Effects of manual motor and cognitive training on functionality and cognition of institutionalized elderly people.

Jaqueline Simionatto*
Arthur Duarte Fantesia Costa Cruz*
Ana Paula Souza Malta Campos*
Dayane Aparecida Moisés Caetano Bottini*
Juliana Hotta Ansai*
Ana Beatriz Gomes de Souza Pegorare*
Suzi Rosa Miziara Barbosa*

Abstract

This study aimed to verify the effects of manual and cognitive motor training on the functionality and cognition of institutionalized elderly people. 26 institutionalized elderly participated in the study and were divided into two groups at random: Intervention Group (IG) (n=13) and Control Group (CG) (n=13). In the IG, 17 interventions were performed with games that worked on cognitive functions and playful-collective activities that stimulated memory, social interaction, and manual motor skills, whereas the CG did not. To assess functionality, the Katz Scale and the Barthel Index were used. For cognitive evaluation, the Mini Mental State Examination (MMSE), the Clock-drawing Test, and the Verbal Fluency Test were used. In the statistical analysis, the difference between the final and initial scores (delta), the t test for comparison between groups, and a significance level of 5% were used. As a result, the IG was composed mainly of women (61.54%) and had a mean age of 78.07 years. In the CG, there were more men (61.54%), with a mean age of 74.84 years. There was a significant improvement in the IG in the scores of the Katz Scale, MMSE and Verbal Fluency Test, compared to the CG. The use of activities that assist in independence, cognition, memory, and socialization are necessary to maintain and/or improve functionality, contributing to guarantee the quality of life of the elderly. Thus, this study contributes to the practice of sensory-motor and cognitive stimulation in long-term care facilities for the elderly, acting in a complementary way to public health policies for the elderly.

Keywords: Cognition. Population dynamics. Elderly health. Long-term care facility for the elderly.

INTRODUCTION

Cognition reflects the individual's mental functioning and includes some skills such as the ability to think, feel, perceive, remember, reason, respond to stimuli, and perform functions. The maintenance of cognitive function is correlated with current epidemiological changes, in that there is an increase in life expectancy triggering an increasing aging population.

With advancing age, dysfunctions can occur that compromise physical and mental independence, negatively influencing the performance of activities of daily living (ADL), autonomy, and cognition. These conditions promote an increase in the risk of falls, causing dependencies, hospitalizations, and institutionalizations. Consequently, cognitive loss is related to institutionalizations and to the risk of death in the elderly.

This sum of physical-functional and
cognitive dysfunctions predisposes elderly the referral by their family members to Long-Term Care Institutions for the Elderly (LTCF). Inactivity and leisure are frequent characteristics in the LTCF, as well as the lack of social and family interaction. Thus, in addition to deficits arising from advanced age, the LTCF itself can further deteriorate the physical-functional and cognitive capacity of institutionalized elderly people, requiring multiprofessional care.

Cognitive training in the elderly has shown positive results in relation to memory and learning, increased cognitive performance, and improvement or maintenance of functionality. Manual and cognitive motor training are non-pharmacological interventions with the objective of preserving or enhancing intellectual and motor capacities (neuroplasticity), through the performance of combined activities. Such training relates to the development of strategies, ability to concentrate, attention, memory, and problem solving with activities that also require motor coordination of the upper limbs for their execution.

In this context, there is a lack of consensus in the national literature on which interventions cause better results on cognitive training in the elderly. Some authors highlight the need to expand the number of studies to test the effectiveness of interventions. Additionally, in two literature reviews, a difficulty was highlighted in consolidating some facts in the literature, such as: the different types of interventions, number of sessions, lack of control group, and different instruments.

Thus, the development of this study aimed to verify the effects of manual (upper limbs) and cognitive motor training on the cognition and functionality of institutionalized elderly. The hypothesis was that this training would improve the functional and cognitive capacity of institutionalized elderly people.

METHOD

This was a randomized clinical trial. The sample consisted of residents of a philanthropic LTCF, located in Campo Grande (MS). The study was carried out from September to December 2016.

Because it is a large LSIE, there are many elderly people in different health conditions. Thus, the methods proposed by this study were presented to health professionals who work at this LTCF. After the presentation, the institution's psychologist listed all the possible elderly people who would be able to participate in this study, taking into account cognitive, psychological, physical and motor issues of the upper limbs.

The elderly were excluded from the study if they missed more than three sessions of the interventions, if they possessed visual problems that interfered in the performance of the proposed activities, and those with physical and motor impairments of the upper limbs.

The sample consisted of 26 elderly people of both sexes, who were randomly divided into two groups: Intervention (IG; n=13) and Control (CG; n=13). The methodological protocol of the study was carried out in three stages: (1) evaluation, (2) intervention, and (3) reassessment. The IG went through three stages: evaluation, intervention, and reassessment. The CG received an initial assessment and a reassessment, without intervention. All evaluations were performed by two physiotherapists previously trained to apply the evaluations and interventions.

In the 1st stage, the following instruments were used to assess functionality: Katz scale and Barthel index. For the cognitive evaluation, Mini Mental State Examination (MMSE), Clock-drawing Test, and Verbal Fluency Test were used.

In the 2nd stage, interventions in the IG
were performed twice a week, totaling 17 interventions, lasting 90 minutes, during the three months of study duration. The meetings were held in the LTCF cafeteria on Tuesdays and Thursdays in the afternoon, and this place offered an adequate structure to carry out the proposed activities. For the development of activities, the elderly were invited to sit in groups, around tables that had four seats. Depending on the activity and need, the elderly sat in pairs or even individually. Such interventions were carried out in rotation, so that all members could carry out all the activities offered.

During the interventions, games were used that worked on cognitive functions, memory, social interaction, and motor skills of the upper limbs, such as assembling puzzles and figures, painting, drawing, writing sentences and words, playing dominoes and mathematical games, fitting shapes, recognizing colors, and more.

In the 3rd stage, the reassessment (final evaluation) of both groups was applied, using the same protocol as in the 1st stage. The study flowchart is described in Figure 1.

Figure 1- Study flowchart

Recruitment	26 elderly participants in the study
Initial assessment	**Functional capacity:** Katz scale and Barthel index. **Cognitive assessment:** Mini Mental State Examination (MMSE), Clock-drawing Test and Verbal Fluency Test
Intervention	Manual and Cognitive Motor Training
Final evaluation	**Functional capacity:** Katz scale and Barthel index. **Cognitive assessment:** Mini Mental State Examination (MMSE), Clock-drawing Test and Verbal Fluency Test
Final sample	26 participants
The Katz Index was developed to measure the ability of the elderly to perform their daily activities independently and, thus, determines the appropriate rehabilitation interventions. The skills of showering, dressing, using the bathroom, transferring, continence, and food are assessed, classifying elderly people as independent or dependent. In this study, the score of ≤ 2 points = very dependent; 4 points = moderate dependence; 6 points = independent.

The Barthel Index is one of the most used instruments to assess basic activities of daily living (BADL) in the elderly, which analyzes functional independence in personal care, mobility, locomotion, and eliminations. The score ranges from 0 to 100 points, in five-point intervals, and the higher scores indicate greater independence. In this study, the following scores were used: 0-20 indicates total dependence; 21-60, severe dependence; 61-90, moderate dependency; 91-99, very light dependency; and 100, independence.

The MMSE is a tool, quick and easy to use, used for the screening of cognitive impairment, detecting cognitive losses, evolution of diseases, monitoring the response to treatment, and helping in the diagnosis of dementia. MMSE was worth five areas: guidance, registration, attention and calculation, recovery and language. The MMSE involves two categories of response, verbal and non-verbal. The score can vary between 0 and 30 points, with the standard cut-off value being 24 points. Below this value, it was considered an indication of cognitive deficit. The application of the cut-off score must be modified according to the patient's level of education, and for illiterates the cut-off value was 18 points.

The Clock-drawing Test is a quick resource to be applied and translates the frontal and temporoparietal functioning pattern. This test assesses several cognitive dimensions, such as memory, motor function, executive function, and verbal comprehension. The score consists of a point scale from 0 (totally incorrect or nonexistent clock) to 10 points (totally correct clock). The ideal cutoff point for the test is 6 points. In this test, it is important to observe the time and strategies used, in addition to the final result such as such steps in the process can contribute with valuable information. The educational level must always be taken into account. For carrying out the test, guidance is provided on the clock to be drawn, as well as what time the hands should mark. Then, a sheet of paper is offered to the individual and he/she is free to choose where to make the drawing on the paper, if he thinks the drawing was not good and wants to draw again, it is allowed.

The Verbal Fluency Test is part of a series of neuropsychological tests and provides information regarding the storage capacity of the semantic memory system, the ability to retrieve stored information, and the processing of executive functions. At the end, 1 point is given for each non-repeated animal name. The cut-off score for illiteracy individuals is 12 points and for literate individuals is 17 points.

For statistical analysis, the SPSS software was used. The data were subjected to the Shapiro-Wilk and Levene tests to verify the normality and homogeneity of the distribution. Subsequently, after checking the normal distribution of the data, the t test was performed for independent samples for comparison between groups (control and intervention). In all cases, a significance level
of 5% was considered.

This study was approved by the Human Research Ethics Committee of the Federal University of Mato Grosso do Sul (UFMS), under Opinion no. 1.816.837, CAAE 58762116.7.0000.0021. Objectives and methodology were presented and each volunteer signed the Informed Consent Form (ICF), according to Resolution 466/2012 of the National Health Council of the Ministry of Health (Brazil) and Resolution No. 510/2016.

RESULTS

The IG was composed of eight females (61.54%) and five males (38.46%). The average age was 78.07 (±8.89) years old, with 23.07% between 60-69 years old, 30.76% between 70-79 years old, 30.76% between 80-89 years old, and 15.38% over 90 years old. In the CG, five individuals were female (38.46%) and eight were male (61.54%). Regarding age, the average obtained was 74.84 (±12.82) years old, with 30.76% between 60-69 years old, 38.46% between 70-79 years old, 23.07% between 80-89 years old, and 7.69% over 90 years old.

When analyzing the age group, the age of the participants in the sample ranged from 60 to 106 years, with an average age of 76.46 (+10.55) years. With regard to education, six elderly people (two males and four females) were illiterate, representing 20% of the participants.

Table 1 shows the descriptive measures in relation to the cognitive tests applied in the assessment and reassessment in the IG and CG and the results of the applied statistical tests. In comparison to the CG, there was a statistically significant difference in the performance of the IG in the Katz Scale, MMSE, and in the Verbal Fluency Test, showing that the intervention was positive to improve patients in these tests. The CG presented negative deltas in the Katz scale, Barthel scale, Clock-drawing Test, and verbal fluency test, that is, there was a worsening in the functional and cognitive performances of the evaluation for reassessment. The only test that the mean of the CG did not decrease was the MMSE, but, when compared with the IG, the performance of the group without intervention was lower. Regarding the level of dependence through the Barthel Test, there was a numerical improvement in the mean of the IG and a numerical worsening in the mean of the CG. However, this difference was not statistically significant (p=0.09) in the performance of the functionality by this test.

In the analysis of cognitive tests for signs of deficit before and after the intervention, the results are described in Table 2.

Regarding the level of dependence, Tables 3 and 4 show the results of the Katz Scale and the Barthel Index, respectively, in the assessment and reevaluation of both groups. In the CG there is a drop in the averages of the evaluation and reevaluation of the Katz Scale, Barthel Scale, Verbal Fluency, and Clock-drawing Test, showing a worsening in the classification of some elderly people. In the reassessment, on the Katz Scale, there was an increase in the number of elderly individuals independent of the IG.
Table 1- Cognitive and motor characteristics, before and after the intervention, Campo Grande, MS, Brazil, 2017.

Tests	Intervention Group	Group control	T test				
	Evaluation	Revaluation	Delta	Evaluation	Revaluation	Delta	
Katz scale	3.69 (±2.05)	4.07 (±2.06)	0.4 (±1.2)	4.53 (±2.33)	3.76 (±2.68)	-0.8 (±1.2)	0.02*
Barthel scale	65.38 (±28.39)	71.15 (±33.48)	5.8 (±19.9)	71.15 (±35.83)	63.84 (±40.78)	-7.3 (±17.2)	0.09
MMSE	13.76 (±5.50)	20.46 (±6.57)	6.7 (±6.5)	17.61 (±2.90)	18.84 (±4.29)	1.2 (±3.0)	0.01*
Clock-drawing Test	5.75 (±5.07)	6.54 (±4.71)	0.8 (±2.4)	3.07 (±3.94)	2.92 (±4.31)	-0.2 (±2.3)	0.34
Teste de Fluência Verbal	7.46 (±2.87)	8.38 (±3.75)	0.9 (±3.2)	9.0 (±2.94)	5.84 (±2.93)	-3.2 (±3.3)	0.004*

IG: Intervention Group; GC: Control Group; MMSE: Mini Mental State Examination.
The results are presented in absolute frequencies (relative frequency).

Table 2- Results of the Mini Mental State Examination, Clock-drawing Test, and Verbal Fluency Test, before and after the intervention, Campo Grande, MS, Brazil, 2017.

Tests	Groups	Evaluation	Revaluation		
		Indication of cognitive deficit	Without cognitive deficit	Indication of cognitive deficit	Without cognitive deficit
MMSE	IG	13 (100%)	0 (0%)	8 (61.54%)	5 (38.46%)
	CG	12 (92.30%)	1 (7.70%)	10 (76.92%)	3 (23.07%)
Clock-drawing Test	IG	11 (84.61%)	2 (15.39%)	9 (69.23%)	4 (30.76%)
	CG	12 (92.30%)	1 (7.70%)	12 (92.30%)	1 (7.70%)
Verbal Fluency Test	IG	12 (92.30%)	1 (7.70%)	10 (76.98%)	3 (23.07%)
	CG	10 (76.98%)	3 (23.07%)	13 (100%)	0 (0%)

MMSE: Mini-Mental State Examination; IG: Intervention Group; GC: Control Group.
The results are presented as averages (±standard deviation).
* P-value <0.05.

Table 3- Results of the Katz Scale, before and after the intervention, Campo Grande, MS, Brazil, 2017.

Groups	Evaluation Rating	Katz scale	Revaluation Rating			
	Very dependent	Moderately dependent	Independent	Very dependent	Moderately dependent	Independent
IG	4 (30.76%)	4 (30.76%)	5 (38.46%)	4 (30.76%)	3 (23.07%)	6 (46.15%)
CG	4 (30.77%)	0 (0%)	9 (69.23%)	5 (38.46%)	0 (0%)	8 (61.54%)

IG: Intervention Group
CG: Control Group
In the present study, as an overview, the elderly in the IG achieved better results and classifications compared to the CG. This panorama was not observed in the study by Loureiro et al.18, where 23 sessions of cognitive rehabilitation intervention were carried out with institutionalized elderly people and no significant gains in functional capacity were found (p-value=0.3173). The authors concluded that functional capacity may have been affected by motor limitations, other dependencies involved, and by the institutional organization of the LTCF.

With regard to cognitive tests, in the reevaluation of the IG, there was an improvement in the performance of the MMSE, where five elderly people (38.46\%) started not to have cognitive deficit, a fact that diverged from the initial assessment where all the elderly people had cognitive deficit. The mean of the MMSE values of the CG also showed improvement. In a study carried out by Souza and Chaves19, the MMSE was applied to a sample of healthy elderly people, followed by activities that stimulated memory. After eight meetings, lasting two hours each, a reassessment was carried out by the MMSE, verifying that 66\% of the elderly showed improvement in the performance of the cognitive test, converging with the results of this study.

A study carried out with 53 elderly people, divided into two groups (G1: 22 institutionalized elderly and G2: 31 non-institutionalized elderly), showed cognitive impairment, assessed by the MMSE, in G1, with a result of 11.73 (±6.04) points, and cognitive functions preserved in G2, with an average of 26.39 (±3.2) points20. The lower cognitive performance of elderly people in LTCF compared to those living in the community suggests that institutionalization can worsen cognitive loss. According to Marin et al.21, LTCFs offer housing, hygiene, food, medical care. However, such institutions distance the individual from family life, favoring social isolation, physical and mental inactivity and dependence, and resulting in decreased functionality and, consequently, losses in the performance of BADL.

In the present study, the IG showed improvement in the Clock-drawing Test, given that only two elderly people (15.39\%) were without cognitive impairment before the intervention and after the intervention, this value doubled. Even so, the Delta of the Test's average score was low (GI: 6.53 points, and CG: 2.92 points). It is possible that this result

Groups	Evaluation Rating	Revaluation Rating
IG	0 (0\%)	1 (7.70\%)
	7 (53.84\%)	5 (38.46\%)
	2 (15.39\%)	1 (7.70\%)
	4 (30.76\%)	6 (46.15\%)
CG	2 (15.39\%)	3 (23.07\%)
	2 (15.39\%)	2 (15.39\%)
	7 (53.84\%)	4 (30.76\%)
	5 (38.46\%)	4 (30.76\%)

I: Dependent; II: Severely dependent; III: Moderately dependent; IV: Independent.
IG: Intervention Group; CG: Control Group.
The results are presented in absolute frequency (relative frequency).
is due to the poor mental representation of the analog clock, either due to the greater use of digital clocks or because they are not encouraged to observe the time. Executive functions are defined as responsible for the appropriate behavior, solving problems that arise in daily life, and carrying out a future project. Changes related to the deficit of these functions in the long-term can significantly interfere in the development of the individual, in their understanding, in the memory of activities, and in the malleability of cognition.

In the Verbal Fluency Test, GI also showed improvement in values after the intervention. In the assessment, 92.30% of the elderly had cognitive decline and in the reassessment there was a decrease to 76.98%. In the CG, in the initial assessment, 76.98% of the elderly had a deficit and in the reevaluation, 100% of them had cognitive decline. Such results show that physical and mental inactivity can worsen the cognitive and, consequently, their functional state, and is able to anticipate and even accentuate the declines resulting from the aging process and impair the quality-of-life.

In addition to cognitive and functional improvement, greater communication and social interaction was observed between the participants of the IG, as they moved from their rooms to carry out the activities and met in the cafeteria of the institution before the scheduled time for the start of each intervention. At this time, the elderly initially talked about their day-to-day difficulties and sometimes continued to tell their life's stories. In addition, the playfulness of the interventions enabled the awakening of creativity and imagination, leading to a greater interaction between the participants and the people around them. Another study also reported participants' satisfaction in developing group activities. Such activities provided motivation, social interaction, and bonding among the participants, who felt included in the community again.

In a study carried out with 21 institutionalized elderly people, the beneficial effects of cognitive training in relation to memory were analyzed, with the main functions favored being understanding, reasoning, judgment, guidance, attention, and memory. The training also stimulated the cognitive reserve, improving of this ability. Another study carried out in Portugal with 12 institutionalized elderly people showed, during cognitive training, the improvement of language skills and constructive ability, orientation, retention, attention, calculation, and evocation, showing significant progress in the elderly individuals' cognition, in addition to the feeling of well-being and improvement in quality-of-life.

A study carried out in Belgium, with 20 institutionalized elderly, used virtual reality training associated with functional activity (cognitive and motor) with the aid of a platform. The results showed that the associated training provided satisfaction and situations that demanded quick decision making, in addition to beneficial effects on the executive function, functionality during commuting, changes in direction, and balance of the elderly.

In the literature, other studies have shown that moments of social interaction were extremely important to reduce the feeling of isolation. Often, institutionalization triggers depression, due to the loss of identity, freedom, and self-esteem, the state of loneliness, and even the refusal of life itself, justifies the high prevalence of mental illness in a LTCF.

Neuroplasticity is the brain's ability to recover from stimuli and is the result of experiences lived by the individual at
any stage of life. Such neural plasticity is expressed through learning and memory, but it can occur through the loss or malfunction of neurons. Additionally, the brain has the ability to reestablish connections, which can improve its performance through training. Thus, multisensory and cognitive stimulations cooperate to establish neuroplasticity and improve cognition, in addition to contributing to the individual's adaptation to new experiences.

Oliveira et al. investigated the benefits of a multisensory and cognitive stimulation program in institutionalized and non-institutionalized elderly people and observed that the elderly in the second group obtained better results in the proposed tests. The authors suggested that the impoverished environment of the LTCF, in terms of promoting stimuli, could result in lower cognitive scores. The same study group performed a follow-up at five different times (two, four, six, eight, and twelve months), reassessing these elderly people, from both groups. After one year, the non-institutionalized elderly showed less neuropsychological decline compared to institutionalized elderly. This fact was again related to the living environment of the elderly, emphasizing that non-institutionalized elderly people have more experiences in their ADL, community and family environment, sustaining the effects of the intervention for a longer time.

Regarding the limitation of this study, it was carried out with a small sample number, since most of the invited elderly did not meet all the inclusion criteria to participate in the study. In addition, there was no blinding of the evaluations, which may have influenced the results. It is known that aging can cause dysfunctions that compromise physical and mental independence, the execution of ADLs and the autonomy of the elderly, especially when institutionalized. The lack of neuropsychomotor stimulation makes the elderly passive in their aging and compromises the psychocognitive aspects and their ADL. The data obtained in this study showed that the cognitive motor training adopted in 17 interventions, proved to be effective in improving the functionality and cognition of the elderly.

CONCLUSION

The results show that, after the interventions, there was a statistical improvement in the Katz Scale, MMSE, and Verbal Fluency Test in the IG. The CG had worse results on the Katz Scale, Barthel Scale, Clock-drawing Test, and Verbal Fluency Test, showing a cognitive decrease and functional motor ability.

The use of activities that help maintain independence, cognition, memory, and socialization are necessary to maintain and/or improve functionality, contributing to guarantee the quality-of-life of the elderly. Thus, this study contributes to the practice of sensory-motor and cognitive stimulation within long-term institutions, acting in a complementary way to public health policies for the elderly.

FUNDING: Coordination for the Improvement of Higher Education Personnel (CAPES - code 001) and Office of the Dean of Research and Graduate Studies at the Federal University of Mato Grosso do Sul Foundation (PROPP / UFMS).
1. Andrade FLJP, Lima JMR, Fidelis KNM, Jerez-Roig J, Lima KC. Cognitive impairment and associated factors among institutionalized elderly persons in Natal, Rio Grande do Norte, Brazil. Rev Bras Geriatr Gerontol. 2017;20(2):186-96. http://dx.doi.org/10.1590/1981-22562017020.160151

2. Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of cognitive training and mental stimulation on cognition and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev. 2014;15:28-43. http://dx.doi.org/10.1016/j.arr.2014.02.004

3. Gomes ECCM, Marques APO, Leal MCC, Barros BP. Fatores associados ao risco de quedas acidentais em idosos institucionalizados: uma revisão integrativa. Cienc Saúde Coletiva. 2014;19(8):3543-51. http://dx.doi.org/10.1590/1413-8123201419.16302013

4. Golino MTS, Flores-Mendoza CE. Desenvolvimento de um programa de treino cognitivo para idosos. Rev Bras Geriatr Gerontol. 2016;19(5):769-85. http://dx.doi.org/10.1590/1809-98232016019.150144

5. Karbach J, Verhaeghen P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol Sci. 2014;25(11):2057-73. http://dx.doi.org/10.1177/0956797614548725

6. Nunes CAN. Impacto de um programa de treino cognitivo em idosos institucionalizados. 2017. [Dissertação] Mestrado em Enfermagem de Reabilitação. Instituto Politécnico de Bragança, Escola Superior de Saúde; 2017. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/14620/1/TESE_treino_cognitivo_EnReab_Catarina_Nunes.pdf. Acesso em 15 mar 2019.

7. Menezes AV, Aguiar AS, Alves EF, Quadros LB, Bezerra PP. Efeito de um treino cognitivo em idosos institucionalizados: uma revisão integrativa. Cienc Saúde Coletiva. 2016;21(11):3459-67. http://dx.doi.org/10.1590/1413-8123201611.17892015

8. Santos MT, Flores-Mendoza C. Treino Cognitivo para Idosos: Uma Revisão Sistemática dos Estudos Nacionais. Psico-USF vol.22 no.2 Campinas maio/ago. 2017. http://dx.doi.org/10.1590/1413-82712017220212

9. Souza F, Mendes A, Bennemann R, Milan R. Treino cognitivo para grupos de idosos: uma revisão Sistemática. Sociedade Portuguesa de Psicologia da Saúde - SPPS - www.sp-ps.pt DOI: http://dx.doi.org/10.15309/19psps2018

10. Lino VTS, Pereira SRM, Camacho LAB, Ribeiro Filho ST, Baksman S. Cross-cultural adaptation of the independence in activities of daily living index (Katz Index). Cad Saúde Pública. 2008;24(1):103-12. http://dx.doi.org/10.1590/S0102-311X20080001000010

11. Minossi JMS, Amendola F, Alcoraera MM, Oliveira MAC. Validação, no Brasil, do índice de Barthel em idosos atendidos em ambulatórios. Acta Paul Enferm São Paulo. 2010;23(2):218-223. http://dx.doi.org/10.1590/S0103-21002010000200011

12. Salselas SCSB. Ganhos em independência funcional no doente com AVC. 2016. [Dissertação] Mestrado em Enfermagem de Reabilitação. Instituto Politécnico de Bragança, Escola Superior de Saúde; 2016. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/13076/1/Ganhos%20em%20independ%C3%A9ncia%20funcional%20do%20doente%20com%20AVC%20-%20Susana%20Salselas.pdf. Acesso em 20 jun 2019.

13. Melo DM, Barbosa AJG. O uso do Mini Exame do Estado Mental em pesquisas com idosos no Brasil: uma revisão sistemática. Ciênc Saúde Coletiva. 2015;20(12):3865-76. http://dx.doi.org/10.1590/1413-823020150120.06302015

14. Montiel JM, Cecato JF, Bartholomeu D, Martinelli JE. Tests do desenho do relógio e de fluência verbal: contribuição para o diagnóstico do Alzheimer. Psicol Teor Prat. 2014;16(1):169-80. Disponível em: http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1516-36872014000100014. Acesso em 25 jun 2020.

15. Hamdan AC, Hamdan EMLR. Teste do desenho do relógio: desempenho de idosos com doença de Alzheimer. RBCEH. 2009;6(1):98-105. http://dx.doi.org/10.5335/rbceh.2009.6.1

16. Rodrigues AB, Yamashita ET, Chiappetta ALML. Teste de fluência verbal no adulto e no idoso: verificação da aprendizagem verbal. Rev CEFAC. 2008;10(4):443-51. http://dx.doi.org/10.1516/s1516-18472008000040004

17. Brucki SM, Rocha MS. Category fluency test: effects of age, gender and education on total scores, clustering and switching in Brazilian Portuguese-speaking subjects. Braz J Med Biol Res. 2004;37(12):1771-7. http://dx.doi.org/10.1590/S0100-879X2004001200002

18. Moreira APL, Lima AA. Silva RCCG. Najar ECA. Reabilitação cognitiva em idosos institucionalizados: um estudo piloto. Rev Ter Occup Univ São Paulo. 2011;22(2):136-144. https://dx.doi.org/10.11606/issn.2236-6149.v22i2p136-144

19. Souza IN, Chaves ECO. Efeito do exercício de estimulação da memória em idosos saudáveis. Rev Esc Enferm USP. 2005;39(1):101-5. http://dx.doi.org/10.1590/S0103-2100200501000100002

20. Trindade APNT, Barbosa MA, Oliveira FB, Borges APO. Repercussão no declínio cognitivo na capacidade funcional em idosos institucionalizados e não institucionalizados. Fisioter Mov. 2013;26(2):289-90. http://dx.doi.org/10.1590/S1981-9823201301000200005

21. Marin MJS, Miranda FA, Fabbri D, Tinelli LP, Storniolo LV. Compreendendo a história de vida de idosos institucionalizados. Rev Bras Geriatr Gerontol. 2012;15(1):147-54. http://dx.doi.org/10.1590/S1809-98232012000100016

22. Costa L, Sanches LRG, Lima JMR, Fidelis KNM, Barbosa MA, Borges APO. Efeitos de um programa de treino cognitivo em idosos institucionalizados com comprometimento cognitivo leve e demência leve. Psicol Teor Prat. 2014;16(1):169-80. http://dx.doi.org/10.1590/1413-81232014000100003

23. Oliveira RMS. O Teste do Relógio. Tempo de Mudança? [Dissertação] Mestrado Integrado em Psicologia, na Faculdade de Psicologia e Ciências da Educação da Universidade do Porto; 2013. Disponível em: https://sigarra.up.pt/ipceup/pt/pub_geral_pub_view/pi_pub_base_id=30235. Acesso em 16 jul 2019.

24. Cordeiro J, Castillo BLD, Freitas CS, Gonçalves MP. Efeitos da atividade física na memória declarativa, capacidade funcional e qualidade de vida em idosos. Rev Bras Geriatr Gerontol. 2014;17(3):541-52. http://dx.doi.org/10.1590/1809-9823.2014.13006

25. Chariglione IPF, Janczura GA. Contribuições de um treino cognitivo para a memória de idosos institucionalizados. Psico-USF. 2013;18(1):11-22. http://dx.doi.org/10.1590/1413-82712013000100003
de Bragança. Escola Superior de Educação. Bragança; 2014. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/11546/1/Sara%20Isabel%20Diegues%20Fernandes.pdf. Acesso em 20 jul 2019.
27. Delbroek T, Vermeulen W, Joke Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: a randomized controlled trial. J Phys Ther Sci. 2017;29:1137-43. http://dx.doi.org/10.1589/jpts.29.11377
28. Bruna FTL, Dyelly HYS, Claudia LOA. Avaliação cognitiva dos idosos institucionalizados. Rev Kairós 2009;12(1):247-56. https://doi.org/10.23925/2176-901X.2009v12i1p%25p
29. Valcarenghi RV, Santos SSC, Barlem ELD, Pelzer MT, Gomes GC, Lange C. Alterações na funcionalidade/cognição e depressão em idosos institucionalizados que sofreram quedas. Acta Paul Enferm. 2011;24(6):828-33. http://dx.doi.org/10.1590/S0103-21002011000600017
30. Macedo LDD, Oliveira TCG, Soares FC, Bento-Torres J, Bento-Torres NVO, Anthony DC, et al. Beneficial effects of multisensory and cognitive stimulation in institutionalized elderly: 12-months follow-up. Clin Interv Aging. 2015;10:1351-60. http://dx.doi.org/10.2147/CIA.S80997
31. Oliveira TCGD, Soares FC, Macedo LDD, Diniz DLWP, Bento-Torres NVO, Picanço-Diniz CW. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions. Clin Interv Aging. 2014;9 309-21. http://dx.doi.org/10.2147/CIA.S54383
32. Sato AT, Batista MPP, Almeida MHM. Programas de estimulação da memória e funções cognitivas relacionadas: opiniões e comportamentos dos idosos participantes. Rev Terap Ocup Univ São Paulo. 2014;25(1):51-9. https://doi.org/10.11606/issn.2238-6149.v25i1p51-59
33. Rahe J, Petrelli A, Kaesberg S, Fink GR, Kessler J, Kalbe E. Efeitos do treinamento cognitivo com atividade física adicional em comparação com o treinamento cognitivo puro em idosos saudáveis. Interv Clin Envel. 2015;10:297-310. http://dx.doi.org/10.1590/S0102-79722012000100023

Received in june 2020.
Accepted in november 2020.
Efeitos do treinamento motor manual e cognitivo na funcionalidade e cognição de idosos institucionalizados.

Este estudo objetivou verificar os efeitos do treinamento motor manual e cognitivo sobre a funcionalidade e cognição de idosos institucionalizados. Participaram do estudo 26 idosos institucionalizados, divididos em dois grupos de forma aleatória: Grupo Intervenção (GI) (n=13) e Grupo Controle (GC) (n=13). No GI, foram realizadas 17 intervenções com jogos que trabalharam as funções cognitivas e atividades lúdico-coletivas que estimulavam a memória, o convívio social e habilidade motora manual, enquanto que o GC não realizou. Para avaliação da funcionalidade, foram utilizados a Escala de Katz e o Índice Barthel. Para avaliação cognitiva, foram utilizados o Mini Exame de Estado Mental (MEEM), o Teste do Relógio e o Teste de Fluência Verbal. Na análise estatística, utilizou-se a diferença das pontuações final e inicial (delta), teste t para comparação entre grupos e nível de significância de 5%. Como resultados, o GI foi composto majoritariamente por mulheres (61,54%) e apresentou média de idade de 78,07 anos. No GC, havia mais homens (61,54%), com média de idade de 74,84 anos. Houve melhora significativa no GI nas pontuações da Escala de Katz, MEEM e Teste de Fluência Verbal, em comparação ao GC. O emprego de atividades que auxiliam na independência, cognição, memória e socialização são necessários para manter e/ou melhorar a funcionalidade contribuindo para garantia da qualidade de vida do idoso. Assim, este estudo contribui com a prática da estimulação sensório-motora e cognitiva dentro de instituições de longa permanência para idosos, atuando de modo complementar às políticas de saúde pública de idosos.

Palavras-chave: Cognição, Dinâmica populacional, Saúde do idoso, Instituição de longa permanência para idosos.

INTRODUÇÃO

A cognição reflete o funcionamento mental do indivíduo e engloba algumas aptidões como a capacidade de pensar, sentir, perceber, lembrar, raciocinar, responder a estímulos e executar funções¹. A manutenção da função cognitiva se correlaciona com as atuais mudanças epidemiológicas, de modo que existe um aumento na expectativa de vida que desencadeia em um crescente envelhecimento da população².

Com o avançar da idade, podem ocorrer disfunções que comprometem a independência física e mental, influenciando negativamente a realização de atividades de vida diária (AVD), a autonomia e a cognição. Essas condições promovem um aumento no risco de quedas, causando dependências, hospitalizações e institucionalizações. Por conseguinte, a perda cognitiva está relacionada às institucionalizações e ao risco

DOI: 10.15343/0104-7809.202044539549

*Universidade Federal do Mato Grosso do Sul – UFMS. Campo Grande/MS, Brasil. E-mail: anabegs@hotmail.com
de morte em idosos. Essa soma de disfunções físicas-funcionais e cognitivas predispõem o encaminhamento por familiares de idosos às Instituições de Longa Permanência para Idosos (ILPI). A inatividade e o ócio são características frequentes nas ILPI, assim como a falta de interação social e familiar. Assim, além dos déficits oriundos da idade avançada, a própria ILPI pode deteriorar ainda mais a capacidade física-funcional e cognitiva dos idosos institucionalizados, necessitando de cuidados multiprofissionais.

O treinamento cognitivo em idosos, tem demonstrado resultados positivos em relação a memória e aprendizagem, aumento de desempenho cognitivo, melhoria ou manutenção da funcionalidade. O treino motor manual e cognitivo são intervenções não-farmacológicas com o objetivo de preservar ou potencializar as capacidades intelectuais e motoras (neuroplasticidade), através da execução de atividades combinadas. Tais treinos relacionam o desenvolvimento de estratégias, capacidade de concentração, atenção, memória e resolução de problemas com atividades que também exigem coordenação motora dos membros superiores para sua execução.

Nesse contexto, observa-se a ausência de um consenso na literatura nacional sobre quais intervenções causam melhores resultados sobre o treino cognitivo nos idosos. Alguns autores destacam a necessidade de ampliar o número de estudos para testar a eficácia das intervenções. Adicionalmente, em duas revisões de literatura, foi ressaltada uma dificuldade em se consolidar alguns fatos na literatura, como: os diferentes tipos de intervenção, número de sessões, falta de grupo controle e diferentes instrumentos de avaliação.

Dessa forma, o desenvolvimento desse estudo teve como objetivo verificar os efeitos do treinamento motor manual (membros superiores) e cognitivo sobre a cognição e a funcionalidade de idosos institucionalizados. A hipótese era de que esse treinamento melhorasse a capacidade funcional e cognitiva dos idosos institucionalizados.

MÉTODO

Trata-se de ensaio clínico randomizado. A amostra foi composta por residentes de uma ILPI filantrópica, localizada em Campo Grande (MS). O estudo foi desenvolvido no período de setembro a dezembro de 2016.

Por se tratar de uma ILPI de grande porte existem muitos idosos em diversas condições de saúde diferentes. Desta forma, foram apresentados os métodos propostos por este estudo aos profissionais de saúde que trabalham nesta ILPI. Após apresentação, a psicóloga da instituição elencou todos os possíveis idosos que teriam condições de participar deste estudo, levando em consideração questões cognitivas, psicológicas, físicas e motoras dos membros superiores.

Foram excluídos do estudo os idosos que faltaram mais de três sessões das intervenções, aqueles com problemas visuais que interferissem na realização das atividades propostas e aqueles com comprometimentos físico e motor de membros superiores.

A amostra foi composta por 26 idosos de ambos os sexos, os quais foram divididos aleatoriamente em dois grupos: Intervenção (GI n=13) e Controle (GC n=13). O protocolo metodológico do estudo foi realizado em três etapas: (1) avaliação, (2) intervenção e (3) reavaliação. O GI passou por três etapas: avaliação, intervenção e reavaliação. Já o GC recebeu uma avaliação inicial e...
uma reavaliação, sem intervenção. Todas as avaliações foram realizadas por duas fisioterapeutas previamente treinadas para aplicação das avaliações e intervenções.

Na 1ª etapa, utilizaram-se os seguintes instrumentos para a avaliação da funcionalidade: Escala de Katz e Índice Barthel. Para a avaliação cognitiva, foram utilizados Mini Exame de Estado Mental (MEEM), Teste do Relógio e Teste de Fluência Verbal.

Na 2ª etapa, foram realizadas intervenções no GI duas vezes por semana, totalizando 17 intervenções, com duração de 90 minutos, durante os três meses de duração do estudo. Os encontros foram realizados no refeitório da ILPI às terças e quintas-feiras no período vespertino, sendo que este local oferecia estrutura adequada para a realização das atividades propostas. Para o desenvolvimento das atividades, os idosos eram convidados a se sentar em grupos, ao redor de mesas que dispunham de quatro lugares. Dependendo da atividade e necessidade, os idosos sentavam-se em dupla ou até mesmo individualmente. Tais intervenções eram realizadas em rodízio, de forma que todos os integrantes pudessem realizar todas as atividades oferecidas.

Durante as intervenções, foram utilizados jogos que trabalharam as funções cognitivas, a memória, o convívio social e as habilidades motoras dos membros superiores, como montar quebra-cabeças e figuras, pintar, desenhar, escrever frases e palavras, jogar dominó e jogos matemáticos, encaixar formas, reconhecer cores e outros.

Na 3ª etapa, foi aplicada a reavaliação (avaliação final) de ambos os grupos, utilizando o mesmo protocolo da 1ª etapa. O fluxograma do estudo está descrito na Figura 1.

Recrutamento

26 idosos participantes do estudo

Avaliação inicial

Capacidade funcional: Escala de Katz e Índice Barthel.
Avaliação cognitiva: Mini Exame do Estado Mental (MEEM), Teste do relógio e Teste de Fluência Verbal

Intervenção

Treinamento Motor Manual e Cognitivo

Avaliação final

Capacidade funcional: Escala de Katz e Índice Barthel.
Avaliação cognitiva: Mini Exame do Estado Mental (MEEM), Teste do relógio e Teste de Fluência Verbal

Amostra final

26 participantes

Figura 1- Fluxograma do estudo
O Índice de Katz foi desenvolvido para medir a habilidade de idosos ao desempenhar suas atividades cotidianas de forma independente e assim determinar as devidas intervenções de reabilitação. São avaliadas as habilidades de tomar banho, vestir-se, ir ao banheiro, transferência, continência e alimentação, classificando as pessoas idosas como independentes ou dependentes\(^{10}\). Nesta pesquisa, foi utilizada a pontuação de: ≤2 pontos = muito dependente; 4 pontos = dependência moderada; 6 pontos = independente.

O Índice de Barthel é um dos instrumentos mais utilizados para avaliar as atividades básicas de vida diária (ABVD) em idosos, o qual analisa a independência funcional no cuidado pessoal, mobilidade, locomoção e eliminações. A pontuação varia de 0 a 100 pontos, em intervalos de cinco pontos, e as pontuações mais elevadas indicam maior independência\(^{11}\). Neste estudo, foi utilizada a seguinte pontuação: 0-20 indica dependência total; 21-60, dependência grave; 61-90, dependência moderada; 91-99, dependência muito leve; e 100, independência\(^{12}\).

O MEEM é uma ferramenta, rápida e de fácil aplicação, utilizada para o rastreio de comprometimento cognitivo, detectando perdas cognitivas, evolução de doenças, monitoramento da resposta ao tratamento e auxiliando no diagnóstico de demência. O MEEM a valia cinco áreas: orientação, registro, atenção e cálculo, recuperação e linguagem. O MEEM envolve duas categorias de resposta, verbais e não verbais. O escore pode variar entre 0 e 30 pontos, sendo o valor de corte padrão de 24 pontos. Abaixo desse valor, considera-se indício de déficit cognitivo. A aplicação da nota de corte deve ser modificada de acordo com o nível de escolaridade do paciente, sendo que para analfabetos o valor de corte é de 18 pontos\(^{13}\).

O Teste do Relógio é um recurso rápido para ser aplicado e traduz o padrão de funcionamento frontal e temporoparietal. Esse teste avalia diversas dimensões cognitivas, como memória, função motora, função executiva e compreensão verbal. A pontuação consiste numa escala de pontuação de 0 (reóglo totalmente incorreto ou inexistente) a 10 pontos (reóglo totalmente correto). O ponto de corte ideal do teste é de 6 pontos\(^{14}\). Nesse teste, é importante observar o tempo e as estratégias utilizadas, além do resultado final, pois tais etapas do processo podem contribuir com valiosas informações. O nível educacional deve sempre ser levado em consideração. Para a realização do teste, são fornecidas orientações sobre o reóglo a ser desenhado, assim como que horas os ponteiros devem marcar. Então, é ofertada uma folha de papel ao indivíduo e o mesmo é livre para escolher onde realizar o desenho no papel, se o mesmo achar que o desenho não ficou bom e quiser desenhar novamente, é permitido\(^{15}\).

O Teste de Fluência Verbal está inserido numa série de testes neuropsicológicos e fornece informações com relação à capacidade de armazenamento do sistema de memória semântica, da habilidade de recuperar a informação guardada e do processamento das funções executivas\(^{16}\). Ao final, é pontuado 1 para cada nome de animal não repetido. A nota de corte para analfabetos é de 12 pontos e para alfabetizados de 17 pontos\(^{17}\).

Para análise estatística, utilizou-se o software SPSS. Os dados foram submetidos aos testes Shapiro-Wilk e Levene para fins de verificação da normalidade e homogeneidade da distribuição. Posteriormente, após verificação da distribuição normal dos dados, foi realizado o teste t para amostras independentes para a comparação entre grupos (controle e intervenção). Em todos os casos foi considerado um nível de significância de 5%.
RESULTADOS

O GI foi composto por oito indivíduos do sexo feminino (61,54%) e cinco do sexo masculino (38,46%). A média de idade ficou em 78,07 (±8,89) anos, sendo que 23,07% estavam entre 60-69 anos, 30,76% entre 70-79, 30,76% entre 80-89 anos e 15,38% com mais de 90 anos. No GC, cinco indivíduos eram do sexo feminino (38,46%) e oito do sexo masculino (61,54%). Com relação à idade, a média obtida foi de 74,84 (±12,82) anos, sendo que 30,76% estavam entre 60-69 anos, 38,46% entre 70-79 anos, 23,07% entre 80-89 anos e 7,69% com mais de 90 anos.

Ao analisar a faixa etária, a idade dos participantes da amostra variou de 60 a 106 anos, sendo que a média de idade foi de 76,46 (±10,55) anos. Com relação à escolaridade, seis idosos (dois do sexo masculino e quatro do sexo feminino) eram analfabetos, representando 20% dos participantes.

Na Tabela 1, são apresentadas as medidas descritivas em relação aos testes cognitivos aplicados na avaliação e reavaliação nos GI e GC e os resultados dos testes estatísticos aplicados. Em comparação ao GC, houve diferença estatisticamente significante no desempenho do GI na Escala de Katz, MEEM e no Teste de Fluência Verbal, mostrando que a intervenção foi positiva para melhora dos pacientes nestes testes. Já o GC apresentou Deltas negativos nos instrumentos Escala de Katz, Escala de Barthel, Teste do Relógio e Teste de Fluência Verbal, ou seja, houve uma piora nas performances funcionais e cognitivas da avaliação para reavaliação. O único teste que a média do GC não diminuiu foi o MEEM, mas, ao comparar com o GI, o desempenho do grupo sem intervenção foi menor. Com relação ao nível de dependência através do Teste de Barthel, houve uma melhora numérica na média do GI e uma piora numérica no valor da média do GC. Porém, essa diferença não foi estatisticamente significativa (p = 0,09) no desempenho da funcionalidade por esse teste.

Na análise dos testes cognitivos em relação a indícios de déficit antes e após a intervenção, os resultados estão descritos na Tabela 2.

Com relação ao nível de dependência, as Tabelas 3 e 4 mostram os resultados da Escala de Katz e do Índice de Barthel, respectivamente, na avaliação e reavaliação de ambos grupos. No GC observa-se uma queda nas médias da avaliação e reavaliação da Escala de Katz, Escala de Barthel, Fluência Verbal e Teste do Relógio, demonstrando uma piora na classificação de alguns idosos. Na reavaliação, na Escala de Katz, ocorreu um aumento do número de idosos independentes do GI.
Tabela 1- Características cognitivas e motoras, antes e após a intervenção, Campo Grande, MS, Brasil, 2017.

Testes	Grupo Intervenção	Grupo Controle	Testes t				
	Avaliação	Reavaliação	Delta	Avaliação	Reavaliação	Delta	
Escala de Katz	3,69 (±2,05)	4,07 (±2,06)	0,4 (±1,2)	4,53 (±2,33)	3,76 (±2,68)	-0,8 (±1,2)	0,02*
Escala de Barthel	65,38 (±28,39)	71,15 (±33,48)	5,8 (±19,9)	71,15 (±35,83)	63,84 (±40,78)	-7,3 (±17,2)	0,09
MEEM	13,76 (±5,50)	20,46 (±6,57)	6,7 (±6,5)	17,61 (±2,90)	18,84 (±4,29)	1,2 (±3,0)	0,01*
Teste do Relógio	5,75 (±5,07)	6,54 (±4,71)	0,8 (±2,4)	3,07 (±3,94)	2,92 (±4,31)	-0,2 (±2,3)	0,34
Teste de Fluência Verbal	7,46 (±2,87)	8,38 (±3,75)	0,9 (±3,2)	9,0 (±2,94)	5,84 (±2,93)	-3,2 (±3,3)	0,004*

GI: Grupo Intervenção; GC: Grupo Controle; MEEM: Mini Exame do Estado Mental.
Os resultados estão apresentados em frequência absoluta (frequência relativa).

Tabela 2- Resultados do Mini Exame de Estado Mental, Teste do Relógio e Teste de Fluência Verbal, antes e após a intervenção, Campo Grande, MS, Brasil, 2017.

Testes	Grupos	Avaliação	Reavaliação		
		Indício de déficit cognitivo	Sem déficit cognitivo	Indício de déficit cognitivo	Sem déficit cognitivo
MEEM	GI	13 (100%)	0 (0%)	8 (61,54%)	5 (38,46%)
	GC	12 (92,30%)	1 (7,70%)	10 (76,92%)	3 (23,07%)
Teste do Relógio	GI	11 (84,61%)	2 (15,39%)	9 (69,23%)	4 (30,76%)
	GC	12 (92,30%)	1 (7,70%)	12 (92,30%)	1 (7,70%)
Teste de Fluência Verbal	GI	12 (92,30%)	1 (7,70%)	10 (76,98%)	3 (23,07%)
	GC	10 (76,98%)	3 (23,07%)	13 (100%)	0 (0%)

MEEM: Miniexame de Estado Mental; GI: Grupo Intervenção; GC: Grupo Controle.
Os resultados estão apresentados em média (±desvio padrão).

Tabela 3- Resultados da Escala de Katz, antes e após a intervenção, Campo Grande, MS, Brasil, 2017.

Grupos	Classificação na Avaliação	Classificação na Reavaliação				
	Muito dependente	Dependente moderado	Independente	Muito dependente	Dependente moderado	Independente
GI	4 (30,76%)	4 (30,76%)	5 (38,46%)	4 (30,76%)	3 (23,07%)	6 (46,15%)
GC	4 (30,77%)	0 (0%)	9 (69,23%)	5 (38,46%)	0 (0%)	8 (61,54%)

GI: Grupo Intervenção; GC: Grupo Controle
Os resultados estão apresentados em frequência absoluta (frequência relativa).
DISCUSSÃO

No presente estudo, em uma visão geral, os idosos do GI alcançaram resultados e classificações melhores em comparação ao GC. Esse panorama não foi observado no estudo de Loureiro e colaboradores\(^\text{18}\), onde foram realizadas 23 sessões de intervenção de reabilitação cognitiva em idosos institucionalizados e não foram encontrados ganhos significativos na capacidade funcional (valor \(p = 0.3173\)). Os autores concluíram que a capacidade funcional pode ter sido afetada pelas limitações motoras, outras dependências instaladas e pela organização institucional das ILPI.

Com relação aos testes cognitivos, na reavaliação do GI verificou-se uma melhora no desempenho do MEEM, onde cinco idosos (38,46%) passaram a não apresentar déficit cognitivo, fato este divergente da avaliação inicial onde todos os idosos apresentavam déficit cognitivo. A média dos valores do MEEM do GC também mostrou melhora. Em um estudo realizado com 53 idosos, divididos em dois grupos (G1: 22 idosos institucionalizados e G2: 31 idosos não institucionalizados), apontou comprometimento cognitivo, avaliado pelo MEEM, no G1, com resultado de 11,73 (±6,04) pontos, e funções cognitivas preservadas no G2, com média de 26,39 (±3,2) pontos\(^\text{20}\). O menor desempenho cognitivo de idosos em ILPI comparado aos que vivem na comunidade sugere que a institucionalização pode agravar a perda cognitiva. Segundo Marin e colaboradores\(^\text{21}\), as ILPI oferecem moradia, higiene, alimentação, acompanhamento médico. Porém, tais instituições distanciam o indivíduo do convívio familiar, favorecendo o isolamento social, a inatividade física e mental e a dependência e acarretando em diminuição da funcionalidade e consequentemente prejuízos na realização das ABVD.

No presente trabalho, o GI apresentou melhora no Teste do Relógio, dado que apenas dois idosos (15,39%) estavam sem déficit cognitivo antes da intervenção e após a intervenção este valor dobrou. Ainda assim, o Delta da média da pontuação do Teste foi baixo (GI: 6,53 pontos, e GC: 2,92 pontos).

Tabela 4: Resultados da Escala de Barthel, antes e após a intervenção, Campo Grande, MS, Brasil, 2017.

Grupos	Classificação na Avaliação	Escala de Barthel	Classificação na Reavaliação					
	I	II	III	IV	I	II	III	IV
GI	0 (0%)	7 (53,84%)	2 (15,39%)	4 (30,76%)	1 (7,70%)	5 (38,46%)	1 (7,70%)	6 (46,15%)
GC	2 (15,39%)	2 (15,39%)	2 (15,39%)	7 (53,84%)	3 (23,07%)	2 (15,39%)	4 (30,76%)	4 (30,76%)

I: Dependente; II: Dependente grave; III: Dependente moderado; IV: Independente.
GI: Grupo Intervenção; GC: Grupo Controle.
Os resultados estão apresentados em frequência absoluta (frequência relativa).
É possível que tal resultado se deva à pobre representação mental do relógio analógico, seja por maior uso dos relógios digitais ou por não serem estimulados a observar as horas. As funções executivas são definidas como responsáveis pelo comportamento adequado, resolução de problemas que surjam no dia-a-dia e realização de um projeto futuro.

Alterações relacionadas ao déficit dessas funções em longo prazo podem interferir de maneira significativa no desenvolvimento do indivíduo, em sua compreensão, na memória de atividades e na maleabilidade da cognição.

No Teste de Fluência Verbal o GI também apresentou melhora nos valores após a intervenção. Na avaliação, 92,30% dos idosos tinham declínio cognitivo e na reavaliação houve um decréscimo para 76,98%. Já no GC, na avaliação inicial 76,98% dos idosos apresentaram déficit e na reavaliação 100% destes estavam com declínio cognitivo. Tais resultados mostram que a inatividade física e mental pode acarretar a piora do estado cognitivo e, consequentemente, funcional, podendo antecipar e até mesmo acentuar os declínios provenientes do processo de envelhecimento e prejudicar a qualidade de vida.

Além da melhora cognitiva e funcional, foi observada uma maior comunicação e interação social entre os participantes do GI, pois os mesmos se deslocavam de seus quartos para realizar as atividades e se reuniam no refeitório da instituição antes do horário combinado para o início de cada intervenção. Neste momento, os idosos conversavam inicialmente sobre suas dificuldades do dia a dia e algumas vezes seguiam contando suas histórias de vida. Além disso, a ludicidade das intervenções possibilitou o despertar da criatividade e da imaginação, levando a uma maior interação dos participantes com as pessoas ao seu redor. Outro estudo também relatou satisfação dos participantes em desenvolverem as atividades em grupo. Tais atividades proporcionaram motivação, interação social e criação de vínculo entre os participantes, os quais se sentiram incluídos na comunidade novamente.

Em um trabalho realizado com 21 idosos institucionalizados, foram analisados os efeitos benéficos do treino cognitivo em relação à memória, sendo que as principais funções favorecidas foram a compreensão, o raciocínio, o julgamento, a orientação, a atenção e a memória. O treino ainda estimulou a reserva cognitiva, possibilitando a melhora dessa capacidade. Um outro estudo realizado em Portugal com 12 idosos institucionalizados evidenciou, durante o treinamento cognitivo, a melhora das capacidades de linguagem e da habilidade construtiva, orientação, retenção, atenção, cálculo e evocação, mostrando avanço significativo na cognição dos idosos, além da sensação de bem estar e melhoria na qualidade de vida.

Um estudo realizado na Bélgica, com 20 idosos institucionalizados, utilizou treinamento de realidade virtual associado à atividade funcional (cognitiva e motora) com auxílio de uma plataforma. Os resultados mostraram que o treinamento associado proporcionou satisfação e situações que demandavam rápida tomada de decisões, além de efeitos benéficos na função executiva, funcionalidade durante o deslocamento, mudanças de direção e equilíbrio dos idosos.

Na literatura, outros estudos evidenciaram que os momentos de convívio social foram de suma importância para diminuir a sensação de isolamento. Muitas vezes, a institucionalização desencadeia a depressão, devido à perda de identidade, liberdade e autoestima, ao estado de solidão e até mesmo à recusa da própria vida, o que justifica a alta prevalência de doenças mentais nas ILPI.

A neuroplasticidade é a capacidade de recuperação do cérebro frente a estímulos e é decorrente de experiências vividas pelo
indivíduo em qualquer fase da vida. Tal plasticidade neural se expressa através da aprendizagem e da memória, mas pode ocorrer através da perda ou mau funcionamento dos neurônios. Adicionalmente, o cérebro tem capacidade de restabelecer conexões, podendo melhorar seu desempenho por meio de treino. Assim, as estimulações multisensoriais e cognitivas cooperam para a neuromodulación e melhora da cognição, além de contribuir para a adaptação do indivíduo frente a novas experiências.

Oliveira et al. investigaram os benefícios de um programa de estimulação multisensorial e cognitivo em idosos institucionalizados e não-institucionalizados e observaram que os idosos do segundo grupo obtiveram melhores resultados nos testes propostos. Os autores sugeriram que o empobrecido ambiente das ILPI, no tocante à promoção de estímulos, poderia acarretar em menores escores cognitivos. O mesmo grupo de estudo realizou um follow-up em cinco momentos diferentes (dois, quatro, seis, oito e 12 meses), reavaliando esses idosos, de ambos grupos. Após um ano, os idosos não-institucionalizados apresentaram menos declínio neuropsicológico em comparação a idosos institucionalizados. Esse fato novamente foi relacionado ao ambiente de convivência dos idosos, ressaltando que idosos não-institucionalizados vivenciam mais experiências em suas AVD, comunidade e meio familiar, sustentando por mais tempo os efeitos da intervenção.

No tocante à limitação deste estudo, este foi realizado com reduzido número da amostra, já que grande parte dos idosos convidados não preenchiam todos os critérios de inclusão para participarem do estudo. Além disso, não houve cegamento das avaliações, o que pode ter influenciado nos resultados. Sabe-se, que o envelhecimento pode acarretar disfunções que comprometem a independência física, mental, a execução das AVD e a autonomia dos idosos, principalmente quando institucionalizados. A falta de estímulo neuropsicomotor torna os idosos passivos em seu envelhecimento e compromete os aspectos psicocognitivos e as AVD. Os dados obtidos neste estudo apontaram que o treinamento cognitivo motor adotado em 17 intervenções, se mostrou eficaz para melhorar a funcionalidade e a cognição de idosos.

CONCLUSÃO

Os resultados mostram que, após a realização das intervenções, houve melhora estatística na Escala de Katz, MEEM e Teste de Fluência Verbal no GI. Já o GC obteve piores resultados na Escala de Katz, Escala de Barthel, Teste do Relógio e no Teste de Fluência Verbal, mostrando decréscimo cognitivo e na habilidade motora funcional.

O emprego de atividades que auxiliam na manutenção da independência, cognição, memória e socialização são necessários para manter e/ou melhorar a funcionalidade contribuindo para garantia da qualidade de vida do idoso. Assim, este estudo contribui com a prática da estimulação sensório-motora e cognitiva dentro de instituições de longa permanência, atuando de modo complementar às políticas de saúde pública para idosos.

FINANCIAMENTO: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - código 001) e Pró-reitoria de Pesquisa e Pós-graduação da Fundação Universidade Federal de Mato Grosso do Sul (PROPP/UFMS).
REFERÊNCIAS

1. Andrade FLJP, Lima JMR, Fidelis KNM, Jerez-Roig J, Lima KC. Cognitive impairment and associated factors among institutionalized elderly persons in Natal, Rio Grande do Norte, Brazil. Rev Bras Geriatr Gerontol. 2017;20(2):186-96. http://dx.doi.org/10.1590/1981-2256201720.160151

2. Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy adults: a systematic review and meta-analysis. Ageing Res Rev. 2014;15:28-43. http://dx.doi.org/10.1016/j.arr.2014.02.004

3. Gomes ECCCC, Marques APO, Leal MCC, Barros BP. Fatores associados ao risco de quedas acidentais em idosos institucionalizados: uma revisão integrativa. Ciência da Saúde Coletiva. 2014;19(6):3543-51. http://dx.doi.org/10.1590/1413-8123201419.16302013

4. Golino MTS, Flores-Mendoza CE. Desenvolvimento de um programa de treino cognitivo para idosos. Rev Bras Geriatr Gerontol. 2016;19(5):769-85. http://dx.doi.org/10.1590/1981-9823201619.150144

5. Karbach J, Verhaeghen P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol Sci. 2014;25(11):2277-85. http://dx.doi.org/10.1177/0956797614548725

6. Nunes CAN. Impacto de um programa de treino cognitivo em idosos institucionalizados. 2017. [Dissertação] Mestrado E enfermagem de Reabilitação. Instituto Politécnico de Bragança, Escola Superior de Saúde; 2017. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/113076/1/DISSERTA%C3%83O.pdf. Acesso em 15 mar 2019.

7. Menezes AV, Aguirar AS, Alves EF, Quadros LB, Bezerra PP. Efeitividade de uma intervenção terapêutica cognitivo-motor-fisioterapêutica em idosos institucionalizados com comprometimento cognitivo leve e demência leve. Ciência da Saúde Coletiva. 2016;21(1):3459-67. http://dx.doi.org/10.1590/1413-812320152111.17892015

8. Santos MT, Flores-Mendoza C. Treino Cognitivo para Idosos: Uma Revisão Sistematica dos Estudos Nacionais. Psico-USF vol.22 no.2 Campinas maio/ago. 2017. http://dx.doi.org/10.1590/1413-82712017220212

9. Souza F, Mendes A, Bennemann R, Milani R. Treino cognitivo para grupos de idosos: uma revisão Sistematica. Sociedade Portuguesa de Psicologia da Saúde - SPPS - www.sp-ps.pt
DOUT: http://dx.doi.org/10.15309/19psd200218

10. Lino VTS, Pereira SRM, Camacho LAB, Ribeiro Filho ST, Bukman S. Cross-cultural adaptation of the independence of daily living index (Katz Index). Cad Saúde Pública. 2008;24(1):103-12. http://dx.doi.org/10.1590/S0102-311X2008000100010

11. Minosso JSM, Amendola F, Alvarenga MRM, Oliveira MAC. Validação, no Brasil, do Índice de Barthel em idosos atendidos em ambulatórios. Acta Paul Enferm São Paulo. 2010;23(2):218-223. http://dx.doi.org/10.1590/S0103-21002010000200011

12. Salselas SCBS. Ganhos em independência funcional no doente com AVC. 2016. [Dissertação] Mestrado E enfermagem de Reabilitação. Instituto Politécnico de Bragança, Escola Superior de Saúde; 2016. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/113076/1/Ganhos%20em%20independ%C3%A1ncia%20funcional%20no%20doente%20com%20AVC%20%20Susana%20Salselas.pdf. Acesso em 20 jun 2019.

13. Melo DM, Barbosa AJG. O uso do Mini Exame do Estado Mental em pesquisas com idosos no Brasil: uma revisão sistemática. Ciência da Saúde Coletiva. 2015;20(12):3865-76. http://dx.doi.org/10.1590/1413-812320152012.06032015

14. Montiel JM, Cecato JF, Bartholomeu D, Martinelli JE. Testes do desenho do relógio e de fluência verbal: contribuição diagnóstica para o Alzheimer. Psicol Teor Prat. 2014;16(1):169-80. Disponível em: http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1516-36872014001000002

15. Hamdan AC, Hamdan EMLR. Teste do desenho do relógio: desempenho de idosos com doença de Alzheimer. RBCEH. 2009;6(1):98-105. https://dx.doi.org/10.5335/rbceh.2009.6.1

16. Rodrigues AB, Yamashita ET, Chiappetta ALML. Teste de fluência verbal no adulto e no idoso: verificação da aprendizagem verbal. Rev CEFAC. 2008;10(4):443-51. http://dx.doi.org/10.1590/S1516-36872008000400004

17. Bruck SM, Rocha MS. Category fluency test: effects of age, gender and education on total scores, clustering and switching in Brazilian Portuguese-speaking subjects. Braz J Med Biol Res. 2004;37(12):1771-7. http://dx.doi.org/10.1590/S0100-879X2004001200002

18. Loureiro APL, Lima AA. Silva RCC. Najar ECA. Reabilitação cognitiva em idosos institucionalizados: um estudo piloto. Rev Ter Occup Univ São Paulo. 2011; 22(2): 136-144. https://dx.doi.org/10.11606/issn.2238-6149.v222p136-p144

19. Souza JN, Chaves ECO. Efeito do exercício de estimulação da memória em idosos saudáveis. Rev Esc Enferm USP. 2005;39(1):13-9. http://dx.doi.org/10.1590/S0080-62342005000100002

20. Trindade APNT, Barbosa MA, Oliveira FB, Borges APO. Repercussão no declínio cognitivo na capacidade funcional em idosos institucionalizados e não institucionalizados. Fisioter Mov. 2013;26(2):289-90. http://dx.doi.org/10.1590/S0103-51502013000200016

21. Marin MIS, Miranda FA, Fabhri D, Tinelli LP, Storniolo LV. Compreendendo a história de vida de idosos institucionalizados. Rev Bras Geriatr Gerontol. 2012;15(1):147-54. http://dx.doi.org/10.1590/S1809-982320120100000016

22. Lousa EFCC. Benefícios da estimulação cognitiva em idosos: Um estudo de caso. 2016. [Dissertação] Mestrado em Psicologia. Instituto Superior Miguel Torga, Escola Superior de Altos Estudos. Coimbra; 2016. Disponível em: https://bibliotecadigital.ipb.pt/bitstream/10198/14620/1/TESE_treino_cognitivo_Enf.Reab._Catara%20Nunes.pdf. Acesso em 15 mar 2020.

23. Oliveira RMS. O Teste do Relógio. Tempo de Mudança? [Dissertação] Mestrado Integrado em Psicologia, na Faculdade de Psicologia e Ciências da Educação da Universidade do Porto; 2013. Disponível em: https://sigarra.up.pt/fpceup/pt/pub_geral/pub_ view/sb/p0_pub_base_id/30235. Acesso em 16 jul 2019.

24. Cordeiro J, Castillo BLD, Freitas CS, Gonçalves MP. Efeitos da atividade física na memória declarativa, capacidade funcional e qualidade de vida em idosos. Rev Bras Geriatr Gerontol. 2014;17(3):541-52. http://dx.doi.org/10.1590/1809-9823.2014.13006

25. Chariglione IFP, Janczura GA. Contribuições de um treino cognitivo para a memória de idosos institucionalizados. Psico-USF. 2013;18(11):13-22. http://dx.doi.org/10.1590/S1413-82712013000100003

26. Fernandes SID. Estimulação cognitiva em idosos institucionalizados. [Dissertação]. Mestre em Educação Social. Instituto Politécnico de
27. Delbroek T, Vermeulen W, Joke Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: a randomized controlled trial. J Phys Ther Sci. 2017;29:1137-43. http://dx.doi.org/10.1589/jpts.29.1137

28. Bruna FTL, Dyelly HYS, Claudia LOA. Avaliação cognitiva dos idosos institucionalizados. Rev Kairós 2009;12(1):247-56. https://doi.org/10.23925/2176-901X.2009v121p%25p

29. Valcarenghi RV, Santos SSC, Balem ELD, Pelzer MT, Gomes GC, Lange C. Alterações na funcionalidade/cognição e depressão em idosos institucionalizados que sofreram quedas. Acta Paul Enferm. 2011;24(6):828-33. http://dx.doi.org/10.1590/S0103-21002011000600017

30. Macedo LDD, Oliveira TCG, Soares FC, Bento-Torres J, Bento-Torres NVO, Anthony DC, et al. Beneficial effects of multisensory and cognitive stimulation in institutionalized elderly: 12-months follow-up. Clin Interv Aging. 2015;10:1351-60. http://dx.doi.org/10.2147/CIA.S80997

31. Oliveira TCGD, Soares FC, Macedo LDD, Diniz DLWP, Bento-Torres NVO, Picanço-Diniz CW. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions. Clin Interv Aging. 2014;9:309–21. http://dx.doi.org/10.2147/CIA.S54383

32. Sato AT, Batista MPP, Almeida MHM. Programas de estimulação da memória e funções cognitivas relacionadas: opiniões e comportamentos dos idosos participantes. Rev Terap Ocup Univ São Paulo. 2014;25(1):51-9. https://doi.org/10.11606/issn.2238-6149.v25i1p51-59

33. Rahe J, Petrelli A, Kaesberg S, Fink GR, Kessler J, Kalbe E. Efeitos do treinamento cognitivo com atividade física adicional em comparação com o treinamento cognitivo puro em idosos saudáveis. Interv Clin Envel. 2015;10:297-310. http://dx.doi.org/10.1590/S0102-79722012000100023

Recebido em junho 2020.
Aceito em novembro 2020.