The 6H states studied in the $d(^8$He,α) reaction and evidence of extremely correlated character of the 5H ground state

E.Yu. Nikolskii,1, 2 I.A. Muzalevskii,2, 3 A.A. Bez balkh,2, 3 V. Chudoba,2, 3 S.A. Krupko,2
S.G. Belogurov,2, 4 D. Biare,2 A.S. Fomichev,2, 5 E.M. Gazeeva,2 A.V. Gorshkov,2 L.V. Grigorenko,2, 4, 1
G. Kaminski,2, 6 M. Khirk,2, 7 O. Kiselev,8 D.A. Kostyleva,8, 9 M.Yu. Kozlov,10 B. Mauyey,2, 11
I. Mukha,8 Yu.L. Parfenova,2 W. Piatek,2, 6 A.M. Quynh,2, 12 V.N. Schetinin,10 A. Serikov,2
S.I. Sidorchuk,2 P.G. Sharov,2, 3 N.B. Shulagina,1, 13 R.S. Slepinev,2 S.V. Stepanov,2 A. Swiercz,2, 14
P. Szymkiewicz,2, 14 G.M. Ter-Akopian,2, 5 R. Wolski,2, 15 B. Zalewsk,2, 6 and M.V. Zhukov16

1 National Research Centre “Kurchatov Institute”, Kurchatov sq. 1, 123182 Moscow, Russia
2 Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
3 Institute of Physics, Silesian University in Opava, 74601 Opava, Czech Republic
4 National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
5 Dubna State University, 141982 Dubna, Russia
6 Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland
7 Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow, Russia
8 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
9 H. Eberhardt Institute, Justus-Liebig-University, 35392 Giessen, Germany
10 Laboratory of Information Technologies, JINR, 141980 Dubna, Russia
11 Institute of Nuclear Physics, 050052 Almaty, Kazakhstan
12 Nuclear Research Institute, 670000 Dalat, Vietnam
13 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
14 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland
15 Institute of Nuclear Physics PAN, Radzikowskiego 152, 31342 Kraków, Poland
16 Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

(Dated: April 19, 2022.)

The extremely neutron-rich system 6H was studied in the direct 2H(8He, 4He)6H transfer reaction with a 26 A MeV secondary 8He beam. The measured missing mass spectrum shows a broad bump at $\sim 4 - 8$ MeV above the 3H+3α decay threshold. This bump can be interpreted as a broad resonant state in 6H at 6.8(5) MeV. The population cross section of such a presumably p-wave state (or may be few overlapping states) in the energy range from 4 to 8 MeV is $d\sigma/d\Omega_{c.m.} \approx 190\mu$b/sr in the angular range $5^\circ < \theta_{c.m.} < 16^\circ$. The obtained missing mass spectrum is practically free of the 6H events below 3.5 MeV ($d\sigma/d\Omega_{c.m.} \lesssim 5\mu$b/sr in the same angular range). The steep rise of the 6H missing mass spectrum at ~ 3 MeV allows to derive the lower limit for the possible resonant-state energy in 6H to be 4.5(3) MeV. According to the paring energy estimates, such a 4.5(3) MeV resonance is a realistic candidate for the 4H ground state (g.s.). The obtained results confirm that the decay mechanism of the 7H g.s. (located at 2.2 MeV above the 3H+4α threshold) is the “true” (or simultaneous) 4α emission. The resonance energy profiles and the momentum distributions of fragments of the sequential 6H \rightarrow 5H(g.s.)$+\alpha$ \rightarrow 2H+3α decay were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the 5H fragments in the 8H rest frame indicate very strong “dineutron-type” correlations in the 5H ground state decay.

I. INTRODUCTION

One of the important trends of the modern experimental nuclear physics, taking advantages of the radioactive ion beam techniques, is the expansion of our knowledge on nuclear systems located further beyond the proton and neutron driplines. An important motivation here is the quest for the limits of of nuclear structure existence: how far should we go beyond the driplines before coming to situation when resonant structures become completely “dissolved in continuum”?

Recently, reliable spectroscopic information was obtained on the extreme neutron-rich system 7H produced in the 2H(8He,α)6H reaction [1, 2]. The 6H population in the 2H(8He,4He)6H reaction, which makes the subject of the present work, is a natural byproduct of the above-mentioned experiment.

Experimental information on the 6H resonant states is very limited. The authors of Ref. [3] reported a value $E_T = 2.7(4)$ MeV (energy above the 3H+3α decay threshold) for the 6H state produced in the 7H(7Li,8B)8H reaction. This result was confirmed (with some reservations) in the 9Be(11B,14O)6H reaction [4], giving 6H ground-state resonance energy $E_T = 2.6(6)$ MeV. The search for 8H in the 8Li(3Li$^{-}\pi^+$) reaction was carried out in [5, 6]. No low-lying resonant states were identified, which led the authors to conclusion that their results cast serious doubt on the existence of the 8H resonance.

* enikolskii@mail.ru
in the 0 – 5 MeV unbound region. The observation of the 6H resonant states at $E_T = \{6.6(7), 10.7(7), 15.3(7), 21.3(4)\}$ MeV, populated in the 10Be($\pi^-, pd)^6$H reaction, and $E_T = \{7.3(10), 14.5(10), 22.0(10), 21.3(4)\}$ MeV states in the 11B($\pi^-, pd)^6$H reaction was reported in Ref. [7]. There was no indication of the resonant state at 2.6-2.9 MeV in this work. The 6H g.s. energy $E_T = 2.9(9)$ MeV was determined in the 8He(12C,14N)6H reaction [8]. Our results are in contradiction with [4, 8] and are majorly in agreement with [2, 7]. We demonstrate in this work that it is likely that the discussion about the actual position of the 6H g.s. is not finished yet, and it should be continued.

The search for the 9H resonant states is an exciting challenge in itself, however, here we face two important questions related also to our understanding of neighboring systems:

(i) What are the decay mechanisms of the 7H ground ($E_T \sim 2.2$ MeV) and excited ($E_T \sim 5.5$ MeV) states? This is defined by the spectra of its subsystems, see Fig. 1. For example, it could be either the true 7H\rightarrow^5H+$4n$ decay, or sequential 7H\rightarrow^5H(g.s.)+$2n$, or, else, the 7H\rightarrow^6H(g.s.)+n decay, depending on the ground state energies of 5H and 6H. While for the 4H and 5H there are some relatively reliable data, the spectrum of 6H is very uncertain.

(ii) What is the decay mechanism of the 6H ground state? Intuitive vision of the situation, also confirmed by the theoretical estimates of this work, tells us that the 6H g.s. decay is likely to have a sequential 6H\rightarrow^5H(g.s.)+$n \rightarrow ^3$H+$3n$ character. Therefore, by studying the 6H decay, we may also gain access to the decay properties of the 5H ground state. The momentum distributions of the 3H fragment, measured in our experiment, can be interpreted by assuming an unexpectedly strong “dineutron” correlation character of the 3H ground state decay. The sequential 6H\rightarrow^5H(g.s.)+$n \rightarrow ^3$H$+3n$ decay has never been studied before, and interpretation of the data required extensive model studies and discussions of this decay mechanism. Our results highlight the potential of the sequential 6H\rightarrow^5H(g.s.)+$n \rightarrow ^3$H$+3n$ decay as an important source of information about the intermediate 5H system.

The data of this work obtained in the double 4He-3H coincidences have quite large statistics (among available data only for the 10Be($\pi^-, pd)^6$H reaction [2] statistics is better), and it allows for a good MM energy resolution for the 6H spectrum and careful treatment of the backgrounds. The consistent MM picture was obtained in the triple 4He-2H-n coincidence data, which provide much smaller statistical confidence, but which can be seen as practically background free. Thus, the derived from our data detailed information on the low-energy spectrum of 6H, shed light on the above-mentioned problems.

II. EXPERIMENT

The experiment was performed in the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) at the recently commissioned ACCULINNA-2 fragment-separator coupled to the U-400M heavy ion cyclotron [12]. Recently the 7H studies were carried out in the 2H(6He,4He)7H reaction [11]. The information on 6H is naturally present in the data of these experiments due to a “satellite” 2H(6He,4He)6H reaction. The 7H experiments were discussed in detail in Ref. [2], and we only briefly sketch here the information important for understanding of the 6H data.

The 6H system was produced in the 2H(6He,4He)6H
reaction. The secondary 8He beam was produced by the 33.4 A MeV 11B primary beam fragmentation on 1 mm Be target. The 8He beam with intensity of $\sim 10^5$ pps at 26 A MeV and $\sim 90\%$ beam purity interacted with the deuterium nuclei in the cryogenic gas target, see Fig. 2. The target was 4 mm thick with 6 μm thick entrance and exit stainless steel windows. Being cooled down to 27 K, it had a thickness of 3.7×10^{25} cm$^{-2}$. The secondary beam diagnostics, made with the pair of thin ToF plastics and the pair of position-sensitive chambers [13], provided the determination of the hit position on the target and the time-of-flight measurement made for every individual beam ion with accuracy 1.8 mm and 280 ps, respectively.

The experimental setup, discussed in detail in Ref. [2], involved four “sideway” ΔE-E-E telescopes detecting the recoil nuclei (4He in this experiment) emitted from the cryogenic deuterium gas target in angular range $\sim 8^\circ$–26° in laboratory system. The 20 μm thick, 50 \times 50 mm2 single-side Si front detector of the telescope had 16 strips. Next to this ΔE detector was the 1 mm thick, 61 \times 61 mm2 double-side Si strip detector having behind another 1 mm thick veto detector. The “central” telescope, assigned for the registration of the 3H fragments, originating from the 6He decay, consisted of the 1.5 mm thick 64 \times 64 mm2 double-side Si strip detector followed by the 4 \times 4 array of CsI(Tl) scintillators. The charged particles, namely the “fast” decay tritons (with lab. energy $\sim 70 \pm 30$ MeV) or Li isotopes (in the case of the reference 3H(10Be,4He)8Li reaction), were registered in the narrow forward cone $\theta \leq 6^\circ$, with good angular ($\Delta \theta \leq 0.5^\circ$) and energy ($\Delta E/E \leq 2\%$) resolutions.

The typical identification plots obtained with these detector telescopes are illustrated in Fig. 3. A good quality of the helium isotopes’ identification is found, see panel (a), where the green dots show the coincidences with “fast” tritons as well. The central telescope performance is illustrated in Fig. 3 (b) giving as example the calibration 2H(10Be,4He)8Li reaction study. All hydrogen and lithium isotopes are obviously well separated here.

The setup also included a neutron wall consisting of 48 stilbene-crystal modules where each 50-mm thick crystal was 80 mm in diameter [14]. The neutron wall was located near zero angle at a ~ 2 m distance from the deuterium target, see Fig. 2 (a). The neutron spectrometer involved into the triple 4He-3H-n coincidences has a good n-γ separation provided by the so called pulse-shape analysis method [14], see Fig. 4.

The dedicated measurement with the 42 A MeV secondary 10Be beam (produced from the 50 A MeV primary beam) was performed to provide independent calibration of the setup, see Section IIIB.

A. The Monte-Carlo simulations

Complete Monte-Carlo (MC) simulations of the experimental setup for the 2H(8He,4He)8H reaction were performed. The 8H MM resolution of the experiment

FIG. 3. Typical ID-plots. (a) For the sideway telescopes in the 2H(8He,4He)8H reaction, where the green dots show the coincidences with 4He-3H coincidences forming the 8H spectrum. (b) For the central telescope in the 2H(10Be,4He)8Li reaction assigned to calibration of the 8H MM spectrum.

FIG. 4. The ID-plot for neutron spectrometer (time-to-amplitude ID parameter vs. neutron energy). Red dots show events identified as neutrons and blue dots indicate such events involved into the triple 4He-3H-n coincidences.
The neutron-unstable 8Li spectrum populated in the 2H(10Be,3He)6Li reaction

Dedicated test experiment was performed with the 10Be beam for the setup calibration. The known neutron-unstable 8Li states were populated in the 2H(10Be,3He)6Li reaction. The $\Delta E-E$ plots viewed in the case where the 42 A MeV 10Be nuclei bombarded the deuterium gas target were even more filled in their 4He loci than in the case of the 8He projectiles. However, by imposing the 4He-Li coincidence condition this background was strongly reduced. The first two particle-stable states of 8Li (corresponding to the 4He-8Li coincidence events) were found to be poorly populated in this reaction. The first neutron-unstable resonant state, known to be at the excitation energy of $E^* = 2.25$ MeV [13], is well seen in the 4He-7Li coincidence events in Fig. 4. The energy of this state is measured with 250-keV error, but also, is well interpreted by assuming that the next 8Li state with $E^* = 3.21$ MeV is populated with relative $\sim 30\%$ probability, as predicted in the FRESCO calculations.

$\theta_{c.m.}$	5	10	15	20
10°	1.7	1.3	1.0	0.8
20°	1.7	1.5	1.3	1.0
30°			1.4	1.2

The 4He-3H coincidence data (4650 events in total) obtained in the 2H(8He,3He)6H reaction are shown in Fig. 6. The setup of experiment 2 was optimized for the 7H search in the 2H(8He,3He)7H reaction, and, therefore, it was not optimal for the 6H studies. For that reason a relatively narrow center-of-mass (c.m.) angular range was available for the 4He recoils originating from the 2H(8He,3He)6H reaction, see Fig. 6(b). Background conditions were quite poor for these recoils because of random coincidences with alphas originating from other intense reaction channels. This background can be seen in Fig. 6(a) as the strong population of the $\{E_T, E_{3\text{H}}\}$ plane beyond the kinematical limit for the 2H(8He,3He)6H reaction ($E_{3\text{H}}$ is the 3H energy in the 6H c.m. frame). The background in the low-energy part of the MM spectrum can be drastically reduced by gating the data in the kinematically allowed range $E_{3\text{H}} < E_T/2$ on the $\{E_T, E_{3\text{H}}\}$ plane. This selection results in 3850 events shown by red dots in Fig. 6(b). The 6H MM spectrum derived from these events [blue histogram in Fig. 6(c)] shows a rise in the region beginning at $E_T = 3.0-3.5$ MeV and going up to $E_T = 6$ MeV, where the spectrum remains flat within the energy range extending up to $E_T = 9$ MeV. The rate of this rise, coming to the flat top, matches well the shape characteristic for relatively broad p-wave resonant states, as can be expected for 6H. This rate is much faster than one may expect in situation without resonant contributions [for example, the 4-body phase volume case is illustrated by the orange dotted curve in Fig. 6(c)]. This specific shape of the MM spectrum allows us to claim that there is a resonance state, or a group of overlapping resonance states in 6H located at MM energy $E_T \sim 6.8$ MeV.

FIG. 5. The 8Li spectrum obtained in the 2H(10Be,3He)8Li reaction for 4He-7Li coincidence events.

III. THE 6H DATA

TABLE I. The 6H MM energy resolution (in MeV) of the setup for the 2H(8He,3He)6H reaction according to MC simulations. The resolution is shown as function of the 6H MM energy (columns, in MeV) and center-of-mass reaction angle (rows, in degrees). Missing values correspond to a near zero efficiency of the setup.

The 6.8 MeV bump can be made more visible by limiting the reaction c.m. angular range as $\theta_{c.m.} < 16°$, see the gray histogram in Fig. 6(c). All the MM spectra gated by some $\theta_{c.m.}$ bands with $\theta_{c.m.} > 16°$ show no resonating behavior, only monotonous growth up to $E_T \sim 20$ MeV.
[for example, see the red histogram in Fig. 6(c)]. Partly this is due to the setup efficiency in the $E_T \sim 6.8$ MeV energy range, which rapidly degrades at $\theta_{c.m.} > 16^\circ$ and comes to zero at $\theta_{c.m.} \sim 22^\circ$. In contrast, the energy range $E_T \gtrsim 10 - 15$ MeV for $\theta_{c.m.} > 16^\circ$ is strongly boosted due to the setup geometry. This effect is well illustrated in Figs. 6(b) and 12(a).

FIG. 6. Data on the 4He-3H coincidence events considered for the ascertainment of the 6H MM energy spectrum. (a) Correlation between the 3H energy in the 6H c.m. frame E_{3H} and the 6H MM energy E_T. The gray triangle, bounded by the blue dotted line, shows the kinematically allowed region. (b) Correlation between the center-of-mass reaction angle and the 6H MM energy. The gray rectangle shows the 3H+α threshold and the position of the 6.8 MeV 6H resonant state.

FIG. 7. The $\Delta l = 1$ cross section for the 2H(4He,4He)6H reaction obtained in FRESCO calculations.

A. The 6H c.m. angular distribution

The cross section of the 2H(4He,4He)6H reaction populating the expected low-lying resonant states of 6H was calculated using the FRESCO code for $\Delta l = 1$ momentum transfer. The calculations are analogous to those performed in [2] for the 2H(8He,3He)7H reaction with the “standard” parameter set. The obtained center-of-mass cross section is shown in Fig. 7. The cross section features a broad peak at about $\theta_{c.m.} = 8^\circ$, the rapid fall after $\theta_{c.m.} > 14 - 16^\circ$, and the diffraction minimum around $\theta_{c.m.} \sim 24^\circ$.

In paper [2] the “standard” parameter set for FRESCO calculations was modified to explain the experimentally observed missing population in the angular range $10^\circ < \theta_{c.m.} < 14^\circ$, which was assumed to correspond to the diffraction minimum of the 2H(8He,3He)7H reaction. The “standard” parameter set predicted this diffraction minimum at $\theta_{c.m.} \sim 18^\circ$. Strong absorption or extreme peripheral character of the reaction were suggested in [2] to explain the low-angle shift of the diffraction minimum. One may expect that such a parameter modification is needed also for the 2H(4He,4He)6H reaction calculations. However, both (i) the situation observed in Fig. 7 with diffraction minimum at about $\theta_{c.m.} \sim 24^\circ$ and (ii) the hypothetic situation of the diffraction minimum shifted to smaller c.m. angles are qualitatively consistent with the observed in Fig. 6(c) absence of the 6.8 MeV bump in the experimental MM spectrum for $\theta_{c.m.} > 16^\circ$: the angular range $16^\circ < \theta_{c.m.} < 20^\circ$ may correspond either to diffraction minimum for the $\Delta l = 1$ cross section, or to the right slope of its low-angle forward peak.

B. “Direct” empty target subtraction

The background contribution can be further reduced by taking into account the empty target (deuterium gas out) data, see Fig. 8. The empty target measurement collected around 17% of the beam integral providing 280
Let’s first use two simple procedures of the “direct” background subtraction of the scaled empty target data. In the first case the total spectra are the subject of subtraction, see Fig. 8 (c), black diamonds. Alternatively, the empty target spectrum is subtracted in the kinematical limits \(E_{3\text{H}} < E_T/2 \) and \(\theta_{\text{c.m.}} < 16^\circ \) (gray circles). The two features should be pointed here:

(i) The subtraction spectra in the energy range 3.5 – 10 MeV are consistent with each other and consistent with the 6.8 MeV bump position as seen in the spectrum without any background subtraction.

(ii) In both cases we get quite a low limit for the population of the \(E_T = 0 – 3.5 \) MeV energy range (the corresponding limits are 0 ± 25 events and 10 ± 9 events).

So, the both direct subtraction methods produce consistent results and indicate that we understand the nature of the apparatus-induced backgrounds in our experiment. However, because of the low statistics of the empty target data the \(E_T \) bin size was to be set to quite a large value of 3 MeV. Despite the large bin size, the statistical error bars produced by the two used procedures are quite large and do not allow detailed quantitative conclusions. For that reason a more stable background subtraction procedure is developed, which is based on the smooth approximation of the empty target background data.

C. “Advanced” empty target subtraction

This subtraction procedure is based on assumption that the empty target contribution is sufficiently smooth in the kinematical space. The empty target data histogram in the \(\{E_T, E_{3\text{H}}\} \) plane is shown in Fig. 8 (a). This background has two components: the flat component, weakly depending on energy, and the relatively narrow “ridge” at small \(E_{3\text{H}} \) values. It was approximated by a smooth analytical function, see Fig. 8 (b), and then a MC procedure was used to subtract it from the data. The subtraction results obtained with the empty-target data normalized to the \(^8\text{He}\) incoming beam flux are shown in Fig. 10. The motivation for the use of complicated “two-dimensional” background subtraction procedure and important conclusions obtained as a result of this procedure are emphasized by the following two issues.

(i) One may see in Figs. 10 (c,d) that the subtraction procedure reduces to zero the contributions in the kinematically forbidden ranges \(\varepsilon = 2E_{3\text{H}}/E_T > 1 \) for the MM ranges \{3.5, 5.5\} and \{5.5, 7.5\}. This is a good indication that the background subtraction procedure is reasonably well “calibrated” for the energy region of interest.

(ii) The energy distribution in Fig. 10 (b) is flat, and there is no considerable event concentration in the kinematically allowed range \(\varepsilon < 1 \). If there is a flat background distribution in the \(\{E_T, E_{3\text{H}}\} \) plane for \(E_T < 3 \text{MeV} \), it implies that the contribution of the apparatus-induced background is quite low in this range.
MeV, then, evidently, the corresponding background contribution to the MM spectrum with the physical kinematical selection $E_{3\text{He}} < E_T/2$ should be linear at $E_T < 3$. This is actually taking place, and, as a result, the whole ^6He spectrum is effectively reduced to zero in the MM range $E_T < 3$ MeV, see Fig. 10(a).

The 6.8 MeV bump is clearly seen in the empty-target-corrected MM spectrum in Fig. 10(a) with an average cross section of $\simeq 190(40)$ mb/sr being deduced for the c.m. angular range $5^\circ < \theta_{\text{c.m.}} < 16^\circ$. This reasonably large cross section is consistent with the resonant population mechanism. This value is also in a very good agreement with the cross section obtained by FRESCO calculations, see Fig. 7. The steep rise of the spectrum at 3.0–3.5 MeV and the broad left tail of the 6.8 MeV bump provide together an indication that another ^6He state may be located at about 4.5 MeV, see the discussion of Figs. 10(c) and (d) in Section III E below. No indication on the 2.6–2.9 MeV state (the ^6He ground state, as suggested in Refs. 3, 4, 5) is found.

D. Neutron coincidence data

Practically background-free ^6He data can be obtained by requesting coincidence with one of the neutrons emitted in the ^6He decay. The data on the $^4\text{He}+^3\text{He}$-n coincidence events (130 in total) from the $^3\text{He}(^4\text{He}, ^4\text{He})^6\text{He}$ reaction are shown in Fig. 11. The background level of this spectrum can be estimated as $\lesssim 3\%$ from the “kinematical triangles” build for the ^3He and neutron emitted by ^6He, see Figs. 11(a) and (b). The c.m. angular distribution of the $^4\text{He}+^3\text{He}$-n coincidence events is shown in Fig. 11(d). There is evidence that there is a peak at 6.8 MeV in Fig. 11(d), where indication on the 4.5 MeV structure can be also found. There is no evidence of possible 2.6 MeV state in Fig. 11 just one event is found in the 1.5 MeV energy bin around $E_T = 2.6$ MeV compared to the total 14 events within the $E_T \sim 3–8$ MeV MM energy range, assigned to the broad 6.8 MeV peak.

It is important to note that the neutron coincidence MM spectrum is nicely described by the same curves as the empty-target-subtracted MM spectrum, see Fig. 12. This statement is, of course, valid within the much larger statistical uncertainty of the neutron coincidence data.

E. ^6He spectrum interpretation

It should be carefully specified why and in which sense we speculate above about the 6.8 MeV (and moreover, about the 4.5 MeV) states.

Possible interpretations of the low-energy ^6He spectrum are illustrated in Fig. 12. In this figure the empty-target-corrected $^4\text{He}+^3\text{He}$ coincidence spectrum of Fig. 10(a) and the $^4\text{He}+^3\text{He}$-n coincidence spectrum of Fig. 10(c) are also corrected for the experimental efficiency by a MC procedure. For consistency, the neutron coincidence spectrum in Fig. 12 has the same $\theta_{\text{c.m.}} < 16^\circ$ cutoff.

The 4-body $^3\text{He}+n+n+n$ and 2-body $^5\text{He}+n$ phase volumes (orange dotted curves) illustrate the possible profiles of nonresonant “physical backgrounds” in Fig. 12(b) and (c). We may see that such “standard” backgrounds have profiles which can not explain the strong population of the $E_T \sim 3–8$ MeV MM range. Some resonant contributions are also needed.

The resonant cross section behavior at $E_T < 9$ MeV is approximated by the conventional Lorentz-like profiles

$$\frac{d\sigma}{dE_T} \sim \frac{\Gamma(E_T)}{(E_T - E_r)^2 + \Gamma(E_T)^2/4},$$

“corrected” for the energy dependence of the width defined by Eq. 3 below.

The interpretation with a single broad resonant peak is given in Fig. 12(b), see the black solid curve. In these estimates we use the width $\Gamma = 5.3$ MeV for the $E_T = 6.8$ MeV resonant state, see Fig. 10. This width value is likely to be the upper limit for the ^6He resonant state,
because the upper-limit parameters are used in the estimates. For example, the maximum single-particle reduced width $\theta^2 = 1.5$ is used in Eq. (31) for the $^5\text{H}_\text{n}$ channel. For this interpretation there is some indication for underestimation of the spectrum in the low-energy region $E_T = 3-5$ MeV. For a smaller width of the $E_T = 6.8$ MeV resonant state or for a higher resonant energy selection, this underestimation becomes larger and is regarded as not acceptable.

Statistically, the deep in the experimental spectrum around $E_T = 8-10$ MeV may be regarded as not very significant. The “smooth” description of the data with-
out explicit resonant bump [see Fig. 12(b), black dashed curve] has χ^2 value only somewhat larger than unity. This is much worse than in the “broad peak” interpretation [black solid curve in Fig. 12(b)], but statistically this is an acceptable value for the χ^2 criterion. However, for such a “smooth” fit we still need a resonant state at $E_T = 6.8$ MeV. For the “smooth” description of the data also the resonance energy values $E_T < 6.8$ MeV are acceptable. However, higher resonance energy values $E_T > 6.8$ MeV are not acceptable due to the systematic underestimation of the low-energy data. Thus, the $E_T = 6.8$ MeV resonance energy can be regarded as an upper limit resonant energy admissible for the data interpretation with a single broad state.

One may find in Fig. 12(b), (c) that for the 6H MM spectrum between $E_T = 4$ and 8 MeV up to $\sim 35\%$ of the population cross section can be related to “physical background” connected with low-energy tail of the higher excitations. For that reason the lower limit given for the uncertainty of the population cross section should be extended as $d\sigma / d\Omega_{c.m.} \approx 190^{+40}_{-30}$ μb/sr.

F. Where is 6H ground state?

Important feature of our data is the nonobservation of the 6H ground state at $E_T = 2.6 - 2.9$ MeV, as proposed in the earlier works [3, 4, 8]. To quantify this fact we performed complete MC simulations for the isolated ground state assuming the $E_T = 2.6$ MeV resonance energy and angular distribution predicted by calculations of Fig. 7. The MC simulations of our setup efficiency, see Fig. 12(a), show that this energy and angular range $\theta_{c.m.} < 16^\circ$ are the most favorable for such a resonant state identification. Fig. 13 illustrates, which limits on the population of the $E_T = 2.6$ MeV resonance are imposed by our data. One can see that even without any background subtraction this cross section limit should be set as $d\sigma / d\Omega_{c.m.} \lesssim 25$ μb/sr. Such a value is essentially smaller than $d\sigma / d\Omega_{c.m.} \approx 190$ μb/sr both observed around 6.8 MeV bump and predicted by calculations for $\Delta l = 1$ angular momentum transfer. It is clear that whatever is the applied background subtraction procedure, the actual cross section limit should be smaller anyhow. With the direct empty target subtraction procedure the cross section limit is obtained as $d\sigma / d\Omega_{c.m.} \lesssim 12$ μb/sr, see Fig. 8(c). According to the advanced subtraction procedure the population is practically zero at $E_T < 3.5$ MeV, see Fig. 10(a). By assuming that the three events, appearing at $E_T < 3.5$ MeV, could be attributed to such a state, the cross section limit of its population is set as $d\sigma / d\Omega_{c.m.} \lesssim 5$ μb/sr.

Here it is natural to ask the question: “What is the lowest resonant energy admissible by our data?” We imply that the population rate for such a state should be comparable for several possible low-lying states of 6H populated by the $\Delta l = 1$ angular momentum transfer. It is discussed in the theoretical estimates of Section IV that much smaller widths of the low-lying 6H states are possible than it is assumed in Fig. 12(b). For the $E_T = 6.8$ MeV resonance with a smaller width (e.g., $\Gamma = 1.5$ MeV) the interpretation with two states, illustrated in Fig. 12(c,d), is preferable. The low-energy slope of the cross section can be described by a resonant state with energy as low as $E_T = 4.5$ MeV. This resonant contribution should be interpreted as the lowest-energy resonant state in 6H with reasonably large population cross section, which can be consistent with our data.

Generally, one should keep in mind that more than two overlapping 6H states may actually be expected in this energy range. Therefore, the “two-state situation” in reality could mean “more than one state”. The ground state situation of 6H is further discussed in Section V.

IV. TRUE AND SEQUENTIAL DECAY OF 6H

The simplest idea about the character of the 4-body decay is based on the phase volume (p.v.) approximation. The decay of such or analogous character is often discussed as “true 4-body decay”: there are no regions in the momentum space which are emphasized by some forms of nuclear dynamics. The phase space dV_4 of the 4-particle system can be defined by the three energies $E_i = \varepsilon_i E_T$ corresponding to the three Jacobi vectors in momentum space

$$dV_4 \sim E_T^{3/2} \delta(E_T - \sum_i \varepsilon_i E_T) \sqrt{1 - 2 \varepsilon_3} \, d\varepsilon_1 d\varepsilon_2 d\varepsilon_3.$$

(1)

The one-dimensional phase-volume-energy distribution can be obtained by integrating the phase space (1) over the two ε variables

$$dV_4 / d\varepsilon \sim E_T^{7/2} \sqrt{\varepsilon(1 - \varepsilon)^2}.$$

(2)
This expression for the energy distribution is evidently the same for any of the three Jacobi vectors. Therefore, it defines the single-particle energy distributions both for 3H and n fragments emitted in the 9H decay.

A more realistic scenario of the decay of 9H can be sequential process: the emission of one neutron, which may lead to the population of the 5H ground state. For theoretical modelling of the 6H sequential decay via the 5H g.s. we employ the generalization of the R-matrix-type expression, which was previously actively used for the two-nucleon emission estimates in Refs. [16–20]:

$$\Gamma(E_T) = \frac{E_T(V_3)^2}{2\pi} \frac{\Gamma_{5H-n}(E_{5H-n})}{\Gamma_{5H}(E_{5H})} \times \frac{(E_{5H} - E_{5H-n})^2 - \Gamma_{5H-n}(E_{5H-n})/4}{(E_{5H} - E_{5H-n})^2 - \Gamma_{5H-n}(E_{5H-n})/4},$$

$$\langle V_3 \rangle^2 = (E_T - E_{5H-n})^2 + \Gamma_{5H}(E_{5H-n}) \frac{\Gamma_{5H}(E_{5H-n})/4}{\Gamma_{5H-n}(E_{5H-n})},$$

$$E_{5H} = \varepsilon_{5H} E_T, \quad E_{5H-n} = (1 - \varepsilon_{5H}) E_T,$$

The $\Gamma_{5H}(E_{5H})$ width dependence can be parameterized as

$$\Gamma_{5H}(E_{5H}) = C_{5H} E_{5H}^2, \quad C_{5H} = 0.5 \text{ MeV}^{-1}. \quad (3)$$

For $E_{5H}^{(R)} = 1.8$ MeV this results in $\Gamma_{5H}^{(R)} = 1.62$ MeV, which is consistent with the data [3,11]. The neutron width can be defined by the standard R-matrix expression

$$\Gamma_{5H-n}(E_{5H-n}) = 2 \frac{\theta^2}{2m r_c^2} P_{l=1}(E_{5H-n}, r_c), \quad (5)$$

where P_l is penetrability as a function of the decay energy E_{5H-n} in the 9H+n channel and its “channel radius” r_c. The Lorentz-type profiles used in Eq. [3] for the 6H estimates are shown in Fig. [14] (a). They correspond to the following parameters: $E_{5H}^{(R)} = 2.25$ MeV, $r_c = 3$ fm, and $\theta^2 = 1.5$. The phase shift in the 3H-n channel, which can be associated with Γ_n in Eq. [4], is shown in Fig. [14] (b); this can be seen as reasonably consistent with phase shifts of the lowest states of 4H. The energy distributions between the 5H(g.s.) and neutron, calculated by Eq. [3], are illustrated in Fig. [15] (b) for two 6H decay energies.

The 6H decay widths, estimated by Eq. [3], is shown in Fig. [16] together with a trivial estimate of the p-wave neutron emission on the 5H(g.s.) threshold made by Eq. [5]. For the states with $E_T = 4.5$ and 6.8 MeV the corresponding width values 3 and 5.5 MeV are obtained. One may see that in proximity of the 5H(g.s.)-n threshold the width provided by the 4-body expression [3] differs qualitatively from that evaluated by [5]. At higher energies the difference becomes not so large. The 4-body expression provides result which is somewhat smaller than the 2-body one (some part of the 5H continuum strength described by a broad state remains outside the 6H decay energy window).

One should also note that the 6H g.s. may have quite low spectroscopic factor of the $n+^4$H(g.s.) configuration. This idea comes as analogy with the 9He g.s. situation, which can also be seen as a hole in the neutron $p_{3/2}$ subshell from the shell model point of view. The respective neutron spectroscopic factors of 0.3–0.6 are typically derived or predicted for the 4He g.s. (e.g. 21,22, and Refs. therein). Therefore, the widths provided in Fig. [16] are expected to be the upper limit estimates for the widths, and one cannot exclude that the actual widths of the 6H resonant states are much smaller. The widths may be around $\Gamma \sim 1 - 3$ MeV, as assumed in Fig. [12] (c,d).

A. Energy distributions of the decay products

Though Eq. [3] can be seen as a very simplistic model of the 3n emission in 6H, it may provide some exclusive information, never considered carefully before: the energy distributions of the decay products of 6H may be calculated for more complicated dynamical assumptions than phase volume.
For these calculations an additional input is required: the energy distribution \(^3\text{H}+n+n\) inside the \(^5\text{H}\) subsytem. Here we employ the following three qualitatively different model distributions.

(i) “3-b. p.v.” — three-body phase volume assumption about the decay of the \(^5\text{H}\) g.s. (the standard uncorrelated assumption).

(ii) “realistic” — the \(^5\text{H}\) g.s. energy distribution inspired by the experimental data [11].

(iii) “dineutron” — the highly correlated dineutron decay of the \(^5\text{H}\) ground state.

These cases are illustrated in Fig. 16 (a). It should be understood, what the above mentioned “inspired by experiment” assumption means: the energy distribution for \(^5\text{H}\) was reconstructed in [11] in the energy range around the g.s. position (see Figs. 10 and 11 in [11]). However, it is demonstrated in [11] that the contribution of the broad 5/2\(^+\) – 3/2\(^+\) doublet of excited \(^5\text{H}\) states (located around \(E_T \sim 5\) MeV) is large or even dominant in the \(^5\text{H}\) g.s. energy region (\(E_T \sim 1.8\) MeV). For that reason we can only guess or try to predict theoretically [23, 25] what is the actual \(^5\text{H}\) g.s. decay energy distribution.

By using the inputs from Figs. 13 and 17 we obtain the energy distributions of the neutrons and \(^3\text{H}\) fragments in the \(^6\text{H}\) rest frame, see Fig. 17 and Fig. 18 respectively. The estimated neutron distributions all have a pronounced bimodal shape connected with the assumed sequential \(^6\text{H} \to ^5\text{H}(g.s.)+n \to ^3\text{H}+3n\) mechanism of the decay. Unfortunately, the single-neutron distribution is relatively weakly sensitive to the decay mechanism of \(^5\text{H}\), and the energy resolution of the neutron spectrum in Fig. 11 is not sufficient to make practical use of this information. In contrast, the \(^3\text{H}\) energy distribution demonstrates strong sensitivity to the correlations in the \(^5\text{H}\) intermediate system.

To make the above considerations quantitative, the \(^3\text{H}\) energy distributions of Figs. 18 (a,b) were used in MC simulations, which allowed us to take into account the bias of our experimental setup. The resulting distributions are shown in Figs. 18 (c,d), and the numerical information about the \(^3\text{H}\) energy distributions is provided in Table II.

The experimental energy distributions for the \(^3\text{H}\) fragment in the \(^6\text{H}\) c.m. system for the \(^4\text{He}^\text{-}\text{He}^\text{-}\text{He}^\text{-}\text{He}^\text{-}\) and \(^4\text{He}^\text{-}\text{He}^\text{-}\text{He}^\text{-}\text{He}^\text{-}\) coincidence events are shown in Fig. 18 (e,f). These distributions are consistent with each other within the available statistics in the energy ranges \(E_T = 3.5 – 5.5\) MeV and \(E_T = 5.5 – 7.5\) MeV. One may conclude from Fig. 18 and Table II that the preferable interpretation of the data suggests the extremely correlated emission of two neutrons from the \(^5\text{H}(g.s.)\) intermediate system.

V. DISCUSSION

In this Section we are going further argument that the 6.8 MeV bump and cross section rise at 4.5 MeV are likely to represent the actual ground and first excited state (states), while the 2.6 MeV ground state, which is broadly accepted now in the literature, has actually a very limited experimental support.

A. Does the 2.6 MeV state exist in the \(^6\text{H}\)?

The vision that the 2.6 MeV ground state energy of \(^6\text{H}\) issolidly established is quite widespread. We have to point here that this misleading impression is partly supported by some problem of data representation in the NNDC database. Namely, in NNDC page for the \(^6\text{H}\) level scheme one gets information that the ground state population was taking place in all the five available reactions — three in papers [3, 4, 8] and two in [7]. Such a broad experimental support may look impressive. However, if one opens the corresponding evaluation pdf files at NNDC [15] for the \(^6\text{H}\) population in pion absorption reactions “B” and “D” (based on Ref. [7]), then it is easy to find out that the presumed \(^6\text{H}\) g.s. at 2.6 MeV is actu-
ally not populated in these reactions. The lowest-energy state, as obtained in this work, has energies 6.6(7) MeV for the 9Be(π^-pd)6He reaction and 7.3(10) MeV for the 11B(π^-p^4He)6He reaction. These values are evidently in a nice agreement with our 6.5(8) MeV bump.

The spectra shown in Ref. 7 have good statistics (thousands of events), comparable to statistics obtained in our experiment. The shapes of the MM spectra are qualitatively the same as our MM spectrum: the energy region under $E_T \sim 3$ MeV is poorly populated; then, there is a kink or bump in the spectra at about $E_T \sim 7$ MeV; at higher energy the spectrum is reasonably flat.

Actually, two reasonably consistent sets of excited states are additionally claimed in Ref. 7: $E_T = \{10.7(7), 15.5(7), 21.3(4)\}$ MeV, populated in the 9Be(π^-pd)6He reaction, and $E_T = \{14.5(10), 21.3(4)\}$ MeV states populated in the 11B(π^-p^4He)6He reaction. We observe some oscillation in this energy range in our spectrum with statistical significance analogous to that of Ref. 7: however, we consider this statistical significance as insufficient to claim additional states in the spectrum of 6He.

The studies of the 6Li($\pi^-\pi^+$)6He reaction provided no evidence for low-lying resonant states of 6He 6. The authors performed the dedicated search for the 2.6 MeV ground state and found that “... In the missing mass region 0 – 5 MeV 95% confidence upper limits of 0 – 5 nb/sr for the production cross section were set.” This limit should be compared to the typical expected 6He g.s. population cross section of ~ 40 nb/sr for this reaction.

We look directly at the missing mass spectrum of the 6Li($\pi^-\pi^+$)6He reaction in 6, then some evidence for a kink in the spectrum can be seen at $E_T \sim 7 – 9$ MeV, where the typical resonant population cross section of $\sim 30 – 70$ nb/sr is achieved. So, this data can be seen as being in qualitative agreement with our result.

Let’s now have some critical review of the experiments in which the 2.6 MeV g.s. was observed.

The 6He resonant state was reported for the first time in Ref. 8. It gives the g.s. energy $E_T = 2.7(4)$ MeV for the 6He state produced in the 7Li(7Li,8B)9He reaction. Actually a broad structure with $E_T = 1.8 – 4.5$ MeV is observed, which statistically is quite convincing (~ 300 events). The data is strongly contaminated with various backgrounds (40 – 60% in the region of resonance bump, according to 6). Mechanism of this reaction is a complicated “bidirectional” transfer (–$2p$, +$1n$). Now we can point that 7Li(7Li,8B)9He(g.s.) can be responsible for the formation of this bump, where the 8B∗ excited states located somewhat above the 8B+n threshold are populated (e.g. $E^* = 18.6$ or 20.7 MeV states). This is the much “easier” reaction and something like an order of the magnitude higher population cross section may be expected for it. The authors of 6 avoided this interpretation, as “... the 5He nucleus is known not to exist.” Now the low-lying resonant g.s. of 5He with $E_T \approx 1.8$ MeV is solidly established.

The $E_T = 2.6(5)$ MeV bump was claimed to be observed in the 9Be(11B,14O)6He reaction in Ref. 9. There are problematic issues concerning this experiment. (i) Marginal statistics and large backgrounds (~ 20 events are spread on the top of ~ 40 of expected background events). (ii) The obtained events are actually spread in a much narrower energy range $E_T = 2.1 – 3.1$ MeV than in 6. Point (ii) is probably partly connected with fact that the kinematical cut-off for the 9Be(11B,14O)6He reaction in 6 is taking place at $E_T \sim 3.2 – 3.5$ MeV leading to unknown strong distortions of the MM spectrum in the region of expected 6He resonance peak. (iii) The ground state of the neighboring 5He nuclide was not observed in Ref. 8 in the analogous 9Be(11B,15O)6He reaction (otherwise providing on average a reliable 10-fold larger statistics than 6H data).

The 6H g.s. energy of $E_T = 2.9(9)$ MeV was claimed in 8 basing on the events which could originate from the 9He(12C,14N)6He reaction. The problem is that there was no channel identification in 8, which can reliably distinguish among the 12N, 13N, and 14N recoils, and, consequently, among the 7H, 6H, and 5H products. Assignment for each of these products was solely based on assumption that only the low-lying near-threshold ground state is populated in each case. Specifically for 6H in 8 there are five events spread from 0 to 7.5 MeV excitation in the MM spectrum and only three events located between 1.5 to 5.5 MeV were assigned as belonging to 6H g.s. resonance. This kind of data, taken without interpretation, actually can be considered as not contradicting to our data.

So, we can see that the $E_T \sim 2.6$ MeV state has very

Models:	4-body p.v.	3-body p.v.	realistic	dineutron	experiment					
ranges (MeV)	th.	bias	th.	bias	th.	bias	th.	bias	4He-3H	4He-3H-n
$3.5 < E_T < 5.5$	1/3	0.30	0.29	0.28	0.33	0.30	0.43	0.39	0.42(3)	0.49(7)
$5.5 < E_T < 7.5$	1/3	0.28	0.27	0.24	0.31	0.26	0.39	0.33	0.33(2)	0.24(8)
questionable support in experimental data. All the experiments [4, 8] in which it was observed have important experimental problems (statistical significance, channel identification, etc.). In contrast, in experiments with large statistics, clear channel identification and background treatment (Refs. [3, 21] and our data) one gets the first expressed lowest-energy feature at $E_T \sim 7$ MeV. It is, of course, not impossible, that the ~ 2.6 MeV state was specifically poorly populated in the reactions of Ref. [3, 21] and our reaction. However, such suggestion is quite unnatural, as there should be several excited states of 6H (all populated by the same $\Delta l = 1$ as the ground state) within several MeV of excitation. All of them are expected to be populated comparably with the ground state, while here we find the 6.8 MeV bump, having typical for direct single-step transfer reactions cross sections (e.g. $d\sigma/d\Omega_{c.m.} \approx 190$ mb/sr in our reaction).

We suggest to consider the location of 6H g.s. as an open question and provide below some theoretical arguments supporting the g.s. prescription based on the data of our work.

B. Analogies among 4He and 6H excitation spectra

Let us consider the energy level evolution from 5He (with the assumed configuration of one neutron particle in the $p_{3/2}$ subshell) to 7He (one neutron hole in the $p_{3/2}$ subshell), see Figure 19. The $3/2^-$ ground state of 7He becomes more bound, than that in 5He. The experimental status of the $1/2^-$ state in 7He is not well established (see e.g. [21]), however, it seems to have higher excitation energy than the $1/2^-$ state in 5He. Moreover, it is highly likely that there is the $5/2^-$ state in 7He, built on the 2^+ excitation of 6He [26, 27], which, evidently, has no counterpart in 5He.

If we consider evolution from 5He to 4H, than the $\{3/2^-, 1/2^\}$ spin-orbit doublet is replaced by a quartet $\{2^+, 1^-, 1^+, 0^-\}$ of states due to split induced by the 3H spin. If we extend the 5He-7He analogy of Fig. 19 to the 6H states, then two effects are expected.

(i) Following the 7He vs. 5He analogy, we expect that the 6H g.s. is more bound than the 4H ground state. This assumption is true if the 4.5 MeV state really exists in 6H.

(ii) In the range $4 < E_T < 9$ MeV we expect six states of 6H. So, it is highly likely that the broad 6.8 MeV structure is actually a superposition of several overlapping states, which are populated in unknown proportions and could not be resolved in the inclusive (no correlation) experiment. It still makes sense to distinguish the 4.5 MeV state, which are populated in unknown proportions and could not be resolved in the inclusive (no correlation) experiment. It still makes sense to distinguish the 4.5 MeV state...
state, as the lowest energy resonance, which is allowed by our data, and, thus, is a candidate to represent the ^6H ground state.

C. Paring energy

As we have mentioned in Introduction, the ^6H g.s. position was suggested to be at $E_T = 2.6 - 2.9$ MeV in Refs. 3, 4, 8. However, now the g.s. energies are known for ^6H ($E_T \sim 1.8$ MeV 3, 11; the $E_T = 2.4(3)$ MeV value from 28 is practically consistent with this value) and ^7H ($E_T \sim 2.2$ MeV 2; we regard the $E_T \sim 0.3 - 1$ MeV value from 8 as much less reliable). Based on these values, the energy reported in 3, 4, 8 for the ^6H ground state, would mean the lack of the neutron pairing effect in the even-neutron nucleus ^7H (experimental paring energy appears to be $\sim 0.7 - 1$ MeV compared with ~ 3 MeV expected in analogy with the $^7\text{He}^3\text{He}$ pair). Hence, we conclude that the results reported in Refs. 3, 4, 8 are not compatible with the standard pairing assumption. The ^6H ground state suggested in this work at $E_T = 4.5$ MeV precisely fits the pairing energy systematics.

D. Strong nn correlation observed in pion double charge exchange

The search for ^6H in the $^6\text{Li}(\pi^-,\pi^+)\text{H}$ reaction provided no g.s. identification in the $E_T = 0 - 5$ MeV range 5. However, the authors have pointed in a dedicated paper that the peculiar behavior of the low-energy ^6H missing mass spectrum can be understood as connected with the presence of strongly correlated $2n$ configuration in the ^6H continuum considered as $^3\text{H}+n+2n$. We should emphasize that this observation is actually consistent with the observation of the strong $n-n$ correlation in the ^9H decay made in this work, and in ^5H decay in Ref. 11.

VI. CONCLUSIONS

The ^6H spectrum was populated in this work in the $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ transfer reaction. The broad bump in the ^6H MM spectrum at $E_T = 4 - 8$ MeV is reliably identified in the data with the population cross section $d\sigma/d\Omega_{\text{cm.}} \simeq 190^{+40}_{-80}$ μb/sr in the $5^\circ < \theta_{\text{cm.}} < 16^\circ$ angular range. This is reasonably large cross section, consistent with the resonant population mechanism. This bump can be interpreted as a broad ($\Gamma > 5$ MeV) resonant state at $E_T = 6.8(5)$ MeV. Actually this could be either a single state or a set of broad overlapping p-wave states, as expected from analogy with the known ^3H spectrum. Observation of such a states(s) is consistent with the data of Ref. 2, concerning the lowest ^6H state.

We have found no evidence of the $\sim 2.6 - 2.9$ MeV state in ^4H, which was reported in the pioneering work 3 and has got support in 4, 8. The cross section limit $d\sigma/d\Omega_{\text{cm.}} \lesssim 5$ μb/sr is set for the population of possible states with $E_T < 3.5$ MeV. Also the existence of the ^6H g.s. at $\sim 2.6 - 2.9$ MeV is hardly consistent, due to the pairing energy argument, with the observation of the ^7H g.s. at 2.2(5) MeV 2. There is no sensible structural argument explaining why the population of the possible $\sim 2.6 - 2.9$ MeV ground state could be suppressed in a very “simplest” $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ transfer reaction and not observed in our data, while the ^6H spectrum at $E_T \gtrsim 3.5$ MeV is well populated. Therefore, we suggest that position of the ^6H g.s. is not yet established, and discussion of this issue should be continued.

The broad bump in the ^6H MM spectrum at $E_T = 4 - 8$ MeV can also be interpreted as overlap of two relatively narrow states. Such an interpretation of the experimental spectrum allows us to establish $E_T = 4.5(3)$ MeV, as the low-energy limit for the ^6H ground state energy admissible by our data. According to the energy systematics and the paring energy arguments, resonance with such an energy is a good candidate for the ^6H ground state.

The low-energy limit of the ^6H g.s. position, established as $E_T = 4.5(3)$ MeV, confirms that the decay mechanism of the ^7H g.s. (located at 2.2 MeV above the $^3\text{H}+4n$ threshold 2) is the “true” (or simultaneous) $4n$ emission. Thus, the ^7H is the first confirmed case of nucleus possessing this exclusive few-body dynamics of decay.

The momentum distribution of the ^3H decay fragments was reconstructed in the ^3H rest frame. In this work the theoretical studies of the four-body sequential $^6\text{H} \rightarrow ^5\text{H}(\text{g.s.})+n \rightarrow ^3\text{H}+3n$ decays were performed for the first time. Within the assumption of the ^6H sequential decay we have found that our data provide evidence that an extremely strong “dineutron-type” correlation is realized in the decay of the ^6H ground state. More accurate measurements are needed for more solid conclusions. However, a potentially powerful approach for extracting information about the nuclear decay dynamics is already illustrated in our work.

It is clear that our work paves a way to more detailed studies of the $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ reaction, which would be able to provide unequivocal results on the excitation spectrum of ^6H.

ACKNOWLEDGMENTS

This work was partly supported by the Russian Science Foundation grant No. 22-12-00054. I.A.M. was supported by the Student Grant Foundation of the Silesian University in Opava, Grant No. SGF/2/2020, which was realized within the UE OPSRE project entitled “Improving the quality of the internal grant scheme of the Silesian University in Opava”, No. CZ.02.2.69/0.0/0.0/19.0473/00116951. The authors are grateful to Prof. M.S. Golovkov for help in the work and useful remarks. We acknowledge the interest and sup-
port of this activity from Profs. Yu.Ts. Oganessian and S.N. Dmitiev.

[1] A. A. Bezbakh, V. Chudoba, S. A. Krupko, S. G. Belogurov, D. Biare, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, L. V. Grigorenko, G. Kaminski, O. A. Kiselev, D. A. Kostyleva, M. Y. Kozlov, B. Mauyey, I. Mukha, I. A. Muzalevsky, E. Y. Nikolskii, Y. L. Parfenova, W. Piatek, A. M. Quynh, V. N. Schetinin, A. Serikov, S. I. Sidorchuk, P. G. Sharov, R. S. Slepnev, S. V. Stepanov, A. Swierz, P. Szymkiewicz, G. M. Ter-Akopian, R. Wolski, B. Zalewski, and M. V. Zhukov, Phys. Rev. Lett. 124, 022502 (2020).

[2] I. A. Muzalevsky, A. A. Bezbakh, E. Y. Nikolskii, V. Chudoba, S. A. Krupko, S. G. Belogurov, D. Biare, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, L. V. Grigorenko, G. Kaminiski, O. Kiselev, D. A. Kostyleva, M. Y. Kozlov, B. Mauyey, I. Mukha, Y. L. Parfenova, W. Piatek, A. M. Quynh, V. N. Schetinin, A. Serikov, S. I. Sidorchuk, P. G. Sharov, N. B. Shul'gina, R. S. Slepnev, S. V. Stepanov, A. Swierz, P. Szymkiewicz, G. M. Ter-Akopian, R. Wolski, B. Zalewski, and M. V. Zhukov, Phys. Rev. C 103, 044313 (2021).

[3] D. Aleksandrov, E. Ganza, Yu.A.Gluhkov, B.G.Novatsky, A.A.Oglbin, and D.N.Stepanov, Yad. Fiz. 39, 513 (1984).

[4] A. Belozyorov, C. Boroea, Z. Dlouhy, A. Kalinin, R. Kalepachiev, N. Ch. Chau, Y. Ognesian, and Y. Penionzhkevich, Nuclear Physics A 460, 352 (1986).

[5] B. Parker, K. K. Seth, and R. Soundranayagam, Physics Letters B 251, 483 (1990).

[6] K. K. Seth and B. Parker, Phys. Rev. Lett. 66, 2448 (1991).

[7] Y. Gurov, B. Chernyshev, S. Isakov, V. S. Karpukhin, S. Lapushkin, I. V. Laukhin, V. A. Pechikurov, N. O. Porooshin, and V. Sandukovskys, The European Physical Journal A 32, 261 (2007).

[8] M. Csamano, D. Cortina-Gil, W. Mittig, H. Savaş, M. Chartier, C. Domenchy, B. Fernández, M. B. G. Herniles, A. Gillibert, B. Jurado, O. Kiselev, R. Lemmon, A. Obertelli, F. Rejmund, M. Rejmund, P. Rousell-Chomaz, and R. Wolski, Phys. Rev. C 78, 044001 (2008).

[9] A. A. Korsheninnikov, M. S. Golovkov, I. Tanihata, A. M. Rodin, A. S. Fomichev, S. I. Sidorchuk, S. V. Stepanov, M. L. Chelnokov, V. A. Gorshkov, D. D. Bogdanov, R. Wolski, G. M. Ter-Akopian, Y. T. Ognesian, W. Mittig, P. Rousell-Chomaz, H. Savajols, A. E. Kuzmin, E. Y. Nikolskii, and A. A. Oglobin, Phys. Rev. Lett. 89, 072501 (2000).

[10] M. S. Golovkov, L. V. Grigorenko, A. S. Fomichev, S. A. Krupko, Y. T. Oganesian, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepanov, G. M. Ter-Akopian, R. Wolski, M. G. Itkis, A. A. Bogatchev, N. A. Kondratiev, E. M. Kozulin, A. A. Korsheninnikov, E. Y. Nikolskii, P. Rousell-Chomaz, W. Mittig, R. Palit, V. Bouchat, V. Kinnard, T. Materna, F. Hanapp, O. Dorvaux, L. Stuttg, C. Angulo, V. Lapou, R. Raabe, L. Nalpas, A. A. Yukhimchuk, V. V. Perevozhkov, Y. I. Vinogradov, S. K. Grishechkin, and S. V. Zlatoustovskiy, Phys. Rev. Lett. 93, 262501 (2004).

[11] M. S. Golovkov, L. V. Grigorenko, A. S. Fomichev, S. A. Krupko, Y. T. Oganesian, A. M. Rodin, S. I. Sidorchuk, R. S. Slepnev, S. V. Stepanov, G. M. Ter-Akopian, R. Wolski, M. G. Itkis, A. S. Denikin, A. A. Bogatchev, N. A. Kondratiev, E. M. Kozulin, A. A. Korsheninnikov, E. Y. Nikolskii, P. Roussel-Chomaz, W. Mittig, R. Palit, V. Bouchat, V. Kinnard, T. Materna, F. Hanapp, O. Dorvaux, L. Stuttg, C. Angulo, V. Lapoux, R. Raabe, L. Nalpas, A. A. Yukhimchuk, V. V. Perevozhkov, Y. I. Vinogradov, S. K. Grishechkin, and S. V. Zlatoustovskiy, Phys. Rev. C 72, 064612 (2005).

[12] A. S. Fomichev, L. V. Grigorenko, S. A. Krupko, S. V. Stepanov, and G. M. Ter-Akopian, The European Physical Journal A 54, 97 (2018).

[13] G. Kaminski, B. Zalewski, S. Bezbahk, D. Biare, V. Chudoba, A. Fomichev, E. Gazeeva, M. Golovkov, A. Gorshkov, L. Grigorenko, D. Kostyleva, S. Krupko, I. Muzalevsky, E. Nikolskii, Y. Parfenova, P. Plucinski, A. Quynh, A. Serikov, S. Sidorchuk, R. Slepnev, P. Sharov, P. Szymkiewicz, A. Swierz, S. Stepantsov, G. M. Ter-Akopian, and R. Wolski, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 61, 631 (2018).

[14] A. A. Bezbakh, S. G. Belogurov, R. Wolski, E. M. Gazeeva, M. S. Golovkov, A. V. Gorshkov, G. Kaminiski, M. Y. Kozlov, S. A. Krupko, I. A. Muzalevsky, E. Y. Nikolskii, E. V. Ovcharenko, R. S. Slepnev, G. M. Ter-Akopian, A. S. Fomichev, P. G. S. V. Chudoba, and V. N. Schetinin, Instruments and Experimental Techniques 61, 631 (2018).

[15] NNDC database: http://www.nndc.bnl.gov/.

[16] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 76, 014009 (2007).

[17] L. V. Grigorenko, T. D. Wiser, K. Mercurio, R. J. Charity, R. Shane, L. G. Sobotka, J. M. Elson, A. H. Wuosmaa, A. Banu, M. McCleskey, L. Tache, R. E. Tribble, and M. V. Zhukov, Phys. Rev. C 80, 034602 (2009).

[18] E. Olsen, M. Fützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac, Phys. Rev. Lett. 110, 222501 (2013).

[19] K. W. Brown, R. J. Charity, L. G. Sobotka, L. V. Grigorenko, T. A. Golubkova, S. Bedoor, W. W. Buhro, Z. Chajecky, J. M. Elson, W. G. Lynch, J. Manfredi, D. G. McNeil, W. Reviol, R. Shane, R. H. Showalter, M. B. Tsang, J. R. Winkelbauer, and A. H. Wuosmaa, Phys. Rev. C 92, 034329 (2015).

[20] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 91, 064617 (2015).

[21] F. Renzi, R. Raabe, G. Rundisi, D. Smirnov, C. Angulo, J. Cabrera, E. Casarejos, T. Keughten, A. Ninane, J. L. Charvet, A. Gillibert, V. Lapoux, L. Nalpas, A. Obertelli, F. Skaza, J. L. Sida, N. A. Orr, S. I. Sidorchuk, R. Wolski, M. J. G. Borge, and D. Escrig, Phys. Rev. C 94, 024619 (2016).

[22] H. T. Fortune, Eur. Phys. J. A 54, 51 (2018).

[23] N. B. Shul'gina, B. V. Danilin, L. V. Grigorenko, M. V. Zhukov, and J. M. Bang, Phys. Rev. C 62, 014312 (2000), 4 pages.
[24] L. V. Grigorenko, N. K. Timofeyuk, and M. V. Zhukov, Eur. Phys. J. A 19, 187 (2004).
[25] L. V. Grigorenko, Eur. Phys. J. A 20, 419 (2004).
[26] A. A. Korsheninnikov, M. S. Golovkov, A. Ozawa, E. A. Kuzmin, E. Y. Nikolskii, K. Yoshida, B. G. Novatskii, A. A. Ogloblin, I. Tanihata, Z. Fulop, K. Kusaka, K. Morimoto, H. Otsu, H. Petrascu, and F. Tokanai, Phys. Rev. Lett. 82, 3581 (1999).
[27] A. H. Wuosmaa, J. P. Schiffer, K. E. Rehm, J. P. Greene, D. J. Henderson, R. V. F. Janssens, C. L. Jiang, L. Jisonna, J. C. Lighthall, S. T. Marley, E. F. Moore, R. C. Pardo, N. Patel, M. Paul, D. Peterson, S. C. Pieper, G. Savard, R. E. Segel, R. H. Siemssen, X. D. Tang, and R. B. Wiringa, Phys. Rev. C 78, 041302 (2008).
[28] A. H. Wuosmaa, S. Bedoor, K. W. Brown, W. W. Buhro, Z. Chajecki, R. J. Charity, W. G. Lynch, J. Manfredi, S. T. Marley, D. G. McNeil, A. S. Newton, D. V. Shetty, R. H. Showalter, L. G. Sobotka, M. B. Tsang, J. R. Winkelbauer, and R. B. Wiringa, Phys. Rev. C 95, 014310 (2017).