Chiral anomalies in superfluid hydrodynamics

Yasha Neiman
YN, Yaron Oz - work in progress

“Particle Physics and Cosmology”, Blois

June 1, 2011
Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^\mu{}^\nu$, J_a^μ.
- Constitutive relations - formulas for $T^\mu{}^\nu$ and J_a^μ in terms of basic variables u^μ, T, μ_a.
- Gradient expansion.
 Zeroth order - ideal fluid. First order - transport terms.
Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^{\mu\nu}$, J^μ_a.
- Constitutive relations - formulas for $T^{\mu\nu}$ and J^μ_a in terms of basic variables u^μ, T, μ_a.
- Gradient expansion.
 Zeroth order - ideal fluid. First order - transport terms.

Examples of transport terms

- Shear viscosity - $T^\mu_\pi^{\nu} = -2\eta_\pi^{\mu\nu}$.
- Conductivity - $J^{a\mu}_E = \sigma^{ab} \left(E^\mu_b - T \nabla^\mu \frac{\mu_b}{T} \right)$
Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^{\mu\nu}$, J^a_{μ}.
- Constitutive relations - formulas for $T^{\mu\nu}$ and J^a_{μ} in terms of basic variables u^μ, T, μ_a.
- Gradient expansion.
 Zeroth order - ideal fluid. First order - transport terms.

Examples of transport terms

- Shear viscosity - $T^{\mu\nu}_\pi = -2\eta_{\pi}^{\mu\nu}$.
- Conductivity - $J^a_{E^\mu} = \sigma^{ab} (E^\mu_b - T \nabla^\mu \frac{\mu_b}{T})$

Two approaches for finding transport terms

- Second law of thermodynamics - $\nabla_\mu s^\mu \geq 0$.
- Kubo formulas - 2-point correlators in thermal QFT.
Hydrodynamics and QFT

Field theory allows new features for currents

- Chirality - $\epsilon^{\mu\nu\rho\sigma}$.
- Anomalies - $\nabla_\mu J_\mu^a \neq 0$.
- Spontaneously broken currents - superfluidity.
- (Non-abelian currents.)
Hydrodynamics and QFT

Field theory allows new features for currents

- Chirality - $\epsilon^{\mu\nu\rho\sigma}$.
- Anomalies - $\nabla_\mu J_\mu^a \neq 0$.
- Spontaneously broken currents - superfluidity.
- (Non-abelian currents.)

Relevance

- Nuclear and QCD fluids - neutron stars, early universe, heavy ion collisions...
- Condensed-matter shenanigans (probably not for anomalies).
Hydrodynamics and QFT

Field theory allows new features for currents

▶ Chirality - \(\epsilon^{\mu\nu\rho\sigma} \).
▶ Anomalies - \(\nabla_\mu J^\mu_a \neq 0 \).
▶ Spontaneously broken currents - superfluidity.
▶ (Non-abelian currents.)

Relevance

▶ Nuclear and QCD fluids - neutron stars, early universe, heavy ion collisions...
▶ Condensed-matter shenanigans (probably not for anomalies).

Task:

▶ Find the transport terms that follow from these new possibilities.
Anomalies in normal fluid
Son, Surowka 0906.5044, YN, Oz 1011.5107, Amado et.al. 1102.4577

Chiral magnetic effect
\[J^a_\mu B^\mu = B^\mu_b \left(C^{abc} \mu_c - \frac{n^a}{\epsilon+p} \frac{1}{2} C^{bcd} \mu_c \mu_d \right) \]

Chiral vortical effect
\[J^a_\omega = \omega^\mu \left(C^{abc} \mu_b \mu_c - \frac{n^a}{\epsilon+p} \frac{2}{3} C^{bcd} \mu_b \mu_c \mu_d \right) \]

\[C_{abc} - JJJ \text{ anomaly coefficient. Omitted the terms from } JTT \text{ anomaly.} \]
Anomalies in normal fluid

Son, Surowka 0906.5044, YN, Oz 1011.5107, Amado et al. 1102.4577

Chiral magnetic effect

\[J^{a\mu}_{B} = B^{\mu}_{b} \left(C^{abc}_{\mu c} - \frac{n^{a}}{\epsilon + p} \frac{1}{2} C^{bdc}_{\mu c \mu d} \right) \]

Chiral vortical effect

\[J^{a\mu}_{\omega} = \omega^{\mu} \left(C^{abc}_{\mu b \mu c} - \frac{n^{a}}{\epsilon + p} \frac{2}{3} C^{bcd}_{\mu b \mu c \mu d} \right) \]

\(C_{abc} \) - JJJ anomaly coefficient. Omitted the terms from \(JTT \) anomaly.

Kubo formulas

\[J^{a\mu}_{B,\omega} = j^{a\mu} - \frac{n^{a}}{\epsilon + p} j'^{\mu} \]

\(j^{a\mu} \) and \(j'^{\mu} \) - combinations of QFT correlators \(\langle JJ \rangle \), \(\langle JT \rangle \), \(\langle TT \rangle \).
Anomalies in normal fluid
Son,Surowka 0906.5044, YN,Oz 1011.5107, Amado et.al. 1102.4577

Chiral magnetic effect
\[J_{B}^{a\mu} = B_{b}^{\mu} \left(C^{abc} \mu_{c} - \frac{n^{a}}{\epsilon + p} \frac{1}{2} C^{bdc} \mu_{c} \mu_{d} \right) \]

Chiral vortical effect
\[J_{\omega}^{a\mu} = \omega^{\mu} \left(C^{abc} \mu_{b} \mu_{c} - \frac{n^{a}}{\epsilon + p} \frac{2}{3} C^{bcd} \mu_{b} \mu_{c} \mu_{d} \right) \]

\(C_{abc} \) - JJJ anomaly coefficient. Omitted the terms from JTT anomaly.

Kubo formulas
- \(J_{B,\omega}^{a\mu} = j^{a\mu} - \frac{n^{a}}{\epsilon + p} j'^{\mu} \)
- \(j^{a\mu} \) and \(j'^{\mu} \) - combinations of QFT correlators \(\langle JJ \rangle, \langle JT \rangle, \langle TT \rangle \).

Nice structure emerges
- \(\partial j^{a\mu} / \partial \mu_{b} = C^{abc} (B_{c}^{\mu} + 2 \mu_{c} \omega^{\mu}) \)
- \(\partial j'^{\mu} / \partial \mu_{a} = C^{abc} \mu_{b} (B_{c}^{\mu} + 2 \mu_{c} \omega^{\mu}) \)
Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ^a_μ.
- Josephson condition - $\xi^a_\mu u^\mu = \mu^a + \text{corrections}$.
Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ^a_μ.
- Josephson condition - $\xi^a_\mu u^\mu = \mu^a + \text{corrections}$.

Transport terms in collinear limit, $\xi^a_\mu \sim u^\mu$

- Known since Landau.
Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ^a_μ.
- Josephson condition - $\xi^a_\mu u^\mu = \mu^a + \text{corrections}$.

Transport terms in collinear limit, $\xi^a_\mu \sim u_\mu$

- Known since Landau.

Transport terms in general case

- Work in progress, spurred by holography.
New chiral terms in superfluids

Bhattacharyya, Minwalla, Yarom 1105.3733

Results from second-law constraints

- Corrections to $T^{\mu\nu}$, J^μ_a and to the Josephson condition.
- The corrections involve $\epsilon^{\mu\nu\rho\sigma} u_\nu \xi_\rho$ - vanish in collinear limit.
- Proportional to $\pi_{\mu\nu}$ or to $E^a_\sigma - T \nabla_\sigma \frac{\mu_a}{T}$.
- Also, some unspeakable things.
New chiral terms in superfluids

Bhattacharyya, Minwalla, Yarom 1105.3733

Results from second-law constraints

- Corrections to $T^{\mu\nu}$, J_a^μ and to the Josephson condition.
- The corrections involve $\epsilon^{\mu\nu\rho\sigma} u_\nu \xi_\rho$ - vanish in collinear limit.
- Proportional to $\pi_{\mu\nu}$ or to $E^a_\sigma - T \nabla_\sigma \frac{\mu^a}{T}$.
- Also, some unspeakable things.

In particular - Chiral Electric Conductivity

$$J_E^{a\mu} = \chi^{abc} \epsilon^{\mu\nu\rho\sigma} u_\nu \xi_\rho (E^b_\sigma - T \nabla_\sigma \frac{\mu^b}{T}); \quad \chi_{abc} = \chi_{bac}$$
Identifying the anomaly in the new terms

Educated guess: \(J^a_\mu \) arises from the \(JJJ \) anomaly

Precise form of the coefficient strongly hinted at by the existing results:

\[
J^a_\mu = C^{cde} \left(\delta^a_d - \frac{n^a n_d}{h} \right) \left(\delta^b_e - \frac{n^b n_e}{h} \right) \epsilon^{\mu\nu\rho\sigma} u_\nu \xi^c_\rho \left(E^b_\sigma - T \nabla_\sigma \frac{\mu_b}{T} \right)
\]
Identifying the anomaly in the new terms

Educated guess: \(J_E^{a\mu} \) arises from the JJJ anomaly

Precise form of the coefficient strongly hinted at by the existing results:

\[
J_E^{a\mu} = C^{cde} \left(\delta^a_d - \frac{n^a_{\mu d}}{h} \right) \left(\delta^b_e - \frac{n^b_{\mu e}}{h} \right) \epsilon^{\mu\nu\rho\sigma} u_\nu \xi^c_\rho \left(E^b_\sigma - T \nabla_\sigma \frac{\mu^b}{T} \right)
\]

Structural components of the guess

- Upgrade \(\mu^a u_\mu \) in the anomalous normal-fluid result to \(\xi^a_\mu \).
- \(B^\mu_a + 2\mu_a \omega^\mu \) and
 \[
 E^a_\mu - \nabla_\mu \mu^a - \mu^a a_\mu \approx \left(\delta^a_b - \frac{\mu^a n^a_{b}}{h} \right) \left(E^b_\mu - T \nabla_\mu \frac{\mu^b}{T} \right)
 \]
 are the magnetic and electric fields for the gauge potential \(A^a_\mu + \mu^a u_\mu \).
Further directions

- Test the guess for the Chiral Electric coefficient χ_{abc} with a Kubo-formula calculation.
Further directions

- Test the guess for the Chiral Electric coefficient χ_{abc} with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?
Further directions

- Test the guess for the Chiral Electric coefficient χ_{abc} with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?
- Understand superfluids with multiple, or non-abelian, broken symmetries.
Further directions

- Test the guess for the Chiral Electric coefficient χ_{abc} with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?
- Understand superfluids with multiple, or non-abelian, broken symmetries.