Cadmium Oxide (CdO) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations

Alireza Heidari1,2,3,4,*, Margaret Hotz1,2,3, Nancy MacDonald1,2,3, Victoria Peterson1,2,3, Angela Caissutti1,2,3, Elizabeth Besana1,2,3, Jennifer Esposito1,2,3, Katrina Schmitt1,2,3, Ling-Yu Chan1,2,3, Francesca Sherwood1,2,3, Maria Henderson1,2,3, Jimmy Kimmel1,2,3

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
3Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
4American International Standards Institute, Irvine, CA 3800, USA
*Corresponding author: Scholar.Researcher.Scientist@gmail.com

Abstract In the current research, the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Cadmium Oxide (CdO) the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude-Lorentz model (Appendix A) for parametric di-electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results.

The effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations.
1. Introduction

The effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiation is investigated. Cadmium Oxide (CdO) is a semi-conductor of type n which its 3d level is filling up [1-67] and it belongs to a group of smart materials that reacts to variations of temperature, electrical or magnetic fields and pressure. This oxide can be used as thin films for a wide range of applications including electrical and or optical-thermal switching tools and energy storing covers [67-103]. Therefore, determining optical constants (refractive coefficient, n, and extinction coefficient, k) of Cadmium Oxide (CdO) thin films is essential for designing optoelectrical and optical tools for producing optical covers and similar tools such as multilayer covers and filters [104-184]. The measured experimental parameters including optical reflectivity are used as a function of wavelength to determine optical parameters of thin layers [185-257]. For determining optical parameters, various physical models such as Kuschi, Frouhi-Blumberg and Tawk-Lorentz have been suggested to calculate refractive coefficient, n, and extinction coefficient, k, for any thin layer, an appropriate optical model should be selected and used for estimation of real and imaginary di-electric function according to its physical condition [258-313].

To do this, an initial guess is needed for parameters of di-electric function and thickness which is defined as a range regarding physical characteristics of thin film and the available results in the literature. In faculty of Chemistry, BioSpectroscopy Core Research Laboratory and Cancer Research Institute (CRI) at California South University, Irvine, California, USA, under similar conditions, Cadmium Oxide (CdO)-the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiation is produced over glassy medium in sol-gel laboratory. Measurement of thin films are performed on four samples of Cadmium Oxide (CdO) as the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiation with mole ratio of 0.5, 1 and 1.5% of Cadmium Oxide (CdO) [314-467]. Simulation of experimental spectra are performed using a single reflection spectrum of thin films and through Drude-Lorentz physical model (Appendix A) in optimization process of Lovenberg-Marquardt. Optical constants such as reflection coefficient, n, extinction coefficient, k, and layer thickness are simultaneously determined at wavelength of 400-1100 (nm).

2. Modeling, Simulation and Calculation Method

A usual method for describing optical constants of thin films is utilizing classic dispersion relationships based on di-electric function. One of the oldest and most applicable dispersion relationships is Drude-Lorentz di-electric equation (Appendix A) which is based on the interaction between light and material. This relationship is shown in Eq. (1):

$$\varepsilon = \varepsilon_\infty + \sum_{j=1}^{n} \frac{f_j E_0^2}{E_0^2 - E^2 + i\Gamma_j E} + \frac{E_0^2}{E^2 + i\varepsilon_j^2}$$ (1)

where $\varepsilon_\infty$, $f_j$, $E_0$ and $\Gamma_j$ are di-electric constant at high frequencies, resonance amplitude, power and resonance width-band which are recognized as the reason for damping. Damping is due to absorption process which includes transition between two states. The third term is related to Drude model (Appendix A). $E_0$ is density of Plasma energy and $E_j$ is incident energy [4]. The complex di-electric function as $\varepsilon = \varepsilon_1 + i\varepsilon_2$ which describes the reaction of material with electromagnetic waves as a function of photon energy, $E$, or wavelength, $\lambda$, has a real part $\varepsilon_1$ and an imaginary part $\varepsilon_2$. Real and imaginary parts of complex reflection coefficient, namely $n(\lambda)$ and $k(\lambda)$ are related to di-electric function as Eq. (2) [5]:

$$n(\lambda) = \left( \frac{\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2}}{2} \right)^{1/2},$$

$$k(\lambda) = \left( \frac{-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2}}{2} \right)^{1/2}$$

(2)

Reflection spectrum (R) of samples for normal incident is a function of film thickness d, medium reflection coefficient $S$, incident light wavelength $\lambda$, reflection coefficient $n(\lambda)$ and extinction coefficient $k(\lambda)$. Keywords: structural, morphological, optical and electrical properties, Nanostructured cadmium Oxide (CdO), nano thin films, anti-cancer nano drug, cancer cells, tissues and tumors, synchrotron and synchrocyclotron radiations

Cite This Article: Alireza Heidari, Margaret Hotz, Nancy MacDonald, Victoria Peterson, Angela Caissutti, Elizabeth Besana, Jennifer Esposito, Katrina Schmitt, Ling-Yu Chan, Francesca Sherwood, Maria Henderson, and Jimmy Kimmel, “Cadmium Oxide (CdO) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations.” Journal of Materials Physics and Chemistry, vol. 9, no. 2 (2021): 26-46. doi: 10.12691/jmpc-9-2-1.
Simulation of the measured reflection data using optimization of objective function (O), which is the square of difference between the measured reflection spectrum and the calculated one, is defined as:

\[ O = (\epsilon_\infty, f, \Gamma, E_0, E_\tau, d) = \sum (R_{\text{meas}} - R_{\text{calc}})^2 \]  

where, \( R_{\text{meas}} \) and \( R_{\text{calc}} \) are the measured and theoretical reflection spectrum, respectively. Using the fitting parameters obtained from minimization of objective function, dispersion curves of reflection and extinction coefficients can be estimated.

3. Results and Discussion

The measured and simulated reflection spectra with fitting parameters of Cadmium Oxide (CdO)-the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations at various concentrations of 0.5, 1 and 1.5%, named as a, b, and c, and the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations sample, named as p, are shown in Figure 1 in wavelength range of 400-1100 (nm) (visible regions close to infrared) using Drude-Lorentz model (Appendix A) for air, film, medium, air system.

![Figure 1](image1.png)

**Figure 1.** Results of simulating the reflection spectrum for Cadmium Oxide (CdO)-the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations at concentrations of (a) 0.5%, (b) 1%, (c) 1.5% and (p) non-doped.

Comparison of the results were shown that the sample containing 0.5% of Cd (sample a) has shown more reflectivity than samples containing 1% and 1.5% of Cadmium Oxide (CdO) (samples b and c). As can be seen in Figure 1, the reflection of thin films is decreased by increase in mole concentration of Cd to Cadmium Oxide (CdO). This reduction can be attributed to various reasons such as increasing roughness, increasing thickness and increasing the concentration of contaminant. The results of investigation about surface roughness using AFM (Atomic Force Microscopy) method confirms the increasing of roughness by increasing the concentration of Cd. Therefore, dispersion of incident light is increased in thin films. Variation of thickness of thin film by increasing the percentage of Cd is effective in variation of reflectivity of thin films which is due to sol viscosity. Changing the crystalline structure and chemical composition of thin films induced by penetration of Cd ions into the crystalline lattice of Cadmium Oxide (CdO) is another effective factor which leads to changing the reflection spectrum. The results of structural analysis using XRD (X-Ray Diffraction) confirms the tendency to be amorphous by increasing the concentration of contaminant.

The best fitting parameters obtained from optimization process and experimental data fitting are listed in Table 1.

| Parameter | Pure | % 0.5 CdO | % 1 CdO | % 1.5 CdO |
|-----------|------|-----------|---------|-----------|
| \( \epsilon_\infty \) | 4.5 | 3.5 | 2.5 | 1.5 |
| \( E_\tau \) | 1.85 | 1.75 | 1.65 | 1.55 |
| \( E_0 \) | 0.45 | 0.4 | 0.35 | 0.25 |
| \( f \) | 0.35 | 0.25 | 0.15 | 0.05 |
| \( \Gamma \) | 0.5 | 0.4 | 0.3 | 0.2 |
| \( d \) (nm) | 200 | 300 | 400 | 500 |

As can be seen in Table 1, more increase in Cd leads to increase in \( \Gamma, f, E_0 \) and \( d \) and decrease in other parameters as crystalline structure and inter-atom distance changes in lattice of Cadmium Oxide (CdO) thin film. According to [7], \( E_0 \) in the range of 2.9-3.1 (eV) shows optical transition capacity band to displaced state of conducting band which according to the data of Table (1), it can be concluded that optical transition energy (gaff energy) increases with increase in Cd concentration. The calculation results of optical constants including reflection coefficient and extinction coefficient using the parameters of obtained di-electric function from the optimization process of thin films at various concentrations of Cadmium Oxide (CdO) as 0.5% (sample a), 1% (sample b) and 1.5% (sample c) are shown in Figure 2 and Figure 3, respectively.

![Figure 2](image2.png)

**Figure 2.** Reflection coefficient of Cadmium Oxide (CdO) thin films with Cd concentrations of (a) 0.5%, (b) 1%, (c) 1.5% and (p) pure sample.
As can be seen in Figure 2, reflection coefficient of samples at 500-1100 (nm) are the same and are decreased by increasing wavelength. By increasing the concentration of Cd, reflection coefficient is totally reduced which is in good agreement with the results related to variations of reflectivity in Figure 1 in which, increasing roughness leads to increase in dispersion and hence, reducing the amount of reflection spectrum. It can be seen in Figure 3 that $k(\lambda)$ for two samples of p and a are of increasing rate at wavelength range of 400-500 (nm). Further, all samples are of decreasing rate at the range of 500-800 (nm). Totally, $k(\lambda)$ is reduced by increase in Cd concentration. In other words, optical absorption is reduced in this range and the emerged peaks at extinction coefficient are in agreement with parameters of Drude-Lorentz (Appendix A) obtained from the optimization algorithm.

4. Conclusions, Summary, Recommendations, Perspectives, Useful Suggestions and Future Studies

The results of optimization algorithm of Lovenberg-Marquardt with physical model of Drude-Lorentz (Appendix A) for determining optical constants of Cadmium Oxide (CdO) - the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol-gel method through a single reflection spectrum show that higher doping leads to lower reflectivity and reflection coefficient and also, leads to increase in thickness of thin layer.

Acknowledgements

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

Appendix (A)

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current $J$ and voltage $V$ driving the current are related to the resistance $R$ of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons (the carriers of electricity) by the relatively immobile ions in the metal that act like obstructions to the flow of electrons. The model, which is an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid may be treated classically and behaves much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions (Figure 4 - Figure 6) [468-488].

Figure 4. The Drude model, which is an application of kinetic theory, assumes that the microscopic behaviour of electrons in a solid may be treated classically and behaves much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.
Figure 5. The Drude model for Cadmium Oxide (CdO) smart nano particles, nano capsules and nanoclusters (a) before and (b) after synchrotron and synchrocyclotron radiations.

Figure 6. Simulation of the Drude model for Cadmium Oxide (CdO) smart nano particles, nano capsules and nanoclusters.

References

[1] A. Heidari, C. Brown, “Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells”, J Nanomed Res., Volume 2, Issue 5, 20 Pages, 2015.
[2] A. Heidari, C. Brown, “Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles”, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15-19, 2015.
[3] A. Heidari, “An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility”, Int J Adv Technol 7: e007, 2016.
[4] A. Heidari, “Extraction and Preconcentration of N-Tolyl-Sulfonyl-Phosphoramid-Saeure-Dichlorid as an Anti-Cancer Drug from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016.
[5] A. Heidari, “A Thermodynamic Study on Hydration and Dehydration of DNA and RNA–Amphiphile Complexes”, J Bioeng Biomed Sci 5: 006, 2016.
[6] A. Heidari, “Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=C–CH–NNN and Isocyanoketene O=C–CH=N=C=O”, J Appl Computat Math 5: e142, 2016.
[7] A. Heidari, “Study of Irradiations to Enhance the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR-FTIR, Raman and 1HNMR Spectroscopies”, J Biomed Res Ther 5: e146, 2016.
[8] A. Heidari, “Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells”, J Bioanal Biomed 8: e135, 2016.
[9] A. Heidari, “A Bio-Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells”, Adv Cancer Prev 1: e102, 2016.
[10] A. Heidari, “Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles”, J Biotechnol Biomater 6: e125, 2016.
[11] A. Heidari, “A Novel Experimental and Computational Approach to Photobiosimulation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study”, J Res Development 4: 144, 2016.
[12] A. Heidari, “Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding”, Biochem Physiol 5: e146, 2016.
[13] A. Heidari, “Anti-Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study”, Arch Cancer Res. 4: 1, 2016.
A. Heidari, “Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes as Anti-Cancer Drugs”, Arch Cancer Res. 4: 2, 2016.

A. Heidari, “Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time-Dependent Bioheat Equation Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O₃) Using Soave-Redlich-Kwong (SRK) and Pang-Robinson (PR) Equations”, Electronic J Biol 12: 4, 2016.

A. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem. 3 (1): 1058, 2016.

A. Heidari, C. Brown, “Phase, Composition and Morphology Study and Analysis of Os-Pd/HC Nanocomposites”, Nano Res Appl. 2: 1, 2016.

A. Heidari, C. Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Carbon Dioxide”, International Journal of Advanced Chemistry, 4 (1): 5-9, 2016.

A. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res. 4: 2, 2016.

A. Heidari, “Genomics and Proteomics Studies of Zolpidem, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e123, 2016.

A. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of 1,3,4-Thiadiazole-2-Sulfonamide as Potential Anti-Pertussis Drug”, Int J Carbohydr Biotechnol 5: e111, 2016.

A. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res. 4: 2, 2016.

A. Heidari, “Cheminformatics and System Chemistry of Cadmium Oxide (CdO) Nanoparticles Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Integr Oncol 5: e110, 2016.

A. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanomedicine 7: e153, 2016.
[49] A. Heidari, “DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles: Derivative Biological Data Mining”, J Mol Biol Biotechnol 1: 1, 2016.

[50] A. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm”, J Mol Biol Biotechnol 1: 1, 2016.

[51] A. Heidari, “Computational Study on Molecular Structures of C20, C20a, C20b, C20c, and C20d Fullerenes Nano Molecules under Synchrotron Radiations Using Fuzzy Logic”, J Material Sci Eng 5: 282, 2016.

[52] A. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylenebiguanide, Polyhexamethylene Adipamide, Polyhexamethylenebiguanide Gauze and Polyhexamethylenebiguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Appl Comput Math 5: e143, 2016.

[53] A. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1000e101, 2016.

[54] A. Heidari, “A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid) (ATRA) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Bioméd 1: 2, 2016.

[55] A. Heidari, “Advances in Logic, Operations and Computational Mathematics”, J Appl Comput Math 5: 5, 2016.

[56] A. Heidari, “Mathematical Equations in Predicting Physical Behavior”, J Appl Comput Math 5: 5, 2016.

[57] A. Heidari, “Chemotherapy a Last Resort for Cancer Treatment”, Chemo Open Access 5: 4, 2016.

[58] A. Heidari, “Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods”, Mass Spectrom Purif Tech 2: e101, 2016.

[59] A. Heidari, “Yoctosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm”, Insight Pharm Res. 1: 1, 2016.

[60] A. Heidari, “Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 156, 2016.

[61] A. Heidari, “A Novel Approach to Biology”, Electronic J Biol 12: 4, 2016.

[62] A. Heidari, “Innovative Biomedical Equipment’s for Diagnosis and Treatment”, J Bioengineering & Biomedical Sci 6: 2, 2016.

[63] A. Heidari, “Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices”, J Oncol Med & Pract 1: 2, 2016.

[64] A. Heidari, “Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives”, J Bioengineering & Biomedical Sci 6: 3, 2016.

[65] A. Heidari, “X-Ray Fluorescence and X-Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metallurgy Processes in Optimal Container”, J Materials Physics and Chemistry

[66] A. Heidari, “Biomolecular Spectroscopy and Dynamics of Nano-Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload-Based Perspective”, Arch Chem Res. 1: 2, 2017.

[67] A. Heidari, “Deficiencies in Repair of Double-Standard DNA/RNA-Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer”, J Appl Bioinforma Comput Biol, 6: 1, 2017.

[68] A. Heidari, “Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing”, Glob J Res Rev. 4: 2, 2017.

[69] A. Heidari, “Polymerization in Nano-Sized Graphene Ligand-Induced Transformation of Au25-xAgx/S(SPh-But)2 to Au25-xAgx/Cu2(SPh-But)2 (x = 1-12) Nanomolecules for Synthesis of Au25-xAgx/Cu2(SR)60, (SCH20)60, (SC2H40)60, (SC2H6O)60, (PET)60, (p-MBA)60, (P)60, (CH3)60, (Be)60, (I)60, (Al)60, (Uus)60 and (SC(NH)3)60 Nano Clusters as Anti-Cancer Nano Drugs”, J Nanomater Mol Nanotechnol, 6: 3, 2017.

[70] A. Heidari, “Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research”, Int J Biomed Data Min 6: e103, 2017.

[71] A. Heidari, “Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Opioidamide Nanomolecules as Agent for Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy under Synchrotron Radiation”, J Dev Drugs 6: e154, 2017.

[72] A. Heidari, “A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer’s, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Antibiotic Resistance and Endovascular Stroke”, J Bioengineering & Biomedical Sci 7: e127, 2017.

[73] A. Heidari, “Opinion on Computational Fluid Dynamics (CFD) Technique”, Fluid Mech Open Acc 4: 157, 2017.

[74] A. Heidari, “Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au25-xAgx/S(SPh-But)2, Au25-xAgx/Cu2(SPh-But)2 (x = 1-12) Nanomolecules in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 156, 2016.

[75] A. Heidari, “Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy)”, Cell Biol (Henderson, NV) 6: 1, 2017.

[76] A. Heidari, “Changing Metal Powder Characteristics for Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors”, J Powder Metall Min 6: 170, 2017.

[77] A. Heidari, “Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hylauronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation”, Am J Drug Deliv 5: 2, 2017.

[78] A. Heidari, “Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech’s Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression”, J Biol Med Science 1: e103, 2017.

[79] A. Heidari, “The Design Graphene-Based Nanosheets as a New Nanomaterial in Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery”, Br Biomed Bull 5: 305, 2017.

[80] A. Heidari, “Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation”, Transcription 5: e117, 2017.
[A. Heidari, "Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intermolecular Network. Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation", Lett Health Biol Sci 2 (2): 1-4, 2017.]

[A. Heidari, "Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation", Br J Res, 4 (3): 16, 2017.]

[A. Heidari, "Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug-Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity", Res Rep Gastroenterol, 1: 1, 2017.]

[A. Heidari, "Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Nano Drugs and Treatment of High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation", J Pharm Sci Emerg Drugs 5: 1, 2017.]

[A. Heidari, "Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microbeams", J Cell Biol Mol Sci 2 (1): 1-5, 2017.]

[A. Heidari, "Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation to Targeted Deliver Anti-Cancer Nano Drugs into the Human Brain to Treat Alzheimer’s Disease under Synchrotron Radiation", J Nanotechnol Mater Sci 4 (2): 1-5, 2017.]

[R. Gobato, A. Heidari, "Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLiSeS"], Science Journal of Analytical Chemistry, Vol. 5, No. 6, Pages 76-85, 2017.]

[A. Heidari, "Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Lung Cancer Translational Anti-Cancer Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations", J Med Oncol. Vol. 1 No. 1: 1, 2017.]

[A. Heidari, "A Modern Ethnomedical Technique for Treatment Activity of Malignant Cells and Tissues Metabolism Using Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy and Self-Organizing Maps under Synchrotron Radiation", SOJ Mater Sci Eng 5 (2): 1-6, 2017.]

[A. Heidari, "High-Resolution Simulations of Human Brain Cancer Translation Nano Drugs Delivery Treatment Process under Synchrotron Radiation", J Transl Res. 1 (1): 1-3, 2017.]

[A. Heidari, "Investigation of Anti-Cancer Nano Drugs’ Effects’ Trend on Human Pancreas Cancer Cells and Tissues Prevention, Diagnosis and Translocation to Targeted Deliver Anti-Cancer Nanodrugs Radiations with the Passage of Time Using Mathematica", Current Trends Anal Bioanal Chem, 1 (1): 36-41, 2017.]

[A. Heidari, "Pros and Cons Controversy on Molecular Imaging and Dynamics of Double-Standard DNA/RNA of Human Preserving Stem Cells-Binding Nano Molecules with Androgens/Anabolic Steroids (AAS) or Testosterone Derivatives through Tracking of Helium-4 Nucleus (Alpha Particle) Using Synchrotron Radiation", Arch Biotechnol Biomed. 1 (1): 067-0100, 2017.]

[A. Heidari, "Visualizing Metabolic Changes in Probing Human Cancer Cells and Tissues Metabolism Using Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 19P NMR Spectroscopy and Self-Organizing Maps under Synchrotron Radiation", SOJ Mater Sci Eng 5 (2): 1-6, 2017.]

[A. Heidari, "Cavity Ring-Down Spectroscopy (CRDS), Circular Dichroism Spectroscopy, Cold Vapour Atomic Fluorescence Spectroscopy and Correlation Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Enliven: Challenges Cancer Detect Ther 4 (2): e001, 2017.]

[A. Heidari, "Laser Spectroscopy, Laser-Induced Breakdown Spectroscopy and Laser-Induced Plasma Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Int J Hepatol Gastroenterol, 3 (4): 079-084, 2017.]

[A. Heidari, "Time-Resolved Spectroscopy and Time-Stream Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Enliven: Pharmacovigilance and Drug Safety 4 (2): e001, 2017.]

[A. Heidari, "Overview of the Role of Vitamins in Reducing Negative Effect of Decapeptyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation", Open J Anal Bioanal Chem 1 (1): 021-026, 2017.]

[A. Heidari, "Electron Phenomenological Spectroscopy, Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Austin J Anal Pharm Chem. 4 (3): 1091, 2017.]

[A. Heidari, "Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB", Madridge J Nano Tech. Sci. 2 (2): 77-83, 2017.]

[A. Heidari, "A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO)
A. Heidari, “A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 1-8, 2017.

[109] A. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res 1 (1): 12-17, 2017.

[110] A. Heidari, “Vibrational Dechertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zephotertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiations”, International Journal of Biomedicine, 7 (4), 335-340, 2017.

[112] A. Heidari, “Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, EC Cancer 2 (5), 239-246, 2017.

[113] A. Heidari, “Photoacoustic Spectroscopy, Photoemission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, BAOJ Cancer Res Ther, 3: 3, 045-052, 2017.

[114] A. Heidari, “J-Spectroscopy, Exchange Spectroscopy (EESY), Nuclear Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Eng Sci, 1 (2): 006-013, 2017.

[115] A. Heidari, “Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biopharm Sci, 1: 103-107, 2016.

[116] A. Heidari, “Vibrational Decahertz (dHz), Decihertz (dHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zetahertz (ZHz) and Yotahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Madridge J Anal Sci Instrum, 2 (1): 41-46, 2016.

[117] A. Heidari, “Two-Dimensional Infrared Correlation Spectroscopy, Linear and Non-Linear Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Mater Sci Nanotech 6 (1): 101, 2018.

[118] A. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Int J Nanotechnol Nanomed, Volume 3, Issue 1, Pages 1-6, 2018.

[119] A. Heidari, “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Austin Pharmacol Pharm, 3 (1): 1011, 2018.

[120] A. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Breast Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, Madridge J Nov Drug Res, 1 (1): 18-24, 2017.

[121] A. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00026-00032, 2018.

[122] M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol. 3, No. 1, Pages 1-9, 2018.

[123] A. Heidari, “Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SMJ Clin. Med. Imaging, 4 (1): 1018, 2018.

[124] A. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NISs) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Pharm Sci, 2 (1): 001-007, 2018.

[125] A. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res; 2 (1): 1-14, 2018.

[126] A. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1-1-001, 2018.

[127] A. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microscopy, Photothermal Microscopy, Thermal Macroscopy and Photothermal Macroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, SMJ Biometrics Biostat, 3 (1): 1024, 2018.

[128] A. Heidari, “A Modern and Comprehensive Experimental Biospectroscopy of Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med. 1 (1), 2018.

[129] A. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018.

[130] A. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NISs), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Biochem Chem Biol. 6 (1e): 1-5, 2018.

[131] A. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells under Non-Clinical Time with the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endocrinol Metab. 1 (3). GJEM. 000514-000519, 2018.

[132] A. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma J. 1 (1): 002-008, 2018.

[133] A. Heidari, “A Modern Comprehensive and Comparative Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Analyst Molecule Tech. 3 (1): 8, 2018.

[134] A. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopy Comparative Study”, European Modern Studies Journal, Vol. 2, No. 1, 1-13, 2019.

[135] A. Heidari, “Saturated Spectroscopy and Unsatuated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clin Medical Sci. 5 (1): 001-007, 2018.

[136] A. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Biochem Chem Mol Biol. 6 (2e): 1-6, 2018.
A. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018.

A. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1-12, 2018.

A. Heidari, “Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 57Fe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Cancer Biology 2.3: 17-20, 2018.

A. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem JI. 6 (1): 555676, 2018.

A. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopic Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Bioanal Biomied. 2 (1): 001-007, 2018.

A. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed. 1 (1): 001-009, 2018.

A. Heidari, “Vivo H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells, Tissues, and Tumors under Synchrotron Radiation”, Ann Biomed Biostat. 1 (1): 1001, 2018.

A. Heidari, “Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues, and Tumors under Synchrotron Radiation”, Ann Biomed Biostat. 1 (1): 1001, 2018.

A. Heidari, “Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blasto-Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018.

A. Heidari, “Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Total Correlation Spectroscopy (ECOSY), and Auger Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Biol Chem Rev Case Rep 5: 201, 2018.

A. Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluorescence X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Oncol Rev Res, Volume 1 (1): 1-10, 2018.

A. Heidari, “Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Adv Material Sci Engg, Volume 2, Issue 1, Pages 1-7, 2018.

A. Heidari, “Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Insights Pharmacol Pharm Sci 1 (1): 1-8, 2018.

A. Heidari, “Acoustic Spectroscopy, Acoustic Resonance Spectroscopy (AROS), Grazing-Incidence X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Anti-Cancer Nano Drugs Delivery in Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Nanosci Technol 5 (1): 1-9, 2018.

A. Heidari, “Niobium, Technetium, Ruthenium, Rhodium, Hafnium, Rhenium, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Nanomed Nanotechnol, 3 (2): 000138, 2018.

A. Heidari, “Homonuclear Single-Quantum Correlation Spectroscopy (HSQC), Homonuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Honomolecular Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Austin J Proteomics Bioinform & Genomics. 5 (1): 1024, 2018.

A. Heidari, “Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Appl Biotechnol Bioeng. 5 (3): 142-148, 2018.

A. Heidari, “Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Cancer Oncol, 2 (2): 000124, 2018.

A. Heidari, “Palauamine and Olympiadane Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues, and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Arch Cytology Lab 3 (1), 2018.

R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, pp. 1-9, 2018.

A. Heidari, “Angelic Acid, Diabetic Acids, Draculin and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Med & Analy Chem Int J, 2 (1): 000111, 2018.

A. Heidari, “Gamma Linolenic Methyl Ester, 5-Heptadec-5,8,11-Trienyl 1,3,4-Oxadiazole-2-Thiol, Sulphoquinoxolyl Diacil Glycerol, Russogenin, Nightshade B, Protodioscine B, Parquioside-B, Leioceparoside, Naranganin, 7-Methoxy Hesperitin, Lupeol, Rosmariniquoline, Rosmanol and Rosamadiol Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations, Int J Pharma Anal Acta, 2 (1): 007-014, 2018.

A. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Two-Dimensional Infrared Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy, Non-Linear Two-Dimensional Infrared Spectroscopy, Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy, Infrared Photodissociation Spectroscopy, Infrared Correlation Table Spectroscopy, Near-Infrared Spectroscopy (NIRS), Mid-Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and
Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", Glob Imaging Insights, Volume 3 (3-4), 2018.

[160] A. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Journal of Materials Physics and Chemistry, 13: 144-156, 2018.

[161] A. Heidari, “Tetrakis [3, 5-bis (Trifluoromethyl) Phenyl] Borate (BARF)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Medical Research and Clinical Case Reports 2.1: 113-126, 2018.

[162] A. Heidari, “Syndone, Minichone, Montérale, Mogone, Montelakast, Bechol and Palame-enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI Nano Molecules), Sur Cas Stud Op Acc J. 1 (3), 2018.

[163] A. Heidari, “Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nano Polymeric Matrix (NPM)”, International Journal of Biochemistry and Biomolecules, Vol. 4: Issue 1, Pages 1-19, 2018.

[164] A. Heidari, R. Gobato, “Putrescine, Cadaverine, Spermine and Spermidine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Parana Journal of Science and Education (PSE) 4, n.5: (1-14) July 1, 2018.

[165] A. Heidari, “Cadaverine (L-5-Pentanediamine or Pentamethyleneamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPMF) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Hiv and Sexual Health Open Access Open Journal. 1 (1): 4-11, 2018.

[166] A. Heidari, “Improving the Performance of Nano-Endofullerenes in Polyamide Nanostructure-Based Biosensors by Covering California Collodial Nanoparticles with Multi-Walled Carbon Nanotubes”, Journal of Advances in Nanomaterials, Vol. 3, No. 1, Pages 1-28, 2018.

[167] R. Gobato, A. Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol. 20 (1), 1-23, 2018.

[168] A. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I)”, Malaysian Journal of Chemistry, Vol. 20 (2), 33-33, 2018.

[169] A. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol. 20 (1), 74-117, 2018.

[170] A. Heidari, “Uranocene (U(CH₂)₃) and Bis(Cyclooctatetraene)Iron (Fe(CH₂)₃ or Fe(COT)-)Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, Vol. 1, Iss 2, Pages 1-16, 2018.

[171] A. Heidari, “Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (3): 1-7, 2018.

[172] A. Heidari, “Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Res Dev Material Sci. 7(2). RDMS.000659, 2018.

[173] A. Heidari, “C70-Carboxylfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPMF) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (3): 1-7, 2018.

[174] A. Heidari, “The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors”, International Journal of Advanced Chemistry, 6 (2) 140-156, 2018.

[175] A. Heidari, “A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclopton versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy”, European Journal of Advances in Engineering and Technology, 5 (7): 414-426, 2018.

[176] A. Heidari, “Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, J Oncol Res; 1 (1): 1-20, 2018.

[177] A. Heidari, “Use of Molecular Enzymes in the Treatment of Chronic Disorders”, Cane Oncol Open Access J. 1 (1): 12-15, 2018.

[178] A. Heidari, “Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polymides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation”, International Journal of Advanced Chemistry, 6 (2) 167-189, 2018.

[179] A. Heidari, “Adamantane, Iren, Naftazone and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPSSI) Nano Molecules”, Madridge J Nov Drug Res. 2 (1): 61-67, 2018.

[180] A. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Madridge J Nov Drug Res, 2 (1): 68-74, 2018.

[181] A. Heidari, R. Gobato, “A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁶-Tetrahydrocannabinol (THC) [C-tetra-Δ⁶-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azoithymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Parana Journal of Science and Education, vol. 4, n. 6, pp. 1-17, 2018.

[182] A. Heidari, R. Gobato, “Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet-Visible (UV-Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Parana Journal of Science and Education, vol. 4, n. 6, pp. 18-33, 2018.

[183] R. Gobato, A. Heidari, A. Mitra, “The Creation of C₃H₅BeLi₃SeSi. The Proposal of a Bio-Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane”, Arc Org Inorg Chem Sci 3 (4): AOICS.MS.ISD.000167, 2018.

[184] R. Gobato, A. Heidari, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, J Nanomed Res. 7 (4): 241-252, 2018.

[185] A. Heidari, “Bastadins and Bastaranes-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Glob Imaging Insights, Volume 3 (4): 1-7, 2018.

[186] A. Heidari, “Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl Azodicarboxylate), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasovnone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (4): 1-8, 2018.

[187] E. Dadvan, A. Heidari, “A Review on Separation Techniques of Graphene Oxide (GO)/Base on Hybrid Polymer Membranes for Eradication of Dyes and Oil Compounds: Recent Progress in Graphene Oxide (GO)/Base on Polymer Membranes-Related Nanotechnologies”, Clin Med Rev Case Rep 5: 228, 2018.

[188] A. Heidari, R. Gobato, “First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate)
and Vomitoxin (Deoxynivalenol (DON)) ((3a,7a)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-en-8-one)-Enhanced Precautlal Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations", Parana Journal of Science and Education, Vol. 4, No. 6, pp. 46-67, 2018.

[A] Heidari, “Buckminsterfullerene (Fullerene), Bullvalene, Dicite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hemolytic and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations", Glob Imaging Insights, Volume 3 (4): 1-7, 2018.

[A] Heidari, “Fluctuation X-Ray Scattering (FXS) and Wide-Angle X-Ray Scattering (WAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Glob Imaging Insights, Volume 3 (4): 1-7, 2018.

[A] Heidari, “A Novel Approach to Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Experimentation (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROEry) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Glob Imaging Insights, Volume 3 (5): 1-9, 2018.

[A] Heidari, “Terphenyl-Based Reversible Receptor with Rhodamine, Rhodamine-Based Molecular Probe, Rhodamine-Based Using the Spiralactam Ring Opening, Rhodamine B with Ferrocene Substituent, Calix[4]Arene-Based Receptor, Thioether + Aniline-Derived Ligand Framework Linked to a Fluorescent Platform, Mercuryfluor-1 (Fluorescent Probe), N,N-Dibenzyl-

[A] Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluactuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Disperse X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Glob Imaging Insights, Volume 3 (5): 1-9, 2018.

[A] Heidari, “Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) and Nuclear Resonance Vibrational Spectroscopy (NRVS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Glob Imaging Insights, Volume 3 (5): 1-7, 2018.

[A] Heidari, “Small-Angle X-Ray Scattering (SAXS) and Ultra-Small Angle X-Ray Scattering (USAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Glob Imaging Insights, Volume 3 (5): 1-7, 2018.

[A] Heidari, “Curious Chloride (ClmCl) and Titanic Chloride (TiclCl) Enhanced Precautlal Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment Cellular Therapeutics", J. Cancer Research and Therapeutic Interventions, Volume 1, Issue 1, Pages 01-10, 2018.

[R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd)”, American Journal of Quantum Chemistry and Molecular Spectroscopy, Vol. 2, No. 1, pp. 9-17, 2018.

[A] Heidari, “Production of Electrochemiluminescence (ECL) Biosensor Using Os-Pd/HfC Nanocomposites for Detecting and Tracking of Human Gastroenterological Cancers, Cells, Tissues and Tumors", Int J Med Nano Res 5: 1, 022-034, 2018.

[A] Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles", J Toxicol Risk Assess 4: 1, 022-034, 2018.

[A] Heidari, “Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation Using Anti-Cancer Nano Drugs Delivery", Integr Mol Med, Volume 5 (5): 1-13, 2018.

[A] Heidari, “Analogous Nano Compounds of the Form M(C4H12): Exist for M = (Nd, Tb, Pu, Pa, Np, Th, and Yb) Enhanced Precautlal Preparation Stabilization and Initiation (EPPSI) Nano Molecules", Integr Mol Med, Volume 5 (5): 1-8, 2018.

[A] Heidari, “Hadron Spectroscopy, Baryon Spectroscopy and Meson Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Integr Mol Med, Volume 5 (5): 1-8, 2018.

[R. Gobato, M. R. R. Gobato, A. Heidari, “Raman Spectroscopy of the Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-Fock Method in the Basis Set CC-pVTZ and 6-311G** (3df, 3pd)”, Integr Mol Med, Volume 5 (5): 1-8, 2018.

[A] Heidari, “Evaluating the Effect of Anti-Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia
Journal of Materials Physics and Chemistry

Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Volume 2 (1): 1-8, 2019.

A. Heidari, R. Gobato, “Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2 (1): 1-8, 2019.

A. Heidari, R. Gobato, “Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1-8, 2019.

A. Heidari, R. Gobato, “Three-Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti-Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation”, Trends in Res, Volume 2 (1): 1-8, 2019.

A. Heidari, R. Gobato, “Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Spectroscopy in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend”, Trends in Res, Volume 2 (1): 1-8, 2019.

A. Heidari, R. Gobato, “High-Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Trends in Res, Volume 2 (2): 1-9, 2019.

A. Heidari, “A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques for Processing Cadmium Oxide (CdO) Nanoparticles Colloidal Solution”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

A. Heidari, “A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystall (AIN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

A. Heidari, “Novel Experimental and Three-Dimensional (3D) Multiphase Computational Framework of Michaelis-Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

A. Heidari, “The Hydrolysis Constants of Copper (II) (Cu2+) and Copper (II) (Cu) in Aqueous Solution as a Function in pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

A. Heidari, “Vibrational Biospectroscopic Study of Gninorous Virus-Sized Macromolecule and Polypeptide Macromolecule as Mega Macromolecules Using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Mathematica 11.3”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

A. Heidari, “Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Gern Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrotron Radiation”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

R. Gobato, M. R. R. Gobato, A. Heidari, “Storm Vortex in the Center of Paraná State on June 6, 2017: A Case Study”, Sumerian Journal of Scientific Research, Volume 2, No. 2, Pages 24-31, 2019.

R. Gobato, M. R. R. Gobato, A. Heidari, “Attenuated Total Reflect-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-FOck Methods in the Basis Set RHF/CC-pVTZ and RHF/6-311G** (3df, 3pd): An Experimental Challenge to Chemists”, Chemistry Reports, Volume 2, No. 1, Pages 1-26, 2019.

A. Heidari, A. Gobato, “Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Gern Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchroscylocotron Radiation”, Res Adv Biomed Sci Technol 1 (1): 1-6, 2019.

R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “New Nano-Molecule Kurumi-C13H20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd)”, J Anal Pharm Res. 8 (1): 1-6, 2019.

A. Heidari, J. Esposito, A. Caissutti, “The Importance of Attenuated Total Reflectance Fourier Transform Infrared (ATR- FTIR) and Raman Biospectroscopy of Single-Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Interpreting Infrared and Raman Spectra of Human Cancer Cells, Tissues and Tumors”, Oncogen 2 (2): 1-21, 2019.

A. Heidari, “Mechanism of Action and Their Side Effects at a Glance Prevention, Treatment and Management of Immune System and Targeted Cancer Nano Chemotherapy”, Nanosci Technol 6 (1): 1-4, 2019.

A. Heidari, J. Esposito, A. Caissutti, “The Quantum Entanglement Dynamics Induced by Non-Linear Interaction between a Moving Nano Molecule and a Two-Mode Field with Two-Photon Transitions Using Reduced Von Neumann Entropy and Jaynes-Cummings Model for Human Cancer Cells, Tissues and Tumors Diagnosis”, Int J Crit Care Emerg Med 5 (2): 071-084, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Palytoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Pharm Drug Res, 3 (1): 150-170, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Aplysia toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Chem Sci Eng, 2 (1): 15-26, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Cyatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Br J Med Health Res. 6 (04): 21-60, 2019.

A. Heidari, “Potential and Theranostics Applications of Novel Anti-Cancer Nano Drugs Delivery Systems in Preparing for Clinical Trials of Synchrotron Microbeam Radiation Therapy (SMRT) and Synchrotron Stereotactic Radiotherapy (SSRT) for Treatment of Human Cancer Cells, Tissues and Tumors Using Image Guided Synchrotron Radiotherapy (IGSRT)”, Ann Nanosci Nanotechnol. 3 (1): 1006-1019, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Study of Anti-Cancer Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructure”, Int J Analyt Bioanal Methods 1 (1): 003-022, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Alpha-Conotoxin, Omega-Conotoxin and Mu-Conotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, International Journal of Advanced Chemistry, 7 (1): 52-66, 2019.

A. Heidari, “Clinical and Medical Pros and Cons of Human Cancer Cells’ Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy Process under Synchrotron Radiation: A Case Study on Mechanism of Action and Their Side Effects”, Parana Journal of Science and Education (PISE)-v. 5, n. 3, (1-23) May 2, 2019.

A. Heidari, “The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply”, Radiother Oncol Int. 1 (1): 1002-1015, 2019.

A. Heidari, J. Esposito, A. Caissutti, “The Importance of Quantum Hydrodynamics (QHD) Approach to Single-Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Genetic Science”, SCIOL Genet Sci. 2 (1): 113-129, 2019.

A. Heidari, J. Esposito, A. Caissutti, “Anatoxin-a and Anatoxin- a(s) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy, and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Saudi J Biomed Res, 4 (4): 174-194, 2019.

R. Gobato, M. R. R. Gobato, A. Heidari, “Evidence of Tornado in The Region of Rio Branco do Ivaí and Rosario do Ivaí, Southern Brazil”, Sci Lett 16, 2020.

M. Jeyaraj, V. Mahalingam, A. Indulekha, P. Sennu, M. S. Ho, A. Heidari, “Chemical Analysis of Surface Water Quality of River Noyyal Connected Tank in Tirupur District, Tamil Nadu, India”, Water and Energy International, Volume 62r, Issue 68, 2019.
Investigation of Vibronic-Mode Coupling Structure in Vibrational Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J. Adv. Phys. Chem., Volume 1, Issue 1, pp. 1-6, 2019.

[244] A. Heidari, J. Espósito, A. Caissutti, "Shiga Toxin and Shiga-Like Toxin (SLT) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis", Annal Biostat & Biomed Appli. 2 (3): 1-4, 2019.

[245] A. Heidari, J. Espósito, A. Caissutti, “Alpha-Bungarotoxin, Beta-Bungarotoxin and Kappa-Bungarotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Archives of Pharmacology and Pharmaceutical Sciences, ReDelve, Volume 2019, Issue 01, pp. 1-24, 2019.

[246] A. Heidari, J. Espósito, A. Caissutti, "Okadaic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis", Int J Analyt Bioanayt Methods 1 (1): 1-19, 2019.

[247] A. Heidari, “Investigation of the Processes of Absorption, Distribution, Metabolism and Elimination (ADME) as Vital and Important Factors for Modulating Drug Action and Toxicity”, Open Access J Oncol, 2 (1): 180010-180012, 2019.

[248] A. Heidari, J. Espósito, A. Caissutti, “Pertussis Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Chemistry Reports, Vol. 1 Iss. 2, Pages 1-5, 2019.

[249] R. Gobato, M. R. R. Gobato, A. Heidari, “Rhodochrosite as Crystal Oscillator”, Am J Biomed Sci & Res. 3 (2), 187, 2019.

[250] A. Heidari, J. Espósito, A. Caissutti, “Tetrodotoxin (TTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Journal of New Developments in Chemistry, Volume No: 2, Issue No: 3, Page Numbers 26-48, 2019.

[251] A. Heidari, J. Espósito, A. Caissutti, “The Importance of Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Supramolecular Aggregates of (CA*Me) Cyanuric Acid (CA) and Melamine (M) beyond the Franck-Condon Approximation”, Journal of Clinical and Medical Images, 2 (2): 1-20, 2019.

[252] A. Heidari, J. Espósito, A. Caissutti, “Microcystin-LR Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Malaysian Journal of Chemistry, Vol. 21 (1), 70-95, 2019.

[253] A. Heidari, J. Espósito, A. Caissutti, “Botulinum Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Journal of Mechanical Design and Vibration, vol. 7, no. 1: 1-15, 2019.

[254] A. Heidari, J. Espósito, A. Caissutti, “Domoic Acid (DA) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 03-07, 2019.

[255] A. Heidari, J. Espósito, A. Caissutti, “Surugatoxin (SGTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 14-18, 2019.

[256] A. Heidari, J. Espósito, A. Caissutti, “Decarbamoylsaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 19-23, 2019.

[257] A. Heidari, J. Espósito, A. Caissutti, “Gonyautoxin (GTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 24-28, 2019.

[258] A. Heidari, J. Espósito, A. Caissutti, “Hislionicotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 1: 01-06, 2019.

[259] A. Heidari, J. Espósito, A. Caissutti, “Dihydoradikin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 1: 07-12, 2019.

[260] A. Heidari, J. Espósito, A. Caissutti, “Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and Q3 (AFQ3) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis", Scientific Drug Delivery Research 1. 1: 25-32, 2019.

[261] A. Heidari, J. Espósito, A. Caissutti, “Mycoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 1: 13-18, 2019.

[262] A. Heidari, J. Espósito, A. Caissutti, “Bufotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis", Scientific Drug Delivery Research 1. 1: 19-24, 2019.

[263] A. Heidari, J. Espósito, A. Caissutti, “Kainic Acid (Kainine) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 02-07, 2019.

[264] A. Heidari, J. Espósito, A. Caissutti, “Nereistoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Clinical Oncology Journal 1. 2: 19-24, 2019.

[265] A. Heidari, J. Espósito, A. Caissutti, “Spider Toxin and Raventoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 1: 25-32, 2019.

[266] A. Heidari, J. Espósito, A. Caissutti, “Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin α and Ochratoxin TA Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 2: 03-10, 2019.

[267] A. Heidari, J. Espósito, A. Caissutti, “Brevetoxin A and B Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 2: 11-16, 2019.

[268] A. Heidari, J. Espósito, A. Caissutti, “Lynghybatoxin-a Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Scientific Drug Delivery Research 1. 2: 23-28, 2019.

[269] A. Heidari, J. Espósito, A. Caissutti, “Balraechotoxin (BTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT)
Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis, Scientific Journal of Neurology 1: 61-05, 2019.

[270] A. Heidari, J. Esposito, A. Caissutti, “Hanatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Int. J. Pharm. Sci. Res., 57 (1), Pages: 21-32, 2019.

[271] A. Heidari, J. Esposito, A. Caissutti, “Antilaxitoxin and Alpha-Neurotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 3 (6), 550-563, 2019.

[272] A. Heidari, J. Esposito, A. Caissutti, “Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure”, American Journal of Optics and Photonics. Vol. 7, No. 1, pp. 18-27, 2019.

[273] R. Gobato, M. R. R. Gobato, A. Heidari, “Calculation by UFF Method of Frequencies and Vibrational Transitions for the 36 Amino Acid Peptide for HIV Therapy beyond the Advanced Chemistry, 7 (2) 77-81, 2019.

[274] A. Heidari, J. Esposito, A. Caissutti, “Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Fuzeon as a 36 Amino Acid Peptide for HIV Therapy beyond the Multi-Dimensional Franck-Condon Approximation”, International Journal of Advanced Chemistry, 7 (2) 82-96, 2019.

[275] A. Heidari, J. Esposito, A. Caissutti, “Dibophoraapsloxatoin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Applied Chemistry, 2 (1) 17-54, 2019.

[276] A. Heidari, J. Esposito, A. Caissutti, “Enterotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Research & Reviews: Journal of Computational Biology. 8 (2): 23-51, 2019.

[277] A. Heidari, J. Esposito, A. Caissutti, “Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Can J Biomed Res & Tech. 2 (1): 1-21, 2019.

[278] A. Heidari, J. Esposito, A. Caissutti, “Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Can J Biomed Res & Tech. 2 (1): 1-21, 2019.

[279] A. Heidari, J. Esposito, A. Caissutti, “Neoaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Clin Case Studie Rep, Volume 2 (3): 1-14, 2019.

[280] A. Heidari, J. Esposito, A. Caissutti, “6-Methoxy-8-[6-Methoxy-8-[6-Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isouquinolin-7-yl]Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isouquinolin-7-ylOxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isouquinolin-7-ol Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 57 (1), Pages: 21-32, 2019.

[281] A. Heidari, J. Esposito, A. Caissutti, “Comparison of Synchrontron Radiation and Synchrocyclotron Radiation Performance in Monitoring of Human Cancer Cells, Tissues and Tumors”, Clin Case Studie Rep, Volume 2 (3): 1-12, 2019.

[282] A. Heidari, J. Esposito, A. Caissutti, “Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 57 (1), Pages: 21-32, 2019.

[283] A. Heidari, J. Esposito, A. Caissutti, “Diphtheria Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 57 (1), Pages: 21-32, 2019.

[284] A. Heidari, J. Esposito, A. Caissutti, “Symbiodinolide Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 57 (1), Pages: 21-32, 2019.

[285] A. Heidari, J. Esposito, A. Caissutti, “Saxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Am J Exp Bio Sci Res 6 (4): 364-377, 2019.

[286] R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Hartree-Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells through Synchrontron Radiation”, Radiation Science and Technology, Vol. 5, No. 3, pp. 27-36, 2019.

[287] R. Gobato, J. K. K. Dosh, A. Heidari, A. Mitra, M. R. R. Gobato, “Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrontron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues”, Arch Biomed Eng & Biotechnol. 3 (2): 1-2, 2019.

[288] R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Unrestricted Hartree-Fock Simulation Approach: A Study in a Protonated Rhodochrosite Crystal”, Phys Astron J 3 (6):220-228, 2019.

[289] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Perspectives on Sub-Nanometer Level of Electronic Structure of the Synchrontron with Mendelevium Nanoparticles for Elimination of Human Cancer Cells, Tissues and Tumors Treatment Using Mathematica 12.0”, Journal of Energy Conservation, Volume 1, Issue 2, Pages 46-73, 2019.

[290] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Simulation of Interaction of Synchrontron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Current Research in Biochemistry and Molecular Biology, 1 (1), 17-44, 2019.

[291] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Investigation of Interaction between Synchrontron Radiation and Thulium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Scientific Exploration, Volume 2, Issue 3, Pages I-8, 2019.

[292] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrontron Radiation”, International Journal of Advanced Engineering and Science, Volume 9, Number 1, Pages 9-39, 2020.

[293] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment in Simulation of Interaction of Synchrontron Radiation Emission as a Function of the Beam Energy and Uranium Nanoparticles”, Nano Prog., 1 (2), 1-6, 2019.

[294] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “A New Approach to Interaction between Beam Energy and Erbium Nanoparticles”, Saudi J Biomed Res, 4 (11): 372-396, 2019.

[295] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Consideration of Energy Functions and Wave Functions of the Synchrontron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process”, Sci. Int. (Lahore), 31 (6), 885-908, 2019.

[296] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “An Outlook on Optothermal Human Cancer Cells, Tissues and Tumors Treatment Using Lanthanum Nanoparticles under Synchrontron Radiation”, Journal of Materials Physics and Chemistry, Vol. 7, No. 1, 29-45, 2019.

[297] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrontron Radiation”, Journal of Analytical Oncology, 8, 1-43, 2019.

[298] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Relation between Synchrontron Radiation and Dubnium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process”, Int. Res. J. Applied Sci., Volume 1, Number 4, Pages 1-20, 2019.
A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Dramaturgy of Technetium Nanoparticles Delivery Process in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 5, Issue 6, Pages 1-19, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Communication of Interaction between Synchrotron Radiation Emission as a Function of the Beam Energy and Ruthenium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment", Dent Oral Maxillofac Res, Volume 5, Issue 6, Pages 1-19, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Appearance of Radhium Nanoparticles Delivery Trend in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 5, Issue 6, Pages 1-19, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Classification of Drug Delivery System of Niobium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 6, Issue 1, Pages 1-17, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Types of Drug Delivery System Sideshare of Protactinium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 6, Issue 1, Pages 1-17, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "New Drug Delivery System of Neptunium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 6, Issue 1, Pages 1-18, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Drug Delivery Describes the Method and Approach to Delivering Drugs or Pharmaceuticals and Other Xenobiotics to Their Site of Action within Radon Nanoparticles Effects on Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 6, Issue 1, Pages 1-18, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Applications of Ognesson Nanoparticles in Increasing Rapidly with the Promise of Targeted and Efficient Drug Delivery in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 6, Issue 1, Pages 1-19, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Wheeler-Feynman Time-Symmetric Study of Effectiveness and Efficiency of Terbium Nanoparticles Delivery Mechanism in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation", Frontiers Drug Chemistry Clinical Res, Volume 3, Issue 1, Pages 1-13, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Similation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Californium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment", Oncol Res: Open Acc. 1 (1): 1-17, 2019.

A. Heidari, "Market Analysis of Glycobiology and Glycochemistry 2020", J Genet Disor Genet Rep. 8: 1, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Stochastic Study of Relativistic Lutetium Nanoparticles Moving in a Quantum Field of Synchrotron Radiation When Charged Lutetium Nanoparticles Are Accelerated Radially in Human Cancer Cells, Tissues and Tumors Treatment", Frontiers Drug Chemistry Clinical Res, Volume 3, Issue 1, Pages 1-19, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Dramaturgy of Technetium Nanoparticles Delivery Process in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation", Dent Oral Maxillofac Res, Volume 5, Issue 6, Pages 1-19, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Quantum Field of Synchrotron Radiation When Charged Lutetium Nanoparticles Are Accelerated Radially in Human Cancer Cells, Tissues and Tumors Treatment", Frontiers Drug Chemistry Clinical Res, Volume 3, Issue 1, Pages 1-15, 2020.

A. Heidari, A. Ciaussiti, M. Henderson, K. Schmitt, E. Besana, J. Esposito, V. Peterson, "Recent New Results and Achievements of California South University (CSU) BioSpectroscopy Core Research Laboratory for COVID-19 or 2019-ncov Treatment: Diagnosis and Treatment Methodologies of "Coronavirus", Journal of Current Viruses and Treatment Methodologies, Vol-1, Issue 1, Pg. no. 3-41, 2020.

A. Heidari, "Awards 2020 on Glycobiology", J Mol Biol Methods. 2: 2, 2019.

A. Heidari, "Young Research Forum-Young Scientist Awards at Glycobiology 2020", J Genet Disor Genet Rep. 8: 2, 2019.

A. Heidari, "2020 Awards on 2nd World Congress on Neurology", J Neurol Neurophysiol. 10: 6, 2019.

A. Heidari, "2020 Conference Announcement on 2nd World Congress on Neurology", J Neurol Neurophysiol. 10: 6, 2019.

A. Heidari, "Awards for Best Research: Gastroenterology and Digestive Disorders", J. Med. Med. Sci. Vol. 10, No. 2, 2019.

A. Heidari, "Market Analysis: Gastroenterology and Digestive Disorders", J. Med. Med. Sci. Vol. 10, No. 2, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Study of Human Cancer Cells, Tissues and Tumors Treatment Through Interaction Between Synchrotron Radiation and Cerium Nanoparticles", Sci Lett. 8 (1): 7-17, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Study of Characteristic Polarization and the Frequencies Generated in Interaction of Synchrotron Radiation Emission and Actinium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process", Parana Journal of Science and Education (PJSE)-v. 6, n.3, (13-47) April 15, 2020.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "Californium Nanoparticles and Human Cancer Treatment: Commemorating the 100th (1920-2020) Anniversary of the California South University (CSU)", Parana Journal of Science and Education (PJSE)-v.6, n. 3, (48-83) April 15, 2020.

A. Heidari, "2020 Conference Announcement on Materials Chemistry", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Announcement-Materials Chemistry-2020", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Awards 2020 of 19th World Congress on Materials Chemistry", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Awards at Materials Chemistry & Science Conference 2020", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Market Analysis of 19th World Congress on Materials Chemistry", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Past Conference Report on Materials Chemistry", J Polym Sci Appi. 3: 1, 2019.

A. Heidari, "Market Analysis", J Polym Sci Appi. 3: 4, 2019.

A. Heidari, "17th International Conference Materials Science and Engineering", J Elect Eng Electron Technol. 8: 3, 2019.

A. Heidari, "16th International Conference on Advance Material & Nanotechnology", J Elect Eng Electron Technol. 8: 4, 2019.

A. Heidari, "Young Research Forum on Laser Advanced Materials Processing", J Elect Eng Electron Technol. 8: 4, 2019.

A. Heidari, "Market Analysis of Materials Science and Engineering", Biomater Med Appl. 3: 1, 2019.

A. Heidari, "Nanotechnology 2020 Conference Announcement: Nanotechnology and Nano Engineering", Biomater Med Appl. 3: 1, 2019.

A. Heidari, "17th International Conference on Material Science and Engineering", Biomater Med Appl. 3: 2, 2019.

A. Heidari, "Young Scientist Awards of Pharmacovigilance 2020", J Pharm Drug Deliv. Res. 8: 1, 2019.

A. Heidari, "Awards 2020 on Pharmacovigilance & Drug Safety", J Pharm Drug Deliv. Res. 8: 2, 2019.

A. Heidari, "2020 Conference Announcement of World Congress on Glycobiology & Glycochemistry", J Cell Bio Res Ther. 8: 3, 2019.

A. Heidari, K. Schmitt, M. Henderson, E. Besana, "A Chemical Review on Cancer Immunology and Immunodeficiency", International Journal of Advanced Chemistry, 8 (1): 27-43, 2020.
[374] A. Heidari, V. Peterson, “A Comprehensive Review on Functional Roles of Cancerous Immunoglobulins and Potential Applications in Cancer Immunodiagnosics and Immunotherapy”, International Journal of Advanced Chemistry, 8 (1): 44-58, 2020.

[375] A. Heidari, V. Peterson, “An Encyclopedic Review on Stereotactic Hypofractionated Radiotherapy, Re-Irradiation, and Cancer Genome Research”, International Journal of Advanced Chemistry, 8 (1): 59-74, 2020.

[376] A. Heidari, V. Peterson, “A Pervasive Review on Biomarker in Cervical Intraepithelial Lesions and Carcinoma”, International Journal of Advanced Chemistry, 8 (1): 75-88, 2020.

[377] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Hereditary Immunity in Cancer”, International Journal of Advanced Chemistry, 8 (1): 94-110, 2020.

[378] A. Heidari, M. R. R. Gobato, A. Heidari, A. Mitra, I. K. K. Dosh, “Secret Messages in Enigmatic Playful Texts”, ABEB, 4 (2): 1-10, 2020.

[379] A. Heidari, R. Gobato, M. R. R. Gobato, A. Mitra, “Hartree-Fock Methods Analysis Protonated Rhododendron Crystal and Potential in the Elimination of Cancer Cells through Synchrotron Radiation Using Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) and Small-Angle Neutron Scattering (SANS)”, AJAN, 1 (1): 1-8, 2020.

[380] A. Heidari, Schmitt, M. Henderson, E. Besana, I. K. K. Dosh, A. Mitra, M. R. R. Gobato, “Single Layer Bioorganic Membrane Using the Kurumi Molecule”, AJAN, 1 (1): 16-20, 2020.

[381] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Pulsed Time Structure of Nobelium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process Which Covers from Microwaves to Hard X-Rays”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[382] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Abraham-Lorentz-Dirac Force Approach to Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Seaborgium Nanoparticles Drug Delivery under Super Contorted Tubular Polar Areas of Magnetic Fields”, Adv. Sci. Eng. Med. 12 (5), 571-575, 2020.

[383] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Specific and Selective Targeting Human Cancer Cells, Tissues and Tumors with Seaborgium Nanoparticles as Carriers and Nano-Enhanced Drug Delivery and Therapeutic in Cancer Treatment and Beyond under Synchrotron Radiation”, Parana Journal of Science and Education, Vol. 6, No. 4, pp. 8-50, 2020.

[384] A. Heidari, “Enhancement of Visible Synchrotron Absorption in Cadmium Oxide (CdO) Nanoparticles Thin Layer Using Plasmonic Nanostructures: A Two-Dimensional (2D) Simulation”, Sci. Int. (Lahore), 32 (3), 329-354, 2020.

[385] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Exclusively Focused on Translational Aspects of Praseodymium Nanoparticles Drug Delivery under Super Contorted Tubular Polar Areas of Magnetic Fields as Optothermal Human Gurn Cancer Cells, Tissues and Tumors Treatment Technique under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-18, 2020.

[386] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “The Dynamics and Quantum Mechanics of an Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Meitnerium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[387] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Unprecedented Progresses of Biomedical Nanotechnology during Conventional Smart Drug Delivery Systems (SDDSs) of Francium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-20, 2020.

[388] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Non-Invasive Image-Guided Targeted Drug Delivery of Radiopharmaceuticals in Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-20, 2020.

[389] A. Heidari, “A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethylamide or LSD), Α9-Tetrahydrocannabinol (THC) [(+)-trans-Α9, Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine,
[447] A. Heidari, R. Gobato, "Exact NMR Simulation of Anti-Cancer Nano Drug-DNA/RNA Complexes in Gum Cancer Cells Spin Systems Using Tensor Train Formalism", Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-2, 2020.

[448] A. Heidari, R. Gobato, "The Anti-Cancer Nano Drug Delivery 13C-Edited/13C-Filtered Transferred Dynamic 15N{1H} NOE Measurements for Studying DNA/RNA Interactions with Short Non-Linear Motifs: A Modern Tool for Studying DNA/RNA Dynamics", Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-2, 2020.

[449] A. Heidari, R. Gobato, "DNA/RNA of Gum Cancer Cells—Anti-Cancer Nano Drugs Ligands Structure Determination with the Two-Dimensional NMR Molecular Line Shape Analysis of Single, Multiple, Zero and Double Quantum Correlation Experiments", Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-3, 2020.

[450] A. Heidari, R. Gobato, "Investigation of the Internal Structure and Dynamics of Gum Cancer Cells, Tissues and Tumors by 13C-NMR Spectra of DNA/RNA of Gum Cancer Cells as an Essential Structural Tool for Integrative Studies of Gum Cancer Cells Development", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-3, 2020.

[451] A. Heidari, R. Gobato, "NMR and Molecular Dynamics Studies Combined to Anti-Cancer Nano Drugs and DNA/RNA Interactions in Gum Cancer Cells and Their Modulations with Resistance Mutations", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[452] A. Heidari, R. Gobato, "Advanced Isotopic Labeling for the NMR Investigation of Challenging DNA/RNA of Gum Cancer Cells and Anti-Cancer Nano Drugs for Production of Isotope-Labeled DNA/RNA in Gum Cancer Cells for NMR Spectroscopy", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[453] A. Heidari, R. Gobato, "Strong Magnetic Field on the Interpretation of Indirect Spin-Spin Interactions Using NMR Line Shape Analysis of a Multi-State DNA/RNA Ligand Bonding Mechanism in Gum Cancer Cells", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[454] A. Heidari, R. Gobato, "Application of Anti-Cancer Nano Drugs Particles (ACNDP) to NMR Characterization of Viral Gum Cancer Cell Membrane DNA/RNA Interactions for Extracting DNA/RNA Dynamics Information from Overlapped NMR Signals Using Relaxation Dispersion Difference NMR Spectroscopy", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[455] A. Heidari, R. Gobato, "Diagnosis of Gum Cancer Cells from DNA/RNA Using Database Mining and Support Vector Regression through High Resolution 4D HPCH Experiment for Sequential Assignment of 13C-Labeled DNAs/RNAs in Gum Cancer Cells", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[456] A. Heidari, R. Gobato, "New Opportunities for Tensor-Free Calculations of Residual Dipolar Couplings for the Study of Dynamic Nuclear Polarization of Nucleic Acids with Endogenously Bound Manganese in Gum Cancer Cells", Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[457] A. Heidari, R. Gobato, "Pros and Cons Controversy on Synchrotron Biosensor Using Os-Pd/HC Nanocomposite for Tracking, Monitoring, Imaging, Measuring, Diagnosing and Detecting Cancer Cells, Tissues and Tumors", Indones. J. Cancer Chemoprevent., Volume 12, Number 1, Pages 1-10, 2021.

[458] R. Gobato, A. Heidari, L. F. Valverde, "ACTG Based on Silicon and Rhodium (IV) Oxide (RhO2) Nanoparticles for Target Biomarkers such as DNA/RNA for New Frontiers of Diagnostic Strategies for Prevention, Prognosis, Diagnosis and Treatment of Gum Cancer Tumor Metabolism", Dent Oral Maxillofac Res, Volume 7, Issue 2, Pages 1-2, 2021.

[459] A. Heidari, R. Gobato, L. F. Valverde, "Spherical Tensor Analysis of Nuclear Magnetic Resonance Signals for Understanding Chemical Shielding Tensors of DNA/RNA in Gum Cancer Cells Using Group Theory, MO Analysis, and Modern Density-Functional Theory", Dent Oral Maxillofac Res, Volume 7, Issue 2, Pages 1-2, 2021.

[460] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisuatti, E. Besana, J. Esposito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, "Introducing Cadmium Oxide (CdO) Smart Nanoparticles as Detector for Diagnosis of Signals from Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations", International Journal of Advanced Engineering and Science, Volume 10, Number 2, Pages 20-64, 2021.

[461] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisuatti, E. Besana, J. Esposito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, "Emerging Use of Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nanoparticles in Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management of Cancer under Synchrotron and Synchrocyclotron Radiations", Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 200-235, 2021.

[462] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisuatti, E. Besana, J. Esposito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, "Biocompatible Core-Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquiioxide (Rh2O3) and Rhodium (IV) Oxide (RhO4) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations, Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 163-199, 2021.

[463] A. Heidari, M. Hotz, L. J. Henderson, J. Kimmel, "Emerging Use of Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nanoparticles in Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management of Cancer under Synchrotron and Synchrocyclotron Radiations", Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 126-162, 2021.

[464] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisuatti, E. Besana, J. Esposito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, "Biocompatible Core-Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquiioxide (Rh2O3) and Rhodium (IV) Oxide (RhO4) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations", Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 89-125, 2021.
[473] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Targeted Biopolymeric Ruthenium (IV) Oxide (RuO$_2$) and Ruthenium (VIII) Oxide (RuO$_4$) Nanoparticles Loaded with Cetuximab and Decorated with Somatostatin Analogue to Colon Cancer under Synchrotron and Synchrocyclotron Radiations”, Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 52-88, 2021.

[474] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Future Studies of Cancer Immunotherapy Using Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Nano Drug Delivery Could Be the Future of Targeted Cancer Therapies under Synchrotron and Synchrocyclotron Radiations”, Parana Journal of Science and Education (PJSE). Vol. 7, No. 6, pp. 15-51, 2021.

[475] A. Heidari, “Removal of Cancer Cells Using Thin Layers of Cadmium Oxide (CdO)-DNA/RNA Sandwiched Complex Composite Plasmonic Nanostucture under Synchrotron Radiation”, Organic Polymer Material Research, Volume 03, Issue 01, Pages 1-15, 2021.

[476] R. Gobato, A. Heidari, L. F. Valverde, A. Mitra, “Infrared Spectrum for the New Exobiological Nanomolecules Asi, Csi, Tsi and Gsi”, Sumerian Journal of Scientific Research, Vol. 4, No. 1, pp. 25-31, 2021.

[477] A. Heidari, “Study of Physical Properties of Cadmium Oxide (CdO) and CdO/DNA/RNA Nanostructures Thin Layers Produced by Spray Pyrolysis Technique for Manufacturing Cadmium Oxide (CdO) Nanoparticles and Evaluation of the Effect of DNA/RNA Doping on Their Optical Characteristics”, Adv. Sci. Eng. Med. 12 (10), 1224-1230, 2020.

[478] A. Heidari, “Vibrational Biospectroscopic Study on Biomedical and Clinical Engineering of Cancer Cells Fingerprints”, Adv. Sci. Eng. Med. 12 (10), 1272-1284, 2020.

[479] A. Heidari, “Effect of Temperature on DNA/RNA-Cadmium Oxide (CdO) Complex Nanoparticles Produced by Synchrotronic Laser Ablation Method in the Cancer Cells”, Adv. Sci. Eng. Med. 12 (10), 1315-1322, 2020.

[480] A. Heidari, “Cadmium Oxide (CdO)-DNA/RNA Sandwiched Complex Composite Plasmonic Nanostucture in Cancer Cells under Synchrotron Radiation”, Nano Prog., 3 (6), 35-47, 2021.

[481] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “The Effect of Solution Molarity on the Structural, Morphological, Optical and Electrical Properties of Nanostructured Cadmium Oxide (CdO) Nano Thin Films as Anti-Cancer Nano Drug in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 16-60, 2021.

[482] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Annealing Effects on the Intereband Transition and Optical Constants of Ruthenium (IV) Oxide (RuO$_2$) and Ruthenium (VIII) Oxide (RuO$_4$) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 61-105, 2021.

[483] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Rhodium (III) Oxide or Rhodium Sesquioxide (Rh$_2$O$_3$) and Rhodium (IV) Oxide (RhO$_2$) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 106-149, 2021.

[484] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_4$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 150-194, 2021.

[485] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Catalytic Effectiveness of Synchrotron and Synchrocyclotron Radiations on Osmium Dioxide (OsO$_2$) and Osmium Tetroxide (OsO$_4$) Nano Capsules Delivery in DNA/RNA of Cancer Cells”, Int J Hematol Oncol. 4: 195-238, 2021.

[486] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Advanced Studies on the Effect of Transition Metal Doped Iridium (IV) Oxide (IrO$_2$) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 239-282, 2021.

[487] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Cadmium Oxide (CdO) Nanoparticles-Based Drug Delivery in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management and its Role and Application in Overcoming Drug Resistance under Synchrotron and Synchrocyclotron Radiations”, International Journal of Advanced Chemistry, 9 (2) 80-98, 2021.

[488] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Espósito, K. Schmitt, L-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Introducing Cadmium Oxide (CdO) Smart Nanoparticles as Detector for Diagnosis of Signals from Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, International Journal of Advanced Engineering and Science, Vol. 10, No.2, Pages 20-64, 2021.