Data Article

Genome assembly and phylogenomic data analyses using plastid data: Contrasting species tree estimation methods

D.J.P. Gonçalves a,*, B.B. Simpson a, G.H. Shimizu b, R.K. Jansen a, c, E.M. Ortiz d

a Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78713, USA
b Department of Plant Biology, University of Campinas, 13083-970, Campinas, SP, Brazil
c Genomics and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
d Department of Ecology & Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, Emil-Ramann Strasse 2, Freising, D-85354, Germany

A R T I C L E I N F O

Article history:
Received 14 June 2019
Received in revised form 4 July 2019
Accepted 9 July 2019
Available online 27 July 2019

Keywords:
Data processing
Genome assembly
Phylogenetic analyses
Phylogenetic signal
Tree space

A B S T R A C T

Phylogenomics has become increasingly popular in recent years mostly due to the increased affordability of next generation sequencing techniques. Phylogenomics has sparked interest in multiple fields of research, including systematics, ecology, epidemiology, and even personalized medicine, agriculture and pharmacy. Despite this trend, it is usually difficult to learn and understand how the analyses were done, how the results were obtained, and most importantly, how to replicate the study. Here we present the data and all of the code utilized to perform phylogenomic inferences using plastome data: from raw data to extensive phylogenetic inference and accuracy assessment. The data presented here utilizes plastome sequences available on GenBank (accession numbers of 94 species are available below) and the code is also available at https://github.com/deisejpg/rosids. Gonçalves et al. is the research article associated with the data analyses presented here.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.ympev.2019.05.022.
* Corresponding author.
E-mail address: deisejpg@gmail.com (D.J.P. Gonçalves).

https://doi.org/10.1016/j.dib.2019.104271
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Biology
More specific subject area	Systematics of angiosperms, plastome evolution
Type of data	Table, PHYLIP, NEXUS, and MARKDOWN formatted files
How data was acquired	Illumina HiSeq. 2500 and Illumina HiSeq 4000
Data format	Raw and Analyzed
Experimental features	Total genomic DNA isolated and sequenced from fresh or silica dried leaf tissue of sampled species of rosids and genome sequences from NCBI
Data accessibility	Within this article and at https://github.com/deisejpg/rosids
Related research article	Deise J.P. Gonçalves, Beryl B. Simpson, Edgardo M. Ortiz, Gustavo H. Shimizu, Robert K. Jansen

Value of the data
- The present data provides details about phylogenomic analysis using a set of well-documented pipelines covering analyses from preprocessing Illumina reads to inferring and testing phylogenies using multiple methods of phylogenetic inference.
- The data introduce the practical use of multispecies coalescent methods using plastid protein-coding genes and could be adjusted and used with molecular data from different molecular markers and organisms.
- Accessibility to scripts utilized and data files containing the alignments and trees will enhance the replication of the analyses presented.

1. Data

A dataset comprising 78 plastid protein-coding genes of 94 species of rosids is presented in Table 1. Here we present all the code used in the analysis of this dataset [1], including the scripts used to quality filter, assemble, extract regions of interest, and perform phylogenomic analysis, in a series of tutorial-like files: I. Genome assembly; II. Phylogenetic Analysis; III. Tree space; IV. Phylogenetic Signal. Part of the data was obtained from GenBank (http://www.ncbi.nlm.nih.gov/genbank). Data for and 27 species from groups of rosids that lacked the information on the database were generated using Illumina HiSeq. A total of 657,471,631 million paired-end reads with an average length of 150 bp was generated (Table 2). Despite the interest on extracting and using only the genes from the plastome, the pipeline for genome assembly presented here also separates contigs from the three cellular genomic compartments with a potential for use used in studies that target not only the plastome, but also mitochondria, nuclear ribosomal DNA, and other nuclear markers. The next set of tutorial-like markdown files present the code utilized for preparing alignments and for inferring phylogenies using an array of strategies of data partition and methods of phylogenetic inference. The code used to explore the similarities/dissimilarities between topologies and for the phylogenetic signal calculation is also presented.

2. Experimental design, materials and methods

2.1. Data preprocessing and genome assembly

For the 27 samples for which data were generated, leaf tissue was ground and total genomic DNA was isolated using DNeasy Plant Mini Kit (Qiagen) according to the manufacturer's protocol or a modified version of [2] described in Ref. [3]. The DNA was quantified using a Qubit Fluorometric Quantitation (Thermo Fisher) instrument and was sequenced at the Genome Sequencing and Analysis
Table 1
Classification according to APG IV (2016) of samples used in the study (89 samples of rosids, considered here as fabids + malvids, and five of outgroup), voucher information of newly sequenced plastomes and GenBank accession numbers. Bold font indicates plastid genome sequences generated in this study.

Order	Family	Species	Voucher ID	GenBank Accession Numbers	
Ingroup					
	Brassicales	Brassicaceae	Brassica napus	NC_016734	
	Brassicales	Caricaceae	Carica papaya	NC_010323	
	Brassicales	Moringaceae	Moringa oleifera	CONN-129179 MK726020	
	Brassicales	Salvadoraceae	Azima tetracantha	CONN00225893	MK726028
	Celastrales	Celastraceae	Euonymus japonicus	NC_028067.1	
	Cucurbitales	Cucurbitaceae	Citrullus lanatus	NC_032008	
	Cucurbitales	Cucurbitaceae	Cucumis hystrix	NC_023544	
	Cucurbitales	Cucurbitaceae	Gynostemma pentaphyllum	NC_029484	
Fabales	Fabaceae	Cicer arietinum	NC_011163		
	Fabaceae	Inga leioalycaicina	NC_028732		
	Fabaceae	Lupinus luteus	NC_023090		
	Fabales	Polygala alba	TEX-DJPG731		
	Fagales	Betulaceae	Ostrya rehderiana	NC_028349	
	Fagales	Castanea mollissima	NC_014674		
	Fagales	Juglans regia	NC_028617		
	Geraniales	Francoaceae	Francoa sonchifolia	NC_021101	
	Geraniales	Geraniaceae	Erodium rupestre	NC_030719	
	Geraniales	Geraniaceae	Geranium paumatum	NC_014573	
	Geraniales	Geraniaceae	Hypecocharis biloba	NC_023260	
	Geraniales	Geraniaceae	Monsonia speciosa	NC_014582	
	Geraniales	Geraniaceae	Pelargonium alternans	NC_023261	
	Malpighiales	Chrysobalanaceae	Chrysobalanus icaco	NC_024061	
	Malpighiales	Chrysobalanaceae	Hirtella racemosa	NC_024060	
	Malpighiales	Erythroxylaceae	Erythroxylon novogranatense	NC_030601	
	Malpighiales	Euphorbiaceae	Ricinus communis	NC_016736	
	Malpighiales	Malpighiaceae	Galphinia angustifolia	TEX-DJPG803	
	Malpighiales	Salicaceae	Salix babylonica	NC_028350	
	Malvales	Malvaceae	Gossypium turneri	NC_026835	
	Malvales	Malvaceae	Hibiscus syriacus	NC_026909	
	Malvales	Malvaceae	Theobroma cacao	NC_014676	
	Malvales	Thymelaeaceae	Aquilaria sinensis	NC_029243	
Myrtales	Alzateaceae	Alzatea verticillata	K-TNV548 MK726006		
Myrtales	Combretaceae	Laguncularia racemosa	CONN00225898 MK726017		
Myrtales	Combretaceae	Terminalia guyanensis	UEC-GHS1070 MK726027		
Myrtales	Lythraceae	Heimia apetala	CONN00225896 MK726012		
Myrtales	Lythraceae	Lagerstroemia guilinensis	NC_029885		
Myrtales	Lythraceae	Lagerstroemia fauriei	NC_029808		
Myrtales	Melastomataceae	Lagerstroemia indica	NC_030484		
Myrtales	Melastomataceae	Blakea schilimii	NC_031877		
Myrtales	Melastomataceae	Henriettea barkeri	NC_031880		
Myrtales	Melastomataceae	Memecylon pauciflorum	K-TNV679 MK726029		
Myrtales	Melastomataceae	Micconia dodecandra	NC_031882		
Myrtales	Melastomataceae	Rhexia virginica	NC_031886		
Myrtales	Melastomataceae	Tibouchina urvilleana	CONN00225897 MK726030		
Myrtales	Myrtaceae	Allosyncarpia ternata	NC_022413		
Myrtales	Myrtaceae	Corymbia eximia	NC_022409		
Myrtales	Myrtaceae	Eucalyptus globulus	NC_008115		
Myrtales	Myrtaceae	Eugenia uniflora	NC_027744		
Myrtales	Myrtaceae	Heteropyxis natalensis	K-MFF s.n. MK726014		
Myrtales	Myrtaceae	Psidium guajava	NC_033335		
Myrtales	Myrtaceae	Stockwellia quadrifida	NC_022414		
Myrtales	Myrtaceae	Xanthostemon chrysanthus	K-TNV684 MK726024		
Myrtales	Onagraceae	Ludwigia octovalvis	NC_031385		
Myrtales	Onagraceae	Oenothera argillicola	NC_010358		

(continued on next page)
Facility (GSAF) at The University of Texas at Austin. Two species were kindly provided by The Royal Botanic Gardens, Kew, DNA bank (https://www.kew.org/data/dnaBank/).

Once the reads were available, the genome assembly pipeline was used to remove adaptors and PHIX, for quality trimming, and for genome assembly.

2.2. Phylogenetic inference

After gathering sequences of plastid protein-coding genes, the alignments and phylogenetic inference were performed. The code used to prepare the alignments using MAFFT [4] and MACSE [5] as well as the scripts used to infer phylogenies using Maximum Likelihood (ML), IQ-TREE [6], and Multispecies Coalescent (MSC) methods, SVDquartets [7], and ASTRAL-II [8] is presented in phylogenetic analysis pipeline.

2.3. Calculating distances of tree topologies and phylogenetic signal

Commented scripts present how the inferred phylogenies were further explored. First, Robinson-Foulds and Kendall-Colijn algorithms implemented in the R package TREESPACE [9] were used to
visualize the distances of species trees and between species trees and gene trees inferred. The code used is available at tree space. Lastly, five taxa from different taxonomic levels that had alternative placements were selected for a set of measurements of gene-wise and site-wise log-likelihood support of alternative topologies phylogenetic signal.

Acknowledgements

We thank the Texas Advanced Computing Center for providing access to its supercomputer Lone-star5. This work was supported by the C. L. Lundell Professorship; the Texas Ecolab Program (DJPJ); the National Science Foundation for the Doctoral Dissertation Improvement Grant (DJPJ, grant number 1601522); the Plant Biology Graduate Program; the Department of Integrative Biology at UT Austin through the Linda Escobar, the Jean Andrews, and the Lorraine Stengl fellowships; the Science without Borders (DJPJ, Capes/Laspau-1186-13-2); and the UT Graduate Continuing Fellowship (DJPJ).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Table 2
Summary of output for Illumina sequencing of the 23 complete and the 4 draft plastomes.

Species	Total # Reads	Plastid reads	Average fold coverage
Laguncularia racemosa	26,332,422	992,869	758.64
Terminalia guayanensis	28,526,166	335,902	411.37
Heimia apetala	27,057,568	3480,902	3630.02
Memecylon pauciflorum	29,404,628	1,776,470	2078.67
Tissuechina urvilleana	51,945,408	1,565,235	1321.25
Heteropanax natalensis	23,511,880	437,572	620.57
Salteria sarcocolla	42,509,058	1,975,497	1589.48
Callisthene erythroclada	13,523,069	1,475,969	1679.93
Erismadelphus exsul	28,714,784	740,005	872.25
Qualea grandiflora	14,026,674	315,666	361.56
Korupodendron songweanum	26,380,860	621,934	697.51
Ruizierania albiflora	13,416,345	346,923	395.21
Salveria convallarioidora	13,719,886	1,131,571	1262.57
Vochnysia acuminata	14,190,315	1,404,610	1588.55
Azima tetracantha	19,768,664	588,345	676.25
Moringa oleifera	35,924,836	3,914,845	3054.87
Dimorcarpus longan	39,914,336	1,125,881	870.47
Galphimia angustifolia	20,773,804	1,235,549	1449.65
Oxalis drummondii	30,898,958	1,231,010	1698.62
Krameria bicolor	20,882,876	1,032,768	1236.57
Krameria lanceolata	20,840,984	191,073	206.57
Guaiacum angustifolium	27,224,600	131,532	143.81
Larrea tridentata	23,104,094	2,094,664	2797.51
Alzatea verticillata (reads mapped to S. sarcocolla)	11,665,088	51,656	143.81
Xanthostemon chrysanthus (reads mapped to H. natalensis)	9,809,306	51,656	61.91
Polygala alba (reads mapped to G. angustifolia)	30,134,340	125,019	101.66
Erismedelphus exsul (reads mapped to K. songweanum)	13,270,682	286,659	368.03

 güvenilir internet <https://jgi.doe.gov/data-and-tools/bbtools/> with the option “covstats”. Reference index was built with the 23 complete plastomes with each representing a scaffold. The average fold coverage was calculated by mapping reads to the reference index and values were taken from the scaffold correspondent to each species. For species with incomplete plastomes (marked in bold) we used the closely related species as the scaffold indicated within the parentheses.
References

[1] D.J.P. Gonçalves, B.B. Simpson, E.M. Ortiz, G.H. Shimizu, R.K. Jansen, Incongruence between species tree and gene trees and phylogenetic signal variation in plastid genes, Mol. Phylogenetics Evol. 138 (2019) 219–232. https://doi.org/10.1016/j.ympev.2019.05.022.

[2] J.J. Doyle, J.L. Doyle, DNA isolation from small amounts of plant tissue, Phytochem. Bull. 19 (1987) 11–15.

[3] M.L. Weng, J.C. Blazier, M. Govindu, R.K. Jansen, Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates, Mol. Biol. Evol. 31 (2013) 645–659. https://doi.org/10.1093/molbev/mst257.

[4] K. Katoh, J. Rozewicki, K.D. Yamada, MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Briefings Bioinf. (2017) 1–7. https://doi.org/10.1093/bib/bbx108.

[5] V. Ranwez, S. Harispe, F. Delsuc, E.J.P. Douzery, MACSE: Multiple alignment of coding sequences accounting for frameshifts and stop codons, PLoS One 6 (2011) 1–10. https://doi.org/10.1371/journal.pone.0022594.s001.

[6] L.T. Nguyen, H.A. Schmidt, A. von Haeseler, B.Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol. 32 (2015) 268–274. https://doi.org/10.1093/molbev/msu300.

[7] J. Chifman, L. Kubatko, Quartet inference from SNP data under the coalescent model, Bioinformatics 30 (2014) 3317–3324. https://doi.org/10.1093/bioinformatics/btu530.

[8] S. Mirarab, T. Warnow, ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes, Bioinformatics 31 (2015) i44–i52. https://doi.org/10.1093/bioinformatics/btv234.

[9] T. Jombart, M. Kendall, J. Almagro-Garcia, C. Colijn, Treesspace: statistical exploration of landscapes of phylogenetic trees, Mol. Ecol. Resour. 17 (2017) 1385–1392. https://doi.org/10.1111/1755-0998.12676.