Comment on “Scaling properties of background- and chiral-magnetically-driven charge separation in heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV (arXiv:2203.10029)”

Fuqiang Wang

1Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

(Dated: April 19, 2022)

In a recent preprint arXiv:2203.10029, the authors argue for a multiplicity scaling of the squared inverse width of the $R_{q_{2}}$ distribution to claim a positive signal for the chiral magnetic effect from STAR’s isobar data, in stark contradiction to the conclusion reached by the STAR Collaboration. This Comment points out the fallacy of their arguments and reinforces the STAR conclusion.

In their recent publication of the isobar data [1], the STAR Collaboration reported the ratios between Ru+Ru and Zr+Zr collisions of the observables $\Delta \gamma / v_2$ (the azimuthal correlator $\Delta \gamma$ divided by the elliptic flow anisotropy v_2) and $1/\sigma^2_{R_{q_{2}}}$ (the squared inverse width of the $R_{q_{2}}(\Delta S)$ distribution [3]). Both are lower than unity, leading the STAR Collaboration to conclude that the chiral magnetic effect (CME) is not observed in their blind analysis of the isobar data [1]. In the post-blind analysis of the STAR paper [1], it was pointed out that “[u]nder the approximation that background to $\Delta \gamma$ is caused by flowing clusters with the properties of the clusters staying the same and the number of clusters scaling with multiplicity (N_{ch}), the value of $\Delta \gamma$ scales with the inverse of multiplicity...it may be considered that the proper baseline for the ratio of $\Delta \gamma / v_2$ between the two isobars is the ratio of the inverse multiplicities of the two systems.” The measured isobar ratios of $\Delta \gamma / v_2$ are all above this baseline by an approximately 1%. Recent studies by STAR [1, 3] have shown, however, that deviations from the assumption about the properties and contamination of nonflow correlations can move the baseline up by approximately 1%, leading to the conclusion that the isobar ratios of the $\Delta \gamma / v_2$ measurements are consistent with background expectations. For $1/\sigma^2_{R_{q_{2}}}$, on the other hand, it was pointed out in the post-blind analysis of the STAR paper [1] that “[t]he scaling relations extracted in Ref. [6] indicate an approximate relation...$1/\sigma^2_{R_{q_{2}}} \approx N_{ch}\Delta \gamma$; an estimate based on the measurements from this analysis indicates this ratio for Ru+Ru over Zr+Zr to be approximately 1.02.” In other words, the baseline for the isobar ratio of $1/\sigma^2_{R_{q_{2}}}$ is 1.02.

In a recent preprint arXiv:2203.10029 by Lacey et al., titled “Scaling properties of background- and chiral-magnetically-driven charge separation in heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV” [7], the authors argue that the $1/\sigma^2_{R_{q_{2}}}$ of the $R_{q_{2}}(\Delta S)$ distribution linearly depends on the inverse multiplicity ($1/N_{ch}$) in the Anomalous Viscous Fluid Dynamics (AVFD) model when CME is absent, and thus the $1/\sigma^2_{R_{q_{2}}}$ should be scaled by N_{ch} for a proper background cancellation between the isobar systems. Because the multiplicity in Ru+Ru is larger than in Zr+Zr by approximately 4.4% in the 20-50% centrality range [1], the multiplicity scaling would lift the isobar ratio of $N_{ch}/\sigma^2_{R_{q_{2}}}$ above unity, constituting a positive CME signal as the authors claim: “Corrections to recent $R_{q_{2}}(\Delta S)$ measurements [1] that account for the background difference in Ru+Ru and Zr+Zr collisions, indicate a charge separation difference between the isobars compatible with the CME.” This utterly contradicts the conclusion reached by the STAR Collaboration in the isobar paper [1], of which the two leading authors of the preprint arXiv:2203.10029 (Lacey and Magdy) are coauthors. In this Comment, I point out the fallacy of their arguments in the preprint.

First, the $1/\sigma^2_{R_{q_{2}}}$ versus $1/N_{ch}$ shown in Fig. 3 of the preprint [7] is apparently linear, but not proportional. This renders already the invalidity of the N_{ch} scaling by the authors. But more importantly, the $1/\sigma^2_{R_{q_{2}}}$ does not explicitly depend on N_{ch} as demonstrated in Refs. [6, 8]. This can easily be seen as follows. The $R_{q_{2}}$ distribution [3] is a double ratio involving four probability distributions, one in $\Delta S = \langle \sin(\phi_{1} - \Psi_{2}) \rangle - \langle \sin(\phi_{1} - \Psi_{2}) \rangle$, the mean sine difference of particle azimuthal angles (ϕ) relative to the second order harmonic plane (Ψ_{2}) between positive and negative particles, another in ΔS_{1} which is analogous to ΔS but with the ϕ angles rotated by $\pi/2$, and the other two in ΔS and ΔS_{1}, respectively, after the particle charges are randomly shuffled. The $1/\sigma^2_{R_{q_{2}}}$ is thus a combination of the variances of ΔS and ΔS_{1}, effectively equal to the $\langle \cos(\phi_{1} - \Psi_{2}) \rangle \cos(\phi_{1} - \Psi_{2}) - \langle \sin(\phi_{1} - \Psi_{2}) \rangle \sin(\phi_{1} - \Psi_{2})$ between opposite-sign and same-sign charge pairs of α, β particles [6, 8, 9], which is equivalent to the $\Delta \gamma$ variable [2]. Additionally, the ΔS and ΔS_{1} are both scaled by the width of the charge-shuffled distribution in ΔS to minimize particle number fluctuations [3]. This introduces a multiplicative factor $(\sqrt{N_{ch}})^2$, leading to the following algebraic relation $1/\sigma^2_{R_{q_{2}}} \approx N_{ch}\Delta \gamma$ [6, 8]. This relation is explicitly stated in the STAR isobar paper [1] (quoted in the first paragraph of this Comment). Because $\Delta \gamma$ is approximately inversely proportional to N_{ch}, the $1/\sigma^2_{R_{q_{2}}}$ on first order does not have an explicit N_{ch} dependence. On the other hand, $\Delta \gamma$ is proportional to v_2 [2] [10], so the $1/\sigma^2_{R_{q_{2}}}$ explicitly depends on v_2. Because of this v_2 dependence...
and because v_2 varies with multiplicity (see Fig. 1), a spurious $1/N_{ch}$ dependency of $1/\sigma_{R_{\Psi_2}}$ results.

Figure 1 shows v_2 versus $1/N_{ch}$ in various centralities in the range of 0-50% of isobar collisions, taken from Ref. 1. In heavy ion collisions, quantities (such as N_{ch}, v_2, and $\sigma_{R_{\Psi_2}}$) vary with centrality and because of that, those quantities correlate with each other one way or the other. In a given collision system, one can choose whatever variable to describe the trends of their data; however, in comparing two different systems, one has to be careful. The strength of the isobar collisions in searching for the CME relies on comparison between the two systems and cancellation of their backgrounds. Because the backgrounds are slightly different between the isobar systems and in 1/N$_{ch}$, the conclusion from it is bogus. The correct background scaling factor is the elliptic flow anisotropy v_2, and no CME is observed in the isobar ratio of 1/$\sigma_{R_{\Psi_2}}$ or its v_2 scaled one, as stated in the STAR isobar paper 1. This work was supported by the U.S. Department of Energy under Grant No. DE-SC0012910.

The authors themselves proposed the normalization of ΔS and ΔS_{\perp} by the Gaussian width of the charge-shuffled distribution 3. So it is clear to them that the R_{Ψ_2} distribution is a double ratio of four distributions, all with approximately unity Gaussian width, irrespective of the N_{ch}. It is not readily expected to have an explicit N_{ch} dependence; indeed, algebra 5 8 shows no explicit N_{ch} dependence in 1/$\sigma_{R_{\Psi_2}}$. On the other hand, the R_{Ψ_2} variable is designed to compare in-plane and out-of-plane distributions, so it must depend on the average v_2 of the events. This was amply demonstrated in the literature 6 8 14. The authors performed event-shape-engineering (ESE) analysis using the q_2 vector 15 and used the apparent q_2 independence to argue that 1/$\sigma_{R_{\Psi_2}}$ is insensitive to v_2. In fact, the ESE results in the STAR isobar paper 1 indicate an decreasing trend of 1/$\sigma_{R_{\Psi_2}}$ with increasing q_2 whereas v_2 increases with q_2. This is rather peculiar and the STAR paper warns 1 that “further studies may be needed to understand the physics behind the observed behavior of the widths of R_{Ψ_2} on q_2”. As there should be no question that any variable exploiting in-plane and out-of-plane difference should depend on the event v_2, and it is known that ESE results may be difficult to interpret with limited acceptance because of short-range correlations, as is the case for STAR, the authors’ keeping promoting the v_2 independence narrative of their observable is a mystery.

In conclusion, the multiplicity N_{ch} is already factored out by the normalization of the R_{Ψ_2} distribution to the charge-shuffled width 3. Scaling the squared inverse width 1/$\sigma_{R_{\Psi_2}}$ by N_{ch} in arXiv:2203.10029 2 is spurious and the conclusion from it is bogus. The correct background scaling factor is the elliptic flow anisotropy v_2, and no CME is observed in the isobar ratio of 1/$\sigma_{R_{\Psi_2}}$ or its v_2 scaled one, as stated in the STAR isobar paper 1.

This work was supported by the U.S. Department of Energy under Grant No. DE-SC0012910.

[1] Mohamed Abdallah et al. Search for the chiral magnetic effect with isobar collisions at $\sqrt{s_{NN}}=200$ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C, 105(1):014901, 2022.
[2] Sergei A. Voloshin. Parity violation in hot QCD: How to detect it. Phys.Rev., C70:057901, 2004.
[3] Niseem Magdy, Shuzhe Shi, Jinfeng Liao, N. Ajitanand, and Roy A. Lacey. New correlator to detect and characterize the chiral magnetic effect. Phys. Rev. C, 97(6):061901, 2018.
[4] Prithwish Tribedy (for the STAR Collaboration). STAR overview presentation at Quark Matter 2022: https://indico.cern.ch/event/895086/contributions/4314628/.
[5] Yicheng Feng (for the STAR Collaboration). Poster presentation at Quark Matter 2022:

* fkwang@purdue.edu
[6] Subikash Choudhury et al. Investigation of experimental observables in search of the chiral magnetic effect in heavy-ion collisions in the STAR experiment. *Chin. Phys. C*, 46(4):014101, 2022.

[7] Roy A. Lacey, Niseem Magdy, Petr Parfenov, and Arkadiy Taranenko. Scaling properties of background- and chiral-magnetically-driven charge separation in heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV. 3 2022.

[8] Yicheng Feng, Jie Zhao, Hao-Jie Xu, and Fuqiang Wang. Decipher the R_{Ψ_m} correlator in search for the chiral magnetic effect in relativistic heavy ion collisions. *Phys. Rev. C*, 103:034912, 2021.

[9] S.A. Voloshin. Private communication.

[10] Fuqiang Wang. Effects of Cluster Particle Correlations on Local Parity Violation Observables. *Phys.Rev.*, C81:064902, 2010.

[11] Hao-Jie Xu, Xiaobao Wang, Hanlin Li, Jie Zhao, Zi-Wei Lin, Caiwan Shen, and Fuqiang Wang. Importance of isobar density distributions on the chiral magnetic effect search. *Phys. Rev. Lett.*, 121(2):022301, 2018.

[12] Hanlin Li, Hao-jie Xu, Jie Zhao, Zi-Wei Lin, Hanzhong Zhang, Xiaobao Wang, Caiwan Shen, and Fuqiang Wang. Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory. *Phys. Rev.*, C98(5):054907, 2018.

[13] Hao-jie Xu, Hanlin Li, Xiaobao Wang, Caiwan Shen, and Fuqiang Wang. Determine the neutron skin type by relativistic isobaric collisions. *Phys. Lett. B*, 819:136453, 2021.

[14] Yicheng Feng, Jie Zhao, and Fuqiang Wang. Responses of the chiral-magnetic-effect-sensitive sine observable to resonance backgrounds in heavy-ion collisions. *Phys. Rev.*, C98(3):034904, 2018.

[15] Jurgen Schukraft, Anthony Timmins, and Sergei A. Voloshin. Ultra-relativistic nuclear collisions: event shape engineering. *Phys. Lett.*, B719:394–398, 2013.