Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements

KAZIM BÜYÜKBODUK

ABSTRACT. In this article, we study the p-ordinary Iwasawa theory of the (conjectural) Rubin-Stark elements defined over abelian extensions of a CM field F and develop a rank-g Euler/Kolyvagin system machinery (where $2g = [F : \mathbb{Q}]$), refining and generalizing Perrin-Riou’s theory and the author’s prior work. This has several important arithmetic consequences: Using the recent results of Hida and Hsieh on the CM main conjectures, we prove a natural extension of a theorem of Yager for the CM field F, where we relate the Rubin-Stark elements to the several-variable Katz p-adic L-function. Furthermore, beyond the cases covered by Hida and Hsieh, we are able to reduce the p-ordinary CM main conjectures to a local statement about the Rubin-Stark elements. We discuss applications of our results in the arithmetic of CM abelian varieties.

CONTENTS

1. Introduction 2
Acknowledgements 5
1.1. Notation and Hypotheses 5
2. Selmer structures and Selmer groups 7
2.1. Semi-local Preparation 7
2.2. Selmer structures 10
2.3. Comparing Selmer groups 11
3. Rubin-Stark elements and an Euler system of rank r 13
3.1. Twisting by the character χ 14
3.2. Choosing the homomorphisms 16
3.3. From Euler systems of rank r to Kolyvagin systems for modified Selmer structures 16
4. Applications to the arithmetic of CM Abelian Varieties 17
4.1. Ideal class groups of CM fields 17
4.2. Iwasawa theory 18
4.3. Katz’s p-adic L-function 21
4.4. Hecke characters attached to CM abelian varieties 22
Appendix A. Λ-adic Kolyvagin systems 24
References 29

2000 Mathematics Subject Classification. 11G05; 11G10; 11G40; 11R23; 14G10.
Key words and phrases. Rubin-Stark elements, CM abelian varieties, CM Main conjectures.
1. Introduction

The main objective of this paper is to study Iwasawa’s main conjecture for CM fields (see [HT94, Page 90] for its precise statement). When the CM field in question is an imaginary quadratic number field, the main conjecture was proved by Rubin [Rub91] using the elliptic unit Euler system. For more general CM fields, it has been tackled by Hida and Tilouine [HT94] and Hida [Hid09] along the anticyclotomic tower, by Mainardi in [Mai08] along the cyclotomic tower and by Hsieh in [Hsi12] in more general context. Hida and Tilouine used the CM ideal method exploiting congruences between CM forms and non-CM forms and the works of Mainardi and Hsieh rely on the Eisenstein ideal method (which in turn uses congruences between Eisenstein series and cusp forms). In this paper, we approach this problem via the conjectural Rubin-Stark elements, by means of extending and refining the rank-r Euler/Kolyvagin system machinery developed by the author in [Büy09b, Büy10]. Before stating our results in detail, we provide an overview of what we carry through in this paper:

1. Applying the general machinery rank-r Euler/Kolyvagin system machinery we set up in this article with the Rubin-Stark elements (along with the aid of Nekovář’s [Nek06] descent formalism incorporated in his theory of Selmer complexes), we prove Theorem A below where we show that the CM main conjecture is equivalent to a purely local statement about the Rubin-Stark elements. This local statement is labeled by Conjecture 2 below and asserts that the collection of Rubin-Stark elements along the maximal \mathbb{Z}_p-power extension of a CM field recovers the Katz p-adic L-function.

2. In particular, combining with recent work of Hsieh [Hsi12] in which he proves the CM main conjectures under certain hypotheses, we are able to prove Conjecture 2 in many interesting cases. Our second main result (that may be found in its precise form in Theorem B below) is a natural and a far reaching generalization of an important theorem of Yager [Yag82, Theorem 1], which in its original form relates the tower of elliptic units along the \mathbb{Z}_p^2-extension of an imaginary quadratic field\(^2\) to the two-variable p-adic L-function of Katz.

3. Assuming the truth of Conjecture 2 (beyond the cases covered by Theorem B), we provide an application of Theorem A in the arithmetic study of CM abelian varieties and to that end, we prove our third result, which is labeled as Theorem C below. The only results so far that parallel Theorem C are limited to the case when the abelian variety \mathcal{A} in question is of GL_2-type and is defined over \mathbb{Q}; or else to the case $\dim \mathcal{A} = 1$, i.e., \mathcal{A} is an elliptic curve. That is why, albeit being conditional, we believe that Theorem C should still be of interest.

We remark that although the existence Rubin-Stark elements is conjectural, one may prove (as in [Büy11, Büy13a]) that the Kolyvagin systems which we obtain using the Rubin-Stark elements and which play a crucial role in the proofs of our main theorems do exist unconditionally. See also Remark 3.8 below.

\(^1\)The techniques developed in [Büy09b, Büy10] improve [PR98], so as to take an Euler system of rank r (as opposed to an Euler system of rank one, which may be treated as in [Rub00, MR04]) as an input to bound Selmer groups. However, these techniques were designed to work over totally real fields and need to be improved further to be applied in our setting. This is one of the tasks we carry out here.

\(^2\)Whereas in our case, the base field is a general CM field and elliptic units are replaced by the conjectural Rubin-Stark elements.
It is important to note that not only our approach significantly differs from that of [HT94, Hid09, Mai08, Hsi12], it also sheds light on the CM main conjectures well-beyond the cases covered in all previous work on this subject. To give an example, suppose E is an elliptic curve defined over a totally real field K which has CM by the imaginary quadratic field M and set $F = MK$. All prior results (in this level of generality, namely when K is a general totally real field) concerning the main conjectures for E required the assumption that the sign $W(E/K)$ of the functional equation of the Hasse-Weil L-function of E/K is $+1$. Our Theorem A allows us to go beyond that (of course, it unfortunately proves less than the main conjectures, too).

The method that we develop in this article seems flexible enough to study the anticyclotomic main conjectures in the following form, which did not seem possible with alternative techniques in the literature. Let M_{∞}^{-} denote the anticyclotomic \mathbb{Z}_p-extension of M and suppose E/\mathbb{Q} is an elliptic curve as above. When $W(E/K) = -1$, the Iwasawa theory of E along $F_{\infty}^{-} := FM_{\infty}^{-}$ is much different from the cyclotomic Iwasawa theory. The relevant Selmer group in this case is not expected to be cotorsion3 and the methods of [HT94, Hid09, Mai08, Hsi12] do not seem adequate to address this important case. We will use the techniques we develop in this paper in our forthcoming work [Büy13c] to study the Iwasawa theory of E/K along F_{∞}^{-}, when K is a general totally real field4 and when the sign of the functional equation is not necessarily $+1$. Along these lines, Ashay Burungale has recently obtained an important result in which he proves that the derivative of the Katz p-adic L-function (in the cyclotomic direction) is non-zero.

As in [HT94, Hid09, Mai08, Hsi12], the p-ordinary condition (labeled as (H.pOrd) below) plays a vital role also in this article. To best of our knowledge, nothing substantial has been proved in the absence of this hypothesis5. In our forthcoming work [Büy13b], we adapt the approach of this article with the conjectural Rubin-Stark elements (and appropriately modify the rank-r Euler/Kolyvagin system machinery that we develop here) in order to prove (a form of) the main conjectures of Iwasawa theory for CM fields at supersingular primes. This falls away from the scope of all the previous work on the CM main conjectures which are alluded to above.

Before giving a further account of our results, we set our notation that will be in effect throughout this paper. Let F be a CM field and K its maximal totally real subfield that has degree g over \mathbb{Q}. Fix a complex conjugation $c \in \text{Gal}(\mathbb{Q}/K)$ lifting the generator of $\text{Gal}(F/K)$. Fix forever an odd prime p unramified in F/\mathbb{Q} and an embedding $i_p : \mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}_p$.

Definition 1.1. A CM-type Σ is a collection of embeddings $\sigma : F \hookrightarrow \overline{\mathbb{Q}}$ such that $\Sigma \cup \Sigma^c$ is the full set of embeddings of F into $\overline{\mathbb{Q}}$ and $\Sigma \cap \Sigma^c = \emptyset$. Here the complex conjugation σ^c of an embedding σ is defined so that $\sigma^c(a) = \sigma(a^c)$ for $a \in F$.

Suppose that the CM-type Σ satisfies the following hypothesis:

(H.pOrd) The embeddings $\Sigma_p := \{i_p \circ \sigma\}_{\sigma \in \Sigma}$ induce exactly half of the places of F over p.

Such a CM-type is called p-ordinary. We identify Σ_p with the associated subset of primes Σ.

3Hsieh has pointed out to us that when K/\mathbb{Q} is abelian or more generally if Leopoldt’s conjecture holds true, then it may be verified that the relevant Selmer groups is not cotorsion.

4When $K = \mathbb{Q}$, this has been studied by Agboola and Howard in [AH06] using the elliptic unit Euler system; see also [Arn07] for a generalization of their results to higher weight forms, as well as [Arn10] for the treatment of an analogous problem in the non-CM case, this time making use of Kato-Ochiai Euler system.

5Only when the totally real field K is \mathbb{Q}, Rubin [Rub91] has proved a form of the two-variable main conjecture in the supersingular setting.
Definition 1.2. For a torsion Λ-module \mathfrak{X}, define its characteristic ideal
\[
\text{char}(\mathfrak{X}) = \prod_{\mathfrak{p}} \mathfrak{p}^{\text{length}(\mathfrak{X}_\mathfrak{p})},
\]
where the product is over height-one prime of Λ.

Since Λ is regular, note that the ideal char(\mathfrak{X}) is principal. Let $\chi : G_F \to \mathfrak{S}$ be a Dirichlet character of order prime to p and let L_χ be the finite extension of F that χ cuts out. We define M_∞ to be the maximal abelian pro-p extension of $L_\infty = L_\chi F_\infty$ which is unramified outside Σ_p. Set $\mathfrak{X}_\infty = \text{Gal}(M_\infty/L_\infty)^\chi$, which is a finitely generated torsion Λ-module (see [HT94, §1.2]). Then the main conjecture in this setting asserts that:

Conjecture 1 (Main conjecture). The characteristic ideal of $\mathfrak{X}_\infty \otimes_\mathfrak{S} \mathcal{W}$ is generated by the Katz p-adic L-function $L^\Sigma_\chi \in \mathcal{W}[[\Gamma]]$.

When $K = \mathbb{Q}$ and F is a quadratic imaginary quadratic number field, Rubin in [Rub91] proved this conjecture using the Euler system of elliptic units. In this paper, we use the conjectural Rubin-Stark elements (see [Rub96] for their conjectural description) in place of elliptic units. In order to do so, the general “rank-g Euler-Kolyvagin systems machinery” (that was set up by the author in [Büy10] refining Perrin-Riou’s original approach in [PR98]) needs to be appropriately modified to apply in this setting. After carrying this out, we prove the following theorem generalizing [Rub91, Theorems 9.3 and 10.6]. For a finite extension M of L_χ, let Σ_M be the places of M that lie above those in Σ and let $U_{M,p}$ denote the p-adic completion of the local units of M at p and $U_M = \oplus_{p \in \Sigma_M} U_{M,p}$ be the semi-local units and U^χ_M its χ-isotypic part. Set $\mathfrak{V}_\infty = \varprojlim U_M^\chi$ and $\text{loc}_p^{+,-\otimes g}(\mathfrak{V}_\infty) \in \wedge^g \mathfrak{V}_\infty$ be the image of the tower of Rubin-Stark elements inside $\wedge^g \mathfrak{V}_\infty$; see §3 and §4.2 for a precise definition of the element $\text{loc}_p^{+,-\otimes g}(\mathfrak{V}_\infty)$.

Theorem A. (See Theorem 4.6 below). Assume that:

1. $\chi(\wp) \neq 1$ for any prime \wp of F above p and $\chi \neq \omega$ (where ω is the p-adic Teichmüller character).
2. Hida and Tilouine’s Σ-Leopoldt conjecture holds true for L_χ; see [HT94, p. 94] or Conjecture 4.2 below for its statement.
3. Rubin-Stark conjecture is true for all abelian extensions K/F chosen from the collection \mathcal{C}_0, which is defined as in §1.1 below.

Then,
\[
\text{char}(\mathfrak{X}_\infty) = \text{char}(\wedge^g \mathfrak{V}_\infty / \Lambda \cdot \text{loc}_p^{+,-\otimes g}(\mathfrak{V}_\infty)).
\]

Here the exterior product is calculated in the category of Λ-modules. See Remark 3.7 which lends evidence for our assumption (3). See also Remark 4.3 for a discussion regarding the Σ-Leopoldt conjecture.
The following conjecture we propose is a natural extension of Yager’s theorem [Yag82, Theorem 1] to our setting:

Conjecture 2. The principal ideal \(\text{char} \left(\bigwedge^g \Omega_{\infty}^X / \Lambda \cdot \text{loc}_p^+ \otimes^g (\xi_{F_{\infty}}^X) \right) \Lambda_W \) is generated by \(L_{\Sigma}^{\chi} \).

In view of Theorem A, this conjecture is equivalent to the main conjecture (namely, Conjecture 1 above). In particular, the recent work of Hsieh [Hsi12] gives a partial result towards the truth of Conjecture 2:

Theorem B. Assume that the hypotheses of Theorem A holds and suppose in addition that:

1. \(p > 5 \) is prime to the minus part of the class number of \(F \), to the order of \(\chi \) and is unramified in \(K/\mathbb{Q} \).
2. \(\chi \) is anticyclotomic in the sense that \(\chi(c\delta c^{-1}) = \chi(\delta)^{-1} \) for \(\delta \in \Delta \) and \(c \in G_K \) that induces the generator of \(\text{Gal}(F/K) \).
3. \(\chi \) is unramified at all places above \(p \).
4. The restriction of \(\chi \) to \(G_{F(\sqrt[p]{\mathfrak{p}})} \) (where \(\mathfrak{p}^* = (-1)^{\frac{p-1}{2}} \mathfrak{p} \)) is non-trivial.

Then Conjecture 2 is true.

As explained above, Theorem B should be thought of as a generalization of an important theorem due to Yager [Yag82] to a general CM field \(F \).

Assuming the truth of Conjecture 2, we obtain the following result on the arithmetic of CM abelian varieties as a consequence of Theorem A; compare to [Rub91, Theorem 11.4]. Let \(A \) be an abelian variety defined over \(F \) that has CM by the ring of integers \(\mathcal{O}_F \) of \(F \). For a fixed place \(\varepsilon \in \Sigma \), let \(\psi_\varepsilon \) be the associated (archimedean) Hecke character and let \(\mathfrak{p} \) be a prime of \(F \) above \(p \) (whose choice depends in a precise way on the choice of the archimedean avatar \(\psi_\varepsilon \) of the associated Grössencharacter, see §4.4 below for precise definitions).

Theorem C (Theorem 4.14). Assume that the hypotheses of Theorem A as well as Conjecture 2 hold true. If \(L(\psi_\varepsilon, 0) \) is nonzero, then \(A(F) \) is finite and \(\text{III}_{A/F}[\mathfrak{p}^\infty] \) is finite for sufficiently large primes \(p \).

See §4.4 below for a detailed discussion; also [Hsi12, Corollary 1] for a result along these lines on the arithmetic of CM elliptic curves, under different set of assumptions and proved using completely different techniques.

Acknowledgements. I would like to thank Ming-Lun Hsieh and Antonio Lei for their comments and suggestions on an earlier version of this article, and to Robert Pollack for his encouragement. I also thank Ashay Burungale for notifying us of his important work on the non-vanishing of the derivative (along the cyclotomic direction) of the Katz \(p \)-adic \(L \)-function. I thank Jan Nekovář for teaching me the general descent formalism built in his theory of Selmer complexes, which plays a crucial role in some of the proofs in this article. Special thanks are due to Karl Rubin, conversations with whom has essentially lead the author to write this article. I thank the anonymous referee for her/his comments and corrections. During the preparation of this article, I was partially supported by the European Commission (EC-FP7 Marie Curie grant 230668) and by TÜBİTAK.

1.1. **Notation and Hypotheses.**

Given a group \(G \), let \(\mu(G) \) denote the torsion subgroup of \(G \). For the local field \(\mathcal{F} \) introduced above, assume that

\[
\rho \text{ does not divide } |\mu(\mathcal{F}^\times)|.
\]
Let \(\chi : G \to \mathcal{O}^\times \) be any continuous character. For an abelian group \(A \) on which \(G \) acts continuously, let \(A^\varphi = \lim \limits_{\to \mathcal{O}} A / A^\varphi \) be the \(p \)-adic completion of \(A \) and
\[
A^\varphi = \{ a \in \hat{A} \otimes_{\mathbb{Z}_p} \mathcal{O} : ga = \chi(g)a \text{ for all } g \in G \}.
\]

For a field \(k \), fix a separable closure \(\bar{k} \) of \(k \) and let \(G_k = \text{Gal}(\bar{k}/k) \) be the absolute Galois group of \(k \). When \(k \) is a global field, \(\mathbb{A}_k \) denotes the adele ring of \(k \) and \(\mathbb{A}_k^\times \) the group of idèles.

Denote by \(F^{\text{cyc}} \) the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \). Set \(\Gamma^{\text{cyc}} = \text{Gal}(F^{\text{cyc}}/F) \) and \(\Lambda^{\text{cyc}} = \mathcal{O}[[\Gamma^{\text{cyc}}]] \). Let \(\chi^{\text{cyc}} : G_F \to \mathbb{Z}_p^\times \) denote the cyclotomic character giving the action of \(G_F \) on the \(p \)-power roots of unity \(\mu_p^\infty \) and let \(\langle \chi^{\text{cyc}} \rangle := \chi^{\text{cyc}} |_{\Gamma^{\text{cyc}}} : \Gamma^{\text{cyc}} \to \mathbb{Z}_p^\times \). Then \(\omega = \langle \chi^{\text{cyc}} \rangle^{-1} \chi^{\text{cyc}} \) is the Teichmüller character, giving the action of \(G_F \) on \(\mu_p^\infty \).

Suppose \(\psi : G_F \to \mathcal{O}^\times \) is a continuous \((p\text{-adic})\) Hecke character with \(\text{im}(\psi) = \mathcal{O}^\times \) and which is Hodge-Tate. Write \(\mathcal{O}^\times = \mathbf{\mu}(\mathfrak{H}^\times) \times U(1) \) and let \(\langle \psi \rangle : G_F \to U(1) \) be the map \(\psi \) followed by the projection \(\mathcal{O}^\times \to U(1) \). Set
\[
\omega_{\psi} = \psi \cdot \langle \psi \rangle^{-1} : G_F \to \mathbf{\mu}(\mathfrak{H}^\times) \hookrightarrow \mathcal{O}^\times
\]
and assume that
\begin{equation}
\omega_{\psi} \text{ is not the trivial character.}
\end{equation}

Let \(\psi^* = \psi^{-1} \otimes \chi^{\text{cyc}} \) and \(T = \mathcal{O}(\psi^*) \) be the free \(\mathcal{O} \) module of rank one on which \(G_F \) acts via the Hecke character \(\psi^* \). Given a Hecke character \(\psi \) as above, let \(F_\psi/F \) be the \(\mathbb{Z}_p[\mathfrak{H}^\psi] \)-extension that \(\langle \psi \rangle \) factors through. Write \(\Gamma_\psi = \text{Gal}(F_\psi/F) \) and \(\Lambda_\psi = \mathbb{Z}_p[[\Gamma_\psi]] \).

Let \(\chi : G_F \to \mathcal{O}^\times \) be any Dirichlet character (whose order is necessarily prime to \(p \)) which has the property that
\begin{equation}
\chi(\psi) \neq 1 \text{ for any prime } \varphi \text{ of } F \text{ above } p.
\end{equation}
and that
\begin{equation}
\chi \neq \omega.
\end{equation}

Define the \(G_F \)-representation \(T_\chi = \mathcal{O}(1) \otimes \chi^{-1} \). Let \(L_\chi \) be the finite extension of \(F \) cut by the character \(\chi \) and set \(\Delta = \text{Gal}(L_\chi/F) \); note that \(p \nmid |\Delta| \). Although for applications of our results to a CM abelian variety \(A \), we will only need to study the case \(\chi = \omega_{\psi} \) where \(\psi \) is the \(p \)-adic Hecke character attached to \(A \), we still chose to state some of our results in greater generality.

Let \(\mathcal{R} \) be the set of primes of \(F \) that does not contain any prime above \(p \) nor any prime at which \(\chi \) is ramified. Define \(\mathcal{N}(\mathcal{R}) \) to be the square free products of primes chosen from \(\mathcal{R} \). For \(\ell \in \mathcal{R} \), let \(F(\ell) \) be the maximal \(p \)-extension inside the ray class field of \(F \) modulo \(\ell \) and for \(\eta = \ell_1 \cdots \ell_s \in \mathcal{N}(\mathcal{R}) \), set \(F(\eta) = F(\ell_1) \cdots F(\ell_s) \). We write \(L(\eta) = L \cdot F(\eta) \) for the composite field. We define the collections of finite abelian extensions of \(F \) (resp., of \(L \))
\[
\mathfrak{E} = \{ M \cdot F(\eta) : \eta \in \mathcal{N}(\mathcal{R}); M \subset F_\infty \text{ is a finite extension of } F \},
\]
\[
\mathfrak{E}_0 = \{ M \cdot L(\eta) : \eta \in \mathcal{N}(\mathcal{R}); M \subset F_\infty \text{ is a finite extension of } F \},
\]
Let \(\mathfrak{K}_0 = \lim \limits_{\to \mathcal{N}} N \) and \(\mathfrak{K} = \lim \limits_{\to \mathfrak{E}} N \). Set \(\mathfrak{G}(\mathfrak{X}) = \text{Gal}(\mathfrak{X}/F) \) and \(\Lambda_\mathfrak{X} = \mathcal{O}[[\mathfrak{G}(\mathfrak{X})]] \) for \(\mathfrak{X} = \mathfrak{K}_0 \) and \(\mathfrak{K} \).

For any non-archimedean prime \(\lambda \) of \(F \), fix a decomposition group \(\mathcal{D}_\lambda \) and the inertia subgroup \(\mathcal{I}_\lambda \subset \mathcal{D}_\lambda \). Let \((-)^{\vee} = \text{Hom}(-, \mathbb{Q}_p^*/\mathbb{Z}_p) \) denote Pontryagin duality functor.
2. Selmer structures and Selmer groups

2.1. Semi-local Preparation. Let \(M = M_0 \cdot F(\eta) \) be a member of the collection \(\mathcal{E} \), where \(M_0 \) is a finite subextension of \(F_\infty/F \). Set \(\Delta_M = \text{Gal}(M/F), \delta_M = |\Delta_M| \) and \(\Lambda_M = \mathcal{O}[\Delta_M] \).

Let \(X \) be any \(\mathcal{O}[[G_F]] \)-module which is free of rank \(d \) as an \(\mathcal{O} \)-module. Suppose in addition that \(X \) satisfies the following hypothesis:

\[
(H.p1) \quad H^2(F_p, X) = 0 = H^2(F_p, \text{Hom}_\mathcal{O}(X, \mathcal{O}(1))), \text{ for any prime } p \text{ of } F \text{ above } p.
\]

Lemma 2.1. Suppose \(X \) is above. Let \(M \in \mathcal{E} \) be an extension of \(F \) and let \(\wp \) be a prime of \(M \) lying above \(p \). Then

\[
H^2(M_\wp, X) = 0 = H^2(M_\wp, \text{Hom}_\mathcal{O}(X, \mathcal{O}(1))).
\]

Proof. Let \(\wp \) be the prime of \(F \) lying below \(\wp \) and set \(D_\wp = \text{Gal}(M_\wp/F_\wp) \). Then either \(D_\wp \) is trivial and in this case Lemma follows from (H.p1), or otherwise \(D_\wp \) is a non-trivial \(p \)-group. Then,

\[
\#H^0(M_\wp, X^*[\wp]) = \#H^0(D_\wp, (H^0(M_\wp, X^*[\wp]) \equiv \#H^0(F_\wp, X^*[\wp]) \equiv 1 \mod p
\]

where the last equality holds thanks to (H.p1) and local duality. This shows that \(H^0(M_\wp, X^*) = 0 \) and thus by local duality that \(H^2(M_\wp, X) = 0 \), as desired. The second assertion is proved in an identical manner. \(\square \)

Definition 2.2. For \(j = 0, 1, 2 \) define

\[
H^j_+ (M_p, X) := \bigoplus_{i=1}^s \bigoplus_{q|\wp_i} H^i(M_\wp, X)
\]

and

\[
H^j_- (M_p, X) := \bigoplus_{i=1}^s \bigoplus_{q|\wp_i} H^i(M_\wp, X).
\]

Proposition 2.3. For \(M \) and \(X \) as above, the \(\mathcal{O} \)-modules \(H^1_+ (M_p, X) \) and \(H^1_- (M_p, X) \) are both free of rank \(g \cdot d \cdot \delta_M \).

Proof. Let \(\wp \) be any prime of \(M \) above \(p \). By [Nek06, Prop. 4.2.9], the cohomology \(H^\bullet (M_\wp, X) \) is represented by a perfect complex of \(\mathcal{O} \)-modules (i.e., projective (hence free) \(\mathcal{O} \)-modules of finite type) concentrated in degrees 0, 1 and 2. In particular, since we assume that \(H^2(M_\wp, X) = 0 \), then this complex may be taken in degrees 0 and 1. Similarly, the local cohomology \(H^\bullet (M_\wp, \text{Hom}_\mathcal{O}(X, \mathcal{O}(1))) \) is represented by a perfect complex of \(\mathcal{O} \)-modules concentrated in degrees 0 and 1. The two complexes \(H^\bullet (M_\wp, X) \) and \(H^\bullet (M_\wp, \text{Hom}_\mathcal{O}(X, \mathcal{O}(1))) \) are related by the duality functor \(\text{RHom}_\mathcal{O}(\cdot, \mathcal{O})[-2] \) (c.f., [Nek06, Prop. 5.2.4]). As a result, each of these two complexes is also represented by a perfect complex concentrated in degrees \(2 - 1 = 1 \) and \(2 - 0 = 2, \) hence by a single projective (hence free) \(\mathcal{O} \)-module of finite type in degree 1. This shows that both \(H^1_+ (M_p, X) \) and \(H^1_- (M_p, X) \) are free \(\mathcal{O} \)-modules of finite type.

Let \(M^\text{cycl}/M \) be the cyclotomic \(\mathbb{Z}_p \)-extension and let \(A^\text{cycl}_M = \mathcal{O}[[\Gamma^\text{cycl}_M]] \) be the completed group ring of its Galois group \(\Gamma^\text{cycl}_M = \text{Gal}(M^\text{cycl}/M) \). Let \(\gamma_M \) be a topological generator of \(\Gamma^\text{cycl}_M \). Since the cohomological dimension of \(G_{M_\wp} \) is 2 and since we assumed (H.p1), it follows that

\[
H^2(M_\wp, X \otimes A^\text{cycl}_M)/(\gamma_M - 1) \cong H^2(M_\wp, X) = 0,
\]
and hence by Nakayama’s lemma that

\[(2.1) \quad H^2(M_p, X \otimes \Lambda^\text{cyc}_M) = 0. \]

Furthermore, as the ring \(\Lambda^\text{cyc}_M \) is Gorenstein, Nekovář’s machinery applies as above *verbatim* for the \(\Lambda^\text{cyc}_M \)-module \(X \otimes \Lambda^\text{cyc}_M \) to conclude that the \(\Lambda^\text{cyc}_M \)-module \(H^1(M_p, X \otimes \Lambda^\text{cyc}_M) \) is free of finite rank. Its rank equals \([M_p : \mathbb{Q}_p] \cdot d\) by [Büy09b, Theorem A.8(ii)]. The natural map

\[H^1(M_p, X \otimes \Lambda^\text{cyc}_M) \longrightarrow H^1(M_p, X) \]

is surjective by (2.1). We conclude therefore that \(H^1(M_p, X) \) is a free \(\mathcal{O} \)-module of rank \([M_p : \mathbb{Q}_p] \cdot d\). This completes the proof.

Lemma 2.4. If (H.p1) holds true then the corestriction map

\[\text{cor} : H^1_\pm(M_p, X) \longrightarrow H^1_\pm(F_p, X) \]

is surjective.

Proof. Define \(X_M = \text{Ind}_{M/F} X \) and let \(\mathfrak{A}_M \) be the augmentation ideal of the local ring \(\mathcal{O}[\Delta_M] \). By the semi-local Shapiro’s Lemma [Rub00, §A.5], there is a canonical isomorphism

\[H^1_\pm(M_p, X) \cong H^1_\pm(F_p, X_M) \]

and the map

\[\text{cor}_{M/F} : H^1_\pm(F_p, X_M) \cong H^1_\pm(M_p, X) \longrightarrow H^1_\pm(F_p, X) \]

is induced from the augmentation sequence

\[0 \longrightarrow \mathfrak{A}_M \cdot X_M \longrightarrow X_M \longrightarrow X \longrightarrow 0. \]

The cokernel of \(\text{cor}_{M/F} \) is therefore contained in \(H^2_\pm(F_p, \mathfrak{A}_M \cdot X_M) \). To conclude the proof, it therefore suffices to check that \(H^2_\pm(F_p, \mathfrak{A}_M \cdot X_M) = 0 \) for every prime \(\wp \) of \(F \) lying above \(p \). This is equivalent by local duality to checking that \(H^0_\pm(\mathfrak{A}_M \cdot X_M^*) = 0 \). By the Claim on Page 1303 of [Büy10], it follows that \(H^0_\pm(\mathfrak{A}_M \cdot X_M^*) \hookrightarrow H^0_\pm(F_p, X_M^*) \), hence the proof reduces to verify that \(H^0_\pm(F_p, X_M^*) = 0 \), which again by local duality is equivalent to the vanishing of \(H^2_\pm(F_p, X_M) \cong H^2(M_p, X) \), and this is the conclusion of Lemma 2.1.

Proposition 2.5. For \(M \) and \(X \) as above then the \(\Lambda_M \)-modules \(H^1_\pm(M_p, X) \) are both free of rank \(g \cdot d \).

Proof. By Lemma 2.4, the map \(H^1_\pm(M_p, X) \rightarrow H^1_\pm(F_p, X) \) (which may be thought of as reduction modulo the augmentation ideal \(\mathfrak{A}_M \subseteq \mathcal{O}[\Delta_M] \)) is surjective. Nakayama’s Lemma and Lemma 2.5 therefore imply that \(H^1_\pm(M_p, X) \) is generated by (at most) \(g \cdot d \) elements over the ring \(\mathcal{O}[\Delta_M] \). Let \(\mathfrak{B} = \{ x_1, x_2, \ldots, x_{g \cdot d} \} \) be any set of such generators. To prove (i), it suffices to check that the \(x_i \)'s do not admit any non-trivial \(\mathcal{O}[\Delta_M] \)-linear relation. Assume contrary, and suppose there is a non-trivial relation

\[(2.2) \quad \sum_{i=1}^{g \cdot d} \alpha_i x_i = 0, \quad \alpha_i \in \mathcal{O}[\Delta_M]. \]

Write \(S = \{ \delta x_j : \delta \in \Delta_M, 1 \leq j \leq g \cdot d \} \), note that by our assumption on the set \(\mathfrak{B} \), the set \(S \) generates \(H^1_\pm(M_p, X) \) as an \(\mathcal{O} \)-module, and \(|S| = g \cdot d \cdot |\Delta_M| = \text{rank}_\mathcal{O} H^1_\pm(M_p, X) \). Equation (2.2) may be rewritten as

\[\sum_{\delta, j} a_{\delta, j} \cdot \delta x_j = 0 \]
with $a_{\delta, j} \in \mathfrak{D}$. Since we already know that $H^1(M, X)$ is \mathfrak{D}-torsion free, we may assume without loss of generality that $a_{\delta_0, j_0} \in \mathfrak{D}^\times$ for some δ_0, j_0. This in turn implies that

$$\delta_0 x_{j_0} \in \text{span}_{\mathfrak{D}}(S - \{\delta_0 x_{j_0}\}),$$

hence $H^1(M, X)$ is generated by $S - \{\delta_0 x_{j_0}\}$. This, however, is a contradiction since we already know that the \mathfrak{D}-rank of $H^1(M, T)$ is $g \cdot d \cdot \delta_M = |S|$, hence it cannot be generated by $|S| - 1$ elements over \mathfrak{D}. The proof of the Proposition is now complete. □

Corollary 2.6.

(i) The Λ-modules $H^1_{\pm}(F, X \otimes \Lambda)$ are both free of rank $g \cdot d$.

(ii) The Λ_K-modules $\varprojlim_{M \in \mathcal{E}} H^1_{\pm}(M, X)$, where the inverse limits are with respect to corestriction maps, are both free of rank $g \cdot d$.

Proof. Immediate after Proposition 2.5. □

When $\chi = \omega \psi$, observe that $T = T_\chi \otimes \langle \psi \rangle^{-1}$. The hypothesis (H.p1) is verified for $X = T$ and $X = T_\chi$, since we assumed (1.2) and (1.3). In particular, the conclusions of Corollary 2.6 hold true both choices of G_F-representations.

Definition 2.7.

(1) Let \mathcal{L} be any free rank one Λ_K-direct summand of $\varprojlim_{M \in \mathcal{E}} H^1_+(M, T_\chi)$.

(2) For $M = M_0 \cdot F(\eta) \in \mathcal{E}$ with $F \subset M_0 \subset F_{\infty}$, let $\mathcal{L}_M \subset H^1_+(M, T_\chi)$ be the image of \mathcal{L} under the surjection

$$\varprojlim_{N} H^1(N, T_\chi) \to H^1(M, T_\chi).$$

We write \mathcal{L} instead of \mathcal{L}_F.

(3) Let \mathcal{L}_{∞} be the image of \mathcal{L} under the surjection

$$\varprojlim_{N} H^1(N, T_\chi) \to H^1(F, T_\chi \otimes \Lambda).$$

Definition 2.8.

(1) The submodule

$$H^1_{\mathcal{L}_\infty}(F, T_\chi \otimes \Lambda) = H^1(F, T_\chi \otimes \Lambda) \oplus \mathcal{L}_\infty \subset H^1(F, T_\chi \otimes \Lambda)$$

is called the \mathcal{L}_{∞}-modified local condition on $T_\chi \otimes \Lambda$.

(2) Similarly, the submodule

$$H^1_{\mathcal{L}}(F, T_\chi) = H^1(F, T_\chi) \oplus \mathcal{L} \subset H^1(F, T_\chi)$$

is called the \mathcal{L}-modified local condition on T.
2.2. Selmer structures. The notation that we have set above is in effect.

We first recall Mazur and Rubin’s definition of a Selmer structure, in particular the canonical Selmer structure on T_χ and $T_\chi \otimes \Lambda$ (or on their various twists).

Let R be a complete local noetherian \mathcal{O}-algebra, and let X be a $R[[G_F]]$-module which is free of finite rank over R. In this paper, we will be interested in the case when $R = \Lambda$ or its certain quotients, and X is $T \otimes \Lambda$ or its relevant quotients by an ideal of Λ. (For example, taking the quotient by the augmentation ideal of Λ will give us \mathcal{O} and the representation T.)

Definition 2.9. A Selmer structure \mathcal{F} on X is a collection of the following data:

- a finite set $\Sigma(\mathcal{F})$ of places of F, including all infinite places and primes above p, and all primes where X is ramified.
- for every $\lambda \in \Sigma(\mathcal{F})$ a local condition on X (which we view now as a $R[[D_\lambda]]$-module), i.e., a choice of R-submodule

$$H^1_\mathcal{F}(F_\lambda, X) \subset H^1(F_\lambda, X).$$

If $\lambda \notin \Sigma(\mathcal{F})$ we will also write $H^1_\mathcal{F}(F_\lambda, X) = H^1_1(F_\lambda, X)$, where the module $H^1_1(F_\lambda, X)$ is the finite part of $H^1(F_\lambda, X)$, defined as in [MR04, Definition 1.1.6].

Definition 2.10. The semi-local cohomology group at a rational prime ℓ is defined by setting

$$H^i_\ell(F_\lambda, X) := \bigoplus_{\lambda | \ell} H^i(F_\lambda, X).$$

Let λ be a prime of F. There is the perfect local Tate pairing

$$<, >_{\lambda}: H^1(F_\lambda, X) \times H^1(F_\lambda, X^*) \to H^2(F_\lambda, \mathfrak{g}/\mathcal{O}(1)) \xrightarrow{\sim} \mathfrak{g}/\mathcal{O},$$

where we recall that $X^* := \text{Hom}(X, \mu_{p\infty})$ is the Cartier dual of X. For a Selmer structure \mathcal{F} on X, define $H^1_\mathcal{F}(F_\lambda, X^*) := H^1_1(F_\lambda, X)$ as the orthogonal complement of $H^1_1(F_\lambda, X)$ with respect to the local Tate pairing. The Selmer structure \mathcal{F}^* on X^* (with $\Sigma(\mathcal{F}) = \Sigma(\mathcal{F}^*)$) defined in this way will be called the dual Selmer structure.

For examples of local conditions see [MR04, Definitions 1.1.6 and 3.2.1].

Definition 2.11. If \mathcal{F} is a Selmer structure on X, we define the Selmer module $H^1_\mathcal{F}(F, X)$ as

$$H^1_\mathcal{F}(F, X) := \ker \left(H^1(\text{Gal}(F_{\Sigma(\mathcal{F})}/F), X) \longrightarrow \bigoplus_{\lambda \in \Sigma(\mathcal{F})} H^1(F_\lambda, X)/H^1_\lambda(F_\lambda, X) \right),$$

where $F_{\Sigma(\mathcal{F})}$ is the maximal extension of F which is unramified outside $\Sigma(\mathcal{F})$. We also define the dual Selmer structure in a similar way; just replace X by X^* and \mathcal{F} by \mathcal{F}^* above.

Example 2.12. In this example we recall [MR04, Definitions 3.2.1 and 5.3.2] of which we make frequent use.

(i) Let $R = \mathcal{O}$ and let X be a free R-module endowed with a continuous action of G_F, which is unramified outside a finite set of places of F. We define a Selmer structure \mathcal{F}_{can} on X by setting $\Sigma(\mathcal{F}_{\text{can}}) = \{ \lambda : X \text{ is ramified at } \lambda \} \cup \{ \varphi | p \} \cup \{ \nu | \infty \}$, and

- if $\lambda \in \Sigma(\mathcal{F}_{\text{can}})$, $\lambda \nmid p\infty$, we define the local condition at λ to be

$$H^1_{\text{can}}(F_\lambda, X) = \ker(H^1(F_\lambda, X) \longrightarrow H^1(F^\text{unr}_\lambda, X \otimes \mathfrak{g})),$$

where F^unr_λ is the maximal unramified extension of F_λ,
– if \(\wp | p \), we define the local condition at \(\wp \) to be
\[
H^1_{F_{\wp}}(F_{\wp}, X) = H^1(F_{\wp}, X).
\]

The Selmer structure \(F_{\text{can}} \) is called the \textit{canonical Selmer structure} on \(X \).

(ii) Let now \(R \) be the Iwasawa algebra \(\Lambda \) or its cyclotomic quotient \(\Lambda^{\text{cyc}} \), and let \(\mathbb{X} \) be a free \(R \)-module endowed with a continuous action of \(G_F \), which is unramified outside a finite set of places of \(F \). We define a Selmer structure \(F_R \) on \(\mathbb{X} \) by setting
\[
\Sigma(F_R) = \{ \lambda : \mathbb{X} \text{ is ramified at } \lambda \} \cup \{ \wp \subset F : \wp | p \} \cup \{ v | \infty \},
\]
and \(H^1_{F_R}(F_{\lambda}, \mathbb{X}) = H^1(F_{\lambda}, \mathbb{X}) \) for every \(\lambda \in \Sigma(F_R) \). The Selmer structure \(F_R \) is called the \textit{canonical \(R \)-adic Selmer structure} on \(\mathbb{X} \).

We still denote the induced Selmer structure on the quotients \(\mathbb{X}/I \mathbb{X} \) by \(F_R \), which is obtained by propagating \(F_{\text{can}} \) on \(\mathbb{X} \) (see [MR04, Example 1.1.2]). Note for \(\lambda \in \Sigma(F_R) \) that \(H^1_{F_R}(F_{\lambda}, \mathbb{X}/I \mathbb{X}) \) will not always be the same as \(H^1(F_{\lambda}, \mathbb{X}/I \mathbb{X}) \). In particular, when \(I \) is the augmentation ideal of \(R \), the Selmer structure \(F_R \) on \(\mathbb{X} \) will not always propagate to \(F_{\text{can}} \) on \(X := \mathbb{X} \otimes_R R/I \). However, when \(X = T \) and \(\mathbb{X} = T \otimes_{\mathbb{Q}} R \) as in §1, \(F_R \) on \(\mathbb{X} \) does propagate to \(F_{\text{can}} \) on \(X \), under the hypothesis \(H_1 \), as we shall check below.

\textbf{Definition 2.13.} A \textit{Selmer triple} is a triple \((X, F, P) \), where \(F \) is a Selmer structure on \(X \) and \(P \) is a set non-archimedean primes of \(F \) disjoint from \(\Sigma(F) \).

\textbf{Definition 2.14.}

(a) Let \(F_{-} \) be the Selmer structure on \(T_{\chi} \otimes \Lambda \) defined as follows:
- \(\Sigma(F_{-}) = \Sigma(F_{\lambda}) \),
- if \(\lambda \nmid p \), define \(H^1_{F_{-}}(F_{\lambda}, T_{\chi} \otimes \Lambda) = H^1_{F_{\lambda}}(F_{\lambda}, T_{\chi} \otimes \Lambda) \),
- \(H^1_{F_{-}}(F_{p}, T_{\chi} \otimes \Lambda) := H^1(F_{p}, T_{\chi} \otimes \Lambda) \subset H^1(F_{p}, T_{\chi} \otimes \Lambda) = H^1_{F_{\lambda}}(F_{p}, T_{\chi} \otimes \Lambda) \).

(b) Fix a \(\Lambda \)-rank one direct summand \(L_{\infty} \subset H^1_{F_{p}}(F_{p}, T_{\chi} \otimes \Lambda) \) as in Definition 2.7. Define the \(L_{\infty} \)-modified Selmer structure \(F_{L_{\infty}} \) on \(T_{\chi} \otimes \Lambda \) as follows:
- \(\Sigma(F_{L_{\infty}}) = \Sigma(F_{\lambda}) \),
- if \(\lambda \nmid p \), define \(H^1_{F_{L_{\infty}}}(F_{\lambda}, T_{\chi} \otimes \Lambda) = H^1_{F_{\lambda}}(F_{\lambda}, T_{\chi} \otimes \Lambda) \),
- \(H^1_{F_{L_{\infty}}}(F_{p}, T_{\chi} \otimes \Lambda) := H^1(F_{p}, T_{\chi} \otimes \Lambda) \oplus L_{\infty} \subset H^1_{F_{\lambda}}(F_{p}, T_{\chi} \otimes \Lambda) \).

2.3. \textbf{Comparing Selmer groups.} To ease notation, set \(T = T_{\chi} \otimes \Lambda \). Suppose in this section that \(\chi = \omega_{\wp} \).

\textbf{Lemma 2.15.} We have the following isomorphisms of \(\Lambda \)-modules:
\[
(2.3) \quad H^1(F, T) \otimes \langle \wp \rangle^{-1} \cong H^1(F, T \otimes \Lambda),
\]
\[
(2.4) \quad H^1(F_\ell, T) \otimes \langle \wp \rangle^{-1} \cong H^1(F_\ell, T \otimes \Lambda)
\]
for every prime \(\ell \).

\textit{Proof.} As we have remarked above, \(T_{\chi} = T \otimes \langle \wp \rangle^{-1} \). As \(\langle \wp \rangle^{-1} \) is a continuous character of \(\Gamma \), the proof of the Lemma follows from [Rub00, Proposition 6.2.1].

\(\square \)
Definition 2.16. Let \(H^1_{\mathcal{F}_-}(F_p, T \otimes \Lambda) \subset H^1(F_p, T \otimes \Lambda) \) (resp., \(\mathcal{L}_\infty^\psi \)) be the isomorphic image of \(H^1_{\mathcal{F}_-}(F_p, \mathbb{T}) \) (resp., \(\mathcal{L}_\infty \)) under the isomorphism (2.4) above. For any subquotient \(X \) of \(T \otimes \Lambda \), let \(H^1_{\mathcal{F}_-}(F_\ell, X) \subset H^1(F_\ell, X) \) denote the propagated local condition on \(X \), in the sense of [MR04, Example 1.1.2].

Lemma 2.17. We have the following isomorphism of Selmer groups:
\[
H^1_{\mathcal{F}_-}(F, \mathbb{T}) \otimes \langle \psi \rangle^{-1} \cong H^1_{\mathcal{F}_-}(F, T \otimes \Lambda).
\]

Proof. Immediate from Lemma 2.15 and the definition of the local condition \(\mathcal{F}_- \) on \(\mathbb{T} \) and on its twist \(T \otimes \Lambda \). \(\square \)

Lemma 2.18. The \(\mathcal{O} \)-module \(\mathcal{O}_{L_\chi}^{\times, \chi} \) is free of rank \(g \).

Proof. This follows from [NSW08, §8.6.12], along with our assumption that \(\chi \) is different from the Teichmüller character \(\omega \). \(\square \)

Consider the following hypothesis:

\[
(2.5) \quad H^1_{\mathcal{F}_-}(F, T_\chi^*) \text{ is finite.}
\]

We will verify later (see Theorem 4.6 below) that (2.5) holds true if we assume \(\Sigma \)-Leopoldt conjecture of Hida and Tilouine.

Lemma 2.19. Assuming (2.5), \(H^1_{\mathcal{F}_-}(F, T_\chi) = 0 \).

Proof. Let \(\mathcal{F}_{\text{can}} \) denote the canonical Selmer structure on \(T_\chi \), defined as in Example 2.12. As explained in [MR04, Lemma 6.1.2] and [Rub00, Proposition II.2.6], it follows from our assumption (1.3) that \(H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi) \cong \mathcal{O}_{L_\chi}^{\times, \chi} \), and therefore \(H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi) \) is an \(\mathcal{O} \)-module of rank \(g \) by Lemma 2.18 under the running assumptions.

The \(\Lambda \)-module \(H^1(F_p, T_\chi \otimes \Lambda) \) is free of rank \(2g \) by Lemma 2.15 and Corollary 2.6, and \(H^1_{\mathcal{F}_-}(F_p, T_\chi \otimes \Lambda) \) is a free rank-\(g \) direct summand of \(H^1(F_p, T_\chi \otimes \Lambda) \). Furthermore, the natural map
\[
H^1(F_p, T_\chi \otimes \Lambda) \rightarrow H^1(F_p, T_\chi)
\]
is surjective thanks to the assumption (1.3). It thus follows that \(H^1(F_p, T_\chi) \) is a free \(\mathcal{O} \)-module of rank \(2g \) and \(H^1_{\mathcal{F}_-}(F_p, T_\chi) \) is a direct summand of this module of rank \(g \). We conclude that
\[
\text{rank}_\mathcal{O} H^1_{\mathcal{F}_{\text{can}}}(F_p, T_\chi) - \text{rank}_\mathcal{O} H^1_{\mathcal{F}_-}(F_p, T_\chi) = g.
\]
Finally, it follows from [Wil95, Proposition 1.6] that
\[
\left(\text{rank}_\mathcal{O} H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi) - \text{corank}_\mathcal{O} H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi^*) \right) - \left(\text{rank}_\mathcal{O} H^1_{\mathcal{F}_-}(F, T_\chi) - \text{corank}_\mathcal{O} H^1_{\mathcal{F}_-}(F, T_\chi^*) \right) = g.
\]

Since \(H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi^*) \) is finite and \(\text{rank}_\mathcal{O} H^1_{\mathcal{F}_{\text{can}}}(F, T_\chi) = g \), we conclude that
\[
\text{rank}_\mathcal{O} H^1_{\mathcal{F}_-}(F, T_\chi) = \text{corank}_\mathcal{O} H^1_{\mathcal{F}_-}(F, T_\chi^*).
\]
Since we assumed (2.5), the proof follows. \(\square \)

Proposition 2.20. Assuming (2.5), \(H^1_{\mathcal{F}_-}(F, T \otimes \Lambda) = H^1_{\mathcal{F}_-}(F, \mathbb{T}) = 0 \).
Proof. Let \(\Gamma \cong \Gamma_1 \times \cdots \times \Gamma_{g+1-\delta} \), where \(\Gamma_i \cong \mathbb{Z}_p \) and \(\delta \) is Leopoldt’s defect. Let \(\gamma_i \) be a topological generator of \(\Gamma_i \). For each \(1 \leq j \leq g+1-\delta \), set \(\mathcal{A}_j = (\gamma_1-1, \ldots, \gamma_j-1) \) and \(\mathcal{A}_0 = 0 \). There is an exact sequence
\[
0 \to T_X \otimes \Lambda/\mathcal{A}_{j-1} \xrightarrow{\gamma_j^{-1}} T_X \otimes \Lambda/\mathcal{A}_j \to T_X \otimes \Lambda/\mathcal{A}_j \to 0
\]
that induces an injection
\[
H^1_{\mathcal{F}_-}(F, T_X \otimes \Lambda/\mathcal{A}_{j-1}) \to H^1_{\mathcal{F}_-}(F, T_X \otimes \Lambda/\mathcal{A}_j).
\]
Noting that
\[
H^1_{\mathcal{F}_-}(F, T_X \otimes \Lambda/\mathcal{A}_{g+1-\delta}) = H^1_{\mathcal{F}_-}(F, T_X) = 0
\]
and using Nakayama’s Lemma at each step, it follows by induction that
\[
H^1_{\mathcal{F}_-}(F, T_X \otimes \Lambda/\mathcal{A}_0) = H^1_{\mathcal{F}_-}(F, T_X \otimes \Lambda) = 0.
\]

Proof. The first follows exact sequence comes from Poitou-Tate global duality, used along with Proposition 2.20. The second is an immediate consequence of (i).

3. RUBIN-STARK ELEMENTS AND AN EULER SYSTEM OF RANK \(r \)

In this section, we review Rubin’s [Rub96] integral refinement of Stark’s conjectures and construct Kolyvagin systems for the modified Selmer structure \(\mathcal{F}_{\mathcal{L}_\infty} \) on \(T_X \otimes \Lambda \), coming from the Rubin-Stark elements.

For the rest of this paper, we assume that the Rubin-Stark conjecture [Rub96, Conjecture B’] holds.

Let \(\chi, f_\chi \) and \(L \) be as above, and recall the definitions of the collections of extensions \(\mathcal{E}_0 \) and \(\mathcal{E} \) from §1.1. Fix forever a finite set \(S \) of places of \(F \) that does not contain any prime above \(p \), but contains the set of infinite places \(S_\infty \) and all primes \(\lambda \upharpoonright p \) at which \(\chi \) is ramified. Assume that \(|S| \geq r+1 \). For each \(\mathcal{K} \in \mathcal{E} \), let
\[
S_{\mathcal{K}} = \{ \text{places of } \mathcal{K} \text{ that lie above the places in } S \} \cup \{ \text{places of } \mathcal{K} \text{ at which } \mathcal{K}/F \text{ is ramified} \}
\]
be a set of places of \(\mathcal{K} \). Let \(\mathcal{O}_{\mathcal{K}, S_{\mathcal{K}}}^\chi \) denote the \(S_{\mathcal{K}} \) units of \(\mathcal{K} \), and \(\Delta_{\mathcal{K}} \) (resp., \(\delta_{\mathcal{K}} \)) denote \(\text{Gal}(\mathcal{K}/F) \) (resp., \(|\text{Gal}(\mathcal{K}/F)| \)). Rubin in [Rub96, Conjecture B’] predicts the existence of certain elements
\[
\tilde{\varepsilon}_{\mathcal{K}, S_{\mathcal{K}}} \in \Lambda_{\mathcal{K}, S_{\mathcal{K}}} \subset \frac{1}{\delta_{\mathcal{K}}} \Lambda^{g} \mathcal{O}_{\mathcal{K}, S_{\mathcal{K}}}^\chi
\]
where the module \(\Lambda_{\mathcal{K}, S_{\mathcal{K}}} \) is defined in [Rub96, §2.1] and has the property that for any homomorphism
\[
\tilde{\psi} \in \text{Hom}_{\mathbb{Q}_p[\Delta_{\mathcal{K}}]}(\Lambda^{g} \mathcal{O}_{\mathcal{K}, S_{\mathcal{K}}}^\chi \otimes \mathbb{Q}_p, \mathcal{O}_{\mathcal{K}, S_{\mathcal{K}}}^{\chi, \Lambda} \otimes \mathbb{Q}_p)
\]
which is induced from a homomorphism

\[\psi \in \text{Hom}_{\mathbb{Z}_p[\Delta_K]}(\bigwedge^g \mathcal{O}_{K,S_K}^\times, \mathcal{O}_{K,S_K}^\times), \]

one has \(\tilde{\psi}(\Lambda_{K,S_K}) \subset \mathcal{O}_{K,S_K}^\times \). We remark that the \(g \)-th exterior power \(\bigwedge^g \mathcal{O}_{K,S_K}^\times \) (and all other exterior powers which appear below) is taken in the category of \(\mathbb{Z}_p[\Delta_K] \)-modules.

Remark 3.1. Rubin’s conjecture predicts that the elements \(\varepsilon_{K,S_K} \) should in fact lie inside the module \(\frac{1}{\delta_K} \bigwedge^g \mathcal{O}_{K,S_K,T}^\times \), where \(T \) is a finite set of primes disjoint from \(S_K \), chosen in a way that the group \(\mathcal{O}_{K,S_K,T}^\times \) of \(S_K \)-units which are congruent to 1 modulo all the primes in \(T \) is torsion-free. As explained in [Büy09b, Remark 3.1], one can safely ignore \(T \) as far as we are concerned in this paper.

Let \(F^\text{cyc} \) denote the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \) and for \(m \in \mathbb{Z}^+ \), let \(F^\text{cyc}_m \) be the unique subextension of \(F \) of degree \(p^m \).

Definition 3.2. For \(K = M \cdot L(\eta) \in \mathfrak{E}_0 \) (or \(K = M \cdot F(\eta) \in \mathfrak{E} \)), where \(\eta \in \mathcal{N}(\mathcal{R}) \) and \(M \subset F_\infty \) a finite extension of \(F \), choose \(m \in \mathbb{Z}^+ \) so that \(M \not\subset F^\text{cyc}_m \) and set \(M_m = M \cdot F^\text{cyc}_m \), \(K_m = K \cdot M_m \). Define

\[\varepsilon_{K,S_K} = N^r_{K_m/K}(\tilde{\varepsilon}_{K_m,S_{K_m}}) \]

where \(N^r_{K_m/K} \) denotes the norm map induced on the \(r \)-th exterior power. It follows from [Rub96, Proposition 6.1] that \(\varepsilon_{K,S_K} \) is well-defined.

As we have fixed \(S \) (therefore \(S_K \) as well), we will often drop \(S \) or \(S_K \) from the notation and denote \(\varepsilon_{K,S_K} \) by \(\varepsilon_K \); or sometimes use \(S \) instead of \(S_K \) and denote \(\mathcal{O}_{K,S_K} \) by \(\mathcal{O}_{K,S} \).

For any number field \(K \), Kummer theory gives a canonical isomorphism

\[H^1(K, \mathfrak{D}(1)) \cong K^\times /K^1 \otimes_{\mathbb{Z}_p} \mathfrak{D} := \left(\lim_{\substack{\longrightarrow\
\mathfrak{D}^n}} K^\times /K^1 \right) \otimes_{\mathbb{Z}_p} \mathfrak{D}. \]

Under this identification, we view each \(\varepsilon_{K,S_K} \) as an element of \(\frac{1}{\delta_K} \bigwedge^g H^1(K, \mathfrak{D}(1)) \). The distribution relation satisfied by the Rubin-Stark elements ([Rub96, Proposition 6.1]) shows that the collection \(\{ \varepsilon_{K,S_K} \}_{K \in \mathfrak{E}} \) is an Euler system of rank \(g \) in the sense of [PR98], as appropriately generalized by [Büy10] to allow denominators.

3.1. Twisting by the character \(\chi \)

Following the formalism of [Rub00, §II.4], we may twist the Euler system \(\{ \varepsilon_{K,S_K} \}_{K \in \mathfrak{E}} \) of rank \(g \) for the representation \(\mathfrak{D}(1) \), in order to obtain an Euler system for the representation \(T_\chi = \mathfrak{D}(1) \otimes \chi^{-1} \).

For a finite subextension \(M \) of \(F_\infty/F \) and \(\eta \in \mathcal{N}(\mathcal{R}) \), let \(\Gamma_M = \text{Gal}(M/F) \) and define \(K = M \cdot F(\eta), K_0 = M \cdot L(\eta) \). Set \(G^n := \text{Gal}(F(\eta)/F), \Delta^n := \text{Gal}(L(\eta)/F) = G^n \times \Delta, \)
and finally \(G^n_M := \text{Gal}(K/F) = G^n \times \Gamma_M, \) which is the \(p \)-part of \(\Delta^n_M := \text{Gal}(K_0/F) \cong G^n_M \times \Delta = G^n \times \Gamma_M \times \Delta. \) (These canonical factorizations of the Galois groups follow easily from the fact that \(|\Delta| \) is prime to \(p \) and from ramification considerations.) The array of fields
Let χ be as above, and let ϵ_{χ} denote the idempotent $\frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \chi(\sigma)\sigma^{-1}$, which regard as an element of the groups ring $O[\Delta]$ via the factorization above. For simplicity, we set $\delta = \delta_{\mathcal{K}}$ (note that δ also equals $\delta_{\mathcal{K}_0}$ up to multiplication by a p-adic unit) allowing ourselves to be somewhat sloppy, as the denominators will not be present when the Rubin-Stark elements are utilized for our main purposes.

For any integral ideal η which is prime to pf_{χ}, we define

\begin{align}
(3.1) \\
\epsilon^\chi_{\mathcal{K}_0} := \epsilon_{\chi}\epsilon_{\mathcal{K}_0,S} & \in \frac{1}{\delta} \epsilon_{\chi} \wedge^g H^1(\mathcal{K}_0, O(1)) \\
(3.2) \\
& = \frac{1}{\delta} \wedge^g \epsilon_{\chi} H^1(\mathcal{K}_0, O(1)) \\
(3.3) \\
& = \frac{1}{\delta} \wedge^g H^1(\mathcal{K}_0, O(1))^{\chi}.
\end{align}

Inflation-restriction yields

$$H^1(\mathcal{K}, O(1) \otimes \chi^{-1}) \longrightarrow H^1(\mathcal{K}_0, O(1) \otimes \chi^{-1})^\Delta.$$

On the other hand, since $G_{\mathcal{K}_0}$ is in the kernel of χ,

$$H^1(\mathcal{K}_0, O \otimes \chi^{-1}) \cong H^1(\mathcal{K}_0, O(1)) \otimes \chi^{-1},$$

hence

$$H^1(\mathcal{K}, T_{\chi}) \sim H^1(\mathcal{K}_0, T_{\chi})^\Delta \cong H^1(\mathcal{K}_0, O(1))^{\chi}.$$

This induces an isomorphism

\begin{equation}
(3.4) \quad \wedge^g H^1(\mathcal{K}, T) \sim \wedge^g H^1(\mathcal{K}_0, O(1))^{\chi}.
\end{equation}

The inverse image of the element $\epsilon^\chi_{\mathcal{K}_0}$ (which was defined in (3.1)) under the isomorphism induced from (3.4) above will be denoted by $\epsilon^\chi_{\mathcal{K}}$. The collection $\{\epsilon^\chi_{\mathcal{K}}\}_{\mathcal{K} \in \mathcal{E}}$ will be called the Rubin-Stark element Euler system of rank r.

Next, we construct a Euler system of rank one (i.e., an Euler system in the sense of [Rub00]) using ideas from [Rub96, §6] and [PR98, §1.2.3]. The main point is that, if one applied the arguments of [Rub96, PR98] directly, all one would get (after applying Kolyvagin’s descent) would be a Λ-adic Kolyvagin system for the coarser Selmer structure \mathcal{F}_{Λ} on $T_{\chi} \otimes \Lambda$. In Section §3.3, we overcome this difficulty and obtain a Λ-adic Kolyvagin system for the finer Selmer structure $\mathcal{F}_{\mathcal{E}_{\infty}}$ on $T_{\chi} \otimes \Lambda$.

This induces an isomorphism

\begin{equation}
(3.4) \quad \wedge^g H^1(\mathcal{K}, T) \sim \wedge^g H^1(\mathcal{K}_0, O(1))^{\chi}.
\end{equation}

The inverse image of the element $\epsilon^\chi_{\mathcal{K}_0}$ (which was defined in (3.1)) under the isomorphism induced from (3.4) above will be denoted by $\epsilon^\chi_{\mathcal{K}}$. The collection $\{\epsilon^\chi_{\mathcal{K}}\}_{\mathcal{K} \in \mathcal{E}}$ will be called the Rubin-Stark element Euler system of rank r.
3.2. Choosing the homomorphisms. For any field $\mathcal{K} \in \mathcal{E}$, recall that $\Delta_{\mathcal{K}} := \text{Gal}(\mathcal{K}/F)$ and write $\delta = |\Delta_{\mathcal{K}}|$. Using the elements of

\begin{equation}
\lim_{\mathcal{K} \in \mathcal{E}} \wedge^{r-1} \text{Hom}_{\mathcal{O}[\Delta_{\mathcal{K}}]} \left(H^1(\mathcal{K}, T), \mathcal{O}[\Delta_{\mathcal{K}}] \right)
\end{equation}

(more precisely, using the elements those are in the image of the canonical map

\begin{equation}
\lim_{\mathcal{K} \in \mathcal{E}} \wedge^{r-1} \text{Hom}_{\mathcal{O}[\Delta_{\mathcal{K}}]} \left(H^1_+(\mathcal{K}_p, T), \mathcal{O}[\Delta_{\mathcal{K}}] \right) \rightarrow \lim_{\mathcal{K} \in \mathcal{E}} \wedge^{r-1} \text{Hom}_{\mathcal{O}[\Delta_{\mathcal{K}}]} \left(H^1(\mathcal{K}, T), \mathcal{O}[\Delta_{\mathcal{K}}] \right)
\end{equation}

which is induced from the localization followed by projection to $H^1_+(\mathcal{K}_p, T)$) and the Rubin-Stark elements above, we obtain an Euler system (in the sense of [Rub00]) for T, following the arguments of [Büy10] (which are based on Rubin’s ideas [Rub96, §6]; see also [PR98, §1.2.3]). We omit the details here and refer the reader to these articles.

Remark 3.3. For $\Psi = \{\psi_{\mathcal{K}}\} \in \lim_{\mathcal{K} \in \mathcal{E}} \wedge^{r-1} \text{Hom}_{\mathcal{O}[\Delta_{\mathcal{K}}]} \left(H^1(\mathcal{K}, T), \mathcal{O}[\Delta_{\mathcal{K}}] \right)$ we have

$$\psi_{\mathcal{K}}(\varepsilon_{\mathcal{K}}) \in H^1(\mathcal{K}, T)$$

by the defining (integrality) property of the elements $\varepsilon_{\mathcal{K}} \in \frac{1}{\delta} \wedge^g H^1(\mathcal{K}, T)$, namely, the denominators δ will disappear once we apply the homomorphisms from (3.5) on the Rubin-Stark elements.

Let $\text{ES}(T, \mathcal{E}) = \text{ES}(T, \mathcal{R})$ denote the collection of Euler systems for T in the sense of [Rub00, §2] and [MR04, §3.2].

Definition 3.4. Let $\mathcal{L} \subset \lim_{M \in \mathcal{E}} H^1_+(M, T)$ be a Λ-direct summand as in Definition 2.16. An Euler system $c = \{c_{\mathcal{K}}\} \in \text{ES}(T, \mathcal{E})$ is called an \mathcal{L}-restricted Euler system if

$$\text{loc}_p(c_{\mathcal{K}}) \in H^1(\mathcal{K}_p, T) \oplus \mathcal{L}_{\mathcal{K}}$$

for every $\mathcal{K} \in \mathcal{E}$. The module of \mathcal{L}-restricted Euler systems is denoted by $\text{ES}_{\mathcal{L}}(T)$. The following Proposition is proved following the arguments of [Büy10, §3.3-3.4] verbatim. The key point is to make use of Corollary 2.6.

Proposition 3.5.

(i) There exists $\Psi = \{\psi_{\mathcal{K}}\} \in \lim_{\mathcal{K} \in \mathcal{E}} \wedge^{r-1} \text{Hom}_{\mathcal{O}[\Delta_{\mathcal{K}}]} \left(H^1_+(\mathcal{K}_p, T), \mathcal{O}[\Delta_{\mathcal{K}}] \right)$ such that $\psi_{\mathcal{K}}$ maps $\wedge^r H^1_+(\mathcal{K}_p, T)$ isomorphically onto $\mathcal{L}_{\mathcal{K}}$.

(ii) For Ψ as above, denote its image under (3.6) still by Ψ. Then

$$c^\chi_{\Psi} := \{\psi_{\mathcal{K}}(\varepsilon_{\mathcal{K}}^\chi)\} \in \text{ES}_{\mathcal{L}}(T, \mathcal{E}).$$

Let $c^\chi_{F, \Psi} := \psi_F(\varepsilon_{\mathcal{K}}^\chi) \in H^1_{\mathcal{F}_{\mathcal{K}}}(F, T)$ be the initial term of the \mathcal{L}-restricted Euler system c^χ_{Ψ}.

3.3. From Euler systems of rank r to Kolyvagin systems for modified Selmer structures. Let \mathcal{P}^χ be a fixed set of places of F that does not contain the archimedean places, primes at which T is ramified and primes above p. Recall the definition of generalized module of Kolyvagin systems $\mathbf{KS}(T \otimes \Lambda, \mathcal{F}_\Lambda; \mathcal{P}^\chi)$ from [MR04, Definition 3.1.6].

Theorem 3.6 (Mazur and Rubin). There is a canonical map

$$\text{ES}(T) \rightarrow \mathbf{KS}(T \otimes \Lambda, \mathcal{F}_\Lambda; \mathcal{P}^\chi),$$
with the property that if c maps to $\kappa \in \overline{KS}(\mathbb{T}, \mathcal{F}_\Lambda, \mathcal{P})$ then

$$\kappa_1 = \{c_M\} \in \lim_{\leftarrow M} H^1(M, T_\chi) = H^1(F, T_\chi \otimes \Lambda),$$

where the inverse limit is over the finite subextensions M of F_∞/F.

Proof. Under the running hypotheses, this may be proved following the proof of Theorem 5.3.3 in [MR04] line by line. □

For Ψ and c_Ψ^χ as in the statement of Proposition 3.5, we let $\kappa_\chi \in KS(T_\chi \otimes \Lambda, F_\Lambda, P_\chi)$ be the image of c_Ψ^χ under the Euler systems to Kolyvagin systems map of Theorem 3.6. The proof of [Büy10, Theorem 3.25] shows that:

Theorem 3.7. $\kappa_\chi \in \overline{KS}(T_\chi \otimes \Lambda, F_\Lambda, P_\chi)$.

Remark 3.8. In Appendix A below, we explain that the techniques of [Büy11, Büy13a] may be used to prove that the Λ-adic Kolyvagin system κ_χ (which we have constructed out of the (conjectural) Rubin-Stark elements above) does exist unconditionally.

4. Applications to the Arithmetic of CM Abelian Varieties

Although our sights are set for applications of Theorem 3.7 on the study of CM abelian varieties, we first state the following two results, the latter of which may be thought of a generalization of Gras’ conjecture. This result will later be used to convert all inequalities which are obtained using the Euler/Kolyvagin system machinery into equalities.

4.1. Ideal class groups of CM fields

For any number field K, let A_K denote the ℓ-Sylow subgroup of the ideal class group of A_K.

Theorem 4.1. $\#H^1_{\mathcal{F}_\chi}(F, T_\chi^*) \leq [H^1_{\mathcal{F}_\chi}(F, T_\chi) : \mathcal{O} \cdot c_\chi^F, \Psi]$.

Proof. This follows from Theorem 3.7 and [MR04, Theorem 5.2.14]. □

The following (stronger) version of Leopoldt’s conjecture was formulated by Hida and Tilouine [HT94, p. 94]:

Conjecture 4.2 (Σ-Leopoldt conjecture). The localization map

$$\text{loc}_p^+ : \mathcal{O}_{L_\chi}^{\times, \chi} \longrightarrow \left(\prod_{\mathfrak{p} \in \Sigma_p(L_\chi)} \mathcal{O}_{L_\chi, \mathfrak{p}}^{\times, \chi} \right)^{\chi}$$

is injective. Here, $\Sigma_p(L_\chi)$ is the collection of primes of L_χ that lie above the primes in Σ_p.

Remark 4.3. As explained in 1.2.1 of [HT94], both the Σ-Leopoldt conjecture and the Leopoldt conjecture itself follow from the p-adic Schanuel’s conjecture.

We assume until the end the following is true (as well as the truth of Rubin-Stark conjectures):

H. Σ_L Σ-Leopoldt conjecture holds true for the field L_χ.

H.S The set S that appears in the definition of Rubin-Stark elements (see the start of §3) contains no archimedean places of F that splits in L_χ/F.

Theorem 4.4. (i) The \mathcal{O}-module $H^1_{\mathcal{F}_\chi}(F, T_\chi)$ is free of rank one and $H^1_{\mathcal{F}_\chi}(F, T_\chi^*)$ is finite.
(ii) \(\# A_{L_\chi}^X \leq [\land g \mathcal{O}_{L_\chi}^{X,x} : \mathcal{O} \cdot \varepsilon_F^X] \).

(iii) If the inequality in (ii) is sharp then so is the inequality in Theorem 4.1.

Proof. (i) is proved using Theorem 4.1 and following the proof of [Büy09a, Corollary 3.6], and (ii) following the proof of [Büy09a, Theorem 3.10]. The key point in the proofs we refer to in [Büy09a] is that, the map \(i \) in loc.cit. from the group of units to semi-local units is injective as Leopoldt’s conjecture was assumed to hold. To apply the arguments in loc.cit., one needs to replace the map \(i \) by the map

\[
\text{loc}_p^+ : \mathcal{O}_{L_\chi}^{X,x} \longrightarrow \left(\prod_{\mathfrak{p} \in \Sigma_p(L_\chi)} \mathcal{O}_{L_\chi,\mathfrak{p}}^{x} \right)^X = H_+^{1}(F_p, T_\chi),
\]

where the last equality follows from the proof of [Rub00, Proposition 2.6] as we have assumed (1.3). The injectivity of \(\text{loc}_p^+ \) is the statement of our hypothesis \(H.\Sigma L \).

(iii) also follows from the proofs of Corollary 3.9 and Theorem 3.10 of loc.cit. \(\square \)

Choosing the auxiliary set of primes \(T \) that appears in the definition of Rubin-Stark elements carefully (as in [Büy09a, §2.1], see also the discussion preceding Theorem 3.11 in loc.cit.), one may use the analytic class number formula for all the fields between \(L \) and \(F \) to convert the inequality of Theorem 4.4(ii) (and therefore also in Theorem 4.1) into an equality. See [Rub92, §5] and [Pop04, §4.2] for further details.

Corollary 4.5.

(i) \(\# A_{L_\chi}^X = [\land g \mathcal{O}_{L_\chi}^{X,x} : \mathcal{O} \cdot \varepsilon_F^X] \).

(ii) \(\# H_{F_{L_\chi}}^{1}(F, T_\chi^+) = [H_{F_{L_\chi}}^{1}(F, T_\chi) : \mathcal{O} \cdot c_{F,\chi}^+] \).

4.2. **Iwasawa theory.** Let \(c_{F,\infty,\chi}^X := \{c_{M,\chi}^X\} \in \lim M H^1(M, T_\chi) \), where the inverse limit is over finite subextensions \(M \) of \(F_\infty/F \). Recall the Selmer structure \(\mathcal{F}_- \) on \(T_\chi \otimes \Lambda \), defined as in §2.3.

Let

\[
\text{loc}_p^+,\otimes^r : \wedge^r H^1(F, X) \longrightarrow \wedge^r H_+^1(F_p, X)
\]

(where \(X = T_\chi \) or \(T_\chi \otimes \Lambda \) be the map induced from \(\text{loc}_p^+ \). Define

\[
\text{loc}_p^+,\otimes^r (\varepsilon_{F,\infty}^X) := \{\text{loc}_p^+,\otimes^r (\varepsilon_{M}^X)\}_M \in \lim M H^1(F_p, T_\chi) = \wedge^r H^1(F, T_\chi \otimes \Lambda),
\]

where the inverse limit is with respect to finite subextensions \(M \) of \(F_\infty/F \), and the last equality holds true since the \(\mathcal{O}[\Gamma_M] \)-module \(H_+^1(M, T_\chi) \) is free of rank \(r \), by Proposition 2.5.

Theorem 4.6. Under the running assumptions,

(i) We have

\[
\# H_{F_{L_\chi}}^{1}(F, T_\chi) = \# L/\mathcal{O} \cdot \text{loc}_p^+ (c_{F,\chi}^+) = \# \wedge^r H_+^1(F_p, T_\chi)/\mathcal{O} \cdot \text{loc}_p^+,\otimes^r (\varepsilon_F^X),
\]

and all these quantities are finite.

(ii) \(\text{char} \left(H_{F_{L_\chi}}^{1}(F, (T_\chi \otimes \Lambda)^*)\right) \mid \text{char} \left(H_{F_{L_\chi}}^{1}(F, T_\chi \otimes \Lambda)/\Lambda \cdot c_{F,\infty,\chi}^X \right) \).

(iii) The module \(H_{F_{L_\chi}}^{1}(F, (T_\chi \otimes \Lambda)^*) \) is \(\Lambda \)-cotorsion and

\[
\text{char} \left(H_{F_{L_\chi}}^{1}(F, (T_\chi \otimes \Lambda)^*)\right) = \text{char} \left(\wedge^r H_+^1(F_p, T_\chi \otimes \Lambda)/\Lambda \cdot \text{loc}_p^+,\otimes^r (\varepsilon_{F,\infty}^X) \right)
\]
Proof. The second equality in (i) is deduced using the defining property of Ψ, see Proposition 3.5(i).

As in Proposition 2.21\(^6\), the Poitou-Tate global duality and Lemma 2.19 yields an exact sequence

$$0 \rightarrow H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi) / \mathfrak{D} \cdot c^\chi_{F,\Psi} \rightarrow \mathcal{L} / \mathfrak{D} \cdot \text{loc}^+ (c^\chi_{F,\Psi}) \rightarrow H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi) \rightarrow H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi^*) \rightarrow 0$$

The first equality in (i) now follows from Corollary 4.5(ii).

When the Iwasawa algebra Λ has Krull dimension 2, (ii) follows from [MR04, Theorem 5.3.1]. The general case is reduced to the case of dimension 2 applying the results of Ochiai in [Och05, §3].

Let $\mathcal{A} = \ker\{\Lambda \rightarrow \mathfrak{D}\}$ be the augmentation ideal. By [MR04, Lemma 3.5.3], we may identify $H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*)[\mathcal{A}]$ with $H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*[\mathcal{A}])$, and

\begin{equation}
H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*[\mathcal{A}]) = H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^* / \mathcal{A})^* \\
\quad = H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi^*).
\end{equation}

Since $H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi^*)$ is finite by (i), the first statement of (iii) follows. It also follows from (ii) and Proposition 2.21(ii) (along with the choice of Ψ as in Proposition 3.5) that

$$\text{char} \left(H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*)^\vee \right) \mid \text{char} \left(\Lambda^r H^1_{\mathcal{F}_e}(F_p, T^\chi \otimes \Lambda) / \mathcal{L} \cdot \text{loc}^+ (c^\chi_{F,\Psi}) \right).$$

It remains to prove that this divisibility may in fact be turned into an equality and this is what we carry out in what follows.

We will first check the equality modulo the augmentation ideal \mathcal{A} (namely, the statements (4.2) and (4.3)), which using Lemma 4.8, Lemma 4.9 below and the divisibility obtained above will conclude the proof.

Observe that the Λ-module $\mathcal{L}_\infty / \Lambda \cdot \text{loc}^+ (c^\chi_{F,\Psi})$ is cyclic. We see therefore that

$$\text{char} \left(\Lambda^r H^1_{\mathcal{F}_e}(F_p, T^\chi \otimes \Lambda) / \mathcal{L} \cdot \text{loc}^+ (c^\chi_{F,\Psi}) \right) = \text{char} \left(\Lambda^r H^1_{\mathcal{F}_e}(F_p, T^\chi \otimes \Lambda) / \mathcal{L} \cdot \text{loc}^+ (c^\chi_{F,\Psi}) \right) = \text{Fitt}_\Lambda \left(\mathcal{L}_\infty / \Lambda \cdot \text{loc}^+ (c^\chi_{F,\Psi}) \right),$$

where the first equality is obtained thanks to the choice of Ψ and $\text{Fitt}_\Lambda (M)$ denotes the initial Fitting ideal of a Λ-module M. Thus,

\begin{equation}
\mathcal{O} : \text{char}(\mathcal{L}_\infty / \Lambda \cdot c^\chi_{F,\Psi}) \otimes \Lambda / \mathcal{A} = [\mathcal{O} : \text{Fitt}_\mathcal{O}(\mathcal{L}_\infty / \Lambda \cdot c^\chi_{F,\Psi}) \otimes \Lambda / \mathcal{A}] \\
= [\mathcal{O} : \text{Fitt}_\mathcal{O}(\mathcal{L} / \mathcal{D} \cdot c^\chi_{F,\Psi})] \\
= \# H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi^*).
\end{equation}

We next check that

\begin{equation}
[\mathcal{O} : \text{char} \left(H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*)^\vee \right) \otimes \Lambda / \mathcal{A} = \# H^1_{\mathcal{F}_e}(\mathcal{F}, (T^\chi \otimes \Lambda)^*)^\vee \otimes \Lambda / \mathcal{A} = \# H^1_{\mathcal{F}_e}(\mathcal{F}, T^\chi^*).
\end{equation}

where the second equality holds thanks to (4.1). In order to achieve this, we appeal to Nekovář’s theory of Selmer complexes and the descent formalism built in his theory.

\[^6\text{See also [Rub00] Theorem I.7.3, proof of Theorem III.2.10 and [dS87, §III.1.7].}\]
The Selmer complex $\mathcal{R}_{\Gamma_f, Iw}(F_{\infty}/F, T_{\chi})$ (resp., the dual complex $\mathcal{R}_{\Gamma_f}(F_{\Sigma(F_{\text{can}})}/F_{\infty}, T_{\chi}^*)$), in the sense of [Nek06, Proposition 9.7.2]) related to the Selmer group $H^1_{F_{\text{an}}}(F, (T_{\chi} \otimes \Lambda)^*)$ is given by the Greenberg local conditions determined by

$$U_v^+(T_{\chi}) = \begin{cases} 0, & \text{if } v \in \Sigma_p, \\ T_{\chi}, & \text{if } v \in \Sigma_c^c. \end{cases}$$

(resp.,

$$U_v^+(T_{\chi}^*) = \begin{cases} T_{\chi}^*, & \text{if } v \in \Sigma_p, \\ 0, & \text{if } v \in \Sigma_c^c. \end{cases}$$

for the dual complex). Since we assume (1.3), [Nek06, Lemma 9.6.3] (and [Nek06, Proposition 8.8.6] to pass to limit) shows that

$$\tilde{H}^1_{\Gamma_f}(F_{\Sigma(F_{\text{can}})}/F_{\infty}, T_{\chi}^*) \sim \rightarrow H^1_{F_{\text{an}}}(F, (T_{\chi} \otimes \Lambda)^*),$$

and [Nek06, 8.9.6.2] that

$$\tilde{H}^2_{f, Iw}(F_{\infty}/F, T_{\chi}) \simeq \tilde{H}^1_{\Gamma_f}(F_{\Sigma(F_{\text{can}})}/F_{\infty}, T_{\chi}^*)^\vee.$$

Furthermore, we proved above that the Λ-module

$$\tilde{H}^1_{\Gamma_f}(F_{\Sigma(F_{\text{can}})}/F_{\infty}, T_{\chi}^*) \simeq H^1_{F_{\text{an}}}(F, (T_{\chi} \otimes \Lambda)^*)$$

is cotorsion. Set $A_{\chi} = T_{\chi} \otimes \mathfrak{F}/\mathcal{O}$ and fix a prime \wp of F and a prime $\tilde{\wp}$ of L_{χ} above \wp. Let Δ_{\wp} be the decomposition group of $\tilde{\wp}$ in Δ. Since we assumed (1.3) and (1.4), we observe that (see [Nek06, §9.5])

$$(4.4) \quad \tilde{H}^0_f(F, A_{\chi}) = \mu_{p_{\infty}}(L_{\chi})^\chi = 0$$

$$(4.5) \quad \tilde{H}^3_f(F, T_{\chi}) = (\mathcal{O}[\Delta/\Delta_{\wp}])^\chi = 0$$

hence by duality that

$$\tilde{H}^0_f(F, X) = 0$$

for $X = A_{\chi}, T_{\chi}^*$. The proof of [Nek06, Proposition 9.7.7] thus shows that the complex $\mathcal{R}_{\Gamma_{f, Iw}}(F_{\infty}/F, T_{\chi})$ may be represented by a complex

$$\text{Cone} \left(M \rightarrow M \right) [-2]$$

where M is a free Λ-module of finite type and u is injective. This, together with Nekovář’s control theorem [Nek06, Proposition 8.10.1]

$$\mathcal{R}_{\Gamma_{f, Iw}}(F_{\infty}/F, T_{\chi}) \mathcal{L} \mathcal{O} \sim \rightarrow \mathcal{R}_{\Gamma_f}(F, T_{\chi})$$

concludes the proof of (4.3), hence also the proof of the theorem.

Remark 4.7. One may also observe directly by Proposition 2.20 that

$$\tilde{H}^1_{f, Iw}(F_{\infty}/F, T_{\chi}) \simeq H^1_{F_{\text{an}}}(F, (T_{\chi} \otimes \Lambda)^*) = 0$$

and thus the Selmer complex $\mathcal{R}_{\Gamma_{f, Iw}}(F_{\infty}/F, T_{\chi})$ has no cohomology in degree 1. Also, the vanishing (4.5) implies by Nakayama’s Lemma (using [Nek06, 8.10.3.3]) that the Selmer complex has no cohomology in degree 3 either.

Lemma 4.8. $\text{char} \left(H^1_{F_{\text{an}}}(F, (T_{\chi} \otimes \Lambda)^*)^\vee \right) \not\in \mathcal{A}$.

Remark 4.10. Mimicking the proof of [Rub00, Proposition 3.2.6] (with the aid of the assumption (1.3)), we see that
\[
H^1_+ (F_p, T_\chi \otimes \Lambda) = \lim_{\longrightarrow} \bigoplus_{\nu \in \Sigma_p} \mathcal{O}_{\Lambda, \chi, \nu}^{\times}
\]
where \(\mathcal{O}_{\Lambda, \chi, \nu} = \mathcal{O}_{\Lambda} \otimes \mathcal{O}_{F, \nu}\) and the inverse limit is over finite subextensions of \(F_\infty/F\). Similarly (using again the arguments of [Rub00, §1.6]), the \(\Lambda\)-module \(H^1_{F_\infty} (F, (T_\chi \otimes \Lambda)^*)\) may be identified by \(\text{Gal}(\mathcal{M}_\infty/\mathcal{L}_\infty)^{\chi}\), where \(\mathcal{L}_\infty = \mathcal{L}_\chi \mathcal{M}_\infty\) and \(\mathcal{M}_\infty\) is the maximal abelian unramified \(\mathcal{L}\)-extension of \(\mathcal{L}_\infty\) unramified outside \(\Sigma_p\). Theorem 4.6(iii) may therefore be regarded as a natural generalization of [Rub91, Theorem 4.1].

4.3. \textbf{Katz’s \(p\)-adic \textit{L}-function.} Attached to the \(p\)-ordinary CM-type \(\Sigma\) and the character \(\chi\), Katz [Kat78] and Hida-Tilouine [HT93, Theorem II] has constructed a \(p\)-adic \textit{L}-function \(\mathcal{L}_\chi^\Sigma \in \Lambda_{\mathcal{W}} := \mathcal{W}_{\mathcal{O}}[[\Gamma]]\), where \(\mathcal{W}_{\mathcal{O}}\) is the composite of \(\mathcal{O}\) and \(\mathcal{W}\) (and \(\mathcal{W}\) is the \(p\)-adic completion of the ring of integers of the maximal unramified extension of \(\mathbb{Q}_p\)), that \(p\)-adically interpolates the algebraic parts (in the sense of [Shi75]) of the critical Hecke \textit{L}\)-values for \(\chi\) twisted by the characters of \(\Gamma\). In the spirit of the main result of [Yag82], we propose the following conjecture under our running assumptions:

\textbf{Conjecture 3.} \(\text{char } (\wedge^g H^1_{\chi} (F, T_\chi \otimes \Lambda_{\mathcal{W}})/\Lambda_{\mathcal{W}} \cdot \text{loc}_{\tilde{\nu}}^{\tilde{\nu}, \otimes g} (\varepsilon_{\mathcal{L}_\infty})) = (\mathcal{L}_\chi^\Sigma)\).

In view of Theorem 4.6(iii), this conjecture is equivalent to the following statement:

\textbf{Theorem 4.11.} Conjecture 1 holds true if and only if the Katz \(p\)-adic \textit{L}-function \(\mathcal{L}_\chi^\Sigma\) generates

\(\text{char } \left(H^1_{F_\infty} (F, (T_\chi \otimes \Lambda_{\mathcal{W}})^*)\right)^{\chi}\).

The latter statement is known as the \((g+1)\)-variable\(^7\) main conjecture, see [HT94, Page 90]. Building on the works of Hida-Tilouine [HT94], Hida [Hid06, Hid09], Mainardi [Mai08], Hsieh has recently proved the CM main conjecture in [Hsi12] under the following hypotheses:

\begin{align*}
(\text{H.1}) & \; p > 5 \text{ is prime to the minus part of the class number of } F, \text{ to the order of } \chi \text{ and is unramified in } K/\mathbb{Q}.
(\text{H.2}) & \; \chi \text{ is unramified in } \Sigma_p^c \text{ and } \chi^{\omega^{-a}} \text{ is unramified at } \Sigma_p \text{ for some integer } a \neq 2 \text{ mod } p - 1.
(\text{H.3}) & \; \chi \text{ is \textsc{anticyclotomic} in the sense that } \chi(c \delta c^{-1}) = \chi(\delta)^{-1} \text{ for } \delta \in \Delta \text{ and } c \in G_K \text{ that induces the generator of } \text{Gal}(F/K),
(\text{H.4}) & \; \chi(\varphi) \neq 1 \text{ for any } \varphi \in \Sigma_p. \text{ (Compare to (1.3))}
(\text{H.5}) & \; \chi \text{ is \textit{non-trivial} \textit{at } } \mathcal{W}_F(\sqrt{p^*}) \text{ (where } p^* = (-1)^{\frac{p-1}{2}} p \text{) is non-trivial.}
\end{align*}

The \(g\)-variable \textsc{anticyclotomic} main conjecture (and therefore the \(g\)-variable version of Conjecture 1 above) may be verified under much less restrictive hypothesis, namely assuming only

\textbf{H.3-5.} See [Hid09, Corollary 2].

\(^7\)As we assumed (H.LC), the Iwasawa algebra \(\Lambda = \mathcal{O}[[\Gamma]]\) is isomorphic to a power series ring in \(g+1\) variables.
4.4. Hecke characters attached to CM abelian varieties. We start this subsection with an overview of well-known facts about CM abelian varieties that we need below, which are originally due to Serre-Tate and Shimura. Let $A_{/K}$ be an abelian variety which has CM by F. We assume that $\text{End}_F(A) = \mathcal{O}_F$; however, the arguments in this section will carry out to the more general case when the index of the order $\text{End}_F(A)$ inside the maximal order \mathcal{O}_F is assumed to be prime to p. Assume also that the field F contains no nontrivial p-th root of unity.

Let $T_p(A) = \varprojlim A[p^n]$ be the p-adic Tate-module of A. It is a free \mathbb{Z}_p-module of rank $2g$ on which G_F acts continuously. As explained in the Remark on page 502 of [ST68], $T_p(A)$ is free of rank one over $\mathcal{O}_F \otimes \mathbb{Z}_p = \prod_p \mathcal{O}_p$, where the product is over the primes of F that lie above p. This yields a decomposition $T_p(A) = \bigoplus_p T_p(A)$, where each $T_p(A) = \varprojlim A[p^n]$ is a free \mathcal{O}_p-module of rank one. The G_F-action on $T_p(A)$ gives rise to a character

$$\psi_p : G_F \longrightarrow \mathcal{O}_p^	imes.$$

By [Rib76, §2], ψ_p is surjective for p large enough; we fix until the end a prime p satisfying this condition. We thence obtain a decomposition

$$T_p(A) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p = \bigoplus_{\mathfrak{p} \mid p} \bigoplus_{\sigma : F_{\mathfrak{p}} \hookrightarrow \mathbb{C}} V_p^\sigma$$

where V_p^σ is the one-dimensional $\overline{\mathbb{Q}}_p$-vector space on which G_F acts via the character ψ_p^σ, which is the compositum

$$G_F \overset{\psi_p}{\longrightarrow} \mathcal{O}_p^\times \overset{\sigma}{\longrightarrow} \overline{\mathbb{Q}}_p.$$

Fix an embedding $j_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $j_p : \overline{\mathbb{Q}}_p \hookrightarrow \mathbb{C}_p$ extending ι_p. Let $J = \Sigma \cup \Sigma^c$ be the set of all embeddings of F into $\overline{\mathbb{Q}}$. Attached to A, there is a character

$$\psi : \mathbb{A}_F/F^\times \longrightarrow F^\times,$$

which induces the Grössencharacters

$$\psi_\tau = j_\infty \circ \tau \circ \psi : \mathbb{A}_F/F^\times \longrightarrow \mathbb{C}^\times$$

and its p-adic avatars

$$\psi_\tau^{(p)} = j_p \circ \tau \circ \psi : \mathbb{A}_F/F^\times \longrightarrow \mathbb{C}_p^\times.$$

Theory of complex multiplication identifies the two sets $\{\text{rec} \circ \psi_\tau^{(p)}\}_{\tau \in J}$ and $\{\psi^\sigma\}_{p, \sigma}$ of p-adic Hecke characters, where $\text{rec} : \mathbb{A}_F/F^\times \rightarrow G_F$ is the reciprocity map. The Hasse-Weil L-function $L(A/F, s)$ of A then factors into a product of Hecke L-series

$$L(A/F, s) = \prod_{\tau \in J} L(\psi_\tau, s).$$

We assume henceforth that A is principally polarized. Fix $\varepsilon \in \Sigma$ and identify F by F^ε. This choice in turn fixes a prime $\wp \in \Sigma_p$ and $\sigma : F_{\wp} \hookrightarrow \overline{\mathbb{Q}}_p$ in a way that $\text{rec} \circ \psi_\varepsilon^{(p)} = \psi_\wp^\sigma$. Set $\mathcal{D} := \sigma(\mathcal{O}_{F_{\wp}})$ and let $\mathcal{F} := \text{Frac}(\mathcal{D})$ denote the fraction field of \mathcal{D}. Define

$$\psi := \psi_\wp^\sigma : G_F \rightarrow \mathcal{O}_\mathcal{F}^\times,$$

this is the Hecke character for which we apply the results from §4.3. Note in particular that we have $T^\varepsilon \cong A[\omega^\infty]$. For \wp as above, we assume the following non-anomaly condition on A:

$$A(F_{\wp})[\varpi] = 0 \text{ for every prime } v \text{ of } F \text{ above } p.$$

For the character ψ, the condition (1.2) holds trivially true. The hypothesis (1.3) holds true for $\chi = \omega_\psi$ since we assumed (4.6). As we have also assumed that the CM field F contains no
For $X = F$ or F_∞, let $\text{Sel}_{\omega}(A/X)$ denote the classical ω-adic Selmer group attached to A. Define the ω-relaxed Selmer group by setting

$$\text{Sel}'_{\omega}(A/X) := \ker \left(H^1(X, A[\omega^\infty]) \longrightarrow \prod_{v|\omega} \frac{H^1(X_v, A[\omega^\infty])}{\text{im} \left(A(X_v) \otimes \mathfrak{F}/\mathcal{O} \to H^1(X_v, A[\omega^\infty]) \right)} \right),$$

where κ_v is the Kummer map.

Obviously, $\text{Sel}_{\omega}(A/X) \subset \text{Sel}'_{\omega}(A/X)$. Recall the Λ-module $\mathfrak{X}_\infty = \text{Gal}(M_\infty/L_\infty)^\chi$ (with $\chi = \omega_\psi$), the Galois group of the maximal abelian extension of L_∞ unramified outside Σ_p.

Proposition 4.13.

1. $\text{Sel}'_{\omega}(A/F) \hookrightarrow \text{Sel}'_{\omega}(A/F_\infty)^\Gamma$.
2. $\text{Sel}'_{\omega}(A/F_\infty) \subset H^1_{\mathfrak{F}_-}(F, \mathbb{T}^*)$.

Proof. Both assertions are standard. Our non-anomaly assumption (4.6) shows that

$$H^1(F_\infty/F, A[\omega^\infty]) = 0$$

(c.f. the proof of [Rub87, Lemma 2.2]) and the inflation/restriction sequence shows that the restriction map

$$H^1(F, A[\omega^\infty]) \longrightarrow H^1(F_\infty, A[\omega^\infty])$$

is injective. This proves (i). The assertion (ii) may be proved following the second half of the proof of [Coa83, Theorem 12] verbatim, and using the identification

$$\text{Hom}(\mathfrak{X}_\infty, A[\omega^\infty]) \cong H^1_{\mathfrak{F}_-}(F, \mathbb{T}^*),$$

which is a consequence of the twisting formalism in [Rub00, §6].

Let $g_\chi \in \text{char} \left(H^1_{\mathfrak{F}_-}(F, \mathbb{T}^*) \right)$ be any generator. Assuming Conjecture 3, we have $g_\chi = u \cdot \mathcal{L}_\chi^\Sigma$ for a unit $u \in \Lambda_{\psi}^\Sigma$.

Theorem 4.14. Assume the truth of Conjecture 3 and the hypotheses of Theorem 4.6.

1. For $\alpha_{\omega} = \text{ord}_{\omega} (\psi(g_\chi))$, we have $|H^1_{\mathfrak{F}_-}(F, T^*)| = p^{\alpha_{\omega}}$.
2. Suppose $L(\psi_\epsilon, 0) \neq 0$. Then $A(F)$ is finite and $\text{III}_{A/F}[\omega^\infty]$ is finite.

Proof. Let $A_\psi = \ker \left\{ \Lambda \xrightarrow{\gamma \rightarrow \psi(\gamma)} \mathcal{D} \right\}$. A variant of the proof of the identity (4.3) shows that

$$[\mathcal{D} : \text{char} \left(H^1_{\mathfrak{F}_-}(F, (T_\chi \otimes \Lambda)^*) \right) \otimes_{\Lambda} \Lambda/A_\psi] = |H^1_{\mathfrak{F}_-}(F, T^*)|$$

and that

$$[\mathcal{D} : \text{char} \left(H^1_{\mathfrak{F}_-}(F, (T_\chi \otimes \Lambda)^*) \right) \otimes_{\Lambda} \Lambda/A_\psi] = [\mathcal{D} : \psi(\text{char}(H^1_{\mathfrak{F}_-}(F, (T_\chi \otimes \Lambda)^*))]

This proves (i).

The assertion (ii) follows immediately from (i), Proposition 4.13 and the interpolation property of the p-adic L-function \mathcal{L}_χ^Σ (which may be found in [HT93, Theorem II]).

\qed
APPENDIX A. \(\Lambda\)-adic Kolyvagin systems

In this Appendix we expand on Remark 3.8 and explain in detail how to prove the existence of the Kolyvagin system \(k^\chi\) constructed in Theorem 3.7 without assuming the truth of the Rubin-Stark conjectures. This in fact has been proved in much more general context in [Büy11, Büy13a] and the goal here is to present the key ingredients in the general construction and explain that the general construction in loc.cit. indeed applies in our setting.

Throughout this Appendix, the notation from the main text is in effect. To ease notation, set \(\mathbb{T}_\chi = T_\chi \otimes \Lambda\). Recall the Selmer structure \(\mathcal{F}_{L_\infty}\) on \(\mathbb{T}_\chi\) defined as in Definition 2.14. Set \(r = 1 + g + \delta\) (where \(\delta\) is Leopoldt’s defect for \(F\)) so that \(\Lambda \cong \mathbb{Z}_\mu\). Choose a decomposition

\[\Gamma = \Gamma_1 \times \cdots \times \Gamma_r\]

where each group \(\Gamma_i\) is isomorphic to \(\mathbb{Z}_\mu\). Fix a topological generator \(\gamma_i\) (resp., \(\gamma_1\)) of the group \(\Gamma_i\). We then have a (non-canonical) isomorphism

\[\Lambda \cong \mathcal{O}[\{\gamma_1 - 1, \cdots, \gamma_r - 1\}]\]

Definition A.1. For \(k \in \mathbb{Z}^+\) and \(\bar{\alpha} = (\alpha_1, \cdots, \alpha_r) \in (\mathbb{Z}^+)^r\), set

\[R_{k,\bar{\alpha}} := \Lambda / (\omega^k, (\gamma_1 - 1)^{\alpha_1}, \cdots, (\gamma_r - 1)^{\alpha_r})\]

\[\mathbb{T}_{k,\bar{\alpha}} := \mathbb{T}_\chi \otimes \Lambda R_{k,\bar{\alpha}} = \mathbb{T}_\chi / (\omega^k, (\gamma_1 - 1)^{\alpha_1}, \cdots, (\gamma_r - 1)^{\alpha_r})\]

and define the collection

\[\text{Quot}(\mathbb{T}_\chi) := \{\mathbb{T}_{k,\bar{\alpha}} : k \in \mathbb{Z}^+ \text{ and } \bar{\alpha} = (\alpha_1, \cdots, \alpha_r) \in (\mathbb{Z}^+)^r\}\]

The propagation of the Selmer structure \(\mathcal{F}_{L_\infty}\) (in the sense of [MR04, Example 1.1.2]) to the quotients \(\mathbb{T}_{k,\bar{\alpha}}\) will still be denoted by the symbol \(\mathcal{F}_{L_\infty}\), as well as its propagation \(T_\chi\). Note that the propagated Selmer structure on \(T_\chi\) is denoted by \(\mathcal{F}_L\) in the main body of this article.

Definition A.2. For \(\bar{\alpha} \in (\mathbb{Z}^+)^r\) and \(k \in \mathbb{Z}^+\), define

(i) \(H_{k,\bar{\alpha}} = \ker\left(G_F \to \text{Aut}(\mathbb{T}_{k,\bar{\alpha}}) \oplus \text{Aut}(\mathbb{\mu}_p^k)\right)\),

(ii) \(L_{k,\bar{\alpha}} = \mathbb{F}^{H_{k,\bar{\alpha}}}_{k,\bar{\alpha}}\),

(iii) \(\mathcal{P}_{k,\bar{\alpha}} = \{\text{Primes } \lambda \in \mathcal{P}_\chi : \lambda \text{ splits completely in } L_{k,\bar{\alpha}} / F\}\).

The collection \(\mathcal{P}_{k,\bar{\alpha}}\) is called the collection of *Kolyvagin primes* for \(T_{k,\bar{\alpha}}\). Define \(\mathcal{N}_{k,\bar{\alpha}}\) to be the set of square free products of primes in \(\mathcal{P}_{k,\bar{\alpha}}\).

Remark A.3. Suppose \(\lambda \in \mathcal{P}_{k,\bar{\alpha}}\). It follows from (iii) that \(N\lambda \equiv 1 \mod p^k\) and hence

\[|F_{\lambda}^k| \cdot \mathbb{T}_{k,\bar{\alpha}} = (N\lambda - 1)\mathbb{T}_{k,\bar{\alpha}} = 0,\]

where \(F_{\lambda}\) is the residue field of \(F\) at \(\lambda\).

Definition A.4.

(i) Given \(\lambda \in \mathcal{P}_{k,\bar{\alpha}}\) fix once and for all an abelian extension \(F'/F_\lambda\) which is totally and tamely ramified, and moreover is a maximal such extension. As in [MR04, Definition 1.1.6(iv)], the *transverse local condition* at \(\lambda\) is defined to be

\[H^1_q(F_\lambda, T_{k,\bar{\alpha}}) = \ker\{H^1(F_\lambda, T_{k,\bar{\alpha}}) \to H^1(F', T_{k,\bar{\alpha}})\}\.

(ii) For \(n \in \mathcal{N}_{k,\bar{\alpha}} \), define the Selmer structure \(\mathcal{F}_{L_{\infty}}(n) \) on \(T_{k,\bar{\alpha}} \) by setting
\[
H^1_{\mathcal{F}_{L_{\infty}}}(n)(F, T_{k,\bar{\alpha}}) = \begin{cases}
H^1_{\mathcal{F}_{L_{\infty}}}(F, T_{k,\bar{\alpha}}), & \text{if } \lambda \nmid n, \\
H^1_{\mathcal{F}_{L_{\infty}}}(n)(F, T_{k,\bar{\alpha}}), & \text{if } \lambda \mid n.
\end{cases}
\]

Remark A.5. It follows from [MR04, Proposition 1.3.2] that \(\mathcal{F}_{L_{\infty}}(n) = \mathcal{F}_{L_{\infty}}'(n) \) (as Selmer structures on \(T_{k,\bar{\alpha}}^{\ast} \)).

Recall the finite subgroup \(H^1_1(F, T_{k,\bar{\alpha}}) = \ker(H^1(F, T_{k,\bar{\alpha}}) \to H^1(F_{\text{ur}}, T_{k,\bar{\alpha}})) \) and define the singular quotient \(H^1_\ast(F, T_{k,\bar{\alpha}}) := H^1(F, T_{k,\bar{\alpha}})/H^1_1(F, T_{k,\bar{\alpha}}). \)

Proposition A.6. Let \(\bar{\alpha} \) and \(k \) be as above and let \(\lambda \in \mathcal{P}_{k,\bar{\alpha}} \).

(i) \(H^1_\ast(F, T_{k,\bar{\alpha}}) \subset H^1(F, T) \) projects isomorphically onto \(H^1_\ast(F, T_{k,\bar{\alpha}}) \).

(ii) There is a canonical functorial isomorphism \(H^1_1(F, T_{k,\bar{\alpha}}) \cong T_{k,\bar{\alpha}}/(\text{Fr}_\lambda - 1)T_{k,\bar{\alpha}} \cong T_{k,\bar{\alpha}} \).

(iii) There is a canonical isomorphism (called the finite-singular comparison isomorphism) \(\phi_1^F: H^1_1(F, T_{k,\bar{\alpha}}) \to H^1_\ast(F, T_{k,\bar{\alpha}}) \otimes \mathbb{F}_\lambda^\times \).

(iv) The \(R_{k,\bar{\alpha}} \)-modules \(H^1_1(F, T_{k,\bar{\alpha}}), H^1_\ast(F, T_{k,\bar{\alpha}}) \) and \(H^1_\ast(F, T_{k,\bar{\alpha}}) \) are free of rank one.

Proof. (i) is [MR04, Lemma 1.2.4] which is proved for a general artinian coefficient ring. (ii) is [MR04, Lemma 1.2.1]. The finite-singular comparison isomorphism is defined in [MR04, Definition 1.2.2] and (iii) is [MR04, Lemma 1.2.3]. (iv) follows from (i), (ii) and (iii).

Note that all the results quoted from [MR04] apply in our setting thanks to Remark A.3.

Definition A.7. Set \(G_n := \otimes \lambda \mid n \mathbb{F}_\lambda^\times \). A Kolyvagin system for the triple \((T_{k,\bar{\alpha}}, \mathcal{F}_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}})\) is a collection \(\kappa = \{ \kappa_n \}_{n \in \mathcal{N}_{k,\bar{\alpha}}} \) such that for every such that for every \(n, \lambda \in \mathcal{N}_{k,\bar{\alpha}} \) we have:

- \(\kappa_n \in H^1_{\mathcal{F}_{L_{\infty}}}(n)(F, T_{k,\bar{\alpha}}) \otimes G_n \),
- \(\phi_1^F(\text{loc}_\lambda(\kappa_n)) = \text{loc}_\lambda^\ast(\kappa_n) \).

Here \(\text{loc}_\lambda^\ast \) stands for the composite \(H^1(F, T_{k,\bar{\alpha}}) \xrightarrow{\text{loc}_\lambda} H^1(F, T_{k,\bar{\alpha}}) \to H^1(F, T_{k,\bar{\alpha}}) \). The collection of Kolyvagin systems for \((T_{k,\bar{\alpha}}, \mathcal{F}_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}})\) will be denoted by \(\mathbf{KS}(T_{k,\bar{\alpha}}, \mathcal{F}_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}}) \).

Definition A.8. Fix \(k, \bar{\alpha} \) as above. An element \(n \in \mathcal{N}_{k,\bar{\alpha}} \) is called a core vertex for the Selmer structure \(\mathcal{F}_{L_{\infty}} \) on \(T_{k,\bar{\alpha}} \) if

(i) \(H^1_{\mathcal{F}_{L_{\infty}}}(n)(F, T_{k,\bar{\alpha}}) = 0 \),
(ii) \(H^1_{\mathcal{F}_{L_{\infty}}}(n)(F, T_{k,\bar{\alpha}}) \) is a free \(R_{k,\bar{\alpha}} \)-module of rank one.

Proposition A.11 below will provide us with infinitely many core vertices for \(\mathcal{F}_{L_{\infty}} \) on \(T_{k,\bar{\alpha}} \) within \(\mathcal{N}_{k,\bar{\alpha}} \).

For \(\bar{\alpha} = (\alpha_1, \ldots, \alpha_r), \bar{\beta} = (\beta_1, \ldots, \beta_r) \in (\mathbb{Z}^+)^r \), we write \(\bar{\alpha} \prec \bar{\beta} \) (resp., \(\bar{\alpha} \succ \bar{\beta} \)) whenever \(\alpha_i \leq \beta_i \) (resp., whenever \(\alpha_i \geq \beta_i \)) for all \(i = 1, \ldots, r \). The following should be compared to Definition 4.1, Propositions 4.3 and 4.10 of [Büy13a]. This is the key property that allows us to prove Theorem A.14 below, which is the main result of this Appendix.

Definition/Theorem A.9. For any \(n \in \mathcal{N}_{k,\bar{\alpha}} \) the Selmer structure \(\mathcal{F}_{L_{\infty}}(n) \) is cartesian on the collection \(\text{Quot}(T_{k,\bar{\alpha}}) \) in the following sense. Let \(\lambda \) be any prime of \(F \).
Lemma A.10. For $\bar{\alpha} \prec \bar{\beta}$ and $k \leq k'$, $H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) \rightarrow H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}})$ is the exact image of $H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}})$ under the canonical map $H^1(F, \mathbb{T}_{k', \bar{\beta}}) \rightarrow H^1(F, \mathbb{T}_{k, \bar{\alpha}})$.

(C1) (Functoriality) For $\bar{\alpha} \prec \bar{\beta}$ and $k \leq k'$, $H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) \rightarrow H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}})$ under the canonical map $H^1(F, \mathbb{T}_{k', \bar{\beta}}) \rightarrow H^1(F, \mathbb{T}_{k, \bar{\alpha}})$.

(C2) (Cartesian property in Γ_1-direction) Given $\bar{\alpha} = (\alpha_1, \ldots, \alpha_r)$ as above set $\bar{\alpha}_{+,:} := (\alpha_1, \ldots, \alpha_{i-1}, \alpha_i + 1, \alpha_{i+1}, \ldots)$. Then,

$$H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) = \ker \left(H^1(F, \mathbb{T}_{k, \bar{\alpha}}) \rightarrow H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}_{+,:}}) \right).$$

Here the arrow is induced from the injection $\mathbb{T}_{k, \bar{\alpha}} \xrightarrow{[\gamma_i - 1]} \mathbb{T}_{k, \bar{\alpha}_{+,:}}$ and $[\gamma_i - 1]$ is the multiplication by $\gamma_i - 1$.

(C3) (Cartesian property as powers of p vary)

$$H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) = \ker \left(H^1(F, \mathbb{T}_{k, \bar{\alpha}}) \xrightarrow{[\gamma_i]} H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}_{+,:}}) \right),$$

where the arrow is induced from the injection $\mathbb{T}_{k, \bar{\alpha}} \xrightarrow{[\gamma_i]} \mathbb{T}_{k, \bar{\alpha}_{+,:}}$.

Proof. For the primes $\lambda \nmid np$, the asserted properties may be verified as in [Büy11, §2.3.1]. The key point is the fact that the inertia group $I_{\lambda} \subset G_F$ acts trivially on Λ. For the primes $\lambda \mid n$, they may proved as in [Büy13a, §4.1.4] (which itself is a slight generalization of [Büy11, Proposition 2.21]). It remains to verify the cartesian property at primes above p.

Set $H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{k, \bar{\alpha}}) := \bigoplus_{\lambda \mid p} H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) = \bigoplus_{\lambda \mid p} H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{k, \bar{\alpha}})$. By its very definition, $H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{k, \bar{\alpha}})$ is the image of $H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{k, \bar{\alpha}})$ under the canonical projection

$$(A.1) \quad H^1(F, \mathbb{T}_{\chi}) \rightarrow H^1(F, \mathbb{T}_{k, \bar{\alpha}}).$$

This verifies the property (C1) at once. Furthermore, the proof of Lemma 2.4 shows that the map (A.1) is surjective and it follows that the $R_{k, \bar{\alpha}}$-module $H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{k, \bar{\alpha}})$ is a free direct summand of $H^1(F, \mathbb{T}_{k, \bar{\alpha}})$ (as, by definition, the Λ-module $H^1_{\mathcal{F}_{L_\infty}}(F, \mathbb{T}_{\chi})$ is a free direct summand of $H^1(F, \mathbb{T}_{\chi})$). The properties (C2) and (C3) follow.

Lemma A.10. For $\bar{\alpha} \prec \bar{\beta}$ and $k \leq k'$, let $n \in N_{k', \bar{\beta}}$ be a core vertex. The map

$$H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}}) \rightarrow H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}})$$

is surjective.

Proof. We verify the assertion of the Lemma for $k' = k + 1$ and $\bar{\beta} = \bar{\alpha}$. The proof of the general case follows by applying this argument repeatedly.

We have the following commutative diagram:

$$\begin{aligned}
H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}}) &\xrightarrow{\text{reduction}} H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k, \bar{\alpha}}) \\
\cong [\bar{\omega}] &\Rightarrow H^1_{\mathcal{F}_{L_\infty}}(n)(F, \mathbb{T}_{k', \bar{\beta}})[\bar{\omega}^k]
\end{aligned}$$

Here the vertical isomorphism is obtained using Definition/Theorem A.9 (see [Büy11, Remark 2.29] and the proof of [Büy13a, Proposition 4.17(iv)] for details). Since $n \in N_{k, \bar{\alpha}}$ is a core
vertex (and therefore $H^1_{\mathcal{F}_{L\infty}}(n)(F, \mathbb{T}_{k,\bar{\alpha}})$ is a free $R_{k,\bar{\alpha}}$-module of rank one), the map on the diagonal is surjective. This proves that the horizontal map is surjective as well. \hfill \Box

Proposition A.11.

(i) For every k and $\bar{\alpha}$ as above, there are infinitely many core vertices $n \in \mathcal{N}_{k,\bar{\alpha}}$ for $\mathcal{F}_{L\infty}$ on $\mathcal{T}_\chi := \mathbb{T}_{1,1}$, where $1 = (1, \ldots, 1) \in (\mathbb{Z}^+)^r$.

(ii) Let $n \in \mathcal{N}_{k,\bar{\alpha}}$ be a core vertex for $\mathcal{F}_{L\infty}$ on the residual representation \mathcal{T}_χ. For every $k \in \mathbb{Z}^+$ and $\bar{\alpha} \in (\mathbb{Z}^+)^r$, n is a core vertex for the Selmer structure $\mathcal{F}_{L\infty}$ on $\mathbb{T}_{k,\bar{\alpha}}$ as well.

Proof. The assertion (i) follows from a Chebotarev density argument in [MR04, §4.1] (see particularly the proof of Corollary 4.1.9 in loc.cit.) once we check that

\[\chi \left(\mathcal{F}_{L\infty}, \mathcal{T}_\chi \right) = 1, \]

where

\[\chi(F, X) := \text{rank}_R \left(H^1_{\mathcal{F}}(F, X) \right) - \text{rank}_R \left(H^1_{\mathcal{R}}(F, X^*)^G \right) \]

for a Selmer structure \mathcal{F} on $X = \mathcal{T}_\chi$ or \mathcal{T}_χ and $R = \mathfrak{O}/\wp$ or $R = \mathfrak{O}$. It follows from Lemma 2.18 and the finiteness of the ideal class group that $\chi(\mathcal{F}_{\text{can}}, \mathcal{T}_\chi) = g$. The proof of Lemma 2.19 shows that $\chi(\mathcal{F}_{L\infty}, \mathcal{T}_\chi) = 1$ and by [MR04, Corollary 5.2.6] it follows that $\chi(\mathcal{F}_{L\infty}, \mathcal{T}_\chi) = 1$ as well.

The proof of (ii) follows the arguments of [Büy13a, §4.2] closely and the key point is the cartesian property verified above in Definition/Theorem A.9. If $n \in \mathcal{N}_{k,\bar{\alpha}}$ as in (i), then one first checks that the $R_{k,\bar{\alpha}}$-module $\mathcal{H}_{k,\bar{\alpha}} := \text{Hom} \left(H^1_{\mathcal{F}_{L\infty}}(n)(F, \mathbb{T}_{k,\bar{\alpha}}), \mathfrak{O}/\wp \right)$ is cyclic using the cartesian property. On the other hand, using [MR04, Theorem 4.1.13] one may check that length $\mathcal{H}_{k,\bar{\alpha}} \geq$ length $R_{k,\bar{\alpha}}$ which in turn implies that the $R_{k,\bar{\alpha}}$-module $\mathcal{H}_{k,\bar{\alpha}}$ is free of rank one. This shows (since the ring $R_{k,\bar{\alpha}}$ is Gorenstein) that $H^1_{\mathcal{F}_{L\infty}}(n)(F, \mathbb{T}_{k,\bar{\alpha}})$ is free of rank one. [MR04, Theorem 4.1.13] applied once again shows that $H^1_{\mathcal{F}_{L\infty}}(n)(F, \mathbb{T}_{k,\bar{\alpha}}) = 0$. \hfill \Box

Definition A.12. Define the module of Λ-adic Kolyvagin systems $\overline{KS}(\mathbb{T}_\chi, \mathcal{F}_{L\infty}, \mathcal{P}_\chi)$ for the triple $(\mathbb{T}_\chi, \mathcal{F}_{L\infty}, \mathcal{P}_\chi)$ by setting

\[\overline{KS}(\mathbb{T}_\chi, \mathcal{F}_{L\infty}, \mathcal{P}_\chi) := \lim_{\substack{\to \kappa, \tilde{\alpha} \to \kappa, \tilde{\beta} \to \kappa \\kappa \geq \kappa \\tilde{\beta} \leq \kappa, \tilde{\alpha}}} \overline{KS}(\mathbb{T}_{k,\bar{\alpha}}, \mathcal{F}_{L\infty}, \mathcal{P}_{k,\bar{\alpha}}). \]

Proposition A.13.

(i) Suppose $n \in \mathcal{N}_{k,\bar{\alpha}}$ is any core vertex for the Selmer structure $\mathcal{F}_{L\infty}$ on $\mathbb{T}_{k,\bar{\alpha}}$. Then the natural map

\[\overline{KS}(\mathbb{T}_{k,\bar{\alpha}}, \mathcal{F}_{L\infty}, \mathcal{P}_{k,\bar{\alpha}}) \to H^1_{\mathcal{F}_{L\infty}}(n)(F, \mathbb{T}_{k,\bar{\alpha}}) \otimes G_n \]

(given by $\kappa \mapsto \kappa_n$) is an isomorphism.

(ii) For any $\bar{\beta} \succ \bar{\alpha}$ and $k' \geq k$, the natural restriction map

\[\overline{KS}(\mathbb{T}_{k,\bar{\alpha}}, \mathcal{F}_{L\infty}, \mathcal{P}_{k,\bar{\alpha}}) \to \overline{KS}(\mathbb{T}_{k,\bar{\alpha}}, \mathcal{F}_{L\infty}, \mathcal{P}_{k',\bar{\beta}}) \]

is an isomorphism.
(iii) For $\alpha' < \bar{\alpha}$ and $k' \leq k$, the map
\[
\text{KS}(T_{k,\bar{\alpha}}, F_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}}) \longrightarrow \text{KS}(T_{k',\bar{\alpha}'}, F_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}})
\]
is surjective.

Proof. The surjectivity of the map (i) is proved following the proof of [Büy11, Theorem 3.11] (which in turn modifies the arguments of Howard in [MR04] appropriately so as to apply them with general artinian rings). The proof of injectivity is identical to the proof of [Büy11, Theorem 3.12].

Proof. Proposition A.13(ii) shows that the horizontal map in the diagram is surjective as well, as desired.

Theorem A.14.

(i) The Λ-module $\text{KS}(T_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$ is free of rank one, generated by a Kolyvagin system κ whose image $\overline{\kappa} \in \text{KS}(\bar{T}_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$ is non-zero.

(ii) Suppose $\kappa \in \text{KS}(T_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$ is a generator. Then,
\[
\text{char} \left(H^{1}_{F_{L_{\infty}}}(F, T_{\chi}) / \Lambda \cdot \kappa_{1} \right) \subset \text{char} \left(H^{1}_{F_{L_{\infty}}}(F, T_{\chi}^{*}) \right).
\]
If Leopoldt’s conjecture for L_{χ} holds true, both sides of the containment above are non-zero and the containment may be turned into an equality.

The statement of Theorem A.14(ii) should be compared to Theorem 4.6, where the initial term of the Kolyvagin system is given in terms of the conjectural Rubin-Stark element $c_{F_{L_{\infty}}, \psi}^\chi$.

Proof. Proposition A.13(ii) shows that
\[
\lim_{\substack{k' \geq k, \\ \beta > \bar{\alpha}}} \text{KS}(T_{k,\bar{\alpha}}, F_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}}) = \text{KS}(T_{k,\bar{\alpha}}, F_{L_{\infty}}, \mathcal{P}_{k,\bar{\alpha}}).
\]
The proof of (i) now follows by Proposition A.13(i) and (iii). The containment in (ii) may be proved following the arguments of [Och05], see particularly the proof of Theorem 2.4 in loc.cit. If Leopoldt’s conjecture is true, it follows that $H^{1}_{F_{L_{\infty}}}(F, T_{\chi})$ is a free \mathcal{O}-module of rank one and $H^{1}_{F_{L_{\infty}}}(F, T_{\chi}^{*})$ is finite. Let $\kappa^{0} \in \text{KS}(T_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$ denote the image of κ that was chosen as in the statement of (i). It follows that the image $\overline{\kappa^{0}} \in \text{KS}(\bar{T}_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$ equals $\overline{\kappa}$, hence it is non-zero. It follows from [MR04, Theorem 5.2.10] that κ^{0} generates $\text{KS}(T_{\chi}, F_{L_{\infty}}, \mathcal{P}_{\chi})$.
and from [MR04, Corollary 5.2.13] that its initial term $\kappa_0^0 \in H^1_{F, L \infty}(F, T^*_\chi)$ is non-zero (since $H^1_{F, L \infty}(F, T^*_\chi)$ is finite). Theorem 5.2.14 of loc.cit. shows that

\[
\#H^1_{F, L \infty}(F, T^*_\chi) = \left[H^1_{F, L \infty}(F, T^*_\chi) : \mathcal{O} \cdot \kappa_0^0 \right].
\]

As in the proof of Theorem 4.6(iii), (A.2) may be used to turn the containment in the statement of (ii) into an equality, using Nekovář’s descent formalism. \qed

REFERENCES

[AH06] Adebusi Agboola and Benjamin Howard. Anticyclotomic Iwasawa theory of CM elliptic curves. *Ann. Inst. Fourier (Grenoble)*, 56(4):1001–1048, 2006.

[Arn07] Trevor Arnold. Anticyclotomic main conjectures for CM modular forms. *J. Reine Angew. Math.*, 606:41–78, 2007.

[Arn10] Trevor Arnold. Hida families, p-adic heights, and derivatives. *Ann. Inst. Fourier (Grenoble)*, 60(6):2275–2299, 2010.

[Büy09a] Kâzım Büyükboduk. Kolyvagin systems of Stark units. *J. Reine Angew. Math.*, 631:85–107, 2009.

[Büy09b] Kâzım Büyükboduk. Stark units and the main conjectures for totally real fields. *Compositio Math.*, 145:1163–1195, 2009.

[Büy10] Kâzım Büyükboduk. On Euler systems of rank r and their Kolyvagin systems. *Indiana Univ. Math. J.*, 59(4):1277–1332, 2010.

[Büy11] Kâzım Büyükboduk. A-adic Kolyvagin systems. *IMRN*, 2011(14):3141–3206, 2011.

[Büy13a] Kâzım Büyükboduk. Deformations of Kolyvagin systems, 2013. Preprint available at http://arxiv.org/abs/1303.1407.

[Büy13b] Kâzım Büyükboduk. On the Iwasawa theory of CM fields for supersingular primes, 2013. 26pp., Preprint.

[Büy13c] Kâzım Büyükboduk. Rubin-Stark elements and anticyclotomic main conjectures for CM elliptic curves, 2013. In preparation.

[Coa83] John Coates. Infinite descent on elliptic curves with complex multiplication. In *Arithmetic and geometry, Vol. I*, volume 35 of *Progr. Math.*, pages 107–137. Birkhäuser Boston, Boston, MA, 1983.

[dS87] Ehud de Shalit. *Iwasawa theory of elliptic curves with complex multiplication*, volume 3 of *Perspectives in Mathematics*. Academic Press Inc., Boston, MA, 1987.

[Hid06] Haruzo Hida. Anticyclotomic main conjectures. *Doc. Math.*, (Extra Vol.):465–532 (electronic), 2006.

[Hid09] Haruzo Hida. Quadratic exercises in Iwasawa theory. *Int. Math. Res. Not. IMRN*, (5):912–952, 2009.

[Hsi12] Ming-Lun Hsieh. Iwasawa main conjecture for CM fields, 2012. 81pp., Preprint.

[HT93] H. Hida and J. Tilouine. Anti-cyclotomic Katz p-adic L-functions and congruence modules. *Ann. Sci. École Norm. Sup. (4)*, 26(2):189–259, 1993.

[HT94] H. Hida and J. Tilouine. On the anticyclotomic main conjecture for CM fields. *Invent. Math.*, 117(1):89–147, 1994.

[Kat78] Nicholas M. Katz. p-adic L-functions for CM fields. *Invent. Math.*, 49(3):199–297, 1978.

[Maio] Fabio Mainardi. On the main conjecture for CM fields. *Amer. J. Math.*, 130(2):499–538, 2008.

[MR04] Barry Mazur and Karl Rubin. Kolyvagin systems. *Mem. Amer. Math. Soc.*, 168(799):viii+96, 2004.

[Nek06] Jan Nekovář. Selmer complexes. *Astérisque*, (310):viii+559, 2006.

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. *Cohomology of number fields*, volume 323 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, second edition, 2008.

[Och05] Tadashi Ochiai. Euler system for Galois deformations. *Ann. Inst. Fourier (Grenoble)*, 55(1):113–146, 2005.

[Pop04] Cristian D. Popescu. Rubin’s integral refinement of the Abelian Stark conjecture. Providence, RI: American Mathematical Society (AMS), 2004.

[PR98] Bernadette Perrin-Riou. Systèmes d’Euler p-adiques et théorie d’Iwasawa. *Ann. Inst. Fourier (Grenoble)*, 48(5):1231–1307, 1998.

[Rib76] Kenneth A. Ribet. Dividing rational points on Abelian varieties of CM-type. *Compos. Math.*, 33:69–74, 1976.
Karl Rubin. Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. *Invent. Math.*, 89(3):527–559, 1987.

Karl Rubin. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. *Invent. Math.*, 103(1):25–68, 1991.

Karl Rubin. Stark units and Kolyvagin’s “Euler systems”. *J. Reine Angew. Math.*, 425:141–154, 1992.

Karl Rubin. A Stark conjecture “over \mathbb{Z}” for abelian L-functions with multiple zeros. *Ann. Inst. Fourier (Grenoble)*, 46(1):33–62, 1996.

Karl Rubin. *Euler systems*, volume 147 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study.

Goro Shimura. On some arithmetic properties of modular forms of one and several variables. *Ann. of Math. (2)*, 102(3):491–515, 1975.

Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. *Ann. of Math. (2)*, 88:492–517, 1968.

Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. *Ann. of Math. (2)*, 141(3):443–551, 1995.

Rodney I. Yager. On two variable p-adic L-functions. *Ann. of Math. (2)*, 115(2):411–449, 1982.

KÂZIM BÜYÜKBODUK
KOÇ UNIVERSITY, MATHEMATICS
RUMELİ FENERİ YOLU, 34450 SARIYER
İSTANBUL, TURKEY

E-mail address: kazim@math.stanford.edu