Solving the 106 years old 3^k points problem with the clockwise-algorithm

Marco Ripà

World Intelligence Network
Rome, Italy
e-mail: marcokrt1984@yahoo.it

Abstract: In this paper, we present the clockwise-algorithm that solves the extension in k-dimensions of the infamous nine-dot problem, the well-known two-dimensional thinking outside the box puzzle. We describe a general strategy that constructively produces minimum length covering trails, for any $k \in \mathbb{N} - \{0\}$, solving the NP-complete $(3 \times 3 \times \cdots \times 3)$-point problem inside $3 \times 3 \times \cdots \times 3$ hypercubes. In particular, using our algorithm, we explicitly draw different covering trails of minimal length $h(k) = \frac{3^k - 1}{2}$, for $k = 3, 4, 5$. Furthermore, we conjecture that, for every $k \geq 1$, it is possible to solve the 3^k-point problem with $h(k)$ lines starting from any of the 3^k nodes, except from the central one. Finally, we cover a $3 \times 3 \times 3$ grid with a tree of size 12.

Keywords: Nine dots puzzle, Thinking outside the box, Polygonal chain, Optimization problem, Clockwise-algorithm.

2020 Mathematics Subject Classification: Primary 05C85; Secondary 05C57, 68R10.

1 Introduction

The classic nine-dot puzzle [1,2] is the well-known thinking outside the box challenge [3,4], and it corresponds to the two-dimensional case of the general 3^k-point problem (assuming $k = 2$) [5–8].

The statement of the 3^k-point problem is as follows:
“Given a finite set of 3^k points in \mathbb{R}^k, we need to visit all of them (at least once) with a polygonal chain that has the minimum number of line segments, $h(k)$, and we simply define the aforementioned line segments as lines. In detail, let G_k be a $3 \times 3 \times \cdots \times 3$ grid in \mathbb{N}_0^k, we are asked to join all the points of G_k with a minimum (link) length covering trail $C := C(k)$ ($C(k)$ represents any trail consisting of $h(k)$ lines), without letting one single line of C go outside of a $3 \times 3 \times \cdots \times 3$, k-dimensional, axis-aligned bounding box (i.e., remaining inside a $4 \times 4 \times \cdots \times 4$ AABB in \mathbb{R}^k, which strictly contains G_k, and we call it box).”

It is trivial to note that the formulation of our problem is equivalent to asking:
“Which is the minimum number of turns ($h(k) - 1$) to visit (at least once) all the points of the k-dimensional grid $G_k = \{(0, 1, 2) \times (0, 1, 2) \times \cdots \times (0, 1, 2)\}$ with a connected series of line segments (i.e., a possibly self-crossing polygonal chain allowed to turn at nodes and Steiner points)?” [9,10].

The goal of the present paper is to solve the 3^k-point problem, for every positive integer k.

1
We introduce a general algorithm, that we name the *clockwise-algorithm*, which produces optimal covering trails for the 3^k-point problem. In particular, we show that $C(k)$ has $h(k) = \frac{3^k - 1}{2}$ lines, answering the most spontaneous 106 years old question that arose from the original Loyd’s puzzle \cite{2}.

The aspect of the 3^k-point problem that most amazed us, when we eventually solved it, is the central role of Loyd’s expected solution for the $k = 2$ case. In fact, the clockwise-algorithm, able to solve the main problem in a k-dimensional space, is the natural generalization of the classic solution of the nine-dot puzzle.

2 Solving the 3^k-point problem

The stated 3^k-point optimization problem, especially for $k < 4$, appears to have concrete applications in manufacturing, drone routing, cognitive psychology, and integrated circuits (VLSI design). Many suboptimal bounds have been proved for the NP-complete \cite{11} 3^k-point problem under additional constraints (such as limiting the solutions to Hamiltonian paths or considering only rectilinear spanning paths \cite{5,7,12}), but (to the best of our knowledge) the $3^{k>2}$-point problem remains unsolved to the present day, and this paper provides its first exact solution \cite{13}.

2.1 A tight lower bound

Given the 3^k-point problem as introduced in Section 1, if we remove its constraint on the inside the box solutions, then we have that a lower bound is provided by Theorem 2.1.

Theorem 2.1. For every positive integer k, $h(k) \geq \frac{3^k - 1}{2}$.

Proof. If $k = 1$, then it is necessary to spend (at least) one line to join the 3 points.

Given $k = 2$, we already know that the nine-dot problem cannot be solved with less than 4 lines (see Reference \cite{14}, assuming $n = 3$).

Let k be greater than 2. We invoke the proof of Theorem 2.1 in Reference \cite{13}, substituting $n_i = 3$.

Thus, Equation (4) of the above-mentioned Reference \cite{13} can be rewritten as

$$h_l(3_1, 3_2, \ldots, 3_k) = \left\lfloor \frac{3^k - 1}{2} \right\rfloor, \quad (1)$$

which is an integer (since $3^k - 1$ is always even).

Therefore, $h(k) \geq h_l(3_1, 3_2, \ldots, 3_k) = \frac{3^k - 1}{2}$ for any (strictly positive) natural number k. \hfill \square

It is redundant to point out that Theorem 2.1 provides also a valid lower bound for any 3^k-point (arbitrary) *box-constrained* problem. The purpose of the next subsection is to show that this bound matches $h(k)$ for every k.

2
2.2 The clockwise-algorithm

To introduce the clockwise-algorithm, let us begin from the trivial case $k = 1$. This means that we have to visit 3 collinear points with a single line, remaining inside a unidimensional box that is 3 units long.

One solution is shown in Figure 1.

Figure 1. Solving the 3×1 puzzle inside the box (3 units of length), starting from one of the line segment endpoints. The puzzle is solvable with this $C(1)$ path starting from both the red points.

Considering the spanning path in Figure 1, it is easy to see that we cannot solve the 3^1-point problem starting from one point of G_1 if and only if this point is the central one.

Given $k = 2$, we are facing the classic nine-dot puzzle considering a 3×3 box (9 units of area). The well-known Hamiltonian path shown in Figure 2 proves that we can solve the problem, without allowing any line to exit from the box, if we start from any node of G_2 except from the central one [14].
Figure 2. $C(2)$ is a path that consists of $h(2) = \frac{3^2 - 1}{2}$ lines. In order to solve the 3×3 puzzle with 4 lines starting from one node of G_2, it is necessary to avoid starting from the central point of the grid.

Looking carefully at $C(2)$, as shown in Figure 2, we note that line 1 includes $C(1)$ if we simply extend it by one unit backward. Thus, $C(1)$ and the first line of $C(2)$ are essentially the same trail, and so they are considering the clockwise-algorithm. Line 2 can be obtained from line 1 going backward when we apply a standard rotation of $\frac{\pi}{4}$ radians: we are just spinning around in a two-dimensional space, forgetting the $3^2 - 1 - 1$ collinear points that will later be covered by the repetition of $C(1)$ following a different direction. We are now able to understand what line 3 really is: it is just a link between the repeated $C(2 - 1)$ trail backward and the final $C(2 - 1)$ trail following the new direction. In general, the aforementioned link corresponds to line $2 \cdot h(k - 1) + 1 = 3^{k-1}$ of any $C(k)$ generated by the clockwise-algorithm.

Definition 2.1. Let $G_3 := \{(0,1,2) \times (0,1,2) \times (0,1,2)\}$. We call “nodes” all the 27 points of G_3, as usual. In particular, we indicate the nodes $V_1 \equiv (0,0,0), V_2 \equiv (2,0,0), V_3 \equiv (0,2,0), V_4 \equiv (0,0,2), V_5 \equiv (2,2,0), V_6 \equiv (2,0,2), V_7 \equiv (0,2,2), V_8 \equiv (2,2,2)$ as “vertices”, we indicate the nodes $F_1 \equiv (1,1,0), F_2 \equiv (1,0,1), F_3 \equiv (0,1,1), F_4 \equiv (2,1,1), F_5 \equiv (1,2,1), F_6 \equiv (1,1,2)$ as “face-centers”, we call “center” the node $X_3 \equiv (1,1,1)$, and we indicate as “edges” the remaining 12 nodes of G_3.

Now, we are ready to describe the generalization of the original Loyd’s covering trail to higher dimensions. Given $k = 3$, a minimum length covering trail has already been shown in Reference [13], but this time we need to solve the problem inside a $3 \times 3 \times 3$ box. Our strategy is to follow the optimal two-dimensional covering trail (see Figure 2) swirling in one more dimension, according to the 3-step scheme given by lines 1 to 3 of $C(2)$, and beginning from a congruent starting point.
Thus, if we take one vertex of G_3, while we rotate in the space at every turn (as observed for $k = 2$), it is possible to repeat twice (forward and backward) the whole $C(2)$ or, alternatively (Figure 3), we can follow $\frac{2}{3}$ times the scheme provided by lines 1 to 3. In both cases, at the end of the process, $3^3 - \frac{1}{3}$ gyratories have been performed, so we spend the (3^3-1)-th line to close the sub-tour ($C(3)$ can never be a circuit plus we avoided extending its first line backward, but we have already seen that this fact does not really matter), joining $3 - 1$ new points. In this way, we reach the starting vertex again, and the last $3^3 - 1$ unvisited nodes belong only to $G_{k-1} = G_2$ (choosing the right direction). Therefore, we can finally paste $C(2)$ (Figure 2) by extending one unit backward its first line (the new $(2 \cdot h(3 - 1) + 2)$-th line) to visit all the 3^2 nodes of G_{3-1}.

Figure 3. $C(3)$ solves the $3 \times 3 \times 3$ puzzle inside a $3 \times 3 \times 3$ box (27 cubic units of volume), starting from face-centers or vertices, thanks to the clockwise-algorithm.

Before moving on $k = 4$, we wish to prove that the 3^3-point problem is solvable starting from any node of G_3 if we exclude the center of the grid (as we have previously seen for $k \in \{1, 2\}$). This result immediately follows from symmetry when we combine the trails shown in Figures 3&4.
Figure 4. Solving the $3 \times 3 \times 3$ puzzle inside a $3 \times 3 \times 3$ box (27 cubic units of volume), starting from edges or vertices.

The number of solutions with $\frac{3^k-1}{2}$ lines increases as k grows. Moreover, if we remove the box constraint, we can find new minimal covering trails [13], including those that reproduce (on a given 3×3 subgrid of G_3) the endpoints by Figure 2 as shown in Figure 5.
Finally, we present the solution to the 3^4-point problem. Two examples of minimum length covering trails generated by the clockwise-algorithm are given.

The method to find $C(4)$ is basically the same one that we have previously discussed for G_3. So, we utilize the standard pattern shown in Figure 3 as we used $C(2)$ in order to solve the 3^3-point problem. We apply $C(3)$ forward (while we spin around following the 3-step gyrateory as shown in Figure 6), then backward (Figure 7), subsequently we return to the starting vertex with line 27 (the $(2 \cdot h(4 - 1) + 1)$-th link), and lastly, we join the $3^3 - 1$ unvisited nodes with $C(3)$ by simply extending backward its first line (corresponding to the 28-th link of $C(4)$ – see Figure 8).

Figure 5. Solving the $3 \times 3 \times 3$ puzzle inside a $3 \times 3 \times 4$ box (36 cubic units of volume).
Figure 6. Lines 1 to 13 of $C(4)$ following $C(3)$, as shown in Figure 3.
Figure 7. Lines 14 to 27 of $C(4)$ following $C(3)$ backward, the 27-th link to come back to the “starting point” is also included.
Figure 8. A minimum length covering trail that completely solves the $3 \times 3 \times 3 \times 3$ puzzle with 40 lines, inside a $3 \times 3 \times 3 \times 3$ box (hyper-volume 81 units4), thanks to the clockwise-algorithm applied to $C(3)$ from Figure 3.

The clockwise-algorithm reduces the complexity of the 3^k-point problem to the complexity of the 3^{k-1}-point one. A clear example is shown in Figure 9.
Figure 9. How the clockwise-algorithm concretely works: it takes a minimum length covering trail $C(3)$ as input, and returns $C(4)$. Lines 1-13 belong to the covering trail $C(3)$ (shown in the upper-right quadrant), line 13′ follows line 13 and belongs to $C(3)$ backward. $C(3)$ backward ends with line 1′: it is extended (by one unit) in order to be connected to the $(2 \cdot h(3) + 1)$-th link, and this allows $C(3)$ to be repeated one more time (joining the remaining 26 unvisited nodes).

Since the clockwise-algorithm takes $C(k - 1)$ as input and returns $C(k)$ as its output, it can be applied to any $C(k)$ in order to produce some $C(k + 1)$ consisting of $h(k + 1) = 3 \cdot h(k) + 1$ lines. Thus, it is possible to show by induction on k that the 3^k-point problem can be solved, inside a $3 \times 3 \times \cdots \times 3$ box of hyper-volume 3^k units, drawing optimal trails with $3 \cdot h(k - 1) + 1$ lines (Figure 10).

Therefore, $\forall k \in \mathbb{N} - \{0\}$,

$$h(k + 1) = 3 \cdot h(k) + 1 = \frac{3^{k+1} - 1}{2}.$$ \hspace{1cm} (2)
Figure 10. For every integer k greater than 1, the 3^k-point problem can be explicitly solved by the clockwise-algorithm ($k = 5$ in our example). A $C(k)$ with $\frac{3^k-1}{2}$ lines immediately follows from any valid $C(k-1)$, and this surely occurs if $C(k-1)$ has one of its endpoints in a vertex of G_{k-1}.
3 Covering 3^k points by trees

Definition 3.1. We call a tree any acyclic connected arrangement of line segments (i.e., edges of the tree) that covers some of the nodes of G_k, and we denote as $T(k)$ any tree (drawn in \mathbb{R}^k) that covers all the points belonging to the k-dimensional grid G_k. More specifically, $T(k)$ represents a covering tree for G_k of size $t(k)$ (i.e., $T(k)$ has $t(k)$ edges).

In 2014, Dumitrescu and Tóth [15] showed the existence of an inside the box covering tree for G_k, $\forall k \in \mathbb{N} - \{0\}$, of size $t_u(k) = h(k) = \frac{3^k - 1}{2}$ (e.g., the set of all the endpoints of the 13 edges of $t_u(3) \subset G_3$ – see Definition 2.1). It is not hard to prove that, when we take as constraints our $3 \times 3 \times \cdots \times 3$ boxes (as usual), the upper bound $t_u(k)$ is not tight for every $k > 3$.

Lemma 3.1. Let box := $\{(-1,0,1,2) \times (-1,0,1,2) \times \cdots \times (-1,0,1,2)\} \subset \mathbb{Z}^k$. For every k greater than 3, there exists a covering tree, $T(k)$, for G_k whose all its vertices belong to box and such that $T(k)$ has size $t(k) < h(k)$.

Proof. We invoke Theorem 2.1 to remember that $h(k) \geq \frac{3^k - 1}{2}$. It follows that it is sufficient to provide a general strategy to cover G_k with a tree consisting of $\frac{3^k - 1}{2} - c(k > 3)$ edges, for some $c(k > 3) \geq 1$. The tree in \mathbb{R}^3 shown in Figure 11, which covers $3^3 - 1$ nodes of G_3 with its 12 edges, also provides a valid upper bound for $t(4)$, since it is sufficient to clone twice the same pattern and spend one more link to join the remaining three collinear points belonging to each copy of G_3. So, we add 2 more lines (at most) to connect every duplicated tree (to the other two copies of itself) and to fix the aforementioned link (which joins the last 3 unvisited nodes of G_4), in order to create a covering tree of size 39.
Figure 11. An inside the $(2 \times 2 \times 3)$ box tree with $t_u(3) - 1 = 12$ edges that covers all the points of G_3 except the black one. The black dotted line represents the direction (w-axis) to fit the remaining three collinear points of G_4 when we replicate three times the same pattern [16].

Thus, we can generalize our result to all $k \geq 4$,

$$t(k) \leq 3 \cdot t(k - 1) + 1 \leq 39 \cdot 3^{k-4} + \sum_{i=1}^{k-5} 3^i + 1. \quad (3)$$

Hence,

$$t(k) \leq \frac{3^{k-4} - 1}{2} + 13 \cdot 3^{k-3}. \quad (4)$$

Therefore, $h(k) - t(k) \geq 3^{k-4} \geq 1$ holds for every $k \geq 4$.

We are finally ready to remove the box constraint. Without any restriction to our thinking outside the box ability, we are free to apply cleverly the idea introduced by Figure 11 to prove the existence of a covering tree for G_3 of size $t(3) = n^2 + n$ (here n assumes the odd value 3 – see Reference [15], Section 3).

Theorem 3.1. The inequality $t(k) < h(k)$ holds if and only if $k \geq 3$.

Proof. Let $k = 1$; it is trivial to verify that $t(1) = h(1) = 1$.

If $k = 2$, then $t(2) = h(2) = 4$ (see Reference [14]).
Thus, let $k = 3$. Figure 12 shows the existence of a covering tree of size

$$12 = t(3) < h(3) = 13.$$ \hspace{1cm} (5)

Figure 12. A covering tree with $t(3) = 12$ edges. $T(3)$ joins all the points of G_3. If $k \geq 4$, then Lemma 3.1 states that $t(k) < h(k)$. In particular, Equation (3) shows that

$$t(k) \leq (3 \cdot t(3) + 1) \cdot 3^{k-4} \sum_{i=1}^{k-5} 3^i + 1.$$ \hspace{1cm} (6)

Hence,

$$t(k) \leq \frac{25 \cdot 3^{k-3} - 1}{2}.$$ \hspace{1cm} (7)

Since we already proven that $h(k) = \frac{3^k - 1}{2}$ is optimal, it follows that

$$h(k) - t(k) \geq \frac{3^k - 1}{2} - \frac{25 \cdot 3^{k-3} - 1}{2}.$$ \hspace{1cm} (8)

Therefore, we conclude that $k \in \{1, 2\}$ implies $h(k) = t(k)$, whereas $h(k) - t(k) \geq 3^{k-3} \geq 1$ holds for every $k \in \mathbb{N} - \{0, 1, 2\}$. \hfill \square
4 Conclusion

Given the k-dimensional grid G_k, the clockwise-algorithm lets us easily draw different covering trails with $3^k - 1$ lines, and all of them remain inside the $(3 \times 3 \times \cdots \times 3)$ box. After the $(3^k - 1)$-th link, it is possible to switch from the previously applied $C(k - 1)$ to another known solution of the $3^k - 1$-point problem, completing a new optimal trial that has a different endpoint (e.g., we can take the walk shown in Figure 7 and then apply $C(3)$ from Figure 9).

Let $X_k \equiv (1, 1, \ldots, 1)$ be the central node of G_k (see Definition 2.1 for the case $k = 3$). We conjecture that, for every positive integer k, the 3^k-point problem is solvable (embracing also every outside the box optimal trail) starting from each node of $G_k - \{X_k\}$ with a covering trail of length $h(k) = \frac{3^k - 1}{2}$, while it is not if we include X_k as an endpoint of $C(k)$.

References

[1] M. Kihn, Outside the Box: The Inside Story, FastCompany, 1995.
[2] S. Loyd, Cyclopaedia of 5000 Puzzles, The Lamb Publishing Company, p. 301, 1914.
[3] J. M. Chein, R. W. Weisberg, N. L. Streeter, and S. Kwok, Working memory and insight in the nine-dot problem, Memory & Cognition, vol. 38, pp. 883–892, 2010.
[4] C. T. Lung and R. L. Dominowski, Effects of strategy instructions and practice on nine-dot problem solving, Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 11, no. 4, pp. 804–811, 1985.
[5] S. Bereg, P. Bose, A. Dumitrescu, F. Hurtado, and P. Valtr, Traversing a set of points with a minimum number of turns, Discrete & Computational Geometry, vol. 41, no. 4, pp. 513–532, 2009.
[6] M. J. Collins, Covering a set of points with a minimum number of turns, International Journal of Computational Geometry & Applications, vol. 14, no. 1-2, pp. 105–114, 2004.
[7] E. Kranakis, D. Krizanc, and L. Meertens, Link length of rectilinear Hamiltonian tours in grids, Ars Combinatoria, vol. 38, pp. 177–192, 1994.
[8] M. Ripà and P. Remirez, The Nine Dots Puzzle extended to $n \times n \times \cdots \times n$ Points, viXra, 2013. Available online at: https://vixra.org/pdf/1307.0021v4.pdf.
[9] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber, The angular-metric traveling salesman problem, SIAM Journal on Computing, vol. 29, pp. 697–711, 1999.
[10] C. Stein and D. P. Wagner, Approximation algorithms for the minimum bends traveling salesman problem. In: K. Aardal, & B. Gerards (Eds.), Integer Programming and Combinatorial Optimization, LNCS, vol. 2081, pp. 406–421, 2001.
[11] B. Chitturi and J. Pai, *Minimum-Link Rectilinear Covering Tour is NP-hard in \mathbb{R}^4*, arXiv, 2018. Available online at: https://arxiv.org/abs/1810.00529.

[12] M. J. Collins and M. E. Moret, Improved lower bounds for the link length of rectilinear spanning paths in grids, *Information Processing Letters*, vol. 68, no. 6, pp. 317–319, 1998.

[13] M. Ripà, *Solving the $n_1 \times n_2 \times n_3$ points problem for $n_3 < 6$*, Optimization Online, 2022. Available online at: https://optimization-online.org/2022/06/8958/.

[14] B. Keszegh, *Covering Paths and Trees for Planar Grids*, arXiv, 2013. Available online at: https://arxiv.org/abs/1311.0452.

[15] A. Dumitrescu and C. Tóth, Covering Grids by Trees, *26th Canadian Conference on Computational Geometry*, 2014.

[16] TM. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, J. Elias, K. Frank, L. Gal, A. Hofstaetter, F. Jordan, B. Karacsony, Z. Konecny, Z. Kovacs, W. Kuellinger, E. Lettner, S. Lizelfelner, B. Parisse, C. Solyom-Gecse, and M. Tomashko, *GeoGebra – Dynamic Mathematics for Everyone – version 6.0.507.0-w*, International GeoGebra Institute, 16 Oct. 2018. Available online at: https://www.geogebra.org.