Functional immunity against SARS-CoV-2 in the general population after a booster campaign and the Delta and Omicron waves, Switzerland, March 2022

Rebecca Amati, Anja Frei, Marco Kaufmann, Serena Sabatini, Céline Pellaton, Jan Fehr, Emiliano Albanese, Milo A. Puhan, on behalf of the Corona Immunitas Research Group.

1. Università della Svizzera Italiana, Facoltà di scienze biomediche, Lugano, Ticino, Switzerland
2. Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland
3. Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland
4. Members of the Corona Immunitas Research Group are listed under Acknowledgements

* These authors contributed equally as first authors.
** These authors contributed equally as senior authors.

Correspondence: Milo Puhan (miloalan.puhan@uzh.ch)

Citation style for this article: Amati Rebecca, Frei Anja, Kaufmann Marco, Sabatini Serena, Pellaton Céline, Fehr Jan, Albanese Emiliano, Puhan Milo A, on behalf of the Corona Immunitas Research Group. Functional immunity against SARS-CoV-2 in the general population after a booster campaign and the Delta and Omicron waves, Switzerland, March 2022. Euro Surveill. 2022;27(31):pii=2200561. https://doi.org/10.2807/1560-7917.ES.2022.27.31.2200561

Article submitted on 12 Jul 2022 / accepted on 04 Aug 2022 / published on 04 Aug 2022

Functional immunity (defined here as serum neutralising capacity) critically contributes to conferring protection against SARS-CoV-2 infection and severe COVID-19. This cross-sectional analysis of a prospective, population-based cohort study included 1,894 randomly-selected 16 to 99-year-old participants from two Swiss cantons in March 2022. Of these, 97.6% (95% CI: 96.8–98.2%) had anti-spike IgG antibodies, and neutralising capacity was respectively observed for 94%, 92% and 88% against wild-type SARS-CoV-2, Delta and Omicron variants. Studying functional immunity to inform and monitor vaccination campaigns is crucial.

Currently available injectable vaccines confer protective immunity against symptomatic severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and severe coronavirus disease (COVID-19), however, protection – particularly against infection – wanes over time and is reduced for highly mutated variants such as Omicron (Phylogenetic Assignment of Named Global Outbreak (Pango) lineage: B.1.1.529) [1-4]. Booster vaccinations are important to maintain individual protection against severe disease more than infection [5]. Functional immunity (defined here as neutralising capacity of serum) contributes to protection against infection and severe disease, however, neutralising antibodies in serum wane over time, and are less effective at preventing infection by emerging variants. To the best of our knowledge, evidence is inexist-ent on functional immunity (defined here as neutralising capacity of serum) in the general population after the Delta (Pango lineage: B.1.617.2) and Omicron waves, and after vaccination and booster campaigns. Immunosurveillance of functional immunity is key to plan vaccination campaigns with respect to both their optimal timing and subgroups to be targeted, and to contemplate other preventive measures to control the burden of disease. Our aims were: (i) to determine the proportion of individuals in the general population with functional immunity against SARS-CoV-2, and (ii) to assess the neutralising activity of antibodies for virus variants of concern.

Study design, sampling, and participants’ characteristics

We conducted a cross-sectional analysis of the baseline assessment of a prospective, population-based cohort study, which is part of the Corona Immunitas research programme in Switzerland [6], within which we had completed four phases of seroprevalence studies throughout Switzerland between April 2020 and October 2021 using a standardised protocol. Here we present results from phase five (Figure), for which baseline assessments were done between 1 and 31 March 2022.

For phase five, we randomly selected individuals from the general population in north-eastern (canton of Zurich) and southern Switzerland (canton of Ticino), two regions that differ across demographic, socio-cultural, linguistic aspects and climate, all of which may impact on the dynamics of the pandemic. The Swiss Federal Office of Statistics provided random samples of the general population in age-stratified (16–29, 30–44, 45–64 and ≥65 years) groups, separately for Zurich and for Ticino. We selected these groups after
consultation with the Swiss Federal Office of Public Health to adequately account for the potential impact on seroprevalence of social behaviour, adherence to public health measures and vaccination uptake, all of which differ across these age groups. Given a sensitivity of 98% and specificity of 99%, we deemed 200 participants for each stratum to provide precise enough estimates for an expected seroprevalence of 90% or more. The target sample size was thus 200 for each age stratum in the two regions (i.e. total planned sample size of 1,600).

Before the in-person study visit, participants provided information regarding socio-demographics, vaccinations, SARS-CoV-2 infections, hospital and intensive care unit (ICU) admissions and symptoms in case of infections and past medical history, using the secure, web-based Research Electronic Data Capture platform for data collection and management [7,8]. We used questionnaires and data collection procedures identical to the previous phases of Corona Immunitas [6] to allow comparability, with small adaptations to the situation of the pandemic in early 2022. We used medians and interquartile ranges or absolute and relative numbers for the descriptive analysis.

We enrolled overall 1,894 individuals (1,044 from north-eastern and 850 southern Switzerland). Participation rate was 21.4% (1,044/4,879) in north-eastern and 18.9% (850/4,497) in southern Switzerland. Women, individuals aged between 45 and 64 years, and persons with high education and socioeconomic status and vaccination were slightly over- and persons with previous infections underrepresented (Table 1).

Ascertainment and prevalence of SARS-CoV-2 antibodies
Participants came to onsite visits at a healthcare facility or were offered at-home visits. For each participant, trained personnel collected venous blood samples, according to clinical standards and COVID-19 hygiene measures. We assessed SARS-CoV-2 specific antibodies against the spike and nucleocapsid proteins using Sensitive Anti-SARS-CoV-2 Spike Trimer Immunoglobulin Serological (SenASTrIS), a Luminex binding assay [9]. The assay measures binding of IgG antibodies to the trimeric SARS-CoV-2 spike and the nucleocapsid proteins. The test has a high specificity (98%) and sensitivity (99%) and has been validated in samples of the general population and in specific subgroups [9].

We calculated seroprevalence using a Bayesian logistic regression model accounting for the psychometric characteristics of the serological test and applied post-stratification weights based on the target population demographic structure [10]. We conducted all analyses in R, version 4.1.2.

We found that 97.6% (95% credible interval (CI): 96.8–98.2%) had developed IgG antibodies against the spike protein following vaccination and/or infection (Table 2) without relevant differences across age groups and region. Overall, 34% (636/1,894) of the sample originated from people recently infected, based on a self-reported positive laboratory viral test since January 2022, and/or detection of anti-nucleocapsid IgG antibodies.

Ascertainment and prevalence of neutralising capacity against wild-type SARS-CoV-2 as well as Delta and Omicron variants
We also assessed the presence of SARS-CoV-2 neutralising antibodies using a cell- and virus-free assay [11]. This assay measures the proportion of antibodies that block the interaction of the angiotensin-converting enzyme 2 receptor (ACE2r) with the receptor-binding...
Table 1a
Characteristics of the sample, stratified by canton and age group, Ticino and Zurich, Switzerland, March 2022 (n = 1,894)

Study site	Ticino	Zurich									
	All 16–29	30–44	45–64	≥ 65	All 16–29	30–44	45–64	≥ 65			
Age category in years	850	176	208	262	204	1,044	183	260	326		
Sample size	48	23	38	54	72	50	24	37	55		
Median age in years	32–64	19–27	34–42	49–58	68–77	34–65	21–27	33–41	51–59	68–77	
IQR	32–64	19–27	34–42	49–58	68–77	34–65	21–27	33–41	51–59	68–77	
Age group in years											
16–29	176	176	0	0	0	183	183	0	0	0	
Number	20.7	100.0	0.0	0.0	0.0	17.5	100.0	0.0	0.0	0.0	
Percentage											
30–44	208	0	208	0	0	260	0	260	0	0	
Number	24.5	0.0	100.0	0.0	0.0	24.9	0.0	100.0	0.0	0.0	
Percentage											
45–64	262	0	0	262	0	326	0	0	326	0	
Number	30.8	0.0	0.0	100.0	0.0	31.2	0.0	0.0	100.0	0.0	
Percentage											
≥ 65	204	0	0	0	204	275	0	0	0	275	
Number	24.0	0.0	0.0	0.0	100.0	26.3	0.0	0.0	0.0	100.0	
Percentage											
Sex											
Female	Number 484	103	125	152	104	567	106	157	169	135	
Percentage 56.9	58.5	60.1	58.0	51.0	54.3	57.9	60.4	51.8	49.1		
Educational level											
Primary	Number 89	39	6	10	34	71	31	7	10	23	
Percentage 10.5	22.2	2.9	3.8	16.7	6.8	16.9	2.7	3.1	8.4		
Secondary	Number 475	90	82	180	123	428	79	68	127	154	
Percentage 55.9	51.1	39.4	68.7	60.3	41.0	43.2	26.2	39.0	56.0		
Tertiary	Number 278	46	120	70	42	537	73	181	187	96	
Percentage 32.7	26.1	57.7	26.7	20.6	51.4	39.9	69.6	57.4	34.9		
Missing	Number 8	1	0	2	5	8	0	4	2	2	
Percentage 0.9	0.6	0.0	0.8	2.5	0.8	0.0	1.5	0.6	0.7		
Household income (CHF/month)											
0–6,000	Number 371	79	64	107	121	353	97	50	62	144	
Percentage 43.6	44.9	30.8	40.8	59.3	33.8	53.0	19.2	19.0	52.4		
6,000–12,000	Number 306	55	100	96	55	392	43	108	143	98	
Percentage 36.0	31.2	48.1	36.6	27.0	37.5	23.5	41.5	43.9	35.6		
12,000–18,000	Number 59	13	20	24	2	173	30	60	70	13	
Percentage 6.9	7.4	9.6	9.2	1.0	16.6	16.4	23.1	21.5	4.7		
≥ 18,000	Number 45	7	15	16	7	75	7	30	36	2	
Percentage 5.3	4.0	7.2	6.1	3.4	7.2	3.8	11.5	11.0	0.7		
Missing	Number 69	22	9	19	19	51	6	12	15	18	
Percentage 8.1	12.5	4.3	7.3	9.3	4.9	3.3	4.6	4.6	6.5		
Employment status	Working	Number 529	126	183	208	12	731	177	237	292	25
Percentage 62.2	71.6	88	79.4	5.9	70	96.7	91.2	89.6	9.1		
Missing	Number 5	1	1	1	2	8	0	4	1	3	
Percentage 0.6	0.6	0.5	0.4	1.0	0.8	0.0	1.5	0.3	1.1		
Swiss citizenship	Swiss citizen	Number 677	161	138	212	166	880	157	180	284	259
Percentage 79.6	91.5	66.3	80.9	81.4	84.3	85.8	69.2	87.1	94.2		
Missing	Number 3	0	0	2	1	6	0	3	1	2	
Percentage 0.4	0.0	0.0	0.8	0.5	0.6	0.0	1.2	0.3	0.7		

BMI: body mass index; CHF: Swiss francs; ICU: intensive care unit; IQR: interquartile range; NuC: nucleocapsid; SARS-CoV-2: severe acute respiratory coronavirus 2.

a Sex was collected as a binary variable (male; female).

b Severe infections were defined as those requiring a hospital admission (among those three ICU admissions in participants from Ticino and none in Zurich).
The domain of the trimer spike protein of the wild type and variants of concern.

The proportion of individuals whose antibodies showed ACE2r-blocking capacity in this virus-free assay was high against the wild-type SARS-CoV-2 (1,783/1,894; 94%), and Delta variant (1,752/1,894; 93%) and appeared only slightly lower for the Omicron (1,676/1,894; 88%), with no relevant differences across the age groups, but slightly higher proportions in north-eastern compared with southern Switzerland (Table 2). When stratified for recent infection, we found that more participants with anti-nucleocapsid IgG antibodies seemed to show ACE2r-blocking capacity against Omicron than those without (96% (221/230) vs 84% (521/620) in Ticino and 93% (222/238) vs 88% (712/806) in Zurich). In contrast, for wild-type SARS-CoV-2 and Delta variant, ACE2r-blocking capacities against Omicron remained similar, whether anti-nucleocapsid IgG antibodies were present or not. The proportions of participants with anti-nucleocapsid IgG antibodies also appeared to decrease across groups with increasing age (Table 1).

Table 1b
Characteristics of the sample, stratified by canton and age group, Ticino and Zurich, Switzerland, March 2022 (n = 1,894)

Study site	Ticino	Zurich	
Lifestyle and conditions			
Smoking	Number	178	56
	Percentage	20.9	31.8
Missing	Number	3	0
	Percentage	0.4	0.0
Obese (BMI ≥ 30)	Number	102	8
	Percentage	12	4.5
Missing	Number	1	0
	Percentage	0.1	0.0
≥ 1 chronic condition	Number	188	14
	Percentage	22.1	8.7
Missing	Number	1	0
	Percentage	0.1	0.0
Previous SARS-CoV-2 infection			
Positive test (ever)	Number	356	91
	Percentage	41.9	51.7
Missing	Number	0	0
	Percentage	0.0	0.0
Infected recently (NuC antibody positive)	Number	230	64
	Percentage	27.1	36.4
Infected recently (NuC antibody positive or positive test 2022)	Number	318	86
	Percentage	37.4	48.9
Past severe infections 2020–2022*	Number	13	0
	Percentage	1.5	0.0
Missing	Number	1	0
	Percentage	0.1	0.0
Vaccination against SARS-CoV-2			
Vaccinated (≥ 1 dose)	Number	765	158
	Percentage	90	89.8
Missing	Number	6	1
	Percentage	0.7	0.6
Booster dose	Number	694	76
	Percentage	58.1	74.8
Missing	Number	100	19
	Percentage	11.8	10.8

BMI: body mass index; CHF: Swiss francs; ICU: intensive care unit; IQR: interquartile range; NuC: nucleocapsid; SARS-CoV-2: severe acute respiratory coronavirus 2.
* Sex was collected as a binary variable (male; female).
* Severe infections were defined as those requiring a hospital admission (among those three ICU admissions in participants from Ticino and none in Zurich).
The introduction of vaccines against SARS-CoV-2 and the circulation of highly infectious but less virulent variants of concern, including Omicron, have considerably contributed to reducing the burden of COVID-19 on individuals and health services. Infection spreading is still substantial, but hospital and ICU admissions, and mortality rates have steadily decreased in many countries, including in Switzerland, since late December 2021 [12,13]. It is plausible that seroprevalence (i.e. the proportion of individuals with anti-spike SARS-CoV-2 antibodies) exceeds 90% for the adult population in countries that were considerably exposed to natural infection and attained high vaccination coverage at the same time [14].

Indeed, by March 2022, almost the entire population in the current study developed antibodies against SARS-CoV-2, irrespective of age and region of residence in Switzerland. The vast majority of individuals also developed antibodies with neutralising capacity against the wild type virus, as well as the Delta and Omicron variants. Neutralising antibodies are critical for protection against infection and play an important role in protection against severe disease [15,16]. Our findings additionally suggest that a substantial part of the general population in Switzerland developed functional hybrid immunity as a result of infection and vaccination. Of note and as suggested by an apparent differential proportion of anti-nucleocapsid IgG antibodies across age groups (Table 1), a smaller proportion of the elderly population might have had hybrid immunity.

Table 2
Prevalence of SARS-CoV-2 IgG antibodies and ACE2r-blocking (neutralising capacity) as measured by a virus-free assay, stratified by canton and age group, Ticino and Zurich, Switzerland, March 2022 (n = 1,894)

Study site	Ticino	Zurich
Age groups in years		
(total number of individuals)	All (n = 850)	All (n = 1,044)
	16–29 (n = 176)	16–29 (n = 183)
	30–44 (n = 208)	30–44 (n = 260)
	45–64 (n = 262)	45–64 (n = 326)
	≥ 65 (n = 204)	≥ 65 (n = 275)

Presence of anti-spike IgG antibodies

	Ticino	Zurich
Number	822	1,027
%	96.7	98.4

Level of anti-spike IgG antibodies*

	Ticino	Zurich
Not detectable		
Number	28	28
%	96.7	96.7

U/mL according to Elecsys anti-SARS-CoV-2 S

	Ticino	Zurich
Median	2,511	2,519
IQR	2,231–2,791	2,143–2,351

Seroprevalence

	Ticino	Zurich
%	97.5	97.8

Neutralisation

Type	Ticino	Zurich
Wild type		
Number	787	774
%	97.6	97.6

ACE2r: angiotensin-converting enzyme 2 receptor; CrI: credible interval; IgG: immunoglobulin G; IQR: interquartile range; MFI: mean fluorescence intensities; NuC: nucleocapsid.

* Unit for levels of anti-spike IgG antibodies is the MFI as measured by the Luminex binding assay Sensitive Anti-SARS-CoV-2 Spike Trimer Immunoglobulin Serological (SenASTrIS) [9].

** Low: from threshold of test positivity (MFI ≥ 6) to < 3 standard deviations above this threshold (MFI < 12); moderate: ≥ 3 standard deviations above positivity (MFI ≥ 12) threshold but unlikely to provide neutralisation (MFI < 40); high: neutralising capacity likely (MFI ≥ 40).

* For interpretation of quantitative results MFI values were converted to U/mL as measured by the Elecsys Anti-SARS-CoV-2 immunoassay produced by Roche. Roche anti-S IgG = 10^((−0.6108069 + 2.0072862 × log10(MFI + 1))) as developed by the Department of Clinical Immunology & Allergy of the University Hospital of Lausanne based on population-based samples.

**

Discussion

The introduction of vaccines against SARS-CoV-2 and the circulation of highly infectious but less virulent variants of concern, including Omicron, have considerably contributed to reducing the burden of COVID-19 on individuals and health services. Infection spreading is still substantial, but hospital and ICU admissions, and mortality rates have steadily decreased in many countries, including in Switzerland, since late December 2021 [12,13]. It is plausible that seroprevalence (i.e. the proportion of individuals with anti-spike SARS-CoV-2 antibodies) exceeds 90% for the adult population in countries that were considerably exposed to natural infection and attained high vaccination coverage at the same time [14].
functional immunity potentially widening the immunity gap over time.

To the best of our knowledge, no population-based seroprevalence studies conducted in European countries in 2022 have been published to date. However, our findings on seroprevalence nearing 100% are expected, as in line with the increase already reported in European [14] and non-European countries [17,18]. A remarkable result of this study is the high proportion of the population whose antibodies showed neutralising activity against different variants of SARS-CoV-2, including Omicron. This may be due to the booster campaign offered in late autumn of 2021, but it is also likely ascribable to the high incidence of infections caused by both Delta and Omicron variants in late 2021 and early 2022 (Figure), when more stringent public health measures were progressively relaxed. The combination of infections and booster vaccinations likely explains the high prevalence of functional immunity at present.

This study has three major strengths: (i) we did a cross-sectional analysis of a prospective, population-based study, whereas population-based studies on SARS-CoV-2 neutralising antibodies are almost nonexistent in Europe [19]; (ii) we adopted a standardised protocol and antibody test, across sites and time, since the beginning of the pandemic; (iii) the current study was timely in March 2022, which was a few weeks after very high incidence of infections due to the Delta and Omicron BA.1 and BA.2 subvariants (Figure). Limitations include the low participation rate and overrepresentation of people with higher education and socioeconomic status. However, while vaccination uptake may be higher, infection rates may have been lower in this group compared with the entire population. Other limitations include the limited scope of immune function assessed (e.g. no T-cell function) and the possibility that (future) variants may evade neutralisation as assessed here. Future immuno-epidemiological studies may also assess mucosal IgA and tissue resident cellular immunity, which are not induced by current injectable vaccines, but increasingly recognised as important for consideration in future vaccines [20].

Conclusion

In conclusion, antibody response and neutralising capacity are both very high in the Swiss population after the booster campaign in late 2021, and after high rates of infections due to the Delta and Omicron variants of SARS-CoV-2. This results in robust protective immunity. The temporal trajectory of protective immunity must be monitored to determine if, when and to whom booster vaccinations should be offered.

Ethical statement

The ethics committees of the cantons of Zurich (BASEC Registration No 2020-01247), and Ticino (BASEC Registration No 2020-01514) authorised the study, and all participants provided written informed consent.

Funding statement

This study is part of the Corona Immunitas research network, coordinated by the Swiss School of Public Health (SSPH+), and funded by fundraising of SSPH+ that includes funds of the Swiss Federal Office of Public Health and private funders (ethical guidelines for funding stated by SSPH+ were respected), by funds of the cantons of Switzerland (Vaud, Zurich, and Basel), and by institutional funds of the universities. Additional funding, specific to this study, was provided by the Federal Office of Public Health, Switzerland. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data availability statement

Data are available on request.

Acknowledgements

CORONA IMMUNITAS RESEARCH GROUP – 25.03.2022

Emiliano Albanese, MD, PhD (Institute of Public Health (IPH), Università della Svizzeria italiana, Lugano, Switzerland); Rebecca Amati, PhD (Institute of Public Health (IPH), Università della Svizzeria italiana, Lugano, Switzerland); Antonio Amendola, Msc (Department of Business Economics, Health and Social Care (DEASS), University of Applied Sciences & Arts of Southern Switzerland (SUPSI), Switzerland; Alexia Anagnostopoulou, MD MPH (Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland); Daniela Anker, PhD (Population Health Laboratory (#PopHealthLab), University of Fribourg, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Switzerland); Anna Maria Annoni, Msc (Institute of Public Health (IPH), Università della Svizzeria italiana, Lugano, Switzerland); Hélène Aschmann, PhD (Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland); Andrew Azman, PhD (Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland); Antoine Bal, MSc (Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland); Tala Ballouz, MD MPH (Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland); Hélène Baysson, PhD (Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland; Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland); Antone Bal, MSc (Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland); Murielle Bochud, MD, PhD (Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland); Patrick Bodenmann, MD, Msc (Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland); Gaille Bryand Rumley, Msc (Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland); Peter Buttaroni, Msc
Conflict of interest
None declared.

Authors’ contributions
MP had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: MP, EA, JF, AF, RA, MK
Acquisition, analysis, or interpretation of data: AF, RA, MK, CP, MP, EA, JF, SS
Drafting of the manuscript: MP
Critical revision of the manuscript for important intellectual content: AF, RA, MK, CP, MP, EA, JF, SS
Statistical analysis: MK
Obtained funding: MP, JF, EA
Administrative, technical, or material support: EA, CP, MP, EA, JF
Supervision: EA, JF, MP

References
1. Tenforde MW, Self WH, Adams K, Gagliani M, Ginde AA, McNeal T, et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA. 2021;326(20):2043-54. https://doi.org/10.1001/jama.2021.19469 PMID: 34734975
2. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months, N Engl J Med. 2021;385(24):e84. https://doi.org/10.1056/NEJMoa2114583 PMID: 34644326
3. Hall V, Foulkes S, Insalata F, Kirwan P, Saei A, Atti A, et al. Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection, N Engl J Med. 2022;386(13):1207-20. https://doi.org/10.1056/NEJMoa2118691 PMID: 35172051
4. Lyke KE, Atmar RL, Islas CD, Posavac CM, Szydlo D, Paul Chourdhury R, et al., DMID 21-0112 Study Group. Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant. Cell Rep Med. 2022;3(7):100679. https://doi.org/10.1016/j.xcrm.2022.100679 PMID: 35798000
5. Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J Med Virol. 2022;94(2):2969-76. https://doi.org/10.1002/jmv.27697 PMID: 35246846
6. West EA, Anker D, Amati R, Richard A, Wisnaiak B, Butty A, et al. Corona Immunitas: study protocol of a nationwide program of SARS-CoV-2 seroprevalence and seroepidemiologic studies in Switzerland. Int J Public Health. 2020;65(6):1259-68. https://doi.org/10.1007/s00038-020-01494-0 PMID: 33098441
7. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde IG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):375-81. https://doi.org/10.1016/j.jbi.2008.10.010 PMID: 18929686
8. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners, J Biomed Inform. 2019;95:103208. https://doi.org/10.1016/j.jbi.2019.103208 PMID: 31078660
9. Fenwick C, Croxatto A, Coste AT, Pojer F, André C, Pellaton C, et al. Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies. J Virol. 2021;95(3):e00828-20. https://doi.org/10.1128/jvi.00828-20 PMID: 33144321
10. Stringhini S, Wisnaiak B, Plumatti G, Azman AS, Lauer SA, Baysoun H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396(10247):313-9. https://doi.org/10.1016/S0140-6736(20)31304-0 PMID: 32534626
11. Fenwick C, Turelli P, Pellaton C, Farina A, Campos J, Raclot C, et al. A high-throughput cell- and virus-free assay shows reduced neutralization of SARS-CoV-2 variants by COVID-19 convalescent plasma. Sci Transl Med. 2021;13(605):eabib452. https://doi.org/10.1126/scitranslmed.abb452 PMID: 34257144
12. Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, et al. OurWorldInData. [Accessed 18 May 2022]. Available from: https://ourworldindata.org/covid-hospitalizations#license.
13. European Centre for Disease Prevention and Control (ECDC). Data on hospital and ICU admission rates and current occupancy for COVID-19. Stockholm: ECDC; Jul 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19
14. Office for National Statistics (ONS). Coronavirus (COVID-19) latest insights: Antibodies 2022. Newport: ONS; Jul 2022. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovidvirologylatestinsights/antibodies
15. Nguyen D, Simmonds P, Steenhuis M, Wouters E, Desmecht D, Gariglianini M, et al. SARS-CoV-2 neutralising antibody testing in Europe: towards harmonisation of neutralising antibody titres for better use of convalescent plasma and comparability of trial data. Euro Surveill. 2021;26(27):2100568. https://doi.org/10.2807/1560-7917.ES.2021.26.27.2100568 PMID: 34240697
16. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wteley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-11. PMID: 34002089
17. Clarke KEN, Jones JM, Deng Y, Nycz E, Lee A, Iachan R, et al. IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a seroprevalence of anti-SARS-CoV-2 Antibodies - United States, September 2021-February 2022. MMWR Mortal Wkly Rep. 2022;71(7):606-8. https://doi.org/10.15585/mmwr.mm7107e3 PMID: 35482576
18. Shields AM, Faustini SE, Hill HI, Al-Taie SI, Tanner C, Ashford F, et al. Increased seroprevalence and improved antibody responses following third primary SARS-CoV-2 immunisation: An update from the COV-AD Study. Front Immunol. 2022;13:912571. PMID: 35720400
19. Aziz NA, Corman VM, Echterhoff AK, Müller MA, Richter A, Schmandke A, et al. Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies from a population-based study in Bonn, Germany. Nat Commun. 2021;12(1):2117. https://doi.org/10.1038/s41467-021-22351-5 PMID: 33837204
20. Topol EJ, Iwasaki A. Operation Nasal Vaccine—Lightning speed to counter COVID-19. American Association for the Advancement of Science; 2022. p. eadd9947.

License, supplementary material and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) License. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2022.