Mini Review

Insights into a Crucial Role of TRIP13 in Human Cancer

S. Lu, J. Qian, M. Guo, C. Gu, Y. Yang

1. Introduction

TRIP13 (Thyroid Hormone Receptor Interacting Protein 13) is one AAA (ATPase family associated with various cellular activities) protein belonging to a large AAA+ protein superfamily of ring-shaped P-loop NTPases (Pfam: PF00004) which is involved in an array of cellular processes, including the checkpoint signaling, DNA repair and recombination, and chromosome synopsis [1,2]. Recently, the structures of TRIP13 protein as well as TRIP13 hexameric complex with ligands and partners are resolved, which would provide more insights into the functional study of TRIP13 [4,5] (Fig. 1). In last decades, the oncogenic roles of TRIP13 have attracted considerable attention. Accumulating researches have indicated that TRIP13 is overexpressed in multiform cancers and usually associated with poor survival [6].

Previous studies have indicated that the spindle assembly checkpoint (SAC) is a ubiquitous safeguard that ensures the fidelity of chromosome separation in cell division [7–9]. A number of SAC proteins, which are highly expressed in multiple cancers, are thought to cause Chromosome instability (CIN) in tumors [10–12]. Moreover, telomere protein with 432 amino acid residues. TRIP13 has a small N-terminal domain putatively involved in substrate recognition and an AAA+ ATPase region containing the ATP-binding site [3].

2. Biological Functions of TRIP13 in Cells

3. Overexpression of TRIP13 Is Associated With Human Cancer

4. TRIP13 Aberrant Expression Leads to Tumorigenesis

5. Elevated TRIP13 Promotes Tumor Progression

6. TRIP13 Contributes to Drug Resistance

7. Targeting TRIP13 May Be Perspective for the Treatment of Cancer

8. Conclusion

Disclosure of Potential Conflicts of Interest

Acknowledgments

References
dysfunction [13–15] and defective DNA repair pathways response [16] have been demonstrated to make main contribution to CIN in cancer. Studies from different labs have corroborated that TRIP13 is one of the top genes related to CIN in human tumors [17–20] and is associated with poor survival in various tumors. In recent years, quite a few studies focused on the roles of TRIP13 in cancer progression, and drug resistance.

In view of previous studies, we discussed the roles of TRIP13 in cell mitosis, highlighted recent findings on the aberrant expression in human cancers, and conjectured that TRIP13 may act as a promising biomarker and a potential therapeutic target for cancer diagnosis and treatment.

2. Biological Functions of TRIP13 in Cells

TRIP13 plays an indispensable role in cell progression, particularly with respect to the checkpoint signaling. Subcellular localization analysis shows that TRIP13 interacts with p31comet, a MAD2 (mitotic arrest deficient 2)-binding HORMA-domain protein that negatively regulates the SAC localizing to kinetochores in prometaphase, and TRIP13 colocalizes with MAD2 at kinetochores. More detailed localization studies on TRIP13 have reported that it is localized to kinetochores and coexpresses with centromere/kinetochore components [21–24]. In addition, immunofluorescence analysis demonstrates that GFP-TRIP13 is distributed in reticulum-like structures and localizes at the nuclear envelope partially in interphase cells, while it disappears from kinetochores in metaphase and anaphase cells [22]. Several studies have shown that TRIP13 is involved in the key mechanism, SAC, an evolutionary conserved cell-cycle checkpoint supervising the fidelity of chromosome separation in mitosis [25,26]. In further studies researchers take advantage of mitotic makers to investigate the role of TRIP13 in mitosis. Mitotic protein monoclonal 2 (MPM2) has been regarded as a mitotic marker [27]. Then flow cytometry analysis shows that TRIP13-overexpressing multiple myeloma (MM) cells have less MPM2-positive cells compared to control cells when all cells are treated with spindle toxin nocodazole [6]. In addition, phosphorylation of histone H3 at Ser10 has been considered as another mitotic marker [28]. In a similar vein, TRIP13 overexpressing cells have lower expression of phosphorylated histone H3 [6]. These results strengthen the link between the functional SAC and TRIP13. In more details, Mitotic checkpoint complex (MCC), as the SAC effector, which consists of MAD2, BubR1/Mad3 and BUB3, as well as CDC20 [29]. Meanwhile, the MCC can bind and inhibit the anaphase-promoting complex or cyclosome (APC/C) [30,31]. In vitro, TRIP13 catalyzes the conversion of closed MAD2 (C-MAD2) to open MAD2 (O-MAD2), because of its HORMA-domain [23,25,33]. During MCC assembly, O-MAD2 is recruited to unattached kinetochores, provided a catalytic platform for the conversion of C-MAD2 [34–38]. The complete MCC assembly includes two steps: firstly C-MAD2 binds to CDC20 to form MAD2–CDC20 complex, then the complex recruits BubR1 [39–41]. Hoi Tang Ma illuminated that TRIP13 is not only involved in MCC activation but also in MCC inactivation [42]. Although the crucial mechanism for SAC silencing is reported about the ubiquitination and degradation of CDC20 [26,43], another novel mechanism has recently been identified in which MCC disassembled through the joint action of TRIP13 and p31comet, providing a progress involving ATP hydrolysis (Fig. 2) [1,44,45]. For the two mechanisms, TRIP13 and p31comet preferentially catalyze the disassembly of free MCC that not bound to APC/Cdc20 while APC15-mediated conformational changes of the APC/C could allow ubiquitination of Cdc20 in MCC, followed by reactivation of APC/C/Cdc20 [46,47]. Collectively, these mechanisms reduce the MCC levels and promote the activation of APC/C/Cdc20 which ubiquitinates securin and cyclin B1 to inactivate CDK 1 (allowing for mitotic exit) and to liberate the protease Separase to initiate the onset of anaphase, respectively (summarized in Fig. 2).

Apart from its functions in the spindle assembly checkpoint of human cells, previous studies have found that TRIP13, the mouse orthologue of pachytene checkpoint 2 (Pch2), mediates the repair of Spo11-generated Double-strand breaks (DSBs) during meiotic cell divisions [48–51]. During the meiosis, the pachytene checkpoint is the surveillance machinery which senses meiotic errors and removes cells containing unrepairled defects, and its function is similar to the spindle checkpoint in the mitosis. It monitors DSB repair and chromosome...
substrate of Tel1A and pairing [61,62]. Meanwhile, Hop1 is a significant meiosis and is required for DSB formation, chromosome organization progression, Pch2 acts as a modulator of Hop1 which is a specific element for establishing interhomologue biased HR [58]. Plenty of studies suggest that Pch2 could contribute to the monitoring meiosis and the control of the cell cycle. Pch2 is also required for the establishment of the interhomologue biased HR.

Besides the above mechanism, the DSB repair was also proposed to be mediated by the activity of the DSB repair pathway. The homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two major DSB repair pathways in genome. The homologous recombination is the process of repairing DNA by using the homologous chromatin as a template to replace the broken DNA. The nonhomologous end-joining is the process of repairing DNA by using the undamaged DNA as a template to replace the broken DNA. The two processes are both important for the repair of DSBs and are involved in various cellular processes, such as cell division, gene regulation, and DNA repair.

Furthermore, TRIP13 can allow proper H2AX phosphorylation and Small ubiquitin-related modifier 1 (SUMO-1) loading [65]. TRIP13 is essential for DSB repair via NHEJ, a well-known repair pathway in mammalian cells that is active throughout the cell division [66,67]. Since Phospho-histone H2A/H2AX isoform is formed following DNA damage, DNA repair is necessary to maintain the integrity of the genome. Western blot analysis demonstrates that knockdown of TRIP13 have more expression of H2AX in cells. Therefore, it seems that loss of TRIP13 promotes DNA damage [66]. The published evidence supports the interaction between TRIP13 and NHEJ/DNA repair group proteins included KU70, KU80 and DNA-PKcs. In addition, the NHEJ and HR florescent reporter constructs were used for quantifying the level of NHEJ and HR efficiency by flow cytometry. Cells expressing NHEJ reporter constructs with TRIP13 siRNA had less GFP+ cells than control cells [66]. All together, these findings showed that TRIP13 could take part in the NHEJ pathway, and thereby may contribute to the CIN and even human tumorigenesis.

3. Overexpression of TRIP13 Is Associated With Human Cancer

The spindle assembly checkpoint proteins are often aberrantly expressed in tumor cells. Aberrations in their expression can result in CIN and aneuploidy, potentially contributing to tumorigenesis [11,12,69]. It has been reported that TRIP13 is aberrantly expressed in various tumor cells detected by RT-PCR, Western blot and Microarray analysis (Table 1). It seems that TRIP13 overexpression may be a common phenomenon in these primary tumors and cancer cell lines. To further understand the clinical outcome of TRIP13 expression, we examined and mined the data about multiple tumors from the GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) using GEPIA online tool (version 2017, http://gepia.cancer-pku.cn)
Table 1
Overview of aberrant expression of TRIP13 in human primary tumors and cancer cell lines investigated.

Tumor type	TRIP13 expression level	Detection method	Reference number
Wilms tumor	Downregulation	RT-PCR, Western blot	[19]
Primary cutaneous T-cell lymphoma	Overexpression	RT-PCR	[100]
Non-small cell lung cancer	Overexpression	Microarray	[104]
Lung adenocarcinoma	Overexpression	Q-PCR, Western blot	[87]
Breast cancer	Overexpression	Microarray	[87-99]
Prostate cancer	Overexpression	Microarray, Q-PCR, Western blot	[88,101]
Colorectal cancer	Overexpression	RT-PCR, Microarray, Western blot	[89,102]
Squamous cell carcinoma of the head and neck	Overexpression	Q-PCR	[66]
Chronic lymphocytic leukemia	Overexpression	Q-PCR	[86]
Multiple myeloma	Overexpression	Q-PCR	[6,103]

[70] with customizable functional analysis such as tumor/normal differential gene profiling, patient survival analysis (Fig. 3A–H). We compared TRIP13 gene expression in eight kinds of tumors (breast invasive carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, stomach adenocarcinoma, thymoma) samples with normal tissues (Fig. 3, A–H). In addition, the Overall Survival (OS) analysis revealed that high TRIP13 expression conferred inferior outcomes in other carcinomas, such as kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, brain lower grade glioma, liver hepatocellular carcinoma and so on (Fig. 3I–O). Therefore, the aberrant expression of TRIP13 is a frequent event in cancer cells, indicating a potential oncogenic role of TRIP13 in cancer development. (See Table 2.)

4. TRIP13 Aberrant Expression Leads to Tumorigenesis

As mentioned above, studies have validated that TRIP13 is involved in the regulation of spindle assembly checkpoint signaling and DNA damage repair during cell division. Thus aberrant expression of TRIP13 in cancer cells can lead to chromosome segregation errors. Given the impact of mitotic errors on cell proliferation and tumorigenesis [71], the overexpression of TRIP13 may induce tumorigenesis by promoting CIN and aneuploidy. In line with this point, DNA copy number variations (CNVs) analysis illuminates that overexpression of TRIP13 in multiple myeloma cell results in CIN [6,17]. In addition, based on Oncomine (www.oncomine.org), TRIP13 mutation, DNA copy number and gene expression frequency in multiple cancers have been analyzed using meta-analysis. As a result, both TRIP13 copy number and gene expression frequency are increased in multiple cancers such as bladder cancer, breast cancer, cervical cancer, colorectal cancer and esophageal cancer [66].

Given the essential roles of TRIP13 in the regulation of SAC and DNA damage repair, several spindle proteins and signaling pathways may be involved in mediation of TRIP13 on CIN and aneuploidy. The PI3K/Akt signaling pathway is required for maintaining the appearance of supernumerary centrosomes and its uncontrolled activity has been implicated in CIN [72]. Previous study has shown that PI3K inhibitor LY294002 elevates MAD2 levels and restores sensitivity to Bortezomib in TRIP13 overexpressed cells [6]. Besides, the p53 signaling pathway plays a significant role in progression towards apoptotic cell death following injury and cell cycle status [73,74]. It was reported that TRIP13 directly interacted with a p53 co-factor called Tetra-tripeptide Repeat Domain 5 (TTC5), and knockdown of TRIP13 in murine inner medullary collecting duct cells enhanced the activity of p53 at Serine 15 [75]. Additionally, it was observed that TRIP13 was higher in p53 "−/−" NIH/3 T3 cells and over 10% of MM patients were diagnosed with the identification of p53 deletion [76]. Taken together, TRIP13 may be involved in the PI3K/Akt signaling pathway associated with CIN and tumorigenesis.

5. Elevated TRIP13 Promotes Tumor Progression

Studies in various types of cancers have demonstrated that overexpression of TRIP13 promotes cell proliferation, while its suppression with siRNA or shRNA inhibits proliferation and induces cell death [6,66,85–89]. Moreover, TRIP13-overexpressing cancer cells showed a significant increase in proliferation, invasion and migration compared with control cells [66]. In a xenograft mouse model, subcutaneous injection of TRIP13 shRNA around the tumor nodules led to reduction of tumor size compared with those of control shRNA injection [66,66]. On the contrary, in chik chorioallantoic membrane model, overexpression of TRIP13 in NIH3T3 cells resulted in significantly more cellular stratification and proliferation. In addition, high expression of TRIP13 promoted malignant transformation, enhanced repair of DNA damage as well as aggressive, treatment-resistant tumors, and TRIP13 overexpressing tumors conferred xenograft mice poorer survival than controls [66]. Meanwhile, the prognosis analysis on TCGA datasets indicate that patients with high TRIP13 expression had inferior outcomes than those patients with low TRIP13 expression [Fig. 3I–O] [6]. Furthermore, recent studies showed that TRIP13 expression was positively associated with MAD2 expression in multiple myeloma and breast cancer [6,18]. In addition, the expression of TRIP13 was positively associated with cancer grade and tumor size in breast invasive ductal carcinoma. These data all point that TRIP13 facilitates tumor progression both in vitro and in vivo, and elevated TRIP13 levels can lead to CIN and aneuploidy, which will ultimately trigger tumorigenesis and promote tumor development.

6. TRIP13 Contributes to Drug Resistance

The major reason for cancer treatment failure is the drug resistance. Recent studies have implicated that overexpression of TRIP13 exhibited less sensitivity to anticancer drugs (bortezomib and cisplatin) [6,66]. Cell viability assay showed that the number of viable cells in multiple myeloma cells transfected with TRIP13 was dramatically higher compared with control cells when treated with anticancer drugs bortezomib and etoposide [6]. Similarly, squamous cell carcinoma of the head and neck cells overexpressed TRIP13 exhibited less sensitivity to cisplatin compared with control cells [66]. Thus it is clear that TRIP13 plays a role in cancer cell drug resistance. To understand the contribution of TRIP13 to drug resistance, the researchers conducted flow cytometry to detect apoptotic cells by annexin V/Hoechst 33258 staining. The results indicated that MM cells overexpressed TRIP13 showed decreased...
Fig. 3. High TRIP13 expression in tumor tissues compared with normal tissues (A-H) and its high expression linked to a poor prognosis in multiple cancers (I–O). (A-H) TRIP13 expression in cancer tissues (T) is compared with normal counterpart tissues (N), including breast invasive carcinoma (A), cervical squamous cell carcinoma, endocervical adenocarcinoma (B), colon adenocarcinoma (C), esophageal carcinoma (D), glioblastoma multiforme (E), head and neck squamous cell carcinoma (F), stomach adenocarcinoma (G) and thymoma (H). TRIP13 expression is significantly higher in all tumors examined ($p < 0.05$). (I–O) Kaplan-Meier analyses of OS revealed that high TRIP13 expression conferred inferior outcomes in kidney renal clear cell carcinoma (I), kidney renal papillary cell carcinoma (J), brain lower grade glioma (K), liver hepatocellular carcinoma (L), lung adenocarcinoma (M), ovarian serous cystadenocarcinoma (N), skin cutaneous melanoma (O). Above tumor/normal differential expression analysis and patient survival analysis are from TCGA and GTEx projects and mining using GEPIA tools (http://gepia.cancer-pku.cn) with a standard pipeline compatible with each other.
apoptosis and protection from drug-induced cytotoxicity compared with cells transfected with empty vectors when treated with serial dosages of bortezomib. Consistently, G2/M cell cycle arrest induced by bortezomib was inhibited in MM cells overexpressed TRIP13 compared with those control cells [6]. Moreover, shRNA-mediated TRIP13 knockdown in MM cells overcame drug resistance and induced apoptosis in vitro as well as in a xenograft myelaoma mouse model. Downregulation of TRIP13 in cancer cells increased the level of cleaved PARP and activation of caspase-3, indicating a possible role of TRIP13 against the apoptosis pathway [6]. Likewise, in human chronic lymphocytic leukemia the microarray data analyzed by Ingenuity Pathway Analysis “canonical pathway” module indicated that TRIP13 participated in several pathways involved in apoptosis such as “induction of apoptosis by HV1”, “p53 signaling” and “PPAR signaling”. Furthermore, knockdown of TRIP13 induced a remarkable up-regulation of caspase 3/7 activity in Granta-519 and JVM-2 cells, both of which are B-cell Lymphocytic Leukemia cell lines. The mechanism by which TRIP13 contributes to chronic lymphocytic leukemia was confirmed through the C-MYC/TRIP13/PUMA axis regulation [86]. The other group also found that TRIP13 knockdown in Squamous cell carcinoma of the head and neck cancer cells induces cell cycle arrest. There is more accumulation of DSB marker observed in cells transfected with siTRIP13. Western blot indicated that siTRIP13-mediated DSB precedes apoptosis [86]. These results strongly indicated that TRIP13 could enhance DNA repair and then induce treatment resistance. Taken together, TRIP13-induced anti-apoptosis action may contribute to the high drug resistance in cancer cells, because one of the main mechanisms of anticancer drugs used to stimulate cell death is induction of apoptosis.

Dysfunctions in MCC surveillance system facilitate chromosome mis-segregation and failure to arrest in mitosis, ultimately leading to the development of human cancers and drug resistance in cancer [90]. Recent study has supported that overexpression of TRIP13 decreased MAD2 protein levels [6]. When the MCC surveillance system is turned on, MAD2 forms a complex with APC/C, preventing the degradation of securin and cyclin B1, and consequently arresting cells at prometaphase [91]. Interestingly, the increased expression of MAD2 protein results in subsequent CIN and drug resistance to chemotherapeutic agents that target microtubules [92]. However, the down-regulation or deletion of MAD2 also has been reported in a variety of human cancers. Moreover, down-regulation of MAD2 is shown to accelerate proliferation and enhance the drug resistance in gastric cancer cells [93]. There is evidence that the PIIIK/Akt signaling pathway plays a critical role in the adjustment of proliferation, migration and drug resistance of MM cells [94]. Meanwhile, the ubiquitination, phosphorylation and degradation of other proteins can regulate tumorogenesis and chemoresistance when PIIIK/Akt is activated [95,96]. It’s likely that MAD2 degradation and ubiquitination are induced by TRIP13 via activating Akt signaling pathway, which further results in damaged checkpoint surveillance and consequent drug resistance [6].

7. Targeting TRIP13 May Be Perspective for the Treatment of Cancer

Given the rationale mentioned above, there is no doubt that TRIP13 contributes to tumorgenesis, tumor progression, and drug resistance in various human cancers, and it may be an ideal target for therapy in cancer. To explore the roles of TRIP13 in human breast ductal carcinoma progression, researchers correlated the expression of TRIP13 to some of the pathological characteristics in human breast ductal carcinoma. Breast cancer patients with high expression of TRIP13 showed higher mortality and recurrence rate than TRIP13 low expression patients [97,98]. In consistence, it has been corroborated that expression of TRIP13 was associated with detrimental relapse free survival (RFS) and OS in luminal tumors which are a breast cancer subtype that expresses hormone receptors [99]. In human Mucosis Fungoides Tumor, TRIP13 is highly upregulated versus control biopsies [100]. Likewise, previous study in Metastatic prostate cancer has shown that TRIP13 expression in combination with Gleason score and preoperative prostate-specific antigen (PSA) level was able to correctly predict recurrence in 85.7% of cases [101]. In line with the previous study, TRIP13 was significantly associated with OS in colorectal cancer patients [102]. Moreover, Kaplan-Meier survival analysis of OS of patients from TT2 and TT3 has validated that high expression of TRIP13 is strongly linked to poor survival in multiple myeloma [6,103]. Furthermore, the TRIP13 mRNA levels of CD19+ B cells were 4 fold higher in chronic lymphocytic leukemia patient than in the healthy person [86]. What’s more, comparative genomic hybridization (CGH) study revealed that TRIP13 (13/19; 68%) was involved in genomic copy number changes (≥40% of patients) in NSCLC. Thus, the chromosomal changes induced by TRIP13 are involved in NSCLC tumorgenesis [104]. In addition, survival curves for mice with TRIP13 overexpressed tumors show inferior survival than those with control tumors in vivo [66]. Meanwhile, Kaplan-Meier analyses of various cancer samples provided by Zhang’s Lab, indicated that higher expression of TRIP13 is associated with shorter OS in examined tumors (Fig. 3). Taken together, those data suggest that TRIP13 is a novel potential biomarker for diagnosis and a possible therapeutic target for cancer.

Of great potential but with a little focus is to find the cause of aberrant expression of TRIP13, such as epigenetic changes or ncRNAs, which may provide insights into promising therapeutic target on TRIP13. For example, miR192 was recently reported to target TRIP13 during colorectal cancer progression [105]. Furthermore, termed TINCR (Terminal differentiation-induced non-coding RNA) expressed in prostate cancer tissue cell lines, in a manner of negatively regulating the TRIP13 mRNA and protein, inhibiting cell proliferation, migration and invasion [106]. Considering the multifunctional roles of regulatory
ncRNAs, it would pave another way to design and develop therapeutic nucleic acid drugs to treat TRIP13 aberrant expressed diseases.

8. Conclusion
TRIP13 plays a key role in several biological processes. However, high expression of TRIP13 in three different arrangements contains TRIP13 is frequently observed in various human cancers. Silencing TRIP13 sensitizes tumor cells to chemotherapeutics. These evidences together suggest that TRIP13 may be a novel therapeutic target for human cancers. To develop specific TRIP13 inhibitor is of great importance. Clinical studies are demanded to further confirm TRIP13 as a potential therapeutic target in TRIP13 high-expression cancers.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by National Natural Science Foundation of China 81770220, 81600177, 81670200 (to CG & YY); National Science Foundation of Jiangsu Province BK20160048 (to YY); Natural Science Foundation of Jiangsu Province BK20161041 (to CG); National key research and development program-precision medicine sub-program 2016YFC0905900 (to YY); The Priority Academic Program Development of Jiangsu Higher Education Institutions for Chinese Medicine.

References
[1] Minowitsz-Shemtov S, Eytan E, Kaisari S, Sity-Shevash D, Herskho A. Mode of interaction of TRIP13 AAA-ATPase with the Mad2-binding protein p31comet and with mitotic checkpoint complexes. Proc Natl Acad Sci U S A 2015;112(37):11536–40.
[2] Vader G. Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma 2015;124(3):333–9.
[3] Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G, Herzog F, et al. The AAA+ ATPase TRIP13 remodels MADOMA domains through N-terminal engagement and unfolding. EMBO J 2017;36(16):2419–34.
[4] Bruolote ML, Jeong BC, Li PX, Li B, Yu EB, Wu Q, et al. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017;8.
[5] Aliferi C, Chang LF, Barford D. Mechanism for remodeling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018;559(7713):274+—4.
[6] Tao Y, Yang G, Yang H, Song D, Hu X, Xie B, et al. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget 2017;8(16):26718–31.
[7] Musacchio A, Salmon ED. The spindle–assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2011;12(7):427–39.
[8] Li J, Kim S, Yu H. Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 2013;38(6):302–11.
[9] Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY, Corbett KD. TRIP13 is a protein remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife 2015;4.
[10] Eytan E, Wang K, Minowitsz-Shemtov S, Sity-Shevash D, Kaisari S, Yen TJ, et al. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci U S A 2014;111(33):12019–24.
[11] de Antini A, Pearson CC, Cimini D, Canman JC, Sala V, Nezi L, et al. The Mad2/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 2005;15(3):214–25.
[12] Mapelli M, Musacchio A. MAD conformational dynamics induces chromatin condensation in mitosis. Science 2014;343(6166):77–80.
[13] Sudakun V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUB1/B, BUB3, CDC20, and MAD2. J Cell Biol 2001;154(5):925–36.
[14] Pines J. Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011;12(7):427–39.
[15] Li J, Kim S, Yu H. Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 2013;38(6):302–11.
[16] Shin SB, Woo SU, Yim H. Differential cellular effects of Plk1 inhibitors targeting the ATP-binding domain or polo-box domain. J Cell Physiol 2015;230(12):3057–67.
[17] Wilkins BJ, Rali NA, Orizwal Y, Krustova T, Hirogami-Hamada K, Winkler M, et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 2014;343(6166):77–80.
[18] Vader G, Dereli I, Rosenberg SC, Hagemann G, Herzog F, et al. The AAA+ ATPase TRIP13 remodels MADOMA domains through N-terminal engagement and unfolding. EMBO J 2017;36(16):2419–34.
[19] de Carcer G, Malumbres M. A centrosomal route for cancer genome instability. Nat Cell Biol 2014;16(6):504–6.
[20] Stollito R, Schwartzman JM, Socci ND, Benezech R. Mad2-induced chromosome instability leads to tumour regression after oncogene withdrawal. Nature 2010;464(7287):436–40.
[21] Bargiela-Iprimariu J, Prado-Marchal L, Pajuelo-Lozano N, Jimenez B, Perona R, Sanchez-Perez I. Mad2 and Bub1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle 2014;13(22):3590–601.
[22] Tussell L, Pampalona J, Soler D, Frias C, Genesca A. Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans 2010;38(6):1698–703.
[23] Stevensius Y, Gorovoua L, Jonson T, Larsson N, Hoglund M, Mandahl N, et al. Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci U S A 2005;102(15):5541–6.
[24] Bailey SM, Murnane JP, Telermors, chromosome instability and cancer. Nucleic Acids Res 2006;34(8):2408–17.
[25] Mills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumourigenesis. Immunol Rev 2003;194:77–95.
[26] Zhou W, Yang X, Jia X, Wang H, Salama ME, Xiong W, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013;23(1):48–62.
[27] Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ, et al. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem 2014;289(34):23928–37.
[28] Yost S, de Wolf B, Hanks S, Zachariou A, Marcozzi C, Clarke M, et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome malsegregation. Nat Genet 2017;49(7):1148–51.
[29] Carter SL, Eklund AC, Kohn ES, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006;38(9):1043–8.
[30] Yang M, Li R, Tonchik DR, Machius M, Rieu J, Yu H, et al. p31comet blocks Mad2 activation through structural mimicry. Cell 2007;131(4):744–55.
[31] Tipton AR, Wang K, Oldalmeji P, Suli S, Gu Z, Liu ST. Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol 2012;13:15.
[32] Habu T, Kim SH, Weinstein J, Matsumoto T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J 2002;21(23):6419–28.
[33] Mapelli M, Filipov FY, Rancati G, Massimiliano L, Nezi L, Stier G, et al. Determinants of conformational dimerization of MAD2 and its inhibition by p31comet. EMBO J 2006;25(6):1273–84.
[34] Kim S, Yu H. Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol 2011;22(6):551–8.
[35] Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 2015;25(20):R1002–18.
[36] Shin SB, Woo SU, Yim H. Differential cellular effects of Plk1 inhibitors targeting the ATP-binding domain or polo-box domain. J Cell Physiol 2015;230(12):3057–67.
Nam HJ, Chae S, Jang SH, Cho H, Lee JH. The PI3K-Akt mediates oncogenic met-in-IGF1R signaling in prostate cancer. Cancer Genet Cytofgenet 2007;174(1):42–51.

Joyce EF, McKim K. Drosophila PCH2 is required for a pachytene checkpoint that prevents double-strand-break-independent events leading to meiotic crossover formation. Genetica 2009;138(1):39–51.

Joyce EF, HS McCormick. Chromosome axis defects induce a checkpoint-mediated delay and interchromosomal effect on crossing over during Drosophila meiosis. PLoS Genet 2010;6(8).

Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012;47(4):497–510.

Nishi N, Brown MS, Bishop DK, Borner GV. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSF levels. Mol Cell 2015;57(5):797–811.

San-Segundo PA, Roeder GS. Pch2 links chromatin silencing to meiotic checkpoint formation. Nature 2015;528(7578):383–9.

Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship. Nat Rev Cancer 2005;5(10):773–85.

Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell 2015;59(2):187–98.

Furlong F, Fitzpatrick P, O’Toole S, Phelan S, McGrogan B, Maguire A, et al. Low MAD2 expression levels associated with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol 2012;226(5):746–55.

Zhu J, Wang M, Cao B, Hou T, Mao X. Targeting the phosphatidylinositol 3-kinase/AKT pathway for the treatment of multiple myeloma. Curr Med Chem 2014;21(27):3173–87.

Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun 2015;6:7769.

Fang X, Zhang P. Aneuploidy and tumorigenesis. Semin Cell Dev Biol 2011;22(6):593–601.

Pressly JD, Hama T, Brien SO, Regner KR, Park F. TRIP13 deficiency in human colorectal cancer cell lines is associated with chromosomal instability in bladder cancer. Proc Natl Acad Sci U S A 2017;114(5):956–61.

Kurita K, Maeda M, Mansour M, Kokuyo T, Uehara K, Yokoyama Y, et al. TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett Dec 2016;12(6):5240–6.

Zhou K, Zhang W, Zhang Q, Gui R, Zhao H, Chai X, et al. Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and human colorectal lymphocytic leukemia. Oncotarget 2017;8(15):25489–91.

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal genome-wide expression analysis. Nucleic Acids Res 2017;45(1):142–8.

Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012;47(4):497–510.

Nishi N, Brown MS, Bishop DK, Borner GV. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSF levels. Mol Cell 2015;57(5):797–811.

San-Segundo PA, Roeder GS. Pch2 links chromatin silencing to meiotic checkpoint formation. Nature 2015;528(7578):383–9.

Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship. Nat Rev Cancer 2005;5(10):773–85.

Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell 2015;59(2):187–98.

Furlong F, Fitzpatrick P, O’Toole S, Phelan S, McGrogan B, Maguire A, et al. Low MAD2 expression levels associated with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol 2012;226(5):746–55.

Zhu J, Wang M, Cao B, Hou T, Mao X. Targeting the phosphatidylinositol 3-kinase/AKT pathway for the treatment of multiple myeloma. Curr Med Chem 2014;21(27):3173–87.

Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun 2015;6:7769.

Abedini MR, Bergeron R, Gray DA, Tsang BK. Akt promotes chromoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein. Oncogene 2010;29(1):11–25.

Rhoes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 2004;101(25):9309–14.

Martin RJ, Patrick DR, Bissell MJ, Fournier MV. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 2008;3(8):e2994.

Nieto-Jimenez C, Akcaraz-Sanabria A, Paez R, Perez-Pena J, Corrales-Sanchez V, Pandeilla A, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget 2017;8(38):62834–41.

van Kester MS, Borg MK, Zoutman WH, Out-Luijtting J, Janssen PM, Deef EF, et al. A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides. J Invest Dermatol 2012;132(8):2059–65.

Larkin SE, Holmes S, Cree IA, Walker T, Baskettter V, Bickers B, et al. Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer 2012;106(1):157–65.

Abdul Aziz NA, Mokhtar NM, Harun R, Mollah MM, Mohamed Rose I, Sagap I, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget 2018;9(1):2799–907.

Bissell MJ, Fournier MV. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 2008;3(8):e2994.

Nieto-Jimenez C, Akcaraz-Sanabria A, Paez R, Perez-Pena J, Corrales-Sanchez V, Pandeilla A, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget 2017;8(38):62834–41.

van Kester MS, Borg MK, Zoutman WH, Out-Luijtting J, Janssen PM, Deef EF, et al. A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides. J Invest Dermatol 2012;132(8):2059–65.

Larkin SE, Holmes S, Cree IA, Walker T, Baskettter V, Bickers B, et al. Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer 2012;106(1):157–65.

Abdul Aziz NA, Mokhtar NM, Harun R, Mollah MM, Mohamed Rose I, Sagap I, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget 2018;9(1):2799–907.

Nieto-Jimenez C, Akcaraz-Sanabria A, Paez R, Perez-Pena J, Corrales-Sanchez V, Pandeilla A, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget 2017;8(38):62834–41.