Topological tensor current of \(\tilde{p} \)-branes in the \(\phi \)-mapping theory

Yishi Duan, Libin Fu* and Guang Jia

Institute of Theoretical Physics, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China

(March 28, 2022)

Abstract

We present a new topological tensor current of \(\tilde{p} \)-branes by making use of the \(\phi \)-mapping theory. It is shown that the current is identically conserved and behave as \(\delta(\tilde{\phi}) \), and every isolated zero of the vector field \(\tilde{\phi}(x) \) corresponds to a ‘magnetic’ \(\tilde{p} \)-brane. Using this topological current, the generalized Nambu action for multi \(\tilde{p} \)-branes is given, and the field strength \(F \) corresponding to this topological tensor current is obtained. It is also shown that the ‘magnetic’ charges carried by \(\tilde{p} \)-branes are topologically quantized and labeled by Hopf index and Brouwer degree, the winding number of the \(\phi \)-mapping.

I. INTRODUCTION

Extended objects with \(p \) spatial dimensional, known as ‘branes’, play an essential role in revealing the non-perturbative structure of the superstring theories and \(M \)-theories \[1-4\]. Antisymmetric tensor gauge fields have been widely studied in the theories of \(p \)-branes \[5-7\]. In the context of the effective \(D = 10 \) or \(D = 11 \) supergravity theory a \(p \)-brane is a \(p \)-dimensional extended source for a \((p + 2)\)-form gauge field strength \(F \). It is well-known that the \((p + 2)\)-form strength \(F \) satisfies the field equation

\[
\nabla_\mu F^{\mu\mu_1\cdots\mu_{p+1}} = j^{\mu_1\cdots\mu_{p+1}}
\]

*Corresponding author. E-mail: itp2@lzu.edu.cn
where $j^{\mu_1 \cdots \mu_{p+1}}$ is a $(p + 1)$-form tensor current and corresponding to electric source, and the dual field strength $*F$ satisfies

$$\nabla_\mu * F^{\mu_1 \cdots \mu_{p+1}} = j^{\mu_1 \cdots \mu_{p+1}}$$

in which $j^{\mu_1 \cdots \mu_{p+1}}$ is a $(p + 1)$-form tensor current and corresponding to magnetic source [8] [9] [10].

The ϕ-mapping theory proposed by Prof. Duan [11,12] is important in studying the topological invariant and topological structure of physics systems and has been used to study topological current of magnetic monopole [11], topological string theory [12], topological structure of Gauss-Bonnet-Chern theorem [13], topological structure of the SU(2) Chern density [14] and topological structure of the London equation in superconductor [15]. We must pointed out that the ϕ-mapping theory is also a powerful tools to investigate the topological defects theory [16–18], and here the vector field $\vec{\phi}$ is looked upon as the order parameters of the defects.

In this paper, we present a new topological tensor current of ‘magnetic’ \tilde{p}-branes by making use of the ϕ-mapping theory. One shows that the each isolated zero of the d-dimensional vector field $\vec{\phi}(x)$ corresponds to a \tilde{p}-brane ($\tilde{p} = D - d - 1$), and this current is proved to be the general current density of multi \tilde{p}-branes. Using this current, the generalized Nambu action for multi \tilde{p}-branes is obtained. This topological tensor current will give rise to the inner structure of the field strength F including the contribution of the ‘magnetic’ \tilde{p}-branes. Finally, we show that the charges carried by multi \tilde{p}-branes are topologically quantized and labeled by the Hopf index and Brouwer degree, the winding number of the ϕ-mapping.

II. THE TOPOLOGICAL TENSOR CURRENT OF \tilde{P}-BRANES

Let X be a D-dimensional smooth manifold with metric tensor $g_{\mu\nu}$ and local coordinates $x^\mu (\mu, \nu = 0, \cdots, D - 1)$ with $x^0 = t$ as time, and let \mathbb{R}^d be an Euclidean space of dimension
We consider a smooth map \(\phi : X \rightarrow \mathbb{R}^d \), which gives a \(d \)-dimensional smooth vector field on \(X \)

\[
\phi^a = \phi^a(x), \quad a = 1, 2, \cdots, d.
\]

(1)

The direction unit field of \(\vec{\phi}(x) \) can be expressed as

\[
n^a = \frac{\phi^a}{||\phi||}, \quad ||\phi|| = \sqrt{\phi^a \phi^a}.
\]

(2)

In the \(\phi \)-mapping theory, to extend the theory of magnetic monopoles [11] and the topological string theory [12], we present a new topological tensor current, with the unit ‘magnetic’ charge \(g_m \), defined as

\[
\tilde{j}^{\mu_1 \cdots \mu_{D-d}} = \frac{g_m}{A(S^{d-1})(d-1)!} \left(\frac{1}{\sqrt{g}} \right)^{\mu_1 \cdots \mu_{D-d} \mu_{D-d+1} \cdots \mu_{D}} \epsilon_{a_1 a_2 \cdots a_d} \partial_{\mu(D-d+1)} n^{a_1} \partial_{\mu(D-d-2)} n^{a_2} \cdots \partial_{\mu_D} n^{a_d}
\]

(3)

where \(g \) is the determinant of the metric tensor \(g_{\mu\nu} \). Obviously, this ‘magnetic’ tensor current is identically conserved,

\[
\nabla_{\mu_{i}} \tilde{j}^{\mu_1 \cdots \mu_{D-d}} = 0, \quad i = 1, \cdots, D - d.
\]

(4)

From (2) we have

\[
\partial_{\mu} n^a = \frac{1}{||\phi||} \partial_{\mu} \phi^a + \phi^a \partial_{\mu} \left(\frac{1}{||\phi||} \right)
\]

(5)

\[
\frac{\partial}{\partial \phi^a} \left(\frac{1}{||\phi||} \right) = -\frac{\phi^a}{||\phi||^3}
\]

(6)

Using the above expressions, the general tensor current can be rewritten as

\[
\tilde{j}^{\mu_1 \cdots \mu_{D-d}} = \frac{g_m}{A(S^{d-1})(d-1)(d-2)!} \left(\frac{1}{\sqrt{g}} \right)^{\mu_1 \cdots \mu_{D-d} \mu_{D-d+1} \cdots \mu_{D}} \epsilon_{a_1 a_2 \cdots a_d} \partial_{\mu(D-d+1)} \phi^a \partial_{\mu(D-d-2)} \phi^{a_2} \cdots \partial_{\mu_D} \phi^{a_d} \frac{\partial}{\partial \phi^a} \frac{\partial}{\partial \phi^{a_1}} \left(\frac{1}{||\phi||^{d-2}} \right).
\]

(7)

If we define a generalized Jacobians tensor as
\[\varepsilon^{a_1 \cdots a_d} J^{\mu_1 \cdots \mu_{D-d}} = \varepsilon^{\mu_1 \cdots \mu_{D-d} \mu_{D-d+1} \mu_{D-d+2} \cdots \mu_D} \partial_{\mu(D-d+1)} \phi^{a_1} \partial_{\mu(D-d+2)} \phi^{a_2} \cdots \partial_{\mu_D} \phi^{a_d} \] (8)

and make use of the generalized Laplacian Green function relation in \(\phi \)-space

\[\frac{\partial}{\partial \phi^a} \frac{\partial}{\partial \phi^a} \left(\frac{1}{||\phi||^{d-2}} \right) = \frac{4\pi^d}{\Gamma(d/2 - 1)} \delta(\vec{\phi}), \] (9)

we obtain a \(\delta \)-function like tensor current \[12\]

\[\tilde{j}^{\mu_1 \cdots \mu_{D-d}} = g_m \delta(\vec{\phi}) J^{\mu_1 \cdots \mu_{D-d}} (\vec{\phi}) \left(\frac{1}{\sqrt{g}} \right). \] (10)

We find that \(\tilde{j}^{\mu_1 \cdots \mu_{D-d}} \neq 0 \) only when \(\phi = 0 \). So, it is essential to discuss the solutions of the equations

\[\phi^a(x) = 0, \quad a = 1, \cdots, d \] (11)

Suppose that the vector field \(\vec{\phi}(x) \) possesses \(l \) isolated zeroes, according to the deduction of Ref. \[12\] and the implicit function theorem \[19\] \[20\], when the zeroes are regular points of \(\phi \)-mapping, i.e. the rank of the Jacobian matrix \([\partial_{\mu} \phi^a] \) is \(d \), the solution of \(\vec{\phi}(x) = 0 \) can be parameterized by

\[x^\mu = z_i^\mu (u^1, u^2, \cdots, u^{D-d}), \quad i = 1, \cdots, l, \] (12)

where the subscript \(i \) represents the \(i \)-th solution and the parameters \(u = u(u^1, \cdots, u^{D-d}) \) span a \((D - d) \)-dimensional submanifold of \(X \), denoted by \(N_i \), which corresponds to a \(\tilde{p} \)-brane \((\tilde{p} = D - d - 1) \) with spatial \(\tilde{p} \)-dimension and \(N_i \) is its worldvolume. One see that the tensor current \(\tilde{j}^{\mu_1 \cdots \mu_{D-d}} \) is not vanished only on the worldvolume manifolds \(N_i \) \((i = 1, \cdots, l) \), each of which corresponds to a \(\tilde{p} \)-brane. Therefore, every isolated zero of \(\vec{\phi}(x) \) on \(X \) corresponds to a magnetic \(\tilde{p} \)-branes. These ‘magnetic’ \(\tilde{p} \)-branes had been formally discussed and not studied based on the topology theory \[22\] \[23\]. Here, we must pointed out that the \(\tilde{p} \)-branes, sometimes, may be considered as topological defects \[10\] \[24\], in this case for our theory the vector field \(\phi^a(x) \) \((a = 1, \cdots, d) \) may be looked upon as the generalized order parameters \[18\] for \(\tilde{p} \)-branes.
In the following, we will discuss the inner structure of the topological tensor current \(\tilde{j}^{\mu_1 \cdots \mu_{D-d}} \). It can be proved that there exists a \(d \)-dimensional submanifold \(M \) in \(X \) with the parametric equation

\[
x^\mu = x^\mu(v^1, \cdots, v^d), \quad \mu = 1, \cdots, D,
\]

which is transversal to every \(N_i \) at the point \(p_i \) with

\[
g_{\mu\nu} \frac{\partial x^\mu}{\partial u^I} \frac{\partial x^\nu}{\partial u^A} \Big|_{p_i} = 0, \quad I = 1, \cdots, D - d, \quad A = 1, \cdots, d.
\]

This is to say that the equations \(\vec{\phi}(x) = 0 \) have the isolated zero points on \(M \).

As we have pointed in Ref. [13,14], the unit vector field defined in (2) gives a Gauss map \(n : \partial M_i \to S^{d-1} \), and the generalized Winding Number can be given by this Gauss map

\[
W_i = \frac{1}{A(S^{d-1})(d-1)!} \int_{\partial M_i} n^* (\epsilon_{a_1 \cdots a_d} n^{a_1} dn^{a_2} \wedge \cdots \wedge dn^{a_d})
\]

\[
= \frac{1}{A(S^{d-1})(d-1)!} \int_{\partial M_i} \epsilon_{a_1 \cdots a_d} n^{a_1} \partial_{A_2} n^{a_2} \cdots \partial_{A_d} n^{a_d} dv^{A_2} \wedge \cdots \wedge dv^{A_d}
\]

\[
= \frac{1}{A(S^{d-1})(d-1)!} \int_{M_i} \epsilon^{A_1 \cdots A_d} \epsilon_{a_1 \cdots a_d} \partial_{A_1} n^{a_1} \partial_{A_2} n^{a_2} \cdots \partial_{A_d} n^{a_d} d^dv.
\]

(15)

where \(\partial M_i \) is the boundary of the neighborhood \(M_i \) of \(p_i \) on \(M \) with \(p_i \notin \partial M_i, M_i \cap M_j = \emptyset \). Then, by duplicating the derivation of (3) from (10), we obtain

\[
W_i = \int_{M_i} \delta(\vec{\phi}(v)) J(\vec{\phi}/v) d^dv.
\]

(16)

where \(J(\vec{\phi}/v) \) is the usual Jacobian determinant of \(\vec{\phi} \) with respect to \(v \)

\[
\epsilon^{a_1 \cdots a_d} J(\vec{\phi}/v) = \epsilon^{A_1 \cdots A_d} \partial_{A_1} n^{a_1} \partial_{A_2} n^{a_2} \cdots \partial_{A_d} n^{a_d}.
\]

(17)

According to the \(\delta \)-function theory [25] and the \(\phi \)-mapping theory, we know that \(\delta(\vec{\phi}(v)) \) can be expanded as

\[
\delta(\vec{\phi}(v)) = \sum_{i=1}^{l} \beta_i \eta_i \delta^d(\vec{v} - \vec{v}(p_i))
\]

(18)
on M, where the positive integer $\beta_i = |W_i|$ is called the Hopf index of the map $v \rightarrow \bar{\phi}(v)$ and $\eta_i = sgn(J(\bar{\phi}(v)))|_{p_i} = \pm 1$ is the Brouwer degree \[13,15\]. One can find the relation between the Hopf index β_i, the Brouwer degree η_i, and the winding number W_i

$$W_i = \beta_i \eta_i,$$

(19)

One see that the Eq. (18) is only the expansion of $\delta(\bar{\phi}(x))$ on M. In order to investigate the expansion of $\delta(\bar{\phi}(x))$ on the whole manifold X, we must expand the d-dimensional δ-function of the singular point in terms of the δ-function on the singular submanifold N_i which had been given in Ref. \[25\]

$$\delta(N_i) = \int_{N_i} \delta^D(x - z_i(u)) \sqrt{g_u} d^{(D-d)} u, \quad i = 1, \cdots, l$$

(20)

in which

$$g_u = \det(g_{\mu\nu} \frac{\partial x^\mu}{\partial u^I} \frac{\partial x^\nu}{\partial u^J}), \quad I, J = 1, \cdots, (D - d).$$

Then, from Eqs. (18), and by considering the property of the δ-function, one will obtain

$$\delta(\bar{\phi}(x)) = \sum_{i=1}^l \beta_i \eta_i \int_{N_i} \delta^D(x - z_i(u)) \sqrt{g_u} d^{(D-d)} u.$$

(21)

Therefore, the general topological current of the \tilde{p}-branes can be expressed directly as

$$\tilde{j}^{\mu_1 \cdots \mu_{D-d}} = \frac{1}{\sqrt{g}} J^{\mu_1 \cdots \mu_{D-d}} \frac{\bar{\phi}}{x} \sum_{i=1}^l \beta_i \eta_i \int_{N_i} \delta^D(x - z_i(u)) \sqrt{g_u} d^{(D-d)} u,$$

(22)

which is a new topological current theory of \tilde{p}-branes based on the $\bar{\phi}$-mapping theory.

If we define a Lagrangian as

$$L = \sqrt{\frac{1}{(D-d)!}} g_{\mu_1 \nu_1} \cdots g_{\mu_{(D-d)} \nu_{(D-d)}} \tilde{j}^{\mu_1 \cdots \mu_{D-d}} \tilde{j}^{\nu_1 \cdots \nu_{D-d}},$$

(23)

which is just the generalization of Nielsen’s Lagrangian \[24\], from the above deductions, we can prove that

$$L = \left(\frac{1}{\sqrt{g}}\right) \delta(\bar{\phi}(x)).$$

(24)
Then, the action takes the form

\[S = \int_X L \sqrt{g} d^D x = \int_X \delta(\vec{\phi}(x)) d^D x. \]

(25)

By substituting the formula (21) into (25), we obtain an important result

\[S = \int_X \sum_{i=1}^l \beta_i \eta_i \int_{N_i} \delta^D(x - z_i(u)) \sqrt{g_u} d^{(D-d)} u d^D x \]

\[= \sum_{i=1}^l \beta_i \eta_i \int_{N_i} \sqrt{g_u} d^{(D-d)} u, \]

(26)

i.e.

\[S = \sum_{i=1}^l \eta_i S_i, \]

(27)

where \(S_i = \beta_i \int_{N_i} \sqrt{g_u} d^{(D-d)} u \). This is just the generalized Nambu action for multi \(\tilde{p} \)-branes\((\tilde{p} = D - d - 1) \), which is the straightforward generalization of Nambu action for the string world-sheet action [27]. Here this action for multi \(\tilde{p} \)-branes is obtained directly by \(\phi \)-mapping theory, and it is easy to see that this action is just Nambu action for multi-strings when \(D - d = 2 \) [12].

\section*{III. THE GAUGE FIELD CORRESPONDING TO THE TOPOLOGICAL CURRENT}

In this section, we will study the antisymmetric tensor gauge field corresponding to the topological tensor current presented in above section. We know that \(p \)-branes naturally acts as the ‘electric’ source of a rank \(p + 2 \) field strength

\[F = dA, \]

(28)

where \(A \) is a \((p+1) \)-form as the tensor gauge potential and satisfies the gauge transformation

\[A \rightarrow A + d\Lambda_p. \]

From Eq. (28), one have the Bianchi identity

\[\]
\[dF \equiv 0. \]

(29)

And the ‘electric’ current density associated with the source can be expressed as

\[j^{\mu_1 \cdots \mu_{\bar{p}+1}} = \nabla_{\mu} F^{\mu \mu_1 \cdots \mu_{\bar{p}+1}}. \]

(30)

Just as the usual Maxwell’s equation, we know that Eqs. (28), (29) and (30) imply the presence of an ‘electric’ charge, i.e. \(p \)-branes, but no ‘magnetic’ source \[10].

Now, let us discuss the case when there exists the ‘magnetic’ source. For this case, one must introduce another \((p+2) \)-form \(G \) for the magnetic source, and the field strength \(F \) must be modified to

\[F = dA + G, \]

(31)

which is the generalized field strength including the contribution of the ‘magnetic’ source, i.e. ‘magnetic’ branes: \(\tilde{p} \)-branes with \(\tilde{p} = D - p - 4 \).

To obtain the explicit expression for \(G \), let us consider the current density corresponds to magnetic source which is given by

\[\tilde{j}^{\mu_1 \cdots \mu_{D-1}} = \nabla_{\mu} F^{\mu \mu_1 \cdots \mu_{D-1}}. \]

(32)

Using (31) and (32), we obtain

\[\tilde{j}^{\mu_1 \cdots \mu_{\tilde{p}+1}} = \frac{1}{\sqrt{g}} \partial_{\mu} (\sqrt{g} \perp^\mu_{\mu_1 \cdots \mu_{\tilde{p}+1}} G_{\mu_{\tilde{p}+2} \cdots \mu_{D-1}}), \]

(33)

It has been pointed out in the above section that the current density of the ‘magnetic’ branes is a topological current given by Eq. (4), which can be rewritten as

\[\tilde{j}^{\mu_1 \cdots \mu_{(D-1)}} = \frac{g_m}{A(S^{d-1})(d-1)!} \left(\frac{1}{\sqrt{g}} \right) \partial_{\mu_1} (\perp_{\mu_2 \cdots \mu_{D-1}} n^{a_1} \partial_{\mu_2} n^{a_2} \cdots \partial_{\mu_{d-1}} n^{a_d}), \]

(34)

where \((D - d) = \tilde{p} + 1 \), i.e. \(\tilde{p} = D - d - 1 \). Comparing the Eq. (33) to (34), we can obtain

\[G_{\mu_1 \cdots \mu_{d-1}} = \frac{(-1)^{(D-d)} g_m}{A(S^{d-1})(d-1)!} \perp_{a_1 \cdots a_d} n^{a_1} \partial_{\mu_1} n^{a_2} \cdots \partial_{\mu_{d-1}} n^{a_d}, \]

(35)
and
\[
G = \frac{(-1)^{(D-d)}g_m}{A(S^{d-1})(d-1)!} \epsilon_{a_1a_2\cdots a_d} n^{a_1}dn^{a_2}\wedge \cdots \wedge dn^{a_d}. \tag{36}
\]

Of equal interest is the ‘magnetic’ charge carried by the multi \tilde{p}-branes, which is given by
\[
Q^M = \int_{\Sigma} \tilde{j}^{\mu_1\cdots\mu_{\tilde{p}+1}} \sqrt{g}d\sigma_{\mu_1\cdots\mu_{\tilde{p}+1}} \tag{37}
\]
where Σ is a d-dimensional ($d = p + 3$) hypersurface in X, while $d\sigma_{\mu_1\cdots\mu_{\tilde{p}+1}}$ is the covariant surface element of Σ \[28\]. From (32) and (37), it is easy to prove that
\[
Q^M = \int_{\partial \Sigma} F,
\]
where $\partial \Sigma$ is the boundary of Σ and a $(p+2)$-dimension hypersurface. Substituting (22) into (37), we have
\[
Q^M = g_m \int_{\Sigma} J^{\mu_1\cdots\mu_{\tilde{p}+1}}(x) \sum_{i=1}^{l} \beta_i \eta_i \int_{N_i} \delta^D(x - z_i(u)) \sqrt{g_u d^{(D-d)}} ud\sigma_{\mu_1\cdots\mu_{\tilde{p}+1}}, \tag{38}
\]
from (8), and the relation
\[
\frac{1}{(\tilde{p} + 1)!} \epsilon^{\mu_1\cdots\mu_{\tilde{p}+1}\nu_1\cdots\nu_d} d\sigma_{\mu_1\cdots\mu_{\tilde{p}+1}} = dx^{\nu_1} \wedge \cdots \wedge dx^{\nu_d},
\]
the expression (38) can be rewritten as
\[
Q^M = \hat{g}_0 \int_{\phi(\Sigma)} \sum_{i=1}^{l} \beta_i \eta_i \int_{N_i} \frac{1}{\sqrt{g}} \delta^D(x - z_i(u)) \sqrt{g_u d^{(D-d)}} ud^{(d)}\phi. \tag{39}
\]
Since on the singular submanifold N_i we have
\[
\phi^a(x)|_{N_i} = \phi^a(z^1_i(u), \cdots, z^D_i(u)) \equiv 0, \tag{40}
\]
which leads to
\[
\partial\phi^a \frac{\partial x^\mu}{\partial u^l}|_{N_i} = 0. \tag{41}
\]
Using this expression, one can prove
\[J_{\mu_1\cdots\mu_{D-d}}^{\mu} \bigg|_{\bar{\phi}=0} = \frac{\sqrt{g}}{\sqrt{g_\mu}} \varepsilon^{I_1\cdots I_{(D-d)}} \frac{\partial x^{\mu}}{\partial u^{I_1}} \cdots \frac{\partial x^{\mu}}{\partial u^{I_{(D-d)}}}. \] (42)

Then we obtain a useful formula

\[d^{(d)} \sqrt{g_\mu} d^{(D-d)} u = \sqrt{g} d^D x. \] (43)

By making use of the above formula and (39), we finally get

\[Q^M = g_m \sum_{i=1}^l \beta_i \eta_i \int_X \delta^D (x - z_i(u)) d^D x = g_m \sum_{i=1}^l \beta_i \eta_i. \] (44)

The above expression shows that the \(i \)-th brane carries the ‘magnetic’ charge \(Q^M_i = g_m \beta_i \eta_i = g_m W_i \), which is topologically quantized and characterized by Hopf index \(\beta_i \) and Brouwer degree \(\eta_i \), the winding number \(W_i \) of the \(\phi \)-mapping.

IV. CONCLUSION

In this paper the \(\phi \)-mapping theory is introduced to study the \(\tilde{p} \)-branes theory, which is development of our former theories of magnetic monopoles and topological strings. We present a new topological tensor current of magnetic multi \(\tilde{p} \)-branes and discuss the inner structure of this current in detail. It is shown that every isolated zero of the vector field \(\bar{\phi} \) (i.e. order parameters) is just corresponding to a magnetic brane, \(\tilde{p} \)-brane \(\tilde{p} = D - d - 1 \).

The generalized Nambu action for multi \(\tilde{p} \)-branes can be obtained directly in terms of this topological current. The topological structure of the charges carried by \(\tilde{p} \)-branes shows that the magnetic charges is topologically quantized and labeled by the Hopf index and Brouwer degree, the winding number of the \(\phi \)-mapping. The theory formulated in this paper is a new concept for topological \(\tilde{p} \)-branes based on the \(\phi \)-mapping theory.

V. ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China and Doctoral Science Foundation of China.
[1] J.H. Schwarz, *Lectures on Superstring and M-theory Dualities*, hep-th/9607201.

[2] E. Witten, Nucl. Phys. B 443 (1995) 85.

[3] P.K. Townsend, Phys. Lett. B 350 (1995) 184.

[4] C.M. Hull, Nucl. Phys. B 468 (1996) 113.

[5] J. Scherk an J.H. Schwarz, Phys. Lett. B 52 (1974) 347; J.H. Schwarz, Phys. Rep. 89 (1982) 223.

[6] Y. Nambu, Phys. Rep. 23 (1976) 250.

[7] R.I. Nepomechie, Phys. Rev. D 31 (1985) 1921.

[8] A. Strominger, Nucl. Phys. B 343 (1990) 167.

[9] C.M. Hull, Nucl. Phys. B 509 (1998) 216.

[10] M.J. Duff, R.R. Khuri and J.X. Lu, Physics Reports 256 (1995) 213.

[11] Y. S. Duan and M. L. Ge, Sci. Sin. 11 (1979)1072; G.H. Yang and Y.S. Duan, Inter. J. Theor. Phys. 37 (1998) 2435.

[12] Y. S. Duan and J. C. Liu, in *Proceedings of Johns Hopkins Workshop 11*, edited by Y. S. Duan et al. (World Scientific, Singapore, 1988).

[13] Y. S. Duan and X. H. Meng, J. Math. Phys. 34 (1993) 1149; Y. S. Duan, S. Li and G. H. Yang, Nucl. Phys. B 514 (1998) 705.

[14] Y.S. Duan and L.B. Fu, J. Math. Phys. 39 (1998) 4343.

[15] Y. S. Duan, H. Zhang and S. Li, Phys. Rev. B 58 (1998) 125.

[16] Y. S. Duan, S. L. Zhang, and S. S. Feng, J. Math. Phys. 35 (1994) 4463; Y. S. Duan, G. H. Yang, and Y. Jiang, Int. J. Mod. Phys. A 58 (1997) 513.

[17] Y. S. Duan and S. L. Zhang, Int. J. Eng. Sci. 28, 689 (1990); *29*, 153 (1991); *29*, 1593 (1991);
[18] Y.S. Duan, H. Zhang and L.B. Fu, Phys. Rev. E 59 (1999).

[19] E. Goursat, A Course in Mathematical Analysis Vol. 1 (transl. E. R. Hedrick, 1904).

[20] L.V. Toralballa, Theory of Functions, (Charles E. Merrill Books, Inc., Columbus, Ohio, 1963).

[21] P.K. Townsend, Brane Surgery, [hep-th/9609217].

[22] R.I. Nepomechie, Phys. Rev. D 31 (1985) 1921.

[23] C. Teitelboim, Phys. Lett. B 167 (1986) 69.

[24] M.C. Diamantini, Topological Defects in Gauge Theories of Open p-branes, hep-th/960790.

[25] J.A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1951).

[26] H.B. Nielsen, and P. Olesen, Nucl. Phys. B 57 (1973) 367.

[27] Y. Nambu, Lectures at the Copenhagen Symposium, 1970.

[28] A. Ashtekar and R.O. Hansen, J. Math. Phys. 19 (1978) 1543.