a^3)$ and $d_3 = \frac{1}{405} (219\delta_a^4 + (270\lambda - 14)\delta_a^2 - (270\lambda + 13))$ to cancel the three braces in (A22), then

\[
\max_{a \in \mathbb{R}} \left| \int_a^\infty f_{r,\lambda}(x) \, dx - \int_{\delta_a-c}^\infty \phi(y) \, dy \right| = \mathcal{O} \left(\frac{1 \vee \lambda^4}{r^2} \right),
\]

(A26)

which proves (27). This ends the proof.
Appendix 2. Moments of the central and noncentral chi-square distribution

In the lemma below, we prove a general formula for the central moments of the central and noncentral chi-square distribution, and we evaluate the first, second, third, fourth and sixth central moments explicitly. This lemma is used to estimate the $\asymp r^{-1}$ errors in (32) of the proof of Theorem 4.1. It is also a preliminary result for the proof of Corollary A.2 below, where the central moments are estimated on various events.

Lemma A.1 (Central moments): Let $X \sim \chi^2_r(\lambda)$ for some $r > 0$ and $\lambda \geq 0$. We have

$$
\begin{align*}
\mathbb{E}[(X - (r + \lambda))] &= 0, \\
\mathbb{E}[(X - (r + \lambda))^2] &= 2(r + 2\lambda), \\
\mathbb{E}[(X - (r + \lambda))^3] &= 8(r + 3\lambda), \\
\mathbb{E}[(X - (r + \lambda))^4] &= 12(r^2 + 4r(1 + \lambda) + 4\lambda(4 + \lambda)), \\
\mathbb{E}[(X - (r + \lambda))^6] &= 40 \left(3r^3 + 2r^2(26 + 9\lambda) + 12r(8 + 26\lambda + 3\lambda^2) + 24\lambda(24 + 18\lambda + \lambda^2) \right).
\end{align*}
$$

(A27)

Proof of Lemma A.1: One way to compute these central moments would be to apply the recurrence formula developed in Withers and Nadarajah [69]. An other method consists in differentiating the moment-generating function

$$
\mathbb{E}[e^{tX}] = (1 - 2t)^{-r/2} \exp \left(\frac{\lambda t}{1 - 2t} \right), \quad t < 1/2,
$$

in order to find $\mathbb{E}[X^i]$, $i \in \mathbb{N}$, and then use the binomial formula:

$$
\mathbb{E}[(X - (r + \lambda))^n] = \sum_{i=0}^{n} \binom{n}{i} \mathbb{E}[X^i] (-1)^{n-i} (r + \lambda)^{n-i}, \quad n \in \mathbb{N}.
$$

(A29)

Using the latter approach with Mathematica give us the result.

We can also estimate the moments of Lemma A.1 on various events. The corollary below is used to estimate the $\asymp r^{-1/2}$ errors in (32) of the proof of Theorem 4.1.

Corollary A.2 (Central moments on various events): Let $X \sim \chi^2_r(\lambda)$ for some $r > 0$ and $0 \leq \lambda \leq r$, and let $A \in \mathcal{B}(\mathbb{R})$ be a Borel set. Then,

$$
\begin{align*}
\left| \mathbb{E}[(X - (r + \lambda)) \mathbb{1}_{[X \in A]}] \right| &\leq 6^{1/2} r^{1/2} \left(\mathbb{P}(X \in A^c) \right)^{1/2}, \\
\left| \mathbb{E}[(X - (r + \lambda))^2 \mathbb{1}_{[X \in A]}] - 2(r + 2\lambda) \right| &\leq 348^{1/2} r \left(\mathbb{P}(X \in A^c) \right)^{1/2}, \\
\left| \mathbb{E}[(X - (r + \lambda))^3 \mathbb{1}_{[X \in A]}] - 8(r + 3\lambda) \right| &\leq 61960^{1/2} r^{3/2} \left(\mathbb{P}(X \in A^c) \right)^{1/2}.
\end{align*}
$$

(A30)

Proof of Corollary A.2: Note that (A27) implies

$$
\begin{align*}
\mathbb{E}[(X - (r + \lambda))^2] &= 6r, \\
\mathbb{E}[(X - (r + \lambda))^4] &\leq 348 r^2, \\
\mathbb{E}[(X - (r + \lambda))^6] &\leq 61960 r^3.
\end{align*}
$$

(A31)

By (A27), we also have
We get (A30) by applying the Cauchy–Schwarz inequality and bounding using (A31).