Supporting Information for
The Monetite Structure Probed by Advanced Solid-State NMR Experimentation at Fast Magic-Angle Spinning

Yang Yu¹, Baltzar Stevensson¹, Michael Pujari-Palmer², Hua Guo¹, Håkan Engqvist², and Mattias Edén¹,*

¹Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
²Applied Material Science, Department of Engineering, Uppsala University, SE-751 21 Uppsala, Sweden

*Corresponding author. E-mail: mattias.eden@mmk.su.se

Figure S1. Deconvoluted (a) 31P and (b) 1H MAS NMR spectra (obtained at $\nu_r = 66$ kHz for 1H). The experimental NMR spectra (black traces) are shown together with the best-fit result (red traces), as well as the component NMR peaks (grey traces). The curve beneath each NMR spectrum represents the difference between the experiment and best-fit. Note that each 31P resonance (grey traces) from the respective P1 and P2 sites in (a) represents the sum of two signals: one narrow (fitted with the constraint FWHM<1.5 ppm) and one broad (FWHM<4.2 ppm) NMR peak, which were necessary to invoke to emulate the structural disorder of the monetite structure. We refer to refs. [S1] and [S2] for details about the deconvolution procedure. Each of the three 1H NMR resonances from the 1H1, 1H2, and 1H3 sites in (b) were accounted for by one peak.

References

[S1] Yu, Y.; Guo, H.; Pujari-Palmer, M.; Stevensson, B.; Grins, J.; Engqvist, H.; Edén, M. Advanced Solid-State 1H/31P NMR Characterization of Pyrophosphate-Doped Calcium Phosphate Cements for Biomedical Applications: The Structural Role of Pyrophosphate. Ceram. Int. 2019, 45, 20642–20655.

[S2] Guo, H.; Pujari-Palmer, M.; Yu, Y.; Stevensson, B.; Engqvist, H.; Edén, M. Quantitative Phase Analyses of Pyrophosphate-Bearing Monetite and Brushite Biocements by Solid-State NMR and Powder XRD. Ceram. Int. 2019, submitted.