Gradient Flow Analysis on MILC HISQ Ensembles

Nathan Brown
brownnathan@wustl.edu

Washington University in St. Louis

MILC Collaboration
Co-Authors: A. Bazavov, C. Bernard, C. DeTar, J. Foley, S. Gottlieb, U.M. Heller, J.E. Hetrick, J. Komijani, J. Laiho, L. Levkova, R.L. Sugar, D. Toussaint, R.S. Van de Water
Motivation

- Any dimensionful quantity with a finite continuum value can be used for scale setting.
- Eventually an experimentally determined quantity is needed to calculate in physical units, but relative scale setting can be done without physical units.
- The ideal scale setting routine:
 ▶ easy and fast to compute
 ▶ low statistical errors
 ▶ insensitive to systematic effects
 (valence/sea quark mass, finite volume, etc.)
- Gradient flow is particularly promising for its ease, speed, low statistical error, and small dependence on the lattice spacing and masses.
Gradient Flow and Scales

- Gradient flow is a smoothing of the original gauge fields U towards stationary points of the action S. \cite{Luscher:2010iy}
- Successive links $V(t)$ are updated in flowtime according to the diffusion equation,

$$
\frac{d}{dt} V(t)_{i,\mu} = -V_{i,\mu} \frac{\partial S(V)}{\partial V_{i,\mu}}, \quad V(0)_{i,\mu} = U_{i,\mu} \quad \left[\frac{dA_{\mu}}{dt} = D_{\nu} F_{\nu\mu} \right]
$$

- Dimensionless quantities can be defined through the energy density $\langle E(t) \rangle$ and flowtime $t[a^2]$. \cite{Luscher:2010iy} and \cite{Borsanyi:2012zs}

$$
T(t) = t^2 \langle E(t) \rangle \quad W(t) = t \frac{d}{dt} T(t)
$$

- From which a dimensionful quantity can be determined at the fiducial point

$$
T(t_0) = W(w_0^2) = 0.3
$$
Measurements of w_0/a and $\sqrt{t_0}/a$ ($m'_s = m_s$)

a(fm)	m'_f/m'_s	volume	N_{run}/N_{bins}	$\sqrt{t_0}/a$	w_0/a[%]
0.15	1/5	$16^3 \times 48$	1021/127	1.1004(05)	1.1221(08)[0.07%]
0.15	1/10	$24^3 \times 48$	1000/125	1.1092(03)	1.1381(05)[0.04%]
0.15	1/27	$32^3 \times 48$	999/124	1.1136(02)	1.1468(04)[0.03%]
0.12	1/5	$24^3 \times 64$	1040/70	1.3124(06)	1.3835(10)[0.07%]
0.12	1/10	$32^3 \times 64$	999/66	1.3228(04)	1.4047(09)[0.06%]
0.12	1/10	$40^3 \times 64$	1001/66	1.3226(03)	1.4041(06)[0.04%]
0.12	1/27	$48^3 \times 64$	34/34	1.3285(05)	1.4168(10)[0.07%]
0.09	1/5	$32^3 \times 96$	102/34	1.7227(08)	1.8957(15)[0.08%]
0.09	1/10	$48^3 \times 96$	119/29	1.7376(05)	1.9299(12)[0.06%]
0.09	1/27	$64^3 \times 96$	67/16	1.7435(05)	1.9470(13)[0.07%]
0.06	1/5	$48^3 \times 144$	127/42	2.5314(13)	2.896(03)[0.11%]
0.06	1/10	$64^3 \times 144$	38/19	2.5510(14)	2.948(03)[0.11%]
0.06	1/27	$96^3 \times 192$	49/16	2.5833(07)	3.0118(19)[0.06%]

- MILC HISQ ensembles with $N_f = 2 + 1 + 1$ dynamical quarks, at physical m'_s.
- Significantly more configurations can be run for ensembles with $a < 0.12$fm.
- Almost all statistical errors have been reduced below 0.1%.
- $\sqrt{t_0}$ has consistently lower statistical errors than w_0.

N. Brown (Wash.U)
Gradient Flow on HISQ
LAT 2014
Measurements of w_0/a and $\sqrt{t_0}/a$ ($m'_s < m_s$)

- MILC HISQ ensembles at lighter than physical m'_s.
- m'_s and m' are the sea quark masses of the ensemble.
- m_s is the physical strange quark mass.
- All ensembles are at $a = 0.12$ fm.

m'_s / m_s	m'_s / m_s	volume	N_{run} / N_{bins}	$\sqrt{t_0}/a$	$w_0/a\%$
0.10	0.10	$32^3 \times 64$	102/25	1.3596(06)	1.4833(13)[0.08%]
0.10	0.25	$32^3 \times 64$	204/51	1.3528(04)	1.4676(10)[0.07%]
0.10	0.45	$32^3 \times 64$	205/51	1.3438(05)	1.4470(10)[0.07%]
0.10	0.60	$32^3 \times 64$	107/26	1.3384(08)	1.4351(16)[0.11%]
0.175	0.45	$32^3 \times 64$	133/33	1.3385(05)	1.4349(13)[0.09%]
0.20	0.60	$24^3 \times 64$	255/63	1.3297(06)	1.4169(12)[0.08%]
0.25	0.25	$24^3 \times 64$	255/63	1.3374(07)	1.4336(14)[0.10%]
Stream Analysis: RHMC vs RHMD

- There are 3 HISQ ensembles with streams generated on RHMD and RHMC. w_0 was measured for streams of both types on 2 of these ensembles.
- No significant difference was found between w_0/a measured on ensembles generated with RHMD compared to RHMC.
 - For $a = 0.09$ fm, $m_l/m_s = 1/27$: $w_0(RHMC)/w_0(RHMD) = 1.0009(12)$
 - For $a = 0.06$ fm, $m_l/m_s = 1/10$: $w_0(RHMC)/w_0(RHMD) = 1.0002(26)$
Charm Quark Mistuning

- From decoupling analysis, variations in the charm quark mass can be accounted for through the leading dependence of the QCD scale with three flavors $\Lambda_{QCD}^{(3)}$. If $Q \propto \Lambda_{QCD}^{(3)}$, then

$$\frac{\partial Q}{\partial m_c} = \frac{2}{27} \frac{Q}{m_c}$$

- The meson masses aM_π, aM_K, scales w_0/a, $\sqrt{t_0}/a$, and decay constant aF_{p4s} were adjusted.
 - F_{p4s} is the pseudoscalar decay constant with degenerate valence masses $m_{val} = 0.4m_s$ and physical sea quark masses
- Because of small errors in the quantities studied and large charm mass mistunings ($\sim 10\%$ in some cases) adjustments were often significant.
 - Meson mass corrections ranged from 0.3 to $7\sigma_{stat}$
 - Gradient flow scale corrections ranged from 0.5 to $18\sigma_{stat}$
- Adjustments were largest for the unphysical quark mass, $a = 0.15$ and $a = 0.06$ fm ensembles.
Chiral Expansion

- Including quark mass dependence allows us to include ensembles with \(m'_s \neq m_s \) and correct for mistuning errors.
- For the continuum, \(N_f = 2 + 1 \) theory the mass dependence of \(w_0 \) to NNLO is: [0. Bär and M. Golterman, Phys. Rev. D 89, 034505 (2014)]

\[
\begin{align*}
 w_0 &= w_{0,\text{ch}} \left(1 + k_1 \frac{2M_K^2 + M^2}{(4\pi f)^2} \right) \\
 &+ \frac{1}{(4\pi f)^2} \left((3k_2 - k_1)M^2_{\pi\mu\pi} + 4k_2M_K^2\mu_K + \frac{k_1}{3} (M^2_{\pi} - 4M_K^2)\mu_\eta + k_2M_{\eta\mu\eta}^2 \right) \\
 &+ k_4 \frac{(2M_K^2 + M^2_{\pi})^2}{(4\pi f)^4} + k_5 \frac{(M^2_K - M^2_{\pi})^2}{(4\pi f)^4} \right), \\
 \mu_Q &= \frac{M_Q^2}{(4\pi f)^2} \log \frac{M_Q^2}{\mu^2}
\end{align*}
\]

- Expansion for \(\sqrt{t_0} \) is identical in form, because the meson masses are independent of flowtime.
Combined Continuum Extrapolation

- We simultaneously performed the continuum extrapolation and meson mass interpolation, using F_{p4s} to make all masses and the gradient flow scale dimensionless.

- We considered many different versions of the extrapolation/interpolation:
 - To extrapolate to the continuum, we included $\alpha_s a^2$ and possible higher orders of a^2 (with or without α_s), up to a^6.
 - Both NLO and NNLO chiral expansions were considered.
 - Products between terms in the chiral and continuum expansions were included up to the same order as the highest of other included terms. For this purpose, $(\Lambda_{QCD} a)^2 \sim (M/(4\pi f))^2$.
 - Due to the large range of M_K covered by the full set of ensembles, some fits drop ensembles with low values of M_K.

- Overall, we consider $5_{\text{cont}} \times 2_{\text{chiral}} \times 7_{\text{kaon}} = 70$ versions of the fit.
The central fit form is up to \((\alpha_s a^2)^3\), chiral NNLO, and across all values of \(M_k\).

- Only \(m_s = m_s^{\text{physical}}\) ensembles are plotted, but fit includes all \(m_s \leq m_s^{\text{physical}}\) ensembles.
- Dotted lines are for actual masses run; solid lines are for re-tuned masses per legend.
- Curvature typical of highly improved actions: “leading” term reduced, so “higher” terms evident.
Histogram only includes fits with p-value > 0.01.
This only included fits with a^6 or $(\alpha_s a^2)^3$ terms.
Both NLO and NNLO chiral expansions are represented:
 - For NLO, ensembles with $M_K/F_{p4s} > 0.8$ are included
 - For NNLO, all ensembles can be included
The central fit has $\chi^2/dof = 10.6/10$, $p = 0.39$, and is 0.1σ from the physical 0.06 fm ensemble.

Half the full width of the histogram is used to conservatively estimate a systematic fit error of 4×10^{-4}.

There is also residual finite volume error in F_{p4s} (coming from residual FV error in f_π, which is estimated using χPT) that cannot be corrected for, adding another systematic error of 2×10^{-4} fm.

Result: $w_0 = 0.1722(2)_{\text{stat}}(4)_{a^2}(2)_{\text{FV}}(3)_{F_{p4s}}$ fm
First is the statistical error, then systematic error from the continuum extrapolation, residual finite volume effects, and the value of F_{p4s} in MeV, respectively.
Comparison of w_0 and $\sqrt{t_0}$

- Comparison of $w_0 F_{pA}$ and $\sqrt{t_0} F_{pA}$ plotted for physical mass ensembles
- The fits are over the full dataset and for the same central fit form shown before.
- Discretization dependence of $\sqrt{t_0} F_{pA}$ is larger.
Mass Dependence

- The central fit can be used to construct the continuum mass dependence of w_0 with masses in units of w_0.

- This is useful for scale setting: measure w_0/a, aM_π, and aM_K to construct the independent variables $x = (w_0 M_\pi)^2$ and $y = (w_0 M_K)^2$, then read off $w_0(x, y)(\text{fm})$ from the plot (or a corresponding interpolation).

- Lines are for fixed values of $y = (w_0 M_K)^2$ from 0.1 to 1.3 times the physical value.
Our preliminary value of

\[w_0 = 0.1722(2)_{\text{stat}}(4)_{a^2(2)FV(3)F_{p4s}} \text{ fm} \]

agrees with HPQCD within 1\(\sigma\), but deviates from BMW by 1.7\(\sigma\) (joint) compared to their HEX smeared, Wilson result \(w_0 = 0.1755(18)(04)\) fm.

[HPQCD (R. J. Dowdall et al.), arXiv:1303.1670] [BMW (S. Borsanyi et al.), JHEP 1209 (2012) 010]

Some of this deviation may be due to the difference in \(N_f\). We will be computing \(w_0\) on the asqtad \(N_f = 2 + 1\) ensembles.

Charm mass mistunings can have a significant effect for precise quantities, such as \(w_0\).

Compared to Lat’13, systematic error from the extrapolation/interpolation is cut in half; this is primarily due to charm mass adjustments and the \(\chi PT\) handle on mass dependence.

Evidence was provided that the discretization effects of \(w_0F_{p4s}\) are smaller than \(\sqrt{t_0F_{p4s}}\), in agreement with what BMW found.