Artificial intelligence in medical education and the meaning of interaction with natural intelligence – an interdisciplinary approach

Abstract

Introduction: The practice of medicine is characterized by decision making in which digital techniques can provide good support. In this context, artificial intelligence (AI) is becoming increasingly important. The challenge for physicians, however, is to maintain an overview of the potential applications and usefulness of AI in order to be able to apply it efficiently and safely in their work. Therefore, appropriate skills must be imparted during the course of medical studies so that future practitioners can meet this requirement.

Project description: The interdisciplinary research-related teaching and learning project "(Natural) Science and Technology in Medicine – NWTmed" brings together students at the Justus-Liebig-University Gießen (JLU) from the fields of medicine and other (natural) scientific disciplines in structured courses with the aim of thinking, learning, and working in an interdisciplinary and research-oriented manner already during their medical education. With the involvement of local researchers, a "multi-disciplinary" seminar on the basic premises, methods, and applications of AI was established.

Results: The participants of the course came from a wide variety of fields of study, which promoted an interdisciplinary exchange and animated discussions. A gain in knowledge and an increase in interest in the topic of AI was noted in the evaluations, and a willingness on the part of the students to pursue further independent study was also expressed.

Discussion and conclusion: The topic of AI and its relevance to the field of medicine is not yet sufficiently represented in medical education. It will require integration in the curriculum and performance evaluations as well as interdisciplinary and research-related teaching formats.

Keywords: artificial intelligence, interdisciplinary research, interdisciplinary learning, evaluation, teaching

Introduction

An important element of medical work is the making of decisions, and the time factor often plays an essential and limiting role. With the rapidly advancing availability and further development of digital technologies and devices and the direct online access to a wide range of information sources, it is hoped not only that the speed of the decision-making process and medical actions will increase but also that the quality of care will improve. However, a major challenge for practitioners is to maintain an overview of the digital possibilities and tools in order to be able to use them efficiently in their work, for which special medical training is under discussion [1]. Therefore, it is important to teach these competencies in a structured way during medical studies so that future physicians can meet this requirement [2], [3]. In particular, the use and further development of AI is highly relevant to this training.

Description

The interdisciplinary research-related teaching and learning project "(Natural) Science and Technology in Medicine – SciTecMed (NWTmed in German)" was launched during the winter semester of 2017/18 at the Department of Medicine of the JLU Gießen, and two more (natural) scientific faculties were added for the winter semester of 2018/19. SciTecMed brings together students from medicine and the natural sciences in a structured way in courses designed to promote thinking, learning, and working in an interdisciplinary and research-oriented manner [4]. The course contents are based on the local research priorities and are presented by the re-

Johannes Lang
Holger Repp

1 Justus-Liebig-University Gießen, Medical Faculty, Dean's Office, Division for Study and Teaching, Gießen, Germany
searchers themselves from their everyday work. This allows students to experience research not only in an abstract but also in an authentic and personal way and to reflect upon and discuss it in an interdisciplinary atmosphere. Since the winter semester of 2018/19, experienced AI users [5], [6] have been offering a multi-disciplinary seminar as an elective (clinical study section for medical students; 2 CP for science students and 3 CP with separate project work) on the basics, methods, and applications of AI with 11 sessions (each 120 min.) in the form of seminars, guided discussions, and demonstration and concrete development of algorithms. The content and the organization of the events were coordinated by the SciTecMed/NWTmed project [7].

Results

The participants (47 total) were students from the fields of biology, chemistry, history, law, materials science, mathematics, medicine, medical informatics, and physics. An initial survey taken during the summer semester of 2019 revealed the following interests: an overview of AI applications in different areas and ongoing projects; current and future applications in medicine; error assessment of AI results and technical insight into AI processes; use in economics and implementation in products; ethical aspects and influence on social change. These interests were covered in the seminars, which had as main topics: AI in personal everyday life; AI examples in medicine; scientific use and potentials of AI; construction of neural networks and principles of deep learning; expansion of basic knowledge of statistics; “NeuroTronics”, with parallels from biology and electronics; radiological applications; ethical aspects; guided programming and practical implementation. Critical aspects of ethics and responsibility, limitations, and possible dangers were handled in discussions. The final evaluation, which was conducted with teaching evaluation sheets provided by the university, showed that the majority of the participants (n=10; low participation due to concurrent examinations) would have liked to have explored the topics in greater depth and to have had more time. Self-assessed knowledge rose from an initial 2.3 to 3.8 on the Likert scale (1-5). Interest in the topic was initially 4.3 and increased to 4.8. The approaches within different disciplines, including theoretical, practical, and ethical considerations, the respectful atmosphere, and the interdisciplinary group discussions were particularly welcomed.

Discussion

The interdisciplinary approach is very sustainable and motivating from the perspective of both students and teachers but requires additional coordination and adjustments. Scientific expertise combined with sound application competence taken directly from scientific and technical research helps the participants to make a critical assessment on the one hand and promotes creative openness on the other, which goes well beyond dogmatic training of technological competence. Although the involvement of motivated participants in the compulsory elective courses is very lively, students who are less aware of the topic should also be confronted with a scientifically in-depth discussion; they are best aligned with a broader series on digitalization topics. Although the importance of AI in medicine is increasing [8], it seems that many medical students lack awareness of this and therefore miss out on taking their own initiative. There are also some instances of restraint, which may be due to the own perception of a lack of basic knowledge. This must be counteracted with easily accessible course offerings and by presenting the relevance of the subject matter, also to other disciplines. Transferability and adaptation to other sites and locations is conceivable and desirable. Scaling up towards large semester cohorts should be carried out in parallel in discussion-compatible groups.

Conclusion

The interest of medical students in AI could be significantly increased by a structured integration in the curriculum and also by an increased presence in the national competence-oriented learning objective catalogue (NKLM) [2]. In the interdisciplinary approach, it is advisable to take into account differences in the level of prior knowledge of the participating students from the various study programmes and to actively incorporate existing student expertise into teaching.

Acknowledgements

The authors would like to thank PD Dr. Olena Linnyk for her initiative in offering an AI course, Dr. Martin Obert for his expertise in big data management, and both of them for their openness to the teaching project SciTecMed/NWTmed. The work is supported by central and decentralized QSL funds of the JLU Giessen as well as by funds from the study structure program of the State of Hesse.

Competing interests

The authors declare that they have no competing interests.

References

1. Ertl G. Brauchen wir einen Facharzt für Digitale Medizin? [Do We Need a Specialist Physician for Digital Medicine?] Dtsch Med Wochenschr. 2018;143(20):1421. DOI: 10.1055/a-0669-1618
2. Haag M, Igel C, Fischer MR; German Medical Education Society (GMA), Committee “Digitization - Technology-Assisted Learning and Teaching”; Joint working group “Technology-enhanced Teaching and Learning in Medicine (TeLL)” of the German Association for Medical Informatics, Biometry and Epidemiology (gmds), the German Informatics Society (GI), Digital Teaching and Digital Medicine: A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189

3. Schreibgruppe Digitalisierung. Digitalisierung der Medizin: Konsequenzen für die Ausbildung. Schw Arztez. 2018;99(42):1441-1444.

4. Lang J, Repp H. Die (Natur)Wissenschaft und Technik im Medizinstudium [Bericht über Entwicklungsprozess]. In: Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA). Wien, 19.-22.09.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. Doc11.1. DOI: 10.3205/18gma050

5. Obert M. Are estimations of radiomic image markers dispensable due to recent deep learning findings? Europ Resp J. 2019;54:1901185. DOI: 10.1183/13993003.01185-2019

6. Linnyk O. Dileptons and photons as probes of the quark-gluon plasma. Gießen: Justus-Liebig-Universität Gießen; 2015.

7. Heinz S, Lang J, Lange U, Linnyk O, Repp H, Thoma M. Plasmamedizin, künstliche Intelligenz, Kernreaktionen und wie wir interdisziplinär von- und miteinander lernen. In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA), des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ) und der Chirurgischen Arbeitsgemeinschaft Lehre (CAL). Frankfurt am Main, 25.-28.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocV26-06. DOI: 10.3205/19gma202

8. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Englisch). New York: Basic Books; 2019.

Corresponding author:
Dr. rer. nat. Johannes Lang
Justus-Liebig-University Gießen, Medical Faculty, Dean's Office, Division for Study and Teaching, Klinikstr. 29, D-35392 Gießen, Germany
johannes.lang@dekanat.med.uni-giessen.de

Please cite as
Lang J, Repp H. Artificial intelligence in medical education and the meaning of interaction with natural intelligence – an interdisciplinary approach. GMS J Med Educ. 2020;37(6):Doc59. DOI: 10.3205/zma001352, URN: urn:nbn:de:0183-zma0013524

This article is freely available from
https://www.egms.de/en/journals/zma/2020-37/zma001352.shtml

Received: 2019-10-12
Revised: 2020-05-04
Accepted: 2020-06-30
Published: 2020-11-16

Copyright
©2020 Lang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Künstliche Intelligenz im Medizinstudium und die Bedeutung des Zusammenspiels mit natürlicher Intelligenz – ein interdisziplinärer Ansatz

Zusammenfassung

Einleitung: Die ärztliche Arbeit ist geprägt vom Treffen von Entscheidungen, bei welchen digitale Techniken eine gute Unterstützung bieten können. In diesem Kontext erlangt Künstliche Intelligenz (KI) eine zunehmende Bedeutung. Die Herausforderung für die Ärzt*innen ist allerdings, fortwährend den Überblick zu Entsatzmöglichkeiten und Sinnhaftigkeit bei der Nutzung von KI zu behalten, um sie bei ihrer Tätigkeit effizient und sicher anwenden zu können. Daher müssen bereits während des Studiums entsprechende Kompetenzen vermittelt werden, damit die zukünftigen Ärzt*innen diesem Anspruch gerecht werden können.

Projektbeschreibung: Das interdisziplinäre forschungsnahe Lehr- und Lernprojekt „(Natur)Wissenschaft und Technik in der Medizin – NWT-med“ bringt Studierende an der Justus-Liebig-Universität Gießen (JLU) aus der Medizin und naturwissenschaftlichen Fachbereichen strukturiert in Lehrveranstaltungen zusammen, mit dem Ziel bereits während des Studiums interdisziplinär und forschungsnah zu denken, zu lernen und zu arbeiten. Unter Einbezug lokaler Forscher*innen konnte ein „multi“disziplinäres Seminar zu Grundlagen, Methoden und Anwendungen der KI etabliert werden.

Ergebnisse: Die Teilnehmer*innen des Lehrangebots setzten sich aus unterschiedlichsten Studienbereichen zusammen, was einen interdisziplinären Austausch und eine angeregte Diskussion beförderte. Ein Zuwachs an Kenntnissen und die Steigerung des Interesses an der Thematik KI wurde in den Evaluationen festgestellt und die Bereitschaft zu weiterführendem Engagement von Seiten der Studierenden auch im Selbststudium wurde geäußert.

Diskussion und Schlussfolgerung: Das Themenfeld KI und dessen Relevanz ist im Medizinstudium noch nicht hinreichend abgebildet. Es bedarf einer curricularen Einbindung und einer Repräsentanz auch in Leistungsnachweisen sowie interdisziplinärer und forschungsnaher Lehrformate.

Schlüsselwörter: Künstliche Intelligenz, Interdisziplinäre Forschung, Interdisziplinäre Vermittlung, Evaluation, Lehren

Einleitung

Ein wesentliches Element der ärztlichen Arbeit ist das Treffen von Entscheidungen, wobei der Faktor Zeit häufig eine essentielle und limitierende Rolle einnimmt. Mit der rasant voranschreitenden Verfügbarkeit und Weiterentwicklung digitaler Techniken und Geräte und dem unmittelbaren online-Zugriff auf vielfältigste Informationsquellen ist die Hoffnung verbunden, dass hierdurch das Treffen ärztlicher Entscheidungen und das ärztliche Handeln nicht nur beschleunigt, sondern auch qualitativ weiter verbessert werden kann. Eine große Herausforderung an die digitalen Kompetenzen der Ärzt*innen ist allerdings, fortwährend einen Überblick über die digitalen Möglichkeiten zu behalten, um diese für ihre Tätigkeit effizient nutzen zu können, wofür gar eine spezielle ärztliche Weiterbildung diskutiert wird [1]. Daher ist es wichtig bereits während des Studiums strukturiert diese Kompetenzen zu vermitteln, damit die zukünftigen Ärzt*innen diesem Anspruch gerecht werden können [2], [3]. Als aktuell besonders relevant kann hier beispielhaft der Einsatz und die Entwicklung von KI benannt werden.

Johannes Lang
Holger Repp

1 Justus-Liebig-Universität Gießen, Dekanat des Fachbereichs Medizin, Referat 4 - Studium und Lehre, Gießen, Deutschland
Projektbeschreibung

Das interdisziplinäre forschungsnahe Lehr- und Lernprojekt „(Natur)Wissenschaft und Technik in der Medizin – NWTmed“ wurde im Wintersemester 2017/18 am Fachbereich Medizin der JLU Gießen gestartet und zum Wintersemester 2018/19 um zwei naturwissenschaftliche Fachbereiche erweitert. NWTmed bringt Studierende aus der Medizin und den Naturwissenschaften strukturiert in Lehrveranstaltungen zusammen, um bereits während des Studiums interdisziplinär und forschungsnah zu denken, zu lernen und zu arbeiten [4]. Die Inhalte orientieren sich an den örtlichen Forschungsschwerpunkten und werden durch die Forscher*innen aus dem Arbeitsalltag heraus dargestellt. Dies erlaubt den Studierenden, Forschung nicht nur abstrakt, sondern authentisch und persönlich zu erleben und interdisziplinär zu reflektieren und zu diskutieren. Seit dem Wintersemester 2018/19 wird von erfahrenen KI-Nutzern [5], [6] ein „multi“-disziplinäres Seminar im Wahlpflichtbereich (klinischer Studienabschnitt für Medizinstudierende; 2 CP für Naturwissenschaftsstudierende (3 CP mit gesonderter Projektarbeit)) zu Grundlagen, Methoden und Anwendungen der KI mit 11 Terminen (je 120 min.) in Form von Seminar, geleiteter Diskussion sowie Demonstration und konkreter Erarbeitung von Algorithmen angeboten. Die Inhalte und der Ablauf der Veranstaltung wurden im Projekt NWTmed abgestimmt [7].

Ergebnisse

Die Teilnehmer*innen (47 gesamt) gehörten den Fachrichtungen Biologie, Chemie, Geschichte, Rechtswissenschaft, Materialwissenschaft, Mathematik, Medizin, Medizinischer Informatik und Physik an. Eine Eingangsbefragung per Fragebogen aus dem Sommersemester 2019 ergab folgende Interessen: Überblick über Anwendungen verschiedener Bereiche und laufender Projekte, aktuelle/perspektivische Anwendung in der Medizin, Fehlerabschätzung von KI-Ergebnissen und technischer Einblick in KI-Prozesse, wirtschaftlicher Einsatz, Implementierung in Produkten, ethische Aspekte und von KI beeinflusster gesellschaftlicher Wandel. Dies wurde in den Seminaren abgedeckt mit den Leitthemen: KI im persönlichen Alltag, KI-Beispiele in der Medizin, wissenschaftliche Nutzung und Potenziale, Aufbau von neuronalen Netzen und Prinzipien des deep learning, und um Statistik-Grundkenntnisse, „NeuroTronics“ mit Parallelen von Biologie und Elektronik, radiologische Anwendungen, mathematische Beschreibung in KI-Verfahren, ethische Aspekte, angeleitetes Programmieren und praktisch-orientierte Umsetzung erweitert. Kritische Aspekte zur Ethik und Verantwortlichkeit, Grenzen und auch möglichen Gefahren konnten in Diskussionen behandelt werden. Bei der Abschlussevaluation mittels universitärer Lehrbewertungsbögen zeigte sich, dass die Mehrzahl der Evaluationsteilnehmer*innen (N=10 (niedrig aufgrund von Klausurphase)) sich eine Vertiefung der Themen und mehr verfügbare Zeit wünschte. Das selbst eingeschätzte Wissen stieg auf einer Likertskala (1-5) von anfänglich 2,3 auf 3,8. Das Interesse an der Thematik lag initial bei 4,3 und konnte auf 4,8 gesteigert werden. Besonders begrüßt wurde die unterschiedliche (fachliche) Betrachtungsweise mit theoretischen, praktischen und ethischen Überlegungen, der wertschätzende Umgang und die gemeinsam geführten interdisziplinären Diskussionen.

Diskussion

Der interdisziplinäre Ansatz zeigt sich sehr nachhaltig und motivierend auf Studierenden- und Lehrendenseite, bedarf aber einen Mehraufwand an Koordinations- und Abstimmung. Wissenschaftliche Expertise kombiniert mit fundierter Anwendungskompetenz direkt aus der naturwissenschaftlich-technischen Forschung verhelfen den Teilnehmer*innen zu einer kritischen Einschätzung einerseits und kreativen Offenheit andererseits, die deutlich über das Antrainieren dogmatischer Techniknutzungs-Kompetenz hinausgeht. Zwar ist die Durchführung bei motivierten Teilnehmer*innen im Wahlpflichtbereich sehr lebendig, jedoch sollten auch weniger mit der Thematik sensibilisierten Studierenden mit einer wissenschaftlich-vertieften Auseinandersetzung konfrontiert werden. Am besten eingeordnet in eine umfassendere Reihe zu Digitalisierungsthemen. Obwohl der KI in der Medizin eine stark zunehmende Bedeutung zugeordnet wird [8], scheint es, als fehle vielen Medizinstudierenden an Bekanntschaft und Wissensgewinn. Die Skalierung hin zu großen Semesterkoordinaten sollte in parallelen, diskussionsfähigen Gruppen erfolgen.

Schlussfolgerung

Das Interesse von Medizinstudierenden an der Thematik KI könnte durch eine strukturierte curriculare Einbindung und auch eine verstärkte Präsenz im NKLM [2] deutlich erhöht werden. Es empfiehlt sich bei dem interdisziplinären Ansatz, die Asymmetrie an Vorkenntnissen der teilnehmenden Studierenden aus den verschiedenen Studiengängen zu nutzen und bereits vorhandene studentische Expertise in die Lehre aktiv mit einzubeziehen.

Danksagung

Die Autoren danken PD Dr. Olena Linnyk für ihre Initiative einer KI-Lehrveranstaltung, Dr. Martin Obert für seine Expertise im Bereich Big Data-Management und beiden...
ganz herzlich für Ihre Offenheit gegenüber dem Lehrprojekt NWTmed.
Die Arbeit wird durch zentrale und dezentrale QSL-Mitteln der JLU Gießen sowie durch Mittel des Studienstrukturprogramms des Landes Hessen gefördert.

Interessenkonflikt
Die Autoren erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur
1. Ertl G. Brauchen wir einen Facharzt für Digitale Medizin? [Do We Need a Specialist Physician for Digital Medicine?] Dtsch Med Wochenschr. 2018;143(20):1421. DOI: 10.1055/a-0669-1618
2. Haag M, Igel C, Fischer MR; German Medical Education Society (GMA), Committee "Digitization - Technology-Assisted Learning and Teaching"; Joint working group "Technology-enhanced Teaching and Learning in Medicine (TeLL)" of the German Association for Medical Informatics, Biometry and Epidemiology (gmds), the German Informatics Society (GI). Digital Teaching and Digital Medicine: A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189
3. Schreibgruppe Digitalisierung. Digitalisierung der Medizin: Konsequenzen für die Ausbildung, Schwa Arztez. 2018;99(42):1441-1444.
4. Lang J, Repp H. Die (Natur)Wissenschaft und Technik im Medizinstudium [Bericht über Entwicklungsprozess]. In: Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA). Wien, 19.-22.09.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. Doc11.1. DOI: 10.3205/18gma050
5. Obert M. Are estimations of radiomic image markers dispensable due to recent deep learning findings? Europ Resp J. 2019;54:1901185. DOI: 10.1183/13993003.01185-2019
6. Linnyk O. Dileptons and photons as probes of the quark-gluon plasma. Gießen: Justus-Liebig-Universität Gießen; 2015.
7. Heinz S, Lang J, Lange U, Linnyk O, Repp H, Thoma M. Plasmamedizin, künstliche Intelligenz, Kernreaktionen und wie wir interdisziplinär von- und miteinander lernen, In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA), des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ) und der Chirurgischen Arbeitsgemeinschaft Lehre (CAL). Frankfurt am Main, 25.-28.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. Doc26-06. DOI: 10.3205/19gma202
8. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Englisch). New York: Basic Books; 2019.

Korrespondenzadresse:
Dr. rer. nat. Johannes Lang
Justus-Liebig-Universität Gießen, Dekanat des Fachbereichs Medizin, Referat 4 - Studium und Lehre, Klinikstr. 29, 35392 Gießen, Deutschland
johannes.lang@dekanat.med.uni-giessen.de

Bitte zitieren als
Lang J, Repp H. Artificial intelligence in medical education and the meaning of interaction with natural intelligence – an interdisciplinary approach. GMS J Med Educ. 2020;37(6):Doc59. DOI: 10.3205/zma001352, URN: urn:nbn:de:0183-zma0013524

Artikel online frei zugänglich unter https://www.egms.de/en/journals/zma/2020-37/zma001352.shtml

Eingereicht: 12.10.2019
Überarbeitet: 04.05.2020
Angenommen: 30.06.2020
Veröffentlicht: 16.11.2020

Copyright ©2020 Lang et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.