Determination of structure and anticancer activity of MM$_2$ compound, isolated from endophytic fungus Aspergillus terreus-RTN3 of Alpinia chinensis Rosc.

T N M Vo*, D N Nguyen2 and V T Nguyen1

1Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
2Faculty of Pharmacy, University of Medicine and Pharmacy Ho Chi Minh city 70000, Vietnam

*Corresponding author: vtnmy@ntt.edu.vn, vongocmy1984@gmail.com

Abstract. The study has isolated endogenous A. terreus-RTN3 strain from young stems of Alpinia chinensis Rosc.-Zingiberaceae family. Cultivating and extracting compounds containing metabolites that are resistant to Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA). Determining the number of antibacterial compounds in the crude extract by thin-layer chromatography and vacuum liquid chromatography (VLC), the research has isolated pure MM$_2$ compound with high antioxidant activity and spectral resolution to find the structure compound MM$_2$ (Methyl 2-((4-amino-2-bromo-3-methyl-5-thioxocyclopenta-1,3-dien-1-yl) oxygen) -4-hydroxy-6-methoxybenzoate). This is a new compound that has not been announced in any works in the world. MM$_2$ compound has a high antioxidant activity, the ability to catch α, α-diphenyl-β-picrylhydrazyl (DPPH) free radicals increases linearly by concentration, at concentration 400ppm of MM$_2$ is capable of catching over 75% of DPPH free radicals. The MM$_2$ compound also has the ability to inhibit 4 test cell lines: breast cancer (MCF-7), cervical cancer (Hela), liver cancer (Hep G2) and lung cancer (NCI-H460). The results showed that MM$_2$ compound's ability to inhibit cancer cell lines increased linearly, at concentrations of 100 µg/ml of MM$_2$ compound, which inhibited nearly 80% of cancer cell lines and was high most in liver cancer cell line HepG2 (at a concentration of 100 µg/ml inhibits 86.82% of liver cancer cells HepG2).

1. Introduction
In plants, endophytic fungi and plant are closely related, endophytic fungi can use substances in plants as nutrients to survive. In return, they bring many benefits to the plant, playing an important role in protecting the host plant against the harmful effects of insects, harmful microorganisms or environmental disadvantages. Recently, secondary fungi metabolites, especially endophytic fungi, are gaining interest because they can produce many bioactive metabolites with antibacterial, antiviral, anticancer, anti-oxidant properties [3]. Some endophytic fungi are noted as Aspergillus, Penicillium, Fusarium due to the production of many metabolites for biological effects such as antibacterial, antiviral, anticancer, etc. in which A. terreus spieces product many compounds have properties antibacterial such as terremid A, terremid B, terrein,etc [1]. A. terreus - RTN3 has isolated from young stems of A. chinensis Rosc.-Zingiberaceae family. In culture media, A. terreus - RTN3 is a microbe that is resistant to S. aureus and
MRSA bacteria. In addition, A. terreus from various sources can produce metabolites such as acetylaranotin and related natural products; aspernolid D, and furandion, (+) - Geodin asperteron, along with four butenolid and aspernolid B [11]. A. terreus also produces enzymes such as invertase and glucosidase when grown in submerged fermentation containing barley black as carbon source; β-xylanase production; cis-aconitic decarboxylase acid (CAD) - an important enzyme in the production of itaconic acid; production of beta-glucosidase, etc. [4]

2. Materials and Methods

2.1. Materials
A. terreus - RTN3 strain has extracted from A. chinensis Rosc-Zingiberaceae family. Microorganisms used for microbiological testing were obtained from ATCC: Staphylococcus aureus ATCC 29213, MRSA ATCC 43300.

2.2. Methods

2.2.1. Investigation of antibacterial activity of extracts from fungal and biomass medium
Investigation of antibacterial activity of extracts obtained from culture medium of A. terreus R-TN3 strain and from lyophilized biomass by diffusion method through paper plates. Taking 10µl of diluent impregnated on a paper plate, leaving in a sterile petri dish to evaporate the solvent. Spread the test bacteria on a cotton swab to 20 ml of TSA medium agar. Place the dried solvent paper plate on a freshly spread petri dish. Incubate at 37°C for 24 hours.

2.2.2. Split the segments for antibacterial activity from crude extract
Thin-layer chromatography (TLC): Proceeding to explore the optimal extraction solvent system for crude extracts from A.terreus culture medium. Raw extracts of A.terreus culture medium were dissolved in MeOH at a concentration of 8mg/ml. Develop with solvent system: CHCl₃ - CH₃COOH (9:1). Record results detected by UV254, UV365 and Vanillin sulfuric reagent. Evaluate the separability of the solvent system for the test substance based on the number and characteristics of traces on the chromatogram.

Vacuum column chromatography (VLC): Separates a mixture into different polarized segments so that more pure fractions can be obtained containing antimicrobial active ingredients. The stages of vacuum column chromatography include: mobile phase survey, column preparation and deployment, evaporation of solvents resulting in dry bites or concentrated solutions.

2.2.3. Determination of antioxidant ability by DPPH of MM2 compound
Determination of antioxidant ability by DPPH test of MM₂ compound. The results showed that MM₂ has a relatively high antioxidant activity, the ability of catching DPPH free radicals increases linearly with concentration.

2.2.4. Methods for determining the chemical structure of a compound
The substances obtained through column chromatography and thin-layer chromatography are processed to determine the structure of the compounds based on spectral methods: Electronic atomizing mass spectrometry (ESI-MS); One-way magnetic resonance spectrum (1H-NMR, 13C-NMR, DEPT) and bidirectional (HMBC, HSQC, COZY, NOESY).

Identification: If a foreign substance appears in the sample, the mass spectrometry can identify its unique chemical structure. The structure of this substance is then compared to a structural library of known substances. If the corresponding substance can not be found in the library, we can obtain a new data and contribute to the structural library after taking further measures to identify the new compound correctly.
2.2.5. *Survey of inhibition of cancer cell lines ability of MM2 compound* Determination of MCF-7 inhibition of breast cancer cell lines, Hela cervical cancer, Hep G2 and NCI-H460 lung cancer of MM2 compound.

2.2.6. *Statistical analysis of data* Data is processed statistically by Microsoft Excel software, in Microsoft Office version 2003.

3. *Results and discussions*

3.1. *Investigation of antibacterial activity of extracts from fungal and biomass medium*

Investigation of antibacterial activity of extracts obtained from culture medium of *A. terreus* R-TN3 strain and from lyophilized biomass by diffusion method through paper plates. (Table 1).

Reagent	Suppressive ring diameter (mm)
	S. aureus
Extract from culture solution	17.33 ± 0.93^a
Extracted from biomass	0.0^b
	MRSA
Extract from culture solution	17.33 ± 0.93^a
Extracted from biomass	0.0^b

^a Notes are referenced using alpha superscripts.

^b Self-supporting.

Extracts from culture solution *A. terreus* R-TN3 medium have antibacterial effects on *S. aureus* and MRSA highly. Extracts from biomass of *A. terreus* R-TN3 strain did not have an antibacterial effect on *S. aureus* and MRSA. This indicates that the antibacterial active ingredients from *A. terreus* R-TN3 strain are extracellularly produced.

3.2. *Refine the sample by Vacuum column chromatography (VLC)*

Perform high-chromatographic column chromatography with chloroform-methanol solvent system with the rate of change in the direction of increasing methanol, dot and combine the segments and proceed to crystallize the compound. The total high mass of all nine fractions obtained through column chromatography was 10.6g. From segment 1, it is purified to be light yellow, amorphous MM₂ compound, with Rf of 0.692.

3.3. *Determination of antioxidant ability by DPPH of MM2 compound*

Determination of antioxidant ability by DPPH test of MM₂ compound. The results showed that MM₂ has a relatively high antioxidant activity, the ability of catching DPPH free radicals increases linearly with concentration. (figure. 1).
The results showed that MM$_2$ has highly antioxidant activity, the ability of catching DPPH free radicals increases linearly with concentration. At a concentration of 400 ppm, MM$_2$ has the ability to catch more than 75% of DPPH free radicals.

3.4. Methods for determining the chemical structure of MM2 compound

MM$_2$ compounds obtained from column chromatography, structure is determined by spectroscopic techniques such as H, C13, MS spectroscopy and bidirectional spectroscopy to determine the structure. The isolated MM$_2$: compound is in the form of powder, light yellow. Soluble in methanol and DMSO, insoluble in n-hexane.

MS spectrum in the form of negative for the tip of the fake molecule ion with m/z: [M-H]$^-$ = 398.8, allows determining the mass of MM$_2$ is 400 corresponding to the molecular formula is C$_{15}$H$_{14}$BrNO$_5$S.

13C-NMR spectrum (125 MHz, DMSO-d_6, δ ppm) combined with DEPT90, DEPT135 shows that MM$_2$ has 9 carbon: 1 carbon carbonyl (ester) at δC 165.6, 3 quadruple carbon aromatic oxygen adjacent rings, 1 quadratic aromatic carbon, 2 aromatic aromatic methons corresponding to 2 aromatic protons met meta at δH 6.93 (1H, d, J = 2.0 Hz, H-3) and 6.72 (1H, d, J = 1.5 Hz, H-5) and 2 carbon oxymethyl corresponding to 6 protons at δH 3.66 (3H, s, H-8) and 3.67 (3H, s, H-9); shows that MM$_2$ is a derivative of 2,4,6-trihydroxybenzoic acid [12].

In addition, MM$_2$ also has 1 carbonyl (ketones) at δC 200.2, 1 carbon quadrant aromatic oxygen adjacent to δC 158.6, 2 carbon quaternary aromatic carbon, 1 carbon methyl corresponding to 3 protons at δH 2.44 (3H, s, H-6') and quaternary aromatic carbon by nitrogen at δC 141.7 together with 2 protons of the second order amine group at δH 11.73 (1H, s, NH2); proves that MM2 has cyclopentadienon ring [5], carrying 4 substituents, including 1 methyl group, 1 amino group II, 1 hydroxy group. What about one substituent, from the calculation of the molecular formula from the MS spectrum, shows that MM$_2$: contains Br and S, so the other substituent is brom and this ring is cyclopentadienthion.

HMBC spectroscopy showed that 2 protons at δH 6.93 (H-3) and 6.72 (H-5) interacted with the carbon quadrant aromatic oxygen adjacent to δC 158.6 and 1 carbon quadrant aromatic at δC 125.4, so these 2 carbon must be C-4 and C-1 on benzoic acid frame. In addition, the proton methine at δH 6.72 (H-5) and the three protons of the oxymethyl group at δH 3.66 (3H, s, H-8) interact with the carbon quadrant aromatic oxygen adjacent to δC 156.8, proves that the C-6 carbon has been oxidized. Similarly, the proton methine at δH 6.93 (H-3) and 3 protons of the oxymethyl group at δH 3.67 (3H, s, H-9) interact with carbon carbonyl at δC 165.6, demonstrating the carbonyl C-7 has been methylated. So MM$_2$ has a frame that is methyl 2,4-dihydroxy-6-methoxybenzoate. (Table 2)

Carbon number	CH$_n$	Chem. Shifts	Conf. Limits
1	C	200.23	39.2
2	C	160.81	4.8
3	C	111.43	5.2
4	C	132.26	15
5	C	147.44	6.2
8	C	161.87	4.8
9	C	111.88	5.3
10	C	166.16	4.8
11	CH	101.33	2.7
12	C	160.21	4.2
13	CH	103.66	3.2
15	CH$_3$	12.6	5.1
17	C	171.23	3.5
20	CH$_3$	56.17	0.9
23	CH$_3$	52.55	0.3
On the other hand, 3 methyl protons at δ\textsubscript{H} 2.44 (3H, s, H-6′) interact with 1 aromatic quadratic carbon at δ\textsubscript{C} 112.2 and aromatic quadratic carbon adjacent to nitrogen at δ\textsubscript{C} 141.7. These 2 carbon should be C-3′, C-5′. Therefore, the bromine group attaches to C-3′ and the secondary amino group attaches to C-5′. Inferred, this methyl group attaches to the remaining aromatic quadratic carbon at δ\textsubscript{C} 128.0 (C-4′) and the aromatic quadratic aromatic carbon adjacent to oxy δ\textsubscript{C} 158.6 is C-2′ and attached to the benzoic acid framework via C-2′. (Table 3).

Table 3. Spectral interpretation of MM\textsubscript{2}.

\(J \)	Group 1	Group 2	Value	Error	Group nH	Shift	Error	
4\(J \)	11	13	2.20	---	11	1	5.84	0.21
5\(J \)	11	20	0.30	---	13	1	6.10	0.19
2\(J \)	15	15	2.88	8.40	15	3	2.46	0.44
3\(J \)	20	20	9.40	2.80	16.21	3	7.31	2.51
2\(J \)	23	23	9.40	2.80	20	3	3.88	0.14

From the HRMS, \(^1\text{H}, \text{C-NMR},\) spectral data, combined with HMBC spectra and compared with references [2], [10], [13]; we identified MM\textsubscript{2} as Methyl 2-((4-amino-2-bromo-3-methyl-5-thioxocyclopenta-1,3-dien-1-yl)oxy)-4-hydroxy-6-methoxybenzoate. This is a new and unpublished substance in any project in the world. (Figure. 2).

3.5. Survey of inhibition of cancer cell lines ability of MM\textsubscript{2} compound

Determination of MCF-7 inhibition of breast cancer cell lines, Hela cervical cancer, Hep G2 and NCI-H460 lung cancer of MM\textsubscript{2} compound. Results are presented in Table 4.

Table 4. Results of inhibiting cancer cell lines of compound MM\textsubscript{2}.

Concentration (µg/ml)	Percentage of cell suppression (%)			
	MCF-7	Hela	Hep G2	NCI-H460
100	78.21	86.82		
75	74.82	65.81	75.39	71.42
50	66.89	58.20	56.77	46.14
25	24.97	21.07	9.29	19.98
10	-8.45	-4.19	0.75	-1.50
IC\textsubscript{50} (µg/ml)	42.26	39.21	48.30	50.26
The results showed that MM2 compound’s ability to inhibit the test cancer cell lines increased linearly with concentration. At a concentration of 100µg/ml, MM2 compound inhibits nearly 80% of cancer cell lines and is highest in HepG2 cancer cell. The results showed that the compound MM2 was able to inhibit the proliferation of in vitro cancer cell lines.

After conducting research, we cultured and extracted a substance containing a crude extract that acts against S. aureus and MRSA of A. terreus R-TN3 strain. The results showed that the compound MM2 was able to inhibit many different cancer cell lines, through the ability to inhibit 4 experimental cell lines. In normal cell lines (Soma), this compound has a higher IC50 value and is outside the cell suppression threshold (> 4 mg/ml). This proves that this compound is highly safe, does not inhibit normal cells. This new compound has not been announced on any works in the country and around the world. This study is completely in line with previous studies on the ability to inhibit cancer cells of A. terreus fungi. However, the source of A. terreus isolates of previous studies is from soil, water, mangroves, sea, etc. 2014, Suja et al. also demonstrated that A. terreus mushroom extract isolated from the ocean was resistant to cancer.

5. Conclusions
The study isolated the pure MM2 compound and spectra to find the structure of MM2 compound with the name: Methyl 2-((4-amino-2-bromo-3-methyl-5-thioxocyclopenta-1,3-dien-1-yl)oxy)-4-hydroxy-6-methoxybenzoat. This is a new compound that has not been published in any works in the world. MM2 compound has antioxidant activity, the ability of catching DPPH free radicals increases linearly with the concentration, at a concentration of 400ppm MM2 has the ability to catch more than 75% of DPPH free radicals. In addition, the compound MM2 also has the ability to inhibit 4 test cell lines: MCF-7 breast cancer, Hela cervical cancer, Hep G2 liver cancer and NCI-H460 lung cancer. The results showed that MM2 compound’s ability to inhibit the cancer cell lines increased linearly, at the concentration of 100 µg/ml of MM2 compound, which inhibited nearly 80% of the cancer cell lines and was high. Most in liver cancer cell line HepG2 (at a concentration of 100µg/ml inhibits 86.82% of HepG2 liver cancer cells). This proves that this compound is highly safe, does not inhibit normal cells and has high potential for application.

Acknowledgments
We would like to thank the Department of microbiology - parasitic, Faculty of Pharmacy, University of Medicine and Pharmacy Ho Chi Minh city; Faculty of Pharmacy, University of Nguyen Tat Thanh have supported and created favorable conditions to complete this research.

References
[1] Dewi R T and Tachibana S 2012 J. Microb. Biochem. Technol. 04.
[2] Gaspar A, Cagide F and Quezada E 2013 Magnetic resonance in Chemistry 51 251–254.
[3] Gu W and Qiao C 2012 Chem. Pharm. Bull. 60 1474–1477.
[4] Jain P and Pundir R K 2010 J. Pharm. Sci. Rev. Res. 5(3) 72-76.
[5] Liu J L and Li X H 2015 Phytochemistry 12 27–30.
[6] Macedo F C, Andre L M and Anita JM 2004 Tetrahedron Letters 45 53–55.
[7] Monks A 1991 Journal of National Cancer Institute 11 (83) 757-766.
[8] Pawlak M and Marcin B 2012 Chemical And Process Engineering 33(4) 651-665.
[9] Rao KV and Sadhukhan AK 2000 Tokyo 48(4) 559-562.
[10] Reis J, Gaspar A and Borges F 2014 Journal of Molecular Structure, 1056 31–37.
[11] Shurygina M P and Kurskii Y A 2008 Tetrahedron 64 9784–9788.
[12] Sun Z H and Zhang C F 2010 Chinese Journal of Natural Medicines 8(4) 0244-0246.
[13] Youssef T A, Ramadan M A and Khalifa A A 1998 Phytochemistry 49(8) 2579-2583.