Non-Abelian Tensor Gauge Fields

Enhanced Symmetries

George Savvidy
Demokritos National Research Center
Institute of Nuclear Physics
Plato Laboratory for Theoretical Physics
Ag. Paraskevi, GR-15310 Athens, Greece
E-mail: savvidy@inp.demokritos.gr

Abstract

We define a group of extended non-Abelian gauge transformations for tensor gauge fields. On this group one can define generalized field strength tensors, which are transforming homogeneously with respect to the extended gauge transformations. The generalized field strength tensors allow to construct two infinite series of gauge invariant quadratic forms. Each term of these infinite series is separately gauge invariant. The invariant Lagrangian is a linear sum of these forms and describes interaction of tensor gauge fields of arbitrarily large integer spins 1, 2, It does not contain higher derivatives of the tensor gauge fields, and all interactions take place through three- and four-particle exchanges with dimensionless coupling constant. The first term in this sum is the Yang-Mills Lagrangian.

The invariance with respect to the extended gauge transformations does not fix the coefficients - the coupling constants - in front of these forms. There is a freedom to vary them without breaking the extended gauge symmetry. We demonstrate that by an appropriate tuning of these coupling constants one can achieve an enhancement of the extended gauge symmetry. This leads to highly symmetric equations. We present the explicit form of the free equations for the rank-2 and rank-3 gauge fields. Their relation to the Schwinger free equation for the rank-3 gauge fields is discussed.
1 Introduction

It is well understood, that the concept of local gauge invariance allows to define non-Abelian gauge fields [1], to derive their dynamical field equations and to develop a universal point of view on matter interactions as resulting from the exchange of gauge quanta of different forms. It is appealing to extend the gauge principle so that it will define the interaction of matter fields which carry not only non-commutative internal charges, but also arbitrary half-integer spins. This extension will induce the interaction of matter fields mediated by a charged gauge quanta carrying a spin larger than one [2, 3].

In our recent approach the gauge fields are defined as rank-$(s + 1)$ tensors [2, 3, 4, 5, 6]

\[A_{\mu\lambda_1...\lambda_s}^a \]

and are totally symmetric with respect to the indices $\lambda_1...\lambda_s$. A priory the tensor fields have no symmetries with respect to the first index μ. This is an essential departure from the previous considerations, in which the higher-rank tensors were totally symmetric [7, 8, 9, 10, 11, 12, 13, 14, 15, 17]. The index s runs from zero to infinity. The first member of this family of the tensor gauge bosons is the Yang-Mills vector boson A_{μ}^a.

The extended non-Abelian gauge transformation of the tensor gauge fields [2, 3]

\[\delta_\xi A_{\mu\lambda_1\lambda_2...\lambda_s}^a \]

is defined by the equation (4) and comprise a closed algebraic structure, because the commutator of two transformations can be expressed in the form

\[[\delta_\eta, \delta_\xi] A_{\mu\lambda_1\lambda_2...\lambda_s} = -ig \delta_\xi A_{\mu\lambda_1\lambda_2...\lambda_s} \]

where the gauge parameters $\{\zeta\}$ are given by the matrix commutators (6). This allows to define generalized field strength tensors (7) [2, 3]

\[G_{\mu\nu,\lambda_1...\lambda_s}^a \]
which are transforming homogeneously (8) with respect to the extended gauge transformations (4).

The field strength tensors $G^a_{\mu\nu,\lambda_1...\lambda_s}$ are used to construct two infinite series of gauge invariant quadratic forms [2, 3]

$$\mathcal{L}_s \quad s = 1, 2, 3...$$

and [3, 4, 5]

$$\mathcal{L}'_s \quad s = 2, 3, ...$$

Each term of these infinite series is separately gauge invariant with respect to the generalized gauge transformations (4). These forms contain quadratic kinetic terms and nonlinear terms describing nonlinear interaction of the Yang-Mills type. In order to make all tensor gauge fields dynamical one should add all these forms together. Thus the gauge invariant Lagrangian describing dynamical tensor gauge bosons of all ranks has the form

$$\mathcal{L} = \sum_{s=1}^{\infty} g_s \mathcal{L}_s + \sum_{s=2}^{\infty} g'_s \mathcal{L}'_s,$$

where $\mathcal{L}_1 \equiv \mathcal{L}_{YM}$ is the Yang-Mills Lagrangian.

It is important that: i) the Lagrangian does not contain higher derivatives of tensor gauge fields ii) all interactions take place through the three- and four-particle exchanges with dimensionless coupling constant g iii) the complete Lagrangian contains all higher-rank tensor gauge fields and should not be truncated iv) the invariance with respect to the extended gauge transformations does not fix the coupling constants g_s and g'_s.

The coupling constants g_s and g'_s remain arbitrary because every term of the sum is separately gauge invariant and the extended gauge symmetry alone does not fix them. This means that there is a freedom to vary these constants without breaking the initial gauge symmetry. The important question to which we should address ourselves here is the following: Can we achieve the enhancement of the initial gauge symmetry properly tuning the coupling constants g_s and g'_s?

Let us consider a simple example: the sum of two Z_2 invariant forms $g x^2 + g' y^2$ exhibits the $U(1)$ invariance if we choose $g = g'$ so that the initial symmetry is elevated to a one parameter family of continuous transformations. A less trivial example is a linear sum of Poincaré invariant forms comprising a SUSY invariant Lagrangian. One can find other examples of the same phenomena when a linear sum of invariant forms of the initial group G exhibits a symmetry with respect to a larger group $G \supset G$ when the coefficients are properly tuned. A similar phenomena appears in our system.

Indeed let us consider a linear sum of two gauge invariant forms in (1)

$$g_2 \mathcal{L}_2 + g'_2 \mathcal{L}'_2$$

which describes the rank-2 tensor gauge field $A^a_{\mu\lambda}$. As we have found in [3, 4, 5] one can chose the coupling constants g_2 and g'_2 so that the sum $g_2 \mathcal{L}_2 + g'_2 \mathcal{L}'_2$ exhibits invariance with respect to a bigger gauge group\(^1\). This means that in addition to full extended gauge group (4), which we had initially, now we have bigger gauge group with double number of gauge parameters [3, 4, 5]. The explicit form of the free field equation for the rank-2

\(^1c_2 = g'_2/g_2 = 1.\)
tensor gauge field is given by equation (30). It was then demonstrated that it describes propagation of two polarizations of helicity-two massless charged tensor gauge boson and of the helicity-zero "axion". This result will be recapitulated in the third section.

Our aim now is to extend this construction to the rank-3 tensor gauge field. We shall consider the linear sum

$$g_3 L_3 + g_3' L_3'$$

and shall demonstrate that for an appropriate choice of the coupling constants

$$c_3 = g_3' / g_3 = 4/3$$

the system have an enhanced gauge symmetry. The explicit description of this symmetry together with the corresponding free field equation (51) for the rank-3 tensor gauge field will be given in the fourth and fifth sections. Its relation to the Schwinger equation for the symmetric rank-3 tensor gauge field is discussed in the last seventh section.

First let us recapitulate the construction of the general Lagrangian L in (1).

2 Non-Abelian Tensor Fields

The gauge fields are defined as rank-$(s + 1)$ tensors $[2, 3]$

$$A^a_{\mu\lambda_1...\lambda_s}(x), \quad s = 0, 1, 2, ...$$

and are totally symmetric with respect to the indices $\lambda_1...\lambda_s$. A priori the tensor fields have no symmetries with respect to the first index μ. The index a numerates the generators L^a of the Lie algebra \hat{g} of a compact Lie group G.

One can think of these tensor fields as appearing in the expansion of the extended gauge field $A_\mu(x)$ over the unite tangent vector e_λ $[2, 3]$:

$$A_\mu(x) = \sum_{s=0}^{\infty} A^a_{\mu\lambda_1...\lambda_s}(x) L^a_{\lambda_1...\lambda_s}.$$ (2)

The gauge field $A^a_{\mu\lambda_1...\lambda_s}$ carries indices $a, \lambda_1, ..., \lambda_s$ labeling the generators of extended current algebra \mathcal{G} associated with compact Lie group G. It has infinite many generators $L^a_{\lambda_1...\lambda_s} = L^a e_{\lambda_1}...e_{\lambda_s}$ and the corresponding algebra is given by the commutator $[4]$

$$[L^a_{\lambda_1...\lambda_s}, L^b_{\rho_1...\rho_k}] = i f^{abc} L^c_{\lambda_1...\lambda_s\rho_1...\rho_k}.$$ (3)

The extended non-Abelian gauge transformations of the tensor gauge fields are defined by the following equations $[2, 3]$:

$$\delta A^a_\mu = (\delta^{ab} \partial_\mu + g f^{acb} A^c_\mu) \xi^b,$$

$$\delta A^a_{\mu\nu} = (\delta^{ab} \partial_\mu + g f^{abc} A^c_\mu) \xi^b + g f^{acb} A^c_{\mu\nu} \xi^b,$$

$$\delta A^a_{\mu\lambda} = (\delta^{ab} \partial_\mu + g f^{abc} A^c_\mu) \xi^b + g f^{acb} (A^c_{\mu\lambda} \xi^b + A^c_{\mu\lambda'} + A^c_{\mu\lambda''} + A^c_{\mu\lambda'''}),$$

$$\ldots$$

2 The algebra \hat{g} possesses an orthogonal basis in which the structure constants f^{abc} are totally antisymmetric.

3 See also the alternative expansions in $[10, 11, 18, 19, 20, 30, 31]$ and the algebras based on diffeomorphisms group in $[32, 33, 35, 34]$.

4
where $\xi_{\lambda_1...\lambda_s}(x)$ are totally symmetric gauge parameters. These extended gauge transformations generate a closed algebraic structure. To see that, one should compute the commutator of two extended gauge transformations $\delta \eta$ and $\delta \xi$ of parameters η and ξ. The commutator of two transformations can be expressed in the form [2, 3]

$$[\delta \eta, \delta \xi] A_{\mu \lambda_1 \lambda_2...\lambda_s} = -ig \delta \xi A_{\mu \lambda_1 \lambda_2...\lambda_s}$$

and is again an extended gauge transformation with the gauge parameters $\{\xi\}$ which are given by the matrix commutators

$$\zeta = [\eta, \xi]$$

$$\zeta_{\lambda_1} = [\eta_{\lambda_1} + \xi_{\lambda_1}]$$

$$\zeta_{\nu \lambda} = [\eta_{\nu}, \xi_{\lambda}] + [\eta_{\lambda}, \xi_{\nu}] + [\eta_{\nu}, \xi_{\lambda}]$$

The generalized field strengths are defined as [2, 3]

$$G_{\mu \nu}^a = \partial_{\mu} A_{\nu}^a - \partial_{\nu} A_{\mu}^a + g f^{abc} A_{\nu}^b A_{\mu}^c,$$

$$G_{\mu \nu, \lambda}^a = \partial_{\mu} A_{\nu \lambda}^a - \partial_{\nu} A_{\mu \lambda}^a + g f^{abc} (A_{\nu}^b A_{\lambda}^c + A_{\lambda}^b A_{\nu}^c),$$

$$G_{\mu \nu, \lambda \rho}^a = \partial_{\mu} A_{\nu \lambda \rho}^a - \partial_{\nu} A_{\mu \lambda \rho}^a + g f^{abc} (A_{\nu}^b A_{\lambda \rho}^c + A_{\lambda}^b A_{\nu \rho}^c + A_{\nu}^b A_{\lambda \rho}^c),$$

and transform homogeneously with respect to the extended gauge transformations (4).

The inhomogeneous extended gauge transformation (4) induces the homogeneous gauge transformation of the corresponding field strength (7) of the form [2, 3]

$$\delta G_{\mu \nu}^a = g f^{abc} G_{\mu \nu}^b \xi^c$$

$$\delta G_{\mu \nu, \lambda}^a = g f^{abc} (G_{\mu \nu, \lambda}^b \xi^c + G_{\mu \nu, \lambda}^b \xi^c),$$

$$\delta G_{\mu \nu, \lambda \rho}^a = g f^{abc} (G_{\mu \nu, \lambda \rho}^b \xi^c + G_{\mu \nu, \lambda \rho}^b \xi^c + G_{\mu \nu, \lambda \rho}^b \xi^c)$$

The field strength tensors are antisymmetric in their first two indices and are totally symmetric with respect to the rest of the indices. The symmetry properties of the field strength $G_{\mu \nu, \lambda_1...\lambda_s}^a$ remain invariant in the course of this transformation.

These tensor gauge fields and the corresponding field strength tensors allow to construct two series of gauge invariant quadratic forms. The first series is given by the formula [2, 3]:

$$\mathcal{L}_{s+1} = -\frac{1}{4} G_{\mu \nu, \lambda_1...\lambda_s}^a G_{\mu \nu, \lambda_1...\lambda_s}^a + \ldots$$

$$= -\frac{1}{4} \sum_{i=0}^{2s} a_i^s G_{\mu \nu, \lambda_1...\lambda_i}^a G_{\mu \nu, \lambda_{i+1}...\lambda_{2s}}^a (\sum_{\gamma} \eta_{\lambda_1...\lambda_i} \ldots \eta_{\lambda_{2s-1}...\lambda_{2s}}),$$

where the sum \sum_{γ} runs over all nonequal permutations of i's, in total $(2s - 1)!!$ terms and the numerical coefficients are

$$a_i^s = \frac{\delta_i^s}{i(2s - i)!}.$$
The second series of gauge invariant quadratic forms is given by the formula [3, 4, 5]:

\[
\mathcal{L}_{s+1} = \frac{1}{4} G_{\mu_1, \lambda_1}^a G_{\mu_2, \lambda_2}^a + \ldots + \frac{1}{8} \sum_{i=1}^{2s+1} g_{i-1}^a G_{\mu_1, \lambda_2, \ldots, \lambda_i}^a G_{\mu_{i+1}, \lambda_i+2, \ldots, \lambda_{2s+2}}^a \left(\sum_{p' s} \eta^{\lambda_1, \lambda_2} \ldots \eta^{\lambda_{2s+1}, \lambda_{2s+2}} \right),
\]

(10)

where the sum \(\sum_{p'} \) runs over all nonequal permutations of \(i' s \), with exclusion of the terms which contain \(\eta^{\lambda_1, \lambda_{i+1}} \).

In order to make all tensor gauge fields dynamical one should add the corresponding kinetic terms. Thus the invariant Lagrangian describing dynamical tensor gauge bosons of all ranks has the form

\[
\mathcal{L} = \sum_{s=1}^{\infty} g_s \mathcal{L}_s + \sum_{s=2}^{\infty} g'_s \mathcal{L}'_s,
\]

(11)

where \(\mathcal{L}_1 \equiv \mathcal{L}_{YM} \).

It is important that: i) the Lagrangian does not contain higher derivatives of tensor gauge fields ii) all interactions take place through the three- and four-particle exchanges with dimensionless coupling constant \(g \) iii) the complete Lagrangian contains all higher-rank tensor gauge fields and should not be truncated iv) the invariance with respect to the extended gauge transformations does not fix the coupling constants \(g \) and \(g'_s \).

The coupling constants \(g_s \) and \(g'_s \) remain arbitrary because every term of the sum is separately gauge invariant and the extended gauge symmetry alone does not fix them. This means that we have a freedom to chose these constants without breaking the initial gauge symmetry. The important question which should be addressed here is the following: Can we achieve the enhancement of the gauge symmetry tuning the coupling constants \(g \) and \(g'_s \)?

Let us consider a linear sum of two gauge invariant forms in (1)

\[
g_2 \mathcal{L}_2 + g'_2 \mathcal{L}'_2,
\]

which describes the rank-2 tensor gauge field \(A_{\mu \lambda}^a \). As we have found in [3, 4, 5] one can choose the coupling constants \(g_2 \) and \(g'_2 \) so that the sum \(g_2 \mathcal{L}_2 + g'_2 \mathcal{L}'_2 \) exhibits invariance with respect to a bigger gauge group (see the next section for details, where we will demonstrate that \(c_2 = g'_2 / g_2 = 1 \)). This means that in addition to full extended gauge group (4), which we had initially, now we have a bigger gauge group with double number of gauge parameters [3, 4, 5]. It was then demonstrated that the corresponding kinetic term describes propagation of two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ”axion”.

In summary the gauge invariant Lagrangian for the lower-rank tensor gauge fields has the form [3, 4, 5]:

\[
\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}'_2 = - \frac{1}{4} G_{\mu \nu}^a G_{\mu \nu}^a - \frac{1}{4} G_{\mu \nu, \lambda}^a G_{\mu \nu, \lambda}^a - \frac{1}{4} G_{\mu \nu, \lambda}^a G_{\mu \nu, \lambda}^a + \frac{1}{4} G_{\mu \nu, \lambda}^a G_{\mu \nu, \lambda}^a + \frac{1}{2} G_{\mu \nu}^a G_{\lambda, \mu \nu}^a.
\]

(12)
The equations of motion which follow from this Lagrangian are:

\[
\nabla^a G^b_{\mu\nu} + \frac{1}{2} \nabla^a (G^b_{\mu\nu,\lambda} + G^b_{\nu\lambda,\mu} + G^b_{\lambda\mu,\nu}) + g f^{abc} A^c_{\mu\lambda} G^b_{\mu\nu,\lambda} = \frac{1}{2} \partial_\mu F^{ab}_{\mu\nu} + \frac{1}{2} \partial_\nu F^{ab}_{\mu\nu,\lambda} + \frac{1}{2} \partial_\lambda F^{ab}_{\mu\nu,\mu} + \frac{1}{2} \partial_\mu (I^a_{\mu\nu,\lambda\rho} + I^a_{\nu\lambda,\mu\rho} + I^a_{\lambda\mu,\nu\rho}) - \frac{1}{2} \partial_\mu (I^a_{\mu\nu,\lambda\rho} + I^a_{\nu\lambda,\mu\rho} + I^a_{\lambda\mu,\nu\rho})
\]

(13)

and for the second-rank tensor gauge field \(A^a_{\nu\lambda} \):

\[
\nabla^a G^b_{\mu\nu,\lambda} - \frac{1}{2} \nabla^a (G^b_{\mu\nu,\lambda\rho} + G^b_{\nu\lambda,\mu} + G^b_{\lambda\mu,\nu} + \eta_{\nu\lambda} \nabla^a G^b_{\mu\nu,\rho}) + g f^{abc} A^c_{\mu\lambda} G^b_{\mu\nu,\lambda} = 0.
\]

(14)

The variation of the action with respect to the third-rank gauge field \(A^a_{\nu\lambda\rho} \) will give the equations

\[
\eta_{\nu\lambda} \nabla^a G^b_{\mu\nu,\rho} - \frac{1}{2} (\eta_{\nu\epsilon} \eta_{\mu\nu} G^b_{\mu\nu,\lambda} + \eta_{\nu\epsilon} \nabla^a G^b_{\mu\nu,\epsilon}) + \frac{1}{2} (\nabla^a G^b_{\mu\nu,\epsilon} + \nabla^a G^b_{\mu\nu,\lambda}) = 0.
\]

(15)

Representing this system of equations in the form

\[
\partial_\mu F^a_{\mu\nu} + \frac{1}{2} \partial_\mu (F^a_{\mu\nu,\lambda\rho} + F^a_{\nu\lambda,\mu\rho} + F^a_{\lambda\mu,\nu\rho}) = j^a_\nu
\]

(16)

\[
\partial_\mu F^a_{\mu\nu,\lambda} - \frac{1}{2} (\partial_\mu F^a_{\mu\nu,\epsilon} + \partial_\epsilon F^a_{\mu\nu,\mu} + \partial_\mu F^a_{\nu\lambda,\mu} + \eta_{\nu\lambda} \partial_\mu F^a_{\mu\nu,\rho}) = j^a_{\nu\lambda}
\]

\[
\eta_{\nu\epsilon} \partial_\mu F^a_{\mu\nu,\epsilon} - \frac{1}{2} (\eta_{\nu\epsilon} \eta_{\mu\nu} F^a_{\mu\nu,\lambda} + \eta_{\nu\epsilon} \partial_\mu F^a_{\mu\nu,\rho}) + \frac{1}{2} (\partial_\mu F^a_{\nu\lambda} + \partial_\lambda F^a_{\nu\lambda}) = j^a_{\nu\lambda\rho},
\]

where \(F^a_{\mu\nu} = \partial_\mu A^a_{\nu} - \partial_\nu A^a_{\mu} \), \(F^a_{\mu\nu,\lambda} = \partial_\lambda A^a_{\mu\nu} - \partial_\nu A^a_{\mu\lambda} \), \(F^a_{\nu\lambda\rho} = \partial_\rho A^a_{\nu\lambda} - \partial_\lambda A^a_{\nu\rho} \), we can find the corresponding conserved currents

\[
\]

(17)

where \(I^a_{\mu\nu,\lambda\rho} = g f^{abc} (A^b_{\mu\nu} A^c_{\lambda\rho} + A^b_{\mu\lambda} A^c_{\nu\rho} + A^b_{\mu\rho} A^c_{\nu\lambda}) \) and

\[
\]

(18)
\[j_{\nu \lambda \rho}^a = - \eta_{\lambda \rho} g f^{abc} A^b_\mu G^c_{\mu \nu} + \frac{1}{2} g f^{abc} (\eta_{\nu \rho} A^b_\mu G^c_{\mu \lambda} + \eta_{\nu \lambda} A^b_\mu G^c_{\mu \rho} - A^b_\rho G^c_{\nu \lambda} - A^b_\lambda G^c_{\nu \rho}) \]

(19)

\[j_{\nu \lambda}^a \text{ is obviously invariant with respect to the gauge transformation } \delta A_\mu^b. \]

The conservation of the corresponding currents follows from the fact that we have enhancement of the gauge group and therefore the partial derivatives of the l.h.s. of the equations (16) are equal to zero

\[\partial_\nu j_{\nu \lambda}^a = 0, \quad \partial_\nu j_{\nu \lambda}^a = 0, \quad \partial_\nu j_{\nu \lambda \rho}^a = 0, \quad \partial_\nu j_{\nu \lambda \rho}^a = 0. \]

(20)

Our aim now is to extend this analysis to the case of rank-3 tensor gauge field. We shall consider the linear sum

\[g_3 L_3 + g_3' L'_3 \]

and demonstrate that for an appropriate choice of the coupling constants ratio \(c_3 = g_3'/g_3 = 4/3 \) the system will have an enhanced symmetry. The explicit form of the Lagrangian for the third-rank tensor gauge field \(A_{\mu \nu \lambda}^a \) can be obtained from our general formulas (9), (10) and (11) when we substitute \(s = 2 \). The Lagrangian is:

\[L_3 + c_3 L'_3 = - \frac{1}{4} G^{\alpha \nu \lambda} G^{\alpha \nu \lambda \rho} - \frac{1}{8} G^{\alpha \nu \lambda} G^{\alpha \nu \lambda \rho \rho} - \frac{1}{2} G^{\alpha \nu \lambda} G^{\alpha \nu \lambda \rho \rho} + \]

\[+ c_3 \left\{ \frac{1}{4} G^{\alpha \nu \lambda} G^{\alpha \nu \lambda \rho} + \frac{1}{4} G^{\alpha \nu \lambda} G^{\alpha \nu \lambda \rho \rho} \right\} \]

(21)

where \(c_3 = g_3'/g_3 \) is a constant\(^4\).

3 Enhanced Symmetry. Rank-2 Gauge Field

As we have seen above there are two invariant forms for the rank-2 tensor gauge field \(L_2 \) and \(L'_2 \) and the general Lagrangian is a linear combination \(L_2 + c_2 L'_2 \), where \(c_2 = g_2'/g_2 \) is a constant coefficient. Let us review how this coefficient has been fixed by the requirement of an enhanced symmetry. For that let us consider the situation at the linearized level when the gauge coupling constant \(g \) is equal to zero. The free part of the \(L_2 \) Lagrangian

\[L_2^{\text{free}} = \frac{1}{2} A_{\alpha \alpha}^a (\eta_{\alpha \gamma} \eta_{\alpha \gamma} \partial^2 - \eta_{\alpha \gamma} \partial_\alpha \partial_\gamma) A_{\gamma \gamma}^a = \frac{1}{2} A_{\alpha \alpha}^a H_{\alpha \alpha \gamma \gamma} A_{\gamma \gamma}^a, \]

where the quadratic form in the momentum representation has the form

\[H_{\alpha \gamma \gamma}(k) = (-k^2 \eta_{\alpha \gamma} + k_\alpha k_\gamma) \eta_{\alpha \gamma}, \]

is obviously invariant with respect to the gauge transformation \(\delta A_{\mu \lambda}^a = \partial_\mu \xi_\lambda^a \), but it is not invariant with respect to the alternative gauge transformations \(\delta A_{\mu \lambda}^a = \partial_\lambda \eta_\mu^a \). This can be seen, for example, from the following relations in momentum representation

\[k_\alpha H_{\alpha \gamma \gamma}(k) = 0, \quad k_\alpha H_{\alpha \gamma \gamma}(k) = -(k^2 \eta_{\alpha \gamma} - k_\alpha k_\gamma) k_\gamma \neq 0. \]

(22)

\(^4\)It is not difficult to present the explicit form of the Lagrangian for any higher-rank tensor field using expressions (9), (10) and (11).
Let us consider now the free part of the second Lagrangian

\[\mathcal{L}_2^{\text{free}} = \frac{1}{4} A^a_{\alpha\alpha}(\eta_{\alpha\gamma} - \eta_{\alpha\gamma} \partial^2 - \eta_{\alpha\alpha} \eta_{\gamma\gamma} + \eta_{\alpha\alpha} \partial_{\alpha} \partial_{\gamma} + \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma} + \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma} + \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma})A^a_{\gamma\gamma} = \frac{1}{2} A^a_{\alpha\alpha} H^\prime_{\alpha\gamma\gamma} A^a_{\gamma\gamma}, \]

(23)

where

\[H^\prime_{\alpha\gamma\gamma}(k) = \frac{1}{2}(\eta_{\alpha\gamma} \eta_{\alpha\gamma} + \eta_{\alpha\alpha} \eta_{\gamma\gamma}) k^2 - \frac{1}{2}(\eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} - 2 \eta_{\alpha\gamma} k_{\alpha} k_{\gamma}). \]

It is again invariant with respect to the gauge transformation \(\delta A^{a}_{\mu\lambda} = \partial_{\mu} \xi^{a}_{\lambda} \), but it is not invariant with respect to the gauge transformations \(\tilde{\delta} A^{a}_{\mu\lambda} = \partial_{\lambda} \eta^{a}_{\mu} \), as one can see from analogous relations

\[k_{\alpha} H^\prime_{\alpha\gamma\gamma}(k) = 0, \quad k_{\dot{\alpha}} H^\prime_{\alpha\dot{\gamma}\dot{\gamma}}(k) = (k^2 \eta_{\alpha\gamma} - k_{\alpha} k_{\gamma}) k_{\gamma} \neq 0. \]

(24)

As it is obvious from (22) and (24), the total Lagrangian \(\mathcal{L}_2^{\text{tot}} + \mathcal{L}_2^{\text{free}} \) now poses new enhanced invariance with respect to the larger, eight-parameter, gauge transformations

\[\delta A^a_{\mu\lambda} = \partial_{\mu} \xi^a_{\lambda} + \partial_{\lambda} \eta^a_{\mu}, \]

(25)

where \(\xi^a_{\lambda} \) and \(\eta^a_{\mu} \) are eight arbitrary functions, because

\[k_{\alpha}(H_{\alpha\gamma\gamma} + H^\prime_{\alpha\gamma\gamma}) = 0, \quad k_{\dot{\alpha}}(H_{\dot{\alpha}\gamma\dot{\gamma}} + H^\prime_{\dot{\alpha}\gamma\dot{\gamma}}) = 0. \]

(26)

Thus our free part of the Lagrangian is

\[\mathcal{L}_2^{\text{tot}} = - \frac{1}{2} \partial_{\mu} A^a_{\alpha\lambda} \partial_{\mu} A^a_{\alpha\lambda} + \frac{1}{2} \partial_{\mu} A^a_{\alpha\lambda} \partial_{\nu} A^a_{\mu\lambda} + \frac{1}{4} \partial_{\mu} A^a_{\alpha\lambda} \partial_{\mu} A^a_{\alpha\lambda} - \frac{1}{4} \partial_{\mu} A^a_{\alpha\lambda} \partial_{\lambda} A^a_{\mu\nu} + \frac{1}{4} \partial_{\nu} A^a_{\mu\lambda} \partial_{\lambda} A^a_{\mu\nu} \]

(27)

or, in equivalent form, it is

\[\mathcal{L}_2^{\text{tot}} = \frac{1}{2} A^a_{\alpha\gamma}(\eta_{\alpha\gamma} - \frac{1}{2} \eta_{\alpha\alpha} \eta_{\gamma\gamma}) \partial^2 - \eta_{\alpha\alpha} \eta_{\gamma\gamma} \partial_{\alpha} \partial_{\gamma} - \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma} - \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma} + \eta_{\alpha\gamma} \partial_{\alpha} \partial_{\gamma} + \eta_{\alpha\gamma} \partial_{\gamma} \partial_{\alpha} + \eta_{\alpha\gamma} \partial_{\gamma} \partial_{\alpha} + \eta_{\alpha\gamma} \partial_{\gamma} \partial_{\alpha} \} A^a_{\gamma\gamma} \]

(28)

and is invariant with respect to the larger gauge transformations \(\delta A^a_{\mu\lambda} = \partial_{\mu} \xi^a_{\lambda} + \partial_{\lambda} \eta^a_{\mu} \), where \(\xi^a_{\lambda} \) and \(\eta^a_{\mu} \) are eight arbitrary functions. In momentum representation the quadratic form is

\[H_{\alpha\gamma\gamma}(k) = (-\eta_{\alpha\gamma} \eta_{\alpha\gamma} + \frac{1}{2} \eta_{\alpha\alpha} \eta_{\gamma\gamma} + \frac{1}{2} \eta_{\alpha\alpha} \eta_{\gamma\gamma}) k^2 + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} - \frac{1}{2} \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma} + \eta_{\alpha\gamma} k_{\alpha} k_{\gamma}). \]

(29)
Free equations of motion which follow from the Lagrangian (28) will take the form
\[
\partial^2(A^a_{\nu\lambda} - \frac{1}{2} A^a_{\lambda\nu}) - \partial_{\nu} \partial_{\mu}(A^a_{\mu\lambda} - \frac{1}{2} A^a_{\lambda\mu}) - \partial_{\lambda} \partial_{\mu}(A^a_{\nu\mu} - \frac{1}{2} A^a_{\mu\nu}) + \partial_{\nu} \partial_{\lambda}(A^a_{\mu\nu} - \frac{1}{2} A^a_{\mu\nu}) + \frac{1}{2} \eta_{\nu\lambda}(\partial_{\mu} A^a_{\mu\rho} - \partial^2 A^a_{\mu\rho}) = 0 \tag{30}
\]
and describe the propagation of massless particles of spin 2 and spin 0. It is also easy to see that for the symmetric tensor gauge fields \(A^a_{\mu\nu} \) our equation reduces to the Einstein-Fierz-Pauli-Schwinger-Chang-Singh-Hagen-Fronsdal equation
\[
\partial^2 A_{\nu\lambda} - \partial_{\nu} \partial_{\mu} A_{\mu\lambda} - \partial_{\lambda} \partial_{\mu} A_{\mu\nu} + \partial_{\nu} \partial_{\lambda} A_{\mu\nu} + \eta_{\nu\lambda}(\partial_{\mu} A_{\rho\mu} - \partial^2 A_{\mu\rho}) = 0,
\]
which describes the propagation of massless boson with two physical polarizations, the \(s = \pm 2 \) helicity states. For the antisymmetric fields it reduces to the equation
\[
\partial^2 A_{\nu\lambda} - \partial_{\nu} \partial_{\mu} A_{\mu\lambda} + \partial_{\lambda} \partial_{\mu} A_{\mu\nu} = 0,
\]
and describes the propagation of one physical polarization \(s = 0 \), the zero helicity state.

The above consideration brings the final form of the gauge invariant Lagrangian for the lower-rank tensor gauge fields to the form (12).

4 Rank-3 Tensor Gauge Field

The Lagrangian \(\mathcal{L}_1 + g_2(\mathcal{L}_2 + \mathcal{L}_2') \) contains the third-rank gauge fields \(A^a_{\mu\nu\lambda} \), but without corresponding kinetic term. In order to make the fields \(A^a_{\mu\nu\lambda} \) dynamical we have to add the corresponding Lagrangian \(g_3 \mathcal{L}_3 + g_3' \mathcal{L}_3' \) presented in (21), so that at this level the total Lagrangian is the sum [3, 4, 5]
\[
\mathcal{L} = \mathcal{L}_1 + g_2(\mathcal{L}_2 + \mathcal{L}_2') + g_3(\mathcal{L}_3 + c_3 \mathcal{L}_3') + \ldots,
\]
where \(c_3 = g_3' / g_3 \). The Lagrangian \(\mathcal{L}_3 \) has the form (21):
\[
\mathcal{L}_3 = -\frac{1}{4} C^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} - \frac{1}{8} G^a_{\mu\nu,\lambda\lambda} G^a_{\mu\nu,\rho\rho} - \frac{1}{2} C^a_{\mu\nu,\lambda} G^a_{\mu\nu,\lambda\rho\rho} - \frac{1}{8} g^a_{\mu\nu} G^a_{\mu\nu,\lambda\lambda\rho\rho}, \tag{31}
\]
where the field strength tensors (7) are
\[
G^a_{\mu\nu,\lambda\rho\sigma} = \partial_{\mu} A^a_{\nu\lambda\rho\sigma} - \partial_{\nu} A^a_{\mu\lambda\rho\sigma} + g f^{abc} \{ A^b_{\mu} A^c_{\nu\lambda\rho\sigma} + A^b_{\mu\lambda} A^c_{\nu\rho\sigma} + A^b_{\mu\rho} A^c_{\nu\lambda\sigma} + A^b_{\mu}\sigma A^c_{\nu\lambda\rho} + A^b_{\mu\lambda\rho} A^c_{\nu\sigma} + A^b_{\mu\lambda\sigma} A^c_{\nu\rho} + A^b_{\mu\rho\sigma} A^c_{\nu\lambda} + A^b_{\mu\rho\lambda} A^c_{\nu}\sigma} \}
\]
and
\[
G^a_{\mu\nu,\lambda\rho\sigma\delta} = \partial_{\mu} A^a_{\nu\lambda\rho\sigma\delta} - \partial_{\nu} A^a_{\mu\lambda\rho\sigma\delta} + g f^{abc} \{ A^b_{\mu} A^c_{\nu\lambda\rho\sigma\delta} + \sum_{\lambda\rho,\sigma,\delta} A^b_{\mu\lambda} A^c_{\nu\rho\sigma\delta} + \sum_{\lambda\rho,\sigma,\delta} A^b_{\mu\lambda\rho} A^c_{\nu\sigma\delta} + \sum_{\lambda\rho,\sigma,\delta} A^b_{\mu\lambda\rho\sigma} A^c_{\nu\delta} \}.
\]
The terms in parentheses are symmetric over \(\lambda\rho\sigma \) and \(\lambda\rho\sigma\delta \) respectively. The Lagrangian \(\mathcal{L}_3 \) is invariant with respect to the extended gauge transformations (4) of the low-rank gauge fields \(A_\mu, A_{\mu\nu}, A_{\mu\lambda} \) and of the fourth-rank gauge field (4)
\[
\delta_{\xi} A_{\mu\nu\lambda\rho} = \partial_{\mu} \xi_{\nu\lambda\rho} - ig[A_\mu, \xi_{\nu\lambda\rho}] - ig[A_{\mu\nu}, \xi_{\lambda\rho}] - ig[A_{\mu\lambda}, \xi_{\nu\rho}] - ig[A_{\mu\rho}, \xi_{\lambda\nu}] - ig[A_{\nu\lambda}, \xi_{\mu\rho}] - ig[A_{\nu\rho}, \xi_{\mu\lambda}] - ig[A_{\lambda\rho}, \xi_{\mu\nu}] - ig[A_{\lambda\nu}, \xi_{\mu\rho}] - ig[A_{\rho\nu}, \xi_{\mu\lambda}] - ig[A_{\rho\lambda}, \xi_{\mu\nu}] - ig[A_{\rho\nu}, \xi_{\mu\lambda}].
\]
and of the fifth-rank tensor gauge field (4)

\[\delta L_{\mu\nu\lambda\rho\sigma} = \partial_\mu \xi_{\nu\lambda\rho\sigma} - ig [A_\mu, \xi_{\nu\lambda\rho\sigma}] - ig \sum_{\nu+\lambda} [A_{\mu\nu}, \xi_{\lambda\rho\sigma}] - \]

\[- ig \sum_{\nu\lambda+\rho} [A_{\mu\nu\lambda}, \xi_{\rho\sigma}] - ig \sum_{\nu\lambda\rho+\sigma} [A_{\mu\nu\lambda\rho}, \xi_{\sigma}] - ig [A_{\mu\nu\lambda\rho}, \xi], \]

where the gauge parameters \(\xi_{\nu\lambda\rho\sigma} \) and \(\xi_{\nu\lambda\rho\sigma} \) are totally symmetric rank-3 and rank-4 tensors. The extended gauge transformation of the higher-rank tensor gauge fields induces the gauge transformation of the fields strengths of the form (8)

\[\delta G_{\mu\nu,\lambda\rho\sigma}^a = g^f abc (G_{\mu\nu,\lambda\rho\sigma}^b \xi^c + G_{\mu\nu,\lambda\rho}^b \xi_{\sigma} + G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\rho} + G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\lambda} + \]

\[+ G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\rho} + G_{\mu\nu,\lambda\rho,\sigma}^b \xi_{\rho} + G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\rho} + G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\rho}) \]

and

\[\delta G_{\mu\nu,\lambda\rho\sigma\delta}^a = g^f abc (G_{\mu\nu,\lambda\rho\sigma}^b \xi^c + \sum_{\lambda,\rho, \sigma+\delta} G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\delta} + \]

\[+ \sum_{\lambda,\rho+\sigma,\delta} G_{\mu\nu,\lambda\rho,\sigma}^b \xi_{\delta} + \sum_{\lambda+\rho,\sigma,\delta} G_{\mu\nu,\lambda\rho,\sigma}^b \xi_{\delta} + G_{\mu\nu,\lambda\rho\sigma}^b \xi_{\rho\delta}), \]

Using the above homogeneous transformations for the field strengths tensors one can demonstrate the invariance of the Lagrangian \(L_3 \) with respect to the extended gauge transformations (see reference [2] for details).

The second invariant Lagrangian can also be constructed explicitly in terms of the above field strength tensors. The following seven Lorentz invariant quadratic forms can be constructed by the corresponding field strength tensors [3, 4, 5]

\[G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b, \quad G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b. \]

Calculating the variation of each of these terms with respect to the gauge transformation (8), (32) and (33) one can get convinced that the particular linear combination

\[L_3' = \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \]

\[+ \frac{1}{8} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b - \frac{1}{2} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b - \frac{1}{8} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \]

forms an invariant Lagrangian (see Appendix A). In summary we have the following Lagrangian for the third-rank gauge field \(A_{\mu\nu} \)

\[L_3 + c_3 L_3' = - \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b - \frac{1}{8} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b - \frac{1}{2} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b - \frac{1}{8} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \]

\[+ \quad c_3 \left\{ \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b + \frac{1}{4} G_{\mu\nu,\lambda\rho\sigma}^a G_{\mu\nu,\lambda\rho\sigma}^b \right\}, \]

where \(c_3 \) is an arbitrary constant. Our intention is to investigate the dependence of symmetries of the system \(L_3 + c_3 L_3' \) as a function of constant \(c_3 \). The system is always invariant with respect to the initial, extended gauge group of transformations (8), (32) and (33) for any value of the constant \(c_3 \). We wish to know if there exists a special value of the constant \(c_3 \) at which the system will have even higher symmetry, as it happens in the case of the rank-2 gauge field. We shall see that this indeed takes place.
where the quadratic form in the momentum representation is

\[\text{and has the form} \]

\[
\mathcal{L}^{\text{free}}_3 = -\frac{1}{2} \partial_\mu A^a_{\nu,\lambda'} \partial_\nu A^{a}_{\mu,\lambda} + \frac{1}{2} \partial_\mu A^a_{\nu,\lambda'} \partial_\nu A^{a}_{\mu,\lambda} - \frac{1}{4} \partial_\mu A^a_{\nu,\lambda \lambda'} \partial_\nu A^{a}_{\mu,\rho \rho} + \frac{1}{4} \partial_\mu A^a_{\nu,\lambda \lambda'} \partial_\nu A^{a}_{\mu,\rho \rho} + \frac{1}{4} \partial_\mu A^a_{\nu,\lambda \lambda'} \partial_\nu A^{a}_{\mu,\rho \rho}
\]

\[
= \frac{1}{2} A_{\alpha' \alpha''}^a (\eta_{\alpha \gamma'} \partial^2 - \partial_\alpha \partial_\gamma)(\frac{1}{2} \eta_{\alpha' \gamma'} \eta_{\alpha'' \gamma''} + \frac{1}{2} \eta_{\alpha' \gamma'} \eta_{\alpha'' \gamma''} + \frac{1}{2} \eta_{\alpha' \gamma'} \eta_{\alpha'' \gamma''}) A_{\gamma' \gamma''}^a,
\]

(38)

where the quadratic form in the momentum representation is

\[
H_{\alpha' \alpha'' \gamma' \gamma''}(k) = -\frac{1}{2} H_{\alpha \gamma}(\eta_{\alpha' \gamma'} \eta_{\alpha'' \gamma''} + \eta_{\alpha' \gamma''} \eta_{\alpha'' \gamma'} + \eta_{\alpha' \gamma'} \eta_{\alpha'' \gamma''})
\]

where \(H_{\alpha \gamma} = k^2 \eta_{\alpha \gamma} - k_{\alpha} k_{\gamma} \) and by construction is invariant with respect to the gauge transformation

\[
\delta A^a_{\mu \nu \lambda} = \partial_\mu \xi^a_{\nu \lambda}
\]

because we have

\[
k_{\alpha} H_{\alpha' \alpha'' \gamma' \gamma''}(k) = 0.
\]

But it is not invariant with respect to the alternative gauge transformations

\[
\tilde{\delta} A^a_{\mu \nu \lambda} = \partial_\nu \xi^a_{\mu \lambda} + \partial_\lambda \xi^a_{\mu \nu},
\]

where the gauge parameter \(\xi^a_{\mu \lambda} \) is a totally symmetric tensor. This can be seen from the following relation in momentum representation

\[
k_{\alpha} H_{\alpha' \alpha'' \gamma' \gamma''}(k) = -\frac{1}{2} H_{\alpha \gamma} (k_{\gamma} \eta_{\alpha'' \gamma''} + k_{\gamma'} \eta_{\alpha' \gamma''} + k_{\gamma'} \eta_{\alpha'' \gamma'}) \neq 0.
\]

(39)

Let us consider now the free part of the Lagrangian \(\mathcal{L}_3' \) which comes from the terms

\[
\frac{1}{4} G^{a}_{\mu \nu, \lambda \rho} G^{a}_{\mu \nu, \lambda \rho} + \frac{1}{4} G^{a}_{\mu \nu, \lambda \rho} G^{a}_{\mu \nu, \rho \lambda} + \frac{1}{4} G^{a}_{\mu \nu, \rho \lambda} G^{a}_{\mu \nu, \rho \lambda},
\]

thus

\[
\mathcal{L}_3'^{\text{free}} = + \frac{1}{4} \partial_\mu A^a_{\nu, \lambda'} \partial_\nu A^{a}_{\mu, \lambda} - \frac{1}{4} \partial_\nu A^a_{\nu, \lambda'} \partial_\mu A^{a}_{\mu, \lambda} - \frac{1}{4} \partial_\mu A^a_{\nu, \lambda' \lambda} \partial_\lambda A_{\mu, \rho \rho} + \frac{1}{4} \partial_\lambda A^a_{\mu, \lambda' \lambda} \partial_\rho A_{\mu, \rho \rho} + \frac{1}{4} \partial_\lambda A^a_{\nu, \lambda' \lambda} \partial_\rho A_{\mu, \rho \rho} + \frac{1}{4} \partial_\mu A^a_{\nu, \lambda' \lambda} \partial_\rho A_{\mu, \rho \rho} + \frac{1}{4} \partial_\mu A^a_{\nu, \lambda' \lambda} \partial_\rho A_{\mu, \rho \rho}
\]

\[
= \frac{1}{2} A_{\alpha' \alpha'' \gamma' \gamma''}^a H_{\alpha' \alpha'' \gamma' \gamma''}^a A_{\gamma' \gamma''}^a,
\]

(40)
where one should symmetrize the $H^\prime_{\alpha_a\alpha'}\gamma\gamma'$ over the $\alpha' \leftrightarrow \alpha''$, $\gamma' \leftrightarrow \gamma''$, and the exchange of two sets of indices $\alpha\alpha' \leftrightarrow \gamma\gamma' \gamma''$, so that the second quadratic form in the momentum representation is (see also Appendix B for derivation)

$$
H^\prime_{\alpha_a\alpha''\gamma\gamma'}(k) = \frac{1}{8}\{ + (k^2\eta_{aa'} - k_\alpha k_{\alpha'}) (\eta_{a''\gamma} \eta_{\gamma'\gamma''} + \eta_{a''\gamma'} \eta_{\gamma''\gamma}) + (k^2\eta_{aa''} - k_\alpha k_{\alpha''}) (\eta_{a'\gamma} \eta_{\gamma'\gamma''} + \eta_{a'\gamma''} \eta_{\gamma'\gamma}) + (k^2\eta_{aa'} - k_\alpha k_{\alpha''}) (\eta_{a''\gamma} \eta_{\gamma'\gamma''} + \eta_{a''\gamma'} \eta_{\gamma''\gamma}) + (k^2\eta_{aa''} - k_\alpha k_{\alpha''}) (\eta_{a'\gamma} \eta_{\gamma'\gamma''} + \eta_{a'\gamma''} \eta_{\gamma'\gamma}) \}
$$

$$-\frac{1}{8}\{ + k_\gamma k_{\gamma'} (\eta_{aa'} \eta_{\gamma''} + \eta_{aa''} \eta_{\gamma'}) + k_\gamma k_{\gamma''} (\eta_{aa} \eta_{\gamma'} + \eta_{aa'} \eta_{\gamma''}) + k_\gamma k_{\gamma'} (\eta_{aa} \eta_{\gamma''} + \eta_{aa''} \eta_{\gamma'}) + k_\gamma k_{\gamma''} (\eta_{aa} \eta_{\gamma'} + \eta_{aa'} \eta_{\gamma''}) \} + \frac{1}{4}\{ + \eta_{aa'} k_\gamma k_{\gamma'} (\eta_{aa''} + k_\gamma k_{\gamma''} \eta_{aa'} + k_\gamma k_{\gamma'} \eta_{aa''} + k_\gamma k_{\gamma''} \eta_{aa'} \}
$$

It is again invariant with respect to the transformation $\delta A^a_{\mu\nu\lambda} = \partial_\mu \xi^a_{\nu\lambda} + \partial_{\nu} \xi^a_{\mu\lambda}$ because we have

$$k_\alpha H^\prime_{\alpha_a\alpha''\gamma\gamma'}(k) = 0,$$

but it is not invariant with respect to the transformation $\tilde{\delta} A^a_{\mu\nu\lambda} = \partial_\mu \xi^a_{\nu\lambda} + \partial_{\nu} \xi^a_{\mu\lambda}$, as one can see from the analogous relation (see also Appendix B for derivation)

$$k_\alpha^\prime H^\prime_{\alpha_a\alpha''\gamma\gamma'}(k) = \frac{1}{8}\{ + H_{aa'} (k_\gamma \eta_{\gamma''} + k_\gamma \eta_{\gamma'}) + H_{aa''} (k_\gamma \eta_{\gamma'} + k_\gamma \eta_{\gamma''}) + H_{aa'} (k_\gamma \eta_{\gamma''} + k_\gamma \eta_{\gamma'}) \}
$$

$$-\frac{1}{4}\{ + k_\gamma k_{\gamma'} (k_\gamma \eta_{\gamma''} + k_\gamma \eta_{\gamma'}) + k_\gamma k_{\gamma''} (k_\gamma \eta_{\gamma'} + k_\gamma \eta_{\gamma''}) + k_\gamma k_{\gamma'} (k_\gamma \eta_{\gamma''} + k_\gamma \eta_{\gamma'}) \} \neq 0. \quad (42)$$

We have to see now whether the sum

$$k_\alpha^\prime (H_{aa'} \gamma\gamma'' + c_3 H_{aa'} \gamma\gamma'')$$

can be made equal to zero by an appropriate choice of the coefficient c_3. For that let us compare the expressions (39) and (42) for divergences. As one can see, only the last term in (42)

$$H_{aa'} (k_\gamma \eta_{\gamma''} + k_\gamma \eta_{\gamma'} + k_\gamma \eta_{\gamma''})$$

and the whole term (39) can cancel each other if we choose $c_3 = 2$, but this will leave the rest of the terms in (42) untouched, thus

$$k_\alpha^\prime (H_{aa'} \gamma\gamma'' + c_3 H_{aa'} \gamma\gamma'') \neq 0$$
for all values of c_3. This situation differs from the case of the rank-2 gauge field $A_{\mu \nu}^a$. In the last case we were able to choose the coefficient $c_2 = 1$ so that the divergences (22) and (24) cancel each other and we got (26)

$$k_{\delta}(H_{\alpha \alpha' \gamma' \gamma} + H'_{\alpha \alpha' \gamma' \gamma}) = 0.$$

Therefore the Lagrangian $L_2^{\text{free}} + L_2'^{\text{free}}$ has enhanced invariance with respect to a large gauge group of transformations $\delta A_{\mu \lambda}^a = \partial_{\mu} \xi^a_{\lambda} + \partial_{\lambda} \eta^a_{\mu}$.

In order to understand the reason why in the case of the rank-3 gauge field it is impossible fully cancel divergences we have to analyze the corresponding field equations. We shall compare the resulting equation with the equation derived by Schwinger [12] for the totally symmetric Abelian rank-3 tensor field in order to get better insight into the problem. It has been proved by Schwinger [12] that it is impossible to derive field equation for the totally symmetric rank-3 tensor which is invariant with respect to the full gauge group of transformations $\delta A_{\mu \lambda}^a = \partial_{\mu} \xi_{\lambda}^a + \partial_{\lambda} \xi_{\mu}^a$ without imposing some restriction on the gauge parameters $\xi_{\mu \nu}$. As he demonstrated, the gauge parameter should be traceless $\xi_{\mu \nu} = 0$. We shall see that similar phenomena take place also in our case, that is, the second gauge parameter $\zeta^a_{\mu \lambda}$ should fulfill constraint which we shall derive below (see equation (44)).

What we would like to prove is that the equation has enhanced invariance with respect to the gauge group of transformations

$$\tilde{\delta} A_{\mu \lambda}^a = \partial_{\nu} \zeta_{\mu \lambda}^a + \partial_{\lambda} \zeta_{\mu \nu}^a,$$

but in our case the gauge parameters $\zeta_{\mu \lambda}^a$ should fulfill the following constraint:

$$\partial_{\rho} \zeta_{\rho \lambda}^a - \partial_{\lambda} \zeta_{\rho \rho}^a = 0. \quad (44)$$

This takes place when we choose the coefficient $c_3 = 4/3$. Indeed, let us consider the equation of motion. From the first form L_3^{free} we have the following contribution to the field equation:

$$H_{\alpha \alpha' \gamma' \gamma} A_{\gamma' \gamma} = \partial^2 A_{\alpha \alpha' \alpha''} - \partial_{\alpha} \partial_{\rho} A_{\rho \alpha' \alpha''} + \frac{1}{2} \eta_{\alpha \alpha''} (\partial^2 A_{\alpha \rho \rho} - \partial_{\alpha} \partial_{\rho} A_{\rho \lambda \lambda}), \quad (45)$$

and from the second one $L_3'^{\text{free}}$ we have

$$H_{\alpha \alpha' \gamma' \gamma} A_{\gamma' \gamma} = -\frac{1}{8} \{ \partial^2 (A_{\alpha \alpha' \alpha''} + A_{\alpha' \alpha'' \alpha} + A_{\alpha'' \alpha \alpha'} + A_{\alpha' \alpha'' \alpha'}) - \partial_{\alpha} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\alpha' \rho \alpha''} + A_{\alpha'' \rho \alpha'} + A_{\alpha' \alpha'' \rho}) - \partial_{\alpha'} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) - \partial_{\alpha'} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) - \partial_{\alpha} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) - \partial_{\alpha} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) - \partial_{\alpha} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) - \partial_{\alpha} \partial_{\rho} (A_{\rho \alpha' \alpha''} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha'' \alpha'} + A_{\rho \alpha' \alpha''}) \} - \frac{1}{8} \{ \eta_{\alpha \alpha'} [\partial^2 (A_{\alpha \rho \rho} + A_{\rho \alpha' \rho} + A_{\rho \rho \alpha'}) - \partial_{\alpha} \partial_{\rho} A_{\rho \rho \lambda} - \partial_{\lambda} \partial_{\rho} (A_{\rho \rho \lambda} + A_{\rho \lambda \lambda}) + \eta_{\alpha''} [\partial^2 (A_{\alpha' \rho \rho} + A_{\rho \rho \rho} + A_{\rho \rho \rho}) - \partial_{\alpha} \partial_{\rho} A_{\rho \rho \lambda} - \partial_{\lambda} \partial_{\rho} (A_{\rho \rho \lambda} + A_{\rho \lambda \lambda}) + \eta_{\alpha''} [\partial^2 (A_{\rho \rho \rho} + A_{\rho \rho \rho} + A_{\rho \rho \rho}) - \partial_{\alpha} \partial_{\rho} A_{\rho \rho \lambda} - \partial_{\lambda} \partial_{\rho} (A_{\rho \rho \lambda} + A_{\rho \lambda \lambda} - 2 A_{\lambda \lambda})] \} \} \}.$$

(46)
Summing these two pieces together we shall get the following free field equation of motion for the rank-3 tensor gauge field:

$$\begin{align*}
(H_{aa'a''} \gamma' \gamma'' + c_3 H_{aa'a''} \gamma' \gamma'') A_{\gamma' \gamma''} & = \partial^2 (A_{a'a''}^{\rho} - \frac{c_3}{4} A_{aa''}^{a'\rho} - \frac{c_3}{4} A_{a''a'}^{\rho a}) - \\
& - \partial_a \partial_{\rho}(A_{\rho a' a''}^{a'} - \frac{c_3}{4} A_{a' a''}^{a'} - \frac{c_3}{4} A_{a'' a'}^{a'}) - \frac{c_3}{4} \partial_{a'} \partial_{\rho}(A_{\alpha a' a''}^{\rho} + A_{\alpha a''}^{\rho a} - A_{\alpha a''}^{\rho a'}) - \\
& - \frac{c_3}{4} \partial_{\alpha'} \partial_{\rho}(A_{\alpha a' a''}^{\rho a} + A_{\alpha' a''}^{\rho a} - A_{\alpha a''}^{\rho a}) + \frac{c_3}{8} \partial_{\alpha'} \partial_{\rho}(A_{\alpha a' a''}^{\rho a} + A_{\alpha a''}^{\rho a} + A_{\rho a''}^{a a'}) + \\
& + \frac{c_3}{8} \partial_{\alpha'} \partial_{\rho}(A_{\alpha' a''}^{\rho a} + A_{\rho a''}^{a a'}) - \frac{c_3}{4} \partial_{\alpha'} \partial_{\rho}(A_{\alpha a'}^{\rho a} + A_{\rho a'}^{a a'}) - \frac{c_3}{4} \partial_{\alpha'} \partial_{\rho}(A_{\alpha a'}^{\rho a} + A_{\rho a'}^{a a'}) - \\
& - \frac{3}{8} \eta_{\alpha'a'}(\partial^2 A_{\alpha a''}^{\rho a} - \partial_{\rho a'} A_{\rho a''}^{\rho a} + 2 \partial^2 A_{\rho a''}^{\rho a} - 2 \partial_{\rho} A_{\rho a''}^{\rho a}) - \\
& - \frac{3}{8} \eta_{\alpha'a'}(\partial^2 A_{\alpha a''}^{\rho a} - \partial_{\rho a'} A_{\rho a''}^{\rho a} + 2 \partial^2 A_{\rho a''}^{\rho a} - 2 \partial_{\rho} A_{\rho a''}^{\rho a}) - \\
& + \frac{1}{2} \eta_{\alpha'a'}(\partial^2 A_{\alpha a''}^{\rho a} - \partial_{\rho a'} A_{\rho a''}^{\rho a} - \frac{c_3}{2} 2 \partial^2 A_{\rho a''}^{\rho a} - \frac{c_3}{2} \partial_{\rho a'} A_{\rho a''}^{\rho a} + \frac{c_3}{2} \partial_{\rho} A_{\rho a''}^{\rho a} + \frac{c_3}{2} \partial_{\rho} A_{\rho a''}^{\rho a}) = 0.
\end{align*}$$

We shall prove that this equation is invariant with respect to the gauge transformation

$$\delta A_{\mu \nu \lambda} = \partial_\nu \zeta_{\mu \lambda} + \partial_\lambda \zeta_{\mu \nu}$$

if we choose the coefficient $c_3 = 4/3$. Performing the above gauge transformation of the field one can see that the terms which originate from differential operators ∂^2, $\partial_a \partial_{\rho}$, $\partial_{\alpha'} \partial_{\rho}$ and $\partial_{\alpha''} \partial_{\rho}$ in the above equation cancel each other if we choose

$$c_3 = \frac{4}{3}. \quad (47)$$

The rest of the terms have the following form:

$$\begin{align*}
(H_{aa'a''} \gamma' \gamma'' + \frac{4}{3} H_{aa'a''} \gamma' \gamma'') \delta A_{\gamma' \gamma''} & = \\
+ \frac{1}{3} \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} & + \frac{1}{3} \partial_{\alpha} \partial_{\sigma} \partial_{\rho} \zeta_{\rho \sigma} - \frac{4}{3} \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} + \frac{2}{3} \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} \\
& - \frac{1}{6} \eta_{\alpha \alpha'} (2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma} - 4 \partial_{\rho} \partial_{\sigma} \partial_{\rho} \zeta_{\rho \sigma} + 2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma}) \\
& - \frac{1}{6} \eta_{\alpha \alpha'} (2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma} - 4 \partial_{\rho} \partial_{\sigma} \partial_{\rho} \zeta_{\rho \sigma} + 2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma}) \\
& + \frac{1}{3} \eta_{\alpha \alpha'} (\partial_{\rho} \partial^2 \zeta_{\rho \sigma} - \partial_{\sigma} \partial_{\rho} \partial_{\rho} \zeta_{\rho \sigma}) \quad (48)
\end{align*}$$

and can be rewritten in the form which makes the desired invariance explicit:

$$\begin{align*}
(H_{aa'a''} \gamma' \gamma'' + \frac{4}{3} H_{aa'a''} \gamma' \gamma'') \delta A_{\gamma' \gamma''} & = + \frac{1}{3} \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} - \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} \\
+ \frac{1}{3} \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} - \partial_{\alpha} \partial_{\rho} \partial_{\sigma} \zeta_{\rho \sigma} \\
- \frac{1}{3} \eta_{\alpha \alpha'} (2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma} - 4 \partial_{\rho} \partial_{\sigma} \partial_{\rho} \zeta_{\rho \sigma} + 2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma}) \\
- \frac{1}{3} \eta_{\alpha \alpha'} (2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma} - 4 \partial_{\rho} \partial_{\sigma} \partial_{\rho} \zeta_{\rho \sigma} + 2 \partial_{\rho} \partial^2 \zeta_{\rho \sigma}) \\
+ \frac{1}{3} \eta_{\alpha \alpha'} (\partial_{\rho} \partial^2 \zeta_{\rho \sigma} - \partial_{\sigma} \partial_{\rho} \partial_{\rho} \zeta_{\rho \sigma}) \quad (49)
\end{align*}$$
From that we see that if the gauge parameter satisfies the conditions (44)

\[\partial_\rho \xi^a\rho - \partial_\lambda \zeta^a_{\rho\rho} = 0 \]

the equation is indeed invariant with respect to a larger group of gauge transformations

\[\delta A_{\mu\nu} = \partial_\nu \xi^a_{\mu\lambda} + \partial_\lambda \zeta^a_{\mu\nu}, \]

because

\[(H_{a\alpha' a'' \gamma' \gamma''} + \frac{4}{3} H'_{a\alpha' a'' \gamma' \gamma''}) \delta A^a_{\gamma' \gamma''} = 0. \] (50)

The final form of the equation is

\[\partial^2 (A_{a a'} a'' - \frac{1}{3} A^a_{a'a'a'} - \frac{1}{3} A^a_{a'a'a'}) - \partial_\alpha \partial_\rho (A^a_{\rho a'a'} - \frac{1}{3} A^a_{a'a'a'} - \frac{1}{3} A^a_{a'a'a'}) - \frac{1}{3} \partial_\alpha \partial_\rho (A^a_{\rho a'a'} + A^a_{a'a'} - A^a_{\rho a'}) + \frac{1}{6} \partial_\alpha \partial_\rho (A^a_{a'a} + A^a_{a'a} + A^a_{a'a}) + \frac{1}{6} \partial_\alpha \partial_\rho (A^a_{\rho a'a'} + A^a_{a'a'} + A^a_{a'a'}) - \frac{1}{3} \partial_\alpha \partial_\rho (A^a_{a'a'}) - \frac{1}{3} \partial_\alpha \partial_\rho (A^a_{\rho a'}) + (51) \]

and it is invariant with respect to the gauge group of transformations

\[\delta A^a_{\mu\nu} = \partial_\mu \xi^a_{\nu\lambda}, \quad \delta A^a_{\mu\nu} = \partial_\nu \xi^a_{\mu\lambda} + \partial_\lambda \zeta^a_{\mu\nu}, \quad \partial_\rho \xi^a_{\rho\lambda} - \partial_\lambda \zeta^a_{\rho\rho} = 0. \] (52)

One should stress that there are no restrictions on the gauge parameters \(\xi^a_{\mu\nu} \). The above invariance of the equation now can be checked directly without referring to the previous analysis. In summary, we have the following Lagrangian for the third-rank gauge field \(A^a_{\mu\nu\lambda} \):

\[\mathcal{L}_3 + \frac{4}{3} \mathcal{L}'_3 = - \frac{1}{4} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} - \frac{1}{8} G^a_{\mu\nu,\lambda\lambda} G^a_{\mu\nu,\rho\rho} - \frac{1}{2} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} - \frac{1}{8} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} + \frac{1}{3} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} + \frac{1}{3} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} + \frac{1}{3} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} + \frac{1}{3} G^a_{\mu\nu,\lambda\rho} G^a_{\mu\nu,\lambda\rho} + (53) \]

We shall present the free equation of motion (51) also in terms of field strength tensors. The kinetic term of the above Lagrangian is

\[\mathcal{L}_3 + \frac{4}{3} \mathcal{L}'_3 \bigg|_{\text{free}} = - \frac{1}{4} F^a_{\mu\nu,\lambda\rho} F^a_{\mu\nu,\lambda\rho} - \frac{1}{8} F^a_{\mu\nu,\lambda\lambda} F^a_{\mu\nu,\rho\rho} + \frac{1}{3} F^a_{\mu\nu,\lambda\rho} F^a_{\mu\nu,\lambda\rho} + \frac{1}{3} F^a_{\mu\nu,\lambda\rho} F^a_{\mu\nu,\lambda\rho} + \frac{1}{3} F^a_{\mu\nu,\lambda\rho} F^a_{\mu\nu,\lambda\rho}, \] (54)

where

\[F^a_{\mu\nu,\lambda\rho} = \partial_\mu A^a_{\nu\lambda\rho} - \partial_\nu A^a_{\mu\lambda\rho}, \]
The variation of the above Lagrangian over the field \(A^{a}_{\nu\lambda\rho} \) gives the free equation written in terms of field strength tensor \(F^{a}_{\mu\nu,\lambda\rho} \) and it is identical to the equation (51)

\[
\begin{align*}
\partial_{\mu}F^{a}_{\mu\nu,\lambda\rho} - \frac{1}{3}\partial_{\mu}F^{a}_{\mu\nu,\lambda\rho} - \frac{1}{3}\partial_{\mu}F^{a}_{\mu\rho,\nu\lambda} + \frac{1}{3}\partial_{\mu}F^{a}_{\nu\lambda,\mu\rho} + \frac{1}{3}\partial_{\mu}F^{a}_{\nu\rho,\mu\lambda} + \\
\frac{1}{6}\partial_{\mu}F^{a}_{\nu\rho,\mu\lambda} + \frac{1}{6}\partial_{\mu}F^{a}_{\nu\rho,\mu\lambda} + \frac{1}{2}\partial_{\mu}F^{a}_{\nu\rho,\mu\lambda} + \frac{1}{2}\partial_{\mu}F^{a}_{\nu\rho,\mu\lambda} - \\
-\eta_{\lambda\nu}(\frac{1}{3}\partial_{\mu}F^{a}_{\mu\sigma,\sigma\rho} + \frac{1}{6}\partial_{\mu}F^{a}_{\mu\rho,\sigma\sigma}) - \eta_{\nu\rho}(\frac{1}{3}\partial_{\mu}F^{a}_{\mu\sigma,\sigma\lambda} + \frac{1}{6}\partial_{\mu}F^{a}_{\mu\lambda,\sigma\sigma}) + \\
\eta_{\lambda\rho}(\frac{1}{2}\partial_{\mu}F^{a}_{\mu\sigma,\sigma\rho} - \frac{1}{3}\partial_{\mu}F^{a}_{\mu\sigma,\sigma\nu} + \frac{1}{3}\partial_{\mu}F^{a}_{\nu\sigma,\sigma\mu}) = j^{a}_{\nu\lambda\rho}.
\end{align*}
\]

(55)

As we demonstrated, this equation is invariant with respect to the following gauge transformations:

\[
\delta A^{a}_{\mu\nu,\lambda\rho} = \partial_{\mu}\zeta^{a}_{\nu\lambda\rho}, \quad \tilde{\delta} A^{a}_{\mu\nu,\lambda\rho} = \partial_{\nu}\zeta^{a}_{\mu\lambda\rho} + \partial_{\lambda}\zeta^{a}_{\mu\nu\rho},
\]

where the gauge parameters are totally symmetric tensors satisfying the condition (44). The initial invariance of the equation \(\delta A^{a}_{\mu\nu,\lambda\rho} = \partial_{\mu}\zeta^{a}_{\nu\lambda\rho} \) imposes restriction on the current \(j^{a}_{\nu\lambda\rho} \), in particular, on its conservation over the first index:

\[
\partial_{\nu}j^{a}_{\nu\lambda\rho} = 0.
\]

(56)

There are also additional constraints on the current which follow from the enhanced invariance \(\tilde{\delta} A^{a}_{\mu\nu,\lambda\rho} = \partial_{\nu}\zeta^{a}_{\mu\lambda\rho} + \partial_{\lambda}\zeta^{a}_{\mu\nu\rho} \). In Fourier components the constraints on the group parameters are

\[
\begin{align*}
\omega\zeta_{03} + \kappa\zeta_{33} + \kappa(\zeta_{00} - \zeta_{11} - \zeta_{22} - \zeta_{33}) &= 0, \\
\omega\zeta_{11} + \kappa\zeta_{31} &= 0, \\
\omega\zeta_{22} + \kappa\zeta_{32} &= 0, \\
\omega\zeta_{00} + \kappa\zeta_{30} - \omega(\zeta_{00} - \zeta_{11} - \zeta_{22} - \zeta_{33}) &= 0,
\end{align*}
\]

where \(k^{\mu} = (\omega, 0, 0, \kappa) \), therefore

\[
\begin{align*}
\zeta_{00} &= \zeta_{11} + \zeta_{22} - \frac{\omega}{\kappa}\zeta_{03}, \\
\zeta_{31} &= -\frac{\omega}{\kappa}\zeta_{01}, \\
\zeta_{32} &= -\frac{\omega}{\kappa}\zeta_{02}, \\
\zeta_{33} &= -\zeta_{11} - \zeta_{22} - \frac{\omega}{\kappa}\zeta_{03},
\end{align*}
\]

(57)

and we have six independent gauge parameters

\(\zeta_{01}, \zeta_{02}, \zeta_{03}, \zeta_{11}, \zeta_{12}, \zeta_{12} \).

From this it follows that the current components fulfill the following six relations:

\[
\begin{align*}
k_{\lambda}(j_{1\lambda 0} + j_{0\lambda 1} + \frac{\omega}{\kappa}j_{1\lambda 3} + \frac{\omega}{\kappa}j_{3\lambda 1}) &= 0, \\
k_{\lambda}(j_{2\lambda 0} + j_{0\lambda 2} + \frac{\omega}{\kappa}j_{2\lambda 3} + \frac{\omega}{\kappa}j_{3\lambda 2}) &= 0,
\end{align*}
\]

(58)
One can also use a different set of independent parameters, in particular: \(\zeta_{11}, \zeta_{12}, \zeta_{13}, \zeta_{22}, \zeta_{23}, \zeta_{33} \).

Schwinger Equation for rank-3 Gauge Field

The Schwinger equation for symmetric massless rank-3 tensor gauge field has the form [12]

\[
\begin{align*}
&+ \partial^2 A_{\alpha\alpha'} A'' - \partial_\alpha \partial_\rho A_{p\alpha'} A'' - \partial_\alpha \partial_{p\alpha} A_{p\alpha'} A'' - \partial_\alpha \partial_{p\alpha} A_{\alpha'} \rho + \\
&+ \partial_\alpha \partial_{p\alpha} A_{\alpha'} A'' \rho + \partial_\alpha \partial_{p\alpha} A_{\alpha'} A'' \rho + \partial_\alpha \partial_{\alpha'} A_{p\rho} A_{pp} - 3 \partial_\alpha \partial_\alpha' \partial_\alpha'' A - \\
&\quad - \eta_{\alpha\alpha'} \left(\partial^2 A_{p\rho a''} - \partial_\lambda \partial_\rho A_{p\rho a''} + \frac{1}{2} \partial_\alpha'' \partial_\rho A_{\rho\lambda} \right) - \\
&\quad - \eta_{\alpha\alpha''} \left(\partial^2 A_{p\rho a'} - \partial_\lambda \partial_\rho A_{p\rho a'} + \frac{1}{2} \partial_\alpha' \partial_\rho A_{\rho\lambda} \right) - \\
&\quad - \eta_{\alpha' \alpha''} \left(\partial^2 A_{p\rho a} - \partial_\lambda \partial_\rho A_{p\rho a} + \frac{1}{2} \partial_\alpha \partial_\rho A_{\lambda \rho} \right) = j_{\alpha\alpha' \alpha''}
\end{align*}
\]

and contains the scalar field \(A \) which should satisfy the high-order differential equation

\[
\partial^2 \partial^2 A = \partial^2 \partial_\lambda A_{\rho \rho} + \frac{2}{3} \partial_\alpha \partial_\lambda \partial_\rho A_{\alpha \lambda \rho} = 0.
\]

Taking derivatives of the l.h.s. of the above equation one can get convinced that we have conservation of the totally symmetric current \(j_{\alpha\alpha' \alpha''} \)

\[
\partial_\alpha j_{\alpha\alpha' \alpha''} = 0
\]

and the invariance of the equation with respect to the full gauge transformation

\[
\delta A_{\mu \nu \lambda} = \partial_\mu \xi_{\nu \lambda} + \partial_\nu \xi_{\mu \lambda} + \partial_\lambda \xi_{\mu \nu}
\]

without any restrictions on the symmetric gauge parameter \(\xi_{\nu \lambda} \). The great advantage of this formulation is that we have conservation of current and full gauge symmetry (62).

The disadvantage of this formulation is the appearance of the scalar field \(A \) and its high-order differential equation. The illuminating remark of Schwinger was to make a change of field variable of the form [12]

\[
A_{\alpha\alpha'} A'' \rightarrow A_{\alpha\alpha'} A'' - 3 \partial^2 \partial_\alpha \partial_\alpha' \partial_\alpha'' A,
\]

which allows to eliminate the scalar field \(A \) from the field equation without changing its actual form! The equation will take a unique form [12]:

\[
\begin{align*}
&+ \partial^2 A_{\alpha\alpha'} A'' - \partial_\alpha \partial_\rho A_{p\alpha'} A'' - \partial_\alpha \partial_{p\alpha} A_{p\alpha'} A'' - \partial_\alpha \partial_{p\alpha} A_{\alpha'} \rho + \\
&+ \partial_\alpha \partial_{p\alpha} A_{\alpha'} A'' \rho + \partial_\alpha \partial_{p\alpha} A_{\alpha'} A'' \rho + \partial_\alpha \partial_{\alpha'} A_{p\rho} A_{pp} - \\
&\quad - \eta_{\alpha\alpha'} \left(\partial^2 A_{p\rho a''} - \partial_\lambda \partial_\rho A_{p\rho a''} + \frac{1}{2} \partial_\alpha'' \partial_\rho A_{\rho\lambda} \right) - \\
&\quad - \eta_{\alpha\alpha''} \left(\partial^2 A_{p\rho a'} - \partial_\lambda \partial_\rho A_{p\rho a'} + \frac{1}{2} \partial_\alpha' \partial_\rho A_{\rho\lambda} \right) - \\
&\quad - \eta_{\alpha' \alpha''} \left(\partial^2 A_{p\rho a} - \partial_\lambda \partial_\rho A_{p\rho a} + \frac{1}{2} \partial_\alpha \partial_\rho A_{\lambda \rho} \right) = j_{\alpha\alpha' \alpha''},
\end{align*}
\]
but it is not invariant any more with respect to the unrestricted gauge transformations (62). The gauge parameter should be traceless:

\[\xi_{\mu\nu} = 0. \]

(64)

This leads to the modification of the current conservation law:

\[\partial_\alpha j_{\alpha\alpha'} - \frac{1}{4} \eta_{\alpha\alpha''} j_{\alpha\rho\rho} = 0. \]

(65)

The conservation law for the current became more sophisticated because of the traceless restriction on the gauge parameters (64). One can see that the same phenomenon also happens in our case where the restriction on the gauge parameters \(\xi_{\mu\nu} \) has the form (52) and the conservation law takes the form (58). Recent discussion of the Schwinger equation can be found in [44, 45].

I would like to thank Luis Alvarez-Gaume, Ignatios Antoniadis, Ioannis Bakas, Lars Brink, Ludwig Faddeev, Sergio Ferrara, Peter Minkowski and Raymond Stora for discussions and CERN Theory Division, where part of this work was completed, for hospitality. This work was partially supported by the EEC Grant no. MRTN-CT-2004-005616.

7 Appendix A

The invariance of the form \(L_3 \) can be demonstrated by explicit variation of each term in the sum (35). Indeed, the variation of the first term is

\[\delta \xi G_{\mu\nu,\lambda\rho}^a G_{\mu\lambda,\nu\rho}^a = 2g f^{abc} G_{\mu\nu,\lambda\rho}^a G_{\mu\lambda,\nu\rho}^c \xi^c + 2g f^{abc} G_{\mu\nu,\lambda\rho}^a G_{\mu\lambda,\nu\rho}^b \xi^c + 2g f^{abc} G_{\mu\nu,\lambda\rho}^a G_{\mu\lambda,\nu\rho}^b \xi^c, \]

of the second term is

\[\delta \xi G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^a = 2g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^c \xi^c + 2g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^b \xi^c + 2g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^b \xi^c, \]

of the third term is

\[\delta \xi G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^a = 2g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^b \xi^c + \]

\[+ g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c + g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c, \]

of the forth term is

\[\delta \xi G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^a = g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^c \xi^c + 2g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^b \xi^c + \]

\[+ g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c + g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c, \]

of the fifth term is

\[\delta \xi G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^a = g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^b \xi^c + \]

\[+ g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c + g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c, \]

of the sixth term is

\[\delta \xi G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^a = g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\rho,\lambda\nu}^c \xi^c + 2g f^{abc} G_{\mu\nu,\lambda}^c G_{\mu\nu,\lambda\rho}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^c \xi^c + g f^{abc} G_{\mu\nu,\lambda}^a G_{\mu\lambda,\rho\nu}^b \xi^c + \]

\[+ 2g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c + g f^{abc} G_{\mu\lambda,\rho\nu}^c G_{\mu\nu,\lambda\rho}^b \xi^c, \]
and finally of the seventh term is

\[2g f^{abc} G^b_{\mu\nu} G^b_{\mu\lambda\nu\rho} \xi^c + g f^{abc} G^a_{\mu\nu} G^b_{\mu\lambda\nu\rho} \xi^c + 2g f^{abc} G^b_{\mu\nu} G^b_{\mu\lambda\nu} \xi^c \]

Some of the terms here are equal to zero, like: \(g f^{abc} G^b_{\mu\nu} G^b_{\mu\lambda\nu} \xi^c + g f^{abc} G^a_{\mu\nu} G^b_{\mu\lambda\nu\rho} \xi^c \) and \(g f^{abc} G^a_{\mu\nu} G^b_{\mu\lambda\nu\rho} \xi^c \). Amazingly, all nonzero terms cancel each other.

8 Appendix B

The quadratic form \(H^{'}_{\alpha\alpha'} \gamma' \gamma'' \) can be extracted from (40) and should be symmetrized over the \(\alpha' \leftrightarrow \alpha'' \) and over the exchange of two sets of indices \(\alpha \alpha' \leftrightarrow \gamma' \gamma'' \), so that in the momentum representation it has the form

\[H^{'\alpha\alpha'}_{\gamma\gamma'}(k) = \frac{k^2}{8} \{ \]

\[+ \eta_{\alpha\alpha'}(\eta_{\alpha''} \gamma \eta_{\gamma'} \gamma'' + \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'') + \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'')
+ \eta_{\alpha'} \gamma' \eta_{\alpha''} \gamma'' + \eta_{\alpha''} \gamma' \eta_{\alpha'} \gamma''
+ \eta_{\alpha'} \gamma' \eta_{\alpha'} \gamma'' + \eta_{\alpha''} \gamma' \eta_{\alpha''} \gamma''
+ \frac{1}{4} \{ \]

\[+ \eta_{\alpha''} (k_{\alpha'} k_{\gamma'} \eta_{\alpha''} \gamma'' + k_{\alpha'} k_{\gamma'} \eta_{\alpha''} \gamma'') + k_{\alpha'} k_{\gamma'} \eta_{\alpha''} \gamma'')
+ k_{\alpha'} k_{\gamma'} \eta_{\alpha''} \gamma'' + k_{\alpha'} k_{\gamma'} \eta_{\alpha''} \gamma'' \}
\]

or combining some of the terms together we shall get an equivalent form

\[H^{'\alpha\alpha'}_{\gamma\gamma'}(k) = \frac{1}{8} \{ \]

\[+ (k^2 \eta_{\alpha\alpha'} - k_{\alpha} k_{\gamma'})(\eta_{\alpha''} \gamma \eta_{\gamma'} \gamma'' + \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'') + \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'')
+ (k^2 \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'') + \eta_{\alpha''} \gamma' \eta_{\gamma'} \gamma'')
+ (k^2 \eta_{\gamma'} \gamma \eta_{\alpha''} \gamma'' + \eta_{\gamma'} \gamma' \eta_{\alpha''} \gamma'')
+ (k^2 \eta_{\gamma'} \gamma' \eta_{\alpha''} \gamma'') + \eta_{\gamma'} \gamma' \eta_{\alpha''} \gamma'' \}
\]

20
and canceling the identical terms we shall get

\[+ \frac{1}{4} \{ \eta_{\alpha'\gamma'} (k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'\gamma''} + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'\gamma''}) + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'} + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma''} \} \}

This expression can be used to calculate divergences. Indeed,

\[k'_{\alpha'} H'_{\alpha'\alpha''\gamma\gamma''}(k) = \frac{1}{8} \{ + \frac{1}{4} \{ \eta_{\alpha'\gamma'} (k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'\gamma''} + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'\gamma''}) + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma'} + k'_{\alpha'} k'_{\gamma'} \eta_{\alpha''\gamma''} \} \}

or using the operator \(H_{\alpha\gamma} = k^2 \eta_{\alpha\gamma} - k_{\alpha} k_{\gamma} \) one can get

\[k'_{\alpha'} H'_{\alpha'\alpha''\gamma\gamma''}(k) = \frac{1}{8} \{ + H_{\alpha''}(k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) + H_{\alpha'\gamma'} (k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) + H_{\alpha\gamma''}(k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) \}

and canceling the identical terms we shall get

\[k'_{\alpha'} H'_{\alpha'\alpha''\gamma\gamma''}(k) = \frac{1}{8} \{ + H_{\alpha''}(k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) + H_{\alpha'\gamma'} (k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) + H_{\alpha\gamma''}(k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) \}

Again collecting terms we shall get the final expression:

\[k'_{\alpha'} H'_{\alpha'\alpha''\gamma\gamma''}(k) = \frac{1}{8} \{ + H_{\alpha''}(k'_{\gamma'} \eta_{\gamma'\gamma''} + k'_{\gamma'} \eta_{\gamma'\gamma''}) \]
\[H_{\alpha\gamma'}(k_{\gamma''}\eta_{\alpha''\gamma'} + k_{\alpha''\gamma''}) \\
+ H_{\alpha\gamma''}(k_{\gamma'}\eta_{\alpha''\gamma} + k_{\alpha''\gamma'}) \}
\]
\[-\frac{1}{4}\{ + k_{\gamma}k_{\alpha''}(k_{\gamma''}\eta_{\alpha''\gamma'} + k_{\gamma'}\eta_{\alpha''\gamma''}) \}
\]
\[-3\eta_{\alpha''\gamma''}k_{\alpha''\gamma'} \}
\]
\[+\frac{1}{4}\{ + H_{\alpha\gamma}(k_{\gamma'}\eta_{\alpha''\gamma'} + k_{\gamma''}\eta_{\alpha''\gamma''} + k_{\alpha''\gamma''}) \}, \]

which has been used in the main text.

References

[1] C.N.Yang and R.L.Mills. "Conservation of Isotopic Spin and Isotopic Gauge Invariance". Phys. Rev. 96 (1954) 191

[2] G. Savvidy, Generalization of Yang-Mills theory: Non-Abelian tensor gauge fields and higher-spin extension of standard model, arXiv:hep-th/0505033.

[3] G. Savvidy, Non-Abelian tensor gauge fields: Generalization of Yang-Mills theory," Phys. Lett. B 625 (2005) 341 [arXiv:hep-th/0509049].

[4] G. Savvidy, Non-Abelian tensor gauge fields and extended current algebra: Generalization of Yang-Mills theory, arXiv:hep-th/0510258.

[5] G. Savvidy, Non-Abelian tensor gauge fields and higher-spin extension of standard model, Fortschr. Phys. 54 (2006) 472 [arXiv:hep-th/0512012].

[6] G. Savvidy and T. Tsukioka, Gauge invariant Lagrangian for non-Abelian tensor gauge fields of fourth rank, arXiv:hep-th/0512344.

[7] M. Fierz. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin, Helv. Phys. Acta. 12 (1939) 3.

[8] M. Fierz and W. Pauli. On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proc. Roy. Soc. A173 (1939) 211.

[9] P. Minkowski. Versuch einer konsistenten Theorie eines Spin-2 Mesons, Helv. Phys. Acta. 32 (1966) 477

[10] H.Yukawa, Quantum Theory of Non-Local Fields. Part I. Free Fields, Phys. Rev. 77 (1950) 219 ; M. Fierz, Non-Local Fields, Phys. Rev. 78 (1950) 184; H.Yukawa, On the radius of the Elementary Particle, Phys. Rev. 76 (1949) 300; H.Yukawa, On the Theory of Elementary Particles. I., Prog. Theor. Phys. 2 (1947) 209; H.Yukawa, Reciprocity in Generalized Field Theory, 3 (1948) 205 H.Yukawa, Possible Types of Nonlocalizable Fields,3 (1948) 452

[11] E. Wigner, Invariant Quantum Mechanical Equations of Motion, in Theoretical Physics ed. A.Salam (International Atomic Energy, Vienna, 1963) p 59; E. Wigner, Relativistische Wellengleichungen, Zeitschrift für Physik 124 (1948) 665

[12] J.Schwinger, Particles, Sources, and Fields (Addison-Wesley, Reading, MA, 1970)
[13] S. Weinberg, *Feynman Rules For Any Spin*, Phys. Rev. **133** (1964) B1318.

[14] S. J. Chang, *Lagrange Formulation for Systems with Higher Spin*, Phys. Rev. **161** (1967) 1308.

[15] L. P. S. Singh and C. R. Hagen, *Lagrangian formulation for arbitrary spin. I. The boson case*, Phys. Rev. **D9** (1974) 898.

[16] L. P. S. Singh and C. R. Hagen, *Lagrangian formulation for arbitrary spin. II. The fermion case*, Phys. Rev. **D9** (1974) 898, 910.

[17] C. Fronsdal, *Massless fields with integer spin*, Phys. Rev. **D18** (1978) 3624.

[18] G. K. Savvidy, *Conformal Invariant Tensionless Strings*, Phys. Lett. B **552** (2003) 72.

[19] G. K. Savvidy, *Tensionless strings: Physical Fock space and higher spin fields*, Int. J. Mod. Phys. A **19** (2004) 3171-3194.

[20] G. Savvidy, *Tensionless strings, correspondence with SO(D,D) sigma model*, Phys. Lett. B **615** (2005) 285.

[21] W. Siegel and B. Zwiebach, “Gauge String Fields,” Nucl. Phys. B **263** (1986) 105.

[22] J. Fang and C. Fronsdal, ”Deformation of gauge groups. Gravitation”. J. Math. Phys. **20** (1979) 2264.

[23] F. A. Berends, G. J. H Burgers and H. Van Dam, “On the Theoretical problems in Constructing Interactions Involving Higher-Spin Massless Particles,” Nucl. Phys. B **260** (1985) 295.

[24] B. deWit, F. A. Berends, J. W. van Halten and P. Nieuwenhuizen, “On Spin-5/2 gauge fields,” J. Phys. A: Math. Gen. **16** (1983) 543.

[25] E. Sezgin and P. Sundell, “Holography in 4D (Super) Higher Spin Theories and a Test via Cubic Scalar Couplings,” hep-th/0305040.

[26] A. Sagnotti, E. Sezgin and P. Sundell, “On higher spins with a strong Sp(2,R) condition,” arXiv:hep-th/0501156.

[27] T. Curtright, “Are There Any Superstrings In Eleven-Dimensions?,” Phys. Rev. Lett. **60** (1988) 393.

[28] A. K. Bengtsson, I. Bengtsson and L. Brink, “Cubic Interaction Terms For Arbitrary Spin,” Nucl. Phys. B **227** (1983) 31.

[29] A. K. Bengtsson, I. Bengtsson and L. Brink, “Cubic Interaction Terms For Arbitrarily Extended Supermultiplets,” Nucl. Phys. B **227** (1983) 41.

[30] A. K. H. Bengtsson, “An abstract interface to higher spin gauge field theory,” J. Math. Phys. **46** (2005) 042312 [arXiv:hep-th/0403267].
[31] L. Edgren, R. Marnelius and P. Salomonson, “Infinite spin particles,” JHEP 0505 (2005) 002 [arXiv:hep-th/0503136].

[32] I. Bakas, B. Khesin and E. Kiritsis, “The Logarithm of the derivative operator and higher spin algebras of W-infinity type,” Commun. Math. Phys. 151 (1993) 233.

[33] I. Bakas and E. Kiritsis, “Grassmannian Coset Models And Unitary Representations Of W(Infinity),” Mod. Phys. Lett. A 5 (1990) 2039.

[34] E. A. Ivanov, “Yang-Mills Theory In Sigma Model Representation. (In Russian),” Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 452.

[35] X. Bekaert, S. Cnockaert, C. Iazeolla and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” arXiv:hep-th/0503128.

[36] N. Turok, M. Perry and P. J. Steinhardt, “M theory model of a big crunch / big bang transition,” Phys. Rev. D 70 (2004) 106004 [arXiv:hep-th/0408083].

[37] J. Engquist and P. Sundell, “Brane partons and singleton strings,” arXiv:hep-th/0508124.

[38] L. Brink, “Particle physics as representations of the Poincare algebra,” arXiv:hep-th/0503035.

[39] J. Gamboa, M. Loewe and F. Mendez, “Quantum theory of tensionless noncommutative p-branes,” Phys. Rev. D 70 (2004) 106006.

[40] G. Bonelli, “On the boundary gauge dual of closed tensionless free strings in AdS,” JHEP 0411 (2004) 059 [arXiv:hep-th/0407144].

[41] I. Bakas and C. Sourdis, “On the tensionless limit of gauged WZW models,” JHEP 0406 (2004) 049 [arXiv:hep-th/0403165].

[42] A. Bredthauer, U. Lindstrom, J. Persson and L. Wulff, ‘Type IIB tensionless superstrings in a pp-wave background,” JHEP 0402 (2004) 051 [arXiv:hep-th/0401159].

[43] M. Bianchi, J. F. Morales and H. Samtleben, “On stringy AdS(5)x S5 and higher spin holography,” JHEP 0307 (2003) 062 [arXiv:hep-th/0305052].

[44] D. Francia and A. Sagnotti, “Minimal local Lagrangians for higher-spin geometry,” Phys. Lett. B 624 (2005) 93 [arXiv:hep-th/0507144].

[45] D. Francia and A. Sagnotti, “On the geometry of higher-spin gauge fields,” Class. Quant. Grav. 20 (2003) S473

[46] N. Boulanger, S. Cnockaert and M. Henneaux, “A note on spin-s duality,” JHEP 0306 (2003) 060

[47] S. Deser and A. Waldron, “Gauge invariances and phases of massive higher spins in (A)dS,” Phys. Rev. Lett. 87 (2001) 031601 [arXiv:hep-th/0102166].

[48] B. de Wit and D. Z. Freedman, “Systematics Of Higher Spin Gauge Fields,” Phys. Rev. D 21 (1980) 358.