Species diversity of drifting fish eggs in the Yangtze River using molecular identification

Mingdian Liu 1, Dengqiang Wang 1, Lei Gao 1, Huiwu Tian 1, Shaoping Liu 1, Daqing Chen 1, Xinbin Duan 1

1 Yangtze River Fisheries Research Institute of Chinese Academy of Fishery Science, Wuhan, Hubei, China

Corresponding Author: Xinbin Duan
Email address: duan@yfi.ac.cn

The dam constructions greatly changed the hydrologic conditions in the Yangtze River, and then significantly affected the spawning activities of indigenous river fish. Monitoring the species composition of drifting eggs during spawning season is important for protection issues. In this study, we have sampled drifting fish eggs in nine locations from 2014 to 2016. Eggs were identified using mitochondrial cyt b gene sequence. A total of 7,933 fish eggs were sequenced successfully and blasted into the NCBI database. Thirty-nine fish species were identified, and were assigned to four families and two orders. Approximately 64% of the species identified, and 67% of the eggs, were classified in the Family Cyprinidae. Abundance and Shannon-Wiener diversity index of species were higher in the main river than in tributaries of the river. However, tributaries may be important spawning grounds for some fish species. The Jaccard’s similarity index and river-way distances among sampled stations were negatively correlated suggesting the environment shapes species composition in the sampled spawning grounds. These results showed that mitochondrial DNA sequence is a powerful and effective tool for fish egg identification in Yangtze River and these data are useful for conservation efforts.
Species diversity of drifting fish eggs in the Yangtze River using molecular identification

Mingdian Liu; Dengqiang Wang; Lei Gao; Huiwu Tian; Shaoping Liu; Daqing Chen; Xinbin Duan

(Yangtze River Fisheries Research Institute of Chinese Academy of Fishery Science, Wuhan, Hubei 430223, China)

ABSTRACT

The dam constructions greatly changed the hydrologic conditions in the Yangtze River, and then significantly affected the spawning activities of indigenous river fish. Monitoring the species composition of drifting eggs during spawning season is important for protection issues. In this study, we have sampled drifting fish eggs in nine locations from 2014 to 2016. Eggs were identified using mitochondrial cyt b gene sequence. A total of 7,933 fish eggs were sequenced successfully and blasted into the NCBI database. Thirty-nine fish species were identified, and were assigned to four families and two orders. Approximately 64% of the species identified, and 67% of the eggs, were classified in the Family Cyprinidae. Abundance and Shannon-Wiener diversity index of species were higher in the main river than in tributaries of the river. However, tributaries may be important spawning grounds for some fish species. The Jaccard’s similarity index and river-way distances among sampled stations were negatively correlated suggesting the environment shapes species composition in the sampled spawning grounds. These results showed that mitochondrial DNA sequence is a powerful and effective tool for fish egg identification in Yangtze River and these data are useful for conservation efforts.

CORRESPONDING AUTHOR
Xinbin Duan, duan@yfi.ac.cn

INTRODUCTION

Monitoring fish spawning grounds in natural rivers provides useful information concerning fish habitat, spawning activity, and the effect of anthropogenic stressors. Data regarding spawning species, scale, and time are important for improving management and policy decisions.

The Yangtze River is the third largest river in the world. The section of the river above Yichang is generally called the “upper reaches” and the section from Yichang to Hukou is called the “middle reaches.” In recent years, more dams have been constructed in the river, which seriously affect the spawning environment for fish. Such drastic ecological and environmental changes particularly affect fish that lay drifting eggs. There are approximately four hundred species of fish in the Yangtze River, and of these, approximately thirty species lay drifting eggs. Some of these fish are of commercial importance in China, such as grass carp (Ctenopharyngodon idella Valenciennes, 1844), black carp (Mylopharyngodon piceus Richardson, 1846), silver carp (Hypophthalmichthys molitrix Valenciennes, 1844), and bighead carp (Hypophthalmichthys nobilis Richardson, 1845); these are referred to as the four domestic Chinese carps (FDC) in China. The FDC spawning activities are controlled by temperature and hydrographs (Stanley 1978; Li et al. 2013), which shape more than 40 spawning grounds within mainstream regions of the Yangtze River. The mean annual egg production was over 100 billion in the 1960’s (Yi and Liang 1964). The construction of the Gezhouba dam in the 1980s, and then the Three Gorges dam in the early 2000s have greatly changed the hydrologic conditions in the middle Yangtze River (Yi et al. 2010). These dam
constructions significantly affected the spawning activities of indigenous river fish. The abundance of FDC larvae in the middle Yangtze River had decreased to 105 million in 2005 (Duan et al. 2009), and the spawning time was also delayed by approximately one month (Zhang et al. 2012). In addition, there are some species of fish that prefer certain river locations for spawning. For example, the largemouth bronze gudgeon, Coreius guichenoti Sauvage & Dabry de Thiersant, 1874, primarily spawns in the lower of the Jinsha River, which is the main tributary of the Yangtze River (Cao et al. 2007). Impoundment of the Xiangjiaba dam in 2012 has destroyed the spawning ground of this species, and as a result no eggs or larvae have been found since then (Gao et al. 2015). If this species cannot find another suitable spawning ground, it is in danger of extinction (Cheng et al. 2015). Many tributaries of the Yangtze River are also distributed spawning grounds of fish that lay drifting eggs, and some of these fishes are endemic to one or several river sections (Xie et al. 2014; Cai et al. 2011; Wu et al. 2010).

Fishery resources in the Yangtze River have been undergoing a serious recession over the past 30 years (Chen et al. 2009; Huang & Li, 2016). In an attempt to remedy the situation, the government has implemented measures to restore fish resources and the ecosystem. Several parameters include setting up protected regions, closed fishing seasons, releasing artificial fish into the river, and restricting fishing instruments (Chen et al. 2009). Monitoring spawning grounds could assess whether these measures have been successful. During the spawning season there may be more than a dozen or more species of fish spawning in the same location (Xie et al. 2014; Cai et al. 2011; Wu et al. 2010). Different species are associated with different nursery habitats and dispersal during early life history stages, and also have different protection requirements. Thus, quantifying and classifying fish eggs is crucial for conservation, management, and assessment of environmental effects. It is challenging to determine the species of the drifting eggs because most of the fish with this reproductive pattern have similar morphological characters in the early egg stages. In the past, several researchers tried to identify eggs species by size, color, oil droplets (Gao et al. 2010; Cao et al. 2007; Yi et al. 1988), and couldn’t obtain enough diagnosable information at species-level, because the egg size was variable and overlapping among most fishes, and the color was not so clear. Others tried to hatch eggs to identify distinguishable characteristics (Xu et al. 2015; Liu et al. 2014), however, it proved difficult to hatch eggs in the field.

Over the past decade, molecular identification methods have been increasingly used to deal within the limitations of morphological identifications for fish eggs. Mitochondrial DNA (mtDNA) DNA gene cytochrome c oxidase subunit I (COI) barcoding was proposed as a global DNA barcoding identification system for animals (Hebert et al. 2003a, b), based on the assumption of a so-called barcoding gap between species that intraspecific COI variation is lower than interspecific COI variation. At present, this approach has been used to the delimitation of various fishes (Hubert et al. 2010; Costa et al. 2012; Landi et al. 2014; Frantine-Silva et al. 2015; Shen et al. 2016), eggs and larvae (Ahern et al. 2018; Burghart et al. 2014; Harada et al. 2015; Lewis et al. 2016; Ardura et al. 2016; Thompson, 2016). A fragment of mtDNA PCR restriction fragment length polymorphism (RFLP) was used for egg identification of European horse mackerel (Nikoletta et al. 2012), the Atlantic cod (Gadus morhua Linnaeus, 1758) (Bui et al. 2011), Antarctic fish (Fitzcharles 2012) and pelagic fish in the North Sea (Lelièvre et al. 2012). The mtDNA control region (D-loop) sequence was used to identify marine fish eggs in Taiwan (Shao et al. 2002) and pufferfish in the Sea of Japan for identification of spawning sites (Katamachi et al. 2015). The sequence of 16S rRNA gene successfully discriminated the pelagic fish eggs in the western North Pacific (Kawakami et al. 2010). Another mtDNA coding gene, cytochrome b (cyt b), was broadly used as a marker for phylogeny in various taxonomic fishes (e.g. Peng et al. 2004; Zhang et al.
2010), and also for species identification (Kartavtsev et al. 2007; Zhang et al. 2010). The gene has proven to be highly efficient and reliable for pelagic eggs in southeastern Australia (Neira et al. 2015).

In this study, we have applied cyt b gene for identification of drifting fish eggs sampled from several spawning grounds in the Middle and Upper Yangtze River. The objective was to i) test identification efficiency of cyt b gene for drifting eggs in the Yangtze River, and ii) to investigate species composition and distribution in different spawning grounds.

MATERIALS AND METHODS
Sampling location and egg collection
May to July of each year is the spawning season for most fish in the Yangtze River. During this period in 2016, nine stations were set up to collect drifting fish eggs. These were the Yangtze River Panzhihua section (YPZ), the Yangtze River Jiangjin section (YJJ), the Yangtze River Yidou section (YYD), the Yangtze River Jingzhou section (YJZ), the Yangtze River Sanzhou section (YSZ), the Yangtze River Yanwo section (YYW), the Minjiang River Yibin section (MYB), the Chishui River Chishui section (CCS) and the Xiangjiang River Yingtian section (XYT) (Fig.1). Among these stations, the four stations of YPZ, YJJ, CCS and MYB were located in the upper reaches and the five stations of YYD, YJZ, YSZ, YYW and XYT in the middle reaches of the Yangtze River. Three stations, MYB, CCS and XYT were located in tributary rivers, and the other six stations were located in the main stream of the Yangtze River. Eggs were collected from YJJ in 2014 and 2015, and from YSZ and YYW in 2015. These collections were also used in this study.

Collecting nets and methods were described as Duan et al. (2009). Trap nets were put down in water at 6:00 to 9:30 and 16:00 to 19:00 every day during spawning season, and retrieved every 15 minutes. Each egg was recorded for morphological traits, such as developmental stage and size, and then preserved in a 2 mL EP tube with absolute ethanol.

The sampling work has been approved by the local related management departments named fishing administration supervision and administration station. This study is fully complied with the relevant laws and ethics of the country.

DNA extraction, PCR
Ethanol was decanted off specimens and eggs were soaked in 1.5 mL ddH$_2$O for 1 h. Water was then removed with a pipette, and egg genomic DNA was extracted using an easy-DNA Kit (Omega, Connecticut, USA).

Mitochondrial (mt) cyt b gene was used as a molecular marker for species identification. The forward primer was L14322: 5´-GAC TTG AAG AAC CAC CGT TGT TAT TCA AC-3´ and the reverse primer H15576: 5´-GCG CTA GGG AGG AAT TTA ACC TCC-3´. PCR reactions had a final volume of 25 µl and contained 2.5 µl 10 x PCR Buffer (TaKaRa, Dalian, China), 0.2 µl of 10 mmol/L dNTPs, 1 µL of each 10 µmol/L primers, 0.5 u Taq enzyme (TaKaRa, Dalian, China), 1 µl of template DNA. The PCR reaction cycles were as follows: Pre-denaturation at 94 °C for 4 min, 35 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30 s, extension at 72 °C for 90 s, and a final extension at 72 °C for 8 min.

PCR products were checked via 1.5% agarose gel electrophoresis and visualized with ethidium bromide to verify successful amplification. PCR DNA bands with expected size were purified using Cycle-Pure Kit (Omega, Connecticut, USA) and sequenced with the same primers as PCR (Tianyi biotech. Co. Ltd, Wuhan, China).

Data analysis
All sequences were aligned and trimmed to the same length using Muscle (Edgar 2004) in
MEGA X (Kumar et al. 2018). Sequence properties of indels, frameshift mutations, in-frame stop codons were carefully examined to eliminate presence of pseudogene or nonfunctional sequences. The genetic distance based on Kimura 2-parameter (Kimura, 1980) between the individuals were calculated using MEGA X (Kumar et al. 2018) and a neighbor-joining tree (NJ tree) (Saitou and Nei, 1987) was constructed with 1000 bootstrap replicates (Felsenstein, 1985). Sequences with 2% or lower of genetic distance and clustered as a monophyletic group in the NJ tree will be assigned to an operational taxonomic unit (OTU) and considered as a species. One or two sequences from each OTU were selected to compare with nucleotide sequences from GenBank (National Center for Biotechnology Information, NCBI) with the standard nucleotide BLAST (Basic Local Alignment Search Tool). Eggs were associated with a given species only if the similarity values were 98% or greater.

Species diversity of spawning ground was characterized using Shannon-Wiener diversity index (Schoener 1968). The Shannon-Wiener index is calculated as:

$$H' = - \sum P_i \ln P_i$$

Where p_i is the proportion of species in total samples (egg numbers).

Similarities of species component between spawning grounds were evaluated by Jaccard’s similarity index (JI) (Real and Vargas, 1996) using the formula $JI = a/(a+b+c)$, where ‘a’ is the number of species shared by two spawning ground, and ‘b’ and ‘c’ are the numbers of species specific in each spawning ground. Correlation between JI and the river-way distance was determined by the Mantel test with 1000 random permutations performed in Arlequin v3.1 (Excoffier and Lischer 2010).

RESULTS
Species identification and diversity
Overall, 8983 drifting eggs were recovered from the nine stations, of which 7,933 were sequenced successfully. All sequences were trimmed to the same length with 605bp. A NJ tree, constructed to cluster species, revealed thirty-nine OTUs (Fig. 2). Comparing with sequences of adults and GenBank data, a total of 39 species were identified, representing 28 genera, 4 families, and 2 orders (Fig. 2, Table 1). The intraspecific and interspecific genetic distance range from 0 to 0.0288, and from 0.0308 (Botia superciliaris Günther, 1892- Botia reevesae Chang, 1944) to 0.3038 (Glyptothorax sinensis Regan, 1908- Pseudolaubuca engraulis Nichols, 1925), respectively (Showed in Supplement table). Approximately 64% of the species and 67% of eggs belonged to the Family Cyprinidae. In addition, 26% of the species and 28% of eggs were from the Family Cobitidae. The most commonly distributed species were the silver carp (H. molitrix), grass carp (C. idellus), silver gudgeon (S. argentatus) and Yichang gudgeon (G. filifer). No fish species were found in all sampled stations.

The spawning ground with the highest species diversity was YJJ with 27 species identified, from 2014–2016. The next were YYD and YJZ, with 20 species found in both. The Shannon-Wiener (H) diversity index of these three spawning grounds were greater than 2.0, and the other five were under 1.9. Stations with the lowest species diversity were YPZ, having 8 species.

Species similarity among sites
Pairwise Jaccard’s similarity index and river-way distances among sampled stations are listed in Table 2. There are only one or two identical species among 19 to 28 species between YPZ and the four stations in the Middle Yangtze River (YYD, YJZ, YSZ, and YYW) and XYT station in the Xiangjiang River, which obtained the least JI values, ranging from 0 to 0.0952. However, JI values among the four stations in the Middle Yangtze River had the highest values, ranging from
A Strongly negative correlation was found between the JI and river-way distance (Mantel test, $R=-0.9003$).

DISCUSSION

In previous studies, Cao et al. (2007) and Li et al. (2013) have shown that approximately 25 species of fish lay drifting eggs in the Yangtze River. Here we identified 39 species from captured drifting fish eggs in seven sampled stations using the mitochondrial Cyt b gene sequences. All obtained sequences had 98% identity with sequences in GenBank, indicating that reference data of the fish are available. Thus, fish eggs can successfully be identified to the species level. Intraspacific similarity of Cyt b gene sequence was greater than 98%, and interspecific distance higher than 2% for all these fish species. These studies indicate that mitochondrial sequence data are a power tool of species identification of drifting eggs in the Yangtze River, and may also contribute to identify rare or endangered species of fish. For example, some fish such as *Saurogobio gymnocheilus* Lo, Yao & Chen, 1998, *B. reevesae*, *Paracobitis potanini* Günther, 1896, and *Jinshaia abbreviata* Günther, 1892, have had a low catch rate in recent years, but were detected in one or two spawning grounds in this study (Table 1). This observation may suggest that there are also smaller populations living in the river. However, two common fish species that lay drifting eggs in the Upper Yangtze River, *C. guichenoti* and *Rhinogobio ventralis* Sauvage & Dabry de Thiersant, 1874 (Xiong et al. 2014; Liu et al. 2010; Xiong et al. 2016), were not found in this study. This may indicate that their spawning grounds were not in our monitoring stations. In addition, two recorded Leuciscin carps laying drifting eggs, *Ochetobius elongatus* Kner, 1867 (still found in Pearl River) and *Luciobrama macrocephalus* Lacepède, 1803 in the middle Yangtze River, were also not found from analysis of eggs. Since they have been not captured in recent years it is possible that these species are endangered to extinction in the Yangtze River.

Several species from the *Culters* genus were found in the collected eggs, such as *Culter alburnus* Basilewsky, 1855, *Culter mongolicus* Dybowski, 1872, and *Cultrichthys erythropterus* Basilewsky, 1855. Interestingly, these are not typical fish that lay drifting eggs. They generally spawn weakly viscous eggs among water plants or in river gravel and can also spawn in still water (Cao et al. 2008). They were detected in the YJJ station due to falling off from plants or gravels by river torrents. *G. sinensis* which is distributed in the Yangtze River and its tributaries and lakes, also produces viscous eggs not drifting, and their eggs usually adhere to stones in the water (Ding, 1994; Chu et al. 1999). Two eggs of *G. sinensis* were found in the YPZ station, where the current velocity could be greater than 2 m/s (Xu et al. 2013).

The negative correlation between species similarity and river way distance reflected the diversity of ecological conditions in the Yangtze River. The nearer river stations have similar ecological characteristics, such as temperature, current velocity, and water flow, which attract more of the same fish to spawn. There are distinct differences in hydrology between the middle and upper reaches of the Yangtze River. The river is narrow, swift, and with a steep fall in elevation in the upper reaches compared with the wider, slower, and gradual fall in the middle reaches. Ecological differences shape the specificity of fish in the spawn ground. Six species, including *Squaliobarbus curriculus* Richardson, 1846, *Elopichthys bambusa* Richardson, 1845, *Parabramis pekinensis* Basilewsky, 1855, *Pseudobrama simoni* Bleeker, 1864, *Xenocypris argentea* Bleeker, 1871 and *Parabotia banarescu* Nalbant, 1965 are only found in the YYD, YJZ and/or YSZ, and YYW stations, consistent with their endemic presence in the middle Yangtze River. The upper
Yangtze River involved fourteen species, including *S. gymnocheilus*, *Hemiculterella sauvagei* Warpachowski, 1888, *Xenophysogobio boulengeri* Tchang, 1929, *Xenophysogobio nudicorpa* Huang & Zhang, 1986, *Leptobotia rubrilabris* Leptobotia rubrilabris,Dabry de Thiersant, 1872, *Leptobotia microphthalmalma* Fu & Ye, 1983, *Leptobotia elongata* Bleeker, 1870, *B. reevesae*, *B. superciliaris*, *P. potanini*, *Jinshaia sinensis* Sauvage & Dabry de Thiersant, 1874, and *J. abbreviate*. Adults of *L. elongate*, the largest fish in the Family Cobitidae, were also found in the middle Yangtze River, but no eggs were detected in stations there. Larvae of *L. elongate* born upstream should have crossed the Three Gorges Dam to the middle reaches of the river.

Species diversity of the YJJ station was shown to be the richest, and it harbored not only some importantly economic fish, such as FDC, also some unique fish, such as *S. gymnocheilus* (Table 1). This river reach is a very important spawning ground for fish laying drifting eggs. The numbers of species in the tributary river is less comparing with the Main River, but the rivers could be important spawning grounds for particular species. For example, the number of the small eye loach, *L. microphthalmalma* accounted for more than 86% of the total eggs in the MYB station, where in down reaches of Minjiang River. In the CCS station, located in the Chishui River, the species and egg numbers of species in the Family Cobitidae accounted for 50% and 36% of the total captures, respectively.

Though spawning and egg development of most of the fish identified in this study rely on running water, dependency levels were different. For example, FCD are apt to spawn in sudden floods (Duan et al. 2009, Li et al. 2011). However, spawning activity of *G. filifer* is negatively correlated with water discharge and water velocity (Tian et al. 2017). Understanding the composition of fish species at each spawning ground helps to assess the impact of environmental changes on fish, and molecular methods could be a useful tool for conducting this task effectively.

Our study presented a highly effective approach for rapid species identification of drifting eggs in Yangtze River, and it should due to reference data obtained in Genbank. A small percentage of collected eggs were not sequenced (approximately 11%), which can be attributed to several errors along the path from collection to sequencing, such as improper egg preservation, DNA extraction and PCR failure. For large scale survey, the lab time as well as amplification and sequencing costs cannot to be ignored. Using high-throughput pipelines as an automatization of egg sorting, and a 96-well system for DNA extraction and for PCR amplification (Hofmann et al. 2017) and/or multiplex arrays (Gleason and Burton, 2012) is recommended. Another problem using a single gene of mtDNA for species identification is presence of heteroplasmy or incomplete lineage sorting within or among some species, which lead to aborted identification at species-level (Hubert et al.2008;April et al. 2011; Shen et al. 2016). Using more loci, for example COI, control region and ITS of rDNA, can improve the success rate of identification.

CONCLUSIONS

Mitochondrial DNA sequence is a powerful and effective tool for identifying species of drifting fish egg in Yangtze River. Species diversity in the main river is higher than that in tributaries, however some fish species prefer to spawn in tributaries.

ACKNOWLEDGMENTS

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

REFERENCES

Ahern A, Gómezgutiérrez J, Aburtooropeza O, Saldieña-Martínez R, Johnson A, Harada A, Sánchez-Uvera
A, Erisman B, Castro Arvizú D, Burton R. 2018. DNA sequencing of fish eggs and larvae reveals high species diversity and seasonal changes in spawning activity in the southeastern Gulf of California. *Marine Ecology Progress*, 592.

April J, Mayden R, Hanner R, Bernatchez L. 2011. Genetic calibration of species diversity among North America’s freshwater fishes. *Proceedings of the National Academy of Sciences of the United States of America*, 108:10602–10607.

Ardura A, Morote E, Kochzius M, Garcia-Vazquez E. 2016. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. *PeerJ*, 4(3):e2438.

Baldwin C, Brito B, Smith D, Weigt L, Escobar-Briones E. 2011. Identification of early life-history stages of Caribbean apogon (Perciformes: Apogonidae) through DNA Barcoding. *Zootaxa*, 3133, 1–36.

Bui A, Castonguay M, Ouellet P, Sévigny J. 2011. Searching for Atlantic cod (Gadus morhua) spawning sites in the northwest Gulf of St Lawrence (Canada) using molecular techniques. *Ices Journal of Marine Science*, 68(5):911-918.

Burghart S, Woudenberg L, Daniels C, Meyers S, Peebles E and Breitbart M. 2014. Disparity between planktonic fish egg and larval communities as indicated by DNA barcoding. *Marine Ecology Progress*, 503(1):195-204.

Cao W, Chang J, Qiao Y, Duan Z. 2007. Fish resources of early life history stages in Yangtze River, China. *Water Power Press, Beijing*.

Chen D, Xiong F, Wang K, Chang Y. 2009. Status of research on Yangtze fish biology and fisheries. *Environmental Biology of Fishes*, 85(4):337-357.

Cheng F, Li W, Castello L, Murphy B, Xie S. 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. *Reviews in Fish Biology and Fisheries*, 25(3):569-585.

Chu X, Zhen B, Dai D. 1999. Fauna Sinica, Osteichthyes, Siluriforms. Beijing: Science Press, 133-135.

Costa F, Landi M, Martins R, Costa M, Costa M, Carneiro M, Carvalho G. 2012. A ranking system for reference libraries of DNA barcodes: Application to marine fish species from Portugal. *PLoS ONE*, 7, e35858.

Ding R. 1994. Sichuan fish fauna. Sichuan Science and Technology Press, 481-484.

Duan X, Liu S, Huang M, Qiu S, Li Z, Wang K, Chen D. 2009. Changes in abundance of larvae of the four domestic Chinese carps in the middle reach of the Yangtze River, China, before and after closing of the Three Gorges Dam. *Environmental Biology of Fishes*, 86(1):13-22.

Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, 32(5):1792-1797.

Excoffier L, Lischer H. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources*, 10, 564-567.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* 39:783-791.

Fitzcharles E. 2012. Rapid discrimination between four Antarctic fish species, genus Macrourus, using HRM analysis. *Fishes Research*, 127-128: 166-170.

Frintane-Silva W, Sofia S, Orsi M, Almeida F. 2015. DNA barcoding of freshwater ichthyoplankton in the Neotropics as a tool for ecological monitoring. *Molecular Ecology Resources*, 15(5):1226-1237.

Gao X, Zeng Y, Wang J, Liu H. 2010. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir. *Environmental Biology of Fishes*, 87:163–173.

Gao S, Tang H, Chen S. 2015. Effects of the first phase of Jinsha River Hydropower Project on fish Recruitment: early life history Stages of Coreius guichenoti in the Upper Yangtze River. *Journal of Hydroecology*, 36(2):6-10.

Gleason L, Burton R. 2012. High-throughput molecular identification of fish eggs using multiplex suspension bead arrays. *Molecular Ecology Resources*, 12(1):57-66.

Harada A, Lindgren E, Hermsmeyer M. 2015. Monitoring spawning activity in a southern California Marine Protected Area using molecular identification of fish eggs. *Plos One*, 10(8): e0134647.

Hebert P, Cywinska A, Ball S, deWaard J. 2003a. Biological identifications through DNA barcodes. *Proceedings of the National Academy of Sciences of the United States of America*, 100, 5763-5768.

Hebert P, Ratnasingham S, deWaard J. 2003b. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. *Proceedings of the National Academy of Sciences of the United States of America*, 100, 5763-5768.

Hofmann T, Knebelsberger T, Kloppmann M, Ulleweil J, Raupach M J. 2017. Egg identification of three economical important fish species using dna barcoding in comparison to a morphological
Huang L, Li J. 2016. Status of freshwater Fish biodiversity in the Yangtze River Basin, China. Aquatic Biodiversity Conservation and Ecosystem Services. Springer Singapore.

Hubert N, Delrieu-Trottin E, Irissor J O, Meyer C, Planes S. 2010. Identifying coral reef fish larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae. Molecular Phylogenetics and Evolution, 55, 1195 – 1203.

Hubert N, Hanner R, Holm E, Mandrak N, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L. 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3:e2490.

Kartavtsev Y, Park T, Vinnikov K, Ivankov V, Sharina S, Lee J. 2007. Cytochrome \(\text{Cyt-b}\) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights. Marine Biology, 152(4):757-773.

Katamachi D, Ikeda M, Uno K. 2015. Identification of spawning sites of the tiger puffer Takifugu rubripes, in Nanao Bay, Japan, using DNA analysis. Fisheries Science, 81(3):485-494.

Kawakami T, Aoyama J, Tsukamoto K. 2010. Morphology of pelagic fish eggs identified using mitochondrial DNA and their distribution in waters west of the Mariana Islands. Environmental Biology of Fishes, 87(3):221-235.

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120.

Kumar S, Stecher G, Li M. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Phylogenetics and Evolution. 35: 1547-1549.

Landi M, Dimech M, Arculeo M, Biondo G, Martins R, Carneiro M, Carvalho GR, Brutto SL, Costa FO. 2014. DNA Barcoding for Species Assignment: The Case of Mediterranean Marine Fishes. PloS One, 9(9):e106135.

Lelièvre S, Jérôme M, Maes G, Vaz S, Calaivany S, Verrez-Bagnis V. 2012. Integrating molecular identification of pelagic eggs with geostatistical mapping to improve the delineation of North Sea fish spawning grounds. Marine Ecology Progress, 445(1):161-172.

Lewis LA, Richardson DE, Zakharov EV, Hanner R. 2016. Integrating DNA barcoding of fish eggs into ichthyoplankton monitoring programs. Fishery Bulletin.114: 153-165.

Li M, Gao X, Yang R, Duan Z, Cao W. 2013. Effects of environmental factors on natural reproduction of the four major Chinese carps in the Yangtze River, China. Zoological Science, 30(4):296-303.

Li W, Cai Y, Tang Y. 2011. Preliminary study on the larval resources of fishes spawning drifting eggs in the middle and lower reaches of the Hanjiang River. Journal of Hydroecology, 32:53-57.

Liu F, Li L, Liu H. 2014. Diel drifting pattern of fish eggs in Chishui section of the Chishui River. Freshwater Fisheries, 44(6):87-91.

Neira F, Perry R, Burridge C, Lyle J, Keane J. 2015. Molecular discrimination of shelf-spawned eggs of two co-occurring Trachurus spp. (Carangidae) in southeastern Australia: a key step to future egg-based biomass estimates. Ices Journal of Marine Science, 72(2):614-624.

Nikoletta K, Alexer T, Paula A, Placida L, Eva G. 2010. Horse mackerel egg identification using DNA methodology. Marine Ecology, 28(4):429-434.

Peng Z, He S, Zhang Y. 2004. Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Molecular Phylogenetics and Evolution, 31(3):979-987.

Real R, Vargas J. 1996. The probabilistic basis of Jaccard's Index of Similarity. Systematic Biology, 45(3):380-385.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 4:406-425.

Schoener T. 1968. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49:704-726.

Shao K, Chen K, Wu J. 2002. Identification of marine fish eggs in Taiwan using light microscopy, scanning electric microscopy and mtDNA sequencing. Marine and Freshwater Research, 53(2):355-365.

Shen Y, Guan L, Wang D, Gan X. 2016. Dna barcoding and evaluation of genetic diversity in cyprinidae fish in the midstream of the yangtze river. Ecology & Evolution, 6(9), 2702-2713.
Thompson A. 2016. Rockfish assemblage structure and spawning locations in southern California identified through larval sampling. *Marine Ecology Progress*, 547:177-192.

Tian H, Wang H, Gao T, Dong W, Lv , Chen D, Duan X. 2017. Early resources of *Gobiobotia filifer* and its relationship with environmental factors in the upper Yangtze River. *Freshwater Fisheries*, 47(2):71-78.

Wibowo A, Wahlberg N, Vasemägi A. 2017. DNA barcoding of fish larvae reveals uncharacterised biodiversity in tropical peat swamps of New Guinea, Indonesia. *Marine and Freshwater Research*, 68(6):1079-1087.

Wu J, Wang Q, Liu F. 2010. Fish resources of early life in Chishui section of the Chishui River. *Resources & Environment in the Yangtze Basin*, 19(11):1270-1276.

Xie W, Tang H, Huang D, Yang Z, Yang H. 2014. The current status of spawning grounds for fishes spawning as pelagic eggs in reaches from Qiyan to Hengnan in Xiangjiang River. *Fisheries Science*, 2: 103-107.

Xiong F, Liu H, Duan X, Liu S, Chen D. 2014. Stock Assessment of Coreius guichenoti in Jiangjin and Yibin Sections of the Upper Yangtze River. *Chinese Journal of Zoology*, 49(6):852-859.

Xiong F, Liu H, Duan X, Liu S, Chen D. 2016. Estimating population abundance and utilization of *Rhinogobio ventralis*, an endemic fish species in the upper Yangtze River. *Biodiversity Science*, 24 (3): 304-312.

Xu W, Qiao Y, Chen X, Cai Y, Yang Z. 2015. Spawning activity of the four major Chinese carps in the middle mainstream of the Yangtze River, during the Three Gorges Reservoir operation period, China. *Journal of Applied Ichthyology*, 31(5):1-1.

Xu X, Wang G, Fu H. 2013. Study on impact from hydropower planning on hydrological regime of Panzhihua Reach of Jinshajiang River. *Water Resources and Hydropower Engineering*, 44(2):2-4.

Yi B, Liang Z. 1964. Natural conditions and major external factors contributing to spawning in the Yangtze River domestic fish spawning grounds. *Aquatic biology collection*, 5(1): 1-15.

Yi B, Yu Z, Liang Z. 1988. A comparative study of the early development of grass carp, black carp, silver carp and big head of the Yangtze River. In: Yi B, Yu Z, Liang Z (eds) Gezhouba Water Control Project and four domestic fishes in Yangtze River. Hubei Science and Technology Press, Wuhan, China, 69-116.

Yi Y, Wang Z, Yang Z. 2010. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. *Journal of Hydrology*, 387(3-4):283-291.

Zhang G, Wu L, Li H. 2012. Preliminary evidence of delayed spawning and suppressed larval growth and condition of the major carps in the Yangtze River below the Three Gorges Dam. *Environmental Biology of Fishes*, 93(93):439-447.

Zhang J, Li M, Xu M, Takita T, Wei F. 2010. Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences, with comments on estuarine fish evolution. *Biological Journal of the Linnean Society*, 91(2):325-340.

Fig. 1 Location of nine sample stations (YPZ, MYB, CCS, YJJ, YYD, YJZ, YSZ, YYW, XYT) and species composition in Family

1-Gezhouba Dam, 2- Three Gorges Dam, 3- Xiangjiaba Dam

Fig. 2 Neighbour-Joining tree of 8,983 fish eggs using mtDNA cyt b gene. Bootstrap values for 1,000 replicates are shown on nodes, and support rates below 50% were cut off. Numbers in brackets are the amount of eggs sampled.

Supplement Table: The intraspecific and interspecific genetic distance based on Kimura 2-parameter model in this study. Values with underline showed the maximum intraspecific distance.
Figure 1

Location of nine sample stations and species composition in Family

1-Gezhouba Dam, 2- Three Gorges Dam, 3- Xiangjiaba Dam.
Figure 2

Neighbour-joining tree of 8,983 fish eggs using mtDNA cyt b gene.
Table 1 (on next page)

Species composition and diversity in nine sampled stations of the Yangtze River
Table 1 Species composition and diversity in nine sampled stations of the Yangtze River

Orders	Families	Species	Stations & Years	GenBank	Total number of eggs	Ratio (%)	Identity %													
			YPZ	MYB	CCS	No.	YIJ	No.	YSZ	No.	YYW	No.	XYT	No.						
			2016	2016	2016	2016	2015	2015	2015	2016	2016	2016	2016	2016	2016					
		Hypophthalmichthys molitrix	2	28	39	97	169	28	1	2	8	6	11	391	4.929	EU315941	98-100			
Cypriniformes		Aristichthys nobilis	1	5	1	1	1	9	0.113	EU343733	99-100									
		Ctenopharyngodon idellus	9	27	44	88	68	49	2	3	3	1	1	295	3.719	EU391390	99-100			
		Mylopharyngodon piceus	8	7	12	13	7	1	48	0.605	EU979307	99-00								
		Squaliobarbus curriculus	1	8	1	1	10	0.126	EU910141	98-100										
		Elopichthys bambusa	2	23			40	37	9	19	7	14	126	1.588	KM196112	99-100				
		Parabramis pekinensis	40	37	9	19	7	14	126	1.588	NC_022678	99-100								
		Hemiculter bleekeri	7	9	23	50	113	19	43	52	213	803	10.122	KT361083	98-100					
		Hemiculter leuciscus	40	1	9	50	0.630													
		Pseudolaubuca engraulis	15	1	84	320	407	1	4	3	835	10.526	NC_020462	99-100						
		Pseudolaubuca sinensis	36	1	1	4	148	136	2	324	4.084	KY471356	99-100							
		Culter mongolicus	1	3	1	4	0.050	AP099060	99-100											
		Culter alburnus	1	6	1	8	0.101	KX829023	99-100											
		Cultrichthys erythropterus	3	3	3	8	0.038	AF051859	99-100											
		Coreius heterokon	49	30	93	5	177	2.231	NC_020041	99-100										
		Rhinogobio tayus	9	43	124	322	1	26	2	6	5	538	6.782	KU323963	98-100					
		Saurogobio dabryi	1	1	2	5	17	0.013	NC_022845	99-100										
		Hemiculterella saucagei	5	2	5	15	27	0.340	KP316066	98-100										
		Saurogobio gymnarchicus	1	1	28	35	4	21	9	98	1.235	KR362925	98-100							
		Squalius argentatus	1	31	38	63	13	111	36	5	20	171	493	6.215	KM654503	98-100				
		Gobiobota filifer	42	92	48	197	418	1	27	5	5	6	857	10.803	KM352413	98-100				
		Xenophysogobio boulengeri	3	54	2	16	1	7	82	1.034	KM052390	98-100								
		Xenophysogobio nudicorpa	2	2	2	2	0.025	KM373519	98-100											
		Pseudobrama simoni	41	10	1	4	1	56	0.706	AP0909059	98-100									
		Leptotobatia rubrilabris	1	1	5	15	23	0.290	AY625717	98-100										
		Leptotobatia tientainensis	3	32	3	9	6	1	54	0.681	AY625725	98-100								
		Leptotobatia microphthalma	1303	1	11	365	1	1682	21.203	NC_024049	99-100									
Species	Balitoridae	Sinorhyncidae	Siluriformes	Nucleotide	Accession	Percentage														
-------------------------	-------------	---------------	-------------	------------	-----------	------------														
Leptobotia elongata	2	5	11	6	32	58	0.731	JQ230103	99-100											
Leptobotia taeniaps	3	9	3	5	19	3	19	4	2	3	1	71	0.895	KM386686	99-100					
Parabotia fasciata	4	18	13	10	30	2	3	4	6	4	2	4	77	0.971	AY625709	98-100				
Parabotia banarescui	2	4																		
Botia reevesae	1	2																		
Botia superciliaris	11	37	87	3	22	110	270	3	4	0.038	KU954768	98-100								
Paracubitis potanini	1									0.013	KP749475	99								
Balitoridae	117	1505	303	361	974	2314	577	704	403	39	100	108	428	7933	100					
Species number	8	20	12	21	21	26	20	20	16	6	11	13	11	40						
Shonnon H	1.552	0.686	1.781	2.317	2.185	2.441	2.018	2.506	1.322	1.396	1.831	1.759	1.117	2.710	100					
Table 2 (on next page)

Fish Jaccard’s similarity index (JI) and river-way distances among sampled stations in the Yangtze River
Table 2 Fish Jaccard’s similarity index (JI) and river-way distances among sampled stations in the Yangtze River (Mantel test, R=-0.9003)

Stations	YPZ	MYB	CCS	YJJ	YYD	YJZ	YSZ	YYW	XYT
YPZ	0	780	1045	1085	1855	1955	2140	2305	2255
MYB	0.3333	0	265	305	1075	1175	1360	1525	1475
CCS	0.2667	0.4545	0	150	920	1020	1205	1370	1320
YJJ	0.2800	0.4687	0.3437	0	770	870	1055	1220	1170
YYD	0	0.2187	0.2800	0.4242	0	100	285	450	400
YJZ	0.0370	0.2581	0.2800	0.4242	0.7391	0	185	350	300
YSZ	0.0952	0.2593	0.3333	0.4333	0.5217	0.5652	0	165	115
YYW	0.0909	0.2593	0.2500	0.3548	0.6500	0.6364	0.5500	0	210
XYT	0	0.1852	0.1579	0.2667	0.4762	0.4286	0.6667	0.5625	0