Static Quantum Computation

Haiqing Wei
Department of Physics, McGill University
Montreal, Quebec, Canada H3A 2T8
E-mail: dhw@physics.mcgill.ca

Xin Xue
Department of Natural Resource Sciences
Macdonald Campus of McGill University
Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
E-mail: xkhz@musicb.mcgill.ca

Abstract

Tailoring many-body interactions among a proper quantum system endows it with computing ability by means of static quantum computation in the sense that some of the physical degrees of freedom can be used to store binary information and the corresponding binary variables satisfy some given logic relations if and only if the system is in the ground state. Two theorems are proved showing that the universal static quantum computer can encode the solutions for any P and NP problem into its ground state using only polynomial number (in the problem input size) of logic gates. The second step is to read out the solutions by relaxing the system. The time complexity is relevant when one tries to read out the solution by relaxing the system, therefore our model of static quantum computation provides a new connection between the computational complexity and the dynamics of a complex system.
Introduction

Any computational task is carried out by a certain kind of physical system. All the existing and proposed computers are dynamic systems. The computation is accomplished via programmed dynamic evolutions of the physical system. In a state-of-the-art digital electronic computer, electromagnetic pulses are used to drive the thermodynamic evolution of the electronic system that achieves the irreversible computation. In a dynamic (this adjective is often omitted in the literature) quantum computer [1,2,3], a series of time-dependent Hamiltonians are applied to realize the unitary operations on the quantum states. The dynamic quantum computation is carried out in a reversible manner. In a recent work [4], it has been described how to construct a quantum search machine to encode the 3-SATISFIABILITY problem which is a famous hard search problem in computer science [5]. The search machine accomplishes its task of encoding the solution for a given problem into its ground state by no dynamic evolution but the so-called static quantum computation (see the definition below). Inspired by this achievement, a natural question to ask is whether similar machines can be constructed that encode other NP problems efficiently. In this article, it will be shown that a universal static quantum computer (see the definition below) can encode the solutions for any P and NP problem into its ground state using only polynomial number of logic gates.

Basic Elements of Static Quantum Computation

Definition 1 Any quantum system having physical degrees of freedom $x_1, x_2, \cdots x_n$ and y to which input and output variables are assigned respectively, is said to evaluate the function $y = F(x_1, x_2, \cdots x_n)$ (1) by means of static quantum computation provided that the system lies at the lowest energy level when and only when the assigned variables satisfy Eq.1. Those states whose variables fail to satisfy Eq.1 are associated with higher energies. Any quantum system that evaluates logic functions via static quantum computation is regarded as a static quantum computer (SQC).

The idea of static quantum computation has been implicitly used to make simple logic gates [6], yet its intimate relation with computational complexity has not been realized. Our above definition of SQC is general. However, in order to show a concrete example about how a static quantum computer can be implemented as well as how it achieves the computational power, this article will concentrate on a specific type of SQC in which the so-called binary wire serves as the basic most constructing element.

Definition 2 A binary wire is a linear chain of strongly interacting atomic bodies which has two degenerate ground states of collective motion (called working modes) that can be used to store binary information. By virtue of its spatial extension, a binary wire can also serve as information transmission line.
By definition, any linear chain of strongly interacting atomic bodies is a potential candidate for the binary wire. Examples are linear ferromagnetic or antiferromagnetic chains, lines of Coulomb interacting quantum dots [7], linear arrays of interacting superconductors, etc. Although the binary wire proposed in Ref.[7] is by no means the only possible implementation, it is conceptually instructive and almost realizable by today’s technology.

Definition 3 A static quantum logic gate (SQLG) evaluating the logic function \(F \) is a device consisting of input and output binary wires which are brought close to interact and the interaction among them are so tailored that the total ground state interaction energy is minimized if and only if the output variable \(y \) and the input variables \((x_1, x_2, \cdots, x_n)\) satisfy the logic relation as given by Eq.1.

Excellent examples of SQLG can be found in Ref.[6].

Definition 4 A static quantum network (SQN) is a network of SQLGs connected by binary wires serving as either binary registers or information transmission lines.

Definition 5 An energy degeneracy conserving (EDC) static quantum logic gate is an SQLG that for all possible inputs, the ground states of this single gate always have the same amount of interaction energy. Hence an EDC gate has the property of energy degeneracy conservation in the sense that when it is connected to an SQN, it shifts all the possible quantum states of the network by the same amount, leaving all degenerate states degenerate.

In Ref.[6] there are examples for both EDC and non-EDC SQLGs. When a logic inverter is connected to any SQN, its ground states always contribute the same amount of interaction energy in spite of the input. The inverter is EDC in the sense that it conserves the energy degeneracy among all the states of the whole network. The dedicated AND gate is a contrast. For two different inputs \(A = 0, B = 0 \) and \(A = 1, B = 0 \) the outputs are the same \(C = 0 \). In each case the interaction energy inside the AND gate is minimized so that the gate itself is in the ground state. However the two ground states obviously have different energies. Hence the dedicated AND gate is non-EDC in the sense that when connected to an SQN it won’t conserve the energy degeneracy. Fortunately, all non-EDC SQLG can be made EDC by an input symmetrization technique. Since any logic gate can be decomposed into two-level AND gates and inverters [8], it is sufficient to show that the two-level AND gate can be made EDC. There are only four possible inputs for an AND gate with two input binary wires. A single AND gate may contribute at most four different values of interaction energy. One can construct a symmetrized AND (SAND) gate as shown in Fig.1 in which four AND gates exhaust all the four possible situations. For any inputs \(A, B \) the ground state energy of the SAND gate is always the sum of the four possible values of interaction energy inside a single AND gate. Notice that only the output of one AND gate \(C_0 \) serves as the output of the SAND gate, other three outputs \(C_1, C_2 \) and \(C_3 \) are dangling. The SAND gate is obviously EDC.

Definition 6 An energy degeneracy conserving static quantum network (ED-CSQN) is a logic network of EDC SQLGs.
To construct the static quantum computer using EDCSQN has the great advantage which will be seen later.

An SQN evaluates logic functions in the static manner that as soon as the whole network has been constructed and the inputs have been set, the evaluation is over. No dynamic evolution is needed. The right answers together with the corresponding inputs are encoded into the ground state. For this reason when the idea of static computation was used to achieve simple logic operations, it has been called “computing with the ground state” [6].

One significant observation is that for each binary wire there are two working modes representing binary values 1 and 0, when \(n \) input binary wires are connected to an EDCSQN, essentially all the integers from 0 to \(2^n - 1 \) in binary form will be sent to the logic network. The EDCSQN evaluates a given function for all the \(2^n \) inputs in parallel and all the results are stored in the output binary wires. This gives birth to the notion of static quantum parallelism. By virtue of this parallelism, an EDCSQN accomplishes nondeterministic computation [5] in the static manner.

Static Computational Complexity

Definition 7 The static computational complexity of an SQC or SQN is the number of basic static logic elements that it consists of. The static computational complexity of a problem with input size \(n \) is the least number of basic static logic elements (as the function of \(n \), denoted by \(SCC(n) \)) needed to construct an SQC which encodes the solutions of the problem into its ground state. The basic static logic elements are the binary wire register, the logic inverter, the AND and the OR gate.

As in the theory of computational complexity based on the Turing machine, problems can be classified according to the static computational complexity.

Definition 8 A problem is in the class \(\text{SP} \) if its static computational complexity function \(SCC(n) \) is bounded by a polynomial \(\mathcal{P} \), i.e.

\[
SCC(n) \leq \mathcal{P}(n)
\]

Notice that unlike the definition of the well-known class \(\text{P} \) on Turing machine, problems in the class \(\text{SP} \) are not restricted to be deterministic.

According to the classical definition, a problem in class \(\text{P} \) with input size \(n \) can be solved in \(p(n) \) steps of computation on a deterministic one-tape Turing machine (DTM), which consists of a finite state control, a read-write head, and a tape made up of a two-way infinite sequence of tape squares [5]. A program runs on the DTM in a step-by-step manner. In each step the read-write head may read the symbol in the tape square under it, then the finite state control changes its own state, gives a new symbol to the read-write head which in turn erases the old symbol in the tape square and writes the new one into it. Also the finite state control gives the read-write head an instruction to move one square left or right. Using SQLGs, a static quantum DTM (SQDTM) in analogue to the classical DTM can be constructed. The construction starts with binary wire registers to simulate the tape of the DTM. Upon the problem in class \(\text{P} \) being solved on the DTM, the number of tape squares
which have ever been scanned by the read-write head is no more than the number of steps of computation, \(p(n) \), because in each step the head scans only one square. For each step of the DTM computation, a register consisting of \(p(n) \) bare binary wires is enough to embody the ever-scanned tape squares in the sense that each square has a corresponding binary wire to simulate it. The binary wires in a register are labeled by an integer \(j, j = 1, 2, \ldots, p(n) \). Totally \(p(n) \) identical registers are needed to record all the states of the tape during the \(p(n) \) steps of DTM computation. These registers are labeled by an integer \(i, i = 1, 2, \ldots, p(n) \), corresponding to the state of the tape right before the \(i \)th step of computation. The \(j \)th binary wire of the \(i \)th register naturally gets the label \((i, j)\). Without the device called STATIC FINITE STATE CONTROL (SFSC) which simulates the function of finite state control in a static manner, the \(p(n) \times p(n) \) isolated binary wires can do nothing but record the states of the tape right before each step of DTM computation. The SFSC is a three-in-three-out device with an EDCSQN inside, as shown in Fig.2. The binary wires labeled by R and W are used to simulate the read-write head. One should connect \(p(n) \times p(n) \) identical SFSCs also labeled by \((i, j)\) where \(i, j = 1, 2, \ldots, p(n) \) to these binary wires in the manner that the R and W ends of the \((i, j)\)th SFSC are connected to the \((i, j)\)th and \((i + 1, j)\)th binary wires respectively, the ID and the IU ends of the \((i, j)\)th SFSC are connected to the OD end of the \((i, j + 1)\)th SFSC and the OU end of the \((i, j - 1)\)th SFSC respectively, with care taken to the connection for these ends of the boundary SFSCs with \(i, j = 1, p(n) \). Now it is time to explain the function of the SFSC in detail. Look at a typical SFSC labeled by \((i, j)\). The end labeled by R “reads” the “symbol” from the binary wire \((i, j)\) and the SFSC does some evaluation which gives a new “symbol” and an instruction for “head move”. The end labeled by W “writes” the new “symbol” into the \((i + 1, j)\)th binary wire. And the “head move” instruction is transmitted through the ends OU (outgoing-up-move) and OD (outgoing-down-move) to the \((i + 1, j + 1)\)th and \((i + 1, j - 1)\)th SFSCs respectively. Correspondingly, the IU (incoming-up-move) and ID (incoming-down-move) ends are used to convey the “head move” instructions from the former SFSCs. The function of the SFSC is controlled by the IU and ID ends in the manner that if all the inputs from ID and IU are logic 0, the SFSC does nothing for the symbol on the end R, just passes it directly to the W end, and sets both OU and OD to logic 0. This is simulating the tape squares which are not under the read-write head. If either ID or IU gives logic 1 (they never both give 1), the SFSC does non-trivial evaluation in simulation of the operation of the finite state control during the \(i \)th step of computation, outputs a new “symbol” through its W end and provides “head move” instructions to following SFSCs. Although for each computational stage \(i \), there are as many as \(p(n) \) SFSCs, only one actually is invoked into effect of non-trivial computation, others just loyally pass the information. Particularly, for the beginning SFSCs labeled by \((1, j), j = 1, 2, \ldots, p(n) \), there is only one connected to the binary wire representing the tape square at which the read-write head starts is invoked into non-trivial effect, all the others are dormant. The SQDTM has been constructed as some kind of static quantum automata (SQA) [9] which “runs” the DTM program in the static manner and outputs the results by the last binary wires when in ground state. It is taken for granted that the SFSC can be realized by a finite number (say \(M \)) of basic static logic elements. The static computational complexity of the SQDTM, i.e. the number of basic static logic elements it contains, is bounded by a polynomial \(P(n) \),

\[
P(n) = p(n) \times p(n) + p(n) \times p(n) \times M
\]
\[(M + 1)p^2(n)\] \hspace{1cm} (3)

This proves

Theorem 1 \(P \subseteq SP\)

which claims that for any problem in the class \(P\) with input size \(n\), the solution together with the inputs can be encoded into the ground state of a static quantum computer consisting of no more than \(P(n)\) basic static logic elements, where \(P(n)\) is a polynomial function. More strikingly, with the help of two energy degeneracy lifting (EDL) units, a universal static quantum computer (USQC) can be constructed to encode the solutions of any NP problem into the ground state.

Definition 9 A decision energy degeneracy lifting unit (DEDLU) is simply a binary wire with one end inside the unit subject to a bias field that lifts the energy degeneracy between the two working modes of the binary wire and the other end called decision port (DPORT) connected externally.

Definition 10 A minimization energy degeneracy lifting unit (MEDLU) is actually a group of binary wires each of which has one end inside the unit subject to an appropriate bias field. The other ends form the group called minimization ports (MPORTs) are for external connection. The bias fields are adjusted so that when the minimization ports are assigned binary values \(z_0, z_1, \ldots, z_m\) respectively that may be used to denote an integer

\[Z = \sum_{i=0}^{m} z_i 2^i\] \hspace{1cm} (4)

the total interaction energy inside the MEDLU should be directly proportional to the number \(Z\).

Definition 11 A universal static quantum computer can be constructed from an EDC SQDTM with some DEDLUs and a MEDLU connected to the output, as shown in Fig.3.

By definition, an NP decision problem is a problem whose answer can be checked in polynomial time on a classical DTM [5]. In general, the check consists of a few YES/NO questions. According to Theorem 1, this check task can be accomplished by an EDC SQDTM consisting of polynomial number of basic static logic elements which is part of the USQC as shown in Fig.3. By virtue of the static quantum parallelism, all instances of this search problem are stored in the input binary wires, the EDC SQDTM checks each instance and gives YES (say logic 1) or NO (say logic 0) answers to the output binary wires which connect with the DPORTs of the DEDLUs. Without the EDL units, all the instances are still degenerate. While a DEDLU lifts the energy degeneracy by providing a higher or lower interaction energy according to the logic value on the DPORT is 0 or 1. Therefore instances which lead to all YES answers will keep the USQC in the ground state while those which lead to at least one NO answer will lift the USQC to higher energies. By this means the USQC
does the nondeterministic computations and labels the YES and NO instances by lower and higher total energies. When the computer is surely in the ground state, a measurement gives the answer of the problem. The USQC further contains a MEDLU intended for minimization search problems. The quantity to be minimized is calculated for each instance and the results are sent to the MPORT. The MEDLU in turn gives an interaction energy proportional to these values as described in Definition 10. The ground state of the USQC encodes the instance which minimize the objective quantity. Actually the USQC can be used to solve all optimization problems since any of them can be easily transformed into a minimization problem. According to the definitions, the two EDL units simply consist of binary wires subject to appropriate bias fields. Since the number of output wires of the EDC SQDTM is polynomially bounded, it is obvious that all of the EDLs can be constructed with the total static complexity bounded by a polynomial function of the problem input size. What has been proved is the fact that any NP problem can be “solved” on a universal static quantum computer consisting of polynomial number of basic static logic elements, in the sense that the solutions are encoded in the ground state of the computer, in mathematical form

\[\text{Theorem } 2 \quad \text{NP } \subseteq \text{SP}. \]

Conclusions

On a universal static quantum computer, all P and NP problems can be efficiently encoded in the sense that the number of logic gates, the precision in energy tailoring are all bounded by polynomial functions of the problem input size. Unfortunately, SP does not imply a polynomial solution of an NP problem. We still don’t know how to make the system go fast to its ground state. The usual way of relaxation often gets slow exponentially. Nevertheless, one may use a static quantum computer to simulate the dynamics of other complex systems and it should be interesting to study how the “hardness” of an NP problem is related to the slow relaxation of a correspondingly designed physical system. On the technological side, nanotechnology holds the promise to realize the desired strongly interacting quantum systems. It seems possible to realize SQLGs and SQNs using superconductive devices [10,11] with today’s well-established technology.
REFERENCES

[1] A. Ekert and R. Jozsa, *Reviews of Modern Physics* **68**, 733 (1996).
[2] S. Lloyd, *Scientific American*, October 1995, Page 140.
[3] C.H. Bennett, *Physics Today* **48**, No. 10, 24 (1995).
[4] H. Wei and X. Xue, “Tailoring Many-Body Interactions to Solve Hard Combinatorial Problems”, to be published.
[5] M.R. Garey and D.S. Johnson, *Computers and Intractability: A Guide to NP-Completeness* (Freeman, San Francisco, 1979).
[6] P.D. Tougaw and C.S. Lent, *J. Appl. Phys.* **75**, 1818 (1994).
[7] C.S. Lent and P.D. Tougaw, *J. Appl. Phys.* **74**, 6227 (1993).
[8] See, for example, T.C. Bartee, *Computer Architecture and Logic Design* (McGraw-Hill, 1991).
[9] T. Toffoli and N. Margolus, *Cellular Automata Machines: a new environment for modeling* (MIT Press, 1987).
[10] For superconductive devices, see, for example, T. van Duzer and C.W. Turner, *Principles of Superconductive Devices and Circuits* (Elsevier North Holland, 1981).
[11] X. Xue and H. Wei, “Superconductive Static Quantum Logic”, to be published.

FIGURE CAPTIONS

Fig.1 The Symmetrized AND Gate
Fig.2 The Static Finite State Control
Fig.3 The Universal Static Quantum Computer
Fig. 1
Fig. 2
Fig. 3