Accuracy of cone beam computed tomography in assessing maxillary molar furcation involvement Zhao Haiyan1, Wang Nan1, Ding Yi2, Zheng Haiying1, Qian Junrong1. (1. Dept. of Stomatology, Affiliated Hospital of Jining Medical University, Jining 272100, China; 2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)

Supported by: Shandong Province Medical and Health Plan Project (2016WS0179); Affiliated Hospital of Jining Medical University “Miaopu” Research Project (MP-2015-006). Correspondence: Qian Junrong, E-mail: qianjr2009@163.com.

[Abstract] Objective This study aimed to assess the accuracy of cone beam computed tomography (CBCT) in detecting furcation involvement (FI) in maxillary molars. Methods Thirty-one maxillary molars of 15 patients with generalized chronic periodontitis considered for furcation surgery were assessed. Clinical examination and CBCT were performed, and the FI degree was evaluated. Clinical and CBCT-based FI assessments were compared with intrasurgical data. Results The agreement between clinical and intrasurgical assessments was weak in all sites, with a kappa of less than 0.4; the complete, overestimated, and underestimated agreement percentages were 42.0%, 24.7%, and 33.3%, respectively. The agreement between the CBCT and intrasurgical assessments was strong, with a kappa of 0.831; the complete, overestimated, and underestimated agreement percentages were 88.2%, 3.2%, and 8.6%, respectively. The agreement between both assessments was the highest in the buccal furcation entrance (κ=0.896), followed by that in the distopalatal (κ=0.822) and mesiopalatal (κ=0.767) furcation entrances. Conclusion CBCT images demonstrated high accuracy in assessing the horizontal bone loss of FI in maxillary molars.

[Key words] cone beam computed tomography; furcation involvement; maxillary molar
危险因素[1]。根分叉病变的准确评价对于制定充分的决策和完善的治疗计划至关重要，尤其是当涉及复杂的手术治疗时。术前、术中评价的不一致可能导致治疗计划的改变及一些不必要的花费[2]。锥形束 CT（cone beam computed tomography，CBCT）于2004年被引人口腔医学领域，并逐渐应用于牙周病学的研究。多项研究[3-6]证实了CBCT在牙周病领域的应用价值，CBCT在评价3D骨缺损尤其是垂直骨缺损和根分叉病变时显示出了极大优势。本研究以术中探诊为金标准评价临床探诊和CBCT检查诊断上颌磨牙根分叉病变的准确性，以期为CBCT在上颌磨牙根分叉病变诊疗中的应用提供理论依据。

1 材料和方法

1.1 研究对象

选取就诊于济宁医学院附属医院口腔内科的15例患者为研究对象，其中男性6例，女性9例，平均年龄43岁。共计31颗上颌磨牙，其中第一磨牙21颗，第二磨牙10颗。纳入标准：年龄在35~50岁的广泛型慢性牙周炎患者；患者经完善的基础治疗，3个月后再评估时，至少一颗上颌磨牙根分叉区仍有≥6 mm的牙周袋且探诊出血（bleeding on probing，BOP）（+），被诊断为Ⅱ度或者Ⅲ度根分叉病变（Hamp’s分类），需要进行翻瓣手术者。排除标准：根分叉区牙体组织龋坏；CBCT投照区域内有银汞充填体、金属冠、种植体或正畸装置等；妊娠期和哺乳期妇女；其他手术非适应证。患者知晓研究目的和内容，并签订知情同意书。

1.2 临床检查

由2名有经验的牙周专科医生对纳入患牙进行临床检查，研究开始前进行检查者间一致性检验，Cohen’s Kappa (κ) =0.689。

用UNC-15牙周探针（PCPUNC15，HU-Friedy公司，美国）检查每颗患牙6个位点（颊侧近中、颊侧中央、颊侧远中、舌侧近中、舌侧中央、舌侧远中）的牙周袋探诊深度（probing depth，PD）、临床附着丧失（clinical attachment loss，CAL）。用Nabers探针（PQ2N，HU-Friedy公司，美国）检查每颗患牙颊侧、近颊腭、远颊腭根分叉处水平骨吸收程度，采用Hamp’s分度法对其分度。Ⅰ度：可探及根分叉；Ⅱ度：根分叉区水平向骨缺损≤3 mm；Ⅲ度：根分叉区水平向骨缺损>3 mm，但未穿通；Ⅳ度：根分叉水平向缺损贯通。

1.3 CBCT检查

在74~90 kV，5~8 mA条件下，使用CBCT（Planmeca 9ProMax，Finland）对上颌磨牙区域进行扫描获得原始数据，扫描范围4 cm×4 cm–6 cm×6 cm，有效曝光时间12 s。选择层厚0.5 mm进行断层数据重建，获得CBCT图像。所有研究对象均由同一名有经验的放射科医师在相同的扫描参数下完成检查。使用Planmeca ProMax自带的影像分析测量软件进行测量。由2名有经验的放射科医师分别从冠状面（Y平面）、轴面（Z平面）、矢状面（X平面）3个层面进行读片，研究开始前进行检查者间一致性检验，κ=0.736。2名放射科医师对术中及术中检查结果均不知情。

1.3.1 标志点确定

1）根分叉开口（furcation entrance，FE）：在Z平面沿冠根方向连续观察根分叉区的序列图像，当光滑牙外形表面开始出现一个凹面外形时，该凹点被确认为根分叉开口，采用此方法可分别找到上颌磨牙颊侧、近颊腭、远颊腭3个根分叉开口。将垂直标记线移至该凹点，在Y平面和X平面上即可显示根分叉开口的截面图像。

2）根分叉水平骨缺损最深处：在Z平面断层上寻找水平向骨缺损最深点。

1.3.2 CBCT上根分叉病变的分度诊断

在Z平面、X平面、Y平面同时观察到根分叉区域骨小梁缺失被确立为根分叉病变。在Z平面上分别测量3个根分叉部位根分叉开口至水平骨缺损最深处的距离，按照Hamp’s分度法进行诊断。

1.4 术中检查

对所有PD≥6 mm，被诊断为Ⅱ度或者Ⅲ度根分叉病变的上颌磨牙进行翻瓣手术，手用刮治器械彻底清创后，由术者及助理医师用Nabers探针检查每颗患牙颊侧、近颊腭、远颊腭根分叉处水平骨吸收并对其分度，采用Hamp’s分度法。研究开始前进行检查者间一致性检验，κ=0.818。术者及助理医师对术中临床检查结果及CBCT数据均不知情。

1.5 统计学分析

使用SPSS 25.0统计软件对实验数据进行分析，采用Kappa值评价术中探诊与临床探诊和CBCT检查所得根分叉病变分度的一致性。
2.1 根分叉病变分度一致性比较

术中探诊与临床探诊、CBCT测量所得根分叉病变分度一致性进行比较,结果显示:临床检查与术中检查所得根分叉病变分度一致性较低,完全一致率为42.0％(κ=0.183)，多数病变被高估(24.7%)或者被低估(33.3%)。而CBCT与术中检查所得根分叉病变分度完全一致率高达88.2%，仅有少数病例被高估(3.2%)或者低估(8.6%)。

2.2 不同位置根分叉病变分度一致性比较

不同位置术中探诊与临床探诊、CBCT测量所得根分叉病变分度一致性比较结果见表2。临床探诊与术中探诊所得根分叉病变分度一致性较差，κ值均小于0.4。其中远中颊侧一致性最差，完全一致率为29.0%，κ=0.007。而CBCT检查与术中探诊所得根分叉病变分度一致性较高，κ=0.831。不同位置一致性比较结果为颊侧(κ=0.896)>远中腭侧(κ=0.822)>近中腭侧(κ=0.767)。

表1 临床检查、CBCT及术中检查所得根分叉病变分度情况

分度	临床检查	CBCT检查	术中检查
0	11	9	5
I	25	33	35
II	47	26	29
III	12	25	24

表2 不同位置临床检查、CBCT及术中检查所得根分叉病变分度一致性比较

位置	临床检查与术中检查结果比较	CBCT检查结果与术中检查结果比较				
	κ值	P值	完全一致百分率%	κ值	P值	完全一致百分率%
颊侧	0.361	0.000	54.8	0.896	0.000	93.5
近中腭侧	0.124	0.279	41.9	0.767	0.000	83.9
远中腭侧	0.007	0.935	29.0	0.822	0.000	87.1
所有位点	0.183	0.003	42.0	0.831	0.000	88.2

3 讨论

本研究以术中测量结果作为金标准,来评价术前临床检查及CBCT检查根分叉病变分度的准确性。结果显示CBCT评价上颌磨牙根分叉病变与术中评价具有高度一致性，而临床检查与术中检查结果一致性较差，完全一致率为42.0％(κ=0.183)，33.3%病变程度被低估，24.7%的病变程度被高估。过去多项研究证实临床检查评价上颌磨牙根分叉病变的局限性,与术中金标准或者CBCT检查结果相比,临床检查常低估或者高估根分叉病变的严重程度。高估病变程度对Ⅱ度或Ⅲ度根分叉病变的患牙预后产生较大影响，因为相比Ⅰ度根分叉病变，这些患牙通常会用侵入性的手术治疗方案或者拔除患牙。而低估病变通常会导致患牙得不到有效干预、治疗，从而使病变进一步地进展。临床探诊技巧（如探诊角度及探诊力量等）、牙根外形（如分叉开口宽度及深度）、探诊部位及患者张口度等都会影响探诊的准确性，使其高估或者低估病变严重程度。不同部位比较结果显示远中腭侧一致性最差(κ=0.007)，一致率为29%，可能与受开口度等影响导致其更难进入有关。

本研究将CBCT检查与术中检查比较，结果显示：二者一致性较高，完全一致率高达88.2%(κ=0.831)。这与其他学者研究结果一致，一致性分别为84%、82.4%。不同位置分析结果显示，颊侧、近中腭侧、远中腭侧一致性均较高，κ值分别为0.896、0.767、0.822。由此可见，相比传统根尖片及临床检查，CBCT更能精确测量根分叉部位的水平骨吸收并对其准确分度，这将有利于上颌磨牙根分叉病变的诊断及治疗计划，减少不必要的治疗经济成本及时间成本。研究表明，CBCT不仅可以用于根分叉病变治疗前评价，而且也可以用于评价其治疗效果。二次手术作为评价根分叉病变治疗效果的金标准，实际临床工作中很难普及，而根尖片应用于上颌磨牙时作用非常有限。因此，CBCT作为微创、有效的评价方法在临床上有一定的应用价值。

测量根分叉水平骨缺损时，首先要明确根分叉开口的基准点，即根分叉开口。本研究采用了Zhu等(12)描述的方法，即Z平面上光滑牙外形表面最早出现凹面外形时的凹点被认为是根分叉开口。该方法定位准确，可重复性好，并可在X、Y平面定位根分叉开口的位置从而测量根分叉垂直骨缺损。根分叉开口至水平骨缺损最深处的距离即为水平骨缺损。有学者(7,10,13)测量水平骨缺损时采用牙根外表
面假想切线至水平骨缺损最深处的距离，该方法主观误差不可避免且重复性较差。

本研究中CBCT分度结果与术中分度结果比较时，8.6%的病变被低估，3.2%病变被高估。一方面原因可能是术中刮治时Gracy刮治器刮掉少量骨组织，使得CBCT病变程度低于术中测量结果。另一方面原因可能是根分叉开口的定位。术中测量时以探到的2根分开时的凹陷作为根分叉开口的参考点，在水平骨缺损最深处平面测量时，根分叉开口向根方投照点可以出现主观偏差，导致术中测量结果与CBCT结果不一致。第三，本研究采用的影像分析测量软件最小体素大小为200 μm，空间分辨率有限，影像分析时有可能出现对脱矿程度的低估或者高估。尽管目前研究显示CBCT在检测根分叉骨缺损方面具有较高的准确性，可作为上颌磨牙根分叉病变评估的一个有价值的补充，CBCT的临床应用仍有一定的局限性。当投照区域有根管充填物、金属冠、种植体、正畸装置等均会影响CBCT成像质

量。此外，与传统的二维图像（包括根尖周X线片和曲面断层片）相比，使用CBCT仍然会获得更高的辐射剂量。因此，需根据ALARA（As Low as Reasonably Achievable）原则针对每个个案的具体情况慎重考虑CBCT的使用。临床上，仍然推荐牙周检查和口内X线片作为根分叉病变的常规检查，对于复杂病例，当常规检查不能提供足够的诊断和或治疗计划的信息时，可考虑使用小视野低剂量CBCT[5]。

本研究不足之处是缺乏垂直骨缺损的测量比较，实际上，CBCT在评价垂直骨缺损时也表现出不良的稳定性[13]。相比CBCT，术中测量仍存在一些问题，牙周探针在测量垂直骨缺损时不得不倾斜从而影响测量准确性，尤其是在有邻牙阻挡的邻面部位；另外，如前所述，术中测量平面根分叉口的定位不够客观，也会影响结果准确性。将需要更多的研究证实CBCT评价垂直骨缺损的准确性。利益冲突声明：作者声明本文无利益冲突。

【参考文献】

[1] Nibali L, Sun C, Akcal A, et al. The effect of horizontal and vertical furcation involvement on molar survival: a retrospective study[J]. J Clin Periodontol, 2018, 45(3): 373-381.

[2] Walter C, Schmidt JC, Dula K, et al. Cone beam computed tomography (CBCT) for diagnosis and treatment planning in periodontology: a systematic review[J]. Quintessence Int, 2016, 47(1): 25-37.

[3] Suphanantachet S, Tantikul K, Tamsailom S, et al. Comparison of clinical values between cone beam computed tomography and conventional intraoral radiography in periodontal and infrabony defect assessment[J]. Dentomaxillofac Radiol, 2017, 46(6): 20160461.

[4] Scarfe WC, Azivedo B, Pinheiro LR, et al. The emerging role of maxillofacial radiology in the diagnosis and management of patients with complex periodontitis[J]. Periodontology 2000, 2017, 74(1): 116-139.

[5] Haas LF, Zimmermann GS, De Luca Canto G, et al. Precision of cone beam CT to assess periodontal bone defects: a systematic review and meta-analysis[J]. Dentomaxillofac Radiol, 2018, 47(2): 20170084.

[6] Ozcan G, Sekerci AE. Classification of alveolar bone destruction pattern on maxillary molars by using cone-beam computed tomography[J]. Niger J Clin Pract, 2017, 20(8): 1010-1019.

[7] Qiao J, Wang S, Duan J, et al. The accuracy of cone-beam computed tomography in assessing maxillary molar furcation involvement[J]. J Clin Periodontol, 2017, 20(8): 269-274.

[8] Walter C, Kaner D, Berndt DC, et al. Three-dimensional imaging as a pre-operative tool in decision making for furcation surgery[J]. J Clin Periodontol, 2009, 36(3): 250-257.

[9] Darby I, Sanelli M, Shain S, et al. Comparison of clinical and conebeam computed tomography measurements to diagnose furcation involvement[J]. Int J Dent Hygiene, 2015, 13: 241-245.

[10] Walter C, Weiger R, Zitzmann NU. Accuracy of three-dimensional imagingin assessing maxillary molar furcation involvement[J]. J Clin Periodontol, 2010, 37(5): 436-441.

[11] Siddiqui ZR, Jhangra R, Bains VK, et al. Comparative evaluation of platelet-rich fibrin versus beta-tri-calcium phosphate in the treatment of Grade II mandibular furcation defects using cone-beam computed tomography[J]. Eur J Dent, 2016, 10(4): 496-506.

[12] Zhu J, Ouyang XY. Assessing maxillary molar furcation involvement by cone beam computed tomography[J]. Chin J Dent Res, 2016, 19(3): 145-151.

[13] Zhang W, Foss K, Wang BY. A retrospective study on molar furcation assessment via clinical detection, intraoral radiography and cone beam computed tomography[J]. BMC Oral Health, 2018, 18(1): 75-82.