Effect of the Minor Principal Stress on Crack Initiation Stress Threshold

E Mutaz¹, M Serati¹ and D J Williams¹

¹ School of Civil Engineering, The University of Queensland, St Lucia 4072, Brisbane, Australia
E-mails: m.mahmoud@uqconnect.edu.au

Abstract. The rapid expansion of urban and mining infrastructures worldwide over the last two decades has seen an escalation of development in hard rock, including urban tunnels, deep open pits, and underground mines. However, despite many success stories, the pervasiveness of rock burst and spalling remains yet a major unresolved ground control problem in many deep mines and tunnels. Spalling is characterised as a sudden explosion-like rock failure that occurs spontaneously and could affect both the short-term and long-term viability of mining operations. Previous studies strongly show that the spalling strength in low-porosity rocks can be associated with the initiation of internal cracks in the sample. However, very limited studies are available that looks at the effect of all the principal stresses on rock crack initiation stress threshold. This paper investigates the previously ignored effect of the minor principal stress on the crack initiation stress level of sandstone cubes tested under true triaxial loading conditions. The results reveal that the minor principal stress has a profound effect on the crack initiation point. As a result of this study, a new crack mode-changing stress (CMCS) concept is also introduced which is defined as the corresponding minimum principal stress required to change rock fracturing from splitting to a sliding failure mode.

1. Introduction
In the hunt for more ores and due to tremendous improvements in excavation techniques and instrumentation methods, mining depths have increased significantly from less than 200 m in the early 1900s to above 2000 m and even further in late 2000s [1] (see Figure 1). More recently, mining depths have even exceeded 4 km, for example, in the Mponeng gold mine in South Africa which is one of the deepest mines on earth [2]. As we go deeper, many associated problems have arisen, such as high-stress conditions, high temperature, and low porosity which leads to explosion-like fractures known as stress spalling, slabbing, or rock bursting. Such failure types emerged in the early 1900s and have gained more attention since [3]. Spalling failure has been observed in different mine locations around the globe: Nickel mines in the Sudbury Basin in Canada, the Neyriz Marble Mine in Iran, metal mines in North America, Champion Reef Mine in the Kolar Gold Fields in India, the Hongtoushan copper mine in China, the Onkalo Tunnel in Finland, the Steg Lateral Adit of the Lötschberg Base Tunnel in Switzerland, and in the Garpenberg zinc mine in Sweden at a depth of 880 m [3, 4, 5, 6, 7, 8, 9, 10]. In Australia, the mining industry makes a great contribution to the economy with over 350 mines in operation [11]. In the last century, spalling failure has been observed in numerous locations around Australia: Hawkesbury Sandstone in the crown of the M5 East Motorway in Sydney, the Northside Storage tunnels and Elgas Cavern in Sydney, the tunnels constructed within Bringley Shale and the Newport Formation in the Sydney Basin, the Mount Isa Mines in Queensland where the depth of the failure in the side walls exceeded one metre, the Kalgoorlie mines in Western Australia, and the NorthConnex project in New South Wales [12, 13, 14, 15, 16]. Therefore, solving the challenges facing
this sector has attracted global attention in the last decade and millions of dollars were allocated to associated research.

Figure 1. Mining depth variation for different ores between 1920 and 2020

Given that spalling failure is associated with the initiation of internal cracks, the crack initiation (CI) concept which is defined as the onset of stress-induced damage that initiates following the closure of pre-existing cracks was used as a predictor of spalling failure. The initiation and accumulation of the induced localised tensile cracks is due to the inhomogeneous nature of rocks, mineral composition, particle size, and structural type [17, 18]. The crack initiates within the elasticity zone of the rock and, therefore, many crack initiation models were developed based on the stress-strain response of underground rock. These include the volumetric strain method [19], the lateral strain method [20], the extensional strain method [21], the crack volumetric strain method [22], the Poisson’s ratio method [23] and the lateral strain response (LSR) method [24]. Before the CI stress threshold, the rock experiences no new induced stress-damage and its strength remains under quasi-static loading [25]. Based on controlled in-situ experiments under uniaxial loading conditions, the CI point is typically in the range of 30% to 50% of the UCS value and, therefore, it has been indicated as an intrinsic property of brittle rocks regardless of the loading or environmental conditions [26, 27]. From this perspective, a crack initiation ratio (CIR) concept (the ratio of the CI stress threshold to the peak strength) has been introduced as a dimensionless indicator of spalling strength to better characterise the mechanism of catastrophic failure of underground brittle rock. While the CI point represents the onset of stress-induced cracks at a micro level, the crack damage CD stage represents the coalescence of cracks at a macro level and dilation of deformation.

The general consensus revealed that the material elasticity, porosity, tensile strength, and brittleness ratio have an impact on the crack initiation, coalescence, and propagation. Whereas the confining pressure significantly increases the CI stress threshold, it also shapes the CI mode. At low confinement, the CI is developed under a splitting mode where the pre-existing cracks remain open during the failure process which promotes higher localised tensile stress around the perimeter, while at higher confinement the predominant crack mode is a sliding mode due to the closure of pre-existing cracks that reduces the tensile stress region around the perimeter [17]. Moreover, it is proven based on experimental testing and theoretical analysis that the intermediate principal stress has a significant influence on crack propagation and hence spalling around the periphery of underground tunnels [28, 29]. However, the effect of the minor principal stress on the CI is yet not addressed well in the literature. Therefore, this paper aims to investigate the effect of the minor principal stress on the crack initiation of sandstone cubes tested under true triaxial loading conditions. The results reveal that, like the intermediate principal stress, the minor principal stress has a profound effect on the crack initiation point and the cracking mode.

2. True Triaxial Testing
Early attempts to model a truly in-situ condition of underground rock were carried out by Mogi in the early 1970s who developed a true triaxial testing system capable of independently applying orthogonal
loading on rock specimens [30]. Afterwards, the fabrication and design of true triaxial testing systems prospered. Nowadays, over 100 true triaxial testing apparatuses are utilised in soil, concrete, and rock testing [31, 32]. The Geotechnical Engineering Centre (GEC) of the University of Queensland owns a multifunctional true triaxial testing system with the capability of performing true triaxial loading, permeability, hydraulic fracking, and thermo-mechanical coupled modelling with a temperature of up to 100 degrees, and it is designed to accommodate acoustic emission and ultrasonic monitoring instrumentations to assess the progressive damage [33, 34, 35].

Sandstone bulk samples were extracted from a quarry in the state of Queensland and transported to the GEC where cutting and grinding took place. After grinding, the samples were oven-dried at 50°C for 24 hours before testing (Figure 2). To study the failure characteristics of the sandstone cubes, several generalised triaxial compression stress state tests ($\sigma_1 > \sigma_2 = \sigma_3$), true triaxial tests ($\sigma_1 > \sigma_2 > \sigma_3$), and generalised triaxial tensile stress state tests ($\sigma_1 = \sigma_2 > \sigma_3$) were carried on 50 mm cubes as per the designated loading path in Table 1.

![Figure 2. Test setup: (a) 50mm sandstone cubes for the triaxial and true triaxial testing, and (b) sample positioned inside the true triaxial machine](image)

Before testing, a seating load of 5 kN was maintained in the direction of the principal stresses ($\sigma_1, \sigma_2, \sigma_3$) to avoid sample eccentricity while loading. The testing was carried under a loading rate of 15 kN/min to satisfy the ISRM recommendations. The major principal stresses (σ_1) were increased from the seating load to sample failure where intermediate (σ_2) and minor (σ_3) principal stresses were increased simultaneously from the seating load to the designated load as shown in Table 1 and Figure 3.

It can be deduced from Figure 3 that the peak strength of the sandstone increases from the generalised triaxial compression stress state ($\sigma_1 > \sigma_2 = \sigma_3$) to the generalised triaxial tensile stress state ($\sigma_1 = \sigma_2 > \sigma_3$) at different σ_2 values for all constant values of $\sigma_3 = 5, 10, 20$ and 40 MPa. That is, the peak strength of the sandstone first increased and then decreased with the increase of σ_2 at constant σ_3 values but is still in general greater than that of the generalised triaxial compression stress state which is in line with the reported observations in the literature [34, 36].

3D Stress State	\(\sigma_3 \) (MPa)	Loading Condition	3D Stress State	\(\sigma_3 \) (MPa)	Loading Condition
\(\sigma_1 > \sigma_2 = \sigma_3 \)	5	Triaxial compression stress	\(\sigma_1 = \sigma_2 > \sigma_3 \)	20	Triaxial tensile stress
	10			40	
	20			5	
	40			10	
\(\sigma_1 = \sigma_2 > \sigma_3 \)	5	Triaxial tensile stress		20	True triaxial
	10			40	
3. Crack Initiation Results

The crack initiation in this study was determined based on four models, as summarised in Table 2 and Figure 4. Several sets of $\sigma_1 > \sigma_2 \geq \sigma_3$ at $\sigma_2=40$ and 60 MPa at different values of $\sigma_3=5, 10, 20$ and 40 MPa were deliberately selected to better understand the effect of σ_3 on the CI stress (represented by a red rectangle in Figure 3). The variation of σ_3 with σ_1 at same σ_2 values is shown in Figure 5. The CI values of the selected stresses were determined as summarised in Table 3 along with the standard deviation (SD) and coefficient of variation (CoV) and were then plotted in Figure 6.

Table 2. Crack initiation models used in this study [25]

Model	Comment
Volumetric Strain Method [19]	The volumetric strain curve is used in this model to determine the onset of dilatancy. Therefore, the CI stress is the point where the curve deviates from its linearity.
Lateral Strain Method [20]	The axial strain in this model remains linear after the closure of pre-existing cracks until the onset of an unstable crack growth stage. Hence, the CI is the point where the lateral strain deviates from the linearity.
Extensional Strain Method [21]	The end of the linear portion of the curve representing lateral strain versus axial strain is considered to be the CI stress.
Crack Volumetric Strain Method [22]	This model was proposed to determine the CI based on crack volumetric strain versus axial strain, especially with specimens that have a high crack density.

Table 3. Crack initiation determination

σ_1 (MPa)	σ_2 (MPa)	σ_3 (MPa)	CI Volumetric Strain [MPa]	CI Lateral Strain [MPa]	CI Extensional Strain [MPa]	CI Crack Volumetric Strain [MPa]	SD	CoV (%)	Average
91	40	5	27	27	28	29	0.9	3.5	27.75
105	40	10	40	38	39	38	0.9	2.5	38.75
124	40	20	68	66	68	68	1.0	1.5	67.50
174	40	40	89	90	88	88	0.9	1.1	88.75
101	60	5	28	28	34	28	3.0	10.1	29.50
117	60	10	43	40	40	40	1.5	3.7	40.75
133	60	20	72	71	68	68	2.1	2.9	69.75
188	60	40	92	92	89	91	1.4	1.6	91.00
Figure 4. CI determination models: a) volumetric strain method b) lateral strain method c) extensional strain method d) crack volumetric strain method [24, 37]

Figure 5. Variation in major and minor principal stresses at same intermediate principal stresses

In Figures 5 and 6, the variation in the major principal stresses and CI stresses with the minor principal stresses was investigated under the constant values of intermediate principal stresses of $\sigma_2 = 40$ and 60 MPa. It is obvious from Figure 5 that the major principal stress increases linearly with the increase in the minor principal stress which is unlike the non-linear increase of σ_1 with σ_2 at constant σ_3 values as shown in Figure 3. On the other hand, at constant values of intermediate principal stresses, the CI stress first increases linearly at low values of the minor principal stresses and then increases in a non-linear fashion at higher minor principal stresses which means a change in the cracking pattern took place, as shown in Figure 6. That is, there is a critical value where the CI stress deviates from its linearity and this could be attributed to the change in cracking mode from a splitting mode (at low confinement) to a sliding mode (at higher confinement), as discussed above and highlighted in the literature [17, 38]. Therefore, the minor principal stress where the cracking mode changed from a splitting mode to a
sliding mode can be defined as a crack mode-changing stress (CMCS) which is the point where the CI stress deviates from its linearity on the CI stress versus σ_3 curve. Therefore, it can be concluded that the minor principal stress has a significant effect on the CI and has a profound effect in controlling the cracking mode. In other words, the effect of the minor principal stress on the crack initiation is not trivial nor should be neglected.

![Graph showing variation of CI stress with minor principal stress at same intermediate principal stresses](image)

Figure 6. Variation of CI stress with the minor principal stress at same intermediate principal stresses

4. **Conclusion**

The spalling phenomenon is explosion-like fractures attributed to high-stress conditions, high temperature, and low porosity in shallow to deep mines. The crack initiation concept has been introduced as a predictor of spalling failure. In line with the fact that the crack initiates within the rock elasticity zone, many crack initiation models were developed based on the stress-strain response of underground rock. While the intermediate principal stress has a significant effect on the crack initiation and propagation, limited studies are available in the literature on the effect of the minor principal stress on crack initiation. Therefore, this study aims to investigate the effect of the minor principal stress on crack initiation.

At the same intermediate principal stress, the CI stress increases linearly at low values of minor principal stress and then increases non-linearly at higher minor principal stress which is indicated the change in the cracking pattern at a micro-level. Therefore, a crack mode-changing stress (CMCS) concept is introduced and defined as the point where the CI stress deviates from its linearity on the CI versus σ_3 curve where the cracking mode is changing from a splitting mode (at low confinement) to a sliding mode (at higher confinement). In other words, a CMCS is the minor principal stress required to change the cracking mode from a splitting to a sliding mode. However, further investigation on the CMCS on wide ranges of intermediate principal stresses is an endeavour that is underway and reserved for future publications. In conclusion, the minor principal stress has a significant effect on the crack initiation and plays a vital role in controlling the cracking mode.

5. **References**

[1] Woo K S, Eberhardt E, Elmo D and Stead D 2013 Empirical investigation and characterization of surface subsidence related to block cave mining International Journal of Rock Mechanics and Mining Sciences. vol 61 pp 31–42

[2] Musa M, Gordon C, Alireza M, Raymond D and Zamaswazi N 2015 Integrated interpretation of 3D seismic data to enhance the detection of the gold-bearing reef: Mponeng gold mine, Witwatersrand Basin (South Africa) European Association of Geoscientists & Engineers Geophysical Prospecting. vol 63 pp 881–902
[3] Blake W and Hedley D G 2003 Rockbursts, Case Studies from North American Hard-Rock Mines Society for Mining, Metallurgy and Exploration Inc. Englewood
[4] Martin C D 1997 Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength Can Geotech J. vol 34(5) pp 698–725
[5] Doghhozlou H, Goodarzi M, Rafiei R and Salmi E 2016 Analysis of spalling failure in marble rock slope: a case study of Neyriz marble mine, Iran Environ Earth Sci.75:1478
[6] Karekal S, Rao M V M S and Chinmappa S 2005 Mining-Associated Seismicity in Kolar Gold Mines- Some Case Studies Using Multifractals Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines Proceedings. Australian Centre for Geomechanics Perth pp 635–639
[7] Xingdong Z, Huaibin Li and Shujing Z 2020 Analysis of the spalling process of rock mass around a deep underground ramp based on numerical modeling and in-situ observation Geomatics, Natural Hazards and Risk. vol 11(1) pp 1619–1637
[8] Matti H, John A, John P and Erik J 2008 Assessment of the Potential for Rock Spalling at the Olkiluoto Site Posiva OY. Working Report (38)
[9] Rojat F, Labiouse V, Kaiser P and Descouedres F 2009 Brittle Rock Failure in the Steg Lateral Adit of the Lötschberg Base Tunnel Rock Mech Rock Eng. vol 42 pp 341–359
[10] Catrin E 2008 Strength, fallouts and numerical modelling of hard rock masses PhD Thesis. Luleå University of Technology, Sweden
[11] Youwei Xu, Shengshen WU, Williams D J and Serati M 2018 Determination of peak and ultimate shear strength parameters of compacted clay Engineering Geology. vol 243 pp 160–167
[12] McQueen L, Bewick R, Sutton J and Morrow A 2017 Stress-induced Brittle Failure of the Hawkesbury Sandstone – Case Study from Crack Initiation to Tunnel Support 16th Australasian Tunnelling Conference
[13] Enever J R, Walton R J and Windsor C 1990 Stress regime in the Sydney Basin and its implication for excavation design and construction Inst. Eng. Aust. VII Tunnelling Conf. Sydney pp 49–59
[14] McQueen L B 2000 Stress relief effects in sandstone in Sydney underground and deep excavations. In McNally, G, & Franklin, B.J., eds. Sandstone City – Sydney’s dimension stone and other sandstone geomaterials Geological Society of Australia (Sydney: Australia)
[15] Villaescusa E, Kusui A and Drover C 2016 Ground Support Design for Sudden and Violent Failures in Hard Rock Tunnels 9th Asian Rock Mechanics Symposium (Bali: Indonesia)
[16] Dey T N and Wang C Y 1981 Some mechanisms of microcrack growth and interaction in compressive rock failure International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. vol 18 pp 199–209
[17] Lai W, Quansheng L and Xuewei L 2018 An Improved Crack Initiation Stress Criterion for Brittle Rocks under Confining Stress IOP Conf. Series: Earth and Environmental Science 170, 022141
[18] Serati M 2014 Stiffness and strength of rock cutting and drilling tools: Drag bit and roller disc cutters PhD thesis. University of Queensland, Australia
[19] Brace W F, Paulding B and Scholz C 1966 Dilatancy in the fracture of crystalline rocks J Geophys Res. vol 71 pp 3939–3953
[20] Lajtai E Z 1974 Brittle fracture in compression Int J Fract Mech. vol 10 pp 525–536
[21] Stacey T R 1981 A simple extension strain criterion for fracture of brittle rock Int J Rock Mech Min Sci Geomech Abstr. 18 pp 469–474
[22] Martin C D and Chandler N A1994 The progressive fracture of Lac du Bonnet granite Int J Rock Mech Min Sci, Geomech Abstr. vol 31(6) pp 643–659
[23] Diederichs M S 2007 The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling Can Geotech J. vol 44 pp 1082–1116
[24] Nicksiar M and Martin C D 2012 Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks Rock Mech Rock Eng. vol 45 pp 607–617
[25] Mutaz E, Serati M, Bahaaddini M and Williams D J 2021. On the evaluation of crack initiation stress threshold In Proceedings of 35th US Rock Mechanics/Geomechanics Symposium ARMA. Texas
[26] Martin C D and Christiannsson R 2009 Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock Int J Rock Mech Min Sci. vol 46 pp 219–228
[27] Martin C D 1993 The strength of massive Lac du Bonnet granite around underground openings
PhD Thesis. University of Manitoba, Canada

[28] Zhang C Q, Zhou H, Feng X T, Xing L and Qiu S L 2011 Layered fractures induced by principal stress axes rotation in hard rock during tunnelling Mater. Res. Innov. vol 15 pp 527–530

[29] Feng-qiang G, Yong L, Xi-bing Li, Xue-feng Si and Ming T 2018 Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels Tunnelling and Underground Space Technology. vol 81 pp 413–427

[30] Mogi K 1970 Effect of the triaxial stress system on rock failure Rock Mech In Japan. vol 1 pp 53–55

[31] Shi L, Li X, Bai B, Li Q and Feng X 2012 Numerical analysis of loading boundary effects in Mogi-type true triaxial tests In: Kwasniewski M, Li X, Takahashi M (eds) True triaxial testing of rocks, CRC Press, Boca Raton pp 19–33

[32] Mutaz E, Serati M, Williams D J and Nguyen V T 2020 On the accurate strain measurements for the crack initiation determination In Proceedings of Underground Mining Technology (Australian Centre for Geomechanics: Perth)

[33] Mutaz E, Serati M, Nguyen V T and Williams D J 2019 Effects of Testing Conditions on Measurement of Material’s Elastic Properties In Proceedings of YSRM2019 & REIF2019 ISRM Specialized Conference (Okinawa: Japan)

[34] Serati M, Mutaz E, Williams D J, Quintero O S, Karlovsek J and Hanzic L 2020 Failure Mode of Concrete Under Polyaxial Stresses 54th U.S. Rock Mechanics/Geomechanics Symposium (Golden, CO, United States) American Rock Mechanics Association

[35] Purser R, Mutaz E, Serati M and Chen Z 2021 Determining rock elastic parameters using a new true-triaxial-based technique In Proceedings of the 2021 Resource Operators Conference (Brisbane, Australia)

[36] Xia-Ting F, Rui K, Xiwei Z and Chengxiang Y 2019 Experimental Study of Failure Differences in Hard Rock Under True Triaxial Compression Rock Mechanics and Rock Engineering. vol 52 pp 2109–2122

[37] Zhao X, Cai M, Wang J, Li P F and Ma L K 2015 Objective Determination of Crack Initiation Stress of Brittle Rocks Under Compression Using AE Measurement Rock Mech Rock Eng. vol 48 pp 2473–2484

[38] Mutaz E, Serati M and Williams D J 2021. Crack Initiation Evolution Under Triaxial Loading Conditions In Proceedings of EUROCK 2021 (Torino: Italy) (Preprint)