FROM QUARTIC ANHARMONIC OSCILLATOR TO DOUBLE WELL POTENTIAL

ALEXANDER V. TURBINER*, JUAN CARLOS DEL VALLE

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México-City, Mexico

* corresponding author: turbiner@nucleares.unam.mx

ABSTRACT. Quantum quartic single-well anharmonic oscillator \(V_{ao}(x) = x^2 + g^2x^4 \) and double-well anharmonic oscillator \(V_{dw}(x) = x^2(1-gx)^2 \) are essentially one-parametric, they depend on a combination \((g^2\hbar)\). Hence, these problems are reduced to study the potentials \(V_{ao} = u^2 + u^4 \) and \(V_{dw} = u^2(1-u)^2 \), respectively. It is shown that by taking uniformly-accurate approximation for anharmonic oscillator eigenfunction \(\Psi_{ao}(u) \), obtained recently, see JPA 54 (2021) 295204 [1] and arXiv 2102.04623 [2], and then forming the function \(\Psi_{dw}(u) = \Psi_{ao}(u) \pm \Psi_{ao}(u-1) \) allows to get the highly accurate approximation for both the eigenfunctions of the double-well potential and its eigenvalues.

KEYWORDS: Anharmonic oscillator, double-well potential, perturbation theory, semiclassical expansion.

1. INTRODUCTION

It is already known that for the one-dimensional quantum quartic single-well anharmonic oscillator \(V_{ao}(x) = x^2 + g^2x^4 \) and double-well anharmonic oscillator with potential \(V_{dw}(x) = x^2(1-gx)^2 \) the (trans)series in \(g \) (which is the Perturbation Theory in powers of \(g \) (the Taylor expansion) in the former case \(V_{ao}(x) \) supplemented by exponentially-small terms in \(g \) in the latter case \(V_{dw}(x) \)) and the semiclassical expansion in \(\hbar \) (the Taylor expansion for \(V_{ao}(x) \) supplemented by the exponentially small terms in \(\hbar \) for \(V_{dw}(x) \)) for energies coincide [3]. This property plays crucially important role in our consideration.

Both the quartic anharmonic oscillator
\[
V = x^2 + g^2x^4 , \tag{1}
\]
with a single harmonic well at \(x = 0 \) and the double-well potential
\[
V = x^2(1-gx)^2 , \tag{2}
\]
with two symmetric harmonic wells at \(x = 0 \) and \(x = 1/g \), respectively, are two particular cases of the quartic polynomial potential
\[
V = x^2 + agx^3 + g^2x^4 , \tag{3}
\]
where \(g \) is the coupling constant and \(a \) is a parameter. Interestingly, the potential (3) is symmetric for three particular values of the parameter \(a \): \(a = 0 \) and \(a = \pm 2 \). All three potentials (1), (2), (3) belong to the family of potentials of the form
\[
V = \frac{1}{g^2} \tilde{V}(gx) ,
\]
for which there exists a remarkable property: the Schrödinger equation becomes one-parametric, both the Planck constant \(\hbar \) and the coupling constant \(g \) appear in the combination \((g^2\hbar)\), see [2]. It can be immediately seen if instead of the coordinate \(x \) the so-called classical coordinate \(u = (gx) \) is introduced. This property implies that the action \(S \) in the path integral formalism becomes \(g \)-independent and the factor \(\frac{1}{g^2} \) in the exponent becomes \(\frac{1}{g^2} \). Formally, the potentials (1)-(2), which enter to the action, appear at \(g = 1 \), hence, in the form
\[
V = u^2 + u^4 , \tag{4}
\]
\[
V = u^2(1-u)^2 , \tag{5}
\]
respectively. Both potentials (4), (5) are symmetric with respect to \(u = 0 \) and \(u = 1/2 \), respectively.

Namely, this form of the potentials will be used in this short Note. This Note is the extended version of a part of presentation in AAMP-18 given by the first author [5].

2. SINGLE-WELL POTENTIAL

In [1] for the potential (1) matching the small distances \(u \to 0 \) expansion and the large distances \(u \to \infty \) expansion (in the form of semiclassical expansion) for the phase \(\phi \) in the representation
\[
\Psi = P(u) e^{-\phi(u)} ,
\]
of the wave function, where \(P \) is a polynomial, it was constructed the following function for the \((2n+p)\)-excited state with quantum numbers \((n,p)\), \(n = 0,1,2,\ldots \), \(p = 0,1 \):
\[
\Psi_{(n,p)\text{approximation}}^{(n,p)} = \frac{u^p P_{np}(u^2)}{(B^2 + u^2)^{\frac{p}{2}} (B + \sqrt{B^2 + u^2})^{2n+p+\frac{1}{2}}}
\]

\(\text{Acta Polytechnica} \text{ 62}(1):208–210,2022 \)

© 2022 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

https://doi.org/10.14311/AP.2022.62.0208

208
This prescription was already checked successfully for
where

The double-well potential (2) in [6] for somehow sim-
ima at

eigenstates. Furthermore, the func-

Figure 1. Two lowest, normalized to one eigenfunc-
tions of positive/negative parity: for single-well potential (1), see (3) (top) and for double-well potential (5), see (7) (bottom). Potentials shown by black lines.

\[V(u) = \begin{cases} \frac{u^2}{2} & \text{for } u^2 < 1 \\ \frac{u^2}{2} + u^4/3 + \frac{A}{B} & \text{for } u^2 > 1 \end{cases} \]

where \(P_{n,p} \) is some polynomial of degree \(n \) in \(u^2 \) with positive roots. Here \(A = a_{n,p}, B = b_{n,p} \) are two parameters of interpolation. These parameters \((-A), B\) are slow-growing with quantum number \(n \) at fixed \(p \) taking, in particular, the values

\[A_{0,0} = -0.6244, B_{0,0} = 2.3667 \]

\[A_{0,1} = -1.9289, B_{0,1} = 2.5598 \]

for the ground state and the first excited state, respectively. This remarkably simple function (6), see Figure 1 (top), provides 10-11 exact figures in energies for the first 100 eigenstates. Furthermore, the function (6) deviates uniformly for \(u \in (-\infty, +\infty) \) from the exact function in \(\sim 10^{-6} \).

4. DOUBLE-WELL POTENTIAL: RESULTS

In this section we present concrete results for energies of the ground state \((0,0)\) and of the first excited state \((0,1)\) obtained with the function (9) at \(p = 0, 1 \), respectively, see Figure 1 (bottom). The results are compared with the Lagrange-Mesh Method (LMM) [7].

4.1. Ground State \((0,0)\)

The ground state energy for (5) obtained variationally using the function (9) at \(p = 0 \) and compared with LMM results [7], where all printed digits (in the second line) are correct,

\[E^{(0,0)}_{\text{var}} = 0.932517518401 \]

\[E^{(0,0)}_{\text{mesh}} = 0.932517518372 \]

Note that ten decimal digits in \(E^{(0,0)}_{\text{var}} \) coincide with ones in \(E^{(0,0)}_{\text{mesh}} \) (after rounding). Variational parameters in (9) take values,

\[A = 2.3237, \quad B = 3.2734, \quad a_0 = 2.3839, \quad b_0 = 0.0605 \]

cf. (7). Note that \(b_0 \) takes a very small value.
4.2. FIRST EXCITED STATE (0,1)

The first excited state energy for (5) obtained variationally using the function (9) at \(p = 1 \) and compared with LMM results [7], where all printed digits (in the second line) are correct,

\[
E_{\text{var}}^{(0,1)} = 3.396 279 329 936 , \quad E_{\text{mesh}}^{(0,1)} = 3.396 279 329 887 .
\]

Note that ten decimal digits in \(E_{\text{var}}^{(0,1)} \) coincide with ones in \(E_{\text{mesh}}^{(0,1)} \). Variational parameters in (9) take values,

\[
A = -2.2957 , \quad B = 3.6991 , \quad a_1 = 4.7096 , \quad b_1 = 0.0590 ,
\]

cf. (5). Note that \(b_1 \) takes a very small value similar to \(b_0 \).

5. CONCLUSIONS

It is presented the approximate expression (9) for the eigenfunctions in the double-well potential [6]. In Non-Linearization procedure [5], it can be calculated the first correction (the first order deviation) to the function (9). It can be shown that for any \(u \in (-\infty, +\infty) \) the functions (9) deviate uniformly from the exact eigenfunctions, beyond the sixth significant figure similarly to the function (6) for the single-well case. It increases the accuracy of the simplified function, proposed in [5] with \(\alpha = 0 \) and \(b_{0,1} = 0 \), in the domain under the barrier \(u \in (0.25, 0.75) \) from 4 to 6 significant figures leaving the accuracy outside of this domain practically unchanged.

ACKNOWLEDGEMENTS

This work is partially supported by CONACyT grant A1-S-17364 and DGAPA grants IN113819, IN113022 (Mexico).

AVT thanks the PASPA-UNAM program for support during his sabbatical leave.

REFERENCES

[1] A. V. Turbiner, J. C. del Valle. Anharmonic oscillator: a solution. Journal of Physics A: Mathematical and Theoretical 54(29):295204, 2021. https://doi.org/10.1088/1751-8121/ac0733.

[2] A. V. Turbiner, E. Shuryak. On connection between perturbation theory and semiclassical expansion in quantum mechanics, 2021. arXiv:2102.04623.

[3] E. Shuryak, A. V. Turbiner. Transseries for the ground state density and generalized Bloch equation: Double-well potential case. Physical Review D 98:105007, 2018. https://doi.org/10.1103/PhysRevD.98.105007.

[4] M. A. Escobar-Ruiz, E. Shuryak, A. V. Turbiner. Quantum and thermal fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. Physical Review D 93:105039, 2016. https://doi.org/10.1103/PhysRevD.93.105039.

[5] A. V. Turbiner, J. C. del Valle. Anharmonic oscillator: almost analytic solution, 2021. Talk presented by AVT at AAMP-18 (Sept.1-3), Prague, Czech Republic (September 1, 2021).

[6] A. V. Turbiner. Double well potential: perturbation theory, tunneling, WKB (beyond instantons). International Journal of Modern Physics A 25(02n03):647–658, 2010. https://doi.org/10.1142/S0217751X10048937.

[7] A. V. Turbiner, J. C. del Valle. Comment on: Uncommonly accurate energies for the general quartic oscillator. International Journal of Quantum Chemistry 121(19):e26766, 2021. https://doi.org/10.1002/qua.26766.

[8] A. V. Turbiner. The eigenvalue spectrum in quantum mechanics and the nonlinearization procedure. Soviet Physics Uspekhi 27(0):668–694, 1984. English Translation. https://doi.org/10.1070/PU1984v027n09ABEH004155.