SUMMARY: The measured building survey is the basic form of presenting and protecting the object of the historic ruin. It also allows us to control the behavior and the progress of the degradation of the object. The ruined objects are very specific because they usually contain not all elements of a traditional building object. This means that the methods and methods of inventory taking, as in the case of traditional objects, may not be sufficient. Elements of objects in ruins often have complicated and diverse geometry, difficult and not completely safe access to all elements. The publication presents methods that can be helpful in the inventory of such objects. Each method describes the necessary instruments, the method of taking measurements, accuracy, advantages and limitations. The paper also presents examples of application for selected methods.

KEYWORDS: measured building survey, inventory, ruins, heritage, photography, 3D scanning, photogrammetry
- przekroje poziome - rzuty wszystkich kondygnacji,
- przekroje pionowe wraz z widokami elewacji,
- szczegółowa dokumentacja rysunkowa detali zabytkowych,
- dokumentacja fotograficzna,
- graficzna dokumentacja uszkodzeń,
- opis techniczny zawierający podstawowe informację o obiekcie,
- opis materiałów z jakich wykonano poszczególne elementy budynku.

Obecnie, pomimo ogromnej ilości norm (ok. 40 norm) i rozporządzeń (ok. 5 aktów prawnych) regulujących techniczną dokumentację rysunkową odczuwalny jest brak jednego, spręczyzowanego standardu inwentaryzacji. Zupełnie odmiennie niż w przypadku dokumentacji projektowej, badań architektoniczno-konserwatorskich czy też nadzorów konserwatorskich - inwentaryzacje pomiarowo-rysunkowe nie są objęte kontrolą jakościową. Ta sytuacja powoduje, że sporządzane dokumentacje mogą być niekompletne lub mogą posiadać wiele niedociągnięć i braków pomiarowych.

2. Metody inwentaryzacji

Dokładność pomiarów inwentaryzacyjnych oraz sposób ich przedstawiania zależny jest od celu jakiemu późniejsza inwentaryzacja ma służyć. W zależności od wymaganej dokładności istnieje możliwość wyboru wariantu pomiarowego z kilku różnych metod.

Użyty podczas inwentaryzacji sprzęt pozwala uzyskać pomiary o różnych dokładnościach. Najmniejszą dokładność w jednostkach miary posiada dokumentacja fotograficzna. Wynika to z zaburzenia skali różnych części obrazu spowodowanych perspektywą. Alternatywą dla dokumentacji fotograficznej jest fotogrametria. Najbardziej tradycyjną metodą pomiarową jest pomiar ręczny uzupełniany niekiedy metodami geodezyjnymi (w przypadku skomplikowanych geometrii obiektów). Zastosowanie pomiaru ręcznego nie wymaga szczególnych umiejętności oraz kosztownego sprzętu.

Najbardziej dokładną ale za razem i najbardziej kosztowną metodą jest bez wątpienia skaning laserowy 3D. Skanowanie laserowe wymaga ogromnej wiedzy i umiejętności zarówno operatora skanera jak i osoby pracującej później z wygenerowaną chmurą punktów.

Metodami uzupełniającymi inwentaryzację będą fotografie przy użyciu dronów oraz aparatów sferycznych. Przy pomocy drona możliwe jest wykonanie zdjęć fragmentów budynku nie dostępnych bez użycia specjalistycznego sprzętu, np. dachy, kominy.

2.1. Tradycyjne techniki pomiarowe

Podstawową metodą wykonywania inwentaryzacji jest tradycyjny pomiar ręczny. Jest to najstarszy, najprostszy i za razem wystarczający dla większości ruin sposób na dokonywanie pomiarów. Skala dokładności jest wystarczająca do stworzenia dokumentacji obiektu. Do wykonywania pomiarów metodą tradycyjną wykorzystuje się taśmy, miarki oraz dalmierze.
laserowe. Uzyskane informacje, przy użyciu tradycyjnych i komputerowych metod należy zamienić na dokumentację rysunkową.

Jako już zostało wspomniane inwentaryzację rozpoczyna się od wizji terenowej, następnie sporządzany jest szkic pomiarowy. Do stworzenia rzutów poziomych pobierane są pomiary ze wszystkich ścian pomieszczeń oraz ich elementów, włączając szczegóły. Pomiary powinny być wykonywane na jednej wysokości. By uniknąć błędów pomiarowych należy zastosować tzw. „zapis sznurowy”, czyli kolejno odczytywać wymiary z charakterystycznych punktów na ścianie. Należy pamiętać, by długie ściany zmierzyć dwukrotnie oraz podać poziom posadzki względem punktu odniesienia, przyjętego dla danego obiektu lub jego fragmentu. Grubość murów powinna być mierzona w miejscach, gdzie można bezpośrednio uzyskać pełen wymiar bądź można wykonać to odcinkowo. W przypadku pomieszczeń o nieregularnych kształtach należy pomierzyć ich przekątną. Pozwala to na dokładniejsze określenie geometrii pomieszczenia. Wykonując pomiary rzutów poziomych podaje się wymiary w świetle wszystkich otworów oraz wnęk, wysokości parapetów, sklepień. Otwory drzwiowe i okienne powinny być zmierzone zarówno w świetle otworu jak i ościeżnicy. W wykonywaniu inwentaryzacji metodą tradycyjną niezwykle ważne jest skoordynowanie rzutów wszystkich kondygnacji za pomocą pionów komunikacyjnych i otworów. Wymiary należy podawać tylko i wyłącznie wtedy, gdy zostały one zmierzone bezpośrednio, a nie na wnikając z obliczeń. Pomiary elewacji powinny być wykonywane na samym końcu, na podstawie rzutów oraz wyznaczonych wysokości punktów charakterystycznych. Wykonując rysunki inwentaryzacyjne elewacji powinno zwrócić się szczególną uwagę na wszelkiego rodzaju uszkodzenia, ubytki, pęknięcia, materiały wtórne. Ważne jest dokładnie określenie ich występowania oraz odpowiednie opisanie. Zarówno pomieszczenia, miejsca niedostępne do pomiaru należy oznaczyć i opisać na rysunkach, a przy elementach znajdujących się na znacznich wysokościach, dodatkowo podać sposób w jaki je wykreślono. Wynikiem inwentaryzacji wykonywanej metodą tradycyjną jest notata inwentaryzacyjna, stworzona w trakcie pobytu na obiekcie. Składają się na nią rysunki wykonane w trakcie pomiarów wraz z naniesionymi wymiarami oraz rozrzuconymi detalami. Na podstawie notaty inwentaryzacyjnej tworzona jest później właściwa dokumentacja obiektu.

1 J. Uścinowicz, Standards of conservation documentation of wooden architecture facilities as a basis for monitoring and management, Documentation and the monitoring in managing timber objects in Krzysztof Kluk Museum of Agriculture in Ciechanowiec and the Ryfylke Museum, Krzysztof Kluk Museum of Agriculture in Ciechanowiec, 2015, s. 43-67.
Ryc. 1 Fragment inwentaryzacji końcowej Donżonu Twierdzy Kłodzko - przekrój poziomy kondygnacji „0” – inwentaryzacja wykonana przy pomocy komputerowego programu kreślarskiego

Metoda tradycyjna jest niezwykle czasochłonna oraz wymaga dużego nakładu pracy, a także nie zawsze daje możliwość dokładnego zmierzenia elementów ze względu na ich niedostępność. Pomiary wykonywane w sposób manualny nie dają możliwości odwzorowania geometrii rzutów, dlatego metoda ta jest polecana jedynie do prostych obiektów. Istnieje także duże ryzyko popełnienia błędu pomiarowego przez osobę mierzącą. Zaletą tradycyjnej metody pomiarowej jest możliwość dokonania szczegółowej analizy opracowywanej struktury budowlanej.

Ryc. 2 Pomiary tradycyjne elewacji Donżonu Twierdzy Kłodzko
Ryc. 3 Widok elewacji Donżonu Twierdzy Kłodzko wykonany po pomiarach metodą tradycyjną

2.2. Metoda geodezyjna

Metody geodezyjne są wykorzystywane głównie do pomiaru geometrii obiektów oraz badań odkształceń i wychyleń obiektu. W przypadku inwentaryzowania obiektów,
Metoda ta jest czasochłonna, dlatego zaleca się stosowanie metody geodezyjnej jedynie w celu pomiarów skomplikowanej geometrii, utrudnionego dostępu lub znacznych wysokości obiektów.

W przypadku oceny stanu technicznego metoda geodezyjna stosowana jest do badania wszelkiego rodzaju odkształceń i przemieszczeń elementów w obiekcie. Przy użyciu sprzętu geodezyjnego z bardzo dużą dokładnością można szacować odchylenia od pionu lub osiadania fragmentów budynku. Obecnie jest to najczęściej stosowana metoda badania przemieszczeń. Alternatywą dla tej metody może być skanowanie 3D opisane w pkt. 2.3.

Można wyróżnić dwie metody geodezyjne pomocne przy wykonywaniu inwentaryzacyjnych. Jedna z nich wykorzystuje w tym celu niwelaor, druga natomiast urządzenia tachimetryczne. Niwelaor jest to instrument geodezyjny, który umożliwia pomiar różnicy wysokości pomiędzy rządami terenowymi.

Wśród urządzeń tachimetrycznych, w ostatnim czasie często wykorzystywane są instrumenty do pomiaru odległości bez konieczności stosowania lustra. Dzięki nim możliwe jest wyznaczanie geometrii obiektu oraz pomiar osnowy fotogrametrycznej. Dlatego też tachimetr bezlusterowy może być wykorzystywany do tworzenia inwentaryzacji architektonicznej.

Inwentaryzowanie obiektu z użyciem tachimetr obiera się na pomiarze kątów i odległości. Pomiar długości odcinka jest możliwy dzięki wbudowanemu w urządzenie precyzyjnemu dalmierzowi laserowemu. Odległość określana jest z przyrostów współrzędnych będących pomiędzy stanowiskiem instrumentu mierzącego, a mierzonym punktem. Tachimetr ma możliwość mierzenia wyselekcjonowanych punktów, które określają charakterystyczne miejsca na obiekcie.

Tachimetr w połączeniu z odpowiednim oprogramowaniem może w znaczny sposób przyspieszyć pracę oraz przede wszystkim zapewnić dużą dokładność pomiarów. Pomiary tachimetrem sprawdzą się do stworzenia rzutów, przekrojów i prostych elewacji. Jest jednak także możliwość stworzenia pełnej inwentaryzacji przy użyciu tego instrumentu, jednakże ogromnym minusem tego sposobu jest duża ilość czasu, jaką trzeba spędzić na obiekcie. W tym przypadku dokumentacja jest tworzona na bieżąco, także istnieje możliwość korygowania ewentualnych błędów na bieżąco. Przed przystąpieniem do pracy należy precyzyjnie wyznaczyć płaszczyzny cięcia. Efektem tego są rysunki powstałe w komputerowych programach, bezpośrednio na miejscu.

Zaletą tej metody jest jej precyzyjność. Użycie tachimetr, w przeciwieństwie do metody tradycyjnej, pozwala na dokonanie dokładnych pomiarów dużych obiektów. W zależności od modelu tachimetr bez-lusterowego, zasięg instrumentu wynosi aż do 2000 m, a dokładność odpowiednio do wzrostu odległości wynosi około 2 do 5 mm. Dokładność pomiarów może się różnić w zależności od materiału od jakiego odbijana będzie wiązka. Przy gładkich materiałach (np. marmur) oraz przy małym kącie padania promieni lasera wyniki pomiaru mogą się znacznie różnić od stanu faktycznego.2

2 H. Klimkowska, A. Wróbel, Uwagi o wykorzystaniu tachimetrów bezlusterowych w inwentaryzacji architektonicznej, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 16, 2016.
Sama w sobie metoda tachimetryczna jest czasochłonna, dlatego dobrze byłoby połączyć ze sobą dwie metody, zarówno pomiary geodezyjne jak i pomiary ręczne. Dzięki tachimetrycznym jest uzyskanie geometrii ścian, natomiast pomiary miarką bądź dalmierzem pozwalają na domierzenie dokładniejszych elementów. Dzięki połączeniu tych dwóch metod możliwe jest precyzyjne odwzorowanie rzeczywistego wyglądu ruiny.

2.3. Skanowanie 3D

Skanning laserowy, z technicznego punktu widzenia, jest to jeden z najdokładniejszych sposobów sporządzenia pomiarów inwentaryzacyjnych. Dokonywany jest za pomocą skanera laserowego. Wykorzystywany jest głównie w przypadku dużych, skomplikowanych obiektów o szczególnej wartości historycznej.

Informacje uzyskane w formie cyfrowej podczas skanowania mogą być przechowywane na dyskach zewnętrznych. Z uwagi na bardzo dużą rozdzielczość oraz dokładność skanowania, stworzona chmura punktów jest wiernym odwzorowaniem stanu rzeczywistego. Materiały archiwizowane w ten sposób wykorzystane mogą być później w innych, bardziej szczegółowych od ogólnej inwentaryzacji pracach. Wykonany skan jest na początku zbiorem punktów potrzebnych do stworzenia modelu i rysunków płaskich. Może być wykorzystywany np. przy pracach konserwatorskich związanych z detalem architektonicznym czy też szczegółowej oceny stanu technicznego uszkodzeń lica muru.

Ryc. 4 Leica ScanStation C10 podczas wykonywania pomiarów

Zasada działania urządzenia skanującego opiera się na pomiarze odległości obiektu od urządzenia. Skaner, dzięki obecności specjalnego układu optycznego wysyła wiązki laserowe, które ulegają odbiciu od przeszkody. Natomiast powracające do fotodiody przekazywane są informacje dotyczące czasu odbicia, co umożliwia określenie odległości punktu od urządzenia. Na tej podstawie możliwy jest zapis współrzędnych XYZ dla każdego punktu, który zebrany
w całość tworzy przestrzenny zbiór zwany „chmurą punktów”. Taka chmura punktów jest cyfrowym odwzorowaniem obiektu objętego inwentaryzacją. Po odpowiedniej obróbce danych możliwe jest stworzenie modelu 3D skanowanego obiektu.\(^3\)

Ryc. 5 Chmura punktów powstała w wyniku opracowania danych przestrzennych pozyskanych ze skanera Leica C10 - zamek w Janowcu

Pomiar wielu punktów i ich wzajemnych relacji przestrzennych jest możliwy dzięki obrotom skanera wokół osi skierowanej prostopadle do płaszczyzny podstawy oraz jednoczesnej rotacji głowicy wokół osi równoległej.

Dodatkową informacją dostarczaną przez laser jest intensywność odbicia światła, która pozwala na zróżnicowanie elementów i powierzchni w obiekcie podlegającym pomiarom. Bardzo pomocna przy opracowywaniu chmury punktów jest możliwość wykonywania fotografii przez urządzenia skanujące. Procesory przetwarzające zdjęcia i współrzędne XYZ przypisują punktom wartość RGB (kolor) nadając chmurze realistyczną teksturę. W istocie obraz jaki utworzony zostaje z chmury punktów staje się aktywnym oraz trójwymiarowym modelem odwzorowanym w skali 1:1.

Skanery laserowe dają możliwość uzyskania o wiele więcej danych w znacznie mniejszym przedziale czasowym niż pomiary wykonywane tradycyjnymi sposobami. Inwentaryzacja dokonana z użyciem skaningu 3D pozwala na stworzenie szczegółowego opracowania, które ma ogromne znaczenie w przypadku pracy nad obiektami w ruinie.

Duży zasięg lasera, zależny od modelu, umożliwia sprawny pomiar obiektów o rozległej skali. Jest to znaczną atut przy inwentaryzowaniu dużych założeń lub ciężko dostępnych z uwagi na ich lokalizację i obszar zabudowy. Gęstość pozyskanych punktów ułatwia szczegółowe odwzorowanie struktury murów oraz geometrii elementów przestrzennych. Stworzenie

\(^3\) A. Gołembnik, *Rola nowych technik dokumentacyjno-pomiarowych w interdyscyplinarnych działaniach badawczo-konserwatorskich*, Wiadomości Konserwatorskie, nr 40/2014, s. 83-93.
chmury punktów całego obiektu jest możliwe dzięki łączeniu pojedynczych zbiorów za pomocą definiowanych tarcz umieszczanych w terenie lub wspólnych punktów ustalanych w trakcie obróbki dedykowanymi programami komputerowymi.

Ten sam problem dotyczy wcześniej wymienionych metodach inwentaryzacji, materiał pochodzący ze skanowania laserowego musi zostać odpowiednio przygotowany i przedstawiony w formie rysunków technicznych. Natomiast, prawdopodobieństwo popełnienia błędu przy odwzorowaniu geometrii czy też grubości przegród budowlanych jest niezwykle małe.

Przeważającą zaletą wykorzystywania skanerów laserowych jest stosunek czasu pracy do uzyskiwanej dokładności i wierności odwzorowania istotnych parametrów obiektów. Skaner jest na tyle dokładnym urządzeniem, że jest w stanie wyłapać anomalie, które nie są możliwe do zaobserwowania gołym okiem. Dzięki temu można wykonać wiele użytecznych analiz oraz wychwycić miejsca, w których występują uszkodzenia i odkształcenia. Warto jednak pamiętać, że wiązka lasera nie zawsze ma możliwość dotarcia w każde miejsce i może zostać odbita od przypadkowego elementu.

Ryc. 6 Widok elewacji obiektu zamku w Janowcu opracowany na podstawie skanu 3D

Z uwagi na dokładność skanera 3D, metoda ta jest bardzo przydatna w procesie dokumentacji obiektu w ruinie. Materiał, jaki możemy otrzymać poprzez skaning, daje możliwości wykorzystania go do różnych celów, m. in. projektowych. Co ważne w przypadku obiektów znajdujących się w ruinie, bardzo ważna jest możliwość monitorowania zmian, dlatego też istotne jest wykonywania skanu w możliwie jak największym zagęszczeniu chmury punktów.

2.4. Dokumentacja fotograficzna (tradycyjna, sferyczna, przy użyciu drona)

Dokumentacja fotograficzna jest niezbędnym elementem do przeprowadzenia szczegółowej analizy obiektu oraz materiałem uzupełniającym do dokumentacji rysunkowej.

Zdjęcia należy wykonywać w najlepszej możliwej rozdzielczości i jakości.
Dokumentacja fotograficzna powinna być wykonana także przy zastosowaniu inwentaryzacji fotogrametrycznej, jako uzupełnienie materiału pomiarowego.

W skład dokumentacji fotograficznej wchodzi:
- spis fotografii,
- spis ponumerowanych oraz dokładnie opisanych zdjęć,
- graficzne przedstawienia planu stanowisk fotograficznych.

Na katalog zdjęć powinny się składać fotografie ukazujące ogólną charakterystykę bryły, jej usytuowanie w przestrzeni, wszystkie elewacje oraz detale. Zdjęcia powinny być ułożone w taki sposób, by zapewnić łatwą orientację w obiekcie oraz umożliwić szybkie zlokalizowanie fotografi na dokumentacji.4

Można wyróżnić trzy zasadnicze plany zdjęciowe:
I – fotografie przedstawiające obiekt wraz z otoczeniem; obejmuje pełne kadry, bez ucinania obiektu, ukazując kontekst, ogólną charakterystykę bryły, jej osadzenie w przestrzeni, pełne elewacje,
II – fotografie przedstawiające pewne elementy obiektu, tj. cały element okienny, drzwiowy,
III – fotografie przedstawiające zблиżenia związane z detalem, czyli pęknięcia, przebarwienia, uszkodzenia, itd.

W zależności od użytych urządzeń inwentaryzację fotograficzną podzielić możemy na: fotografia tradycyjna, fotografia sferyczna, zdjęcia dronem.

Fotografia tradycyjna

Fotografia tradycyjna wykonywana jest przy użyciu różnego rodzaju aparatów fotograficznych. Sprzęt stosowany do robienia zdjęć wybierany jest w zależności od umiejętności i preferencji użytkownika.

Dokumentacja fotograficzna powinna przedstawiać cały obiekt oraz jego części, detale, charakterystyczne elementy, elewacje oraz elementy wystroju architektonicznego. Fotografie powinny być wykonane z charakterystycznych punktów widokowych, by umożliwić zobrazowanie całego obiektu bądź jego fragmentów. Zdjęcia elewacji, charakterystycznych elementów, otworów, materiałów, uszkodzeń muru należy wykonać w sposób zbliżony do ortogonalnego, po to by uniknąć zniekształceń perspektywicznych obiektu. Fotografie detali należy wykonać wraz z czytelną skalą porównawczą.

Fotografia sferyczna

Jest nowoczesnym rodzajem fotografii. Dzięki zakresowi widoku wynoszącym 360°

4 Wytyczne Techniczne G-3.4, Inwentaryzacja zespołów urbanistycznych, zespołów zieleni i obiektów architektury, GUGiK, Warszawa, 1981.
w poziomie oraz 180° w pionie, umożliwia obrót wokół własnej osi i dokumentowanie obrazu w dół i prosto do góry. Daje to efekt swobodnego rozglądania się. W przeciwieństwie do tradycyjnej fotografii statycznej, która ukazuje jedynie wycinek rzeczywistości, fotografia sferyczna nie jest ograniczona przez tzw. kadr.

Fotografia sferyczna wykonywana jest przy użyciu aparatu panoramicznego, kamery 360°, bądź też można łączyć kolejno pojedyncze zdjęcia wykorzystując programy komputerowe. Fotografie powinny być wykonane w taki sposób, by posiadać punkty kontrolne pozwalające na połączenie kadrów. Dlatego też konieczne jest, by każde kolejne zachodziło na siebie w około 20-40%.

Zdjęcia wykonane przez kamery 360° oraz oglądane bez użycia odpowiedniego do tego oprogramowania tworzy rozłożony i płaski obraz (Ryc. 7). Efekt swobodnego rozglądania się jest możliwy do uzyskania dopiero przy zastosowaniu programów komputerowych. Fotografie tworzone są w dobrej rozdzielczości, co umożliwia spore zbliżenia. Przybliżając zdjęcie, obraz staje się płaski.

Fotografia sferyczna stanowi idealny, uzupełniający materiał inwentaryzacyjny, który pozwala również na stworzenie wirtualnego spaceru po obiekcie.

Ryc. 7 Fotografia pochodząca z kamery 360°, widok płaskiego obrazu

Fotografia dronem

Bezzałogowe statki powietrzne, czyli drony są to urządzenia zdalnie sterowane przez operatora, choć występują również modele poruszające się całkowicie autonomicznie. Niewątpliwie posiadają ogromny potencjał, bowiem umożliwiają wykonanie wielu prac, które są nieosiągalne przy zastosowaniu tradycyjnych metod.

Technologia ta, przy inwentaryzacji obiektów w ruinie, pozwala na dotarcie w miejsca, które są niemożliwe do sfotografowania przy użyciu tradycyjnych metod dokumentacji fotograficznej. Drony pozwalają na objęcie całej bryły obiektu z góry i dzięki temu są pomocne w określaniu dokładnego kształtu ruiny.
2.5. Fotogrametria

Fotogrametria podobnie jak fotografia tradycyjna polega na wykonywaniu zdjęć z tą różnicą, że na przedstawionych obrazach nie występują zaburzenia geometrii spowodowane perspektywą. Dzięki fotogrametrii możliwe jest objęcie pomiarami elementów trudnodostępnych, ponieważ rejestracja obrazów odbywa się bez kontaktu fizycznego z budowlą.5

Fotogrametria jest to technika sporządzania pomiarów, odtwarzania kształtow, rozmiarów oraz wzajemnych relacji między położeniem obiektów na danym terenie na podstawie zdjęć fotogrametycznych zwanych fotogramami. Obraz rejestrowany przy pomocy metody fotogrametrycznej odzwierciedla dużo więcej informacji niż uzyskano by pomiarami tradycyjnymi. Dlatego też materiał ten stanowi niezwykle wartościowy materiał archiwalny, szczególnie w przypadku obiektów w ruinie.6

Do stworzenia opracowania fotogrametrycznego należy sfotografować obiekt przynajmniej z dwóch punktów. Pozwala to na matematyczne odtworzenie położenia oraz orientacji każdego z tych zdjęć w przestrzeni, a także możliwe jest przestrzenne widzenie obrazu obiektu. W połączeniu z geodezyjnym wyznaczeniem współrzędnych wspólnych punktów odwzorowanych na fotografiach, możliwe jest osadzenie otrzy-manych trójwymiarowe obrazy w przestrzeni.

Fotogrametria jest dokładną techniką sporządzania inwentaryzacji obiektów. W przypadku ustawienia aparatu w odległości 20 m od obiektu, dokładność pomiaru będzie wynosiła 1 cm.7

5 E. Bar, J. Faldrowicz, Dokumentowanie zabytków architektury metodami fotogrametrycznymi i skaningu laserowego, Acta Scientifica Academiae Ostroviensis, nr 34, 2010, s. 5-14.

6 http://www.wrogeo.pl/pl/fotogrametria.html, data odczytu: 24.07.2018 r.

7 http://geo-metric.com/fotogrametria-cyfrowa, data odczytu: 24.07.2018 r.
Precyzyjność pomiarów można zwiększyć stawiając aparat bliżej badanego obiektu. Efektem opracowania fotogrametrycznego są inwentaryzacyjne rysunki wektorowe. Metoda ta jest niezwykle pomocna przy wykonywaniu dokumentacji technicznej elewacji oraz obrysu zewnętrznego budynku. Fotogrametria pozwala przede wszystkim na precyzyjne ujęcie zdobionych detalami powierzchni, co sprawia że jest przydatna w przypadku obiektów zabytkowych.

Widoki elewacji wykonane na podstawie tej metody mogą na dalszych etapach badań posłużyć jako podstawa do stworzenia rozwartwienia chronologicznego, natomiast w przypadku prac restauratorskich i konserwatorskich mogą zostać wykorzystane przy inwentaryzacji uszkodzeń.

Zasadniczo, przekształcanie techniki fotogrametrycznej na rysunki inwentaryzacyjne jest bardzo czasochłonne. Zdjęcia należy każdorazowo obrysować. Inwentaryzacja powstała w metodzie fotogrametrii może funkcjonować także jako plany, ponieważ ich wykonanie jest zgodne ze skalą obiektu.

3. Podsumowanie

Obiekty znajdujące się w stanie ruiny są dość specyficzne jeżeli chodzi o ich inwentaryzację. Z uwagi na szereg ograniczeń takich jak: utrudniony i niebezpieczny dostęp, zróżnicowanie materiałowe, różnorodność geometryczna oraz szczególny detal architektoniczny podczas opracowywania takiej dokumentacji koniecznym jest korzystanie ze zróżnicowanych metod.

Wybór metody zależy przede wszystkim od celu jakiemu inwentaryzacja ma służyć, ale także dostępności specjalistycznego sprzętu oraz warunku ekonomicznego (niewyobrażone przedstawionej metod są kosztowne). Zdecydowanie najpowszechniejszą stosowanymi metodami są metody tradycyjne z wykorzystaniem pomiarów ręcznych. Postęp technologiczny jednak coraz częściej wypiera takie metody i techniki kosztem metod cyfrowych. Coraz częściej sięga się po bardziej specjalistyczny skaning 3D. Skaning oferuje ogromną detaliczność, umożliwia wykonanie rysunków w znacznie prostszy i szybszy sposób. Przy użyciu odpowiedniego oprogramowania istnieje możliwość wygenerowania z powłoki chmury punktów modelu 3D. Model takie mają obecnie szerokie zastosowanie nie tylko w obróbce cyfrowej ale również druku przestrzennym.

Metody geodezyjne, fotograficzne oraz fotogrametryczne mogą posłużyć jako metody uzupełniające.
Literatura

Literatura:
1. Bar E., Fałdrowicz J., Dokumentowanie zabytków architektury metodami fotogrametrycznymi i skaningu laserowego, Acta Scientifica Academiae Ostroviensis, nr 34, 2010, s. 5-14,
2. Brusaporci S., The Representation of Architectural Heritage in the Digital Age, Encyclopedia of Information Science and Technology, Information Resources Management, USA, 2005,
3. Brykowska M., Metody pomiarów i badań zabytków architektury, Oficyna Wydawnicza Politechniki Warszawskiej, 2003
4. Centofanti M, Brusaporci S., Interpretative 3D digital models in architectural surveying of historical buildings, Computational modelling of objects represented in images. CRC Press, London, 2012
5. Golembnik A., Rolanowych technik dokumentacyjno-pomiarynych zabytkowych budowli, Wiadomości Konserwatorskie, nr 40/2014, s. 83-93
6. Golka J., Haliński J., Fotogrametria cyfrowa w architekturze – nowe możliwości inwentaryzacji i archiwizacji obiektów, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 10, 2000, s. 38-1:38-7
7. Jachimski J., Fotogrametryczna inwentaryzacja obiektów zabytkowych, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 7, 1997, s. 53-60,
8. Klimkowska H., Wróbel. A., Uwagi o wykorzystaniu tachimetrów bezlustrowych w inwentaryzacji i archiwizacji zabytków, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 16, 2016,
9. Kwoczyńska B., Opracowanie obiektów architektonicznych z wykorzystaniem metod stosowanych w fotogrametrii cyfrowej, Infrastruktura i ekologia terenów wiejskich, nr 3/2010, Polska Akademia Nauk, Odzioł w Krakowie, s.65-74
10. Parat M., Schaaf Urlich, Inwentaryzacja pomiarowo-rysunkowa zabytków architektury drewnianej w procesie konserwatorskim – problemy i propozycja standaryzacji, Budownictwo i Architektura, vol. 14(4), 2015, s. 99-110
11. Prarat M., Wykorzystanie tachimetrów i fotogrametrii w dokumentacji zabytków architektury na przykładzie inwentaryzacji pomiarowo-rysunkowej wybranych kamienic toruńskich, Acta Universitatis Nicolai Copernici, No 46, 2015, s. 509-531
12. Szmygin B., Wprowadzenie, Trwała ruina II. Problemy utrzymania i adaptacji. Ochrona, konserwacja i adaptacja zabytkowych murów, Lublin-Warszawa, 2010, s. 5-6
13. Tajchman J., Standardy w zakresie projektowania, realizacji i nadzorów prac konserwatorskich dotyczących zabytków architektury i budownictwa, Narodowy Instytut Dziedzictwa, Warszawa, 2014,
14. Trizio I., GIS-technologies and Cultural Heritage: stocktaking, documentation and management. In Rethinking Cultural Heritage, Experiences from Europe and Asia, Dresden: Technische Universität Dresden, 2007, s. 75–91
15. Uścinowicz J., *Standards of conservation documentation of wooden architecture facilities as a basis for monitoring and management*, Documentation and the monitoring in managing timber objects in Krzysztof Kluk Museum of Agriculture in Ciechanowiec and the Ryfylke Museum, Krzysztof Kluk Museum of Agriculture in Ciechanowiec, 2015, s. 43-67

16. *Wytyczne Techniczne G-3.4, Inwentaryzacja zespołów urbanistycznych, zespołów zieleni i obiektów architektury*, GUGiK, Warszawa, 1981,

17. PN-70/B-02365 – Powierzchnie budynków – Podział, określenia i zasady obmiaru,

18. PN-ISO9836:1997 – Właściwości użytkowe w budownictwie – Określenie i obliczanie wskaźników powierzchniowych i kubaturowych.

Strony internetowe:

19. http://geo-metric.com/fotogrametria-cyfrowa, data odczytu: 24.07.2018 r.,

20. http://www.wrogeo.pl/pl/fotogrametria.html, data odczytu: 24.07.2018 r.