Targeted Genome Engineering and Its Application in Trait Improvement of Crop Plants

Xiaoyu Yang¹,²*, Linlin Luo¹, Beixin Mo¹, Lin Liu¹*

¹Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
²Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China

Email: *xyyang-1982@163.com, *linliu@szu.edu.cn

Abstract

Targeted genome engineering refers to technologies that are used for site-specific genome modifications such as knockout, knockin and transcriptional regulation of genes of interest in organisms. Site-specific recombination system, zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) technologies are the representatives of targeted genome engineering and have been widely used in crop basic and applied research. In this review, we introduce the basic information and action modes of these different genome engineering technologies, summarize the recent progresses of targeted genome engineering technologies and their applications in crop improvement, and propose perspectives for genome engineering-mediated modifications of crop plants in the future.

Keywords

Targeted Genome Engineering, Site-Specific Recombination, ZFN, TALEN, CRISPR/Cas9, Crop Improvement

1. Introduction

In the past decades, global climate changes and improper agricultural practices have caused serious environmental problems such as soil salinization and acidification [1], soil erosion [2], drought [3] and explosion of insect pests [4], which severely challenge agricultural production in the world, while simultaneously the
increasing of global crop productivity is required to meet the growing demand for grain products from continuously increased world population [5]. It becomes an urgent task for current agricultural scientists to create novel crop varieties with better agronomic traits such as high yield and grain quality, high nutrient usage efficiency, and good acclimation capacity to abiotic and biotic stresses. Conventional breeding strategies such as genetic hybridization have been widely used for creation of new crop varieties and obtained tremendous successes for a long period, but these processes are commonly time-consuming and labor-intensive, thus being difficult to satisfy modern plant breeding objectives.

The rapid development of molecular biology and transgene technologies has made it feasible to genetically modify the traits of interest, and lots of transgenic plants harboring beneficial agronomic traits such as golden rice, a kind of GM rice that is able to accumulate β-carotene in grain, have been generated [6] [7] [8]. In contrast to the widespread utilization of transgenic technology in the basic and applied research of crops in the lab, commercialization of GM crops is still strictly regulated by governments in the world such as China, Japan and European countries because of intensive concerns about biosafety of GM crops [9]. Therefore, only a very small portion of GM crops have been released by now [10] [11] [12] [13].

Targeted genome engineering refers to technologies that are used for site-specific genome modifications including gene knockout, knockin and transcriptional regulation [14] [15]. Site-specific recombination system, ZFNs, TALENs and CRISPR/Cas9 technologies are the representatives of targeted genome engineering. In comparison to the conventional transgenic technology, genome editing has obvious advantages such as easy design and construction, high precision and efficiency of modifications for genome loci responsible for traits of interest, being capable of stacking multiple genes of interest simultaneously, generation of descendants without transgenic elements, and so on. Therefore, targeted genome engineering has attracted extensive attentions from plant scientists and breeders, and has been rapidly adopted in crop improvement, especially with the emergence of CRISPR/Cas9 system since 2013 [16] [17]. In this review, we summarize recent progresses of targeted genome engineering and its application in genetical modifications of crop plants, and propose perspectives for future research on genome editing-based crop improvement.

2. Site-Specific Recombination System

Site-specific recombination refers to the reaction of two DNA molecules catalyzed by specific enzymes (recombinases) at their cognate pairs of sequences or target sites [18]. This recombination requires three components, a recombinase such as Cre responsible for DNA editing and two DNA partners such as LoxP cognate sites recognized by the recombinase. The recombinases can be divided into two families, tyrosine recombinase family and serine recombinase family.
The tyrosine recombinases contain a conserved tyrosine active site and catalyze DNA rearrangement via formation and resolution of a Holliday junction intermediate [19], while the serine recombinases contain a conserved serine active site and catalyze site-specific DNA recombination through a concerted, four-strand cleavage and rejoining mechanism [20].

Among these site-specific recombination systems, Cre/LoxP is the most commonly used one, which is composed of Cre recombinase and 34-bp LoxP sequences that can be recognized by Cre [21]. When the Cre recombinase is expressed, recombination events will occur to the cells harboring LoxP recognition sites in their genomes. In general, there are three possible outcomes from the Cre/LoxP-derived recombination including inversion, translocation or excision, depending on the initial arrangement of LoxP recombination sites (Figure 1). Inversion event or excision event can occur when the recombination sites are located on the same chromosome with the same orientation or the opposite orientation, respectively. Translocation event can result from the exchange of DNA segments when the two recombination sites are located on separate chromosomes with the same orientation [21].

There are two main applications of site-specific recombination system in genetic modifications of crop plants: removal of undesirable transgenic elements such as selectable marker genes and site-specific integration of genes of interest. For example, by using Cre/LoxP-mediated recombination, the selectable marker gene, HPT, has been successfully eliminated from transgenic mustard plants with insect resistance [22]. Elimination of selectable marker genes has also been reported in rice [23], potato [24], tomato [25] and so on. Cre/LoxP system has been adopted in construction of maize and rice minichromosomes as well, wherein genes of interest are expected to be stacked without limitations [26] [27]. The application of Flp/Frt recombination system has also been reported for elimination of selectable marker genes in plants such as rice [28] and maize [29]. The representative GM crops that were generated via site-specific recombination recently are summarized in Table 2.

Although targeted genome editing has been realized via different site-specific recombination tools, there are still disadvantages limiting their applications in current crop improvement such as the failure of complete removal of transgenic elements, complicated design for vectors, time-consuming multiple transformation and genetic hybridization, and relatively low targeting efficiency [52].

Table 1. Representative recombinases responsible for site-specific recombination [18].

Recombinase family	Representative
Tyrosine recombinase family	Cre, Flp, R, lnt, Int of Tn916/Tn1545, Intf, XerC/D, Tnp1 of Tn4430, FimB/E, Rci of R64, XisA/C
Serine recombinase family	Cin or Gin, Int of φC31/Bbv1/φRv1, TnpR of Tn3/y5, Sin of S. aureus, ParA of RP4, Hin, OrfA of IS607/IS1535, TnpX of Tn4451, SpoIVCA, XisF
3. ZFN Technology

ZF proteins are the common group of DNA binding proteins in eukaryotic organisms. Each ZF protein is composed of about 30 amino acids in a conserved β-β-α configuration [53]. The DNA binding ability is determined by the specific amino acids present on the surface of the α-helix in each ZF with varying specificity. Based on the specific DNA binding trait, a targeted genome editing platform, ZFNs, has been constructed (Figure 2). A ZFN system is composed of two arrays of ZF proteins and a nuclease such as Fok I. Each array of ZF proteins is linked with a subunit of Fok I. Fok I can work normally after the two arrays of ZF proteins bind to the DNA sites of interest and two subunits of Fok I are dimerized. There are several strategies used for the assembly of ZFNs. The first one is called as modular assembly, a strategy based on the library of ZFs with well-known DNA-binding specificities. ZFNs can also be assembled through web-based tools by combining random assembly of multi-finger libraries with specificity screening or by companies.

In general, there are two types of DNA editing by ZFNs (Figure 2). The first type is the targeted gene knockout, of which the purpose is to create a null mutant by interfering with the expression of genes of interest at DNA level. For example, the HIV-1 resistance has been detected in the primary T cells and the hematopoietic stem/progenitor cells by ZFN-mediated knockout of the CC chemokine receptor 5 [54] [55]. A maize ipk1 mutant line has also been generated by ZFN-mediated gene knockout, leading to a modified phytate biosynthesis pathway in the resulted maize plants [56]. The other is the targeted gene
Table 2. The application of site-specific recombination system in targeted gene modifications of crop plants.

Modification type	Crop	System	Target	Purpose	Reference
	Apple	Flp/Frt	NPTII, RVi6	Marker gene excision, scab resistance	[30]
Removal of transgenic elements	Barley	phiC31	GFP	Excision assessment	[31]
	Barley	Cre/LoxP	BAR	Marker gene excision	[32]
	Grapevine	Flp/Frt	NPTII	Marker gene excision	[33]
	Maize	Cre/LoxP	GAT, CFP	Excision assessment	[34]
	Maize	Cre/LoxP	GFP	Marker gene excision	[35]
	Mustard	Cre/LoxP	HPT	Marker gene excision	[22]
	Oilseed rape	Cre/LoxP	NPTII	Marker gene excision	[36]
	Orange	Cre/LoxP	AATCR, IPT	Canker resistance, marker gene excision	[37]
	Potato	Cre/LoxP	BAR	Marker gene excision, Transgenic element excision	[38]
	Rice	Cre/LoxP	NOS terminator	Enhancement of tocopherol content, marker gene excision	[39]
	Rice	Flp/Frt	HPT, TC	Marker gene excision	[40]
	Soybean	Cre/LoxP	NPTII	Marker gene excision	[41]
	Tobacco	Cre/LoxP	NPTII	Marker gene excision	[42]
	Tobacco	CinH-RS2	GFP	Excision assessment	[43]
	Tobacco	ParA-MRS, CinH-RS2	RFP	Marker gene excision	[44]
	Wheat	Cre/LoxP	BAR	Marker gene excision	[45]
Gene integration	Maize	Cre/LoxP	RFP	Insertion assessment	[26]
	Maize	Flp/Frt	PMI, RFP	Insertion assessment	[46]
	Oilseed rape	Cre/LoxP, Flp/Frt	RFP, GFP	Insertion assessment	[47]
	Rice	Cre/LoxP	GUS	Insertion assessment	[48]
	Rice	Cre/LoxP, ZFN	UBI promoter, clone sites for genes of interest	Insertion assessment	[49]
	Soybean	Flp/Frt	ALS, CFP	Insertion assessment	[50]
	Tobacco	R/Rs	LUC	Insertion assessment	[51]

knockin, of which the purpose is to create organisms expressing genes of interest by introducing exogenous genes at a specific site of the genome or by repairing the mutation sites of endogenous genes. In this case, for example, ZFNs have been applied to repair the mutation sites that are closely associated with diseases such as haemophilia B [57], sickle-cell disease [58] and Parkinson’s disease [59]. In tobacco BY2 cells, a functional GFP gene has been successfully introduced into both the pre-integrated defective reporter construct and an endogenous locus.
Figure 2. Zinc finger (ZF)-mediated regulation of gene expression. (a) ZF nuclease (ZFN)-mediated genome editing. Arrays of ZF proteins recognize specific DNA sequences in the genome, and double-strand breakages (DSBs) will be generated by linked Fok I nuclease. The DSBs will be repaired by either non-homologous end joining (NHEJ) to produce knockout events or by homologous recombination (HR) to produce gene knockin events. (b) ZF-mediated transcriptional regulation of gene expression. By linking with specific transcription factors or repressors, ZFs can also be used to regulate gene expression at transcriptional level.

Despite the successes of ZF-associated technologies in previous studies, some disadvantages such as the complexity of assembly, context-dependent binding specificity and relatively low targeting efficiency have not been well addressed and thus limited the application of these technologies in current research [74].

4. TALEN Technology

TALEs are a group of natural proteins from the genus of plant bacteria, *Xanthomonas*, and can bind some specific DNA regions in plant genome through a series of 33-35 amino acid domains that each can recognize a single base pair [75]. The binding specificity of TALEs is dependent on the RVD, the two highly-variable amino acids at the position of 12 and 13 in each TALE (Table 4) [75]. TALEs can be designed to recognize specific DNA sequences in the genome. By
Table 3. The application of zinc finger nucleases (ZFNs) or ZF transcription factors in targeted gene modifications of crop plants.

Modification type	Crop	Target	Purpose	Reference
Knockout	Apple	GUS	Mutagenesis assessment	[62]
	Fig	GUS	Mutagenesis assessment	[62]
	Maize	IPK1	Alteration of inositol phosphate profile	[56]
	Poplar	LFY, AG	Complete sexual sterility	[63]
	Tobacco	SUR	Herbicide resistance	[64]
	Tobacco	GUS	Transgene disruption	[65]
	Soybean	DCL1a, DCL1b, DCL4a, DCL4b	Mutagenesis assessment	[66]

Knockin

Knockin	Crop	Target	Purpose	Reference
	Maize	PAT	Herbicide resistance	[56]
	Maize	AAD1	Herbicide resistance	[67]
	Maize	PAT	Herbicide resistance	[68]
	Maize	BAR	Herbicide resistance	[69]
	Rice	GUS	Identification of safe harbor loci	[70]
	Soybean	AAD1, DSM2, DGT28, HPTII, RPF	Multigene insertion assessment	[71]
	Tobacco	NPTII, RFP	Insertion assessment	[72]

Transcription activation

| Transcription activation | Oilseed rape | KASII | Improvement of oil production | [73] |

Table 4. The corresponding nucleotide of amino acid pairs in transcriptional activator-like effector (TALE) [75].

RVD in TALE	The corresponding nucleotide
NI (Asparagine and Isoleucine)	A
HD (Histidine and Aspartate)	C
NN (Asparagine and Asparagine)	G/A
NG (Asparagine and Glycine)	T

adding a nuclease such as the Fok-I, TALEN system has been developed to make DSBs on pre-selected genome sites to generate knockout or knockin editing in the genome (Figure 3).

For example, AvrXa7 is the effector-binding element in the promoter of a bacterial blight susceptibility gene Os11N3, and the TALEN-mediated knockout of this element has generated rice with resistance to bacterial blight [76]. In another report, rice fragrance has been improved by TALEN-mediated targeting to a defective badh2 allele, which is responsible for the synthesis of 2AP, a major fragrance compound in rice [77]. The TALE designer transcription factors have been used to regulate OCT4 and NANOG loci by targeting their enhancers in mammalian cells, leading to stimulation or inhibition of reprogramming somatic cells to the induced pluripotent cells [78], while similar applications have not been introduced into plants yet. Table 5 shows a summary of representative GM crops that were generated via TALEN recently.
Figure 3. Transcription activator-like effector (TALE)-mediated regulation of gene expression. (a) TALE nuclease (TALEN)-mediated gene knockout event based on non-homologous end joining (NHEJ) mechanism or gene knockin event based on homologous recombination (HR) mechanism. (b) TALE-mediated transcriptional regulation of gene expression. By linking with specific transcription factors, TALEs can also be used to regulate gene expression transcriptionally. The binding specificity of each TALE is dependent on repeat-variable di-residue (RVD) composition.

The single base recognition of TALE-DNA binding repeats affords greater design flexibility than triplet-confined ZF proteins, while the assembly of the large repetitive TALE modules is still a great challenge for the cloning of repeated TALE arrays [74].

5. CRISPR/Cas9 System

CRISPR/Cas is an adaptive innate immune system to defend against the invasion of viral and plasmid DNA in bacteria and archaea [99]. Scientists have found three types of CRISPR/Cas systems (type I, II and III) within a series of microbes, and each type includes a Cas protein and the corresponding CRISPR arrays [100]. These CRISPR/Cas arrays are composed of repeat sequences interspaced by spacer sequences, which are non-repetitive and derive from the short segments of viral or plasmid DNA often called as protospacer sequences. By transcribing the CRISPR arrays into crRNAs, Cas proteins can be directed to the target sites and make DSBs, resulting in the degradation of foreign genetic materials.
Table 5. The application of transcription activator-like effector nuclease (TALEN) technology in targeted gene modifications of crop plants.

Modification type	Crop Target	Purpose	Reference	
Knockout	*Brassica oleracea*	FRI	Mutagenesis assessment	[79]
	Maize	GL2	Alteration of wax compositions	[80]
	Maize	MTL	Haploid induction	[81]
	Peanut	FAD2	Alteration of lipid compositions	[82]
	Potato	SSR2	Inhibition of cholesterol synthesis	[83]
	Potato	ALS1	Mutagenesis assessment	[84]
	Potato	VIN	Reduction of acrylamide content	[85]
	Potato	SBE1, VINV	Alterations of starch compositions and cold sweetening trait	[86]
	Rice	11N3	Bacterial blight resistance	[76]
	Rice	BADH2	Improvement of grain fragrance	[77]
	Rice	11N3	Bacterial blight resistance	[87]
	Sugarcane	COMT	Alteration of cell wall composition	[88]
	Sugarcane	COMT	Alteration of cell wall composition	[89]
	Soybean	FAD2-1a, FAD2-1b	Alteration of lipid compositions	[90]
	Soybean	FAD2-1a, FAD2-1b, FAD3a	Alteration of lipid compositions	[91]
	Tobacco	ALS	Mutagenesis assessment	[92]
	Wheat	MLO	Powdery mildew resistance	[93]
Knockin	Barley	GFP	Insertion assessment	[94]
	Potato	ALS1	Herbicide resistance	[95]
	Potato	ALS1, NPTII	Insertion assessment, herbicide resistance	[96]
	Rice	ALS	Herbicide resistance	[97]
	Tobacco	YFP	Insertion assessment	[92]
	Tomato	35S promoter	Anthocyanin accumulation	[98]

Among the three CRISPR systems, the type II CRISPR system is the first one to be engineered for targeted genome editing in eukaryotic organisms (Figure 4). In this system DNA sequence bearing a 5’-NGG-3’ PAM can be recognized by a duplex of two non-coding RNAs, a crRNA and a tracrRNA, or with a sgRNA, which is a synthetic fusion of crRNA and tracrRNA, and then be degraded by Cas9 protein that is complexed with the duplex of crRNA and tracrRNA or the sgRNA [16] [17]. The Cas9 protein from *Streptococcus pyogenes* (SpCas9) has two nuclease motifs, HNH and RuvC, which play critical roles in generating DSBs at target sites [101]. The target specificity of CRISPR/Cas9 is determined by a seed sequence, which is a 12-base sequence upstream of the PAM and must match with the sequence of crRNA or sgRNA [102]. Compared with the
Figure 4. The basic components of a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) system and its application in targeted genome editing. (a) CRISPR/Cas9 or (b) CRISPR/Cas9n-mediated gene knockout event based on non-homologous end joining (NHEJ) mechanism or gene knockin event based on homologous recombination (HR) mechanism after the occurrence of Cas9 or Cas9n-induced double-strand breakages (DSBs). (c) CRISPR/dCas9-mediated transcriptional regulation of gene expression. By being fused with specific transcription factors, dCas9 can regulate gene expression transcriptionally via RNA-directed binding to specific genome sites. Targeted gene repression can also be realized via the only dCas9 associated with specific sgRNAs. The binding specificity of CRISPR/Cas9 system is dependent on a seed sequence, which is an about 12-base sequence upstream of the PAM sequence and must match with the crRNA or sgRNA.

formerly-designed ZFNs and TALENs, CRISPR/Cas9 system has more advantages such as the simplicity of design and assembly, the high efficiency of targeting and the versatility of application, and thus is expected to be a powerful tool for targeted genome editing (Table 6).
Table 6. Characteristic comparison of different targeted genome engineering systems.

	Cre/LoxP	Flp/Frt	ZFN	TALEN	CRISPR/Cas9
Design and assembly	Easy	Easy	Difficult	Difficult	Easy
Targeting site	34 bp	34 bp	9 - 18 bp for ZFN monomer, 18-36 bp for ZFN dimer	14 - 20 bp for TALEN dimer, 28 - 40 bp for TALEN dimer	23 bp including 20 bp binding site and 3 bp PAM, multiple editing simultaneously
Restriction for target sites on genome	High	High	No	No	Low
Mismatch tolerance at target site	No	No	Low	Low	Relatively high
Targeting efficiency	Low	Low	Low	Moderate	High
Repair mechanism	HR	HR	NHEJ and HR	NHEJ and HR	NHEJ and HR
Off-target effects	Not available	Not available	Low	Low	Low
Transgene-free in offspring	No	No	Yes	Yes	Yes

CRISPR/Cas9 is first reported to be efficient in targeted genome editing in mammalian cells at single-gene level [16] [17], multi-gene level [103] and even genome-wide level [104]. Thereafter, this system is adopted for gene knockout or knockin in plants such as Arabidopsis, tobacco, sorghum, rice, and wheat [105] [106]. By modifying two amino acids at the position of 10 and 841 from aspartate (D) and histidine (H) to alanine (A), scientists have successfully developed two variants of Cas9, Cas9n (D10A) with a nickase activity and dCas9 (D10A and H841A) without any catalytic activity. The two variants of Cas9 have been further developed to CRISPR/Cas9n [107] and CRISPR/dCas9 systems [108]. Some Cas9-derived base editor systems have also been established by fusing an adenine or a cytidine deaminase to a Cas9n protein [109]. Being different from the classical Cas9 system, the base editor systems can catalyze two kinds of nucleotide replacement reactions, from adenine (A) to guanine (G) or from cytosine (C) to thymine (T), depending on the deaminase that is linked to Cas9n [109]. Applications of these Cas9-derived systems have been reported in targeted genome editing. For example, in a comparison study of gene expression regulation by CRISPR/dCas9 and TALE designer transcription factor systems, scientists have demonstrated better performance in activation of gene expression by TALE activator system, while repression by CRISPR/dCas9 was similar with or better than TALE repressor [78]. The successful utilization of base editors has been well documented in crop plants such as rice, tomato, potato, wheat, maize, rape and watermelon as well [110]-[118]. To date, CRISPR/Cas9-mediated genome editing has been widely used for crop improvement and a number of GM crops with desired traits have been created (Table 7).

Recently, some orthologues of the classical Cas9 (SpCas9) have been identified in bacteria such as SaCas9 from Staphylococcus aureus and St1Cas9 from Streptococcus thermophilus [154], and been adopted in targeted genome modifications.
Table 7. The application of CRISPR/Cas9 in targeted gene modifications of crop plants.

Modification type	Crop	Target	Purpose	Reference
Knockout	Apple	DIPM1, DIPM2, DIPM3, DIPM4	Fire blight disease resistance	[119]
Knockout	Apple	PDS	Mutagenesis assessment	[120]
Knockout	Banana	PDS	Mutagenesis assessment	[121]
Knockout	Camelina	FAD2	Alteration of lipid compositions	[122]
Knockout	Cassava	PDS	Mutagenesis assessment	[123]
Knockout	Cassava	nCBP-1, nCBP-2	Brown streak disease resistance	[124]
Knockout	Citrus	LOB1	Citrus canker resistance	[125]
Knockout	Cucumber	eIF4E	Virus resistance	[126]
Knockout	Flax	EPSPS	Herbicide resistance	[95]
Knockout	Grape	IdnDH	Improvement of tartaric acid production	[127]
Knockout	Oilseed rape	FAD2	Alteration of lipid compositions	[128]
Knockout	Potato	ALS1	Herbicide resistance	[129]
Knockout	Tomato	GBSS	Alteration of starch content	[130]
Knockout	Potato	MYB44	Improvement of phosphate usage efficiency	[131]
Knockout	Potato	S-Rnase	Improvement of self-compatibility	[132]
Knockout	Rice	ERF922	Blast resistance	[133]
Knockout	Rice	HAK1	Inhibition of Ca2+ accumulation	[134]
Knockout	Rice	CYP97A4, DSM2, CCD4a, CCD4b, CCD7	β-carotene accumulation, plant architecture	[135]
Knockout	Tobacco	PDS, PDR6	Optimization of plant architecture and yield	[136]
Knockout	Tomato	MAPK3	Drought resistance	[137]
Knockout	Wheat	GASR7, DEP1	Enhancement of thousand grain weight	[138]
Knockout	Wheat	ABC6, NFXL1, LTP9.4	Fusarium head blight disease resistance	[139]
Knockout	Wheat	DREB2, ERF3	Drought resistance, ethylene responses	[140]
Knockout	Wheat	GW2	Enhancement of seed size and thousand grain weight	[141]
Knockin	Flax	BFP	Insertion assessment	[129]
Knockin	Maize	ALS2, PAT	Chlorsulfuron resistance, herbicide resistance	[142]
Knockin	Rice	TB-476, E2 fragment, E2-476, E8-476 fragment	Insertion assessment	[143]
Knockin	Rice	HPTII, RFP	Insertion assessment	[144]
Knockin	Soybean	HPT	Insertion assessment	[145]
Continued

Knockin	Tobacco	AvrII recognition site	Insertion assessment
Tomato	ALS2	Chlorsulfuron resistance	[147]
Wheat	GFP	Insertion assessment	[148]

Transcriptional activation	Rice	GW7, ER1	Activation assessment
	Rice	Os03g01240, Os04g39780, Os11g35410	Activation assessment

Transcriptional repression	Tobacco	PDS	Repression assessment
	Tobacco	LUC	Repression assessment

of *Arabidopsis*, tobacco and rice (Table 8) [155] [156]. The comparable target efficiency of SaCas9 and St1Cas9 with SpCas9 system has also been documented in plants [155]. Although all of the three Cas9 proteins are clustered to the type II CRISPR/Cas system, different PAM sequences are recognized (5’-NNGRRT-3’ for SaCas9 and 5’-NNGGAA-3’ for St1Cas9 instead of 5’-NGG-3’ for SpCas9) when DSBs are catalyzed at the target sites [157]. Considering that the flexibility of target sites is constrained by PAM sequences to great extent, the introduction of SaCas9 and St1Cas9 into CRISPR group greatly expands the coverage of available target sites on plant genome and promotes CRISPR-mediated crop improvement. In addition to the mentioned type II CRISPR systems above, a CRISPR/Cpf1 platform (also named CRISPR/Cas12a) has been developed, of which several aspects are quite distinct from the Cas9 systems [158] [159]. For instance, only a crRNA is needed for guiding Cpf1-crRNA complex to target sites on plant genome, and therefore, the length of sgRNA is shortened from approximately 100 nt in Cas9 systems to 42 nt, facilitating sgRNA synthesis. The PAM sequence of Cpf1 is 5’-TTTN-3’ and the Cpf1-mediated DSBs can generate 4 bp overhangs at 5’ end of cleavage sites, while blunt ends are produced after Cas9 cleavage at target sites. The resulted cohesive ends by Cpf1 display some potential advantages over blunt ends such as the improvement of knockin efficiency and the increased possibility of multiple editing events. The CRISPR/Cpf1 system is thus considered as a promising tool and has been applied in genetic modifications of crop plants [Table 8]. And we believe that this system will be widely used for crop improvement in the near future.

6. Perspectives

The appearance and rapid development of targeted genome engineering technologies have paved a new way for crop breeding. By now, four generations of genome editing platforms have been provided from site-specific recombination system to ZFN, TALEN and CRISPR/Cas9 technologies. CRISPR/Cas9 is now
Table 8. The newly-developed CRISPR systems and their applications in crop improvement.

System	Source	Crop	Target	Purpose	Reference
CRISPR/FnCas9	Francisella novicida	Tobacco	CMV and TMV genomes	Virus resistance	[160]
CRISPR/SaCas9	Staphylococcus aureus	Rice	DL	Mutagenesis assessment	[156]
CRISPR/SaCas9	Staphylococcus aureus	Tobacco	PDS, FT4	Mutagenesis assessment	[156]
CRISPR/LshCas13a	Leptotrichia shahii	Rice	SRBSDV genome	Virus resistance	[161]
CRISPR/LshCas13a	Leptotrichia shahii	Tobacco	TMV genome	Virus resistance	[161]
CRISPR/Cpf1	Acidaminococcus sp. BV3L6	Rice	ROC5, DEP1	Temperature-dependent target efficiency improvement	[162]
CRISPR/Cpf1	Francisella novicida	Rice	DL, ALS	Leaf morphology	[163]
CRISPR/Cpf1	Francisella novicida	Tobacco	PDS, STF1	Leaf morphology and pigment biosynthesis	[163]
CRISPR/Cpf1	Lachnospiraceae bacterium	Maize	GL2	Target specificity assessment	[164]
CRISPR/Cpf1	Lachnospiraceae bacterium	Maize	GL2	Temperature-dependent target efficiency improvement	[162]
CRISPR/Cpf1	Lachnospiraceae bacterium	Rice	DEP1, SPL14, TB1, LAC, MIR398a, Os02cir25329, Os03cir00204, PDS, ROC5	Target specificity assessment	[165]
CRISPR/Cpf1	Lachnospiraceae bacterium	Rice	BEL-230, BEL-240, BEL-250, BEL-260, EPSFS, RLK-798, RLK-799, RLK-802, RLK-803	Multigene mutagenesis assessment	[166]
CRISPR/Cpf1	Lachnospiraceae bacterium	Rice	EPLFL9	Stomata development	[167]

considered as the advantageous tool over the other three and has been used in genetical modifications of crops most widely. A lot of new crop germplasms that do not exist in nature have been efficiently created via CRISPR-mediated knock-out, knockin, transcriptional activation and transcriptional repression of genes of interest.

However, challenges still remain in current CRISPR platform. Thus far, most of reported modifications for crops are CRISPR-mediated gene knockouts while knockin events are rare and usually at low efficiency, though knockin is very useful for crop breeding because it can confer novel traits that do not exist in crops in nature by editing of existing alleles or adding of new ones. CRISPR/dCas9 is considered as a promising tool for transcriptional regulation of gene expression, particularly for genes with highly methylated promoter regions [168] [169], while available data for gene modification of this kind are quite limited, constraining the improvement of CRISPR-based transcriptional regulation systems and their applications in crops. Transformation and tissue culture are crucial for CRISPR-mediated genome editing, while their efficiencies are challenged for most of crop plants. Last but not the least, off-targeting is still an intensive concern for plant scientists, though numerous studies have evidenced the precision of CRISPR-mediated genome editing in plants [170]. All of these challenges should be addressed in the future studies in order to promote the applications of CRISPR systems in crop improvement.
Acknowledgements

This work was supported by Natural Science Foundation of Guangdong Province (2018A030310446), China Postdoctoral Science Foundation (2017M612741), Guangdong Innovation Research Team Fund (2014ZT05S078), National Natural Science Foundation of China (31600982), and Shenzhen High-Level Talents Research Fund (827/000256).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Shen, W., Ni, Y., Gao, N., Bian, B., Zheng, S., Lin, X. and Chu, H. (2016) Bacterial Community Composition Is Shaped by Soil Secondary Salinization and Acidification Brought on by High Nitrogen Fertilization Rates. Applied Soil Ecology, 108, 76-83. https://doi.org/10.1016/j.apsoil.2016.08.005

[2] Bashagaluke, J.B., Logah, V., Opoku, A., Sarkodie-Addo, J. and Quansah, C. (2018) Soil Nutrient Loss through Erosion: Impact of Different Cropping Systems and Soil Amendments in Ghana. PLoS ONE, 13, e0208250. https://doi.org/10.1371/journal.pone.0208250

[3] Monroe, J.G., Powell, T., Price, N., Mullen, J.L., Howard, A., Evans, K., Lovell, J.T. and McKay, J.K. (2018) Drought Adaptation in Arabidopsis thaliana by Extensive Genetic Loss-of-Function. Elife, 7, e41038. https://doi.org/10.7554/eLife.41038

[4] Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B. and Naylor, R.L. (2018) Increase in Crop Losses to Insect Pests in a Warming Climate. Science, 361, 916-919. https://doi.org/10.1126/science.aat3466

[5] Poveda, K., Diaz, M.F. and Ramirez, A. (2018) Can Overcompensation Increase Crop Production? Ecology, 99, 270-280. https://doi.org/10.1002/ecy.2088

[6] Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000) Engineering the Provitamin A (Beta-Carotene) Biosynthetic Pathway into (Carotene-Free) Rice Endosperm. Science, 287, 303-305. https://doi.org/10.1126/science.287.5451.303

[7] Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L. and Drake, R. (2005) Improving the Nutritional Value of Golden Rice through Increased Pro-Vitamin A Content. Nature Biotechnology, 23, 482-487. https://doi.org/10.1038/nbt1082

[8] Federico, M.L. and Schmidt, M.A. (2016) Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds. Sub-Cellular Biochemistry, 79, 345-358. https://doi.org/10.1007/978-3-319-39126-7_13

[9] Carzoli, A.K., Aboobucker, A.I., Sandall, L.L., Lübbenstedt, T.T. and Suza, W.P. (2018) Risks and Opportunities of GM Crops: Bt Maize Example. Global Food Security, 19, 84-91. https://doi.org/10.1016/j.gfs.2018.10.004

[10] Huang, J., Hu, R., Rozelle, S. and Pray, C. (2005) Insect-Resistant GM Rice in Farmers’ Fields: Assessing Productivity and Health Effects in China. Science, 308, 688-690. https://doi.org/10.1126/science.1108972

[11] Wei, X.D., Zou, H.L., Chu, L.M., Liao, B., Ye, C.M. and Lan, C.Y. (2006) Field Re-
leased Transgenic Papaya Affects Microbial Communities and Enzyme Activities in Soil. Plant and Soil, 285, 347-358. https://doi.org/10.1007/s11104-006-9020-8

[12] Smyth, S.J. (2017) Genetically Modified Crops, Regulatory Delays, and International Trade. Food and Energy Security, 6, 78-86. https://doi.org/10.1002/foes.3.100

[13] Rocha-Munive, M.G., Soberón, M., Castañeda, S., Niaves, E., Scheinvar, E., Eguiarte, L.E., Mota-Sánchez, D., Rosales-Robles, E., Nava-Camberos, U., Martínez-Carrillo, J.L., Blanco, C.A., Bravo, A. and Souza, V. (2018) Evaluation of the Impact of Genetically Modified Cotton after 20 Years of Cultivation in Mexico. Frontiers in Bioengineering and Biotechnology, 6, 82. https://doi.org/10.3389/fbioe.2018.00082

[14] Sun, N., Abil, Z. and Zhao, H. (2012) Recent Advances in Targeted Genome Engineering in Mammalian Systems. Biotechnology Journal, 7, 1074-1087. https://doi.org/10.1002/biot.201200038

[15] Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System. Plant Methods, 9, 39. https://doi.org/10.1186/1746-4811-9-39

[16] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F. (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339, 819-823. https://doi.org/10.1126/science.1231143

[17] Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. and Church, G.M. (2013) RNA-Guided Human Genome Engineering via Cas9. Science, 339, 823-826. https://doi.org/10.1126/science.1232033

[18] Segall, A. (2001) Site-Specific Recombination. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., New York. https://doi.org/10.1038/npg.els.0001058

[19] Esposito, D. and Scocca, J.J. (1997) The Integrase Family of Tyrosine Recombinases: Evolution of a Conserved Active Site Domain. Nucleic Acids Research, 25, 3605-3614. https://doi.org/10.1093/nar/25.18.3605

[20] Smith, M.C.M. and Thorpe, H.M. (2002) Diversity in the Serine Recombinases. Molecular Microbiology, 44, 299-307. https://doi.org/10.1046/j.1365-2958.2002.02891.x

[21] McLellan, M.A., Rosenthal, N.A. and Pinto, A.R. (2017) Cre-loxP-Mediated Recombination: General Principles and Experimental Considerations. Current Protocols in Mouse Biology, 7, 1-12. https://doi.org/10.1002/cpmo.22

[22] Bala, A., Roy, A., Das, A., Chakrabarti, D. and Das, S. (2013) Development of Selectable Marker Free, Insect Resistant, Transgenic Mustard (Brassica juncea) Plants Using Cre/lox Mediated Recombination. BMC Biotechnology, 13, 88. https://doi.org/10.1186/1472-6750-13-88

[23] Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D. and Yin, Z. (2005) Excision of a Selectable Marker in Transgenic Rice (Oryza sativa L.) Using a Chemically Regulated Cre/loxP System. Plant Cell Reports, 24, 86-94. https://doi.org/10.1007/s00299-004-0909-5

[24] Cuellar, W., Gaudin, A., Solórzano, D., Casas, A., Ñopo, L., Chudalayandi, P., Medrano, G., Kreuze, J. and Ghislain, M. (2006) Self-Excision of the Antibiotic Resistance Gene NPTII Using a Heat Inducible Cre/loxP System from Transgenic Potato. Plant Molecular Biology, 62, 71-82. https://doi.org/10.1007/s11103-006-9004-3

[25] Zhang, Y., Li, H., Ouyang, B., Lu, Y. and Ye, Z. (2006) Chemical-Induced Auto Excision of Selectable Markers in Elite Tomato Plants Transformed with a Gene Confering Resistance to Lepidopteran Insects. Biotechnology Letters, 28, 1247-1253.
[26] Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007) Construction and Behavior of Engineered Minichromosomes in Maize. *Proceedings of the National Academy of Sciences of the United States of America*, **104**, 8924-8929. https://doi.org/10.1073/pnas.0700932104

[27] Xu, C., Cheng, Z. and Yu, W. (2011) Construction of Rice Mini-Chromosomes by Telomere-Mediated Chromosomal Truncation. *Plant Journal*, **70**, 1070-1079. https://doi.org/10.1011/j.1365-313X.2012.04916.x

[28] Radhakrishnan, P. and Srivastava, V. (2005) Utility of the FLP-FRT Recombination System for Genetic Manipulation of Rice. *Plant Cell Reports*, **23**, 721-726. https://doi.org/10.1007/s00299-004-0876-x

[29] Djukanovic, V., Orczyk, W., Gao, H., Sun, X., Garrett, N., Zhen, S., Gordon-Kamm, W., Barton, J. and Lyznik, L.A. (2006) Gene Conversion in Transgenic Maize Plants Expressing FLP/FRT and Cre/loxP Site-Specific Recombination Systems. *Plant Biotechnology Journal*, **4**, 345-357. https://doi.org/10.1111/j.1467-7652.2006.00186.x

[30] Würdig, J., Flachowsky, H., Saß, A., Peil, A. and Hanke, M.V. (2015) Improving Resistance of Different Apple Cultivars Using the *Rvi6* Scab Resistance Gene in a Cis-genic Approach Based on the Flp/FRT Recombinase System. *Molecular Breeding*, **35**, 95. https://doi.org/10.1007/s11032-015-0291-8

[31] Kapusi, E., Kempe, K., Rubtsova, M., Kumlehn, J. and Gils, M. (2012) PhiC31 Integrate-Mediated Site-Specific Recombination in Barley. *PLoS ONE*, **7**, e45353. https://doi.org/10.1371/journal.pone.0045353

[32] Éva, C., Tégánszki, H., Tamás, C., Juhász, A., Mézsáros, K. and László Tamás, L. (2018) Cold Inducible Promoter Driven Cre-Lox System Proved to Be Highly Efficient for Marker Gene Excision in Transgenic Barley. *Journal of Biotechnology*, **265**, 15-24. https://doi.org/10.1016/j.jbiotec.2017.10.016

[33] Costa, L.D., Piazza, S., Campa, M., Flachowsky, H., Hanke, M.V. and Malnoy, M. (2016) Efficient Heat-Shock Removal of the Selectable Marker Gene in Genetically Modified Grapevine. *Plant Cell, Tissue and Organ Culture*, **124**, 471-481. https://doi.org/10.1007/s11240-015-0907-z

[34] Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S., Trewyn, B.G., Lyznik, L.A. and Wang, K. (2014) Mesoporous Silica Nanoparticle-Mediated Intracellular Cre Protein Delivery for Maize Genome Editing via IoxP Site Excision. *Plant Physiology*, **164**, 537-547. https://doi.org/10.1104/pp.113.233650

[35] Du, D., Jin, R., Guo, J. and Zhang, F. (2019) Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector. *Genes*, **10**, E374. https://doi.org/10.3390/genes10050374

[36] Boszorádová, E., Matušíková, I., Líbantová, J., Zimová, M. and Moravčíková, J. (2019) Cre-Mediated Marker Gene Removal for Production of Biosafe Commercial Oilseed Rape. *Acta Physiologiae Plantarum*, **41**, 73. https://doi.org/10.1007/s11738-019-2865-2

[37] Peng, A., Xu, L., He, Y., Lei, T., Yao, L., Chen, S. and Zou, X. (2015) Efficient Production of Marker-Free Transgenic ‘Tarocco’ Blood Orange (*Citrus sinensis* Osbeck) with Enhanced Resistance to Citrus Canker Using a Cre/loxP Site-Recombination System. *Plant Cell, Tissue and Organ Culture*, **123**, 1-13. https://doi.org/10.1007/s11240-015-0799-y

[38] Kopertekh, L. and Schiemann, J. (2017) Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X. *Methods in Molecular Biology*, **1642**, 151-168. https://doi.org/10.1007/978-1-4939-7169-5_10
[39] Chen, H., Luo, J., Zheng, P., Zhang, X., Zhang, C., Li, X., Wang, M., Huang, Y., Liu, X., Jan, M., Liu, Y., Hu, P. and Tu, J. (2017) Application of Cre-Lox Gene Switch to Limit the Cry Expression in Rice Green Tissues. Scientific Reports, 7, 14505. https://doi.org/10.1038/s41598-017-14679-0

[40] Woo, H.J., Qin, Y., Park, S.Y., Park, S.K., Cho, Y.G., Shin, K.S., Lim, M.H. and Cho, H.S. (2015) Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP-FRT-Mediated Spontaneous Auto-Excision. PLoS ONE, 10, e0132667. https://doi.org/10.1371/journal.pone.0132667

[41] Zhang, X., Dong, Q., Qiao, X., Qiao, Y., Wang, B., Zhang, K. and Li, G. (2019) Creation and Analysis of Marker Free Transgenic Soybean Germplasm with Low Phosphate Tolerance Transcription Factor GmPTF1 Based on Cre/loxP System. Acta Agronomica Sinica, 45, 683-692. http://kns.cnki.net/kcms/detail/11.1809.S.20190115.1603.004.html

[42] Zheng, Y., Pan, Y., Li, J., Zhou, Y, Pan, Y., Ding, Y., Su, C. and Zhang, X. (2016) Visible Marker Excision via Heat-Inducible Cre/LoxP System and ipt Selection in Tobacco. In Vitro Cellular & Developmental Biology-Plant, 52, 492-499. https://doi.org/10.1007/s11627-016-9775-4

[43] Moon, H., Abercrombie, L., Eda, S., Blanvillain, R., Thomson, J., Ow, D. and Stewart Jr., C.N. (2011) Transgene Excision in Pollen Using a Codon Optimized Serine Resolvase CinH-RS2 Site-Specific Recombination System. Plant Molecular Biology, 75, 621-631. https://doi.org/10.1007/s11103-011-9756-2

[44] Shao, M., Blechl, A. and Thomson, J.G. (2017) Small Serine Recombination Systems ParA-MRS and CinH-RS2 Perform Precise Excision of Plastid DNA. Plant Biotechnology Journal, 15, 1577-1589. https://doi.org/10.1111/pbi.12740

[45] Mészáros, K., Éva, C., Kiss, T., Bányai, J., Kiss, E., Tégás, F., Karsai, L.L. and Tamás, L. (2015) Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System. Plant Molecular Biology Reporter, 33, 1221-1231. https://doi.org/10.1111/tpj.13089

[46] Anand, A., Wu, E., Li, Z., TeRonde, S., Arling, M., Lenderts, B., Mutti, J.S., Gordon-Kamm, W., Jones, T.J. and Chilcoat, N.D. (2019) High Efficiency Agrobacterium-Mediated Site-Specific Gene Integration in Maize Utilizing the FLP-FRT Recombination System. Plant Biotechnology Journal, 17, 1636-1645. https://doi.org/10.1111/pbi.13089

[47] Yan, X., Li, C., Yang, J., Wang, L., Jiang, C. and Wei, W. (2017) Induction of Telomere-Mediated Chromosomal Truncation and Behavior of Truncated Chromosomes in Brassica napus. Plant Journal, 91, 700-713. https://doi.org/10.1111/tpj.13598

[48] Chawla, R., Ariza-Nieto, M., Wilson, A.J., Moore, S.K. and Srivastava, V. (2006) Transgene Expression Produced by Biolistic-Mediated, Site-Specific Gene Integration Is Consistently Inherited by the Subsequent Generations. Plant Biotechnology Journal, 4, 209-218. https://doi.org/10.1111/j.1467-7652.2005.00173.x

[49] Srivastava, V. (2019) Gene Stacking in Plants through the Application of Site-Specific Recombination and Nuclease Activity. Methods in Molecular Biology, 1864, 267-277. https://doi.org/10.1007/978-1-4939-8778-8_18

[50] Li, Z., Xing, A., Moon, B.P., McCardell, R.P., Mills, K. and Falco, S.C. (2009) Site-Specific Integration of Transgenes in Soybean via Recombinase-Mediated DNA Cassette Exchange. Plant Physiology, 151, 1087-1095. https://doi.org/10.1104/pp.109.137612
[51] Ebinuma, H., Nakahama, K. and Nanto, K. (2015) Enrichments of Gene Replacement Events by Agrobacterium-Mediated Recombinase-Mediated Cassette Exchange. *Molecular Breeding*, 35, 82. [https://doi.org/10.1007/s11032-015-0215-7]

[52] Vibha Srivastava, V. and Gidoni, D. (2010) Site-Specific Gene Integration Technologies for Crop Improvement. *In Vitro Cellular & Developmental Biology-Plant*, 46, 219-232. [https://doi.org/10.1007/s11627-009-9274-y]

[53] Beerli, R.R. and Barbas, C.F. (2002) Engineering Polydactyl Zinc-Finger Transcription Factors. *Nature Biotechnology*, 20, 135-141. [https://doi.org/10.1038/nbt0202-135]

[54] Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., Guschin, D.Y., Rupniewski, I., Waite, A.J., Carpenito, C., Carroll, R.G., Orange, J.S., Urnov, F.D., Rebar, E.J., Ando, D., Gregory, P.D., Riley, J.L., Holmes, M.C. and June, C.H. (2008) Establishment of HIV-1 Resistance in CD4+ T Cells by Genome Editing Using Zinc-Finger Nucleases. *Nature Biotechnology*, 26, 808-816. [https://doi.org/10.1038/nbt1410]

[55] Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., Crooks, G.M., Kohn, D.B., Gregory, P.D., Holmes, M.C. and Cannon, P.M. (2010) Human Hematopoietic Stem/Progenitor Cells Modified by Zinc-Finger Nucleases Targeted to CCR5 Control HIV-1 in Vivo. *Nature Biotechnology*, 28, 839-847. [https://doi.org/10.1038/nbt.1663]

[56] Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worde, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Gao, Z., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwald, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D. and Urnov, F.D. (2009) Precise Genome Modification in the Crop Species Zea mays Using Zinc-Finger Nucleases. *Nature*, 459, 437-441. [https://doi.org/10.1038/nature07992]

[57] Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S.Y., Bhagwat, A.S., Malani, N., Anguela, X.M., Sharma, R., Ivanciu, L., Murphy, S.L., Finn, J.D., Khazi, F.R., Zhou, S., Paschon, D.E., Rebar, E.J., Bushman, F.D., Gregory, P.D., Holmes, M.C. and High, K.A. (2011) In Vivo Genome Editing Restores Homostasis in a Mouse Model of Haemophilia. *Nature*, 475, 217-221. [https://doi.org/10.1038/nature10177]

[58] Zou, J., Mali, P., Huang, X., Dowey, S.N. and Cheng, L. (2011) Site-Specific Gene Correction of a Point Mutation in Human iPSC Cells Derived from an Adult Patient with Sickle Cell Disease. *Blood*, 118, 4599-4608. [https://doi.org/10.1182/blood-2011-02-335554]

[59] Soldner, F., Laganière, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., Zhang, L., Guschin, D., Fong, L.K., Vu, B.J., Meng, X., Urnov, F.D., Gregory, P.D., Zhang, H.S. and Jaenisch, R. (2011) Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. *Cell*, 146, 659. [https://doi.org/10.1016/j.cell.2011.06.019]

[60] Cai, C.Q., Doyon, Y., Ainline, W.M., Miller, J.C., DeKelver, R.C., Moehle, E.A., Rock, J.M., Lee, Y., Garrison, R., Schullenberg, L., Blue, R., Worden, A., Baker, L., Faraji, F., Zhang, L., Holmes, M.C., Rebar, E.J., Collingwood, T.N., Rubin-Wilson, B., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2009) Targeted Transgene Integration in Plant Cells Using Designed Zinc Finger Nucleases. *Plant Molecular Biology*, 69, 699-709. [https://doi.org/10.1007/s11103-008-9449-7]

[61] Kelly, K.F. and Daniel, J.M. (2006) POZ for Effect-POZ-ZF Transcription Factors in Cancer and Development. *Trends in Cell Biology*, 16, 578-587. [https://doi.org/10.1016/j.tcb.2006.09.003]
[62] Peer, R., Rivlin, G., Golobovitch, S., Lapidot, M., Gal-On, A., Vainstein, A., Tzfira, T. and Flaishman, M.A. (2015) Targeted Mutagenesis Using Zinc-Finger Nucleases in Perennial Fruit Trees. *Planta*, 241, 941-951. https://doi.org/10.1007/s00425-014-2224-x

[63] Lu, H.W., Klocko, A.L., Dow, M., Ma, C., Amarasinghe, V. and Strauss, S.H. (2015) Low Frequency of Zinc-Finger Nuclease-Induced Mutagenesis in *Populus*. *Molecular Breeding*, 36, 121. https://doi.org/10.1007/s11032-016-0546-z

[64] Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009) High-Frequency Modification of Plant Genes Using Engineered Zinc-Finger Nucleases. *Nature*, 459, 442-445. https://doi.org/10.1038/nature07845

[65] Petolino, J.F., Worden, A., Curlee, K., Connell, J., Strange Moynahan, T.L., Larsen, C. and Russell, S. (2010) Zinc Finger Nuclease-Mediated Transgene Deletion. *Plant Molecular Biology*, 73, 617-628. https://doi.org/10.1007/s11103-010-9641-4

[66] Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reynon, D., Dahlborg, E.J., Goodwin, M.J., Coffman AP, Dobbs, D., Joung, J.K., Voytas, D.F. and Stupar, R.M. (2011) Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases. *Plant Physiology*, 156, 466-473. https://doi.org/10.1104/pp.111.172981

[67] Kumar, S., AlAbed, D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, M., Robinson, H., Minnicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P. and Gupta, M. (2015) A Modular Gene Targeting System for Sequential Transgene Stacking in Plants. *Journal of Biotechnology*, 207, 12-20. https://doi.org/10.1016/j.jbiotec.2015.04.006

[68] Kumar, S., Worden, A., Novak, S., Lee, R. and Petolino, J.F. (2016) A Trait Stacking System via Intragenomic Homologous Recombination. *Planta*, 244, 1157-1166. https://doi.org/10.1007/s00425-016-2595-2

[69] Cantos, C., Francisco, P., Trijatmiko, K.R., Slamet-Loedin, I. and Chadha-Mohanty, P.K. (2014) Identification of “Safe Harbor” Loci in Indica Rice Genome by Harnessing the Property of Zinc Finger Nucleases to Induce DNA Damage and Repair. *Frontiers in Plant Science*, 5, 302. https://doi.org/10.3389/fpls.2014.00302

[70] Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., Samuel, J.P., Sardesai, N., Simpson, M., Folkerts, O., Sarria, R., Webb, S.R., Gonzalez, D.O., Simmons, D.H. and Pareddy, D.R. (2019) Zinc Finger Nuclease-Mediated Targeting of Multiple Transgenes to an Endogenous Soybean Genomic Locus via Non-Homologous End Joining. *Plant Biotechnology Journal*, 17, 750-761. https://doi.org/10.1111/pbi.13012

[71] Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J., Fischer, R., Russell, S.M., Cao, Z.H., Corbin, D.R., Sastry-Dent, L., Ainley, W.M., Webb, S.R., Schinkel, H. and Schillberg, S. (2016) Targeted Gene Exchange in Plant Cells Mediated by a Zinc Finger Nuclease Double Cut. *Plant Biotechnology Journal*, 14, 1151-1160. https://doi.org/10.1111/pbi.12483

[72] Gupta, M., DeKelver, R.C., Palta, A., Clifford, C., Gopalan, S., Miller, J.C., Novak,
S., Desloover, D., Gachotte, D., Connell, J., Flook, J., Patterson, T., Robbins, K., Rebar, E.J., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2012) Transcriptional Activation of *Brassica napus* Beta-Ketoacyl-ACP Synthase II with an Engineered Zinc Finger Protein Transcription Factor. *Plant Biotechnology Journal*, **10**, 783-791. https://doi.org/10.1111/j.1467-7652.2012.00695.x

[74] Rinaldo, A.R. and Ayliffe, M. (2015) Gene Targeting and Editing in Crop Plants: A New Era of Precision Opportunities. *Molecular Breeding*, **35**, 40. https://doi.org/10.1007/s11032-015-0210-z

[75] Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN and CRISPR/Cas-Based Methods for Genome Engineering. *Trends in Biotechnology*, **31**, 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004

[76] Li, T., Liu, B., Spalding, M.H., Weeks, D.P. and Yang, B. (2012) High-Efficiency TALEN-Based Gene Editing Produces Disease-Resistant Rice. *Nature Biotechnology*, **30**, 390-392. https://doi.org/10.1038/nbt.2199

[77] Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. (2015) Creation of Fragrant Rice by Targeted Knockout of the OsBADH2 Gene Using TALEN Technology. *Plant Biotechnology Journal*, **13**, 791-800. https://doi.org/10.1111/pbi.12312

[78] Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L. and Liu, P. (2014) Comparison of TALE Designer Transcription Factors and the CRISPR/dCas9 in Regulation of Gene Expression by Targeting Enhancers. *Nucleic Acids Research*, **42**, e155. https://doi.org/10.1093/nar/gku836

[79] Sun, Z., Li, N., Huang, G., Xu, J., Pan, Y., Wang, Z., Tang, Q., Song, M. and Wang, X. (2013) Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in *Brassica oleracea*. *Journal of Integrative Plant Biology*, **55**, 1092-1103. https://doi.org/10.1111/jipb.12091

[80] Char, S.N., Unger-Wallace, E., Frame, B., Briggs, S.A., Main, M., Spalding, M.H., Spalding, M.H., Vollbrecht, E., Wang, K. and Yang, B. (2015) Heritable Site-Specific Mutagenesis Using TALENs in Maize. *Plant Biotechnology Journal*, **13**, 1002-1010. https://doi.org/10.1111/pbi.12344

[81] Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., Delzer, B., Nuccio, M.L., Green, J., Chen, Z., McCuiston, J., Wang, W., Liebler, T., Bullock, P. and Martin, B. (2017) *MATRILINEAL*, a Sperm-Specific Phospholipase, Triggers Maize Haploid Induction. *Nature*, **542**, 105-109. https://doi.org/10.1038/nature20827

[82] Wen, S., Liu, H., Li, X., Chen, X., Hong, Y., Li, H., Lu, Q. and Liang, X. (2018) TALEN-Mediated Targeted Mutagenesis of *Fatty Acid Desaturase 2* (*FAD2*) in Peanut (*Arachis hypogaea L.*) Promotes the Accumulation of Oleic Acid. *Plant Molecular Biology*, **97**, 177-185. https://doi.org/10.1007/s11103-018-0731-z

[83] Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K. and Umemoto, N. (2014). *Sterol Side Chain Reductase 2* is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato. *Plant Cell*, **26**, 3763-3774. https://doi.org/10.1105/tpc.114.130096

[84] Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreassen, E. and Zhu, L.H. (2015) Targeted Gene Mutation in Tetraploid Potato through Transient TALEN Expression in Protoplasts. *Journal of Biotechnology*, **204**, 17-24. https://doi.org/10.1016/j.jbiotec.2015.03.021

[85] Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., Daulhac, A., Coffman, A., Yabandith, A., Rotterath, A., Haun, W., Baltes, N.J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Improving Cold Sto-
rage and Processing Traits in Potato through Targeted Gene Knockout. *Plant Biotechnology Journal*, 14, 169-176. https://doi.org/10.1111/pbi.12370

[86] Ma, J., Xiang, H., Donnelly, D.J., Meng, F.R., Xu, H., Durnford, D. and Li, X. (2017) Genome Editing in Potato Plants by Agrobacterium-Mediated Transient Expression of Transcription Activator-Like Effector Nucleases. *Plant Biotechnology Reports*, 11, 249-258. https://doi.org/10.1007/s11816-017-0448-5

[87] Blanvillain-Baufume, S., Reschke, M., Sole, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J. and Koebnik, R. (2017) Targeted Promoter Editing for Rice Resistance to *Xanthomonas oryzae* pv. *oryzae* Reveals Differential Activities for *SWEET14*-Inducing TAL Effectors. *Plant Biotechnology Journal*, 15, 306-317. https://doi.org/10.1111/pbi.12613

[88] Jung, J.H. and Altpeter, F. (2016) TALEN Mediated Targeted Mutagenesis of *Thea-cffic Acid O-Methyltransferase* in Highly Polyploid Sugarcane Improves Cell Wall Composition for Production of Bioethanol. *Plant Molecular Biology*, 92, 131-142. https://doi.org/10.1007/s11103-016-0499-y

[89] Kannan, B., Jung, J.H., Moxley, G.W., Lee, S.M. and Altpeter, F. (2018) TALEN-Mediated Targeted Mutagenesis of more than 100 COMT Copies/Aleles in Highly Polyploid Sugarcane Improves Saccharification Efficiency without Compromising Biomass Yield. *Plant Biotechnology Journal*, 16, 856-866. https://doi.org/10.1111/pbi.12833

[90] Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F. and Zhang, F. (2014) Improved Soybean Oil Quality by Targeted Mutagenesis of the *Fatty Acid Desaturase 2* Gene Family. *Plant Biotechnology Journal*, 12, 934-940. https://doi.org/10.1111/pbi.12201

[91] Demorest, Z.L., Coffman, A., Baltes, N.J., Stoddard, T.J., Clasen, B.M., Luo, S., Retterath, A., Yabandith, A., Gamó, M.E., Bissen, J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Direct Stacking of Sequence-Specific Nuclease-Induced Mutations to Produce High Oleic and Low Linolenic Soybean Oil. *BMC Plant Biology*, 16, 225. https://doi.org/10.1186/s12870-016-0906-1

[92] Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J. and Voytas, D.F. (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. *Plant Physiology*, 161, 20-27. https://doi.org/10.1104/pp.112.205179

[93] Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J.L. (2014) Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. *Nature Biotechnology*, 32, 947-951. https://doi.org/10.1038/nbt.2969

[94] Budhagatapalli, N., Rutten, T., Gurusidhe, M., Kumlehn, J. and Hensel, G. (2015) Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley. *G3 Genes Genomes Genetics*, 5, 1857-1863. https://doi.org/10.1534/g3.115.018762

[95] Butler, N.M., Baltes, N.J., Voytas, D.F. and Douches, D.S. (2016) Geminivirus-Mediated Genome Editing in Potato (*Solanum tuberosum* L.) Using Sequence-Specific Nucleases. *Frontiers in Plant Science*, 7, 1045. https://doi.org/10.3389/fpls.2016.01045

[96] Forsyth, A., Weeks, T., Richael, C. and Duan, H. (2016) Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. *Frontiers in Plant Science*, 7, 1572. https://doi.org/10.3389/fpls.2016.01572
[97] Li, T., Liu, B., Chen, C.Y. and Yang, B. (2016) TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice. *Journal of Genetics and Genomics*, **43**, 297-305. https://doi.org/10.1016/j.jgg.2016.03.005

[98] Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y. and Voytas, D.F. (2015) High-Frequency, Precise Modification of the Tomato Genome. *Genome Biology*, **16**, 232. https://doi.org/10.1186/s13059-015-0796-9

[99] Terns, M.P. and Terns, R.M. (2011) CRISPR-Based Adaptive Immune Systems. *Current Opinion in Microbiology*, **14**, 321-327. https://doi.org/10.1016/j.mib.2011.03.005

[100] Marraffini, L.A. and Sontheimer, E.J. (2008) CRISPR Interference Limits Horizontal Gene Transfer in *Staphylococcus* by Targeting DNA. *Science*, **322**, 1843-1845. https://doi.org/10.1126/science.1165771

[101] Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. *Proceedings of the National Academy of Sciences of the United States of America*, **109**, E2579-E2586. https://doi.org/10.1073/pnas.1208507109

[102] Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J.R., Boekema, E.J., Dickman, M.J. and Doudna, J.A. (2011) RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 10092-10097. https://doi.org/10.1073/pnas.1102716108

[103] Wang, H., Yang, H., Shivaila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. and Jaenisch, R. (2013) One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. *Cell*, **153**, 910-918. https://doi.org/10.1016/j.cell.2013.04.025

[104] Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelson, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G. and Zhang, F. (2014) Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. *Science*, **343**, 84-87. https://doi.org/10.1126/science.1247008

[105] Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/gRNA-Mediated Targeted Gene Modification in *Arabidopsis*, Tobacco, Sorghum and Rice. *Nucleic Acids Research*, **41**, e188. https://doi.org/10.1093/nar/gkt780

[106] Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qiu, J. and Gao, C. (2013) Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. *Nature Biotechnology*, **31**, 686-688. https://doi.org/10.1038/nbt.2650

[107] Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y. and Zhang, F. (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. *Cell*, **154**, 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021

[108] Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., Lim, W.A., Weissman, J.S. and Qi, L.S. (2013) CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. *Cell*, **154**, 442-451. https://doi.org/10.1016/j.cell.2013.06.044
[109] Kumlehn, J., Pietralla, J., Hensel, G., Pacher, M. and Puchta, H. (2018) The CRISPR/Cas Revolution Continues: From Efficient Gene Editing for Crop Breeding to Plant Synthetic Biology. Journal of Integrative Plant Biology, 60, 1127-1153. https://doi.org/10.1111/jipb.12734

[110] Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., Ezura, H., Nishida, K., Ariizumi, T. and Kondo, A. (2017) Targeted Base Editing in Rice and Tomato Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Nature Biotechnology, 35, 441-443. https://doi.org/10.1038/nbt.3833

[111] Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D. and Gao, C. (2017) Precise Base Editing in Rice, Wheat and Maize with a Cas9-Cytidine Deaminase Fusion. Nature Biotechnology, 35, 438-440. https://doi.org/10.1038/nbt.3811

[112] Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O. and Toki, S. (2018) Genome Editing in Plants by Engineered CRISPR-Cas9 Recognizing NG PAM. Nature Plants, 5, 14-17. https://doi.org/10.1038/s41477-018-0321-8

[113] Hua, K., Tao, X., Yuan, F., Wang, D. and Zhu, J.K. (2018) Precise A-T to G-C Base Editing in the Rice Genome. Molecular Plant, 11, 627-630. https://doi.org/10.1016/j.molp.2018.02.007

[114] Kang, B.C., Yun, J.Y., Kim, S.T., Shin, Y., Ryu, J., Choi, M., Woo, J.W. and Kim, J.S. (2018) Precision Genome Engineering through Adenine Base Editing in Plants. Nature Plants, 4, 427-431. https://doi.org/10.1038/s41477-018-0115-z

[115] Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R. and Gao, C. (2018) Expanded Base Editing in Rice and Wheat Using a Cas9-Adenosine Deaminase Fusion. Genome Biology, 19, 59. https://doi.org/10.1186/s13059-018-1443-2

[116] Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q. and Xu, Y. (2018) Engineering Herbicide-Resistant Watermelon Variety through CRISPR/Cas9-Mediated Base-Editing. Plant Cell Reports, 37, 1353-1356. https://doi.org/10.1007/s00299-018-2299-0

[117] Yan, F., Kuang, Y., Ren, B., Wang, J., Zhang, D., Lin, H., Yang, B., Zhou, X. and Zhou, H. (2018) Highly Efficient A-T to G-C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 11, 631-634. https://doi.org/10.1016/j.molp.2018.02.008

[118] Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J. and Gao, C. (2018) Efficient C-to-T Base Editing in Plants Using a Fusion of nCas9 and Human APOBEC3A. Nature Biotechnology, 36, 950-953. https://doi.org/10.1038/nbt.4261

[119] Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R. and Kanchiswamy, C.N. (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Frontiers in Plant Science, 7, 1904. https://doi.org/10.3389/fpls.2016.01904

[120] Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T. and Osakabe, Y. (2016) Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6, 31481. https://doi.org/10.1038/srep31481

[121] Kaur, N., Alok, A., Shivani, Kaur, N., Pandey, P., Awasthi, P. and Tiwari, S. (2018) CRISPR/Cas9-Mediated Efficient Editing in Phytoene Desaturase (Pds) Demonstrates Precise Manipulation in Banana cv. Rasthali Genome. Functional & Integrative Genomics, 18, 89-99. https://doi.org/10.1007/s10142-017-0577-5

[122] Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogue, F. and Faure,
J.D. (2017) Selective Gene Dosage by CRISPR-Cas9 Genome Editing in Hexaploid Camelina sativa. *Plant Biotechnology Journal, 15*, 729-739. https://doi.org/10.1111/pbi.12671

[123] Odipio, J., Alicai, T., Ingelbrecht, I., Nusinow, D.A., Bart, R. and Taylor, N.J. (2017) Efficient CRISPR/Cas9 Genome Editing of Phytsoe Desaturase in Cassava. *Frontiers in Plant Science, 8*, 1780. https://doi.org/10.3389.fpls.2017.01780

[124] Gomez, M.A., Lin, Z.D., Moll, T., Chauhan, R.D., Hayden, L., Renninger, K., Beyene, G., Taylor, N.J., Carrington, J.C., Staskawicz, B.J. and Bart, R.S. (2019) Simultaneous CRISPR/Cas9-Mediated Editing of Cassava elf4E Isororms nCBP-1 and nCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence. *Plant Biotechnology Journal, 17*, 421-434. https://doi.org/10.1111/pbi.12987

[125] Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L. and Zou, X. (2017) Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. *Plant Biotechnology Journal, 15*, 1509-1519. https://doi.org/10.1111/pbi.12733

[126] Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazzi, T. and Gal-On, A. (2016) Development of Broad Virus Resistance in Non-Transgenic Cucumber Using CRISPR/Cas9 Technology. *Molecular Plant Pathology, 17*, 1140-1153. https://doi.org/10.1111/mpp.12375

[127] Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S. and Liang, Z. (2016) CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Chardonnay (Vitis vinifera L.). *Scientific Reports, 6*, 32289. https://doi.org/10.1038/srep32289

[128] Okuzaki, A., Ogawa, T., Kozuka, N., Kana, K., Inaba, M., Imamura, J. and Kozuka, N. (2018) CRISPR/Cas9-Mediated Genome Editing of the Fatty Acid Desaturase 2 Gene in Brassica napus. *Plant Physiology and Biochemistry, 131*, 63-69. https://doi.org/10.1016/j.plaphy.2018.04.025

[129] Sauer, N.J., Narvaez-Vasquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., Walker, K.A., Beetham, P.R., Schöpke, C.R. and Gocal, G.F. (2016) Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants. *Plant Physiology, 170*, 1917-1928. https://doi.org/10.1104/pp.15.01696

[130] Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M. and Hofvander, P. (2017) Efficient Targeted Multiallelic Mutagenesis in Tetraploid Potato (Solanum tuberosum) by Transient CRISPR-Cas9 Expression in Protoplasts. *Plant Cell Reports, 36*, 117-128. https://doi.org/10.1007/s00299-016-2062-3

[131] Zhou, X., Zha, M., Huang, J., Li, L., Imran, M. and Zhang, C. (2017) StMYB44 Negatively Regulates Phosphate Transport by Suppressing Expression of PHOSPHATE1 in Potato. *Journal of Experimental Botany, 68*, 1265-1281. https://doi.org/10.1093/jxb/erx026

[132] Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C. and Huang, S. (2018) Generation of Self-Compatible Diploid Potato by Knockout of S-RNase. *Nature Plants, 4*, 651-654. https://doi.org/10.1038/s41477-018-0218-6

[133] Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. and Zhao, K. (2016) Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. *PLoS ONE, 11*, 0154027. https://doi.org/10.1371/journal.pone.0154027

[134] Cordones, M.N., Mohamed, S., Tanoi, K., Natsuko Kobayashi, N.I., Takagi, K.,
[135] Yang, X., Chen, L., He, J. and Yu, W. (2017) Knocking out of Carotenoid Catabolic Genes in Rice Fails to Boost Carotenoid Accumulation, But Reveals a Mutation in Strigolactone Biosynthesis. *Plant Cell Reports*, 36, 1533-1545. https://doi.org/10.1007/s00299-017-2172-6

[136] Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P. and Xia, Q. (2015) CRISPR/Cas9-Mediated Targeted Mutagenesis in *Nicotiana tabacum*. *Plant Molecular Biology*, 87, 99-110. https://doi.org/10.1007/s11103-014-0263-0

[137] Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L. and Gao, C. (2016) Efficient and Transgene-Free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA. *Nature Communications*, 7, Article No. 12617. https://doi.org/10.1038/ncomms12617

[138] Cui, X.C. (2017) Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System. University of Ottawa, Ottawa.

[139] Kim, D., Alptekin, B. and Budak, H. (2018) CRISPR/Cas9 Genome Editing in Wheat. *Functional & Integrative Genomics*, 18, 31-41. https://doi.org/10.1007/s10142-017-0572-x

[140] Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J. and Gao, C. (2016) Gene Replacements and Insertions in Rice by Intron Targeting Using CRISPR-Cas9. *Plant Molecular Biology*, 89, 931-945. https://doi.org/10.1007/s11103-016-00819-1

[141] Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhofer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C. and Cigan, A.M. (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. *Plant Physiology*, 169, 960-970. https://doi.org/10.1104/pp.15.00783

[142] Lee, K., Eggenberger, A.L., Banakar, R., McCaw, M.E., Zhu, H., Main, M., Kang, M., Gelvin, S.B. and Wang, K. (2019) CRISPR/Cas9-Mediated Targeted T-DNA Integration in Rice. *Plant Molecular Biology*, 99, 317-328. https://doi.org/10.1007/s11103-018-00819-1

[143] Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhofer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C. and Cigan, A.M. (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. *Plant Physiology*, 169, 960-970. https://doi.org/10.1104/pp.15.00783

[144] Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and Homologous Recombination-Mediated Genome Editing in *Arabidopsis* and *Nicotiana benthamiana* Using Guide RNA and Cas9. *Nature Biotechnology*, 31, 688-691. https://doi.org/10.1038/nbt.2654

[145] Danilo, B., Perrot, L., Mara, K., Botton, E., Nogué, F. and Mazier, M. (2019) Efficient and Transgene-Free Gene Targeting Using *Agrobacterium*-Mediated Delivery of the CRISPR/Cas9 System in Tomato. *Plant Cell Reports*, 38, 459-462.
[148] Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C. and Voytas, D.F. (2017) High-Efficiency Gene Targeting in Hexaploid Wheat Using DNA Replicons and CRISPR/Cas9. *Plant Journal*, **89**, 1251-1262. https://doi.org/10.1111/tpj.13446

[149] Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J. and Li, J.F. (2017) A Potent Cas9-Derived Gene Activator for Plant and Mammalian Cells. *Nature Plants*, **3**, 930. https://doi.org/10.1038/s41477-017-0046-0

[150] Lowder, L.G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T.F., Voytas, D.F., Zhang, Y. and Qi, Y. (2017) Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. *Molecular Plant*, **11**, 245-256. https://doi.org/10.1016/j.molp.2017.11.010

[151] Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M. and Mahfouz, M.M. (2015) RNA-Guided Transcriptional Regulation in Planta via Synthetic dCas9-Based Transcription Factors. *Plant Biotechnology Journal*, **13**, 578-589. https://doi.org/10.1111/pbi.12284

[152] Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F., Zhang, Y. and Qi, Y. (2015) A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. *Plant Physiology*, **169**, 971-985. https://doi.org/10.1104/pp.15.00636

[153] Vazquez-Vilar, M., Bernabé-Orts, J.M., Fernandez-Del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A. and Orzaez, D. (2016) A Modular Toolbox for gRNA-Cas9 Genome Engineering in Plants Based on the GoldenBraid Standard. *Plant Methods*, **12**, 10. https://doi.org/10.1186/s13007-016-0101-2

[154] Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A. and Zhang, F. (2015) In Vivo Genome Editing Using Staphylococcus aureus Cas9. *Nature*, **520**, 186-191. https://doi.org/10.1038/nature14299

[155] Steinert, J., Schiml, S., Fauser, F. and Puchta, H. (2015) Highly Efficient Heritable Plant Genome Engineering Using Cas9 Orthologues from Streptococcus thermophilus and Staphylococcus aureus. *Plant Journal*, **84**, 1295-1305. https://doi.org/10.1111/tpj.13078

[156] Kaya, H., Mikami, M., Endo, A., Endo, M. and Toki, S. (2016) Highly Specific Targeted Mutagenesis in Plants Using Staphylococcus Cas9. *Scientific Reports*, **6**, Article No. 26871. https://doi.org/10.1038/srep26871

[157] Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M. and Siksnys, V. (2015) Rapid Characterization of CRISPR-Cas9 Protospacer Adjacent Motif Sequence Elements. *Genome Biology*, **16**, 253. https://doi.org/10.1186/s13059-015-0818-7

[158] Zetsche, B., Gootenberg, J.S., Abudayeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. and Zhang, F. (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. *Cell*, **163**, 759-771. https://doi.org/10.1016/j.cell.2015.09.038

[159] Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I. and Kneppers, J. (2016) Multiplex Gene Editing by CRISPR-Cpf1 Using a Single crRNA Array. *Nature Biotechnology*, **35**, 31-34. https://doi.org/10.1038/nbt.3727

[160] Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S. and Zhou, G. (2018) Establishing RNA Virus Resistance in Plants by Harnessing CRISPR Immune System.
[161] Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X. and Zhou, G. (2019) Establishing CRISPR/Cas13a Immune System Confering RNA Virus Resistance in Both Dicot and Monocot Plants. *Plant Biotechnology Journal*, 17, 1185-1187. https://doi.org/10.1111/pbi.13095

[162] Malzahn, A.A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y. and Qi, Y. (2019) Application of CRISPR-Cas12a Temperature Sensitivity for Improved Genome Editing in Rice, Maize, and Arabidopsis. *BMC Biology*, 17, 9. https://doi.org/10.1186/s12915-019-0629-5

[163] Endo, A., Masafumi, M., Kaya, H. and Toki, S. (2016) Efficient Targeted Mutagenesis of Rice and Tobacco Genomes Using Cpf1 from *Francisella novicida*. *Scientific Reports*, 6, 38169. https://doi.org/10.1038/srep38169

[164] Lee, K., Zhang, Y., Kleinstiver, B.P., Guo, J.A., Aryee, M.J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C.J., Joung, J.K., Qi, Y. and Wang, K. (2019) Activities and Specificities of CRISPR/Cas9 and Cas12a Nucleases for Targeted Mutagenesis in Maize. *Plant Biotechnology Journal*, 17, 362-372. https://doi.org/10.1111/pbi.12982

[165] Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T. and Zhang, Y. (2018) A Large-Scale Whole-Genome Sequencing Analysis Reveals Highly Specific Genome Editing by Both Cas9 and Cpf1 (Cas12a) Nucleases in Rice. *Genome Biology*, 19, 84. https://doi.org/10.1186/s13059-018-1458-5

[166] Wang, M., Mao, Y., Lu, Y., Tao, X. and Zhu, J.K. (2017) Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. *Molecular Plant*, 10, 1011-1013. https://doi.org/10.1016/j.molp.2017.03.001

[167] Yin, X., Biswal, A.K., Dionora, J., Perdigon, K.M., Balahadia, C.P., Mazumdar, S., Chater, C., Lin, H.C., Coe, R.A., Kretzschmar, T., Gray, J.E., Quick, P.W. and Bandyopadhyay, A. (2017) CRISPR-Cas9 and CRISPR-Cpf1 Mediated Targeting of a Stomatal Developmental Gene *EPFL9* in Rice. *Plant Cell Reports*, 36, 745-757. https://doi.org/10.1007/s00299-017-2118-z

[168] Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D., Young, R.A. and Jaenisch, R. (2016) Editing DNA Methylation in the Mammalian Genome. *Cell*, 167, 233-247. https://doi.org/10.1016/j.cell.2016.08.056

[169] Lei, Y., Zhang, X., Su, J., Jeong, M., Gundry, M.C., Huang, Y.H., Zhou, Y., Li, W. and Goodell, M.A. (2017) Targeted DNA Methylation *in Vitro* Using an Engineered dCas9-MQ1 Fusion Protein. *Nature Communications*, 8, Article No. 16026. https://doi.org/10.1038/ncomms16026

[170] Hahn, F. and Nekrasov, V. (2019) CRISPR/Cas Precision: Do We Need to Worry about off-Targeting in Plants? *Plant Cell Reports*, 38, 437-441. https://doi.org/10.1007/s00299-018-2355-9
Abbreviations

11N3: 11 nodulin 3
2AP: 2-acetyl-1-pyrroline
AAD1: aryloxyalkanoate dioxygenase 1
AATCB: cecropin B gene with a signal peptide sequence AAT from the a-1-antitrypsin
ABCC6: ATP-binding cassette sub-family C member 6
AG: agamous gene
ALS1: acetolactate synthase 1
BADH2: betaine aldehyde dehydrogenase 2
BAR: phosphinothricin acetyl transferase
BEL-230: bentazon sensitive lethal 230
BFP: blue fluorescent protein
Cas9: CRISPR-associated protein9 nuclease
CCD4a: carotenoid cleavage dioxygenase 4a
CFP: cyan fluorescent protein
CRT: caffeic acid O-methyltransferase
Cre: cyclization recombination enzyme
CRISPR: clustered regularly interspaced short palindromic repeats
crRNA: CRISPR RNA
CYP97A4: cytochrome P450-type carotenoid hydroxylases 97A4
DCL1a: dicer-like 1a
DEP1: dense and erect panicle 1
DGT28: dow glyphosate tolerance
DIPM1: DspA/E-interacting protein of Malus × domestica 1
DL: drooping leaf
DREB2: DRE-binding protein 1
DSB: double-strand breakage
DSM2: drought-hypersensitive mutant 2
eIF4E: eukaryotic initiation factor 4E
EPFL9: epidermal patterning factor like 9
EPSPS: 5-enolpyruvylshikimate-3-phosphate synthase
ER1: Erysiphe pisi resistance 1
ERF922: ethylene responsive factor 922
FAD2: oleate desaturase 2
Fim: fimbrial subunit
Flp: yeast 2-micron circle plasmid recombinase
FR1: FRIGIDA
Frt: Flp-recognition target
FT4: flowering locus T 4
GASR7: gibberellic acid-stimulated transcript-related 7
GAT: glyphosate acetyltransferase
GBSS: granule-bound starch synthase
GFP: green fluorescent protein
GL2: GLABRA 2
GM: genetically modified
GUS: β-glucuronidase
GW2: grain width 2
HAK1: high-affinity potassium transporter 1
HIV-1: human immunodeficiency virus type 1
HPT: hygromycin phosphotransferase
HR: homologous recombination
IdnDH: idonate dehydrogenase
Int: integrase
IPK1: inositol 1,3,4,5,6-pentakis phosphate 2-kinase
IPT: isopentenyl transferase
KASII: 3-ketoacyl-ACP synthase II
LFY: leafy
LOB1: lateral organ boundaries
LoxP: integration/crossover site on phage P1 genome
LTP9.4: lipid transfer protein 9.4
LUC: luciferase
MAPK3: mitogen-activated protein kinase 3
MLO: mildew resistance locus O
MTL: MATRILINEAL phospholipase
MYB44: v-myb avian myeloblastosis viral oncogene homolog 44
NANOG: Nanog homeobox
nCBP-1: novel cap binding protein 1
NFXLI: nuclear factor-X like 1
NHEJ: non-homologous end joining
NOS: nopaline synthase
NPTII: neomycin phosphotransferase II
OCT4: octamer-binding transcription factor 4
PAM: protospacer-adjacent motif
PAT: phosphinothricin acetyltransferase
PDR6: pleiotropic drug resistance 6
PDS: phytoene desaturase
PMI: phosphomannose isomerase
RFP: red fluorescent protein
RLK-798: receptor-like kinases 798
ROC5: rice outermost cell-specific gene 5
RVD: repeat-variable di-residues
RVI6: resistance to Venturia inaequalis 6
SBE1: starch-branching enzyme 1
sgRNA: single guide RNA
SPL14: SQUAMOSA promoter binding protein-like 14
SSR2: sterol side chain reductase 2
STF1: soybean TGACG-motif binding factor 1
SUR: sulfonylurea receptor
TALE: transcriptional activator-like effector
TALEN: transcriptional activator-like effector nuclease
TB1: teosinte branched 1
TC: tocopherol cyclase
tracrRNA: trans-activating crRNA
VINV: vacuolar invertase
Xis: excisionase
YFP: yellow fluorescent protein
ZF: zinc finger
ZFN: zinc finger nuclease