On the descent algebra of type D
N. Bergeron and S.J. van Willigenburg

1 Introduction

Given a Coxeter group, W, we can construct an algebra - the descent algebra - which is a sub-algebra of the group algebra $Q[W]$. These were introduced in 1976 by Louis Solomon [Sol76], however, his description, in terms of double coset representatives and parabolic subgroups of W, although ingenious, made them, in practice, difficult to handle.

Consequently, little advance was made in this area until a matrix interpretation for multiplying together basis elements of the descent algebra of the symmetric groups was found, for example [GR89]. This led to a revival of interest, and much development in the subject, [Atk92], [BGR92], [BBHT92], including a matrix interpretation by François and Nantel Bergeron for multiplication in the descent algebra of the hyperoctahedral groups, [BB92].

Until now, there has been little success in developing such an interpretation for the Coxeter groups of type D. However, in this paper we shall reveal the rule for this remaining Coxeter family.

The Coxeter group, D_n, is the group whose involutory generators are the set $S = \{1',1,2,\ldots,n-1\}$, and whose relations are given by the following diagram:

$$
\begin{array}{c}
1 \\
\vdots \\
n-1
\end{array}
\quad
1' \quad 2 \quad 3 \\
\vdots
$$

where an edge between nodes i and j gives us the relation $(ij)^3 = 1$, and no edge gives $(ij)^2 = 1$.

Solomon proved that if J is a subset of S, and W_J is the subgroup generated by J, then if $X_J (X_J^{-1})$ is the set of unique left (right) coset representatives of minimal length of W_J, and x_J is the formal sum of the elements in X_J then for $J,K,L \subseteq S$,

$$
x_J x_K = \sum a_{JKL} x_L
$$

where a_{JKL} is the number of elements $x \in X_J^{-1} \cap X_K$ such that $x^{-1} J x \cap K = L$. Moreover, the set of all x_J's form a basis for an algebra - the descent algebra of D_n, ΣD_n. Our interpretation of this multiplication rule uses this basis, but for ease of computation, we use a different notation.

We define a composition, q, of an integer, n, to be an ordered list $[q_1, q_2, \ldots, q_k]$ of positive integers whose sum is n, and shall write $q \equiv n$ to denote this. We shall call the integers $\{q_i\}_{i=1}^k$ the components of q.

There exists a natural bijection between the subsets of $\{1',1,2,3,\ldots,n-1\}$ and the union, $C(n)$, of the sets $C_{<n} = \{q | q \equiv m, m \leq n-2\}$, $C_n = \{q | q \equiv n\}$ and $C'_n = \{q' | q \equiv n, q_1 \geq 2\}$ (the $'$ here is purely notational, and so in practice we write $q' \equiv n$). The subset corresponding to such a composition, q, in $C(n)$ is

1. $\{q_1, q_0 + q_1, \ldots + q_k, q_0 + \ldots + q(k-1)\}$ if $q \in C_{<n}$,
2. $\{1, q_1, \ldots q_1 + \ldots + q(k-1)\}$ if $q \in C_n'$,
3. $\{1', q_1, \ldots q_1 + \ldots + q(k-1)\}$ if $q \in C_n$.

where \(q_0 = n - m \)

We can also define a partial order relation on the set of compositions in \(C(n) \). Let \(q, r \in C(n) \), with \(q \vdash m_1 \) and \(r \vdash m_2 \), where \(m_2 \leq m_1 \). Then we say \(q \preceq r \) if the components of \(r \) can be obtained from the components of \(q \) by deleting components of \(q \) to give \(q \vdash m_2 \) and replacing adjacent components of \(q \) by their sum.

2 The multiplication rule and further results

If \(J' \) is the complement of \(J \) in \(S \), then we let \(B_q = x_{J'} \) where \(q \) is the composition in \(C(n) \) that corresponds to \(J \) by the above bijection. Solomon’s rule can now be described as follows.

Consider “templates” with the following form

\[
\begin{pmatrix}
\begin{array}{cccc}
 a_{00} & a_{01} & a_{02} & \cdots & a_{0l} \\
 b_{11} & b_{12} & \cdots & b_{1l} \\
 a_{10} & a_{11} & a_{12} & \cdots & a_{1l} \\
 & & & & \\
 & & & & \\
 a_{s0} & a_{s1} & a_{s2} & \cdots & a_{sl}
\end{array}
\end{pmatrix}
\]

where

1. \(a_{00} = n - N \), where \(N \) is the sum of all other entries in the template,
2. All entries in a template are non-negative integers,
3. The \(b \)-lines do not have entries in column 0.

Definition 1. We define the periphery-sum, \(P \), of the template to be the sum

\[
a_{00} + \sum_{j=1}^{l} a_{0j} + \sum_{i=1}^{s} a_{i0}
\]

and the \(b \)-sum, \(B \), to be \(\sum_{i,j} b_{ij} \). The reading word, \(r(t) \), of a given template \(t \) is given by

\[
[a_{01}, a_{02}, \ldots, a_{0l}, b_{11}, b_{12}, b_{1l}, a_{10}, a_{11}, \ldots, a_{1l}, \ldots, a_{s0}, a_{s1}, a_{s2}, \ldots, a_{sl}]
\]

unless \(a_{00} = 1 \), in which case \(r(t) \) is given by

\[
[1, a_{01}, a_{02}, \ldots, a_{0l}, b_{11}, b_{12}, b_{1l}, a_{10}, a_{11}, \ldots, a_{1l}, \ldots, a_{s0}, a_{s1}, a_{s2}, \ldots, a_{sl}]
\]

If \(q \) and \(r \) are compositions in \(C(n) \), such that \(q \) has components \(q_1, q_2, \ldots, q_l \), and \(r \) has components \(r_1, r_2, \ldots, r_s \), then we define \(S(q,r) \) to be the set of templates, \(T \), such that

1. the row sum, \(a_{00} + \sum_{j=1}^{l} (b_{ij} + a_{ij}) = r_i \),
2. the column sum, \(a_{0j} + \sum_{i=1}^{s} (b_{ij} + a_{ij}) = q_j \),
3. If \(P = 0 \), \(B \) is odd if

 (a) \(q \in C \) and \(r \in C' \), or
 (b) \(q \in C' \) and \(r \in C \).

We are now ready to state our multiplication rule:
Theorem 1. Let \(q \in \mathcal{C}(n) \). Let \(T \) be a template, and \(u = [u_1, u_2, \ldots, u_k] \) be the composition obtained by omitting zero components of \(r(T) \). Then

1. If \(r \in C_n \),
 \[
 B_q B_r = \sum_{T \in S_{(q,r)}} B_{r(T)}
 \]
 where \(B_{r(T)} = B_u \).

2. If \(r \in C_n' \),
 \[
 B_q B_r = \sum_{T \in S_{(q,r)}} B_{r(T)}
 \]
 where \(B_{r(T)} = B_{u'} \).

3. If \(r \in C_{<n} \),
 \[
 B_q B_r = \sum_{T \in S_{(q,r)}} B_{r(T)}
 \]
 where

 (a) if \(q \in C_n \) and \(B \) is odd, or \(q \in C_n' \) and \(B \) is even, then \(B_{r(T)} = B_{u'} \),

 (b) if \(q \in C_{<n} \) and \(a_{00} = 0 \), then \(B_{r(T)} = B_u + B_{u'} \).

 (c) Otherwise \(B_{r(T)} = B_u \).

Remark. Note that in point 3b, if \(u_1 = 1 \), then \(u \equiv u' \), hence \(B_{r(T)} = 2B_u \).

A formal proof of this theorem can be found in [vW97]. However, since it can follow a similar argument to either [vW], or [GRS5], for the analogous theorem in the symmetric groups case, we feel it would be more beneficial to replace the proof with a collection of illuminating examples.

Examples. To illustrate our rule we shall work in \(\Sigma D_4 \). Each example, \(B_q B_r \), shall consist of \(S_{(q,r)} \), and the resulting summands it generates according to the rule.

1. \(B_{31} B_4 \)

 \[
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 3 & 1
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 =
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}

 B_{31} B_4 = B_{31} + B_{13} + B_{211} + B_{112}

2. \(B_{31'} B_4 \)

 \[
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 3 & 0
 \end{pmatrix}
 =
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 =
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{pmatrix}

 B_{31} B_4 = B_{31} + B_{13} + 2B_{121}

3
3. $B_{22'}B_{4'}$
\[
\begin{pmatrix}
0 & 0 & 0 \\
2 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
2 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 2 & 2
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}
\]
\[B_{22'}B_{4'} = 4B_{22'} + B_{13} + B_{1111}\]

4. B_4B_2
\[
\begin{pmatrix}
0 & 2 \\
2 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 2 \\
0 & 2 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\]
\[B_4B_2 = 2B_{22} + B_{211'}\]

5. B_2B_2
\[
\begin{pmatrix}
2 & 0 \\
2 & 2 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 \\
0 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 2 \\
1 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
0 & 0 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 1
\end{pmatrix}
\]
\[B_2B_2 = 2B_2 + B_{11} + B_{22} + B_{22'} + 2B_{1111}\]

6. $B_{11}B_2$
\[
\begin{pmatrix}
2 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
2 & 0 & 0
\end{pmatrix}
\]
\[B_{11}B_2 = 4B_{11} + 2B_{112} + 4B_{1111}\]

Remark. Note, in particular, that examples 1 and 2 illustrate point 1, and moreover the influence of $P = 0$; 3 illustrates point 2; and 4, 5 and 6 illustrate point 3. More specifically, examples 4, 5 and 6 illustrate respectively points 3a, 3b, and the remark associated with 3b.

Corollary 1. Let $q, r, s \in C(n)$. If the coefficient of B_s in B_4B_r is non-zero, then $s \not\preceq r$.

Proof. Let r_i be a component of r, and let q contain k parts. If B_s occurs in B_4B_r with non-zero multiplicity then, by Theorem 1, there exists a template whose reading word corresponds to s. However, since $a_{ik} + \sum_{j=1}^{k}(b_{ij} + a_{ij}) = r_i$, it follows that $s \not\preceq r$. \qed

By Corollary 1, it follows that $\mathcal{T} = \langle B_q | q \in C_n \cup C_n' \rangle$ is a left ideal. Moreover, we have the following,
Theorem 2. Let B_n be the Coxeter group of type B, whose Dynkin diagram is on n nodes, and let ΣB_n be its associated descent algebra. Then

$$\Sigma B_n \cong \Sigma D_n/I$$

Proof. For clarity, for $q \in C_{<n}$, let B_q^D be a basis element of ΣD_n, and let B_q^B be a basis element of ΣB_n. Let $S(q,r)$ be the set of templates corresponding to templates in $\Sigma (q,r)$ with $a_{oo} \geq 2$. We denote this set of templates by $I(q,r)$. Note that if we subtract 2 from the a_{oo} of any template T, the reading word, row sum, and column sum of T are unaffected. Moreover, if this is performed on all $T \in I(q,r)$ the resulting templates are precisely those that arise if we calculate the product $B_q^B B_r^B$ in ΣB_n. Since this argument is reversible, the result follows.

Acknowledgments. The authors are indebted to Michael Atkinson for the opportunity to work together, and to him, Götz Pfeiffer and Meinolf Geck for many useful discussions.

References

[Atk92] MD Atkinson. Solomon’s descent algebra revisited. *Bulletin of the London Mathematical Society*, 24:545–551, 1992.

[BB92] F Bergeron and N Bergeron. A decomposition of the descent algebra of the hyperoctahedral group 1. *Journal of Algebra*, 148:86–97, 1992.

[BBHT92] F Bergeron, N Bergeron, RB Howlett, and DE Taylor. A decomposition of the descent algebra of a finite Coxeter group. *Journal of Algebraic Combinatorics*, 1:23–44, 1992.

[BGR92] F Bergeron, A Garsia, and C Reutenauer. Homomorphisms between Solomon’s descent algebras. *Journal of Algebra*, 150:508–519, 1992.

[GR85] AM Garsia and J Remmel. Shuffles of permutations and the Kronecker product. *Graphs and Combinatorics*, 1:217–263, 1985.

[GR89] AM Garsia and C Reutenauer. A decomposition of Solomon’s descent algebra. *Advances in Mathematics*, 77:189–262, 1989.

[Sol76] L Solomon. A Mackey formula in the group ring of a Coxeter group. *Journal of Algebra*, 41:255–268, 1976.

[vW] SJ van Willigenburg. A new proof of Solomon’s theorem. To appear.

[vW97] SJ van Willigenburg. *The descent algebras of Coxeter groups*. PhD thesis, University of St Andrews, UK, 1997. In preparation.