Facing the LISA data analysis challenge

Louis J Rubbo
Center for Gravitational Wave Physics, Pennsylvania State University, University Park, PA 16802
E-mail: rubbo@gravity.psu.edu

Abstract. By being the first observatory to survey the source rich low frequency region of the gravitational wave spectrum, the Laser Interferometer Space Antenna (LISA) will revolutionize our understanding of the Cosmos. For the first time we will be able to detect the gravitational radiation from millions of galactic binaries, the coalescence of two massive black holes, and the inspirals of compact objects into massive black holes. The signals from multiple sources in each class, and possibly others as well, will be simultaneously present in the data. To achieve the enormous scientific return possible with LISA, sophisticated data analysis techniques must be developed which can mine the complex data in an effort to isolate and characterize individual signals. This proceedings paper very briefly summarizes the challenges associated with analyzing the LISA data, the current state of affairs, and the necessary next steps to move forward in addressing the imminent challenges.

1. Introduction
When launched the Laser Interferometer Space Antenna (LISA) will be the first low frequency ($3 \times 10^{-5} - 0.1$ Hz) gravitational wave detector [1]. Whenever a new detector is proposed, especially when it is the first of its kind, there are plenty of doubts about its capabilities. LISA is no different. However, even though the LISA technology is ambitious, its the ability to analyze LISA data that many think will be the mission’s Achilles heel.

The LISA observatory will return a finite set of time series. Encoded within these time series will be the superposition of all gravitational wave signals received during the mission’s observational run, co-added to a complicated, time dependent instrumental noise signal. The goal of LISA data analysis is to coax out an individual signal from these correlated time series in order to make scientific inferences about the emitting system or population. The real challenge arises because LISA will observe in excess of 10^8 stellar mass galactic binaries, in addition to $0.1 - 10^5$ massive black holes binaries (MBHBs) per year, and up to 10^3 extreme mass ratio inspirals (EMRIs) per year. While a daunting task, preliminary investigations suggest that the LISA data analysis challenge can be conquered. This proceedings paper very briefly reviews the difficulties, achievements, and future directions that the LISA science community has and will face.

The layout for this paper follows the necessary steps required in building an analysis routine. Section 2 briefly reviews what are our expectations for low frequency sources of gravitational radiation. Section 3 discusses modeling the detector response and incorporating these models into the analysis routines. Section 4 explores what has been achieved in analyzing simulated data. The last section points to future advancements and necessary steps that must be accomplished.
2. Expectations for astrophysical sources
Within the LISA band there are three main classes of sources: a large galactic population of compact stellar mass binaries; the inspiral, merger, and ringdown of massive ($10^4-7 M_\odot$) black hole binaries – MBHBs; and the capture, inspiral, and eventual merger of compact stellar mass objects into massive black holes – EMRIs. Each source class presents unique challenges for data analyst, but as equally unique is the scientific content that each signal carries.

A number of the greatest challenges associated with LISA data analysis are concerned with the overwhelming number of stellar mass galactic binaries. Initial estimates place the number of individually resolvable LISA binaries in the several thousands, with millions more forming an unresolvable background [2, 3]. Due to the large orbital periods and low chirp masses associated with galactic binaries, radiation reaction effects will not drive the binaries to coalescence during the mission lifetime. In turn, their signals will be ever present in the detector output.

Conversely, MBHBs are semi-continuous sources. They begin as a continuous source during the inspiral phase but eventually fade out during the ringdown. Considering the large masses and small orbital separations, which lead to highly relativistic orbits, the signal-to-noise ratios (SNRs) for MBHB mergers will make them visible from throughout the Universe. The predicted coalescence event rate ranges from 0.1 per year to a confusion background depending on the galaxy evolution and black hole growth models [4]. The wide range in possible event rates hinders the development of data analysis routines. An algorithm that searches for the rare MBHB would be different than one that attempts to isolate an individual signal within a background.

The predicted detection event rate for EMRIs is 10^{2-3} events per year out to $z \approx 1$ with captures of $10 M_\odot$ black holes accounting for the majority of the rate [5]. This estimate was derived using a set of assumptions about analysis capabilities and a particular astrophysical model. Nevertheless, it is evident that a major challenge is detecting EMRIs at large distances where there is a transition from individual detections to a possible EMRI background [6].

3. Forward modeling
As with any measurement in astronomy the telescope acts as a filter between the incident radiation and the data analyst. Understanding the filtering process, sometimes referred to as forward modeling, is essential in order to extract the full scientific potential hidden in the data. Forward modeling plays a significant role for spaceborne gravitational wave detectors because it is through the continual orbital motion of the detector that only certain information (e.g. sky location) becomes encoded in the data.

The LISA mission consists of three identical spacecraft in separate, slightly eccentric, heliocentric orbits inclined with respect to the ecliptic plane. The orbits are chosen such that the constellation will form an equilateral triangle with a mean spacecraft separation of 5×10^6 km. The constellation center will have an orbital radius of 1 AU and trail the Earth by 20°. The spacecraft motion introduces amplitude, frequency, and phase modulations into the gravitational wave signals. In modeling LISA’s response it is critical to incorporate these modulations.

An early, complete description for LISA’s response was derived by modifying the response function for terrestrial interferometric gravitational wave detectors [7]. However, since ground-based detectors operate in the small antenna approximation, the extension to LISA is only valid for frequencies below ~ 10 mHz, the point where the gravitational wavelength is on the order of the detector size. A higher fidelity response has also been formulated [8]. Based on this, or a similar description, multiple open software packages have been developed that simulate LISA’s response to an arbitrary gravitational wave signal [9, 10, 11].

4. Data analysis
LISA data analysis is in its early exploratory phase. The typical strategy undertaken is to develop analysis techniques for each source class separately with the intent to combine several
independent algorithms to formulate a yet undetermined global analysis procedure. The following subsections briefly review a few of the highlights in data analysis developments.

4.1. Galactic binaries
Strategies for identifying and characterizing individual bright galactic binaries include Doppler demodulation methods [12, 13], an iterative subtraction scheme [14], a tomographic search [15], Markov Chain Monte Carlo (MCMC) approaches [16, 17], and a genetic algorithm [18]. While each technique shows promise, in this limited space we will highlight the MCMC approach since it appears to be a viable strategy for other source classes as well.

The central challenge in detecting bright galactic binaries is that in a small bandwidth ($\Delta f \approx 10^{-6}$ Hz) there may be on the order of 10 bright binaries with the exact number not known a priori [3]. Since each source is described by at least 7 parameters, the associated parameter space for a small snippet of the spectrum can be large. The advantage of a MCMC approach is that it can quickly (in a comparative sense) explore the parameter space and return estimates for the parameter values. In [17] they demonstrated the ability to detect and characterize 10 binary signals when the number of systems was a given. Using a toy model for the signals, [16] relaxed the a priori assumption concerning the number of systems deriving its value from the data along with the source parameters.

4.2. Massive black hole binaries
Only recently has work been done on MBHBs. The delay may be attributed to two factors: the large uncertainty in the event rate, which influences the type of algorithm to design; and the large SNRs along with their unique “chirping” signals implied it would be a minor exercise to develop a MBHB binary analysis routine.

With this sentiment in mind, a few investigations jumped straight to the problem of identifying and characterizing a single MBHB signal in the presence of other signals. Using a Metropolis-Hastings sampling with simulated annealing, [19] was able to isolate a MBHB signal within a noisy data stream that included a galactic background. Separately [20] and [21] used a MCMC and a Reversible Jump MCMC (RJMCMC) respectively to characterize a MBHB signal. Moreover, [21] investigated the issue of characterizing a dimmer galactic binary superimposed by a brighter MBHB and found that it should be possible to study weaker signals buried beneath brighter signals.

In these isolated examples, the analysis has only focused on the inspiral phase and, therefore, did not use information from the merger or ringdown phases. Also, the MBHB signals where simplified by ignoring component spins and assuming a circular orbit. However, their results are encouraging and suggests future advancements in the algorithms can account for the neglected effects.

4.3. Extreme mass ratio inspirals
Much like with MBHBs, initial analysis algorithms for EMRIs have just recently been formulated. However, in contrast to the MBHB case, the delay for an EMRI analysis algorithm was due to their complicated and intrinsically weaker signals. Unlike bright galactic binaries and MBHBs, the amplitude of a typical EMRI is an order of magnitude below the instrumental noise. Only by tracking multiple wave cycles is enough SNR accumulated to allow a confident detection.

Using scaling arguments, it is possible to show that a standard template matching routine would require $\sim 10^{40}$ templates for an EMRI detection, making it computational prohibitive. However, this assumes a fully coherent search. If instead a hierarchal search is done by piecing together coherent searches over short observational periods (\sim 3 weeks) then it may be possible to use a template based algorithm to search for EMRI signals in the data [5].
An alternative tactic is to use a time-frequency method in which short segments of the data time series is Fourier transformed and stacked together to form a spectrogram \cite{22, 23}. By searching for excess power in the spectrogram it is possible to detect an EMRI out to distance of ~ 2.25 Gpc, which is about half the capabilities of the semi-coherent method described previously.

The above analyses are only able to return limited information about the sources themselves. In a recent conference proceedings paper \cite{24} demonstrated the use of a RJMCMC to characterize a simplified EMRI signal. While this analysis only considered leading order effects to an already approximate EMRI signal, this case study implies that future improvements may lead to a full EMRI characterization algorithm.

5. Concluding remarks
While the LISA data analysis challenge seems difficult, the early returns indicate that it will be met. The (RJ)MCMC appears to be a viable approach for addressing many of the analysis challenges. However, other techniques may also play a significant role, especially in the early detection stage where the (RJ)MCMC appears to be limited in its capabilities.

The next challenges that need to be addressed include processing full bandwidth (simulated) data without human intervention, cross comparing existing algorithms, and developing robust routines capable of analyzing data that contain multiple classes of gravitational wave sources. These next steps should be attainable using existing methods. However, with LISA data analysis still in its infancy, it is appropriate and necessary to explore other alternatives in an attempt to find methods that will maximize our scientific return on the LISA data.

Acknowledgments
This work was supported by the Center for Gravitational Wave Physics which is supported by the National Science Foundation under Cooperative Agreement PHY 01-14375.

References
\begin{thebibliography}{99}
\bibitem{1} Danzmann K and Rüdiger A. 2003 Class. Quantum Grav. 20 S1–9
\bibitem{2} Nelemans G, Yungelson L R and Portegies Zwart S F. 2001 A&A 375 890–8
\bibitem{3} Timpano S E, Rubbo L J and Cornish N J. 2006 Phys. Rev. D 73 122001
\bibitem{4} Berti E. 2006 Class. Quantum Grav. 23 S785–97
\bibitem{5} Gair J R, Barack L, Creighton T, Cutler C, Larson S L, Phinney E S and Vallisneri M. 2004 Class. Quantum Grav. 21 S1595–606
\bibitem{6} Barack L and Cutler C. 2004 Phys. Rev. D 70 122002
\bibitem{7} Cutler C. 1998 Phys. Rev. D 57 7089–102
\bibitem{8} Cornish N J and Rubbo L J. 2003 Phys. Rev. D 67 022001
\bibitem{9} Cornish N J and Rubbo L J. 2003 The LISA Simulator http://www.physics.montana.edu/LISA/
\bibitem{10} Vallisneri M. 2003 Synthetic LISA http://www.vallis.org/syntheticlisa/
\bibitem{11} Petiteau A, Auger G, Halloin H, Jeannin O, Pireaux S, Plagnol E, Regimbau T and Vinet J-Y. 2006 LISACode http://www.apc.univ-paris7.fr/LISA-France/analyse.phtml
\bibitem{12} Hellings R W. 2003 Class. and Quantum Grav. 20 1019–29
\bibitem{13} Cornish N J and Larson S L. 2003 Class. and Quantum Grav. 20 S163–70
\bibitem{14} Cornish N J and Larson S L. 2003 Phys. Rev. D 67 103001
\bibitem{15} Mohanty S D and Nayak R K. 2006 Phys. Rev. D 73 083006
\bibitem{16} Umstätter R, Christensen N, Hendry M, Meyer R, Sinha V, Veitch J, Vigeland S and Woan G. 2005 Phys. Rev. D 72 022001
\bibitem{17} Cornish N J and Crowder J. 2005 Phys. Rev. D 72 043005
\bibitem{18} Crowder J, Cornish N J and Reddinger J L. 2006 Phys. Rev. D 73 063011
\bibitem{19} Cornish N J and Porter E K. 2006 gr-qc/0605135
\bibitem{20} Cornish N J and Porter E K. 2006 Class. Quantum Grav. 23 S761–7
\bibitem{21} Wickham E D L, Stroeer A and Vecchio A. 2006 Class. Quantum Grav. 23 S819–27
\bibitem{22} Wen L and Gair J R. 2005 Class. and Quantum Grav. 22 S445–51
\bibitem{23} Gair J and Wen L. 2005 Class. and Quantum Grav. 22 S1359–71
\bibitem{24} Stroeer A, Gair J and Vecchio A. 2006 gr-qc/0609010
\end{thebibliography}