Ailanthus altissima and Amorpha fruticosa – invasive arboreal alien plants as cheap sources of valuable essential oils

Ekaterina Kozuharova¹, Niko Benbassat¹, Strahil Berkov², Iliana Ionkova¹

¹ Medical University of Sofia, Department of Pharmacognosy, Faculty of Pharmacy, 2 Dunav str, Sofia 1000, Bulgaria
² Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 G. Bonchev str, Sofia, Bulgaria

Corresponding author: Ekaterina Kozuharova (ina_kozuharova@yahoo.co.uk)

Received 8 November 2019 ♦ Accepted 21 February 2020 ♦ Published 31 July 2020

Citation: Kozuharova E, Benbassat N, Berkov S, Ionkova I (2020) Ailanthus altissima and Amorpha fruticosa – invasive arboreal alien plants as cheap sources of valuable essential oils. Pharmacia 67(2): 71–81. https://doi.org/10.3897/pharmacia.67.e48319

Abstract

The high tolerance of various habitat conditions and potent propagation ability of Ailanthus altissima (Mill.) Swingle (Simaroubaceae) and Amorpha fruticosa L. (Fabaceae) promote their aggressive invasive behaviour. Additionally, they not only over-compete the local vegetation but suppress the seed development. In the newly invaded habitats they might not have suitable herbivores to control their populations. The aim of this review is to evaluate the potential of A. altissima and A. fruticosa, as cheap sources of valuable essential oils. The essential oils yield and composition of both plant species vary significantly depending on plant parts, origin and time of collection. The main constituents of A. altissima essential oil are α-curcumene, α-gurjunene, γ-cadinene, α-humulene β-caryophyllene caryophyllene oxide, germacrene D etc. The main constituents of A. fruticosa are δ-cadinene, γ-cadinene, β-caryophyllene γ-muurolene +, ar-curcumene, myrcene etc. These essential oils have been reported to possess different activities such as antimicrobial, insect repellent, insecticidal and herbicidal activity. Due to the fact that these are aggressive invasive species, they can provide abundant and cheap resources. Additionally, future industrial exploitation of the biomass of these invasive plants for essential oils’ extraction might contribute to biodiversity conservation by relieving their destructive impact on the natural habitats.

Keywords

essential oils, pharmacological activity, invasive plants, Ailanthus altissima Amorpha fruticosa

Introduction

Ailanthus altissima (Mill.) Swingle, (Simaroubaceae) and Amorpha fruticosa L. (Fabaceae), are alien plant species which have high tolerance of various habitat conditions and elevated propagation ability. They demonstrate aggressive invasive behaviour. They not only overcompete the local plants but also suppress their seed germination and seedling development. In the newly invaded habitats they practically do not have suitable herbivores to control their populations (DAISIE 2009, Monaco 2014, Global Invasive Species Database 2019). Therefore they can be regarded as cheap resources of bioactive compounds, especially essential oils. Additionally excessive harvesting might contribute to decrease their populations and reduce the destructive impact of these species on natural habitats.

In their native range of distribution these plants have been recognized as useful for remedial purposes. In many parts of Asia including China the bark and the leaves of A. altissima have been used traditionally against leucorrhoea, diarrhea; to treat cold, dysentery, endoparasites and gastric diseases (De Martino and De
Feo 2008). The Omaha have used *A. fruticosa* to cure wounds (Munson, 1981).

The aim of this mini review is to evaluate the potential of *Ailanthus altissima* and *Amorpha fruticosa*, as cheap sources of valuable essential oils.

Extraction methods of the essential oil

Material for essential oil of *Ailanthus altissima* is collected in September in Horacia, (Mastelić and Jerković 2002), in summer in Tunisia (Albouchi et al. 2013), and in summer in Tunisia (El Ayeb-Zakhama et al. 2014). The essential oil of different plant parts of *A. altissima* (roots, stems, leaves/young and old plants, flowers, and ripe fruits, all cut into small pieces), is extracted by hydrodistillation using a Clevenger-type apparatus (Mastelić and Jerković 2002, El Ayeb-Zakhama et al. 2014), or simple laboratory Quikfit apparatus (Albouchi et al. 2013). Identification of the components is accomplished by GC-FID and GC/MS analyses. For the repellent bioassays the essential oil of *A. altissima* is extracted by Soxhlet method with anhydrous diethyl ether from the bark (Lu and Wu 2010).

The plant material of *Amorpha fruticosa* used for essential oil extraction is as follows: fresh or air-dried crushed fruits harvested at four stages of maturity (formation of fruits, unripe fruits, ripe fruits and ripe fruits after slight frost (Georgiev et al. 2000); air-dried crushed fruits stored for 6, 18, 30 and 40 months (Stoyanova et al. 2003); fresh flowers, fresh leaves, fresh crushed unripe fruits, fresh crushed ripe fruits and air-dried crushed ripe fruits (Lis and Göra 2001); ripe fruits collected in Bulgaria and in Poland (Lis et al. 2001); and air-dried crushed fruits collected during the period October to November (Ivanescu et al. 2014). The fruit surface of *A. fruticosa* is more or less heavily beset with conspicuous pustulate, resinous glands (Wilbur 1964, Straub 2010, Taft 2013, Reid 2019, Sevcik 2019). The essential oil is extracted usually by hydrodistillation (Georgiev et al. 2000, Lis and Göra 2001, Stoyanova et al. 2003, Ivanescu et al. 2014). A modified technique to separate essential oil from the fruit of *A. fruticosa* is developed using microwave-assisted hydrodistillation concentrated liquid-liquid extraction (MHD-LLE) (Chen et al. 2017). Microwave assisted hydro-distillation method provides important advantages over conventional method such as: accelerated extraction time, reduced energy consumption, and cleaner production (Akhbari et al. 2018).

Ailanthus altissima (Mill.) Swingle

Distribution and invasion level

Ailanthus altissima (family Simaroubaceae, Tree of heaven) is a deciduous tree with a smooth, grey bark, alternate, odd-pinnate compound leaves with 11–25 lanceolate leaflets, numerous small flowers, clustered in panicles and seeds centred in a papery sheath (samara). It is native to Asia and globally invasive plant cultivated as ornamental and went out of control (Global Invasive Species Database 2019). According to Delivering Alien Invasive Species Inventories for Europe it is one of the three taxa together with *Ambrosia artemisifolia* and *Robinia pseudacacia* which are considered most invasive alien species in Europe (DAISIE 2009, Monaco 2014, Sladonja et al. 2015). For example it is massively distributed in Bulgaria in all floristic regions between 0 and 1800 m above sea level, and is extremely difficult to control due to its excessive seed set and germination, fast growing and significant regenerative abilities from stems and root fragments in addition to its vast tolerance to the environmental conditions (Petrova et al. 2012, Zahariev 2014). The plant contains a number of bioactive compounds with valuable pharmacological effects (Kozuharova et al. 2014, Al-Snafi 2015).

Composition of the essential oil

The essential oil of *Ailanthus altissima* varies considerably (Table 1). More than 130 constituents are identified in *A. altissima* essential oil (Mastelić and Jerković 2002, Albouchi et al. 2013, El Ayeb-Zakhama et al. 2014). The main of them are α-curcumene, α-gurjunene, γ-cadinene, α-humulene β-caryophyllene caryophyllene oxide, germacrene D etc. (Table 1, Fig. 1). Both qualitatively and quantitatively the variability depends on the plant populations/ecological factors, extractable part, ontogenesis stage and the drying process (Mastelić and Jerković 2002, Albouchi et al. 2013, El Ayeb-Zakhama et al. 2014).

Antimicrobial activity

The high content of γ-cadinene (Fig. 1) in *A. altissima* essential oil indicates good antimicrobial activity. To γ-cadinene together with thymol, carvacrol, eugenol, α-pinene, myrcene, α-terpineol, terpinen-4-ol, linalool, γ-muurolene, spathulenol, α-selinene is attributed significant antimicrobial activity such as anti-septic, antibacterial and antifungal (Ismam 2000, Oliva et al. 2003, Hong et al. 2004, Behravan et al. 2007, Clarke 2009, Khomarlou et al. 2018). Experimentally essential oil of *A. altissima* is poorly tested for antimicrobial activity. Methanolic extracts of *A. altissima* leaves and their hydrodistilled residues are efficient against Gram-positive bacteria, but not active against Gram-negative bacterial strains and the yeast *Candida albicans* (Albouchi et al. 2013).

Phytotoxicity Assay

The presence of α-humulene (Fig. 1) indicates potential of *A. altissima* essential to repel insects and to have contact, and fumigant insecticidal actions against specific pests. Such activity is attributed to α-humulene as well as to amphenol, camphor, 1,8-cineole (eucaliptol), terpinen-4-ol, isoborneol, α-pinene and β-pinene, (–)-α-bisabolol (Shaaya et al. 1991, Isman 2000, Suthisut et al. 2011, Polatoğlu et al. 2013, Ortiz de Elguea-Culebras et al. 2017).
It is shown experimentally that the essential oil of *Ailanthus altissima* negatively affects the seed germination and early stage development of the seedlings of the target species. The effect is dose dependant as well as it is greater in the light than in the dark. Also the phytotoxic effect depends on the origin of the essential oil, as the oil extracted from flowers is most phytotoxic (Tsao et al. 2002, Albouchi et al. 2013, El Ayeb-Zakhama et al. 2014). The observed phytotoxic effect can be associated with caryophyllene oxide, b-caryophyllene, germacrene D, and hexahydrofarnesyl acetone (El Ayeb-Zakhama et al. 2014). Caryophyllene oxide and germacrene D are known for their phytotoxicity (Quintana et al. 2009, De Martino et al. 2010). Germination percentage is severely inhibited by the leaf hydrodistilled residues, where 400 to 600 μg/mL are sufficient to achieve complete inhibition of germination of the target plants (Albouchi et al. 2013).

Table 1. Chemical composition (%) of *Ailanthus altissima* essential oil – a compilation of [1] - Mastelić and Jerković (2002); [2] – El Ayeb-Zakhama et al. (2014) and [3] – Albouchi et al. (2013) legend: Y-Young plant O-Old plant.

Components	Quantity of terpenes in the essential oil							
	Source of information							
	leaf Y mg/kg	leaf O mg/kg	leaf %	root %	stem %	leaf %	flower %	samara %
hexadecanal	leaf Y mg/kg	leaf O mg/kg	leaf %	root %	stem %	leaf %	flower %	samara %
(E)-2-hexenal	8.21	0.36	0.17–0.40	22.60	4.50	1.80	0.30	
(Z)-3-hexen-1-yl acetate	21.89	2.29	4.50	0.30	0.30	0.30	0.30	
(Z)-3-hexen-1-ol	40.63	12.18	4.50	0.30	0.30	0.30	0.30	
(Z)-3-hexen-1-yl butanoate	22.52		4.50	0.30	0.30	0.30	0.30	
(Z)-3-hexen-1-yl hexanoate	4.42	< 0.05	4.50	0.30	0.30	0.30	0.30	
hexadecanoic (palmitic) acid	13.05	< 0.05	4.50	0.30	0.30	0.30	0.30	
tetradeanol			4.50	0.30	0.30	0.30	0.30	
heneicosane			4.50	0.30	0.30	0.30	0.30	
docosane			4.50	0.30	0.30	0.30	0.30	
tricosane			4.50	0.30	0.30	0.30	0.30	
(Z)-caryophyllene			4.50	0.30	0.30	0.30	0.30	
β-caryophyllene			4.50	0.30	0.30	0.30	0.30	
α-curcumene			4.50	0.30	0.30	0.30	0.30	
α-gurjunene			4.50	0.30	0.30	0.30	0.30	
α-humulene			4.50	0.30	0.30	0.30	0.30	
γ-cadinene			4.50	0.30	0.30	0.30	0.30	
δ-cadinene			4.50	0.30	0.30	0.30	0.30	
γ-cadinol			4.50	0.30	0.30	0.30	0.30	
α-cadinol			4.50	0.30	0.30	0.30	0.30	
α-Terpinen-7-al			4.50	0.30	0.30	0.30	0.30	
Caryophyllene oxide			4.50	0.30	0.30	0.30	0.30	
germacrene D			4.50	0.30	0.30	0.30	0.30	
hexahydrofarnesyl acetone			4.50	0.30	0.30	0.30	0.30	
linalool			4.50	0.30	0.30	0.30	0.30	
α-cyclocitrinal			4.50	0.30	0.30	0.30	0.30	
α-terpineol			4.50	0.30	0.30	0.30	0.30	
geraniol			4.50	0.30	0.30	0.30	0.30	
cis-jasmonone			4.50	0.30	0.30	0.30	0.30	
neophtadiene			4.50	0.30	0.30	0.30	0.30	

Fumigant and repellent activity of the essential oil

The essential oil of *Ailanthus altissima* bark has a fumigant activity – it can be used to kill insects that damage stored foods or seeds. The tests show potent fumigant activity against *Oryzaephilus surinamensis* (Linnaeus) (Coleoptera: Silvanidae), *Sitophilus oryzae* (Linnaeus) (Coleoptera: Curculionidae) with 99.3 and 81.9% mortality within 24 h respectively and although fumigant activity is weak against *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae), and *Liposcelis paeta* Pearman (Psocoptera: Liposcelididae) adults it notably repells *T. castaneum* adults and *L. paeta* nympha (Lü et al. 2006, Lü 2007, Lü and Wu 2010). *A. altissima* bark oil has extremely strong repellent activity against *Lasioderma serricorne* (Fabricius) (Coleoptera: Anobiidae) adults with the percentage repellency 93.7, 87.8 and 76.1% after 24, 48, and 72 h exposure, respectively. The oil also possesses high fumigant activity against *L. serricorne* adults with the corrected percentage mortality 100% at 8 μL/L air within 48 h exposure (Lü and Shi 2012). It is also found to have activity towards nematodes of the *Meloidogyne* genus (Caboni et al. 2012). There is a high mortality rate of aphyds, pests of peas when treated with ailanton (Polonsky et al. 1989). (Z)-3-hexen-1-ol which is one of the main components of the essential oil (Table 1) is known as a key herbivore-induced plant volatile. In spite of the conflict functions of (Z)-3-hexenol in direct and indirect plant defenses – attraction or repellent for various herbivore insects, there is no doubt for its role.
The main constituents of *Ailanthus altissima* essential oil

Compound	Molecular Structure
α-curcumene	![α-curcumene](image)
α-gurjunene	![α-gurjunene](image)
γ-cadinene	![γ-cadinene](image)
α-humulene	![α-humulene](image)
β-caryophyllene	![β-caryophyllene](image)

Figure 1. The main constituents of *Ailanthus altissima* and *Amorpha fruticosa* essential oils.
The main constituents of *Amorpha fruticosa* essential oil

Component	Molecular Structure
caryophyllene oxide	![caryophyllene oxide](image)
germacrène D	![germacrene D](image)
δ-cadinene	![δ-cadinene](image)
γ-cadinene	![γ-cadinene](image)
β-caryophyllene	![β-caryophyllene](image)

Figure 1. Continued.
γ-muurolene

\[
\begin{align*}
\text{H} & \\
\text{H} & \\
\text{H} & \\
\end{align*}
\]

\[\text{ar-curcumene}\]

\[
\begin{align*}
\text{H} & \\
\text{H} & \\
\text{H} & \\
\end{align*}
\]

\[\text{myrcene}\]

\[
\begin{align*}
\text{H} & \\
\text{H} & \\
\text{H} & \\
\end{align*}
\]

Figure 1. Continued.

as an indirect defense. This compound is a good candidate for novel insect pest control strategies (Wei and Kang 2011). Additionally caryophyllene, and caryophyllene oxide which are main constituents of the essential oil of A. altissima (Table 1) are attractive to green lacewings which are important predators of many insect pests and thus are part of the biological control. The activity mechanism of these compounds is expressed by increased adult oviposition and thereby increased larval predation against pest insects. (Flint et al 1979).

Amorpha fruticosa L.

Distribution and invasion level

Amorpha fruticosa L. (family Fabaceae, indigo bush) is a shrub with a stem of 1–3 m, extensive root system, with odd-pinnate compound leaves with stipules. Leaflets 9–35 ovate or elliptical, entire. The purple flowers are clustered in racemes. The fruit is an indehiscent pod of 8–9 mm covered with glands and containing 1 or 2 seeds. The plant is native to North America, and it is widely distributed in the US, southern Canada and northern Mexico (Wilbur 1975, USDA NRCS 2009, USDA, ARSNPGS 2019). *A. fruticosa* was introduced in Europe as an ornamental, honey and protective against erosion plant (Kozuharova et al. 2017, CABI 2019) but turned into aggressive invasive species and now is included in the list of “Worst invasive alien species threatening biodiversity in Europe” (Petrova et al. 2012, Monaco 2014, CABI 2019). It is widely distributed in Bulgaria along roadsides, and it forms large monodominant, dense groups, particularly along Danube river, along the major rivers in Strandzha Natural Park and also reservoir banks, replacing native species and altering the structure of native plant communities. *A. fruticosa* is difficult to control as it propagates by seeds, which are produced in large quantities and have high germination rate. Additionally there is considerable vegetative propagation. The seeds are driven by the water to the moist places, which the plant prefers but it also tolerates both prolonged droughts and prolonged flooding, as well as wide range of light and soil conditions including salinity (Petrova et al. 2012, Zahariev 2014, Ciuvat et al. 2016). *A. fruticosa* contains number of bioactive compounds with valuable pharmacological effects such as antimicrobial, wound healing, hepatoprotective and osteoclast inhibitory effects, anticancer properties etc, and its potential against diabetes and metabolic disease is rather high (Kozuharova et al. 2017). It is attacked only by several more or less specialized insects (Petrova et al. 2012).
Table 2. Chemical composition (%) of *Amorpha fruticosa* essential oil – a compilation of [1]– Georgiev et al. 2000, [2]– Lis et al. 2001, [3] – Lis and Góra 2001, [4]– Stoyanova et al. 2003, [5]– Ivanescu et al. 2014, [6] – Chen et al. 2017.

Components	Source of information	Quantity of terpenes in the essential oil
Flower oil		
α-eudesmol	[1]	15.80
β-eudesmol	[2]	7.80
δ-cadinene	[3]	6.20
(E)-nerolidol	[4]	6.10
Leaf oil		
α-eudesmol	[5]	13.90
(E)-β-ocimene	[6]	11.90
α-pinene		11.80
Fruit oil		
Yield	Bulgaria to ripe fruit	0.32–0.72
	Unripe to dried ripe fruit	0.45–1.36
	6 to 40 months storage	0.83–0.76
	Loc. S1 Nov. 2011	1.30
	Loc. S2 Oct. 2011	1.50
	Loc. S3 Oct. 2014	1.80
α-pinene		15.80
myrcene		8.70
α-copaene		9.84
bicyclosesquiphellandrene		11.40
γ-cadinene		7.90–10.70
δ-cadinene		14.40–17.30
β-caryophyllene		11.5–5.20
γ-muurolene +		13.20–18.10
ar-curcumene		12.20–18.10
α-zingiberene		2.40–6.90
α-eudesmol		2.30–0.90
γ-eudesmol		0.6–1.0
isolongifolene		3.0–8.00
isolongifol		8.00
Monoterpenes hydrocarbons		46.00
Oxygenated monoterpenes		46.00
Sesquiterpene hydrocarbons		46.00
Oxygenated sesquiterpenes		46.00

Composition of the essential oil

The essential oil of *Amorpha fruticosa* fruits varies qualitatively and quantitatively (Table 2) depending on the maturity stage, drying process and storage, as well as location of the plant populations/ecological factors (Georgiev et al. 2000, Lis and Góra 2001, Lis et al. 2001, Stoyanova et al. 2003, Ivanescu et al. 2014, Chen et al. 2017). Flowers and leaves also produce essential oil with different composition (Table 2) compared to the fruits (Lis and Góra 2001). The yield varies between 0.32–1.80 % (Table 2). Between 50 and 70 constituents are identified with majors δ-cadinene, γ-cadinene, β-caryophyllene γ-muurolene +, ar-curcumene, myrcene etc. (Table 2, Fig. 1) but their quantitative content varies considerably. The odor of the oil is intensive, balsamic and long lasting therefore it can be used in perfumery (Lis and Góra 2001, Lis et al. 2001).

Antimicrobial and woundhealing activity

The high content of α-pinene, γ-muurolene, myrcene, γ-cadinene and δ-cadinene (Fig. 1) in *A. fruticos* essential oil indicates good antimicrobial activity. To these compounds together with thymol, carvacrol, eugenol, α-terpineol, terpinen-4-ol, linalool, spathulenol, α-selinene is attributed significant antimicrobial activity – antiseptic, antibacterial and antifungal (Isman 2000, Oliva et al. 2003, Hong et al. 2004, Behravan et al. 2007, Clarke 2009). It is shown that α-pinene affects the integrity of the bacterial membrane (Teroglu 2007, Park and Lee 2011). Experimentally the antimicrobial activity of the essential oil of *Amorpha fruticosa* is studied using Gram positive bacteria (*Staphylococcus aureus* ATCC 25923, *Sarcina lutea* ATCC 9341, *Bacillus cereus* ATCC 14579, *B. subtilis*), Gram negative bacteria - *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and pathogenic yeasts *Candida albicans* ATCC 10231, *C. sake*, *C. glabrata* ATCC MYA 2950. The volatile oil manifests moderate antibacterial activity against Gram-positive bacteria (*Staphylococcus aureus*, *Sarcina lutea*, *Bacillus cereus*, *B. subtilis*) and no antifungal activity (against three fungi *Candida albicans*, *C. glabrata*, *C. sake*) that can be explained by the absence of phenolic compounds and the low content of oxygenated monoterpenes (Ivanescu et al. 2014).

Phytotoxicity Assay

The essential oil of *Amorpha fruticosa* is not tested yet for its phytotoxicity effect. However it is known that α-pinene, caryophyllene, muurolene and cadinene possess phytotoxicity activity (Angelini et al. 2003, De Martino et al. 2010, Wright et al. 2013, Polatoğlu et al. 2013, Amri et al. 1998).
2013). The high content of these components in the essential oil of *A. fruticosa* (Table 1, Fig. 1) indicates that such effect can be expected.

Fumigant and repellent activity of the essential oil

The essential oil of *Amorpha fruticosa* is poorly tested for its fumigant and repellent activity with few experimental research but the results are promising (Park and Shin 2005, Park et al. 2006). One of the essential oil’s components related to insect repellent/fumigant effect is α-pinene (Shaaya et al. 1991, Isman 2000, Suthisut et al. 2011, Połatoğlu et al. 2013, Ortiz de Elguea-Culebras et al. 2017). The essential oil extracted from some populations and particularly from unripe fruits are rich in α-pinene (Table 1, Fig. 1). Also the high content of δ-cadinene (Table 1, Fig. 1) suggests a positive fumigant effect (Liciardiello et al. 2013) as it has larvicidal effect against malaria, dengue and filariasis mosquitoes (Govindarajan et al. 2016a, 2016b). Additionally δ-cadinene is responsible for the multiple defense responses of plants (Tan et al. 2000). However contradictively in some cases it can attract insects e.g the beetle which is a specialist on the elm tree (McLeod et al. 2005).

Conclusion

Some plant essential oils repel insects. They even have contact and fumigant insecticidal actions against specific pests (Shaaya et al. 1991, Suthisut et al. 2011). Additionally essential oils are considered potential bio-herbicides, having different and selective herbicidal mechanisms in comparison to their synthetic herbicides (Dudai et al. 1999, Tworkoski 2002, Angelini et al. 2003, Kordali et al. 2008, Haig et al. 2009, Verdeguer et al. 2009, De Almeida et al. 2010, Pasdaran and Hamedi 2017) as they are active against germination and early radicle growth at different levels (De Almeida et al. 2010).

The *Ailanthus altissima* essential oil has phytotoxic and potent fumigant activity demonstrated by a number of research papers. It is prospective as a bio-pesticide because natural products are biodegradable and possibly less harmful to the humans’ health. The fumigant and herbicide effects of *Amorpha fruticosa* essential oil is poorly studied experimentally. However there are some indications for such activity based on the main constituents of the essential oil and it may appear a prospective bio-pesticide. The experimentally tested antimicrobial activity of the essential oils of both plant species is evaluated as moderate.

Application of essential oils from these arboreal invasive plants against pests and weeds can help to reduce the use of synthetic pesticides which are known with their negative effects on the wild bees and honeybees (Potts et al. 2010, Goulson et al. 2013, 2018). However further research is necessary to test the effect of these essential oils on the pollinators.

Acknowledgements

This work has been carried out in the framework of the Grant J-79/23.04.2019, Project 8276/20.11.2019 to Council of Medicinal Science at Medical University of Sofia. Our thanks to the graduate student Kristina Stoycheva for the assistance in the working process.

References

Akhbari M, Masoum S, Aghababaei F, Hamedi S (2018) Optimization of microwave assisted extraction of essential oils from Iranian *Rosmarinus officinalis* L. using RSM. Journal of food science and technology 55(6): 2197–2207. https://doi.org/10.1007/s13197-018-3137-7

Albouschi F, Hassen, I, Casabianca H, Hosni K (2013) Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of *Ailanthus altissima* (Mill.) Swingle leaves. South African journal of botany 87: 164–174. https://doi.org/10.1016/j.sajb.2013.04.003

Al-Snafi AE (2015) The pharmacological importance of *Ailanthus altissima* – a review International Journal of Pharmacy Review and Research 5(2): 121–129.

Amri I, Hamrouni L, Hanana M, Jamoussi B (2013) Reviews on phytotoxic effects of essential oils and their individual components: news approaches for weed management. International journal of applied biology and pharmaceutical technology 4(1): 96–114.

Angelini G, Carpanese G, Cioni PL, Morelli I, Macchia M, Flamini G (2003) Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. Journal of Agricultural and Food Chemistry 51(21): 6158–6164. https://doi.org/10.1021/jf0210728

Behravan J, Ramezani M, Hassanzadeh MK, Eskandari M, Kasaian J, Sabeti Z (2007) Composition, anticycotic and antibacterial activity of *Ziziphus clinopodioides* Lam. essential oil from Iran. Journal of Essential Oil Bearing Plants 10(4): 339–345. https://doi.org/10.1080/0972060X.2007.10643565

CABI (2019) Amorpha fruticosa [original text by D. Iamonico]. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc

Caboni, P Ntalli, N G, Aissani, N, Cavoski, I, Angioni A (2012) Nematicidal activity of (E, E)-2, 4-decadienial and (E)-2-decalen from *Ailanthus altissima* against Meloidogyne javanica. Journal of Agricultural and food Chemistry, 60(4): 1146–1151. https://doi.org/10.1021/jf2044586

Chen F, Jia J, Zhang Q, Gu H, Yang L (2017) A modified approach for isolation of essential oil from fruit of *Amorpha fruticosa* Linnaeus microwave-assisted hydrodistillation concatenated liquid-liquid extraction. Journal of Chromatography A 1524, 254–265. https://doi.org/10.1016/j.chroma.2017.10.008

Cuvaat A, Vasile D, Dinu C, Apostol E, Apostol B, Petriţan AM (2016) Valorisation possibilities of invasive indigobush (*Amorpha fruticosa*) in Romania. Revista de Silvicultură i Cinegetică 21(39): 96–99.
Clarke S (2009) Essential Chemistry for Aromatherapy E-Book. Elsevier Health Sciences. https://doi.org/10.1016/B978-0-443-10403-9.00002-9

DAISIE (2009) Handbook of Alien Species in Europe. – Dordrecht.

De Almeida LFR, Frei F, Mancini E, De Martino L, De Feo V (2010) Phytochemical composition of Mediterranean essential oils. Molecules 15(6): 4309–4323. https://doi.org/10.3390/molecules15064309

De Martino L, De Feo V (2008) Chemistry and biological activities of Ailanthus altissima Swingle: A review. Pharmacognosy Reviews 2(4): 339.

De Martino L, Formisano C, Mancini E, Feo VD, Piozzi E, Rigano D, Senatore F (2010) Chemical composition and phytotoxic effects of essential oils from several Teucrium species. Natural product communications 5(12): 1934578X1000501230. https://doi.org/10.1177/1934578X1000501230

Dudai N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25: 1079–1089. https://doi.org/10.1023/A:1020881825669

El Ayeb-Zakhama A, Ben Salem S, Sakka-Rouis L, Flamini G, Ben Jannet H, Harzallah-Skhiri F (2014) Chemical Composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (Mill.) Swingle cultivated in Tunisia. Chemistry & biodiversity 11(8): 1216–1227. https://doi.org/10.1002/cbdv.201300409

Flint HM, Salter SS, Walters S (1979) Caryophyllene: an attractant for the green lacewing. Environmental Entomology 8(6): 1123–1125. https://doi.org/10.1093/ee/8.6.1123

Georgiev EV, Stoianova AS, Lis A, Góra J (2000) Seasonal variation of the fruit essential oil of Amorpha fruticosa L. Herba Polonica 46(4): 220–225.

Global Invasive Species Database (2019) Species profile: Ailanthus altissima. https://www.iucngisd.org/gisd/species.php?sc=319 [on 25-07-2017]

Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50(4): 977–987. https://doi.org/10.1111/1365-2664.12111

Goulson D, Frey H, Tzinieris S, Callaghan C, Kerr J (2018) Call to restrict neonicotinoids. Science 360(6392): 973. https://doi.org/10.1126/science.aau0432

Govindarajan M, Rajeswary M, Benelli G (2016a) δ-Cadinene, Calarene and δ-4-Carene from Kadsura heteroclita essential oil as novel larvicide against malaria, dengue and filariasis mosquitoes. Combinatorial chemistry & high throughput screening, 19(7): 565–571. https://doi.org/10.2174/13862073196610506123520

Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016b) Eugenol, α-pinene and β-caryophyllene from Plectranthus serricorne, Fabricius) (Lamiaceae: Lamiinae) as new larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology research 115(2): 807–815. https://doi.org/10.1007/s00436-015-4809-0

Haig TJ, Haig TJ, Seal, AN, Pratley JE, An M, Wu H (2009) Lavender as a source of novel plant compounds for the development of a natural herbicide. Journal of chemical ecology 35(9): 1129–1136. https://doi.org/10.1007/s10886-009-9689-2

Hong EJ, Na K J, Choi JG, Choi KC, Jeung EB (2004) Antibacterial and antifungal effects of essential oils from coniferous trees. Biological and Pharmaceutical Bulletin 27(6): 863–866. https://doi.org/10.1248/bpb.27.863

Ismar MB (2000) Plant essential oils for pest and disease management. Crop protection 19(8–10): 603–608. https://doi.org/10.1016/S0261-2194(00)00079-X

Ivanescu B, Langu C, Spac A, Tuchilus C (2014) Essential oils from Amorpha fruticosa L. fruits-chemical characterization and antimicrobial activity. Analele Stiintifice ale Universitatii” Al. I. Cuza” din Iasi, 60(1): 33.

Khomarlou N, Aberoomand-Azar P, Pasdaran A, Tebyanian H, Hakaian A, Ranjbar R, Ayatollahi SA (2018) Essential oil composition and in vitro antibacterial activity of Chenopodium album subsp. striatum. Acta Biologica Hungarica 69(2): 144–155. https://doi.org/10.1556/018.69.2018.2.4

Kordali S, Cakir A, Ozer H, Cakmakci R, Serdem M, Etete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutifidum and its three components, carvacrol, thymol and p-cymene. Bioresource Technology, 99(18): 8788–8795. https://doi.org/10.1016/j.biortech.2008.04.048

Kožuharova E, Lebanova H, Getov I, Benchassat N, Kochmarov V (2014) Ailanthus altissima (Mill.) Swingle – a terrible invasive pest in Bulgaria or potential useful medicinal plant? Bothalia 44, 213–230.

Kožuharova E, Matkowsky A, Wozacuteniak D, Simeonova R, Nachev Z, Malaineur A, Mocan A, Nabavi SM, Atanosov AG (2017) Amorpha fruticosa – a notorious invasive alien plant in Europe or a medicinal plant against metabolic disease? Frontiers in Pharmacology 8(6): 333. https://doi.org/10.3389/fphar.2017.00333

Liciardello F, Muratore G, Suma P, Russo A, Nerín C (2013) Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum). Innovative food science & emerging technologies, 19, 173–180. https://doi.org/10.1016/j.ifset.2013.05.002

Lin L.-J, Peiser G, Ying B.-P, Mathias K, Karasina F, Wang Z, Itatani J, Green L, Hwang Y.-S (1995) Identification of plant growth inhibitory principles in Ailanthus altissima and Castella tortuosa. Journal of Agricultural and Food Chemistry 43: 1706–1711. https://doi.org/10.1021/jf00054a056

Lis A, Stoianova A, Georgiev E, Góra J (2001) Essential oil composition of Amorpha fruticosa L. From Bulgaria and Poland. In: Rothe M (Ed.) Flavour 2000. Precedings of the 6th Warburg Aroma Symposium isenach April 10–13, 2000, Eigenverlag Bergholz-Rechbrücke, 376–379.

Lis A, Stoianova A, Georgiev E, Góra J (2001) Essential oil composition of Amorpha fruticosa L. Journal of Essential Oil Research 13(5): 340–342. https://doi.org/10.1080/1041299.2001.9712227

Liu Y, Xue, M, Zhang Q, Zhou F, Wei J (2010) Toxicity of β-caryophyllene from Vitex negundo (Lamiales: Verbenaceae) to Aphis gossypii (Hemiptera: Aphididae) and its action mechanism. Acta Entomologica Sinica 53(4): 396–404.

Lu J (2007) The insecticidal activities of Ailanthus altissima extracts on several kinds of important stored-grain insects. Grain Storage (2): 878–879. https://doi.org/10.1007/s10461-007-9789-7

Lu JH, He YQ (2010) Fumigant toxicity of Ailanthus altissima Swingle, Atractylodes lancea (Thunb.) DC. and Elsholtzia stansottii Benth extracts on three major stored-grain insects. Industrial crops and products 32(3): 681–683. https://doi.org/10.1016/j.indcrop.2010.06.006

Lu JH, Shi YL (2012) The Bioactivity of essential oil from Ailanthus altissima Swingle (Sapindales: Simaroubaceae) bark on Lasioderma serricorne (Fabricius)(Coleoptera: Anobiidae). In Advanced Materials Research 365: 428–432. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.365.428

Lu JH, Lu YJ, Hu YY (2006) Controlling effects of three plant essential oils on Liposcelis paeta (J.), Journal of Henan Agricultural Sciences 5: 58–63.
Lu J, Wu S (2010) Bioactivity of essential oil from *Ailanthus altissima* bark against 4 major stored-grain insects. African Journal of Microbiology Research 4(3): 154–157.

Mastelč J, Jerkovič I (2002) Volatile Constituents from the Leaves of Young and Old *Ailanthus altissima* (Mill.) Swingle Tree. Croatica chemica acta 75(1): 189–197.

McLeod G, Gries R, Von Reuss SH, Rahe JE, McIntosh R, König WA, Gries G (2005) The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proceedings of the Royal Society B: Biological Sciences 272(1580): 2499–2503. https://doi.org/10.1098/rspb.2005.2302

Monaco A (2014) European guidelines on protected areas and invasive alien species. Council of Europe, Rome.

Munson PJ (1981) Contributions to osage and lakota ethnobotany. Plains Anthropol. 26, 229–240. https://doi.org/10.20525/4.1981.11909014

Oliva B, Piccirilli E, Ceddia T, Pontieri E, Aureli P, Ferrini AM (2003) Antimycotic activity of *Melaena alternifolia* essential oil and its major components. Letters in applied microbiology 37(2): 185–187. https://doi.org/10.1046/j.1472-765X.2003.01375.x

Ortiz de Elguea-Culebras G, Sánchez-Vioque R, Berruga M.I, Her reiz-Penalver D, Santana-Méridas O (2017) Antifeedant effects of common terpenes from Mediterranean aromatic plants on Liptoptena decemlineata. Journal of soil science and plant nutrition 17(2): 475–483. https://doi.org/10.4067/S0718-95162017000200034

Park IK, Shin SC (2005) Fumigant activity of plant essential oils and components from garlic (*Allium sativum*) and clove bud (*Eugenia Caryophyllata*) oils against the Japanese termite (*Reticulitermes speratus* Kolbe). Journal of Agricultural and Food Chemistry, 53(11): 4388–4392. https://doi.org/10.1021/jf050393r

Park IK, Choi KS, Kim DH, Choi HI, Kim LS, Bak WC, Shin SC (2006) Fumigant activity of plant essential oils and components from horseradish (*Armoracia rusticana*): anise (*Pimpinella anisum*) and garlic (*Allium sativum*) oils against *Lycoriella ingenua* (Diptera: Sciaridae). Pest Management Science: formerly Pesticide Science, 62(8): 723–728. https://doi.org/10.1002/ps.1228

Park JS, Lee GH (2011) Volatile compounds and antimicrobial and anti oxidant activities of the essential oils of the needles of *Pinus densiflora* and *Pinus thunbergii*. Journal of the Science of Food and Agriculture 91(4): 703–709. https://doi.org/10.1002/psa.4239

Pasaradan A, Hamed A (2017) The genus *Serophila*aria: a source of iridoids and terpenoids with a diverse biological activity. Pharmaceutical biology 55(1): 2211–2223. https://doi.org/10.1002/pbsa.20197

Petrova A, Vladimirov V, Georgiev V (2011) Invasive alien plant species in Bulgaria. Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia. [in Bulgarian language]

Pelatouglu K, Karakoç OC, Gören N (2013) Phytotoxic, DPPH scaveng ing, insecticidal activities and essential oil composition of *Achillea vermicularis*, *A. tereftolia* and proposed chemotypes of *A. bieber steinii* (Asteraceae). Industrial crops and products 51: 35–45. https://doi.org/10.1016/j.indcrop.2013.08.052

Polonsky J, Bhatnagar SC, Griffiths DC, Pickett JA, Woodcock CM, (1989) Activity of quassinoids as antifeedants against aphids. Journal of Chemical Ecology 15: 989–993. https://doi.org/10.1007/BF01015194

Potts SG, Bismeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25: 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Quintana, N, El Kassis EG, Sternmitz FR, Vivanco JM (2009) Phytotoxic compounds from roots of *Centaurea diffusa* Lam. Plant signaling & behavior 4(1): 9–14. https://doi.org/10.4161/psb.4.1.7487

Reid CS (2019) *Amorpha fruticosa* L. False indigo. Louisiana plant ID. http://www.lsu.edu/plantid/species/falsindigo/falsindigo.htm

Sevcik J (2019) *Amorpha fruticosa* BioLib. https://www.biolib.cz/en/image/id10510/
Wei J, Kang L (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant signaling & behavior 6(3): 369–371. https://doi.org/10.4161/psb.6.3.14452

Wilbur RL (1964) A revision of the dwarf species of Amorpha (Leguminosae). Journal of the Elisha Mitchell Scientific Society 51–65.

Wilbur RL (1975) A revision of the North American genus Amorpha (Leguminosae-Psoraleae). Rhodora 77(811): 337–409.

Wright C, Chhetri BK, Setzer WN (2013) Chemical composition and phytotoxicity of the essential oil of Encelia farinosa growing in the Sonoran Desert. American Journal of Essential Oils and Natural Products 1, 18–22.

Zahariev D (2014) Invasive plant species along the major rivers in Strandzha Natural Park, Seminar of Ecology – 2014, Proceedings, Union of scientist in Bulgaria, IBER – BAS, 148–158.