Prognostic value of maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis of positron emission tomography/computed tomography in patients with nasopharyngeal carcinoma

A systematic review and meta-analysis

Qingfang Li, MDa, Jing Zhang, MDb, Wei Cheng, MDc, Chenjing Zhu, MDa, Linyan Chen, MDa, Fan Xia, MDa, Manni Wang, MDa, Fuyao Yang, MDa, Xuelei Ma, MDa, b

Abstract

Background: The maximal standard uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma (NPC) perform as new prognostic factors, but the outcomes of the published articles were inconclusive. In this meta-analysis, we evaluated the prognostic value of SUVmax, MTV, and TLG of PET/CT in patients with NPC.

Methods: Relevant English articles were searched in PubMed and EMBASE. The data of patients and the survival outcomes were extracted. Pooled hazard ratios (HRs) were accounted to assess the prognostic value of the SUVmax, MTV, and TLG.

Results: This meta-analysis combined 10 primary studies including 941 patients with NPC. The combined HRs (95% confidence interval [CI]) of higher SUVmax, higher MTV, and higher TLG for event-free survival were 2.93 (95% CI, 1.39–3.91, P = .001), 2.51 (95% CI, 1.61–3.91, P < .0001), and 2.74 (95% CI, 1.91–3.93, P < .00001), respectively. Regarding overall survival, the combined HRs were 2.50 (95% CI, 1.65–3.78, P < .0001) with higher SUVmax, 3.30 (95% CI, 1.92–5.69, P < .0001) with higher MTV and 3.18 (95% CI, 1.70–5.96, P = .0003) with higher TLG.

Conclusion: SUVmax, MTV, and TLG were significant prognostic predictors in patients with NPC. And the results suggested that higher SUVmax, MTV, and TLG were associated with worse prognosis.

Abbreviations: CI = confidence interval, DFS = disease-free survival, DMFS = distant metastasis-free survival, EFS = event-free survival, HR = hazard ratio, MTV = metabolic tumor volume, NPC = nasopharyngeal carcinoma, OS = overall survival, PET = positron emission tomography, PFS = progression-free survival, SUVmax = maximum standard uptake value, TLG = total lesion glycolysis.

Keywords: MTV, nasopharyngeal carcinoma, prognosis, SUVmax, TLG

1. Introduction

Nasopharyngeal carcinoma (NPC) is a common malignant tumor in Asia, which occurs in 20 to 30 per 100,000 people per year.\[1,2\] However, in Western countries, it is an unusual form of squamous cell carcinoma.\[3\] Nowadays, it is widely convinced that biopsy of the primary site or fine needle aspiration (FNA) of the neck can be used in diagnosing NPC eventually.\[4\] Radiotherapy (RT) is the primary treatment of NPC. Intensity-modulated radiotherapy (IMRT) is a new method that provides high radiation doses to the target with less harm to adjacent organs.\[5\] The increase of dose with IMRT could decrease recurrence and relapse.\[6\] NPC patients in stage T1N0M0 can be treated by RT only without chemotherapy, but T3-T4 stage patients have a control rate of 30% to 60% if they undergo RT only.\[8\] The control rate will increase after treated with the combination of RT and concurrent platinum-based chemotherapy. In recent studies, the expression of p53 and epidermal growth factor receptor (EGFR) was researched in NPC, and the article analyzed the relation between their expression and survival.\[11,13\] In addition, Epstein-Barr virus DNA level was also recommended as a new factor in the prognosis of NPC.\[12\] But these prognosis factors cannot reflect the tumor burden and tumor aggressiveness in NPC. Fluodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is recommended to find the metastasis after diagnosed.\[13\]

Editor: Yufang Ma.

QL, JZ, and WC contributed equally to this study.

The authors report no conflicts of interest.

© Copyright 2017 the Author(s). Published by Wolters Kluwer Health, Inc.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2017) 96(37):e8084

Received: 13 March 2017 / Received in final form: 30 June 2017 / Accepted: 23 August 2017

http://dx.doi.org/10.1097/MD.0000000000008084
(PET) and in particular integrated PET/CT, which are widely used techniques in the cancer staging assessment in recent years.13 Staging system is a considered factor to predict prognosis by American Joint Committee on Cancer (AJCC).14 The maximal standard uptake value (SUVmax) is used to quantify the lesion’s metabolism.15 And it is a recommended factor to predict the prognosis of the primary tumor in some studies. There are some opposite options that the SUVmax provide a threshold defining the tumor,16,17 but it does not account other aspects of the tumor.18 Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) calculated by multiplying MTV by mean SUV were considered as prognosis values besides SUVmax.19 TLG can describe the stereoeffectiveness of tumor. They can be measured efficiently by the available commercial tools. One study reported the prognostic value of MTV and TLG in head and neck cancer (HNC) in 201420 and they also reported the prognosis value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer in 2015.21 And they also reported the prognosis value of volumetric parameters in NPC. Most articles reported outcomes that high SUVmax, MTV, and TLG ranged from 55.01 to 7640. People were divided into 2 groups, lower volume group and higher volume group, based on the cutoff parameters.

2. Methods

2.1. Search strategy and study selection

As this is a meta-analysis, ethical approval was not necessary. A comprehensive literature search of PubMed and EMBASE was performed to find relevant English articles about volumetric parameters in the prognosis in NPC. The retrieved articles were searched by the combination of the following keywords: (nasopharyngeal carcinoma OR nasopharynx cancer) AND PET/CT AND (prognosis OR prognostic). References of selected studies were also screened for additional relevant studies. Two independent researchers screened the articles respectively making sure that every article was scrutinized. Any discrepancy was solved by consensus.

Only the relevant articles were included and the inclusion criteria in the meta-analysis were as follows: articles are reported in English original high-quality magazines, each has at least 20 patients, 18F-FDG PET/CT scans before treatment, one cutoff data was reported at least, the studies investigated the relationship between the volumetric parameters of 18F-FDG PET/CT and the prognosis of patients. Studies were eliminated based on any of the following conditions: review, case reports, laboratory articles, and letters; analyzed in diverse tumors but with no specific results of NPC; lacked important information for analysis with methods developed by Parmar et al24 (1998), Williamson et al25 (2002), and Tierney et al26 (2007); non-English articles.

2.2. Data extraction

Extracted data concluded the following: author, publication time, sample number; patient characteristics, that is, patients’ age, their sex, histology, TNM staging; the result measures median and cutoff values of SUVmax, MTV, and TLG, prognosis-free survival (PFS), disease-free survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS); hazard ratios (HRs) and their 95% confidence intervals (CIs), P values of the log-rank test and the Kaplan–Meier survival curve; raw data to calculate HR and standard error (SE) for the patients with high parameters comparing to low parameters.

2.3. Data analysis

We conformed to the similar methodology, which was used in previous study. DFS and PFS were got as primary outcomes and were defined as event-free survival (EFS), which was measured from the date of initiation of therapy.27 To compare the prognosis, logHR and SE were statistically combined, but the essential data were not always explicit. For this reason, we calculated the data based on Parmar et al24 (1998), Williamson et al25 (2002), and Tierney et al26 (2007). The logHR and SE can be calculated if any following data were given: the HR and 95% CIs, the P value for the log rank or Mantel-Haenszel test, and the Kaplan–Meier survival curves. We carried out the meta-analysis in subgroup, categorized by tumor stage, sex, and the delineation of tumor. Figure was carried through by the software contrived by Matthew Sydes and Jayne Tierney with these methods on survival.26 Positive group means that the value of volumetric parameters patients in this group is higher. We considered HR as the effect factor of the study. HR >1 points that positive group had worse outcome compared to negative group under the circumstance that the 95% CIs did not overlap 1. The heterogeneity of the studies was measured by P values and I^2. Heterogeneity was significant with $P < .10$ or $I^2 > 50\%$28 (Higgins et al, 2003).When heterogeneity was acceptable ($I^2 \geq 10, I^2 \leq 50\%$), a fixed-effect model was used for next step. Begg test was used to measure publication bias ($P < .05$ indicates statistically significant). RevMan 5.1 (Cochrane collaboration, Oxford, UK) was applied in the study to calculate the data.

3. Results

3.1. Study selection and characteristics

Using the search strategy defined before, 66 articles were found. After screening the titles and abstracts, 30 articles were further screened. One was a case report. Eight articles were reviews and 10 articles were excluded after screening full text. One article was excluded because of incomplete data. Ten studies were published from 2010 to 2015 were enrolled in the research. The details of the selection were presented in the Figure 1.

The study characteristics were shown in Table 1. Three of the involved articles were prospective, and the others were retrospective. Seventy-three percent of the whole 941 patients were males. The average age of all was 50.22 years. There was no significant difference in the sex and age among the studies. The number of patients in the studies ranged from 40 to 196. Ten articles measured SUVmax, 6 measured MTV, 5 measured TLG, and only 4 articles measured all of them. The cutoff value of SUVmax ranged from 7.8 to 18, MTV ranged from 12.71 to 110, and TLG ranged from 55.01 to 7640. People were divided into 2 groups, lower volume group and higher volume group, based on the cutoff parameters.

Most of the articles included primary NPC, whereas 3 articles reported advanced NPC, 1 reported recurrence, and 1 reported metastatic NPC. Most articles reported outcomes that high SUVmax was a negative prognostic factor, and only 1 reported that high SUVmax led to positive prognosis. All the articles showed that pretreatment high value of MTV and TLG led to negative prognosis.
3.2. Primary outcome: EFS

Five articles about SUVmax were included in the research. Based on the cutoff value, the patients were divided into 2 groups, the higher and the lower. The combined HR for EFS of higher SUVmax was 2.33 (95% CI, 1.39–3.91, *P* = .001) (Fig. 2). There was no significant heterogeneity between the articles (*I*² = 0%, *P* = .48). We performed subgroup analyses based on the delimiting of VOI. The HR was 2.29 (95% CI, 1.61–3.91, *P* = .0001) (Fig. 2). There was no significant heterogeneity between the articles (*I*² = 0%, *P* = .47). We performed subgroup analyses based on the delimiting of VOI. The HR was 1.44 (95% CI, 0.59–3.50; *P* = .42) (Fig. 4) for an MTV delimited by the tumor and lymph node was 2.56 (95% CI, 1.32–3.84; *P* = .002) for a higher SUVmax delimited by the tumor and lymph node (LN) (Fig. 3) and there was only 1 article delimiting by the tumor. Another subgroup analysis was performed based on tumor recurrence or metastasis. Among studies including SUVmax, those with primary carcinoma had an HR of 3.41 (95% CI, 2.09–5.75, *P* = .001), and those with metastasis carcinoma had an HR of 2.41 (95% CI, 1.41–4.13, *P* = .001).

Four articles about MTV were included in the research. The combined HR for EFS of higher MTV was 2.51 (95% CI, 1.61–3.91, *P* = .0001) (Fig. 2). There was no significant heterogeneity between the articles (*I*² = 0%, *P* = .47). We performed subgroup analyses based on the delimiting of VOI. The HR was 1.44 (95% CI, 0.59–3.50; *P* = .42) (Fig. 4) for an MTV delimited by the tumor and LN and the HR was 3.02 (95% CI, 1.81–5.02; *P* < .0001) for an MTV delimited by the tumor. Another subgroup analysis was performed based on tumor recurrence or metastasis. Among studies containing MTV, those with primary tumor had an HR of 2.74 (95% CI, 1.26–5.95, *P* = .01), and those with metastasis carcinoma had an HR of 2.41 (95% CI, 1.41–4.13, *P* = .001).

Five articles about TLG were included in the research. The combined HR for EFS of higher TLG was 2.74 (95% CI, 1.91–3.93, *P* < .00001) (Fig. 2). There was no significant heterogeneity between the articles (*P*² = 36%, *P* = .18). The subgroup analysis was performed based on tumor recurrence or metastasis. Among studies containing TLG, those with primary tumor had an HR of 3.41 (95% CI, 2.09–5.75, *P* < .00001) (Fig. 5), and those with metastasis carcinoma had an HR of 2.10 (95% CI, 1.23–3.60, *P* = .007).

DMFS was an important parameter in predicting prognosis. It was an event occurring after the EFS and the distant metastasis was an important factor in predicting prognosis. The HR for DMFS of higher SUVmax was 2.81 (95% CI, 1.54–5.13, *P* < .0008), for MTV the HR was 5.42 (95% CI, 1.27–23.11, *P* = .02) and for TLG the HR was the same as MTV.

3.3. Secondary outcome: OS

Six articles involving SUVmax were contained in the analysis. The combined HR for the overall survival of higher SUVmax was 2.50 (95% CI, 1.65–3.78, *P* < .0001) (Fig. 6). VOI was used to define the subgroup analysis. The HR of higher SUVmax defined by the tumor and lymph node was 2.56 (95% CI, 1.32–4.95, *P* = .005) (Fig. 7) and for the tumor group was 2.45 (95% CI, 1.44–4.20, *P* = .001). Another subgroup analysis was performed.

Table 1

Study	Year	Country	Study design	No. of patients	Age (%)	Tumor Staging	Treatment	Endpoints	Follow-up	Parameters	VOL	SUVmax/MTV/TLG	Tumor	DMFS	OS	DMFS/MTV	SUVmax/MTV	MTV (cm³)/T	Tissue-D	Tissue-T
Yang et al.	2015	China	R	46	12.5	LANC	CT + RT	CT + T	SUV/MTV	SUVmax/MTV	T	SUV max > 2.5	T	15.8	26.9	249.1				
Xue et al.	2015	China	P	179	43	Primary	IMRT + CT	IMRT + CT	DFS	SUVmax	T	SUVmax < 2.5	T	10.22	5.02	3.91				
Yoon et al.	2014	Korea	R	40	48	Primary	RT + CT	RT + CT	DFS	SUVmax	T	SUVmax < 2.5	T	3.13	1.39	4.20				
Moon et al.	2015	Korea	R	44	51	Primary	IMRT + CT	IMRT + CT	DFS	SUVmax	T	SUVmax < 2.5	T	6.89	7.8	1.02				
Shi et al.	2014	China	R	43	45	Primary	CTR = CRT	CTR = CRT	DFS	SUVmax/MTV	T	SUVmax < 2.5	T	6.89	12.7	58.08				
Shen et al.	2015	China	R	194	49	Recurrence	Stage IV	Stage IV	DFS/CT	SUVmax	T	SUVmax < 2.5	T	8.65	8.65	0.18				
Chen et al.	2015	Taiwan	P	56	55	Metastasis	IV stage	IV stage	DFS/CT	SUVmax	T	SUVmax < 2.5	T	12	110	560				
Chen et al.	2014	Taiwan	P	196	48	Primary	Stage IV	Stage IV	DFS/CT	SUVmax	T	SUVmax < 2.5	T	18	45	16.5				
Xie et al.	2010	China	R	62	43	LANC	Stage IV	Stage IV	DFS/CT	SUVmax	T	SUVmax < 2.5	T	8	8	8				
Chen et al.	2010	China	R	46	48	Primary	Stage IV	Stage IV	DFS/CT	SUVmax	T	SUVmax < 2.5	T	7.5	7.5	7.5				

CCRT = concurrent chemoradiotherapy, CT = chemotherapy, DFS = disease-free survival, DMFS = distant metastasis-free survival, IMRT = intensity-modulated radiotherapy, LANC = locally advanced nasopharyngeal carcinoma, LC = local control, LN = lymph node, MBP = mediastinal blood pool, MTV = metabolic tumor volume, OS = overall survival, PFS = progression-free survival, RT = radiotherapy, SUVmax = maximum standard uptake value, T = Tumor, TLG = total lesion glycolysis.
based on tumor recurrence or metastasis. Among studies including SUVmax, those with primary carcinoma had an HR of 2.32 (95% CI, 1.35–3.99, \(P = 0.002\)), and those with recurrence or metastasis had an HR of 2.77 (95% CI, 1.44–5.33, \(P = 0.002\)). The combined HR for OS of higher MTV was 3.30 (95% CI, 1.92–5.69, \(P < 0.0001\)) (Fig. 6). We performed subgroup analyses based on the delimiting of VOI. The HR was 3.09 (95% CI, 0.84–11.37, \(P = 0.09\)) for a higher MTV delimited by the tumor and LN and the HR was 3.35 (95% CI, 1.84–6.09, \(P = 0.0001\)) for a higher MTV delimited by the tumor. Another subgroup analysis was performed based on tumor recurrence or metastasis. Among studies including MTV, those with primary carcinoma had an HR of 4.30 (95% CI, 1.48–12.48, \(P = 0.007\)), and those with metastasis had an HR of 3.01 (95% CI, 1.60–5.66, \(P = 0.0006\)) (Fig. 8). The combined HR of higher TLG was 3.18 (95% CI, 1.70–5.96, \(P = 0.0003\)). All the articles were delimited by tumor and lymph node, so no subgroup analysis was performed.

4. Discussion

Staging assessment has been convinced as a prognostic factor of the malignancy.\(^{[36]}\) So it is important to distinct the stage of tumor in prognosis. Volumetric parameters of PET/CT such as SUVmax, MTV, and TLG are widely convinced that they can help staging the tumor.\(^{[37]}\) So if the value of the volumetric parameters can contribute to predict metastasis and survival, the patients may benefit from it. One study found out that the SUV of 18-FDG PET/CT is a helpful tool to predict the EFS and OS in colorectal carcinoma patients with liver metastases.\(^{[38]}\) Another study reported that higher values of SUVmax, MTV, or TLG forecasted a higher risk of recurrence or death in non-small cell lung cancer patients who received surgery.\(^{[39]}\) Several published original studies aimed at finding the prognostic value of SUVmax, MTV, and TLG for NPC. Our meta-analysis is the first article to report the prognostic value of SUVmax, MTV, and TLG in NPC. Ten published studies were included to accumulate the evidence on the connection between the prognosis of the volumes of SUVmax, MTV, and TLG in NPC in our meta-analysis. The results showed that SUVmax, MTV and TLG can be used to predict the prognosis of the EFS and OS in NPC patients.

Although MTV or TLG may be affected by variable reasons, our results indicated that high volumetric parameters of PET had worse prognostic value in EFS or OS. In our meta-analysis, the results revealed that higher SUVmax reflected negative prognostic value, with apparent poorer combined HRs for EFS and OS: 2.33 (95% CI, 1.39–3.91, \(P = 0.001\)) and 2.50 (95% CI, 1.65–3.78, \(P < 0.0001\)), respectively. It also showed that higher TLG and MTV reflected negative prognostic value. One study\(^{[20]}\)
Figure 3. Subgroup of event-free survival of maximum standard uptake value.

Figure 4. Subgroup of event-free survival of metabolic tumor volume.
Figure 5. Subgroup of event-free survival of total lesion glycolysis.

Figure 6. Forest plots of hazard ratio of overall survival of SUVmax, MTV, TLG. CI = confidence interval, MTV = metabolic tumor volume, SUVmax = maximum standard uptake value, TLG = total lesion glycolysis.
Figure 7. Subgroup of overall survival of maximum standard uptake value.

Figure 8. Subgroup of overall survival metabolic tumor volume.
also did a meta-analysis reporting that higher TLG and MTV predicted worse prognosis in HNC.

We carried out subgroup analyses to assess the prognostic effects of methods selected in each part on outcome (Table 2). The VOI was defined as whether is tumors alone or tumors and lymph node. Variable methods were used to measure VOI. And the value of VOI will be affected by the various measure methods. A settled SUV of 2.5 was adopted in 8 of 10 studies in the meta-analysis, which may be a criterion standard of threshold of VOI delineation. And this method was also used to measure TLG and MTV. In the subgroup delimited by the tumor, the HRs of SUVmax and MTV for EFS and OS were statistically significant. In the subgroup delimited by the tumor and lymph node, the HRs of SUVmax for EFS and OS were statistically significant, whereas the HRs of MTV were not. When the subgroup analysis was delineated based on the stage of the tumor, all the HRs of SUVmax, MTV, and TLG for EFS and OS were statistically significant, and the cutoff value, and the variations in study quality may be slightly after we introduced sensitivity analysis. The tumor grade, the cutoff value, and the variations in study quality may be connected to the heterogeneity.

However, there are several limitations in this meta-analysis. First, this research was based on a small numbers of patients. And only 941 patients were included in this study. Second, only the published data can be reached. Some significant negative data might not be published. Because of the amount of unpublished data, there may be publication bias in the meta-analysis, thus influencing the predicting value of the volumetric parameters. Third, only English articles were brought into our search. Articles written in other languages were not included. Fourth, the cutoff values were various. But so far, there is no criterion standard to define the cutoff value.

In conclusion, our meta-analysis presented that low values of SUVmax, MTV, and TLG predicted a lower risk of recurrence and metastasis or death in NPC. PET/CT can be used in discovering the risk of metastasis and survival in NPC. Patients with NPC whose volumetric parameters are in high level should focus on the progress of the
tumor and the doctors should pay attention to the patients of high value of SUVmax, MTV, and TLG.

Acknowledgments

The authors thank the reviewers for their constructive comments. This work was supported by the Foundation for Young Scientists of Sichuan University (2017SCU11046).

References

[1] Lai V, Khong PL. Updates on MR imaging and 18F-FDG PET/CT imaging in nasopharyngeal carcinoma. Oral Oncol 2014;50:539–48.
[2] Riley CA, Marino MJ, Hawkey N, et al. Sinonasal tract inflammation as a precursor to nasopharyngeal carcinoma: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 2016;154:810–6.
[3] Shen G, Zhou L, Jia Z, et al. [Meta-analysis of PET/CT for diagnosis of residual/recurrent nasopharyngeal carcinoma]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2015;29:61–7.
[4] Feinnesser R, Miyazaki I, Cheung R, et al. Diagnosis of nasopharyngeal carcinoma by DNA amplification of tissue obtained by fine-needle aspiration. N Engl J Med 1992;326:17–21.
[5] Ng WT, Lee MC, Chang AT, et al. The impact of dosimetric inadequacy on treatment outcome of nasopharyngeal carcinoma with IMRT. Oral Oncol 2014;50:506–12.
[6] Guadagnolo BA, Liu CC, Cormier JN, et al. Evaluation of trends in the use of intensity-modulated radiotherapy for head and neck cancer from 2000 through 2005: socioeconomic disparity and geographic variation in a large population-based cohort. Cancer 2010;116:3505–12.
[7] Sanguineti G, Geara FB, Garden AS, et al. Carcinoma of the nasopharynx. Semin Radiat Oncol 2014;23:1184–90.
[8] Higginson JK, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:373–60.
[9] Chan SC, Chang JT, Lin CY, et al. Clinical utility of 18F-FDG PET/CT parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun 2011;32:989–96.
[10] Moon SH, Choi JY, Lee HJ, et al. Prognostic value of volume-based positron emission tomography/computed tomography in patients with nasopharyngeal carcinoma treated with concurrent chemoradiotherapy. Clin Otorhinolaryngol 2015;8:142–8.
[11] Shen T, Tang LQ, Luo DH, et al. Different prognostic values of plasma Epstein-Barr virus DNA and maximal standardized uptake value of 18F-FDG PET/CT for nasopharyngeal carcinoma patients with recurrence. PLoS One 2015;10:e0122756.
[12] Chan SC, Hsu CL, Yen TC, et al. The role of 18F-FDG PET/CT metabolic tumor volume in predicting survival in patients with metastatic nasopharyngeal carcinoma. Oral Oncol 2013;49:71–8.
[13] Xiao W, Xu A, Han F, et al. Positron emission tomography-computed tomography before treatment is highly prognostic of distant metastasis in nasopharyngeal carcinoma patients after intensity-modulated radiotherapy treatment: a prospective study with long-term follow-up. Oral Oncol 2015;51:363–9.
[14] Xie P, Yue JB, Fu Z, et al. Prognostic Value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol 2010;21:1078–82.
[15] Yoon YH, Lee SH, Hong SL, et al. Prognostic value of metabolic tumor volume as measured by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in nasopharyngeal carcinoma. Int Forum Allergy Rhinol 2014;4:845–50.
[16] Cheng L, Davison DD, Adams J, et al. Biomarkers in bladder cancer: translational and clinical implications. Crit Rev Oncol Hematol 2014;89:73–111.
[17] Ng SH, Chan SC, Yen TC, et al. Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up. Eur J Nucl Med Mol Imaging 2009;36:1612–22.
[18] Xia Q, Liu J, Wu C, et al. Prognostic significance of (18)FDG PET/CT in colorectal cancer patients with liver metastases: a meta-analysis. Cancer Imaging 2015;15:19.
[19] Liu J, Dong M, Sun X, et al. Prognostic Value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One 2016;11:e0154619.
[20] Moon SH, Choi JY, Lee HJ, et al. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters. Head Neck 2013;35:15–22.
[21] Dong M, Liu J, Sun X, et al. Prognostic significance of SUVmax on pretreatment (18)F-FDG PET/CT in early-stage non-small cell lung cancer treated with stereotactic body radiotherapy: a meta-analysis. J Med Imaging Radiat Oncol 2017.

Li et al. Medicine (2017) 96:37 www.md-journal.com