Improvement of antioxidant properties of jujube puree by biotransformation of polyphenols via Streptococcus thermophilus fermentation

Jing Li a, Wenting Zhao b, Xin Pan a, Fei Lao a, Xiaojun Liao a, Yong Shi c, Jihong Wu a,⁎

a College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
b Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
c Huaxiangni Health Food Co., Ltd, Xinzheng 451100, China

ARTICLE INFO

Keywords:
Jujube
Lactic acid bacteria fermentation
Streptococcus thermophilus
UPLC-MS/MS
Phenolic compound
Antioxidant activity

ABSTRACT

To investigate the effect of lactic acid bacteria fermentation on jujube bioactivity, Streptococcus thermophilus was used to ferment jujube puree. The number of viable bacteria cells, physicochemical properties, phenolics profile and antioxidant capacity were analyzed, and their correlation were investigated. Streptococcus thermophilus exhibited a high growth capacity in jujube puree, and significantly (p < 0.05) increased the total phenolics content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power after 48 h fermentation, while 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity was decreased. 12 differentially metabolized polyphenols were identified in fermented jujube puree. Upregulated phenolics exhibited a positive correlation with DPPH radical-scavenging ability and reducing power. This work demonstrated that Streptococcus thermophilus fermentation can be an effective method with great practical application potential to improve the antioxidant activity in jujube puree by modifying the phenolic compositional quantity and quality.

1. Introduction

The use of lactic acid bacteria (LAB) has been found to be the most economical and valuable biotechnological method for maintaining and improving the safety and sensory and nutritional properties of foods (Kwaw et al., 2018). Fruits and vegetables are excellent matrices for lactic acid fermentation because of their high contents of carbohydrates, vitamins, minerals, and fibers. This has led to the development of a large number of new fruit and vegetable products via LAB fermentation (Kumar et al., 2015). After LAB fermentation, the content of polyphenols with potential health-promoting effects in fruits and vegetables increases. This occurs because the hydrolysis of cell walls releases bound phenols, which results in a significant increase in the content of polyphenols (De Souza et al., 2019). In general, the changes in polyphenols that occur after fermentation can also promote improvements in functional activity. Previous studies have reported that the antioxidant activities of tomato (Ricci et al., 2020), cabbage (Satora et al., 2021), and apple juices (Wu et al., 2020) were enhanced by LAB strains, such as Lactocaseibacillus casei, Pediococcus acidilactici, and Lactobacillus helveticus.

Studies of the fermentation of jujubes by LAB have recently been reported. The jujube (Ziziphus jujuba Mill.) was one of the earliest traditional fruits to be cultivated in China and has been grown for over 4000 years. This fruit is widely accepted by consumers because of its abundant nutritional compounds, including polysaccharides, polyphenols, dietary fiber, and triterpene acids (Liu et al., 2020). Mahmoudi et al. (2021) utilized Lactobacillus plantarum and Lactobacillus delbrueckii to ferment beverages from a jujube extract and found that the total phenolics concentration and free radical-scavenging ability significantly increased. Li et al. (2021) studied the correlation between the phenolics content and the antioxidant capacity of fermented jujube juices. They found that increased contents of caffeic acid and rutin in fermented jujube juices improved the antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power. However, no study has investigated the biotransformation pathways of polyphenols in fermentation. Therefore, in order to further improve the nutritional value of fermented jujube puree, it is necessary to reveal the changes in polyphenol profiles during fermentation and further explain the
As shown in Fig. S1, the number of viable cells and the total polyphenol content after fermentation were significantly higher than those observed after fermentation using Lactobacillus plantarum LMG 11881 T and Lactobacillus casei subsp. Lacticaseibacillus rhamnosus MG1363. The pH values were 4.52 ± 0.05 and 4.97 ± 0.06, respectively. The total polyphenol content was 4.65 ± 0.03 mg/g and 4.81 ± 0.03 mg/g, respectively. The antioxidant activity was investigated. This study should provide relationships between polyphenols and antioxidant activity.

The pH, sugars, organic acids, total phenols, and antioxidant capacity of jujube puree fermented by S. thermophilus were initially studied. Next, ultra-performance liquid chromatography–mass spectrometry (UPLC–MS/MS) analysis was used to construct profiles of polyphenols and differential metabolites. The transformation of differentially metabolized polyphenols was analyzed using metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes. Finally, the relationship between phenolic compounds in fermented jujube puree and antioxidant activity was investigated. This study should provide valuable insights into the fermentation of jujube puree by S. thermophilus, as well as a practical reference for the development of jujube products via LAB fermentation.

2. Materials and methods

2.1. Raw materials, microorganisms, and reagents

Ziziphus jujuba cv. Jinxixiaozao was purchased from Laoling (Shandong Province, China). *Streptococcus thermophilus* CICC62320 was purchased from the China Center of Industrial Culture Collection (Beijing, China). This strain was in lyophilized form. The jujubes and LAB strain were stored at 4 °C prior to use. Chromatography-grade organic acid standards and phenolics standards were purchased from Shanghai Yuanye Bio-Technology Co., Ltd (Shanghai, China) and Solarbio Science and Technology Co., Ltd (Beijing, China), respectively. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were of 96% purity and were purchased from Macklin (Shanghai, China). All other reagents used were of analytical grade and were purchased from Sinopharm Chemical Reagent Company (Shanghai, China).

2.2. Fermentation of jujube puree

The jujubes were washed, boiled for 20 min, and cooled to room temperature, and then the pits were removed. The jujubes were mixed with distilled water in a ratio of 3:5 (w/w) using a kitchen blender (JYL-C91T; Joyoung Co., Ltd, Hangzhou, China), followed by homogenization using a colloid mill (JTM-L65; Lixin Co., Ltd, Shanghai, China) for 10 min. The resulting puree was poured into 50 mL polyethylene teraphthalate bottles and sterilized under a high hydrostatic pressure of 550 MPa at 25 °C for 10 min using a high hydrostatic pressure pressurization unit (HHP-750; Baotou Kefa Co., Inner Mongolia, China) (Qi et al., 2020).

According to the method described by Pan et al., 2022 with minor modifications, *S. thermophilus* was added to 100 mL MRS broth and incubated at 37 °C for 24 h. Using the streak plate method, the strain was subcultured onto MRS agar to form a single colony, which was incubated at 37 °C for 24 h prior to use. Under aseptic conditions, 5% by volume of the strain as an inoculant was added to the treated jujube puree, which was then incubated at 37 °C for 48 h according to our preliminary experiments (Fig. S2). Samples were removed and analyzed after fermentation for 8, 16, 24, 32, 40, and 48 h. Unfermented jujube puree was used as a control.

2.3. Determination of viable cell counts and physicochemical properties

Viable LAB cell counts were determined by the standard method of decimal serial dilution. Aliquots of 1 mL dilutions in saline (0.9%, w/v) were plated onto MRS agar in triplicate. The plates were then incubated at 37 °C for 24 h in an incubator. The LAB cell counts of plates containing 30–300 colonies were measured and recorded as log colony-forming units (CFU)/mL.

The pH was measured by a digital pH meter (868; Thermo Orion Co., USA). The pH was measured at 30 °C for 24 h according to our standard operating procedure. The

Time (h)	Viable cell counts (Log cfu/mL)	pH values	Total acidity (Lactic acid g/kg)	Reducing sugar (g/100 g)	Total sugar (g/100 g)	Oxalic acid (mg/g)	Total flavones (mg RE/g DM)	DPPH radical scavenging (%)	ABTS radical scavenging (%)	Reducing power
0	7.25 ± 0.05α	4.52 ± 0.02	4.65 ± 0.03β	12.16 ± 0.63α	15.29 ± 0.14α	0.03 ± 0.02c	0.31 ± 0.00d	0.14 ± 0.01β	90.45 ± 0.01c	0.38 ± 0.01c
8	7.24 ± 0.04a	4.41 ± 0.06	4.82 ± 0.03a	12.01 ± 0.49a	15.26 ± 0.20a	1.15 ± 0.01a	0.53 ± 0.01α	0.16 ± 0.04a	75.29 ± 0.06a	0.41 ± 0.01β
16	7.70 ± 0.02f	4.07 ± 0.04	5.73 ± 0.02f	11.97 ± 0.99a	15.13 ± 0.13ab	3.83 ± 0.02b	5.63 ± 0.02f	1.08 ± 0.01d	78.37 ± 0.35c	0.41 ± 0.01c
24	8.19 ± 0.02f	3.84 ± 0.02	6.12 ± 0.02f	11.86 ± 0.18ab	14.98 ± 0.13ab	5.90 ± 0.03b	9.11 ± 0.01d	12.47 ± 0.01f	78.50 ± 0.36c	0.42 ± 0.01c
32	8.21 ± 0.01f	3.62 ± 0.03	7.00 ± 0.14b	11.84 ± 0.18b	14.87 ± 0.79bc	3.73 ± 0.03d	9.15 ± 0.01f	18.06 ± 0.01b	75.29 ± 0.03c	0.40 ± 0.00c
40	8.31 ± 0.01b	3.63 ± 0.03	7.99 ± 0.09b	11.32 ± 0.25b	14.65 ± 0.34cd	3.72 ± 0.02b	7.63 ± 0.02f	19.66 ± 0.02e	74.00 ± 0.04c	0.47 ± 0.01e
48	8.50 ± 0.08f	3.59 ± 0.01	7.14 ± 0.05c	11.30 ± 0.18c	14.40 ± 0.77d	3.07 ± 0.02b	7.5 ± 0.01f	25.0 ± 0.04e	72.00 ± 0.12b	0.25 ± 0.01f

Data are presented as the mean ± SD (n = 3). Different letters (a–f) in the same row indicate significant difference (p < 0.05). Reducing power was expressed as OD value.
The total phenolics content was determined using the Folin–Ciocalteu method with slight modifications (Liu et al., 2019). Specifically, a 1 mL sample of jujube puree was added to 29 mL ultrapure water, and the resulting mixture was vortexed for 1 min. A sample of 1 mL diluted fermented jujube puree was taken out and mixed with 1 mL of a methanolic solution of DPPH (50 μmol/L), and then the mixture was added to a 96-well microplate and incubated in the dark for 30 min. The absorbance at 517 nm was measured by a microplate reader (SpectraMax iD5; Molecular Devices, Sunnyvale, CA, USA). Vitamin C was used as a positive control.

The ABTS radical-scavenging activity was determined by a previously described method with some modifications (Tang et al., 2019). ABTS (10 mg) and 2.6 mL K3Fe(CN)6 (2.45 mmol/L) were mixed in the dark at room temperature for 16 h to produce ABTS⁺. The resulting ABTS⁺ solution was diluted with absolute ethanol to give an absorbance of 0.70 at 734 nm. Then, 1 mL fermented jujube puree was added to 29 mL distilled water and vortexed for 20 s. Subsequently, 0.1 mL of the diluted jujube puree was mixed with 1.9 mL of the ABTS⁺ solution and added to a 96-well plate. The absorbance at 734 nm was measured after the plate had been kept in the dark for 10 min by a microplate reader (SpectraMax iD5; Molecular Devices, Sunnyvale, CA, USA). Vitamin C was used as a positive control.

2.5.2. Reducing power assay

The reducing power was determined by a previously reported method with slight modifications (Chen et al., 2012). In brief, 0.5 mL phosphate buffer (0.2 mol/L, pH 6.6) and 0.5 mL potassium ferricyanide (1%) were added to 1 mL of the sample solution, and the mixture was allowed to react at 50 °C for 20 min. Next, 0.5 mL of a 10% trichloroacetic acid solution was added to the mixture, which was then stirred for 3 min, followed by centrifugation at 3000 g for 10 min. Then 1 mL of the supernatant was taken and mixed with 1 mL distilled water and 0.25 mL of 0.1% ferric chloride. The absorbance at 700 nm was read by a microplate reader (SpectraMax iD5; Molecular Devices, Sunnyvale, CA, USA) after the reaction had proceeded for 10 min. The reducing power was regarded as proportional to the absorbance of the mixture.

2.6. Metabolomics analysis of fermented jujube puree

A freeze-dried sample of jujube puree was crushed using a mixer mill (MM 400, Retsch, Haan, Germany) with a zirconia bead for 1.5 min at 30 Hz. A sample of 100 mg of the resulting lyophilized powder was dissolved in 1.2 mL of a 70% methanol solution and then vortexed for 4 min and placed in a refrigerator at 4 °C overnight. Centrifugation at 12,000 g for 10 min, the extract was filtered through a 0.22 μm filter (SCAA-104; ANPEL, Shanghai, China) before analysis by ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) analysis.

Metabolomics assays of secondary metabolites were performed according to the method described by Li et al. (2021) with slight modifications using a UPLC–electrospray ionization–MS/MS system (UPLC: Nexera X2; Shimadzu, Kyoto, Japan; MS: 4500 Q TRAP; Applied
Biosystems, Waltham, MA, USA). Chromatographic separation of fermented jujube puree was performed in an SB-C18 column (2.1 × 100 mm, 1.8 µm; Agilent, CA, USA). The mobile phase used for separation consisted of phase A (pure water with 0.1% formic acid) and phase B (acetonitrile with 0.1% formic acid). The gradient elution program was as follows: 0 min, 5% B; 0–9 min, increase to 95% B; and then held for 1 min. Subsequently, the composition was adjusted to 5% B within 1.5 min and then held for 2.5 min. The column was maintained at 40 °C with a flow rate of 0.35 mL/min, and the injection volume was 4 µL.

Linear ion trap and triple quadrupole scans were performed using a triple quadrupole–linear ion trap (Q TRAP) mass spectrometer (AB4500 Q TRAP UPLC/MS/MS System). Sequence analyses were carried out in positive ion mode (ion spray voltage of 5500 V) and negative ion mode (ion spray voltage of −4500 V) with an ion source temperature of 550 °C. The pressures of the ion source gases I and II and the curtain gas were set at 345, 414, and 172 kPa, respectively. Instrument tuning and mass calibration were performed with 10 and 100 µmol/L polypropylene glycol solutions in triple quadrupole and linear ion trap modes, respectively. The triple quadrupole scans were performed as multiple reaction monitoring (MRM) experiments with the pressure of the collision gas (nitrogen) set to medium. The declustering potential and collision energy were selected for the individual MRM transitions and were then further optimized. A specific set of MRM transitions were monitored for each period according to the metabolites eluted within this period.

2.7. Statistical analysis

All the experiments were carried out in triplicate. The results were expressed as the mean ± standard deviation (n = 3). The data were compared by analysis of variance followed by Duncan’s multiple-range test using SPSS 20.0 software (IBM, Armonk, NY, USA), and a value of p < 0.05 was regarded as indicating a statistically significant difference.

The raw data signals were processed by Analyst 1.6.3 software (AB Scieix, Framingham, MA, USA). Principal component analysis (PCA), hierarchical cluster analysis, and orthogonal partial least-squares discriminant analysis were carried out by the R software package (www.r-project.org) to visualize the metabolic changes between the unfermented jujube puree and the fermented jujube puree. Differential metabolites between groups were identified by a variable importance in projection score of ≥1 and a fold change score of ≥2 or ≤0.5. Heatmap analysis and cluster analysis of secondary metabolites were performed using R on the basis of their signal abundances in the fermented jujube puree.

3. Results and discussion

3.1. Viable cell counts and physicochemical properties during fermentation

To determine the growth ability of the S. thermophilus strain in
fermented jujube puree, the viable cell count was monitored during fermentation, as shown in Table 1. In comparison with the count before fermentation, the viable cell count of the strain increased significantly after fermentation for 48 h from 4.65 g/kg to 7.14 g/kg (p < 0.05), while the total flavonoids content was 8.66 mg GAE/g. Kwaw et al. (2018) demonstrated an increase in the total phenolics content in mulberry juice fermented by L. plantarum, Lactobacillus acidophilus, and Lactica-sebacillus paracasei. The first decrease in the total phenolics content may have been due to the low number of viable cells of the S. thermophilus strain in the early stage of fermentation and the decomposition of phenolic compounds, but as the number of viable cells increased glycosidases and phenol esterases produced by the strain, which can hydrolyze bound phenolic compounds to form free phenols, may have caused the increase in the total phenolics content (Rodriguez et al., 2009). As was expected, the total flavonoids content increased by 74% after fermentation (Table 1), which could have been due to enzymes that hydrolyze bound flavonoids compounds into simpler flavonoids during fermentation (Kwaw et al., 2018). However, the total flavonoids content significantly decreased in jujube juice fermented by L. acidophilus and L. plantarum (Li et al., 2021). The individual

Table 2

Differential phenolic compounds identified in jujube puree before and after fermentation for 48 h.

Rt (min)	Precursor ions (Da)	Product ions (Da)	CAS	Formula	Phenolic compound	VIP	Fold change	Regulation (0 h vs 48 h)	Identification in references
2.26	167.1	123.04	451-13-8	C6H8O4	Homogentisic acid	1.59	2.57	up	
2.58	353.09	191.00	906-33-2	C6H12O6	Neochlorogenic acid (5-O-Caffeoylquinic acid)	1.35	0.11	down	
2.59	181.05	135.04	67828-42-6	C6H10O4	Methyl 2,4-dihydroxyphenylacetate	1.60	48.93	up	
2.63	299.11	119	10338-51-9	C6H12O7	Salidroside	1.54	5.43	up	
2.74	353.09	191.01	327-97-9	C6H12O5	Chlorogenic acid (3-O-Caffeoylquinic acid)	1.30	0.10	down	Ivanisová (2017)
2.92	353.09	191.05	905-99-7	C6H14O5	Cryptochlorogenic acid (4-O-Caffeoylquinic acid)	1.36	0.13	down	Shen (2019)
3.23	109.03	81	120-80-9	C6H8O2	Pyrocatechol	1.60	13033.70	up	Dilek Tepe et al. (2020)
3.29	167.03	108.02	121-34-6	C6H8O4	Vanillic acid	1.59	0.41	down	Hong (2019)
3.38	197.05	123	530-57-4	C6H10O5	Syringic acid	1.45	0.49	down	Najina (2019)
3.64	165.06	119.05	501-97-3	C6H10O5	3-(4-Hydroxyphenyl)-propionic acid	1.60	21.13	up	
4.58	531.15	177.06	159934-13-1	C6H12O2	3,5-Dicaffeoylquinic Acid Methyl Ester	1.60	433.58	up	
7.99	165.1	95.2	141632-15-7	C6H8O2	Caffeic aldehyde	1.58	0.42	down	

* a Rt, retention time.

* b VIP, variable importance in projection.

* c The minus sign (—) indicated no related references.

* d Ivanisová et al. (2017).

* e Shen et al. (2019).

* f Dilek Tepe et al. (2020).

* g Hong et al. (2020).

* h Najina et al. (2019).
adaptability of the strain and its ability to produce hydrolytic enzymes may have caused the difference in the total flavonoids content in jujube puree.

3.3. Changes in antioxidant activities

The dynamic changes in the antioxidant activity of jujube puree after fermentation by *S. thermophilus* were measured in terms of DPPH and ABTS radical-scavenging activities and ferric-reducing antioxidant power (Table 1). In comparison with the control, the DPPH radical-scavenging activity of fermented jujube puree after fermentation for 48 h significantly increased by 26% \((p < 0.05) \). Our results were similar to other results previously reported for jujube juices (Li et al., 2021). The increase in DPPH free radical-scavenging activity showed that LAB fermentation might increase the availability of polyphenol compounds with proton-donating properties (Kwaw et al., 2018). Conversely, the ABTS radical-scavenging activity notably decreased with an increase in the fermentation time from 94% to 75% \((p < 0.05) \). Similar changes were observed by Wu et al. (2020). This can be attributed to the difference in antioxidant mechanism: in the case of ABTS this occurs via hydrogen atom transfer, whereas in the case of DPPH it is based on electron transfer (Apak et al., 2016). Perhaps the reduction in ABTS free radical-scavenging activity was also related to synergy and redox interactions among different compounds (Wu et al., 2020). Moreover, the antioxidant mechanism is characteristic of specific bacterial strains (Hoffmann et al., 2021). Therefore, the reducing power was further investigated. The reducing power is an important indicator that is often used to determine phenolic-reducing ability (Vasylyev et al., 2020). The reducing power of the sample increased with a prolongation of the fermentation time and reached its maximum \((0.47 \pm 0.01) \) after fermentation for 48 h, which represented a significant difference in comparison with the value before fermentation \((p < 0.05). \)

3.4. Metabolites identified in fermented jujube puree

According to previous studies, a widely untargeted metabolomics method was implemented to fully understand changes in the composition or content of phytochemicals (Antonio et al., 2020). With reference to the Metware database, the results showed that a total of 575 secondary metabolites were identified, namely, 140 phenolic acids, 178 flavonoids, 12 quinones, 37 lignans and coumarins, 12 tannins, 64 alkaloids, 109 terpenes, one steroid, and 22 other metabolites.

As shown in Fig. 1A, the mix samples (quality controls) were clustered in the center of the PCA score plot, which indicates that the instrument exhibited high stability during data acquisition. The two principal components can explain 35.14% of the variance. The samples with different fermentation times were clearly distinguished from each other, and the distance between the samples of fermented and unfermented jujube puree continually increased with the increase in the fermentation time, which indicates that the changes in metabolite...
and has various physiological activities such as improving immunity and (Bai et al., 2014). The increase in salidroside content may have occurred antiaging, antifatigue, anti-senile dementia, and antiradiation effects significantly increased fivefold after fermentation for 48 h (Bai et al., 2021). 3-(4-Hydroxyphenyl)propionic acid can be used as an intermediate for drugs (such as cetraxate hydrochloride) or as a precursor for the synthesis of plant products such as myricanol and phloretin (Kawai et al., 2010).

On the other hand, the six downregulated phenolics were chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid, vanillic acid, syringic acid, and caffeic aldehyde. Chlorogenic acid and crypto-chlorogenic acid are found in many fruits and vegetables, such as jujubes, apples, blueberries, and potatoes (Ivanisová et al., 2017; Shen et al., 2019; Herrmann and Nagel, 1989). According to our results, one possible reason for the decrease in the content of chlorogenic acid was the decrease in the content of caffeic acid, which is an important intermediate in the synthesis of chlorogenic acid. It was speculated that this may have been due to the fact that as the fermentation time increased tyrosine was not completely converted into caffeic acid but rather into 3-(4-hydroxyphenyl)pyruvic acid, which further produced salidroside and homogentisic acid (Fig. 3A). Fritsch et al. (2016) mentioned that the content of chlorogenic acid in sunflower flour decreased after fermentation by animal-derived LAB. The S. thermophilus strain used in our experiment is of animal origin, which may be another important reason for the decrease in chlorogenic acid content during fermentation. Previous studies have shown that vanillic acid and syringic acid were found in different jujube extracts, and an aqueous jujube extract rich in vanillic acid was also found to have protective activity against alcohol-induced oxidative stress in cells (Hong et al., 2020; Najjaa et al., 2020). However, the content of vanillic acid in our study significantly decreased after fermentation, and it may have been converted into pyrocatechol (Fig. 3B).

3.6. Correlation analysis of phenolic compounds and antioxidant activities before and after fermentation

To determine the relationships between the contents of specific phenolic metabolites and antioxidant activities, the Pearson correlation test was used. The results showed that the DPPH radical-scavenging activity, ABTS radical-scavenging activity, and ferric-reducing antioxidant power were correlated with the contents of phenolic compounds (Fig. 4). The contents of salidroside and 3-(4-hydroxyphenyl)propionic acid were used as an intermediate for drugs (such as cetraxate hydrochloride) or as a precursor for the synthesis of plant products such as myricanol and phloretin (Kawai et al., 2010).

![Fig. 4. Pearson correlation coefficients of differential metabolites and antioxidant activities. Green ellipses represent metabolites, and purple diamonds represent indicators of antioxidant activity.](image-url)
were the main antioxidant substances in fermented jujube puree. The pyrocatechol content was notably positively correlated with the DPPH radical-scavenging activity ($p < 0.001$), which indicates that pyrocatechol was the main contributor to the DPPH radical-scavenging capacity of fermented jujube puree. However, the DPPH radical-scavenging activity and reducing power were significantly negatively correlated with the content of syringic acid ($p < 0.05$). In addition, the vanillin acid content was negatively correlated with the DPPH radical-scavenging activity ($p < 0.001$). This indicates that different types of monomeric phenolic compound were selectively associated with different types of antioxidant activity.

4. Conclusions

In summary, this study showed that *S. thermophilus* exhibited excellent growth capacity, with a viable cell count of 8.50 log CFU/mL in jujube puree, which has been proved to provide health benefits. In addition, fermentation by *S. thermophilus* demonstrated a strong capacity for malolactic conversion. Most importantly, it has been confirmed that *S. thermophilus* can improve antioxidant capacity by altering the contents of pyrocatechol in fermented jujube puree via the metabolic conversion of phylloquinone. Our further research should focus on gastric and intestinal digestibility and absorption rates of fermented jujube puree to ascertain what impact fermented jujube puree has on human health.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by Construction of Green Design Platform for Deep Processed healthy food of Jujube of HaoXiangNi Health Food Co., Ltd (No. 202005410610147).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fooch.2022.100214.
Sumby, K. M., Grbin, P. R., & Jiranek, V. (2014). Implications of new research and technologies for malolactic fermentation in wine. Applied Microbiology and Biotechnology, 98(19), 8111–8132. https://doi.org/10.1007/s00253-014-5976-0
Tang, J., Dunshea, F. R., & Soleria, H. A. R. (2019). LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods, 9(1), 7. https://doi.org/10.3390/foods9010007
Torrens-Spence, M. P., Pluskal, T., Li, P. S., Carballo, V., & Weng, J. K. (2018). Complete pathway elucidation and heterologous reconstitution of rhodiola salidroside biosynthesis. Molecular Plant, 11(1), 205–217. https://doi.org/10.1016/j.molp.2017.12.007
Vasylyiev, G. S., Vorobyova, V. I., Linyucheva, O. V., & Lvova, L. (2020). Evaluation of reducing ability and antioxidant activity of fruit pomace extracts by spectrophotometric and electrochemical methods. Journal of Analytical Methods in Chemistry, 2020, 1–16. https://doi.org/10.1155/2020/8869426
Wang, Y. C., Yu, R. C., Yang, H. Y., & Chou, C. C. (2003). Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiology, 20(3), 333–338. https://doi.org/10.1016/S0740-0020(02)00125-9

J. Li et al.

Wood, I. P., Elliston, A., Ryden, P., Bancroft, L., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117–121. https://doi.org/10.1016/j.biombioe.2012.05.003
Wu, C., Li, T., Qi, J., Jiang, T., Xu, H., & Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT-Food Science and Technology, 122, 109064. https://doi.org/10.1016/j.lwt.2020.109064
Wu, Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P. L., … Zhou, J. (2021). Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry, 348, 129083. https://doi.org/10.1016/j.foodchem.2021.129083
Zhang, W. H., Wu, J., Weng, L., Zhang, H., Zhang, J., & Wu, A. (2020). An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate. Carbohydrate Polymers, 227, 115332. https://doi.org/10.1016/j.carbpol.2019.115332