Full Length Research Paper

Pathogenic and genetic diversity in *Puccinia hordei* Otth in Australasia

K. S. Sandhu*, H. Karaoglu and R. F. Park

Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, 107 Cobbitty Rd., Cobbitty, NSW 2570, Australia.

Received 29 April, 2016; Accepted 16 August, 2016

Two PCR-fingerprinting primers, (GACA)$_4$ and M13, were tested across 22 pathotypes of *Puccinia hordei* Otth collected from Australasia over a 30 year period, to assess their usefulness in revealing genetic variability in this pathogen. Both primers revealed polymorphisms among the pathotypes, with (GACA)$_4$ generating a higher level of polymorphism. Molecular analyses revealed evidence of clonality among the *P. hordei* pathotypes, supporting the hypothesis that some arose from mutational changes in the pathogenicity of a founding pathogen genotype. Evidence was also obtained of sexual recombination within *P. hordei* in Australia on the alternate host *Ornithogalum umbellatum*. This is the first study of genetic variation among Australasian pathotypes of *P. hordei* using a PCR-fingerprinting technique.

Key words: *Puccinia hordei*, genetic diversity, fingerprinting, (GACA)$_4$, M13.

INTRODUCTION

The fungus *Puccinia hordei* (*Ph*) belongs to the genus *Puccinia*, the largest genus of the order Pucciniales with 3,000 to 4,000 species (Littlefield, 1981). *Ph* is the casual agent of barley leaf rust, an economically important disease which affects barley production in many parts of the world (Clifford, 1985). The pathogen is present in all barley growing regions of Australia (Park et al., 2003), reaching epidemic levels in Queensland during 1978, 1983, 1984 and 1988 (Cotterill et al., 1995). A severe epidemic of leaf rust can reduce the yield of a susceptible cultivar by up to 62% (Cotterill et al., 1992), and significant yield losses have been experienced in Australia (Cotterill et al. 1995; Cotterill et al., 1992; Waterhouse, 1927), New Zealand (Arnst et al., 1979), Europe and the USA (Griffey et al., 1994; Melville et al., 1976). *Ph* is a macrocyclic and heteroecious rust pathogen that forms its aecial stage on various species of *Ornithogalum, Leopoldia* and *Dipcadi* in the family Liliaceae (Clifford, 1985).

Different barley genotypes with resistance genes, known collectively as a differential set, were used by Levine and Cherewick (1952) and Clifford (1977) to characterise pathotypes (pts) among different isolates of *Ph*. The differential set used to characterise pts of *Ph* at the University of Sydney, Plant Breeding Institute (PBI) comprises 30 different barley genotypes with one or more resistance (*Rph*) genes (Park, 2003). The first assessment of pathogenic variability in *Ph* in Australia

*Corresponding author. E-mail: karanjeet.sandhu@sydney.edu.au. Tel: +61 2 93518821. Fax: +61 2 93518875.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
was made in 1920 by Waterhouse (1927), who detected two pts, one similar to a European pt and another that differed in virulence on some genotypes compared to a pt found in North America (Waterhouse, 1952; Watson and Butler, 1947). In a later Australian study, Cotterill et al. (1995) found substantial pathogenic variation among Ph isolates collected between 1966 and 1990. This study identified 11 different pts among 154 isolates, of which pt 210P was the most common. Up to 1995, virulence was detected for the leaf rust resistance genes Rph1, Rph2, Rph4, Rph5, Rph6, Rph8, Rph9 and Rph12, and the genes Rph3 and Rph7 remained effective (Cotterill et al., 1995). Pathotype 4610P virulent on Rph12 was first detected in 1991 from Tasmania, after which (1996 to 2002), more pathogenic variation was detected in Ph including the identification of two new Rph12 virulent pathotypes (pts) with added virulence for the resistance gene Rph10 (viz. pts 5610P and 5453P) (Park, 2003). While no virulence was detected in these studies for genes Rph3, Rph7, Rph11, Rph14, Rph15 and Rph18 (Park, 2003), virulence for Rph3 was detected in 2009 (pt 5453P) in northern New South Wales (NSW) (Park, 2010). This pathotype is believed to have arisen from pt 5453P, first detected in Western Australia in 2001 (Park, 2006), via sequential single step mutations for virulence to Rph19 (pt 5453P) and then Rph3 (pt 5457P) (Park et al., 2010). While annual surveys of pathogenic variation in rust pathogens that infect cereal crops in Australia have provided evidence that variation arises via either the introduction of exotic genotypes, simple mutation, and asexual hybridisation (Wellings and McIntosh, 1990), sexual recombination is also thought to contribute to variability in the case of P. hordei (Park, 2008; Park et al., 1995). The alternate host Ornithogalum umbellatum occurs in Australia, where it is present on the Yorke Peninsula of South Australia (SA) (Wallwork et al., 1992) and in the Murrumbidgee catchment areas including Henty and Junee in NSW. While six pts of Ph were identified among uredinal isolates derived from aeciospores collected from infected plants of O. umbellatum from the Yorke Peninsula (Wallwork et al., 1992), the contribution of sexual recombination to overall genetic variability in Ph in Australia is largely unknown.

Although information on variability obtained from pathogenicity on differential genotypes is important in the genetic control of rusts, it is of limited use in assessing genetic variation in these pathogens. Both biochemical and molecular markers have been applied to evaluate genetic diversity among various plant pathogens (McDermott and McDonald, 1993). Amplified fragment length polymorphism (AFLP) analyses were used to study genetic diversity among isolates of Ph in relation to their virulence (Sun et al., 2007). This study revealed an association between molecular diversity and virulence patterns in Ph isolates collected from different geographical regions of the world. Keiper et al. (2003) studied the genetic structure of several cereal rust pathogens using various polymerase chain reaction (PCR) based tools like AFLP, selectively amplified microsatellites (SAM) and sequence-specific amplification polymorphisms (S-SAP). This study was able to discriminate fungal pathogens from five rust taxa [P. triticina (Pt), P. graminis f. sp. tritici (Pgt), P. striiformis f. sp. tritici (Pst), barley grass stripe rust caused by P. striiformis f. sp. psuedocondar (Paps) and P. graminis f. sp. avenae (Pg),], although the level of polymorphism observed within individual taxa was low. In a separate study that used AFLPs and random amplified polymorphic DNA (RAPDs), Steele et al. (2001) found no polymorphism among Australian and New Zealand isolates of Pst. However, the same AFLP primers showed five to 15% polymorphic fragments among isolates of Pst from the UK, Denmark and Colombia. These results were consistent with clonality in Australian populations of Pst. Microsatellites, or simple sequence repeats (SSRs) have also been developed and applied to study polymorphism among different rust pathogens (Dambrosi and Carson, 2008; Kolmer et al., 2011; Ordoñez et al., 2010; Mantovani et al., 2010; Keiper et al. 2006; Visser et al., 2011; Karaoglu and Park, 2014).

Another useful tool for assessing genetic diversity is “PCR-fingerprinting”. This technique uses microsatellites (GACA)4 and (GTG)4 and the minisatellite M13 derived from the core sequence of the wild type phase M13 bacterium, as single primers in PCR to amplify hypervariable DNA sequences (Meyer et al., 2001). The PCR-fingerprinting technique has been used successfully to reveal polymorphism among various fungal and bacterial pathogens. For example, Vuyst et al. (2008) used (GTG)3 to identify acetic acid bacteria in cocoa beans and the primers GTG, GACA and M13 were used to study population dynamics in several human pathogens (Cogliati et al., 2007; Dehaes et al., 2008; Meyer et al., 2001; Roque et al., 2006; Trilles et al., 2008). Selective amplification of the microsatellite polymorphic loci (SAMPL) markers (GACA)4 + H-G and R1 + H-G were used to study polymorphism among 44 (25 Australasian and 19 European) isolates of Phragmidium violaceum (causal agent of blackberry rust), revealing more diversity in European isolates than in Australasian isolates, with 37 and 22% polymorphic loci, respectively (Gomez et al., 2006). In all of these studies, the primers GACA and M13 generated the most discriminating and informative DNA profiles. Efforts have been made for the first time to study genetic variation in Australasian populations of Ph using PCR-fingerprinting profiles with primers (GACA)4 and M13.

MATERIALS AND METHODS

Isolates of pathogens and DNA extraction

A total of 22 pts of Ph, comprising 20 from Australia and two from
was carried in a fume hood by adding ~ 250 µl of cold phenol, followed by ~ 250 µl of cold chloroform: isoamyl alcohol (24:1 v:v), to each tube. Samples were mixed gently by inverting (~100 times) the tubes until a thick emulsion formed. Tubes were centrifuged at 13,000 rpm for 15 min and the supernatant was transferred into sterile 1.5 ml Eppendorf tubes. The process of phenol and chloroform: isoamyl alcohol extraction was repeated. After centrifuging at 13,000 rpm for 15 min, the DNA pellet was re-suspended in 500 µl of ethanol (70% v:v) and allowed to air dry. The dried pellet was re-suspended in cold ddH₂O and stored overnight at 4°C. The following day, the tubes were centrifuged at 13,000 rpm for 30 min and the DNA pellet thus formed was re-suspended in 100 µl ddH₂O and stored overnight at 4°C. The following day, 5 µl of Rnase-A (10 µg µl⁻¹) was added to each tube and incubated at 37°C for 2 h. All DNA samples were quantified using a Nanodrop ND-1000 spectrophotometer (Nanodrop® Technologies) and diluted to working dilution of 10 ng µl⁻¹ using ddH₂O.

PCR-fingerprinting

Two oligonucleotide primers were used in fingerprinting the isolates.

Table 1. Details of Puccinia hordei pathotypes and control pathotypes of P. triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, P. graminis f. sp. avenae and P. striiformis f. sp. pseudohordei analysed using PCR-fingerprinting markers (GACA), and M13.

Isolate ID	Pathogen	Pathotype	Culture No.	Origin	Host/Cultivar	Year
1-Ph	P. hordei	211P⁺	484	Coonamble, NSW	Barley/O'Connor	1992
2-Ph	P. hordei	220P⁺	485	Yanco, NSW	Barley/Nigrinudum	1992
3-Ph	P. hordei	253P⁺	490	Grafton, NSW	Barley/?	1992
4-Ph	P. hordei	243P⁺	537	Grafton, NSW	Barley/?	1999
5-Ph	P. hordei	200P⁺	570	Yanco, NSW	Barley/Gus	2002
6-Ph	P. hordei	232P⁺	506	Balaklava, SA	Barley/Galleon	1994
7-Ph	P. hordei	201P⁺	480	St Leonards, VIC	Barley/?	1992
8-Ph	P. hordei	201P⁺	481	Rochester, VIC	Barley/?	1992
9-Ph	P. hordei	242P⁺	531	Borung, VIC	Barley/?	1998
10-Ph	P. hordei	5653P⁺	569	Byaduk, VIC	Barley/Franklin	2002
11-Ph	P. hordei	243P⁺	489	Monto, QLD	Barley/?	1992
12-Ph	P. hordei	243P⁺	507	Toowoomba, QLD	Barley/Dampier	1994
13-Ph	P. hordei	5453P⁺	560	Esperance, WA	Barley/Schooner	2002
14-Ph	P. hordei	5653P⁺	584	Wongan Hills, WA	Barley/?	2004
15-Ph	P. hordei	4610P⁺	491	Cressy, TAS	Barley/Franklin	1992
16-Ph	P. hordei	5653P⁺	542	Glen Esk, TAS	Barley/Gairdner	2000
17-Ph	P. hordei	211P⁺	483	Aorangi, NZ	Barley/?	1992
18-Ph	P. hordei	231P⁺	486	Aorangi, NZ	Barley/?	1992
19-Ph	P. hordei	5610P⁺	520	Ravensthorpe, WA	Barley/?	1997
20-Ph	P. hordei	220P⁺	577	SA	O. umbellatum	2003
21-Ph	P. hordei	200P⁺	518	SA	Barley/?	1995
22-Ph	P. hordei	5457P⁺	612	Legume, QLD	Barley/?	2009
23-Pl	P. triticina	104-2,3,(6),(7),11	423	Mt Derimit, VIC	Wheat/Nebraska	1984
24-Pgt	P. graminis f. sp. tritici	194-2,3,7,8,9	344	Hermitage, QLD	Wheat?	1980
25-Pst	P. striiformis f. sp. tritici	110 E143 A⁺	444	Richmond, TAS	Wheat/Hartog	1987
26-Psp	P. striiformis f. sp. pseudohordei	981549	589	Turrettfield, SA	Barley/?	1998
27-Pga	P. graminis f. sp. avenae	41+Pg9	496	Rutherglen, VIC	Oat?	1993

Source: Cereal Rust Collection, University of Sydney, PBI, Cobbitty.
of Ph and control pts: The microsatellite-specific [(GACA)₄ (5′GACACGACAGACGACA3′)] (Ali et al., 1986; Meyer et al., 2001) and [M13 (5′GAGGGTGGCCGGTTC3′)] minisatellite specific core sequence derived from the wild-type phage M13 vector) (Vassart et al., 1987; Meyer et al., 2001).

PCR reactions were performed in a final volume of 50 μl which contained 3.0 μl of genomic DNA (10 ng μl⁻¹), 5.0 μl of dNTPs (0.2 mM), 5.0 μl of 10x PCR buffer (NH4 Reaction buffer, Bioline), 3.0 μl of 50 mM MgCl₂ (Bioline), 5.0 μl of primer (2 mM), 0.5 μl (5 u μl⁻¹) of Taq DNA (Immolase DNA polymerase from Bioline) and 28.5 μl of ddH₂O. PCR amplification profile comprised of an initial denaturation step at 94°C for 5 min, followed by 35 cycles of 30 s denaturation at 94°C, 60 s annealing at 47°C if M13 or at 40°C if (GACA)₄ primer was used, 30 s extension at 72°C and a final extension of 7 min at 72°C. Reactions were performed in a 96-well DNA thermocycler (Eppendorf Mastercycler, Germany). PCR products were concentrated to 30 μl by placing in a fan forced oven (MetaPhor® for 45 min at 65°C and resolved on 2% high resolution agarose (Agarose, Lonza, Rockland Inc.USA) gels at 80 V electrohoresis for 6 h. Five kilobite DNA marker HyperLadder™ II (Bioline) was used as reference. The separated fragments were visualised under an ultra violet light unit fitted with a GelDoc-IT UVP Camera (Bio-rad, Australia Pty. Ltd. Gladesville NSW).

Data analyses

Gel images were scored and analysed using the software GelCompar II (6th edition, Applied Maths, Belgium). Fragment position optimisation and tolerance was set to 1 and 1.5%, respectively. Fragments were selected automatically by the GelCompar and unclear fragments were deselected manually. Based on the standard DNA ladder used, molecular weights of selected fragments were assigned automatically. Fragment scoring for the both primers ranged from 500 to 2500 bp. Genetic diversity among the Ph pts examined was evaluated using Unweighted pair group method for arithmetic averages (UPGMA) cluster analyses based on a distance matrix calculated using the Dice coefficient of similarity. The quality of similarity clusters was tested using the cluster stability index Cophenetic correlation coefficient (CPCC) using software GelCompar II. The CPCC was used to test the efficiency of the similarity clusters that resulted from the individual analyses of markers M13 and (GACA)₄. The CPCC is a simple correlation coefficient between the original dissimilarity matrix and the final dissimilarity matrix (Cophenetic matrix) produced after the clustering algorithm recalculates the dissimilarities (Lessig, 1972). Dendrograms were constructed and based on similarity clusters of both primers (GACA)₄ and M13, the Ph pts were clustered accordingly.

RESULTS

Both oligonucleotides (GACA)₄ and M13 amplified all pts, producing fragments in the range of 500 to 2500 bp. After deselecting unclear fragments manually, a total 27 and 28 fragments were scored automatically for markers (GACA)₄ and M13, respectively (Table 3). The UPGMA similarity dendrograms produced from the cluster analyses based on markers (GACA)₄ and M13 data grouped all 22 Ph pts and control pathogens (Figures 1 and 2). Both primers (GACA)₄ (Figure 1) and M13 (Figure 2) out-grouped representative control isolates of Pt, Pgt, Pst, Psph and Pga from the Ph pts examined. Both fingerprinting primers produced distinct clades for Pst and Psph, Pgt and Pga, while Pt was in a standalone group (Figures 1 and 2).

Cluster analysis based on marker M13 produced seven groups among the Ph pts with 75.9% to 100% similarities (Figure 2), while marker (GACA)₄ revealed higher variability among the Ph pts and produced 10 different groups with 70.5 to 100% similarities (Figure 1). Markers clustered pts 211P and 231P together (Figures 1 and 2), both of which originated from New Zealand.

Marker (GACA)₄ resolved the greatest genetic variation among the Ph pts and different “GACA” and “M13” groups were defined (Table 2). GACA group one (GGP1) contained pts 211P, 220P, 253P, 243P, 200P, 232P, 201P, 241P, 242P and 243P. All 10 pts have virulence for Rph8 in common (Park 2003). Marker M13 also grouped these pts in one group (MGP1, except pts 201P and 243P, which were grouped in the other GGP1 group (Table 2). Both markers out-grouped pts 200P (GGP4 and MGP4), 5653P (GGP6 and MGP6) and 5635P (GGP7 and MGP7) from all others (Table 2). Pathotype 200P is virulent to Rph8 only whereas pt 5635P carries additional virulence for genes Rph1, Rph2, Rph4, Rph6, Rph9, Rph10 and Rph12. Pathotype 5653P possesses additional virulence for Rph19 compared to pt 5635P (Park, 2003). In both cases, pts 211P and 231P were grouped together in distinct groups of GACA (GGP1) and M13 (MGP1) as detailed in Table 2. Marker (GACA)₄ produced distinct clusters for pts 5453P (Isolate 13-Ph) and 5457P (Isolate 22-Ph) but with 90.9% similarity (Figure 1), whereas these two pts were shown to be 100% similar (Figure 2) when genotyped using the fingerprinting marker M13. Pathotype 5457P possesses additional virulence for Rph3 and Rph19 as compared to the pt 5453P though both pts share virulence for genes Rph1, Rph2, Rph4, Rph6, Rph9, Rph10, Rph12 (Park et al., 2015). Marker (GACA)₄ grouped pts 243P and 4610P and 5635P together in a single group (GGP1) and discriminated pt 220P in a distinct group (GGP6) (Table 2), but genotyping based on M13 marker grouped these four pts in a group (MGP6) with other pts (Table 2).

DISCUSSION

The evolution of new virulent pts of Ph is a significant constraint in the economical production of barley in Australia and worldwide. Understanding genetic diversity in Ph is fundamental in the efforts to develop cultivars of barley with resistance to this pathogen. For example, genetically diverse fungal pathogens may have a greater potential to evolve new pts with the ability to overcome resistance. In earlier work, six pts of Ph were identified from aeciospores collected from infected plants of O. umbellatum in SA (Wallwork et al., 1992). Furthermore, high diversities of Ph pts have been reported in SA in pathogenicity surveys, suggesting that sexual recombination is contributing to pathogen diversity (Park, 2010).
Prior to the current study, no attempt had been made to study the genetic diversity of *Ph* in Australia, using PCR-fingerprinting. The usefulness of the PCR-fingerprinting primers M13 and GACA in discriminating fugal pathogens has been shown in several studies (Cogliati et al., 2007; Delhaes et al., 2008; Meyer et al., 2001; Roque et al., 2006; Trilles et al., 2008). In view of this, PCR-fingerprinting primers M13 and (GACA)$_4$, were assessed for their utility in *Ph*.

Cluster analyses of marker data revealed seven to 10 clusters among the 22 *Ph* pts and both markers out-grouped the control pathogens. As expected, a high percentage of similarity was observed among the *Ph* clusters, whereas the control pathogens were more diverse. Both PCR-fingerprinting primers (GACA)$_4$ and M13 clearly differentiated *Pt*, *Pgt*, *Pst*, *Psph*, *Pga* from each other and from the pts of *Ph*. Markers M13 and (GACA)$_4$ revealed only 26.4 and 33.3% genetic similarities between *Ph* and the control rust pts. These findings are in accordance with earlier studies in which isolates of *Pgt* were clearly differentiated from isolates of *Ph* using AFLP markers (Sun et al., 2007).

Both markers distinguished *Pst* and *Psph* with 57.1 to 83.3% genetic similarities, which is in accordance with an earlier study of these rust pathogens by Keiper et al. (2003) in which *Psph* was distinct but more similar compared to other rust pathogen species. Both markers M13 and (GACA)$_4$ formed distinct clades of *Pga* and *Pgt* and differentiated these two from the wheat rust pathogens *Pst* and *Pt*, also consistent with earlier results of an AFLP study on these rust pathogens (Keiper et al., 2003). The current results support the informative value and usefulness of the PCR-fingerprinting markers in differentiating species of rust pathogens.

The PCR-fingerprinting primer M13 clustered the 22 *Ph* pts into seven groups, while the marker (GACA)$_4$ resolved 10 groups among the *Ph* pts (Table 2) and detected more polymorphism. Interestingly, both markers grouped *Ph* pts 211P- and 231P* with 100% similarity (GACA$_4$ and M13, Table 2) and differentiated them from all other *Ph* pts. Both pts originated from New Zealand and differ only in virulence on *Rph* genes shown in last column is corresponding to the pathotypes shown in the previous column.

Table 2. Groups of *P. hordei* pathotypes based on the cluster analyses using PCR-fingerprinting markers (GACA)$_4$ and M13.

Isolate	MGP	Pathotype	Isolate	GGP	Pathotype	Virulence to Rph genes*
8	MGP	201P*	1	GGP	211P*	Rph1, Rph4, Rph8, Rph19
12	MGP	243P	2	GGP	220P*	Rph5, Rph8, Rph19
16	MGP	5653P*	3	GGP	253P*	Rph1, Rph2, Rph4, Rph6, Rph8
1	MGP	211P*	4	GGP	243P*	Rph1, Rph2, Rph6, Rph8, Rph19
2	MGP	220P*	5	GGP	200P*	Rph8, Rph19
3	MGP	253P*	6	GGP	232P*	Rph2, Rph4, Rph5, Rph8, Rph19
4	MGP	243P*	7	GGP	201P	Rph1, Rph8
5	MGP	200P*	8	GGP	201P*	Rph1, Rph8, Rph19
6	MGP	232P*	9	GGP	242P*	Rph2, Rph6, Rph8, Rph19
7	MGP	201P*	10	GGP	243P	Rph1, Rph2, Rph6, Rph8
9	MGP	242P*	11	GGP	5610P*	Rph4, Rph8, Rph9, Rph10, Rph12, Rph19
11	MGP	243P*	12	GGP	5653P*	Rph1, Rph2, Rph4, Rph6, Rph8, Rph9, Rph10, Rph12, Rph19
15	MGP	4610P*	13	GGP	243P*	Rph1, Rph2, Rph6, Rph8, Rph19
19	MGP	5610P*	14	GGP	5653P*	Rph1, Rph2, Rph4, Rph6, Rph8, Rph9, Rph10, Rph12, Rph19
20	MGP	220P*	15	GGP	4610P*	Rph4, Rph8, Rph9, Rph12, Rph19
21	MGP	200P*	16	GGP	220P*	Rph5, Rph8, Rph13, Rph19
14	MGP	5653P*	17	GGP	5653P*	Rph1, Rph2, Rph4, Rph6, Rph8, Rph9, Rph10, Rph12, Rph19
10	MGP	5653P*	18	GGP	211P*	Rph1, Rph4, Rph8
13	MGP	5453P	19	GGP	231P*	Rph1, Rph2, Rph4, Rph5, Rph8, Rph19
22	MGP	5457P*	20	GGP	200P	Rph8
17	MGP	211P	21	GGP	5453P*	Rph1, Rph2, Rph4, Rph6, Rph9, Rph10, Rph12, Rph19
18	MGP	231P*	22	GGP	5457P*	Rph1, Rph2, Rph3, Rph4, Rph6, Rph9, Rph10, Rph12, Rph19

Isolate: Isolate ID as given in Table 1; MGP Groups of *P. hordei* pathotypes based on M13 analysis; GGP Groups of *P. hordei* pathotypes based on GACA analysis; * with respect to the resistance genes listed in Park (2003), virulence to *Rph* genes shown in last column is corresponding to the pathotypes shown in the previous column.
Table 3. GelCompar selected fragments across the amplifications produced by PCR-fingerprinting markers (GACA)₄ and M13 where unclear fragments were deselected manually.

S/N	(GACA)₄ fragments (bp)	M13 fragments (bp)
1	510	543
2	550	557
3	572	571
4	584	668
5	675	768
6	707	811
7	741	853
8	765	895
9	790	914
10	839	950
11	956	999
12	961	1023
13	1061	1084
14	1089	1122
15	1126	1195
16	1173	1255
17	1278	1327
18	1276	1410
19	1380	1542
20	1502	1574
21	1568	1629
22	1639	1699
23	1852	1787
24	2000	1875
25	2078	2014
26	2250	2140
27	2480	2268
28		2485

substantial evidence of rust migration between the two land masses (Luig, 1985). These studies have also provided evidence that wheat rust movement is predominantly from west to east (Luig, 1985; Wellings et al., 2003). In view of this, the distinctiveness of the two pts of Ph from New Zealand from those in Australia suggests that they may have originated from a region outside Australasia and that they have remained localized to New Zealand.

Based on pathogenicity, Cotterill et al. (1995) suggested that the appearance of a group of pts distinct from pt 243P⁻ and typified by pt 200P⁻ and its subsequent single-step mutations in the form of pts 201P⁻, 210P⁻ and 220P⁻ in the 1980s, may have resulted from an exotic incursion. The present results support this hypothesis. Studies of pathogenic variability in all three wheat rust pathogens in Australia have provided strong evidence of clonality, with presumed clonal lineages comprising closely related pts derived by sequential single-step mutations from a common ancestor (Keiper et al., 2006). In contrast, pts of Ph detected in Australia between 1992 and 2001 did not appear to be so simply related based on pathogenicity (Park, 2003). Of the pts examined in the present study, pt 5457P⁺ is believed to have originated from pt 5453P⁻ via step-wise mutation for virulence for Rph19 and then for Rph3 (Park, unpublished). Surprisingly, while markers (GACA)₄ and M13 grouped these two pts and separated them from all other pts, they were not identical (Figures 1 and 2, respectively). These results show that the relationship between these two pts is not as simple as thought.

The molecular analyses in the present study did, however, provide some evidence of clonal lineages in Ph in Australasia. Marker (GACA)₄ revealed pts 201P⁺ and 201P⁻ to be 100% genetically similar (Figure 1) and given that pt 201P⁺ differs from 201P⁻ only in being virulent for Rph19, together these results are consistent with pt 201P⁺ arising via a single step mutation in pt 201P⁻ with
Figure 1. Genetic similarity dendrogram of 22 P. hordei pathotypes and five control pathotypes (Pt, Pgt, Pst, Psph and Pga) based on PCR-fingerprinting marker (GACA)4 data. UPGMA cluster analyses conducted using Dice coefficient of similarity. Similarity percentage values are shown on the left hand side of the group nodes. Pathotypes detail is provided in Table 1.

Figure 2. Genetic similarity dendrogram of 22 P. hordei pathotypes and five control pathotypes (Pt, Pgt, Pst, Psph and Pga) based on PCR-fingerprinting marker M13 data. UPGMA cluster analyses conducted using Dice coefficient of similarity. Percent similarity values are shown on the left hand side of the group nodes. Pathotypes detail is provided in Table 1.
added virulence for Rph19. The lack of molecular variation among some of the pts studied support the hypothesis of single-step mutation being an important source of pathogenic variation in Ph, which is consistent with the results published by Steele et al. (2001) who found a similar situation among Australian isolates of Pst. Marker (GACA)\textsubscript{4} revealed more informative fragments compared to the M13. So PCR-fingerprinting technique using marker (GACA)\textsubscript{4} can be a very efficient and an effective tool to find genetic variations in Ph and other rust pts.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Ali S, Müller CR, Epplen JT (1986). DNA fingerprinting by oligonucleotide probes specific to simple repeats. Hum. Genet. 74:239-243.

Arnst BJ, Martens JW, Wright GM, Burnett PA, Sanderson FR (1979). Incidence, importance and virulence of Puccinia hordei on barley in New Zealand. Ann. Appl. Biol. 92:185-90.

Clifford BC (1977). Monitoring virulence in *Puccinia hordei*: A proposal for the choice of host genotypes and survey procedures. Cereal Rusts Rev. 5:34-38.

Clifford BC (1985). Barley leaf rust. In: Roelfs AP and Bushnell WR (ed) *Cultivated Barley: Pathology and Control*. Orlando, Florida 32887, pp. 295-320.

Clifford BC, Carson ML (2008). Development and characterization of novel, polymorphic microsatellite markers for oat crown rust, *Puccinia coronata* f. sp. *tritici* in *Australasia* as revealed by analysis of SAMPL. Mycol. Res. 110:423-430.

Kolmer JA, Ordoñez ME, Manisterski J, Anikster Y (2011). Genetic differentiation of *Puccinia triticina* populations in the Middle East and genetic similarity with populations in Central Asia. Phytopathol. 101:870-877.

Lessig V (1972). Comparing cluster analyses with cophenetic correlation. J. Mark. Res. 9:82-84.

Levine MN, Cherewick WJ (1952). Studies on dwarf leaf rust of barley. U.S., Department of Agriculture (USDA), Tech. Bull. 1056:1-17.

Luig NH (1985). Epidemiology in Australia and New Zealand. In: Roelfs AP and Bushnell WR (ed) *The cereal Ruts*. Diseases, Distribution, Epidemiology and Control. Vol. II. Harcourt Brace Jovanovich, Orlando, Florida 32887, pp. 295-320.

Mantovani P, Maccacferri M, Tuberosa R, Kolmer J (2010) Virulence phenotypes and molecular genotypes in collections of *Puccinia triticina* from Italy. Plant. Dis. 94:420-424.

McDermott JM, McDonald BA (1993). Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 31:353-373.

Melville SC, Griffin GW, Jemmert JL (1976). Effects of fungicide spraying on brown rust and yield in spring barley. Plant Pathol. 25:99-107.

Meyer W, Maszewskis, K, Sorrell TC (2001). PCR-Fingerprinting: a convenient molecular tool to distinguish between *Candida dubliniensis* and *Candida albicans*. Med. Mycol. 39:185-193.

Ordoñez ME, Germán SE, Kolmer JA (2010). Genetic differentiation within the *Puccinia triticina* population in South America and comparison with the North American population suggests common ancestry and intercontinental migration. Phytopathol. 100:376-383.

Park RF (2003). Pathogenic specialization and pathotype distribution of *Puccinia hordei* in Australia, 1992 to 2001. Plant. Dis. 87:1311-1316.

Park RF (2006). Annual Report: 2005-2006 Cereal Rust Survey, The University of Sydney, Plant Breeding Institute, Cobbitty, pp. 10.

Park RF (2008). Breeding cereals for rust resistance in Australia. Plant. Pathol. 57:91-602.

Park RF (2010). Annual Report: 2009-2010 Cereal Rust Survey, The University of Sydney, Plant Breeding Institute, Cobbitty. pp. 1-12.

Park RF, Burdon JJ, McIntosh RA (1995). Studies on the origin, spread, and evolution of an important group of *Puccinia reconditif sp. tritici* pathotypes in *Australasia*. Eur. J. Plant Pathol. 101:613-622.

Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karagholi G, Elmansour HM, Dracatos PM, Singh D (2015). Leaf Rust of Cultivated Barley: Pathology and Control. Annu. Rev. Phytopathol. 53:565-589.

Roque HD, Vieira R, Rato S, Luz-Martins M (2006). Specific Primers for Rapid Detection of *Microsporum audouini* by PCR in Clinical Samples. J. Clin. Microbiol. 44(12):4336-4341.

Steele KA, Humphreys E, Wellings CR, Dickinson MJ (2001). Support for a stepwise mutation model for pathogen evolution in Australasian *Puccinia striiformis* f.sp. *tritici* by use of molecular markers. Plant. Pathol. 50:174-180.

Sun Y, Zhong S, Steffenson BJ, Friesen TL, Neate SM (2007). Amplified fragment length polymorphism and virulence polymorphism in *Puccinia hordei*. Can. J. Plant. Pathol. 29:25-34.

Trilles L, Lazéra MS, Wanke B, Oliveira RV, Barbosa GG, Nitikawa MM, Morales BP, Meyer W (2011). Regional pattern of the molecular types of *Cryptococcus neoformans* and *Cryptococcus gattii* in Brazil. Memórias do Instituto Oswaldo Cruz 103(5):455-462.

Vassart G, Georges M, Monsieur R, Brocas H, Lequarré AS, Christophe D (1987). A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Sci. 235(4789), pp.683-684.

Visser B, Herselman L, Park RF, Karagholi H, Bender CM, Pretorius ZA (2011). Characterization of two new *Puccinia graminis* f.sp. *tritici* races within the Ug99 lineage in South Africa, Euphytica 179:119-127.

Vuyldt LS, Camu N, Winter TD, Vandemeulebroecke K, Van de Peer V, Vancanneyt M, Vos PD, Cleenwerck I (2008). Validation of the (GTC)\textsubscript{n}-rep-PCR-fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int. J. Food Microbiol. 125:79-90.

Waller AG, Hellmich RB, Freese P, Cotterill PJ (1992). *Puccinia hordei* on barley and *Ornithogalum umbellatum* in *Southern Australia*. Ausralas. Plant. Pathol. 21:95-97.
Waterhouse WL (1927). Studies in the inheritance of resistance to leaf rust, *Puccinia anomala* Rost., in crosses of barley. 1. J. Royal. Soc. NSW 61:218-247.

Waterhouse WL (1952). Australian rust studies, IX. Physiologic race determinations and surveys of cereal rusts. Proc. Linnean Soc. NSW 77:209-258.

Watson IA, Butler FC (1947). Resistance to barley leaf rust (*Puccinia anomala* Rost.). Proc. Linnean Soc. NSW 72:379-386.

Wellings CR, McIntosh RA (1990). *Puccinia striiformis* f. sp. *tritici* in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 39:316-325.

Wellings CR, Wright DG, Keiper F, Loughman R (2003). First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australas. Plant Pathol. 32:321-322.