The efficacy of Yiqi Huoxue method in treating coronary artery disease after percutaneous coronary intervention: A meta-analysis in accordance with PRISMA guideline

Miao Zhang, PhD,a,b Ming-Yue Sun, PhDb, Qi-Ting Chen, Master*a, Feng-Qin Xu, PhDb, Zong-Zheng Chen, PhDb, Wen-Bo Wei, PhDb, Rui-Ting Wangb, Gui-Peng Xub, Hui-Jun Yin, PhDb,*

Abstract

Background: Percutaneous coronary intervention (PCI), the most common method in treating coronary artery disease (CAD), has a variety of side effects. Yiqi Huoxue therapy (YQHX) can effectively alleviate the symptoms of patients and reduce the side effects. However, a reliable and systematic assessment of the methodologies is not available.

Methods: Seven electronic databases were searched to identify randomized controlled trials of YQHX method for CAD after PCI. The quality assessment of the trials included was performed by employing the Cochrane Risk of Bias tool.

Results: One thousand eight hundred sixty-eight patients from 23 randomized controlled trials were included in this review. The aggregated results showed that the experimental group got better effect in increasing ORR, TCMSRR, ECG, HDL-C, and in lowering the level of CRP, TC, and MACE in comparison with the control group.

Conclusion: YQHX method is a valid complementary and alternative therapy in the management of CAD after PCI, and is an effective and safe therapy for CAD.

Abbreviations: CAD = coronary artery disease, CI = confidence interval, CRP = C-reactive protein, CWM = conventional western medicine, ECG = electrocardiogram, HDL-C = high-density lipoprotein cholesterol, LDL-C = low density lipoprotein-cholesterol, MACE = major adverse cardiovascular events, ORR = overall response rate, PCI = percutaneous coronary intervention, RCT = randomized controlled trial, RR = risk ratio, SMD = standardized mean difference, TC = total cholesterol, TCM = traditional Chinese medicine, TCMSRR = TCM syndrome response rate, TG = triglycerides, YQHX = Yiqi Huoxue.

Keywords: coronary artery disease, meta-analysis, percutaneous coronary intervention, Yiqi Huoxue

1. Introduction

Coronary artery disease (CAD) is one of the most serious cardiovascular diseases threatening human health. Yiqi Huoxue therapy (YQHX) means invigorating Qi and activating blood circulation, and has already been widely used to treat cardiovascular diseases.[1–3] Presently, percutaneous coronary intervention (PCI) is the most common method in treating CAD and can reduce the mortality of CAD significantly.[4] However, PCI cannot root out the underlying causes or pathological basis of coronary stenosis and may damage blood vessels and endothelial cells, thus inducing platelet aggregation and thrombosis.[4] Furthermore, the patients may also be complicated with coronary embolism and thrombosis, myocardial ischemia-reperfusion injury, coronary microcirculation disorder, no reflux, in-stent restenosis and other pathological conditions.[5] Routine dual antiplatelet therapy after PCI also has toxic and side effects.[6] In addition, PCI is an exogenous injury and is normally costly. Therefore, alternative and complementary therapies in CAD after PCI treatment are becoming more and more imminent.

According to the basic theories of Traditional Chinese Medicine (TCM), CAD after PCI is equivalent to the term of coronary artery disease after percutaneous coronary intervention: A meta-analysis in accordance with PRISMA guideline. Medicine 2022;101:41(e30739).

*Correspondence: Hui-Jun Yin, Department of Cardiovascular Disease, Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Building Xingyuan, No. 1 Xiyuan Caocchang, Beijing 100091, P.R. China (e-mail: huijunyin@aliyun.com).

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Zhang M, Sun M-Y, Chen Q, Chen Z, Wei W, Wang R, Feng-Qin X, Yin H-J. The efficacy of Yiqi Huoxue method in treating coronary artery disease after percutaneous coronary intervention: A meta-analysis in accordance with PRISMA guideline. Medicine 2022;101:41(e30739).

Received: 15 January 2022 / Received in final form: 25 August 2022 / Accepted: 25 August 2022
http://dx.doi.org/10.1097/MD.00000000000030739
“Xiong Bi.” The etiology and pathogenesis of CAD after PCI are related to Qi deficiency and blood stasis referring to the 5 elements in TCM. When Qi deficiency occurs in the organism, blood circulation will become, to a different degree, retarded, which may lead to a blockage of the heart vessels. Therefore, invigorating Qi and activating circulation to remove blood stasis, the term for which in Chinese Pinyin is “Yiqi Huoxue,” are important therapies for CAD after PCI. Clinical studies have proven that YQHX can effectively alleviate the symptoms of the patients and reduce the side effects of drugs. However, either the evidence of the effect of YQHX on CAD after PCI is so far insufficient or the current information available is not systematic. Therefore, a meta-analysis of clinical randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of YQHX on patients with CAD after PCI.

2. Methods

2.1. Search strategy

The Cochrane Library, PubMed, EMBASE, the China National Knowledge Infrastructure database, the Chinese Biomedical Literature database, the VIP database and the Wanfang database were searched. The search terms used were (Chinese medicine OR herbs OR herbal formula OR Yiqi OR Huoxue OR Supplementing Qi OR activating blood circulation) AND (CAD) AND (PCI OR intervention therapy) AND (RCT). The last search was finished on December 31, 2021. No limit was placed on the language.

2.2. Study selection

Studies were selected according to the Cochrane Handbook for Systematic Reviews of Interventions. Inclusion Criteria.

![Flow diagram of study selection and identification](image-url)

Classification	Detailed description
Markedly effective	Clinical symptoms and signs completely disappeared, or the score ratio of clinical symptoms/TCM syndromes reduction to 70% or more
Effective	Clinical symptoms and signs were significantly reduced, with clinical symptoms/TCM syndrome score ratio reduction to 30%, but less than 70%
Invalid	Clinical symptoms and signs were partially reduced, with clinical symptoms/TCM syndrome score ratio reduction less than 30%
Pejorative	The score ratio of clinical symptoms or TCM syndromes got worse

GCRNDTCM = guidelines of clinical research of new drugs of traditional Chinese medicine, TCM = traditional Chinese medicine.
The studies were performed as RCTs; patients were diagnosed with CAD and received PCI; dual antiplatelet therapy plus other western medicine was permitted to be taken according to individual symptoms; YQHX formula composed of classic herbs (Astragalus or Salvia miltiorrhiza or Codonopsis pilosula or Ginseng with clear dose) with conventional western medicine (CWM) was used for the experimental group and CWM alone for the control group. The primary outcomes included overall response rate (ORR) and TCM syndrome response rate (TCMSRR) by referring to the evaluation criteria of Guidelines for clinical research on Chinese new herbal medicines (Table 1), electrocardiogram (ECG) improvement (ST segment rose more than 0.05 MV after treatment, in the main lead, the change of T wave became more than 25% shallow or T wave changed from flat to upright), and major adverse cardiovascular events (MACE); secondary outcomes included levels of C-reactive protein (CRP) and blood lipid index (total cholesterol [TC], TG, high-density lipoprotein cholesterol [HDL-C], LDL-C).

Exclusion Criteria. The target population was incongruent with diagnostic criteria of CAD and received PCI; the main intervention was mixed with too many measures; the studies were allocated neither with appropriate control nor with randomization; the studies had data missed or duplicate publication.

2.3. Data abstraction

Two authors (Miao Z and Mingyue S) independently screened the titles and abstracts of the achieved citations from primary searching. Full text of the articles of potential interest was downloaded for further evaluation. Those meeting inclusion criteria were included in the final review. The discrepancies in the process of selection were resolved by the third author (Huijun Y).

Table 2

ID (Author/yr)	Case (T/C)	Age (T/C)	Gender (M/F)	Control group	Intervention group	Treatment duration	Outcome
Liu N/2016	30/30	NA	32/28	CWM	YQHX + CWM	14D	ORR,TCMSRR,ECG,CRP
Li Y/2017	30/30	65.23/62.14	31/29	CWM	YQHX + CWM	35D	TCMSRR,ECG
Ge Y/2018	38/38	64.68/62.05	45/31	CWM	YQHX + CWM	14D	TCMSRR,ECG
Wang Y/2015	30/30	63.78/60.54	31/29	CWM	YQHX + CWM	15D	ORR,TCMSRR,ECG,TC,TG,HDL-C,LDL-C
Dai G/2010	49/46	61.2/63.8	54/41	CWM	YQHX + CWM	1Y	ORR,MACE,TCMSRR,ECG
Dai G/2017	70/70	72.47/65.17	85/65	CWM	YQHX + CWM	6M	MACE,TCMSRR,ECG
Mao Z/2016	30/30	55.3/56.2	34/26	CWM	YQHX + CWM	6M	MACE,ORR
Guo S/2017	30/30	68.2 ± 4.5	40/20	CWM	YQHX + CWM	28D	ORR,TCMSRR,ECG,CRP,TC,TG,HDL-C,LDL-C
Yang J/2017	46/45	60.18/61.3	50/41	CWM	YQHX + CWM	28D	ORR,TCMSRR,ECG,CRP,TC,TG,HDL-C,LDL-C
Guo Z/2018	54/54	62.1/58.6	63/45	CWM	YQHX + CWM	56D	ORR
Zhai Y/2016	36/36	NA	34/38	CWM	YQHX + CWM	28D	ORR
Shi Q/2014	30/30	60.3/62.8	39/22	CWM	YQHX + CWM	6M	MACE,ORR,ECG
Zhang Y/2011	30/30	64.2/65.6	28/32	CWM	YQHX + CWM	56D	ORR,ECG,CRP,TC,TG,HDL-C,LDL-C
Shi L/2017	34/34	65.3/64.7	42/26	CWM	YQHX + CWM	3M	TC,TG,HDL-C,LDL-C
Zhou C/2018	32/32	62.9/62.7	35/29	CWM	YQHX + CWM	6M	MACE,CRP
Zhang Y/2017	36/36	57.64/57.19	44/28	CWM	YQHX + CWM	6M	MACE,CRP
Zhou Y/2018	50/50	62.41/62.7	56/44	CWM	YQHX + CWM	6M	MACE
An H/2017	30/30	63.43/63.70	33/27	CWM	YQHX + CWM	3M	ORR,TC,TG,HDL-C,LDL-C
Zhang L/2019	36/36	48.9/48.2	39/33	CWM	YQHX + CWM	20D	MACE
Zhang W/2019	80/80	54.5/53.5	83/77	CWM	YQHX + CWM	6M	ORR
Huang C/2019	30/30	63.58/63.42	33/27	CWM	YQHX + CWM	28D	ORR,TC,TG,HDL-C,LDL-C
Wu H/2020	53/53	63.37/63.76	58/48	CWM	YQHX + CWM	30D	ORR
Lin S/2021	52/52	60.8/60.3	65/39	CWM	YQHX + CWM	56D	TC,TG,LDL-C

CRP = C-reactive protein, CWM = conventional western medicine, ECG = electrocardiogram, HDL-C = high-density lipoprotein cholesterol, LDL-C = low density lipoprotein-cholesterol, MACE = major adverse cardiovascular events, NA = not applicable, ORR = overall response rate, TC = total cholesterol, TCMSRR = TCM syndrome response rate, TG = triglycerides, YQHX = Yiqi Huoxue.

CRP = C-reactive protein, CWM = conventional western medicine, ECG = electrocardiogram, HDL-C = high-density lipoprotein cholesterol, LDL-C = low density lipoprotein-cholesterol, MACE = major adverse cardiovascular events, NA = not applicable, ORR = overall response rate, TC = total cholesterol, TCMSRR = TCM syndrome response rate, TG = triglycerides, YQHX = Yiqi Huoxue.

Figure 2. Risk of bias: reviewing authors’ judgments about each risk of bias item for each included study.
2.4. Quality assessment

The methodological quality of trials was assessed independently by 2 authors (Miao Z and Mingyue S) referring to criteria from the Cochrane Handbook for Systematic Review of Interventions. The items included random sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and other bias (defined as baseline data comparability).

2.5. Statistical method

Meta-analyses of RCTs were performed by using RevMan 5.3. Data were summarized by using risk ratio (RR) with 95% confidence intervals (CI) for discontinuous outcomes, or standard mean difference (SMD) with 95% CI for continuous outcomes. The data were assessed by both fixed effect model and random effect model. Publication bias was assessed by funnel plot analysis if the group included more than 10 trials.[12]

3. Results

3.1. Study selection

The search of 7 databases (English or Chinese) identified 283 records for further evaluation (Fig. 1). 23 RCTs of them were eligible.[4–26] All studies involved patient consent, and the informed consent was given.

3.2. Study characteristics

All of the 23 trials included were conducted in China and published in Chinese. All studies were performed in China, with a total of 1868 patients involved (936 the in control group, and 932 in the experimental group). In addition, all the studies exhibited comparable baseline patient characteristics, including age and gender (1053 male, and 815 female). The characteristics of the selected studies are shown in Table 2.

3.3. Study quality

Among the trials, 14 studies[5–17,25] stated the method of the sequence generation with random number table and drawing, while none of the 22 studies reported details for sample size calculations and none was double-blind or placebo controlled study. Additionally, none mentioned allocation concealment or blinding methods. Fourteen trials included[5–9,12–15,17–20,22] were assessed as low risk of bias in incomplete outcome data. Fourteen of the trials included[5,6,8,10,11,13,14,16–22] were assessed as low risk of reporting bias, and the other 4,[7,9,12,15] as unclear risk of reporting bias. The details of the risk of bias of each trial are presented in Figures 2 and 3.

3.4. Effects of the interventions

The outcomes, ORR (13 trials), TCMSRR (8 trials), ECG (9 trials), MACE (9 trials), blood lipid (TC, TG) level (7 trials), (HDL-C, LDL-C) level (6 trials), and CRP (6 trials) were analyzed.

3.4.1. Overall response rate

Thirteen RCTs[5,6,8–10,12,14,15,17,19,21,23] reported ORR and found an obvious difference (RR = 1.24, 95% CI 1.17–1.32, 1092 participants, \(P < .00001 \)), which meant that YQHX plus CWM was significantly better than CWM. No heterogeneity was found (\(I^2 = 0\% \), \(P = .69 \)) (Fig. 4).

3.4.2. ECG improvement

Nine RCTs[5,10,12,13,15,18,19,21,22] evaluated the effect of ECG improvement and found an significant difference (RR = 1.33, 95% CI 1.21–1.46, 699 participants, \(P < .00001 \)). The result indicated that YQHX plus CWM was significantly better than CWM in ECG improvement, and there was significant homogeneity (\(I^2 = 0\% \), \(P = .86 \)) (Fig. 5).

3.4.3. TCM syndrome response rate

Eight RCTs[8,11–14,18,21,22] reported TCMSRR and found an obvious difference (RR = 1.26, 95% CI 1.17–1.36, 508 participants, \(P < .00001 \)). The result indicated that YQHX combined with CWM was significantly better than CWM in the TCMSRR and there was significant homogeneity (\(I^2 = 0\% \), \(P = .96 \)) (Fig. 6).
3.4.4. Major adverse cardiovascular events
Nine RCTs\cite{4,6,10,11,13,16,17,19,20} reported MACE and found an obvious difference (RR = 0.26, 95% CI 0.16–0.42, 723 participants, \(P < .00001\)). The result indicated that YQHX combined with CWM were significantly better than CWM in the MACE and there was significant homogeneity (\(I^2 = 0\%, \ P = .99\)) (Fig. 7).

3.4.5. GRADE assessment
However, due to the poor methodology of the included studies and the obvious statistical heterogeneity among trials, the evidence for all 4 outcomes (ORR, TCMSRR, ECG, MACE) were “low” and “very low,” according to the GRADE assessment (see Table 3).

3.4.6. CRP
Six RCTs\cite{9,12,15,16,17,24} reported CRP and found an obvious difference (SMD = -4.08, 95% CI -5.78–2.37, 407 participants, \(P < .00001\)). The trials were divided into 4 subgroups which were 14d, 28d, 56d, and 6m by course of intervention. The meta-analysis of 3 subgroups of CRP assessment showed obvious differences (28d: SMD = -2.00, 95% CI -4.79 to 0.78, 151 participants, \(P < .00001\); 6m: SMD = -3.34, 95% CI -5.32 to -1.35, 136 participants, \(P = .001\)) with significant heterogeneity (28d: \(I^2 = 98\%, \ P = .16\); 6m: \(I^2 = 93\%, \ P < .00001\)). There was significant difference between subgroups (\(I^2 = 94.2\%, \ P < .00001\)) (Fig. 8).
3.4.7. Blood lipid

(1) TC 8 RCTs\cite{5,7,11,12,15,21,24,26} reported TC and found an obvious difference (SMD = -1.34, 95% CI - 2.20 to - 0.47, 563 participants, P = .003). The trials were divided into 4 subgroups which were 15d, 28d, 56d, and 3-6m. The meta-analysis of 3 subgroups showed no significant differences (15d: SMD = -0.19, 95% CI -0.70 to 0.32, 60 participants, P = .47; 28d: SMD = -1.15, 95% CI -3.45 to 1.15, 151 participants, P = .33; 3-6m: SMD = -0.33, 95% CI -0.69 to 0.03, 120 participants, P = .08). In contrast, the 56d subgroup\cite{21,24} showed that 2 groups had obvious difference (SMD = -2.55, 95% CI -3.24 to -1.85, 232 participants, P < .0001) with low heterogeneity (I² = 34%, P = .22). There was significant difference between subgroups (I² = 91.9%, P < .00001) (Fig. 9).

(2) TG 8 RCTs\cite{5,7,11,12,15,21,24,26} reported TG and found no obvious difference (SMD = −0.67, 95% CI −1.41 to 0.07, 563 participants, P = .07). In TG group, the trials were divided into 4 subgroups which were 15d, 28d, 56d and 3-6m. The meta-analysis of subgroups showed no significant differences (15d: SMD = -0.08, 95% CI -0.59 to 0.43, 60 participants, P = .76; 28d: SMD = -0.24, 95% CI -0.56 to 0.08, 151 participants, P = .14; 56d: SMD = -1.53, 95% CI -1.41 to 0.07, 232 participants, P = .15; 3-6m: SMD = -0.10, 95% CI -0.46 to 0.26, 120 participants, P = .57). There was no significant difference between subgroups (I² = 0%, P = .55) (Fig. 10).

(3) HDL-C 6 RCTs\cite{5,11,12,15,21,24} reported HDL-C and found an significant difference (SMD = 0.56, 95% CI 0.15–0.98, 399 participants, P = .008). The trials were divided into 4 subgroups which were 15d, 28d, 56d and 3m. The
meta-analysis of 3 subgroups showed no significant differences (15d: SMD = 0.08, 95% CI -0.43 to 0.58, 60 participants, \(P = .76\); 28d: SMD = 0.52, 95% CI -0.06 to 0.10, 151 participants, \(P = .08\); 3m: SMD = 0.11, 95% CI -0.40 to 0.61, 60 participants, \(P = .68\)). The 56d subgroup\(^{21,24}\) showed that 2 groups had obvious difference (SMD = 1.08, 95% CI 0.36 to 1.81, 128 participants, \(P < .05\)) with heterogeneity (\(I^2 = 73\%, P = .05\)).

Table 1: Improvement of C-reactive protein (CRP) over time

Study or Subgroup	YOHX+Routine treatment Mean	SD	Total	Routine treatment Mean	SD	Total	Weight	IV, Random, 95% CI	Std. Mean Difference	IV, Random, 95% CI
3.11.1 14d										
Liu N 2016	-9.14	0.901	30	-3.39	0.656	30	17.1%	-3.44 [-4.26, -2.63]		
Subtotal (95% CI)	30									
Heterogeneity: Not applicable										
Test for overall effect \(Z = 0.29 (P < .000001)\)										

3.11.2 28d										
Huang EC 2019	-4.22	1.565	30	-3.43	1.111	30	17.6%	-0.59 [-1.11, 0.07]		
Yang JL 2017	-2.29	0.272	46	-1.41	0.235	45	17.4%	-0.33 [-0.68, -0.27]		
Subtotal (95% CI)	60									
Heterogeneity: Not applicable										
Test for overall effect \(Z = 1.41 (P = .16)\)										

3.11.3 56d										
Zhang Y 2011	-8.8	1.891	30	-3.02	0.385	30	13.5%	-12.14 [-14.44, -9.83]		
Subtotal (95% CI)	30									
Heterogeneity: Not applicable										
Test for overall effect \(Z = 10.23 (P < .000001)\)										

3.11.4 6m										
Zhang Y 2017	-2.84	0.339	36	-1.49	0.288	36	17.1%	-4.37 [-5.24, -3.50]		
Zhou CJ 2018	-4.55	0.485	32	-3.48	0.405	32	17.4%	-2.34 [-3.29, -1.70]		
Subtotal (95% CI)	60									
Heterogeneity: Tau^2 = 1.90, Chi^2 = 13.51, df = 1 (P = 0.0002); \(I^2 = 93\%\)										
Test for overall effect \(Z = 3.29 (P = 0.0010)\)										

| Total (95% CI) | 204 | 203 | 100.0% | -4.08 [-5.78, -2.37] |
| Heterogeneity: Tau^2 = 3.24, Chi^2 = 15.07, df = 5 (P = 0.00001); \(I^2 = 97\%\) |
| Test for overall effect \(Z = 4.60 (P < 0.00001)\) |

Test for subgroups differences: Chi^2 = 52.03, df = 3 (P < 0.00001); \(I^2 = 94\%\)

Figure 8. Forest plot of improvement of CRP. CRP = C-reactive protein.

Table 2: Improvement of total cholesterol (TC) over time

Study or Subgroup	YOHX+Routine treatment Mean	SD	Total	Routine treatment Mean	SD	Total	Weight	IV, Random, 95% CI	Std. Mean Difference	IV, Random, 95% CI
3.14.1 15d										
Wang Y 2015	-0.95	0.271	30	-0.9	0.251	30	12.6%	-0.19 [-0.70, 0.32]		
Subtotal (95% CI)	30									
Heterogeneity: Not applicable										
Test for overall effect \(Z = 0.73 (P = 0.47)\)										

3.14.2 28d										
Huang EC 2019	-3.43	1.111	30	-0.96	0.97	30	12.2%	-2.34 [-3.00, -1.67]		
Yang JL 2017	-0.58	0.932	46	-0.59	0.972	45	12.8%	0.01 [-0.40, 0.42]		
Subtotal (95% CI)	76									
Heterogeneity: Tau^2 = 2.90, Chi^2 = 34.62, df = 5 (P < 0.00001); \(I^2 = 97\%\)										
Test for overall effect \(Z = 4.60 (P < 0.00001)\)										

| Total (95% CI) | 204 | 203 | 100.0% | -4.08 [-5.78, -2.37] |
| Heterogeneity: Tau^2 = 4.27, Chi^2 = 0.56, df = 5 (P < 0.00001); \(I^2 = 97\%\) |
| Test for overall effect \(Z = 4.60 (P < 0.00001)\) |

| Test for subgroups differences: Chi^2 = 52.03, df = 3 (P < 0.00001); \(I^2 = 94\%\)

Figure 9. Forest plot of improvement of TC. TC = total cholesterol.
was significant difference between subgroups ($I^2 = 51.9\%$, $P = .10$) (Fig. 11).

(4) LDL-C. 7 RCTs\(^{5,11,12,15,21,24,26}\) reported LDL-C and found an obvious difference ($\text{SMD} = -1.44$, 95% CI -2.53 to -0.35, 503 participants, $P = .0009$). The trials were divided into 4 subgroups which were 15d, 28d, 56d and 3m. The meta-analysis of 3 subgroups showed no significant differences (28d: SMD = -0.32, 95% CI -1.07 to 0.43). The trials were divided into 4 subgroups which were 15d, 28d, 56d and 3m. The meta-analysis of 3 subgroups showed no significant differences (28d: SMD = -0.32, 95% CI -1.07 to 0.43).
Figure 12. Forest plot of improvement of LDL-C. LDL-C = Low density lipoprotein-cholesterol.

Figure 13. Funnel plot of the overall response rate.
3.5. Adverse reactions

Five cases in the treatment group and 9 cases in the control group had adverse reactions, with an incidence of 4.1%, 7.5%, respectively. The incidence of adverse reactions in the treatment of PCI patients with YQHX was relatively lower.

3.6. Publication bias

In order to detect possible publication bias, the 13 trials of ORR were analyzed with a fixed effects model. The funnel plot of ORR was asymmetrical, indicating the presence of publication bias (Fig. 13).

4. Discussion

In this study, we systematically evaluated the RCT of the control group treated with CWM, while the experimental group were added YQHX. The ORR, ECG, TCMSSR, and MACE were the important indicators of clinical efficacy and quality of life of the patients.[17,28] The results showed that these 4 outcomes of CAD patients after PCI treated with CWM alone were inferior to CWM plus YQHX herbs, which had higher safety and fewer side effects.

Inflammatory response is an important factor affecting plaque progression.[31] CRP is a kind of protein secreted in the blood during acute inflammation and reflects the inflammatory status of the organism.[39] The concentration of CRP in serum is higher in patients with acute inflammation and shows a positive correlation with the severity of CAD.[10,31] Therefore, CRP can be used as an important index to measure the risk of CAD after PCI.[37] The results showed that the combination of YQHX with CWM was better than CWM alone in reducing CRP.

Hyperlipidemia is one of the risk factors of atherosclerosis.[32] Elevated blood lipids can damage endothelial cells, increase vascular permeability, cause cholesterol deposition, plaque formation, and thrombosis, and lead to coronary stenosis.[33,34] Therefore, abnormal blood lipid level is an independent risk factor for restenosis after PCI. The results indicated that the combination of YQHX with CWM was better than CWM alone in reducing TC.

PCI is currently recognized as the most effective and safe way to restore myocardial reperfusion when it meets the indications. PCI is an exogenous injury, and the persistent blood stasis is not relieved by the operation. The mechanical injury of PCI can also induce the formation of new blood stasis, then damage the local tissue, leading to the aggravation of blood stasis.[33,36] PCI, having the function of “breaking blood,” is easy to consume the healthy Qi of the injured organism. The etiology and pathogenesis of PCI after CAD are Qi deficiency and blood stasis, for which YQHX is the basic therapy. Results from previous studies showed that YQHX, as a complementary therapy, may alleviate the clinical symptoms, reduce the onset of angina pectoris and the side effects of drugs, increase the exercise endurance, prevent in-stent restenosis, and improve the quality of life of CAD after PCI patients.[12,13,17]

Based on the above results, it can be concluded that the combination of YQHX with CWM is superior to CWM alone in the treatment of CAD after PCI. This integrated therapy has fewer adverse reactions and higher safety. However, the quality of the methodologies being used is not high enough. As all the studies were conducted in Chinese population, the results cannot necessarily be extrapolated to other populations. Therefore, more high-quality, multi-center, and largely sampled RCTs need to be carried out to provide more reliable evidence-based medical basis for clinical guidance.

Acknowledgments

Thank all the authors for their contributions to this article.

Author contributions

Data curation: Miao Zhang, Qiting Chen.

Formal analysis: Ming-Yue Sun, Qiting Chen.

Funding acquisition: Miao Zhang, Feng-Qin Xu.

Investigation: Hui-Jun Yin.

Methodology: Qiting Chen.

Project administration: Wenbo Wei.

Software: Miao Zhang, Qiting Chen.

Supervision: Zongzheng Chen, Hui-Jun Yin.

Validation: Zongzheng Chen.

Visualization: Ruiting Wang.

Writing – original draft: Miao Zhang, Ming-Yue Sun.

Writing – review & editing: Miao Zhang, Wenbo Wei, Feng-Qin Xu, Hui-Jun Yin.

References

[1] Jiang C, Wang T, Xu YC, et al. A retrospective study of Yiqi-Huoxue Decoction on blood pressure in patients with acute ischemic stroke. Medicine. 2020;99:e23187e23187.

[2] Du WT, Ming G, Lui P, et al. Treatment of chronic heart failure with carotid plaque patients by Yiqiu Huoxue Tongyang Xehuo Recipe. Zongguo Zhong Xi Yi Jie He Za Zhi. 2015;35:1322–5.

[3] Feng QM, Dong YR, Zhao Y, et al. Treatment of sixty-one patients with coronary slow flow phenomenon by yiqiu huoxue recipe combined Western drugs: a clinical research. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33:747–50.

[4] LG Z. Protective effect of Yiqi Huoxue Method on myocardium after coronary intervention. Guangming J Chinese Med. 2019;34:1683–4.

[5] An HY, Wang ZY. Clinical study on the method of reinforcing qi nourishing yin and promoting blood circulation to reduce blood stasis in the treatment of restenosis after percutaneous coronary intervention. Int J Traditional Chinese Med. 2012;34:601–3.

[6] D M. Clinical study of yiqi huoxue tongyang method on prevention and treatment of restenosis after coronary artery stent operation. Information Traditional Chinese Med. 2016;33:102–5.

[7] GG SLL. Clinical analysis of Buyang Huwuan decoction in treating Qi deficiency and blood stasis after PCI of coronary heart disease. Shangxi J Traditional Chinese Med. 2017;38:1157–9.

[8] Guo ZY LLZY. Cardiac function of acute myocardial infarction patients with Chinese herbal medicine for nourishing qi and removing blood stasis after percutaneous coronary intervention. Jilin J Chinese Med. 2018;38:1050–3.

[9] N L. Curative effect of the therapy of enriching qi and activating blood on recurrent angina pectoris after the intervention therapy for coronary artery disease. J Shandong Med College. 2016;38:461–4.

[10] QJ S. Treatment of restenosis after PCI with Yiqi Huoxue Tongyang Xezhuo Recipe. J Traditional Chinese Med. 2017;38:2736–8.

[11] SF G. Clinical observation of the effect of supplementing Qi and activating blood circulation method on preventing and treating restenosis after PCI. J Liaoning Univ Traditional Chinese Med. 2017;19:196–8.

[12] Yang JL DS. Clinical observation on 46 Angina pectoris patients after percutaneous coronary intervention treated with Yiqi Huoxue Jiedu Fang combined with Western Medicine. J Tradit Chin Med. 2015;38:850–3.

[13] YH DGD. Effect of Yiqiu Huoxue ointment on in-stent restenosis of post-coronary stent effect of Yiqiu Huoxue ointment on in-stent restenosis of post-coronary stent. Acta Chinese Med. 2017;32:1733–6.

[14] Zhai YS. Clinical study on Tonifying Qi and Nourishing Yin for invigoration the circulation of blood therapy in the treatment of angina after PCI. Chinese Med Modern Distance Educ China. 2016;14:70–2.
[15] Zhang YC. Clinical experience about Chinese herbs with effects of replenishing qi and activating blood circulation and detoxication preventing on angina after percutaneous coronary intervention. J Liaoning Univ Traditional Chinese Med. 2011;13:201–3.

[16] Zhang YZ. Effect of Yangxin Decoction on inflammatory reaction and endothelial function in acute myocardial in acute myocardial infarction after PCI. J Hunan Normal Univ (Medical Sciences). 2017;14:113–4.

[17] Zhou CJ SS. Observation on the effect of Yiqhuayu Decoction plus routine western medicine maintenance on acute myocardial infarction after PCI. Med J Chinese People’s Health. 2018;30:74–5.

[18] Ge Yb, Li H, Li B. Clinical Observation on Yiq Huoxue Decoction in the Treatment of Recurrent Angina after Percutaneous Coronary Intervention: a report of 38 cases. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease. 2015;13:667–9.

[19] HB DGY. Yiqihuoxuetongmai Decoction in the Intervention of Restenosis after PCI in 49 Cases of Coronary Heart Disease. Liaoning J Traditional Chinese Med. 2010;37:1082–3.

[20] PD ZYW. Effects of Tongluo Huxin Decoction combined with anti-coagulants on plasma sICAM-1 and cardiac function in patients with acute myocardial infarction after PCI. J Emer Traditional Chinese Med. 2018;20:1798–800.

[21] Wang YZ. Clinical research on the treatment of angina with post-operation of PCI by Yiqi Huoxue method. Acta Chinese Med. 2015;30:1482–4.

[22] YC L. The effect of Yiqi Huoxue decoction on coronary heart disease (Stable Angina Pectoris) after the operation of percutaneous coronary intervention. Clin J Traditional Chinese Med. 2017:29:506–9.

[23] W Z. Therapeutic effect of Yiqi Huoxue Method on restenosis after coronary stent implantation in 80 cases. China Pract Med. 2019;14:153–4.

[24] BC H. Clinical and experimental observation on the treatment of angina pectoris after PCI with Yiqi Huoxue Recipe. Cardiovasc Dis J Integrated Traditional Chinese Western Med. 2019;7:144.

[25] Wu W, Fan D, Zhu Yj, et al. Effect of Yiqi Huoxue Huayu Decoction on coronary blood flow in elderly patients with coronary heart disease after PCI. Acta Chinese Med Pharmacol. 2020;48:50–3.

[26] DD LMC. Effect of Yiqi Quyu decoction on blood lipid and cardiac function in patients after PCI. Chinese J Traditional Med Sci Technol. 2021;28:417–8.

[27] Frobert O, Arevstrom L, Calais F, et al. Height and prognosis following percutaneous coronary intervention. Int J Cardiol. 2016;224:188–90.

[28] Wu HG, H Gao, S Gao, et al. A Chinese 4-herb formula, Yqi-Huoxue granule, alleviates H2O2-induced apoptosis by upregulating uncoupling protein 2 in H9c2 cells. Phytomedicine. 2019;53:171–81.

[29] Li H, Sun K, Zhao R, et al. Inflammatory biomarkers of coronary heart disease. Front Biosci (Scholar edition). 2018;10:185–96.

[30] Wang Y, Li L, Tan HW, et al. Transcoronary concentration gradient of sCD40L and hsCRP in patients with coronary heart disease. Clin Cardiol. 2007;30:86–91.

[31] Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62:397–408.

[32] Liu H, Deng X, Peng Y, et al. Meta-analysis of serum non-high-density lipoprotein cholesterol and risk of coronary heart disease in the general population. Clinica Chimica Acta. 2017;471:23–8.

[33] Manita D, Yoshida H, Hirowatari Y. Cholesterol levels of six fractionated serum lipoproteins and its relevance to coronary heart disease risk scores. J Atheroscler Thromb. 2017;24:928–39.

[34] Drakopoulou M, Toutouzas K, Stathogiannis K, et al. Managing the lipid profile of coronary heart disease patients. Expert Rev Cardiovasc Ther. 2016;14:1263–71.

[35] Xi RX, Chen KJ, Shi DZ, et al. Diagnostic standard evaluation of Chinese medicine syndrome for coronary heart disease patients after percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33:1036–41.

[36] Yu G, Wang J. Blood stasis syndrome of coronary heart disease: A perspective of modern medicine. Chin J Integr Med. 2014;20:300–6.

[37] Li FG, Guo S, Wang C, et al. Yiqihuoxue decoction protects against post-myocardial infarction injury via activation of cardiomyocytes PGC-Ialpha expression. BMC Complement Altern Med. 2018;18:253.