Functional and Anatomical Imaging for Early Diagnosis of Tumor Induced Osteomalacia

Ghazala Malik¹ and Fatima Sultan²

¹Consultant Radiologist, United Lincolnshire Hospitals NHS Trust, United Kingdom
²Shalamar Medical College, Shalamar Institute of Health Sciences, Pakistan

Submission: March 30, 2017; Published: April 10, 2017

Correspondence Address: Ghazala Malik, Consultant Radiologist, United Lincolnshire Hospitals NHS Trust 101 Manthorpe Road, Grantham NG31 8DG, United Kingdom, Email: ghazalomalik97@gmail.com

Abstract

Oncogenic osteomalacia, or tumor-induced osteomalacia (TIO), is an acquired paraneoplastic syndrome being associated with benign or in rare cases malignant mesenchymal. Patients with TIO often present with many years of nonspecific but progressive symptoms commonly with bone pain, muscle weakness, reduced height, and multiple fractures. Due to this nonspecificity, patients are often misdiagnosed with a variety of musculoskeletal, rheumatologic diseases and sometimes even having psychiatric disorders. Not only that these tumors are rare but also finding the tumor can be a major diagnostic challenge and may need total body magnetic resonance imaging, computed tomography and scintigraphy using radio labelled somatostatin analogue and sometimes even venous sampling. Majority of clinicians, radiologists and pathologists are not aware of this rare disease because mostly the cases are described in rheumatology practice. We provide mini review of the current literature by having looked at the different studies done including case reports to conclude the best practice for the diagnosis and treatment of this rare entity.

Keywords: Magnetic Resonance Imaging; Positron Emission Tomography; Computed Tomography; Venous Sampling

Introduction

Tumors that can lead to this syndrome are classified on the basis of histology as phosphaturic mesenchymal tumors mostly mixed connective tissue PMTMTMCT, but also other morphology like osteoblastoma like tumors, ossifying fibrous like tumors, or nonossifying fibrous like tumors. Weidner N. Reviewed 16 tumours to establish four different morphologic patterns with further subgroups mostly the first group with ten sub types [1]. Decades after the discovery of fibroblast growth factor mesenchymal tumor were found to be related to fibroblast growth factor 23 (FGF23), which is responsible for hypophosphataemia and phosphaturia occurring in this paraneoplastic syndrome [2]. Hypophosphataemia, phosphaturia and elevated alkaline phosphatase are the important laboratory readings that may guide to more precise investigations and better diagnosis [3,4]. Regardless of tumour morphology, the hallmark of the diagnosis which forms the basis of all diagnostic modalities is the association of the tumor with the clinical syndrome of TIO, which includes an elevation in plasma FGF23 and its disappearance after tumor resection. As tumours are typically very small in size and slow-growing, detecting and locating these tumors is quite challenging [5].

Clunie GP et al. studied four cases confirming that slow recognition of acquired hypophosphataemic osteomalacia and TIO resulting in unnecessary and prolonged morbidity. These cases emphasize that osteomalacia may precede the discovery of a tumor and illustrate that the site and nature of tumors and their complete resection is often difficult to assess [6,7]. As a result, the time from osteomalacia to identifying the associated tumour averages a period of 5 years and in some studies 7 years. An added problem is that tumor behavior varies from case to case. Seijas R et al. reported two cases with surprisingly different outcomes one showing complete cure while other resulted in incomplete resection and later on recurrence with multiplicity [8].

Discussion

TIO was first described in 1947 by Robert McCance, who treated a patient having low phosphorous levels, bone pain, with high doses of vitamin D but the symptoms did not completely resolve until a tumor in femur bone was removed. In 1959, Andrea Prader treated rickets in an 11-year-old girl who had decreased tubular phosphate reabsorption however normal kidney function. A tumour, giant cell granuloma, was diagnosed...
fractures of the proximal femur often have a pathological basis of
H and co-workers presented a case with bilateral insufficiency
primarily in the ribs, vertebral bodies, and femoral neck. Bumard
pain, muscle weakness, reduced height, and multiple fractures,
diagnosis was made. Patients with TIO often present with bone
and 56% in males, with a mean age of 45 years when definitive
cases reported in English literature between 1987 and 2011,
Jiang et al. who reviewed 308 tumour-induced osteomalacia
of 32 cases and describing craniofascial origin [17]. Quoting
AL, described osteomalacia-associated mesenchymal tumors
even in organs such as the liver, tongue, thyroid and lungs. Folpe
craniofasial [16] and less common locations are the vertebra,
bones (40%) and soft tissues (55%) most common limbs and
soft tissues. The most common diagnosis for these tumours has been
hemangiopericytoma [14], but it has also included hemangio,
sarcomas, ossifying fibromas, granulomas, giant cell tumours and
osteoblastomas. Most of them are believed to be benign, although
histopathologically malignant have been also described and also
while typically benign, malignant presentation and metastases
can occur. While metastases are rare, infiltration of surrounding
connective tissue is typically present, which has significant
implications for surgical management and recurrence. It also
emphasises importance for wide surgical margins to avoid
persistence or reoccurrence [3,7]. Uramoto N. et al, reported a
case of a recurrent malignant PMT variant which arose in the
tongue. In accordance with the tumor recurrence and resection,
the hypophosphatemia progressed and didn’t improve. However,
hypophosphatemia did not progress after receiving radiation
therapy at the second recurrence even though the recurrent
tumor gradually increased its size. These results suggest clinical
feature of malignant PMT could be changed by radiation therapy.
Thus, this report could add an insight to the nature of PMT
[13,15].

PMT tumours usually occur in bones or soft tissues.
A study in China by Yang et al, diagnosing and managing
successfully used to locate tumors in up to 95% of patients with
tumour resection suggesting that 111In-pentetreotide imaging
with oncogenic osteomalacia. In five patients, it was identified a
tumors that cause TIO [22]. Jan de Beur SM and co-workers did
39 cases of TIO, suggesting that the syndrome is an important
cause of adult-onset hypophosphatemic osteomalacia and
39cases
cancer. Diagnosis of rare causes of insufficiency
fractures can be challenging when the causative factor is a
tumour [18].

A systematic approach to hypophosphatemia helps in the
early recognition and treatment of TIO. Impaired renal phosphate
reabsorption is the biochemical hallmark of the disease with
normal or low levels of 1,25-dihydroxyvitamin D, elevated levels
of alkaline phosphatase and normal circulating levels of calcium
and mostly normal or high parathormone [5,6]. When testing
antigen expression, FGF23 is positive in about 70% of all the
cases studied, and the proliferating cells within the tumour
are usually the source of FGF23 [6]. Somatostatin receptors
have also been found to be present in many TIO tumors [19].
Localization of FGF23-producing tumors can be challenging and
a step-wise approach, including functional imaging, followed by
anatomical imaging, and if necessary selective venous sampling
may significantly improve success in tumor localization [6].

Establishing the diagnosis of an FGF23-producing
phosphaturic mesenchymal tumor requires an adequate
integration of the clinical picture in correlation with radiology
and histology in a multidisciplinary setting, since radiology
and histology show considerable overlap with other entities
that need different treatment and harbor other clinical
outcomes. A stepwise approach is advocated, first performing
functional tests that include scintigraphy using radiolabelled
somatostatin analogue (such as 99mTc-Tektrotid). Tumors
associated with osteomalacia variably express five somatostatin
receptors (SSTR1-5), allowing SSTR-based functional imaging
by somatostatin analogue scintigraphy or positron emission
tomography [19-21].

Octreotide is somatostatin analogue that can be radiolabelled
in an attempt to detect tumours that express somatostatin
receptors [20]. Octreotide scanning is commonly performed
with 111In-labelled pentetreotide. Octreotide scintigraphy is
successfully used to locate tumors in up to 95% of patients with
TIO. A study in China by Yang et al, diagnosing and managing
39 cases of TIO, suggesting that the syndrome is an important
cause of adult-onset hypophosphatemic osteomalacia and
99mTc-OCT scintigraphy is an effective method to detect the
tumors that cause TIO [22]. Jan de Beur SM and co-workers did
Indium-111 labeled pentetreotide imaging in seven patients
with oncogenic osteomalacia. In five patients, it was identified a
mesenchymal tumour and clinical improvement occurred after
tumour resection suggesting that 111In-pentetreotide imaging
effectively detects occult mesenchymal tumours and facilitates
surgical treatment of oncogenic osteomalacia [23].

Despite this success, there are several limitations of this
imaging technology. Inflammatory reactions or a fracture will
be associated with a false-positive scan. Somatostatin analogues
scintigraphy is also limited by planar two-dimensional imaging
and relatively poor spatial resolution, which is particularly
problematic given that TIO tumours are often very small. Single-photon emission tomography (SPECT) or hybrid SPECT/CT enables three-dimensional imaging and better tumour contrast but is time-consuming and therefore limited to areas of suspected abnormality rather than a whole body survey. Somatostatin analogue positron emission tomography can dramatically improve the spatial resolution and lesion detectability. 68Ga-octreotide PET/CT may have an important role in localization of the culprit lesion, and may potentially reduce significant delay in establishing the diagnosis of TIO [24,25].

FDG-PET/CT can confirm a lesion or identify a lesion that was not initially seen on octreotide scintigraphy. FDG-PET/CT has been proven to be sensitive but not a specific method of identifying FGF23-producing tumors. PET/CT using 68-gallium is expected to be much more specific and informative for this kind of tumors but is often not available in many centers. Agarwal et al. compared the utility of F-FDG PET/CT and Ga DOTATATE PET/CT to detect the site of primary tumour in patients with suspicion of TIO in 6 patients in which former could detect 3 cases while latter could detect 5 cases [24]. In another study on 54 patients Zhang J and co-workers observed (68) Ga DOTATATE PET/CT scans were positive in 44 patients, among which, 33 had surgery to remove the lesions and their symptoms diminished promptly, and the serum phosphate levels became normal, which confirmed the diagnoses of TIO [22,25].

There are certain circumstances in which more certainty and testing are indicated. When multiple suspicious lesions are identified on functional imaging, particularly FGD-PET, each with a reasonable degree of suspicion or the suspicious lesion is located in an area where the indicated operation is associated with a high level of potential morbidity. In these cases, additional certainty and testing are indicated. Of particular utility is selective venous sampling with measurement of FGF23 [5].

Venous sampling has been attempted in localizing tumors in the absence of any suspicious lesions identified on either functional or anatomical imaging [26]. In a trial to test to localize tumors by venous sampling without a ‘target’ lesion which was suggested by anatomical or functional imaging, it was concluded to be not a useful approach [26]. Van Boeckel et al. (2008) advocated a two step approach to venous sampling. They suggested that if a suspected tumor cannot be localized by imaging, whole body venous sampling can be performed with assessment of the average values for samples from different anatomical regions. If the average values in samples from a region appear to be higher, more detailed sampling is performed in the smaller branches of the veins in that region. In one patient studied by this approach, it appeared to suggest a particular region. However, in retrospect, the tumor was evident on an MRI that had been performed prior to venous sampling, so the utility of this approach is not clear. An additional approach that can be used for confirmation that a suspicious lesion identified on functional or anatomical imaging is the culprit tumor is aspiration of the lesion. Elevated FGF23 in the aspirate is diagnostic of a causative lesion. Inspection of cellular morphology consistent with that of a phosphaturic mesenchymal tumor, further supporting that the aspirated lesion represents the culprit lesion Sciubba et al. (2009).

Anatomic imaging (radiography, CT and MRI) should be performed to confirm the location of the tumor after suspicious lesions had been identified by functional imaging. CT indicates deformations in skeletal bones, rib, bones, thoracic vertebrae and pelvic bone due to osteomalacia or stress fractures, compressive with pathologic kyphosis, stress fractures in both femoral heads and osteosclerotic tumour. Total body magnetic resonance imaging (MRI) is the accurate method to confirm the location of the tumour. It is important to scan the whole body, including extremities [4] as tumours can occur anywhere in the body. Despite all of the advances in imaging that are available today, tumour localization may not be successful. If this is the case, imaging studies should be repeated every 1–2 years.

Treatment

The treatment of choice for TIO is resection of a tumour with a wide margin, as recurrences of these tumours have been reported [13,26]. Tumour removal is always curative [24], and the recovery and improvement of the patients is relatively quick, FGF23 disappears rapidly from the circulation, and serum phosphate returns to normal by day 5 post operation. The prognosis depends on detecting the tumour and possibility to remove it widely. Nevertheless, the follow-up should be continued because the delayed metastasis can occur as it was described in few cases.

Conclusion

The diagnosis of TIO is a challenge and is commonly delayed for years due to the nonspecific nature of the presenting symptoms, failure to include serum phosphorus levels in blood chemistry and difficulty in identifying the responsible tumour. The professional evaluation of whole body images, including single-photon emission tomography enables identification and better tumour contrast which can be found in skeletal structures of whatever region of the human body. FGF23 may be of help to understand the underlying mechanisms of TIO and a measurement to follow up the disease course.

Reference

1. Weidner N (1991) Review and update: oncogenic osteomalacia-rickets. Ultrastruct Pathol. 15(4-5): 317-333.
2. Miyachi A, Fukase M, Tsutsumi M, Fujita T (1988) Hemangiopericytoma-induced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D 1-hydroxylase activity. J Clin Endocrinol Metab 67(1): 46-53.
3. Ogose A, Hotta T, Emura I, Hatano H, Inoue Y, et al. (2001) Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skeletal Radiol 30(2): 99-103.

How to cite this article: Ghazala M, Fatima S. Functional and Anatomical Imaging for Early Diagnosis of Tumor Induced Osteomalacia. Canc Therapy & Oncol Int J. 2017; 4(3): 55636. DOI: 10.19080/CTOIJ.2017.04.55635.
15. Uramoto N, Furukawa M, Yoshizaki T (2009) Malignant phosphaturic mesenchymal tumor. J Clin Rheumatol Pract Rep Rheum 16(4): 373-379.

16. Savage CR, Zimmer LA (2009) Oncogenic osteomalacia from pterygopalatine fossa mass. Laryngol Otol 123(9): 1052-1054.

17. Folpe AL, Fanburg Smith JC, Billings SD, Bisceglia M, Bertoni F, et al. (2004) Most osteosarcoma-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28(1): 1-30.

18. Burnand H, Samuels A, Hagan I, Sawant N, Mutimer J (2012) Hip Bilateral subtrochanteric fractures in tumour-induced osteomalacia caused by a nasal haemangiofibroctyoma. Journal of clinical and experimental research on hip biology and therapy 22(2): 227-229.

19. Houang M, Clarkson A, Sioson L, Elston MS, Clifton-Bligh RJ, et al. (2013) Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum Pathol 44(12): 2711-2718.

20. Duet M, Kerkeni S, Sfiri R, Bazille C, Liote F, et al. (2008) Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin Nucl Med. 33(11): 752-756.

21. Moran M, Paul A (2002) Octreotide scanning in the detection of a mesenchymal tumour in the pubic symphysis causing hypophosphataemic osteomalacia. J Bone Miner Metab 30(1): 1-9.

22. Yan Jiang, Wei-bo Xia, Xiao-ping Xing, Barbara C Silva, Mei Li, et al. (2012) Tumor-induced osteomalacia: An important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature. J Bone Miner Res 27(9): 1967-1975.

23. Jan de Beur SM, Streeter EA, Civelek AC, McCarthy EF, Uribe L, et al. (2002) Localization of mesenchymal tumours by somatostatin receptor imaging. 359(9308): 761-763.

24. Agrawal K, Bhadada S, Mittal BR, Shukla J, Sood A, et al. (2015) Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in localization of tumor causing oncogenic osteomalacia. Clin Nucl Med 40(1): e6-e10.

25. Zhang J, Zhu Z, Zhong D, Deng Y, Xing H, et al. (2015) 68Ga DOTATATE PET/CT is an Accurate Imaging Modality in the Detection of Culprit Tumors Causing Osteomalacia. 40(8): 642-646.

26. Andreopoulos P, Millo C, Reynolds J, Kelly M, Brilliante B, et al. (2010) Multimodality Diagnosis and Treatment of Tumor-Induced Osteomalacia. Endocrine Reviews 31(1): 0869-6549.