Formulation of parenteral nutrition based on argan oil nanocapsule system using d-optimal mixture design

Majda Benabbes*, Aicha Fahri, Yassir El alaoui, Naoual Cherkaoui, Abdelkader Laatiris, Younes Rahali

Department of Galenic Pharmacy, Team of Formulation and Quality Control of Health Products, Mohammed V University-Rabat, 10170 Rabat, Morocco

Article History:
Received on: 12 May 2020
Revised on: 10 Jun 2020
Accepted on: 15 Jun 2020

Keywords:
Parenteral nutrition, lipid nanocapsule, Argan oil, Mixture design

ABSTRACT

In parenteral nutrition, the lipid emulsions are usually presented separately from other components. The admixture is made just before or during administration because of limited stability. The purpose of the present study is the formulation of lipid nanocapsules (LNC) based on Argan-oil and their introduction into preparations for parenteral nutrition, then the evaluation of their stability. The lipid nanocapsules have been prepared according to the phase inversion temperature method. The experimental design was used to determine the feasibility of LNC with Argan oil (A.O.-LNC), the evaluation of their size and the stability in the final mixing parenteral nutrition. The average size of the LNC was chosen as a response. The LNC based on 14% Argan oil, 6% Labrafac®, 55% water and 25% of Solutol® with an average size of 44 nm was selected for the preparation of the parenteral nutrition. The particle size distribution with a value of 70 nm and a polydispersity index of 0.102 indicates the homogeneity of the populations of particles. The statistical analysis shows the excellent stability of parenteral nutrition for 14 days.

*Corresponding Author
Name: Majda Benabbes
Phone: (212) 671206956
Email: benabbesmajda@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i3.2567

INTRODUCTION

Parenteral nutrition (P.N.) is a mixture of solutions that include amino acids, dextrose, vitamins, electrolytes, trace elements, minerals and lipid emulsion. The P.N. is induced in patients with the impossibility to assure adequate nutritional support through enteral way (Lappas et al., 2017; Fell et al., 2015). These patients are classified as having an intestinal failure. In the field of health care, a Total Nutrient Admixture (TNA), as known as 3-in-1 formulation, is the most used. Lipids are one of the components of P.N., which are incorporated separately to other compounds, and we talk about 2-in-1 formulation. The TNA formulation permitted to reduce cost, risk of microbial contamination and improve stability of the mixture (Lappas et al., 2017; Rahali et al., 2010).

Vegetable oils are known for their essential energy source, and they are used as a lipid component for P.N. formulation and incorporated separately to other compounds in the form of injectable emulsions (Bensouda, 2008). The lipid typically used is soybean oil which has been partly replaced with olive oil as a second approach (Raman et al., 2017). The substitution of soybean oil in the current P.N. is particularly essential. This is because of the reduced percentage of polyunsaturated fatty acids, the richness in alpha-tocopherol, the maintenance of the membrane status in fatty acids and finally the minimisation of hepatobiliary disorders associated with parenteral nutrition in animals (Garnier-Chevereau et al., 1991; Rössle et al., 1992).

In 2008, an invention was patented; the objective of
Table 1: Lower and upper limits of ao-LNC components used to make experimental design.

Nutritional constituent	Lower limit (%)	Upper limit (%)
Argan oil	15	30
Soluto®	5	30
Lipoid®	1.5	1.5
NaCl	1.78	1.78
Water	50	70

Table 2: Lipid nanocapsules size with gradual inclusion of Labrafac®. Constant components for all formulations: Soluto® 25%, Lipoid® 1.5%, NaCl 1.78% and water 55%.

Formula	(a)	(b)	(c)	(d)	(e)	(f)
Labrafac®%	00	20	04	06	08	10
Argan oil %	20	00	16	14	12	10
Average size of LNC (nm)	352	47	331	44	49	49

Table 3: Lower and upper limits of nutritional components used to make experimental design.

Nutritional constituent	Lower limit (%)	Upper limit (%)
Lipids (prepared LNC)	2.8	5.6
Amino acids	2	4
Glucose	8	12
Electrolytes	0.5	0.7
Water	78	87

Table 4: Experimental fields for the evaluation of stability of vo-LNC in PN mixture.

Run	Lipid	Amino acids	Glucose	Electrolytes	Water
1	2.8	2	8	0.5	86.7
2	5.5	3	9.9	0.6	81
3	5.5	3.9	11.9	0.5	78.2
4	5.5	2	11.9	0.5	80.1
5	4.8	2.5	9	0.6	83.1
6	4.2	3.9	9.9	0.6	81.4
7	4.2	3	11.9	0.6	80.4
8	4.8	3.5	9	0.6	82.1
9	4.8	3.5	10.9	0.6	80.2
10	3.5	2.5	10.9	0.6	82.5
11	3.5	3.5	9	0.6	83.5
12	5.5	2	8	0.5	84
13	5.5	2	8	0.5	84
14	2.8	3.9	8	0.5	84.8
15	4.2	3	9.9	0.6	82.3
16	2.8	3.9	11.9	0.5	80.9
Table 5: Experimental fields with responses for the evaluation of stability vo-LNC in PN mixture.

| Run | Average size of ao-LNC (nm) at |
D0 (PdI*)	D1 (PdI)	D4 (PdI)	D14 (PdI)	
1	58 (0.078)	63 (0.085)	63 (0.085)	62 (0.099)
2	70 (0.125)	82 (0.130)	73 (0.113)	72 (0.149)
3	70 (0.109)	83 (0.119)	78 (0.122)	79 (0.132)
4	70 (0.116)	83 (0.130)	75 (0.114)	76 (0.142)
5	63 (0.118)	76 (0.120)	72 (0.100)	71 (0.118)
6	67 (0.091)	71 (0.133)	69 (0.102)	68 (0.142)
7	68 (0.081)	81 (0.098)	74 (0.088)	73 (0.118)
8	67 (0.117)	78 (0.120)	72 (0.115)	70 (0.118)
9	70 (0.139)	80 (0.116)	75 (0.131)	77 (0.137)
10	65 (0.082)	71 (0.060)	67 (0.064)	68 (0.096)
11	62 (0.074)	68 (0.077)	66 (0.077)	65 (0.090)
12	63 (0.132)	69 (0.120)	65 (0.114)	65 (0.125)
13	62 (0.139)	66 (0.130)	66 (0.137)	65 (0.123)
14	61 (0.063)	68 (0.091)	65 (0.076)	66 (0.104)
15	64 (0.088)	72 (0.112)	69 (0.107)	68 (0.120)
16	69 (0.084)	76 (0.100)	72 (0.064)	72 (0.097)

Average size of ao-LNC (nm) by day:

Day	Average Size (nm)
0	66
1	74
2	70

Global Average size of ao-LNC (nm): 70

*PdI: Polydispersity Index.

Table 6: Experimental fields with responses for the formulation of ao-LNC (Average size = 0 means that phase separation was occurred).

Run	Argan oil (%)	Solutol® (%)	Water (%)	Average size (nm)
1	25	5	70	0
2	30	15	55	0
3	30	5	65	0
4	20	10	70	0
5	30	10	60	0
6	25	10	65	0
7	15	20	65	0
8	20	25	55	353
9	25	20	55	432
10	25	20	60	0
11	25	15	60	0
12	20	20	60	387
13	20	15	65	0
14	15	30	55	0
15	20	30	50	0
16	25	25	50	0
17	30	20	50	0
Table 7: Significance of the results and mathematical model used.

Model	F0.05	p Value	Significance for alpha at 5%	R-Squared (R²)	Precision
Day 0 Linear	24.57	<0.0001	Significant	0.89	18.20
Day 1 Linear	12.42	0.0005	Significant	0.81	12.51
Day 4 Linear	17.69	<0.0001	Significant	0.86	15.58
Day 14 Linear	17.48	<0.0001	Significant	0.86	15.41

F0.05: Fisher's exact test for alpha at 10%.

Figure 1: Feasibility zone for the formation of ao-LNC

which was the introduction of Argan Oil (A.O.) for the first time into P.N. and enteral nutrition. The P.N. took the form of injectable lipid emulsion (Bensouda, 2008).

Argan oil is well known for its nutraceutical properties; it contains essential fatty acids, which play an indispensable role in human health promotion. The triacylglycerols are the main constituent of Argan oil, and the primary fatty acids are oleic, linoleic, stearic, and palmitic. All those considerations justified the use of Argan oil for P.N. preparations, which may provide a remarkable nutritional value (Abbassi et al., 2014; Bensouda, 2008).

Nanotechnology has become one of the most promising technologies to revolutionise nanomedicine and pharmaceutical science fields. The encapsulation is a potential approach in the field of nanotechnology and a new process in which lipid droplets are recovered by a crust or enclosed in a matrix to create nanoparticles with size less than 1000 nm. According to the definition of NNI (National Nanotechnology Initiative), nanoparticles are structures of sizes ranging from 1 to 100 nm in at least one dimension. However, the prefix "nano" is commonly used for particles of several hundred nanometers. There are today different types of nanocarriers used in nanomedicine that differ according to their composition, form or structure (Ferreira and Nunes, 2019).

Among these carriers, the lipid nanocapsules (LNCs) which have been initially prepared according to phase inversion temperature method, their size...
ranges from 20 to 100 nm, and they are characterized by an oily core, corresponding to medium-chain triglycerides, surrounded by tensioactive rigid membrane (Huynh et al., 2009; Rahali et al., 2010). The LNCs present the advantages to be highly stable with a functional drug loading capacity and the possibility of scaling up their production quickly (Clavreul et al., 2018).

The aim of the present study is the formulation of LNCs based on argan oil, which allows a good dispersion of the oily phase in water and the evaluation of their size using an experimental design. However, in this study, we are not targeting industrial production, but we are on a development scale.

MATERIALS AND METHODS

Reagents

The LNC is based on two phases and surfactant. The oily phase consists of Labrafac WL 1349® (capric and caprylic acid triglycerides), it was provided from Gattefosse S.A. (Saint-Priest, France) and the Argan oil (Pharmaceutical grade) which was purchased from TARGANTE with ECOCERT label. The aqueous phase mainly constituted of ultrapure water from a Milli-Q Plus system (Millipore, Paris, France). The Lipoid S75-3® (soybean lecithin at 69 % of phosphatidylcholine) (purchased from Lipoid GmbH (Ludwigshafen, Germany) was used as a surfactant. Another nonionic surfactant, Solutol HS 15® (a mixture of polyethene glycol 660 and 12-hydroxy stearate of polyethylene glycol 660) used for this study and provided from BASF (Ludwigshafen, Germany), it was a significant influence on LNC formation and stability (Heurtault et al., 2002, 2003).

Furthermore, other components used were: Glucose 50 % (B Braun). Potassium chloride 15 % (Bioseda). Amino acids 10 % Baxter. Magnesium 15 % Aguettant. Sodium chloride 20 % (Aguettant). Phosphate monopotassique 13.6 % (Renaudin). Calcium 10 % (Aguettant).

Materials

The LNC was prepared using a stirring, heating plate
Preparation of LNC based on argan oil (A.O.-LNC)

The preparation of Nanocapsules has been widely discussed and described in the literature (Huynh et al., 2009). The LNC was prepared according to the Phase-Inversion Temperature (PIT) method, which is developed and described by K. (Shinoda and Saito, 1969) Shinoda. This technique provides stable fine emulsions, and an average size ranged from 100 to 4000 nm (Benoit et al., 2012). The above process generates lipid Nanocapsules constituted of an oily core, related to Labrafac®. The cohesive membrane is made up of the mixture of Lipoid® anchored in the oily phase formed by Argan Oil and Solutol®. The PIT technic is based on the changes in solubility of a nonionic surfactant according to the temperature (Huynh et al., 2009; Rahali et al., 2010). The molecule of surfactant has a large, positive, spontaneous curvature forming an oil in water emulsion at low temperature. In this case, the conductivity value is around 35 mS/cm at high temperature; the spontaneous curvature becomes negative. It forms a water/oil emulsion accompanied by a rapid decrease of conductivity value, lower than ten μS/cm and zero. However, a stable high steady-state reflects that the water continuous phase is reached (Morales et al., 2003; Solans et al., 2005).

The formulation feasibility of the A.O.-LNC was carried out according to an experimental design using software Design-Expert®. It permits calculation for factorial designs and drawing graphs for design evaluation. Furthermore, the design expert provides maximum information from a limited number for experiments (Lorentz et al., 2014). The size of LNC was selected as an output parameter and measured after 48h. Table 1 shows the limits of LNC components selected as factors. The Labrafac®, which increases LNC size, was added gradually in a lipidic fraction at different amounts to optimise the size of A.O.-LNC, as shown in Table 2. The addition of NaCl decreases the PIT of LNC as described by Amir A. Mehrdad Sharif (Sharif et al., 2012).

Evaluation of A.O.-LNC stability in P.N. preparation

A D-optimal design (mixture design) was used to evaluate the effect of P.N. compounds on the size

Figure 3: Variation of size control coefficients of each parameters during 14 days after mixture.
-Electrolytes - Lipid - Glucose - Amino acids - Water
of LNC. The lower and upper limits of nutritional components were fixed, as presented in Table 3 to make this experimental design. The limits were chosen based on the general composition of nutritional admixtures and formulas for PN. (Carpentier, 2009; Yailian et al., 2019).

The studied factors were the amounts of lipids (prepared LNC), amino acids, glucose, electrolytes and water. The design expert allows the matrix of 16 formulations at different amount of all compounds as shown in Tables 4 and 5.

The soybean oil has been used in PN preparation since its adaptation in Europe with approval in 1961 (Raman et al., 2017). In this paper and owing to reasons explained above, argan oil substituted the soybean oil at the same amount.

Statistical analysis

The statistical analysis of variance, the R-Squared and precision was done. The mathematical modeling of response by polynomial equation at day 0, day 1, day 4 and day 14 was made by design expert.

RESULTS AND DISCUSSION

Formulation of LNC based on Argan oil (ao-LNC)

To optimize the formulation of ao-LNC and the proportions of the constituents, a ternary diagram was established using Design Expert ®. The software permitted the formulas of 17 mixtures as shown in Table 5.

The amount of NaCl in water was fixed at 1.78% because of its influence on the temperature of phase inversion during the formulation process. For Lipoid® percentage, it was fixed at 1.5% as long as it does not influence on particle size (Heurtault et al., 2003).

By fixing the amount of the two components, a feasibility zone of ao-LNC was determined as a triangle, which proportions were comprised from 20 to 25% of Argan oil, 20 to 25% of hydrophilic surfactant and 55 to 60% of water as described in Figure 1. In the domain of feasibility, an increase of Argan oil amount leads to an increase of particle size. However, the percentage of water has no effect on particle diameter. Conversely, a percentage of 25% of solutol® allows the formulation of ao-LNC with the smallest average size (352 nm) as described by Huynh et al. Furthermore, the properties at the triglyceride/water interface of the hydrophilic surfactant leads to a considerable decrease of average particle diameter, this phenomenon may justified the outcome (Huynh et al., 2009; Heurtault et al., 2003). On other hand, the amphiphilic properties of this compound reduce the effect of the oil as described by Heurtault et al. (Heurtault et al., 2003).

The eighth preparation in Table 6 with an average size of 352 nm that contained 25% of Solutol®, 20% and 55% of water, was selected to determine the emulsion inversion zone. A gradual introduction of Labrafac® from 4 to 20% has permitted the preparation of ao-LNC. The Table 2 shows the average size after Labrafac® inclusion.

The emulsion (a) with 20% of Argan oil shows a constant variation of conductivity that remains higher than 10 μS.cm-1. Such result indicates the absence of emulsion inversion. Where the 20% of oil were replaced by Labrafac® in (b) formula, the emulsion presented a zone inversion as shown in the Figure 2. The (c) formula including 16% of Argan Oil and 4% of Labrafac® show an intermediate status compared to previous formulas.

The last formulation (d) show a profile comparable to (b) formula, this preparation with an optimum amount of Labrafac® (6%) which composed of capric and caprylic acid triglycerides, allows the TIP and an average size of LNC of 44 nm. Our outcome is comparable to the results published by Rahali who used Labrafac® for the formulation of LNCs based on olive oil and soybean oil at the same proportion (Rahali et al., 2010).

Evaluation of stability of LNC in PN

Mathematical modeling

The formulation including 6% of Labrafac® and 14% of Argan oil, 25% of Solutol®, 1.5% of Lipoid®, 1.78% of NaCl and 55% of water was selected to the preparation of PN. Experiments were carried out to determine the mathematical relationship between the studied factors influencing the PN based on ao-LNC. The response of average size of LNC in PN at Day 0, Day 1, Day 4 and Day 14 was expressed by a linear equation with X1(amino acid), X2(Glucose), X3(Lipids), X4(Electrolytes) and X5(Water):

\[
Y(LNC \text{ Size }_{D_0}) = 1.92X_1 + 2.07X_2 + 2.10X_3 + 3.10X_4 + 0.35X_5
\]

\[
Y(LNC \text{ Size }_{D_1}) = 1.97X_1 + 2.98X_2 + 3.39X_3 + 1.53X_4 + 0.21X_5
\]

\[
Y(LNC \text{ Size }_{D_4}) = 2.04X_1 + 2.25X_2 + 2.54X_3 + 3.13X_4 + 0.35X_5
\]

\[
Y(LNC \text{ Size }_{D_{14}}) = 2.15X_1 + 2.58X_2 + 2.54X_3 + 5.36X_4 + 0.36X_5
\]

Considering the five studied factors given by our linear equation at day 1, it has been noticed that electrolytes are the coefficient that affects the most LNC particle size after mixing all parenteral nutrition components, this factor has no effect on the last day (14th) of the experiment as shown in Figure 3. According to this results, we can conclude that the
stability of ao-LNC was not influenced by the component of PN.

Polydispersity Index

The particle size distribution and polydispersity index (PdI) of lipid-based nanocarriers are highly important physical parameters that affect product performance, stability and appearance of finished product. Also known as the heterogeneity index, Polydispersity index (PdI) is a parameter used to define the size range of the lipidic nanocarrier systems. The term polydispersity is used to describe the degree of non-uniformity of a size distribution of particles and can also indicate nanoparticle aggregation (Clayton et al., 2016; Danaei et al., 2018).

As shown in Table 5 the PdI is ranged from 0.060 to 0.146 after mixture for all points at Day 0, Day 1, Day 4 and Day 14. On other hand, the average size of LNC was 44 nm before mixture with a PdI of 0.112 which become 70 nm after mixture with PdI of 0.102 for all points at Day 0, Day 1, Day 4 and Day 14. As described in literature, the PdI numerical value ranged from 0.0 to 1.0. In drug delivery formulations using lipid-based carriers, a PdI of 0.3 and less is acceptable and indicates a homogenous population of particles (Danaei et al., 2018). Such conclusion confirms that our results are good. As regards the particle size, there has been a global 50% increase of average size in all studied mixtures, this outcome may be justified by a steric effect as explained by Rahali (Rahali et al., 2010).

Statistical analysis

To confirm the validity of the physical stability of the LNC mixed with PN, a statistical analysis of variance (ANOVA) at 5% was made by Design Expert® as shown in Table 7. A model was considered significant if the p-value was <0.05. The precision that measures the signal to noise should be more than 4. Our values are greater than 12.60. The model F-value of 24.57 implies that the model is significant. Moreover, a value greater than 0.81 of R-Squared (R2) is reasonable and acceptable.

For all this consideration, it can be concluded that our ao-LNC based PN is stable during the 14 days of the experiment.

CONCLUSIONS

During recent years, Argan oil has found its place in medical use due to its nutritional properties. In PN, the formulations currently available are based on soybean and olive oils. The purpose of the present study was introducing Argan oil into PN using LNCs which are considered as an adequate system to vegetable oil encapsulation inside an aqueous core. The encapsulation allows the advanced introduction of lipids in PN, especially since these components do not influence the stability of the preparation. This stability may be optimized for a possible sterilization or storage in the hospital sector. Our study will continue in the sense to optimizing the levels of surfactants to avoid potential toxicity.

ACKNOWLEDGEMENT

The authors would like to thank the team of formulation and quality control of health products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat for their collaboration.

Conflict Of Interest Statement

We declare that we have no conflict of interest.

Funding Support

The author(s) received no financial support for the research, authorship, and/or publication of this article.

REFERENCES

Abbassi, A. E., Khalid, N., Zbakh, H., Ahmad, A. 2014. Physicochemical Characteristics, Nutritional Properties, and Health Benefits of Argan Oil: A Review. *Critical Reviews in Food Science and Nutrition*, 54(11):1401–1414.

Benoit, J. P., Thomas, O., Saulnier, P. 2012. *Adel Ramadan A. Method for preparing lipid nanoparticles*. U.S. Patent US.

Bensouda, Y. 2008. Formulation of argan oil based lipid emulsion for parenteral nutrition. *World Patent*.

Carpentier, Y. A. 2009. Basic in clinical nutrition: Substrates used in parenteral and enteral nutrition - lipids. E Spen Eur E. *J Clin Nutr Metab*, 4(2):66–68.

Clavreul, A., Roger, E., Pourbaghi-Masouleh, M., Lemaire, L., Tëtaud, C., Menei, P. 2018. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. *Drug Delivery*, 25(1):1756–1765.

Clayton, K. N., Salameh, J. W., Wereley, S. T., Kinzer-Ursem, T. L. 2016. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. *Biomicrofluidics*, 10(5):054107–054107.

Danaei, M., Dehghankhosh, H., Ataei, N., Davaran, F. H., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M. 2018. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. *Pharmaceutics*,
Fell, G. L., Nandivada, P., Gura, K. M., Puder, M. 2015. Intravenous Lipid Emulsions in Parenteral Nutrition. *Advances in Nutrition*, 6(5):600–610.

Ferreira, C. D., Nunes, L. I. 2019. Oil nanoencapsulation: development, application, and incorporation into the food market. *Nanoscale Res Lett*, 14(9):1–13.

Garnier-Chevereau, F., Ythier-Moury, P., Dutot, G., Melin, C. 1991. Hepatobiliary modifications associated with TPN in rats: influence of different components of lipid emulsions. *Clinical Nutrition*, 10(47):47–47.

Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., Benoît, J. P. 2002. Properties of polyethylene glycol 660 12-hydroxy stearate at a triglyceride/water interface. *International Journal of Pharmaceutics*, 242(1-2):167–170.

Heurtault, B., Saulnier, P., Pech, B., Venier-Julienne, M.-C., Proust, J.-E., Phan-Tan-Luu, R., Benoît, J.-P. 2003. The influence of lipid nanocapsule composition on their size distribution. *European Journal of Pharmaceutical Sciences*, 18(1):55–61.

Huynh, N. T., Passirani, C., Saulnier, P., Benoit, J. P. 2009. Lipid nanocapsules: A new platform for nanomedicine. *International Journal of Pharmaceutics*, 379(2):201–209.

Lappas, B. M., Patel, D., Kumpf, V., Adams, D. W., Seidner, D. L. 2017. Parenteral Nutrition: Indications, Access, and Complications. *Gastroenterol Clin N Am*, 47(1):39–59.

Lorentz, R., Rahali, Y., Issa, S., Bensouda, Y., Holtzinger, G., Aoussat, A., Penser-Lhéritier, A.-M. 2014. One-pot synthesis of sub-micron organosilicate particles for the formulation of Pickering emulsions. *Powder Technology*, 264:446–457.

Morales, D., Gutiérrez, J. M., García-Celma, M. J., Solans, Y. C. 2003. A Study of the Relation between Bicontinuous Microemulsions and Oil/Water Nano-emulsion Formation. *Langmuir*, 19(18):7196–7200.

Rahali, Y., Saulnier, P., Benoit, J. P., Bensouda, Y. 2010. Incorporating vegetal oils in parenteral nutrition using lipid nanocapsules. *Journal of Drug Delivery Science and Technology*, 20(6):425–429.

Raman, M., Almutairdi, A., Mulesa, L., Alberda, C., Beattie, C., Gramlich, L. 2017. Parenteral Nutrition and Lipids. *Nutrients*, 9(4):388–388.

Rössle, C., Breton, I., Bereziat, G., Desmonts, J. M., Lienhart, A., Masini, J. P., Pescio, M., Brun, A. L., Marinier, E., Dutot, G., Melin, C. 1992. Evolution of plasma phospholipid fatty acid pattern in patients receiving postoperative TPN including soybean oil- or olive oil-based lipid emulsions: a comparative multicenter trial. *Clinical Nutrition*, 11(19):19–19.

Sharif, A. A. M., Astaraki, A. M., Azar, P. A., Khorrami, S. A., Moradi, S. 2012. The effect of NaCl and Na2SO4 concentration in aqueous phase on the phase inversion temperature O/W nanoemulsions. *Arabian Journal of Chemistry*, 5(1):41–44.

Shinoda, K., Saito, H. 1969. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. *Journal of Colloid and Interface Science*, 30(2):258–263.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., García-Celma, M. 2005. Nano-emulsions. *Current Opinion in Colloid & Interface Science*, 10(3-4):102–110.

Yailian, A.-L., Serre, C., Fayard, J., Faucon, M., Thomaré, P., Filali, S., Pivot, C., Vételé, F., Pirot, F., Olivier, E. 2019. Production and stability study of a hospital parenteral nutrition solution for neonates. *Journal of Pharmaceutical Analysis*, 9(2):83–90.