Evaluation of the relationship of serum vitamin D levels in COVID-19 patients with clinical course and prognosis

Buğra KERGET1(ID)
Ferhan KERGET2(ID)
Ahmet KIZILTUNC3(ID)
Abdullah Osman KOÇAK4(ID)
Ömer ARAZ1(ID)
Elif YILMAZEL UÇAR1(ID)
Metin AKGÜN1(ID)

1 Department of Pulmonary Diseases, School of Medicine, Ataturk University, Erzurum, Turkey
2 Department of Infection Diseases and Clinical Microbiology, Health Science University, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
3 Department of Biochemistry, School of Medicine, Ataturk University, Erzurum, Turkey
4 Department of Emergency Medicine, School of Medicine, Ataturk University, Erzurum, Turkey

ABSTRACT
Evaluation of the relationship of serum vitamin D levels in COVID-19 patients with clinical course and prognosis

Introduction: SARS-CoV-2 (COVID-19), which emerged in Wuhan, China in December 2019, infected more than six million people in a short time. In COVID-19, the relationship of many laboratory parameters to morbidity and mortality has been defined. In our study, we aimed to determine the relationship of serum vitamin D level to clinical course and prognosis.

Materials and Methods: This study included 108 patients; 88 patients who stayed in Ataturk University and Erzurum City Hospital between March 24, 2020 and May 15, 2020, who were identified as COVID-19 by real-time PCR method from the nasopharyngeal swab and 20 asymptomatic voluntary medical personnel who tested negative for real-time PCR after routine check-up in our hospital.

Results: In statistical analysis conducted between healthy control group and vitamin D levels of patients admitted due to COVID-19, it was observed that patients infected with COVID-19 had a lower level (p = 0.004). In 20 patients developing MAS, a lower level of vitamin D was observed (p = 0.004) compared to 68 patients who did not develop. In the comparison of vitamin D levels...
INTRODUCTION

Coronavirus (COVID-19), which emerged in Wuhan, China in December 2019 and spread to many parts of the world in a short time, has infected more than eight million people and the number continues to increase day by day (1). COVID-19 is present with mild symptoms such as loss of smell and taste, sore throat, weakness, joint pain or asymptomatic in most infected patients. However, it can be severe in cases where hypertension can reduce immunity at an advanced age, diabetes, HIV, patients who have to receive immunosuppressive treatment for a long time, and pregnancy (2,3).

Acute respiratory failure syndrome and macrophage activation syndrome (MAS), which are characterized by hypoxic respiratory failure, are among the primary severe clinical manifestations (4). Proinflammatory cytokines expressed extensively in both clinical cases can cause endothelial dysfunction, causing damage to vital organs, especially the lungs. In this case, which is defined as cytokine storm syndrome, the most important cell that plays a role in the withdrawal of the trigger is Thelper 1 (Th1) (5,6). The failure to adequately establish proinflammatory anti-inflammatory balance in the body is the most important cause of morbidity and mortality in COVID-19 patients (4).

It is a known fact that vitamin D holds an important place in anti-inflammatory balance. Vitamin D receptors have been expressed in many organs and tissues, including heart, lungs, kidneys, liver, nervous system, intestine, bone, parathyroid gland, cardiovascular system and myocardium (7,8). Vitamin D shows anti-inflammatory effectiveness by suppressing the level of Th1. In addition, TNF-alpha, IFN-gamma, IL-2 and nuclear factor-κB significantly reduce the formation (9,10). During viral infection, it was shown that the inactive vitamin D form could be converted into an active form by alveolar epithelial cells, and the gene expression of the host defense cathelicidine increased. Cathelicidine has been shown to have a protective effect against hyperoxia-related lung damage (11). It has also been determined that ACE-2 receptor level, which plays an important role in linking the virus in COVID-19, increases with vitamin D effect. This has raised doubts that vitamin D can increase predisposition rather than its protective activity (12). In the literature, different findings such as this and similar have been present all the time and have been an indication of the need for extensive research.

In our study, we aimed to evaluate the relationship of vitamin D, which plays an important role in anti-inflammatory balance, to clinical course and prognosis in COVID-19 patients.
MATERIALS and METHODS

In our study, patients who admitted to the emergency department of Ataturk University and Erzurum Regional Education Research Hospital with complaints of primarily fever, cough, shortness of breath, weakness, sudden taste and smell, who had returned from their visit abroad in the last 14 days and who had been in contact with suspected COVID-19 patient were include in the study. The approval of the local ethics committee was obtained for our study, in which the patients and the control group were evaluated prospective.

Posterior-anterior pulmonary graphs of high-risk patients were taken in terms of COVID-19, and in the event of suspicious lesions, the findings were evaluated in detail with high-resolution computed thorax tomography. Patients were diagnosed with COVID-19 by real time PCR method by taking nasopharyngeal swap.

The first positive case that admitted to Ataturk University was on March 24, 2020 while the first case admitted to Erzurum City Hospital was on March 20, 2020 and 88 patients followed by the Chest Diseases and Infectious Diseases clinic from this period until May 15, 2020 and 20 voluntary non-symptomatic health workers who tested negative in real-time PCR during routine COVID-19 screening in our hospital were included in our study.

After admission to the clinic, biochemical parameters, clotting parameters, ferritin, D-Dimer, troponin-I, CRP, and arterial blood gas parameters and in addition hematological parameters, liver and kidney function tests were observed. The current parameters of the patients were repeated daily.

In the control group, subjects with autoimmune disorders, any neoplasms, metabolic bone disorders (osteopenia, osteoporosis), renal or liver dysfunctions and with recent vitamin D supplementation were excluded.

Definitions and Treatment

The axil measurement of temperature in patients which was above 37.3 °C was defined as fever. Showing a new pathogen and a positive culture sample with endotracheal aspirators or sputum from the lower respiratory tract, which is characterized by bacterium or pneumonia symptoms was defined as a secondary bacterial infection. Treatment was planned in accordance with the existing guidelines for patients diagnosed with pneumonia associated with ventilator or as hospital-induced. The diagnosis and rating of acute respiratory failure was done according to the Berlin 2015 diagnostic criteria. If the daily level of cardiac specific troponin was observed above normal, echocardiography was evaluated in terms of newly developed cardiac pathologies. In coagulopathy, prothrombopathy was defined 3 seconds above normal in time and 5 seconds above normal at the level of partial thromboplasty. According to the weight of the patients, the treatment was performed according to the COVID-19 adult diagnosis and treatment guide of the Ministry of Health of the Republic of Turkey. In the event of ongoing resistant fever, persistent high or increasing CRP and ferritin values, cytopenia in the form of D-dimer height, lymphopenia and thrombocytopenia, deterioration in liver function tests, hypofibrinogenemia or elevation in triglyceride values, patients were followed up in terms of MAS. In the event that there is an increase in consecutive measurements taken daily in these parameters and this condition cannot be explained by secondary bacterial infections, patients were applied 400 mg tocilizumab if there is no contraindicated condition for MAS. After 24 hours, the appropriate clinic and laboratory response was not repeated in patients who received the appropriate clinical and laboratory response. However, in the event of a lack of proper clinical and laboratory response, the same dose was repeated.

Measurement of Biochemical Markers

After 15 minutes of rest in half supine position, blood samples were taken from the antecubital vein to tubes containing ethylenediaminetetraacetic acid (EDTA) to prevent clotting. Troponin-I concentrations were measured by chemiluminescence immunoanalysis using Immulite 2500 (Siemens Medical Solutions, Erlangen, Germany). IL-6 and vitamin D were measured by enzyme-linked immunosorbent analysis (Elabscience human ELISA kit, UK).

Statistical Analysis

The data were analyzed using IBM SPSS Statistics for Windows version 20.0 (IBM Corp., Armonk, NY). Pearson’s chi-square test and Mann-Whitney U test were used for intergroup comparisons of parametric data and nonnormally distributed numerical data, respectively. Independent-samples t test was used to compare demographic data and laboratory parame-
Vitamin D and COVID-19
ters between the groups. Wilcoxon analysis was used for intragroup comparisons of laboratory values during follow-up. Pearson correlation analysis was used to evaluate relationships between vitamin D levels and CRP, and PaO$_2$/FiO$_2$. A p-value less than 0.05 was considered statistically significant.

RESULTS

Of the patients included in our study, 47 (53.4%) were female and 41 (46.6%) were male. Of the patients in the control group, 12 (60%) were female and 8 (40%) were male. The mean age of the patients was 49.1 ± 21.1 and the control group was 35.2 ± 6.9. No statistically significant difference between gender and age was observed between the patient groups (p= 0.196).

Of the patients involved in the study and developed MAS, 10 had hypertension, 8 had diabetes mellitus, 8 had chronic obstructive pulmonary disease, 1 had epilepsy, 1 had an ininfarct in the temporoparietal region, and 1 had chronic kidney failure. All patients with MAS had ARDS, and the other 15 patients had hypertension, 3 had asthma and 1 had chronic renal failure. Of the 63 patients who did not develop ARDS and MAS, 5 had diabetes mellitus and 2 had diabetes.

The laboratory parameters taken on the 5th day of admission to hospital and treatment from Covid-19 patients included in the study came are shown in Table 1. The laboratory parameters taken on the 5th day of admission to hospital and treatment from patients who developed MAS were shown in Table 2.

In 20 patients developing MAS, a lower level of vitamin D was observed (p= 0.004) than 68 patients who did not develop. Laboratory parameters taken on the 5th day of admission and treatment from patients who were been observed and not observed to have ARDS are shown on Table 3. A significant difference was not observed in the vitamin D level of 35 patients who were observed to have ARDS compared to those who did not (p= 0.102).

Comparison vitamin D levels of patients in which MAS and ARDS was observed and not observed, with the control group has been shown in Table 4. Vitamin D levels of patients with MAS and ARDS were statistically significantly lower than the control group (p= 0.001, p= 0.001). Exitus developed in 8 out of 88 patients who were followed due to COVID-19. The

Table 1. Comparison of laboratory parameters of COVID-19 patients at admission and on day 5 of treatment

	Admission (n= 88)	Day 5 of treatment (n= 88)	p
	(Mean ± SD)	(Mean ± SD)	
WBC (/µL)	7239.7 ± 4023.8	7158.7 ± 3370.7	0.82
Lymphocytes (/µL)	1573.2 ± 888.4	1823.2 ± 906.8	0.003
Neutrophils (/µL)	4987.3 ± 3614.9	4685.1 ± 3250.1	0.206
NLR	5.3 ± 8.4	4.3 ± 8.4	0.03
AST (U/L)	32.9 ± 20.5	31.9 ± 34.1	0.189
ALT (U/L)	30.6 ± 25.2	31.3 ± 23.4	0.225
LDH (U/L)	311.7 ± 159.1	305.1 ± 199.9	0.275
GGT (U/L)	39.9 ± 34.2	40.6 ± 35.7	0.317
ALP (U/L)	79.1 ± 41.2	69.2 ± 27.5	0.003
Sodium (mmol/L)	138.8 ± 3.9	140.7 ± 4.6	0.007
Potassium (mmol/L)	4.2 ± 0.5	4.4 ± 0.5	0.001
Creatine (mg/dL)	1.1 ± 0.9	1.1 ± 0.9	0.319
Prothrombin time (s)	15.9 ± 6.8	14.6 ± 5.1	0.001
CRP (mg/dL)	63.3 ± 83.5	27.5 ± 27.4	0.001
Tropomin-I (ng/dL)	67.1 ± 297.8	149.7 ± 1185.2	0.001
PaO$_2$/FiO$_2$	294.3 ± 69.1	323.9 ± 47.6	0.001
D-Dimer (ng/mL)	1151.7 ± 1809.5	666.7 ± 925.5	0.001

WBC: White blood cells, NLR: Neutrophil/lymphocyte ratio, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, LDH: Lactate dehydrogenase, GGT: Gamma glutamyl transferase, ALP: Alkaline phosphatase.
vitamin D level of the patients who developed exitus was 7.48 ± 3.48 ng/ml, while it was 21.1 ± 14.2 ng/ml in patients who did not develop. Statistically significant difference was observed between vitamin D levels of both groups ($p=0.009$).

In the correlation analysis of vitamin D level with laboratory parameters, negative correlation was observed only with CRP and positive-directional correlation with $\text{PaO}_2/\text{FiO}_2$ ratio ($r=-0.297$, $p=0.01$, $r=0.262$, $p=0.05$) (Figure 1).

DISCUSSION

In our study, we observed that serum vitamin D levels are significantly lower than control group patients who are tracked due to COVID-19. On the other hand, in the evaluation of patients who were admitted and followed by COVID-19 among themselves, we found that vitamin D levels of patients developing

MAS were lower than patients who did not develop. In our service, exitus developed after the 5th day of treatment for various reasons in 8 patients. The vitamin D level in patients with exitus was significantly lower compared to patients who did not develop.

In December 2019, a new virus was discovered in Wuhan, China, and the International Committee on Virus Taxonomy called it COVID-19 in connection with Coronavirus 2 (SARS-CoV-2) and the World Health Organization (WHO) (1). SARS-CoV-2 is closely related to SARS-CoV and MERS-CoV, which are responsible for past outbreaks with significant morbidity and mortality (13). The rapid spread of COVID-19 has caused the Chinese outbreak and is currently spreading globally. So far, the number of people infected due to COVID-19 is said to be over eight million (14).

Table 2: Comparison of laboratory parameters at admission COVID-19 patients who did and did not develop macrophage activation syndrome (MAS)

	MAS patients (n= 20) (Mean ± SD)	Non-MAS patients (n= 68) (Mean ± SD)	p
Admission			
Age (year)	70.1 ± 12.7	43.4 ± 18.1	0.001
WBC (/µL)	9133.7 ± 7270.7	6760.1 ± 2324.1	0.17
Lymphocytes (/µL)	821.1 ± 405.9	1794.7 ± 872.5	0.001
Neutrophils (/µL)	7513.2 ± 6404.7	4316.3 ± 1896.9	0.04
NLR	13.3 ± 15.1	3.1 ± 2.6	0.008
AST (U/L)	42.2 ± 19.7	30.3 ± 20.3	0.02
ALT (U/L)	36.4 ± 28.3	29.2 ± 24.5	0.273
LDH (U/L)	451.3 ± 304.3	270.5 ± 118.5	0.001
GGT (U/L)	57 ± 47.1	33.3 ± 23.2	0.04
ALP (U/L)	81.7 ± 33.9	77.1 ± 42.3	0.66
Sodium (mmol/L)	137.5 ± 61.1	139.1 ± 3.1	0.3
Potassium (mmol/L)	4.2 ± 0.6	4.2 ± 0.4	0.8
Creatine (mg/dL)	1.8 ± 1.8	0.9 ± 0.5	0.04
Prothrombin time (s)	20.4 ± 12.4	14.7 ± 3.5	0.04
CRP (mg/dL)	176.7 ± 75.7	27.7 ± 38.7	0.001
Troponin-I (ng/dL)	276.1 ± 607.3	8.9 ± 15.3	0.001
$\text{PaO}_2/\text{FiO}_2$	209.8 ± 67.7	318.9 ± 47.6	0.001
D-Dimer (ng/mL)	2529.9 ± 3111.7	766.6 ± 955.2	0.03
Ferritin (ng/mL)	1094.4 ± 1559.9	346.7 ± 144.1	0.001
Vitamin D (ng/ml)	11.9 ± 5.7	22.1 ± 15.1	0.004
IL-6 (pg/ml)	114.5 ± 60.5	36.2 ± 30.4	0.001

MAS: Macrophage activation syndrome, WBC: White blood cells, NLR: Neutrophil/lymphocyte ratio, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, LDH: Lactate dehydrogenase, GGT: Gamma glutamyl transferase, ALP: Alkaline phosphatase, IL-6: interleukin 6.
When laboratory tests are examined, lymphopenia is observed in most patients (15). This result suggests that 2019nCoV can have an impact on lymphocytes, especially T lymphocytes, such as SARS-CoV. Virus particles emitted from the respiratory mucosa and transmitted to other cells form a cytokine storm in the body. T lymphocyte damage is thought to be an important part of the cytokine storm formation. Therefore, it is thought that lymphopenia may be a reference parameter that can be used in the diagnosis of COVID-19. After the cytokine storm, many proinflammatory cytokines, especially TNF-alpha, IL-1, IL-2, IL-6, nitric oxide, are revealed. These cytokines can cause an increase in vascular permeability, causing deterioration in tissue perfusion, as well as endothelial damage and microtombus formation (16). This

| Table 3. Comparison of laboratory parameters at admission COVID-19 patients who did and did not develop acute respiratory distress syndrome (ARDS) |
|--|--|
| **ARDS patients (n=35)** | **Non-ARDS patients (n=53)** |
| **(Mean ± SD)** | **(Mean ± SD)** |
| **Admission** | **Admission** |
| Age (year) | 67.9 ± 12.2 | 38.3 ± 15.6 | 0.001 |
| WBC (/µL) | 8109.1 ± 5749.5 | 6665.5 ± 2151.8 | 0.1 |
| Lymphocytes (/µL) | 960 ± 467.3 | 1978.1 ± 870.3 | 0.001 |
| Neutrophils (/µL) | 6411.4 ± 5117.7 | 4046.8 ± 1572.3 | 0.002 |
| NLR | 9.8 ± 11.9 | 2.3 ± 1.1 | 0.001 |
| AST (U/L) | 42.9 ± 25.1 | 26.4 ± 13.4 | 0.001 |
| ALT (U/L) | 34.1 ± 30.6 | 28.5 ± 20.9 | 0.3 |
| LDH (U/L) | 434.4 ± 180.1 | 230.7 ± 65.6 | 0.001 |
| GGT (U/L) | 55.2 ± 44.6 | 29.9 ± 20 | 0.001 |
| ALP (U/L) | 90.1 ± 55.1 | 71.8 ± 26.9 | 0.07 |
| Sodium (mmol/L) | 137.3 ± 4.9 | 139.7 ± 2.8 | 0.005 |
| Potassium (mmol/L) | 4.1 ± 0.6 | 4.2 ± 0.4 | 0.171 |
| Creatine (mg/dL) | 1.3 ± 1.4 | 0.9 ± 0.5 | 0.04 |
| Prothrombin time (s) | 19.1 ± 9.6 | 13.8 ± 2.1 | 0.001 |
| CRP (mg/dl) | 132.1 ± 92.4 | 17.9 ± 28.3 | 0.001 |
| Troponin-I (ng/dl) | 160.5 ± 460.3 | 5.4 ± 7.6 | 0.001 |
| PaO₂/FiO₂ | 228.5 ± 58.8 | 337.8 ± 29.5 | 0.001 |
| D-Dimer (ng/ml) | 2113.2 ± 2622.2 | 534.9 ± 243.8 | 0.001 |
| Ferritin (ng/ml) | 742.4 ± 1204.9 | 359.7 ± 143.1 | 0.02 |
| Vitamin D (ng/ml) | 16.8 ± 10.5 | 21.8 ± 15.8 | 0.102 |
| IL-6 (pg/ml) | 91.6 ± 63.4 | 39.4 ± 30.7 | 0.001 |

ARDS: Acute respiratory distress syndrome. WBC: White blood cells. NLR: Neutrophil/lymphocyte ratio. AST: Aspartate aminotransferase. ALT: Alanine aminotransferase. LDH: Lactate dehydrogenase. GGT: Gamma glutamyl transferase. ALP: Alkaline phosphatase. IL-6: Interleukin 6.

| Table 4. Comparison of Vitamin D levels between COVID-19 patients who did and did not develop MAS, ARDS and control group |
|--|--|
| **MAS** | **ARDS** |
| (n=20) | (n=68) |
| (mean ± SD) | (mean ± SD) |
| Vitamin D (ng/ml) | 11.9 ± 5.7 | 22.1 ± 15.1 |
| (mean ± SD) | 16.8 ± 10.5 | 21.8 ± 15.8 |
| Control | 25.6 ± 7.8 |
| (n=20) | (mean ± SD) |
| (mean ± SD) | 0.001 |

Therefore, it is thought that lymphopenia may be a reference parameter that can be used in the diagnosis of COVID-19. After the cytokine storm, many proinflammatory cytokines, especially TNF-alpha, IL-1, IL-2, IL-6, nitric oxide, are revealed. These cytokines can cause an increase in vascular permeability, causing deterioration in tissue perfusion, as well as endothelial damage and microtombus formation (16). This
Increase in vascular permeability causes fluid accumulation in lung tissue and interstitial field to form a table of acute respiratory failure as a result. Positive results have been reported on the use of IL-6 antagonist tocilizumab used in the prevention of the formation of this clinical table (17,18).

Vitamin D, which is primarily involved in bone and calcium metabolism, has an important role in ensuring anti-inflammatory balance. Vitamin D plays an important role in the hemostasis of congenital and acquired immune system cells. Predisposition to bacterial, viral infections and chronic obstructive lung disease which is one of the leading chronic lung diseases detected in patients with vitamin D deficiency and low vitamin D levels detected in patients with asthma are associated with low FEV₁ and frequent recurrent episodes have been the most concrete example of this (19-22). CalciTriol (1,25-dihydroxyvitamin D3) causes an increase in ACE2 expression via ACE2/Ang (1-7)/MasR pathway (23). ACE2’s receptors on the host cell mediate the SARS-CoV-2 infection. This has also raised questions that vitamin-D can create predisposition. However, it has been found to have played a role in the development of MAS in COVID-19 and expressed by Th1 cells IL-6, IL-8, IL-12, and IL-17 proinflammatory cytokines suppressing, antimicrobial peptide, cathelicin and defensive induction that play a role in the alveoli, this view has caused the contrary opinions to dominate (24,25). In European studies, the relationship between low vitamin D and mortality also supports this (12,26).

In our study, which evaluated the follow-up of SARS-CoV-2 patients, we observed that the duration of the prothrombin, CRP, troponin-1, and D-Dimer levels associated with clinical course and prognosis, decreased with high levels of the disease and with treatment. We found that the initial vitamin D levels of patients followed by COVID-19 were lower than the control group, while in patients with COVID-19, a higher rate of MAS developed in patients with low vitamin D levels.

This was observed to support the work done on the anti-inflammatory activity of vitamin D. The failure to observe a significant difference in the correlation analysis between IL-6 level and vitamin D level, which plays a role in the development of MAS, can be interpreted depending on the fact that many proinflammatory cytokines are active in MAS development. COVID-19 is one of the most important causes of mortality such as ARDS MAS. While the vitamin D-level detected in patients with ARDS was significantly lower than the control group, there was no significant difference between patients developing and not developing ARDS, unlike in MAS. The lack of intensive proinflammatory cytokine discharge, as in the development of MAS, may have caused vitamin D, which plays a role in the synthesis of cytokines that play an antiinflammatory balance in these patients, not to come to the fore as well as in MAS. Failure to observe a correlation between age and vitamin D level, which plays an important role in the development of ARDS, and the association of patients developing ARDS with advanced age and

Figure 1. Correlation analysis between Vitamin D level and CRP and PaO₂/FiO₂.
comorbid diseases can also be among the causes of this condition.

The most important limitation of our study was the inability to provide homogeneous age range in patients with ARDS and MAS. However, the observation of ARDS and MAS development in COVID-19 patients in people of more advanced age and comorbid disease will constitute the most important limiting factor for the studies in which this is wished to be realized.

CONCLUSION

As a result, the lack of adequate sunlight in the community quarantined at home for a long time during the course of COVID-19 may have caused the most common vitamin D deficiency to deepen. Therefore, in patients tracked with COVID-19, vitamin D can easily be accessible, which can be a fast-enforceable medical treatment that can change the clinical course and prognosis of patients.

CONFLICT of INTEREST

There is no conflict of interest related to this study.

Ethics Committee Approval: The approval for this study was obtained from Ataturk University Ethics Committee (Decision No: B.30.2.ATA.0.001.00/458 Date: 26.06.2020).

AUTHORSHIP CONTRIBUTIONS

Concept/Design: BK, FK, MA
Analysis/Interpretation: BK, AOK, FK
Data Acquisition: AK, BK
Writting: BK, FK, MA
Critical Revision: MA, EYU, ÖA
Final Approval: MA, EYU, ÖA, BK

REFERENCES

1. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71-6.
2. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls Publishing; 2020.
3. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55(5): 2000547.
4. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-e47.
5. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033.
6. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue plasminogen activator (tpa) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost 2020; 18(7): 1752-5.
7. Dancer RC, Parekh D, Lax S, D’Souza V, Zheng S, Bassford CR, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70(7): 617-24.
8. Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—a review of recent evidence. Autoimmun Rev 2013; 12(10): 976-89.
9. Schwalfenberg GK. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol Nutr Food Res 2011; 55(1): 96-108.
10. Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolmowska K, et al. IFN-gamma-and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 2007; 178(11): 7190-8.
11. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007; 179(4): 2060-3.
12. Grant WB, Lahore H, McDonnell SL, Baggery CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12(4): 988.
13. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
14. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
15. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5(1): 33.
16. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75(23): 2950-73.
17. McGonagle D, Sharif K, O’Regan A, Bridgewood C. Interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev 2020; 20:227-35.

18. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Nat Acad Sci USA 2020; 117(20): 10970-5.

19. Zengin FH, Karadağ MG. Kronik obstrüktif akciğer hastalığında D vitamininin rolü. Türkiye Klinikleri Sağlık Bilimleri Derg 2019; 4(3): 323-32.

20. Sağmen SB. Astımda D vitamini ve klinik bulgularla ilişkisi. 2013. Available from: http://dspace.marmara.edu.tr/handle/11424/19516?locale-attribute=tr

21. Büyükdere Y, Ayaz A. Tüberküloz ve D vitamini arasındaki ilişkinin değerlendirilmesi: güncel yaklaşımlar. Sakarya Tıp Derg 2019; 9(4): 565-73.

22. Yalaki Z, Taşar MA, Oney H, Cocceoğlu AU. Comparison of viral agents and vitamin D levels in children with acute bronchiolitis infection. J Pediatr Infect/Cocuk Enfeksiyon Derg 2019; 13(1).

23. Kong J, Li YC. Effect of ANG II type I receptor antagonist and ACE inhibitor on vitamin D receptor-null mice. Am J Physiol Regul Integr Comp Physiol 2003; 285(1): R255-R61.

24. Nonn L, Peng L, Feldman D, Peehl DM. Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res 2006; 66(8): 4516-24.

25. Konya V, Czarnewski P, Forkel M, Rao A, Kokkinou E, Villablanca EJ, et al. Vitamin D downregulates the Il-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J Allergy Clin Immunol 2018; 141(1): 279-92.

26. Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res 2020; 37(7): 1195-8.