Purification of Morphologically Intact Triad Structures from Skeletal Muscle

ROBERT D. MITCHELL, PHILIP PALADE, and SIDNEY FLEISCHER
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235. Dr. Mitchell’s present address is the Roche Institute of Molecular Biology, Nutley, New Jersey 07110. Dr. Palade’s present address is the Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77550.

ABSTRACT A procedure has been devised for isolation of triads (t-tubule/sarcoplasmic reticulum (SR) junctional complexes) from rabbit skeletal muscle. The procedure consists of preparation of a heavy microsomal fraction followed by two sequential 90-min sucrose gradient centrifugations to enrich the triads. A pyrophosphate/phosphate/magnesium buffer system was introduced to decrease aggregation in order to achieve effective separation. The preparation time is 12 h. Some differences between purified triads isolated by two variants of this method are noted. The purity of the triad fractions has been estimated by particle counting to be in the vicinity of 50%. There is good retention of morphology and Ca++-loading activity and enrichment in Na+,K+-ATPase and adenylate cyclase. The triads are practically devoid of contractile elements, mitochondria, and free plasmalemma, and low in content of light SR. The method for obtaining enriched triads is reproducible, and sufficient yields are obtained for structural, biochemical, and functional characterization.

Muscle contraction and relaxation in skeletal muscle are regulated by the intracellular concentration of Ca++. During excitation-contraction coupling, Ca++ is released from the sarcoplasmic reticulum (SR) compartment elevating the Ca++ concentration in the myoplasm, thereby triggering muscle contraction (1). Relaxation involves the reuptake and storage of Ca++ by sarcoplasmic reticulum, which can be simulated, in vitro, and therefore has been characterized in depth (2). The physiological Ca++-release process is less readily simulated, in vitro, and is poorly understood in molecular or mechanistic terms. Of particular interest here is the intracellular triad junction, purported to be the link between the signal process of the surface membrane (excitation) and the release of Ca++ from the terminal cisternae of the SR resulting in contraction. The isolation of triads,1 which are junctional associations of transverse tubular invaginations of the surface membrane with the terminal cisternae of the SR, could make possible in vitro simulation of the Ca++-release process, especially Ca++ release induced by transverse tubule depolarization.

The only procedures in the literature that deal with the isolation of triads are by Caswell and co-workers (3, 4). The fraction described was somewhat enriched in triads and was used mainly for the subsequent isolation of transverse tubule (4-7). No estimate of purity was given. We now report the preparation of highly purified triad structures that retain architectural properties resembling that seen in situ (8-11). The purity of the fraction has been assessed by diagnostic marker enzyme assay and by particle counting. This paper describes the isolation procedures. A companion paper (11) emphasizes morphology and structural susceptibility of isolated triads to a variety of conditions.

MATERIALS AND METHODS

Materials

Solutions were prepared in sequentially distilled and deionized water and all stock chemicals were reagent grade from Fisher Scientific Co. (Pittsburgh, PA) unless otherwise stated. "Density gradient grade" sucrose was obtained from Schwarz/Mann Div., Becton, Dickinson & Co. (Orangeburg, NY) and from EM laboratories, Inc. (Elmsford, NY). All sucrose concentrations are given as percent sucrose (wt/wt), determined using a Bausch and Lomb refractometer (Bausch
& Lorn Inc., Scientific Optical Products Div., (Rochester, NY). The pH of all solutions was adjusted at room temperature to the values indicated. Radioactive α-labeled ATP for adenylate cyclase was prepared by the method of Walshe and Johnson (12) in Dr. R. Johnson's laboratory at Vanderbilt University or obtained from New England Nuclear (Boston, MA), as was [H]cAMP (30-50 Ci/m mole). Myokinase, adenosine deaminase, arsenazo III (~98%), Na2ATP, and creatine phosphate were obtained from Sigma Chemical Co. (St. Louis, MO) while creatine phosphokinase was obtained from both Sigma and Boehringer Mannheim Biochemicals (Indianapolis, IN).

New Zealand White rabbits (2-3 kg) were obtained from Hilltop Rabbids, Inc. (Columbia, TN). All centrifugation steps were performed with Beckman medium speed centrifuges (J-21) and ultracentrifuges with appropriate rotors.

Assay Methods

Protein concentrations were determined by the procedure of Lowry et al. (13) using bovine serum albumin as standard. Total phosphorus was measured by a modification of the method of Chen et al. (14), as described by Rouser and Fleischer (15), and provided an estimate of lipid phosphorus. Radioactivity was measured with a Searle Mark III scintillation counter with appropriate programming.

Samples were prepared for thin-section electron microscopy as described in Mitchell et al. (11) and/or Palade et al. (16). The former uses a small amount of sample to form a thin pellet that can be sectioned and viewed from top to bottom; the latter is a filtration procedure that makes use of dextran to insure a representative distribution of sample.

Enzyme Assays: Samples from gradient centrifugation were diluted slowly over approximately one-half hour to 10% sucrose, sedimented with a Type 35 rotor (27,000 rpm for 60 min), and resuspended in 10% sucrose, 5 mM HEPES, pH 7.2 before assaying. Adenylate cyclase activity was determined by measuring the production of radioactive cAMP from α-32P-ATP according to a modification of the method of Jakobs et al. (17). In our experience this activity is stable and can be carried out on samples frozen and thawed one time. Generally, assays were run for 5 min at 37°C. The assay medium contained final concentrations of 25 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 1 mM 1-methyl-3-isobutyl xanthine (M.I.X.) was included to inhibit phosphodiesterase activity. An ATP-regenerating system, consisting of 25 U/ml myokinase, 12.4 U/ml creatine phosphokinase, 1 U/ml adenosine deaminase, and 20 mM creatine phosphate, was used to insure constant ATP concentration and to avoid buildup of competitive inhibitors. Ouabain-sensitive Na+-K+ ATPase activity was titrated with SDS according to the method of Seiler and Fleischer (18). The sample (1 mg/ml) was pretreated with varying concentrations of SDS ranging from 0 to 0.3 mg/ml in a medium containing 40 mM imidazole-HEPES, 2 mM Tris-EDTA for 30 min at room temperature before enzyme assay. Ouabain sensitivity was assayed in the presence and absence of 1 mM ouabain. Reactions were started by the addition of sample (10-20 μl) to a 37°C assay mix containing 120 mM NaCl, 5 mM NaH2PO4, 20 mM KCl, 3 mM MgCl2, 0.5 mM EGTA, 3 mM Na2ATP in 30 mM imidazole buffer, pH 7.5 in a final volume of 0.5 ml. Reactions were allowed to proceed for 5-20 min and were stopped by the addition of 0.5 ml of 5% SDS, 10 mM EDTA, and placing on ice. Phosphate production was measured by a modification of the method of Baginski et al. (19). Ouabain-sensitive Na+-K+ ATPase was calculated as the difference between the amount of phosphate released in the presence and absence of 1 mM ouabain at the optimal SDS concentration, usually between 0.17 and 0.25 mg SDS/ml.

Succinate-cytochrome c reductase activity was measured as described by Fleischer and Fleischer (20) by measuring the increase in optical density at 550.5 nm in the presence of cyanide at 32°C.

Ca2+ "loading" rates in the presence of phosphate were assayed using the metallochromic indicator arsenazo III (21) with a Hewlett-Packard type 8450A spectrophotometer. Removal of calcium from the medium was measured by following ΔA660-A740. Samples (20-50 μg protein) were assayed at room temperature in the presence of 125 mM potassium phosphate buffer, pH 7.0, 1 mM MgCl2, 1 mM Na2ATP, and 10 μM arsenazo III. Several loadings were made with 25 μM CaCl2 additions per loading; further additions of calcium were made after the initial 30,000 rpm (for 60 min); and resuspended in 10% sucrose, 5 mM HEPES, pH 7.2 for 60 min at 37°C. The distribution of material at any uptake during this addition was negligible. The loading rates from such individual additions did not differ significantly and were averaged.

RESULTS

The procedure for triad isolation is described with two variants, standard and pyrophosphate. These will be dealt with sequentially in the text, although the figures and tables may include data from both variants for comparison.

The two variants were run side-by-side using portions of the same stock of rabbit muscle. For each preparation, the hind leg muscles of a single rabbit (~200-250 g) were utilized. Connective tissue fat, nerve, and red muscle were removed. The leg muscle was supplemented with back muscle (100-150 g). The mixture was passed through a General model H meat grinder fitted with a 2-mm hole mincing plate to obtain 300 g of ground muscle. In total, 180 g was used for the standard variant and 120 g for the pyrophosphate variant.

A. STANDARD VARIANT

Triads were enriched from microsomes by velocity gradient centrifugation. A combination step and continuous gradient centrifugation was performed (Fig. 2). Centrifugation was carried out using a precooled Beckman SW 27 rotor at 27,000 rpm (96,260 gav) at 2-5°C for 90 min (at speed). The distribution of material at completion of the run is shown in Fig. 2 (tube designated S). The 90-min centrifugation permitted only the most dense material to approach its isopycnic density, resulting in good separation of triad plasmalemmal activities from light SR and two even lighter density plasmalemmal fractions which we previously described (22). Two main bands were well resolved. The lower band was enriched in triads. It consisted of light brown turbid material containing visible small white aggregates. The fraction contained substantial levels of adenylate cyclase activity (20-25 pmol/mg-min) (Table I A). The Ca++-phosphate "loading" was roughly half that of the light SR. Examination by electron microscopy (not shown) indicated that the band contained a heterogeneous population including (a) intact triads (or dyads), (b) free "heavy" SR (24), (c) some free transverse tubule, (d) intact mitochondria, and (e) contractile protein. The triad-enriched fraction accounted for 15-20% of the total microsomal protein (See Table I A).

The upper band designated "light" SR layered at the interface between the 25% sucrose step and the continuous gradient (see Fig. 2). It exhibited much lower adenylate cyclase activity but higher rates of calcium phosphate loading (Table I A). Electron microscopy of this fraction revealed mostly light SR vesicles with relatively little heavy SR and few triads (not shown).

Stage II Gradient Purification

The major impurities in Stage I triad-enriched material were mitochondria and aggregated contractile material. Separation of triads from mitochondria required dissociation of contractile elements, which was achieved using a pyrophosphate mixture (20 mM sodium pyrophosphate, 20 mM NaH2PO4, and 1 mM MgCl2, pH 7.1) and a second velocity (90-min) centrifugation. The Stage I gradient triad-enriched material was diluted slowly

MITCHELL ET AL. Triad Isolation and Characterization 1009
with pyrophosphate mixture to 10% sucrose, pelleted, and resuspended in pyrophosphate mix containing 10% sucrose. The sucrose step-gradient (Fig. 3) was fortified with the pyrophosphate mixture until the slow dilution of the Stage I gradient triads. The pyrophosphate variant contains pyrophosphate mixture in all solutions at all stages. The pyrophosphate mixture contains 20 mM Na$_2$P$_2$O$_7$, 20 mM NaH$_2$PO$_4$, and 1 mM MgCl$_2$, pH 7.1. The asterisk indicates the absence of pyrophosphate mixture in the solutions for the standard variant. The Stage I gradient and separation is illustrated in Fig. 2 and is summarized in Table I. The Stage II gradient separation is shown in Fig. 3 and is summarized in Table II. The time required to reach the stages of the purification is indicated on the left. The standard and pyrophosphate variants are discussed sequentially in the text.

Protein and diagnostic enzyme distribution of the Stage II gradient purification is detailed in Table II.A. Fractions F3, F4, and F5 contain the majority of the adenylate cyclase activity, and were enriched in triads as viewed by electron microscopy. Fraction F4, appearing at the 28/32% interface, displayed peak activity (50-65 pmol/mg-min). Identification of this material as purified triads is shown in Fig. 4a by electron microscopy; more extensive quantitative data are presented later in the text (see Table IV). Fraction F3 was contaminated with light SR, as indicated by its increased Ca$^{++}$-phosphate loading rates (Table II.A) and by electron microscopy (not shown). Both fractions F4 and F5 consisted mainly of, and were considered, purified triads. Fraction F4 had only minor mitochondrial contamination (1.5%) while fraction F5 contained about 7% mitochondria as measured by particle counting. F4 appeared to be the more enriched of the two by adenylate cyclase and Ca$^{++}$-phosphate loading activity. The combined protein yield of fractions F4 and F5 is 5-6 mg/100 g starting muscle, accounting for ~60% of the adenylate cyclase activity of the Stage I triad-enriched starting material.

Figure 1: Flow diagram for isolation and purification of triads. Two variants are described. The standard variant does not introduce pyrophosphate mixture until the slow dilution of the Stage I gradient triads. The pyrophosphate variant contains pyrophosphate mixture in all solutions at all stages. The pyrophosphate mixture contains 20 mM Na$_2$P$_2$O$_7$, 20 mM NaH$_2$PO$_4$, and 1 mM MgCl$_2$, pH 7.1. The asterisk indicates the absence of pyrophosphate mixture in the solutions for the standard variant. The Stage I gradient and separation is illustrated in Fig. 2 and is summarized in Table I. The Stage II gradient separation is shown in Fig. 3 and is summarized in Table II. The time required to reach the stages of the purification is indicated on the left. The standard and pyrophosphate variants are discussed sequentially in the text.

A preparation of purified nontriadic SR can also be obtained as a byproduct of the standard variant. The upper "light" SR band of the first stage enrichment is applied to a Stage II gradient; residual adenylate cyclase activity concentrates in the LF4 fraction (Table II.C), leaving low levels of contaminating plasmalemmal adenylate cyclase activity in LF3 fraction. The highest levels of Ca$^{++}$-phosphate loading were found in Fraction LF3, which was generally 60% greater than that of Stage II purified triad and ~10% higher than that of Stage I light SR fractions. Examination by electron microscopy (not shown) indicated that this fraction was composed predominantly of vesicles without electron-opaque contents and was therefore considered to be light SR.

B. PYROPHOSPHATE VARIANT

This procedure is similar to the standard variant method, except that the pyrophosphate mixture is included throughout the purification. Because more protein is suspended during homogenization in the presence of the pyrophosphate mix, less ground muscle (40 g) was homogenized for every 300 ml of medium containing 0.5 mM EDTA, 10% sucrose (wt/wt) and pyrophosphate mixture. Otherwise, the preparation of microsomes employed the same centrifugation steps as outlined in Fig. 1 for the standard variant. The yield of microsomes was ~1.6-fold higher in the pyrophosphate variant compared with...
A summary of Stage I enrichment of triads. Four successive preparations of Stage I light SR and triad-enriched material were isolated and assayed for protein and enzymic activities. The results are expressed as the mean with standard deviation. The gradient purification is shown in Fig. 2. Standard and Pyrophosphate variants are compared. Yields were normalized for 100 g of ground white muscle and are expressed in terms of mg obtained/100 g ground muscle, % of microsomal protein, and the ratio of protein to light SR functions. Adenylate cyclase was assayed at 37°C as an index of transverse tubule. Rates of 375 pmol/mg min have been obtained in our laboratory for transverse tubule isolated using the French Pressure cell technique of Lau et al. (4) for disruption of triads and subsequent gradient centrifugation. Comparable rates (313 pmol/mg min) have been reported for purified surface sarcolemmal vesicles from rabbit skeletal muscle (18). Phosphate facilitated calcium "loading" was assayed as an index of sarcoplasmic reticulum. Purified light SR exhibits a rate approaching 4-5 nmo/mg min when assayed promptly after preparation and without freezing. The determinations shown here were performed on material frozen and thawed once and are, therefore, less than optimal in activity. The mitochondrial marker enzyme, succinate-cytochrome c reductase activity was assayed at 32°C. In order to estimate mitochondrial contamination, a rate of 800-900 nmol/mg min (20, 23) was used.

Table I

Recovery	Enzymic activity					
Tissue	% of microsomal protein	Ratio of protein triads/light SR	Adenylate cyclase	Ca++-Phosphate Loading Ca++-Phosphate Loading Ca++-Phosphate Loading		
	mg/100 g		µmol/mg min	µmol/mg min	nmol/mg min	
A. Standard Variant						
Light SR	21.3 ± 3.7	21.7 ± 4.2	0.85 ± 0.21	5.6 ± 1.2	3.45 ± 0.56	7.5 ± 3.3
Enriched triadic material	17.9 ± 4.1	18.2 ± 4.9		21.4 ± 2.6	1.56 ± 0.05	79.3 ± 24.4
B. Pyrophosphate Variant						
Light SR	31.9 ± 5.9	21.1 ± 6.7	2.04 ± 0.23	Variable	1.94 ± 0.56	51.3 ± 15.3
Enriched triadic material	64.4 ± 10.7	40.7 ± 7.1		15.6 ± 2.2	1.04 ± 0.04	130.0 ± 13.0

A summary of Stage I enrichment of triads. Four successive preparations of Stage I light SR and triad-enriched material were isolated and assayed for protein and enzymic activities. The results are expressed as the mean with standard deviation. The gradient purification is shown in Fig. 2. Standard and Pyrophosphate variants are compared. Yields were normalized for 100 g of ground white muscle and are expressed in terms of mg obtained/100 g ground muscle, % of microsomal protein, and the ratio of protein to light SR functions. Adenylate cyclase was assayed at 37°C as an index of transverse tubule. Rates of 375 pmol/mg min have been obtained in our laboratory for transverse tubule isolated using the French Pressure cell technique of Lau et al. (4) for disruption of triads and subsequent gradient centrifugation. Comparable rates (313 pmol/mg min) have been reported for purified surface sarcolemmal vesicles from rabbit skeletal muscle (18). Phosphate facilitated calcium "loading" was assayed as an index of sarcoplasmic reticulum. Purified light SR exhibits a rate approaching 4-5 nmo/mg min when assayed promptly after preparation and without freezing. The determinations shown here were performed on material frozen and thawed once and are, therefore, less than optimal in activity. The mitochondrial marker enzyme, succinate-cytochrome c reductase activity was assayed at 32°C. In order to estimate mitochondrial contamination, a rate of 800-900 nmol/mg min (20, 23) was used.

Stage II Gradient Purification

Stage II gradient purification of triads using standard (S) and pyrophosphate (P) variants. The sucrose step gradient employed is shown in the diagram at the right. Stage I triad-enriched material, in hypertonic sucrose from the gradient, was diluted slowly (30-45 min) with the pyrophosphate mixture to a sucrose concentration of 8-12%, using gentle stirring. The diluted material was sedimented (Type 35 rotor, 60 min at 30,000 rpm) and resuspended in the pyrophosphate mixture containing 10% sucrose (wt/wt) and applied to a discontinuous sucrose gradient. The gradient was constructed with steps of 0.5 ml 45%, 4.5 ml 36%, 6 ml 34%, 6 ml 32%, 6 ml 28%, 6 ml 25%, and 4 ml 15% sucrose. Each step was fortified with the pyrophosphate mixture. Sample, equivalent to one SW 27 tube of gradient I, was applied in 5 ml, and velocity centrifugation was carried out at 27,000 rpm for 90 min at 2-5°C using a Beckman SW 27 rotor. The distribution of material in the gradient after centrifugation is shown in Fig. 2. Stage II gradients for both variants contain pyrophosphate band. Positions of bands are indicated to the right of tube P. Purified triads are located in fractions 4 and 5. Enzymic characterization of the fractions in the gradient is given in Table II.

Comparison of Triad Fractions

Diagnostic enzymic activities of triad fractions prepared by the two variants of the current purification procedure and by two other methods are compared in Table III. From the standpoint of adenylate cyclase activity, the Stage I gradient enriched triad material from both variants are in the same range, although that from the standard variant is significantly higher. Each Stage II gradient procedure results in enhanced cyclase activity, although purified triads prepared by the standard variant exhibit approximately twofold higher specific activity of adenylate than those prepared by the pyrophosphate variant.

Na,K-ATPase, another diagnostic for transverse tubule (4), demonstrated similar enhancement of levels through a second
Stage II purification of triads and light sarcoplasmic reticulum

Fraction	% sucrose at interface	mg	% of Total	pmol/mg min	% of Total	pmol/mg min	% of Total	pmol/mg min	% of Total
A. Summary of Stage II gradient purification of enriched triads prepared by the Standard variant									
Stage I	—	16.00	100	28.3	100	1.61	100	118.9	100
Stage II									
F1	10/15	0.43	27	2.7	ND	—	ND	—	34.3
F2	15/25	0.51	3.2	7.0	1.0	ND	—	40.0	1.3
F3	25/28	1.26	7.8	24.2	8.5	2.91	14.2	25.4	2.1
F4 (triads)	28/32	2.35	14.7	56.1	36.9	1.81	16.5	15.5	2.4
F5 (triads)	32/34	2.99	18.7	28.6	23.9	1.15	13.3	52.5	10.4
F6	34/36	3.49	21.8	8.6	8.4	0.92	12.5	163.8	38.1
F7	36/45	1.58	9.8	4.8	2.1	1.12	6.8	349.9	36.8
Recovery								78.7	80.8
B. Summary of Stage II gradient purification of enriched triads prepared by the Pyrophosphate variant									
Stage I	—	68.40	100	15.7	100	1.0	100	137.5	100
Stage II									
F1	10/15	2.09	3.0	33.0	6.5	ND	—	39.0	0.8
F2	15/25	2.85	4.2	10.1	2.7	ND	—	33.0	1.0
F3	25/28	6.52	9.5	16.8	10.2	ND	—	27.5	1.9
F4 (triads)	28/32	10.72	15.7	27.1	27.2	1.41	15.1	35.5	4.0
F5 (triads)	32/34	16.00	23.4	23.5	35.0	0.56	9.0	82.5	14.0
F6	34/36	12.56	18.4	ND	—	0.63	7.9	302.5	40.4
F7	36/45	8.85	12.9	ND	—	0.70	9.2	468.5	44.0
Recovery	87.1	>81.6	106.1						
C. Summary of Stage II gradient purification of light SR prepared from the Standard variant									
Stage I	—	28.90	100	4.8	100	0.0	0.0	6.4	100
Stage II									
L F3	25/28	9.54	33.0	2.2	15.1	5.2	34.9	8.6	44.0
L F4	28/32	9.07	31.3	12.1	79.1	3.7	23.6	7.6	37.2

Stage II gradient purification of triads. Stage I triad material from Standard and Pyrophosphate variants was further purified using Stage II gradient purification (Fig. 3). The amount of Stage I triad material recovered from 100 g of ground muscle is given as Stage I (protein). A total of six SW 27 tubes (applying approximately 20 mg and 60 mg protein per tube for Standard and Pyrophosphate variants, respectively) is convenient for a single preparation involving one or two rabbits and one SW 27 rotor for both the Standard and Pyrophosphate variants. The fractions were assayed for protein, adenylate cyclase, phosphate facilitated calcium loading, and succinate-cytochrome c reductase. Protein and Ca\(^{++}\)-phosphate loading are values obtained from a single preparative run while succinate-cytochrome c reductase and adenylate cyclase are values averaged from several preparations. All assays were carried out on samples that were quick-frozen and singly thawed, except for the phosphate-facilitated loading in Table II C, which was performed on fresh material after the second stage of purification of light SR by the Standard variant. Purified triads, Stage II Standard (F4), assayed fresh without freezing and thawing, demonstrate Ca\(^{++}\)-loading rates of 2.5-3 \(\mu\)mol/min-mg protein. The reduction in activity revealed in Tables II A and II B is the result of assaying material that was frozen in the absence of 0.1 M KCl; the latter is required for stabilizing activity (25). ND, not determined.

Stage of purification. However, for this enzymatic activity, the purified triads from the pyrophosphate variant have more than twofold higher specific activity than the purified product from the standard variant. The calcium-phosphate loading rates of the purified triads (F4 fractions) from both variants are similar.

ELECTRON MICROSCOPIC ASSESSMENT OF TRIAD PURITY

Attempts have also been made to quantify the triad content of fractions from both the standard and pyrophosphate variants. Triad fractions were prepared from four consecutive runs of both standard and pyrophosphate variants (Stage I gradient triad fraction, and Stage II gradient, Fractions F4 and F5). Quantitation of vesicle types and number were made by thin-section electron microscopy. To facilitate quantitation, a filtration procedure was developed that makes use of high molecular weight dextran as a nonosmiophilic spacer substance (16). This method insures uniform sample distribution permitting quantitation without necessitating sectioning entirely through the pellet, as is required for pellets obtained by centrifugation. In

one instance, in which both methods of sample preparation were compared, essentially similar results were obtained.

Only vesicular structures were counted, and these were segregated into the categories shown in Table IV. The identification of junctional structures involved subdivision into "probable" and "possible" categories (cf. Legend, Table IV) in order to reduce observer bias. Half or more of the vesicles counted in both standard and pyrophosphate Stage II, F4 fractions fell into the "probable" junctional structure category, which averaged 1.5 terminal cisternae per transverse tubule.

Particle counting (Table IV) confirms enzymic data (Tables II A and III) indicating a further enrichment of standard triads by the second stage of purification, but it does not reflect a similar purification for the second stage of the pyrophosphate variant. Particle count comparison of standard, F4 and F5 fractions suggests greater similarity than do the enzymic data.

2 Contractile protein was observed as a minor contaminant in Stage I preparations of both variants but was not evident in purified Stage II triads.
FIGURE 4 (a) Electron microscopy of a representative section Stage II gradient fraction 4 triads prepared according to the standard variant. The triads were fixed with glutaraldehyde in suspension and filtered according to (16) to ensure representative sampling. A representative field is shown, X 45,000. Material enclosed by square is considered a “probable” junctional structure (i.e. terminal cisternae and transverse tubule are juxtaposed appropriately to suggest junctional association and are in the field of focus). Material enclosed by circle is considered a “possible” junctional structure (see legend to Table IV). (b) Electron microscopy of Stage II gradient, fraction 5 triads prepared according to the pyrophosphate variant. X 45,000.
isolated triads retain considerable architectural detail (11) characteristic of that observed in intact tissue (8–10), including the junctional feet structures that join transverse tubule and terminal cisternae (11).

The only previous work concerned with the isolation of triads is by Caswell et al. (3) who achieved some enrichment of triads from a microsomal fraction of rabbit skeletal muscle. The fraction was used mainly for the isolation of transverse tubule (4). Their study served to direct attention to the preparation of triads but did not include any quantitation that would permit an evaluation of enrichment or purity. In the six years that followed, no report of the purification of triads has appeared in the literature, although more recently Caswell's laboratory reported studies involving junctional reassociation (6, 26, 27) between purified transverse tubule and terminal cisternae.

The isolation of triads from rabbit skeletal muscle described here is straightforward and reproducible. The procedure consists of the preparation of a "heavy microsome" fraction and two sequential 90-min gradient centrifugations. The entire procedure takes about 12 h. The method yields adequate amounts of sample for biochemical study. The muscle from one rabbit will yield ~15 or 75 mg of purified triads (combined F4 and F5) by the standard or pyrophosphate variants, respectively.

The most critical problem in triad isolation was to devise conditions to disaggregate membrane components in order to achieve purification by centrifugation. The aggregation appears to be referable to contractile proteins and is therefore a problem inherent in the purification of membrane fractions from muscle. Most preparations of sarcoplasmic reticulum or plasma membrane from skeletal muscle make use of a salt presoak containing high concentrations of KCl or LiBr (22, 24, 28, 29). Initially, we used 0.6–0.7 M KCl (30), which enabled us to achieve separation and good purification of triads based on enzymic criteria, but the morphology was severely altered (11, 30).

Early work by Hasselbach and Schneider (31) and Hanson and Huxley (32) recognized that pyrophosphate could be used to solubilize actomyosin. Mg++ was found to be essential for the dissociation process (33). More recently, pyrophosphate has been used in the isolation of sarcosomes and sarcoplasmic reticulum from heart muscle (34–38). The application of pyrophosphate to the purification of triads required fine-tuning. In an effort to effectively solubilize actomyosin aggregates, a variety of PPi/Mg++ combinations were substituted for KCl. Low levels of PPI (20 mM) were sufficient to break up actomyosin complexes for purification of triads. At higher levels (50 mM PPI/1 mM MgCl2), swelling of the terminal cisternae portion of the triad was observed with loss of contents, similar to that seen (30) with high concentrations of KCl. In our experience, pyrophosphate from different batches and sources (Fisher Scientific Co. and Alfa Div., Vention Corp.) can behave somewhat differently so that minor adjustment in concentration with a new batch of reagent may be necessary for optimization. Some MgCl2 was required for the procedure to be effective, although MgCl2 concentrations in excess of 1 mM caused gross aggregation. The pyrophosphate mixture described was satisfactory for dissociating contractile elements, enabling separation of membrane components with retention of triad morphology.

Two variants have been described for preparation of triads that differ mainly with regard to when the pyrophosphate

Table III

Comparison of Enzymic Characteristics of Isolated Triad Fractions Obtained by Different Procedures

	Na,K-ATPase	Adenylate cyclase	Ca++ Phosphate “loading”
	µmol/mg·h	pmol/mg·min	µmol/mg·min
I. Isopycnic enrichment by Caswell et al. (3, 5)	ND	13.0 ± 7.0	ND
II. KCl preparation (30)	ND	17.4 ± 3.2	ND
Purification (Stage II gradient)	ND	41.2 ± 4.4	ND
III A. Standard variant			
Stage I enrichment	0.96 ± 0.19	21.4 ± 2.6	1.56 ± 0.05
Purified triads	2.16 ± 0.79	57.5 ± 8.5	1.35 ± 0.20
III B. Pyrophosphate variant			
Stage I enrichment	2.76 ± 0.03	15.6 ± 2.2	1.04 ± 0.04
Purified triads	4.96 ± 0.63	27.1 ± 7.0	1.43 ± 0.20

Comparison of enzymic characteristics of isolated triad fractions obtained by several different procedures. Procedure I A and III B are described in the text. The Stage II triad fractions given in the table are Fraction 4 (Table II). The Na,K-ATPase and adenylate cyclase assays were carried out at 37°C while the Ca++-phosphate loading was at 25°C. The only triad fractionation in the literature is the isopycnic purification of Caswell et al. (3, 4). The first stage of the KCl preparation (30) has some similarity to the Caswell preparation in that it involves an isopycnic sucrose gradient of microsomes in the absence of KCl. The second stage of purification employed 0.7 M KCl in the gradient to disaggregate contractile protein during a 2.5-h centrifugation (30). Limited enzymic activity is available for the Caswell fraction, which has been used primarily as an intermediate for transverse tubule isolation. Transverse tubule isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. The fraction was used mainly for the isolation of contractile protein during a 2.5-h centrifugation (30). Limited enzymic activity is available for the Caswell fraction, which has been used primarily as an intermediate for transverse tubule isolation. Transverse tubule isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C. Transverse tubule isolated in our laboratory in a manner similar to Caswell from purified triads isolated by Lau et al. (4) was reported to have a Na,K-ATPase activity of 6.18 µmol/mg·h when assayed in the presence of Nal at 37°C.

DISCUSSION

The isolation of a subcellular structure is an important step in its biochemical and functional characterization. Thus far, a purified preparation of triads has not been available. We now report the development of a procedure for the isolation of a fraction highly enriched in triads. The purity is estimated by particle counting to be in the vicinity of 50% (Table IV). The
mixture is introduced. The pyrophosphate variant contained pyrophosphate mixture in all solutions beginning with homogenization, whereas the standard variant contains solutions fortified with pyrophosphate mixture beginning with the slow dilution of Stage I gradient triads. The early introduction of pyrophosphate gives a higher recovery of microsomes, and a four- to fivefold greater yield of triads. The pyrophosphate as compared with the standard variant is characterized by a higher Na,K-ATPase and lower adenylate cyclase at both stages of gradient purification. The basis for such differences will be dealt with in a later communication (Mitchell, R. D., P. Volpe, P. Palade, and S. Fleischer, manuscript submitted for publication).

A variety of contaminants must be separated from triads including contractile protein, mitochondria, and nontriadic sarcoplasmic reticulum and transverse tube. A "heavy" microsome fraction was obtained in order to reduce light SR contamination, even though the content of mitochondria and contractile protein initially may have been higher. Of the two variants described, the pyrophosphate microsomes contained more triads and mitochondria and less light SR. Velocity gradient centrifugation was effective for further purification in the standard Stage I enrichment. The two bands in pyrophosphate Stage I separation were less well separated, but the procedure was still effective to remove most free light SR from the triad-enriched material.

The mitochondrial contamination in our Stage I fraction is aggregated together with the triads and requires disaggregation conditions for further purification. A simple discontinuous sucrose gradient containing pyrophosphate mixture was effective in achieving the Stage II purification. As long as conditions for disaggregation were used, plasmalemma and free transverse tube remained at the top of the gradient. The purified triads, especially Fraction 4, have only minor contamination by mitochondria (<1.7%), light SR (<6.6%) and larger vesicles probably of plasma membrane origin (<0.5%) as judged by particle counting by electron microscopy (Table IV). The low mitochondrial contamination is confirmed by marker enzyme assay (Table II). Fraction 5, though slightly less pure, is a respectable triad preparation as well, particularly in the pyrophosphate variant (Fig. 4b).

At present, no enzymic property has been localized histochemically that is biochemically unique to the triad structure and not to either of its component membranes, the transverse tubule or sarcoplasmic reticulum. Since triads could potentially co-isolate in regions of sucrose gradients containing sarcoplasmic reticulum, we employed transverse tubule markers, i.e., Na,K-ATPase and adenylate cyclase, which have been validated as simple diagnostics for triads by the work of Caswell and his colleagues (4, 5, 7). However, transverse tubule enzymic activities are shared by other sources of muscle and nonmuscle plasma membrane. A second consideration is that optimizing for even valid marker enzymes for transverse tubule and SR does not necessarily insure that these structures are in junctional association or retain good morphology. Thus, quantitation at the level of the electron microscope was used to check the purity of our fractions. The proportion of junctionally associated vesicles in both standard and pyrophosphate Stage II gradient F4 fractions was estimated to be in the vicinity of 50%.

Enzymic and electron microscopy criteria lead to somewhat different estimates of purity of the triads in comparing some of the fractions. This is because both methods, although the best available, are inadequate to the task. Both reflect uncertainties that are limiting. Particle counting is somewhat subjective with regard to triad identification; further, it counts the number and ignores size. Differences in soluble adventitious or compartmental protein are not considered by particle counting but markedly alter the specific activity by enzymic criteria. An additional problem is that the two diagnostic enzymes for t-tubule, adenylate cyclase and Na,K-ATPase, may be subject to differential inactivation during purification (Mitchell, R. D., P. Volpe, P. Palade, and S. Fleischer, manuscript submitted for publication).

Our standard and pyrophosphate procedures differ only in the extent of pyrophosphate exposure during preparation. At this point in time we have insufficient data available to recommend one variant over the other, despite certain clear enzymic differences. In both cases, the morphology of the purified triads is similar and resembles that of the structure in vivo. A highly enriched triad preparation is now available that may open the door to studies attempting to simulate a t-tubule mediated calcium release process in vitro. We have also de-
scribed the preparation of a defined light SR fraction, isolated under similar conditions to the triads, which may provide an important control for such Ca²⁺-release studies.

The authors wish to express their gratitude to Akisugu and Reiko Saito, without whose seemingly endless toil and dedication this work could not have been performed, and to Macie Schreiber for typing of the manuscript.

This work was supported by grants from The National Institutes of Health AM 14602 and Muscular Dystrophy Association to S. Fleischer and an American Heart Association Tennessee Affiliate Grant-in-Aid award to P. Palade and R. D. Mitchell. Postdoctoral fellowship support to R. D. Mitchell was provided by the Muscular Dystrophy Association and to P. Palade by U. S. Public Health Service SF52 AM06386-02.

Received for publication 14 June 1982, and in revised form 7 January 1983.

REFERENCES

1. Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57:71-108.
2. DeMaria, L. 1981. The Sarcoplasmic Reticulum. Transport and Energy Transfer. In Transport in the Life Sciences, Vol. 2. E. E. Bittar, editor. John Wiley and Sons, New York. 1-163.
3. Caswell, A. H., Y. H. Lau, and J.-P. Brunschwig. 1976. Ouabain binding vesicles from skeletal muscle. Arch. Biochem. Biophys. 176:417-430.
4. Lau, Y. H., A. Caswell, and J.-P. Brunschwig. 1979. Isolation of transverse tubules by fractionation of intact junctions of skeletal muscle. J. Biol. Chem. 254:5563-5574.
5. Caswell, A. H., S. P. Baker, H. Boyd, L. T. Potter, and M. Garcia. 1978. \(\beta \)-Adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle. J. Biol. Chem. 253:3009-3054.
6. Caswell, A. H., Y. H. Lau, M. Garcia, and J.-P. Brunschwig. 1979. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J. Biol. Chem. 254:202-208.
7. Lau, Y. H., A. Caswell, M. Garcia, and L. Letellier. 1979. Ouabain binding and coupled sodium, potassium and chloride transport in isolated transverse tubules of skeletal muscle. J. Gen. Physiol. 76:335-340.
8. Franzini-Armstrong, C. 1970. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47:480-499.
9. Franzini-Armstrong, C. 1973. Membranous systems in muscle fibers. In The Structure and Function of Muscle, Vol. 2. G. H. Bourne, editor. Academic Press, New York. 551-619.
10. Franzini-Armstrong, C. 1977. The comparative structure of intracellular junctions in striated muscle fibers. In Pathogenesis of Human Muscular Dystrophies, Excerpta Med. Int. Congr. Ser. 404:612-625.
11. Mitchell, R. D., A. Saito, P. Palade, and S. Fleischer. 1983. Morphology of isolated triads. J. Cell Biol. 96:1017-1029.
12. Walloth, T. F., and R. A. Johnson. 1979. The enzymatic preparation of [\(^{32P}\)]phosphotriesters, cyclic [\(^{32P}\)]AMP, and cyclic [\(^{32P}\)]GMP. Biochim. Biophys. Acta. 562:11-31.
13. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
14. Chen, P. S., T. Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756.
15. Rouser, O., and S. Fleischer. 1967. Isolation, characterization, and determination of polar lipids in mitochondria. Methods Enzymol. 10:385-406.
16. Palade, P., A. Saito, R. D. Mitchell, and S. Fleischer. 1983. Preparation of representative samples of subcellular fractions for electron microscopy by fractionation with dextran. J. Histochem. Cytochem. In press.
17. Bottom, R. H., E. Bohme, and G. Schatz. 1974. Determination of cyclic GMP in biological material. In Lukaryotic Cell Fractionation and Growth. B. L. Dunson and N. J. Maxwell, editors. Plenum Press, New York. 285-311.
18. Seiler, S., and S. Fleischer. 1982. Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies. J. Biol. Chem. 257:13862-13871.
19. Baginski, E. S., P. P. Fox, and B. Z. 1967. Determination of phosphatase: study of labile organic phosphate interference. Clin. Chem. Acta. 15:155.
20. Fleischer, S., and B. Fleischer. 1967. Removal and binding of polar lipids in mitochondria and other membrane systems. Methods Enzymol. 10:406-433.
21. Scarpa, A. 1979. Measurements of cation transport with metallochromic indicators. Methods Enzymol. 56:301-338.
22. Mitchell, R. D., S. Seiler, and S. Fleischer. 1979. Fractionation of skeletal muscle microsomes. J. Cell Biol. 83:387a. (Abstr.)
23. Fleischer, S., G. Briereley, H. Klouwen, and D. B. Slatterback. 1962. Studies of the electron transport system. XLVII. The role of phospholipids in electron transfer. J. Biol. Chem. 237:2564-2572.
24. Metzner, G. 1975. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta. 389:51-68.
25. Metzner, G., G. Codner, and S. Fleischer. 1973. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca²⁺-pump and Ca²⁺-binding proteins. Biochim. Biophys. Acta. 298:246-269.
26. Brunschwig, J. P., N. Brandt, A. H. Caswell, and D. S. Lukeman. 1979. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid and mordanting. J. Cell Biol. 93:533-542.
27. Cadwell, J. J. S., and A. H. Caswell. 1982. Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle. J. Cell Biol. 93:543-550.
28. Kosza, T., and S. Polowicz. 1961. Isolation of skeletal muscle cell membrane and some of its properties. Arch. Biochem. Biophys. 93:520-533.
29. Baruch, R. L., J. S. Weigle, D. M. Chalikian, and L. E. Murphy. 1979. Muscle surface observations of isolated intact and fragmented junctions of skeletal muscle. Ph.D. Thesis, Nashville, TN: Vanderbilt University. 1-274.
30. Hasegawa, W., and G. Schneider. 1951. Der N-Mycast- und Akutschmittelkasten des Kenzinchen- muscles. Biochem. Z. 321:461-475.
31. Hasson, J., and H. E. Huxley. 1953. Structural basis of the cross- striations in muscle. Nature (Lond.) 172:350-352.
32. Granier, D., and H. Portzehl. 1964. The influence of magnesium and calcium pyrophosphate ions on the dissociation of actomyosin in solution. Biochem. Biophys. Acta. 50:59-76.
33. Mitchell, R. D. 1981. Initial studies in excitation contraction coupling: isolation and characterization of the triad structure from skeletal muscle. Ph.D. Thesis, Nashville, TN: Vanderbilt University, 1-274.
34. Hasegawa, W., and G. Schneider. 1951. Der N-Mycast- und Akutschmittelkasten des Kenzinchen- muscles. Biochem. Z. 321:461-475.
35. Heuser, J., and H. E. Huxley. 1953. Structural basis of the cross- striations in muscle. Nature (Lond.) 172:350-352.
36. Granier, D., and H. Portzehl. 1964. The influence of magnesium and calcium pyrophosphate ions on the dissociation of actomyosin in solution. Biochem. Biophys. Acta. 50:59-76.
37. Zak, R., J. Eltinger, and D. A. Fischman. 1972. Studies on the fractionalisation of skeletal and heart muscle. In Research in Muscle Development and the Muscle Spindle. Excerpta Med. Int. Congr. Ser. 240:163-175.
38. Heuser, J., and H. Huxley. 1977. Plasma membranes from cardiac cells in culture. Exzymatic radioiodination, evaluation of preparation and properties of the sarcolemma. Biochim. Biophys. Acta. 467:29-43.
39. Jones, L. R., H. R. Beck, Jr., R. W. Fleming, M. M. McConaughay, and A. M. Watanabe. 1979. Separation of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. J. Biol. Chem. 254:530-539.
40. Bers, D. M. 1979. Isolation and characterization of cardiac sarcolemma. Biochim. Biophys. Acta. 555:131-146.
41. Colabe, C. A. L. S., and W. H. Evans. 1982. Partial purification of an intercalated disc containing cardiac plasma membrane fraction. Biochim. Biophys. Acta. 684:40-46.