Mangalassery, S. and Sjögersten, Sofie and Sparkes, D.L. and Mooney, Sacha J. (2015) Examining the potential for climate change mitigation from zero tillage. Journal of Agricultural Science, 153 (7). pp. 1151-1173. ISSN 1469-5146

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/41193/1/JAS%20%28153%29%202015%201151-1173.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Examining the potential for climate change mitigation from zero tillage

Short title: Zero tillage in climate change mitigation

S. MANGALASSERY1†, S. SJÖGERSTEN1, D. L. SPARKES1 AND S. J. MOONEY1∗

1School of Biosciences, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK

(MS received 27 September 2013, revised 2 July 2014, accepted TBC August 2014)

SUMMARY

The benefits of reduced and zero tillage systems have been presented as reducing runoff, enhancing water retention and preventing soil erosion. There is also general agreement that the practice can conserve and enhance soil organic carbon levels to some extent. However, their applicability in mitigating climate change has been debated extensively, especially when the whole profile of carbon in the soil is considered, along with a reported risk of enhanced nitrous oxide (N₂O) emissions. The current paper presents a meta-analysis of existing literature to ascertain the climate change mitigation opportunities offered by minimizing tillage operations.

Research suggests zero tillage is effective in sequestering carbon in both soil surface and sub-soil layers in tropical and temperate conditions. The carbon sequestration rate in tropical soils can be about five times higher than in temperate soils. In tropical soils, carbon accumulation is generally correlated with the duration of tillage. Reduced N₂O emissions under long-term zero tillage have been reported in the literature but significant variability exists in the N₂O flux information. Long-term,
location-specific studies are needed urgently to determine the precise role of zero tillage in driving N₂O fluxes. Considering the wide variety of crops utilized in zero-tillage studies, for example maize, barley, soybean and winter wheat, only soybean has been reported to show an increase in yield with zero tillage (7.7% over 10 years). In several cases yield reductions have been recorded e.g. c. 1–8% over 10 years under winter wheat and barley, respectively, suggesting zero tillage does not bring appreciable changes in yield but that the difference between the two approaches may be small. A key question that remains to be answered is: are any potential reductions in yield acceptable in the quest to mitigate climate change, given the importance of global food security?

INTRODUCTION

The adoption of tillage practices for crop production date back to the invention of animal-drawn implements, with the benefits of tillage recorded as early as the 1800s (Gebhardt et al. 1985; Lal et al. 2007). In present-day conventional tillage systems, a mould board plough is typically used for primary tillage followed by the use of secondary tillage implements such as power harrows for seed bed preparation. In this approach it is usual that < 0.15 of crop residues are left on the surface (El Titi 2003) and the tillage depth is ≥ 20 cm (Jastrow et al. 2007). The environmental concerns about soil erosion, soil degradation and pollution of water brought about by tillage have resulted in the development of alternative tillage systems whose popularity have varied over time (Gebhardt et al. 1985) but are currently gaining more attention. Reduction of tillage in crop cultivation was first attempted primarily as a strategy to reduce soil erosion during the late 1950s in the US Corn Belt and Great Plains and increased in popularity globally especially after the discovery of the herbicides
atrazine and paraquat (Six et al. 2002b; Hermle et al. 2008). This and other different forms of tillage practices that reduce soil or water loss compared to ploughing have been referred to as ‘conservation tillage’ (Liu et al. 2013). Soil inversion in this context is not considered as conservation tillage, and shallow ploughing, if done, should be < 10 cm (El Titi 2003).

The current review focuses specifically on zero tillage (also called no tillage or direct drill) which aims to conserve soil and water by not disturbing the soil surface and leaving 0.30 or more crop residues on the surface (Erenstein & Laxmi 2008). Where relevant, a distinction is made from reduced tillage (also called minimum tillage), where only the upper 5 cm are disturbed (Wang et al. 2006). In 1999, the area under zero tillage was about 45 million hectares (Mha) globally, of which 0.96 was in North and South America (Derpsch & Friedrich 2009). By 2007/08 this area had more than doubled to 111 Mha spread across all continents (Table 1) (Derpsch et al. 2010). The largest area was in South America (0.468), followed by North America (0.378) and the least in Africa (0.003) and Europe (0.011). Zero tillage practices have been widely documented for their benefits including protection of soil against erosion and degradation of soil structure (Petersen et al. 2011), greater aggregate stability (Zotarelli et al. 2007; Fernández et al. 2010), increased sequestration of carbon (Six et al. 2000a; West & Post 2002) and improved biological activity (Helgason et al. 2010). The reduced use of fuel in field preparations is a significant economic attraction to farmers and adds substantially to environmental protection (Petersen et al. 2008). Further emphasis has been given in recent years to the climate change mitigation opportunities by following zero tillage systems considering in particular the potential carbon (C) storage in soil and reduction in emissions of carbon dioxide (CO₂) (Peigne et al. 2007; Koga & Tsuji 2009; Farina et al. 2011).
It has recently been reported that zero tillage can bring about stratification of organic carbon at the soil surface (Baker et al. 2007) compared to the more uniform distribution of carbon typically found in conventionally tilled soils (Campbell et al. 2000), questioning the effective sequestration obtainable under zero tillage. The surface-accumulated crop residues under zero-tilled soils may decompose, releasing CO$_2$ to the atmosphere (Petersen et al. 2008). Crucially, climate change mitigation benefits, such as reduced CO$_2$ emissions by virtue of increased sequestration of carbon and increased methane (CH$_4$) uptake under zero tillage, could be offset by increased emissions of nitrous oxide (N$_2$O), a greenhouse gas (GHG) with high global warming potential (Six et al. 2002b, 2004; Chatskikh & Olesen 2007). The warming potential refers to the radiative forcing impacts of each greenhouse gas relative to CO$_2$, as detailed in IPCC (2001). Increased N$_2$O emissions have been related to enhanced denitrification under zero tillage, due to formation of micro-aggregates (<250 µm) within macro-aggregates (>250 µm) that create anaerobic micro-sites (Hermle et al. 2008), high microbial activity leading to high competition for oxygen (West & Marland 2002a) and a dense soil structure (Regina & Alakukku 2010). Soil structure and soil wetness exert a considerable role in GHG emissions from soil (Ball 2013). Avoiding tillage in crop production can also impact on crop yields and ultimately global food security (Huang et al. 2008). A yield reduction of 21 and 15% in wheat and barley, respectively, was reported over 6 years in zero-tilled soil compared to conventional tillage by Machado et al. (2007). Among other factors, the yield reduction with zero tillage has been mainly attributed to increased weed growth, which makes it necessary to apply more herbicides. The potential for any mitigation by zero tillage therefore needs to be considered together with its impact on crop yields, as climate change and global food security are intrinsically linked. The
objectives of the current paper were to evaluate zero tillage for: (i) mitigation of climate change by sequestration of carbon and by reducing or balancing emissions of major GHGs from the soil and (ii) its effect on crop yield.

MATERIALS AND METHODS

For the current study, data sets pertaining to carbon storage in soils and crop yield under zero tillage were compiled.

Datasets on soil organic matter

A total of 49 data sets were collected from peer-reviewed research papers using the search term ‘zero (or no) tillage and carbon’ in Web of Science. Only those papers with paired conventional tillage (CT) and zero tillage (ZT) treatments were selected (Table 2). The C data were reported in t/ha. When only carbon concentrations were reported, bulk density values were used to convert carbon content to carbon stock using the following equation.

\[
t_{\text{C per ha}} = \frac{%C \times \text{bulk density} \times \text{soil depth} \times 100}{100}
\]

Note here that zero tillage tends to result in denser soils with higher bulk densities (Mangalassery et al. 2014), hence soil profiles of the same depth will contain a greater soil mass in zero-tilled soils (Powlson & Jenkinson 1981; Ellert & Bettany 1995): this has implications for C content calculations. Specifically, basing the calculations on depth may result in an over-estimation of the positive effect of zero tillage on soil C stocks. Indeed using data from Ellert & Bettany (1995), depth-based calculations resulted in estimates of C stocks c. 16% higher than mass-based calculations.
Yield data sets

A review of the existing literature was made to compile a data set for comparing crop yield under zero tillage and conventional tillage. Sixty one datasets were used, from peer-reviewed research papers that made one-to-one comparisons with zero tillage and conventional tillage found using the search terms ‘crop yield and zero (or no) tillage’ in Web of Science (Table 3). The relative yield was then computed as follows.

Relative yield (%) = \[\frac{\text{Yield Zero Till in kg/ha}}{\text{Yield Conventional Till in kg/ha}} \times 100\]

(2)

Statistical analysis

The locations of the studies reported in each paper were separated into tropical and temperate based on the climatic information provided in the paper and FAO agro-ecological zoning guidelines (Fischer et al. 2008). Regression equations were developed to explore the potential for carbon sequestration with zero and conventional tillage separately and under tropical and temperate conditions. The aim was to derive conclusions regarding the effect of duration of zero tillage on sequestration of carbon and soil depth on net sequestration carbon rate. The yield advantage or disadvantage under zero tillage with respect to conventional tillage was computed from the selected published literature. Linear regressions were carried out on the yield differences against duration of zero tillage. All the statistical analysis was carried out in Genstat (v. 14).
TILLAGE INFLUENCES IMPORTANT SOIL PROPERTIES

Zero tillage affects soil aggregation by decreasing oxidation of soil organic matter, which acts as a binding agent for macro-aggregates (Andruschkewitsch et al. 2014). Hence, water-stable aggregates (>250 mm) become more stable under zero-tillage systems (Tisdall & Oades 1980). Kasper et al. (2009) observed 18.2% of soil aggregates in the stable class under conventional tillage compared with minimum tillage which contained 37.6% stable aggregates. Continuous tillage practices also make aggregates susceptible to disruption under exposure to frequent wetting and drying cycles (Six et al. 2000b). The effect of wetting and drying cycles are more intensive on the top-soil and hence structural instability is generally greater in tilled soil where manual disaggregation of top soil occurs (Hernanz et al. 2002). Utomo & Dexter (1982) observed wet-dry cycles decreased the proportion of water stable aggregates > 0.5 mm.

Soil organic matter accumulates with zero-tillage practices, especially near the soil surface (upper 5 cm), when compared to conventionally tilled soils (Angers et al. 1997; Gosai et al. 2009). Under conventional tillage, crop residues are mixed with soil in the plough layer and hence nutrients are more or less evenly distributed (Wright et al. 2007), unlike zero tillage where an enhanced biochemical and physical environment at the surface would be expected, due to longer retention of crop residues there. Under minimum tillage, a reduction in soil organic matter turnover can affect net mineralization of nitrogen (Kong et al. 2009) and result in lower nitrogen availability for crops. Net immobilization of nitrogen has been reported during the transition periods to zero tillage (Jastrow et al. 2007). However, in the long term, the nitrogen concentration in the surface layer of zero-till soils has been found to be higher than in conventionally tilled soils (Ussiri et al. 2009). Zero-tilled soils have
also been reported to accumulate phosphorus and potassium at the surface (Wright et al. 2007). Franzluebbers & Hons (1996) observed greater surface accumulation of P, K, Zn and Mn in zero tilled soil than in conventionally tilled soils and Bauer et al. (2002) found enhanced accumulation of Ca and Mg in the upper layers of zero-tilled soils.

Tillage has both direct (by exposing them through inversion of soil) and indirect (by altering the soil microclimate) impacts on soil macro-organisms, with the effect being largely negative to their population (Roger-Estrade et al. 2010). In the long term, zero-tillage practices can be beneficial for earthworm populations compared with conventionally tilled soils due to enhanced availability of food resources (Eriksen-Hamel et al. 2009). An abundance of microbial biomass has been found in soils under zero tillage, including saprophytic fungi and arbuscular mychorrhizal fungi (Roger-Estrade et al. 2010). Helgason et al. (2010) found up to 32% higher microbial biomass under long-term zero-till systems than conventionally tilled soils.

CLIMATE CHANGE AND GREENHOUSE GASES

According to the Intergovernmental Panel on Climate Change (IPCC 2007b) the increased concentration of GHGs in the atmosphere is the major cause of global warming and associated climatic changes (Ugalde et al. 2007). The global atmospheric CO₂ concentration increased from 280 ppm in 1750 to 379 ppm in 2005, which has been attributed primarily to fossil fuel use and land use change (IPCC 2007b) with a total increase of 1.9 ppm per year. Apart from CO₂, the atmospheric concentration of CH₄ increased to 1774 ppb in 2005 from the pre-industrial value of
715 ppb (increase of 148%). Nitrous oxide continues to rise at the rate of 0.26% per year, measured at 319 ppb in 2005, 18% higher than its pre-industrial value (IPCC 2007b). Agriculture can act as both a sink and source for the GHGs of CO₂, CH₄ and N₂O based on the various mitigation strategies adopted. The IPCC (2007a) have suggested three broad mitigation options to reduce GHG emissions from agriculture; i) reducing soil disturbance, ii) enhanced sequestration of carbon in soil (West & Post 2002; Lal 2004a) and iii) reduced emissions of CO₂ during decomposition of crop residues triggered by ploughing and reduced use of fossil fuel in farm operations (West & Marland 2002a). Each of these is covered in further detail in the synthesis below.

SEQUESTRATION OF CARBON UNDER ZERO TILLAGE

Soils are the largest carbon reservoirs of the terrestrial carbon cycle (Lal 2004a), and increasing C sequestration in soil can mitigate increasing atmospheric CO₂ concentration (Kimble et al. 2001). A reduction in soil tillage is suggested to increase the rates of carbon sequestration by altering soil physico-chemical and biological conditions (Marland et al. 2004). Zero tillage is important for land management as it can help to sequester as much as 100–1000 kg carbon/ha/year (Lal 2004a). The sequestration of carbon under zero till management occurs faster under humid conditions, with Six et al. (2004) reporting sequestration within 5 years under such climatic conditions. Example sequestration rates obtained under various zero tillage studies are presented in Table 4. West & Marland (2002a) obtained a mean carbon sequestration rate of 340 kg/ha/year from 76 long term experiments for the plough layer of soil extending up to 30 cm over 20 years. Similarly a comparable sequestration of carbon was observed by Six et al. (2002b) in the upper 30cm of zero
tilled soil for both tropical (325 kg/ha/year) and temperate (113 kg/ha/year) conditions. The carbon sequestration capabilities increased considerably with an increase in duration of zero tillage, with the increment more evident under tropical conditions (Fig. 1, $P < 0.05$ for tropical and non-significant (NS) in case of temperate). The present analysis suggests the carbon sequestration rate under zero tillage of the top 25 cm soil (ploughing depth) was 864 kg/ha/year in tropical regions against 173 kg/ha/year in temperate soils (Fig. 2, $P < 0.05$ for tropical and $P < 0.001$ for temperate). The changes in carbon sequestration are also dependent on many other variables such as crop rotation, soil type (Gaiser et al. 2009) and soil drainage (Duiker & Lal 1999). McConkey et al. (2003) observed a linear relationship with clay content and increase in carbon stock under zero till, which was further confirmed by Grace et al. (2012) who recorded more than double the sequestration rate in clay soils compared to sandy soils in India. The ability to sequester carbon also depends on the initial carbon content at the initiation of zero tillage practices as there is an upper limit of maximum carbon that could be sequestered (Stewart et al. 2007). Therefore, it is crucial to consider these parameters when evaluating the benefits of zero tillage.

Longevity of sequestered carbon under zero tillage

Lal (2004b) suggested that carbon sequestration by zero tillage might be viewed as a short-term strategy only. An initial decline of soil carbon has been reported with zero tillage compared to conventional tillage due to the absence of incorporated residues and organic inputs into deeper layers of soil (Kong et al. 2009). After 5 years, de Rouw et al. (2010) reported a net loss of carbon (1.33 t/ha) under zero till in comparison to tilled soil in Laos. The initial delayed response to sequestration of carbon after conversion from conventional tillage was also reported by West & Post
(2002), who observed little or no increase during 2–5 years and then a large increase between 5–10 years. The time required to reach a ‘steady state’ in carbon sequestration varies with respect to climate, soil type and management practices and can range from 5 to 30 years according to the studies listed in Table 4. The initial soil carbon content in relation to the equilibrium level that a particular soil can achieve is important in deciding the effectiveness of zero tillage with respect to the sequestration (de Rouw et al. 2010). Angers & Eriksen-Hamel (2008) found a weak but significant correlation for soil organic carbon ($R^2 = 0.15, P \leq 0.05$) with the duration of zero tillage and hypothesized that the positive effect of zero tillage would increase with time. In the current analysis, carbon under zero tillage in tropical regions was significantly correlated with the time since conversion ($R^2 = 0.22, P \leq 0.001$), but this was not significant for temperate regions. This is in agreement with reports that in temperate soils, the time period to attain sink saturation is around 100 years, with lower values for tropical soils (20–50 years) (Lal 2004b; Smith 2004; Alvaro-Fuentes & Paustian 2011).

Physical aspects of carbon sequestration with zero tillage

Aggregation

Tillage generally reduces soil aggregation and consequently particulate organic matter content (Wright & Hons 2005). Under tillage, macro-aggregates are physically broken up due to shearing forces and by exposure to wet-dry and freeze-thaw cycles (Conant et al. 2007). Zero tillage is reported to increase sequestration of soil carbon, especially in the surface layer, and the major mechanism underlying such sequestration is an increase in micro-aggregation (Lal & Kimble 1997) and decrease in decomposition of
soil organic matter (Chatterjee & Lal 2009). Six et al. (1999) found proportions of crop-derived C in macro-aggregates were similar under zero till and conventional tillage, but proportions of crop-derived C were three times greater in micro-aggregates (250–2000 μm) from zero tillage than micro-aggregates from conventional tillage. Although the crop-derived carbon in macro-aggregates was similar in both conventional tillage and zero till, the zero till system had 28% more total organic carbon in all aggregate size classes compared to conventional tillage (Madari et al. 2005). Six et al. (2000a) developed a conceptual model to explain the C sequestration from zero tillage which hypothesized that tillage enhances macro-aggregate turnover and decreases the formation of new micro-aggregates. Under zero tillage the turnover of macro-aggregates decreases and the crop-derived carbon is sequestered within stable micro-aggregates and preserved within macro-aggregates. The improvement in soil aggregation and organic carbon preservation by zero tillage has been demonstrated by other workers, including Wright & Hons (2005) and Mrabet et al. (2001b). Six et al. (1999) attributed the decrease of C sequestration by tillage to increased macro-aggregate turnover. By following zero tillage the turnover of macro-aggregates are decreased and formation of stable micro-aggregates occur within macro-aggregates (Denef et al. 2007), which serve as long-term carbon stabilization sites. The increased macro-aggregation and its decreased turnover under zero tillage can cause a 1.5 times slower carbon turnover in temperate soils, due to carbon stabilization within micro-aggregates (Six et al. 2002 c, d).

Soil bulk density

Previous studies have indicated that continuous zero tillage practices over the long term reduce the bulk density of soil (Dam et al. 2005; Li et al. 2011). Lal et al. (1994)
found that after 28 years of maize and soybean, the lowest bulk density soil was in zero till soils. In another study, a continuous zero till system for 43 years had significantly decreased bulk density at the surface (0–15 cm) of a silt loam soil in Ohio ($P < 0.05$) with little effect on the subsurface layer (15–30 cm) (Ussiri et al. 2009). The reduction in soil compaction under zero tillage is mainly due to reduced traffic, additional crop residues at the surface (Jastrow et al. 2007) and increased biological activity provided by soil macro and micro fauna (Simmons & Coleman 2008) and changes in soil structure (Zhang et al. 2012). The lower bulk density is beneficial for easier root penetration into deeper layers, thereby increasing the crop-derived carbon input. This is specifically important in the case of deep-rooted plants, since photosynthates are translocated into the below-ground portions of the soil through rhizodeposition (Baker et al. 2007). The decreased soil bulk density can also aid the downward movement of surface-accumulated carbon (Luo et al. 2010), by preferential accumulation of plant residues moving in the soluble fraction (Angers & Eriksen-Hamel 2008). Blanco-Canqui et al. (2011) also found a moderate negative correlation between bulk density and soil organic carbon throughout a 1 m soil depth under zero till, indicating increased soil organic carbon could aid in reducing soil compaction. However, there are contrasting reports stating that continuous zero tillage can lead to increased soil strength and soil bulk density (Schjønning & Rasmussen 2000; Hernanz et al. 2009). Hill (1990) noticed increased bulk density and soil strength in the zero till treatments over an 11–12 year zero tillage experiment under continuous maize cultivation in Maryland, USA. López-Fando & Pardo (2011) found significantly higher surface bulk density under zero till soil than conventionally tilled soil over 20 years of experimentation in central Spain. It is possible that several factors contribute to increased bulk density with zero tillage systems but most likely is
the increased settling of soil due to lack of cultivation (Hermle et al. 2008), which can lead to soil consolidation (Peigne et al. 2007). Other possibilities include enmeshment of soil particles due to root action and impact of rainfall on the soil surface. However, the enhanced bulk density might not negatively impact on root growth if pore continuity is enhanced by creation of more biopores (Peigne et al. 2007), although further work is needed to explore the precise impact on pore geometry of zero tillage.

Soil structure and porosity

Soil structure is an important factor in determining the sequestration or decomposition of organic matter as it governs the physical space available for microorganisms, aiding their actions in terms of aeration, moisture supply (Strong et al. 2004) and mobility. Kay & VandenBygaart (2002) reported that zero tillage might cause a decline in total porosity but with increased porosity in the uppermost layer of the soil (upper 5 cm), near to the crop residues. Minimum and zero tillage practices initially lead to a decline in macro-pore volume in soil, which ultimately reduces diffusion of air into soil in comparison to conventional tillage (Schjønning & Rasmussen 2000). However, over time, there have been reports of increases in macro-porosity especially near to the soil surface (Zhang et al. 2007), due to the retention of stubble (Bronick & Lal 2005) and formation of macro-pores by the activities of soil organisms and plant roots (Kay & VandenBygaart 2002). Arshad et al. (1999) observed more micro-pores under zero tillage than conventional tillage. Smaller aggregates (50–250 μm or less), which can develop more readily when the soil is subjected to less disturbance, have a higher capacity for protection of organic matter than larger aggregates due to their smaller pore sizes (Bachmann et al. 2008). In undisturbed conditions, the organic matter lying between aggregates or inside larger aggregates are less prone to
microbial attack and therefore has increased longevity of residency (Chivenge et al. 2007).

Chemical aspects of carbon sequestration with zero tillage

Soil organic matter consists of different fractions with varying physico-chemical properties, each of which differs in turnover time (Del Galdo et al. 2003). Tillage alters aggregate dynamics and prevents the formation of stabilized carbon fractions such as intra-aggregate organic carbon (Six et al. 1999). The turnover of soil organic matter is dependent upon the type of organic matter in soil with the labile fraction requiring only 0.4 to 1.2 years for decomposition, whereas many years (400–2200) are required to decompose passive pools comprising of humic fractions, especially in cold, temperate soil (Lal & Kimble 1997). These include humic and fulvic acids and organo-mineral complexes. Microbially transformed substances are converted into humic forms through the intermediaries of quinones and amino compounds, the reaction being mediated by biological and inorganic catalysts (Stevenson 1994). The main determinant in this phenol oxidation is oxygen availability, which is directly related to cultivation practices in soil (Jastrow et al. 2007). The nature of association of organic matter with mineral particles heavily influences the chemical stabilization of carbon. Soils containing 2:1 clay minerals tend to preserve carbon more than those dominated by 1:1 clay minerals owing to their higher Cation Exchange Capacity (CEC) and specific surface available to 2:1 type of clay minerals (Six et al. 2002a). Thus zero tillage, by directly affecting the physical characteristics, has a significant impact on the chemistry of soil carbon dynamics.
Biological aspects of carbon sequestration with zero tillage

The number and diversity of soil organisms has been reported to increase with a reduction in tillage (Roger-Estrade et al. 2010). Soil microorganisms improve soil aggregation and thus indirectly influence carbon cycling by assisting with the physical protection of soil organic matter (Noguez et al. 2008). Peigne et al. (2007) found zero tillage systems contained more fungi than bacteria in the surface layers. Fungi have the capacity to efficiently sequester carbon in aerobic conditions and have greater carbon utilization efficiency than bacteria. Fungi attack more frequently on lignitic materials, producing monomers which are important constituents of humic materials and the residues of fungal death cells are resistant to microbial degradation (Jastrow et al. 2007). Mycorrhizal fungi are effective in increasing soil organic carbon through their effect on soil aggregation and are also efficient in securing carbon from the plant, thus adding extra carbon to soil organic matter (Manns et al. 2007). Tillage incorporates crop residues and places them close to decomposers while under zero tillage they are initially kept away from decomposers (de Rouw et al. 2010). In zero tillage, where disturbance is less, fungal hyphae grow and form bridge structures between soil and surface residues and form a major component of the soil fabric (Jastrow et al. 2007). Upon decomposition, these hyphal masses add to the soil carbon pool by way of the recalcitrant by-products of decomposition. The dry weight of hyphae in soil has been reported to be 0.03–0.5 mg/g and the amount of soil carbon derived by arbuscular mycorrhizal fungi is estimated to be in the range of 54–900 kg/ha for a soil depth of 30 cm (Zhu & Miller 2003). Frey et al. (1999) indicated fungal biomass in no till soils can vary from 6.8 to 74.3 µg C/g compared to 2.8 to 32.7 µg C/g in tilled soil. The contribution from microbial fungal carbon has been reported to be c. 0.08 to 0.2% of total C (Rillig et al. 2001).
Impact of soil depth on carbon sequestration under zero tillage

Previous work to estimate the carbon sequestration benefits of zero tillage have been criticized for being limited to the upper 20 cm of soil or less (Baker et al. 2007). In the current meta-analysis it was found that carbon sequestration with zero tillage takes place independently of soil depth (up to the maximum depth of 160 cm considered in the current study, although not all studies used in the meta-analysis considered as deep as 160 cm; Fig. 2). Significantly higher carbon was sequestered under zero tillage compared to conventional tillage, under both tropical ($R^2 = 0.30, P < 0.05$) and temperate conditions ($R^2 = 0.38, P < 0.001$) up to a depth of 160 cm. Multiple linear regression of carbon sequestration with depth and duration of tillage also indicated significant carbon increases under tropical ($P < 0.01$) and temperate conditions ($P < 0.001$). Angers & Eriksen-Hamel (2008) also found significantly greater soil organic carbon under zero tillage compared to full inversion tillage at depths up to 30 cm, by comparing 23 studies of zero tilled soils for more than 5 years to > 30 cm depths. The greater soil carbon at sub-surface depths recorded in full inversion tillage was not sufficient to offset the surface gain under zero tillage. Similarly, Six et al. (2002b) also found a net sequestration of carbon to a depth of 50 cm after 20 years of zero tillage. In a long-term tillage experiment over 17 years by López-Fando & Pardo (2011), a significant effect of zero tillage on carbon sequestration in the top 30 cm depth was found. This indicates that a net carbon sequestration is possible with zero tillage when the whole soil profile is considered, which might be due to the carbon addition to lower layers from the plant roots and leachates. It is worth noting, however, that care is needed when interpreting the C sequestration potential of different tillage systems since most studies do not account for the differences in soil
mass resulting from the different soil bulk densities with respect to tillage. This can result in an over-estimation of C stocks, as shown for zero tilled soils compared to tilled soils by Ellert & Bettany (1995).

Greenhouse gas emissions with zero tillage

Carbon dioxide emissions under zero tillage

Decomposition of plant residues and organic matter by the action of soil microbes and respiration of microbes and plant roots are the major sources of emissions of CO$_2$ in soil (Oorts *et al.* 2007). Immediately after tillage, emissions of CO$_2$ are known to rise. Chatskikh *et al.* (2008), in an experiment in Denmark, reported a 34% increase in emissions under tilled soil compared to reduced tilled soil. Ellert & Janzen (1999) showed that enhanced release of CO$_2$ immediately after tillage was associated with the release of CO$_2$ stored in soil pores and from stimulated biological production. The CO$_2$ flux soon after soil disturbance has been related to the depth of tillage and the degree of soil disturbance (Álvaro-Fuentes *et al.* 2007). Reduced turnover of soil organic matter through adoption of zero tillage can lead to decreased emissions of CO$_2$ (Six *et al.* 2000a). In south-western Saskatchewan, Canada, there was a 20–25% reduction in CO$_2$ flux under soils that had been zero tilled for 13 years compared to conventional tillage attributed to slower decomposition of the surface left crop residues under zero-tilled soil (Curtin *et al.* 2000). Mangalassery *et al.* (2014) have also shown significant reductions in CO$_2$ in zero-tilled compared to conventional tilled soils after 5–10 years post-conversion. In a long-term tillage experiment maintained for 25 years, Bauer *et al.* (2006) found the CO$_2$ flux from conventional tillage was higher compared to zero tillage, irrespective of timing. Zero tillage has
been reported to reduce CO$_2$ emission rate by 0.6 t C/ha/year compared to conventional tillage in a long-term experiment under maize (43 years) in the USA (Ussiri & Lal 2009). Whilst evidence points to less tillage leading to a significant reduction in CO$_2$ emissions, a long-term study by Oorts et al. (2007) found that, on more than half of the sampled days, zero tillage exhibited larger CO$_2$ emissions and they attributed it to the achievement of equilibrium between input and output under long periods (32 years) of zero tillage.

Nitrous oxide emissions under zero tillage

In contrast to CO$_2$ emissions, most research reports increased N$_2$O emissions under zero tillage compared to conventional tillage (Ball et al. 1999; Chatskikh & Olesen 2007; Oorts et al. 2007). This has frequently been attributed to decreased water-filled pore space and mineral nitrogen concentration (Oorts et al. 2007), reduced gas diffusivity and air-filled porosity (Chatskikh & Olesen 2007), increased water content (Blevins et al. 1971) and a denser soil structure (Schjønning & Rasmussen 2000; Beare et al. 2009) as a result of a lack of disturbance. Overall, increased N$_2$O fluxes reported with zero-tilled soils have been linked to the increased anaerobic conditions provided by the increased bulk density and decreased soil porosity due to soil consolidation (Ball et al. 1999). The physical characteristics of the soil in different layers, as modified by different tillage practices, may affect the flux of N$_2$O. If N$_2$O is produced at surface layers, which are frequently more permeable, the gas is likely to be emitted to the atmosphere, but if the point of production is in lower layers, overlaid by compact layers, the N$_2$O produced may be consumed within the profile over time. Although most reported N$_2$O emissions are quantitatively less in comparison to CO$_2$ emissions, N$_2$O assumes a greater significance due to its larger global warming
potential (296 times that of CO$_2$: IPCC 2001). Indeed, increased N$_2$O emissions have the potential to offset 75–310% of the climate change mitigation obtainable from the sequestration of carbon in soil (Regina & Alakukku 2010). The adoption of zero tillage over longer terms (20 years) has been reported to nullify this adverse effect on N$_2$O emissions, with lower N$_2$O emissions recorded under zero tillage than in tilled soils in humid climates and similar emissions under both tillage types in dry climates (Six et al. 2004). Similar reports were also made by Kessavalou et al. (1998) and Chatskikh et al. (2008), attributable to increased N$_2$O consumption in soil (Luo et al. 2010) although there is a lack of published long-term studies in this area. A further confounding issue is the uncertainty associated with estimation of N$_2$O which remains high in most experiments due to significant spatial and temporal variability (Chatskikh et al. 2008; Ussiri et al. 2009). It seems that further long-term location-specific studies combining different greenhouse gases and carbon sequestration are urgently needed to investigate the impact of zero tillage on N$_2$O flux, especially to investigate the time post conversion at which N$_2$O emissions from zero tillage fall below those from conventional tillage as reported by Six et al. (2004).

Methane emissions under zero tillage

Most previous studies indicate increased absorption of CH$_4$ in soils under zero tillage due to reduced surface disruption (Kessavalou et al. 1998; Regina & Alakukku 2010), greater pore continuity (developed over time) and the presence of more micro-sites for methanotrophic bacteria (Hütsch 1998). The increased soil bulk density reported with zero tillage might prevent the efflux of CH$_4$ leading to its oxidation within soil (Li et al. 2011). Long-term studies by Ussiri et al. (2009) indicated a net CH$_4$ uptake in zero-till soils in silt loam soil under maize in the USA (0.32 kg CH$_4$-C/ha/year for
zero till vs 2.76 kg CH₄-C/ha/year in conventional till). Continuous ecological disturbance under tillage can be detrimental to methane oxidizers. Most previous studies indicate that zero-tilled soils act as net sinks for methane. However, both increased and decreased CH₄ consumption has been reported in zero-till soils (Hütsch 1998; Venterea et al. 2005). If a zero-tillage system creates anaerobic micro-sites or creates conditions favourable to enhance water-logging conditions then it is likely that CH₄ production and emissions will increase.

Net emission of greenhouse gases

To obtain a realistic assessment on the potential of zero tillage for reducing GHG, the combined emissions of all major GHGs need to be considered. There are very few studies that have considered the global warming potential of different gases between conventional and zero-tillage systems. Whilst increased N₂O emissions from zero tillage have been reported, crucially some long-term studies have indicated a stabilization of N₂O emissions under reduced tillage over 20 years, especially in humid climates (Six et al. 2004). In a long-term study, Ussiri et al. (2009) observed lower total emissions of N₂O under 43 years of zero till in comparison to conventional tillage and the global warming potential under zero-till systems was found to be 51 to 58% less than under conventional tillage. Mangalassery et al. (2014) recently reported reductions of c. 20% under zero tillage, though the time since conversion was <10 years. A complete life-cycle analysis of a zero-till system and conventional till system was carried out by West & Marland (2002b) based on comparisons of 76 long-term experiments up to soil depths of 30 cm. After accounting for the CO₂ emissions from different inputs and production activities for maize, wheat and soybean in the US and comparing carbon sequestered under zero till, the net carbon sequestration reported
was 368 kg C/ha/yr. However, in an alternative study involving a global data analysis of zero till vs conventional tillage covering tropical and temperate soils it was found that, after accounting for the carbon sequestered and CH₄ taken up in soil, net sequestration was negative with an overall negative greenhouse balance of 214 kg CO₂- equivalents/ha/yr (Six et al. 2002b). However, Six et al. (2002b) only compared systems with tillage or zero-tillage elements, excluding experiments with the potential for additional carbon sequestration such as cover crops and crops in rotation. Robertson et al. (2000), after only 8 years of experimentation, reported a low net global warming potential under zero till (14 g CO₂- equivalents/m²/yr) compared to conventional till (114 g CO₂- equivalents /m²/yr). In most studies it would seem the slightly higher or comparable N₂O emissions under zero till is compensated for by the significantly enhanced carbon storage. For example, following a 30-year simulation experiment, Chatskikh et al. (2008) showed that zero tillage can decrease net GHG release by 0.56 t CO₂- equivalents/ha/yr compared to conventionally tilled soil while a field study over 43 years by Ussiri et al. (2009) found a decrease of 1.03 t CO₂- equivalents/ha/yr with zero tillage compared to conventional tillage (52% reduction).

The most consistent trend in the literature suggests that overall, zero tillage reduces GHG emissions in the long term (c. 20 years), but crucially some uncertainty still exists as to when the positive effects are first recorded and how long these effects can be observed. Large uncertainties still remain and further work is needed both to define the underlying mechanisms and understand the variation between agricultural systems.
Soil quality and yield responses under zero tillage

Current analysis suggests there is a lack of consistently reported effects of zero tillage on yield: 0.53 of publications examined in the current study reported an increase in crop yield with zero tillage, whereas 0.47 reported higher yield under conventional management (n=61). The most negative effects have been recorded in maize with an average of 0.36 reduction in maize yield by following zero tillage over 10 years reported in 15 publications (Fig. 3). The data on winter wheat (n = 20) generally suggested little effect on yield following the adoption of zero tillage over conventional tillage (1% reduction) (Fig. 3), though an 8% reduction in barley yield was observed over 10 years. However, the research in this area is conflicting: Machado et al. (2007) reported a yield reduction of 21 and 15% in wheat and barley, respectively, over 6 years, in zero-tilled soils compared with conventionally tilled soils. Declining cereal yields under short-term zero tillage practices have also been reported by Känkänen et al. (2011). A meta-analysis of 47 European studies by Van den Putte et al. (2010) comparing the crop yields under conservation tillage with conventional tillage reported yield reductions ranging from 0 to 30% depending on crop type, tillage depth, and texture of soil and crop rotation, with an average yield reduction of 4.5%.

The major constraint for realising good yields with zero tillage is the infestation of weeds (Vakali et al. 2011). Weeds compete with the seedlings for important resources necessary for growth such as light, water, nutrients and space, which may lead to poor germination, establishment and crop growth (Gruber et al. 2012). The surface retention of crop residues may also adversely affect the crop yield. Increased accumulation of crop residues, especially straw in poorly drained soils, can increase water-loggening and disease as well as reduce crop yield by affecting
germination (Wuest et al. 2000; Wang et al. 2006). It can potentially reduce the efficiency of applied fertilizers and pesticides, and affect drying and wetting regimes of soil (Carter 1994; Känkänen et al. 2011). The residue left on the surface may also affect nutrient availability to the crops, especially nitrogen due to immobilization.

Potentially, the negative effects of zero tillage on yield can be offset in the long term, following the development of an enhanced soil structure, which will support enhanced crop yields in the future. Wang et al. (2006) found increased yield under soybean of 7.7% with zero tillage over 10 years compared to conventional tillage (Fig. 3). The increased yields with zero tillage were mainly attributed to improvements in soil structure through non-disturbance and retention of crop residues at the surface. The positive aspects of surface retention of crop residues are a reduction in evaporation losses from soil, reduction in crust formation and enhanced protection from soil erosion (Guérif et al. 2001). In dry regions such as north-west China, crop residues left at the surface can be helpful for storing water (Huang et al. 2008) and in temperate regions it can prevent frost damage. Long-term tillage experiments in Switzerland over 15 years found comparable yields of wheat under reduced and conventional tillage systems (Anken et al. 2004), as also reported for maize yield during 11 years of experimentation in Canada (Dam et al. 2005), which is in contrast to many other studies (Chen et al. 2011). When combining zero tillage with retention of stubble, Huang et al. (2008) obtained 12.5% more yield from pea and 14% more spring wheat yield under conventional tillage over 4 years of experiments. They observed that the yield advantage of zero-tilled soils with respect to conventional soils disappeared when the stubble was removed, indicating the necessity of combining both zero tillage and residue retention to maximize productivity. This suggests there is potential for crop yields to be increased or
maintained under zero tillage by carefully addressing the yield-limiting factors such as weed growth, slow initial growth, nutrient deficiency, pest pressure and a hardened sub-surface (Lyon et al. 1998; Machado et al. 2007). It is worth noting that when considering the benefits of zero tillage over conventional tillage, there are considerations other than yield, as often a slight reduction in yield can be overcome by reduction in cultivation costs (Hobbs 2007).

The adoption of zero tillage in combination with other sustainable land use management options such as diversified crop rotation involving non-cereals (Van den Putte et al. 2010) has the potential to harness even better results. Infrequent tillage has been suggested as an alternative strategy to address the problem of compaction and weed growth. Conant et al. (2007) observed that such practices can sequester as much carbon as continuous zero-till systems, based on a modelling study. Indeed, field studies on periodic tillage by Yang et al. (2008) found tilling of a long-term zero-till soil (13 years) destroyed the surface stratification of soil carbon in the 0–5 cm layer, which was offset by soil carbon gains in the 10–20 cm depth. Similar results were reported by Kettler et al. (2000) and Pierce et al. (1994). However, such studies need to be conducted for each agro-ecological region to determine the fine balance between offsetting GHG emissions and maintaining good yields. The yield perspective is also important from a global change view point. Carbon sequestration may also be affected by biomass, which in turn is correlated with higher crop yield (de Rouw et al. 2010), and hence maintaining crop yield at satisfactory levels is important both for food security and climate change mitigation.

Zero tillage can be beneficial in sequestering carbon not only at the soil surface, but also in deeper layers in both tropical and temperate climatic conditions. The greatest concern regarding the ability to contribute to mitigating climate change
through zero tillage relates to the reported enhanced emissions of N₂O. However, declining N₂O emissions with zero tillage over longer timescales (e.g. 20 years) have been reported recently. In addition, when considered as a whole, most studies report a reduction in net warming potential following adoption of zero-tillage practices. Adopting further agronomic management along with zero-tillage strategies including weed control, crop rotation, cover crops and controlled traffic systems to control N₂O emissions may be the most beneficial ways in addressing the problem of yield reduction compared to environmental benefits.

Funding support to this work was provided by the International Fellowship programme of the Indian Council of Agricultural Research, India and a Research Excellence Scholarship by the University of Nottingham, UK.

REFERENCES

ABREU, S. L., GODSEY, C. B., EDWARDS, J. T. & WARREN, J. G. (2011). Assessing carbon and nitrogen stocks of no-till systems in Oklahoma. *Soil and Tillage Research* **117**, 28-33.

AL-KAISI, M. M., YIN, X. & LICHT, M. A. (2005). Soil carbon and nitrogen changes as affected by tillage system and crop biomass in a corn–soybean rotation. *Applied Soil Ecology* **30**, 174-191.

ÁLVARO-FUENTES, J., CANTERO-MARTÍNEZ, C., LÓPEZ, M. V. & ARRÚE, J. L. (2007). Soil carbon dioxide fluxes following tillage in semiarid Mediterranean agroecosystems. *Soil and Tillage Research* **96**, 331-341.
ÁLVARO-FUENTES, J., LÓPEZ, M. V., ARRÚE, J. L., MORET, D. & PAUSTIAN, K. (2009). Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. *Agriculture, Ecosystems and Environment* **134**, 211-217.

ÁLVARO-FUENTES, J. & PAUSTIAN, K. (2011). Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: Quantifying management and climate effects. *Plant and Soil* **338**, 261-272.

ANDRUSCHEWITSCH, R., KOCH, H.-J. & LUDWIG, B. (2014). Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. *Geoderma* **217–218**, 57-64.

ANGERS, D. A. & ERIKSEN-HAMEL, N. S. (2008). Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. *Soil Science Society of America Journal* **72**, 1370-1374.

ANGERS, D. A., RECOUS, S. & AITA, C. (1997). Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ. *European Journal of Soil Science* **48**, 295-300.

ANKEN, T., WEISSKOPF, P., ZIHLMANN, U., FORRER, H., JANSA, J. & PERHACOVA, K. (2004). Long-term tillage system effects under moist cool conditions in Switzerland. *Soil and Tillage Research* **78**, 171-183.

ARSHAD, M. A., FRANZLUEBBERS, A. J. & AZOOZ, R. H. (1999). Components of surface soil structure under conventional and no-tillage in northwestern Canada. *Soil and Tillage Research* **53**, 41-47.

ARSHAD, M. A., GILL, K. S. & COY, G. R. (1994). Wheat yield and weed population as influenced by three tillage systems on a clay soil in temperate continental climate. *Soil and Tillage Research* **28**, 227-238.
AULAKH, M. S., MANCHANDA, J. S., GARG, A. K., KUMAR, S., DERCON, G. & NGUYEN, M.-L. (2012). Crop production and nutrient use efficiency of conservation agriculture for soybean–wheat rotation in the Indo-Gangetic Plains of Northwestern India. *Soil and Tillage Research* **120**, 50-60.

BACHMANN, J., GUGGENBERGER, G., BAUMGARTL, T., ELLERBROCK, R. H., URBANEK, E., GOEBEL, M.-O., KAISER, K., HORN, R. & FISCHER, W. R. (2008). Physical carbon-sequestration mechanisms under special consideration of soil wettability. *Journal of Plant Nutrition and Soil Science* **171**, 14-26.

BAKER, J. M., OCHSNER, T. E., VENTEREA, R. T. & GRIFFIS, T. J. (2007). Tillage and soil carbon sequestration--What do we really know? *Agriculture, Ecosystems and Environment* **118**, 1-5.

BALL, B. C. (2013). Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. *European Journal of Soil Science* **64**, 357-373.

BALL, B. C., SCOTT, A. & PARKER, J. P. (1999). Field N₂O, CO₂ and CH₄ fluxes in relation to tillage, compaction and soil quality in Scotland. *Soil and Tillage Research* **53**, 29-39.

BAUER, P. J., FREDERICK, J. R. & BUSSCHER, W. J. (2002). Tillage effect on nutrient stratification in narrow- and wide-row cropping systems. *Soil and Tillage Research* **66**, 175-182.

BAUER, P. J., FREDERICK, J. R., NOVAK, J. M. & HUNT, P. G. (2006). Soil CO₂ flux from a norfolk loamy sand after 25 years of conventional and conservation tillage. *Soil and Tillage Research* **90**, 205-211.

BAYER, C., MIELNICZUK, J., AMADO, T. J. C., MARTIN-NETO, L. & FERNANDES, S. V. (2000). Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. *Soil and Tillage Research* **54**, 101-109.
BEARE, M. H., GREGORICH, E. G. & ST-GEORGES, P. (2009). Compaction effects on CO2 and N2O production during drying and rewetting of soil. *Soil Biology and Biochemistry* **41**, 611-621.

BLANCO-CANQUI, H., SCHLEGEL, A. J. & HEER, W. F. (2011). Soil-profile distribution of carbon and associated properties in no-till along a precipitation gradient in the central Great Plains. *Agriculture, Ecosystems and Environment* **144**, 107-116.

BLEVINS, R. L., COOK, D., PHILLIPS, S. H. & PHILLIPS, R. E. (1971). Influence of no-tillage on soil moisture. *Agronomy Journal* **63**, 593-596.

BRONICK, C. J. & LAL, R. (2005). Soil structure and management: a review. *Geoderma* **124**, 3-22.

BUSCHIAZZO, D. E., PANIGATTI, J. L. & UNGER, P. W. (1998). Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas. *Soil and Tillage Research* **49**, 105-116.

CAMPBELL, C., ZENTNER, R. P., SELLES, F., BIEDERBECK, V. O., McCONKEY, B. G., BLOMERT, B. & JEFFERSON, P. G. (2000). Quantifying short-term effects of crop rotations on soil organic carbon in southwestern Saskatchewan. *Canadian Journal of Soil Science* **80**, 193-202.

CANTERO-MARTÍNEZ, C., ANGAS, P. & LAMPURLANÉS, J. (2003). Growth, yield and water productivity of barley (*Hordeum vulgare* L.) affected by tillage and N fertilization in Mediterranean semiarid, rainfed conditions of Spain. *Field Crops Research* **84**, 341-357.

CARTER, M. R. (1994). A review of conservation tillage strategies for humid temperate regions. *Soil and Tillage Research* **31**, 289-301.
CARTER, M. R. (2005). Long-term tillage effects on cool-season soybean in rotation with barley, soil properties and carbon and nitrogen storage for fine sandy loams in the humid climate of Atlantic Canada. *Soil and Tillage Research* **81**, 109-120.

CASTELLANOS-NAVARRETE, A., RODRÍGUEZ-ARAGONÉS, C., DE GOEDE, R. G. M., KOOISTRA, M. J., SAYRE, K. D., BRUSSAARD, L. & PULLEMAN, M. M. (2012). Earthworm activity and soil structural changes under conservation agriculture in central Mexico. *Soil and Tillage Research* **123**, 61-70.

CHATSKIKH, D. & OLESEN, J. E. (2007). Soil tillage enhanced CO₂ and N₂O emissions from loamy sand soil under spring barley. *Soil and Tillage Research* **97**, 5-18.

CHATSKIKH, D., OLESEN, J. E., HANSEN, E. M., ELSGAARD, L. & PETERSEN, B. M. (2008). Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. *Agriculture, Ecosystems and Environment* **128**, 117-126.

CHATTERJEE, A. & LAL, R. (2009). On farm assessment of tillage impact on soil carbon and associated soil quality parameters. *Soil and Tillage Research* **104**, 270-277.

CHEN, Y., LIU, S., LI, H., LI, X. F., SONG, C. Y., CRUSE, R. M. & ZHANG, X. Y. (2011). Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China. *Soil and Tillage Research* **115–116**, 56-61.

CHIVENGE, P. P., MURWIRA, H. K., GILLER, K. E., MAPFUMO, P. & SIX, J. (2007). Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. *Soil and Tillage Research* **94**, 328-337.
CLAPP, C. E., ALLMARAS, R. R., LAYESE, M. F., LINDEN, D. R. & DOWDY, R. H. (2000). Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. *Soil and Tillage Research* **55**, 127-142.

CONANT, R. T., EASTER, M., PAUSTIAN, K., SWAN, A. & WILLIAMS, S. (2007). Impacts of periodic tillage on soil C stocks: A synthesis. *Soil and Tillage Research* **95**, 1-10.

CURTIN, D., WANG, H., SELLES, F., MCCONKEY, B. G. & CAMPBELL, C. A. (2000). Tillage effects on carbon fluxes in continuous wheat and fallow–wheat rotations. *Soil Science Society of America Journal* **64**, 2080-2086.

DALAL, R. C., ALLEN, D. E., WANG, W. J., REEVES, S. & GIBSON, I. (2011). Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. *Soil and Tillage Research* **112**, 133-139.

DAM, R. F., MEHDI, B. B., BURGESS, M. S. E., MADRAMOOTOO, C. A., MEHUYS, G. R. & CALLUM, I. R. (2005). Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. *Soil and Tillage Research* **84**, 41-53.

DE ROUW, A., HUON, S., SOULILEUTH, B., JOUQUET, P., PIERRET, A., RIBOLZI, O., VALENTIN, C., BOURDON, E. & CHANTHARATH, B. (2010). Possibilities of carbon and nitrogen sequestration under conventional tillage and no-till cover crop farming (Mekong valley, Laos). *Agriculture, Ecosystems and Environment* **136**, 148-161.

DEEN, W. & KATAKI, P. K. (2003). Carbon sequestration in a long-term conventional versus conservation tillage experiment. *Soil and Tillage Research* **74**, 143-150.
DEL GALDO, I., SIX, J., PERESSOTTI, A. & COTRUFO, M. F. (2003). Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. *Global Change Biology* **9**, 1204-1213.

DENDOOVEN, L., PATIÑO-ZÚÑIGA, L., VERHULST, N., LUNA-GUIDO, M., MARSCH, R. & GOVAERTS, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. *Agriculture, Ecosystems & Environment* **152**, 50-58.

DENEF, K., ZOTARELLI, L., BODDEY, R. M. & SIX, J. (2007). Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. *Soil Biology and Biochemistry* **39**, 1165-1172.

DERPSCH, R. & FRIEDRICH, T. (2009). Global overview of conservation agriculture adoption. In *Innovations for Improving Efficiency, Equity and Environment: Proceedings of the 4th World Congress on Conservation Agriculture* (Ed. ICAR), pp. 429-438. New Delhi, India: ICAR.

DERPSCH, R., FRIEDRICH, T., KASSAM, A. & LI, H. (2010). Current status of adoption of no-till farming in the world and some of its main benefits. *International Journal of Agricultural and Biological Engineering* **3**(1), 1-26.

DOLAN, M. S., CLAPP, C. E., ALLMARAS, R. R., BAKER, J. M. & MOLINA, J. A. E. (2006). Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. *Soil and Tillage Research* **89**, 221-231.

DUIKER, S. W. & LAL, R. (1999). Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. *Soil and Tillage Research* **52**, 73-81.
EKEBERG, E. & RILEY, H. C. F. (1997). Tillage intensity effects on soil properties and crop yields in a long-term trial on morainic loam soil in southeast Norway. *Soil and Tillage Research* **42**, 277-293.

EL TITI, A. (2003). *Soil Tillage in Agroecosystems*. Boca Raton, FL, USA: CRC Press.

ELLERT, B. H. & BETTANY, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. *Canadian Journal of Soil Science* **75**, 529-538.

ELLERT, B. H. & JANZEN, H. H. (1999). Short-term influence of tillage on CO₂ fluxes from a semi-arid soil on the Canadian Prairies. *Soil and Tillage Research* **50**, 21-32.

ERENSTEIN, O. & LAXMI, V. (2008). Zero tillage impacts in India's rice–wheat systems: A review. *Soil and Tillage Research* **100**, 1-14.

ERIKSEN-HAMEL, N. S., SPERATTI, A. B., WHALEN, J. K., LÉGÈRE, A. & MADRAMOOTO, C. A. (2009). Earthworm populations and growth rates related to long-term crop residue and tillage management. *Soil and Tillage Research* **104**, 311-316.

ERNST, O. & SIRI-PRIETO, G. (2009). Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. *Soil and Tillage Research* **105**, 260-268.

FAO (2013). *AQUASTAT Database*. Rome: FAO. Available online from: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 25 December 2013).

FARINA, R., SEDDAIU, G., ORSINI, R., STEGLICH, E., ROGGERO, P. P. & FRANCAVIGLIA, R. (2011). Soil carbon dynamics and crop productivity as
influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. *Soil and Tillage Research* **112**, 36-46.

FERNÁNDEZ, R., QUIROGA, A., ZORATI, C. & NOELLEMEYER, E. (2010). Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage. *Soil and Tillage Research* **109**, 103-109.

FILIPOVIC, D., HUSNJAK, S., KOSUTIC, S. & GOSPODARIC, Z. (2006). Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia. *Journal of Terramechanics* **43**, 177-189.

FISCHER, G., NACHTERGAELE, F., PRIELER, S., VAN VELTHUIZEN, H., VERELST, L. & WIBERG, D. (2008). *Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008)*. Laxenburg, Austria and Rome, Italy: IIASA and FAO.

FOLLETT, R. F. (2001). Soil management concepts and carbon sequestration in cropland soils. *Soil and Tillage Research* **61**, 77-92.

FRANCHINI, J. C., DEBIASI, H., BALBINOT JUNIOR, A. A., TONON, B. C., FARIAS, J. R. B., DE OLIVEIRA, M. C. N. & TORRES, E. (2012). Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. *Field Crops Research* **137**, 178-185.

FRANZLUEBBERS, A. J. & HONS, F. M. (1996). Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. *Soil and Tillage Research* **39**, 229-239.

FREY, S. D., ELLIOTT, E. T. & PAUSTIAN, K. (1999). Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. *Soil Biology and Biochemistry* **31**, 573-585.

FUENTES, M., GOVAERTS, B., HIDALGO, C., ETCHEVERS, J., GONZÁLEZ-MARTÍN, I., HERNÁNDEZ-HIERRO, J. M., SAYRE, K. D. & DENDOOVEN, L. (2010). Organic
carbon and stable 13C isotope in conservation agriculture and conventional systems. *Soil Biology and Biochemistry* **42**, 551-557.

GAISER, T., ABDEL-RAZIK, M. & BAKARA, H. (2009). Modeling carbon sequestration under zero-tillage at the regional scale. II. The influence of crop rotation and soil type. *Ecological Modelling* **220**, 3372-3379.

GEBHARDT, M. R., DANIEL, T. C., SCHWEIZER, E. E. & ALLMARAS, R. R. (1985). Conservation tillage. *Science* **230**, 625-630.

GOSAI, K., ARUNACHALAM, A. & DUTTA, B. K. (2009). Influence of conservation tillage on soil physicochemical properties in a tropical rainfed agricultural system of northeast India. *Soil and Tillage Research* **105**, 63-71.

GRACE, P. R., ANTLE, J., AGGARWAL, P. K., OGLE, S., PAUSTIAN, K. & BASSO, B. (2012). Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. *Agriculture, Ecosystems and Environment* **146**, 137-146.

GRUBER, S., PEKRUN, C., MÖHRING, J. & CLAUPEIN, W. (2012). Long-term yield and weed response to conservation and stubble tillage in SW Germany. *Soil and Tillage Research* **121**, 49-56.

GUÉRIF, J., RICHARD, G., DÜRR, C., MACHET, J. M., RECOUS, S. & ROGER-ESTRADE, J. (2001). A review of tillage effects on crop residue management, seedbed conditions and seedling establishment. *Soil and Tillage Research* **61**, 13-32.

HALVORSON, A. D., BLACK, A. L., KRUPINSKY, J. M., MERRILL, S. D., WIENHOLD, B. J. & TANAKA, D. L. (2000). Spring wheat response to tillage and nitrogen fertilization in rotation with sunflower and winter wheat. *Agronomy Journal* **92**, 136-144.
HALVORSON, A. D., PETERSON, G. A. & REULE, C. A. (2002). Tillage system and crop rotation effects on dryland crop yields and soil carbon in the Central Great Plains. *Agronomy Journal* **94**, 1429-1436.

HE, J., LI, H., RASAILY, R. G., WANG, Q., CAI, G., SU, Y., QIAO, X. & LIU, L. (2011). Soil properties and crop yields after 11 years of no tillage farming in wheat–maize cropping system in North China Plain. *Soil and Tillage Research* **113**, 48-54.

HELGASON, B. L., WALLEY, F. L. & GERMIDA, J. J. (2010). No-till soil management increases microbial biomass and alters community profiles in soil aggregates. *Applied Soil Ecology* **46**, 390-397.

HEMMAT, A. & ESKANDARI, I. (2004). Conservation tillage practices for winter wheat–fallow farming in the temperate continental climate of northwestern Iran. *Field Crops Research* **89**, 123-133.

HEMMAT, A. & ESKANDARI, I. (2006). Dryland winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran. *Soil and Tillage Research* **86**, 99-109.

HERMLE, S., ANKEN, T., LEIFELD, J. & WEISSKOPF, P. (2008). The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. *Soil and Tillage Research* **98**, 94-105.

HERNANZ, J. L., LÓPEZ, R., NAVARRETE, L. & SÁNCHEZ-GIRÓN, V. (2002). Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. *Soil and Tillage Research* **66**, 129-141.

HERNANZ, J. L., SÁNCHEZ-GIRÓN, V. & NAVARRETE, L. (2009). Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three
tillage systems in semiarid conditions. *Agriculture, Ecosystems and Environment* **133**, 114-122.

Hill, R. L. (1990). Long-term conventional and no-tillage effects on selected soil physical properties. *Soil Science Society of America Journal* **54**, 161-166.

Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? *Journal of Agricultural Science, Cambridge* **145**, 127-137.

Huang, G. B., Zhang, R. Z., Li, G. D., Li, L. L., Chan, K. Y., Heenan, D. P., Chen, W., Unkovich, M. J., Robertson, M. J., Cullis, B. R. & Bellotti, W. D. (2008). Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems. *Field Crops Research* **107**, 43-55.

Hütsch, B. W. (1998). Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. *Biology and Fertility of Soils* **27**, 284-292.

IPCC (2001). *Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change* (Eds J. T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson), pp. 1-881. Cambridge, UK: Cambridge University Press.

IPCC (2007a). *Climate Change 2007: Mitigation of Climate Change. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* (Eds B. Metz, O. R. Davidson, P. R. Bosch, R. Dave & L. A. Meyer), pp. 1-851. Cambridge, UK: Cambridge University Press.

IPCC (2007b). Summary for policy makers. In *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report*
of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor & H. Miller), pp. 1-18. Cambridge, UK: Cambridge University Press.

JANTALIA, C. P., RESCK, D. V. S., ALVES, B. J. R., ZOTARELLI, L., URQUIAGA, S. & BODDEY, R. M. (2007). Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil and Tillage Research 95, 97-109.

JARECKI, M. K., LAL, R. & JAMES, R. (2005). Crop management effects on soil carbon sequestration on selected farmers’ fields in northeastern Ohio. Soil and Tillage Research 81, 265-276.

JASTROW, J. D., AMONETTE, J. E. & BAILEY, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23.

JEMAI, I., BEN AISSA, N., BEN GUIRAT, S., BEN-HAMMOUDA, M. & GALLALI, T. (2012). On-farm assessment of tillage impact on the vertical distribution of soil organic carbon and structural soil properties in a semiarid region in Tunisia. Journal of Environmental Management 113, 488-494.

KAHLON, M. S., LAL, R. & ANN-VARUGHESE, M. (2013). Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research 126, 151-158.

KÄNKÄNEN, H., ALAKUKU, L., SALO, Y. & PITKÄNEN, T. (2011). Growth and yield of spring cereals during transition to zero tillage on clay soils. European Journal of Agronomy 34, 35-45.
KARUNATILAKE, U., VAN ES, H. M. & SCHINDELBECK, R. R. (2000). Soil and maize response to plow and no-tillage after alfalfa-to-maize conversion on a clay loam soil in New York. *Soil and Tillage Research* **55**, 31-42.

KASPER, M., Buchan, G. D., MENTLER, A. & BLUM, W. E. H. (2009). Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. *Soil and Tillage Research* **105**, 192-199.

KAY, B. D. & VANDENBYGAART, A. J. (2002). Conservation tillage and depth stratification of porosity and soil organic matter. *Soil and Tillage Research* **66**, 107-118.

KESSAVAVALOU, A., DORAN, J. W., MOSIER, A. R. & DRIJBER, R. A. (1998). Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system. *Journal of Environmental Quality* **27**, 1105-1116.

KETTLER, T. A., LYON, D. J., DORAN, J. W., POWERS, W. L. & STROUP, W. W. (2000). Soil quality assessment after weed-control tillage in a no-till wheat–fallow cropping system. *Soil Science Society of America Journal* **64**, 339-346.

KIMBLE, J. M., LAL, R. & FOLLET, R. F. (2001). Methods for assessing soil carbon pools. In *Assesment Methods for Soil Carbon* (Eds R. Lal, J. M. Kimble, R. F. Follet & B. A. Stewart), pp. 3-12. Boca Raton, FL, USA: Lewis Publishers.

KOGA, N. & TSUII, H. (2009). Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. *Soil Science and Plant Nutrition* **55**, 546-557.

KONG, A. Y. Y., FONTE, S. J., VAN KESSEL, C. & SIX, J. (2009). Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. *Soil and Tillage Research* **104**, 256-262.
Kumar, V., Saharawat, Y. S., Gathala, M. K., Jat, A. S., Singh, S. K., Chaudhary, N. & Jat, M. L. (2013). Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research 142, 1-8.

Kushwaha, C. P., Tripathi, S. K. & Singh, K. P. (2001). Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology 16, 229-241.

Kutcher, H. R. & Malhi, S. S. (2010). Residue burning and tillage effects on diseases and yield of barley (Hordeum vulgare) and canola (Brassica napus). Soil and Tillage Research 109, 153-160.

Lafond, G. P., Loepky, H. & Derksen, D. A. (1992). The effects of tillage systems and crop rotations on soil water conservation, seedling establishment and crop yield. Canadian Journal of Plant Science 72, 103-115.

Lal, R. (1997). Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. II. Soil chemical properties. Soil and Tillage Research 42, 161-174.

Lal, R. (2004a). Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623-1627.

Lal, R. (2004b). Soil carbon sequestration to mitigate climate change. Geoderma 123, 1-22.

Lal, R. & Kimble, J. M. (1997). Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49, 243-253.

Lal, R., Kimble, J. M., Follett, R. F. & Cole, C. V. (1998). The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton, FL, USA: CRC Press.
Lal, R., Mahoubi, A. A. & Fausey, N. R. (1994). Long-term tillage and rotation effects on properties of a Central Ohio soil. *Soil Science Society of America Journal* 58, 517-522.

Lal, R., Reicosky, D. C. & Hanson, J. D. (2007). Evolution of the plow over 10,000 years and the rationale for no-till farming. *Soil and Tillage Research* 93, 1-12.

Lampurlanes, J., Angas, P. & Cantero-Martinez, C. (2001). Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. *Field Crops Research* 69, 27-40.

Larney, F. J., Bremer, E., Janzen, H. H., Johnston, A. M. & Lindwall, C. W. (1997). Changes in total, mineralizable and light fraction soil organic matter with cropping and tillage intensities in semiarid southern Alberta, Canada. *Soil and Tillage Research* 42, 229-240.

Li, D., Liu, M., Cheng, Y., Wang, D., Qin, J., Jiao, J., Li, H. & Hu, F. (2011). Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. *Soil and Tillage Research* 113, 77-81.

Liu, Y., Gao, M., Wu, W., Tanveer, S. K., Wen, X. & Liao, Y. (2013). The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. *Soil and Tillage Research* 130, 7-12.

López-Fando, C. & Pardo, M. T. (2011). Soil carbon storage and stratification under different tillage systems in a semi-arid region. *Soil and Tillage Research* 111, 224-230.

Lou, Y., Xu, M., Chen, X., He, X. & Zhao, K. (2012). Stratification of soil organic C, N and C:N ratio as affected by conservation tillage in two maize fields of China. *CATENA* 95, 124-130.
Luo, Z., Wang, E. & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. *Agriculture, Ecosystems & Environment* **139**, 224-231.

Lyon, D. J., Stroup, W. W. & Brown, R. E. (1998). Crop production and soil water storage in long-term winter wheat–fallow tillage experiments. *Soil and Tillage Research* **49**, 19-27.

Machado, S., Petrie, S., Rhinhart, K. & Qu, A. (2007). Long-term continuous cropping in the Pacific Northwest: Tillage and fertilizer effects on winter wheat, spring wheat, and spring barley production. *Soil and Tillage Research* **94**, 473-481.

Madari, B., Machado, P. L. O. A., Torres, E., de Andrade, A. G. & Valencia, L. I. O. (2005). No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. *Soil and Tillage Research* **80**, 185-200.

Mangalassery, S., Sjögersten, S., Sparkes, D. L., Sturrock, C. J., Craigon, J. & Mooney, S. J. (2014). To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? *Scientific Reports* **4**, 4586. doi:10.1038/srep04586.

Manns, H. R., Maxwell, C. D. & Emery, R. J. N. (2007). The effect of ground cover or initial organic carbon on soil fungi, aggregation, moisture and organic carbon in one season with oat (*Avena sativa*) plots. *Soil and Tillage Research* **96**, 83-94.

Marland, G., Garten Jr, C. T., Post, W. M. & West, T. O. (2004). Studies on enhancing carbon sequestration in soils. *Energy* **29**, 1643-1650.

McConkey, B. G., Liang, B. C., Campbell, C. A., Curtin, D., Moulin, A., Brandt, S. A. & Lafond, G. P. (2003). Crop rotation and tillage impact on
carbon sequestration in Canadian prairie soils. *Soil and Tillage Research* **74**, 81-90.

METAY, A., MOREIRA, J. A. A., BERNOUX, M., BOYER, T., DOUZET, J.-M., FEIGL, B., FELLER, C., MARAUX, F., OLIVER, R. & SCOPEL, E. (2007). Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). *Soil and Tillage Research* **94**, 122-132.

MORELL, F. J., LAMPURLANÉS, J., ÁLVARO-FUENTES, J. & CANTERO-MARTÍNEZ, C. (2011). Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. *Soil and Tillage Research* **117**, 76-84.

MRABET, R. (2000). Differential response of wheat to tillage management systems in a semiarid area of Morocco. *Field Crops Research* **66**, 165-174.

MRABET, R., IBNO-NAMR, K., BESSAM, F. & SABER, N. (2001a). Soil chemical quality changes and implications for fertilizer management after 11 years of no-tillage wheat production systems in semiarid Morocco. *Land Degradation and Development* **12**, 505-517.

MRABET, R., SABER, N., EL-BRAHILI, A., LAHLOU, S. & BESSAM, F. (2001b). Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. *Soil and Tillage Research* **57**, 225-235.

NOGÜEZ, A. M., ESCALANTE, A. E., FORNEY, L. J., NAVA-MENDEZ, M., ROSAS, I., SOUZA, V. & GARCÍA-OLIVA, F. (2008). Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs. *Biogeochemistry* **89**, 209-220.
NYBORG, M., SOLBERG, E. D., IZAURREALDE, R. C., MALHI, S. S. & MOLINA-AYALA, M. (1995). Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. Soil and Tillage Research 36, 165-174.

OORTS, K., MERCKX, R., GRÉHAN, E., LABREUCHE, J. & NICOLARDOT, B. (2007). Determinants of annual fluxes of CO₂ and N₂O in long-term no-tillage and conventional tillage systems in northern France. Soil and Tillage Research 95, 133-148.

PEIGNE, J., BALL, B. C., ROGER-ESTRADE, J. & DAVID, C. (2007). Is conservation tillage suitable for organic farming? A review. Soil Use and Management 23, 129-144.

PETERSEN, S. O., MUTEGI, J. K., HANSEN, E. M. & MUNKHOLM, L. J. (2011). Tillage effects on N₂O emissions as influenced by a winter cover crop. Soil Biology and Biochemistry 43, 1509-1517.

PETERSEN, S. O., SCHJØNNING, P., THOMSEN, I. K. & CHRISTENSEN, B. T. (2008). Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content. Soil Biology and Biochemistry 40, 967-977.

PIERCE, F. J., FORTIN, M.-C. & STATON, M. J. (1994). Periodic plowing effects on soil properties in a no-till farming system. Soil Science Society of America Journal 58, 1782-1787.

POWLSON, D. S. & JENKINSON, D. S. (1981). A comparison of the organic matter, biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. The Journal of Agricultural Science, Cambridge 97, 713-721.

PUGET, P. & LAL, R. (2005). Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research 80, 201-213.
REGINA, K. & ALAKUKU, L. (2010). Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. *Soil and Tillage Research* **109**, 144-152.

RILLIG, M. C., WRIGHT, S. F., NICHOLS, K. A., SCHMIDT, W. F. & TORN, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. *Plant and Soil* **233**, 167-177.

ROBERTSON, G. P., PAUL, E. A. & HARWOOD, R. R. (2000). Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. *Science* **289**, 1922-1925.

ROGER-ESTRADE, J., ANGER, C., BERTRAND, M. & RICHARD, G. (2010). Tillage and soil ecology: Partners for sustainable agriculture. *Soil and Tillage Research* **111**, 33-40.

SAINJU, U. M., SENWO, Z. N., NYAKATAWA, E. Z., TAZISONG, I. A. & REDDY, K. C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. *Agriculture, Ecosystems and Environment* **127**, 234-240.

SAINJU, U. M., SINGH, B. P. & WHITEHEAD, W. F. (2002). Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. *Soil and Tillage Research* **63**, 167-179.

SÁNCHEZ-GIRÓN, V., SERRANO, A., HERNANZ, J. L. & NAVARRETE, L. (2004). Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. *Soil and Tillage Research* **78**, 35-44.
SCHJØNNING, P. & RASMUSSEN, K. J. (2000). Soil strength and soil pore characteristics for direct drilled and ploughed soils. *Soil and Tillage Research* **57**, 69-82.

SIMMONS, B. L. & COLEMAN, D. C. (2008). Microbial community response to transition from conventional to conservation tillage in cotton fields. *Applied Soil Ecology* **40**, 518-528.

SISTI, C. P. J., DOS SANTOS, H. P., KOHHANN, R., ALVES, B. J. R., URQUIAGA, S. & BODDEY, R. M. (2004). Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. *Soil and Tillage Research* **76**, 39-58.

SIX, J., CONANT, R. T., PAUL, E. A. & PAUSTIAN, K. (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. *Plant and Soil* **241**, 155-176.

SIX, J., ELLIOTT, E. T. & PAUSTIAN, K. (1999). Aggregate and soil organic matter dynamics under conventional and no-tillage systems. *Soil Science Society of America Journal* **63**, 1350-1358.

SIX, J., ELLIOTT, E. T. & PAUSTIAN, K. (2000a). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. *Soil Biology and Biochemistry* **32**, 2099-2103.

SIX, J., FELLER, C., DENEF, K., OGLE, S. M., DE MORAES SA, J. C. & ALBRECHT, A. (2002b). Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. *Agronomie* **22**, 755-775.

SIX, J., OGLE, S. M., BREIDT, F. J., CONANT, R. T., MOSIER, A. R. & PAUSTIAN, K. (2004). The potential to mitigate global warming with no-tillage management is
only realized when practised in the long term. *Global Change Biology* **10**, 155-160.

SIX, J., PAUSTIAN, K., ELLIOTT, E. T. & COMBRINK, C. (2000b). Soil structure and organic matter. *Soil Science Society of America Journal* **64**, 681-689.

SMITH, P. (2004). Soils as carbon sinks: the global context. *Soil Use and Management* **20**, 212-218.

SOMBRERO, A. & DE BENITO, A. (2010). Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. *Soil and Tillage Research* **107**, 64-70.

STEVenson, F. J. (1994). *Humus Chemistry: Genesis, Composition, Reactions, 2nd Edition*. New York: Wiley.

STEWART, C. E., PAUSTIAN, K., CONANT, R. T., PLANTE, A. F. & SIX, J. (2007). Soil carbon saturation: concept, evidence and evaluation. *Biogeochemistry* **86**, 19-31.

STRONG, D. T., DE WEVER, H., MERCKX, R. & RECous, S. (2004). Spatial location of carbon decomposition in the soil pore system. *European Journal of Soil Science* **55**, 739-750.

SU, Z., ZHANG, J., WU, W., CAI, D., LV, J., JIANG, G., HUANG, J., GAO, J., HARTMANN, R. & GABRIELS, D. (2007). Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. *Agricultural Water Management* **87**, 307-314.

TISDALL, J. M. & OADES, J. M. (1980). The effect of crop rotation on aggregation in a red-brown earth. *Australian Journal of Soil Research* **18**, 423-433.

UGALDE, D., BRUNGS, A., KAEBERNICK, M., McGRooR, A. & SLATTERY, B. (2007). Implications of climate change for tillage practice in Australia. *Soil and Tillage Research* **97**, 318-330.
USSIRI, D. A. N., LAL, R. & JARECKI, M. K. (2009). Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. *Soil and Tillage Research* **104**, 247-255.

USSIRI, D. A. N. & LAL, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. *Soil and Tillage Research* **104**, 39-47.

UTOMO, W. H. & DEXTER, A. R. (1982). Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. *Journal of Soil Science* **33**, 623-637.

VAKALI, C., ZALLER, J. G. & KÖPKE, U. (2011). Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. *Soil and Tillage Research* **111**, 133-141.

VAN DEN PUTTE, A., GOVERS, G., DIELS, J., GILLIJNS, K. & DEMUZERE, M. (2010). Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. *European Journal of Agronomy* **33**, 231-241.

VARVEL, G. E. & WILHELM, W. W. (2011). No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems. *Soil and Tillage Research* **114**, 28-36.

VENTEREA, R. T., BURGER, M. & SPOKAS, K. A. (2005). Nitrogen oxide and methane emissions under varying tillage and fertilizer management. *Journal of Environmental Quality* **34**, 1467-1477.

VERHULST, N., NELISSEN, V., JESPERS, N., HAVEN, H., SAYRE, K. D., RAES, D., DECKERS, J. & GOVAERTS, B. (2011). Soil water content, maize yield and its
stability as affected by tillage and crop residue management in rainfed semi-arid highlands. *Plant and Soil* **344**, 73-85.

VOGELER, I., ROGASIK, J., FUNDER, U., PANTEN, K. & SCHNUG, E. (2009). Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. *Soil and Tillage Research* **103**, 137-143.

WANG, X.-B., CAI, D.-X., HOOGMOED, W. B., OENEMA, O. & PERDOK, U. D. (2006). Potential effect of conservation tillage on sustainable land use: a review of global long-term studies. *Pedosphere* **16**, 587-595.

WANG, X., DAI, K., ZHANG, D., ZHANG, X., WANG, Y., ZHAO, Q., CAI, D., HOOGMOED, W. B. & OENEMA, O. (2011). Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. *Field Crops Research* **120**, 47-57.

WANG, X., WU, H., DAI, K., ZHANG, D., FENG, Z., ZHAO, Q., WU, X., JIN, K., CAI, D., OENEMA, O. & HOOGMOED, W. B. (2012). Tillage and crop residue effects on rainfed wheat and maize production in northern China. *Field Crops Research* **132**, 106-116.

WEST, T. O. & MARLAND, G. (2002a). Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. *Environmental Pollution* **116**, 439-444.

WEST, T. O. & MARLAND, G. (2002b). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. *Agriculture, Ecosystems and Environment* **91**, 217-232.

WEST, T. O. & POST, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation. *Soil Science Society of America Journal* **66**, 1930-1946.
Wilhelm, W. W. & Wortmann, C. S. (2004). Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. *Agronomy Journal* **96**, 425-432.

Wright, A. L. & Hons, F. M. (2005). Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences. *Soil and Tillage Research* **84**, 67-75.

Wright, A. L., Hons, F. M., Lemon, R. G., McFarland, M. L. & Nichols, R. L. (2007). Stratification of nutrients in soil for different tillage regimes and cotton rotations. *Soil and Tillage Research* **96**, 19-27.

Wuest, S. B., Albrecht, S. L. & Skirvin, K. W. (2000). Crop residue position and interference with wheat seedling development. *Soil and Tillage Research* **55**, 175-182.

Yang, X.-M. & Wander, M. M. (1999). Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois. *Soil and Tillage Research* **52**, 1-9.

Yang, X. M., Drury, C. F., Reynolds, W. D. & Tan, C. S. (2008). Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon. *Soil and Tillage Research* **100**, 120-124.

Zanatta, J. A., Bayer, C., Dieckow, J., Vieira, F. C. B. & Mielniczuk, J. (2007). Soil organic carbon accumulation and carbon costs related to tillage, cropping systems and nitrogen fertilization in a subtropical Acrisol. *Soil and Tillage Research* **94**, 510-519.

Zhang, G. S., Chan, K. Y., Oates, A., Heenan, D. P. & Huang, G. B. (2007). Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. *Soil and Tillage Research* **92**, 122-128.
ZHANG, S., LI, Q., ZHANG, X., WEI, K., CHEN, L. & LIANG, W. (2012). Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research 124, 196-202.

ZHU, Y.-G. & MILLER, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science 8, 407-409.

ZOTARELLI, L., ALVES, B. J. R., URQUIAGA, S., BODDEY, R. M. & SIX, J. (2007). Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil and Tillage Research 95, 196-206.
Table 1. *Area under zero tillage in different countries - Adopted from (Derpsch et al. 2010)*

Country	Area under zero tillage (’000ha) as of 2007-2008	Area of zero tillage as % of cropped area*
USA	26500	16.3
Brazil	25502	32.3
Argentina	19719	50.5
Canada	13481	28.1
Australia	17000	35.4
Paraguay	2400	60.2
China	1330	1.1
Kazakhstan	1200	5.0
Bolivia	706	17.4
Uruguay	655	35.5
Spain	650	3.8
South Africa	368	3.0
Venezuela	300	9.2
Country	Value	Percentage
--------------	-------	------------
France	200	1.0
Finland	200	8.9
Chile	180	10.1
New Zealand	162	29.9
Colombia	102	2.6
Ukraine	100	0.3

Total 110755

(FAO 2013)
Table 2. *Global examples of Carbon stocks reported under conventional and zero tillage*

Sl	Author	Study area	Soil texture	Years under zero tillage	Crops	Depth to which C reported	Carbon - Conventional (t/ha)	Carbon - under ZT (t/ha)	Climate
1	Sombrero & de	Burgos, Spain	Loamy sand in surface	10	Cereal – fallow, Cereal legume	30	4.6	17.80	Temperate
	de Benito								
	(2010)								
2	Deen & Kataki	Ontario, Canada	Silt loam	25	Maize, Soybean	60	36.7	39.0	Temperate
	(2003)								
3	López-Fando &	Toledo, Central Spain	Loamy sand	16	Chick pea, barley	30	26.5	32.6	Temperate
	Pardo								
	Author	Location	Soil Type	Crop Rotation	Yr 1	Yr 2	Yr 3	Tempereate	
---	----------------	------------------	--------------------	---------------	------	-------	-------	------------	
4	Chatterjee & Lal	Michigan, US	Clay loam	Maize-soybean	60	97.6	104.0	Temperate	
5	Chatterjee & Lal	Ohio, US	Clay loam, silty clay loam	Maize-soybean	60	82.3	79.0	Temperate	
6	Chatterjee & Lal	Ohio, US	Loam	Maize-soybean	60	117.0	143.0	Temperate	
7	Chatterjee & Lal	Ohio, US	Silt loam	Maize-soybean	60	46.3	66.7	Temperate	
8	Chatterjee & Lal	Pennsylvania, US	Loam	Maize-alfalfa	60	96.4	83.4	Temperate	
	Authors	Location	Soil Type	Crop(s)	Yield in t/ha	Nitrogen Use	Carbon Input	Climate Type	
---	------------------	-------------------	---------------	---------------------------	--------------	--------------	--------------	--------------	
9	Puget & Lal (2005)	Ohio, US	Silty clay loam	Maize	20	88.5	90.9	Temperate	
10	Dolan et al. (2006)	Minnesota, US	Silt loam	Soybean, maize	40	117.0	106.0	Temperate	
11	Kahlon et al. (2013)	Ohio, US	Silt loam	-	15	21.4	27.6	Temperate	
12	Yang et al. (2008)	Ontario, Canada	Clay loam	Maize, maize-soybean rotation	30	104.8	112.9	Temperate	
13	Yang & Wander (1999)	Urbana, US	Silt loam	Soybean	30	46.6	58.5	Tropical	
14	Lou et al. (2012)	Jianping county, China	Sandy loam	Maize	100	87.6	93.1	Temperate	
15	Lou et al.	Changtu	Loam	Maize	100	95.4	96.3	Temperate	
ID	Authors	Location, Year	Soil Type	Rotation	Yield 1	Yield 2	Yield 3	Climate	
-----	--------------------	----------------	-----------	-----------------	---------	---------	---------	----------	
16	Jemai et al. (2012)	Mateur, Tunisia	Clay loam	Wheat/faba bean	50	83.9	80.2	Temperate	
17	Jemai et al. (2012)	Mateur, Tunisia	Clay loam	Wheat/sulla	50	83.9	73.1	Temperate	
18	Lal (1997)	Ibadan, Nigeria	Sandy	Maize	10	2.0	2.4	Tropical	
19	Larney et al. (1997)	Alberta, Canada	Sandy clay	Spring wheat - fallow	15	27.1	29.2	Temperate	
20	Larney et al. (1997)	Alberta, Canada	Sandy clay	Continuous	15	31.0	33.0	Temperate	
21	Sisti et al. (2004)	Passo Fundo, Brazil	Clay	Wheat-soybean	30	60.7	65.0	Tropical	
	Author(s)	Location	Soil Type	Cover Crops	Treatment 1	Treatment 2	Treatment 3	Temp. Type	
---	----------------	---------------------------	-----------------	-----------------------------	-------------	-------------	-------------	------------	
22	Metay et al. (2007)	Cerrados, Brazil	Clay	Leguminous cover crops	5	10	19.9	Tropical	
23	Dendooven et al. (2012)	Central Mexico	Clay	Wheat and maize	19	60	76.8	Tropical	
24	Varvel & Wilhelm (2011)	Lincoln, US Silty clay loam	Maize, soybean	20	60	90.5	114.4	Temperate	
25	Varvel & Wilhelm (2011)	Lincoln, US Silty clay loam	Maize, soybean	20	90	104.8	138.6	Temperate	
26	Varvel & Wilhelm (2011)	Lincoln, US Silty clay loam	Maize, soybean	20	120	123.3	165.4	Temperate	
27	Dalal et al. (2011)	Queensland, Australia	Clay	Wheat, barley	40	10	19.8	Temperate	
	Author(s)	Location	Soil Type	Year	Crop Rotation	Yield (g/m²)	Temperature		
---	----------------------	-------------------	-------------	------	---------------	--------------	-------------		
28	He et al. (2011)	Hebei province, China	Silt loam	11	Summer maize, winter wheat	30	6.1	6.6	Temperate
29	Ussiri et al. (2009)	Ohio, US	Silt loam	43	Maize	30	44.8	80.0	Temperate
30	Jantalia et al. (2007)	Planaltina, Distrito Federal, Cerrado, Brazil	Clay	20	Soybean based rotations	30	64.8	85.9	Tropical
31	Bayer et al. (2000)	Rio Grande do Sul State, Brazil	Sandy clay loam	9	Oat /maize	30	44.6	49.2	Tropical
32	Bayer et al. (2000)	Rio Grande do Sul State, Brazil	Sandy clay loam	9	Oat + common vetch /maize + cowpea	30	50.2	56.6	Tropical
Study	Location	Soil Type	Year	Crop(s)	Yield	Yield/Maize	Yield/Soybean	Climate	
---------	---------------------------	-----------	------	--------------------------------	-------	-------------	---------------	---------	
33 Fuentes et al. (2010)	Central Mexico Clay	16	Maize	20	27.5	36.2	Tropical		
34 Fuentes et al. (2010)	Central Mexico Clay	16	Wheat	20	27.3	40.0	Tropical		
35 Clapp et al. (2000)	Minnesota, US Silt loam	13	Maize, soybean, oats	15	49.7	50.4	Temperate		
36 Jantalia et al. (2007)	Planaltina, Distrito, Brazil Clay	20	Rice, soybean, maize	30	71.6	85.9	Tropical		
37 Varvel & Wilhelm (2011)	Lincoln, US Silty clay loam	19	Continuous maize and soybean	150	131.6	171.3	Temperate		
38 He et al. (2011)	Gaocheng, North China Silt loam	11	Summer maize and winter	30	19.6	18.2	Temperate		

60
Study ID	Authors	Location	Soil Type	Duration	Crop Rotation	Yield	Probability	Climate Zone
39	Sainju et al. (2002)	Georgia, USA	Sandy loam	6	Tomato or silage maize	20 20.8 24.4	Temperate	
40	Kushwaha et al. (2001)	Banaras, India	Sandy loam	1	Barley	10 9.9 12.0	Tropical	
41	Castellanos-Navarrette et al. (2012)	Central Mexico	Clay loam	17	Maize–wheat rotation	30 35.4 44.1	Tropical	
42	Jarecki et al. (2005)	Ohio	Silt loam	14	Continuous maize	50 51.4 54.7	Temperate	
43	Ernst & Paysandú (2005)	Paysandú, Clay loam	10	Wheat, barley	18 47.3 51.8	Temperate		
and oat for winter crops and maize, sunflower, sorghum, and soybean for summer crops

	Authors	Location	Soil Type	Spacing	Yield						
44	Mrabet et al.	Sidi El Aydi, Morocco	Clay	11	Wheat–maize, lentils fallow	20	33.9	37.3	Temperate		
45	Abreu et al.	Oklahoma, US	Silt loam	5	Soybean–maize–wheat–soybean–maize	110	101.6	119.2	Temperate		
46	Abreu et al.	Oklahoma, US	Silt loam	7	Wheat–soybean–maize	110	111.6	127.4	Temperate		
47	Abreu et al.	Oklahoma, US	Silt loam	5	Maize–wheat	110	104.5	116.3	Temperate		
	48	Abreu et al. (2011)	US	Oklahoma,	Silt loam	12	Wheat/soybean/grain sorghum	110	72.1	81.9	Temperate
---	----	-------------------	----	-----------	-----------	----	----------------------------	-----	------	------	-----------
	49	Zanatta et al. (2007)	US	Rio Grande do Sul State,	Sandy clay loam	18	Oat/maize	30	41.8	46.5	Tropical
Table 3. Reported yields under various crops in zero till and conventional tillage systems, with increases and decreases associated with zero till highlighted

Sl no.	Reference	Study area	Soil texture	Annual Rainfall	Years under zero till	Crop	Yield Zero till (kg/ha)	Yield Conventional till (kg/ha)
1	Chen et al.	Northeast China	Clay loam	530	6	Soybean	2659	2441
	(2011)							
2	Su et al.	Henan Province, China	Loam	614	6	Winter	4679	4125
	(2007)							
3	Hemmat & Eskandari	East Azerbaijan Province, Iran	Clay loam	375	3	Winter	1435	1014
	(2006)							
4	Vogeler et al.	Braunschweig, Germany	Silty loam	620	8	Winter	5790	5680
	(2009)							
5	Vogeler et al.	Braunschweig, Germany	Silty loam	620	8	Field	2910	2520
	(2009)							
6	He et al.	Gaocheng in Hebei, China	Silt loam	494	11	Winter	6154	5945
	(2011)							
7	Morell et al.	Agramunt, Spain	Sandy silt	435	10	Winter	1590	1148
	(2011)		loam					
Study Reference	Location	Soil Type	Clay (%)	CEC (cmol/kg)	Nutrient 1	Nutrient 2		
---------------------	---------------------------	-------------	----------	---------------	------------	------------		
Ekeberg & Riley (1997)	Southeast Norway Loam	415	9	Spring barley	4310	4020		
Ekeberg & Riley (1997)	Southeast Norway Loam	415	9	Spring wheat	3760	3280		
Cantero-Martínez et al. (2003)	Guissona, Spain Clay loam	<350	3	Barley	4163	3803		
Cantero-Martínez et al. (2003)	Agramunt, Spain Sandy silt loam	<350	3	Barley	3770	3230		
Buschiazzo et al. (1998)	Córdoba, Argentina Silt loam	760	11	Soybean	3230	2480		
Buschiazzo et al. (1998)	Córdoba, Argentina Silt loam	760	11	Sorghum	5720	4780		
Buschiazzo et al. (1998)	Buenos Aires, Argentina Sandy loam	660	7	Wheat	1600	1040		
Mrabet et al. (2000)	Casablanca, Morocco Clay	296	3	Maize	2470	2410		
Wang et al. (2012)	Luoyang, Henan, China Sandy loam	570	6	Winter wheat	4534	4413		
Franchini et al. (2012)	Paraná, Brazil Clay	1651	23	Soybean	3071	2496		
Study ID	Authors	Location	Soil Type	Depth (cm)	Nitrogen Application (kg/ha)	Winter Wheat (kg/ha)	Barley (kg/ha)	
---------	--------------------------	---------------------------	-------------------------------	------------	------------------------------	----------------------	----------------	
18	Kutcher & Malhi (2010)	Saskatchewan, Canada	Sandy loam	-	5	3069	2796	
19	Kutcher & Malhi (2010)	Saskatchewan, Canada	Clay loam	-	5	3133	2760	
20	Arshad et al. (1994)	Alta, Canada	Clay	449	3	1570	1530	
21	Filipovic et al. (2006)	north-west Slavonia, Croatia	Silt loam	817	4	5680	5590	
22	Wang et al. (2011)	Shanxi province, China	Sandy loam	520	5	5347	5185	
23	Karunatilak e et al. (2000)	Willsboro, New York	Clay loam	-	7	7260	6420	
24	Sánchez-Girón et al. (2004)	Madrid, Spain	Loam	430	13	3169	3032	
25	Kumar et al. (2013)	western Uttar Pradesh, India	Sandy loam	800	3	4490	4090	
26	Lafond et al. (1992)	Saskatchewan, Canada	Clay	534	3	2070	2039	
Study Reference	Location	Soil Type	Yield (kg ha⁻¹)	Study Year (Apr to Mar)	Crop Type			
----------------------------	------------------------	-----------	----------------	-------------------------	---------------			
Hemmat & Eskandari (2004)	Maragheh, Iran	Clay	476	2	Winter wheat			
Halvorson et al. (2000)	North Dakota, US	Silt loam	422	12	Spring wheat			
Aulakh et al. (2012)	Ludhiana, India	Loamy sand	563-695	4	Soybean			
Verhulst et al. (2011)	El Batán, Mexico	Clay	625	12	Maize			
Halvorson et al. (2002)	Akron, US	Silt loam	419	5	Winter wheat			
Lampurlané et al. (2001)	Catalonia, Spain	Loamy	440	4	Barley			
Chen et al. (2011)	Northeast China	Clay loam	530	6	Maize			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Winter wheat			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Oil seed rape			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Oats			
Vogeler et al. (2009)	Braunschweig, Germany	Silty loam	620	8	Maize			

Studies reporting increased yields under conventional tillage

Study Reference	Location	Soil Type	Yield (kg ha⁻¹)	Study Year (Apr to Mar)	Crop Type			
Chen et al. (2011)	Northeast China	Clay loam	530	6	Maize			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Winter wheat			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Oil seed rape			
Gruber et al. (2012)	Hohenheim, Germany	Loam	715	10	Oats			
Vogeler et al. (2009)	Braunschweig, Germany	Silty loam	620	8	Maize			
	Authors	Location	Soil Type	Depth (cm)	Water Content (%)	Crop	Water Deficit (mm)	
---	------------------	---------------------------	-------------	------------	-------------------	------------	-------------------	
39	He et al.	Gaocheng in Hebei, China	Silt loam	494	11	Summer maize	9945	10727
40	Carter	Prince Edward Island, Canada	Loam	403	8	Barley	2730	2790
41	Nyborg et al.	North central Alberta	Loam	547	11	Maize	2090	3240
42	Nyborg et al.	North central Alberta	Silty clay loam	452	11	Maize	2640	3750
43	Buschiazzo et al.	Buenos Aires, Argentina	Sandy loam	660	7	Maize	5000	5200
44	Buschiazzo et al.	La Pampa, Argentina	Sandy loam	639	9	Sorghum	3960	4070
45	Buschiazzo et al.	La Pampa, Argentina	Sandy loam	639	9	Wheat	1440	2340
46	Buschiazzo et al.	San Luis, Argentina	Loamy sand	591	10	Maize	1400	2150
47	Wang et al.	Shouyang, Shanxi, China	Sandy loam	520	15	Spring maize	4683	4827
49	Franchini et al.	Paraná, southern Brazil	Clay	1651	23	Maize	5751	6623
50	Franchini et al.	Paraná, southern Brazil	Clay	1651	23	Wheat	2253	2287
51	Filipovic et al.	North-west Slavonia, Croatia	Silt loam	817	4	Maize	7540	7690
Study	Location	Soil Type	Texture	Depth (cm)	Season	Treatment 1	Treatment 2	
-------	-----------	------------	---------	------------	--------	-------------	-------------	
Sánchez-Girón et al.	Madrid, Spain	Loam	430	Winter	3024	3046		
Machado et al. (2007)	Oregon, US	Silty	398	Winter	2180	2560		
Machado et al. (2007)	Oregon, US	Silty	398	Spring	1640	2200		
Machado et al. (2007)	Oregon, US	Silty	398	Spring	1700	3360		
Lafond et al. (1992)	Saskatchewan, Canada	Clay	534	Spring	2548	2553		
Lyon et al. (1998)	Sidney, US	Silty	440	Winter	2430	2620		
Aulakh et al. (2012)	Ludhiana, India	Loamy sand	563-995	Winter	3226	3283		
Wilhelm & Wortmann (2004)	Nebraska, US	Silty clay loam	708	Maize	6200	6750		
Wilhelm & Wortmann (2004)	Nebraska, US	Silty clay loam	708	Soybean	2450	2480		

Studies reporting little/no difference in yields under both tillage systems

Study	Location	Soil Type	Texture	Depth (cm)	Season	Treatment	Treatment
Carter (2005)	Prince Edward Island, Canada	Sandy loam	403	9	Soybean	1540	1540
Table 4. *Soil carbon sequestration rates under zero tillage*

Region	Carbon sequestration rate achievable by reduced tillage (g C/m²/year)	Time period to attain the sequestration rate	Depth of soil (cm)	Reference
Global soils	57	15 years	Top 22 cm	West & Post (2002)
US Great plains	30-60	-	-	Follet (2001)
US Croplands	10-50	In 5-10 years	Top 20 cm	Lal *et al.* (1998)
US Croplands	34	20 years	Top 30 cm	West & Marland (2002b)
Global soils	33	30 years	Top 30 cm	Hermle *et al.* (2008)
Tropical-humid	3-20	30 years	Top 100 cm	Farina *et al.* (2011)
Sub tropical humid	2.67	10 years	60 cm	Sainju *et al.* (2008)
Sub tropical humid	0.7	7 years	40 cm	Al-Kaisi *et al.* (2005)
Semi arid	0.55	20 years	20 cm	Hernanz *et al.* (2009)
Environment	Depth (m)	Duration (years)	Depth of Growth (cm)	Reference
----------------------	-----------	------------------	----------------------	--------------------------------
Semi-arid	0.5	17	60	López-Fando & Pardo (2011)
Semi-arid	2.46	16	30	Álvaro-Fuentes et al. (2009)
Arid areas in India	2.69	20	30	Grace et al. (2012)
Fig. 1. Net sequestration of carbon (t/ha) under zero tillage in comparison to conventional tillage as affected by duration under zero tillage in tropical and temperate soils. ($F_{1,55} = 1.42$, NS overall, $F_{1,16} = 4.40$, $P < 0.05$ tropical, $F_{1,37} = 0.54$, NS temperate; for the data sets used please refer to Table 2).

Fig. 2. Carbon sequestration rate in tropical and temperate soils ($F_{1,55} = 16.57$, $P < 0.001$ overall, $F_{1,16} = 7.03$, $P < 0.05$ tropical, $F_{1,37} = 17.73$, $P < 0.001$ temperate; Please refer to Table 2 for the sources of data used in this figure).

Fig. 3. Yield advantage versus years under zero tillage for winter wheat, soybean and maize (Taken from the data in Table 3).
Fig. 1.

Temperate

\[y = 0.3218x + 4.009 \]

\[R^2 = 0.05 \]

Tropical

\[y = 1.0411x - 1.0485 \]

\[R^2 = 0.23 \]
Fig. 2.

Temperate
\[y = 0.0166x - 0.2421 \]
\[R^2 = 0.30 \]

Tropical
\[y = 0.0354x - 0.0215 \]
\[R^2 = 0.38 \]
Maize
\[y = -0.5081x - 8.5045 \]
\[R^2 = 0.01 \]

Soybean
\[y = 0.5578x + 2.0978 \]
\[R^2 = 0.14 \]

Winter wheat
\[y = -0.7799x + 8.7384 \]
\[R^2 = 0.06 \]

Fig. 3.