HADAMARD GAP SERIES IN WEIGHTED-TYPE SPACES ON THE UNIT BALL

BINGYANG HU AND SONGXIAO LI

Abstract. We give a sufficient and necessary condition for an analytic function \(f(z) \) on the unit ball \(\mathbb{B} \) in \(\mathbb{C}^n \) with Hadamard gaps, that is, for \(f(z) = \sum_{k=1}^{\infty} P_{n_k}(z) \) where \(P_{n_k}(z) \) is a homogeneous polynomial of degree \(n_k \) and \(n_k+1/n_k \geq c > 1 \) for all \(k \in \mathbb{N} \), to belong to the weighted-type space \(H^\infty_\mu \) and the corresponding little weighted-type space \(H^\infty_{\mu,0} \), under some condition posed on the weighted function \(\mu \). We also study the growth rate of those functions in \(H^\infty_\mu \). Finally, we characterize the boundedness and compactness of weighted composition operator from weighted-type space \(H^\infty_\mu \) to mixed norm spaces.

1. Introduction

Let \(\mathbb{B} \) be the open unit ball in \(\mathbb{C}^n \) with \(\mathbb{S} \) as its boundary and \(H(\mathbb{B}) \) the collection of all holomorphic functions in \(\mathbb{B} \). \(H^\infty(\mathbb{B}) \) denotes the Banach space consisting of all bounded holomorphic functions in \(\mathbb{B} \) with the norm \(\|f\|_\infty = \sup_{z \in \mathbb{B}} |f(z)| \).

A positive continuous function \(\mu \) on \([0,1)\) is called normal if there exists positive numbers \(\alpha \) and \(\beta \), \(0 < \alpha < \beta \), and \(\delta \in (0,1) \) such that (see, e.g., [9])

\[
\frac{\mu(r)}{(1-r)^\alpha} \text{ is decreasing on } [\delta, 1), \quad \lim_{r \to 1^-} \frac{\mu(r)}{(1-r)^\alpha} = 0,
\]

\[
\frac{\mu(r)}{(1-r)^\beta} \text{ is increasing on } [\delta, 1), \quad \lim_{r \to 1^-} \frac{\mu(r)}{(1-r)^\beta} = \infty.
\]

Note that a normal function \(\mu : [0,1) \to [0,\infty) \) is decreasing in a neighborhood of 1 and satisfies \(\lim_{r \to 1^-} \mu(r) = 0 \).

Date: September 1, 2015.

2010 Mathematics Subject Classification. 32A05, 32A37, 47B33.

Key words and phrases. Weighted-type space, Hadamard gaps, weighted composition operator, mixed norm space.
An \(f \in H(B) \) is said to belong to the weighted-type space, denoted by \(H^\infty_\mu = H^\infty_\mu(B) \) if
\[
\| f \| = \sup_{z \in B} \mu(|z|)|f(z)| < \infty,
\]
where \(\mu \) is normal on \([0, 1)\) (see, e.g. [11]). It is well-known that \(H^\infty_\mu \) is a Banach space with the norm \(\| \cdot \| \).

The little weighted-type space, denoted by \(H^{\infty,0}_\mu \), is the closed subspace of \(H^\infty_\mu \) consisting of those \(f \in H^\infty_\mu \) such that
\[
\lim_{|z| \to 1^-} \mu(|z|)|f(z)| = 0.
\]
When \(\mu(|z|) = (1 - |z|^2)^\alpha, \alpha > 0 \), the induced spaces \(H^\infty_\mu \) and \(H^{\infty,0}_\mu \) become the Bers-type space and little Bers-type space respectively.

Let \(\phi \) be a normal function on \([0, 1)\). For \(0 < p, q < \infty \), the mixed-norm space \(H^{(p,q,\phi)}(B) = H^{(p,q,\phi)}(B) \) is the space consisting of all \(f \in H(B) \) such that
\[
\| f \|_{H^{(p,q,\phi)}} = \left(\int_0^1 M_q^p(f, r) \frac{\phi^p(r)}{1 - r} dr \right)^{1/p} < \infty,
\]
where
\[
M_q(f, r) = \left(\int_S |f(r\zeta)|^q d\sigma(\zeta) \right)^{1/q},
\]
and \(\sigma \) is the normalized area measure on \(S \).

Let \(\varphi \) be a holomorphic self-map of \(B \) and \(u \in H(B) \). For \(f \in H(B) \), the \text{weighted composition operator} \(uC_{\varphi} \) is defined by
\[
(uC_{\varphi}f)(z) = u(z)f(\varphi(z)), \quad z \in B.
\]
The weighted composition operator can be regarded as a generalization of the \text{multiplication operator} and the \text{composition operator}, which are defined by \(M_u(f) = (uf)(z) \) and \((C_{\varphi}f)(z) = f(\varphi(z)) \), respectively. See [4] for more information on this topic.

We say that an \(f \in H(B) \) has the \text{Hadamard gaps} if
\[
f(z) = \sum_{k=0}^{\infty} P_{n_k}(z),
\]
where \(P_{n_k} \) is a homogeneous polynomial of degree \(n_k \) and there exists some \(c > 1 \) (see, e.g., [10]),
\[
\frac{n_{k+1}}{n_k} \geq c, \; \forall k \geq 0.
\]

Hadamard gap series on spaces of holomorphic functions in the unit disc \(D \) or in the unit ball \(B \) has been studied quite well. We refer the
readers to the related results in [2, 5, 6, 10, 11, 13, 14, 15, 16, 17] and the reference therein.

In [15], the authors studied the Hadamard gap series and the growth rate of the functions in \(H^\infty_\mu \) in the unit disk. Motivated by [15], the aim of this paper is to study the Hadamard gap series in \(H^\infty_\mu \), as well as its little space \(H^\infty_{\mu,0} \) on the unit ball. Moreover, as an application of our main result, we characterize the growth rate of those functions in \(H^\infty_\mu \). Finally, we give some sufficient and necessary conditions for the boundedness and compactness of weighted composition operators from weighted-type space \(H^\infty_\mu \) to mixed norm spaces.

Throughout this paper, for \(a, b \in \mathbb{R} \), \(a \lesssim b \) (\(a \gtrsim b \), respectively) means there exists a positive number \(C \), which is independent of \(a \) and \(b \), such that \(a \leq Cb \) (\(a \geq Cb \), respectively). Moreover, if both \(a \lesssim b \) and \(a \gtrsim b \) hold, then we say \(a \simeq b \).

2. Hadamard gap series in \(H^\infty_\mu \) and \(H^\infty_{\mu,0} \)

Let \(f(z) = \sum_{k=0}^{\infty} P_k(z) \) be a holomorphic function in \(\mathbb{B} \), where \(P_k(z) \) is a homogeneous polynomial with degree \(k \). For \(k \geq 0 \), we denote

\[
M_k = \sup_{\xi \in \mathbb{S}} |P_k(\xi)|.
\]

We have the following estimations on \(M_k \) of a holomorphic function \(f \in H^\infty_\mu \) (or \(f \in H^\infty_{\mu,0} \), respectively).

Theorem 2.1. Let \(\mu \) be a normal function on \([0,1)\). Let \(f(z) = \sum_{k=0}^{\infty} P_k(z), z \in \mathbb{B} \). Then the following statements hold.

1. If \(f \in H^\infty_\mu \), then \(\sup_{k \geq 0} M_k \mu (1 - \frac{1}{k}) < \infty \).
2. If \(f \in H^\infty_{\mu,0} \), then \(\lim_{k \to \infty} M_k \mu (1 - \frac{1}{k}) = 0 \).

Proof. (1). Suppose \(f \in H^\infty_\mu \). Fix a \(\xi \in \mathbb{S} \) and denote

\[
f_\xi(w) = \sum_{k=0}^{\infty} P_k(\xi) w^k = \sum_{k=0}^{\infty} P_k(\xi w), \ w \in \mathbb{D}.
\]

Since \(f \in H(\mathbb{B}) \), it is known that for a fixed \(\xi \in \mathbb{S} \), \(f_\xi(w) \) is holomorphic in \(\mathbb{D} \) (see, e.g., [7]). Hence, for any \(r \in (0,1) \), we have
\begin{align}
M_k &= \sup_{\xi \in \mathbb{S}} |P_k(\xi)| = \sup_{\xi \in \mathbb{S}} \left| \frac{1}{2\pi i} \int_{|w|=r} \frac{f(\xi w)}{w^{k+1}} \, dw \right| \\
&= \frac{1}{2\pi} \sup_{\xi \in \mathbb{S}} \left| \int_{|w|=r} \frac{f(\xi w)}{r^{k+1}} \, dw \right| \\
&\leq \frac{1}{2\pi} \sup_{\xi \in \mathbb{S}} \int_{|w|=r} \frac{|f(\xi w)|}{r^{k+1}} \, dw \\
&= \frac{1}{2\pi} \sup_{\xi \in \mathbb{S}} \int_{|w|=r} \frac{|f(\xi w)| \mu(|\xi w|)}{r^{k+1} \mu(r)} \, dw \\
&\leq \frac{\|f\|}{r^k \mu(r)}.
\end{align}

In (2.1), letting \(r = 1 - \frac{1}{k}, k \geq 2, k \in \mathbb{N} \), we have

\[M_k \leq \frac{\|f\|}{(1 - \frac{1}{k})^k \mu(1 - \frac{1}{k})}. \]

Thus, for each \(k \geq 2 \),

\[M_k \mu \left(1 - \frac{1}{k}\right) \leq \frac{\|f\|}{(1 - \frac{1}{k})^k} \leq 4\|f\|, \]

which implies that

\[\sup_{k \geq 1} M_k \mu \left(1 - \frac{1}{k}\right) \leq \max \{\mu(0), 4\|f\|\} < \infty. \]

(2). Suppose \(f \in H^\infty_{\mu,0} \), that is, for any \(\varepsilon > 0 \), there exists a \(\delta \in (0, 1) \), when \(\delta < |z| < 1 \),

\[\mu(|z|)|f(z)| < \varepsilon. \]

Take \(N_0 \in \mathbb{N} \) satisfying \(\delta < 1 - \frac{1}{k} < 1 \) when \(k > N_0 \). Then for any \(k > N_0 \) and \(r = 1 - \frac{1}{k} \), as the proof in the previous part, we have

\[M_k \leq \frac{1}{(1 - \frac{1}{k})^k \mu(1 - \frac{1}{k})} \cdot \sup_{\delta < |z| < 1} \mu(|z|)|f(z)| < \frac{\varepsilon}{(1 - \frac{1}{k})^k \mu(1 - \frac{1}{k})}, \]

which implies

\[M_k \mu \left(1 - \frac{1}{k}\right) \leq \frac{\varepsilon}{(1 - \frac{1}{k})^k} \leq 4\varepsilon, \quad k > N_0. \]

Hence we have \(\lim_{k \to \infty} M_k \mu \left(1 - \frac{1}{k}\right) = 0. \) \qed
Theorem 2.2. Let μ be a normal function on $[0,1)$. Let $f(z) = \sum_{k=0}^{\infty} P_{n_k}(z)$ with Hadamard gaps, where P_{n_k} is a homogeneous polynomial of degree n_k. Then the following assertions hold.

1. $f \in H^\infty_\mu$ if and only if $\sup_{k \geq 1} \mu \left(1 - \frac{1}{n_k} \right) M_{n_k} < \infty$.
2. $f \in H^\infty_{\mu,0}$ if and only if $\lim_{k \to \infty} \mu \left(1 - \frac{1}{n_k} \right) M_{n_k} = 0$.

Proof. By Theorem 2.1, it suffices to show the sufficiency of both statements.

1. Noting that $|f(z)| = \left| \sum_{k=0}^{\infty} P_{n_k} \left(\frac{z}{|z|} \right) \right| \leq \sum_{k=0}^{\infty} M_{n_k} |z|^{n_k} \leq \sum_{k=0}^{\infty} \mu \left(1 - \frac{1}{n_k} \right) |z|^{n_k}$, from the proof of [15, Theorem 2.3], we have

$$\frac{|f(z)|}{1 - |z|} \lesssim \sum_{m=1}^{\infty} \left(\sum_{n_k \leq m} \frac{1}{\mu \left(1 - \frac{1}{n_k} \right)} \right) |z|^m \lesssim \sum_{m=1}^{\infty} \frac{|z|^m}{\mu \left(1 - \frac{1}{m} \right)} \lesssim \frac{1}{(1 - |z|)\mu(|z|)}$$

which implies $f \in H^\infty_\mu$, as desired.

2. Since $\lim_{k \to \infty} \mu \left(1 - \frac{1}{n_k} \right) M_{n_k} = 0$, we have $\sup_{k \geq 1} \mu \left(1 - \frac{1}{n_k} \right) M_{n_k} < \infty$. Hence by part (1), we have $f \in H^\infty_\mu$. For any $\varepsilon > 0$, there exists a $N_0 \in \mathbb{N}$ satisfying when $m > N_0$,

$$M_{n_m} \mu \left(1 - \frac{1}{n_m} \right) < \varepsilon.$$

For each $m \in \mathbb{N}$, put $f_m(z) = \sum_{k=0}^{m} P_{n_k}(z)$. Note that

$$\mu(|z| |f_m(z)|) \leq \mu(|z|) \left(\sum_{k=0}^{m} |P_{n_k}(z)| \right) \leq \mu(|z|) \sum_{k=0}^{m} \left| P_{n_k} \left(\frac{z}{|z|} \right) |z|^{n_k} \right| \leq K_m \mu(|z|) \sum_{k=0}^{m} |z|^{n_k} \leq mK_m \mu(|z|),$$
where \(K_m = \max\{M_{n_0}, M_{n_1}, M_{n_2}, \ldots, M_{n_m}\} \). Noting that \(\lim_{|z| \to 1^-} \mu(|z|) = 0 \), we have \(\lim_{|z| \to 1^-} \mu(|z|)|f_m(z)| = 0 \), which implies for each \(m \in \mathbb{N} \), \(f_m \in H^\infty_{\mu, 0} \). Hence it suffices to show that \(\| f_m - f \| \to 0 \) as \(m \to \infty \).

Indeed, for \(m > N_0 \), we have

\[
|f_m(z) - f(z)| = \left| \sum_{k=m+1}^{\infty} P_{n_k}(z) \right| \leq \sum_{k=m+1}^{\infty} M_{n_k} |z|^{n_k} \leq \sum_{k=m+1}^{\infty} \frac{|z|^{n_k}}{\mu \left(1 - \frac{1}{n_k} \right)}.
\]

From this, the result easily follows from the proof of part (1).

\[\Box\]

3. Growth rate

As an application of Theorem 2.2 in this section, we show the following result.

Theorem 3.1. Let \(\mu \) be a normal function on \([0, 1)\). Then there exists a positive integer \(M = M(n) \) with the following property: there exists \(f_i \in H^\infty_{\mu}, 1 \leq i \leq M \), such that

\[
\sum_{i=1}^{M} |f_i(z)| \gtrsim \frac{1}{\mu(|z|)}, \quad z \in \mathbb{B}.
\]

Note that the result in [15, Theorem 2.5] in the unit disc is a particular case of Theorem 3.1 when \(n = 1 \).

Remark 3.2. We observe that \(M \) cannot be 1. Indeed, assume that there exists a \(f \in H^\infty_{\mu} \), such that

\[
|f(z)| \gtrsim \frac{1}{\mu(|z|)}, \quad z \in \mathbb{B}.
\]

It implies that \(f(z) \) has no zero in \(\mathbb{B} \), and it follows that there exists \(g \in H(\mathbb{B}) \), such that \(f = e^g \). Thus,

\[
|f(z)| = |e^{g(z)}| = e^{\text{Re} g(z)},
\]

which implies that \(e^{\text{Re} g(z)} \gtrsim \frac{1}{\mu(|z|)} \) and hence \(\text{Re} g(z) \gtrsim \log \frac{1}{\mu(|z|)} \). For each \(r \in (0, 1) \), integrating on both sides of the above inequality on \(r\mathbb{S} = \{z \in \mathbb{B}, |z| = r\} \), we have

\[
\int_{r\mathbb{S}} \text{Re} g(z) d\sigma \gtrsim \int_{r\mathbb{S}} \log \left(\frac{1}{\mu(|z|)} \right) d\sigma = \log \left(\frac{1}{\mu(r)} \right) \cdot \sigma(r\mathbb{S}).
\]

By the mean value property, we have \(\text{Re} g(0) \gtrsim \log \left(\frac{1}{\mu(r)} \right), \forall r \in (0, 1) \), which is impossible.
Before we formulate the proof of our main result, we need some preliminary results. In the sequel, for $\xi, \zeta \in S$, denote
\[
d(\xi, \zeta) = (1 - |\langle \xi, \zeta \rangle|^2)^{1/2}.
\]
Then d satisfies the triangle inequality (see, e.g., [1]). Moreover, we write $E_\delta(\zeta)$ for the d-ball with radius $\delta \in (0, 1)$ and center at $\zeta \in S$:
\[
E_\delta(\zeta) = \{ \xi \in S : d(\xi, \zeta) < \delta \}.
\]
We say that a subset Γ of S is d-separated by $\delta > 0$, if d-balls with radius δ and center at points of Γ are pairwise disjoint.

We begin with several lemmas, which play important role in the proof of our main result.

Lemma 3.3. [3, 12] For each $a > 0$, there exists a positive integer $M = M_n(a)$ with the following property: if $\delta > 0$, and if $\Gamma \subset S$ is d-separated by $a\delta$, then Γ can be decomposed into $\Gamma = \bigcup_{j=1}^M \Gamma_j$ in such a way that each Γ_j is d-separated by δ.

Lemma 3.4. [3, Lemma 2.3] Suppose that $\Gamma \subset S$ is d-separated by δ and let k be a positive integer. If
\[
P(z) = \sum_{\zeta \in \Gamma} \langle z, \zeta \rangle^k, \quad z \in \mathbb{B},
\]
then
\[
|P(z)| \leq 1 + \sum_{m=1}^\infty (m + 2)^{2n-2} e^{-m^2 \delta^2 k/2}.
\]

Proof of Theorem 3.1. We will prove the theorem by constructing $f_i \in H^\infty_\mu$ satisfying the given property only near the boundary (then, by adding a proper constant, one obtains the given property on all of the unit ball). Since μ is normal, by the definition of normal function, there exists positive numbers α, β with $0 < \alpha < \beta$, and $\delta \in (0, 1)$ satisfy (1.1). Take and fix some small positive number $A < 1$ such that
\[
\sum_{m=0}^\infty (m + 2)^{2n-2} e^{-m^2 \frac{\alpha^2}{2A^2}} \leq \frac{1}{27}.
\]
Let $M = M_n \left(\frac{A}{2} \right)$ be a positive integer provided by Lemma 3.3 with $A/2$ in place of a. Let p be a sufficiently large positive integer so that
\[
1 - \frac{1}{p} \geq \delta,
\]
For each positive integer $j \leq M$, set $\delta_{j,0}$ such that
\[
(3.6) \quad A^2 p^j \delta^2_{j,0} = 1
\]
and inductively choose $\delta_{j,v}$ such that
\[
(3.7) \quad p^M \delta^2_{j,v} = \delta^2_{j,v-1}, \quad v = 1, 2, \ldots
\]
From (3.6) and (3.7), we get
\[
(3.8) \quad A^2 p^{vM+j} \delta^2_{j,v} = 1.
\]
For each fixed j and v, let $\Gamma_{j,v}$ be a maximal subset of S subject to the condition that $\Gamma_{j,v}$ is d-separated by $A\delta_{j,v}/2$. Then by Lemma 3.3
write
\[
(3.9) \quad \Gamma_{j,v} = \bigcup_{l=1}^{M} \Gamma_{j,vM+l}
\]
in such a way that each $\Gamma_{j,vM+l}$ is d-separated by $\delta_{j,v}$.
For each $i, j = 1, 2, \ldots, M$ and $v \geq 0$, set
\[
P_{i,vM+j}(z) = \sum_{\xi \in \Gamma_{j,vM+\tau^i(j)}} \langle z, \xi \rangle p^{vM+j},
\]
where τ^i is the ith iteration of the permutation τ on $\{1, 2, \ldots, M\}$ defined by
\[
\tau(j) = \begin{cases} j+1, & j < M; \\ 1, & j = M. \end{cases}
\]
By (3.8), Lemma 3.4 and (3.1), we get that
\[
(3.10) \quad |P_{i,vM+j}(z)| \leq 1 + \sum_{m=1}^{\infty} (m + 2)^{2n-2} e^{-m^2 \delta^2_{j,v} p^{vM+j}/2} \leq 1 + \sum_{m=1}^{\infty} (m + 2)^{2n-2} e^{-\frac{m^2}{2\lambda^2}} \leq 2, \quad z \in \mathbb{B},
\]
for all $i, j = 1, 2, \ldots, M$ and $v \geq 0$.

Define

\[g_{i,j}(z) = \sum_{v=0}^{\infty} \frac{P_{i,vM+j}(z)}{\mu \left(1 - \frac{1}{p^{vM+j}} \right)}, \quad z \in \mathbb{B}. \]

By Theorem 2.2, it is clear that for each \(i, j \in \{1, 2, \ldots, M\} \), \(g_{i,j} \in H^\infty \).

We will show that for every \(v \geq 0, 1 \leq j \leq M \) and \(z \in \mathbb{B} \) with that

(3.11) \[1 - \frac{1}{p^{vM+j}} \leq |z| \leq 1 - \frac{1}{p^{vM+j} + \frac{1}{2}}, \]

there exists an \(i \in \{1, 2, \ldots, M\} \) such that

\[|g_{i,j}(z)| \geq \frac{C}{\mu(|z|)}, \]

where \(C \) is some constant independent of the choice of \(i, j \) and \(z \).

Fix \(v, j \) and \(z \) for which (3.11) holds. Let \(z = |z|\eta \) where \(\eta \in \mathbb{S} \).

Since \(d \)-balls with radius \(A\delta_{j,v} \) and centers at points of \(\Gamma^{j,v} \) cover \(\mathbb{S} \) by maximality, there exists some \(\zeta \in \Gamma^{j,v} \) such that

\[\eta \in E_{A\delta_{j,v}}(\zeta). \]

Note that \(\zeta \in \Gamma^{j,vM+l} \) for some \(1 \leq l \leq M \) by (3.9) and hence \(\zeta \in \Gamma^{j,vM+j+l}(j) \) for some \(1 \leq i \leq M \).

We now estimate \(|g_{i,j}(z)| \). By (3.10),

\[|g_{i,j}(z)| = \sum_{k=0}^{\infty} \frac{P_{i,kM+j}(z)}{\mu \left(1 - \frac{1}{p^{kM+j}} \right)} \geq \frac{P_{i,vM+j}(z)}{\mu \left(1 - \frac{1}{p^{vM+j}} \right)} - \sum_{k \neq v} \frac{P_{i,kM+j}(z)}{\mu \left(1 - \frac{1}{p^{kM+j}} \right)} \]

\[= \frac{|z|p^{vM+j}|P_{i,vM+j}(\eta)|}{\mu \left(1 - \frac{1}{p^{vM+j}} \right)} - \sum_{k \neq v} \frac{|z|p^{kM+j}P_{i,kM+j}(\eta)|}{\mu \left(1 - \frac{1}{p^{kM+j}} \right)} \geq \frac{|z|p^{vM+j}|P_{i,vM+j}(\eta)|}{\mu \left(1 - \frac{1}{p^{vM+j}} \right)} - 2 \sum_{k=0}^{v-1} \frac{|z|p^{kM+j}}{\mu \left(1 - \frac{1}{p^{kM+j}} \right)} \]

\[- 2 \sum_{k=v+1}^{\infty} \frac{|z|p^{kM+j}}{\mu \left(1 - \frac{1}{p^{kM+j}} \right)} = I_1 - I_2 - I_3, \]
where
\[I_1 = \frac{|z|^{p_{v+J}} |P_{i,v+J}(\eta)|}{\mu \left(1 - \frac{1}{p_{v+J}} \right)}, \quad I_2 = 2 \sum_{k=0}^{v-1} \frac{|z|^{p_{k+J}}}{\mu \left(1 - \frac{1}{p_{k+J}} \right)} \]
and
\[I_3 = 2 \sum_{k=v+1}^{\infty} \frac{|z|^{p_{k+J}}}{\mu \left(1 - \frac{1}{p_{k+J}} \right)} \].

Now we estimate \(I_1, I_2 \) and \(I_3 \) respectively.

- **Estimation of \(I_1 \).**

 By (3.3) and (3.11), we obtain
 \[|z|^{p_{v+J}} \geq \left(1 - \frac{1}{p_{v+J}} \right)^{p_{v+J}} \geq \frac{1}{3} \],
 and therefore
 \[I_1 \geq \frac{|P_{i,v+J}(\eta)|}{3\mu \left(1 - \frac{1}{p_{v+J}} \right)} \geq \frac{2}{27\mu \left(1 - \frac{1}{p_{v+J}} \right)}. \]

- **Estimation of \(I_2 \).**

 By the definition of normal function and (3.2), we have for each \(s \in \mathbb{N} \),
 \[\left(1 - \left(1 - \frac{1}{p_{s+J}} \right) \right)^{\alpha} \leq \frac{\mu \left(1 - \frac{1}{p_{s+J}} \right)}{\mu \left(1 - \frac{1}{p_{s+1}s+J} \right)} \leq \left(1 - \left(1 - \frac{1}{p_{s+1}s+J} \right) \right)^{\beta}, \]
 that is,
 \[\frac{\mu \left(1 - \frac{1}{p_{s+J}} \right)}{\mu \left(1 - \frac{1}{p_{s+1}s+J} \right)} \leq p_{s+J}^{M_{s+J}}. \]
Combining this with (3.4), we have

\[
I_2 \leq 2 \sum_{k=0}^{v-1} \frac{1}{\mu \left(1 - \frac{1}{p^{k+1}M^j} \right)}
\]

\[
= \frac{2}{\mu \left(1 - \frac{1}{p^{v}M^j} \right)} \sum_{k=0}^{v-1} \left[\mu \left(1 - \frac{1}{p^{k+1}M^j} \right) \mu \left(1 - \frac{1}{p^{(v-k)+1}M^j} \right) \right]
\]

\[
\times \mu \left(1 - \frac{1}{p^{(k+1)+1}M^j} \right)
\]

\[
\leq \frac{2}{\mu \left(1 - \frac{1}{p^{v}M^j} \right)} \sum_{k=0}^{v-1} \frac{1}{p^{vM(v-k)}
\]

\[
\leq \frac{2}{\mu \left(1 - \frac{1}{p^{v}M^j} \right)} \cdot \frac{1}{p^{vM} - 1}
\]

\[
\leq \frac{1}{100\mu \left(1 - \frac{1}{p^{v}M^j} \right)}.
\]

Estimation of \(I_3 \).

Noting that by (3.3) and (3.11), we have

\[
(3.13) \quad |z|^p_{M+j} \leq \left(1 - \frac{1}{p^{vM+j+\frac{1}{2}}} \right)^{p^{vM+j+\frac{1}{2}}p^{-\frac{1}{2}}} \leq \left(\frac{1}{2}\right)^{p^{-\frac{1}{2}}}.
\]

Hence, by (3.5), (3.12) and (3.13), we have

\[
I_3 = \frac{2|z|^p_{M+j}}{\mu \left(1 - \frac{1}{p^{v}M^j} \right)} \cdot \sum_{k=v+1}^{\infty} \left[\mu \left(1 - \frac{1}{p^{kM+j}} \right) \mu \left(1 - \frac{1}{p^{vM+j}} \right) \mu \left(1 - \frac{1}{p^{(v-k)+1}M^j} \right) \mu \left(1 - \frac{1}{p^{(k+1)+1}M^j} \right) \right]
\]

\[
\times \mu \left(1 - \frac{1}{p^{(k+1)+1}M^j} \right)
\]

\[
\leq \frac{2|z|^p_{M+j}}{\mu \left(1 - \frac{1}{p^{v}M^j} \right)} \cdot \sum_{k=v+1}^{\infty} \left[p^{(3M)(k-v)} \left(p^{kM+j} - p^{(v+1)M+j} \right) \right]
\]
\[|g_{i,j}(z)| \geq I_1 - I_2 - I_3 \geq \frac{1}{\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} \left(\frac{2}{27} - \frac{1}{100} - \frac{1}{100} \right) \]

\[
\geq \frac{1}{20\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} = \frac{1}{20\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} \cdot \frac{\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)}{\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} \cdot \frac{1}{20\mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} \\
\geq \frac{1}{20p^{\frac{v}{2}} \mu \left(1 - \frac{1}{p^{v+1}M+1}\right)} \geq \frac{1}{20p^{\frac{v}{2}} \mu (|z|)}.
\]

In summary, we have

\[\sum_{i=1}^{M} \sum_{j=1}^{M} |g_{i,j}(z)| \geq \frac{1}{20p^{\frac{v}{2}} \mu (|z|)}, \quad (3.14) \]
for all z such that $1 - \frac{1}{p^k} \leq |z| \leq 1 - \frac{1}{p^{k+\frac{1}{2}}}, k = 1, 2, \ldots$.

Next, pick a sequence of positive integers q_k such that $0 \leq q_k - p^{k+\frac{1}{2}} < 1$ and for each $1 \leq j \leq M$, a sequence of positive numbers $\varepsilon_{j,v}$ such that $A^2 q_{vM+j} \varepsilon_{j,v}^2 = 1$.

Choose a sequence of subsets $\Psi_{j,v}$ of S with the following property: for each nonnegative integer v, the set $\bigcup_{l=1}^M \Psi_{j,vM+l}$ is a maximal subset of S which is d-separated by $A\varepsilon_{j,v}/2$, and each $\Psi_{j,vM+l}$ is d-separated by $\varepsilon_{j,v}$.

For each $i, j = 1, 2, \ldots, M$ and $v \geq 0$, set

$$Q_{i,vM+j}(z) = \sum_{\xi \in \Psi_{j,vM+i(j)}} \langle z, \xi \rangle^{q_{vM+j}}$$

and define

$$h_{i,j}(z) = \sum_{v=0}^{\infty} \frac{Q_{i,vM+j}(z)}{\mu \left(1 - \frac{1}{q_{vM+j}} \right)}.$$

Then $h_{i,j}$ is in the Hadamard gap since for each $v \geq 0$,

$$\frac{q_{vM+j}}{q_{(v-1)M+j}} \geq \frac{p^{vM+j+\frac{1}{2}}}{p^{(v-1)M+j+\frac{1}{2}} + 1} \geq \frac{p^{M}}{2} > 1.$$

Moreover, the homogeneous polynomials $Q_{i,vM+j}$ are uniformly bounded by 2 as before. Hence each $h_{i,j}$ belongs to H^∞_{μ} by Theorem 2.2 and an easy modification of the previous arguments yields for each $v \geq 0, 1 \leq j \leq M$ and $z \in \mathbb{B}$ satisfying

$$1 - \frac{1}{p^{vM+j+\frac{1}{2}}} \leq |z| \leq 1 - \frac{1}{p^{vM+j+1}}$$

there exists an index $i \in \{1, 2, \ldots, M\}$, such that

$$|h_{i,j}(z)| \geq \frac{C_p}{\mu(|z|)},$$

where $C_p > 0$.

Hence

$$\sum_{i=1}^M \sum_{j=1}^M |h_{i,j}(z)| \geq \frac{C_p}{\mu(|z|)},$$

for all z such that $1 - \frac{1}{p^{k+\frac{1}{2}}} \leq |z| \leq 1 - \frac{1}{p^{k+1}}, k = 1, 2, \ldots.$
Consequently, we finally have
\[\sum_{i=1}^{M} \sum_{j=1}^{M} (|g_{i,j}(z)| + |h_{i,j}(z)|) \geq \frac{C}{\mu(|z|)} \]
for all \(z \in \mathbb{B} \) sufficiently close to the boundary and for some constant \(C \). Therefore the proof is complete. \(\square \)

As a corollary, we get the following description of the growth rate on Bers-type space \(H^{\infty}_\alpha (\alpha > 0) \), by taking \(\mu(|z|) = (1 - |z|^2)^{\alpha} \) in Theorem 3.1.

Corollary 3.5. There exists some positive integer \(M \) and a sequence of functions \(f_i \in H^{\infty}_\alpha, 1 \leq i \leq M \), such that
\[\sum_{i=1}^{M} |f_i(z)| \gtrsim \frac{1}{(1 - |z|^2)^{\alpha}}, \quad z \in \mathbb{B}. \]

4. **Weighted composition operator** \(uC_\varphi : H^{\infty}_\mu \to H(p, q, \phi) \)

In this section, we will use Theorem 3.1 to characterize the boundedness and compactness of the operator \(uC_\varphi : H^{\infty}_\mu \to H(p, q, \phi) \). Our main result is the following.

Theorem 4.1. Let \(\varphi \) be a holomorphic self-map of \(\mathbb{B} \) and \(u \in H(\mathbb{B}) \). Suppose that \(0 < p, q < \infty \) and \(\mu, \phi \) are normal on \([0, 1)\). Then the following statements are equivalent:
(i) The operator \(uC_\varphi : H^{\infty}_\mu \to H(p, q, \phi) \) is bounded;
(ii) The operator \(uC_\varphi : H^{\infty}_\mu \to H(p, q, \phi) \) is compact;
(iii)
\[\int_{0}^{1} \left(\int_{\mathbb{S}} \frac{|u(r\xi)|^q}{\mu^q(|\varphi(r\xi)|)} d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} dr < \infty; \]
(iv)
\[\lim_{t \to 1} \int_{0}^{1} \left(\int_{|\varphi(r\xi)| > t} \frac{|u(r\xi)|^q}{\mu^q(|\varphi(r\xi)|)} d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} dr = 0. \]

Before proving Theorem 4.1, we need the following auxiliary result, which can be proved by standard arguments (see, e.g., Proposition 3.11 of [4]).

Lemma 4.1. Let \(\varphi \) be a holomorphic self-map of \(\mathbb{B} \) and \(u \in H(\mathbb{B}) \). Suppose that \(0 < p, q < \infty \) and \(\mu, \phi \) are normal on \([0, 1)\). Then \(uC_\varphi : \)
$H^\infty_\mu \rightarrow H(p,q,\phi)$ is compact if and only if $uC_\phi : H^\infty_\mu \rightarrow H(p,q,\phi)$ is bounded and for any bounded sequence $\{f_k\}_{k \in \mathbb{N}}$ in H^∞_μ which converges to zero uniformly on compact subsets of \mathbb{B} as $k \rightarrow \infty$, we have $\|uC_\phi f_k\|_{H(p,q,\phi)} \rightarrow 0$ as $k \rightarrow \infty$.

Lemma 4.2. [8] If $a > 0, b > 0$, then the following elementary inequality holds.

$$ (a + b)^p \leq \begin{cases} a^p + b^p, & p \in (0, 1) \\ 2^p(a^p + b^p), & p \geq 1 \end{cases} $$

It is obvious that Lemma 4.2 holds for the sum of finite terms, that is,

$$ (a_1 + \cdots + a_j)^p \leq C(a_1^p + \cdots + a_j^p) $$

where a_1, \ldots, a_j are nonnegative numbers, and C is a positive constant.

Proof of Theorem 4.1. (ii) \Rightarrow (i). It is obvious.

(i) \Rightarrow (iii). Suppose that $uC_\phi : H^\infty_\mu \rightarrow H(p,q,\phi)$ is bounded. From Theorem 3.1, we pick functions $f_1, \cdots, f_M \in H^\infty_\mu$ such that

$$ \sum_{j=1}^M |f_j(z)| \geq \frac{1}{\mu(|z|)} \quad z \in \mathbb{B}. \quad (4.1) $$

The assumption implies that

$$ \int_0^1 \left(\int_S |(uC_\phi f_j)(r \xi)|^q d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} \, dr < \infty, \quad j = 1, \cdots, M, $$

which together with (4.1) and Lemma 4.2 imply

$$ \sum_{j=1}^M \int_0^1 \left(\int_S |u(r \xi)|^q \left(\sum_{j=1}^M |f_j(\varphi(r \xi))| \right)^q d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} \, dr $$

$$ \leq \sum_{j=1}^M \int_0^1 \left(\int_S \left| u(r \xi) \varphi(\xi) \right|^q d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} \, dr $$

$$ \leq \sum_{j=1}^M \int_0^1 \left(\int_S |(f_j \circ \varphi)(r \xi)|^q d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} \, dr $$

$$ \leq \sum_{j=1}^M \int_0^1 \left(\int_S |(uC_\phi f_j)(r \xi)|^q d\sigma(\xi) \right)^{p/q} \phi^p(r) \frac{1}{1-r} \, dr $$

$$ < \infty, $$

as desired.
(iii) \Rightarrow (iv). This implication follows from the dominated convergence theorem.

(iv) \Rightarrow (ii). Assume that (iv) holds. To prove that \(uC_\varphi : H^\infty_\mu \rightarrow H(p, q, \phi) \) is compact, it suffices to prove that if \(\{ f_k \}_{k \in \mathbb{N}} \) is a bounded sequence in \(H^\infty_\mu \) such that \(\{ f_k \}_{k \in \mathbb{N}} \) converges to zero uniformly on compact subsets of \(\mathbb{B} \), then \(\| uC_\varphi f_k \|_{H(p, q, \phi)} \rightarrow 0 \), as \(k \rightarrow \infty \). Take such a sequence \(\{ f_k \} \subset H^\infty_\mu \). We have

\[
\int_0^1 \left(\int_{|\varphi(r\xi)| > \xi} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr \\
\leq \| f_k \|^p \int_0^1 \left(\int_{|\varphi(r\xi)| > \xi} \frac{|u(r\xi)|^q}{\mu^q(|\varphi(r\xi)|)} d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr
\]

(4.2)

\[
\lesssim \int_0^1 \left(\int_{|\varphi(r\xi)| > \xi} \frac{|u(r\xi)|^q}{\mu^q(|\varphi(r\xi)|)} d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr,
\]

for all \(k \). Take \(\varepsilon > 0 \). (iv) and (4.2) imply that there exists \(t_0 \in (0, 1) \) such that

\[
\int_0^1 \left(\int_{|\varphi(r\xi)| > \frac{t_0}{r}} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr < \varepsilon,
\]

(4.3)

for all \(k \). For the above \(\varepsilon \), since \(\{ f_k \} \) converges to 0 on any compact subset of \(\mathbb{B} \), there exists a \(k_0 \) such that

\[
\int_0^1 \left(\int_{|\varphi(r\xi)| \leq \frac{t_0}{r}} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr < \varepsilon,
\]

(4.4)

for all \(k > k_0 \). Hence by (4.3) and (4.4), we have

\[
\| uC_\varphi f_k \|_{H(p, q, \phi)}
\]

\[
= \int_0^1 \left(\int_{\mathbb{B}} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr
\]

\[
\lesssim \int_0^1 \left(\int_{|\varphi(r\xi)| > \frac{t_0}{r}} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr
\]

\[
+ \int_0^1 \left(\int_{|\varphi(r\xi)| \leq \frac{t_0}{r}} |u(r\xi)|^q |(f_k \circ \varphi)(r\xi)|^q d\sigma(\xi) \right)^{\frac{p}{q} \phi^p(r)} \frac{1}{1-r} dr \\
\lesssim \varepsilon, \text{ as } k > k_0,
\]

from which we obtain \(\lim_{k \rightarrow \infty} \| uC_\varphi f_k \|_{H(p, q, \phi)} = 0 \). Thus \(uC_\varphi : H^\infty_\mu \rightarrow H(p, q, \phi) \) is compact by Lemma 4.1. This completes the proof of this theorem.

Acknowledgement. This project was partially supported by the Macao Science and Technology Development Fund (No.098/2013/A3),
NSF of Guangdong Province(No.S2013010011978) and NNSF of China(No.11471143).

REFERENCES

[1] A. Aleksandrov, Proper holomorphic mappings from the ball into a polydisk, *Soviet Math. Dokl.* 33 (1986), 1–5.

[2] J. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, *Complex Variables* 29 (1996), 277–285.

[3] B. Choe and K. Rim, Fractional derivatives of Bloch functions, growth rate and interpolation, *Acta Math. Hungar.* 72(1–2) (1996), 67–86.

[4] C. Cowen and B. MacCluer, *Composition Operators on Spaces of Analytic Functions*, Studies in Advanced Math., CRC Press, Boca Raton, 1995.

[5] S. Li and S Stević, Weighted-Hardy functions with Hadamard gaps on the unit ball, *Appl. Math. Comput.* 212 (2009), 229–233.

[6] J. Miao, A property of analytic functions with Hadamard gaps, *Bull. Austral. Math. Soc.* 45 (1992) 105–112.

[7] W. Rudin, *Function Theory in the Unit Ball of C^n*, Springer-Verlag, New York, 1980.

[8] J. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of C^n, *Trans. Amer. Math. Soc.* 328 (1991), 619-637.

[9] A. Shields and D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, *Trans. Amer. Math. Soc.* 162 (1971), 287–302.

[10] S. Stević, A generalization of a result of choa on analytic functions with Hadamard gaps, *J. Korean Math. Soc.* 43 (2006), 579–591.

[11] S. Stević, Norm of weighted composition operators from Bloch space to H_μ∞ on the unit ball, *Ars Combin.* 88 (2008), 125–127.

[12] D. Ullrich, A Bloch function in the ball with no radial limits, *Bull. London Math. Soc.* 20 (1988), 337–341.

[13] H. Wulan and K. Zhu, Lacunary series in Q_K spaces, *Studia Math.* 178 (2007), 217–230.

[14] S. Yamashita, Gap series and α-Bloch functions, *Yokohama Math. J.* 28 (1980), 31–36.

[15] C. Yang and W. Xu, Spaces with normal weights and Hadamard gap series, *Arch. Math.* 96 (2011), 151–160.

[16] R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of C^n, *Memoires de la SMF* 115 (2008), 103 pages.

[17] K. Zhu, A class of Möbius invariant function spaces, *Illinois J. Math.* 51 (2007), 977–1002.

Bingyang Hu: Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA.

E-mail address: BingyangHu@math.wisc.edu

Songxiao Li: Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.

E-mail address: jyulsx@163.com