Twin extreme ultraviolet waves in the solar corona

Ruisheng Zheng (✉ ruishengzheng@sdu.edu.cn)
Shandong University

Bing Wang
Shandong University

Liang Zhang
Shandong University

Yao Chen
Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209

Robertus Erdelyi
Sheffield University

Article

Keywords:

Posted Date: January 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1180040/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Twin extreme ultraviolet waves in the solar corona

December 21, 2021
Solar extreme ultraviolet (EUV) waves are spectacular propagating disturbances with EUV enhancements in annular shapes in the solar corona. These EUV waves carry critical information about the coronal magnetised plasma that can shed light on gaining insight to the elusive physical parameters (e.g. the magnetic field strength) by global solar coronal magneto-seismology (SMS). EUV waves are closely associated with a wide range of solar atmospheric eruptions, from violent flares and coronal mass ejections (CMEs) to less energetic plasma jets or mini-filament eruptions, and can play a role in accelerating particles to non-thermal energies. However, the physical nature and driving mechanism of EUV waves is still under controversy. Here, we report the unique discovery of twin EUV waves (TEWs) that were formed in a single eruption with observations from two different perspectives. In all earlier studies, a single eruption was associated at most in a single EUV wave. The newly found TEWs urge to re-visit our theoretical understanding about the underlying formation mechanism(s) of coronal EUV waves. Two distinct scenarios of TEWs were found. In the first scenario, the two waves were separately associated with a filament eruption and a precursor jet, while in another scenario the two waves were successively associated with a filament eruption. Hence, we label these distinguished scenarios as "fraternal TEWs" and "identical TEWs", respectively. Further, we also suggest that impulsive lateral expansions of two distinct groups of coronal loops are critical to the formation of TEWs in a single eruption.

The solar corona is filled with dynamic magnetized plasma, and hosts a variety of disturbances/waves that can be driven by all motions of the ubiquitous plasma. These waves are believed to contribute in many fundamental processes of solar physics, such as heating of the solar atmosphere and solar wind acceleration [1, 2, 3]. One of the most spectacular of these waves is the extreme ultraviolet (EUV) wave that appears as the traveling coronal disturbance from its erupting source region in the solar atmosphere. Hints about the existence of EUV waves were initially deduced from indirect evidences of sympathetic solar activities, type II radio bursts, and Hα Moreton waves. Later, EUV waves were finally detected directly with the Extreme Ultraviolet Imaging Telescope (EIT) [4] on-board the SOHO space-
EUV waves can provide potential diagnostics of the coronal magnetic field strengths and can be used to estimate coronal plasma parameters that are hard to observe directly [8, 9]. It is also suggested that EUV waves may accelerate solar energetic particles and therefore contribute to space weather [10].

Although there is ongoing debate about the physical nature of these waves, an EUV wave is always interpreted either as a true wave or as a pseudo wave. The interpretations of true waves include linear/nonlinear fast-mode magnetohydrodynamic (MHD) waves, slow-mode waves, and soliton-like waves [11, 12, 13]. On the other hand, the methods of employing pseudo waves embrace e.g. the magnetic field-line stretching, Joule heating in current shells, and continuous small-scale reconnections [14, 15, 16]. Benefiting from high-quality observations from the Solar Terrestrial Relations Observatory [17] (STEREO) and the Solar Dynamics Observatory [18] (SDO), EUV waves have been best interpreted as a bimodal composition of an outer fast-mode MHD wave and an inner non-wave component of coronal mass ejections (CMEs) in a hybrid model [19, 20, 21, 22, 23]. More details about the nature of EUV waves are in recent reviews [24, 25, 22, 7, 26, 27, 28]. It is widely recognized by now that the EUV waves are associated with a variety of energetic eruptions (e.g. CMEs and flares), and small-scale EUV waves are closely associated with small-scale ejections (e.g. jets and eruptions of mini-filaments) [29, 30]. Therefore, the formation of an EUV wave strongly depends on the rapid expansion of overlying coronal loops ahead of an erupting core [31, 32].

To date, it has only been observed that each single eruption triggered only a single EUV wave. In this study, we now provide new observational evidence for two scenarios of TEWs in a single eruption. TEWs in the first scenario were separately associated with a filament eruption and its precursor jet, while those in the second scenario were successively related to another filament eruption. Hence, we refer to these cases as "fraternal TEWs" and "identical TEWs", respectively. In the following text, the term "EUV wave" is simply abbreviated as "wave".

Results

Fraternal TEWs. The fraternal TEWs reported here occurred on 2010 August 18, and the pre-eruption evolution is shown in SMART Hα, AIA 304 Å and EUVI-A 304 Å (Fig. 1). Half an hour prior to the eruption (∼04:41 UT), two small filaments (white arrows in panels (a)-(b)) appeared suddenly
and rose slowly from the source region behind the northwest limb. The two small filaments were clearly disconnected with different chiralities, one hour earlier in the disk view of EUVI-A (white arrows and black dotted lines in panel (c)). Interestingly, a jet (marked by the cyan arrow) and a new long filament (green arrows) occurred during the filament ascent, and the jet clearly originated from the junction (see the blue arrow) of two small filaments in the disk view of EUVI-A (panels (d)-(f)). It is likely that the jet and the newly-formed long filament resulted from the collision and subsequent magnetic reconnection of the two small filaments. Immediately, this newly-formed long filament lifted southwestwards in a non-radial direction (green arrows) (panels (g)-(h)). On the other hand, the jet moved northwards (cyan arrows in bottom panels), and had an initial speed of $\sim 207 \text{ km s}^{-1}$ (panel (h1)) along S0 (panel (h)). The measured jet speed is highly supersonic and is consistent to be in the range of local Alfvén speeds, supporting the scenario of reconnection.

Ahead of the ejecting jet, a faint wave (W1) formed and is visualised in intensity-normalized images of AIA 211 Å and EUVI-A 195 Å (Fig. 2 and Movie S1). W1 mainly propagated northeastwards in the lower corona, and was much clearer in the disk view of EUVI-A, due to the projection effect (red arrows in panels (a)-(b)). There is a loop-like dimming structure (the yellow arrow) propagating visualised in difference images of AIA 193 Å (panel (c)), what is an indicator of the expansion of a group of overlying coronal loops (L1). On the disk view, the north end of L1 follows the faint wavefront (yellow and red arrows in panel (d)), which reflects a close relation between the propagating W1 and the expanding L1. In the time-distance plot (panel (e)) along S1, the expansion speed of L1 is estimated to be a supersonic $\sim 167 \text{ km s}^{-1}$ (dotted lines with asterisks), and there is also a close temporal and spacial relationship between the jet and the onset of the L1 expansion (the blue asterisk and the green arrow). In the time-distance plots of intensity-normalized images along S2 and S3 (panels (f)-(g)), it is shown that W1 started at $\sim 04:58$ UT (blue asterisks) with a nearly linear speed of $\sim 230 \text{ km s}^{-1}$, and the wavefront in EUVI-A 195 Å is stronger than its counterpart in AIA 211 Å.

In the meantime of the northwards propagation of W1, the newly-formed long filament also kept rising and eventually erupted (Fig. 3). The filament (green arrows) lifted southwestwards and quickly vanished in AIA 171 Å (panels (a)-(d)). However, a hot channel appeared in AIA 131 and 94 Å (orange arrows in panels (e)-(f)), which is an indicator of a high-temperature
flux rope [33]. Meanwhile, there formed the current sheet containing plasma blobs beneath the flux rope (red arrows in panels (d)-(f)), which was studied in details by Takasao et al. [34]. The legs of the erupting flux rope (orange arrows) remain still anchored in the solar surface, and the post-eruption cusp structure (pink arrows) appeared in the eruption center (panels (h)-(i)).

Surprisingly, the flux rope eruption was followed by another wave (W2) that mainly travelled southwards (see Fig. 4 and Movie S2). W2 was much stronger than W1, which is apparent in intensity-normalized images in AIA 211 Å and EUVI-A 195 Å. W2 was closely associated with the expansion of another group of coronal loops (L2; cyan arrows in top panels). W2 propagated southwards along the limb, as seen in the AIA view, and displayed an arc shape in the disk view (yellow and red arrows in panels (c)-(d)). In the time-distance plots along S4 and S5 (panels (e)-(f)), W2 shows a nearly constant velocity of $\sim 390 \text{ km s}^{-1}$ (yellow and red lines with asterisks) that is highly supersonic and likely super-Alfvénic, and set off at $\sim 05:20$ UT (blue asterisks), closely following the flux rope eruption.

Identical TEWs. The identical TEWs occurred on 2011 June 1, and the related eruption is shown in Fig. 5. The eruption region (the dotted box) is comprised of a central parasitic negative polarity (N1), and surrounding positive polarities that formed a circular neutral line, and a sunspot with negative polarity (N2) located at the west boundary (panel (a)). It is apparent that the filament consisted of two branches (white arrows) that lay along the circular neutral line, and are rooted at the central N1 and the strong positive polarity (P1) in the north (panels (b)-(c)). Likely due to some disturbances from P1, the filament erupted as a jet (red arrows in panels (d)-(f)). It is noteworthy that the escaping jet was guided by a bundle of coronal loops (L3; the yellow arrow) that connected the P1 and the N2, which was best seen in AIA 94 Å (panel (d)). After the eruption, there appeared a cusp structure (the orange arrow) connecting P1 and the remote N2 over the flare loops (the green arrow), as a result of the explosion of the overlying L3 (panel (g)). Interestingly, the eruption failed and left a bunch of filament threads rooted at the P1 (red arrows in panels (h)-(i)), which indicates the confinement from a higher group of coronal loops.

Following the eruption, the taller group of confined loops (L4; dashed curves) is apparent in the running difference images, and interestingly, two waves successively formed in a short period (see Fig. 6 and Movie S3). The first wave (W3) emerged from the expansion direction of L3, and the initially
narrow wavefront then became diffuse (red arrows in panels (a)-(d)). Following the expansion of L4, the second wave (W4) formed at the south flank of the expanding L4, ∼150 Mm behind W3 (the red and cyan arrows in panel (d)). The front of W4 developed into an arc shape some minutes later (the cyan arrow in panel (f)). Note that a strong wave (yellow arrows) came from the south, and interacted with W3-W4 propagating southwards (panels (e)-(f)). From the intensity-normalized time-distance plot in AIA 193 Å along S6 (panel (g)), the erupting filament speed of ∼250 km s\(^{-1}\), again a highly supersonic value, is estimated after extricating from the L3 confinement, what then quickly began to fall back (the pink arrow) at ∼02:50 UT (the blue vertical line), likely due to the restriction by L4. In the running-difference time-distance plot in AIA 193 Å along S7 (panel (h)), W3 and W4 started at ∼02:44 and ∼02:49 UT (blue asterisks), respectively, and the likely both supersonic and super-Alfvénic speed of W3 (∼495 km s\(^{-1}\)) was higher than that (∼370 km s\(^{-1}\)) of W4, and two waves encountered the south strong wave (the yellow arrow). Due to the lower cadence, the wavefronts of W3-W4 consisted of some discrete brightenings (red and cyan arrows) in the running-difference time-distance plot along S8 (panel (i)).

Discussion
The observational results presented above are evidences for two distinct scenarios of TEWs that successively occurred in a single eruption in a short interval (∼22 minutes and ∼5 minutes) and TEWs were confirmed by two different viewpoints from SDO and STEREO. W1-W4 had a linear speed in the range of ∼230-500 km s\(^{-1}\) that is highly supersonic and likely super-Alfvénic giving away hints about their nature, which is then consistent with the interpretation of fast-mode MHD waves. Two scenarios show two different formation situations of these TEWs. In the first scenario, W1 and W2 were separately associated with two erupting portions (the precursor jet and the first filament eruption) that simultaneously formed during the magnetic reconnection process between two small filaments. In the second scenario, both W3 and W4 were associated with the same filament eruption in the form of blowout jet [35, 36]. Therefore, we refer two scenarios as "fraternal TEWs" and "identical TEWs", respectively.

How did these TEWs formed? Firstly, we superimposed the magnetic field lines extrapolated by the potential field source surface[37] (PFSS) model on the intensity-normalized images for the fraternal TEWs, and, on difference images for the identical TEWs (see Fig. 7). For the fraternal TEWs (top panels), W1 and W2 (yellow and red arrows) appear at the flanks of
the yellow and red loops at different times. For the identical TEWs (bottom panels), the loop-like dimmings (the white arrow) and remote dimmings (purple arrows) probably indicate the explosion of the orange loops and the expansion of cyan loops. Hence, the orange, red, and orange, and cyan extrapolated loops are corresponding to the observations of L1, L2, L3, and L4, respectively.

Secondly, we proposed a generation sketch of the two distinct scenarios of TEWs (Fig. 8), in which the selected important extrapolated coronal loops (yellow, red, orange, and cyan lines) are superimposed on the extrapolated magnetogram (top panels) and the HMI magnetogram (bottom panels).

For the fraternal TEWs (top panels), two small filaments (brown and pink lines) slowly rose and interacted with each other (the yellow star symbol), which simultaneously produced a jet and a long filament. The powerful jet moved northwards (the dashed arrow) and punched the northern overlying yellow L1, and the rapid lateral expansion of L1 gave birth of W1 (the cyan shade). On the other hand, the newly-formed long filament (the purple rope) erupted and forced the southern overlying red L2 to expand suddenly, and the W2 formed (the blue shade) at the east flank of the expanding green loops.

For the identical TEWs (bottom panels), the filament eruption initially pushed the lower overlying orange L3, and W3 formed (the yellow shade). After the explosion of L3, the erupting filament hit the higher overlying cyan L4, and W4 was formed (the green shade) at the south flank of the expanding L4. Therefore, we suggested that the four waves were driven by the rapid expansions of overlying loops (the supplementary Figure 1 and 2).

TEWs in a single eruption are two fast-mode MHD waves, which is different from the two components of the fast-mode wave and the coronal reconfiguration signature in the hybrid model, see e.g. [22, 27]. On the other hand, there exist reports on multiple-wave phenomena, e.g. the quasi-periodic fast-propagating (QFP) waves and the homologous waves. QFP waves propagate as wave trains at the local Alfvén speed along open field lines, and it is believed that QFP waves are excited by repetitive flaring energy releases [38, 39]. Meanwhile, homologous waves occur successively from the same place in a few hours or days, but they are generated by a series of distinct eruptions from the same region [40, 30]. In this study, we report TEWs triggered by the rapid expansion of overlying loops, and both waves were closely associated with a single eruption. Hence, TEWs are also intrinsically different from the QFP waves and homologous waves.
Why are TEWs rare, though they have the same physical nature and driving mechanism with that of a single wave? It is likely because the TEWs easily mixed together. Assuming that two groups of coronal loops stay near or expand in close directions, the two waves generated will mix and become hardly distinguishable from each other. If a wave-related strong eruption invokes a series of groups of coronal loops, then a series of wave segments will compose a large arc-like or circular wavefront. Hence, we further suggest that some visible wavefront consist of a series of undistinguishable wave segments that are triggered by a series of groups of coronal loops.

The discovery of TEWs also indicate that there should be more EUV waves around. We point out that the key for the formation of TEWs is the expansion that is divided in the directions of two separate groups of coronal loops in a single eruption. Actually, it is ubiquitous for the plasma motions in the solar corona that consists of building blocks of coronal loops. Hence, the EUV wave should be prevalent in the solar corona. However, the number of detectable EUV waves is far less than the expected one, which is possibly because most weak and small EUV waves are submerged by ubiquitous coronal loops around, or due to some waves may be at lower temperatures than what the current filters can detect.

Methods

Data and Observations.

For the first scenario, the filament eruption occurred beyond the northwest limb on 2010 August 18, and involved two EUV waves, a C4.5 flare, and a partial halo CME (https://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/2010_08/univ2010_08.html) with a linear speed of 1471 km s$^{-1}$. The source region, located at the mixture polarities of National Oceanic and Atmospheric Administration (NOAA) Active Region (AR) 11093 and 11099, was confirmed by the ARs on the solar disk on August 14 in Helioseismic and Magnetic Imager[41] magnetograms.

For the second scenario, the filament eruption occurred at AR 11228 near the northeast limb on 2011 June 1. The eruption involved two EUV waves, and a C2.6 flare. During the eruption, there was a slow CME (https://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/2011_06/univ2011_06.html) with a linear speed of 259 km s$^{-1}$, which was better seen in the view of COR1 (https://cor1.gsfc.nasa.gov/catalog). However, the CME originated from another eruption in AR 11227 in the south hemisphere.

Besides the view provided by SDO, the two scenarios were also captured by the spacecrafts A and B of STEREO, respectively. We used the EUV
observations from the Atmospheric Imaging Assembly\[42\] (AIA) on-board SDO and from the Extreme Ultraviolet Imager\[43\] (EUVI) on the STEREO. The AIA instrument contains seven EUV wavelengths that involve a wide range of temperature coverage, and its images have a field of view (FOV) of $1.5 \, R_\odot$ with a pixel resolution of 0.6” and a cadence of 12 s. The EUVI images have a pixel resolution of 1.58”, and their cadences are 2.5 minutes for both the 195 Å and 304 Å. In addition, the filaments and the associated jet, observed in the first scenario, were also recorded by the Hα filtergrams from the Solar Magnetic Activity Research Telescope\[44\] (SMART) with a solar imaging system of Solar Dynamics Doppler Imager\[45\] at Hida Observatory. The Hα images have a cadence of 1 minute and a pixel size of \sim1”.

Kinematic Analysis.

To display better the faint wavefronts in the first scenario, the EUV images are processed by the intensity-normalization method, where the value at a pixel is normalized by all the intensities at this same pixel among a set of the original images. For the diffuse wavefronts in the second scenario, the EUV images are subtracted by a fixed image and the previous image with a fixed time gap. The evolutions of the EUV waves and the associated erupting cores and loops, are analysed by the time-slice approach\[19\], in which a time-distance plot was constructed with a stack of slices along a selected direction for a set of images. The slices include S0-S8 with starting triangles. In the first scenario, S0 is in the original ejection direction of the jet, and S1 is in the vertical northward direction, and S2 is an arc at the height of 0.1 R_\odot over the northwest limb, and S3 is in the lateral expanding direction of the north end of L1, and S4 is an arc path with the height of 0.1 R_\odot over the southwest limb, and S5 is in the direction of 20° counted clockwise from the south in the perspective of EUVI-A. In the second scenario, S6 is in the direction of the erupting filament, and S7-S8 are in the vertical southward directions in the view of AIA and EUVI-B, respectively. The speeds are obtained by fitting with the linear (linfit.pro) function, assuming a measurement uncertainty of 4 pixels (\sim 1.74 Mm) for the selected points. On the other hand, the coronal magnetic field lines are also extrapolated using the PFSS package of SolarSoftWare. The coronal magnetic filed lines are also extrapolated with pfss_trace_field.pro and pfss_draw_field.pro, parts of the PFSS package of SolarSoftWare (see the template routine of pfss_sample1.pro).
References

[1] De Pontieu, B., McIntosh, S.W., Carlsson, M. et al. (2007), Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind, Science, 318, 1574.

[2] Jess, D. B., Mathioudakis, M., Erdélyi, R., Crockett, P. J., Keenan, F. P., Christian, D. J., (2009), Alfvén waves in the lower solar atmosphere. Science 323, 1582.

[3] McIntosh, S. W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M., (2011), Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477.

[4] Delaboudinière, J.-P., Artzner, G. E., Brunaud, J. et al., (1995), EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission, Solar Physics, 162, 291.

[5] Moses, D., Clette, F., Delaboudinière, J.-P., et al. (1997), EIT Observations of the Extreme Ultraviolet Sun, Solar Physics, 175, 571.

[6] Thompson, B. J., Plunkett, S. P., Gurman, J. B., et al. (1998), SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997, Geophysical Research Letters, 25, 2465.

[7] Warmuth, A. (2015), Large-scale Globally Propagating Coronal Waves, Living Reviews in Solar Physics, 12, 3.

[8] Ballai, I. (2007), Global Coronal Seismology, Solar Physics, 246, 177.

[9] Kwon, R.-., Kramar, M., Wang, T., Ofman, L., Davila, J. M., Chae, J. & Zhang, J. (2013), Global Coronal Seismology in the Extended Solar Corona through Fast Magnetosonic Waves Observed by STEREO SECCHI COR1, The Astrophysical Journal, 776, 55.

[10] Carley, E. P., Long, D. M., Byrne, J. P., Zucca, P., Bloomfield, D. S., McCauley, J. and Gallagher, P. T., (2013), Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere, Nature Physics, 9, 811.

[11] Ofman, L. & Thompson, B. J. (2002), Interaction of EIT Waves with Coronal Active Regions, The Astrophysical Journal, 574, 440.
[12] Wills-Davey, M. J., DeForest, C. E., & Stenflo, J. O. (2007), Are “EIT Waves” Fast-Mode MHD Waves? The Astrophysical Journal, 664, 556.

[13] Wang, H., Shen, C., & Lin, J. (2009), Numerical Experiments of Wave-like Phenomena Caused by the Disruption of an Unstable Magnetic Configuration. The Astrophysical Journal, 700, 1716.

[14] Chen, P. F., Wu, S. T. & Shibata, K. (2002), Evidence of EIT and Moreton Waves in Numerical Simulations, The Astrophysical Journal letters, 572, L99.

[15] Delannée, C., Török, T., Aulanier, G., et al. (2008), A New Model for Propagating Parts of EIT Waves: A Current Shell in a CME, Solar Physics, 247, 123.

[16] Attrill, G. D. R., Harra, L. K., van Driel-Gesztelyi, L., et al. (2007), Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? The Astrophysical Journal letters, 656, L101.

[17] Kaiser, M. L., Kucera, T. A., Davila, J. M., et al. (2007), The STEREO Mission: An Introduction. Space Science Reviews, 136, 5.

[18] Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. (2012), The Solar Dynamics Observatory (SDO), Solar Physics, 275, 3.

[19] Liu, W., Nitta, N. V., Schrijver, C. J., et al. (2010), First SDO AIA Observations of a Global Coronal EUV “Wave”: Multiple Components and “Ripples”, The Astrophysical Journal letters, 723, L53.

[20] Chen, P. F. & Wu, Y. 2011, First Evidence of Coexisting EIT Wave and Coronal Moreton Wave from SDO/AIA Observations, The Astrophysical Journal letters, 732, L20.

[21] Downs, C., Roussev, I. I., van der Holst, B., et al. (2012), Understanding SDO/AIA Observations of the 2010 June 13 EUV Wave Event: Direct Insight from a Global Thermodynamic MHD Simulation, The Astrophysical Journal, 750, 134.

[22] Liu, W. & Ofman, L. (2014), Advances in Observing Various Coronal EUV Waves in the SDO Era and Their Seismological Applications (Invited Review), Solar Physics, 289, 3233.
[23] Mei, Z. X., Keppens, R., Cai, Q. W., et al. (2020), Mon Not Roy Astron Soc, 3D numerical experiment for EUV waves caused by flux rope eruption, Monthly Notices of the Royal Astronomical Society, 493, 4816

[24] Gallagher, P. T. & Long, D. M. 2011, Space Science Reviews, 158, 365

[25] Patsourakos, S. & Vourlidas, A. (2012), On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode (Invited Review), Solar Physics, 281, 187.

[26] Chen, P. F. (2016), Global Coronal Waves, Geophysical Monograph Series, 216, 381.

[27] Long, D. M., Bloomfield, D. S., Chen, P. F., et al. (2017), Understanding the Physical Nature of Coronal “EIT Waves”, Solar Physics, 292, 7.

[28] Shen, Y. D., Li, B., Chen. P. F., et al. (2020), Research progress on coronal extreme ultraviolet waves (in Chinese), Chin Sci Bull, 65, 3909.

[29] Zheng, R., Jiang, Y., Yang, J., et al. (2012), An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory, Astronomy and Astrophysics, 541, A49.

[30] Zheng, R., Jiang, Y., Yang, J., et al. (2012), Homologous Extreme Ultraviolet Waves in the Emerging Flux Region Observed by the Solar Dynamics Observatory, The Astrophysical Journal, 747, 67.

[31] Zheng, R., Xue, Z., Chen, Y., et al. (2019), The Initial Morphologies of the Wavefronts of Extreme Ultraviolet Waves, The Astrophysical Journal, 871, 232.

[32] Zheng, R., Chen, Y., Wang, B., et al. (2020), An Extreme Ultraviolet Wave Associated with a Solar Filament Activation, The Astrophysical Journal, 894, 139.

[33] Zhang, J., Cheng, X. & Ding, M. D. (2012), Observation of an evolving magnetic flux rope before and during a solar eruption, Nature Communications, 3, 747.

[34] Takasao, S., Asai, A., Isobe, H., Shibata, K. et al. (2012), Simultaneous Observation of Reconnection Inflow and Outflow Associated with the 2010 August 18 Solar Flare, The Astrophysical Journal letters, 745, L6.
[35] Moore, R. L., Certain, J. W., Sterling, A. C. & Falconer, D. A. (2010), Dichotomy of solar coronal jets: standard jets and blowout jets, The Astrophysical Journal, 720, 757.

[36] Li, X., Zhang, J., Yang, S., Hou, Y. & Erdélyi, R. (2018), Observing KelvinCHelmholtz instability in solar blowout jet, Scientific Reports, 8, 8136.

[37] Schrijver, C. J. & De Rosa, M. L. (2003), Photospheric and heliospheric magnetic fields, Solar Physics, 212, 165.

[38] Liu, W., Title, A. M., Zhao, J., et al. (2011), Direct imaging of quasi-periodic fast propagating waves of \sim2000 km s$^{-1}$ in the low solar corona by the solar dynamics observatory atmospheric imaging assembly, The Astrophysical Journal letters, 736, L13

[39] Liu, W., Ofman, L., Nitta, N. V., et al. (2012) Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA, The Astrophysical Journal, 753, 52.

[40] Kienreich, I. W., Veronig, A. M., Temmer, M., et al. (2011) , Case Study of Four Homologous Large-scale Coronal Waves Observed on 2010 April 28 and 29, The Astrophysical Journal, 727, L43.

[41] Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G. et al. (2012), The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), Solar Physics, 275, 207.

[42] Lemen, James R., Title, Alan M., Akin, David J., Boerner, Paul F. et al. (2012), The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Solar Physics, 275, 17.

[43] Howard, R. A., Moses, J. D., Vourlidas, A., et al. (2008), Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Science Reviews, 136, 67.

[44] UeNo, S., Nagata, S.-i., Kitai, R., Kurokawa, H., Ichimoto, K.: (2004), The development of filter vector magnetographs for the Solar Magnetic Activity Research Telescope (SMART), In: Moorwood, A.F.M., Iye, M. (eds.) Ground-Based Instrumentation for Astronomy, Proc. SPIE 5492, 958.
[45] Ichimoto, K., Ishii, T. T., Otsuji, K., Kimura, G. et al. (2017), A New Solar Imaging System for Observing High-Speed Eruptions: Solar Dynamics Doppler Imager (SDDI), Solar Physics, 292, 63

Competing financial interests: The authors declare no competing financial interests.

Supporting Material:
There are six pieces: Supplementary Figure 1, 2 and supplementary Movie S1, S2, S3.
Figure 1: The evolution of the jet in negative filtergrams of SMART Hα (left panels) and in images of AIA 304 Å (middle panels) and EUVI-A 304 Å (right panels). Two small filaments and their junction are pointed out by white and blue arrows, respectively. The cyan arrows indicate the jet, and green arrows indicate the newly-formed long filament. The dotted line (S0) starting at a triangle is used to derive the jet speed that is shown in the time-distance plot of panel (h1).
Figure 2: W1 in intensity-normalized images between 04:30 and 06:30 UT in AIA 211 Å (left panels) and EUVI-A 195 Å (right panels). The green and red arrows indicate the wave, and the yellow arrows point out coronal loops L1. The cyan and white arrows show the dimmings, and the solid lines (S1-S3) starting at triangles are used to derive the speeds that were shown in time-distance plots (bottom panels). The dotted lines with asterisks are used to calculate the wave speeds. The green arrow indicate the jet.
Figure 3: The eruption of the newly-formed long filament in Hα negative filtergram and AIA 304, 171, 131, and 94 Å. The green arrows indicate the newly-formed filament, and the red arrows indicate the current sheet. The pink arrow indicates post-flare arcades, and the orange arrows indicate the hot channel. The dotted box in panel (g) represents the field of view (FOV) of other panels.
Figure 4: W2 in intensity-normalized images between 04:30 and 06:30 UT in AIA 211 Å (left panels) and EUVI-A 195 Å (right panels). The cyan arrows point out the coronal loops L2, and yellow and red arrows indicate W2, and the solid lines (S4 and S5) starting at triangles are used to derive the wave speeds that were shown in time-distance plots (bottom panels). The dotted lines with asterisks are used to calculate the wave speeds.
Figure 5: The filament eruption in the HMI magnetogram, AIA 304, 193, and 94 Å, and EUVI-B 304 and 195 Å. The white arrows indicate the filament, and P1, N1, and N2 represent associated magnetic polarities. The red arrows indicate the erupting filament, and the green arrow points out the flare loops. The yellow and orange arrows indicate coronal loops L3 and the cusp structure, respectively. The dotted boxes represents the FOV of panel (b) and (c), respectively. The yellow and blue contours superposed on panel (b) represent the positive and negative magnetic polarities with levels of 200, 400, 600 Gauss. The dotted line (S6) starting at a diamond is used to derive the filament speed that is shown in the time-distance plot of Figure 6.
Figure 6: The identical twin waves in running difference images in AIA 193 Å and EUVI-B 195 Å. The red and cyan arrows indicate W3 and W4, and the yellow arrow show the wave that interacted with W3 and W4. The blue vertical line shows the beginning of the falling back of the filament, and the pink arrow shows the falling material. The dashed lines (S6-S8) starting at triangles are used to derive the wave speeds that were shown in time-distance plots (bottom panels), and the dotted lines with asterisks are used to calculate the speeds.
Figure 7: The extrapolated PFSS field lines superimposed on the intensity-normalised images in AIA 211 Å and EUVI-A 195 Å (top panels) and the difference images in AIA 193 Å and EUVI-B 195 Å (bottom panels). The blue and pink lines represent the coronal closed loops and open field lines, respectively. The yellow, green, cyan, and orange lines are the vital loops (L1-L4) for the generation of twin waves. The yellow and red arrows show the fraternal twin waves, and the white and purple arrows show the coronal dimmings associated with identical twin waves.
Figure 8: The sketch of the events based on the PFSS extrapolated magnetogram (bottom panels) and HMI magnetogram (bottom panels). The yellow, green, cyan, and orange lines are the vital loops for the generation of twin waves, and the cyan, blue, yellow, and green shades represent the wavefronts of W1-W4. The yellow star indicates the magnetic reconnection between two small filaments (brown and pink lines), and the red dashed arrow represents the trajectory the jet. The thick lines show the erupting filaments or jets. The black arrows indicate the moving direction of the erupting jet and filament.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- MovieS1.mp4
- MovieS2.mp4
- MovieS3.mp4
- GraphicalAbstract1.pdf
- GraphicalAbstract2.pdf