In terms of absolute spending on research and development (R&D) and their share in GDP, Canada can hardly be ranked among the leaders of scientific and technological advance. The Canadian Encyclopedia defines it as a “small-science” country [1], and the Organization for Economic Cooperation and Development (OECD) characterizes it as a medium R&D country [2].

According to the OECD data, Canada ranks 11th in the world in terms of absolute R&D spending, behind other G7 countries, as well as China, South Korea, Russia, and Taiwan. The share of R&D spending in Canada’s GDP is 1.59%, which is lower than that of the other G7 members, except for Italy, and significantly lower than the OECD average of 2.48%. Moreover, Canada is the only country in this group the R&D spending of which as a percentage of GDP from 2000 to 2019 did not increase but decreased (Table 1).

At the very beginning of the 21st century, the situation was different and Canadian science spending as a percentage of GDP was not much lower than the OECD average. However, the subsequent slight increase in absolute terms in the volume of such investments led to a growing lag: from 2.0% of GDP in 2001, the share of R&D spending in Canada decreased to 1.84% in 2010, 1.69% in 2015, and 1.59% in 2019, which was contrary to the global trend, according to which this indicator for OECD countries increased over the same period from 2.08% in 2001 to 2.48% in 2019. One of the main causes of this lag was probably a stronger and sharper drop in Canada’s GDP of the share of manufacturing—the main consumer of R&D results—after the end of the technology boom of the late 1990s, compared to other developed countries.

The current norm for developed countries in R&D spending is about 2.5% of GDP. China, France, the Netherlands, Denmark, Finland, Norway, Slovenia, and Iceland spend as much or slightly less. More “science-oriented” and wealthier countries, such as the United States, Germany, Japan, Belgium, Austria, Sweden, and Taiwan, spend 3–4% of GDP for this purpose. Finally, South Korea and Israel stand out as the leaders, their share of R&D expenditures being almost 5% of GDP.

In terms of the number of researchers (167400 people), Canada in 2020 ranked 11th in the world (Russia with its 397200 researchers is in 6th place); in terms of the number of R&D personnel (in full-time equivalent), 238100 people, Canada is 13th (for Russia, this figure is 748700, 4th place) [4, p. 33]. However, even with such relatively modest figures, Canadian science shows good results.

In total, Canadians have received 28 Nobel Prizes, of which 24 were for scientific research (eight in chemistry, six in physics, six in physiology and medicine, and four in economics), two in literature, and two in peace. For comparison, out of Russian/Soviet scien-
tists, writers, and public figures, 32 people have become Nobel prizewinners [5].

By the number of articles in international scientific journals published in 2005–2010, Canadian scientists were in 7th place in the world; for the years 2009–2014, Canada dropped to 9th place, behind Italy and India. Its contribution to world science was most noticeable in disciplines such as personalized medicine, quantum information computing, neuroscience, and computer applications, in which Canadian researchers in the years 2011−2015 accounted for over 5% of all articles published in the world [6, pp. 37, 41]. These data correspond to those given in the short statistical collection Nauka. Tekhnologii. Innovatsii: 2022 [4].

Thus, the share of Canada in the number of articles in journals indexed in Web of Science was 3.83% (Russia, 2.80%) and in Scopus, 3.47% (Russia, 3.14%). In terms of the number of such articles, Canadian scientists ranked 8th in the world in 2020, and 10th in terms of the number of articles in Scopus (Table 2).

Canadian scientists are approximately in the same places in terms of the number of articles published in the prestigious international journals Nature and Science. Based on the results for the period from December 1, 2020, to November 30, 2021, the Nature Index, which combines the results of both journals, ranks Canada in 8th place after the United States, China, Germany, Britain, Japan, France, and South Korea (Russia is in 18th place). In a breakdown of the four major disciplines for these journals (chemistry, earth and environmental sciences, life sciences, and physics), Canada is ranked 10th, 6th, 7th, and 11th, respectively (for comparison, Russia is in the 18th, 26th, 27th, and 14th places) [7].

Another generally accepted indicator showing the degree of development of science in a country is the balance of foreign trade in science-intensive products. The OECD traditionally monitors the position of leading countries in international trade in pharmaceuticals, computers, electronics, and optical instruments, as well as aircraft and other aerospace products. The position of Canada appears ambiguous: it has a negative balance in trade in pharmaceuticals (1.3% of world exports), computers, electronics, and optics (0.5%) but a positive balance in trade in aerospace products (3.3% of world exports) (Table 3).

R&D FUNDING AND SPENDING IN CANADA

Table 4 gives an overview of both the main sources of R&D funding and the top performers of research in Canada. The main sources of funding are the following: business enterprise sector (43.5% of costs), universities (19.8%), the federal government (18.0%), foreign sector (9.4%), subnational governments (5.0%), and private nonprofit organizations (4.3%). The top R&D performers are business enterprise sector (52.3%), universities (40.3%), the federal government

Countries	2000 % of GDP	2005 % of GDP	2010 % of GDP	2015 % of GDP	2019 % of GDP	2019 % of GDP at PPP*
United States	2.62	2.52	2.74	2.72	657.4	3.07
China	0.90	1.31	1.73	2.06	525.7	2.23
Japan	3.00	3.13	3.25	3.24	173.3	3.20
Germany	2.39	2.44	2.71	2.93	148.1	3.19
South Korea	2.18	2.52	3.47	3.98	102.5	4.64
France	2.08	2.05	2.18	2.27	73.3	2.20
United Kingdom	1.72	1.56	1.69	1.65	56.9	1.76
Russia	1.05	0.99	1.13	1.10	44.5	1.04
Taiwan	1.91	2.33	2.80	3.00	44.0	3.49
Italy	1.01	1.04	1.22	1.34	39.3	1.47
Canada	1.87	1.97	1.84	1.69	30.3	1.59
OECD, total	2.14	2.11	2.30	2.31	1564.1	2.48

Compiled according to [3].

* PPP is purchasing power parity of currencies.
Comparison with other countries makes it possible to determine the Canadian specificity, which consists in an excessively high share of universities in the financing and execution of R&D, with the undersized participation of business. While in the OECD countries the expenditure of private business on R&D are on average 63% of the total, in Canada they are slightly more than 40% (in Russia, 30%); while in the OECD business acts as a performer of 71% of all R&D, in Canada this figure is only 51% (in Russia, 61%). In contrast, Canadian universities absorb a much larger share of R&D allocations than in other countries, 41.5%, while in the United States, they amount to 12%; Russia, 11%; China, 8%; and the OECD average is 16.5% (Table 5).

Although the share of the state (represented by the federal and subnational governments) in the total amount of R&D funding in Canada is not so large, it plays a leading role in the development of scientific and technological priorities, and, in relation to science proper, in the financing of basic research. The state understands its role in stimulating R&D in different ways: it directly funds scientists working in universities and private laboratories, supports industrial R&D indirectly by providing private companies with generous tax deductions and benefits [10, pp. 49–69], inde-
pendently conducts scientific research in federal and provincial laboratories and shares the results with private business and universities, and creates a general institutional environment in the country that is conducive to the development of science. The data of Statistics Canada on the allocation of federal science appropriations show that three major granting agencies and the National Research Council Canada have the largest budgets. Of the departments, the Department of Innovation, Science, and Economic Development; the Department of Agriculture and Agri-Food; the Department of Natural Resources; and the Department of National Defense have large budgets for R&D. Of the agencies, the most “knowledge intensive” are Atomic Energy of Canada Ltd. and the Canadian Space Agency [11]. In fiscal year 2020−2021, the science budget of the Public Health Agency of Canada

Table 4. Gross domestic expenditures on research and development, by funder and performer sector, 2021, mln Canadian dollars (in brackets, in %)

Funders	Performers	2021, mln Canadian dollars				
	federal government sector	provincial sector	business enterprise sector	higher education sector	private nonprofit sector	total, all sectors
Federal government sector	2450	1	882	3871	30	7234 (18.0)
Provincial sector	0	331	307	1295	46	2001 (5.0)
Business enterprise sector	9	..	16100	1285	7	17417 (43.5)
Higher education sector	7922	..	7922 (19.8)
Private nonprofit sector	75	1621	33	1730 (4.3)
Foreign sector	3607	146	6	3760 (9.4)
Total, all sectors	2459	(6.1)	372	20972	16141	40066 (100)

Source: [9].

Table 5. R&D performance by sectors, 2019

Countries	Business	Higher education	Government	Private nonprofit	Total R&D			
	% of total R&D	% of GDP	% of total R&D	% of GDP	% of total R&D	% of GDP	% of total R&D	% of GDP
South Korea	80.3	3.73	8.3	0.38	10.0	0.46	1.43	4.64
United States	73.9	2.27	12.0	0.37	9.9	0.30	4.25	3.07
France	65.8	1.44	20.1	0.44	12.4	0.27	1.76	2.20
Norway	53.0	1.14	34.3	0.74	12.7	0.27	–	2.15
Canada	50.6	0.81	41.5	0.66	7.5	0.12	0.39	1.59
Russia	60.7	0.63	10.2	0.11	0.29	0.29	0.43	1.04
OECD average	71.2	1.76	16.5	0.41	0.24	0.24	2.48	2.48

Compiled according to [8].
increased by more than an order of magnitude due to the COVID-19 pandemic.

These organizations manage their scientific budgets differently. Most of them outsource R&D, others act as major contractors and customers at the same time, and three organizations (the agriculture and defense departments and Statistics Canada) perform all or almost all R&D in-house.

Speaking about the role of the state in the formulation and implementation of science policy, one cannot but mention, at least in brief, the participation of subnational governments in solving these problems. Since Canada is a federation and science in it is not attributed by the constitution to the sole competence of the central government, the provinces also play a noticeable, although not decisive, role in the field of science. They, first, finance universities, which carry out the lion’s share of scientific research. Second, they have their own scientific laboratories both within large departments and in the form of independent agencies and research centers. Third, in some cases they act as proving grounds to test new initiatives and practices in the organization of science, which, if successful, are reproduced at the federal level. In addition, the role of the provinces is to better tailor federal programs and incentives to the specific needs of their regions.

The provinces in Canada differ from each other in how they build their scientific profile. Some of them, such as Quebec, work in a wide range of disciplines and, in essence, reproduce federal politics in miniature on their territory. Others prefer to narrow their scientific search by opting for specialization. Thus, Saskatchewan, which has highly developed agriculture, sets the task of taking a leading position in the biological sciences. New Brunswick has identified six priority areas for itself: information and communication technology; life sciences; highly processed food and forest products; and industrial production, including the aerospace and defense industries. Alberta is known for first subnational scientific organization, the Alberta Research Council, created in 1921, which specialized in the development of technologies for the extraction of natural resources. At present, this province is a world leader in oil sands recovery technologies; it also has a strong research base in medical sciences [12, pp. 12, 18–23].

NATIONAL SCIENCE POLICY IN CANADA: GENESIS AND CURRENT SITUATION

The development of research activities in the country created a need to coordinate scientific efforts and create a system of science management. This process began in the 1960s and continued into the next decade. It was then that here, as in most OECD member countries, the concept of national science policy was established. Public, parliamentary, and scientific discussions of that time were focused on issues related to the purpose and ways of scientific research in the country. Four main approaches were considered.

1. “Pure” science, science for the sake of science, when scientists themselves determine what and how to study.
2. Government support for scientific research depending on the social demand and the overall usefulness of the expected discoveries.
3. The development of science based on large-scale mission-oriented projects, to which the lion’s share of budget allocations go. (Examples from history include Canadian participation during World War II in the British–US Manhattan Project to build an atomic bomb and the postwar national program on the development of nuclear energy, which involved the construction of the original Canadian CANDU reactor.)
4. Comprehensive scientific planning in accordance with government-defined national goals, following the example of the then Soviet Union.

The Canadian Encyclopedia argues that the option of comprehensive scientific planning was deemed unfeasible in a market economy and suitable only for emergencies, such as martial law. The first and third approaches also did not fit (the first as not corresponding to the current stage of development, and the third as not being consistently implemented in practice). Thus, the second approach was chosen as the main one [1].

Another important issue that required discussion was the mechanism for implementing science policy. Three options were offered.

- The appointment of a Minister for Science, who would be responsible for the work of all government scientific institutions and act as an adviser to the Cabinet. This option was rejected because the new position implied too many functions and excessive centralization and bureaucracy. This idea was opposed by Canadian scientists, who were accustomed to working in a pluralistic environment and were unwilling to give up their autonomy.

- The creation of a federal department for science and technology, the activities of which could both be limited to an advisory function under the government and have executive powers.

- The formation of a government agency with advisory functions.

It was the latter option in the form of the Science Secretariat as part of the Privy Council Office that was initially adopted in Canada, but it was rather quickly abandoned in favor of the establishment of the post of a relevant minister and/or department of science.

Analyzing the recent science policy of Canada, two dissimilar periods can be distinguished: 2006–2015, when Conservative governments headed by Prime Minister S. Harper were in power in the country, and
since 2015 to the present day, when the Liberal Party is in power.

Harper’s Conservative cabinets (2006–2015) are best remembered for their undisguised utilitarian approach to science and underestimation of the importance of basic knowledge, the elimination of the post of National Science Advisor in 2008, attempts to limit scientists employed in federal laboratories in contacts with the media and the free exchange of opinions and information. Many regarded these actions as pressures on basic science, which caused rejection not only by the academic community but also, in solidarity with it, by civil society organizations. The culmination of discontent was the march of 2000 scientists that took place in July 2012 on Parliament Hill in Ottawa and acquired an international dimension [13].

The blunders of the Conservatives were soon used to their own advantage by their eternal rivals—the Liberals, who won the general elections in 2015 and have been pursuing a more civilized and enlightened science policy. Their 2015 election platform contained a separate paragraph promising to “value science and treat scientists with respect” and to appoint a Chief Science Officer (advisor). The latter was supposed to ensure the solution of three interrelated tasks: to make the results of research conducted in federal laboratories available to the public, to allow scientists to discuss their problems and research results freely, and to provide scientific justification for government decisions [14].

In 2016, the Liberal government of J. Trudeau established an independent commission headed by Professor of Medicine D. Naylor to assess the state of Canadian fundamental science. A year later, it presented a report with 35 recommendations [6]; note, however, that they are being implemented extremely slowly. According to the report of the nonprofit organization Evidence for Democracy, as of November 2021, only nine recommendations have been implemented, 13 were under implementation, and 13 were not implemented [15].

A partial response to Naylor’s report was the science support measures included in the 2018–2019 federal budget, which, according to government websites, were the largest allocations for the development of basic science in the history of Canada and provided for spending in an amount of CA$2.8 billion (hereinafter, the figures are given in national currency) to update the instrumental base of federal laboratories.

The 2021–2022 budget allocated funding for the implementation of three nationwide strategies: an artificial intelligence strategy (launched in 2017, which has now received an additional $444 million for ten years), a quantum strategy ($360 million for seven years), and a genomics strategy ($400 million for six years). Even larger expenditures are planned for the implementation of the energy transition ($5 billion for seven years) and for the development of biomanufacturing sector and life sciences ($2.2 billion for seven years) [16].

THE ORGANIZATIONAL MECHANISM OF SCIENCE MANAGEMENT

The key federal agency responsible for conducting national science policy and coordinating R&D in Canada is the Department of Innovation, Science, and Economic Development, one of the largest departments at the federal level. Currently, it is headed by four ministers at once, one of whom is responsible for innovation, science, and industry; the second oversees international trade, small business, and economic development; the third, tourism; and the fourth, rural economic development. The superdepartment was created in 2015 by merging the Department of Industry with the Department of Science and Technology. The Science and Research Sector, which is part of the new structure, consists of four branches: science policy; science programs and partnerships; infrastructure fund; and clean technologies and “clean growth.”

Since 2017, the Secretariat of the Chief Science Advisor Office has been operating within the department. Formally, it is not subordinate to the Minister for Innovation, Science, and Economic Development and is independent in judgments, assessments, and recommendations. The Chief Adviser reports annually on the situation in the field of science to the respective Minister and Prime Minister of Canada. The Office of the Chief Science Adviser promotes new initiatives such as “open science” and “scientific integrity policies.”

The following goals were set: from January 1, 2022, to open free access to all journal articles published by scientists working for the federal government, and from January 1, 2023, to all their other publications (reports, conference presentations, monographs, and chapters in monographs).

In addition to its own research units, the area of responsibility of Innovation, Science, and Economic Development Canada includes several dozen government agencies and organizations with a separate budget and varying degrees of autonomy. The most important of these are the National Research Council Canada, three research grant foundations, the Canada Foundation for Innovation, and the Council of Canadian Academies.

The National Research Council Canada, established in 1916, is one of the oldest scientific organizations in the country (only the Royal Society of Canada is older). Initially, it consisted of three departments:

1 As defined by the Canadian government website, the policy of “scientific integrity” aims to ensure that scientists working in federal laboratories have the right to objectivity, openness, transparency, and reproducibility of scientific research results, as well as freedom from political or commercial interference in their activities.
At present, it focuses on three priorities: emerging technologies (information and communication technologies, measurement methods and standards, astronomy and astrophysics, and security technologies), life sciences (development of water and crop resources, human health therapy, and medical devices), and engineering sciences (aviation and space, automotive and land transport, construction, mining, energy and environmental protection, ocean, and coastal and river engineering). In fiscal year 2021-2022, the National Research Council Canada had a budget of $1.276 billion, of which it spent $809 million on its own. Until recently, this structure was considered the closest analogue to the Soviet/Russian Academy of Sciences. However, in the last decade, the differences between them have increased. As a result of the 2013 reform, the Russian Academy of Sciences was deprived of its own research institutes. In May of that year, the National Research Council Canada announced that it was beginning to shift its focus from basic research to applied R&D, following the example of the Fraunhofer Society in Germany.

There are three foundations in Canada that provide federal research grants. These are the Natural Sciences and Engineering Research Council and the Social Sciences and Humanities Research Council, established in 1978, as well as the Canadian Institutes of Health Research, which have been working since 1999. In fiscal year 2021-2022, these foundations issued grants to more than 33,000 scientists, as well as 40,000 undergraduate and graduate students, totaling $2.4 billion [17]. In 1997, a fourth foundation was added to the three funds, the Canada Foundation for Innovation, which allocates grants for the purchase of scientific equipment and the implementation of infrastructure projects. In 2017, an umbrella structure was created over the funds in the form of the Canadian Research Coordinating Committee.

Another important organization that is not directly subordinate to the Innovation, Science, and Economic Development Canada but is associated with it, is the Council of Canadian Academies, formed in 2002, a nonprofit organization that brings together the Canadian Academy of Health Sciences, the Canadian Academy of Engineering, and the Royal Society of Canada. At its inception, the Council of Canadian Academies received a $30 million grant from the government for ten years. Since then, this period has been extended twice: in 2015, $15 million was allocated for the next five years, and $9 million was appropriated from the 2020-2021 financial year for three years. The council manages this money independently, subject to annual review of up to five scientific examinations on the instructions of the government. In total, since 2002, it has carried out more than 50 studies to assess the state of the scientific and technical complex of Canada and develop recommendations both on the orders of the federal government and on its own initiative.

Reports on the state of R&D in the country, published periodically by the Council of Canadian Academies, make it possible to trace the change in the specializations of Canadian science. The first report, dated 2006, identified four broad areas in which Canada had a comparative advantage—natural resources, information and communication technologies, health and life sciences, and environmental protection [18]. In the second report (2012), six areas were identified as priorities: clinical medicine, historical sciences, information and communication technologies, physics and astronomy, psychology and cognitive sciences, and fine and performing arts [19]. The third report, prepared in 2018, ranked psychology and cognitive sciences, health and medical services, philosophy and theology, earth and environmental sciences, and the visual and performing arts among the most developed disciplines [20].

A landmark event was the establishment of the Standing Committee on Science and Research in the House of Commons of the Canadian Parliament in December 2021; the committee was designed to deal with issues of legislative support for science policy.

SPECIFICITY OF THE CANADIAN MODEL

The mechanism of science management in Canada is similar to those in other Western countries, in particular, the United States [21, 22]. However, the scientific and technical complex of Canada has a certain specificity, which can be reduced to the following.

Canada, which is not a great power, does not conduct R&D in the full range of scientific disciplines: it lacks financial resources, scientific schools, highly qualified personnel, and international ambitions. The country chooses areas that meet the capabilities of its scientific and technical base and the needs of the economy. Over time and due to circumstances, the areas of scientific specialization in Canada change.

Canada does not conduct large-scale military research. The government spends 97.8% of its expenditures on science on civilian R&D, and 2.2% on defense research. (For comparison, in the United States, this ratio is 51.9 to 48.1%, and the OECD average is 78.8 to 21.2%) [23]. This is due to the fact that the Canadian military—industrial complex is part of the US military—industrial complex, and military production itself accounts for a small part of the country’s GDP.

The weak link in the national scientific and technical complex has long been the insufficient participation of business in the financing and execution of R&D [24, 25]. The private sector’s share of total R&D spending in Canada has historically been lower than the average for the OECD and most other industrialized countries. One of the reasons for this is that foreign capital is widely represented in the Canadian
economy in the form of branches and subsidiaries of the largest American and other foreign TNCs, which in some cases find it more convenient not to conduct independent R&D in Canada but to receive research results carried out in the home country through intercompany exchange channels. As for national Canadian business, it is seldom represented by large companies, and the more common medium and small businesses here may not have enough financial and other resources for very costly R&D. In Canada, there is only one TNC (Magna International), which annually spends more than $1 billion on R&D, and eight more companies the budget for science in which ranges from $500 million to $1 billion [26].

One of the most stable elements of Canada’s science policy is the configuration of grant-giving funds. Whereas the United States has one National Science Foundation, Canada has four grant-giving organizations at the federal level. The country’s leadership does not attempt to merge or reform them, reasonably believing that this may cause inconvenience for scientists who are accustomed to certain requirements and procedures for filing applications and reporting, specific for each fund.

Although Canada has pursued national science policy since the 1960s and has accumulated considerable experience in this area, the form and directions of science policy, as well as the optimal set and composition of relevant organizations, continue to be fine-tuned and changed. Speaking about the evolution of the role of the government in the implementation of R&D in recent decades, two trends can be noted: a gradual shift in emphasis from basic to applied research and development and a deliberate reduction in the role of federal laboratories in R&D in favor of transferring orders to external contractors—primarily universities, as well as business.

* * *

The Canadian experience in managing science is of particular interest to Russia due to the presence of several similarities. First, these two countries spend less than the OECD average on science as a percentage of GDP, not to mention the leading countries. Both belong to a small group of developed countries whose spending on these purposes has stagnated in relative terms over the past few decades.

Second, the weak link in the scientific and technical complex of both countries is business, which is passive both in financing and in disbursing funds for R&D. Although the reasons for such passivity are different (in Canada, it is the dominance of foreign, primarily American, capital, while in Russia, it is an insufficient level of competition in industry), in both countries this problem is very difficult to solve.

Third, both countries have a federal form of government, which makes the generally successful experience of the participation of Canadian provinces in the implementation of science policy worthy of attention and study.

Of course, not everything from Canada’s experience suits us. It is obvious that a country that is a military—political ally of the United States and is under the cover of the American nuclear umbrella can save on financing military research and development and other military spending, which Russia cannot afford in the current geopolitical environment. In the same way, the effectiveness of Canadian science and the high citation of its results are greatly enhanced by close collaboration with scientists from other countries, primarily the leaders of scientific and technological progress—the United States, Britain, Germany, France, and, more recently, China.

It is known that at one time the National Research Council of Canada carefully studied the theory and practice of the functioning of the USSR Academy of Sciences. Perhaps now it is our turn to analyze critically the content and priorities of Canada’s science policy and learn something useful for Russia.

CONFLICT OF INTEREST

The author declares that she has no conflicts of interest.

REFERENCES

1. J. W. Grove, “Science policy,” in Canadian Encyclopedia. https://www.thecanadianencyclopedia.ca/en/article/science-policy. Cited January 5, 2022.
2. OECD, Science, Technology, and Industry Outlook 2014 (OECD, Paris, 2014). https://www.oecd-ilibrary.org/industry-outlook/oecd-science-technology-and-industry-outlook-2014_sti_outlook-2014-en
3. OECD, Main Science and Technology Indicators 2021 (1) (OECD, Paris, 2021). https://doi.org/10.1787/177ef5f5-en
4. L. M. Gokhberg, K. A. Ditkovskii, M. N. Kotsemir, et al., Science. Technology. Innovations: 2022: Brief Statistical Compendium, Ed. by L.M. Gokhberg and Ya.I. Kuz’minov (NIU VShE, Moscow, 2022) [in Russian]. https://issek.hse.ru/news/527997187.html. Cited February 7, 2022.
5. List of Nobel laureates by country. https://en.wikipedia.org/wiki/List_of_Nobel_laureates_by_country. Cited June 6, 2022.
6. Investing in Canada’s future: Strengthening the foundations of Canadian research: Canada’s fundamental science review 2017. https://sciencereview.ca/eic/site/059.nsf/vwapj/ScienceReview_April2017-rv.pdf/$file/ScienceReview_April2017-rv.pdf. Cited January 27, 2022.
7. https://www.natureindex.com. Cited March 1, 2022.
8. OECD, Main Science and Technology Indicators 2021 (1) (OECD, Paris, 2021). https://doi.org/10.1787/177ef5f5-en
9. Gross domestic expenditures on research and development by science type and by funder and performer sector. https://doi.org/10.25318/2710027301-eng

10. V. P. Zavarukhin, L. L. Korchmar, D. A. Rubval’ter, and O. V. Rudenskii, “Indirect financing mechanisms for innovation activities: Tax regimes, concessions, and credits in OECD Countries,” Inf.-Anal. Byull. TsISN, No. 4, 1–107 (2006).

11. Statistics Canada, Federal expenditures on science and technology, by major departments and agencies—Intentions, Table 27-10-0026-01, June 6 (2022). Cited February 10, 2022. https://doi.org/10.25318/2710002601-eng

12. Science policy: Considerations for subnational governments: A workshop steering committee report, Apr. 19 (2017). https://cca-reports.ca/reports/science-policy-considerations-for-subnational-governments/. Cited February 2, 2022.

13. P. Dufour, “How the Harper regime changed the science policy landscape,” Can. Sci. Policy Mag. 1, 16–17 (2019). https://cdn.sciencepolicy.ca/wp-content/uploads/2020/10/CSPC_Magazine_2019-Optimized.pdf. Cited January 20, 2022.

14. Evidence-based policy, Liberal Platform, pp. 36–37 (2015). https://documentcloud.org/documents/2484248-liberal-party-of-canada-2015-platform. Cited January 10, 2022.

15. U. A. Baqi, M. Deith, E. Halbe, et al., “The fundamental science review: Where are we at?,” Evidence for Democracy, Nov. 16 (2021). https://evidencefordemocracy.ca/sites/default/files/fsr_review_table.pdf. Cited February 27, 2022.

16. Budget 2021: Building an innovation economy of the future. https://www.canada.ca/en/department-finance/news/2021/04/budget-2021-building-an-innovation-economy-of-the-future.html. Cited February 27, 2022.

17. Standing Committee on Science and Research (SRSR-44-1) Meeting 6, Feb. 17 (2022). http://www.ourcommons.ca/DocumentViewer/en/44-1/SRSR/meeting-6/evidence. Cited March 2, 2022.

18. The state of science & technology in Canada. https://cca-reports.ca/reports/the-state-of-science-and-technology-in-canada/. Cited February 24, 2022.

19. The state of science and technology in Canada, 2012. https://cca-reports.ca/reports/the-state-of-science-and-technology-in-canada-2012. Cited January 24, 2022.

20. Competing in a global innovation economy: The current state of R&D in Canada, 2018. https://cca-reports.ca/reports/competing-in-a-global-innovation-economy/. Cited January 24, 2022.

21. S. M. Rogov, “Russia must become a scientific superpower,” Herald Russ. Acad. Sci. 80 (4), 313–323 (2010).

22. V. B. Supyan, “R&D in the USA: Funding, structure, and results,” J. New Econ. Assoc., No. 1, 201–207 (2019).

23. OECD, Main Science and Technology Indicators 2021 (1), Tables 58, 59. Accessed March 5, 2022. https://doi.org/10.1787/177ef5f5-en

24. B. I. Alekhin, Canada: Monopolies and Scientific Policy of the State (Nauka, Moscow, 1982) [in Russian].

25. L. A. Nemova, “The current stage of development of the scientific and technical potential of Canada,” USA Can. Econ. Polit. Cult., No. 8, 3–32 (2003).

26. Canada’s top 100 corporate R&D spenders 2021. https://researchinfosource.com/top-100-corporate-rd-spenders/2021/list/. Cited February 7, 2022.