Physiological roles of Casparian strips and suberin in the transport of water and solutes.

Monica Calvo-polanco, Zoe Ribeyre, Myriam Dauzat, Guilhem Reyt, Christopher Hidalgo-shrestha, Patrick Diehl, Marc Frenger, Thierry Simonneau, Bertrand Muller, David Salt, et al.

To cite this version:
Monica Calvo-polanco, Zoe Ribeyre, Myriam Dauzat, Guilhem Reyt, Christopher Hidalgo-shrestha, et al.. Physiological roles of Casparian strips and suberin in the transport of water and solutes.. New Phytologist, Wiley, In press, 10.1111/nph.17765. hal-03373045

HAL Id: hal-03373045
https://hal.inrae.fr/hal-03373045
Submitted on 23 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Physiological roles of Casparian strips and suberin in the transport of water and solutes

Monica Calvo-Polanco1,2, Zoe Ribeyre3, Myriam Dauzat3, Guilhem Rey4, Christopher Hidalgo-Shrestha5, Patrick Diehl5, Marc Frenger5, Thierry Simonneau3, Bertrand Muller3, David E. Salt4, Rochus B. Franke5, Christophe Maurel1 and Yann Boursiac1

1BPM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France; 2Excellence Unit AGRIENVIRONMENT, CIALE, University of Salamanca, 37185 Salamanca, Spain; 3LEPSE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France; 4Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK; 5Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany

Author for correspondence: Yann Boursiac
Email: yann.boursiac@inrae.fr

Received: 9 February 2021
Accepted: 2 August 2021

New Phytologist (2021) 232: 2295–2307
doi: 10.1111/nph.17765

Key words: apoplastic barriers, aquaporins, Arabidopsis thaliana, Casparian strips, root hydraulic conductivity, solutes diffusion, suberin, water transport.

Summary

- The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth.
- A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform.
- Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes.
- Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.

Introduction

As sessile organisms, plants strongly depend on the ability of their root system to cope with variable and possibly stressing soil conditions. Roots have evolved as plastic organs (Gruber et al., 2013), able to operate water and nutrient uptake in a wide spectrum of conditions going from deficiency to excess or toxicity. This capacity depends on multiple mechanisms, including the tuning of root system architecture, the regulation of membrane transporters and channels (Maurel et al., 2015), as well as alterations in root anatomical structures, such as the exodermis and endodermis (Liška et al., 2016). The radial transport of water and solutes from the soil to the root xylem vessels is considered as a major site of control (Steudle & Peterson, 1998). Radial transport can occur through the nonselective apoplastic pathway, or from cell-to-cell whereby membrane transporters and channels exert variable resistance and selectivity (Maurel et al., 2015). In contrast to the exodermis, which is lacking in certain species such as Arabidopsis thaliana (Arabidopsis), the endodermis is ubiquitous among the angiosperms and acts as the main apoplastic barrier. Two types of structures can be found in the fully developed endodermis: Casparian strips (CS) and suberin lamellae. The CS form a longitudinal belt encircling all endodermal cells, while suberin lamellae covers them, except for passage cells (Andersen et al., 2018). The CS result from a coordinated and localized impregnation of the primary cell wall by lignin (Naseet et al., 2012). This process is regulated by the MYB36 transcription factor (Kamiya et al., 2015), and its integrity surveyed by the SCHENGEN3/CIF1&2 receptor/ligand complex (Doblas et al., 2017b; Nakayama et al., 2017). Suberin is a heterogeneous biopolymer primarily composed of aliphatic monomers and some minor aromatic moieties. It is deposited around endodermal cells, eventually coating the entire endodermal cell surface (Haas & Carothers, 1975) and progressing into a suberized periderm from the pericycle (Campilho et al., 2020). Suberin is thought to create a diffusion barrier for water, gases and solutes (Enstone et al., 2002; Franke et al., 2012).

The function of endodermal CS and suberin as barriers to the radial transfer of water and solutes has been extensively questioned, notably over the last 25 yr (Peterson et al., 1993; Steudle et al., 1993; Frensch et al., 1996, and references cited therein; for recent reviews see: Geldner, 2013; Nawrath et al., 2013; Doblas et al., 2017a). A brief historical overview shows, however, that this issue is not settled yet. In 1993, mechanical disruption of maize endodermis led authors to conclude that this cell layer is not a barrier to water but to solutes, although roots were not
suberized in their studies (Peterson et al., 1993; Steudle et al., 1993). In 1996, French et al. concluded, also from studies in maize roots, that the suberized endodermis impedes both solute and water flow (French et al., 1996). However, no clear distinction between the role of suberin and CS was made until 2000, when it was shown that suberin is a barrier to water while CS influence solute transport in maize roots (Zimmermann et al., 2000). But this conclusion was restricted to root exodermis while no role of the endodermis was found in this study. The role of suberin as a barrier to root water transport was assessed later through genetic alteration of its deposition or composition in the horst-1 and esb1 mutants (Ranathunge & Schreiber, 2011). At this time though, the esb1 mutant was characterized for an enhanced suberin accumulation at the endodermis (Baxter et al., 2009), and it was only later that its primary defect in CS formation was established (Hosmani et al., 2013; Pfister et al., 2014; Li et al., 2017). Thorough phenotypic characterization of sgn3 mutants also pointed to the specific role of CS in altering water and solute relations (Pfister et al., 2014). However, we added to this representation that hydraulic alterations can be induced through a signaling process induced by damaged CS towards aquaporin activity (Wang et al., 2019). Therefore, a comprehensive study addressing the impact of CS and suberin on both water and solute transports at the root level would help integrate, and possibly reconcile, current knowledge. Such a study has become possible thanks to the large collection of CS and suberin-defective mutants which is now available.

Due to the importance of CS and suberin in the control of plant water transport and mineral nutrition, variations in these structures are expected to impact shoot development. For this purpose, we used Arabidopsis wild-type (WT) and a group of 17 Arabidopsis mutants with defects in CS and/or suberin (Supplementary Information Table S1), were surface sterilized and sowed Col-0 and 17 mutants with defects in CS and/or suberin (Supplementary Information Table S1), were surface sterilized and sowed onto clear polystyrene culture plates containing a 1/2 Murashige and Skoog (MS) medium (Sigma-Aldrich, St Louis, MO, USA). Plates were kept for 2 d at 4°C, then incubated vertically for 10 d under environmentally-controlled conditions: 60% relative humidity, 16 h d⁻¹ of 250 µmol photons m⁻² s⁻¹, 20°C. Plants were then transferred on 35 cm × 35 cm plastic plates floating over a basins filled with 81 of hydroponic solution (1.25 mM KNO₃, 0.75 mM MgSO₄, 1.5 mM, Ca(NO₃)₂, 0.5 mM KH₂PO₄, 50 µM FeEDTA, 50 µM H₂BO₃, 12 µM MnSO₄, 0.70 µM CuSO₄, 1 µM ZnSO₄, 0.24 µM MoO₃N₃, 100 µM Na₂SiO₃). Physiological and molecular determinations were done after 10–11 d of hydroponic culture (i.e. on 20–21 d-old plants). Previously unpublished mutants are T-DNA insertions provided by the Nottingham Arabidopsis Stock Centre (NASC): gelp51-2, GK_016A11; anac038-1, SALK_103716; anac038-2, WiscDsLoxH5007-11H (Fig. S1).

Casparian strip permeability and suberin quantification Pro-pidium iodide (PI) staining was performed as previously described (Allassimone et al., 2010) on 21 d-old plants with a 1 h incubation period. Root suberin was extracted and quantified using gas chromatography following the procedures explained in Franke et al. (2005). Despite Fluorol Yellow being the standard dye for suberin staining, we faced issues when working with more mature and bigger root systems. Auramine O staining was therefore performed instead, as described in Ursache et al. (2018), on 21 d-old plants.

Root hydraulics and root balancing pressure Root hydraulic conductance (K) was determined in de-topped plants using a set of pressure chambers filled with hydroponic solution (Boursiac et al., 2005). Excised roots were subjected to 350 kPa for 10 min, followed by successive measurements at 320, 160, and 240 kPa. The value of K was calculated as the slope of the flow to pressure relationship. The hydrostatic hydraulic conductivity (Lpv) was calculated by dividing K by the root dry weight. Osmotic hydraulic conductivity (Lpv,osm) was determined using the free-exudation method. The plants were de-topped with a razor blade and the sectioned hypocotyl immediately introduced into a 100 µl micro capillary. Dental paste (Coltène/Whaledent s.a.r.l., Lenzennes, France) was used to ensure a proper seal between the hypocotyl and the capillary. The sap exuded for the first 10 min was discarded, and the sap exuded over the next 45 min was collected and analyzed. Its osmolality (as well as osmolality of the bath medium) was measured using a Vapro 5520 osmometer (Wescor, Logan, UT, USA). The value of Lpv,osm was obtained by dividing the exudation rate by the root dry weight and osmotic potential gradient between the exuded sap and the bath. The contribution of the aquaporin-related pathway to Lpv was tested by the application of 1 mM sodium azide (NaN₃), a plant respiration inhibitor known to induce the gating of aquaporins (Tournaire-Roux et al., 2003).

The passive leakage of solutes into the root was approximated by determining the root balancing pressure (Pv,0) after 1 h treatment with 100 mM sodium chloride (NaCl). The value of Pv,0 is the extrapolated intercept with the pressure axis (Jv = 0) of the flow/pressure relationship obtained from pressure chamber measurements. It is related to the selectivity of the root to solutes, or reflection coefficient σₛ, as explained in Boursiac et al. (2005).

Materials and Methods

Hydroponic experiments

Plant materials and growth conditions Arabidopsis accession Col-0 and 17 mutants with defects in CS and/or suberin (Supporting Information Table S1), were surface sterilized and sowed into clear polystyrene culture plates containing a 1/2 Murashige and Skoog (MS) medium (Sigma-Aldrich, St Louis, MO, USA). Plates were kept for 2 d at 4°C, then incubated vertically for 10 d

New Phytologist (2021) 232: 2295–2307
www.newphytologist.com © 2021 The Authors
New Phytologist © 2021 New Phytologist Foundation
Active solutes pumping by root cells, which is responsible for the free exudation of the root, may impair this measurement by mimicking solutes leakage (Knipfer & Fricker, 2010). However, we usually observed a free exudation in the range of 1/20th to 1/30th of the flow obtained under pressurization, making its influence negligible.

Total RNA isolation and aquaporin expression RNA was isolated from 30 to 50 mg frozen roots using the RNA Isolation Kit Z3100 and DNase kit from Promega (Promega Corp., Madison, WI, USA). Total RNA was quantified by optical density measurements at 280/260 nm and stored at −80°C until use. Transcript abundance was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), using the sequences of primer pairs corresponding to the 13 Arabidopsis PIPs described in Sutka et al. (2011). For each gene, relative quantification was made by the Delta cycle threshold method with correction for PCR efficiency. The references genes tested were those described in Sutka et al. (2011), of which TIP41-like, PP2A3, and SFP were selected as the most stable ones among the different mutants.

Phenopsis experiment conditions

Plant material and growth conditions Plant phenotyping was realized using the Phenopsis platform (Granier et al., 2006). Seeds were surface sterilized and sown in pots as prescribed. The soils were filled with a loamy soil. Soil water content was automatically adjusted by replacing the water lost by evapotranspiration twice a day during 18 additional days, with a total duration of the experiment of 5 wk. Climatic conditions in the chamber were 20.5°C temperature, 65% relative humidity and 200 µmol photons m⁻² s⁻¹ with a photoperiod of 12 h.

Physiological determinations Five weeks after sowing, the rosettes (which were close to bolting stage, n = 7) were detached from the root and were weighted prior to and after oven-drying at 65°C for 72 h, to determine their fresh weight (FW) and dry weight (DW).

Leaves were frozen at −20°C for 2 d, pending extraction of the cellular medium with a centrifuge (8 min × 1000 g). Next, 10 µl of the extract was transferred to an absorbent paper disc and measured using a vapor pressure osmometer (Vapro 5520; Wescor).

Whole plant transpiration was determined in seven plants with the soil covered by a plastic sheet to prevent evaporation (Granier et al., 2006). Pot weights were monitored six times a day during 2 d. Day/night transpiration per unit rosette area was determined as the slope of the pot weight loss over time (g cm⁻² h⁻¹). The rosette area was calculated based on the photographs taken at the end of the transpiration period.

Shoot elemental analysis Briefly, 30 mg of ground dried tissue from young and old leaves of five plants per treatment and genotype (n = 5), were digested in 1 ml of 48.75% nitric acid (HNO₃) and 7.5% hydrogen peroxide (H₂O₂) in a quartz tube at 110°C for 2 h. Cations were determined with an atomic absorption spectrophotometer (SpectraAA 220; Varian, Palo Alto, CA, USA). Results were expressed in mg g⁻¹ DW.

Statistical analyses

All data, except for the regression analyses, were analyzed using one-way ANOVA with the R software (R Core Team, 2020). Tukey’s post hoc adjustment was used to test mean differences between treatments at α = 0.05. Spearman’s correlation analyses were performed in order to elucidate the relations between Lp, and aquaporin expression.

For the experiment at the Phenopsis platform, plants were set-up in a random block design that was analyzed using a two-way ANOVA together with Tukey’s adjustment at α = 0.05 with R.

Results

Presentation of the mutant collection

In order to study the physiological role of CS and suberin while avoiding pitfalls related to single-mutant studies, we gathered a collection of Arabidopsis mutants that aimed at covering various combinations of alterations. The chosen genotypes were (Table S1): (1) mutants known for their alterations in CS and the formation of ectopic suberin: myb36-1 and myb36-2 (Kamiya et al., 2015), esb1-1 and esb1-2 (Baxter et al., 2009), cap3-1 esb3-1 (Roppolo et al., 2011; Pfister et al., 2014). (2) Mutants with altered CS and with unaffected suberin content: sgn3-3 esb1-1, sgn3-3 (Pfister et al., 2014; Wang et al., 2019), and sgn3-4 (Tsuwamoto et al., 2008). (3) Mutants with reduced or altered suberin but no information on the functionality of CS: horst-1 and horst-2 (Hofer et al., 2008), and the double mutant horst-1 ralph-1 (present work). We added to this group a plant line expressing the CDEF1 cutinase under the control of the CASPI promoter (pCASPI₁-CDEF1), which has reduced content in suberin but functional CS (Naseer et al., 2012). (4) Mutants with altered suberin composition and no differences in total suberin content: ralph-1 and ralph-2 (Compagnon et al., 2009). (5) A set of new, not yet described mutants, with potentially modified suberin content and unknown properties of the CS (present work). These included gelp51-2, an insertion mutant in a GDSL-type esterase/lipase family (GELP), and anac038-1 and anac038-2, insertion mutants in a NAC transcription factor gene family member. Genes encoding the latter mutants were identified based on strong in silico coexpression using suberin biosynthetic genes such as RALPH as a ‘bait’ in the ATTEDII analysis tool (Oyabashi et al., 2007) and in silico expression data showing a expression in the root endodermis (Fig. S1).

Casparian strip mutants maintain barrier defects in mature root systems

The functionality of the CS was assessed through monitoring of PI penetration into the stele (Alassimone et al., 2010). PI diffuses through the apoplast where it binds to the carbonyl groups of the cell wall homogalacturonans (Rounds et al., 2011) and thereby
stains the vessels if not blocked by the CS. Assays with PI on 7 d-old seedlings have previously revealed a defective CS in myb36-1 and myb36-2 (Kamiya et al., 2015), esb1-1 and casp1-1/casp3-1 (Baxter et al., 2009; Hosmani et al., 2013), and sgn3-3 (Pfister et al., 2014). We performed our experiment on more mature and complex root systems of 21 d-old plants grown for 10 d in vitro and 11 d in hydroponics. Observations were made at various zones along the root: zone of first root hairs formation, lateral root primordia (LRP) at stages I and II, first lateral root emergence, an intermediate zone, and an zone close to the base, on the primary root and lateral roots (Figs 1a, S2). While xylem or proto-xylem vessels were stained by PI in the root hairs zone in primary root and lateral roots (Figs 1a, S2). While xylem or proto-xylem vessels were stained by PI in the root hairs zone in almost all genotypes, no more staining could be observed after the stages I and II LRP in WT plants (Fig. 1b). This was observed for all genotypes but myb36-1, esb1-1, casp1-1/casp3-1, sgn3-3 and sgn3-3/esb1-1 (Fig. 1c). Impermeability of the stele to PI was occasionally observed at later stages in those genotypes though. In the basal zone, no PI could penetrate in the root of any genotype (Fig. S2). Additional staining could be observed at the corners of the endodermal cells in myb36-1 and esb1-1 (Fig. 1c), which may relate to the deposition of ectopic cell wall, as observed in Kamiya et al. (2015). Noticeably, this ectopic cell wall material does not restore the impermeability of the stele to PI. Altogether, our analyses indicate that all the genotypes have the same high PI permeability at the root hairs zone and low PI permeability after the periderm formation. They differ in between stages I and II lateral root and intermediate zones, where the CS become fully impermeable to PI – thereafter considered as ‘functional’ – for all genotypes besides myb36, esb1, casp1/casp3, sgn3 and sgn3/esb1.

Suberin quantity and/or development in the mutant collection

Quantitative chemical analysis of suberin in 21 d-old hydroponically grown plants of myb36-1, myb36-2, esb1-1, esb1-2 and casp1-1/casp3-1, that are mutants with ectopic suberin, confirmed an approximate 1.9-fold increase in their root content with respect to Col-0, while sgn3-3/esb1-1 and sgn3-3 were similar to Col-0 (Fig. 1d). The group composed of gelp51-2, anac038-1 and anac038-2 was characterized by an increase in total root suberin content by 30 to 50% compared to Col-0. Within the group with unaltered CS, horst-1, horst-2, horst-1/ralph-1, and pCASP1::CDEF1 exhibited a suberin reduction of about 60% with respect to Col-0, while ralph-1 and ralph-2 showed no significant change or a slight increase in total suberin content, respectively. Auramine-O staining was used to locate the deposition of suberin and score its development along the primary root. Although this dye stains both lignin and suberin (Ursache et al., 2018), a combination of stereo microscopy and confocal observations, as well as co-imaging auramine-O signal with the suberin synthesis reporter pGPAT5::NLS-RFP was performed (Fig. S3). Since the deconvoluted Auramine O signal resembled the expression pattern of suberin genes and the staining pattern of FY during development (Beisson et al., 2007; Barberon et al., 2016), our approach allowed us to clearly distinguish between these compounds in the younger region of the roots, where periderm has not formed yet. In WT plants, a signal corresponding to suberin was first visible around the LRP, at about 20% from the tip (relative to the total root length). Further from the root tip, in between 30 and 45% of the total root length, the signal became patchy, but not necessarily around the LRP. It then evolved into a continuous signal up to 80% of the total root length where the root eventually developed a periderm (Figs 1e, S3). Similar patterns of suberin development could be observed for most of the genotypes tested (Fig. 1e). By contrast, noticeable differences were observed in myb36-1, esb1-1 and casp1-1/casp3-1, where the zones of suberization around the LRP and patchy suberized zones were absent or significantly reduced. Despite having significantly more (gelp51-2, anac038-1, anac038-2) or less (horst-1, horst-2, horst-1/ralph-1) suberin, several mutants did not exhibit any major change in their suberin pattern along the primary root axis (Fig. 1e). This result indicates that the timing of suberin deposition was unaltered in these mutants and no evidence of ectopic deposition could be found.

Based on CS functionality and suberin characterization, we therefore propose a classification of our mutant collection into five groups, each comprising at least two independent members, and named as follows. CS(−)/Sub(+) comprises mutants with disrupted CS, ectopic cell wall deposition, and enhanced suberin content: myb36-1, myb36-2, esb1-1, esb1-2, and casp1-1/casp3-1. CS(−)/Sub(−) gathers genotypes with disrupted CS and similar suberin content as Col-0: sgn3-3, sgn3-4, and sgn3-3/esb1-1. CS(=)Sub(+) comprises mutants with functional CS but with higher suberin content than Col-0: gelp51-2, anac038-1 and anac038-2. CS(=)Sub(−) comprises plants with functional CS and reduced

Fig. 1 Characterization of Casparian strip permeability and suberin development. (a) Reconstituted picture of a 21 d-old primary root, and the zones that were monitored for propidium iodide (PI) permeability. Bar, 1 cm. (b) Confocal cross-sections of a 21 d-old plants, PI stained, Arabidopsis root from Col-0 at various zones: root hairs, stages I and II lateral root primordium (LRP), first lateral root (LR) emergence, intermediate, and basal. Bars, 50 µm. (c) Confocal cross-section of PI staining in roots of 21 d-old plant at stages I and II LRP development. Arrows highlight the staining related to ectopic deposition of cell wall polymers at the cell corners, stars indicate when the vessels are stained and hence, PI was able to penetrate through the stele. Bars, 50 µm. (d) Relative suberin content related to wild-type Arabidopsis plants (Col-0) of 17 Casparian strips (CS) and/or suberin mutants of 21 d-old plants. Suberin was analyzed using gas chromatography after release by transesterification using boron trifluoride in methanol from solvent extracted root cell walls. Bars represent mean values in µg per mg dry weight ± SE (n = 3–5). *Suberin content taken from literature esb1-2 (Baxter et al., 2009), pCASP1::CDEF1 (Barberon et al., 2016), horst-1, horst-2 (Hofer et al., 2008), ralph-1, ralph-2 (Compagnon et al., 2009). (e) Scoring of the suberin stages along the root, as a relative position from the tip ± SE, after staining with the lignin/suberin dye Auramine-O (n = 3–5). Method detailed in Supporting Information Fig. S2. Asterisks indicate significant difference (P < 0.05) to Col-0 plants. Colors patterns of (c) allow to visually identify the groups that are defined in the first section of the results. They are reproduced similarly over all the figures.
suberin content: horst-1, horst-2, horst-1 ralph-1, pCAS1::CDEF1. Finally, CS(=)Sub(X) is formed by ralph-1 and ralph-2 which differ from Col-0 in their suberin composition but not necessarily in their content. From our assays, no difference in periderm development nor periderm permeability could be identified within our mutants. Altogether, we define here a collection of genotypes that covers multiple combinations of CS and suberin defects (Table S1). Although with sometimes a limited number of alleles, such as gelp51-2 in the CS(=)Sub(+) group, we would like to point out that the primary objective of this
collection is not to determine the function of each gene. Rather, we anticipate that extracting the most salient features of each group will allow us to conclude on the role of these apoplastic barriers.

Specific effects of CS and endodermal suberin on root water transport

Root water transport capacity was characterized by measurement of root hydraulic conductivity (Lp_r) on detopped plants using the pressure chamber and exudation techniques, yielding hydrostatic Lp_r (Lp_r,o) and osmotic Lp_r (Lp_r,n) conductivity, respectively (Fig. 2). Thus, Lp_r,h varied among mutants by −73% to +48% compared to Col-0 (Fig. 2a). A significant linear correlation was observed between Lp_r,o and Lp_r,h throughout the overall set of genotypes with the exception of sgn3-3 eib1-1 (Fig. 2b). Variation in Lp_r was mostly consistent with the classification of mutants according to their CS and suberin characteristics, though with very few exceptions. Mutants of the CS(−)Sub(+) group showed a significant reduction in Lp_r (although not statistically significant for casp1-1 casp3-1), CS(−)Sub(−) (sgn3-3, sgn3-4 and sgn3-3 eib1-1) and CS(+)Sub(+) (gelp51-2, anac38-1, anac038-2) genotypes showed no difference in Lp_r to Col-0, although Lp_r,o was lower for sgn3-3 eib1-1. Finally, CS(=)Sub(X) mutants (horst-1, horst-1 ralph-1, pCASP1::CDEF1, ralph-1 and ralph-2) showed higher Lp_r except for horst-2.

Based on these results, and with the exception of three genotypes of 16 (casp1-1 casp3-1, sgn3-3 eib1-1 and horst-2), the most important reduction in root water transport capacity occurs in plants with enhanced suberin but with defective CS. Conversely, the most important increase in root water transport capacity is found in plants with reduced or altered suberin (horst-1, horst-1 ralph-1, pCASP1::CDEF1, ralph-1, ralph-2) and non-defective CS. Defective CS were associated to both reduced and similar Lp_r in our collection. Thus, suberin quantity and composition seem to influence water transport as a barrier, while CS, per se, do not.

Reduction of Lp_r,h in Caspian strip defective mutants is mediated by concomitant changes in aquaporin activity

Water transport in Arabidopsis roots is considered to be mainly contributed by aquaporins (Tournaire-Roux et al., 2003). Possible interactions between endodermal barriers and aquaporin functionalities were analyzed by comparing Col-0 and a subset of mutants representing the five groups identified earlier. Excised root systems were treated with NaN3, an inhibitor of aquaporin activity (Tournaire-Roux et al., 2003; Sutka et al., 2011). By contrast to all other groups, and with the exception of casp1-1 casp3-1, CS(−)Sub(+) mutants only showed a slight inhibition of Lp_r upon NaN3 addition, indicating a low contribution of aquaporins, as was already shown for eib1-1 (Wang et al., 2019) (Fig. 3). The residual Lp_r,h, insensitive to NaN3, was similar to that of Col-0. Thus, the low Lp_r,h in this group would mainly originate from downregulation of aquaporins rather than from direct physical effects of increased suberin deposition. However, mutants from the CS(=)Sub(−) and CS(+)Sub(X) groups showed an increased absolute inhibition to NaN3, together with a significantly higher residual Lp_r,h, suggesting that their higher Lp_r,h results from both an upregulation of aquaporins and alteration in suberin deposition or composition (Fig. 3). Finally, mutants from the CS(=)Sub(+) and CS(−)Sub(=) groups, besides sgn3-3 eib1, behaved similarly to Col-0.
Aquaporin regulation triggered by the loss of integrity of root endodermal barriers was further investigated by testing, in roots of nine of the 17 genotypes, the relationship between the messenger RNA (mRNA) abundance of 13 PIP aquaporin genes and Lpr–h. Figure 4 shows that Lpr–h was positively correlated with the expression of AtPIP1;5 (\(q = 0.7, P = 0.03\)) whereas it was negatively correlated with the expression of AtPIP2;1 (\(q = -0.86, P = 2.10^{-7}\)). No correlation was observed with expression of other PIP genes (Fig. S4). These results indicate that modifications in root apoplastic barriers can be accompanied with changes in expression of aquaporin genes, but which cannot simply explain their hydraulic phenotype.

Altogether, these results indicate that the two apoplastic structures at the endodermis do not simply act as physical barriers for root water or solute transport, but also functionally interact with the aquaporin-dependent pathway. Our results are in line with the results of Wang et al. (2019), where CS deficiency downregulates aquaporins activity and the deposition of ectopic suberin through a CIFS/SGN3 pathway (Doblas et al., 2017b). By contrast, the mechanism that possibly links a decrease in suberin content and/or composition with an upregulation in aquaporin activity or expression remains unknown.

Permeability to solutes at the endodermis is determined by the CS

Root permeability to solutes was determined for a subset of genotypes from each group, by supplying NaCl to detopped plants and measuring Lpr–h and root balancing pressure (\(P_{Jv0}\)). The value of \(P_{Jv0}\) is the hydrostatic pressure required to counteract the osmotic gradient existing between the root culture medium and the xylem sap and was taken as a proxy for root selectivity to solutes. The application of 100 mM NaCl for 1 h to the root medium typically reduces Lpr–h in WT plants (Boursiac et al., 2005). Our mutant collection followed this behavior except for the CS(–)Sub(+) group (myb36-1, myb36-2, esb1-1 and esb1-2), where no major variation of the constitutively low Lpr–h could be detected (Fig. S5). We next determined \(P_{Jv0}\) (Fig. 5). The leakier the root to solutes, the lower the osmotic gradient across the root, and so is \(P_{Jv0}\). Hence, \(P_{Jv0}\) under NaCl treatment can be considered as an indicator of the root selectivity to \(Na^+\) and \(Cl^-\) (Boursiac et al., 2005). Only mutants with defective CS showed a marked difference in \(P_{Jv0}\) compared to Col-0, with a reduction in the CS(–)Sub(+) group even more marked in the CS(=)Sub(=) group. In the CS(=) groups, only two genotypes (anac38-1 and

Fig. 3 Effects of sodium azide (NaN₃) on root hydraulic conductivity and effects of root barrier mutations on residual water transport. Measurements were performed in a collection of 19 to 21 d-old Arabidopsis Col-0 and 11 Casparian strips (CS) and/or suberin mutants (means ± SE, n = 15–20, n = 3). The aquaporin-dependent pathway (colored bar) was derived from the subtraction of xylem sap flow before (full bar) and after 40 min (residual-Lpr, gray bars) of a NaN₃ treatment. Uppercase and lowercase letters inside the bars indicate significant differences. Data were analyzed using one-way ANOVA and Tukey’s test at \(z = 0.05\).

Fig. 4 Correlations between root hydraulic conductivity (Lpₚ,h) and aquaporins AtPIP1;5 (a) or AtPIP2;1 (b) expression levels in Col-0 and a collection of seven Arabidopsis mutants with alterations in endodermal Casparian strips (CS) and/or suberin. Spearman’s correlations are statistically significant for each gene (\(P < 3 \times 10^{-2}\) and \(2 \times 10^{-7}\), respectively). Plants were grown hydroponically for 19 to 21 d (means ± SE, n = 3).
pCASp1::CDEFI) out of eight showed a significant reduction compared to Col-0. (Fig. 5). Our results highlight a clear link between defective CS and solute leakage into the root xylem. The role of suberin is less trivial since various configuration led to slight modifications in transpiration and growth rate in the shoot of maize or peach tree (Solari & DeJong, 2006; Ehlert et al., 2009). Similarly, the rosette FW measured at harvest in our mutant collection under control conditions varied in parallel to K_r (Fig. 7a). However, transpiration rate was not different from Col-0 under our low evaporative demand conditions (Fig. S6b). Such a reduction in leaf growth without change in transpiration had been reported in maize plants, where K_r was downregulated using pharmacological aquaporin inhibition, provided that the evaporative demand was kept low (Ehlert et al., 2009). In the present work, we might face a similar scenario, where reduced growth of the CS(−) groups after 5 wk originates from the downregulation of K_r although without provoking a major rebalancing of plant water relations.

Additionally, there was a positive correlation between rosette osmotic potential (Π_{leaf}) and growth across mutants in our experiments (Fig. 7b). As cell turgor is expected to vary inversely to Π_{leaf} (the more negative Π_{leaf} the more positive turgor for a given total water potential), it is unlikely that variation in Π_{leaf} was responsible for variation in growth through changes in turgor. We therefore examined whether variation in Π_{leaf} was rather indicative of ionic damages which could have caused variation in...
in growth. CS(−) mutants, which showed a reduced shoot growth, also exhibited ionomic differences compared to Col-0, with higher potassium (K) and lower calcium (Ca), as referenced in previous reports for esb1-1 and myb36-1 (CS(−)Sub(+) group) (Baxter et al., 2009; Kamiya et al., 2015), and a reduced K and Ca content in sgn3-3 and sgn3-3 esb1-1 (CS(−)Sub(=) group) (Pfister et al., 2014), still in agreement with previous studies (Table S2). By comparison, none of the suberin mutants (CS(=) Sub(+) and CS(=)Sub(−) groups), which did not show any growth phenotype, had any alteration in their ionome profile (Table S2), similarly to the previously described ralpb-1 (group CS(=)Sub(−)) (Compañon et al., 2009). Moreover, the relationship between K and Π_{leaf}, which usually derives from the major role played by this mineral on the osmotic potential in cells, was not conserved across mutants (Fig. 7c). Thus, in our growth conditions, alteration of CS function provoked a reduction in rosette growth possibly associated to ionome variations, but not caused by the resulting change in Π_{leaf}, the latter not being driven by K content.

Discussion

The present study aimed at investigating the specific role and impact on the whole plant, of each of the two main apoplastic diffusion barriers of the root: the CS and the suberin layers. For this, we used a unique collection of Arabidopsis mutants, which we categorized according to the permeability of the CS to PI and the amount and location of suberin (Figs 1, S2, S3). The characterization of multiple mutants per group ruled out the drawbacks inherent to single-mutant analyses that could come from unforeseen genetic compensation (El-Brolosy & Stainier, 2017). The casp1-1 casp3-1 double mutant typically fits into this category,
being an outlier to the other members of the CS(−)Sub(+) group for many of the root parameters that were measured. Our results support the following conclusions.

Casparian strips do not directly block apoplastic water transport while suberin does. Yet, both act on aquaporin activity

Characterization of *esb1-1* revealed that CIF/SGN3 dependent signaling, which inhibits aquaporin activity, is its primary cause of Lp, downregulation (Wang *et al.*, 2019). We generalized this observation and revealed a complex interaction between apoplastic barriers and aquaporin activity and/or expression (Figs 3, 4, S4) to regulate Lp, (Fig. 2): CS do not directly block water transport while suberin does, but alteration of both acts on aquaporin activity. Our conclusions are based on three sets of measurements.

First, functional CS were associated with higher Lp, – a paradox if we only consider CS as hydrophobic barriers – while we found a correlation between suberin alteration and Lp, in CS(=)Sub(−) and CS(=)Sub(X) mutants. Specifically, a substantial reduction in suberin (pCASP1::CDEF1, horst-1, horst-1ralph-1), or a qualitative change in suberin composition (ralph-1), potentially affecting hydrophobicity (Schreiber *et al.*, 2005; Kreszies *et al.*, 2019) or crosslinking and structure (Molina *et al.*, 2009), allowed for an increased Lp,. These results extend the previous characterization of the pCASP1::CDEF1 line, for which we then observed only a trend (Wang *et al.*, 2019). They confirm the importance of studying multiple independent mutants in a reverse genetic approach. Suberin would therefore act as a barrier to water transport. Enhanced suberin deposition, which appeared not ectopic in the CS(=)Sub(+) group, had no further effect on Lp,. This suggests that regular suberin deposition already blocks efficiently the water path in WT. *In vitro* measurement of the water permeability of thin layers of purified suberin would help confirming such effects.

Second, from the use of the aquaporin blocker NaN3 (Fig. 3), we derived an ‘aquaporin-mediated Lp,’ and a ‘residual Lp,’. The former refers to the activity of aquaporins in the root, but the latter has to be interpreted with caution since it surely reflects more than apoplastic barriers, and includes transport through lipid membranes, vessels, or communication between the radial transport pathways (Steudle, 2000; Sack *et al.*, 2004). We found significant differences in aquaporin-mediated Lp, in our collection, that confirmed a regulation of aquaporins linked to the apoplastic barrier status (see later). Qualitatively speaking, we found no difference in residual Lp, in four out of six CS mutants, while mutants with a lower suberin content or different suberin compositions (CS(=)Sub(−), CS(=)Sub(X)) had a higher residual Lp,. We concluded that, within the root zone altered in our mutant collection, the CS is not a major barrier for water transport while suberin physically restricts this transport. In the context of disturbed CS (CS(−)Sub(+) and CS(−)Sub=)), the comparison between *esb1-1*, where ectopic suberin content can be seen as a compensatory mechanism for CS deficiency, and *sgn3-3 esb1-1*, which lacks this response, further reinforces this conclusion. The role of suberin as a hydrophobic barrier in roots has already been highlighted by previous studies in Arabidopsis (Ranathunge & Schreiber, 2011) and other species (Frensch *et al.*, 1996; Freundl *et al.*, 2000; Steudle, 2000; Zimmermann *et al.*, 2000; Ranathunge *et al.*, 2016). The originality of our work resides in the fact that, in the root of Arabidopsis, we were able to separate the role of suberin from that of the CS, and described a complementary regulation of root aquaporins. We note that the periderm defines a zone where the organization of suberin layers and lignified cell walls would challenge our interpretations. However, the initial characterization did not reveal any difference in periderm development or permeability in our collection.

Third, we found positive correlation between Lp, and AtPIP1;5 mRNA abundance. This could fit with a putative role of this isoform in root water transport, which has yet to be proven. The function of AtPIP2;5, whose expression negatively correlated to Lp,, has not been described either. In contrast, the negative correlation between Lp, and the mRNA abundance of AtPIP2;1, which is among the most abundant aquaporins in roots (Boursiac *et al.*, 2005; Monneuse *et al.*, 2011) and acts on osmotically-driven root water flow (Javot *et al.*, 2003; Péret *et al.*, 2012), is contradictory to a major contribution of this aquaporin to water transport. Hence, our results highlight links between apoplastic barrier functionality and aquaporin expression and function, with a complex interplay between isoforms that remains to be elucidated. Future studies will have to take into account distinct cell-specific expression patterns of isoforms (Hachez *et al.*, 2006a,b), their regulation at the protein level, and their possible functional interactions, at the endodermis in particular (Chau-mont & Tyerman, 2014).

Casparian strips are the primary barriers against passive solutes diffusion in roots, while suberin acts as a distinctive, compensatory barrier

Previous studies (Pfister *et al.*, 2014; Barberon *et al.*, 2016; Doblas *et al.*, 2017b; Wang *et al.*, 2019) have concluded that CS exerts a main barrier role in ion transport. With respect to these studies, the present work was carried out in a broader collection of mutants of different origin, and relied on quantitative measurements of balancing pressure (P* sr* Fig. 5). Although not strictly equivalent, this parameter is indicative of the reflection coefficient (σsr) of the root. Measurements of σsr of Col-0, esb1-1 and *sgn3-3 esb1-1* were reported by Wang *et al.* (2019) and agree with the alterations in P* sr* described here. In the present study, Col-0 plants and mutants from groups with functional CS (CS(=)Sub(+) and CS(=)Sub(−)) showed very consistent P* sr* in the range 0.57–0.73 of the total osmotic force due to NaCl, which fits with σsr values commonly in a 0.4–0.8 range (Boursiac et al., 2005; Fritz & Ehwald, 2011; Ranathunge & Schreiber, 2011; Ranathunge et al., 2017). Mutants with altered CS (CS(−)Sub(+) and CS(−)Sub(−)), exhibited a reduction in P* sr*, down to 0–0.47 of the total osmotic force due to NaCl (with the exception of *casp1-1 casp1-3*) which confirms that the CS act as the primary barrier against solute permeation towards
inner tissues. With regard to mutants with deficient CS, the higher $P_{v,T}$ of CS(−)Sub(+) members (esb1-1 and myb36-1) compared to sgn3-3 esb1-1 (CS(−)Sub(=)) suggests that deposition of ectopic suberin partially compensates for the lack of CS. This result parallels those of NaCl selectivity for esb1-1 and pCASP1::CDEF1 esb1-1 genotypes characterized in Wang et al. (2019). Altogether, these results indicate that CS are the main barriers to the free diffusion of solutes through the apoplast, while suberin can act secondarily as a barrier when deposited ectopically as in esb1 and myb36.

Under standard conditions, root diffusional barriers exert direct and indirect impacts on shoot development

Under control conditions, mutants of the altered CS(−) groups showed lower rosette DW and reduced surface development (Figs 6, S5). Both root hydraulic conductance and shoot solutes accumulation were correlated to rosette DW in our experiments (Fig. 7a,b). Thus, both a hydraulic defect and an alteration in solute selectivity appeared as plausible causes of the reduction in shoot growth rate.

However, the observation that plants with the lower osmotic potential are those with the lower growth rate raises an apparent paradox. Indeed, in well-watered soil conditions and with no differences in transpiration (Fig. S6), it can be assumed that the leaf water potential is similar among the genotypes tested. Hence the lower osmotic potential in the CS(−) groups should translate into an increase in the average leaf turgor pressure. According to Lockhart’s model for plant cell expansion (Lockhart, 1965), this would increase the growth rate in the CS(−) groups, for which we observed exactly the converse (Figs 6, S5). Our results therefore suggest that other parameters involved in plant cell expansion are altered when CS are not functional, namely the yield and/or the extensibility of the cell wall.

Furthermore, we looked in more details at the elemental composition of the growing rosettes of the mutant collection in order to look for the origin of the variations in osmotic potential. Our results are in accordance with previous reports (Hosmani et al., 2013; Pfister et al., 2014; Kamiya et al., 2015), and highlight that mutants of the CS(−)Sub(+) and CS(−)Sub(=) groups had opposite phenotypes with respect to K accumulation (Table S2). This implies that the significant variations in shoot osmotic potential, while related to a reduction in shoot growth in both groups, could not be attributed to K (Fig. 7c). We therefore conclude that defective CS do not limit shoot growth through K nutrition. Quantification of other osmotic potential such as NO3−, sugars, and organic acids would be required to find the origin of such osmotic potential variations.

Overall, the control of shoot growth by CS and suberin functionality is not simply mediated by variations in major nutrients or osmotic control of turgor in growing cells, but by indirect effects on other growth characteristics like cell wall mechanical properties. For example, Wang et al. (2019) identified that activation of the CIF/SGN3 signaling pathway in roots of CS deficient plants translates into an abscisic acid (ABA) dependent signaling in shoots, and such signaling could be at the origin of the growth inhibition highlighted in our study.

In conclusion, study of CS and suberin deficient mutants in Arabidopsis highlights that, in roots, suberin acts physically as a barrier to water transport while CS prevent the passive leakage of solutes into the stele. However, the two components appear to control aquaporin activity. In the shoots, defect in CS provokes a reduction in growth not only via an alteration in hydromineral nutrition but also via signaling, including the CIF/SGN pathway, and perhaps also via so far undiscovered pathways.

Acknowledgements

The authors acknowledge support from the ERA-NET Coordinating Action in Plant Sciences program project ERACAPS13.089_RootBarriers, the German Research Foundation (DFG; grant FR 1721/2-1 to R.B.F.), the AgreenSkills+ fellowship to MC-P which has received funding from the EU’s Seventh Framework Program under grant agreement no. FP7-609398 (AgreenSkills+ contract) and FEDER-Junta de Castilla y León, CLU-2018-04. Results have also been achieved within the framework of the Transnational Cooperation within the PLANT-KBBE Initiative, with funding from the German Federal Ministry of Education to RBF. The authors want to thank Prof. Marie Barberon (University of Geneva) and Prof. Niko Geldner (University of Lausanne) for kindly providing plants expressing the pGPAT5::NLS-RFP construct, the SAME platform from BPMP for elemental analyses, as well as Carine Alcon and the MRI imaging facility, member of the national infrastructure France-BioImaging supported by the French National Research Agency (ANR-10-INBS-04, «Investments for the future»).

Author contributions

Design of the research: YB, CM, DES, RBF, TS, BM; data analysis: MC-P, YB, BM, TS; performance of the research: MC-P, ZR, MD, GR, C-HS, RBF, YB; resources: PD, MF, GR; writing-original draft: MC-P, YB; writing-review and editing: CM, BM, TS, DES, RBF, YB.

ORCID

Yann Boursiac https://orcid.org/0000-0002-9545-9003
Monica Calvo-Polanco https://orcid.org/0000-0002-0813-0921
Myriam Dauzat https://orcid.org/0000-0001-7846-7397
Patrick Diehl https://orcid.org/0000-0003-3922-8419
Rochus B. Franke https://orcid.org/0000-0003-2269-7390
Christopher Hidalgo-Shrestha https://orcid.org/0000-0002-0727-9388
Christophe Maurel https://orcid.org/0000-0002-4255-6440
Bertrand Muller https://orcid.org/0000-0001-6387-9460
Guilhem Rey https://orcid.org/0000-0003-0545-2500
Zoe Ribeyre https://orcid.org/0000-0003-4162-0858
David E. Salt https://orcid.org/0000-0003-0283-0991
Thierry Simonneau https://orcid.org/0000-0001-5636-9534
Haas DL, Carothers ZB. 1975. Some ultrastructural observations on endodermal cell development in Zea mays roots. American Journal of Botany 62: 336–348.

Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F. 2006a. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Molecular Biology 62: 305–323.

Hachez C, Zelazny E, Chaumont F. 2006b. Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochimica et Biophysica Acta (BBA) – Biomembranes 1758: 1142–1156.

Hofer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany 59: 2347–2360.

Hosmani PS, Kamya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE. 2013. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proceedings of the National Academy of Sciences, USA 110: 14498–14503.

Javot H, Lauvergeat V, Santoni V, Martin-Laurant F, Gücüli J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D et al. 2003. Role of a single aquaporin isoform in root water uptake. Plant Cell 15: 509–522.

Kamiya T, Bonghi M, Wang P, Danku JMC, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences, USA 112: 10533–10538.

Knipfer T, Frick W. 2010. Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytologist 187: 159–170.

Kreszies T, Shellakluttì N, Osthoff Y, Yu P, Baldauf JA, Zeier-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L. 2019. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytologist 212: 180–194.

Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JMC, Salt DE, Geldner N et al. 2017. Role of LOTRI in nutrient transport through organization of spatial distribution of root endodermal barriers. Current Biology 27: 758–765.

Liska D, Martinka M, Kohanova J, Lux A. 2016. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Annals of Botany 118: 667–674.

Lockhart JA. 1965. An analysis of irreversible plant cell elongation. Journal of Theoretical Biology 2: 264–275.

Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L. 2015. The development of the periderm: the typical suberin and a particular cutin. Plant, Cell & Environment 38: 221–239.

Matsubayashi Y. 2017. Genetic compensation: a phenomenon in Arabidopsis root system under nutrient deficiencies. Plant Physiology 174: 455–467.

Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Monneuse J-M, Sugano M, Becue T, Santoni V, Hem S, Rossignon M. 2011. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 39: D863–D869.

Obayashi T, Kinoshita K, Nakai K, Shibaoa M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H. 2007. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35: D863–D869.

Péret B, Li G, Zhao J, Band LR, Voß U, Postare O, Luu D-T, Da Ines O, Casimiro I, Lucas M et al. 2012. Auxin regulates aquaporin...
function to facilitate lateral root emergence. Nature Cell Biology 14: 991–998.

Peterson CA, Murmann M, Steudle E. 1993. Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190: 127–136.

Pfister A, Barberon M, Alasimone J, Kalmbach L, Lee Y, Vermeer JEM, Yamazaki M, Li G, Maurel C, Takano J et al. 2014. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 3: e03115.

R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Ranathunge K, Kim YX, Wassmann F, Kreszies T, Zeisler V, Schreiber L. 2017. Propidium iodide penetration in the root of 21 d-old Casparian strips (CS) and suberin mutants. Front. Plant Sci. 8: 1970.

Ranathunge K, Schreiber L. 2011. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Journal of Experimental Botany 62: 1961–1974.

Ranathunge K, Schreiber L, Bi Y-M, Rothstein SJ. 2016. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 243: 231–249.

Reyt G, Chao Z, Flis P, Salas-Gonzalez I, Castirillo G, Chao D-Y, Salt DE. 2020. Uclacyanin proteins are required for lignified nanodomain formation within Casparian strips. Current Biology 30: 4103–4111.

Roppolo D, De Rybel B, Tendon VD, Pfister A, Alasimone J, Vermeer JEM, Yamazaki M, Stierhof Y-D, Beeckman T, Geldner N. 2011. A novel protein family mediates Casparian strip formation in the endodermis. Nature 473: 380–383.

Rounds CM, Lubeck E, Hepler PK, Winship LJ. 2011. Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiology 157: 175–187.

Sack L, Streeter CM, Holbrook NM. 2004. Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiology 134: 1824–1833.

Schreiber L, Franke R, Hartmann K-D, Ranathunge K, Steudle E. 2005. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). Journal of Experimental Botany 56: 1427–1436.

Solari LL, Dejong TM. 2006. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance. Journal of Experimental Botany 57: 1981–1989.

Steudle E. 2000. Water uptake by plant roots: an integration of views. Plant and Soil 226: 45–56.

Steudle E, Murmann M, Peterson CA. 1993. Transport of water and solutes across maize roots modified by puncturing the endodermis (further evidence for the composite transport model of the root). Plant Physiology 103: 335–349.

Steudle E, Peterson C. 1998. Review article. How does water get through roots? Journal of Experimental Botany 49: 775–788.

Surmatka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C. 2011. Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiology 155: 1264–1276.

Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Lus D-T, Bligny R, Maurel C. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393–397.

Tsuwamoto R, Fukuoka H, Takahata Y. 2008. GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. The Plant Journal 54: 30–42.

Ursache R, Andersen TG, Marhavy P, Geldner N. 2018. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal 93: 399–412.

Wang P, Calvo-Polanco M, Rey G, Barberon M, Champeyroux C, Santoni V, Maurel C, Franke RB, Ljung K, Novak O et al. 2019. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Scientific Reports 9: 4227.

Zimmermann HM, Hartmann K, Schreiber L, Steudle E. 2000. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210: 302–311.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 New mutants genotyping and expression information.

Fig. S2 Propidium iodide penetration in the root of 21 d-old Casparian strips (CS) and suberin mutants.

Fig. S3 Deconvolution of the Auramine O signal in 21 d hydroponically grown plants enables the detection and quantification of endodermal and peridermal suberin.

Fig. S4 Expression of aquaporins genes in the mutant collection.

Fig. S5 Effect of sodium chloride (NaCl) on the root hydraulic conductivity (Lp, h) of Col-0 and of a collection of 16 Casparian strips (CS) and suberin mutants.

Fig. S6 Kinetics of rosette development transpiration rates in Col-0 and in a selection of Casparian strips (CS) and suberin mutants grown under environmentally controlled conditions for 5 wk.

Table S1 Table summarizing the different mutants analyzed in the present study.

Table S2 Ionomeric comparisons of the shoots of Casparian strips (CS) and suberin deficient mutants.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.