Results of the first mapping of soil-transmitted helminths in Benin: Evidence of countrywide hookworm predominance

Moudachirou Ibikounlé1,2*, Ablavi Onzo-Aboki2, Justin Doritchamou2, Jean-Jacques Tougué3, Pélage Mimonnou Boko1, Boris S. Savassi2, Edoux Joel Siko2, Aboudou Dare3, Wilfrid Batcho1, Achille Massougbodji4, Dorotheé Akoko Kindé-Gazard4, Achille Kabore3

1 National Control Program of Communicable Diseases, Ministry of Health of Benin, Cotonou, Benin, 2 Department of Zoology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou, Benin, 3 Research Triangle Institute, Washington, District of Columbia, United States of America, Research Triangle Park, NC, United States of America, 4 Department of Parasitology and Mycology, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin

* Current address: National Institute of Allergy and Infectious Diseases, National Institute of Health, Maryland, United States of America.

OPEN ACCESS

Citation: Ibikounlé M, Onzo-Aboki A, Doritchamou J, Tougué J-J, Boko PM, Savassi BS, et al. (2018) Results of the first mapping of soil-transmitted helminths in Benin: Evidence of countrywide hookworm predominance. PLoS Negl Trop Dis 12(3): e0006241. https://doi.org/10.1371/journal.pntd.0006241

Editor: Serap Aksoy, Yale School of Public Health, UNITED STATES

Received: June 27, 2017
Accepted: January 17, 2018
Published: March 1, 2018

Copyright: © 2018 Ibikounlé et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This study was made possible with funding from the United States Agency for International Development (USAID). USAID support for NTD control in Benin led by RTI International under Cooperative Agreement No 0213210-000-012-003 through the ENVISION project. The contents of this manuscript are the

Abstract

Background
National mapping of soil-transmitted helminth infections (STH) was conducted for the first time in all of the 77 districts of Benin (West Africa) from 2013 to 2015. This mapping aimed to provide basic epidemiological data essential for the implementation of the national strategy against the neglected tropical diseases (NTDs) in the context of achieving the WHO target of controlling these infections by 2020.

Methods
In each district, 5 schools were purposively selected in 5 villages and 50 school-children (25 girls and 25 boys) from ages 8 to 14 years were randomly enrolled in each school. In total, 19,250 stool samples of school children (9,625 girls and 9,625 boys) from 385 schools were examined by Kato-Katz technique.

Results
The three major species of STH (hookworm, Ascaris lumbricoides and Trichuris trichiura) were observed with intra- and inter-specific variations in the prevalence and the intensity of these parasites. Hookworm infection was present in all of the surveyed districts with an average prevalence of 17.14% (95% CI 16.6%-17.6%). Among the infected schoolchildren, at national level, 90.82%, 6.73% and 2.45% of infections were of light, moderate and heavy parasite intensities respectively. A. lumbricoides infection, with a national average prevalence of 5.35% (95% CI 5.00%-5.60%), was the second most prevalent STH, and 84.37%, 14.27% and 1.36% of the infections were of light, moderate and heavy parasite intensities,
respectively. T. trichiura had a national average prevalence of 1.15% (95% CI 0.90%-1.20%) and 80.45%, 13.18% and 6.36% infections were of light, moderate and heavy parasite intensities, respectively. The national cumulative prevalence of the three STH infections was 22.74% (95% CI 22.15%-23.33%), with 58.44% (45/77) of the districts requiring mass treatment according to WHO recommendations. In all of the surveyed districts, multiple infections by STH species were common, and boys seemed more at risk of hookworm and Ascaris infections.

Conclusions
This first national mapping provided an overview of the epidemiological pattern of STH infections and was essential for the implementation of a control strategy with an effective preventive chemotherapy treatment (PCT). Results show that while preventive chemotherapy is not indicated for children in 32/77 districts, 43 require annual deworming and two require twice yearly deworming. If no environmental change occurs, and no mass treatment is delivered, prevalence is likely to remain stable for many years owing to poor hygiene and sanitation.

Author summary
Benin, like other low or moderate-income countries in the African continent, is endemic for several neglected tropical diseases, including soil-transmitted helminthiases. The National Program for Neglected Tropical Diseases of the Ministry of Health has conducted the national STH mapping using the Kato-Katz method to assess the baseline epidemiological status in all 77 districts of Benin, in order to guide implementation of a preventive chemotherapy program using albendazole. The results of the survey showed that infection with at least one of the three targeted species (hookworm, roundworm or whipworm) affected 20% or more of school aged children in 45 out of 77 districts, and which therefore require PCT. Hookworm infection was the most prevalent followed by ascariasis and trichuriasis. Boys were significantly more likely than girls to be infected with hookworm or ascariasis.

Introduction
The soil-transmitted helminthiasis (STH) are one of eighteen groups of diseases termed as Neglected Tropical Diseases by the World Health Organization (WHO) and which have caught the attention of donors following World Health Assembly resolution WHA54.19 in 2001 [1]. Indeed, more than 1.5 billion people, or 24% of the world population, have been estimated to be infected with STH worldwide [2]. Infections are widely distributed in tropical and subtropical areas and affects the poorest and most deprived communities, with the greatest numbers occurring in sub-Saharan Africa, the Americas, China and East Asia [3,4]. These diseases are transmitted by eggs present in human excreta, which contaminate the soil in areas with populations who have limited access to latrines and potable water. The main species of STH that infect humans are nematodes (A. lumbricoides, T. trichiura, Necator americanus and Ancylostoma duodenale) with relatively similar cycles involving the presence of adult worms in the intestine. Infection is caused by larval penetration of the skin (in the case of hookworm) or
ingestion of parasite eggs (for other STH). High to moderate intensity of STH infections have been associated with increased risk of malnutrition, iron-deficiency related anemia and other adverse physical and cognitive morbidities, particularly in children and pregnant women [2,5,6,7]. In sub-Saharan Africa (SSA), the majority of pregnant women are anemic (more than 60% in Benin) [8] and STH infections are among the most significant causes of anemia diagnosed during pregnancy in SSA [9].

In Benin, several studies have highlighted STH infections as a major public health problem and the related associations have been recently demonstrated on a small Beninese cohort [8–11]. Anemia had a negative impact on maternal health but also on newborn health due to significant decrease of the hemoglobin during the first months of life, leading to elevated risk of mortality and morbidity of the young child [8–11]. These studies have been the basis of sporadic preventive chemotherapy according to WHO guidelines. With the London Declaration on NTDs by 2020, the National Communicable Disease Control Program developed a strategy for the control of five NTDs in 2012 (Trachoma, Onchocerciasis and Lymphatic Filariasis, schistosomiasis and STH). Since 2013, the national plan has been funded by USAID through the ENVISION project led by Research Triangle Institute (RTI).

This study aimed to investigate the national epidemiological situation regarding the three major STH infections (hookworm, ascariasis and trichuriasis) as baseline data was essential for implementation of the PCT strategy in Benin.

Materials and methods

Ethical statement

This study was approved by the Comité National d’Ethique pour la Recherche en Santé (CNERS) under the authorisation reference 009/CNERS-MS from the Ministry of Health in Benin. Informed consent was obtained from the head teacher of each school and sometimes from the chief of the village, parents and teachers associations. In some districts where parents and teachers associations (PTA) exist, the head of the PTA and the head teachers received detailed explanation about the study. Individual parents were informed by the PTA and consents were secured orally. The PTA then provided a formal written approval on behalf of school children and parents. In cases where those that were to give authorisation were unable to read and write, a detailed verbal explanation of the form was given so that informed consent was obtained. Two copies of the written consent form were signed and dated. The person giving consent kept one copy and the second copy was returned to the NTD national control program. During the sampling all school children from whom no consent statement was received were replaced by other volunteers according to inclusion criteria. Participants detected with high intensity of STH or any other intestinal parasite infections were directed to healthcare centres in order to receive appropriate treatment before PCT school-based organized the following year.

Study area

The republic of Benin is divided into 12 departments (political subdivisions), which are further divided into 77 districts. A total population is 10,008,749 inhabitants with 29.7% of total population of school age children (5–14 year old). These districts are divided into 545 sub-districts and into 3755 villages. Each sub-district has at least one unit of health and each village has at least one public school. All of the 77 districts were sampled in this study. Rainfall intensifies from the south to the north of the country. In the northern departments (Atacora, Donga, Borgou and Alibori), the annual rainfall varies between 900 mm and 1200 mm with numerous lakes and rivers feeding the region. In the southern departments (Collines, Zou, Atlantic,
Littoral, Mono, Couffo Plateau and Oueme), the annual rainfall varies from 800 mm to 1200 mm [12]. The geographical location of each school surveyed, including altitude and Universal Transverse Mercator coordinates are provided in S1 Table.

Study design and stool collection

This study was carried out from 2013 to 2015 in all 77 districts of Benin (S1 Table). In each district, five primary schools were selected as previously described [13]. From each selected school, 50 children (25 girls and 25 boys) aged between 8 and 14 years were randomly selected. The children were given a container to provide stool samples. The containers were distributed by a team of lab technicians and the samples were collected within an hour.

Detection of STH in stool samples

The stool samples were analyzed using the Kato-Katz method as previously described [13]. Although the Kato-Katz method has some limitations, especially in terms of sensitivity in settings with low infection intensities [14,15], this technique is the standard approach for highly endemic areas such as Benin [16]. In this study, the kits used were manufactured by Vestergaard Frandsen Group and 41.7 mg of stool was filtered through a nylon mesh and covered with cellophane previously soaked in 50% green-malachite [17]. Only one smear was prepared and examined per stool sample. The slides were observed under microscope by two technicians and their results were validated by a third slide-reader. Especially, hookworm eggs were counted from 20 to 60 minutes after the slide was prepared and other soil-transmitted helminth eggs (A. lumbricoides, T. trichiura) were counted 24 hours later. The presence of infection was recorded; the number of eggs for each parasite was tallied and the intensity of infection was reported as the number of eggs per gram of feces (epg). Egg counts were used to classify the intensity of infection into light (L), moderate (M), or heavy (H) as follows: for *A. duodenale / N. americanus* (not distinguished hookworms) 1–1,999 epg (L), 2,000–3,999 epg (M) and ≥4,000 epg (H); for *A. lumbricoides*, 1–4,999 epg (L), 5,000–49,999 epg (M) and ≥50,000 epg (H); for *T. trichiura*, 1–999 epg (L), 1,000–9,999 epg (M) and ≥10,000 epg (H) [18]. The cumulative prevalence of STH infections reflects the number of individuals infected with any one of the three STH parasites. Cases of co-infection were counted once. For quality control purposes, 10% of the slides prepared on the previous day were examined each day by an independent team of biologists.

Data analysis

Data were double entered into Microsoft Excel 2008 (Redmond, Washington, USA). Range and consistency checks were conducted for all non-string variables. Descriptive statistics and prevalence estimates were calculated using Epi-Info 7 (CDC, Atlanta, USA) and all results with a P value of <0.05 were considered significant. The multiple comparison test chi square proportions were used to compare the prevalence by departments. The Fisher exact method of maximum likelihood and calculation of confidence intervals was used to calculate odds ratios by gender in each of the districts.

A Z-test was used to compare prevalence values between two districts and between the gender and Chi square to compare prevalence values between districts of each department. Any district with a prevalence of infection above 50% was defined as a “hotspot” of the corresponding parasite.
Results

In total, stool samples from 19,250 school-children (9,625 boys and 9,625 girls) were screened in 385 schools of the 77 districts of the twelve departments using Kato-Katz technique. The eggs of several helminths (STH, Schistosoma and other) were found but this paper focuses only on STH infection.

Distribution of hookworm infections

Hookworm infection was detected in all the surveyed districts with a prevalence ranging from 0.4% to 60% (Table 1). The national average prevalence of hookworm infection was 17.4% (95% CI: 16.6%-17.6%). The district of Djakotomey in the department of Couffo had the highest prevalence (60%) with hookworm infection detected in 150 children, whereas only one case was detected in the districts of Aguegue and Porto-Novo in the department of Oueme. In two districts (Toffo and Djakotomey), hookworm infection was detected in more than 50% of the surveyed children. The prevalence of hookworm infection was below 10% in 29/77 districts, and in 18 and 28 districts the prevalence ranged from 10% to 19.2% and from 20% to 43.2%, respectively. The intensity of the infection was light in most of the surveyed schools. However, moderate and heavy infections have been detected in different regions of the country with the highest prevalence of heavy infections observed in the districts of Copargo (16.67% of the infections) and Ouake (17.58%), both in the department of Djougou. In these two districts located in the northern part of the country, 33.33% (Copargo) and 27.47% (Ouake) of the hookworm infections were defined as moderate.

Prevalence of *A. lumbricoides* infection

Ascariasis is less widely distributed compared to hookworm and the overall prevalence of infection was 5.35% (95% CI:5.00%-5.60%). No Ascaris infection was detected in 15 districts (Table 2). In the other districts where Ascaris infection was detected, the prevalence ranged from 0.4% to 26.4%. The highest prevalence was observed in Toffo (26.4%), in the department of Atlantique in southern Benin, along with the district of Allada (21.20%) from the same department, and the districts of Bante (22.40%) and Glazoue (23.20%) both from the department of Collines. In these 4 districts, the prevalence of Ascaris infection was ≥20%. In 48/77 districts, the prevalence of Ascaris infection was <10%, whereas 10/77 districts had prevalence values between 10% and 18%. Most of the detected infections had light parasite load. All over the country, Ascaris infections with heavy parasite intensity were detected in only 6 districts, the highest being observed at Ouake (13% of infections) in the department of Djougou (Table 2). Ascaris infections with moderate parasite intensity were found in the 20 districts including the 6 districts with heavy parasite intensity.

T. trichiura infections in Benin

T. trichiura had the lowest prevalence at district and national level. The overall prevalence was 1.15% (Table 3). Trichuris infection was absent in 40/77 districts and most of the infections were detected at prevalence <10% in the other 37 districts. In these districts, the prevalence of Trichuris infection varied between 0.4% and 9.6%. Districts of Dassa-Zoume and Dogbo in the departments of Collines and Couffo respectively, had the highest (9.6%) prevalence of Trichuris infections. Along with these two districts, the districts of Materi in the department of Atacora, and Glazoue in the department of Collines were the only 4 districts with prevalence >5%. As for the other parasites screened in this study, the intensity of the Trichuris
Department	District	Infected/Examined	Prevalence [95% CI]	Light n (%)	Moderate n (%)	Heavy n (%)
				1–1999 epg	2000–3999 epg	≥4000 epg
ATACORA	COBLI	76/250	30.40 [24.7–36.1]	72 (94.74)	4 (5.26)	0
	BOUKOUMBE	33/250	13.20 [9.0–17.4]	31 (93.94)	2 (6.06)	0
	MATERI	27/250	10.80 [6.9–14.6]	27 (100.00)	0	0
	KOUANDE	54/250	21.60 [16.5–26.7]	52 (96.30)	2 (3.70)	0
	TOUKOUMANNA	11/250	4.40 [1.8–6.9]	11 (100.00)	0	0
	TANGUIETTA	26/250	10.40 [6.6–14.1]	26 (100.00)	0	0
	NAITITINGOU	15/250	6.00 [3.0–8.9]	15 (100.00)	0	0
	KEROU	37/250	15.00 [10.6–19.4]	25 (67.57)	12 (32.43)	0
	PEHUNCO	15/250	6.00 [3.0–8.9]	10 (66.67)	5 (33.33)	0
DONGA	BASSILA	108/250	43.20 [37.0–49.3]	102 (94.44)	2 (1.85)	4 (3.70)
	DJOUGOU	16/250	6.40 [3.4–9.4]	16 (100.00)	0	0
	COPARGO	90/250	36.00 [30.0–41.9]	45 (50.00)	30 (33.33)	15 (16.67)
	OUAKE	91/250	36.40 [30.4–42.4]	50 (54.95)	25 (27.47)	16 (17.58)
BORGOU	NIKKI	18/250	7.20 [4.0–10.4]	17 (94.44)	1 (5.56)	0
	PERERE	44/250	17.60 [12.9–22.3]	43 (97.73)	1 (2.27)	0
	TCHAOUROU	48/250	19.20 [14.3–24.1]	48 (100.00)	0	0
	PARAKOU	53/250	21.20 [16.1–26.3]	52 (98.11)	1 (1.89)	0
	SINENDE	14/250	5.60 [2.7–8.4]	14 (100.00)	0	0
	BEMBEREKE	15/250	6.00 [3.0–8.9]	15 (100.00)	0	0
	N’DALI	57/250	23.00 [17.8–28.2]	30 (52.63)	20 (35.09)	7 (12.28)
	KALALE	65/250	26.00 [20.6–31.4]	32 (49.23)	25 (38.46)	8 (12.31)
ALIBORI	BANIKOARA	19/250	7.60 [4.3–10.9]	19 (100.00)	0	0
	GOGOUNOU	26/250	10.40 [6.6–14.2]	26 (100.00)	0	0
	MALANVILLE	7/250	2.80 [0.7–4.8]	7 (100.00)	0	0
	KARIMAMA	3/250	1.20 [0–2.5]	3 (100.00)	0	0
	SEGABANA	35/250	14.00 [9.7–18.3]	35 (100.00)	0	0
	KANDI	12/250	4.80 [2.1–7.4]	12 (100.00)	0	0
COLLINES	DASSA-ZOUME	76/250	30.40 [24.7–36.1]	74 (97.36)	1 (1.32)	1 (1.32)
	OUESSE	74/250	29.60 [23.9–35.2]	70 (94.60)	3 (4.05)	1 (1.35)
	SAVÈ	73/250	29.20 [23.6–34.8]	67 (91.78)	1 (1.37)	5 (6.85)
	BANTE	61/250	24.40 [19.1–29.7]	60 (98.36)	1 (1.64)	0
	GLAZOUZE	61/250	24.40 [19.1–29.7]	61 (100.00)	0	0
	SAVALOU	42/250	16.80 [12.2–21.4]	36 (85.71)	6 (14.29)	0
ZOU	ABOMEY	15/250	6.00 [3.0–8.9]	14 (93.33)	0	1 (6.67)
	AGBANGNIZOUN	55/250	22.00 [16.9–27.1]	53 (96.36)	1 (1.82)	1 (1.82)
	BOHICON	23/250	9.20 [5.6–12.8]	23 (100.00)	0	0
	COVE	70/250	28.00 [22.4–33.6]	63 (90.00)	6 (8.57)	1 (1.43)
	DJIDJA	45/250	18.00 [13.2–22.8]	43 (95.56)	2 (4.44)	0
	OUINHI	30/250	12.00 [8.0–16]	29 (96.67)	1 (3.33)	0
	ZAKPOTA	58/250	23.20 [18.0–28.4]	55 (94.83)	1 (1.72)	2 (3.45)
	ZOGBODOMEY	77/250	30.20 [24.5–35.9]	77 (100.00)	0	0
	ZAGNANADO	24/250	9.60 [5.9–13.2]	21 (87.50)	2 (8.33)	1 (4.17)

(Continued)
Infections was light, whereas moderate and heavy infections were observed in 12 and 4 districts, respectively. In the district of Dassa-zoume, heavy infection (41.67%; 95% CI: 35.56%-47.78%) was more prevalent as compared to moderate (20.83%; 95% CI: 15.79%-25.86%) and light (35.50%; 95% CI: 29.57%-41.43%) infections.

Table 1. (Continued)

Department	District	Infected/Examined	Prevalence [95% CI]	Light n (%)	Moderate n (%)	Heavy n (%)
				1–1999 epg	2000–3999 epg	≥4000 epg
OUÈME	ADJARRA	19/250	7.60 [4.3–10.9]	19 (100.00)	0	0
	Adiohou	33/250	13.20 [9.0–17.4]	32 (96.97)	0	1 (3.03)
	AGUEGUE	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	AKPRO-MISERETE	50/250	20.00 [15.0–24.9]	48 (96.00)	1 (2.00)	1 (2.00)
	AVRANKOU	22/250	8.80 [5.3–12.3]	22 (100.00)	0	0
	BONOU	15/250	6.00 [3.0–8.9]	15 (100.00)	0	0
	DANGBO	12/250	4.80 [2.1–7.4]	12 (100.00)	0	0
	PORTO-NOVO	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	SÈME-KPODJJI	14/250	5.60 [2.7–8.4]	14 (100.00)	0	0
PLATEAU	ADJA-OUERE	34/250	13.60 [9.3–17.8]	32 (94.12)	1 (2.94)	1 (2.94)
	IFANJNÈ	80/250	32.00 [26.2–37.8]	70 (87.50)	6 (7.50)	4 (5.00)
	POBE	66/250	26.40 [20.9–31.9]	63 (95.45)	2 (3.03)	1 (1.52)
	KETOU	70/250	28.00 [22.4–33.6]	64 (91.43)	5 (7.14)	1 (1.43)
	SAKÈTÈ	66/250	26.40 [20.9–31.9]	63 (95.45)	3 (4.55)	0
ATLANTIQUE	ABOIMEY-CAVALI	25/250	10.00 [6.2–13.7]	18 (72.00)	6 (24.00)	1 (4.00)
	ALLADA	27/250	10.80 [6.9–14.6]	26 (96.30)	1 (3.70)	0
	KPOMASSE	12/250	4.80 [2.1–7.4]	11 (91.67)	0	1 (8.33)
	OUIDAH	24/250	9.60 [5.9–13.2]	24 (100.00)	0	0
	SÔ-AVA	5/250	2.00 [0.3–3.7]	5 (100.00)	0	0
	TOFFO	125/250	50.00 [43.8–56.2]	121 (96.80)	4 (3.20)	0
	TÔRI-BISSÔTO	80/250	32.00 [26.2–37.8]	78 (97.50)	2 (2.50)	0
	ZE	69/250	27.60 [22.0–33.1]	67 (97.10)	2 (2.90)	0
LITTORAL	COTONOU	6/250	2.40 [0.5–4.3]	6 (100.00)	0	0
COUFFO	APLAHOU	81/250	32.40 [26.6–38.2]	81 (100.00)	0	0
	DIJAKOTOMEY	150/250	60.00 [53.9–66.0]	142 (94.67)	6 (4.00)	2 (1.33)
	DOBO	3/250	1.20 [0.0–2.5]	3 (100.00)	0	0
	KLOUEKAME	96/250	38.40 [32.3–44.4]	94 (97.92)	2 (2.08)	0
	LALO	73/250	29.20 [23.5–34.8]	58 (79.45)	12 (16.44)	3 (4.11)
	TOVIKLIN	46/250	18.40 [13.5–23.2]	45 (97.83)	1 (2.17)	0
MONO	ATHIÈME	30/250	12.00 [8.0–16.0]	25 (83.33)	5 (16.67)	0
	BOPA	22/250	8.80 [5.3–12.3]	22 (100.00)	0	0
	COME	10/250	4.00 [1.6–6.4]	9 (90.00)	1 (10.00)	0
	GRAND POPO	20/250	8.00 [4.6–11.3]	18 (90.00)	2 (10.00)	0
	HOUEYOGBE	38/250	15.20 [10.7–19.6]	36 (94.74)	2 (5.26)	0
	LOKOSSA	76/250	30.40 [24.7–36.1]	71 (93.42)	4 (5.26)	1 (1.32)
SYNTHESIÈS	3300/19250	17.14 [16.6–17.6]	2997 (90.82)	222 (6.73)	21 (2.45)	

https://doi.org/10.1371/journal.pntd.0006241.t001
Table 2. Prevalence (%) and intensity of *A. lumbricoides* infections.

Department	District	Infected/Examined	Prevalence [95% IC]	Parasite load		
				Light n (%)	Moderate n (%)	Heavy n (%)
				1–4999 epg	5000–49999 epg	≥50000 epg
ATACORA	COBLI	13/250	5.20 [2.4–7.9]	13 (100)	0	0
	BOUKOUMBE	32/250	12.80 [8.6–16.9]	32 (100)	0	0
	MATERI	32/250	12.80 [8.6–16.9]	30 (93.75)	2 (6.25)	0
	KOUANDE	16/250	6.40 [3.4–9.4]	15 (93.75)	1 (6.25)	0
	TOUKOUNTOUNA	15/250	6.00 [3.0–8.9]	15 (100)	0	0
	TANGUIETA	12/250	4.80 [2.1–7.4]	12 (100)	0	0
	NATITINGOU	0/250	0	0	0	0
	KEROU	7/250	3.00 [0.9–5.1]	7 (100)	0	0
	PEHUNCO	0/250	0	0	0	0
DONGA	BASSILA	0/250	0	0	0	0
	DJOUGOU	0/250	0	0	0	0
	COPARGO	9/250	4.00 [1.6–6.4]	9 (100)	0	0
	OUAKE	45/250	18.00 [13.2–22.8]	30 (66.67)	9 (20.00)	6 (13.33)
BORGOU	NIKKI	0/250	0	0	0	0
	PERERE	0/250	0	0	0	0
	TCHAOUROU	14/250	5.60 [2.7–8.4]	14 (100)	0	0
	PARAKOU	17/250	6.80 [3.7–9.9]	17 (100)	0	0
	SINENDE	8/250	3.20 [1.0–5.4]	8 (100)	0	0
	BEMBEREKE	7/250	3.00 [0.9–5.1]	6 (85.7)	1 (14.3)	0
	NDALI	0/250	0	0	0	0
	KALALE	0/250	0	0	0	0
ALIBORI	BANIKOARA	25/250	10.00 [6.3–13.7]	25 (100)	0	0
	GOGOUNOU	14/250	5.60 [2.7–8.4]	14 (100)	0	0
	MALANVILLE	15/250	6.00 [3.0–8.9]	15 (100)	0	0
	KARIMAMA	6/250	2.40 [0.5–4.3]	6 (100)	0	0
	SEGBAHA	33/250	13.20 [9.0–17.4]	33 (100)	0	0
	KANDI	9/250	3.60 [1.3–5.9]	9 (100)	0	0
COLLINES	DASSA-ZOUME	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	OUESSE	0/250	0	0	0	0
	SAVÈ	3/250	1.20 [0–2.5]	3 (100.00)	0	0
	BANTE	56/250	22.40 [17.2–27.6]	56 (100)	0	0
	GLAZOUE	58/250	23.20 [18.0–28.4]	58 (100)	0	0
	SAVALOU	11/250	4.40 [1.8–6.9]	11 (100)	0	0
ZOU	ABOIMEY	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	AGBANGNIZOUN	2/250	0.80 [0–1.9]	2 (100.00)	0	0
	BOHICON	2/250	0.80 [0–1.9]	2 (100.00)	0	0
	COVÈ	0/250	0	0	0	0
	DJIDJA	0/250	0	0	0	0
	OUINHI	36/250	14.40 [10–18.7]	18 (50.00)	18 (50.00)	0
	ZAKPOTA	5/250	2.00 [0.3–3.7]	5 (100.00)	0	0
	ZOGBODOMEY	8/250	3.20 [1.0–5.4]	8 (100.00)	0	0
	ZAGNANADO	3/250	1.20 [0–2.5]	3 (100.00)	0	0

(Continued)
Soil-transmitted helminthiasis endemicity and preventive chemotherapy strategy

Cumulative prevalence of the surveyed STH parasites was analyzed by combining the determined prevalence of hookworm, Ascaris and Trichuris infections (Table 4). At least one of the three species of the targeted STH was found in all 77 surveyed districts. The average cumulative prevalence of STH infection was 22.74% (95% CI 22.15%-23.33%) and 58.44% (45/77) of

Table 2. (Continued)

Department	District	Infected/Examined	Prevalence [95% IC]	Parasite load		
			Light n (%) 1	Moderate n (%) 5000–49999 epg	Heavy n (%) ≥50000 epg	
			1–4999 epg 5000			
OUÉME	ADJARRA	6/250	2.40 [0.5–4.3]	6 (100.00)	0	0
	ADJOHOUN	0/250	0	0	0	0
	AGUEGUE	12/250	4.80 [2.1–7.4]	12 (100.00)	0	0
	AKPRO-MISSERET	4/250	1.60 [0.04–3.1]	4 (100.00)	0	0
	AVRANKOU	0/250	0	0	0	0
	BONOU	0/250	0	0	0	0
	DANGBO	3/250	1.20 [0–2.5]	3 (100.00)	0	0
	PORTO-NOVO	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	SEME-KPODJI	18/250	7.20 [4.0–10.4]	12 (66.67)	6 (33.33)	0
PLATEAU	ADJA OUERE	37/250	14.80 [10.4–19.2]	29 (78.38)	8 (21.62)	0
	IFANGNI	18/250	7.20 [4.0–10.4]	8 (44.44)	9 (50.00)	1 (5.56)
	POBE	34/250	13.60 [9.5–17.8]	17 (50.00)	17 (50.00)	0
	KETOU	1/250	0.40 [0–1.2]	1 (100.00)	0	0
	SAKÉTÉ	9/250	3.60 [1.3–5.9]	9 (100.00)	0	0
ATLANTIQUE	ABOMEY-CALAVI	7/250	2.80 [0.7–4.8]	7 (100.00)	0	0
	ALLADA	53/250	21.20 [16.1–26.2]	30 (56.60)	23 (43.40)	0
	KPOMASSE	2/250	0.80 [0–1.9]	2 (100.00)	0	0
	OUIDAH	4/250	1.60 [0.4–3.1]	4 (100.00)	0	0
	SÔ-AVA	15/250	6.00 [3.0–8.9]	10 (66.67)	5 (33.33)	0
	TOFFO	66/250	26.40 [20.9–31.9]	49 (74.24)	16 (24.24)	1 (1.52)
	TORI-BOSSITO	0/250	0	0	0	0
	ZE	23/250	9.20 [5.6–12.8]	19 (82.61)	4 (17.39)	0
LITTORAL	COTONOU	7/250	2.80 [0.7–4.8]	7 (100.00)	0	0
COUFFO	APLAHOUJ	41/250	16.40 [11.8–20.9]	41 (100)	0	0
	DJAKOTOMEY	21/250	8.40 [5.0–11.8]	17 (80.95)	3 (14.29)	1 (4.76)
	DOGBO	8/250	3.20 [1.0–5.4]	8 (100)	0	0
	KLOUEKAME	6/250	2.40 [0.5–4.3]	4 (66.67)	2 (33.33)	0
	LALO	17/250	6.80 [3.7–9.9]	7 (41.18)	6 (35.29)	4 (23.53)
	TOVIKLIN	21/250	8.40 [5.0–11.8]	17 (80.95)	3 (14.29)	1 (4.76)
MONO	ATHIEME	4/250	1.60 [0.4–3.1]	3 (75.00)	1 (25.00)	0
	BOPA	7/250	2.80 [0.7–4.8]	7 (100)	0	0
	COME	39/250	15.60 [11.1–20.1]	27 (69.23)	12 (30.77)	0
	GRAND POPO	1/250	0.40 [0–1.2]	1 (100)	0	0
	HOUEYOGBE	13/250	5.20 [2.4–7.9]	13 (100)	0	0
	LOKOSSA	17/250	6.80 [3.7–9.9]	16 (94.12)	1 (5.88)	0
SYNTHESIS	1030/19250	5.35 [5.0–5.6]	869 (84.37)	147 (14.27)	14 (1.36)	0

https://doi.org/10.1371/journal.pntd.0006241.t002
Department	District	Infected/Examined	Prevalence [95% IC]	Parasites Load		
				Light n (%)		
				Moderate n (%)		
				Heavy n (%)		
				1–999 epg	1000–9999 epg	≥10000 epg
ATACORA	COBLI	0/250	0	0	0	
	BOUKOUMBE	6/250	2.40 [0.5–4.3]	6 (100)	0	
	MATERI	23/250	9.20 [5.6–12.8]	20 (86.96)	3 (13.04)	
	KOUANDE	0/250	0	0	0	
	TOUKOUNTOUNA	0/250	0	0	0	
	TANGUITIA	0/250	0	0	0	
	NATITINGOU	0/250	0	0	0	
	KEROU	0/250	0	0	0	
	PEHUNCO	0/250	0	0	0	
DONGA	BASSILA	0/250	0	0	0	
	DIOUGOU	0/250	0	0	0	
	COPARGO	0/250	0	0	0	
	KEROU	0/250	0	0	0	
BORGOU	NIKKI	1/250	0.40 [0–1.2]	1 (100.00)	0	
	PERÈRE	0/250	0	0	0	
	TCHAOUROU	8/250	3.20 [1–5.4]	6 (75.00)	2 (25.00)	
	PARAKOU	2/250	0.80 [0–1.9]	2 (100)	0	
	SINENDE	0/250	0	0	0	
	BEMBEREKE	0/250	0	0	0	
	N’DALI	0/250	0	0	0	
	KALALE	0/250	0	0	0	
ALIBORI	BANIKOARA	3/250	1.20 [0–2.5]	3 (100)	0	
	GOGOUNOU	0/250	0	0	0	
	MALANVILLE	0/250	0	0	0	
	KARIMAMA	0/250	0	0	0	
	SEGĐANA	4/250	1.60 [0.04–3.1]	4 (100)	0	
	KANDI	0/250	0	0	0	
COLLINES	DASSA-ZOUMÈ	24/250	9.60 [5.9–13.2]	9 (37.50)	5 (20.83)	
	OUÉSSÉ	4/250	1.60 [0.04–3.1]	3 (75.00)	0 (0.00)	
	SAVÈ	4/250	1.60 [0.04–3.1]	4 (100.00)	0	
	BANTE	0/250	0	0	0	
	GLAZOUJE	21/250	8.40 [5–11.8]	21 (100)	0	
	SAVALOU	5/250	2.00 [0.3–3.7]	5 (100)	0	
ZOU	ABOMÉY	1/250	0.40 [0–1.2]	1 (100.00)	0	
	AGBANGNIZOUN	1/250	0.40 [0–1.2]	1 (100.00)	0	
	BOHICON	3/250	1.20 [0–2.5]	3 (100.00)	0	
	COVÈ	5/250	2.00 [0.3–3.7]	2 (40.00)	1 (20.00)	
	DJIDJA	5/250	2.00 [0.3–3.7]	2 (40.00)	1 (20.00)	
	OUINHI	1/250	0.40 [0–1.2]	0	1 (100.00)	
	ZAKPOTA	10/250	4.00 [1.6–6.4]	7 (70.00)	3 (30.00)	
	ZOGBODOMEY	1/250	0.40 [0–1.2]	1 (100.00)	0	
	ZAGNANADO	3/250	1.20 [0–2.5]	3 (100.00)	0	

(Continued)
the surveyed districts needed preventive chemotherapy (Table 4), as defined by WHO (STH prevalence ≥20%). Two rounds of PCT per year was needed in the districts of Toffo and Djakotomey where the detected STH prevalence was >50% (Table 4) using WHO guidelines [15]. Boys were significantly more likely to be infected compared to girls (S2 Table), with both hookworm and Ascaris, with average prevalence of 20.31% v. 14.03% (Z = 11.53; p < 0.00001).

Department	District	Infected/Examined	Prevalence[95% IC]	Parasites Load	Light n (%)	Moderate n (%)	Heavy n (%)
					1–999 epg	1000–9999 epg	≥10000 epg
OUEME	ADJARRA	4/250	1.60[0.04–3.1]	4 (100.00)	0	0	
	ADJOHOUN	0/250	0	0	0	0	
	AGUÉGUÉ	0/250	0	0	0	0	
	AKPRO-MISSÉRÉTÉ	0/250	0	0	0	0	
	AVRANKOU	1/250	0.40[0–1.2]	1 (100.00)	0	0	
	BONOU	1/250	0.40[0–1.2]	0	1 (100.00)	0	
	DANGBO	2/250	0.80[0–1.9]	2 (100.00)	0	0	
	PORTO-NOVO	3/250	1.20[0–2.5]	3 (100.00)	0	0	
	SÉMÉ-KPODJI	3/250	1.20[0–2.5]	3 (100.00)	0	0	
PLATEAU	ADJA OUÉRÈ	1/250	0.40[0–1.2]	1 (100.00)	0	0	
	IFANGNI	2/250	0.80[0–1.9]	2 (100.00)	0	0	
	POBÉ	0/250	0	0	0	0	
	KÉTOU	0/250	0	0	0	0	
	SAKÉTÉ	0/250	0	0	0	0	
ATLANTIQUE	ABOIMEY-CALAVI	0/250	0	0	0	0	
	ALLADA	0/250	0	0	0	0	
	KPMASSE	0/250	0	0	0	0	
	OUIDAH	3/250	1.20[0–2.5]	3 (100.00)	0	0	
	SÔ-AVA	0/250	0	0	0	0	
	TOFFO	2/250	0.80[0–0.19]	1 (50.00)	1 (50.00)	0	
	TORI-BOSSITO	0/250	0	0	0	0	
	ZÈ	2/250	0.80[0–0.19]	1 (50.00)	1 (50.00)	0	
LITTORAL	COTONOU	10/250	4.00[1.6–6.4]	2 (20.00)	8 (80.00)	0	
COUFO	APLAHOUÉ	7/250	2.80[0.7–4.8]	7 (100)	0	0	
	DJAKOTOMEY	0/250	0	0	0	0	
	DOGBO	24/250	9.60[5.9–13.2]	22 (91.67)	1 (4.17)	0	
	KLOUEKAME	0/250	0	0	0	0	
	LALO	0/250	0	0	0	0	
	TOVIKLIN	0/250	0	0	0	0	
MONO	ATHIEME	0/250	0	0	0	0	
	BOPA	0/250	0	0	0	0	
	COME	12/250	4.80[2.1–7.4]	12 (100)	0	0	
	GRAND POPO	0/250	0	0	0	0	
	HOUEYOGBE	9/250	3.60[1.3–5.9]	9 (100)	0	0	
	LOKOSA	0/250	0	0	0	0	
SYNTHESIS		221/19250	1.15[0.9–1.2]	177 (80.45)	29 (13.18)	14 (6.36)	

https://doi.org/10.1371/journal.pntd.0006241.t003
Table 4. Cumulative STH (hookworms, Ascaris and Trichuris) prevalence and PCT strategy (n: Schoolchildren co-infected by at least two STH species; schoolchildren co-infected were counted once; n1: Number of schoolchildren infected per department; PCT: Preventive chemotherapy; SAC: School age children).

Department	District	Parasitological data	STH Prevalence[95% CI]	X2 p-Value n1 (%)	PCT strategy
ATACORA	COBLI	76/250	30.40[24.7–36.1]	X2 = 134.031 p<0.00001 453 (20.13)	1PCT/Year for SAC
	BOUKOUMBE	71/250	28.40[22.8–34.0]		1PCT/Year for SAC
	MATERI	76/250	30.40[24.7–36.1]		1PCT/Year for SAC
	KOUANDE	70/250	28.00[22.4–33.6]		No PCT
	TOUKOUNTOUNA	26/250	10.40[6.6–14.2]		No PCT
	TANGUIETTA	61/250	24.40[19.1–29.7]		No PCT
	NATITINGOU	15/250	6.00[3.0–8.9]		No PCT
	KEROU	43/250	17.20[12.5–21.9]		No PCT
	PEHUNCO	15/250	6.00[3.0–8.9]		No PCT
DONGA	BASSILA	108/250	43.20[37.0–49.3]	X2 = 86.630 p<0.00001 318 (31.80)	1PCT/Year for SAC
	DJOUGOU	21/250	8.40[5.0–11.8]		No PCT
	COPARGO	92/250	36.80[30.8–42.8]		1PCT/Year for SAC
	OUAKE	97/250	38.80[32.7–44.8]		1PCT/Year for SAC
BORGOU	NIKKI	21/250	8.40[5.0–11.8]	X2 = 73.691 p<0.00001 411 (20.55)	No PCT
	PERERE	51/250	20.40[15.4–25.4]		1PCT/Year for SAC
	TCHAOUROU	71/250	28.40[22.8–34.0]		1PCT/Year for SAC
	PARAKOU	69/250	27.60[22.0–33.1]		1PCT/Year for SAC
	SINEDE	59/250	23.60[18.3–28.9]		1PCT/Year for SAC
	BEMBEREKE	18/250	7.20[4.0–10.4]		No PCT
	NDALI	57/250	22.80[17.6–28.0]		1PCT/Year for SAC
	KALALE	65/250	26.00[20.6–31.4]		1PCT/Year for SAC
ALIBORI	BANIKOARA	44/250	17.60[12.9–22.3]	X2 = 43.091 p<0.00001 313 (20.87)	No PCT
	GOGOUNOU	57/250	22.80[17.6–28.0]		No PCT
	MALANVILLE	36/250	14.40[10.0–18.7]		1PCT/Year for SAC
	KARIMAMA	33/250	13.20[9.0–17.4]		1PCT/Year for SAC
	SEGIBANA	84/250	33.60[27.7–39.4]		1PCT/Year for SAC
	KANDI	59/250	23.60[18.3–28.9]		1PCT/Year for SAC
COLLINES	DASSA-ZOUME	90/250	36.00[30.0–41.9]	X2 = 32.903 p<0.00001 512 (34.13)	1PCT/Year for SAC
	OUESSE	75/250	30.00[24.3–35.7]		1PCT/Year for SAC
	SAVÈ	87/250	34.80[28.9–40.7]		1PCT/Year for SAC
	BANTE	106/250	42.40[36.3–48.5]		1PCT/Year for SAC
	GLAZOUE	101/250	40.40[34.3–46.5]		1PCT/Year for SAC
	SAVALOU	53/250	21.20[16.1–26.3]		1PCT/Year for SAC
ZOU	ABOMEY	20/250	8.00[4.6–11.4]	X2 = 103.427 p<0.00001 476 (21.16)	No PCT
	AGBANGNIZOUN	57/250	22.80[17.6–28.0]		1PCT/Year for SAC
	BOHICON	31/250	12.40[8.3–16.5]		No PCT
	COVÈ	71/250	28.40[22.8–34.0]		1PCT/Year for SAC
	DJIDJA	47/250	18.80[13.9–23.6]		No PCT
	OUINHI	62/250	24.80[19.4–30.1]		1PCT/Year for SAC
	ZAKPOTA	70/250	28.00[22.4–33.6]		1PCT/Year for SAC
	ZOGBOTOMEY	90/250	36.00[30.0–41.9]		No PCT
	ZAGNANADO	28/250	11.20[7.3–15.1]		No PCT

(Continued)
and 5.79% v. 4.91% (Z = 2.68; p = 0.01), respectively. This difference was not observed with Trichuris infections. In all the surveyed districts, multiple infections by STH species was common in school age children as determined by the prevalence of co-infections with the highest number of cases (prevalence >10%) being found in the districts of Toffo (18.00%), Glazoue (16.50%), Bante and Lalo (14.40%), Djakotomey (14.00%) and Lokossa (10.80%).

Table 4. (Continued)

Department	District	Parasitological data	STH Prevalence [95% CI]	X² p-Value	PCT strategy
		Infected / Examined			
OUÉME (9)	ADJARRA	26/250	10.40 [6.6–14.2]	X² = 69.827 p < 0.0001	
	ADJOHOUN	33/250	13.20 [9.0–17.4]	No PCT	
	AGUEGUE	13/250	5.20 [2.4–7.9]	No PCT	
	AKPRO-MISSETE	52/250	20.80 [15.8–25.8]	1 PCT/Year for SAC	
	AVRANKOU	23/250	9.20 [5.6–12.8]	No PCT	
	BONOU	15/250	6.00 [3.0–8.9]	No PCT	
	DANGBO	20/250	8.00 [4.6–11.4]	No PCT	
	PORTO-NOVO	5/250	2.00 [0.3–3.7]	No PCT	
	SEME-KPODJ	34/250	13.60 [9.3–17.8]	No PCT	
PLATEAU (5)	ADJA OUERE	72/250	28.80 [23.2–34.4]	X² = 4.171 p = 0.383	
	IFANGNI	89/250	35.60 [29.7–41.5]	1 PCT/Year for SAC	
	POBE	81/250	32.40 [26.6–38.2]	1 PCT/Year for SAC	
	KETOUGÉ	71/250	28.40 [22.8–34.0]	1 PCT/Year for SAC	
	SAKÉTÉ	75/250	30.00 [24.3–35.7]	1 PCT/Year for SAC	
ATLANTIQUE (8)	ABOUMEY-CALAVI	28/250	11.20 [7.3–15.1]	X² = 379.055 p < 0.00001	
	ALLADA	73/250	29.20 [23.6–34.8]	No PCT	
	KPMASSE	14/250	5.60 [2.7–8.4]	No PCT	
	OUIDAH	25/250	10.00 [6.3–13.7]	No PCT	
	SÔ-AVA	20/250	8.00 [4.6–11.4]	No PCT	
	TOFFO	157/250	62.80 [56.8–68.8]	2 PCT/Year for SAC	
	TORI-BOSSITO	82/250	32.80 [27.0–38.6]	1 PCT/Year for SAC	
	ZE	103/250	41.20 [35.1–47.3]	1 PCT/Year for SAC	
LITTORAL (1)	COTONOU	8/250	3.20 [1.0–5.4]	8 (3.20)	No PCT
COUFFO (6)	APLAHOUÉ	122/250	48.80 [42.6–55.0]	X² = 162.804 p < 0.00001	
	DJAKOTOMEY	150/250	60.00 [53.9–66.1]	2 PCT/Year for SAC	
	DOGBO	32/250	12.80 [8.6–16.9]	No PCT	
	KLOUKEKAME	87/250	34.80 [28.9–40.7]	1 PCT/Year for SAC	
	LAO	78/250	31.20 [25.4–36.9]	1 PCT/Year for SAC	
	TOVIKLIN	56/250	22.40 [17.2–27.6]	1 PCT/Year for SAC	
MONO (6)	ATHIEME	31/250	12.40 [8.3–16.5]	X² = 54.397 p < 0.00001	
	BOPA	25/250	10.00 [6.3–13.7]	No PCT	
	COME	50/250	20.00 [15.0–24.9]	No PCT	
	GRAND POPO	23/250	9.20 [5.6–12.8]	No PCT	
	HOUYEHGBE	48/250	19.20 [14.3–24.1]	No PCT	
	LOKOSSA	74/250	30.60 [24.9–36.3]	1 PCT/Year for SAC	
SYNTHESIS		4378/19250	22.74 [22.15–23.33]	X² = 660.386 p < 0.00001	

https://doi.org/10.1371/journal.pntd.0006241.t004
Discussion

This study was part of national schistosomiasis and soil-transmitted helminthiasis mapping performed to collect baseline epidemiological data prior to launching STH MDA in Benin using WHO guidelines [18]. Results from this study provided evidence of nationwide distribution of STH parasites with variable prevalence and intensity of infection throughout the country.

Among the three STH species studied in the present work, *T. trichiura* had the lowest prevalence at the districts and national level. This overall low prevalence of trichuriasis confirmed data reported from previous studies in several districts of Benin [19,20]. The reported prevalence of trichuriasis in Benin, was also low as compared to other West Sub-Saharan African (WSSA) countries [7,21,22]. In contrast, ascariasis and hookworm infections are widely distributed with high prevalence in different regions of the countries.

Hookworm infections were widely distributed throughout the country and have been detected in 100% of the surveyed districts. This study clearly highlighted the predominance of hookworm infections nationwide with several hotspots where the prevalence reached 50% and more. Ascariasis was detected in 62/77 districts with the highest prevalence observed in Toffo. In this district, elevated prevalence of hookworm and Ascaris infections was detected, suggesting that populations living in that area are more vulnerable to these infections. Although, moderate to heavy hookworm and *Ascaris* infections have been observed in several districts of the country, most of the detected infections had a light parasite load. These findings confirmed that *Ascaris* and hookworm infections are endemic in all the departments of Benin and that the prevalence of STH in Benin varied steadily over localities and the current results are similar to those from our previous studies [13,19,20] and reports from other SSA countries [2,4,7,21]. Ascariasis appeared to be the predominant STH infection in the border districts between Benin and Burkina Faso (Materi and Boukoumbe), Benin and Togo (Copargo, Bante and Aplahoue), and Benin and Nigeria (Pobe, Ouinhi, Adjouere and Segbana), whereas hookworm infections appeared to be predominant in peripheral districts in the northern and in the central districts in the southern part of the country. This distribution of STH infection could be explained by recently published data from Ivory Coast [22], which found a significantly positive association between STH infection rates and activities involving close contact to water and access to latrines. On the other hand, a negative association between STH infection and deworming, higher socioeconomic status, living in urban settings has been reported [22]. Our study showed that prevalence estimates in some districts are higher than those reported in previous studies from Benin [19,20], suggesting an increased exposure to STH in those districts.

We believe that Benin follows the trends reported from other countries in SSA where the prevalence of the neglected tropical diseases appeared higher [7,22] than previously thought. However, this general trend of high prevalence of STH in WSSA is exceptional. In Burkina Faso for example, a recent study conducted on 3514 schoolchildren aged from 7 to 11 years randomly selected from 22 schools in 11 regions revealed low prevalence of hookworm, *A. lumbricoides* and *T. trichiura* infections [21].

In the current study the predominance of STH infections in boys compared to girls (hookworms: 21.31% of boys vs. 14.03% of girls, Z = 11.53, p<0.0001; Ascaris: 5.79% of boys vs. 4.91% of girls, Z = 2.68, p<0.01) might be explained by a difference in terms of behavior and activities [19,21].

Our study has a few limitations. First, the prevalence of STH in adult populations and particularly in pregnant women has not been investigated. Although having data on prevalence/intensity in other population groups such as pre-school-age children (PSAC) and women of child-bearing age (WCBA) is certainly useful, WHO does not strictly recommend collecting
such information. However, since age prevalence curves have been well established for all three infections, information collected among school-age children can guide decision-making on treatment of this age-group, as well as of PSAC and WCBA. Data shown in this report are therefore sufficient to justify treatment in these two additional population groups as well [1].

Second, only one sample was analyzed for each participant due to the nationwide scale of this study and the limited financial and human resources. Day-to-day variation in STH detection that may influence the prevalence estimates reported in this study could not be considered [23]. Third, the impact of STH infections on the health of the Beninese population has not been addressed in the current study. Many studies conducted in Benin [8,11] and in other West Africa countries [10,24] showed that people living in the endemic areas are at risk of helminth infections, with the most vulnerable populations being pregnant women and children. Helminth and hookworm infections have been associated with poor cognitive and gross motor outcomes in infants, as well as maternal anemia in pregnant women [8,10,11,24]. The high prevalence of hookworm and its predominance in all the districts has an implication in terms of maternal child health policy, which should be strengthened. PCT for STH should be tailored to prevent sequelae and disabling consequences in these populations at risk. Those infections may cause not only maternal anemia but also affect infants’ hemoglobin levels, their growth, their susceptibility to helminth infections, their cognitive development, their selective attention, their socioeconomic status, their physical fitness and their immunological responses to vaccination [25–30].

Supporting information

S1 Table. Geographical positions of the surveyed schools during the mapping in 77 districts in Benin. UTM: Universal Transverse Mercator.

S2 Table. Prevalence of three STH infections by sex.

Acknowledgments

The authors thank the schoolchildren who participated in this study, the teachers, the PTA and local authorities for facilitation and laboratory technicians for collaboration during the field and laboratory work. Manuscript publishing has been supported by DeWorm3 project which authors thank the staff and especially Dr Judd Walson, DeWorm3 central Principal Investigator.

Author Contributions

Conceptualization: Moudachirou Ibikounlé, Aboudou Daré, Achille Kaboré.

Data curation: Moudachirou Ibikounlé, Ablavi Onzo-Aboki, Boris S. Savassi.

Formal analysis: Moudachirou Ibikounlé, Ablavi Onzo-Aboki, Justin Doritchamou, Edoux Joel Siko.

Funding acquisition: Jean-Jacques Tougoué, Aboudou Daré, Dorotheé Akoko Kindé-Gazard, Achille Kaboré.

Investigation: Moudachirou Ibikounlé, Ablavi Onzo-Aboki, Boris S. Savassi.

Methodology: Moudachirou Ibikounlé, Ablavi Onzo-Aboki, Justin Doritchamou, Jean-Jacques Tougoué, Pélagie Mimonnou Boko, Edoux Joel Siko, Achille Kaboré.
Project administration: Moudachirou Ibikounlé, Jean-Jacques Tougoué, Dorothée Akoko Kindé-Gazard, Achille Kaboré.

Resources: Aboudou Daré, Achille Kaboré.

Software: Moudachirou Ibikounlé, Justin Doritchamou, Pelagie Mimonnou Boko, Boris S. Savassi, Edoux Joel Siko.

Supervision: Moudachirou Ibikounlé, Ablavi Onzo-Aboki, Pelagie Mimonnou Boko, Boris S. Savassi, Edoux Joel Siko, Aboudou Daré.

Validation: Moudachirou Ibikounlé, Justin Doritchamou, Jean-Jacques Tougoué, Wilfrid Batcho, Achille Massougbojdji.

Visualization: Justin Doritchamou, Pelagie Mimonnou Boko, Aboudou Daré, Wilfrid Batcho, Achille Massougbojdji, Dorothée Akoko Kindé-Gazard, Achille Kaboré.

Writing – original draft: Moudachirou Ibikounlé, Ablavi Onzo-Aboki.

Writing – review & editing: Moudachirou Ibikounlé, Dorothée Akoko Kindé-Gazard, Achille Kaboré.

References

1. WHO (2006) Preventive chemotherapy in human helminthiasis: coordinated use of anthelmintic drugs in control interventions: a manual for health professionals and programme managers. World Health Organization Press, Geneva.

2. Hotez PJ, Bundy DAP, Beegle K, Broker S, Drake L, de Silva N, Montresor A, Engels D, Jukes M, Chitsulo L, Chow J, Laxminarayan R, Michaud C, Bethony J, Correa-Oliveira R, Shuua X, Fenwick A, Savioit L. (2006). Helminth Infections: Soil-transmitted Helminth Infections and Schistosomiasis. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Evans DB, Jha P, Mills A, Musgrove P, editors. Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): World Bank; 2006. Chapter 24.

3. WHO (2017) Soil-transmitted Helminth infections. Fact sheet updated January 2017. http://www.who.int/mediacentre/factsheets/fs366/en/

4. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S (2004) Hookworm infection. The New England Journal of Medicine; 351:799–807. https://doi.org/10.1056/NEJMra032492 PMID: 15317893

5. Hotez P (2006) Helminth Infections: Soil-transmitted Helminth Infections and Schistosomiasis, in Disease Control Priorities in Developing Countries., World Bank; 2006.

6. Pullan RL, Smith JL, Jasrasaria R, Broker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors; 7(1):37.

7. Ouédraogo S, Koura GK, Abercrombessi MM, et al. (2012) Maternal anemia at first antenatal visit: prevalence and risk factors in an amalaria-endemic area in Benin. Am J Trop Med Hyg; 87(3):418–24. https://doi.org/10.4269/ajtmh.2012.11-0706 PMID: 22826498

8. Larocque R, Casapia M, Gotuzzo E, Gyorkos TW (2005) Relationship between intensity of soil-transmitted helminth infections and anemia during pregnancy. The American Journal of Tropical Medicine and Hygiene; 73:783–789. PMID: 16222026

9. Ayowa MA, Bendech MA, Zagré NM, Tchibindat F (2011) Maternal anaemia in West and Central Africa: time for urgent action. Pub Health Nutr; 15(5):916–927.

10. Mireku MO, Boivin MJ, Davidson LL, Ouédraogo S, Koura GK, Alao MJ, et al. (2015) Impact of Helminth Infection during Pregnancy on Cognitive and Motor Functions of One-Year-Old Children. PLoS Negl Trop Dis; 9(3):e0003463. https://doi.org/10.1371/journal.pntd.0003463 PMID: 25756357

11. INSAE & ICF. Enquête Démographique et de Santé du Bénin 2011–2012 [Internet]. 2013 [cited 2015 Dec 21].

12. Boko PM, Ibikounlé M, Onzo-Aboki A, Tougoué J-J, Sissinto Y, Batcho W, et al. (2016) Schistosomiasis and Soil Transmitted Helminths Distribution in Benin: A Baseline Prevalence Survey in 30 Districts. PLoS ONE; 11(9):e0162798. https://doi.org/10.1371/journal.pone.0162798 PMID: 27643795

13. Utzinger J, Rinaldi L, Lohourignon LK, Rohner F, Zimmermann MB, Tschanzen AB, Ng’oran EK, Cringoli G (2008) FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans.
Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol.; 25(4):151–16. https://doi.org/10.1016/j.pt.2009.01.004 PMID: 19269899

Booth M, Vounatsou P, Ng'oran EK, Tanner M, Utzinger J (2003) The influence of sampling effort and the performance of the Kato-Katz technique in diagnosing Schistosoma mansoni and hookworm co-infections in rural Côte d’Ivoire. Parasitology; 127:525–531. PMID: 14700188

Katz N, Chaves A, Pellegrin JA (1972) Simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop; 14:397–400.

WHO (2006) Preventive chemotherapy in human helminthiasis–Coordinated use of anthelminthic drugs and when? Trends Parasitol.; 25(4):151–16. https://doi.org/10.1016/j.pt.2009.01.004 PMID: 19269899

Ibikounle M, Satoguina J, Fachinan R, Tokplonou L, Batcho W, et al (2013). Epidemiology of urinary schistosomiasis and STH among schoolchildren in Benny, southern Benin. J Appl Biosci; 70: 5632–5639.

Ibikounle M, Gbédjissi LG, Ogouyé S, Obégou X, et al. (2016). Prevalence of helminth infections in primary school children in Sô-Ava, southern Benin. Parasit Vectors; 9:290. https://doi.org/10.1186/s13071-017-2084-x

Yapi RB, Hurlimann E, Houngbedji CA, Ndri PB, Silue KD, et al. (2014) Infection and Co-infection with helminths and Plasmodium among School Children in Cote d’Ivoir. Results from a National Cross-Sectional Survey. PLoS Negl Trop Dis; 8(6):e2913. https://doi.org/10.1371/journal.pntd.0002913 PMID: 24901332

Tarafder M, Carabin H, Joseph L, Balolong E, Olveda R, et al. (2010) Estimating the sensitivity and specificity of Kato-Katz stool examination technique for detection of hookworms, Ascaris lumbricoïdes and Trichuris trichiura infections in humans in the absence of a ‘gold standard’. Int J Parasitol; 40:399–404. https://doi.org/10.1016/j.ijpara.2009.09.003 PMID: 19772859

Bagayan M, Zongo D, Oueda A, Sorgho H, Savadogo B, Drabo F, Ouedraogo A, Podia JN, Kabre BG, Zhang Y. (2016) Prévalence de la schistosomose et des géohelminthiases chez des élèves de l’école primaire au Burkina Faso. Med Sante Trop; 26:267–272. https://doi.org/10.1684/mst.2016.0570 PMID: 27694082

Yapi RB, Hurlimann E, Houngbedji CA, Ndri PB, Silue KD, et al. (2014) Infection and Co-infection with helminths and Plasmodium among School Children in Cote d’Ivoir. Results from a National Cross-Sectional Survey. PLoS Negl Trop Dis; 8(6):e2913. https://doi.org/10.1371/journal.pntd.0002913 PMID: 24901332

22. Taraferd M, Carabin H, Joseph L, Balolong E, Olveda R, et al. (2010) Estimating the sensitivity and specificity of Kato-Katz stool examination technique for detection of hookworms, Ascaris lumbricoïdes and Trichuris trichiura infections in humans in the absence of a ‘gold standard’. Int J Parasitol; 40:399–404. https://doi.org/10.1016/j.ijpara.2009.09.003 PMID: 19772859

23. Babamale OA, et al. (2017) High prevalence of Plasmodium falciparum and soil-transmitted helminth co-infections in a periurban community in Kwara State, Nigeria. J Infec Public Health. http://dx.doi.org/10.1016/j.jiph.2017.03.002.

24. Mpairwe H, Tweyongyere R, Elliott A (2014) Pregnancy and helminth infections. Parasite Immunol 36 (8):328–37. https://doi.org/10.1111/pim.12101 PMID: 24471654

25. Gail S, Muller I, Walter C, Seelig H, Steenkamp L, Puhse U, et al. (2017) Associations between selective attention and soil-transmitted helminth infections, socioeconomic status, and physical fitness in disadvantaged children in Port Elizabeth, South Africa: An observational study. PLoS Negl Trop Dis; 11 (5):e5573. https://doi.org/10.1371/journal.pntd.0005573 PMID: 28481890

26. Welch VA, Ghogomu E, Bossain A, Awaathi S, Bhutta ZA, Cumberbatch C, et al. (2017) Mass deworming to improve developmental health and wellbeing of children in low-income and middle-income countries: a systematic review and network meta-analysis. The Lancet Global Health, 5(1):e40–e50. https://doi.org/10.1016/S2214-109X(16)30242-X PMID: 27955788

27. Campbell SJ, Nery SV, D’Este CA, Gray DJ, McCarthy JS, Traub RJ et al (2017) Investigations into the association between soil-transmitted helminth infections, haemoglobin and child development indices in Manufahi District, Timor-Leste. Parasit Vectors; 10:192. https://doi.org/10.1186/s13071-017-2084-x PMID: 28424091

28. Kim JB, Seo KI, Moon W (2017) Trichuris trichiura Infection in North Korean Defector Resulted in Chronic Abdominal Pain and Growth Retardation. Korean J Gastroenterol; 69(4):243–247. https://doi.org/10.4166/kjg.2017.69.4.243 PMID: 28449427

29. Malhotra I, McKibben M, Mungai P, et al. (2015) Effect of antenatal parasitic infections on anti-vaccine IgG levels in children: a prospective birth cohort study in Kenya. PLoS Negl Trop Dis; 9(1): e0003466.

30. Morawski BM, Yunus M, Kerukadho E, Turyasingura G, Barbra L, Ojok AM, et al. (2017) Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl Trop Dis; 11(5):e0005634. https://doi.org/10.1371/journal.pntd.0005634 PMID: 28542260