Onset of Glassy Dynamics in a Two-Dimensional Electron System in Silicon

Snezana Bogdanovich and Dragana Popovic
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
(January 4, 2002)

The time-dependent fluctuations of conductivity σ have been studied in a two-dimensional electron system in low-mobility, small-size Si inversion layers. The noise power spectrum is $\sim 1/f^\alpha$ with α exhibiting a sharp jump at a certain electron density $n_s = n_g$. An enormous increase in the relative variance of σ is observed as n_s is reduced below n_g, reflecting a dramatic slowing down of the electron dynamics. This is attributed to the freezing of the electron glass. The data strongly suggest that glassy dynamics persists in the metallic phase.

PACS Nos. 71.30.+h, 71.27.+a, 73.40.Qv

The possibility of a metal-insulator transition (MIT) in two dimensions (2D) has been a subject of intensive research in recent years [1], but the physics behind this phenomenon is still not understood. It is well established that the MIT occurs in the regime where both Coulomb (electron-electron) interactions and disorder are strong. Theoretically, it is well known [2] that, in the strongly localized limit, the competition between electron-electron interactions and disorder leads to glassy dynamics (electron or Coulomb glass). Some glassy properties, such as slow relaxation phenomena, have been indeed observed in various insulating thin films [3]. Furthermore, recent work [4] has suggested that the critical behavior near the 2D MIT may be dominated by the physics of the insulator, leading to the proposals that the 2D MIT may be dominated by the physics of the insulator, leading to the proposals that the 2D MIT can be described alternatively as the melting of the Wigner glass [8], or the melting of the electron glass [9]. It is clear that understanding the nature of the insulator represents a major open issue in this field. Here we report the first detailed study of glassy behavior in a 2D system in semiconductor heterostructures. The glass transition is manifested by a very abrupt onset of a specific type of random-looking slow dynamics, together with other signs of cooperativity. Our results strongly suggest that the glass transition occurs in the metallic phase as a precursor to the MIT, in agreement with recent theory [10].

While glassy systems exhibit a variety of phenomena [1, 2], studies of metallic spin glasses have demonstrated [3] that mesoscopic, $i.$ $e.$ transport noise measurements are required in order to provide definitive information on the details of glassy ordering and dynamics. Fluctuations of conductivity σ as a function of chemical potential (or gate voltage V_g, which controls the carrier density n_s) have been investigated extensively in the insulating regime [3] and near the MIT [4] in a 2D electron system in mesoscopic Si metal-oxide-semiconductor field-effect transistors (MOSFETs). The latter study indicated that Coulomb interactions dominate the physics near the MIT. In order to get reasonably reproducible fluctuations as a function of V_g, it was necessary to make very slow sweeps of many hours over a very narrow range of V_g. Thus, all measurements represented a time average. As a matter of fact, it had been already known [11] that, at fixed V_g (or n_s), σ fluctuates as a function of time. Both high- and low-frequency fluctuations were evident. It was speculated that the time dependence of σ was due to correlated transitions of electrons between different configurations [12] or, in other words, between different metastable states in the glassy phase, but there has been no detailed study of these effects up to now. Here we present the first systematic study of transport and noise in a strongly disordered, mesoscopic 2D system over a wide range of n_s and T.

Most of the measurements were carried out on a 1 μm long, 90 μm wide rectangular n-channel Si MOSFET with the peak mobility of only 0.06 m^2/Vs at 4.2 K (with the applied back-gate bias of -2 V). The samples were fabricated using standard 0.25 μm Si technology [13] with poly-Si gates, self-aligned ion-implanted contacts, substrate doping $N_a \sim 2 \times 10^{17}cm^{-3}$, oxide charge $N_{ox} = 1.5 \times 10^{11}cm^{-2}$, and oxide thickness $d_{ox} = 50$ nm. The fluctuations of current I ($i.$ $e.$ σ) were measured as a function of time in a two-probe configuration using an ITHACO 1211 current preamplifier and a PAR124A lock-in amplifier at ~ 13 Hz. The excitation voltage V_{exc} was kept constant and low enough (typically, a few μV) to ensure that the conduction was Ohmic. A precision DC voltage standard (EDC MV1163J) was used to apply V_g. The current fluctuations as low as 10^{-13} A were measured at $0.13 \leq T \leq 0.80$ K in a dilution refrigerator with heavily filtered wiring. Relatively small fluctuations of T, V_g, and V_{exc} were ruled out as possible sources of the measured noise, since no correlation was found between them and the current fluctuations. In addition, a Hall bar sample from the same wafer was measured at $T = 0.25$ K in both two- and four-probe configurations, and it was determined that the contact resistances and the contact noise were negligible.

The relative fluctuations $(\sigma - \langle \sigma \rangle)/\langle \sigma \rangle$ (averaging over time intervals of several hours) are shown in Fig. [4] for a few selected n_s at $T = 0.13$ K. It is quite striking that, for the lowest n_s, the fluctuation amplitude is of the order of 100%. In addition to rapid, high-frequency fluctuations, both abrupt jumps and slow changes over
FIG. 1. Relative fluctuations of $\langle \sigma \rangle$ vs. time for different n_s at $T = 0.13$ K. Different traces have been shifted for clarity, starting with the lowest n_s at bottom and the highest at top.

FIG. 2. $\langle \sigma \rangle$ vs. T for different n_s. The data for many other n_s have been omitted for clarity. The error bars show the size of the fluctuations. n_s^*, n_d, and n_c are marked by arrows. They were determined as explained in the main text.

periods of several hours are also evident. The amplitude of the fluctuations decreases with increasing either n_s or T, as discussed in more detail below.

Figure 2 shows the time-averaged conductivity $\langle \sigma \rangle$ as a function of T for different n_s. The behavior of $\langle \sigma(n_s, T) \rangle$ in our samples is found to be somewhat similar to that of high-mobility Si MOSFETs. At the highest n_s, for example, our devices exhibit a metallic-like behavior with $d(\sigma)/dT < 0$. The change of $\langle \sigma \rangle$ in a given T range, however, is small (only 6% for the highest $n_s = 20.2 \times 10^{11}$ cm$^{-2}$) as observed in other Si MOSFETs with a large amount of disorder [15,18]. $d(\sigma)/dT$ changes sign when $\langle \sigma(n_s^*) \rangle = 0.5 e^2/h$ similar to other 2D samples [8]. Even though the corresponding density $n_s^* = 12.9 \times 10^{11}$ cm$^{-2}$ is much higher due to a large amount of disorder in our devices, the effective Coulomb interaction is still comparable to that in other 2D systems ($r_s \sim 4$, r_s—ratio of Coulomb energy to Fermi energy).

The density n_s^*, where $d(\sigma)/dT = 0$, has been usually identified with the critical density for the MIT. In high-mobility Si MOSFETs, the critical density has been also determined [21] as the density n_c where activation energy associated with the insulating exponential behavior of $\langle \sigma(T) \rangle$ vanishes. It was established that $n_s^* \approx n_c$, although a small but systematic difference of a few percent has been reported [17,20] such that $n_s^* > n_c$. For the lowest n_s in our experiment, the data are best described by the simply activated form $\langle \sigma \rangle \propto \exp(-T_0/T)$ [Fig. 3(a)], consistent with other studies close enough to the MIT [21]. The data could not be fitted satisfactorily to any variable-range hopping (VRH) law regardless of the prefactor [22]. T_0 decreases linearly with increasing n_s (Fig. 3(a) inset), and vanishes at $n_c \approx 5.2 \times 10^{11}$ cm$^{-2}$. Close to n_c, the data are best described by the metallic power-law behavior $\langle \sigma(n_s, T) \rangle = a(n_s) + b(n_s)T^x$ with $x \approx 1.5$ [Fig. 3(b)]. The fitting parameter $a(n_s)$ is relatively small and, in fact, vanishes for $n_s(10^{11}$ cm$^{-2}) = 4.72$ and 4.92. Such a simple power-law T-dependence of
samples than in high-mobility Si MOSFETs \cite{17,20,21}. The fluctuations of \(\sigma \) with time have been studied first by analyzing \(\delta \sigma = \langle (\sigma - \langle \sigma \rangle)^2 \rangle^{1/2} \). Fig. 4 inset shows that, while \(\delta \sigma \) does not seem to depend on \(T \), it increases with \(n_s \) by three orders of magnitude. The most striking feature of the data, however, is the sudden and dramatic change in the rate of its \(n_s \) dependence (see “kink” in Fig. 4 inset), which occurs near \(n_c \). Although we are not aware of any theoretical work relevant to this problem, we note that the observed \(\delta \sigma(n_s) \) is plausible: once electrons enter the localized (i.e., insulating) phase by reducing \(n_s \) below \(n_c \), their ability to change configurations will be severely impaired, resulting in a much more rapid drop of the fluctuation amplitude \(\delta \sigma \) with decreasing \(n_s \).

The critical density \(\delta \sigma/\sigma \) keeps decreasing with \(T \) and \(n_s \), which is consistent with the observation \cite{23} that, in some materials, a considerable increase in noise occurs in the metallic phase as a precursor to the MIT. We show below that here \(n_{s} \) represents the density below which the 2D electron system freezes into an electron glass.

The normalized power spectra \(S_1(f) = S(I,f)/I^2 \) (frequency) of \((\sigma - \langle \sigma \rangle)/\langle \sigma \rangle \) were also studied for all \(n_s \) and \(T \). Most of the spectra were obtained in the \(f = (10^{-4} - 10^{-1}) \) Hz bandwidth, where they follow the well-known empirical law \(S_1 = \beta/f^{\alpha} \) \cite{23,24} \((\beta \text{ is inversely proportional to the number of fluctuators and, usually, } \alpha \approx 1)\). The background noise was measured by setting \(I = 0 \) for all \(n_s \) and \(T \). It was always white and usually several orders of magnitude smaller than the sample noise. Nevertheless, a subtraction of the background spectra was always performed, and the power spectra of the device noise were averaged over frequency bands \((\lesssim \text{ an octave})\). Some of the resulting \(S_1 \) are presented in Fig. 5(a). At the highest \(n_s \) (not shown), \(S_1(f) \) does not depend on \(n_s \). However, it is obvious that, by reducing \(n_s \) below \(n_g \), \(S_1 \) increases enormously, by up to six orders of magnitude at low \(f \). This striking increase of the slow dynamic contribution to the conductivity is consistent with the behavior of \(\sigma(n_s, T) \) \cite{23}. The observed \(T \)-dependence of noise (obvious from Fig. 5) is consistent with early studies on Si MOSFETs \cite{27}, and it shows that the noise in our system cannot be explained by the models of thermally activated charge trapping \cite{26,27,29}, noise generated by fluctuations of \(T \) \cite{20,21}, noise in the hopping regime \cite{34}, and in the vicinity of the Anderson transition \cite{24}. On the other hand, similar increase of noise at low \(T \) has been observed in mesoscopic spin glasses \cite{20,24,34}, in wires in the quantum Hall regime for tunneling through localized states \cite{33}, and in Si quantum dots in the Coulomb blockade regime \cite{35}.

Another remarkable result, shown in Fig. 5(b), is a sharp jump of the exponent \(\alpha \) at \(n_s \approx n_g \). While \(\alpha \approx 1 \) for \(n_s > n_g \), \(\alpha \approx 1.8 \) below \(n_g \), reflecting a sudden shift of the spectral weight towards lower frequencies. Similar large values of \(\alpha \) have been observed in spin glasses above the MIT \cite{24}, and in submicron wires \cite{33}. In general, such noise with spectra closer to \(1/f^{\alpha} \) than to \(1/f \) is typical of a system far from equilibrium, in which a step does not lead to a probable return step. We also have the analysis of higher order statistics (non-Gaussianity or second spectra \cite{12,26}) of the noise, showing an abrupt change to the sort of statistics characteristic of complicated multi-state systems just at the density \(n_g \) at which \(\alpha \) jumps. This will be described in detail elsewhere.
We note that in order to obtain reproducible values of addition, for glasses was attributed to spin glass freezing [32,33]. In T of noise with decreasing spectral weight towards lower in the low-frequency noise in glass freezing at a well-defined density low system in silicon, in agreement with theoretical predictions [8,9]. Glassy freezing occurs in the regime of very is consistent with theoretical predictions [10].

The authors are grateful to the Silicon Facility at IBM, Yorktown Heights for sample fabrication, and to V. Dobrosavljević and J. Jaroszyński for useful discussions. This work was supported by NSF Grant DMR-0071668 and by an NHMFL In-House Research Program grant.

We have demonstrated that the transition to a glassy phase is characterized by a sudden, enormous increase in the low-frequency noise in \(\alpha \), a sudden shift of the spectral weight towards lower \(f \), and a dramatic increase of noise with decreasing \(T \). Similar behavior in spin glasses was attributed to spin glass freezing [22,23]. In addition, for \(n_s < n_g \), we have observed long relaxation times following a large change in \(V_g \), and history dependent behavior characteristic of a glassy phase [Fig. 3(c)]. We note that in order to obtain reproducible values of \(\langle \sigma(n_s, T) \rangle \) shown in Fig. 2, it was necessary to vary \(n_s \) in small steps of \(4.3 \times 10^{10} \text{cm}^{-2} \) at the highest \(T \) (0.8 K).

In summary, we present the first evidence of electron glass freezing at a well-defined density \(n_d \) in a 2D electron system in silicon, in agreement with theoretical predictions [24]. Glassy freezing occurs in the regime of very low \(\langle \sigma \rangle \), apparently as a precursor to the MIT. The existence of such an intermediate \((n_e < n_s < n_g) \) glass phase is consistent with theoretical predictions [25].

The authors are gratefully supported by the Silicon Facility at IBM, Yorktown Heights for sample fabrication, and to V. Dobrosavljević and J. Jaroszyński for useful discussions. This work was supported by NSF Grant DMR-0071668 and by an NHMFL In-House Research Program grant.

FIG. 5. (a) The averaged noise power spectra \(S_f \propto 1/f^\alpha \) vs. \(f \) for several \(n_s \). Solid lines are linear least-squares fits with the slopes equal to \(\alpha \). (b) \(\sigma \) vs. \(n_s \). (c) Relaxation of \(\sigma \) following a slow change in \(n_s (10^{13} \text{cm}^{-2}) \) from 15.93 to 6.01, carried out at \(T = 0.8 K \) and \(T = 0.13 K \) over a period of \(\approx 4.5 \) hours each. After \(\sigma \) reached a stationary value \(\langle A \rangle \) at 0.8 K, the sample was cooled down to 0.13 K. The resulting \(\sigma \) (B) differs from \(\sigma \) (C) obtained using a different cooling procedure by a factor of two, clearly demonstrating history dependent, i.e. non-ergodic behavior. Such behavior is not observed for \(n_s > n_g \).

[1] See E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001), and references therein.
[2] X. G. Feng et al., Phys. Rev. Lett. 86, 2625 (2001).
[3] J. H. Davies, P. A. Lee, and T. M. Rice, Phys. Rev. Lett. 49, 758 (1982); M. Pollak and A. Hunt in Hopping Transport in Solids, edited by M. Pollak and B. I. Shklovskii (Elsevier, Amsterdam, 1991), and references therein.
[4] M. Ben-Chorin et al., Phys. Rev. B 44, 3420 (1991); M. Ben-Chorin et al., Phys. Rev. B 48, 15025 (1993); Z. Ovadyahu and M. Pollak, Phys. Rev. Lett. 79, 450 (1997); A. Vaknin et al., Phys. Rev. Lett. 81, 669 (1998); A. Vaknin et al., Phys. Rev. Lett. 84, 3402 (2000).
[5] G. Martinez-Arizala et al., Phys. Rev. Lett. 78, 1130 (1997); G. Martinez-Arizala et al., Phys. Rev. B 57, R670 (1998).
[6] E. Bielejec and W. Wu, cond-mat/0007474 (2000).
[7] V. Dobrosavljević et al., Phys. Rev. Lett. 79, 455 (1997).
[8] S. Chakravarty et al., Phil. Mag. B 79, 859 (1999).
[9] J. S. Thakur et al., Phys. Rev. B 59, R5280 (1999); A. A. Pastor et al., Phys. Rev. Lett. 83, 4642 (1999).
[10] V. Dobrosavljević and A. A. Pastor (unpublished).
[11] See Complex Behavior of Glassy Systems, Lecture Notes in Physics, edited by Miguel Rubi and Conrado Perez-Vicente (Springer, Barcelona, 1996).
[12] See M. B. Weissman, Rev. Mod. Phys. 65, 829 (1993).
[13] See A. B. Fowler et al., IBM J. Res. Develop. 32, 372 (1988); D. Popović et al., Phys. Rev. B 42, 1759 (1990).
[14] D. Popović et al., Phys. Rev. B 56, R10048 (1997).
[15] A. B. Fowler et al., Phys. Rev. Lett. 57, 138 (1986).
[16] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1999).
[17] V. M. Pudalov et al., JETP Lett. 68, 442 (1998); cond-mat/0103087 (2001).
[18] It is interesting that weak localization (WL) has not been seen in \(\sigma(T) \) even though our lowest \(T \approx 9 \times 10^{-4} T_F \) (Fermi temperature \(T_F = 7.31 \times 10^{-11} \text{cm}^{-2} \)) is almost an order of magnitude lower than \(T \) below which WL effects are expected to set in [19,20].
[19] V. M. Pudalov et al., Phys. Rev. B 60, R2154 (1999).
[20] B. L. Altshuler et al., Physica E 9, 209 (2001).
[21] V. M. Pudalov et al., Phys. Rev. Lett. 70, 1866 (1993); A. A. Shashkin et al., Phys. Rev. Lett. 87, 266402 (2001).
[22] We expect that VRH would become important at even lower \(n_s \), which could not be reached experimentally because of the low signal-to-noise ratio.
[23] D. Belitz et al., Rev. Mod. Phys. 66, 261 (1994).
[24] O. Cohen et al., Phys. Rev. Lett. 69, 3555 (1992); O. Cohen and Z. Ovadyahu, Phys. Rev. B 50, 10442 (1994).
[25] F. N. Hooge, Physica B 83, 14 (1976).
[26] See M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).
[27] C. J. Adkins and R. H. Koch, J. Phys. C 15, 1829 (1982).
[28] See P. Dutta et al., Rev. Mod. Phys. 53, 497 (1981).
[29] C. T. Rogers et al., Phys. Rev. Lett. 53, 1272 (1984).
[30] R. F. Voss and J. Clarke, Phys. Rev. B 13, 556 (1976).
[31] B. I. Shklovskii, Solid State Comm. 33, 273 (1980); V. I. Kozub, Solid State Comm. 97, 843 (1996); Sh. Kogan, Phys. Rev. B 57, 9736 (1998).
[32] N. E. Israeloff et al., Phys. Rev. Lett. 63, 794 (1989).
[33] J. Jaroszyński et al., Phys. Rev. Lett. 80, 5635 (1998); G. Neuttiens et al., Phys. Rev. B 62, 3905 (2000).
[34] J. Wróbel et al., Physica B 256-258, 69 (1998).
[35] M. G. Peters et al., J. Appl. Phys. 86, 1523 (1999).