Is the cholesterol-perfluoroalkyl substance association confounded by dietary fiber intake?: a Bayesian analysis of NHANES data with adjustment for measurement error in fiber intake

Matthew W Linakis1, Paul Gustafson2, Bruce C Allen3, Annette M Bachand4, Cynthia Van Landingham5, Debra R Keast6 and Matthew P Longnecker1*

Abstract

Background: Serum concentrations of total cholesterol and related lipid measures have been associated with serum concentrations of per- and polyfluoroalkyl substances (PFAS) in humans, even among those with only background-level exposure to PFAS. Fiber is known to decrease serum cholesterol and a recent report based on National Health and Nutrition Examination Survey (NHANES) showed that PFAS and fiber are inversely associated. We hypothesized that confounding by dietary fiber may account for some of the association between cholesterol and PFAS.

Methods: We implemented a Bayesian correction for measurement error in estimated intake of dietary fiber to evaluate whether fiber confounds the cholesterol-PFAS association. The NHANES measure of diet, two 24-h recalls, allowed calculation of an estimate of the “true” long-term fiber intake for each subject. We fit models to the NHANES data on serum cholesterol and serum concentration of perfluorooctanoic acid (PFOA) and two other PFAS for 7,242 participants in NHANES.

Results: The Bayesian model, after adjustment for soluble fiber intake, suggested a decrease in the size of the coefficient for PFOA by 6.4% compared with the fiber-unadjusted model.

Conclusions: The results indicated that the association of serum cholesterol with PFAS was not substantially confounded by fiber intake.

Keywords: Serum cholesterol, PFAS, Confounding, Dietary fiber, Bayesian models, Measurement error correction
Although a few animal studies have suggested an increase in serum cholesterol with increasing PFAS dose [6, 7], most show a decrease in cholesterol [5]. Nonetheless, the PFAS – cholesterol association was proposed as the point of departure in risk assessments by the European Food Safety Authority (EFSA) [8] and the California Environmental Protection Agency [9]. A recent critique of the EFSA risk assessment questioned the causality of the PFAS – cholesterol association due to uncertainties about the biologic mechanism [10]. In addition, occupational studies among workers whose PFAS levels were above background have not consistently found evidence of associations between PFAS and cholesterol [11, 12]. In an epidemiologic study by Fitz-Simon et al., marked lowering of PFAS exposure results in no change in serum cholesterol [13]. Furthermore, a large epidemiological study with an unusually high exposure to perfluorooctanoic acid (PFOA) did not find evidence of an association between PFOA and cardiovascular disease [14]. Large doses of PFOA had no effect on serum cholesterol in a clinical trial [15].

A possible explanation for the contradictory epidemiologic results is confounding by dietary fiber intake [5, 16]. This explanation is plausible because an inverse relationship between dietary fiber and serum cholesterol has been suggested for many years [17], and a recent report based on National Health and Nutrition Examination Survey (NHANES) provided evidence of an inverse association between serum PFAS and fiber intake among adults aged 20 years and older [18]. A simplified directed acyclic graph depicting the potential confounding is shown in Fig. 1. Because fiber decreases both serum cholesterol and serum PFAS, not adjusting for it in epidemiologic analyses could produce the appearance of a positive relation, even if none exists.

The biologic mechanisms underlying the relationships of fiber with serum PFAS and serum cholesterol are as follows. Soluble fiber is a bile acid sequestrant [19]. Bile acid sequestrants in the intestine have two key effects. First, they cause an upregulation of bile acid synthesis in the liver, which lowers serum cholesterol [19]. Second, bile acid sequestrants have been shown to decrease serum PFAS by increasing fecal excretion, which is probably due to binding of PFAS by fiber [5, 20, 21].

We investigated the effect of confounding by fiber intake on the PFAS – cholesterol association using NHANES data. We focused on PFOA, perfluorotane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) because these PFAS have been most consistently related to serum cholesterol in epidemiologic studies [4, 5]. Because of evidence suggesting a stronger inverse relationship between serum cholesterol and soluble dietary fiber than total dietary fiber [17], we conducted separate analyses for the two fiber variables. We recognized that due to day-to-day variation in fiber intake, error in measurement of fiber intake might result in an underestimate of the confounding it caused. To minimize such residual confounding, we implemented a Bayesian correction for measurement error [18, 22, 23]. Bayesian correction for measurement error has previously been described for an exposure of interest (e.g., [24]); in our context, however, the correction was for a confounding factor, meaning a related but slightly different approach was required, as described below.

**Methods**

**Data and data manipulations**

NHANES is an ongoing survey of civilian non-institutionalized people residing in the U.S., and it is conducted using a complex sampling design that oversamples selected minorities, income groups, and ages [25]. Data from NHANES are publicly available from [https://www.cdc.gov/nchs/nhanes/Default.aspx](https://www.cdc.gov/nchs/nhanes/Default.aspx). From 2003–2016,
cholesterol levels were measured among NHANES participants aged 12 years and older who provided a blood sample. PFAS levels, specifically PFOA, PFOS, and PFNA, were measured in a random sample of one-third of these study subjects. All NHANES participants were asked to complete a 24-h dietary recall on two occasions 3–10 days apart [26]. The first interview took place in person and the second interview was conducted over the phone. NHANES data includes daily energy (kcal) and daily total dietary fiber (g) intake as determined by USDA using their food composition database, i.e., the U.S. Department of Agriculture (USDA) Food and Nutrient Database for Dietary Studies (FNDDS), to calculate energy (kcal) and total dietary fiber (g) intake from foods reported in NHANES dietary interviews. A food composition database developed by the Nutrition Coordinating Center (NCC), University of Minnesota, Minneapolis, MN, i.e., the NCC Food and Nutrient Database, was used to add soluble fiber data to the FNDDS, which allowed for the calculation of soluble fiber intake by NHANES respondents (Supplementary materials, S1). The fiber intake data reflect both the amount and fiber composition of foods consumed. To focus our analyses on diet composition, we estimated daily fiber intake relative to the daily caloric intake. We calculated the energy intake-adjusted fiber variables as the residuals of linear regression models of dietary fiber (g/d) on energy (kcal/d) intake [27].

We limited our study population to NHANES participants aged 20 years or older with complete serum PFAS and serum cholesterol data, and 2 days of complete dietary intake data. More than 99% of our study population had detectable concentrations of PFOA, PFOS, and PFNA in serum. For years 2013–2014 and 2015–2016, in which the linear and branched isomers of PFOA and PFOS were measured separately, we calculated the sum of these isomers. PFAS values below the limit of detection (LOD) were imputed by the CDC as LOD/√2.

To ensure that fiber intake did not act as a surrogate for other confounding variables, we extracted data for additional variables from the NHANES data set. We considered age, sex, race/ethnicity, body mass index, income to poverty ratio, smoking, dietary saturated fat, dietary cholesterol, and NHANES wave as “secondary” confounders. Additional details are provided in the Supplementary Materials, Section S2 and Figure S1.

To reduce the influence of outliers on the study results, we excluded subjects whose ln-transformed energy intake-adjusted fiber values (shifted by 40 g/d to avoid taking the log of a number ≤ 0) or ln-transformed cholesterol value fell outside the 99th percentile of the normal distribution, i.e., > 2.57 standard deviations from the mean. Ln transformations were required to normalize the data. We also excluded subjects who reported using cholesterol-lowering medications (cholestyramine, colesvelam, colestipol, ezetimibe, orlistat, any statin, or Vytorin). Our analyses were based on 7,242 subjects with complete data.

Ordinary least squares regression
As a reference point, we conducted ordinary least squares (OLS) regression with ln-transformed cholesterol as the outcome variable and ln-transformed energy intake-adjusted fiber (shifted by 40 g/d) as the confounding variable of interest, with fiber intake defined as the average over the two days. We created separate models for the three PFAS compounds and we considered a change of ≥10% in the coefficient for the PFAS compound after adjusting for fiber as evidence of confounding [28]. The secondary confounders were included in all models and all non-categorical confounders were centered. In sensitivity analyses, we evaluated the addition of a quadratic PFAS term with Akaike Information Criterion. Note that in OLS regression, the success of adjustment for confounding is based on the assumption that the confounder can be observed without measurement error.

Bayesian adjustment for measurement error
Several frequentist and Bayesian methods have been suggested to correct for measurement error in model covariates [22–24, 29–31]. Bayesian analyses estimate the posterior distribution of unknown parameters based on prior information combined with information gained from available data, and they generally allow for the greatest flexibility with few assumptions.

Following an approach outlined by Bartlett and Keogh [24], we assumed that \( Y \) is the response variable (cholesterol), \( X \) is the exposure variable (PFOA, PFOS, or PFNA), \( F \) is the confounding variable of interest (fiber intake), and \( C \) represents the secondary confounding variables. If \( F \) could be observed, then a regression model such as

\[
(Y|X,F,C) \sim N\left(\beta_0 + \beta_X X + \beta_F F + \beta_C^T C, \sigma^2\right)
\]  

(1)

could be fit directly, and this model contains the parameters of interest. Note that with (1) being the relationship of interest, we would include components in \( C \) that we suspect also confound the exposure-disease relationship (as we suspect of \( F \)).

With \( F \) being latent however, we can't fit (1) alone to data. We must augment with two further models. The first of these models is \((F|X,C)\), with a natural form being

\[
(F|X,C) \sim N\left(\gamma_0 + \gamma_X X + \gamma_C^T C, \omega^2\right)
\]  

(2)

An additional component is needed to link the latent and measured values of dietary fiber. Presume that subjects have two noisy measurements, \( F_1^* \) and \( F_2^* \). In full
generality, it is necessary to complement Eqs. (1) and (2)
with a model for \( F_j^* | F, X, C \). However, several sim-
plications can be made. First, a supposition that the two
measurements are “pure” replicates in the sense of being
conditionally independent of one another given \( (E, Y, X, C) \),
may be justifiable. This reduces a model for the bivariate
pair of measurements into two models for the univari-
ate measurements, i.e., for \( F_j^* | F, Y, X, C \), for \( j = 1,2 \). Sec-
ond, a “nondifferential” measurement error assumption
may be justifiable, whereby the measurement error is not
affected by \( (Y, X, C) \). This then reduces the model specifi-
cation task to models for \( F_j^* | F \), for \( j = 1,2 \). Then finally
it might be justifiable to posit no systematic bias in the
measurement. In such a case, a specification as simple as

\[
(F_j^* | F) \sim \mathcal{N}(F, \tau^2) \tag{3}
\]

for \( j = 1,2 \), would suffice. Although subtleties of the pre-
ent problem may call for a richer model, an initial evalu-
ation as described is an important first step.

Conceptually, it is important to note that together
(1), (2), and (3) prescribe a joint distribution for \( (F_1^*, F_2^*, F, Y, X, C) \), and therefore a joint distribution for \( (F_1^*, F_2^*, Y, X, C) \). Since the latter involves only observables, it pro-
vides a foundation for likelihood or Bayesian inference
concerning all the unknown regression coefficients (\( \beta \)
and \( \gamma \)) and variance parameters \( (\sigma^2, \omega^2, \tau^2) \).

Operationally, Markov chain Monte Carlo software
operates by sampling from the joint posterior distribu-
tion of latent variables and parameters given observed
variables. Thus, the software output is simulated samples
of \( (F_{1:n}, \beta, \gamma, \sigma^2, \omega^2, \tau^2) \), where \( n \) is the number of subjects.

**Bayesian analyses**

We used Stan statistical software (v 2.27) interfaced
with R software (v 4.1.0) using the “RStan” package (v
2.21.2) [32]. We used a virtual machine with 4 virtual
CPUs (Microsoft Azure Standard D4 v4) and 16 GiB of
RAM. We used 4 chains with a burn-in proportion of
0.5, a maximum tree depth of 15, 2,500 iterations, and
set the target average acceptance probability to 0.8. For
all analyses, we used mixing and convergence diagnos-
tics recommended by Gelman et al. [33]. We compared
the parameter estimates for each PFAS between the
three models, one unadjusted and two adjusted for fiber
(total and soluble). We also examined the influence of
using informative priors for regression coefficients in the
Bayesian models (1)-(3) (not shown). The informative
priors were normally distributed with parameters based
on published data (Supplementary Material Sect. 3,
Tables 1 and 2). We present results based on the mod-
els with informative priors because they converged more
quickly than models with uninformative priors and there
were no substantial differences in the results (not shown).
The Stan model, R code, and data required to replicate
both the OLS and Bayesian analyses have been provided
in a supplemental file (Supplemental_Code.zip).

**Results**

The descriptive statistics for the study variables are pre-
sented in Supplementary Material Table S1. As expected,
based on the NHANES sampling design, selected minor-
ity racial and ethnic groups were overrepresented. There
were more women than men because statin users (pri-
marily males) were excluded. Other than minor differ-
ences due to the sampling design, the study population
and the U.S. population were similar [18].

OLS regression results did not meaningfully depend on
the NHANES sampling design and, to simplify the Baye-
sian analyses, we conducted unweighted analyses. Table 1
shows the estimated adjusted coefficients and their error
estimates for fiber and PFOA from OLS and Bayesian
models of ln-transformed cholesterol. OLS regression
suggested a more pronounced association between fiber
and cholesterol for soluble than for total fiber. After
adjusting for measurement error in the Bayesian analyses,
the coefficients for the fiber variables were more inverse
(larger negative coefficient). The coefficients for PFOA
were similar in the fiber-unadjusted OLS and Bayesian
analyses and adjusting for fiber had a nominal effect (e.g.,
coefficients were 5.4% [OLS] and 6.4% [Bayesian] smaller
after adjustment for soluble fiber). Error estimates for
the PFOA coefficients were similar for the OLS-based
and the Bayesian-based coefficients. Results for PFOS
and PFNA were similar to those shown here although

| Fiber variable included in model | In-transformed energy intake-adjusted fiber (ln(g/d)) | PFOA (ng/ml) |
|---------------------------------|---------------------------------|--------------|
|                                 | OLS | Bayesian | OLS | Bayesian |
| None                            | N/A | N/A      | 2.59 (0.75) | 2.66 (0.71) |
| Total fiber                     | -1.92 (1.58) | -2.35 (1.58) | 2.53 (0.75) | 2.59 (0.72) |
| Soluble fiber                   | -2.90 (1.06) | -3.53 (1.49) | 2.45 (0.75) | 2.49 (0.72) |

* To simplify the presentation coefficients and error estimates were multiplied by \( 10^{-3} \) for PFOA and \( 10^{-2} \) for fiber
* Ordinary least squares (OLS) error estimates are standard errors and Bayesian error estimates are standard deviations
* Modeled as ln-transformed energy intake-adjusted fiber
* All models were adjusted for the secondary covariates energy intake, saturated fat intake, dietary cholesterol intake, age, sex, race/ethnicity (5 categories), income to poverty ratio, smoking (4 categories, treated as an ordinal variable), and a linear and a quadratic wave variable

---

Table 1 Coefficients (error estimates) for fiber(ln[g/d]) and PFOA (ng/ml) in multivariable models of ln-transformed cholesterol, according to fiber variable included in model and type of model; \( n = 7,242 \)
adjustment for fiber led to less attenuation of the coefficients (Supplemental Table S2). Results for Eq. (1) for all full models are shown in the Supplemental Materials (Tables S3-S5).

Discussion

We investigated the effect of confounding by fiber intake on the association between PFAS compounds and serum cholesterol using OLS regression. Based on NHANES data, we considered total and soluble fiber and focused our analyses on diet composition. To determine if measurement error in the fiber variables affected our ability to adjust for confounding, we used Bayesian methods to correct for measurement error. We focused on the PFAS compounds PFOA, PFOS, and PFNA because previous studies have suggested that these compounds are positively associated with serum cholesterol levels [4, 34–36] and inversely associated with dietary fiber [18]. More than 99% of our study subjects had detectable concentrations of the three compounds. Although the NHANES data are based on a complex sampling design, adjusting for the variables that determined the sampling fractions (age, race/ethnicity, income) allowed us to conduct unweighted analyses [37], which simplified the Bayesian approach.

While mechanisms involving hepatic, lipoprotein, and bile acid metabolism have been proposed as explanations for observed association between PFAS and serum cholesterol in humans, a clear mechanism has not been elucidated [5, 16]. Both Andersen et al. and Fragki et al. suggested that the PFAS – cholesterol association may be explained by uncontrolled confounding by dietary fiber. In our analyses of the association based on data from NHANES 2003–2016 (n = 7,242), adjusting for fiber had a nominal effect in both OLS regression analyses and Bayesian analyses that adjusted for measurement error.

Our study had several limitations. First, use of NHANES data meant our analyses were cross-sectional. However, the cholesterol-fiber interrelations may have been near a steady state. The three PFAS studied have half-lives on the order of years [12, 38–40] and serum cholesterol measures vary only a small amount from day-to-day [41, 42]. Another limitation was that the Bayesian analyses were based on multiple assumptions which may have been violated in our study. This included the unlikely assumption that, except for fiber, all model covariates were measured without error. We further assumed that measurement error affecting the fiber variable was unbiased despite suggestions that relying on recall can lead to biased estimates of dietary intake [43]. The Bayesian analyses on the full data set (n = 7,242) were computationally intensive and took an extraordinarily long time to run. They were only practical after reducing the number of iterations to 2,500 per chain and decreasing the target average acceptance probability to 0.8. Each analysis still took approximately 10 days to complete but chain convergence was acceptable. Implementing alternative approaches such as approximate Bayesian inference (e.g., the R-INLA package (r.inla.org)) could be considered in the future. Strengths of our study included our focus on diet composition by estimating fiber intake relative to total caloric intake, and the comparison of results for total and soluble fiber.

Conclusions

Our findings suggest that adjusting the association for fiber had a nominal effect on the results and that adjusting for measurement error did not meaningfully change the results. The associations between PFAS compounds and cholesterol in serum seem unlikely to be explained by confounding by dietary fiber intake. Elucidation of the biologic mechanism accounting for the association will require laboratory experiments, possibly in humanized mice.

Abbreviations

PFAS: Per- and polyfluoroalkyl substances; NHANES: National Health and Nutrition Examination Survey; PFOA: Perfluorooctanoic acid; EFSA: European Food Safety Authority; PFOS: Perfluorooctane sulfonic acid; PFNA: Perfluorononanoic acid; USDA: U.S. Department of Agriculture; FNDDS: Food and Nutrient Database for Dietary Studies; NCC: Nutrition Coordinating Center; LOD: Limit of Detection; OLS: Ordinary Least Squares.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12940-022-00923-2.

Acknowledgements

Dr. Michael W. Dzierlenga provided critical comments on an early draft of the manuscript.

Authors’ contributions

MWL: Revised the Bayesian code so that it would run on the full dataset, conducted all Bayesian analyses, reviewed manuscript drafts and provided critical comments. PG: Guided the Bayesian methodology, reviewed manuscript drafts and provided critical comments. BCA: Wrote the initial draft of the Bayesian code, reviewed manuscript drafts and provided critical comments. AMB: Contributed to the development of the study strategy, did extensive rewriting of an early manuscript draft, reviewed manuscript drafts and provided critical comments. CVL: Prepared the NHANES data for analysis, reviewed manuscript drafts and provided critical comments. DRK: Calculated soluble fiber intake for subjects in the analysis, reviewed manuscript drafts and provided critical comments. MPL: Conceived of the study, designed it, obtained funding for it, wrote the initial draft of the manuscript, and incorporated coauthor’s comments into the final version. The author(s) read and approved the final manuscript.
Funding
This project was funded through a contract between 3 M and Ramboll. Ramboll is an international science and engineering company that provided salary compensation to the authors. None of the authors are currently engaged to testify as experts on behalf of the sponsors in litigation related to the compound discussed in this manuscript.

Availability of data and materials
The NHANES and FNDDS databases are freely available and can be found at the following locations:

NHANES: https://www.cdc.gov/nchs/nhanes/Default.aspx
FNDDS: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fnnds-download-databases/

Additionally, the NCC Food and Nutrient database can be licensed from the following location: http://www.ncc.umn.edu/food-and-nutrient-database/

Because the last database is not freely available, we have also provided our database (data_w_dictionary.xlsx) in the Supplemental Materials.

Declarations

Ethics approval and consent to participate
NHANES obtained written informed consent from all participants, and all data are available on the NHANES website in a de-identified form. Data were collected by the National Center for Health Statistics (NCHS) and approved by their ethical review board under Protocol #2021–05.

Consent for publication
Not applicable.

Competing interests
3 M, the company that funded this research, previously used PFOA and precursors to PFOS in manufacturing. 3 M was not involved in the preparation of the manuscript. The authors retained sole control of the manuscript content and the findings, and statements in this paper are those of the authors and not those of the author’s employer or the sponsors. No authors were directly compensated by 3 M.

Author details
1Ramboll US Consulting, Inc., 3214 Charles B Root Wynd #130, Raleigh NC 27612, USA. 2Department of Statistics, University of British Columbia, Vancouver, Canada. 3Independent consultant, Chapel Hill, North Carolina, USA. 4Ramboll US Consulting, Inc, Amherst, Massachusetts, USA. 5Ramboll US Consulting, Inc, Monroe, Louisiana, USA. 6Food & Nutrition Database Research, Inc, Bangor, PA, USA.

Received: 1 September 2022 Accepted: 24 October 2022
Published online: 22 November 2022

References
1. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and Polychlorinated Biphenyl Substances in the Environment: Terminology, Classification, and Origins. Integr Environ Assess Manag. 2011,7:513–41.
2. Peaslee GF, Wilkinson JT, McGuinness SR, Tighe M, Caterisano N, Lee S, et al. Another Pathway for Firefighter Exposure to Per- and Polyfluoralkyl Substances: Firefighter Textiles. Environ Sci Technol Lett American Chemi- cal Society. 2020,7:594–9.
3. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoralkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019,29:131–47.
4. Dong Z, Wang H, Yu YY, Li YB, Naedo R, Liu Y, Using 2003–2014 U.S. NHANES data to determine the associations between per- and polyfluoralkyl substances and cholesterol: Trend and implications. Ecotoxicol Environ Saf. 2019,173:461–8.
5. Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C, et al. Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFASs) in humans? A workshop report on potential mechanisms. Toxicology. 2021,459:152845.
6. Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, et al. Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci. 2002,69:244–57.
7. Chang S, Allen BC, Andres KL, Ehesman DJ, Falvo R, Provencher A, et al. Evaluation of Serum Lipid, Thyroid, and Hepatic Clinical Chemistries in Association With Serum Perfluorooctanesulfonate (PFOS) in Cynomol- gus Monkeys After Oral Dosing With Potassium PFOS. Toxicol Sci. 2017,156:387–401.
8. EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Alexander J, Barregård L, Bignami M, Bruschweiler B, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018,16:60194.
9. Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. FIRST PUBLIC REVIEW DRAFT: Perfluorooctanoic Acid and Perfluorooctane Sulfonic Acid in Drinking Water [Internet]. 2021 Jul. Available from: https://oeohha.ca.gov/media/downloads/crm/pfoapfosphdratf061021.pdf
10. EFSA Panel on Contaminants in the Food Chain (CONTAM). Minutes of the expert meeting on perfluorooctane sulfonic acid and perfluoroocta- noate acid in food assessment [Internet]. 2018 p. 25. Report No: EFSA/ CONTAM/3503. Available from: https://www.efsa.europa.eu/sites/default/files/news/efa-contam-3503.pdf
11. Olsen GW, Burris JM, Burlow MM, Mandel JH. Plasma cholecycto- kinin and hepatic enzymes, cholesterol and lipoproteins in ammo- muffin perfluorooctanoate production workers. Drug Chem Toxicol. 2000,23:603–20.
12. Olsen GW, Burris JM, Ehesman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate, per- fluorohexanesulfonate, and perfluorooctanoate in retired chemical- production workers. Environ Health Perspect. 2007,115:1298–305.
13. Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K, et al. Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiol. 2013,24:569–76.
14. Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker- environ Health Perspect. 2014,122:1299–305.
15. Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, et al. Stochastic Pharmacokinetic-Pharmacodynamic Modeling for Assess- ing the Systemic Health Risk of Perfluorooctanoate (PFOA). Toxicol Sci. 2018,163:293–306.
16. Frągki S, Driven H, Fletcher T, Gral-Kraupp B, Bjerre-Gutzkow K, Hoogenboom R, et al. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol. 2021,51:141–54.
17. Brown L, Rosner B, Willett WW, Sacks FM, Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999,69:30–42.
18. DzerlenGA, Meier, Drastor D, Longnecker MP. The concentration of several perfluoroalkyl acids in serum appears to be reduced by dietary fiber: dietary fiber: a meta-analysis. Am J Clin Nutr. 1999,69:30–42.
19. Sorrentino MJ. An update on statin alternatives and adjuncts. Clin Lipidol. 2011,6:513–20.
20. Dzierlenga MW, Keast DR, Longnecker MP. The concentration of several perfluoroalkyl acids in serum appears to be reduced by dietary fiber. Am J Clin Nutr. 1999,69:30–42.
21. Johnson J. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoic acid or potassium [14C]perfluorooctanesulfonate. Fundam Appl Toxicol. 1984,4:972–6.
22. Gustafson P. Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Adjustments. New York: Chapman and Hall/CRC; 2003.
23. Gustafson P. Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data. New York: Chapman and Hall/CRC; 2003.
24. Bartlett JW, Keogh RH. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration. Stat Methods Med Res. 2018,27:1695–708.
25. Zipf G, Chiappa M, Porter KS, Ostchega Y, Lewis BG, Dostal J. National health and nutrition examination survey: plan and operations, 1999–2010. Vital Health Stat. 2013;1:1–37.
26. CDC. NHANES Questionnaires, Datasets, and Related Documentation [Internet]. 2004 [cited 2022 Apr 21]. Available from: https://www.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2003
27. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S-1228S discussion 1229S-1231S.
28. Rothman KJ, Lash TL, Greenland S. Modern Epidemiology. Third. Philadelphia: Lippincott Williams &Wilkins; 2008.
29. Keogh RH, Shaw PA, Gustafson P, Carroll RJ, Deffner V, Dodd KW, et al. STRATOS’ guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-Basic theory and simple methods of adjustment. Stat Med. 2020;39:2197–231.
30. Richardson S, Gilks WR. A Bayesian approach to measurement error problems in epidemiology using conditional independence models. Am J Epidemiol. 1993;138:430–42.
31. Shaw PA, Gustafson P, Carroll RJ, Deffner V, Dodd KW, Keogh RH, et al. STRATOS’ guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2-More complex methods of adjustment and advanced topics. Stat Med. 2020;39:2232–63.
32. Stan Development Team. Stan User’s Guide [Internet]. 2021 [cited 2021 Nov 29]. Available from: https://mc-stan.org/users/citations/
33. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. 3rd ed. Boca Raton: CRC Press; 2014.
34. Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere Elsevier. 2014;98:78–83.
35. Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population. Environmental health perspectives. National Inst Environ Health Sciences. 2010;118:197–202.
36. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009;170:1268–78 Oxford University Press.
37. Korn EL, Graubard B. Epidemiologic studies utilizing surveys: accounting for the sampling design. Am J Public Health. 1991;81:1166–73.
38. Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, et al. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 2018;75:46–51.
39. Xu Y, Fletcher T, Pineda D, Lindh CH, Nilsson C, Glynn A, et al. Serum Half-Lives for Short- and Long-Chain Perfluoroalkyl Acids after Ceasing Exposure from Drinking Water Contaminated by Firefighting Foam. Environ Health Perspect. 2020;128:77004.
40. Zhang Y, Beesoon S, Zhu L, Martin JW. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ Sci Technol. 2013;47:10619–27.
41. Hegsted DM, Nicolosi RJ. Individual variation in serum cholesterol levels. Proc Natl Acad Sci U S A. 1987;84:6259–61.
42. Pereira MA, Weggemans RM, Jacobs DR, Hannan PJ, Zock PL, Or dovaz JM, et al. Within-person variation in serum lipids: implications for clinical trials. Int J Epidemiol. 2004;33:534–41.
43. Karvetti RL, Knuts LR. Validity of the 24-hour dietary recall. J Am Diet Assoc. 1985;85:1437–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.