Binding of a glaucoma-associated myocilin variant to the \(\alpha \)B-crystallin chaperone impedes protein clearance in trabecular meshwork cells

Received for publication, June 5, 2018, and in revised form, October 19, 2018. Published, Papers in Press, November 2, 2018, DOI 10.1074/jbc.RA118.004325

© 2018 Lynch et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

Jeffrey M. Lynch‡,†, Bing Li†, Parvaneh Katoli‡, Chuanxi Xiang¶, Barrett Leehey*, Nalini Rangaswamy**, Veronica Saenz-Vash§, Y. Karen Wang*, Hong Lei†, Thomas B. Nicholson‡, Erik Meredith**, Dennis S. Rice‡, Ganesh Prasanna‡, and Amy Chen‡

From †Ophthalomology, ‡Analytical Sciences and Imaging, §Laboratory Animal Services, ||Chemical Biology and Therapeutics, and **Global Developmental Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139

Edited by Paul E. Fraser

Myocilin (MYOC) was discovered more than 20 years ago and is the gene whose mutations are most commonly observed in individuals with glaucoma. Despite extensive research efforts, the function of WT MYOC has remained elusive, and how mutant MYOC is linked to glaucoma is unclear. Mutant MYOC is believed to be misfolded within the endoplasmic reticulum, and under normal physiological conditions misfolded MYOC should be retro-translocated to the cytoplasm for degradation. To better understand mutant MYOC pathology, we CRISPR-engineered a rat to have a MYOC Y437H substitution that is the equivalent of the pathological human MYOC Y437H mutation. Using this engineered animal model, we discovered that the chaperone \(\alpha \)B-crystallin (CRYAB) is a MYOC-binding partner and that co-expression of these two proteins increases protein aggregates. Our results suggest that the misfolded mutant MYOC aggregates with cytoplasmic CRYAB and thereby compromises protein clearance mechanisms in trabecular meshwork cells, and this process represents the primary mode of mutant MYOC pathology. We propose a model by which mutant MYOC causes glaucoma, and we propose that therapeutic treatment of patients having a MYOC mutation may focus on disrupting the MYOC–CRYAB complexes.

Primary open-angle glaucoma (POAG) is a multifactorial, chronic condition, and people with glaucoma generally experience a gradual loss of peripheral vision, which is due to the death of retinal ganglion cells (RGCs). The risk of glaucoma increases with age, and glaucoma is a major cause of blindness worldwide with the global patient population in 2020 estimated to be 80 million people (1). In the United States, more than 80% of the people with glaucoma have POAG (2) and most exhibit elevated (>21 mm Hg) intraocular pressure (IOP). High IOP is a risk factor for POAG as the optic nerve is very sensitive and can be damaged by high pressure (3).

Steroid-induced glaucoma constitutes a major subset of glaucoma patients. The first gene with mutations associated with glaucoma was identified at the GLC1A locus on chromosome 1q21-q31 (4, 5) and was called trabecular meshwork-inducible glucocorticoid response (TIGR) because its expression is up-regulated following dexamethasone treatment. The TIGR gene was later renamed to myocilin (MYOC) due to shared identity with myosin (6). At present, MYOC mutations remain the most common gene mutation found in glaucoma patients (7). MYOC mutations are found in 2–4% of all POAG patients (8, 9) and over one-third of all patients (10) with juvenile open-angle glaucoma (JOAG). Uniquely, it has been reported that only people that are heterozygous for a MYOC mutation develop glaucoma, although those homozygous do not (11). The most common MYOC mutation introduces an early stop codon, Q368X, and it is reported in over one-third of glaucoma patients carrying a MYOC mutation (12). To date, there are >70 pathological MYOC mutations reported (www.myocilin.com) (9, 2), and most of these mutations are found in exon 3, which encodes for the C terminus of MYOC. Interestingly, an in vitro observation is that N-terminal pathological MYOC mutants are secreted, although the C-terminal pathological MYOC mutant proteins are not secreted (13, 14).

Patients with a MYOC mutation are estimated to be 25% younger than the general POAG population (15), and these patients typically exhibit extremely high IOPs (16) that may not be adequately lowered by current IOP-lowering medica-
MYOC–CRYAB interaction impedes protein clearance

Penetration of the MYOC mutant gene in families reported to have a history of glaucoma has been suggested to be as high as 90% (19); however, a more recent study suggests that penetrance of a MYOC mutation in the general population is likely much lower (20). Nevertheless, there remains a large glaucoma patient population with a MYOC mutation, and these patients have a medical need that is not sufficiently met.

In mice, Northern blots have suggested that MYOC has a limited tissue distribution, with transcripts found in eye, skeletal muscle, and heart (21–23). Myoc-deficient mice have been created, and these null animals have normal trabecular meshwork (TM) histology and normal IOP, and they do not develop glaucoma (24). Numerous researchers have attempted to gain understanding of mutant MYOC by creating various MYOC transgenic mice (25–27). In all these early transgenic models, no animals showed a statistically-significant IOP elevation. It was later hypothesized that the reason for this lack of a glaucoma phenotype in rodents is because human MYOC has a cryptic C-terminal (−SKM) peroxisomal targeting signal (PTS) that is not conserved in MYOC from other species (28). Support for the PTS theory came from mice that exhibited IOP elevation following ocular injection of CMV-driven human MYOC adenoviruses (28). Although the SKM sequence is essential for weak binding to peroxisomal targeting signal type 1 receptor (PTSR1), the sequence is not sufficient for peroxisomal import because of the fact that the PTS1 is much longer and is believed to be a dodecamer (29–31). Within the PTS1 dodecamer, optimal residues from the tripeptide have been identified at −2 and −5 (32), and these hydrophobic residues are not found in human MYOC. Since publication of the MYOC–PTS hypothesis, the C-terminal structure of human MYOC has been solved, and the SKM signal of MYOC has been found not to be cryptic (33), thus suggesting that there may be an alternative explanation for the IOP phenotype observed following CMV–MYOC adenovirus injection. More recently, a CMV-driven human MYOC Y437H mutant transgenic mouse line was created and reported to have IOP elevation with notable RGC loss (34). In this CMV–MYOC–Y437H model, the authors attributed pathology associated with mutant MYOC to endoplasmic reticulum (ER) stress (34). CMV is a very robust promoter with potential to cause protein overexpression that exceeds any normal or diseased physiological protein expression range. As MYOC is a secreted protein processed in the ER, CMV driving its overexpression should be anticipated to challenge the protein-processing capacity of any cell resulting in up-regulation of ER and ER-associated proteins. Hence, a limitation of robust CMV-driven animal models could be artifacts arising from pronounced overexpression.

The purpose of our work was to enhance biological understanding of mutant MYOC, so we utilized CRISPR technology to engineer a rat to have a pathological MYOC Y435H mutation. The rat MYOC Y435H mutation corresponds to the severe human MYOC Y437H mutation associated with JOAG (8, 35). By studying mutant MYOC in an in vivo model where expression is physiologically relevant, we were able to discover a novel protein–protein interaction between MYOC and CRYAB. In vitro experiments substantiated the interactions as we found that mutant MYOC can aggregate with CRYAB. Furthermore, to validate findings from our MYOC Y435H rat model, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines, one with expression of human WT MYOC, and the other with the most common pathological human MYOC mutation, Q368X. By discovering the MYOC–CRYAB interaction, our findings provide new insight into how mutant MYOC causes pathology. We propose that targeting/disrupting the MYOC–CRYAB complex is a therapeutic strategy to maintain proper cell function and ultimately help the glaucoma patient with a MYOC mutation retain their vision and avoid blindness.

Results

As MYOC gene mutations are the most common mutation detected in glaucoma patients, there is substantial interest in understanding the role of MYOC in the eye. By Western blot analysis, human MYOC protein migrates under denaturing conditions slightly greater than 50 kDa and appears as a doublet due to partial N-glycosylation (36). The basal level of MYOC in human aqueous humor (AH) is low, but it is detectable by Western blotting (Fig. 1A). The MYOC gene has been reported to be stress-induced (37) and is reported to be higher in glaucomatous eyes compared with nondiseased eyes (14). By Western blotting, we observed increased MYOC protein in AH collected from cadaver eyes (Fig. 1, A and B) compared with the level observed in AH from living donors. The increased MYOC in cadaver eyes could be due to hypoxia stress and/or due to some cell lysis occurring following death, and this may obscure what would be a higher MYOC level anticipated in glaucoma patient samples. Immunohistochemical (IHC) analyses showed that in human eyes MYOC has the greatest expression throughout the TM tissue (Fig. 1C) with lesser amounts observed in the ciliary body and retina (Fig. S1).

CRISPR-engineered MYOC mutant rat

Our CRISPR-engineered MYOC Y435H rat was developed (Fig. 2A) and created by Horizon Labs (St. Louis, MO). Off-target effects of CRISPR are rare, and quality control to ensure integrity of the Myoc gene was completed by Horizon Labs. Sequencing of PCR products (Genewiz, Cambridge, MA) from rat genomic DNA confirmed that the rat model had been successfully generated (Fig. 2B). Western blot analysis of rat eye limbal ring extracts indicated a band at the expected protein size for monomeric MYOC (Fig. 2C). Rodent MYOC lacks the glycosylation site found in human MYOC, so no doublet is observed in the Western blottings. The Western blottings do show that expression of soluble MYOC in heterozygote and homozygote CRISPR-engineered rats was similar to that for the WT rats (Fig. 2, C and D); hence, our CRISPR-engineered rat model was expressing MYOC protein within a normal physiological range.

IOP for aged cohorts of WT, heterozygous, and homozygous MYOC Y435H rats was monitored for several months (Fig. 3A). IOP was found not to differ among the animal cohorts based on time of day (Fig. S2). MYOC expression is known to be up-regulated by steroid treatment (38, 39), and some rat cohorts were treated with prednisolone and their IOP monitored during the
was observed in other regions of the eye (TM region. High expression of MYOC is evident in the TM. MYOC expression stained to show MYOC expression (MYOC indicated by the control immunohistochemistry image of the human TM region and an image SC than that observed for the TM. Abbreviations used are as follows:

kDa	Normal	Glaucoma
1	1	1
2	1	2

Similarly, from that of the WT rats (heterozygote and homozygote animals did not differ significantly from each other and both had some minor differences when compared with WT rats. As the published literature focuses on human MYOC heterozygote phenotypes, we limited our rat RGC analysis to a comparison of WT and heterozygotes. When retinal structure and function were evaluated in 18-month-old WT and heterozygote rats, no significant differences in retinal thickness (assessed by optical coherence tomography (OCT)) and function, specifically a- and b-wave (assessed by electoretinography (ERG)) were observed between mutant MYOC Y435H heterozygous and WT MYOC animals (Fig. 4).

Dark-adapted ERGs were recorded from mutant MYOC Y435H heterozygous and WT MYOC rats at 18 months of age. In rats, the positive and negative scotopic threshold responses (STR) are primarily generated by ganglion cells with minimal amacrine cell contribution (40). These responses were assessed using low-intensity stimuli at −6.0, −5.5, and −5.0 log cd/s/m². No significant differences in pSTR and nSTR amplitudes were observed between MYOC Y435H heterozygous and WT MYOC rats (Fig. 4A) suggesting normal ganglion cell function associated with MYOC Y435H heterozygosity. Photoreceptor function was assessed with a high-intensity 2.2 log cd/s/m² stimulus (Fig. 4B). At high-stimulus intensity the photoreceptor response (a-wave) is primarily rod-dominated with a smaller contribution generated from cone cells (41). No significant differences in photoreceptor function and on-bipolar cell function (b-wave) were observed between groups (Fig. 4B). At 18 months of age, OCT images of the retina were acquired using a spectral domain OCT system. Two b-scans were manually centered on the optic nerve head and acquired in the vertical and horizontal orientations from each eye and assessed for morphological abnormalities (Fig. 4C). Cell loss was assessed by quantifying retinal thickness between the nerve fiber layer (NFL) and the RPE. OCT scans did not reveal any morphological abnormalities nor cell loss in the mutant MYOC Y435H heterozygous rats (Fig. 4C). These results suggest that the presence of mutant MYOC did not adversely impact retina development nor did mutant MYOC cause a loss of RGCs or adversely impact retina function.

MYOC–CRYAB interaction impedes protein clearance

Figure 1. MYOC protein is found in human AH, and in the eye tissue, the highest MYOC expression is observed in the trabecular meshwork. A. Western blotting for MYOC protein in human AH collected from different living donor eyes as well as from different deceased donor eyes. All AH samples were from donors of a similar elderly age, and no donors had a MYOC mutation. For the Western blotting, 5 μg of each sample was loaded per well, and anti-MYOC antibody is from R&D Systems. B, human AH sample Western blots were quantified. Error bars are ± S.D., and * indicates t test p < 0.05. C, control immunohistochemistry image of the human TM region and an image stained to show MYOC expression (MYOC indicated by the brown color) in the TM region. High expression of MYOC is evident in the TM. MYOC expression was observed in other regions of the eye (Fig. S1), but at a lower expression than that observed for the TM. Abbreviations used are as follows: AC, anterior chamber; SC, Schlemm’s canal.

2 months of treatment. Prednisolone treatment resulted in an increase in IOP for all three groups of animals; however, IOP for heterozygote and homozygote animals did not differ significantly from that of the WT rats (Fig. 3A). Additionally, when we examined the TM of the animals by H&E, trichrome, and immunohistochemical methods, we did not observe any major differences in outflow pathway morphology nor changes in cytoskeletal and extracellular matrix among the three groups either before (Fig. 3B) or after steroid treatment (Fig. 3B). Similar results for IOP and TM histology were observed for another two aged rat cohorts.

Our cumulative findings, including those from Western blot analysis, had suggested that MYOC Y435H heterozygote and homozygote rats are very similar to each other and both had some minor differences when compared with WT rats. As the published literature focuses on human MYOC heterozygote phenotypes, we limited our rat RGC analysis to a comparison of WT and heterozygotes. When retinal structure and function were evaluated in 18-month-old WT and heterozygote rats, no significant differences in retinal thickness (assessed by optical coherence tomography (OCT)) and function, specifically a- and b-wave (assessed by electoretinography (ERG)) were observed between mutant MYOC Y435H heterozygous and WT MYOC animals (Fig. 4).

Findings for mouse mutant Myoc Y423H BAC mice (25) and human mutant MYOC Y437H BAC mice (26, 42) have previously been reported, and the animals exhibited low to no IOP increase. Similarly, we observed no IOP differences between 6- and 8-month-old WT mice and MYOC Q368X BAC mice (Fig. S3) and no morphological abnormalities in the eye. This animal model was utilized to validate findings made in the CRISPR-engineered MYOC Y435H rat model (Fig. S4).

MYOC Q368X BAC mice

Findings for mouse mutant Myoc Y423H BAC mice (25) and human mutant MYOC Y437H BAC mice (26, 42) have previously been reported, and the animals exhibited low to no IOP increase. Similarly, we observed no IOP differences between 6- and 8-month-old WT mice and MYOC Q368X BAC mice (Fig. S3) and no morphological abnormalities in the eye. This animal model was utilized to validate findings made in the CRISPR-engineered MYOC Y435H rat model (Fig. S4).

CRYAB identified as a MYOC-binding partner

Several studies have been conducted to identify protein-binding partners for MYOC in the hope of defining a putative function for this protein (43–45). To identify proteins of inter-
Figure 2. Generation and confirmation of rats with the Myoc Y435H mutation.

A, CRISPR/Cas9–based strategy to introduce Y435H point mutation in rat Myoc.
B, sequencing traces of Myoc PCR products amplified from rat genomic DNA isolated from tail biopsies. Sequencing results confirm both the Y435H point mutation and the silent (PAM site) mutation in the heterozygote and homozygote animals (sites of mutation are underlined).
C, Western blotting of soluble Myoc in rat limbal ring lysates (40 μg of samples) using anti-MYOC antibody from Acris.
D, rat limbal ring lysate Western blots were quantified. Error bars are ± S.D., and t tests showed p > 0.1. Abbreviations used are as follows: HA-L, left homology arm; HA-R, right homology arm; Het, heterozygote; Hom, homozygote; wt, WT.
est potentially associated with MYOC, we completed small-scale proteomic analysis of rat AH. Mass spectrometry (MS) analysis of AH samples collected from heterozygote rats provided evidence that animals with mutant MYOC harbored differences in protein composition from WT animals. MS analysis revealed that the AH from WT animals had higher expression of many crystallin proteins (e.g., CRYAA, CRYAB, CRYBA2, and CRYBB3) compared with animals with mutant MYOC Y435H (Table 1). Next Generation Sequencing data from primary human TM cell lines identified CRYAB as the highest expressed crystallin family member in the TM. Western blot analysis of rat AH samples supported the MS data as WT animals were found to have more soluble CRYAB than animals with a MYOC Y435H mutation (Fig. 5, A–D). Additionally, immunocytochemistry staining of TM tissues from 18-month-old WT

Figure 3. Rats with the Myoc Y435H mutation have IOP and TM histology (at 9 months of age) that does not differ from WT rats, and this did not change following prednisolone challenge. A, IOP was monitored in a 4-month-old cohort of 10 WT (wt), 10 heterozygote (Het), and 10 homozygote (Hom) rats before and after implantation of a prednisolone pellet (25 mg for 60 days). Arrow indicates time of implantation. Results are ± S.E. B, top, H&E and trichrome staining of TM of 9-month-old rats that were not treated with prednisolone. Immunohistochemical images for α-SMA, COLIV, and FN1 (red color) indicated that the WT rats did not have tissue expression of these proteins that differed from the rats with a Myoc Y435H mutation. Bottom, H&E and trichrome staining of 9-month-old rat eyes from animals treated with prednisolone. Immunohistochemical images for α-SMA, COLIV, and FN1 for 9-month-old rats that received prednisolone treatment. Abbreviation used is as follows: SC, Schlemm’s canal. Scale bars are 100 μm.

J. Biol. Chem. (2018) 293(52) 20137–20156

20141
MYOC–CRYAB interaction impedes protein clearance

A

STR waveforms

Positive Scotopic Threshold Response (pSTR)

Negative Scotopic Threshold Response (nSTR)

B

Scotopic waveforms (2.2 log scot cd.s/m²)

Rod/Cone photoreceptor response (A-wave amplitude)

On-bipolar cell response (B-wave amplitude)

C

MYOC-wt

MYOC-Y435H-Het

Total retinal thickness (NFL → RPE)
and mutant MYOC Y435H rats showed more intensive staining of CRYAB in the WT animal (Fig. 5E). An immunoprecipitation (IP) experiment revealed that CRYAB bound WT MYOC (Fig. 5F). Supporting evidence of a MYOC–CRYAB interaction was observed via an additional IP experiment that was completed using a cell line (G401) that has endogenous expression of both MYOC and CRYAB (Fig. S5). Findings from these IP experiments are important as protein binders to MYOC are poorly defined and tentatively identified binders have lacked validation.

It has been suggested that mutant MYOC accumulates in the ER and causes pathology because of ER stress (34, 46–48). When we examined whole-eye extracts from 18-month-old animals by Western blotting, we observed no up-regulation of proteins indicative of ER stress (i.e. BiP, CALR, PDI, and GRP94), which is in agreement with that previously reported for another mutant MYOC animal model (49). However, what we did observe by Western blotting was an accumulation of high-molecular weight (HMW) ubiquitinated (Ub) proteins (Fig. 6, A and B). This accumulation of HMW ubiquitinated proteins in the rats with the MYOC Y435H mutation suggests that the proteasome and protein clearance mechanisms are not working effectively. To see whether protein clearance was compromised in another mutant MYOC animal model, we examined two MYOC BAC mouse lines. One line is a BAC transgenic with WT human MYOC, whereas the second line is a BAC transgenic with a Q368X point mutation in human MYOC. MYOC was identified in whole-eye extracts using R&D Systems with WT human MYOC, whereas the second line is a BAC promised in another mutant MYOC animal model, we examined that presence of CRYAB results in accumulation of MYOC, especially in the insoluble cellular component (Fig. 7, A and B). Thioflavin T (ThT) staining method can identify misfolded protein aggregates, so we used ThT to stain transfected NTM5 cells. ThT signal was found to be more prominent for mutant MYOC, and the staining was more intense when mutant MYOC was co-transfected with CRYAB (Fig. 7, C and D). To confirm that mutant MYOC was in the cytoplasm, we transiently-transfected NTM5 cells with cDNA for mutant MYOC Y437H and used a hypotonic lysis buffer to isolate the cytoplasmic fraction. In this experiment, CALR MYOC Q368X BAC had less soluble CRYAB and more HMW ubiquitinated proteins (Fig. S4, A and B). These findings from BAC mice were in agreement with our MYOC Y435H rat model. Therefore, we have myocilin in vivo models that do not show ER stress, but 1) suggest a correlation exists between MYOC and CRYAB; 2) indicate there is an accumulation of HMW ubiquitinated proteins when mutant myocilin is present; and 3) support a hypothesis that mutant myocilin is forming insoluble complexes with CRYAB, which has the potential to compromise protein degradation pathways.

Presence of CRYAB causes an increase in insoluble mutant MYOC

To further test our hypothesis that mutant MYOC forms insoluble complexes with CRYAB, we transiently-transfected NTM5 cells with different MYOC cDNAs ± CRYAB. From our Next Generation Sequencing data for human TM cells as well as from previous Western blottings, we knew that NTM5 cells do not express MYOC or αβ-CRYAB proteins. As others have reported, WT MYOC is efficiently secreted in vitro, although pathological mutant MYOCs are not (13, 14). Western blot analysis comparing soluble and insoluble fractions from transfected NTM5 cells indicated that presence of CRYAB results in accumulation of MYOC, especially in the insoluble cellular component (Fig. 7, A and B). Thioflavin T (ThT) staining method can identify misfolded protein aggregates, so we used ThT to stain transfected NTM5 cells. ThT signal was found to be more prominent for mutant MYOC, and the staining was more intense when mutant MYOC was co-transfected with CRYAB (Fig. 7, C and D). To confirm that mutant MYOC was in the cytoplasm, we transiently-transfected NTM5 cells with cDNA for mutant MYOC Y437H and used a hypotonic lysis buffer to isolate the cytoplasmic fraction. In this experiment, CALR MYOC Q368X BAC had less soluble CRYAB and more HMW ubiquitinated proteins (Fig. S4, A and B). These findings from BAC mice were in agreement with our MYOC Y435H rat model. Therefore, we have myocilin in vivo models that do not show ER stress, but 1) suggest a correlation exists between MYOC and CRYAB; 2) indicate there is an accumulation of HMW ubiquitinated proteins when mutant myocilin is present; and 3) support a hypothesis that mutant myocilin is forming insoluble complexes with CRYAB, which has the potential to compromise protein degradation pathways.

Table 1

Summary table highlighting proteins detected by LC-MS analysis to be in pooled aqueous humor samples collected from WT rats and from rats hetrozygous for mutant MYOC Y435H (n = 10 animals per group).

Protein name	Gene	Accession no.	Mass	No. of unique peptides	Wildtype	Heterozygote
α-Crystallin-A	Cryaa	P24623	22.4	23	1.60E + 11	9.50E + 08
α-Crystallin-B	Cryab	P23928	20.0	15	5.50E + 10	3.40E + 08
β-Crystallin-A2	Cryba2	QBCGQ0	22.2	9	1.90E + 10	2.80E + 07
β-Crystallin-A3	Cryba1	P14881	25.3	17	1.60E + 10	7.60E + 07
β-Crystallin-A4	Cryba4	P56374	22.4	14	6.80E + 09	1.30E + 08
β-Crystallin-B1	Crybb1	P02523	28.1	21	2.60E + 10	5.30E + 07
β-Crystallin-B2	Crybb2	P62697	23.4	27	1.20E + 11	2.90E + 08
β-Crystallin-B3	Crybb3	P02524	24.3	20	1.90E10	2.30E + 07
Cathepsin D	Ctsd	P24368	44.7	7	2.96E + 07	4.00E + 07
Complement C3	C3	P01026	186.5	99	4.00E + 09	2.70E + 09
Complement C4	C4	P08649	192.2	10	9.40E + 07	8.30E + 07
Serotransferrin	Tf	P12346	76.4	57	3.50E + 10	1.50E + 10
Serum albumin	Alb	P02770	68.7	5	4.10E + 10	2.90E + 10
Western blotting serves as a control indicative of ER lumen proteins. Our results do indicate that mutant MYOC is in the cytoplasm, and the probable reason for this finding is because it is being retro-translocated from the ER to the cytoplasm (Fig. 8A) and intended for proteasome degradation.

CRYAB is increased in human glaucoma

CRYAB is a heat-shock protein, so its expression is stress-induced. CRYAB expression has been reported to be elevated in the trabecular meshwork in glaucoma (50), and we wished to verify these published findings. What we observed was that...
CRYAB, which can be secreted (51), is detectable in human AH following the hypoxia and cell death stresses predicted to occur in cadaver tissues (Fig. 8B). We stained human tissue samples for CRYAB protein and observed much higher CRYAB expression in the TM region of the glaucomatous eye compared with the control (Fig. 8C). This result was in agreement with the published literature for CRYAB localization in human TM (50). The highest CRYAB expression in the TM appears to be nearest Schlemm’s canal in the juxtacanalicular region, which is the site of greatest AH outflow resistance. High CRYAB expression in the juxtacanalicular region has previously been noted (52). Therefore, human glaucoma samples show that there are interesting expression correlations between CRYAB and MYOC. Association of MYOC with CRYAB provides a mechanistic understanding as to how mutant MYOC causes glaucoma (Fig. 9).

Discussion

There are limitations to studying glaucoma in rodent models. In particular, humans have a much more abundant (i.e. thicker)...
TM tissue than rodents (Figs. 1C and 5E). In addition, humans have ~95% of their AH exiting the eye through the TM and conventional outflow pathway with only 5% of AH exiting via an unconventional mode (53). In comparison, rodents have the majority of their AH (21–83% depending upon strain) exiting the eye through an unconventional pathway (54). These species differences mean that glaucoma pathology may not manifest to the same extent or in a similar relative time in rodents.

Mutant MYOC Y435H rats did not have elevated IOP nor did they have tissue morphology that differed from the WT animals. Similarly, our mutant MYOC Q368X BAC mice did not have an IOP phenotype. MYOC BAC transgenic mice have previously been reported: 1) a transgenic with BAC mouse Myoc Y423H mutation (25), which corresponds to the pathological human MYOC Y437H mutation, was reported to have an IOP increase of ~2 mm Hg (OD BAC IOP of 14.1 ± 0.3 mm Hg versus WT IOP 12.4 ± 0.3 mm Hg); and 2) a transgenic with BAC human MYOC Y437H mutation (26) was reported to have an approximate IOP increase of 2 mm Hg (BAC IOP of 11.8 ± 1.2 mm Hg versus WT IOP 10.0 ± 0.8 mm Hg), but this mean IOP increase for the BAC MYOC Y437H mouse was later not validated (42). What can be concluded from previously reported BAC myocilin transgenics is that similar results were observed for the animals regardless of whether it was human or

Figure 7. *In vitro*, MYOC protein was found to accumulate in presence of CRYAB. **A**, NTM5 cells were transiently transfected for 48 h with different MYOC cDNAs + CRYAB and then MYOC in soluble and insoluble fractions examined by Western blotting. Note that very little GAPDH was detectable in the insoluble fraction. **B**, bar graph quantifying anti-MYOC Westerns blottings to show percentage of MYOC in soluble and insoluble fractions. **C**, ThT staining (green) for aggregates in NTM5 cells co-transfected with MYOC and CRYAB suggests the most intense staining is when mutant MYOC is co-expressed with CRYAB. The nucleus is counter-stained with DAPI (blue). **D**, quantification of number of ThT aggregates relative to cell number ± S.E. and with t test results.
mouse gene utilized. Thus, our IOP findings for our MYOC rodent models are in agreement with what has previously been reported for other myocilin transgenics (25–27).

Despite the lack of an IOP phenotype, differences among WT and mutant MYOC Y435H rats were found via proteomic analysis of rat AH (Table 1). In particular, animals with mutant MYOC Y435H had reduced levels of several crystallin family proteins. Crystallin proteins are highly expressed in the eye where they function as chaperones, protect the cytoskeleton, inhibit apoptosis, enhance resistance of cells to stress, and are neuroprotective (55). There is established precedence in the literature confirming an association between CRYAB levels and disease with CRYAB showing modified expression in glaucoma models of high IOP (56, 57). Additionally, analysis of the human vitreous humor proteome found that expression of numerous crystallin family proteins are significantly down-regulated in glaucomatous eyes (58).

CRYAB is a protein that can be found throughout a cell but also can also be secreted (51). Within a cell, CRYAB functions as a chaperone, where it assists in protein folding as well as helps to shuttle misfolded proteins to the proteasome for clearance (59). Using IP, we verified that MYOC binds CRYAB (Fig. 5F), and we further confirmed this interaction using a cell line that has endogenous expression of both MYOC and CRYAB (Fig. S5). In our in vivo mutant MYOC models, we observed a decline in soluble CRYAB protein that was accompanied by an intracellular accumulation of HMW ubiquitinated proteins. Accumulation of HMW-ubiquitinated proteins is suggestive of a compromised proteasome and/or impaired protein clearance mechanisms, both of which can have a chronic effect and will eventually impact cell viability.

Both CRYAB and MYOC are highly expressed in the TM. Normally, these small MYOC–CRYAB protein complexes within the cytoplasm should be effectively cleared by the proteasome; however, under stress conditions, TM cells produce elevated amounts of both MYOC and CRYAB, and protein accumulation may occur. We observed this protein accumulation in NTM5 cells co-transfected with mutant MYOC and CRYAB as evidenced by ThT staining (Fig. 7C). One function of CRYAB is to inhibit amorphous (disordered) aggregation by participating in amyloid fibril formation that leads to ordered β-sheet–containing aggregates (60). We postulate that in the short term, binding of MYOC to CRYAB may be beneficial to the TM cell by facilitating a recovery process. Binding of CRYAB to misfolded mutant proteins has been shown to aid in the restoration of cellular homeostasis and even an extended lifespan (61, 62). However, if the aggregates are not efficiently cleared by the proteasome then the aggregates pose a long-term threat to cell vitality (55). This idea is supported by the observation that fewer TM cells are present in trabeculectomy samples from mutant MYOC donors (63).

Protein folding in the ER is not completely efficient (64), so some misfolded WT proteins will normally occur. Misfolded protein is regularly retro-translocated from the ER into the cytoplasm for degradation via a process known as ER-associated degradation (ERAD). ERAD can utilize the ubiquitin–proteasome pathway, and MYOC has previously been shown to be cleared by the proteasome (65). When mutant MYOC is the protein being produced, then large amounts of misfolded MYOC protein will begin to accumulate, and it will associate with CRYAB within the cell. It has been observed that for cytoplasmic aggregates, such as that observed for mutant desmin protein, there is a feedback on ERAD resulting in a mild ER-signaling response (66). Thus, it is possible that the ER stress response reported by some researchers (34, 67) for mutant MYOC proteins may arise as an artifact of overexpression or as a secondary response to the primary event of cytoplasmic pro-

Figure 8. In human AH samples, CRYAB appears following stress conditions. A, NTM5 cells transiently transfected for 48 h had cytoplasmic proteins isolated by a hypotonic buffer, and MYOC Y437H was found in the cytoplasmic extract. CALR serves as a control indicating no lysis of the ER. B, Western blotting of human donor aqueous humor (10 μg per sample) indicates that CRYAB expression in AH is elevated during stress conditions. C, IHC suggests that CRYAB protein (red color) is highly expressed in human glaucoma in the trabecular meshwork nearest Schlemm’s canal. Nuclei are indicated by hematoxylin staining.
protein aggregates and inefficient protein clearance. Hence, when protein expression is within physiological relevance, the ER stress is a secondary and not a primary cause of mutant MYOC pathology. Proteins prone to aggregation typically have high β-sheet content (68), and MYOC OLF domain is a five-bladed β-propeller (33, 69). It would be interesting to know whether protein aggregation results in glaucoma for other GLC1 proteins (e.g. GLC1G/WDR36 which contains two multibladed β-propellers). In addition, it would be interesting to investigate whether protein aggregation and/or CRYAB binding is a universal feature in this multifactorial disease.

Our proposed model for mutant MYOC pathology is supported by published in vivo data. A mouse model with mutant MYOC Y437H expression under control of a lens-specific crystallin promoter (27) was found to develop cataracts by 6 weeks of age, and the lenses of these transgenics eventually ruptured. The lens is extremely enriched in crystallin proteins, so this animal model supports our findings that co-expression of mutant MYOC with CRYAB can adversely impact a cell eventually leading to cell death. Interestingly, CRYAB and MYOC: 1) are expressed in the same limited number of tissues, which include the eye, heart, and skeletal muscle (21, 34, 70); 2) both are stressed-induced genes (70); 3) both are up-regulated following steroid (e.g. dexamethasone) treatment (38, 71); and 4) both have expression enhanced in the presence of soft substrates/matrices (72). Extracellular crystallin has been reported to bind dexamethasone (73), and as both MYOC and CRYAB gene expression are up-regulated by dexamethasone, this potentially identifies a feedback for our MYOC model (Fig. 9).

Current information in the literature that challenges our proposed model for mutant MYOC is a publication that reported that only heterozygotes in a mutant MYOC K423E pedigree, not homozygotes, developed glaucoma (11). This 2-decade-old MYOC publication is the only example in the literature of a hypothetical form of simple inheritance (74). Since that early MYOC publication, several people homozygous for pathological MYOC mutations have been reported as having glaucoma (63, 75). In fact, homozygotes for MYOC T377M have a more severe glaucoma phenotype than MYOC T377M heterozygotes (75). Typically, in the case of a pathological misfolded protein, one would expect that: 1) homozygotes would have a more severe phenotype than heterozygotes; and 2) offspring carrying two pathological variants on opposing alleles would also have a phenotype more severe than heterozygotes with a single mutation. The researchers that reported the MYOC K423E pedigree (11) later acknowledged that a spouse in the K423E pedigree carried mutant MYOC R126W and their blind child, who had the most severe phenotype in the family tree, carried both MYOC variants (76). In another reported pedigree, individuals that were compound heterozygotes for mutant MYOC Q368X and mutant MYOC T377M were found to have a more severe glaucoma phenotype than people with either mutant alone (77).

Therefore, there are examples in the literature that challenge the idea that homozygotes for mutant MYOC do not manifest glaucoma. Our data from our MYOC Y435H rat model suggest that heterozygote and homozygote rats are more similar to each other and different from the WT animals. One can speculate that the report for the MYOC
K423E homozygotes was at an age before the glaucoma disease onset; alternatively, there may be a MYOC gene penetrance variable to consider and/or external stress factor(s) needed to enhance MYOC gene expression to manifest glaucoma.

Protein aggregates can initiate cell dysfunction to impact cell viability (60), and aggregates are well-established as a factor in several age-related diseases (60, 78). Interestingly, patients with Alzheimer’s disease have a higher risk of glaucoma, and optic nerve changes have also been shown in patients with Parkinson’s disease (79). The predominant current hypothesis is that mutant MYOC causes glaucoma pathology through a mechanism involving intracellular accumulation of misfolded protein (47, 80). Herein, we have identified CRYAB as a MYOC binder. We show that severity of aggregates is enhanced when the two proteins are co-expressed. Changes to the level of available CRYAB can cause cell dysfunction by compromising efficiency of the ubiquitin–proteasome pathway (70). Aggregation of CRYAB with MYOC also prevents CRYAB from performing its numerous normal essential cellular functions, which include 1) a chaperone (55, 59); 2) a protein important for inhibiting apoptosis (81); and 3) a protein providing neuroprotection (82). Thus, intracellular binding of MYOC to CRYAB will impact cell homeostasis, and the aggregates could cause disease development and/or progression.

Up-regulation and aggregation of WT MYOC has been reported in other glaucoma subtypes, and this suggests broader relevance of misfolded MYOC across the disease spectrum (80). To date, methods to target misfolded MYOC have focused on MYOC in the ER (80), but a limitation to this strategy is that it does not address aggregation of MYOC in the cytoplasm. The relevance of our identification of the MYOC–CRYAB interaction is that it supports therapeutic approaches to prevent cytoplasmic MYOC aggregates that compromise the ERAD pathway. We postulate that disruption of the MYOC–CRYAB interaction will assist in protein clearance thus preventing TM cell dysfunction and the resulting cell death that occurs in glaucoma. A compound that targets CRYAB has been reported (84), and future research may involve studying the application of this or other CRYAB–targeting compounds in a model that is representative of the patient with a pathological MYOC mutation.

POAG is a disease associated with aging. Many aging diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s, have pathology attributed to chronic accumulation of misfolded proteins that will eventually compromise cell function and viability. Our finding that MYOC binds CRYAB adds to the biological understanding how pathological MYOC mutations cause glaucoma. As rodents have a much smaller TM region than humans, the majority of their AH exiting via an unconventional pathway, and only an approximate 2-year life span, it can be concluded that no currently available rodent model ideally represents the chronic nature of human POAG. As such, all current in vitro and in vivo myocilin rodent models for POAG have limitations. An effort to establish or identify an in vivo model that better resembles human POAG is paramount to advancing the development of novel glaucoma treatments to directly modify disease pathology. The application of CRISPR/Cas9 technology provides researchers with new opportunities to develop these novel in vitro and in vivo models to better study MYOC and its role in POAG.

Two decades post-discovery, MYOC remains a fascinating gene that is strongly-associated with glaucoma. We propose that targeting MYOC at a transcriptional or transcript level to reduce the amount of MYOC protein or, alternatively, a low molecular weight compound that reduces MYOC–CRYAB protein complexes/aggregates may be potential therapeutic approaches. Discovery of the MYOC–CRYAB complex provides new insight as to how mutant MYOC is causing pathology via the removal of CRYAB from performing its many prosurvival cellular functions. It is hoped that identification of this complex will assist in facilitating a treatment strategy to help the patient with a pathological MYOC mutation so that these patients may retain their vision and maintain quality of life.

Materials and methods

Human samples

Human samples were obtained with consent from regional donor eye banks. AH from living donors was collected during cataract surgery and immediately frozen, while AH and tissues collected from cadaver donor eyes were collected <12 h post mortem and immediately frozen upon isolation. All human samples were stored at −80 °C until use. Medical histories provided patient information. All human samples were from donors of a similar elderly age. Note that none of the human donors had a MYOC mutation.

Animal models

All procedures in this investigation conformed to the Association for Research in Vision and Ophthalmology (ARVO) resolution on the Use of Animals in Ophthalmic and Vision Research and were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at Novartis Institutes for Biomedical Research. Animals were housed in rooms in which the temperature, humidity, and lighting (12:12 h light/dark cycle) were controlled, and water and food were available ad libitum. When animal tissues samples were collected, they were immediately frozen and then stored at −80 °C until used.

CRISPR-engineered MYOC Y435H mice

CRISPR-engineered Sprague-Dawley MYOC Y435H rats were created by Horizon Labs (St. Louis, MO), and the Myoc gene was sequenced to ensure only the single mutation was introduced. To identify the rats as WT (native), heterozygote, or homozygote for the MYOC Y435H mutation, genomic DNA was isolated from tail clippings. Tails were digested in 1× Tail Buffer (10 mM Tris, pH 8; 2.5 mM EDTA; 100 mM NaCl; 0.1% SDS) with proteinase K (10 mg/ml) added. Genomic DNA was purified by a single precipitation step using phenol/chloroform/isoamyl. The isolated genomic DNA was amplified by PCR using rat Myoc primers (forward: 5’-ctgtggatgagagcgg-gcctc-3’ and reverse: 5’-tgaccagttggtgctc-3’). For PCR, GeneChoice polymerase (Apex, 42-409R) and a C1000 Touch™ thermal cycler (Bio-Rad, 52 °C annealing and 72 °C extension temperatures) were utilized. PCR products (343 bp) were gel-purified from 0.8% agarose/1× TAE gels using a gel...
purification kit (Qiagen, 28704) according to the manufacturer’s instructions. Sequencing was completed by GeneWiz (Cambridge, MA) using the forward Myoc primer. Animals were born at expected Mendelian frequencies, and no breeding or viability issues were noted. All experimental animals were obtained from heterozygote breeding pairs.

MYOC WT BAC and MYOC Q368X BAC mice

BAC containing the human MYOC gene (RP11-1152G22) was used to generate the transgenic mouse lines. This BAC contains the entire MYOC coding sequence, with 68-kb 5’- and 51-kb 3’-flanking sequences. Modification of the BAC to introduce the C>T mutation at position 1102 of the coding sequence was performed by GeneBridges (Heidelberg, Germany). Purified BAC constructs were injected into the pronuclei of C57BL/6J mice. The resulting offspring were screened by PCR to identify transgenic founders, and one founder for each of the WT BAC and mutant BAC was used to establish transgenic lines. No breeding complications or viability issues were noted for any of the mice.

Measurement of conscious IOP

Animals underwent training of conscious IOP measurement for more than 3 weeks. IOP was measured with a TonoLab rebound tonometer (Colonial Medical Supply, Franconia, NH) twice per week at the same time each mid-day. Ten measurements deemed reliable by internal software were utilized to generate and display an average. An average of these readings was then calculated and reported as mean IOP ± S.E. The normal variability expected for multiple examiners using tonometers is ~1 mm Hg (85).

Implantation of prednisolone or placebo pellet

IOP was monitored in the rat cohorts before and after prednisolone challenge. Each animal cohort consisted of 10 WT, 10 heterozygote, and 10 homozygote animals. Pellets were ordered from Innovative Research of America (Sarasota, FL), and the prednisolone pellet was 25 mg x 60 days releasing. Animals were anesthetized with an i.p. injection of a mixture of ketamine (35 mg/kg) and xylazine (5 mg/kg). Subcutaneous implantation was conducted via small incision in the dorsal neck area. RT-PCR using Myoc rat primers (ThermoFisher Scientific, Rn00578382_m1) suggested that Myoc transcript was increased up to six times with prednisolone treatment.

Electroretinography methods

Electroretinography (ERG) was performed using the Espion™ E3 system (Diagnostics LLC, Lowell, MA) equipped with dual Codorome Ganzfeld stimulators. ERGs were acquired from Sprague-Dawley MYOC Y435H rats (n = 9) and WT Sprague-Dawley rats (n = 6). Preceding the recording, the animals were dark-adapted overnight in a ventilated light-tight enclosure (Phenome Technologies) for at least 18 h. Pupils were dilated using 1–2 drops of 1.0% cyclopentolate hydrochloride (Alcon) and 1–2 drops of 2.5% phenylephrine hydrochloride (Akorn). Proparacaine 0.5% (Akorn) was applied topically as a local anesthetic. Rats were subsequently anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture (75:0:5:0 mg/kg) and positioned on a warm-water heating pad during the recording. Corneal hydration was maintained through application of 1.0% carboxymethylcellulose lubricating drops (TheraTears, Akorn). ERGs were recorded using a gold loop contact lens electrode (LKC, part no. R275) referenced to a gold nasopharyngeal electrode (Natus Technologies, F-ERG-G) placed in the mouth. A 30-gauge platinum electrode was inserted subcutaneously in the tail to ground the recording. All procedures were performed under dim red illumination (>650 nm). The scotopic threshold responses were elicited with −6.0, −5.5, and −5.0 log cd·s/m² flash luminance (50 replicate flashes, 2-s inter-stimulus interval). Photoreceptor (a-wave) and on-bipolar cell function (b-wave) were assessed by a single 2.2 log cd·s/m² high luminance stimulus. ERG traces were analyzed using a customized script written in MATLAB (Mathworks, Natick, MA). Data quantification and statistical analysis were performed using GraphPad Prism (Version 7).

OCT

Ocular imaging was performed using a spectral domain OCT imaging system (Leica Microsystems, Bioptigen Envisu R2210). Anesthesia and pupil dilation were performed as stated in the ERG protocol. Corneal hydration was maintained through application of 0.3% hypromellose lubricating drops (Alcon). OCT b-scans centered on the optic nerve were acquired in the inferior–superior (vertical scan) and nasal–temporal (horizontal scan) directions from each eye. Ten 1.8-mm b-scans were acquired at each position and then subsequently aligned and averaged for analysis. Retinal thickness measurements were performed using a custom code developed in MATLAB (Mathworks Release 2016a). The central 200-μm centered on the optic nerve head was excluded from the thickness measurements to avoid alignment variability observed near the optic nerve. Total retinal thickness measurements were performed manually by delineating the NFL and RPE/Bruch’s membrane. Retinal thickness measurements from both eyes were averaged for each animal. Statistical analysis and graphing were performed using GraphPad Prism (Version 7).

Histology

Human anterior segments, rat eyes, and mouse eyes were all fixed in 10% neutral-buffered formalin for 3–4 days (human and rat) and 2 days (mouse). The tissues were processed for paraffin embedding in Tissue-Tek VIP and Tissue-Tek Tec (Sakura). Paraffin blocks were sectioned (5 μm) and mounted to slides (Superfrost Plus, ThermoFisher Scientific). Slides from each eye were treated with antibody and/or stained with H&E or trichrome in accordance with auto-staining machine protocols (Tissue-Tek Prisma®, Sakura).

Immunohistochemistry was run on LeicaBond Rx IHC/ISH slide staining system. Slides were treated by heat-induced epitope retrieval ER2 (pH 9.0, AR9640) for 20 min. Primary antibodies were incubated for 30 min. Specifically bound antibodies were visualized using Bond Polymer Refine Detection System (Leica, DS9390). Finally, stained slides were covered and scanned into Aperio AT2 slide scanner (Leica).

Primary antibodies and working concentrations were as follows: 1) rabbit anti-MYOC 0.2 μg/ml (Sigma, HPA027364); 2)
mouse anti-CRYAB 0.2 µg/ml (Abcam, ab13496); 3) mouse α-smooth muscle actin (α-SMA) 1 µg/ml (Abcam, ab7817); 4) rabbit anti-collagen IV (COLIV) 2 µg/ml (Millipore, A756p, 1 mg/ml); and 5) rabbit anti-fibronectin (FN1) 0.18 µg/ml (Proteintech, 15613-1-AP).

In vitro experiments

An immortalized human normal trabecular meshwork cell line 5 (NTM5) was utilized, and this cell line has previously been described (86). MYOC is a protein whose expression in primary cells declines with culture time (87). Additionally, NTM5 cells no longer express MYOC protein nor is the MYOC protein level in NTM5 cells impacted by dexamethasone treatment. NTM5 cells were grown in 10-cm culture dishes in a 37 °C incubator with 90% relative humidity and 5% CO2. Cell media used for NTM5 cells were DMEM (Gibco, 1199-065) supplemented with 10% FBS (Gibco, 10082-147) and 1% penicillin/streptomycin (Gibco, 15140-122). NTM5 cells at 70–80% confluence were transiently transfected with plasmids (6 µg of total cDNA per 10-cm plate) using FuGENE 6 transfection reagent (Promega, E2691). Human MYOC plasmids were all in the same vector, which had a minimal CMV promoter. CMV–MYOC plasmid cDNAs had been created and sequences confirmed by GeneWiz. One plasmid contained cDNA for WT untagged MYOC (accession no. NM_000261), and the other plasmids had cDNA for mutant MYOC with either the Y437H mutation or Q368X mutation. Additional plasmids included human CRYAB (Origene, RC202718; accession no. NM_001885). All plasmids had been purified using a Qiagen plasmid maxi kit (Qiagen, 12163), and for transfections FuGENE 6 was utilized at a 5:1 ratio with the cDNA. 48 h post-transfection, cells were washed with 1× PBS (Gibco, 20012-027) and lysed on ice using a RIPA buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA (pH 8.0), 1 mM EGTA (pH 8.0), 0.1% SDS, 1% Triton X-100, 0.5% sodium deoxycholate, 1 mM DTT) with Complete protease inhibitors (Roche Applied Science, 11873580001). Cell debris was removed by cold centrifugation (Eppendorf 5810R), and the soluble cell lysates in the supernatant were retained. Protein assay (Bio-Rad) was determined by the Bio-Rad DC protein assay, and samples were concentrated by centrifugation and Ambion Ultra-4 Centrifugal Filters (Millipore, UFC801008). Protein concentration was determined by the Bio-Rad DC protein assay, and samples were analyzed by Western blotting. For Western blotting, 5× SDS loading buffer was added to each sample. For isolation of soluble cell lysates, a minimal amount of RIPA buffer with protease inhibitors was added to each plate, and the plates were placed on ice for 10 min. Cells were scraped from the plates using a cell scraper (Corning, 3008), and the samples were transferred to pre-chilled tubes. Tubes were centrifuged at 4 °C for 10 min at 7500 rpm. The supernatant (soluble fraction) was isolated and saved in tubes on ice, and the pellet was processed as described below. Bio-Rad DC protein assay of the soluble samples was completed. 5× SDS loading buffer was added to each sample, and samples were placed in a boiling water bath for 5 min. For isolation of insoluble cell lysates to the pellet of each sample, 250 µl of RIPA buffer with protease inhibitors was added, and these samples were briefly sonicated three times (Misonix XL-2000, 7 V). 100 µl of 5× SDS loading buffer was added to each of these samples, and the tubes were placed in a boiling water bath for 5 min. RIPA buffer was added to the insoluble samples to equalize the volume to that in the soluble fractions.

Isolation of in vivo protein

Tissue harvested from animals was minced with scissors and homogenized (Omni Tissue Master 125 Homogenizer, Omni International) in the RIPA buffer with Complete protease inhibitors (Roche Applied Science). The tissue samples were sonicated using a Misonix Sonicator XL-2000 series with ultrasonic converter (Serial C6498) set at power setting 1 (5 V). Samples were cold-cenrifuged and supernatants saved. Sample protein concentration was determined by the Bio-Rad DC protein assay. For Western blotting, 5× SDS loading buffer was added to each sample, and samples were placed in a boiling water bath for 5 min before being loaded into wells of 10% SDS-polyacrylamide gels.

Antibodies

All primary antibodies were from commercial sources. With the exception of anti-GAPDH (1:10,000), and unless otherwise mentioned, all primary antibodies for Western blotting application were typically utilized at a 1:1000 dilution in 1% nonfat milk and 1× TBS-T. All primary antibody incubations were overnight at 4 °C with gentle rocking. Primary antibodies uti-
MYOC–CRYAB interaction impedes protein clearance

lized in this study for Western blotting and for histology applications were as follows: ARMET (Abcam, ab126321), BIP (Cell Signaling Technology, 3183S), CALR (Cell Signaling Technology, 2891S), CRYAB (Abcam 76467), CRYAB for IP (Cell Signaling Technology, 45844), FLAG (Sigma, F1804), GAPDH (Fitzgerald, 1OR-G109a; 1:10,000), GRP94 (Cell Signaling Technology, 21045), MYOC (Acris, AP10162PU-N), MYOC (Origene, TA323708), MYOC (R&D Systems, AF2537; 1 μg/μl), MYOC (Sigma, HPA027364), and ubiquitin (Abcam, ab134953). For Western blotting, all secondary antibodies were AP-conjugated and were utilized at a 1:2000 dilution in 1% non-fat milk and 1× TBS-T. All secondary antibodies were purchased from Abcam (ab97107, ab97237, and ab6722). As a Western blotting loading control, membranes were stripped according to the manufacturer’s instructions using 1× Strong Stripping Buffer (Millipore, 2504) and after blocking in a 5% nonfat milk, 1× TBS-T solution, the membranes were treated with anti-GAPDH.

Gel LC-MS/MS analysis of rat aqueous humor

Upon separation of pooled rat aqueous humor samples by SDS-PAGE and staining with SimplyBlue (Invitrogen, LC6065), protein bands were excised from gels and subjected to trypsin digestion. Trypsin digestion was performed according to standard procedures (88). Briefly, the gel pieces were dehydrated with acetonitrile (ThermoFisher Scientific) and rehydrated with 100 mM NH₄HCO₃ buffer containing 10 mM DTT (ThermoFisher Scientific) to reduce disulfide bonds. Gel pieces were treated with 100 mM NH₄HCO₃ buffer containing 20 mM iodoacetamide (ThermoFisher Scientific) to alkylate cysteines. After two rounds of dehydration with acetonitrile and rehydration with 100 mM NH₄HCO₃ buffer, the dried gel pieces were rehydrated with 20 ng/μl trypsin sequencing grade (Roche Applied Science) in 50 mM NH₄HCO₃ buffer and incubated overnight at 37 °C. Peptides were extracted with 75% acetonitrile, 0.1% formic acid and dried in a vacuum centrifuge. Samples were resuspended in 5% acetonitrile, 0.1% formic acid and introduced to an Orbitrap Fusion Lumos (ThermoScientific) using an EASY nano-LC1200 system (ThermoFisher Scientific) with an analytical column packed with a 0.075 × 200 mm ReproSil-Pur C18-AQ, 3 μm (Dr. Maisch, Ammerbuch, Germany).

MS and tandem MS/MS spectra were performed on an Orbitrap Fusion Lumos mass spectrometer operated on data-dependent acquisition mode. Survey MS1 scans were acquired in the Orbitrap using a 350–1400 m/z range at 120,000 resolution. The most intense ions per survey scan (top speed mode), rising above threshold, were selected for HCD fragmentation, and the resulting fragments were analyzed in the Orbitrap. Proteome Discoverer software suite (Version 2.1, ThermoFisher Scientific) was used for peptide identification. The data were searched against the UniProt rat database (Version Nov., 2015). At the MS1 level, a precursor ion mass tolerance of 10 ppm was set for the Orbitrap MS/MS detection methods. Oxidation of methionine was defined as a variable modification, and carbamidomethylation on cysteines was defined as a fixed modification. False discovery rate in peptide identification was limited to a maximum of 0.01 by using a decoy database. Abundance data were retrieved from the “Precursor ion area detector” node from Proteome Discoverer (Version 2.0) using 2 ppm mass tolerance for the peptide extracted ion current.

Immunoprecipitation

NTM5 cells were grown in 10-cm culture dishes and were transiently transfected. Plasmid cDNAs utilized were for WT untagged MYOC (accession no. NM_000261) and CRYAB–FLAG (Origene, RC207218, accession number NM_001885), and the control vector was pCMV-Tag1. 24 h post-transfection, plates of transfected cells were washed five times with 1× PBS, and 10 ml of serum-free DMEM was added to each plate. 48 h post-transfection, the media were collected from these plates and concentrated to 100× using Ambion filter units. Similar media samples were pooled, and protein concentration was determined by the Bio-Rad DC protein assay.

48 h post-transfection, the NTM5 cells were washed with 1× PBS and then 250 μl of IP buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100) with Roche Applied Science Complete protease inhibitors was added to each plate for 10-min incubation on ice. Cell lysates were transferred into tubes and sonicated once at power setting 1 (5 V) for 15 s. Tubes were then centrifuged at 7500 rpm at 4 °C for 10 min, and the supernatants were transferred to new pre-chilled tubes. Similar samples were pooled, and Bio-Rad DC protein assay was completed. 50 μl of anti-FLAG antibody was added to each tube, and tubes were incubated overnight at 4 °C with gentle rotation. Later, 40 μl of Pierce protein A/G-agarose (ThermoFisher Scientific, 20241) beads were added to each tube for a 90-min incubation at 4 °C with gentle rotation. Using the cold centrifuge (1000 × g at 4 °C for 3 min), samples were gently centrifuged to pellet the A/G beads. Beads were washed five times with the IP buffer, and then 15 μl of 5× SDS loading buffer added. Sample tubes were placed in a boiling water bath for 5 min and then centrifuged at room temperature at 13,000 rpm for 3 min. The supernatant was retained for Western blot analysis. This IP protocol is a modified version of that provided by Cell Signaling Technology for native proteins.

The Broad Institute Cancer Cell Library Encyclopedia was searched to identify immortalized human cell lines with high transcript levels of both MYOC and CRYAB (https://portals.broadinstitute.org/ccle).² Two soft tissue cell lines were identified (Fig. S5A) from the CCLE of which the G401 cell line was chosen for IP experiments. G401 cells were grown in McCoy’s 5A media (Gibco, 16600082) supplemented with 10% FBS. G401 cells were not transfected, and cell lysates and cell media were independently isolated and utilized for IP, as described above, but IP was performed using an anti-CRYAB mAb (Cell Signaling Technology, 45844). For this IP, the reaction tubes were +/− G401 conditioned media as this is the primary location of the majority of WT MYOC.

Isolation of cytoplasmic-only proteins

NTM5 cells were transfected with a control vector (pCMV-Tag1) or a CMV–MYOC Y437H plasmid. 48 h post-transfec-
tion, plates of cells were washed three times with 1× PBS. To each plate, 125 μl of Hypotonic lysis buffer (Sigma, ER0100) containing Roche Applied Science Complete protease inhibitors and 1 mM DTT was added for a 10-min incubation on ice. Cells were scraped from the plates and transferred into tubes that were then frozen on dry ice. Tubes were thawed, and following hard vortexing, the tubes were centrifuged at 7500 rpm at 4 °C for 5 min. The supernatant was transferred to a new tube, and the Bio-Rad DC protein assay completed. Samples were analyzed by Western blotting.

Thioflavin T staining

NTM5 cells were plated in Lab-Tek II chamber slides (Lab-Tek, 154461) and 24 h later transfected using FuGENE 6 (Promega, E2691) transfection reagent and maxi prep plasmids. 72 h post-transfection, cells were fixed using 4% paraformaldehyde solution. A 1% ThT solution (Sigma, T3516) was added to chamber slides for a 45-min incubation at room temperature. Following 1× PBS washes, a DAPI solution (Molecular Probes, D1306) was applied for 30 min. After additional 1× PBS washes, a cover slip was applied using VectaShield Hardmount (Vector Labs, H-1400). Slides were imaged using a Nikon BX-21 fluorescent microscope fitted with a ×40 objective.

Note that a limitation to ThT staining is that it cannot differentiate oligomeric intermediates (89). Additionally, disease severity does not necessarily correlate with the amount of amyloid deposition as small oligomers are also predicted to be highly toxic to cells (90). As ThT staining depends on the surface charge of the fiber (60), the staining intensity is influenced by exposed surface areas. Thus, a limitation to ThT staining is that it will predominantly stain aggregated proteins in which the protein precipitated state is highly ordered, and ThT may not be capable of staining aggregates formed by the amorphous aggregation pathway (91). Despite these drawbacks to the staining method, ThT does show excellent linearity between fibril concentration and ThT emission intensity (91). Amyloid staining is best viewed using transmission EM (92). Additional 1× PBS washes, a coverslip was applied using VectaShield Hardmount (Vector Labs, H-1400). Slides were imaged using a Nikon BX-21 fluorescent microscope fitted with a ×40 objective.

References

1. Quigley, H. A., and Broman, A. T. (2006) The number of people with glaucoma worldwide in 2010 and 2020. *Br. J. Ophthalmol.* 90, 262–267 CrossRef Medline

2. Friedman, D. S., Wolfs, R. C., O’Colmain, B. J., Klein, B. E., Taylor, H. R., West, S., Leske, M. C., Mitchell, P., Congdon, N., Kempen, J., and Eye Diseases Prevalence Research Group. (2004) Eye diseases prevalence research group. Prevalence of open-angle glaucoma among adults in the United States. *Arch. Ophthalmol.* 122, 532–538 CrossRef Medline

3. Weinreb, R. N., Åun, T., and Medeiros, F. A. (2014) The pathophysiology and treatment of glaucoma. *JAMA* 311, 1901–1911 CrossRef Medline

4. Meyer, A., Béchetoille, A., Valtot, F., Dupont de Dinechin, S., Adam, M. F., Belmouden, A., Brézin, A. P., Gomez, L., Bach, J. F., and Garchon, H. J. (1996) Age-dependent penetration and mapping of the locus for juvenile and early-onset open-angle glaucoma on chromosome 1q (GLC1A) in a French family. *Hum. Genet.* 98, 567–571 CrossRef Medline

5. Sunden, S. L., Alward, W. L., Nichols, B. E., Rohklin, T. R., Nyustuen, A., Stone, E. M., and Sheffield, V. C. (1996) Fine mapping of the autosomal dominant juvenile open angle glaucoma (GLC1A) region and evaluation of candidate genes. *Genome Res.* 6, 862–869 CrossRef Medline

6. Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., Nishimura, D., Clark, A. F., Nyustuen, A., Nichols, B. E., Mackey, D. A., Rith, R., Kalenak, J. W., Craven, E. R., and Sheffield, V. C. (1997) Identification of a gene that causes primary open angle glaucoma. *Science* 275, 668–670 CrossRef Medline

7. Tamm, E. R. (2002) Myocilin and glaucoma: facts and ideas. *Prog. Retin. Eye Res.* 21, 395–428 CrossRef Medline

8. Fingert, J. H., Héon, E., Liebmann, J. M., Yamamoto, T., Craig, J. E., Rait, I., Kawase, K., Hoh, S. T., Buys, Y. M., Dickinson, J., Hockey, R. R., Williams-Lyn, D., Trope, G., Kitazawa, Y., Ritch, R., Mackey, D. A., Alward, W. L., Sheffield, V. C., and Stone, E. M. (1999) Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. *Hum. Mol. Genet.* 8, 889–905 CrossRef Medline

9. Johnson, D. (2000) Myocilin and glaucoma: a TIGR by the tail? *Arch. Ophthalmol.* 118, 974–978 Medline

10. Shimizu, S., Lichter, P. R., Johnson, A. T., Zhou, Z., Higashi, M., Gottfredsdottir, M., Othman, M., Moroi, S. E., Roza, F. W., Schertzer, R. M., Clarke, M. S., Schwartz, A. L., Downs, C. A., Vollrath, D., and Richards, J. E. (2000) Age-dependent prevalence of mutations at the GLC1A locus in primary open-angle glaucoma. *Am. J. Ophthalmol.* 130, 165–177 CrossRef Medline

11. Morissette, J., Clépet, C., Moisan, S., Dubois, S., Winstall, E., Veermeeren, D., Nguyen, T. D., Polansky, J. R., Côté, G., Ancil, I. L., Amyot, M., Plante, M., Falardeau, P., and Raymond, V. (1998) Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma. *Nat. Genet.* 19, 319–321 CrossRef Medline

12. Alward, W. L. (2000) The genetics of open-angle glaucoma: the story of GLC1A and myocilin. *Eye* 14, 429–436 CrossRef Medline

13. Gobeil, S., Letartre, L., and Raymond, V. (2006) Functional analysis of the glaucoma-causing TIGR/myocilin protein: integrity of amino-terminal coiled-coil regions and oatflacidin homology domain is essential for extracellular adhesion and secretion. *Exp. Eye Res.* 82, 1017–1029 CrossRef Medline

14. Jacobson, N., Andrews, M., Shepard, A. R., Nishimura, D., Searsby, C., Fingert, J. H., Hageman, G., Mullins, R., Davidson, B. L., Kwon, Y. H., Alward, W. L., Stone, E. M., Clark, A. F., and Sheffield, V. C. (2001) Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. *Hum. Mol. Genet.* 10, 117–125 CrossRef Medline

15. Souzeau, E., Burdon, K. P., Dubowsky, A., Grist, S., Usher, B., Fitzgerald, J. T., Crawford, A., Hewitt, A. W., Goldberg, I., Mills, R. A., Ruddle, J. B., Landers, J., Mackey, D. A., and Craig, J. E. (2013) Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an Australian disease registry. *Ophthalmologica* 2012, 1135–1143 CrossRef Medline

16. Alward, W. L., Fingert, J. H., Coote, M. A., Johnson, A. T., Lerner, S. F., Junqua, D., Durcan, F. J., McCartney, P. J., Mackey, M. B., Sheffield, V. C., and Stone, E. M. (1998) Clinical features associated with mutations in the chromosome open-angle glaucoma gene (GLC1A). *N. Engl. J. Med.* 338, 1022–1027 CrossRef Medline

17. Zhuo, Y. H., Wei, Y. T., Bai, Y. J., Duan, S., Lin, M. K., Saragovi, H. U., and Ge, J. (2008) Pro370Leu MYOC gene mutation in a large Chinese family
with juvenile-onset open angle glaucoma: correlation between genotype and phenotype. *Mol. Vis.* 14, 1533–1539

18. Li, C. M., Zhang, Y. H., Ye, R. H., Yi, C. X., Zhong, Y. M., Cao, D., and Liu, X. (2014) Anticipation, anti-glaucoma drug treatment response and phenotype of a Chinese family with glaucoma caused by the Pro370Leu myocilin mutation. *Int. J. Ophthalmol.* 7, 44–50

19. Kwon, Y. H., Fingert, J. H., Kuehn, M. H., and Alward, W. L. (2009) Primary open-angle glaucoma. *N. Engl. J. Med.* 360, 1113–1124

20. Nag, A., Lu, H., Arno, M., Iglesias, A. I., Bonnemaijer, P., Broer, L., Uitterlinden, A. G., Klaver, C. C., van Duijn, C. H., Hyöty, P. G., and Hammond, C. J. (2017) Evaluation of the myocilin mutation Gln368Stop demonstrates reduced penetrance for glaucoma in European populations. *Ophthalmology* 124, 547–553

21. Adam, M. F., Belmouden, A., Binisti, P., Brézin, A. P., Valtot, F., Béchetteille, A., Dascotte, J. C., Copin, B., Gomez, L., Chaventlé, A., Bach, J. F., and Garchon, H. J. (1997) Recurrent mutations in a single copy exon encoding the evolutionarily conserved oafactomedin-homology domain of TIGF in familial open-angle glaucoma. *Hum. Mol. Genet.* 6, 2091–2097

22. Nguyen, T. D., Chen, P., Huang, W. D., Chen, H., Johnson, D., and Polan, D., and Hartig, A. (2006) Peroxisome targeting signal 1: is it really needed? *Mol. Biol. Cell.* 17, 2249–2259

23. Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J., and Hartig, A. (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. *J. Biol. Chem.* 273, 33635–33643

24. Donegan, R. K., Hill, S. E., Freeman, D. M., Nguyen, E., Orwig, S. D., Turnage, K. C., and Lieberman, R. L. (2015) Structural basis for misfolding in myocilin-associated glaucoma. *Hum. Mol. Genet.* 24, 2111–2124

25. Zode, G. S., Kuehn, M. H., Nishimura, D. Y., Searby, C. C., Mohan, K., Grozdanic, S. D., Bugge, K., Anderson, M. G., Clark, A. F., Stone, E. M., and Sheffield, V. C. (2011) Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. *J. Clin. Invest.* 121, 3542–3553

26. Zhou, Y., Grinchuk, O., and Tomarev, S. I. (2008) Transgenic mice expressing TIGR/MYOC gene expression in human trabecular meshwork cells. *Biochim. Biophys. Acta* 1789, 55–66

27. Wiggs, J. L., Allingham, R. R., Vollrath, D., Jones, K. H., De La Paz, M., Kern, J., Patterson, K., Babb, V. L., Del Bono, E. A., Broomer, B. W., Pericak-Vance, M. A., and Haines, J. L. (1998) Prevalence of mutations in TIGF/myocilin in patients with adult and juvenile primary open-angle glaucoma. *Am. J. Hum. Genet.* 63, 1549–1552

28. Shepard, A. R., Jacobson, N., Sui, R., Steely, H. T., Lotery, A. J., Stone, E. M., and Clark, A. F. (2003) Characterization of rabbit myocilin: implications for human myocilin glycosylation and signal peptide usage. *BMC Genet.* 4, 5

29. Polansky, J. R., Faus, D. J., and Zimmerman, C. C. (2000) Regulation of TIGF/MYOC gene expression in human trabecular meshwork cells. *Eye* 14, 503–514

30. Ishibashi, T., Takagi, Y., Morii, K., Naruse, S., Nishino, H., Yuce, B. Y., and Kinoshita, S. (2002) cDNA microarray analysis of gene expression changes induced by dexamethasone in cultured human trabecular meshwork cells. *Invest. Ophthalmol. Vis. Sci.* 43, 3691–3697

31. Miyara, N., Shinzato, M., Yamashiro, Y., Yamatsugu, A., Kariya, K. L., and Sawaguchi, S. (2008) Protonic analysis of rat retina in a steroid-induced ocular hypertension model: potential vulnerability to oxidative stress. *Jpn. J. Ophthalmol.* 52, 84–90

32. Bui, B. V., and Fortunate, B. (2004) Ganglion cell contributions to the rat full-field electoretinogram. *J. Physiol.* 555, 153–173

33. Penn, R. D., and Hagins, W. A. (1969) Signal transmission along retinal rods and the origin of the electoretinographic a-wave. *Nature* 223, 201–204

34. Fautsch, M. P., Vrabel, A. M., and Johnson, D. H. (2006) The identification of myocilin, a novel myocilin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. *J. Biol. Chem.* 273, 6341–6350

35. Ortego, J., Escobedo, I., and Coca-Pрадos, M. (1997) Cloning and characterization of the full-length myocilin gene: a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and oafactomedin. *FEBS Lett.* 413, 349–353

36. Kim, B. S., Savinova, O. V., Reedy, M. V., Martin, J., Lun, Y., Gan, L., Smith, R. S., Tomarev, S. I., John, S. W., and Johnson, R. L. (2001) Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. *Mol. Cell. Biol.* 21, 7707–7713

37. Senatorov, V., Malyukova, I., Fariss, R., Wawrousek, E. F., Swaminathan, S., Sharan, S. K., and Tomarev, S. (2006) Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. *J. Neurosci.* 26, 11903–11914

38. Zhou, Y., Grinchuk, O., and Tomarev, S. I. (2008) Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. *Invest. Ophthalmol. Vis. Sci.* 49, 1932–1939

39. Zillig, M., Wurm, A., Greinh, F. J., Russell, P., and Tammi, E. R. (2005) Overexpression and properties of wild-type and Tyr437His mutated myocilin in the eyes of transgenic mice. *Invest. Ophthalmol. Vis. Sci.* 46, 223–234

40. Shepard, A. R., Jacobson, N., Millar, J. C., Pang, I. H., Steely, H. T., Searby, C. C., Sheffield, V. C., Stone, E. M., and Clark, A. F. (2007) Glaucoma-causing myocilin mutants require the peroxisomal targeting signal-1 receptor (PTSR1) to elevate intraocular pressure. *Hum. Mol. Gen.* 16, 609–617

41. Elgersma, V., Vos, A., van der Berg, M., van Roermund, C. W., van der Sluijs, P., Distel, B., and Tabak, H. F. (1996) Analysis of the carboxy-terminal peroxisomal targeting signal 1 in a homologous context in *Saccharomyces cerevisiae*. *J. Biol. Chem.* 271, 26375–26382

42. Brocard, C., and Hartig, A. (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? *Biochim. Biophys. Acta* 1763, 1565–1573

43. Swinkels, B. W., Gould, S. J., and Subramani, S. (1992) Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. *FEBS Lett.* 305, 133–136

44. Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J., and Hartig, A. (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. *J. Biol. Chem.* 273, 33635–33643

45. Kore, R. A., and Abraham, E. C. (2016) Phosphorylation negatively regulates exosome mediated secretion of CRYAB in glioma cells. *Biochim. Biophys. Acta* 1863, 368–377
52. Snider, E. J., Vannatta, R. T., Schildmeyer, L., Stamer, W. D., and Ethier, C. R. (2018) Characterizing differences between MSCs and TM cells towards autologous stem cell therapies for the glaucomatous trabecular meshwork. *J. Tissue Eng. Regen. Med.* 12, 695–704 CrossRef Medline

53. Brubaker, R. F. (1998) In *Eye’s Aqueous Humor: From Secretion to Glaucoma* (Civan, M. I., ed) pp. 234–284, Academic Press, San Diego

54. Johnson, M., McLaren, J. W., and Overby, D. R. (2017) Unconventional aqueous humor outflow: a review. *Exp Eye Res.* 158, 94–111 CrossRef Medline

55. Andley, U. P. (2007) Crystallins in the eye: function and pathology. *Prog. Retin. Eye Res.* 26, 78–98 CrossRef Medline

56. Piri, N., Song, M., Kwong, J. M., and Caprioli, J. (2007) Modulation of α and β crystallin expression in retina with ocular hypertension-induced ganglion cell degeneration. *Brain Res.* 1181, 1–9 CrossRef Medline

57. Steele, M. R., Inman, D. M., Calkins, D. J., Horner, P. J., and Vetter, M. L. (2006) Microarray analysis of retinal gene expression in th dbEBA/2J model of glaucoma. *Invest. Ophthalmol. Vis. Sci.* 47, 977–985 CrossRef Medline

58. Mirzaei, M., Gupta, V. B., Chick, J. M., Wu, Y., Shyam, R., Yue, B. Y., and Ying, H. (2014) Cellular stress and ganglion cell survival. *Invest. Ophthalmol. Vis. Sci.* 55, 4205–4219 CrossRef Medline

59. Benjamin, I. J., and McMillan, D. R. (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. *Circ. Res.* 83, 117–122 CrossRef Medline

60. Ecroyd, H., Meehan, S., and Carver, J. A. (2010) in *Small Stress Proteins and Human Diseases* (Simon, S., and Arrigo, A. P., eds) pp. 189–211, Nova Science Publishers, New York

61. Hagemann, T. L., Boelens, W. C., Wawrousek, E. F., and Messing, A. (2009) Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease. *Hum. Mol. Genet.* 18, 1190–1199 CrossRef Medline

62. Oliveira, A. O., Osmand, A., Outeiro, T. F., Muchowski, P. J., and Finkbeiner, S. (2016) αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington’s disease. *Hum. Mol. Genet.* 25, 1677–1689 CrossRef Medline

63. Hamanaka, T., Kimura, M., Sakurai, T., Ishida, N., Yasuda, J., Nagasaki, M., Nariai, N., Endo, A., Homma, K., Matsubara, Y., Yamamoto, M., and Fuse, N. (2017) A histologic categorization of aqueous outflow pathways associated with mutations in the MYOC gene in Japanese patients. *Invest. Ophthalmol. Vis. Sci.* 58, 2818–2831 CrossRef Medline

64. Glembotski, C. (2007) Endoplasmic reticulum stress in the heart. *Circ. Res.* 101, 975–984 CrossRef Medline

65. Qiu, Y., Shen, X., Shyam, R., Yue, B. Y., and Ying, H. (2014) Cellular stress and ganglion cell survival. *Invest. Ophthalmol. Vis. Sci.* 55, 4205–4219 CrossRef Medline

66. Jones-Odeh, E., and Hammond, C. J. (2015) How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative disease such as Alzheimer’s disease and multiple sclerosis? *Eye* 29, 1270–1284 CrossRef Medline

67. Stohert, A. R., Suntharalingam, A., Huard, D. J., Fontaine, S. N., Crowley, V. M., Mishra, S., Blagg, B. S., Lieberman, R. L., and Dickey, C. A. (2014) Exploiting the interaction between Grp94 and aggregated myocilin to treat glaucoma. *Hum. Mol. Genet.* 23, 6470–6480 CrossRef Medline

68. Chis, R., Sharma, P., Bousset, N., Miyake, T., Wilson, A., Backs, P. H., and Gramolini, A. O. (2012) α-Crystallin B prevents apoptosis after H_{2}O_{2} exposure in mouse neonatal cardiomyocytes. *Am. J. Physiol. Heart Circ. Physiol.* 303, H967–H978 CrossRef Medline

69. Piri, N., Kwong, J. M., and Caprioli, J. (2013) Crystallins in retinal ganglion cell survival and regeneration. *Neurobiol. Dis.* 48, 819–828 CrossRef Medline

70. Massaad, C. A., Washington, T. M., Pautler, R. G., and Klann, E. (2009) Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. *Proc. Natl. Acad. Sci. U.S.A.* 106, 13576–13581 CrossRef Medline

71. Mackley, L. N., McMenimen, K. A., DeVree, B. T., Goldman, J. W., McGlasson, B. N., Rajagopal, P., Dunyak, B. M., McCuade, T. J., Thompson, A. D., Sunahara, R., Klevit, R. E., Andley, U. P., and Gestwicki, J. E. (2015) Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. *Science* 350, 674–677 CrossRef Medline

72. Bundell, A., Svedberg, H., and Chen, E. (2011) Application of the iCare rebound tonometer in healthy infants. *J. Glaucoma* 20, 7–9 CrossRef Medline

73. Pang, I. H., Shade, D. L., Clark, A. F., Steely, H. T., and DeSantis, L. (1994) Preliminary characterization of a transformed cell strain derived from human trabecular meshwork. *Curr. Eye Res.* 13, 51–63 CrossRef Medline

74. Liton, P. B., Luna, C., Challa, P., Epstein, D. L., and Gonzalez, P. (2006) Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. *Mol. Vis.* 12, 774–790 CrossRef Medline

75. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2000) In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nat. Protoc.* 1, 2856–2860 Medline

76. Mazzawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., Kung, H. F., Lam, K. S., Oddo, S., Laferla, F. M., and Jin, L. W. (2008) Congo...
red and thioflavin-T analogs detect Aβ oligomers. J. Neurochem. 104, 457–468 Medline
90. Patel, H. R., Pithadia, A. S., Brender, J. R., Fierke, C. A., and Ramamoorthy, A. (2014) In search of aggregation pathways of IAPP and other amyloidogenic proteins: finding answers through NMR spectroscopy. J. Phys. Chem. Lett. 5, 1864–1870 CrossRef Medline
91. Gade Malmos, K., Blancas-Mejia, L. M., Weber, B., Buchner, J., Ramirez-Alvarado, M., Naiki, H., and Otzen, D. (2017) TnT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24, 1–16 CrossRef Medline
92. Hewitt, A. W., Mackey, D. A., and Craig, J. E. (2008) Myocilin allele-specific glaucoma phenotype database. Hum. Mutat. 29, 207–211 CrossRef Medline