Abstract: The experiment was carried out during the winter season 2019-2018 in Al-Hartha district, Basrah Governorate to study the effects of fish by-product prepared by Alcalase and Flavourzyme enzyme as a foliar application on lettuce (*Lactuca sativa* L.) yield and quality grown under salinity conditions. Fish by-product protein hydrolysate was spray-applied (3 and 6ml. L\(^{-1}\)) additional to control treatment (spraying with water) referred to (T0-T4) at four (S4), six(S6) times after 20 days transplanting at 10-day intervals. Randomized Complete Block Design (R.C.B.D.) was used as factorial experiment. Treatment means were compared by using Least Significant Differences (L.S.D.) at a probability of 0.05. The results showed that spraying with protein hydrolysates had a significant effect on most studied characters compared to control treatment. Results showed that foliar application with (T2) significantly increased the total leaves number, leaves area, carbohydrate, proline, shoot fresh weight of plant, dry matter, total soluble solids (TSS %) and total yield additional to significantly decreased in nitrate contents, while foliar application with (T4) significantly increased in the plant height and stem height. The results showed that spraying six times (S6) were significant increases in these growth characters comparing with four sprays (S4). The interaction between treatments and spraying number show significantly increased in some characters, the (T2 S6) had the highest value shoot fresh weight 762.5 g and total yield 17.899 tone.\(\text{donum}^{-1}\).

Keywords: Fish by-product, Protein hydrolysates, Salinity, Yield, Quality, Lettuce.

Introduction

Lettuce (*Lactuca sativa* L.) belongs to Asteraceae family, it is one of the most important vegetables in Iraq and other countries. The plant shoot is source of proteins, oils, fibers and minerals such as phosphorus, potassium, zinc and vitamins such as thiamine, riboflavin, niacin, folic acid, B6, C, D vitamins (USDA, 2019). Lettuce leaf extracts can control certain types particularly leukemia cells and breast cancer cells of cancer (Gridling *et al.*, 2010). Salinity is one of the most important abiotic stress factors that affect all vegetable corps, especially in semi-arid and arid regions (Munns & Tester, 2008) because of small rainfall biostimulants hold a great promise for
the future of agriculture. These environmentally and friendly natural substances promote vegetative growth, and tolerance of plants to abiotic stresses such as soil salinity, water deficit, and thermal stress, nutrition and crop quality (Chojnacka et al., 2015). Protein hydrolysates are an important group of plant biostimulants that have received growing attention in recent years because of their positive effects on crop performance and contribution to a groecological sustainability. Protein hydrolysates are mixtures of polypeptides, oligopeptides and amino acids that are manufactured from by-products of animals or plant origins protein sources using partial hydrolysis by chemical (acid and alkaline hydrolysis) or enzymatic hydrolysis of a groindustrial (Schaafsma, 2009; Colla et al., 2015).

Several beneficial effects of plant-derived protein hydrolysates on plants including increased nutrient uptake and assimilation and increasing tolerance against abiotic stress (Cavani et al., 2006). The fish by-products contain valuable proteins and essential amino acids. Therefore, hydrolysis of fish protein would be a proper strategy for economic profit (Wisuthiphaet & Kongruang, 2015).

Several studies have shown the importance of Protein hydrolysate application for improving the growth and production of vegetable crops. Koukounaras et al. (2013) found that applications of an animal-derived hydrolyzed protein Amino16® enhanced both plant height as well as the number of flowers per plant in tomato (Solanum lycopersicum L.). Xu & Mou (2017) found that the application of fish-derived biostimulants increased the lettuce leaf number from 22 to 28, shoot fresh and dry weight 59 to 89 g and 5.5 to 7.5 g.

The aim of this study was to assess the effects of protein hydrolysate from fish by-products prepared by enzyme hydrolysis using Alcalase and Flavourzyme applied in different concentrations and doses on lettuce growth, yield and quality grown salt stress conditions.

Materials & Methods

The experiment was carried out during the winter season 2019-2018 in Al-Hartha district, Basrah Governorate to study the effects of fish by-product protein hydrolysate prepared by Alcalase and Flavourzyme enzyme as a foliar application on growth, yield and quality of lettuce plant under salinity conditions. The chemical and physical characteristics of field soil and irrigation water used in the field reported in table (1). Lettuce cv. Fajr seeds were used, the seeds were cultivated in 209 holes Styrofoam trays at 20/9/2018 in media (peatmous). The seedlings were transplanted to field after 30 days from seed sowing. The soil field preparing and divided into ridge in 3.75 m of length and distance between them 0.75 m. The cultivation was on both sides of the line, 25 cm distance between plants, density plants 23466 plant donum⁻¹, each treatment had three replicate.

Preparation of fish by-product protein hydrolysates:

The hydrolysis processes for fish by-products were carried out using method Chotikachinda et. al. (2018); Klomklao & Benjakul (2018). Fish by-products of Marine whitefin wolf-herring (Chirocentrus nudus) (head and tails) were purchased from Basrah markets. The by-products washed with water and dried at 40 °C. Then they were ground, the fat was
removed from powder according to Qi et al., (2015). The fish by-products were mixed with water at ratio 1:6. The mixed was heated at 85°C for 10 min (Guerard et al., 2002).

The fish by-products were hydrolysate using Alcalase and Flavourzyme under optimal conditions of each: Alcalase (pH 8, 50°C) and Flavourzyme (pH 7, 50°C) for 6 hours. Enzyme and substrate ratio of 0.1%. The hydrolysis degree was monitored during the process, and the reaction was stopped by inactivating the enzyme (90°C /10 min). The hydrolysis was centrifuged at 4000rpm for 20 min and concentration by rotary evaporator. The study included ten treatments which were the combination of five treatments are control (T0), Tow concentrations from hydrolysate using Alcalase T1:3 ml.l⁻¹, T2: 6 ml.l⁻¹ and Flavourzyme T3: 3 ml.l⁻¹ and T4:6 ml.l⁻¹. Plants were sprayed with hydrolyzed protein treatments four times (S4) and six times (S6) during the growing season. Treatments were applied to start at 20 days after transplant at10- day intervals. Head lettuce was harvested at the marketable stage.

Harvesting was carried out from 10/1 to 12/2/2018. Plant height(cm), stem height (cm), total leaf number, plant leaf area (cm². plant⁻¹), shoot fresh weight (g), dry matter (g) and total yield (tone. donum⁻¹) were recorded at harvest. The nitrate was determined according to Cataldo et al. (1975) carbohydrate determined by using methods Dubois et al. (1956). Proline was determined using the method of Bates et al. (1973), and TSS determined as described by AOAC (2012).

Characterization of fish by-products protein hydrolysates

Total amino acids in fish by-product protein hydrolysates were determined by sing High-Performance Liquid Chromatography (HPLC), according to Levin & Grushka (1985). Organic matter was determined by using method Ben-Dor & Banin (1989).

The Randomized Complete Block Design (R.C.B.D.) was used factorial experiment with three replications for each parameter.

Table (1): Chemical and physical properties of the soil and irrigation water used in field.

Soil Chemical	
E.C. (ds.m⁻¹)	10.22
pH	7.69
Total nitrogen (g.kg⁻¹)	0.75
Phosphorus (mg.kg⁻¹)	2.46
Potassium (mg.kg⁻¹)	15.51
Organic matter (%)	1.64

Soil Structure	
Sand (%)	11
Silt (%)	69
Clay (%)	20

Texture Class	Silty clay

Irrigation Water	
E.C. (ds.m⁻¹)	6.48
pH	7.39

The treatment means were compared with (L.S.D.) test at 0.05. The data were analyzed by using the statistical program Genstat (version 7.2).

Results & Discussion

Table (3) displayed that the T2 and T4 had a significant effects on vegetative growth. Plant height and stem height of T4 plants were 35.05 cm and 19.18 cm respectively. T0 treatment recorded the 24.88 and 11.34 cm respectively. Significant increases were found in the total leaf number and plant leaf area 58.87 and 424.94 cm² plant⁻¹ respectively. of (T2) compared with T0 treatment had the lowest value of total leaf number 39.65 leave and leaves area 214.85 cm² plant⁻¹.

The results showed that spraying six times (S6) significantly increases growth parameters comparing with four sprays (S4). The interaction between treatments and spraying numbers shows significantly increased in leaf area, the (T2 S6) had the highest leaf area value 445.70 cm² plant⁻¹.

Table (2): Total amino acids and organic matter in fish by-product protein hydrolysates (%) using enzymes Alcalase and Flavourzyme.

Amino Acid	Alcalase	Flavourzyme
Asp	1.48	1.51
Trp	3.73	1.12
Glu	22.72	20.70
Val	7.42	7.09
Gly	15.79	14.13
Met	1.07	1.58
Ser	14.45	15.63
Cys	1.80	4.68
Ala	5.18	5.05
Lys	0.72	1.54
His	4.07	0.17
Arg	3.38	1.32
Thr	0.05	4.89
Ile	3.71	2.35
Pro	5.70	5.41
Leu	7.02	6.00
Phe	1.46	3.56

| Total amino acids | 99.75% | 96.73% |
| Total organic matter | 87.2% | 84.07% |

Statistical analysis

while the (T0S4) treatment had the lowest value 211.34 cm² plant⁻¹. The positive effect of protein hydrolysates low molecular weight peptides and amino acids stimulate plant growth parameters through stimulation nitrogen uptake and increased leaf N contents plant biomass (Colla et al., 2014; 2015). As well as the regulation of nitrogen uptake and the enzymes activity of TCA cycle (Colla et al., 2015; Nardi et al., 2016). Protein hydrolysates are also stimulating plants carbon and nitrogen metabolism (Colla et al., 2017).

The foliar application of protein hydrolysates can induce plant defense responses, thus increasing plant tolerance for various abiotic stresses. Also, Protein hydrolysates have chelating activities that reduce the impact of different stresses on plant growth (Colla et al., 2014). In the present study, the protein hydrolysates preparation from fish by-products contains several amino acids such as Glutamic acid, Glycine,
Table (3): Effect of foliar application of fish by-products protein hydrolysates and number of sprays on some vegetative growth characters of lettuce.

Treatments	Plant height (cm)	Stem height (cm)	Total Leaf number	Leaf area (cm², plant⁻¹)
Fish by-products protein hydrolysates (ml.1⁻¹)				
*T0	24.88±0.60	11.34±0.43	39.65±0.20	214.85±2.87
T1	29.42±1.10	17.30±1.00	50.50±0.95	337.09±17.79
T2	30.72±1.31	17.80±1.38	58.87±0.65	424.94±16.95
T3	27.43±0.62	14.56±0.51	46.33±1.63	296.44±20.83
T4	35.05±0.36	19.18±1.53	53.03±1.57	360.88±21.09
LSD 0.05	1.364	0.801	1.403	12.41

Number of sprays				
S4	28.51±3.16	14.97±2.11	48.44±5.75	307.35±58.8
S6	30.49±3.09	17.30±3.02	50.90±6.07	346.32±69.1
LSD 0.05	0.862	0.507	0.887	7.85

Fish by-products protein hydrolysates × Number of sprays				
T0 S4	24.13±0.60	10.83±0.22	39.40±0.74	211.34±1.45
T0 S6	25.63±0.34	11.89±0.40	39.90±0.32	218.37±0.67
T1 S4	28.07±0.71	16.40±0.34	49.33±1.08	315.30±8.62
T1 S6	30.77±1.42	18.86±0.38	51.66±1.08	358.88±8.96
T2 S4	29.10±0.60	16.10±0.39	58.06±0.68	404.17±6.53
T2 S6	32.33±0.57	19.49±0.70	59.67±0.40	445.70±3.19
T3 S4	26.67±1.08	13.93±0.28	44.33±1.08	270.92±14.91
T3 S6	28.20±0.60	15.20±0.37	48.33±1.08	321.96±6.90
T4 S4	34.60±0.86	17.30±0.36	51.10±0.60	335.04±4.25
T4 S6	35.50±0.64	21.06±0.89	54.96±0.67	386.71±5.60
LSD 0.05	N.S	N.S	N.S	17.56

*T0: Control (untreated) T1: Protein hydrolysate 3 ml.1⁻¹ prepared by Alcalase T2: Protein hydrolysate prepared by Alcalase at 6 ml.1⁻¹ T3: Protein hydrolysate prepared by Flavourzyme at 3ml.1⁻¹ T4: Protein hydrolysate prepared by Flavourzyme at 6ml.1⁻¹ S4; Plants were sprayed with hydrolyzed protein treatments four times, S6; Plants were sprayed with hydrolyzed protein treatments six times. The significant at P <0.05 level. ± means Standard deviation (S.D.); n=3 and Not significant (N.S.) .

Serene, Alanine, Proline and tryptophan as in the table (2), which stimulate photosynthesis, hormone balance and vegetative growth (Zhao, 2014). The results agreed with those of Lucini et al. (2015), who found that foliar application of protein hydrolysates improved the vegetative growth of lettuce plants. Also, Xu & Mou (2017) observed that the protein hydrolysates treated lettuce plants significantly increased vegetative growth.
Table (4) revealed a significant difference among the treatments, the spraying (T2) treatment recorded the highest carbohydrate and proline content 75.31 mg. g\(^{-1}\) and 19.84 µmol.g\(^{-1}\) respectively, while (T2) had the lowest nitrate content 0.309 mg.g\(^{-1}\) compared with (T0) treatment which gave the lowest value carbohydrate and proline content 34.57 mg. g\(^{-1}\) and 13.35 µmol.g\(^{-1}\) respectively, while (T0) gave the highest value of nitrate 0.394 mg.g\(^{-1}\).

Spraying six times (S6) significantly increased carbohydrate, proline and chlorophyll contents compared with four times (S4), while it decreased nitrate content. The interaction between treatments and spraying numbers shows significantly decreased in nitrate content. It is noticeable that treatment T2S6 produced lowest value of nitrate content 0.306 mg. g\(^{-1}\) compared with (T0S4) treatment which had the highest value of nitrate 0.391mg.g\(^{-1}\). The protein hydrolysate used in this study contained percentage of glycine and proline (table 2) that may promotes the accumulation of carbohydrate.

Table (4): Effect of foliar application of fish by-products protein hydrolysates and number of sprays on nitrate, carbohydrate and proline of lettuce leaves.

Treatments	Nitrate (mg.g\(^{-1}\) fw)	Carbohydrate (mg.g\(^{-1}\) dw)	Proline (µmol.g\(^{-1}\) dw)
Fish by-products protein hydrolysates (ml.l\(^{-1}\))			
T0	0.394±0.001	34.57±2.61	13.35±0.13
T1	0.357±0.004	56.20±2.58	17.09±0.21
T2	0.309±0.002	75.31±2.63	19.84±0.59
T3	0.377±0.003	46.69±1.85	16.01±0.45
T4	0.346±0.003	61.59±1.42	18.14±0.35
LSD 0.05	**0.015**	**3.13**	**0.81**
Number of sprays			
S4	0.359±0.02	52.15±12.6	16.46±1.84
S6	0.354±0.03	57.59±12.4	17.31±2.12
LSD 0.05	**0.003**	**1.98**	**0.51**

Treatments	Nitrate (mg.g\(^{-1}\) fw)	Carbohydrate (mg.g\(^{-1}\) dw)	Proline (µmol.g\(^{-1}\) dw)
Fish by-products protein hydrolysates \times Number of sprays			
T0	S4 0.391±0.002	31.37±0.84	13.19±0.17
	S6 0.396±0.001	37.78±2.39	13.51±0.27
T1	S4 0.362±0.003	53.04±1.68	16.83±0.44
	S6 0.351±0.003	59.36±1.58	17.36±0.47
T2	S4 0.312±0.04	72.08±0.27	19.11±0.67
	S6 0.306±0.003	78.54±2.15	20.56±0.81
T3	S4 0.381±0.002	44.42±3.45	15.46±0.40
	S6 0.373±0.002	48.96±1.26	16.56±0.62
T4	S4 0.350±0.001	59.85±0.26	17.70±0.28
	S6 0.342±0.003	63.33±1.94	18.57±0.63
LSD 0.05	**0.002**	N.S	N.S
regulate proline biosynthetic pathway enzymes. While, the decrease of nitrate contents might be caused by the role of amino acids on nitrate uptake the regulation of several processes and metabolic pathways of plant nitrogen such as nitrate and nitrite reduction and glutamic synthesis activities (Liu et al., 2008 a, b).

Similar results were observed by Rouphael et al. (2017) who found an increase in the accumulation of proline of lettuce contents when foliar sprayed with protein hydrolysates "Trainer". Tsouvaltzis et al. (2014) observed that amino acids treatment reduced the nitrate content of lettuce by 29%, while Genc & Atici (2019) obtained that the protein hydrolysate preparation from chicken feather treatment could enhance the free sugars contents in wheat plants.

Result in table (5) indicated significant difference among the treatments. The spraying T2 and T4 treatment influenced most studies characteristics, but the highest significant increased obtained from (T2) in shoot fresh weight 756.1 g, dry matter 7.09%, TSS 4.50% and total yield 17.747 ton. donum\(^{-1}\) compared with (T0) treatment which gave the lowest value of shoot fresh weight 452.0 g, dry matter 4.94 %, TSS 2.92 % and total yield 10.606 tone. donum\(^{-1}\).

Table (5): Effect of foliar application of fish by-products protein hydrolysates and number of sprays on yield and some quality parameters.

Treatments	Shoot fresh weight (g)	Dry matter (%)	Total soluble solid (TSS) (%)	Total yield (tone. donum\(^{-1}\))
Fish protein by-products hydrolysates (ml.l\(^{-1}\))				
T0	452.0±11.7	4.94±0.09	2.92±0.17	10.606±0.27
T1	571.2±9.7	6.31±0.32	3.98±0.17	13.404±0.22
T2	756.1±5.3	7.09±0.29	4.50±0.11	17.747±0.12
T3	498.5±11.5	5.88±0.33	3.83±0.16	11.699±0.27
T4	629.0±6.3	6.49±0.28	4.23±0.17	14.761±0.14
LSD 0.05	14.1	0.216	0.294	0.331

Number of sprays	Shoot fresh weight (g)	Dry matter (%)	Total soluble solid (TSS) (%)	Total yield (tone. donum\(^{-1}\))
S4	570.5±97.5	5.81±0.58	3.69±0.50	13.387±2.56
S6	592.3±94.2	6.47±0.72	4.08±0.47	13.900±2.21
LSD 0.05	8.93	0.136	0.186	0.209

Fish protein hydrolysates × Number of sprays	Shoot fresh weight (g)	Dry matter (%)	Total soluble solid (TSS) (%)	Total yield (tone. donum\(^{-1}\))
T0 S4	437.6±3.5	4.81±0.15	2.70±0.14	10.267±0.08
T0 S6	466.4±6.8	5.06±0.11	3.13±0.17	10.944±0.15
T1 S4	559.3±14.7	5.91±0.19	3.77±0.17	13.123±0.34
T1 S6	583.2±10.8	6.71±0.09	4.20±0.21	13.685±0.25
T2 S4	749.8±11.2	6.73±0.06	4.37±0.10	17.595±0.26
T2 S6	762.5±8.3	7.46±0.06	4.63±0.31	17.899±0.19
T3 S4	484.4±6.7	5.47±0.33	3.63±0.11	11.368±0.16
T3 S6	512.6±1.5	6.28±0.03	4.03±0.11	12.030±0.03
T4 S4	621.3±6.4	6.14±0.02	4.00±0.10	14.580±0.15
T4 S6	636.8±2.8	6.83±0.02	4.43±0.11	14.942±0.06
LSD 0.05	19.97	0.305	N.S	0.468
The results showed that spraying six times (S6) significantly increases in characters compared with four sprays (S4). The interaction between treatments and spraying number shows significantly affected all studying characteristics except TSS. The (T2S6) had the highest values of shoot fresh weight 762.5g, dry matter 7.46%, TSS 4.63% and total yield 17.899 tone. donum\(^1\) compared with (T0S4) that had the lowest values 437.6 g, 4.81%, 2.70%, and 10.267 tone. donum\(^1\).

Protein hydrolysates may positively affect plants due to amino acids (table 2) acting on an increase in vegetative growth. Such as leaf number and leaf area, photosynthesis, chlorophyll content, protein synthesis and mechanisms involved in abiotic stress resistance (Cavani et al., 2006). As well as chelating effects and hormone-like activity (Colla et al., 2014). The results agree with the study of Xu & Mou (2017) on the application of fish-derived protein hydrolysates, which significantly increased fresh weight lettuce crop. Tarantino et al. (2015) observed higher dry matter in pepper, cauliflower and fennel crops when, treated with biostimulant "Siapton". Significant improvement in TSS was observed by Tsouvaltzis et al. (2014) when lettuce plants treated with amino acids. Polo & Mata (2018) observed increased tomato yield when peptone treated plants.

Conclusions

The protein hydrolysate derived from fish by-product using either Alcalase or Flavourzyme was effective in improving the growth, yield and quality of lettuce under salinity conditions. protein hydrolysate applied at T2 and T4 treatment gave the highest value of shoot fresh weight and total yield compared with T0. Spraying six times (S6) significantly increases in most parameters compared with four sprays (S4). protein hydrolysates is possible used for sustainable production of lettuce.

Acknowledgments

The authors want to thank the Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah for supporting.

References

AOAC. (2012). Association of Official Analytical Chemistry. 19. ed. Gaithersburg: :3000pp.

Bates, L.S.; Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.

Ben-Dor, E. & Banin, A. (1989). Determination of organic matter content in arid zone soils using a simple “Loss-on-Ignition” method. Communications Soil Sci. Plant Anal., 20: 1675-1695.

Cataldo, D.A.; Maroon, M. & Schrader, L.E. (1975). Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun. Soil Science and Plant Analysis, 6(1): 71-80.

Chojnacka, K.; Michalak, I.; Dmytryk, A.; Wilk, R. & Gorecki, H. (2015). Innovative natural plant growth biostimulants. 451–489. In Sinha, S.; Pant, K.K.; Bajpai S. & Govil, J.N. (Eds.). Fertilizer Technology: II Biofertilizer. Houston, TX: Studium Press LLC: 268pp.
Chotikachinda, R.; Tantikitti, C.; Benjakul, S. & Rustad, T. (2018). Tuna viscera hydrolysate products prepared by different enzyme preparations improve the feed intake and growth of Asian seabass, *Lates calcarifer*, fed total fishmeal replacement diets. Songklanakarin J. Sci. Technol., 40(1): 167-177

Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E. & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci., 5(448): 1–6.

Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R. & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196: 28-38.

Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R. & Rouphael, Y. (2017). Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci., 8: 2202. doi: 10.3389/fpls.2017.02202.

Dubois, M.K.; Crilles, K.A.; Hamilor, J.K.; Rebers, D.A. & Smith, F.(1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 57: 350-365.

Genc, E. & Atici, O. (2019). Chicken feather protein hydrolysate as a biostimulant improves the growth of wheat seedlings by affecting biochemical and physiological parameters. Turkish J. Bot., 43: 67-79.

Gridling, M.; Popescu, B.; Kopp, B.; Wagner, K.H.; Krenn, L. & Krupitza, G. (2010). Anti-leukaemic effects of two extract types of *Lactuca sativa* correlate with the activation of Chk2, induction of p21, down regulation of cyclin D1 and acetylation of alpha-tubulin. Oncol. Rep., 23(4): 1145-1151.

Guerard, F.; Guimas, L. & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catalysis B: Enzym., 19: 489-498.

Klomklao1, S. & Benjakul, S. (2018). Protein hydrolysates prepared from the viscera of skipjack tuna (*Katsuwonus pelamnis*): Antioxidative activity and functional properties. Turkish J. Fish. Aquat. Sci., 18: 69-79.

Koukounaras, A.; Tsouvaltzis, P. & Siomos, A. (2013). Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ., 11(2): 644-648.

Levin, S. & Grushka, E. (1985). Reversed-phase liquid chromatographic separation of amino acids with aqueous mobile phases containing copper ions and alkylsulfonates. Anal. Chem., 57: 1830-1835.

Liu, X.Q.; Chen, H.Y.; Ni, Q.X. & Lee, K.S. (2008a). Evaluation of the role of mixed amino acids in nitrate uptake and assimilation in leafy radish by using 15N-labeled nitrate. Agric. Sci. Chin., 7: 1196-1202.

Liu, X.Q.; Ko, K.Y.; Kim, S.H. & Lee, K.S. (2008b). Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Commun. Soil Sci. Plant Anal., 39: 269-281.

Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P. & Colla G.
The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic., 182: 124-133.

Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59: 651-681.

Nardi, S.; Pizzeghello, D.; Shiavon, M. & Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolyzed–based products and humic substances in plant metabolism. Sci. Agric., 73: 18-23.

Polo, J. & Mata, P. (2018). Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress Ambient Field Conditions. Front. Plant Sci., 8: 2261: 1-8.

Qi, J.; Yokoyama, W.; Masamba, K.G.; Majeed, H.; Zhong, F. & Li, Y. (2015). Structural and physicochemical properties of insoluble rice bran fiber fiberi effect of acid–base induced modifications. J. RSC. Adv., 97(5): 79915-79923.

Rouphael, Y.; Cardarelli, M.; Bonini, P. & Colla, G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci., 8: 131.

Schaafsma, G. (2009). Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr., 63(10): 1161-1168.

Tarantino, E.; Disciglio, G.; Frabboni, L.; Libutti, A.; Gatta, G.; Gagliaridi, A. & Tarantino, A. (2015). Effects of biostimulant application on qualitative characteristics of cauliflower, pepper and fennel crops under organic and conventional fertilization. Int. J. Agric. Biosys. Eng., 9(7): 734-738.

Tsouvaltzis, P.; Koukounaras, A. & Siomos, A.S. (2014). Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. Int. J. Agric. Biol., 16: 951-955.

United States Department of Agriculture (USDA) (2019). National Nutrient Database for Standard Reference Release: https://ndb.nal.usda.gov/ndb/foods/show/3001

Wisuthiphaet, N. & Kongruang, S. (2015). Production of fish protein hydrolysates by acid and enzymatic hydrolysis. J. Med. Bioeng., 4(6): 466-470.

Xu, C. & Mou, B. (2017). Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content and gas exchange. Hort. Technol., 27(4): 539-543.

Zhao, Y. (2014). Auxin biosynthesis. Arabidopsis Book Am. Soc. Plant Biol., 12: e 0173. 10.1199/tab.0173.