Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate.

Index Terms— seq2seq, attention, HMMs, duration modelling, acoustic modelling

1. INTRODUCTION

Text-to-speech (TTS) technology has advanced tremendously in the last decade, and output speech quality has seen a number of step changes as the field evolved. Statistical parametric speech synthesis (SPSS) based on hidden Markov models (HMMs) [1], has now largely been supplanted by neural TTS [2]. Waveform-level deep learning greatly improved segmental quality over signal-processing based vocoders, while sequence-to-sequence models with attention, e.g., [3], demonstrated greatly improved prosody. Combined, as in Tacotron 2 [4], these innovations produce synthetic speech whose naturalness sometimes rivals that of recorded speech.

However, not all aspects of TTS systems have improved along the way. The integration of deep learning with positional features into HMM-based TTS increased naturalness [5], but sacrificed the ability to learn to speak and align simultaneously, instead requiring an external forced aligner. Attention-based neural TTS systems [3] reintroduced the ability to learn to align, but are not grounded in probability and require more data and time to start speaking. Furthermore, their non-monotonic attention mechanisms do not enforce alignment during TTS training. In a model like Tacotron, positional and durational features violate the Markov assumption (e.g., [10]) to promote continuity across time. However, positional and durational features violate the Markov assumption (e.g., they depend on the time spent in the current state), preventing realignment during TTS training. In a model like Tacotron, positional information is instead mediated and continuity enforced by autoregression. Since this only involves dependencies on observed vari-

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

2. BACKGROUND

The starting point of this work is [6], which identified four key differences between HMM-based SPSS and sequence-to-sequence attention-based TTS that had a notable impact on output quality:

1. Neural vocoder with mel-spectrogram inputs
2. Learned front-end (the encoder)
3. Acoustic feedback (autoregression)
4. Attention instead of HMM-based alignment

Among these, items 1–3 led to improved speech quality, whereas attention sometimes made the output significantly worse. This paper incorporates aspects 1–3 into a TTS system that leverages neural HMMs [7, 8] rather than attention for sequence-to-sequence modelling. Sec. 2.1, below, describes how to add aspects 1–3 to HMMs based on prior work, with attention (aspect 4) discussed in Sec. 2.2.

2.1. Adding neural TTS aspects to HMM-based TTS

For aspect 1, high-quality neural vocoders are now available off the shelf. Furthermore, most of these use spectral features as input. This helps avoid flat intonation caused by explicit averaging over pitch contours, commonly seen in systems that use a separate f0 feature to parameterise speech [6]. However, nothing prevents HMM-based TTS from using mel-spectrogram features and neural vocoders: this is just a straightforward change of acoustic features, and the HMM-based approach described in this paper uses this setup.

Another factor in the improved prosody is item 2, the learned front-end (i.e., the encoder). Again, there is nothing that prevents using this idea in a system that leverages HMMs. The HMM-based systems we introduce all use the same encoder architecture as Tacotron 2 [4] with no additional linguistic features added.

The situation for item 3, autoregression (AR), is again similar, in that AR and HMMs are not mutually exclusive. Acoustic models in HMM-based TTS systems benefit from using positional and durational information [9, 5], that increases granularity by enabling the statistics of each generated frame to be different, together with dynamic features [10] to promote continuity across time. However, positional and durational features violate the Markov assumption (e.g., they depend on the time spent in the current state), preventing realignment during TTS training. In a model like Tacotron, positional information is instead mediated and continuity enforced by autoregression. Since this only involves dependencies on observed vari-
ables, it is possible to devise autoregressive models that do not violate the Markov assumption, and linear autoregressive HMMs (AR-HMMs) [11] have previously been explored in HMM-based SPSS [12, 13, 14]. In this paper, we describe HMMs that, like Tacotron, use stronger, nonlinear AR models defined by a neural network.

2.2. Attention in TTS

In a typical sequence-to-sequence based TTS system, the attention mechanism is responsible for duration modelling and for learning to align input symbols with output frames during training. Watts et al. [6] found that the use of neural attention did not necessarily benefit TTS, and more suitable TTS attention mechanisms have recently been a focus of intense research. Only some of the relevant work can be surveyed here; please see [2] for additional references. He et al. [15] emphasised that TTS alignments should be local (each output frame is associated with a single input symbol), monotonic (never move backwards), and complete (not skip any speech sounds). HMMs are local by design, while the two other concepts map directly onto the classes of left-right and no-skip HMMs. Most neural TTS attention mechanisms do not satisfy these requirements [15, 2].

Many systems that do satisfy all three criteria rely on external tools for input-output alignment to obtain duration data (see [2] for a list), and do not jointly learn to speak and align, unlike regular HMMs or Tacotron 1/2. However, some proposals do learn to speak and align without external tools, mostly (e.g., [16, 17, 18, 19, 20, 21, 22]) by introducing duration models into neural TTS, which will be our focus here. Many of these models only optimise a lower bound on the sequence likelihood, either due to the use of variational methods (e.g., Non-Attentive Tacotron [19] and the VQ-VAEs in [20]) or by not marginalising over all possible alignments (Glow-TTS [18]). By using a mean squared error (MSE) duration loss, Glow-TTS also violates probabilistic assumptions. Our proposal avoids these issues.

AlignTTS [17] is more similar to an HMM and uses a variant of the HMM forward recursions [11], but requires a complex, four-stage training procedure that culminates in training a separate, non-probabilistic duration predictor that is used at synthesis time. AlignTTS is also parallel, while our proposal is autoregressive.

The constant-per-state transition probability of regular HMMs implicitly describes a geometric duration distribution, which is a poor fit for natural speech [23, 24]. A solution to this in SPSS was to introduce explicit duration modelling through hidden semi-Markov models (HSMMs) [23]. These sacrifice the Markovian property to describe more general duration distributions, by letting transition probabilities depend on the time spent in the current state. Independent work [21, 22] concurrent to ours proposes to integrate HSMMs into neural TTS, obtaining better results than Tacotron 2, but uses a variational approximation and again assumes a Gaussian distribution for the positive-integer frame durations. In contrast, [24] described how arbitrary discrete duration distributions can be parameterised implicitly via frame-dependent transition probabilities, and then predicted jointly with output frames in a single, joint model of durations and acoustics. This paper combines this idea with autoregression acting as an indirect, “acoustic memory” of the time spent in a state, to obtain a fully probabilistic model with general discrete durations, that can be trained efficiently on the exact log-likelihood.

The most similar work to ours is SSNT-TTS [16], which essentially describes a neural HMM for TTS, albeit under another name. We differ in applying an HMM perspective to the approach, in integrating more SPSS ideas to improve our system, in using a different duration-generation method, in demonstrating control over speaking rate, and in reporting better TTS quality, on par with Tacotron 2.

3. METHOD

We now (in Sec. 3.1 and Fig 1) describe the key modifications used to put HMMs into neural TTS such as Tacotron 2. Sec. 3.2 then describes how ideas and implementation aspects from classic HMM-based TTS can be adapted to further improve neural HMM TTS.

3.1. Replacing attention with neural HMMs

The location-sensitive attention [25] used by Tacotron 2 is a function that uses information from previously generated acoustic frames \(x_{1:t−1} \) to select which encoder output vector(s) \(h_n\) to send to the decoder, to generate the next frame \(x_t\). We use a complex, vector-valued function that depends on the time spent in the current state. Independently, \(T_{\text{att}}\) described a neural HMM for TTS, albeit under another name. This paper combines this idea with autoregression acting as an indirect, “acoustic memory” of the time spent in a state, to obtain a fully probabilistic model with general discrete durations, that can be trained efficiently on the exact log-likelihood.

The most similar work to ours is SSNT-TTS [16], which essentially describes a neural HMM for TTS, albeit under another name. We differ in applying an HMM perspective to the approach, in integrating more SPSS ideas to improve our system, in using a different duration-generation method, in demonstrating control over speaking rate, and in reporting better TTS quality, on par with Tacotron 2.
changing its LSTM layer to a feedforward layer, since an LSTM would propagate a dependence on past hidden states. This change also substantially reduces the number of parameters in the model.

Finally, the full Tacotron 2 architecture contains a non-causal convolutional post-net that enhances the initial AR-generated mel-spectrogram in a residual setup. This resembles post-filtering and global variance compensation [26] in classic SPSS. Tacotron 2 training minimises the sum of the MSEs before and after the post-net. However, the non-invertibility of the Tacotron post-net makes it incompatible with likelihood-based models like ours. A post-net can be added, but must either be trained separately, or be invertible like in [18]. We leave this as future work, and instead evaluate our proposal against Tacotron 2 output from both before and after the post-net.

3.2. Practical considerations

Numerical stability: When working with HMMs, it is crucial for numerical precision to perform all computations in the logarithmic domain using the “log-sum-exp trick”. Since zeroes in these computations map to \(\ln 0 = -\infty \) in the log domain, care must be taken to avoid NaN gradients in deep-learning frameworks like PyTorch.

Like classic HMM-based TTS [1], we chose to use diagonal-covariance Gaussian emission distributions \(o(\mu, \sigma) \) in this work. We also used softplus (not exponential) nonlinearities for \(\sigma \), with a non-zero minimum value (“variance flooring”), here clamped at 0.001, since this has been important in other generative models.

Architecture enhancements: Tacotron 2 can represent intermediate states using soft attention, since the \(\alpha_{t,n} \)-values have many degrees of freedom. Major HMM-based synthesisers instead use 5 sub-states per input phone and run at 200 fps [1, 9]. Tacotron 2 runs at 80 fps, i.e., 40% of the framerate, hence we use 2 states per phone to get the same time resolution as these HMMs. This is implemented by doubling the size of the decoder output layer and interpreting its output as two concatenated state vectors \(h \) for each phone.

Classic HMM-based TTS includes a model of the dependencies between several adjacent frames to promote temporally smooth output [1, 12, 9]. Although Tacotron 2 and the neural HMMs in this article only take the latest frame \(x_{t-1} \) as AR input, the LSTM in Eq. (1) means they can remember information arbitrarily far back, which is beneficial for modelling utterance-level prosody. We also treat \(x_0 \), the initial AR context (the “go token”), as a learnable parameter.

Initialisation: HMMs are often initialised using a flat start, in which all states have the same statistics [27]. By zeroing out all weights in the decoder output layer but initialising other layers as normal, all states will have the same output (zero), but different and nonzero gradients, thus enabling learning [28]. The last-layer bias values were chosen so that \(\mu = 0 \) and \(\sigma = 1 \) for every state at the start of training, to match the global statistics of our normalised data.

Training: Neural HMM training [7] is a hybrid of old and new: We use the classic (scaled) forward algorithm [11] to compute the exact sequence log-likelihood, but then leverage backpropagation and automatic differentiation to optimise it using Adam. These parts correspond to the E step and the M step of the (generalised) EM algorithm [29], respectively. Computations during training parallelise over the states but, like Tacotron 2, are sequential across time due to the temporal recurrences.

Maximum-likelihood estimation of linear AR-HMMs can lead to unstable models [13, 12]. A similar problem exists for non-linear, autoregressive neural TTS [2]. Tacotron 2 works around this by adding dropout to the pre-net, and we retain that solution here.

Synthesis: We can iteratively use the equations in Sec. 3.1 and randomly sample new frames \(x_t \sim o(\theta_t) \). However, HMM-based TTS generally benefits from deterministically generating typical output rather than random sampling [30, 31]. For acoustics, this is done by generating the most probable output sequence [10], which is the same as the mean \(\mu_t \) when \(o(\theta_t) \) is Gaussian. By iteratively taking \(x_t = \mu_t \) (red arrow in Fig. 1b), we obtain a greedy approximation of [10]. This is closely related to Tacotron 2 output generation, since it is trained using the MSE, which is minimised by the mean \(E[X_t] \).

SSNT-TTS found that randomly sampling transitions led to poor pause durations when synthesising [16], and classic HMM-based systems typically base the time in each state on the mean duration of the state [23]. This mean is difficult to compute with duration distributions implicitly defined through transition probabilities \(\tau_t \), as here. We instead use the simple algorithm from [24, 32] for deterministic duration generation based on duration quantiles (e.g., the median rather than the mean). A quantile threshold controls speaking rate, which can be adjusted on a per-state basis, unlike [33]. For the models evaluated in this paper, informal listening showed that deterministic generation of acoustics and durations both led to clear quality improvements; examples are provided on the webpage.

4. EXPERIMENTS

To validate our proposal and show that neural HMMs provide notable advantages over attention in neural TTS, we performed a number of experiments (including a subjective listening test) comparing TTS using neural HMMs to a maximally similar Tacotron 2 [4] system. Synthetic speech examples from the different experiments can
We based our systems on the widely used PyTorch open-source Nvidia implementation\(^1\) of Tacotron 2. The systems were trained on the LJ Speech dataset\(^2\), which contains utterances (normalised text and matching audio) adapted from free audiobooks read by a female speaker of US English. We used the default train/val/test split in the repository, which designates about 23 h of audio for training. We likewise used the default text-processing, including the pronouncing dictionary (CMUdict), since this generally benefits neural TTS [34].

Output features were normalised to zero mean and unit variance over the training data, and waveforms were generated using the default, pre-trained v5 "universal" WaveGlow [35] vocoder.\(^3\)

We trained three systems: one Tacotron 2 baseline (T2) and two neural HMM systems, with either two (NH2) or one (NH1) state per phone. We expect NH2 to perform the best, with NH1 functioning as an ablation. All systems used the same architecture and hyperparameters (layer widths, learning rates, etc.) as the repository defaults, except that the size of the decoder output vectors was doubled to 1024 in the two-state system, since the decoder output now represents two concatenated state vectors. From the single Tacotron 2 baseline system, we synthesised two outputs: T2−P, using the full mel-spectrogram output after the post-net, and T2−P, using the initial mel-spectrogram prior to post-net enhancement, which is directly comparable to our neural HMMs. Model sizes for the different setups are listed in Table 1. We see that both neural HMMs are significantly smaller than Tacotron 2, even if the post-net is removed.

Each system was trained for 30k mixed-precision updates on 7 GPUs using a batch size of 6. It took approximately 14.5k updates for T2 to learn to speak coherently, whereas NH2 was intelligible after 1k updates. Fig. 2 graphs how the Google ASR word error rate (WER) of synthesising the 100 validation utterances evolves during training, including results from training on a small subset (500 utterances) of the data. Audio of speech synthesised during training is also provided on our demo webpage. We see that NH2 rapidly learns to speak intelligibly in both cases, much faster than Tacotron 2, which does not learn to speak at all on the smaller dataset. Even after the WER stabilised, we could consistently reproduce the effect where Tacotron 2 (including the best pre-trained system made available by Nvidia) degenerates into unintelligible babbling on long and short sentences, with examples provided on our webpage.

Tacotron 2 applies pre-net dropout both during training and synthesis [4], otherwise attention breaks down. Our neural HMMs retained this dropout, since it improved the speech quality in informal listening. Audio synthesised without it is provided on our webpage.

The distribution of phone durations in natural speech is skewed to the right. The median of a skewed distribution lies between the mode and the mean, and median-based duration generation therefore often gives a faster-than-average speaking rate; cf. [31]. Following the proposal in [32], the transition threshold of the deterministic duration-generation procedure was manually tuned to make the speaking rate of the NH systems match T2. The resulting threshold-quantile values were 0.57 for NH2 and 0.45 for NH1. Our webpage provides examples of speech generated with different threshold quantities, to demonstrate speaking-rate control at synthesis time.

We conducted a subjective listening test to evaluate speech naturalness for the four conditions in Table 1. In the test, participants were presented with four parallel stimuli at a time, one from each condition (unlabelled and in random order), all speaking the same sentence. Participants were asked to rate the naturalness of each stimulus on an integer scale from 1 (worst) to 5 (best), anchored using the classic MOS labels “Bad” through “Excellent”. Stimuli were drawn from a pool of 9 sets of Harvard sentences [36], which are sets of 10 sentences each, designed so that each set is approximately phonetically balanced. All stimuli were loudness normalised to ~20 dB LUFS following EBU R128 [37]. We manually verified that no T2 stimuli exhibited babbling due to failed attention.

We used Prolific to recruit 30 test participants ages 21 through 70, all self-reported headphone-wearing native English speakers from UK, Ireland, USA, Canada, Australia, and New Zealand. Each participant rated 3 randomly selected sets of 10 Harvard sentences, giving a grand total of 3600 ratings, 900 per condition. A completed test took on average 17 minutes and was rewarded with 3.50 GBP.

The mean opinion scores (MOS) from the test are reported in Table 1, together with 95% confidence intervals based on a Gaussian approximation. Pairwise t-tests find all conditions to be significantly different (with \(p<10^{-3}\)) except NH2 and T2−P \((p>0.98)\), whose respective mean opinion scores differ by less than 0.002 before rounding. We can conclude that the proposed neural HMM TTS (NH2), despite being simpler and lighter, achieved a naturalness on par with the most comparable Tacotron 2 condition (T2−P). This was not achieved by SSNT-TTS [16]. Neural HMMs were found to benefit from using two states per phone (NH2 vs. NH1), whilst Tacotron 2 improved from the use of a post-net (T2−P vs. T2−P).

5. CONCLUSION AND FUTURE WORK

We have described how classical and contemporary TTS paradigms can be combined to obtain fully probabilistic, attention-free sequence-to-sequence TTS based on neural HMMs. Our example system is smaller than Tacotron 2; yet achieves comparable naturalness, learns to speak and align faster, needs less data, and does not babble. To our knowledge, this is the first time an HMM-based system demonstrates a speech quality matching prior neural TTS. The neural HMMs also permit easy control over the speaking rate of the synthetic speech.

Future work includes stronger network architectures, e.g., based on transformers and with a separately trained post-net. It also seems compelling to combine neural HMMs with powerful distribution families such as normalising flows, either replacing the Gaussian assumption (as done for non-neural HMMs in [38]) or as a probabilistic post-net like in [18]. This may allow the naturalness of sampled speech to surpass that of deterministic output generation.

Table 1: Models from the experiments, with number of parameters and mean opinion scores (with 95% confidence intervals) for each.

Type	Condition	Tacotron 2	Neural HMM	
	T2+P	T2−P	NH2	NH1
Size	28.2M	23.8M	15.3M	12.7M
MOS	3.41±0.01	3.25±0.01	3.24±0.01	2.68±0.01

1. https://github.com/NVIDIA/tacotron2/
2. https://keithito.com/LJ-Speech-Dataset/
3. https://github.com/NVIDIA/waveglow/
6. REFERENCES

[1] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,” *Speech Commun.*, vol. 51, no. 11, 2009.

[2] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A survey on neural speech synthesis,” *arXiv preprint arXiv:2106.15561*, 2021.

[3] Y. Wang, RJ Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, et al., “Tacotron: Towards end-to-end speech synthesis,” in *Proc. Interspeech*, 2017.

[4] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, et al., “Natural TTS synthesis by conditioning WaveNet on mel spectrogram predictions,” in *Proc. ICASSP*, 2018.

[5] O. Watts, G. E. Henter, T. Merritt, Z. Wu, and S. King, “From HMMs to DNNs: where do the improvements come from?,” in *Proc. ICASSP*, 2016.

[6] O. Watts, G. E. Henter, J. Fong, and C. Valentini-Botinhao, “Where do the improvements come from in sequence-to-sequence neural TTS?,” in *Proc. SSW*, 2019.

[7] K. M. Tran, Y. Bisk, A. Vaswani, D. Marcu, and K. Knight, “Unsupervised neural hidden Markov models,” in *Proc. Workshop on Structured Prediction for NLP*, 2016.

[8] L. Yu, J. Buys, and P. Blunsom, “Online segment to segment neural transduction,” in *Proc. EMNLP*, 2016.

[9] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural network speech synthesis system,” in *Proc. SSW*, 2016.

[10] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech parameter generation algorithms for HMM-based speech synthesis,” in *Proc. ICASSP*, 2000.

[11] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” *Proc. IEEE*, vol. 77, no. 2, 1989.

[12] M. Shannon, H. Zen, and W. Byrne, “Autoregressive models for statistical parametric speech synthesis,” *IEEE T. Audio Speech*, vol. 21, no. 3, 2013.

[13] C. Quillen, “Autoregressive HMM speech synthesis,” in *Proc. ICASSP*, 2012.

[14] X. Wang, S. Takaki, and J. Yamagishi. “An autoregressive recurrent mixture density network for parametric speech synthesis,” in *Proc. ICASSP*, 2017.

[15] M. He, Y. Deng, and L. He, “Robust sequence-to-sequence acoustic modeling with stepwise monotonic attention for neutral TTS,” *Proc. Interspeech*, 2019.

[16] Y. Yasuda, X. Wang, and J. Yamagishi, “Initial investigation of encoder-decoder end-to-end TTS using marginalization of monotonic hard alignments,” in *Proc. SSW*, 2019.

[17] Z. Zeng, J. Wang, N. Cheng, T. Xia, and J. Xiao, “AlignTTS: Efficient feed-forward text-to-speech system without explicit alignment,” in *Proc. ICASSP*, 2020.

[18] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-TTS: A generative flow for text-to-speech via monotonic alignment search,” in *Proc. NeurIPS*, 2020.

[19] J. Shen, Y. Jia, M. Chrzansowski, Y. Zhang, I. Elias, H. Zen, et al., “Non-Attentive Tacotron: Robust and controllable neural TTS synthesis including unsupervised duration modeling,” *arXiv preprint arXiv:2010.04301*, 2020.

[20] Y. Yasuda, X. Wang, and J. Yamagishi, “End-to-end text-to-speech using latent duration based on VQ-VAE,” in *Proc. ICASSP*, 2021.

[21] Y. Nankaku, K. Sumiya, T. Yoshimura, S. Takaki, K. Hashimoto, K. Oura, et al., “Neural sequence-to-sequence speech synthesis using a hidden semi-Markov model based structured attention mechanism,” *arXiv preprint arXiv:2108.13985*, 2021.

[22] T. Fujimoto, K. Hashimoto, Y. Nankaku, and K. Tokuda, “Autoregressive variational autoencoder with a hidden semi-Markov model-based structured attention for speech synthesis,” in *Proc. ICASSP*, 2022.

[23] H. Zen, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Hidden semi-Markov model based speech synthesis,” in *Proc. SLIP*, 2004.

[24] S. Ronanki, O. Watts, S. King, and G. E. Henter, “Median-based generation of synthetic speech durations using a non-parametric approach,” in *Proc. SLT*, 2016.

[25] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech recognition,” in *Proc. NIPS*, 2015.

[26] T. Toda and K. Tokuda, “A speech parameter generation algorithm considering global variance for HMM-based speech synthesis,” *IEICE T. Inf. Syst.*, vol. 90, no. 5, 2007.

[27] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, et al., *The HTK Book (for HTK Version 3.2)*, 2002.

[28] H. Zhang, Y. N. Dauphin, and T. Ma, “Fixup initialization: Residual learning without normalization,” in *Proc. ICLR*, 2019.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” *J. Roy. Stat. Soc. B*, vol. 39, no. 1, 1977.

[30] G. E. Henter, T. Merritt, M. Shannon, C. Mayo, and S. King, “Measuring the perceptual effects of modelling assumptions in speech synthesis using stimuli constructed from repeated natural speech,” in *Proc. Interspeech*, 2014.

[31] G. E. Henter, S. Ronanki, O. Watts, M. Wester, Z. Wu, and S. King, “Robust TTS duration modelling using DNNs,” in *Proc. ICASSP*, 2016.

[32] G. E. Henter, S. Ronanki, O. Watts, and S. King, “Non-parametric duration modelling for speech synthesis with a joint model of acoustics and duration,” *IEICE Tech. Rep.*, vol. 17, no. 3, 1969.

[33] J.-S. Bae, H. Bae, Y.-S. Joo, J. Lee, G.-H. Lee, and H.-Y. Cho, “Speaking speed control of end-to-end speech synthesis using sentence-level conditioning,” in *Proc. Interspeech*, 2020.

[34] J. Fong, J. Taylor, K. Richmond, and S. King, “A comparison between letters and phones as input to sequence-to-sequence models for speech synthesis,” in *Proc. SSW*, 2019.

[35] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A flow-based generative network for speech synthesis,” in *Proc. ICASSP*, 2019.

[36] IEEE, “IEEE recommended practice for speech quality measurements,” *IEEE T. Acoust. Speech Signal Process.*, vol. 17, no. 3, 1969.

[37] EBU, “Loudness normalisation and permitted maximum level of audio signals,” EBU Recommendation EBU R 128 v4, 2020.

[38] A. Ghosh, A. Honoré, D. Liu, G. E. Henter, and S. Chatterjee, “Normalizing flow based hidden Markov models for classification of speech phones with explainability,” *arXiv preprint arXiv:2107.00730*, 2021.