Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P_{crit}) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P_{crit} values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining P_{crit} are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P_{crit}, including temperature, CO$_2$, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P_{crit}; 20% of variation in the P_{crit} data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO$_2$ within a closed respirometer during the measurement of P_{crit}. Modelling suggests that the final partial pressure of CO$_2$ reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood acid–base balance and P_{crit} itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.

Key words: Carbon dioxide, critical oxygen tension, metabolic rate, oxygen and capacity limitation of thermal tolerance, physiological trait

Editor: Steven Cooke

Received 17 December 2015; Revised 17 March 2016; accepted 19 March 2016

Cite as: Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW (2016) A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P_{crit}). Conserv Physiol 4(1): cow012; doi:10.1093/conphys/cow012.
Introduction

In recent decades, there has been growing concern regarding the increasingly widespread and frequent occurrence of hypoxia in aquatic environments, associated with the increased discovery of hypoxic zones globally (Diaz, 2001; Diaz and Breitburg, 2009; Zhang et al., 2010). Although periods of hypoxia can develop naturally in many aquatic systems, anthropogenic influences have been shown to be a major driver of hypoxic events in both freshwater and marine habitats (Friedrich et al., 2014). In particular, eutrophication associated with increased anthropogenic nutrient loading of lakes, rivers and coastal waters leads to blooms of algae and phytoplankton, the death of which subsequently fuels microbial respiration and the depletion of dissolved oxygen (Smith, 2003).

Hypoxia has been shown to result in losses of biodiversity and to trigger widespread mortality events (Vaquer-Sunyer and Duarte, 2008). In the marine environment, more than 400 coastal systems have been reported as eutrophication-associated ‘dead zones’ (Diaz and Rosenberg, 2008). Global warming is likely to exacerbate hypoxia in aquatic systems owing to increased microbial respiration rates and reduced oxygen solubility with increasing water temperatures (McBryan et al., 2013). In addition, potential modifications to oceanic circulation linked to future climate change are predicted to result in greater stratification and ‘deoxygenation’ of the oceans (Keeling and Garcia, 2002; Keeling et al., 2009). In summary, in the future, reduced oxygen concentrations are predicted to occur more extensively, more frequently and for longer periods of time (IPCC, 2014). Fish are among the more hypoxia sensitive of aquatic taxa and, as such, the sequential loss of fauna from aquatic ecosystems during hypoxic events is commonly initiated by the loss or relocation of fish populations (Vaquer-Sunyer and Duarte, 2008). Understanding the physiological responses of individual organisms to environmental stressors, such as hypoxia, provides a mechanistic link between environmental change and population-level effects, which may be key to predicting future ecological impacts (Chown, 2012; Seebacher and Franklin, 2012; Cooke et al., 2013).

Fish can show various behavioural responses to hypoxia, such as rising to the surface to breathe the uppermost layer of water in contact with air, increasing activity to escape the hypoxic area or decreasing activity to reduce oxygen demand (Chapman and McKenzie, 2009; Urbina et al., 2011; Domenici et al., 2012). Beyond these behavioural responses, fishes can engage numerous profound physiological responses, such as changes in ventilation, cardiac activity and haemoglobin–O₂ binding (Richards, 2009). These physiological responses work primarily to sustain oxygen extraction from the environment in order to maintain aerobic ATP production. This allows the majority of fishes to maintain stable oxygen uptake rates across a wide range of ambient partial pressures of oxygen (Pb), a response known as ‘oxyregulation’ (reviewed by Perry et al., 2009). When, however, oxygen reduces to a threshold below which oxygen uptake rate cannot be maintained, oxygen uptake declines linearly with a decrease in ambient Pb, a response known as ‘oxyconforming’ (Pörtner and Grieshaber, 1993; Claireaux and Chabot, 2016). This threshold, when oxygen uptake transitions from regulation to conforming, is referred to as the critical Pb (Pcrit; Beamish, 1964; Ultsch et al., 1978). As a measure of whole-animal oxygen extraction capacity, which varies extensively across species and among populations, Pcrit is widely used to describe the degree of hypoxia tolerance in fishes (Ultsch et al., 1978; Chapman et al., 2002; Nilsson et al., 2007a, b; Mandic et al., 2009; reviewed by Chapman and McKenzie, 2009; Speers-Roesch et al., 2012).

Oxygen, the key variable in Pcrit measurements, is used by aerobic organisms as an electron acceptor in order to drive the production of ATP. As such, the rate of oxygen uptake is widely considered as a proxy for the rate of aerobic metabolism, at least when in a steady state (Brown et al., 2004; Nelson, 2016). Standard metabolic rate (SMR) is the oxygen uptake rate of an entirely inactive, post-absorptive fish and reflects its minimal cost of living at a given temperature (Beamish and Mookherjii, 1964; Chabot et al., 2016). Routine metabolic rate (RMR) provides a similar estimate of the cost of living but takes into account energy expended on maintaining posture and making the small movements that are typical of most fishes even when in a quiescent state (McBryan et al., 2013). In contrast, maximal metabolic rate (MMR) is the highest rate of oxygen uptake that can be attained in defined environmental conditions (Clark et al., 2013; Norin and Clark, 2016). The difference between SMR and MMR is referred to as aerobic scope and provides for the oxygen demands of higher functions, such as locomotion, growth, behaviour and reproduction (Farrell and Richards, 2009; Claireaux and Chabot, 2016). In the context of this aerobic hierarchy, levels of critical Pb are represented in Figure 1. As this conceptual diagram illustrates, MMR is the
first rate to become limited as ambient oxygen decreases (P_{crit}), from which point a decline in MMR leads to a reduction in aerobic scope. Secondly, the P_{crit} for RMR reaches a threshold, whereby oxygen supply cannot sustain even minimal levels of aerobic activity. Finally, the P_{crit} for SMR indicates that oxygen supply cannot meet even basic oxygen demands (Portner and Lannig, 2009; Claireaux and Chabot, 2016). Below this threshold, anaerobicosis or suppression of metabolic rate are required to sustain life (Richards, 2009). Each of the three levels of P_{crit} may indicate the difference between mortality and survival. If so, P_{crit} may have major implications for the fitness of fishes living in environments prone to hypoxia and, as such, each of these levels can be considered as functional traits (McGill et al., 2006; Claireaux and Chabot, 2016).

The examination of trait variation across populations and communities, and its ecological implications, are increasingly becoming the basis for predicting and potentially mitigating the effects on biodiversity of environmental change (Chown, 2012). Such trait-based approaches are facilitated by the collection and dissemination of trait data. Large-scale multi-trait databases have been compiled for various taxa, including plants (Kattge et al., 2011), mammals (Jones et al., 2009), marine polychaetes (Faulwetter et al., 2014) and North American freshwater fishes (Frimpong and Angermeier, 2009). As a quantifiable measure of hypoxia tolerance that is measured on individuals and is applicable at population level, P_{crit} is useful for incorporation into trait-based approaches to the conservation physiology of fishes (Frimpong and Angermeier, 2009).

The field of fish physiology has generated a large body of literature on P_{crit} across a wide range of species and in highly variable abiotic and biotic conditions (Perry et al., 2009). Owing to the discrete and nuanced nature of each study, it is challenging to make broad generalizations. The aims of the present work were as follows: (i) to assemble a database of the P_{crit} values reported for fishes, from published literature, in a format suitable for future incorporation into multi-trait-based analyses; (ii) to analyse the data to identify how biotic and abiotic factors (particularly temperature) interact with hypoxia and affect P_{crit}; and (iii) to appraise methodologies for measuring P_{crit} critically, and thereby evaluate its usefulness for quantifying hypoxia tolerance in fishes. This new analysis not only provides an opportunity for further quantitative considerations but also serves as a tangible link between the physiology and the conservation of fishes.

Methods

Literature search

The citation and abstract indexes, Scopus® and Web of Science®, were used to collect relevant peer-reviewed literature. The literature search was conducted in December 2014 using the following terms: ‘critical oxygen’, ‘critical PO$_2$’, ‘oxygen threshold’, ‘P_{crit}’, ‘oxyregulate’, ‘oxyconform’ or ‘hypoxia tolerance’. Approximately 400 papers from relevant subject areas were identified. Each of these articles was individually assessed for relevance based on their title and abstract. Finally, 144 papers were downloaded for a full read of the manuscript. Of these, only 96 papers reported P_{crit} measurements in at least one fish species.

Database construction

In order to maximize the future usefulness of the database and to ensure that it fully reflects the variation in abiotic/biotic conditions in which P_{crit} has previously been measured in fishes, it was necessary to extract multiple parameters from each study. For each P_{crit} entry, 66 columns summarize information on the species and origin, acclimation parameters, animal characteristics, experimental method, results, statistical analyses, general comments and bibliographic information (Table 1). The database was constructed as a single Microsoft Excel file, with individual columns for each parameter and rows for each P_{crit} determination in a particular species or treatment group. As such, a single study may occupy several rows depending on the number of treatment groups and/or species for which P_{crit} is reported. Values for P_{crit} were reported in a variety of different oxygen units across the literature (millimetres of mercury, torr, percentage air saturation, milligrams of oxygen per litre and micromolar), but were converted here to a partial pressure of oxygen (in kilopascals) based on oxygen solubility values reported by Green and Carritt (1967) and assuming standard atmospheric pressure at sea level (760 mmHg), if not otherwise reported. Likewise, all values of oxygen uptake rate were converted to milligrams of oxygen per kilogram per hour. To enable unbiased inter-species comparison, a subset of the full database was produced, which included only those P_{crit} measurements made in fishes meeting the following conditions: (i) in an unfed or post-absorptive state; (ii) undergoing no additional (to hypoxia) abiotic stressor; and (iii) where temperature acclimation lasted for >2 days.

Database analysis

The frequency of P_{crit} measurements across families and climatic zones was calculated based on the full database. However, comparisons of P_{crit} values were made using the subset ‘control’ database described above. Based on the latitude of where the studies were conducted, each entry was labelled as tropical, sub-tropical, temperature or polar. Analysis of variance was used to test for an effect of climate zone on P_{crit} using the Sidak post hoc test.

Potential influences of varying respiration methodologies and hypoxia exposure methods on P_{crit} were explored using the subset ‘control’ database, in which there are 297 data points. Similar to the full database, the majority of studies measured P_{crit} using closed static respirometry on individual fish, where oxygen is reduced via the oxygen consumption of the fish ($n = 202$). Where there were sufficient data to compare methods between respirometry methods within a species, a Student’s unpaired t-test was used to compare between groups. It was not possible to test for differences in hypoxia exposure methods within species because there were insufficient data from at least two methods.
Stepwise multiple linear regression analysis was used to develop a model for predicting \(P_{\text{crit}} \) based on biotic (body mass, RMR) and abiotic (temperature, salinity) variables. Earlier analysis detected no significant within-species effect of respirometry method (closed or flow through) on \(P_{\text{crit}} \), and it was therefore not included in the linear regression model. Acclimation variables such as temperature, \(P_{\text{O2}} \) and salinity were not included in this analysis because they were very highly correlated with the equivalent variables reported during the trials. Minimal \(P_{\text{O2}} \) was not included in the model because it is driven by \(P_{\text{crit}} \).

As the multivariate model identified salinity as a relevant factor, the potential effect of salinity on \(P_{\text{crit}} \) was explored further by comparing \(P_{\text{crit}} \) values measured in seawater (150 entries from 82 species) with \(P_{\text{crit}} \) values measured in freshwater (116 entries from 50 species). This approach was taken because most of the studies were conducted either in freshwater [\(-0.1\) practical salinity units (PSU)] or seawater (30–38 PSU). Values of \(P_{\text{crit}} \) were calculated as the partial pressure of oxygen (in kilopascals) and as the concentration of oxygen (in milligrams per litre), using the solubility coefficient based on experimental temperature and salinity (Green and Carr, 1967). Potential differences between groups were then tested by a Mann–Whitney U-test, because normality assumptions were violated.

Results and discussion

Database coverage

Of the 96 studies reviewed, 331 measurements of \(P_{\text{crit}} \) across 151 species were incorporated into the database. Across the global database, 58 families are represented, with Cyprinidae (44 entries), Pomacentridae (41), Gobiidae (24), Cichildae (23), Salmonidae (19), Cottidae (18), Apogonidae (17), Percidae (16), and Sparidae (12) the most frequently represented. Freshwater and marine (including euryhaline) species account for 40 and 60% of \(P_{\text{crit}} \) entries, respectively. Water temperatures at which \(P_{\text{crit}} \) values were determined ranged between \(-1.5\) and \(36.0^\circ\text{C}\), with a mean (±SD) of \(21.7\pm7.6^\circ\text{C}\). Values for \(P_{\text{crit}} \) over the entire dataset ranged between 1.02 kPa (Pseudocrenilabrus multicolor victoriae; Reardon and Chapman, 2010) and 16.2 kPa (Solea

Table 1: List of the parameters incorporated into the database alongside each reported critical oxygen level value

Species and origin	Stock acclimation	Sample characteristics	Experimental method	Results	Statistical analysis	Comments and reference
Family	Holding time	Sample size	Respirometry type	Oxy regulating or conforming	Statistical method	Comments
Genus	Acclimation	Mean mass	BMR/RMR/SMR/MMR	\(M_{\text{O2}} \), \(P_{\text{crit}} \) calculation method	Reference	
Species	Acclimation	Mass SD	Determination method	Critical \(R_{\text{O2}} \), SMR determination		
Origin	\(R_{\text{O2}} \) units	Mass SEM	Swimming speed	Critical \(R_{\text{O2}} \) range	Corresponding Author	
Latitude and longitude	Acclimation \(R_{\text{O2}} \)	Mass range upper	Hypoxia method	Critical \(R_{\text{O2}} \) SD	DOI	
Acclimation pH	Mass range lower	Rate of hypoxia onset	Critical \(R_{\text{O2}} \) SEM			
Acclimation time	Mean length	\(R_{\text{O2}} \) set-point time	Critical \(R_{\text{O2}} \) units			
Diet	Length SD	Minimal \(R_{\text{O2}} \)	Air breathing threshold			
Ration unit	Length range upper	Salinity	 			
Ration size	Length range lower	Temperature	 			
Photoperiod (light:dark)	Life stage	pH				
Feeding regimen	Sex	\(R_{\text{O2}} \)				
Last feed	Photoperiod (light:dark)	 	 			
Access to air	 	 	 			

Abbreviations: BMR, basal metabolic rate; DOI, digital object identifier; MMR, maximal metabolic rate; \(M_{\text{O2}} \), oxygen uptake rate; \(R_{\text{O2}} \), partial pressure of carbon dioxide; \(P_{\text{crit}} \), critical oxygen level; \(R_{\text{O2}} \), partial pressure of oxygen; RMR, routine metabolic rate; SMR, standard metabolic rate.
solea larvae; McKenzie et al., 2008) with a mean (±SD) \(P_{\text{crit}} \) in the ‘control’ data set of 5.15 ± 2.21 kPa. Plots of species and their reported \(P_{\text{crit}} \) values from the subset data set are provided in the Supplementary Data (Supplementary Fig. 1).

The geographical coverage of the database includes at least one entry from every continent, although North America, Europe and Australasia are by far the most heavily represented and, when combined, account for 87% of \(P_{\text{crit}} \) entries. Perhaps unsurprisingly, most studies of \(P_{\text{crit}} \) in fishes have been concentrated around the major fish physiology research groups in Europe, North America and Australia. Arguably, this introduces an element of bias into the database, given the incomplete representation of all habitats and species at a global scale. Based on the full database, tropical studies are the most frequently represented \((n = 125 \ P_{\text{crit}} \) measurements, dominated by Lizard Island Research Station, Australia, \(n = 98 \), followed by subtropical \((n = 104) \) and temperate regions \((n = 100) \), dominated by Canada and Europe. The polar regions are the most under-represented \((n = 2) \). Within the subset ‘control’ database, there was a significant difference in mean \(P_{\text{crit}} \) across climatic regions (ANOVA, \(F_{2,297} = 4.054, P = 0.018 \)), where tropical fishes had the lowest \(P_{\text{crit}} \) (mean ± SEM: 4.92 ± 0.190 kPa) < sub-tropical fishes (5.0 ± 0.24 kPa) < temperate fishes (5.74 ± 0.24 kPa). However, the Sidak post hoc test suggested that \(P_{\text{crit}} \) values for tropical fishes were significantly lower only than temperate fishes \((P = 0.021) \). There was no difference in mean \(P_{\text{crit}} \) between subtropical and either tropical \((P = 0.991) \) or temperate \(P_{\text{crit}} \) \((P = 0.085) \). Owing to low sample size, the polar \(P_{\text{crit}} \) values were not included in the ANOVA across temperatures but, interestingly, had a higher mean \(P_{\text{crit}} \) than the other three climatic zones (7.9 ± 1.6 kPa).

Additionally, the species studied tend to be those conducive to respirometry trials. In particular, large, active or highly sensitive species, such as those of the Scombridae family (tuna, mackerels and bonitos) are generally under-represented in the literature (Blank et al., 2007). For example, the majority of \(P_{\text{crit}} \) values reported in the database were measured on fish <1 kg body mass.

Table 2: The breakdown of the number of data points representing each respirometry type and oxygen removal method in the subset database

Respirometry type	Oxygen depletion method	\(N_2 \) equilibration	\(N_2 \) and \(O_2 \) equilibration	\(N_2 \) and \(CO_2 \) equilibration	\(N_2, O_2 \) and air equilibration	Total
Closed static (individual)	202	1	0	0	0	203
Closed static (grouped)	13	0	0	0	0	13
Closed flow-through (individual)	13	14	0	0	3	30
Intermittent flow (individual)	13	26	2	1	0	42
Mesocosm (grouped, large tuna)	0	1	0	0	0	1
Open flow-through (grouped)	7	0	0	0	0	7
Opercular mask	1	0	0	0	0	1

Methodology used to determine critical oxygen level

The relationship between ambient \(P_{O_2} \) and oxygen uptake in fishes has been investigated since the study of Keys (1930). Even at that early stage, there was considerable discussion among physiologists regarding the validity of different methodologies. Technological developments, particularly methods for measuring dissolved oxygen content such as galvanic oxygen electrodes and, more recently, fibre-optic sensors, have made the performance of high-resolution measurements of oxygen uptake in fishes increasingly common (Clark et al., 2013; Nelson, 2016). Nevertheless, the literature examined for the purpose of building this database is characterized by considerable variation in terms of methods used to determine \(P_{\text{crit}} \). For example, the majority of studies (56%) used closed respirometry for \(P_{\text{crit}} \) estimates, 21% used flow-through respirometry, 20% used intermittent respirometry, and 3% used other approaches, such as indirect estimation of gill oxygen uptake (Table 2). Most studies (70%) depleted ambient oxygen through the fish’s own respiration, whereas 30% of studies bubbled nitrogen gas into the water to reduce ambient oxygen levels. The majority of studies (80%) measured RMR for \(P_{\text{crit}} \) estimates; the remaining 20% measured SMR. These methodological differences and their implications are important to consider when interpreting collated \(P_{\text{crit}} \) data.

Closed respirometry, whereby the fish is placed within a sealed chamber from which water is intermittently sampled for measurement of dissolved oxygen content, provides the simplest method of measuring oxygen uptake rate (Steffensen, 1989), as follows:

\[
M_{O_2} = [(V_i - V_t) \times \Delta O_2] \ast (\Delta t \times bw),
\]

where \(M_{O_2} \) represents oxygen uptake rate, \(V_i \) is respirometer volume, \(V_t \) is fish volume, \(\Delta O_2 \) is change in ambient oxygen content, \(\Delta t \) is time, and \(bw \) is fish mass (‘body weight’). Importantly, water needs to be recirculated within the chamber to ensure adequate mixing, thus preventing the stratification of dissolved
oxygen within the chamber (Keys, 1930). Whether spontaneous movements and ventilation are sufficient to provide mixing depends on the species and achieving the correct fish-to-respirometer volume ratio. For closed determinations of \(P_{\text{crit}} \), hypoxia is generated by allowing the fish to deplete available oxygen through its own respiration, therefore negating the need to strip dissolved oxygen from the water artificially through equilibration with nitrogen. For this reason, closed respirometry is particularly useful for conducting measurements of \(P_{\text{crit}} \) in the field or at remote locations where facilities such as a supply of \(N_2 \) may not be readily available (Rosenberger and Chapman, 2000; Nilsson et al., 2007b).

However, there are several important considerations regarding the use of closed respirometry for determination of \(P_{\text{crit}} \). For instance, the rate of oxygen depletion during closed respirometry is determined by the ratio of fish size (or oxygen uptake rate) to respirometer volume. A lack of control over the development of hypoxia can be problematic in comparative studies that use the same respirometer to measure \(P_{\text{crit}} \) in fish of different size and/or metabolic rate. As an illustrative example, the depletion of oxygen levels from 20 to 1 kPa by Australian barramundi (\(Lates calcarifer \)) took between 1.5 and 4 h depending on the temperature (26 or 36°C; Collins et al., 2013). From our database, it is evident that there is very little, if any, standardization in terms of the rate of oxygen depletion between \(P_{\text{crit}} \) studies, irrespective of which respirometry method is employed. This is in contrast to measurements of other physiological threshold traits, such as the determination of critical temperature, which tends to be made at consistent warming or cooling rates among studies (0.2–3.0°C min\(^{-1}\); Beitinger et al., 2000; Mora and Maya, 2006; Murchie et al., 2011). It is unclear whether the rate of decline in ambient oxygen will significantly affect \(P_{\text{crit}} \), but it is likely that a longer time scale would allow for greater respiratory adjustments, and hence, reveal lower \(P_{\text{crit}} \) values than more acute hypoxic exposures. Indeed, our own anecdotal observations in European flounder (\(Platichthys flesus \)) suggest that these fish tend to oxyconform across the entire range of ambient \(P_{\text{O}_2} \) when exposed to a very rapid reduction of oxygen (from 21 to 2 kPa in <2 h).

A further issue associated with closed respirometry is the build-up of the waste products of metabolism, in particular \(CO_2 \) (Keys, 1930; Steffensen 1989; Urbina et al., 2012). It has been argued that the \(CO_2 \) accumulation within a closed respirometer is unlikely to impact on \(CO_2 \) excretion by fishes significantly, given that they normally exhibit a blood partial pressure of \(CO_2 \) \((P_{CO_2})\) of around 2–4 mmHg, much higher than normal ambient levels (Ishimatsu et al., 2005; Nilsson et al., 2007a). However, a precedent has been set, albeit at more severe levels of hypercarbia (2.25–20 mmHg), to show that elevated \(P_{CO_2} \) can increase \(P_{\text{crit}} \) in European eels (\(Anguilla anguilla \); Cruz-Neto and Steffensen, 1997), although no effect on \(P_{\text{crit}} \) was observed when eels were given enough time to acclimate fully in terms of acid–base regulation (McKenzie et al., 2003), or in spot fish (\(Leistostomus xanthurus \)) and mummichog (\(Fundulus heteroclitus \); Cochran and Burnett, 1996). Given the potential influence of hypercarbia, it would be prudent to report any change in water \(P_{CO_2} \) alongside values for \(P_{\text{crit}} \) that have been determined through closed respirometry, but this has rarely been the case throughout the existing literature. A single study so far has evaluated this potential confounding factor in determining \(P_{\text{crit}} \) but in this unusual oxyconforming species (inanga, \(Galaxias maculatus \)) elevated \(P_{CO_2} \) had no effect on oxygen uptake rate at any level of ambient oxygen (Urbina et al., 2012). Furthermore, the authors pointed out that the effect of \(CO_2 \) on \(M_{O2} \) in fishes appears to be species specific (Gilmour, 2001; Ishimatsu et al., 2008).

An important issue that does not appear to have been considered previously is that the extent to which \(P_{CO_2} \) increases within a closed respirometer will be highly dependent on the starting water chemistry, in particular \(pH \) and salinity (Fig. 2). A higher seawater \(pH \) indicates a greater total alkalinity (TA). In turn, this gives increased capacity for buffering added \(CO_2 \) and limiting the increase in \(P_{CO_2} \) for a given increase in total \(CO_2 \) attributable to net excretion by the fish in a respirometer. Therefore, the lower the starting water \(pH \), the larger the...
overall change in P_{CO_2} over the course of the P_{crit} measurement. From the models shown in Figure 2, it is clear that pH has a massive influence on the ambient P_{CO_2} reached within such a closed respirometry scenario, with final P_{CO_2} values ranging by 5-fold, from \sim650 μatm (0.49 mmHg) to \sim3500 μatm (2.66 mmHg) at the highest (8.5) and lowest (7.5) starting pH values shown, respectively. Note that even the lowest of these final P_{CO_2} values has been shown (in experiments designed to mimic future ‘ocean acidification’ scenarios) to have significant detrimental effects in fishes (Munday et al., 2009). When the starting pH is low, the highest P_{CO_2} values of \sim3500 μatm occur, which are more than 3.5 times higher than the ‘business as usual’ for end-of-century global CO$_2$ projections (representative concentration pathway scenario 8.5; Meinshausen et al., 2011). It is also relevant to note that salinity has a major modulating effect, in particular within the middle of the range of starting pH values. For example, at a starting pH of 8.0, the final P_{CO_2} will vary from slightly <1500 μatm (1.14 mmHg) at the highest salinity (40 PSU) to >2500 μatm (1.90 mmHg) at the lowest salinity (20 PSU).

The larger ambient P_{CO_2} values indicated above would certainly be expected to cause significant blood acid–base disturbance during the time scale of a typical closed respirometry experiment (minutes to hours) and thus have the potential to influence P_{crit} via alterations in the oxygen binding affinity of haemoglobin. It is therefore important to recognize this variability in P_{CO_2} when conducting closed respirometry experiments to determine hypoxia tolerance, and particularly, when interpreting P_{crit} measurements.

Flow-through respirometry is a technique whereby oxygen content of the inflowing (O_2 in) and outflowing (O_2 out) water is continuously measured at a fixed water flow rate through the respirometer (F_w). By application of the Fick principle, oxygen uptake (M_{O_2}) is determined by:

$$M_{O_2} = F_w(O_{2, in} - O_{2, out}) + bw.$$

Although flow-through respirometry avoids the accumulation of metabolites in the chamber, it suffers from problems primarily related to the ‘wash-out’ effect, whereby a significant lag can develop between changes in the fish’s real M_{O_2} and changes in observed O_2 out. The degree of wash-out depends on the dilution factor, which is a function of water mixing, volume and flow rate (Steffensen, 1989).

Intermittent flow-through respirometry is generally considered the ideal method of M_{O_2} determination in fishes because it involves none of the problems associated with closed or flow-through techniques (Steffensen, 1989; Clark et al., 2013). The term ‘intermittent’ or ‘semi-closed’ in this context refers to the transitioning between a closed phase for determination of M_{O_2} and a flush phase for restoring O_2 to a set level and removing metabolites from the respirometer. As the equipment and software for automating flush–recirculation cycles and simultaneous data acquisition from multiple chambers have become more sophisticated and widely available, intermittent flow-through respirometry has been increasingly used (Svensens et al., 2016). However, P_{crit} measurements via this preferred technique account for only 20% of values incorporated into the present database.

Flow-through techniques allow for the supply of hypoxic water to the respirometry chamber. This hypoxic water can be produced by bubbling with N_2 via a solenoid valve linked to an O_2 probe (Schurmann and Steffen, 1997) or by bubbling with set gas mixtures of variable O_2 and N_2 content. Both methods allow for finer control of the hypoxic exposure compared with allowing the fish to deplete ambient oxygen levels dependent on its own M_{O_2}. Progressive hypoxia can be generated in a stepwise fashion such that multiple M_{O_2} measurements can be made at a specific P_{O_2}, thereby increasing the likelihood of determining an M_{O_2} that is representative of true SMR or RMR (Rantin et al., 1993).

Using the present database, we were able to explore differences in respirometry methods within three species, Atlantic salmon (Salmo salar), common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus), for which the sample size for at least two methods was greater than $n > 2$. Between closed static or closed flow-through respirometers, there was no difference in P_{crit} of common carp (Student’s unpaired t-test, $t = 1.429$, d.f. = 6, $P = 0.203$). Likewise, between closed, static respirometers (individual fish) and open flow respirometry (with grouped fish), there was no difference in P_{crit} in Atlantic salmon (Student’s unpaired t-test, $t = -0.678$, d.f. = 8, $P = 0.517$). There was no difference in P_{crit} between closed, flow-through or intermittent flow-through respirometry within Nile tilapia (Student’s unpaired t-test, $t = -0.644$, d.f. = 6, $P = 0.543$). In both Atlantic salmon and common carp, oxygen levels were reduced by the respiration of the fish, whereas in Nile tilapia the oxygen was reduced by nitrogen equilibration. A direct comparison in the shiner perch (Cymatogaster aggregata) found, however, that P_{crit} measured by intermittent flow-through respirometry was significantly lower than that measured by closed respirometry (Snyder et al., 2016). Thus, more direct comparisons are needed to investigate whether the two most common methodologies might provide different estimates of P_{crit}.

To determine P_{crit}, M_{O_2} is plotted against ambient P_{O_2} in order to identify the inflection point at which M_{O_2} transitions from being independent of ambient oxygen to dependent on ambient oxygen. Within this procedure, a great deal of subtle variation exists among studies. Most obvious is the differential use of SMR or RMR, with the majority (84%) of studies reporting a P_{crit} for RMR. Arguably, the P_{crit} exhibited for RMR is more ecologically relevant, given that this level of M_{O_2} is likely to be exhibited most of the time in the field (Ultsch et al., 1978; Pörnter, 2010). Indeed, for some highly active species, such as salmonids, P_{crit} determined during active swimming may be most useful in considering the ecological implications of hypoxia (Fry, 1957). Activity level may affect P_{crit} in unexpected ways, such as in the Adriatic sturgeon (Acipenser naccarii), which exhibits a well-developed ability to
oxyregulate ($P_{\text{crit}} = 4.9 \pm 0.5$ kPa) when permitted to swim at a low sustained speed but oxyconforms across the entire range of declining ambient oxygen when its activity is restricted in a static respirometer (McKenzie et al., 2007). Some species exhibit a relatively high P_{crit} for RMR at a P_{O_2} that is well above the P_{50} (half of the hemoglobin oxygen binding sites are saturated with oxygen) of their haemoglobin. In these instances, P_{crit} may indicate a behavioural change and not simply a physical limitation of oxygen supply (McBryan et al., 2013).

Of the studies that determine the P_{crit} for SMR, the methods used for quantifying SMR vary considerably. Some studies use the single lowest M_O value recorded at normoxia, whereas others take the average of a set number of the lowest M_O values (Iversen et al., 2010). More sophisticated and robust methods involve extrapolating the average M_O measured at specified swimming speeds back to zero activity (Wilson et al., 1994; Cook et al., 2014) or the use of percentiles and frequency distributions to assess all normoxic M_O data (Dupont-Prinet et al., 2013). As the critical level for basal metabolism, P_{crit} determinations based on SMR should theoretically reflect a true physiological limitation of oxygen extraction capacity (McBryan et al., 2013), although this may not be true in species for which metabolic depression below P_{crit} has a facultative component. Given that the P_{crit} for RMR is likely to be encountered at higher P_{O_2} than that for SMR (Fig. 1), intra- or inter-species comparisons among studies reporting different levels of P_{crit} may not be entirely valid. Whether SMR or RMR measurements are used to reflect normoxic M_O, it is essential that sufficient time is allowed for the fish to acclimate to the respirometry chamber; otherwise, apparent reductions in M_O as hypoxia develops may be an artefact of increasing habituation rather than true oxyconforming (Nilsson et al., 2004).

The method used to establish the point of intersection between continuous oxyregulation and oxyconforming M_O data is also inconsistent among studies. The slope of these lines will determine the P_{crit} and vice versa; therefore, determining which data points should be included within each line is critical to establishing an accurate estimate of P_{crit} (Yeager and Ultsch, 1989). This can be achieved graphically by fitting a least-squares linear regression through data points that show a progressive decline in M_O, such that it intersects with a regression line fitted through normoxic M_O data (Monteiro et al., 2013). A number of mathematical methods for performing so-called piece-wise or segmented linear regression analyses are available, which provide greater robustness to estimates of P_{crit} and are used in the majority of studies incorporated into the present database (Nickerson et al., 1989; Yeager and Ultsch, 1989; Leiva et al., 2015). These approaches assume that the response of M_O to declining P_{O_2} is biphasic and consists of two entirely linear elements, with an abrupt transition between the two. Such assumptions are not necessarily met by real-world data, and indeed, concentration-dependent reaction kinetics make truly linear relationships between M_O and P_{O_2} unlikely (Marshall et al., 2013). Recent developments in non-linear regression techniques are now being promoted as a more accurate approach to determining biological thresholds such as P_{crit} (Stinchcombe and Kirkpatrick, 2012; Marshall et al., 2013).

Critical oxygen level as a hypoxia tolerance trait

A low P_{crit} is generally associated with greater hypoxia tolerance because it indicates a higher capacity for oxygen extraction and tissue delivery at low P_{O_2} (Mandic et al., 2009). Maintaining aerobic metabolism during hypoxia is advantageous because it is up to 30-fold more efficient than anaerobic ATP production (per unit substrate consumed) and avoids accumulation of the deleterious by-products (e.g. H^+) of anaerobic metabolism (Richards, 2009). Hypoxia-induced physiological modifications that increase oxygen extraction capacity, such as increased gill surface area (Nilsson, 2007) and haemoglobin–O_2 binding (Brix et al., 1999), are observed in fishes that frequently encounter hypoxia, suggesting that maintaining aerobic metabolism is a primary hypoxia survival strategy (Mandic et al., 2009). However, when ambient P_{O_2} declines below P_{crit}, survival depends on the availability of substrate for O_2-independent ATP production (primarily glycolysis) and the ability to reduce metabolic demand (Richards, 2009).

How long a fish can maintain a balance between ATP demand and supply below its P_{crit}, and thus delay the onset of cellular dysfunction, necrosis and subsequent death, is a key component of hypoxia tolerance (Nilsson and Östlund-Nilsson, 2008; Urbina and Glover, 2012; Speers-Roesch et al., 2013). Speers-Roesch et al. (2013) showed that P_{crit} does not entirely predict hypoxia tolerance at lower oxygen levels. The authors used three species of sculpin (Blepsias cirrhosis, Leptocottus armatus and Oligocottus maculosus), which exhibit different P_{crit} values (1.76, 1.48 and 1.03 kPa, respectively), and exposed them to hypoxia levels that were 30% below each of their respective P_{crit} values while recording the time to loss of equilibrium. The loss of equilibrium was consistent between only two of the three species ($L. \text{ armatus}$ and $O. \text{ maculosus}$). Similar relative hypoxia exposures in the epaulette shark (Hemiscyllium ocellatum) and shovelnose ray (Aptechotrema rostrata) revealed lower lactate accumulation in epaulette sharks, indicating enhanced metabolic depression in this species (Speers-Roesch et al., 2012). Furthermore, Nilsson and Östlund-Nilsson (2008) showed that P_{crit} did not correlate with body mass in juvenile and adult damselfish (Pomacentridae) ranging between 10 mg and 40 g but that smaller fish were much less tolerant to hypoxia below P_{crit}, owing to their limited capacity for meeting ATP demand through anaerobic metabolism. These findings were further supported in $G. \text{ maculatus}$ (Urbina and Glover, 2013). These results illustrate the benefit of considering P_{crit} alongside other methods of determining hypoxia tolerance, such as measurements of tissue-specific lactate accumulation and determinations of the loss of equilibrium of 50% of the fish, in order to assess overall hypoxia tolerance (Urbina and Glover, 2013; Speers-Roesch et al., 2013; Claireaux and Chabot, 2016).
A recent review by Salin et al. (2015) argues that whole-animal oxygen consumption measurements may provide only a partial proxy for energy metabolism because of variation, within and between individuals, in the amount of ATP produced per molecule of oxygen consumed by mitochondria (P/O ratio). Environmental factors such as ambient temperature, food intake and diet composition have been shown both to increase and to decrease P/O ratios in the mitochondria of a variety of organisms (Salin et al., 2015). Hence, conclusions based on oxygen consumption rate alone could lead to misleading conclusions regarding respiratory performance during environmental changes. To our knowledge, the effect of hypoxia on P/O ratios in fish has yet to be investigated, and as such, provides an interesting avenue for further research.

As a hypoxia-tolerance trait, low \(P_{crit} \) can often, but not always, indicate an ability to survive in hypoxic water. It does not consider the use of hypoxia-avoidance strategies, such as adaptations for emersion, aquatic surface respiration and air breathing (Chapman and McKenzie, 2009). The inanga (\(G. \ maculatus \)), which inhabits lowland streams prone to severe hypoxia, is a rare example of a fish species that appears to be an entirely obligate oxyconformer and thus demonstrates no discernible \(P_{crit} \) (Urbina et al., 2012). Likewise, several species of Gymnotiform electric fishes from South America, which inhabit naturally hypoxic floodplain pools, also appear to be obligate oxyconformers with no \(P_{crit} \) (Reardon E. E., personal communication), an observation that is also anecdotally supported in Brachyhypopmus brevirostris (Crampton, 1998). In some of these species, such as the inanga, a lack of scales and a large surface area-to-volume ratio indicate a high capacity for cutaneous \(O_2 \) uptake whilst emersed, and hence, provide a short-term means to escape aquatic hypoxia (Urbina et al., 2011). The oxygen thresholds for aquatic surface respiration, air breathing and emergence were incorporated into the database, but only where they have been reported alongside \(P_{crit} \) measurements. Such examples demonstrate the limitation of \(P_{crit} \) as a universal and comparative measure of hypoxia tolerance between species and emphasize the benefit of multi-trait-based approaches.

Biotic and abiotic interactions

Environmental stressors, such as hypoxia, rarely occur in isolation, and the interaction between stressors is of key concern in the context of predicting the ecological impacts of future environmental change (Crain et al., 2008). As a typical threshold effect, the response of fish to hypoxia is likely to result in ‘ecological surprises’, whereby seemingly resilient populations suddenly collapse once a critical threshold is crossed (McBryan et al., 2013). Additive or synergistic interactions with hypoxia could hasten the arrival of such thresholds, meaning that small environmental shifts could result in large effects on the performance of a population. Theoretically, any abiotic or biotic factor that affects either oxygen supply (cardiorespiratory capacity) or oxygen demand (metabolic rate) of an individual, and the balance therein, will have implications for its hypoxia tolerance. As an indicator of hypoxia tolerance, the effects of a wide range of abiotic and biotic interactions on \(P_{crit} \) in fish have been published (Table 3).

The stepwise multiple linear regression found that biotic (body mass, RMR) and abiotic (temperature, salinity) variables were highly correlated with \(P_{crit} \) (see Table 4). A significant regression \(F_{6,114} = 10.565, P < 0.001 \) predicted 19.5% of the variation in the data, based on an adjusted \(r^2 \) (multiple linear regression). Predicted \(P_{crit} \) is equal to 5.689 + 0.047 (salinity) - 0.083(temperature) + 1.931(body mass) + 0.001 (RMR), where salinity is measured in practical salinity units, temperature in degrees Celsius, body mass in kilograms, and RMR in milligrams of oxygen per litre. All four variables were significant predictors of \(P_{crit} \) in the full model (Table 4).

Temperature is by far the most widely studied abiotic factor potentially interacting with hypoxia (reported in 30 species) and is particularly relevant, given ongoing global climate change (Ficke et al., 2007; Pörtner, 2010). As ectotherms, oxygen demand in fishes increases in a roughly exponential manner with temperature (inter-species mean \(Q_{10} \) of 1.83; Clarke and Johnston, 1999), and the intrinsic link between temperature and environmental hypoxia has become the basis of an overarching concept termed ‘oxygen and capacity limitation of thermal tolerance’ (Pörtner, 2001, 2010). Essentially, this concept suggests that the thermal tolerance of ectotherms is dictated by their capacity to meet the oxygen demands of aerobic metabolism. Increased temperature both raises basal oxygen demand (SMR) and reduces oxygen supply (via its effect on oxygen solubility), whereas hypoxia reduces the oxygen supply. Hence, temperature and hypoxia are likely to act synergistically in fishes. Within species, increasing temperature generally results in a higher \(P_{crit} \) but among species, the slope of the relationship between temperature and \(P_{crit} \) is highly variable (Fig. 3).

For example, the Atlantic salmon (\(S. \ salar \)) exhibits a steep linear increase of \(P_{crit} \) in comparison to the shallower slope seen in the common carp (\(C. \ carpio \)) across a similar temperature range (Ott et al., 1980; Remen et al., 2013). A surprising exception to the generally positive intra-species correlation between temperature and \(P_{crit} \) was observed in four out of six species of darter (\(Etheostoma \)), for which \(P_{crit} \) was lower at than 10°C (Ultsch et al., 1978). Variation in the sensitivity of species to temperature in terms of hypoxia tolerance may arise because of differences in their potential for thermal acclimation. Explanations for this variation may include reducing the metabolic impact of increased temperature or enhancing oxygen extraction capacity (Ott et al., 1980; Pörtner, 2010). Species exhibit highly contrasting capacities for plastic acclimation responses. At opposite ends of this spectrum, crucian carp (\(C. \ carassius \)) can dramatically increase respiratory surface area through gill remodelling in response to temperature and hypoxia (Solidl et al., 2005), whereas certain tropical reef fish species (Ostorhinchus doederleinii and Pomacentrus moluccensis) demonstrate no thermal acclimation ability even over a relatively modest temperature range (29–32°C; Nilsson et al., 2010).
Table 3: Summary of biotic and abiotic factors and their interactions with the intra-species critical oxygen level as reported by studies included in the database

Variable	Species	Effect on P_{O_2}	Reference
Increasing temperature	*Gadus morhua*	Increase	Schurmann and Steffensen (1997)
	Lates calcarifer	Increase	Collins et al. (2013)
	Scyliorhinus canicula	Increase	Butler and Taylor (1975)
	Salmo salar	Increase	Barnes et al. (2011)
	S. salar	Increase	Remen et al. (2013)
	Dentex dentex	Increase	Cerezo Valverde et al. (2006)
	Tautogolabrus adspersus	Increase	Corkum and Gamperl (2009)
	Gadus ogac	Increase	Corkum and Gamperl (2009)
	Bellapiscis medius	Increase	Hilton et al. (2008)
	Bellapiscis lesleyae	Increase	Hilton et al. (2008)
	Morone saxatilis	Increase	Lapointe et al. (2014)
	Carassius carassius	Increase	Nilsson et al. (2010)
	Oreochromis niloticus	Increase	Fernandes and Rantin (1989)
	Cyprinus carpio	Increase	Ott et al. (1980)
	Oncorhynchus mykiss	Increase	Ott et al. (1980)
	Pomacentrus moluccensis	Increase	Nilsson et al. (2010)
	Ostorhinchus doederleini	Increase	Nilsson et al. (2010)
	Carassius auratus grandoculis	No effect	Yamanaka et al. (2013)
	Etheostoma boschungi	Decrease	Ultsch et al. (1978)
	Etheostoma fusiforme	Decrease	Ultsch et al. (1978)
	Etheostoma flabellare	Decrease	Ultsch et al. (1978)
	Etheostoma ruflineatum	Decrease	Ultsch et al. (1978)
Increasing salinity	*Cottus asper*	Decrease	Henriksson et al. (2008)
	Leptocottus armatus	No effect	Henriksson et al. (2008)
	Cyprinus carpio	Increase	De Boeck et al. (2000)
	Cyprinodon ariegatus	Increase	Haney and Nordlie (1997)
Increased P_{CO_2}	*Fundulus heteroclitus*	No effect	Cochran and Burnett (1996)
	Leiostomus xanthurus	No effect	Cochran and Burnett (1996)
	Anguilla anguilla	Increase	Cruz-Neto and Steffensen (1997)
	Platichthys flesus	Increase	Rogers (2015)
Hypoxic acclimation	*Pagrus auratus*	No effect	Cook et al. (2013)
	S. salar	No effect	Remen et al. (2013)
	Hemiscyllium ocellatum	Decrease	Routley et al. (2002)
	Spinibarbus sinensis	Decrease	Dan et al. (2014)
	C. auratus	Decrease	Fu et al. (2011)
	Poecilia latipinna	Decrease	Timmerman and Chapman (2004 a,b)

(Continued)
Variable	Species	Effect on P_{O_2}	Reference
Reared in hypoxic environment	Pseudocrenilabrus multicolor	Decrease	Reardon and Chapman (2010)
Exercise pre-conditioning	C. auratus	Decrease	Fu et al. (2011)
Fed	Astronotus ocellatus	Increase	De Boeck et al. (2013)
	Oreochromis niloticus	Increase	Mamun et al. (2013)
	Perca fluviatilis	Increase	Thuy et al. (2010)
Fatty acid-enriched diet	Solea solea (larvae)	Decrease	McKenzie et al. (2008)
	S. solea (juveniles)	Decrease	McKenzie et al. (2008)
Increasing body mass	Hypostomus plecostomus	Decrease	Perna and Fernandes (1996)
	Astronotus ocellatus	Decrease	Sloman et al. (2006)
	Pomacentridae	No effect	Nilsson and Östlund-Nilsson (2008)
Pre- to post-settlement (larvae)	Chromis atripectoralis	Decrease	Nilsson et al. (2007a,b)
	Pomacentrus amboinensis	Decrease	Nilsson et al. (2007a,b)
Larvae to juveniles	C. auratus grandoculis	Decrease	Yamanaka et al. (2013)
Juveniles to adults	Reinhardtius hippoglossoides	Decrease	Dupont-Prinet et al. (2013)
Increasing brood size (mouthbrooders)	Zoramia fragilis	Increase	Östlun-Nilsson and Nilsson (2004)
	Zoramia leptacantha	Increase	Östlun-Nilsson and Nilsson (2004)
Mycobacteriosis infection	Morone saxatlis	Increase	Lapointe et al. (2014)
Acidified water	Salmo gairdneri	Increase	Ultsch et al. (1980)
	Cyprinus carpio	Increase	Ultsch et al. (1980)
Metal exposure	Brycon amazonicus	Increase	Monteiro et al. (2013) (Hg$^{2+}$)
	C. carassius	Increase	Schjolden et al. (2007) (Cu$^{2+}$)
	Perca fluviatilis	Increase	Bilberg et al. (2010) (AgNO$_3$)
	P. fluviatilis	Increase	Bilberg et al. (2010) (nano-Ag)
Organophosphate exposure	Oreochromis niloticus	Increase	Thomaz et al. (2009)
Anaemia	P. auratus	Increase	Cook et al. (2011)

Abbreviations: P_{O_2}, partial pressure of oxygen; P_{CO_2}, critical oxygen level.
Unlike intra-species P_{crit}, there is no apparent relationship between temperature and inter-species P_{crit} (Fig. 3), suggesting that evolution may have nullified the thermal sensitivity of hypoxia tolerance across species. It has been shown that the difference in RMR between a typical cold-water and warm-water fish is less than expected, given the thermal sensitivity of RMR within individual species (intra-species median $Q_{10} = 2.4$; Clarke and Johnston, 1999). In addition, gill surface area appears to scale in a linear manner with metabolic rate, implying that natural selection equips fishes with the oxygen extraction capacity required to match demand at higher temperatures (Nilsson and Östlund-Nilsson, 2008). Selective pressures for small gills, such as the osmorespiratory compromise (Nilsson, 1986; Gonzalez and McDonald, 1992; Urbina and Glover, 2015), gill parasites and risks associated with gill injury, are likely to limit respiratory surface area so that oxygen extraction capacity does not exceed that required by a particular species for survival in its natural range (Nilsson, 2007). Thus, generalizations regarding hypoxia tolerance across temperatures cannot be established firmly at the inter-species level.

Although salinity has long been recognized as a key environmental factor, studies evaluating the effects of salinity on P_{crit} are scarce. A previous study in the euryhaline sheephead minnow ($C. variegatus$, acclimated to salinities from freshwater (0 PSU) to hypersaline waters (100 PSU), showed a marked effect on P_{crit} (Haney and Nordlie, 1997) as environmental salinity rose. Inter-specific comparisons in the database agree with this previous intra-specific finding; that is, salinity had a significant influence on P_{crit}, whereby freshwater

Table 4: Results of the stepwise linear regression analysis where salinity, body mass, routine metabolic rate (RMR) and temperature had zero-order r correlations with P_{crit} ($P < 0.05$) and with each other, where values were reported

Variable	Salinity (psu)	Temperature (°C)	Body mass (kg)	RMR (mg O$_2$ l$^{-1}$)	P_{crit} (kPa)	β	sr^2	b
Salinity	0.317	−0.165	0.354	0.279	0.346	0.099	0.047	
Temperature	0.366	−0.141	−0.166	0.166	0.242	0.056	−0.083	
Body mass	−0.166	0.166	0.242	0.083	0.036	0.193		
RMR	0.17	0.202	0.202	0.032	0.001			
Mean	23.54	23.1	0.1	323.84	5.4	Intercept = 4.027		
SD	15.36	7.9	0.3	434.04	2.1	Adjusted $r^2 = 0.195$	$P < 0.001$	

Abbreviations: P_{crit}, critical oxygen level; RMR, routine metabolic rate. In the full model, all four variables were significant predictors of P_{crit}.
species (including a few euryhaline species) presented a 23% lower \(P_{\text{crit}} \) than seawater species (also including a few euryhaline species; Fig. 4A; \(P \leq 0.001 \)).

As explained in earlier sections, any factor influencing the oxygen demand (metabolic rate) of an individual will be likely to have implications for its hypoxia tolerance. Given that teleost fishes must maintain a tight regulation of their internal salts and water composition (osmolality), as external salinity changes or becomes extreme, fishes must expend increased efforts to maintain internal homeostasis (Urbina and Glover, 2015). As many of the mechanisms of osmoregulation involve the action of ATP-driven pumps (i.e. \(\text{Na}^+\text{K}^-\text{ATPase} \)) in order to pump ions against a concentration gradient, increased costs of osmoregulation may explain, in part, some of these differences in \(P_{\text{crit}} \), at least for intra-specific comparisons. However, from our database (inter-specific), where more freshwater vs. seawater species comparison are presented, it is likely that other mechanisms are explaining differences in \(P_{\text{crit}} \). Given that seawater species separated million years ago from a freshwater ancestor (actinoptyergians, 300–180 million years ago; Vega and Wiens, 2012), both fresh- and seawater species have adapted to their respective environments, and therefore, have also optimized their energy allocated to osmoregulation. Thus, the differences in \(P_{\text{crit}} \) found in the present study, rather than being explained by energy-related/oxygen demand issues, could be associated with intrinsic characteristics of both media (freshwater vs. seawater). Owing to differences in size, organic matter load and stability, hypoxia is much more prevalent and common in freshwater than in seawater environments. As such, the driver for an enhanced hypoxia tolerance (lower \(P_{\text{crit}} \)) could potentially explain the lower \(P_{\text{crit}} \) found in freshwater species. A future phylogenetic analysis might contribute to test this hypothesis.

It is also worth noting that the difference found in \(P_{\text{crit}} \) when presented as the partial pressure of oxygen (in kilopascals) was no longer found when \(P_{\text{crit}} \) was calculated as the concentration (in milligrams per litre; Fig. 4B; \(P > 0.05 \)). This could potentially highlight the importance of working with partial pressure, because this is what drives diffusion when considering gases. Alternatively, it could indicate that the oxygen concentration is more relevant when considering \(P_{\text{crit}} \) values, because it determines the total amount of oxygen that is potentially available for diffusion as water flows over the gills, i.e. for the same oxygen uptake, salinity (through its effect on solubility) will have a big effect on the difference between inspired and expired \(P_{\text{O}_2} \).

The biological processes that consume \(O_2 \) also produce \(CO_2 \); therefore, hypoxia and hypercarbia can often co-occur in aquatic environments (Ultsch, 1996; Cruz-Neto and Steffensen, 1997; Gilmour, 2001). Despite this, the interactive effect of environmental hypercarbia on hypoxia tolerance has been relatively understudied. As previously discussed (Table 3), there are conflicting reports within the available literature regarding to the effect of hypercarbia on the \(P_{\text{crit}} \) of fishes (Cochran and Burnett, 1996; Cruz-Neto and Steffensen, 1997; McKenzie et al., 2003). The most likely mechanism by which hypercarbia could negatively impact hypoxia tolerance is through respiratory acidosis, leading to Bohr/Root effects on haemoglobin and reduced oxygen transport capacity (Jensen et al., 1993; Cruz-Neto and Steffensen, 1997). In this respect, hypercarbia is partly akin to the far more extreme acidosis that can occur in poorly buffered freshwater environments subjected to acid precipitation or drainage. Acidification of the surrounding water by addition of sulphuric acid (water pH range 7.4–4.0, at constant atmospheric \(P_{\text{CO}_2} \)) increases \(P_{\text{crit}} \) in both rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio; Ultsch et al., 1980). The time required to compensate for acid–base disturbance is highly variable among species (10–24 h during moderate hypercarbia; Melzner et al., 2009), and as such, the effect of hypercarbia and acidification on hypoxia tolerance is likely to be dependent.
largely on the species in question as well as the severity and duration of the hypercarbic or acid exposure (Jensen et al., 1993).

Exposure to toxicants, such as trace metal contamination, appears to reduce hypoxia tolerance in fishes. Specifically, exposure to elevated concentrations of copper (300 µg l\(^{-1}\)), mercury (150 µg l\(^{-1}\)) and silver (63 µg l\(^{-1}\)) have been demonstrated to increase \(P_{\text{crit}} \) in various species (Table 3). The accumulation of toxic metals on the gills can stimulate the hypersecretion of mucus, which acts as a barrier to diffusion of external toxicants into the blood (McDonald and Wood, 1993; Wilson et al., 1994). In addition, some trace metals cause hyperplasia and hypertrophy of gill epithelia cells that results in the fusing and thickening of gill lamellae (Schijolde et al., 2007; Bilberg et al., 2010). As a consequence, respiratory function is compromised as a result of reduced diffusion area and increased diffusion distance (McDonald and Wood, 1993). The organophosphate insecticide trichlorfon has been shown to increase \(P_{\text{crit}} \) by inducing similar changes in gill morphology as well as by promoting vasconstriction that reduces lamellae blood flow in Nile tilapia (Oreochromis niloticus; Thomaz et al., 2009). These potential interactions between toxic contaminants and hypoxia in fishes are clearly of concern, particularly given that both stressors predominantly threaten freshwater and coastal marine systems and are therefore likely to coincide (McDonald and Wood, 1993; Diaz and Rosenberg, 2008).

Determinations of \(P_{\text{crit}} \) in fishes have almost universally been made in unfed, post-absorptive individuals which, although providing a useful basis for comparing absolute hypoxia tolerance among species and individuals, does not fully account for the digestive state typical of fishes in their natural setting. An increase in oxygen uptake following ingestion of food, termed specific dynamic action (SDA), is required in order to meet the energetic costs associated with mechanical and biochemical digestion and assimilation (Jobling, 1993). Shortly after a meal, oxygen uptake in fish typically rises rapidly, reaching a peak two to three times higher than pre-fed levels within a few hours. The shape and duration of the SDA is highly dependent on the species in question as well as the meal size and composition (Secor, 2009). Measurements of \(P_{\text{crit}} \) in fishes undergoing SDA have revealed significant increases in \(P_{\text{crit}} \) compared with unfed control fishes, showing that increased aerobic demand during digestion has negative consequences for hypoxia tolerance (Table 3). In common perch (Perca fluviatilis) force-fed a 5% body mass ration, \(P_{\text{crit}} \) at 20 h post-feeding was increased by 1.44-fold compared with sham-fed individuals (Thuy et al., 2010). Likewise, oscars (Astronotus ocellatus) fasted for 14 days showed a 1.6-fold lower \(P_{\text{crit}} \) than individuals fed a daily 1% body mass ration up to 24 h prior to \(P_{\text{crit}} \) determination (De Boeck et al., 2013). In such experiments, the requirement for a stable \(M_{\text{bo}} \), on which to base a determination of \(P_{\text{crit}} \) means that measurements at peak SDA are not feasible, and thus, are likely to underestimate the effect of digestion on hypoxia tolerance (Thuy et al., 2010).

Several studies have investigated the effect of hypoxia acclimation on \(P_{\text{crit}} \) (Table 3). Broadly, short-term physiological acclimation to hypoxia appears to be achieved through either enhanced \(O_2 \) extraction capacity or metabolic depression. In goldfish (Carassius auratus), 48 h of severe (0.63 kPa) hypoxia induced dramatic increases in both lamellar surface area and blood haemoglobin content, leading to a 49% reduction in \(P_{\text{crit}} \) compared with individuals held at normoxia (Fu et al., 2011). Likewise, sailfin molly (Poecilia latipinna) demonstrated increased haemoglobin and red blood cell concentrations and a reduced \(P_{\text{crit}} \) following a 6 week exposure to severe hypoxia (Timmerman and Chapman, 2004a). Depression of RMR at normoxia and a subsequent reduction in \(P_{\text{crit}} \) following chronic hypoxic exposure has been observed in the epaulette shark (H. ocellatum; Routley et al., 2002) and qingbo (Spinichthys sinensis; Dan et al., 2014). However, some less hypoxia-tolerant species appear to demonstrate no physiological acclimation potential through hypoxic pre-conditioning. Daily exposure to 6 h of moderate hypoxia (10.5 kPa) for 33 days had no effect on \(P_{\text{crit}} \) in post-smolt Atlantic salmon (S. salar; Remen et al., 2013). Additionally, chronic (6 week) moderate hypoxia produced no change in the \(P_{\text{crit}} \) of juvenile snapper (Pagrus auratus; Cook et al., 2013).

As hypoxia is likely to become an increasingly predominant aquatic perturbation in the future (Vaquera-Sunyer and Duarte, 2008; Keeling et al., 2009), the degree of physiological plasticity for hypoxia tolerance will be a key determinant of species performance. The potential for long-term and transgenerational hypoxia acclimation with respect to \(P_{\text{crit}} \) has been largely unstudied. A transgenerational transfer of hypoxia tolerance has been demonstrated in zebrafish (Danio rerio) larvae after 2–4 weeks of parental hypoxia exposure, but this was based on determinations of time to loss of equilibrium (4 kPa \(O_2 \)) rather than through measurement of \(P_{\text{crit}} \) (Ho and Burggren, 2012). Reardon and Chapman (2010) demonstrated a strong element of developmental plasticity in the \(P_{\text{crit}} \) of the Egyptian mouthbrooder (Pseudocrenilabrus multiclor) when reared in hypoxic conditions. In addition, intraspecies population effects on \(P_{\text{crit}} \) across habitats of differing \(O_2 \) regimes have been observed in several species, indicating that a high degree of phenotypic plasticity for \(P_{\text{crit}} \) exists within these populations (Timmerman and Chapman, 2004b; Reardon and Chapman 2010; Fu et al., 2011).

Future applications

The comprehensive \(P_{\text{crit}} \) database presented here provides the opportunity for a variety of further analyses with potential to offer fundamental physiological, as well as wider ecological, insights. For example, further analyses could involve comparing species \(P_{\text{crit}} \) values within a phylogenetic context as a means to investigate the evolutionary relationships of hypoxia tolerance among species (Mandic et al., 2009). Likewise, combining species \(P_{\text{crit}} \) data with information on the spatial distribution of populations would help to refine our understanding of the ecological relevance of \(P_{\text{crit}} \) as a physiological trait. Such an analysis would be particularly relevant to predicting the
impacts on fish populations likely to arise from the increasingly widespread occurrence of hypoxic zones in aquatic environments around the globe (Friedrich et al., 2014). Given the variability found in the reported P_{crit} for different fish species, it is likely that hypoxic events will have consequences that are very dependent on individual species. This highlights the complexity of predicting the effects that hypoxia will have at community and ecosystem levels, and the potential for hypoxia to have differential effects on predator-prey interactions, migrations, and ultimately, global fisheries.

The integration of the present database with similar databases of other widely measured physiological parameters in fishes should offer useful insights into interactions among traits. Such physiological data are of great value for improving the predictive capacity of models as an aid to the management and conservation of aquatic systems (Jørgensen et al., 2012; Cooke et al., 2013). Traits for which databases are currently under construction include the metabolic response to feeding (SDA), aerobic scope, growth rate and critical temperature. On completion, the combined data set will be made widely accessible via an online database repository facility, such as that provided by Dryad (http://datadryad.org/). Thus, it is envisaged that these data will prove to be a tangible link between the field of fish physiology and future studies of ecology, conservation and management.

Supplementary material

Supplementary material is available at Conservation Physiology online.

Acknowledgements

The authors wish to thank Silvana Birchenough and Julian Metcalfe (Cefas, Lowestoft, UK) for their mentoring and encouragement in the creation of the P_{crit} database.

Funding

This work was supported by a Natural Environment Research Council (NERC, UK) PhD studentship awarded to N.J.R./R.W.W. and NERC and Biotechnology and Biological Sciences Research Council (BBSRC) research grants (NE/H010041/1, BB/D005108/1 and BB/J00913X/1) awarded to R.W.W. The physiological database is a contribution of the European Union Cooperation in Science and Technology (COST) Action (FA1004) on the ‘Conservation Physiology of Marine Fishes’. The same EU COST Action supported this work as a Short Term Scientific Mission (STSM).

References

Barnes R, King H, Carter CG (2011) Hypoxia tolerance and oxygen regulation in Atlantic salmon, *Salmo salar* from a Tasmanian population. *Aquaculture* 318: 397–401.

Beamish FWH (1964) Respiration of fishes with special emphasis on standard oxygen consumption: II. Influence of weight and temperature on respiration of several species. *Can J Zool* 42: 177–188.

Beamish FWH, Mooijerij PS (1964) Respiration of fishes with special emphasis on standard oxygen consumption: I. Influence of weight and temperature on respiration of goldfish, *Carassius auratus*. *Can J Zool* 42: 161–175.

Beitinger T, Bennett W, McCauley R (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. *Environ Biol Fish* 58: 237–275.

Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (*Perca fluviatilis*). *Aquat Toxicol* 96: 159–165.

Blank JM, Morrisette JM, Farwell CJ, Price M, Schallert RJ, Block BA (2007) Temperature effects on metabolic rate of juvenile pacific bluefin tuna *Thunnus orientalis*. *J Exp Biol* 210: 4254–4261.

Brix O, Clements KD, Wells RMG (1999) Haemoglobin components and oxygen transport in relation to habitat distribution in triplefin fishes (*Tripterygidae*). *J Comp Physiol B* 169: 329–334.

Brown JH, Gillooly J, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. *Ecology* 85: 1771–1789.

Butler PJ, Taylor EW (1975) The effect of progressive hypoxia on respiration in the dogfish (*Scyliorhinus canicula*) at different seasonal temperatures. *J Exp Biol* 63: 117–130.

Cerezo Valverde J, Martinez López F-J, Garcia García B (2006) Oxygen consumption and ventilatory frequency responses to gradual hypoxia in common dentex (*dentex dentex*): Basis for suitable oxygen level estimations. *Aquaculture* 256: 542–551.

Chabot D, Steffensen JF, Farrell AP (2016) The determination of standard metabolic rate in fishes. *J Fish Biol* 88: 81–121.

Chapman LJ, McKenzie D (2009) Behavioural responses and ecological consequences. In Richards JG, Farrell AP, Brauner CJ, eds, *Hypoxia in Fishes*. Elsevier, San Diego.

Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE (2002) Physiological refugia: swamps, hypoxia tolerance, and maintenance of fish biodiversity in the Lake Victoria region. *Comp Biochem Physiol A Mol Integr Physiol* 133: 421–437.

Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. *Philos Trans R Soc Lond B Biol Sci* 367: 1615–1627.

Claireaux G, Chabot D (2016) Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. *J Fish Biol* 88: 232–251.

Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. *J Exp Biol* 216: 2771–2782.

Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. *J Anim Ecol* 68: 893–905.

Cochran RE, Burnett LE (1996) Respiratory responses of the salt marsh animals, *Fundulus heteroclitus*, *Leiostomus xanthurus*, and...
Lates calcarifer to environmental hypoxia and hypercapnia and to the organophosphate pesticide, azinphosmethyl. *J Exp Mar Biol Ecol* 195: 125–144.

Collins GM, Clark TD, Rummer JL, Carton AG (2013) Hypoxia tolerance is conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (*Lates calcarifer*). *Conserv Biol* 1: doi:10.1093/conphys/cot029.

Cook DG, Wells RMG, Herbert NA (2011) Anaemia adjusts the aerobic physiology of snapper (*Pomacentrus moluccenis*) and modulates hypoxia avoidance behaviour during oxygen choice presentations. *J Exp Biol* 214: 2927–2934.

Cook DG, Iftikar FI, Baker DW, Hickey AJR, Herbert NA (2013) Low-O2 acclimation shifts the hypoxia avoidance behaviour of snapper (*Pomacentrus moluccenis*) with only subtle changes in aerobic and anaerobic function. *J Exp Biol* 216: 369–378.

Cook DG, Brown EJ, Lefevere S, Domenici P, Steffensen JF (2014) The response of striped surfperch *Embiotoca lateralis* to progressive hypoxia: swimming activity, shoal structure, and estimated metabolic expenditure. *J Exp Mar Biol Ecol* 460: 162–169.

Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. *Conserv Physiol* 1: doi:10.1093/conphys/cot001.

Corkum CP, Gamperl AK (2009) Does the ability to metabolically down-regulate alter the hypoxia tolerance of fishes? A comparative study using cunner (*T. adspersus*) and greenland cod (*G. ogac*). *J Exp Zool A Ecol Genet Physiol* 311: 231–239.

Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. *Ecol Lett* 11: 1304–1315.

Crampton WGR (1998) Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. *J Fish Biol* 53: 307–330.

Cruz-Neto AP, Steffensen JF (1997) The effects of acute hypoxia and hypercapnia on oxygen consumption of the freshwater European eel. *J Fish Biol* 50: 759–769.

Dan XM, Yan GJ, Zhang AJ, Cao ZD, Fu SJ (2014) Effects of stable and diel-cycling hypoxia on hypoxia tolerance, postprandial metabolic response, and growth performance in juvenile qingbo (*Cyprinus carpio l.*). *Aquat Culture* 428–429: 21–28.

De Boeck G, Vlaeminck A, Van Der Linden A, Blust R (2000) Salt stress and resistance to hypoxic challenges in the common carp (*Cyprinus carpio L.*). *J Fish Biol* 57: 761–776.

De Boeck G, Wood CM, Iftikar FI, Matey V, Scott GR, Sloman KA, De Nazaré Paula da Silva M, Almeida-Val VMF, Val AL (2013) Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, *Astronotus ocellatus*. *J Exp Biol* 216: 4590–4600.

Diaz RJ (2001) Overview of hypoxia around the world. *J Environ Qual* 30: 275–281.

Diaz RJ, Breitburg DL (2009) Chapter 1 The Hypoxic Environment. In Jeffrey G, Richards APF, Colin JB, eds, *Fish Physiology*, Vol 27. Academic Press, pp 1–23.

Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. *Science* 321: 926–929.

Domenici P, Herbert NA, LeFrançois C, Steffensen JF, McKenzie DJ (2012) The effect of hypoxia on fish swimming performance and behaviour. In Palstra AP, Planas JV, eds, *Swimming Physiology of Fish*. Springer Verlag, Berlin, pp 129–161.

Dupont-Prinet A, Vagner M, Chabot D, Audet C (2013) Impact of hypoxia on the metabolism of greenland halibut (*Reinhardtius hippoglossoides*). *Can J Fish Aquat Sci* 70: 461–469.

Farrell AP, Richards JG (2009) Chapter 11 Defining Hypoxia: an integrative synthesis of the responses of fish to hypoxia. In Jeffrey G, Richards APF, Colin JB, eds, *Fish Physiology*, Vol 27. Academic Press, London, pp 487–503.

Faulwetter S, Markantontou V, Pavlouci C, Papageorgiou N, Keklikoglou K, Chatzinikolaou E, Pafiliis E, Chatzigeorgiou G, Vasileiadou K, Dailianis T et al. (2014) Polytraits: a database on biological traits of marine polychaetes. *Biodivers Data J* 2: e1024.

Fernandes MN, Rantin FT (1989) Respiratory responses of *Oreochromis niloticus* (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. *J Fish Biol* 35: 509–519.

Ficke A, Myrick C, Hansen L (2007) Potential impacts of global climate change on freshwater fisheries. *Rev Fish Biol Fisher* 17: 581–613.

Friedrich J, Janssen F, Aleyndk D, Bange HW, Boltacheva N, Çağatay MN, Dale AW, Etope G, Erdem Z, Geraga M et al. (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. *Biogeoosciences* 11: 1215–1259.

Frimpong EA, Angermeier PL (2009) Fishtraits: a database of ecological and life-history traits of freshwater fishes of the United States. *Fisheries* 34: 487–493.

Fry FEJ (1957) The aquatic respiration of fish. In Brown M., ed., *The Physiology of Fishes*, Vol I. Academic Press, New York, pp 1–63.

Fu SJ, Brauner CJ, Cao ZD, Richards JG, Peng JL, Dhillon R, Wang YX (2011) The effect of acclimation to hypoxia and sustained exercise on subsequent hypoxia tolerance and swimming performance in goldfish (*Carassius auratus*). *J Exp Biol* 214: 2080–2088.

Gilmour KM (2001) The CO2/pH ventilatory drive in fish. *Comp Biochem Physiol A Mol Integr Physiol* 130: 219–240.

Gonzalez RJ, McDonald G (1992) The relationship between oxygen consumption and ion loss in a freshwater fish. *J Exp Biol* 163: 317–332.

Green EJ, Carrit DE (1967) New tables for oxygen saturation of seawater. *J Mar Biol* 25: 140–147.

Haney DC, Nordlie FG (1997) Influence of environmental salinity on routine metabolic rate and critical oxygen tension of *Cyprinodon variegatus*. *Physiol Zool* 70: 511–518.
Henriksson P, Mandic M, Richards J (2008) The osmoregulatory compromise in sculpins: impaired gas exchange is associated with freshwater adaptation. Physiol Biochem Zool 81: 310–319.

Hilton Z, Wellenreuther M, Clements KD (2008) Physiology underpins habitat partitioning in a sympatric sister-species pair of intertidal fishes. Funct Ecol 22: 1108–1117.

Ho DH, Burggren WW (2012) Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (Danio rerio). J Exp Biol 215: 4208–4216.

IPCC (2014). Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 1–32.

Ishimatsu A, Hayashi M, Lee K-S, Kikkawa T, Kita J (2005) Physiological responses of the ghost shrimp Neotrypaenaea uncinata (Milne Edwards 1837) (Decapoda: Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia. Comp Biochem Physiol A Mol Integr Physiol 189: 30–37.

Leiva FP, Urbina MA, Cumilla JP, Gebauer P, Paschke K (2015) Physiological responses of the ghost shrimp Neotrypaenaea uncinata (Milne Edwards 1837) (Decapoda: Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia. Comp Biochem Physiol A Mol Integr Physiol 189: 30–37.

McBryan TL, Anttila K, Healy TM, Schulte PM (2013) Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change. Integr Comp Biol 53: 648–659.

McDonald DG, Wood CM (1993) Branchial mechanisms of acclimation to metals in freshwater fish. In Rankin JC, Jensen FB, eds, Fish Ecophysiology. Chapman and Hall, London, pp 297–321.

McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21: 178–185.

McKenzie DJ, Dalla Valle AZ, Piccolella M, Taylor EW, Steffensen JF (2003) Tolerance of chronic hypercapnia by the European eel (Anguilla anguilla). J Exp Biol 206: 1717–1726.

McKenzie DJ, Steffensen JF, Korsmeyer K, Whiteley NM, Bronzi P, Taylor EW (2007) Swimming alters responses to hypoxia in the Adriatic sturgeon Acipenser naccarii. J Fish Biol 70: 651–658.

McKenzie DJ, Lund I, Pedersen PB (2008) Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole (Solea solea) larvae and juveniles. Mar Biol 154: 1041–1051.

Mamun SM, Focken U, Becker K (2013) A respirometer system to measure critical and recovery oxygen tensions of fish under simulated diurnal fluctuations in dissolved oxygen. Aquat Int 21: 31–44.

Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc Biol Sci 276: 735–744.

Marshall DJ, Bode M, White CR (2013) Estimating physiological tolerances – a comparison of traditional approaches to nonlinear regression techniques. J Exp Biol 216: 2176–2182.

Meinhausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K et al. (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109: 213–241.

Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeoosciences 6: 2313–2331.

Monteiro DA, Thomaz JM, Rantin FT, Kalinin AL (2013) Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traira (Hoplax malabaricus) after waterborne or trophic exposure to inorganic mercury. Aquat Toxicol 140–141: 346–355.
Mora C, Maya MF (2006) Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. J Therm Biol 31: 337–341.

Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Devling KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106: 1848–1852.

Murchie KJ, Cooke SJ, Danylchuk AJ, Danylchuk SE, Goldberg TL, Suski CD, Philipp DP (2011) Thermal biology of bonefish (Albula vulpes) in Bahamian coastal waters and tidal creeks: an integrated laboratory and field study. J Therm Biol 36: 38–48.

Nelson JA (2016) Oxygen consumption rate versus rate of energy utilisation of fishes: a comparison and brief history of the two measures. J Fish Biol 88: 10–25.

Nickerson DM, Facey DE, Grossman GD (1989) Estimating physiological thresholds with continuous 2-phase regression. Physiol Zool 62: 866–887.

Nilsson GE, Östlund-Nilsson S (2008) Does size matter for hypoxia tolerance in fish? Biol Rev 83: 173–189.

Nilsson GE, Hobbs JP, Munday PL, Östlund-Nilsson S (2004) Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. J Exp Biol 207: 33–39.

Nilsson GE, Hobbs JPA, Östlund-Nilsson S (2007a) Tribute to P.L. Lutz: respiratory ecophysiology of coral-reef teleosts. J Exp Biol 210: 1673–1686.

Nilsson GE, Östlund-Nilsson S, Penfold R, Gruetter AS (2007b) From record performance to hypoxia tolerance: respiratory transition in damselsfish larvae settling on a coral reef. Proc Biol Sci 274: 79–85.

Nilsson GE, Östlund-Nilsson S, Munday PL (2010) Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comp Biochem Physiol A Mol Integr Physiol 156: 389–393.

Nilsson S (1986) Control of gill blood flow. In Nielssson S, Holmgren S, eds, Fish Physiology: Recent Advances. Croom Helm, London, pp 87–101.

Norin T, Clark TD (2016) Measurement and relevance of maximum metabolic rate in fishes. J Fish Biol 88: 122–151.

Östlund-Nilsson S, Nilsson GE (2004) Breathing with a mouth full of eggs: respiratory consequences of mouthbrooding in cardinalfish. Proc Biol Sci 271: 1015–1022.

Ott ME, Heisler N, Ultsch GR (1980) A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp Biochem Physiol Physiol A 67: 337–340.

Perna S, Fernandes M (1996) Gill morphometry of the facultative air-breathing loricariid fish, Hypostomus plecostomus (Walbaum) with, special emphasis on aquatic respiration. Fish Physiol Biochem 15: 213–220.

Perry SF, Jonz MG, Gilmour KM (2009) Chapter 5 Oxygen sensing and the hypoxic ventilatory response. In Jeffrey G, Richards APF, Colin JB, eds, Fish Physiology, Vol 27: Academic Press, pp 193–253.

Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146.

Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213: 881–893.

Rantin FT, Glass ML, Kalinin AL, Verzola RMM, Fernandes MN (1993) Cardio-respiratory responses in two ecologically distinct erythrinids (Hoplias malabaricus and Hoplias lacerdae) exposed to graded environmental hypoxia. Environ Biol Fish 36: 93–97.

Reardon EE, Chapman LJ (2010) Energetics of hypoxia in a mouth-breeding cichlid: evidence for interdemic and developmental effects. Physiol Biochem Zool 83: 414–423.

Remen M, Oppedal F, Imsland AK, Olsen RE, Torgersen T (2013) Hypoxia tolerance thresholds for post-smolt Atlantic salmon: dependency of temperature and hypoxia acclimation. Aquaculture 416–417: 41–47.

Richards JG (2009) Chapter 10 Metabolic and molecular responses of fish to hypoxia. In Jeffrey G, Richards APF, Colin JB eds, Fish Physiology, Vol 27: Academic Press, pp 443–485.

Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds.) (2010) Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, 260 pp.

Rogers NJ (2015) Chapter 4: Respiratory responses and gut carbonate production during hypoxia and hypercarbia in the European flounder (Platichthys flesus). In The Respiratory and Gut Physiology of Fish: Responses to Environmental Change. PhD Dissertation, University of Exeter, Exeter, UK, pp 95–139.

Rosenberger AE, Chapman LJ (2000) Respiratory characters of three species of haplochromine cichlids: implications for use of wetland refugia. J Fish Biol 57: 483–501.

Routley MH, Nilsson GE, Renshaw GMC (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol A Mol Integr Physiol 131: 313–321.

Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc R Soc B Biol Sci 282: 20151028.

Schjolden J, Sørensen J, Nilsson GE, Poléo ABS (2007) The toxicity of copper to crucian carp (Carassius carassius) in soft water. Sci Total Environ 384: 239–251.
Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50: 1166–1180.

Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179: 1–56.

Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc Lond B Biol Sci 367: 1607–1614.

Slovak KA, Wood CM, Scott GR, Wood S, Kajimura M, Johannsson OE, Almeida-Val VMF, Val AL (2006) Tribute to R. G. Boutilier: the effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. J Exp Biol 209: 1197–1205.

Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems – a global problem. Environ Sci Pollut Res 10: 126–139.

Snyder S, Nadler LE, Bayley JS, Svendsen MBS, Johansen JL, Domenici P, Steffensen JF (2016) Design and setup of an intermittent-flow respirometry system for aquatic organisms. J Fish Biol 88: 252–264.

Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory area of crucian carp Carassius carassius and goldfish Carassius auratus. J Exp Biol 208: 1109–1116.

Sørensen C, Munday PL, Nilsson GE (2014) Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival. Glob Change Biol 20: 724–729.

Speers-Roesch B, Richards JG, Brauner CJ, Farrell AP, Hickey AJ, Wang YS, Renshaw GM (2012) Hypoxia tolerance in the shiner perch Cymatogaster aggregata. J Fish Biol 88: 252–264.

Speers-Roesch B, Mandic M, Groom DJE, Richards JG (2013) Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J Exp Mar Biol Ecol 449: 239–249.

Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol Biochem 6: 49–59.

Stinchcombe JR, Kirkpatrick M (2012) Genetics and evolution of functional-traits values: understanding environmentally responsive phenotypes. Trends Ecology Evol 27: 637–647.

Svendsen MBS, Bushnell PG, Steffensen JF (2016) Design and setup of an intermittent-flow respirometry system for aquatic organisms. J Fish Biol 88: 26–50.

Thomaz JM, Martins ND, Monteiro DA, Rantin FT, Kalinín AL (2009) Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUUVON). Ecotoxicol Environ Saf 72: 1413–1424.

Thuy NH, Tien LA, Tuyet PN, Huong DTT, Cong NV, Bayley M, Wang T, Lefevre S (2010) Critical oxygen tension increases during digestion in the perch Perca fluviatilis. J Fish Biol 76: 1025–1031.

Timmerman CM, Chapman LJ (2004a) Behavioral and physiological compensation for chronic hypoxia in the sailfin molly (Poecilia latipinna). Physiol Biochem Zool 77: 601–610.

Timmerman CM, Chapman LJ (2004b) Hypoxia and interdemic variation in Poecilia latipinna. J Fish Biol 65: 635–650.

Ultsch GR (1996) Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates. Palaeogeogr Palaeoclimatol Palaeoecol 123: 1–27.

Ultsch GR, Boschung H, Ross MJ (1978) Metabolism, critical oxygen tension, and habitat selection in darters (Etheostoma). Ecology 59: 99–107.

Ultsch GR, Ott ME, Heisler N (1980) Standard metabolic rate, critical oxygen tension, and aerobic scope for spontaneous activity of trout (Salmo gairdneri) and carp (Cyprinus carpio) in acidified water. Comp Biochem Physiol A Mol Integr Physiol 67: 329–335.

Urbina MA, Glover CN (2012) Should I stay or should I go? Physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fish Galaxias maculatus. J Comp Physiol B 182: 1057–1067.

Urbina MA, Glover CN (2013) Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia. Physiol Biochem Zool 86: 740–749.

Urbina MA, Glover CN (2015) Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). J Exp Mar Biol Ecol 473: 7–15.

Urbina MA, Forster ME, Glover CN (2011) Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia. Physiol Behav 103: 240–247.

Urbina MA, Glover CN, Forster ME (2012) A novel oxyconforming response in the freshwater fish Galaxias maculatus. Comp Biochem Physiol A Mol Integr Physiol 161: 301–306.

Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105: 15452–15457.

Vega GC, Wiens JJ (2012) Why are there so few fish in the sea? Proc R Soc B 283: 1826.

Wilson RW, Bergman HL, Wood CM (1994) Metabolic costs and physiological consequences of acclimation to aluminium in juvenile rain-bow trout (Oncorhynchus mykiss). 2: Gill morphology, swimming performance, and aerobic scope. Can J Fish Aquat Sci 51: 536–544.

Yamanaka H, Kohmatsu Y, Yuma M (2007) Difference in the hypoxia tolerance of the round crucian carp and largemouth bass: implications for physiological refugia in the macrophyte zone. J Fish Biol 68: 888–907.

Yeager DP, Ultsch GR (1989) Physiological regulation and conformation: a BASIC program for the determination of critical points. Physiol Zool 62: 888–907.

Zhang JD, Gilbert AJ, Gooday L, Levin S, Naqvi WA, Middelburg JJ, Scranton M, Ekaú E, Peña A, Dewitte B et al. (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7: 1443–1467.