Crossover Temperature from Non-Fermi Liquid to Fermi Liquid Behavior in Two Types of Impurity Kondo Model

Satoshi Yotsuhashi* and Hideaki Maebashi

Division of Materials Physics, Department of Physical Science, Graduated School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

1Department of Condensed Matter Physics, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047

(Received February 6, 2022)

Numerical renormalization-group results on entropy of the anisotropic two-channel Kondo model with the band-width cutoff (D) in the presence of a magnetic field (h) are obtained to determine crossover temperature from the non-Fermi liquid to Fermi liquid fixed point. It is found that the crossover temperature (T_x) is given by

\[T_x \equiv rT_K \sim D(\Delta J/J_{av})^2 e^{-1/J_{av}} \]

when \((h/T_K)^2 \ll r \ll 1\), where \(T_K, J_{av}, \) and \(\Delta J\) are the Kondo temperature, the average and difference of the exchange coupling constants, respectively. This result indicates that non-Fermi liquid behavior can be seen even if \(\Delta J > T_K\). Robust similarities of the crossover behavior in the region around the non-Fermi liquid critical point to that of the two-impurity Kondo model are also discussed.

KEYWORDS: numerical renormalization-group method, two-channel Kondo model, two-impurity Kondo model, non-Fermi liquid

§1. Introduction

Non-Fermi-liquid (NFL) behavior observed in some heavy fermion compounds and High \(T_c\) cuprates has stimulated intense studies for a variety of impurity models which have NFL quantum-critical points.1–5) While each of the models has its own energy scale \(T_K\) below which the thermodynamic and transport properties are governed by the NFL fixed point, relevant perturbation which is normally present in real systems introduces another energy scale \(T_x\) where crossover to the Fermi-liquid (FL) fixed point occurs. In other words, the NFL behavior can be observed only when \(T_x/T_K \ll 1\). Since real systems would not be exactly on the critical points, it is important to know about the above condition that NFL behavior occurs. In this paper, we investigate the crossover energy scale \(T_x\) so that the condition \(T_x/T_K \ll 1\) is specified in a microscopic sense by using the

* E-mail: yotsu@eagle.mp.es.osaka-u.ac.jp
numerical renormalization-group (NRG) method6–8) for two types of the quantum impurity model, the two-channel Kondo model in the presence of a magnetic field and the two-impurity Kondo model, with a special emphasis on the effect of channel anisotropy.

The non-Fermi-liquid fixed point of the multichannel Kondo model in the overscreened case, i.e., when the number of channels n is larger than twice the size of impurity spin S, is characterized by a degeneracy of the ground state which cannot be completely lifted by coupling to conduction electrons.1,9) The residual entropy is given by $\ln[^{\sin [(2S + 1)\pi/(n + 2)]/\sin[\pi/(n + 2)]}]$.10,11) In temperature T below the Kondo temperature T_K, the specific heat coefficient γ and magnetic susceptibility χ are $\sim T^{4/(n+2)-1}$, the electrical resistivity ρ is $\text{const.} \pm T^{2/(n+2)}$.10–13) A magnetic field or channel anisotropy is relevant so that it brings about crossover to Fermi-liquid fixed points but γ, χ and ρ keep the above scaling laws when $T_x \ll T \ll T_K$. Fig.1 presents a schematic phase diagram in the case of $n = 2$, $S = 1/2$ in which γ, $\chi \sim |\ln T|$ and $\rho \sim \text{const.} \pm \sqrt{T}$ in the region $T_x \ll T \ll T_K$. The two-channel Kondo model has been regarded as one of the most probable candidates responsible for the NFL behavior observed in U alloys.2 Recently, the multichannel Kondo model with channel anisotropy has been discussed in relation to singular effects of impurities in the region around the ferromagnetic quantum-critical point.14)}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{phase_diagram.png}
\caption{A schematic phase diagram near a quantum-critical point (QCP) of the $n = 2$, $S = 1/2$ channel anisotropic Kondo model. In the region $T_x \ll T \ll T_K$, NFL behavior occurs due to the overscreening Kondo effect.}
\end{figure}

The crossover behavior to the FL fixed point in the $n = 2$, $S = 1/2$ Kondo model with channel anisotropy and/or in the presence of a magnetic field has been investigated by a variety of methods.15–22) It can be easily seen in the impurity entropy which decreases from $\ln \sqrt{2}$ to 0 around T_x.8}
as temperature is lowered. The crossover temperature T_x is proportional to the square of relevant perturbation as follows:

$$T_x \propto h^2,$$

(1.1a)

in the presence of a magnetic field H where $h = \mu_B H$;

$$T_x \propto (J_1 - J_2)^2,$$

(1.1b)

in the channel anisotropic case where J_1 and J_2 are the exchange couplings for two channels, respectively.16,17 On the other hand, the impurity free energy F_{imp} has the following scaling form:

$$F_{\text{imp}}(r;T,h) = -Tf(r,T/T_K,h/T),$$

(1.2)

where r is a dimensionless function of D, J_1 and J_2 which depends on a cutoff scheme and in general unknown.21 Since r represents channel anisotropy, $r = 0$ if $J_1 = J_2$. From eqs. (1.1a) and (1.2), we can easily see that $T_x \sim h^2/T_K$ so that crossover from NFL to FL regime occurs if $(h/T_K)^2 \ll 1$ in the isotropic channel case.9,15,17 In the case of channel anisotropy, however, eqs. (1.1b) and (1.2) tell us nothing about the condition that the NFL behavior can be seen. Our main purpose is to identify this condition analyzing temperature dependence of the entropy by the NRG method and it will be emphasized that crossover from the NFL to FL regime can occur even if $|J_1 - J_2| > T_K$.

The two-impurity Kondo model is also known to have a NFL critical point, which arises from competition between the interimpurity antiferromagnetic interaction and single-channel Kondo effects.3 The nature of criticality of this system has been well understood.3,23–26 The residual entropy is $\ln \sqrt{2}$ at the critical point just like the $n = 2$, $S = 1/2$ single impurity Kondo model which was discussed in the above. The staggered impurity susceptibility χ_s is $\sim |\ln T|$ when $T_x \ll T \ll T_K$. Recently, it has been shown that a similar mechanism works in the model with the competition between the Kondo singlet and f^2-crystalline-electric-field singlet explaining the NFL behavior observed in $R_{1-x}U_xRu_2Si_2$ (R=Th, Y and La, $x \leq 0.07$).27,28

The crossover temperature T_x of the two-impurity Kondo model is known to be proportional to $(K_c - K)^2$ where K is the interimpurity antiferromagnetic (RKKY) coupling constant and K_c is the critical coupling.26 We will also elucidate an explicit expression of the crossover temperature of this model and discuss similarities of the crossover behavior to that of the two-channel anisotropic Kondo model in a magnetic field.

The organization of this paper is as follows. In §2, we discuss effects of channel anisotropy and a magnetic field in the two-channel Kondo model. In §3, we study the crossover behavior of the two-impurity Kondo model around the criticality. Finally, we summarize our results in §4.
2. Anisotropic Two-Channel Kondo Model in a Magnetic Field

2.1 Model and numerical procedure

In this section, we discuss crossover from the NFL to FL regime in the \(n = 2, S = 1/2 \) Kondo model with channel anisotropy and in a magnetic field described by the following Hamiltonian:

\[
H = H_K + H_I + H_Z, \tag{2.1}
\]

\[
H_K = \sum_{m=1,2} \sum_{k,\sigma} \epsilon_k c_{km\sigma}^\dagger c_{km\sigma}, \tag{2.2}
\]

\[
H_I = \sum_{m=1,2} \sum_{k,k',\sigma,\sigma'} J_m c_{km\sigma}^\dagger \hat{\sigma}_{\sigma\sigma'} c_{k' m\sigma'} \cdot \vec{S}, \tag{2.3}
\]

\[
H_Z = -2hS_z. \tag{2.4}
\]

Here \(m (= 1, 2) \) is the index of two channels, \(\sigma \) is the spin index, \(c_{km\sigma}^\dagger \) is the creation operator of the conduction electron, \(\vec{S} \) is the impurity spin and \(\hat{\sigma} \) is the vector formed by the Pauli matrices. \(H_Z \) represents the Zeeman term where the \(g \)-factor is taken as 2. When \(J_1 = J_2 \) and \(h = 0 \), one obtains the isotropic two-channel Kondo Hamiltonian leading to the NFL stable fixed point. The case of \(J_1 \neq J_2 \) corresponds to the anisotropic two-channel Kondo Hamiltonian whose stable fixed point is that of FL.

To analyze the Hamiltonian eq. (2.1) by the NRG method,\(^6\)\(^-\)\(^8\) we transform eqs. (2.2) and (2.3) into

\[
H_K = \frac{(1 + \Lambda^{-1})}{2} D \sum_{m=1,2} \sum_{n=0}^{\infty} \sum_{\sigma} \Lambda^{-n/2} \times (f_{m,n\sigma}^\dagger f_{m,n+1\sigma} + f_{m,n+1\sigma}^\dagger f_{m,n\sigma}), \tag{2.5}
\]

\[
H_I = \frac{(1 + \Lambda^{-1})}{2} D \sum_{m=1,2} \sum_{\sigma,\sigma'} J_m f_{m,0\sigma}^\dagger \hat{\sigma}_{\sigma\sigma'} f_{m,0\sigma'} \cdot \vec{S}, \tag{2.6}
\]

where \(f_{m,n} (f_{m,n}^\dagger) \) is annihilation (creation) operator of the conduction electron in the Wannier representation whose extent \(k_F^{-1} \Lambda^{n/2} \). \(\Lambda \) is a logarithmic discretization parameter in NRG calculation, \(D \) is half the bandwidth of the conduction electrons. Following an usual procedure of the NRG method, we define \(H_N \) as

\[
H_N = \Lambda^{(N-1)/2} \left\{ \sum_m \sum_{\sigma} \sum_{n=0}^{N-1} \Lambda^{-n/2} (f_{m,n\sigma}^\dagger f_{m,n+1\sigma} + \text{h.c}) \right. \\
\left. + J_m \sum_{\sigma,\sigma'} f_{m,0\sigma}^\dagger \hat{\sigma}_{\sigma\sigma'} f_{m,0\sigma'} \cdot \vec{S} \right\}. \tag{2.7}
\]

Then, the Hamiltonian (2.7) satisfies the recursion relation

\[
H_{N+1} = \Lambda^{1/2} H_N + \sum_{m,\sigma} (f_{m,N\sigma}^\dagger f_{m,N+1\sigma} + f_{m,N+1\sigma}^\dagger f_{m,N\sigma}). \tag{2.8}
\]

By repeated use of the recursive procedure, we can compute the eigen states and energy levels of Hamiltonians (\(H_N \)).
Once the energy levels of H_N are obtained, the entropy can be calculated by the relation

$$ S = \beta_N(\langle H_N \rangle - F_N), \tag{2.9} $$

in each N-step. Here $\langle H_N \rangle$ and F_N are defined as

$$ \langle H_N \rangle = \frac{\text{Tr}H_N e^{-\beta_N H_N}}{\text{Tr} e^{-\beta_N H_N}}, \quad F_N = -\frac{1}{\beta_N} \ln Z_N = -\frac{1}{\beta_N} \ln(\text{Tr} e^{-\beta_N H_N}), \tag{2.10} $$

where $\beta_N = \Lambda^{-{(N-1)/2}}/T$. By setting $T \sim T_N \equiv \Lambda^{-{(N-1)/2}}$, we can obtain temperature dependence of the entropy with a good accuracy in NRG calculation.

In our calculation, we set $\beta_N^{-1} = 0.5$ and $\Lambda = 3$ and about 600 total states are retained at each iteration. Hereafter, we take the unit of energy as $(1 + \Lambda^{-1})D/2$.

2.2 Crossover temperature T_x

In this subsection, we elucidate an explicit expression of the crossover temperature T_x of the model, eq. (2.1), from NRG results on the impurity entropy $S_{\text{imp}}(T)$. As mentioned in §1, if $0 < T_x/T_K \ll 1$, $S_{\text{imp}}(T)$ of this model decreases from $1/2 \cdot \ln 2$ to 0 around T_x as T is lowered. So T_x can be defined as temperature at which the entropy takes a value of $S_{\text{imp}}(T_x) = 1/4 \cdot \ln 2$, the middle point between NFL and FL fixed points. (For examples, see Fig. 2 below.)

Firstly, we investigate an effect of channel anisotropy on T_x for $h = 0$. In this case, we can assume that T_x is described by a function of two parameters, i.e., $J_{av} \equiv (J_1 + J_2)/2$ and $\Delta J \equiv J_1 - J_2$. Our procedure to determine T_x is illustrated in Fig. 2 (a) and (b) which present NRG results on $S_{\text{imp}}(T)$ for $J_{av} = 0.1$, $\Delta J = 1.0 \times 10^{-4}$ and for $J_{av} = 10$, $\Delta J = 1.0 \times 10^{-3}$, respectively. It is noted that $T_x/T_K \ll 1$ while $\Delta J \geq T_K$ in both (a) and (b). These examples lead us to the fact that T_x is not scaled as $T_x \sim \Delta J^2/T_K$. (If T_x were $\sim \Delta J^2/T_K$, ΔJ should be much less than T_K for $T_x/T_K \ll 1$.) Actually, we have tested a bunch of parameter sets and found a function which reproduces the behavior of T_x as follows:

$$ T_x = \alpha \times (\Delta \bar{J}/\bar{J}_{av})^2 e^{-1/\bar{J}_{av}}, \tag{2.11} $$

where α is a numerical constant which is taken to be $\alpha = 2.95$ within the accuracy of our calculation, and

$$ \Delta \bar{J} = A_\Lambda \Delta J, \tag{2.12} $$

$$ \bar{J}_{av} = A_\Lambda J_{av}, \tag{2.13} $$

$$ A_\Lambda = \frac{11 + \Lambda^{-1}}{21 - \Lambda^{-1}} \ln \Lambda. \tag{2.14} $$
Here A_A is a revision factor of the density of states in NRG calculation. Fig. 3 shows that T_x is well fitted by eq. (2.11). From Fig. 3 (a) in which $J_{av}=0.3$ is fixed, T_x can be seen to be proportional to ΔJ^2, which is consistent with the results of Pang and Cox.16 On the other hand, from Fig. 3 (b) in which $\Delta J=1.0 \times 10^{-3}$ is fixed, J_{av}-dependence of T_x can be seen to be equivalent to that of the right hand side of eq. (2.11). In the weak-coupling case of $J_{av}<0.4$, T_x is an increasing function of J_{av} as can be seen in Fig. 3 (b) while T_K is well known to be an increasing function $\sim J_{av}e^{-1/J_{av}}$ in the case of $n=2$ by the two-loop perturbative renormalization group theory. It is noted that if T_x were $\sim \Delta J^2/T_K$, T_x should be a decreasing function of J_{av} in the weak-coupling regime. (See also Fig. 4 (b) for comparison.)

We have checked that eq. (2.11) can be adopted in a wide parameter region of J_{av} for the $n=2$, $S=1/2$ Kondo model with channel anisotropy. In the weak-coupling regime, from eq. (2.11) and $T_K \sim J_{av}e^{-1/J_{av}}$, the condition that crossover from NFL to FL regime occurs, i.e. $T_x/T_K\ll1$, is given explicitly by $\Delta J^2/J_{av}^3\ll1$. This result indicates that the NFL behavior in the two-channel Kondo model is fairly robust against channel anisotropy.

Next, we investigate an effect of a magnetic field in the isotropic channel case of $J_1=J_2=J$. In this case, as mentioned in §1, T_x is $\sim h^2/T_K$.9,15,17 As shown in Fig. 4 (a) and (b), it can be actually
checked from our NRG results on the entropy that \(T_x \) can be well fitted by a function of

\[
T_x = \beta \times \frac{h^2}{T_K},
\]

where \(\beta \) is a numerical constant of \(\beta = 4.45 \). Here \(T_K \) is defined in terms of the dynamical impurity susceptibility \(\chi(\omega) \) by

\[
T_K \propto \lim_{\omega \to 0} \lim_{T \to 0} [\text{Im}\chi(\omega)]^{-1},
\]

for the isotropic channel model in the absence of a magnetic field\(^{29-31} \) in which the value of \(T_K \) is normalized to coincide with \(J e^{-1/J} (\equiv T_K^p) \) at \(J=0.1 \). Eq. (2.15) is valid in a wide region from weak to strong coupling. This suggests that eq. (2.16) is a good definition of \(T_K \). In Fig. 5, we show \(J \)-dependence of \(T_K \), which is defined by eq. (2.16), and of \(T_K^p \), which is the two-loop perturbative renormalization group result. While \(T_K^p \) is a monotonously increasing function of \(J \), \(T_K \) exhibits a broad peak at or around \(J \sim 1.3 \). The discrepancy between \(T_K \) and \(T_K^p \) indicates that the two-loop perturbative renormalization group result on the Kondo temperature is not sufficient for \(J \geq 0.5 \).

2.3 Scaling function for entropy in the crossover regime

We have obtained an explicit expression of \(T_x \), eq. (2.11), in the conventional band-width cutoff scheme for the \(n = 2, S = 1/2 \) Kondo model with channel anisotropy. On the other hand, the thermodynamic Bethe ansatz (TBA) equations for the anisotropic multichannel Kondo model was obtained by Andrei and Jerez.\(^{21} \) While their cutoff scheme differs substantially from ours, and so
Fig. 4. Crossover temperature (T_x) of the two-channel Kondo model in the presence of a magnetic field (h). (a) T_x versus h with $J=0.3$ fixed. (b) T_x versus J with $h=1.0 \times 10^{-4}$ fixed. T_x is well fitted by eq. (2.15).

Fig. 5. J-dependence of T_K defined by eq. (2.16) compared with $T_K^{p}=J e^{-1/J}$.

does their expression of T_x (T_K), their $n=2$, $S=1/2$ model must be in the same universality class as ours. It is thus possible to make a comparison of our NRG results with the TBA result by use of our expression of T_x (if necessary, T_K). In this subsection, we concentrate on the crossover regime.
in which $0 \leq S_{\text{imp}}(T) \leq \ln \sqrt{2}$, $T \ll T_K$, and explicitly show that our NRG results on the entropy can be fitted by a scaling function of T/T_x.

First, we derive the scaling function in the crossover regime analytically from the TBA equations. In the scaling limit, the impurity part of the free energy is given by

$$F_{\text{imp}}(T) = -\frac{T}{2\pi} \int_{-\infty}^{\infty} \ln\left[1 + \eta_1(\xi)\right] \frac{\ln[1 + \eta_1(\xi)]}{\cosh[\xi + \ln(T/T_K)]} d\xi,$$ \hspace{1cm} (2.17)

where $\eta_1(\xi)$ is determined by the TBA equations:

$$\ln \eta_1(\xi) = -2re^\xi + G \ln[1 + \eta_2(\xi)],$$ \hspace{1cm} (2.18)

$$\ln \eta_2(\xi) = -e^\xi + G \ln[1 + \eta_1(\xi)] + G \ln[1 + \eta_3(\xi)],$$ \hspace{1cm} (2.19)

$$\ln \eta_j(\xi) = G \ln[1 + \eta_{j-1}(\xi)] + G \ln[1 + \eta_{j+1}(\xi)], \quad j \geq 3,$$ \hspace{1cm} (2.20)

with a boundary condition

$$\lim_{j \to \infty} \frac{\ln \eta_j(\xi)}{j} = \frac{2h}{T}.$$

Here $G \varphi(\xi) \equiv \int_{-\infty}^{\infty} G(\xi - \xi') \varphi(\xi') d\xi'$ and $G(\xi - \xi') \equiv 1/2\pi \cosh(\xi - \xi')$. For $T \ll T_K$, the impurity free energy, eq. (2.17), is determined by the $\xi \to +\infty$ asymptotic form of η_1. In the limit of $\xi \to +\infty$, η_j is given by

$$\eta_j(+\infty) = \frac{\sinh^2((j - 1)h/T)}{\sinh^2(h/T)} - 1, \quad j \geq 2.$$

Firstly, we consider the case of $T \ll h \ll T_K$. By eq. (2.22), $\eta_3(+\infty) \approx \exp(2h/T)$ and its corrections due to ξ dependence can be neglected, so that eq. (2.19) leads to

$$\ln \eta_2(\xi) = -e^\xi + h/T + f(r, e^{-\xi}, h/T),$$ \hspace{1cm} (2.23)

where f is defined by eq. (1.2). In eq. (2.23), the last term can be seen to compare negligibly with h/T if we note that this term is $\sim F_{\text{imp}}(T)/T$ in a region around $\xi \sim \ln(T_K/T)$. Then, after some manipulations of eqs. (2.17), (2.18) and (2.23), we obtain

$$F_{\text{imp}}(T) \sim -\frac{T}{2\pi} \int_{-\infty}^{\infty} \ln[1 + \exp(-(h/T)\varepsilon(\zeta))] \frac{\ln[1 + \exp(-(h/T)\varepsilon(\zeta))]}{\cosh[\zeta + \ln(h/T_K)]} d\zeta,$$ \hspace{1cm} (2.24)

where $\varepsilon(\zeta)$ is given by

$$\varepsilon(\zeta) = e^\zeta \left(2r + \frac{1}{2\pi} \ln \left(1 + e^{-2\zeta}\right) - \frac{1}{\pi} e^{-\zeta} \tan^{-1} \left(e^{-\zeta}\right)\right),$$ \hspace{1cm} (2.25)

$$\sim e^\zeta \left(2r - e^{-2\zeta}/2\pi\right), \quad \text{for} \quad e^{-\zeta} \sim h/T_K \ll 1.$$ \hspace{1cm} (2.26)

The integral in eq. (2.24) has dominant contributions from a region around $\zeta \sim \ln(T_K/h)$. When $r \gg (h/T_K)^2$, the second term can be neglected in eq. (2.26) so that the impurity free energy can
be written in the following scaling form:

\[F_{\text{imp}}(T) = -T \tilde{f}(T/T_x), \]

(2.27)

where the crossover temperature is given by \(T_x = r T_K \) and \(\tilde{f} \) is a scaling function in the crossover regime;

\[
\tilde{f}(x) = \int_{-\infty}^{\infty} \frac{\ln[1 + \exp(-2\exp(\xi))]}{2\pi \cosh[\xi + \ln(x)]} d\xi
\]

(2.28)

\[
= \frac{1}{\pi x} \ln \frac{1}{\pi x} - \frac{1}{\pi x} - \ln \Gamma \left(\frac{1}{\pi x} + \frac{1}{2} \right) + \frac{1}{2} \ln 2 \pi,
\]

(2.29)

where \(\Gamma \) is the gamma function. Then, the impurity entropy, \(S_{\text{imp}} = -\partial F_{\text{imp}}/\partial T \), is calculated as

\[
S_{\text{imp}}(T) = \frac{1}{\pi(T/T_x)} \psi \left(\frac{1}{\pi(T/T_x)} + \frac{1}{2} \right) - \frac{1}{\pi(T/T_x)}
\]

\[- \ln \Gamma \left(\frac{1}{\pi(T/T_x)} + \frac{1}{2} \right) + \frac{1}{2} \ln 2 \pi,
\]

(2.30)

where \(\psi \) is the digamma function. On the other hand, when \(r \ll (h/T_K)^2 \), the first term can be neglected in eq. (2.26). In this case, if the crossover temperature is regarded as \(T_x = h^2/4\pi T_K \), \(T \)-dependent contributions in the impurity free energy is given by \(-T \tilde{f}(T/T_x)\) and therefore eq. (2.30) is also available for the entropy.

Secondly, we consider the case of \(h \ll T \ll T_K \). By eqs. (2.19) and (2.22), \(\ln \eta_2(\xi) \sim -e^{-\xi} \) so that \(\ln \eta_1(\xi) \sim -2re^{\xi} \). Hence eq. (2.30) is available by \(T_x = r T_K \). It is noted that if \(r \ll (h/T_K)^2 \), \(T_x = r T_K \ll h \ll T \) so that the entropy is \(\sim \ln \sqrt{2} \), which is not sensitive to the value of \(T_x \).

In summary, a scaling function for entropy in the crossover regime is given by eq. (2.30) where \(T_x = r T_K \) for \(r \gg (h/T_K)^2 \) and \(T_x = h^2/4\pi T_K \) for \(r \ll (h/T_K)^2 \). For eq. (2.30), \(S_{\text{imp}}(T_x) = 0.99 \times 1/4 \cdot \ln 2 \) so that \(T_x \) is about the same as we defined in the former subsection. (We must apologize for the normalization schemes on \(T_K \) which are different between the former and this subsections.)

Second, we compare our NRG results on entropy with eq. (2.30). Figures 6 and 7 present the results on entropy versus temperature scaled by \(T_x \), expressions of which are eq. (2.11) and eq. (2.15), in the anisotropic channel case and in the presence of a magnetic field, respectively. In both cases, the \(T \) dependence of entropy can be fitted quite well in the crossover regime by the scaling function, eq. (2.30), derived from the TBA equations.

§3. Two-Impurity Kondo Model

3.1 Model

In this section, we study the two-impurity Kondo model whose Hamiltonian is given by two independent Kondo models coupled by interimpurity exchange interaction \((K) \) as follows:

\[H = H_K + H'_I + H_L, \]

(3.1)
Fig. 6. Temperature dependences of entropy obtained by the NRG method for the anisotropic two-channel Kondo model. In the crossover regime, by use of an expression of T_x, eq. (2.11), they can be fitted quite well by a scaling function, eq. (2.30) derived from the TBA equations.

$$T_x = 2.95 \times (\Delta J / J_{av})^2 e^{(1/\Delta J)}$$

two-channel Kondo model

Fig. 7. Temperature dependence of entropy obtained by the NRG method for the two-cannel Kondo model in the presence of a magnetic field. In the crossover regime, by use of an expression of T_x, eq. (2.15), they can be fitted quite well by a scaling function, eq. (2.30) derived from the TBA equations.

$$T_x = 4.45 \times h^2 / T_K$$

two-channel Kondo model
\[H_K = \sum_{m=1,2} \sum_{k,\sigma} \epsilon_{km}\sigma c^\dagger_{km\sigma} c_{km\sigma}, \]
(3.2)
Fig. 8. Temperature dependence of entropy for the two-impurity Kondo model when K is displaced slightly away from K_c. $K_c=0.564723$ for $J_1=J_2=0.4$. $K_c=2.655538$ for $J_1=J_2=0.7$. The temperature is scaled by T_x, which is determined by eqs. (3.5) and (3.6).

Fig. 9. Crossover behavior for the two-impurity Kondo model ($J_1=0.3$, $J_2=0.297$, and $K=K_c=0.195416$), compared with the case of the anisotropic two-channel Kondo model with $J_1=0.3$ and $J_2=0.297$.
§4. Summary

In this paper, we have investigated effects of relevant perturbations, which bring about crossover from the NFL to FL regime, in the regions around quantum critical points of the two-channel and two-impurity Kondo models.

For the two-channel Kondo model in which T_K is defined by $T_K \propto \lim_{\omega \rightarrow 0} \lim_{T \rightarrow 0} [\text{Im} \chi(\omega)]^{-1}$ (in the weak-coupling regime, $T_K \approx J_{av} e^{-1/J_{av}}$), we have derived numerically exact expressions of the crossover temperature T_x from our NRG results on the entropy as follows: (1) in the anisotropic channel case, if $T_x/T_K \ll 1$ (in the weak-coupling regime, $\Delta J^2/J_{av}^3 \ll 1$), crossover from the NFL to FL regime occurs around T_x which is given by $T_x = \alpha \times (\Delta J/\tilde{J}_{av})^2 e^{-1/\tilde{J}_{av}}$ with $\alpha = 2.95$, where J_{av} and ΔJ are the average and difference of the exchange couplings J_1 and J_2, respectively (a swung dash means $A \Lambda$ times, $A \Lambda$ being a revision factor of the order of 1); (2) in the presence of a magnetic field, if $(\hbar/T_K)^2 \ll 1$, crossover from the NFL to FL regime occurs around T_x which is given by $T_x = \beta \times \hbar^2/T_K$, where $\beta = 4.45$ in our normalization procedure on T_K.

For the two-impurity Kondo model which has a NFL critical point at $K = K_c(J_1, J_2)$ for a set of the Kondo exchange couplings J_1 and J_2, we have obtained NRG results on the entropy in the region around critical points of $K = K_c(J, J)$ as follows: (1) when J_2 is displaced slightly away from $J_2 = J$ with $J_1 = J$ and $K = K_c(J, J)$ fixed, crossover to a FL fixed point occurs around T_x which is given by that of the two-channel Kondo model with the same set of J_1 and J_2 in the absence of a magnetic field; (2) when interimpurity (RKKY) exchange coupling K is displaced slightly away from the critical value of $K_c(J, J)$ with $J_1 = J_2 = J$ fixed, crossover to a FL fixed point occurs around T_x which is given by $T_x = \gamma \times (K_c - K)^2/T_K$ with $\gamma = 0.50$ where $T_K \equiv \lim_{\omega \rightarrow 0} \lim_{T \rightarrow 0} \text{Im} \chi_s(\omega)$.

In the present work, all the results on T_x can be adopted in a wide region of $J (J_{av})$ and all the temperature dependences of entropy in the crossover regime can be fitted quite well by a scaling function, eq. (2.30), derived from the TBA equations of the two-channel Kondo model with channel anisotropy and in the presence of a magnetic field. It is emphasized that the NFL behavior in the two channel Kondo model is fairly robust against channel anisotropy so that crossover from the NFL to FL regime can be seen even if $\Delta J > T_K$.

Acknowledgments

We wish to thank C. M. Varma for valuable advice. We also would like to thank I. Affleck, D. L. Cox, H. Kohno, H. Kusunose and K. Miyake for helpful comments. H. M. is supported by Research Fellowship of Japan Society for the Promotion of Science for Young Scientists. This work is supported in part by the Grant-in-Aid for COE Research (10CE2004) of the Ministry of Education, Science, Sports and Culture.

1) P. Nozières and A. Blandin: J. Phys. (Paris) 41 (1980) 193.
2) D. L. Cox: Phys. Rev. Lett. 59 (1987) 1240.
