EVIDENCE FOR ORDERED MAGNETIC FIELDS IN THE QUASAR ENVIRONMENT

P. S. UDOMPRAsert, G. B. TAYLor, T. J. PEARSON, AND D. H. ROBERTS

Received 1997 February 20; accepted 1997 April 11

ABSTRACT

While typical extragalactic radio sources display Faraday rotation measures (RMs) of 1–100 rad m$^{-2}$ at arcsecond resolution, OQ 172 is one of only ~20 sources found to have RMs exceeding 1000 rad m$^{-2}$ (Taylor, Inoue, & Tabara 1992; Inoue et al. 1995; Carilli et al. 1997). About half of these are compact steep spectrum (CSS) sources. Those of larger angular extent, for example, Hydra A, Cygnus A, and 3C 295, have been shown by VLA observations to possess ordered RM structure on scales of 1–100 kpc (Dreher, Carilli, & Perley 1989). A spectral index image was made from the total intensity image of Q 172. By applying a constant correction, we preserve the relative angles among the different frequencies, which are of prime importance to this experiment. The four frequencies within the 6 cm band were combined to create a total intensity image of OQ 172 (Fig. 1). Based on compactness, relative strength, and a flat spectrum (see below), we identify the strong northeasternmost component in Figure 1 as the core. At this resolution, OQ 172 shows the typical core and jet structure of a CSS quasar (Dallacasa et al. 1995), but it is slightly unusual in that the jet turns through almost 180°. The jet emission extends from the central core in a west-southwest direction and almost immediately bends southward. About 20 mas south of the core, it turns again, about 90°, and extends to the east. No extended emission has been detected on scales greater than 100 mas (Spencer et al. 1989). A spectral index image was made from the total intensity images at 6 and 20 cm (Fig. 2). The core shows the flattest spectrum ($\alpha = -0.4$). However, because the core and the inner jet are unresolved, it is likely that the core component has an even flatter spectrum. The spectral index of the jet is very steep (typically, $\alpha = -1.2$). This is steeper than the expected value of $\alpha = -0.7$ and is probably caused by a loss of flux at 6 cm owing to a lack of short spacings.

Our 20 cm total intensity image of OQ 172 compares well with one made at 1.66 GHz by Dallacasa et al. (1995) using a global array. A 6 cm image produced by Gurvits et al. (1994), however, is inconsistent with any of the images produced by us or by Dallacasa et al. The Gurvits et al. image is now thought to suffer from calibration errors.

The RM structure of OQ 172 was determined by comparing the four position angle (PA) images in the 6 cm band and determining the change in PA with respect to wavelength squared for each pixel. The resulting RM image, shown in Figure 3 (Plate L1), reveals a distinct difference in RM between the core and the southern jet. Typical RM values at the core are extremely high, ranging from 1000 to 2000 rad m$^{-2}$, with a gradient of about -445 rad m$^{-2}$ mas$^{-1}$ toward the southwestern jet, whereas values in the southern jet area range following the standard procedure (Cotton 1993; Roberts, Wardle, & Brown 1994). A short segment of data from the strongly polarized source 3C 345 (Brown, Roberts, & Wardle 1994) was used for calibration of the polarization angles. A single correction was applied for all 6 cm frequency observations of OQ 172. By applying a constant correction, we preserve the relative angles among the different frequencies, which are of prime importance to this experiment.

1. INTRODUCTION

1 Department of Astrophysics, Princeton University, Princeton, NJ 08544; psu@astro.princeton.edu.
2 NRAO, Box 0, Socorro, NM 87801; gtaylor@nrao.edu.
3 California Institute of Technology, 105-24, Pasadena, CA 91125; tjp@astro.caltech.edu.
4 Department of Physics, MS-057, Brandeis University, Waltham, MA 02254; dhr@vbi.astro.brandeis.edu.
from -200 to -60 rad m$^{-2}$. Figure 4 shows sample fits to the position angle versus wavelength squared for a group of pixels in the region of the core. The fits in the core agree well with a λ^2 law in the core. In the jet, the lower rotation measures yield a much smaller change in position angle, approaching the minimum RM detectable over this frequency range. At 20 cm, we found the inner region to be unpolarized, consistent with depolarization by the large RM gradients seen at 6 cm. The southern and eastern portions of the jet were found to be up to 15% polarized, with RMs of -80 ± 20 rad m$^{-2}$.

The most striking feature of this high-resolution RM image (Fig. 3) is the observed nonuniformity between the inner and outer jet. The lower RMs observed in the outer, southern jet are comparable to RM values obtained from single-dish measurements of nearby objects (Simard-Normandin, Kronberg, & Button 1981) and can thus be explained as being Galactic in origin. However, something particular to the nuclear environment must be producing the high RMs in the inner core and jet of the quasar. In this region, the RMs in the

![Figure 1](image1.png)

Fig. 1. Contour image of OQ 172 at 6 cm with a resolution of 4.2 \times 1.7 mas in position angle -15°. Contour levels are at $-1.7, 1.7, 3.4, 6.8, 14, 27, 54, 109, and 218$ mJy beam$^{-1}$ with negative contours shown as dashed lines. Positions are given in milliarcseconds relative to the strongest component, located at R.A. (J2000) 14h45m16s.465 and decl. (J2000) 09$^\circ$58$'$36.072 (Johnston et al. 1995). This naturally weighted image has a dynamic range of 1700. Overlaid on the contours is the RM-corrected projected magnetic field of OQ 172. A vector length of 1 mas corresponds to a polarized intensity of 10.4 mJy beam$^{-1}$ at 6 cm. The error in the projected magnetic field direction ranges from 10$^\circ$ to 20$^\circ$.

![Figure 2](image2.png)

Fig. 2. Spectral index of OQ 172 between 6 and 20 cm. Since the two frequencies yielded images of different resolutions, the 6 cm image had to be remade with a taper to match the resolution of the 20 cm image. The restoring beam of the total intensity images has dimensions 13.1 \times 6 mas in position angle 0$^\circ$. The gray-scale range is from -2 to 0.5. Contours from the 20 cm image are overlaid at $-5.4, 5.4, 11, 22, 43, 86, 173, 346$, and 691 mJy beam$^{-1}$.

![Figure 4](image4.png)

Fig. 4. Sample fits to the polarization angle vs. wavelength squared in the core region of OQ 172 for the 6 cm frequencies (4612, 4650, 4850, and 5092 MHz). The fits are plotted every 1.2 mas. Fairly good agreement with a λ^2 law is found.

Table 1

Source	Frequency	BW	Δv	Δt	Scan Time	
OQ 172.....	1.506, 1.514, 1.664, 1.672	7	500	4	8.5	94
	4.616, 4.654, 4.854, 5.096	7	500	4	8.5	85
OQ 208.....	1.506, 1.514, 1.664, 1.672	7	500	4	4	40
	4.616, 4.654, 4.854, 5.096	7	500	4	4	40
3C 345.....	1.506, 1.514, 1.664, 1.672	7	500	4	4	4
	4.616, 4.654, 4.854, 5.096	7	500	4	4	4

Notes.—Col. (1): Source name. Col. (2): Observing frequencies in GHz. Col. (3): Total spanned bandwidth in MHz. Col. (4): Channel width output from correlator in kHz. Col. (5): Integration time output from correlator in seconds. Col. (6): Length of each scan in minutes. Col. (7): Total integration time on source in minutes.
rest frame of OQ 172 are 20,000–40,000 rad m$^{-2}$, values that, to our knowledge, are the highest RMs yet observed in any extragalactic source. Since the scale length for these RMs is so small (~ 70 pc), they cannot be explained by the cluster-scale magnetic fields that cause the high RMs in the larger radio galaxies such as Hydra A and Cygnus A. The high RMs observed in OQ 172 thus result from an effect confined to the nuclear region. Here we discuss some of the possible candidates.

3. DISCUSSION

We first consider internal Faraday rotation as the cause of the high observed RMs. In internal Faraday rotation, thermal material is mixed in with the synchrotron-emitting plasma. For a slab model in which the density and magnetic field are homogeneous throughout the source (Burn 1966), the position angle of the polarized flux density, Ψ, follows a wavelength squared law but only between 0° and 90° with discontinuous jumps in Ψ. There is also considerable depolarization, with nulls at the discontinuous changes in polarization angle. Figure 4 shows that for various pixels, Ψ turns through almost 90° without a discontinuity or marked change in the fractional polarization, and we thus rule out internal Faraday rotation.

We now consider a magnetized plasma in the nuclear region, but external to the radio source, as the cause of the RMs observed in the core. For such an external Faraday screen, the rotation measure is given by (Spitzer 1978)

$$\text{RM} = 812 \int_0^L n_e B_0 dl \, \text{rad m}^{-2}, \quad (1)$$

where n_e is the electron density in cm$^{-3}$, B_0 is in mG, and l is in pc. On average, the magnetic field, B, will be larger than the parallel component, B_0, by $3^{1/2}$. If the magnetic field is tangled, then it will be larger by a factor $N^{1/2}$, where N is the number of cells along the line of sight.

Two regions containing thermal gas that could act as a Faraday screen if magnetized are the broad-line region (BLR) and the narrow-line region (NLR) associated with active galactic nuclei. The BLR is thought to have a size of ~ 0.1 pc and magnetic field strengths of perhaps 1 G (Rees 1987). However, the region of high RM in OQ 172 extends over 3 mas, or a projected size of 20 pc. Given the likely inclination of the jet close to the line of sight, this region could be considerably larger. Thus, the BLR is unlikely to produce coherent RMs on the observed scale. The NLR is thought to cover a region of 100–1000 pc albeit with a small volume filling factor ($\epsilon \sim 10^{-3}$ [Osterbrock 1989]). In order to produce a coherent RM on scales of tens of parsecs, the covering factor of the NLR must be close to unity, and the free-free opacity must be sufficiently low that the radio source is not extinguished at cm wavelengths. Free-free opacities for the NLR, with the standard estimates for density of 10^3 cm$^{-3}$ and temperature of 10^4 K, are much less than unity at centimeter wavelengths (Ulvestad, Wilson, & Sramek 1981). The covering factor could be close to unity if the NLR clouds form preferentially in the vicinity of the radio jet (Norman & Miley 1984). If the magnetic field is in pressure equilibrium with the NLR, then its field strength would be 0.6 mG. A RM of 40,000 rad m$^{-2}$ could be produced in a path length of 0.01 pc. Such a short path length is unlikely to produce a coherent RM since variations across the source would result in depolarization. It is more likely that the magnetic fields are not in equipartition—if distributed over 20 pc, the field strengths in the NLR are ~ 0.5 μG.

Alternatively, the NLR clouds could be thermally confined by a more rarefied intercloud region at higher temperature. O’Dea (1989) took a density of 10 cm$^{-3}$, temperature 10^7 K, and size of 100 pc for this intercloud material and, assuming an equipartition magnetic field strength of 1 mG, predicted a RM of 2×10^2 rad m$^{-2}$ toward the cores of quasars. A tangled magnetic field, or a shorter path length through this intercloud region, could produce the RM observed for the core of OQ 172. O’Dea observed much lower RMs of ~ 200 rad m$^{-2}$ for a sample of 15 core-dominated quasars and BL Lac objects. His measurements, however, were based on VLA observations at ~ 150 mas resolution. At this comparatively low resolution, his observations may not reflect the true RM of the core component.

Finally, we ask ourselves what is special about OQ 172? It is possible that we are seeing it along some favorable line of sight or that the magnetic fields of the NLR are enhanced in this source. Few sources, however, have been studied in this way. In fact, the low polarization seen in many quasar cores at 6 cm (Cawthorne et al. 1993) may be the result of depolarization from a Faraday screen. Just recently, multifrequency VLBI polarimetry of the quasar 3C 138 has revealed a RM of -1780 ± 50 within 22 pc from the nucleus, while the jets farther out exhibit low RMs (Cotton et al. 1997). OQ 172 is also similar to other quasars in that, once corrected for rotation measure, the polarized emission appears to follow the curve of the jet (Roberts et al. 1989; Brown, Roberts, & Wardle 1994). RM studies performed to date at arcsecond resolution are in almost all cases dominated by the polarized flux of jets (Roberts et al. 1989). The jets will have lower RMs if they are outside the region of high magnetic fields. The “anomalous” high RM CSS sources discovered in surveys at low resolution may be unusual only in that their cores dominate the integrated polarized density and are therefore detectable in the integrated RM. High-resolution RM measurements of additional sources, especially “typical” quasars, are needed. This technique may lead us to a better understanding of the nuclear environment in AGNs.

One of us (P. S. U.) acknowledges support from a summer research position at NRAO. We acknowledge use of the VLA and VLBA of The National Radio Astronomy Observatory which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, Caltech, under contract with NASA. This research also made use of data from the University of Michigan Radio Astronomy Observatory which is supported by the National Science Foundation and by funds from the University of Michigan. T. J. P. acknowledges support by the NSF under grant AST-9420018. D. H. R. acknowledges support by the NSF under grants AST-9102282 and AST-95-29228.

REFERENCES

Brown, L. F., Roberts, D. H., & Wardle, J. F. C. 1994, ApJ, 437, 108
Burn, B. F. 1966, MNRAS, 133, 67
Carilli, C. L., Röttgering, H., van Ojik, R., Miley, G., & van Breugel, W. 1997, ApJS, 109, 1
Cawthorne, T. V., Wardle, J. F. C., Roberts, D. H., Gabuzda, D. C., & Brown, L. F. 1993, ApJ, 416, 496
Cotton, W. D. 1993, AJ, 106, 1241
Cotton, W. D., Dallacasa, D., Fanti, C., Fanti, R., Foley, A. R., Schilizzi, R. T., & Spencer, R. E. 1997, A&A, in press
Dallacasa, D., Fanti, C., Fanti, R., Schilizzi, R. T., & Spencer, R. E. 1995, A&A, 295, 27
Dreher, J. W., Carilli, C. L., & Perley, R. A. 1987, ApJ, 316, 611
Gurvits, L. I., Schilizzi, R. T., Barthel, P. D., Kardashev, N. S., Kellermann, K. I., Lobanov, A. P., Pauliny-Toth, I. I. K., & Popov, M. V. 1994, A&A, 291, 737
Inoue, M., Tabara, H., Kato, T., & Aizu, K. 1995, PASP, 47, 725
Johnston, K. J., et al. 1995, AJ, 110, 880
Norman, C., & Miley, G. 1984, ApJ, 141, 85
O'Dea, C. P. 1989, A&A, 210, 35
Osmer, P. S., Porter, A. C., & Green, R. F. 1994, ApJ, 436, 678
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)
Perley, R. A., & Taylor, G. B. 1991, AJ, 101, 1623
Rees, M. J. 1987, MNRAS, 228, 47P
Roberts, D. H., Wardle, J. F. C., & Brown, L. F. 1994, ApJ, 427, 718
Roberts, D. H., Wardle, J. F. C., Brown, L. F., Gabuzda, D. C., & Cawthorne, T. V. 1989, in Parsec-Scale Radio Jets, ed. A. Zensus & T. Pearson (Cambridge: Cambridge Univ. Press), 110
Simard-Normandin, M., Kronberg, P. P., & Button, S. 1981, ApJS, 45, 97
Spencer, R. E., McDowell, J. C., Charlesworth, M., Fanti, C., Parma, P., & Peacock, J. A. 1989, MNRAS, 240, 657
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: Wiley)
Taylor, G. B., Barton, E. J., & Ge, J. 1994, AJ, 107, 1942
Taylor, G. B., Inoue, M., & Tabara, H. 1992, A&A, 264, 421
Taylor, G. B., & Perley, R. A. 1993, ApJ, 416, 554
Ulvestad, J. S., Wilson, A. S., & Sramek, R. A. 1981, ApJ, 247, 419
FIG. 3.—False color rotation measure image of OQ 172 at 4 × 2 mas resolution. A pixel was blanked if the error in PA exceeded 20° for any particular frequency. No corrections have been made for the redshift of the observed emission, so if the RMs are being produced in the vicinity of the source, the values in the rest frame of OQ 172 are larger by a factor of (1 + z)^2, or 20. The color bar range is from −1000 to 2500 rad m^-2. Contours are as in Fig. 1.

UDOMPRAERT et al. (see 483, L9)