Interrelations of slenderness ratio and main design criteria in supertall buildings

Hüseyin Emre Ilgın
School of Architecture, Tampere University, Tampere, Finland

Abstract

Purpose – To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (≥300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.

Design/methodology/approach – This paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat (CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].

Findings – The paper’s findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.

Originality/value – To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (≥300 m). This important issue was explored using detailed data collected from 75 cases.

Keywords Slenderness ratio, Aspect ratio, Supertall building, Structural system, Location, Building form, Structural material, Building function, Building height, Interrelations

Paper type Research paper

1. Introduction

In the global race for the title of the world’s tallest tower, besides height, slenderness is among the prominent concerns. Slender skyscrapers are gaining popularity, as they can accommodate large volumes of spaces in the smallest possible footprint. These buildings are a manifestation of advanced technologies and innovative construction materials. Slenderness is perceived as an aesthetic value, and slender towers are generally considered beautiful (Riad, 2016). However, excessive slenderness can increase structural costs exponentially (Chakraborty et al., 2020; Elhegazy et al., 2021).

The history of slender towers can be divided into the following periods (Szołomicki and Golasz-Szołomicka, 2021): In the early 20th century, there was a rapid increase in the height of...
slender buildings, such as the Metropolitan Life Tower (Plate 1) due to the lack of municipal regulations. This was followed by the second period, dated to the 1920s. According to the 1916 Zoning Resolution, the building form had to be the same up to a certain height and the floor area had to be gradually reduced upwards as in the Empire State Building (Plate 2). In the mid-1980s, in the next era of slender skyscrapers, condominium towers rose in New York. These buildings used slenderness as a dominant design strategy as in City Spire (Plate 3). In the next period, several ultra-luxury skyscrapers were built between 2005 and 2010, such as the One 57 (Plate 4) in New York. Highcliff (Hong Kong, 2003) (Plate 5) was the world’s slenderest tower at that time, with a slenderness ratio of 20. This building left its mark on Hong Kong’s residential history, but in the following years such buildings were discontinued. At the beginning of 2010, a new form of a super-slim skyscraper was launched in New York, mainly due to increased land scarcity and demand for luxury housing. Today, the construction of tall slender towers is increasing rapidly all over the world, such as in Dubai, Melbourne and Guangzhou.

Today’s skyscrapers continue to take slenderness to unprecedented levels. Notable representatives of these structures are known as “pencil towers”: 432 Park Avenue (Plate 6) with an aspect ratio of 15 and 111 West 57th Street (Plate 7) with an aspect ratio of 24. The slenderness ratio or aspect ratio is defined as the ratio of the structural height of a building to the narrowest structural width at the ground floor plan or tower base (Ilgun et al., 2021). Especially in supertall buildings (≥300 m), the aspect ratio becomes more critical. This is because, at slenderness ratios exceeding 5, lateral loads often begin to dominate the structural
design (Galsworthy et al., 2016). A building with an aspect ratio greater than 7 is considered slender by New York State Building Code. Additionally, for towers with an aspect ratio greater than 8, additional damping systems should be used for occupancy comfort (Sarkisian, 2012).

Aspect ratio is one of the most important factors affecting the structural behavior of tall towers. Under wind loads, the overturning moment at the base increases with the square of the building height, and the lateral deflection is proportional to the fourth power of the building height (Almusharaf and Elnimeiri, 2010). Therefore, as the height and slenderness increase, it becomes more critical to provide adequate lateral stiffness under lateral loads (Kikuchi et al., 2014).

Developing an effective structural system is one of the biggest challenges facing the designer of tall slender buildings. In this context, outriggered frame and tube systems are among the prominent structural systems (Walsh et al., 2018). For example, in tube systems, the full width of the building is used to resist overturning forces, and this is one way to reduce the slenderness ratio. Additionally, slender skyscrapers need to have sufficient mass, and one way to achieve this is to use concrete as in the case of 432 Park Avenue.

Occupancy comfort (serviceability) is one of the most important inputs in skyscraper design (Gunel and Ilgın, 2014a). To meet the serviceability limit state design, the lateral...
displacement must not exceed the limit value (Gunel and Ilgin, 2014b). Furthermore, building sway must be kept within acceptable limits. For this reason, it is important to minimize the discomfort experienced by those living on the upper floors and to prevent negative consequences such as damage to non-structural elements.

In slender towers, aerodynamic behavior becomes an important design criterion in terms of occupancy comfort and building sway (Ilgin and Günel, 2021; Whiteman et al., 2022). In this sense, aerodynamically efficient design modifications are used to change the wind flow pattern around the building. The selection of aerodynamic building form, aerodynamic building top and corner modifications are effective methods (Arslan Seçluk and Ilgin, 2017; Sharma et al., 2018; Jafari and Alipour, 2021a). In addition to the abovementioned measures, auxiliary dumping devices can also be used as in 432 Park Avenue (Ripamonti et al., 2019; Zhong et al., 2022).

The small footprint forces the service core to become compact. This significantly increases space efficiency by optimizing the number of elevators as in 111 West 57th Street. This world’s slenderest tower has more than 80 floors and 60 apartments serviced by only two passenger elevators. Slender buildings benefit from daylight more efficiently due to their narrow lease span. Lease span is the distance between a fixed interior component (e.g. building core wall) and the facade element (e.g. window).

There is no study in the literature that comprehensively understands the interrelations of slenderness ratio and main design criteria in supertall buildings. These criteria are height, location, function, form, structural system and structural material. Their relationships to slenderness ratio were investigated multidimensionally using 75 detailed supertall cases.
In this study, besides giving general information (building name, location, height, number of stories, completion date and function), important data analyses (aspect ratio, core type, form, structural system and structural material) were also made. This article will help key construction professionals such as architects and structural designers to produce more viable slender skyscraper projects.

The remainder of the paper was structured as follows: first, a comprehensive literature review was provided; then, the research methods employed in the study were presented; this was followed by results of interrelations of slenderness ratio and main design criteria, and finally, discussion and conclusions were presented, along with recommendations and research limitations.

2. Literature review

There are a limited number of studies in the literature focusing on the slenderness ratio in tall buildings. In addition, as seen in the following studies, the current literature is mostly based on the effect of slenderness on structural and aerodynamic design. In this sense, the relationship between the slenderness ratio and the main design considerations is a gap in the literature.

Among the studies on structural and aerodynamic design, Kikuchi et al. (2014) focused on the design of seismically isolated tall slender buildings through a case study. The results showed that (1) appropriate rigidity was achieved using steel mega braces; (2) it was possible to decrease the tensile reaction forces on the corner seismic isolators. Willis (2016) highlighted the slender residential building as a new typology by analyzing financial and engineering variables. Two types of super-slim towers were identified: Manhattan’s ultra-luxury towers and all other tall slender residential buildings. Kim et al. (2018) studied aerodynamic forces on a tall building with an aspect ratio of 9. The results showed major differences in across-wind direction, but only minor differences in along-wind direction. Walsh et al. (2018) compared...
Plate 5.
Highcliff

Source(s): Wikipedia

Plate 6.
432 Park Avenue

Source(s): Wikipedia
nine different slender towers in terms of lateral deformation. The results indicated that square-based buildings could achieve greater heights than rectangular-based towers in the same area. Mele et al. (2019) investigated the effect of slenderness ratio on the structural behavior of diagrid tall buildings. The results showed that (1) for 6 to 8 aspect ratios, the structural design was mainly dominated by rigidity; (2) aspect ratios around 5 became the threshold for design solutions driven by local strength demand. Szołomicki and Golasz-Szołomicka (2021) presented the needle-like residential towers as a new typology. Their results addressed a variety of issues related to wind-induced vibrations, structural limitations and construction costs. Cascone et al. (2021) proposed a new diagrid-like model with different slenderness ratios. The results showed that the highest structural efficiency was achieved in buildings with slenderness ratios of 6.67 and 5. Ghosh and Sil (2022) analyzed the dynamic responses of tall buildings with different aspect ratios in extreme wind hazard regions of India. The aspect ratio was found to contribute greatly to the dynamic responses in terms of the base moment. Gunda and Anthugari (2022) proposed tall building models to evaluate the seismic response for various aspect ratios. Their study showed that the aspect ratio was critical in optimum outrigger location. Singh and Mandal (2022) examined wind loads for supertall towers with different aspect ratios. Across-wind loads at the tip of the tower were found to increase by up to 275% for different aspect ratios.

Overall, there is no study in the literature that comprehensively understands the interrelations of slenderness ratio and main design criteria in supertall buildings. This important issue was explored using data collected from 75 supertall cases as detailed below.

3. Research methods
This paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat (CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources.
In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. This method is widely used in built environment assessments where projects are defined for quantitative and qualitative data (Ilgin, 2022a). In this paper, the parameters were examined as follows: (1) building height, (2) location, (3) building function, (4) building form, (5) structural system and (6) structural material. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America, 3 from Russia and 1 from the UK]. Detailed information was provided in 75 selected case studies (see Appendixes 1 and 2). Half of these cases were completed in the last ten years and the majority in the last two decades. In addition, the selected buildings included the world’s tallest iconic skyscrapers such as the Burj Khalifa. Buildings that do not have sufficient information about the slenderness ratio and related design features were not included in the list.

In terms of functionality, supertall buildings were classified as single-use and mixed-use. In this study, hotel, residence and office were considered primary functions, while their combinations (e.g. hotel and residential) were considered mixed-use. There is no global consensus on the number of floors or heights of supertall buildings (Ali and Al-Kodmany, 2022). However, in the author’s view, taking into account the CTBUH database (CTBUH, 2022), a “supertall building” was considered equal to and taller than a 300 m building, while a “megatall” was a 600 m or higher building.

Considering existing literature (e.g. Ilgin, 2006; Gunel and Ilgin, 2007; Taranath, 2016; Ali and Moon, 2018; Chen, 2021), the classifications of Ilgin (2022b) on core typology, building form, structural system and structural material were used (see Figure 1).

4. Results
4.1 Interrelations of slenderness ratio and main design criteria
In this section, the interrelations of the slenderness ratio and the main design criteria (building height, location, building function, building form, structural system and structural material) were examined. Since the most frequently used core typology (>96%) in the study sample was the central core, no analysis was made on this subject.

4.1.1 Interrelation of slenderness ratio and building height. Figures 2 and 3 shows how the aspect ratio changes with building height where the dots correspond to supertall buildings. Considering the trend line in Figure 3, it did not seem possible to establish a strong scientific relationship between the slenderness ratio and the height.

Core	Building form	Structural system	Structural material
Central core	Prismatic form	Shear-frame system	Steel
- central	Setback form	- shear trussed frame	Reinforced concrete
- central split	Tapered form	- shear walled frame	
Atrium core	Twisted form	Mega core system	
- atrium	Leaning/tilted form	Mega column system	
- atrium split	Free form	Outrigged frame system	
External core		Tube system	
- attached		- framed-tube	
- detached		- trussed-tube	
- partial split		- bundled-tube	
- full split		Buttressed core system	
Peripheral core			
- partial peripheral			
- full peripheral			
- partial split			
- full split			

Figure 1.
Core, building form, structural system and structural material classifications used in this study.
Buildings with a height of 300–349 m constituted 33% of the entire sample. The median slenderness ratio of these buildings was 7.7. There were 16 buildings with the same median slenderness ratio in the 350–399 m height range. In the height range of 300–349 m, slenderness ratios between 7–7.9 and 10–15 were mostly used, whereas only 1 supertall building had an aspect ratio above 15. While the slenderness ratio between 7 and 7.9 was used in the 350–399 m height range in 5 cases, the slenderness ratio above 15 was not encountered.

The median slenderness ratio of 17 buildings in the 400–499 m height range was 8.6. The median slenderness ratio of 10 towers built between 500 and 599 m in height was 8.5. In the height range of 400–499 m, 5 cases were built with a slenderness ratio of 7–7.9. Slenderness ratios between 5 and 6.9 and above 15 were represented by one case for each (Figure 2). The slenderness ratio of the 10 cases in the 500–599 m height range was predominantly...
between 7 and 9.9. Megatall towers were usually built with a slenderness ratio of 10–15. Their median slenderness ratio was 10.

Burj Khalifa is the tallest building in the world with a height of 828 m. The slenderness ratio of this tower is 10.5. Additionally, 111 West 57th Street is the slenderest building with a slenderness ratio of 24.

4.1.2 Interrelation of slenderness ratio and location. Figure 4 indicates the interrelation of aspect ratio and location. The median slenderness ratio was about 8 in Asia, the lowest in Chongqing IFS T1 with 5.8 and the highest in MahaNakhon with 13.6. In the Middle East, the median was around 10, the lowest in PIF Tower with 6.9 and the highest in Aspire Tower with 16.6. The median slenderness ratio of supertall buildings in North America was 8, the lowest in Salesforce Tower with 6.9 and the highest in 111 West 57th Street with 24.

The high slenderness ratio of the three locations mentioned above (the median ≥8) can be explained by the following drivers: (1) prestige concern, (2) high demand for luxury living, (3) narrow-base construction due to scarcity of buildable areas and (4) high land prices (Willis, 2016; Szołomicki and Golasz-Szołomicka, 2021; Ilgm, 2021a, b). For example, 432 Park Avenue offered the iconic mailing address specifically targeted at the investment aspirations of the world’s ultra-wealthy buyers. Similarly, many of Dubai’s towers targeted Emirati workers.

In Russia (3 cases) and the rest (only 1 case), the number of supertall towers was too small to establish a scientific relationship between aspect ratio and location.

4.1.3 Interrelation of slenderness ratio and building function. Figure 5 depicts the interrelation of aspect ratio and building function. The median slenderness ratio was about 11 for supertall residential buildings, the lowest in World One with 9.2 and the highest in 111 West 57th Street with 24. For supertall office towers, the median was around 7.5, the lowest in Bank of America Plaza with 6.4 and the highest in Pearl River Tower with 11.7. The median slenderness ratio of supertall mixed-use buildings in the study sample was 8, the lowest in The Shard with 5 and the highest in Aspire Tower with 16.6.

The high median value of residential skyscrapers can be explained by the demand for luxury living at higher altitudes with astonishing views (Generalova and Generalov, 2018; Ilgm, 2021c; Besjak et al., 2022). The fact that the slenderest tower, 111 West 57th Street, was built for residential purposes supported this statement.

4.1.4 Interrelation of slenderness ratio and building form. Figure 6 shows the interrelation of aspect ratio and building form. The median slenderness ratio of prismatic supertall buildings was about 8.5, the lowest in Chongqing IFS T1 with 5.8 and the highest in 432 Park Avenue with 15. The median of setback towers was around 8.3, the lowest in Bank of America
Plaza with 6.4 and the highest in 111 West 57th Street with 24. The median slenderness ratio of tapered skyscrapers was 8, the lowest in The Shard with 5 and the highest in 53 West 53 with 12. Freeform supertall buildings had the median slenderness ratio of 9.2, the lowest in Zifeng Tower with 6 and the highest in Aspire Tower with 16.6.

Given the above median values, it was seen that all building forms can be constructed at high slenderness ratios. Also considering that wind loads become more critical in highly slender structures such as 111 West 57th Street, the aerodynamic advantages of setback form may be an important factor in form selection (Ilgın and Gümel, 2007; Ilgın, 2018; Mandal et al., 2022). Since the number of twisted buildings was very small, it was not possible to establish a scientific relationship between the aspect ratio and the building form in these towers.

4.1.5 Interrelation of slenderness ratio and structural system. Figure 7 illustrates the interrelation of aspect ratio and structural system. Since the number of buildings with a shear walled frame, mega core and mega column and buttressed core systems was quite small,
deriving a correlation between aspect ratio and structural systems in these towers was likely to be inaccurate. The median slenderness ratio was about 8.3 for supertall buildings with outriggered frame systems, the lowest in Chongqing IFS T1 with 5.8 and the highest in 111 West 57th Street with 24. The median for tubular towers was around 8, the lowest in China Resources Tower with 6.6 and the highest in 432 Park Avenue with 15.

Under wind loads, the overturning moment at the building base differs in proportion to the square of the height of the building; therefore, supertall slender towers are much more susceptible to these loads (Zhang et al., 2020; Jafari and Alipour, 2021b). Outriggered frame system is commonly used in tall slender towers to provide lateral stiffness against overturning. This may be the main reason why this superior system was used in the slenderest building in this study.

Since the distance between the inner mega core walls is used instead of the exterior facade in the slenderness calculation of mega core systems, the slenderness ratio is higher than expected. This might explain the unusual slenderness seen in mega core Aspire Tower. On the other hand, in buttressed core systems, the massive tower base can make these structures less slender than expected as in the Burj Khalifa.

4.1.6 Interrelation of slenderness ratio and structural material. Figure 8 indicates the interrelation of aspect ratio and structural material. The median slenderness ratio was about 10.5 for concrete supertall buildings, the lowest in Kingdom Center with 7.2 and the highest in 111 West 57th Street with 24. The median for composite towers was 7.7, the lowest in The Shard with 5 and the highest in Pearl River Tower with 11.7.

Concrete is generally preferred for tall slender towers to provide sufficient mass against wind loads. Therefore, it was not surprising that concrete was often preferred in buildings with high slenderness ratios (>10) such as 111 West 57th Street. Similarly, composite structures achieve high slenderness (with a median of 8), using concrete that performs better at damping building sway (Zhou et al., 2022). This may explain why composite was the most preferred material in the sample group.

Since the number of steel buildings was very few, it was not possible to establish a relationship between the aspect ratio and the structural material in these towers.

5. Discussion and conclusions
Due to the lack of literature, it was not possible to make a comprehensive discussion about the similarities and differences between this study and other slenderness-oriented studies. However, the findings regarding location, building form, structural system and structural
material were supported by the findings of Szolomicki and Golasz-Szolomicka (2021). The main findings of the study were as follows:

1. For buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15;

2. The median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6;

3. A trend towards supertall slender buildings (≥8) was observed in Asia, the Middle East and North America;

4. Residential, office and mixed-use towers had a median slenderness ratio of over 7.5;

5. All building forms were utilized in the construction of slender towers (>8);

6. The medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems;

7. Especially concrete towers reached values pushing the limits of slenderness (>10) and

8. Since the number of some supertall building groups (e.g. steel towers) was not sufficient, it was not possible to establish a scientific relationship between aspect ratio and related design criteria.

Slender supertall building construction was in demand in Asian, Middle Eastern and North American cities. This finding can be associated with the findings of Szolomicki and Golasz-Szolomicka (2021). In their study, it was noted that supertall slender buildings began to appear in Asia and the Middle East, inspired by New York’s super-slim residential towers. According to the results of the study, slender towers (>7) were built in all building forms. Furthermore, the slenderest structure in the sample group was in a setback form, probably due to the strong relationship between supertall tower design and aerodynamic considerations. This issue was also highlighted in the study by Szolomicki and Golasz-Szolomicka (2021). In addition,
their study drew attention to the use of outriggered frame and tube systems in the design of slender towers. Similarly, in this study, the median slenderness ratios were found to be high (>8) in supertall buildings where these structural systems were used. In terms of structural material, concrete supertall towers such as 111 West 57th Street reached values pushing the limits of slenderness (>10). Supporting this finding, Szolomicki and Golasz-Szolomicka (2021) stressed that concrete was an ideal material for super-slender tall buildings, especially because of its mass advantage against wind loads.

In this study, the relationships between slenderness ratio and related design considerations were examined over 75 detailed supertall cases. These design parameters were building height, location, building function, building form, structural system and structural material. The results obtained in this paper will contribute to key construction professionals such as architectural and structural designers to produce more viable slender skyscraper projects.

Today, skyscrapers of different forms and functions are being built in many cities of the world, pushing the limits of slenderness. Increasingly, the world’s metropolises are following in the footsteps of pioneering cities like New York. Such cities are notorious for offering the luxury of living in pen-like towers, especially given global residential trends. Often built as concrete residences, these skyscrapers present engineering and economic challenges to meet the desired architectural and technical requirements (Wang et al., 2017; Elhegazy, 2020). These challenges can include the overuse of structural materials for required lateral stiffness and thus high construction costs (Elhegazy et al., 2022). In this sense, combining structural efficiency and esthetics, diagrid-frame-tube systems can be an ideal structural system for slender towers (Mele et al., 2019). This system, which is more effective against lateral loads compared to the conventional framed-tube system, can be made of steel, concrete or composite (Ilgin et al., 2022). The choice of concrete or composite provides an advantage to tall slender structures by providing sufficient mass under wind loads. Additionally, interdisciplinary collaboration is critical in transforming slender tower projects into viable applications in terms of structural stiffness, occupancy comfort and space efficiency.

Several limitations of this study should be mentioned. The empirical data given were limited to 75 supertall cases. Building groups with relatively few cases such as steel towers can yield biased results. However, where necessary, it was emphasized that the analyses in these groups may not yield scientifically accurate results. In addition, much larger sample sizes can be studied to make the results more convincing. In this sense, tall buildings lower than 300 m can also be included in the sample so that a sufficient number of subclasses can be created in future studies.

References
Ali, M.M. and Al-Kodmany, K. (2022), “Structural systems for tall buildings”, Encyclopedia, Vol. 2 No. 3, pp. 1260-1286, doi: 10.3390/encyclopedia2030085.

Ali, M.M. and Moon, K.S. (2018), “Advances in structural systems for tall buildings: emerging developments for contemporary urban giants”, Buildings, Vol. 8 No. 8, p. 104, doi: 10.3390/buildings8080104.

Almusharaf, A.M. and Elnimeiri, M. (2010), “A performance-based design approach for early tall building form development”, CAAD - Cities - Sustainability, 5th International Conference Proceedings of the Arab Society for Computer-Aided Architectural Design, (ASCAAD 2010), ISBN 978-1-907349-02-7, Fez (Morocco), 19-21 October 2010, pp. 39-50.

Arslan Seçluk, S. and Ilgin, H. (2017), “Performative approaches in tall buildings: pearl River tower”, Eurasian Journal of Civil Engineering and Architecture, Vol. 1 No. 2, pp. 11-20.
Besjak, C., Biswas, P., Petrov, G.I., Shen, Y., Kim, B. and Thewis, A. (2022), “Three supertall slender towers in Midtown Manhattan”, *Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE)*, Vol. 32 No. 1, pp. 19-27, doi: 10.1080/10168664.2021.1898297.

Cascone, F., Faiella, D., Tomei, V. and Mele, E. (2021), “Stress lines inspired structural patterns for tall buildings”, *Engineering Structures*, Vol. 229, 111546, doi: 10.1016/j.engstruct.2020.111546.

Chakraborty, D., Elhegazy, H., Elzarka, H. and Gutierrez, L. (2020), “A novel construction cost prediction model using hybrid natural and light gradient boosting”, *Advanced Engineering Informatics*, Vol. 46, doi: 10.1016/j.aei.2020.101201.

Chen, J. (2021), “Study on the joint mechanical properties of steel structure buildings”, *International Journal of Building Pathology and Adaptation*, Vol. 39 No. 4, pp. 655-665, doi: 10.1108/IJBPA-07-2020-0055.

CTBUH (2022), *Council on Tall Buildings and Urban Habitat*, Illinois Institute of Technology, S.R. Crown Hall, Chicago, IL, available at: https://www.ctbuh.org (accessed 20 July 2022)

Elhegazy, H. (2020), “State-of-the-art review on benefits of applying value engineering for multi-story buildings”, *Intelligent Buildings International*, Vol. ahead-of-print No. ahead-of-print, pp. 1-20, doi: 10.1080/17508975.2020.1806019.

Elhegazy, H., Ebied, A., Mahdi, I., Haggag, S. and Abdul-Rashied, I. (2021), “Implementing QFD in decision making for selecting the optimal structural system for buildings”, *Construction Innovation*, Vol. 21 No. 2, pp. 345-360, doi: 10.1108/CI-12-2019-0149.

Elhegazy, H., Chakraborty, D., Elzarka, H., Ebied, A.M., Mahdi, I.M., Aboul Haggag, S.Y. and Abdel Rashid, I. (2022), “Artificial intelligence for developing accurate preliminary cost estimates for composite flooring systems of multi-storey buildings”, *Journal of Asian Architecture and Building Engineering*, Vol. 21 No. 1, pp. 120-132, doi: 10.1080/13467581.2020.1838288.

Galsworthy, J., Kilpatrick, J. and Kelly, D. (2016), “Form follows physics”, *Structure Magazine*, pp. 10-13, available at: https://www.structuremag.org/wp-content/uploads/2016/06/C-StrucAnalysis-Galsworthy-July161.pdf

Generalova, E.M. and Generalov, V.P. (2018), “Development: residential high-rises in Dubai: typologies, tendencies and development prospects”, *CTBUH Journal*, No. 4, pp. 36-43.

Ghosh, T. and Sil, A. (2022), “Effect of aspect ratio subjected to wind hazard in tall buildings situated along the coastal line of India”, *The Structural Design of Tall and Special Buildings*, Vol. 31 No. 9, doi: 10.1002/tal.1930.

Gunda, P. and Anthugari, V. (2022), “Optimization of location of outrigger system in tall buildings of different aspect ratios”, *Materials Today: Proceedings*, Vol. 52, pp. 588-598, doi: 10.1016/j.matpr.2021.10.034.

Gunel, M.H. and Ilgın, H.E. (2007), “A proposal for the classification of structural systems of tall buildings”, *Building and Environment*, Vol. 42 No. 7, pp. 2667-2675, doi: 10.1016/j.buildenv.2006.07.007.

Gunel, M.H. and Ilgın, H.E. (2014a), *Yüksek Bina: Tasyana Sistem Ve Aerodinamik Form*, METU Faculty of Architecture Press, Ankara, ISBN: 978-975-429-278-7 (in Turkish).

Gunel, M.H. and Ilgın, H.E. (2014b), *Tall Buildings: Structural Systems and Aerodynamic Form*, Routledge, London; New York, NY.

Ilgın, H.E. (2006), “A study on tall buildings and aerodynamic modifications against wind excitation”, MSc Thesis, Department of Architecture, Middle East Technical University, Ankara.

Ilgın, H.E. (2018), “Potentials and limitations of supertall building structural systems: guiding for architects”, PhD Dissertation, Department of Architecture, Middle East Technical University, Ankara.

Ilgın, H.E. (2021a), “Space efficiency in contemporary supertall office buildings”, *Journal of Architectural Engineering*, Vol. 27 No. 3, 4021024, doi: 10.1061/(ASCE)AE.1943-5568.0000486.
Ilgn, H.E. (2021b), “Space efficiency in contemporary supertall residential buildings”, *Architecture*, Vol. 1 No. 1, pp. 25-37, doi: 10.3390/architecture1010004.

Ilgn, H.E. (2021c), “A search for A New tall building typology: structural hybrids”, *LIVENARCH VII Livable Environments and Architecture 7th International Congress OTHER ARCHITECT/URe(S), September 28-30, Trabzon, Turkey*, Vol. 1, pp. 95-107.

Ilgn, H.E. (2022a), “Use of aerodynamically favorable tapered form in contemporary supertall buildings”, *Journal of Design for Resilience in Architecture and Planning*, Vol. 3 No. 2, pp. 183-196, doi: 10.4781/DRArch.2022.v3i2052.

Ilgn, H.E. (2022b), “A study on interrelations of structural systems and main planning considerations in contemporary supertall buildings”, *International Journal of Building Pathology and Adaptation*, Vol. ahead-of-print No. ahead-of-print, doi: 10.1108/IJBPA-12-2021-0172.

Ilgn, H.E. and Günel, M.H. (2007), “The role of aerodynamic modifications in the form of tall buildings against wind excitation”, *METU Journal of the Faculty of Architecture*, Vol. 24 No. 2, pp. 17-25.

Ilgn, H.E. and Gunel, M.H. (2021), “Contemporary trends in supertall building form: aerodynamic design considerations”, *Livenarch VII Livable Environments and Architecture 7th International Congress Other Architect/Ure(S), September 28-30, Trabzon, Turkey*, Vol. 1, pp. 61-81.

Ilgn, H.E., Ay, B.O. and Gunel, M.H. (2021), “A study on main architectural and structural design considerations of contemporary supertall buildings”, *Architectural Science Review*, Vol. 64 No. 3, pp. 212-224, doi: 10.1080/00038628.2020.1753010.

Ilgn, H.E., Karjalainen, M. and Pelsmakers, S. (2022), “Contemporary tall residential timber buildings: what are the main architectural and structural design considerations?”, *International Journal of Building Pathology and Adaptation*, Vol. ahead-of-print No. ahead-of-print, doi: 10.1108/IJBPA-10-2021-0142.

Jafari, M. and Alipour, A. (2021a), “Aerodynamic shape optimization of rectangular and elliptical double-skin façades to mitigate wind-induced effects on tall buildings”, *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 213, 104586, doi: 10.1016/j.jweia.2021.104586.

Jafari, M. and Alipour, A. (2021b), “Methodologies to mitigate wind-induced vibration of tall buildings: a state-of-the-art review”, *Journal of Building Engineering*, Vol. 33, 101582, doi: 10.1016/j.jobe.2020.101582.

Kikuchi, T., Takeuchi, T., Fujimori, S. and Wada, A. (2014), “Design of seismic isolated tall building with high aspect-ratio”, *International Journal of High-Rise Buildings*, Vol. 3 No. 1, pp. 1-8, doi: 10.21022/IJHRB.2014.3.1.001.

Kim, Y.C., Lo, Y.L. and Chang, C. (2018), “Characteristics of unsteady pressures on slender tall building”, *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 174, pp. 344-357, doi: 10.1016/j.jweia.2018.01.027.

Mandal, S., Dalui, S.K. and Bhattacharjya, S. (2022), “Wind-induced effect on different corner positions of corner-modified irregular plan-shaped tall building”, in Maity, D., Patra, P.K., Afzal, M.S., Ghoshal, R., Mistry, C.S., Jana, P. and Maiti, D.K. (Eds), *Recent Advances in Computational and Experimental Mechanics*, Lecture Notes in Mechanical Engineering, Springer, Singapore, Vol. 1.

Mele, E., Imbimbo, M. and Tomei, V. (2019), “The effect of slenderness on the design of diagrid structures”, *International Journal of High-Rise Buildings*, Vol. 8 No. 2, pp. 83-94, doi: 10.21022/IJHRB.2019.8.2.83.

Riad, J. (2016), “Conceptual high-rise design: a design tool combining stakeholders and demands with design”, MSc thesis, Structural Engineering and Building Technology, Chalmers University of Technology, Gothenburg.

Ripamonti, F., Bussini, A. and Resta, F. (2019), *Active Self-Tuned Mass Damper for Vibration Control and Continuous Monitoring of Civil Structures*, SPIE, pp. 109702L-109702L-11, doi: 10.1117/12.2511760.
Sarkisian, M. (2012), *Designing Tall Buildings: Structure as Architecture*, Routledge, London; New York, NY.

Sharma, A., Mittal, H. and Gairola, A. (2018), “Mitigation of wind load on tall buildings through aerodynamic modifications: review”, *Journal of Building Engineering*, Vol. 18, pp. 180-194, doi: 10.1016/j.jobe.2018.03.005.

Singh, A. and Mandal, S. (2022), “Effect of plan and height aspect ratios on along wind and across wind loads on super high rise buildings”, *Jordan Journal of Civil Engineering*, Vol. 16 No. 2, pp. 335-354.

Szołomicki, J. and Golasz-Szołomicka, H. (2021), “The modern trend of super slender residential buildings”, *Budownictwo i Architektura*, Vol. 20 No. 1, pp. 83-116, doi: 10.35784/bud-arch.2068.

Taranath, B.S. (2016), *Structural Analysis and Design of Tall Buildings: Steel and Composite Construction*, CRC Press, Taylor & Francis Group, Boca Raton, FL, p. 2016.

Walsh, P., Saleh, A. and Far, H. (2018), “Evaluation of structural systems in slender high-rise buildings”, *Australian Journal of Structural Engineering*, Vol. 19 No. 2, pp. 105-117, doi: 10.1080/13287982.2018.1449597.

Wang, W.-C., Bilozerov, T., Dzeng, R.-J., Hsiao, F.-Y. and Wang, K.-C. (2017), “Conceptual cost estimations using neuro-fuzzy and multi-factor evaluation methods for building projects”, *Journal of Civil Engineering and Management*, Vol. 23 No. 1, pp. 1-14.

Whiteman, M.L., Fernández-Cabán, P.L., Phillips, B.M., Masters, F.J., Davis, J.R. and Bridge, J.A. (2022), “Cyber-physical aerodynamic shape optimization of a tall building in a wind tunnel using an active fin system”, *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 220, 104835, doi: 10.1016/j.jweia.2021.104835.

Willis, C. (2016), “Singularly slender: sky living in New York, Hong Kong, and elsewhere”, *CTBUH 2016 China Conference, Cities to Megacities: Shaping Dense and Vertical Urbanism, Conference Proceedings, Shenzhen, Guangzhou, and Hong Kong, 16-21 October 2016*.

Zhang, Y., Schauer, T., Wernicke, L., Wulff, W. and Bleicher, A. (2020), “Facade-integrated semi-active vibration control for wind-excited super-slim tall buildings”, *IFAC PapersOnLine*, Vol. 53 No. 2, pp. 8395-8400, doi: 10.1016/j.ifacol.2020.12.1585.

Zhong, S., Elhegazy, H. and Elzarka, H. (2022), “Key factors affecting the decision-making process for buildings projects in Egypt”, Ain Shams Engineering Journal, Vol. 13 No. 3, 101597, doi: 10.1016/j.asej.2021.09.024.

Zhou, K., Zhang, J.-W. and Li, Q.-S. (2022), “Control performance of active tuned mass damper for mitigating wind-induced vibrations of a 600-m-Tall skyscraper”, *Journal of Building Engineering*, Vol. 45, 103646, doi: 10.1016/j.jobe.2021.103646.

(The Appendix follows overleaf)
Table A1.
Supertall buildings considered in this study

#	Building name	Aspect ratio	Location (Country/city)	Height (m)	# of story	Completion date	Function
1	Nakheel Tower	10	UAE/Dubai	1,000+	200	NC	H/R/O
2	Jeddah Tower	10	SA/Jeddah	1,000+	167	UC	R
3	Burj Khalifa	10.5	UAE/Dubai	828	163	2010	H/R/O
4	Suzhou Zhongnan Center	8.7	China/Suzhou	729	137	NC	H/R/O
5	Merdeka PNB118	6.7	Malaysia/Kuala Lumpur	644	118	UC	H/O
6	Shanghai Tower	7.6	China/Shanghai	632	128	2015	H/O
7	Chicago Spire	10	USA/Chicago	609	150	NC	R
8	Ping An Finance Center	8.3	China/Shenzhen	599	115	2017	O
9	Goldin Finance 117	9.5	China/Tianjin	596	128	OH	H/O
10	Entisar Tower	9	UAE/Dubai	577	122	OH	H/R
11	Lotte World Tower	7.9	South Korea/Seoul	554	123	2017	H/R/O
12	One World Trade Center	8.5	USA/New York	541	94	2014	O
13	Guangzhou CTF Finance Center	8.5	China/Guangzhou	530	111	2016	H/R/O
14	Tianjin CTF Finance Center	7.3	China/Tianjin	530	97	2019	H/O
15	CITIC Tower	7.2	China/Beijing	528	108	2018	O
16	Evergrande Hefei Center 1	9.2	China/Hefei	518	112	OH	H/R/O
17	TAIPEI 101	10	Taiwan/Taipei	508	101	2004	O
18	Shanghai World Financial Center	8.5	China/Shanghai	492	101	2008	H/O
19	International Commerce Center	9	China/Hong Kong	484	108	2010	H/O
20	Chengdu Greenland Tower	7.5	China/Chengdu	468	101	UC	H/O
21	Lakhtra Center	7.8	Russia/St. Petersburg	462	87	2019	O
22	Petronas Twin Tower 1	8.6	Malaysia/Kuala Lumpur	452	88	1998	O
23	Petronas Twin Tower 2	8.6	Malaysia/Kuala Lumpur	452	88	1998	O
24	Zifeng Tower	6	China/Nanjing	450	66	2010	H/O
25	World One	9.2	Mumbai/India	442	117	NC	R
26	KK 100	9.5	China/Shenzhen	441	98	2011	H/O
27	Guangzhou International Finance Center	7.7	China/Guangzhou	438	103	2010	H/O
28	111 West 57th Street	24	USA/New York	435	84	UC	R
29	Marina 101	12	UAE/Dubai	425	101	2017	H/R

(continued)
#	Building name	Aspect ratio	Location (Country/city)	Height (m)	# of story	Completion date	Function
30	432 Park Avenue	15	USA/New York	425	85	2015	R
31	Trump International Hotel and Tower	8	USA/Chicago	423	98	2009	H/R
32	Al Hamra Tower	7	Kuwait/Kuwait City	413	80	2011	O
33	Princess Tower	11	UAE/Dubai	413	101	2012	R
34	Two International Finance Center	7.2	China/Hong	412	88	2003	O
35	China Resources Tower	6.6	China/Shenzhen	393	68	2018	O
36	23 Marina	9.5	UAE/Dubai	392	88	2012	R
37	CITIC Plaza	7.4	China/Guangzhou	390	80	1996	O
38	Shum Yip Upperhills Tower 1	7.2	China/Shenzhen	388	80	2020	H/O
39	PIF Tower	6.9	China/Shenzhen	384	69	1996	O
40	Sun Hing Square	8	China/Shenzhen	381	88	2014	R
41	Burj Mohammed Bin Rashid	13	UAE/Abu Dhabi	380	87	2012	R
42	Elite Residence	10.3	Hong Kong	374	78	1992	O
43	Central Plaza	8.4	China/Hong	358	83	2019	H/O
44	Golden Eagle Tiandi Tower A	7.3	China/Nanjing	359	65	2018	O
45	Bank of China Tower	7	China/Shenzhen	346	73	1998	O
46	Almas Tower	9.2	China/Shenzhen	337	79	2019	R
47	Hankning Center Tower	7.3	China/Shenzhen	328	68	2012	O
48	Sino Steel Int. Plaza T2	6.9	China/Tianjin	328	68	2019	O
49	Raffles City Chongqing T3N	9.5	China/Shanghai	319	79	2019	R
50	Raffles City Chongqing T4N	9.5	China/Shanghai	319	79	2019	R
51	The Center	8.2	China/Hong	319	79	2019	R
52	NEVA TOWERS 2	11.3	Russia/Moscow	319	79	2019	R
53	Four Seasons Place	12.5	Malaysia/Kuala Lumpur	319	79	2019	R
54	Comcast Technology Center	7.1	USA/Kuala Lumpur	339	59	2018	H/O
55	Mercury City Tower	7.6	Russia/Moscow	338	75	2013	R/O
56	Hengqin International Finance Center	7.7	China/Zhuhai	337	69	2020	R/O
57	Tianjin World Financial Center	8	China/Tianjin	337	75	2011	O
58	Golden Eagle Tiandi Tower B	8.3	China/Nanjing	328	68	2019	O

(continued)
#	Building name	Aspect ratio	Location (Country/city)	Height (m)	# of story	Completion date	Function
59	Salesforce Tower	6.9	USA/San Francisco	326	61	2018	O
60	53 West 53	12	USA/New York	320	77	2019	R
61	New York Times Tower	7.3	USA/New York	319	52	2007	O
62	Chongqing IFS T1	5.8	China/Chongqing	316	63	2016	H/O
63	MahaNakhon	13.6	China/Bangkok	314	79	2016	H/R
64	Bank of America Plaza	6.4	USA/Atlanta	312	55	1992	O
65	Shenzhen Bay Innovation and Technology Center Tower 1	6.9	China/Shenzhen	311	69	2020	O
66	Ocean Heights	11.5	UAE/Dubai	310	83	2010	R
67	Pearl River Tower	11.7	China/Guangzhou	309	71	2013	O
68	Guangfa Securities Headquarters	7.7	China/Guangzhou	308	60	2018	O
69	One 57	8	USA/New York	306	75	2014	R/H
70	The Shard	5	UK/London	306	73	2013	H/R/O
71	Cayan Tower	10.8	UAE/Dubai	306	73	2013	R
72	Kingdom Center	7.2	SA/Riyadh	302	41	2002	H/R/O
73	Shimao Riverside Block D2b	6.7	China/Wuhan	300	53	UC	H/O
74	Aspire Tower	16.6	Qatar/Doha	300	36	2007	H/O
75	Golden Eagle Tiandi Tower C	7.5	China/Nanjing	300	60	2019	O

Note(s): “H” indicates hotel use; “R” indicates residential use; “O” indicates office use; “UAE” indicates the United Arab Emirates; “SA” indicates Saudi Arabia; “UC” indicates Under construction; “NC” indicates Never completed and “OH” indicates On hold

Table A1.
#	Building name	Core type	Building form	Structural system	Structural material
1	Nakheel Tower	Central	Free	Mega column	Composite
2	Jeddah Tower	Central	Tapered	Buttressed core	RC
3	Burj Khalifa	Central	Setback	Buttressed core	RC
4	Suzhou Zhongnan Center	Central	Tapered	Outriggered frame	Composite
5	Merdeka PNB118	Central	Free	Outriggered frame	Composite
6	Shanghai Tower	Central	Twisted	Outriggered frame	Composite
7	Chicago Spire	Central	Twisted	Outriggered frame	RC
8	Ping An Finance Center	Central	Tapered	Outriggered frame	Composite
9	Goldin Finance 117	Central	Tapered	Trussed-tube	Composite
10	Entisar Tower	Central	Setback	Framed-tube	RC
11	Lotte World Tower	Central	Tapered	Outriggered frame	Composite
12	One World Trade Center	Central	Tapered	Outriggered frame	Composite
13	Guangzhou CTF Finance Center	Central	Setback	Outriggered frame	Composite
14	Tianjin CTF Finance Center	Central	Tapered	Framed-tube	Composite
15	CITIC Tower	Central	Free	Trussed-tube	Composite
16	Evergrande Hefei Center 1	Central	Free	Outriggered frame	Composite
17	TAIPEI 101	Central	Free	Outriggered frame	Composite
18	Shanghai World Financial Center	Central	Tapered	Outriggered frame	Composite
19	International Commerce Center	Central	Tapered	Outriggered frame	Composite
20	Chengdu Greenland Tower	Central	Tapered	Outriggered frame	Composite
21	Lakhta Center	Central	Twisted	Outriggered frame	Composite
22	Petronas Twin Tower 1	Central	Setback	Outriggered frame	RC
23	Petronas Twin Tower 2	Central	Setback	Outriggered frame	RC
24	Zifeng Tower	Central	Free	Outriggered frame	Composite
25	World One	Central	Setback	Buttressed core	RC
26	KK 100	Central	Free	Framed-tube	Composite
27	Guangzhou International Finance Center	Central	Tapered	Outriggered frame	Composite
28	111 West 57th Street	Peripheral	Setback	Outriggered frame	RC
29	Marina 101	Central	Prismatic	Framed-tube	RC
30	432 Park Avenue	Central	Prismatic	Framed-tube	RC

Table A2. Supertall buildings by core type, building form, structural system, and structural material (continued)
#	Building name	Core type	Building form	Structural system	Structural material
31	Trump International Hotel and Tower	Central	Setback	Outriggered frame	RC
32	Al Hamra Tower	Central	Free	Shear-walled frame	Composite
33	Princess Tower	Central	Prismatic	Framed-tube frame	RC
34	Two International Finance Center	Central	Setback	Outriggered frame	Composite
35	China Resources Tower	Central	Tapered	Outriggered frame	Composite
36	23 Marina	Central	Prismatic	Outriggered frame	RC
37	CITIC Plaza	Central	Prismatic	Shear-walled frame	RC
38	Shum Yip Uppermills Tower 1	Central	Prismatic	Outriggered frame	Composite
39	PIF Tower	Central	Free	Trussed-tube frame	Composite
40	Shun Hing Square	Central	Free	Outriggered frame	Composite
41	Burj Mohammed Bin Rashid	Central	Free	Outriggered frame	RC
42	Elite Residence	Central	Prismatic	Framed-tube frame	RC
43	Central Plaza	Central	Prismatic	Trussed-tube frame	Composite
44	Golden Eagle Tiandi Tower A	Central	Tapered	Outriggered frame	Composite
45	Bank of China Tower	Central	Setback	Trussed-tube frame	Composite
46	Almas Tower	Central	Free	Outriggered frame	Composite
47	Hanking Center Tower	External	Tapered	Trussed-tube frame	Steel
48	Sino Steel International Plaza T2	Central	Prismatic	Framed-tube frame	Composite
49	Raffles City Chongqing T3N	Central	Tapered	Outriggered frame	Composite
50	Raffles City Chongqing T4N	Central	Tapered	Outriggered frame	Composite
51	The Center	Central	Prismatic	Mega column	Composite
52	NEVA TOWERS 2	Central	Prismatic	Outriggered frame	RC
53	Four Seasons Place	Central	Prismatic	Outriggered frame	RC
54	Comcast Technology Center	Central	Setback	Trussed-tube frame	Composite
55	Mercury City Tower	Central	Setback	Framed-tube frame	RC
56	Hengpin International Finance Center	Central	Free	Outriggered frame	Composite
57	Tianjin World Financial Center	Central	Tapered	Outriggered frame	Composite
58	Golden Eagle Tiandi Tower B	Central	Tapered	Outriggered frame	Composite
59	Salesforce Tower	Central	Tapered	Shear-walled frame	Composite
60	53 West 53	Peripheral	Tapered	Framed-tube frame	RC
61	New York Times Tower	Central	Prismatic	Outriggered frame	Steel
62	Chongqing IFS T1	Central	Prismatic	Outriggered frame	Composite

Table A2. (continued)
#	Building name	Core type	Building form	Structural system	Structural material
63	Mahanakhon	Central	Free	Outriggered frame	RC
64	Bank of America Plaza	Central	Setback	Mega column	Composite
65	Shenzhen Bay Innovation and Technology Center Tower 1	Central	Prismatic	Framed-tube	Composite
66	Ocean Heights	Central	Tapered	Outriggered frame	RC
67	Pearl River Tower	Central	Free	Outriggered frame	Composite
68	Guangfa Securities Headquarters	Central	Tapered	Outriggered frame	Composite
69	One 57	Peripheral	Setback	Outriggered frame	RC
70	The Shard	Central	Tapered	Shear-walled frame	Composite
71	Cayan Tower	Central	Twisted	Framed-tube	RC
72	Kingdom Center	Central	Free	Shear-walled frame	RC
73	Shimao Riverside Block D2b	Central	Tapered	Outriggered frame	Composite
74	Aspire Tower	Central	Free	Mega core	RC
75	Golden Eagle Tiandi	Central	Tapered	Outriggered frame	Composite

Note(s): “RC” indicates reinforced concrete

Table A2.

Corresponding author
Hüseyin Emre Ilgin can be contacted at: emre.ilgin@tuni.fi