A new record of *Lasiodiplodia pseudotheobromae* causing leaf spot of *Cynometra malaccensis* in Thailand

Gomdola D1,2, Jeewon R3, Jayawardena RS1,2, Pem D1,2 and Harishchandra DL1,2,4

1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
3Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit 80837, Mauritius
4Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Gomdola D, Jeewon R, Jayawardena RS, Pem D, Harishchandra DL 2020 – A new record of *Lasiodiplodia pseudotheobromae* causing leaf spot of *Cynometra malaccensis* in Thailand. Plant Pathology & Quarantine 10(1), 223–237, Doi 10.5943/PPQ/10/1/21

Abstract

Lasiodiplodia species are well-known plant pathogens, causing fruit rot, stem-end rot and die-back on a wide range of hosts. They are characterized by hyaline or pigmented, aseptate or septate, thick-walled conidia, usually with longitudinal striations. In this study, *Lasiodiplodia pseudotheobromae* was found to cause leaf spots of *Cynometra malaccensis* in Thailand. Based on morphology and phylogenetic analyses of internal transcribed spacer regions (ITS) and translation elongation factor 1-alpha gene (TEF1-α), we identify the taxon as *L. pseudotheobromae*; it is the first confirmed record on *Cynometra malaccensis* in the world.

Key words – Botryosphaeriaceae – Fabaceae – Morphology – Multigene – Phylogeny – Taxonomy

Introduction

Lasiodiplodia Ellis & Everh., typified by *Lasiodiplodia theobromae* (Pat.) Griffon & Maubl. (Phillips et al. 2013, Jayasiri et al. 2019), is a genus in Botryosphaeriaceae (Alves et al. 2008, Phillips et al. 2019, Wijayawardene et al. 2020). *Lasiodiplodia* species have been recorded from many hosts, manifesting as pathogens (Abdollahzadeh et al. 2010), endophytes (Slippers & Wingfield 2007, Chen et al. 2015b) and saprobes (Abdollahzadeh et al. 2010, Liu et al. 2012, Dissanayake et al. 2016, Hyde et al. 2019). *Cynometra* (Fabaceae) contains approximately 85 species distributed in tropical regions (Mabberley 2008). Similar to other *Cynometra* species, *C. malaccensis* forms part of a large, pantropical group of woody plants ranging from 5-50 m in height (Radosavljevic et al. 2017).

Lasiodiplodia pseudotheobromae was first described from *Gmelina arborea* in Costa Rica (Alves et al. 2008). It was later isolated from different parts of many host plants including dead leaves of *Plukenetia volubilis* (Tennakoon et al. 2016), necrotic shoots and branches of *Mangifera indica* (Kwon et al. 2017), necrotic calyx of persimmon fruit (Nogueira et al. 2017), dead leaves of *Pandanus* sp. (Tibpromma et al. 2018), fruit rot of *Dimocarpus longan* (Pipattanapuckdee et al. 2019) and stems of *Ormosia pinnata* (Li et al. 2020). In this study, we provide a new record of *L. pseudotheobromae* causing leaf spots of *Cynometra malaccensis* from northern Thailand, based on identification using two-locus phylogeny and morphology.
Materials & Methods

Sample collection, fungal isolation and microscopic characterization

Leaves with brown spots were collected in plastic bags from a living *Cynometra malaccensis* tree at Mae Fah Luang Botanical Garden, Chiang Rai, Thailand on 9 October 2018. Each spot from the infected leaf was cut into four sections (5 mm²) consisting of both symptomatic and healthy tissue. All sections were surface sterilized in 70% ethanol for one minute, 5% sodium hypochlorite for one minute, rinsed thrice with sterilized water, dried on sterilized tissue paper, placed on potato dextrose agar (PDA) plates, and incubated at 25 ± 1°C for three days in the dark. Hyphal tips from the margin of developing colonies were transferred to fresh PDA plates and pure isolates were incubated for seven to 10 days at 25°C. To induce the formation of pycnidia, four to six autoclaved wooden toothpicks were placed on top of the culture medium, and the plates were kept at 25°C for two weeks. Subsequently, morphological characters such as conidia (size, shape, and colour) and mycelium were examined and digital images were captured using an Axio Cam ERc5s attached to a stereomicroscope (SteREO Discovery v8) and a Canon EOS 600D camera (Canon, Tokyo, Japan) attached to a Nikon ECLIPSE Ni-U compound microscope (Nikon, Tokyo, Japan). The features observed were measured by using Tarosoft® Image Frame Work software (version 0.97). The photomicrograph plate was prepared using Adobe Photoshop CS6 version (Adobe Systems). Ex-type living cultures are deposited in Mae Fah Luang University Culture Collection (MFLUCC) and the fungarium specimen is deposited in the Mae Fah Luang University Herbarium (MFLU), Thailand. Faces of Fungi (FoF) number was obtained following Jayasiri et al. (2015).

DNA extraction, PCR amplification and sequencing

Fresh mycelium was scraped from the margin of the colony grown on PDA plates (incubated at 25°C for 4 weeks) and transferred into 1.5 ml microcentrifuge tubes for genomic DNA extraction. Genomic DNA was extracted with an amended cetyltrimethyl ammonium bromide (CTAB) method (Guo et al. 2000). DNA amplification was performed by polymerase chain reaction (PCR) using the following primers: ITS4 and ITS5 (White et al. 1990) to amplify the partial rRNA of the internal transcribed spacer regions (ITS); and EF1-728F and EF2 (O’Donnell et al. 1998) to amplify the protein coding region of the translation elongation factor 1-alpha gene (TEF1-α). PCR was carried out using BIORAD C1000 TouchTM Thermal Cycler (Applied Biosystems, Foster City, CA, USA). The PCR mixtures contained 16.2 µl of ddH2O, 1 µl of each primer, 3 µl of dNTPs (TaKaRa, China), 2.5 µl of 10x Ex-Taq buffer (TaKaRa, China), 1 µl of genomic DNA, and 0.3 µl of TaKaRa Ex-Taq DNA polymerase (TaKaRa, China). The thermal cycling process was completed by an initial denaturation for 3 min at 95°C, followed by 34 cycles of denaturation for 30 s at 95°C, 30 s of annealing, elongation for 1 min at 72°C, and a final extension for 10 min at 72°C. The annealing temperatures for ITS and TEF-1α were 58°C and 52°C, respectively. Ethidium bromide (EtBr) was used for staining PCR products on 1% agarose electrophoresis gel under UV light. PCR products were sequenced with the same primers mentioned above at Beijing Biomed Gene Technology Co., China.

Phylogenetic analyses

Sequences obtained were subjected to BLAST search in the GenBank database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to determine the most probable closely related taxa. Based on the latest publications, ITS and TEF1-α sequences from types strains were retrieved from GenBank (Table 1). Single gene sequence datasets were aligned using the MAFFT website (v.7.036) (Katoh et al. 2019) and manually adjusted in BioEdit (v.7.0) (Hall 2004) wherever necessary. BioEdit (v.7.0) was used to combine ITS and TEF1-α sequences. The combined alignment in FASTA format was converted to PHYLIP and NEXUS formats using the Alignment Transformation Environment (ALTER) website (Posada 2010). Phylogenetic analyses were performed for the combined ITS and TEF1-α sequence data. Maximum likelihood (ML) analysis was performed in the CIPRES Science Gateway (v.3.3) (Miller et al. 2010). Randomized Axelerated Maximum Likelihood (RAxML) rapid
bootstrapping and subsequent ML search were performed using distinct model/data partitions with joint branch length optimization. The number of replicates was inferred using the stopping criterion (Pattengale et al. 2010). Phylogenetic Analysis Using Parsimony (PAUP) (v.4.0b10) (Swofford 2001) was used to conduct the maximum parsimony (MP) analysis using the heuristic search option with 1,000 random taxa additions to building the phylogenetic tree. Bayesian inference (BI) analysis was conducted with MrBayes (v.3.1.2) (Huelsenbeck et al. 2001). Simultaneous Markov chains were run for 2,000,000 generations and trees were sampled every 200th generation. The first 2,000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining trees were used for calculating posterior probabilities in the majority rule consensus tree. Adobe Illustrator CS3 (Adobe Systems, USA) software was used to present the tree. The new sequences generated from this study were submitted to GenBank (Table 1).

Pathogenicity test
Pathogenicity was confirmed by comparing morphology and colony characteristics with the original isolate. Since our isolate did not sporulate in culture, the experiment was carried out using the mycelium plug method on both attached and detached leaves of *Cynometra malaccensis*. Two-month old plants of *C. malaccensis* were used to conduct the pathogenicity test. For the attached method, each leaf selected was surface sterilized by spraying with 70% ethanol, followed by 5% sodium hypochlorite and sterilized water. For the detached method, each healthy leaf selected was surface sterilized in 70% ethanol for one minute, 5% sodium hypochlorite for one minute, rinsed thrice with sterilized water, and dried on sterilized tissue paper. Mycelium plugs of the growing culture were cut using sterilized straws. Leaves were wounded with syringe needles. The mycelium plugs were then placed on five wounded and five non-wounded attached leaves, and three wounded and three non-wounded detached leaves. The attached leaves with the inoculum were covered with a thin layer of Parafilm to prevent the plugs from drying. Sterile PDA plugs were used as controls.

The trays containing the plants and the detached leaves were covered with plastic for 48 h to maintain the humidity near saturation, at 25±1°C, and kept under fluorescent light for 12 h per day. The leaves were observed daily for any symptoms and lesion lengths were measured after two and five days. Fungal isolation was carried out on the fifth day. Tissue culture method was used for fungal isolation on the attached leaves, since no conidiomata were formed, while single spore method was used for the detached leaves.

Table 1 GenBank accession numbers, isolate numbers, host information and origin of the taxa used in the phylogenetic analyses. Sequences generated in this study are in bold. Ex-type strains are denoted with *.

Taxa	Isolate No.	Host	Country	GenBank accession numbers	References	
Diplodia mutila	CMW 7060	*Fraxinus excelsior*	Netherlands	AY236955	Slippers et al. (2004)	
D. seriata	CBS 112555*	*Vitis vinifera*	Montemor-o-Novo, Portugal	AY259094	Alves et al. (2004)	
Lasiodiplodia americana	CERC 1961*	Twigs of *Pistacia vera*	Arizona, USA	KP217059	Chen et al. (2015a)	
L. aquilariae	CGMCC 3.18471*	*Aquilaria crassna*	Vientiane, Laos	KY783442	Wang et al. (2019)	
L. avicenniae	CBS 139670*	Asymptomatic branches of *Avicennia marina*	Kwazulu-natal, South Africa	KP860835	Osorio et al. (2017)	
Taxa	Isolate No.	Host	Country	GenBank accession numbers	References	
----------------------	-------------	-----------------------------------	--------------------------	---------------------------	--------------------------	
L. avicenniarum	MFLUCC 17-2591*	Decaying fruit pericarp of Avicennia marina	Krabi, Thailand	MK347777	MK340867	Jayasiri et al. (2019)
L. brasiliense	CMM 4015*	Mangifera indica	Brazil	JX464063	JX464049	Marques et al. (2013)
L. bruguierae	CBS 139669*	Asymptomatic branches of Bruguiera gymnorrhiza	Kwazulu-natal, South Africa	KP860832	KP860677	Osorio et al. (2017)
L. caatinguensis	CMM 1325*	Trunk canker of Citrus sinensis	Itarema, Brazil	KT154760	KT008006	Coutinho et al. (2017)
L. chinensis	CGMCC 3.18061*	Stem blight or dieback of blueberries	Hainan, China	KX499889	KX499927	Dou et al. (2017)
L. chonburiensis	MFLUCC 16-0376*	Dead leaf of Pandanus sp.	Chonburi, Thailand	MH275066	MH412773	Tibpromma et al. (2018)
L. cinnamomum	CFCC 51997*	Twigs and branches of Cinnamomum camphora	Jiangsu, China	MG866028	MH236799	Jiang et al. (2018)
L. citricola	CBS 124707*	Twigs of Citrus sp.	Gilan, Iran	GU945354	GU945340	Abdollahzadeh et al. (2010)
L. crassispora	CBS 118741*	Canker of Santalum album	Western Australia	DQ103550	EU673303	Burgess et al. (2006)
L. curvata	CGMCC 3.18456*	Aquilaria crassna	Vientiane, Laos	KY783437	KY848596	Wang et al. (2019)
L. egyptiaca	BOT10*	Leaf of Mangifera indica	Sharkia, Egypt	JN814397	JN814424	Ismail et al. (2012)
L. endophytica	MFLUCC 18-1121*	Fresh leaves of Magnolia candolii	Yunnan, China	MK501838	MK584572	de Silva et al. (2019)
L. euphorbiicola	CMM 3609*	Collar and root rot of Jatropha curcas	Colatina, Brazil	KF234543	KF226689	Machado et al. (2014)
L. exigua	CBS 137785*	Branch canker of Retama raetam	Nabeul, Tunisia	KJ638317	KJ638336	Linaldeddu et al. (2015)
L. gilanensis	CBS 124704*	Twigs of unknown woody plant	Gilan, Iran	GU945351	GU945342	Abdollahzadeh et al. (2010)
L. gonubiensis	CBS 115812*	Syzygium cordatum	Eastern Cape, South Africa	AY639595	DQ103566	Pavlic et al. (2004)
L. gravistiata	CMM 4564*	Stems of Anacardium humile	Minas Gerais, Brazil	KT250949	KT250950	Netto et al. (2017)
L. hormozganensis	CBS 124709*	Twigs of Olea sp.	Hormozgan, Iran	GU945355	GU945343	Abdollahzadeh et al. (2010)
L. hyalina	CGMCC 3.17975*	Acacia confusa	Hainan, China	KX499879	KX499917	Dou et al. (2017b)
L. indica	PAN 30202*	Fallen twig of angiospermous tree	Chandigarh, India	NR_155317	-	Prasher et al. (2014)
L. iranensis	CBS 124710*	Twigs of Salvadora persica	Hormozgan, Iran	GU945346	GU945334	Abdollahzadeh et al. (2010)
Taxa	Isolate No.	Host	Country	GenBank accession numbers	References	
------------------------	-------------	-------------------------------	-----------------------	---------------------------	---------------------------------	
L. irregularis	CGMCC 3.18468*	Aquilaria crassna	Vientiane, Laos	KY783472	Wang et al. (2019)	
L. jatrophicola	CMM 3610*	Collar and root rot of Jatropha curcas	Colatina, Brazil	KF234544 KF226690	Machado et al. (2014)	
L. krabiensis	MFLU 17-2617*	Decaying submerged wood of Bruguiera sp.	Krabi, Thailand	MN047093 MN077070	Dayarathe et al. (2020)	
L. laeiocattleyae	CBS 167.28*	Necrotic branch of Mangifera indica	Piura, Peru	KU507487 KU507454	Rodríguez-Gálvez et al. (2017)	
L. laosensis	CGMCC 3.18464*	Aquilaria grassea	Vientiane, Laos	KY783471 KY848609	Wang et al. (2019)	
L. lignicola	CBS 134112*	Dead wood of unknown plant	Chiang Rai, Thailand	JX646797 KU887003	Liu et al. (2012)	
L. macroconidia	CGMCC 3.18479*	Aquilaria crassna	Vientiane, Laos	KY783438 KY848597	Wang et al. (2019)	
L. macrospora	CMM 3833*	Collar and root rot of Jatropha curcas	Colatina, Brazil	KF234557 KF226718	Machado et al. (2014)	
L. magnolia	MFLUCC 18-0948*	Dead leaves attached to Magnolia candolli	Yunnan, China	MK499387 MK568537	de Silva et al. (2019)	
L. mahajangana	CBS 124925*	Healthy branches of Terminalia catappa	Mahajanga, Madagascar	FJ900595 FJ900641	Begoude et al. (2010)	
L. margaritacea	CBS 122519*	Adansonia gibbosa	Western Australia	EU144050 EU144065	Pavlic et al. (2008)	
L. marypalmiae	CMM 2275*	Carica papaya fruit	Pernambuc, Brazil	NR_147341	Netto et al. (2014)	
L. mediterranea	CBS 137783*	Branch canker of Quercus ilex	Bortigijadas, Italy	KJ638312 KJ638331	Linalddedu et al. (2015)	
L. microcondia	CGMCC 3.18485	Aquilaria crassna	Vientiane, Laos	KY783441 KY848614	Wang et al. (2019)	
L. missouriana	CBS 128311*	Interspecific hybrid grape	Saint James, USA	HQ288225 HQ288267	Urbez-Torres et al. (2012)	
L. pandanicola	MFLUCC 16-0265*	Dead leaves of Pandanus sp.	Phatthalung, Thailand	MH275068 MH412774	Tiberonma et al. (2018)	
L. parva	CBS 456.78*	Cassava field soil	Colombia	EF622083 EF622063	Alves et al. (2008)	
L. plurivora	CBS 120832*	V-shaped necrotic lesion of Prunus salicina	Western Cape, South Africa	EF445362 EF445395	Damm et al. (2007)	
L. pontae	CMM 1277*	Necrotic canker on Spondias purpurea	Brazil	KT151794 KT151791	Coutinho et al. (2017)	
L. pseudotheobromae	CBS 116459*	Gmelina arborea	San Carlos, Costa Rica	EF622077 EF622057	Alves et al. (2008)	
L. pseudotheobromae	CGMCC 3.18047	Pteridium aquilimum	China	KX499876 KX499914	Dou et al. (2017a)	
L. pseudotheobromae	Gr26	Grevillea robusta	Kenya	FJ904834 JF682854	Njuguna et al. (2011)	
L. pseudotheobromae	MFLUCC 20-0137	leaf spot of Cynometra malaccensis	Chiang Rai, Thailand	MT947087 MT951067	This study	

References indicate the authors and publication year for each isolate.
Table 1 Continued.

Taxa	Isolate No.	Host	Country	GenBank accession numbers	References
L. pyriformis	CBS 121770*	Acacia mellifera	Dordabis, Namibia	EU101307	Van der Walt (2009)
L. rubropurpurea	CBS 118740*	Canker of Eucalyptus grandis	Queensland, Australia	DQ103553	Burgess et al. (2006)
L. sterculiae	CBS 342.78*	Sterculia oblonga	Braunschweig, Germany	KX464140	Yang et al. (2017)
L. subglobosa	CMM 3872*	Collar and root rot of Jatropha curcas	Colatina, Brazil	KF234558	Machado et al. (2014)
L. swieteniae	MFLUCC 18-0244*	Decaying fruit pericarp of Swietenia sp.	Chiang Rai, Thailand	MK347789	Jayasiri et al. (2019)
L. tenuiconidia	CGMCC 3.18449*	Aquilaria crassa	Vientiane, Laos	KY783466	Wang et al. (2019)
L. thailandica	CBS 138760*	Mangifera indica	Chiang Mai, Thailand	KJ193637	Trakunyaingcharoen et al. (2014)
L. theobromae	CBS 164.96*	Fruit	Papua New Guinea	AY640255	Phillips et al. (2005)
L. tropica	CGMCC 3.18477*	Aquilaria crassa	Vientiane, Laos	KY783454	Wang et al. (2019)
L. vaccini	CGMCC 3.19022*	Blighted branches of Vaccinium corymbosum	Beijing, China	MH330320	Zhao et al. (2019)
L. venezuelensis	CBS 118739*	Wood of living Acacia mangium	Portuguesa, Venezuela	DQ103547	Burgess et al. (2006)
L. viticola	CBS 128313*	Interspecific hybrid grape	Altus, USA	HQ288227	Urbez-Torres et al. (2012)
L. vitis	CBS 124060*	Canker of Vitis vinifera	Sicily, Italy	KX464148	Yang et al. (2017)

*CBS – Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands, CERC – Culture collection of China Eucalypt Research Centre, Zhanjiang, Guangdong Province, China, CFCC – China Forestry Culture Collection Center, CGMCC – China General Microbiological Culture Collection Center, CMM – Culture Collection of Phytopathogenic fungi “Prof. Maria Menezes”, CMW – Culture collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa, MFLUCC – Mae Fah Luang University Culture Collection, Chiang Rai, Thailand.

Results

Phylogenetic analyses

The combined ITS and TEF1-α sequences for the fungus obtained in this study were aligned with 61 sequences retrieved from GenBank, representing Botryosphaeriaceae. All three phylogenetic trees (ML, MP and BI) showed similar topologies. The RAxML analysis yielded a best scoring tree with the final ML optimization likelihood value of -3256.889118. The matrix had 247 distinct alignment patterns, with 7.77% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.216125, C = 0.289643, G = 0.255338, T = 0.238894; substitution rates AC = 1.353360, AG = 5.161491, AT = 1.777014, CG = 1.550618, CT = 6.747365, GT = 1.000000; gamma distribution shape parameter alpha = 0.682453 and invar = 0.467834. The maximum parsimonious dataset consisted of 770 characters, of which 576 were conserved and 99 were variable. The parsimony analysis resulted in 5,000 equally parsimonious trees (length = 363) with CI = 0.691, RI = 0.776, RC = 0.537 and HI = 0.309. Our strain of L. pseudotheobromae (MFLUCC 20–0137) clustered with other strains of L. pseudotheobromae (CBS 116459, CGMCC 3.18047, Gr26) with
bootstrap support as follows: 68% ML, 64% MP and 0.94 BI, confirming its phylogenetic position (Fig. 1).

Fig. 1 – Maximum parsimony tree resulting from analysis of combined ITS and TEF1-α sequence data alignment. Bootstrap support values for maximum likelihood and maximum parsimony greater than 50 and Bayesian posterior probabilities (BYP, third set) greater than 0.90 are indicated at the
nodes as ML/MP/BYPP. The tree is rooted with *Diplodia mutila* and *D. seriata*. Ex-type strains are denoted with * and our strain is indicated in **red bold** (MFLUCC 20-0137).

Taxonomy

Lasiodiplodia pseudaetheobromae A.J.L. Phillips, A. Alves & Crous

Index Fungorum number: IF510941; Facesoffungi number: FoF00166

Causing brown leaf spots on *Cynometra malaccensis* van Meeuwen. Sexual morph: not observed. Asexual morph: *Pycnidia* 1.0–1.5 × 0.6–0.9 mm (\(\bar{x} = 1.2 \times 0.8\) mm, n = 10), on toothpick surfaces solitary, globose to subglobose, uniloculate, black, irregularly surrounded by grey-white mycelium. *Pycnidial wall* 75.0–103 \(\mu\)m (\(\bar{x} = 92.0\) \(\mu\)m, n = 10) comprising cells of *textura angularis*, consisting of 2 layers of thick-walled, brown to hyaline cells. *Mycelium* hyaline to brown, septate. *Conidiophores* 6.0–33.0 × 2.6–8.0 \(\mu\)m (\(\bar{x} = 16.7 \times 5.7\) mm, n = 20), hyaline, pyriform and cylindrical. *Conidiogenous cells* 6.4–27.0 × 5.1–10.0 \(\mu\)m (\(\bar{x} = 16.2 \times 8.7\) \(\mu\)m, n = 20), hyaline, smooth, cylindrical, holoblastic. *Conidia* 23.0–33.5 × 14.7–16.9 \(\mu\)m (\(\bar{x} = 29.7 \times 15.8\) \(\mu\)m, n = 30), oblong, sub-ovoid to ellipsoidal with rounded apex and base, thick-walled, hyaline and aseptate when immature, becoming dark brown, 1-septate and striated longitudinally.

Fig. 2 – *Lasiodiplodia pseudaetheobromae* (MFLUCC 20–0137). a–b Herbarium specimen. c–d Colonies on PDA after 3 days of incubation at 25°C. e–f Colonies on PDA after 15 days of
incubation at 25°C. g Pycnidia on toothpick surfaces. h Close up of pycnidium covered with grey-white mycelium. i Close up of pycnidium. j Mycelium. k Section through pycnidium. l Pycnidial wall. m Conidiogenesis and developing conidia. n–r Conidia. Scale bars: h–i = 1.00 mm, j = 10 µm, k = 100 µm, l = 50 µm, m = 20 µm, n–r = 10 µm.

Culture characteristics – Colonies growing on PDA, reaching 8 cm diam. in three days at 25°C, initially grey-white, turning grey-black after 15 days, mycelium dense.

Material examined – THAILAND, Chiang Rai Province, Mae Fah Luang Botanical Garden, on attached leaves of *Cynometra malaccensis* (Fabaceae), 9 Oct 2018, N. Huanraluek, culture collection no: MFLUCC 20–0137, Fungarium no: MFLU 20–0654.

The morphology of our specimen is compared with other isolates of *L. pseudotheobromae* in Table 2.

Pathogenicity test

Lesions were formed after two days on both the attached and detached leaves, but only on those that were wounded (Fig. 3b, c, h). Measurements of the lesions are shown in Table 3. Conidiomata were formed only on the detached leaves. No symptoms were produced on non-wounded leaves (Fig. 3d, i) and controls (Fig. 3e–f, j–k). After re-isolation, the isolate was identified as *Lasiodiplodia pseudotheobromae*, based on morphology and colony characteristics, which is similar to those shown in Fig. 2.

Table 2 Comparison of conidial dimensions of *Lasiodiplodia pseudotheobromae* isolates.

Isolate No.	Conidial dimensions (µm)	Disease & country	References
CBS 116459*	25.5–30.5 × 14.8–17.2	From *Gmelina arborea*, Costa Rica	Alves et al. (2008)
CMM4875–CMM4877	21.4–30.7 × 11.4–15.1	Coffee dieback, Brazil	Freitas-Lopes et al. (2020)
FRLP1	23.7–28.2 × 12.4–14.9	Postharvest fruit rot of longan, Thailand	Pipattanapuckdee et al. (2019)
GXJG4.5	25.0–30.5 × 12.5–16.5	Husk rot of macadamia, China	Chang et al. (2019)
HNSY003	21.5–31.85 × 12.06–14.49	Leaf spots of *Hevea brasiliensis*, China	Wu et al. (2019)
IRAN 1518C	21.7–26.3 × 13.4–14.8	From *Citrus* sp., Iran	Abdollahzadeh et al. (2010)
MFLUCC 14-1192	25.0–30.0 × 10.0–15.0	Grapevine fruit peduncle and pedicel, China	Dissanayake et al. (2015)
MFLUCC 18-1120, MFLUCC 18-0950	20.0–26.0 × 10.0–14.0 (hyaline conidia) 19.0–25.0 × 12.0–15.0 (brown conidia)	Dead twigs of *Magnolia candolli*, China	de Silva et al. (2019)
MFLUCC 20-0137	23.0–33.5 × 14.7–16.9	Leaf spot of *Cynometra malaccensis*, Thailand	Current study
MHGNU F120	24.0–27.0 × 13.0–16.0	Mango dieback, South Korea	Kwon et al. (2017)
R1757	25.5–27.3 × 12.7–14.6	Pre-harvest fruit rot of mango, Malaysia	Munirah et al. (2017)

Table 3 Size of lesions (mm) formed in wounded attached and detached leaves

Leaf	Attached leaves	Detached leaves		
	After 2 days (mm)	After 5 days (mm)	After 2 days (mm)	After 5 days (mm)
1	7.0 × 9.0	10.0 × 12.0	1.0 × 3.0	5.0 × 6.0
	7.0 × 8.0	8.0 × 9.0	1.0 × 2.0	6.0 × 9.0
2	7.0 × 10.0	11.0 × 14.0	2.0 × 2.0	5.0 × 6.0
	6.0 × 11.0	12.0 × 17.0	2.0 × 2.0	5.0 × 7.0
Table 3 Continued.

Leaf	Attached leaves	Detached leaves		
	After 2 days (mm)	After 5 days (mm)	After 2 days (mm)	After 5 days (mm)
3	9.0 × 10.0	9.0 × 12.0	1.0 × 2.0	8.0 × 9.0
	7.0 × 11.0	8.0 × 12.0	-	-
4	7.0 × 10.0	8.0 × 10.0	-	-
	7.0 × 9.0	8.0 × 10.0	-	-
5	7.0 × 8.0	10.0 × 12.0	-	-
	8.0 × 9.0	12.0 × 14.0	-	-
x̅ (mm)	6.5 × 9.5	9.6 × 12.2	1.5 × 2.3	7.2 × 7.3

Fig. 3 – Pathogenicity test results on attached and detached leaves of Cynometra malaccensis. a Experimental plant (Cynometra malaccensis). b Leaf spots formed after 5 days in wounded leaf. c Close up of leaf spot on wounded leaf. d Mycelium plugs on non-wounded leaf. e Control for wounded leaf. f Control for non-wounded leaf. g Pathogenicity test results on detached leaves of Cynometra malaccensis. h Wounded leaf. i Non-wounded leaf. j Control for wounded leaf. k Control for non-wounded leaf.

Discussion
Lasiodiplodia pseudotheobromae was recorded for the first time from Cynometra malaccensis. Lasiodiplodia consists of 66 species (Species Fungorum 2020), exhibiting pathogenic, saprobic and endophytic lifestyles, occurring mainly on woody hosts (Phillips et al. 2013, 2019, Hyde et al. 2019, Phookamsak et al. 2019). From our collection and isolation, we found that L. pseudotheobromae causes brown leaf spots of Cynometra malaccensis (Fig. 3).

Morphological examination of our isolate confirmed that it is characterized by thick-walled conidia, initially hyaline and aseptate and becoming pigmented and one-septate, bearing longitudinal striations on maturation (Alves et al. 2008, Phillips et al. 2013). However, only hyaline conidia were observed in an endophytic strain of L. pseudotheobromae (MFLUCC 18-0951) (de Silva et al. 2019). Morphologically, L. pseudotheobromae resembles L. theobromae, the type species of the genus. Nonetheless, these two species can be delineated based on size and shape of their conidia. Conidia of L. pseudotheobromae are larger and more ellipsoid than those of L. theobromae (Alves et al. 2008). Conidial sizes of our collection are similar to those described by Alves et al. (2008) and for other strains of L. pseudotheobromae (Table 2).
Botryosphaeriaceae consists of 24 genera and more than 100 species (Slippers et al. 2017, Yang et al. 2017, Index Fungorum 2020), with a cosmopolitan distribution. Most members of Botryosphaeriaceae cause infection to plants via wounds or natural openings (van Niekerk et al. 2010, Úrbez-Torres & Gubler 2011, Chethana et al. 2016, Massonnet et al. 2017). They can infect a wide range of unrelated hosts, although some appear to be host-specific (De Wet et al. 2008). Lasiodiplodia pseudotheobromae is a common plant pathogen (Kwon et al. 2017, Munirah et al. 2017, Chang et al. 2019, Wu et al. 2019), but not host-specific (Phillips et al. 2013, Dissanayake et al. 2015, 2016, Li et al. 2019). These fungi can enter the hosts and manifest as endophytes but becoming pathogens when the host is stressed (Chethana et al. 2016, Paolinelli-Alfonso et al. 2016). Thus, they are considered as opportunistic pathogens (Yan et al. 2018). Our pathogenicity test results validate that L. pseudotheobromae is an opportunistic pathogen when lesions were formed only in wounded leaves.

Research on new records of fungal species in hosts are crucial as it provides useful information in understanding the interactions between hosts and fungi as well as determining their geographical distribution (Li et al. 2019).

Acknowledgements
Authors would like to thank Mae Fah Luang University and the director of Mae Fah Luang University Botanical garden, Tovaranonte J. and the botanist Songssangchun A. with respect to sample collection. Also, we would like to thank Chen Y.J. for her help with phylogenetic analyses.

References
Abdollahzadeh J, Javadi A, Goltapeh EM, Zare R, Phillips AJL. 2010 – Phylogeny and morphology of four new species of Lasiodiplodia from Iran. Persoonia 25, 1–10.
Alves A, Correia A, Luque J, Phillips A. 2004 – Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96, 598–613.
Alves A, Crous PW, Correia A, Phillips AJL. 2008 – Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28, 1–13.
Begoude BD, Slippers B, Wingfield MJ, Roux J. 2010 – Botryosphaeriaceae associated with Terminalia catappa in Cameroon, South Africa and Madagascar. Mycological Progress 9, 101–123.
Burgess TI, Barber PA, Mohali S, Pegg G et al. 2006 – Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia 98, 423–435.
Chang JM, Zhan RL, Liu F, Wu JB. 2019 – First report of Lasiodiplodia pseudotheobromae causing husk rot in macadamia. Plant Disease 103, 153.
Chen S, Li G, Liu F, Michailides TJ. 2015a – Novel species of Botryosphaeriaceae associated with shoot blight of pistachio. Mycologia 107, 780–792.
Chen S, Liu Z, Li H, Xia G et al. 2015b – β-Resorcylic acid derivatives with α-glucosidase inhibitory activity from Lasiodiplodia sp. ZJ-HQ1, an endophytic fungus in the medicinal plant Acanthus ilicifolius. Phytochemistry Letters 13, 141–146.
Chethana KT, Li X, Zhang W, Hyde KD, Yan J. 2016 – Trail of decryption of molecular research on Botryosphaeriaceae in woody plants. Phytopathologia Mediterranea 55, 147–171.
Coutinho IBL, Freire FCO, Lima CS, Lima JS et al. 2017 – Diversity of genus Lasiodiplodia associated with perennial tropical fruit plants in northeastern Brazil. Plant Pathology 66, 90–104.
Damm U, Crous PW, Fourie PH. 2007 – Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99, 664–680.
Dayarathe MC, Jones EBG, Maharachchikumbura SSN, Devadatha B et al. 2020 – Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11, 1–188.
Lasiodiplodia species associated with magnolia forest plants. Scientific Reports 9, 1–11.

De Wet J, Slippers B, Preiss O, Wingfield BD, Wingfield MJ. 2008 – Phylogeny of the Botryosphaeriaceae reveals patterns of host association. Molecular Phylogenetics and Evolution 46, 116–126.

Dissanayake AJ, Zhang W, Mei L, Chukateirote E et al. 2015 – Lasiodiplodia pseudotheobromae causes pedicel and peduncle discolouration of grapes in China. Australasian Plant Disease Notes 10, 21.

Dissanayake AJ, Phillips AJL, Li XH, Hyde KD. 2016 – Botryosphaeriaceae: current status of genera and species. Mycosphere 7, 1001–1073.

Dou ZP, He W, Zhang Y. 2017a – Lasiodiplodia chinensis, a new holomorphic species from China. Mycosphere 8, 521–530.

Dou ZP, He W, Zhang Y. 2017b – Does morphology matter in taxonomy of Lasiodiplodia? An answer from Lasiodiplodia hyalina sp. nov. Mycosphere 8, 1014–1027.

Freitas-Lopes RDL, Machado AR, Lopes UP. 2020 – Coffee dieback caused by Lasiodiplodia pseudotheobromae in Brazil. Plant Disease 104, 980.

Guo LD, Hyde KD, Liew ECY. 2000 – Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist 147, 617–630.

Hall T. 2004 – BioEdit version 7.0.0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html.

Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001 – Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.

Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ et al. 2019 – Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96, 1–242.

Index Fungorum. 2020 – http://www.indexfungorum.org/Names/Names.asp (Accessed 10 September 2020).

Ismail AM, Cirvilleri G, Polizzi G, Crous PW et al. 2012 – Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt. Australasian Plant Pathology 41, 649–660.

Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 – The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.

Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC et al. 2019 – Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10, 1–186.

Jiang N, Wang XW, Liang YM, Tian CM. 2018 – Lasiodiplodia cinnamomi sp. nov. from Cinnamomum camphora in China. Mycotaxon 133, 249–259.

Katoh K, Rozewicki J, Yamada KD. 2019 – MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.

Kwon JH, Choi O, Kang B, Lee Y et al. 2017 – Identification of Lasiodiplodia pseudaethobromae causing mango dieback in Korea. Canadian Journal of Plant Pathology 39, 241–245.

Li HL, Jayawardena RS, Xu W, Hu M et al. 2019 – Lasiodiplodia theobromae and L. pseudaethobromae causing leaf necrosis on Camellia sinensis in Fujian Province, China. Canadian Journal of Plant Pathology 41, 277–284.

Li L, Lei M, Wang H, Yang X et al. 2020 – First report of dieback caused by Lasiodiplodia pseudaethobromae on Ormosia pinnata in China. Plant Disease, PDIS-03.

Linalleddu BT, Deidda A, Scanu B, Franceschini A et al. 2015 – Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Diversity 71, 201–214.

Liu JK, Phookamsak R, Doilom M, Wikee S et al. 2012 – Towards a natural classification of Botryosphaeriales. Fungal Diversity 57, 149–210.
Pipattanapuckdee A, Boonyakait D, Tiyayon C, Seehanam P, Ruangwong OU. 2019 – Lasiodiplodia pseudotheobromae causes postharvest fruit rot of longan in Thailand. Australasian Plant Disease Notes 14, 21.

Posada D. 2010 – ALTER: program-oriented format conversion of DNA and protein alignments. Nucleic Acids Research 38, W14–W18.

Prasher IB, Singh G. 2014 – Lasiodiplodia indica—a new species of coelomycetous mitosporic fungus from India. Kavaka 43, 64–69.

Radosavljevic A, Mackinder BA, Herendeen PS. 2017 – Phylogeny of the detarioid legume genera Cynometra and Manihot (Leguminosae). Systematic Botany 42, 670–679.

Rodriguez-Gálvez E, Guerrero P, Barradas C, Crous PW, Alves A. 2017 – Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru. Fungal Biology 121, 452–465.

Slippers B, Crous PW, Denman S, Coutinho TA et al. 2004 – Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96, 83–101.

Slippers B, Crous PW, Jami F, Groenewald JZ, Wingfield MJ. 2017 – Diversity in the Botryosphaeriaceae: looking back, looking forward. Fungal Biology 121, 307–321.

Slippers B, Wingfield MJ. 2007 – Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21, 90–106.

Species Fungorum. 2020 – http://www.speciesfungorum.org/Names/Names.asp (Accessed 10 September 2020).

Swofford DL. 2001 – Paup*: Phylogenetic analysis using parsimony (and other methods) 4.0. B5.

Tennakoon DS, Phillips AJL, Phokamsak R, Ariyawansa HA et al. 2016 – Sexual morph of Lasiodiplodia pseudotheobromae (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes) from China. Mycosphere 7, 990–1000.

Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ et al. 2018 – Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity 93, 1–160.

Trakunyingcharoen T, Cheewangkoon R, To-Anun C, Crous PW et al. 2014 – Botryosphaeriaceae associated with diseases of mango (Mangifera indica). Australasian Plant Pathology 43, 425–438.

Úrbez-Torres JR, Gubler WD. 2011 – Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology 60, 261–270.

Úrbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE et al. 2012 – Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Diversity 52, 169–189.

Van der Walt FJJ. 2009 – Botryosphaeriaceae associated with native Acacia species in southern Africa with special reference to A. mellifera (Doctoral dissertation, University of Pretoria).

van Nierkerk JM, Calitz FJ, Halleen F, Fourie PH. 2010 – Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. European Journal of Plant Pathology 127, 375–390.

Wang Y, Lin S, Zhao L, Sun X et al. 2019 – Lasiodiplodia spp. associated with Aquilaria crassna in Laos. Mycological Progress 18, 683–701.

White TJ, Bruns T, Lee SJWT, Taylor J. 1990 – Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18, 315–322.

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D. 2020 – Outline of Fungi and fungus-like taxa. Mycosphere 11, 1060–1456.

Wu RH, Zhang Y, Li ZP. 2019 – First report of leaf spot on rubber tree caused by Lasiodiplodia pseudotheobromae in China. Plant Disease 103, 766.

Yan JY, Zhao WS, Chen Z, Xing QK et al. 2018 – Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research 25, 87–102.
Yang T, Groenewald JZ, Cheewangkoon R, Jami F et al. 2017 – Families, genera, and species of Botryosphaeriales. Fungal Biology 121, 322–346.
Zhao L, Wang Y, He W, Zhang Y. 2019 – Stem blight of blueberry caused by Lasiodiplodia vaccinii sp. nov. in China. Plant Disease 103, 2041–2050.