Cascade approach to current fluctuations in a chaotic cavity

K. E. Nagaev1,2, P. Samuelsson2, and S. Pilgram2

1Institute of Radioengineering and Electronics, Russian Academy of Sciences, Mokhovaya ulica 11, 101999 Moscow, Russia
2Département de Physique Théorique, Université de Genève, CH-1211, Genève 4, Switzerland

We propose a simple semiclassical method for calculating higher-order cumulants of current in multichannel mesoscopic conductors. To demonstrate its efficiency, we calculate the third and fourth cumulants of current for a chaotic cavity with multichannel leads of arbitrary transparency and compare the results with ensemble-averaged quantum-mechanical quantities. We also explain the discrepancy between the quantum-mechanical results and previous semiclassical calculations.

I. INTRODUCTION

In the last decade, there has been a large interest in current correlations in mesoscopic conductors. Recently, also higher cumulants of current have received a significant attention of theorists. In a series of papers, a scattering approach to the distribution of charge transmitted through an arbitrary multi-terminal, multi-mode mesoscopic conductor, i.e. the so-called full counting statistics has been developed. As was shown in Ref.1, the ensemble-averaged cumulants of arbitrary order can be calculated for any two-terminal conductor where the distribution of the transmission eigenvalues is known, e.g. for diffusive wires, chaotic cavities, or combinations of different conductors.

Recently, Nazarov11 presented a method for calculating the full counting statistics of charge transfer in conductors with a large number of quantum channels based on equations for the semiclassical Keldysh Green’s functions. Subsequently, this method was extended2 to multiterminal systems. Also, other approaches to higher cumulants, such as the nonlinear sigma model3 or combinations of different conductors, have been proposed.

Common to all approaches4,5,6,7,8 is that they are based on a quantum mechanical formulation. To obtain the cumulants for semiclassical systems, i.e. systems much larger than the Fermi wavelength, an ensemble average is performed and the number of transport modes is set to infinity, i.e. single-mode weak-localization-like corrections are neglected. Therefore it is of interest to have a completely semiclassical theory for the higher cumulants, which does not involve any quantum-mechanical quantities.

A step in this direction was made by de Jong9, who calculated the distribution of charge transmitted through a double-barrier tunnel junction by applying a master equation to the transport in each completely independent transverse quantum channel. The results were in agreement with the quantum-mechanical theory in the limit of large channel number.

An attempt to construct a fully semiclassical theory of higher cumulants of current in a chaotic cavity was made by Blanter, Schomerus, and Beenakker10 based on the principle of minimal correlations.11 According to this principle, the fluctuations of the semiclassical distribution function of electrons in the cavity and the fluctuations of outgoing currents are related only through the condition of electron-number conservation, which is equivalent to the dephasing-voltage-probe approach12 in quantum mechanics. However an attempt to extend the minimal-correlation approach to the fourth cumulant has led to a discrepancy with quantum-mechanical results,13 which highly surprised the authors.

Meanwhile the correlations imposed by the particle-number conservation are not the only possible ones in semiclassics. Quite recently the semiclassical Boltzmann–Langevin approach14 has been extended to higher cumulants.15 This extension takes into account the effect of lower cumulants on higher cumulants through the fluctuations of the distribution function and therefore it was termed cascade approach. Its equivalence with quantum-mechanical results16 has been proven for diffusive metallic conductors.17 In this paper, we show that the cascade approach is not restricted to diffusive metals or to conductors where the scattering is described by a collision integral, but it may be also applied to other systems that allow a semiclassical description, e.g. to chaotic cavities. To this end, we semiclassically calculate the third and fourth cumulants of current in a chaotic cavity taking into account cascade correlations and show that these values coincide with ensemble-averaged quantum-mechanical results.

The paper is organized as follows. In Section II we describe the model of chaotic cavity to be considered. The minimal-correlation results for the second cumulant of current are presented in Section III. In Section IV we

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{chaotic_cavity.png}
\caption{A chaotic cavity with imperfect leads}
\end{figure}

calculate the third and fourth cumulants of current by means of the cascade approach. In Section III, the third cumulant of current is calculated by means of the quantum-mechanical circuit theory and its equivalence with the cascade results is shown. Section IV presents a conclusion where the results are summarized.

II. THE MODEL

Consider a chaotic cavity with two contacts of arbitrary transparency. The left contact has \(N_L \gg 1 \) channels and transparency \(\Gamma_L \), and the right contact has \(N_R \) channels and a transparency \(\Gamma_R \). The conductances of the leads \(G_L = (e^2/\pi\hbar)N_L\Gamma_L \) and \(G_R = (e^2/\pi\hbar)N_R\Gamma_R \) are also assumed to be much larger than \(e^2/\hbar \), and the total conductance of the system is that of two resistors connected in series:

\[
G = \frac{G_L G_R}{G_L + G_R}.
\]

Because of strong chaotic scattering in the cavity, the electrons entering the cavity lose the memory of their phase on the time scale of the order of the time of flight through the cavity yet retain their energy. Therefore despite the quantum nature of the contacts, the cavity is a semiclassical object in the sense that the electrons inside it may be described by a semiclassical distribution function that depends only on the electron energy. Its average value is given by an expression:

\[
f(\varepsilon) = \frac{G_L f_L(\varepsilon) + G_R f_R(\varepsilon)}{G_L + G_R}, \tag{1}
\]

where \(f_L(\varepsilon) \) and \(f_R(\varepsilon) \) are the distribution functions in the left and right electrodes.

III. THE PRINCIPLE OF MINIMAL CORRELATIONS

If the distribution function in the cavity were not allowed to fluctuate, the cavity could be considered just as a reservoir with non-Fermi-Dirac distribution of electrons. The contacts would be independent generators of current noise and the cumulants of the corresponding extraneous noise currents could be obtained by differentiating the corresponding quantum-mechanical characteristic functions for the charge transmitted in time \(t \)

\[
\chi_{L,R}(\lambda, t) = \exp\left\{\frac{t N_{L,R}}{2\pi\hbar} \int d\varepsilon \ln\left\{1 + \Gamma_{L,R} f(\varepsilon)[1 - f(\varepsilon)](e^{\lambda \varepsilon} - 1) + \Gamma_{L,R} f(\varepsilon)[1 - f(\varepsilon)](e^{-\lambda \varepsilon} - 1)\right\}\right\} \tag{2}
\]

with respect to the parameter \(\lambda \) the corresponding number of times.

In what follows, we will be interested only in the Fourier transforms of the current cumulants in the low-frequency limit and it will be implied that all the subsequent equations contain only low-frequency Fourier transforms of the corresponding quantities. Equation (3) leads to the following expressions for the cumulants of the noise current generated by the contacts:

\[
\langle \langle \tilde{I}_{L,R}^n \rangle \rangle = \int d\varepsilon \langle \langle \tilde{I}_{L,R}^n \rangle \rangle \varepsilon, \tag{3}
\]

where

\[
\langle \langle \tilde{I}_{L,R}^n \rangle \rangle \varepsilon = G_{L,R} f_{L,R}(1 - f) + f(1 - f) \Gamma_{L,R} (f - f)^2, \tag{4}
\]

and

\[
\langle \langle \tilde{I}_{L,R}^4 \rangle \rangle = e^2 G_{L,R} \left\{ f_{L,R}(1 - f) + f(1 - f) \right\} + \Gamma_{L,R} (12 f^2_{L,R} f + 12 f_{L,R}^2 f^2 - 7 f_{L,R}^2 - 7 f^2 + 2 f_{L,R}^2)
\]

\[
+ 12 \Gamma^2_{L,R} (f_{L,R} - f)^2 (f_{L,R}(1 - f) + f(1 - f)) \right\}, \tag{5}
\]

Since we are interested here only in low-frequency fluctuations, the pile-up of electrons in the cavity is forbidden. On the other hand, the noise currents \(\tilde{I}_L \) and \(\tilde{I}_R \) are absolutely independent, which would apparently result in a violation of the current-conservation law if these were the only contributions to the current noise. To ensure the current conservation at low frequencies, one has to take into account fluctuations of the distribution function \(\delta f(\varepsilon) \) in the cavity. Now the fluctuations of the current outgoing from the cavity to the left and right electrodes assume a form of Langevin equations, where \(\tilde{I}_L \) and \(\tilde{I}_R \) play the role of extraneous sources:

\[
\delta \tilde{I}_{L,R} = \tilde{I}_{L,R} + \frac{1}{e G_{L,R}} \int d\varepsilon \delta f(\varepsilon). \tag{7}
\]

Extracting \(\delta f \) from the condition of current conservation

\[
\delta \tilde{I}_L + \delta \tilde{I}_R = 0,
\]
one obtains
\[\delta I_L = \frac{G_R \tilde{I}_L - G_L \tilde{I}_R}{G_L + G_R}. \] (8)

By squaring this equation and using the independence of \(\tilde{I}_L \) and \(\tilde{I}_R \), one easily obtains that the second cumulant of the measurable current is
\[\langle \langle I_L^2 \rangle \rangle = \frac{G_R^2 \langle \langle \tilde{I}_L^2 \rangle \rangle + G_L^2 \langle \langle \tilde{I}_R^2 \rangle \rangle}{(G_L + G_R)^2}. \] (9)

In the zero-temperature limit it gives
\[\langle \langle I_L^2 \rangle \rangle = eI [G_L G_R (G_L + G_R) + G_R^3 (1 - \Gamma_R)] + G_R^3 (1 - \Gamma_L) / (G_L + G_R)^3, \] (10)
where \(I \) is the average current flowing through the cavity. In the high-transparency limit \(\Gamma_L = \Gamma_R = 1 \) it reproduces the expression obtained by Blanter and Sukhorukov by means of the minimal-correlation principle and the exact quantum-mechanical results.

IV. CASCADE CORRECTIONS

A straightforward extension of the minimal correlation approach to higher cumulants has led to a discrepancy with the quantum mechanical results. The reason is that the cavity is not just a reservoir with a nonequilibrium distribution of electrons. As suggested by Eqs. 10, their distribution function \(f(\varepsilon) \) also exhibits fluctuations. As the cumulants of the currents \(\tilde{I}_L \) and \(\tilde{I}_R \) are functionals of the distribution function in the cavity, its fluctuation \(\delta f \) changes them too. Since the characteristic time scale for \(\delta f \) is of the order of the dwell time of an electron in the cavity, these changes are slow on the scale of the correlation time of extraneous currents, and therefore the cumulants of these currents adiabatically follow \(\delta f \). This results in additional correlations, which may be termed “cascade” because lower-order correlators of extraneous currents contribute to higher-order cumulants of measurable quantities. One can write for the low-frequency transforms of the corresponding quantities
\[\delta \langle \langle \tilde{I}_{L,R}^2 \rangle \rangle = \int d\varepsilon \frac{\delta \langle \langle \tilde{I}_{L,R}^2 \rangle \rangle}{\delta f(\varepsilon)} \delta f(\varepsilon), \] (11)
where \(\delta (\ldots) / \delta f \) denotes a functional derivative of the corresponding quantity with respect to \(f(\varepsilon) \). For example, the third cumulant of the current may be written as the sum of the minimal-correlation value
\[\langle \langle I_L^3 \rangle \rangle_m = \frac{G_R^3 \langle \langle \tilde{I}_L^3 \rangle \rangle - G_L^3 \langle \langle \tilde{I}_R^3 \rangle \rangle}{(G_L + G_R)^3} \] (12)
and the cascade correction
\[\Delta \langle \langle I_L^3 \rangle \rangle = 3 \int d\varepsilon \frac{\delta \langle \langle I_L^3 \rangle \rangle}{\delta f(\varepsilon)} \delta f(\varepsilon) \delta I_L. \] (13)

The factor 3 is due to the fact that this equation in general includes three different currents and allows three inequivalent permutations of them.

The cascade corrections are conveniently presented in a diagrammatic form (see Figs. a and b). The rules for constructing these diagrams strongly differ from the ones known for Green’s functions in quantum mechanics. The diagrams do not present an expansion in any small parameter and their number is strictly limited for a cumulant of a given order. All diagrams present graphs, whose outer vertices correspond to different instances of current and whose inner vertices correspond either to cumulants of extraneous currents or their functional derivatives. The number of arrows outgoing from an inner vertex corresponds to the order of the cumulant and the number of incoming arrows corresponds to the order of a functional derivative. Since the \(n \)th cumulant presents a polynomial of the distribution function of degree \(n \), the number of incoming arrows at any inner vertex cannot exceed the number of outgoing arrows. Apparently, the difference between the total order of cumulants involved and the total number of functional differentiations should be equal to the order of the cumulant being calculated. As there should be no back-action of higher cumulants on lower cumulants, all diagrams are singly connected. Therefore any diagram for the \(n \)th cumulant of the current may be obtained from a diagram of order \(m < n \) by combining it with a diagram of order \(n - m + 1 \), i.e. by inserting one of its outer vertices into one of the inner vertices of the latter. Hence the most convenient way to draw diagrams for a cumulant of a given order is to start with diagrams of lower order and to consider all their inequivalent combinations that give diagrams of the desired order. The analytical expressions corresponding to each diagram contain numerical prefactors equal to the numbers of inequivalent permutations of the outer vertices.

Unlike the case of a diffusive conductor, the third and fourth cumulants include now \(all \) possible diagrams and
not only those that are constructed of second-order cumulants (Fig. 3 diagram a). The third cumulant is presented by diagrams b and c in Fig. 3. Diagram b presents the minimal-correlation value \((13)\) and diagram c presents the only possible cascade correction \((13)\) obtained by combining two second cumulants.

We are now in position to evaluate the diagrams. The functional derivative is easily obtained by differentiating Eq. \((4)\) and substituting it into \((3)\), which gives

\[
\frac{\delta \langle \langle I_L^2 \rangle \rangle}{\delta f(\varepsilon)} = \frac{G_L G_R}{(G_L + G_R)^2} \left\{ G_L \left[1 - 2f_R + 2\Gamma_R(f_R - f) \right] + G_R \left[1 - 2f_L + 2\Gamma_L(f_L - f) \right] \right\}. \tag{14}
\]

To calculate the fluctuation \(\delta f\), one has to write down equations \((3)\) and the current-conservation law in the energy-resolved form. This immediately gives

\[
\delta f(\varepsilon) = -\frac{e}{G_L + G_R} \left[(\tilde{I}_L)_\varepsilon + (\tilde{I}_R)_\varepsilon \right] \tag{15}
\]

where \((\tilde{I}_{L,R})_\varepsilon\) are energy-resolved extraneous currents. Since fluctuations at different energies are completely independent, one easily obtains that

\[
\langle \delta f(\varepsilon) \delta I_L \rangle = \frac{e}{(G_L + G_R)^2} \left[G_L \langle \langle I_L^2 \rangle \rangle_\varepsilon - G_R \langle \langle I_R^2 \rangle \rangle_\varepsilon \right]. \tag{16}
\]

Hence the total third cumulant, which is the sum of \((12)\) and \((13)\), is of the form

\[
\langle \langle I_L^3 \rangle \rangle = -\frac{e^2 I}{(G_L + G_R)^2} \left\{ (G_L + G_R) \left[(G_L + G_R)^2 \left(G_L^2 + G_R^2 \right) - 3(G_L + G_R) (\Gamma_L G_R^4 + \Gamma_R G_L^4) + 2\Gamma_L^2 G_R^2 + 2\Gamma_R^2 G_L^2 \right] - 3 G_L G_R \left[G_L^2 (1 - \Gamma_R) - G_R^2 (1 - \Gamma_L) \right] \right\} \times \left[G_L^2 (1 - 2\Gamma_R) - G_R^2 (1 - 2\Gamma_L) \right] \}. \tag{17}
\]

In the case of perfectly transparent leads \(\Gamma_L = \Gamma_R = 1\) the cascade correction to the third cumulant is zero and the minimal-correlation result

\[
\langle \langle I_L^3 \rangle \rangle = -\frac{e^2 I G_L G_R (G_L - G_R)^2}{(G_L + G_R)^4}
\]

is reproduced. This is why the discrepancy between the minimal-correlation and quantum-mechanical results was noted by Blanter and co-workers only for the fourth cumulant.

The fourth cumulant is presented by a sum of six diagrams shown in Fig. 3. Diagram a presents the minimal-correlation value\(^{20}\) and \(\gamma_L = \gamma_R = 1\). The first correction is given by an expression

\[
\Delta_1 \langle \langle I_L^4 \rangle \rangle = 6 \int d\varepsilon_1 \int d\varepsilon_2 \frac{\delta^2 \langle \langle I_L^2 \rangle \rangle}{\delta f(\varepsilon_1) \delta f(\varepsilon_2)} \times \langle \delta f(\varepsilon_1) \delta I_L(\varepsilon) \delta f(\varepsilon_2) \delta I_L \rangle. \tag{19}
\]

The second functional derivative

\[
\frac{\delta^2 \langle \langle I_L^2 \rangle \rangle}{\delta f(\varepsilon_1) \delta f(\varepsilon_2)} = -2\delta(\varepsilon_1 - \varepsilon_2) G_L G_R (G_R \Gamma_L + G_L \Gamma_R) \tag{20}
\]

is obtained by differentiating \((3)\) twice with respect to \(f(\varepsilon)\), and the two correlators in \((19)\) are given by \((13)\).

The second cascade correction is given by an expression

\[
\Delta_2 \langle \langle I_L^4 \rangle \rangle = 12 \int d\varepsilon_1 \frac{\delta \langle \langle I_L^2 \rangle \rangle}{\delta f(\varepsilon_1)} \int d\varepsilon_2 \frac{\delta \langle \delta f(\varepsilon_1) \delta I_L \rangle}{\delta f(\varepsilon_2)}
\]
where the first functional derivative is given by \[\frac{\delta \langle f(\epsilon_1) \delta I_L \rangle}{\delta f(\epsilon_2)} = 2 \delta(\epsilon_1 - \epsilon_2) \frac{G_L G_R}{(G_L + G_R)^2} \left[(\Gamma_L - \Gamma_R) f + (1 - \Gamma_L) f_L - (1 - \Gamma_R) f_R \right], \]
and the last correlator is given by \[\langle \langle \delta f(\epsilon_1) \delta f(\epsilon_2) \rangle \rangle = \epsilon \langle \langle f(\epsilon_1) f(\epsilon_2) \rangle \rangle \]
where the functional derivatives are given by \[\frac{\delta \langle f(\epsilon) \delta I \rangle}{\delta f(\epsilon)} = \frac{\delta \langle f(\epsilon) \delta I \rangle}{\delta f(\epsilon)} \]
where the first functional derivative is given by \[\frac{\delta \langle f(\epsilon) \delta I \rangle}{\delta f(\epsilon)} = \frac{\delta \langle f(\epsilon) \delta I \rangle}{\delta f(\epsilon)} \]
and the second cumulant of the distribution function

The fourth cascade correction involves third-order cumulants of extraneous currents and is given by an expression

\[\Delta_4 \langle \langle I_L^4 \rangle \rangle = 6 \int d\epsilon \frac{\delta \langle \langle I_L^4 \rangle \rangle}{\delta f(\epsilon)} \langle \langle f(\epsilon) \delta I_L^2 \rangle \rangle_m, \]

where

\[\langle \langle f(\epsilon) \delta I_L^2 \rangle \rangle_m = -\epsilon G_R^2 \langle \langle I_L^3 \rangle \rangle_e + G_L^2 \langle \langle I_L^3 \rangle \rangle_e \]

is obtained by multiplying one equation \[\frac{\delta \langle f(\epsilon) \delta I_L^2 \rangle_m}{\delta f(\epsilon)} \]
and averaging them with the correlators \[\langle \langle f(\epsilon) \delta I_L^2 \rangle \rangle_m \]
The fifth correction is given by

\[\Delta_5 \langle \langle I_L^4 \rangle \rangle = 4 \int d\epsilon \frac{\delta \langle \langle I_L^4 \rangle \rangle}{\delta f(\epsilon)} \langle \langle f(\epsilon) \delta I_L \rangle \rangle. \]

The functional derivative in the integrand

\[\frac{\delta \langle \langle I_L^4 \rangle \rangle}{\delta f(\epsilon)} = e \frac{G_L G_R}{(G_L + G_R)^3} \left\{ G_L^2 \left[1 - 6 \Gamma_L f(1 - f) - 6 \Gamma_L(1 - \Gamma_L)(f - f_L)^2 \right] - G_L^2 \left[1 - 6 \Gamma_R f(1 - f) - 6 \Gamma_R(1 - \Gamma_R)(f - f_L)^2 \right] \right\} \]

is calculated similarly to \[\frac{\delta \langle f(\epsilon) \delta I_L^2 \rangle}{\delta f(\epsilon)} \]
The total fourth cumulant of current is given by the sum of its minimal-correlation value \[\langle \langle f(\epsilon) \delta I_L^2 \rangle \rangle_m \]
and the cascade corrections given by \[\frac{\delta \langle f(\epsilon) \delta I_L^2 \rangle}{\delta f(\epsilon)} \]
and \[\langle \langle f(\epsilon) \delta I_L^2 \rangle \rangle_m \]
The full resulting expression of rather complicated form is given in the Appendix, and here we give only its limiting values

\[\langle \langle I_L^4 \rangle \rangle = e^3 V \frac{G_L^2 G_R^2}{(G_L + G_R)^3} \left[G_L^4 - 8 G_R G_L^3 + 12 G_L^2 G_R^2 - 8 G_L G_R^3 + G_R^4 \right] \]
in the high-transparency limit \[\Gamma_L = \Gamma_R = 1 \]
and

\[\langle \langle I_L^4 \rangle \rangle = e^3 V \frac{G_R G_L^4}{(G_L + G_R)^3} \left[G_R^4 - 8 G_L G_R^3 + 31 G_L^2 G_R^2 - 40 G_L G_R^3 + 31 G_L^4 - 8 G_L^5 + G_R^4 \right] \]
in the low-transparency limit \[\Gamma_L \to 0 \] and \[\Gamma_R \to 0 \].

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]

\[\Gamma_L \]

\[\chi \]

\[\Gamma_R \]
count the electrons in one reservoir). The matrix $\bar{g}(\chi)$ is determined from a matrix current conservation equation
\begin{equation}
\bar{I}_L + \bar{I}_R = 0, \quad \bar{I}_{L,R} = \frac{G_{L,R}[\bar{g}_{L,R}, \bar{g}]}{4 + \Gamma_{L,R}[\{\bar{g}_{L,R}, \bar{g}\} - 2]} \tag{32}
\end{equation}
where $[\ldots, \ldots]$ is the commutator and $\{\ldots, \ldots\}$ the anti-commutator. Knowing $\bar{g}(\chi)$, the full counting statistics of charge transfer can be found. However, in the system under study, it is not possible to find an explicit expression for $\bar{g}(\chi)$ in the general case (arbitrary N_L, N_R and Γ_L, Γ_R), and the full counting statistics has to be studied by numerical means. Here we are only interested in the first three cumulants, which can be found analytically by an expansion of the Green’s functions in the counting field χ.

The first three cumulants are given by (evaluated at the left contact)
\begin{align*}
I &= \frac{e}{\hbar} \int dE \text{ tr } [\bar{\tau}_z \bar{I}_L] \bigg|_{\chi = 0} \\
\langle \langle I^2_L \rangle \rangle &= -\frac{e^2}{\hbar} \int dE \text{ tr } \left[\bar{\tau}_z \frac{d\bar{I}_L}{d\chi} \right] \bigg|_{\chi = 0} \\
\langle \langle I^3_L \rangle \rangle &= -\frac{e^3}{\hbar} \int dE \text{ tr } \left[\bar{\tau}_z \frac{d^2\bar{I}_L}{d\chi^2} \right] \bigg|_{\chi = 0} \tag{33}
\end{align*}
To calculate these cumulants, we thus need to expand the Green’s functions, and correspondingly the matrix currents, to second order in the counting field χ, i.e.
\begin{equation}
\bar{g}(\chi) = \bar{g}^{(0)} + \chi \bar{g}^{(1)} + \frac{\chi^2}{2} \bar{g}^{(2)} + \ldots, \quad \bar{g}^{(n)} = \frac{d^n \bar{g}}{d\chi^n} \bigg|_{\chi = 0} \tag{34}
\end{equation}
and similarly for the other quantities. For simplicity, we consider the case with zero temperature and the left reservoir held at a finite voltage eV. In this case, only the energies $0 < \varepsilon < eV$ need to be considered, where $f_L(\varepsilon) = 1$ and $f_R(\varepsilon) = 0$, and we drop the energy notation below.

For the first cumulant, we have the matrix currents to zeroth order in the counting field,
\begin{equation}
\bar{I}^{(0)}_{L,R} = \frac{G_{L,R}[\bar{g}^{(0)}_{L,R}, \bar{g}^{(0)}]}{4 + \Gamma_{L,R}[\{\bar{g}^{(0)}_{L,R}, \bar{g}^{(0)}\} - 2]} \tag{35}
\end{equation}
where from Eq. (31), one has $\bar{g}^{(0)}_{R,L} = g_{R,L}$. From the matrix current equation in Eq. (32), i.e. $\bar{I}^{(0)}_{L,R} + \bar{I}^{(0)}_{L,R} = 0$, we then obtain
\begin{equation}
\bar{g}^{(0)} = \begin{pmatrix}
1 - 2f \\
-2(1 - f)
\end{pmatrix}, \quad f = \frac{G_L}{G_L + G_R} \tag{36}
\end{equation}
where f is the distribution function in the dot, as in Eq. (31). Knowing $\bar{g}^{(0)}$, we find $\bar{I}^{(0)}_{L,R}$ from Eq. (33) and then the current from Eq. (35).

For the second cumulant, we need to expand the matrix currents to first order in χ. Noting that the expressions in the matrix denominator appearing in the expansion, is $4 + \Gamma_{L,R}[\{\bar{g}^{(0)}_{L,R}, \bar{g}^{(0)}\} - 2] = 4$, we obtain
\begin{align*}
\bar{I}^{(1)}_{L} &= \frac{G_L}{4} \left([\bar{g}^{(1)}_{L}, \bar{g}^{(0)}] + [\bar{g}^{(0)}, \bar{g}^{(1)}_{L}] \right) \\
&\quad + \frac{G_L}{16} \left([\bar{g}^{(1)}_{L}, \bar{g}^{(0)}] + [\bar{g}^{(0)}, \bar{g}^{(1)}_{L}] \right), \\
\bar{I}^{(1)}_{R} &= \frac{G_R}{4} \left([\bar{g}^{(0)}_{R}, \bar{g}^{(1)}_{R}] + [\bar{g}^{(1)}_{R}, \bar{g}^{(0)}_{R}] \right) \tag{37}
\end{align*}
In addition to the matrix current equation $\bar{I}^{(1)}_{L} + \bar{I}^{(1)}_{R} = 0$, we get an extra condition for $\bar{g}^{(1)}$ from the normalization condition $\bar{g}(\chi)^2 = 1$, namely
\begin{equation}
\bar{g}^{(2)}(\chi) = 1 + \chi \{\bar{g}^{(0)}, \bar{g}^{(1)}\} + O(\chi^2) = 1 \\
\Rightarrow \{\bar{g}^{(0)}, \bar{g}^{(1)}\} = 0 \tag{38}
\end{equation}
Staring from the ansatz (equivalent to the parametrization in Ref. [2])
\begin{equation}
\bar{g}^{(1)} = \begin{pmatrix}
h^{(1)}_{11} \\
h^{(1)}_{21}
\end{pmatrix}, \quad h^{(1)}_{11} = h^{(1)}_{21} - h^{(1)}_{11} \tag{39}
\end{equation}
Eq. (38) gives $h^{(1)}_{21} = h^{(1)}_{11}(1 - 2f)/f - h^{(1)}_{12}(1 - f)/f$. Inserting $\bar{g}^{(1)}$ into the matrix current equation $\bar{I}^{(1)}_{L} + \bar{I}^{(1)}_{R} = 0$ gives $h^{(1)}_{11} = h^{(1)}_{12} + 4f^2$ and then
\begin{align*}
h^{(1)}_{12} &= -\frac{4G_L}{(G_L + G_R)^4} \left[G^2_L + G^2_L G_R(1 + \Gamma_R) \right. \\
&\quad \left. + G_L G^2_R + G^2_R(1 - \Gamma_L) \right]. \tag{40}
\end{align*}
From $h^{(1)}_{12}$ we thus obtain all components of $\bar{g}^{(1)}$. Inserting this into the matrix currents in Eq. (37) we get the second cumulant from Eq. (33). It coincides exactly with Eq. (10).

The calculation of the third cumulant proceeds along the same lines. One first expands the matrix currents to second order in χ (not presented due to the lengthy expressions). The requirement that the $O(\chi^2)$ term in Eq. (38) should be zero gives $\{\bar{g}^{(2)}, \bar{g}^{(0)}\} + 2(\bar{g}^{(1)})^2 = 0$. Using the ansatz
\begin{equation}
\bar{g}^{(2)} = \begin{pmatrix}
h^{(2)}_{11} \\
h^{(2)}_{22}
\end{pmatrix}, \quad h^{(2)}_{11} = h^{(2)}_{22} - h^{(2)}_{11} \tag{41}
\end{equation}
one gets $h^{(2)}_{21} = \left[(g^{(1)}_1)^2 + g^{(2)}_{1c} \right]/f + h^{(1)}_{11}(1 - 2f)/f - h^{(2)}_{12}(1 - f)/f$. The matrix current equation $\bar{I}^{(2)}_{L} + \bar{I}^{(2)}_{R} = 0$ then gives $h^{(2)}_{11}$ and $h^{(2)}_{22}$ (not written out), which fully determines $\bar{g}^{(2)}$. Inserting this into the expression for the matrix currents we find the third cumulant from Eq. (37). It coincides exactly with Eq. (17).

We point out that it is in principle possible to obtain analytical expressions for all higher cumulants in the
same way, although the procedure is rather cumbersome already for the third cumulant.

The third and fourth cumulants of current may be also obtained by means of random-matrix theory using the diagrammatic technique proposed by Brouwer and Beenakker. Substituting the resulting transmission probabilities for the whole system and using Eq. (2), one obtains expressions that coincide with Eq. (17) and the expression for the fourth cumulant given in the Appendix.

VI. CONCLUSION

In summary, we have shown that the semiclassical cascade approach gives the same results for the third and fourth cumulants of current in a chaotic cavity with imperfect leads as the circuit theory. This leads us to the conclusion that this approach may be applied to a wide class of systems that may include both semiclassical and quantum-mechanical elements. The advantage of the cascade approach is its physical transparency and a relative simplicity. For example, if the system consists of a number of cavities connected by contacts whose cumulants of current are known, this approach allows one to easily construct the cumulants of the current for the whole system. In principle, it also allows an inclusion of inelastic scattering processes and a calculation of cross-correlated cumulants of current in multiterminal systems. Therefore it presents a reasonable alternative to the full counting statistics based on the circuit theory.

We are grateful to M. Büttiker and E. V. Sukhorukov for fruitful discussions. This work was supported by the Swiss National Foundation, the program for Materials and Novel Electronics Properties, Russian Foundation for Basic Research, grant 01-02-17220, and by the INTAS Open grant 2001-13-14. One of us is thankful to the Geneva University for hospitality.

APPENDIX

In the case of arbitrary transmissions of the contacts the fourth cumulant is given by the expression

\[
\langle I^4 \rangle = -e^3 I \left((G^2_R - 66 I_R - 66) + 1 \right) G^3_L
\]

\[
+ (60 I^2_R - 30 I_R - 36 I^3_R + 5) G^2_R G^3_L
\]

\[
+ (30 I^3_R - 10 - 60 I_R + 45 I_R) G^2_R G^2_L
\]

\[
+ (120 I^2_R \Gamma^2_R - 60 I^2_R - 30 + 92 \Gamma_L + 55 \Gamma_R - 168 \Gamma_L \Gamma_R) G^3_R G^3_L
\]

\[
+ (72 I^2_L \Gamma_R + 4 + 72 I^2_R - 6 I_L - 96 I^2_L \Gamma_R) G^4_R G^3_L
\]

\[
+ (4 - 6 I_R - 51 I_L + 72 I^2_R + 72 I_L \Gamma_R - 96 I^2_L \Gamma_R) G^5_R G^3_L
\]

\[
+(92 \Gamma_L - 60 \Gamma^2_L - 30 - 168 \Gamma_L \Gamma_R + 120 \Gamma^2_R \Gamma_R + 55 \Gamma_R) G^6_R G^3_L
\]

\[
+ (45 \Gamma_L + 30 \Gamma^3_L - 10 - 60 \Gamma^2_L) G^7_R G^4_L
\]

\[
+ (-36 \Gamma^3_R - 30 \Gamma_L + 5 + 60 \Gamma^2_L) G^5_R G^4_L
\]

\[
+ (-1 + \Gamma_L) (6 \Gamma^2_L - 6 \Gamma_L + 1) G^5_R \left/ \left(G_L + G_R \right) ^9 \right.
\]

\[
+ \left(\Gamma^2_L - 6 \Gamma_L + 1 \right) G^5_R \left/ \left(G_L + G_R \right) ^9 \right.
\]

\[
\frac{(G^2_L + G^2_R)}{G^2_L + G^2_R}.
\]

1. Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
2. L. S. Levitov and G. B. Lesovik, Pis’m. Zh. Eksp. Teor. Fiz. 58, 225 (1993) [JETP Lett. 58, 230 (1993)].
3. H. Lee, L. S. Levitov, and A. Yu. Yakovets, Phys. Rev. B 51, 4079 (1995).
4. L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845 (1996).
5. P.A. Mello and J.-L. Pichard, Phys. Rev. B 40, 5276 (1989).
6. R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett. 27, 255 (1994).
7. H. U. Baranger and P. Mello, Phys. Rev. Lett. 73, 142 (1994).
8. P.W. Brouwer and C.W.J. Beenakker, J. Math. Phys. 37, 4904 (1996).
9. Yu. V. Nazarov, in Quantum Dynamics of Submicron Structures, edited by H. Cerdeira, B. Kramer, and G. Schoen (Kluwer, Dordrecht, The Netherlands, 1995), p. 687.
10. M. J. M. de Jong, Phys. Rev. B 54, 8144 (1996).
11. Yu. V. Nazarov, Ann. Phys. (Leipzig) 8, SI-193 (1999).
12. Yu. V. Nazarov and D. A. Bagrets, Phys. Rev. Lett. 88, 196801 (2002).
13. D. B. Gutman and Y. Gefen, cond-mat/0201007.
14. Ya. M. Blanter, H. Schomerus, and C.W.J. Beenakker, Physica (Amsterdam) 11E, 1 (2001).
15. Ya. M. Blanter and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1280 (2000).
16. Shot-noise experiments on chaotic cavities have recently been carried out by S. Oberholzer, E. V. Sukhorukov, C. Strunk, C. Schonenberger, T. Heinzel, K. Ensslin, and M. Holland, Phys. Rev. Lett. 86, 2114 (2001).
17. M.J.M. de Jong and C.W.J. Beenakker, Physica A 230, 219 (1996).
18. Sh. M. Kogan and A. Ya. Shul’man, Zh. Eksp. Teor. Fiz. 56, 862 (1969) [Sov. Phys. JETP 29, 467 (1969)].
19. K. E. Nagaev, cond-mat/0204308, to appear in Phys. Rev. B.
20. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
21. S. A. van Langen and M. Büttiker, Phys. Rev. B 56, R1680 (1997).
22. B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 50, 3982 (1994).
23. S. Pilgram, unpublished