Exponential Modulation Integral Observer for Online Detection of the Fundamental and Harmonics in Grid-Connected Power Electronics Equipment

Hin Sang Lam, Peng Li, Boli Chen, Member, IEEE, Wai Man Ng, Member, IEEE, Thomas Parisini, Fellow, IEEE, and S. Y. R. Hui, Fellow, IEEE

Abstract—Harmonic current estimation is required in active power filters for compensation purposes. The most efficient way of calculating the total harmonic content up to the infinite order is to subtract the fundamental component from the distorted current. Direct determination of the fundamental component of a distorted current of mains frequency was realized recently with a third-order modulation integral observer. This article shows that using an exponential modulation function (Exp-MF) for the integral observer will: 1) significantly enhance the robustness of the observer against noise and 2) automatically remove the low-frequency envelope arising from the D/A and A/C sampling processes compared to previous polynomial modulation function. These new and advantageous features are supported with detailed analysis and experimental verification. The robust observer can be implemented in grid-connected power electronics circuits that require the instantaneous information of the fundamental and/or harmonic currents. Practical comparative tests with the adaptive notch filter and recursive discrete Fourier transform (DFT) methods in an active power filter have confirmed the good performance under both the steady and dynamic states of the proposed Exp-MF integral observer.

Index Terms—Active power filters (APFs), fundamental extraction, harmonics detection.

NOMENCLATURE AND NOTATIONS

\[i \]

Line current.

\[i_1, i_k \]

Fundamental current and \(k \)th order harmonic current.

\[c \]

DC current component.

\[a, \omega \]

Amplitude and frequency of the fundamental current.

\[y \]

Sum of fundamental current and dc offset.

\[z \]

State vector of the sinusoidal signal state–space model.

\[T_A, T_r \]

Temporal window length and resetting period of the modulation integral observer.

\[t \]

Time variable.

\[t_k \]

Time instant of the \(k \)th resetting sequence.

\[d \]

Process disturbance.

\[\phi_h \]

General modulation functions, \(h = 1, 2, 3 \).

\[\phi_{p,h}, \phi_{e,h} \]

Polynomial and exponential modulating functions, \(h = 1, 2, 3 \).

\[\omega_h \]

Weighting parameters of the modulating functions, \(h = 1, 2, 3 \).

\[\Gamma_1, \Gamma_2, \Gamma_e \]

General modulating function matrix and the variants formed by \(\phi_{p,h} \) and \(\phi_{e,h} \).

\[v_{p,h} \]

Auxiliary modulated signals.

A. Subscripts, Superscripts, and Accents

\[\hat{x} \]

Estimated signal.

\[\bar{x} \]

Estimation error.

\[x_i \]

\(i \)th component of the vector.

\[x^{(t)} \]

\(i \)th order time-derivative of the signal.

\[x^T \]

Transpose.
I. INTRODUCTION

The increasing use of nonlinear loads has prompted the harmonics pollution issues in power systems since the 1980s [1]. The power electronics community responded to this challenge by developing active power filters (APFs) [2]–[4] which inject approximate harmonic currents into the ac mains (Fig. 1) in order to comply with various international electromagnetic compatibility (EMC) regulations such as the IEC-61000. A seminal review paper [5] on harmonics detection methods for APFs was published in 2007. This review paper compares six methods listed as follows: discrete Fourier transform (DFT) [6], [7], recursive DFT [8], [9], synchronous fundamental dq-frame [10], [11], fifth harmonic dq-frame [12], p–q theory [13], and generalized integrators. But since its publication, new methods not previously included have been reported. Among them is a modulation integral observer algorithm that adopts a totally different approach [14].

Based on the theoretical work in [14], it is reported in [15] that using modulation integrator observer, which determines only the fundamental component of a periodic signal, can be used to obtain the total current harmonic content up to infinite order by simply subtracting the fundamental component from the nonlinear input current. Because such a method can be implemented with a third-order observer, it is shown in [15] that it is a fast method with high accuracy. Such an approach is conceptually simple and computationally efficient. It has the advantage of no phase delay between the actual and reconstructed fundamental components of the distorted waveform. Moreover, the proposed method requires only single-phase current measurements for fundamental signal reconstruction. Therefore, it can be easily extended to a three-phase system without being affected by the unbalanced load.

In this article, the robustness of the modulation integrator observer method against noise and the aliasing issues caused in the A/D and D/A conversion process are explored for practical implementation of the modulation integral observer in a noisy environment. The novel contribution involves the use of a new exponential modulation function (Exp-MF) which can both increase the observer’s robustness against noise and eliminate the practical aliasing issues. The mathematical proof on the robustness of the Exp-MF over the original MF is included. Practical comparisons of the exponential and the original MF is also provided to confirm the robust performance of the exponential modulation integral observer. Finally, the real-time performance of the time-domain Exp-MF method is practically compared with that of the adaptive notch filter (ANF) and frequency-domain recursive DFT (RDFT) methods in an APF application (Fig. 1).

II. SUMMARY OF THE INTEGRAL OBSERVER WITH POLYNOMIAL MODULATION FUNCTION FOR DETECTING THE FUNDAMENTAL COMPONENT

This section briefly summarizes the integral observer based on the polynomial modulation function (Fig. 2) that was published in [15]. The line current \(i(t) \) is expressed as

\[
i(t) = c + i_1(t) + \sum_{k=2}^{N} i_k(t) \tag{1}
\]

where \(t \) is the time variable, \(c \) is the dc current component, \(i_1(t) \) is the fundamental current, \(i_k(t) \) is the \(k \)th current harmonic component and \(\sum_{k=2}^{N} i_k(t) \) is the total harmonic current. Let the fundamental current be

\[
i_1(t) = a \sin \theta(t) \\
\dot{\theta}(t) = \omega \\
\theta(0) = \phi \tag{2}
\]

and

\[
y(t) = c + i_1(t) \tag{3}
\]

where \(a \) is the amplitude of the fundamental current, \(\omega \) is the angular frequency, \(\theta \) is the phase angle, and \(\phi \) is the initial phase angle. The integral observer considers the total harmonic current as “noise” initially. If \(y(t) \) can be obtained by the observer, from (1) and (3), the total harmonic current can be obtained easily as follows:

\[
\sum_{k=2}^{N} i_k(t) = i(t) - y(t). \tag{4}
\]
Therefore, \(y(t) \) is chosen to be the single output of the integral. Differentiating (3) twice leads to

\[
y^{(2)}(t) = -\omega^2 i_1(t) \tag{5}
\]

where \(y^{(2)}(t) \) is the second-order time-derivative of \(y(t) \). Based on (3) and (5), one can form the following expression:

\[
\begin{bmatrix}
y(t) \\
y^{(2)}(t)
\end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -\omega^2 \end{bmatrix} \begin{bmatrix} c \\ i_1(t) \end{bmatrix} \tag{6}
\]

As can be noticed, \(y(t) \) can be formulated as the output of a third-order state–space observable system

\[
\begin{align*}
\dot{z}^{(1)}(t) &= A_z z(t) \\
y(t) &= C_z^T z(t)
\end{align*} \tag{7}
\]

where

\[
\begin{align*}
z(t) &= \begin{bmatrix} z_1(t) \\
z_2(t) \\
z_3(t)
\end{bmatrix} = \begin{bmatrix} c + a \sin \theta(t) \\
a \omega \cos \theta(t) \\
a \omega^2 c
\end{bmatrix} \\
A_z &= \begin{bmatrix} -\omega^2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}, \\
C_z &= \begin{bmatrix} 1 \\
0 \\
0
\end{bmatrix} \tag{8}
\]

Since \(z_1(t) = y(t) \), the total harmonic current can be derived if \(z_1(t) \) is available. In addition, the dc offset and the fundamental component can be individually recovered after simple algebra [6]

\[
\begin{align*}
i_1(t) &= G z(t) \\
c &= H z(t)
\end{align*} \tag{9}
\]

where \(G = \begin{bmatrix} 1 & 0 & -(1/\omega^2) \end{bmatrix} \) and \(H = \begin{bmatrix} 0 & 0 & (1/\omega^2) \end{bmatrix} \).

III. Existing Polynomial Modulation Function and the Proposed Exp-MF for the Integral Observer

In previous works [14], [15], a polynomial MF (10) in Table I was used to illustrate the effectiveness of the integral observer in determining the fundamental component. In this article, we focus on the use of the new Exp-MF (11) and compare the performance of these two MFs. As can be noticed, the Exp-MF \(\phi_{e,b}(t) \) inherits from the polynomial MF \(\phi_{p,b}(t) \) by multiplying an exponentially increasing term \(e^{w_a t} \). The purposes of introducing the Exp-MF will be illustrated in Section IV.

In the following, we will use \(\phi_i(t) \) to denote an unclassified modulation function (which can be either polynomial or exponential). The MFs designed for this application must satisfy two conditions.

1) The MF and its first \((n-1)\)th derivatives have 0 initial conditions, such that

\[
\phi_{i}^{(0)}(0) = 0, \quad i = \{0, 1, 2\}. \tag{12}
\]

2) The modulation function matrix defined as

\[
\Gamma(t) = \begin{bmatrix} \phi_{1}^{(1)}(t) & -\phi_{1}^{(1)}(t) & \phi_{1}(t) \\
\phi_{2}^{(1)}(t) & -\phi_{2}^{(1)}(t) & \phi_{2}(t) \\
\phi_{3}^{(1)}(t) & -\phi_{3}^{(1)}(t) & \phi_{3}(t)
\end{bmatrix}
\]

is invertible for any \(t \geq t_e > 0 \), where \(t_e \) is a small time instant.

Condition 2) can be verified by calculating the determinant of \(\Gamma(t) \). For example, with the MFs selected from (10), it is immediate to obtain

\[
\det(\Gamma(t)) = -\frac{w_1 w_2 w_3 t^2}{8640} \neq 0 \quad \forall t > 0
\]

which implies the invertibility of \(\Gamma(t) \). Following the same steps, the invertibility of \(\Gamma(t) \) in the context of the Exp-MF [see (11)] also can be verified by simple algebras.

With the availability of the modulation function matrix, the following matrix equation can be formed:

\[
V_{\phi}(t) = \Gamma(t) z(t). \tag{13}
\]

Hence,

\[
z(t) = \Gamma(t)^{-1} V_{\phi}(t) \tag{14}
\]

where the elements of column vector \(V_{\phi}(t) = [v_{\phi}(1) \ v_{\phi}(2) \ v_{\phi}(3)]^T \) can be obtained from the practical measurements of the line current \(i(t) \). It follows that

\[
v_{\phi}(t) = \int_{0}^{t} \phi_{(3)}(t)i(t) + a \omega^2 \phi_{(1)}(t)i(t) dt \tag{15}
\]

To avoid error-accumulation and windup of the pure integrator operator (15) in case the measurement of \(i(t) \) is noisy, a periodic resetting strategy is integrated (see Appendix for the derivation of the resetting mechanism [14]). As such, the integral operator (15) is rescaled at time instants \(t_k \), defined as

\[
t_k = T_\Delta + (k+1)T_r, \quad k = 0, 1, 2, \ldots \tag{16}
\]

where \(T_r \) is the period of the resetting scheme, while \(T_\Delta \) represents the temporal window length of the integration after each rescaling event, \(T_r \geq T_\Delta \). When \(k = 0, t_0 = T_\Delta + T_r \), which represents the first resetting instant. Subsequently, the resetting period is fixed at \(T_r \). In this context, the first derivative of \(v_{\phi}(t) \) can be obtained from the practical measurement of the line current \(i(t) \), as follows:

\[
v_{\phi}(t) = \begin{cases}
\phi_{(3)}(t) + a \omega^2 \phi_{(1)}(t) i(t) & \text{for } 0 \leq t < t_0 \\
\phi_{(3)}(t - t_k + T_\Delta) + a \omega^2 \phi_{(1)}(t - t_k + T_\Delta) i(t) & \text{for } t_k < t < t_{k+1}.
\end{cases} \tag{17}
\]
Then, \(v_{\phi h}(t) \) can be calculated iteratively, and the value of the modulated signal \(v_{\phi h}(t_k) \) at \(t = t_k \) is rescaled by
\[
v_{\phi h}(t_k) = E_h \Gamma(T_\Delta)^{-1}(T_\Delta + T_r)V_\phi(t_k), \quad \text{for } t = t_k
\]
where \(E_1 = [1 \ 0 \ 0], \ E_2 = [0 \ 1 \ 0], \ E_3 = [0 \ 0 \ 1]. \)

The smoothness of the rescaling strategy is justified in the Appendix.

Note that the line current is sampled at a relatively high speed within each repetitive period, and the integral values of (18) can provide the time-domain vector \(V_\phi(t) \) continuously at each sampling instant, then the state vector \(z(t) \) can be obtained from (14) as
\[
z(t) = \begin{cases}
\Gamma(t)^{-1}(t)V_\phi(t), & \text{for } t_e \leq t \leq t_0 \\
\Gamma(t - t_k + T_\Delta)^{-1}V_\phi(t_k), & \text{for } t_k < t < t_{k+1}.
\end{cases}
\]

IV. Issues in Practical Implementation

A. Aliasing Issues in A/D and D/A Conversion Process

In practical implementation, analog–digital (AD) and digital–analog (DA) conversion processes are involved in the sampling of waveforms that tends to introduce additional perturbations to the current signal fed to the observer. A periodic reset of the algorithm [see (17) and (18)] is needed to avoid the accumulation of integral estimation errors. Such processes would lead to an aliasing phenomenon resulting in low-frequency ripples in the envelope of the estimated fundamental component. This section mathematically characterizes the aliasing phenomenon, which is then addressed by the newly developed Exp-MF.

To proceed with the analysis, let us consider that the harmonic current signal \(i(t) \) is perturbed by a broadband noise \(n(t) \). Then, the perturbed signal is expressed as
\[
\hat{i}(t) = i(t) + n(t) = y(t) + n(t) + \sum_{k=2}^{N} i_k(t)
\]
where \(n(t) \) and the unmodeled high-order harmonics \(\sum_{k=2}^{N} i_k(t) \) are treated as the additive disturbance in the estimation scheme. With reference to (17), the noisy input \(\hat{i}(t) \) gives rise to a noisy auxiliary signal \(\hat{\delta}_{\phi h}(t) \), as shown by (20), as shown at the bottom of the page, with \(d(t) \triangleq n(t) + \sum_{k=2}^{N} i_k(t) \). In contrast to the precise counterpart \(v_{\phi h}(t) \) that is driven by \(y(t) \), the additive perturbation \(d(t) \) leads to an error signal, \(\hat{\delta}_{\phi h}(t) \triangleq \hat{\delta}_{\phi h}(t) - v_{\phi h}(t) \), expressed as (21), shown at the bottom of the page, where \(\hat{\delta}_{\phi h}(t_k^+) = E_h \Gamma(T_\Delta)^{-1}(T_\Delta + T_r)V_\phi(t_k) \) is the rescaled error, depending on the terminal error of the previous time interval
\[
\hat{\delta}_{\phi h}(t_k^+)_T = [\hat{\delta}_{\phi h}(t_k) \hat{\delta}_{\phi h}(t_k + T_\Delta^+)]^T.
\]

In view of (19) and (21), the estimation error of \(y(t) \), defined by \(\hat{y}(t) \triangleq \hat{y}(t) - y(t) \) takes on the form of (22), as shown at the bottom of the page, with
\[
\tilde{y}(t_k^+) = E_1 \Gamma(t_k + T_\Delta^{-1})V_\phi(t_k^+)
\]
is the rescaled terminal error at the end of the previous time interval. Because of (9), the total error \(\tilde{y}(t) \) consists of two parts: the fundamental current estimation error \(\hat{i}_1(t) \triangleq \hat{i}_1(t) - i_1(t) = \hat{z}(t) \triangleq z(t) - \hat{z}(t) \) and the dc offset estimation error \(\hat{c}(t) \triangleq \hat{c}(t) - c = H\hat{z}(t) \), such that \(\hat{i}_1(t) + \hat{c}(t) = \tilde{y}(t) \).

In view of (22), the integral operator offers satisfactory attenuation of the high-frequency components, including the harmonics \(\sum_{k=2}^{N} i_k(t) \) and the high-frequency contents contained in \(n(t) \). However, the remaining low-frequency components, unless being zero-mean and uncorrelated with the modulation function \(\Phi(t) \), the error signal \(\tilde{y}(t) \) is prone to diverge due to the error accumulation within two continuous resetting instants. In combination with the resetting mechanism that inherently prevents the drift by downscaling the estimation error, the resulting fundamental signal estimates appear as a swinging sinewave. A numerical example is shown in Fig. 3, which is obtained by repeating the simulation example presented in [6] whereas the harmonic current signal is affected by a nonzero mean uniform distributed disturbance.

B. Antialiasing Solutions

Now, two possible approaches are introduced to reduce the aliasing effect.

\[
\hat{\delta}_{\phi h}(t) = \begin{cases}
\phi_h^{(3)}(t) + \omega^2 \phi_h^{(1)}(t)(y(t) + d(t)), & \text{for } 0 < t < t_0 \\
\phi_h^{(3)}(t - t_k + T_\Delta) + \omega^2 \phi_h^{(1)}(t - t_k + T_\Delta)(y(t) + d(t)), & \text{for } t_k < t \leq t_{k+1}
\end{cases}
\]
\[
\hat{\delta}_{\phi h}(t) = \begin{cases}
\int_0^t (\phi_h^{(3)}(\tau) + \omega^2 \phi_h^{(1)}(\tau))d(\tau)d\tau, & 0 \leq t < t_0 \\
\int_t^{t_k} (\phi_h^{(3)}(\tau - t_k + T_\Delta) + \omega^2 \phi_h^{(1)}(\tau - t_k + T_\Delta))d(\tau)d\tau + \hat{\delta}_{\phi h}(t_k^+), & t_k < t \leq t_{k+1}
\end{cases}
\]

\[
\hat{y}(t) = \begin{cases}
E_1 \Gamma(t_k)^{-1} \int_0^\tau \Phi(\tau) \left[\begin{array}{c} 1 \\
\omega^2 \end{array} \right] d(\tau)d\tau, & 0 \leq t < t_0 \\
E_1 \Gamma(t_k + T_\Delta)^{-1} \int_t^{t_k} \Phi(\tau - t_k + T_\Delta) \left[\begin{array}{c} 1 \\
\omega^2 \end{array} \right] d(\tau) + \hat{y}(t_k^+), & t_k < t \leq t_{k+1}
\end{cases}
\]
To proceed with the analysis, let us first recall the MFs selected from (10) and (11)
\[
\phi_{p,1}(t) = \frac{w_1 t^5}{5!}, \quad \phi_{p,2}(t) = \frac{w_2 t^4}{4!}, \quad \phi_{p,3}(t) = \frac{w_3 t^3}{3!}
\]
\[
\phi_c(t) = e^{w_1 t} \frac{w_1 t^5}{5!}, \quad \phi_{c,2}(t) = e^{w_2 t} \frac{w_2 t^4}{4!}
\]
\[
\phi_{c,3}(t) = e^{w_1 t} \frac{w_1 t^3}{3!}
\]
(24)

In view of (21), the estimation error \(\hat{e}_{\phi_1}(t) \) at an arbitrary time instant is composed of two parts: 1) the rescaled terminal error at the end of the previous time-interval (initial error at \(t = 0 \) is 0) and 2) the accumulated error within the present time-interval. Next, the error comes from 2) will be investigated first whereas the error signal 1) will be studied later.

Without loss of generality, let us pick the first time-interval \(t \in [0,t_0] \). In the context of the polynomial case, the estimation error \(\hat{e}_{\phi_1}(t) \) induced by \(\phi_{p,1}(t) \) can be evaluated by
\[
\hat{e}_{\phi_1}(t) = \int_0^t \left(\phi_{p,1}(\tau) + \omega^2 \phi_{p,2}(\tau) \right) d(\tau) d\tau
\]
\[
= \int_0^t \left(\frac{w_1 t^5}{5!} + \frac{w_1^2 t^4}{4!} \right) d(\tau) d\tau
\]
(26)

Assuming that \(d(t) \) is a periodic signal formed by \(M \) sinusoidal components, \(d_1, d_2, \ldots, d_M \) with associated frequencies \(\omega_{d_1}, \omega_{d_2}, \ldots, \omega_{d_M} \). Due to the linearity of the integral operator, the error term \(\hat{e}_{\phi_1}(t) \) can be expressed as the sum of \(M \) components \(\hat{e}_{\phi_{1,i}}(t) \), \(\hat{e}_{\phi_{1,2}}(t) \), \ldots, \(\hat{e}_{\phi_{1,M}}(t) \) induced by each individual component of \(d(t) \), respectively. Therefore, with reference to (26) it holds that
\[
\hat{e}_{\phi_{1,i}}(t) = w_1 s \left[\frac{1}{2} \left(\frac{d^2}{ds^2 s^2 + \omega_{d_i}^2} \right) + \omega^2 \frac{\omega_{d_i}}{24} \left(\frac{d^4}{ds^4 s^2 + \omega_{d_i}^4} \right) \right]
\]
(27)

where \(i = 1, 2, \ldots, M, s \) is the Laplace variable. After some algebra, we obtain
\[
\hat{e}_{\phi_{1,i}}(s) = G_{p_{1,i}}(s)d_i(s), \quad i = 1, 2, \ldots, M
\]
(28)

where
\[
G_{p_{1,i}}(s) = \frac{w_1}{2} \left(\frac{8s^2}{s^2 + \omega_{d_i}^2} - \frac{2}{s^2 + \omega_{d_i}^2} \right)
\]
\[
+ s \frac{\omega^2 w_1}{24} \left(\frac{384s^4}{s^4 + \omega_{d_i}^4} - \frac{288s^2}{s^2 + \omega_{d_i}^2} + \frac{24}{s^2 + \omega_{d_i}^2} \right)
\]

As can be noticed, the sensitivity function of the system (28) (that is \(|1 - G_{p_{1,i}}(j \omega)| \)) has the sensitivity peak at \(\omega_{d_i} \) since
the closed-loop transfer function $G_{p1}(s)$ is characterized by imaginary poles at $\pm j\omega_d$. Therefore, the system (28) is sensitive to $d_i(t)$, which also implies that $\tilde{\phi}_{p1}(t)$ is sensitive to all frequency components. Analogously, it can be inferred that $\tilde{\phi}_{p2}(t)$ and $\tilde{\phi}_{p3}(t)$ are also sensitive to periodic disturbances when polynomial MFs (24) are applied.

By analogy to (26), the error term $\tilde{\phi}_1(t)$ driven by the Exp-MF $\phi_1(t)$ is expressed as (29), shown at the bottom of the previous page, with $p_2 = 1$, $p_3 = 2$, $p_4 = 3$, $p_5 = 4$, $q_1 = 1$, $q_5 = 2$, $a_2 = 2$, $a_3 = 2$, $a_4 = 8$, $\alpha_3 = 120$, $\beta_4 = 24$, $\beta_5 = 120$. By following the same steps (27)–(28) taken in the polynomial case, we have

$$\tilde{\phi}_{p1}(s) = G_{e1}(s)d_i(s), \quad i = 1, 2, \ldots, M $$

(30)

where $G_{e1}(s)$ is the transfer function induced by Exp-MFs. Due to the exponential term $e^{\gamma t}$, all the imaginary poles at $\pm j\omega^d$ are shifted to the right-hand side of the complex plane by w_1, such that the new poles are $w_1 \pm j\omega_d$. In this context, the sensitivity to sinusoidal disturbances, d_i, $i = 1, 2, \ldots, M$, is significantly reduced. For the sake of completeness, the bode plots of $G_{p1}(s)$, $G_{e1}(s)$ with $w_1 = 45$ and $\omega_d = 5$ Hz are depicted in Fig. 5 as an illustrative example. As can be seen, the sensitivity peak appears in $G_{p1}(s)$ is effectively removed in the exponential counterpart $G_{e1}(s)$.

Although closed-loop transfer functions $G_{p1}(s)$, $G_{e1}(s)$ in both cases are not stable (because of multiple 0 poles in the polynomial case and poles with positive real parts in the exponential case), the divergence of the estimation error $\tilde{\phi}_{p1}(s)$ evoked by the unstable poles (introduced by the polynomial and exponential functions, respectively) are highly attenuated in $\tilde{y}(t)$ by the MF matrix $\Gamma(t)^{-1}$ as the rates of the divergence are compensated by the rate of decay (i.e., $\Gamma(t)^{-1}$ formed by the same type of MFs in each case). Finally, the boundedness of $\tilde{y}(t)$ is rigorously ensured by the resetting mechanism with the properly selected T_Δ, T_r, and the observer scheme is subject to input-to-state stability [15]. Generally, the algorithm has to be reset frequently enough to avoid error accumulation and thereby to ensure stability.

Next, the initial error (rescaled terminal error at the end of the previous time-interval) at each time-interval will be studied. We demonstrate that the rescaling gain of the Exp-MFs is much smaller than the one induced by the polynomial MFs for possible choices of T_Δ and T_r around 0.1 s (which is selected for both resetting coefficients in [6]). Let us consider the norm of the rescaling gains in both cases

$$\gamma_i = |\Gamma_i(T_\Delta)\Gamma_i(T_\Delta + T_r)^{-1}|, \quad i = \{p, e\} $$

where Γ_p and Γ_e represent the MF matrix formed by polynomial and Exp-MFs, respectively. The map of the ratio γ_p/γ_e with respect to T_Δ and T_r is illustrated in Fig. 6, where the benefit of Exp-MFs in terms of scaling down the gain is clearly presented. As such, the rescaled error of the Exp-MFs at each resetting instant tends to be smaller as compared to the polynomial counterparts by also considering the noise sensitivity in both scenarios.

Now, it is possible to infer from the analysis that the robustness of the modulation integral observer is expected to be improved by replacing the polynomial MFs with the exponential ones. Thus, the swing phenomenon tends to be suppressed without adding an extra filter, which will be experimentally verified in Section IV.

V. PRACTICAL IMPLEMENTATION AND EVALUATION

Four sets of practical tests have been conducted to evaluate the performance of the proposed method. First, the robustness of the exponential and the polynomial modulation functions are compared under different noise levels. Second, a comparison of the computation time between polynomial and exponential modulation on FPGA and microcontroller is evaluated. Third, the practical implementation of the exponential modulation in an APF is demonstrated in a hardware setup. Finally, the dynamic performance has been compared between RDFT and Exp-MF methods.

A. Comparison of the Exponential and Polynomial Modulation Functions for the Integral Observer

Practical tests have been conducted to compare the performance of the two MFs under noiseless and noisy situations.
The reference waveform used in this test is shown in Fig. 7 and its harmonic content is given in Table II. Note that this reference waveform is based on the example (with the same relative harmonic ratios) used in the comparison in [5] for a range of harmonic detection methods. The third harmonic is not included because it is canceled in a three-phase power system with a delta-connected transformer. In the experiment, the weighted coefficients w_1, w_2, w_3 are selected as 45, 35, and 15 for both polynomial and Exp-MFs. The fundamental rule for tuning w_1, w_2, w_3 is to minimize the condition number of $\gamma(t)$, in order to render feasible the practical inversion of $\gamma(t)$, in the interval $[T_0, T_{\lambda} + T_r]$. Note that the inverse matrix $\gamma(t)^{-1}$ can be computed analytically once the MFs have been chosen, thereby the inverse can be implemented directly, to avoid online matrix inversion. The noise used for the practical tests is the Gaussian white noise and the peak to peak magnitude of the noise is set at 0.26, 1, 2, and 3 V. The reset time is $T_{\lambda} = T_r = 0.1$ s and the sampling frequency is 10 kHz. The harmonic current and the noise are generated by the function generator Tektronix AFG3102C and the algorithm is implemented by dSPACE DS1006.

The error is calculated by the following method. First, a predesigned harmonic current and fundamental current are injected by a functional generator to the dSPACE. Also, a fundamental current is injected into the dSPACE at the same time. Hence, the reconstructed fundamental current will be subtracted by the injected fundamental current in the program and output by the digital-to-analog converter (DAC) to the scope and further analysis can be carried out by capturing the data. The method used here is to eliminate the phase error between the reconstructed and injected fundamental current as the functional generator can provide the two signals that are perfectly in phase.

Fig. 8(a)–(c) shows the actual and reconstructed fundamental waveforms by the polynomial MF integral observer under noiseless and different noisy conditions. The corresponding measurements for the Exp-MF integral observer are shown in Fig. 9(a)–(c). It can be seen from Fig. 8(a) to (c) that the polynomial MF integral observer can estimate the fundamental component accurately when there is no noise. But the quality of the reconstructed fundamental waveform deteriorates with the increasing noise level. The reconstructed fundamental is affected by the noise and suffers from a swing issue. Therefore, the results are highly affected. However, the reconstructed fundamental waveforms using the Exp-MF integral observer are relatively closer to their ideal sinusoidal references with no obvious swing phenomena.

An alternative way to observe the robustness against noise is to plot the error-time series. Such results under different noise conditions (noise levels of 0, 2, and 3 V) are plotted in Fig. 10(a)–(c). In all cases, the Exp-MF has less error and outperforms the polynomial MF. These practical results confirm that the Exp-MF integral observer has more robustness against noise than the polynomial counterpart. These waveforms are
TABLE III

Noise Level (Vpp)	Exponential MF	Polynomial MF	Polynomial MF with band-pass filter			
	RMS error(V)	Error boundary(V)	RMS error(V)	Error boundary(V)	RMS error(V)	Error boundary(V)
noiseless	0.3703	2.4594	0.8445	4.6135	0.5865	2.0737
0.26	0.3725	2.5037	1.028	5.1721	0.6002	2.0796
1	0.4082	2.4353	1.0209	5.3679	0.6053	2.0521
2	0.417	2.4221	1.1967	7.7316	0.6021	2.1556
3	0.4077	3.2128	1.4236	9.0187	0.6032	2.2391

Further analyzed so that their root-mean-square (rms) error and error boundary (which is the maximum error minus the minimum error) are obtained. Table III shows the rms error and the error boundary for both MFs.

B. Comparison of Computational Times of Online Implementations in Microcontroller and FPGA

The previous section shows that the Exp-MF has a better performance and robustness against noise than the polynomial function when used in the integral observer. A typical APF is controlled by a microcontroller or DSP which has a limited computation power. Therefore, a microcontroller and FPGA are selected to implement the algorithm for comparison of the computing times. The basic specifications of the microcontroller and FPGA are listed in Tables IV and V.

Two development boards for the MCU and FPGA have been implemented with the exponential modulation integral...
TABLE IV
SPECIFICATIONS OF THE MICROCONTROLLER

MCU model	STM32H7
Max Main Clock frequency	400MHz
Microarchitecture	ARM Cortex-M7F

TABLE V
SPECIFICATIONS OF THE FPGA

FPGA Board	Arty S7-50
Look-up Tables (LUTs)	32,600
Flip-Flops	65,200
Block RAM	337.5 KB

![Fig. 11. Reconstructed fundamental (o range) and injected harmonic (green) by Exp-MF executed by low-cost MCU at a sampling rate of 10 kHz.](image)

C. Practical Comparison of ANF, RDFT, and Exp-MF Methods in an APF Application

A hardware setup similar to that of Fig. 1 has been employed to investigate the real-time performance of the proposed algorithm. Fig. 12 shows the photograph of such a setup. In the experiment, a KIKUSUI PBZ40-10 bipolar power supply is to emulate the power grid; a Delta VDF015M21A drive system (VFD) is used as the nonlinear load to generate the harmonic current; another KIKUSUI PBZ40-10 bipolar power supply has been set to current mode and acts as the APF. Since the bipolar power supply could only supply a 48-V ac voltage, an autotransformer is connected in between the VFD and the bipolar supply to step-up the voltage to 200 V.

1) Steady-State Performance: The nonlinear load current drawn by the variable speed drive system is sampled at a frequency of 10 kHz. The proposed integral observer with the Exp-MF is compared with the ANF and RDFT methods. For the integral observer, the weighting factors are tuned offline to be $w_1 = 45$, $w_2 = 35$, and $w_3 = 15$. $T_r = T_A = 0.1$. A pair of RDFT filters are employed with the order 0 and 1 for the offset and fundamental, respectively. The ANF is tuned with $\zeta a = 1$ and $\gamma = 10$. Also, the test frequency is extended to a range between 48 and 52 Hz in order to study the robustness of the algorithms for both strong and weak power grids. Details of ANF and RDFT implementations can be found in the appendix of the work [15].

The total harmonic distortion (THD) of the grid current is calculated by the Voltech PM6000 power analyzer. The data are captured after one minute of operation so as to reduce the error caused by transients.

Fig. 13 shows the mains voltage and the highly distorted input current before harmonic compensation by the APF. The total harmonic content is about 50%. The corresponding mains voltage and input current at 50 Hz after compensation by the APF based on the ANF, RDFT, and the Exp-MF methods are shown in Figs. 14, 15, and 16, respectively.

The THD values of the compensated currents of the three methods under comparison have been measured from 48 to 52 Hz with an increment of 1 Hz. These THD values are tabulated in Table V. These results show that the performances of both RDFT and the integral observer with the Exp-MF are comparable and are much better than the ANF method. In this set of tests, the Exp-MF method has a slightly lower THD than RDFT.
2) Dynamic Performance: A normal power grid in Hong Kong and the U.K. should operate between 49.5 and 50.5 Hz and the rate of change of frequency (RoCoF) should not exceed 0.4 Hz/s (it would increase to 1 Hz/s with more renewable energy connected to the grid in the future) [16], [17]. Under these practical requirements, three representative cases are studied where the fundamental frequency comprises a frequency ramp from 50.5 to 49.5 Hz with different slopes:

1) RoCoF = −0.2 Hz/s for a period of $T = 5$ s
2) RoCoF = −0.4 Hz/s for a period of $T = 2.5$ s
3) RoCoF = −1.0 Hz/s for a period of $T = 1$ s.

A dynamic response test is set up to evaluate the performance of the Exp-MF and the RDFT methods. A dSPACE system is used to control a bipolar power supply to generate a distorted current of the shape shown in Fig. 7 for the three cases with specified RoCoF values. The Exp-MF and RDFT methods are implemented to derive the fundamental component of the distorted current. To compare their transient performance, the rms estimation errors of both methods within the transient period are evaluated by

$$\sqrt{\frac{\sum (i_n - i_n^*)^2}{T}}$$

where i_n and i_n^* are the ideal and sampled current values, respectively. For the three cases, the largest error boundaries are also recorded. These results are tabulated in Table VIII.

It can be shown that the Exp-MF method has smaller rms
errors and error boundaries than the RDFT method in all three cases.

The error signals of RDFT and Exp-MF method in case (c) are depicted in Fig. 17, where the scale of both methods is the same. The results verify the superior performance of the proposed estimation scheme.

VI. CONCLUSION

An integral-observer-based modulation function was recently reported to be a fast and effective solution in detecting the fundamental and thus the total harmonic content of a periodic waveform. The novel contributions of this article include a thorough theoretical analysis, a mathematical proof, and practical verification that an integral observer based on an Exp-MF will offer better robustness against noise and aliasing issues than that based on a polynomial modulation function. The computational times obtained in real-time implementation confirm that the proposed exponential modulation integral observer can be used in low-cost MCU for real-time operation. The proposed method has been practically compared with the ANF and RDFT methods in a practical real-time application of an APF. The THD values confirm the good performance of the proposed method. Under a range of rate of change of frequency in an ac power system, the proposed method provides a re-constructed fundamental component from a distorted waveform with a smaller error and error boundary than the RDFT method. Thus, the proposed method can provide good performance in both fixed and variable frequency situations. The study advances the integral observer technology for identifying the fundamental and hence the total harmonic content by introducing a new Exp-MF to enhance the integral observer’s robustness against noise and mitigate the aliasing issues. Its ability to withstand noise in the sampled signal has been theoretically analyzed and proved, and also experimentally verified. The Exp-MF integral observer offers the combined advantages of fast computation and high robustness. It is a feasible option for adoption in grid-tied power inverters that require the information of the fundamental and harmonic content in real time for control purposes.

VII. APPENDIX

A. Periodic Rescaling Strategy

To introduce the rescaling strategy, let us now consider the time-shifted counterpart of the modulation integral (15)

$$v_{\phi_h}(t | t_0) = \int_{t_0}^{t} \phi_h^{(3)}(\tau - t_0) i(\tau) + \omega^2 \phi_h^{(1)}(\tau - t_0) i(\tau) d\tau$$

(A.1)

where t_0 is a time instant different from 0. On this occasion, a time-shifted version of (14) can be obtained

$$z(t) = \Gamma(t - t_0)^{-1} V_{\phi}(t | t_0)$$

(A.2)

Define two positive scalars T_Δ and T_r, dividing the time span into successive segments terminated at

$$t_k = T_\Delta + (k + 1)T_r, \quad k = 0, 1, \ldots$$

Noting that (A2) holds for any generic t_0, the following two equations both hold, for all $t > t_k - T_\Delta$, $k = 1, 2, \ldots$

$$z(t) = \Gamma(t - (t_k - T_\Delta))^{-1} V_{\phi}(t | t_k - T_\Delta)$$

$$z(t) = \Gamma(t - (t_{k-1} - T_\Delta))^{-1} V_{\phi}(t | t_{k-1} - T_\Delta).$$

(A.3)

It is worth pointing out that the vector signal $V_{\phi}(t | t_k - T_\Delta)$ contains the information collected in the time window $[t_k - T_\Delta, t]$, while $V_{\phi}(t | t_{k-1} - T_\Delta)$ contains information collected in a longer time-window $[t_{k-1} - T_\Delta, t]$. Referring to the two identities in (A3), it is possible to establish an algebraic relation between $V_{\phi}(t | t_k - T_\Delta)$ and $V_{\phi}(t | t_{k-1} - T_\Delta)$ that permits to discard old information carried by the data processed in the interval $[t_{k-1} - T_\Delta, t_k - T_\Delta]$. Therefore, for $t = t_k$, according to (A.3), it holds that

$$\Gamma(t_k - (t_k - T_\Delta))^{-1} V_{\phi}(t_k | t_k - T_\Delta)$$

$$= \Gamma(t_k - (t_{k-1} - T_\Delta))^{-1} V_{\phi}(t_k | t_{k-1} - T_\Delta)$$

which can be reformed as

$$V_{\phi}(t_k | t_k - T_\Delta) = \Gamma(T_\Delta) \Gamma(T_r + T_\Delta)^{-1} V_{\phi}(t_k | t_{k-1} - T_\Delta).$$

That is to say, the vector $V_{\phi}(t_k | t_k - T_\Delta)$ can be computed from the vector $V_{\phi}(t_k | t_{k-1} - T_\Delta)$ through a simple algebraic rescaling, which is smooth as a result of (A3). For clarification, T_r is the time between two rescaling events, while T_Δ represents the length of the equivalent integration window after each operation.

![Fig. 17. Estimation error signal of the MF exp and RDFT during a frequency ramp change. Top: fundamental frequency. Middle: fundamental signal estimation error of RDFT. Bottom: fundamental signal estimation error of Exp-MF.](image)
To ensure the error signal is downscaled after each resetting instant, the constant rescaling gain $|\Gamma(T_{\Delta})\Gamma(T_r + T_{\Delta})^{-1}|$ needs to be sufficiently small (fulfilled by suitably designed T_r and T_{Δ}). Readers can refer to [14] for detailed characterization.

REFERENCES

[1] J. Douglas, “Quality of power in the electronics age,” *IEEE Power Eng. Rev.*, vol. PER-6, no. 3, pp. 5–8, Nov. 1986.

[2] H. Akagi, “Trends in active power line conditioners,” *IEEE Trans. Power Electron.*, vol. 9, no. 3, pp. 263–268, May 1994.

[3] W. M. Grady, M. J. Samotyj, and A. H. Noyola, “Survey of active power line conditioning methodologies,” *IEEE Trans. Power Del.*, vol. 5, no. 3, pp. 1536–1542, Jul. 1990.

[4] H. Akagi, “Active harmonic filters,” *Proc. IEEE*, vol. 93, no. 12, pp. 2128–2141, Dec. 2005.

[5] L. Asiminoaei, F. Blaabjerg, and S. Hansen, “Detection is key–Harmonic detection methods for active power filter applications,” *IEEE Ind. Appl. Mag.*, vol. 13, no. 4, pp. 22–33, Jul. 2007.

[6] B. P. McGrath, D. G. Holmes, and J. J. H. Galloway Galloway, “Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate,” *IEEE Trans. Power Electron.*, vol. 20, no. 4, pp. 877–884, Jul. 2005.

[7] S. A. Gonzalez, R. Garcia-Reguei, and M. Benedetti, “Harmonic computation technique suitable for active power filters,” *IEEE Trans. Ind. Electron.*, vol. 54, no. 5, pp. 2791–2796, Oct. 2007.

[8] E. Jacobsen and R. Lyons, “The sliding DFT,” *IEEE Signal Process. Mag.*, vol. 20, no. 2, pp. 74–80, Mar. 2003.

[9] E. Jacobsen and R. Lyons, “An update to the sliding DFT,” *IEEE Signal Process. Mag.*, vol. 21, no. 1, pp. 110–111, Jan. 2004.

[10] X. Yuan, W. Merk, H. Stemmler, and J. Allmeling, “Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions,” *IEEE Trans. Ind. Appl.*, vol. 38, no. 2, pp. 523–532, Mar/Apr. 2002.

[11] V. M. Moreno, M. Liserre, A. Pigazo, and A. Dell’Aquila, “A comparative analysis of real-time algorithms for power signal decomposition in multiple synchronous reference frames,” *IEEE Trans. Power Electron.*, vol. 22, no. 4, pp. 1280–1289, Jul. 2007.

[12] D. Yazdani, A. Bakhshai, G. Joos, and M. Mojiri, “A real-time three-phase selective-harmonic-extraction approach for grid-connected converters,” *IEEE Trans. Ind. Electron.*, vol. 56, no. 10, pp. 4097–4106, Oct. 2009.

[13] H. Kim and H. Akagi, “The instantaneous power theory based on mapping matrices in three-phase four-wire systems,” in *Proc. Power Convers. Conf. (PCC)*, Aug. 1997, pp. 361–366.

[14] G. Pin, B. Chen, and T. Parisini, “Robust deadbeat continuous-time observer design based on modulation integrals,” *Automatica*, vol. 107, pp. 95–102, Sep. 2019.

[15] B. Chen, G. Pin, W. M. Ng, T. Parisini, and S.-Y.-R. Hui, “A fast-convergent modulation integral observer for online detection of the fundamental and harmonics in grid-connected power electronics systems,” *IEEE Trans. Power Electron.*, vol. 32, no. 4, pp. 2596–2607, Apr. 2017.

[16] National Grid. (2020). *The Grid Code*. [Online]. Available: https://www.nationalgrid.com/sites/default/files/documents/8589935310-Complete%20Grid%20Code.pdf

[17] National Grid. (2014). *System Operability Framework*. Accessed: 2014. [Online]. Available: https://www.nationalgrid.co.uk/content/63446/download

Hin Sang Lam

Hin Sang Lam received the B.Eng. (Hons.) in electrical engineering and M.Phil. degrees from the University of Hong Kong, Hong Kong, in 2018 and 2020, respectively. He is currently pursuing the Ph.D. degree with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

His current research interests include power electronics, smart grids, and renewable energy conversion.

Peng Li

Peng Li received the B.Eng. degree in control technology and instruments from North-Eastern University, Shenyang, China, in 2013, and the M.Sc. and Ph.D. degrees in control engineering from the Department of Electrical and Electronic Engineering, Imperial College London, London, U.K., in 2014 and 2019, respectively. She has been an Assistant Professor at Harbin Institute of Technology, Shenzhen, China, since 2020. Her current research interests include system identification and estimation and fault diagnosis, and their applications in power electronics, robotics, and unmanned aerial vehicle.

Boli Chen

Boli Chen (Member, IEEE) received the B.Eng. degree in electrical and electronic engineering from Northumbria University, Newcastle upon Tyne, U.K., in 2010, and the M.Sc. and Ph.D. degrees in control systems from Imperial College London, London, U.K., in 2011 and 2015, respectively. Currently, he is a Lecturer with the Department of Electronic and Electrical Engineering, University College London, London, U.K. His research focuses on control, optimization, estimation and identification of a range of complex dynamical systems, and power electronics areas.

Wai Man Ng

Wai Man Ng (Member, IEEE) received the B.Eng. and M.Phil. degrees in electronic engineering from the City University of Hong Kong, Hong Kong, in 1998 and 2004, respectively, and the Ph.D. degree in electrical and electronic engineering from the University of Hong Kong, Hong Kong, in 2015. In 1998 to 2000, he was an Electronic Engineer with Astec Custom Limited. He was an Application Engineer with Ericsson Limited from 2000 to 2003. In 2009, he joined the City University of Hong Kong as a Research Fellow. Between 2011 and 2020, he was a Research Officer and Laboratory Manager at the Smart Grid Research Facility, University of Hong Kong. Since 2020, he is an Assistant Technical Manager and Laboratory Manager at the Department of Electrical and Electronic Engineering of the University of Hong Kong. He is a Chartered Engineer. He has authored or coauthored more than 20 journal and conference papers. He is the co-inventor of two U.S. patents. His current research interests include electromagnetic interference, LED control, smart grid, and wireless power transfer.

Thomas Parisini

Thomas Parisini (Fellow, IEEE) received the Ph.D. degree in electronic engineering and computer science from the University of Genoa, Genoa, Italy, in 1993.

He was with Politecnico di Milan, Milan, Italy and since 2010 he holds the Chair of Industrial Control and is Director of Research at Imperial College London, London, U.K. He is a Deputy Director of the KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus. Since 2001, he is also Danielli Endowed Chair of Automation Engineering with the University of Trieste, Trieste, Italy. In 2009–2012, he was Deputy Rector of University of Trieste. In 2018, he received an Honorary Doctorate from the University of Aalborg, Aalborg, Denmark. In 2020, he has been appointed as Deputy Chair of the Employment and Education Task Force of the B20-Italy. He authored or coauthored one monography and more than 350 research papers in archival journals, book chapters, and international conference proceedings.
Dr. Parisini is a co-recipient of the IFAC Best Application Paper Prize of the Journal of Process Control, Elsevier, for the three-year period 2011–2013 and of the 2004 Outstanding Paper Award of the IEEE TRANSACTIONS ON NEURAL NETWORKS. He is also a recipient of the 2007 IEEE Distinguished Member Award. In 2016, he was awarded as Principal Investigator at Imperial of the H2020 European Union flagship Teaming Project KIOS Research and Innovation Center of Excellence led by University of Cyprus. Thomas Parisini serves as 2021–2022 President of the IEEE Control Systems Society and has served as Vice-President for Publications Activities. During 2009–2016, he was the Editor-in-Chief of the IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. Since 2017, he is the Editor for Control Applications of Automatica and since 2018 he is the Editor-in-Chief of the European Journal of Control. Among other activities, he was the Program Chair of the 2008 IEEE Conference on Decision and Control and General Co-Chair of the 2013 IEEE Conference on Decision and Control. He is a fellow of the IFAC.

S. Y. (Ron) Hui (Fellow, IEEE) received the B.Sc. (Eng.) Hons. degree in electrical and electronic engineering from the University of Birmingham, Birmingham, U.K., in 1984 and the D.I.C. and Ph.D. degrees in electrical engineering from Imperial College London, London, U.K., in 1987.

He was previously Philip Wong Wilson Professor at the University of Hong Kong, Hong Kong. Presently, he holds the MediaTek Endowed Professorship at Nanyang Technological University, Singapore, and a Chair Professorship of Power Electronics at Imperial College London. He has published over 500 research papers including 300 refereed journal publications. Over 120 of his patents have been adopted by industry worldwide. His research interests include power electronics, wireless power, sustainable lighting, and smart grid. His inventions on wireless charging platform technology underpin key dimensions of Qi, the world’s first wireless power standard, with freedom of positioning and localized charging features for wireless charging of consumer electronics. He also developed the Photo-Electro-Thermal Theory for LED Systems.

Dr. Hui received the IEEE Rudolf Chope Research and Development Award and the IET Achievement Medal (The Crompton Medal) in 2010, and IEEE William E. Newell Power Electronics Award in 2015. He is a Fellow of the Australian Academy of Technological Sciences & Engineering, US National Academy of Inventors, and Royal Academy of Engineering, U.K.