Driven-state relaxation of a coupled qubit-defect system in spin-locking measurements

Leonid V. Abdurakhimov, Imran Mahboob, Hiraku Toida, Kosuke Kakuyanagi, Yuichiro Matsuzaki, and Shiro Saito

NTT Basic Research Laboratories, NTT Corporation,
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

(Dated: June 11, 2020)

It is widely known that spin-locking noise-spectroscopy is a powerful technique for the characterization of low-frequency noise mechanisms in superconducting qubits. Here we show that the relaxation rate of the driven spin-locking state of a qubit can be significantly affected by the presence of an off-resonant high-frequency two-level-system defect. Thus, both low- and high-frequency defects should be taken into account in the interpretation of spin-locking measurements and other types of driven-state noise-spectroscopy.

The field of gate-based quantum computing using superconducting qubits is rapidly developing [1]. However, the realization of a fault-tolerant quantum computer remains a challenging task: the implementation of a reasonably robust logical qubit would require an overhead of order 10^3 to 10^4 physical qubits with per-gate error rates $p \approx 10^{-3}$ [2]. Lowering per-operation error rates would significantly reduce the overhead requirements, and, therefore, it is important to understand noise-induced error mechanisms during free and driven evolution of qubits. Free-evolution qubit relaxation has been extensively studied, and standard protocols for measurements of energy relaxation and dephasing rates — including spin-echo, Ramsey, and dynamical decoupling methods — have been widely used [3, 4]. As for the decoherence of a superconducting qubit during driven evolution, qubit relaxation mechanisms in Rabi and spin-locking measurements were initially analyzed in Refs. [5, 6]. The Rabi spectroscopy was later used in experimental studies of noise characteristics in superconducting flux qubits [7, 8], and in a qubit-fluctuator system [9]. More recently, spin-locking spectroscopy has been demonstrated to be a powerful tool for noise characterization in superconducting qubits [10], which can be used to detect low-frequency defects [11], distinguish between coherent and thermal photon noise [12], and measure low-frequency noises in multi-qubit systems [13].

Spin-locking noise spectroscopy of a superconducting qubit is based on the measurements of the qubit evolution driven by a spin-locking pulse sequence originally developed in NMR studies [10]. In the Bloch-sphere representation in a rotating frame, a qubit state is associated with a fictitious spin bi-level state, and a spin-locking measurement is described by the sequence of three consecutive pulses

$$(-\pi/2)_Y - SL_X - (-\pi/2)_Y.$$

The first pulse rotates the spin around the y-axis by a $-\pi/2$ angle resulting in the spin oriented along the x-axis. The second pulse — a so-called spin-locking pulse — is a long pulse with the variable amplitude and duration which is applied along the x-axis. Driven by the spin-locking pulse, the spin precesses around the x-axis at the Rabi frequency Ω_R (determined by the pulse amplitude), and, thus, the spin is effectively “locked” along the x-axis. The third pulse aligns the spin along the z-axis which allows one to measure the qubit state (e.g., by dispersive readout). In spin-locking measurements, both the amplitude and duration τ of the spin-locking pulse are varied, and, at a given amplitude, the relaxation rate is extracted from an exponential fit of the qubit excited-state population decay, $P_e = (1 + \exp(-\Gamma_1 \tau))/2$. According to the model of generalized Bloch equations (GBE) [3, 10, 11], the relaxation rate Γ_1 and relaxation time $T_{1\rho}$ of the qubit driven-state in the rotating frame (hence, the subscript symbol “ρ”) is used conventionally are given by:

$$\Gamma_1 = \frac{1}{T_{1\rho}} = \frac{1}{2} \Gamma'_1 + \Gamma_1(\Omega_R),$$

where the relaxation rate $\Gamma_1(\Omega_R)$ is related to the low-frequency longitudinal noise at the Rabi frequency Ω_R, while the relaxation rate Γ'_1 is usually assumed to be determined by the high-frequency transverse noise at the qubit frequency ω_q ($\omega_q \gg \Omega_R$) [3, 10, 11]:

$$\Gamma'_1 \approx \Gamma_1(\omega_q) = (T_1(\omega_q))^{-1},$$

where T_1 is the qubit energy-relaxation time. However, it is known that the exact equation for Γ'_1 is given by [10, 11, 12, 13]:

$$\Gamma'_1 = \frac{1}{2} \left(\Gamma_1(\omega_q - \Omega_R) + \Gamma_1(\omega_q + \Omega_R) \right),$$

and, therefore, Eq. (2) is valid only if $\Gamma_1(\omega_q) \approx \Gamma_1(\omega_q \pm \Omega_R)$. Equation (3) is usually disregarded, and results of spin-locking measurements are interpreted as the characterization of noise sources at low frequencies determined by the Rabi frequency, since the term $\Gamma'_1/2 \approx \Gamma_1(\omega_q)/2$ is not expected to depend on Ω_R, and, moreover, the condition $\Gamma_1(\Omega_R) \gg \Gamma_1(\omega_q)/2$ is fulfilled in many cases. For example, spectral features observed in the MHz frequency range in spin-locking experiments with a superconducting qubit were attributed to low-frequency fluctuators [10].

In this Rapid Communication, we present results of spin-locking measurements of a superconducting flux qubit coupled to off-resonant high-frequency two-level-system (TLS) defects. We observed spectral features in...
the driven-state relaxation time T_{1p}, which were caused by the interaction between the qubit with the frequency ω_q and defects with the frequencies ω_{TLS} matching the conditions $\omega_{\text{TLS}} = \omega_q - \Omega_R$ or $\omega_{\text{TLS}} = \omega_q + \Omega_R$. Thus, both low-frequency and high-frequency noise sources should be taken into account when interpreting results of spin-locking noise-spectroscopy measurements.

Our sample is a capacitively-shunted (c-shunt) superconducting flux qubit embedded in a 3D microwave cavity. Detailed information about the qubit design and experimental setup can be found in Ref. [16]. In the reported spin-locking experiments, a commercial high-power microwave amplifier from Spacek Labs with a gain of 40 dB was used to drive the qubit. The qubit was measured by dispersive readout. The cavity frequency was $\omega_c/2\pi \approx 8.2185$ GHz, the cavity linewidth was $\kappa/2\pi \approx 1$ MHz, and the dispersive frequency pull was $2\chi/2\pi \approx 1.4$ MHz. The qubit frequency measured as a function of the applied magnetic flux Φ is shown in Fig. 1(a).

FIG. 1. (a) The qubit frequency as a function of the applied magnetic flux. Dashed lines correspond to positions of TLS defects determined from T_1 measurements. (b) The energy-relaxation time T_1 of the qubit. Markers show approximate positions of four TLS defects resonantly coupled to the qubit. (c) The frequency of Rabi oscillations at a given drive amplitude. (d) The frequency of Rabi oscillations at the optimal bias point $\Phi = 0.5\Phi_0$ as a function of the drive amplitude. The black dashed line corresponds to a linear fit.

Variations of the T_1 values in the range 50–90 μs were related to the temporal variations reported previously [16] which were caused by quasiparticle tunneling [8, 17, 18] and a bath of background TLS defects [19–21]. In a separate two-tone measurement, the qubit anharmonicity was found to be about 0.8 GHz. At the optimal bias point, qubit decoherence times $T_{2E} \approx 6\mu$s and $T_{2R} \approx 5\mu$s were measured using spin-echo and Ramsey pulse sequences, respectively. In comparison with previous measurements of the sample [16], the qubit frequency was slightly lower due to the thermal cycling between the experimental runs, and the reduction of decoherence times T_{2E} and T_{2R} was caused by the low-frequency noise of the high-power amplifier.

The magnetic-flux dependence of the qubit energy-relaxation time T_1 is shown in Fig. 1(b). Variations of the T_1 values in the range 50–90 μs were related to the temporal variations reported previously [16] which were caused by quasiparticle tunneling [8, 17, 18] and a bath of background TLS defects [19–21]. In addition, we observed four pronounced dips which can be attributed to a resonant coupling between the qubit and a subset of distinct TLS defects denoted as TLS-1, TLS-2, TLS-3, and TLS-4. The dependence of the energy-relaxation rate on parameters of a coupled qubit-defect system is non-trivial [22–24]. Qualitatively, the presence of observed TLS defects did not cause averaged crossings in the qubit spectrum, and, hence, the qubit-defect couplings were weak which was in contrast with the previous works on strongly-coupled qubit-defect systems [3, 23, 29].

Figure 1(c) shows the frequency of Rabi oscillations at a given drive amplitude as a function of the applied magnetic flux. The decrease of the Rabi frequency at $\Phi \approx 0.5\Phi_0$ was probably due to the coupling to the bath of high-frequency TLS defects. The dependence of the Rabi frequency on the drive amplitude at the optimal bias point $\Phi = 0.5\Phi_0$ is shown in Fig. 1(d). The non-linear behavior of $1/T_1$ at high amplitudes was caused by the operation of the high-power microwave amplifier.

Results of spin-locking measurements at the optimal bias point $\Phi = 0.5\Phi_0$ are shown in Fig. 2. We used two types of spin-locking pulse sequences. The first one (labeled ‘S1’) was the standard sequence $(-\pi/2)Y - \text{SL}_X - (-\pi/2)Y$, in which the qubit was in the state $|0\rangle_x = (|0\rangle + |1\rangle)/\sqrt{2}$ (parallel to the x-axis) at the end of the first pulse. Here, the states $|0\rangle$ and $|1\rangle$ are eigenstates of the qubit Pauli operator σ_x with eigenvalues +1 and −1 respectively. In experiments, we measured the probability to find the qubit in the excited state $|0\rangle$ in the end of the spin-locking sequence. Figure 2(a) shows the data set D_1 obtained using the S1 sequence. The second sequence (labeled ‘S2’) was the modified spin-locking sequence $(+\pi/2)Y - \text{SL}_X - (+\pi/2)Y$, in which the qubit was in the state $|1\rangle_x = (|0\rangle - |1\rangle)/\sqrt{2}$ (anti-parallel to the x-axis) at the end of the first pulse. The data set D_1 obtained using the S2 sequence is shown in Fig. 2(b). For both types of pulse sequences, rectangular pulses were used. The $\pi/2$-pulse duration was chosen to be long (≈ 100 ns) to minimize spectral widths of the $\pi/2$-pulses. The amplitude and duration of SL_X-pulses were varied. Figure 2(c) shows the arithmetic mean $P = (D_1 + D_2)/2$ which was used for estimations of the relaxation time T_{1p}.

A distinct spectral feature was observed in spin-locking measurements at the Rabi frequency $\Omega_R/2\pi \approx 51.3$ MHz [Figs. 2(a)–(c)]. We suppose that it was caused by the coupling between the qubit and the TLS-3 defect. Following Refs. [10, 24, 27, 30], we model the
FIG. 2. Results of spin-locking spectroscopy at the optimal point \(\Phi = 0.5\Phi_0 \). (a) The data set \(D_1 \) represents results obtained using the pulse sequence \((-\frac{1}{2})_Y - SL_X - (-\frac{1}{2})_Y\). (b) The data set \(D_2 \) corresponds to results obtained using the pulse sequence \((\frac{1}{2})_Y - SL_X - (+\frac{1}{2})_Y\). (c) The arithmetic \((D_1 + D_2)/2\) is the microwave drive term. Here, \(\sigma \) is the interaction term, and \((D_1, D_2)\) correspond to the frequency of the applied microwave drive.

The qubit-TLS system subjected to a microwave excitation by the Hamiltonian \(H = H_q + H_{TLS} + H_{1} + H_{MW} \), where \(H_q = (\hbar \omega_q/2)\sigma_z^{(1)} \) is the qubit Hamiltonian, \(H_{TLS} = (\hbar \omega_{TLS}/2)\sigma_z^{(2)} \) is the defect Hamiltonian, \(H_1 = \hbar g\sigma_x^{(1)} \sigma_z^{(2)} \) is the interaction term, and \(H_{MW} = \Omega_R \cos(\omega_{MW})\sigma_x^{(1)} \) is the microwave drive term. Here, \(\sigma_{x,y,z}^{(1,2)} \) are Pauli operators for the qubit (\(\sigma_x \), \(\sigma_y \), \(\sigma_z \)) and the coupling strength, and \(\omega_{MW} \) corresponds to the frequency of the applied microwave drive. In the case of the resonant driving (\(\omega_{q} = \omega_{MW} \)), the Hamiltonian can be written in the rotating wave approximation:

\[
H_{R} = \frac{\Omega_R}{2} \sigma_z^{(1)} + \frac{\Delta_{TLS}}{2} \sigma_z^{(2)} + g(\sigma_x^{(1)} \sigma_x^{(2)} + \sigma_y^{(1)} \sigma_y^{(2)})/2,
\]

where \(\Delta_{TLS} = \omega_{TLS} - \omega_{q}, \) and \(\sigma_{x,y,z}^{(1,2)} = (\sigma_{x,y,z}^{(1,2)} \pm i\sigma_{y,x,z}^{(1,2)})/2 \). Using QuTiP package \([31]\), we numerically simulated the dynamics of the system in the rotating frame by solving the Lindblad master equation for given energy-relaxation rates \(\Gamma_{1}^{(1)} \) and \(\Gamma_{1}^{(2)} \), and dephasing rates \(\Gamma_{2}^{(1)} \) and \(\Gamma_{2}^{(2)} \) of the qubit and the TLS defect, respectively (with the corresponding collapse operators \(\sqrt{\Gamma_{1}^{(1)}} \sigma_{+}^{(1)}, \sqrt{\Gamma_{1}^{(2)}} \sigma_{-}^{(2)}, \sqrt{\Gamma_{2}^{(1)}}/2 \sigma_{+}^{(1)}, \) and \(\sqrt{\Gamma_{2}^{(2)}}/2 \sigma_{-}^{(2)} \)). Following Ref. \([32]\), we used the values \(\Gamma_{1}^{(2)} = 10^6 s^{-1} \) and \(\Gamma_{2}^{(2)} = 0 \) for the defect relaxation rates, and, for simplicity, we assumed the qubit was free of pure dephasing, \(\Gamma_{2}^{(1)} = 0 \). To simulate the S1 (S2) measurement, the defect was initialized in its ground state in the laboratory frame, and the expectation value \(\langle \sigma_x^{(1)} \rangle \) as a function of the evolution time was calculated for the qubit initial state \(|0\rangle_x \) (\(|1\rangle_x \)) and converted to the corresponding value of \(D_1 = (1 + \langle \sigma_x^{(1)} \rangle)/2 \) (\(D_1 = (1 - \langle \sigma_x^{(2)} \rangle)/2 \)). We found that the observed spectral feature can be well reproduced using the following parameters: \(\Omega_R/2\pi = \Delta_{TLS}/2\pi = 51.3 \text{MHz} \), the coupling strength \(g/2\pi = 28 \text{kHz} \), and the qubit energy-relaxation rate \(\Gamma_{1}^{(1)} = 1.5 \times 10^6 s^{-1} \) [Fig.2(d)]. Thus, conditions of the Purcell-like effect were fulfilled in the rotating frame: \(\Gamma_{1}^{(1)} < g < \Gamma_{1}^{(2)} \). We assume that the qubit effective dissipation rate can be roughly estimated as \(\Gamma_P \approx g^2/\Gamma_{1}^{(2)} \approx 0.31 \times 10^5 s^{-1} \) extracted from an exponential fit of the spin-locking data P [Fig.2(d)]. Therefore, the phase cycling procedure described above — averaging the data sets obtained using S1 and S2 sequences with alternating pulse phases — is a valid method to obtain the information on the driven-state relaxation rate. The \(T_{1p} \) data, presented in Fig.3(a), was extracted from the signal P using exponential fitting.

Besides the main feature at \(\Omega_R/2\pi = 51.3 \text{MHz} \), various additional spectral features were observed at other Rabi frequencies [Fig.2(a)–(c) and Fig.3(b)]. All features can be divided into two groups based on their “polarity” that is defined by the relation between the steady levels of the excited-state population \(D_1 \) and \(D_2 \) in S1 and S2 measurements, respectively. For “positive polarity” features, such as the one observed at \(\Omega_R/2\pi = 70 \text{MHz} \) in Figs.2(a),(b), the condition \(D_1 > D_2 \) was fulfilled. For those features, steady values of \(\langle \sigma_x^{(1)} \rangle \) in the end of the spin-locking pulse were positive \([35]\), which was caused by the heating by defects with \(\Delta_{TLS} < 0 \) according to our model \([30]\). Other features, such as the main one observed at \(\Omega_R/2\pi = 51.3 \text{MHz} \), can be attributed to the “negative polarity” group for which the condition \(D_1 < D_2 \) was realized. For those features, steady values of \(\langle \sigma_x^{(1)} \rangle \) were negative, which was caused by the cooling of the qubit by defects with \(\Delta_{TLS} > 0 \). It should be mentioned that the pure qubit state \(|0\rangle_x \) (\(|1\rangle_x \)) corresponded to the excited (ground) state in the rotating frame with \(\langle \sigma_x^{(1)} \rangle = 1 \) (\(\langle \sigma_x^{(1)} \rangle = -1 \)), and, therefore, the steady spin-locking state of the qubit without coupling to the TLS defect would be a completely mixed state of \(|0\rangle_x \) and \(|1\rangle_x \) states with \(\langle \sigma_x^{(1)} \rangle = 0 \).

Figure3(a) shows relaxation times \(T_{1p} \) as a function of the Rabi frequency at the optimal bias point and the flux bias detuned from the optimal point by \(\delta \Phi = \Phi - 0.5\Phi_0 \approx 7.5 \times 10^{-4} \Phi_0 \). At the detuned bias, the qubit frequency was 4.33 GHz, and, hence, the qubit frequency detuning was \(\delta\omega_q/2\pi \approx 3 \text{MHz} \). In addition, Fig.3(a) shows the values of \((\Gamma_{1}^{(2)}/2)^{-1} \) at the op-
The relaxation rate $\Gamma'_1(\Omega_R)$ was estimated from the data shown in Figs. 2(a), (b) using the equation $\Gamma'_1 \approx \Gamma_1(\omega_q) / 2 + \Gamma_1(\omega_q + \Omega_R) / 2$ obtained from Eq. 4 under the assumption $\Gamma_1(\omega_q - \Omega_R) \approx \Gamma_1(\omega_q)$ (here, we neglected the contribution from defects with $\Delta_{TLS} < 0$). At low Rabi frequencies, in accordance with Eq. 1, the T_{1p} time was dominated by the term $\Gamma_1^{-1}(\Omega_R)$ due to the low-frequency $1/f$ noise of the high-power amplifier. At high Rabi frequencies, the relaxation time plateaued at the value of 100 μs which was below the baseline level of $(\Gamma'_1/2)^{-1}$. In this frequency range, the $1/f$ noise was not dominant, and the difference between background values of T_{1p} and $(\Gamma'_1/2)^{-1}$ was caused by other low-frequency noises at Ω_R, and by high-frequency TLS defects with $\Delta_{TLS} < 0$ and short relaxation times (broad spectra). The pronounced features in the T_{1p} data were caused by the coupling between the qubit and high-frequency TLS defects with long relaxation times (narrow lines). As explained above, the main feature observed at the optimal point was attributed to the TLS-3 defect. At the detuned flux bias, positions of spectral features related to the defects with $\Delta_{TLS} > 0$ were shifted to lower Rabi frequencies by the value of the qubit frequency detuning $\delta \omega_q$. Therefore, we identified the feature observed at $\Omega_R/2\pi \approx 45$ MHz at the detuned bias as the main one corresponding to the TLS-3 defect [Fig. 3(a)]. As shown in Fig. 3(b), there were some discrepancies in the positions of TLS defects observed in T_1 and T_{1p} measurements which could be caused by fluctuations of defect frequencies [10, 21]. In separate spin-locking measurements, we found that positions of the spectral features were not affected by in-plane magnetic fields of up to 0.2 mT, which indicated that the detected TLS defects were charge defects.

In conclusion, we demonstrated that spin-locking measurements of the driven-state relaxation of a superconducting qubit with the frequency ω_q can be significantly affected by the interaction with off-resonant TLS defects with the frequencies ω_{TLS} if one of the conditions $\omega_{TLS} = \omega_q \pm \Omega_R$ is met. Although the qubit and defects were nominally off-resonance in the laboratory frame in our experiments, the Purcell-like regime of resonant qubit-defect coupling was realized in the rotating frame by driving the qubit with the spin-locking pulse. As a result, the qubit relaxation was affected by the interaction with the defects. Thus, in addition to the effect of low-frequency noise sources reported previously [10], spectral features in spin-locking measurements can be caused by off-resonant high-frequency defects. Similar effects can be observed in other types of driven-state noise spectroscopy such as Rabi and rotary-echo measurements [4, 7, 8]. The reported qubit-defect coupling can be also interpreted in terms of Autler-Townes splitting of the qubit state as the interaction between the defect and one of the qubit dressed states [37, 38]. Our results demonstrate that spin-locking methods can be used to couple a superconducting qubit to other quantum systems with high-frequency transitions such as NV centers in diamond [29]. Our work also shows that spin-locking techniques can be used to determine the spectral distribution of high-frequency defects in the vicinity of the qubit frequency, which can be especially useful for fixed-frequency qubits such as transmons.

This work was partially supported by CREST (JP-MJCR1774), JST.

[1] F. Arute et al., Quantum supremacy using a programmable superconducting processor,
It should be noted that different notations and frame et al. Decoherence in a superconducting quantum bit circuit, Physical Review B 72, 134519 (2005).

J. Bylander et al., Noise spectroscopy through dynamical decoupling with a superconducting flux qubit, Nature Physics 7, 565 (2011).

F. Yan et al., The flux qubit revisited to enhance coherence and reproducibility, Nature Communications 7, 12964 (2016).

A. Y. Smirnov, Decoherence and relaxation of a quantum bit in the presence of Rabi oscillations, Physical Review B 67, 155104 (2003).

S. Gustavsson, J. Bylander, F. Yan, P. Forn-Díaz, V. Bolkhovsky, D. Braje, et al., Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator, Physical Review Letters 108, 170503 (2012).

F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W. D. Oliver, and J.-S. Tsai, Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions, Physical Review B 89, 020503(R) (2014).

J. Lisenfeld, C. Müller, J. H. Cole, P. Bushev, A. Lukashenko, A. Shnirman, and A. V. Ustinov, Rabi spectroscopy of a qubit-fluctuator system, Physical Review B 81, 100511(R) (2010).

G. Ithier et al., Noise spectroscopy through dynamically coupled qubits, Physical Review B 81, 155104 (2005).

J. Lisenfeld et al., Decoherence in Josephson phase qubits from junction resonators, Physical Review Letters 93, 077003 (2004).

J. M. Martinis et al., Decoherence in Josephson qubits from dielectric loss, Physical Review Letters 95, 210503 (2005).

A. Lupsasca, P. Doret, E. F. C. Driessen, C. J. P. M. Harmans, and J. E. Mooij, One- and two-photon spectroscopy of a flux qubit coupled to a microscopic defect, Physical Review B 80, 172506 (2009).

J. Lisenfeld, G. J. Grabovskij, C. Müller, J. H. Cole, G. Weiss, and A. V. Ustinov, Observation of directly interacting coherent two-level systems in an amorphous material, Nature Communications 6, 6182 (2015).

A. Bilmes, A. Megrant, P. Klimov, G. Weiss, J. M. Martinis, A. V. Ustinov, and J. Lisenfeld, Resolving the positions of defects in superconducting quantum bits, Scientific Reports 10, 3090 (2020).

A. M. Zagoskin, S. Ashhab, J. R. Johansson, and F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Physical Review Letters 97, 077001 (2006).

J. Johansson, P. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).

J. Lisenfeld et al., Decoherence spectroscopy with individual two-level tunneling defects, Scientific Reports 6, 23786 (2016).

C. J. Wood, T. W. Borneman, and D. G. Cory, Cavity cooling of an ensemble spin system, Physical Review Letters 112, 050501 (2014).

A. Bienfait et al., Controlling spin relaxation with a cavity, Nature 531, 74 (2016).

At a given Rabi frequency, the steady levels of the expectation value \(\langle J_z \rangle \) in the end of the spin-locking pulse were the same for S1 and S2 measurements.

For defects with \(\Delta_{\text{TLS}} < 0 \), the ground state in the laboratory frame corresponds to the excited state in the rotating frame. Therefore, such defects can be considered as “hot” defects.
[38] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Resonance fluorescence of a single artificial atom, Science 327, 840 (2010).

[39] S. Saito et al., Towards realizing a quantum memory for a superconducting qubit: Storage and retrieval of quantum states, Physical Review Letters 111, 107008 (2013).