Long-term outcome of repeated septal reduction therapy after alcohol septal ablation for hypertrophic obstructive cardiomyopathy: insight from the Euro-ASA registry

Josef Veselka1, Lothar Faber2, Max Liebregts3, Robert Cooper4, Jaroslav Januska5, Jan Krejci6, Maciej Dabrowski7, Peter Riis Hansen8, Hubert Seggewiss9, Dieter Horstkotte2, Eva Hansvenclova1, Henning Bundgaard10, Jurriën ten Berg1, Morten Kvistholm Jensen10

1 Department of Cardiology, Second Medical School, Charles University, University Hospital Motol, Prague, Czech Republic
2 Department of Cardiology, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
3 Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, the Netherlands
4 Institute of Cardiovascular Medicine and Science, Liverpool Heart and Chest Hospital, Liverpool, England
5 Cardiocentre Podlesí, Třinec, Czech Republic
6 First Department of Internal Medicine/Cardioangiology, International Clinical Research Centre, St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
7 Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
8 Department of Cardiology, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
9 Department of Internal Medicine, Juliussspital Wuerzburg, Germany
10 Unit for Inherited Cardiac Diseases, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Submitted: 27 March 2018
Accepted: 25 May 2018

Arch Med Sci 2020; 16 (5): 1239–1242
DOI: https://doi.org/10.5114/aoms.2020.97969
Copyright © 2020 Termedia & Banach

Two-thirds of patients with hypertrophic cardiomyopathy (HCM) have a significant left ventricular outflow tract (LVOT) obstruction that may be treated with alcohol septal ablation (ASA) dependent on symptoms [1]. However, some degree of obstruction may remain after ASA and if the patient remains symptomatic repeated septal reduction therapy (RSRT) may be indicated [1–5]. The outcome of RSRT remains unknown. In this study, we sought to determine the long-term outcomes of patients treated with ASA or myectomy after previous ASA.

A total of 1385 consecutive patients (48% women, mean age: 58 ±14 years) from nine European centres (Euro-ASA registry) who had been treated once with ASA as first time septal reduction therapy were enrolled in the study. We identified 145 (10%) patients who subsequently underwent RSRT, including 99 (68%) who underwent re-ASA, 31 (21%) who underwent myectomy, 12 (8%) who underwent re-ASA and myectomy, and 3 (2%) who underwent two further ASA procedures.

Patients were divided into those who had undergone only the initial ASA (group A, 1240 patients) and those who had undergone RSRT (group B, 145 patients). The primary end-point was major adverse cardiovascular events (MACE), defined as death related to any cardiovascular dis-
Table I. Clinical and echocardiographic characteristics at baseline and at the last check-up

Parameter	Group A
	(n = 1240)
Age at baseline [years]	58.7 ±13.4
Females, n (%)	597 (48)
Dyspnoea, NYHA class:	
Baseline	2.9 ±0.5
Last clinical follow-up	1.7 ±0.7
NYHA class III/IV, n (%)	
Baseline	1041 (84)
Last clinical follow-up	142 (11)
Angina, CCS class:	
Baseline	1.2 ±1.2
Last clinical follow-up	0.7 ±0.8
LV outflow gradient at rest [mm Hg]:	
Baseline	69 ±38.9
Last clinical follow-up	15.4 ±20.8
> 30 mm Hg, n (%)	170 (14)
Delta gradient, % reduction	74.6 ±30.3
LV systolic diameter [mm]:	
Baseline	43.0 ±6.3
Last clinical check-up	45.4 ±6.2
LV ejection fraction (%)	
Baseline	70 ±9
Last clinical follow-up	66 ±10
Basal interventricular septum thickness [mm]:	
Baseline	20.5 ±4.2
Last clinical check-up	15.3 ±4.5
Left atrium diameter [mm]:	
Baseline	47.4 ±6.8
Last clinical check-up	45.8 ±7.2
Alcohol [ml]	2.1 ±0.9
Pacemaker, n (%)	
Baseline	51 (4.1)
Last clinical check-up	198 (16.0)
Implantable cardioverter-defibrillator, n (%)	
Baseline	63 (5.1)
Last clinical check-up	110 (8.9)
Mean follow-up duration [years]	5.4 ±4.2

LV – left ventricular, NYHA – New York Heart Association, CCS – Canadian Cardiovascular Society.
ease, sudden death, an appropriate implantable cardioverter-defibrillator discharge, resuscitation for ventricular fibrillation or death due to an unknown cause. Secondary endpoints were clinical symptoms and echocardiographic variables and number of implanted pacemakers at the last clinical check-up.

The septal reduction procedure was performed as described previously [1–6]. The indication for RSRT was at the discretion of each participating centre. Most patients underwent a routine clinical examination 3–6 months after ASA and then once per year including echocardiography [7–9]. All adverse events were confirmed by reviewing the medical records and/or national death registries.

Student’s t-test, χ² test and Kaplan-Meier analysis were used as appropriate. The long-term occurrence of MACE was estimated using the Kaplan-Meier method, with the curves of groups A and B adjusted for age at ASA (60 years), baseline LVOT gradient (70 mm Hg), baseline septum thickness (20 mm) and baseline NYHA class (2.5). A p-value of < 0.05 was considered statistically significant.

A total of 1385 consecutive patients underwent ASA. A total of 12 (0.9%) patients died within 30 days after the first ASA and none died early after RSRT. In group B, the first RSRT was performed 1.9 ±1.9 years (range: 0.04–10.77 years) after the first ASA. The mean follow-up period was 6.5 ±4.1 years and none of the patients were lost to follow-up. The baseline (before first ASA) and long-term results are summarised in Table I. At the most recent clinical follow-up, group B patients were more symptomatic, had a higher residual LVOT gradient, and a larger proportion of the patients had a pacemaker implanted compared to group A patients (Table I). A total of 24 (24%) patients treated with ASA and re-ASA and 6 (19%) patients treated with ASA and myectomy underwent pacemaker implantation (p = 0.81). The percentage reduction of LVOT gradient was similar in patients who underwent ASA and re-ASA versus ASA and myectomy (71 ±29% vs. 70 ±29%; p = 0.84).

Survival free from MACE is presented in Figure 1.

The major findings in this study were as follows: 1) the incidence of MACE was similar among both groups of patients; 2) patients who required RSRT were younger, had a higher LVOT gradient and had a thicker interventricular septum at baseline; 3) RSRT is safe; 4) despite RSRT the patients had a higher residual LVOT gradient and worse dyspnoea and chest pain at the most recent follow-up; 5) repeated procedures were associated with an increased cumulative need for pacemaker implantation.

Currently, patients with only mild basal hypertrophy and redundant mitral apparatus, marked papillary muscle abnormalities, and mid-cavity obstruction are considered good candidates for myectomy. On the other hand, patients with less complex pathology might be treated with ASA. A growing body of evidence suggests that patients with HCM and a high LVOT gradient should be treated aggressively in order to eliminate or reduce the gradient to < 30 mm Hg [2, 3, 7]. However, it has not yet been established whether these patients should be submitted to the risk of undergoing RSRT or whether a conservative treatment approach would be more beneficial. Although this was an observational study only, our results suggest that the risk of MACE after repeated procedures is not increased compared to patients with a clinically satisfactory result after the first ASA.

In conclusion, repeated septal reduction therapy after ASA is not associated with a higher risk of major cardiovascular events over a long-term follow-up period but patients more often require pacemaker implantation.

Acknowledgments

This work was supported by the Project for conceptual development of research organization (no. 00064203) and by the AZV Grant awarded by the Ministry of Health, Czech Republic (15-34904A).

Conflict of interest

The authors declare no conflict of interest.

References

1. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 2014; 35: 2733-79.
2. Veselka J, Tomašov P, Krejčí J, Januška J, Adlová R. Obstruction after alcohol septal ablation is associated with cardiovascular mortality events. Heart 2016; 102: 1793-6.
3. Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 2005; 384: 295-303.

4. Veselka J, Krejčí J, Tomašov P, et al. Outcome of patients after alcohol septal ablation with permanent pacemaker implanted for periprocedural complete heart block. Int J Cardiol 2014; 171: e37-8.

5. Veselka J, Duchonova R, Palenickova J, et al. Age-related hemodynamic and morphologic differences in patients undergoing alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Circ J 2006; 70: 880-4.

6. Veselka J, Zemánek D, Fiedler J, Šváb P. Real-time myocardial contrast echocardiography for echo-guided alcohol septal ablation. Arch Med Sci 2009; 5: 271-2.

7. Ziolkowska L, Petryka J, Boruc A, Kawalec W. Comparison of echocardiography with tissue Doppler imaging and magnetic resonance imaging with delayed enhancement in the assessment of children with hypertrophic cardiomyopathy. Arch Med Sci 2017; 13: 328-36.

8. Veselka J. Alcohol septal ablation for hypertrophic obstructive cardiomyopathy: a review of literature. Med Sci Monitor 2007; 13: RA62-8.

9. Scisło P, Kochanowski J, Kołtowski Ł, Opolski G. Utility and safety of three-dimensional contrast low-dose dobutamine echocardiography in the evaluation of myocardial viability early after an acute myocardial infarction. Arch Med Sci 2018; 14: 488-93.