Self-supervised Deep Learning Model for COVID-19 Lung CT Image Segmentation Highlighting Putative Causal Relationship among Age, Underlying Disease and COVID-19

Daryl L.X. Fung, Qian Liu, Judah Zammit, Carson Kai-Sang Leung, Pingzhao Hu

Sensitivity Analyses

A series of sensitivity analyses are performed to further support our conclusions. These analyses include: three-fold cross validations using both single SSInfNet and multi SSInfNet to ensure that the performance is consistent, a comparison with transfer learning-based FCN8 (fully convolutional neural network architecture) segmentation network[1], further experiments on other independent datasets[2] to show the generalization ability of our models, ablation studies to explore which techniques (generative adversarial image inpainting, focal loss, and lookahead optimizer) we used in the multi SSInfNet contribute to the improved performance, and a computation cost analysis to show the difference between the different models’ computation efficiency. The details of these analyses could be found below.

1. Three-fold cross-validation

We carried out a three-fold cross-validation on the Med-Seg (medical segmentation) COVID-19 Dataset as shown in Figure 2D to test the robustness of the proposed SSInfNet. We did this for both single SSInfNet and multi SSInfNet. Since the analysis is time consuming, we did not perform five-fold or 10-fold cross-validation analysis. During self-supervision, we trained the multi SSInfNet to reconstruct the CT lung images and the prior by replacing the last layer to output the reconstruction of the CT lung images. As for the self-supervision of single SSInfNet, we trained
the single SSInfNet to reconstruct the edge and the CT lung images. We undergo self-supervision to help the single SSInfNet and multi SSInfNet learn a good representation of the CT lung images before transferring the learned weights to train on segmenting the infected region of the CT lung images to determine if there is an improvement in performance.

2. Comparison with transfer learning

To address the data set with small labeled samples, we also carried out a comparison of our method and the baseline method with a transfer learning technique, which is also frequently used to overcome small sample size issue [1]. We compared against FCN8 network for segmenting the CT lung images in the Med-Seg (medical segmentation) COVID-19 Dataset as shown in Figure 2D. We transferred the learned weights from VGG16 network to the multi FCN8 network and started the training from the pre-trained weights. We then compared the performance of multi FCN8 network with the baseline multi SInfNet and the multi SSInfNet. Originally, the multi FCN8 network receive 3 input channels, we changed the input channels to be 6 to make the model consistent with the other model where the model receives the prior and the CT lung images of which both are concatenated together to form 6 input channels. For the multi SSInfNet, the focal loss alpha is set as 1 and the gamma is set as 2, the lookahead optimizer k is set as 5 and the alpha is set as 0.5. All other parameters are kept the same.

3. Additional independent data sets

To further compare the performance of our proposed method with other baseline methods, we tested them on two additional data sets, which are called as Data set 2 and Data set 3, respectively.
The Med-Seg (medical segmentation) COVID-19 Data set as shown in Figure 2D is called as Data set 1.

The Data sets 2 and 3 are detailed as follows: **Data set 2**: This is the original dataset that was used to evaluate the SInfNet [2]. It contains 50 single labeled CT lung images and 48 multi labeled CT lung images for the training set; 48 single & multi labeled images for testing set. There is no validation set. **Data set 3**: The dataset contains 750 CT images for which the segmentation mask is available[3]. These come from 150 patients with novel-coronavirus pneumonia. The images were labelled by a panel of five senior radiologist with over 25 years of experience. The labels used were healthy lung-field, GGO and consolidation. We used the labelled CT images to train a U-Net semantic segmentation model that effectively segments the lung field present in the CT image. Using this model, as well as the opening and closing morphological transformations for noise reduction, we cropped the CT images so that they would only include lung field. Then, for efficiency reasons, we took the middle most slice of each CT scan and removed all others. This ensures that we have a data set with a similar amount of diversity to the original data set, while being significantly smaller. After this, we manually removed any CT images that did not have the lungs in full view or had a significant amount of non-lung field present in the CT image.

4. **Ablation studies**

We carried out ablation studies to compare the performance differences between the combination of the different techniques that we incorporated into the multi SSInfNet. This analysis helped us determine which one contributes to the improved performance. We carried out 4 different ablations
of our proposed Multi SSInfNet: Multi SSInfNet, Multi SSInfNet – focal loss (without focal loss), Multi SSInfNet – lookahead optimizer (without lookahead optimizer), Multi SSInfNet – focal loss – lookahead optimizer (without focal loss and lookahead optimizer). All other parameters are maintained the same with focal loss alpha as 1 and gamma as 2, the lookahead optimizer k value as 5 and alpha as 0.5.

5. **Computation cost analysis**

We performed a computation cost analysis to show the difference between the different models’ computation efficiency.

Reference

1. Hooda R, Mittal A, Sofat S. Lung segmentation in chest radiographs using fully convolutional networks. Turkish J Electr Eng Comput Sci [Internet]. 2019 [cited 2021 Jun 29];27:710–22. Available from: https://journals.tubitak.gov.tr/elektrik/abstract.htm?id=24422

2. Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, et al. Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Trans Med Imaging [Internet]. Institute of Electrical and Electronics Engineers Inc.; 2020 [cited 2020 Sep 22];39:2626–37. Available from: http://arxiv.org/abs/2004.14133

3. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell. Cell Press; 2020;181:1423-1433.e11.
Supplementary Figures

Supplementary Figure 1. Architecture of the supervised InfNet.
Supplementary Figure 2. A is the original architecture of the SInfNet. B is the architecture of our self-supervised InfNet model. Highlighted purple block is the difference between the original single SInfNet and the single SSInfNet.

Supplementary Figure 3. A is the architecture of the original multi SInfNet model. B is the architecture of our self-supervised multi InfNet model. Highlighted green block is the difference between the original multi SInfNet and our self-supervised multi SSInfNet.
Supplementary Figure 4. ROC for single InfNet
Supplementary Algorithm 1. SSInfNet

Algorithm 1 Pseudo code for self-supervised with InfNet

Input: $D_{labeled} = [(inputImage_1, G_r), ...]$

for each epoch **do**

for each coach step **do**

 mask = M(x)
 maskedInput = mask \odot inputImage
 predictedImage = network(maskedInput), inputImage
 $L_{rec} = CrossEntropy(predictedImage, inputImage)$
 $L_{coach}(x) = 1 - L_{rec}$
 update coach weights

end for

for each network step **do**

 $P_{labeled} = Preprocess(D_{labeled})$
 inpaintingOutput = network($P_{labeled}$)
 $L_{rec} = CrossEntropy(InpaintingOutput, inputImage)$
 backpropagate and save network weights

end for

end for

for each batch of $D_{labeled}$ **do**

 $P_{labeled} = Preprocess(D_{labeled})$
 trainLoss = train($P_{labeled}$)
 Backpropagate train loss
 testLoss = test($P_{labeled}$)
 save model weights, w.

end for
Supplementary Tables

Supplementary Table 1. Image phenotypes

Image Phenotype	Description	Formula		
Area	The number of pixels in the mask.	\[\sum_{i=1}^{N_p} (X(i) + c)^2\]		
Energy	The magnitude of voxel values in an image.	\[\sum_{i=1}^{N_p} (X(i) + c)^2\]		
Total Energy	Energy scaled by the volume of the voxel.	\[V_{voxel} \sum_{i=1}^{N_p} (X(i) + c)^2\]		
Entropy	The uncertainty/randomness in the image values.	\[-\sum_{i=1}^{N_g} p(i) \log_2(p(i) + \epsilon)\]		
Minimum	The Minimum of \(X\)	\[\text{min}(X)\]		
10th percentile	The 10th percentile of \(X\)	\[\text{P}_{10}\]		
90th percentile	The 90th percentile of \(X\)	\[\text{P}_{90}\]		
Maximum	The maximum of \(X\)	\[\text{max}(X)\]		
Mean	The average gray level intensity.	\[\frac{1}{N_p} \sum_{i=1}^{N_p} X(i)\]		
Median	The median gray level intensity.			
Interquartile Range	The subtract of 25th and 75th percentile of the image array.	\[\text{P}_{75} - \text{P}_{25}\]		
Range	The range of gray values.	\[\text{max}(X) - \text{min}(X)\]		
Mean Absolute Deviation (MAD)	The mean distance of all intensity values from the Mean Value of the image array.	\[\frac{1}{N_p} \sum_{i=1}^{N_p}	X(i) - \bar{X}	\]
Robust Mean Absolute Deviation (RMAD)	The mean distance of all intensity values from the mean value.	\[\frac{1}{N_{10-90}} \sum_{i=1}^{N_{10-90}}	X_{10-90}(i) - \bar{X}_{10-90}	\]
Root Mean Squared (RMS)	The square-root of the mean of all the squared intensity values.	\[\sqrt{\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) + c)^2}\]		
Skewness	The asymmetry of the distribution of values about the mean value.	\[\sqrt{\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) - \bar{X})^3}\]		
Feature	Description	Formula		
-------------------------	---	--		
Kurtosis	A higher value means that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean. A lower value means that the mass of the distribution is concentrated near the mean value.	\[
\frac{1}{N_p \sigma_x^4} \sum_{i=1}^{N_p} (X(i) - \bar{X})^4 - \left(\frac{1}{N_p \sigma_x^2} \sum_{i=1}^{N_p} (X(i) - \bar{X})^2 \right)^2				
\]				
Variance	The mean of the squared distances of each intensity value from the Mean value.	\[
\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) - \bar{X})^2				
\]				
Uniformity	A higher value means a smaller range of discrete intensity.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) i j				
\]				
Autocorrelation	The magnitude of the fineness and coarseness of texture.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) i j				
\]				
Joint Average	Returns the mean gray level intensity of the distribution.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) i				
\]				
Cluster Prominence	The skewness and asymmetry of the GLCM.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i + j - \mu_x - \mu_y)^3 p(i,j)				
\]				
Cluster Shade	The skewness and uniformity of the GLCM.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i + j - \mu_x - \mu_y)^2 p(i,j)				
\]				
Cluster Tendency	The grouping of voxels with similar gray-level values.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i + j - \mu_x - \mu_y)^2 p(i,j)				
\]				
Contrast	The local intensity variation. A larger value is associated with a greater disparity among neighboring voxels.	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - j)^2 p(i,j)				
\]				
Correlation	The linear dependency of gray level values to their respective voxels in the GLCM.	\[
\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) i j - \mu_x \mu_y}{\sigma_x(i) \sigma_y(j)}				
\]				
Difference Average	The difference between occurrences of pairs with similar intensity values and occurrences of pairs with differing intensity values.	\[
\sum_{k=0}^{N_g-1} k p_{x,y}(k)				
\]				
Difference Entropy	The randomness/variability in neighborhood intensity value differences.	\[
\sum_{k=0}^{N_g-1} p_{x,y}(k) \log_2 (p_{x,y}(k) + e)				
\]				
Difference Variance	The heterogeneity that places higher weights on differing intensity level pairs that deviate more from the mean.	\[
\sum_{k=0}^{N_g-1} (k - DA)^2 p_{x,y}(k)				
\]				
Dissimilarity		\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g}	i - j	^p(i,j)		
\]				
Joint Energy	The homogeneous patterns in the image. A greater Energy implies	\[
\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)^2				
\]				
Feature	Definition	Formula		
---	---	---	---	---
Joint Entropy	The randomness/variability in neighborhood intensity values.	$- \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)^2 \log_2(p(i,j) + \epsilon)$		
Homogeneity 1		$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p(i,j)}{1 +	i - j	}$
Homogeneity 2		$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{p(i,j)}{1 +	i - j	^2}$
Informational Measure of Correlation 1 (IMC1)	The correlation between the probability distributions of i and j (quantifying the complexity of the texture), using mutual information $I(x, y)$	$H_{XY} - H_{XY1}$ $\frac{\max\{H_X, H_Y\}}{- I(i,j)} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \log \left(\frac{p_x(i)p_y(j)}{p(i,j)} \right)$		
Informational Measure of Correlation 2 (IMC2)	The correlation between the probability distributions of i and j (quantifying the complexity of the texture).	$\sqrt{1 - e^{-2(H_{XY2} - H_{XY})}}$		
Inverse Difference Moment (IDM)	The local homogeneity of an image.	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + k^2}$		
Maximal Correlation Coefficient (MCC)	The complexity of the texture	$\sqrt{\text{second largest eigenvalue of } Q}$ $Q(i,j) = \sum_{k=0}^{N_g} p(i,k)p(j,k)$ $p_x(i)p_y(k)$		
Inverse Difference Moment Normalized (IDMN)	The local homogeneity of an image.	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + \left(\frac{k^2}{N_g}\right)}$		
Inverse Difference (ID)	The local homogeneity of an image. With more uniform gray levels, the denominator will remain low, resulting in a higher overall value.	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + k}$		
Inverse Difference Normalized (IDN)	The local homogeneity of an image. IDN normalizes the difference between the neighboring intensity values by dividing over the total number of discrete intensity values.	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + \left(\frac{k}{N_g}\right)}$		
Feature Type	Description	Formula		
------------------------------------	---	---		
Inverse Variance	Maximum probability	$\sum_{k=0}^{N_\mu-1} \frac{p_{x-y}(k)}{k^2}$		
Sum Average	The relationship between occurrences of pairs with lower intensity values and occurrences of pairs with higher intensity values.	$\sum_{k=2}^{2N_g} p_{x+y}(k)k$		
Sum Variance	Sum entropy	$\sum_{k=2}^{2N_g} (k - \text{SA})^2 p_{x+y}(k)$		
Sum Entropy	The distribution of neighboring intensity level pairs about the mean intensity level in the GLCM.	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \mu_i)^2 p(i,j)$		
Small Dependence Emphasis	The distribution of small dependencies. A larger value indicates less homogeneous textures.	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)^2}{N_Z}$		
Large Dependence Emphasis	The distribution of large dependencies. A larger value means more homogeneous textures.	$\frac{\sum_{i=1}^{N_D} \sum_{j=1}^{N_d} p(i,j)^2}{N_Z}$		
Gray Level (GL) Non-Uniformity	The similarity of gray-level intensity values in the image.	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)^2}{N_Z}$		
Gray Level (GL) Non-Uniformity	The similarity of dependence throughout the image.	$\frac{\sum_{j=1}^{N_d} \sum_{i=1}^{N_g} (\mu - \mu_j)^2}{N_Z}$		
Gray Level (GL) Variance	The variance in grey level in the image.	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)(i - \mu)^2$ Where $\mu = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)}{N_Z}$		
Dependence Variance	The variance in dependence size in the image.	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)(j - \mu)^2$ Where $\mu = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)}{N_Z}$		
Dependence Entropy		$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j) \log_2(p(i,j) + \epsilon)$		
Low Gray Level (LGL) Emphasis	The distribution of low gray-level values, with a higher value indicating a greater concentration of low gray-level values in the image.	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)^2}{N_Z}$		
Neighboring Gray Tone Difference Matrix (NGTDM) Features (5)	High Gray Level (HGL) Emphasis	Small Dependence Low Gray Level (SDLGL) Emphasis	Small Dependence High Gray Level (SDGHL) Emphasis	Large Dependence Low Gray Level (LDLGL) Emphasis
---	---	---	---	---
Distribution of the higher gray-level values, with a higher value indicating a greater concentration of high gray-level values in the image.	The joint distribution of small dependence with lower gray-level values.	The joint distribution of small dependence with higher gray-level values.	The joint distribution of large dependence with lower gray-level values.	The joint distribution of large dependence with higher gray-level values.
$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} P(i,j)^2$	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{P(i,j)^2}{i^2}$	$\frac{1}{\sum_{i=1}^{N_g} p_i s_i}$	$\frac{1}{N_{g,p}(N_{g,p} - 1)} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_i p_j (i - j)^2 \times \left(\frac{1}{N_{v,p}} \sum_{i=1}^{N_g} s_i \right)$	$\frac{\sum_{i=1}^{N_g} p_i s_i}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g}
Supplementary Table 2. The three-fold cross-validation performance of single networks. It should be noted that the data were obtained by combining the training, testing, and validation set from the Med-Seg (medical segmentation) COVID-19 dataset, and then splitting the combined data into 3 folds.

Three-fold Cross-Validation Performance for Single Segmentation	Single U-Net	Single SInfNet	Single SSInfNet
Mean Error			
F1	0.39	0.05	**0.76**
IoU	0.28	0.04	**0.64**
Recall	0.38	0.05	0.77
Precision	0.41	0.05	**0.79**

Supplementary Table 3. The three-fold cross validation performance of multi networks

Cross-Validation Performance for Multi Segmentation	Multi-U-Net	Multi-SInfNet	Multi-SSInfNet			
Mean Error Mean	Error Mean	error Mean	Error			
GGO						
F1	0.26	0.04	0.69	0.06	**0.70**	0.06
IoU	0.17	0.03	0.63	0.06	**0.64**	0.06
Recall	0.25	0.03	0.77	0.05	0.72	0.06
Precision	0.3	0.04	0.73	0.05	**0.79**	0.05
Consolidation						
F1	0.18	0.04	0.39	0.07	**0.61**	0.07
IoU	0.13	0.03	0.33	0.06	**0.55**	0.07
Recall	0.21	0.04	0.45	0.06	**0.68**	0.07
Precision	0.19	0.04	**0.82**	0.04	0.74	0.07
Background						
F1	1	0	1	1	1	
IoU	1	0	1	0	1	
Recall	1	0	1	0	0	
Precision	1	0	1	0	0	
Overall						
F1	0.48	0.03	0.69	0.04	**0.77**	0.04
IoU	0.43	0.02	0.65	0.04	**0.73**	0.04
Recall	0.49	0.02	0.74	0.04	**0.80**	0.04
Precision	0.5	0.03	**0.85**	0.03	0.84	0.04
Supplementary Table 4. Comparison with transfer learning based FCN8 network. Quantitative result of Ground-glass Opacities & Consolidation on the test data set of the Med-Seg (medical segmentation) COVID-19 dataset. Prior was obtained from the single segmentation InfNet.

Methods	Multi FCN8	Multi U-Net	Multi SInfNet	Multi SSInfNet				
GGO								
F1	0.41	0.059	0.26	0.057	0.38	0.054	**0.43**	0.057
IoU	0.3	0.046	0.18	0.043	0.27	0.042	**0.31**	0.046
Recall	0.45	0.066	0.216	0.053	**0.58**	0.065	**0.58**	0.072
Precision	0.52	0.06	0.405	0.085	0.41	0.058	**0.48**	0.059
Cons								
F1	0.42	0.092	0.35	0.097	0.29	0.078	**0.46**	0.096
IoU	0.33	0.082	0.26	0.08	0.22	0.068	**0.36**	0.088
Recall	0.56	0.097	0.32	0.089	**0.61**	0.099	0.56	0.11
Precision	0.51	0.103	0.46	0.116	0.31	0.084	**0.56**	0.101
Background								
F1	1.0	0.002	0.857	0.01	1.0	0.002	**1.00**	0.002
IoU	0.99	0.003	0.754	0.017	0.99	0.003	**0.99**	0.003
Recall	1.0	0.001	0.998	0.001	0.99	0.002	**0.99**	0.002
Precision	0.99	0.002	0.755	0.017	1.0	0.002	**1.00**	0.002
Overall								
F1	0.61	0.051	0.49	0.055	0.55	0.044	**0.63**	0.052
IoU	0.54	0.044	0.40	0.046	0.5	0.038	**0.55**	0.046
Recall	0.67	0.055	0.51	0.048	**0.73**	0.055	0.71	0.061
Precision	0.67	0.055	0.54	0.073	0.57	0.048	**0.68**	0.054
Supplementary Table 5. Model performance on independent COVID-19 CT Dataset set 2

A: Single InfNet

	SlInfNet	SSInfNet		
Mean	Error	Mean	error	
F1	0.8	0.011	0.78	0.028
IoU	0.67	0.016	0.64	0.038
Recall	0.79	0.014	0.84	0.017
Precision	0.82	0.038	0.73	0.061

B: Multi InfNet

	Multi-SlInfNet	Multi-SSInfNet		
Mean	Error	Mean	error	
F1	0.79	0.056	0.70	0.066
IoU	0.72	0.064	0.61	0.065
Recall	0.77	0.064	0.67	0.07
Precision	0.89	0.043	0.89	0.038

	GGO	Consolidation
F1	0.48	0.38
IoU	0.39	0.32
Recall	0.70	0.32
Precision	0.52	0.38

	Background	Overall
F1	1	0.76
IoU	1	0.70
Recall	1	0.82
Precision	1	0.80

| GGO | Consolidation | Background | Overall |
Supplementary Table 6. Model performance on the independent COVID-19 CT Data set 3

A: Single InfNet

	SInfNet	SSInfNet		
	Mean	Error	Mean	error
F1	0.96	0.002	0.58	0.009
IoU	0.93	0.003	0.41	0.009
Recall	0.96	0.001	0.53	0.007
Precision	0.97	0.005	0.64	0.013

B: Multi InfNet

	Multi-SInfNet	Multi-SSInfNet		
	Mean	Error	Mean	error
F1	0.94	0.019	0.94	0.017
IoU	0.89	0.029	0.90	0.028
Recall	0.94	0.022	0.99	0.002
Precision	0.94	0.019	0.91	0.028

	GGO				
	F1	0.11	0.05	0.13	0.06
	IoU	0.07	0.037	0.09	0.044
	Recall	0.10	0.046	0.10	0.048
	Precision	0.20	0.079	0.73	0.114

	Consolidation				
	F1	0.95	0.011	0.98	0.001
	IoU	0.91	0.019	0.97	0.002
	Recall	0.98	0.002	0.98	0.002
	Precision	0.93	0.02	0.99	0.001

	Background				
	F1	0.67	0.027	0.69	0.026
	IoU	0.62	0.029	0.65	0.024
	Recall	0.68	0.024	0.69	0.017
	Precision	0.69	0.039	0.87	0.048

	Overall				
	F1	0.96	0.002	0.97	0.013
	IoU	0.93	0.003	0.92	0.009
	Recall	0.96	0.001	0.95	0.007
	Precision	0.97	0.005	0.99	0.013
Supplementary Table 7. Results of ablation studies. The performance of the ablation of our proposed multi-SSInfNet. Multi-SSInfNet refers to the self-supervised SInfNet with Focal Loss and Lookahead optimizer. We tried a variety of the model with a subtraction of the different technologies to carry out the ablation.

	Multi-SSInfNet	Multi-SSInfNet – Focal – Lookahead	Multi-SSInfNet – Lookahead	Multi-SSInfNet – Focal	Multi-SSInfNet	Mean	Error
GGO						Mean	Error
F1	0.38	0.39	0.36	0.36	0.43	0.054	0.057
IoU	0.27	0.29	0.26	0.26	0.31	0.062	0.046
Recall	0.58	0.59	0.60	0.58	0.58	0.045	0.071
Precision	0.41	0.44	0.38	0.39	0.48	0.058	0.059
Consolidation						Mean	Error
F1	0.29	0.27	0.39	0.42	0.46	0.078	0.096
IoU	0.22	0.066	0.32	0.32	0.36	0.093	0.088
Recall	0.61	0.54	0.52	0.59	0.56	0.104	0.11
Precision	0.31	0.084	0.51	0.49	0.56	0.104	0.101
Background						Mean	Error
F1	1	1	1	1	1	0.002	0.002
IoU	0.99	0.99	0.99	0.99	0.99	0.003	0.003
Recall	0.99	0.99	0.99	0.99	0.99	0.002	0.002
Precision	1	1	1	1	1	0.002	0.002
Overall						Mean	Error
F1	0.55	0.55	0.58	0.59	0.63	0.044	0.052
IoU	0.50	0.55	0.52	0.52	0.55	0.038	0.046
Recall	0.73	0.71	0.70	0.72	0.68	0.055	0.075
Precision	0.57	0.68	0.63	0.63	0.68	0.048	0.054
Supplementary Table 8. Computational costs of processing one image

Epoch	FCN8 (seconds)	Multi-SInfNet	Multi-SSInfNet
1	36.61	49.68	50.28
2	35.73	51.03	50.41
3	36.03	50.38	50.17
4	36.69	48.52	50.34
5	38.51	48.08	52.19
6	37.84	48.26	52.88
7	35.91	48.47	51.88
8	36.01	49.38	53.73
9	35.63	49.69	54.26
10	36.11	48.65	54.43
Average	36.051	49.21	52.06
Relative*	0.742	1	1.06

* The computation analysis was calculated relatively to the baseline multi SInfNet.