Interventions to improve school-based eye-care services in low- and middle-income countries: a systematic review

Anthea M Burnett,1 Aryati Yashadhana,1 Ling Lee,1 Nina Serova,1 Daveena Brain1 & Kovin Naidoo1

Objective To review interventions improving eye-care services for schoolchildren in low- and middle-income countries.

Methods We searched online databases (CINAHL, Embase®, ERIC, MEDLINE®, ProQuest, PubMed® and Web of Science®) for articles published between January 2000 and May 2018. Eligible studies evaluated the delivery of school-based eye-care programmes, reporting results in terms of spectacle compliance rates, quality of screening or attitude changes. We considered studies to be ineligible if no follow-up data were reported. Two authors screened titles, abstracts and full-text articles, and we extracted data from eligible full-text articles using the availability, accessibility, acceptability and quality rights-based conceptual framework.

Findings Of 24,559 publications screened, 48 articles from 13 countries met the inclusion criteria. Factors involved in the successful provision of school-based eye-care interventions included communication between health services and schools, the willingness of schools to schedule sufficient time, and the support of principals, staff and parents. Several studies found that where the numbers of eye-care specialists are insufficient, training teachers in vision screening enables the provision of a good-quality and cost-effective service. As well as the cost of spectacles, barriers to seeking eye-care included poor literacy, misconceptions and lack of eye health knowledge among parents.

Conclusion The provision of school-based eye-care programmes has great potential to reduce ocular morbidity and developmental delays caused by childhood vision impairment and blindness. Policy-based support, while also attempting to reduce misconceptions and stigma among children and their parents, is crucial for continued access.

Introduction

Vision impairment and blindness in children can have negative consequences on their health, education and prospects, which in turn can affect the nation’s broader economic prosperity. Globally, an estimated 19 million children are blind or vision impaired, with the majority of vision impairment being preventable or treatable. The highest burden of blindness is experienced by children in low-income countries, where the prevalence is estimated to be 0.9 per 1000 children compared with 0.7 per 1000 and 0.4 per 1000 children in middle- and high-income countries, respectively; this suggests there are fewer services or else increased barriers to accessing services in low-income countries.

School-based eye-care interventions have the potential to provide high-quality and cost-effective services that allow the early detection of eye diseases and prevention of blindness, particularly for children living in remote locations. Identifying methods of improving and strengthening school-based eye-care interventions, particularly in low- and middle-income countries, is therefore important.

We conducted a systematic review and qualitative analysis to identify and understand methods by which eye-care services for schoolchildren in low- and middle-income countries could be improved. Our analysis was guided by the availability, accessibility, acceptability and quality conceptual framework as presented in the United Nations Committee on Economic, Social and Cultural Rights, General Comment No. 14, The Right to the Highest Attainable Standard of Health.

Methods

Systematic search

We registered our search on the International prospective register of systematic reviews (CRD42018090316) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines when identifying studies assessing interventions that improve schoolchildren’s access to eye-care services.

This review set out to include all studies evaluating the impact of school-based eye-care interventions in countries that were categorized as low- and middle-income countries in 2017. Eligible studies were those that: (i) evaluated the delivery of a school-based eye-care programme through vision screening, refractive services or health promotion activities; (ii) reported the evaluation results as either spectacle compliance rates, quality of vision screening processes, quality of vision screening personnel, or changes in knowledge or attitudes due to health promotion; or (iii) provided other quantitative or qualitative results from follow-up evaluations of school-based eye-care interventions. We included cross-sectional epidemiological surveys, prospective observational studies, qualitative studies, economic evaluations and randomized controlled trials.

Studies were excluded if: (i) they were not conducted in low- and middle-income countries; (ii) the described intervention did not include schoolchildren; or (iii) they did not report data from follow-up evaluation. We also excluded meeting abstracts, conference papers, editorial discussions, books, theses and studies without primary data collection. Systematic reviews that we detected in the initial search were

1 Brien Holden Vision Institute, Level 4, North Wing, RMB, Gate 14, Barker St, University of New South Wales, Sydney 2052, Australia.

Correspondence to Anthea M Burnett (email: A.Burnett@brienholdenvision.org).

Submitted: 14 March 2018 – Revised version received: 28 June 2018 – Accepted: 2 July 2018 – Published online: 27 August 2018.
screened to identify any studies initially missed; they were not included in the analysis, however.

We searched the online databases CINAHL, Embase®, ERIC, MEDLINE®, ProQuest, PubMed® and Web of Science™ for articles published between January 2000 and May 2018, using the search terms in Box 1. No language restrictions were placed on the search, but since search terms were in English we only retrieved English abstracts. We imported citations to Covidence software (Veritas Health Innovation, Melbourne, Australia), where two authors independently reviewed titles and abstracts. If the article could not be excluded based on abstract or title, it was included for full-text review. Two authors independently reviewed the full text of potential articles. Some article abstracts identified for full-text review did not have a full text in English, and were translated in full by a native speaker of the language.

Disagreements regarding inclusion or exclusion at either the title and abstract screening or full text review were resolved by discussion with a third reviewer. Two independent reviewers then appraised study quality using the Mixed Methods Appraisal Tool (v-2011, McGill University, Montreal, Canada), resolving discrepancies through discussion. We selected the appraisal tool as it has been used extensively in prior systematic reviews, and allows for the critical appraisal of qualitative, quantitative and/or mixed methods studies. This tool is preferable to the use of multiple tools, which may not allow for inter-study comparisons.

Analysis

We analyzed the extracted data qualitatively using NVivo 11 (QSR International, Melbourne, Australia). Thematic deductive coding was applied to identify the a priori themes from the availability, accessibility, acceptability and quality conceptual framework. This framework applies a rights-based approach to analyzing factors related to health system coverage and accessibility, and the underlying determinants that shape them. The framework identifies the systemic characteristics that inhibit or facilitate equitable eye-care outcomes for schoolchildren, while also considering determinants related to sex, culture, education and discrimination.

Results

Of the 24 559 articles initially captured, we identified 48 describing school-based eye-care interventions (Fig. 1). Identified articles were from 13 countries spanning five World Health Organization (WHO) Regions including Africa (eight studies), the Americas (10 studies), the Eastern Mediterranean (one study), South-East Asia (18 studies) and the Western Pacific (11 studies).
studies. Identified articles comprised 19 school-based eye-care programme evaluations,19,33-35,62-64,66 16 studies investigating spectacle compliance associations,54-61 eight studies exploring the quality of various eye-care screening personnel,40-56 four studies evaluating the effectiveness of health promotion,55-60 and one study that included both spectacle compliance and the quality of screening personnel.61 When appraised for quality,15 we classified 18 studies as being of high quality, 20 as medium quality and 10 as low quality. Study characteristics are outlined in Table 1 (available at: http://www.who.int/bulletin/volumes/96/10/18-212332).

Availability

School-based eye-care interventions

Recent guidelines for school-based eye-care recommend screening all primary schoolchildren for reduced visual acuity, with annual screening thereafter for new students and those previously prescribed spectacles to maintain correct prescriptions.62 The same guidelines are recommended for secondary schoolchildren in the first two years, followed by a re-screening of all students in the third year.63 However, several studies noted that these guidelines were not being met by some school-based eye-care programmes.55,64 with some children having never been screened.65 Routine vision screening within schools can provide a solution to poor uptake of care external to education systems.33,37 A study that conducted mass vision screenings in 51 Indian schools at the start of each academic year was identified as a cost–effective intervention.66 Many studies noted the availability of uncomplicated referral pathways between education and health systems, and clarity regarding referral processes, as being crucial in successful follow-up, provision of spectacles and continuity of care.26,22,23,29,32,35,41,51,61,64 For example, a study exploring children as potential vision screeners found that, despite being effective screeners, they were not held with sufficient credibility when referring those they screened to other health services.67 Inappropriate or overprescribing of spectacles was identified in studies from India and Mexico,26,68 suggesting that the prescribing of spectacles for moderate vision impairment should be balanced with cost and willingness to pay.69 Overarching factors in the provision of successful school-based eye-care interventions included communication between health services and schools, the willingness of schools to schedule sufficient time while minimizing impact,52,63 and the support of principals, staff and parents.23,28,29

School-based eye-care resources

An insufficient number of eye-care specialists created barriers to referrals and follow-ups in China,62 India52,64 and Peru.65 As the availability of eye-care specialists can be limited in school settings, particularly in low- and middle-income countries, studies have investigated the use of teachers, nurses, certified medical assistants and key informants for the provision of screening and basic eye-care for children.61,21,29,30,35,41,56,61,62 Several studies found that training teachers in vision screening enabled the provision of a good-quality15,53,56 and cost–effective service,53 while facilitating the opportunity to motivate spectacle use among students.54 Two studies reported that the use of teachers as vision screeners did not create significant burdens on normal workloads, and in fact enhanced rapport with children and parents.56,60 Evidence from Brazil,27 Nepal30 and Timor-Leste21 highlighted the benefits of school-based vision screening performed by trained nurses or certified medical assistants.

Studies reported that the lack of facilities20,23 and tools,31,50 such as appropriate charts for vision screening, was a potential barrier to implementing school-based eye-care programmes. The supply of low-cost spectacles was identified as increasing spectacle acceptance in China,23,39,45,46 Mexico26 and Timor-Leste.21 However, other studies reported that spectacle acceptance may be low with free or low-cost spectacles,35,42,43 which can be linked to parental concerns of poor quality.65

Health plans and policies

A key policy-based facilitator to the prioritization of child eye-care is uptake and execution of a national eye-care plan,61,53,61 and the inclusion of eye-care in school health policy.28,29,30,55,58 Studies assessing the feasibility of school-based eye-care interventions, such as the targeting of trachoma in the United Republic of Tanzania,38 vision screening in Peru,30 South Africa28 and Thailand,36 and the provision of free spectacles in China,36 noted that success was dependent on multidisciplinary support from health and education ministries. The level of collaboration between ministries may either facilitate20,28,30,58 or inhibit62 the coordination and success of interventions at the school level. An example from a trachoma intervention in Tanzanian schools outlined that, while elimination of trachoma was prioritized in health policies, it also needed to be incorporated into education curriculums if progress was to be made.58 Since achieving shared responsibility of the monitoring and execution of policies targeting eye health is considered important in the success of school-based eye-care interventions in low- and middle-income countries, partnerships between ministries and nongovernmental or private organizations are considered crucial.21,30,32,36,62

Accessibility

Economic and physical accessibility

The cost of spectacles for children was identified as a significant barrier in many settings.25,45,56 Factors associated with a higher willingness to pay for spectacles included previous or current ownership of spectacles,21 regular spectacle wear,65 a recognized need for spectacles or an understanding that vision improves with spectacles,50,60 An additional economic factor that was reported to influence the demand of parents or guardians for eye-care services and spectacles was the loss of daily wages64,66 due to a lack of a carer to accompany children to additional appointments.39 Approaches to reduce programme costs were reported as sourcing instrumentation from local tertiary institutions,65 and the use of cost–effective personnel (e.g. school health counsellors25 or teachers10) and appropriate spectacle correction protocols. Examples of correction protocols include only prescribing spectacles for moderate or severe refractive error,34,56 and the use of ready-made spectacles.40,47 The geographical inaccessibility of specialist eye-care services was also a barrier reported by parents.32,48

Information accessibility

Studies have identified misconceptions regarding the causes42,48,56,61,64,66 and treatment36,38,45,48,56,66 of eye disease and vision impairment as a significant barrier. Poor literacy, lack of awareness of eye health and misconceptions among parents were all reported as
having an impact on seeking care, age of presentation and treatment choices for children.28,36,64 A prominent misunderstanding regarding the wearing of spectacles is that they weaken or harm the eyes, resulting in the reluctance of parents to obtain them.36,43,48,65,66

Gender inequity

Gender inequity in some countries presents barriers to school attendance among girls, which can subsequently affect access to school-based eye-care. A Nepalese study reported that irregular school attendance among girls may affect access to eye-care.49 However, a programme providing outreach eye-care to schools in Timor-Leste resulted in greater gender equity among participants.21

Acceptability

Cultural appropriateness

The perspectives of children, parents, eye-care specialists, teachers and the broader community all affect the success of school-based eye-care interventions. Any intervention must be culturally appropriate, as longstanding cultural practices can have a stronger influence than national health policy.60 For instance, a study from India identified how children’s participation in school-based eye-care programmes can be influenced by elderly family members, hindering parental decision-making.64 The planning of school-based vision screening should also account for religious or cultural practices,66 and understand emergent local beliefs. For example, a health promotion intervention in the United Republic of Tanzania was hindered by local beliefs that the services provided were linked to the recruitment of cult group followers through the outreach activities.37

Sex

Sex-related factors associated with spectacles wear varied. In India, aesthetic norms that view spectacles as cosmetically unappealing among girls34 were also linked to marriageability, therefore affecting uptake and utilization.36 Similarly, girls were more likely to refuse spectacles than boys in western China.42 However, studies evaluating spectacle compliance at unannounced follow-up visits found that boys were significantly less likely to be wearing spectacles (Table 2) in China44,65 and South Africa;43 no differences between boys and girls were observed elsewhere, however. Sex also influenced the success of health promotion activities in the United Republic of Tanzania57 and Viet Nam.59

Spectacle compliance

There were 17 studies either assessing interventions to increase spectacle purchase or compliance or investigating factors associated with increased spectacle wear (Table 2). While an intervention designed to promote spectacle purchase was deemed ineffective in China,65 one that included free spectacles was shown to increase spectacle wear in India.41 Free spectacles also resulted in higher compliance compared with provision of a prescription only,58 a prescription and a letter to the parents,39 or when provided in conjunction with an education programme.46 In observational studies following school-based eye-care programmes, spectacle compliance ranged from 13.4\% (66/493) in Mexico14 to 87.1\% (54/62) in Brazil.37

Due to variations in reporting, it was not possible to identify which demographic factors were consistently associated with spectacle purchase and ongoing wear. However, girls, children with higher maternal education and children with poorer visual acuity at presentation were generally more likely to be wearing spectacles at follow-up. Many studies,28,33,36,37,41,43,45,46,56,64,6658 reported that children’s experiences or perspectives of wearing spectacles were linked to stigma and discrimination, or included verbal36,37,48,59 or physical abuse.41 In Timor-Leste, 18.1\% (43/237) of children surveyed believed that vision-impaired people could not attend school.38 Other common reasons for not wearing prescribed spectacles included a lack of perceived need,43,45,46 fear of potential harm,6,44,46,50,66 affordability41,48,66 and parental objections.42,58 Support networks within schools, including health promotion interventions,28,45,10 teacher training58 and curriculum-based eye health education,21,50 were key in correcting negative perceptions regarding spectacles or eye care.

Quality

Spectacle quality and provision guidelines

Concerns about the quality of spectacles,43,45,65 or the inability to replace them42,43 were reported as factors related to the unwillingness to purchase or wear them. Ready-made spectacles are often a cost-effective and acceptable strategy for reducing the time of a clinician’s visit and to dispense spectacles,29,47 and were acceptable to many children.39,44,47

As poorer visual acuity has been associated with increased spectacle acceptance and compliance, several studies have recommended only prescribing spectacles to children with more severe refractive error.34,47,53,5455 However, a randomized controlled trial investigating the effect of various refractive cut-off protocols on compliance found no associations.33 As small differences in refractive cut-offs are likely to have a significant impact on spectacle provision and programme costs, further investigations of spectacle prescribing guidelines are warranted.

Quality of trained teachers as screeners

There are inherent benefits in using teachers to conduct initial screening as compared with visiting eye-care specialists, particularly in terms of cost-effectiveness. Identified studies reported on the sensitivity (the percentage of children correctly identified with vision impairment) and specificity (the percentage of children correctly identified as not having vision impairment) of various school personnel (Table 3). While teachers have demonstrated adequate sensitivity and specificity in a variety of settings, sensitivity was reduced with younger children24 and when screening cut-off thresholds were lower.34,35 The type of vision chart used was also suggested to affect teacher sensitivity and screening function.33 Screening specificity is also critical due to the unnecessary burden placed on the limited numbers of eye-care specialists. One study reported that teachers sometimes overestimate the risk, and refer children who do not require visual correction.20

Training can improve teacher performance, as highlighted in examples from Peru where strategies to increase teacher engagement resulted in higher levels of teacher involvement and increased confidence in vision screening.30,52 Elsewhere, strategies used to increase teacher screening quality and engagement included: involving all class teachers in the vision screening programme, as compared with selected teachers;31 using adequate and structured training to increase knowledge and screening performance;39,58
Table 2. Spectacle compliance and acceptability from systematic review of eye-care services for schoolchildren in low- and middle-income countries

Study	Study sample and follow-up period	No. of participants (%)	Spectacle compliance or acceptance	Factors assessed for association with increased spectacle compliance or acceptance	Reasons reported for non-purchase or non-wear
Randomized/non-randomized controlled trials: spectacle promotion					
Congdon et al., 2011⁶⁵	Spectacle promotion: n = 2236; Control: n = 2212 Announced single visit 6 months after dispensing spectacles	Spectacle promotion: 1622 (72.5); Control: 1578 (71.3)	Spectacle promotion purchased, 25.7% (417/1622); wearing/in possession, 82.0% (342/417) Control: purchased, 34.0% (537/1578); wearing/in possession, 87.2% (468/537)	Purchasing spectacles:^c Significant: female, poorer uncorrected VA at baseline, higher refractive error; shorter follow-up after spectacle provision Non-significant: age, best corrected VA, having spectacles at baseline, randomized to intervention group Wearing/in possession of spectacles:^c Significant: female, poorer uncorrected VA at baseline Non-significant: age, best corrected VA, refractive error magnitude, having spectacles at baseline, randomized to intervention group	Lack of perceived need (34.0%, 738/2170), satisfied with current spectacles (30.5%, 662/2170), fears that spectacles will harm eyes (13.2%, 281/2170)
Narayanan & Ramani, 2018⁴¹	Intervention package: n = 124; Control: n = 114 Three unannounced single visits at 1 and 4 months after dispensing spectacles	Intervention package: 1 month, 101 (81.4); 4 months, 104 (83.9) Control: 1 month, 102 (89.5); 4 months, 96 (84.2)	Intervention package: wear at 1 month, 46.5% (47/101); wear at 4 months, 52.9% (55/104) Control: wear at 1 month, 17.6% (18/102); wear at 4 months, 23% (22/96)	NR	NR
Randomized/non-randomized controlled trials: free spectacles versus purchased spectacles					
Wedner et al, 2008³⁸	Free spectacles: n = 68; Prescription only: n = 57 Single-visit 3 months after intervention provided	Free spectacles: 58 (85.3); Prescription only: 50 (87.7)	Free spectacles: wearing or in possession, 46.6% (27/58) Prescription only: wearing or in possession, 26.0% (13/50)	Significant:^c worse VA, myopia (refractive error status) Non-significant:^c provided with free spectacles	NR
Ma et al, 2014⁴⁹	Free spectacles: n = 527; Free spectacles + education: n = 626; Voucher: n = 492; Voucher + education: n = 496; Control: n = 510; Control + education: n = 526 Unannounced single visit 8 months after intervention provided	Free spectacles: 506 (96.0); Free spectacles + education: 598 (95.5); Voucher: 473 (96.1); Voucher + education: 474 (95.6); Control: 490 (96.1); Control + education: 513 (97.5)	Free spectacles: 36.8% wearing (194/527); Free spectacles + education: 43.9% wearing (275/626); Voucher: 37.6% wearing (185/492); Voucher + education: 35.4% wearing (176/496); Control: 25.3% wearing (129/510); Control + education: 26.0% wearing (137/526)	Significant:^c provided spectacles voucher (without education); provided spectacles (with education); provided free spectacles voucher (without education); provided free spectacles (with education)	NR

(continues...)
Systematic reviews

Study	Study sample and follow-up period	No. of participants (%)	Spectacle compliance or acceptance	Factors assessed for association with increased spectacle compliance or acceptance	Reasons reported for non-purchase or non-wear
Yi et al., 2015	Free spectacles + teacher incentive: n = 358; Prescription + parent letter: n = 370 Unannounced visits at 16 weeks and 6 months	6 week follow-up: Free spectacles + teacher incentive: 352 (98.3); Prescription + parent letter: 363 (98.1) 6 month follow-up: Free spectacles + teacher incentive: 341 (95.3); Prescription + parent letter: 352 (95.1)	Free spectacles + teacher incentive: 6 weeks wearing 81.5% (287/352); 6 months wearing, 68.3% (233/341) Prescription + parent letter: 6 weeks wearing, 16.5% (60/363); 6 months wearing, 23.9% (84/352)	At the 6-month visit Significant: intervention group VA < 6/18, at least one parent wears spectacles, having spectacles at baseline Non-significant: sex, age, location, parents education, being only child, believes wearing spectacles harms vision, mathematics score, parents employed, family wealth, blackboard use	NR
Randomized/non-randomized controlled trials: ready- versus custom-made spectacles					
Zeng et al., 2009	Ready-made: n = 250; custom-made: n = 245 Unannounced single visit 1 month after spectacles dispensed	Ready-made: 208 (83.2); custom-made: 206 (84.1)	Wearing: ready-made: 46.9% (98/209); custom-made: 51.4% (106/206)	Non-significant: being provided with custom- compared with ready-made spectacles	NR
Morjaria et al., 2017	Ready-made: n = 232; custom-made: n = 228 Unannounced single visit 3–4 months after intervention provided	Ready-made: 184 (79.3); custom-made: 178 (78.1)	Wearing or had them at school: ready-made: 75.5% (139/184); custom-made: 73.6% (131/178)	Non-significant: being provided with custom- compared with ready-made spectacles	NR
Observational studies following school eye-care programmes					
Castanon Holguin et al., 2006	n = 654 Single visit at 4–18 months after dispensing spectacles	493 (75.4) Participants aged ≥19 years were excluded	Wearing: 13.4% (66/493); in possession: 34.3% (169/493)	Significant: older age, rural residence, mother’s education, myopia < –1.25 D, hyperopia > +0.50 D Non-significant: sex, length of time since spectacles dispensed	Concerns about appearance and being teased (16.6%, 82/493), fooged (16.6%, 82/493); use only occasionally (14.2%, 70/493)
Congdon et al., 2008	n = 810 Unannounced single visit at 4–11 months after dispensing spectacles	483 (59.6)	Wearing: 30.8% (149/483); in possession: 13.9% (67/483)	Significant: female, shorter time to follow-up Non-significant: age, presenting VA worse eye	NR
Li et al., 2008	n = 674 Single visit 3 months after intervention provided	597 (88.6)	Purchased: 35.2% (210/597); wearing: 63.9% (of those that purchased; 134/210)	Significant: worse VA at baseline, spherical equivalent < –2.00 D, willing to pay more for spectacles Non-significant: age, sex, parents’ education, baseline visual field score, home floor space per resident	Owned spectacles at baseline: current spectacles are good enough (77.9%, 109/140), spectacles too expensive (11.4%, 16/140), have symptoms from current spectacles (6.4%, 9/140) Did not own spectacles at baseline: spectacles not needed (48.7%, 110/226), price (17.7%, 40/226), harmful effects of spectacles on vision (12.8%, 29/226)

(continues . . .)
Study	Study sample and follow-up period	No. of participants (%)	Spectacle compliance or acceptance	Factors assessed for association with increased spectacle compliance or acceptance	Reasons reported for non-purchase or non-wear	
Odedra et al., 2008⁴⁸	Unannounced single visit 3 months after intervention	n = not stated 108	Wearing: 37.0% (40/108)	Non-significant: sex	Name-calling, concerns over safety of spectacles (harm), cost	
Keay et al., 2010⁴⁴	Unannounced single visit 1 month after dispensing spectacles	n = 415 (87.0)	Wearing: 46.5% (193/415); in possession: 2.6% (11/415)	Significant: female, lower income, spectacles VA < 6/6, pupil size ≥ 4 mm, less trouble with appearance Non-significant: age, having custom-made spectacles	NR	
Santos et al., 2011³⁷	Single visit 3 months after dispensing spectacles	n = 79 (28.5)	Wearing: 87.1% (54/62)	Non-significant: sex, age, presenting VA	Poor frame to face adjustment, prejudice from colleagues	
Rustagi et al., 2012³⁶	Single visit 8 months after dispensing spectacles	n = 48 (94.1)	Purchased: 70.8% (34/48); wearing: 20.8% (10/48)	Non-significant: sex	Harmful effect of spectacles on vision (57.9%, 22/38), anticipation of teasing from other students (52.6%, 20/38), difficulty in getting married (50.0%, 19/38)	
Gogate et al., 2013⁴³	Unannounced single visit at 6–12 months after dispensing spectacles	n = 2312 (44.0)	Wearing: 29.5% (300/1018); in possession: 2.1% of those not wearing spectacles (15/718)⁹	Significant: myopia < –2.00 D, VA < 6/18 to 3/60 at baseline, higher academic performance Non-significant: sex, age, VA 6/12 to 6/18	Teased about spectacles (19.8%, 142/718), spectacles broken (17.4%, 125/718), spectacles at home (16.3%, 117/718)	
Rewri et al., 2013⁶¹	Single visit 9 weeks after second vision screening	n = 742 (66.4)	Purchased: 40.2% (198/493); wearing: 81.3% (of those who purchased) (161/198)	NR	NR	
Glewwe et al., 2016⁴²	Assessed acceptance of receiving spectacles rather than wearing	n = 1978 (NR)	Accepted spectacles: 70.0% (1384/1978)	Significant: male, worse VA, household head is a teacher, higher township per capita income Non-significant: having spectacles at baseline, household head is a village leader, head years of schooling test score, county location, Tibetan, school level	Household head refused (31.5%, 187/594), child refused (15.0%, 89/594), cannot adjust to spectacles (10.3%, 61/594)	

D: dioptre; NR: not reported; VA: visual acuity.

^a Spectacles were recommended to be purchased after provision of a prescription, but not provided.

^b Intervention package consisted of 23 components related to spectacle frame and fit, education and motivation, and conduct of the screening.

^c Multivariate analysis.

^d Probit estimate associated with accepting spectacles.

^e Univariate analysis.

^f Myopia sample only.

^g Percentages have been recalculated as discrepancies existed between the reported values and reported percentages. Compliance rates may not be reliable.
Table 3. Ability of various cadres to identify vision impairment from review of school-based eye-care programmes in low- and middle-income countries

Study	Screening cadre	Population screened	Gold standard	Outcome	Percentage sensitivity (95% CI)	Percentage specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	
Khandekar et al., 2009	Kindergarten teachers	7768 children aged 3–6 years	Optometrist	VA < 20/40 (6/12) correctable by spectacles of > ±0.5 D	74.5 (72.7–76.3)	97.2 (96.7–97.6)	96.6	86.6	
Tabansi et al., 2009	Teachers	1300 children aged 6–11 years	Study investigators and doctors	VA < 6/18 in either or both eyes	53.3	98.4	79.3	94.7	
Adhikari & Shrestha, 2011	Certified medical assistants	528 children aged 3–7 years	Paediatric ophthalmologist	VA < 6/12 (HOTV1 chart) Abnormal red reflex test Screening pass/fail	80.0	990	–	–	
Rewri et al., 2013	Teachers	7411 children aged 10–19 years	817 children with self-assessed impaired vision aged 10–19 years	Optometrist	VA ≤ 6/12 (self-examination)	96.2 (94.5–97.4)	90.2 (87.8–92.2)	90.8 (88.6–92.7)	96.0 (94.1–97.2)
Latore-Arteaga et al., 2014	Teachers	33 children aged 3–5 years	Ophthalmic assistants	VA < 6/9 in one or both eyes	–	95.8 (92.8–98.7)	59.1 (36.3–81.9)	–	
Teerawattananon et al., 2014	Pre-primary teachers	1132 children, pre-primary grades	Ophthalmologist	Presenting VA < 20/40 (< 6/12) ('E' chart)	25.0 (23.0–27.0)	98.0 (97.0–99.0)	–	–	
Primary teachers	471 children, primary grades	Presenting VA < 20/40 (6/12) (Snellen chart)	59.0 (57.0–61.0)	980	–	–			
Priya et al., 2015	Selected teachers	6225 children aged 6–17 years	Ophthalmic team	VA ≤ 6/30 (6/9.5) in either eye	–	–	–	–	
All teachers	3806 children aged 6–17 years	VA ≤ 6/30 (6/9.5) in either eye	–	–	–	–			
Saxena et al., 2015	Teachers	9383 children aged 6–15 years	Primary eye-care worker	VA < 6/9.5	79.2 (77.0–81.2)	93.3 (92.7–93.8)	–	–	
			VA < 6/12	77.0 (74.1–79.7)	97.1 (96.7–97.4)	–	–		
			VA < 6/15	55.0 (54.1–59.7)	99.1 (98.8–99.2)	–	–		
Kaur et al., 2016	Teachers	129 children aged ≤ 16 years	Ophthalmologists	VA < 6/9 in either eye	98.0 (88.0–99.9)c	27.8 (18.6–37.2)c	46.2 (36.6–56.1)c	95.7 (76.0–99.8)c	

D: dioptre; PPV: positive predictive value; NPV: negative predictive value; VA: visual acuity.

1. An HOTV vision testing chart contains the letters H, O, T and V.
2. Sensitivity and specificity results not provided; studies are included in the table for completeness.
3. Sensitivity, specificity and 95% confidence intervals were calculated from reported values of true positive, true negative, false positive and false negative.
involving ophthalmologists in training to increase motivation,51 and greater emphasis on accurately measuring visual acuity.57 Financial incentives may encourage teachers to participate,51,56 and were shown to increase spectacle compliance through additional teacher motivation.39

Discussion

This systematic review revealed many factors that affect the delivery of eye-care services to children in schools. The rights-based framework12 allowed us to explore the various dimensions of service delivery, extending beyond physical availability to accessibility, acceptability and service quality. The consideration of culture, discrimination and economic factors highlights the importance of social and systemic inequality and its impact on accessibility.58,59 Our review explored how school-based eye-care services function and connect with general health systems, how stakeholders interact with school-based eye-care services and programmes, and the possible paths to meeting population needs in a way that is equitable and responsive.60,71 School-based eye-care interventions (including vision screenings) are key to reducing morbidity and developmental delays associated with vision impairment, while promoting early detection and prevention of eye diseases.57,72 Increasing the availability of school-based eye-care interventions in low- and middle-income countries is essential to help address the burden on poorly resourced secondary and tertiary eye-care,72,74 and enhance access for underserved rural children.21,50

Effective coordination between education and health systems is essential for appropriate referral pathways and follow-up mechanisms.22,33,34,52 At the policy level this requires cooperation between the ministries of health and education, and a national eye-care plan that includes school-based eye-care.52,56,58 Without a policy-based foundation, programmes to provide high-quality and cost-effective school-based eye-care, including training teachers,50,52,56 and school nurses21 in vision screening, will face challenges in acquiring resources and achieving sustainable outcomes.

Recent standard guidelines for comprehensive school-based eye-care programmes state that vision screening should use only one row of optotypes at the 6/9 visual acuity level.67 Standardized assessment and equipment (using a tumbling E chart) would reduce the current inconsistency in referral standards, and allow improved monitoring of quality and compliance. We also identified teacher training strategies that could be applied to increase teacher engagement and the quality of screening.

Because economic considerations are important in low- and middle-income countries, the provision of low-cost or free spectacles can improve access. However, the cost-effectiveness of screening and prescribed spectacles must be carefully considered to ensure sustainability. Our review identified the need to improve perceptions and awareness of eye-care services and treatments (particularly spectacles) among parents and children; we suggest health promotions that aim to (i) reduce misconceptions and stigma among parents, children and the broader community; and (ii) engage potential school-based eye-care providers such as teachers, school nurses and community health workers. A rights-based approach focusing on the link between good vision and childhood educational development is recommended, while also considering cultural factors.

Our systematic review was executed according to recommended guidelines.15 The literature consisted of a broad range of qualitative and quantitative studies, and our use of the rights-based conceptual framework12 enabled us to analyze the data in a well structured manner. However, data extraction and coding was only performed by a single reviewer due to time and resource constraints, which may have resulted in the omission of some data.

In conclusion, providing school-based eye-care interventions is challenging and reliant on economical, sociocultural, geographical and policy-based factors. With these determinants considered, school-based eye-care interventions have great potential to reduce the morbidity and developmental delays caused by childhood vision impairment and blindness. Teachers and nurses are well placed to provide school vision screenings, particularly where there is a lack of eye-care specialists. Policy-based support, with a focus on health systems rather than a focus on a single disease, is crucial for school-based eye-care interventions to be sustainable.

Acknowledgements

We thank Alison Poffley. AB, AM, LL and KN are also affiliated to the School of Optometry and Vision Science, University of New South Wales, Sydney, Australia. KN is also affiliated to the School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

Funding: The World Bank Group and the Global Partnership for Education (GPE) provided financial support.

Competing interests: None declared.
摘要
改善中低收入国家学校眼部护理服务的干预措施：系统综述
目的：综述改善中低收入国家学校学生眼部护理服务的干预措施。
方法：我们在线上数据库（CINAHL、Embase®、ERIC、MEDLINE®、ProQuest、PubMed® 和 Web of Science™）中搜索了自 2000 年 1 月至 2018 年 5 月之间发表的文章。符合入选标准的研究评估了学校开展的眼部护理课程，从依从率、筛查质量或态度改变几个方面报告结果。如果没有上报后续数据，我们认为研究不符合入选标准。两个作者筛选出标题、摘要和全文，然后我们利用基于可用性、可得性、可接受性和质量权利的概念框架，从符合入选标准的全文中提取数据。
结果：从 24,559 个出版物中筛选出满足入选标准的来自 13 个国家的 48 篇文章。学校成功提供眼部护理干预措施所涉及的因素包括卫生服务与学校之间的沟通、学校安排充足时间的意愿以及校长、学校工作人员和父母的支持。有几项研究发现，在眼部护理专家人手不够时，视力筛查的培训老师能够提供高质量且经济有效的服务。除了眼镜的费用，阻碍寻求眼部护理的因素还包括父母读写能力差、误解和缺乏眼部健康知识。
结论：学校提供眼部护理课程对减少眼部发病率和缓解由童年视力损伤和失明导致的发育迟滞现象有巨大的潜在作用。在试图减少孩子和父母对此误解和污名化的同时，政策支持对继续获取服务至关重要。

Résumé
Interventions visant à améliorer les services d'ophtalmologie en milieu scolaire dans les pays à revenu faible et intermédiaire: une revue systématique
Objectif: Examiner les interventions permettant d'améliorer les services d'ophtalmologie pour les enfants scolarisés dans les pays à revenu faible et intermédiaire.
Méthodes: Nous avons recherché dans des bases de données en ligne (CINAHL, Embase®, ERIC, MEDLINE®, ProQuest, PubMed® et Web of Science™) des articles publiés entre janvier 2000 et mai 2018. Les études admissibles évaluaient la mise en œuvre de programmes d'ophtalmologie en milieu scolaire et en présentaient les résultats en termes de taux de suivi des recommandations, de qualité du dépistage ou de changements d'attitude. Nous avons considéré comme non admissibles les études qui ne comportaient pas de données de suivi. Deux auteurs ont parcouru des titres, des résumés et des articles intégraux, et nous avons extrait des données des articles admissibles selon le cadre conceptuel de disponibilité, d'accessibilité, d'acceptabilité et de qualité fondé sur les droits.
Résultats: Sur les 24 559 publications examinées, 48 articles provenant de 13 pays remplissaient les critères d'inclusion. Les facteurs entrant en jeu dans la réussite des interventions d'ophtalmologie en milieu scolaire étaient la communication entre les services de santé et les établissements scolaires, la volonté de ces derniers d'y accorder suffisamment de temps, et le soutien des chefs d'établissement, du personnel et des parents. Plusieurs études ont révélé que lorsque le nombre de spécialistes en ophtalmologie est insuffisant, former les enseignants à la remise en question des personnes qui ont des difficultés de vision peut permettre d'offrir un service économique et de bonne qualité. Outre le coût des lunettes, un faible taux d'alphabetisation, des idées fausses et un manque de connaissances des parents en matière de santé oculaire freinaient le recours aux soins d'ophtalmologie.
Conclusion: La mise en œuvre de programmes d'ophtalmologie en milieu scolaire peut permettre de réduire sensiblement la morbidité oculaire et les retards de développement dus à des déficiences visuelles et à la cécité chez les enfants. Il est crucial de bénéficier d'un soutien politique, tout en tentant de combattre les idées fausses et la stigmatisation chez les enfants et leurs parents, pour maintenir l'accès à ces services.

Резюме
Меры по повышению качества оказания офтальмологической помощи на базе школ в странах с низким и средним уровнем дохода: систематический обзор
Цель: Провести обзор мер, направленных на повышение качества оказания медицинской помощи школьникам в странах с низким и средним уровнем дохода.
Методы: Авторы выполнили поиск в онлайн-базах данных (CINAHL, Embase®, ERIC, MEDLINE®, ProQuest, PubMed® и Web of Science™) по статтям, опублікованим в період січень 2000 року по травень 2018 року. Удовлетворяючі критерії отбора дослідників проводилися оцінка реалізації програм офтальмологічної помощи на базі школ, результатов отчітності з точки зору степені приверженності, качества скрінінга или изменения
Resumen

Intervenciones para mejorar los servicios de atención oftalmológica en escuelas de países con ingresos entre bajos y medios: una revisión sistemática

Objetivo
Revisar las intervenciones para mejorar los servicios de atención oftalmológica para los niños en edad escolar en países con ingresos entre bajos y medios.

Métodos
Se realizaron búsquedas en bases de datos en línea (CINAHL, Embase®, ERIC, MEDLINE®, ProQuest, PubMed® y Web of Science®) para encontrar artículos publicados entre enero de 2000 y mayo de 2018. Los estudios admisibles evaluaron la ejecución de los programas de atención oftalmológica en las escuelas e informaron de los resultados en cuanto a las tasas de cumplimiento, la calidad de los exámenes de evaluación o los cambios de actitud. Se consideró que los estudios no eran admisibles si no incluyan datos de seguimiento. Dos autores seleccionaron los títulos, los resúmenes y los artículos de texto completo, y se extrajeron los datos de los artículos admisibles mediante el marco conceptual basado en derechos de disponibilidad, accesibilidad, aceptabilidad y calidad.

Resultados
De las 24 559 publicaciones examinadas, 48 artículos de 13 países cumplieron los criterios de inclusión. Los factores que intervienen en el éxito de las intervenciones de atención oftalmológica en las escuelas incluyen la comunicación entre los servicios de salud y las escuelas, la disposición de las escuelas a programar el tiempo suficiente y el apoyo de los directores, el personal y los padres. Varios estudios descubrieron que, cuando el número de especialistas en atención oftalmológica es insuficiente, la formación de los profesores en la evaluación de la visión permite la prestación de un servicio de buena calidad y rentable. Además del costo de las gafas, las dificultades para obtener atención oftalmológica incluyen la alfabetización deficiente, los conceptos erróneos y la falta de conocimientos sobre la salud ocular entre los padres.

Conclusión
La provisión de programas de atención oftalmológica en las escuelas tiene un gran potencial para reducir la morbilidad ocular y los retrasos en el desarrollo causados por el deterioro de la visión y la ceguera infantiles. Para mantener el acceso, es fundamental contar con apoyo basado en políticas, al tiempo que se intentan reducir los conceptos erróneos y el estigma entre los niños y sus padres.

Referencias

1. Shashidhar S, Rao C, Hegde R. Factors affecting scholastic performances of adolescents. Indian J Pediatr. 2009 May;76(5):495–9. doi: http://dx.doi.org/10.1007/s12098-009-0091-4 PMID: 19390794
2. Ma X, Zhou Z, Yi H, Pang X, Shi Y, Chen Q, et al. Effect of providing free glasses on children’s educational outcomes in China: cluster randomized controlled trial. BMJ. 2014 09 23;349 sep23 7:g5740. doi: http://dx.doi.org/10.1136/bmj.g5740 PMID: 25249453
3. Sommer A, Tanoto I, Hussani G, Susanto D. Increased mortality in children with mild vitamin A deficiency. Lancet. 1983 Sep 10;322(8350):585–8. doi: http://dx.doi.org/10.1016/S0140-6736(83)90677-3 PMID: 6136744
4. Gilbert C, Foster A. Childhood blindness in the context of VISION 2020—the right to sight. Bull World Health Organ. 2001;79(3):227–32. PMID: 11285667
5. Sustainable development goals [internet]. New York: United Nations Department of Economic and Social and Economic Affairs; 2015. Available at: http://www.refworld.org/docid/4538838d0.html [cited 2018 Jul 10].
6. Lester BA. Comparing the cost-effectiveness of school eye screening versus a primary eye care model to provide refractive error services for children in India. Community Eye Health. 2007;20(61):15. PMID: 17637869
7. Frick KD, Riva-Clement L, Shankar MB. Review of refractive error management and fitting with spectacles in rural and urban India: cost-effectiveness. Ophthalmic Epidemiol. 2009 Nov-Dec;16(6):378–87. doi: http://dx.doi.org/10.3109/09286504.2009.1110032
8. CESC General Comment No. 14: The right to the highest attainable standard of health (Art. 12). New York: United Nations Economic and Social Council, 2000. Available at: http://www.refworld.org/docid/4538838d0.html [cited 2018 Jul 10].
9. Preventing blindness in children: report of a WHO/IAPB scientific meeting, Hyderabad, India, 13–17 April 1999. Geneva: World Health Organization, Hyderabad. International Agency for the Prevention of Blindness; 2000. Available from: http://apps.who.int/iris/handle/10665/66663 [cited 2018 Jul 12].
10. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009 Jul 21;6(7):e1000100. doi: http://dx.doi.org/10.1371/journal.pmed.1000100 PMID: 19995203
11. Frick KD, Riva-Clement L, Shankar MB. Screening for refractive error and fitting with spectacles in rural and urban India: cost-effectiveness. Ophthalmic Epidemiol. 2009 Nov-Dec;16(6):378–87. doi: http://dx.doi.org/10.3109/09286504.2009.1110032
12. Preventing blindness in children: report of a WHO/IAPB scientific meeting, Hyderabad, India, 13–17 April 1999. Geneva: World Health Organization, Hyderabad. International Agency for the Prevention of Blindness; 2000. Available from: http://apps.who.int/iris/handle/10665/66663 [cited 2018 Jul 12].
13. Frick KD, Riva-Clement L, Shankar MB. Screening for refractive error and fitting with spectacles in rural and urban India: cost-effectiveness. Ophthalmic Epidemiol. 2009 Nov-Dec;16(6):378–87. doi: http://dx.doi.org/10.3109/09286504.2009.1110032
14. World Bank country and lending groups [internet]. Washington, DC: The World Bank Group; 2016. Available from: https://datatopics.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups [cited 2018 Jul 10].
52. Latorre-Arteaga S, Gil-González D, Enciso O, Phelan A, García-Muñoz A, Kohler J. Reducing visual defects caused by refractive errors in prime school children: results of a pilot school program in the Andean region of Apurimac, Peru. Glob Health Action. 2014 02;13(1):22656. doi: http://dx.doi.org/10.3402/gha.v7i2.22656 PMID: 24560253

53. Priya A, Veena K, Thulasiraj R, Fredrick M, Venkatesh R, Sengupta S, et al. Vision screening by teachers in southern Indian schools: testing a new “all class teacher” model. Ophthalmic Epidemiol. 2015 Feb;22(1):60–5. doi: http://dx.doi.org/10.3109/0970-0218.2014.988877 PMID: 25495755

54. Saxena R, Vashist P, Tandon R, Pandey RM, Bhardwaj A, Menon V. Accuracy of visual assessment by school teachers in school eye screening program in delhi. Indian J Community Med. 2015 Jan-Mar;40(1):38–42. doi: http://dx.doi.org/10.4103/0970-0218.2014.988877 PMID: 25495755

55. Tabansi PN, Anochie IC, Nkanginieme KE, Pedro-Egbe CN. Evaluation of school vision testing. Oman J Ophthalmol. 2015 Jan-Apr;8(1):28–32. doi: http://dx.doi.org/10.4314/noj.v17i1.46759

56. Teerawattananon K, Myint CY, Wongkittriu K, Teerawattananon Y, Chinkulkritnav B, Opreayoon S, et al. Assessing the accuracy and feasibility of a refractive error screening program conducted by school teachers in pre-primary and primary schools in Thailand. PLoS One. 2014 06;13(6):e69684. doi: http://dx.doi.org/10.1371/journal.pone.0069684 PMID: 24926993

57. Chan VF, Minto H, Mashayo E, Naidoo KS. Improving eye health using a programme on Indian schoolteachers’ knowledge and responsibility for children’s eye health. Health Educ J. 2013;72(4):375–85. doi: http://dx.doi.org/10.1177/0017896912446550

58. Lewallen S, Massae P, Tharaney M, Somba M, Geneau R, Macarthur C, et al. Effect of education sessions of a structured school eye screening programme on Indian schoolteachers’ knowledge and responsibility for children’s eye health. Health Educ J. 2013;72(4):375–85. doi: http://dx.doi.org/10.1177/0017896912446550

59. Paudel P, Yen PT, Kovai V, Naduvilath T, Ho SM, Giap NV, et al. Effect of school vision testing on children’s eye health literacy in Vietnam. Health Promot Int. 2017 Oct 6. doi: http://dx.doi.org/10.1093/heapro/dax065 PMID: 29040581

60. Thummalapalli R, Williams JD, Khoshnood K, Salchow DJ, Forster SH. Evaluating a school-based trachoma curriculum in Tanzania. Health Educ Res. 2008 Dec;23(6):1068–73. doi: http://dx.doi.org/10.1093/her/cym097 PMID: 18209114

61. Rewri P, Vashist P, Kaur M, Raghav D. Self-vision testing and intervention seeking behavior among school children: a pilot study. Ophthalmic Epidemiol. 2013 Oct;20(5):315–20. doi: http://dx.doi.org/10.3109/0970-0218.2013.823506 PMID: 24070103

62. Bai Y, Li H, Zhang L, Shi Y, Ma X, Congdong N, et al. An investigation of vision problems and the vision care system in rural China: Southeast Asian J Trop Med Public Health. 2014 Nov;45(6):1464–73 PMID: 25466433

63. Anuradha N, Ramani K. Role of optometry school in single day large scale school vision testing. Oman J Ophthalmol. 2015 Jan-Apr;8(1):28–32. doi: http://dx.doi.org/10.4314/noj.v17i1.46759

64. Balasubramaniam SM, Kumar DS, Kumaran SE, Ramani KK. Factors affecting eye care-seeking behavior of parents for their children. Optom Vis Sci. 2013 Oct;90(10):1138–42. doi: http://dx.doi.org/10.1097/OPX.0b013e31829e0010 PMID: 24307360

65. Congdon N, Li L, Zhang M, Yang A, Gao Y, Griffiths S, et al. Randomized, controlled trial of an educational intervention to promote spectacle use in rural China: the see well to learn well study. Ophthalmology. 2011 Dec;118(12):2343–50. doi: http://dx.doi.org/10.1016/j.ophtha.2011.06.016 PMID: 21899800

66. Ebiegie JA. Factors influencing eye-care seeking behaviour of parents for their children in Nigeria. Clin Exp Optom. 2018 Jul;101(4):560–4 PMID: 27990681

67. Gilbert C, Minto H, Morajia P, Khan I. Standard guidelines for comprehensive school eye health programs. Sightsavers International. London: London School of Hygiene and Tropical Medicine, Brien Holden Vision Institute; 2016.

68. Marmot M, Friel S, Bell R, Houweling TAJ, Taylor S. Commission on Social Determinants of Health. Closing the gap in a generation: health equity through action on the social determinants of health. Lancet. 2008 Nov 8;372(9650):1661–9. doi: http://dx.doi.org/10.1016/S0140-6736(08)61690-6 PMID: 18994664

69. Closing the gap in a generation: health equity through action on the social determinants of health: Commission on Social Determinants of Health Final Report. Geneva: World Health Organization; 2008. p. 33.

70. Blanchet K, Gilbert C, de Savigny D. Rethinking eye health systems to achieve universal coverage: the role of research. Br J Ophthalmol. 2014 Oct;98(10):1325–8. doi: http://dx.doi.org/10.1136/bjophthalmol-2013-303905 PMID: 24990874

71. Blanchet K, Gilbert C, Lindfield R, Crook S. Eye health systems assessment (EHSA): How to connect eye care with the general health system. London: London School of Hygiene and Tropical Medicine, 2012.

72. Gilbert C, Muhtt M. Eye conditions and blindness in children: priorities for research, programs, and policy with a focus on childhood cataract. Indian J Ophthalmol. 2012 Sep-Oct;60(5):451–5. doi: http://dx.doi.org/10.4103/0301-4738.100548 PMID: 22944758

73. Resnikoff S, Felch W, Gauthier T-M, Spivey B. The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners. Br J Ophthalmol. 2012 Jun;96(6):783–7. doi: http://dx.doi.org/10.1136/bjo.2011-301378 PMID: 22452836

74. Palmer JJ, Chinanayi F, Gilbert A, Pillay D, Fox S, Jaggernath J, et al. School-based eye screening programmes in sub-Saharan Africa: current progress towards VISION 2020. Hum Resour Health. 2014 06 15;12(1):44. doi: http://dx.doi.org/10.1186/1478-4491-12-44 PMID: 24990874

75. Resnikoff S, Felch W, Gauthier T-M, Spivey B. The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners. Br J Ophthalmol. 2012 Jun;96(6):783–7. doi: http://dx.doi.org/10.1136/bjo.2011-301378 PMID: 22452836

76. Palmer JJ, Chinanayi F, Gilbert A, Pillay D, Fox S, Jaggernath J, et al. Mapping human resources for eye health in 21 countries of sub-Saharan Africa: current progress towards VISION 2020. Hum Resour Health. 2014 08 15;12(1):44. doi: http://dx.doi.org/10.1186/1478-4491-12-44 PMID: 25128163
Table 1. Studies identified in the systematic review of interventions to improve eye-care services for schoolchildren in low- and middle-income countries

Study	Country	Study design	Study sample	Purpose	Quality appraisal
Castanon Holgui et al., 2006	Mexico	Prospective observational	493 primary and secondary schoolchildren aged 5–18 years	Assess spectacle compliance	Low
Carvalho et al., 2007	Brazil	Cross-sectional	1517 elementary school teachers or principals	Assess teacher perceptions of school visual health campaigns	Medium
Esteso et al., 2007	Mexico	Prospective observational	96 primary and secondary schoolchildren, average age 12 years	Assess the impact of spectacles on self-reported vision health	Medium
Congdon et al., 2008	South Africa	Prospective observational	850 primary and secondary schoolchildren aged 6–11 years	Evaluate trachoma education outcomes, including knowledge and hygiene	Low
Lewallen et al., 2008	United Republic of Tanzania	Mixed methods	20 schools (10 intervention, 10 control), 1396 schoolchildren (grades 3 and 4)	Evaluate trachoma education outcomes, including knowledge and hygiene	High
Li et al., 2008	China	Prospective cohort	1892 secondary schoolchildren (age 13–16 years)	Assess the determinants of spectacle compliance	Medium
Odedra et al., 2008	United Republic of Tanzania	Mixed methods	108 secondary school students (average age 15 years), 58 intervention group, 50 control group, 50 control group, 50 control group	Assess reasons for poor compliance following in-school provision of spectacles	Medium
Wedner et al., 2008	United Republic of Tanzania	Randomized controlled trial	183 secondary schoolchildren aged 11–15 years, 13 parents and 13 teachers	Assess compliance of free spectacles	High
Khandekar et al., 2009	Islamic Republic of Iran	Mixed methods	15 parents and 15 teachers	Evaluate school vision screening in kindergarten, including cost and validity of teacher use	Medium
Tabansi et al., 2009	Nigeria	Cross-sectional	130 teachers, 1300 primary schoolchildren (age 6–11 years)	Assess accuracy of teacher screenings compared with research team doctors	High
Zeng et al., 2009	China	Randomized controlled trial	743 secondary schoolchildren aged 12–15 years	Evaluate children's vision and satisfaction with ready-made spectacles	Medium
Keay et al., 2010	China	Prospective observational	428 secondary schoolchildren (age 12–15 years)	Determine what influences eyeglass use and custom-made spectacle compliance	Medium
Adhikari & Shrestha, 2011	Nepal	Cross-sectional	20 certified medical assistants	Assess reliability of certified medical assistants in school-based vision screening, compared with paediatric ophthalmologists	Low
Congdon et al., 2011	China	Randomized controlled trial	11 423 primary and secondary schoolchildren (age 12–17 years)	Effectiveness of an educational intervention to promote spectacle purchase	Low
Noma et al., 2011	Brazil	Cross-sectional	35 primary and secondary schoolchildren (age 12–17 years)	Assess non-compliance reasons for non-compliance with school vision screening	Low
Intervention for School-based Eye-care Services

Study	Country	Study design	Study sample	Purpose	Quality appraisal
Santos et al., 2011	Brazil	Cross-sectional (prospective)	62 primary schoolchildren aged 6–11 years with refractive error	Assess compliance of children to their first pair of glasses	Low
Noma et al., 2012	Brazil	Cross-sectional (prospective)	14,651 primary schoolchildren aged 7–10 years	Determine reasons for non-adherence to ophthalmic examinations following school screening	High
Pereira et al., 2012	Timor-Leste	Cross-sectional (prospective)	21 school health nurses, 1,819 children screened	Evaluate efficacy of eye health outreach services	Medium
Rajaraman et al., 2012	India	Mixed methods	52 children aged 9–17 years, 35 school staff, 13 school health counsellors, 4 parents and 3 clinicians	Evaluate the effectiveness of delivery of school health promotion by lay school health counsellors	High
Rustagi et al., 2012	India	Mixed methods	51 secondary schoolchildren aged 11–18 years, sampled for refraction, out of 1,075 screened	Assess the magnitude of vision impairment among children and their spectacle compliance	Medium
Balasubramaniam et al., 2013	India	Qualitative	35 parents with school-aged children and 16 eye-care specialists	Effectiveness of school vision screening	Medium
Gogate et al., 2013	India	Cross-sectional (prospective)	1,018 secondary schoolchildren aged 8–16 years	Assess spectacle compliance among rural children	High
Rewi et al., 2013	India	Cross-sectional (prospective)	7411 secondary schoolchildren aged 11–19 years	Evaluate students’ ability to self-examine their vision and seek intervention such as spectacles	High
Thummalapalli et al., 2013	India	Prospective observational	104 primary school teachers	Evaluate effectiveness of eye health promotion and screening intervention among teachers	Low
Bai et al., 2014	China	Cross-sectional (retrospective)	19,977 primary school students (in grades 4 and 5)	Effectiveness of school vision screening	Medium
Latorre-Arteaga et al., 2014	Peru	Cross-sectional (prospective)	21 teachers	Evaluate the effectiveness of teacher vision screening and estimate childhood refractive error prevalence	Medium
Ma et al., 2014	China	Randomized controlled trial	3,177 primary schoolchildren aged 8–13 years in 251 schools	Assess the effect of free spectacle provision on academic performance	Medium
Puri et al., 2014	India	Cross-sectional (prospective)	5,040 children aged 8–15 years screened and 71 teachers surveyed	Evaluate school vision programme	Medium
Teerawattananon et al., 2014	Thailand	Mixed methods	5,885 students; 1,335 pre-primary children aged 4–6 years, 4,550 primary children aged 7–12 years	Assess accuracy and feasibility of teacher screening	Medium
Zhou et al., 2014	China	Mixed methods	136 urban primary schoolchildren aged 9–11 years, 290 rural secondary schoolchildren aged 11–17 years, 16 parents	Assess the take-up of adjustable-lens spectacles among children and parents	High
Anuradha & Ramani, 2015	India	Cross-sectional (prospective)	123 optometrists or optometry students	Effectiveness of optometry students in conducting school-based single-day vision screening	High

(continues...)
Study	Country	Study design	Study sample	Purpose	Quality appraisal
Fontenele et al., 2015	Brazil	Cross-sectional (prospective)	94 school health nurses aged 20–29 years	Assess the involvement of nurses in children's eye health	Medium
Hobday et al., 2015	Timor-Leste	Mixed methods	384 primary schoolchildren aged 10–17 years; teachers and parents (number undisclosed)	Evaluate an in-school health promotional intervention	Medium
Juggernath & Knight, 2015	South Africa	Randomized controlled trial	37 teachers or principals; 19 in intervention group (aged 23–67 years), 18 in control group (aged 21–59 years)	Assess teacher visual acuity screening following training	Medium
Ma et al., 2015	China	Randomized controlled trial	2840 primary schoolchildren aged 8–13 years in 249 schools	Assess the safety of spectacles in rural context where a fear that spectacles harm the eyes is an important barrier	High
Priya et al., 2015	India	Case-control	917 teachers	Assess cost and effectiveness of screening programme involving all teachers, compared with using a limited number of teachers	High
Saxena et al., 2015	India	Cross-sectional (prospective)	40 teachers, 9838 primary schoolchildren aged 6–15 years	Assess accuracy of teacher screenings, compared with primary eye-care workers	High
Wang et al., 2015	China	Cross-sectional (prospective)	4376 primary schoolchildren aged ~9–12 years; 4225 migrant children and 151 local children	Measure prevalence of spectacle need and ownership among migrant children	Low
Yi et al., 2015	China	Randomized controlled trial	693 primary schoolchildren aged 10–12 years	Assess the effect of the provision of free spectacles, combined with teacher incentives, on compliance	High
Glewwe et al., 2016	China	Mixed quantitative	28 798 primary schoolchildren aged 10–12 years	Determine the impact of free spectacle provision on children's academic performance	High
Kaur et al., 2016	India	Cross-sectional (prospective)	253 teachers	Assess the effectiveness of teacher screening in identifying eye problems in children	Medium
Latorre-Arteaga et al., 2016	Peru	Cross-sectional (prospective)	355 teachers	Assess teacher screening programme implementation following pilot phase	High
Chan et al., 2017	Tanzania	Cross-sectional (prospective)	120 schoolchildren aged 11–12 years	Effectiveness of child-to-child health promotion strategy	High
de Melo et al., 2017	Brazil	Cross-sectional (prospective)	74 primary and secondary schoolchildren aged 13–18 years	Effectiveness of an educational intervention on the topic of disability	Low
Morjaria et al., 2017	India	Randomized controlled trial	460 secondary school aged 11–15 years; 232 ready-made spectacles, 228 custom-made spectacles	Compare compliance between ready- and custom-made spectacles	Medium
Paudel et al., 2017	Viet Nam	Prospective cohort	300 children aged 12–15 years	Assess the effect of eye health promotion on eye health literacy in schools	High
Systematic reviews

Intervention for school-based eye-care services

Anthea M Burnett et al.

Study	Country	Study design	Study sample	Purpose	Quality appraisal
Ebeigbe, 2018^a	Nigeria	Qualitative	35 parents of schoolchildren aged 5–12 years	Assess the factors that influence the seeking of eye-care	Medium
Narayanan & Ramani, 2018^b	India	Non-randomized controlled trial	8442 secondary schoolchildren aged 13–17 years screened; 238 required spectacles, of which 124 formed the intervention group and 114 the control group	Assess spectacle and referral compliance following school screening programme	Low

^a We appraised the quality of study methods by using the Mixed Methods Appraisal Tool (v-2011). Studies were classified as high quality if > 90% of criteria were adequate, medium quality if > 60 to 90% of criteria were adequate, low quality if > 30 to 60% of criteria were adequate and very low quality if ≤ 30% criteria were adequate. No studies of very low quality were eligible for inclusion, so no studies were excluded based on this quality assessment.