Time Minimization and Online Synchronization for Multi-agent Systems under Collaborative Temporal Tasks

Zesen Liu, Meng Guo and Zhongkui Li

Abstract—Multi-agent systems can be extremely efficient when solving a team-wide task in a concurrent manner. However, without proper synchronization, the correctness of the combined behavior is hard to guarantee, such as to follow a specific ordering of sub-tasks or to perform a simultaneous collaboration. This work addresses the minimum-time task planning problem for multi-agent systems under complex global tasks stated as Linear Temporal Logic (LTL) formulas. These tasks include the temporal and spatial requirements on both independent local actions and direct sub-team collaborations. The proposed solution is an anytime algorithm that combines the partial-ordering analysis of the underlying task automaton for task decomposition, and the branch and bound (BnB) search method for task assignment. Analyses of its soundness, completeness and optimality as the minimal completion time are provided. It is also shown that a feasible and near-optimal solution is quickly reached while the search continues within the time budget. Furthermore, to handle fluctuations in task duration and execution time, and the assumption that no direct collaborations are required. Thus, any mismatch in the given model or dependency in the subtasks would lead to erroneous execution; (III) Online adaptation. An optimal but static solution can not handle changes in the workspace or in the team during online execution, e.g., certain paths between subtasks are blocked, or some robots break down.

To overcome these challenges, this work takes into account the minimum-time task coordination problem of a team of heterogeneous robots. The team-wise task is given as LTL formulas over the desired actions to perform at the desired regions of interest in the environment. Such action can be independent that it can be done by one of these robots alone, or collaborative where several robots should collaborate to accomplish it. The objective is to find an optimal task policy for the team such that the completion time for the task is minimized. Due to the NP-completeness of this problem, the focus here is to design an anytime algorithm that returns the best solution within the given time budget. More specifically,
the proposed algorithm interleaves between the partial ordering analysis of the underlying task automaton for task decomposition, and the branch and bound (BnB) search method for task assignment. Each of these two sub-routines is anytime itself. The proposed partial relations can be applied to non-instantaneous subtasks, thus providing a more general model for analyzing concurrent subtasks. Furthermore, the proposed lower and upper bounding methods during the BnB search significantly reduces the search space. The overall algorithm is proven to be complete and sound for the considered objective, and also shown empirically that a feasible and near-optimal solution is quickly reached. Besides, an online synchronization protocol is proposed to handle fluctuations in the execution time, while ensuring that the partial ordering constraints are still respected. Lastly, to handle agent failures during the task execution, an adaptation algorithm is proposed to dynamically reassign unfinished subtasks online to maintain optimality. The effectiveness and advantages of the proposed algorithm are demonstrated rigorously via numerical simulations and hardware experiments, particularly over large-scale systems of more than 20 robots and 10 subtasks.

The main contribution of this work is threefold: (I) it extends the existing work on temporal task planning to allow collaborative subtasks and the practical objective of minimizing task completion time; (II) it proposes an anytime algorithm that is sound, complete and optimal, which is particularly suitable for real-time applications where computation time is restricted; and (III) it provides a novel theoretical approach that combines the partial ordering analysis for task decomposition and the BnB search for task assignment.

The rest of the paper is organized as follows: Sec. II reviews related work. The formal problem description is given in Sec. IV. Main components of the proposed framework are presented in Sec. V-VII. Experiment studies are shown in Sec. VIII, followed by conclusions and future work in Sec. IX.

II. RELATED WORK

A. Multi-agent Task and Motion Planning

Planning for multi-agent systems have two distinctive characteristics: high-level task planning in the discrete task space, and low-level motion planning in the continuous state space. In particular, given a team-wise task, task planning refers to the process of first decomposing this task into sub-tasks and then assigning them to the team, see [19], [20], [21] for comprehensive surveys. Such tasks can have additional constraints, such as time windows [22], robot capacities [23], and ordering constraints [24], [25]. The optimization criteria can be single or multiple, two of which are the most common: MinSUM that minimizes the sum of robot costs over all robots [20], [22], [24], and MinMAX that minimizes the maximum cost of a robot over all robots [25], similar to the makespan of all tasks.

Typical solutions can be categorized into centralized methods such as Mixed Integer Linear Programming (MILP) [19] and search-based methods [23], [26]; and decentralized methods such as market-based methods [22], distributed constraint optimization (DCOP) [24]. However, since many task planning problems are in general NP-hard or even NP-complete [20], meta-heuristic approaches are used to gain computational efficiency, e.g., local search [27] and genetic algorithms [21]. One type of problem is particularly of relevance to this work, namely the Multi-Vehicle Routing Problem (MVRP) in operation research [20], [21], where a team of vehicles are deployed to provide services at a set of locations, and the MinSum objective above is optimized. Despite of the similarity, this work considers a significantly more general specification of team-wise tasks, which can include as special cases the vanilla formulation and its variants with temporal and spatial constraints [24], [25]. Moreover, collaborative tasks and synchronization during online execution are often neglected in the aforementioned work, where planning and execution are mostly decoupled.

On the other hand, motion planning problem for multi-agent systems aims at designing cooperative control policies such that a team-wise control objective is reached, e.g., collision-free navigation [28], formation [29], consensus [30] and coverage [31]. Such objectives are self-sustained but lacks a high-level purpose for task completion. In this work, we extend these results by incorporating them into the team-wise task as collaborative sub-tasks.

B. Temporal Logic Tasks

Temporal logic formulas can be used to specify complex robotic tasks, such as Probabilistic Computation Tree Logic (PCTL) in [32], Linear Temporal Logics (LTL) in [8], [9], [11], [33], and counting LTL (cLTL) in [16]. As summarized in Table I, the most related work can be compared in the

Table I

Ref.	Syntax	Collaboration	Objective	Solution	Anytime	Synchronization	Adaptation
[11], [12]	Local-LTL	No	Summed Cost	Dijkstra	No	Event-based	Yes
[13]	Local-LTL	Yes	Summed Cost	Dijkstra	No	Event-based	Yes
[8], [13]	Global-LTL	No	Summed Cost	Sampling	Yes	All-time	No
[9]	Global-LTL	No	Balanced	Martins’ Alg.	No	None	No
[15]	Global-LTL	Yes	Summed Cost	MILP	No	All-time	No
[16], [17]	Global-LTL	No	Summed Cost	MILP	No	Partial	No
Ours	Global-LTL	Yes	Min Time	BnB	Yes	Event-based	Yes

This section contains the preliminaries essential for this work, namely, Linear Temporal Logic, Büchi Automaton, and the general definition of partially ordered set.

A. Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) formulas are composed of a set of atomic propositions AP in addition to several Boolean and temporal operators. Atomic propositions are Boolean variables that can be either true or false. Particularly, the syntax φ is given as follows: $\varphi \equiv T \mid p \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid F \varphi_1 \cup \varphi_2$, where $T \equiv \text{True}$, $p \in AP$, $\bigcirc (\text{next})$, $U (\text{until})$ and $\bot \equiv \neg T$.

For brevity, we omit the derivations of other operators like \square (always), \diamond (eventually), \Rightarrow (implication). The full semantics and syntax of LTL are omitted here for brevity, see e.g., [6].

An infinite word w over the alphabet AP is defined as an infinite sequence $\omega = \sigma_1 \sigma_2 \cdots, \sigma_i \in AP$. The language of φ is defined as the set of words that satisfy φ, namely, $L_\varphi = \text{Words}(\varphi) = \{\omega \mid \omega \models \varphi\}$ and \models is the satisfaction relation.

However, there is a special class of LTL formula called co-safe formulas, which can be satisfied by a set of finite sequence of words. They only contain the temporal operators \bigcirc, U and \diamond and are written in positive normal form.

B. Nondeterministic Büchi Automaton

Given an LTL formula φ mentioned above, the associated Nondeterministic Büchi Automaton (NBA) can be derived with the following structure.

Definition 1 (NBA). A NBA B is a 5-tuple: $B = (Q, Q_0, \Sigma, \delta, Q_F)$, where Q is the set of states; $Q_0 \subseteq Q$ is the set of initial states; $\Sigma = AP$ is the allowed alphabet; $\delta : Q \times \Sigma \rightarrow 2^Q$ is the transition relation; $Q_F \subseteq Q$ is the set of accepting states.

Given an infinite word $w = \sigma_1 \sigma_2 \cdots$, the resulting run r within B is an infinite sequence $\rho = q_0 q_1 q_2 \cdots$ such that $q_0 \in Q_0$, and $q_i \in Q$, $q_{i+1} \in \delta(q_i, \sigma_i)$ hold for all index $i \geq 0$. A run is called accepting if it holds that $\inf(r) \cap Q_F \neq \emptyset$, where $\inf(r)$ is the set of states that appear in r infinitely often. In general, an accepting run can be written in the prefix-suffix structure, where the prefix starts from an initial state and ends in an accepting state; and the suffix is a cyclic path that contains the same accepting state. It is easy to show that such a run is accepting if the prefix is repeated once, while the suffix is repeated infinitely often. In general, the size of B is double exponential to the size of $|\varphi|$.

C. Partially Ordered Set

A partial order [38] defined on a set S is a relation $\rho \subseteq S \times S$, which is reflexive, antisymmetric, and transitive. Then, the pair (S, ρ) is referred to as a partially ordered set (or simply poset). A generic partial order relation is given by \leq. Namely, for $x, y \in S$, $(x, y) \in \rho$ if $x \leq y$. The set S is totally ordered if $\forall x, y \in S$, either $x \leq y$ or $y \leq x$ holds. Two elements x, y are incomparable if neither $x \leq y$ nor $y \leq x$ holds, denoted by $x \parallel y$.

III. PRELIMINARY

The following four aspects: (i) collaborative tasks. In a bottom-up fashion, [11], [12], [13] assume local LTL tasks and dynamic environment, where collaborative tasks are allowed in [13]. In a top-down fashion, [8], [9], [15], [16], [17] consider team-wise tasks, but no direct collaboration among the agents; (ii) the optimization criteria. Most aforementioned work [8], [13], [15], [16], [17] optimizes the summed cost of all agents, while [9] evaluates a weighted balance between this cost and the task completion time. Even though both objectives are valid, we emphasize in this work the achievement of maximum efficiency by minimizing solely the completion time; (iii) the synchronization requirement. Synchronization happens when two or more agents communicate regarding the starting time of next the next sub-task. The work in [8], [14], [16] requires full synchronization before each sub-task due to the product-based solution, while [9] imposes no synchronization by allowing only independent sub-tasks and thus limiting efficiency. This work however proposes an online synchronization strategy for sub-tasks that satisfies both the strict partial ordering and the simultaneous collaboration. As illustrated in Fig. 1 this can improve greatly the concurrency and thus the efficiency of the multi-agent execution even further; and lastly (iv) the solution basis. Solutions based on solving a MILP as in [15], [16], [17] often can not guarantee a feasible solution within a time budget, while this work proposes an anytime algorithm that could return quickly a feasible and near-optimal solution. Last but not least, instead of generating only a static team-wise plan as in the aforementioned work, the proposed online adaptation algorithm can handle fluctuations in the task duration and possible agent failures during execution.

C. Branch and Bound

Branch and bound (BnB) is a search paradigm to solve discrete and combinatorial optimization problems exactly [34]. All candidate solutions are represented by a rooted tree within the solution space. Via branching and bounding intelligently, an efficient search strategy can be derived by pruning early branches that are provably suboptimal. It has been successfully applied to various NP-hard problems, e.g., the traveling salesman problem [35], multi-vehicle routing problem [20], [21], and the job-shop scheduling problem [37]. Different from the commonly-seen BnB algorithms that are applied to MILP directly, we propose in this work a novel BnB search strategy specifically designed for the planning problem of multi-agent systems under complex temporal tasks. It takes into account both the partial ordering constraints imposed by the temporal task, and the synchronization constraints due to inter-agent collaboration.

Fig. 1. Comparison of the planning results based on decompositional states in [9] (left) and the partial ordering proposed in this work (right). Note that the sub-task ω_3 has to be completed after ω_2, while ω_1 is independent.
IV. Problem Formulation

A. Collaborative Multi-agent Systems

Consider a team of N agents operating in a workspace as $W \subseteq \mathbb{R}$. Within the workspace, there are M regions of interest, denoted by $W = \{W_1, W_2, \ldots, W_M\}$, where $W_m \in W$. Each agent $n \in \mathcal{N} = \{1, \ldots, N\}$ can navigate within these regions following its own transition graph, i.e., $G_n = (W, \rightarrow_n, d_n)$, where $\rightarrow_n \subseteq W \times W$ is the allowed transition for agent n; and $d_n : \rightarrow_n \rightarrow \mathbb{R}$ maps each transition to its time duration.

Moreover, similar to the action model used in our previous work [13], each robot $n \in \mathcal{N}$ is capable of performing a set of actions: $\mathcal{A}_n = \mathcal{A}_n^a \cup \mathcal{A}_n^c$, where \mathcal{A}_n^a is a set of local actions that can be independently performed by agent n itself; \mathcal{A}_n^c is a set of collaborative actions that can only be performed in collaboration with other agents. Moreover, denote by $\mathcal{A} = \bigcup_{n \in \mathcal{N}} \mathcal{A}_n^a \cup \mathcal{A}_n^c$, $\mathcal{A}_i = \bigcup_{n \in \mathcal{N}} \mathcal{A}_n^a$, $\mathcal{A}^c = \bigcup_{n \in \mathcal{N}} \mathcal{A}_n^c$. More specifically, there is a set of collaborative behaviors pre-designed for the team, denoted by $\mathcal{C} = \{C_1, \ldots, C_K\}$. Each behavior $C_k \in \mathcal{C}$ consists of a set of collaborative actions that should be accomplished by different agents, namely:

$$C_k \equiv \{a_{1k}, a_{2k}, \ldots, a_{\ell_k}\}, \quad (1)$$

where $\ell_k > 0$ is the number of collaborative actions required; $a_{\ell} \in \mathcal{A}_n$, \forall $\ell = 1, \ldots, \ell_k$. Thus, each collaborative action has a fixed duration as $d : \mathcal{C} \rightarrow \mathbb{R}_+$. For instance, formation [29], herding [39], consensus [30] and coverage [31] are common collaborative behaviors of multi-agent systems.

Remark 1. Different from [15, 16, 17], the definition of collaborative behavior above does not specify explicitly the agent identities or types, rather their capabilities. This subtle difference can improve the flexibility of the underlying solution, e.g., no hard-coding of the agent identities or types is necessary; any capable agent can be recruited for the collaborative behavior.

B. Task Specification

First, the following three types of atomic propositions can be introduced: (i) p_m is true when any agent $n \in \mathcal{N}$ is at region $W_m \in W$; Let $p \equiv \{p_m \mid W_m \in W\}$; (ii) a_k is true when a local action a_k is performed at region $W_m \in W$ by agent n, where $a_k \in \mathcal{A}_n^a$; Let $a \equiv \{a_k \mid W_m \in W, a_k \in \mathcal{A}_n^a\}$; (iii) c_k is true when the collaborative behavior C_k in (1) is performed at region W_m. Let $c \equiv \{c_k \mid \forall C_k \in \mathcal{C}, \forall W_m \in W\}$.

Given these propositions, a team-wide task specification can be specified as a sc-LTL formula

$$\varphi = \text{sc-LTL}(\{p, a, c\}), \quad (2)$$

where the syntax of sc-LTL is introduced in Sec. III-A. Denote by $t_0, t_f > 0$ the time instants when the system starts and satisfies executing φ, respectively. Thus, the total time taken for the multi-agent team to satisfy φ is given by:

$$T_\varphi = t_f - t_0. \quad (3)$$

Since a sc-LTL can be satisfied in finite time, this total duration is finite and thus can be optimized.

Remark 2. As described previously in Sec. I, the minimum time cost in (3) is significantly different from the summed time cost of all agents, i.e., $\sum_i T_i$, where T_i is the total time agent i spent on executing task φ_i, as in [8, 9, 13, 15]. The main advantage of concurrent execution can be amplified via the objective of time minimization, since concurrent or sequential execution of the same task assignment could be equivalent in terms of summed cost.

Example 1. Consider a team of UAVs and UGVs deployed for maintaining a remote Photovoltaic power plant. One collaborative task considered in Sec. VIII is given by:

$$\begin{aligned}
\varphi_1 = &\neg(p_{p_3} \land \neg s_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \\
&\land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \\
&\land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \\
&\land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \\
&\land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3}) \land \neg(w_{p_3} \land \neg w_{p_3} \land s_{p_3})
\end{aligned} \quad (4)$$

which means to repair and scan certain PV panel p_3 in a given order, deeply cleaning the panel $p_{21}, p_{34},$ fix transformers t_5, sweep p_{27} with safety request.

C. Problem Statement

Problem 1. Given the task specification φ, synthesize the motion and action sequence for each agent $n \in \mathcal{N}$, such that T_φ in (3) is minimized.
problems. Various approximate algorithms have been proposed in [21], [27]. However, the combination of dynamic vehicles within a graph-like environment, linear temporal constraints, and collaborative tasks has not been addressed.

In the following sections, we present the main solution of this work. As shown in Fig. 2, the optimal plan synthesis which is performed offline is first described in Sec. V, and then the online adaptation strategy to handle dynamic changes which is performed offline is first described in Sec. V, and the overall solution is summarized in Sec. VII. The overall solution is summarized in Sec. VII with analyses for completeness, optimality and complexity.

V. OPTIMAL PLAN SYNTHESIS

The optimal plan synthesis aims to solve Problem 1 offline. As mentioned previously in Sec. II-B most related work requires the synchronized product of all agents’ model, thus subject to exponential complexity. Instead, we propose an anytime algorithm that combines seamlessly the partial-ordering analyses of the underlying task automaton for task decomposition, and the branch and bound (BnB) search method for task assignment. In particular, it consists of three main components: (i) the pre-processing of the NBA associated with the global task; (ii) the partial-ordering analyses of the processed task automaton; (iii) the BnB search algorithm that searches in the plan space given the partial ordering constraints.

A. Büchi Automaton Pruning

As the first step, the NBA \(B_\varphi\) associated with the task \(\varphi\) is derived, e.g., via translation tools in [42]. Note that \(B_\varphi\) has the structure as defined in Def. 1 which however can be overly redundant. For instance, the required input alphabets for some transitions are infeasible for the whole team; or some transitions are redundant as they can be decomposed equivalently into other transitions. Via detecting and removing such transitions, the size of the underlying NBA can be greatly reduced, thus improving the efficiency of subsequent steps. More specifically, pruning of \(B_\varphi\) consists of the following three steps:

(i) Remove infeasible transitions. Given any transition \(q_j \in \delta(q_i, \sigma)\) in \(B_\varphi\), it is infeasible for the considered system if no subgroup of agents in \(\mathcal{N}\) can generate \(\sigma\). It can be easily verified by checking whether there exist an agent that can navigate to region \(W_{\rho_1}\) and perform local action \(a_k\); or several agents that can all navigate to region \(W_{\rho_1}\) and perform collaborative action \(a_k\). If infeasible, such transition is removed in the pruned automaton.

(ii) Remove invalid states. Any state \(q \in Q\) in \(B_\varphi\) is called invalid if it can not be reached from any initial state; or it can not reach any accepting state that is in turn reachable from itself. An invalid state can not be part of an accepting path thus removed in the pruned automaton.

(iii) Remove decomposable transitions. Due to the distributed nature of multi-agent systems, it is unrealistic to enforce the fulfillment of two or more subtasks to be exactly at the same instant in real time. Therefore, if possible, any transition that requires the simultaneous satisfaction of several subtasks is decomposed into equivalent transitions. Decomposable transitions are formally defined in Def. 2 below. In other words, the input alphabets of a decomposed transition can be mapped to two other transitions that connect the same pair of states, but via another intermediate state, as illustrated in Fig. 3. Thus, all decomposable transitions in \(B_\varphi\) are removed in the pruned automaton. Algorithmically, decomposability can be checked by simply composing and comparing the propositional formulas associated with each transition.

Definition 2 (Decomposable Transition). Any transition from state \(q_i\) to \(q_j\) in \(B_\varphi\) is decomposable if there exists another state \(q_k\) such that \(q_j \in \delta(q_k, \sigma_{ik} \cup \sigma_{kj})\) holds, \(\forall \sigma_{ik}, \sigma_{kj} \subseteq \Sigma\) that \(q_k \in \delta(q_i, \sigma_{ik})\) and \(q_j \in \delta(q_k, \sigma_{kj})\) hold.

An example of decomposable transitions is shown in Fig. 3. To summarize, the pruned NBA, denoted by \(B'\), has the same structure as \(B_\varphi\) but with much fewer states and edges. In our experience, this pruning step can reduce up to 60% states and edges for typical multi-agent tasks. More details can be found in the experiment section.

Lemma 1. If there exists a word \(\omega\) that is accepted by \(B\), then an equivalent run \(\omega'\) can be found that is accepted by \(B'\).

Proof. Consider an accepting word \(\omega = \cdots \{\sigma_1 \land \sigma_2\} \cdots\). The associated run in \(B\) is given by \(p = \cdots q_1 q_3 \cdots\). Thus there exists state \(q_2\) satisfying that \(q_2 = \delta(\sigma_1, q_1)\), \(q_3 = \delta(\sigma_2, q_2)\). \(q_3 = \delta(\sigma_1 \land \sigma_2, q_1)\). Moreover, as the labels are not instantaneous, an equivalent word \(\omega' = \cdots \{\sigma_1 \land \sigma_2\}\{\sigma_1 \land \sigma_2\} \cdots\) can be created by adding an additional time step. The associated run in \(B'\) is given by \(p' = \cdots q_1 q_2 q_3 \cdots\) where \(q_2 = \delta(\sigma_1 \land \sigma_2, q_1)\), \(q_3 = \delta(\sigma_1 \land \sigma_2, q_2)\). This completes the proof.

Example 2. The NBA \(B_\varphi\) associated with the task formula in (4) has 707 states and 16044 edges with more than 1.29 \times 10^7 accepting word, translated via [42]. After the pruning process described above, the pruned automaton \(B'\) has 707 states and 2423 edges with 174469 accepting word. The NBA pruning step reduces 84.9% edges and 98.6% accepting word without losing any information.

B. Task Decomposition

Since the team-wise task in this work is given as a compact temporal task formula, a prerequisite for optimal task assignment later is to decompose this task into suitable subtasks.
Moreover, different from simple reachability task, temporal tasks can impose strict constraints on the ordering of subtasks. For instance, the task $\Diamond(\omega_1 \land \Diamond(\omega_2 \land \Diamond \omega_3))$ specifies that $\omega_1, \omega_2, \omega_3$ should be satisfied in sequence, while $\Diamond \omega_1 \land \Diamond \omega_2 \land \Diamond \omega_3$ does not impose any ordering constraint. Thus, it is essential for the overall correctness to abstract such ordering constraints among the subtasks. This part describes how the subtasks and their partial orderings are abstracted from the pruned automaton B^ω_r.

Definition 3 (Decomposition and Subtasks), Consider an accepting run $\rho = q_0 q_1 \cdots q_L$ of B^ω_r, where $q_0 \in Q_0$ and $q_L \in Q_F$. One possible decomposition of φ into subtasks is defined as a set of 3-tuples:

$$\Omega_\varphi = \{(\ell, \sigma_\ell, \sigma^*_\ell), \forall \ell = 1, \cdots, L \},$$

where ℓ is the index of subtask σ_ℓ, and $\sigma_\ell \subseteq \Sigma$ satisfies two conditions: (i) $q_{\ell+1} \in \delta(q_{\ell-1}, \sigma_\ell)$; and (ii) $q_{\ell+1} \notin \delta(q_0, \sigma^*_\ell)$, where $\sigma^*_\ell = \sigma^*_\ell \setminus \{s\}$, $\forall s \in \sigma_\ell$, and $\sigma^*_\ell \subseteq \Sigma$ also satisfies two conditions: (i) $q_{\ell-1} \in \delta(q_{\ell-1}, \sigma^*_\ell)$; and (ii) $q_{\ell-1} \notin \delta(q_{\ell-1}, \sigma^*_\ell)$, where $\sigma^*_\ell = \sigma^*_\ell \setminus \{s\}, \forall s \in \sigma^*_\ell$.

Example 3. As shown in Fig. 3, the subtasks associated with $q_1 q_2 q_3 q_4 q_5 q_6$ are given by $\Omega = \{(1, \text{scan}_{p_2}, \neg \text{p}_{24}), (1, \text{mow}_{p_2}, \neg \text{p}_{24}), (1, \text{sweep}_{p_2}, \neg \text{p}_{24})\}$. It represents the concurrent conjunction of the subtasks.

In other words, a subtask $(\ell, \sigma_\ell, \sigma^*_\ell)$ consists of its index, its set of position or action propositions and self-loop requirement. The index should not be neglected as the same set of propositions, namely sub-tasks, can appear multiple times in the run. It is important to distinguish them by their indices. And the self-loop should be satisfied before executing. Moreover, the two conditions in the above definition ensure that each subtask σ_ℓ satisfies the segment of the task from q_ℓ to $q_{\ell+1}$. Thus, every element inside σ_ℓ needs to be fulfilled for the subtask to be fulfilled. Note that the decomposition Ω_φ imposes directly a strict and complete ordering of the subtasks within, namely it requires that the subtasks be fulfilled in the exact order of their indices. Thus the order can be overly restrictive as it prohibits the concurrent execution of several subtasks by multiple agents. Thus, we propose a new notion of relaxed and partial ordering of the decomposition, as follows.

Definition 4 (Partial Relations). Given two subtasks in $\omega_1, \omega_2 \in \Omega_\varphi$, the following two types of relations are defined:

(I) “less than”: $\omega_1 \leq \omega_2 \in \Omega_\varphi \times \Omega_\varphi$. If $(\omega_1, \omega_2) \in \leq$ or equivalently $\omega_1 \leq \omega_2$, then ω_1 has to be started before ω_2 is started.

(II) “opposed”: $\omega_1 \neq \omega_2 \in \Omega_\varphi$. If $(\omega_1, \omega_2) \in \neq$ or equivalently $\omega_1 \neq \omega_2$, then all subtasks ω_1, \cdots cannot be executed simultaneously.

Remark 3. Note that most related work [8], [11], [12], [14], [15], [16], [17] treats the fulfillment of robot actions as instantaneous, i.e., the associated proposition becomes True once the action is finished. Thus, the probability of two actions are fulfilled at the exact same time instant is of measure zero. The above two relations can be simplified into one “less than” relation. The work in [15] also proposes a partial relation similar to \leq_φ above, without considering the opposing relation \neq_φ. On the contrary, for the action model described in Sec. IV-A each action has a duration that the associated proposition is True during the whole period. Consequently, it is essential to distinguish these two relations defined above.

The above definition is illustrated in Fig. 4. Intuitively, the relation \leq_φ represents the ordering constraints among subtasks, while the relation \neq_φ represents the concurrent constraints. Given these partial relations above, we can formally introduce the poset of subtasks in Ω_φ as follows.

Definition 5 (Poset of Subtasks). One partially ordered set (poset) over the decomposition Ω_φ is given by

$$P_\varphi = (\Omega_\varphi, \leq_\varphi, \neq_\varphi),$$

where $\leq_\varphi, \neq_\varphi$ are the partial relations by Def. 4.

Similar to the original notion of poset in [38], the above relation is reflexive and asymmetric, however only partially transitive. In particular, it is easy to see that if $\omega_1 \leq_\varphi \omega_2$ and $\omega_2 \leq_\varphi \omega_3$ hold for $\omega_1, \omega_2, \omega_3 \in \Omega_\varphi$, then $\omega_1 \leq_\varphi \omega_3$ holds. However, $\{\omega_1, \omega_2\} \leq_\varphi \{\omega_1, \omega_3\}$ cannot imply $\{\omega_1, \omega_3\} \leq_\varphi \{\omega_2, \omega_3\} \leq_\varphi \{\omega_1, \omega_2\}$. Due to similar reasons, $\{\omega_1, \omega_2, \omega_3\} \neq_\varphi \{\omega_1, \omega_3\}$ can not imply $\{\omega_1, \omega_2\} \neq_\varphi \{\omega_2, \omega_3\}$. Clearly, given a fixed set of subtasks Ω_φ, the more elements the relations \leq_φ and \neq_φ have, the more temporal constraints there are during the execution of these subtasks. This can be explained by two extreme cases: (i) no partial relations in Ω_φ, i.e., $\leq_\varphi = \emptyset$ and $\neq_\varphi = \emptyset$. It means that the subtasks in Ω_φ can be executed in any temporal order; (ii) total relations in Ω_φ, e.g., $\omega_h \leq_\varphi \omega_\ell$ and $\{\omega_h, \omega_\ell\} \leq_\varphi \{\omega_h, \omega_\ell\}$, for all $h < \ell$. It means that each subtask in Ω_φ should only start after its preceding subtask finishes according to their indices in the original accepting run. For convenience, we denote by $\varphi = \mathcal{F}$ and $\varphi = 2^\Omega$ for this case, where $\mathcal{F} = \{(i, j), \forall i, j \in [0, L] \text{ and } i < j\}$. As discussed in the sequel, less temporal constraints implies more concurrent execution of the subtasks, thus higher efficiency of the overall system. Thus, it is desirable to find one decomposition and the associated poset that has few partial relations.

Remark 4. The above two relations, i.e., \leq_φ and \neq_φ, are chosen in the definition of posets due to following observations: as illustrated in Fig. 4 and explained in Remark 3 these two relations can describe any possible temporal relation between non-instantaneous subtasks. More importantly, they can abstract the key information contained in the structure of NBA. In particular, given any two transitions in an accepting run, their temporal constraint can be expressed via the \leq_φ. Secondly, within each transition, there are often subtasks in the “negated” set, meaning that they cannot be executed concurrently, which can be expressed via the \neq_φ relation.

Remark 5. It is worth noting that the proposed notion of posets contains the “decomposable states” proposed in [19] as a special case. More specifically, the set of decomposable states divide an accepting run into fully independent segments,
where (i) any two alphabets within the same segment are fully ordered; (ii) any two alphabets within different segments are not ordered thus independent. In contrast, the proposed poset allows also independent alphabets within the same segment. This subtle difference leads to more current executions not only by different segments but also within each segment, thus increases the overall efficiency. □

To satisfy a given poset, the language of the underlying system is much more restricted. In particular, the language of a poset is defined as follows.

Definition 6 (Language of Poset). Given a poset $P_\varphi = (\Omega_\varphi, \preceq_\varphi, \neq_\varphi)$, its language is defined as the set of all finite words that can be generated by the subtasks in Ω_φ while satisfying the partial constraints. More concretely, the language is given by $L(P_\varphi) = \{W_\varphi\}$, where W_φ is a finite word constructed with the set of subtasks in P_φ, i.e.,

$$W_\varphi = (t_1, \omega_1)(t_2, \omega_2) \cdots (t_L, \omega_L),$$

(7)

where the subtask $\omega_\ell \in \Omega_\varphi$ and t_ℓ is the starting time of subtask ω_ℓ. Furthermore, W_φ should satisfy the partial relations in P_φ, namely: (i) $t_\ell \leq t_\ell'$ holds, $\forall (\omega_\ell, \omega_\ell') \in \preceq_\varphi$; (ii) $\forall \omega_\ell \in \Omega_\varphi$, $\exists \omega_\ell', \forall \omega_\ell \in \Omega_\varphi$, $t_\ell + d_\ell < t_\ell'$ holds, where d_ℓ and d_ℓ' are the durations of subtasks $\omega_\ell, \omega_\ell' \in \Omega_\varphi$. With a slight abuse of notation, W_φ can also denote the simple sequence of alphabets $\omega_1, \omega_2, \cdots, \omega_L$. □

Given the above definition, a poset P_φ is called **accepting** if its language satisfies the original task specification, i.e., $L(P_\varphi) \subseteq \Omega_\varphi$. In other words, either a direct search for the accepting word of φ or we can focus on finding the accepting poset that requires the least completion time. In the rest of this section, we present how this can be achieved efficiently in real-time. First of all, it is worth pointing out that it is computationally expensive to generate the complete set of all accepting poset and then select the optimal one. More precisely, even to generate all accepting runs in \mathcal{B}_φ^+, the worst-case computational complexity is $\mathcal{O}(|Q^-|^!)$). Instead, we propose an anytime algorithm that can generate at least one valid poset within any given time budget, while incrementally adding more posets as time allows.

As summarized in Alg. [1], the proposed algorithm builds upon the modified depth-first search (DFS) algorithm with local visited sets [43]. Given the pruned automaton \mathcal{B}_φ^+, the modified DFS can generate an accepting run ρ given the chosen pair of initial and final states. Given ρ, the associated set of subtasks Ω and word W can be derived by following Definition 3 see Line 5. Then, a poset P is initialized as $P = (\Omega, F, 2^{I_\rho})$ in Line 7, namely, a fully-ordered poset as described after Definition 5. Furthermore, to reduce the partial relations, we introduce a “swapping” operation to change the order of adjacent alphabets, and then check if the resulting new word can lead to an accepting run. If so, it means the relative ordering of this two adjacent subtasks can potentially be relaxed or removed from \preceq_φ as in Line 20. On the contrary, for any other word within $L(P)$, if such swapping does not result in an accepting run, it is definitively kept in the partial ordering. The resulting poset is a new and valid poset that have less partial ordering constraints. Furthermore, for any subtasks set that belong to the “opposed” relation, a new word is generated by allowing all subtasks to be fulfilled simultaneously in Line 22. If this new word is accepting, it means that this subtasks set do not belong to the relation \neq_φ in Line 24. After that, self-loop σ_φ^* is calculated by checking all feasible word in line 27. Note that the resulting P is only one of the posets and the associated language is given by $L(P)$ as defined in Definition 5. Lastly, as time allows, the DFS continues until a new accepting run is found, which is used to compute new posets with same steps.

Example 4. Continuing from example 3 we can get a poset with $\preceq_\varphi = \{(1, 2), (1, 3)\}, \neq_\varphi = \{(2, 3)\}$.

![Diagram](image-url)
Lemma 2. Any poset within \(P_\varphi \) obtained by Alg. 1 is accepting.

Proof. Due to the definition of accepting poset, it suffices to show that the language \(L(P) \) derived above for reach \(P \) is accepting. To begin with, as shown in Line 17 any word \(W \) added to \(L(P) \) is accepting. Second, assume that there exists a word \(W \in L_\varphi \) but \(W \notin L(P) \), i.e., \(W \) satisfies the partial ordering constraints in \(P \) but does not belong to \(L(P) \). Regarding the ordering relation \(\preceq_\varphi \), due to the iteration process of \(\text{Que} \) in Line 9-19 any accepting word \(W \) that satisfies the ordering constraints will be added to \(L(P) \). In other words, starting from the initial word \(W_0 \) associated with the run \(\rho \), there always exists a sequence of switching operation in Line 13 that results in the new word \(W \). With respect to each ordering relation within \(\varphi \), it is even simpler as any word within \(L(P) \) satisfies this relation and is verified to be accepting after augmenting the alphabets with the union of all alphabets. Thus, if \(W \in L_\varphi \), it will be first added to \(\text{Que} \) in Line 9-19 and then verified in Line 22 thus \(W \in L(P) \). This completes the proof.

Since Alg. 1 is an anytime algorithm, its output \(P_\varphi \) within the given time budget could be much smaller than the actual complete set of accepting posets. Consequently, if a word \(W \) does not satisfy any poset \(P \in P_\varphi \), i.e., \(W \notin W_\varphi \), it can still be accepting. Nonetheless, it is shown in the sequel for completeness analyses that given enough time, Alg. 1 can generate the complete set of posets. In that case, any word that does not satisfy any poset within \(P_\varphi \) is surely not accepting. It means that the complete set of posets \(P_\varphi \) is equally expressive as the original NBA \(B^- \). The above analysis is summarized in Lemma 3.

Lemma 3. The outputs of Alg. 1 satisfy that \(L(P_1) \cap L(P_2) = \emptyset \), \(\forall i \neq j \), and \(L(P_1) \subset L(P_2) \), \(\forall P_i \in P_\varphi \). Moreover, given enough time \(t_0 \to \infty \), the complete set of posets can be returned, i.e., \(L_\varphi = \cup P_i \in P_\varphi L(P_i) = L_{\varphi} \).

Proof. The first part can be proven by contradiction. Assume that there exists two posets \(P_1, P_2 \in P_\varphi \) and one accepting word \(W \in L_{\varphi} \) such that \(W \in L(P_1) \cap L(P_2) \). holds. Since the set of subtasks within the poset is simply the union of all subtasks within each word, it implies that \(\Omega_1 = \Omega_2 \). Then, as discussed in Lemma 2 \(W \in L(P_1) \) implies that there exists a sequence of switching operations that maps the original word \(W_0 \) to \(W \), all of which satisfy the partial relations in \(P_1 \). The same applies to \(W \in L(P_2) \). Since the set of subtasks are identical, it implies that the relations in \(P_1 \) is a subset of those in \(P_2 \), or vice versa. However, since the \(\text{Que} \) in Alg. 1 iterates through all accepting words of the same \(\Omega \), the partial relations are the maximum given the same \(\Omega \). Thus both partial relations in \(P_1, P_2 \) can only be equal and \(P_1 = P_2 \) holds. Regarding the second part, the underlying DFS search scheme in Alg. 1 is guaranteed to exhaustively find all accepting runs of \(B^- \).

In other words, the complete set of posets \(P_\varphi \) returned by the algorithm after full termination is ensured to cover all accepting words of the underlying NBA. As discussed earlier, the pruning procedure does not affect the complete set of accepting words, given the model of the multi-agent system.

Thus, it can be concluded that the returned language set \(L_{\varphi} \) is equivalent to the original task specification.

Last but not least, similar to the Hasse diagram in [38], the following graph can be constructed given one poset \(P_\varphi \).

Definition 7 (Poset Graph). The poset graph of \(P_\varphi = (\Omega, \preceq_\varphi, \varphi_0) \) is a digraph \(G_{P_\varphi} = (\Omega, E, R) \), where \(\Omega \) is the set of nodes; \(E \subset \Omega \times \Omega \) is the set of directed edges; \(R \subset 2^\Omega \) is the set of undirected special 'edges' which connect multiple nodes instead of only two. A edge \((\omega_1, \omega_2) \in E \) if two conditions hold: (i) \(\omega_1, \omega_2 \in \varphi \); and (ii) there are no intermediate nodes \(\varphi_3 \) such that \(\omega_1 \varphi \omega_3 \varphi \omega_2 \) holds; lastly, \(\Omega_0 \subset \Omega \) is set of root nodes that do not have incoming edges. An undirected 'edge' \((\omega_1, \omega_2, \ldots) \in R \), if \(\{\omega_1, \omega_2, \ldots\} \in \varphi \).

The poset graph \(G_{P_\varphi} \) provides a straightforward representation of the partial ordering among subtasks, i.e., from low to high in the direction of edges. Note that \(G_{P_\varphi} \) can be disconnected with multiple root nodes. An example of a poset graph is shown in Fig. 5.

C. Task Assignment

Given the set of posets \(P_\varphi \) derived from the previous section, this section describes how this set can be used to compute the optimal assignment of these subtasks. More specifically, we consider the following sub-problems of task assignment:

Problem 2. Given any poset \(P = (\Omega, \preceq, \varphi) \) where \(P \in P_\varphi \), find the optimal assignment of all subtasks in \(\Omega \) to the multi-agent system \(N \) such that (i) all partial ordering requirements in \(\preceq_\varphi \) are respected; (ii) the maximum completion time of all subtasks is minimized.

To begin with, even without the requirements of partial ordering and collaborative actions, the above problem includes the multi-vehicle routing problem [20], [21], and the job-shop scheduling problem [37] as special instances. Both problems are well-known to be NP-hard. Thus, the above problem is also NP-hard and its most common and straightforward solution is to formulate a Mixed Integer Linear Program (MILP). However, there are two major drawbacks of MILP: (i) the computation complexity grows exponentially with the problem size; (ii) there is often no intermediate solution before the optimal solution is generated via a MILP solver, e.g., CPLEX [44]. Both drawbacks hinder the usage of this...
approach in large-scale real-time applications, where a timely good solution is far more valuable than the optimal solution.

Motivated by these observations, an anytime assignment algorithm is proposed in this work based on the Branch and Bound (BnB) search method \[\text{[X2, X5].}\] It is not only complete and optimal, but also anytime, meaning that a good solution can be inquired within any given time budget. As shown in Fig. 6, the four typical components of a BnB algorithm are the node expansion, the branching method, and the design of the upper and lower bounds. These components for our application are described in detail below.

Node expansion. Each node in the search tree stands for one partial assignment of the subtasks, i.e.,

$$\nu = (\tau_1, \tau_2, \cdots, \tau_N),$$

where \(\tau_n\) is the ordered sequence of tasks assigned to agent \(n \in \mathcal{N}\). To give an example, for a system of three agents, \(\nu = ((\omega_1, \omega_2), (\cdot, \cdot))\) means that two subtasks \(\omega_1, \omega_2\) are assigned to agent 1, whereas no tasks to agents 2 and 3.

To avoid producing infeasible nodes, we assign only the next task satisfies the partial order. Let \(\nu\) be the current node of the search tree. The next subtask \(\omega\) to be assigned is chosen from the poset \(\mathcal{G}_{P\nu}\) defined in Def. \[\text{[7]}\] if all of its parent subtasks are already assigned, i.e.,

$$\omega' \in \Omega_\nu, \forall \omega' \in \text{Pre}(\omega),$$

where \(\text{Pre}(\omega)\) is the set of preceding or parenting subtasks of \(\omega \in \mathcal{G}_{P\nu}\); and \(\Omega_\nu\) is the set of assigned subtasks

$$\Omega_\nu = \{\omega \in \tau_n, \forall n \in \mathcal{N}\}, \Omega_\nu^- = \Omega \setminus \Omega_\nu,$$

where \(\Omega\) is the set of subtasks from \(P\nu\); \(\Omega_\nu\) is the set of subtasks already assigned in node \(\nu\); and \(\Omega_\nu^-\) are the remaining unassigned subtasks. Once this subtask \(\omega\) is chosen, the succeeding or child node \(\nu^+\) of \(\nu\) in the search tree is created by assigning local action to any agent or cooperative task combination of agents which is with capable functions.

Branching. Given the set of nodes to be expanded, the branching method determines the order in which these child nodes are visited. Many search methods such as breadth first search (BFS), depth first search (DFS) or \(A^*\) search can be used. We propose to use \(A^*\) search here as the heuristic function matches well with the lower bounds introduced in the sequel. More specifically, the set of child nodes is expanded in the order of estimated completion time of the whole plan given its current assignment.

Lower and upper bounding. The lower bound method is designed to check whether a node fetched by branching has the potential to produce a better solution. And the upper bound method is tried for each chosen node to update the current best solution. More specifically, given a node \(\nu\), the upper bound of all solutions rooted from this node is estimated via a greedy task assignment policy, as summarized in Alg. \[\text{[2]}\]

$$\mathcal{J}_\nu, T_\nu, T_\Omega = \text{upper_bound}(\nu, P\nu),$$

where \(\mathcal{T}_\nu\) is upper bound, and \(\mathcal{J}_\nu\) is the associated complete assignment with the same structure of \(\nu\), while its \(\Omega^-\) is empty: \(\mathcal{T}_\Omega\) is the beginning time of each subtasks. From node \(\nu\), any task \(\omega \in \Omega^-\) is assigned to any allowed agent set \(\{n\} \subset \mathcal{N}\) in Line \[\text{[2]}\] thus generating a set of child nodes \(\nu^+\). Then, for each node \(\nu \in \nu^+\), its concurrency level \(\eta_\nu\) is estimated as follows:

$$T_\nu = \max_{n \in \mathcal{N}}\{T_\tau_n\}, T_\nu = \sum_{\omega \in \Omega_\nu} D_\omega N_\omega, \eta_\nu = \frac{\eta_\nu}{T_\nu},$$

where node \(\nu = (\tau_1, \cdots, \tau_N)\); \(T_\tau_n\) is the execution time of all subtasks in \(\tau_n\) by agent \(n\); \(T_\nu\) is the max current makespan calculate by \[\text{(12)}\]; and \(\sum_{\omega \in \Omega_\nu} D_\omega N_\omega\) is the total execution time of all subtasks \(\omega\) given its duration \(D_\omega\) and the number of participants \(N_\omega\). Thus, the child node with the highest \(\eta_\nu\) is chosen as the next node to expand in Line \[\text{[4,5]}\] who procedure is repeated until no subtasks remain unassigned. Afterwards, once a complete assignment \(J_\nu\) is generated, its makespan \(T_\nu\) and start time \(T_\Omega\) are obtained by solving a simple linear program as in Line \[\text{[6]}\]

Furthermore, the lower bound of the makespan of all solutions rooted from this node is estimated via two separate relaxations of the original problem: one is to consider only the partial ordering constraints while ignoring the agent capacities; another is vice versa. The details of optimization functions for the upper(lower) bound can be found in the supplementary material.

Remark 6. The computation of both the upper and lower bounds are designed to be free from any integer optimization.
This is intentional to avoid unpredictable solution time caused by external solvers.

Given the above components, the complete BnB algorithm can be stated as in Alg. 3. In the initialization step in Line 1 the root node \(v_0 \) is created as an empty assignment, the estimated optimal cost \(T^* \) is set to infinity, and the queue to store un-visited nodes \(Q \) and the lower bound as indexes contains only \((v_0, 0) \). Then, within the time budget, a node \(\nu \) is taken from \(Q \) for expansion with smallest lower bound. We calculate the upper bound of \(\nu \) in line 5 and update the optimal value \(T^*, J^*, T^*_{\Omega} \) in line 8. After that, we expand the child nodes \(\{\nu^+\} \) of current node \(\nu \). Finally, we calculate the lower bound of each new node \(\nu^+ \) in line 10 and only store the node with potential to get a better solution into \(Q \) in line 11. This process repeat until time elapsed or the whole search tree is exhausted.

Lemma 4. Any task assignment \(J^* \) obtained from Alg. 3 satisfies the partial ordering constraints in \(P_\varphi \).

Proof. Since the assignment \(J^* \) belongs to the set of solutions obtained from the upper bound estimation in Alg. 2 at each node in the search tree, it suffices to show that any solution of Alg. 2 satisfies the partial ordering constraints. Regardless of the current node \(\nu \), the set of remaining subtasks in \(\Omega^-_\nu \) is assigned strictly following the preceding order in the poset graph as defined in (9). In other words, for any pair \((\omega_1, \omega_2) \in \leq_\varphi \cap \neq_\varphi \), if \(\omega_1 \in \Omega_\nu \) and \(\omega_2 \in \Omega^-_\nu \), then the starting time of \(\omega_2 \) is larger than the finishing time of \(\omega_1 \). Similar arguments hold for \(\leq_\varphi \) and \(\neq_\varphi \) separately.

D. Overall Algorithm

The complete algorithm can be obtained by combining Alg. 1 to compute posets and Alg. 3 to assign sub tasks in the posets. More specifically, as summarized in Alg. 4, the NBA associated with the given task \(\varphi \) is derived and pruned as described in Sec. 1. Afterwards, within the allowed time budget \(t_0 \), once the set of posets \(\mathcal{P}_\varphi \) derived from Alg. 1 is nonempty, any poset \(P_\varphi \in \mathcal{P}_\varphi \) is fed to the task assignment Alg. 3 to compute the current best assignment \(J \) and its makespan \(T \), which is stored in a solution set \(J^* \). This procedure is repeated until the computation time elapsed. By then, the optimal assignment \(J^* \) and its makespan \(T^* \) are returned as the optimal solution.

Remark 7. It is worth noting that even though Alg. 1 and Alg. 3 are presented sequentially in Line 5-6. They can be implemented and run in parallel, i.e., more posets are generated and stored in Line 5 while other posets are used for task assignment in Line 6. Moreover, it should be emphasized that Alg. 4 is an \textit{anytime} algorithm meaning that it can run for any given time budget and generate the current best solution. As more time is allowed, either better solutions are found or confirmations are given that no better solutions exist.

Finally, once the optimal plan \(J^* \) is computed with the format defined in (9), i.e., the action sequence \(\tau_n \) and is assigned to agent \(n \) with the associated time stamps \(t_{\omega_1}, t_{\omega_2}, \ldots, t_{\omega_n} \) in \(T^*_{\Omega^*_n} \). In other words, agent \(n \) can simply execute this sequence of subtasks at the designated time, namely \(\omega_k \) at time \(T_{\omega_k} \). Then, it is ensured that all task can be fulfilled in minimum time. However, such way of execution can be prone to uncertainties in system model such as fluctuations in action duration and failures during execution, which will be discussed in the next section.

VI. ONLINE ADAPTATION

Since there are often uncertainties in the model, e.g., the agents may transit faster or slower due to disturbances due to the additional constraints of self-loop \(\sigma^*_k \), an action might be finished earlier or latter, or failures may occur during mission, the optimal plan derived above might be invalid during online execution. Thus, in this section, we first analyze these uncertainties in the execution time and agent failures, for which online adaptation methods are proposed.
A. Online Synchronization under Uncertain Execution Time

Uncertainty in the execution time can cause delay or early termination of subtasks. Without proper synchronization, the consequences can be disastrous. For instance, one collaborative action is started without waiting for one delayed collaborator, or one subtask \(\omega_2 \) is started before another subtask \(\omega_1 \) is finished, which violates the partial ordering constraints \(\omega_1 \not\leq \omega_2 \). These cases would all lead to a failed task execution. To overcome these potential drawbacks, we propose an adaptation algorithm that relies on online synchronization and distributed communication.

More specifically, consider the optimal assignment \(J^* \) and the local sequence of subtasks for agent \(n \): \(\tau_n = \omega^{1}_{n}, \omega^{2}_{n}, \ldots, \omega^{k_n}_{n} \). Without loss of generality, agent \(n \) just finished executing \(\omega^{k_n-1}_{n} \) and is during the transition to perform subtask \(\omega^{k_n}_{n} \) at the designated region. No matter how much the transition is delayed or accelerated, the following synchronization procedure can be enforced to ensure a correct execution of the derived plan even under uncertainties:

(i) Before execution. In order to start executing \(\omega^{k_n}_{n} \), a “start” synchronization message is sent by agent \(n \) to agent \(m \), for each subtask \(\omega^{k_m}_{m} \) satisfying \((\omega^{k_n}_{n}, \omega^{k_m}_{m}) \in \mathcal{G}_f \). This message indicates that the execution of \(\omega^{k_n}_{n} \) is started thus \(\omega^{k_m}_{m} \) can be started. On the other hand, for each subtask \(\omega^{k_m}_{m} \) satisfying \((\omega^{k_m}_{m}, \omega^{k_n}_{n}) \in \mathcal{G}_f \), agent \(n \) waits for the “start” synchronization message from agent \(m \). This message indicates that the execution of \(\omega^{k_m}_{m} \) is started thus \(\omega^{k_n}_{n} \) can be started. Last, for each subtask \(\omega^{k_h}_{h} \) satisfying \((\omega^{k_h}_{h}, \omega^{k_n}_{n}) \in \mathcal{G}_f \), agent \(n \) checks the “start” or “stop” synchronization message from agent \(h \) to ensure that not all subtasks in \(\{\omega^{k_h}_{h}, \omega^{k_m}_{m}, \ldots\} \) is executing. Moreover, the self-loop constraint associated with the subsequent subtasks must be followed to satisfy the poset. Namely, each subset of agents that are executing \(\omega^{k_n}_{n} \) publishes the self-loop requirement \(\sigma^s \) associated with the subsequent subtask \(\omega^{k_s}_{s} \). It means that all other agents would satisfy the requirements in \(\sigma^s \) before \(\omega^{k_n}_{n} \) is finished.

(ii) During execution. If \(\omega^{k_n}_{n} \) is a collaborative action, then agent \(n \) sends another synchronization message to each collaborative agent to start executing this action. Otherwise, if \(\omega^{k_n}_{n} \) is a local action, then agent \(n \) starts the execution directly; (iii) After execution. After the execution of \(\omega^{k_n}_{n} \) is finished, for each subtask \(\omega^{k_s}_{s} \) satisfying \((\omega^{k_s}_{s}, \omega^{k_n}_{n}) \in \mathcal{G}_f \), a “stop” synchronization message is sent by agent \(n \) to agent \(h \). This message indicates that the execution of \(\omega^{k_s}_{s} \) is finished thus \(\omega^{k_h}_{h} \) can be started. The above procedure is summarized in Fig. 7. The synchronization for collaborative tasks is easier as a collaborative subtask can start if all participants are present at the location.

Remark 8. The synchronization protocol above is event-based, i.e., only the subtasks within the partial relations are required to synchronize, which are much less than the complete set of subtasks. In comparison, the product-based solution [6] and the sampling-based solution [8] require full synchronization during task execution, meaning that the movement of all agents should be synchronized for each transition in the global plan. Moreover, the Mixed Integer Linear Program (MILP)-based solution in [15], [17] requires no synchronization as each agent simply executes the subtasks according to the optimal time plan. The planning algorithm in [9] also requires no synchronization as the local subtasks of each agent are designed to be independent (however losing optimality). As validated in the numerical experiments, the synchronization protocol offers great flexibility and robustness against fluctuation in task durations during execution, while ensuring correctness.

B. Plan Adaptation under Agent Failures

Whenever an agent is experiencing motor failures that it can not continue executing its remaining subtasks, a more complex adaptation method is required as the unfinished subtasks should be re-assigned to other agents.

Assume that agent \(N_d \) has the optimal plan \(\tau_{N_d} = \omega^{1}_{N_d}, \omega^{2}_{N_d}, \ldots, \omega^{k_{N_d}}_{N_d} \). It fails at time \(t = T_d \) after the execution of subtask \(\omega^{k_{N_d}-1}_{N_d} \) and during the transition to subtask \(\omega^{k_{N_d}}_{N_d} \). Consequently, the set of unfinished tasks is given by:

\[
\hat{\Omega}_{N_d} = \{\omega^{k'}_{N_d}, k' = k_d, k_d + 1, \ldots, K_{N_d}\},
\]

which is communicated to other agents before agent \(N_d \) failed. Note that if an agent fails during the execution of a subtask, this subtask has to be re-scheduled and thus re-executed.

Given this set of subtasks, the easiest recovery is to recruit another new agent \(N'_d \) with the same capabilities as agent \(N_d \) and takes over all tasks in \(\hat{\Omega}_{N_d} \). However, this is not always feasible, meaning that \(\Omega_{N_d} \) needs to be assigned to other existing agents within the team. Then, the BnB algorithm in Alg. 3 is modified as follows. First, the initial root node now consists of the subtasks that are already accomplished by each functional agent, i.e.,

\[
\nu'_0 = (\tau'_{N_d} - 1, \tau'_{N_d} + 1, \ldots, \tau'_{N_d}),
\]

where \(\tau'_{N_d} = \omega^{1}_{N_d}, \omega^{2}_{N_d}, \ldots, \omega^{K_{N_d}}_{N_d} \) and \(K_{N_d} \) is last subtask be accomplished at time \(t = T_d \), for each agent \(n \in \{1, \ldots, N_d - 1, N_d + 1, \ldots, N\} \). Namely, agent \(N_d \) is excluded from the node definition. Second, the node expansion now re-assigns all unfinished tasks: \(\Omega_d = \bigcup_{n \in \hat{N}_d} \Omega_n \), where \(\Omega_n \subset \Omega_d \) is the set of unfinished tasks for agent \(n \in \hat{N}_d \), defined similarly as in (13). Namely, each remaining task is selected according to
the same partial ordering constraints P_ϕ as before agent failure, for node expansion. Afterwards, the same branching rules and more importantly, the methods for calculating lower and upper bounds are followed. Consequently, an adapted plan J^* can be obtained from the same anytime BnB algorithm. It is worth noting that the above adaptation algorithm shares the same completeness and optimality property as Alg. 4.

Last but not least, when there are multiple failed agents, the above procedure can be applied with minor modifications, e.g., the node definition excludes all failed agents.

VII. ALGORITHMIC SUMMARY

To summarize, the proposed planning algorithm in Alg. 4 can be used offline to synthesize the complete plan that minimizes the time for accomplishing the specified collaborative temporal tasks. During execution, the proposed online synchronization scheme can be applied to overcome uncertainties in the duration of certain transition or actions. Moreover, whenever one or several agents have failures, the proposed adaptation algorithm can be followed to re-assign the remaining unfinished tasks. In the rest of this section, we present the analysis of completeness, optimality and computational complexity for Alg. 4.

Theorem 5 (Completeness). Given enough time, Alg. 4 can return the optimal assignment J^* with minimum makespan T^*.

Proof. To begin with, Lemma 2 shows that any poset obtained by Alg. 1 is accepting. As proven in Lemma 3, the underlying DFS search scheme finds all accepting runs of B_ϕ via exhaustive search. Thus, the complete set of posets P_ϕ returned by Alg. 1 after full termination is ensured to cover all accepting words of the original task. Moreover, Lemma 4 shows that any assignment J^* from the BnB Alg. 3 satisfies the input poset from Alg. 1. Combining these two lemmas, it follows that any assignment J^* from Alg. 4 satisfies the original task formula. Second, since both Alg. 1 and 3 are exhaustive, the complete set of posets and the complete search tree of all possible assignments under each poset can be visited and thus taken into account for the optimal solution. As a result, once both sets are enumerated, the derived assignment J^* is optimal over all possible solutions.

Second, the computational complexity of Alg. 4 is analyzed as follows. To generate one valid poset in Alg. 1, the worst case time complexity is $O(M^2)$, where M is the maximum number of subtasks within the given task thus bounded by the number of edges in the pruned NBA B_ϕ. However, as mentioned in Sec. III-B, the size of B is double exponential to the size of $|\phi|$. The number of posets is upper bounded by the number of accepting runs within B_ϕ, thus worst-case combinatorial to the number of nodes within B_ϕ. Furthermore, regarding the BnB search algorithm, the search space is in the worst case $O(M \cdot N^M)$ as the possible sequence of all subtasks is combinatorial and the possible assignment is exponential to the number of agents. However, the worst time complexity to compute the upper bound via Alg. 2 remains $O(M \cdot N)$ as it greedily assigns the remaining subtasks, while the complexity to compute the lower bound is $O(M^2)$ as it relies on a BFS over the poset graph G_{P_ϕ}. How to decompose the length of an overall formula while ensuring the satisfaction of each subformula, thus overcoming the bottleneck in the size of B_ϕ, remains a part of our ongoing work.

Remark 9. The exponential complexity above is expected due to the NP-hardness of the considered problem. However, as emphasized previously, the main contribution of the proposed algorithm is the anytime property. In other words, it can return the best solution within the given time budget, which is particularly useful for real-time applications where computation time is limited.

VIII. SIMULATIONS AND EXPERIMENT

This section contains the numerical validation over large-scale multi-agent systems, both in simulation and on actual hardware. The proposed approach is implemented in Python3 on top of Robot Operating System (ROS) to enable communication across planning, control and perception modules. All benchmarks are run on a workstation with 12-core Intel Conroe CPU. More detailed descriptions and experiment videos can be found in the supplementary file.

A. Simulations and Experiment

The numerical study simulates a team of multiple UGVs and UAVs that are responsible for maintaining a remote photovoltaic (PV) power station. We first describe the scenario and three types of tasks, followed by the results obtained via the proposed method. Then, we introduce various changes in the environment and agent failures, in order to validate the proposed online adaptation algorithm. Third, we perform scalability analysis of our method by increasing the system size and the task complexity. Lastly, we compare our methods against several strong baselines, in terms of optimality, computation time and adaptation efficiency.

1) Workspace Description: Consider a group of UAVs and UGVs that work within a PV power station for long-term daily maintenance. As shown in Fig. 8, the station consists of mainly three parts: PV panels P_1, \cdots, P_34, roads, inverter/transformer substations t_1, \cdots, t_7 and the robot base station b. Furthermore, there are one type of UAVs and two types of UGVs
as table II showed. The UAVs V_f are quadcopters which can move freely between all interested places. The larger type of UGVs, denoted by V_i, has the limitation of not going to PV panels or transformers; the smaller ones V_s can travel more freely, e.g., under the PV panels but not under the transformers. As a result, different types of robots have different motion models G_r, as described in Sec. IV-A and distinctive action models. The traveling time among the regions of interest is estimated by the route distance and their respective speed. The actions required and the Descriptions of these regions are summarized in Table III. Note that some actions can be performed alone while some require direct collaboration of several agents, e.g., one V_s can sweep debris under the PV panel while one V_f and two V_s are required to repair a broken PV panel.

2) Task Description: For the nominal scenario, we consider a system of moderate size, including 12 agents: 6 V_f, 3 V_i and 3 V_s. Scalability analysis to larger systems are performed later in Sec. VIII-A5. Moreover, we consider a complex task and test it with agent failure.

This task can be specified as the following LTL formulas, requires a series of limited actions to maintain the photovoltaic power station:

$$
\varphi_1 = (\neg\text{repair}_{p_3} \land \neg\text{sweep}_{p_3} \land \neg\text{wash}_{p_3}) \land (\neg\text{wash}_{p_2} \land \\
\neg\text{sweep}_{p_2} \land \neg\text{wash}_{p_2}) \land (\neg\text{fix}_{p_1} \land \neg\text{p}_{18} \land \\
\neg\text{p}_{24} \land \neg\text{wash}_{p_{27}} \land \\
\neg\text{sweep}_{p_{27}}) \land \lnot U \text{ sweep}_{p_{27}}
$$

The location of these subtasks are chosen across the workspace thus a coordination strategy to minimize completion time is crucial for the task.

Table II

Agent type	label	Capable action	Speed (m/s)
Quadcopter	V_f	temp, scan, wash	10
Larger UGV	V_i	wash, repair, fix	4
Smaller UGV	V_s	sweep, mow, repair, fix	4

Table III

Proposition	Description	Duration [s]
P_1,\ldots,P_{34}	34 PV panels.	\(\)
b	Base stations for all agents to park and charge.	\(\)
t_1,\ldots,t_7	7 transformers.	\(\)
temp_{p_1},r_i	Measure temperature of panel p_1 and transformer t_i, Requires 1 temp action.	10
sweep_{p_1}	Sweep debris around any panel p_1, Requires 1 sweep action.	190
mow_{p_1},r_i	Mow the grass under panel p_1, or transformer t_i, Requires 1 mow action.	190
fix_{r_i}	Fix malfunction transformer t_i, Requires 2 fix action collaborations	72
repair_{p_1}	Repair broken panel p_1, Requires 2 repair, 1 repair action collaborations.	576
wash_{p_1}	Wash the dirt off panel p_1, Requires 2 wash actions collaborations.	565
scan_{p_1},r_i	Build 3D models of panel p_1, or transformer t_i for inspection. Requires 3 scan action.	95

Fig. 9. Poset graph of φ_1, in which the negative labels of σ_ℓ are omitted here for simply. The relations $\preceq, \not\preceq$ are marked by black and red arrows, respectively.

Fig. 10. Illustration of the upper and lower bounds T_ν, T_ω, and the optimal value T^*, along with the BnB search process.

3) Results: In this section, we present the results of the proposed method for the above tasks, including the computation of posets, task assignment via the BnB search algorithm, and the task execution results.

Partial analysis: The NBA B_{φ_1} associated with task one in (15) contains 707 states and 160,44 edges. And the pruning step reduces 84.9% edges within 30.43 second. Then, the Alg. 1 explores 4 accepting runs in 0.14s to find the first poset and gets the one of the best poset in 22.40s. Finally showed in [9] we choose the best poset P_{φ_1} with 10 subtasks, whose language $L(P_{\varphi_1})$ has 525 Words. In P_{φ_1} there are multiple subtasks can be executed in parallel such as ω_2 with ω_3, ω_1 with ω_7. However, these subtasks are still ordered as no subtask set can be executed independent with the left subtasks. That means we cannot divide the word into series independent parts with the method in [9]. It’s worth noting that this poset has only one subtask ω_7 with mow$_{p_{21}}$, which is required in twice in φ_1. And it follows additions partial orders as $\omega_4, \omega_5, \omega_6 \preceq \omega_7$. That means our method found a more efficient poset with relations not explicitly written in the formula. There are two $\not\preceq$ relations as $(\omega_1, \omega_3), (\omega_2, \omega_4)$, due to the constrains repair$_{p_3} \land \neg$scan$_{p_3}$ and sweep$_{p_{21}} \land \neg$wash$_{p_{27}}$ in formula φ_1. Before execute ω_8, all subtasks has the self-loop constrains \negwash$_{p_{24}}$ due to $\neg pU$ sweep$_{p_{27}}$.

Task assignment Then, during the task assignment step, the first valid solution is found in 0.131s. Afterwards, at $t = 1.75s$, a node is reached and its estimated lower bound is larger than current upper bound, and thus cut off the search tree. Overall, around 84.2% of visited nodes are cut off, which clearly shows the benefits of the “bounding” mechanism. Then, the estimated upper-bound rapidly converged to the optimal $T^* = 1388.5s$ in 3.34s with exploring 30 nodes. This is due to the branching efficiency during the BnB search, by using
the estimated lower bounds as heuristics. Lastly, the whole search tree is exhausted after more than 10 hours due to the complexity of the problem.

In the optimal task assignment, for the same type of task wash, different types of agent are employed as V_{f3}, V_{f9} for $\text{wash}_{p_{21}}$ and V_{f4}, V_{f5} for $\text{wash}_{p_{34}}$. And all the constraints of $\leq \varphi_i, \neq \varphi$ are satisfied such as $\text{mow}_{p_{21}}$ should be executed after $\text{repair}_{p_{3}}, \text{sweep}_{p_{21}}$ should not be execute at same time which denote by triangles of the corresponding color. What’s more, the most subtasks without these relations are executed parallel as ω_1, ω_2. These parallelisms dramatically reduce the make span. In the trajectory graph 8 the self-loop constrains of each subtasks are all satisfied as before executing ω_k, no agent is permitted enter the PV panels P_{24}, while V_f, V_s are allowed crossing other PV panels.

4) Online Adaptation: As an important part of the contribution, we now simulate the following two practical scenarios to validate the proposed online adaptation algorithm: (i) fluctuations in the execution time of subtasks; (ii) several agents break down during the online execution.

First of all, we artificially change the executing time of certain subtasks. For instance, the executing time of the maintenance tasks for smaller panels is reduced in comparison to the large panels, e.g., the execution time of $\text{wash}_{p_{34}}$ are reduced to 141s from 565s, as the size of p_{34} is 25\% of p_{10}. And the transfer time between different regions will be disturbed. The proposed online synchronization method in Sec. VI-A is applied during execution to dynamically accommodate these fluctuations. As the fig 12 showed, V_{s1}, V_{s2} arrived p_3 first and then began “waiting for collaborators” until V_{f1} arrives p_3 and start to executing repair_{p_3}. And after finished task $\text{scan}_{p_{21}}$, agent V_{f2}, V_{f5} go to proper place quickly but cannot start $\text{scan}_{p_{3}}$ until repair_{p_3} finished. Thus, they turn to the state of “waiting for preceding subtasks in partial order”.

Secondly, more severe scenarios are simulated where agents break down during task execution and thus are removed from the team. More specifically, vehicle V_{f3} breaks down at 200s, V_{l1}, V_{l4} break down at 600s during the execution of φ_1. Consequently, as shown in Fig. 12, $\text{wash}_{p_{21}}$ is re-assigned to other agent as one of its cooperators V_{f3} is failed. And subtask repair_{p_3} is continuing as its cooperate situation and partial relations are still satisfied. As described in Sec. VI-B the set of unfinished tasks is re-assigned to the remaining agents by re-identifying the current node in the BnB search tree and continue the planning process. It can be seen that no subtasks are assigned to V_{f3} anymore in the updated assignment. Then, as V_{f1}, V_{s3} break down at 600s, the execution of subtask repair_{p_3} is interrupted. And it is executed again by vehicles V_{l4} and V_{s3}, V_{s4} at 1222s. In the same way, the unfinished subtasks are re-assigned to the remaining agents.

It is worth noting that the partial ordering constraints are respected at all time during the adaptation. For instance, V_{f1} cannot execute the subtask $\text{wash}_{p_{34}}$ before $\text{mow}_{p_{21}}$ is started, as $\text{mow}_{p_{21}} \leq \varphi \text{wash}_{p_{34}}$ holds. All subtasks are fulfilled at 2109s, despite of the above contingencies. The trajectory is showed in fig 8.

5) Scalability Analysis: To further validate the scalability of the proposed methods, the following tests are performed: (i) the same task with increased team sizes, e.g., 16, 24, 32 and 40; (ii) test more LTL formula list with different structure.

As summarized in Table VI, as the system size is increased from 8 to 40, the computation time to obtain the first solution for task Three remains almost unchanged, while the time taken to compute the optimal value increases slightly. This result verifies that the proposed anytime algorithm is beneficial especially for large-scale systems, as it can returns a high quality solution fast, and close-to-optimal solutions can be returned as time permits. Secondly, more tasks as φ_2, φ_3 are considered as follows:

\[
\varphi_2 = 0(\text{wash}_{p_{11}} \land \neg \text{scan}_{p_{2}} \land \neg \text{scan}_{p_{11}} \land 0((\text{mow}_{p_{11}} \
\land \neg \text{wash}_{p_{11}}) \land 0(\text{sweep}_{p_{11}} \land \neg \text{mow}_{p_{11}}))) \land
0(\text{temp}_{p_{25}} \land \neg \text{repair}_{p_{25}} \land 0(\text{scan}_{p_{25}} \land
\neg \text{wash}_{p_{25}}) \land 0(\text{sweep}_{p_{25}} \land \neg \text{p}_{26})) \land \text{temp}_{t4}, \tag{16}
\]

\[
\varphi_3 = 0(\text{temp}_{p_{25}} \land \neg \text{repair}_{p_{25}} \land 0((\text{scan}_{p_{25}} \land \neg \text{wash}_{p_{25}})
\land 0(\text{sweep}_{p_{25}} \land \neg \text{p}_{26})) \land \text{temp}_{t4} \land 0(\text{sweep}_{p_{8}}
\land \neg \text{wash}_{p_{8}} \land \neg \text{scan}_{p_{8}}) \land \neg \text{temp}_{t4} \land \text{fix}_{t4}. \tag{17}
\]
where B_{22} contains 216 states and B_{23} contains 970 states. As summarized in Table IV, the computation time of both posets and tasks assignment are increased significantly, as the task becomes more complex. However, the time when the first solution is obtained in tasks assignment does not monotonically increase due to the polynomial complexity of upper bound method.

6) Comparison: The proposed method is compared against several state-of-the-art methods in the literature. More specifically, four methods below are compared:

Prod: the standard solution [6] that first computes the Cartesian products of all agent models, then computes the product Büchi automaton, and searches for the accepting run within. As the brute-force method, it is well-known to suffer from complexity explosion.

Milp: the optimization-based solution that formulates the assignment problem of posets as a MILP the compute optimal assignment. As summarized in Table IV, the computation time of both posets and tasks assignment are increased significantly, as the task becomes more complex. However, the time when the first solution is obtained in tasks assignment does not monotonically increase due to the polynomial complexity of upper bound method.

Prod: the standard solution [6] that first computes the Cartesian products of all agent models, then computes the product Büchi automaton, and searches for the accepting run within. As the brute-force method, it is well-known to suffer from complexity explosion.

Milp: the optimization-based solution that formulates the assignment problem of posets as a MILP the compute optimal assignment similar to [15, 17], i.e., instead of the search method. The partial relations are formulated as constraints in the program. An open source solver GLPK is used.

Samp: the sampling based method proposed in [8]. Compared with the product-based methods, it does not pre-compute the complete system model. Instead it relies on a sampling strategy to explore only relevant search space. However, since it does not support collaborative actions natively, we modify the definition of transitions there slightly.

Decomp: the task assignment strategy proposed in [9]. As discussed earlier in Sec. I, the proposed task decomposition strategy only allows completely independent subtasks. Furthermore, since it does not support collaborative actions, collaborative subtasks are decomposed manually.

Two identical comparisons are performed under different system sizes, namely 12 and 24 agents, to compare not only efficiency but also scalability. To begin with, the nominal system of 12 agents under task φ_2 is considered. The above four methods are used to solve the same planning problem. As summarized in Table IV, the results are compared in the following four aspects: the time to derive the first solution, the time to derive the optimal solution, the termination time, the objective as the task completion time, and the number of synchronizations required.

1 The number of different types of agents as system size increases.
2 The associated solution time, measured by two time stamps when: the first poset is returned, the best poset with largest language is returned.
3 The associated solution time, measured by two time stamps when: the first solution is returned, and the optimal solution is returned.

Table IV

Scalability analyses of the proposed method

System (V_1, V_2, V_3)	t_{φ_1} [s]	t_{φ_2} [s]	t_{φ_3} [s]
(8, 4, 4)	0.13, 5.9	0.14, 1.08	0.23, 4.81
(12, 6, 6)	0.15, 4.6	0.08, 1.85	0.22, 5.23
(16, 8, 8)	0.13, 5.0	0.10, 1.56	0.21, 4.33
(20, 10, 10)	0.53, 8.4	0.09, 2.11	0.58, 6.20
Poset analysis	64.4, 71.1	8.4, 37.9	136.4, 552.5

Table V

Comparison to other methods.

Method	t_{fin} [s]	t_{opt} [s]	t_{Milp} [s]	t_{Samp} [s]	t_{Decomp} [s]	t_{Ours} [s]	N_{sync} [s]
Prod	∞	∞	∞	∞	∞	∞	∞
Milp	2069.27	2069.27	2069.27	1058.47	8		
Samp	328.39	1838.96	∞	1968.03	24		
Decomp	3280.68	16294.30	∞	1968.03	24		
Ours	24.81	25.26	28.12	37.40	1058.47	8	8

1 For each method, the first row measures the time for the system of 12 agents while the second row for 24 agents.
2 The time to derive the first solution, the time to derive the optimal solution, the termination time, the objective as the task completion time, and the number of synchronizations required.
base station (b_1 marked in yellow). Moreover, 4 UAVs and 2 UGVs are deployed to maintain the PV farm, where the UAVs are Crazyfly mini-drones (denoted by V_f) and the UGVs are four-wheel driven cars with mecanum wheels (denoted by V_s, V_t). Existing mature navigation controllers are used and omitted here for brevity. The routine maintenance task considered can be specified with the following LTL formulas:

$$\varphi_4 = (\neg \text{repair}_{p_2} \land \neg \text{scan}_{p_2} \land \neg \text{scan}_{p_3} \land \neg \text{sweep}_{p_2} \\
\land \neg \text{repair}_{p_2}) \land \Diamond \text{fix}_t \land \Diamond \text{scan}_{p_3} \land \Diamond \text{wash}_{p_5},$$ (18)

2) Results: First, we describe the nominal scenario. Following the procedure described in Alg. 2 the LTL formula is converted to its NBA B with 62 nodes and 521 edges. And the pruned NBA B^s has 62 nodes and 377 edges. Only one poset is found with Alg. 1 which contains 6 subtasks whose language $L(P)$ equals to the full language $L(B^s)$. Furthermore, Alg. 2 finds the optimal task assignment within 3.7s, which has the estimated makespan of 124s, after exploring 59 nodes. During execution, it is worth noting that due to collision avoidance and communication delay, the fluctuation in the time of navigation and task execution is significant. Consequently, the proposed online synchronization protocol in Sec. VI-A plays an important role to ensure that the partial constraints are respected during execution, instead of simply following the optimal schedule. The execution of the complete task lasts 170s and the resulting trajectories are shown in Fig. 14. Moreover, to test the online adaptation procedure as described in Sec. VI-B one UAV V_{f_1} is stopped manually to mimic a motor failure during execution at 75s, as shown in Fig. 13. During adaptation, a new node is located the BnB search tree given the set of unfinished tasks and the search is continued until a new plan is found within 0.8s. As a result, UAV V_{f_1} takes over the subtask scan_{p_2} to continue the overall mission. The resulting trajectory is shown in Fig. 14 where the trajectory of V_{f_1} before failure is shown in red, and the trajectory in blue is another UAV taking over the subtasks. In the end, the complete task is accomplished in 178s.

IX. CONCLUSION

In this work, a novel anytime planning algorithm has been proposed for the minimum-time task planning of multi-agent systems under complex and collaborative temporal tasks. Furthermore, an online adaptation algorithm has been proposed to tackle fluctuations in the task duration and agent failures during online execution. Its efficiency, optimality and adaptability have been validated extensively via simulations and experiments. Future work includes the distributed variant.

REFERENCES

[1] T. Arai, E. Pagello, L. E. Parker et al., “Advances in multi-robot systems,” *IEEE Transactions on Robotics and Automation*, vol. 18, no. 5, pp. 655–661, 2002.
[2] P. Toth and D. Vigo, “An overview of vehicle routing problems,” *The Vehicle Routing Problem*, pp. 1–26, 2002.
[3] O. M. Cliff, R. Fitch, S. Sukkarieh, D. L. Saunders, and R. Heisohn, “Online localization of radio-tagged wildlife with an autonomous aerial robot system,” in *Robotics: Science and Systems*, 2015.
[4] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via caging in environments with obstacles,” in 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, pp. 1471–1476.
[5] A. Varava, K. Hang, D. Kragie, and F. T. Pokorny, “Herding by caging: a topological approach towards guiding moving agents via mobile robots.” in *Robotics: Science and Systems*, 2017, pp. 696–700.
[6] C. Baier and J.-P. Katoen, *Principles of Model Checking*. MIT press, 2008.
[7] A. Ulusoy, S. L. Smith, X. C. Ding, C. Bela, and D. Rus, “Optimality and robustness in multi-robot path planning with temporal logic constraints,” *The International Journal of Robotics Research*, vol. 32, no. 8, pp. 889–911, 2013.
[8] Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems,” *The International Journal of Robotics Research*, vol. 39, no. 7, pp. 812–836, 2020.
[9] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems,” *The International Journal of Robotics Research*, vol. 37, no. 7, pp. 818–838, 2018.
[10] M. Guo and M. M. Zavlanos, “Multirobot data gathering under buffer constraints and intermittent communication,” *IEEE Transactions on Robotics*, vol. 34, no. 4, pp. 1082–1097, 2018.
[11] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under local ltl specifications,” *The International Journal of Robotics Research*, vol. 34, no. 2, pp. 218–235, 2015.
[12] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local ltl specifications and event-based synchronization,” *Automatica*, vol. 70, pp. 239–248, 2016.
[13] M. Guo and D. V. Dimarogonas, “Task and motion coordination for heterogeneous multiagent systems with loosely coupled local tasks,” *IEEE Transactions on Automation Science and Engineering*, vol. 14, no. 2, pp. 797–808, 2016.
[14] X. Luo, Y. Kantaros, and M. M. Zavlanos, “An abstraction-free method for multirobot temporal logic optimal control synthesis,” *IEEE Transactions on Robotics*, 2021.
