Howard JM, Nandy K, Woldu SL, Margulis V. Demographic factors associated with non-guideline–based treatment of kidney cancer in the United States. *JAMA Netw Open*. 2021;4(6):e2112813. doi:10.1001/jamanetworkopen.2021.12813

eAppendix. Supplemental Methods
eReferences
eTable 1. Proportion of Missing Values
eTable 2. Definitions of Tumor Size Classifications and Corresponding Guideline-Based Treatments
eTable 3. Variance Inflation Factors for the Primary Multinomial Regression Analysis and for Each Subgroup Analysis
eTable 4. Sensitivity Analysis for Primary Outcome
eTable 5. Subgroup Sensitivity Analysis With Tumor Size as a Continuous Covariate
eFigure. Inclusion and Exclusion Criteria

This supplemental material has been provided by the authors to give readers additional information about their work.
eAppendix. Supplemental Methods

Covariates

Covariates included in the analysis were patient age, sex, race/ethnicity, Charlson-Deyo comorbidity index, insurance status (private insurance, uninsured, Medicaid, Medicare, other government insurance), facility type (community cancer program, comprehensive community cancer program, academic/research program, facility location (Northeast, South/Southeast, Midwest, Mountain/West), urban/rural facility setting (metro, urban, rural), great-circle distance from patient’s residence to facility, annual institutional case volume, median income and educational attainment of patient’s home ZIP code, and year of diagnosis. Patient sex and race/ethnicity were abstracted from medical records by the participating institutions and were therefore dependent on documentation practices of the individual treating institutions, which could not be determined with certainty. Race/ethnicity was classified as White, Black, Hispanic, or other. Patients of any race reported as having Hispanic ethnicity were classified as Hispanic. Treatment modality was categorized as observation/surveillance (including non-curative treatments), ablation, partial nephrectomy, and radical nephrectomy. Patients with a delay from diagnosis to treatment of ≥ 6 months were deemed to have undergone a trial of observation. Institutional case volume was calculated as the number of kidney cancer cases reported by a given institution in a given year. Institutional case volumes were stratified into quartiles by year. Missing tumor sizes were inferred from the clinical T stage, where possible. Conflicts between reported tumor size and clinical T1-T2 stage were resolved in favor of the reported tumor size. Tumor histology was stratified into clear cell, papillary, chromophobe, sarcomatoid, collecting duct, medullary carcinoma, and mixed/unspecified/other for the multiple imputation. Due to small case numbers the sarcomatoid, collecting duct, and medullary histologies were combined with the mixed/unspecified/other group when reporting.
Multiple Imputation of Missing Values

As discussed in the main text, the data set was first filtered by the inclusion criteria of year of diagnosis, age, and Charlson-Deyo score, none of which had missing values, to yield a group of 214,763 patients. Cases with metastatic disease ($n = 27,717$) were excluded using variables reporting the presence of metastases at diagnosis and the reported clinical and pathologic M stages. A small minority of cases ($n = 1,559, 0.7\%$) with no data on metastatic status were also excluded. Finally, a small group of patients with documented cT0 stage ($n = 196$) were excluded, yielding a population of 185,291 patients with non-metastatic kidney tumors. Tumor histology was not used as an inclusion criterion as this would not necessarily be known at the time of treatment decision making.

Analysis of missing values indicated substantial proportions of missing clinical and demographic data (eTable 1). The pattern of missingness was not monotone. Missing values were imputed 20 times in 10 iterations using fully conditional specification. The imputation model included the following as both independent and imputed variables: facility type, facility location, urban/rural status, race/ethnicity, insurance status, income by ZIP code, educational attainment by ZIP code, great-circle distance to facility, tumor size (categorical), and clinical T and N stages. Independent variables which were not imputed included age, sex, Charlson-Deyo score, year of diagnosis, annual institutional patient volume by quartile, tumor histology, pathologic T and N stages, clinical and pathologic summary stages, and NCDB analytic stage group. Treatment modality was missing in a minority (1.0\%) of cases. As an outcome variable, it was imputed where missing but was not included as an independent factor in the imputation. Statistical analyses were performed separately on each imputed data set and the results were then pooled, using Rubin’s rules for parametric tests and taking the median of calculated values for nonparametric tests, for which Rubin’s rules are not applicable. Significance across multiple imputed data sets was determined using a similar technique\(^1\).
Validations of Multivariable Analyses

For all multivariable analyses, multicollinearity of the included covariates was assessed by calculation of variance inflation factors (VIFs). With one minor exception, VIFs were ≤ 2.0, suggesting a minimal effect of multicollinearity on the outcome (eTable 3). For the primary multinomial analysis of undertreatment versus overtreatment versus guideline-based treatment, a sensitivity analysis was performed on an alternate, non-imputed data set in which cases with missing information were excluded. This yielded similar results to the primary analysis (eTable 4). Tumor size was not included as a covariate in the primary multinomial regression analysis, as it was part of the definition of guideline-based treatment. However, it was recognized that tumor size could vary within tumor subgroups and that this could confound the results. We therefore repeated the subgroup (binomial regression) analyses including tumor size as a continuous covariate. This did not significantly change the result (eTable 5).
eReferences

1. Eekhout I, Van De Wiel MA and Heymans MW: Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis. BMC Med Res Methodol 2017;17:1–12.
eTable 1. Proportion of Missing Values

Characteristic	Missing Values n (%)
total patients	185,291
age	0
sex	0
race/ethnicity	1,557 (0.8%)
Charlson-Deyo comorbidity index	0
insurance status	3,579 (1.9%)
facility type	10,621 (5.7%)
facility annual patient volume, median (IQR)	0
facility location	10,621 (5.7%)
urban/rural location	6,252 (3.4%)
distance to facility, median (IQR), miles	20,594 (11.1%)
median income by ZIP code, US$	22,611 (12.2%)
% without high school degree, by ZIP code	22,326 (12.0%)
tumor size	1,586 (0.9%)
AJCC clinical T stage	31,404 (16.9%)
AJCC clinical N stage	20,878 (11.3%)
treatment modality	1,809 (1.0%)

Among \(n = 185,291 \) patients with non-metastatic kidney cancer prior to multiple imputation.
Tumor Classification	Undertreatment	Guideline-Based Treatment	Overtreatment
cT1a (< 2 cm)		surveillance	ablation
			partial nephrectomy
			radical nephrectomy
cT1a (2 - 4 cm)		surveillance	ablation
			partial nephrectomy
			radical nephrectomy
cT1b (4 - 7 cm)	surveillance	partial nephrectomy	
	ablation		
cT2 (> 7 cm)	surveillance	partial nephrectomy	
	ablation		
eTable 3. Variance Inflation Factors for the Primary Multinomial Regression Analysis and for Each Subgroup Analysis

Covariate	Primary Analysis	Subgroup Analysis			
		Small cT1a	Large cT1a	cT1b	cT2
age	1.21	1.19	1.20	1.23	1.23
year of diagnosis	1.00	1.01	1.01	1.00	1.00
sex	1.00	1.00	1.01	1.01	1.00
race/ethnicity	1.10	1.09	1.09	1.10	1.10
Charlson-Deyo comorbidity index	1.02	1.02	1.02	1.02	1.02
insurance status	1.21	1.20	1.21	1.23	1.22
facility type	1.20	1.20	1.19	1.21	1.20
facility location	1.02	1.02	1.02	1.02	1.02
institutional case volume	1.24	1.23	1.23	1.25	1.24
urban/rural status	1.34	1.32	1.33	1.35	1.36
distance traveled to facility	1.27	1.25	1.26	1.28	1.30
median income	1.98	2.01	1.97	1.96	1.97
median educational attainment	1.91	1.94	1.91	1.90	1.89

Values shown are the median of variance inflation factors (VIFs) calculated separately for 20 imputed data sets.
eTable 4. Sensitivity Analysis for Primary Outcome

Analysis Characteristic	Undertreatment (Multivariable)	Overtreatment (Multivariable)				
	OR	95% CI	p	OR	95% CI	p
sex						
male		reference		reference		
female	0.81	0.75 - 0.88	< 0.001	1.28	1.25 - 1.32	< 0.001
race/ethnicity						
White		reference		reference		
Black	1.40	1.26 - 1.55	< 0.001	1.06	1.02 - 1.11	0.006
Hispanic	1.21	1.06 - 1.39	0.005	1.05	1.00 - 1.11	0.067
insurance status						
private insurance		reference		reference		
uninsured	2.58	2.20 - 3.02	< 0.001	0.73	0.67 - 0.79	< 0.001
Medicaid	2.43	2.15 - 2.75	< 0.001	0.93	0.88 - 0.98	0.010
Medicare	1.67	1.51 - 1.83	< 0.001	1.18	1.14 - 1.22	< 0.001

Multinomial logistic regression analysis using the original, non-imputed data set with cases missing tumor size or treatment information excluded (n = 138,016 cases with complete information). The following covariates were included in the model but are not shown here for brevity: age, year of diagnosis, Charlson-Deyo comorbidity index, facility type, facility location, urban/rural location, facility annual patient volume, distance traveled to facility, income and educational attainment by patient’s home ZIP code. Comparisons meeting the threshold for significance (p ≤ 0.05) are highlighted in **bold**.
eTable 5. Subgroup Sensitivity Analysis With Tumor Size as a Continuous Covariate

Tumor Category Characteristic	Overtreatment (Multivariable)	Undertreatment (Multivariable)				
	OR	95% CI	p	OR	95% CI	p
small cT1a (< 2 cm)						
sex						
male						
female	1.15	1.06 - 1.25	0.001			
race/ethnicity						
White						
Black	0.72	0.64 - 0.80	< 0.001			
Hispanic	0.91	0.78 - 1.06	0.22			
insurance status						
private insurance						
uninsured	0.40	0.33 - 0.49	< 0.001			
Medicaid	0.58	0.50 - 0.67	< 0.001			
Medicare	0.79	0.72 - 0.87	< 0.001			
tumor size (per 1 cm)	1.10	1.00 - 1.21	0.055			
large cT1a (2 - 4 cm)						
sex						
male						
female	1.16	1.11 - 1.20	< 0.001			
race/ethnicity						
White						
Black	1.11	1.05 - 1.17	< 0.001			
Hispanic	1.13	1.05 - 1.21	0.002			
insurance status						
private insurance						
uninsured	0.98	0.87 - 1.09	0.72			
Medicaid	1.03	0.96 - 1.11	0.38			
Medicare	1.21	1.15 - 1.27	< 0.001			
tumor size (per 1 cm)	2.23	2.16 - 2.31	< 0.001			
cT1b (2 - 7 cm)						
sex						
male						
female	0.78	0.72 - 0.85	< 0.001			
race/ethnicity						
White						
Black	1.47	1.31 - 1.64	< 0.001			
Hispanic	1.21	1.05 - 1.41	0.009			
insurance status						
private insurance						
uninsured	2.53	2.14 - 3.00	< 0.001			
Medicaid	2.44	2.14 - 2.78	< 0.001			
Medicare	1.72	1.55 - 1.90	< 0.001			
tumor size (per 1 cm)	0.74	0.71 - 0.78	< 0.001			
cT2 (> 7 cm)						
sex						
male						
female	0.99	0.85 - 1.15	0.87			
race/ethnicity						
White						
Tumor Category Characteristic	Undertreatment (Multivariable)					
-----------------------------	--------------------------------					
	OR	95% CI	p			
Black	1.65	1.37 - 1.99	< 0.001			
Hispanic	1.21	0.94 - 1.56	0.14			
insurance status						
private insurance reference						
uninsured	2.78	2.12 - 3.64	< 0.001			
Medicaid	2.89	2.31 - 3.61	< 0.001			
Medicare	1.96	1.63 - 2.36	< 0.001			
tumor size (per 1 cm)	0.98	0.96 - 1.00	0.017			

The following covariates were included in the model but are omitted here for brevity: age, year of diagnosis, Charlson-Deyo comorbidity index, facility type, facility location, facility annual patient volume, urban/rural location, distance traveled to facility, income, and educational attainment. Comparisons meeting the threshold for significance ($p \leq 0.05$) are highlighted in **bold.**
The final study population consisted of 158,445 patients aged 30 - 70 with cT1-2 N0 M0 kidney cancer. Abbreviations; NCDB, National Cancer Database.