ВЕГЕТАЦИЈСКО ЕСТИЧКО СУВИХ ПАШЊАКА И КАМЕЊАРА ПЛАНИНЕ ВИДЛИЧ (ЈУГОИСТОЧНА СРБИЈА)

dr Марија Марковић, научни сарадник, Универзитет у Нишу, Природно-математички факултет, (marijam@pmf.ni.ac.rs)
dr Биљана Николић, виши научни сарадник, Институт за шумарство, Београд
dr Љубинко Ракоњац, научни саветник, Институт за шумарство, Београд
dr Душанца Пешић, ванредни професор, Универзитет у Нишу, Факултет заштите на раду

ИЗВОД: У овом раду је приказана вегетација сувих пашњака и камењара на кречњачком терену планине Видлич која се граничи с јужним ободом планине Балкан, у Србији познатим као Стара планина. Обављена су теренска истраживања, а резултати представљени у виду фитоценолошке табеле. Суви пашњаци и камењари припадају свезима Festucion valesiacae и Seslerion rigidae. Анализиране фитоценолошке податке урађене су применом кластер анализе и поређењем индекса биодиверзитета. Извршена је класификација сувих пашњака и камењара, базирана на њиховом флористичком саставу. Закључено је да највећу улогу у груписању по сличности описаних састојина има надморска висина. Биодиверзитет показује пораст са повећањем надморске висине. Значај сувих пашњака и камењара планине Видлич је у заустављању процеса ерозије, а захваљујући великој разноврсности могу да послуже као извор за прикупљање лековитог биља и за испашу домаћих животиња.

КЛЮЧНЕ РЕЧИ: Видлич, суви пашњаци, камењари, флористички састав, индекс биодиверзитета

УВОД

Према различитом специјском диверзитету, суви пашњаци и кречњачки камењари имају велику улогу у очувању биодиверзитета у Европи и били су циљ многих истраживања (Harrison et al., 2003; Alard et al., 2005). Њихов настанак, флористички састав и структура условљени су углавном антропогеним, климатским и едафским факторима (Diklić, Nikolić, 1964). Суви пашњаци и камењари на кречњачку источне Србије припадају свези Festucion valesiacae Klika 1931 (класа Festuco-Brometea Br.-Bl. et Tüxen ex Soó 1947) и свези Seslerion rigidae Zoly. 1939 (класа Festuco-Seslerietea Barbero et Bonin 1969) са израженим степским обележјем у чији састав истовремено улазе и извесни флорни елементи медитеранског и субмедитеранског распрострањења, што указује на сложеност животних услова који владају у овим пределима (Diklić, Nikolić, 1964).

Термофилне ливаде, пашњаци и камењари на планини Видлич формирали су се у појасу храстових шума после сече шума, а погото-
во након периода испаше, који је уследио на местима где су шуме посечене. Има их и на већим надморским висинама у појасу букурших шум на јужним експозицијама. Приликом истраживања која су вршена на Видличу показало се да подаци о флористичком саставу и екологији ксерофилних ливада и пашњака могу послужити као допуна резултатима до којих су дошли током ранијих истраживања сличних заједница на кречњаку источне и западне Србије (Jovanović-Dunjić, 1955, 1956), Danon (1960), Diklić (1962), Diklić, Nikolić (1964), али централне и западне Србије у виду фрагмената степске вегетације екстразоналног карактера (Marković, 1982, 2007). Најзаступљеније асоцијације сувих пашњака и камењара на Видличу су: Carici humilis-Stipetum pulherrimae R. Jov. 1955., Potentillo-Caricetum humilis R. Jov. 1955., Sanguisorbo-Festucetum vallesiacae, Bromo-Festucetum valesiacae, Gali-eto-Festucetum vallesiacae и Andropogono-Danthonietum calycinae. Велика пажња је посвећена површинама сувих пашњака и камењара у изузетно еродираним областима, укључујући заједницу Euphorbio myrsiniti-Botrichloetum (Chrysopogoni-Satureion) која представља завршни стадијум деградације термофилних шум, као једне од најважнијих шире заступљених асоцијација. Наведене заједнице граде биљке прилагођене на сува и топла станишта са плитком слојем земљишта које је сиромашног органског и минералног састава.

Асоцијација Carici humilis-Stipetum pulherrimae има две едификаторске врсте: Carex humilis и Stipa pulherrima. Врло полиморфна врста Stipa pulherrima са знатним бројем подврста и варијетета распрострањена је на сувим, сушним и каменим стаништима јужних и источних области Европе, и то претежно на кречњаку (Jovanović-Dunjić, 1955). У Србији је ову асоцијацију описала Jovanović-Dunjić (1955) на Сувој планини, наводећи је на јужним падинама Ртња испод врха Шиљка (Jovanović-Dunjić, 1956), а Diklić и Nikolić (1964) је налазе на Сврљишким планинама. Бројност и покровност ко- виља (Stipa pulherrima) у типичним састојинама је изразита па потискује у други план остале врсте које сачињавају ову заједницу. Ковиље (Stipa pulherrima) нема готово никакву хранљивост, па се овај пашњак ређе користи за испашу, али има значај у везивању земљишта на кречњачким камењарима.

Западна Potentillo-Caricetum humilis заузима јужне експозиције Видлича на већим надморским висинама (око 1000 m) и бла- гом нагибу на локалитетима: Басарски ками и Големи врх изнад села Гуленовци и Височине. Станиште на ком се јавља ова фитоценоза на Видличу, осим што је са малим нагибом или разното, већином је експонирано југу, а земљиште је растресито, порозно, брзо се сушити и компактније је и дубље него у асоцијацији Carici humilis-Stipetum pulherrimae. Ове особине станишта као и асоцијације Potentillo-Caricetum humilis веома су сличне истоименој асоцијацији на Сувој планини (Jovanović-Dunjić, 1955), Ртњу (Jovanović-Dunjić, 1956), а са суб- асоцијацијом artemisietosum на Лесковику (Diklić, 1962) и Сврљишким планинама (Diklić, Nikolić, 1964) указују на чињеницу да је ова заједница у источној Србији пре свега условљена карактером земљишта и рељефа. Асоцијација Potentillo-Caricetum humilis читавог лета служи за пашу сите стоке. Ова фитоценоза има веома значајну улогу у борби земљишта јужних падина планине спречавајући одрођивање и одношење плитког и трошног стола земљишта.

Разноврсност сувих пашњака и камењара се традиционално користи за испашу домаћих животиња, што је било нарочито заступљено у прошлом веку. У данашње време велики диверзитет вегетације ливада, пашњака и камењара представља важан изvor за прикупљање лековитог (Marković et al., 2010), а посебно ароматичног биља (Marković et al., 2009), које има богату и разноврсну примену у медицини, фармацеутској, козметичкој, парфимеријској и прехрамбеној индустрији.
МАТЕРИЈАЛ И МЕТОДИ РАДА

Опис истраживаног подручја

Планина Видлич се налази у југоисточном делу Србије, северно од тока реке Нишаве. Заузима територију општина Пирот и Димитровград. Пружа се у правцу северозапад−југозапад, прелазећи српско-бугарску границу и пружајући се све до Софијске котлине. Припада Балканском планинском систему. Планина је карактеристична по динамичном рељефу, нагнутим падинама и огромном обешумљеном подручју које је изложено снажној ерозији.

На читавом кречњачком терену Видлича простире се суво и скелетно земљиште пре ко моћне стеновите подлоге. Заступљен је тип земљишта који је сиромашан хранљивим материјама, а носи назив кречњачка рендзина и налази се у различитим еволутивним фазама. Након сече шума и периода испашеформирале су се ливаде, пашњаци као и ксерофилна вегетација стеновитих падина, које су већим делом изложене ерозији. Посебан специјски диверзитет кречњачких пашњака у великој мери условљен је ниском расположивошћу хранљивих материја у земљишту и дугом динамичком имиграцијом врста (Poschold, Wallisdevries, 2002; Schrautzer et al. 2009).

Теренска истраживања

Теренска истраживања сувих пашњака и камењара на планини Видлич у југоисточном делу Србије обављена су током 2008, 2009. и 2010. године. Резултат теренских истраживања представља обиман биљни материјал који су током 2008, 2009. и 2010. године. Резултат теренских истраживања представља обиман биљни материјал који је хербаризован, етикетиран и депонован у Хербаризуму Департмана за биологију и екологију Природно-математичког факултета Универзитета у Нишу: Herbarium Moesiacum (HMN).

Идентификација сакупљеног биљног материјала извршена је према Јосифовићу (1970−1986) и Веччеву (1982−1989), а номенклатура усклађена према Флори Европе (Tutin, 1964−1980, 1993). Фитоценолошка истраживања вегетације сувих пашњака и камењара планине Видлич обављена су на терену методом Braun-Blanquet-a (1964). Резултати истраживања представљени су у виду фитоценолошке табеле.

Аналiza фитоценолошких подataka и диверзитет

Аналiza фитоценолошког података урађена је употребом класификационог метода (WPGMA) из софтверског пакета Statistica 8.0 (StatSoft, 2007). Ова анализа користи комбиновање бројности и заступљености сваке врсте по фитоценолошким снимцима. уз предходну трансформацију комбинованих вредности по нумеричкој скали коју су предложили Westhoff и van der Marel (1973). Алфа диверзитет врста у заједници, унутар минимума ареала одређен је уз помоћ софтверског пакета програма Flora (Karadžić, Marinković, 2009). Одређени су индекси биодиверзитета по Whitaker-у: укупан број врста, Симпсонов индекс биодиверзитета (Whitaker, 1972).

РЕЗУЛТАТИ

Суви пашњаци типа Sanguisorbo-Festucetum vallesiacae забележени су на локалитету Басара на надморској висини 900 м, са доминантом врстом фитоценозе Sanguisorba minor и знатном заступљеносту дивље јагоде (Fragaria vesca) (Табела 1).

Термофилни пашњаци типа Bromo-Festucetum vallesiacae заступљени су на већим површинама југоzapадних и западних падина Видлича, на локалитетима Вучје (490 м), Црни врх (810 м, 890 м) и Извор (490 м) (Табела 1).

Доминантне врсте фитоценозе: Festuca vallesiacca и Bromus squarrosus карактеристичне су за суша станишта ливада и пашњака.
Табела 1. Суви пашњаци и камењари планине Видлич.

Локалитет	Мали врх (A)	Басара (C)	Влковија (F)	Вуче (E)	Црни врх (B)	Извор (D)
Надморска висина	635	620	900	1100	1090	490
Експозиција	W	S	SW	S	W	S
Нагиб (°)	20	5	10	40	30	15
Површина снимка (m²)	50	100				
Општа покровност вегетације (%)	60	70	90	70	75	60
Редни број снимка	1	2	3	4	5	6

Флористички састав

Спрат жбинова:

- **Rosa canina** L. . . +.2 . +.1 . +.1 . +.1 . +.1 . I
- **Prunus spinosa** L. . . +.1 +.1 +.1 . . +.1 . . I
- **Cytisus procumbens** (Walldst. & Kit. ex Wild.) Sprengel . . . +.1 3.4 . +.1 . +.1 . I
- **Pyrus pyraster** L. . . . +.1 . +.1 . +.1 . . . I
- **Clematis vitalba** Burgsd. . . . +.1 +.1 +.1 . I
- **Crataegus monogyna** Jacq. +.1 +.1 . 1.1 . . . I
- **Syringa vulgaris** L. . . . +.1 +.1 I
- **Cornus sanguinea** L. +.1 +.1 . I
- **Rhamnus saxatilis** Jacq. subsp. saxatilis +.1 +.1 I
- **Carpinus orientalis** Miller +.1 +.1 . I
- **Juniperus communis** L. . . . +.1 I
- **Rhamnus cathartica** L. . . . +.1 I
- **Chamaecytisus glaber** (L.) Rothm. . . . +.1 I
- **Chamaecytisus ciliatus** (Wahlenb.) Rothm. . . . +.1 I
- **Rosa obtusifolia** Desv. . . +.1 I
- **Quercus cerris** L. . . . +.1 I
- **Chamaecytisus jankae** (Velen.) Rothm. . . . +.1 I
- **Quercus pubescens** Willd. +.1 I
- **Rhamnus saxatilis** Jacq. subsp. tinctoria (Walldst. & Kit.) Nyman +.1 . . . I
- **Malus pumila** Miller +.1 . . . I
- **Viburnum lantana** L. +.1 . . . I
- **Ononis pusilla** L. +.1 . . . I
- **Pinus nigra** Arnold +.1 . . . I
| Страт зељастих биљака: | +.1 | +.1 | 1.1 | +.1 | +.1 | 1.1 | +.1 | +.1 | . | V | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Euphorbia cyparissias L. | +.1 | 1.1 | 2.2 | 1.1 | 1.1 | 1.2 | 1.1 | +.1 | 1.1 | V |
| Teucrium chamaedrys L. | +.1 | +.1 | +.1 | +.1 | . | 1.1 | 1.1 | +.1 | +.1 | . | IV |
| Orlaya grandiflora (L.) Hoffm. | 1.2 | +.1 | +.1 | +.1 | 1.1 | 1.1 | +.1 | +.1 | . | IV |
| Thymus glabrescens Willd. | 1.2 | 1.2 | 1.2 | . | . | +.2 | +.2 | +.1 | 1.3 | +.2 | IV |
| Festuca valesiaca Schleicher ex Gaudin | . | 1.2 | 2.3 | 1.3 | 1.2 | 2.2 | 2.2 | 1.2 | 1.1 | IV |
| Melica ciliata L. | 1.2 | +.1 | +.1 | . | . | 1.1 | +.1 | +.1 | 1.2 | . | IV |
| Petrorhagia saxifraga (L.) Link | +.2 | 1.1 | 1.1 | +.1 | 2.2 | . | +.1 | . | 1.1 | IV |
| Sideritis montana L. | 2.3 | 1.1 | . | +.1 | . | . | 3.3 | +.1 | 1.1 | +.1 | IV |
| Sedum acre L. | +.2 | +.2 | +.2 | . | +.2 | 1.2 | +.1 | +.2 | . | IV |
| Asperula purpurea (L.) Ehrend. | +.2 | 1.1 | 1.1 | +.1 | 2.2 | . | +.1 | . | +.1 | . | III |
| Ajuga chamaepitys (L.) Schreber subsp. chia (Schreber) Arcangeli | +.2 | +.2 | +.2 | . | +.2 | . | +.1 | +.1 | +.1 | +.1 | III |
| Bromus squarrosus L. | +.1 | +.1 | +.1 | +.1 | 2.2 | 2.2 | . | . | 1.1 | 2.2 | III |
| Hypericum rumeliacum Boiss. | +.1 | . | . | +.1 | +.1 | 1.1 | +.1 | +.1 | +.1 | 1.1 | III |
| Eryngium campestre L. | . | +.1 | +.1 | +.1 | . | . | 3.3 | 1.1 | . | +.1 | 2.2 | III |
| Stipa capillata L. | . | +.2 | . | +.1 | +.1 | 1.1 | 1.1 | 2.2 | . | III |
| Teucrium montanum L. | . | +.1 | +.1 | +.1 | . | +.1 | +.1 | . | +.1 | . | III |
| Crucianella angustifolia L. | 1.1 | +.1 | +.1 | . | . | . | +.1 | . | +.1 | +.1 | III |
| Achillea crithmifolia Waldst. & Kit. | +.1 | +.1 | +.1 | . | . | . | +.1 | . | +.1 | . | III |
| Sanguisorba minor Scop. | +.1 | . | . | +.1 | +.1 | 1.1 | +.1 | . | . | . | III |
| Convolvulus cantabrica L. | 1.2 | +.1 | +.1 | . | +.1 | . | +.1 | +.1 | . | III |
| Leontodon crispus Vill. | +.1 | . | +.1 | +.1 | . | +.1 | +.1 | . | +.1 | . | III |
| Trifolium campestre Schreber | 1.1 | . | . | +.1 | 1.1 | 1.2 | +.1 | +.1 | . | III |
| Fragaria vesca L. | . | +.1 | 1.4 | 1.1 | +.1 | . | . | . | +.1 | . | III |
| Petrorhagia illyrica (Ard.) P. W. Ball & Heywood | . | +.1 | . | . | +.1 | +.1 | +.1 | . | . | . | III |
| Astragalus onobrychis L. | . | . | +.1 | . | . | 1.1 | +.1 | +.1 | +.1 | III |
| Asperula cynanchica L. | . | . | +.1 | . | 1.1 | +.1 | +.1 | +.1 | . | III |
| Sedum album L. | +.2 | +.2 | +.2 | 2.2 | . | . | +.2 | . | II |
| Medicago minima (L.) Bartal. | 1.2 | +.1 | +.1 | . | . | +.1 | +.1 | . | . | II |
| Allium sphaerocephalon L. | +.1 | . | +.1 | +.1 | . | . | . | +.1 | . | II |
| Muscari neglectum Guss. ex Ten. | +.1 | . | +.1 | . | +.1 | . | . | +.1 | . | II |
| Xeranthemum annuum L. | . | +.1 | . | . | +.1 | +.1 | . | . | +.1 | II |
| Species | Activity Score | Effectiveness Score | Relative Yield | Anthropogenic Value | Notes |
|--|----------------|---------------------|----------------|---------------------|---------------------|
| *Artemisia alba* Turra | . | 3.3 | +.2 | +.2 | II |
| *Helleborus odorus* Waldst. & Kit. | . | 3.3 | +.1 | +.1 | +.1 |
| *Acinos alpinus* (L.) Moench subsp. majoranifolius* (Miller) P. W. Ball | . | +.1 | +.1 | . | 1.2 +.1 |
| *Thesium arvense* Horvatovszky | . | +.1 | . | +.1 +.1 |
| *Centaurea biebersteinii* DC. subsp. australis* (Pančić) Dostál | . | +.1 | +.1 | +.1 | 1.1 II |
| *Poa bulbosa* L. | +.1 | +.1 | +.1 | . | . |
| *Teucrium polium* L. | +.1 | +.2 | . | +.2 | . |
| *Logfia minima* (Sm.) Dumort. | +.1 | +.1 | . | +.1 | . |
| *Trifolium striatum* L. | 2.3 | 2.2 | 1.1 | . | . |
| *Poa compressa* L. | +.2 | +.1 | +.1 | . | . |
| *Althaea hirsuta* L. | +.1 | +.1 | +.1 | 1.1 | +.1 |
| *Acinos arvensis* (Lam.) Dandy | +.1 | +.1 | +.1 | +.1 | . |
| *Centaurea calcitraca* L. | +.1 | +.1 | +.1 | 1.1 | +.1 |
| *Aegilops geniculata* Roth | +.1 | +.1 | +.1 | 1.1 | . |
| *Trifolium scabrum* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Crepis foetida* L. subsp. foetida | +.2 | +.1 | +.1 | . | +.1 |
| *Plantago lanceolata* L. | +.1 | +.1 | +.1 | 1.1 | +.1 |
| *Fumana procumbens* (Dunal) Gren. & Godron | +.1 | +.1 | +.1 | +.1 | 1.1 |
| *Allium scorodoprasum* L. subsp. rotundum* (L.) Stearn | +.1 | +.1 | +.1 | +.1 | . |
| *Geranium dissectum* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Sherardia arvensis* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Galium album* Miller | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Ajuga laxmannii* (L.) Bentham | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Trifolium alpestre* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Hyssopus officinalis* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Thlaspi perfoliatum* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Carex caryophyllea* Latourr. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Minuartia verna* (L.) Hiern | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Stachys recta* L. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Onobrychis alba* (Waldst. & Kit.) Desv. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Carduus candicans* Waldst. & Kit. | +.1 | +.1 | +.1 | +.1 | +.1 |
| *Linaria rubioides* Vis. & Pančić subsp. nissana* Niketić & Tomović | +.1 | +.1 | +.1 | +.1 | 1.1 |
| *Helianthemum nummularium* (L.) Miller | +.1 | +.1 | +.1 | +.1 | 1.1 |

64
Вегетацијске одлике су: Еглена Видлича и каменара планине Видлич...
Euphorbia falcata L.
Koeleria glaucovirens Domin
Scabiosa argentea L.
Festuca ovina L.
Scabiosa ochroleuca L.
Ziziphora capitata L.
Arenaria serpyllifolia L. subsp. *leptoclados* (Reichenb.) Nyman
Potentilla recta L.
Herniaria hirsuta L.
Scrophularia canina L.
Carduus acanthoides L.
Chondrilla juncea L.
Festuca panciciana (Hackel) K. Richter
Koeleria macrantha (Ledeb.) Schultes
Hypericum perforatum L.
Vicia lathyroides L.
Vicia sativa L. subsp. *nigra* (L.) Ehrh.
Bromus commutatus Schrader
Lathyrus nissolia L.
Inula oculus-christi L.
Plantago media L.
Erysimum odoratum Ehrh.
Lepidium campestre (L.) R. Br.
Vicia pannonica Crantz
Phlomis tuberosa L.
Digitalis lanata Ehrh.
Orobanche coerulescens Stephan
Thalictrum minus L.
Scandix australis L.
Polytrichum commune L.
Viola jordanii Hanry
Koeleria nitidula Velen.
Lens nigricans (Bieb.) Godron
Thymus pannonicus All.
Silene bupleuroides L.
Agrimonia eupatoria L.
Tragopogon pratensis L.
Viola alba Besser
Species

Polygonatum odoratum (Miller) Druce
Dactylis glomerata L.
Leontodon hispidus L.
Crupina vulgaris Cass.
Fagus moesiaca (K. Malý) Czech.
Achillea clypeolata Sibth. & Sm.
Ptostemon afer (Jacq.) W. Greuter
Cleistogenes serotina (L.) Keng
Cichorium intybus L.
Hieracium pilosella L.
Geranium columbinum L.
Trifolium dalmaticum Vis.
Potentilla cinerea Chaix ex Vill.
Sedum hispanicum L.
Dasypryum villosum (L.) P. Candargy
Tragus racemosus (L.) All.
Rhinanthus rumelicus Velen.
Verbascum thapsus L.
Galium verum L.
Xeranthemum cylindraceum Sibth. & Sm.
Anthoxanthum odoratum L.
Carex humilis Leysser
Carex hallerana Asso
Crepis setosa Haller
Fragaria viridis Duchesne
Knautia integrifolia (L.) Bertol.
Calamintha nepeta (L.) Savi

Само у једном фитоценолошком снимку са вредношћу +.1 констатоване су следеће врсте:

Снимак 1: Coronilla scorpioides (L.) Koch, Medicago rigidula (L.) All., Valerianella locusta (L.) Laterrade, Crepis neglecta L., Cynosurus echinatus L., Euphorbia taurinensis All., Onobrychis montana DC., Carex sp.;

Снимак 2: Marrubium peregrinum L., Verbena officinalis L., Verbascum vandasisi (Rohlena) Rohlena, Crepis biennis L., Verbascum sinuatum L., Centaurea rhenana Boreau, Petrorhagia prolifera (L.) P. W. Ball & Heywood;

Снимак 3: Thesium alpinum L., Centaurea scabiosa L., Elymus repens (L.) Gould, Digitalis ferruginea L., Stachys germanica L., Bupleurum affine Sadler, Poa pratensis L., Rumex crispus L., Potentilla argentea L., Myosotis arvensis (L.) Hill, Rhinanthus alectorolophus (Scop.) Pollich, Seseli peucedanoides (Bieb.) Kos.-Pol.;

Снимак 4: Astragalus depressus L., Hype-ricum umbellatum A. Kerner, Sedum urvillei
Вегетацијске одлике су вих пашњака и камењара планине Видлич...
Марија Марковић, Бојан Златковић, Биљана Николић, Љубинко Ракоњац, Душица Пешић

68

вредношћу Симпсоновог индекса диверзитета у дијапазону 0,976−0,985. 10 фитоценолошких снимака обухватају укупно 242 врсте и подврсте. Само на једном фитоценолошком снимку забележено је 86 врста и подврста, што указује на велику разноврсност.

На сувим пашњацима и камењарима пла
- нине Видлич уочавамо бројне врсте степског, субмедитеранског и медитеранског каракте- ра. Adamović (1899) и Soó (1951) у врсте суб- медитеранског и медитеранског карактера, а које се јављају на топлим стаништима сувих пашњака и камењара Видлича и осталих креч- начких терена југоисточне Србије, убрајају: Bromus squarrosus, Aethionema saxatile, Sideritis montana, Artemisia alba, Ptilostemon afer, Carthamus lanatus, Crupina vulgaris, Petrophagia saxifraga, Veronica austriaca subsp. austriaca, Asperula cynanchica, Teucrium montanum, Asperula purpurea и друге.

Класификација фитоценолошких снимака вегетације сувих пашњака и камењара базира- на на њиховом флористичком саставу приказа- на је на Графикону 1. Према мање или више хомогеним еколошким условима, највећи број фитоценолошких снимака (1−2, 6−10) показали су се сличним. То су фитоценолошки снимци узети са малих (635 m) надморских висина (Та- бела 1) који су груписани заједно у десном делу Графикона 1. Они припадају зони храстових шум. У средишњем делу графикона су суви пашњаци и камењари у зони мезофилних шума на прелазу између храстових и букових шума, на надморским висинама од 635 m (фитоценолошки снимци 7, 9, 8, 6, 10 и 3). Посебно се издвајају камењари у појасу букових шума на надморској висини изnad 1000 m (фитоценолошки снимци 4 и 5). Највећу улогу у груписању по сличности пручаваних састојина на камени- тим стаништима има надморска висина.

Највећи број врста, а с тим у вези и највећи диверзитет имају фитоценолошки снимци 4 и 5 који се налазе у зони букових шум, следе фитоценолошки снимци нешто мањих надмор- ских висина у зони шума на прелазу између храстових и букових (Табела 2). Најмањи број врста и најмањи диверзитет имају фитоценолошки снимци 1 и 2, који се налазе на најма- њим надморским висинама Видлича у зони термофилне храстове шуме са деградационим стадијумом грабића (Quercetum frainetto-cerris subass. carpinetosum orientalis).

На Слици 1 се може уочити издвајање састо- јина које су смештене на већим надморским ви- синама (F) у односу на све остале. Састојине које се налазе на нижим надморским висинама (A, B, C, D, E) издвојене су у виду посебне групе, при чему се и у овој групи може уочити готово јасан распоред у односу на градијент висине.

Графикон 1. Кластер анализа вегетације сувих па-
шњака и камењара планине Видлич
Брог врста и диверзитет одликује вегетацију камењара на најмањим надморским висина ма у зони шибљака грабића која припада по јасу храстових шума. У том смислу, диверзитет вегетације отворених типова станишта показује пораст у складу са повећањем надморске висине.

ДИСКУСИЈА

Опште запажање је да је диверзитет сувих пашњака и камењара у директној сразмери са надморском висином. Повећањем надморске висине расте и разноврсност вегетације. Према Alard et al. (2005), дубина земљишта и карбонатног супстрата је у директној сразмери са диверзитетом, а плодност земљишта се директно одражава на сукцесивне фазе и специјски диверзитет. Овом чињеницом можемо објаснити највиши ниво разноврсности вегетације у највишем делу планине на еродираним падинама са повећаним присуством хамефита. Fuhlendorf, Smiens (1998) кроз своје радове истичу да промене у земљишним условима утичу на конкурентну хијерархију између древнастих и ћелијастих врста. Густина ћелијастих врста може да опада за време сукцесије са компетитивним фанерофитама (Brown, Archer, 1999). Бројем доступношћу хранљивих ресур са на мањим надморским висинама, која је у вези са дубином земљишта и повећањем хумидношћу, може се објаснити повећање бро жбунских и дрвенастих биљака у односу на ћелијасте представнике. Ова чињеница допри носи опадању индекса диверзитета на мањим надморским висинама.

Кад се име у виду изражен степски ка-рак тер, са присуством бројних понских и субме дитеранских врста, вегетација сувих пашњака и камењара је значајна из више разлога. Пре свега, на стрмим падинама планине има значајну улогу у заустављању процеса ерозије, и то не само на Видличу и у источној и југоисточ ној Србији већ и у другим областима западне Бугарске, источне Србије и централних делова Балканског полуострва.

Сува и каменина травна станишта ове области обликује велика флористичка раз новрсност, уз присуство бројних ендемичних и реликтних степских представника: *Adonis vernalis, Paeonia tenuifolia, Ranunculus illyricus, Sternbergia colchiciflora, Hyacinthella leucophaea*. Вегетација сувих пашњака и камењара на кречњачким теренима планине Видлич игра значајну улогу у очувању таквих врста, па са свим оправдано заслужује одређену пажњу и са конзервационог аспекта.

ЗАКЉУЧИЦИ

Суви пашњаци и камењари кречњачког терена планине Видлич припадају севзамам *Festucion valesiacae* (класа *Festuco-Brometea*) и *Seslerion rigidae* (класа *Festuco-Seslerietea*).
INTRODUCTION

A wide diversity of species of dry grasslands and limestone rocky grounds gives them an important role in the preservation of biodiversity in Europe. Therefore, they have been the sub-

VEGETATION PATTERNS OF DRY GRASSLANDS AND ROCKY GROUNDS ON VIDILIĆ MOUNTAIN (SOUTHEASTERN SERBIA)

dr Marija Marković, Research Associate, University of Niš, Faculty of sciences and mathematics, (marijam@pmfni.ac.rs)
dr Biljana Nikolić, Senior Research Associate, Institute of forestry, Belgrade
dr Ljubinko Rakonjac, Principal Research Fellow, Institute of forestry, Belgrade
dr Dušica Pešić, Associate Professor, University of Niš, Faculty of occupational safety

Abstract: This paper studies vegetation patterns of dry grasslands and rocky grounds on the limestone terrain of Mt. Vidlić, which borders the southern edge of the Balkans Mountain in Serbia, known as Stara planina. Having conducted field research, we presented the obtained results in the form of a phytosociological table. Dry grassland and rocky ground vegetation belongs to the familiar alliances of Festucion valesiacae (Festuco-Brometea) and Seslerion rigidae (Festuco-Seslerietea). Phytosociological data were analyzed using cluster analysis and evaluation of biodiversity indices. The stands of dry grasslands and rocky grounds were classified according to their floristic composition. Altitude proved to be the major factor in their grouping by floristic similarity. In other words, there is an increase in biodiversity with an increasing altitude. The importance of dry grasslands and rocky grounds of Mt.Vidlić lies primarily in their role in erosion control, but their diversity makes them an important source of medicinal herbs and grazing land.

Key words: Mt. Vidlić, dry grasslands, rocky grounds, floristic composition, index of biodiversity
ject of numerous studies (Harrison et al., 2003; Alard et al., 2005). Their formation, floristic composition and structure have been determined by different anthropogenic, climatic and edaphic factors (Diklić, Nikolić, 1964).

The stands of dry grasslands and rocky grounds growing on limestones of eastern Serbia belong to Festucion valesiacae Klika 1931 (class Festuco-Brometea Br.-Bl. et Tüxen ex Soó 1947) and Seslerion rigidae Zoly. 1939 (class Festuco-Seslerietea Barbero et Bonin 1969) alliances. Although they are markedly steppe in character, they have certain Mediterranean and sub-Mediterranean floral elements in the composition, which points to complex living conditions prevailing in these areas (Diklić, Nikolić, 1964).

Thermophilic meadows, grasslands and rocky grounds on Mt. Vidlič were formed in the belt of oak forests after they had been felled, especially after a period of grazing which followed the fellings. They can also be found at higher altitudes in the belt of south-facing beech forests during the research conducted on the mountain of Vidlič, it turned out that the data obtained on the floristic composition and ecology of xerophilic meadows and grasslands could contribute to the results obtained in earlier studies of similar communities on limestone in eastern Serbia Jovanović-Dunjić (1955, 1956), Danon (1960), Diklić (1962), Diklić, Nikolić (1964), and in central and western Serbia where they occur in the form of fragments of extrazonal steppe vegetation (Marković, 1982, 2007). The most common associations of dry grasslands and rocky grounds on Mt. Vidlič are: Carex humilis-Stipetum pulherrimae association has two edifying species: Carex humilis and Stipa pulherrima. A highly polymorphic species Stipa pulherrima with a significant number of subspecies and varieties is commonly found in dry, sunny and rocky areas of the southern and eastern regions of Europe, mainly on limestone (Jovanović-Dunjić, 1955). In Serbia, this association was described by Jovanović-Dunjić (1955) on Mt. Suva Planina. It was recorded on the southern slopes of Mt. Rtanj below its highest peak named Šiljak (Jovanović-Dunjić, 1956). It was further found by Diklić and Nikolić (1964) on Svrljiške mountains. With its great abundance and considerable coverage, golden feather grass (Stipa pulherrima) suppresses other species that make up this community. Golden feather grass (Stipa pulherrima) has virtually no nutritional value, so these grasslands are not used for grazing. However, it has an important role in soil binding on limestone rocky grounds.

Potentillo-Caricetum humilis is a forest community that occurs on gentler south-facing slopes of Mt. Vidlič which are at higher altitudes (about 1000 m) of the following localities: Basarski kamik and Golemi vrh above the villages of Gulenovci and Visočki Odorovci. The soil is loose, porous and quickly-drying. It is more compact and deeper than the soil in the association of Carex humilis-Stipetum pulherrimae. Site features and characteristics of the association of Potentillo-Caricetum humilis are very similar to the associations of the same name on Mt. Suva Planina (Jovanović-Dunjić, 1955) and Mt. Rtanj (Jovanović-Dunjić, 1956), and to artemisietosum subassociation on Leskovik (Diklić, 1962) and Svrljiške Mountains (Diklić, Nikolić, 1964), which shows that this community in eastern Serbia is primarily affected by the characteristics of the soil and topography. Potentillo-Caricetum humilis association is used as small livestock pasture in summer months. This plant community has a very important role in binding the soil on the southern slopes of the mountain, preventing landslides and removal of shallow and crumbly topsoil.

These diverse dry grasslands and rocky grounds have traditionally been used for livestock grazing, which was particularly the case in the last century. Today, rich diversity of meadow, grassland and rocky ground vegetation is an
important source of medicinal (Marković et al., 2010), especially aromatic herbs (Marković et al., 2009), which have a wide and varied application in medicine, pharmaceuticals, cosmetics, perfume and food industry.

MATERIAL AND METHODS

Study area

Vidlič Mountain is located in the southeast of Serbia, north of the river Nišava and belongs to the municipalities of Pirot and Dimitrovgrad. It stretches from the northwest to the southeast up to the Bulgarian border and from there extends through its territory all the way to Sofia Valley. Mt. Vidlič belongs to the Balkan mountain range. The mountain is characterized by dynamic topography, sloped terrain and vast barren areas that are exposed to strong erosion processes.

The whole limestone area of Mt. Vidlič is characterized by dry skeletal soil developed over deep parent rock. The prevailing soil type is nutrient-poor, calcareous rendzina at different stages of soil development. Clear-cutting and the subsequent period of grazing resulted in the formation of many types of meadows, grasslands and xerophilic vegetation of eroded rocky slopes. The marked species diversity of limestone grasslands is largely associated with low availability of plant nutrients in the soil and long-term species immigration dynamics (Poschold, Wallisdevries, 2002; Schrautzer et al. 2009).

Field research

Field studies of dry grassland and rocky ground vegetation on Vidlič Mountain, southeastern Serbia were conducted in 2008, 2009 and 2010. The plant material collected during the field research was labeled and preserved in the “Herbarium moesiacum Niš”, Department of Biology and Ecology, Faculty of Sciences, University of Niš-HMN.

Categorization of the collected plant material was performed according to Josifović (1970-1986) and Velčev (1982-1989), and the nomenclature was done in accordance with Flora Europaea nomenclature system (Tutin, 1964-1980, 1993).

Phytosociological studies of dry grassland and rocky ground vegetation on Mt.Vidlič were carried out using the method of Braun-Blanquet (1964). The results are presented in the form of a phytosociological table.

All the localities were georeferenced using Ozi explorer software and plotted on the map (Figure 1) using DIVA-GIS (5.2 software) (Hijmans et al., 2005).

Analysis of phytosociological data and diversity

The obtained phytosociological data were analyzed using the classification method (WPGMA) of Statistica 8.0 software package (StatSoft, 2007).

The combined cover-abundance value was estimated for each species in a plot after they had been transformed into the numeric scale proposed by Westhoff and van der Marel (1973). Alpha diversity, or the species diversity within the smallest units, was calculated using ‘Flora’ software package (Karadžić, Marinković, 2009). Species richness (the total number of species) and Simpson’s diversity index (Whitaker, 1972) that includes species evenness were also calculated.

RESEARCH RESULTS

Dry grasslands of Sanguisorbo-Festucetum vallesiaceae type were recorded at the site of Bašara at an altitude of 900 m, with Sanguisorba minor as the dominant species and substantial presence of wild strawberry (Fragaria vesca) (Table 1).

Thermophilic grasslands of Bromo Festucetum vallesiaceae type occur over large areas of south-western and western slopes of Mt. Vidlič, at the following sites: Vučje (490 m), Crni vrh (810 m, 890 m) and Izvor (490 m) (Table 1). Dominant species Festuca vallesiaca and Bromus squarrosus are typical of dry meadow and grassland sites.
Table 1. Dry grasslands and rocky grounds of Mt. Vidlič

Locality	Mali vrh (A)	Basara (C)	Vlkovija (F)	Vučje (E)	Crni vrh (B)	Izvor (D)	Altitude (m)	Exposure	Terrain inclination (°)	Plot area (m²)	Cover (%)	Plot number
	635	620	900	1100	1090	490	810	S	W	50	60	1
							930	S	W		70	2
							890	W	W		90	3
							480					4

| | Locality | | | | | | | | | | |
|--------|------------------|---------|---------|---------|---------|---------|-------------|-------|-----------------------|----------------|---------|-------------|
| | Altitude | 635 | 620 | 900 | 1100 | 1090 | 490 | 810 | 930 | 890 | 480 |
| | Exposure | W | S | SW | S | W | S | W | | | |
| | Terrain inclination (°) | 20 | 5 | 10 | 40 | 30 | 15 | 5 | 35 | 15 | 40 |
| | Plot area (m²) | 50 | | | | | | | 100 | | |
| | Cover (%) | 60 | 70 | 90 | 70 | 75 | 60 | 70 | 50 | | |

Floristic composition

Shrub layer:

- *Rosa canina* L. +.2 +.1 +.1 +.1 +.1 +.1 . IV
- *Prunus spinosa* L. . . +.1 +.1 +.1 . . +.1 . . III
- *Cytisus procumbens* (Waldst. & Kit. ex Willd.) Sprengel . . +.1 3.4 . +.1 . +.1 . II
- *Pyrus pyraster* Burgsd. . . . +.1 +.1 . +.1 . . . II
- *Clematis vitalba* L. . . . +.1 +.1 +.1 II
- *Crataegus monogyna* Jacq. +.1 +.1 . 1.1 . . II
- *Syringa vulgaris* L. . . . +.1 +.1 I
- *Cornus sanguinea* L. . . . +.1 +.1 I
- *Rhamnus saxatilis* Jacq. subsp. *saxatilis* +.1 +.1 . . . I
- *Carpinus orientalis* Miller +.1 +.1 . +.1 . I
- *Juniperus communis* L. . . . +.1 I
- *Rhamnus cathartica* L. . . . +.1 I
- *Chamaecytisus glaber* (L.) Rothm. +.1 +.1 I
- *Chamaecytisus ciliatus* (Wahlenb.) Rothm. +.1 I
- *Rosa obtusifolia* Desv. +.1 I
- *Quercus cerris* L. +.1 I
- *Chamaecytisus jankae* (Velen.) Rothm. +.1 I
- *Quercus pubescens* Willd. +.1 I
- *Rhamnus saxatilis* Jacq. subsp. *tinctoria* (Waldst. & Kit.) Nyman +.1 I
- *Malus pumila* Miller +.1 I
- *Viburnum lantana* L. +.1 I
- *Ononis pusilla* L. +.1 I
- *Pinus nigra* Arnold . +.1 I
| Ground flora layer: | +.1 | +.1 | 1.1 | +.1 | +.1 | 1.1 | +.1 | +.1 | . | V | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| *Euphorbia cyparissias* L. | +.1 | . | 1.1 | 2.2 | 1.1 | 1.1 | 1.2 | 1.1 | +.1 | 1.1 | V |
| *Teucrium chamaedrys* L. | 1.2 | +.1 | +.1 | +.1 | . | 1.1 | 1.1 | +.1 | +.1 | . | IV |
| *Orlaya grandiflora* (L.) Hoffm. | 1.2 | 1.2 | 1.2 | . | . | +.2 | +.2 | +.1 | 1.3 | +.2 | IV |
| *Thymus glabrescens* Willd. | | | | | | | | | | | |
| *Festuca valesiaca* Schleicher ex Gaudin | . | . | 1.2 | 2.3 | 1.3 | 1.2 | 2.2 | 2.2 | 1.2 | 1.1 | IV |
| *Melica ciliata* L. | 1.2 | +.1 | +.1 | . | . | 1.1 | +.1 | +.1 | 1.2 | . | IV |
| *Petrorhagia saxifraga* (L.) Link | +.2 | 1.1 | 1.1 | +.1 | . | 2.2 | . | +.1 | . | 1.1 | IV |
| *Sideritis montana* L. | 2.3 | 1.1 | . | +.1 | . | . | 3.3 | +.1 | 1.1 | +.1 | IV |
| *Sedum acre* L. | +.2 | +.2 | . | . | +.2 | 1.2 | +.1 | +.2 | +.1 | IV |
| *Asperula purpurea* (L.) Ehrend. | +.1 | +.2 | . | . | +.1 | 1.1 | +.2 | +.1 | . | 2.2 | IV |
| *Satureja kitaibelii* Wierzb. | +.2 | . | . | 1.2 | +.3 | +.2 | +.2 | 2.3 | +.1 | IV |
| *Eryngium diffusum* Ehrh. | +.1 | +.1 | +.1 | . | +.1 | +.2 | . | +.1 | +.1 | . | III|
| *Ajuga chamaepitys* (L.) Schreber subsp. *chia* (Schreber) Arcangeli | +.1 | +.1 | +.1 | . | . | +.1 | +.1 | . | +.2 | . | III|
| *Bromus squarrosus* L. | +.1 | +.1 | . | . | . | 2.2 | 2.2 | . | 1.1 | 2.2 | III|
| *Hypericum rumeliacum* Boiss. | +.1 | . | . | +.1 | +.1 | +.1 | . | +.1 | 1.1 | III |
| *Eryngium campestre* L. | . | +.1 | +.1 | +.1 | . | +.1 | +.1 | . | +.1 | . | III|
| *Medicago sativa* L. subsp. *falcata* (L.) Arcangeli | . | +.1 | 2.1 | +.1 | . | +.1 | . | +.1 | +.1 | . | III|
| *Dichanthium ischaemum* (L.) Roberty | . | +.1 | +.1 | . | . | 3.3 | 1.1 | . | +.1 | 2.2 | III|
| *Stipa capillata* L. | . | +.2 | +.1 | +.1 | +.1 | +.1 | 1.1 | 2.2 | . | III |
| *Teucrium montanum* L. | . | . | +.1 | . | . | +.2 | +.2 | +.1 | +.1 | +.1 | III|
| *Crucianella angustifolia* L. | 1.1 | +.1 | +.1 | . | . | . | . | +.1 | . | +.1 | III|
| *Achillea crithmifolia* Waldst. & Kit. | +.1 | +.1 | +.1 | . | . | +.1 | +.1 | . | +.1 | +.1 | III|
| *Sanguisorba minor* Scop. | +.1 | 1.2 | . | . | . | +.1 | +.1 | +.1 | . | . | III|
| *Convolvulus cantabrica* L. | 1.2 | +.1 | . | +.1 | . | +.1 | . | +.1 | +.1 | . | III|
| *Leontodon crispus* Vill. | +.1 | . | +.1 | . | . | +.1 | +.1 | . | +.1 | . | III|
| *Trifolium campestre* Schreber | 1.1 | . | . | 1.1 | 1.2 | +.1 | +.1 | . | . | . | III|
| *Fragaria vesca* L. | . | +.1 | 4.4 | 1.1 | +.1 | . | . | . | . | +.1 | III|
| *Petrophytum illyricum* (Ard.) P. W. Ball & Heywood | . | +.1 | . | . | +.1 | +.1 | +.1 | . | +.1 | . | III|
| *Astragalus onobrychis* L. | . | . | +.1 | . | . | 1.1 | +.1 | +.1 | +.1 | . | III|
| *Asperula cynanchica* L. | . | . | +.1 | . | . | 1.1 | +.1 | +.1 | +.1 | . | III|
| *Sedum album* L. | +.2 | +.2 | . | . | 2.2 | . | . | +.2 | . | . | II |
| *Medicago minima* (L.) Bartal. | 1.2 | +.1 | . | . | . | +.1 | +.1 | . | . | . | II |
| Scientific Name | Increment |
|----------------|-----------|
| Allium sphaerocephalon L. | +1 +1 +1 +1 +1 +1 |
| Muscari neglectum Guss. ex Ten. | +1 +1 +1 +1 +1 +1 |
| Xeranthemum annuum L. | +1 +1 +1 +1 +1 +1 |
| Artemisia alba Turra | 3.3 3.3 +2 +2 +2 |
| Helleborus odorus Waldst. & Kit. | +1 +1 +1 +1 +1 +1 |
| Acinos alpinus (L.) Moench subsp. majoranifolius (Miller) P. W. Ball | +1 +1 +1 +1 +1 +1 |
| Thesium arvense Horvatovszky | +1 +1 +1 +1 +1 +1 |
| Centaurea biebersteinii DC. subsp. australis (Pančić) Dostál | +1 +1 +1 +1 +1 +1 |
| Poa bulbosa L. | +1 +1 +1 +1 +1 +1 |
| Teucrium polium L. | +1 +1 +1 +1 +1 +1 |
| Logfia minima (Sm.) Dumort. | +1 +1 +1 +1 +1 +1 |
| Trifolium striatum L. | 2.3 2.2 1.1 +1 +1 +1 |
| Poa compressa L. | +1 +1 +1 +1 +1 +1 |
| Althaea hirsuta L. | +1 +1 +1 +1 +1 +1 |
| Acinos arvensis (Lam.) Dandy | +1 +1 +1 +1 +1 +1 |
| Centaurea calcitrapa L. | 1.1 +1 +1 +1 +1 +1 |
| Aegilops geniculata Roth | +1 +1 +1 +1 +1 +1 |
| Trifolium scabrum L. | 2.2 +1 +1 +1 +1 +1 |
| Crepis foetida L. subsp. foetida | +1 +1 +1 +1 +1 +1 |
| Plantago lanceolata L. | +1 +1 +1 +1 +1 +1 |
| Fumana procumbens (Dunal) Gren. & Godron | +1 +1 +1 +1 +1 +1 |
| Allium scorodoprasum L. subsp. rotundum (L.) Stearn | 1.1 +1 +1 +1 +1 +1 |
| Geranium dissectum L. | 1.1 +1 +1 +1 +1 +1 |
| Sherardia arvensis L. | +1 +1 +1 +1 +1 +1 |
| Galium album Miller | +1 +1 +1 +1 +1 +1 |
| Ajuga laxmannii (L.) Bentham | +1 +1 +1 +1 +1 +1 |
| Trifolium alpestre L. | 2.2 +1 +1 +1 +1 +1 |
| Hyssopus officinalis L. | +1 +1 +1 +1 +1 +1 |
| Thlaspi perfoliatum L. | +1 +1 +1 +1 +1 +1 |
| Carex caryophyllea Latourr. | 1.2 +1 +1 +1 +1 +1 |
| Minuartia verna (L.) Hiern | +1 +1 +1 +1 +1 +1 |
| Stachys recta L. | +1 +1 +1 +1 +1 +1 |
| Onobyrychis alba (Waldst. & Kit.) Desv. | +1 +1 +1 +1 +1 +1 |
| Scientific Name | Additional Information |
|-----------------|------------------------|
| *Carduus candicans* Waldst. & Kit. | +.1 +.1 . +.1 | 1 |
| *Linaria rubioides* Vis. & Pančić subsp. *nissana* Niketić & Tomović | +.1 . +.1 . 1.1 | II |
| *Helianthemum nummularium* (L.) Miller | +.1 . +.1 . 1.1 | II |
| *Euphorbia falcata* L. | +.1 . . +.1 +.1 | II |
| *Koeleria glaucovirens* Domin | 2.3 . +.1 . | II |
| *Scabiosa argentea* L. | +.1 +.1 . +.1 | II |
| *Festuca ovina* L. | 1.2 . . +.1 | I |
| *Scabiosa ochroleuca* L. | +.1 . +.1 | I |
| *Ziziphora capitata* L. | +.2 . . +.1 | I |
| *Arenaria serpyllifolia* L. subsp. *leptoclados* (Reichenb.) Nyman | +.1 +.1 | I |
| *Potentilla recta* L. | +.1 1.1 | I |
| *Herniaria hirsuta* L. | . +.1 1.1 | I |
| *Scrophularia canina* L. | . 1.2 . . +.1 | I |
| *Carduus acanthoides* L. | . +.1 . . +.1 | I |
| *Chondrilla juncea* L. | . +.1 +.1 | I |
| *Festuca paniciiana* (Hackel) K. Richter | . . 2.2 | I |
| *Koeleria macrantha* (Ledeb.) Schultes | . . +.2 . +.1 | I |
| *Hypericum perforatum* L. | . . +.1 +.1 | I |
| *Vicia lathyroides* L. | . . +.1 . +.1 | I |
| *Vicia sativa* L. subsp. *nigra* (L.) Ehrh. | . . +.1 . +.1 | I |
| *Bromus commutatus* Schrader | . . 1.1 . . +.1 | I |
| *Lathyrus nissolia* L. | . . +.1 +.1 | I |
| *Inula oculus-christi* L. | . . +.1 1.1 | I |
| *Plantago media* L. | . . +.1 +.1 | I |
| *Erysimum odoratum* Ehrh. | . . . +.1 +.1 | I |
| *Lepidium campestris* (L. R. Br. | . . . +.1 +.1 | I |
| *Vicia pannonica* Crantz | . . . +.1 +.1 | I |
| *Phlomis tuberosa* L. | . . . +.1 +.1 | I |
| *Digitalis lanata* Ehrh. | . . . +.1 +.1 | I |
| *Orobanche coerulescens* Stephan | . . . +.1 +.1 | I |
| *Thalictrum minus* L. | . . . +.1 +.1 | I |
| *Scandix australis* L. | . . . +.1 2.2 | I |
| *Polytrichum commune* L. | . . . +.2 +.2 | I |
| Вегетацијске одлике су вих пашњака и камењара планине Видлич... |
|------------------|------------------|------------------|
| **Viola jordanii** Hanry | . . . | +.1 | +.1 | . . . | . . . | . | ! |
| **Koeleria nitidula** Velen. | . . . | +.1 | . | +.2 | . . . | . | ! |
| **Lens nigricans** (Bieb.) Godron | . . . | +.1 | . | . | +.1 | . . . | . | ! |
| **Thymus pannonicus** All. | . . . | 1.2 | . . . | 2.3 | . . . | . | ! |
| **Silene bupleuroides** L. | . . . | +.1 | . . . | +.1 | . . . | . | ! |
| **Agrimonia eupatoria** L. | . . . | +.1 | . . . | . . . | +.1 | . | ! |
| **Tragopogon pratensis** L. | . . . | +.1 | . . . | . . . | +.1 | . | ! |
| **Viola alba** Besser | . . . | . | 1.2 | +.1 | . . . | . | ! |
| **Polygonatum odoratum** (Miller) Druce | . . . | . | . | 1.1 | +.1 | . . . | . | ! |
| **Dactylis glomerata** L. | . . . | +.1 | 1.1 | . . . | . | ! |
| **Leontodon hispidus** L. | . . . | +.1 | +.1 | . . . | . | ! |
| **Crepina vulgaris** Cass. | . . . | . | 1.1 | . | +.1 | . . . | . | ! |
| **Fagus moesiaca** (K. Malý) Czech. | . . . | +.1 | . . . | +.1 | . . . | . | ! |
| **Achillea clypeolata** Sibth. & Sm. | . . . | +.1 | . . . | +.1 | . . . | . | ! |
| **Ptilostemon afer** (Jacq.) W. Greuter | . . . | +.1 | . . . | . . . | +.1 | . | ! |
| **Cleistogenes serotina** (L.) Keng | . . . | 1.1 | . . . | +.1 | . | ! |
| **Cichorium intybus** L. | . . . | +.1 | . . . | +.1 | . . . | . | ! |
| **Hieracium pilosella** L. | . . . | +.1 | . . . | +.1 | . . . | . | ! |
| **Geranium columbinum** L. | . . . | . | . | . | +.1 | +.1 | . | ! |
| **Trifolium dalmaticum** Vis. | . . . | . | . | . | 1.1 | 1.1 | . | ! |
| **Potentilla cinerea** Chaix ex Vill. | . . . | . | . | . | +.2 | +.2 | . | ! |
| **Sedum hispanicum** L. | +.2 | . . . | . | . | . | . | ! |
| **Dasypyrum villosum** (L.) P. Candargy | . | 1.1 | . . . | . . . | . | ! |
| **Tragus racemosus** (L) All. | . | +.2 | . . . | . | . . . | . | ! |
| **Rhinanthus rumelicus** Velen. | . | 2.2 | . . . | . | . . . | . | ! |
| **Verbascum thapsus** L. | . | 1.1 | . . . | . | . . . | . | ! |
| **Galium verum** L. | . | 1.1 | . . . | . | . . . | . | ! |
| **Xeranthemum cylindraceum** Sibth. & Sm. | . | 1.1 | . . . | . | . . . | . | ! |
| **Anthoxanthum odoratum** L. | . | +.2 | . . . | . | . . . | . | ! |
| **Carex humilis** Leysser | . | +.2 | . . . | . | . . . | . | ! |
| **Carex hallerana** Asso | . . . | . | +.2 | . . . | . | . | ! |
| **Crepis setosa** Haller | . . . | . | . | 1.1 | . . . | . | ! |
| **Fragaria viridis** Duchesne | . . . | . | . | . | 2.2 | . . . | . | ! |
| **Knautia integrifolia** (L.) Bertol. | . . . | . | . | . | . | 1.1 | . | ! |
| **Calamintha nepeta** (L.) Savi | . . . | . | . | . | . | +.2 | . | ! |
One plot with the value +.1 had the following species:

Plot 1: Coronilla scorpioides (L.) Koch, Medicago rigidula (L.) All., Valerianella locusta (L.) Laterrade, Crepis neglecta L., Cynosurus echinatus L., Euphorbia taurinensis All., Onobrychis montana DC., Carex sp.;

Plot 2: Marrubium peregrinum L., Verbena officinalis L., Verbascum vandasi (Rohlena) Rohlena, Crepis biennis L., Verbascum sinuatum L., Centaurea rhenana Boreau, Petrhoragia prolifera (L.) P. W. Ball & Heywood;

Plot 3: Thesium alpinum L., Centaurea scabiosa L., Elymus repens (L.) Gould, Digitalis furginea L., Stachys germonica L., Bupleurum affine Sadler, Poa pratensis L., Rumex crispus L., Potentilla argentea L., Myosotis arvensis (L.) Hill, Rhinanthus alectorolophus (Scop.) Pollich, Seseli peucedanoides (Bieb.) Kos.-Pol.;

Plot 4: Astragalus depressus L., Hypericum umbellatum A. Kerner, Sedum urvillei DC., Symphybium orientale L., Onosma visianii G. C. Clementi, Thlaspi kovatsii Heuffel, Dianthus petraeus Waldst. & Kit., Orchis tridentata Scop., Arabis alpina L., Arabis sagittata (Bertol.) DC., Viola arvensis Murray, Polygonum comosum Schkuhr, Arenaria serpillifolia L. subsp. serpillifolia;

Plot 5: Ranunculus illyricus L., Peucedanum austriacum (Jacq.) Koch, Brachypodium pinnatum (L.) Beauv., Vicia tenifolia Roth, Trifolium incarnatum L., Clinopodium vulgare L., Vincetoxicum hirundinaria Medicus, Gagea arvensis (Pers.) Dumort., Geum urbanum L., Anchusa officinalis L., Veronica austriaca L. subsp. austriaca, Muscari comosum (L.) Miller, Campanula bononiensis L., Seseli pallasii Besser, Acanthus balcanicus Heywood & I. B. K. Richardson;

Plot 6: Lactuca saligna L., Chrysopogon gryllus (L.) Trin.;

Plot 7: Carthamus lanatus L., Convolvulus arvensis L., Medicago prostrata Jacq., Allium cupani Rafin., Campanula trichocalycina Ten., Lathyrus cicera L., Euphorbia esula L., Logfia arvensis (L.) J. Holub, Cerastium pumilum Curtis, Trifolium arvense L., Cuscuta europaea L., Euphorbia helioscopia L., Lactuca viminea (L.) J. & C. Presl, Vulpia myuros (L.) C. C. Gmelin;

Plot 8: Medicago lupulina L.;

Plot 9: Allium flavum L., Asplenium ruta-muraria L., Cuscuta epithymum (L.) L;

Plot 10: Prunella laciniata (L.) L., Melica transsilvanica Schur, Thymus pulegioides L., Linum tenuifolium L., Lotus corniculatus L., Erigeron acer L., Silene vulgaris (Moench) Garcke, Silene noctiflora L.

Legend: degree of pr. - degree of presence

Thermophilic meadows of Galieto Festucetum vallesiacae type were recorded at the lowest altitudes of the sites Vučje (490 m) and Izvor (480 m) (Table 1), and they are very similar in species composition to the thermophilic meadows of the same name on the mountain of Ozren (Diklić, 1962) at similar low altitudes, whereas they are less similar to the thermophilic meadows of the same name on the mountain of Rtanj (Jovanić-Dunjić, 1956), where they were recorded at higher altitudes (800-1000 m).

The importance of Sanguisorbo-Festucetum vallesiacae at Basara site, Bromo Festucetum vallesiacae at Vučje, Crni vrh and Izvor sites and Galieto Festucetum vallesiacae at Vučje and Izvor sites as a source of livestock food reduces the presence of certain chamaephytic, aromatic, toxic and weed species, although these phytocoenoses are used for early spring grazing when the dominant and most abundant species Festuca valesiaca is still young.

Andropogono-Danthonietum calycinae was recorded at Vučje (490 m) and Izvor (480 m) (Table 1), and its floristic composition is similar to the plant community of the same name on Stara Planina (Mišić et al., 1978), to Danthonietum calycinae on Ozren Mountain (Diklić, 1962), where it was formerly used as agricultural land and to Asperuleto-Agrostidetum vulgaræ on Rtanj Mountain (Jovanović-Dunjić, 1956). The botanical and economic aspects of the association Danthonietum calycinae have been thoroughly described in western Serbia - on Rajac, Maljen, Suvobor and Divčibare mountains and in the area of Sjenica (Cincović, Kojić, 1962). Dichanthium ischaemum (L.) Robery is the dominant species of the community on Mt. Vidlič. This grass species tolerates livestock trampling, which makes it well-adapted to the prevailing pasture conditions. Its presence
reduces harmful effects of erosion. *Andropogono-Danthonietum calycinae* plant community on Stara Planina (Mišić et al., 197) and on Vidlič Mountain shows considerable similarities in its ecology and floristic composition with the an- droppogonoretum ischaemii subassociation of *Brometo-Chrysopogonetum grylli* in Šumadija (Kojić, 1959). In Šumadija, *Dichanthium ischaemum*-covered surfaces have scented grass (*Chrysopogon gryllus*) in high abundance and cover, while it isn’t the case on Stara Planina and Vidlič, where it occurs only in semi-open sites, with a stronger presence of *Bromus squarrosus* species.

Figure 1 shows the localities where phytosociological plots of thermophilic meadows and rocky grounds were taken on Mt.Vidlič.

The resulting phytosociological table (Table 1) shows dry grasslands and rocky grounds of Mt. Vidlič, at the altitudes ranging from 480 to 1100 m, with S, SE and W exposures and the terrain inclination of 5-40°. The number of species and subspecies is 46-66 per plot and the value of Simpson diversity index is in the range between 0.976 and 0.985. Ten plots comprise a total of 242 species and subspecies. One single plot comprises 86 species and subspecies, indicating great diversity.

There are numerous species of steppe, sub-Mediterranean and Mediterranean character on dry grasslands and rocky grounds of Mt. Vidlič. Adamović (1899) and Soó (1951) state the presence of the following sub-Mediterranean and Mediterranean species in warm habitats of dry grasslands and rocky grounds of Mt. Vidlič and other limestone terrains of southeastern Serbia: *Bromus squarrosus*, *Aethionema saxatile*, *Sideritis montana*, *Artemisia alba*, *Ptilostemon afer*, *Carthamus lanatus*, *Crupina vulgaris*, *Petrorphagia saxifraga*, *Veronica austriaca* subsp. *austriaca*, *Asperula cynanchica*, *Teucrium montanum*, *Asperula purpurea* and others.

Phytosociological classification of dry grassland and rocky ground vegetation based on its floristic composition is shown in Graph 1. According to environmental conditions, which are more or less homogeneous, the majority of plots (1-2, 6-10) proved to be similar. These are plots at low altitudes (635m) (Table 1), grouped in the right-hand part of Graph 1. They belong to the zone of oak forests. The central part of the graph comprises dry grasslands and rocky grounds in the zone of mesophilic forests, i.e. in the transitional zone between the oak and beech forests at an altitude of 635m (plots 7, 9, 8, 6, 10 and 3). Rocky grounds are especially notable in the zone of beech forests above 1000m a.s.l (plots 4 and 5). Altitude was the major factor in the classification of stands on rocky ground according to their similarity.

The largest number of species and in this respect the greatest diversity was found in plots 4 and 5 which are in the zone of beech forests, followed by the plots at somewhat lower altitudes in the transitional zone between the

![Diagram 1. Cluster analysis of dry grassland and rocky ground vegetation on Mt. Vidlič](image-url)
oak and beech forests (Table 2). The smallest number of species i.e. the smallest diversity was found in plots 1 and 2, which are located at the lowest altitudes of Mt. Vidlič in the zone of degraded thermophilic oak forest with hornbeam (Quercetum frainetto-cerris subass. Carpinetosum orientalis).

As seen in Figure 1 the stands located at higher altitudes (F) are segregated from all the other stands. The stands located at lower altitudes (A, B, C, D, E) make one group, although there is a clear distribution along the elevation gradients within the group.

The largest number of species and consequently the greatest diversity (Whitaker, 1972) was found in the dry grasslands and rocky grounds formed at the highest altitudes of Mt. Vidlič (above 1000 m), in the beech forest zone. They were followed by the plots at medium altitudes between the oak and beech forest belts. The smallest number of species and consequently the lowest diversity was found in the rocky ground vegetation at the lowest altitudes in the zone of hornbeam brushwood, which belongs to the zone of oak forests. In that sense, the diversity of the vegetation of open habitat types of the studied area increases with increasing altitude.

DISCUSSION

It is a general fact that diversity of dry grasslands and rocky grounds correlates with altitude. An increase in altitude increases vegetation diversity. According to Alard et al. (2005) the depth of soil and carbonate bedrock is in direct correlation with diversity, while soil fertility has direct effects on the stages of succession and species diversity. This fact can explain the highest level of vegetation diversity in the highest parts of the mountain, on eroded slopes with the increasing presence of chamaephytes. In their research studies, Fuhlendorf, Smiens (1998) point out that changes in soil conditions affect the dominance hierarchy between woody and herbaceous species. The density of herbaceous species may decline during succession with rival phanerophyte competitors (Brown, Archer, 1999). Better availability of nutrients at lower altitudes, which is related to soil depth and increased humidity, can explain the increasing number of shrub and woody plants compared to herbaceous individuals. This fact contributes to the decline in the index of diversity at lower altitudes.

Bearing in mind its marked steppe character, with the presence of numerous Pontic and sub-Mediterranean species, vegetation of dry grasslands and rocky grounds is important for several reasons. First of all, it has an important role in controlling erosion processes on steep slopes not only of Mt. Vidlič and in eastern and southeastern Serbia, but also in other parts of western Bulgaria, eastern Serbia and the central parts of the Balkan Peninsula.

Dry grasslands and rocky grounds of this region are characterized by high floristic diversity, with the presence of numerous endemic and rel-
ict steppe representatives: *Adonis vernalis, Paeonia tenuifolia, Ranunculus illyricus, Sternbergia colchiciflora,* and *Hyacinthella leucophaea.* The vegetation of dry grasslands and rocky grounds on limestone terrains of Mt. Vidlič plays a significant role in the preservation of these species and as such quite justly deserves some attention from the aspect of conservation.

CONCLUSIONS

Dry grasslands and rocky grounds of limestone terrain on Mt. Vidlič belong to *Festucion valesiacae* (class *Festuco-Brometea*) and *Seslerion rigidae* (class *Festuco-Seslerietea*) alliances. The largest areas under the specified type of vegetation occur on the south and southwest-facing slopes of the mountain, with shallow and dry soil. There are numerous species of steppe, sub-Mediterranean and Mediterranean distribution. Stand classification, which was carried out according to their floristic composition, showed that altitude was the major factor in grouping stands by similarity. The number of species *i.e.* diversity increases with an increasing altitude which is followed by an increase in the number (of endemic and relict steppe specimens. Dry grasslands and rocky grounds have an important role in the prevention of erosion processes. Due to its great diversity, this type of vegetation is used for livestock grazing.

In the absence of other sources of animal feed in the rural areas of the southern slopes, the described dry grasslands and rocky grounds of Mt. Vidlič are of outstanding economic importance for this region.

Based on these results, we can suggest that future studies of the structure, dynamics and diversity of dry grassland and rocky ground vegetation would be of great scientific and practical importance.

Acknowledgements: This research was conducted within the project of the Ministry of Education, Science and Technological Development of Republic of Serbia OI 171025, OI 173029 and TR 31070. We would like to express our sincere gratitude to dr Bojan Zlatković (Faculty of Sciences and mathematics, Niš) for his critical comments of the manuscript.

АЛИТЕРАТУРА / REFERENCES

Adamović L. (1899): *Die mediterranean Elemente der serbischen Flora,* „Botanische Jahrbücher für Systematic, Pflanzenwissenschaft und Pflanzengeographie“, ured. von A. Engler, Seibenzundwanzigster Band. I. u II. Heft. Verlag von Wilhelm Engelmann, Leipzig, (351-389)

Alard D., Chabrerie O., Dutoit T., Roche, P.D., Langlois, E. (2005): *Patterns of secondary succession in calcareous grasslands: can we distinguish the influence of former land uses from present vegetation data?* Basic and Applied Ecology 6(2) (161-173)

Braun-Blanquet J. (1964): *Pflanzensoziologie, Grundzüge der Vegetationskunde,* Springer Verlag, Berlin

Brown J.R., Archer S. (1999): *Shrub invasion of grassland: recruitment is continuous and not regulated by herbaceous biomass or density.* Ecology 80 (7) (2385-2396)

Cincović T., Kojić M. (1962): *O livadskoj asocijaciji Danthonietum calycinae u zapadnoj Srbiji,* Arhiv za poljoprivrede naucle 15, Ministarstvo poljoprivrede i šumarstva, Beograd (100-109)

Diklić N. (1962): *Prilog poznavanju šumskih i livadskih fitocenoza Ozrena, Device i Leskovika kod Sokobanje,* Glasnik Prirodnjačkog muzeja 18(B), Beograd (49-83)

Diklić N., Nikolić V. (1964): *O nekim zajednicama pašnjaka i livada na Svrliškim planinama,* Glasnik Prirodnjačkog muzeja 19(B), Beograd (65-88)

Fuhlendorf S.D., Smeins F.E. (1998): *The influence of soil depth on plant species response to grazing within a semi-arid savanna.* Plant Ecology 138 (1) (89–96)

Harrison S., Inouye B.D., Safford H.D. (2003): *Ecological heterogeneity in the effects of grazing and fire on grassland diversity.* Conservation Biology 17 (3) (837–845)

Hijmans R.J., Guarino L., Jarvis A., O’Brien R., Mathur P. (2005): *DIVA-GIS version 5.4.0.1.* from http://www.diva-gis.org/

Josifović M. (ed.) (1970-1986): *Flora SR Srbije I-X,* SANU, Beograd
Jovanović-Dunjić R. (1955): *Tipovi pašnjaka i livada Suve planine*, „Zbornik radova Instituta za ekologiju i biogeografiju“, ured. Stanković S., SANU, 6 (1), Beograd, (3-104)

Jovanović-Dunjić R. (1956): *Tipovi pašnjaka i livada na Rtnju*, „Zbornik radova Instituta za ekologiju i biogeografiju“, ured. Stanković S., SANU, 6 (2), Beograd, (3-45)

Karađžić B., Marinković S. (2009): *Kvantitativna ekologija*, Institut za biološka istraživanja „Siniša Stanković“, Beograd

Kojić М. (1959): *Zastupljenost, uloga i značaj đipovine (Chrysopogon gryllus Trin) u livadskim fitocenozama Zapadne Srbije*, Arhiv za poljoprivredne nauke 12 (37), Beograd (75-118)

Marković A. (1982): *Prilog proučavanju fragmenta stepske vegetacije u centralnoj i zapadnoj Srbiji*, VI kongres biologa u Jugoslaviji, septembar 1982, Izvodi saopštenja C 41, Novi Sad, (7-11)

Marković A. (2007): *Stepske fitocenoze u Šumadiji*, Univerzitet u Kragujevcu, Prirodno matematički fakultet, Kragujevac

Marković M., Pavlović-Muratspahić D., Matović M., Marković A., Stankov-Jovanović V. (2009): *Aromatic flora of the Vidlič Mountain*. Biotechnology and biotechnological equipment 23 (2) (1225-1229)

Marković M., Matović M., Pavlović D., Zlatković B., Marković A., Jotić B, Stankov-Jovanović V. (2010): *Resources of medicinal plants and herbs collector’s calendar of Pirot County (Serbia)*. Biologica nyssana 1 (1-2), University of Niš, Faculty of Sciences and Mathematics, Niš (9-21)

Mišić V., Jovanović-Dunjić R., Popović M., Borisavljević Lj., Antić M, Dinić A., Danon J., Blaženčić Ž. (1978): *Biljne zajednice i staništa Stare planine*, ured. Belić, J. SANU, 49, Beograd, (1-489)

Poschlod P., WallisDeVries F.M. (2002): *The historical and socioeconomic perspective of calcareous grasslands - lessons from the distant and recent past*. Biological Conservation 104 (3) (361-376)

Schrautzer J., Jansen D., Breuer M., Nelle O. (2009): *Succession and management of calcareous dry grasslands in the Northern Franconian Jura*. Tuexenia 29 (339-351)

Soó R. (1951): *Les associations vegetales de la moyenne Transylvanie*, Annales historico-matériaux musei nations Hungarici, Budapest (1-72)

StatSoft. Inc (2007): *STATISTICA* (data analysis software system), version 8.0.

Tutin T.G., Heywood W.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. (Eds) (1964-1980): *Flora Europaea, I-V*. Cambridge University Press, London

Tutin T.G., Burges N.A., Chater O.A., Edmondson J.R., Heywood V.H., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. (1993): (Eds.). *Flora Europaea 1* (2nd Edition). Cambridge University Press, London

Велчев В. (ед.) (1982-1989): *Флора на Народна република България*, т. I-X, Българската Академия на Науките, София

Westhoff V., Van der Maarel E. (1973): *The Braun-Blanquet approach. Ordination and classification of communities*, „Handbook of Vegetation Science 5“, ured. Whitaker R.H., Junk, The Hague, (617-726)

Whitaker R.H. (1972): *Evolution and measurement of species diversity*, Taxon 21 (2/3) (213-251)