Supplemental Information

The clock modulator Nobiletin mitigates astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer’s disease model

Marvin Wirianto¹, Chih-Yen Wang², Eunju Kim¹, Nobuya Koike³, Ruben Gomez-Gutierrez⁴,⁵, Kazunari Nohara¹, Gabriel Escobedo Jr.⁴, Jong Min Choi⁶, Chorong Han¹, Kazuhiro Yagita³, Sung Yun Jung⁶, Claudio Soto⁴, Hyun Kyoung Lee², Rodrigo Morales⁴,⁷, Seung-Hee Yoo¹, Zheng Chen¹§

1. Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030.
2. Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030
3. Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
4. Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, TX, 77030, USA
5. Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
6. Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030.
7. Centro Integrativo de Biologia Y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins. Santiago, Chile.

This SI file contains 6 supplemental figures (Figure S1-S6) with figure legends and 3 supplemental table (Table S1-S3).
Figure S1. Characterization of circadian free-running behavior, sleep and systemic metabolism in control or NOB-treated WT and APP/PS1 mice. (A) Circadian period measurements. (B) Piezo sleep measurements. Left to right panels: percent sleep, sleep bout duration, and number of bouts. Data are presented as mean ± SEM. *, p<0.05: two-way ANOVA with Tukey’s multiple comparisons indicating significant difference between WT.Cntl and APP/PS1.Cntl. #, p<0.05: t-test showing significant difference between WT.Cntl and WT.NOB. (C) Metabolic chamber measurements. Left to right: average of oxygen consumption, carbon dioxide production, respiratory exchange ratio (RER) and heat production. Data are presented as mean ± SEM. *, p<0.05: t-test showing significant statistical difference between WT.Cntl and WT.NOB.
Figure S2. Cortical mRNA expressions of core clock genes and AD-related genes in WT and APP/PS1 mice. RT-qPCR analysis of (A) core clock genes and (B) AD-related genes in cortex tissues collected at ZT6 and ZT18 (n ≥ 3/each group). Data are presented as mean ± SEM in bar graph. *, p<0.05; **, p<0.01; ***, p<0.001: three-way ANOVA with Tukey’s multiple comparisons. Statistical significance and F distribution of interaction are shown in Table S2.
Figure S3. NOB alters proteomic landscape in the cortex. (A) List of AD-related proteins upregulated and downregulated in APP/PS1 and rescued by NOB treatment. (B) Venn Diagram of differentially expressed proteins in WT.Cntl (Top), APP/PS1.Cntl (Right) and APP/PS1 NOB (Left) groups. “WT.Cntl ZT6 vs ZT18 (199)”: Yellow circle indicates differentially expressed proteins in WT.Cntl at two circadian time points (ZT6 and ZT18). “APP/PS1 NOB ZT6 vs 18 (224)”: Purple circle indicates differentially expressed proteins in APP/PS1.NOBS at two circadian time points (ZT6 and ZT18). “APP/PS1 ZT6 vs 18 (335)”: Red circle indicates differentially expressed proteins in APP/PS1.Cntl at two circadian time points (ZT6 and ZT18). (C) Heat map showing the top enrichment clusters by Metascape analysis in WT.Cntl, APP/PS1.Cntl, APP/PS1.NOBS cortex at two circadian time points (ZT6 and ZT18).

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1

Proteins upregulated in APP/PS1 (103+27)
- CAMKK1, CSMD2, ENTPD2, LETM1, NDFIP1, OGG1, PCBP3, RhoA, RPL12, RWDD2a, UBA3, USF1, WFS1, ZNRF2, CENPJ, KIT

Proteins downregulated in APP/PS1 (31+83)
- ABCG2, ABLIM2, AGAP2, AGBL4, ARFGAP3, BAG6, CKAP4, CPLX2, DAAM1, DNAJB4, ERC2, EXOG, FBXL16, GGA3, LRRC7, MAP3K5, MAPK8IP3, NECT1N1, PLCB1, RABE7F1, SUMO1
Figure S4. Immunofluorescence staining revealed diminished Aβ pathology by NOB. (A) Double immunofluorescence of brain regions containing both the cortex and the hippocampus. Scale bar: 500 µm. Green: GFAP (astrocyte); red: 4G8 (Aβ); DAPI (blue). (B) Quantification of 4G8 immunofluorescence in the cortex and the hippocampus. Right panels: Quantifications based on plaque size. T-test shows significant statistical difference between APP/PS1.Cntl and APP/PS1.NOB (**, p<0.01; ***, p<0.001; ****, p<0.0001).
Figure S5. NOB significantly affects astrocyte cell morphology and density. (A) Process thickness of GFAP+ astrocytes in the cortex (top) and hippocampus (bottom) at ZT6. Data are presented as mean ± SEM. *, p<0.05; ****, p<0.0001: two-way ANOVA with Tukey’s multiple comparisons. (B) Quantification of GFAP+ astrocyte cell size. Data are presented as mean ± SEM. ***, p<0.001; ****, p<0.0001: two-way ANOVA with Tukey’s multiple comparisons. This analysis revealed a significant effect for interaction (treatment × genotype): cell size in the cortex, F(1,21)=13.54, p<0.01; cell size in the hippocampus, F(1,21)=11.34, p<0.01. (C-D) S100β immunostaining of the cortex and the hippocampus regions. (C) Quantification data are presented as mean ± SEM. *, p<0.05; ****, p<0.0001: two-way ANOVA with Tukey’s multiple comparisons. #, p<0.05: t-test showing significant difference between APP/PS1.Cntl and APP/PS1.NOB. (D) Representative images. Scale bar: 100 µm. Green: S100β (astrocyte); red: 4G8 (Aβ); blue: DAPI.
Figure S6. NOB did not alter immunoreactivity of the microgliosis marker IBA1 in APP/PS1 mice. Double immunofluorescence staining in the cortex (upper two rows) and the hippocampus (lower two rows) at two different time points (ZT6 and ZT18). Scale bar: 100 µm. Green: IBA1 (microglia); red: 4G8 (Aβ). Right panels: Quantification of IBA1 immunoreactivity. Data are presented as mean ± SEM. ****, p<0.0001: two-way ANOVA with Tukey’s multiple comparisons.
Table S1. Primer sequences for RT-qPCR.

Gene	Forward (5'-3')	Reverse (5'-3')
Clock	CCTTCAGGAGTCAGTCCATAAAC	AGACATCGCTGGCTGTGTTAA
Bmal1	CCACCTCAGAGCCATTTGATACA	GAGCAGGTTCATTTCCACTTTGCT
Per1	TTCGTGGAAGTCACACCTCTT	GGGAAAGTGTGGCTTTTAGAT
Per2	ATGCTCGCCATCCACAAGA	GCGGAATCGAATGGGAGAAT
Per3	AAAAGCACCAGGGATAGATGG	GGGAGGCTGTAGCTGTTCA
Cry1	CTGCGCTGGAAGTCATCTGTG	CGTGCGCCATTTGAGTTTATG
Cry2	TGTCCCTTCAGTGTGGGAAGA	GCTTCCAGGCTTGCTGTTGA
Npas2	CAACAGAGCAAGCACATCTCT	TTCTGATCCATCCGATCCG
Rora	GCACCTGACCAGAGACGCAA	GAGCGATCCACGTACATCA
Nr1d1	CATGGTGACTGTGTAAGGTGTG	CACAGGCGTGCACTCCATAG
Dbp	CTGCCCCAGTTTCTTCTGTG	CCAGGTCCAGTATCCACG
App	AGCACCCAGAGAGAATGTCG	GCCAGTTCTTGCGTACGC
Bace1	ACATGCTGCGCTGACTGAA	GCCTGCGAAATCTCAGCATAG
Bace2	TGAGGAGCTGTACCCACATCCAAA	TGGCCAAAGCAAGCATACGCAAGTC
Apoe	ATTGCGAAGTAGGGCTCTGCTG	CCAGTCGAGTAGCTGTCTCA
Scna	TGACAGCAGTCGTCGCTGA	CATGTCTTCCGAGATTCTTC
Scnb	GAGAGGAGCTGTGCTGCTG	TCCCTGCGTTCAGGACTGT
Lrp1	ATTGAGGCAAGAGATGACAG	CCAGTCTGCTCCAGAATCCAC
Adam10	ACAGACTTGCTCTGCTGTAATCTT	GGTATGTCATTGGGCAAGTGATG
Atxn3	TGTCGTTTACGAAAGATCAG	GTCAAAGAAGACAGGCTGACT
Atxn10	TCAGAGTGCCCGTTCTGTGAT	ATCCCTTGTGCTAGTCTCT
Tnfa	CTGTAGCCAGCTGCTGACTG	TTAGAGATCCATCCGGTCTG
IL1b	TGTTGGCAGTACTCTGCTGTCT	TCGTCCGAGCCTGATG
IL6	TACCATCTGCAGTGCTGAGGAG	CTGAAGTGCGATCTGTCTGT
IL4	ACAAGGAGAAGGACGCCAT	GAAGCCCTTACAGAGCCCTCA
IL17	GGTCCAGCCAGGGCCCTACAAG	AGGCTTCCCTCCGACTGA
IL18	CAGGACGTGACACTCTTGCAAG	TCGTACATGGGACGCATTGT
Ifngr	TCAAGTGGCATAGTGAGGAAGA	TGGCTCTGCGAGTCTTTCATG
Gapdh	CAAGGTCATCCATGACACCTTG	GGGCCATCCAGCTTTGTG
Table S2. Statistical significance and F distribution of interaction by three-way ANOVA for Figures 2 and S2. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. The F distribution shows two parameters including degrees of freedom numerator (dfn) and degrees of freedom denominator (dfd).

Gene Name	P value	Treatment	Genotype	Time point	Treatment X Genotype	Treatment X Timepoint	Timepoint X Genotype
Clock	F(dfn,dfd)=3.744	ns	ns	ns	*	ns	ns
Brmal1	F(dfn,dfd)=20.27	ns	*	***	ns	ns	ns
Rora	F(dfn,dfd)=97.14	ns	ns	***	ns	*	ns
Nr1d1	F(dfn,dfd)=8.073	ns	ns	ns	**	ns	ns
Per1	F(dfn,dfd)=10.83	ns	*	ns	ns	ns	ns
Per2	F(dfn,dfd)=6.877	ns	***	****	ns	ns	ns
Per3	F(dfn,dfd)=1.662	ns	ns	ns	***	ns	ns
Npas2	F(dfn,dfd)=29.93	ns	ns	ns	***	ns	ns
Cry1	F(dfn,dfd)=13.74	ns	***	ns	ns	ns	ns
Cry2	F(dfn,dfd)=0.588	ns	ns	ns	*	ns	ns
Dbp	F(dfn,dfd)=12.40	ns	ns	ns	ns	ns	ns
App	F(dfn,dfd)=25.98	ns	ns	ns	ns	ns	ns
Bace1	F(dfn,dfd)=18.44	ns	ns	ns	ns	ns	ns
Bace2	F(dfn,dfd)=1.230	ns	ns	ns	ns	ns	ns
Apoe	F(dfn,dfd)=12.51	ns	ns	ns	ns	ns	ns
Scna	F(dfn,dfd)=11.05	ns	ns	***	ns	ns	ns
Scnb	F(dfn,dfd)=1.606	ns	ns	ns	ns	ns	ns
Lrp1	F(dfn,dfd)=27.32	ns	ns	ns	ns	ns	ns
Adam10	F(dfn,dfd)=23.57	ns	ns	ns	ns	ns	ns
Axtn3	F(dfn,dfd)=1.377	ns	ns	ns	ns	ns	ns
Axtn10	F(dfn,dfd)=0.028	ns	ns	ns	ns	ns	ns
Table S3. Statistical significance and F distribution of interaction by three-way ANOVA for Figure 4. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. The F distribution shows two parameters including degrees of freedom numerator (dfn) and degrees of freedom denominator (dfd).

Gene and Protein Name	P and F values	Treatment	Genotype	Time point	Treatment	Timepoint	Timepoint	Timepoint
								Genotype
Tnfa	F(df,df)	F(1,26)=32.77	F(1,26)=8.358	F(1,26)=1.562	F(1,26)=7.359	F(1,26)=0.87	F(1,26)=10.13	F(1,26)=4.137
IL1b	P value	****	**	ns	*	ns	**	ns
IL6	P value	****	**	ns	ns	ns	ns	ns
IL4	P value	**	***	ns	***	ns	ns	ns
IL17	P value	**	**	ns	**	ns	ns	*
IL18	P value	****	***	ns	ns	ns	ns	ns
Ifngr	P value	**	****	ns	ns	ns	ns	ns
NLRP3	P value	*	****	ns	ns	ns	ns	****