Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Ochodo EA, Gopalakrishna G, Spek B, Reitsma JB, van Lieshout L, Polman K, Lamberton P, Bossuyt PMM, Leeflang MMG

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2015, Issue 3

http://www.thecochranelibrary.com

WILEY
Table of Contents

Section	Page
HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
BACKGROUND	3
OBJECTIVES	6
METHODS	6
RESULTS	10
Figure 1	11
Figure 2	12
Figure 3	14
Figure 4	15
Figure 5	16
Figure 6	17
Figure 7	18
Figure 8	19
Figure 9	20
Figure 10	21
Figure 11	22
Figure 12	23
Figure 13	25
Figure 14	26
Figure 15	27
Figure 16	28
DISCUSSION	35
AUTHORS’ CONCLUSIONS	38
ACKNOWLEDGEMENTS	38
REFERENCES	39
CHARACTERISTICS OF STUDIES	52
DATA	254
Test 1. Microhaematuria.	255
Test 2. Microhaematuria after treatment.	258
Test 3. CCA POC mansoni trace threshold.	258
Test 4. Proteinuria.	259
Test 5. Leukocyturia.	261
Test 6. CCA POC mansoni +1 threshold.	262
Test 7. CCA POC mansoni with good reference standard.	262
Test 8. CCA POC haematobium.	263
Test 9. CCA POC mixed species.	263
Test 11. Serum CAA ELISA mansoni.	264
Test 12. Serum CAA ELISA haematobium.	264
Test 13. Urine CAA ELISA mansoni.	265
Test 14. Urine CAA ELISA haematobium.	265
Test 15. Serum CCA ELISA mansoni.	265
Test 16. Serum CCA ELISA haematobium.	266
Test 17. Urine CCA ELISA mansoni.	266
Test 18. Urine CCA ELISA haematobium.	267
ADDITIONAL TABLES	267
APPENDICES	269
Figure 17	271
Figure 18	278
Figure 19	280
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Eleanor A Ochodo1,2, Gowri Gopalakrishna1, Bea Spek1,3, Johannes B Reitsma4, Lisette van Lieshout5, Katja Polman6, Poppy Lamberton7, Patrick MM Bossuyt1, Mariska MG Leeflang1

1Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands. 2Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. 3Department of Speech and Language Pathology, Hanz University Groningen, Groningen, Netherlands. 4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands. 5Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands. 6Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. 7Department of Infectious Disease Epidemiology, Imperial College London, London, UK

Contact address: Eleanor A Ochodo, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, 1100 DD, Netherlands. eleanor.ochodo@gmail.com. eochodo@sun.ac.za.

Editorial group: Cochrane Infectious Diseases Group.
Publication status and date: New, published in Issue 3, 2015.
Review content assessed as up-to-date: 30 June 2014.

Citation: Ochodo EA, Gopalakrishna G, Spek B, Reitsma JB, van Lieshout L, Polman K, Lamberton P, Bossuyt PMM, Leeflang MMG. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas. Cochrane Database of Systematic Reviews 2015, Issue 3. Art. No.: CD009579. DOI: 10.1002/14651858.CD009579.pub2.

Background

Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use.

Objectives

To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting active Schistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard.

Search methods

We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014.

Selection criteria

We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only.
Data collection and analysis

Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI).

Main results

We included 90 studies; 88 from field settings in Africa. The median S. haematobium infection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8% to 95%). Study design and conduct were poorly reported against current standards.

Tests for S. haematobium

Urine reagent test strips versus microscopy

Compared to microscopy, the detection of microhaematuria on test strips had the highest sensitivity and specificity (sensitivity 75%, 95% CI 71% to 79%; specificity 87%, 95% CI 84% to 90%; 74 studies, 102,447 participants). For proteinuria, sensitivity was 61% and specificity was 82% (82,113 participants); and for leukocyturia, sensitivity was 58% and specificity 61% (1532 participants). However, the difference in overall test accuracy between the urine reagent strips for microhaematuria and proteinuria was not found to be different when we compared separate populations (P = 0.25), or when direct comparisons within the same individuals were performed (paired studies; P = 0.21).

When tests were evaluated against the higher quality reference standard (when multiple samples were analysed), sensitivity was marginally lower for microhaematuria (71% vs 75%) and for proteinuria (49% vs 61%). The specificity of these tests was comparable.

Antigen assay

Compared to microscopy, the CCA test showed considerable heterogeneity; meta-analytic sensitivity estimate was 39%, 95% CI 6% to 73%; specificity 78%, 95% CI 55% to 100% (four studies, 901 participants).

Tests for S. mansoni

Compared to microscopy, the CCA test meta-analytic estimates for detecting S. mansoni at a single threshold of trace positive were: sensitivity 89% (95% CI 86% to 92%); and specificity 55% (95% CI 46% to 65%); 15 studies, 6091 participants) Against a higher quality reference standard, the sensitivity results were comparable (89% vs 88%) but specificity was higher (66% vs 55%). For the CAA test, sensitivity ranged from 47% to 94%, and specificity from 8% to 100% (4 studies, 1583 participants).

Authors’ conclusions

Among the evaluated tests for S. haematobium infection, microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy.

The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy, but it misclassifies a large proportion of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection, possibly because the test is potentially more sensitive than microscopy.

Plain Language Summary

How well do point-of-care tests detect Schistosoma infections in people living in endemic areas?

Schistosomiasis, also known as bilharzia, is a parasitic disease common in the tropical and subtropics. Point-of-care tests and urine reagent strip tests are quicker and easier to use than microscopy. We estimate how well these point-of-care tests are able to detect schistosomiasis infections compared with microscopy.

We searched for studies published in any language up to 30 June 2014, and we considered the study’s risk of providing biased results.

What do the results say?

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
We included 90 studies involving almost 200,000 people, with 88 of these studies carried out in Africa in field settings. Study design and conduct were poorly reported against current expectations. Based on our statistical model, we found:

- Among the urine strips for detecting urinary schistosomiasis, the strips for detecting blood were better than those detecting protein or white cells (sensitivity and specificity for blood 75% and 87%; for protein 61% and 82%; and for white cells 58% and 61%, respectively).
- For urinary schistosomiasis, the parasite antigen test performance was worse (sensitivity, 39% and specificity, 78%) than urine strips for detecting blood.
- For intestinal schistosomiasis, the parasite antigen urine test, detected many infections identified by microscopy but wrongly labelled many uninfected people as sick (sensitivity, 89% and specificity, 55%).

What are the consequences of using these tests?

If we take 1000 people, of which 410 have urinary schistosomiasis on microscopy testing, then using the strip detecting blood in the urine would misclassify 77 uninfected people as infected, and thus may receive unnecessary treatment; and it would wrongly classify 102 infected people as uninfected, who thus may not receive treatment.

If we take 1000 people, of which 360 have intestinal schistosomiasis on microscopy testing, then the antigen test would misclassify 288 uninfected people as infected. These people may be given unnecessary treatment. This test also would wrongly classify 40 infected people as uninfected who thus may not receive treatment.

Conclusion of review

For urinary schistosomiasis, the urine strip for detecting blood leads to some infected people being missed and some non-infected people being diagnosed with the condition, but is better than the protein or white cell tests. The parasite antigen test is not accurate.

For intestinal schistosomiasis, the parasite antigen urine test can wrongly classify many uninfected people as infected.

BACKGROUND

Target condition being diagnosed

Schistosomiasis, also known as bilharzia, is the second major parasitic disease affecting tropical and subtropical regions after malaria. It is caused by trematode worms of the genus *Schistosoma* (*Gryseels 2012*). The latest estimates show that schistosomiasis is endemic in 76 countries, with 779 million people at risk of infection and approximately 207 million people currently infected. Sub-Saharan Africa accounts for more than 90% of current cases of schistosomiasis (*Engels 2002; WHO 2010; Gryseels 2012*). The global burden of disease in 2004 was estimated at 13 to 15 million disability-adjusted life-years (DALYs) lost as the result of schistosomiasis (*King 2010a*). These estimates could be an underestimate resulting from the low sensitivity of routinely used diagnostic tests (*King 2010a; King 2010b*).

Five main schistosome species are known to infect man (*Schistosoma mansoni*, *S. haematobium*, *S. japonicum*, *S. intercalatum*, and *S. mekongi*), of which *S. mansoni*, *S. haematobium*, and *S. japonicum* have the greatest impact on morbidity (*Gryseels 2006*). The focus of this review will be on diagnosing infection caused by *S. mansoni* and *S. haematobium*, as they are more widespread globally and account for most infections and associated morbidity worldwide. These species cause intestinal schistosomiasis and urogenital schistosomiasis, respectively. As outlined in Appendix 1, urogenital schistosomiasis presents with blood in urine (haematuria), proteins in urine (proteinuria), or white blood cells in urine (leukocyturia). In its chronic form, it presents with major bladder, kidney, and genital pathologies including chronic renal failure. Intestinal schistosomiasis presents with abdominal pain and in its chronic and severe forms can present with enlarged liver (hepatomegaly), abdomen distended with fluid (ascites), and liver failure. Currently, no vaccine is available to protect against schistosomal infection (*Rollinson 2009; Bethony 2011*). If left untreated, schistosomal infection may result in chronic disease. The current drug of choice is praziquantel, which is cheap (costing less than USD 0.15 per treatment) and safe and causes few side effects. Praziquantel however is ineffective against the eggs and larval forms of schistosomiasis.
schistosome worms (Gryseels 2012; Rollinson 2013). Mass praziquan-
etel treatment of populations at risk of infection is now routine in
many endemic areas (WHO 2010; Rollinson 2013). Reinfections
rapidly occur as the result of recurrent direct contact with water
bodies infected with schistosomal parasites (WHO/TDR 2006;
Rollinson 2009; Rollinson 2013). No strong evidence of clinically
relevant drug resistance is available (Geerts 2001; Doenhoff 2002;
Fenwick 2003; Doenhoff 2009; Greenberg 2013). However re-
ports have described heterogeneities in egg reduction rates and
in systematic non-clearers of infection after treatment with praz-
iquantel (Black 2009; Melman 2009; Ahmed 2012). In the long
run, mass treatment has limitations related to cost-effectiveness
(French 2010), poor sustainability (Utzinger 2009), poor drug
compliance by individuals (Guo 2005; Croce 2010), and increased
drug selection pressure (Greenberg 2013).

Accurate and affordable diagnostic tools are essential for providing
targeted treatment and for maximizing the success of control
of schistosomiasis in endemic areas; they are required for moni-
toring drug efficacy as well. Diagnosis of schistosomiasis can be
performed directly or indirectly. Direct methods include detection
of schistosome eggs in urine or stool by microscopy, detection of
chistosome antigens in serum or urine samples, and detection of
Schistosoma-specific DNA in urine, stool, or blood. Indirect meth-
ods include questionnaires, biochemical tests (urine reagent strips
for microhaematuria/proteinuria/leukocyturia), antibody tests, ul-
trasonography, computed tomography (CT) scan, magnetic reso-
nance imaging (MRI) scan, endoscopy, and cystoscopy (Feldmeier
1993; Rabello 1997; Doenhoff 2004; Bichler 2006; Gryseels 2012;
Cavalcanti 2013).

Currently no gold standard is recommended for the detection of
schistosomiasis. Microscopy is the most widely used test for diag-
nosing schistosomiasis and, although imperfect, it is commonly
used as the reference standard in practice. Its sensitivity has been
shown to vary with intensity of infection, prevalence of infection,
sample preparation techniques, stool consistency, and circadian
and day-to-day variation of egg counts in stool and/or urine
(Doehring 1983; Doehring 1985a; Rabello 1992; Feldmeier 1993;
Rabello 1997; van Lieshout 2000; Knopp 2008). This becomes
particularly pertinent as control programmes progress and sensi-
tivity of microscopy decreases as the result of reduced infection in-
tensity. Repeated measurements over multiple days from multiple
samples and/or multiple smears/slides taken from each sample has
been shown to increase sensitivity (Knopp 2008; da Frota 2011;
Siqueira 2011; Deelder 2012); however this task increases the time
taken to perform the survey and therefore becomes logistically
expensive (van Lieshout 2000; Legesse 2007).

Index test(s)

Urine reagent strips and circulating antigen tests are used as alter-
natives to microscopy for diagnosis of schistosomiasis. Compared
with microscopy, urine reagent strips used to detect microhaema-
uria or proteinuria as a proxy for *S. haematobium* infection are
cheap, quick, and easy to use (Mort 1985; Brooker 2009); have
no technical requirements; and are less influenced by the circadian
production of schistosome eggs (Murare 1987; Lengeler 1991b).
Furthermore, some studies have shown that the sensitivity of these
strips is higher than that of urine filtration (French 2007; Robinson
2009), and that a single test with microhaematuria strips is more
sensitive than a single test with urine filtration (Taylor 1990)-fea-
tures that make these strips suitable for screening of urogenital
schistosomiasis in the field. However, results should be interpreted
against the background of risk for schistosomiasis, as well as any
other signs and symptoms that could be indicative of other dis-

eases. Microhaematuria and proteinuria are non-specific signs that
could also result from other ailments such as urogenital infection,
malignancy, immune system disorders, metabolic disorders, and
trauma.

Circulating antigen tests (circulating anodic antigen (CAA) and
circulating cathodic antigen (CCA)) have also been evaluated as
replacements for microscopy in the diagnosis of infection due to *S.
haematobium* or *S. mansoni*. These tests can differentiate between
active and past infections, as the circulating antigens are probably
present only when there is active infection (Doenhoff 2004). As
circulating antigens are released from living worms, antigen levels
may correlate directly with parasite load, whilst microscopy does
not. This may make the CCA POC test useful in monitoring the
dynamics of worm burdens and clearance of worms after treat-
ment (Cavalcanti 2013; Rollinson 2013). However, the sensitiv-
ity of these tests has been shown to vary with prevalence of dis-
ease and intensity of infection (De Jonge 1988; De Jonge 1989;
van Lieshout 1992; De Clerq 1997; Stothard 2006; Ayele 2008;
Obeng 2008; Midzi 2009; Colley 2013).

This review evaluates the urine CCA POC test, urine CCA and
CAA enzyme-linked immunosorbent assay (ELISA), and serum
CCA and CAA ELISA. The urine CCA POC test is a lateral flow
assay that uses a nitrocellulose strip with a monoclonal antibody-
coated test line to detect the presence of *Schistosoma*-specific CCA
antigen in urine. When urine from an infected individual flows
through the strip, the antigen will bind to the test line, which
becomes visible with the binding of added labelled monoclonal
antibodies (van Dam 2004). Of note, the urine CCA POC test
was developed based on the performance of the ELISA format
(Brooker 2009). The urine CCA ELISA was found to have the
best diagnostic performance, followed by the serum CAA assay
for *S. mansoni* (Polman 1995; van Lieshout 1995; van Lieshout
2000). Therefore, although they are not rapid tests, the accuracy
measures of ELISA tests will be systematically assessed, as the
summary measures obtained may guide the ongoing development of
improved POC tests.

So far, a range of accuracy measures have been reported for urine
reagent tests and for circulating antigen tests. Diagnostic and treat-
ment strategies in endemic areas vary with results of these tests
(Appendix 2) and depend on financial and human resource capaci-
Clinical pathway

Patients suspected of having active *S. haematobium* or *S. mansoni* infection in endemic settings.

Prior test(s)

As outlined in Appendix 2, current practice in endemic settings is to use urine reagent strips as a replacement for microscopy or as a triage test (before microscopy), or circulating antigen tests as a replacement for microscopy. In line with practice in disease control programmes, we focus on the role of these tests as alternatives to microscopy. We will not consider prior testing with other tests, as this is rarely done in public health programmes.

Role of index test(s)

We are interested in the following purposes for testing.

- Reagent strips to detect microhaematuria, proteinuria, or leukocyturia as a replacement test for microscopy for *S. haematobium* infection.
- CCA point-of-care test as a replacement test for microscopy for *S. haematobium* or *S. mansoni* infection.

Alternative test(s)

Apart from the two test types mentioned above, a range of other tests can be used to screen for schistosomiasis. However, all are used in different situations and in different circumstances than the tests mentioned above.

Questionnaires have been used for the initial rapid screening for urinary schistosomiasis in high-risk communities in endemic areas (Lengeler 1991a; Feldmeier 1993; Chitsulo 1995). These questionnaires rely on self-reporting of blood in urine. Studies have shown that questionnaires demonstrate moderate to high sensitivities and specificities when used to screen individuals for urogenital schistosomiasis in high-prevalence areas but low sensitivity and specificity in low-prevalence areas (Lengeler 1991a; Lengeler 1991b; Brooker 2009). Questionnaires for intestinal schistosomiasis have been shown to be less sensitive and specific than those for urogenital schistosomiasis (WHO/TDR 2006; Brooker 2009).

Symptoms of intestinal schistosomiasis are associated with many other diseases, which often overlap in range. As co-infection is the norm rather than a rare occurrence, the questionnaires are less specific. The accuracy of questionnaires has been shown to be influenced by age and gender. When questionnaires are used repeatedly in the same area, respondents are prone to give biased answers, as they know the consequences of the answers they give. Thus, recall bias may interfere with the accuracy of the test. Consequently, relying on questionnaires may become ineffective, making this screening method unsuitable even for follow-up of patients after treatment (Ansell 1997; Guyatt 1999; Lengeler 2002). As questionnaires are recommended mainly for initial rapid screening and not for routine screening for schistosomiasis, they will not be evaluated in this review.

Serology tests are alternative tests for the diagnosis of schistosomiasis. These tests detect antibodies against worm antigens, egg antigens (soluble egg antigens (SEAs)), or eosinophil cationic proteins (ECPs) (Reimert 1991; Feldmeier 1993; ITM 2007). Available methods include ELISA, indirect immunofluorescence assay (IFA), and indirect haemagglutination assay (IHA). Antibody tests demonstrate high sensitivity even in areas with light infection and therefore can be used in areas with low endemicity. However, these tests fall short in distinguishing current active infection from past infection, have low specificity in endemic areas because of cross-reactivity with antigens of other helminths, and often show antibody levels that remain elevated after treatment; therefore they yield many false-positive results (Doenhoff 2004; Cavalcanti 2013). Antibody tests may have a role in checking for maintained exposure to schistosomiasis in areas that are moving towards elimination (Rollinson 2013).

The ECP test is an indirect marker of *S. haematobium* infection and related morbidity (Reimert 2000; Vennervald 2004). Other test examples include rectal biopsy (ITM 2007), cystoscopy and endoscopy, radiological methods (Bichler 2006), FLOTAC (a novel faecal egg count technique) (Knopp 2009; Glinz 2010), and molecular tests using polymerase chain reaction (PCR) (Ten Hove 2008; Oliveira 2010; Knopp 2011). However, these tests may be expensive or may require trained laboratory personnel and an elaborate laboratory infrastructure.

Rationale

For improved mapping to ensure effective selective (or targeted) treatment and for accurate data on treatment success with praziquantel, appropriate diagnostic tests are urgently required. When a test for diagnosing schistosomiasis is considered, a test with high sensitivity is paramount, especially when infection is being monitored within a disease control programme. False-negative results lead to missed treatment and subsequently to more advanced disease or, if occurring after praziquantel treatment, may lead to overestimated cure rates and potentially undetected cases of praziquantel resistance and the spread of the disease. High specificity is also required, as unnecessary treatment due to false-positive results could reduce cost-effectiveness in current control programme strategies through potentially inaccurate classification of prevalence levels or in future targeted treatment control programmes (WHO/TDR 2006). On the other hand, a test for mapping of disease (to get an estimate of disease prevalence in an endemic area) may not need sensitivity and specificity as high as those required for monitoring of disease.
There is currently no recommended gold standard for the detection of active schistosomiasis. However, because microscopy is the most commonly used test in practice and is often used as the reference test in studies, we selected it for use as the reference standard within this review to detect S. haematobium and S. mansoni. The primary concern with microscopy is the possibility of missing infected cases (because of its low and varied sensitivity), especially in areas with low intensity of infection. This means that truly infected cases may be missed and misclassified as non-infected by microscopy. Therefore when comparing an index test against microscopy, the number of false-positives (potentially true cases classified as positive by the index test and classified as negative by the reference test) may be high, and the index test may present with low specificity. Increasing the sensitivity of microscopy by taking multiple measurements may reduce the number of true cases wrongly classified as non-infected by microscopy. An index test compared against a more sensitive reference test (microscopy with multiple measurements) may have higher specificity because the number of false-positives will be low. Our review will therefore also investigate the effect of the quality of the reference standard on the sensitivity and specificity of the index tests being evaluated. In this case, a test considered as a replacement for microscopy should have comparable sensitivity or should be less costly, portable, faster, and easier to use or interpret, and it should be less demanding logistically. Point-of-care tests based on circulating antigen detection and biochemical urine reagent strips in particular are being included (or developed) in disease control strategies, as they are easy to use and interpret, require minimal laboratory infrastructure, are cost-effective, reduce patient waiting time and potentially therefore reduce loss to follow-up, and may have comparable or higher sensitivity to microscopy (Loubiere 2010). The results of this review may guide policy makers on appropriate diagnostic tests to use and may help identify research gaps in diagnostic testing for schistosomiasis in endemic areas.

OBJECTIVES

With the goals of making recommendations and informing policy makers on which tests to use and identifying research gaps, these were our primary objectives:

- To obtain summary estimates of the diagnostic accuracy of urine reagent strip tests for microhaematuria, proteinuria, and leukocyturia in detecting active S. haematobium infection, with microscopy of urine as the reference standard.

- To obtain summary estimates of the diagnostic accuracy of circulating antigen tests-a urine POC circulating cathodic antigen (CCA) test, a urine and serum CCA enzyme-linked immunosorbent assay (ELISA) test, and a urine and serum circulating anodic antigen (CAA) test-for detection of active S. haematobium infection in geographical regions endemic for S. mansoni or S. haematobium or both, with microscopy as the reference standard.

- To compare the accuracy of the above index tests.

- To investigate potential sources of heterogeneity in the diagnostic accuracy of the tests listed above.

Secondary objectives

To investigate whether age and gender of participants, positivity thresholds, prevalence of infection, intensity of infection, quality of the reference standard, effects of praziquantel treatment, infection stage, mixed infections, and the methodological quality of included studies can explain observed heterogeneity in estimates of test accuracy.

METHODS

Criteria for considering studies for this review

Types of studies

We included primary observational studies that compared the results of one or more of the index tests versus the reference standard. These studies could be cross-sectional in design, cohort studies, or diagnostic case-control studies with cases and controls sampled from the same patient population. We included studies that provide participant data. Only studies in which true-positives (TPs), true-negatives (TNs), false-positives (FPs), and false-negatives (FNs) were reported or could be extracted from the data were included. We excluded case-control studies with healthy controls, controls from non-endemic areas, or controls with alternative diagnoses (patients with diseases similar to schistosomiasis), as specificity may be overestimated (Rutjes 2005). False-positive test results may occur when an alternative disease produces the same pathophysiological changes as the target condition. We also excluded studies that enrolled only participants with proven schistosomiasis, as sensitivity may be overestimated.

Participants

Participants had to be individuals residing in regions where S. haematobium and S. mansoni infections were endemic. We excluded articles that studied travelers originating from non-endemic countries, as they were typically screened with other tests such as antibody tests.
Index tests
We included studies that evaluated the following tests.

Urine reagent strip tests
A urine reagent strip test is a biochemical semiquantitative test. It is regarded as an indirect indicator of *S. haematobium* infection or morbidity, as it detects microhaematuria, proteinuria, or leukocy turia (white blood cells in urine) that can develop as a consequence of schistosomal infection (Doehring 1985b; Doehring 1988). This test is cheap and easy to use for rapid screening of urinary schistosomiasis (Feldmeier 1993; Gryseels 2006; Gryseels 2012). The results of urine reagent tests used to measure haematuria are scored as 0 (negative), trace-positive (tr), 1+ (5 to 10 erythrocytes/µL), 2++ (10 to 50 erythrocytes/µL), or 3+++ (50 to 250 ery throcytes/µL). For proteinuria, results are scored as 0 (negative), trace-positive (tr), 1+ (30 mg protein/dL), 2++ (100 mg protein/dL), or 3+++ (500 mg protein/dL) (Murare 1987).

Antigen tests
Antigen tests are based on detection of schistosome antigens in the serum and urine of individuals (Gryseels 2006; WHO/TDR 2006; Gryseels 2012). The main circulating antigens are adult worm gut-associated circulating antigens, and CAA and CCA are the main focus of research. The CCA dipstick is scored according to test band reaction intensity as negative (−), trace-positive (tr), single-positive (+), double-positive (++), and triple-positive (+++) (Stothard 2006). ELISA results are continuous, and positivity thresholds may vary. To estimate the accuracy of ELISA tests, ELISA must have been evaluated against the reference standard only.

Target conditions
Active infection with *S. haematobium*.
Active infection with *S. mansoni*.

Reference standards

S. haematobium
For diagnosis of *S. haematobium* infection, the reference standard is microscopy of urine for examination of schistosome eggs. To increase sensitivity, urine samples can be concentrated by sedimentation, filtration, or centrifugation techniques (Gryseels 2006), or more samples can be examined (Feldmeier 1993). We therefore included studies that use all of these concentration techniques, and to estimate the effect of the quality of the reference standard, we accepted studies using microscopy on a single urine sample (lower-quality reference standard) and studies performing microscopy on multiple urine samples (higher-quality reference standard).

S. mansoni
For diagnosis of *S. mansoni* infection, microscopic examination of schistosome eggs in stool is the reference standard. Sensitivity is increased by preparing a faecal thick smear using the Kato-Katz (KK) method (Gryseels 2006) or by examining multiple stool samples (Feldmeier 1993). To estimate the effect of the quality of the reference standard, we accepted studies using microscopy on a single stool sample (lower-quality reference standard) and studies performing microscopy on multiple stool samples (higher-quality reference standard).

It is important to note that some regions experience mixed infections of *S. haematobium* and *S. mansoni*. In such situations, microscopy of both stool and urine samples must be carried out to confirm infection.

Search methods for identification of studies

Electronic searches
We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and HTA (Health Technology Assessment). The MEDLINE search strategy is outlined in Appendix 3. We further translated the MEDLINE search to EMBASE and BIOSIS databases to identify additional records. To avoid missing studies, we did not use a diagnostic search filter. We performed the searches on 12 January 2012 and repeated them on 16 November 2012, 29 August 2013, and 30 June 2014.

Searching other resources
We looked through reference lists of relevant reviews and studies and websites of the World Health Organization (WHO), the Schistosomiasis Control Initiative (SCI), and the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE). When possible, we contacted study authors to request extra information.

Data collection and analysis

Selection of studies
Two independent review authors first looked through titles and abstracts to identify potentially eligible studies. Full-text articles of these studies were obtained and assessed for study eligibility by two independent review authors using the predefined inclusion and exclusion criteria. Disagreements were resolved through discussion and by consultation with a third review author when necessary.
Data extraction and management

Two independent review authors extracted data onto a data extraction form. The following data were extracted.

- Study authors, publication year, and journal.
- Study design.
- Study participants-age, sex.
- Prevalence of schistosomiasis.
- Treatment status of participants with praziquantel-treatment status before study or post treatment.
- Reference standard (microscopy), including number of samples per individual and exact volume of stool/urine examined.
- Index tests-urine and serum circulating antigen tests (CCA and CAA) and urine reagent strips.
- Urine reagent strips-signs measured (microhaematuria, proteinuria, leukocyturia).
- Sample preparation techniques-time of day urine/stool sample was taken, intensity of infection-egg counts in urine and stool by microscopy.
- Presence of missing or unavailable test results.
- Numbers of TPs, FNs, FPs, and FNPs.

Assessment of methodological quality

We used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess risk of bias and concerns for applicability of the included studies (Whiting 2011) (Appendix 4). Disagreements were resolved through consensus or by consultation with a third review author. We extracted data using signalling questions and scored for risk of bias and concerns for applicability under the four main domains: participant selection, index test, reference standard, and participant flow.

Statistical analysis and data synthesis

Comparisons of index test versus the reference standard

We analyzed data for the two target conditions (S. haematobium and S. mansoni) separately. Only one included study (Ashton 2011) evaluated the ability of a test to detect S. haematobium and/or S. mansoni in an area of mixed infection. Among studies reporting sufficient data for calculating sensitivity and specificity, we plotted their sensitivity and specificity in both forest plots and receiver operating characteristic (ROC) space using the software Review Manager 5.2. We performed a meta-analysis using the statistical software SAS version 9.2 for test types that had sufficient data points (four or more data points) to be pooled by the statistical models and those that did not demonstrate substantial heterogeneity in ROC space (Macaskill 2010). These tests included the reagent strip for microhaematuria, the reagent strip for proteinuria, the reagent strip for leukocyturia, the CCA POC test for S. haematobium, and the CCA POC test for S. mansoni.

The statistical model selected to perform the overall meta-analysis depended on the variability of the positivity thresholds, as discussed below. Data for urine reagent strips and urine CCA POC tests were ordinal. These tests are typically scored as 0, trace, 1+, 2+, and 3+, or as 0, 1+, 2+, and 3+.

When data from a test had multiple thresholds, we used the hierarchical summary receiver operating characteristic model (HSROC) to perform the overall meta-analysis. This model estimates the underlying ROC curve, which describes how sensitivity and specificity of the included studies trade off with each other as thresholds vary. It allows for variation in the parameters of accuracy, thresholds between studies, and the shape of the underlying ROC curve (Rutter 2001; Macaskill 2010). Because this method models sensitivity and specificity indirectly, we calculated average sensitivities and average specificities from the output of the model.

When data from a test had one or a common threshold, we used the bivariate random-effects model to perform the overall meta-analysis. This method models sensitivity and specificity directly at a common threshold (Reitsma 2005; Macaskill 2010).

We included all studies in the overall meta-analysis, whether or not a positivity threshold was included. We assumed that different thresholds were used for the studies that did not report their thresholds, and we used the HSROC model to perform the overall meta-analysis. For urine reagent strips for microhaematuria and proteinuria, many studies did not report a positivity threshold (n = 41 for microhaematuria and n = 25 for proteinuria). Some studies (n = 2) provided data points at both thresholds of trace and +1. When data points were provided at both thresholds, we selected the data point at threshold trace for the overall analysis; we selected the first stipulated positivity threshold. Leukocyturia had five overall data points, with four data points at threshold trace and one at +1. The CCA POC for S. haematobium had four overall data points, with two at threshold trace and two at +1.

All studies evaluating CCA POC for S. mansoni reported positivity thresholds; five provided data points at both thresholds trace and +1. When data points were provided at both thresholds, we selected the data point at threshold trace for the overall analysis; we selected the first stipulated positivity threshold. The overall analysis therefore contained 15 data points with threshold ≥ trace, for which we used the bivariate model for meta-analysis.

Comparisons of index tests

We compared the accuracy of the reagent strips for microhaematuria in detecting S. haematobium versus the accuracy of the reagent strips for proteinuria. These were the only tests with sufficient data to enable comparisons between different types of tests. Tests were compared by adding the co-variate test type to the HSROC model and allowing this to have an effect on the accuracy, threshold, and shape parameters. We performed indirect comparisons and direct comparisons; in the latter, we included only studies that applied both index tests in the same individuals.
Investigations of heterogeneity

We investigated heterogeneity by examining the forest plots and statistically by including co-variates in the HSROC or bivariate model, by conducting subgroup analysis, and by performing sensitivity analysis. In the HSROC model, we investigated whether these co-variates affect the parameters of this model—accuracy, threshold, and shape—whereas in the bivariate model, we investigated whether these co-variates affect sensitivity and specificity. We did not investigate the effects of infection stage and mixed infection caused by poor reporting and insufficient data for these items.

We investigated the following sources of heterogeneity: quality of the reference standard, positivity threshold, age, gender (proportion of female participation), intensity of infection, prevalence of infection, effect of praziquantel treatment, and QUADAS-2 risk of bias domains. Of these, the co-variates gender (proportion of female participation) and prevalence of infection were analyzed as a continuous co-variate. The rest were analyzed as categorical co-variates.

We classified studies that used single-measurement microscopy (one stool and/or one slide or smear) and those that did not report how the reference standard was conducted as using lower-quality reference standards because single measurements are more likely to miss diseased individuals. We assumed that studies that used multiple measurements of microscopy were likely to report this, given the relevance of this additional effort. Reference standards that used multiple urine or stool samples or multiple slides or smears were classified as higher-quality reference standards.

For the age co-variate, many mixed adult/children studies did not state the proportions of adults or children. Some did not state the age of participants. As accuracy data were not provided for age subgroups in most studies, we dichotomized the age co-variate into the groups ‘all ages’ and ‘children only’. We assumed that studies that did not state the age had included participants of all ages.

Because the proportions of female and male participants were poorly reported at the test level and at the level of the 2 × 2 tables, we analyzed the co-variate of gender as a continuous variable at the study level. For this co-variate, gender indicated the proportion of female participation. We focused on females because gender may influence accuracy estimates through factors associated with females, such as menstruation and genitourinary tract infection (Hall 1999; French 2007; Brooker 2009).

The World Health Organization (WHO) recommendations (WHO 2002) categorize intensity of infection for *S. haematobium* as follows: < 50 eggs/10 mL (light) and ≥ 50 eggs/10 mL (heavy) and intensity of *S. mansoni* as follows: 1 to 99 eggs per gram (epg) (light), 100 to 399 epg (moderate), and ≥ 400 epg (heavy). In our review, the intensity of infection was reported in different ways (arithmetic mean or range of infection, or geometric mean or range of infection, or proportions of participants with light/moderate/heavy infection) and for most included studies was not reported at all (63% and 65% for microhaematuria and proteinuria, respectively). We used the reported estimates of mean (arithmetic/geometric) or median intensity of infection to classify our studies according to WHO recommendations. We classified as unclear studies that reported only proportions of participants with light/moderate/heavy infections or did not report estimates of intensity of infection.

We examined the effects of treatment with praziquantel on the sensitivity and specificity of the test type microhaematuria because it was the only test with sufficient data to investigate this. Nine studies provided data on praziquantel treatment; seven were follow-up studies with praziquantel given at variable intervals (King 1988_a (one year), NGoran 1989 (one month), Kitange 1993 (one year), Lengeler 1993 (one month), Shaw 1998 (six weeks), Magnussen 2001 (one year), French 2007 (one year)), and two indicated that praziquantel had been given before the baseline study was performed (Abdel-Wahab 1992 (two years), Bogoch 2012 (two years)). When multiple follow-up studies were performed, we selected data for the first follow-up evaluation (Shaw 1998; French 2007). However, pooling of results of all studies with varying time intervals would likely introduce a lot of heterogeneity, bias our summary estimates, and lead to overestimates of sensitivity, because studies with long time intervals were likely to have a greater number of participants reinfected compared with studies done at shorter time intervals. We opted to present estimates of sensitivity and specificity of individual studies evaluating the performance of microhaematuria post treatment in the ROC space.

We added the following co-variates one by one to the HSROC model for microhaematuria and proteinuria and to the bivariate model for CCA POC for *S. mansoni*; quality of the reference standard, age, gender, and prevalence of infection. We then performed a subgroup analysis for the co-variates—quality of the reference standard, age, positivity threshold, and intensity of infection—for all three index tests.

Sensitivity analyses

We performed a sensitivity analysis to check the robustness of results when filtration was used as a concentration for urine microscopy for *S. haematobium*, and to estimate sensitivity and specificity for studies with low risk of bias according to the QUADAS domains, along with participant selection, participant flow, and the reference standard.

Assessment of reporting bias

We did not assess reporting bias. Methods of assessing reporting bias for diagnostic accuracy studies are still being refined. For instance, the Deeks test, a test that has been proposed for use in diagnostic accuracy studies, has low power to detect funnel plot asymmetry, especially when a lot of heterogeneity is present (Macaskill 2010). The studies included in our review showed a lot of het-
ergenecity; therefore assessments for reporting bias may not yield conclusive results.

Results

Results of the search

Our search yielded 17,477 hits. After the titles and abstracts were screened, 152 full texts were retrieved, and after full texts were assessed, 90 articles were deemed suitable for inclusion; 62 were excluded. One study author whom we contacted responded to our request for information, but the data submitted did not meet our eligibility criteria. No additional eligible studies were found through additional searches. This review contains results derived from 90 articles. The search results can be seen in Figure 1.
Figure 1. Study flow diagram.* Reasons for exclusion can be found in the table of Characteristics of excluded studies.

of records identified through database searching
N = 17,477

of additional records identified through other sources
N = 0

of records after duplicates removed
N = 13,085

of titles & abstracts screened
N = 13,085

of abstracts excluded
N = 12,933

of full-text articles assessed for eligibility
N = 152

*# of full-text articles excluded
N = 52

of studies included in qualitative synthesis
N = 90

of studies included in quantitative synthesis
N = 85
Included studies
Details of included studies can be found in the Characteristics of included studies table. We included 90 studies containing 197,411 participants. Of these included studies, 88 were carried out in Africa, one in South America (Surinam), and one in Asia (Yemen). Only one study was conducted in a hospital setting (antenatal clinic, outpatient setting). The other tests were performed in a field setting (village/school/military camp). S. haematobium was evaluated in most studies (n = 74); 16 evaluated S. mansoni. One study evaluated both species. Eighty studies reported the age of study participants; most of these were conducted in children (n = 50; 62.5%). Median prevalence of S. haematobium infection was 41% (range 1% to 89%), and that of S. mansoni infection was 36% (range 8% to 95%). Median female participation was 50% (Q1 46; Q3 53) for studies that reported gender (n = 46; 51%). Most of the included studies (n = 73; 81%) did not report on the status of praziquantel treatment in the study setting before the baseline study was performed. Eighty-one studies used a cross-sectional design; six were cohort studies (longitudinal studies with follow-up), and three were case-control studies with controls from the same population (nested case-control studies). We included 84 English studies and six French studies. One study (Colley 2013), which was retrieved through an updated search, provided recent data for studies retrieved previously (Coulibaly 2011; Shane 2011; Tchuente 2012). In this case, we gathered data for the 2 × 2 tables from the most recent publication (Colley 2013).

Excluded studies
Full details of excluded studies can be found in the Characteristics of excluded studies table. We excluded 62 articles after reading the full texts. We excluded 17 case-control studies with healthy controls or with controls from non-endemic areas of schistosomiasis. We could not extract data from 2 × 2 tables for 16 studies. Twelve studies were not test accuracy studies, and four studies enrolled only patients proven to have schistosomiasis. Six studies used reference standards other than microscopy, four studies used other index tests to diagnose schistosomiasis that did not fulfil our inclusion criteria, and three studies performed similar tests on the same population as those reported by other already included studies.

Methodological quality of included studies
Figure 2 and Appendix 5 show results of the quality appraisal of the 60 included studies. Using the QUADAS-2 tool, we evaluated these studies for risk of bias in the following domains: participant selection, index test, reference standard, and participant flow. In general, poor reporting of quality items hindered our evaluation of quality. We therefore rated the risk of bias for these domains largely as unclear. In the participant selection domain, about 75% of studies were rated as having unclear risk of bias. For index tests, unclear risk of bias ranged from 80% to about 98% (about 98% for reagent strips for microhaematuria, about 95% for reagent strips for proteinuria, and about 80% for CCA POC testing). None of the studies had high risk of bias in the index test domain. For the reference standard, about 50% of the studies had high risk of bias, whereas the other half had unclear risk of bias. For the participant flow domain, about 75% of the studies had low risk of bias, and the remaining studies had unclear risk. Concerns for applicability for all four domains were predominantly low.

Figure 2. Risk of bias and applicability concerns graph: review authors’ judgements about each domain presented as percentages across included studies.
Findings
A summary of the main findings can be found in Summary of findings 1 and Summary of findings 2. Below we present in detail the overall findings for each index test.

Urine reagent strips

For microhaematuria
A total of 74 evaluations of the reagent strip for microhaematuria were performed with a total of 102,447 individuals. All evaluations were conducted in Africa. Median prevalence of *S. haematobium* was 42% (range 1% to 87%), and median female participation was 49% (Q1 49; Q3 53). Most of these evaluations were conducted with a lower-quality reference standard of only one slide/person (n = 63; 85%), and most evaluations were carried out in mixed populations of adults and children (n = 40; 54%). These evaluations were described in articles published between the years 1979 and 2014; a large proportion (n = 43; 58%) were published between 1979 and 1999. Over these four decades, no clear pattern was evident for effects of year of study on sensitivity and specificity of microhaematuria (see forest plot in Appendix 6). However, the forest plot shows greater heterogeneity for sensitivity compared with specificity.

A large range of test brands were used to estimate the sensitivity and specificity of microhaematuria, as shown in Appendix 7. Most evaluations (n = 25; 34%) were performed with the brand from the manufacturer Ames.

The forest plot (Figure 3) and the HSROC curve (Figure 4) for the reagent strip for microhaematuria reveal heterogeneity for estimates of both sensitivity and specificity.
Figure 3. Forest plot of sensitivity and specificity of the urine reagent strip for microhaematuria. Squares represent sensitivity and specificity of one study, the black line its confidence interval.
Figure 4. Summary ROC plot of sensitivity versus specificity of the urine reagent strip for microhaematuria. The size of the points is proportional to the study sample size. The solid line shows the summary ROC curve.

Meta-analytical sensitivity and specificity (95% confidence interval (CI)) of data at mixed thresholds were 75% (71% to 79%) and 87% (84% to 90%).

For proteinuria
A total of 46 evaluations of the reagent strip for proteinuria were performed with a total of 82,113 individuals. All evaluations were conducted in Africa. Median prevalence of *S. haematobium* was
51% (range 4% to 89%), and median female participation was 50% (Q1 46; Q3 53). Most of these evaluations were conducted with a lower-quality reference standard (n = 36; 78%), and most were carried out in mixed populations of adults and children (n = 28; 61%). These evaluations were described in articles published between the years 1979 and 2014; the largest proportion (n = 27; 59%) were published before the year 2000. Over these four decades, no clear pattern was evident for effects of year of study on sensitivity and specificity of proteinuria (see forest plot in Appendix 8).

A large range of test brands were used to estimate the sensitivity and specificity of proteinuria, as shown in Appendix 9. Most evaluations (n = 17; 37%) were performed using the brand from the manufacturer Ames. The forest plot (Figure 5) and the HSROC plot (Figure 6) for the reagent strip for proteinuria reveal greater heterogeneity for estimates of sensitivity than specificity. Meta-analytical sensitivity and specificity (95% CI) of data at mixed thresholds were 61% (53% to 68%) and 82% (77% to 88%).

Figure 5. Forest plot of sensitivity and specificity of the urine reagent strip for proteinuria. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Figure 6. Summary ROC plot of sensitivity versus specificity of the urine reagent strip for proteinuria. The size of the points is proportional to the study sample size. The solid line shows the summary ROC curve.

For leukocyturia

A total of five evaluations of the reagent strip for leukocyturia were performed with data from four publications and a total of 1532 individuals. Of these evaluations, two were carried out with a higher-quality reference standard (40%). Median prevalence of *S. haematobium* was 34% (range 4% to 77%), and median female participation was 100% (Q1 68; Q3 100). All evaluations except one were conducted in Africa in mixed populations of adults and children. These evaluations were described in articles published between the years 1992 and 2000; most (n = 3) were published before the year 2000. Two different test brands were evaluated. Most evaluations (n = 3; 60%) were done using the Nephur-test from Boehringer Mannheim. The forest plot (Figure 7) and the HSROC plot (Figure 8) for the reagent strip for leukocyturia reveal greater heterogeneity for estimates of specificity than sensitivity. The ROC plot also reveals poor accuracy of the test, as most study points lie close to the diagonal line. Meta-analytical sensitivity and specificity (95% CI) of data at mixed thresholds were 58% (44% to 71%) and 61%
Figure 7. Forest plot of sensitivity and specificity of the urine reagent strip for leukocyturia. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Abdel-Wahhab 1992	48	20	98	260	0.32 [0.25, 0.41]	0.93 [0.89, 0.98]		
Gunderson 1996	37	160	45	45	0.77 [0.50, 0.84]	0.25 [0.19, 0.30]		
Poggenburg 2010_settingA	4	52	3	76	0.67 [0.16, 0.93]	0.65 [0.30, 0.61]		
Poggenburg 2010_settingB	38	32	29	28	0.57 [0.44, 0.69]	0.48 [0.35, 0.61]		
Rasendranino 1988	238	30	102	67	0.57 [0.52, 0.61]	0.76 [0.69, 0.83]		
Urine CCA POC test

For S. haematobium

A total of four evaluations of the CCA POC test for S. haematobium were performed on data derived from four publications with a total population of 901 individuals. Median prevalence of S. haematobium was 40% (range 31% to 48%), and median female participation was 47% (Q1 40; Q3 51). Most of these evaluations were conducted with a lower-quality reference standard (n = 3; 75%). All evaluations were conducted in Africa. All evaluations included data from children only. These evaluations were described in articles published between the years 2008 and 2011. Four different test brands were evaluated.

Forest plots (Figure 9) and ROC plots (Figure 10) for this test reveal a high degree of heterogeneity for estimates of both sensitivity and specificity. The ROC plot also reveals poor accuracy of the test, as the study points lie close to the diagonal line. Meta-analytical
sensitivity and specificity (95% CI) of data at mixed thresholds were 39% (6% to 73%) and 78% (55% to 100%).

Figure 9. Forest plot of the sensitivity and specificity of the urine CCA POC test for *S. haematobium*. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Study	TP	FP	FN	TN	Prevalence	Ref/Std	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Ashton 2011	28	45	45	153	Moderate	No	0.37 [0.26, 0.49]	0.75 [0.72, 0.78]		
Meri 2009	80	23	78	78	Moderate	Yes	0.78 [0.70, 0.86]	0.44 [0.36, 0.53]		
Ayele 2008	51	39	47	83	Moderate	No	0.52 [0.42, 0.63]	0.64 [0.54, 0.73]		
Stothard 2010a	4	2	42	102	Moderate	No	0.06 [0.02, 0.21]	0.88 [0.83, 1.01]		
Figure 10. Summary ROC plot of sensitivity versus specificity of the urine CCA POC test for S. haematobium. The size of the points is proportional to the study sample size. The solid line shows the summary ROC curve.
For *S. mansoni*

A total of 15 evaluations of the CCA POC test for *S. mansoni* were performed on data derived from 13 publications with a total population of 6091 individuals. Median prevalence of *S. mansoni* was 36% (range 8% to 68%), and median female participation was 49% (Q1 48; Q3 51). Most of these evaluations were conducted with a lower-quality reference standard (n = 10; 67%). All evaluations were conducted in Africa, and all except one included data from children only. These 15 evaluations were described in articles published between the years 2007 and 2014. Two different test brands were evaluated: Rapid Diagnostic Tests from Pretoria South Africa and Schistosomiasis One Step Test from EVL Holland, as shown in Appendix 10. Most evaluations (n = 9) were performed using the Rapid Diagnostic Tests from South Africa. The forest plot for this test reveals greater heterogeneity for estimates of specificity versus estimates of sensitivity (Figure 11). Meta-analytical sensitivity and specificity (95% CI) of data at a threshold ≥ trace positive were 89% (86% to 92%) and 55% (46% to 65%) (Figure 12).

Figure 11. Forest plot of sensitivity and specificity of the urine CCA POC test for *S. mansoni*. Squares represent the sensitivity and specificity of one study, the black line its confidence interval. Colley 2013 was a study that included data for 5 studies (done in different countries). Some of the studies had been published earlier (Coulibaly 2011, Erko 2013, Shane 2011, Tchuente 2012). In this case, we used data from Colley 2013, which provided the most recent and updated data.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Adhikari 2014 Setting A	8	42	2	59	0.75 [0.66, 0.87]	0.54 [0.44, 0.66]
Adhikari 2014 Setting B	49	62	6	72	0.67 [0.74, 0.59]	0.47 [0.38, 0.55]
Adhikari 2014 Setting C	63	75	3	63	0.59 [0.68, 0.59]	0.41 [0.33, 0.50]
Adu 2013	64	53	9	151	0.69 [0.76, 0.59]	0.74 [0.67, 0.80]
Colley 2013_Uganda	114	159	11	178	0.61 [0.65, 0.56]	0.47 [0.42, 0.52]
Coulibaly 2013_Colley2013	278	42	39	249	0.83 [0.84, 0.91]	0.96 [0.61, 0.99]
Coliubaly 2013_HK	52	104	6	62	0.93 [0.90, 0.99]	0.44 [0.37, 0.52]
Erko 2012_Colley 2013	306	103	23	168	0.83 [0.90, 0.99]	0.65 [0.59, 0.70]
Legesse 2007	130	50	21	43	0.86 [0.80, 0.91]	0.41 [0.31, 0.51]
Legesse 2008	55	65	12	52	0.82 [0.71, 0.93]	0.44 [0.35, 0.54]
Naverabaham 2012	149	161	34	255	0.81 [0.75, 0.87]	0.53 [0.48, 0.56]
Shane 2011_Colley 2013	231	66	39	33	0.87 [0.92, 0.91]	0.56 [0.53, 0.56]
Shane 2010	118	44	1	10	0.89 [0.95, 1.00]	0.19 [0.09, 0.31]
Stothard 2006	116	26	24	105	0.83 [0.76, 0.90]	0.31 [0.73, 0.97]
Tchuente 2012_Colley2013	41	31	9	57	0.82 [0.66, 0.91]	0.65 [0.54, 0.75]
Figure 12. Summary ROC plot of sensitivity versus specificity of the urine CCA POC test for *S. mansoni*. The size of the points is proportional to the study sample size. The thick black point shows the average value for sensitivity and specificity. The inner ellipse around the black spot represents the 95% confidence regions around the summary estimates. The outer ellipse represents the prediction region.
For mixed infection
One study assessed the capability of the POC test to detect schistosomiasis in an area of mixed *S. haematobium* and *S. mansoni* infection. This evaluation was conducted in Africa (Southern Sudan) in children only and was published in 2011. The brand used was Rapid Diagnostic Tests from Pretoria, South Africa. The sensitivity of the test was 66%, and the specificity was 79%. No meta-analysis was performed for this test because of insufficient data.

CCA ELISA test

Serum
A total of five evaluations of the serum CAA test for *S. mansoni* were performed on data derived from four publications (total population 1583, years of publication 1995 to 1998). Median prevalence of *S. mansoni* was 93% (range 28% to 96%), and median female participation was 49% (Q1 49; Q3 51). All of these evaluations were conducted using relatively higher-quality reference standards (n = 5; 100%). All were in-house assays, and one study involved only children. Sensitivity of the serum CAA ELISA for *S. mansoni* ranged from 47% to 94%, and specificity ranged from 8% to 100% (Appendix 11). The ROC plot (Appendix 12) reveals a lot of scatter of the estimates of sensitivity and specificity provided by the included studies.

A total of three evaluations of the serum CAA test for *S. haematobium* were performed on data derived from three publications (total population 990, years of publication 1995 to 1999). Median prevalence of *S. haematobium* was 38% (range 18% to 57%). Only one study provided data on gender proportions (female participation was 54%). Two of the three evaluations were conducted using a higher-quality reference standard (67%). All were in-house assays, and all were carried out in mixed populations of adults and children. Sensitivity of the serum CAA test for *S. haematobium* ranged from 55% to 97%, and specificity ranged from 24% to 57% (Appendix 13; Appendix 14).

Urine
Only one evaluation of the urine CAA test for *S. mansoni* was performed on data derived from one publication (total population 204, year of publication 1995). This was an in-house assay and was done on data obtained from a mixed population of adults and children. Sensitivity of this test was 10%, and specificity was 99%. Only one evaluation of the urine CAA test for *S. haematobium* was performed on data derived from one publication (total population 370, year of publication 1999). This in-house assay was performed on data obtained from a mixed population of adults and children. Sensitivity of this test was 16%, and specificity was 94%.

CCA ELISA test

Serum
Two evaluations of the urine CCA test for *S. mansoni* were performed on data derived from two publications (total population 569, year of publication 1995). Both were in-house assays performed on data obtained from a mixed population of adults and children. Sensitivity of this test ranged from 36% to 85%, and specificity was 50% to 93% (Appendix 15). Only one evaluation of the urine CCA test for *S. haematobium* was performed on data derived from one publication (total population 370, year of publication 1999). This in-house assay was performed on data obtained from a mixed population of adults and children. Sensitivity of this test was 3%, and specificity was 90%.

Urine
Two evaluations of the urine CCA test for *S. mansoni* were performed on data derived from two publications (total population 560, year of publication 1995). Both were in-house assays, and neither involved children only. Sensitivity of this test ranged from 62% to 97%, and specificity from 27% to 84% (Appendix 16). Only one evaluation of the urine CCA test for *S. haematobium* was performed on data derived from one publication (total population 370, year of publication 1999). This in-house assay did not involve children only. Sensitivity of this test was 78%, and specificity was 70%.

Comparisons of accuracy between reagent strips for microhaematuria and proteinuria

Results of comparisons between microhaematuria and proteinuria are outlined in the Summary of findings 1. We first compared accuracy in all studies (indirect comparisons); we then limited the comparison to paired studies (direct comparisons). No statistically significant difference between the accuracy of microhaematuria and that of proteinuria was observed when the tests were compared in different populations using all studies (P = 0.25) (Figure 13). This can be demonstrated in the ROC curve showing the curves of tests as close together and crossing. The difference in accuracy also was not statistically significant when the tests were directly compared in the same individuals (P = 0.21) (Figure 14). A statistically significant difference in the threshold parameter was noted when the tests were compared in different populations using all
studies (P < 0.0001), and when the tests were directly compared in the same individuals (P = 0.0009). This could imply that one test has a different operating threshold when compared with the other, and although overall accuracy is not statistically significantly different, sensitivity and specificity may be different under field circumstances.

Figure 13. Summary ROC plot of sensitivity versus specificity showing the indirect comparison between microhaematuria and proteinuria (all studies). The solid lines show the summary ROC curves.
Figure 14. Summary ROC plot of sensitivity and specificity showing the direct comparison between microhaematuria and proteinuria (paired studies). Study points of microhaematuria and proteinuria from the same study are joined by a dotted line. The solid lines show the summary ROC curves.
Investigations of heterogeneity

Co-variates in the models
The co-variates quality of reference standard, age, gender (% female participation), prevalence of infection, and intensity of infection were added to the HSROC model. We investigated whether these co-variates affect the parameters of the HSROC model, that is, accuracy, threshold, and shape.

For the reagent strip for microhaematuria, the co-variates age (P = 0.002) and gender (% female participation) (P = 0.02) had statistically significant effects only on the threshold parameter of the HSROC model.

For the reagent strip for proteinuria, the co-variates quality of reference standard (P = 0.01) and prevalence of infection (P value 0.007) had statistically significant effects on the accuracy parameter. Accuracy was higher with the higher-quality reference standard and in settings with higher prevalence. Other co-variates did not have a statistically significant effect on any of the other parameters of the HSROC model.

For CCA POC used to detect *S. mansoni*, no co-variate had a statistically significant effect on sensitivity or on specificity.

Subgroup analysis
Table 1, Table 2, and Table 3 outline the results of subgroup analyses on the tests microhaematuria, proteinuria, and CCA POC for *S. mansoni*. When these tests were evaluated against the higher-quality reference standard (ie when multiple samples were analyzed), sensitivity was lower for microhaematuria (71% vs 76%) and proteinuria (49% vs 68%) than with a lower-quality reference standard. Specificity of these tests was lower for microhaematuria (85% vs 87%) but higher for proteinuria (83% vs 78%). In contrast, sensitivity was similar (88%) and specificity was higher for the CCA POC test for *S. mansoni* (66% vs 55%) when measured against a higher-quality reference standard in comparison with a lower-quality reference standard.

Microhaematuria and proteinuria had higher sensitivity (77% vs 73% and 67% vs 56%) in children than in mixed populations of adults and children. Specificity was higher for microhaematuria (91% vs 82%) but was comparable for proteinuria (81% vs 82%) in children compared with mixed populations of adults and children. All except one study of CCA POC for *S. mansoni* were carried out with children. At a positivity threshold \(\geq 1 \), sensitivity of CCA POC for *S. mansoni* was lower (72% vs 89%) and specificity higher (85% vs 55%) than at a positivity threshold of trace positive. In the light-intensity subgroup, sensitivity was slightly lower for microhaematuria (73% vs 75%) and specificity slightly higher (88% vs 87%) compared with results of the overall analysis. In contrast, sensitivity (60% vs 61%) and specificity (83% vs 82%) for proteinuria were comparable. Data were insufficient to permit estimation of the sensitivity and specificity of CCA POC for *S. mansoni* in light-intensity settings.

The forest plot (Figure 15) and the ROC plot (Figure 16) demonstrating sensitivity and specificity for microhaematuria after praziquantel treatment show a lot of variation in the estimates (predominantly for sensitivity) of the individual studies.

Figure 15. Forest plot of sensitivity and specificity of the urine reagent strip for microhaematuria for studies done after treatment with praziquantel. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.
Figure 16. Summary ROC plot of sensitivity and specificity of the urine reagent strip for microhaematuria for studies done after treatment with praziquantel. The size of the points is proportional to the study sample size.
Sensitivity analysis

For microhaematuria, when the analysis was limited to studies that used filtration only as the concentration method for urine microscopy, sensitivity (73% (69% to 78%) vs 76% (72% to 80%)) was lower and specificity was comparable (86% (82% to 89%) vs 86% (82% to 89%)) with those produced by the overall analysis. For proteinuria, when the analysis was limited to studies that used filtration only as the concentration method for urine microscopy, sensitivity was comparable (62% (52% to 71%) vs 61% (53% to 69%) and specificity was lower (80% (73% to 86%) than those produced by the overall analysis (83% (77% to 88%)) (Table 1; Table 2; Table 3).

Sensitivities and specificities of microhaematuria were comparable when analysis was limited to studies with low risk of bias for the participant flow domain. Sensitivity of proteinuria was higher when limited to studies with low risk of bias for the participant selection domain (64%) and the participant flow domain (67%). Specificity on the other hand was comparable for these two domains. Sensitivity and specificity of CCA POC for *S. mansoni* were comparable when limited to studies with low risk of bias for the participant flow domain (Table 1; Table 2; Table 3). Data were insufficient to allow estimation of sensitivity and specificity for studies with low risk of bias in the other domains-reference standard and participant selection-for the CCA POC test for *S. mansoni*.

As part of post hoc analyses, we noted that three evaluations showed substantial heterogeneity for the tests microhaematuria (Aryeetey 2000; sensitivity 55%, specificity 36%), proteinuria (Aryeetey 2000; sensitivity 38%, specificity 11%), and CCA POC for *S.mansoni* (Standley 2010; sensitivity 99%, specificity 19%). We excluded these evaluations in sensitivity analyses for the respective tests and found the following results. Results for microhaematuria (sensitivity 75%, specificity 87%) and proteinuria (sensitivity 61%, specificity 82%) were similar to those of the overall analysis. For CCA POC for *S. mansoni*, sensitivity was comparable (88% vs 89%) and specificity was slightly higher (58% vs 55%) compared with those of the overall analysis.
Summary of findings

What is the diagnostic accuracy of circulating antigen tests and biochemical urine reagent strips in detecting *S. haematobium* infection?

Patients/Population	People residing in areas endemic for *S. haematobium* infection (74 out of 90 studies)
Prior treatment with praziquantel before baseline study	Yes (6 studies), No (11 studies), Unclear (57 studies)
Prior testing	None
Settings	Field settings (villages and schools) and 1 outpatient clinic in Africa
Index tests	Circulating cathodic antigen test (CCA)
Circulating anodic antigen test (CAA)	
Urine reagent strips to detect microhaematuria, proteinuria, and leukocyturia	
Reference standard	Urine microscopy
Importance	These tests are being used as replacements for conventional microscopy in disease control programmes for schistosomiasis, as they are rapid, are easier to use and interpret, and may have comparable sensitivity to microscopy. As control programmes gain impetus and infection intensities decrease, higher sensitivities become a prerequisite for future diagnostics
Studies	Cross-sectional (n = 62), cohort (n = 6), and case-control studies with controls from same population (n = 3)
Quality concerns	Poor reporting of participant characteristics, index test and reference standard methods, and intensity of infection were common concerns. The risk of bias assessment for most included studies was largely unclear for the QUADAS domains Patient Selection, Index Tests, and Reference Tests

Test types

Test types	Number of evaluations	Summary estimates (95% CI)	In 1000 people tested			
			Infected cases	Missed cases (FNs)	False-positives (FPs)	All positives (TPs + FPs)
			S. haematobium			

Copyrigh © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Biochemical urine reagent strips	Sens	Spec	Number of evaluations	Number of differences in overall accuracy
For microhaematuria	75%	87%	102	77
	(71% to 79%)	(84% to 90%)	384	
For proteinuria	61%	82%	160	106
	(53% to 68%)	(77% to 88%)	356	
For leukocyturia	58%	61%	172	230
	(44% to 71%)	(34% to 88%)	468	

Circulating cathodic antigen test (CCA)	Sens	Spec	Number of evaluations	Number of differences in overall accuracy
Urine POC test	39%	78%	250	94
	(6% to 73%)	(55% to 100%)	254	

Comparisons

Comparison	Comparison type	Number of evaluations and differences in overall accuracy	Explanation
Microhaematuria vs proteinuria	All studies	74 microhaematuria vs proteinuria, difference in accuracy (P = 0.25)	We found no evidence of a statistically significant difference in overall accuracy when microhaematuria and proteinuria are carried out and compared
			Proteinuria would be expected to miss 14% more cases than microhaematuria
			Proteinuria would be expected to falsely identify 5% more cases than microhaematuria
We found no evidence of a statistically significant difference in overall accuracy when microhaematuria and proteinuria are carried out and compared in the same individuals.

Studies were insufficient to provide summary estimates for the CAA tests. When the tests were evaluated against the higher-quality reference standard (i.e., when multiple samples were analyzed), sensitivity was lower for microhaematuria (71% vs 76%) and proteinuria (49% vs 61%) in comparison with a lower-quality reference standard. The specificity of these tests was comparable.

In light-intensity settings, sensitivity was slightly lower for microhaematuria (73% vs 76%) and specificity was slightly higher (88% vs 86%) compared with results of the overall analysis. In contrast, sensitivity (60% vs 61%) and specificity (83% vs 83%) for proteinuria were comparable.

Microhaematuria and proteinuria had higher sensitivity (77% vs 73% and 67% vs 56%) in children than in mixed populations of adults and children. Specificity was higher for microhaematuria (91% vs 82%) but specificity was comparable for proteinuria (81% vs 82%) in children compared with mixed populations of adults and children.

For the effects of risk of bias, sensitivities and specificities of microhaematuria were comparable when limited to studies with low risk of bias for the participant flow domain. Sensitivity of proteinuria was higher when limited to studies with low risk of bias for the participant selection domain (64%) and the participant flow domain (67%). Specificity on the other hand was comparable for these 2 domains.

Abbreviations: TPs (true-positives), FPs (false-positives), FNs (false-negatives).
What is the diagnostic accuracy of circulating antigen tests for *S. mansoni* infection?

Patients/Population	People residing in areas endemic for *S. mansoni* infection (16 out of 90 studies)
Prior treatment with praziquantel before baseline study	Yes (1 study), No (5 studies), Unclear (10 studies)
Prior testing	None
Settings	Field settings (villages, schools, and military camp) in Africa and South America
Index tests	Circulating cathodic antigen test (CCA)
Circulating anodic antigen test (CAA)	
Reference standard	Stool microscopy

Importance

These tests are being used as replacements for conventional microscopy in disease control programmes for schistosomiasis, as they are rapid, are easier to use and interpret, and may have comparable sensitivity to microscopy. As control programmes gain impetus and infection intensities decrease, higher sensitivities become a prerequisite for future diagnostics.

Study types	Cross-sectional studies
Quality concerns	Poor reporting of participant characteristics, index test and reference standard methods, and intensity of infection were common concerns. The risk of bias assessment for most included studies was largely unclear for the QUADAS domains Patient Selection, Index Tests, and Reference Tests

Test types	Number of evaluations	Summary estimates (95% CI)	In 1000 people tested
			Infected cases
S. mansoni	Missed cases		
(FNs)	False-positives		
(FPs)	All positives		
(TPs + FPs)			
Circulating cathodic antigen test (CCA)	33		
Studies were insufficient to provide summary estimates for CAA tests. When measured against a higher-quality reference standard, sensitivity of CCA POC for *S. mansoni* was comparable (88% vs 88%) but specificity was higher (66% vs 55%) than when measured against a lower-quality reference standard. At a positivity threshold ≥ 1, sensitivity of CCA POC for *S. mansoni* was lower (72% vs 87%) and specificity higher (85% vs 61%) than at a positivity threshold of trace-positive. Data were insufficient to estimate the sensitivity of CCA POC for *S. mansoni* in light-intensity settings. For the effects of risk of bias, sensitivity and specificity of CCA POC for *S. mansoni* were comparable when limited to studies with low risk of bias for the participant flow domain. Abbreviations: TPs (true-positives), FPs (false-positives), FNs (false-negatives).

DISCUSSION

Summary of main results

This review focused on analyzing the accuracy of urine reagent strips for the diagnosis of *S. haematobium* and of circulating antigen tests for the detection of *S. haematobium* and *S. mansoni* infections. Microscopy was used as the reference standard, and 90 studies were found to fit our inclusion criteria; data from these studies were used in this review. The main results, including average sensitivities and specificities for tests included in the meta-analyses, are reported in Summary of findings 1 and Summary of findings 2.

Most of the studies included in our overall meta-analyses used a ‘lower-quality reference test’: microhaematuria 81%, proteinuria 73%, leukocyturia 60%, circulating cathodic antigen point-of-care (CCA POC) for *S. haematobium* 75%, and CCA POC for *S. mansoni* 81%. This implies that infections missed by single-sample microscopy may have increased the number of false-positives identified by the index tests, consequently leading to lower estimates of specificity.

Our overall analyses suggest that among the tests used to detect *S. haematobium*, the urine reagent strip for microhaematuria detects the largest proportion of schistosome infections identified by microscopy (sensitivity 75%); it also detects the largest proportion of non-infections identified by microscopy (specificity 87%). Proteinuria follows suit, with sensitivity of 61% and specificity of 82%.

The superior performance of microhaematuria over proteinuria was not statistically significant when the comparison was performed both indirectly (using all studies) and directly (using paired studies) within the HSROC model. When measured against a higher-quality reference standard (multiple measurements), microhaematuria had both lower sensitivity (71% vs 75%) and lower specificity (85% vs 87%) than were seen with a lower-quality reference standard. Proteinuria on the other hand, when measured against a higher-quality reference standard, had lower sensitivity (49% vs 61%) and higher specificity (82% vs 78%) versus a lower-quality reference standard. Increasing the sensitivity of microscopy by taking multiple measurements may reduce the number of true cases wrongly classified as non-infected by microscopy. An index test compared against a more sensitive reference test (higher quality) may have higher specificity because the number of false-positives will be low. The lower specificity for microhaematuria may be due in part to poor reporting of how the reference standard was conducted in some studies.

Our results suggest that the urine reagent strip when used to detect leukocyturia is limited by low sensitivity (58%) and specificity (61%) and is not useful in practice. The low sensitivity for leukocyturia could be explained by the variations in morbidity caused by *S. haematobium*. Not all infected people have leukocyturia; therefore the proportion of false-negatives is higher. The CCA POC test has very low sensitivity (39%) to detect *S. haematobium* and specificity of 78% and may not be suitable for mapping or estimation of infection, because it misses very many infections identified by microscopy.

The CCA POC test for *S. mansoni* detected a large proportion of infections identified by microscopy (sensitivity 89%). However, it also detected a lower proportion of the non-infected cases identified by microscopy (specificity 55%). The low specificity can be explained by the fact that most studies in the overall analyses were measured against a lower-quality reference standard. When compared with a higher-quality reference standard, the CCA POC test had comparable sensitivity (88%) but higher specificity (66%). Arguably, if the reference standard had been even better, this specificity might have increased further.

As studies were insufficient, we were unable to generate summary estimates for the circulating antigen enzyme-linked immunosorbent assay (ELISA) tests (CCA and circulating anodic antigen (CAA)). Estimates of sensitivity and specificity from the included studies evaluating these tests ranged widely.

Results of our assessment of risk of bias of the included studies were largely unclear because of poor reporting of items in these studies.

Application of the meta-analysis to a hypothetical cohort

Summary of findings 1 and Summary of findings 2 apply the results of the meta-analyses to a hypothetical cohort of 1000 individuals suspected of having active *S. haematobium* and/or active *S. mansoni* infection in a field setting. We illustrate the impact of using microhaematuria, proteinuria, leukocyturia, and CCA POC for *S. haematobium* in a setting with a prevalence of *S. haematobium* infection of 41%, and the impact of using CCA POC for *S. mansoni* in a setting with a prevalence of *S. mansoni* infection of 36%. These are the estimates of median prevalence of infection obtained from all studies included in this review.

Delivery of population-based control programmes such as treatment with praziquantel requires knowledge of prevalence estimates of schistosomal infections (Colley 2014). This helps the clinician in determining whether mass drug treatment should be administered in settings of very high prevalence, or targeted treatment in settings of low prevalence. We have included descriptions of the performance of these tests in estimating the prevalence (index test positives (TP + FP)) of *S. haematobium* and *S. mansoni* infections.

S. haematobium infection

If the point estimates of the tests for *S. haematobium* are applied to a hypothetical cohort of 1000 individuals suspected of having active *S. haematobium* infection, among whom 410 actually have the infection, the strip for microhaematuria would be expected to
miss (102) and falsely identify (77) the least number of cases. This test would identify 384 positive cases in total. For the other tests (in increasing order of missed cases): The strip for proteinuria would be expected to miss 160 cases and to falsely identify 106 cases; proteinuria would be expected to miss 14% more cases than microhaematuria and to falsely identify 5% more cases than microhaematuria; leukocyturia would be expected to miss 172 cases and to falsely identify 230 cases; and the CCA POC test would be expected to miss 250 cases and to falsely identify 130 cases. In total, the strips for proteinuria, leukocyturia, and the CCA POC test would identify 356, 468, and 254 positive cases, respectively.

Overall, when infection is mapped, the prevalence of microhaematuria would seem to be 38%-close to the true prevalence of 41%. The prevalence of proteinuria would seem to be 36%, that of leukocyturia 47%, and that of CCA POC 25%. In cases of mass treatment, the ultimate consequences of these numbers would depend on the minimal prevalence needed to start mass treatment.

S. mansoni infection

If the point estimates for the CCA POC test are applied to the same hypothetical cohort of 1000 individuals suspected of having active *S. mansoni* infection, among whom 360 actually have the infection, the CCA POC test would be expected to miss 40 cases and to falsely identify 288 cases. In total, the test would identify 608 positive cases (for an observed prevalence of 61%).

Comparison with other reports

The absence of a suitable gold standard for active schistosomiasis is reflected in the existing literature, where different reference standards are used with subsequent variation in accuracy (especially with specificity) of the index test (Koukounari 2009; Coulibaly 2011; Tchuente 2012; Colley 2013; Erko 2013; King 2013; Lodh 2013; Sousa-Figueiredo 2013).

A meta-analysis was recently published that assessed the accuracy of urine reagent strips for microhaematuria against conventional microscopy as a reference standard (King 2013). Unlike King’s review, our review also estimated the accuracy of other urine reagent strips for proteinuria and leukocyturia. To guide decision making, it is important to show which of these tests fares better. Our analyses suggest that microhaematuria has higher sensitivity than proteinuria and leukocyturia.

Compared with results from King’s meta-analysis (King 2013), our estimate of sensitivity for microhaematuria was lower (75% vs 81%) but specificity was comparable (87% vs 89%). This difference may be attributed to the method of meta-analysis used. King used the HSROC regression following a Bayesian Monte Carlo Markov chain approach (Dendukuri 2012), and we used the HSROC model recommended in the *Cochrane Handbook for Systematic Reviews of Interventions* (Macaskill 2010). With regard to sources of heterogeneity, some of our results are also comparable with those of King 2013. For instance, King found through multi-variable regression modelling that the urine heme dipstick performed better in children than in mixed populations of adults and children (Relative diagnostic odds ratio = 3.16). In our review, we found that sensitivity and specificity were higher in studies on children compared with studies on mixed populations of adults and children. We strongly confirm that this test is therefore highly suitable for mass mapping of school-aged children in endemic areas. Again our analyses show that sensitivity of the urine heme dipstick was slightly lower in settings of low intensity (73%) compared with that of the overall estimate (75%). This finding was similar to the findings of King, which showed that sensitivity of the urine heme dipstick was lower in settings of lower infection intensity (65%) in the subgroup analysis than in the overall analysis (81%). However it should be noted that our definition of light intensity differed from that used by King. We selected the more commonly used World Health Organization (WHO) recommended cutoff of < 50 eggs per 10 mL, whereas King defined low intensity as ≤ 100 eggs/10 mL. This could explain in part why our sensitivity estimates were higher than those of King in settings of light intensity.

A key difference between our review and that of King 2013 concerned the effects of treatment on the estimate of sensitivity of the heme dipstick. In a subgroup of eight studies with mixed post-treatment evaluations of one year (n = 6), six months (n = 1), and one month (n = 1), King’s review produced a lower summary estimate of sensitivity (72%) in the subgroup analysis than in the overall analysis (81%). However it should be noted that our definition of light intensity differed from that used by King. We opted not to pool the estimates of studies, as this would likely produce biased overestimates of sensitivity and specificity. Studies with long time intervals were likely to include greater numbers of participants reinfected compared with studies carried out at shorter time intervals, and their results may be confounded by repeated treatments provided by national programmes.

A recently published multi-centre evaluation of CCA POC tests done in five African countries (Colley 2013) recommended that the CCA POC test for *S. mansoni* (evaluated with a positivity threshold ≥ trace positive) was a sufficiently sensitive and specific tool for mapping intestinal schistosomiasis in moderate- to high-prevalence areas, and therefore it was a viable alternative to microscopy (Colley 2013). After acknowledging the absence of a gold standard, this multi-centre study used latent class analysis (modelling results from CCA POC, Kato-Katz, and PCR) to generate an overall estimate of 86% sensitivity and 72% specificity of the CCA POC based on data from 4405 school-age children. Using microscopy only (KK) as the reference standard, our review, which incorporated all include study results along with findings of
additional studies, produced a comparable summary estimate of 89% sensitivity but a lower summary estimate of 55% specificity at a threshold of trace positive. Differences in specificity could be explained by the reference standard and indicate that some of the false-positives identified by CCA POC are indeed likely to be true infections that are not detected by standard microscopy. Few studies have fully evaluated the accuracy of the circulating antigen ELISA tests (CCA and CAA). The serum CAA ELISA test is currently being converted to a point-of-care format for *S. mansoni* (Corstjens 2008) and *S. haematobium* (van Dam 2013) with promising results of analytical sensitivity and specificity. In our review, sensitivity of the included studies evaluating the serum CAA ELISA test for *S. mansoni* ranged widely from 47% to 94%, and specificity ranged widely from 8% to 100%. Sensitivity of the included studies evaluating the serum CAA ELISA test for *S. haematobium* ranged from 55% to 97%, and specificity was low, ranging from 24% to 57%. However, the studies included in our review were carried out before the year 2000 with in-house tests. The tests currently being developed are most likely improved versions; therefore additional studies analyzing the clinical sensitivity and specificity of the serum ELISA tests are needed for conclusive determination of whether they are suitable for the diagnosis of active schistosomiasis.

Strengths and weaknesses of the review

Strengths

We have evaluated the accuracy of POC tests currently in use and tests that have recently been transformed into POC tests for detection of active schistosomiasis in endemic areas. This makes our review relevant to current practice. To avoid missing studies, we did not use a search filter, and we did not limit our search by publication year or language; also to limit bias, data extraction was performed by two people independently.

Weaknesses

Choice of the reference standard

In light of the absence of a suitable gold standard for active schistosomiasis and the presence of other proposed alternative reference standards, evaluation of index tests with only microscopy as the reference standard may be considered a shortcoming of our review. However because microscopy remains the most commonly used test and therefore reference test, we wanted our review to be applicable to current practice. Our review provides better insight into the proportion of cases detected and the proportion of cases misclassified by urine reagent strips and CCA POC tests when microscopy is used as the reference standard. A more reliable way of evaluating whether an index test can replace microscopy would be to compare the accuracy of microscopy, urine reagent strips, and circulating antigen tests against other proposed reference standards in the same set of participants (direct comparison studies). A few studies have compared the accuracy of one or more KK smears and CCA POC against a reference standard comprising six or more KK smears (Coulibaly 2011; Tchuente 2012; Erko 2013) or against PCR as the reference test (Lodh 2013) (see comparisons in Appendix 17). All of these studies have shown the CCA POC test to be more sensitive but less specific than single or double KK. More direct comparative studies and reviews are needed to reliably confirm this finding and to identify sources of variation in results.

Quality of included studies

Poor and inconsistent reporting of participant characteristics such as clinical status of participants, intensity of infection, administration of praziquantel treatment, and conduct of the study limited our investigations of sources of heterogeneity and risk of bias assessment. In our review, the reporting of intensity of infection was unclear (reported in different ways (arithmetic mean or range of infection or geometric mean or range of infection or proportions with light/moderate/heavy infections) or not reported at all) for a large proportion of the included studies (microhaematuria 44%, proteinuria 42%, and CCA POC 45%). It was therefore difficult to effectively investigate its influence on the accuracy of the evaluated tests. It was also a challenge to fully investigate the effects of praziquantel treatment on the accuracy of the evaluated tests because 82% of the studies did not report the treatment status of participants before the start of the study. The effects of intensity of infection and the effects of praziquantel treatment on the accuracy of diagnostic tests for schistosomiasis are currently an important concern for national control programmes, particularly as praziquantel treatments progress, with subsequent decreases in infection intensities. Indeed, in areas where the force of infection and associated morbidity have been greatly reduced, some programmes are beginning to focus on elimination. It is therefore of vital importance that highly sensitive tests are used for monitoring, and that highly sensitive and specific tests are used in efficacy studies before and after treatment.

Applicability of findings to the review question

Our concern about the applicability of the included studies to our review question was low, as assessed by QUADAS-2. As all but one study were carried out in Africa, and all but one study were conducted in field settings, our results are highly applicable for use in endemic communities for which disease control programmes are often targeted. However, one area that may limit the applicability of our findings to the review question is our investigation into sources of heterogeneity such as effects of praziquantel treatment and risk of bias assessment on the accuracy estimates of evaluated
tests. As discussed earlier, poor and inconsistent reporting limited this investigation. In light of the ongoing disease control programmes, fully showing any variation in test accuracy associated with effects of praziquantel treatment would be useful for policy makers. Knowing the risk of bias of included studies would also help in objective assessments of the strength of the evidence. Study authors therefore are encouraged to use the Standards for Reporting of Diagnostic Accuracy Studies (STARD) guidelines (Bossuyt 2003) in reporting the design and conduct of their studies.

AUTHORS’ CONCLUSIONS

Implications for practice

Among the tests evaluated for S. haematobium infection, microhaematuria has detected the largest proportion of infections and non-infections identified by microscopy. This test could continue to serve as a replacement test for microscopy for initial mapping or estimation of S. haematobium infection, particularly in endemic areas with moderate to high prevalence of infection.

The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy but misclassifies many microscopy-negatives as positives in endemic areas with moderate to high prevalence of infection. This may occur because the test is potentially more sensitive than microscopy. Nevertheless, healthcare workers should interpret the results with care when using this test for initial mapping or estimation of S. mansoni infection, as some of the positives may still be false-positives, in particular when trace-positive is used as the threshold.

Besides assessment of the accuracy of a test, the choice of a suitable diagnostic test should be made in light of cost and logistical considerations. Costs for microscopy (USD per examination, 0.3 for a single thick KK smear) (Cavalcanti 2013) and for reagent strips for microhaematuria (USD 0.32) (Legesse 2008) are comparable, but the strips are easier to use and interpret and therefore are not logistically challenging in field settings. The CCA POC tests are more costly (USD 2.6 per examination) (Cavalcanti 2013) but are rapid and easy to use and interpret, are highly portable, and require fewer technical personnel than microscopy; they are also suitable for field screening and diagnosis.

Implications for research

As control programmes progress with expected subsequent decreases in prevalence and intensity of infection, we highlight the importance of additional primary research conducted to identify a suitable clinical reference standard for active schistosomiasis.

Additional studies comparing the accuracy of microscopy, circulating antigen tests, and urine reagent strips versus other proposed reference standards are needed if a suitable replacement for microscopy in practice is to be reliably recommended.

Further studies to identify other sensitive tests to detect active S. haematobium and S. mansoni infections and further evaluations of the CAA test as a future POC test for serum or urine are also needed.

For suitable tests to be reliably recommended for monitoring effects of praziquantel treatment in disease control programmes, additional follow-up studies are required to evaluate the effects of praziquantel treatment on intensity of infection and accuracy of urine reagent strips and circulating antigen tests.

Further research on cost-effectiveness of diagnostic tests in areas of different endemicity is also needed, as cost is a key deciding factor in resource-limited settings.

Finally, authors of primary test accuracy studies should be encouraged to use the STARD guidelines when reporting the design and conduct of their studies. This will enable systematic reviewers to better synthesize the data and to draw conclusions on risk of bias in studies of test accuracy.

ACKNOWLEDGEMENTS

We thank René Spijker, MSc (Dutch Cochrane Centre, University of Amsterdam), for assisting in the development of the search strategy of this project.
References to studies included in this review

Abdel-Wahab 1992 [published data only]
Abdel-Wahab MF, Esmat G, Ramzy I, Fouad R, Abdel-Rahman M, Yosery A, et al. [Schistosoma haematobium infection in Egyptian schoolchildren: demonstration of both hepatic and urinary tract morbidity by ultrasonography]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1992; 86:406–9.

Abdel-Wahab 2000 [published data only]
Abdel-Wahab MF, Esmat G, Ramzy I, Narooz S, Medhat E, Ibrahim M, et al. [The epidemiology of schistosomiasis in Egypt: Fayoum Governorate]. American Journal of Tropical Medicine and Hygiene 2000;62(2):55–64.

Adriko 2014 [published data only]
Adriko M, Standley CJ, Tinkitina B, Tukahebwa EM, Fenwick A, Fleming FM, et al. [Evaluation of circulating cathodic antigen (CCA) urine–cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda]. Acta Tropica 2014;136:50–7.

Adriko 2014 setting A [published data only]
Adriko M, Standley CJ, Tinkitina EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, et al. [Evaluation of circulating cathodic antigen (CCA) urine–cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda]. Acta Tropica 2014;136:50–7.

Adriko 2014 setting B [published data only]
Adriko M, Standley CJ, Tinkitina EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, et al. [Evaluation of circulating cathodic antigen (CCA) urine–cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda]. Acta Tropica 2014;136:50–7.

Adriko 2014 setting C [published data only]
Adriko M, Standley CJ, Tinkitina EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, et al. [Evaluation of circulating cathodic antigen (CCA) urine–cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda]. Acta Tropica 2014;136:50–7.

Alsherbiny 1999 [published data only]
Al-Sherbiny MM, Osman AM, Hancock K, Deelder AM, Tsang VC. [Application of immunodiagnostic assays: detection of antibodies and circulating antigens in human schistosomiasis and correlation with clinical findings]. American Journal of Tropical Medicine and Hygiene 1999;60 (6):960–6.

Anosike 2001 [published data only]
Anosike JC, Nwoke BEB, Njoku AJ. [The validity of haematuria in the community diagnosis of urinary schistosomiasis infections]. Journal of Helminthology 2001; 75(3):223–5.

Aryeetey 2000 [published data only]
Aryeetey ME, Wagatsuma Y, Yeboah G, Asante M, Mensah G, Nkrumah FK, et al. [Urinary schistosomiasis in southern Ghana: 1. Prevalence and morbidity assessment in three (defined) rural areas drained by the Densu river]. Parasitology International 2000;49(2):155–63.

Ashton 2011 [published data only]
Ashton RA, Stewart BT, Petty N, Lado M, Finn T, Broker S, et al. [Accuracy of circulating cathodic antigen tests for rapid mapping of Schistosoma mansoni and S. haematobium infections in Southern Sudan]. Tropical Medicine and International Health 2011;16(9):1099–103.

Ayele 2008 [published data only]
Ayele B, Erko B, Legesse M, Hai lu A, Medhin G. [Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia]. Parasite 2008;15(1):69–75.

Bassouiny 2014 [published data only]
Bassouiny HK, Hasab AA, El-Nimr NA, Al-Shihan LA, Al-Waleedi AA. Rapid diagnosis of schistosomiasis in Yemen using a simple questionnaire and urine reagent strips [Diagnostic rapide de la schistosomiase au Yemen a l’aide d’un questionnaire simple et de bandelettes urinaires reactives]. Eastern Mediterranean Health Journal 2014;20 (4):242–9.

Birrie 1995 setting A [published data only]
Birrie H, Medhin G, Jemaneh L. [Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia]. East African Medical Journal 1995;72(3):180–5.

Birrie 1995 setting B [published data only]
Birrie H, Medhin G, Jemaneh L. [Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia]. East African Medical Journal 1995;72(3):180–5.

Birrie 1995 setting C [published data only]
Birrie H, Medhin G, Jemaneh L. [Comparison of urine filtration and a chemical reagent strip in the diagnosis of urinary schistosomiasis in Ethiopia]. East African Medical Journal 1995;72(3):180–5.

Bogoch 2012 [published data only]
Bogoch II, Andrews JR, Dadzie Ephraim RK, Utzinger J. [Simple questionnaire and urine reagent strips compared to microscopy for the diagnosis of Schistosoma haematobium in a community in northern Ghana]. Tropical Medicine and International Health 2012;17(10):1217–21.

Bosompem 1996 [published data only]
Bosompem KM, Ayi I, Anyan WK, Nkrumah FK, Kojima S. [Limited field evaluation of a rapid monoclonal antibody–based dipstick assay for urinary schistosomiasis]. Hybridoma 1996;15(6):443–7.

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Schistosoma haematobium]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1999;93(4):411–2.

Hammad 1997 [published data only]
Hammad TA, Grabr NS, Talat MM, Orizeby A, Shawksy E, Strickland GT. [Hematuria and proteinuria as predictors of Schistosoma haematobium infection]. American Journal of Tropical Medicine and Hygiene 1997;57(3):363–7.

Hammad 2000’a [published data only]
Hammad HM, Allam FAM, Moftah FM, Abdel-Aty MA, Hany AH, Abd-El-Motagaly, et al. [The epidemiology of schistosomiasis in Egypt: Assiut Governorate]. American Journal of Tropical Medicine and Hygiene 2000;62(2):73–9.

Hammad 2000’b [published data only]
Hammad HM, Zazour AH, Moftah FM, Abdel-Aty MA, Hany AH, El-Kady AY, et al. [The epidemiology of schistosomiasis in Egypt: Qena Governorate]. American Journal of Tropical Medicine and Hygiene 2000;62(2):80–7.

Houmsou 2011 [published data only]
Houmsou RS, Kela SL, Suleiman MM. [Performance of microhaematuria and proteinuria as measured by urine reagent strips in estimating intensity and prevalence of Schistosoma haematobium infection in Nigeria]. Asian Pacific Journal of Tropical Medicine 2011;4(12):997–1000.

Kassim 1989 [published data only]
Kassim OO. [Proteinuria and haematuria as predictors of schistosomiasis in children]. Annals of Tropical Paediatrics 1989;9(3):156–60.

Kiliku 1991 [published data only]
Kiliku FM, Kimura E, Muhoho N, Migwi DK, Katsumata T. [The usefulness of urinalysis reagent strips in selecting Schistosoma haematobium egg positives before and after treatment with praziquantel]. Journal of Tropical Medicine and Hygiene 1991;94(6):401–6.

King 1988’a [published data only]
King CH, Lombardi G, Lombardi C, Greenblatt R, Hodder S, Kinyanjui H, et al. [Chemotherapy–based control of schistosomiasis haematobia. I. Metrifonate versus praziquantel in control of intensity and prevalence of infection]. American Journal of Tropical Medicine and Hygiene 1988;39(3):295–305.

King 1988’b [published data only]
King CH, Keating CE, Muruka JE, Ouma JH, Houser H, Arap Siongok TK, et al. [Urinary tract morbidity in schistosomiasis haematobia: associations with age and intensity of infection in an endemic area of Coast Province, Kenya]. American Journal of Tropical Medicine and Hygiene 1988;39(4):361–8.

Kitange 1993 [published data only]
Kitange HM, Swai AB, McLarty DG, Alberti KG. [Schistosomiasis prevalence after administration of praziquantel to school children in Melela village, Morogoro region, Tanzania]. East African Medical Journal 1993;70(12):782–6.

Legesse 2007 [published data only]
Legesse M, Erko B. [Field–based evaluation of a reagent strip test for diagnosis of Schistosoma mansoni by detecting circulating cathodic antigen in urine before and after chemotherapy]. Transactions of the Royal Society of Tropical Medicine and Hygiene 2007;101(7):668–73.

Legesse 2008 [published data only]
Legesse M, Erko B. [Field–based evaluation of a reagent strip test for diagnosis of schistosomiasis mansoni by detecting circulating cathodic antigen (CCA) in urine in low endemic area in Ethiopia]. Parasite 2008;15(2):151–5.

Lengeler 1993 [published data only]
Lengeler C, Mshinda H, Morona D, deSavigny D. [Urinary schistosomiasis: testing with urine filtration and reagent sticks for haematuria provides a comparable prevalence estimate]. Acta Tropica 1993;53(1):39–50.

Mafe 1997 [published data only]
Mafe MA. [The diagnostic potential of three indirect tests for urinary schistosomiasis in Nigeria]. Acta Tropica 1997;68(3):277–84.

Mafe 2000 [published data only]
Mafe MA, von Stamm T, Utzinger J, N’Goran EK. [Control of urinary schistosomiasis: an investigation into the effective use of questionnaires to identify high–risk communities and individuals in Niger State, Nigeria]. Tropical Medicine and International Health 2000;5(1):53–63.

Magnussen 2001 [published data only]
Magnussen P, Ndawi B, Sheshe AK, Byskov J, Mbwana K, Christensen NO. [The impact of a school health programme on the prevalence and morbidity of urinary schistosomiasis in Mweria Division, Pangani District, Tanzania]. Transactions of the Royal Society of Tropical Medicine and Hygiene 2001;95(1):58–64.

Midzi 2009 [published data only]
Midzi N, Butterworth AE, Mduluza T, Munyati S, Deelder AM, van Dam GJ. [Use of circulating cathodic antigen strips for the diagnosis of urinary schistosomiasis]. Transactions of the Royal Society of Tropical Medicine and Hygiene 2009;103(1):45–51.

Morenikjei 2014 [published data only]
* Morenikjei O, Quazim J, Omoroghe C, Hassan A, Nwuba R, Anumudu C, et al. [A cross–sectional study on urogenital schistosomiasis in children; haematuria and proteinuria as diagnostic indicators in an endemic rural area of Nigeria]. African Health Sciences 2014;14(2):390–6.

Mott 1985a 1 [published data only]
Mott KE, Dixon H, Osei-Tutu E, England EC, Ekue K, Tekle A. [Indirect screening for Schistosoma haematobium infection: a comparative study in Ghana and Zambia]. Bulletin of the World Health Organization 1985;63(1):135–42.

Mott 1985a 2 [published data only]
Mott KE, Dixon H, Osei-Tutu E, England EC, Ekue K, Tekle A. [Indirect screening for Schistosoma haematobium infection: a comparative study in Ghana and Zambia].
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Murare 1987 [published data only]

Murare HM, Taylor P. [Haematuria and proteinuria during 198–200.

Navaratnam 2012 [published data only]

Navaratnam AM, Mutumba-Nakalembe MJ, Stothard JR, Kabaterine NB, Fenwick A, Sousa-Figueiredo JC. [Notes on the use of urine–CCA dipsticks for detection of intestinal schistosomiasis in preschool children.]. Transactions of the Royal Society of Tropical Medicine and Hygiene 2012;106(10): 619–22.

Ndlovu 1996 [published data only]

Ndlovu P, Cadman H, Gundersen S, Vennervald BJ, Friis H, Christensen NO, et al. [Circulating anodic antigen (CAA) levels in different age groups in a Zimbabwean rural community endemic for Schistosoma haematobium determined using the magnetic beads antigen–capture enzyme–linked immunosassay]. American Journal of Tropical Medicine and Hygiene 1996;54(5):537–42.

Nduka 1995 [published data only]

Nduka FO, Ajaero CM, Nwoke BE. [Urinary schistosomiasis among school children in an endemic community in south–eastern Nigeria]. Applied Parasitology 1995;36:34–40.

Ndayomugyenyi 2001 [published data only]

Ndayomugyenyi R, Minjas JN. [Urinary schistosomiasis in schoolchildren in Dar–es–Salaam, Tanzania, and the factors influencing its transmission]. Annals of Tropical Medicine and Parasitology 2001;95(7):697–706.

Ngándu 1988 [published data only]

Ngándu NH. [The use of Baye’s theorem and other indices of agreement in evaluating the use of reagent strips in screening rural school children for Schistosoma haematobium in Zambia]. International Journal of Epidemiology 1988;17(1):202–8.

NGoran 1989 [published data only]

NGoran KE, Tapi YG, Rey J-L, Soro B, Coulibaly A, Bellec C. Screening of urinary schistosomiasis by sticks reactive to haematuria study in Ivory Coast [Depistage de la schistosomose urinaire par bandelettes reactives a l’hematurie. Evaluation en zones de moyenne et faible endemic de cote–d’ivoire]. Bulletin de la Societe de Pathologie Exotique et de Ses Filiales 1989;82(2):236–42.

NGoran 1998 [published data only]

Ngoran KE, Gwoswemwe OA, Ukwandu NCD, Nwokolo NQ. [Urinary schistosomiasis in a rural community in Edo state, Nigeria: eosinophilia as a diagnostic marker]. African Journal of Biotechnology 2005;4(2):183–6.

Nwaorgu 1992 [published data only]

Nwaorgu OC, Anigbo EU. [The diagnostic value of haematuria and proteinuria in Schistosoma haematobium infection in southern Nigeria]. Journal of Helminthology 1992;66(3):177–85.

Ofori 1986 [published data only]

Ofori-Adjei D, Adejepon-Yamoah KK, Ashitey GA, Osei-Tutu E. [Screening methods for urinary schistosomiasis in an endemic area (the Krabo/Coaltar district of Ghana)]. Annals of Tropical Medicine and Parasitology 1986;80(3): 365–6.

Okelle 2014 [settingA] [published data only]

Okelle OC, Obsachukwu PO. [Performance of three rapid screening methods in the detection of Schistosoma haematobium infection in school–age children in Southeastern Nigeria]. Pathogens and Global Health 2014; 108(2):111–7.

Okelle 2014 [settingB] [published data only]

Okelle OC, Obsachukwu PO. [Performance of three rapid screening methods in the detection of Schistosoma haematobium infection in school–age children in Southeastern Nigeria]. Pathogens and Global Health 2014; 108(2):111–7.

Onayade 1996 [published data only]

Onayade AA, Abayomi IO, Fabiyi AK. [Urinary schistosomiasis: options for control within endemic rural communities. A case study in south–west Nigeria]. Public Health 1996;110(4):221–7.

Poggenese 2000 [settingA] [published data only]

Poggenese G, Krantz I, Kiwelu I, Feldmeier H. [Screening of Tanzanian women of childbearing age for urinary schistosomiasis: validity of urine reagent strip readings and self–reported symptoms]. Bulletin of the World Health Organization 2000;78(4):542–8.

Poggenese 2000 [settingB] [published data only]

Poggenese G, Krantz I, Kiwelu I, Feldmeier H. [Screening of Tanzanian women of childbearing age for urinary schistosomiasis: validity of urine reagent strip readings and self–reported symptoms]. Bulletin of the World Health Organization 2000;78(4):542–8.

Polman 1995 [published data only]

Polman K, Stelma FF, Grysels B, van Dam GJ, Talla I, Niang M, et al. [Epidemiologic application of circulating antigen detection in a recent Schistosoma mansoni focus in Northern Senegal]. American Journal of Tropical Medicine and Hygiene 1995;53(2):152–7.
Shane 2011 Colley 2013 [published data only]
Colley DG, Binder S, Campbell C, King CH, Tchuen Tchuentu LA, N'goran EK, et al. [A five–country evaluation of a point–of–care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni]. American Journal of Tropical Medicine and Hygiene 2013;88(3):426–32.

Shaw 1998 [published data only]
Shaw DJ, Picquet M, Ly A, Sambou B, Vercreyssse J. [Evaluation of dipsticks in Schistosoma haematobium infections in four villages in the middle valley of the Senegal River Basin, Senegal]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1998;92(6):634–5.

Standley 2010 [published data only]
Standley CJ, Lwambo NJS, Lange CN, Kariuki HC, Adikro M, Stothard JR. [Performance of circulating cathodic antigen (CCA) urine–dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria]. Parasites and Vectors 2010;3 (1).

Stephenson 1984 [published data only]
Stephenson LS, Latham MC, Kinosti SN, Odouori ML. [Sensitivity and specificity of reagent strips in screening of Kenyan children for Schistosoma haematobium infection]. American Journal of Tropical Medicine and Hygiene 1984;33 (5):862–71.

Stothard 2006 [published data only]
Stothard JR, Kabaterine NB, Tukahebwa EM, Kazibwe F, Rollinson D, Mathieson W, et al. [Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis]. Acta Tropic 2006;97(2): 219–28.

Stothard 2009a [published data only]
Stothard JR, Sousa-Figueiredo JC, Standley C, van Dam GJ, Knopp S, Utzinger J, et al. [An evaluation of urine–CCA strip test and fingerprick blood SEA–ELISA for detection of urinary schistosomiasis in schoolchildren in Zanzibar]. Acta Tropica 2009;111(1):64–70.

Stothard 2009b [published data only]
Russell SJ, Sousa-Figueiredo JC, Simba KI, Garba A, Rollinson D. [Urinary schistosomiasis–associated morbidity in schoolchildren detected with urine albumin–to–creatinine ratio (UACR) reagent strips]. Journal of Pediatric Urology 2009;5(4):287–91.

Tanner 1983 1 [published data only]
Tanner M, Holzer B, Marti HP, Saladin B, Degremont AA. [Frequency of haematuria and proteinuria among Schistosoma haematobium infected children of two communities from Liberia and Tanzania]. Acta Tropic 1983;40(3):231–7.

Tanner 1983 2 [published data only]
Tanner M, Holzer B, Marti HP, Saladin B, Degremont AA. [Frequency of haematuria and proteinuria among Schistosoma haematobium infected children of two communities from Liberia and Tanzania]. Acta Tropic 1983;40(3):231–7.

Tchuentu 2012 9KK [published data only]
Tchuentu Tchuentu LA, Kuete Fouodo CJ, Kamwa Ngassam RI, Sumo L, Dongmo NC, Kenfack CM, et al. [Evaluation of circulating cathodic antigen (CCA) urine–tests for diagnosis of Schistosoma mansoni infection in Cameroon]. PLoS Neglected Tropical Diseases 2012;6(7):e1758.
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Tchuente 2012 [published data only]
Tchuente LA, N’goran EK, et al. [A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni]. American Journal of Tropical Medicine and Hygiene 2013;88(3):426–32.

Traore 1998 [published data only]
Traore M, Traore HA, Kardoff R, Diarra A, Landoure Vester U, Doehring E, et al. [The public health significance of urinary schistosomiasis as a cause of morbidity in 2 districts in Mali]. American journal of Tropical Medicine and Hygiene 1998;59(3):407–13.

Ugboroiko 2009a [published data only]
Ugboroiko US, Obiezue RNN, Ogunniyi T AB, Ofoezie IE. [Diagnostic accuracy of different urine dipsticks to detect urinary schistosomiasis: a comparative study in five endemic communities in Osun and Ogun States, Nigeria]. Journal of Helminthology 2009;83(3):203–9.

Ugboroiko 2009b 1 [published data only]
Ugboroiko US, Obiezue RNN, Ogunniyi TAB, Ofoezie IE. [Diagnostic accuracy of different urine dipsticks to detect urinary schistosomiasis: a comparative study in five endemic communities in Osun and Ogun States, Nigeria]. Journal of Helminthology 2009;83(3):456–61.

Ugboroiko 2009b 2 [published data only]
Ugboroiko US, Obiezue RNN, Ogunniyi TAB, Ofoezie IE. [Diagnostic accuracy of different urine dipsticks to detect urinary schistosomiasis: a comparative study in five endemic communities in Osun and Ogun States, Nigeria]. Journal of Helminthology 2009;83(3):203–9.

Van Lieshout 1995 [published data only]
van Lieshout L, Punday UG, De Jonge N, Krijger FW, Oostburg BF, Polderman AM, et al. [Immunodiagnosis of schistosomiasis mansoni in a low endemic area in Surinam by determination of the circulating antigens CAA and CCA]. Acta Tropica 1995;59(1):19–29.

Van Lieshout 1998 1 [published data only]
van Lieshout L, Polman K, Gryseels B, Deelder AM. [Circulating anodic antigen levels in two areas endemic for schistosomiasis mansoni indicate differences in worm fecundity]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1998;92(1):115–9.

Van Lieshout 1998 2 [published data only]
van Lieshout L, Polman K, Gryseels B, Deelder AM. [Circulating anodic antigen levels in two areas endemic for schistosomiasis mansoni indicate differences in worm fecundity]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1998;92(1):115–9.

Verle 1994 [published data only]
Verle P, Stelma F, Desreumaux P, Dieng A, Diaw O, Kongi A, et al. [Preliminary study of urinary schistosomiasis in a village in the delta of the Senegal river basin, Senegal]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1994;88(4):401–5.

Warren 1979 [published data only]
Warren KS, Mahmoud AAF, Muruka JF, Whittaker LR, Ouma JH, Arap Siongok TK. [Schistosomiasis haematobia in Coast province Kenya]. American Journal of Tropical Medicine and Hygiene 1979;28(5):864–70.

Wilkins 1979 [published data only]
Wilkins HA, Goll P, Marshall TF, Moore P. [The significance of proteinuria and haematuria in Schistosoma haematobium infection]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1979;73(1):74–80.

Zumstein 1983 [published data only]
Zumstein A. [A study of some factors influencing the epidemiology of urinary schistosomiasis at Ifakara (Kilombero Districy, Morogoro Region, Tanzania)]. Acta Tropica 1983;40:187–204.

References to studies excluded from this review

Adesola 2012 [published data only]
Adesola H, Uduak N, Olajumoke M, Roseangela N, Chiaka A, Sunday A, et al. [Urine turbidity and microhaematuria as rapid assessment indicators for Schistosoma haematobium infection among school children in endemic areas]. American Journal of Infectious Diseases 2012;8(1).

Brouwer 2004 [published data only]
Brouwer KC, Munansi A, Ndhlovu PD, Wagatsuma Y, Shiff CJ. [Urinary schistosomiasis in Zimbabwean school children: predictors of morbidity]. African Health Sciences 2004;4(2):115–8.

Coulibaly 2012 [published data only]
Coulibaly JT, N’Gesso YK, Knopp S, Keiser J, N’goran EK, Utzinger J. [Efficacy and safety of praziquantel in preschool-aged children in an area co-endemic for Schistosoma mansoni and S. haematobium]. PLoS Neglected Tropical Diseases 2012;6(12):e1917.

Coulibaly 2013 2 [published data only]
Coulibaly JT, N’Gesso YK, Knopp S, Keiser J, N’goran EK, Utzinger J. [Efficacy and safety of praziquantel in preschool-aged children in an area co-endemic for Schistosoma mansoni and S. haematobium]. PLoS Neglected Tropical Diseases 2013;6(12):e1917.

Coulibaly 2013 3 [published data only]
Coulibaly JT, N’goran EK, Utzinger J, Doenhoff MJ, Dawson EM. [A new rapid diagnostic test for detection of anti-Schistosoma mansoni and anti-Schistosoma haematobium antibodies]. Parasites and Vectors 2013;6(29).

de Clercq 1997 [published data only]
de Clercq D, Sacko M, Vercruyssse J, vanden BV, Landoure A, Diarra A, et al. [Circulating anodic and cathodic antigen in serum and urine of mixed Schistosoma haematobium and S. mansoni infections in Office du Niger, Mali]. Tropical Medicine and International Health 1997;2(7):680–5.

Deelder 1981 [published data only]
Deelder AM, Van den Berge W. [Detection of antibodies against circulating cathodic antigen of Schistosoma mansoni]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1981;75(2):191–7.
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Kremsnner 1994 [published data only]
Kremsnner PG, Enyong P, Krigger FW, De Jonge N, Zotter GM, Thalhammer F, et al. [Circulating anodic and cathodic antigen in serum and urine from Schistosoma haematobium–infected Cameroonian children receiving praziquantel: a longitudinal study]. Clinical Infectious Diseases 1994;18(3):408–13.

Krijger 1994 [published data only]
Krijger FW, van Lieshout L, Deelder AM. [A simple technique to pretreat urine and serum samples for quantification of schistosome circulating anodic and cathodic antigens]. Acta Tropica 1994;56(1):55–63.

Lengeler 1999 [published data only]
Lengeler C, Kamba S, Morona D. [Urinary schistosomiasis: influence of the circadian variation of hematuria and proteinuria on reagent stick testing]. Acta Tropica 1999;48(4):313–7.

Leutcher 2008 [published data only]
Leutcher PDC, Van Dam GTJ, Reimert CM, Ramarakoto CE, Deelder AM, Ombirgen N. [Eosinophil cationic protein, soluble egg antigen, circulating anodic antigen, and egg excretion in male urogenital schistosomiasis]. American Journal of Tropical Medicine and Hygiene 2008;79(3):422–6.

Lodh 2013 [published data only]
Lodh N, Mwansa JC, Mutengo MM, Shiff CJ. [Diagnosis of Schistosoma mansoni without the stool: comparison of three diagnostic tests to detect Schistosoma [corrected] mansoni infection from filtered urine in Zambia]. American Journal of Tropical Medicine and Hygiene 2013;89(1):46–50.

Lwambo 1997 [published data only]
Lwambo NJ, Savioli L, Kismuku UM, Alawi KS, Bundy DA. [Control of Schistosoma haematobium morbidity on Pemba Island: validity and efficiency of indirect screening tests]. Bulletin of the World Health Organization 1997;75(3):247–52.

Madwar 1988 [published data only]
Madwar MA, Hassan MM, Strickland GT. [Circulating antigens for assessing cure in schistosomiasis mansoni]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1988;82(6):881–4.

Melchers 2014 [published data only]
Melchers NVS, van Dam GJ, Shaproski D, Kahama AI, Brienen EAT, Vennervald BJ, et al. [Diagnostic performance of schistosoma real–time PCR in urine samples from Kenyan children infected with Schistosoma haematobium: day–to–day variation and follow–up after praziquantel treatment]. PLoS Neglected Tropical Diseases 2014;8(4):e2807.

Mott 1983 [published data only]
Mott KE, Dixon H, Ossei-Tutu E, England EC. [Relation between intensity of Schistosoma haematobium infection and clinical haematuria and proteinuria]. Lancet 1983;1(8332):1065–8.

Mott 1985 [published data only]
Mott KE, Dixon H, Ossei-Tutu E, England EC, Ekue K, Tekle A. [Evaluation of reagent strips in urine tests...
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

for detection of Schistosoma haematobium infection: a comparative study in Ghana and Zambia]. Bulletin of the World Health Organization 1985;63(1):125–33.

Nibbeling 1998 [published data only]
Nibbeling HAM, van Lieshout L, Deelder AM. [Levels of circulating soluble egg antigen in urine of individuals infected with Schistosoma mansoni before and after treatment with praziquantel]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1998;92(6):675–7.

Obeng 2008 [published data only]
Obeng BB, Aryeetey YA, De Dood CJ, Amoah AS, Larbi IA, Deelder AM, et al. [Application of a circulating–cathodic–antigen (CCA) strip test and real–time PCR, in comparison with microscopy, for the detection of Schistosoma haematobium in urine samples from Ghana]. Annals of Tropical Medicine and Parasitology 2008;102(7): 625–33.

Pereira 1999 [published data only]
Pereira ES, Secor E, Andrade MO, Katz N, Rabello A. [Circulating antigens levels in different clinical forms of the Schistosoma mansoni infection]. Memorias do Instituto Oswaldo Cruz 1999;94(1):83–6.

Poggensee 1998 [published data only]
Poggensee G, Kiwelu I, Saria M, Richter J, Kranz J, Feldmeier H. [Schistosomiasis of the lower reproductive tract without egg excretion in urine]. American Journal of Tropical Medicine and Hygiene 1998;59(5):782–3.

Polman 1998 [published data only]
Polman K, Engels D, Fathers L, Deelder AM, Gryseels B. [Day–to–day fluctuation of schistosome circulating antigen levels in serum and urine of humans infected with Schistosoma mansoni in Burundi]. American Journal of Tropical Medicine and Hygiene 1998;59(1):150–4.

Polman 2000 [published data only]
Polman K, De Vlas SJ, Gryseels B, Deelder AM. [Relating serum circulating anodic antigens to faecal egg counts in Schistosoma mansoni infections: a modelling approach]. Parasitology 2000;121(6):601–10.

Savioli 1989 [published data only]
Savioli L, Dixon H, Kismukum UM, Mott KE. [Control of morbidity due to Schistosoma haematobium on Pemba Island: programme organisation and management]. Tropical Medicine and Parasitology 1989;40(2):189–94.

Sousa-Figueiredo 2013 [published data only]
Sousa-Figueiredo JC, Betson M, Kabaterine NB, Stothard JR. [The urine circulating cathodic antigen (CCA) dipstick: a valid substitute for microscopy for mapping and point–of–care diagnosis of intestinal schistosomiasis]. PLoS Neglected Tropical Diseases 2013;7(1):e2208.

Stothard 2011 [published data only]
Stothard JR, Sousa-Figueiredo JC, Betson M, Adriko M, Arinaiwe M, Rowell C, et al. [Schistosoma mansoni infections in young children: when are schistosome antigens in urine, eggs in stool and antibodies to eggs first detectable?]. PLoS Neglected Tropical Diseases 2011;5(1):e938.

Takougang 2004 [published data only]
Takougang I, Meli J, Photos S, Angwofo F 3rd, Kamajeu R, Ndumbe PM. [Hematuria and dysuria in the self–diagnosis of urinary schistosomiasis among school–children in Northern Cameroon]. African Journal of Health Sciences 2004;11(3-4):121–7.

Taylor 1990 [published data only]
Taylor P, Chandiwana SK, Matanhire D. [Evaluation of the reagent strip test for haematuria in the control of Schistosoma haematobium infection in schoolchildren]. Acta Tropica 1990;47(2):91–100.

Tiemersma 1997 [published data only]
Tiemersma EW, Hafid S, Boelke E, Khallayoune K, Gryseels B. [Detection of urinary schistosomiasis in a low prevalence region]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1997;91(3):285–6.

van Dam 2004 [published data only]
v Dam GJ, Wiggers JH, Ferreira TM, Ghati D, van AA, Deelder AM. [Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen]. Journal of Clinical Microbiology 2004;42(12):5458–61.

van Etten 1994 [published data only]
van Etten EW, Polman CC, Egelpale TA, Kremsner PG, Deelder AM. [Rapid diagnosis of schistosomiasis by antigen detection in urine with a reagent strip]. Journal of Clinical Microbiology 1994;32(10):2404–6.

van Etten 1997 [published data only]
van Etten EW, van Lieshout L, Mansour MM, Deelder AM. [A reagent strip antigen capture assay for the assessment of cure of schistosomiasis patients]. Transactions of the Royal Society of Tropical Medicine and Hygiene 1997;91(2):154–5.

van Lieshout 1992 [published data only]
van Lieshout L, De Jonge N, el Masry NA, Mansour MM, Krijger FW, Deelder AM. [Improved diagnostic performance of the circulating antigen assay in human schistosomiasis by parallel testing for circulating anodic and cathodic antigens in serum and urine]. American Journal of Tropical Medicine and Hygiene 1992;47(4):463–9.

van Lieshout 1995 [published data only]
van Lieshout L, Polderman AM, De Vlas SJ, De Caluwe P, Krijger FW, Gryseels B, et al. [Analysis of worm burden variation in human Schistosoma mansoni infections by determination of serum levels of circulating anodic antigen and circulating cathodic antigen]. Journal of Infectious Diseases 1995;172(5):1336–42.

Verani 2011 [published data only]
Verani JR, Abuchoo B, Montgomery SP, Mwinzi PNM, Shane HL, Butler SE, et al. [Schistosomiasis among young children in Usoma, Kenya]. American Journal of Tropical Medicine and Hygiene 2011;84(5):787–91.

Additional references
Ahmed 2012
Ahmed AM, El Tash LA, Mohamed EY, Adam I. [High levels of Schistosoma mansoni infections among schoolchildren in
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Central Sudan one year after treatment with praziquantel. *Journal of Helminthology* 2012;86(2):228–32.

Ansell 1997
Ansell J, Guayt H, Hall A, Kihamia C, Kivugo J, Ntimbwa P, et al. [The reliability of self–reported blood in urine and schistosomiasis as indicators of *Schistosoma haematobium* infection in school children: a study in Muheza District, Tanzania]. *Tropical Medicine and International Health* 1997;2(12):1180–9.

Ayele 2008
Ayele B, Erko B, Legesse M, Hailu A, Medhin G. [Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia]. *Parasite* 2008;15(1):69–75.

Bethony 2011
Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, Lousk A, et al. [Vaccines to combat the neglected tropical diseases]. *Immunological Reviews* 2011;239(1):237–70.

Bichler 2006
Bichler KH, Savatovsky I, Naber KG, Bischop MC, Bjerklund-Johansen TE, Botto H, et al. [EAU guidelines for the management of urogenital schistosomiasis]. *Urology* 2006;67(2):342–7.

Black 2009
Black CL, Steinauer ML, Mwinzi PN, Evan SW, Karanja DM, Colley DG. [Impact of intense, longitudinal retreatment with praziquantel on cure rates of schistosomiasis mansoni in a cohort of occupationally exposed adults in western Kenya]. *Tropical Medicine and International Health* 2009;14(4):450–7.

Bosuuyt 2003
Bosuuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. [Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative]. *Annals of Internal Medicine* 2003;138(1):40–4.

Brooker 2009
Brooker S, Kabaterine NB, Gyapong JO, Stothard JR, Utzinger J. [Rapid mapping of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa]. *Parasitology* 2009;136(13):1707–18.

Cavalcanti 2013
Cavalcanti MG, Silva LF, Peralta RH, Barreto MG, Peralta JM. [Schistosomiasis in areas of low endemicity: a new era in diagnosis]. *Trends in Parasitology* 2013;29(2):75–82.

Chitsulo 1995
Chitsulo L, Lengeler C, Jenkins J. [The Schistosomiasis Manual]. UNDP/World Bank/WHO Special Programme for Research Training in Tropical Diseases (TDR), 1995; http://libdoc.who.int/hq/1995/TDR SER’MSR 95.2.pdf (accessed 10 October 2010).

Colley 2013
Colley DG, Binder S, Campbell C, King CH, Tchuem Tchuente LA, N’goran EK, et al. [A five–country evaluation of a point–of–care circulating cathodic antigen urine assay for the prevalence of *Schistosoma mansoni*]. *American Journal of Tropical Medicine and Hygiene* 2013;88(3):426–32.

Colley 2014
Colley DG, Bustinduy AL, Secor WE, King CH. [Human schistosomiasis]. *Lancet* 2014;383:2253–64.

Corsiens 2008
Corsiens PLAM, van Lieshout L, Zuidewijk M, Kornelis D, Tanke HJ, Deelder AM, et al. [Up–converting phosphor technology–based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum]. *Journal of Clinical Microbiology* 2008;46(1):171–6.

Coulibaly 2011
Coulibaly JT, Knopp S, N’Guessan NA, Silue KD, Furst T, Lohouignon LK, et al. [Accuracy of urine circulating cathodic antigen (CCA) test for *Schistosoma mansoni* diagnosis in different settings of Cote d’Ivoire]. *PLoS Neglected Tropical Diseases* 2011;5(1):e1384.

Croce 2010
Croce D, Porazzi E, Foglia E, Restelli U, Sinuon M, Socheat D, et al. [Cost–effectiveness of a successful schistosomiasis control programme in Cambodia (1995–2006)]. *Acta Tropica* 2010;113(3):279–84.

da Frota 2011
da Frota SM, Carneiro TR, Queiroz JA, Alencar LM, Heukelbach J, Bezerra FS. [Combination of Kato–Katz faecal examinations and ELISA to improve accuracy of diagnosis of intestinal schistosomiasis in a low–endemic setting in Brazil]. *Acta Tropica* 2011;120(Suppl 1):S138–5141.

De Clercq 1997
De Clercq D, Sacko M, Vercruysse J, vanden Bussche V, Landoue A, Diarra A, et al. [Circulating anodic and cathodic antigen in serum and urine of mixed *Schistosoma mansoni* and *S. haematobium* infections in Office du Niger, Mali]. *Tropical Medicine and International Health* 1997;2(7):680–5.

De Jonge 1988
De Jonge N, Gryseels B, Hilberath GW, Polderman AM, Deelder AM. [Detection of circulating anodic antigen by ELISA for seroepidemiology of schistosomiasis mansoni]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1988;82(4):591–4.

De Jonge 1989
De Jonge N, Fillie YE, Hilberath GW, Krijger FW, Lengeler C, de Savigny DH, et al. [Presence of the schistosome circulating anodic antigen (CAA) in urine of patients with *Schistosoma mansoni* or *S. haematobium* infections]. *American Journal of Tropical Medicine and Hygiene* 1989;41(5):563–9.

Deelder 2012
Deelder AM, van Dam GJ, van Lieshout L. [Response to: accuracy of circulating cathodic antigen tests for rapid mapping of *Schistosoma mansoni* and *S. haematobium* infections in Southern Sudan by RA Adson et al]. *Tropical Medicine and International Health* 2012;17(3):402–3.
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Dendukuri 2012
Dendukuri N, Schiller I, Joseph L, Pai M. [Bayesian meta-analysis of the accuracy of a test for tuberculous pleuritis in the absence of a gold standard reference]. Biometrics 2012;68:1285–93.

Doehring 1983
Doehring E, Feldmeier H, Daffalla AA. [Day-to-day variation and circadian rhythm of egg excretion in urinary schistosomiasis in the Sudan]. Annals of Tropical Medicine and Parasitology 1983;78(6):587–94.

Doehring 1985a
Doehring E, Vester U, Ehrich JH, Feldmeier H, Poggensee U, Brodehl J. [Proteinuria, hematuria, and leukocyturia in children with mixed urinary and intestinal schistosomiasis]. Kidney International 1985;28(3):520–5.

Doehring 1985b
Doehring E, Vester U, Ehrich JH, Feldmeier H. [Circadian variation of ova excretion, proteinuria, hematuria, and leukocyturia in urinary schistosomiasis]. Kidney International 1985;28(4):667–71.

Doehring 1988
Doehring E. [Schistosomiasis in childhood]. European Journal of Pediatrics 1988:147:2–9.

Doenhoff 2002
Doenhoff MJ, Kusel JR, Coles GC, Cioli D. [Resistance of Schistosoma mansoni to praziquantel: is there a problem?]. Transactions of the Royal Society of Tropical Medicine and Hygiene 2002;96(5):465–9.

Doenhoff 2004
Doenhoff MJ, Chiodini PL, Hamilton JV. [Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies?]. Trends in Parasitology 2004;20(1):35–9.

Doenhoff 2009
Doenhoff MJ, Hagan P, Cioli D, Southgate V, Picamattocia L, Bottos S, et al. [Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs]. Parasitology 2009;136(13):1825–35.

Engels 2002
Engels D, Chitsulo L, Montresor A, Savioli L. [The global epidemiological situation of schistosomiasis and new approaches to control and research]. Acta Tropica 2002;82(2):139–46.

Erko 2013
Erko B, Medhin G, Tekdehaymanot T, Degarege A, Legesse M. [Evaluation of urine–circuiting cathodic antigen (Urine–CCA) cassette test for the detection of Schistosoma mansoni infection in areas of moderate prevalence in Ethiopia]. Tropical Medicine and International Health 2013;18(8):1029–35.

Feldmeier 1993
Feldmeier H, Poggensee G. [Diagnostic techniques in schistosomiasis control: A review]. Acta Tropica 1993;52:205–20.

Fenwick 2003
Fenwick A, Savioli L, Engels D, Robert BN, Todd MH. [Drugs for the control of parasitic diseases: current status and development in schistosomiasis]. Trends in Parasitology 2003;19(11):509–19.

French 2007
French MD, Rollinson D, Basanez MG, Mgeni AF, Kamis Is, Stothard JR. [School–based control of urinary schistosomiasis on Zanzibar, Tanzania: monitoring micro–haematuria with reagent strips as a rapid urological assessment]. Journal of Pediatric Urology 2007;3(5):364–8.

French 2010
French MD, Churcher TS, Gambhir M, Fenwick A, Webster JP, Kabaterine NB, et al. [Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study]. PLoS Neglected Tropical Diseases 2010;4(11):e897.

Geerts 2001
Geerts S, Gryseels B. [Anthelmintic resistance in human helminths: a review]. Tropical Medicine and International Health 2001;6(11):915–21.

Glinz 2010
Glinz D, Silue KD, Knopp S, Lohourignon LK, Yao KP, Steinmann P, et al. [Comparing diagnostic accuracy of Kato–Katz, Koga agar plate, ether–concentration, and FLOTAC for Schistosoma mansoni and soil–transmitted helminths]. PLoS Neglected Tropical Diseases 2010;4(7):e754.

Greenberg 2013
Greenberg RM. [New approaches for understanding mechanisms of drug resistance in schistosomes]. Parasitology 2013;140(12):1534–46.

Gryseels 2006
Gryseels B, Polman K, Clerinx J, Kestens L. [Human schistosomiasis]. Lancet 2006;368(9541):1106–18.

Gryseels 2012
Gryseels B. [Schistosomiasis]. Infectious Disease Clinics of North America 2012;26(2):383–97.

Guo 2005
Guo JG, Cao CL, Hu GH, Lin H, Li D, Zhu R, et al. [The role of ‘passive chemotherapy’ plus health education for schistosomiasis control in China during maintenance and consolidation phase]. Acta Tropica 2005;96(2-3):177–83.

Guyatt 1999
Guyatt H, Brooker S, Lwanbo NJ, Siza JE, Bundy DA. [The performance of school–based questionnaires of reported blood in urine in diagnosing Schistosoma haematobium infection: patterns by age and sex]. Tropical Medicine and International Health 1999;4(11):751–7.

ITM 2007
ITM (Institute of Tropical Medicine). [Illustrated Lecture Notes on Tropical Medicine, 2007]. http://content-e.itg.be/content-e/pub ITG/Illus-trated lecture notes on‘Tropical Medicine’1169817124568/index.htm (accessed 8 March 2011).
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

King 2010a
King CH. [Parasites and poverty: the case of schistosomiasis]. *Acta Tropica* 2010;113(2):95–104.

King 2010b
King CH. [Chapter 3 Health metrics for helminthic infections]. *Advances in Parasitology* 2010;73:51–69.

King 2013
King CH, Bertsch D. [Meta-analysis of urine heme dipstick diagnosis of *Schistosoma haematobium* infection, including low-prevalence and previously treated populations]. *PLoS Neglected Tropical Diseases* 2013;7(9):e2431.

Knopp 2008
Knopp S, Mgeni AF, Khamis IS, Steinmann P, Stothard JR, Rollinson D, et al. [Diagnosis of soil-transmitted helminths in the era of preventive chemotherapy: effect of multiple stool sampling and use of different diagnostic techniques]. *PLoS Neglected Tropical Diseases* 2008;2(11):e331.

Knopp 2009
Knopp S, Glinz D, Rinaldi L, Mohammed KA, N’goran, EK, Stothard JR, et al. [FLOTAC: a promising technique for detecting helminth eggs in human faeces]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2009;103(12):1190–4.

Knopp 2011
Knopp S, Speich B, Hattendorf J, Rinaldi L, Mohammed KA, Khamis IS, et al. [Diagnostic accuracy of Kato–Katz and FLOTAC for assessing anthelmintic drug efficacy]. *PLoS Neglected Tropical Diseases* 2011;5(4):e1036.

Koukounari 2009
Koukounari A, Webster JP, Donnelly CA, Bray BC, Naples J, Bosompem K, et al. [Sensitivities and specificities of diagnostic tests and infection prevalence of *Schistosoma haematobium* estimated from data on adults in villages northwest of Accra, Ghana]. *American Journal of Tropical Medicine and Hygiene* 2009;80(3):435–41.

Legesse 2007
Legesse M, Erko B. [Field-based evaluation of a reagent strip test for diagnosis of *Schistosoma mansoni* by detecting circulating cathodic antigen in urine before and after chemotherapy]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2007;101(7):668–73.

Lengeler 1991a
Lengeler C, Kilima P, Mshinda H, Morona D, Hatz C, Tanner M. [Rapid, low-cost, two-step method to screen for urinary schistosomiasis at the district level: the Kilosa experience]. *Bulletin of the World Health Organization* 1991;69(2):179–89.

Lengeler 1991b
Lengeler C, Utzinger J, Tanner M. [Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa]. *Bulletin of the World Health Organization* 2002;80(3):235–42.

Lengeler 2002
Lengeler C, Utzinger J, Tanner M. [Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa]. *Bulletin of the World Health Organization* 2002;80(3):235–42.

Lodh 2013
Lodh N, Mwansa JC, Mutengo MM, Shiff CJ. [Diagnosis of *Schistosoma mansoni* without the stool: comparison of three diagnostic tests to detect *Schistosoma* [corrected] *mansoni* infection from filtered urine in Zambia]. *American Journal of Tropical Medicine and Hygiene* 2013;89(1):46–50.

Loubiere 2010
Loubiere S, Moatti JP. [Economic evaluation of point-of-care diagnostic technologies for infectious diseases]. *Clinical Microbiology and Infection* 2010;16(8):1070–6.

Macaskill 2010
Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10 Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C editor(s). *Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy*. Version 1.0. http://srdr.cochrane.org/. The Cochrane Collaboration, 2010.

Melman 2009
Melman SD, Steinauer ML, Cunningham C, Kubanko LS, Mwangi IN, Wynn NB, et al. [Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of *Schistosoma mansoni*]. *PLoS Neglected Tropical Diseases* 2009;3(8):e504.

Midzi 2009
Midzi N, Butterworth AE, Mduluza T, Munyati S, Deelder AM, Van Dam GJ. [Use of circulating cathodic antigen strips for the diagnosis of urinary schistosomiasis]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2009;103(1):45–51.

Mott 1985
Mott KE, Dixon H, Osei-Tutu E, England EC, Ekue K, Tekle A. [Indirect screening for *Schistosoma haematobium* infection: a comparative study in Ghana and Zambia]. *Bulletin of the World Health Organization* 1985;63(1):135–42.

Murare 1987
Murare HM, Taylor P. [Haematuria and proteinuria during *Schistosoma haematobium* infection: relationship to intensity of infection and the value of chemical reagent strips for pre- and post-treatment diagnosis]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1987;81(3):426–30.

Obeng 2008
Obeng BB, Ayeyetey YA, de Dood CJ, Amoah AS, Larbi IA, Deelder AM, et al. [Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of *Schistosoma haematobium* in urine samples from Ghana]. *Annals of Tropical Medicine Parasitology* 2008;102(7):625–33.

Oliveira 2010
Oliveira LM, Santos HL, Goncalves MM, Barreto MG, Peralta JM. [Evaluation of polymerase chain reaction as an additional tool for the diagnosis of low-intensity *Schistosoma* infection in a community in Brazil]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2010;104(8):808–11.

Collaboration.
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Polman 1995
Polman K, Stelma FF, Gryseels B, Van Dam GJ, Talla I, Niang M, et al. Epidemiologic application of circulating antigen detection in a recent Schistosoma mansoni focus in northern Senegal. *American Journal of Tropical Medicine and Hygiene* 1995;53(2):152–7.

Rabello 1992
Rabello AL. [Parasitological diagnosis of schistosomiasis mansoni: fecal examination and rectal biopsy]. *Memorias do Instituto Oswaldo Cruz* 1992;87 Suppl 4:325–31.

Rabello 1997
Rabello A. [Diagnosing schistosomiasis]. *Memorias do Instituto Oswaldo Cruz* 1997;92(5):669–76.

Reimert 1991
Reimert CM, Venge P, Kharazmi A, Bendtzen K. [Detection of eosinophil cationic protein (ECP) by an enzyme–linked immunosorbent assay]. *Journal of Immunological Methods* 1991;138(2):285–90.

Reimert 2000
Reimert CM, Mshinda HM, Hatz CF, Kombe Y, Nkulila T, Poulsen LP, et al. [Quantitative assessment of eosinophilia in Schistosoma haematobium infections: a new marker of infection and bladder morbidity]. *American Journal of Tropical Medicine and Hygiene* 2000;62(1):19–28.

Reitsma 2005
Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. *Journal of Clinical Epidemiology* 2005;58(10):982–90.

Robinson 2009
Robinson E, Picon D, Sturrock HJ, Sabasio A, Lado M, Kolaczinski J, et al. [The performance of haematuria reagent strips for the rapid mapping of urinary schistosomiasis: field experience from Southern Sudan]. *Tropical Medicine and International Health* 2009;14(12):1484–7.

Rollinson 2009
Rollinson D. [A wake up call for urinary schistosomiasis: reconciling research effort with public health importance]. *Parasitology* 2009;136(12):593–610.

Rollinson 2013
Rollinson D, Knopp S, Levitz S, Stothard JR, Tchuente Tchuente LA, Garba A, et al. [Time to set the agenda for schistosomiasis elimination]. *Acta Tropica* 2013;128(2):423–40.

Rutjes 2005
Rutjes AWS, Reitsma JB, Vandenbroucke JP, Glas AS, Bossuyt PMM. [Case–control and two–gate designs in diagnostic accuracy studies]. *Clinical Chemistry* 2005;51(8):1335–41.

Rutter 2001
Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. *Statistics in Medicine* 2001;20(19):2865–84.

Shane 2011
Shane HL, Verani JR, Abudho B, Montgomery SP, Blackstock AJ, Mwinzi PN, et al. [Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya]. *PLoS Neglected Tropical Diseases* 2011;5(1):e951.

Siqueira 2011
Siqueira LM, Coelho PM, Oliveira AA, Massara CL, Carneiro NF, Lima AC, et al. [Evaluation of two coproscopic techniques for the diagnosis of schistosomiasis in a low–transmission area in the state of Minas Gerais, Brazil]. *Memorias do Instituto Oswaldo Cruz* 2011;106(7):844–50.

Sousa-Figueiredo 2013
Sousa-Figueiredo JC, Betson M, Kabatereine NB, Stothard JR. [The urine circulating cathodic antigen (CCA) dipstick: a valid substitute for microscopy for mapping and point–of–care diagnosis of intestinal schistosomiasis]. *PLoS Neglected Tropical Diseases* 2013;7(1):e2008.

Stothard 2006
Stothard JR, Kabatereine NB, Tukahebwa EM, Kazibwe F, Rollinson D, Mathieson W, et al. [Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis]. *Acta Tropica* 2006;97(2):219–28.

Taylor 1990
Taylor P, Chandiwana SK, Matanhire D. [Evaluation of the reagent strip test for haematuria in the control of Schistosoma haematobium infection in schoolchildren]. *Acta Tropica* 1990;50(2):91–100.

Tchuente 2012
Tchuente Tchuente LA, Kuste Fouodo CJ, Kamwa Ngassam RJ, Sumo L, Dongmo NC, Kenfack CM, et al. [Evaluation of circulating cathodic antigen (CCA) urine–tests for diagnosis of Schistosoma mansoni infection in Cameroon]. *PLoS Neglected Tropical Diseases* 2012;6(7):e1758.

Ten Hove 2008
Ten Hove RJ, Verweij JJ, Vereecken K, Polman K, Dieye L, van Lieshout L. [Multiplex real–time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal]. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2008;102(2):179–85.

Utzinger 2009
Utzinger J, Raso G, Broker S, de Savigny D, Tanner M, Ombjerg N, et al. [Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution]. *Parasitology* 2009;136(13):1859–74.

van Dam 2004
van Dam GJ, Wichers JH, Ferreira TMF, Ghati D, van Amerongen A, Deelder A. [Diagnosis of schistosomiasis mansoni infection]. *Diagnostic Microbiology and Infectious Disease* 2010;68(4):416–21.
by reagent strip test for detection of circulating cathodic antigen. *Journal of Clinical Microbiology* 2004;42(12):5458–61.

van Dam 2013
van Dam GJ, De Doed CJ, Lewis M, Deelder AM, van Lieshout L, Tanke HJ, et al. [A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of *Schistosoma* circulating anodic antigen]. *Experimental Parasitology* 2013;135(2):274–82.

van der Werf 2003
van der Werf MJ, De Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, Habberma JD, et al. [Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa]. *Acta Tropica* 2003;86(2-3):125–39.

van Lieshout 1992
van Lieshout, De Jonge N, el Masry NA, Mansour MM, Krijger FW, Deelder AM. [Improved diagnostic performance of the circulating antigen assay in human schistosomiasis by parallel testing for circulating anodic and cathodic antigens in serum and urine]. *American Journal of Tropical Medicine and Hygiene* 1992;47(4):463–9.

van Lieshout 1995
van Lieshout, Panday UG, De Jonge N, Krijger FW, Oostburg BF, Polderman AM, et al. [Immunodiagnosis of schistosomiasis mansoni in a low endemic area in Surinam by determination of the circulating antigens CAA and CCA]. *Acta Tropica* 1995;59(1):19–29.

van Lieshout 2000
van Lieshout, Polderman AM, Deelder AM. [Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections]. *Acta Tropica* 2000;77(1):69–80.

Vennervald 2004
Vennervald BJ, Dunne DW. [Morbidity in schistosomiasis: an update]. *Current Opinion in Infectious Diseases* 2004;17(5):439–47.

Whiting 2011
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. [QUADAS–2: a revised tool for the quality assessment of diagnostic accuracy studies]. *Annals of Internal Medicine* 2011;155(8):529–36.

WHO 2002
WHO Expert Committee on the Control of Schistosomiasis. [Prevention and control of schistosomiasis and soil transmitted helminthiasis: report of a WHO expert committee:Geneva, 8–14 October 2001]. *World Health Organization* 2002:1–57.

WHO 2010
WHO (World Health Organization). [Schistosomiasis fact sheet]. http://www.who.int/mediacentre/factsheets/fs115/en/index.html (accessed 10 October 2010).

WHO/TDR 2006
WHO/TDR. [Scientific working group on Schistosomiasis; Meeting report 14-16 November 2005, Geneva, Switzerland]. http://apps.who.int/tdr/svc/publications/tdr-research-publications/swg-report-schistosomiasis (accessed 10 October 2010).

* Indicates the major publication for the study.
CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Abdel-Wahab 1992

Study characteristics	
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Egypt	
Sample size: 422	
Age range: 12 to 16 years	
Participants: school children whose parents gave consent	
Setting: field study	
Praziquantel status before study: About half of the included children gave a history of receiving PZQ in past 2 years	
Index tests	RS-Microhaematuria, RS-Proteinuria, RS-Leukocyturia (Combur-Test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		

DOMAIN 2: Index Test RS-Microhaematuria
Question	Unclear
Were the index test results interpreted without knowledge of the results of the reference standard?	
If a threshold was used, was it pre-specified?	
Was quality control done?	
Low	

DOMAIN 2: Index Test RS-Proteinuria

Question	Unclear
Were the index test results interpreted without knowledge of the results of the reference standard?	
If a threshold was used, was it pre-specified?	
Was quality control done?	
Low	

DOMAIN 2: Index Test RS-Leukocyturia

Question	Unclear
Were the index test results interpreted without knowledge of the results of the reference standard?	
If a threshold was used, was it pre-specified?	
Was quality control done?	

DOMAIN 3: Reference Standard

Question	Unclear
Is the reference standards likely to correctly classify the target condition?	
Were the reference standard results interpreted without knowledge	
Abdel-Wahab 1992 (Continued)

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was quality control done?	Unclear		
			Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Unclear		

Abdel-Wahab 2000

Study characteristics

Patient sampling	Cross-sectional design; multi-stage stratified random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Egypt	
Sample size: 5214	
Age range: 5 to 25 years	
Participants: residents from villages in Fayoum Governorate	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	
Methodological quality	
Item	Authors’ judgement
Domain: Patient Selection	

Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

Low

Domain: Index Test RS-Microhaematuria
Were the index test results interpreted without knowledge of the results of the reference standard?
If a threshold was used, was it pre-specified?
Was quality control done?

Low

Domain: Reference Standard
Is the reference standards likely to correctly classify the target condition?
Were the reference standard results interpreted without knowledge of the results of the index tests?
Was quality control done?

Low

Domain: Flow and Timing
Was there an appropriate interval between index test and reference standard?
Abdel-Wahab 2000 (Continued)

Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis? | Yes

Adriko 2014 ‘6KK

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Uganda	
Sample size: 469	
Age range: 7 to 13 years	
Participants: children from 5 schools categorized into 3 settings	
Setting: field study	
Praziquantel status before study: Annual mass treatment had been administered 5 years before study began	
Index tests	CCA POC test
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (6 Kato-Katz smears)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC

Question	Response
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Response
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Response
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Low
Study characteristics

Patient sampling	Cross-sectional design; random sampling
Species	S. mansoni
Country	Uganda
Sample size	100
Age range	7 to 13 years
Participants	children from 1 school from low endemic setting (setting A)
Setting	field study
Praziquantel status before study	Annual mass treatment had been administered 5 years before study began

| Index tests | CCA POC test |

| Target condition and reference standard(s) | S. mansoni infection measured by stool microscopy (2 Kato-Katz smears from 1 stool sample) |

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		

| DOMAIN 2: Index Test CCA POC | | |
| Were the index test results interpreted without knowledge of the results of the reference standard? | Unclear | | |
If a threshold was used, was it pre-specified?	Yes
Was quality control done? | Unclear

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Adriko 2014 settingB

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Uganda
Sample size: 200
Age range: 7 to 13 years
Participants: children from 2 schools from moderate endemic setting (setting B)
Setting: field study |
Adriko 2014 (Continued)

Praziquantel status before study: Annual mass treatment had been administered 5 years before study began

Index tests
CCA POC test

Target condition and reference standard(s)
S. mansoni infection measured by stool microscopy (2 Kato-Katz smears from 1 stool sample)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			Low
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
---|---
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Study characteristics

Patient characteristics

Patient sampling	Cross-sectional design; random sampling

Patient characteristics and setting

Species	*S. mansoni*
Country	Uganda
Sample size	200
Age range	7 to 13 years
Participants	children from 2 schools from high endemic setting (setting C)
Setting	field study
Praziquantel status before study	Annual mass treatment had been administered 5 years before study began

Index tests

CCA POC test

Target condition and reference standard(s)

| *S. mansoni* measured by stool microscopy (2 Kato-Katz smears from 1 stool sample) |

Flow and timing

Comparative
Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Adrako 2014

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Alsherbiny 1999

Study characteristics

Patient sampling	Cross-sectional design; consecutive enrolment
Patient characteristics and setting	Species: *S. haematobium*
Country: Egypt	
Sample size: 370	
Age range: 5 to 75 years	
Participants: Occupants > 5 years of age living in Behbeet Village willing to provide a stool, urine, and blood sample	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CAA ELISA-Serum and Urine; CCA ELISA-Serum and Urine (in-house assays)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Alsherbiny 1999 (Continued)

Question	Rating
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test CCA ELISA	Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
DOMAIN 2: Index Test CAA ELISA	Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
DOMAIN 3: Reference Standard	Low
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Alsherbiny 1999 (Continued)

DOMAIN 4: Flow and Timing

Item	Authors' judgement	Risk of bias	Applicability concerns
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	No		

Anosike 2001

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Nigeria
	Sample size: 1173
	Age range: not reported
	Participants: all participating households in 7 communities
	Setting: field study
	Praziquantel status before study: not reported

Index tests

- RS-Microhaematuria (Medi-Test Combi-9, Macherey Nagel, Düren, Germany)

Target condition and reference standard(s)

- *S. haematobium* measured by urine microscopy (filtration method)

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Question	Anosike 2001 (Continued)		
---	--------------------------		
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
Domain 2: Index Test RS-Microhaematuria	Low		
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
Domain 3: Reference Standard	Low		
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
Domain 4: Flow and Timing	Low		
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Anosike 2001 (Continued)

Question	Answer
Were all patients included in the analysis?	Yes

Aryetey 2000

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Ghana
	Sample size: 370
	Age range: > 5 years
	Participants: All participants aged 5 years and above from the 3 study areas
	Setting: field study
	Praziquantel status before study: not reported

Index tests	RS-Microhaematuria, RS-Proteinuria (Hema-Combi-Stix, Bayer Diagnostics, Sudbury, UK)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			Low
Aryeetey 2000 *(Continued)*

Question	Response
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	

DOMAIN 2: Index Test RS-Proteinuria

Question	Response
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Question	Response
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Question	Response
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Low	
Aryeetey 2000 (Continued)

Were all patients included in the analysis?	Unclear

Ashton 2011

Study characteristics

Patient sampling	Nested case-control design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium* and *S. mansoni*
Country: Ivory Coast	
Sample size: 370	
Age range: 5 to 16 years	
Participants: enrolled children within a study, rapid mapping for soil-transmitted helminthiasis	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method) and *S. mansoni* infection by stool microscopy (Kato-Katz)
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	No		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test CCA POC			Low
Ashton 2011 (Continued)

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Yes

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Ayele 2008

Study characteristics

| Patient sampling | Cross-sectional design; unclear sampling |
Patient characteristics and setting

- **Species:** *S. haematobium*
- **Country:** Ethiopia
- **Sample size:** 206
- **Age range:** 4 to 21 years
- **Participants:** school children from 1 school, born and grown up in the area, and not moved since birth
- **Setting:** field
- **Praziquantel status before study:** not reported

Index tests

- RS-Microhamaturia (Combur 10 test, Roche GmbH, Mannheim, Germany); CCA POC test (European Veterinary Laboratory (EVL), Woerden, Holland)

Target condition and reference standard(s)

- *S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

- Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear	Low	
--------------------------	---------	-----	
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	
Species: *S. haematobium*	
Country: Yemen	
Sample size: 696	
Age range: 10 to 16 years	
Participants: primary school children from fifth and sixth grades and first and second grades of preparatory education	
Setting: field study	
Praziquantel status before study: not reported	

Index tests	RS-Microhaematuria (Urocolor 9, Standard Diagnostics Inc., Suwon City, Kyonggi Province, Korea)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (sedimentation method)

| **Flow and timing** | |
|----------------------------------| |

| **Notes** | |

| **Methodological quality** | |

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low

| **DOMAIN 2: Index Test RS-Microhaematuria** | | |
| Were the index test results interpreted without knowledge of the results of the reference standard? | Yes | |
Bassiouny 2014 (Continued)

Question	Rating
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Question	Rating
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Rating
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Birrie 1995 setting

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Ethiopia
	Sample size: 156
	Age range: 0 to > 40 years
	Participants: all residents invited for checkup (low endemic area)
	Setting: field study
Birrie 1995 settingA (Continued)

Index tests	RS-Microhaematuria (Multistix Reagent Strips, Ames-Miles, Elkhart, IN, USA)
Target condition and reference standard(s)	S. haematobium infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		
Birrie 1995: settingA (Continued)

Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear

Birrie 1995: settingB

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Ethiopia	
Sample size: 121	
Age range: 0 to > 40 years	
Participants: all residents invited for checkup (moderate endemic area)	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Multistix Reagent Strips, Ames-Miles, Elkhart, IN, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes
Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear	Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	Low	
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear	Low	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Birrie 1995 settingB (Continued)

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear

Birrie 1995 settingC

Study characteristics

| Patient sampling | Cross-sectional design; consecutive sampling |
| Patient characteristics and setting | Species: *S. haematobium*
Country: Ethiopia
Sample size: 224
Age range: 0 to > 40 years
Participants: all residents invited for checkup (high endemic area)
Setting: field study
Praziquantel status before study: not reported |
Index tests	RS-Microhaematuria (Multistix Reagent Strips, Ames-Miles, Elkhart, IN, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Question	Answer
Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear
Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	**Species:** *S. haematobium*
Country: Ghana	
Sample size: 280	
Age range: 1 to 77 years	
Participants: all willing to participate in voluntary screening and treatment	
Setting: field study	
Praziquantel status before study: 2 years before study	
Index tests	RS-Microhaematuria (Combur 10 Test, Roche GmbH, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (centrifugation method)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			Low
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		

DOMAIN 2: Index Test RS-Microhaematuria

	Authors’ judgement	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
If a threshold was used, was it pre-specified?	Unclear	
Was quality control done?	Unclear	Low
--------------------------	---------	-----

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Bosompem 1996

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient character-istics and setting	Species: *S. haematobium*
Country: Ghana	
Sample size: 229	
Age range: 1 to 86 years	
Participants: volunteers	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Ames-Miles, Tokyo, Japan)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (centrifugation method)

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Bosompem 1996 (Continued)

Was quality control done?	Unclear	Low

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	No
Were all patients included in the analysis?	Unclear
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	**Species: *S. haematobium***
Country: Ghana	
Sample size: 141	
Age range: not reported	
Participants: Urine samples were collected from 90 individuals with symptoms and 51 asymptomatic individuals	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Haemacombrix Strips, Millipore Corp., Billerica, MA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified? | Unclear
---|---
Was quality control done? | Unclear

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified? | Unclear
Was quality control done? | Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | Unclear
Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	
Index tests	CCA POC cassette test (Rapid Medical Diagnostics; Pretoria, South Africa)
Target condition and reference standard(s)	S. mansoni as measured by stool microscopy (1 KK smear)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test CCA POC			
Were the index test results CCA POC interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard

Question	Score
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Score
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Unclear
Were all patients included in the analysis?	Unclear

Cooppan 1987

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: South Africa	
Sample size: 941	
Age range: 4 to 20 years	
Participants: school children belonging to most infected age group were examined at selected localities	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Labstix, Ames, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	No		
		Low	
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	No		
Cooppan 1987 (Continued)

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Coulibaly 2011 ‘9KK

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. mansoni*
	Country: Ivory Coast
	Sample size: 146
	Age range: 8 to 12 years
	Participants: children from grades 3 to 5 attending the schools selected for participation in the study
	Setting: field study (low endemic area)
	Praziquantel status before study: not reported
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s) | *S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes | In Coulibaly 2011_9KK, the index test was measured against a higher-quality reference standard (9 Kato-Katz smears)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
	Low		

DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Yes		
	Low		

| **DOMAIN 3: Reference Standard** | | | |
| Is the reference standards likely to correctly classify the target condition? | Yes | | |
Table 1. Quality Assessment Criteria

Criteria	Details
Were the reference standard results interpreted without knowledge of the results of the index test?	Unclear
Was quality control done?	Unclear
DOMAIN 4: Flow and Timing	Low
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Coulibaly 2011’ Colley2013

Study characteristics

Characteristic	Details
Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. mansoni*
	Country: Ivory Coast
	Sample size: 146
	Age range: 8 to 12 years
	Participants: children from grades 3 to 5 attending the schools selected for participation in the study
	Setting: field study (low endemic area)
	Praziquantel status before study: not reported
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative
Notes

This article describes part of a multi-centre study (Colley 2013). This was similar to Coulibaly 2011, but this article presented 2-by-2 tables of the CCA POC measured against the first daily stool specimen (triplicate KK smears on 1 stool sample).

Methodological quality	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear	Low	
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Yes	Low	
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear	Low	
DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Coulibaly 2013’ 4KK,

Study characteristics

Patient sampling	Cohort design; consecutive sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Cote D’ivoire
Sample size: 367
Age range: < 6 years
Participants: all preschool children from 2 villages
Setting: field study
Praziquantel status before study: reported that there had been no treatment in the area |

Index tests	CCAPOC cassette test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)	*S. mansoni* as measured by stool microscopy (4 Kato-Katz smears)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled? | Yes | | |
Was a case-control design avoided?
Yes

Did the study avoid inappropriate exclusions?
Yes

DOMAIN 2: Index Test CCA POC

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Yes

DOMIAN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Yes

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No
De Clerq 1995

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling

| Patient characteristics and setting | Species: *S. haematobium*
| Country: Mali
| Sample size: 441
| Age range: not reported
| Participants: Blood and urine samples were collected from 182 and 271 people in the villages of Kassa and Boro
| Setting: field study
| Praziquantel status before study: no prior drugs |

Index tests	CAA ELISA Serum (in-house assay)

| Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method) |

Flow and timing	Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear

DOMAIN 2: Index Test CAA ELISA
De Clerq 1995 (Continued)

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

El-Morshedy 1996

Study characteristics

| Patient sampling | Cross-sectional design; random sampling |
Patient characteristics and setting

- Species: *S. mansoni*
- Country: Egypt
- Sample size: 257
- Age range: 20 to 25 years
- Participants: Cohort consisted of 257 men, treated, infected cases in a military camp
- Setting: military camp
- Praziquantel status before study: no prior drugs

Index tests

- CAA ELISA Serum (in-house assay)

Target condition and reference standard(s)

- *S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	No		
		Low	

DOMAIN 2: Index Test CAA ELISA

| | | | |
| | | | |
DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Quality: Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

El-Sayed 1995

Study characteristics

Characteristic	Details
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Egypt	
Sample size: 280	
Age range: 4 to 36 years	
Participants: permanent settlers who agreed to participate in study	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Chemistrip, Boehringer, Indianapolis, IN, USA)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standard likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Yes		
El-Sayed 1995 (Continued)

DOMAIN 4: Flow and Timing

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?			
Were all patients included in the analysis?			

Eltoum 1992

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Sudan
	Sample size: 425
	Age range: 3 to 39 years
	Participants: asymptomatic and symptomatic participants randomly selected from population
	Setting: field study
	Praziquantel status before study: not reported
Index tests	RS-Microhaematuria (Ames-Miles, Elkhart, IN, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Eltoum 1992 (Continued)

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear

Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis? | No

Erko 2013 6KK
Study characteristics
Patient sampling
Patient characteristics and setting
Country: Ethiopia
Sample size: 620
Age range: 8 to 12 years
Participants: children from a village in Western Kenya
Setting: field study
Praziquantel status before study: reported that there had been no treatment in the area
Index tests
Target condition and reference standard(s)
Flow and timing
Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes	Low	
DOMAIN 2: Index Test CCA POC			
Erko 2013‘6KK (Continued)

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Yes

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Erko 2013‘ Colley 2013

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting

- **Species:** *S. mansoni*
- **Country:** Ethiopia
- **Sample size:** 620
- **Age range:** 8 to 12 years
- **Participants:** children from a village in Western Kenya
- **Setting:** field study
- **Praziquantel status before study:** reported that there had been no treatment in the area

Index tests

CCA POC cassette test (Rapid Medical Diagnostics, Pretoria, South Africa)

Target condition and reference standard(s)

S. mansoni as measured by stool microscopy (3 Kato-Katz smears on 1 stool sample)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		

Erko 2013 Colley 2013 (Continued)
Was quality control done?	Unclear	Low
DOMAIN 3: Reference Standard		
Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
Was quality control done?	Yes	
DOMAIN 4: Flow and Timing		
Was there an appropriate interval between index test and reference standard?	Unclear	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	

Etard 2004

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Mali	
Sample size: 2873	
Age range: 10 to 22 years	
Participants: families from 14 villages	
Setting: field study	
Praziquantel status before study: Half of the villages had received mass treatment	
Index tests	RS-Microhaematuria (Ecur test, Boehringer- Mannheim, Germany)
Target condition and reference standard(s)

S. haematobium measured with urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
		Low	
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge	Unclear		
Etard 2004 \(\text{(Continued)}\)

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was quality control done?	Yes		
Low			
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		

Fatiregun 2005

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 592	
Age range: 11 to 20 years	
Participants: all students of junior classes	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Combi-9 Multi-Strip, Macherey Nagel, Düren, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
French 2007

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling

| Patient characteristics and setting | Species: *S. haematobium*
Country: Tanzania
Sample size: 1976
Age range: 6 to 19 years
Participants: school children from 24 sentinel schools
Setting: field study
Praziquantel status before study: Participants were already receiving praziquantel as part of a World Health Organization (WHO) programme, but no time interval was provided |

Index tests	RS-Microhaematuria (Haemastix, Bayer, Glasgow, UK)

Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing	

Comparative	

Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection	
Was a consecutive or random sample of patients enrolled?	Unclear

| Was a case-control design avoided? | Yes |
| Did the study avoid inappropriate exclusions? | Unclear |
Domain	Question	Answer	Low
2	Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
2	If a threshold was used, was it pre-specified?	Yes	
2	Was quality control done?	Unclear	
3	Is the reference standard likely to correctly classify the target condition?	No	
3	Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
3	Was quality control done?	Unclear	
4	Was there an appropriate interval between index test and reference standard?	Unclear	
4	Did all patients receive the same reference standard?	Yes	
4	Were all patients included in the analysis?	Unclear	
Gabr 2000

Study characteristics

Patient sampling	Cross-sectional design; random sampling

Patient characteristics and setting

- **Species:** *S. haematobium*
- **Country:** Egypt
- **Sample size:** 12,134
- **Age range:** 0 to > 55 years
- **Participants:** Randomization took place at village and household levels
- **Setting:** field study
- **Praziquantel status before study:** not reported

Index tests

- RS-Microhaematuria, RS-Proteinuria (Combur-Test, Boehringer, Mannheim, Germany)

Target condition and reference standard(s)

- *S. haematobium* measured by urine microscopy (filtration method)

Flow and timing

- Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			

 - Was a consecutive or random sample of patients enrolled? | Yes | Low |
 - Was a case-control design avoided? | Yes |
 - Did the study avoid inappropriate exclusions? | Yes |

DOMAIN 2: Index Test RS-Microhaematuria

- Were the index test results interpreted without knowledge of the results of the reference standard? | Unclear |
- If a threshold was used, was it pre-specified? | Unclear |
| Was quality control done? | Unclear |
|--------------------------|---------|
| **Low** | |

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characterisics and setting	Species: *S. haematobium*
Country: Chad	
Sample size: 195	
Age range: 7 to 19 years	
Participants: children from a village	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Hema-Combi-Stix) (Combur-Test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (centrifugation method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
	Low		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Gigase 1988 (Continued)

Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Gundersen 1996

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Malawi
Sample size: 260
Age range: 6 to 19 years
Participants: all women of childbearing age (range 15 to 47 years) willing to provide samples, irrespective of complaints
Setting: outpatient department, hospital
Praziquantel status before study: not reported |
Gundersen 1996 (Continued)

Index tests	RS-Microhaematuria (Combur Test 9, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
---	-----		
Was quality control done?	Unclear		
Low			

DOMAIN 2: Index Test RS-Leukocyturia

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Hall 1999

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Ghana	
Sample size: 786	
Age range: 6 to 16 years	
Participants: school-age children from 10 communities	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Hemastix, Bayer, Glasgow, UK)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		

| | | Low |

DOMAIN 2: Index Test RS-Microhaematuria

Gundersen 1996 (Continued)

Hall 1999

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Question	Hall 1999 (Continued)	Hammad 1997
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Cross-sectional design; random sampling
If a threshold was used, was it pre-specified?	Yes	
Was quality control done?	Unclear	
DOMAIN 3: Reference Standard		
Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	No	
Was quality control done?	Unclear	
DOMAIN 4: Flow and Timing		
Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	No	
Was quality control done?	Unclear	
Low		
Was there an appropriate interval between index test and reference standard?	Yes	
Did all patients receive the same reference standard?	No	
Were all patients included in the analysis?	Yes	
Patient characteristics and setting

Species:	S. haematobium
Country:	Egypt
Sample size:	11,970
Age range:	not reported
Participants:	participants interviewed and willing to participate in study
Setting:	field study
Praziquantel status before study:	not reported

Index tests

| RS-Microhaematuria (Chemstrip-4 OB, Boehringer, Mannheim, Germany) |

Target condition and reference standard(s)

| S. haematobium infection measured by urine microscopy (filtration method) |

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Proteinuria

Question	Rating
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Rating
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Yes

Low

DOMAIN 4: Flow and Timing

Question	Rating
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Egypt	
Sample size: 9555	
Age range: 0 > 55 years	
Participants: residents from villages and households in Assiut Governorate	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Combur-Test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
--------------------------	---------		

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Unclear
Were all patients included in the analysis?	Unclear
Study characteristics	
--	
Patient sampling	
Cross-sectional design; multi-stage stratified cluster sample	
Patient characteristics and setting	
Species: *S. haematobium*	
Country: Egypt	
Sample size: 12,327	
Age range: 0 to > 55 years	
Participants: residents from villages and households in Qena Governorate	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	
RS-Microhaematuria, RS-Proteinuria (Combur-Test, Boehringer, Mannheim, Germany)	
Target condition and reference standard(s)	
S. haematobium measured by urine microscopy (filtration method)	
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	No		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Hammam 2000

(Continued)

Was quality control done?	Unclear
Low	

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Low	
Houmsou 2011

Study characteristics

Patient sampling	Cross-sectional; unclear sampling
Patient characteristics and setting	
Species: *S. haematobium*	
Country: Nigeria	
Sample size: 1124	
Age range: 3 to 27 years	
Participants: those interviewed and willing to participate in study	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	
RS-Microhaematuria (Medi-Test Combi 9, Macherey-Nagel, Düren, Germany)	
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Houmsou 2011 (Continued)

Domain	Question	Outcome
DOMAIN 2: Index Test RS-Proteinuria	Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
	If a threshold was used, was it pre-specified?	Yes
	Was quality control done?	Unclear
DOMAIN 3: Reference Standard	Is the reference standards likely to correctly classify the target condition?	No
	Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
	Was quality control done?	Yes
DOMAIN 4: Flow and Timing	Was there an appropriate interval between index test and reference standard?	Yes
	Did all patients receive the same reference standard?	Yes
	Were all patients included in the analysis?	Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Species: *S. haematobium*	
Country: Nigeria	
Sample size: 922	
Age range: 5 to 14 years	
Participants: school children from Epe and surrounding communities in SW Nigeria	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Labstix, Ames, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (centrifugation method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Domain	Question	Score	Score
-----------------------------	---	-------	-------
Was quality control done?	Unclear		Low
DOMAIN 2: Index Test RS-Proteinuria	Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
	If a threshold was used, was it pre-specified?	Unclear	
	Was quality control done?	Unclear	Low
DOMAIN 3: Reference Standard	Is the reference standards likely to correctly classify the target condition?	Unclear	
	Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
	Was quality control done?	Unclear	Low
DOMAIN 4: Flow and Timing	Was there an appropriate interval between index test and reference standard?	Yes	
	Did all patients receive the same reference standard?	Yes	
	Were all patients included in the analysis?	Yes	
Kiliku 1991

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	
Species: *S. haematobium*	
Country: Kenya	
Sample size: 426	
Age range: not reported	
Participants: sample of all participants in Kwale District	
Setting: field study	
Praziquantel status before study: no prior drug given	
Index tests	
RS-Microhaematuria, RS-Proteinuria (Uro-Labstix III, Miles-Sanko Co., Ltd., Osaka, Japan)	
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	No		
Kiliku 1991 *(Continued)*

Was quality control done?	Yes	Low

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
If a threshold was used, was it pre-specified?	No	
Was quality control done?	Yes	Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
Was quality control done?	Unclear	Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	No
Were all patients included in the analysis?	Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Kenya	
Sample size: 2628	
Age range: 4 to 21 years	
Participants: students registered at 5 local primary and secondary schools	
Setting: field study	
Praziquantel status before study: before and after study; follow-up evaluation 1 year after PZQ and metrifonate given	
Index tests	RS-Microhaematuria, RS-Proteinuria (Chemstrip 5 Indicator Dipsticks, Roche Diagnostics, Montreal, Quebec Canada)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes	Low	
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified? | Unclear
---|---
Was quality control done? | Unclear

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified? | Unclear
Was quality control done? | Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Kenya
Sample size: 639
Age range: 0 to 60+ years
Participants: residents of a village who submitted urine samples
Setting: field study
Praziquantel status before study: not reported |

Index tests	RS-Microhaematuria (Combur-Test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)

Flow and timing	
Comparative	

Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
King 1988'b (Continued)

Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

- Is the reference standards likely to correctly classify the target condition? No
- Were the reference standard results interpreted without knowledge of the results of the index tests? Unclear
- Was quality control done? Unclear

DOMAIN 4: Flow and Timing

- Was there an appropriate interval between index test and reference standard? Unclear
- Did all patients receive the same reference standard? Yes
- Were all patients included in the analysis? Yes

Kitange 1993

Study characteristics

Patient sampling	Cohort design; unclear sampling

| Patient characteristics and setting | Species: *S. haematobium*
Country: Tanzania
Sample size: 253
Age range: not reported
Participants: children in classes 1 to 7 in Melela primary school
Setting: field study
Praziquantel status before study: not reported |
|-------------------------------------|--|

| Index tests | RS-Microhaematuria (BM Test 5L, Boehringer, Mannheim, Germany) |
Kitange 1993 (Continued)

Target condition and reference standard(s)	S. haematobium infection measured by urine microscopy (centrifugation method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Unclear		
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	No		
Kitange 1993 *(Continued)*

Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes	
Was quality control done?	Unclear	Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Unclear
Were all patients included in the analysis?	Unclear

Legesse 2007

Study characteristics

Patient sampling	Cross sectional design; unclear sampling
Patient characterisitics and setting	Species: *S. mansoni*
Country: Ethiopia
Sample size: 251
Age range: 5 to 75 years
Participants: those > 5 years recruited through house -to -house visits
Setting: field study
Praziquantel status before study: not reported |
Index tests

CCA POC test (Schistosomiasis One Step Test, BV European, Veterinary Laboratory, Woerden, The Netherlands)

Target condition and reference standard(s)

S. mansoni infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	No		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Unclear	
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
		Low	
Legesse 2007 (Continued)

Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Legesse 2008

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Ethiopia	
Sample size: 184	
Age range: 5 to 22 years	
Participants: primary school children	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CCA POC test (Schistosomiasis One Step Test, BV European, Veterinary Laboratory, Woerden, The Netherlands)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes
Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			

Legesse 2008 (Continued)

Question	Yes
Was there an appropriate interval between index test and reference standard?	
Did all patients receive the same reference standard?	
Were all patients included in the analysis?	

Lengeler 1993

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 1208	
Age range: 11 to 15 years	
Participants: school children who were willing to participate and provided a urine sample	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Combur 9 Multistix, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Lengeler 1993
(Continued)

Question	Rating
Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test RS-Microhaematuria	**Low**
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
DOMAIN 3: Reference Standard	**Low**
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
DOMAIN 4: Flow and Timing	**Low**
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Mafe 1997

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 1056	
Age range: 5 to > 60 years	
Participants: individuals residing in 4 lakeside villages	
Setting: field study	
Praziquantel status before study: no prior drugs given	
Index tests	RS-Microhaematuria (Ames Chemical Reagent Strip, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
Low			
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Unclear		
Mafe 1997 (Continued)

Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes	
Was quality control done?	Unclear	Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Mafe 2000

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characterisitcs and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 529	
Age range: mean 11 years	
Participants: school children in Borgo local government area	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Sangur Sticks, Boehringer, Mannheim, Germany)
Mafe 2000 (Continued)

Target condition and reference standard(s)	$S. \text{haematobium}$ measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
		Low	
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge	Unclear		
Mafe 2000 (Continued)

of the results of the index tests?

Was quality control done?	Unclear	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	

Magnussen 2001

Study characteristics

Patient sampling	Cohort design; consecutive sampling
Patient characterisics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 170	
Age range: 11 to 17 years	
Participants: All children in class 5 in each school in the district were selected	
Setting: field study	
Praziquantel status before study: given prior, but time interval not stated	
Index tests	RS-Microhaematuria (Haemastix, Ames Labs, Ames, IA, USA; Bayer Diagnostics, Sudbury, UK)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	Comparative

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Magnussen 2001 *(Continued)*

DOMAIN 1: Patient Selection
Was a consecutive or random sample of patients enrolled?
Was a case-control design avoided?
Did the study avoid inappropriate exclusions?

DOMAIN 2: Index Test RS-Microhaematuria
Were the index test results interpreted without knowledge of the results of the reference standard?
If a threshold was used, was it pre-specified?
Was quality control done?

DOMAIN 3: Reference Standard
Is the reference standards likely to correctly classify the target condition?
Were the reference standard results interpreted without knowledge of the results of the index tests?
Was quality control done?

DOMAIN 4: Flow and Timing
Was there an appropriate interval between index test and reference standard?
Magnussen 2001 *(Continued)*

Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear

Midzi 2009

Study characteristics

Patient sampling	Cross-sectional design; random sampling

| Patient characteristics and setting | Species: *S. haematobium*
Country: Zimbabwe
Sample size: 265
Age range: 2 to 19 years
Participants: preschool and primary school children
Setting: field study
Praziquantel status before study: not reported |
|-------------------------------------|--|

Index tests	CCA POC test (Van Dam version)

Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing	Comparative

Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes
Low

DOMAIN 2: Index Test CCA POC

Question	Response
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Yes

DOMAIN 3: Reference Standard

Question	Response
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Response
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Uganda
	Sample size: 432
	Age range: 7 to 13 years
	Participants: primary school children
	Setting: field study
	Praziquantel status before study: not reported

Index tests	RS-Microhaematuria, RS-Proteinuria (Medi-Test Combi 10, Standard Diagnostics Inc., Suwon City, Kyonggi Province, Korea)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (centrifugation)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low

DOMAIN 2: Index Test RS-Microhaematuria

| Were the index test results interpreted without knowledge of the results of the reference standard? | Yes | | |
If a threshold was used, was it pre-specified?	Unclear	Low
Was quality control done?	Unclear	

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	
--	-----	
If a threshold was used, was it pre-specified?	Unclear	
Was quality control done?	Unclear	

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No	Low
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
Was quality control done?	Unclear	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes	
--	-----	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	
Study characteristics

Patient sampling	Cohort design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Ghana	
Sample size: 562	
Age range: 5 to 64 years	
Participants: those from 5 settlements interviewed and samples collected	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Neostix-3, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns		
DOMAIN 1: Patient Selection					
Was a consecutive or random sample of patients enrolled?	Yes				
Was a case-control design avoided?	Yes				
Did the study avoid inappropriate exclusions?	Unclear		Low		
DOMAIN 2: Index Test RS-Microhaematuria					
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes				
If a threshold was used, was it pre-specified?	Yes				
Domain	Question	Yes	No	Unclear	Rating
--------	----------	-----	----	---------	--------
DOMAIN 2: Index Test RS-Proteinuria	Were the index test results interpreted without knowledge of the results of the reference standard?	Yes			Low
	If a threshold was used, was it pre-specified?	Yes			
	Was quality control done?	Unclear			Low
DOMAIN 3: Reference Standard	Is the reference standards likely to correctly classify the target condition?	No			
	Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear			
	Was quality control done?	Unclear			Low
DOMAIN 4: Flow and Timing	Was there an appropriate interval between index test and reference standard?	Unclear			
	Did all patients receive the same reference standard?	Yes			
	Were all patients included in the analysis?	Yes			
Study characteristics

Patient sampling Cross-sectional design; unclear sampling

Patient characteristics and setting
- Species: *S. haematobium*
- Country: Zambia
- Sample size: 656
- Age range: 0 to 64 years
- Participants: those in Mutenda
- Setting: field study
- Praziquantel status before study: not reported

Index tests RS-Microhaematuria, RS-Proteinuria (Neostix-3, Ames Labs, Ames, IA, USA)

Target condition and reference standard(s) *S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
--------------------------	---------		
DOMAIN 2: Index Test RS-Proteinuria	**Low**		
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard	**Low**		
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing	**Low**		
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 404	
Age range: 7 to 15 years	
Participants: Urine samples were drawn from 404 pupils, including those with frank haematuria	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Sangur Reagent Sticks, Boehringer, Mannheim, Germany)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Mtasiwa 1996 (Continued)

Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Murare 1987

Study characteristics

Patient sampling	Cohort design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Zimbabwe	
Sample size: 232	
Age range: 9 to 14 years	
Participants: school children from a school chosen on basis of previous studies	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Medi-Test Combi-7, Macherey-Nagel, Düren, Germany)
Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method)
---|---
Flow and timing | ---
Comparative | ---
Notes | ---

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria		Low	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 2: Index Test RS-Proteinuria		Low	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Murare 1987
(Continued)

Question	Yes/No/Ounclear	Quality
Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

- Is the reference standards likely to correctly classify the target condition? Yes
- Were the reference standard results interpreted without knowledge of the results of the index tests? Unclear
- Was quality control done? Unclear

DOMAIN 4: Flow and Timing

- Was there an appropriate interval between index test and reference standard? Yes
- Did all patients receive the same reference standard? Yes
- Were all patients included in the analysis? Yes

Navaratnam 2012

Study characteristics

Category	Details
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Uganda	
Sample size: 569	
Age range: 1 to 5 years	
Participants: preschool children living in 4 villages in Buliisa District	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)

S. mansoni infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge	Unclear		
Navaratnam 2012 (Continued)

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was quality control done?	Unclear		Low

DOMAIN 4: Flow and Timing

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was there an appropriate interval between index test and reference standard?	Unclear		Low
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		

Ndamukong 2001

Study characteristics

Item	Authors’ judgement	Risk of bias	Applicability concerns
Patient sampling	Cross-sectional design; unclear sampling		
Patient characteristics and setting	Species: S. haematobium		
Country: Cameroon			
Sample size: 347			
Age range: 5 to 16 years			
Participants: primary school children attending 6 primary schools			
Setting: field study			
Praziquantel status before study: not reported			
Index tests	RS-Microhaematuria, RS-Proteinuria (Haemastix and Albustix, Bayer, Pittsburgh, PA, USA)		
Target condition and reference standard(s)	S. haematobium measured by urine microscopy		
Flow and timing	Comparative		
Notes			
DOMAIN 1: Patient Selection

Question	Answer
Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear

Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 2: Index Test RS-Proteinuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standard likely to correctly classify the target condition?	No
Were the reference standard results	Unclear
Ndamukong 2001 (Continued)

Question	Answer
Interpreted without knowledge of the results of the index tests?	
Was quality control done?	Unclear
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Ndlovu 1996

Study characteristics

Patient sampling	Nested case-control design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Zimbabwe
	Sample size: 179
	Age range: > 5 years
	Participants: egg-positives and egg-negatives, resulting in 96 cases and 83 controls from same population
	Setting: field study
	Praziquantel status before study: not reported

| Index tests | CAA ELISA Serum (in-house assay) |
| Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method) |

Flow and timing

Comparative

Notes

Methodological quality

Low
Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	No		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test CAA ELISA			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Unclear		
Ndlovu 1996 (Continued)

Did all patients receive the same reference standard?	Unclear
Were all patients included in the analysis?	Unclear

Nduka 1995

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 1165	
Age range: 6 to 21 years	
Participants: school children from a rural town	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Medi-Test Combi-9, Macherey Nagel, D ü ren, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
Domain	Question	Answer	
--------	--	--------	
Low	Nduka 1995 (Continued)		
Low	**DOMAIN 2: Index Test RS-Microhaematuria**		
	Were the index test results interpreted without knowledge of	Unclear	
	the results of the reference standard?		
	If a threshold was used, was it pre-specified?	Yes	
	Was quality control done?	Unclear	
Low	**DOMAIN 3: Reference Standard**		
	Is the reference standards likely to correctly classify the target	No	
	condition?		
	Were the reference standard results interpreted without knowledge of	Unclear	
	the results of the index tests?		
	Was quality control done?	Unclear	
Low	**DOMAIN 4: Flow and Timing**		
	Was there an appropriate interval between index test and reference	Yes	
	standard?		
	Did all patients receive the same reference standard?	Yes	
	Were all patients included in the analysis?	Yes	
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 483	
Age range: 5 to 19 years	
Participants: children from 3 primary schools	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Multistix, Ames Labs, Ames, IA, USA ; Bayer Diagnostics, Tarrytown, NY, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
			Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified? | Unclear
---|---
Was quality control done? | Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | Yes

NGoran 1989

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Ivory Coast	
Sample size: 1059	
Age range: not reported	
Participants: inhabitants of village of Nguessan Pokoukro, present on the day of examination	
Setting: field study	
Item	Authors’ judgement
---	--------------------
DOMAIN 1: Patient Selection	
Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
---|---

Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard? | Unclear

Did all patients receive the same reference standard? | Unclear

Were all patients included in the analysis? | Yes

NGoran 1998

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling

| Patient characteristics and setting | Species: *S. haematobium*
| | Country: Ivory Coast
| | Sample size: 1336
| | Age range: 12.2 +/- 1.6 years
| | Participants: school children from 14 schools in town of Toumoudi
| | Setting: field study
| | Praziquantel status before study: not reported |

| Index tests | RS-Microhaematuria (Sangur- Test, Boehringer, Mannheim, Germany) |

| Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method) |

| Flow and timing |

| Comparative |

| Notes |

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard? Unclear

Did all patients receive the same reference standard? Yes

Were all patients included in the analysis? Yes

Ngându 1988

Study characteristics

Patient sampling Cross-sectional design; unclear sampling

Patient characteristics and setting
Species: *S. haematobium*
Country: Zambia
Sample size: 412
Age range: 6 to 19 years
Participants: school children from 9 primary schools
Setting: field study
Praziquantel status before study: not reported

Index tests RS-Microhaematuria, RS-Proteinuria (Bili-Labstix, Miles, Bridgend, UK)

Target condition and reference standard(s) *S. haematobium* measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions? | Yes
---|---
Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 2: Index Test RS-Proteinuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing
Ngándu 1988 *(Continued)*

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Nmorsi 2005

Study characteristics

Section	Information
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 300	
Age range: 5 to 60 years	
Participants: volunteers; excluded were patients with allergy and skin infections	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Haemastix, Ames Laboratories, Ames, IA, USA), RS-Proteinuria (Albustix, Ames Laboratories)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (centrifugation method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Domain	Question	Answer	
-------------------------------	---	--------	
DOMAIN 1: Study Selection	**Was a case-control design avoided?**	Yes	
	Did the study avoid inappropriate exclusions?	No	
	DOMAIN 2: Index Test RS-Microhaematuria		
	Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
	If a threshold was used, was it pre-specified?	Unclear	
	Was quality control done?	Unclear	
	DOMAIN 2: Index Test RS-Proteinuria		
	Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
	If a threshold was used, was it pre-specified?	Unclear	
	Was quality control done?	Unclear	
	DOMAIN 3: Reference Standard		
	Is the reference standards likely to correctly classify the target condition?	Unclear	
	Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
	Was quality control done?	Unclear	

Notes:
- Unclear
- Low
Nmorsi 2005 (Continued)

Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Nwaorgu 1992

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 437	
Age range: 0 to 35+ years	
Participants: permanent settlers who agreed to participate in study	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (L-Combur, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Nwaorgu 1992 (Continued)

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes
Low	
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear
Low	
DOMAIN 2: Index Test RS-Proteinuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear
Low	
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Nwaorgu 1992 (Continued)

Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Ofori 1986

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling

| Patient characteristics and setting | Species: *S. haematobium*
| | Country: Ghana
| | Sample size: 118
| | Age range: not reported
| | Participants: urine specimens collected from 118 pupils
| | Setting: field study
| | Praziquantel status before study: not reported |

| Index tests | RS-Microhaematuria, RS-Proteinuria (N-Multistix SG, Ames, Glasgow, England) |

| Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method) |

Flow and timing	Comparative

| Notes |

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection
Question	Rating
Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear
Low	
DOMAIN 2: Index Test RS-Proteinuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear
Low	
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Ofori 1986 (Continued)

Was quality control done?	Unclear	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	

Okeke 2014: setting A

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling

| Patient characteristics and setting | Species: *S. haematobium*
Country: Nigeria
Sample size: 296
Age range: 5 to 13 years
Participants: primary school children from Niger Lake, a low endemic setting (setting A)
Setting: field study
Praziquantel status before study: not reported |
|--------------------------------------|--|

Index tests	RS-Microhaematuria, RS-Proteinuria (Medi-Test Combi-9, Macherey-Nagel, Dü ren, Germany)

Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (sedimentation method)

Methodological quality

| Item | Authors' judgement | Risk of bias | Applicability concerns |
|------|--------------------|--------------|------------------------|------------------------|
DOMAIN 1: Patient Selection	
Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

Low

DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear

Low

DOMAIN 2: Index Test RS-Proteinuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results	Unclear
interpreted without knowledge of the results of the index tests?

Question	Answer
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Okeke 2014 setting B

Study characteristics

Category	Details
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Nigeria
	Sample size: 184
	Age range: 5 to 13 years
	Participants: primary school children from Niger cem, a moderate endemic setting (setting B)
	Setting: field study
	Praziquantel status before study: not reported
Index tests	RS-Microhaematuria, RS-Proteinuria (Medi-Test Combi-9, Macherey-Nagel, Düren, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (sedimentation method)

Methodological quality

Quality
Low
###DOMAIN 1: Patient Selection

Item	Authors' judgement	Risk of bias	Applicability concerns
Was a consecutive or random sample of patients enrolled?	Unclear	Low	
Was a case-control design avoided?	Yes	Low	
Did the study avoid inappropriate exclusions?	Yes	Low	

###DOMAIN 2: Index Test RS-Microhaematuria

Item	Authors' judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	
If a threshold was used, was it pre-specified?	Unclear	Low	
Was quality control done?	Unclear	Low	

###DOMAIN 2: Index Test RS-Proteinuria

Item	Authors' judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	
If a threshold was used, was it pre-specified?	Unclear	Low	
Was quality control done?	Unclear	Low	

###DOMAIN 3: Reference Standard

Item	Authors' judgement	Risk of bias	Applicability concerns
Is the reference standards likely to correctly classify the target condition?	No	Low	
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
---|---
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | Yes

Onayade 1996

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 105	
Age range: 8 to 16 years	
Participants: all grade 4 to 6 pupils with minimum age of 4	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Proteinuria (N-Multistix, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (sedimentation method)

Flow and timing

Comparative

Notes
Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 4: Flow and Timing			
Onayade 1996 (Continued)

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Poggensee 2000 settingA

Study characteristics

| Patient sampling | Cross-sectional design; non-probability-based sampling procedure |
| Patient characteristics and setting | Species: *S. haematobium*
Country: Tanzania
Sample size: 175
Age range: 15 to 60 years
Participants: women of childbearing age
Setting: field study (low endemic setting)
Praziquantel status before study: not reported |
Index tests	RS-Microhaematuria, RS-Proteinuria, RS-Leukocyturia (Nephur-Test + Leuco, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	No		
Was a case-control design avoided?	Yes		
-----------------------------------	-----		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 2: Index Test RS-Leukocyturia			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
Was quality control done? | Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard? | Yes
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | Yes

Poggensee 2000 settingA

Study characteristics

Patient sampling | Cross-sectional design; non-probability-based sampling procedure
Patient characteristics and setting | Species: *S. haematobium*
Country: Tanzania
Sample size: 128
Age range: 15 to 60 years
Participants: women of childbearing age
Setting: field study (high endemic setting)
Praziquantel status before study: not reported

Index tests | RS-Microhaematuria, RS-Proteinuria, RS-Leukocyturia (Nephur-Test + Leuco, Boehringer, Mannheim, Germany)

Target condition and reference standard(s) | *S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

- **Was a consecutive or random sample of patients enrolled?** No
- **Was a case-control design avoided?** Yes
- **Did the study avoid inappropriate exclusions?** Unclear

Item	Authors’ judgement	Risk of bias	Applicability concerns

Low

DOMAIN 2: Index Test RS-Microhaematuria

- **Were the index test results interpreted without knowledge of the results of the reference standard?** Unclear
- **If a threshold was used, was it pre-specified?** Unclear
- **Was quality control done?** Unclear

Item	Authors’ judgement	Risk of bias	Applicability concerns

Low

DOMAIN 2: Index Test RS-Proteinuria

- **Were the index test results interpreted without knowledge of the results of the reference standard?** Unclear
- **If a threshold was used, was it pre-specified?** Unclear
- **Was quality control done?** Unclear

Item	Authors’ judgement	Risk of bias	Applicability concerns
Low			

DOMAIN 2: Index Test RS-Leukocyturia			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Polman 1995

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Senegal	
Sample size: 422	
Age range: 0 to 77 years	
Participants: 10% of the households (all members) from an updated census list	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CAA ELISA Serum; CCA ELISA Serum and Urine (in-house)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test CCA ELISA			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear	Low	
--------------------------	---------	-----	
DOMAIN 2: Index Test CAA ELISA			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Unclear		
Study characteristics

Category	Details
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 5367	
Age range: 5 to > 36 years	
Participants: males 5 to 25 years of age from 3 villages and all participants over 4 years from 2 study areas	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria ; RS-Proteinuria (Labstix, Ames Labs, Berlin, Germany)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified? | Yes
---|---
Was quality control done? | Unclear

DOMIAN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified? | Yes
Was quality control done? | Unclear

DOMIAN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests? | Unclear
Was quality control done? | Unclear

DOMIAN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard? | Yes
Were all patients included in the analysis? | No
Rasendramino 1998

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Madagascar	
Sample size: 574	
Age range: > 5 years	
Participants: all inhabitants of a village > 5 years	
Setting: field study	
Praziquantel status before study: Study reports that no praziquantel was administered before the study	
Index tests	RS-Microhaematuria, RS-Proteinuria, RS-Leukocyturia (Nephur 7 test, Roche Diagnostics, Montreal, Quebec, Canada)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
	Rasendramino 1998		
------------------------	---------------------		
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
	Low		
DOMAIN 2: Index Test RS-Leukocyturia			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
	Low		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
	Low		
Rasendramino 1998

(Continued)

DOMAIN 4: Flow and Timing

Question	Authors’ judgement
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Robinson 2009

Study characteristics

Patient sampling	Nested case-control design; quasi-random 2-stage cluster sampling method
Patient characteristics and setting	Species: *S. haematobium*
	Country: Sudan
	Sample size: 677
	Age range: 5 to 16 years
	Participants: In each selected household, children were asked to provide a urine sample
	Setting: field study
	Praziquantel status before study: not reported
Index tests	RS-Microhaematuria (Hemastix Bayer Diagnostics, Bridgend, UK)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Robinson 2009 (Continued)

Question	Answer
Was a case-control design avoided?	No
Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear
DOMAIN 3: Reference Standard	
Is the reference standard likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	No
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Rollinson 2005

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 280	
Age range: 10 to 22 years	
Participants: children from 2 schools	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Hemastix, Bayer, Pittsburgh, PA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	

DOMAIN 2: Index Test RS-Microhaematuria
Rollinson 2005 (Continued)

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	No
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Sarda 1985

Study characteristics

| Patient sampling | Cross-sectional design; unclear sampling |
| Patient characteristics and setting | Species: *S. haematobium*
Country: Tanzania
Sample size: 2418
Age range: 7 to 19 years
Participants: children from 12 schools
Setting: field study
Praziquantel status before study: not reported |
|-----------------------------------|--------------------------------|
| Index tests | RS-Microhaematuria, RS-Proteinuria (N-Multistix, Ames Labs, Ames, IA, USA) |
| Target condition and reference standard(s) | *S. haematobium* measured by urine microscopy (filtration method) |
| Flow and timing | |
| Comparative | |
| Notes | |
| Methodological quality | |
| Item | Authors’ judgement | Risk of bias | Applicability concerns |
| **DOMAIN 1: Patient Selection** | | | |
| Was a consecutive or random sample of patients enrolled? | Unclear | | Low |
| Was a case-control design avoided? | Yes | | |
| Did the study avoid inappropriate exclusions? | Unclear | | |
| **DOMAIN 2: Index Test RS-Microhaematuria** | | | |
| Were the index test results interpreted without knowledge of the results of the reference standard? | Unclear | | |
| If a threshold was used, was it pre-specified? | Unclear | | |
| Was quality control done? | Unclear | | |
DOMAIN 2: Index Test RS-Proteinuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standard likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Kenya	
Sample size: 1300	
Age range: 6 to 19 years	
Participants: school children from various schools	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (N-Multistix Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear	Low	
---------------------------	---------	-----	

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes
Was quality control done?	Yes

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Savioli 1990

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 879	
Age range: 5 to 19 years	
Participants: children in a village	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Hemastix, Ames-Miles Laboratories, Elkhart, IN, USA)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Savioli 1990 (Continued)

Was quality control done?	Unclear
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Sellin 1982

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Burkina Faso
Sample size: 1162
Age range: not reported
Participants: people from a high endemic village in Upper Volta
Setting: field study
Praziquantel status before study: treatment given after baseline study and follow-up accuracy study done 1 year later |
Sellin 1982 (Continued)

Index tests	RS-Microhaematuria, RS-Proteinuria (Laboratoires Ames, Paris, France)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
		Low	
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
---	-----		
Was quality control done?	Unclear		

Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Shane2011˙Colley2013

Study characteristics

Patient sampling	Cross-sectional design; consecutive sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Kenya
Sample size: 1845 (updated from Colley 2013)
Age range: 1 to 15 years
Participants: children from a village in Western Kenya
Setting: field study |
Praziquantel status before study: reported that there had been no treatment in the area

Index tests	CCA POC cassette (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz smears)
Flow and timing	
Comparative	
Notes	This article was part of a multi-centre study (Colley 2013). In this article, 2-by-2 tables of the CCA POC measured against the first daily stool specimen (duplicate KK smears on 1 stool sample) were presented

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Yes		Low
DOMAIN 3: Reference Standard			
Question	Answer		
--	--------		
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes		
Was quality control done?	Yes		

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Shaw 1998

Study characteristics

Patient sampling	Cohort design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Senegal	
Sample size: 857	
Age range: 4 to > 40	
Participants: individuals in households invited to participate	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Ames Labs, Ames, IA, USA; Bayer Diagnostics, Gent, Belgium)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
Domain 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Standley 2010

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. mansoni*
	Country: Eastern Lake Victoria (Tanzania and Kenya)
	Sample size: 171
	Age range: 6 to 17 years
	Participants: school children selected in 11 schools by headmaster
	Setting: field study
	Praziquantel status before study: not reported
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Standley 2010 (Continued)			
--			
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test CCA POC	Low		
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	No		
Was quality control done?	Yes		
DOMAIN 3: Reference Standard	Low		
Is the reference standard likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Yes		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Unclear		
Stephenson 1984

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Kenya	
Sample size: 359	
Age range: 6 to 16 years	
Participants: Children from 2 primary schools not previously tested were examined	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Ames N-Multistix, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Stepenson 1984	(Continued)		
----------------	-------------		
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Low	**Low**		
Stephenson 1984 (Continued)

| Were all patients included in the analysis? | Yes |

Stothard 2006

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Uganda
Sample size: 270
Age range: 11 years
Participants: children from 9 sentinel schools of matched sexes
Setting: field study
Praziquantel status before study: not reported |

Index tests	CCA POC test (Schistosomiasis One Step Test, EVL, Woerden, Holland)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			Low
Stothard 2006

(Continued)

Question	Answer	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	
If a threshold was used, was it pre-specified?	Yes	
Was quality control done?	Unclear	
		Low
DOMAIN 3: Reference Standard		
Is the reference standards likely to correctly classify the target condition?	Yes	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
Was quality control done?	Unclear	
		Low
DOMAIN 4: Flow and Timing		
Was there an appropriate interval between index test and reference standard?	Unclear	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	

Stothard 2009a

Study characteristics

| Patient sampling | Cross-sectional design; unclear sampling |
Patient characteristics and setting

Species: *S. haematobium*
Country: Tanzania
Sample size: 150
Age range: 8 to 14 years
Participants: children from 5 schools
Setting: field study
Praziquantel status before study: annual MDA 11 months before the study

Index tests

CCA POC test (Leiden University Medical Centre, Leiden, The Netherlands)

Target condition and reference standard(s)

S. haematobium infection measured by urine microscopy (filtration method)

Flow and timing

Comparative

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		Low
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		Low
Stothard 2009a (Continued)

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Stothard 2009b

Study characteristics

Category	Details
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Tanzania	
Sample size: 66	
Age range: 9 to 15 years	
Participants: school children	
Setting: field study	
Praziquantel status before study: Likely, children enrolled were already part of a ‘kick out schistosomiasis’ campaign	
Index tests	RS-Microhaematuria (Hemastix, Bayer, Sudbury, UK)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standard likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing

Question	Yes
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Tanner 1983’1

Study characteristics

Patient sampling	Cross-sectional design; random sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Liberia	
Sample size: 267	
Age range: 0 to 15 years	
Participants: school children from 3 villages	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Labstix, Ames, Glasgow, England)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Tanner 1983' 1 (Continued)

Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes
Low	
DOMAIN 2: Index Test RS-Microhaematuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	
DOMAIN 2: Index Test RS-Proteinuria	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Tanner 1983'1 (Continued)

Item	Authors' judgement	Risk of bias	Applicability concerns
Tanner 1983'1		Low	
Was quality control done?	Unclear		

DOMAIN 4: Flow and Timing

Item	Authors' judgement	Risk of bias	Applicability concerns
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		

Tanner 1983’2

Study characteristics

Item	Authors' judgement	Risk of bias	Applicability concerns
Study characteristics			
Patient sampling	Cross-sectional design ; random sampling		
Patient characteristics and setting	Species: *S. haematobium*		
Country: Tanzania			
Sample size: 548			
Age range: 0 to 15 years			
Participants: children from 1 village and river plain			
Setting: field study			
Praziquantel status before study: not reported			
Index tests	RS-Microhaematuria (Blood Sangur Test, Boehringer, Mannheim FRG), RS-Proteinuria (Protein Albym Test, Boehringer, Mannheim, Germany)		
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)		
Flow and timing	Comparative		
Notes			

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 2: Index Test RS-Proteinuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results	Unclear
Tanner 1983 (Continued)

Interpreted without knowledge of the results of the index tests?	Yes
Was quality control done?	Unclear

Domain 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Tchuente 2012 9KK

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characterstics and setting	Species: *S. mansoni*
Country: Cameroon	
Sample size: 138	
Age range: 7 to 15 years	
Participants: children who provided all 3 samples	
Setting: field study (low endemicity)	
Praziquantel status before study: not reported	
Index tests	CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)

Methodological quality

Methodological quality	Low
## Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low

DOMAIN 2: Index Test CCA POC

Item	Authors’ judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Yes		Low

DOMAIN 3: Reference Standard

Item	Authors’ judgement	Risk of bias	Applicability concerns
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		Low

DOMAIN 4: Flow and Timing

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was there an appropriate interval between index test and reference standard?	Yes		
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Species	S. mansoni
Country	Cameroon
Sample size	138
Age range	7 to 15 years
Participants	children who provided all 3 samples
Setting	field study (low endemicity)
Praziquantel status before study	not reported

Index tests

CCA POC test (Rapid Medical Diagnostics, Pretoria, South Africa)

Target condition and reference standard(s)

S. mansoni infection measured by stool microscopy (Kato-Katz)

Flow and timing

Comparative

Notes

This article describes part of a multi-centre study (Colley 2013), which was similar to Tchuente 2012_9KK, but in this article, 2-by-2 tables of the CCA POC measured against the first daily stool specimen (triplicate KK smears on 1 stool sample) were presented

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Question	Evidence Level		
---	----------------		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test CCA POC			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Yes		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	No		
Traore 1998

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Mali	
Sample size: 1041	
Age range: 2 to 25+ years	
Participants: all inhabitants in a village older than 2 years	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Combur -9, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured with urine microscopy (filtration method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
Low			
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?
- **Unclear**

DOMAIN 2: Index Test RS-Proteinuria

Was the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Unclear
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No
Study characteristics

Study characteristics	Value
Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 447	
Age range: 3 to 17 years	
Participants: all school children except girls who had menstruated within 5 days of sample collection	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Medi-Test Combi-9, Analyticon Biotechnologies, Rosbach vor der Höhe, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
If a threshold was used, was it pre-specified?	Yes		
---	-----		
Was quality control done?	Unclear		
Low			

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
Low	

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear
Low	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 566	
Age range: > 1 year	
Participants: consenting individuals at household level in 5 communities	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (5L test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (sedimentation method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
		Low	
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear	Low	
--------------------------	---------	-----	

DOMAIN 2: Index Test RS-Proteinuria

Were the index test results interpreted without knowledge of the results of the reference standard?	Yes
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

Low

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Low
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Nigeria	
Sample size: 1457	
Age range: > 1 year	
Participants: consenting participants at central locations in 5 communities	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria, RS-Proteinuria (Combur-9 test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (sedimentation method)

Flow and timing

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		Low
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear	Low	
--------------------------	---------	-----	
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear	Low	
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear	Low	
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Surinam	
Sample size: 389	
Age range: 1 to 85 years	
Participants: all inhabitants of a village except those younger than 1 year of age	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CAA and CCA ELISA, Serum (in-house assays)
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test CCA ELISA			Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Yes		
Was quality control done?	Unclear		
--------------------------	--------		

DOMAIN 2: Index Test CAA ELISA

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Van Lieshout 1995 (Continued)
Van Lieshout 1998’1

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. mansoni*
Country: Zaire	
Sample size: 508	
Age range: 1 to 66 years	
Participants: data set populations living in Maniema- area with intense transmission	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CAA ELISA Serum test
Target condition and reference standard(s)	*S. mansoni* infection measured by stool microscopy (Kato-Katz)

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
		Low	
DOMAIN 2: Index Test CAA ELISA			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Van Lieshout 1998'1 (Continued)

Was quality control done?	Unclear	Low

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes	
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	
Was quality control done?	Unclear	Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Van Lieshout 1998’2

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characterisics and setting	Species: *S. mansoni*
Country: Senegal	
Sample size: 246	
Age range: 1 to 77 years	
Participants: data set of populations living in Ndombo- area with intense transmission	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	CAA ELISA Serum test
Target condition and reference standard(s)	S. mansoni infection measured by stool microscopy (Kato-Katz)
--	--
Flow and timing	Comparative
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

Item	Authors’ judgement	Risk of bias	Applicability concerns
Was a consecutive or random sample of patients enrolled?	Unclear		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		

DOMAIN 2: Index Test CAA ELISA

Item	Authors’ judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		Low

DOMAIN 3: Reference Standard

Item	Authors’ judgement	Risk of bias	Applicability concerns
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge	Unclear		
Van Lieshout 1998

Continued

Item	Authors’ judgement	Risk of bias	Applicability concerns
of the results of the index tests?			
Was quality control done?	Unclear		
		Low	

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		

Verle 1994

Study characteristics

Patient sampling	Cross-sectional design ; consecutive sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Senegal	
Sample size: 352	
Age range: 0 to > 50 years	
Participants: registered village inhabitants invited to participate	
Setting: field study	
Praziquantel status before study: not given previously	
Index tests	RS-Microhaematuria, RS-Proteinuria (Multistix, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* infection measured by urine microscopy (filtration method)
Flow and timing	
Comparative	
Notes	

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes
	Low

DOMAIN 2: Index Test RS-Microhaematuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
	Low

DOMAIN 2: Index Test RS-Proteinuria

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
If a threshold was used, was it pre-specified?	Yes
Was quality control done?	Unclear
	Low

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results	Unclear

| |
Verle 1994 (Continued)

Question	Answer
Was quality control done?	Yes
Low	
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Warren 1979

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling		
Patient characteristics and setting	Species: *S. haematobium*		
	Country: Kenya		
	Sample size: 390		
	Age range: 5 to 18 years		
	Participants: school children from 2 schools		
	Setting: field study		
	Praziquantel status before study: not reported		
Index tests	RS-Microhaematuria, RS-Proteinuria (Bili-Lab- Stix, Ames Labs, Ames, IA, USA)		
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)		
Flow and timing			
Comparative			
Notes			
Item	Authors' judgement	Risk of bias	Applicability concerns
---	--------------------	--------------	------------------------
DOMAIN 1: Patient Selection			Low
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		

DOMAIN 2: Index Test RS-Microhaematuria

Item	Authors' judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Yes		

DOMAIN 2: Index Test RS-Proteinuria

Item	Authors' judgement	Risk of bias	Applicability concerns
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Yes		

DOMAIN 3: Reference Standard

Item	Authors' judgement	Risk of bias	Applicability concerns
Is the reference standards likely to correctly classify the target condition?	No		
Warren 1979 (Continued)

Question	Response
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Response
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Wilkins 1979

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
Country: Gambia	
Sample size: 1944	
Age range: ≥ 2 years	
Participants: study based on specimens collected from earlier study	
Setting: field study	
Praziquantel status before study: not reported	
Index tests	RS-Microhaematuria (Lab- Stix, Ames Labs, Ames, IA, USA)
Target condition and reference standard(s)	*S. haematobium* measured by urine microscopy (filtration method)
Flow and timing	
Comparative |
Notes |
Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 2: Index Test RS-Proteinuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Wilkins 1979

Question	Answer
Is the reference standards likely to correctly classify the target condition?	No
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
Was quality control done?	Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Unclear
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes

Zumstein 1983

Study characteristics

Patient sampling	Cross-sectional design; unclear sampling
Patient characteristics and setting	Species: *S. haematobium*
	Country: Tanzania
	Sample size: 3478
	Age range: 6 to 19 years
	Participants: school children from 15 schools
	Setting: field study
	Praziquantel status before study: not reported
Index tests	RS-Microhaematuria (Sangur Test, Boehringer, Mannheim, Germany)
Target condition and reference standard(s)	*S. haematobium* measured with urine microscopy (filtration method)
Flow and timing	
Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Unclear	Low	
Was a case-control design avoided?	Unclear	Low	
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test RS-Microhaematuria			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
If a threshold was used, was it pre-specified?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Was quality control done?	Unclear		Low
DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No

Characteristics of excluded studies [ordered by year of study]

Study	Reason for exclusion
Deelder 1981	Not a test accuracy study
Feldmeier 1982	Case-control study with healthy controls
Kassim 1983	Case-control study with healthy controls
Mott 1983	Accuracy study carried out with similar tests and populations as another included paper
Mott 1985	Accuracy study carried out with similar tests and populations as another included paper
Doehring 1985	Not a test accuracy study
Feldmeier 1986	Case series with healthy individuals from "same endemic area"
de Jonge 1988	Case-control study with healthy controls
Madwar 1988	Not a test accuracy study
Deelder 1989	Not a test accuracy study
de Jonge 1989,a	Only proven cases included in study
Savioli 1989	Not a test accuracy study
de Jonge 1989,b	Only proven cases included in study
Study	Study Characteristics
---------------------	---
de Jonge 1990	Cannot extract 2-by-2 tables
Taylor 1990	Cannot extract 2-by-2 tables
de Jonge 1990	Case-control study with controls from non-endemic areas
Lengeler 1991	Cannot extract 2-by-2 tables
Hassan 1992	Ineligible index test
Gundersen 1992	Case-control study with healthy controls
van Lieshout 1992	Case-control study with controls from non-endemic areas
Eltoum 1992	Accuracy study carried out with similar tests and populations as another included paper
Kaiser 1992	Ineligible reference standard
Krijger 1994	Case-control study with healthy controls
Jemaneh 1994	Cannot extract 2-by-2 tables
van Etten 1994	Case-control study with healthy controls
Fillie 1994	Case-control study with healthy controls
Kremsner 1994	Cannot extract 2-by-2 tables
Hassan 1994	Cannot extract 2-by-2 tables
van Lieshout 1995	Case-control study with controls from non-endemic areas
Hakangard 1996	Case-control study with controls from non-endemic areas
Disch 1997	Only proven cases included in study
van Etten 1997	Ineligible reference standard
Tiemersma 1997	Cannot extract 2-by-2 tables
Lwambo 1997	Cannot extract 2-by-2 tables
de Clerq 1997	Cannot extract 2-by-2 tables
Nibbeling 1998	Ineligible index test
Study	Description
------------------	--
Poggensee 1998	Cannot extract 2-by-2 tables
Polman 1998	Not a test accuracy study
Kahama 1998	Cannot extract 2-by-2 tables
Pereira 1999	Case-control study with controls from non-endemic areas
Hassan 1999	Only proven cases included in study
Kahama 1999	Not a test accuracy study
Polman 2000	Case-control study with healthy controls
van Dam 2004	Case-control study with controls from non-endemic areas
Takougang 2004	Cannot extract 2-by-2 tables
Brouwer 2004	Cannot extract 2-by-2 tables
Obeng 2008	Case-control study with controls from non-endemic areas
Leutscher 2008	Case-control study with healthy controls
Koukounari 2009	Ineligible reference standard
Stoithard 2011	Ineligible reference standard
Kosinski 2011	Cannot extract 2-by-2 tables
Verani 2011	Cannot extract 2-by-2 tables
Adesola 2012	Cannot extract 2-by-2 tables
Coulibaly 2012	Not a test accuracy study
Eyo 2012	Not a test accuracy study
Lodh 2013	Ineligible reference standard
Grenfell 2013	Not a test accuracy study
Coulibaly 2013,2	Not a test accuracy study
Coulibaly 2013,3	Ineligible index test
Reference	Reason
-------------------	-------------------------
Sousa-Figueiredo 2013	Ineligible reference standard
Melchers 2014	Ineligible index test
Degarege 2014	Not a test accuracy study
DATA

Presented below are all the data for all of the tests entered into the review.

Tests. Data tables by test

Test	No. of studies	No. of participants
1 Microhaematuria	74	10247
2 Microhaematuria after treatment	9	7845
3 CCA POC *mansoni* trace threshold	15	6091
4 Proteinuria	46	82113
5 Leukocyturia	5	1532
6 CCA POC *mansoni* +1 threshold	5	1404
7 CCA POC *mansoni* with good reference standard	5	2399
8 CCA POC *haematobium*	4	901
10 CCA POC mixed species	1	373
11 Serum CAA ELISA *mansoni*	5	1583
12 Serum CAA ELISA *haematobium*	3	990
13 Urine CAA ELISA *mansoni*	1	204
14 Urine CAA ELISA *haematobium*	1	370
15 Serum CCA ELISA *mansoni*	2	569
16 Serum CCA ELISA *haematobium*	1	370
17 Urine CCA ELISA *mansoni*	2	560
19 Urine CCA ELISA *haematobium*	1	370
Test 1. Microhaematuria

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Study	TP	FP	FN	TN	Sensitivity	Specificity
Abdel-Wahab 1992	80	102	62	178	0.56 [0.48, 0.65]	0.64 [0.58, 0.69]
Abdel-Wahab 2000	502	1032	196	3388	0.72 [0.68, 0.75]	0.77 [0.75, 0.78]
Anosike 2001	240	106	345	482	0.41 [0.37, 0.45]	0.82 [0.79, 0.85]
Aryeetey 2000	117	335	919	191	0.55 [0.53, 0.57]	0.36 [0.32, 0.41]
Ayele 2008	78	11	20	97	0.80 [0.70, 0.87]	0.90 [0.83, 0.95]
Bassiouney 2014	78	34	48	536	0.62 [0.53, 0.70]	0.94 [0.92, 0.96]
Birrie 1995 settingA	3	20	2	131	0.60 [0.15, 0.95]	0.87 [0.80, 0.92]
Birrie 1995 settingB	20	17	6	78	0.77 [0.56, 0.91]	0.82 [0.73, 0.89]
Birrie 1995 settingC	54	52	15	103	0.78 [0.67, 0.87]	0.66 [0.58, 0.74]
Bogoch 2012	19	18	0	243	1.00 [0.82, 1.00]	0.93 [0.89, 0.96]
Bosompem 1996	83	8	26	112	0.76 [0.67, 0.84]	0.93 [0.87, 0.97]
Bosompem 2004	33	5	52	51	0.39 [0.28, 0.50]	0.91 [0.80, 0.97]
Cooppan 1987	632	21	129	159	0.83 [0.80, 0.86]	0.88 [0.83, 0.93]
El-Sayed 1995	9	176	12	440	0.43 [0.22, 0.66]	0.71 [0.68, 0.75]
Eltoum 1992	140	123	39	123	0.78 [0.71, 0.84]	0.50 [0.44, 0.56]
Etard 2004	596	392	1541	1541	0.63 [0.60, 0.66]	0.80 [0.78, 0.81]
Fatiregun 2005	49	49	23	471	0.68 [0.56, 0.79]	0.91 [0.88, 0.93]
French 2007	219	45	41	1671	0.84 [0.79, 0.88]	0.97 [0.97, 0.98]
Gabr 2000	648	1829	426	9007	0.60 [0.57, 0.63]	0.83 [0.82, 0.84]
Gigase 1988	101	9	7	78	0.94 [0.87, 0.97]	0.90 [0.81, 0.95]
Gundersen 1996	50	158	1	51	0.98 [0.90, 1.00]	0.24 [0.19, 0.31]
Hall 1999	5	21	1	759	0.83 [0.36, 1.00]	0.97 [0.96, 0.98]
Hammam 1997	712	2408	360	8490	0.66 [0.64, 0.69]	0.78 [0.77, 0.79]
Hammam 2000 a	245	1464	343	7503	0.42 [0.38, 0.46]	0.84 [0.83, 0.84]
Hammam 2000 b	409	2526	257	9134	0.61 [0.58, 0.65]	0.78 [0.78, 0.79]
Houmsou 2011	302	68	164	590	0.65 [0.60, 0.69]	0.90 [0.87, 0.92]
Kassim 1989	99	11	21	791	0.83 [0.75, 0.89]	0.99 [0.98, 0.99]
Kilku 1991	109	21	64	232	0.63 [0.55, 0.70]	0.92 [0.88, 0.95]

(Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review))

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Study	TP	FP	FN	TN	Sensitivity	Specificity
King 1988 a	1362	47	459	741	0.75 [0.73, 0.77]	0.94 [0.92, 0.96]
King 1988 b	199	38	215	187	0.48 [0.43, 0.53]	0.83 [0.78, 0.88]
Kitange 1993	80	17	3	153	0.96 [0.90, 0.99]	0.90 [0.84, 0.94]
Lengeler 1993	228	117	66	797	0.78 [0.72, 0.82]	0.87 [0.85, 0.89]
Mafe 1997	416	91	190	359	0.69 [0.65, 0.72]	0.80 [0.76, 0.83]
Mafe 2000	134	61	38	296	0.78 [0.71, 0.84]	0.83 [0.79, 0.87]
Magnussen 2001	107	3	33	27	0.76 [0.69, 0.83]	0.90 [0.73, 0.98]
Morenikeji 2014	178	38	65	151	0.73 [0.67, 0.79]	0.80 [0.73, 0.85]
Mott 1985a 1	267	20	121	154	0.69 [0.64, 0.73]	0.89 [0.83, 0.93]
Mott 1985a 2	382	9	74	191	0.84 [0.80, 0.87]	0.96 [0.92, 0.98]
Masiwa 1996	253	18	20	113	0.93 [0.89, 0.95]	0.86 [0.79, 0.92]
Murare 1987	126	12	36	58	0.78 [0.71, 0.84]	0.83 [0.72, 0.91]
Ndumugenyi 2001	194	58	36	195	0.84 [0.79, 0.89]	0.77 [0.71, 0.82]
NGoran 1989	160	11	19	256	0.89 [0.84, 0.93]	0.70 [0.65, 0.74]
NGoran 1998	102	41	51	1142	0.67 [0.59, 0.74]	0.97 [0.95, 0.98]
Ng ndu 1988	130	43	39	200	0.77 [0.70, 0.83]	0.82 [0.77, 0.87]
Nmosi 2005	170	30	43	57	0.80 [0.74, 0.85]	0.66 [0.55, 0.75]
Nwaorgu 1992	527	49	53	388	0.91 [0.88, 0.93]	0.89 [0.85, 0.92]
Ofori 1986	45	0	19	54	0.70 [0.58, 0.81]	1.00 [0.93, 1.00]
Okeke 2014 settingA	11	8	4	273	0.73 [0.45, 0.92]	0.97 [0.94, 0.99]
Okeke 2014 settingB	21	17	28	118	0.43 [0.29, 0.58]	0.87 [0.81, 0.92]
Poggenpoe 2000 settingA	4	48	3	120	0.57 [0.18, 0.90]	0.71 [0.64, 0.78]
Poggenpoe 2000 settingB	44	26	23	35	0.66 [0.53, 0.77]	0.57 [0.44, 0.70]
Pugh 1980	415	444	515	3993	0.45 [0.41, 0.48]	0.90 [0.89, 0.91]
Rasendramino 1998	352	32	68	95	0.84 [0.80, 0.87]	0.75 [0.66, 0.82]
Robinson 2009	135	222	3	317	0.98 [0.94, 1.00]	0.59 [0.55, 0.63]
Rollinson 2005	125	16	26	113	0.83 [0.76, 0.88]	0.88 [0.81, 0.93]
Sarda 1985	36	32	20	317	0.64 [0.50, 0.77]	0.91 [0.87, 0.94]
Sarda 1986	275	54	53	918	0.84 [0.79, 0.88]	0.94 [0.93, 0.96]
Savali 1990	113	38	64	305	0.64 [0.56, 0.71]	0.89 [0.85, 0.92]
Sellin 1982	463	356	75	268	0.86 [0.83, 0.89]	0.43 [0.39, 0.47]
Study	TP	FP	FN	TN	Sensitivity	Specificity
---------------------	-----	-----	-----	-----	-------------	-------------
Shaw 1998	216	105	121	415	0.64	0.80
Stephenson 1984	151	6	20	182	0.88	0.97
Stothard 2009b	42	9	1	14	0.98	0.61
Tanner 1983 1	129	10	60	68	0.68	0.87
Tanner 1983 2	139	42	23	344	0.86	0.89
Traore 1998	420	74	155	392	0.73	0.84
Ugbomoika 2009a	155	37	72	183	0.68	0.83
Ugbomoika 2009b 1	331	25	21	189	0.94	0.88
Ugbomoika 2009b 2	595	78	150	630	0.80	0.89
Verle 1994	205	15	101	31	0.67	0.67
Warren 1979	208	3	118	61	0.64	0.95
Wilkins 1979	585	95	493	771	0.54	0.89
Zumstein 1983	134	15	48	199	0.74	0.93

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Test 2. Microhaematuria after treatment.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Study	TP	FP	FN	TN	Sensitivity	Specificity
Abdel-Wahab 1992	80	102	62	178	0.56 [0.48, 0.65]	0.64 [0.58, 0.69]
Bogoch 2012	19	18	0	243	1.00 [0.82, 1.00]	0.93 [0.89, 0.96]
French 2007	368	59	35	2810	0.91 [0.88, 0.94]	0.98 [0.97, 0.98]
King 1988 a	259	65	1178	524	0.18 [0.16, 0.20]	0.89 [0.86, 0.91]
Kitange 1993	44	26	0	183	1.00 [0.92, 1.00]	0.88 [0.82, 0.92]
Lengeler 1993	8	9	16	187	0.33 [0.16, 0.55]	0.95 [0.91, 0.98]
Magnussen 2001	44	10	14	132	0.76 [0.63, 0.86]	0.93 [0.87, 0.97]
NGoran 1989	14	6	3	319	0.82 [0.57, 0.96]	0.98 [0.96, 0.99]
Shaw 1998	46	84	80	620	0.37 [0.28, 0.46]	0.88 [0.85, 0.90]

Test 3. CCA POC mansoni trace threshold.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Study	TP	FP	FN	TN	Sensitivity	Specificity
Adriko 2014 settingA	6	42	2	50	0.75 [0.35, 0.97]	0.54 [0.44, 0.65]
Adriko 2014 settingB	40	82	6	72	0.87 [0.74, 0.95]	0.47 [0.39, 0.55]
Adriko 2014 settingC	69	75	3	53	0.96 [0.88, 0.99]	0.41 [0.33, 0.50]
Ashton 2011	64	53	8	151	0.89 [0.79, 0.95]	0.74 [0.67, 0.80]
Colley 2013 Uganda	114	199	11	176	0.91 [0.85, 0.96]	0.47 [0.42, 0.52]
Coulibaly 2011 Colley2013	278	42	38	249	0.88 [0.84, 0.91]	0.86 [0.81, 0.89]
Coulibaly 2013 4K,	52	104	4	82	0.93 [0.83, 0.98]	0.44 [0.37, 0.52]
Erko 2013 Colley 2013	306	103	23	188	0.93 [0.90, 0.96]	0.65 [0.59, 0.70]

(Continued...)
Study	TP	FP	FN	TN	Sensitivity	Specificity
Legesse 2007	130	59	21	41	0.86 [0.80, 0.91]	0.41 [0.31, 0.51]
Legesse 2008	55	65	12	52	0.82 [0.71, 0.90]	0.44 [0.35, 0.54]
Navaratnam 2012	149	181	34	205	0.81 [0.75, 0.87]	0.53 [0.48, 0.58]
Shane2011 Colley2013	231	664	35	833	0.87 [0.82, 0.91]	0.56 [0.53, 0.58]
Standley 2010	116	44	1	10	0.99 [0.95, 1.00]	0.19 [0.09, 0.31]
Stothard 2006	116	25	24	105	0.83 [0.76, 0.89]	0.81 [0.73, 0.87]
Tchuente 2012 Colley2013	41	31	9	57	0.82 [0.69, 0.91]	0.65 [0.54, 0.75]

Test 4. Proteinuria.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 4 Proteinuria

Study	TP	FP	FN	TN	Sensitivity	Specificity
Abdel-Wahab 1992	32	31	110	249	0.23 [0.16, 0.30]	0.89 [0.85, 0.92]
Abdel-Wahab 2000	97	81	602	4338	0.14 [0.11, 0.17]	0.98 [0.98, 0.99]
Aryeetey 2000	610	842	1003	107	0.38 [0.35, 0.40]	0.11 [0.09, 0.13]
Bogoch 2012	8	53	11	208	0.42 [0.20, 0.67]	0.80 [0.74, 0.84]
Bosompem 1996	44	10	65	110	0.40 [0.31, 0.50]	0.92 [0.85, 0.96]
Bosompem 2004	26	17	59	39	0.31 [0.21, 0.42]	0.70 [0.56, 0.81]
Cooppan 1987	616	112	145	68	0.81 [0.78, 0.84]	0.38 [0.31, 0.45]
Gabr 2000	185	293	889	10540	0.17 [0.15, 0.20]	0.97 [0.97, 0.98]
Gundersen 1996	43	163	8	46	0.84 [0.71, 0.93]	0.22 [0.17, 0.28]
Hammam 1997	662	3081	410	7817	0.62 [0.59, 0.65]	0.72 [0.71, 0.73]
Hammam 2000 \(a\)	155	605	433	8362	0.26 [0.23, 0.30]	0.93 [0.93, 0.94]
Hammam 2000 \(b\)	297	1174	369	10487	0.45 [0.41, 0.48]	0.90 [0.89, 0.90]
Houmsou 2011	446	216	20	442	0.96 [0.93, 0.97]	0.67 [0.63, 0.71]
Study	TP	FP	FN	TN	Sensitivity	Specificity
---------------------	-----	-----	-----	-----	-------------	-------------
Kassim 1989	96	98	24	704	0.80 [0.72, 0.87]	0.88 [0.85, 0.90]
Kiliku 1991	206	63	58	99	0.78 [0.73, 0.83]	0.61 [0.53, 0.69]
King 1988’a	1343	118	478	670	0.74 [0.72, 0.76]	0.85 [0.82, 0.87]
Kizange 1993	27	4	56	166	0.33 [0.23, 0.44]	0.98 [0.94, 0.99]
Morenikej 2014	195	88	48	101	0.80 [0.75, 0.85]	0.53 [0.46, 0.61]
Mott 1985’a 1	334	99	38	47	0.90 [0.86, 0.93]	0.32 [0.25, 0.40]
Mott 1985’a 2	428	25	75	123	0.85 [0.82, 0.88]	0.83 [0.76, 0.89]
Murare 1987	140	25	22	45	0.86 [0.80, 0.91]	0.64 [0.52, 0.75]
Ndamukong 2001	155	17	31	144	0.83 [0.77, 0.88]	0.89 [0.84, 0.94]
Ng ndu 1988	90	58	79	185	0.53 [0.45, 0.61]	0.76 [0.70, 0.81]
Nnorsu 2005	115	25	90	70	0.56 [0.49, 0.63]	0.74 [0.64, 0.82]
Nwaorgu 1992	537	85	43	352	0.93 [0.90, 0.95]	0.81 [0.77, 0.84]
Ofori 1986	42	13	22	41	0.66 [0.53, 0.77]	0.76 [0.62, 0.87]
Okeke 2014 settingA	8	64	7	217	0.53 [0.27, 0.79]	0.77 [0.72, 0.82]
Okeke 2014 settingB	15	18	34	117	0.31 [0.18, 0.45]	0.87 [0.80, 0.92]
Onuyade 1996	53	1	41	10	0.56 [0.46, 0.67]	0.91 [0.59, 1.00]
Poggensee 2000 settingA	1	14	6	154	0.14 [0.00, 0.58]	0.92 [0.86, 0.95]
Poggensee 2000 settingB	8	6	59	55	0.12 [0.05, 0.22]	0.90 [0.80, 0.96]
Pugh 1980	508	887	422	3550	0.55 [0.51, 0.58]	0.80 [0.79, 0.81]
Rasendrarno 1998	316	20	104	107	0.75 [0.71, 0.79]	0.84 [0.77, 0.90]
Sarda 1985	35	73	21	276	0.63 [0.49, 0.75]	0.79 [0.74, 0.83]
Sarda 1986	234	173	94	799	0.71 [0.66, 0.76]	0.82 [0.80, 0.85]
Selin 1982	376	227	162	397	0.70 [0.66, 0.74]	0.64 [0.60, 0.67]
Stephenson 1984	113	11	58	177	0.66 [0.58, 0.73]	0.94 [0.90, 0.97]
Tanner 1983 1	108	10	81	68	0.57 [0.50, 0.64]	0.87 [0.78, 0.94]
Tanner 1983 2	136	68	26	318	0.84 [0.77, 0.89]	0.82 [0.78, 0.86]
Traore 1998	340	84	235	382	0.59 [0.55, 0.63]	0.82 [0.78, 0.85]
Ugboro & 2009a	121	45	106	175	0.53 [0.47, 0.60]	0.80 [0.74, 0.85]
Ugboro & 2009b 1	206	12	146	202	0.59 [0.53, 0.64]	0.94 [0.90, 0.97]
Ugboro & 2009b 2	602	9	147	699	0.80 [0.77, 0.83]	0.99 [0.98, 0.99]
Verle 1994	168	21	138	25	0.55 [0.49, 0.61]	0.54 [0.39, 0.69]
Warren 1979	123	1	203	63	0.38 [0.32, 0.43]	0.98 [0.92, 1.00]
Wilkins 1979	701	251	377	615	0.65 [0.62, 0.68]	0.71 [0.68, 0.74]
Test 5. Leukocyturia.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 5 Leukocyturia

Study	TP	FP	FN	TN	Sensitivity	Specificity
Abdel-Wahab 1992	46	20	96	260	0.32	0.93
					[0.25, 0.41]	[0.89, 0.96]
Gundersen 1996	37	160	14	49	0.73	0.23
					[0.58, 0.84]	[0.18, 0.30]
Poggensee 2000 settingA	4	92	3	76	0.57	0.45
					[0.18, 0.90]	[0.38, 0.53]
Poggensee 2000 settingB	38	32	29	29	0.57	0.48
					[0.44, 0.69]	[0.35, 0.61]
Rasendramino 1998	238	30	182	97	0.57	0.76
					[0.52, 0.61]	[0.68, 0.83]
Test 6. CCA POC mansoni +1 threshold.

Study	TP	FP	FN	TN	Sensitivity	Specificity
Ashton 2011	50	9	22	195	0.69 [0.57, 0.80]	0.96 [0.92, 0.98]
Coulbaly 2011 Colley 2013	27	6	21	92	0.56 [0.41, 0.71]	0.94 [0.87, 0.98]
Coulbaly 2013 4KK	43	40	13	146	0.77 [0.64, 0.87]	0.78 [0.72, 0.84]
Navaratnam 2012	118	109	65	277	0.64 [0.57, 0.71]	0.72 [0.67, 0.76]
Standley 2010	103	17	14	37	0.88 [0.81, 0.93]	0.69 [0.54, 0.80]

Test 7. CCA POC mansoni with good reference standard.

Study	TP	FP	FN	TN	Sensitivity	Specificity
Adriko 2014 6KK	157	139	21	152	0.88 [0.83, 0.93]	0.52 [0.46, 0.58]
Coulbaly 2011 9KK	213	13	58	159	0.79 [0.73, 0.83]	0.92 [0.87, 0.96]
Coulbaly 2013 4KK	52	104	4	82	0.93 [0.83, 0.98]	0.44 [0.37, 0.52]
Erko 2013 6KK	306	103	23	188	0.93 [0.90, 0.96]	0.65 [0.59, 0.70]
Tchuente 2012 9KK	322	94	59	150	0.85 [0.80, 0.88]	0.61 [0.55, 0.68]
Test 8. CCA POC haematobium.

Study TP FP FN TN Sensitivity Specificity

Study	TP	FP	FN	TN	Sensitivity	Specificity
Ashton 2011	29	43	49	159	0.37 [0.26, 0.49]	0.79 [0.72, 0.84]
Ayele 2008	51	39	47	69	0.52 [0.42, 0.62]	0.64 [0.54, 0.73]
Midzi 2009	84	88	23	70	0.79 [0.70, 0.86]	0.44 [0.36, 0.52]
Stothard 2009a	4	2	42	102	0.09 [0.02, 0.21]	0.98 [0.93, 1.00]

Test 10. CCA POC mixed species.

Study TP FP FN TN Sensitivity Specificity

Study	TP	FP	FN	TN	Sensitivity	Specificity
Ashton 2011	111	43	58	161	0.66 [0.58, 0.73]	0.79 [0.73, 0.84]
Test 11. Serum CAA ELISA mansoni.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

**Test: **11 Serum CAA ELISA *mansoni*

Study	TP	FP	FN	TN	Sensitivity	Specificity
El-Morshedy 1996	117	0	30	110	0.80 [0.72, 0.86]	1.00 [0.97, 1.00]
Polman 1995	325	22	19	2	0.94 [0.92, 0.97]	0.08 [0.01, 0.27]
Van Lieshout 1995	27	20	31	126	0.47 [0.33, 0.60]	0.86 [0.80, 0.91]
Van Lieshout 1998	449	8	34	17	0.93 [0.90, 0.95]	0.68 [0.46, 0.85]
Van Lieshout 1998	222	9	14	1	0.94 [0.90, 0.97]	0.10 [0.00, 0.45]

Test 12. Serum CAA ELISA haematobium.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

**Test: **12 Serum CAA ELISA *haematobium*

Study	TP	FP	FN	TN	Sensitivity	Specificity
Alsherbiny 1999	37	131	30	172	0.55 [0.43, 0.67]	0.57 [0.51, 0.62]
De Clerq 1995	199	82	55	105	0.78 [0.73, 0.83]	0.56 [0.49, 0.63]
Ndlovu 1996	93	63	3	20	0.97 [0.91, 0.99]	0.24 [0.15, 0.35]
Test 13. Urine CAA ELISA mansoni.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 13 Urine CAA ELISA *mansoni*

Study	TP	FP	FN	TN	Sensitivity	Specificity
Van Lieshout 1995	6	1	52	145	0.10 [0.04, 0.21]	0.99 [0.96, 1.00]

Test 14. Urine CAA ELISA haematobium.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 14 Urine CAA ELISA *haematobium*

Study	TP	FP	FN	TN	Sensitivity	Specificity
Alsherbiny 1999	11	18	56	285	0.16 [0.08, 0.27]	0.94 [0.91, 0.96]

Test 15. Serum CCA ELISA mansoni.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 15 Serum CCA ELISA *mansoni*

Study	TP	FP	FN	TN	Sensitivity	Specificity
Polman 1995	290	12	51	12	0.85 [0.81, 0.89]	0.50 [0.29, 0.71]
Van Lieshout 1995	21	10	37	136	0.36 [0.24, 0.50]	0.93 [0.88, 0.97]
Test 16. Serum CCA ELISA haematobium.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 16 Serum CCA ELISA haematobium

Study	TP	FP	FN	TN	Sensitivity	Specificity
Alsherbiny 1999	2	29	65	274	0.03 [0.00, 0.10]	0.90 [0.87, 0.93]

Test 17. Urine CCA ELISA mansoni.

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Test: 17 Urine CCA ELISA mansoni

Study	TP	FP	FN	TN	Sensitivity	Specificity
Polman 1995	316	21	11	8	0.97 [0.94, 0.98]	0.28 [0.13, 0.47]
Van Lieshout 1995	36	23	22	123	0.62 [0.48, 0.74]	0.84 [0.77, 0.90]
Test 19. Urine CCA ELISA haematobium

Review: Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

Study: 19 Urine CCA ELISA *haematobium*

Study	TP	FP	FN	TN	Sensitivity	Specificity	Sensitivity	Specificity
Alsherbiny 1999	52	90	15	213	0.78 [0.66, 0.87]	0.70 [0.65, 0.75]		

ADDITIONAL TABLES

Table 1. Sources of heterogeneity for urine reagent strip for microhaematuria

Group	Co-variate	Subgroup	n (N = 74)	Sensitivity (95% CI)	Specificity (95% CI)
Overall				0.75 (0.71-0.79)	0.87 (0.84-0.90)
Subgroup analysis					
Reference standard		Higher quality (> 1 sample)	10	0.71 (0.62-0.80)	0.85 (0.78-0.93)
		Lower quality (1 sample)	64	0.76 (0.71-0.80)	0.87 (0.84-0.90)
Threshold ≥ +1			23	0.80 (0.73-0.85)	0.85 (0.78-0.92)
Age		Children	34	0.77 (0.71-0.82)	0.91 (0.87-0.93)
Intensity of infection		Light	28	0.73 (0.66-0.79)	0.88 (0.84-0.92)
Sensitivity analysis					
Concentration		Filtration only	62	0.73 (0.69-0.78)	0.86 (0.82-0.89)
QUADAS Patient Selection		Low risk of bias	16	0.77 (0.70-0.86)	0.86 (0.79-0.92)
QUADAS Reference Standard		Low risk of biasa	1	-	-
QUADAS Flow and Timing		Low risk of bias	43	0.77 (0.72-0.82)	0.87 (0.83-0.90)

aInsufficient data for synthesis.
Table 2. Sources of heterogeneity for urine reagent strip for proteinuria

Group	Co-variate	Subgroup	n (N = 46)	Sensitivity (95% CI)	Specificity (95% CI)
Overall				0.61 (0.53-0.68)	0.82 (0.77-0.88)
Subgroup analysis	**Reference standard**	Higher quality (> 1 sample)	9	0.49 (0.28-0.70)	0.83 (0.76-0.90)
		Lower quality (1 sample)	37	0.68 (0.60-0.76)	0.78 (0.69-0.87)
	Threshold ≥ +1		13	0.69 (0.56-0.81)	0.72 (0.54-0.90)
	Age Children		18	0.67 (0.56-0.76)	0.81 (0.74-0.87)
	Intensity of infec-	Light	15	0.60 (0.43-0.77)	0.83 (0.73-0.93)
Sensitivity analysis	Concentration	Filtration only	35	0.62 (0.52-0.71)	0.80 (0.73-0.86)
	QUADAS Selection	Low risk of bias	11	0.64 (0.50-0.79)	0.81 (0.70-0.93)
	QUADAS Reference Standard	Low risk of bias^a	1	-	
	QUADAS Flow and Timing	Low risk of bias	36	0.67 (0.59-0.76)	0.82 (0.73-0.88)

^aInsufficient data for synthesis.

Table 3. Sources of heterogeneity for CCA POC test for S. mansoni

Group	Co-variate	Subgroup	n (N = 15)	Sensitivity (95% CI)	Specificity (95% CI)
Overall				0.89 (0.86-0.92)	0.55 (0.46-0.65)
Subgroup analysis	**Reference standard^a**				
	Higher quality (> 1 sample)		5	0.88 (0.82-0.92)	0.66 (0.46-0.82)
	Lower quality (1 sample)		13	0.88 (0.85-0.91)	0.55 (0.45-0.66)
Table 3. Sources of heterogeneity for CCA POC test for *S. mansoni* (Continued)

Positivity threshold^b	> +1	5	0.72 (0.60-0.82)	0.85 (0.71-0.93)
Age	Children	14	0.90 (0.86-0.92)	0.56 (0.46-0.66)
Intensity of infection	Light^c	3	-	-

Sensitivity analysis

QUADAS Patient Selection	Low risk of bias^c	3	-	-
QUADAS Reference Standard	Low risk of bias^c	0	-	-
QUADAS Flow and Timing	Low risk of bias	11	0.87 (0.84-0.90)	0.57 (0.49-0.65)

^aThree studies had data points for evaluations with both a lower- and a higher-quality reference standard.

^bFive studies had data points at both thresholds: trace and +1.

^cInsufficient data for synthesis.

APPENDICES

Appendix 1. Geographical distribution, infection, and morbidity of *S. haematobium* and *S. mansoni*

Species	Geographical distribution^a	Number infected (millions)	Morbidity (millions)	
S. haematobium	Africa, Middle East	In SSA (112)^b	Urethral schistosomiasis^a	
			Signs and symptoms:	Haematuria (71)
				Dysuria (32)
				Minor bladder pathology(76)
				Major bladder pathology(24)
				Major hydrenephrosis (9.6)

^aCirculating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)

Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
vaginal bleeding, pain during sexual intercourse, nodules in the vulva, infertility, pathology in prostate and seminal vesicles

| S. mansoni | Africa, Middle East, the Caribbean, South America | In SSA (54)\(^b\) | Intestinal schistosomiasis\(^a\) **Signs and symptoms:** Abdominal pain, blood in stool, portal hypertension, ascites | In SSA\(^b\): Diarrhoea (0.78) Blood in stool (4.4) Hepatomegaly (8.5) |

Abbreviations: SSA = sub-Saharan Africa.
\(^a\)WHO 2010.
\(^b\)van der Werf 2003.
\(^c\)WHO/TDR 2006.

Appendix 2. Diagnostic and treatment strategies

Figure 17
Figure 17. Diagnostic and treatment strategies. Abbreviations: +ve = positive; -ve = negative; CAA = circulating anodic antigen; CCA = circulating cathodic antigen; M+ = microscopy positive; M- = microscopy negative; U+ = urine reagent strips positive; U- = urine reagent strips negative; Rx = treatment; No Rx = no treatment.

Urine reagent strips to detect haematuria/proteinuria/leukocyturia

- Urine reagent strips (U) → Microscopy (M)
 - U+ → Rx
 - U- → No Rx
- Urine reagent strips
 - M+ → +ve Rx
 - M- → -ve Rx
- Urine reagent strips
 - +ve → Rx
 - -ve → No Rx

Antigen tests

- Urine/Serum CAA test
 - +ve → Treatment
 - -ve → No treatment
- Urine/Serum CCA test
 - +ve → Treatment
 - -ve → No treatment

Abbreviations: +ve = positive; -ve = negative; CAA = circulating anodic antigen; CCA = circulating cathodic antigen; M+ = microscopy positive; M- = microscopy negative; U+ = urine reagent strips positive; U- = urine reagent strips negative; Rx = treatment; No Rx = no treatment.
Appendix 3. MEDLINE search strategy via Ovid SP platform

Limits: limited to human studies

Line #	Term
1	(anodic adj3 antigen*).ti,ab.
2	(cathodic adj3 antigen*).ti,ab.
3	exp Enzyme-Linked Immunosorbent Assay/
4	exp Immunoenzyme Techniques/
5	hematuria/ or exp proteinuria/
6	leukocyturia.ti,ab.
7	leucocyturia.ti,ab.
8	h?ematuria.ti,ab.
9	proteinuria.ti,ab.
10	albuminuria.ti,ab.
11	CCA.ti,ab.
12	CAA.ti,ab.
13	urinalysis.ti,ab.
14	elisa.ti,ab.
15	eia.ti,ab.
16	exp Reagent Strips/ or dipstick.mp.
17	(reagent adj3 strip*).ti,ab.
18	(test adj3 strip*).ti,ab.
19	haemastix.ti,ab.
20	“schistosoma mansoni”.ti,ab. or “schistosoma haematobium”.ti,ab
21	exp Glycoproteins/
---	---
22	exp Antigens, Helminth/
23	exp Helminth Proteins/
24	exp Schistosoma haematobium/
25	exp Antibodies, Monoclonal/
26	exp Schistosoma mansoni/
27	or/1-26
28	schistosomiasis/ or schistosomiasis haematobia/ or schistosomiasis mansoni/
29	schistosomiasis.ti,ab.
30	bilharzia*.ti,ab.
31	or/28-30
32	animals/ not humans/
33	exp Letter/
34	exp Case Reports/
35	or/32-34
36	27 and 31
37	36 not 35

With use of the Ovid platform, this MEDLINE search was translated automatically to suit the EMBASE and BIOSIS databases to identify additional records. In the search interface, under 'resource selected,' with the link 'change,' one can select the desired database.

Appendix 4. QUADAS tool

We used the QUADAS-2 tool. The signalling questions under the four recommended domains are outlined in questions 7 to 10 on the data extraction form.

The scoring guidance for these questions was as follows.

Flow diagram

For questions 7 and 8, drawing a flow diagram of the study may be helpful (this is not mandatory). Flow charts of patients display how many patients were eligible for the study, how many were actually recruited, how many received the index test, how many received the reference standard, etc. In addition, the numbers of true- and false-positives and true- and false-negatives are displayed. If necessary, please draw a flow diagram for the primary study in the space provided on page 8 of the extraction form.
7. Patient selection (patient selection domain)
These questions will help assess risks of bias in the study design.

a. Please cite here the selection criteria
Please list in the space provided the selection criteria used to recruit patients into the study. You can also cite the page number in the article on which the selection criterion was written.
If no criteria were reported, indicate “Not reported/NR” in the space provided. If the criterion was unclear, please indicate “Unclear,” and explain your answer.

b. Stage of disease
Participants recruited into the study may be without symptoms or with symptoms. Please indicate the disease stage for participants. If the study clearly reports that both asymptomatic and symptomatic cases were evaluated, please tick the appropriate box provided (both A and S). If the study does not clearly report the clinical status of the participants, please tick the box ‘Unclear.’ A box N/A has been provided. If S. m for example was not evaluated in the study, please tick this box. The same applies to S. h. A comment box is provided for any comments that you may have.

c. What was the study design?
Please indicate the design of the study by ticking one of the choices provided.
We will not include case-control studies that incorporate healthy controls, alternative diagnosis controls, or controls from non-endemic areas. Research has shown that this type of study overestimates accuracy measures. Healthy controls are those who have been confirmed as disease-free. Alternative diagnosis controls are controls who have symptoms similar to those of the disease under study.
If the design is not stated or is unclear, please tick the appropriate boxes. If necessary, insert comment into the box provided.

d. Was a consecutive or random sample of patients enrolled?
- Yes: when the authors report random patient sampling or consecutive enrolment.
- No: when patients were selected, for example, based on previous (reference or index) test results.
- Unclear: there seems to be no problem, but the study authors do not explicitly state that patients were enrolled consecutively.

e. Did the study avoid inappropriate exclusions?
- Yes: No patients were excluded after inclusion.
- No: For example, when patients with mild disease were excluded, because they are more difficult to detect.
- Unclear: not reported or insufficient information given to permit a decision.

f. Could the selection of patients have introduced bias?
- High: if one or more of the questions above (7 d-e) was answered with ‘no.’
- Low: if all questions were answered with ‘yes’ (7 d-e), or if at most one question was answered with ‘unclear.’
- Unclear: for any other combination of answers (eg if two or more questions were unclear and the other(s) was/were answered with ‘yes.’

g. Is there a concern that the included patients do not match the review question?
- High concern: when participants are those who do not reside in endemic areas, such as tourists, healthy controls, or controls with alternative diagnoses.
- Low concern: when participants in the study are those who reside in schistosomiasis endemic areas. This group will include those at risk of infection, those who are infected but asymptomatic, or those who are infected with symptoms.
- Unclear: scored when information is insufficient to permit a decision.
8. Patient flow and timing (Flow and Timing domain)

a. Was there an appropriate interval between index test(s) and reference standard?
 - Yes: if urine/stool samples are examined by both the reference standard and the index standard at the same time, or if the time period is less than one week.
 - No: if time period between index and reference standards is longer than one week.
 - Unclear: if no or insufficient information on time period is provided.

b. Did all patients receive a reference standard? (focus on those included in 2 × 2 table)
 - Yes: scored when the whole sample or a random selection of the sample or a selection of the sample with consecutive series receive verification using the reference standard.
 - No: scored when a part of the sample that is non-randomly or non-consecutively selected receives verification with the reference standard.
 - Unclear: scored when no or insufficient information is provided to ascertain whether the whole sample or a random selection of the sample received verification with a reference standard.

c. Did patients receive the same reference standard?
 - Yes: scored when study participants are tested with the same reference standard, urine/stool microscopy, regardless of index test result.
 - No: scored when microscopy is used with different urine concentration techniques depending on index test results for S. haematobium.
 - Unclear: scored when no or insufficient information is provided on the different reference standards used.

d. Were all patients included in the analysis?
 - Yes: scored when the patients who were included in the study were also included in the analysis.
 - No: scored when some patients/results are missing.
 - Unclear: scored when no or insufficient information is provided to permit a judgement.

e. Could the conduct or interpretation of the flow and timing have introduced bias?
 - High: if two or more questions above (8 a-d) were answered with ‘no.’
 - Low: if all questions were answered with ‘yes’; or at least three and the other one with unclear.
 - Unclear: for any other combination of answers (eg all questions were unclear; three were unclear and the last one was ‘yes’).

Please state the tests under evaluation in the study.

Indicate the tests that have been evaluated for S. mansoni and/or S. haematobium in the study by ticking the appropriate boxes for the respective species. If a species was not evaluated, please tick the box ‘not applicable.’

9. Index tests (Index test domain)

a. Was quality control done?
 To ensure reliability or good quality of results, a sample of slides may be cross-checked by a second person, by an expert, or by a reference laboratory. Please indicate whether this was done in the study. If information given is unclear, please tick the box ‘unclear.’ If not reported, tick the box ‘not stated.’ If necessary, provide comment in the box provided.
b. Were the index test results interpreted without knowledge of the results of the reference standard?

- Yes: when results of the index tests are interpreted without knowledge of reference test results, or when index tests are done before the reference standard.
- No: when results of the index tests are interpreted with knowledge of reference test results in cases when reference tests were used before the index tests.
- Unclear: when information on when the index and reference tests were interpreted is insufficient.
- Not stated: when no information was reported on this item.

c. If a threshold was used, was it prespecified?

- Yes: when the study authors report the use of one prespecified cutoff value. A prespecified threshold also includes statements such as, ”the test was scored according to manufacturer’s instructions.”
- No: when multiple cutoff values were tested and the best one chosen afterwards.
- Unclear: when only one cutoff value was used, but this was not explicitly stated in the Methods section.
- Not stated: when no information was reported on this item.

Could the conduct or interpretation of the index test have introduced bias?

- High: if two or more questions above (9 a-c) were answered with ‘no.’
- Low: if questions (9 a-c) were answered with ‘yes.’
- Unclear: for any other combination of answers (eg both questions were unclear; one was unclear and one was ‘yes’).

10. Reference test (Reference Test domain)

The reference test for S. haematobium that this review will evaluate is urine microscopy.

The following questions (10 A (h-k)) are part of the QUADAS tool and will be used to assess for risk of bias in how the reference test is carried out.

A. S. haematobium

h. Was quality control done?

To ensure reliability or good quality of results, a sample of slides may be cross-checked by a second person, by an expert, or by a reference laboratory. Please indicate whether this was done in the study. If information given is unclear, please tick the box ‘unclear.’ If not reported, tick the box ‘not stated.’ If necessary, insert comment into the box provided.

i. Is the reference standard likely to correctly classify the target condition?

- Yes: if measures to increase sensitivity are used (eg concentration techniques, multiple slides examined, stool sampled over a number of days. The recommended reference std for microscopy is one carried out on 3 stools or 3 urine samples (grading as follows: 1 sample; poor; 2 samples; moderate; 3 samples; good).
- No: for example, if only ill children are sampled for the reference standard, or if stool samples with blood are thrown away to avoid contaminating technicians
- Unclear: scored when information on the reference standard used or sample preparation technique used was insufficient.

j. Were the reference standard results interpreted without knowledge of results of the index test?

- Yes: when results of the reference tests are interpreted without knowledge of index test results in cases when reference tests are used before the index standard.
- No: when results of the reference tests are interpreted with knowledge of the index test results in cases in which index tests are used before reference tests.
- Unclear: when information on when the index and reference tests were interpreted is insufficient.
- Not stated: when no information on this item was reported.
k. Could the conduct or interpretation of the reference standard have introduced bias?
 • High: if one or both questions above (a-b) were answered with ‘no.’
 • Low: if both questions were answered with ‘yes.’
 • Unclear: if both questions were unclear; or one was unclear and one was ‘yes.’

B. S. mansoni

Tick the appropriate box for the index tests used to detect S. m in the article.

These questions for S.m should be tackled in a similar fashion to those for S. haematobium.

a. Reference standard

The reference test for S.m that this review will evaluate is microscopy of stool that is prepared by the Kato-Katz method.

b. Was quality control done?

To ensure reliability or good quality of results, a sample of slides may be cross-checked by a second person, by an expert, or by a reference laboratory. Please indicate whether this was done in the study. If information given is unclear, please tick the box ‘unclear.’ If not reported, tick the box ‘not stated.’ If necessary, insert comment into the box provided.

The questions 10 B (i-l) are part of the QUADAS tool and will be used to assess for risk of bias in how the reference test is carried out. Instructions for these questions are similar to those for S. haematobium given above.

Appendix 5. Risk of bias and applicability concerns summary: review authors’ judgements about each domain for each included study

Figure 18
Figure 18. Risk of bias and applicability concerns summary: review authors’ judgements about each domain for each included study. The blank cells refer to information that is not applicable to the stated study.
Appendix 6. Effect of year of study on the accuracy of microhaematuria

Figure 19
Figure 19. Forest plot showing effect of year of study on sensitivity and specificity of microhaematuria.

Year	Sensitivity (95% CI)	Specificity (95% CI)
1970	0.54 (0.51, 0.57)	0.93 (0.92, 0.94)
1971	0.56 (0.53, 0.58)	0.94 (0.93, 0.95)
1972	0.58 (0.55, 0.60)	0.94 (0.93, 0.95)
1973	0.59 (0.56, 0.61)	0.94 (0.93, 0.95)
1974	0.60 (0.57, 0.62)	0.94 (0.93, 0.95)
1975	0.61 (0.58, 0.63)	0.94 (0.93, 0.95)
1976	0.62 (0.59, 0.64)	0.94 (0.93, 0.95)
1977	0.63 (0.60, 0.65)	0.94 (0.93, 0.95)
1978	0.64 (0.61, 0.66)	0.94 (0.93, 0.95)
1979	0.65 (0.62, 0.67)	0.94 (0.93, 0.95)
1980	0.66 (0.63, 0.68)	0.94 (0.93, 0.95)
1981	0.67 (0.64, 0.69)	0.94 (0.93, 0.95)
1982	0.68 (0.65, 0.70)	0.94 (0.93, 0.95)
1983	0.69 (0.66, 0.71)	0.94 (0.93, 0.95)
1984	0.70 (0.67, 0.72)	0.94 (0.93, 0.95)
1985	0.71 (0.68, 0.73)	0.94 (0.93, 0.95)
1986	0.72 (0.69, 0.74)	0.94 (0.93, 0.95)
1987	0.73 (0.70, 0.75)	0.94 (0.93, 0.95)
1988	0.74 (0.71, 0.76)	0.94 (0.93, 0.95)
1989	0.75 (0.72, 0.77)	0.94 (0.93, 0.95)
1990	0.76 (0.73, 0.78)	0.94 (0.93, 0.95)
1991	0.77 (0.74, 0.79)	0.94 (0.93, 0.95)
1992	0.78 (0.75, 0.80)	0.94 (0.93, 0.95)
1993	0.79 (0.76, 0.81)	0.94 (0.93, 0.95)
1994	0.80 (0.77, 0.82)	0.94 (0.93, 0.95)
1995	0.81 (0.78, 0.83)	0.94 (0.93, 0.95)
1996	0.82 (0.79, 0.84)	0.94 (0.93, 0.95)
1997	0.83 (0.80, 0.85)	0.94 (0.93, 0.95)
1998	0.84 (0.81, 0.86)	0.94 (0.93, 0.95)
1999	0.85 (0.82, 0.87)	0.94 (0.93, 0.95)
2000	0.86 (0.83, 0.88)	0.94 (0.93, 0.95)
2001	0.87 (0.84, 0.89)	0.94 (0.93, 0.95)
2002	0.88 (0.85, 0.90)	0.94 (0.93, 0.95)
2003	0.89 (0.86, 0.91)	0.94 (0.93, 0.95)
2004	0.90 (0.87, 0.92)	0.94 (0.93, 0.95)
2005	0.91 (0.88, 0.93)	0.94 (0.93, 0.95)
2006	0.92 (0.89, 0.94)	0.94 (0.93, 0.95)
2007	0.93 (0.90, 0.95)	0.94 (0.93, 0.95)
2008	0.94 (0.91, 0.96)	0.94 (0.93, 0.95)
2009	0.95 (0.92, 0.97)	0.94 (0.93, 0.95)
2010	0.96 (0.93, 0.98)	0.94 (0.93, 0.95)
2011	0.97 (0.94, 0.99)	0.94 (0.93, 0.95)
2012	0.98 (0.95, 1.00)	0.94 (0.93, 0.95)
2013	0.99 (0.96, 1.02)	0.94 (0.93, 0.95)
2014	1.00 (0.97, 1.03)	0.94 (0.93, 0.95)
2015	1.01 (0.98, 1.04)	0.94 (0.93, 0.95)
2016	1.02 (0.99, 1.05)	0.94 (0.93, 0.95)
2017	1.03 (1.00, 1.06)	0.94 (0.93, 0.95)
2018	1.04 (1.01, 1.07)	0.94 (0.93, 0.95)
2019	1.05 (1.02, 1.08)	0.94 (0.93, 0.95)
2020	1.06 (1.03, 1.10)	0.94 (0.93, 0.95)
2021	1.07 (1.04, 1.11)	0.94 (0.93, 0.95)
2022	1.08 (1.05, 1.13)	0.94 (0.93, 0.95)
2023	1.09 (1.06, 1.14)	0.94 (0.93, 0.95)
2024	1.10 (1.07, 1.16)	0.94 (0.93, 0.95)
2025	1.11 (1.08, 1.18)	0.94 (0.93, 0.95)
2026	1.12 (1.09, 1.20)	0.94 (0.93, 0.95)
2027	1.13 (1.10, 1.22)	0.94 (0.93, 0.95)
2028	1.14 (1.11, 1.24)	0.94 (0.93, 0.95)
2029	1.15 (1.12, 1.26)	0.94 (0.93, 0.95)
2030	1.16 (1.13, 1.28)	0.94 (0.93, 0.95)
Appendix 7. Effect of test brand on accuracy of microhaematuria

Figure 20
Figure 20. Summary ROC plot showing effect of test brand on sensitivity and specificity of microhaematuria.
Appendix 8. Effect of year of study on the accuracy of proteinuria

Figure 21

Figure 21. Forest plot showing effect of year of study on sensitivity and specificity of proteinuria.

Study	TP	FP	FN	TM	Year	Sensitivity (95% CI)	Specificity (95% CI)
Willems 1979	120	1	203	63	1979	6.38 [0.22, 0.43]	9.59 [0.92, 1.00]
Ylikoski 1978	701	251	327	615	1978	6.35 [0.55, 0.68]	9.71 [0.69, 0.74]
Rumi 1980	569	197	422	2650	1980	6.55 [0.51, 0.58]	8.39 [0.74, 0.91]
Itelim 1982	376	172	163	397	1982	6.70 [0.74, 0.78]	8.64 [0.50, 0.67]
Tamir 1982	126	66	26	319	1982	6.64 [0.77, 0.99]	9.02 [0.70, 0.86]
Tamir 1982	126	66	26	319	1982	6.64 [0.77, 0.99]	9.02 [0.70, 0.86]
Steinhof 1984	113	11	50	177	1984	6.69 [0.56, 0.73]	9.04 [0.70, 0.91]
Mod 1985a	334	98	38	47	1985	6.60 [0.56, 0.71]	9.32 [0.25, 0.40]
Mod 1985a	334	98	38	47	1985	6.60 [0.56, 0.71]	9.32 [0.25, 0.40]
Bera 1985	35	73	21	276	1985	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1986	42	13	22	41	1986	6.63 [0.53, 0.77]	9.78 [0.62, 0.79]
Oche 1986	42	13	22	41	1986	6.63 [0.53, 0.77]	9.78 [0.62, 0.79]
Bera 1986	34	17	21	276	1986	6.63 [0.46, 0.74]	9.79 [0.74, 0.82]
Oche 1987	42	13	22	41	1987	6.60 [0.53, 0.77]	9.78 [0.62, 0.79]
Oche 1987	42	13	22	41	1987	6.60 [0.53, 0.77]	9.78 [0.62, 0.79]
Bera 1986	25	27	75	122	1986	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Bera 1986	25	27	75	122	1986	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1988	35	73	21	276	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1988	35	73	21	276	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1989	42	13	22	41	1989	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1989	42	13	22	41	1989	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Bera 1988	25	27	75	122	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Bera 1988	25	27	75	122	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1987	35	73	21	276	1987	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1987	35	73	21	276	1987	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1988	35	73	21	276	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]
Oche 1988	35	73	21	276	1988	6.63 [0.46, 0.73]	9.79 [0.74, 0.82]

Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas (Review)
Copyright © 2015 The Authors. The Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Appendix 9. Effect of test brand on accuracy of proteinuria

Figure 22

Figure 22. Summary ROC plot showing effect of test brand on sensitivity and specificity of proteinuria.
Appendix 10. Effect of test brand on accuracy of CCA POC *S. mansoni*

Figure 23

Figure 23. Summary ROC plot showing effect of test brand on sensitivity and specificity of CCA POC *S. mansoni.*

Legend
- ○ Brand: Rapid Medical Diagnostics Pretoria South Africa
- □ Brand: Schistosomiasis on step test EVL Holland
Appendix 11. Forest plot of sensitivity and specificity of serum CAA ELISA for *S. mansoni*

Figure 24

Figure 24. Forest plot of sensitivity and specificity of serum CAA ELISA for *S. mansoni*. Squares represent the sensitivity and specificity of one study, the black line shows its confidence interval.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
El-Borsahey 1996	117	30	110	110	0.80 (0.72, 0.88)	1.00 (0.97, 1.00)		
Polman 1995	325	22	76	110	0.94 (0.92, 0.97)	0.88 (0.81, 0.97)		
Van Loo 1995	27	10	10	126	0.47 (0.33, 0.60)	0.88 (0.80, 0.91)		
Van Loo 1999_1	449	9	34	17	0.92 (0.90, 0.95)	0.99 (0.48, 0.86)		
Van Loo 1999_2	232	6	14	17	0.94 (0.90, 0.97)	0.10 (0.00, 0.45)		

Squares represent the sensitivity and specificity of one study. The black line shows its confidence interval.

Appendix 12. Summary ROC plot of sensitivity versus specificity of serum CAA ELISA for *S. mansoni*

Figure 25
Figure 25. Summary ROC plot of sensitivity versus specificity of serum CAA ELISA for S. mansoni. The size of the points is proportional to the study sample size.
Appendix 13. Forest plot of sensitivity and specificity of serum CAA ELISA for *S. haematobium*

Figure 26. Forest plot of sensitivity and specificity of serum CAA ELISA for *S. haematobium*. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Alhewairi 1999	37	121	30	172	0.55 [0.42, 0.67]	0.67 [0.51, 0.63]		
De Clerq 1995	198	82	55	105	0.72 [0.73, 0.83]	0.68 [0.43, 0.63]		
Ndlovu 1998	83	63	3	20	0.37 [0.21, 0.99]	0.24 [0.15, 0.33]		

Squares represent sensitivity and specificity of one study. The black line shows its confidence interval.

Appendix 14. Summary ROC plot of sensitivity versus specificity of serum CAA ELISA for *S. haematobium*

Figure 27
Figure 27. Summary ROC plot of sensitivity versus specificity of serum CAA ELISA for *S. haematobium*. The size of the points is proportional to the study sample size.
Appendix 15. Forest plot of sensitivity and specificity of serum CCA ELISA for *S. mansoni*

Figure 28

Figure 28. Forest plot of sensitivity and specificity of serum CCA ELISA for *S. mansoni*. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Polman 1995	20	12	51	12	0.95 (0.81, 0.99)	0.90 (0.72, 0.97)		
Van Lieshout 1995	21	10	37	12	0.39 (0.24, 0.50)	0.93 (0.89, 0.97)		

Squares represent sensitivity and specificity of one study. The black line shows its confidence interval.

Appendix 16. Forest plot of sensitivity and specificity of urine CCA ELISA for *S. mansoni*

Figure 29

Figure 29. Forest plot of sensitivity and specificity of urine CCA ELISA for *S. mansoni*. Squares represent the sensitivity and specificity of one study, the black line its confidence interval.

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Polman 1995	31	21	11	8	0.97 (0.94, 0.98)	0.75 (0.63, 0.87)		
Van Lieshout 1995	36	23	22	133	0.62 (0.45, 0.74)	0.84 (0.77, 0.90)		

Squares represent sensitivity and specificity of one study. The black line shows its confidence interval.

Appendix 17. Comparison of KK smears and CCA POC against other reference standards (as reported by study authors)

Study	Ref std	Index test	KK	1 CCA		
		Sensitivity	Specificity	Sensitivity	Specificity	
Coulibaly 2011	9 KK	1 KK	83 (76-88)	100 (77-100)	90 (83-94)	85 (55-99)
Setting C		2 KK	86 (80-91)	100 (77-100)		
		3 KK	94 (89-97)	100 (77-100)		

CONTINUATION

	Tchuente 2012	Erko 2013	Lodh 2013
	9KK	6KK	PCR
Writing of first draft of review:	Eleanor Ochodo.		
Methodological advice:	Mariska Leeflang, Johannes Reitsma, Patrick Bossuyt.		
Content advice:	Lisette Van Lieshout, Katja Polman, Poppy Lambert.		
Data collection:	Eleanor Ochodo, Gowri Gopalakrishna, Bea Spek, Mariska Leeflang, Lisette Van Lieshout, Katja Polman, Poppy Lambert.		
Data analysis:	Eleanor Ochodo, Mariska Leeflang, Johannes Reitsma.		
Contributions to manuscript drafts:	Eleanor Ochodo, Mariska Leeflang, Johannes Reitsma, Patrick Bossuyt, Lisette Van Lieshout, Katja Polman, Poppy Lambert, Gowri Gopalakrishna, Bea Spek.		
Agreement with final draft of review:	Eleanor Ochodo, Gowri Gopalakrishna, Bea Spek, Poppy Lambert, Lisette Van Lieshout, Katja Polman, Johannes Reitsma, Patrick Bossuyt, Mariska Leeflang.		

DECLARATIONS OF INTEREST

The review authors have reported no conflicts of interest.
SOURCES OF SUPPORT

Internal sources

• Academic Medical Centre Medical Research; University of Amsterdam, Netherlands.
 Funding PhD project of EAO
• Dutch Cochrane Centre, Netherlands.
 Technical support

External sources

• No sources of support supplied

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

Title of the review: To make the title of the review more specific to the tests that we evaluated, we have changed the title from “Rapid diagnostic tests for human schistosomiasis in endemic areas” to “Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas.”

We used QUADAS-2 to assess the methodological quality of studies included in the review. In the protocol, we stated that we would use the original QUADAS tool to assess quality and planned to perform a sensitivity analysis of the individual quality (QUADAS) items 4, 7, 8, 10, and 11, to explore whether the results that we found are robust for methodological challenges. Items 10 and 11 are not included in QUADAS-2. We instead assessed whether reference tests could classify the target condition as a co-variate.

In the protocol, we stated that we would analyze the intensity of infection as numerical co-variates. Because of poor reporting, we converted the data into categorical co-variates, including intensity of infection (light, moderate, heavy, unclear).

In the protocol, we also stated that we would estimate the sensitivity of urine reagent strips and urine CCA POC at positivity thresholds of +1 and ≥ +1. Instead we estimated the accuracy at thresholds > trace and > +1, as these data were most commonly provided.

As part of the post hoc analyses, we noted that three evaluations had substantial heterogeneity for the tests microhaematuria (Aryeetey 2000; sensitivity 55%, specificity 36%), proteinuria (Aryeetey 2000; sensitivity 38%, specificity 11%), and CCA POC for S. mansoni (Standley 2010; sensitivity 99%, specificity 19%). We excluded these evaluations in sensitivity analyses for the respective tests, as shown in the Results section.