DUAL FLOWS IN HYPERBOLIC SPACE AND DE SITTER SPACE

HAO YU

Abstract. We consider contracting flows in \((n+1)\)-dimensional hyperbolic space and expanding flows in \((n+1)\)-dimensional de Sitter space. When the flow hypersurfaces are strictly convex we relate the contracting hypersurfaces and the expanding hypersurfaces by the Gauß map. The contracting hypersurfaces shrink to a point \(x_0\) in finite time while the expanding hypersurfaces converge to the maximal slice \(\{\tau = 0\}\). After rescaling, by the same scale factor, the rescaled contracting hypersurfaces converge to a unit geodesic sphere, while the rescaled expanding hypersurfaces converge to slice \(\{\tau = -1\}\) exponential fast in \(C^\infty(S^n)\).

Contents

1. Introduction 1
2. Setting and general facts 4
3. Strictly concave curvature functions 5
4. Polar sets and dual flows 7
5. Pinching estimates 9
6. Contracting flows - convergence to a point 12
7. The rescaled flow 17
8. Convergence to a sphere 22
9. Inverse curvature flows 27
References 30

1. Introduction

In a recent paper [7] a pair of dual flows was considered in \(S^{n+1}\). The one flow is the contracting flow

\[
\dot{x} = -F\nu,
\]
while the other is an expanding flow
\begin{equation}
\dot{x} = F^{-1} \nu,
\end{equation}
where $F \in C^\infty(I_+)$ and \tilde{F} is its inverse
\begin{equation}
\tilde{F}(\kappa_i) = \frac{1}{F(\kappa_i^{-1})}.
\end{equation}
There is a Gauss map for the pair (S^{n+1}, S^{n+1}), which maps closed, strictly convex hypersurfaces M to their polar sets \tilde{M}, cf. [5, Chapter 9]. Gerhardt [7] proved, that the flow hypersurfaces of (1.1) and (1.2) are polar sets of each other, if the initial hypersurface have this property. Under the assumption that F is symmetric, monotone, positive, homogeneous of degree 1, F strictly concave (cf. 3.1) and \tilde{F} concave, it is proved in [7] that the contracting flows contract to a round point and the expanding flows converge to an equator such that after appropriate rescaling, both flows converge to a geodesic sphere exponential fast.

The Gauss map exists also for the pair (\mathbb{H}^{n+1}, N), where \mathbb{H}^{n+1} is the $(n + 1)$-dimensional hyperbolic space and N is the $(n + 1)$-dimensional de Sitter space, cf. [5, Chapter 10]. We prove in this work similar results as in [7] by using this duality. Let $M(t)$ resp. $\tilde{M}(t)$ be solutions of the contracting flows
\begin{equation}
\dot{x} = -F \nu
\end{equation}
in \mathbb{H}^{n+1} resp. the dual flows
\begin{equation}
\dot{x} = -\tilde{F}^{-1} \nu
\end{equation}
in N, where \tilde{F} is the inverse of F defined by (1.3). We impose the following assumptions.

1.1. Assumption. Let $F \in C^\infty(I_+)$ be a symmetric, monotone, 1-homogeneous and concave curvature function satisfying the normalization
\begin{equation}
F(1, \ldots, 1) = 1.
\end{equation}
We assume further, either
\begin{enumerate}
\item F is concave and \tilde{F} is concave and the initial hypersurface M_0 is horoconvex (i.e. all principal curvatures $\kappa_i \geq 1$),
or
\item \tilde{F} is convex and M_0 is strictly convex.
\end{enumerate}
We now state our main results

1.2. Theorem. We consider curvature flows (1.4) and (1.5) under assumption 1.1 with initial smooth hypersurfaces M_0 and \tilde{M}_0, where \tilde{M}_0 is the polar hypersurface of M_0. Then the both flows exist on the maximal time interval $[0, T^*)$ with finite T^*. The hypersurfaces $\tilde{M}(t)$ are the polar hypersurfaces of $M(t)$ and vice versa during the evolution. The contracting flow
hypersurfaces in \(\mathbb{H}^{n+1} \) shrink to a point \(x_0 \) while the expanding flow hypersurfaces in \(N \) converge to a totally geodesic hypersurface which is isometric to \(\mathbb{S}^n \). We may assume the point \(x_0 \) is the Beltrami point by applying an isometry such that the hypersurfaces of the expanding flow are all contained in \(N \) and converge to the coordinate slice \(\{ \tau = 0 \} \).

Viewing \(\mathbb{H}^{n+1} \) and \(N \) as submanifolds of \(\mathbb{R}^{n+1} \) and by introducing polar coordinates in the Euclidean part of \(\mathbb{R}^{n+1} \) centered in \((0, \ldots, 0) \in \mathbb{R}^{n+1} \), we can write flow hypersurfaces in \(\mathbb{H}^{n+1} \) resp. \(N \) as graphs of functions \(u \) resp. \(u^* \) over \(\mathbb{S}^n \). Let \(\Theta = \Theta(t, T^*) \) be the solution of (1.4) with spherical initial hypersurface and exitence interval \([0, T^*) \). Then the rescaled functions

\[
\tilde{u} = u\Theta^{-1}
\]

and

\[
w = u^*\Theta^{-1}
\]

are uniformly bounded in \(C^\infty(\mathbb{S}^n) \). The rescaled principal curvatures \(\kappa_i\Theta \) as well as \(\tilde{\kappa}_i\Theta^{-1} \) are uniformly positive, where \(\tilde{\kappa}_i \) are the principal curvatures of \(\tilde{M}(t) \).

If the curvature function \(F \) is further strictly concave or \(F = \frac{1}{n}H \), then the rescaled functions (1.7) resp. (1.8) converge to the constant functions \(1 \) resp. \(-1 \) in \(C^\infty(\mathbb{S}^n) \) exponentially fast.

Let us review some results concerning the contracting flows in \(\mathbb{H}^{n+1} \). Under the assumption that the initial hypersurface is strictly convex and satisfies the condition \(\kappa_i H > n \) for each \(i \), Huisken [11] proved that the flow (1.4) with \(F = H \) converges in finite time to a round sphere. Andrews [2] proved similar results for a general class of curvature function with argument \(\kappa_i - 1 \). Makowski [13] proved the contracting flow with a volume preserving term exists for all times and converges to a geodesic sphere exponentially fast.

The key ingredient treating the contracting flow is the pinching estimates. Under assumption 1.1 (1) it follows by a similar calculation as in [13], while Gerhardt [8] proved the pinching estimates under assumption 1.1 (2).

The elementary symmetric polynomials are defined by

\[
H_k(\kappa_1, \ldots, \kappa_n) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \kappa_{i_1} \cdots \kappa_{i_k}, \quad 1 \leq k \leq n.
\]

Examples of curvature functions \(F \) satisfying assumption 1.1 (1) (up to normalization condition (1.6)) are

- the power means \((\frac{1}{n} \sum \kappa_i^r)^{1/r} \) for \(|r| \leq 1 \),
- \(\sigma_k = H_k^{1/k} \) for \(1 \leq k \leq n \),
- the inverse \(\tilde{\sigma}_k \) of \(\sigma_k \) for \(1 \leq k \leq n \),
- \((H_k/H_l)^{1/(k-l)} \) for \(0 \leq l < k \leq n \),
- \(H_n^{\alpha_n}H_{n-1}^{\alpha_{n-1}} \cdots H_2^{\alpha_2}H_1^{\alpha_1} \) for \(\alpha_i \geq 0 \) and \(\sum \alpha_i = 1 \).
For a proof see [3, Chapter 2]. Moreover, the curvature functions in the above list are all strictly concave with exception of the mean curvature (cf. Section 3)

Examples of convex curvature functions \bar{F}, which is used in assumption 1.1 (2) (up to normalization condition (1.6)) are (cf. [5, Remark 2.2.13])

- the mean curvature H,
- the length of the second fundamental form $|A| = \left(\sum_i \kappa_i^2\right)^{1/2}$,
- the complete symmetric functions
 $$\gamma_k(\kappa_1, \ldots, \kappa_n) = \left(\sum_{|\alpha|=k} \kappa_1^{\alpha_1} \kappa_2^{\alpha_2} \cdots \kappa_n^{\alpha_n}\right)^{1/k} \text{ for } 1 \leq k \leq n.$$

Note that for convex \bar{F} under assumption 1.1 (2), F is of class (K) and homogeneous of degree 1, hence strictly concave. (cf. [5, Definition 2.2.1, Lemma 2.2.12, 2.2.14], [7, Lemma 3.6])

2. Setting and General Facts

We now review some general facts about hypersurfaces from [5, Chapter 1]. Let N be a $(n+1)$-dimensional dimensional semi-Riemannian manifold and M be a hypersurface in N. Geometric quantities in N will be denoted by $(\bar{g}_{\alpha\beta}), (\bar{R}_{\alpha\beta\gamma\delta})$, etc., where greek indices range from 0 to n. Quantities in M will be denoted by $(g_{ij}), (h_{ij})$ etc., where latin indices range from 1 to n.

Generic coordinate systems in N resp. M will be denoted by (x^α) resp. (ξ^i). Covariant differentiation will usually be denoted by indices, only if ambiguities are possible, by a semicolon, e.g. $h_{ij;}$.

Let $x : M \hookrightarrow N$ be a spacelike hypersurface (i.e. the induced metric is Riemannian) with a differentiable normal ν, which is always supposed to be normalized, and (h_{ij}) be the second fundamental form, and set $\sigma = \langle \nu, \nu \rangle$.

We have the Gauß formula

$$x^\alpha_{ij} = -\sigma h_{ij} \nu^\alpha,$$

the Weingarten equation

$$\nu^\alpha = h_k^i x_k^\alpha,$$

the Codazzi equation

$$h_{ij;k} - h_{ik;j} = \bar{R}_{\alpha\beta\gamma\delta} \nu^\alpha x_i^\beta x_j^\gamma x_k^\delta,$$

and the Gauß equation

$$R_{ij;kl} = \sigma \{h_{ik} h_{jl} - h_{il} h_{jk}\} + \bar{R}_{\alpha\beta\gamma\delta} \nu^\alpha x_i^\beta x_j^\gamma x_k^\delta.$$

Let us review some properties of \mathbb{H}^{n+1} and N, cf. [5, Section 10.2]. We label the coordinates in the $(n+2)$-dimensional Minkowski space $\mathbb{R}^{n+1,1}$ as $x = (x^a), 0 \leq a \leq n + 1$, where x^0 is the time function. Recall that the hyperbolic space \mathbb{H}^{n+1} and de Sitter space N are the subspaces of $\mathbb{R}^{n+1,1}$ defined by

$$\mathbb{H}^{n+1} = \{ x \in \mathbb{R}^{n+1,1} : \langle x, x \rangle = -1, x^0 > 0 \},$$
(2.6) \(N = \{ x \in \mathbb{R}^{n+1} : \langle x, x \rangle = 1 \} \).

Introduce polar coordinates in the Euclidean part of \(\mathbb{R}^{n+1} \) centered in \((0, \ldots, 0) \in \mathbb{R}^{n+1} \) such that the metric in \(\mathbb{R}^{n+1} \) is expressed as

\[
(2.7) \quad ds^2 = -dx^0{}^2 + dr^2 + r^2 \sigma_{ij} d\xi^i d\xi^j,
\]

where \(\sigma_{ij} \) is the spherical metric.

By viewing \(H^{n+1} \) as

\[
(2.8) \quad H^{n+1} = \{ (x^0, r, \xi^i) : r = \sqrt{|x^0|^2 - 1}, x^0 > 0, \xi \in S^n \},
\]

and by setting

\[
(2.9) \quad \varrho = \text{arccosh} x^0,
\]

\(H^{n+1} \) has coordinates \((\varrho, \xi^i)\) and the metric

\[
(2.10) \quad ds^2_{H^{n+1}} = d\varrho^2 + \sinh^2 \varrho \sigma_{ij} d\xi^i d\xi^j.
\]

Similarly,

\[
(2.11) \quad N = \{ (x^0, r, \xi^i) : r = \sqrt{1 + |x^0|^2}, x^0 \in \mathbb{R}, \xi \in S^n \},
\]

and by setting the eigentime

\[
(2.12) \quad \tau = \text{arsinh} x^0,
\]

\(N \) has coordinates \((\tau, \xi^i)\) and the metric

\[
(2.13) \quad ds^2_N = -d\tau^2 + \cosh^2 \tau \sigma_{ij} d\xi^i d\xi^j.
\]

3. Strictly concave curvature functions

For \(\xi, \kappa \in \mathbb{R}^n \), we write \(\xi \sim \kappa \), if there is \(\lambda \in \mathbb{R} \) such that \(\xi = \lambda \kappa \).

3.1. Definition. Let \(F \in C^2(\Gamma) \) be a symmetric, monotone, 1-homogeneous and concave curvature function. We call \(F \) strictly concave (in non-radial directions), if

\[
(3.1) \quad F_{ij} \xi^i \xi^j < 0 \quad \forall \xi \neq \kappa \text{ and } \xi \neq 0,
\]

or equivalently, if the multiplicity of the zero eigenvalue for \(D^2 F(\kappa) \) is one for all \(\kappa \in \Gamma \).

Note since \(F \) is homogeneous of degree 1, \(\kappa \in \Gamma \) is an eigenvector of \(D^2 F(\kappa) \) with zero eigenvalue. In [7, Chapter 3] it is proved that \(\sigma_k, 2 \leq k \leq n \) and the inverses \(\sigma_k \) of \(\sigma_k, 1 \leq k \leq n \) are strictly concave. In [12, Chapter 2] it is proved that \(Q_k = H_{k+1} / H_k, 1 \leq k \leq n - 1 \) are strictly concave in \(\Gamma_+ \). We consider the rest of the concave and inverse concave curvature functions listed on page 3.

3.2. Lemma. The curvature functions

\[
(3.2) \quad F = \left(\frac{1}{n} \sum_k \kappa^r_k \right)^{1/r} - 1 \leq r < 1
\]

are strictly concave in \(\Gamma_+ \).
Proof. Note that F converges locally uniformly to $\sigma_n = (\kappa_1 \cdots \kappa_n)^{1/n}$ as $r \to 0$ and σ_n is strictly concave. Furthermore, for $-1 \leq r < 1$ and $r \neq 0$,

\begin{equation}
\frac{\partial F}{\partial \kappa_i} = n^{-1/r} \left(\sum_{l} \kappa_l^r \right)^{\frac{1}{r} - 1} \kappa_i^r \left(\sum_{l} \kappa_l^r \right)^{1/r - 1} \kappa_i^r \kappa_i^r - \sum_{l} \kappa_l^r \delta_{ij},
\end{equation}

where σ_n is strictly concave. Furthermore, for $-1 < r < 1$ and $r \neq 0$,

\begin{equation}
\frac{\partial^2 F}{\partial \kappa_i \partial \kappa_j} = n^{-1/r} (1 - r) \left(\sum_{l} \kappa_l^r \right)^{\frac{1}{r} - 2} \kappa_i^r \kappa_i^r - \sum_{l} \kappa_l^r \delta_{ij}).
\end{equation}

Consider η such that $F_{ij} \eta^j = 0$. Since $r \neq 1$,

\begin{equation}
\eta_i = \left(\sum_{l} \kappa_l^r \right)^{-1} \kappa_i^r \eta^j \kappa_j.
\end{equation}

Knowing that F is concave for $|r| \leq 1$ we conclude that F is strictly concave for $-1 \leq r < 1$. \hfill \Box

3.3. Lemma. Let f^α be concave in Γ_+ for all $1 \leq \alpha \leq k$ and strictly concave in Γ_+ for at least one index in $1 \leq \alpha \leq k$. Let φ be strictly monotone increasing and concave in Γ_+, then

\begin{equation}
F(\kappa_1, \cdots, \kappa_n) = \varphi(f^1(\kappa_1, \cdots, \kappa_n), \cdots, f^k(\kappa_1, \cdots, \kappa_n))
\end{equation}

is strictly concave in Γ_+.

Proof. Let $0 \neq \xi \in \mathbb{R}^n$ and $\xi \neq \kappa$, then

\begin{equation}
F_{ij} \xi^i \xi^j = \varphi_n f^\alpha_{ij} \xi^i \xi^j + \varphi_{\alpha \beta} f^\alpha_{ij} f^\beta_{ij} \xi^i \xi^j < 0,
\end{equation}

since by assumption

\begin{equation}
\varphi_\alpha > 0, \quad \varphi_{\alpha \beta} \leq 0, \quad f^\alpha_{ij} \xi^i \xi^j \leq 0
\end{equation}

and

\begin{equation}
f^\alpha_{ij} \xi^i \xi^j < 0 \text{ for at least one } 1 \leq \alpha \leq k. \hfill \Box
\end{equation}

Note that the weighted geometric mean

\begin{equation}
\varphi(f^1, \cdots, f^k) = (f^1)^{\alpha_1} \cdots (f^k)^{\alpha_k} \quad \text{with} \quad \sum_i \alpha_i = 1
\end{equation}

is a strictly monotone increasing and concave function. Knowing that $H_{k+1}/H_k, 1 \leq k \leq n - 1$ are strictly concave in Γ_+, we conclude that

\begin{equation}
(H_{k}/H_l)^{1/(k-l)} = (H_{l+1}/H_l)^{1/(k-l)} \cdots (H_k/H_{k-1})^{1/(k-l)} \quad 0 \leq l < k \leq n
\end{equation}

and

\begin{equation}
H_1^{\alpha_1} H_2^{\alpha_2 - \alpha_1} \cdots H_2^{\alpha_k - \alpha_2} H_n^{1 - \alpha_k} = \left(\frac{H_1}{H_0} \right)^{\alpha_1} \left(\frac{H_2}{H_1} \right)^{\alpha_2} \cdots \left(\frac{H_n}{H_{n-1}} \right)^{\alpha_n}
\end{equation}
with \(\alpha_i \geq 0, \sum_i \alpha_i = 1 \) and \(\alpha_1 \neq 1 \) are strictly concave in \(\Gamma^+ \).

4. Polar sets and dual flows

We state some facts about Gauß maps for \((H^{n+1}, N)\), cf. [5, Section 10.4].

4.1. Theorem. Let \(x : M_0 \to M \subset H^{n+1} \) be a closed, connected, strictly convex hypersurface. Consider \(M \) as a codimension 2 immersed submanifold in \(\mathbb{R}^{n+1,1} \), such that
\[
(4.1) \quad x_{ij} = g_{ij} x - h_{ij} \bar{x},
\]
where \(\bar{x} \in T_x(\mathbb{R}^{n+1,1}) \) is the representation of the exterior normal vector \(\nu = (\nu^i) \) of \(M \) in \(T_x(H^{n+1}) \). Then the Gauß map
\[
(4.2) \quad \bar{x} : M_0 \to N
\]
is the embedding of a closed, spacelike, achronal, strictly convex hypersurface \(\bar{M} \subset N \). Viewing \(\bar{M} \) as a codimension 2 submanifold in \(\mathbb{R}^{n+1,1} \), its Gaussian formula is
\[
(4.3) \quad \bar{x}_{ij} = -\bar{g}_{ij} \bar{x} + \bar{h}_{ij} x,
\]
where \(\bar{g}_{ij}, \bar{h}_{ij} \) are the metric and second fundamental form of \(\bar{M} \) and \(x \) is the embedding of \(M \) which also represents the future directed normal vector of \(\bar{M} \). The second fundamental form \(\bar{h}_{ij} \) is defined with respect to the future directed normal vector, where the time orientation of \(N \) is inherited from \(\mathbb{R}^{n+1,1} \). Furthermore, there holds
\[
(4.4) \quad \bar{h}_{ij} = h_{ij},
\]
\[
(4.5) \quad \bar{\kappa}_i = \kappa_i^{-1}.
\]

\(\square \)

We prove in the following that the duality is also valid in case of curvature flows.

4.2. Lemma. Let \(\Phi \in C^\infty(\mathbb{R}^+) \) be strictly monotone, \(\dot{\Phi} > 0 \), and let \(F \in C^\infty(\Gamma^+_* \mathbb{R}_+ \) be a symmetric, monotone, 1-homogeneous curvature function such that \(F|_{\Gamma^+_* \mathbb{R}_+} > 0 \) and such that the flows
\[
(4.6) \quad \dot{x} = -\Phi(F) \nu
\]
in \(H^{n+1} \) resp.
\[
(4.7) \quad \dot{x} = -\Phi(\bar{F}^{-1}) \bar{\nu}
\]
in \(N \) with initial strictly convex hypersurfaces \(M_0 \) resp. \(\bar{M}_0 \) exist on maximal time intervals \([0, T^*) \) resp. \([0, \bar{T}^*) \), where \(\nu \) and \(\bar{\nu} \) are the exterior normal resp. past directed normal. The flow hypersurfaces are then strictly convex. Let \(M(t) \) resp. \(\bar{M}(t) \) be the corresponding flow hypersurfaces, then \(T^* = \bar{T}^* \) and \(M(t) = \bar{M}(t) \) for all \(t \in [0, T^*) \).

Proof. The arguments are similar to those in [7, Section 4] with combination with the results from [5, Section 10.4]. Since there holds
\[(x, x) = 1, \langle \dot{x}, x \rangle = 0, \langle x_j, x \rangle = 0, \langle \tilde{x}, x \rangle = 0,\]
(see [5, Lemma 10.4.1] for the last identity) we can consider the flow (4.6) as flow in \(\mathbb{R}^{n+1,1}\)
\[(4.8) \quad \dot{x} = -\Phi \tilde{x},\]
and we have the decomposition
\[(4.9) \quad T_x(\mathbb{R}^{n+1,1}) = T_x(\mathbb{H}^{n+1}) \oplus \langle x \rangle.\]
Furthermore, we conclude from
\[(4.10) \quad \langle \dot{\tilde{x}}, x_j \rangle = \Phi_j, \quad \langle \dot{\tilde{x}}, \tilde{x} \rangle = 0, \quad \langle \dot{\tilde{x}}, x \rangle = \Phi,\]
from the Weingarten equation (see [5, Lemma 10.4.3, 10.4.4])
\[(4.11) \quad x_j = \tilde{h}^k_j \tilde{x}_k,\]
and from (4.10) that
\[(4.12) \quad \dot{x} = \Phi x + \Phi^m x_m = \Phi x + \Phi^m \tilde{h}^k_m \tilde{\tilde{x}}_k,\]
where
\[(4.13) \quad \tilde{\tilde{V}}_2 = 1 - |D \tilde{u}|^2 = 1 - \frac{1}{\cosh^2 \tilde{u}} \sigma^{ij} \tilde{u}_i \tilde{u}_j.\]
Note that \(\tilde{v}\) in (4.15) is the future directed normal
\[(4.14) \quad (\tilde{v}^n) = \tilde{v}^{-1}(1, \tilde{\tilde{u}}),\]
where
\[(4.15) \quad \tilde{\tilde{u}}^i = \frac{1}{\cosh^2 \tilde{u}} \sigma^{ij} \tilde{u}_j.\]
Thus it holds in view of (4.15)
\[
\frac{\partial \tilde{u}}{\partial t} = \frac{d \tilde{u}}{dt} - \tilde{u}_i \tilde{x}^i = \Phi \tilde{v} - \frac{1}{\Phi} |D \tilde{u}|^2 - \Phi \tilde{h}_{ik} \delta^i_k \tilde{u}_i = \Phi \tilde{v}.
\]
This is exactly the scalar curvature equation of the flow equation (4.22)
\[
\dot{x} = -\Phi \tilde{v},
\]
where \(\tilde{v} \) in (4.22) is the future directed normal and
\[
\Phi = \Phi(F) = \Phi(F^{-1}).
\]
Now \(\tilde{h}_{ij} \) in \(N \) is defined with respect to the future directed normal. By adapting the convention in [5, p.307] we switch the light cone in \(N \) and by defining \(\tau = -\arcsinh x^0 \) in (2.12) we still derive the flow (4.22) in \(N \), where \(\tilde{v} \) is now the past directed normal and the second fundamental form is defined with respect to this normal. The rest of the proof is identical to [7, Theorem 4.2].

From now we shall employ this duality by choosing
\[
\Phi(r) = r.
\]
Note that the expanding flows in \(\mathbb{H}^{n+1} \) was already considered in [6] and its non-scale-invariant version in [14].

5. Pinching estimates

We consider the contracting flow
\[
\begin{align*}
\dot{x} &= -F \nu, \\
x(0) &= M_0
\end{align*}
\]
in \(\mathbb{H}^{n+1} \) with initial smooth and strictly convex hypersurfaces \(M_0 \), where \(\nu \) is the exterior normal vector.

Under the assumptions of Theorem 1.2 the curvature flow (5.1) exists on a maximal time interval \([0, T^*)\), \(0 < T^* \leq \infty \), cf. [5, Theorem 2.5.19, Lemma 2.6.1].

5.1. Theorem. Let \(M(t) \) be a solution of the flow (5.1) in \(\mathbb{H}^{n+1} \). If the initial hypersurface \(M_0 \) in \(\mathbb{H}^{n+1} \) satisfies
\[
\kappa_i > 1,
\]
then this condition will also be satisfied by the flow hypersurfaces \(M(t) \) during the evolution.
It was proved in [1] that the tensor S, homogeneous of order 2, satisfies the equation
\begin{equation}
\dot{S}_{ij} = h_{ij} - g_{ij}
\end{equation}
which is in (5.3) $S_{ij} = h_{ij} - g_{ij}$. The proof is similar to those in [4, Theorem 3.2], where the notation C_t denotes the part is based on the computation in [4, Theorem 3.2] implies that S_{ij} is a constant, depending on the $C_t^0 \equiv 0$.

Proof. The tensor S_{ij} satisfies the equation
\begin{equation}
\dot{S}_{ij} - F^{kl}S_{ij;kl} = F^{kl}h_{rk}h^r_i + 2Fh_i^k + F^{kl,rs}h_{kl,r}h_{rs,j}
\end{equation}
where $\dot{N}_{ij} = F^{kl,rs}h_{kl,r}h_{rs,j}$. At every point where $h_{ij} \eta^j = \eta$ there holds
\begin{equation}
N_{ij}\eta^i \eta^j \equiv \{F^{kl}h_{rk}h^r_i - 2F + F^{kl}g_{kl}\} [\eta]^2 \geq 0.
\end{equation}
It was proved in [3, Theorem 3.3, Lemma 4.4] that
\begin{equation}
\dot{N}_{ij}\eta^i \eta^j + \sup_{\Gamma} 2F^{kl}\{2\Gamma^r_i S_{ir,k} \eta^j - \Gamma^r_i \Gamma^s_k S_{rs} \} \geq 0,
\end{equation}
where only the inverse concavity of F was used. Andrews’ maximum principle in [3, Theorem 3.2] implies that $S_{ij} > 0$ during the evolution. □

In the next step we use a constant rank theorem to allow the condition $\kappa_t \geq 1$ in the proof of the succeeding Lemma 5.4.

5.2. Lemma. Let $M(t)$ be a solution of the flow (5.1) in \mathbb{H}^{n+1} and assume that the tensor S_{ij} satisfies $S_{ij} \geq 0$ on the hypersurfaces $M(t)$ for $t \in [0, T^*)$, then S_{ij} is of constant rank $l(t)$ for every $t \in (0, T^*)$.

Proof. The proof is similar to those in [15, Theorem 3.2], where the main part is based on the computation in [4, Theorem 3.2]. For $\epsilon > 0$, let
\begin{equation}
W_{ij} = S_{ij} + \epsilon g_{ij}.
\end{equation}
Let $l(t)$ be the minimal rank of $S_{ij}(t)$. For a fixed $t_0 \in (0, T^*)$, let $x_0 \in M(t_0)$ be the point such that $S_{ij}(t_0, x_0)$ attains its minimal rank at x_0. Set
\begin{equation}
\phi(t, \xi) = H_{l+1}(W_{ij}(t, \xi)) + H_{l+2}(W_{ij}(t, \xi))
\end{equation}
where H_l is the elementary symmetric polynomials of eigenvalues of W_{ij}, homogeneous of order l. A direct computation shows
\begin{equation}
F^{kl}W_{ij;kl} - \dot{W}_{ij} = -F^{kl}h_{rk}h^r_i W_{ij} - F^{kl}g_{kl}W_{ij} + 2Fh_i^k W_{kj}
\end{equation}
\begin{equation}
- F^{kl,rs}W_{kl,r}W_{rs,j} + 2F\epsilon g_{ij}
\end{equation}
\begin{equation}
- (1 - \epsilon)\{F^{kl}h_{rk}h^r_i - 2F + F^{kl}g_{kl}\} g_{ij}.
\end{equation}
As in [4], we consider a neighborhood $(t_0 - \delta, t_0) \times \mathcal{O}$ around (t_0, ξ_0). We use the notation $h = O(f)$ if $|h(\xi)| \leq C f(\xi)$ for every $(t, \xi) \in (t_0 - \delta, t_0] \times \mathcal{O}$, where C is a constant, depending on the $C^{1,1}$ norm of the second fundamental form on $(t_0 - \delta, t_0] \times \mathcal{O}$, but independent of ϵ. It was proved in [4, Corollary 2.2] that ϕ is in $C^{1,1}$. And as in [4], let $G = \{n-l+1, n-l+2, \ldots, n\}$
and \(B = \{1, \ldots, n - l\} \). We choose the coordinates such that \(h_{ij} = \kappa_i \delta_{ij} \) and \(g_{ij} = \delta_{ij} \). In view of \([4, (3.14)]\), in such coordinates \(\phi^{ij} \) is up to \(O(\phi) \) non-negative in \(O \) and we have

\[
F^{kl} \phi_{,kl} - \dot{\phi} \leq \phi^{ij} \{ - F^{kl} h_{rk} h_{lj} W_{ij} - F^{kl} g_{kl} W_{ij} + 2 F h_{ik} W_{kj} \\
+ 2 F g_{ij} - F^{kl,rs} W_{kl,i} W_{rs,j} \} + F^{kl} \delta^{ij,rs} W_{ij,kl} W_{rs,kl} + O(\phi).
\]

We can choose \(O \) small enough, such that \(\epsilon = O(\phi) \) as in \([4, (3.8)]\). It was proved in \([4, (3.14)]\) that \(\phi_{ii} = O(\phi) \) for \(i \in G \) and since \(W_{ii} \leq \phi \) for \(i \in B \), we infer that

\[
F^{kl} \phi_{,kl} - \dot{\phi} \leq - \phi^{ij} F^{kl,rs} W_{kl,i} W_{rs,j} + F^{kl} \phi^{ij,rs} W_{ij,kl} W_{rs,kl} + O(\phi).
\]

Using the inverse concavity of \(F \) and proceed as in \([4, \text{Theorem 3.2}]\), we conclude

\[
F^{kl} \phi_{,kl} - \dot{\phi} \leq C \{ \phi + |D\phi| \},
\]

where \(C \) is a constant independent of \(\epsilon \) and \(\phi \). Taking \(\epsilon \to 0 \), the strong maximum principle for parabolic equations yields

\[
H_{l(t_0)+1}(S_{ij}(t, \xi)) \equiv 0 \quad \forall (t, \xi) \in (t_0 - \delta, t_0) \times O.
\]

Since \(M(t_0) \) is a closed hypersurface, \(S_{ij}(t_0, \xi) \) is of constant rank \(l(t_0) \) on \(M(t_0) \).

Note that the proof of the Lemma 5.1 implies, if the initial hypersurface satisfies \(\kappa_i \geq 1 \), then this condition remains true during the evolution. Furthermore, every closed hypersurface in \(\mathbb{H}^{n+1} \) contains a point on which holds \(\kappa_i > 1 \). Thus we conclude

5.3. Corollary. Let \(M(t) \) be a solution of the flow (5.1) in \(\mathbb{H}^{n+1} \). If the initial hypersurface \(M_0 \) in \(\mathbb{H}^{n+1} \) satisfies \(\kappa_i \geq 1 \), then \(\kappa_i > 1 \) for every \(t \in (0, T^*) \).

5.4. Lemma. Let \(M(t) \) be a solution of the flow (5.1) in \(\mathbb{H}^{n+1} \) under assumption 1.1 (1), then there exists a uniform positive constant \(\epsilon > 0 \) such that

\[
\kappa_1 \geq \epsilon \kappa_n
\]

during the evolution, where the principal curvatures are labeled as

\[
\kappa_1 \leq \cdots \leq \kappa_n.
\]

Proof. The proof is similar to \([13, \text{Lemma 4.2}]\). By Replacing \(M_0 \) by \(M(t_0) \) for a \(t_0 \in (0, T^*) \) as initial hypersurface, we can assume that \(\kappa_i > 1 \) on \(M_0 \). Let \(F \) be a concave and inverse concave curvature function, then

\[
T_{ij} = h_{ij} - g_{ij} - \epsilon (H - n) g_{ij}
\]
satisfies the equation
\[
\dot{T}_{ij} - F^{kl} T_{ij;kl} = F^{kl} h_{rk} h_{r}^{i} \{ h_{ij} - \epsilon H g_{ij} \} - 2F h_{kl}^{k} \{ h_{kj} - \epsilon H g_{kj} \} \\
+ 2K_{N} F g_{ij} - 2nK_{N} F g_{ij} - K_{N} F^{kl} g_{kl} \{ h_{ij} - \epsilon H g_{ij} \} \\
- 2F(\epsilon n - 1)h_{ij} + F^{kl;r} h_{kl;ij} h_{rs;ij} - \epsilon F^{kl;r} h_{kl;ij} h_{rs;ij} g^{pq} g_{ij} \\
\equiv N_{ij} + \tilde{N}_{ij},
\]
where \(\tilde{N}_{ij} = F^{kl;r} h_{kl;ij} h_{rs;ij} - \epsilon F^{kl;r} h_{kl;ij} h_{rs;ij} g^{pq} g_{ij}\).

At every point where \(T_{ij} \eta = 0\) there holds
\[
N_{ij} \eta^{\iota} \eta^{\iota} = F^{kl} h_{rk} h_{r}^{i} (1 - \epsilon n) |\eta|^{2} + 2F h_{ij} (\epsilon n - 1) \eta^{\iota} \eta^{\iota} \\
+ \{ F^{kl} g_{kl} - 2F \} (1 - \epsilon n) |\eta|^{2} - 2F (\epsilon n - 1) h_{ij} \eta^{\iota} \eta^{\iota} \\
= (1 - \epsilon n) \sum_{i} F_{i} (\kappa_{i}^{2} - 2\kappa_{i} + 1) |\eta|^{2} \geq 0.
\]

It is proved in [1, Theorem 4.1] (see also the modification in [13, Theorem B.2]) that
\[
\tilde{N}_{ij} \eta^{\iota} \eta^{\iota} + \sup_{r} 2F^{kl} \{ 2\Gamma^{r}_{i} T_{ir} \eta^{i} - \Gamma^{r}_{i} \Gamma^{s}_{i} T_{rs} \} \geq 0,
\]
We can choose \(\epsilon > 0\) sufficiently small, such that \(T_{ij} \geq 0\) on \(M_{0}\), then the Andrews’ maximum principle [3, Theorem 3.2] implies \(T_{ij} \geq 0\) and hence
\[
\kappa_{1} \geq 1 \geq \epsilon (H - n)
\]
during the evolution. \(\square\)

The following pinching results is due to Gerhardt. By using [8, Theorem 1.1] and the duality result Lemma 4.2 we obtain

5.5. **Theorem.** Let \(M(t)\) be a solution of the flow (5.1) in \(\mathbb{H}^{n+1}\) under the assumption 1.1 (2), then there exists a uniform constant \(\epsilon > 0\) such that
\[
\kappa_{1} \geq \epsilon \kappa_{n}
\]
during the evolution.

6. **Contracting flows - convergence to a point**

Fix a point \(p_{0} \in \mathbb{H}^{n+1}\), the hyperbolic metric in the geodesic polar coordinates centered at \(p_{0}\) can be expressed as
\[
ds^{2} = dr^{2} + \sinh^{2} r \sigma_{ij} dx^{i} dx^{j},
\]
where \(\sigma_{ij}\) is the canonical metric of \(S^{n}\).

Geodesic spheres with center in \(p_{0}\) are totally umbilic. The induced metric, second fundamental form and the principal curvatures of the coordinate slices \(S_{r} = \{ x^{0} = r \} \) are given by
\[
\dot{g}_{ij} = \sinh^{2} r \sigma_{ij}, \quad \dot{h}_{ij} = \frac{1}{2} \dot{g}_{ij} = \coth r \ddot{g}_{ij}, \quad \bar{k}_{i} = \coth r,
\]
respectively. See [5, (1.5.12)].

6.1. Lemma. Consider (5.1) with initial hypersurface \(x(0) = S_{r_0} \), then the corresponding flow exists in a maximal time interval \([0, T^*)\) with \(T^* \) finite and will shrink to a point. The flow hypersurfaces \(M(t) \) are all geodesic spheres with the same center and their radii \(\Theta = \Theta(t) \) solve the ODE

\[
\begin{align*}
\dot{\Theta} &= -\coth \Theta, \\
\Theta(0) &= r_0.
\end{align*}
\]

(6.3)

Proof. We set

\[
\begin{align*}
x^0(t, \xi) &= \Theta(t), \\
x^i(t, \xi) &= x^i(0, \xi).
\end{align*}
\]

(6.4)

In view of [5, (1.5.7)] the exterior normal of a geodesic sphere is \((1,0,\ldots,0)\).

Using that \(F(\bar{h}_{ij}) = \coth \Theta \), we see that \(x \) in (6.4) solves the flow equation (5.1). Now the solution of (6.3) is given by

\[
\cosh \Theta = (\cosh r_0) e^{-t}.
\]

(6.5)

Thus the spherical flow exists only for a finite time \([0, T^*)\). Note that (6.5) can be rewritten as

\[
\Theta = \arccosh e^{(T^*-t)}.
\]

(6.6)

Next we want to prove that the flow (5.1) shrinks to a point. Using the inverse of the Beltrami map, \(\mathbb{H}^{n+1} \) is parametrizable over \(B_1(0) \) yielding the metric (cf. [5, Section 10.2])

\[
ds^2 = \frac{1}{(1-r^2)^2} dr^2 + \frac{r^2}{1-r^2} \sigma_{ij} d\xi^i d\xi^j.
\]

(6.7)

Define the variable \(q \) by

\[
q = \arctanh r = \frac{1}{2} (\log(1+r) - \log(1-r)),
\]

(6.8)

then

\[
ds^2 = dq^2 + \sinh^2 q \sigma_{ij} d\xi^i d\xi^j.
\]

(6.9)

Let

\[
ds^2 = dr^2 + r^2 \sigma_{ij} d\xi^i d\xi^j
\]

be the Euclidean metric over \(B_1(0) \). Define

\[
d\tau = \frac{1}{r\sqrt{1-r^2}} dr, \quad d\hat{\tau} = r^{-2} dr,
\]

(6.10)
we have further
\[
\begin{align*}
 ds^2 &= \frac{r^2}{1-r^2} \{d\tau^2 + \sigma_{ij} d\xi^i d\xi^j\} \equiv e^{2\psi} \{d\tau^2 + \sigma_{ij} d\xi^i d\xi^j\}, \\
 ds^2 &= r^2 \{d\tilde{\tau}^2 + \sigma_{ij} d\xi^i d\xi^j\} \equiv e^{2\tilde{\psi}} \{d\tilde{\tau}^2 + \sigma_{ij} d\xi^i d\xi^j\}.
\end{align*}
\]
(6.12)

An arbitrary closed, connected, strictly embedded hypersurface \(M \subset \mathbb{H}^{n+1} \) bounds a convex body and we can write \(M \) as a graph in geodesic polar coordinates.

(6.13) \[M = \text{graph } u = \{ \tau = u(x) : x \in \mathbb{S}^n \}. \]

\(M \) can also be viewed as a graph \(\tilde{M} \) in \(B_1(0) \) with respect to the Euclidean metric

(6.14) \[\tilde{M} = \text{graph } \tilde{u} = \{ \tilde{\tau} = \tilde{u}(x) : x \in \mathbb{S}^n \}. \]

Writing \(\tilde{u} = \varphi(u) \), then there holds (see [5, (10.2.18)])

(6.15) \[\dot{\varphi}^2 = 1 - r^2. \]

The same argument as in [7, Lemma 6.1] yields

6.2. Lemma. Let \(M(t) \) be a solution of (5.1) on a maximal time interval \([0, T^*)\) and represent \(M(t) \), for a fixed \(t \in [0, T^*) \), as a graph in polar coordinates with center in \(x_0 \in M(t) \)

(6.16) \[M(t) = \text{graph } u(t, \cdot), \]

then

(6.17) \[\inf_M u(t) \leq \Theta(t, T^*) \leq \sup_M u, \]

where the solution of the spherical flow \(\Theta(t, T^*) \) is given by (6.6). \(\square \)

6.3. Lemma. Let \(x_0 \in \tilde{M}(t) \) be as above and represent \(M(t) \) in Euclidean polar coordinates (6.10), then there exists a constant \(c_0 = c_0(M_0) < 1 \) such that the estimate

(6.18) \[r \leq c_0 \]

holds for any \(t \in [0, T^*) \).

Proof. The argument is similar to those in [7, Lemma 6.3, Remark 6.5]. Looking at the scalar flow equation for a short time interval, we conclude that the convex bodies \(\tilde{M}(t) \subset \mathbb{H}^{n+1} \) are decreasing with respect to \(t \). Furthermore, \(\tilde{M}_0 \) is strictly convex. Thus \(\varphi \) is uniformly bounded and the claim follows from the relation

(6.19) \[r = \tanh \varphi = 1 - \frac{2}{e^{2\varphi} + 1}. \]

\(\square \)

Denote \(h_{ij} \) resp. \(\tilde{h}_{ij} \) the second fundamental forms and \(\kappa_i \) resp \(\tilde{\kappa}_i \) the principal curvatures of \(M \) with respect to the ambient metric \(\tilde{g}_{\alpha\beta} \) resp. \(\tilde{g}_{\alpha\beta} \).
6.4. Lemma. The principal curvatures $\tilde{\kappa}_i$ of $\hat{M}(t)$ are pinched, i.e., there exists a uniform constant c such that

$$\tilde{\kappa}_n \leq c\tilde{\kappa}_1,$$

where the $\tilde{\kappa}_i$ are labeled as

$$\tilde{\kappa}_1 \leq \cdots \leq \tilde{\kappa}_n.$$

Proof. The h_{ij} and \tilde{h}_{ij} are related through the formula (see [5, (10.2.33)])

$$\tilde{h}_{ij} = (1 - r^2)h_{ij}v,$$

where

$$v^2 = 1 + \sigma^{ij}u_iu_j,$$

$$\tilde{v}^2 = 1 + \dot{\sigma}^{ij}u_iu_j.$$

Because of Lemma 6.3 there exists $0 < \delta < 1$ such that

$$r^2 \leq 1 - \delta,$$

and thus

$$\delta v^2 \leq \tilde{v}^2 \leq v^2,$$

$$\delta h_{ij} \leq \tilde{h}_{ij} \leq \delta^{-1} h_{ij}.$$

Furthermore, there holds

$$g_{ij} = \frac{r^2}{1 - r^2} \{u_iu_j + \sigma^{ij}\},$$

$$\tilde{g}_{ij} = \frac{\dot{r}^2}{r^2} \{\dot{\sigma}^{ij}u_iu_j + \sigma^{ij}\}.$$

and we conclude

$$\delta^2 g_{ij} \leq \tilde{g}_{ij} \leq g_{ij}.$$

Now the claim follows from the maximum-minimum principle. \qed

For $\hat{M}(t) \subset \mathbb{H}^{n+1}$, the inradius $\rho_-(t)$ and circumradius $\rho_+(t)$ of $\hat{M}(t)$ are defined by

$$\rho_-(t) = \sup \{r : B_r(y) \text{ is enclosed by } \hat{M}(t) \text{ for some } y \in \mathbb{H}^{n+1}\},$$

$$\rho_+(t) = \inf \{r : B_r(y) \text{ encloses } \hat{M}(t) \text{ for some } y \in \mathbb{H}^{n+1}\}.$$

Now, choose $x_0 \in \hat{M}(t)$ to be the center of the inball of $\hat{M}(t) \subset \mathbb{H}^{n+1}$ and let x_0 be the center of the geodesic polar coordinates. Note that the center of the Euclidean inball is also x_0. Let $\rho_-(t)$ resp. $\rho_+(t)$ be the inradius resp. circumradius of $\hat{M}(t) \subset \mathbb{H}^{n+1}$, and let $\tilde{\rho}_-(t)$ resp. $\tilde{\rho}_+(t)$ be the inradius resp. circumradius of $\hat{M}(t) \subset \mathbb{R}^{n+1}$.

6.5. Lemma. Let $B_{\rho_-(t)}(x_0) \subset \hat{M}(t)$ be a geodesic inball, then there exist positive constants c and δ, such that

$$\hat{M}(t) \subset B_{4c\rho_-(t)}(x_0) \quad \forall t \in [T^* - \delta, T^*).$$
Proof. The pinching estimates in the Euclidean ambient space (6.20) and [1, Theorem 5.1, Theorem 5.4] imply
\begin{equation}
\tilde{\rho}_+(t) \leq c \tilde{\rho}_-(t)
\end{equation}
with a uniform constant c, hence $\tilde{M}(t)$ is contained in the Euclidean ball $B_{\tilde{\rho}}(0)$,
\begin{equation}
\tilde{M}(t) \subset B_{\tilde{\rho}}(0), \quad \tilde{\rho}(t) = 2\epsilon \tilde{\rho}_-(t).
\end{equation}
Furthermore, we deduce from Lemma 6.2 that
\begin{equation}
\inf_{M(t)} \tilde{u} \leq \tilde{\Theta} \leq \sup_{M(t)} \tilde{u},
\end{equation}
where $M(t) = \text{graph } \tilde{u}$ is a representation of $M(t)$ in Euclidean polar coordinates. We conclude further
\begin{equation}
\tilde{\rho}(t) = 2\epsilon \tilde{\rho}_-(t) \leq 2\epsilon \tilde{\Theta}.
\end{equation}
Choose now $\delta > 0$ small such that
\begin{equation}
2\epsilon \tilde{\Theta}(t, T^*) \leq 1 \quad \forall t \in [T^* - \delta, T^*).
\end{equation}
Now it holds for
\begin{equation}
\rho(t) = \text{arctanh } \tilde{\rho}(t)
\end{equation}
\begin{equation}
\tilde{M}(t) \subset B_{\rho(t)}(x_0) \subset \mathbb{H}^{n+1}.
\end{equation}
Since
\begin{equation}
\tilde{\rho}(t) \leq 1,
\end{equation}
we conclude further
\begin{equation}
\tilde{\rho} \leq \rho \leq 2\tilde{\rho}, \quad \tilde{\rho}_- \leq \rho_-.\n\end{equation}
Thus
\begin{equation}
\rho \leq 2\tilde{\rho} = 4\epsilon \rho_- \leq 4c\rho_-
\end{equation}
and the claim follows. \(\Box\)

6.6. Lemma. During the evolution the flow hypersurfaces $M(t)$ are smooth and uniformly convex satisfying a priori estimates in any compact subinterval $[0, T] \subset [0, T^*)$.

Proof. Let $0 < T < T^*$ be fixed. From (6.31) and (6.33) we infer
\begin{equation}
\epsilon \tilde{\Theta}(T, T^*) \leq \tilde{\rho}_-(T).
\end{equation}
Since
\begin{equation}
\Theta(T, T^*) = \text{arctanh } \tilde{\Theta}(T, T^*), \quad \rho_-(T) = \text{arctanh } \tilde{\rho}_-(T),
\end{equation}
and $\tilde{\rho}_-(T)$, $\tilde{\Theta}(T, T^*)$ are uniformly bounded from above by 1 we infer that
\begin{equation}
0 < \frac{\epsilon}{2} \Theta = \frac{\epsilon}{2} \text{arctanh } \tilde{\Theta} \leq c\tilde{\Theta} \leq \text{arctanh } (c\tilde{\Theta}) \leq \rho_-(T).
\end{equation}
Let \(x_0 \in \hat{M}(T) \) be the center of an inball and introduce geodesic polar coordinates with center \(x_0 \). This coordinate system will cover the flow in \(0 \leq t \leq T \).

Writing the flow hypersurfaces as graphs \(u(t, \cdot) \) of a function we have

\[
0 < c^{-1} \leq u \leq c.
\]

And since \(M(t) \) are convex,

\[
v^2 = 1 + \sinh^{-2} u \sigma^{ij} u_i u_j
\]

is uniformly bounded. Under assumption 1.1 (1) we have \(\kappa_i \geq 1 \). And under assumption 1.1 (2) it is proved in [8, Lemma 4.4] that

\[
\frac{1}{n} \tilde{\kappa}_n \leq \tilde{F} \leq c
\]

in \(N \) or equivalently, \(\kappa_i \geq c \) in \(\mathbb{H}^{n+1} \). The proof of uniform boundedness of \(\kappa_i \) from above is similar to those in [7, Theorem 6.6]. Since \(\tilde{F} \) is concave, we may first apply the Krylov-Safonov and then the parabolic Schauder estimates to obtain the desired a priori estimates. □

In view of Lemma 6.1, 6.2, 6.5 and 6.6, the flow (5.1) shrinks in finite time to a point \(x_0 \).

7. The rescaled flow

In view of Lemma 6.2 and 6.5 we can choose \(\delta > 0 \) small and define

\[
t_\delta = T^* - \delta,
\]

such that

\[
\hat{M}(t_\delta) \subset B_{8\rho_-(t_\delta)}(x_0) \quad \forall x_0 \in \hat{M}(t_\delta),
\]

and

\[
8\rho_-(t_\delta) \leq 8c\Theta(t_\delta, T^*) < 1.
\]

Fix now a \(t_0 \in (t_\delta, T^*) \) and let \(B_{\rho_-(t_0)}(x_0) \) be an inball of \(\hat{M}(t_0) \). Choose \(x_0 \)

to be the center of a geodesic polar coordinate system, then the hypersurfaces \(M(t) \) can be written as graphs

\[
M(t) = \text{graph } u(t, \cdot) \quad \forall t_\delta \leq t \leq t_0,
\]

such that

\[
\rho_-(t_0) \leq u(t_0) \leq u(t) \leq 1.
\]

7.1. Lemma. Let

\[
\chi = \frac{v}{\sinh u} \equiv v\eta(r),
\]

if \(\chi_i = 0 \), then \(u_i = 0 \).
Proof. Note that
\begin{equation}
(7.7) \quad \eta(r) = \frac{1}{\sinh r}
\end{equation}
solves the equation
\begin{equation}
(7.8) \quad \dot{\eta} = -\frac{\bar{H}}{r} \eta,
\end{equation}
hence the proof is same as those in [7, Lemma 7.1]. \qed

Similar to [7, Lemma 7.2, Corollary 7.3] we obtain
\begin{itemize}
\item [7.2. Lemma] There exists a uniform constant \(c > 0\) such that
\begin{equation}
(7.9) \quad \Theta(t, T^*) F \leq c \quad \forall t \in [t_\delta, T^*),
\end{equation}
and that the rescaled principal curvatures \(\bar{k}_i = k_i \Theta\) satisfy
\begin{equation}
(7.10) \quad \bar{k}_i \leq c \quad \forall t \in [t_\delta, T^*).
\end{equation}
\end{itemize}
\begin{itemize}
\item [7.3. Lemma] Let \(t_1 \in [t_\delta, T^*)\) be arbitrary and let \(t_2 > t_1\) be such that
\begin{equation}
(7.11) \quad \Theta(t_2, T^*) = \frac{1}{2} \Theta(t_1, T^*).
\end{equation}
Let \(x_0 \in \hat{M}(t_2)\) be the center of an geodesic inball and introduce polar coordinates around \(x_0\) and write the hypersurface \(M(t)\) as graphs
\begin{equation}
(7.12) \quad M(t) = \text{graph} u(t, \cdot).
\end{equation}
Define \(\vartheta\) by
\begin{equation}
(7.13) \quad \vartheta(r) = \sinh r,
\end{equation}
and
\begin{equation}
(7.14) \quad \varphi = \int_{r_2}^{u} \vartheta^{-1},
\end{equation}
where \(r_2 = \Theta(t_2, T^*)\). Then \(\varphi(t, \cdot)\) is uniformly bounded in \(C^2(\mathbb{S}^n)\) for any \(t_1 \leq t \leq t_2\) independent of \(t_1, t_2\). Furthermore, let \(\Gamma_{ij}^k\) and \(\tilde{\Gamma}_{ij}^k\) be the Christoffel symbols of the metrics \(g_{ij}\) and \(\sigma_{ij}\) respectively, then the tensor \(\Gamma_{ij}^k - \tilde{\Gamma}_{ij}^k\) is also uniformly bounded independent of \(t_1, t_2\).
\end{itemize}
\begin{itemize}
\item [Proof] As in [7, Lemma 7.4], we conclude from Lemma 6.2 and Lemma 6.5 that there exists a uniform constant \(c > 1\), independent of \(t_1, t_2\), such that
\begin{equation}
(7.15) \quad c^{-1} \Theta(t_2, T^*) \leq u(t, \xi) \leq c \Theta(t_2, T^*) \quad \forall t \in [t_1, t_2].
\end{equation}
Note that
\begin{equation}
(7.16) \quad \varphi = \{\log \sinh(\frac{u}{r_2}) - \log \cosh(\frac{u}{r_2})\}_{r_2}^{u},
\end{equation}
thus we derive the \(C^0\)-estimates
\begin{equation}
(7.17) \quad |\varphi| \leq \log c.
\end{equation}
\end{itemize}
As in the proof of [7, Lemma 7.5], an upper bound for the principal curvatures of the slices \(\{ x^0 = \text{const} \} \) intersecting \(M(t) \) satisfies
\[
(7.18) \quad \bar{\kappa} \leq \frac{\sup \cosh u(0, \cdot)}{\sinh u_{\min}} \leq \frac{c}{u_{\min}},
\]
and from [5, (2.7.83)] we infer that the uniformly boundedness of \(v \).
\[
(7.19) \quad v \leq e^{\bar{\kappa}(u_{\max} - u_{\min})} \leq e^{c(u_{\max})},
\]
concluding further that
\[
(7.20) \quad |D\varphi|^2 = v^2 - 1 \leq c.
\]
Define
\[
(7.21) \quad \bar{\varphi}^i = \sigma^{ik} \varphi_k,
\]
where
\[
(7.22) \quad \varphi^i = \sigma_{\ell}^i \varphi^\ell.
\]
Due to the boundedness of \(v \) the metrics \(\bar{g}_{ij} \) and \(\sigma_{ij} \) are equivalent, thus we can raise the indices of \(\varphi_{ij} \) by \(\bar{g}_{ij} \) and by employing the relation [6, (3.26)]
\[
(7.23) \quad h^i_j = v^{-1} \vartheta^{-1} \left\{ -\sigma^{jk} + v^{-2} \varphi^i \varphi^j \right\} \varphi_{jk} + \dot{\vartheta} \delta^i_j,
\]
we infer
\[
(7.24) \quad \bar{g}^{ik} \varphi_{jk} = -v \vartheta h^i_j + \dot{\vartheta} \delta^i_j,
\]
concluding further from (7.10)
\[
(7.25) \quad \| \varphi_{ij} \|^2 \leq c(v^2 \vartheta^2 |A|^2 + n \dot{\vartheta}^2)
\]
is bounded from above for all \(t \in [t_1, t_2] \). We choose coordinates such that \(\bar{F}^i_{ij} \) in a fixed point vanishes. Denote the covariant derivative with respect to \(\sigma_{ij} \) by a colon. In such coordinates
\[
(7.26) \quad \Gamma^k_{ij} = \frac{1}{2} g^{km}(g_{mi,j} + g_{mj,i} - g_{ij,m}).
\]
From
\[
(7.27) \quad g^{ij} = \vartheta^{-2} \bar{g}^{ij}
\]
we compute
\[
(7.28) \quad g^{km} g_{m;i,j} = \bar{g}^{km} (\varphi_{m;j} \varphi^i + \varphi_{i;j} \varphi^m + 2 \cosh u \varphi^m \varphi_i + \sigma_{m;i} \varphi^m).
\]
Using the estimates for \(\varphi \) proved before, we conclude that \(\Gamma^k_{ij} - \bar{F}^k_{ij} \) are uniformly bounded independent of \(t_1 \) and \(t_2 \).

Define a new time parameter as
\[
(7.29) \quad \tau = - \log \Theta,
\]
then
\[
(7.30) \quad \frac{dt}{d\tau} = \Theta \frac{\sinh \Theta}{\cosh \Theta}.
\]
In the following we denote the differentiation with respect to \(t \) by a dot and differentiation with respect to \(\tau \) by a prime.

7.4. **Lemma.** The rescaled quantity \(\tilde{F} = F \Theta \) satisfies the inequality

\[
\sup_{M(t_1)} \tilde{F} \leq c \inf_{M(t_2)} \tilde{F}
\]

with a uniform constant \(c > 0 \).

Proof. \(\tilde{F} \) satisfies the equation

\[
\tilde{F}' = F \Theta^2 \frac{\sinh \Theta}{\cosh \Theta} - \tilde{F},
\]

and from the evolution equation of \(F \) in [7, (2.8)] we conclude further

\[
\tilde{F}' + \tilde{F} - \{ F^{ij} F_{ij} + F^{ij} h_ik h_j^k F + K_N F^{ij} g_{ij} F \} \Theta^2 \frac{\sinh \Theta}{\cosh \Theta} = 0.
\]

We consider the non-trivial term in (7.33)

\[
\tilde{F}' - \{ F^{ij} F_{ij} \Theta^2 \frac{\sinh \Theta}{\cosh \Theta} \}
\]

In view of (7.27), the pinching estimate and the boundedness of \(v, \Theta^2 F^{ij} \) and \(\sigma^{ij} \) are equivalent and hence uniformly positive definite. Furthermore,

\[
F_{ij} = \bar{F}_{ij} - \{ \Gamma^k_{ij} - \bar{\Gamma}^k_{ij} \} \bar{F}_k.
\]

Hence we conclude from Lemma 7.3 that \(\tilde{F} \) satisfies a uniform parabolic equation of the form

\[
\tilde{F}' - a^{ij} \tilde{F}_{ij} + b^i \tilde{F}_i + c \tilde{F} = 0
\]

in the cylinder \([\tau_1, \tau_2] \times S^n\), where \(\tau_1 = - \log \Theta(t, T^*) \), with uniformly bounded coefficients. The statement follows then from the parabolic Harnack inequality. □

7.5. **Corollary.** The rescaled principal curvatures \(\tilde{\kappa}_i = \kappa \Theta \) are uniformly bounded from below.

Proof. Consider a point \((t, \xi)\) in \(M(t) \) such that

\[
u(t, \xi) = \sup_{M(t)} u.
\]

In view of [5, (1.5.10)], it holds in \((t, \xi)\)

\[
h_{ij} \geq \bar{h}_{ij}, \quad g_{ij} = \bar{g}_{ij}, \quad \kappa_i \geq \bar{\kappa}_i = \frac{\cosh u}{\sinh u}.
\]

where we denote the quantity of the slices \(\{ x^0 = \text{const} \} \) with a bar. In view of (7.15)

\[
\sup_{M(t)} \tilde{F} \geq F(\tilde{\kappa}_i(t, \xi)) \geq F \left(\frac{\cosh u(t, \xi)}{\sinh u(t, \xi)} \Theta(t, T^*) \right) \geq c > 0.
\]

The statement follows from the pinching estimates and Lemma 7.4. □
Let \(x_0 \in \mathbb{H}^{n+1} \) be the point the flow hypersurfaces are shrinking to and introduce geodesic polar coordinates around it. Write \(M(t) = \text{graph } u(t, \cdot) \) and let
\[
\tilde{u}(\tau, \xi) = u(t, \xi) \Theta(t, T^* \tau)^{-1},
\]
\[
\tau_\delta = -\log \Theta(t_\delta, T^* \tau), \quad Q(\tau_\delta, \infty) = [\tau_\delta, \infty) \times S^n.
\]
Using the same argument as in \[7, Lemma 7.9, Lemma 7.10\] we conclude that

7.6. Lemma. The quantities \(v \) and \(|D\tilde{u}| \) are uniformly bounded from above and \(\tilde{u} \) is uniformly bounded from below and above in \(Q(\tau_\delta, \infty) \). \(\square \)

Let
\[
\varphi = -\int_0^{\Theta(0, T^* \tau)} \vartheta^{-1},
\]
then
\[
\varphi_i = \vartheta^{-1} u_i, \quad \varphi_{ij} = \vartheta^{-1} u_{ij} - \cosh u \vartheta^{-2} u_i u_j,
\]
and
\[
\vartheta^{-2} |D^2 u|^2 + |D\tilde{u}|^4 \cosh^2 u - 2\vartheta^{-1} |D^2 u||D\tilde{u}|^2 \cosh u \leq |D^2 \varphi|^2.
\]
Since \(|D^2 \varphi| \) and \(|D\tilde{u}| \) are bounded, we conclude that the \(C^2 \)-norm of \(\tilde{u} \) is uniformly bounded, where the covariant derivatives of \(\tilde{u} \) and \(\varphi \) are taken with respect to \(\sigma_{ij} \). From \[5, Remark 1.5.1, Lemma 2.7.6\] we conclude that
\[
\frac{\sinh \Theta}{\cosh \Theta} F v = \Phi(x, \tau, \tilde{u}, \tilde{u} e^{-\tau}, D\tilde{u}, D^2 \tilde{u}),
\]
where \(\Phi \) is a smooth function with respect to its arguments, and
\[
\Phi^{ij} = \frac{\partial \Phi}{\partial (-\tilde{u}_{ij})} = \frac{\sinh \Theta}{\cosh \Theta}, \quad \Phi^{ij, kl} = \frac{\partial \Phi}{\partial (-\tilde{u}_{ij})}.
\]
Hence by applying first the Krylov and Safonov, then the Schauder estimates, we deduce (cf. \[5, Remark 2.6.2\])

7.7. Theorem. The rescaled function \(\tilde{u} \) satisfies the uniformly parabolic equation
\[
\tilde{u}' = -\Phi + \tilde{u}
\]
in \(Q(\tau_\delta, \infty) \) and \(\tilde{u}(\tau, \cdot) \) satisfies a priori estimates in \(C^\infty(S^n) \) independently of \(\tau \).
8. Convergence to a sphere

The aim of this section is to prove that \(\tilde{u} \) converges exponentially fast to the constant function 1 if \(F \) is strictly concave or \(F = \frac{1}{n} H \). Comparing the proof in [7, Section 8], we should handle a term stemming from the negative curvature of the ambient space \(K_N < 0 \).

8.1. Lemma. There exists a positive constant \(C \) such that

\[
(8.1) \quad F^{kl}g_{kl}|A|^2 - FH \leq C \sum_{i<j} (\kappa_i - \kappa_j)^2.
\]

Proof. The proof is similar to [7, Lemma 8.2]. Let

\[
(8.2) \quad \varphi = F^{kl}g_{kl}|A|^2 - FH.
\]

Denote the partial derivatives of \(\varphi \) with respect to \(\kappa_i \) by \(\varphi_i \), then

\[
(8.3) \quad \varphi_j = \sum_{i=1}^{n} F_{ij}|A|^2 + \sum_{i=1}^{n} 2F_{ij}\kappa_j - F_j H - F,
\]

\[
\varphi_{jk} = \sum_{i=1}^{n} F_{ijk}|A|^2 + \sum_{i=1}^{n} 2F_{ij}\kappa_k + \sum_{i=1}^{n} 2F_{ik}\kappa_j + 2\delta_{jk} \sum_{i=1}^{n} F_i - F_{jk}H - F_j - F_k.
\]

Therefore

\[
(8.5) \quad \varphi(\kappa_1, \ldots, \kappa_n) = 0, \quad \varphi_j(\kappa_1, \ldots, \kappa_n) = 0 \quad \forall j = 1, \ldots, n.
\]

by using the Euler’s homogeneous relation and the normalization (1.6). Furthermore, \(\varphi_{jk} \) are uniformly bounded from above, since \(\varphi_{jk} \) are homogeneous of grad 0 and \(\frac{\kappa_i}{|A|} \) are compactly contained in the defining cone. The statement follows by an argument using Taylor’s expansion up to the second order similar to those in [7, Lemma 8.2]. \(\square \)

We want to estimate the function

\[
(8.6) \quad f_\sigma = F^{-\alpha}(|A|^2 - nF^2),
\]

where

\[
(8.7) \quad \alpha = 2 - \sigma,
\]

and \(0 < \sigma < 1 \) small. For simplicity we drop the subscript \(\sigma \) of \(f_\sigma \). In the following we always assume that \(F \) satisfies the assumption 1.1.

By Lemma 8.1 we have the following inequality corresponding to [7, Lemma 8.3].
8.2. Lemma. Let F be strictly concave, then there exist uniform constants $\epsilon > 0$ and $C > 0$, such that

\begin{equation}
-F^{ij} f_{ij} + 2^2 F^{ij} h^k_i h^j_k f \leq \alpha F^{-1} F^{ij} f_{ij} f + 2(\alpha - 1) F^{-1} F^{ij} f_{ij} f - 2 \{h^{ij} - F_n F^{ij}\} F^{-\alpha} f_{ij} - 2c^2 |DA|^2 F^{-\alpha} + 2Cf.
\end{equation}

Corresponding to [7, Lemma 8.5] we have

8.3. Lemma. Let F be strictly concave, then there exist positive constants C and c such that for any $\delta > 0$ and any $0 \leq t < T^*$

\begin{equation}
\epsilon^2 \int_M F^{ij} h^k_i h^j_k f^p \leq \{\delta^{-1} c(p - 1) + c\} \int_M F^{ij} f_{ij} f^{p-2} + \{\delta c(p - 1) + c\} \int_M |DA|^2 F^{-\alpha} f^{p-1} + 2C \int_M f^p.
\end{equation}

Parallel to [7, Lemma 8.6] we have

8.4. Lemma. Let F be strictly concave, then there exist $C_1 > 0$ and $\sigma_0 > 0$ such that for all

\begin{equation}
P \geq 4c\epsilon^{-2}, \quad \sigma \leq \min\left(\frac{1}{4} c^{-1} \epsilon^3 p^{-1/2}, \sigma_0\right),
\end{equation}

the estimate

\begin{equation}
\|f\|_{p, M} \leq C_1 \quad \forall t \in [0, T^*)
\end{equation}

holds, where $C_1 = C_1(M_0, p)$ and $\sigma_0 = \sigma_0(F, M_0)$.

Proof. Multiply [7, (8.30)] with pf^{p-1} and integrate by parts, and note that

\begin{equation}
d\mu_t = \mu_t \, dx \text{ on } M_t,
\end{equation}

where

\begin{equation}
\frac{d}{dt} \mu_t = \frac{d}{dt} \sqrt{g} = \frac{1}{2} \mu_t g^{ij} g_{ij} = -FH\mu_t,
\end{equation}

thus

\begin{equation}
\frac{d}{dt} \int_M f^p = p \int_M f^{p-1} f' - \int_M HF f^p,
\end{equation}

and

\begin{equation}
\frac{d}{dt} \int_M f^p + \frac{1}{2} p(p - 1) \int_M F^{ij} f_{ij} f^{p-2} + \epsilon^2 p \int_M |DA|^2 F^{-\alpha} f^{p-1} \leq \sigma p \int_M F^{ij} h^k_i h^j_k f^p + 4Cp \int_M f^p.
\end{equation}

By choosing

\begin{equation}
c_0 = \frac{1}{4} c, \quad \sigma \leq \min(\epsilon^3 p^{-1/2} c_0^{-1}, \sigma_0), \quad \delta = \epsilon p^{-1/2},
\end{equation}

the estimate

\begin{equation}
\|f\|_{p, M} \leq C_1 \quad \forall t \in [0, T^*)
\end{equation}

holds.
and by using (8.9), the right-hand side of inequality (8.15) can be estimated from above by

\[
\begin{align*}
\epsilon_p^{1/2} c_0^{-1} \left(\epsilon^2 \int_M F^{ij} h_k h_j f^p \right) + 4Cp \int_M f^p \\
\leq \epsilon_p^{1/2} c_0^{-1} \left\{ \delta^{-1} c(p - 1) + \epsilon \right\} \int_M F^{ij} f_i f_j f^{p-2} \\
+ \epsilon_p^{1/2} c_0^{-1} \left\{ \delta c(p - 1) + \epsilon \right\} \int_M |DA|^2 F^{-\alpha} f^{p-1} + \{ 2C\epsilon_p^{1/2} c_0^{-1} + 4Cp \} \int_M f^p \\
= c_0^{-1} \{ p(p - 1)c + \epsilon_p^{1/2} c \} \int_M F^{ij} f_i f_j f^{p-2} \\
+ c_0^{-1} \{ \epsilon^2 (p - 1)c + \epsilon_p^{1/2} c \} \int_M |DA|^2 F^{-\alpha} f^{p-1} + \{ 2C\epsilon_p^{1/2} c_0^{-1} + 4Cp \} \int_M f^p \\
\leq \frac{1}{4} p(p - 1) \int_M F^{ij} f_i f_j f^{p-2} + \frac{1}{2} \epsilon^2 (p - 1) \int_M |DA|^2 F^{-\alpha} f^{p-1} + 5Cp \int_M f^p.
\end{align*}
\]

From (8.15), (8.17) we conclude that

\[
\begin{align*}
\frac{d}{dt} \int_M f^p & \leq 5Cp \int_M f^p, \\
\int_M f^p & \leq \int_M f^p
|_{t=0} \cdot \exp(5CpT^*), \\
\| f \|_{p} & = \left(\int_M f^p \right)^{\frac{1}{p}} \leq e^{5CpT^*} (|M_0| + 1) \sup_{0 \leq \sigma \leq 1/2} \sup_{M_0} f_\sigma.
\end{align*}
\]

To proceed further, we use the Stampacchia iteration scheme as in the Huisken’s paper [10, Theorem 5.1], as well as [11, Theorem 5.1]. Note that \(\mathbb{H}^{n+1} \) is simply connected and has constant sectional curvature \(K_N = -1 \), thus the Sobolev inequality in [9, Theorem 2.1] has the form

\[
8.5. \textbf{Lemma.} \text{ Let } v \text{ be a nonnegative Lipschitz function on } M, \text{ then there exists a constant } c = c(n) > 0, \text{ such that}
\]

\[
\left(\int_M |v|^{\frac{n}{n-1}} \right)^{n-1} \leq c \int_M |Dv| + \int_M H|v|.
\]

Corresponding to [7, Theorem 8.7], we have

\[
8.6. \textbf{Theorem.} \text{ Let } F \text{ be strictly concave or } F = \frac{1}{n} H, \text{ then there exist constants } \delta > 0 \text{ and } c_0 > 0, \text{ such that}
\]

\[
|A|^2 - nF^2 \leq c_0 F^{2-\delta}.
\]
Proof. As in the proof of [10, Theorem 5.1] let $f_{\sigma,k} = \max(f_{\sigma} - k, 0)$ for all $k \geq k_0 = \sup_{M_0} f_{\sigma}$ and denote by $A(k)$ the set where $f_{\sigma} > k$. We obtain with $v = f_{\sigma,k}^{p/2}$ for $p \geq 4e^{-2}$,

$$\frac{d}{dt} \int_{A(k)} v^2 + \int_{A(k)} |Dv|^2 \leq \sigma p \int_{A(k)} H^2 f_{\sigma}^p + 5Cp \int_{A(k)} f_{\sigma}^p \leq C(p) \int_{A(k)} H^2 f_{\sigma}^p.$$ \hfill (8.23)

By applying Lemma 8.5 we can bound f_{σ} for σ small as in the proof of [10, Theorem 5.1]. The case $F = \frac{1}{n}H$ is proved in [11, Lemma 5.1].

8.7. Lemma. Let F be strictly concave or $F = \frac{1}{n}H$ and $\tilde{M}(\tau)$ be the rescaled hypersurfaces, then there are constants $c, \delta > 0$ such that

$$\int_{\tilde{M}} |D\tilde{A}|^2 \leq ce^{-\delta \tau} \quad \forall \tau_0 \leq \tau < \infty,$$ \hfill (8.24)

where

$$\tau_0 = -\log \Theta(0,T^*), \quad |D\tilde{A}|^2 = \Theta^2 g^{ij} h^k_{ij} \Theta h^l_{k;ij} \Theta.$$ \hfill (8.25)

Proof. Choose

$$f = F^{-2} \{ |A|^2 - nF^2 \}. \hfill (8.26)$$

From Theorem 8.6 we infer

$$f \leq c_0 F^{-\delta} \leq c \Theta^\delta = ce^{-\delta \tau} \quad \forall \tau \geq \tau_0,$$ \hfill (8.27)

and from Theorem 7.7 we obtain

$$|D^m A| \leq c |A| \quad \forall m \geq 1.$$ \hfill (8.28)

Integrating inequality (8.8) over M, using integration by parts and using relation (8.28), we infer

$$2e^2 \int_M |DA|^2 F^{-2} \leq c \int_M f.$$ \hfill (8.29)

Hence (8.24) follows by rescaling (8.29). \qed

Using the same proof of [7, Lemma 8.10] we have

8.8. Lemma. There are positive constants c and δ such that for all $\tau \geq \tau_0$

$$\tilde{F}_{\text{max}} - \tilde{F}_{\text{min}} \leq ce^{-\delta \tau},$$ \hfill (8.30)

and

$$\|D\tilde{F}\| \leq ce^{-\delta \tau}.$$ \hfill (8.31)
8.9. Lemma. There are positive constants c and δ such that for all $\tau \geq \tau_0$

\begin{equation}
|\tilde{D}u| \leq ce^{-\delta \tau},
\end{equation}

where

\begin{equation}
|\tilde{D}u|^2 = \sigma^{ij} \tilde{u}_i \tilde{u}_j.
\end{equation}

Proof. As in the proof of [7, Lemma 8.12], we let

\begin{equation}
\varphi = \log \tilde{u}, \quad w = \frac{1}{2}|D\varphi|^2,
\end{equation}

then

\begin{equation}
\varphi' = -e^{-\varphi} \tilde{F} \Theta^{-1} \frac{\sinh \Theta}{\cosh \Theta} v + 1.
\end{equation}

Differentiate now (8.35) with respect to $\varphi^k D_k$ we obtain

\begin{equation}
w' = 2e^{-\varphi} w \tilde{F} \Theta^{-1} \frac{\sinh \Theta}{\cosh \Theta} v - e^{-\varphi} \tilde{F} \Theta^{-1} \frac{\sinh \Theta}{\cosh \Theta} v^{-1} \sinh^{-2} u u^2 w_k \varphi^k + R_1 + R_2,
\end{equation}

where

\begin{equation}
R_1 = -e^{-\varphi} \frac{\sinh \Theta}{\cosh \Theta} F k \varphi^k,
\end{equation}

\begin{equation}
R_2 = e^{-\varphi} \tilde{F} \frac{\sinh \Theta}{\cosh \Theta} v^{-1} |D\varphi|^{-4} \sinh^{-2} u \{ u^3 \cosh u - u^2 \sinh u \} \geq 0.
\end{equation}

In view of (8.31) R_1 decays exponentially. Thus the function

\begin{equation}
w_{\text{max}} = \sup_{M(\tau)} w
\end{equation}

is Lipschitz and satisfies

\begin{equation}
w_{\text{max}}' \geq 2e^{-\varphi} w \tilde{F} \Theta^{-1} \frac{\sinh \Theta}{\cosh \Theta} v - ce^{-\delta \tau}
\end{equation}

for almost every $\tau \geq \tau_0$. Using the same argument as in [7, Lemma 8.12] we conclude that

\begin{equation}
w_{\text{max}}(\tau) \leq \frac{c}{\delta} e^{-\delta \tau} \quad \forall \tau \geq \tau_0.
\end{equation}

The same arguments of [7, Corollary 8.13] and the interpolation inequalities for the C^m-norms (cf. [6, Corollary 6.2]) yield

8.10. Theorem. Let F be strictly concave or $F = \frac{1}{n} H$, then the rescaled function \tilde{u} converges in $C^\infty(S^n)$ to the constant function 1 exponentially fast.

\[\square \]

8.11. Lemma. Let F be strictly concave or $F = \frac{1}{n} H$, then there exist positive constants c and δ such that

\begin{equation}
|\tilde{F}(\tau, \cdot) - 1| \leq ce^{-\delta \tau} \quad \forall \tau \geq \tau_0.
\end{equation}
Proof. Observe that for \(\tau_1 \) sufficiently large we have

\[
|\frac{\sinh \Theta}{\cosh \Theta} - \Theta| \leq c \Theta^2 \quad \forall \tau \geq \tau_1.
\]

The rest of the proof is identical to [7, Lemma 8.16]. □

9. Inverse curvature flows

Let \(M(t) \) be the flow hypersurfaces of the direct flow in \(\mathbb{H}^{n+1} \) and write \(M(t) = \text{graph } u(t, \cdot) \) with respect to the geodesic polar coordinates centered in the point where the direct flow shrinks to. By applying an isometry we may assume that the point \(x_0 \) is the Beltrami point. The polar hypersurfaces \(M(t)^* \) are the flow hypersurfaces of the corresponding inverse curvature flow in the de Sitter space. Write \(M(t)^* = \text{graph } u^*(t, \cdot) \) over \(\mathbb{S}^n \).

9.1. Lemma. The functions \(u, u^* \) satisfy the relations

\[
\begin{align*}
\max u &= -\min u^* \quad \forall t \in [t_0, T^*), \\
\min u &= -\max u^* \quad \forall t \in [t_0, T^*).
\end{align*}
\]

Proof. We use the relation [5, (10.4.65)]

\[
\tilde{x}^0 = \frac{r}{\sqrt{1 - r^2}}.
\]

and note that by comparing [5, (10.2.5)] and the metric in the eigentime coordinate system in \(N(2.13) \) we infer that

\[
\cosh^2 u^* = 1 + |\tilde{x}^0|^2.
\]

From (6.8) we infer that

\[
r = \tanh u.
\]

Since we have switched the light cone such that the uniformly convex slices are contained in \(\{ \tau < 0 \} \), we deduce that

\[
\max u^* = -\arcsinh(\tilde{v} \sinh u) = -\arcsinh \tilde{v}.
\]

In a point where \(u^* \) attains its minimum, there holds \(v = 1 \) in view of Lemma 7.1. Thus \(u = -u^* \) and \(u \) attains its maximum in such a point. This proves (9.1). The proof of (9.2) is similar. □

9.2. Corollary. There exists a positive constant \(c \) such that

\[
-c \leq w \equiv u^* \Theta^{-1} \leq -c^{-1} \quad \forall t \in [t_0, T^*).
\]

Define \(\vartheta(u) = \cosh(u) \) and \(\hat{g}_{ij} = \vartheta^2 \sigma_{ij} \). We prove in the following that \(w \) is uniformly bounded in \(C^\infty(\mathbb{S}^n) \). For simplicity, we write in the following \(u \) instead \(u^* \) for the graphs of the flow hypersurfaces in the de Sitter space. The proof of \(C^1 \)-estimates of \(w \) is similar to [5, Theorem 2.7.11].
9.3. Lemma. There exists a positive constant c such that
\begin{equation}
|Dw|^2 \equiv \sigma^{ij}w_iw_j \leq c \quad \forall t \in [t_\delta, T^*].
\end{equation}

Proof. Since
\begin{equation}
\|Du\|^2 \equiv g^{ij}u_iu_j = v^{-2}g^{ij}u_iu_j \equiv v^{-2}\|Du\|^2,
\end{equation}
we first estimate $\|Du\|\Theta^{-1}$. Let λ be a real parameter to be specified later
and define
\begin{equation}
G = \frac{1}{2} \log(\|Du\|^2\Theta^{-2}) + \lambda u\Theta^{-1}.
\end{equation}
There is $x_0 \in S^n$ such that
\begin{equation}
G(x_0) = \sup_{S^n} G,
\end{equation}
and thus in x_0
\begin{equation}
0 = G_i = \|Du\|^{-2}u_iu^j + \lambda u_i\Theta^{-1},
\end{equation}
where the covariant derivatives are taken with respect to g_{ij} and
\begin{equation}
u^i = g^{ij}u_j = v^{-2}g^{ij}u_j.
\end{equation}
Since
\begin{equation}
h_{ij}v^{-1} = -u_{ij} - \dot{\vartheta}\sigma_{ij},
\end{equation}
we infer that
\begin{equation}
\lambda\|Du\|^{-4}\Theta^{-4} = -u_{ij}w^iw^j\Theta^{-3}
\end{equation}
\begin{equation}
= v^{-1}h_{ij}w^iw^j\Theta^{-3} + \dot{\vartheta}\sigma_{ij}w^iw^j\Theta^{-3}.
\end{equation}
By considering the dual flow in the hyperbolic space, we conclude that $h_{ij} > 0$. Furthermore,
\begin{equation}
\dot{\vartheta}\sigma_{ij}w^iw^j\Theta^{-3} = (\dot{\vartheta}\Theta^{-1})\vartheta^{-1}v^{-2}\|Du\|^2\Theta^{-2}.
\end{equation}
By applying [5, Theorem 2.7.11] directly, we conclude that v^{-2} is uniformly bounded. Note $\vartheta\Theta^{-1} \leq c$. Let c_0 be an upper bound for $(\dot{\vartheta}\Theta^{-1})\vartheta^{-1}v^{-2}$ and by choosing $\lambda < -c_0$ we conclude that $\|Du\|\Theta^{-1}$ can not be too large in x_0. Thus $\|Du\|\Theta^{-1}$ is uniformly bounded from above. We conclude that
\begin{equation}
\sigma^{ij}w_iw_j = \|Du\|^2\Theta^{-2}\vartheta^2v^2
\end{equation}
is uniformly bounded. \hfill \Box

9.4. Lemma. There exists a positive constant c such that for all $m \geq 2$
\begin{equation}
|D^m w|^2 \leq c \quad \forall t \in [t_\delta, T^*].
\end{equation}
Proof. Let \((\hat{h}^{ij}) = (h_{ij})^{-1}\) be the inverse of the second fundamental form in \(H^{n+1}\) and \(\bar{h}_{ij}\) the second fundamental form in \(N\). We consider the mixed tensor
\[
(9.19) \quad \hat{h}^j_i = g_{ik} \hat{h}^k_j, \quad \bar{h}^j_i = \bar{g}^{kj} \bar{h}_{ki},
\]
where \(g_{ij}\) and \(\bar{g}_{ij} = h^k_i h_{kj}\) are the metrics of hypersurfaces in \(H^{n+1}\) resp. \(N\).

From the relation
\[
(9.20) \quad \bar{\kappa}_i = \kappa_i^{-1},
\]
we infer that
\[
(9.21) \quad \bar{h}^j_i = \hat{h}^j_i.
\]
From Theorem 7.7 we infer that \(h^j_i \Theta\) are uniformly bounded in \(C^\infty(S^n)\) and due to Lemma 7.2 and Corollary 7.5 there are constants \(c_1, c_2 > 0\) such that
\[
(9.22) \quad 0 < c_1 \delta_j^i \leq h^j_i \Theta \leq c_2 \delta_j^i,
\]
and thus \(\hat{h}^j_i \Theta^{-1} = \bar{h}^j_i \Theta^{-1}\), as the inverse of \(h^j_i \Theta\), are uniformly bounded in \(C^\infty(S^n)\). We switch now our notation by considering the quantities in \(N\) without writing a tilde. Denote the covariant derivatives with respect to \(\bar{g}^{ij}\) resp. \(\sigma^{ij}\) by a semicolon resp. a colon. In view of [5, Remark 1.6.1, Lemma 2.7.6] we have
\[
(9.23) \quad v^{-1} h_{ij} = -v^{-2} u_{ij} - \dot{\theta} \partial \sigma_{ij}
\]
\[
= -v^{-2} \{ u_{ij} - \frac{1}{2} g^{km} ((\dot{\theta})^j m \sigma_{mj} + (\dot{\theta})^i k \sigma_{mj} - (\dot{\theta})^i m \sigma_{mj}) u_k \} - \dot{\theta} \partial \sigma_{ij}.
\]
Therefore,
\[
(9.24) \quad u_{ij} = -v h_{ij} + 2 \dot{\theta}^{-1} \dot{\theta} u_i u_j - \dot{\theta} \partial \sigma_{ij},
\]
By considering the dual flow in hyperbolic space, we infer that
\[
(9.25) \quad |A| \Theta^{-1} \leq c,
\]
and note that
\[
(9.26) \quad \bar{g}^{ij} \leq \bar{g}^{ij} + v^{-2} \bar{a}^i \bar{a}^j = g^{ij},
\]
where
\[
(9.27) \quad \bar{a}^i = \bar{g}^{ij} u_j,
\]
we conclude that
\[
(9.28) \quad \sigma^{ik} \sigma^{jl} h_{ij} h_{kl} \leq c |A|^2.
\]
In view of \(\bar{\theta} \Theta^{-1} \leq c\) we conclude that \(|D^2 w|^2\) is uniformly bounded. Contract (9.24) with \(g^{ij}\) we conclude further
\[
(9.29) \quad - g^{ij} w_{ij} - \bar{g}^{-2} \bar{g} \bar{\theta} v^{-2} |Dw|^2 + v H \Theta^{-1} + n \bar{\theta}^{-1} \bar{\theta} \Theta^{-1} = 0.
\]
Since \(v \) is uniformly bounded, (9.29) is a uniformly elliptic equation in \(w \) with bounded coefficients. A bootstrapping procedure with Schauder theory yields for all \(m \in \mathbb{N} \)
\[
|w|_{m,S^n} \leq c_m \quad \forall t \in [0, T^*)
\]
\(\square \)

From Lemma 8.10 and preceding results in Section 9 we conclude

9.5. Theorem. Let the geodesic polar coordinates \((\tau, \xi)\) of \(N \) be specified in Section 2. Represent the inverse curvature flow (1.5) in \(N \) as graphs over \(S^n \), \(M(t)^* = \text{graph } u^*(t,\cdot) \), where the curvature function \(\tilde{F} \) satisfies the assumption 1.1. Then \(u^* \) converges to the constant function 0 in \(C^\infty(S^n) \). The rescaled function \(w = u^*\Theta^{-1} \) are uniformly bounded in \(C^\infty(S^n) \). When the curvature function \(F \) of the corresponding contracting flow is strictly concave or \(F = \frac{1}{n}H \), then \(w(\tau,\cdot) \) converges in \(C^\infty(S^n) \) to the constant function \(-1\) exponentially fast. \(\square \)

References

[1] Ben Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151–171.
[2] , Contraction of convex hypersurfaces in Riemannian spaces, J. Diff. Geom. 39 (1994), no. 2, 407–431.
[3] , Pinching estimates and motion of hypersurfaces by curvature functions, J. Reine Angew. Math. 608 (2007), 17–33.
[4] Baojun Bian and Pengfei Guan, A microscopic convexity principle for nonlinear partial differential equations, Inventiones mathematicae 177 (2009), 307–335.
[5] Claus Gerhardt, Curvature Problems, Series in Geometry and Topology, Vol. 39, International Press, Somerville, MA, 2006.
[6] , Inverse curvature flows in hyperbolic space, J. Diff. Geom. 89 (2011), 487–527.
[7] , Curvature flows in the sphere, J. Differential Geom. 100 (2015), no. 2, 301–347.
[8] , Pinching estimates for dual flows in hyperbolic and de Sitter space, preprint, 2015, arXiv:1510.03747.
[9] David Hoffman and Joel Spruck, Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds, Comm. Pure Appl. Math. 27 (1974), 715–727.
[10] Gerhard Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), no. 1, 237–266.
[11] , Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math. 84 (1986), 463–480.
[12] Gerhard Huisken and Carlo Sinestrari: Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45–70.
[13] Matthias Makowski, Mixed volume preserving curvature flows in hyperbolic space, preprint, 2012, arXiv:1208.1898.
[14] Julian Scheuer, Non-scale-invariant inverse curvature flows in hyperbolic space, Calc. Var. Partial Differ. Equ. 53 (2015), no. 1-2, 91–123.
[15] Guofang Wang and Chao Xia, Isoperimetric type problems and Alexandrov - Fenchel type inequalities in the hyperbolic space, Adv. Math. 259 (2014), 532–556.

RUPRECHT-KARLS-UNIVERSITÄT, INSTITUT FÜR ANGEWANDTE MATHEMATIK, IM NEUENHEIMER FELD 294, 69120 HEIDELBERG, GERMANY
E-mail address: h.yu@stud.uni-heidelberg.de