Snowmass2021 Computational Frontier White Paper: Cosmological Simulations and Modeling

Marcelo A. Alvarez1, Arka Banerjee2,3, Simon Birrer4, Salman Habib5,†, Katrin Heitmann5, Zarija Lukić1,†, Julian B. Muñoz6, Yuuki Omori4, Hyunbae Park1, Annika H. G. Peter7, Jean Sexton1, and Yi-Ming Zhong8

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
3Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
4SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
5Argonne National Laboratory, Lemont, IL 60439, USA
6Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge MA 02138, USA
7CCAPP, Department of Physics, Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
8Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
†Paper Facilitator

Abstract

Powerful new observational facilities will come online over the next decade, enabling a number of discovery opportunities in the “Cosmic Frontier”, which targets understanding of the physics of the early universe, dark matter and dark energy, and cosmological probes of fundamental physics, such as neutrino masses and modifications of Einstein gravity. Synergies between different experiments will be leveraged to present new classes of cosmic probes as well as to minimize systematic biases present in individual surveys. Success of this observational program requires actively pairing it with a well-matched state-of-the-art simulation and modeling effort. Next-generation cosmological modeling will increasingly focus on physically rich simulations able to model outputs of sky surveys spanning multiple wavebands. These simulations will have unprecedented resolution, volume coverage, and must deliver guaranteed high-fidelity results for individual surveys as well as for the cross-correlations across different surveys. The needed advances are as follows:

- Development of scientifically rich and broadly-scoped simulations, which capture the relevant physics and correlations between probes
- Accurate translation of simulation results into realistic image or spectral data to be directly compared with observations
- Improved emulators and/or data-driven methods serving as surrogates for expensive simulations, constructed from a finite set of full-physics simulations
- Detailed and transparent verification and validation programs for both simulations and analysis tools

Stringent accuracy requirements will be imposed given the statistical power of the new datasets. Use of exascale and post-exascale computing resources, AI/ML methods, and...
Cosmological Simulations and Modeling

robust error control mechanisms will be essential features of these efforts. This white paper details a simulation program to fully realize the potential of the coming decade’s cosmic observatories.

1 Introduction

The next generation of cosmology experiments [1–7] are aimed at exploring some of the most exciting questions in fundamental science – the twin mysteries of dark energy and dark matter and the origin of primordial fluctuations, along with the use of cosmology as a probe of particle physics (e.g., studies of the neutrino sector or the nature of dark matter). Interpreting the results of many of these experiments, spanning measurements across multiple temporal epochs and length scales, involves solving an inverse problem, where given the observational results one wishes to unearth the details of the underlying physics. Modeling the effects of changes in parameter values as well as in the physical assumptions and establishing a direct connection to the observations across multiple surveys is a complex and challenging task. Cosmological simulations are the only way to approach this problem, simultaneously addressing the myriad issues associated with dynamical complexity, cross-correlations, and strict requirements on error control.

The required ability to create simulated “virtual universes” on demand is the fundamental computational challenge faced by the Cosmic Frontier. Indeed, it is not an exaggeration to say that the ultimate scientific success of the next generation of sky surveys hinges critically on the success of the underlying modeling and simulation effort.

The generation of these virtual universes can be accomplished in different ways [8, 9]. Large gravity-only simulations [10] are used as the backbone for building sky maps that closely resemble the observations from large surveys [11, 12]. This approach requires careful modeling to establish the “galaxy-halo” connection [13]. The modeling strategies range from simple methods that take limited information into account and rely on empirical modeling assumptions to elaborate schemes that try to model galaxy formation processes as closely as possible but without directly modeling computationally expensive gas physics and feedback effects [8]. Hydrodynamics simulations attempt to model galaxy formation in cosmological volumes including gas physics and feedback effects [9]. They employ phenomenological subgrid models whenever the dynamical range needed to resolve the physics of interest is too vast to start from first principles. The ultimate aim is to advance these different methods such that they all converge to the same answer – faithfully describing our Universe in all observable wavebands.

With the advent of exascale computing resources [14], several opportunities will arrive, but taking full advantage of them will not be straightforward. The high-performance computing (HPC) system architectures, associated software ecosystem, and data infrastructure will be substantially different from that of the previous generation. Adjusting to this computational environment, along with its variety and rapid evolution, will require special attention and substantial human resources. The resolution and volume of gravity-only simulations will enable the creation of ever more detailed synthetic sky catalogs. Hydrodynamics simulations in large cosmological volumes with a rich set of well-tuned subgrid models will be feasible. These simulations will allow us to study and mitigate possible
systematic effects that might obscure fundamental physics insights. Synthetic skies will be
developed across multiple wavebands and surveys (e.g., Ref. [12]). In order to realize this
vision, we have to fully exploit the next generation of HPC resources for these large-scale
simulations, and develop efficient analysis approaches to connect the simulations closely
to observational data. The large data sets may require additional dedicated data-intensive
computing resources to run complicated analysis workflows (potentially including cloud
access).

2 Numerical Simulations

Numerical simulations play a critical role in delivering Cosmic Frontier science, both as
the means to formulate precise theoretical predictions for different cosmological and astrophysical models, but also in evaluating and interpreting the capabilities of current and planned experiments. For optical surveys, the chain begins with a large cosmological sim-
ulation into which galaxies and quasars (along with their individual properties) are placed
using semi-analytic or halo-based models. A synthetic sky is then created by adding real-
istic object images and colors and by including the local solar and galactic environment.
Propagation of this sky “image” through the atmosphere, the telescope optics, detector
electronics, and the data management and analysis systems constitutes an end-to-end sim-
ulation of the survey. A sufficiently detailed simulation of this type can serve a large
number of purposes such as identifying possible sources of systematic errors and inves-
tigating strategies for correcting them and for optimizing survey design (in area, depth,
and cadence). The effects of systematic errors on the analysis of the data can also be
investigated; given the very low level of statistical errors in current and next-generation
precision cosmology experiments, and the precision with which deviations from ΛCDM are
to be measured, this is an absolutely essential task.

- **N-body simulations.** Gravity is the dominant force on large scales, and dark matter
outweighs baryons by roughly a factor of five to one. Thus N-body simulations accu-
rately describe matter fluctuations from the largest observable scales down to scales
deep into the nonlinear regime. Due to their computational efficiency, conventional
N-body simulations (i.e., those treating cold dark matter models and some variants
thereof) cover a wide dynamic range (Gpc to kpc, allowing coverage of survey-size
volumes), with relative ease. It should be noted, however, that multi-Gpc-scale sim-
ulations at high mass resolution are still significantly expensive, even on exascale
resources.

N-body simulations have essentially no free parameters, and when properly de-
signed, can reach sub-percent accuracy over a wide dynamic range. A significant part
of our current knowledge of nonlinear structure formation has been a direct byprod-
uct of advances in N-body techniques. In the near future, survey-scale simulation
suites are likely to be dominated by N-body simulations, although some large-volume
hydrodynamic simulations will begin to appear at a reasonable mass resolution for
the baryonic component.
The key shortcoming of the N-body approach is that the physics of the baryonic sector is not accounted for, thus many of the directly observable quantities are derived in somewhat heuristic ways and by adding a number of modeling or nuisance parameters. Galaxies in N-body simulations are usually reconstructed by applying additional modeling on top of a simulation, such as the halo occupation distribution (HOD) [15], sub-halo abundance matching (SHAM) [16, 17], or semi-analytic modeling (SAM) schemes (for a description of many SAM approaches, see for example Ref. [18]).

Hydrodynamical Simulations. The primary role of hydrodynamical simulations in cosmology is to provide a reasonably accurate description of the distribution of baryons, to quantify the effects of baryons on various probes of large-scale structure (e.g., galaxy clustering, weak and strong lensing, matter-galaxy cross-correlations, redshift-space distortions, Lyman-\(\alpha\) forest, SZ signal, 21cm and other line intensity mapping signals), and to provide useful results for the distribution and properties of galaxies, groups, and clusters. Because the final results depend strongly on the choices made for parameterized subgrid models, there is substantial variability in the robustness of the results, depending on the nature of the cosmic probe under consideration. There is, therefore, considerable interest in melding the results of hydrodynamic simulations with empirical modeling of galaxy properties, in order to produce a set of predictive forward models that can plausibly cover a wide range of physical galaxy formation scenarios. These phenomenological models parameterize baryonic effects in a form that can be used directly in constraining the dark sector.

The exascale systems that will be available shortly – and in the second half of the decade, post-exascale computing resources – will allow hydrodynamical simulations to become significantly more useful in cosmology (as compared to qualitative interpretation of astronomical observations). In particular, it is expected that there will be a coming together of very small scale, high resolution simulations that currently aim to study the details of galaxy formation at the level of individual objects with simulations that aim to model billions of galaxies. The hope is that this confluence of methods, combined with new observations, will significantly improve the robustness of the obtained results.

Beyond ΛCDM Simulations. Although ΛCDM has been very successful on large scales, the fact that dark energy is not theoretically understood and that at small scales different dark matter models may have different signatures that will be observationally accessible has motivated the development of simulations in different directions. Modified gravity simulations typically involve the solution of a nonlinear variant of the Poisson equation and are therefore significantly more expensive than traditional (N-body) Vlasov-Poisson solvers. Different dark matter models may require the addition of new treatments of local interactions, or may not be accessible to an N-body approach at all (as in the case of fuzzy dark matter models). For further details on the last topic, we refer the reader to a related White Paper on simulations focusing on dark matter [19].
• **Radiative Transfer Simulations.** Radiative transfer is playing an increasingly important role in astrophysics and cosmology. It is especially important for modeling reionization, which is thought to have occurred when the earliest generations of galaxies created photo-ionized bubbles that grew and merged until overlapping completely. In addition to driving reionization itself, the ionizing radiation from these galaxies also affected their own evolution, as well as the density structure of the intergalactic medium between them. This resulted in a complex feedback loop in which small-scale effects were tightly coupled to radiation originating from a multitude of galaxies over vast cosmological volumes, e.g., Refs. [20, 21]. The demands on the dynamic range and accuracy of radiative transfer simulations will increase dramatically as observations reach further into the epoch of reionization.

2.1 Target Probes and Observables

While simulations geared towards a particular probe satisfying the requirements of a specific survey have well-defined road maps, simulations capable of describing more than one probe, especially those consisting of more than one experiment, are less developed and discussed in the community. Since an immense amount of cosmological and astrophysical information could be extracted from combinations of observables from different surveys, the development of such simulations is of great interest.

• **Galaxy clustering/lensing, cluster clustering/lensing-counts.** These are the key observables for photometric galaxy surveys (see [22–24]). While the 2-point correlation function has been commonly used to measure these observables [25], there has been an increased interest in applying higher-point correlation functions [26] as well as alternate summary statistics that capture higher-order information [27–29] to extract additional signal from non-Gaussian density fields. Suites of simulations are needed to make predictions for these summary statistics since equivalent analytical frameworks do not exist. Additionally, multi-wavelength simulations of galaxies will allow us to test our detection/deblending pipelines, improve photometric redshift error estimations and validate shape measurements through cross-correlations [12, 30].

• **Spectroscopic galaxies.** Spectroscopic instruments [31–35] measure redshifts, radial velocities, gas dynamics and chemical compositions of galaxies. Cosmological information will be extracted through Baryonic Acoustic Oscillation (BAO) and redshift space distortions (RSD) measurements [36]. These galaxies are ideal for galaxy–galaxy lensing analyses [37], as well as for calibrating photometric redshifts using the clustering redshift technique [38, 39]. When correlated with CMB temperature maps, the distribution of gas in low mass systems can be mapped out by using the kinematic Sunyaev Zel’dovich (kSZ) effect [40–42]. Additionally, the Lyman-α forest can be used to measure the three-dimensional power spectrum to intermediate redshifts [43], which can be correlated with galaxy/CMB lensing [44].

1While physically there are no differences between photometric and spectroscopic galaxies, we separate these here since their implementation in simulations are significantly different.
• **CMB Lensing.** Lensing of the cosmic microwave background (CMB) measures the integrated mass between the last scattering surface and us. Experiments such as CMB-S4 will produce clean (i.e. polarization based) maps of the integrated mass at high detection significance [45]. Since the signal is sensitive to the full redshift range of the observable Universe, it is correlated with all of the other probes listed [46, 47]. It is especially useful for weighing distant objects that are beyond the redshift ranges accessible through optical weak lensing [48].

• **Lyman-α forest.** Experiments such as DESI [2] will observe the Lyman-α forest in the spectra of distant quasars $2 \lesssim z \lesssim 4$. Statistical properties of the Lyman-α forest can be used to constrain thermal properties of the intergalactic medium [49] and cosmological parameters [43, 50]. The Lyman-α signal originates in low density regions, thus probing different parts of the universe from most other probes.

• **tSZ/kSZ Effects.** Both the thermal (tSZ) and kinematic Sunyaev Zel’dovich (kSZ) effects are sensitive to the distribution of gas in the Universe. The SZ effects are strongly correlated with the locations of high gas densities such as in galaxy clusters, and are hence correlated with lensing [51] and X-ray [52] observations. The kSZ signal can effectively probe the early universe as it also correlates with the ionization pattern of the intergalactic gas during reionization [53].

• **CIB.** The cosmic infrared background (CIB) consists of emission from dusty star forming galaxies at $z \sim 2$. The CIB is highly correlated with CMB lensing since their redshift kernels overlap well, and therefore the CIB has been used to delens the CMB [54, 55]. The number counts and clustering measurements of these infrared galaxies as well as their properties such as stellar mass, star formation rate, dust mass, and metallicity can give us insights into galaxy evolution [56, 57], and are strongly related to the characterization of galaxies at lower redshifts [58].

• **X-ray maps.** Experiments such as eRosita [59] will measure about $\mathcal{O}(10^5)$ clusters of galaxies and 3 million active galactic nuclei over the full sky. By exploiting the tight correlation between X-ray emission and mass, X-ray observations could be used to calibrate mass estimates of SZ-selected clusters [60].

• **Line intensity mapping.** Experiments such as SPHEREx [7] and SKA [61] will map out the density field at $0.5 \lesssim z \lesssim 3$. While the treatment of foregrounds are anticipated to be challenging, density fluctuations of the dark ages could be measured cleanly by cross-correlating with CMB lensing maps. [62].

• **High-redshift 21-cm.** Interferometers such as HERA [63], or the SKA [64], aim to give us access to 3D maps of the universe during cosmic dawn and reionization ($z \approx 5 – 30$), by using the 21-cm line of hydrogen. These maps track the density of hydrogen, processed by a factor that depends on its spin temperature and ionized fraction [65, 66]. As such, they provide invaluable information on the thermal and ionization state of the IGM at high redshifts, which can be used to learn about dark matter, as it can cool the gas [67], heat/ionize it [68, 69], or delay structure formation [70, 71].
2.2 Modeling Challenges

Cosmological simulations have a well-established history, going back to about half a century, when computers first became powerful enough to enable very early studies of structure formation in the universe [72]. Since then, progress has been rapid, and cosmological simulations now rank among the most complex and computationally challenging problems for HPC systems. This situation is likely to remain unchanged for the foreseeable future. Below we describe some of the modeling challenges that are being faced in the area of cosmological simulations. This is by no means a complete list, but it is generally representative of the type of advances that are needed.

- **Volume/Resolution/Number of simulations.** A challenging aspect in generating simulations that encompass multiple probes, is the computational cost, as the base simulation needs to meet the precision requirements of all the individual observables. In addition, some of the observables (such as tSZ/kSZ or Lyman-α) require hydrodynamical simulations, which are computationally demanding. In estimating covariance matrices where a large number of realizations are essential, approximate methods or machine learning techniques [73] to accelerate the simulation procedure will be required. In specific cases, the modeling of certain observables confronts a very large dynamical range. For instance, the 21-cm signal depends on X-ray and UV photons with long mean free paths (∼ Gpc), whereas the first galaxies formed in very small haloes (with $M_h \sim 10^6 M_\odot$). In these examples, detailed hydrodynamical simulations cannot cover large-enough volumes while reaching small-enough halo masses [74]. Semi-numerical simulations (such as 21cmFAST [75, 76]), which rely on sub-grid models, are instead commonly used. Detailed calibrations and comparisons between these different approaches are currently lacking, and will be critical to interpret upcoming data.

- **Consistent galaxy formation model.** Connecting galaxy properties to the underlying dark matter structure in a way that reproduces observed correlations between multi-wavelength observables is a major challenge. Sufficiently robust hydrodynamical simulations are capable of making predictions for such correlations, but are too expensive to run in large volumes. As such, development of galaxy formation models that can be applied on dark-matter-only simulations while accounting for the correlations between neutral and ionized gas, stars and dust in galaxies and galaxy clusters will be necessary.

Multi-probe simulations should also offer predictions for the intrinsic shapes of galaxies, another example of a very small-scale observable that is extremely difficult to model. The correlations of these shapes, known as their intrinsic alignments (IA), is an important systematic effect for next generation weak lensing surveys, but also contain information on galaxy formation and fundamental physics. Currently, galaxy shapes are either drawn from semi-empirical models, which require both high mass resolution simulations and extensive observations [77], or are obtained from hydrodynamical simulations [78, 79] which are computationally infeasible to be run with the required volumes. New techniques to rapidly assign realistic shapes to galaxies
without incurring significant additional computational costs should be explored as an alternative, and outputs stored from future simulations should include the required quantities.

- **Neutrinos.** Neutrino oscillation measurements have shown that at least two of the three mass eigenstates of the Standard Model neutrinos are massive [80]. Massive neutrinos produce scale-dependent suppression of cosmic structures, with the largest effects on small scales, allowing for constraints on the total mass of neutrinos from cosmological measurements. Simulating massive neutrinos, which make up a non-negligible fraction of the total energy budget of the Universe, can be challenging since they decouple when relativistic, and have a free streaming scale of \(\sim O(1h^{-1}\text{Gpc}) \). On smaller scales, their thermal velocity distribution needs to be accounted for in a structure formation calculation, unlike the CDM component. In an N-body approach, therefore, the six-dimensional distribution function of neutrinos needs to be sampled, i.e. that at each location, an ensemble of neutrino particles should be initialized with the momentum distribution given by a Fermi-Dirac distribution. This is a fully non-linear approach and represents a “gold standard” in the field, but suffers from Poisson noise unless the number of neutrino particles is prohibitively large [81]. Some recent approaches on how to reduce this noise include better sampling of neutrino momentum directions [81], hybrid fluid and N-body techniques [82], and by sampling only the deviations from the linear solution with particles [83]. A computationally more efficient, albeit approximate method, is to model massive neutrinos with linear or perturbative approach which is then added to the large-scale non-linear gravitational potential in a simulation (see, e.g. Refs. [84–87]). Depending on the mass of the individual neutrino species being simulated, this approximation eventually break down at sufficiently late times and sufficiently small scales since it lacks nonlinear evolution of neutrino perturbations as well as the back-reaction of non-linear matter on the neutrinos. For small neutrino masses, which are usually of primary interest, these effects may not be significant [88, 89], but need to be calibrated carefully, depending on precision targets set by the sensitivity of future surveys.

- **Ray tracing.** With currently available ray tracing algorithms (see e.g. Ref. [90]), it is computationally infeasible to cover both the large volume required by future weak lensing surveys, and yet maintain the accuracy at small scales required for strong lensing. Therefore, we must develop a multi-resolution ray tracing algorithm that will effectively cover the two regimes.

- **Baryonic effects in large-volume simulations.** Baryonic feedback effects are known to alter the local matter density and hence the weak lensing observables [91, 92]. This is one of the leading systematic effects in cosmic shear analyses that is limiting the extraction of information from small scale measurements [93]. Modeling gas dynamics and feedback is also a crucial aspect of predicting the SZ signals, which depend on the ionized gas density/temperature at small scales [94, 95]. Therefore, these effects must be included in the modeling for future analyses. While attempts have already been made in existing hydrodynamical simulations, the predictions vary
significantly due to lack of predictive control over the relevant astrophysical processes.

3 New Physics Modeling Needs

Cosmological simulations need to advance in terms of increased resolution, larger volumes, and better treatments of known physics, as described in the previous section. Additionally, as the observational reach of the surveys expands, they can be used to explore previously unconsidered physics regimes. It is therefore only natural that simulation methods be developed to model these new probes.

• **Modified Gravity.** The current theory of gravity is given by Einstein’s theory of General Relativity (GR), and the currently leading explanation for the observed accelerated expansion of the universe is the cosmological constant, \(\Lambda \), which is supported by all current observations. While the cosmological constant is mathematically simple, it is extremely unnatural from a theoretical physics standpoint [96]. Alternative models for accelerated expansion roughly split into two categories: dark energy and modified gravity. Dark energy models add an energy component with equation of state \(w \neq -1 \), and these are straightforward to simulate using virtually any existing code as this amounts to a modification of the background expansion rate. The situation is quite different with modified gravity models. There are many proposed models (see for example Ref. [97]), and they generically modify the Poisson equation in a non-trivial way by introducing non-linearity. This makes modified gravity simulations much more computationally expensive than \(\Lambda \)CDM simulations, although algorithmic improvements and physical approximations used in recent modified gravity codes help reducing the cost [98–101]. Additional complication is that different models of modified gravity generally require different simulation setups. Nevertheless, understanding theory of gravity remains a fundamental question in Physics, and testing gravity on cosmological scales (for a comprehensive review, see Ref. [102]) will continue to be one of the primary science goals of the upcoming generation of large-scale structure observations [103, 104].

• **Dark Matter Models.** Most cosmological N-body and hydrodynamical simulations have focused on modeling particle dark matter that is cold, collisionless, and stable, as part of the \(\Lambda \)CDM paradigm. However, since the microphysical nature of dark matter, or even possibly a complicated dark sector, remains unclear, particle theorists have proposed a landscape of dark matter candidates with mass across tens of order of magnitudes [105]. Many of these candidates demand different simulation approaches from that of the cold dark matter (CDM) given their different properties. Below we list some examples of dark matter candidates and their related simulation demands or challenges, which are further summarized in a companion white paper focusing on cosmological simulations for dark matter physics [19].

 – **Warm dark matter.** Warm dark matter (WDM) is a family of models with sizable thermal motions, in between that of CDM and (ruled out) hot dark matter.
at the first epoch of structure formation. It is associated with a free-streaming length that washes out small structures below the length, which leads to a cutoff in the matter power spectrum [106]. Examples of WDM include sterile neutrinos and gravitinos from SUSY theories [107, 108]. WDM has been constrained from the Lyman-\(\alpha\) forest [109], Milky Way subhalos, and the 21-cm signal [110]. But many of those studies suffer from systematic uncertainties related to baryons. For example, the constraint from Lyman-\(\alpha\) forest data strongly depends on the modeling of the intergalactic medium, such as its temperature fluctuations [111]. Dedicated hydrodynamic simulations will be helpful to reduce the systematic uncertainties.

- **Interacting dark matter.** Interacting dark matter (IDM) candidates that strongly interact with Standard Model particles such as protons, neutrons, or electrons. For some part of the parameter space, the interaction is so strong such that IDM cannot be probed by direct-detection experiments due to the overburden from the Earth’s atmosphere or crust. Therefore, cosmological observations are one of the most sensitive probes for IDM, including the CMB, the Lyman-\(\alpha\) forest, and Milky way subhalos [112].

- **Self-interacting dark matter.** Self-interactions are ubiquitous for dark matter models, especially when dark matter is a part of the dark sector. Sizable self-interactions of dark matter, with cross section strength at \(\mathcal{O}(1 \text{ cm}^2/\text{g})\), may address the so-called “small-scale problems” of \(\Lambda\)CDM while keeping its success on predicting the large-scale structure [113]. The self-interactions of the dark matter can be diverse, e.g., elastic, dissipative, velocity-dependent, forward interactions, but many numerical studies only capture a small subset with phenomenological descriptions. The central region of self-interacting dark matter halos may experience dramatic changes in structure given the gravothermal collapse or dark matter-ordinary matter interactions. But this region is often omitted in numerical simulations because of the high computational cost.

- **Dissipative dark matter.** If dark matter is connected to other light dark sector particles, its self-interactions can emit those particles and become dissipative. Similar to ordinary matter, dissipative dark matter could experience cooling and heating through interactions with the environment. As a sub-component of the total dark matter, it could also fragment into dark clumps or form dark disks if the cooling effect is strong. Dedicated hydrodynamic simulations are needed to study dissipative dark matter.

- **Decaying dark matter.** Dark matter particles can be long-lived yet unstable. They could decay into Standard Model particles (e.g. sterile neutrinos) or other dark matter/dark sector particles on a long-time scale. High-resolution cosmological N-body simulations are often employed in studies of decaying dark matter [114–116]. Hydrodynamical simulations are also needed to study the impacts of processes such as baryonic feedback [114, 115].

- **Ultralight dark matter (fuzzy dark matter).** Dark matter can be made of ultralight scalar, pseudo-scalar, or vector particles. They collectively behave as a
classical wave given their high occupation number [117]. Ultralight dark matter candidates are featured in many beyond-Standard-Model scenarios as the pseudo-Nambu-Goldstone-Boson of the broken symmetries. Examples include fuzzy dark matter [111, 118, 119], QCD axions, axion-like-particles, and dark photon dark matter. Ultralight dark matter suppress small structures on the scale below the de Broglie wavelength. Thus it can be probed by observations such as Lyman-\(\alpha\) forest, MW subhalos, or the formation of the first galaxies at cosmic dawn [71, 120–122].

Numerical simulations for ultralight dark matter include: 1) Schrödinger–Poisson equations that govern the evolution of the wave function of the ultralight dark matter [123–125]; 2) N-body simulations based on the Schrödinger-Vlasov correspondence (for scales much greater than de Broglie wavelength) [126]; 3) fluid simulations based on the Madelung-transformed Schrödinger–Poisson equations [127]. Few simulations of ultralight dark matter go beyond the dark matter only simulations to include baryons. Additionally, higher resolution simulations over wider ranges of parameters are needed.

The cosmological evolution of QCD axion dark matter can be classified into two scenarios: (a) Peccei-Quinn symmetry is broken before or during cosmic inflation, and (b) broken after inflation. While the production process of axion dark matter of scenario (a) is relatively easy to model, that of scenario (b) requires numerical simulations given the production of the topological defects in the intermediate stage. Dedicated high-resolution numerical simulations have been recently developed to accurately track axion dark matter abundance [128–131] for scenario (b).

- **Ultraheavy dark matter.** Dark matter can be made of ultraheavy objects with mass from around the Planck mass to solar masses. Examples of ultraheavy dark matter include primordial black holes, massive compact halo objects, exotic compact objects [132], and dark matter blobs [133]. In the absence of strong self-interactions or interactions with ordinary matter, probes of ultraheavy dark matter are limited to gravitational probes such as micro-lensing or gravitational waves produced from merging binaries. These probes can be strongly affected by the distribution of ultraheavy dark matter [132–134], motivating dedicated numerical studies of the clustering of ultraheavy dark matter.

- **Multiple dark matter components.** Given the landscape of the dark matter candidates, it is easy to imagine that the dark matter consists of multiple components. For example, CDM can be the dominant component, while other dark matter candidates are sub-dominant. Examples of this scenario include axiverse [135] and cannibal dark matter [136]. An important question is the distribution of the sub-dominant component inside dark matter halos. Just as for the distribution of baryonic matter and dark matter, the distribution of the sub-dominant component inside the halo may not be a simple re-scaling of the dominant component. Dedicated numerical simulations are needed to pin down the distribution of the sub-dominant components and make the predicted signatures reliable (e.g. [137, 138]).
There are other new ideas on dark matter, motivated by modified gravity theories, such as superfluid dark matter [139] and the apparent dark matter from entropic gravity [140]. Many of those models still lack dedicated cosmological simulations or simulations with baryons.

4 Statistical Inference and Simulation Suites

The current cosmological Standard Model, ΛCDM, is an excellent fit to the data but has several theoretical shortcomings and is generally perceived, very like the particle physics Standard Model, to possess only a transitory existence, and be eventually replaced by a more complete description. But because ΛCDM is so successful, deviations from it will be subtle and difficult to nail down. Consequently, the next generation of cosmology experiments will be driven not only by the accumulation of statistics but also by the need to understand, mitigate, and control systematic uncertainties. To make substantial headway in the latter task, the ability to create detailed and realistic “virtual universes” on demand is gaining central importance, so much so, that the ultimate scientific success of upcoming sky surveys hinges critically on the success of the modeling and simulation effort.

Scientific inference with sky surveys is a statistical inverse problem, where, given a set of measurement results, one attempts to fit a class of physical models to the data (which include models for the observational process), and to infer the values of the model parameters. Typically, such analyses require many evaluations over a very large number of “virtual universes”. The main difficulty lies in the fact that producing each virtual universe requires, in principle, an extremely expensive numerical simulation carried out at high fidelity. Emulators are effectively fast surrogate models that can be used as an alternative route to solving this inverse problem [141].

4.1 Emulating the Observable Universe

The importance of providing predictions for cosmological surveys via emulators is now widely recognized; emulation-based predictions have become very popular over the last few years [142–154]. It is now possible to carry out high-quality simulation suites that provide the input to the emulators for a range of cosmological statistics, such as halo mass functions, matter power spectra, and halo bias. (Some of the emulators have gone beyond ΛCDM as well.) However, in order to fully integrate the emulators into the analysis frameworks used by the surveys to extract cosmological parameters, it is very desirable to create emulators connected directly to the survey observables. As a concrete example, the cluster mass function is commonly used to derive cosmological constraints, but it is not a quantity that can be easily extracted from the observations. All measurements, including weak lensing shear, do not directly provide mass measurements, but rather approximations or proxies for an idealized “cluster mass”. The translation from the observable to the mass function from simulations adds additional uncertainties into derived cosmological parameters and could be avoided if emulators would directly predict the quantity of interest, which is the cluster abundance, measured in a way that is most relevant to how the survey is actually carried out. This level of forward modeling would involve new simulation...
and analysis efforts and the development of more flexible and sophisticated emulation approaches. Given that a successful implementation can potentially eliminate a major source of uncertainty and bias, this is clearly a worthwhile step. With a broad enough simulation footprint, such an approach would also enable easier connections across measurements carried out in different wavebands.

4.2 Extending the Physics Content of Simulations

Most emulator efforts so far have relied upon gravity-only simulations. These are an order of magnitude less expensive than hydrodynamic simulations, and yet carrying out a high-quality suite of gravity-only simulations has only become possible in the last few years due to increases in available computing resources. For hydrodynamics simulations, such campaigns are still out of reach because of the much larger time to solution per simulation. Additionally, hydrodynamics simulations have many modeling (nuisance) parameters and uncertainties, increasing the design space for the emulation and in turn increasing the number of simulations to be carried out. (For gravity-only simulations, after having established criteria for precision simulations, only the fundamental cosmological parameters have to be varied, keeping the simulation campaign size manageable.) With the advent of exascale supercomputing resources (and beyond) in the coming years, and employing strategies such as multi-fidelity simulations, this problem can be significantly reduced, assuming the hydrodynamics codes can take full advantage of the new generation of architectures. If this turns out to be the case, many opportunities open up: Emulators can be built to investigate and optimize subgrid model parameters, be deployed to gain a better understanding of the interplay of subgrid model and cosmology parameters, and to directly predict observational quantities for different surveys accessing different wavelength regimes.

4.3 Robust Error Estimation and Parameter Exploration

Error estimation with emulators is a potentially very powerful avenue of research but remains to be properly realized in many of the current generation of emulators. Partly this is because error estimation is inherently difficult and partly because the methods used have been too informal, and insufficiently sharp. For example, there is no rigorous theory for error convergence and systematically handling discrepancy between model predictions and observational measurements remains an open problem. Because the formal statistical uncertainties in the observations are reducing with time, the onus is on modeling systematic errors, including the errors in the emulators. This area is relatively little-studied in the statistics literature although there are some useful investigations in discrepancy modeling [155]; the power of the results obtained, however, is relatively limited.

Another problem is that the dynamic range in cosmology is vast and it is computationally impractical to model all the relevant processes via a first principles approach. Consequently, some of the inputs in the subgrid models must be empirical, based on known results from observations. This adds another layer of complexity to error estimation because the proper treatment of such evidence in a cosmological analysis potentially requires
a separate set of investigations for each empirical input. However, we note that continuous inclusion of observational data in emulator construction will be helpful in reducing the volume of parameter space that needs to be explored. (As mentioned previously, multifidelity simulations are also useful here in minimizing the amount of computational work.) Adaptive sampling methods are very useful in time-domain applications and they can be easily transplanted to cosmology, provided error analyses can continue to be undertaken in a robust manner.

5 Future of High Performance Computing

5.1 Next-generation Supercomputing Platforms

The arrival of the first generation of exascale supercomputers, Aurora and Frontier, at the Leadership Computing Facilities at Argonne and Oak Ridge National Laboratories provides an extraordinary opportunity to push scientific simulations to the next level. In cosmology, they enable two classes of simulations relevant to cosmological surveys: gravity-only simulations with unprecedented volume coverage and resolution and hydrodynamics simulations with exceptionally detailed and realistic modeling of baryonic physics in the Universe. The Exascale Computing Project (ECP) led by the Office of Advanced Scientific Computing Research (ASCR) in collaboration with other DOE science program offices has made tremendous strides to prepare scientific applications for these resources and will continue to do so [14]. As part of this effort, important challenges have been identified, including the efficient use of computational accelerators, effective memory access patterns, performance portable programming models and scalable algorithms. For gravity-only simulations, some of these challenges have already been successfully addressed by a subset of codes [156–158]. For hydrodynamics simulations, these challenges are far more complex, but are being tackled by different codes [for example, see 159–161]. Continuous developments on these fronts are extremely important in order to enable full use of exascale systems and the ones that will follow them.

5.2 Scalable Analysis Approaches

Scalable analysis approaches are as important as the development of the simulation codes. In principle, many petabytes of data can be easily generated by current and next-generation HPC systems, in practice, however, storage capacities are limited and the handling and processing of very large data sets require large supercomputing resources in their own right. Consequently, carefully designed analysis routines have to be instantiated on-the-fly while the simulation codes themselves are running (“in situ” analysis). The development of these analysis routines faces the same challenges as the simulation codes, and scalability and efficient usage of the available architectures are mandatory [162, 163]. A successful cosmological simulation program therefore needs to ensure that the development of the codes and the analysis routines go hand in hand. In particular, these analysis routines can leverage a tight coupling with simulation codes to best balance available memory and compute capabilities of the supercomputing system. This co-development of simulation codes and analysis routines is complicated by the fact that cosmological simulations aim
to provide predictions for a wide range of observations. A carefully orchestrated analysis approach has to be developed with cosmological surveys in mind – close collaboration between simulators and observers is essential for its success.

5.3 Verification and Validation

The accuracy requirements for cosmological simulations are stringent. As outlined above, the simulations provide the foundation for the analysis of current and next-generation cosmological surveys. Given the aim to constrain, e.g., dark energy parameters at the percent level, simulations and the coupled analysis and modeling approaches have to deliver results at least at the same level of accuracy, and better, if possible. The community has made good progress with regard to code verification in the last few years by carrying out rigorous comparison projects [164–167] and convergence studies [168]. However, not all differences between the codes and analysis tools have been fully resolved and/or understood. In particular, in the area of hydrodynamic simulations, much more work is needed to obtain the desired levels of robustness, although there is recent evidence of progress in this direction [169, 170].

Validation (confirming the accuracy of the simulation predictions by direct comparison against observations) is another crucial area that requires a concerted effort between different code and analysis development teams and observers. The upcoming surveys will provide a rich data set for this effort. A delicate issue is how to control errors coming from empirical modeling used within the setup of the simulations. The detailed connection between the simulations and the survey observables has to be tightened up considerably as this is the most problematic aspect of the validation program from the simulation perspective.

6 Conclusion

Cosmological surveys carried out over the next decade are poised to make discoveries that will either extend or confirm the ΛCDM model. Both alternatives are significant – in the first instance, observational input in finding “Beyond ΛCDM” corrections is clearly of fundamental importance, and in the second instance there will be a sharp reduction in the number of possible alternatives to the model, with ramifications for future tests and other investigations. To achieve the level of accuracy that is desired, close coupling to a state-of-the-art simulation campaign that not only provides a complete and robust modeling platform for each survey but also provides a capability to simultaneously model a number of observations from a range of facilities, including their cross-correlations, is required. Next-generation HPC systems promise to provide a capability that can help achieve these goals; getting to the desired results will require a concerted effort in implementing new algorithms/models, and evolving the simulation codes and associated analysis tools. Additionally, close collaborations with survey teams will be an essential element for success.

Over the course of the next decade, we expect exciting discoveries to be made by combining and analysing data sets from large-scale structure, CMB, and line intensity mapping experiments. In preparation, we must develop simulations with a broad set of observ-
ables, including their correlations, in order to conduct these analyses. However, despite their importance, resources to aid in developing these simulations and associated analysis methods have been scarce since 1) they do not belong to a specific collaboration/telescope, and 2) to generate fully coherent simulations, expertise from various disparate areas is required. This situation will have to evolve in a positive direction, if we are to achieve the full scientific potential of future surveys.

References

[1] Kevork Abazajian, Graeme Addison, Peter Adshead, Zeeshan Ahmed, Steven W Allen, David Alonso, Marcelo Alvarez, Mustafa A Amin, Adam Anderson, Kam S Arnold, et al. Cmb-s4 decadal survey apc white paper. arXiv preprint arXiv:1908.01062, 2019.

[2] DESI Collaboration et al. The DESI Experiment Part I: Science,Targeting, and Survey Design. arXiv e-prints, page arXiv:1611.00036, October 2016.

[3] DESI Collaboration et al. The DESI Experiment Part II: Instrument Design. arXiv e-prints, page arXiv:1611.00037, October 2016.

[4] Luca Amendola et al. Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 21(1):2, April 2018.

[5] Željko Ivezić et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J., 873(2):111, March 2019.

[6] Simons Observatory Collaboration et al. The Simons Observatory: science goals and forecasts. J. Cosmology Astropart. Phys., 2019(2):056, February 2019.

[7] Olivier Doré et al. Cosmology with the SPHEREX All-Sky Spectral Survey. arXiv e-prints, page arXiv:1412.4872, December 2014.

[8] Rachel S. Somerville and Romeel Davé. Physical Models of Galaxy Formation in a Cosmological Framework. ARA&A, 53:51–113, August 2015.

[9] Mark Vogelsberger, Federico Marinacci, Paul Torrey, and Ewald Puchwein. Cosmological Simulations of Galaxy Formation. Nature Rev. Phys., 2(1):42–66, 2020.

[10] Raul E. Angulo and Oliver Hahn. Large-scale dark matter simulations. Living Reviews in Computational Astrophysics, 8(1):1, December 2022.

[11] The LSST Dark Energy Science Collaboration (LSST DESC), Danila Korytov, et al. CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST. ApJS, 245(2):26, December 2019.

[12] LSST Dark Energy Science Collaboration (LSST DESC) et al. The LSST DESC DC2 Simulated Sky Survey. ApJS, 253(1):31, March 2021.
[13] Risa H. Wechsler and Jeremy L. Tinker. The Connection Between Galaxies and Their Dark Matter Halos. ARA&A, 56:435–487, September 2018.

[14] Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee, Jacqueline Chen, Phil Colella, David Daniel, Jack DeSlippe, Lori Diachin, Erik Draeger, et al. Exascale applications: skin in the game. Philosophical Transactions of the Royal Society A, 378(2166):20190056, 2020.

[15] Andreas A. Berlind and David H. Weinberg. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass. ApJ, 575(2):587–616, August 2002.

[16] Andrey V. Kravtsov, Andreas A. Berlind, Risa H. Wechsler, Anatoly A. Klypin, Stefan Gottlöber, Brandon Allgood, and Joel R. Primack. The Dark Side of the Halo Occupation Distribution. ApJ, 609(1):35–49, July 2004.

[17] Andrew P. Hearin, Andrew R. Zentner, Andreas A. Berlind, and Jeffrey A. Newman. SHAM beyond clustering: new tests of galaxy-halo abundance matching with galaxy groups. MNRAS, 433(1):659–680, July 2013.

[18] Alexander Knebe, Frazer R. Pearce, Peter A. Thomas, Andrew Benson, Jeremy Blaizot, Richard Bower, Jorge Carretero, Francisco J. Castander, Andrea Cattaneo, Sofia A. Cora, Darren J. Croton, Weiguang Cui, Daniel Cunnama, Gabriella De Lucia, Julien E. Devriendt, Pascal J. Elahi, Andreea Font, Fabio Fontanot, Juan Garcia-Bellido, Ignacio D. Gargiulo, Violeta Gonzalez-Perez, John Helly, Bruno Henriques, Michaela Hirschmann, Jaehyun Lee, Gary A. Mamon, Pierluigi Monaco, Julian Onions, Nelson D. Padilla, Chris Power, Arnau Pujol, Ramin A. Skibba, Rachel S. Somerville, Chaichalit Srisawat, Cristian A. Vega-Martínez, and Sukyoung K. Yi. nIFTy cosmology: comparison of galaxy formation models. MNRAS, 451(4):4029–4059, August 2015.

[19] Arka Banerjee, Kimberly K. Boddy, Francis-Yan Cyr-Racine, Adrienne L. Erickcek, Daniel Gilman, Vera Gluscevic, Stacy Kim, Benjamin V. Lehmann, Yao-Yuan Mao, Philip Mocz, Ferah Munshi, Ethan O. Nadler, Lina Necib, Aditya Parikh, Annika H. G. Peter, Laura Sales, Mark Vogelsberger, and Anna C. Wright. Snowmass2021 Cosmic Frontier White Paper: Cosmological Simulations for Dark Matter Physics. arXiv e-prints, page arXiv:2203.07049, March 2022.

[20] J. Rosdahl and R. Teyssier. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT. MNRAS, 449(4):4380–4403, June 2015.

[21] Joseph S. W. Lewis, Pierre Ocvirk, Jenny G. Sorce, Yohan Dubois, Dominique Aubert, Luke Conaboy, Paul R. Shapiro, Taha Dawoodbhoy, Romain Teyssier, Gustavo Yepes, Stefan Gottlöber, Yann Rasera, Kyungjin Ahn, Iliyan T. Iliev, Hyunbae Park, and Emilie Thélie. The short ionizing photon mean free path at z=6 in Cosmic Dawn III, a new fully-coupled radiation-hydrodynamical simulation of the Epoch of Reionization. arXiv e-prints, page arXiv:2202.05869, February 2022.
[22] LSST Dark Energy Science Collaboration. Large Synoptic Survey Telescope: Dark Energy Science Collaboration. *arXiv e-prints*, page arXiv:1211.0310, November 2012.

[23] R. Laureijs and et al. Euclid Definition Study Report. *arXiv e-prints*, page arXiv:1110.3193, October 2011.

[24] Rachel Akeson and et al. The Wide Field Infrared Survey Telescope: 100 Hubbles for the 2020s. *arXiv e-prints*, page arXiv:1902.05569, February 2019.

[25] T. M. C. Abbott and Dark Energy Survey Collaboration. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. *Phys. Rev. D*, 98(4):043526, August 2018.

[26] Cameron K. McBride, Andrew J. Connolly, Jeffrey P. Gardner, Ryan Scranton, Jeffrey A. Newman, Román Scoccimarro, Idit Zehavi, and Donald P. Schneider. Three-point Correlation Functions of SDSS Galaxies: Luminosity and Color Dependence in Redshift andProjected Space. *ApJ*, 726(1):13, January 2011.

[27] Geraint Pratten and Dipak Munshi. Non-Gaussianity in large-scale structure and Minkowski functionals. *MNRAS*, 423(4):3209–3226, July 2012.

[28] Jia Liu, J. Colin Hill, Blake D. Sherwin, Andrea Petri, Vanessa Böhm, and Zoltán Haiman. CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts. *Phys. Rev. D*, 94(10):103501, November 2016.

[29] Arka Banerjee and Tom Abel. Nearest neighbour distributions: New statistical measures for cosmological clustering. *MNRAS*, 500(4):5479–5499, January 2021.

[30] Jason Rhodes et al. Scientific Synergy between LSST and Euclid. *ApJS*, 233(2):21, December 2017.

[31] Masahiro Takada et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. *PASJ*, 66(1):R1, February 2014.

[32] David Schlegel, Juna A. Kollmeier, and Simone Ferraro. The MegaMapper: a z½ spectroscopic instrument for the study of Inflation and Dark Energy. In *Bulletin of the American Astronomical Society*, volume 51, page 229, September 2019.

[33] Kevin Bundy et al. FOBOS: A Next-Generation Spectroscopic Facility. In *Bulletin of the American Astronomical Society*, volume 51, page 198, September 2019.

[34] The MSE Science Team. The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition. *arXiv e-prints*, page arXiv:1904.04907, April 2019.

[35] Richard Ellis and Kyle Dawson. SpecTel: A 10-12 meter class Spectroscopic Survey Telescope. In *Bulletin of the American Astronomical Society*, volume 51, page 45, September 2019.
[36] Héctor Gil-Marín et al. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0. MNRAS, 498(2):2492–2531, October 2020.

[37] Catherine Heymans et al. KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. A&A, 646:A140, February 2021.

[38] C. Davis et al. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES – Calibration of the Weak Lensing Source Redshift Distributions. arXiv e-prints, page arXiv:1710.02517, October 2017.

[39] J. L. van den Busch, H. Hildebrandt, A. H. Wright, C. B. Morrison, C. Blake, B. Joachimi, T. Erben, C. Heymans, K. Kuijken, and E. N. Taylor. Testing KiDS cross-correlation redshifts with simulations. A&A, 642:A200, October 2020.

[40] ACTPol Collaboration, Emmanuel Schaan, et al. Evidence for the kinematic Sunyaev-Zel’dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey. Phys. Rev. D, 93(8):082002, April 2016.

[41] J. Colin Hill, Simone Ferraro, Nick Battaglia, Jia Liu, and David N. Spergel. Kinematic Sunyaev-Zel’dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data. Phys. Rev. Lett., 117(5):051301, July 2016.

[42] Kendrick M. Smith, Mathew S. Madhavacheril, Moritz Münchmeyer, Simone Ferraro, Utkarsh Giri, and Matthew C. Johnson. KSZ tomography and the bispectrum. arXiv e-prints, page arXiv:1810.13423, October 2018.

[43] Julian E. Bautista et al. Measurement of baryon acoustic oscillation correlations at $z = 2.3$ with SDSS DR12 Lyα-Forests. A&A, 603:A12, June 2017.

[44] Cyrille Doux, Emmanuel Schaan, Eric Aubourg, Ken Ganga, Khee-Gan Lee, David N. Spergel, and Julien Tréguer. First detection of cosmic microwave background lensing and Lyman-α forest bispectrum. Phys. Rev. D, 94(10):103506, November 2016.

[45] Kevork N. Abazajian and et al. . CMB-S4 Science Book, First Edition. arXiv e-prints, page arXiv:1610.02743, October 2016.

[46] Y. Omori and SPT Collaboration. Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope+Planck CMB weak lensing. Phys. Rev. D, 100(4):043517, August 2019.

[47] Y. Omori and SPT Collaboration. Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck. Phys. Rev. D, 100(4):043501, August 2019.
[48] J. E. Geach, J. A. Peacock, A. D. Myers, R. C. Hickox, M. C. Burchard, and M. L. Jones. The Halo Mass of Optically Luminous Quasars at $z \approx 1-2$ Measured via Gravitational Deflection of the Cosmic Microwave Background. ApJ, 874(1):85, March 2019.

[49] Michael Walther, Jose Oñorbe, Joseph F. Hennawi, and Zarija Lukić. New Constraints on IGM Thermal Evolution from the Lyα Forest Power Spectrum. ApJ, 872(1):13, February 2019.

[50] Nathalie Palanque-Delabrouille, Christophe Yèche, Julien Baur, Christophe Magneniveil, Graziano Rossi, Julien Lesgourgues, Arnaud Borde, Etienne Burtin, Jean-Marc LeGoff, and James Rich. Neutrino masses and cosmology with Lyman-alpha forest power spectrum. Journal of Cosmology and Astro-Particle Physics, 2015(11):011, Nov 2015.

[51] Ken Osato, Masato Shirasaki, Hironao Miyatake, Daisuke Nagai, Naoki Yoshida, Masamune Oguri, and Ryuichi Takahashi. Cross-correlation of the thermal Sunyaev-Zel’dovich effect and weak gravitational lensing: Planck and Subaru Hyper Suprime-Cam first-year data. MNRAS, 492(4):4780–4804, March 2020.

[52] G. Hurier, N. Aghanim, and M. Douspis. Modeling the cross power spectrum of the Sunyaev-Zel’dovich and X-ray surveys. A&A, 568:A57, August 2014.

[53] Hyunbae Park, Paul R. Shapiro, Eiichiro Komatsu, Ilian T. Iliev, Kyungjin Ahn, and Garrelt Mellema. The Kinetic Sunyaev-Zel’dovich Effect as a Probe of the Physics of Cosmic Reionization: The Effect of Self-regulated Reionization. ApJ, 769(2):93, June 2013.

[54] Patricia Larsen, Anthony Challinor, Blake D. Sherwin, and Daisy Mak. Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background. Phys. Rev. Lett., 117(15):151102, October 2016.

[55] Julien Carron, Antony Lewis, and Anthony Challinor. Internal delensing of Planck CMB temperature and polarization. J. Cosmology Astropart. Phys., 2017(5):035, May 2017.

[56] A. S. Maniyar, M. Béthermin, and G. Lagache. Star formation history from the cosmic infrared background anisotropies. A&A, 614:A39, June 2018.

[57] J. M. Simpson, Ian Smail, U. Dudzevičiūtė, Y. Matsuda, B. C. Hsieh, W. H. Wang, A. M. Swinbank, S. M. Stach, Fang Xia An, J. E. Birkin, Y. Ao, A. J. Bunker, S. C. Chapman, Chian-Chou Chen, K. E. K. Coppin, S. Ikarashi, R. J. Ivison, I. Mitsuhashi, T. Saito, H. Umehata, R. Wang, and Y. Zhao. An ALMA survey of the brightest sub-millimetre sources in the SCUBA-2-COSMOS field. MNRAS, 495(3):3409–3430, July 2020.

[58] Peter S. Behroozi, Risa H. Wechsler, and Charlie Conroy. The Average Star Formation Histories of Galaxies in Dark Matter Halos from $z = 0-8$. ApJ, 770(1):57, June 2013.
[59] A. Merloni, P. Predehl, W. Becker, H. Böhringer, T. Boller, H. Brunner, M. Brusa, K. Dennerl, M. Freyberg, P. Friedrich, A. Georgakakis, F. Haberl, G. Hasinger, N. Meidinger, J. Mohr, K. Nandra, A. Rau, T. H. Reiprich, J. Robrade, M. Salvato, A. Santangelo, M. Sasaki, A. Schwope, J. Wilms, and the German eROSITA Consortium. eROSITA Science Book: Mapping the Structure of the Energetic Universe. *arXiv e-prints*, page arXiv:1209.3114, September 2012.

[60] Esra Bulbul et al. X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 \(\leq z \leq 1.5 \) Observed with XMM-Newton. *ApJ*, 871(1):50, January 2019.

[61] Square Kilometre Array Cosmology Science Working Group. Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts. *PASA*, 37:e007, March 2020.

[62] Shoichiro Tanaka, Shintaro Yoshiura, Kenji Kubota, Keitaro Takahashi, Atsushi J. Nishizawa, and Naoshi Sugiyama. Detectability of CMB Weak Lensing and HI Cross Correlation and constraints on cosmological parameters. *arXiv e-prints*, page arXiv:1904.10363, April 2019.

[63] David R. DeBoer et al. Hydrogen Epoch of Reionization Array (HERA). *Publ. Astron. Soc. Pac.*, 129(974):045001, 2017.

[64] Garrelt Mellema et al. Reionization and the Cosmic Dawn with the Square Kilometre Array. *Exper. Astron.*, 36:235–318, 2013.

[65] Steven Furlanetto, S. Peng Oh, and Frank Briggs. Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe. *Phys. Rept.*, 433:181–301, 2006.

[66] Jonathan R. Pritchard and Abraham Loeb. 21-cm cosmology. *Rept. Prog. Phys.*, 75:086901, 2012.

[67] Julian B. Muñoz and Abraham Loeb. A small amount of mini-charged dark matter could cool the baryons in the early Universe. *Nature*, 557(7707):684, 2018.

[68] Laura Lopez-Honorez, Olga Mena, Ángeles Moliné, Sergio Palomares-Ruiz, and Aaron C. Vincent. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes. *JCAP*, 08:004, 2016.

[69] Hongwan Liu and Tracy R. Slatyer. Implications of a 21-cm signal for dark matter annihilation and decay. *Phys. Rev. D*, 98(2):023501, 2018.

[70] Michael Sitwell, Andrei Mesinger, Yin-Zhe Ma, and Kris Sigurdson. The Imprint of Warm Dark Matter on the Cosmological 21-cm Signal. *Mon. Not. Roy. Astron. Soc.*, 438(3):2664–2671, 2014.

[71] Julian B. Muñoz, Cora Dvorkin, and Francis-Yan Cyr-Racine. Probing the Small-Scale Matter Power Spectrum with Large-Scale 21-cm Data. *Phys. Rev. D*, 101(6):063526, 2020.
[72] PJE Peebles. Structure of the coma cluster of galaxies. *The Astronomical Journal*, 75:13, 1970.

[73] Tilman Tröster, Cameron Ferguson, Joachim Harnois-Déraps, and Ian G. McCarthy. Painting with baryons: augmenting N-body simulations with gas using deep generative models. *MNRAS*, 487(1):L24–L29, July 2019.

[74] R. Kannan, E. Garaldi, A. Smith, R. Pakmor, V. Springel, M. Vogelsberger, and L. Hernquist. Introducing the THESAN project: radiation-magneto-hydrodynamic simulations of the Epoch of Reionization. *arXiv e-prints*, 10 2021.

[75] Andrei Mesinger, Steven Furlanetto, and Renyue Cen. 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal. *Mon. Not. Roy. Astron. Soc.*, 411:955, 2011.

[76] Julian B. Muñoz, Yuxiang Qin, Andrei Mesinger, Steven G. Murray, Bradley Greig, and Charlotte Mason. The Impact of the First Galaxies on Cosmic Dawn and Reionization. *arXiv e-prints*, 10 2021.

[77] B. Joachimi, E. Semboloni, S. Hilbert, P. E. Bett, J. Hartlap, H. Hoekstra, and P. Schneider. Intrinsic galaxy shapes and alignments - II. Modelling the intrinsic alignment contamination of weak lensing surveys. *MNRAS*, 436(1):819–838, November 2013.

[78] James Bate, Nora Elisa Chisari, Sandrine Codis, Garreth Martin, Yohan Dubois, Julien Devriendt, Christophe Pichon, and Adrianne Slyz. When galaxies align: intrinsic alignments of the progenitors of elliptical galaxies in the Horizon-AGN simulation. *MNRAS*, 491(3):4057–4068, January 2020.

[79] Ananth Tenneti, Thomas D. Kitching, Benjamin Joachimi, and Tiziana Di Matteo. Group-scale intrinsic galaxy alignments in the Illustris-TNG and MassiveBlack-II simulations. *MNRAS*, 501(4):5859–5872, March 2021.

[80] P.A. Zyla et al. Review of Particle Physics. *PTEP*, 2020(8):083C01, 2020.

[81] Arka Banerjee, Devon Powell, Tom Abel, and Francisco Villaescusa-Navarro. Reducing noise in cosmological N-body simulations with neutrinos. *J. Cosmology Astropart. Phys.*, 2018(9):028, September 2018.

[82] Arka Banerjee and Neal Dalal. Simulating nonlinear cosmological structure formation with massive neutrinos. *J. Cosmology Astropart. Phys.*, 2016(11):015, November 2016.

[83] Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, and Silvia Pascoli. An optimal non-linear method for simulating relic neutrinos. *MNRAS*, 507(2):2614–2631, October 2021.
[84] Jacob Brandbyge and Steen Hannestad. Grid based linear neutrino perturbations in cosmological N-body simulations. J. Cosmology Astropart. Phys., 2009(5):002, May 2009.

[85] Yacine Ali-Haïmoud and Simeon Bird. An efficient implementation of massive neutrinos in non-linear structure formation simulations. MNRAS, 428(4):3375–3389, February 2013.

[86] Amol Upadhye, Juliana Kwan, Adrian Pope, Katrin Heitmann, Salman Habib, Hal Finkel, and Nicholas Frontiere. Redshift-space distortions in massive neutrino and evolving dark energy cosmologies. Phys. Rev. D, 93(6):063515, March 2016.

[87] Leonardo Senatore and Matias Zaldarriaga. The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos. arXiv e-prints, page arXiv:1707.04698, July 2017.

[88] Christian Pedersen, Andreu Font-Ribera, Keir K. Rogers, Patrick McDonald, Hiranya V. Peiris, Andrew Pontzen, and Anže Slosar. An emulator for the Lyman-α forest in beyond-ΛCDM cosmologies. J. Cosmology Astropart. Phys., 2021(5):033, May 2021.

[89] Adrian E. Bayer, Arka Banerjee, and Uros Seljak. Beware of Fake 𝜈: The Effect of Massive Neutrinos on the Non-Linear Evolution of Cosmic Structure. arXiv e-prints, page arXiv:2108.04215, August 2021.

[90] Stefan Hilbert, Alexandre Barreira, Giulio Fabbian, Pablo Fosalba, Carlo Giocoli, Sownak Bose, Matteo Calabrese, Carmelita Carbone, Christopher T. Davies, Baojiu Li, Claudio Llinares, and Pierluigi Monaco. The accuracy of weak lensing simulations. MNRAS, 493(1):305–319, March 2020.

[91] Aurel Schneider, Romain Teyssier, Joachim Stadel, Nora Elisa Chisari, Amandine M. C. Le Brun, Adam Amara, and Alexandre Refregier. Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. J. Cosmology Astropart. Phys., 2019(3):020, March 2019.

[92] Eegene Chung, Simon Foreman, and Alexander van Engelen. Baryonic effects on CMB lensing and neutrino mass constraints. Phys. Rev. D, 101(6):063534, March 2020.

[93] Hung-Jin Huang and DES Collaboration. Dark energy survey year 1 results: Constraining baryonic physics in the Universe. MNRAS, 502(4):6010–6031, April 2021.

[94] Laurie D. Shaw, Douglas H. Rudd, and Daisuke Nagai. Deconstructing the Kinetic SZ Power Spectrum. ApJ, 756(1):15, September 2012.

[95] Hyunbae Park, Marcelo A. Alvarez, and J. Richard Bond. The Impact of Baryonic Physics on the Kinetic Sunyaev-Zel’dovich Effect. ApJ, 853(2):121, February 2018.
[96] Steven Weinberg. The cosmological constant problem. *Reviews of Modern Physics*, 61(1):1–23, January 1989.

[97] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos Skordis. Modified gravity and cosmology. Phys. Rep., 513(1):1–189, March 2012.

[98] Sownak Bose, Baojiu Li, Alexandre Barreira, Jian-hua He, Wojciech A. Hellwing, Kazuya Koyama, Claudio Llinares, and Gong-Bo Zhao. Speeding up N-body simulations of modified gravity: chameleon screening models. J. Cosmology Astropart. Phys., 2017(2):050, February 2017.

[99] Christian Arnold, Matteo Leo, and Baojiu Li. Realistic simulations of galaxy formation in f(R) modified gravity. *Nature Astronomy*, 3:945–954, July 2019.

[100] Cheng-Zong Ruan, César Hernández-Aguayo, Baojiu Li, Christian Arnold, Carlton M. Baugh, Anatoly Klypin, and Francisco Prada. Fast full N-body simulations of generic modified gravity: conformal coupling models. *arXiv e-prints*, page arXiv:2110.00328, October 2021.

[101] César Hernández-Aguayo, Cheng-Zong Ruan, Baojiu Li, Christian Arnold, Carlton M. Baugh, Anatoly Klypin, and Francisco Prada. Fast full N-body simulations of generic modified gravity: derivative coupling models. J. Cosmology Astropart. Phys., 2022(1):048, January 2022.

[102] Mustapha Ishak. Testing general relativity in cosmology. *Living Reviews in Relativity*, 22(1):1, December 2019.

[103] Enis Belgacem, Gianluca Calcagni, Marco Crisostomi, Charles Dalang, Yves Dirian, Jose María Ezquiaga, Matteo Fasiello, Stefano Foffa, Alexander Ganz, Juan García-Bellido, Lucas Lombriser, Michele Maggiore, Nicola Tamanini, Gianmassimo Tasinato, Miguel Zumalacárregui, Enrico Barausse, Nicola Bartolo, Daniele Bertacca, Antoine Klein, Sabino Matarrese, and Mairi Sakellariadou. Testing modified gravity at cosmological distances with LISA standard sirens. J. Cosmology Astropart. Phys., 2019(7):024, July 2019.

[104] Shadab Alam, Christian Arnold, Alejandro Aviles, Rachel Bean, Yan-Chuan Cai, Marius Cautun, Jorge L. Cervantes-Cota, Carolina Cuesta-Lazaro, N. Chandrachani Devi, Alexander Eggemeier, Sebastien Fromenteau, Alma X. Gonzalez-Morales, Vitali Halenka, Jian-hua He, Wojciech A. Hellwing, César Hernández-Aguayo, Mustapha Ishak, Kazuya Koyama, Baojiu Li, Axel de la Macorra, Jennifer Menezes Rizo, Christopher Miller, Eva-Maria Mueller, Gustavo Niz, Pierros Ntelis, Matia Rodríguez Otero, Cristiano G. Sabiu, Zachary Slepian, Alejo Stark, Octavio Valenzuela, Georgios Valogiannis, Mariana Vargas-Magaña, Hans A. Winther, Pauline Zarrouk, Gong-Bo Zhao, and Yi Zheng. Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. J. Cosmology Astropart. Phys., 2021(11):050, November 2021.
Cosmological Simulations and Modeling

[105] Marco Battaglieri et al. US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report. In U.S. Cosmic Visions: New Ideas in Dark Matter, 7 2017.

[106] Paul Bode, Jeremiah P. Ostriker, and Neil Turok. Halo formation in warm dark matter models. *Astrophys. J.*, 556:93–107, 2001.

[107] Matteo Viel, Julien Lesgourgues, Martin G. Haehnelt, Sabino Matarrese, and Antonio Riotto. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. *Phys. Rev. D*, 71:063534, 2005.

[108] M. Drewes et al. A White Paper on keV Sterile Neutrino Dark Matter. *JCAP*, 01:025, 2017.

[109] Vid Irišič et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. *Phys. Rev. D*, 96(2):023522, 2017.

[110] Aurel Schneider. Constraining noncold dark matter models with the global 21-cm signal. *Phys. Rev. D*, 98(6):063021, 2018.

[111] Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and Edward Witten. Ultralight scalars as cosmological dark matter. *Phys. Rev. D*, 95(4):043541, 2017.

[112] Manuel A. Buen-Abad, Rouven Essig, David McKeen, and Yi-Ming Zhong. Cosmological Constraints on Dark Matter Interactions with Ordinary Matter. *arXiv e-prints*, 7 2021.

[113] Sean Tulin and Hai-Bo Yu. Dark Matter Self-interactions and Small Scale Structure. *Phys. Rept.*, 730:1–57, 2018.

[114] Mei-Yu Wang, Annika H. G. Peter, Louis E. Strigari, Andrew R. Zentner, Bryan Arant, Shea Garrison-Kimmel, and Miguel Rocha. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes. *Mon. Not. Roy. Astron. Soc.*, 445(1):614–629, 2014.

[115] Jonathan Hubert, Aurel Schneider, Doug Potter, Joachim Stadel, and Sambit K. Giri. Decaying dark matter: simulations and weak-lensing forecast. *JCAP*, 10:040, 2021.

[116] S. Mau et al. Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. *arXiv e-prints*, 1 2022.

[117] Lam Hui. Wave Dark Matter. *Ann. Rev. Astron. Astrophys.*, 59:247–289, 2021.

[118] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. Cold and fuzzy dark matter. *Phys. Rev. Lett.*, 85:1158–1161, 2000.

[119] David J. E. Marsh. Axion Cosmology. *Phys. Rept.*, 643:1–79, 2016.
[120] Vid Iršič, Matteo Viel, Martin G. Haehnelt, James S. Bolton, and George D. Becker. First constraints on fuzzy dark matter from Lyman-\(\alpha\) forest data and hydrodynamical simulations. *Phys. Rev. Lett.*, 119(3):031302, 2017.

[121] Katelin Schutz. Subhalo mass function and ultralight bosonic dark matter. *Phys. Rev. D*, 101(12):123026, 2020.

[122] Dana Jones, Skyler Palatnick, Richard Chen, Angus Beane, and Adam Lidz. Fuzzy Dark Matter and the 21 cm Power Spectrum. *Astrophys. J.*, 913(1):7, 2021.

[123] Hsi-Yu Schive, Ming-Hsuan Liao, Tak-Pong Woo, Shing-Kwong Wong, Tzihong Chiueh, Tom Broadhurst, and W. Y. Pauchy Hwang. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. *Phys. Rev. Lett.*, 113(26):261302, 2014.

[124] Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst. Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. *Nature Phys.*, 10:496–499, 2014.

[125] Jan Veltmaat, Jens C. Niemeyer, and Bodo Schwabe. Formation and structure of ultralight bosonic dark matter halos. *Phys. Rev. D*, 98(4):043509, 2018.

[126] Lawrence M. Widrow and Nick Kaiser. Using the Schrodinger equation to simulate collisionless matter. *Astrophys. J. Lett.*, 416:L71–L74, 1993.

[127] Jens C. Niemeyer. Small-scale structure of fuzzy and axion-like dark matter. *arXiv e-prints*, 12 2019.

[128] Marco Gorghetto, Edward Hardy, and Giovanni Villadoro. Axions from Strings: the Attractive Solution. *JHEP*, 07:151, 2018.

[129] Benedikt Eggemeier, Javier Redondo, Klaus Dolag, Jens C. Niemeyer, and Alejandro Vaquero. First Simulations of Axion Minicluster Halos. *Phys. Rev. Lett.*, 125(4):041301, 2020.

[130] Marco Gorghetto, Edward Hardy, and Giovanni Villadoro. More axions from strings. *SciPost Phys.*, 10(2):050, 2021.

[131] Malte Buschmann, Joshua W. Foster, Anson Hook, Adam Peterson, Don E. Willcox, Weiqun Zhang, and Benjamin R. Safdi. Dark matter from axion strings with adaptive mesh refinement. *Nature Commun.*, 13(1):1049, 2022.

[132] Gian F. Giudice, Matthew McCullough, and Alfredo Urbano. Hunting for Dark Particles with Gravitational Waves. *JCAP*, 10:001, 2016.

[133] Melissa D. Diamond, David E. Kaplan, and Surjeet Rajendran. Binary Collisions of Dark Matter Blobs. *arXiv e-prints*, 12 2021.

[134] Bernard Carr and Florian Kuhnel. Primordial Black Holes as Dark Matter Candidates. In *Les Houches summer school on Dark Matter*, 10 2021.
[135] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-Russell. String Axiverse. *Phys. Rev. D*, 81:123530, 2010.

[136] Eric D. Carlson, Marie E. Machacek, and Lawrence J. Hall. Self-interacting dark matter. *Astrophys. J.*, 398:43–52, 1992.

[137] Donnino Anderhalden, Juerg Diemand, Gianfranco Bertone, Andrea V. Maccio, and Aurel Schneider. The Galactic Halo in Mixed Dark Matter Cosmologies. *JCAP*, 10:047, 2012.

[138] Arka Banerjee, Subinoy Das, Anshuman Maharana, and Ravi Kumar Sharma. Signatures of Light Massive Relics on nonlinear structure formation. *arXiv e-prints*, 2022.

[139] Justin Khoury. Dark Matter Superfluidity. In *Les Houches summer school on Dark Matter*, 9 2021.

[140] Erik P. Verlinde. Emergent Gravity and the Dark Universe. *SciPost Phys.*, 2(3):016, 2017.

[141] Katrin Heitmann, David Higdon, Charles Nakhleh, and Salman Habib. Cosmic Calibration. *ApJ*, 646(1):L1–L4, July 2006.

[142] Earl Lawrence, Katrin Heitmann, Martin White, David Higdon, Christian Wagner, Salman Habib, and Brian Williams. The Coyote Universe. III. Simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum. *ApJ*, 713(2):1322–1331, April 2010.

[143] Katrin Heitmann, Earl Lawrence, Juliana Kwan, Salman Habib, and David Higdon. The Coyote Universe Extended: Precision Emulation of the Matter Power Spectrum. *ApJ*, 780(1):111, January 2014.

[144] Earl Lawrence, Katrin Heitmann, Juliana Kwan, Amol Upadhye, Derek Bingham, Salman Habib, David Higdon, Adrian Pope, Hal Finkel, and Nicholas Frontiere. The Mira-Titan Universe. II. Matter Power Spectrum Emulation. *ApJ*, 847(1):50, September 2017.

[145] Sebastian Bocquet, Katrin Heitmann, Salman Habib, Earl Lawrence, Thomas Uram, Nicholas Frontiere, Adrian Pope, and Hal Finkel. The Mira-Titan Universe. III. Emulation of the Halo Mass Function. *ApJ*, 901(1):5, September 2020.

[146] Thomas McClintock, Eduardo Rozo, Arka Banerjee, Matthew R. Becker, Joseph DeRose, Sean McLaughlin, Jeremy L. Tinker, Risa H. Wechsler, and Zhongxu Zhai. The Aemulus Project IV: Emulating Halo Bias. *arXiv e-prints*, page arXiv:1907.13167, July 2019.

[147] Zhongxu Zhai, Jeremy L. Tinker, Matthew R. Becker, Joseph DeRose, Yao-Yuan Mao, Thomas McClintock, Sean McLaughlin, Eduardo Rozo, and Risa H. Wechsler. The Aemulus Project. III. Emulation of the Galaxy Correlation Function. *ApJ*, 874(1):95, March 2019.
Cosmological Simulations and Modeling

[148] Thomas McClintock, Eduardo Rozo, Matthew R. Becker, Joseph DeRose, Yao-Yuan Mao, Sean McLaughlin, Jeremy L. Tinker, Risa H. Wechsler, and Zhongxu Zhai. The Aemulus Project. II. Emulating the Halo Mass Function. ApJ, 872(1):53, February 2019.

[149] Takahiro Nishimichi, Masahiro Takada, Ryuichi Takahashi, Ken Osato, Masato Shirasaki, Taira Oogi, Hironao Miyatake, Masamune Oguri, Ryoma Murata, Yosuke Kobayashi, and Naoki Yoshida. Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. ApJ, 884(1):29, October 2019.

[150] Yosuke Kobayashi, Takahiro Nishimichi, Masahiro Takada, Ryuichi Takahashi, and Ken Osato. Accurate emulator for the redshift-space power spectrum of dark matter halos and its application to galaxy power spectrum. Phys. Rev. D, 102(6):063504, September 2020.

[151] Arrykrishna Mootoovaloo, Alan F. Heavens, Andrew H. Jaffe, and Florent Leclercq. Parameter inference for weak lensing using Gaussian Processes and MOPED. MNRAS, 497(2):2213–2226, September 2020.

[152] Sven Heydenreich, Benjamin Brück, and Joachim Harnois-Déraps. Persistent homology in cosmic shear: Constraining parameters with topological data analysis. A&A, 648:A74, April 2021.

[153] Euclid Collaboration, M. Knabenhans, and et al. Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. MNRAS, 505(2):2840–2869, August 2021.

[154] Timur Takhtaganov, Zarija Lukić, Juliane Müller, and Dmitriy Morozov. Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations. ApJ, 906(2):74, January 2021.

[155] Jenný Brynjarsdóttir and Anthony O’Hagan. Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30, 11 2014.

[156] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić, S. Sehrish, and W.-k. Liao. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures. New Astronomy, 42:49–65, January 2016.

[157] Douglas Potter, Joachim Stadel, and Romain Teyssier. PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys. Computational Astrophysics and Cosmology, 4(1):2, May 2017.

[158] Lehman H. Garrison, Daniel J. Eisenstein, Douglas Ferrer, Nina A. Maksimova, and Philip A. Pinto. The ABACUS cosmological N-body code. MNRAS, 508(1):575–596, November 2021.
[159] Jean Sexton, Zarija Lukić, Ann Almgren, Chris Daley, Brian Friesen, Andrew Myers, and Weiqun Zhang. Nyx: A massively parallel amr code for computational cosmology. *Journal of Open Source Software*, 6(63):3068, 2021.

[160] Volker Springel, Rüdiger Pakmor, Oliver Zier, and Martin Reinecke. Simulating cosmic structure formation with the GADGET-4 code. *MNRAS*, 506(2):2871–2949, September 2021.

[161] Nicholas Frontiere, J. D. Emberson, Michael Buehlmann, Joseph Adamo, Salman Habib, Katrin Heitmann, and Claude-André Faucher-Giguère. Simulating Hydrodynamics in Cosmology with CRK-HACC. *arXiv e-prints*, page arXiv:2202.02840, February 2022.

[162] Pascal Grosset, Christopher M. Biwer, Jesus Pulido, Arvind T. Mohan, Ayan Biswas, John Patchett, Terece L. Turton, David H. Rogers, Daniel Livescu, and James Ahrens. Foresight: Analysis that matters for data reduction. In *SC20: International Conference for High Performance Computing, Networking, Storage and Analysis*, pages 1–15, 2020.

[163] Sian Jin, Pascal Grosset, Christopher M. Biwer, Jesus Pulido, Jiannan Tian, Dingwen Tao, and James Ahrens. Understanding gpu-based lossy compression for extreme-scale cosmological simulations. In *2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, pages 105–115, 2020.

[164] Katrin Heitmann, Paul M. Ricker, Michael S. Warren, and Salman Habib. Robustness of Cosmological Simulations. I. Large-Scale Structure. *ApJS*, 160(1):28–58, September 2005.

[165] Aurel Schneider, Romain Teyssier, Doug Potter, Joachim Stadel, Julian Onions, Darren S. Reed, Robert E. Smith, Volker Springel, Frazer R. Pearce, and Roman Scoccimarro. Matter power spectrum and the challenge of percent accuracy. *J. Cosmology Astropart. Phys.*, 2016(4):047, April 2016.

[166] Julian Onions, Alexander Knebe, Frazer R. Pearce, Stuart I. Muldrew, Hanni Lux, Steffen R. Knollmann, Yago Ascasibar, Peter Behroozi, Pascal Elahi, Jiaxin Han, Michal Maciejewski, Manuel E. Merchán, Mark Neyrinck, Andrés N. Ruiz, Mario A. Sgró, Volker Springel, and Dylan Tweed. Subhaloes going Notts: the subhalo-finder comparison project. *MNRAS*, 423(2):1200–1214, June 2012.

[167] Oscar Agertz, Ben Moore, Joachim Stadel, Doug Potter, Francesco Miniati, Justin Read, Lucio Mayer, Artur Gawryszczak, Andrey Kravtsov, Åke Nordlund, Frazer Pearce, Vicent Quilis, Douglas Rudd, Volker Springel, James Stone, Elizabeth Tasker, Romain Teyssier, James Wadsley, and Rolf Walder. Fundamental differences between SPH and grid methods. *MNRAS*, 380(3):963–978, September 2007.

[168] Katrin Heitmann, Zarija Lukić, Patricia Fasel, Salman Habib, Michael S. Warren, Martin White, James Ahrens, Lee Ankeny, Ryan Armstrong, Brian O’Shea, Paul M.
Cosmological Simulations and Modeling

Ricker, Volker Springel, Joachim Stadel, and Hy Trac. The cosmic code comparison project. *Computational Science and Discovery*, 1(1):015003, October 2008.

[169] Weiguang Cui, Chris Power, Alexander Knebe, Scott T Kay, Federico Sembolini, Pascal J Elahi, Gustavo Yepes, Frazer Pearce, Daniel Cunnama, Alexander M Beck, et al. nifty galaxy cluster simulations–iv. quantifying the influence of baryons on halo properties. *Monthly Notices of the Royal Astronomical Society*, 458(4):4052–4073, 2016.

[170] Nicholas Frontiere, JD Emberson, Michael Buehlmann, Joseph Adamo, Salman Habib, Katrin Heitmann, and Claude-André Faucher-Giguère. Simulating hydrodynamics in cosmology with crk-hacc. *arXiv preprint arXiv:2202.02840*, 2022.