A Dirac Delta Operator

Juan Carlos Ferrando

Centro de Investigacion Operativa, Universidad Miguel Hernandez, E-03202 Elche, Spain

Received February 1, 2021; Revised March 18, 2021; Accepted April 9, 2021

Cite This Paper in the following Citation Styles
(a): [1] Juan Carlos Ferrando, "A Dirac Delta Operator," Mathematics and Statistics, Vol.9, No.2, pp. 179-187, 2021. DOI: 10.13189/ms.2021.090213.
(b): Juan Carlos Ferrando, (2021). A Dirac Delta Operator. Mathematics and Statistics, 9(2), 179-187. DOI: 10.13189/ms.2021.090213.

Copyright ©2021 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract If T is a (densely defined) self-adjoint operator acting on a complex Hilbert space \mathcal{H} and I stands for the identity operator, we introduce the delta function operator $\lambda \mapsto \delta (\lambda I - T)$ at T. When T is a bounded operator, then $\delta (\lambda I - T)$ is an operator-valued distribution. If T is unbounded, $\delta (\lambda I - T)$ is a more general object that still retains some properties of distributions. We provide an explicit representation of $\delta (\lambda I - T)$ in some particular cases, derive various operative formulas involving $\delta (\lambda I - T)$ and give several applications of its usage in Spectral Theory as well as in Quantum Mechanics.

Keywords Hilbert Space, Self-adjoint Operator, Vector-valued Distribution, Spectral Measure

1 The delta function $\delta (\lambda I - T)$

The scalar delta ‘function’ $\lambda \mapsto \delta (\lambda - \alpha)$ along with its derivatives were introduced by Paul Dirac in [1], and later in [2, Section 15], although its definition can be traced back to Heaviside. The rigorous treatment of this object in the context of distribution theory is due to Laurent Schwartz [6, 12]. In this paper we extend the definition of $\delta (\lambda - \alpha)$ from real numbers to self-adjoint operators on a Hilbert space \mathcal{H}. We denote by $\mathcal{D} (\mathbb{R}) = \lim D([-n, n])$ the linear space of infinitely differentiable complex-valued functions of compact support, equipped with the inductive limit topology. As usual in physics we shall assume that the scalar product in \mathcal{H} is anti-linear for the first variable.

If T is a densely defined self-adjoint operator\(^1\) on \mathcal{H} and I stands for the identity operator, we define the delta function operator $\lambda \mapsto \delta (\lambda I - T)$ at T by

$$f (T) = \int_{-\infty}^{+\infty} f (\lambda) \delta (\lambda I - T) \, d\lambda \quad (1.1)$$

for each $f \in \mathcal{C} (\mathbb{R})$, i.e., for each real-valued continuous function $f (\lambda)$. Here $d\lambda$ is the Lebesgue measure of \mathbb{R}, but the right-hand side of (1.1) is not a true integral. If T is a bounded operator, we shall see at once that $\delta (\lambda I - T)$ must be regarded as a vector-valued distribution, i.e., as a continuous linear map from the space $\mathcal{D} (\mathbb{R})$ into the locally convex space $\mathcal{L} (\mathcal{H})$ of the bounded linear operators on \mathcal{H} equipped with the strong operator topology [10, 11], whose action on $f \in \mathcal{D} (\mathbb{R})$ we denote as an integral. If T is unbounded we shall see that $\delta (\lambda I - T)$ still retains some useful distributional-like properties. The previous equation means

$$\langle y, f (T) x \rangle = \int_{-\infty}^{+\infty} f (\lambda) \langle y, \delta (\lambda I - T) x \rangle \, d\lambda \quad (1.2)$$

for each $(x, y) \in D (f (T)) \times \mathcal{H}$, where $D (f (T))$ stands for the domain of the self-adjoint operator $f (T)$.

Let us recall that if T is a (densely defined) self-adjoint operator, there is a unique spectral family $\{ E_\lambda : \lambda \in \mathbb{R} \}$ of self-adjoint operators defined on the whole of \mathcal{H} that satisfy (i) $E_\lambda \leq E_\mu$ and $E_\lambda E_\mu = E_\lambda$ for $\lambda \leq \mu$, (ii) $\lim_{\lambda \to 0^+} E_{\lambda + \epsilon} = E_\lambda x$, and (iii) $\lim_{\lambda \to -\infty} E_{\lambda} x = 0$ and $\lim_{\lambda \to +\infty} E_{\lambda} x = x$ in \mathcal{H} for all $x \in \mathcal{H}$. The domain $D (T)$ of T consists of those $x \in \mathcal{H}$ such that

$$\int_{-\infty}^{+\infty} |\lambda|^2 \, d \| E_\lambda x \|^2 < \infty.$$

In this case, the spectral theorem (cf. [8, Section 107]) and the Borel-measurable functional calculus provide a self-adjoint operator $f (T)$ defined by

$$f (T) = \int_{-\infty}^{+\infty} f (\lambda) \, dE_\lambda \quad (1.3)$$

1In what follows $\sigma (T)$ will denote the spectrum of T. Recall that the residual spectrum of a self-adjoint operator T is empty, so that $\sigma (T) = \sigma_p (T) \cup \sigma_c (T)$, where $\sigma_p (T)$ denotes the point spectrum (the eigenvalues) and $\sigma_c (T)$ the continuous spectrum of T.

for each Borel-measurable function $f(\lambda)$, whose domain

$$D(f(T)) = \left\{ x \in \mathcal{H} : \int_{-\infty}^{+\infty} |f(\lambda)|^2 \, d\|E_\lambda x\|^2 < \infty \right\}$$

is dense in \mathcal{H}. Observe that if T is bounded, $f(T)$ need not be bounded. Moreover, since $\lambda \mapsto E_\lambda$ is constant on the set $\mathbb{R} \setminus \sigma(T)$ of T, an open set in \mathbb{R}, equation (1.1) tells us that $f(\lambda)$ need not be defined on $\mathbb{R} \setminus \sigma(T)$.

Thanks to (1.3) the definition of $\delta(\lambda I - T)$ may be extended to Borel-measurable functions by declaring that the equation (1.1) holds for $(x, y) \in D(f(T)) \times \mathcal{H}$ and each Borel function f. But, by reasons that will become clear later, we shall restrict ourselves to those Borel functions which are continuous at each point of $\sigma_p(T)$. Moreover, working with the real and complex parts, no difficulty arises if the function f involved in the equation (1.1) is complex-valued (except that $f(T)$ is no longer a self-adjoint operator whenever $Im f \neq 0$). Thus, unless otherwise stated, we shall assume that both in (1.1) and (1.3) the function is complex-valued. Note that the complex Stieltjes measure $d(E_\lambda x, y)$ need not be $d\lambda$-continuous. In what follows we shall denote by $B_p(\mathbb{R})$ the linear space over \mathbb{C} consisting of all complex-valued Borel-measurable functions of one real variable which are continuous on $\sigma_p(T)$.

If $f_n \rightarrow f$ in $D(\mathbb{R})$, the sequence $\{f_n\}_{n=1}^{\infty}$ is uniformly bounded and $f_n(x) \rightarrow f(x)$ at each $x \in \mathbb{R}$. So, if T is bounded on \mathcal{H} (equivalently, self-adjoint on the whole of \mathcal{H}) it turns out that $f_n(T) \rightarrow f(T)$ in the strong operator topology [3, 10.2.8 Corollary]. Therefore, in this case $\delta(\lambda I - T)$ is an $L(\mathcal{H})$-valued distribution.

As all integrals considered so far are over $\sigma(T)$, we have

$$\delta(\lambda I - T) = 0 \quad \forall \lambda \notin \sigma(T) \quad (1.4)$$

Also $\delta(-\lambda I + T) = \delta(\lambda I - T)$ for all $\lambda \in \mathbb{R}$. On the other hand, if $\mu \in \sigma_p(T)$ and y is an eigenvector corresponding to the eigenvalue μ, clearly

$$\delta(\lambda I - T)y = \delta(\lambda - \mu)y \quad (1.5)$$

for every $\lambda \in \mathbb{R}$. In the particular case when T_a is the linear operator defined on \mathcal{H} by $T_a x = ax$ for a fixed $a \in \mathbb{R}$, then T_a is a self-adjoint linear operator with $\sigma(T_a) = \sigma_p(T_a) = \{a\}$. In this case $\delta(\lambda I - T_a)x = \delta(\lambda - a)x$ for every $x \in \mathcal{H}$, i.e., $\delta(\lambda I - T_a) = \delta(\lambda - a)I$.

Since equality $\langle f(T)\gamma, y \rangle = \langle y, f(T)x \rangle$ holds for all $x, y \in D(f(T))$ and each $f \in B_p(\mathbb{R})$, we may infer that

$$\langle y, \delta(\lambda I - T)x \rangle = \langle \delta(\lambda I - T)y, x \rangle$$

holds (in a ‘distributional’ sense) for all $x, y \in D(T)$. This suggests that in certain sense $\delta(\lambda I - T)$ may be regarded (possibly for almost all $\lambda \in \mathbb{R}$) as a Hermitian operator on $D(T)$.

Let us also point out that as equation (1.1) holds for all $f \in D(\mathbb{R})$, in a distributional sense we have

$$\frac{d}{d\lambda} \langle y, E_\lambda x \rangle = \langle y, \delta(\lambda I - T)x \rangle \quad (1.6)$$

If $\lambda \mapsto Y(\lambda - \mu)$ denotes the unit step function at $\mu \in \mathbb{R}$, given by $Y(\lambda - \mu) = 0$ if $\lambda < \mu$ and $Y(\lambda - \mu) = 1$ if $\lambda \geq \mu$, since $E_\lambda = Y(\lambda I - T)$ for each $\lambda \in \mathbb{R}$, formally

$$dE_\lambda/d\lambda = Y'(\lambda I - T) \quad (1.7)$$

So, from (1.6) and (1.7) we get $Y'(\lambda I - T) = \delta(\lambda I - T)$.

Proposition 1. If T is a bounded self-adjoint operator on \mathcal{H} and $f \in C^1(\mathbb{R})$, then

$$\int_{-\infty}^{+\infty} f(\lambda) \, \delta'(\lambda I - T) \, d\lambda = -f'(T).$$

The same equality holds if T is unbounded but $f \in D(\mathbb{R})$.

If T is a self-adjoint operator and $f \in B_p(\mathbb{R})$, then

$$\int_{-\infty}^{+\infty} |f(\lambda)|^2 \, \delta(\lambda I - T) \, d\lambda = \int_{-\infty}^{+\infty} |f(\lambda)|^2 \, dE_\lambda,$$

where the latter equality is the definition of $|f(T)|^2$. So, we have the following result.

Proposition 2. If T is self-adjoint and $f \in B_p(\mathbb{R})$, then

$$\langle f(T) y, f(T)x \rangle = \int_{-\infty}^{+\infty} |f(\lambda)|^2 \langle y, \delta(\lambda I - T) x \rangle \, d\lambda$$

for every $x, y \in D(f(T))$.

Proof. We adapt a classic argument. Indeed, for every $x, y \in D(f(T))$ we have

$$\langle f(T) y, f(T)x \rangle = \int_{-\infty}^{+\infty} \langle f(\lambda) \, d\langle f(T)y, E_\lambda x \rangle \rangle.$$

Since $E_\mu E_\lambda = E_\mu$ whenever $\mu \leq \lambda$, and $\langle E_\lambda y, x \rangle$ does not depend on μ, by splitting the integral we get

$$\int_{-\infty}^{+\infty} f(\mu) \, d\langle E_\mu y, E_\lambda x \rangle = \int_{-\infty}^{\lambda} f(\mu) \, d\langle y, E_\mu x \rangle,$$

where clearly the first integral is $\langle f(T)y, E_\lambda x \rangle$. Plugging $d\langle f(T)y, E_\lambda x \rangle$ into (1.8), we are done. □

Corollary 3. Under the same conditions of the previous theorem, the equality

$$\|f(T)x\|^2 = \int_{-\infty}^{+\infty} |f(\lambda)|^2 \langle x, \delta(\lambda I - T) x \rangle \, d\lambda \quad (1.9)$$

holds for every $x \in D(f(T))$.

Proposition 4. If T is self-adjoint and $\{f_n\}_{n=1}^{\infty}$ is a uniformly bounded sequence in $B_p(\mathbb{R})$ such that $f_n \rightarrow f$ pointwise on \mathbb{R} with $f \in B_p(\mathbb{R})$, then $f_n(T)x \rightarrow f(T)x$ for every $x \in D(T)$.

Proof. This is a straightforward consequence of preceding corollary and the Lebesgue dominated convergence theorem. □
This proposition holds in particular if \(f_n \to f \) in \(D(\mathbb{R}) \). Hence, even in the unbounded case, \(\delta (\lambda I - T) \) behaves as a vector-valued distribution-like object.

Proposition 5. Let \((\lambda, \mu) \mapsto g(\lambda, \mu)\) be a function defined on \(\mathbb{R}^2\) such that \(g(\lambda, \cdot) \in L_1(\mathbb{R}) \) for every \(\lambda \in \mathbb{R} \) and \(g(\cdot, \mu) \in B_p(\mathbb{R}) \) for every \(\mu \in \mathbb{R} \). If the parametric integral

\[
f(\lambda) = \int_{-\infty}^{+\infty} g(\lambda, \mu) \, d\mu
\]

is continuous on \(\mathbb{R}\) and makes sense if we replace \(\lambda \) by a self-adjoint operator \(T \), the value of the integral

\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(\lambda, \mu) \delta(\lambda I - T) \, d\mu \, d\lambda
\]

does not depend on the integration ordering.

Proof. Since \(g(\cdot, \mu) \in B_p(\mathbb{R}) \) for every \(\mu \in \mathbb{R} \), one has

\[
g(T, \mu) = \int_{-\infty}^{+\infty} g(\lambda, \mu) \delta(\lambda I - T) \, d\lambda,
\]

which implies

\[
f(T) = \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} g(\lambda, \mu) \delta(\lambda I - T) \, d\lambda \right\} \, d\mu.
\]

On the other hand, by the definition of \(\delta(\lambda I - T) \) we have

\[
f(T) = \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} g(\lambda, \mu) \, d\mu \right\} \delta(\lambda I - T) \, d\lambda,
\]

for \((x, y) \in D(T) \times \mathcal{H}\). So, the proposition follows. \(\square \)

Theorem 6. If \(T \) is a self-adjoint operator on \(\mathcal{H} \), then

\[
\int_{0}^{+\infty} f(\lambda) \delta(\lambda I - T^2) \, d\lambda = \int_{-\infty}^{+\infty} \frac{1}{2\sqrt{\lambda}} \left(\delta\left(\sqrt{\lambda} I - T\right) - \delta\left(\sqrt{\lambda} I + T\right) \right) f(\lambda) \, d\lambda
\]

if \(\lambda > 0 \) and \(f \in B_p(\mathbb{R}) \), both members acting on \(D(T^2) \).

Proof. First note that \(T^2 \geq 0 \). Hence \(\sigma(T^2) \subseteq [0, +\infty) \), which implies that \(\delta(\lambda I - T^2) = 0 \) if \(\lambda < 0 \). Since \(T^2 \) is a self-adjoint operator, for \(f \in B_p(\mathbb{R}) \) we have

\[
\int_{0}^{+\infty} f(\lambda) \delta(\lambda I - T^2) \, d\lambda = f(T^2)
\]

On the other hand, it is clear that

\[
\int_{0}^{+\infty} \frac{f(\lambda)}{2\sqrt{\lambda}} \delta\left(\sqrt{\lambda} I - T\right) \, d\lambda = \int_{0}^{+\infty} f(\mu^2) \delta(\mu I - T) \, d\mu
\]

whereas, using that \(\delta(-\mu I + T) = \delta(\mu I - T) \), we have

\[
\int_{0}^{+\infty} \frac{f(\lambda)}{2\sqrt{\lambda}} \delta\left(\sqrt{\lambda} I + T\right) \, d\lambda = \int_{-\infty}^{0} f(\mu^2) \delta(\mu I - T) \, d\mu
\]

So, the right-hand side of (1.10) coincides with

\[
\int_{0}^{+\infty} f(\mu^2) \delta(\mu I - T) \, d\mu = f(T^2)
\]

since \(\mu \mapsto f(\mu^2) \) is a Borel function.

If we denote by \(L(\mathcal{H}) \) the linear space of all linear endomorphisms on \(\mathcal{H} \), the next theorem summarize some previous results.

Theorem 7. If \(T \) is a densely defined self-adjoint operator on a Hilbert space \(\mathcal{H} \), there is an \(L(\mathcal{H}) \)-valued linear map \(\delta_T \) on \(B_p(\mathbb{R}) \), whose action on \(f \in B_p(\mathbb{R}) \) we denote by

\[
\langle \delta_T, f \rangle = \int_{-\infty}^{+\infty} f(\lambda) \delta(\lambda I - T) \, d\lambda,
\]

such that \(\langle \delta_T, f \rangle = f(T) \). If \(\{f_n\} \subseteq B_p(\mathbb{R}) \) is uniformly bounded and \(f_n(t) \to f(t) \), with \(f \in B_p(\mathbb{R}) \), for all \(t \in \mathbb{R} \) then \(\langle \delta_T, f_n \rangle \to \langle \delta_T, f \rangle \) for all \(x \in \mathcal{H} \). If \(T \) is bounded, \(\delta_T \) is an \(L(\mathcal{H}) \)-valued distribution, so \(\langle \delta_T, f \rangle \) is a bounded operator on \(\mathcal{H} \). In addition \(\delta(\lambda I - T) = 0 \) if \(\lambda \notin \sigma(T) \) and \(\langle y, \delta(\lambda I - T) x \rangle = \langle \delta(\lambda I - T) y, x \rangle \) for \(x, y \in D(T) \).

2 Explicit form of \(\delta(\lambda I - T) \)

If \(Q \) is a vector-valued distribution, the Fourier transform of \(Q \) is defined as the vector valued distribution \(\mathcal{F}Q \) on \(S(\mathbb{R}) \) such that \(\langle \mathcal{F}Q, f \rangle = \langle Q, \mathcal{F}f \rangle \). As usual, we denote by \(\mathcal{F}^{-1} \) the inverse Fourier transform.

Theorem 8. If \(T \) is a self-adjoint operator, the identity

\[
\delta(\lambda I - T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{it(\lambda I - T)} \, dt
\]

holds for every \(\lambda \in \mathbb{R} \), and the action \(f(T) \) of \(\delta(\lambda I - T) \) on \(f \in S(\mathbb{R}) \) is given by

\[
f(T) = \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} \frac{f(\lambda)}{2\pi} e^{it(\lambda I - T)} \, d\lambda \right\} \, dt.
\]

Proof. Setting \(\delta_T(\lambda) = \delta(\lambda I - T) \) observe that

\[
\langle \mathcal{F}\delta_T, f \rangle = \langle \delta_T, \mathcal{F}f \rangle = \int_{-\infty}^{+\infty} \langle f(\lambda) \delta(\lambda I - T) \rangle \, d\lambda = \langle \mathcal{F}f, T \rangle = \int_{-\infty}^{+\infty} f(t) e^{-itT} \, dt.
\]

Indeed, if \(f \in S(\mathbb{R}) \) we have

\[
\langle \mathcal{F}\delta_T, f \rangle = \langle \delta_T, \mathcal{F}f \rangle = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-itT} \, dt.
\]

Consequently

\[
\delta_T = \mathcal{F}^{-1} \left\{ \frac{1}{\sqrt{2\pi}} e^{-itT} \right\}.
\]

Functionally, the action of \(\delta_T \) on \(f \in S(\mathbb{R}) \) by means of equation (2.2) becomes

\[
\langle \delta_T, f \rangle = \left\langle \frac{1}{\sqrt{2\pi}} e^{-itT}, \mathcal{F}^{-1} \langle f \rangle \right\rangle
\]

Consequently, we have

\[
\langle \delta_T, f \rangle = \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} \frac{f(\mu)}{2\pi} e^{it(\mu I - T)} \, d\mu \right\} \, dt
\]

with the order of the integration as stated. \(\square \)
The limit is well-defined since

$$H$$

for small

and the right-hand integral makes no sense (see [4] for a useful

Remark 10. Consider the one-parameter unitary group

$$\{ U(t) : t \in \mathbb{R} \}$$
generated by the self-adjoint operator $$T$$, that is, $$U(t) = \exp(-itT)$$ for every $$t \in \mathbb{R}$$. If $$\mathcal{F}$$ denotes the Fourier transform, equation (2.2) can be written as

$$\delta(\lambda I - T) = \frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1} (U)(\lambda). \quad (2.4)$$

So, equation (2.3) reads as

$$f(T) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left(\mathcal{F}^{-1} f \right)(t) U(t) \, dt. \quad (2.5)$$

In what follows we shall compute the spectral family $$\{E_\lambda : \lambda \in \mathbb{R} \}$$ for some useful self-adjoint operators of Quantum Mechanics by means of the delta $$\delta(\lambda I - T)$$. Nonetheless, although $$E_\lambda = Y(\lambda I - T)$$, the identification

$$Y(\lambda I - T) = \int_{-\infty}^{+\infty} Y(\lambda - \mu) \delta(\mu I - T) \, d\mu$$

might be not well-defined because $$\mu \mapsto Y(\lambda - \mu)$$ has a jump discontinuity at $$\mu = \lambda$$. Indeed, if $$\lambda \in \sigma_p(T)$$ and $$x$$ is an eigenvector corresponding to $$\lambda$$, then

$$\int_{-\infty}^{+\infty} Y(\lambda - \mu) \delta(\mu I - T) \, x \, d\mu = \left\{ \int_{-\infty}^{\lambda} \delta(\mu - \lambda) \, d\mu \right\} x$$

and the right-hand integral makes no sense (see [4] for a useful discussion). If $$\lambda \notin \sigma_p(T)$$ we define

$$E_\lambda = \int_{-\infty}^{+\infty} Y(\lambda - \mu) \delta(\mu I - T) \, d\mu \quad (2.6)$$

If $$\lambda$$ belongs to $$\sigma_p(T)$$, then $$(\mu \mapsto Y(\lambda - \mu)) \notin B_p(\mathbb{R})$$. In order to define $$E_\lambda$$ we enlarge a little the interval of integration by considering the integral

$$\int_{-\infty}^{\lambda + \epsilon} \delta(\mu - \lambda) \, d\mu$$

for small $$\epsilon > 0$$. So, if $$\lambda \in \sigma_p(T)$$ we define

$$E_\lambda = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} Y(\lambda + \epsilon - \mu) \delta(\mu I - T) \, d\mu. \quad (2.7)$$

The limit is well-defined since $$\lim_{\epsilon \to 0^+} E_{\lambda + \epsilon} = E_\lambda$$ pointwise on $$\mathcal{H}$$. In the particular case when $$\lambda$$ belongs to $$\sigma_d(T)$$, the discrete part of $$\sigma_p(T)$$, $$\lambda$$ is isolated in $$\sigma_p(T)$$.

Example 11. The spectral family of the (up to a sign) one-dimensional Quantum Mechanics momentum operator of the free particle $$P = iD$$, where $$D \varphi = \varphi'$$, acting on the Hilbert space $$\mathcal{H} = L_2(\mathbb{R})$$ is given by

$$(E_\lambda \varphi)(x) = \frac{1}{2} \varphi(x) + \frac{1}{2\pi i} \text{p.v.} \int_{-\infty}^{+\infty} \frac{e^{i\lambda(s-x)}}{s-x} \varphi(s) \, ds$$

for every regularly compactly supported $$\varphi \in D(P)$$.

Proof. As is well-known $$P$$ is a self-adjoint operator with $$D(P) = H^{2,1}(\mathbb{R})$$ and $$\sigma_c(P) = \mathbb{R}$$. Since

$$(e^{-itP}\varphi)(x) = (e^{itP}\varphi)(x) = \varphi(x + t)$$

for a regular enough $$\varphi \in D(P)$$, by Corollary 9 we have

$$\{ \delta(\mu I - P) \varphi \}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\mu t} \varphi(x + t) \, dt.$$

Note that the integral of the right-hand side does exist because $$\varphi$$ has compact support.

According to the definition of $$E_\lambda$$ for the continuous spectrum and keeping in mind the order of integration as indicated in Corollary 9, one has

$$\{E_\lambda \varphi \}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} Y(\lambda - \mu) e^{i\mu t} \varphi(x + t) \, d\mu \, dt.$$

So, since

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} Y(\lambda - \mu) e^{i\mu t} \, d\mu = \mathcal{F}(Y)(t) \cdot e^{i\lambda t},$$

bearing in mind the distributional relation

$$\mathcal{F}(Y)(t) = \sqrt{\frac{\pi}{2}} \left(\delta(t) + \frac{1}{i\pi} \text{p.v.} \frac{1}{t} \right),$$

we get

$$\{E_\lambda \varphi \}(x) = \frac{1}{2} \varphi(x) + \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{e^{i\lambda(s-x)}}{s-x} \varphi(s) \, ds$$

where the last integral must be understood in Cauchy’s principal value sense.

Example 12. The spectral family of the one-dimensional Quantum Mechanics kinetic energy term of the free particle, corresponding to the Laplace operator $$T = -D^2$$ on $$\mathcal{H} = L_2(\mathbb{R})$$, where $$D^2 \varphi = \varphi''$$, is given by

$$(E_\lambda \varphi)(x) = \frac{1}{i\pi} \text{p.v.} \int_{-\infty}^{+\infty} \cos(\lambda(s-x)) \frac{1}{s-x} \varphi(s) \, ds$$

for $$\lambda > 0$$ and $$E_\lambda = 0$$ whenever $$\lambda < 0$$, where $$\varphi$$ is a regular function with compact support belonging to $$D(T)$$.

Proof. In this case $$T$$ is a self-adjoint operator with $$\sigma(T) = [0, +\infty)$$. Since $$T = (iD)^2$$, according to (1.10) we have

$$\delta(\lambda I - T) = \frac{1}{2\lambda} \left\{ \delta \left(\sqrt{\lambda} I - iD \right) - \delta \left(\sqrt{\lambda} I + iD \right) \right\}$$
regarded as a functional on $\mathcal{S}(\mathbb{R})$ through $d\lambda$-integration over $[0, +\infty)$. Plugging

$$
(\delta (\mu I \mp iD) \varphi) (x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\mu t} \varphi (x \pm t) \, dt
$$

into the previous expression and keeping in mind the correct order of integration, we see that

$$
\int_{0}^{\infty} f (\lambda) \left(\delta (\mu I - T) \varphi \right) (x) \, d\lambda =
\frac{1}{4\pi} \int_{0}^{\infty} \int_{-\infty}^{+\infty} f (\lambda) \frac{e^{i\sqrt{\mu} t}}{\sqrt{\lambda}} \left[\varphi (x + t) - \varphi (x - t) \right] \, d\lambda \, dt
$$

for every $f \in \mathcal{S}(\mathbb{R})$. By the definition of E_λ if $\lambda > 0$ and the fact that $\delta (\mu I - T) = 0$ whenever $\mu < 0$, we have

$$
(E_\lambda \varphi) (x) = \int_{0}^{+\infty} Y (\lambda - \mu) \left(\delta (\mu I - T) \varphi \right) (x) \, d\mu.
$$

Working out the penultimate integral with μ instead of λ and $f (\mu) = Y (\lambda - \mu)$, we obtain

$$
\int_{0}^{+\infty} \int_{-\infty}^{+\infty} Y (\lambda - \mu) \frac{e^{i\sqrt{\mu} t}}{\sqrt{\lambda}} \left[\varphi (x + t) - \varphi (x - t) \right] \, d\mu \, dt
= \int_{-\infty}^{\infty} \int_{0}^{+\infty} \left\{ \int_{-\infty}^{\lambda} e^{i\sqrt{\mu} t} \, dt \right\} \left[\varphi (x + t) - \varphi (x - t) \right] \, dt
$$

for $\lambda > 0$. So, by setting $u = \sqrt{\mu}$ we get

$$
(E_\lambda \varphi) (x) = \int_{0}^{+\infty} \frac{dt}{2\pi} \left[\varphi (x + t) - \varphi (x - t) \right] \int_{0}^{\lambda} e^{iut} \, du.
$$

Now we have

$$
\frac{1}{\sqrt{2\pi}} \int_{0}^{\lambda} e^{iut} \, du = \left(1 - e^{i\lambda t} \right) F^{-1} (Y) (t),
$$

so, using that $F^{-1} (Y (v)) = F (1 - Y (v)) (t)$ as well as equation (2.8), we get

$$
\frac{1}{\sqrt{2\pi}} \int_{0}^{\lambda} e^{iut} \, du = \left(1 - e^{i\lambda t} \right) \sqrt{\frac{\pi}{2}} \left(\delta (t) - \frac{1}{i\pi} \mathrm{p.v.} \frac{1}{t} \right)
$$

which implies

$$
(E_\lambda \varphi) (x) =
- \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{\varphi (s) \, ds}{s - x} + \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{\cos (\lambda (s - x))}{s - x} \varphi (s) \, ds
$$

where the integrals are understood in Cauchy’s principal value sense.

Example 13. Spectral family of the (up to a sign) one-dimensional Quantum Mechanics momentum operator S for a bounded particle on $\mathcal{H} = L_2 [-\pi, \pi]$ with domain

$$
\{ \varphi \in L_2 [-\pi, \pi] : \varphi' \in L_2 [-\pi, \pi], \varphi (-\pi) = \varphi (\pi) \}
$$

As is well-known this is a self-adjoint operator with discrete spectrum $\sigma (S) = \mathbb{Z}$ whose eigenfunction system $\{ \varphi_n : n \in \mathbb{Z} \}$, with $\varphi_n (x) = (2\pi)^{-1/2} e^{-inx}$, are the solutions of the eigenvalue problem $i \varphi'' = \lambda \varphi$ with $\varphi (-\pi) = \varphi (\pi)$. So, for $\varphi \in D (S)$ we have $E_\lambda \varphi \equiv \sum_{n \in \mathbb{Z}} c_n \varphi_n$ with

$$
c_n = \langle \varphi, \varphi_n \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi (x) e^{inx} \, dx
$$

for every $n \in \mathbb{Z}$. Since $\sigma (S) = \sigma_d (S)$, recalling the definition of the operator E_λ for $\lambda \in \sigma_d (S)$, clearly we have

$$
(E_\lambda \varphi) (x) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} Y (\lambda + \epsilon - \mu) \left(\delta (\mu I - S) \varphi \right) (x) \, d\mu
$$

for every $\lambda \in \mathbb{R}$. So, the fact that E_λ is a bounded operator yields

$$
E_\lambda \varphi = \sum_{n \in \mathbb{Z}} c_n E_\lambda \varphi_n.
$$

Using that $\delta (\mu I - S) e^{-inx} = \delta (\mu - n) e^{-inx}$ and that $Y (\lambda + 0 - n) = Y (\lambda - n)$, we get

$$
(E_\lambda \varphi) (x) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{2\pi}} Y (\lambda - n) e^{-inx} = \sum_{n \in \mathbb{Z}, n \leq |\lambda|} \frac{e^{-inx}}{\sqrt{2\pi}}.
$$

Remark 14. Since in the previous example S is bounded on $\mathcal{H} = L_2 [-\pi, \pi]$, the delta operator $\delta (\lambda I - S)$ should be regarded as a continuous endomorphism as well. In this case

$$
\delta (\lambda I - S) \varphi = \sum_{n \in \mathbb{Z}} c_n \delta (\lambda - n) \varphi_n.
$$

Example 15. The one-dimensional Quantum Mechanics position operator on $L_2 (\mathbb{R})$. This operator is defined on $\mathcal{H} = L_2 (\mathbb{R})$ by $(Q \varphi) (x) = x \varphi (x)$ for every $x \in \mathbb{R}$. Clearly $\sigma_c (Q) = \mathbb{R}$ and $\varphi \in D (Q)$ if $(x \mapsto x \varphi (x)) \in L_2 (\mathbb{R})$. Moreover, it is clear that

$$
\{ \exp (it (\lambda - Q)) \varphi \} (x) = e^{i(\lambda - x)t} \varphi (x).
$$

So we have

$$
(\delta (\lambda I - Q) \varphi) (x) = \delta (\lambda - x) \varphi (x).
$$

Hence, in this case we can write

$$
\{ E_\lambda \varphi \} (x) = \int_{-\infty}^{+\infty} Y (\lambda - \mu) \delta (\mu - x) \varphi (x) \, d\mu
$$

Therefore, if $\lambda \neq x$ we get

$$
\{ E_\lambda \varphi \} (x) = Y (\lambda - x) \varphi (x).
$$

Example 16. Explicit form of $\delta (\lambda I - M)$ for the Hermitian matrix of $\mathcal{H} = \mathbb{C}^3$.

$$
M = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}.
$$
Proof. In this case \(M = PJ_MP^{-1} \) with \(\sigma(M) = \{-1, 2\} \) and
\[
J_M = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{bmatrix}, \quad P = \begin{bmatrix}
1 & 1 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{bmatrix}
\]
Using (2.1) we get
\[
\delta(\lambda I - M) = P \begin{bmatrix}
\delta(\lambda + 1) & 0 & 0 \\
0 & \delta(\lambda + 1) & 0 \\
0 & 0 & \delta(\lambda - 2)
\end{bmatrix} P^{-1}
\]
Let us compute the spectral family and the projection operator onto the eigenspace \(\ker(M + I) \). Clearly
\[
E_\lambda = P \begin{bmatrix}
Y(\lambda + 1) & 0 & 0 \\
0 & Y(\lambda + 1) & 0 \\
0 & 0 & Y(\lambda - 2)
\end{bmatrix} P^{-1}
\]
for every \(\lambda \in \mathbb{R} \). If \(\lambda_1 = -1 \), the orthogonal projection \(P_{\lambda_1} \) onto \(\ker(I + M) \) is
\[
P_{\lambda_1} = \frac{1}{3} P \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} P^{-1} = \frac{1}{3} \begin{bmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{bmatrix}
\]
since \(P_{\lambda_1} = E_{\lambda_1} - E_{\lambda_1 - 0} = E_{\lambda_1} \).

Example 17. Consider a compact self-adjoint operator \(K \) acting on a separable Hilbert space \(\mathcal{H} \) which does not admit the eigenvalue zero. Let \(\{u_i : i \in \mathbb{N}\} \) be a Hilbert basis of \(\mathcal{H} \) with its corresponding sequence of real eigenvalues \(\{\lambda_i : i \in \mathbb{N}\} \), where \(|\lambda_{i+1}| \leq |\lambda_i| \) for every \(i \in \mathbb{N} \). Let us compute the action of the operator \((\lambda I - K)^{-1} \) on any \(x \in \mathcal{H} \) and the operator \(\delta(\lambda I - T) \).

Proof. If \(x \in \mathcal{H} \), we can write \(x = \sum_{i=1}^{\infty} \langle x, u_i \rangle u_i \). Since \((\lambda I - K)^{-1} \) is a bounded operator whenever \(\lambda \not\in \sigma(K) \), we have
\[
(\lambda I - K)^{-1} x = \sum_{i=1}^{\infty} \frac{1}{\lambda - \mu_i} \langle x, u_i \rangle u_i
\]
so we obtain the classic series
\[
(\lambda I - K)^{-1} x = \sum_{i=1}^{\infty} \frac{1}{\lambda - \mu_i} (x, u_i) u_i.
\]
For the solution of the equation \((I - zK) x = y \) with \(z \in \mathbb{C} \), we get the Schmidt series
\[
x = (I - zK)^{-1} y = \sum_{i=1}^{\infty} \frac{1}{1 - z \mu_i} \langle y, u_i \rangle u_i
\]
whenever \(z^{-1} \not\in \sigma(T) \). On the other hand, since \(\delta(\lambda I - K) \) acts on \(\mathcal{H} \) as a continuous endomorphism, equation
\[
\delta(\lambda I - K) x = \sum_{i=1}^{\infty} (x, u_i) \delta(\lambda - \mu_i) u_i.
\]
holds for every \(x \in \mathcal{H} \).

If \(T \) is an unbounded self-adjoint operator then \(D(T) \neq \mathcal{H} \) and \(D(T^n) \) becomes smaller as \(n \) grows. So, the following result, makes sense only if the operator \(T \) is bounded.

Theorem 18. In general, if \(T \) is a bounded self-adjoint operator, one has
\[
\delta(\lambda I - T) = \sum_{n=0}^{\infty} (\mu I - \lambda) n! T^n
\]
which is the Taylor series of \(\delta(\lambda I - T) \) at \(\lambda I \).

Proof. Developing the operator function \(\exp(itT) \), which is well-defined by the spectral theorem, we get
\[
\delta(\lambda I - T) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{-i\lambda t} \sum_{n=0}^{\infty} \frac{(it)^n}{n!} T^n dt,
\]
so that, formally interchanging the sum and the integral, we may write
\[
\delta(\lambda I - T) = \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \mathcal{F}\{(it)^n\}(\lambda) T^n.
\]
Using the fact that
\[
\mathcal{F}\{(it)^n\}(\lambda) = (-1)^n \sqrt{2\pi} \delta^{(n)}(\lambda)
\]
for every \(n \in \mathbb{N} \), we obtain (2.9).

3 The resolvent operator and \(\delta(\lambda I - T) \)

Recall that the spectrum \(\sigma(T) \) of a (densely defined) self-adjoint operator on a complex Hilbert space \(\mathcal{H} \) is a closed subset of \(\mathbb{C} \) contained in \(\mathbb{R} \) (see for instance [9, 3.2]). If \(z \in \mathbb{C} \setminus \sigma(T) \), i.e., if \(z \) is a regular point of \(T \), and
\[
\mathcal{R}(z, T) = (z - T)^{-1}
\]
denotes the resolvent operator of \(T \) at \(z \) (see [7, Definition 8.2]), the function \(\lambda \mapsto (z - \lambda)^{-1} \) is continuous on \(\sigma(T) \). The resolvent is well-defined over \(\mathcal{H} \), so it is a bounded normal operator. If \(z \in \mathbb{C} \setminus \sigma(T) \) then \(\mathcal{R}(z, T) \) is even self-adjoint. From (1.1) it follows that
\[
\mathcal{R}(z, T) = \int_{-\infty}^{+\infty} \frac{1}{z - \lambda} \delta(\lambda I - T) d\lambda
\]
which is the integral form of the resolvent of \(T \). So, by considering the complex-valued function \(f(\lambda) = (z - \lambda)^{-1} \) with \(z \in \mathbb{C} \setminus \sigma(T) \) and using the fact that
\[
\mathcal{F}^{-1}\left(\frac{1}{\lambda - z}\right)(t) = \sqrt{2\pi} i e^{izt} Y(t)
\]
then, according to (2.5), for \(Imz > 0 \) we have
\[
(z - I)^{-1} = -i \int_{0}^{\infty} e^{izt} U(t) dt.
\]
From here, it follows that
\[\mathcal{R} (z, iT) = i \mathcal{R} (iz, -T) = (LU^{-1})(z) \]
if \(Imz > 0 \), where \(\mathcal{L} \) is the Laplace transform. This is the Hille-Yosida theorem which relates the resolvent with the one-parameter group of unitary transformations \(\{ U(t) : t \in \mathbb{R} \} \) generated by the self-adjoint operator \(T \).

If \(T \) is a bounded self-adjoint operator, \(\gamma \) is a closed Jordan contour that encloses \(\sigma(T) \) and \(f(z) \) is holomorphic inside the connected region surrounded by the path \(\gamma \), the Dunford integral formula asserts that
\[\frac{1}{2\pi i} \int_{\gamma} f(z) \mathcal{R}(z, T) \, dz = f(T). \]

In [13] is pointed out that \((2\pi i)^{-1} \mathcal{R}(z, T) \) can be considered as the indicatrix of a vector-valued distribution with values in \(\mathcal{L}(\mathcal{H}) \). Dunford integral formula is easily obtained by using the \(\delta(\lambda I - T) \) operator since, if we apply the Proposition 5 with \(\varphi(\lambda, \mu) = f(z(\mu)) (z(\mu) - \lambda)^{-1} \), where \(z(\mu) = \gamma(\mu) \) and \(0 \leq \mu \leq 1 \), then
\[\int_{\gamma} f(z) \mathcal{R}(z, T) \, dz = \int_{-\infty}^{\infty} \left\{ \int_{\gamma} \frac{f(z)}{z - \lambda} \, dz \right\} \delta(\lambda I - T) \, d\lambda = 2\pi i \int_{-\infty}^{\infty} f(\lambda) \delta(\lambda I - T) \, d\lambda = 2\pi i f(T). \]

Example 19. Derivation of the orthogonal projection operator onto \(\ker(M + I) \) of the Hermitian matrix \(M \) of the Example 16 by the resolvent technique. We must compute
\[P_{\lambda} = \frac{1}{2\pi i} \int_{[\lambda+1]} \mathcal{R}(z, M) \, dz. \]

Clearly, we have
\[\mathcal{R}(z, M) = \frac{1}{z^2 - z - 2} \begin{bmatrix} z - 1 & 1 & 1 \\ 1 & z - 1 & 1 \\ 1 & 1 & z - 1 \end{bmatrix}. \]

Using that
\[\int_{[\lambda+1]} \frac{1, z - 1}{(z + 1)(z - 2)} \, dz = \left\{ \frac{-2\pi i}{3}, \frac{4\pi i}{3} \right\} \]
we reproduce the result we got earlier.

4 The \(\delta(\lambda I - T) \) operator as a limit

As \(\mu \to (\lambda \pm i\epsilon - \mu)^{-1} \) is continuous, for self-adjoint \(T \)
\[((\lambda - i\epsilon) I - T)^{-1} - ((\lambda + i\epsilon) I - T)^{-1} \]
\[= \int_{-\infty}^{\infty} \left(\frac{1}{\lambda - i\epsilon - \mu} - \frac{1}{\lambda + i\epsilon - \mu} \right) \delta(\mu I - T) \, d\mu. \]

If \(f \in \mathcal{D}(\mathbb{R}) \), Proposition 5 yields
\[\int_{-\infty}^{\infty} \frac{f(\lambda)}{2\pi i} \left(((\lambda - i\epsilon) I - T)^{-1} - ((\lambda + i\epsilon) I - T)^{-1} \right) \, d\lambda \]
\[= \frac{1}{\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} \frac{\epsilon}{(\lambda - \mu)^2 + \epsilon^2} \, d\lambda \right\} \delta(\mu I - T) \, d\mu. \]

Since in the sense of distributions
\[\frac{1}{2\pi i} \left(\frac{1}{\lambda - i\epsilon - \mu} - \frac{1}{\lambda + i\epsilon - \mu} \right) \to \delta(\lambda - \mu) \]
as \(\epsilon \to 0^+ \), we have
\[\frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{(\lambda - \mu)^2 + \epsilon^2} \, d\lambda \to \int_{\mathbb{R}} \frac{1}{\lambda - \mu} \, d\lambda \]
as \(\epsilon \to 0^+ \). Hence, if \(g_n \) is defined by the left-hand side \(\mu \)-parametric integral with \(\epsilon = 1/n \), then \(g_n \to f \) pointwise on \(\mathbb{R} \).

Thus, by [3, 10.2.8 Corollary] one has \(g_n (T) \to f(T) \) in the strong operator topology, that is
\[\frac{1}{\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} \frac{1}{\lambda - \mu} \, d\lambda \right\} \delta(\mu I - T) \, d\mu \]
as \(\epsilon \to 0^+ \) in the strong operator topology of \(\mathcal{L}(\mathcal{H}) \). Therefore, if \(T \) is bounded and \(f \in \mathcal{D}(\mathbb{R}) \) then
\[\int_{-\infty}^{+\infty} \frac{f(\lambda)}{2\pi i} \left(((\lambda - i\epsilon) I - T)^{-1} - ((\lambda + i\epsilon) I - T)^{-1} \right) \, d\lambda \]
goes to \(f(T) \) as \(\epsilon \to 0^+ \). This proves that for bounded \(T \)
\[\lim_{\epsilon \to 0^+} \frac{1}{2\pi i} \left(((\lambda - i\epsilon) I - T)^{-1} - ((\lambda + i\epsilon) I - T)^{-1} \right) \]
coincides with \(\delta(\lambda I - T) \) as an \(\mathcal{L}(\mathcal{H}) \)-valued distribution.

5 Unitary equivalence of \(\delta(\lambda I - T) \)

Theorem 20. If \(T \) is a self-adjoint operator defined on the whole of \(\mathcal{H} \), there exist a finite measure \(\mu \) on the Borel sets of the compact space \(\sigma(T) \) and a linear isometry \(U \) from \(L_2(\sigma(T), \mu) \) onto \(\mathcal{H} \) such that
\[U^{-1} \delta(\lambda I - T) U = \delta(\lambda I - Q) \]
where \((Q\varphi)(x) = x\varphi(x) \) is the position operator.

Proof. According to [5] there exist a finite measure \(\mu \) on the Borel sets of the compact space \(\sigma(T) \) and a linear isometry \(U \) from \(L_2(\sigma(T), \mu) \) onto \(\mathcal{H} \) such that
\[(U^{-1}TU) \varphi = Q\varphi \]
for every \(\varphi \in L_2(\sigma(T), \mu) \). So, since \(U^{-1}TU \) is a self-adjoint operator on \(L_2(\sigma(T), \mu) \), we have
\[U^{-1}\delta(\lambda I - T) U = \delta(\lambda I - U^{-1}TU) = \delta(\lambda I - Q) \]
as stated.

Remark 21. For such linear isometry \(U \) the equation
\[(U^{-1}\delta(\lambda I - T) U \varphi)(x) = \delta(\lambda - x) \varphi(x) \]
holds for every \(\varphi \in L_2(\sigma(T), \mu) \).
6 Commutation relations

Let S and T be two self-adjoint operators defined on the whole of \mathcal{H} for which equations $[S, [S, T]] = [T, [S, T]] = 0$ hold. In this case

$$[-iS, [-iS, -isT]] = it^2s [S, [S, T]] = 0$$

and the Baker-Campbell-Hausdorff formula yields

$$\delta (\lambda I - S) \delta (\mu I - T) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it(\lambda + s\mu)} e^{-isT} e^{-i(sT + sT)} ds dt = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it(\lambda + s\mu)} e^{sT} e^{-isT} e^{-i(sT + sT)} ds dt.$$

Likewise, since $[T, [T, S]] = [S, [T, S]] = 0$ one has

$$\delta (\mu I - T) \delta (\lambda I - S) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it(\lambda + s\mu)} e^{sT} e^{-i(sT + sT)} ds dt = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it(\lambda + s\mu)} e^{sT} e^{-i(sT + sT)} ds dt.$$

So, using that

$$\exp \left(\frac{ist}{2} i [S, T] \right) - \exp \left(- \frac{ist}{2} i [S, T] \right) = 2i \sin \left(\frac{ist}{2} [S, T] \right)$$

we have

$$\int_{\mathbb{R}} \sin \left(\frac{ist}{2} [S, T] \right) e^{it(\lambda + s\mu)} e^{-i(sT + sT)} ds dt.$$

For position Q and momentum P of a one-dimensional particle, one has $\mathcal{H} = L_2(\mathbb{R})$ and $[Q, P] = i\hbar I$. Therefore $[Q, [Q, P]] = [P, [Q, P]] = 0$ and

$$\int_{\mathbb{R}} \sin \left(\frac{st}{2} [S, T] \right) e^{it(\lambda + s\mu)} e^{-i(sT + sT)} ds dt.$$

According to Theorem 8, if $\delta (\lambda I - S), \delta (\mu I - T)$ acts on $f (\lambda) = \lambda$, formally we have

$$\int_{-\infty}^{+\infty} \lambda \left[\delta (\lambda I - S), \delta (\mu I - T) \right] d\lambda = \frac{i}{2\pi^2} \int_{\mathbb{R}} \sin \left(\frac{ist}{2} [S, T] \right) e^{it\lambda} d\lambda.$$

and integrating by parts, it follows that

$$\int_{-\infty}^{+\infty} \lambda \left[\delta (\lambda I - S), \delta (\mu I - T) \right] d\lambda = -\frac{i}{2\pi} \left[S, T \right] \int_{-\infty}^{+\infty} se^{is(\mu I - T)} ds.$$

Observe that a second application of equation (6.1) and a second integration by parts yield

$$\int_{-\infty}^{+\infty} \lambda \mu \left[\delta (\lambda I - S), \delta (\mu I - T) \right] d\lambda d\mu = -\frac{i}{2\pi} \left[S, T \right] \int_{-\infty}^{+\infty} se^{isT} \left\{ \int_{-\infty}^{+\infty} \mu e^{is\mu} d\mu \right\} ds = \left[S, T \right] \int_{-\infty}^{+\infty} \delta (s) \left[1 - isT \right] e^{-isT} ds = [S, T]$$

as expected.

7 A remark on the Stone formula

Let T be a self-adjoint operator densely defined on a Hilbert space \mathcal{H}. If A is a Borel set in $\sigma (T)$, defining

$$E (A) := \int_{-\infty}^{+\infty} \chi_A (\lambda) \, dE (\lambda)$$

(7.1)

where χ_A stands for the characteristic function of A (which is a bounded Borel function), then E is an $\mathcal{L} (\mathcal{H})$-valued finitely additive and pointwise countably additive measure (i.e., countably additive under the strong operator topology of $\mathcal{L} (\mathcal{H})$) on the σ-algebra \mathcal{A} of Borel subsets of $\sigma (T)$. So, if the characteristic function χ_A of A with respect to \mathbb{R} is continuous on $\sigma (T)$ then

$$E (A) = \int_{-\infty}^{+\infty} \chi_A (\lambda) \delta (\lambda I - T) \, d\lambda.$$

For $-\infty < a < b < \infty$ and $\epsilon > 0$, we have

$$\int_a^b \left\{ \int_{-\infty}^{+\infty} \left(\frac{1}{\lambda - i\epsilon - \mu} - \frac{1}{\lambda + i\epsilon - \mu} \right) \delta (\mu I - T) \, d\mu \right\} d\lambda$$

$$= \int_{-\infty}^{+\infty} \left\{ \int_a^b \frac{2i\epsilon d\lambda}{(\lambda - \mu)^2 + \epsilon^2} \right\} \delta (\mu I - T) \, d\mu = 2i \int_{\mathbb{R}} \left\{ \arg \tan \left(\frac{b - \mu}{\epsilon} \right) - \arg \tan \left(\frac{a - \mu}{\epsilon} \right) \right\} \delta (\mu I - T) \, d\mu.$$

If the limit as $\epsilon \to 0^+$ the bracketed function is equal to 0 if $\mu \in \mathbb{R} \setminus [a, b]$, equal to π if $a < \mu < b$ and equal to $\pi/2$ if $\mu \in \{a, b\}$. So, if $a, b \notin \sigma_p (T)$ so that $\chi_{(a, b)}$ and $\chi_{[a, b]}$ both belong to $B_p (\mathbb{R})$, setting

$$g_n (\mu) := \frac{1}{\pi} \int_a^b \frac{2i n^{-1} d\lambda}{(\lambda - \mu)^2 + n^{-2}}$$

for each $n \in \mathbb{N}$ and

$$f (\mu) := \chi_{(a, b)} (\mu) + \chi_{[a, b]} (\mu),$$

and $f (\mu)$ is a simple function.

$$\int_{-\infty}^{+\infty} \lambda \left[\delta (\lambda I - S), \delta (\mu I - T) \right] d\lambda = -\frac{i}{2\pi} \left[S, T \right] \int_{-\infty}^{+\infty} se^{is(\mu I - T)} ds.$$
then $g_n(\mu) \to f(\mu)$ for every $\mu \in \mathbb{R}$ and $\sup_{n \in \mathbb{N}} \|g_n\|_\infty \leq 1$ which, according to Proposition 4, implies that $g_n(T)x \to f(T)x$ for every $x \in D(T)$. In other words

$$
\lim_{\epsilon \to 0^+} \frac{1}{2\pi i} \int_{a}^{b} \left((\lambda - i\epsilon - T)^{-1} - (\lambda + i\epsilon - T)^{-1} \right) d\lambda = \frac{1}{2} \int_{-\infty}^{+\infty} \left(\chi_{(a,b)} + \chi_{[a,b]} \right) \delta (\mu - T) \, d\mu,
$$

holds pointwise on the domain $D(T)$ of T. Hence, by virtue of (7.1) we get

$$
\lim_{\epsilon \to 0^+} \frac{1}{2\pi i} \int_{a}^{b} \left((\lambda - i\epsilon - T)^{-1} - (\lambda + i\epsilon - T)^{-1} \right) d\lambda = \frac{1}{2} E((a,b)) + \frac{1}{2} E([a,b]) = E(a,b) + \frac{1}{2} E(a) + \frac{1}{2} E(b)
$$

which is Stone’s formula.

REFERENCES

[1] Dirac, P. A. M., *The Physical Interpretation of the Quantum Dynamics*, Proc. Royal Soc. London 113, 621–641, (1927).

DOI: 10.1098/rspla.1927.0012

[2] Dirac, P. A. M., *The Principles of Quantum Mechanics*, 4th Edition, Clarendon Press, Oxford, 1988.

[3] Dunford, N. and Schwartz, J. T., *Linear Operators. Part II: Spectral Theory*, John Wiley, New York, 1988.

[4] Griffiths, D. and Walborn, S., *Dirac deltas and discontinuous functions*, Am. J. Phys. 67, 446–446, (1999).

[5] Halmos, P., *What does the spectral theorem say?* Amer. Math. Monthly 70, 241–247, (1963).

DOI: 10.1080/00029890.1963.11990075

[6] Horváth, J., *Topological Vector Spaces and Distributions*, Vol. I, Addison-Wesley, Reading, Massachusetts, 1966.

[7] Moretti, V., *Spectral Theory and Quantum Mechanics*, 2nd Edition, Unitext 110, Springer, 2013.

[8] Riesz, F., Nagy, B. Sz.-, *Functional Analysis*, Dover Publications, Mineola, 1990.

[9] Schmüdgen, K., *Unbounded Self-adjoint Operators on Hilbert Space*, Springer, Dordrecht, 2012.

[10] Schwartz, L., *Théorie des distributions à valeurs vectorielles. I*, Anal. Inst. Fourier, 1–141, 7 (1957).

DOI: 10.5802/aif.68

[11] Schwartz, L., *Théorie des distributions à valeurs vectorielles. II*, Anal. Inst. Fourier 8, 1–209, (1958).

DOI: 10.5802/aif.77

[12] Schwartz, L., *Théorie des Distributions*, Hermann, Paris, 1966.

[13] Tillmann, H. G., *Vector-valued distributions and the spectral theorem for self-adjoint operators in Hilbert space*, Bull. Amer. Math. Soc. 69, 67–71, (1963).

DOI: 10.1090/S0002-9904-1963-10862-9