Regions of Dynamical Stability for Discs and Planets in Binary Stars of the Solar Neighborhood

Luisa G. Jaime1,2, Barbara Pichardo1 *, and Luis Aguilar3

1Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264, Ciudad Universitaria, México
2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. postal 70-543 Ciudad Universitaria, D.F., México
3Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 877, 22800 Ensenada, México

Accepted xxx. Received ; in original form

ABSTRACT
Using the results of Pichardo et al. (2005,2008), we determine regions of dynamical stability where planets (or discs in general) could survive in stable orbits around binary stellar systems. We produce this study for 161 binary stars in the Solar neighborhood with known orbital parameters. Additionally, we constructed numerically the discs (invariant loops) around five binary systems with known orbital parameters and with confirmed planets: HIP 10138, HIP 4954, HIP 67275, HIP 116727 and Kepler 16, as a test to the approximation of Pichardo et al. (2005,2008). In each single case, the reported position of the planets lay within our calculated stability regions. This study intends to provide a guide in the search for planets around binary systems with well known orbital parameters, since our method defines precise limits for the stable regions, where discs may have established and planets formed.

Key words: circumstellar matter, discs – binary: stars, Solar Neighborhood, exoplanets.

1 INTRODUCTION

It is known that most low-mass main-sequence stars are members of binary or multiple systems (Duquennoy & Mayor 1991; Fisher & Marcy 1992), and in particular in the Solar Neighborhood, the fraction goes up to \(\sim 78\%\) (Abt 1983). This suggests that binary formation is the primary branch of the star formation process (Mathieu 1994).

Significant advances in high-angular-resolution infrared imaging technology have enabled large surveys of young binary stars on a variety of star-forming regions (Mathieu et al. 1992, 1994). In addition, right after the discovery of the first extrasolar planetary system around a pulsar (Wolszczan & Frail 1992), and particularly after the first extrasolar planet discovered around a main sequence star (Mayor & Queloz 1995; Marcy & Butler 1998), observational activity was greatly stimulated. More recently, advances in observational techniques and instrumentation, such as the HST (WFPC2 & NICMOS) imaging (Padgett et al. 1997, 1999; Reid et al. 2001; Borucki et al. 2010), submillimeter imaging (Smith et al. 2000), optical and infrared long-baseline interferometry (Quirrenbach 2001a,b), millimeter and sub-millimeter interferometry (Launhardt et al. 2000, Launhardt 2001, Guilloteau 2001), adaptive optics (Simon et al. 1999; Close 2001), spatial astrometry (Söderhjelm 1999; Quist & Lindegren 2000, 2001), and microlensing (Alcock et al. 2001; Dong-Wook et al. 2008; Rattenbury 2009), are also available in binary studies. Thanks to all this new technology and observational work, we have now the possibility to study and understand better the physics of binary systems and the surrounding discs built during the formation stage.

In the recent past, several planets in binary or multiple star systems have been discovered (Correia 2008; Deeg et al. 2008; Desidera & Barbieri 2007; Fischer et al. 2008; Raghavan 2006; Konacki 2005; Mugrauer et al. 2005; Eggenberger et al. 2004; Sigurdsson et al. 2003; Udry et al. 2002; Sigurdsson & Phinney 1993; Lyne 1988, etc.). Both suspected of formed in situ, or acquired by dynamical processes (Pfahl & Muterspaugh 2006). For a review of observational techniques see Muterspaugh et al. (2010). In addition, several recently discovered circumstellar discs where planets are assumed to be formed, lie around close binaries (Wright et al. 2011; Prato & Weinberger 2010; Desidera & Barbieri 2007; Doyle et al. 2011; Queloz et al. 2000; Hatzes et al. 2003). In these cases the presence of a companion star should have a very strong influence on both discs and planets. From the several hundreds of extrasolar planets confirmed so far (see http://exoplanet.eu, http://planetquest.jpl.nasa.gov, www.exoplanets.org) to be around main sequence stars, about 10\% are known to reside in binary systems with a wide range of orbital separations. In almost all cases, the planet orbits in S-type configurations...
(Dvorak 1986), while the second star acts as a perturber to the planetary system. A circumbinary planet (P-type orbit) has recently also been detected in Kepler 16 (Doyle et al. 2011). This has motivated the search for stable periodic orbits around binary systems where planets (and discs in general) can settle down in a stable configuration. Most theoretical studies have focused on binaries in near-circular orbits around binary systems where planets (and discs in general) can settle down in a stable configuration. Most theoretical studies have focused on binaries in near-circular orbits (Hénon 1970; Lubow & Shu 1975; Paczyński 1977; Papaloizou & Pringle 1977; Rudak & Paczyński 1981; Bonell & Bastien 1992; Bate 1997; Bate & Bonnell 1997). Even very precise analytical methods to approximate periodic orbits in circular binaries are available (Nagel & Pichardo 2008).

Due to the lack of conservation of the Jacobi integral, the case of eccentric binaries is qualitatively more complicated. Artymowicz & Lubow (1994) and Pichardo et al. (2005, 2008, hereafter PSA1 and PSA2) calculate the extent of zones in phase space available for stable, non self-intersecting orbits around each star and around the whole system. In this study we use the results of PSA1 and PSA2, to calculate stable regions for planets or discs in binary systems in the Solar Neighborhood with known orbital parameters such as, mass ratio, eccentricity and semimajor axis. Although the existence of stable zones, as the ones we are calculating here, is a necessary, but not a sufficient condition to the existence of planets (or discs in general), if any stable material (planets, gas, etc.), exists in a given system, irrespective of their formation mechanism, they would be necessarily located within the limits of the stable zones. In this direction, a fruitful line of investigation is the intersection between phase space available zones for the long term evolution of planetary systems and habitable regions allowed by the binary system (Haghighipour et al. 2007; Haghighipour et al. 2010).

We present a table with the compilation of all the binaries in the Solar Neighborhood with known orbital parameters from different sources. In the same table are presented the results for our calculated circumsolar and circumbinary stable zones around each binary system. This paper is organized as follows. In Section 2, we explain briefly the method employed to calculate regions of stable non self-intersecting orbits around binary stars. The binary star sample is presented in Section 3. Results, including stable regions of orbital stability for circumsolar and circumbinary planetary discs (and discs in general), and an application to observations of five binaries with observed planets, are given in Section 4. In Section 5 we present our conclusions.

2 THE METHOD

In the simpler case of circular binary orbits, the potential is time-independent in the co-rotating frame and thus the Jacobi energy is conserved. This allows the existence of closed orbits that, when stable, spawn the orbital structure of the system (Carpintero & Aguilar 1998). In the general case of binaries in eccentric orbits, the problem is more complex, as now the potential is time-dependent. However, we can exploit the fact that the time-dependency is strictly periodic.

A time-periodic potential in 2-D can be casted as a 3-D system with an autonomous Hamiltonian, with the addition of time and the original Hamiltonian as two extra dimensions in phase space. Regular orbits will lie on 3-D manifolds and be multiple periodic with three frequencies, one of which is given by the binary orbital frequency. If we take snapshots at a fixed binary phase, the projections of a regular orbit will lie on a 2-D manifold. If the orbit has an additional isolating integral of motion, this projection will now lie on a 1-D manifold: an invariant loop (Maciejewski & Sparke 1997, 2000).

Stable invariant loops represent the generalization to periodically time-varying potentials of stable periodic orbits in steady potentials. PSA1 and PSA2, implemented a numerical method to find them. The equations of motion are solved in an inertial reference frame with Cartesian coordinates with the origin at the binary barycenter. An ensemble of test particles is launched when the binary star is at periastron, and from the line that joins both stars at that moment, to search for invariant loops. A more detailed explanation of the method and a study of the phase space in binary systems is in those references. In this work we employ the formulae from PSA1 (Eq. 6) and PSA2 (Eq. 6). These relations provide the maximum radius of circumsolar stable zones and the inner radius of the circumbinary stable zone, in terms of the mass ratio \(q = m_2/(m_1 + m_2) \), where \(m_1 \) and \(m_2 \) are the masses of the primary and secondary stars, respectively, and the eccentricity \(e = \sqrt{1 - b^2/a^2} \), where \(a \) and \(b \) are the semimajor and semiminor axes of the binary orbit. The radius of the outer limit of the circumbinary stable zones from PSA1, is given by,

\[
R_i = R_{i,Egg} \times \left[0.733(1 - e)^{1.20} q^{0.07} \right],
\]

and a similar study in PSA2 but for the circumbinary region, gives a relation for the inner radius,

\[
R_{CB}(e, q) \approx 1.93 a (1 + 1.01 e^{0.32}) [q(1 - q)]^{0.043}.
\]

In these relations \(R_{i,Egg} \) is the approximation of Eggleton to the maximum radius of a circle circumscribed within the Roche lobe (Eggleton 1983):

\[
R_{i,Egg}/a = \frac{0.49q_i^{2/3}}{0.6q_i^{2/3} + ln(1 + q_i^{1/3})},
\]

and

\[
q_1 = m_1/m_2 = \frac{1 - q}{q} \quad \text{and} \quad q_2 = m_2/m_1 = \frac{q}{1 - q}.
\]

In Figure 1 we present a schematic figure of the geometry of the system. We show in this figure some of the variables involved in the problem.

We must emphasize that the regions of stable orbits we report here, are the regions where these invariant loops exist, and furthermore, we restrict ourselves only to non self-intersecting orbits, where gas could settle and planets may form. It is in this sense that the term "stable region" should be understood in this work. Using these formulæ and restriction, we have calculated circumbinary and circumbinary radii for our sample with a total of 161 binary systems in the solar neighborhood with known orbital parameters.
3 THE SAMPLE

The previous equations require, besides the stellar mass ratio, the semimajor axis and orbital eccentricity for each binary system, two parameters that are difficult to determine observationally. There is a diversity of methods that have been used to estimate them. Our sample is a compilation from different sources (Jancart et al. 2005; Martin et al. 1998; Strigachev & Lampens 2004; Bonavita & Desidera 2007; Holman & Wiegert 1999; Mason et al. 1999; Latham et al. 2002; Balera et al. 2006; Cakirli et al. 2009; Milone et al. 2005; Díaz et al. 2007; Konacki et al. 2010; Desidera & Barbieri 2007; Doyle et al. 2011). We include all binaries with an estimation of these parameters within 100 pc from the Sun (currently 161 systems).

In Table 4 we present our sample. Columns 1 and 2, are the name of the systems in the Hipparcos catalogue and an alternate name, if it exists. Columns 3 to 6 are our input data: the semimajor axis, orbital eccentricity and stellar masses as reported in the references listed in column 10. Columns 7 to 9 list our results: the circumprimary, circumstellar, and circumbinary boundaries of the stable regions. In the circumstellar cases, the value is the radius of the outer boundary. In the circumbinary, is the radius of the inner boundary. All lengths are given in AU and masses in solar masses. Finally, the last column is a schematic figure that gives the relative sizes and positions of the stable zones (see Figure 1). For instance, for BD -8° 4352 (9th entry in the table) the circumstellar regions are symmetric and cover a good fraction of the inner hole of the circumbinary region, this is is due to the low eccentricity of the system and its high q (=0.5). In contrast, the binary called Gamma Vir (6th entry in the table), present circumstellar regions slightly asymmetric, due to the small mass difference between the stars, and quite narrow, due to its high eccentricity.

4 RESULTS

The presence of a stellar companion, particularly in an eccentric orbit, severely curtails the size and shape of the stable zones. While a single star has circular stable orbits at all radii (neglecting finite stellar size and tidal distortion effects), the presence of a stellar companion severely curtails the region where stable, non-self intersecting orbits may exist, both in extent and, to a lesser extent, shape.

It is unclear at present the way in which these effects impose restrictions in the process of star formation. What is clear is that the effect is in the sense of inhibiting, rather than promote it.

From the observational side, the statistics of the observed systems suggests that binarity does indeed has an effect on planetary masses and orbits (Eggenberger et al. 2004), even restricting terrestrial planet formation for binary pertiastron smaller than 5 AU affecting discs to within ~1 AU of the primary star (Quintana et al. 2007, Quintana & Lissauer 2010).

The goal of this study is to determine the extent of circumstellar and circumbinary regions of stable, non-self intersecting orbits, as plausible regions where planets could have formed and may exist. It could also indicate possible regions of planetary formation.

Figure 2 shows the binary semimajor axes vs. the orbital eccentricity of our entire sample, split in mass ratio intervals. As it is already known, the region of small semimajor axes and high eccentricities is depleted, i.e. very close binaries, tidally locked in general, have eccentricities close to zero (Duquennoy & Mayor 1991). A large percentage (about 60%) of binaries in the sample have low eccentricities (e ≤ 0.5), small semimajor axes (a ≤ 50 AU) and large mass ratios (q ≥ 0.4), as shown in the histograms in Figure 2. Consequently (as seen in Figure 3), circumstellar stable regions in this sample have small radii (~2 AU), with both stable regions (circumprimary and circumsecondary) in most systems having similar size. On the other hand, the majority of circumbinary gaps have radii smaller that ~50 AU.
Figure 2. Binary semimajor axes (AU) vs eccentricities of our sample. The mass ratio is indicated with various colors and symbols, as shown in the upper left corner.

Figure 3. Histograms (from top to bottom): Eccentricity, semimajor axis and mass ratios, for all systems in our sample.

Figure 4. Histograms (from top to bottom): Circumprimary, circumsecondary and circumbinary radii, for all systems in our sample.
Object	Alter. name	a (AU)	e	M_1 (M$_\odot$)	M_2 (M$_\odot$)	R_{ce1} (AU)	R_{ce2} (AU)	R_{cr} (AU)	Ref	Scheme
–	HD 10361	52.2	0.53	0.77	0.75	5.61	5.54	173.15	4	1
–	HD 145958A	124	0.39	0.9	0.89	18.17	18.08	393.95	4	1
–	HD 145958B	124	0.39	0.89	0.9	18.17	18.08	393.95	4	1
–	HD 146362	130	0.76	2.19	1.12	6.98	5.14	452.9	4	1
–	ε Cet	1.57	0.27	1.3	1.3	0.28	0.28	4.75	5	1
–	γ Vir	37.84	0.88	0.94	0.9	0.78	0.78	135.53	5	1
–	α Com	12.49	0.5	1.43	1.37	1.45	1.42	41.08	5	1
–	ε CrB	13.98	0.28	0.79	0.78	2.51	2.49	42.43	5	1
–	BD -8° 4352	1.35	0.05	0.42	0.42	0.33	0.33	3.41	5	1
–	BD 45° 2505	4.58	0.73	0.29	0.29	0.25	0.25	15.93	5	1
–	δ Equ	4.73	0.42	1.66	1.59	0.66	0.64	15.18	5	1
–	Kpr 37	9.67	0.15	1.2	0.89	2.26	1.97	27.23	5	1
–	99 Her	16.39	0.74	0.89	0.52	0.98	0.77	56.97	5	1
–	9 Pup	10.00	0.69	0.98	0.87	0.67	0.63	34.49	5	1
–	α CMa	19.89	0.59	2.11	1.04	2.12	1.54	66.70	5	1
–	α Cen	23.57	0.52	1.12	0.95	2.71	2.52	77.86	5	1
–	ξ Boo	33.14	0.51	0.86	0.73	3.85	3.58	109.35	5	1
–	G9-42	0.44	0.81	0.77	0.04	0.02	0.01	1.45	7	1
–	G62-30	0.79	0.59	0.68	0.04	0.1	0.03	2.49	7	1
–	G165-22	0.1	0.08	0.82	0.07	0.03	0.01	0.25	7	1
–	G65-52	0.48	0.26	0.62	0.04	0.12	0.04	1.36	7	1
–	G178-27	0.33	0.43	0.68	0.05	0.06	0.02	0.1	7	1
–	G15-6	0.73	0.45	0.67	0.06	0.13	0.04	2.25	7	1
–	G66-65	0.61	0.9	0.7	0.04	0.01	0	2.05	7	1
–	G141-8	0.8	0.58	0.77	0.02	0.11	0.02	2.43	7	1
Object HIP	Alter. name	a (AU)	e	M_1 (M\odot)	M_2 (M\odot)	R_{ce1} (AU)	R_{ce2} (AU)	R_{AB} (AU)	Ref	Scheme
------------	-------------	---------	-----	----------------	----------------	---------------	---------------	---------------	-----	---------
–	G18-35	4.48	0.37	0.75	0.07	0.93	0.32	13.44	7	
–	V821 Cas	0.044	0.13	2.046	1.626	0.01	0.01	0.12	10	
–	SV Cam	0.016	0	0.862	0.646	0.0045	0.004	0.03	11	
–	BS Dra	0.060	0	1.294	1.276	0.02	0.016	0.11	11	
473	HD 38	73.01	0.22	0.76	0.74	14.41	14.24	215.35	3	
1349	HD 1273	1.25	0.57	0.98	0.55	0.13	0.1	4.18	1	
1955	HD 2070	0.54	0.33	1.13	0.48	0.1	0.07	1.66	1	
2237	HD 2475	7.08	0	1.56	1.24	1.96	1.76	12.87	2	
2552	HD 3196	51.3	0.77	1.71	1.14	0.25	0.21	17.96	2	
2941	ADS520	9.57	0.22	0.7	0.7	1.87	1.87	28.23	5	
3821	HD 4614	72	0.49	0.99	0.51	9.54	7.05	235.07	4	
3850	HD 4747	6.7	0.64	0.82	0.04	0.73	0.19	21.21	4	
5531	HD 7693	5.00	0.72	1.17	1.16	0.29	0.29	17.36	8	
5842	HD 9021	0.64	0.31	1.21	0.7	0.12	0.09	1.97	1	
7078	HD 10360	52.2	0.53	0.77	0.75	5.61	5.54	173.15	4	
7918	HD 10307	7.1	0.42	0.8	0.14	1.26	0.57	22.13	2	
8903	HD 11636	0.63	0.88	1.86	1.05	0.01	0.01	2.25	1	
8903	HD 11636	0.66	0.9	2.07	1.28	0.01	0.01	2.37	2	
48904		0.027	0.01	0.365	0.348	0.007	0.006	0.06	9	
9480	WDS 02019+7054	22.5	0.39	1.92	1.19	3.59	2.88	71.31	6	
10138	HD 13445	18.4	0.4	0.77	0.49	2.86	2.33	58.53	13	
10321	HD 13507	4.3	0.14	1	0.05	1.34	0.36	11.18	4	
11231	HD 15064	0.64	0.29	1.01	0.68	0.12	0.1	1.95	1	
Object HIP	Alter. name	a (AU)	e	M_1 (M$_\odot$)	M_2 (M$_\odot$)	R_{ce1} (AU)	R_{ce2} (AU)	R_{cb} (AU)	Ref	Scheme
-----------	-------------	---------	----	------------------	------------------	----------------	----------------	----------------	-----	---------
12062	HD 15862	2.04	0.26	0.95	0.44	0.43	0.3	6.11	1	
12114	HD 16160	15	0.75	0.76	0.09	1.01	0.39	50.26	4	
12153	HD 16234	4.22	0.88	11	9.41	0.09	0.08	15.11	2	
12623	HD 16739	1.27	0.66	1.13	1.39	0.1	0.09	4.35	2	
12777	HD 16895	249.5	0.13	1.24	0.43	66.5	41.09	684.25	4	
13769	HD 18445	1.06	0.56	0.78	0.18	0.13	0.07	3.47	4	
14954	**HD 19994**	**120**	**0.26**	**1.35**	**0.35**	**27.34**	**14.83**	**354.86**	**13**	
18512	HD 24916	174.55	0	0.35	0.17	52.36	37.68	315.65	3	
19206	HD 27176	9.290	0.69	0.960	0.790	0.64	0.58	32.1	8	
20087	HD 27176	7.05	0.17	1.76	0.95	1.66	1.26	20.08	2	
20935	HD 28394	0.99	0.24	1.13	1.11	0.19	0.19	2.95	1	
22429	HD 30339	0.13	0.25	1.39	0.07	0.03	0.01	0.36	4	
23395	WDS 05017+2640	10.28	0.33	1	0.72	1.79	1.54	31.9	6	
23835	HD 32923	2.86	0.9	1.11	1.03	0.05	0.05	10.28	4	
24419	HD 34101	1.75	0.08	0.9	0.21	0.52	0.27	4.52	1	
25662	HD 35956	2.6	0.62	0.98	0.18	0.28	0.13	8.58	4	
27913	HD 39587	5.9	0.45	1.05	0.14	1.01	0.41	18.41	4	
29860	HD 43587	11.6	0.8	1.06	0.34	0.54	0.32	40.39	4	
33451	HD 51825	9.3	0.43	1.61	1.26	1.31	1.17	29.93	2	
34164	HD 53424	1.7	0.27	1.09	1.09	0.66	0.27	5.13	1	
38657	HD 64468	0.56	0.26	0.81	0.14	0.13	0.06	1.64	4	
39064	HD 65430	4	0.32	0.83	0.06	0.92	0.29	11.66	4	
39893	HD 65430	1.81	0.21	0.95	0.52	0.4	0.31	5.29	1	
44248	HD 76943	10.51	0.1	1.53	0.92	2.69	2.13	28.27	2	
44892	HD 78418	0.184	0.2	1.173	1.011	0.04	0.04	0.53	12	
Object HIP	Alter. name	a (AU)	e	M_1 (M$_\odot$)	M_2 (M$_\odot$)	R_{ce1} (AU)	R_{ce2} (AU)	R_{cb} (AU)	Ref	Scheme
------------	-------------	----------	-----	------------------	------------------	----------------	----------------	---------------	-----	---------
45571	HD 80671	4.22	0.51	3.66	3.66	0.47	0.47	13.92	2	
52940	HI52940	2.6	0.37	1.12	0.12	0.53	0.2	7.84	4	
54204	WDS 11053-2718	6.04	0.35	1.93	1.93	0.95	0.95	18.91	6	
55016	HD 97907	6.87	0.42	2.62	2.32	0.97	0.92	22.05	2	
56809	HD 101177	240.39	0.05	1.95	1.36	63.9	54.21	605.53	3	
60129	HD 107259	10.48	0.08	6.01	0.67	3.37	1.26	26.45	2	
63406	HD 112914	1.59	0.33	0.82	0.23	0.32	0.18	4.86	1	
65026	WDS 13198+4747	14.36	0.23	0.66	0.58	2.85	2.68	42.58	6	
65343	HD 116495	39.65	0.84	0.61	0.58	1.17	1.15	140.96	3	
66077	111.11	51.51	0	0.39	0.35	13.91	13.24	93.65	3	
66492		46.59	0.61	0.54	0.39	4.23	3.65	157.58	3	
66640	WDS 13396+1044	10.7	0.55	1.24	1.19	1.09	1.07	35.68	6	
67275	HD 120136	245	0.91	1.35	0.4	4.38	2.52	868.91	13	
67422	HD 120476	33.2	0.45	0.76	0.75	4.3	4.27	107.59	3	
67422	HD 120476	33.15	0.44	0.83	0.76	4.45	4.27	107.08	4	
68682	HD 122742	5.46	0.55	1.11	0.55	0.63	0.45	18.11	2	
68682	HD 122742	5.3	0.48	0.92	0.54	0.7	0.55	17.28	4	
69226	HD 123999	0.124	0.19	1.411	1.368	0.026	0.025	0.359	12	
71094		13.98	0.16	1.89	1.16	3.28	2.62	39.6	2	
71681	HD 128621	22.76	0.51	1.12	0.89	2.67	2.4	75.04	4	
71683	HD 128620	22.76	0.51	1.12	0.89	2.67	2.4	75.04	4	
71729	HD 129132	8.28	0.4	3.34	3.29	1.19	1.18	26.4	2	
72569	HD 131156	32.8	0.51	0.92	0.79	3.8	3.54	108.17	4	
72848	HD 131511	0.53	0.51	0.79	0.45	0.07	0.05	1.74	1	
72848	HD 131511	0.52	0.51	0.93	0.45	0.07	0.05	1.71	4	

© RAS, MNRAS 000, 1–16
Object HIP	Alter. name	a (AU)	e	M_1 (M_\odot)	M_2 (M_\odot)	R_{ce1} (AU)	R_{ce2} (AU)	R_{cb} (AU)	Ref	Scheme	$*_1$	$*_2$
73440	HD 133621	1.25	0.22	1.03	0.15	0.32	0.14	3.56	1			
74392	WDS 15123+1947	14.93	0.25	3.54	2.51	2.98	2.55	44.69	6			
75312	WDS 15232+3018	16.15	0.26	1.26	1.18	3.02	2.93	48.64	6			
75379	HD 137502	0.91	0.68	1.26	0.68	0.07	0.05	3.12	1			
76382	ADS9716	19.15	0.59	1.14	1.14	1.73	1.73	64.54	5			
76852	HD 140159	12.4	0.15	2	1.98	2.7	2.69	34.96	2			
77152	HD 140913	0.55	0.54	1.17	0.04	0.08	0.02	1.67	4			
78727	WDS 16044+1122	15.64	0.71	0.92	0.92	0.94	0.94	54.18	6			
79101	HD 145389	2.24	0.47	3.47	1.31	0.33	0.21	7.23	1			
80046	HD 145784	0.12	0.06	1.05	0.37	0.04	0.02	0.3	1			
81126	HD 149630	6.33	0.53	3.04	1.5	0.77	0.55	20.89	2			
82817	HD 152771	1.38	0.05	0.33	0.56	0.38	0.3	3.47	2			
82860	HD 153597	0.33	0.21	1.18	0.52	0.08	0.05	0.96	1			
83895	HD 155763	7.09	0	5.94	3.65	2.05	1.64	12.86	2			
84140	HD 155876	5.01	0.75	0.38	0.37	0.25	0.25	17.5	2			
84720	HD 156274	91.65	0.78	0.79	0.47	4.33	3.41	321.18	4			
84949	HD 157482	4.87	0.67	1.15	2.62	0.29	0.42	16.6	2			
85141	HD 157498	9.29	0.58	1.79	1.75	0.87	0.86	31.22	2			
86201	HD 160922	0.082	0	1.460	1.180	0.02	0.011	0.143	12			
86221	WDS 17370+2753	9	0.21	0.64	0.63	1.8	1.79	26.4	6			
86400	HD 1360346	0.39	0.23	0.72	0.39	0.08	0.06	1.15	1			
86722	HD 161198	3.97	0.94	0.94	0.34	0.04	0.03	14.21	2			
86974	HD 161797	22	0.32	1.15	0.13	4.92	1.85	65.17	4			
87895	HD 163840	2.14	0.41	0.99	0.68	0.32	0.27	6.84	1			
Object HIP	Alter. name	a (AU)	e	M_1 (M_\odot)	M_2 (M_\odot)	R_{cc1} (AU)	R_{cc2} (AU)	R_{cb} (AU)	Ref	Scheme		
------------	-------------	----------	-----	-------------------	-------------------	----------------	----------------	----------------	-----	---------		
89937	HD 170153	1.05	0.41	1.18	0.77	0.16	0.13	3.35	1			
90355	HD 169822	0.84	0.48	0.91	0.3	0.12	0.07	2.71	4			
91768	HD 173739	49.51	0.53	0.39	0.34	5.43	5.1	164.2	3			
92418	HD 174457	1.9	0.23	1.07	0.06	0.52	0.14	5.26	4			
92835	HP Dra	0.123	0.06	1.102	1.099	0.03	0.03	0.31	11			
93017	ADS 11871	22.96	0.25	1.65	1.58	4.34	4.26	68.77	5			
93506	WDS 19026+2953	13.36	0.2	2.97	2.4	2.81	2.55	38.93	6			
93574	HD 175986	9.01	0.39	1.89	1.65	1.35	1.27	28.62	2			
95028	HD 181602	0.85	0.37	1.4	0.5	0.15	0.1	2.65	1			
95575	HD 183255	0.62	0.15	0.78	0.38	0.15	0.11	1.74	1			
95995	HD 184467	1.45	0.37	1.22	0.46	0.26	0.17	4.53	2			
96302	HD 184759	4.68	0.82	3.34	1.59	0.18	0.13	16.48	2			
96471	HD 184860	1.4	0.67	0.77	0.03	0.14	0.03	4.42	4			
98001	HD 188753	11.65	0.47	1.3	1.11	1.48	1.38	37.98	2			
99965	HD 193216	1.24	0.08	0.88	0.56	0.32	0.26	3.26	1			
103641	HD 200077	0.587	0.66	1.186	0.941	0.04	0.04	2.01	12			
104019	WDS 21044+1951	12.86	0.39	1.67	1	2.06	1.63	40.74	6			
105969	HD 204613	2.06	0.13	1.01	0.49	0.52	0.38	5.68	1			
107354	HD 206901	8.24	0.31	1.56	2.6	1.53	1.21	25.32	2			
108473	HD 208776	4.2	0.27	1.14	0.51	0.87	0.61	12.62	4			
109176	HD 210027	0.12	0	1.25	0.8	0.03	0.03	0.22	1			
110893	HD 239960	9.51	0.42	0.28	0.15	1.46	1.1	30.4	3			
110893	ADS15972	9.53	0.41	0.27	0.17	1.51	1.20	30.41	5			
111170	HD 213429	1.74	0.38	1.08	0.7	0.28	0.23	5.5	1			
113718	HD 217580	1.16	0.54	0.76	0.18	0.15	0.08	3.78	1			
Object	Alter. name	a	ε	M1	M2	Rce1	Rce2	Rb	Ref	Scheme		
------------	-------------	----	------	-----	-----	------	------	-----	------	--------		
HIP 116310	HD 221673	95	0.322	2.0	2.0	15.70	15.70	294.14	16			
HIP 116727	HD 222404	18.5	0.36	1.59	0.4	3.55	1.9	57.04	13			
HIP 117666	WDS 23517+0637	10.2	0.3	0.6	0.58	1.77	1.74	31.29	6			
HIP	Kepler 16	0.22	0.16	0.69	0.20	0.06	0.03	0.63	14			
HIP	K10848064	0.049	0	1.2	0.073	0.018	0.005	0.083	15			
HIP	K08016222	0.065	0.044	1.1	0.086	0.023	0.007	0.154	15			
HIP	K09512641	0.060	0	1.2	0.140	0.021	0.008	0.105	15			
HIP	K07254760	0.042	0	1.2	0.215	0.014	0.007	0.075	15			
HIP	K05263749	0.055	0	1.3	0.266	0.018	0.009	0.097	15			
HIP	K04577324	0.039	0	1.2	0.241	0.013	0.006	0.069	15			
HIP	K06370196	0.061	0	1.3	0.359	0.020	0.011	0.108	15			

(1) Jancart et al. 2005, (2) Martin et al. 1998, (3) Strigachev and Lampens 2004, (4) Bonavita and Desidera 2007, (5) Holman and Wiegert 1998, (6) Mason et al. 1999, (7) Latham et al. 2002, (8) Balega et al. 2006, (9) Diaz et al. 2007, (10) Cakirli et al. 2009, (11) Milone et al. 2005, (12) Konacki et al. 2010, (13) Desidera and Barbieri 2007, (14) Doyle et al. 2011, (15) Faigler et al. 2011, (16) Muterspaugh et al. 2010
4.1 Application to Real Systems

The perturbing effect of stellar companions lead to a widespread belief that the presence of planets in binary systems was very unlikely. Now we know that binaries can have planets, and thus should have stable regions around them where planet formation took place. Queloz et al. 2000, and Hatzes et al. 2003, discovered two giant planets in the binary systems GJ 86 and γ Cephei. Since then, binaries have become important targets in the search for extrasolar planets, particularly given their abundance.

Until now about 70 binary systems with planets have been discovered (Wright et al. 2011), but only for eight of them, orbital parameters (semimajor axis, eccentricity and mass ratio) are available (Desidera & Barbieri 2007, Doyle et al. 2011, Muterspaugh et al. 2010). Table 4 shows our prediction for the extent of the stable orbits regions for these systems (in bold type letter). In all cases, where the semimajor axis of the planet is known, the observed planet is located within the predicted stable zone. We present figures with the calculated stable regions constructed with invariant loops, for the five cases where planets are confirmed, and the values for the semimajor axis of observed planets are known.

In particular, notice the case of HD 120136, this is an open binary with a very high eccentricity, usually treated as single star for this reason. The large eccentricity results in a very narrow, circumstellar stable region. Even so, the discovered planet lies in a P-type orbit inside our predicted circumstellar stable region.

4.1.1 HIP 10138 (HD 13445 or GL 86)

This binary system is located at a distance of 10.9 ± 0.08 pc. The companion of this object, discovered by Els et al. 2001, has a semimajor axis of 18.4 AU, with an eccentricity of 0.4. The spectral type of the most massive component is K1 with a mass of 0.77 M⊙ and it is a white dwarf (Mugrauer & Neuhauser 2005). The companion has a mass of 0.49 M⊙. At the moment, one planet was found in this system with a mass of $M_p \sin i = 4.0 \, M_J$. It has a semimajor axis of 0.113 AU and an eccentricity of 0.4 (Bonavita & Desidera 2007). For this binary the calculated stable zone located around each star is $R_{ce1} = 3.06 \, AU$ around the principal component, $R_{ce2} = 2.49 \, AU$ around the companion, in both cases this radii is the outermost radii possible to have stable orbits, and $R_{cb} = 58.53 \, AU$ as the innermost radii available for circumbinary orbits.

In Figure 5 we present the circumprimary, circumsencondary and circumbinary regions of orbital stability, for planets in this case, to settle down, calculated at periastron with our method. The stellar orbits are marked in green. The known planet is orbiting the primary star in a very small orbital radius, indistinguishable in this figure.

4.1.2 HIP 14954 (HD 19994 or 94 Cet)

This binary system is located at a distance of 22.6 pc. Its semimajor axis is 120 AU and it has eccentricity of 0.26. The mass of the primary star is 1.35 M⊙ with a spectral type F8 V, the mass of the secondary star is 0.35 M⊙. The planet orbiting this object has a semimajor axis of 1.428 AU with an eccentricity of 0.30 and $M_p \sin i = 1.69 \, M_J$ (Desidera & Barbieri 2007).

In Figure 6, circumstellar, circumbinary stable regions, and planetary orbit (in red) are shown. Stellar orbits (green) are also indicated.

4.1.3 HIP 67275 (HD 120136 or τ Boo)

This system is located at 15.62 pc, and it has the largest eccentricity for the cases of binary systems with known orbital parameters, which here are semimajor axis 245 AU, eccentricity of 0.91 and masses 1.35 M⊙ for the primary and 0.4 M⊙ for the secondary component. The planet observed in this system has a semimajor axis of 0.048 AU while our approach predicts a maximum radii of 4.86 AU, the eccentricity planet is 0.023 and $M_p \sin i = 4.13$ (Desidera & Barbieri 2007).
Figure 6. Stable zones around the system HD 19994 (94 Cet). The upper panel shows the circumstellar regions, primary star to the left secondary to the right. The bottom panel shows the circumbinary region, notice the change in scale. The green curves show the stellar orbits, the system is presented at periastron. Orbital parameters: $M_1 = 1.35 \, M_\odot$, $M_2 = 0.35 \, M_\odot$, $e = 0.26$, $a = 120 \, \text{AU}$.

In Figure 7, we present the circumprimary, circumsecondary and circumbinary stable regions, for planets in this case, calculated at periastron. The stellar orbits are marked in green. The known planet is orbiting the primary star in a very small orbital radius, indistinguishable in this figure.

4.1.4 HIP 116727 (HD 222404 or Gamma Cep)

This system is located at a distance of 14.1 pc. The spectral type of the main component is K, and its mass is $1.59 M_\odot$, while the mass of the companion is $0.4 \, M_\odot$, the semimajor axis is $18.5 \, \text{AU}$ with an eccentricity of 0.36. The planet in this system has a semimajor axis of $2.14 \, \text{AU}$, with an eccentricity 0.12 and $M_p \sin i = 1.77 \, M_J$ (Desidera & Barbieri 2007).

In Figure 8, circumstellar stable regions, circumbinary stable region (gray), and planetary orbit (in red) are shown. Stellar orbits (green) are also indicated.

4.1.5 Kepler 16

Recently it was found in this system a planet in circumbinary orbit, this the first observed of this kind (on the circumbinary disc). The primary star has a mass of $0.69 \, M_\odot$, and the companion has a mass of $0.20 \, M_\odot$, the semimajor axis is $0.22 \, \text{AU}$ with an eccentricity of 0.16 (Doyle et al. 2011). The discovered planet has a semimajor axis of $0.71 \, \text{AU}$, with an eccentricity of 0.0069 and a mass of $0.33 \, M_J$.

In Figure 9, circumstellar stable regions, circumbinary stable region, and planetary orbit (in red) are shown. Stellar orbits (green) are also indicated.
Figure 8. Stable zones around the system HD 222404 (Gamma Cep). The upper panel shows the circumstellar regions, primary star to the left secondary to the right. The bottom panel shows the circumbinary region, notice the change in scale. The green curves show the stellar orbits, the system is presented at periastron. In this case planet orbit is not close to the star, line darker (red) around the primary star shows its orbit. Orbital parameters for the star: $M_1 = 1.59 \, M_\odot$, $M_2 = 0.4 \, M_\odot$, $e = 0.36$, $a = 18.5 \, AU$.

Figure 9. Stable zones around the system Kepler 16. The upper panel shows the circumstellar regions, primary star to the left secondary to the right. The bottom panel shows the circumbinary region, notice the change in scale. The green curves show the stellar orbits, the system is presented at periastron. Orbital parameters: $M_1 = 0.69 \, M_\odot$, $M_2 = 0.20 \, M_\odot$, $e = 0.16$, $a = 0.22 \, AU$.

5 CONCLUSIONS

We have compiled a sample of binary stars with known orbital parameters (semimajor axes, eccentricities and stellar masses) of the Solar neighborhood and present some basic statistics.

We calculate on this binary stars sample the extent of regions of stable non-self intersecting orbits where planets may exist. For this purpose, we have applied the concept of “invariant loops” and used the formulae of PSA1 and PSA2. Our approximation is ballistic, thus, the application is straightforward to debris discs (planets, cometary nuclei, asteroid belts, etc.). In the case of gas discs, further physics may constraint discs sizes, however, what we are providing here are the regions where the most important orbits of the binary, i.e., the ones that represent the backbone of the dynamical system (the ones that are followed for the most of the orbits), lay. We have computed the spatial limits of these circumstellar and circumbinary zones for a sample of 161 binaries in the Solar neighborhood where orbital data is known and presented it in the form of a table where all the relevant parameters are provided.

We compare our results with observations in the 5 cases where planets have been discovered in binary systems, and where semimajor axis for the planets are provided. We find that all the planets lay down within our computed regions of stability. In particular, for HD 120136, our predicted region
of circumstellar stability is very small, and yet the discovered planet lays within it. Although confrontation with a larger database is desirable, the current statistics is fully consistent with our results, proving reliable our approach. The tool of “invariant loops” may be very helpful in the search for planets in binary systems.

ACKNOWLEDGMENTS

We thank our referee, Rudolf Dvorak for the review of this work that greatly improved it. We also thank Linda Sparke and Antonio Peimbert for enlightening discussions and Gustavo Arciniega for technical support. We thank project UNAM through grant DGAPA-PAPIIT IN110711-2.

References

Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Nelson, C. A.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Stubbs, C. W.; Sutherland, W.; Tomaney, A. B.; Vandehei, T.; Welch, D. 2001, ApJ, 552, 259

Artyomowicz, P. & Lubow, S. H. 1994, 421, 651

Balega, I. I.; Balega, Y. Y.; Hofmann, K.-H.; Malogolovets, E. V.; Schertl, D.; Shkhasosheva, Z. U.; Weigelt, G. 2006, A&A, Vol 448, pp. 703

Bate, M. R., 1997, MNRAS, 285, 16

Bate, M. R., & Bonnell, I. A. 1997, MNRAS, 285, 33

Bonavita, M. & Desidera, S., A&A, 2007, 468, 721-729

Bonnell, I., & Bastien, P. 1992, IAU Colloquium 135, 32, 206

Borucki, W.J. 2010, arXiv:1006.2799v1

Cakirli, O.; Ibanoglu, C.; Bilir, S.; Sipahi, E. 2009, MNRAS, 395, pp. 1649

Carpintero, D., Aguilar, L., 1998, MNRAS, 298, 1

Cieza, Lucas A.; Padgett, Deborah L.; Allen, Lori E.; McCabe, Caer E.; Brooke, Timothy Y.; Carey, Sean J.; Chapman, Nicholas L.; Fukagawa, Misato; Huard, Tracy L.; Noriega-Crespo, Alberto; Peterson, Dawn E.; Rebull, Luisa M. 2009, ApJ, 696L, 84

Correia, A. C. M.; Udry, S.; Mayor, M.; Eggenberger, A.; Naef, D.; Beuzit, J.-L.; Perrier, C.; Queloz, D.; Sivan, J.-P.; Pepe, F.; Santos, N. C.; Segransan, D. 2008, A & A, 479, 271

Deeg, H. J.; Ocaña, B.; Kozhevnikov, V. P.; Charbonneau, D.; O’Donovan, F. T.; Doyle, L. R. 2008, A & A, 480, 563

Desidera, S. & Barbieri M. 2007, A&A, 462, 345

Díaz, R. F.; González, J. F.; Cincunegui, C.; Mauas, P. J. D. 2007, A&A, Vol. 474, pp. 345

Di Stefano, R. 2001. See Zinnecker & Mathieu 2001, pp. 529-38

Dong-Wook, Lee; Chung-Uk, Lee; Byeong-Gon; Park; Sun-Ju, Chung; Young-Soo, Kim; Ho-II, Kim; Cheongho, Han. 2008, ApJ, 672, 623

Doyle, Laurence R.; Carter, Joshua A.; Fabrycky, Daniel C.; Slawson, Robert W.; Howell, Steve B.; Winn, Joshua N.; Orosz, Jerome A.; Pr’sa, Andrej; Welsh, William F.; Quinn, Samuel N.; Latham, David; Torres, Guiller-mo; Buchhave, Lars A.; Marcy, Geoffrey W.; Fortney, Jonathan J.; Slipher, Avi; Ford, Eric B.; Lissauer, Jack J.; Ragozzine, Darin; Ricker, Michael; Batalha, Natalie; Jenkins, Jon M.; Borucki, William J.; Koch, David; Middour, Christopher K.; Hall, Jennifer R.; McCauliff, Sean; Fane-lli, Michael N.; Quintana, Elisa V.; Holman, Matthew J.; Caldwell, Douglas A.; Still, Martin; Stefanik, Robert P.; Brown, Warren R.; Esquerdo, Gilbert A.; Tang, Sumin; Furesz, Gabor; Geary, John C.; Berlind, Perry; Calkins, Michael L.; Short, Donald R.; Steffen, Jason H.; Sasse- lov, Dimitar; Dunham, Edward W.; Cochran, William D.; Boss, Alan; Haas, Michael R.; Buzasi, Derek; Fischer, Debra, 2011, Sci. Vol. 333, pp. 1602

Dvorak, R. 1986, A&A, 167, 379

Dvorak, R. 1986, A&A, 167, 379

Eggenberger, A., Udry, S. & Mayor, M. 2004, A&A, 417, 353

Eggleton, P. P. 1983, ApJ, 268, 368

Faigler, S. and Mazeh, T. and Quinn, S.N. and Latham, D.W. and Tal-Or, L. 2011, arXiv astro-ph: 1110.2133

Fischer, Debra A.; Vogt, Steven S.; Marcy, Geoffrey W.; Butler, R. Paul; Sato, Bunéi; Henry, Gregory W.; Robinson, Sarah; Laughlin, Gregory; Ida, Shigeru; Toyota, Eri; (and 5 coauthors), 2007, ApJ, 669, 1336

Goldstein, H. 2002, Classical Mechanics, (3d ed.; Addison Wesley)

Guillot, S., 2001. See Zinnecker & Mathieu 2001, pp. 547-54

Hénon, M., 1970, A&A, 9, 24

Hénon M.J. and Wiegent P.A. 1999, AJ, Vol. 117, pp 621

Haghighipour, N., Dvorak, R., & Pilot-Lohinger, E. 2010, Astrophysics and Space Science Library, 366, 285

Haghighipour, N., Sigrudsson, S., Lissauer, J., & Raymond, S. 2007, [arXiv:0704.0852]

Jancart S., Jorissen A., Babusiaux C. and Pourbaix D. 2005, A&A vol. 442, pp. 365

Konacki, M. 2005, Nature, 436, 230

Konacki, M., Muteraus, M. W., Kulkarni, S. R., & Helmiàki, K. G. 2010, ApJ, 719, 1293

Latham, David W.; Stefanik, Robert P.; Torres, Guillermo; Davis, Robert J.; Mazeh, Tsevi; Carney, Bruce W.; Laird, John B.; Morse, Jon A. 2002 AJ Vol 124 pp 1144

Launhardt, R. 2001. See Zinnecker & Mathieu 2001, pp. 117-21

Launhardt, R., Sargent, A.I., Henning, T., Zylka, R., Zinnecker, H. 2000. In Birth and Evolution of Binary Stars, IAU Symp. No. 200, ed. B. Reipurth, H. Zinnecker, pp. 103-5. San Francisco: Astron. Soc. Pac

Lubow, S. H. & Shu, F. H. 1975, ApJ, 198, 383

Lyne A.G., Biggs J.D., Brinklow A., McKenna J. and Ashley, M., 1988, Nature 332, 45

Marcy GW, Butler R.P. 1998. Annu. Rev. Astron. Astrophys. 36:57-98

Marcy GW, Butler R.P. 1998. Annu. Rev. Astron. Astrophys. 36:57-98

Marcy GW, Butler R.P. 2000. Publ. Astron. Soc. Pac. 112:3-70

Martin, C.; Mignard, F.; Hartkopf, W. I. and McAlister, H. A., A&A, 1998, 133, 149-162.

Marzari, F., & Scholl, H. 2000, MNRAS, 313, 745

Mason, B. D.; Douglas, G. G. and Hartkopf, W. I. ApJ,
1999, 117,1023-1036.
Mathieu, R. D. 1994, ARA&A, 32, 465
Mathieu, R. D., Ghez, A. M., Jensen, E. L. N. & Simon, M. 2000, in Protostar and Planets IV, ed. V. Mannings, A. P. Boss & S. S. Russell (Tucson: Univ. Arizona Press) 731
Robert D. Mathieu; David W. Latham & R. F. Griffin, 1990, AJ, 100, 1859
Mathieu, R. D., Walter, F. M. & Myers, P. C. 1989, AJ, 98, 987
Mayor M, Queloz D. 1995. Nature 378:355-59
Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T. 2005, A&A, Vol. 441, pp. 605
Mugrauer, M.; Neuhäuser, R.; Seifahrt, A.; Mazeh, T.; Guenther, E. 2005, A&A, 440, 1051
Muterspaugh, M. W., Konacki, M., Lane, B. F., & Pfahl, E. 2010, Astrophysics and Space Science Library, 366, 77
Muterspaugh, M. W., Lane, B. F., Kulkarni, S. R., et al. 2010, AJ, 140, 1657
Nagel, Erick; Pichardo, Barbara, 2008, MNRAS, 384, 548
Paczyński, B. 1977, ApJ, 216, 822
Padgett, D.L., Brandner, W., Stapelfeldt, R., Strom, S.E., Terebey, S., Koerner, D. 1999. AJ, 117:1490-1504
Padgett, D.L., Strom, S.E., Ghez, A. 1997. ApJ, 477:705-10
Papaloizou, J., & Pringle, J. E. 1977, 181, 441
Pfahl,E. & Muterspaugh M. 2006, ApJ, 652, 1694
Pichardo, Barbara; Sparke, Linda S.; Aguilar, Luis A. 2005, MNRAS, 359, 521
Pichardo, Barbara; Sparke, Linda S.; Aguilar, Luis A. 2008, MNRAS, 391, 815
Prato, L., & Weinberger, A. J. 2010, Astrophysics and Space Science Library, 366, 1
Quintana, Elisa V.; Adams, Fred C.; Lissauer, Jack J.; Chambers, John E. 2007, ApJ, 660, 807
Quintana, E. V., & Lissauer, J. J. 2010, Astrophysics and Space Science Library, 366, 265
Quirrenbach, A. 2001a. See Zinnecker & Mathieu 2001, pp. 539-46
Quirrenbach, A. 2001b. Annu. Rev. Astron. Astrophys. 39:353-401
Quist, C.F., Lindegren, L. 2000. Astron. Astrophys. 361:770-80
Quist, C.F., Lindegren, L. 2001. See Zinnecker & Mathieu 2001, pp. 64-68
Reid, I.N., Gizis, J.E., Kirkpatrick, J.D., Koerner, D.W. 2001. A.J. 121:489-502
Raghavan D., Henry T.J., Mason B.D., Subasavage J.P., Jao W.-C., Beaulieu T.D. and Hambly N.C., 2006, ApJ 646, 523
Rudak, B., Paczynski, B. 1981, Acta Astron, 31, 13
Rattenbury N.J. 2009, MNRAS, 392, 439
Sigurdsson S. and Phinney E.S., ApJ, 415, 631
Sigurdsson S., Richer H.B., Hansen B.M., Stairs I.H. and Thorsett S.E., 2003, Science 301, 193
Simon, M., Close, L.M., Beck, T.L. 1999. A.J. 117:1375-86
Smith, K.W., Bonnell, I.A., Emerson, J.P., Jenness, T. 2000. MNRAS 319:991-1000
Söderhjelm, S. 1999, A&A, 341:121-40
Strigachev, A. & Lampens, P. A&A, 2004, 422, 1023-1029.
Thébault, P., Marzari, F., & Scholl, H. 2004, A&A, 427, 1097
Udry S., Mayor M., Naef D., Pepe F., Queloz D., Santos N.C. and Burnet M., A&A, 390, 267
Wolszczan, A., & Frail, D. A. 1992, Nature, 355, 145
Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N. 2011, PASP, 123, 412