Pion-assisted $N\Delta$ and $\Delta\Delta$ dibaryons, and beyond

Avraham Gal, Jerusalem

Received: date / Accepted: date

Abstract Experimental evidence for $I^P(3^+) = 0(3^+)$ nonstrange dibaryon $D_{03}(2370)$ has been presented recently by the WASA-at-COSY Collaboration. Here I review new hadronic-basis Faddeev calculations of $L = 0$ nonstrange pion-assisted $N\Delta$ and $\Delta\Delta$ dibaryon candidates. These calculations are so far the only ones to reproduce the relatively small $D_{03}(2370)$ width of 70–80 MeV. Predictions are also given for the location and width of D_{30}, the $I^P(3^+) = 3(0^+)$ exotic partner of $D_{03}(2370)$. Extensions to strangeness $S=−1$ dibaryons are briefly discussed.

Keywords Faddeev equations · nucleon-nucleon interactions · pion-baryon interactions · dibaryons

PACS 11.80.Jy, 13.75.Cs, 13.75.Gx, 21.45.-v

1 Introduction

The WASA-at-COSY Collaboration has presented recently striking evidence for a $I^P = 0(3^+)$ nonstrange dibaryon resonance some 80–90 MeV below $2M_\Delta \approx 2.46$ GeV, with a relatively small width of $\Gamma \approx 70–80$ MeV, by observing a distinct resonance in $pn \to d\pi\pi$ reactions as shown in Fig. 1. Isospin $I = 0$ is uniquely fixed in this particular $\pi^0\pi^0$ production reaction and the spin-parity 3^+ assignment follows from the measured deuteron and pions angular distributions, assuming s-wave $\Delta\Delta$ decaying pair. The shape of the $M^2_{d\pi}$ distribution on the right panel supports $\Delta\Delta$ assignment and its peak at $\sqrt{s} \approx 2.13$ GeV, almost at the $D_{12}(2150) N\Delta$ dibaryon location (see below), might suggest a possible role for D_{12} in forming the $\Delta\Delta$ dibaryon D_{03}.

* Invited talk at EXA 2014, Vienna, Sept. 2014, published in Hyperfine Interactions (2015) DOI 10.1007/s10751-015-1133-0

A. Gal
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
E-mail: avragal@savion.huji.ac.il
Further evidence supporting the $D_{03}(2370)$ dibaryon assignment comes from very recent measurements of pn elastic scattering as a function of energy, taking sufficiently small steps around $\sqrt{s} = 2370$ MeV \[^{3}\]. This is shown in Fig. 2 left for the Argand diagram of the 3D_3 partial wave, and in the right panel for the speed plot of the 3D_3 partial wave, within a new SAID partial wave analysis incorporating these measurements.

$N\Delta$ and $\Delta\Delta$ s-wave dibaryon resonances D_{IS} with isospin I and spin S were proposed by Dyson and Xuong \[^{4}\] as early as 1964, when quarks were still perceived as merely mathematical entities. They focused on the lowest-dimension SU(6) multiplet in the 56×56 product that contains the SU(3) 10 and 27 multiplets in which the deuteron D_{01} and NN virtual state D_{10} are classified. This yields two dibaryon candidates, $D_{12} (N\Delta)$ and $D_{03} (\Delta\Delta)$ as listed in Table \[^{1}\]. Identifying the constant A in the resulting mass formula...
M = A + B[I(I + 1) + S(S + 1) - 2] with the NN threshold mass 1878 MeV, a value \(B \approx 47 \) MeV was reached by assigning \(D_{12} \) to the \(pp \leftrightarrow \pi^+ d \) resonance at \(\sqrt{s} = 2160 \) MeV (near the \(N\Delta \) threshold) which was observed already during the 1950’s. This led to the prediction \(M(D_{03}) = 2350 \) MeV. The \(D_{03} \) dibaryon has been the subject of several quark-based model calculations since 1980, see Ref. [5] for a representative although perhaps somewhat incomplete listing.

Table 1 Nonstrange s-wave dibaryon SU(6) predictions [4].

dibaryon	I	S	SU(3) legend	mass	
\(D_{01} \)	0	1	10	deuteron	\(A \)
\(D_{10} \)	1	0	27	\(nn \)	\(A \)
\(D_{12} \)	1	2	27	\(N\Delta \)	\(A + 6B \)
\(D_{21} \)	2	1	35	\(N\Delta \)	\(A + 6B \)
\(D_{03} \)	0	3	28	\(\Delta\Delta \)	\(A + 10B \)
\(D_{30} \)	3	0	28	\(\Delta\Delta \)	\(A + 10B \)

It is shown below that the pion-assisted methodology applied recently by Gal and Garcilazo [6,7] couples \(D_{12} \) and \(D_{03} \) dynamically in a perfectly natural way, the analogue of which has not emerged in quark-based models. These hadronic-based calculations emphasize the long-range physics aspects of nonstrange dibaryons. Extensions to strangeness \(S = -1 \) pion-assisted dibaryons are also briefly discussed.

2 Pion-assisted nonstrange dibaryons

2.1 \(N\Delta \) dibaryons

The \(D_{1S} \) dibaryon candidates from Table 1 have been calculated recently in Ref. [7] by solving Faddeev equations with relativistic kinematics for the \(\pi NN \) three-body system, where the \(\pi N \) subsystem is dominated by the \(P_{33} \Delta(1232) \) resonance channel and the \(NN \) subsystem is dominated by the \(^3S_1 \) and \(^1S_0 \) channels. The coupled Faddeev equations give rise then to an effective \(N\Delta \) Lippmann-Schwinger (LS) equation for the three-body \(S \)-matrix pole, with energy-dependent kernels that incorporate spectator-hadron propagators, as shown diagrammatically in Fig. 3 where circles denote the \(N\Delta T \) matrix.

Fig. 3 \(N\Delta \) dibaryon’s Lippmann-Schwinger equation [7].
Fig. 4 Coupled-channel fits (solid) to the SAID (dashed) NN^1D_2 phase shift δ (left panel) and inelasticity η (right panel) as obtained in Ref. [6], see text.

Of the $L=0$ $N\Delta$ dibaryon candidates D_{1S} with $IS=12,21,11,22$, the latter two do not provide resonant solutions. For D_{12}, only 3S_1 contributes out of the two NN interactions, while for D_{21} only 1S_0 contributes. Since the 3S_1 interaction is the more attractive one, D_{12} lies below D_{21} as borne out by the calculated masses listed in Table 2 for two choices of the P_{33} interaction form factor corresponding to spatial sizes of 1.35 fm and 0.9 fm of the Δ isobar. The two dibaryons are found to be degenerate to within less than 20 MeV, close to the $N\Delta$ threshold at ≈ 2.17 GeV with a width similar to that of the Δ baryon. In particular, the mass values calculated for D_{12} are reasonably close to the values $W = 2148 - i63$ MeV [8] and $W = 2144 - i55$ MeV [9] derived in $pp(^1D_2)\leftrightarrow \pi d(^3P_2)$ coupled-channel phenomenological analyses.

$W^{>}(D_{12})$	$W^{>}(D_{21})$	$W^{<}(D_{12})$	$W^{<}(D_{21})$
2147−160	2165−164	2159−170	2169−169

2.2 $\Delta\Delta$ dibaryons

Generally, four-body $\pi\pi NN$ configurations appear in $\Delta\Delta$ dibaryons. Nevertheless, attempting to capture its most relevant degrees of freedom, the D_{03} dibaryon was studied in Ref. [6] by solving a $\pi N \Delta'$ three-body model, where Δ'
is a stable $\Delta(1232)$ and the $N\Delta'$ interaction is dominated by the D_{12} dibaryon. The $I(J^P) = 1(2^+)$ $N\Delta'$ interaction was not assumed to resonate but, rather, it was fitted within a $NN-\pi NN-N\Delta'$ coupled-channel caricature model to the $NN^1D_2 T$-matrix, requiring that the resulting $N\Delta'$ separable-interaction form factor is representative of long-range physics, with momentum-space soft cutoff $\Lambda \leq 3$ fm$^{-1}$. A fit of this kind is shown in Fig. 4.

The Faddeev equations of the $\pi N \Delta'$ three-body model give rise, as before, to an effective LS equation for the $\Delta\Delta'$ S-matrix pole corresponding to D_{03}. This LS equation is shown diagrammatically in Fig. 5 where D stands for the D_{12} dibaryon. The πN interaction was assumed again to be dominated by the P_{33} Δ resonance, using two different parametrizations of its form factor that span a reasonable range of the Δ hadronic size. The calculation of D_{03} was extended in Ref. [7] to other D_{1S} $\Delta\Delta$ dibaryon candidates, with D now standing for both $N\Delta$ dibaryons D_{12} and D_{21}. Since D_{21} is almost degenerate with D_{12}, and with no NN observables to constrain the input $(I, S)=(2, 1)$ $N\Delta'$ interaction, the latter was taken the same as for $(I, S)=(1, 2)$. The lowest and also narrowest $\Delta\Delta$ dibaryons found are D_{03} and D_{30}.

Representative results for D_{03} and D_{30} are assembled in Table 3, where the calculated mass and width values listed in each row correspond to the specific spectator-Δ' complex mass $W(\Delta')=1211-1i49.5$ MeV value used in the propagator of the LS equation shown in Fig. 5. The value $x=1$ in the first row corresponds to the free-space $\Delta(1232)$ S-matrix pole. It is implicitly assumed thereby that the decay $\Delta' \rightarrow N\pi$ proceeds independently of the $\Delta \rightarrow N\pi$ isobar decay. However, as pointed out in Ref. [6], care must be exercised to ensure that the decay nucleons and pions satisfy Fermi-Dirac and Bose-Einstein statistics requirements, respectively. Assuming $L = 0$ for the decay-nucleon pair, this leads to the suppression factor $x=2/3$ depicted in the second row. It is seen that the widths obtained upon applying this width-suppression are only moderately smaller, by less than 15 MeV, than those calculated disregarding this quantum-statistics correlation.

The mass and width values calculated for D_{03} [6] agree very well with those determined by the WASA-at-COSY Collaboration [1, 2, 3], reproducing in particular the reported width value $\Gamma(D_{03}) \approx 70$ MeV which is considerably below the phase-space estimate $\Gamma_\Delta \leq \Gamma(D_{03}) \leq 2\Gamma_\Delta$, with $\Gamma_\Delta \approx 118$ MeV. No other calculation so far has succeeded to do that. Similarly small widths
Table 3 \(\Delta\Delta \) dibaryon \(S \)-matrix poles (in MeV) obtained in Refs. [6,7] by using in the propagator of the LS equation depicted in Fig. 5 a spectator-\(\Delta' \) complex mass \(W(\Delta') = 1211 - i\times 9.3 \text{ MeV} \), where \(x \) is a width-suppression factor (see text). The last two columns give mass and width values averaged over those from the > and < columns, with > and < defined in Table 2 caption. Other \(\Delta\Delta \) dibaryon candidates are discussed in Ref. [7].

\(x \)	\(W^>(\Delta_03) \)	\(W^>(\Delta_{30}) \)	\(W^<(\Delta_03) \)	\(W^<(\Delta_{30}) \)	\(W_{av}(\Delta_03) \)	\(W_{av}(\Delta_{30}) \)
1	2383−i47	2412−i49	2342−i31	2370−i30	2363−i39	2391−i39
2/3	2383−i41	2411−i41	2343−i24	2370−i22	2363−i33	2390−i32

hold for \(\Delta_{30} \) which is located according to Table 3 about 30 MeV above \(\Delta_{03} \). Adding \(\approx 20 \text{ MeV} \) for the \(\Delta_{30} \) input mass excess relative to \(\Delta_{12} \), the resulting \(\Delta_{30} \) to \(\Delta_{03} \) mass excess of roughly 50 MeV agrees with that found recently by H. Huang et al. [5] in a quark-based calculation. A more complete discussion of these and of other \(\Delta_1S \) \(\Delta\Delta \) dibaryon candidates is found in Ref. [7].

Bashkanov, Brodsky and Clement [10] have emphasized recently the dominant role that six-quark hidden-color configurations might play in binding \(\Delta_{03} \) and the exotic \(I = 3/2 \) \(\Delta_30 \). The recent calculations by H. Huang et al. [5], however, find that these configurations play a marginal role, enhancing dibaryon binding by merely 15±5 MeV and reducing the dibaryon width from 175 to 150 MeV for \(\Delta_{03} \), still twice as big as the reported width, and from 216 to 200 MeV for \(\Delta_{30} \). These minor contributions of six-quark hidden-color configurations are in line with the secondary role found for them in studies of the \(NN \) interaction in the context of the \(\Delta_01 \) and \(\Delta_{10} \) \(NN \) ‘dibaryons’ [11].

3 Extension to strangeness \(S = -1 \)

Recent searches of a \(\Lambda(1405)N \) dibaryon have been reported from experiments at Frascati [12], SPring-8 [13], GSI [14] and J-PARC [15,16,17]. A missing-mass spectrum measured in the \(d(\pi^+, K^+) \) reaction at 1.69 GeV/c in J-PARC is shown in Fig. 6, indicating \(\approx 22 \text{ MeV} \) attractive shift of the unresolved \(Y^*(1385+1405) \) quasi-free peak complex. This is consistent with the attraction expected in the \(I = 1/2 \), \(J^P = 0^− \) \(\Lambda(1405)N \) s-wave channel shown in Ref. [18] to overlap substantially with a \(KNN \) quasibound state known also as ‘\(K^- pp \)’ which is being searched for in these experiments. The lower-energy components of this \(KNN \) dibaryon–\(\pi \Lambda N \) and \(\pi \Sigma N \)–do not support any strongly attractive meson-baryon s-wave interaction.

The \(\pi \Lambda N–\pi \Sigma N \) system, however, can benefit from strong meson-baryon \(p \)-wave interactions fitted to the \(\Delta(1232) \rightarrow \pi N \) and \(\Sigma(1385) \rightarrow \pi A–\pi \Sigma \) form factors by fully aligning isospin and angular momentum: \(I = 3/2 \), \(J^P = 2^+ \). Such \(S = -1 \) pion-assisted dibaryon was introduced in Ref. [19], predicting a dibaryon resonance about 10–20 MeV below the \(\pi \Sigma N \) threshold obtained by solving \(\pi YN \) coupled-channel Faddeev equations [20]. This prediction, however, is sensitive to the \(p \)-wave form factors assumed. Adding a \(KNN \) channel hardly matters, since its leading \(^3S_1 \) \(NN \) configuration is Pauli forbidden.
This $S = -1$ pion-assisted dibaryon, denoted Y^*, overlaps with s-wave 5S_2, $I = 3/2 \Sigma(1385)N$ and $\Delta(1232)Y^*$ dibaryon configurations, the lower of which is $\Sigma(1385)N$. These quantum numbers differ from $\ ^1S_0, I = 1/2$ for $\Lambda(1405)N$ which is being searched upon. A recent search for the $I = 3/2 \ Y^*$ dibaryon in

\[p + p \rightarrow Y^{++} + K^0 \]

\[\leftrightarrow \Sigma^+ + p \] (1)

by the HADES Collaboration at GSI [21] found no Y^* dibaryon signal. Other possible search reactions are

\[\pi^+ + d \rightarrow Y^{++/-} + K^{0/+} \]

\[\leftrightarrow \Sigma^{\pm} + p(n) , \] (2)

again offering distinct $I = 3/2$ decay channels. Other decay channels such as

\[\pi^+ + d \rightarrow Y^+ + K^+ \]

\[\leftrightarrow \Sigma^0 + p \] (3)

allow for both $I = 1/2, 3/2$. E27 has just reported [17] a dibaryon signal near the $\pi\Sigma N$ threshold in reaction (3). This requires further experimental study.

4 Conclusion

It was shown how the 1964 Dyson-Xuong SU(6)-based classification and predictions of nonstrange dibaryons [4] are confirmed in the hadronic model of $N\Delta$ and $\Delta\Delta$ pion-assisted dibaryons [6,7]. The input for dibaryon calculations in
this model consists of nucleons, pions and Δ's, interacting via long-range pairwise interactions. These calculations reproduce the two nonstrange dibaryons established experimentally and phenomenologically so far, the $N\Delta$ dibaryon $D_{12}^{\pm}[8,9]$ and the $\Delta\Delta$ dibaryon $D_{03}^{++}[1,2,3]$, and predict several exotic $N\Delta$ and $\Delta\Delta$ dibaryons. We note that, within the $\pi N\Delta$ three-body model of D_{03}^{++}, D_{12}^{\pm} provides a two-body decay channel πD_{12}^{\pm} with threshold lower than $\Delta\Delta$ which proves instrumental in obtaining a relatively small width for $D_{03}^{++}[7]$.

Finally, a straightforward extension of nonstrange pion-assisted dibaryon phenomenology to strangeness $S=-1$ was briefly discussed in connection to recent searches of kaonic nuclear clusters, see Ref. [22] for a recent review.

Acknowledgements Fruitful collaboration with Humberto Garcilazo and stimulating discussions with Mikhail Bashkanov, Heinz Clement, Tomofumi Nagae and Makoto Oka are gratefully acknowledged. Special thanks are due to the Organizers of EXA14 for their kind hospitality. Support by the EU FP7 initiative HadronPhysics3, under the SPHERE and LEANNIS cooperation programs, is gratefully acknowledged.

References
1. P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Rev. Lett. 106 (2011) 242302, and arXiv:1409.2659. See also the preceding reports: H. Clement et al. (CELSIUS-WASA Collaboration), Prog. Part. Nucl. Phys. 61 (2008) 276; M. Bashkanov et al. (CELSIUS/WASA Collaboration), Phys. Rev. Lett. 102 (2009) 052301.
2. P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 721 (2013) 229.
3. P. Adlarson et al. (WASA-at-COSY Collaboration, SAID Data Analysis Center), Phys. Rev. C 90 (2014) 035204. See also P. Adlarson et al. (WASA-at-COSY Collaboration, SAID Data Analysis Center), Phys. Rev. Lett. 112 (2014) 202301.
4. F.J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13 (1964) 815.
5. P.J. Mulders, A.T. Aerts, J.J. de Swart, Phys. Rev. D 21 (1980) 2653; M. Oka, K. Yazaki, Phys. Lett. B 90 (1980) 41; M. Cvetiˇc, B. Golli, N. Mankoˇc-Borstnik, M. Resina, Phys. Lett. B 93 (1980) 489; P.J. Mulders, A.W. Thomas, J. Phys. G 9 (1983) 1159; K. Maltman, Nucl. Phys. A 438 (1985) 669; T. Goldman, K. Maltman, G.J. Stephenson, K.E. Schmidt, F. Wang, Phys. Rev. C 39 (1989) 1889; X.Q. Yuan, Z.Y. Zhang, Y.W. Yu, P.N. Shen, Phys. Rev. C 60 (1999) 045203; R.D. Mota, A. Valcarce, F. Fernández, D.R. Entem, H. Garcilazo, Phys. Rev. C 65 (2002) 034006; J.L. Ping, H.X. Huang, H.R. Pang, F. Wang, C.W. Wong, Phys. Rev. C 79 (2009) 024601. H. Huang, J. Ping, F. Wang, Phys. Rev. C 89 (2014) 034001.
6. A. Gal, H. Garcilazo, Phys. Rev. Lett. 111 (2013) 172301.
7. A. Gal, H. Garcilazo, Nucl. Phys. A 928 (2014) 73.
8. R.A. Arndt, J.S. Hyslop III, L.D. Roper, Phys. Rev. D 35 (1987) 128.
9. N. Hoshizaki, Phys. Rev. C 45 (1992) R1424; Prog. Theor. Phys. 89 (1993) 563.
10. M. Bashkanov, S.J. Brodsky, H. Clement, Phys. Lett. B 727 (2013) 438. See also F. Huang, Z.Y. Zhang, P.N. Shen, W.L. Wang, arXiv:1408.0458 [nucl-th].
11. S. Ohta, M. Oka, A. Arima, K. Yazaki, Phys. Lett. B 119 (1982) 35.
12. M. Agnello et al. (FINUDA Collaboration), Nucl. Phys. A 914 (2013) 310.
13. A.O. Tokiyasu et al. (LEPS Collaboration), Phys. Lett. B 728 (2014) 616.
14. G. Agakishiev et al. (HADES Collaboration), Phys. Lett. B 742 (2015) 242.
15. T. Hashimoto et al. (J-PARC E15 Experiment), arXiv:1408.5637.
16. Y. Ichikawa et al. (J-PARC E27 Experiment), Prog. Theor. Exp. Phys. 2014, 101D03.
17. Y. Ichikawa et al. (J-PARC E27 Experiment), Prog. Theor. Exp. Phys. 2015, 021D01.
18. T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A 868-869 (2011) 53.
19. A. Gal, H. Garcilazo, Phys. Rev. D 78 (2008) 014013, Phys. Rev. C 81 (2010) 055205.
20. H. Garcilazo, A. Gal, Nucl. Phys. A 897 (2013) 167.
21. J.C. Berger-Chen, L. Fabbietti, in Proc. PANIC 2014, arXiv:1410.8004.
22. A. Gal, Nucl. Phys. A 914 (2013) 270.