Synthesis and theoretical activity of three steroid-derivatives on both aromatase and 17β-hydroxysteroid dehydrogenase Type 1 enzymes

Figueroa-Valverde Lauro 1*, Díaz Cedillo Francisco 2, Rosas-Nectiaca Marcela 3**, Mateu-Armand Virginia 3, Hernandez-Vasquez Patricia 3, Benítez-Coeto Laura 3, Pool Gómez Eduardo 1, Hau-Heredia Lenin 1, Lopez-Ramos Maria 1, Cauch-Carrillo Regina 1, López-Gutierrez Tomas 1, Borges-Ballote Yaritza 1, Cabrera-Tzu Jhair 1, Guillen-Morales Maria 1

1Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P.24039 Campeche Cam., México.
2Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prof. Carpio y Plan de Ayala s/n Col. Santo Tomas, México.
3Facultad de Nutrición, Universidad Veracruzana. Médicos y Odontólogos s/n, 91010, Xalapa, Veracruz. México.
*corresponding author e-mail address: lfigueroa@uacam.mx; lauro_1999@yahoo.com; rosasnm@yahoo.com.mx

ABSTRACT
Breast cancer is the most common malignancy in the worldwide. It is noteworthy, that several drugs can be used for cancer breast; nevertheless, some these drugs can produce secondary effects such as changes in blood pressure, bone loss and others. The objective of this investigation was synthesizing three steroid derivatives (compounds 4, 5 and 6) to evaluate their theoretical activity against both aromatase (2W3D) and 17β-Hydroxysteroid dehydrogenase Type 1 (3BH4) enzymes using fisetin and exemestane as control in a docking model. The data found indicate that compound 5 could exert a greater interaction with the 2WD4 and 3BH4 proteins in comparison with fisetin, exemestane and compounds 4 or 6. In conclusion, this compound could be a good candidate as both aromatase and 17β-hydroxysteroid dehydrogenase enzymes inhibitor.

Keywords: Breast cancer, steroids, fisetin, exemestane and enzymes.

1. INTRODUCTION
Several studies indicate that breast cancer is a risk factor to produce death in worldwide [1-3]; there are several drugs for the treatment of some of this disease such as tamoxifen (estrogen antagonist) [4], anastrozole, letrozole or exemetane (aromatase inhibitors) [5-7], fisetin or methyl paraben (17β-hydroxysteroid dehydrogenase type 1 inhibitors) [8, 9]; however some these drugs can produce secondary effects such as secondary endometrial cancer [10] and bone loss [11]. In the search a new therapeutic alternative, several compounds have been developed for treatment of breast cancer. For example, the 4-hydroxy-androstenedione derivative was prepared from androstenedione to evaluate their biological activity as an aromatase inhibitor using in human placenta [12]. In addition, a substituted pyrrolizine was prepared via reaction of 3-aryl-3-(pyrrol-1-yl)propionates with ethyl 4-(pyrrol-1-yl)-4-vinylbutyrate and their biological effect on aromatase enzyme was asses in human placenta [13]. A study, shown the preparation of 1,2,4-thiadiazoles from 4-methoxybenzonitrile and 3-hydroxybenzonitrile as 17β-Hydroxysteroid dehydrogenase Type 1 inhibitors using a liver microsomes model [14]. Other study showed the synthesis of an androstan-17β-ol derivative from dihydrotestosterone as 17β-Hydroxysteroid dehydrogenase Type 10 inhibitor [15].

On the other hand, also, have been prepared some compounds to predict their biological activity against aromatase and 17β-Hydroxysteroid dehydrogenase using some theoretical models [16-17]. In this sense, some indenodiazine derivatives were synthesized from 2-methyl-5H-indeno[1,2-d]pyrimidine and N-bromosuccinimide to determinate its binding with aromatase using a 3D QSAR model [18]. Additionally, a dihydroxyestratrienylacetate derivative was prepared from estradiol to predict their theoretical interaction with aromatase using 3D QSAR [19]. Recently was synthesized a new steroid derivative as 17β-Hydroxysteroid dehydrogenase Type 1 inhibitor using a theoretical model [20]. All these studies indicate that several drugs have prepared as inhibitors to both aromatase and 17β-hydroxysteroid dehydrogenase; however, some protocol used for their preparation use dangerous reagents and require specific conditions. Analyzing these data, the objective of this investigation was synthesize three steroid derivatives from estrone to evaluate its theoretical activity against both aromatase and 17β-hydroxysteroid dehydrogenase enzymes using some theoretical models.

2. MATERIALS AND METHODS
2.1. Chemical synthesis.
The reagents involved in this investigation were purchased from Sigma-Aldrich Sigma-Aldrich Co., Ltd. The melting point for compounds was determinate using an Electrothermal (900 model).

Infrared spectra (IR) were evaluated using i50 FT-IR Nicolet spectrometer. 1H and 13C NMR (nuclear magnetic resonance) spectra were determine with a Varian VX300/5 FT NMR spectrometer at 300 MHz (megahertz) in CDCl3 (deuterated...
In a round bottom flask (10 ml), forsmene (200 mg, 0.66 mmol), phenylhydrazine (76 mg, 0.70 mmol) in 5 ml of acetic acid were stirred to reflux for 12 h. The solvent of the mixture produced was diminished to reduced pressure and purified through a crystallization using the methanol:hexane (4:1) system; yielding 67% of product; m.p. 72-74 °C; IR (V_N, cm^-1) 3430, 3402 and 1712; ^1H NMR (500 MHz, Chloroform-d) δH: 0.90 (s, 3H), 1.02 (s, 3H), 1.08-2.00 (m, 12H), 2.12-3.12 (m, 5H), 7.12-7.66 (m, 4H) 10.70 (broad, 2H) ppm. ^13C NMR (75.4 Hz, CDCl3) δC: 13.62, 18.90, 21.32, 21.70, 22.82, 30.84, 30.90, 33.72, 34.96, 36.52, 41.00, 47.52, 51.44, 53.70, 112.12, 116.90, 119.52, 119.78, 121.24, 121.60, 126.90, 132.32, 135.52, 149.56, 220.10 ppm. EI-MS m/z: 375.21. Anal. Calcld. for C23H28N2O: C, 79.96; H, 7.78; N, 3.73; O, 8.52. Found: C, 79.90; H, 7.70.

In a round bottom flask (10 ml), compound 2 (200 mg, 0.53 mmol) and 10 ml of acetonitrile were stirring for reflux to 12 h. The solvent of the mixture produced was diminished to reduced pressure and purified via a crystallization using the methanol:water (4:1) system; yielding 44% of product; m.p. 127.00, 127.32, 128.54, 130.60, 132.12, 138.30, 156.30, 178.71, 220.10 EI-MS m/z: 531.28. Anal. Calcld. for C38H37NO4: C, 79.06; H, 7.01; N, 7.90; O, 6.02. Found: C, 79.00; H, 7.00.

In a round bottom flask (10 ml), compound 3 (200 mg, 0.48 mmol) and 4-hydroxybenzoic acid (69 mg, 0.50 mmol), potassium carbonate (50 mg, 0.36 mmol) and 5 ml of dimethyl sulfoxide were stirred to room temperature for 72 h. The solvent of the mixture produced was diminished to reduced pressure and purified via a crystallization using the methanol:hexane:water (4:1:1) system; yielding 58% of product; m.p. 126-128 °C; IR (V_N, cm^-1) 3430, 3400, 3320, 1742, and 1712; ^1H NMR (500 MHz, Chloroform-d) δH: 0.90 (s, 3H), 1.04 (s, 3H), 1.06-2.12 (12H), 2.14 (s, 3H), 2.17-2.46 (m, 5H), 7.02 (m, 2H), 7.28-7.74 (m, 4H), 8.30 (m, 2H), 9.00 (broad, 2) ppm. 13.62, 19.20, 20.62, 21.32, 21.70, 29.72, 30.88, 32.38, 34.92, 34.94, 35.60, 38.72, 47.52, 50.90, 51.44, 112.82, 117.62, 119.32, 119.72, 121.12, 123.95, 124.62, 125.50, 126.82, 128.74, 131.04, 134.08, 138.12, 160.22, 161.90, 171.44, 220.10 ppm. EI-MS m/z: 536.26. Anal. Calcld. for C39H36N2O4: C, 76.09; H, 6.76; N, 5.22; O, 11.93. Found: C, 76.00; H, 6.70.

In a round bottom flask (10 ml), compound 3 (200 mg, 0.48 mmol) and benzoic acid (60 mg, 0.49 mmol), potassium carbonate (50 mg, 0.36 mmol) and 5 ml of dimethyl sulfoxide were stirred to room temperature for 72 h. The solvent of the mixture produced was diminished to reduced pressure and purified via a crystallization using the methanol:water (4:1) system; yielding 58% of product; m.p. 114-116 °C; IR (V_N, cm^-1) 3430, 3322, 1742, and 1710; ^1H NMR (500 MHz, Chloroform-d) δH: 0.90 (s, 3H), 1.04 (s, 3H), 1.06-2.12 (12H), 2.14 (s, 3H), 2.17-2.46 (m, 5H), 7.28-7.40 (m, 2H), 7.56-7.60 (m, 3H), 7.66-7.74 (m, 2H), 8.36 (m, 2H), 9.92 (broad, 1) ppm. 13.62, 19.20, 20.62, 21.32, 21.70, 29.72, 30.88, 32.38, 34.92, 34.94, 35.60, 38.72, 47.52, 50.90, 51.44, 112.82, 117.62, 119.32, 119.72, 121.12, 123.95, 124.62, 125.50, 126.82, 128.74, 131.04, 134.08, 138.12, 160.22, 161.90, 171.44, 220.10 ppm. EI-MS m/z: 520.27. Anal. Calcld. for C38H37NO4: C, 78.43; H, 6.97; N, 5.38; O, 9.22. Found: C, 78.38; H, 6.90.

2.2. Physicochemical parameters evaluation. Some electronic factors of compounds 4, 5 and 6 such as M_e (molar volume), M_r (molar refractivity), HOMO (Highest Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital) energy, orbital coefficients distribution, molecular dipole moment and HBD (hydrogen bond donor groups) and HBA (hydrogen bond acceptor groups) and PSA (polar surface area) were evaluated using both ACD/Chem Sketch and Spartan’06 programs [21, 22].
3. RESULTS

Chemical synthesis.

In this study, three steroid derivatives were prepared using some chemical strategies:

First stage. This step involved the preparation of an indol-steroid derivative (compound 2); it is noteworthy that several indol analogs have been synthesized using some reagents such as N-chlorosuccinimide [28], gold [29], rhodium [30], CuBr [31] and others. In this study, the compound 2 was prepared from formestane and diphenylhydrazine (Figure 1).

The 1H NMR spectra for 2 showed several signals at 0.90-1.08 ppm for both methyl groups; at 1.08-3.12 ppm for steroid moiety; at 7.12-7.60 ppm for indol group; at 10.70 ppm for both hydroxyl and amino groups (Figure 2). 13C NMR spectra for 2 showed several signals at 13.62-18.90 ppm for both methyl groups bound to steroid nucleus; at 21.32-53.50, 121.52 and 149.56 ppm for steroid moiety; at 112.12-121.24 and 126.90-135.52 ppm for indol ring; at 220.10 ppm for ketone group. Finally, the mass spectrum from 2 showed a molecular ion (m/z) 375.21.

Second stage. Some reports have showed the preparation of several acetimidic acid derivatives using some reagents such as 2-bromocyclohexylacetimidium chloride [32], N-benzyl-N-nitro-sopivalamide [33], o-aminobenzoylehydrazine [34]. Analyzing these data and a report which showed the synthesis of a steroid-ethanimidic acid derivative [35]; in this study an azahexacyclotetraconta-ethanimidic acid (3) was prepared from compound 2 and acetonitrile (Figure 1). The 1H NMR spectra for 3 (Figure 3) showed several signals at 0.90-1.04 for both methyl groups bound to steroid nucleus; at 1.96 ppm for methyl group bound to imino group; at 1.06-1.88 and 2.00-7.26 ppm for steroid moiety; at 7.24-7.40 and 7.64-7.72 ppm for indol group; at 7.60 ppm for both hydroxyl and amino groups (Figure 3). 13C NMR spectra for 3 showed several signals at 13.62 and 19.22 ppm for methyl groups bound to steroid nucleus; at 13.74 ppm for methyl group bound to imino group; at 21.30-51.44 and 126.22-129.12 ppm for steroid moiety; at 112.82-126.00 and 130.60-137.34 ppm for indol group; at 167.60 ppm for imino group; at 220.10 ppm for ketone group. Additionally, the mass spectrum from 3 showed a molecular ion (m/z) 416.25.

Third stage. In this stage, some ester derivatives (Figure 4) were prepared using a previously method reported for ester-steroid derivatives via esterification of hydroxyl group [36]. In this study, the compound 3 reacted with (4-Nitro-phenyl)-acetonitrile or 4-hydroxybenzoic acid or benzoic acid to form the ester derivatives (compounds 4 or 5 or 6).

Figure 1. Preparation of an oxo-tetradecahydrcyclopenta-carbazol-acetimidic acid derivative (3). Reaction of formestane (1) with phenylhydrazine (i) to form a dodecahydrocyclopenta-carbazolone (2).

Figure 2. The scheme shown 1H NMR spectrum from 2. Analyzed with a Varian VXR300/5 FT NMR apparatus at 300 and 75.4 MHz in CDCl3. Axis abscissa (ppm); ppm = parts per million.

Figure 3. The scheme showed 1H NMR spectrum from 3. Analyzed with a Varian VXR300/5 FT NMR apparatus at 300 and 75.4 MHz in CDCl3. Axis abscissa (ppm); ppm = parts per million.

Figure 4. Synthesis of three steroid derivatives (4 or 5 or 6). Reaction of 3 with (4-Nitro-phenyl)-acetonitrile (iii) to form a 4-(cyanomethyl)phenyl-tetradecahydrcyclopenta-carbazol-acetimidate (4). Then, 3 reacted with 4-hydroxy benzoic acid (iv) for the synthesis of oxo-tetradecahydrocyclopenta-carbazol-acetimidic anhydride (5).
Finally, 6 was prepared via reaction of 3 with benzoic acid (v). The 1H NMR spectra for 4 showed several signals at 0.90-1.04 for both methyl groups bound to steroid nucleus; at 2.14 ppm for methyl group bound to imino group; at 1.06-2.12 and 2.17-2.46 ppm for steroid moiety; at 3.62 ppm for methylene group bound to both phenyl and cyanide groups; at 7.22, 7.38 and 7.66-7.94 ppm for indol group; at 7.28 and 7.54 ppm for phenyl group bound to ester group (Figure 5). 13C NMR spectra for 4 showed several signals at 13.62-19.24 ppm for both methyl groups bound to steroid nucleus; at 20.80 ppm for methyl bound to imino group; at 21.32-21.70, 29.70-52.44, 12.32 and 130.60 ppm for steroid moiety; at 23.42 ppm for methylene bound to both phenyl and cyanide groups; at 112.83, 119.32-120.23, 121.12, 124.60-127.00 and 132.12-138.30 ppm for steroid moiety; at 117.40 ppm for cyanide group; at 22.01 ppm for indol group; at 7.28 and 7.54 ppm for phenyl group bound to ester group; at 138.12 ppm for indol group; at 7.28 and 7.54 ppm for phenyl group bound to ester group; at 130.60 and 131.12 ppm for phenyl group bound to ester group; at 178.70 ppm for imino group; at 220.10 ppm for ketone group. Additionally, the mass spectrum from 5 showed a molecular ion (m/z) 536.26.

Finally, the 1H NMR spectra for 6 showed several signals at 0.90-1.04 ppm for both methyl groups bound to steroid nucleus; at 2.14 ppm for methyl group bound to imino group; at 1.06-2.12 and 2.17-2.46 ppm for steroid moiety; at 7.28-7.40 and 7.76-7.74 ppm for indol group; at 7.56-7.60 and 8.36 ppm for phenyl group bound to ester group; at 9.92 ppm for amino group (Figure 7). 13C NMR spectra for 6 showed several signals at 13.62-19.20 ppm for both methyl groups bound to steroid nucleus; at 20.62 for methyl bound to imino group; at 21.32-51.44, 125.50 and 131.04 ppm for steroid moiety; at 112.82-124.62, 126.82-128.74 and 138.12 ppm for indol group; at 130.60 and 131.12-135.50 ppm for phenyl group bound to ester group; at 160.22 ppm for imino group; at 171.44 ppm for ester group; at 220.10 ppm for ketone group. Finally, the mass spectrum from 6 showed a molecular ion (m/z) 520.27.

Other data showed several signals involved in 1H NMR spectra for compound 5 at 0.90-1.04 ppm for both methyl groups bound to steroid nucleus; at 2.14 ppm for methyl group bound to imino group; at 1.06-2.12 and 2.17-2.46 ppm for steroid moiety; at 7.02-7.28 ppm for methyl group bound to imino group; at 1.06 and 1.20 ppm for phenyl group bound to ester group; at 2.12 and 2.17 ppm for steroid moiety; at 7.28-7.74 ppm for indol group; at 9.00 ppm for both hydroxyl and amino groups (Figure 6).

13C NMR spectra for 5 showed several signals at 13.62-19.20 ppm for both methyl groups bound to steroid nucleus; at 20.62 ppm for methyl bound to imino group; at 21.32-51.44, 125.50 and 131.04 ppm for steroid moiety; at 112.82, 119.32-121.12, 124.62, 126.82 and 138.12 ppm for indol group; at 117.62, 123.95, 134.08 and 161.90 ppm for phenyl group bound to ester group; at 160.22 ppm for imino group; at 171.44 ppm for ester group; at 220.10 ppm for ketone group. Additionally, the mass spectrum from 5 showed a molecular ion (m/z) 536.26.

Finally, the 1H NMR spectra for 6 showed several signals at 0.90-1.04 ppm for both methyl groups bound to steroid nucleus; at 2.14 ppm for methyl group bound to imino group; at 1.06-2.12 and 2.17-2.46 ppm for steroid moiety; at 7.28-7.40 and 7.76-7.74 ppm for indol group; at 7.56-7.60 and 8.36 ppm for phenyl group bound to ester group; at 9.92 ppm for amino group (Figure 7). 13C NMR spectra for 6 showed several signals at 13.62-19.20 ppm for both methyl groups bound to steroid nucleus; at 20.62 for methyl bound to imino group; at 21.32-51.44, 125.50 and 131.04 ppm for steroid moiety; at 112.82-124.62, 126.82-128.74 and 138.12 ppm for indol group; at 130.60 and 131.12-135.50 ppm for phenyl group bound to ester group; at 160.22 ppm for imino group; at 171.44 ppm for ester group; at 220.10 ppm for ketone group. Finally, the mass spectrum from 6 showed a molecular ion (m/z) 520.27.
Physicochemical parameters of both compounds 3 and 4. Analyzing these data in this investigation, both \(M_V \) and \(M_R \) descriptors were determinate using ChemSketch 3.5 program [21]. Theoretical data showed that \(M_V \) and \(M_R \) were higher for 4 compared with 2, 3, 5 and 6 (Table 1).

Table 1. Physicochemical parameters involve in the structure of compounds 2-6.

Parameter	2	3	4	5	6
Molar Refractivity (cm\(^3\))	109.83	120.00	156.78	151.96	151.11
Molar Volume (cm\(^3\))	295.20	307.90	413.60	395.30	398.10
Polarizability (cm\(^3\))	43.54	74.60	84.71	83.82	83.43
Parachor (cm\(^3\))	820.01	826.80	1100.80	1066.40	1060.70
Index of refraction	1.66	1.70	1.68	1.69	1.68
Surface Tension (dyne/cm)	59.50	51.80	50.10	52.90	50.40
PSA Å\(^2\)	45.72	52.71	55.61	74.41	51.05
Density g/cm\(^3\)	1.27	1.35	1.28	1.35	1.30
HBD	2	2	1	2	1
HBA	2	4	5	5	4
HOMO (eV)	-6.54	-6.70	-6.86	-6.92	-6.91
LUMO (eV)	2.77	3.17	2.91	2.51	2.10

These results suggest that higher volume translated as steric hindrance and different conformational changes might be two factors which influence on biological activity exerted by 4 compared with the other compounds involved in this study. Nevertheless, it is noteworthy that also other physicochemical factors such as hydrogen bond donor groups (HBD) and hydrogen bond acceptor groups (HBA), topological polar surface area (TPSA) can produce changes on biological activity of some compounds in several theoretical models [38]. Therefore, these factors involved in the chemical structure of compounds 2-4 were determinate using LigandScout software [23, 24]. The theoretical results showed values of <10 for compounds 2 to 6. These data indicate that these compounds could have good absorption and permeability on plasma membranes, which could be translated as changes on the biological activity of some system as described by Lipinski’s rule [39].

Pharmacophore evaluation. Some studies have showed that the pharmacophore model can be used to design new molecules with pharmacological activity [23, 24]. In this way, the LigandScout software was used to develop two pharmacophores from compounds 4 to 6. The theoretical data (Figures 10 and 11) showed the different types of functional groups that can act as hydrogen bond receptors or as hydrogen bond donors with some biomolecules.
To evaluate if these differences might depend on their functional groups, the distance involved between the compounds 4 to 6 and 2WD3 protein surface was determined using the SeeSAR program (Table 3).

Theoretical results showed that both ester and imino group could be responsible for a higher interaction with 2WD3 protein surface and possibly with another type of enzymes. To evaluate this hypothesis, the interaction of compounds 4 to 6 with the 3HB4 protein surface was determined using fisetin as a control. The results (Table 4) showed that several differences in the interaction of fisetin and compounds 4-6 with aminoacid residues involved in the 3HB4 protein surface.

Table 3. Distance involved in the interaction between compounds 4 to 6 with 2WD3 protein surface.

Comp.	Ketone (Å)	Cyanide (Å)	Imino (Å)	Indole (Å)	Hydroxyl (Å)	Ester (Å)							
4	Ser19 (13.98)	-	Ty113 (11.90)	Cys185 (17.79)	Cys185 (20.69)	Let94 (14.10)	Ser19 (19.89)	Leu96 (14.74)	Ser19 (13.37)	-			
5	Ser19 (15.44)	Ty113 (15.14)	Cys185 (20.51)	Ser19 (25.90)	Ser19 (19.89)	Leu96 (13.31)	Ser19 (10.66)	Asn52 (2.72)	Ser19 (5.58)	Cys185 (15.32)			
6	Ser19 (22.27)	Leu96 (16.88)	Ser19 (11.53)	Ty113 (11.53)	Cys185 (7.65)	Phe107 (16.19)	Ser19 (25.90)	Ser19 (19.89)	Leu96 (13.31)	Ser19 (10.66)	Asn52 (2.72)	Ser19 (5.58)	Cys185 (15.32)

In addition, the distance between the compounds 4 to 6 with the aminoacid residues involved on 3HB4 protein surface was noteworthy. The results showed that the imino group could have greater specificity in the interaction between compounds 4-6 with the 3HB4 protein surface (Table 5).

Table 4. Aminoacid residues involved in the interaction of exametane and compounds 4-6 with 3HB4 protein surface.

Aminoacid Residues	C-4	C-5	C-6
Exametane	Trp5	Trp5	Trp5
Cys94	Asn62	Asn62	Asn62
His96	His64	His64	His64
His119	Glu67	Glu67	Glu67
Val121	Gln69	Gln69	Gln69
Val142	Ile70	Ile70	Ile70
Leu197	Gln72	Gln72	Gln72
Thr198	His74	His74	His74
Thr199	Val212	Val212	Val212
Val206	Phe213	Phe213	Phe213
Trp208	Leu214	Leu214	Leu214

Table 5. Distance involved in the interaction between compounds 4 to 6 with 3HB4 protein surface.

Comp.	Ketone (Å)	Cyanide (Å)	Imino (Å)	Indole (Å)	Hydroxyl (Å)	Ester (Å)							
4	Ser19 (13.98)	-	Ty113 (11.90)	Cys185 (17.79)	Cys185 (20.69)	Let94 (14.10)	Ser19 (19.89)	Leu96 (14.74)	Ser19 (13.37)	-			
5	Ser19 (15.44)	Ty113 (15.14)	Cys185 (20.51)	Ser19 (25.90)	Ser19 (19.89)	Leu96 (13.31)	Ser19 (10.66)	Asn52 (2.72)	Ser19 (5.58)	Cys185 (15.32)			
6	Ser19 (22.27)	Leu96 (16.88)	Ser19 (11.53)	Ty113 (11.53)	Cys185 (7.65)	Phe107 (16.19)	Ser19 (25.90)	Ser19 (19.89)	Leu96 (13.31)	Ser19 (10.66)	Asn52 (2.72)	Ser19 (5.58)	Cys185 (15.32)

Nevertheless, it is noteworthy that some reports suggest that other thermodynamic factors; for example, free energy of binding, electrostatic energy, total intermolecular energy and Van Der Waals (vdW) + hydrogen bond (Hbond) + desolvation energy can be involved in the interaction of several compounds with some proteins or enzymes [25, 26]. Therefore, in this study, these
thermodynamic parameters were determined using DockigServer [27]. Theoretical data (Table 6 and 7) indicate that there are differences in the thermodynamic factors values of exematane and fisetin compared with compounds 4 to 6.

Table 6. Thermodynamic parameters involved in the interaction of exematane and compounds 4-6 with 2WD3 protein surface.

Compound	Energy of Binding (kcal/mol)	ΔHbnd	ΔSolv	ΔGbind	ΔElectro	ΔIntermolec	ΔInteract.	Surface
Exematan	-7.33	4.25	-7.36	0.03	-7.33	688.06		
4	-8.77	374.92	-10.47	0.06	-10.42	981.15		
5	-7.64	2.51	-9.19	0.03	-9.16	909.54		
6	-7.02	7.17	-8.34	0.01	-8.32	880.11		

Other theoretical results showed that inhibition constant (Ki) of the compounds 5 with 2WD3 protein surface was lower compared with exematane and compounds 4 or 6 (Table 6). In addition, the theoretical data showed in Table 7 indicated that Ki value involved in the binding between the compound 5 with 3BH4 protein surface was lower compared to fisetin and compounds 4 or 6. All these results suggest that compounds 4 to 6 could interact with both 2WD3 and 3BH4 proteins. However, compound 5 could exert a higher interaction with these enzymes, which translates into the possibility of high enzymatic inhibition.

Table 7. Thermodynamic factors involved in the interaction of compounds 4-6 and fisetin with 3BH4 protein surface.

Compound	Est. Fee Energy of Binding (kcal/mol)	Est. Inhibition Constant, Ki (µM)	edw + Hbnd + desolv Energy	Electrostatic Energy	Total Intermolec. Energy	ΔInteract.	Surface
Fisetin	-7.20	5.24	-7.69	-0.06	-7.75	709.06	
4	-11.04	8.10	-12.32	0.16	-12.16	1140.94	
5	-11.90	3.15	-12.56	-0.07	-12.83	1094.61	
6	-2.90	7.47	-3.23	-0.07	-3.30	1102.41	

4. CONCLUSIONS

In this investigation a facile synthesis of three steroid-derivatives was reported. In addition, theoretical study suggests that compound 5 could be a good candidate as inhibitor of the biological activity of both aromatase and 17β-hydroxysteroid dehydrogenase enzymes which is translated such as a possible drug for treatment of breast cancer.

5. REFERENCES

1. Harahap, W.; Nindrea, R. Prognostic Factors of Local-Regional Recurrence in Patients with Operable Breast Cancer in Asia: A Meta-Analysis. Open Access Maced J Med Sci 2019, 27, 690-695. https://doi.org/10.3889%2Fomjms.2019.151.
2. Kardan-Souraki, M.; Moosazadeh, M.; Khani, S.; Hamzehgardeshi, Z. Factors Related to Breast Cancer Screening in Women in the Northern Part of Iran: A Cross-Sectional Study. Open Access Maced J Med Sci 2019, 15, 637-642.
3. Silva, M.; Melo, E.; Osorio-de-Castro, C. Origin-destination flows in chemotherapy for breast cancer in Brazil: implications for pharmaceutical services. Cien Saude Colet 2019, 24, 1153-1164, http://dx.doi.org/10.1590/1413-81232018v24i100272017.
4. Pierce, L.; Hutchins, L.; Green, S.; Lew, D.; Gralow, J.; Livingston, R.; Albain, K. Sequencing of tamoxifen and radiotherapy after breast-conserving surgery in early-stage breast cancer. Journal of Clinical Oncology 2004, 23, 24-29, https://doi.org/10.1200/JCO.2005.01.198.
5. Gerber, B.; Krause, A.; Reimer, T.; Mylonas, I.; Makovitzky, J.; Janni, W. Anastrozole versus tamoxifen treatment in postmenopausal women with endocrine-resistant breast cancer and tamoxifen-induced endometrial pathology. Clinical Cancer Research 2006, 12, 1245-1250, https://doi.org/10.1158/1078-0432.CCR-05-0225.
6. Colleoni, M.; Luo, W.; Karlsson, P.; Chirgwin, J.; Aebi, S.; Jerusalem, G.; Kamy, C. Extended adjuvant intermittent letrozole versus continuous letrozole in postmenopausal women with breast cancer (SOL): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 2018, 19, 127-138, https://doi.org/10.1016/S1470-2245(17)30715-5.
7. De Placido, S.; Gallo, C.; De Laurentiis, M.; Bisagni, G.; Arpino, G.; Sarobba, M.; Cognetti, F. Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial. The Lancet Oncology 2018, 19, 474-485, https://doi.org/10.1016/S1470-2245(18)30116-5.
8. Brožič, P.; Kocbek, P.; Sová, M.; Kristl, J.; Martens, S.; Adamski, J.; Rižner, T. Flavonoids and cinnamic acid derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Molecular and cellular endocrinology 2009, 301, 229-234, https://doi.org/10.1016/j.mce.2008.09.004.
9. Salah, M.; Abdelsamie, A.; Frotscher, M. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges. Molecular and cellular endocrinology 2018, 48, 0303-7207, https://doi.org/10.1016/j.mce.2018.10.001.
10.8. Yang, G.; Nowsheen, S.; Aziz, K.; Georgakilas, A. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacology & therapeutics 2013, 139, 392-404, https://doi.org/10.1016/j.pharmthera.2013.05.005.
11. Lester, J.; Dodwell, D.; Purohit, O.; Gutcher, S.; Ellis, S.; Thorpe, R.; Coleman, R. Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clinical Cancer Research 2008, 14, 6336-6342, https://doi.org/10.1158/1078-0432.CCR-07-5101.
12. Marsh, D.; Brodie, H.; Garrett, W.; Tsai-Morris, C.; Brodie, A. Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives. Journal of medicinal chemistry 1985, 28, 788-795, http://dx.doi.org/10.1021/jm00383a017.
13. Sonnet, P.; Dallemagne, P.; Guillou, J.; Enguehard, C.; Stiebing, S.; Tangoj, Y.; Sourdaine, P. New aromatase inhibitors. Synthesis and biological activity of aryl-substituted pyrrolizine and indolizine derivatives. Bioorganic & medicinal chemistry 2000, 8, 945-955, https://doi.org/10.1016/S0968-0896(00)00024-9.
14. Bey, E.; Marchais-Obervinkler, S.; Werth, R.; Negri, M.; Al-Soud, Y.; Kruchten, P.; Hartmann, R. Design, synthesis, evaluation and pharmacokinetics of bis-(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). Journal of medicinal chemistry 2008, 51, 6725-6739, https://doi.org/10.1021/jm8006917.
15. Boutin, S.; Roy, J.; Maitais, R.; Alata, W.; Calon, F.; Poirier, D. Identification of steroidal derivatives inhibiting the transformations of allopregnanolone and estradiol by 17β-
Synthesis and theoretical activity of three steroid-derivatives on both aromatase and 17β-hydroxysteroid dehydrogenase Type 1 enzymes

hydroxysteroid dehydrogenase type 10. Bioorganic & medicinal chemistry letters 2018, 28, 3554-3559, https://doi.org/10.1016/j.bmcl.2018.09.031.
16. Sowa, M.; Perdih, A.; Kotnik, M.; Kristan, K.; Ržišner, T.L.; Solmajer, T.; Gobec, S. Flavonoids and cinnamic acid esters as inhibitors of fungal 17β-hydroxysteroid dehydrogenase: A synthesis, QSAR and modelling study. Bioorganic & medicinal chemistry 2006, 14, 7404-7418, https://doi.org/10.1016/j.bmc.2006.07.027.
17. Leonetti, F.; Favia, A.; Rao, A.; Aliano, R.; Palusczak, A.; Hartmann, R.; Carotti, A. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. Journal of medicinal chemistry 2004, 47, 6792-6803, https://doi.org/10.1021/jm0495353.
18. Brožič, P.; Kocbek, P.; Sova, M.; Kristl, J.; Martens, S.; Adamski, J.; Ržišner, T. Flavonoids and cinnamic acid derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Molecular and cellular endocrinology 2011, 301, 229-234, https://doi.org/10.1016/j.mce.2008.09.004.
19. Bérubé, M.; Poirier, D. Synthesis of simplified hybrid inhibitors of type 1 17β-hydroxysteroid dehydrogenase via cross-metathesis and Sonogashira coupling reactions. Organic letters 2004, 6, 3127-3130, https://doi.org/10.1021/ol0408820.
20. Figueroa-Valverde, L.; Camacho-Luis, A.; Díaz-Cedillo, F.; Rosas-Nectica, M.; Mateu-Armand, V.; Hernandez-Vasquez, P.; Pool-Gómez, E.; Lopez-Ramos, M.; Hau-Heredia, L.; Lopez-Gutierrez, T.; Sarabia-Alcocer, B.; Alfonso-Jimenez, A.; Cabrera-Tuz, J. Preparation of two steroid derivatives and its theoretical interaction with a 17βhydroxysteroid dehydrogenase type 1. Biointerface Research in Applied Chemistry 2019, 9, 3800-3805.
21. Österberg, T.; Norinder, U. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/LogP and ACD/ChemSketch descriptors. European Journal of Pharmaceutical Sciences 2001, 12, 327-337, https://doi.org/10.1016/S0928-0977(00)00189-5.
22. Obot, I.; Obi-Egbedi, N. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corrosion Science 2010, 52, 657-660, https://doi.org/10.1016/j.corsci.2009.10.017.
23. Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling 2005, 45, 160-169, https://doi.org/10.1021/ci049885e.
24. Temml, V.; Kaserner, T.; Kutil, Z.; Landa, P.; Vanek, T.; Schuster, D. Pharmacophore modeling for COX-1 and-2 inhibitors with LigandScout in comparison to Discovery Studio. Future Medicinal Chemistry 2014, 6, 1869-1881, https://doi.org/10.4155/fmc.14.114.
25. Woo, L.; Jackson, T.; Putey, A.; Cozier, G.; Leonard, P.; Acharya, K.; Potter, B. Highly potent first examples of dual aromatase–steroid sulfatase inhibitors based on a bifephen template. Journal of Medicinal Chemistry 2010, 53, 2155-2170, http://doi.org/10.1021/jm901705h.
26. Clark, V.; Harmanec, A.; Bäi, H.; Youngblood, M.; Lee, T.; Baranoski, J.; Simon, M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature genetics 2016, 48, 1253-129.
27. Yu, J.; Vavrusa, M.; Andreani, J.; Rey, J.; Tufféry, P.; Guerou, R. InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information. Nucleic acids research 2016, 44, 542-549, https://doi.org/10.1093/nar/gkw340.
6. ACKNOWLEDGEMENTS

The authors extend their sincere thanks to Dr. Cindy Rossina Saravia, Rector of the Autonomous University of Campeche for their support in carrying out this study.

© 2019 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).