Optimized base editors enable efficient editing in cells, organoids and mice

Maria Paz Zafra1,11, Emma M Schatoff1,2,11, Alyna Katti1,3, Miguel Foronda1, Marco Breinig4, Anabel Y Schweitzer1, Amber Simon1, Teng Han1,3, Sukanya Goswami1, Emma Montgomery1, Jordana Thibado3, Edward R Kastenhuber5,6, Francisco J Sánchez-Rivera5, Junwei Shi7,8,9, Christopher R Vakoc7, Scott W Lowe5,9,10, Darjus F Tschaharganeh4 & Lukas E Dow1,3,10

CRISPR base editing enables the creation of targeted single-base conversions without generating double-stranded breaks. However, the efficiency of current base editors is very low in many cell types. We reengineered the sequences of BE3, BE4Gam, and xBE3 by codon optimization and incorporation of additional nuclear-localization sequences. Our collection of optimized constitutive and inducible base-editing vector systems dramatically improves the efficiency by which single-nucleotide variants can be created. The reengineered base editors enable target modification in a wide range of mouse and human cell lines, and intestinal organoids. We also show that the optimized base editors mediate efficient in vivo somatic editing in the liver in adult mice.

Base editors are hybrid proteins that tether DNA-modifying enzymes to nuclease-defective Cas9 variants. They enable the direct conversion of C to other bases (T, A, or G)1–4, or A to inosine or G nucleic acids5,6, thus allowing the creation or repair of disease-associated single-nucleotide variants (SNVs). The BE3 base editor carries a rat APOBEC cytidine deaminase at the N terminus of Cas9n (Cas9n10A) and a uracil glycosylase inhibitor (UGI) domain at the C terminus. This construct has been shown to drive targeted C-to-T transitions at nucleotide positions 3–8 of the protospacer (Fig. 1a) after transfection of plasmid DNA or ribonuclear particles7,8.

To enable base editing in difficult-to-transfect cells, we cloned a lentiviral vector for expression from the EF1 short (EFIs) promoter of BE3 linked to a puromycin (puro)-resistance gene via a P2A self-cleaving peptide (pLenti-BE3-P2A-Puro, BE3). Despite efficient production of viral particles and integration of the vector into target cells (Supplementary Fig. 1), we were not able to generate puro-resistant cells (Fig. 1b and Supplementary Fig. 1c). To test whether this result was due to low expression of the BE3-linked Puro cassette, we generated a new lentivirus wherein puro was driven by an independent (PGK) promoter (pLenti-BE3-PGK-Puro). This vector produced equivalent viral titer and target cell integration (Supplementary Fig. 1) but, in contrast to BE3-P2A-Puro, enabled effective puro resistance (Fig. 1b and Supplementary Fig. 1c).

These data suggested that an issue in the production of BE3 protein was limiting effective base editing. During cloning of lentiviral constructs, we observed that the Cas9n DNA sequence in BE3 was not optimized for expression in mammalian cells, and it contained a large number of nonfavored codons (Supplementary Fig. 2 and Supplementary Table 1) and six potential polyadenylation sites (AATAAA or ATTAAA) throughout the cDNA (Fig. 1c); therefore we reconstructed the BE3 enzyme by using an extensively optimized Cas9n sequence (Supplementary Fig. 2). The resulting construct with a reassembled BE3 sequence (BE3RA; hereafter denoted RA) enabled efficient puro selection (Fig. 1b and Supplementary Fig. 1), markedly increased protein expression (Fig. 1d), and, most notably, showed up to 30-fold-higher target C-to-T conversion (Fig. 1e,f and Supplementary Fig. 3a,b). Although C-to-T editing increased on average 15-fold, the level of unwanted insertions and deletions (indels) or undesired (C-to-A or C-to-G) editing remained low, thus indicating a substantial improvement in the relative fidelity of base editing compared with that of previous versions (Supplementary Fig. 3c,d). Notably, we and others10 observed similar problems in expression of high-fidelity Cas9 (HF1)11 and altered protospacer-adjacent motif (PAM)-specificity variants12, which share the same Cas9cDNA as BE3. In each case, these problems were corrected by reengineering the construct10 (Fig. 1g and Supplementary Fig. 4). The resulting increased expression of the HF1 enzyme (HF1RA) dramatically improved on-target DNA cleavage while maintaining little or no off-target activity13 (Fig. 1h).

Nuclear-localization signal (NLS) sequences at the N terminus of Cas9 can improve the efficiency of gene targeting14. Indeed, despite...
the presence of a C-terminal NLS (Fig. 2a), RA protein was largely excluded from the nucleus (Fig. 2b). We tested two different N-terminal positions for the NLS in case the inclusion of these sequences in one location might have interfered with APOBEC function: (i) with a FLAG epitope tag at the N terminus (FNLS) and (ii) within the XTEN linker that bridges APOBEC and Cas9n (2X) (Fig. 2a and Supplementary Fig. 5a). Whereas 2X showed no obvious increase in nuclear targeting compared with that of RA, FNLS protein was more evenly distributed through the nucleus and cytoplasm (Fig. 2b).

In transfection-based assays, FNLS improved editing approximately twofold across multiple target positions and single guide RNAs (sgRNAs) (Supplementary Fig. 5b). In contrast, 2X did not alter editing within the normal target window but substantially increased the range of editing of C nucleotides at positions 10 and 11 in the protospacer (Fig. 2c and Supplementary Fig. 5b,c); the expanded range was not attributable solely to the increased length of the linker (Supplementary Fig. 5c). We next generated codon-optimized 2X- and PAM-variant Cas9 proteins. Representative of similar results from three independent blots. (f) Frequency of target C-to-T editing across five different sgRNA targets, 2 d and 6 d after sgRNA transduction, as indicated. CR8.OS2 targets a nongenic region on mouse chromosome 8 (ref. 13). Graphs show mean values. Error bars, s.d. (n = 3). β-actin, loading control. (g) Western blot showing expression of original and optimized HF1- and PAM-variant Cas9 proteins. Representative of similar results from three independent blots. (h) T7 endonuclease assays on Trp53 and Kras target sites, and off-target sites (Elk3 and Nras), showing that reasssembled HF1 (HF1 RA) improves on-target activity while maintaining little to no off-target cutting. Genomic target sites for each region are shown below. Notably, the slightly decreased on-target activity of HF1 RA at the Kras site may be due to the G–A mismatch at position 1 of the protospacer (highlighted blue). The experiment was performed twice with similar results.
Figure 2 N-terminal NLS sequences increase the range and potency of target base editing. (a) Schematic representation of RA enzyme (top) and two new variants carrying NLS sequences within the XTEN linker (2X) or at the N terminus (FNLS). (b) Immunofluorescence staining of Cas9 in NIH/3T3 cells expressing RA, 2X, or FNLS. The experiment was repeated twice with similar results. (c) Sanger-sequencing chromatogram showing increased editing of the C at position 10 (blue arrowhead) within the protospacer of a CTNNB1*545 sgRNA. (d) Frequency (%) of C-to-T conversion in NIH/3T3 cells transduced with RA- or FNLS-P2A-Puro lentiviral vectors 6 days after introduction of different sgRNAs, as indicated. Editing in BE3-PGK-Puro cells (from Supplementary Fig. 8a) is shown for comparison. (e) Frequency (%) of C-to-T conversion in PC9 cells transduced with BE3-PGK-Puro, FNLS, or BE4GamRA-P2A-Puro lentiviral vectors 6 days after introduction of different sgRNAs, as indicated. In d and e, graphs show mean values. Error bars, s.e.m. (n = 3 biologically independent samples); * P < 0.05 between groups, by two-way ANOVA with Tukey’s correction for multiple testing; NS, not significant. (f) Schematic representation of dox-inducible BE3 lentiviral construct and immunoblot of Cas9 in transduced and selected NIH/3T3 cells treated with dox (1 µg/ml) for 4 days or left untreated (0 d), as indicated. Blotting was performed twice with similar results. Exp., exposure. (g) Frequency (%) of C-to-T conversion in NIH/3T3 cells transduced with TRE3G-BE3, TRE3G-RA, or TRE3G-FNLS, and sgRNA lentiviral vectors, 0, 2, and 6 days after dox treatment. Graph shows mean values. Error bars, s.e.m. (n = 3 biologically independent experiments); * P < 0.05 between groups, by two-way ANOVA with Tukey’s correction for multiple testing. (h) Immunoblot showing induction of truncated (~160 kDa) Apc product after target editing in NIH/3T3 cells expressing BE3 or FNLS. Blotting was performed twice with similar results.

(C-to-A and C-to-G) edits compared with RA (Supplementary Figs. 7b,c). To confirm that the reengineered enzymes were active in multiple cell types, we transduced three different human cancer cell lines (PC9, H23, and DLD1) and measured editing at FANCF and CTNNB1 target sites. Although the absolute editing efficiency varied, FNLS increased target C-to-T conversion 15- to 150-fold within the expected window (positions 3–8 bp) (Fig. 2e and Supplementary Fig. 8a). Indels and undesired edits were elevated in each of the cancer lines compared with 3T3 cells but were decreased through use of an optimized version of the second-generation editor BE4Gam15 (Supplementary Figs. 8b and 9). The improved efficiency also increased editing at predicted off-target sites, although the overall level of off-target editing remained low (Supplementary Fig. 10). As predicted from transfection experiments, the 2X construct did not alter the overall efficiency of the enzyme but significantly extended the range of editing in both mouse and human cells (Supplementary Fig. 11).

To provide a temporally controlled system for base editing, we generated (TRE3G) doxycycline (dox)-inducible constructs (Fig. 2f).
Figure 3 Optimized enzymes induce efficient base editing in a wide range of cell systems. (a) Graph showing relative abundance of tdTomato-positive (sgRNA-expressing) cells in BE3 and FNLS-transduced DLD1 cells, after treatment with DMSO control or XAV939 (1 µM) and trametinib (10 nM). Bars in each case represent serial passages every 5 d, starting at day 0. Graphs show mean values. Error bars, s.e.m. (n = 3 biologically independent samples). *P < 0.05 between groups, by two-way ANOVA with Tukey’s correction for multiple testing. (b) Chromatograms showing sequencing of the CTNNB1 PAM target site in BE3 and FNLS cells, treated with DMSO (top) or XAV939/trametinib (bottom). Chromatograms show representative of three independent samples with similar results. Drug-treated cells show enrichment of the S45F mutation, thus suggesting that this mutation provides an advantage in XAV939/trametinib-treated populations. (c) Schematic representation of the process of editing and selection in intestinal organoids. Images show wild-type (WT) mouse small intestinal organoids after editor/sgRNA transfection and selection by RSPO1 withdrawal (6 d). Only FNLS-transfected organoids show consistent outgrowth of large budding organoids in the absence of RSPO1. Images are representative of three independent experiments with similar results. Transfection with tandem sgRNAs targeting Apc and Pik3ca drives the generation of compound mutant organoids that survive RSPO1 withdrawal and treatment with 25 nM trametinib (additional data in Supplementary Fig. 13). (d) Number of viable organoids 6 d after RSPO1 withdrawal. Graphs show mean values (n = 2 biologically independent samples). (e) Mean frequency of Apc(WT) and Pik3ca(WT) mutations in intestinal organoids after selection in RSPO1-free medium, but no selection in trametinib. Error bars, s.e.m. (n = 3 independent transfections). (f) Mean number of visible tumor nodules counted in the livers of mice 4 weeks after hydrodynamic delivery of BE3 or FNLS, a mouse Ctnnb1 sgRNA and Sleeping Beauty transposon–based Myc cDNA. Error bars, s.e.m., n = 3–5 biologically independent animals, as indicated; significant differences between groups were calculated with a one-way ANOVA with Tukey’s correction for multiple testing. (g) Representative images of tumor burden after editing of Ctnnb1 with FNLS and BE3. Right, hematoxylin and eosin (H&E) staining and immunohistochemical staining for GS (red stain) of representative sections of livers from BE3- and FNLS-transfected mice. Asterisks highlight pericentral hepatocytes staining positively for GS. Arrowheads indicate tumors within the liver in FNLS-transfected mice. Images are representative of five independent samples, with similar results. Bottom, Sanger sequencing from uninvolved liver and a tumor nodule from an FNLS/BE3-transfected mouse. Images are representative of three independent experiments with similar results. Transfection with tandem sgRNAs targeting Apc and Pik3ca drives the generation of compound mutant organoids that survive RSPO1 withdrawal and treatment with 25 nM trametinib (additional data in Supplementary Fig. 13). (h) Sanger sequencing chromatogram showing editing of Apc in embryonic stem cells after 4 d of treatment with dox (1 µg/ml) and immunoblot showing induction of the expected truncated allele of Apc in RA-expressing cells but not in BE3 cells. Blotting was performed twice with similar results. (i) Pie charts indicating the theoretical number of recurrent cancer-associated mutations that could be modeled with FNLS or 2X (‘NGG’ PAM) or xFNLS and xF2X (‘NG’ PAM) constructs. Purple indicates sites where only the target C would be affected (scarless); blue indicates sites where creation of the desired mutation would probably be accompanied by additional C-to-T alterations (scar). An editing window of positions 4–8 (for FNLS and xFNLS) and 4–11 (for 2X and xF2X) is assumed. Details in Online Methods.
As expected, dox treatment drove strong induction of RA and FNLS, but limited expression of the original BE3 construct (Fig. 2f). Using sgRNAs targeting Apc and Pik3ca, we observed a time-dependent generation of target missense (Pik3caE545S) and nonsense (ApcQ1405X) mutations (Fig. 2g). In agreement with earlier observations, both RA and FNLS dramatically increased editing efficiency compared with that of the original BE3 enzyme (Fig. 2g), which for ApcL405 led to production of a truncated Apc protein (Fig. 2h).

Together, these data demonstrate that our optimized enzymes increase the range (2X) and efficiency (FNLS) of targeted base editing. To demonstrate the utility and effects of the improved editors, we set out to engineer a series of precise and functional genetic changes in different model systems: human cancer cells, intestinal organoids, mouse embryonic stem cells, and mouse hepatocytes in vivo.

DLD1 colorectal cancer cells are sensitive to combined inhibition of tankyrase and MEK1,17, but WNT-activating mutations in CTNNB1 are predicted to bypass this response.18 Hence, we cultured DLD1 cells carrying sgRNAs targeting the CTNNB1E545 or FANCFS1 codons in the presence of inhibitors of tankyrase (XAV939; 1 µM) and MEK (tratertinib; 10 nM) and tracked tdTomato-positive, sgRNA-expressing cells over time (Supplementary Fig. 12). At treatment initiation, cells expressing RA, 2X, or FNLS, but not BE3, showed efficient editing (40–50%) at the FANCF control site and showed CTNNB1E545 mutations at a frequency of 12–18% (Supplementary Fig. 8a). In the presence of inhibitors, CTNNB1 sgRNA-transduced cells (expressing RA, 2X, or FNLS, but not the original BE3) outcompeted the nontransduced population (Fig. 3a and Supplementary Fig. 12b), and inhibitor-treated cells, but not control dimethylsulfoxide (DMSO)-treated cells, showed enrichment in the expected S45F alteration (Fig. 3b). Together, these data imply that editor-induced CTNNB1E545 mutations are functional and enable resistance to upstream WNT suppression by tankyrase inhibitors.

Truncating Apc mutations are the most common genetic events observed in human colorectal cancers,19 and they drive WNT- and R-Spondin (RSPO)-independent proliferation. To engineer Apc truncations, we cotransfected intestinal organoids with either BE3 or FNLS, and the ApcL405 sgRNA (Fig. 3c). FNLS-transfected cultures showed a tenfold higher outgrowth of RSPO-independent organoids than BE3-transfected cells (Fig. 3d) and carried a high frequency of targeted Apc editing (>97%) (Fig. 3e) with less than 1% indels. Co-delivery of two tandem-arrayed sgRNAs (ApcL405 and Pik3caE545S) produced Apc.Q1405X; Pik3caE545K double-mutant organoids (Fig. 3e) that were able to survive and expand in the presence of a MEK inhibitor (tratertinib; 25 nM) (Supplementary Fig. 13a,b), as has been described for homology directed repair–generated Pik3caE545K mutations in human organoids.20

In hepatocellular carcinoma, CTNNB1 mutations are the primary mechanism of WNT-driven tumorigenesis. To explore the potential of base editors to drive tumor formation in vivo, we introduced BE3 or FNLS, a mouse Ctnmb1E545 sgRNA and Myc cDNA to the livers of adult mice via hydrodynamic transfection. After 4 weeks, three of five BE3-transfected animals showed one or two small tumor nodules on the liver, whereas FNLS-transfected mice showed a dramatically higher disease burden, and all mice (five of five) carried multiple tumors (Fig. 3f). The tumors resembled hepatocellular carcinoma with a trabecular and solid growth pattern, and showed upregulation of the WNT target glutamine synthetase21 (GS; Fig. 3g). The tumor nodules showed near-complete editing of the Ctnmb1 locus, creating activating S45F mutations (Fig. 3g).

An alternate approach to in vivo somatic base editing is the generation of temporally regulated transgenic strains, which enables the manipulation of tissues and cell types that cannot be easily transfected in vivo and avoids the potential immunogenicity of exogenous Cas9 delivery.22,23 Accordingly, we generated TRE-inducible, knock-in mouse embryonic stem cells. We chose RA for targeting mouse embryonic stem cells, because we observed low-level ‘leaky’ editing in 3T3 cells carrying TRE.GF;FNLS lentivirus (Fig. 2g). TREP-RSA cells showed efficient dox-dependent C-to-T conversion and generation of the predicted mutant alleles (Fig. 3h and Supplementary Fig. 13c). Together, these data show that optimized RA and FNLS constructs offer a flexible and efficient platform to engineer directed somatic alterations in animals.

Base editing is arguably the most direct approach to engineer disease-associated SNVs in model systems. To estimate the number of cancer-related SNVs that could potentially be modeled with Cas9-mediated base editing, we analyzed MSK-IMPACT targeted deep sequencing of more than 22,000 tumors and defined a list of 2,696 recurrent mutations (observed in at least four individual patients). With a conservative base-editing window of positions 4–8 (FNLS) and 4–11 (2X), we estimate that ~17% of cancer-associated SNVs could be engineered with FNLS, and ~23% could be engineered by exploiting the expanded range of the 2X construct. Of these, approximately 40% could be generated without any collateral editing (or ‘scar’) at nontarget C nucleotides (Fig. 3i). In principle, through use of Cas9 variants with less restrictive PAM requirements (for example, xCas9)24, more than 50% of all mutations could be created (Fig. 3i). To that end, we produced optimized xFNLS andxF2X constructs that enable more efficient base editing than the published xBE3 construct (Supplementary Fig. 14). Notably, the xCas9-derived base editors showed lower on-target activity for both sgRNAs and cell lines tested (Supplementary Fig. 14b,c). Further work will be required to assess the contexts in which these newer variants enable efficient base editing.

Here, by optimizing protein expression and nuclear targeting, we developed a range of potent base-editing and Cas9 enzymes that dramatically improve DNA editing across multiple in vitro and in vivo model systems. These tools, along with similar optimized versions for A-base editors,25,26, should enable the rapid generation of targeted SNVs in a variety of cell systems in vitro and in vivo and should be key to implementing base editing in genetic screens, in which high efficiency is essential. Moreover, the improved protein expression of our reengineered enzymes should substantially enhance therapeutic approaches that rely on delivery of mRNA molecules,27 whereas enhanced nuclear targeting will probably improve the delivery and/or activity of ribonuclear particles.28 In all, we expect that the toolkit described herein will make base editing a feasible and accessible option for a wide range of research and therapeutic applications.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

This work was supported by a project grant from the NIH/NCI (CA195787-01), a U54 grant from the NIH/NCI (U54OD020355), a project grant from the Starr Cancer Consortium (110-0095), a Research Scholar Award from the American Cancer Society (RSG-17-202-01), and a Stand Up to Cancer Colorectal Cancer Dream Team Translational Research Grant (SU2C-AACR-DT22-17). Stand Up to Cancer is a program of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, a scientific partner of SU2C. M.P.Z. is supported in part by National Cancer
Programmable base editing of A
Highly efficient RNA-guided base editing in mouse embryos.

RNA editing with CRISPR-Cas13.
High-fidelity CRISPR–Cas9 nucleases with no detectable

The authors declare no competing interests.

COMPETING INTERESTS
The authors declare no competing interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing
of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
2. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate
adaptive immune systems. Science 353, aaf729 (2016).
3. Hess, G.T. et al. Directed evolution using dCas9-targeted somatic hypermutation in
mammalian cells. Nat. Methods 13, 1036–1042 (2016).
4. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic
diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).
5. Gaudelli, N.M. et al. Programmable base editing of AT to GC in genomic DNA
without DNA cleavage. Nature 551, 464–471 (2017).
6. Cox, D.B.T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).
7. Rees, H.A. et al. Improving the DNA specificity and applicability of base editing
through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
8. Cong, L. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat.
Biotechnol. 35, 435–437 (2017).
9. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science
339, 819–823 (2013).
10. Kim, S., Bae, T., Hwang, J. & Kim, J.S. Rescue of high-specificity Cas9 variants
using sgRNAs with matched 5’ nucleotides. Genome Biol. 18, 218 (2017).
11. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable
genome-wide off-target effects. Nature 529, 490–495 (2016).
12. Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM
specificities. Nature 523, 481–485 (2015).
13. Dow, L.E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat.
Biotechnol. 33, 390–394 (2015).
14. Staahl, B.T. et al. Efficient genome editing in the mouse brain by local delivery of
engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).
15. Komor, A.C. et al. Improved base excision repair inhibition and bacteriophage Mu
Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity.
Sci. Adv. 3, eaaq4774 (2017).
16. Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt
signaling. Nature 461, 614–620 (2009).
17. Schumacher, M. et al. Inhibiting Tankyrases sensitizes KRAS-mutant cancer cells
to MEK inhibitors via FGF2 feedback signaling. Cancer Res. 74, 3294–3305 (2014).
18. Mashima, T. et al. mTOR signaling mediates resistance to tankyrase inhibitors in
Wnt-driven colorectal cancer. Oncotarget 8, 47902–47915 (2017).
19. Cador et al. New targets of beta-catenin signaling in the liver are involved in
the glutamine metabolism. Oncogene 21, 8293–8301 (2002).
20. Matano, M. et al. Modeling colorectal cancer using CRISPR/Cas9-mediated
engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).
21. Cador et al. New targets of beta-catenin signaling in the liver are involved in
the glutamine metabolism. Oncogene 21, 8293–8301 (2002).
22. Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-
mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).
23. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/
Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther.
26, 432–442 (2015).
24. Hu, J.H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA
specificity. Nature 556, 57–63 (2018).
25. Koblan, L.W. et al. Improving cytidine and adenine base editors by expression
optimization and ancestral reconstruction. Nat. Biotechnol. https://doi.org/10.1038/
istics.4172 (2018).
26. Ryu, S.M. et al. Adenine base editing in mouse embryos and an adult mouse model
of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).
27. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent
non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).
ONLINE METHODS

Cloning. All primers, Ultraprimers, and gBlocks used for cloning are listed in Supplementary Table 2–5. pCMV-BE3-2X (CMV-2X) and pCMV-BE3-FNLS were generated through Gibson assembly, by combining an Xmal-digested (2X) or NotI-digested (FNLS) pCMV-BE3 backbone with DNA Ultraprimers (BE3-2X-NLS or T7-FLAG-NLS). Double-stranded DNA from Ultraprimers were generated by PCR amplification of primers XEN-TNS-NLS_F/XEN-TNS-NLS_R and T7-FLAG_F/T7-FLAG_R. pLenti-BE3-PKG-Puro (LBPP) was generated through Gibson assembly, by combining the following four DNA fragments: (i) PCR-amplified EF1s promoter (FSR-19/FSR-20), (ii) PCR-amplified B3E3 CDNAs (FSR-114/FSR-115), (iii) PCR-amplified PKG-Puro cassette (FSR-16/FSR-17), and (iv) BsrGI/Pmel-digested pL3-based lentiviral backbone. pLenti-BE3RA_APOBEC-Puro (LRPP) was generated through Gibson assembly, by combining a PCR-amplified BE3RA_cDNA (BE3RA_APOBEC-Puro_F/BE3RA_APOBEC-Puro_R) and an Nhel/AvrII-digested BE3-3G-PGK-Puro backbone. pLenti-FNLS-PGK-Puro (LFPP) was generated by restriction cloning of a FLAG-NLS-AP0BEC BamHI (blunt)/EcoRI-digested fragment into an Nhel (blunt)/EcoRI-digested pLenti-BE3RA_APOBEC-Puro backbone. pLenti-BE3RA_APOBEC-Puro (LR2P) was generated through Gibson assembly, by combining the following four DNA fragments: (i) PCR-amplified APOBEC-XEN-cDNA (BE3RA_APOBEC-F/BSE3RA_XEN_T) and APOBEC-BXNLs fragment (BE3RA_APOBEC-BXNLs_T), and (ii) PCR-amplified Cas9n (BE3RA_APOBEC-Cas9n_F/BSE3RA_APOBEC-Cas9n_R). pLenti-BH1/Nhel-digested pLenti-Cas9n-PGK-Puro viral backbone. Some wobbles positions were altered within the UGI (SGGS) linker to avoid complications during Gibson assembly because of an identical region downstream of UGI. pLenti-FNLS-APOBEC-XTEN (3G_F/3G_R) and FNLS-APOBEC fragments (FNLS-APOBEC_F/BE3A_APOBEC-RI_R) with an Xmal-digested pLenti-BE3-APOBEC-Puro (L3RP) was generated through Gibson assembly, by combining a PCR-amplified TRE_UGI promoter (3G_F/3G_R) and APOBEC fragment (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. pLenti-TRE_UGI-BE3-PGK-Puro (L3RP) was generated through Gibson assembly, by combining a PCR-amplified TRE_UGI promoter (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. pLenti-Cas9n-APOBEC-XTEN (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. pLenti-Cas9n-APOBEC-XTEN (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. Transfection. For transfection-based editing experiments in HEK293Ts, cells were seeded on a 12-well plate at 80% confluence and cotransfected with 750 ng of base editor, 750 ng of sgRNA expression plasmid, and 4.5 µl of polyethylenimine (1 mg/ml). Cells were harvested for genomic DNA 3 d after transfection. For virus production, HEK293T cells were plated in a six-well plate and transfected 12 h later (at 95% confluence) with a prepared mix in DMEM (with no supplements) containing 2.5 µg of lentiviral backbone, 1.25 µg of PAX2, 1.25 µg of VSV-G, and 0.5 µl of polyethylenimine (1 mg/ml). Flow cytometry was used to identify transduced cells. pLenti-Cas9n-PGK-Puro (L3RP) was generated through Gibson assembly, by combining a PCR-amplified TRE_UGI promoter (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. pLenti-Cas9n-APOBEC-XTEN (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. pLenti-Cas9n-PGK-Puro (L3RP) was generated through Gibson assembly, by combining a PCR-amplified TRE_UGI promoter (3G_F/3G_R) and APOBEC fragments (APOBEC-F/BSE3A_XEN_T) with an Xmal-digested pLenti-BE3-APOBEC-Puro backbone. Transduction. 7.5 × 10⁴ NIH/3T3, DLD1, PC9, and H23 cells were plated on six-well plates. 24 h after plating, cells were transduced with viral supernatants in the presence of polybrene (8 µg/ml). Two days after transduction, cells were selected in puromycin (2 µg/ml) or blasticidin S (4 µg/ml). 500,000 ESCs were plated in six-well plates on gelatin and spinoculated (90 min, 32 °C, 2,100 r.p.m.) with 150 µl of concentrated lentiviral particles (with 100 µg/ml polyethylene glycol, Sigma Aldrich P4338) in 1 ml of medium containing polybrene (8 µg/ml). After centrifugation, the medium was replaced. Fluorescent competitive proliferation assays. DLD1 cells expressing BE3, RA, 2X, or FNLs were transduced with LRT2B-CTNNB1 or LRT2B-FANCFI, selected with blasticidin for 4 d, and mixed at defined ratios with parental cells. 5 × 10⁶ mixed cells were seeded in 96-well plates and treated with DMSO or 1 µM XAV939 plus 10 nM trametinib every 48 h, and the remaining tdTomato-positive cells were tracked every 5 d by flow cytometry with a BD-Accuri C6 cytometer.

Organoid isolation, culture, and transfection. Organoid isolation was performed as previously described. Briefly, 15 cm of the proximal small intestine was removed, flushed, and washed with cold PBS. The intestine was then cut into 5-mm pieces and placed into 10 ml cold 5 mM EDTA-PBS and vigorously resuspended with a 10-ml pipette. The supernatant was aspirated and replaced with 10 ml of EDTA-PBS and placed at 4 °C on a benchtop roller for 10 min. This procedure was then repeated a second time for 30 min. The supernatant was aspirated and then 10 ml of cold PBS was added to the intestine, and samples were resuspended with a 10-ml pipette. After this 10-ml PBS-containing fraction was collected, the procedure was repeated, and each successive fraction was collected and examined under a microscope for the presence of intact intestinal crypts and the absence of villi. The 10-ml fraction was then mixed with 10 ML DMEM basal medium (Advanced DMEM F12 containing pen/strep, glutamine, and 1 mM N-acetylcysteine (Sigma Aldrich A9165-SG)) containing 10 U/ml DNase I (Roche 04716728001), and filtered through a 100-µm filter. Samples were then filtered through a 70-µm filter into an FBS (1 ml)-coated tube and spun at 1,200 r.p.m. for 3 min. The supernatant was aspirated, and the cell
pellets (purified crypts) were resuspended in basal medium, mixed 1:10 with
Growth Factor Reduced Matrigel (BD 354230), and plated in multiple wells of
a 48-well plate. After polymerization for 15 min at 37 °C, 250 µl of small
intestinal organoid growth medium (basal medium containing 50 ng/ml EGF
(Invitrogen PMG8043), 100 ng/ml Noggin (Peprotech 250-38), and R-spondin
(conditioned medium) was then laid on top of the Matrigel.

Maintenance. The medium on organoids was changed every 2 d, and or-
ganoids were passaged 1:4 every 5–7 d. For passaging, the growth medium
was removed, and the Matrigel was resuspended in cold PBS and trans-
ferred to a 15-ml conical tube. The organoids were mechanically disassoci-
ated with a p1000 or a p200 pipette, through pipetting 50–100 times. 7 ml of
cold PBS was added to the tube and pipetted 20 times to fully wash the cells.
The cells were then centrifuged at 1,000 r.p.m. for 5 min, and the super-
natant was aspirated. Cells were then resuspended in GFR Matrigel and replated as above. For freezing, after spinning, the cells were resuspended in basal medium containing 10% FBS and 10% DMSO and stored in liquid
nitrogen indefinitely.

Transfection. Mouse small intestinal organoids were cultured in medium
containing CHIR99021 (5 µM) and Y-27632 (10 µM) for 2 d before transfec-
c tion. Cell suspensions were produced by dissociating organoids with TrypLE
express (Invitrogen 12604) for 5 min at 37 °C. After trypsinization, cell clus-
ters in 300 µl transfection medium were combined with 100 µl DMEM/F12/
Lipofectamine2000 (Invitrogen 11668)/DNA mixture (97 µl/2 µl/1 µg) and
transfected into a 48-well culture plate. The plate was centrifuged at 600g at
32 °C for 60 min, then incubated another 6 h at 37 °C. The cell clusters were
spun down and plated in Matrigel. For selection of organoids with Apo muta-
tions, exogenous RSPO1 was withdrawn 2–3 d after transfection. For selec-
tion of Pik3ca alterations, organoids were cultured in medium containing
tratmenitin (25 nM) for 1 week.

Hydrodynamic delivery. All animal experiments were authorized by the
regional board, Karlsruhe, Germany (animal permit number G178/16) or
the Institutional Animal Care and Use Committee (IACUC) at Weill Cornell
Medicine (2014-0038). Eight-week-old C57Bl6/N mice (Charles River) were
injected with 0.9% sterile sodium chloride solution containing 20 µg pLenti-
BE3-P2A-Puro or pLenti-FNLS-P2A-Puro, 10 µg of the respective sgRNA
vector, and 5 µg PT3 EF1a-myc, as well as 1 µg CMV-SB13. The total injection
volume corresponded to 20% of each mouse’s body weight and was injected
into the lateral tail vein in 5–7 s. No animals were excluded from the analyses;
the investigators were not blinded during the analyses.

Lentiviral titer assay. Lentiviral titers were calculated with a quantitative
PCR assay. Lentiviral titers were calculated with a quantitative
PCR amplicon. The concentration of viral particles was calculated as
the single copy number

Protein analysis. DLD1, PC9, and JTO cells were scraped from a confluent well of
a six-well plate in 100 µl RIPA buffer, then centrifuged at 4 °C at 13,000 r.p.m.
to collect protein lysates. DLD1 cells were pelleted from a confluent well of
a six-well plate at 1,000 r.p.m. for 4 min, resuspended in 200 µl RIPA buffer,
then centrifuged at 4 °C at 13,000 r.p.m. to collect protein lysates. Organoids
were collected from a confluent well of a 12-well plate (~100 µl Matrigel) in
200 µl Cell Recovery Solution (Corning 354253), incubated on ice for 20 min,
then pelleted at 300g for 5 min. The pellet was then resuspended in 20 µl RIPA
buffer and centrifuged at 4 °C at 13,000 r.p.m. to collect protein lysates. ESCs
were collected at the indicated time points and filtered through a 40-µm cell
strainer (Fisher Scientific) to remove feeders, then pelleted at 1,000 r.p.m.
for 4 min and resuspended in 100 µl RIPA buffer. Samples were centrifuged at 4 °C
at 13,000 r.p.m. to collect protein lysates. Antibodies to the following proteins
were used for western blot analyses: Cas9 (BioLegend 844301), actin
(Abcam ab94990), and Apc (Millipore MABC2202).

Immunofluorescence staining and microscopy. 2 × 10^6 editor-expressing
JTO cells were plated in a chamber slide. 24 h later, cells were washed in PBS
and fixed in PBS, 4% PFA solution for 20 min at RT and incubated in per-
meabilization buffer (PBS, 0.5% Triton X-100) for 10 min on ice. Then cells
were washed with anti–Cas9 (BioLegend 844301) at 4 °C overnight. Donkey
anti-mouse Alexa 594 (Thermo Fisher Scientific A21203) was used as a second-
ary antibody.

Immunohistochemistry. Slides containing 3-µm-thick liver sections were
deparaffinized and rehydrated with a descending graded alcohol series. For
antigen retrieval, slides were cooked in sodium citrate buffer, pH 6.0, in a
pressure cooker for 8 min. Subsequently, endogenous HRP was blocked for 10 min in
3% H2O2. Slides were blocked with PBS containing 5% BSA for 1 h before
incubation with the primary antibody (anti–mouse GS, BD BD610517) over-
night (1:200 dilution in PBS, 5% BSA). Slides were washed three times, and
staining was visualized with a DAKO Real Detection System (DAKO K5003)
according to the manufacturer’s instructions.

PCR amplification for MiSeq. Target genomic regions of interest were ampli-
cated by PCR with the primer pairs listed in Supplementary Table 4. PCR
was performed with Herculase II Fusion DNA polymerase (Agilent 600675)
according to the manufacturer’s instructions with 200 ng of genomic DNA as
a template, under the following PCR conditions: 95 °C, 2 min; 95 °C, 20 s →
58 °C, 20 s → 72 °C, 30 s for 34 cycles; and 72 °C, 3 min. PCR products were
collected, purified (Qiagen) for analysis through Sanger sequencing or MiSeq.

Mutation detection by T7 assays. Cas9-induced mutations were detected with
T7 endonuclease I (NEB). Briefly, an approximately 500-bp region sur-
rounding the expected mutation site was PCR-amplified with Herculase II
Fusion DNA polymerase (Agilent 600675). PCR products were column purified (Qiagen)
and subjected to a series of melt–anneal temperature cycles with annealing temperatures
gradually lowered in each successive cycle. T7 endonuclease I was then added to
selectively digest heteroduplex DNA. Digest products were visualized on a 2.5% agarose gel.

Off-target predictions. sgRNA-dependent off-target predictions were pre-
dicted from a previous publication (1) or with the ‘Cas-OffFinder’ prediction
tool (http://www.rgenome.net/cas-offfinder/) (3). Sites were prioritized as the
most likely to show off-target editing if they contained the fewest mismatches,
and those mismatches were clustered toward the 5’ end of the sgRNA.

DNA-library preparation and MiSeq. DNA-library preparation and sequenc-
ing reactions were conducted at GENEWIZ. An NEB NextUltra DNA Library
Preparation kit was used according to the manufacturer’s recommendations
(Illumina). Adaptor-ligated DNA was indexed and enriched through limited-
circle PCR. The DNA library was validated with a TapeStation (Agilent) and
was quantified with a Qubit 2.0 fluorometer. The DNA library was quantified
through real-time PCR (Applied Biosystems). The DNA library was loaded
on an Illumina MiSeq instrument according to the manufacturer’s instructions (Illumina). Sequencing was performed with a 2 × 150 paired-end configuration. Image analysis and base calling were conducted in MiSeq Control Software on a MiSeq instrument and verified independently with a custom workflow in Geneious R11.

Identification of recurrent cancer-associated mutations. With MSK-IMPACT targeted deep sequencing of 473 cancer-relevant genes across 22,647 patient samples, we identified recurrent somatic variants present in four or more individual samples. This procedure generated a list of 2,696 somatic missense, nonsense, and splice-site mutations. The flanking sequences around each mutation were retrieved and queried for the presence of a relevant PAM (NGG for FNLS and 2X; NG for xFNLS and xF2X) within a specified distance downstream of the target C nucleotide, with the following packages (implemented in R, https://cran.r-project.org/): Bioconductor, BSgenome, and Biostrings. For G-to-A mutations, the reverse-complement strand was examined. Target C (or G) nucleotides were considered ‘editable’ if they were within positions 4–8 of the protospacer (for FNLS and xFNLS) or positions 4–11 (for 2X and xF2X). The presence of a nontargeted C in the editing window was noted, and editable mutations were parsed into those in which only the target C was edited (scarless) and those in which an additional C was predicted to be altered (scar).

Statistics. All statistical tests used throughout the manuscript are indicated in the appropriate figure legends. In general, to compare two conditions, a two-sided Student’s t test was used, assuming unequal variance between samples. In most cases, analyses were performed with one-way or two-way ANOVA, with Tukey’s correction for multiple comparisons. Unless otherwise stated, each replicate represents a biologically independent experiment, i.e., an independent cell transfection, independently transduced cell line, or independent animal. Results of all statistical tests are available in Supplementary Table 6.

Life Sciences Reporting Summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Data have been deposited in the NCBI database under accession number SRP151111. All lentiviral and expression vectors described have been deposited at Addgene for distribution.

28. Dow, L.E. et al. A pipeline for the generation of shRNA transgenic mice. Nat. Protoc. 7, 374–393 (2012).
29. Han, T. et al. R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat. Commun. 8, 15945 (2017).
30. O’Rourke, K.P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).
31. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
32. Bae, S., Park, J. & Kim, J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).
Experimental design

1. Sample size

Describe how sample size was determined. Three independent replicates were performed for most in vitro experiments, based on experience with similar previous studies. For in vivo work, where variance is increased, we used 5 mice per experimental group. This provides the power (0.7) to detect an effect size of 2 (2x increase or decrease), at a probability level of 0.05.

2. Data exclusions

Describe any data exclusions. No data were excluded.

3. Replication

Describe the measures taken to verify the reproducibility of the experimental findings. Experiments were performed on three independent occasions. For in vitro, transduction-based experiment that make up the majority of this manuscript, this means three independent transduction / selection and target sequencing. All attempts at replication were successful.

4. Randomization

Describe how samples/organisms/participants were allocated into experimental groups. No randomization was performed.

5. Blinding

Describe whether the investigators were blinded to group allocation during data collection and/or analysis. Investigators were not blinded during collection or analysis.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

- **Confirmed**

 - The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.).
 - A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly.
 - A statement indicating how many times each experiment was replicated.
 - The statistical test(s) used and whether they are one- or two-sided.
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
 - A description of any assumptions or corrections, such as an adjustment for multiple comparisons.
 - Test values indicating whether an effect is present. Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.
 - A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range).
 - Clearly defined bars in all relevant figure captions (with explicit mention of central tendency and variation).

See the web collection on statistics for biologists for further resources and guidance.
7. Software

Describe the software used to analyze the data in this study.

Statistical calculations were performed in Prism. Sequence analysis was performed on MiSeq control software, and independently validated using Geneious R11. Additional software packages used for the analysis of recurrent cancer-associated mutations: R (version 3.2.1), Bioconductor (version 2.30.0), Bsgenome (version 1.38.0), Biostrings (version 2.38.4). Each of these is open-access.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a third party.

All vectors described in the manuscript have been deposited at Addgene for ease of distribution.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

The specificity of the Cas9 antibody used was confirmed by including non-Cas9 expressing cells as a negative control (Supplementary Figure 5). The specificity of the Apc antibody used has previous been confirmed using shRNA-mediated knockdown of Apc in mouse tissue (Dow et al, Cell, 2015). Specificity of the Glutamine Synthetase antibody is demonstrated in Figure 3, where it marks pericentral hepatocytes. Specificity of the Alexa594 secondary antibody was confirmed by performing a 'secondary only' staining control - no staining was observed.

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

293T, NIH3T3, H23, and DLD1 cells were purchased from ATCC. PC9 cells were obtained from Harold Varmus’ laboratory. KH2 mESCs were derived by the Jaenisch laboratory in 2006 (Beard et al, 2006) and have been maintained by us since then. Irradiated MEF feeders were derived from DR4 embryos. Primary organoids were generated directly from C57Bl/6 mice.

b. Describe the method of cell line authentication used.

All lines were purchased directly from ATCC and frozen at early passage (P2), thus they did not require additional authentication.

c. Report whether the cell lines were tested for mycoplasma contamination.

Yes. All lines tested negative for mycoplasma by PCR.

d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.