The influence of the interface layer between the electron transport layer and absorber on the performance of perovskite solar cells

Dena N Qasim Agha1* and Qais Th Algwari1

1College of Electronics Engineering, Department of Electronic Engineering, Ninevah University, Mosul-Iraq

*E-mail: dina.abduljabbar20192019@stu.uoninevah.edu.iq

Abstract. High efficiency, lightweight, and cost-effectiveness put the perovskite solar cells to the top of the focus researches of solar cells. The architecture of the cell especially the energy band alignment at the interface is a critical issue in the cell performance. In the current paper, the solar cell structure under investigation consists of TiO2, CH3NH3PbI3, and Spiro OMe TAD as electron transport layer, absorber and hole transport layer respectively. A 3C-SiC material with energy gap of 2.420 eV was used as interface layer. The role of the interface layer between the perovskite and electron transport layer was considered. Before inserting the interface layer, a parametric study including the thickness and doping of each layer, was achieved. The results showed that the best performance of the cell at a thickness of 400 nm, 300 nm, 200 nm for absorber layer, ETL, and HTL respectively, with a doping concentration of 1014 cm−3, 1019 cm−3, 1019 cm−3 for the same layers. These parameters give a Voc, Jsc, FF, and PCE of 1.11 V, 28.9 mA∙cm−2, 83.19%, and 26.88% respectively. Inserting an interface layer improved the performance of the cell where the PCE increased over 29% at a thickness of 90 nm. The results showed that the parameters of the interface layer play a significant role in cell performance.

1. Introduction

The endless expansion in world population and improved lifestyle continuously brings up a larger demand for electricity to power produces. With global warming being a major climate issue worldwide, the use of renewable energy could represent a valuable alternative to help to reduce the effect of pollution, which is the main drawback of conventional power generating devices. Natural sources like water and wind are still recruited in electrical power generation. However, the sun is still one of our greatest sources of energy, which could be utilized through the introduction of solar cells. The latter’s mode of action is usually based on the conversion of light or photons into electricity; for that reason, it is often referred to as a photovoltaic device [1].

The perovskite solar cells (PSCs) are the most recent photovoltaic devices which use the light-absorbing layer made of perovskite material. A long carrier diffusion length, high light absorption, and tunable bandgap are the main features that made perovskite solar preferable over the conventional solar cells [2]. Since their introduction, they have dragged considerable attention due to their high efficiency (>15%) and remarkable ease of processing over large areas [3]. PSC is composed of organic metal halide as an absorber. The lead halide perovskite
material is promising to use in the production of perovskite solar cells due to its superior optoelectronic properties [4].

In addition to the cathode and anode, the PSC comprises three main layers which are the hole transporting material layer (HTL), the absorber perovskite layer, an electron transporting material layer (ETL). From their names, the function of the HTL is to extract and transfer holes and block electrons while the function of ETL is to block the holes and transfer the electrons [5]. Upon absorption of light, photo-generation of free charge carriers occurs in the absorber, and these carriers, under the built-in potential will drift to HTL-perovskite and ETL-perovskite interface region. The weak charge transport and/or the energy barrier of the HTL or ETL will produce the charges accumulation at the border of the interface of these layers and this will cause an increase in charges recombination and hence reduce the solar cell efficiency. Therefore, to avoid the aforementioned problem, the interfacial materials should be engineered carefully. In the present work, a layer of n-3C-SiC was added as an interface layer between ETL and the perovskite layer. The added layer would hopefully improve the charge transfer between the layers due to band match and decreases the energy losses of the electrons during transportation which in turn lead to enhance the photovoltaic performance.

2. Simulation details
In the present work, the perovskite solar cell simulation was achieved using SACPS (Solar Cell Capacitance Simulator). SCAPS is a 1D simulation program with a multi-layers (up to seven) input. This software was developed by a group at the Department of Electronics and Information System, University of Gent, Belgium [6]. To simulate the proposed device, the individual parameters for each layer should be well defined. In terms of the energy bandgap (E_g), electron affinity (χ), dielectric permittivity (ϵ), conduction and valence band density of states (N_C and N_V), electron and hole mobility (μ_e and μ_h), and donor and acceptor density (N_D and N_A), the property of each layer were used as an input to the simulator. These parameters were taken from the literature [4,7-9] and are summarized in Table 1.

Parameters	TiO$_2$	n-3C-SiC	CH$_3$NH$_3$PbI$_3$	Spiro OMe TAD
Bandgap E_g (eV)	3.2	2.420	1.55	3.0
Electron affinity (eV)	4.0	3.830	3.9	2.45
Dielectric permittivity	9.0	9.720	10.0	3.0
CB effective density of states (1/cm3)	2×1018	1.553×1019	2×1018	2.2×1018
VB effective density of states (1/cm3)	2×1019	1.163×1019	2×1019	1.9×1019
Thermal velocity of electron (cm/s)	107	1×107	107	107
Thermal velocity of hole (cm/s)	107	1×107	107	107
Electron mobility (cm2/Vs)	0.2	650	1.0	2.0×10$^{-4}$
Hole mobility (cm2/Vs)	0.1	40	1.0	2.0×10$^{-4}$
Shallow uniform donor density N_D (1/cm3)	1019	1018	1014	–
Shallow uniform acceptor density N_A (1/cm3)	–	–	–	1019

As shown ‘in Figure 1’, the current device having a structure of TiO$_2$, CH$_3$NH$_3$PbI$_3$, and Spiro OMe TAD as ETL, absorber, and HTL respectively. The initial values of thickness and doping for each layer are given in Table 2 [4]. The thickness and doping concentration were changed to obtain the solar cell structure with the best performance. A thin layer of 3C-SiC was inserted in the optimum structure between ETL and absorber as an interface layer. The standard conditions, illuminated under AM1.5G solar spectrum with 100 mW.cm$^{-2}$ incident power
density and temperature of 300 °K, are considered in the current study. The absorption coefficient of the absorber, HTL, and ETL are defined in the program for simulation.

Table 2. Initial values of thickness and doping of the proposed cell.

Layer	Thickness (nm)	Doping (cm⁻³)
Absorber	200	10¹¹
HTL	700	10¹⁸
ETL	100	3×10¹⁹

3. Results and discussion

To obtain the optimum structure of the solar cell that gives the best performance the current study involved two main parts, the first is the optimum thickness and doping density of each layer of the cell while the second part focused on the role of the interface layer between the perovskite and ETL on the cell parameters.

3.1 Effect of layers thickness

To obtain best absorption of the solar light in the perovskite layer and hence increase the generation process of electron-hole pairs the thickness of the absorber layer has been varied from 100 nm to 900 nm. Figure 2 illustrated the variation of the solar cell parameters with the absorber layer thickness. As shown in Figure 2 the Jₛₑ increased from 19.88 mA·cm⁻² to 43.61 mA·cm⁻² over the examined thickness range, while Vₒc slightly decreases from 1.18 V to 1.08 V. The absorber thickness effect noticeably on the efficiency although the FF drop from 84.5% to 75.98%. As represented in figure 2 the cell efficiency increased from 20% to 36%. This increase can be signed to the photo absorption enhancement in this layer. This means that the number of photo-generated carriers is associated with the total amount of absorbed photons, resulting in a Jₛₑ increase with layer thickness increases. It can be noticed that above 300 nm the increase in Jₛₑ trend to be slow compare to the Jₛₑ variation at low absorber thickness. The efficiency has the same behavior in this range. This could be ascribed to the saturation in the light absorption occurs. As the absorber becomes thicker, the photo-generated carriers at the center of the absorber layer will recombine when the thickness of this layer exceeds the diffusion length. This is reflected on the Vₒc due to the decrease in the effective band gap, also, to increase in the recombination processes [9-12]. Although the maximum efficiency was found to be 36% at absorber thickness of 900 nm the results show that the better thickness of 400 nm

![Figure 1. Perovskite solar cell structure.](image-url)
where the efficiency significantly improved to 31% with J_{sc}, V_{oc}, FF of 33 mA·cm$^{-2}$, 1.12 V, and 83%, respectively.

Figure 2. The variation of solar cell parameters with absorber thickness.

‘Figure 3.’ illustrates the thickness influence of the electron transport layer on J_{sc}, V_{oc}, FF, and PCE. This figure reveals a dramatic decrease in the J_{sc} and PCE with increasing the electron transport layer thickness while no significant influence of the thickness increasing on the V_{oc} and FF. As shown in figure 3 the J_{sc} decreases from 33.2 mA·cm$^{-2}$ to 10.29 mA·cm$^{-2}$ and PCE decreases from 31% to 9.1% over the ETL thickness from 100 nm to 1000 nm. The impact of the electron transport layer on the solar cell parameters can be attributed to the fact that the TiO$_2$ has a critical drawback of intrinsic low mobility and increasing the thickness of this layer will result in a charge accumulation and hence increases the recombination. The best performance was found at a thickness of 300 nm [4].

Figure 3. The variation of solar cell parameters with ETL thickness.

Keeping the thickness of the absorber and ETL at the optimum thicknesses which gave the best cell performance, the effect of the HTL thickness on the cell performance was also studied by varying the thickness of this layer over the range from 100 nm to 1000 nm with step of 200 nm. ‘Figure 4’ shows that the thickness of HTL does not have a critical impact on the solar cell performance and the values of V_{oc}, J_{sc}, FF, and PCE are around 1.12 V, 33.27 mA·cm$^{-2}$, 83.25%, and 31% respectively. This result agrees with what was obtained by Hima et. al., and it can be
attributed to the constant number of charge carriers produced in the absorber layer [4]. We used a 200 nm as a reference thickness for this layer.

![Figure 4](image1.png)

Figure 4. The variation of solar cell parameters with HTL thickness.

3.2 Effect of layers doping

Layer doping plays a critical issue in decides the electrical behavior and hence the performance of the solar cell. To improve the cell performance proper doping of ETL, HTL and absorber are necessary. The impact of the doping concentration of the absorber layer was investigated by varying the doping level from 10^{12} cm$^{-3}$ to 10^{22} cm$^{-3}$. 'Figure 5' shows the change in cell parameters with doping density, it can be seen that the cell parameters are almost unchanged with increasing the absorber density until the doping concentration of 10^{17} cm$^{-3}$. Above the doping level of 10^{17} cm$^{-3}$, a dramatic decrease in the J_{sc}, FF, and PCE was observed while an increase in the V_{oc} from 1.18 V to 2.6 V can be noticed. The reason which stands behind this behavior is that high doping leads to a reduction in the width of the depletion region and hence increases the recombination process at the bulk of the absorber [13]. The current results show that doping density for the absorber layer ($>10^{16}$ cm$^{-3}$) is not suitable for high efficiency.

![Figure 5](image2.png)

Figure 5. The variation of solar cell parameters with absorber doping.

The HTL doping impact on solar cell performance was studied by varying the acceptor concentration from 10^{17} cm$^{-3}$ to 10^{22} cm$^{-3}$. As shown 'in Figure 6’ the difference overdoping
concentration are FF and PCE while both J_{sc} and V_{oc} are almost constant and independent of acceptor concentration which indicates that the recombination rate is unrestrained of doping density. The recombination rate affects minority carrier’s density and at high doping of acceptor in HTL the density of minority deceases which in turn blocks the electrons from absorber [14]. A dramatic increase in the FF and PCE at doping density above 10^{18} cm$^{-3}$ could be attributed to the sheet resistance and conductivity enhancement in HTL at a high doping rate [15]. Doping over 10^{18} cm$^{-3}$ gives a best cell performance with efficiency of 25.3 %.

By keeping the doping density of perovskite and HTL at 10^{14} cm$^{-3}$ and 10^{19} cm$^{-3}$ respectively the doping concentration of ETL was varied from 10^{17} cm$^{-3}$ to 10^{22} cm$^{-3}$ to investigate the impact of the ETL doping on the solar cell performance. ‘Figure 7’ shows that the cell parameters remain unaffected by donor doping variation and this can be attributed to the Moss-Burstein effect [16]. The results of the doping rate in the ETL suggest that ETL doping density at 10^{19} cm$^{-3}$ is the better value for best cell performance.

From the aforementioned parametric study of the thickness and doping of each layer, one can conclude the optimum structure parameters are 400 nm, 200 nm, 300 nm as a thickness of
absorber layer, HTL, and ETL respectively, while the doping of 10^{14} cm$^{-3}$, 10^{19} cm$^{-3}$, 10^{19} cm$^{-3}$ for the same layers. These parameters give a V_{oc}, J_{sc}, FF, and PCE of 1.11 V, 28.9 mA cm$^{-2}$, 83.19%, and 26.88% respectively.

3.3 Interface layer:
To boost the PCE, the charge losses at the interface between the perovskite/ETL and/or perovskite/HTL should be reduced. One of the interface engineering strategies is to use a thin layer between the active layer and HTLs (ETLs) to improve the energy alignment and hence the charge transport across the interfaces. In the current study, the interface layer of 3C-SiC was used in the optimum structure between ETL and absorber. To study the impact of this layer on the cell parameters the thickness and doping density were taken into consideration. The thickness was varied from 30 nm to 100 nm, with doping density of 10^{16} cm$^{-3}$, and the results are presented in Figure 8. It can be seen that the J_{sc} increases slightly from 29.6 mA cm$^{-2}$ to 31.5 mA cm$^{-2}$ and this can be ascribed to the reduction in the charge recombination. The interface layer makes a drop of energy barrier at the perovskite/interfacial layers which in turn facilitates the charge transfer. This explanation enhances the stability in V_{oc} over the examined interface thickness. An enhancement in the PCE from 27.6% to 29% was also noticed.

Figure 8. The variation of solar cell parameters with interface thickness.

To study the impact the doping of interface layer on the cell performance the donor doping density of this layer was varied from 10^2 cm$^{-3}$ to 10^{18} cm$^{-3}$. The results show that the doping density does not affect significantly on the cell parameter until doping density of $>10^{15}$ cm$^{-3}$ and beyond this value of doping the J_{sc} decreases slightly while an increase in the PCE from 28.8% to 29.25% due to narrowing the depletion region beneficial for charge carrier collection.
4. Conclusions

In the present work, the impact of layer thicknesses and doping of CH$_3$NH$_3$PbI$_3$-based solar cell on different electrical parameters was investigated. It was found that the perovskite layer thickness has a significant influence on electrical parameters in comparison with that of HTL and ETL. It was found that the optimized layer thickness values were 400 nm, 200 nm, and 300 nm for the perovskite layer, HTL, and ETL, respectively which provided the better power conversion efficiency of 26.88%. The parametric study of the doping variation on the proposed structure showed that the doping density for absorber layer (> 1016 cm$^{-3}$) was not suitable to obtain a high efficiency while the doping of acceptor in HTL (> 1016 cm$^{-3}$) enhanced the cell performance whilst the cell parameters remained unaffected by ETL donor doping variation.

With regards the interface layer, the present work demonstrated that the introduction of n-3C-SiC into the solar cell design evidently had a good effect on enhancing the overall cell performance through achieving an enhancement in efficiency by improving charge transport and reducing recombination; which was in correspondence to the proposed hypothesis. Within the tested thickness range, it was shown that the lower the thickness, the better the device efficiency obtained. In contrast, it was found that the highest doping density within the used range produced the best observed improvement in device efficiency. However, it is worth to consider that these findings need to be further investigated using other interface materials rather than n-3C-SiC to confirm the current findings. This in turn can uncover additional possibilities for future versions of solar cell devices, opening the horizon for an entirely new fields of knowledge and research.

5. References

[1] Lee M, Teuscher J, Miyasaka T, Murakami T and Snaith H. 2012. Science. Numerical simulations on perovskite photovoltaic devices. 2(338), pp. 643-7.

[2] Zhang F, Castaneda J, Chen S, Wu W, DiNezza M, Lassise, M, Nie W, Mohite A, Liu Y, Liu S and Friedman D. 2020. Materials Today. Comparative studies of optoelectrical properties of prominent PV materials: Halide perovskite, CdTe, and GaAs. 36, pp.18-29.

[3] Di Giacomo F, Fakharuddin A, Jose R and Brown T. 2016. Energy & Environmental Science. Progress, challenges and perspectives in flexible perovskite solar cells. 9(10), pp.3007-3035.
[4] Hima A, Lakhdar N, Benhaoua B, Saadoune A, Kemerchou I and Rogti, F. 2019.
Superlattices and Microstructures. An optimized perovskite solar cell designs for high
conversion efficiency. 129, pp.240-246.

[5] Zekey A, Yahyaoui I and Tadeo F. 2019. 10th International Renewable Energy, Congress
(IREC) Generic Analytical Models for Organic and Perovskite Solar Cells.. (pp. 1-6).
IEEE.

[6] Niemegeers A, Burgelman M, Decock K, Verschraegen J and Degrave S. 2013. SCAPS
manual. University of Gent, 13.

[7] Lakhdar N and Hima A, 2020. Optical Materials. Electron transport material effect on
performance of perovskite solar cells based on CH3NH3GeI3. 99, p.109517.

[8] Hima A, Le Khouimes, A, Rezzoug, A, Yahkem, M, Khechekhouche A and Kemerchou,
I. 2019. International journal of energetics. Simulation and optimization of
CH3NH3PbI3 based inverted planar heterojunction solar cell using SCAPS software
4(1), pp.56-59.

[9] Rahman M, Miah S, Marma M and Sabrina, T. 2019. In 2019 International Conference
on Electrical, Computer and Communication Engineering (ECCE). Simulation based
Investigation of Inverted Planar Perovskite Solar Cell with All Metal Oxide Inorganic
Transport Layers. (pp. 1-6).

[10] Momblon C, Malinkiewicz O, Roldán-Carmona C, Soriano A, Gil-Escrig L, Bandiello
E, Scheepers M, Edri E and Bolink H. 2014. Applied Materials. Efficient
methylammonium lead iodide perovskite solar cells with active layers from 300 to
900 nm. 2(8), pp.081504.

[11] Jeyakumar R., Bag A, Nekovei R and Radhakrishnan R. 2020. Journal of Electronic
Materials. Influence of Electron Transport Layer (TiO 2) Thickness and Its Doping
Density on the Performance of CH 3 NH 3 PbI 3-Based Planar Perovskite Solar Cells.
(14) pp.3533–3539.

[12] Mandadapu U, Vedanayakam S and Thyagarajan K. 2017. Indian Journal of Science and
Technology. Simulation and analysis of lead based perovskite solar cell using SCAPS-
1D. 10(11), pp.65-72.

[13] An Y, Shang A, Cao G, Wu S, Ma D and Li X. 2018. Solar RRL. Perovskite solar cells:
optoelectronic simulation and optimization Perovskite. 2(11), p.1800126.

[14] Jeyakumar R, Bag A, Nekovei R and Radhakrishnan R. 2019. Solar Energy. Interface
studies by simulation on methylammonium lead iodide based planar perovskite solar
cells for high efficiency. 190, pp.104-111.

[15] Nguyen W, Bailie, C, Unger E and McGehee M.D. 2014. Journal of the American
Chemical Society. Enhancing the hole-conductivity of spiro-OMeTAD without
oxygen or lithium salts by using spiro (TFSI) 2 in perovskite and dye-sensitized solar
cells. 136 (31), pp.10996-11001.

[16] Trukhanov, V, Bruevich V. and Paraschuk D. 2011. Physical Review B. . Effect of
doping on performance of organic solar cells. 84(20), pp.205318.