Characterization of exosomal release in bovine endometrial intercaruncular stromal cells

Yong Qin Koh, Hassendrini N. Peiris, Kanchan Vaswani, Sarah Reed, Gregory E. Rice, Carlos Salomon and Murray D. Mitchell*

Abstract

Background: Cell-to-cell communication between the blastocyst and endometrium is critical for implantation. In recent years, evidence has emerged from studies in humans and several other animal species that exosomes are secreted from the endometrium and trophoblast cells and may play an important role in cell-to-cell communication maternal-fetal interface during early pregnancy. Exosomes are stable extracellular lipid bilayer vesicles that encapsulate proteins, miRNAs, and mRNAs, with the ability to deliver their cargo to near and distant sites, altering cellular function(s). Furthermore, the exosomal cargo can be altered in response to environmental cues (e.g. hypoxia). The current study aims to develop an in vitro system to evaluate maternal-embryo interactions via exosomes (and exosomal cargo) produced by bovine endometrial stromal cells (ICAR) using hypoxia as a known stimulus associated with the release of exosomes and alterations to biological responses (e.g. cell proliferation).

Methods: ICAR cells cultured under 8 % O2 or 1 % O2 for 48 h and changes in cell function (i.e. migration, proliferation and apoptosis) were evaluated. Exosome release was determined following the isolation (via differential centrifugation) and characterization of exosomes from ICAR cell-conditioned media. Exosomal proteomic content was evaluated by mass spectrometry.

Results: Under hypoxic conditions (i.e. 1 % O2), ICAR cell migration and proliferation was decreased (~20 and ~32 %, respectively) and apoptotic protein caspase-3 activation was increased (~1.6 fold). Hypoxia increased exosome number by ~3.6 fold compared with culture at 8 % O2. Mass spectrometry analysis identified 128 proteins unique to exosomes of ICAR cultured at 1 % O2 compared with only 46 proteins unique to those of ICAR cultured at 8 % O2. Differential production of proteins associated with specific biological processes and molecular functions were identified, most notably ADAM10, pantetheinase and kininogen 2.

Conclusions: In summary, we have shown that a stimulus such as hypoxia can alter both the cellular function and exosome release of ICAR cells. Alterations to exosome release and exosomal content in response to stimuli may play a crucial role in maternal-fetal crosstalk and could also affect placental development.

Keywords: Bovine, Intercaruncular, Hypoxia, Exosomes

* Correspondence: murray.mitchell@uq.edu.au
University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia

© The Author(s), 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
In dairy cattle, the average gestation length is approximately 282 days. The placenta is epitheliochorial, cotyledonary and non-deciduate [1]. Placentation is restricted to the aglandular maternal caruncles, where the fetal cotyledons come into contact with each other [2, 3]. They then form the placentome for maternal-fetal exchange of oxygen, nutrients and waste products. The glandular intercaruncular regions are associated with preserving the uterus in a state of quiescence and allowing a progressive uterine hypertrophy to accommodate the increasing needs of the growing feto-placental unit [4]. The uterine glands present in the intercaruncular endometrial areas secrete and release histotroph that is crucial for conceptus survival and growth [5] and is transported into the fetal circulation via the placental areolae. The establishment of a successful pregnancy requires the interactions between the endometrial cells and the early conceptus during maternal recognition of pregnancy [6, 7].

Cells located within intercaruncular region and associated with maternal fetal crosstalk include cells of stroma (intercaruncular stromal cell; ICAR) and epithelial origin. Both cell types are known to produce prostanoids (e.g. PGF$_{2\alpha}$) and have immunomodulatory functions [8, 9]. Interactions between these cells may also play a pivotal role in endometrial receptivity during early pregnancy as was reported in a co-culture study that human endometrial stromal cells can mediate epithelial cell function by promoting differentiation and inhibiting proliferation of endometrial epithelial cells [10]. In the bovine, endometrial stromal cells (as utilized in the current study) are known to differentially regulate the production of prostanoids and enzymes related to the production of prostanoids, in response to specific stimuli (e.g. inflammatory mediators and interferon tau) [8, 11]. ICAR cells were a kind gift from Professor Michel A. Fortier (Université Laval, Québec). ICAR cells are a well characterized bovine endometrial intercaruncular stromal cell line (ICAR cells) was utilized for the current study [8, 30]. ICAR cells were a kind gift from Professor Michel A. Fortier (Université Laval, Québec). ICAR cells were maintained in 175 cm2 (T175, Corning Costar) culture flasks supplemented with exosome-free media (1640 Roswell Park Memorial Institute (RPMI) medium (Invitrogen, Life Technologies) with 10% heat-inactivated fetal bovine serum (Bovogen, Interpath services Pty Ltd) depleted of exosomes by ultracentrifugation (100,000 g for 20 h at 4 °C) and 1000 U/mL antibiotic-antimycotic solution (Gibco, Life Technologies) in a humidified cell culture incubator at 37 °C under an atmosphere of 5% CO$_2$-balanced N$_2$ to obtain a hypoxic (1% O$_2$) environment or under physiologically relevant conditions (8% O$_2$). Lactate dehydrogenase (LDH) assay was also
performed accordingly to the manufacturer’s protocol using the commercially available kit Pierce LDH cytotoxicity assay kit (Thermo scientific) to measure LDH in supernatants of ICAR cells cultured at 8 % O_2 and 1 % O_2 and ICAR cell viability was accessed. No significant difference in the LDH activity was observed (data not shown) between 8 % O_2 and 1 % O_2, indicating that the viability of ICAR cells was not affected by experimental condition.

Cell migration assay

The effect of oxygen tension on cell migration was assessed using methods as previously published [31]. Briefly, ICAR cells were plated (30,000 cells per well) and grown to confluence in a 96-well culture plate (Corning Costar) at 1 % O_2 or 8 % O_2 oxygen tension and a wound scratch was made on confluent monolayers using a 96-pin WoundMaker (Essen BioScience). Migration assays were performed in the presence of Mitomycin C (100 ng/mL, Sigma–Aldrich) to minimize any confounding effects of cell proliferation. The wound images were automatically acquired every 2 h for 48 h and registered by the IncuCyte software system (Essen BioScience). Data are presented as the Relative Wound Density (RWD, Eizen, v1.0 algorithm). RWD is a representation of the spatial cell density in the wound area relative to the spatial cell density outside of the wound area at every time point (time-curve).

Cell proliferation assay

Proliferation of ICAR cells was assessed using methods as previously published [28, 31]. In brief, the effect of oxygen tension on ICAR cell proliferation was assessed using a non-labelled cell monolayer confluence approach with a high density phase contrast real-time cell imaging system (IncuCyte™). ICAR cells were seeded at 40,000 cells per well in a 12-well culture plate (Corning Costar) and exposed to oxygen tension at 1 % O_2 or 8 % O_2 and the cell confluence (as the proliferation parameter) was measured at 0, 24 and 48 h.

Cell apoptosis assay

To assess the effect of hypoxia on cell apoptosis, ICAR cells were seeded at 5000 cells per well in 96-well culture plate (Corning Costar) in the presence of CellPlayer Kinetic Caspase-3/7 Apoptosis Assay Reagent (1:5000; Essen Biosciences) and imaged at 48 h with IncuCyte™. Cell apoptosis is determined by the measurement of the number of activated caspase 3/7 fluorescent objects count per mm2 divided by the percentage of cell confluence at 48 h (percentage of the area of field of view covered by cells with the metric ‘phase object confluence’) with the IncuCyte Zoom software using an integrated object counting algorithm.

Exosome isolation from cell-conditioned media

To study the effect of oxygen tension on exosome release, ICAR cells were incubated at 1 % O_2 or 8 % O_2 for 48 h. Exosomes were isolated from ICAR cell culture-conditioned media by successive differential centrifugation steps at 300 × g for 10 min and 2000 × g for 30 min. The supernatant was filtered through a 0.22-μm filter (Corning Costar) and ultracentrifuged at 100,000 × g for 20 h at 4 °C (Sorvall, SureSpin 630/360, Swinging-bucket ultracentrifuge rotor). Another round of ultracentrifugation washing steps was performed at 100,000 × g for 2 h at 4 °C (Beckman, Type 70.1 Ti, Fixed angle ultracentrifuge rotor). Exosomes were further enriched by layering on top of a discontinuous iodixanol gradient (OptiPrep, Sigma–Aldrich), which was centrifuged at 100,000 × g for 20 h (Beckman, Sw41Ti, Swinging-bucket ultracentrifuge rotor). Twelve fractions were obtained and diluted in 10 mL PBS (Gibco, Life Technologies). The fractions were washed with PBS and centrifuged at 100,000 × g for 2 h (Beckman, Type 70.1 Ti, Fixed angle ultracentrifuge rotor) and the exosomal pellets were suspended in 50 μL PBS.

Nanoparticle Tracking Analysis (NTA)

NTA measurements were performed using a NanoSight NS500 instrument (NanoSight NTA 3.0 Nanoparticle Tracking and Analysis Release Version Build 0064) as previously described [32, 33].

Western blot analysis and transmission electron microscopy

Exosomes were solubilized in RIPA buffer (Sigma–Aldrich) and separated by polyacrylamide gel electrophoresis, transferred to a polyvinylidene fluoride (PVDF) membrane (Bio-Rad) and probed with primary rabbit polyclonal antibody anti-CD63 (1:1000; EXOAB-CD63A-1, System Biosciences) and TSG101 (1:500; sc-6037, Santa Cruz Biotechnology). For electron microscopy analysis, exosome pellets were fixed in 3 % (w/v) glutaraldehyde and analyzed under an FEI Tecnai 12 transmission electron microscope (FEI, Hillsboro, Oregon, USA).

Proteomic Analysis of Endometrial Exosomes by Mass Spectrometry (MS)

Exosomes (10 μg of protein) were solubilized in RIPA buffer (Sigma–Aldrich) and separated by polyacrylamide gel electrophoresis. The gel was fixed in fixing solution (10:1:9; ethanol, acetic acid, MilliQ water respectively) for 15 min, washed in 1:1, ethanol and MilliQ water for 10 min and washed three times with MilliQ water. Proteins were stained with Coomassie Brilliant Blue R-250 staining solution (Bio-Rad) for 1 h and the gel was allowed to destain in MilliQ water until a clear background was obtained.
In-gel digestion methods for the mass spectrometric identification of exosomal proteins were performed by modification of previously published method [34]. In brief, each sample lane was cut into 24 gel slices and destained twice with 200 mM ammonium bicarbonate in 50 % acetonitrile solution for 45 min at 37 °C, desiccated using a vacuum centrifuge and then resuspended for 1 h at 65 °C. DTT in 20 mM dithiothreitol (DTT) in 25 mM ammonium bicarbonate solution and reduced for 1 h at 65 °C. DTT was then removed, and the samples were alkylated in 50 mM iodoacetamide and 25 mM ammonium bicarbonate at 37 °C in darkness for 40 min. Gel slices were washed three times for 45 min in 25 mM ammonium bicarbonate and then desiccated. Individual dried slices were then allowed to swell in 20 μL of 40 mM ammonium bicarbonate, 10 % acetonitrile containing 20 μg/mL trypsin (Sigma) for 1 h at room temperature. An additional 50 μL of the same solution was added and the samples were incubated overnight at 37 °C.

The supernatants were removed from the gel slices, and residual peptides were washed from the slices by incubating them three times in 50 μL of 0.1 % formic acid for 45 min at 37 °C. The original supernatant and washes were combined and desalted according to a modified version of the stage tip protocol that we have published [35, 36] using a 3-mm piece of an Empore C18 (Octadecyl) SPE Extraction Disk and the eluted peptides were dried in a vacuum centrifuge prior to spectral acquisition. The digested protein samples were analysed using the TripleTOF® 5600 mass spectrometer (ABSciex, Redwood City, CA) and Eksigent 1D+ NanoLC system with the chHiPLC system to obtain initial high mass accuracy survey MS/MS data, identifying the peptides present in the samples. The ChromXP C18-CL TRAP chHiPLC (200 μm × 6 mm, 3 μm, 120 Å) and analytical chHiPLC columns (200 μm × 15 cm; 3 μm, 120 Å) (Eksigent, Redwood City, CA) were used to separate the digested proteins. A 10 μL aliquot of digested material was injected onto the column and separated with a linear gradient of 5 to 10 % Buffer B for 2 min (Buffer A: 0.1 % Formic acid/water; Buffer B: acetonitrile/0.1 % formic acid), 10 to 40 % Buffer B (58 min), 40 to 50 % Buffer B (10 min), 50 to 95 % (10 min) with a flow rate of 500 nL/min. The column was flushed at 95 % buffer B for 15 min and re-equilibrated with 5 % Buffer B for 6 min. The in-depth proteomic analysis was performed using the Information Dependent Acquisition (IDA) experiments on the TripleTOF® 5600 System interfaced with a nanospray source. The source parameters were as follows: Cur gas at 25 psi, GS1 at 5 psi and IHT at 150 °C. A 250 msec accumulation time was set for the TOFMS survey scan and from this scan, the 10 most intense precursor ions were selected automatically for the MS/MS analysis (accumulation time of 150 msecs per MS/MS scan). Ions were isolated using unit resolution of the quadrupoles and rolling collision energy equation was used to calculate the collision energies of precursors. The precursor selection criteria included a minimum intensity of 50 counts per second (cps) and a charge state greater than 2 +.

Protein identification was determined using the ProteinPilot™ Software (v4.5 beta, AB Sciex, Redwood City, CA) with the Paragon algorithm. The search parameters were as follows: sample type, identification; cys alkylation, iodoacetamide; digestion, Trypsin; Instrument, TripleTOF 5600; special factors, none; and ID focus, biological modifications. The database was downloaded from the UniProt website in October 2015, which contained all proteins from Bos taurus. False discovery rate (FDR) was selected in the method and determined using a reversed sequence database. Data were subjected to ontology and pathway analysis using the protein analysis through evolutionary relationships tool (PANTHER) and gene ontology algorithms and classified based on biological process and molecular function categories [37].

Statistical analyses
The effects of oxygen tensions on ICAR cells are presented as mean ± SE for migration, proliferation and apoptosis assays (n = 6 independent experiments in duplicate). The number of exosomes is presented as number of particles per mL (mean ± SE, n = 3 independent isolations from 80 million cells each). The effects of oxygen tension on ICAR cells were identified by Student’s T tests (two-tailed) to compare the effect of hypoxia (i.e. 1 % O2) with the control group (i.e. 8 % O2) using a commercially-available software package (Prism 6, GraphPad Inc, La Jolla, CA 92037 USA).

Results
The Effect of Oxygen Tension on Bovine Endometrial (ICAR) cell migration and proliferation
The effect of normal oxygen tension (i.e. 8 % O2) and hypoxia (i.e. 1 % O2) on ICAR cell migration is presented in Fig. 1. ICAR cell migration was significantly lower under hypoxia compared with normal oxygen tension (Fig. 1a). Hypoxia decreased ICAR cell migration in a time-dependent manner (Fig. 1b). Area under the curve analysis indicated that hypoxia decreased ICAR cell migration by ~20 % compared with values observed at 8 % O2 (2173 ± 36 and 2620 ± 50 for 1 % O2 and 8 % O2, respectively) (Fig. 1c). Interestingly, hypoxia decreased ICAR cell proliferation in a time-dependent manner (Fig. 2a and b). Area under curve analysis showed that at 1 % O2, the proliferative capacity of ICAR cells was inhibited (p < 0.05) ~32 % compared with
Fig. 1 The effects of different oxygen tension on migration of bovine endometrial stromal cells (ICAR).

(a) Graphical representation of the initial wound width (white) at 0 h and the area of the initial wound covered by advancing cells (grey) at 24 h and 48 h. Scale bar 300 μm.

(b) Decreased ICAR cell migration under hypoxic conditions (1 % O\(_2\) (●)) compared with a normoxic 8 % O\(_2\) (○) over a period of 48 h.

(c) Area under the curve analysis from (b); 8 % O\(_2\) (white bar) and 1 % O\(_2\) (black bar). Data are presented as mean ± SE, n = 6. In (b) and (c) \(P < 0.05\)

Fig. 2 The effects of different oxygen tension on proliferation of bovine endometrial stromal cells (ICAR).

(a) Representative phase-contrast image of ICAR cells at 48 h when cultured under hypoxic conditions (1 % O\(_2\)) compared with a normoxic 8 % O\(_2\). Scale bar 200 μm.

(b) Decreased \((p < 0.01)\) ICAR cell proliferation under hypoxic conditions (1 % O\(_2\) (●)) compared with a normoxic 8 % O\(_2\) (○) over a period of 48 h.

(c) Area under the curve analysis from (b); 8 % O\(_2\) (white bar) and 1 % O\(_2\) (black bar). Data are presented as mean ± SE, n = 6. In (C) \(P < 0.05\)
cell proliferation at 8% O₂ (2.32 ± 0.18 and 3.41 ± 0.2 for 1% O₂ and 8% O₂, respectively) (Fig. 2c).

The Effect of Oxygen Tension on Bovine Endometrial (ICAR) cell apoptosis

The effect of oxygen tension on cell apoptosis is presented in Fig. 3. A hypoxic (1% O₂) environment altered cell morphology compared with cells cultured under normal conditions (8% O₂), displaying morphological hallmarks of apoptotic death (Fig. 3A,a and d). Fluorescent images acquired with IncuCyte™ (Fig. 3A, b and e) showed greater fluorescence in cells cultured under 1% O₂, indicating a higher activation of caspase-3/7 under hypoxic conditions compared with 8% O₂ (Fig. 3A, b and e). Apoptosis was quantified using the object counting algorithm in which the number of fluorescent objects was indicated with red x's in Fig. 3A (c and f). Quantification analysis showed that hypoxia increased (~1.6 fold) the apoptosis ratio (presented as activated caspase 3/7 fluorescent objects count per mm² divided by percentage of cell confluence at 48 h) compared with cells cultured under normal oxygen tension (Fig. 3B).

The Effect of Oxygen Tension on Exosome Release from Bovine Endometrial Cells (ICAR)

Exosomes were enriched by buoyant density gradient (see Material and Methods). We fractioned the 100,000 × g pelleted into 12 fractions and the Western blot analysis for TSG101 and CD63 showed positive protein abundance in fractions 1.17 and 1.18 g/mL (Fig. 4a). Exosomes were pooled between densities 1.16 and 1.18 g/mL. Morphology of exosomes was determined by electron microscopy (Fig. 4b), exosomes displayed a cup-shaped morphology with an estimated diameter of 100 nm. Hypoxia did not alter the size distribution of exosomes compared with normal oxygen tension (123 ± 2.7 nm versus 127 ± 1.7 nm for 8% O₂ and 1% O₂, respectively) (Fig. 4c). Interestingly,
hypoxia increased (~3.6 fold) the number of exosomes compared with values observed at normal oxygen tension (Fig. 4d).

Proteomic Analysis of Bovine Endometrial ICAR-Derived Exosomes

Mass spectrometric analysis identified over 250 exosomal proteins with 113 similar proteins identified as present in both exosomes of ICAR cultured at 1 % O₂ and at 8 % O₂. 128 proteins identified as unique to exosomes of ICAR cultured at 1 % O₂; 46 proteins were identified as unique to exosomes of ICAR cultured at 8 % O₂ (Table 1 A-C; Fig. 5a). Data were subjected to ontology and pathway analysis using PANTHER and gene ontology algorithms and classified based on biological process (Fig. 5b) and molecular function (Fig. 5c). In biological process, the clusters identified from individual proteins that are unique to and present only in exosomes of ICAR cultured at 1 % O₂ but not those at 8 % O₂ were: growth (0.7 %), locomotion (0.7 %) and reproduction (1.4 %) (Fig. 5b). In molecular functions, the proteins related to binding and catalytic activity were the greatest recognized in both exosomes of ICAR cultured at 1 % O₂ and to those of ICAR cultured at 8 % O₂ (Fig. 5c).

Discussion

A successful pregnancy is dependent of having a quality embryo and a receptive uterus synergizing with a synchronized crosstalk between the endometrium and embryo. Any insults or disturbances to its normal course can compromise implantation and the ability for the growing fetus to develop properly in the uterus [26]. The endometrium clearly has important functions in dairy cow pregnancy and we have now shown that exosomal release (30–120 nm) is part of its armamentarium which has analogous properties to similar tissues of other mammalian species.

In the present case, we have shown for the first time the effects of hypoxia on the biological activities of endometrial ICAR cells, including actions on the release and protein content of exosomes. Although it remains to be determined whether exosomes released from ICAR cells at different oxygen tensions also serve different functional goals, our data underscore that the content of exosomes may reflect the physiological state of the cells. Our non-exosomal characterization of the ICAR cells indicated that the migration and proliferative capacity of ICAR cells decreased, while activation of apoptotic caspase-3 was enhanced at 1 % O₂ (hypoxia), compared with an oxygen tension that was close to the bovine
Protein ID	Name	Gene Name	Biological Process (Total # Gene 69; Total #Function 146)	Molecular function (Total # Gene 69; Total #Function 81)
A1LS23_BOVIN	Copine II (Fragment)	CPNE2		
A3KNS1_BOVIN	TSG101 protein	TSG101	Metabolic process	Catalytic activity
A5D7L1_BOVIN	CLEC11A protein	CLEC11A	Cellular process/Developmental process	Binding/Structural molecule activity
A5D9D2_BOVIN	Complement component 4 binding protein, alpha chain	C4BPA		
A5P969_BOVIN	SERPINA10 protein	SERPINA10	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
A5PJE3_BOVIN	Fibrinogen alpha chain	FGA		
A5PK77_BOVIN	SERPINA11 protein	SERPINA11	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
A6QLB7_BOVIN	Adenyllyl cyclase-associated protein	CAP1		
A6QLL8_BOVIN	Fructose-bisphosphate aldolase	ALDOA		
A6QNZ7_BOVIN	Keratin 10 (Epidermolytic hyperkeratosis; keratosis palmaris et plantaris)	KRT10		
A6QPP2_BOVIN	SERPIND1 protein	SERPIND1	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
A6QPR1_BOVIN	PCYOX1 protein	PCYOX1	Apoptotic process/Biological adhesion/Biological regulation/Cellular process/Developmental process/Immune system process/localization/Metabolic process	Catalytic activity/Receptor activity
B0JYQ6_BOVIN	Inter-alpha-trypsin inhibitor heavy chain H2	ITIH2		
B0JYQ7_BOVIN	Inter-alpha-trypsin inhibitor heavy chain H1	ITIH1		
C1QTNF3 protein	C1QTNF3	C1QTNF3		
LOC539596 protein	LOC539596	LOC539596		
CD63				
AHSF				
ALB				
CSN151				
WNT5A			Biological regulation/Cellular process/Developmental process/Multicellular organismal process/response to stimulus	Binding
SERPINA6			Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
FGB				
ENO1				
KRT14				
QSOX1				
AMBP				
AMBP				
ITGA3				
ITIH2				
SERPINC1				
Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O₂ and at 8 % O₂ (Continued)

Accession	Protein Name	Function	Cellular/Metabolic Process	Activity
F1MTVS_BOVIN	Amino acid transporter	SLC1A5	Cellular process/Metabolic process	Catalytic activity
F1MW44_BOVIN	Coagulation factor XIII A chain	F13A1	Response to stimulus	
F1MXIS_BOVIN	IST1 homolog	IST1	Developmental Process/Metabolic process	Enzyme regulator activity
F1MX6_BOVIN	Lactadherin	MFGE8	Biological regulation/Metabolic process	Enzyme regulator activity
F1MY85_BOVIN	Complement C5a anaphylatoxin	C5	Multicellular organismal process	
F1NO45_BOVIN	Complement component C7	C7	Response to stimulus	
F1RA1_BOVIN	Serine protease HTRA1	HTRA1	Metabolic process	
F1N116_BOVIN	Gelsolin	GSN	Immune system process/Metabolic process	Catalytic activity
F6QVC9_BOVIN	Annexin	ANXA5	Developmental process/Metabolic process	Enzyme regulator activity
G3X6N3_BOVIN	Serotransferrin	TF	Response to stimulus	
G5E5A9_BOVIN	Fibronectin	FN1	Multicellular organismal process	
Protein Name	Function	GO Terms	Activity	
--------------	----------	----------	----------	
ITIH3_BOVIN	Inter-alpha-trypsin inhibitor heavy chain H3	Biological regulation/Metabolic process	Binding/Catalytic activity/Enzyme regulator activity	
ACTB_BOVIN	Actin, cytoplasmic 1	Structural molecule activity	structural molecule activity	
ANXA6_BOVIN	Annexin A6	Metabolic process	Catalytic activity/Receptor activity/Transporter activity	
CFAB_BOVIN	Complement factor B	Biological adhesion/Cellular process/Immune system process/localization/Metabolic process/Response to stimulus	Catalytic activity/Receptor activity/Transporter activity	
TBA1B_BOVIN	Tubulin alpha-1B chain	Structural molecule activity	Structural molecule activity	
LUM_BOVIN	Lumican	Metabolic process	Receptor activity	
UPAR_BOVIN	Urokinase plasminogen activator surface receptor	Metabolic process	Catalytic activity	
SNTD_BOVIN	5′-nucleotidase	Metabolic process	Catalytic activity	
PGM1_BOVIN	Phosphoglucomutase-1	Metabolic process	Catalytic activity	
Q09TE3_BOVIN	Insulin-like growth factor binding protein acid labile subunit	Metabolic process	Catalytic activity	
Q17R18_BOVIN	Adenosine kinase	Metabolic process	Catalytic activity	
FAS_BOVIN	Coagulation factor V	Metabolic process	Catalytic activity	
Q2KIF2_BOVIN	Leucine-rich alpha-2-glycoprotein 1	Metabolic process	Receptor activity	
CBP2_BOVIN	Carboxypeptidase B2	Metabolic process	Catalytic activity	
Q2K47_BOVIN	EH-domain containing 2	Metabolic process	Catalytic activity	
TBB5_BOVIN	Tubulin beta-5 chain	Metabolic process	Catalytic activity	
A1BG_BOVIN	Alpha-1B-glycoprotein	Metabolic process	Receptor activity	
HPT_BOVIN	Haptoglobin	Metabolic process	Receptor activity	
CO3_BOVIN	Complement C3	Metabolic process	Receptor activity	
Q3MH8_BOVIN	Alpha-amylase	Metabolic process	Catalytic activity	
SAHH_BOVIN	Adenosylhomocysteinase	Metabolic process	Catalytic activity	
C09_BOVIN	Complement component C9	Metabolic process	Catalytic activity	
Q3MH2_BOVIN	F10 protein (Fragment)	Metabolic process	Catalytic activity	
Q3MH20_BOVIN	FLOT1 protein (Fragment)	Metabolic process	Catalytic activity	
Q3SYR0_BOVIN	Serpin peptidase inhibitor, clade A (Alpha-1 antiproteinase, antitrypsin), member 7	Metabolic process	Catalytic activity	
Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O₂ and at 8 % O₂ (Continued)

Protein ID	Name	Gene Name	Biological Process (Total # Gene 22; Total #Function 49)	Molecular function (Total # Gene 22; Total #Function 28)
FETA_BOVIN	Alpha-fetoprotein	AFP	Developmental process/localization	
Q3SZH5_BOVIN	Angiotensinogen	AGT		
HEMO_BOVIN	Hemopexin	HPX	localization	
Q3SZZ9_BOVIN	FGG protein	FGG		
PGK1_BOVIN	Phosphoglycerate kinase 1	PGK1	Metabolic process	Catalytic activity
Q3T101_BOVIN	IGL@ protein	IGL@		
G6PI_BOVIN	Glucose-6-phosphate isomerase	GPI	Metabolic process	Catalytic activity
Q3ZBX0_BOVIN	Basigin	BSG		
Q3ZC87_BOVIN	Pyruvate kinase (Fragment)	PKM2		
Q3ZC14_BOVIN	6-phosphogluconate dehydrogenase, decarboxylating	PGD	Metabolic process	Catalytic activity
FETUB_BOVIN	Fetuin-B	FETUB		
EHD1_BOVIN	EH domain-containing protein	EHD1	Biological regulation/Cellular process/localization/Metabolic process/Multicellular organismal process	Binding/Catalytic activity/Enzyme regulator activity
HPPD_BOVIN	4-hydroxyphenylypyruvate dioxygenase	HPD	Metabolic process	Catalytic activity
QSEA67_BOVIN	Inter-alpha (Globulin) inhibitor H4 (Plasma Kallikrein-sensitive glycoprotein)	ITIH4		
QSGN72_BOVIN	Alpha-1-acid glycoprotein	agg		
BHMT1_BOVIN	Betaine–homocysteine S-methyltransferase 1	BHMT	Cellular process/Metabolic process	Catalytic activity
Q5J801_BOVIN	Endopin 2B			
Q6T182_BOVIN	Sex hormone-binding globulin (Fragment)	SHBG		
A2MG_BOVIN	Alpha-2-macroglobulin	A2M	Biological regulation/Cellular process/Immune system process/Metabolic process/Response to stimulus	Binding/Catalytic activity/Enzyme regulator activity
PEDF_BOVIN	Pigment epithelium-derived factor	SERPINF1	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
CHIA_BOVIN	Acidic mammalian chitinase	CHIA	Immune system process/Metabolic process/Response to stimulus	Binding/Catalytic activity
IPSP_BOVIN	Plasma serine protease inhibitor	SERPINA5	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
SPA31_BOVIN	Serpin A3-1	SERPINA3-1	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
V6F9A2_BOVIN	Apolipoprotein A-I preproprotein	APOA1		

B. List of 128 unique proteins identified in exosomes of ICAR cultured at 1 % O₂
Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O₂ and at 8 % O₂ (Continued)

Protein ID	Protein Name	Biological process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
G1K1R6_BOVIN	Galactokinase	Apoptotic process/Biological regulation/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
G3P_BOVIN	Glyceraldehyde-3-phosphate dehydrogenase	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q0P5B0_BOVIN	Arrestin domain containing 1	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
RL40_BOVIN	Ubiquitin-60S ribosomal protein L40	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
A5O9B6_BOVIN	Syntenin	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q8HZY1_BOVIN	Serine protease inhibitor clade E member 2	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q5E962_BOVIN	Aldo-keto reductase family 1, member B1	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
A7MBH9_BOVIN	GNAI2 protein	Biological regulation/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
GBB2_BOVIN	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2	Biological regulation/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
I6YIV1_BOVIN	Annexin	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
F16P1_BOVIN	Fructose-1,6-bisphosphatase 1	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
F1N3Q7_BOVIN	Apolipoprotein A-IV	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
AK1A1_BOVIN	Alcohol dehydrogenase [NADP(+)i]	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
A5O7B4_BOVIN	CPNE8 protein	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
H590A_BOVIN	Heat shock protein HSP 90-alpha	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q1JPA2_BOVIN	Eukaryotic translation elongation factor 1 gamma (Fragment)	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
SERA_BOVIN	D-3-phosphoglycerate dehydrogenase	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q3T08S_BOVIN	OGN protein	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
A80BT6_BOVIN	Monocyte differentiation antigen CD14	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
ASPK73_BOVIN	Fructose-bisphosphate aldolase	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
G5E5U7_BOVIN	S-adenosylmethionine synthase	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
F1N2W0_BOVIN	Prostaglandin reductase 1	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
IF4A1_BOVIN	Eukaryotic initiation factor 4A-1	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Q05B55_BOVIN	IGK protein	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
F1N1D4_BOVIN	Protein tweety homolog	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
A4F94_BOVIN	KRT6A protein	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
RGN_BOVIN	Regucalcin	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
I433E_BOVIN	14-3-3 protein epsilon	Metabolic process/Cellular component organization or biogenesis/Cellular process/Developmental process/Growth/localization/Metabolic process/Multicellular organismal process/Response to stimulus			
Accession	Description	Gene	Protein Name	Function	Activity
-------------	--	--------	--------------	---	------------------------
Q2HJB6_BOVIN	Procollagen C-endopeptidase enhancer	PCOLCE	Q2HJB6_BOVIN	Biological adhesion/Biological regulation/Cellular process/Developmental process/Immune system process/localization/Metabolic process/Multicellular organismal process/Response to stimulus	Binding/Catalytic activity/Enzyme regulator activity/Receptor activity/Transporter activity
B8YB76_BOVIN	Homogentisate 1,2-dioxygenase	HGD	B8YB76_BOVIN	Metabolic process	Catalytic activity
DHSO_BOVIN	Sorbitol dehydrogenase	SORD	DHSO_BOVIN	Cellular component organization or biogenesis/Immune system process/Metabolic process/Response to stimulus	Transporter activity
H571A_BOVIN	Heat shock 70 kDa protein 1A	HSPA1A	H571A_BOVIN	Metabolic process	Catalytic activity
Q3ZBQ9_BOVIN	APOM protein	APOM	Q3ZBQ9_BOVIN	Metabolic process	Catalytic activity
PYGL_BOVIN	Glycogen phosphorylase, liver form	PYGL	PYGL_BOVIN	Metabolic process	Catalytic activity
A6QP30_BOVIN	CPN2 protein	CPN2	A6QP30_BOVIN	Cellular process/Multicellular organismal process	Receptor activity
ARF3_BOVIN	ADP-ribosylation factor 3	ARF3	ARF3_BOVIN	Cellular process/localization/Metabolic process	Binding/Catalytic activity
G3MYH4_BOVIN	Tetratspanin (Fragment)	CD81	G3MYH4_BOVIN	Metabolic process	Structural molecule activity
ACTC_BOVIN	Actin, alpha cardiac muscle 1	ACTC1	ACTC_BOVIN	Cellular component organization or biogenesis/Cellular process/Developmental process/localization	Structural molecule activity
GALM_BOVIN	Aldose 1-epimerase	GALM	GALM_BOVIN	Metabolic process	Catalytic activity
TSN6_BOVIN	Tetraspanin-6	TSPAN6	TSN6_BOVIN	Metabolic process	Binding/Receptor activity
Q3ZC83_BOVIN	Solute carrier family 29 (Nucleoside transporters), member 1	SLC29A1	Q3ZC83_BOVIN	Metabolic process	Transporter activity
B4GA1_BOVIN	Beta-1,4-glucuronyltransferase 1	B4GAT1	B4GA1_BOVIN	Metabolic process	Catalytic activity
ADA10_BOVIN	Disintegrin and metallopeptidase domain-containing protein 10	ADAM10	ADA10_BOVIN	Apoptotic process/Developmental process/Reproduction	
A6QR28_BOVIN	Phosphoserine aminotransferase	PSAT1	A6QR28_BOVIN	Metabolic process	Catalytic activity
Q1JR86_BOVIN	Acetyl-Coenzyme A acetyltransferase	ACAT2	Q1JR86_BOVIN	Metabolic process	
DDBX_BOVIN	Dihydrodiol dehydrogenase 3	DDBX	DDBX_BOVIN	Metabolic process	Catalytic activity/Transporter activity
A7VE11_BOVIN	IGSF8 protein	IGSF8	A7VE11_BOVIN	Metabolic process	Catalytic activity
F1MS32_BOVIN	Apolipoprotein D	APOD	F1MS32_BOVIN	Metabolic process	Catalytic activity
A6QP64_BOVIN	VPS37B protein (Fragment)	VPS37B	A6QP64_BOVIN	Metabolic process	Catalytic activity
Q2KH4W4_BOVIN	Lecithin-cholesterol acyltransferase	LCAT	Q2KH4W4_BOVIN	Metabolic process	Catalytic activity
GBB1_BOVIN	Guanine nucleotide-binding protein G()G()G()G()T subunit beta-1	GNB1	GBB1_BOVIN	Metabolic process	Binding/Catalytic activity
GNA11_BOVIN	Guanine nucleotide-binding protein subunit alpha-1	GNA11	GNA11_BOVIN	Metabolic process	Catalytic activity
Q17K4_BOVIN	Epoxide hydrolase 2, cytoplasmatic	EPHX2	Q17K4_BOVIN	Metabolic process	Catalytic activity
Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O2 and at 8 % O2 (Continued)

Protein ID	Protein Name and Description	Cellular Component or Biogenesis/Cellular Process	Metabolic Process/Response to Stimulus	
K2C7_BOVIN	Keratin, type II cytoskeletal 7	Cellular component organization or biogenesis/Cellular process/Developmental process	Structural molecule activity	
CLIC1_BOVIN	Chloride intracellular channel protein 1	Biological regulation/Cellular process/ Metabolic process/Response to stimulus	Binding/Catalytic activity/ Structural molecule activity/Translation regulator activity	
Q08DW4_BOVIN	Mannan-binding lectin serine peptidase 1 (C4/C2 activating component of C-reactive factor)	MASP1		
B4GT1_BOVIN	Beta-1,4-galactosyltransferase 1	BAGALT1		
ASD766_BOVIN	Tetraspanin	CD82	Celluar process/Response to stimulus	
ASD973_BOVIN	Alpha isoform of regulatory subunit A, protein phosphatase 2	PPP2R1A	Binding/Receptor activity	
E1B726_BOVIN	Plasminogen	PLG		
G5E69_BOVIN	Histone H2B	LOC101904777	Celluar component organization or biogenesis/Cellular process/Metabolic process	
ADIPO_BOVIN	Adiponectin	ADIPOQ		
F1MBCS_BOVIN	Coagulation factor IX	F9		
A2VDL2_BOVIN	Solute carrier family 2 (Facilitated glucose transporter), member 3	SLC2A3		
VPS4B_BOVIN	Vacuolar protein sorting-associated protein 4B	VPS4B		
G3X8B1_BOVIN	Peptidyl-prolyl cis-trans isomerase	LOC613401		
K4JB97_BOVIN	Alpha-2-macroglobulin variant 4	A2M		
ACTG_BOVIN	Actin, cytoplasmic 2	ACTG1	Celluar component organization or biogenesis/Cellular process/localization	
Q1JPG7_BOVIN	Pyruvate kinase	PKLR	Structural molecule activity	
GTR1_BOVIN	Solute carrier family 2, facilitated glucose transporter member 1	SLC2A1		
F1N342_BOVIN	Protein tweety homolog	TTYH2	Localization	
ADHX_BOVIN	Alcohol dehydrogenase class-3	ADH5	Metabolic process	
URP2_BOVIN	Fermitin family homolog 3	FERMT3	Transporter activity	
E1B7N2_BOVIN	Histone H4	HISTH4	Catalytic activity	
EF2_BOVIN	Elongation factor 2	EEF2		
KLKB1_BOVIN	Plasma kallikrein	KLKB1	Biological regulation/localization/	Binding/Transduction regulator activity
ESTD_BOVIN	S-formylglutathione hydrolase	ESD	Biological regulation/localization/Metabolic process/Response to stimulus	Binding/Catalytic activity/Enzyme regulator activity/Receptor activity
SEPR_BOVIN	Prolyl endopeptidase FAP	FAP	Cellular process/Immune system process/localization/Metabolic process/Multicellular organismal process/Response to stimulus	Binding/Catalytic activity
QSEA54_BOVIN	Solute carrier family 3 (Activators of dibasic and neutral amino acid transport), member 2	SLC3A2		
ID	Description	GO Term	Functions	
----------	---	--	---	
Q1JP99	G protein-coupled receptor, family C, group S, member B	GPRC8	Cellular process, Receptor activity	
F1M05	Aconitate hydratase	ACO1	Metabolic process, Catalytic activity	
F1MJ12	Complement C1s subcomponent	C1S	Biological adhesion/Cellular process/Immune system process/localization/Response to stimulus	
CNDP2	Cytosolic non-specific dipeptidase	CNDP2	Metabolic process, Catalytic activity	
Q2B5Q1	Coagulation factor XIII, B polypeptide	F13B	Biological adhesion/Cellular process/Immune system process/localization/Response to stimulus	
Q1J972	Colony stimulating factor 1 receptor	CSF1R	Metabolic process, Catalytic activity	
Q0V0D3	CD44 antigen	CD44	Metabolic process	
G3X6Y4	Osteomodulin	OMD	Metabolic process	
G3X6Y4	Guanidinoacetate N-methyltransferase	G3X6Y4	Metabolic process	
WVA1	von Willebrand factor A domain-containing protein 1	WVA1	Metabolic process	
SERC3	Serine incorporator 3	SERC3	Metabolic process	
Q7OYV4	Kappa-casein (Fragment)	csn3	Metabolic process	
G3X6Q8	Pentraxin-related protein PTX3	G3X6Q8	Metabolic process	
K7QEL2	MHC class I antigen	K7QEL2	Metabolic process	
TCPQ	T-complex protein 1 subunit theta	TCPQ	Metabolic process	
F1N6Z9	26S proteasome regulatory subunit 5	F1N6Z9	Metabolic process	
PRS23	Serine protease 23	PRS23	Metabolic process	
P0Y7N1	Cathepsin L2	P0Y7N1	Metabolic process	
A4V799	FCNB protein	A4V799	Metabolic process	
A7YV37	CDS8 protein (Fragment)	A7YV37	Metabolic process	
F1MT5P	WD repeat-containing protein 1	F1MT5P	Metabolic process	
A7E3DQ	CCDC45 protein (Fragment)	A7E3DQ	Metabolic process	
Q8C0K1	Myeloid-associated differentiation marker	Q8C0K1	Metabolic process	
A1L570	Ephrin-B1	A1L570	Metabolic process	
Table 1 List of the common proteins identified in exosomes of ICAR cultured at 1 % O₂ and at 8 % O₂ (Continued)

Protein ID	Name	Gene Name	Biological Process (Total # Gene 22; Total #Function)	Molecular function (Total # Gene 22; Total #Function)
F1N049_BOVIN	Actin-related protein 3 (Fragment)	ACTR3	Biological regulation/Metabolic process	Catalytic activity/Enzyme regulator activity
PAI1_BOVIN	Plasminogen activator inhibitor 1	SERPINE1	Biological regulation/Immune system process/Multicellular organismal process	
Q3ZC30_BOVIN	Sulfotransferase	SULT1E1		
COL11_BOVIN	Collectin-11	COLEC11		
MPZL1_BOVIN	Myelin protein zero-like protein 1	MPZL1	Cellular process/localization	Transporter activity
G5E595_BOVIN	Lys-63-specific deubiquitinase BRCC36	BRCC3		
O1897T_BOVIN	Tenascin-X	TN-X		
A6H7D3_BOVIN	KRT18 protein (Fragment)	KRT18		
J9ZG05_BOVIN	Integrin alpha V subunit	ITGAV		
B0JYN3_BOVIN	L-lactate dehydrogenase	LDHB		
MB211_BOVIN	Protein mab-21-like 1	MAB21L1		
E1B7R4_BOVIN	Eukaryotic translation initiation factor 3 subunit A	EIF3A	Biological regulation/Metabolic process	Binding/Translation regulator activity
C. List of 46 unique proteins identified in exosomes of ICAR cultured at 8 % O₂				

Protein ID	Name	Gene Name	Biological Process (Total # Gene 22; Total #Function)	Molecular function (Total # Gene 22; Total #Function)
F1MMD7_BOVIN	Inter-alpha-trypsin inhibitor heavy chain H4	ITIH4		
F1N3A1_BOVIN	Thrombospondin-1	THBS1		
PLMN_BOVIN	Plasminogen	PLG		
F1MYN5_BOVIN	Fibulin-1	FBLN1		
F1MMN5_BOVIN	Kininogen-1	KNG1		
EF1A1_BOVIN	Elongation factor 1-alpha 1	EEF1A1		
ITAV_BOVIN	Integrin alpha-V	ITGA5		
F1MK44_BOVIN	Integrin alpha-5	ITGA5		
TTHY_BOVIN	Transthyretin	TTR	localization	Transporter activity
F1NC45_BOVIN	Complement factor H (Fragment)	CFH		
J9Q9Q7_BOVIN	Periostin variant 9			
ACT5_BOVIN	Actin, alpha skeletal muscle	ACTA1		
E1B9K1_BOVIN	Polyubiquitin-C	UBC		
A7YWR0_BOVIN	Apolipoprotein E	APOE		
FA9_BOVIN	Coagulation factor IX	F9	Apoptotic process/Biological regulation/Developmental process/Immune system process/localization/Metabolic process/Multicellular organismal process/Response to stimulus	Binding/Catalytic activity/Enzyme regulator activity/Receptor activity
COMP_BOVIN	Cartilage oligomeric matrix protein	COMP		
Moreover, the effect on migration was greater when exposed at 1% O₂ [39]. Interestingly, no relationship between oxygen tension and cell proliferation and apoptosis was observed in this previous study. Differences in cell types may explain this observation. Ito et al.

Table 1

Accession	Description	Cell Type	Molecular Function	Biological Process
K2C80_BOVIN	Keratin, type II cytoskeletal 80 KRT80	Cellular component organization or biogenesis/Cellular process/Developmental process	Structural molecule activity	
TRFE_BOVIN	Serotransferrin TF	localization/Metabolic process	Catalytic activity	
K4JDR8_BOVIN	Alpha-2-macroglobulin variant S A2M	Cellular component organization or biogenesis/Cellular process/Metabolic process	Binding	
Q3P272_BOVIN	CP protein (Fragment) CP	Cellular process/localization	Transporter activity	
J92W47_BOVIN	Integrin beta	Metabolic process/Response to stimulus	Binding/Receptor activity	
F1MM86_BOVIN	Complement component C6 C6	Biological regulation/Cellular process/Metabolic process	Binding/Catalytic activity	
E1H02_BOVIN	Fibromodulin FMOD	Biological regulation/Metabolic process	Binding/Catalytic activity/Translation regulator activity	
VNN1_BOVIN	Pantetheinase VNN1	Cellular component organization or biogenesis/Cellular process/Developmental process	Structural molecule activity	
G3X807_BOVIN	Histone H4 (Fragment)	Metabolic process/Response to stimulus	Transporter activity	
MOT1_BOVIN	Monocarboxylate transporter 1 SLC16A1	Cellular process/localization	Transporter activity	
TF_BOVIN	Tissue factor F3	Biological regulation/Cellular process/Response to stimulus	Binding/Receptor activity	
HS71L_BOVIN	Heat shock 70 kDa protein 1-like HSPA1L	Metabolic process/Response to stimulus	Transporter activity	
Q3ZCA7_BOVIN	Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 GNAI3	Metabolic process/Response to stimulus	Transporter activity	
IDHC_BOVIN	Isocitrate dehydrogenase [NADP] cytoplasmic IDH1	Metabolic process/Response to stimulus	Transporter activity	
Q1PB8_C_BOVIN	CD14 (Fragment)	Biological regulation/Metabolic process	Binding/Catalytic activity	
F1MJJ8_BOVIN	Radixin (Fragment) RDX	Localization	Transporter activity	
IF4A2_BOVIN	Eukaryotic initiation factor 4A-II EIF4A2	Biological regulation/Metabolic process	Binding/Catalytic activity/Translation regulator activity	
C1QB_BOVIN	Complement C1q subcomponent subunit B C1QB	Metabolic process/Response to stimulus	Transporter activity	
A6QPD4_BOVIN	LOC790886 protein LOC790886	Metabolic process/Multicellularorganismal process	Transporter activity	
CTL2_BOVIN	Choline transporter-like protein 2 SLC4A2	Localization	Transporter activity	
HPC11_BOVIN	Hippocalcin-like protein 1 HPCAL1	Cellular process/Response to stimulus	Transporter activity	
Q24K07_BOVIN	Vacuolar protein sorting 11 homolog (S. cerevisiae) VPS11	Metabolic process/Response to stimulus	Transporter activity	
Q5H9M6_BOVIN	Dynein heavy chain (Fragment) Bv2	Metabolic process/Multicellularorganismal process	Transporter activity	
Q864S1_BOVIN	Cathepsin C (Fragment)	Metabolic process/Multicellularorganismal process	Transporter activity	
Q4ZJ50_BOVIN	MHC class I antigen (Fragment) BoLA-N	Metabolic process/Multicellularorganismal process	Transporter activity	
Q58C24_BOVIN	Flotillin 2 FLOT2	Metabolic process/Multicellularorganismal process	Transporter activity	
MBL2_BOVIN	Mannose-binding protein C MBL	Binding	Transporter activity	
TM214_BOVIN	Transmembrane protein 214 TMEM214	Metabolic process/Response to stimulus	Transporter activity	
Q8MIR1_BOVIN	Nicotinic acetylcholine receptor beta 2 subunit (Fragment) CHRNA2	Metabolic process/Response to stimulus	Transporter activity	
Q5E9W1_BOVIN	CDC45-like CDC45L	Metabolic process/Response to stimulus	Transporter activity	

Mass spectrometric (with a set FDR of 5%) identification of proteins was present in exosomes generated by ICAR cultured at 1% O₂ and at 8% O₂. Data were subjected to ontology and pathway analysis using PANTHER and gene ontology algorithms and classified based on biological process and molecular function.

endometrial physiological oxygen levels (8% O₂ [38]). Moreover, the effect on migration was greater when exposed at 1% O₂ [39]. Interestingly, no relationship between oxygen tension and cell proliferation and apoptosis was observed in this previous study. Differences in cell types may explain this observation. Ito et al.
described the rate of proliferation of human mesenchymal stem cell (MSCs) was observed to be highest in 5 % O₂ and the lowest in < 0.1 % O₂ conditions [40]. The MSCs at severely induced hypoxic conditions (< 0.1 % O₂), showed a decrease in proliferative ability, but were able to maintain viability for at least 48 h through increased glucose availability, to facilitate the generation of energy. Similar results were obtained from an airway smooth muscle study [41]. Hence, our cells have relatively normal proliferation responses to decreased oxygen tension.

Our study suggests that exosomes can serve as a vector for signaling molecules that harbor a variety of bioactive molecules including proteins at the conceptus-endometrial interface and that has the potential to modulate the functions of targeted cells during early pregnancy. Endometrial exosome release may also be modulated during an insult such as infection [42, 43].

In the current study we utilized hypoxia (i.e. 1 % O₂) as a known modulator of exosome release as documented by alteration to both the number of exosomes released as well as differences in the exosomal content (cargo) [24, 27, 29].

In our study, endometrial cells exposed to 1 % O₂-released ~3.6 more exosomes relative to the 8 % O₂ treatment, suggesting that hypoxia modulates cell function, including the release of exosomes. Hypoxia has already been reported to be a stimulus to increase secretion of exosomes by several groups [44–46]. It is also suggested that the protein and RNA content of exosomes can reflect the physiological state of the cell as well as when the cells are in stress condition [47, 48]. However, the initial stress insult that contributed to an alteration of the exosomal content in relation to the functional effects of the subsequent cargo transfer and their role in
cell-to-cell communication remains unclear. It is possible that exposure to other stressors such as adverse environmental hazards [49–51] will also increase secretion of exosomes and alter composition of the cargo.

The protein content of exosomes from ICAR cells cultured under the 1 % O2 contained unique proteins compared to the contents of the ICAR exosomes cultured at 8 % O2. Our proteomic analyses detected the presence of tetraspanin-6 (TSPAN6), disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) that are only unique to exosomes of ICAR cultured at 1 % O2. The proteins are involved in the biological processes for reproduction. Interestingly, to evaluate TSPAN6, belonging to the transmembrane 4 superfamily that mediate the regulation of signal transduction events, as well as the disintegrin-like metalloproteinase ADAM10 which participates in ectodomain shedding activity could provide great insights into their functional role and regulation that is important for reproduction.

Studies using immunohistochemistry of human placental explants [52] have demonstrated that ADAM10 expression is significantly increased in preeclamptic placentas compared with normal placentas. Up-regulation of ADAM10 could induce placental release of soluble vascular endothelial growth factor receptor-1 (sFlt-1) and this cascade is associated with endothelial dysfunction, suggesting the significant role of oxidative change in preeclamptic placentas. ADAM10 is also a shed- dase [53] that could induce CD46 shedding attributed to cell apoptotic processes [54], as well as mediate E-cadherin shedding affecting cellular adhesion and cell migration [55].

Mass spectrometry detection of pantetheinase (VNN1) in exosomes was unique to ICAR cultured at 8 % O2. VNN1 is an enzyme that hydrolyses pantetheine to form pantothentic acid (a precursor of coenzyme A) and the antioxidant cysteamine [56]. VNN1 could promote tissue inflammation through peroxisome proliferator-activated receptor gamma as well as modulate levels of glutathione [57]. It is proposed that VNN1 have innate immune functions and might contribute to tissue injury in endometritis [58, 59]. VNN1 was also reported being involved in proteolysis and can denature proteins by reducing disulfides [60], suggesting that it may have a role in regulating uterine receptivity for implantation and trophoblast invasion [61].

Mass spectrometry detected kininogen-2 (KNG2) in exosomes generated by ICAR cells cultured at either 1 or 8 % O2. KNG2 is a precursor protein to high molecular weight kininogen, low molecular weight kininogen and bradykinin, and the concentration were reported to fluctuate during ovulation, pregnancy, and parturition [62]. Studies also showed that the release of vasoactive bradykinins from high molecular weight kininogen and low molecular weight kininogen are responsible for micro-vascular permeability and vascular growth, which plays an essential role in utero-placental vasculature and angiogenesis, necessary for embryonic and fetal survival [63].

Conclusion
Our present findings show that ICAR cell function, release of exosomes and exosomal content can be altered when subjected to adverse stimuli. These findings should be expanded to include cells of endometrial epithelial origin, interactions between these cells (i.e. stromal—epithelial crosstalk) and in the presence of common pathophysiological factors associated with reduced fertility (e.g. infectious or inflammatory agents). The identification of unique proteins (by mass spectrometry) in exosomes of ICAR cultured at 1 % O2 compared to 8 % O2 suggests that the cells respond and release proteins encapsulated within the exosomes to signal the environment in which they live. It is hoped that identification of unique proteins in exosomes following stimulation by factors affecting the physiological condition of cows may lead to novel targets for manipulation to aid fertility. Moreover, inves- tigations into the release, uptake and content of exosomes may offer the opportunity to evaluate maternal-fetal crosstalk.

Abbreviations
ADAM10: Metalloproteinase domain-containing protein 10; DTT: Dithiothreitol; FDR: False discovery rate; ICAR: Intercaruncular stromal cell; KNG2: Kininogen-2; LDH: Lacrate dehydrogenase; MS/MS: Mass spectrometry/mass spectrometry; PANTHER: Protein analysis through evolutionary relationships; PBS: Phosphate buffered saline; PGF2α: Prostaglandin F2α; PVDF: Polyvinylidene fluoride; RIPA: Radioimmunoprecipitation assay buffer; RWD: Relative wound density; sFLT-1: Soluble vascular endothelial growth factor receptor-1; TSPAN6: Tetraspanin-6; VNN1: Pantetheinase

Acknowledgments
The authors acknowledge the assistance of Dr. Jamie Riches and Dr. Rachel Hancock of the Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT) for the electron microscope analyses. We also thank our colleagues at DairyNZ for their helpful insights. YQ Koh is supported by a student scholarship from a partnership fund (DRXC1302) between the New Zealand Ministry of Business, Innovation and Employment and New Zealand dairy farmers through DairyNZ Inc. CS holds a research fellowship at The University of Queensland Centre for Clinical Research, Brisbane, Australia. GER was in receipt of an NHMRC Principal Research Fellowship. These studies were funded in part by the Australian Research Council, Therapeutic Innovation Australian and National Collaborative Research Infrastructure Strategy.

Funding
Australian Research Council and a partnership fund (DRXC1302) between the New Zealand Ministry of Business, Innovation and Employment and New Zealand dairy farmers through DairyNZ Inc.
Availability of data and materials
The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Authors’ contributions
YQK performed the study, collected and interpreted data performing statistical analysis and wrote the manuscript. YQK, SR, HNP and KV performed mass spectrometry analyses and reviewed the data generated. YQK, CS, HNP, GER and MDM were responsible for the study concept and participated in designing the study and interpreted data. CS, GER, HNP, MDM revised and approved the final version of manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 21 September 2016 Accepted: 25 October 2016
Published online: 09 November 2016

References
1. Banu SK, Arosh JA, Chapdelaine P, Fortier MA. Expression of prostaglandin transporter in the bovine uterus and fetal membranes during pregnancy. Biol Reprod. 2005;73:230–6.
2. Verduzco A, Fecteau G, Lefebvre R, Smith LC, Murphy BD. Expression of steroidogenic proteins in bovine placenta during the first half of gestation. Reprod Fertil Dev. 2012;24:392–404.
3. Mansouri-Attia N, Aubert J, Reinaud P, Giraud-Delville C, Taghouti G, Galio L, Evets RE, Degrelle S, Richard C, Hue I, et al. Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol Genomics. 2009;39:14–27.
4. Arosh JA, Banu SK, Chapdelaine P, Fortier MA. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology. 2004;145:407–17.
5. Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Everts RE, Degrelle S, Richard C, Hue I, et al. Gene expression profiles of bovine endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013;8:e68502.
6. Ruiz-Gonzalez J, Xu J, Wang X, Burghardt RC, Dunlap KA, Bazer FW. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction. 2015;149:281–91.
7. Cley RL, Tallarida JJ, McWhorter E, Hengenerder J, Enriquez VA, da Silveira JC, Brumme ZJ, Winger QA, Bouma GJ. Identification of microRNAs in exosomes isolated from serum and umbilical cord blood, as well as placentalions of gestational day 90 pregnant sheep. Mol Reprod Dev. 2014;81:983–93.
8. Burns G, Brooks K, Wildung M, Nakavankirwakul R, Christenson LK, Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One. 2014;9:e90913.
9. Schel WM, Hoelker M, Noffre S, Sallew-Wondim D, Tholen E, Loop C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for Bovine Oocyte Developmental Competence. PLoS One. 2013;8:e78505.
10. van der Pol E, Boing AN, Harrison P, Stuk A, Nieuwland R, Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64:676–705.
11. Simon S, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21:575–81.
12. Gupta S, Knowlton AA. HSPE1 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292:H3052–3056.
13. Onishi IR, Knight GE, Utting JC, Taylor SE, Burnstock G, Annett TR. Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol. 2009;220:155–62.
14. Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modifiers of microenvironment in expanding tumors. Int J Cancer. 2009;125:1595–603.
15. King HW, Michael MG, Gleeadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.
16. Mattepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis—clinical implications. Pediatr Res. 2009;65:261–8.
17. Mallard EC, Rees S, Stringer M, Cock ML, Harding R. Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res. 1998;43:262–70.
18. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9:1085–99.
19. Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. Hypoxia-induced changes in the bioactivity of cytostroblast-derived exosomes. PLoS One. 2013;8:e79636.
20. Nonog A, Naune K, Sato T, Tsuii M, Shigetomi H, Noguchi T, Yamada Y, Asakai M, Oh H, Kobayashi H. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta. 2011;32:665–70.
21. Fortier MA, Guibault LA, Grasso F. Specific properties of epithelial and stromal cells from the endometrium of cows. J Reprod Fertil. 1988;83:239–46.
22. Onogi A, Naruse K, Sado T, Tsuemi T, Shigetomi H, Moguchi T, Yarnada Y, Asakai M, Oh H, Kobayashi H. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta. 2011;32:665–70.
23. Fortier MA, Guibault LA, Grasso F. Specific properties of epithelial and stromal cells from the endometrium of cows. J Reprod Fertil. 1988;83:239–46.
24. Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013;8:e68451.
25. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNAs and miR-200. J Transl Med. 2014;12:4.
26. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell MD, Rice GE. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9:e98667.
27. Brinkman DL, Jia X, Potriquet J, Kumar D, Dash D, Kravskoff D, Mulvenna J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics. 2015;16:407.
28. Vaswani K, Ashman K, Reed S, Salomon C, Sarker S, Anatzoa JA, Perez-Sepulveda A, Illanes SE, Kravskoff D, Mitchell MD, Rice GE. Applying SWATH mass spectrometry to investigate human cervicovaginal fluid during the menstrual cycle. Biol Reprod. 2015;93:39.
29. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003;75:663–70.
37. Thomas PD, Campbell MJ, Kejarwal A, Mi H, Karak B, Daverman R, Diemer K, Muruganujan A, Narechiani A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.

38. Gahlenbeck H, Freking H, Rathschlag-Schafer AM, Bartels H. Oxygen and carbon dioxide exchange across the cow placenta during the second part of pregnancy. Respir Physiol. 1968;11:19–31.

39. Ng CT, Binnieck M, Kennedy A, McCormick J, Fitzgerald O, Bresnihan B, Buggy D, Taylor CT, O’Sullivan J, Featon U, Veale DJ. Synovial tissue hypoxia and inflammation in Ann Rheum Dis. 2010;69:1389–95.

40. Ito A, Aoyama T, Yoshizawa M, Nagai M, Tajino J, Yamaguchi S, Iijima H, Zhang X, Kuroki H. The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16(INK4a) mRNA expression: Investigation using a simple hypoxic culture system with a decoupling agent. J Stem Cells Regen Med. 2015;11:25–31.

41. Cogo A, Napolitano G, Michoud MC, Barbon DR, Ward M, Martin JG. Effects of hypoxia on rat airway smooth muscle cell proliferation. J Appl Physiol (1985). 2003;94:1403–9.

42. Harp D, Driss A, Mehrabi S, Chowdhury I, Xu W, Liu D, Garcia-Barrio M, Alfaidy N, Cand F, Huber P, Buggy D, Taylor CT, O’Sullivan J, Featon U, Veale DJ. Synovial tissue hypoxia and inflammation in Ann Rheum Dis. 2010;69:1389–95.

43. Bouillot S, Tillet E, Carmona G, Prandini MH, Gauchez AS, Hoffmann P, Martin F, Malergue F, Pitari G, et al. Vanin-1/- mice exhibit a gluthathione-mediated tissue resistance to oxidative stress. Mol Cell Biol. 2004;24:7214–24.

44. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH. Systemic transfusion-mediated activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2012;94:1403–7.

45. Taylor RN, Gold B, Jefferson S, et al. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro. Cell Tissue Res. 2016;365:187–96.

46. Koide K, Massari P, Genco CA. Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2. Infect Immun. 2015;83:3410–7.

47. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH. Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in pre-eclampsia. Am J Obstet Gynecol. 2012;207(4):337.e1–8.

48. Kucharewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, Morgelin M, Bourseau-Guilmé E, Bengzon J, Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110:2312–7.

49. Sano S, Iizumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wainbuchi H, et al. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3 T3-L1 cells. Biochem Biophys Res Commun. 2014;445:327–33.

50. Belting M, Christianson HC. Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J Intern Med. 2015;278:251–63.

51. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schifflers RM, Gucke M, van Balkom BW. Cellular stress responses are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1. http://www.journalsextracellularvesicles.net/index.php/jev/article/view/18396.

52. Alvarez-Erviti L, Secow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM. Lysosomal dysfunction increases exosome-mediated release in the human placenta. Placenta. 2010;31:512–9.

53. Chen Y, Wen HW, van Balkom BW. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1. http://www.journalsextracellularvesicles.net/index.php/jev/article/view/18396.

54. Hakulinen J, Keski-Oja J. ADAM10-mediated release of complement membrane cofactor protein during apoptosis of epithelial cells. J Biol Chem. 2011;286:15195–204.

55. Hakulinin J, Keski-Oja J. ADAM10-mediated release of complement membrane cofactor protein during apoptosis of epithelial cells. J Biol Chem. 2011;286:15195–204.

56. Martin F, Malergue F, Pitari G, Philippe JM, Phillips S, Chabret C, Granjeaud S, Mattei MG, Mungall AJ, Naquet P, Galland F. Vanin genes are clustered (human 6q22–24 and mouse 10A2B1) and encode isoforms of pantetheinase ectoenzymes. Immunogenetics. 2001;53:296–306.