Recovering the phase diagram of condensate gas reservoir in Well TZ86, Central Tarim Basin using PVTsim with geochemical inputs

Rui Deng¹², Haizu Zhang³, Chengsheng Chen¹², and Yunpeng Wang¹*

¹ State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
² University of Chinese Academy of Sciences, Beijing 100039, China
³ Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Korla Xinjiang 841000, China

* Corresponding author’s e-mail address: wangyp@gig.ac.cn

Abstract. The phase diagram of the condensate gas reservoir in the Ordovician lithologic trap of Well TZ86 was recovered using PVTsim software with geochemical inputs (well fluid components and experiment data). The results show the error between the recovery and measured phase diagrams is within a reasonable range, indicating the reliability of the recovery result. The recovery phase diagram shows an order of CP-Pm-Tm, and the current reservoir temperature and pressure (138.49°C, 65.10MPa) confirms that the fluid belongs to the condensate gas phase currently and turns to the condensate gas-condensate oil coexistence phase when it is mined to the surface condition. The components rich in gaseous hydrocarbons caused by the gas charging in the Late Himalayan and the temperature and pressure condition determined the formation of condensate gas reservoirs in the Tazhong Uplift.

1. Introduction
The Tarim Basin is the largest petroleum-bearing basin in China, covering an area of 56x10⁴ km². The development of two sets of hydrocarbon source rocks, multiple oil and gas charging, and multiple adjustments after accumulation, all made the distribution of oil and gas phase state complicated[1, 2]. There are solid bitumens, heavy oil reservoirs, normal oil reservoirs, light oil reservoirs, condensate gas reservoirs, wet gas reservoirs, and dry gas reservoirs in the Tarim Basin[3]. Among all these reservoirs, condensate gas reservoirs have a particular retrograde condensate phenomenon, so they are special, valuable, and have research significance[4]. Therefore, in this paper, the phase diagram of the condensate gas reservoir in the Ordovician lithologic trap of Well Tazhong 86 (TZ86) was recovered using PVTsim software with geochemical inputs (well fluid components and experiment data), to characterize the fluid phase state and explore the possible formation mechanism of condensate gas reservoirs in the Tazhong Uplift.

2. Geological Setting
The Tarim Basin is the largest superimposed basin in China, containing three uplifts and four depressions. The Tazhong Uplift is in the central Tarim Basin, near the Manjiaer hydrocarbon generation depression, and has favorable conditions for long-term migration and accumulation of oil and gas[5]. It was formed in the Ordovician, developed in the Silurian and Devonian, and its structure
was finalized at the end of Devonian, and then developed steadily after the Late Paleozoic[6]. The Tazhong Uplift included the Tazhong No.1 fault zone, Tazhong No.10 structural belt, Tazhong central horst belt, and Tazhong 1-8 buried hill belt [7]. The Tazhong North Slope is sited between the Tazhong central horst belt and Tazhong No.1 fault zone. Well TZ86 is located in the northwestern of the Tazhong North Slope (Figure 1). The condensate gas reservoir was discovered in the Ordovician lithologic trap, with a burial depth of 6273-6320m. The measured temperature and pressure of the in-situ gas reservoir are 138.49°C and 65.1 MPa.

![Figure 1. Map showing the location of Well TZ86 and the geological structures of the Tazhong Uplift (modified from Reference [8]).](image)

3. Methods and Data

3.1. Input data for recovering the phase diagram

The input data needed for recovering the phase diagram of the Ordovician reservoir in Well TZ86 include the well fluid components, constant volume depletion (CVD) experimental data, and constant mass expansion (CME) experimental data. These data were all derived from the PVT analysis report (inner report of the Tarim Oil Company, 2014) and the concrete values are shown in Table 1 and Table 2. The well fluid components of the Ordovician reservoir in Well TZ86 is dominated by methane, which accounts for 83.366%, and the total of gaseous hydrocarbons account for 86.679%. The contents of light hydrocarbons and heavy hydrocarbons are 3.456% and 0.301%. The specific contents were all measured using the gas chromatography (Agilent 7890A, 6890N).

Reservoir	Components/%
TZ86(O)	N₂ 4.656
	CO₂ 4.909
	C₁ 83.366
	C₂ 1.746
	C₃ 0.693
	iC₄ 0.168
	nC₄ 0.359
	iC₅ 0.142
	nC₅ 0.205
	C₆ 0.328
	C₇⁺ 3.429

Table 1. Well fluid components (C₁⁻C₇⁺) of the Ordovician reservoir in Well TZ86.

Well	Constant Mass Expansion Experiment	Constant Volume Depletion Experiment				
	Pressure (MPa)	Temperature (°C)	Liquid vol% of Vd	Pressure (MPa)	Temperature (°C)	Z factor gas
	*61.44	98.50	0.00	*56.08	138.50	1.336
TZ86	*58.61	118.50	0.00			
	*56.08	138.50	0.00			

Table 2. Constant mass expansion and constant volume depletion experimental data.
Dew point pressure

3.2. The method of recovering the phase diagram

The PVTsim commercial software developed by Calsep Co. in Denmark specializes in the calculations of fluid properties and has been extensively used in the study of oil and gas reservoirs[9]. The phase diagram simulation steps are as follows: First, the well fluid components of the Ordovician reservoir in Well TZ86 were entered into the PVTsim software. Then the original phase envelope was obtained after calculated with the Peng-Robinson equation of state. Check the deviation between the calculated phase envelope and the measured phase envelope getting from the PVT analysis report, and input appropriate experiment data (CME, CVD) to do regression calculation until the deviation between two was small enough. Then the final phase model can be regarded as the actual fluid in the reservoir.

4. Results and Discussion

4.1. The phase diagram recovery results

After several rounds of calculation and regression, the final recovery phase envelope and the measured phase envelope getting from the PVT analysis report are shown in Figure 2. The concrete comparison results of the characteristics of two phase envelopes are listed in Table 3. The results show that the deviations between the recovery and measured phase envelope are within a reasonable range and the recovery result is valid. There are three basic elements in the phase envelope, which are the critical point (CP), cricondentherm (Tm), and cricondenbar (Pm). The recovery result shows that the temperature and pressure of the critical point (CP) are -87.8°C and 48.98 MPa, and the cricondentherm (Tm) and cricondenbar (Pm) are 324.73°C and 62.39 MPa, respectively.

The phase diagram can be divided into the gas-liquid coexistence phase zone, liquid phase zone, condensate gas phase zone, and gas phase zone by the positional order of the critical point (CP), cricondentherm (Tm) and cricondenbar (Pm) (Figure 3). According to the PVT analysis report, the reservoir temperature and pressure are 138.49°C and 65.10MPa, which indicates the fluid belongs to the condensate gas phase currently. The difference between reservoir pressure and starvation pressure is small which illustrates the fluid saturation is relatively high. When the fluid is mined to the surface condition, it turns to the condensate gas-condensate oil coexistence phase. The production gas-oil ratio is 5231.6 m³/m³, and the condensate oil content of the reservoir is 146.062 g/m³, which is a condensate gas reservoir fluid with medium liquid hydrocarbon content. The condensate oil density is relatively light with good quality.

![Figure 2. The recovery and measured phase envelope.](image-url)
Table 3. The comparison between recovery and measured features of the fluid.

Items	Recovery Values	Measured Values
Critical Temperature (°C)	-87.80	-82.10
Critical Pressure (MPa)	48.98	45.67
Cricondentherm (°C)	324.73	329.5
Cricondenbar (MPa)	62.39	62.32
Dew point pressure (138.5°C) (MPa)	56.43	56.08
Oil density at ground (20°C) (g/cm³)	0.7384	0.7686

![Figure 3](image.png)

Figure 3. The recovery phase diagram of the condensate gas reservoir in Well TZ86.

4.2. *Forming conditions of the condensate gas reservoir in the Tazhong Uplift*

The main source rocks in the Tarim Basin are the Cambrian-Lower Ordovician source rock and the Middle-Upper Ordovician source rock. Their main hydrocarbon generation stages include the Late Caledonian, Late Hercynian, and Late Himalayan. The first two stages are dominated by oil charge, and the last stage is dominated by gas charge. The strike-slip faults provide the main pathway for oil and gas migration. The gas charging happened in the Late Himalayan is the main reason for the condensate gas reservoir in Well TZ86 being rich in gaseous hydrocarbons. The thick sedimentation of Neogene (more than 2000m) in the Himalayan makes the strata temperature and pressure increased to a suitable range for the formation of condensate gas reservoirs. The components rich in gaseous hydrocarbons and the temperature and pressure condition determined the formation of condensate gas reservoirs in the Tazhong Uplift.
5. Conclusions
The phase diagram recovery result of the condensate gas reservoir in the Ordovician lithologic trap of Well TZ86 shows the error between the recovery and measured phase diagrams is within a reasonable range, indicating the reliability of the recovery result. The recovery phase diagram shows an order of CP-Pm-Tm, and the current reservoir temperature and pressure (138.49°C, 65.10MPa) confirms that the fluid belongs to the condensate gas phase currently and turns to the condensate gas-condensate oil coexistence phase when it is mined to the surface condition. The components rich in gaseous hydrocarbons caused by the gas charging in the Late Himalayan and the temperature and pressure condition determined the formation of condensate gas reservoirs in the Tazhong Uplift.

Acknowledgments
This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010103), the China National Major S&T program (2017ZX05008-002-030), and the NSFC Project (41702151).

References
[1] Li D, Liang D, Jia C, Wang G, Wu Q and He D 1996 Hydrocarbon accumulations in the Tarim Basin, China AAPG Bulletin 80 1587-603
[2] Song D, Wang T G, Li M, Zhang J, Ou G, Ni Z, Yang F and Yang C 2017 Geochemistry and charge history of oils from the Yuqi area of Tarim Basin, NW China Marine and Petroleum Geology 79 81-98
[3] Liu Q, Jin Z, Li H, Wu X, Tao X, Zhu D and Meng Q 2018 Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin, NW China Marine and Petroleum Geology 89 91-105
[4] Yang H and Zhu G 2013 The condensate gas field geological characteristics and its formation mechanism in Tarim basin Acta Petrologica Sinica 29 3233-50
[5] Wang Z, Cai C, Li H, Yang H, Wang T, Zhang K, Jia L and Chen K 2014 Origin of late charged gas and its effect on property of oils in the Ordovician in Tazhong area Journal of Petroleum Science and Engineering 122 83-93
[6] Jia C 1997 Tectonic characteristics and petroleum, tarim basin, China: Petroleum Industry Press)
[7] Zhou X, Pang X, Li Q, Pang H, Xiang C, Jiang Z, Li S and Liu L 2010 Advances and problems in hydrocarbon exploration in the Tazhong area, Tarim Basin Petroleum Science 7 164-78
[8] Zhang Y, Lyu X, Yu H, Jing B, Zhang C and Cai J 2016 Controlling mechanism of two strike-slip fault groups on the development of the Ordovician karst reservoirs in the Tazhong Uplift, Tarim Basin Oil & Gas Geology 37 663-73
[9] Dimitrakopoulos P, Jia W and Li C 2014 An Improved Computational Method for the Calculation of Mixture Liquid–Vapor Critical Points International Journal of Thermophysics 35 865-89