Cloud condensation nuclei characteristics at the Southern Great Plains site: role of particle size distribution and aerosol hygroscopicity

Piyushkumar N Patel and Jonathan H Jiang

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States of America
2 Universities Space Research Association, Columbia, MD, United States of America

Received 29 March 2021
Revised 23 June 2021
Accepted for publication 15 June 2021
Published 5 July 2021

Abstract

The activation ability of aerosols as cloud condensation nuclei (CCN) is crucial in climate and hydrological cycle studies, but their properties are not well known. We investigated the long-term measurements of atmospheric aerosol properties, CCN concentrations (N_{CCN}) at supersaturation (SS = 0.1%–1.0%), and hygroscopicity at the Department of Energy’s Southern Great Plains (SGP) site to illustrate the dependence of N_{CCN} on aerosol properties and transport pathways. Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aged biomass burning aerosols from Central America were characterized by higher accumulation mode particles (N_{accum}; median value 805 cm$^{-3}$) and relatively high aerosol hygroscopicity (κ; median value \sim0.25) values that result in the higher CCN activation and relatively high N_{CCN} (median value 258–1578 cm$^{-3}$ at a SS of 0.1%–1.0%). Aerosols from the Gulf of Mexico were characterized by higher N_{accum} (\sim35%), and N_{CCN} (230–1721 cm$^{-3}$ at a SS of 0.1%–1.0%) with the lowest κ (\sim0.17). In contrast, relatively high nucleation mode particles (N_{nuc}; \sim20%) and low N_{CCN} (128–1553 cm$^{-3}$ at a SS of 0.1%–1.0%) with higher κ (\sim0.30) values were observed on the aerosols associated with a westerly wind. The results indicate particle size as the most critical factor influencing the ability of aerosols to activate, whereas the effect of chemical composition was secondary. Our CCN closure analysis suggests that chemical composition and mixing state information are more crucial at lower SS, whereas at higher SS, most particles become activated regardless of their chemical composition and size. This study affirms that soluble organic fraction information is required at higher SS for better N_{CCN} prediction, but both the soluble organics fraction and mixing state are vital to reduce the N_{CCN} prediction uncertainty at lower SS.

1. Introduction

Suspended atmospheric aerosols allow for the water vapor condensation under certain supersaturation (SS) conditions and subsequently evolve into cloud droplets by serving as cloud condensation nuclei (CCN). Changes in the amount or the CCN properties will indirectly affect the climate by perturbing the cloud development and precipitation (Rosenfeld et al 2008, Li et al 2011). In this sense, the CCN concentration is an important parameter affecting aerosol–cloud interaction. The radiative forcing induced by aerosol–cloud interaction (\sim0.55 \pm 0.63 W m$^{-2}$) is larger than the one induced by aerosol–radiation interaction (\sim0.27 \pm 0.50 W m$^{-2}$) (IPCC 2014). Moreover, the uncertainty in the radiative forcing associated with the aerosol–cloud interaction remains high and is significantly larger than that associated with the aerosol–radiation interaction (IPCC 2014). Despite the considerable efforts to better understand aerosol–cloud interaction during the last decade, the uncertainty associated with the radiative forcing due to aerosol–cloud interaction has not
decreased significantly (Seinfeld et al. 2016). Reducing this uncertainty is crucial for increasing our confidence in predictions of global and regional climate models (IPCC 2014). The fundamental parameter relevant for understanding the aerosol-cloud interaction is the CCN (Rosenfeld et al. 2014). Hence, the significant uncertainty in aerosol-cloud interaction points to the necessity of dedicated observational and modelling efforts to improve the scientific understanding of CCN activation and accurately quantify the aerosol perturbed change in cloud microphysics (Rosenfeld et al. 2014).

The ability of particles to act as CCN is mainly controlled by aerosol particle size following by chemical composition (Dusek et al. 2006) and meteorological conditions (i.e., supersaturation (SS) and uplift force of air parcels; Seinfeld & Pandis 2016). CCN are particles directly emitted (as primary particles) into the atmosphere from natural and anthropogenic sources (Després et al. 2012, Duan et al. 2018) or aerosol particles that have undergone growth processes and possible chemical transformation in the atmosphere. These fine particles may originate from atmospheric new particle formation (NPF) events, anthropogenic combustion, or other various emission sources (Paasonen et al. 2018). With the development and dissemination of techniques, measurements of ambient aerosol size distribution and chemical composition have increased in the last few decades. However, the global coverage of such data is still far from sufficient (Fan et al. 2016), and the effort to systematically combine surface measurement sites is only at its earliest stages. Earlier studies suggested that measuring the aerosol hygroscopicity under subsaturated water vapor conditions has been proposed as a way to estimate the CCN activity of aerosols (Brechtel & Kreidenweis 2000, Kreidenweis et al. 2005). In those studies, particle hygroscopicity was used to predict the critical supersaturation or critical diameter of particles, above which the thermodynamic equilibrium between the aerosols and the surrounding vapor collapses and the vapor condensation rate exceeds the evaporation rate. This leads to the continuous growth of the particles, which are thus solution droplets. The advancement of a single parameter \(\kappa \) that incorporates Raoults law and the Kelvin effect with the given value of surface tension of water made the quantitative comparison between hygroscopicity at subsaturated condition and CCN activation more feasible (Petters & Kreidenweis, 2007). Information on CCN number concentration \((N_{\text{CCN}}) \) at specific SS values is needed for the present-day climate models. To fulfill this requirement, many attempts have been made to retrieve \(N_{\text{CCN}} \) from aerosol hygroscopicity and size measurements at various regions such as the Amazon rainforest (Gunthe et al. 2009, Pöhlker et al. 2016), rural continental sites (Dusek et al. 2006, Cho Cheung et al. 2020), large cities (Lance et al. 2009, Rose et al. 2010), coastal locations (Dusek et al. 2003, Gong et al. 2020) and subarctic (Kammermann et al. 2010). Several investigations have raised attention to the effect of aerosol mixing state on \(N_{\text{CCN}} \) (Ervens et al. 2010, Wang et al. 2010, Wex et al. 2010). However, hygroscopicity data for ambient aerosols is still far from sufficient (Swietlicki et al. 2008).

The Atmospheric Radiation Measurement (ARM) program initiated by the US Department of Energy (DOE) aims to improve the parameterization of clouds in global climate models (Stokes & Schwartz 1994). The Southern Great Plains (SGP) site under the ARM program is one of the world’s largest and most extensive climate research facilities, which has over 20 years of long-term ground-based measurements of aerosol and cloud properties (Ackerman & Stokes 2003, Dong et al. 2005). While the SGP site is located in a rural environment, around 40 km away from the nearest population centers, it is influenced by a mixture of anthropogenic, biogenic, and biomass burning aerosol sources along with long-range transported aerosols. Indeed, earlier studies showed a distinct seasonal variability in size and composition of aerosols, aided by favorable air masses at the SGP (Parworth et al. 2015, Logan et al. 2018). Therefore, it provides a unique platform to investigate the role of aerosol in CCN activity extensively. The prevailing aerosols at the ARM-SGP site typically contain organic and black carbon associated with biomass burning and inorganic aerosols composed of sulfate and nitrate species (Parworth et al. 2015, Logan et al. 2018). None of the prior studies at the SGP site demonstrated the differences in intrinsic hygroscopicity among those aerosol species and their roles in aerosol activation processes. Thus, this study aimed to characterize the variation in aerosol hygroscopicity and CCN activity under the influence of different air mass histories by utilizing a long, continuous record (January-December, 2019) of aerosol properties and CCN concentration measured at the SGP site. Section-1 outlines the methodology, instrumentation, and observations used in this study. Section-2 provides the present study results, which cover identifying the aerosol source regions and associated variation in aerosol characteristics and their activation processes. Section-3 summarizes the key findings of the present study and discusses areas of focus for future research.

2. Experiments & data analysis

2.1. Site description and measurements

The present study utilizes comprehensive in situ measurements conducted at the ARM-SGP extended central facility (E13) (36.605° N 97.486° W) site located in a mixed land-use area of cattle pastures and agricultural fields in Lamont, Oklahoma, U.S. (https://www.arm.gov/capabilities/observatories/sgp). The central facility
employs surface-based instruments and remote sensing equipment that can provide continuous measurements of the physical and chemical properties of atmospheric constituents and local meteorological environments. The climate at the site is continental, with cold winters and hot summers. The site is impacted by various air masses originating from Central America, the Gulf of Mexico, and influence from long-range transport (figure 1 & Figure S1 (available online at stacks.iop.org/ERC/3/075002/mmedia)) with accompanying diversity in aerosol concentrations and properties. The site experiences complex and highly variable aerosol chemical compositions

Table 1. List of instruments, measured quantities, manufacturer, and data period (used in this study).

Instrument	Measurement	Manufacture/Model	Data period (used in this study)
Scanning Mobility Particle Sizer (SMPS)	Size Distribution from 10 nm to 512 nm	TSI Inc. 3936	January-December 2019
Dual Column Cloud Condensation Nuclei Counter (CCNC)	CCN concentration at a various set of supersaturations (0.1%, 0.2%, 0.4%, 0.8%, 1.0%)	Droplet Measurement Technologies CCN-200	January-December 2019
Condensation Particle Counter (CPC)	Concentration of condensation nuclei	TSI Inc. 3772	January-December 2019
Aerosol Chemical Speciation Monitor (ACSM)	Chemical composition (organsics, ions of sulfate, nitrate, ammonium, and chloride)	Aerodyne Research Inc.	April-December 2019

Figure 1. Cluster classification of 168 h (a) back trajectories during measurement period, and (b) airmass heights are shown in the graph below. Airmasses with both C2 and C4 have slow movements and relatively from the lower elevation, which originated from the Central America and Gulf of Mexico, respectively. While airmass in C1 and C3 are associated with the intercontinental long-range transportation from the high elevation.
with time and particle size, as reflected in that of growth factor (GF) described by Mahish & Collins, (2017). The ARM-based Aerosol Observation System (AOS) has several ground-based instruments that can retrieve aerosol physical and chemical properties at the lowest atmospheric levels. Table 1 lists the routine aerosol measurements at the site that were used for the analysis presented here. All datasets used for this analysis are available for download from the ARM archive (https://adc.arm.gov/).

The scanning mobility particle sizer (SMPS) measured dry particle number size distribution (PNSD) with a TSI 3936 SMPS at 5 min interval. The SMPS system consisted of an electrostatic classifier with a differential mobility analyzer (DMA) and a TSI 3772 CPC. A total of 109 bins were used to measure a diameter range from 10.6 nm to 512 nm. A sheath to aerosol flow ratio of 5:1 was used for the DMA. An additional diffusion correction for the inlet tube was applied, assuming a laminar flow (Hinds 1999). Before deployment, the sizing accuracy of the SMPS was confirmed using the National Institute of Standards and Technology (NIST)-certified polystyrene latex spheres. Total particle number concentrations for particles larger than 10 nm in diameter were obtained from the condensation particle counter (CPC). A CPC, which has a ~10% detection efficiency for particles of 10 nm diameter, was connected to the same inlet as the SMPS. The additional details about the calibration, operation, accuracy, and uncertainty of both instruments are discussed elsewhere (Kuang 2016a, 2016b). N_{CCN} was measured using a continuous-flow, streamwise thermal gradient dual-column cloud condensation nuclei counter (CCNC). The sampled aerosol particles are guided within a sheath flow through this chamber and can become activated to droplets, depending on the supersaturation conditions and particles ability to act as CCN. Dual-column CCNC has two columns to measure different samples at different supersaturations (SS) simultaneously. During the experiment, one column measures CCN concentration for fixed value of supersaturation (ss = 0.4% in the present study), whereas second column measures CCN concentration at 5 different supersaturation conditions (0.1%, 0.2%, 0.4%, 0.8% and 1.0%). The additional description about the operation, calibration, data quality, and uncertainty is discussed elsewhere (Uim 2016).

The Aerosol Chemical Speciation Monitor (ACSM) employs thermal vaporization, electron impact ionization mass spectrometer that can measure ground-level species, such as organics (carbonaceous compounds), ions of nitrate, sulfate, ammonium, and chloride, in units of μg m^{-3} (Ng et al 2011). ACSM, in conjunction with the other measurement platforms and air mass trajectory analysis, provides crucial information about the air mass pathways and potential aerosol sources over regions. More detail about ACSM measurements are given elsewhere (Watson et al 2018, 2020).

2.2. Derivation of the particle hygroscopicity parameter (κ)
Firstly, the N_{CCN} and total particle number concentration (N_{CN}) data were synchronized into 5-minute averages, which corresponded to the time interval for particle size distribution data measured by SMPS. According to Köhler theory (Köhler 1936), whether or not an aerosol particle can act as a CCN is primarily controlled by its size, chemical composition, and maximum supersaturation in its vicinity. The aerosol hygroscopicity (κ) values in the present study were derived using κ-Köhler theory (Petters & Kreidenweis 2007) using CCN activity data (κ_{CCN}). For κ_{CCN} > 0.1, the following approximate expressions can be used, assuming the surface tension of the examined solution droplets (σ_{s/a}) is that of pure water:

Month	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Undefined
January	81 (43.5%)	53 (28.5%)	46 (24.7%)	6 (3.2%)	0 (0.0%)
February	45 (26.8%)	91 (54.2%)	16 (9.5%)	15 (8.9%)	1 (0.6%)
March	74 (39.8%)	68 (36.6%)	31 (16.7%)	13 (7.0%)	0 (0.0%)
April	54 (30.0%)	92 (51.1%)	12 (6.7%)	22 (12.2%)	0 (0.0%)
May	21 (11.3%)	55 (29.6%)	6 (3.2%)	74 (39.8%)	30 (16.1%)
June	27 (15.0%)	18 (10.0%)	13 (7.2%)	122 (67.8%)	0 (0.0%)
July	8 (4.3%)	55 (29.6%)	8 (4.3%)	85 (45.7%)	30 (16.1%)
August	13 (7.0%)	23 (12.4%)	0 (0.0%)	150 (80.6%)	0 (0.0%)
September	10 (5.6%)	13 (7.2%)	0 (0.0%)	133 (73.9%)	24 (13.3%)
October	82 (44.1%)	37 (19.9%)	45 (24.2%)	22 (11.8%)	0 (0.0%)
November	77 (42.8%)	19 (10.6%)	43 (23.9%)	16 (8.9%)	25 (13.9%)
December	88 (47.3%)	50 (26.9%)	9 (4.8%)	39 (21.0%)	0 (0.0%)
All data	580 (26.5%)	574 (26.2%)	229 (10.5%)	697 (31.8%)	110 (5.3%)

Table 2. Statistics on the occurrence of respective airmass clusters for each month during the study period.

* The number indicates the total number of trajectories associated with particular cluster (percentage contribution from particular cluster)
where \(d_{\text{crit}}\) is the critical diameter above which all particles are activated into droplets for a certain supersaturation ratio, \(S (\approx \text{supersaturation} + 1)\). \(M_w\) and \(\rho_w\) are the molecular weight and water density, while \(R\) and \(T\) are the gas constant and temperature, respectively.
and T are the ideal gas constant and the absolute temperature, respectively. Simultaneously measured NCCN and PNSDs were used to derive \(\delta_{\text{crit}} \) using the approach described by Rose et al (2008) and Mei et al (2013).

Additionally, a simple mixing rule on chemical volume fractions for an assumed internal mixture proposed by Petters & Kreidenweis (2007) is used to calculate \(\kappa_{\text{chem}} \):

\[
\kappa_{\text{chem}} = \sum_{i} \xi_i \kappa_i
\]

Where \(\xi_i \) and \(\kappa_i \) are the volume fraction and hygroscopicity parameter, respectively, for the individual (dry) chemical components, and \(i \) is the number of components in the mixture. The ACSM measured bulk composition is used to calculate \(\kappa_{\text{chem}} \), in the present analysis. The ACSM-measured aerosol components mainly consisted of organics, (NH\(_4\))\(_2\)SO\(_4\), and NH\(_4\)NO\(_3\) (Zhang et al 2014, Zhang et al 2016). The \(\kappa \) values for (NH\(_4\))\(_2\)SO\(_4\), and NH\(_4\)NO\(_3\), are 0.67 and 0.61, respectively, which are derived from previous laboratory experiments (Petters & Kreidenweis 2007). The linear function derived by Mei et al (2013) was used to estimate \(\kappa_{\text{org}} \) (\(\approx 2.10 \times f_{44} - 0.11 \)) in our study, where \(f_{44} \) is the fraction of m/z = 44 in total organics. The particle hygroscopicity is thus the volume average of the participating species. Volume fractions of species were derived from mass concentrations and densities of the participating species. The densities of NH\(_4\)NO\(_3\) and (NH\(_4\))\(_2\)SO\(_4\) are 1720 kg m\(^{-3}\) and 1770 kg m\(^{-3}\), respectively. The density of organics is assumed to be 1200 kg m\(^{-3}\) (Turpin & Lim, 2001). More detailed descriptions of the method to derive \(\kappa_{\text{chem}} \) can be found elsewhere (Zhang et al 2014).

Additionally, to remove the outliers in \(\kappa \) data, we defined an outlier by values larger or smaller than 1.5 times the interquartile range (IQR) as follows:

\[
Q1 - 1.5 \times \text{IQR or Q3 + 1.5 \times IQR}
\]

Where Q1 and Q3 are the first and third quarters of kappa data and IQR is Q3 minus Q1. About 7% of the data has been removed, according to equation (4).

3. Results & discussions

3.1. Identification of air mass origins and potential source regions

In order to assess the potential origin of air masses that affect aerosols characteristics during the study period, seven-days air mass back trajectories over study location were calculated every 4 h using the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) for the entire sampling period (Stein et al 2015). For the analysis, a model is initiated with the six-hourly Global Data Assimilation System (GDAS) archived data with a resolution of 1\(^\circ\) in longitude and latitude. The endpoint of the trajectories was 200 m a.g.l. (above ground level) at the ARM-SGP.
These back trajectories from various sources (Figure S1) were classified into clusters using the cluster analysis technique (Dorling et al 1992). This analysis resulted in four distinct air mass back trajectory clusters (see Figure S1; hereafter referred to as C1, C2, C3, and C4). Month wise occurrence frequency of each cluster is listed in Table 2. Synoptic and mesoscale dynamics play essential roles in governing the movement of the air masses that transport aerosols from their sources to the SGP site (Parworth et al 2015, Logan et al 2018). The high-elevated air mass cluster C1 is associated with a westerly wind, contributing ∼27% of the total back trajectories, bringing air masses from the arid and mixed forest regions in the west of the SGP site. The intercontinental transport from Asia (mainly from eastern China) has also been seen during C1, mainly containing land-based anthropogenic aerosols (Lin et al 2014). Like C1, C3 also shows long-range transport from Canada, mainly influenced by continental emissions, contributing the least (∼11%) to total back trajectories. This set of trajectories also originates from the northern plain, passed over grassland and cropland (Trishchenko et al 2004), and is influenced by weak biogenic emissions (Liu et al 2020). Both C1 and C3 mostly dominate during late Fall and Winter. Unlike C1 and C3, most back trajectories during C2 and C4 are low-elevated and transport from shorter distances, depending on the position of high- and low-pressure systems passing through the region. During C2, the air masses arriving at the SGP site primarily originated from Central America, dominated during spring, contributing ∼26% of the total back trajectories. This set of trajectories are primarily attributed to agricultural burns and wildfires in Central America (Pepper et al 2000, Wang et al 2009). During C4, air mass arriving at the SGP site originated primarily from the southern region, contributing the highest (∼32%) to the total back trajectories. During summer, these trajectories were passed by urban/industrial areas such as Oklahoma City and eastern Texas, which are influenced mainly by anthropogenic emissions. A fraction of trajectories during C4 pass over the biogenic-rich emissions regions southeast of the SGP site. This indicates that biogenic emissions likely contribute to secondary organic aerosol mass at SGP (Parworth et al 2015, Liu et al 2020). Previous studies reported that a set of back trajectories associated with air mass cluster C4, having a signature of biomass burning smoke aerosols (especially during spring) and transport of marine air masses from the Gulf of Mexico (Parworth et al 2015, Logan et al 2018, Liu et al 2020). The pollution and smoke aerosols tend to be confined closer to the surface during moist, stagnant conditions, while the processes between the interface of the free troposphere and boundary layer, such as subsidence, entrainment, and turbulent, settle down the long-range transported aerosols to the surface (Logan et al 2014, Dong et al 2015).

3.2. Aerosol physical and chemical characteristics

Particles of different sizes have different formation routes, sources, and behaviors. Therefore, the simultaneous observations of aerosol particle number size distributions are co-located to various air mass clusters and further
Table 4. Statistics of ACSM-measured aerosol chemical composition at the ARM-SGP site during April-December, 2019. Measurement units are μg m⁻³ for all species.

Species	Cluster 1 mean	median	25th percentile	75th percentile	Cluster 2 mean	median	25th percentile	75th percentile
Organic	1.40	1.14	0.68	1.82	2.24	1.91	0.92	3.07
Nitrate	0.38	0.20	0.10	0.46	0.40	0.22	0.12	0.43
Sulfate	0.22	0.17	0.10	0.29	0.42	0.31	0.18	0.58
Ammonium	0.19	0.14	0.07	0.24	0.30	0.21	0.11	0.37
Chloride	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01

Cluster 3

Species	mean	median	25th percentile	75th percentile	Cluster 4 mean	median	25th percentile	75th percentile
Organic	0.95	0.74	0.47	1.07	2.55	2.37	1.70	3.22
Nitrate	0.51	0.34	0.18	0.61	0.23	0.17	0.12	0.26
Sulfate	0.29	0.24	0.16	0.38	0.70	0.66	0.35	0.95
Ammonium	0.27	0.22	0.13	0.35	0.31	0.28	0.16	0.41
Chloride	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01

The range between the 25th and 75th percentiles. To better understand the particle size modes, we corresponded the median particle number size distributions for all four air mass clusters. The shaded area indicates divided into the subsets to examine their dependence on the air mass origin. The frequency of ACSM-measured aerosol chemical composition at the ARM-SGP site during April-December, 2019. The shaded area indicates the range between the 25th and 75th percentiles. The frequency of ACSM-measured aerosol chemical composition at the ARM-SGP site during April-December, 2019. Measurement units are μg m⁻³ for all species.

The average relative contribution of the particle number concentration in the three modes for individual air mass clusters is shown in figure 2(a). Figure 2(b) represents the corresponding median particle number size distributions for all four air mass clusters. The shaded area indicates the range between the 25th and 75th percentiles. The frequency distribution of geometric mean diameter (GMD) for each air mass cluster, along with the mean GMD values, is shown in figure 2(c).

Variations in the contributions of the particle modes during the observational period indicated a potential difference in the particle characteristics over the region during the four distinct air mass histories. In general, the PNSD exhibited a bimodal distribution for all four air mass clusters with varying degrees of particle concentration. The median PNSDs during C1 and C3 have the first peak at below 50 nm and the second at > 100 nm. In these periods, the majority (50%) of the aerosol particles were present in the Aitken mode and least (~14%) in the accumulation mode. Interestingly, a prominent presence of nucleation mode particles (~30%) was also observed during both the environment even though the air mass history varies. It also reflects in the frequency distribution of GMD, spreading towards the lower size range with the mean values 52 nm (C1) and 49 nm (C3). Changes in GMD of the PNSD for a given observation site most likely reflect the different particle emission sources and aging histories. Moreover, the relatively lower occurrence frequency of C3 (table 2) contributes significantly lower to total aerosol number concentration with a median value of 705 cm⁻³. On the other hand, C1 had a second maximum contribution to total aerosol number concentrations (median value of 1046 cm⁻³). In general, nucleation mode particles are produced by homogeneous and heterogeneous nucleation processes, formed during natural gas-to-particle condensation. Nucleation mode particles are transferred to the Aitken mode through coagulation of nucleation particles, condensation of vapors onto existing particles (Seinfeld & Pandis 2016), or cloud processing (Hoppel et al 1994), during which they grow into that size range.
Unlike C1 & C3, the PNSD are entirely different during the C2 & C4, as seen in the gas phase with warmer temperatures. Moreover, cations and anions illustrate a good correlation section exhibited an increase in particle number concentration during C2 while Aitken mode particles still dominated the particle number concentration, the accumulation mode concentrations of nucleation mode particles, and those particles are growing into Aitken and accumulation mode size ranges and last for a few hours until they disappear into the atmospheric condensation and coagulation sinks. Additionally, C4 contributes highest to the total aerosol number concentration than the other air mass clusters, with a median value of 1147 cm$^{-3}$, followed by C2 with a median value of 903 cm$^{-3}$. Accumulation mode particles are mostly emitted to the atmosphere from natural sources, e.g. mineral dust, marine aerosol or bioaerosols, mainly long-range transported or more aged aerosols. These results are similar to the previous studies (Andrews et al 2011, Marinescu et al 2019). Moreover, the new particle formation (NPF) event is the primary source of secondary aerosol particles. This could significantly increase the number concentrations of nucleation mode particles, and those particles are growing into Aitken and/or accumulation mode size ranges and last for a few hours until they disappear into the atmospheric condensation and coagulation sinks. Therefore, the occurrence frequency of NPF has been investigated during each air mass environment (Figure S2) to find their contribution to total particle concentration. In total, 205 NPF events were visually identified by following the protocol given in Kulmala et al (2012) during the entire study period. The investigation reported that NPF occurred more frequently during C1 (~36%) may significantly contribute to nucleation mode particles. Interestingly, the occasional NPF occurrence during C3 (~12%) suggests that nucleation mode particles are associated with long-range transportation via the westerly wind from Asia. The observation shows that NPF occurrence frequency during C2 (20%) and C4 (29%) may contribute to nucleation mode particles.

According to Köhler’s theory, particle activation depends on their solubility for particles of constant size, which is a function of their composition, including the number of potential solute molecules and their solubility. Therefore, we analyzed the ACSM-measured bulk chemical composition of aerosol particles, reaching the study location via different air mass histories. Figure 3 gives the mass fraction of organics, ammonium, chloride, nitrate, and sulfate as measured by ACSM, and the average mass concentration of these components is summarized in table 4 during April-December, 2019. Organic aerosols (OA) contributed the most considerable fraction to the total mass concentration during C1, C2, and C4 periods, accounting for >60% on average, whereas inorganics were greater than 50% of the total mass during C3. Sulfate was abundant in absolute mass during C4 with an average concentration of 0.7 μg m$^{-3}$. In contrast, nitrate is dominated in C3 (mean concentration 0.51 μg m$^{-3}$) and C1 (mean concentration 0.38 μg m$^{-3}$). The nitrate mass was lowest during C4 (mean concentration 0.23 μg m$^{-3}$) than others due to its semi-volatile behavior pushing the equilibrium back to the gas phase with warmer temperatures. Moreover, cations and anions illustrate a good correlation (Figure S3), but during C4, ammonium is insufficient for full neutralization of the anions, suggesting the aerosols associated with air mass cluster C4 were more acidic. In general, ammonium nitrate will not partition into the condensed phase until particulate sulfate is fully neutralized (Guo et al 2017). Thus, the more acidic behavior of aerosol might be another explanation for the lower nitrate during C4. These given values might have slight variation due to incomplete datasets of aerosol chemical composition, but the variation in chemical composition associate with air mass clusters are almost similar in comparison to previous studies (Parworth et al 2015, Mahish et al 2018, Liu et al 2020). Subsequently, we used these measurements for the computation of the chemical-based hygroscopicity parameter (κ_{chem}) and the further evaluation of CCN closure analysis (discussed in the following section).
3.3. CCN concentration and aerosol hygroscopicity

Statistics for the number concentration of cloud condensation nuclei (N$_{CCN}$) and total particles (N$_{CN}$) as well as for critical diameter (d$_{crit}$) and kappa (κ$_{CCN}$) values under specific supersaturation conditions for different air mass history are summarized in Table 5. The N$_{CN}$ amount represents the total number of boundary layer aerosols that can serve as centers for condensation, while the N$_{CCN}$ is the fraction of NCN that can activate as CCN. The median N$_{CCN}$ values exhibited large variability throughout the study period, ranging from 128 to 1721 cm$^{-3}$ for a supersaturation value of 0.1%–1.0%. The peak values of N$_{CCN}$ observed in C4 (median 230–1721 cm$^{-3}$ at a SS of 0.1%–1.0%) and C2 (median 258–1578 cm$^{-3}$ at a SS of 0.1%–1.0%) suggesting a large number of hygroscopic particles transported to the observational site from Gulf of Mexico (South) and Central America (North), respectively. The particles associated with C4 and C2 that are advected to the SGP site tend to readily activate as CCN under moist environments brought about by mesoscale and synoptic weather events (Logan et al 2018, 2020). The relatively low air mass occurrence frequency of C3 could have contributed lowest to N$_{CN}$ (median 2329 cm$^{-3}$) and N$_{CCN}$ (median 134–1057 cm$^{-3}$ at a SS of 0.1%–1.0%). Though the N$_{CN}$ (median 2874 cm$^{-3}$) is higher in C1, a low concentration of hygroscopic aerosols was inferred from the decrease in N$_{CCN}$ (median 128–1553 cm$^{-3}$ at a SS of 0.1%–1.0%). A further discussion on how the variability in the particle characteristics affects their activation is presented in section 2.4. Furthermore, CCN spectra (plotted against the supersaturation) are a frequently used representation in various studies to summarize the observed N$_{CCN}$ values over the cloud-relevant supersaturation range for a given period and location (Gunthe et al 2009, Pöhlker et al 2016). The dependence of N$_{CCN}$ on supersaturation is shown by plotting the averages of the measured N$_{CCN}$ during different air mass histories at the specific supersaturations of the CCN counters (Figure S4). A logarithmic function fits better to the data in all these different environments than the power function N$_{CCN}$ (SS) = C* (SS)κ. It is not a new observation that the power function is not perfect for expressing the N$_{CCN}$ versus SS relationship. Previous studies have used other function types, for instance, an exponential function (Mircea et al 2005, Deng et al 2013), a product of the hypergeometric and power function (Cohard et al 1998, Pinsky et al 2012), and the error function (Dusek et al 2006, Pöhlker et al 2016). More than 95% of cases in the current observations show a high correlation coefficient (R > 0.98) with logarithmic function fit.

The median d$_{crit}$ and associated κ$_{CCN}$ value calculated for the observation period ranged from 40.2 to 129.1 nm and 0.11 to 0.41 (under supersaturation 0.1%–1.0%), respectively, which exhibited larger variations than that reported in the previous literature from the various sites across the world (Gong et al 2019, Hung et al 2014, Iwamoto et al 2016, Meng et al 2014; references therein). The large variability in κ$_{CCN}$ values measured at the ARM-SGP station compared to the previous studies may be attributed to the shorter measurement period, while the present study lasted for one year and thereby was subject to seasonal variations. Moreover, the adaptation of κ estimation methodology also observed a large variation in the κ$_{CCN}$ values. However, the κ$_{CCN}$ was computed using d$_{crit}$ in the present study, representing the average hygroscopicity of the aerosols (Rose et al 2008). Nevertheless, the aerosol composition at the SGP station are frequently influenced by regional emissions and long-range transported natural and anthropogenic aerosols through different seasons, as indicated in previous studies (Andrews et al 2011, Parworth et al 2015, Marinescu et al 2019); hence this elucidates the large variability

![Figure 4](image-url). Size dependence of the hygroscopic parameter (κ$_{CCN}$) for every SS level are plotted against their corresponding critical diameter. Dots represent the median value and the bars represent the interquartile range. The colors indicate the various air mass clusters. A clear size dependence and trends in κ$_{CCN}$ levels can be observed.
in κ_{CCN} values observed in this study. Furthermore, the median values of κ_{CCN} against their corresponding d_{crit} for different air mass histories is shown in figure 4. The error bars represent the interquartile range of κ_{CCN}. Both κ_{CCN} and d_{crit} decrease with an increase of supersaturation, suggesting that the chemical composition was not uniform among sizes. Smaller particles tended to have lower κ_{CCN} values corresponding to less hygroscopic species, while more hygroscopic species in larger ones. These low κ_{CCN} values in smaller diameter suggest the presence of organic material, which has also been observed in previous studies (Parworth et al 2015, Mahish & Collins 2017, Liu et al 2020). This observed trend was consistent with the assumption that larger particles are activated first. Although the Kelvin effect may cause some decrease of κ with decreasing particle size, this effect is small, less than 5% for particles in the diameter ranged from 50–200 nm (Swietlicki et al 2008, Wang et al 2018). Moreover, κ_{CCN} values are higher during C1 and lowest during C4. Due to incomplete datasets of aerosol chemical composition, we were unable to determine the higher κ_{CCN} values in C1 directly. However, the previous studies reported that the increased hygroscopicity is probably associated with the promotion of condensation of semi-volatile species such as ammonium nitrate and semi-volatile organic species due to a

Figure 5. (a) Variation of CCN activation ratio (AR) at different SS during all four air mass histories. shaded area indicates the standard error. (b) Ratio of activations ratios for all SS over the activation ratio at 0.5% SS for each air mass clusters based on particle size distribution > 10 nm. At SS = 0.5% (x-axis) ratio is 1. The gray dotted line is the average fit through all curves, whereby $y = A \ln(\text{SS} \%) + b \text{ with } A = 0.55 \pm 0.02 \text{ and } b = 1.41 \pm 0.02.$
combination of shallow boundary layers, enhanced emissions, and low temperature (Parworth et al. 2015). Moreover, during C1, a relatively high concentration of hydrophobic particles such as dust and organic soil particles from crop harvesting contribute to be depression of κ_{CCN} of larger particles (Mahish & Collins, 2017). Conversely, the highest organic mass concentration from biomass burning and anthropogenic emissions during C4 further reduces the κ_{CCN} values. During C2, the biomass burning aerosol contribute a significant fraction of the organic aerosol that oxidize to a more water soluble form, likely due to aging occurring during the transport (Parworth et al. 2015, Liu et al. 2020), resulting in relatively high value of hygroscopicity. Particles in this size range are mostly accumulation mode and have undergone cloud processing and aging. In comparison of C2, κ_{CCN} is relatively low in C4, likely due to aerosol during C2 are more aged than C4 (Liu et al. 2020). Interestingly, the presence of high inorganic concentration in comparison to organic during C3 still have lowest κ_{CCN} than other air mass clusters, likely due to coating of hydrophobic particles such as carbonaceous particles associated to intercontinental transportation that suppress the overall hygroscopicity of particle. Furthermore, the κ_{CCN} curve against size is found flatter during C2 and C4 in comparison to C1 and C3, likely due to the presence of more aged and chemically homogenous aerosols.

Besides, the comparison of mean κ_{chem} with that derived from the N_{CCN} (κ_{CCN}) measurements against the aerosol particle size is shown in Figure S5. Here, κ_{chem} is computed from the bulk chemical composition, whereas κ_{CCN} is arithmetic based on measurements of particles with a diameter range from 10 nm to 512 nm. As illustrated in Figure S5, the κ_{chem} calculated from equation (3) agreed well with the measured κ_{CCN} and having a similar trend. The difference between κ_{chem} and κ_{CCN} is statistically insignificant at all diameters during C3 and C4, while the one during C1 and C2 became statically significant, particularly at larger particle sizes. This large difference in C1 and C2 (more frequent during winter and spring) can be due to incomplete aerosol chemical composition datasets (only available during April-December). Although the ACSM-based κ_{chem} may overestimate particle hygroscopicity because of its sensitivity to larger particles, the mean κ_{chem} is lower than κ_{CCN}. One possible explanation for the lower κ_{chem} is uncertainty in the hygroscopicity of organic aerosols because it is assumed to be a simple linear function of f44 (Mei et al. 2013). Because the coefficients in the linear function $\kappa_{org} = 2.10 \times f_{44} - 0.11$ are based on measurements in different regions, they may not fit the aerosols sampled during the present study. Another cause may be the particle aging/coating process, for instance, condensation of secondary aerosol on preexisting particles. The resulting particle hygroscopicity may depend more on the coating layer than on the preexisting particle composition (Ma et al. 2013).

3.4. CCN activation

The fraction of aerosol particles acting as CCN at a given supersaturation is known as the CCN activation ration/ fraction (AR) and is a crucial parameter for characterizing the CCN activity (Dusek et al. 2006, Andreea, 2009). Figure 5(a) shows a direct comparison of the AR spectra for the given SS segregated to various air mass histories for the period of interest, which reveals characteristics differences in the curve’s shape. The observed differences among the AR spectra in figure 5(a) reflect some of the significant trends in the aerosol variability in SGP. In general, the key parameters in the CCN activation behavior are aerosol number size distribution (primary) and, in a secondary role, the chemical composition of particles (Dusek et al. 2006). Thus, the cluster-wise averaged PNSD (in figure 2) and κ_{CCN} (in figure 4) have to be considered to explain the different shapes in figure 5(a). Focusing on C2 and C4, it can be stated that with increasing SS, the d_{crit} decreases and is shifted from the accumulation-mode towards the Aitken-mode size range. Thus, comparatively small SS levels can already activate most particles of the pronounced accumulation mode. In contrast, during C1 and C3, while the same SS levels still activate the accumulation mode remains inactivated. It means that the ratio of Aitken and accumulation-mode particles determine the activated fraction as a function of SS and thus also the steepness of the activation spectra in figure 5(a). During C2 and C4, 50% of particles activate at 0.4% SS, while in the cases of C1 and C3, 50% activation occurs at SS = 0.8% and 1.0%, respectively, revealing that the ratio of Aitken and accumulation-mode particles determine the activated fraction as a function of SS and thus also the steepness of the activation spectra. While size appears as the dominant parameter in the particle activation behavior, in certain cases variability in chemical composition also matters. In figure 5(a), this can be seen between C2 and C4. In the presence of more aged aerosol in C2, the 50% activation occurs already at SS = 0.32% than to be C4 (SS = 0.44%) behavior. While figure 2(a) shows that the relatively higher accumulation mode presence during C4 than C2, the observed difference in figure 5(a) can be explained by the deviations in the corresponding κ_{CCN} size distribution (figure 4). In other words, the elevated κ_{CCN} during the intrusion of more aged aerosols in C2 allows the activation of particle sizes that remains inactivated at the lower κ_{CCN} levels in the C4 due to relatively larger contribution of organic aerosols. Therefore, the difference in chemical composition can explain the decreased SS in C2 and C4 cases. Furthermore, the lower κ_{CCN} would yield a larger d_{crit} or higher critical SS, and thus a lower CCN and cloud droplet concentration, which will turn lead to uncertainty in evaluating the
associated aerosol indirect effects on clouds and climate. Contrary, the higher AR ratio at each SS analysis is shown in NCCN at SS smaller dcrit or lower critical SS, and consequently higher estimated CCN and cloud droplet concentration. The previous study associated with the lower AR at higher SS link it to the inferences that particles with a smaller electrical mobility diameter are less hygroscopic than larger particles due to the difference in composition. The mass fraction of inorganic constituents is higher in larger in their composition with external mixing method. The mass fraction of inorganic constituents is higher in larger in their composition with external mixing method.

Figure 6. Normalized mean bias resulting from CCN closure analysis performed for all four air mass histories using three different parameterization methods. A value of 0.2 is equivalent to an average overprediction of 20%. M1 indicates the experimental average hygroscopicity method, M2 indicates the bulk chemical composition with internal mixing method and M3 indicates the bulk chemical composition with external mixing method.

Table 6. Fitting results of measured and predicted CCN concentrations. The values are the slope and R² (in brackets).

	C1	C2	C3	C4
0.1%	M1 0.79 (0.87)	0.81 (0.91)	0.75 (0.88)	0.80 (0.91)
	M2 0.82 (0.89)	0.83 (0.90)	0.79 (0.90)	0.82 (0.91)
	M3 0.87 (0.91)	0.86 (0.93)	0.85 (0.91)	0.87 (0.92)
0.2%	M1 0.80 (0.89)	0.82 (0.90)	0.78 (0.90)	0.81 (0.91)
	M2 0.84 (0.87)	0.86 (0.91)	0.83 (0.88)	0.85 (0.91)
	M3 0.91 (0.91)	0.90 (0.93)	0.85 (0.91)	0.91 (0.92)
0.4%	M1 0.83 (0.89)	0.84 (0.90)	0.83 (0.90)	0.83 (0.91)
	M2 0.88 (0.87)	0.86 (0.91)	0.91 (0.88)	0.86 (0.91)
	M3 0.94 (0.91)	0.92 (0.93)	0.93 (0.91)	0.91 (0.92)
0.8%	M1 1.01 (0.87)	1.01 (0.91)	1.02 (0.88)	1.01 (0.91)
	M2 1.06 (0.89)	1.06 (0.90)	1.07 (0.90)	1.05 (0.91)
	M3 1.04 (0.91)	1.04 (0.93)	1.05 (0.91)	1.05 (0.92)
1.0%	M1 1.06 (0.91)	1.04 (0.93)	1.01 (0.91)	1.04 (0.92)
	M2 1.14 (0.89)	1.12 (0.90)	1.10 (0.90)	1.09 (0.91)
	M3 1.11 (0.87)	1.09 (0.91)	1.07 (0.88)	1.11 (0.91)

We calculated the activation ratio (AR) for each measured SS based on the particle number size distribution >10 nm to compare the particle activation behaviors from various air mass clusters. Further, we computed the AR ratio at each SS (ARX) to AR at SS = 0.5% (AR0.5) to assess the changes in AR with respect to SS. In this study, NCCN at SS = 0.5% were not measured directly therefore, the value was linearly interpolated. The result of the analysis is shown in figure 5(b). The dashed gray line represents a logarithmic fit through all four curves. A steep slope represents that the aerosol particle population activation is sensitive to small changes in SS, while a flat slope describes that a further increase in SS would not have a significant influence on the AR. The curves in figure 5(b) suggest that particles at all four clusters have distinct activation properties with changing SS, reflecting the results shown in figure 5(a). Particles observed in the C2 & C4 have a higher AR at higher SS and that most particles activate at SS = 0.5%. The frequency distribution of GMD for C2 & C4 in figure 2(c) suggests that most particles are larger than 70 nm which will already activate at SS lower than 0.5%. The previous study associated with the lower AR at higher SS link it to the influence of nearby biomass burning and hence smaller less hygroscopic particles (Pöhlker et al. 2016). Furthermore, Gunthe et al. (2009) have shown in their findings that particles with a smaller electrical mobility diameter are less hygroscopic than larger particles due to the difference in composition. The mass fraction of inorganic constituents is higher in larger
Surprisingly, particle activation behavior in C2 (associated with pure continental signature) portrays that most particles active already at SS < 0.4%, which is in line with the measured large particle sizes. It suggests that the mixing between water-solute organics and the natural (biogenic) sources leads to size distribution, which has hygroscopic behavior. Likewise, the mixing between biomass burning from the Gulf of Mexico and natural (marine) sources associated with C4 leads to a complex particle activation behavior and it is sensitive to SS < 0.5%. Conversely, particle activation behavior in C1 & C3 is sensitive to higher SS, indicating the influence from long-range transported air pollution at the site. Regarding the C1, findings from a previous study (Lin et al 2014) showed that growing international trade in China exports a significant amount of air pollution to the USA, which highly contains land-based anthropogenic particles such as black carbon, carbon...
monoxide, sulfate, etc (Lin et al. 2014). These smaller anthropogenic particles (GMD = 57 nm; figure 2(c)) activate at higher SS greater than 0.5% due to less hygroscopic behavior of particles. Similarly, particles in C3, associated with transboundary transportation of land-based polluted particles, are sensitive to higher SS.

3.5. CCN Closure Analysis

Cloud resolving models require simple and efficient parameterizations of the complex microphysical basis to adequately reflect the spatiotemporal CCN cycling (Cohard et al. 1998, Andreae 2009). The previous literature (Andreae 2009, Cai et al. 2018, Deng et al. 2013, Gunthe et al. 2009, Jurányi et al. 2011, Pöhlker et al. 2016, Rose et al. 2010 and references therein) reported several different schemes for the prediction of N$_{CCN}$ to understand the involvement of size and chemical composition of aerosol particles in CCN activity under different environments, to improve the knowledge of aerosol-induced CCN activation further. Based on this fact, the present study used three different assumptions regarding particle diameter, chemical composition, and mixing state (internally & externally) for a CCN closure analysis.

(1) Using experimental average hygroscopicity (M1): in this scheme, the average hygroscopicity estimated using equation (1) represents the particle chemical composition and mixing state. However, it only represents the regional CCN activation due to aerosol hygroscopicity in SGP.

(2) Using bulk chemical composition and internally mixed (M2): in this scheme, the ACSM-based averaged chemical composition was assumed to be size-independent and internally mixed. All particles have an identical chemical composition in the entire size range.

(3) Using bulk chemical composition and externally mixed (M3): in this scheme, the aerosol chemical composition was assumed to be size-independent and externally mixed. There were three types of particles at each size: NH4NO3, (NH4)2SO4, and organics, and the concentrations of these three types of particles at each size were identical.

The κ-Köhler theory, as indicated in appendix-1, was used to calculate the critical diameter for the prediction of total N$_{CCN}$. Due to limited aerosol chemical composition datasets, a CCN closure analysis was performed during April-December, 2019. Table 6 describes the results of CCN closure for each airmass history. Closure analysis was assessed in terms of normalized mean bias (NMB = $\sum (CCN_{pre} - CCN_{mea}) / \sum CCN_{mea}$), which represents the average N$_{CCN}$ prediction error observed (Asa-Awuku et al. 2011). Figure 6 shows the normalized mean bias of closure analysis for different airmass histories under low (SS < 0.5) and high (SS > 0.5) supersaturation conditions.

The fitting results depicted that M3 was more accurate than M2 at all SS values in all air mass histories, likely due to the internally mixed particles with homogenous composition had already grown into larger particles or activated as cloud droplets under high moist environments due to their hygroscopic nature. Simultaneously, heterogeneous reactions may have existed in the nucleation particle formation and the remaining particles were mainly externally mixed. The best CCN closure results were achieved in C2 and C4 compared to C3 and C1 in all the schemes, particularly for higher SS, possibly due to aged aerosols, which were less affected by assumptions of chemical composition and mixing state. A previous study conducted in Mexico City reported a similar pattern to that of C3 and C1, in which the presence of primary organic aerosols and black carbon in the form of an external mixture deteriorated the closure ratio (Wang et al. 2010). The low concentration and simple species in C3 made the M3 scheme better for CCN prediction. Figure 6 illustrates that the N$_{CCN}$ prediction accuracy using chemical methods (M2 & M3) depends on SS, typically underpredicting N$_{CCN}$ at low SS but always overpredicting at high SS. This reflects the mean hygroscopicity derived from bulk chemical composition, usually higher than the hygroscopicity of smaller particles but lower than larger particles. In general, the mean hygroscopicity in chemical methods is closest to the hygroscopicity of particles with a $d_{0.1}$ of 100–130 nm, corresponding to SS of 0.1%–0.2%. However, the weak size-dependency of aerosol hygroscopicity due to particle aging neglected such an effect in C2 and C4 but expected to be prominent in C1 and C3 due to the strong size-dependency (as seen in figure 4). These results further confirm that the prediction of N$_{CCN}$ is less sensitive to κ at high SS than at low SS and that the impact of hygroscopicity on the N$_{CCN}$ prediction decreases with increasing SS. In addition, CCN closure is sensitive to solubility & surface tension of organics can lead to a poor closure ratio with a low-soluble inorganics fraction (Chang et al. 2007). It is worth noting that the solubility of organics significantly affects CCN prediction in both external and internal mixing cases. The previous study in a region influenced by urban and industrial sources also suggested that knowledge of the water-soluble organic compound fraction combined with the assumptions of internally mixed aerosols can significantly improve CCN prediction (Asa-Awuku et al. 2011). Notable underprediction of N$_{CCN}$ is reduced (10%–15%) from C2 to C4 at lower SS when assuming external mixing, in agreement with the aerosol aging, which should lead to both oxidized organic aerosol and a
significant amount of internal mixing. This pattern indicates that at lower SS, the solubility of organics plays a crucial role in the CCN activity of aerosols, whereas at higher SS values, most particles become activated regardless of their chemical composition and size. In general, CCN closure error increases (15%–20%) as κ_{CCN} decreases (from C1 to C2 to C4) at lower SS, suggesting that detailed size-resolved composition and mixing states information is crucial for accurate prediction of N_{CCN}. The study conducted over the Northern Pacific Ocean (Schulze et al. 2020) suggested that the environment with intense organic aerosol intrusion into the marine boundary layer similar to C4 are least likely to be precisely reproduced by regional models that need a detailed investigation of their particle characteristics, frequency, and the resulting impact on cloud properties is warranted.

Figure 7 illustrates the comparison of different prediction methods under low supersaturation (SS < 0.5) and high supersaturation (SS > 0.5) conditions irrespective of any airmass cluster. It was more reliable to assume that the external mixing method was more accurate than the internal mixing method at both low and high supersaturation environments. It is worth noting that the soluble organic fraction is required at higher SS, but both the soluble organics fraction and mixing state are substantial at lower SS for CCN prediction. As illustrated in figure 7, the predictions obtained from M1 were slightly poor than the chemical methods (M2 & M3), while at higher supersaturation, the M1 method was more robust. It suggests that the chemical method was still unreliable under high supersaturation due to the critical diameters of particles at high supersaturation being too small. The CCN closure error increases as SS decreases, particularly for M1, suggesting that detailed mixing state and size-resolved compositional information or both is critical for accurate CCN prediction. As the aerosol hygroscopicity calculation used in this study relies on an assumption of internal mixing of organic and inorganic aerosol components, it is difficult to determine whether CCN closure error results from external mixing of organic and inorganic aerosols or a result of variable composition with size. In general, the particle mixing state in the CCN closure studies has been considered size-independent, which may not be correct for all cases because the mixing state varies with the time of the day, aging of aerosols, and distance from the potential source. The atmospheric processes, such as coagulation, condensation, and photochemical transformation, shifts the externally mixed aerosols to an internally mixed state. Therefore, the better CCN closure results are unexpected by considering the long lifetime of externally mixed aerosols. Aerosol aging processes such as condensation, mass transfer processes, or reactive uptake cause the production of secondary species and reduce the overall contribution of primary species that further reduces error in CCN closure. It suggests that implementing an external mixing state, particularly for aged aerosols, is still valid in global climate models. However, it does not represent actual ambient conditions. Therefore, a knowledge of size-resolved chemical composition and the mixing state assumption is required to reduce the CCN closure error.

4. Summary and Discussion

The present study investigates aerosol characteristics and their ability to activate as CCN using measurements obtained over the ARM-SGP site. Measurements of aerosol properties were combined with cluster analysis of the back trajectories to gain insight into aerosol characteristics and their influence on CCN under various airmass environments. Trajectory analysis demonstrated that aerosols that prevail at SGP have major source regions: The Gulf of Mexico, Mexico, and Central America, along with long-range transportation. The characteristics of these airmass clusters and their contribution to CCN activation are as follows:

- Airmass transported from Central America (C2) was characterized by biomass burning aerosols, contributing highest to accumulation mode particles (~38%) with relatively high aerosol hygroscopicity (~0.25), likely due to the aging of aerosols. Aged aerosols with a GMD > 80 nm and relatively high aerosol hygroscopicity (~0.25) demonstrates that ~50% of particles activate at SS < 0.4%. It portrays both particle size and chemical composition together play a crucial role in the CCN activation.

- Airmass transported from the Gulf of Mexico (C4) has the signature of urban pollution, biomass burning smoke, and marine aerosols, contributing the highest to total particle concentration (~median value 1147 cm^{-3}) and Naccu (~35%). The significant contribution from anthropogenic emissions reduces the aerosol hygroscopicity to the lowest (~0.17). Interestingly, even in the poor aerosol hygroscopicity condition, the relatively lower ratio of Aitken and accumulation mode particles increase the CCN activation ratio, and ~50% of particles activate at SS < 0.5%. This demonstrates that particle size matters more than the chemical composition.

- High-elevated airmass associated with a westerly wind (C1) has a prominent presence of nucleation mode particles (~30%) and least contributes to accumulation mode particles (~19%) with a geometric mean diameter (GMD) ~ 50 nm. Although the condensation of semi-volatile species under favorable meteorology
increases the aerosol hygroscopicity (0.30), the ∼50% particle activation occurs at 0.8% SS. It suggests that CCN activation mainly depends on particle size followed by chemical composition.

- The minimal contribution from elevated airmass clusters (C3) from Canada to total have the lowest contribution to total particle contribution (median value 705 cm⁻³) and relatively prominent contribution in fine mode particles (∼20%). It mostly has a signature of continental aerosols, which are hygroscopically inactive, and ∼50% activation occurs at 1.0% SS.

- The better association of biomass burning aerosols with CCN and accumulation mode aerosols during C2 indicates aerosols’ aging process possibly enhanced the CCN activity prior to the marine airmass (C4). It suggests that particle size is responsible first, followed by chemical composition for the CCN activity.

- The CCN closure analysis indicates that the prediction method using bulk chemical composition is more reliable at lower SS. In contrast, the experimental average hygroscopicity method provides a robust prediction of NCCN at higher SS. Additionally, the external mixing method was more accurate than the internal mixing method at both low and high supersaturation environments. The solubility of organics plays a crucial role in the CCN activity of aerosols. The present closure analysis suggests that the soluble organic fraction is required at higher SS, but both the soluble organics fraction and mixing state are substantial at lower SS for better NCCN prediction. Finally, the closure error analysis suggests that detailed size-resolved compositional information and mixing state are critical to reducing the NCCN prediction uncertainty. This information will help establish the empirical hygroscopicity relationship for the climate models.

Acknowledgments

This work was conducted at the NASA-sponsored Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract by NASA. We appreciate the facility provided by the JPL for data analysis and research. This work was supported by the NASA Postdoctoral Program, administered by Universities Space Research Association under contract with NASA. All data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division.

Data availability statement

All data that support the findings of this study are included within the article.

Appendix A1: NCCN estimation in CCN closure analysis

The saturation ratio is given as follows:

\[S = \frac{a_w \exp \left(\frac{4 \sigma M_w}{RT} \right)}{\frac{1}{2}} \] (A1)

where \(a_w \) is the water activity of the solution droplet, \(\sigma \) is the surface tension of the solution, \(M_w \) and \(\rho_w \) are the molecular mass and density of water. \(R \) is the universal gas constant, and \(D_p \) is the size (Seinfeld & Pandis 2016).

The critical diameter can be estimated from the Köhler theory based on its size distribution, chemical composition, and hygroscopic growth information. The critical diameter derived from the Köhler equation is as follows (Lance et al. 2009):

\[d_{crit} = \left[\frac{27}{4} \left(\ln \left(\frac{S}{100} + 1 \right) \right)^2 \left(\frac{\rho_w RT}{4 \sigma M_w} \right) \left(\frac{M_w \rho_s \epsilon}{M_s \rho_w} \right)^{\frac{1}{3}} \right]^{-1/3} \] (A2)

Where \(\rho_s, M_s, \) and \(\epsilon \) denote density, molecular mass, and volume fraction of the solute, respectively. \(\vartheta \) is the effective van’t Hoff factor. Assuming a pure internally mixed aerosol system with uniform composition, \(N_{CCN} \) can be predicted using the following equation based on the measured aerosol number size distribution and estimated critical diameter (Jurányi et al. 2011):

\[N_{CCN} = \int_{D_{min}}^{D_{max}} \left(\frac{dN}{d\log D_p} \right) dD_p \] (A3)

The authors declare that they have no conflict of interest.
Jurányi Z, Gysel M, Weingartner E, Bukowiecki N, Kammermann L and Baltensperger U 2011 A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch Journal of Geophysical Research Atmospheres. 116 1–16
Kammermann L, Gysel M, Weingartner E, Herich H, Cziczo DJ, Holst T and Baltensperger U 2010 Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei Journal of Geophysical Research Atmospheres. 115 1–15
Köhler H 1936 The nucleus in and the growth of hygroscopic droplets Trans. Faraday Soc. 32 1152–61
Kreidenweis SM, Koehler K, DeMott PJ, Perri M J, Carrico C and Ervens B 2005 Water activity and activation diameters from hygroscopic data I. Theory and application to inorganic salts Atmos. Chem. Phys. [https://doi.org/10.5194/acp-5-1357-2005]
Kuang C 2016a Condensation Particle Counter (CPC) Instrument Handbook. https://www.arm.gov/publications/tech_reports/handbooks/cpc_handbook.pdf (DOI: SC-ARM-TTR-145)
Kuang C 2016b TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook. https://www.osti.gov/servlets/purl/1245993/ (DOI: SC-ARM-TTR-147)
Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen H E, Lehtipalo K and Kerminen V M 2012 Measurement of the nucleation of atmospheric aerosol particles Nat. Protoc. 7 1651–67
Lance S, Nenes A, Mazzoleni C, Dubey M K, Gates H, Varutbangkul V and Jonsson H H 2009 Cloud condensation nuclei activity, closure, and the onset growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) J. Geophys. Res. 114 1–21
Li Z, Niu F, Fan J, Liu Y, Rosenfeld D and Ding Y 2011 Long-term impacts of aerosols on the vertical development of clouds and precipitation Nat. Geosci. 4 888–94
Lin J, Pan D, Davis S J, Zhang Q, He K, Wang C and Guan D 2014 China’s international trade and air pollution in the United States Proc. Natl. Acad. Sci. U.S.A. 111 1736–41
Li J, Alexander L, Fast J D, Lindenmaier R and Shilling J E 2021 Aerosol characteristics at the Southern Great Plains site during the HI-SCALE campaign Atmos. Chem. Phys. 21 5101–16
Logan T, Dong X and Xi B 2018 Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment Adv. Atmos. Sci. 35 224–33
Logan T, Dong X, Xi B, Zheng X, Wang Y, Wu P and Maddux J 2020 Quantifying Long-Term Seasonal and Regional Impacts of North American Fire Activity on Continental Boundary Layer Aerosols and Cloud Condensation Nuclei Earth and Space Science. 7 1–12
Logan T, Xi B and Dong X 2014 Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores J. Geophys. Res. 119 8599–72
Ma Y, Brooks S D, Vidaurre G, Khalizov A F, Wang L and Zhang R 2013 Rapid modification of cloud-nucleating ability of aerosols by biogenic emissions Geophys. Res. Lett. 40 6293–97
Mahish M and Collins D 2017 Analysis of a multi-year record of size-resolved hygroscopic measurements from a rural site in the U.S. Aerosol Air Qual. Res. 17 1489–1500
Mahish M, Jefferson A and Collins D R 2018 Analysis of a multi-year record of size-resolved hygroscopic measurements from a rural site in the U.S. Aerosol Air Qual. Res. 17 1489–1500
Mahish M, Jefferson A and Collins D R 2018 Influence of common assumptions regarding aerosol composition and mixing state on predicted CCN concentration Atmosphere. 9 1–18
Marinescu P J, Levin E J T, Collins D, Kreidenweis S M and Van Den Heever S C 2019 Quantifying aerosol size distribution and their temporal variability in the Southern Great Plains, USA Atmos. Chem. Phys. 19 11985–12006
Mei F, Hayes P L, Ortega A, Taylor J W, Allan J D, Gilman J and Wang J 2013 Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA Journal of Geophysical Research Atmospheres. 118 2903–16
Meng J, Yeung M C, Li Y J, Meng B Y L and Chan C K 2014 Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong Atmos. Chem. Phys. 14 10267–282
Mircea M, Facchina M C, Decesari S, Cavalli F, Emblico L, Fuzzi S and Artaxo P 2005 Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: A case study in the Amazon Basin Atmos. Chem. Phys. 5 3111–26
Ng N L, Herndon S C, Trimborn A, Canagaratna M R, Croteau P L, Onasch T B and Jayne J T 2011 An Aerosol Chemical Speciation Monitor J. Geophys. Res. 116 1–16
Parworth C, Fast J, Mei F, Shiprett T, Nunnermacker C, Tiptop A and Zhang Q 2015 Long-term measurements of submicrometer aerosol chemistry at the Southern great plains (SGP) using an aerosol chemical speciation monitor (ACSM) Atmos. Environ. 106 43–55
Pepper R A, Bahrnmann C P, Barnard J C, Campbell J R, Cheng M D, Ferrare R A and Turner D D 2000 ARM Southern Great Plains sites observations of the smoke pall associated with the 1998 Central American Fire Bull. Am. Meteorol. Soc. 81 2563–92
Petters M D and Kreidenweis S M 2007 A single parameter representation of hygroscopic growth and cloud condensation nucleus activity Part II: Including solubility Atmos. Chem. Phys. 8 6273–79
Pinsky M, Khain A, Mazin I and Korolev A 2012 Analytical estimation of droplet concentration at cloud base Journal of Geophysical Research Atmospheres. 117 1–14
Pohler M L, Pohller C, Ditas F, Klimach T, De Angelis H I, Araujo A and Poschil U 2016 Long-term observations of cloud condensation nuclei in the Amazon rain forest: I. Aerosol size distribution, hygroscopicity, and new model parameters for CCN prediction Atmos. Chem. Phys. 16 15709–740
Rose D, Gunthe S S, Mikhailov E, Frank G P, Dusek U, Andread M O and Poschil U 2008 Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment Atmos. Chem. Phys. 8 1153–79
Rose D, Nowak A, Achtet P, Wiedensohler A, Hu M, Sato S and Poschil U 2010 Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China: I. Size-resolved measurements and implications for the modeling of aerosol hygroscopicity and CCN activity Atmos. Chem. Phys. 10 3365–83
Rosenfeld D, Lohmann U, Raga G B, O’Dowd C D, Kulmala M, Facchina M C and Andreae M O 2008 Flood or drought: how do aerosols affect precipitation? Science 321 1309–13
Rosenfeld D, Andreae M O, Asmi A, Chin M, Leewu G, Donovan D P and Quaas J 2014 Global observations of aerosol-cloud-precipitation-climate interactions Rev. Geophys. 52 750–808
Schulze B C, Charman S M, Kenneth C M, Kong W, Bates K H, Williams W and Seinfeld J H 2020 Characterization of aerosol hygroscopicity over the Northeast Pacific ocean: impacts on prediction of CCN and stratocumulus cloud droplet number concentrations Earth and Space Science. 7 1–26
Seinfeld J H and Pandis S N 2016 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd edn (New Jersey: Wiley) 978–1–118–94740–1
Seinfeld J H, Bretherton C, Carslaw K S, Coe H, DeMott P J, Dunlea E J and Wood R 2016 Improving our fundamental understanding of the role of aerosol—cloud interactions in the climate system Proc. Natl Acad. Sci. 113 5781–90

Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D and Ngan F 2015 Noaa’s hysplit atmospheric transport and dispersion model Bull. Am. Meteorol. Soc. (https://doi.org/10.1175/BAMS-D-14-00110.1)

Stokes G M and Schwartz S E 1994 The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation test bed Bulletin - American Meteorological Society. 75 1201–1222 https://journals.ametsoc.org/view/journals/bams/75/7/1520-0477_1994_075_1201_tarmpp_2_0_co_2.xml

Swietlicki E, Hansson H C, Hämeri K, Svenningsson B, Mascle A, McFiggans G and Kulmala M 2008 Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - A review Tellus, Series B: Chemical and Physical Meteorology. 60 432–69

Trishchenko A, Luo Y, Latifovic R and Li Z 2004 Land cover type distribution over the ARM SGP area for atmospheric radiation and environmental research Proc. of the 14th ARM Science Team Meeting (Albuquerque, New Mexico, March 22-26, 2004)

Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y and Tanimoto H 2016 Number–size distribution of aerosol particles and new particle formation events in tropical and subtropical Pacific Oceans Atmos. Environ. 142 324–39

Watson T, Aiken A, Zhang Q, Croteau P, Onasch T, Williams L and Flynn C 2020 Second ARM Aerosol Chemical Speciation Monitor Users’ Meeting Report. https://www.arm.gov/publications/programdocs/doe-sc-arm-tr-249.pdf (https://doi.org/DOE/SC-ARM-TR-249)

Watson T, Aiken A, Zhang Q, Croteau P, Onasch T, Williams L and Flynn C 2018 Second ARM Aerosol Chemical Speciation Monitor Users’ Meeting Report. https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-215.pdf (https://doi.org/DOE/SC-ARM-TR-215)

Watson T, Aiken A, Zhang Q, Croteau P, Onasch T, Williams L and Flynn C 2018 First ARM Aerosol Chemical Speciation Monitor Users’ Meeting Report. https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-215.pdf (https://doi.org/DOE/SC-ARM-TR-215)

Wex H, McFiggans G, Henning S and Stratmann F 2010 Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations Geophys. Res. Lett. 37 1–4

Willis M D, Burkart J, Thomas J L, Kölner F, Schneider J, Bozem H and Abbatt J P D 2016 Growth of nucleation mode particles in the summertime Arctic: A case study Atmos. Chem. Phys. 16 7663–79

Zhang F, Li Y, Li Z, Sun L, Li R, Zhao C and Fan T 2014 Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp campaign: Implications for cloud condensation nuclei parameterization Atmos. Chem. Phys. 14 13423–437

Zhang F, Li Z, Li Y, Sun Y, Wang Z, Li P and Wang Q 2016 Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China Atmos. Chem. Phys. 16 5413–25