Comparison of the MSMS and NanoShaper molecular surface triangulation codes in the TABI Poisson–Boltzmann solver

Leighton Wilson | Robert Krasny

Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA

Correspondence
Leighton Wilson, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
Email: leightonwilson@mac.com

Funding information
National Science Foundation, Division of Mathematical Sciences, Grant/Award Number: DMS-1819094; Department of Defense (DoD); Michigan Institute for Computational Discovery and Engineering (MICDE)

Abstract
The Poisson–Boltzmann (PB) implicit solvent model is a popular framework for studying the electrostatics of solvated biomolecules. In this model the dielectric interface between the biomolecule and solvent is often taken to be the molecular surface or solvent-excluded surface (SES), and the quality of the SES triangulation is critical in boundary element simulations of the model. This work compares the performance of the MSMS and NanoShaper surface triangulation codes for a set of 38 biomolecules. While MSMS produces triangles of exceedingly small area and large aspect ratio, the two codes yield comparable values for the SES surface area and electrostatic solvation energy, where the latter calculations were performed using the treecode-accelerated boundary integral (TABI) PB solver. However we found that NanoShaper is computationally more efficient and reliable than MSMS, especially when parameters are set to produce highly resolved triangulations.

KEYWORDS
boundary element method, electrostatics, Poisson–Boltzmann, solvated biomolecule, solvent excluded surface, treecode

1 | INTRODUCTION

Implicit solvent models play an important role in computational modeling of electrostatic interactions between biomolecules and their solvent environment.1–3 Of particular importance in this work is the Poisson–Boltzmann (PB) implicit solvent model.4,5 Figure 1 shows the interior domain \(\Omega_1 \subset \mathbb{R}^3 \) containing the solute biomolecule, the exterior domain \(\Omega_2 = \mathbb{R}^3 \setminus \Omega_1 \) containing the ionic solvent, and the dielectric interface \(\Gamma = \Omega_1 \cap \Omega_2 \). In a 1:1 electrolyte at low ionic concentration, the electrostatic potential \(\phi \) satisfies the linear PB equation,

\[
-\nabla \cdot (\varepsilon(x) \nabla \phi(x)) + \kappa^2(x) \phi(x) = \sum_{k=1}^{N_a} q_k \delta(x - y_k), \quad x \in \mathbb{R}^3, \quad (1)
\]

where \(\varepsilon(x) \) is the dielectric constant, \(\kappa \) is the modified Debye–Hückel inverse length in units of Å⁻¹, \(N_a \) is the number of atoms in the solute biomolecule, \(y_k \) is the position of the \(k \)th solute atom, and \(q_k \) is the associated partial charge in units of fundamental charge \(e \). The dielectric interface conditions are

\[
\phi_1(x) = \phi_2(x), \quad \varepsilon_1 \frac{\partial \phi_1(x)}{\partial n} = \varepsilon_2 \frac{\partial \phi_2(x)}{\partial n}, \quad x \in \Gamma, \quad (2)
\]

where \(\phi_1(x) \) and \(\phi_2(x) \) are the limiting values approaching the interface \(\Gamma \) from inside and outside the biomolecule, respectively, and \(n \) indicates the outward normal direction on the interface. The first condition in Equation (2) expresses continuity of the potential across the interface and the second condition expresses continuity of the electric flux. The far-field boundary condition is

\[
\lim_{|x| \to \infty} \phi(x) = 0. \quad (3)
\]

The present work assumes that \(\varepsilon \) and \(\kappa \) are piecewise constant,

\[
\varepsilon(x) = \begin{cases}
\varepsilon_1, & x \in \Omega_1, \\
\varepsilon_2, & x \in \Omega_2,
\end{cases} \quad \kappa^2(x) = \begin{cases}
0, & x \in \Omega_1, \\
\frac{8\pi N_a e^2}{1000k_B T}, & x \in \Omega_2.
\end{cases} \quad (4)
\]
Several models have been utilized for the dielectric interface between the solute and solvent domains in implicit solvent simulations. Including finite-difference,7 finite-element,17–19 and boundary element methods (BEM) which compute the surface potential on a triangulation of the interface; these schemes benefit from rigorous enforcement of the interface conditions and far-field boundary condition, but they face the difficulty of evaluating singular integrals and the expense of solving a dense linear system. The treecode-accelerated boundary integral PB solver (TABI-PB) addresses these issues using a centroid collocation scheme to discretize the integrals and a treecode algorithm to reduce the cost of solving the linear system from $O(N^2)$ to $O(\text{NlogN})$, where N is the number of triangles representing the interface.27

The simplest of these models, the van der Waals surface (vdW), is the union of hard spheres with vdW radii representing the atoms comprising the biomolecule. The solvent accessible surface (SAS) is formed by tracing the center of a probe sphere representing a water molecule rolling along the exterior of the vdW surface; the SAS surface is equivalent to a vdW surface in which the vdW radii are increased by the probe sphere radius. The solvent excluded surface (SES) is formed by the inward facing surface of the probe sphere rolling along the vdW surface.

A number of algorithms have been developed to triangulate these surfaces, where the input is the location and radii of the solute atoms and the output is a list of triangles. An alternative approach uses a level-set representation of the surface in an adaptive Cartesian grid.37,38 Publicly available surface triangulation codes include MSMS,39 EDTSurf,40,41 TMSmesh,29,36 and NanoShaper.32 Previous work investigated the performance of SES, skin, and Gaussian surfaces in the finite-difference DelPhi code,30 and the performance of Gaussian surfaces relative to SES surfaces in the boundary element fast multipole code AFMPB.43 The present work focuses on the SES surface and compares the performance of the MSMS and NanoShaper triangulation codes in computations of the surface area and electrostatic solvation energy utilizing the boundary element TABI-PB solver. Next we describe the MSMS and NanoShaper codes, followed by the TABI-PB solver.

2.1 MSMS

MSMS, introduced by Sanner in 1995,39 has been widely utilized for generating SES surface triangulations. The algorithm first creates an analytical representation of the surface and then generates a triangulation of specified density by fitting predefined triangulated patches to the surface. The mesh resolution is controlled by the user-specified density parameter d, which sets the number of vertices per Å2 of surface area in the triangulation.

2.2 NanoShaper

NanoShaper, introduced by Decherchi and Rocchia,42 implements the SES surface as well as several alternatives including the Gaussian and skin surfaces. In constructing an SES surface triangulation, NanoShaper first builds a description of the surface with a set of patches, analytically if possible or else with an approximation. The code then employs a ray-casting algorithm in which rays parallel to the

![Figure 1](Image)

Figure 1 Poisson–Boltzmann implicit solvent model, solute domain Ω_2 with dielectric constant ε_2, atomic charges q_k located at y_k, vdW radii (dashed circles), solvent domain Ω_1 with dielectric constant ε_1, dissolved salt ions (−−), dielectric interface Γ, and reactive potential $\phi_{\text{reac}}(y_k)$.
coordinate axes are cast and intersections with the surface are calculated. The vertex positions of intersection are then used by the marching cubes algorithm to obtain the triangulation. The mesh resolution is controlled by the user-specified scale parameter s, which sets the number of grid points per Å in the marching cubes algorithm.

3 | TABI-PB SOLVER

The TABI-PB solver relies on a reformulation of the linear PB Equation (1) developed by Juffer et al. as a set of coupled second kind boundary integral equations for the surface potential ϕ_1 and its normal derivative $\partial \phi_1 / \partial n$ on the dielectric interface,

$$
\frac{1}{2}(1+\varepsilon)\phi_1(x) = \int_\Gamma \left[K_1(x,y) \frac{\partial \phi_1(y)}{\partial n} + K_2(x,y)\phi_1(y) \right] dS_y + S_1(x), \quad x \in \Gamma,
$$

where $\varepsilon = \varepsilon_1/\varepsilon_2$ is the solute/solvent ratio of dielectric constants. The kernels K_1, K_2, K_3, K_4 depend on the Coulomb and screened Coulomb potentials,

$$
G_0(x,y) = \frac{\varepsilon}{4\pi|x-y|}, \quad G_s(x,y) = \frac{\varepsilon e^{-\kappa|x-y|}}{4\pi\varepsilon_0|x-y|},
$$

where $\kappa^2 = k^2/\varepsilon_2$, and the source terms are defined by

$$
S_1(x) = \frac{1}{\varepsilon_1} \sum_{k=1}^{N_s} q_k G_0(x,y_k), \quad S_2(x) = \frac{1}{\varepsilon_1} \sum_{k=1}^{N_s} q_k \frac{\partial G_0(x,y_k)}{\partial n_x}.
$$

In this context the electrostatic solvation energy in Equations (5) and (6) is obtained from an equivalent expression involving the surface potential and its normal derivative,

$$
\Delta G_{solv} = \frac{1}{2} \sum_{k=1}^{N_s} q_k \int_{\gamma} \left[K_1(y_k,y) \frac{\partial \phi_1(y)}{\partial n} + K_2(y_k,y)\phi_1(y) \right] dS_y.
$$

The TABI-PB solver calculates the surface integrals using a BEM on the triangulated SES surface, where the collocation points are the triangle centroids. This yields a linear system for the surface potentials and normal derivatives which is solved by the generalized minimum residual method (GMRES) utilizing a treecode to accelerate the matrix-vector product in each step of the iteration. The boundary element form of the electrostatic solvation energy ΔG_{solv} for 38 biomolecules given in Table 1 comprising peptides, proteins and nucleic acid fragments chosen from a previous comparison study of surface triangulation codes. The PQR file for each biomolecule was generated using PDB2PQR with the CHARMm force field and water molecules removed. For all surfaces a probe radius of 1.4 Å was used. The physical parameter values were ionic concentration $i_s = 0.15$ M, temperature $T = 300$ K, and solute and solvent dielectric constants $\varepsilon_1 = 1, \varepsilon_2 = 80$. The treecode parameter was a multiple acceptance criterion $\theta = 0.8$, Taylor series order $p = 3$, and maximum number of particles in a leaf $N_0 = 500$. The GMRES tolerance was 1×10^{-4}, with 10 iterations between restarts and maximum number of iterations set to 110.

Triangulations were generated for the 38 biomolecules in the test set using MSMS density $d = 1, 2, 4, 8, 16$ and NanoShaper scale $s = 1, 2, 3, 4, 5$. As observed in previous work, MSMS failed to produce a triangulation in 13 cases involving larger biomolecules and it produced distorted surfaces with spurious solvation energy in 3 more cases. By contrast, NanoShaper failed in only one case, a low resolution mesh with scale $s = 1$ for the smallest molecule in the test set (2LWC, 75 atoms). Figure 2 plots the number of triangles N for four representative proteins (1AIE, 1HGB, 3FR0, 1IL5), showing that N depends linearly on the density d and quadratically on the scale s.

In the results reported below, the SES surface area S_s is computed by summing the triangle areas, and the solvation energy ΔG_{solv} is computed using TABI-PB. In addition to examining the accuracy of the computed S_s and ΔG_{solv}, we report the total run time for TABI-PB computations which includes the run time for generating the triangulation and other pre-processing steps. It should be noted that the GMRES iteration run time in TABI-PB is much larger than the other run time components.

The computations were performed in serial on the University of Michigan FLUX cluster, with Intel Xeon CPUs running at either 2.5 or 2.8 GHz. In this system the exact processors could not be specified, so the timing results were averaged over multiple runs. The code was compiled with gfortran using the -O2 optimization flag. Surface visualizations were generated with VTK ParaView. The version of TABI-PB used in this work is available at github.com/lwwilson/TABI-PB.

5 | RESULTS

First we explain how the triangulations are filtered, followed by discussions of the triangle aspect ratios, surface mesh features, effect of mesh resolution on computed results, and finally the computational efficiency.

5.1 | Triangulation filter

Molecular surface triangulation codes typically produce small or thin triangles that reduce computational accuracy and efficiency. Hence following common practice, the present work deletes triangles
if their area is less than 1×10^{-5} Å or if the distance between the centroids of two neighboring triangles is less than 1×10^{-5} Å. Table 2 gives the percent of deleted triangles averaged over all triangulations generated using either MSMS or NanoShaper; among the deleted triangles, some had area less than machine precision and these are designated as zero-area triangles. For MSMS the deleted triangles are 0.064% of the total, while for NanoShaper the fraction of deleted triangles is less than 10−6. For MSMS the deleted triangles are 0.054% of the total, while for NanoShaper the fraction of deleted triangles is less than 10−6. In the results presented below, the triangulations have been filtered in this manner.

5.2 | Triangle aspect ratios

The aspect ratio of a triangle is defined as the ratio of the longest to shortest side lengths, where an equilateral triangle has ideal aspect ratio 1. Figure 3 plots the average and maximum aspect ratio for each triangulation generated versus the number of triangles N, where N varies from 10^3 to 10^6 for the chosen density and scale parameters. Figure 3A shows that the average aspect ratio of MSMS triangles can be as large as 30 for small N and decreases to ~2 for large N, while the average aspect ratio of NanoShaper triangles is closer to 1 for all N. Figure 3B shows that the maximum aspect ratio of MSMS triangles varies between approximately 100 and 2000, while the maximum aspect ratio of NanoShaper triangles is less than 10. It should be noted that these large aspect ratio triangles are present even after the filtering described above. In the case of the finite-element method, mathematical analysis of model problems shows that computational accuracy and efficiency improves for triangulations with aspect ratio closer to 1. Although we are not aware of similar rigorous results for the BEM applied to the PB implicit solvent model, we expect that the discrepancy between MSMS and NanoShaper triangle aspect ratios gives NanoShaper triangulations a computational advantage.

5.3 | Surface mesh features

Figure 4 displays the SES triangulation and surface potential for a representative protein (1AIE) using MSMS and NanoShaper with similar resolution ($N \approx 3 \times 10^4$ in each case). The surfaces appear similar at first glance, although the NanoShaper surface is slightly smoother than the MSMS surface. Figure 5 displays a zoom of the triangulations, where some small-scale irregular features are highlighted; in the MSMS
mesh, green boxes enclose stitches formed by high aspect ratio triangles, and a yellow box encloses a cusp formed by neighboring triangles that meet at an acute angle, while in the NanoShaper mesh, a white box encloses a possible irregular feature, which could in fact simply be an artifact of the surface lighting. It should be noted that these irregular features are present in the MSMS mesh even after filtering, while the NanoShaper mesh is relatively free of them. Similar results were observed for other mesh resolutions and biomolecules in the test set.
We expect that in TABI-PB computations, these irregular features diminish the efficiency of MSMS meshes relative to NanoShaper meshes.

5.4 Effect of mesh resolution

Next we examine the effect of mesh resolution for four representative proteins (1AIE, 1HG8, 3FR0, 1IL5). Figure 6 plots the computed surface area S_a versus N^{-1}, where N is the number of triangles in a given triangulation, and increasing resolution corresponds to the limit $N^{-1} \to 0$. The MSMS and NanoShaper results converge to almost the same value in Figure 6A,D (1AIE, 1IL5), but in Figure 6B,C (1HG8, 3FR0), the NanoShaper surface area is 2%–3% larger than the MSMS surface area. In all cases the convergence with N^{-1} is smooth. The MSMS results approach their limiting value somewhat faster than the NanoShaper results, but the NanoShaper dependence on N^{-1} is generally smoother than the MSMS dependence.

We used linear extrapolation to obtain highly accurate converged values of the surface area S_a and solvation energy ΔG_{solv}, that is, the converged result is obtained by extrapolating the computed S_a and ΔG_{solv} values to the limit $N^{-1} \to 0$ using the two highest resolution meshes, MSMS density $d = 8, 16$ and NanoShaper scale $s = 4, 5$. In cases for which MSMS produced spurious or null results, the extrapolation used the highest resolution meshes for which MSMS did not fail.

Figure 8 displays the extrapolated values of the surface area S_a and solvation energy ΔG_{solv} for the 38 biomolecules in the test set, where the NanoShaper results are plotted versus MSMS results. The correspondence between MSMS and NanoShaper results is very good, except in

![Figure 6: Computed surface area S_a versus N^{-1} for four proteins, N is the number of triangles, MSMS (black, solid line, ●), NanoShaper (red, dashed line, ▲).](image-url)
two cases (1I2X, 375D) indicated by the two markers furthest away from the diagonal line in Figure 8A,B. These two cases each consist of a complex of two domains separated by more than the water probe radius, and MSMS returned a triangulation of only one domain. In principle, MSMS could be run on each domain, but this would require dividing the input XYZR file into two separate files and processing them individually. On the other hand, NanoShaper successfully triangulated both domains in the complex with no special processing required.

FIGURE 7 Computed solvation energy ΔG_{solv} versus N^{-1} for four proteins, N is the number of triangles, MSMS (black, solid line, \circ), NanoShaper (red, dashed line, \triangledown).

FIGURE 8 NanoShaper versus MSMS results for the 38 biomolecules in the test set using values extrapolated to the limit $N \to \infty$, (A) surface area S_a, (B) solvation energy ΔG_{solv}, black lines indicate perfect correspondence.
5.5 | Computational efficiency

Figure 9 compares the efficiency of MSMS and NanoShaper triangulations for computing the solvation energy ΔG_{solv} using TABI-PB. Figure 9A plots the run time versus the number of triangles N for all 38 biomolecules and triangulations generated, where the solid lines are least squares fits to the data. The run time for generating and filtering the meshes is negligible compared to the TABI-PB run time. The results show that NanoShaper meshes generally require less run time than MSMS meshes. This is supported by Figure 9B showing the number of GMRES iterations in each case, where the maximum number of iterations was set to 110. The results show that NanoShaper meshes generally require fewer GMRES iterations than MSMS meshes. Note that in the case of MSMS, the iteration maximum was reached in 23 out of 177 meshes, while in the case of NanoShaper, the iteration maximum was never reached.

Table 3 quantifies the average run time and average number of GMRES iterations per triangle for MSMS and NanoShaper meshes over all 38 biomolecules and triangulations generated.

Mesh Type	Average run time (s)/triangle	Average iterations/triangle
MSMS	6.67E-3	1.17E-3
NanoShaper	4.19E-3	2.92E-4

Formulation in Equations (7a) and (7b) is well-conditioned, a low quality triangulation can result in an ill-conditioned discrete linear system. In such cases one can apply preconditioning to alleviate the problem and the present work used the simple diagonal preconditioner for this purpose. Recently a more effective block preconditioner was developed to further accelerate the convergence of GMRES in TABI-PB calculations, and it was shown that the block preconditioner reduces the number of GMRES iterations not only for MSMS meshes, but also in some cases for NanoShaper meshes.

6 | CONCLUSIONS

We compared the performance of MSMS and NanoShaper, two widely used codes for triangulating the SES in PB simulations of solvated biomolecules. Comparisons were made of the surface area S_a and electrostatic solvation energy ΔG_{solv}, where the latter calculations were performed using the TABI-PB solver utilizing a well-conditioned boundary integral formulation and centroid collocation on the SES triangulation. Calculations were carried out for a set of 38 biomolecules over a range of mesh resolutions. The triangulations produced by the two codes are qualitatively similar, although the MSMS meshes contain some triangles of exceedingly small area and high aspect ratio. The computed values of the surface area and solvation energy produced by MSMS and NanoShaper meshes often agree to within several percent, but NanoShaper meshes were more efficient, generally requiring less run time and fewer GMRES iterations than MSMS meshes. Furthermore, NanoShaper was consistently able to produce higher resolution meshes than MSMS, and NanoShaper solvation energies exhibited smoother convergence with increasing mesh resolution. A version of TABI-PB using NanoShaper was recently installed as an option in the APBS software suite maintained at the Pacific Northwest National Laboratory. A future release of TABI-PB will
incorporate the recently developed block preconditioner and several other improvements.

ACKNOWLEDGMENTS
We thank the reviewer for constructive comments that helped improve the article. This work was supported by NSF grant DMS-1819094 and a grant from the Michigan Institute for Computational Discovery and Engineering (MICDE). Leighton Wilson was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon request.

ORCID
Leighton Wilson https://orcid.org/0000-0003-1676-8156
Robert Krasny https://orcid.org/0000-0002-8375-1699

REFERENCES
[1] B. Roux, T. Simonson, Biophys. Chem. 1999, 78, 1.
[2] J. Tomasi, Theor. Chem. Acc. 2004, 112, 184.
[3] Z. Zhang, S. Witham, E. Alexov, Phys. Biol. 2011, 8, 035001.
[4] N. A. Baker, in Numerical Computer Methods, Part D (Eds: L. Brand, M. L. Johnson), Methods in Enzymology, Vol. 383, 1st ed, Academic Press, Cambridge, MA 2004, Ch. 5, pp. 94–118.
[5] J. Wang, C. Tan, Y.-H. Tan, Q. Lu, R. Luo, Commun. Comput. Phys. 2008, 3, 1010.
[6] B. Lu, Y. C. Zhou, M. J. Holst, J. A. McCammon, Commun. Comput. Phys. 2008, 3, 973.
[7] J. Warwicker, H. C. Watson, J. Mol. Biol. 1982, 157, 671.
[8] I. Klapper, R. Haggstrom, R. Fine, K. Sharp, B. Honig, Proteins 1986, 1, 47.
[9] M. J. Holst, F. Saied, J. Comput. Chem. 1995, 16, 337.
[10] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. USA 2001, 98, 10037.
[11] R. Luo, L. David, M. K. Gilson, J. Comput. Chem. 2002, 23, 1244.
[12] J. Wang, R. Luo, J. Comput. Chem. 2010, 31, 1689.
[13] D. Chen, Z. Chen, C. Chen, W. Geng, G. W. Wei, J. Comput. Chem. 2011, 32, 756.
[14] A. H. Boschitsch, M. O. Fenley, J. Chem. Theory Comput. 2011, 7, 1524.
[15] W. Geng, S. Zhao, Mol. Based Math. Biol. 2012, 1, 109.
[16] L. Wilson, S. Zhao, Int. J. Numer. Anal. Model. 2016, 13, 852.
[17] M. J. Holst, N. A. Baker, F. Wang, J. Comput. Chem. 2000, 21, 1319.
[18] N. A. Baker, M. J. Holst, F. Wang, J. Comput. Chem. 2000, 21, 1343.
[19] Y. Jiang, J. Ying, D. Xie, Mol. Based Math. Biol. 2014, 2, 2299.
[20] R. J. Zauhar, R. S. Morgan, J. Comput. Chem. 1988, 9, 171.
[21] B. J. Yoon, A. M. Lenhoff, J. Comput. Chem. 1990, 11, 1080.
[22] A. H. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, H. J. C. Berendsen, J. Comput. Phys. 1991, 97, 144.
[23] H.-X. Zhou, Biophys. J. 1993, 65, 955.
[24] J. Liang, S. Subramaniam, Biophys. J. 1997, 73, 1830.
[25] A. H. Boschitsch, M. O. Fenley, H.-X. Zhou, J. Phys. Chem. B 2002, 106, 2741.
[26] B. Lu, X. Cheng, J. Huang, J. A. McCammon, Phys. Chem. Commun. 2010, 181, 1150.
[27] W. Geng, R. Krasny, J. Comput. Phys. 2013, 247, 62.
[28] C. D. Cooper, J. P. Bardhan, L. A. Barba, Phys. Chem. Commun. 2014, 185, 720.
[29] M. Chen, B. Lu, J. Chem. Theory Comput. 2011, 7, 203.
[30] S. Decherchi, J. Colmenares, C. E. Catalano, M. Spagnuolo, E. Alexov, W. Rocchia, Commun. Comput. Phys. 2013, 13, 61.
[31] F. M. Richards, Annu. Rev. Biophys. Bioeng. 1977, 6, 151.
[32] M. L. Connolly, J. Appl. Crystallogr. 1985, 18, 499.
[33] W. Rocchia, S. Sridharan, A. Nicholls, E. G. Alexov, A. Chiabrera, B. Honig, J. Comput. Chem. 2002, 23, 128.
[34] W. Rocchia, Math. Comput. Model. 2005, 41, 1109.
[35] H.-L. Cheng, X. Shi, Comput. Geom. 2009, 42, 192.
[36] M. Chen, B. Tu, B. Lu, J. Mol. Graphics Modell. 2012, 38, 411.
[37] T. Can, C.-I. Chen, Y.-F. Wang, J. Mol. Graphics Modell. 2006, 25, 442.
[38] R. Egan, F. Gibou, J. Comput. Phys. 2018, 374, 91.
[39] M. F. Sanner, A. J. Olson, J.-C. Spehner, Proc. 11th ACM Symposium on Comput. Geo, Association for Computing Machinery, New York, NY 1995, C6.
[40] D. Xu, Y. Zhang, PLoS One 2009, 4, e8140.
[41] D. Xu, H. Li, Y. Zhang, J. Comput. Biol. 2013, 20, 805.
[42] S. Decherchi, W. Rocchia, PLoS One 2013, 8, e59744.
[43] T. Liu, M. Chen, B. Lu, J. Mol. Model. 2015, 21, 113.
[44] T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, N. A. Baker, Nucleic Acids Res. 2004, 32, W665.
[45] J. Ahrens, B. Geveci, C. Law, in The Visualization Handbook (Eds: C. D. Hansen, C. R. Johnson), Butterworth–Heinemann, Burlington, MA 2005, p. 717.
[46] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., Clifton Park, NY 2015.
[47] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Studentlitteratur, Lund, Sweden 1987.
[48] J. Chen, W. Geng, J. Comput. Phys. 2018, 372, 750.
[49] E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandl, L. E. Felberg, D. H. Brooks, L. Wilson, J. Chen, K. Liles, M. Chun, P. Li, D. W. Gohara, T. Dolinsky, R. Konecny, D. R. Koes, J. E. Nielsen, T. Head-Gordon, W. Geng, R. Krasny, G. W. Wei, M. J. Holst, J. A. McCammon, N. A. Baker, Protein Sci. 2018, 27, 112.

How to cite this article: L. Wilson, R. Krasny, J Comput Chem 2021, 42(22), 1552. https://doi.org/10.1002/jcc.26692