COUPLED SYSTEMS OF HILFER FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

SAÏD Abbas
Laboratory of Mathematics, Geometry, Analysis
Control and Applications, Tahar Moulay University of Saida
P.O. Box 138, EN-Nasr, 20000 Saida, Algeria

MOUFFAK Benchahra
Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès
P.O. Box 89, 22000, Algeria

JOHN R. GRAEF*
Department of Mathematics, University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA

(Communicated by Yuri Latushkin)

Abstract. This paper deals with some existence results in Banach spaces for Hilfer and Hilfer-Hadamard fractional differential inclusions. The main tools used in the proofs are Mönch’s fixed point theorem and the concept of a measure of noncompactness.

1. Introduction. Fractional differential equations and inclusions appear in several areas such as engineering, mathematics, bio-engineering, physics, and other applied sciences [19, 32]. For some fundamental results in the theory of fractional calculus and fractional differential equations, we refer the reader to the monographs of Abbas et al. [4, 5], Kilbas et al. [23], Samko et al. [31], Zhou [35], as well as the papers by Abbas et al. [1, 2], Benchahra et al. [10], Lakshmikantham et al. [24, 25, 26] and the references therein. Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative; see [14, 15, 19, 21, 33, 34] and the references therein.

Recently, in [3, 8, 9, 11, 12, 16, 17] the authors applied the measure of noncompactness to some classes of Riemann-Liouville or Caputo fractional differential equations in Banach spaces. In this paper we discuss the existence of solutions to the coupled system of Hilfer fractional differential inclusions

\[
\begin{align*}
(D_0^{\alpha_1,\beta_1} u)(t) & \in F_1(t,u(t),v(t)), \\
(D_0^{\alpha_2,\beta_2} v)(t) & \in F_2(t,u(t),v(t)),
\end{align*}
\]

\(t \in I := [0,T], \) (1)

2000 Mathematics Subject Classification. Primary: 26A33, 34A60.
Key words and phrases. Fractional differential inclusion, coupled system, left-sided mixed Riemann-Liouville and Hadamard integrals of fractional order, Hilfer fractional derivative, Hilfer-Hadamard fractional derivative, measure of noncompactness.

* Corresponding author.
with the initial conditions
\[
\begin{align*}
(I_0^{1-\gamma_1} u)(0) &= \phi_1, \\
(I_0^{1-\gamma_2} v)(0) &= \phi_2,
\end{align*}
\] (2)
where \(T > 0, \alpha_i \in (0, 1), \beta_i \in [0, 1], \gamma_i = \alpha_i + \beta_i - \alpha_i \beta_i, \) \(E \) is a real (or complex) separable Banach space with a norm \(\| \cdot \| \), \(P(E) \) is the family of all nonempty subsets of \(E \), \(\phi_i \in E, F_i : I \times E \times E \to P(E), i = 1, 2, \) are given multivalued maps, \(I_0^{1-\gamma_i} \) is the left-sided mixed Riemann-Liouville integral of order \(1 - \gamma_i \) with the initial conditions
\[\{(I_0^{1-\gamma_i} u)(0) = \phi_i, \} \] where \(T > E \) if
\[
\{H D_1^{\alpha_i, \beta_i} u(t) \in G_1(t, u(t), v(t)), \}
\]
\[
\{H D_1^{\alpha_i, \beta_i} v(t) \in G_2(t, u(t), v(t)), \}
\]
t \(\in [1, T], \) (3)
with the initial conditions
\[
\begin{align*}
(H I_1^{1-\gamma_i} u)(1) &= \psi_1, \\
(H I_1^{1-\gamma_i} v)(1) &= \psi_2,
\end{align*}
\] (4)
where \(T > 1, \alpha_i \in (0, 1), \beta_i \in [0, 1], \gamma_i = \alpha_i + \beta_i - \alpha_i \beta_i, \psi_i \in E, G_i : [1, T] \times E \times E \to P(E), i = 1, 2, \) are given multivalued maps, \(H I_1^{1-\gamma_i} \) is the left-hand mixed Hadamard integral of order \(1 - \gamma_i \), and \(H D_1^{\alpha_i, \beta_i} \) is the Hilfer-Hadamard fractional derivative of order \(\alpha_i \) and type \(\beta_i \).

2. Preliminaries. Let \(C := C(I) \) be the Banach space of all continuous functions \(w \) from \(I \) into \(E \) with the supremum (uniform) norm
\[
\|w\|_\infty := \sup_{t \in I} \|w(t)\|.
\]
As usual, \(AC(I) \) denotes the space of absolutely continuous functions from \(I \) into \(E \). We denote by \(AC^1(I) \) the space defined by
\[
AC^1(I) := \{w : I \to E : \frac{d}{dt}w(t) \in AC(I)\}.
\]
By \(L^1(I) \), we denote the space of measurable functions \(v : I \to E \) that are Bochner integrable and normed by
\[
\|v\|_1 = \int_0^T \|v(t)\| dt.
\]
Let \(L^\infty(I) \) be the Banach space of measurable functions \(v : I \to \mathbb{R} \) that are essentially bounded and equipped with the norm
\[
\|v\|_{L^\infty} = \inf\{c > 0 : |v(t)| \leq c, \text{ a.e. } t \in I\}.
\]
By \(C_\gamma(I) \) and \(C_\gamma^1(I) \), we denote the weighted spaces of continuous functions defined by
\[
C_\gamma(I) = \{w : (0, T] \to E : t^{1-\gamma}w(t) \in C\},
\]
with the norm
\[
\|w\|_{C_\gamma} := \sup_{t \in I} \|t^{1-\gamma}w(t)\|,
\]
and
\[
C_\gamma^1(I) = \{w \in C : \frac{dw}{dt} \in C_\gamma\},
\]
with the norm
\[\|w\|_{C^2} := \|w\|_\infty + \|w'\|_{C}\. \]
Also, by \(C := C_{r1} \times C_{r2} \) we denote the product weighted space with the norm
\[\|(u,v)\|_{C} = \|u\|_{C_{r1}} + \|v\|_{C_{r2}}. \]

Let \(P_{cl}(E) = \{ A \in \mathcal{P}(E) : A \text{ is closed} \} \), \(P_{xx}(E) = \{ A \in \mathcal{P}(E) : A \text{ is convex} \} \), and \(P_{cp,xx}(E) = \{ A \in \mathcal{P}(E) : A \text{ is compact and convex} \} \). If there exists \(x \in E \) such that \(x \in G(x) \) then the multivalued map \(G : E \to \mathcal{P}(E) \) has a fixed point. The symbol \(FixG \) stands for the set of fixed point of \(G \). If for every \(y \in E \), the function \(t \mapsto d(y,G(t)) = \inf \{|y-z| : z \in G(t)\} \), then a multivalued map \(G : J \to P_{cl}(E) \) is said to be measurable.

Definition 2.1. Let \(X \) and \(Y \) be two sets. The graph of a set-valued map \(N : X \to \mathcal{P}(Y) \) is defined by
\[
\text{graph}(N) = \{(x,y) : x \in X, y \in N(x)\}.
\]

For more details about multivalued functions, see for instance [6, 7, 13, 20].

Definition 2.2. If
1. \(t \to F(t,u) \) is measurable for each \(u \in E \), and
2. \(u \to F(t,u) \) is upper semicontinuous for a.e. \(t \in I \),
then the multivalued function \(F : I \times E \to \mathcal{P}(E) \) is Carathéodory.

For each \(u \in C(I) \), we defined the set of selections of \(F \) by
\[
S_{Fou} = \{ v \in L^1(I) : v(t) \in F(t,u(t)) \text{ a.e. } t \in I \}.
\]

We next give some results and properties of the fractional calculus.

Definition 2.3 ([4, 23, 31]). The left-sided mixed Riemann-Liouville integral of order \(r > 0 \) of a function \(w \in L^1(I) \) is defined by
\[
(I_0^\alpha w)(t) = \frac{1}{\Gamma(r)} \int_0^t (t-s)^{r-1} w(s)ds \text{ for a.e. } t \in I,
\]
where \(\Gamma(\cdot) \) is the (Euler's) Gamma function defined by
\[
\Gamma(\xi) = \int_0^\infty t^{\xi-1} e^{-t}dt, \quad \xi > 0.
\]

Notice that for all \(r, r_1, r_2 > 0 \) and each \(w \in C \), we have \(I_0^r w \in C \), and
\[
(I_0^{r_1} I_0^{r_2} w)(t) = (I_0^{r_1+r_2} w)(t) \text{ for a.e. } t \in I.
\]

Definition 2.4 ([4, 23, 31]). The Riemann-Liouville fractional derivative of order \(r \in (0,1] \) of a function \(w \in L^1(I) \) is defined by
\[
(D_0^\alpha w)(t) = \left(\frac{d}{dt} I_0^{1-r} w \right)(t) = \frac{1}{\Gamma(1-r)} \frac{d}{dt} \int_0^t (t-s)^{-r} w(s)ds \text{ for a.e. } t \in I.
\]

Let \(r \in (0,1], \gamma \in [0,1) \), and \(w \in C_{1-\gamma}(I) \). Then the next expression leads to the left inverse operator as follows:
\[
(D_0^\alpha I_0^\gamma w)(t) = w(t) \text{ for all } t \in (0,T].
\]
Moreover, if \(I_0^{1-r} w \in C_{1-\gamma}(I) \), then the following composition is proved in [31]:
\[
(I_0^r D_0^\alpha w)(t) = w(t) - \frac{I_0^{1-r} w(0^+)}{\Gamma(r)} t^{r-1} \text{ for all } t \in (0,T].
\]
Definition 2.5 ([4, 23, 31]). If \(w \in L^1(I) \),

\[
(\mathcal{D}^\alpha w)(t) = \left(\mathcal{I}^{1-\gamma}(\mathcal{I}^{\alpha-1}w) \right)(t) = \frac{1}{\Gamma(1-\gamma)} \int_0^t (t-s)^{-r} \frac{d}{ds} w(s) ds \quad \text{for a.e. } t \in I.
\]

is the Caputo fractional derivative of the function \(w \) of order \(r \in (0, 1] \).

In [19], Hilfer studied applications of a generalized fractional operator with the Riemann-Liouville and the Caputo derivatives as specific cases (see also [21, 33]).

Definition 2.6 (Hilfer derivative). Let \(\alpha \in (0, 1) \), \(\beta \in [0, 1] \), \(w \in L^1(I) \), and \(\mathcal{I}_0^{(1-\alpha)(1-\beta)} \in AC^1(I) \). The Hilfer fractional derivative of order \(\alpha \) and type \(\beta \) of \(w \) is defined as

\[
(\mathcal{D}^\alpha_0 w)(t) = \left(\mathcal{I}^{\beta(1-\alpha)} \mathcal{I}^\alpha \mathcal{I}^{\gamma - 1} w \right)(t) \quad \text{for a.e. } t \in I.
\]

Properties. Let \(\alpha \in (0, 1) \), \(\beta \in [0, 1] \), \(\gamma = \alpha + \beta - \alpha \beta \), and \(w \in L^1(I) \).

1. The operator \((D^\alpha_0 w)(t) \) can be written as

\[
(D^\alpha_0 w)(t) = \left(\mathcal{I}^{\beta(1-\alpha)} \frac{d}{dt} \mathcal{I}^\alpha \mathcal{I}^{\gamma - 1} w \right)(t) \quad \text{for a.e. } t \in I.
\]

Moreover, the parameter \(\gamma \) satisfies

\[
\gamma \in (0, 1], \quad \gamma \geq \alpha, \quad \gamma > \beta, \quad 1 - \gamma < 1 - \beta(1 - \alpha).
\]

2. The special case of (5) with \(\beta = 0 \) coincides with the Riemann-Liouville derivative, and with \(\beta = 1 \), it coincides with the Caputo derivative. In addition,

\[
D^\alpha_0 = D^\alpha_0 \quad \text{and} \quad D^{\alpha,1}_0 = \mathcal{D}^\alpha_0.
\]

3. If \(D_0^{\beta(1-\alpha)} w \) exists and is in \(L^1(I) \), then

\[
(D_0^{\beta} \mathcal{I}_0^{\beta(1-\alpha)} w)(t) = (\mathcal{I}_0^{\alpha} D_0^{\beta(1-\alpha)} w)(t) \quad \text{for a.e. } t \in I.
\]

Furthermore, if \(w \in C_\gamma(I) \) and \(\mathcal{I}_0^{\beta(1-\alpha)} w \in C_\gamma(I) \), then

\[
(D_0^{\alpha,\beta} \mathcal{I}_0^{\beta(1-\alpha)} w)(t) = w(t) \quad \text{for a.e. } t \in I.
\]

4. If \(D_0^\gamma w \) exists and is in \(L^1(I) \), then

\[
(\mathcal{I}_0^\gamma D_0^{\alpha,\beta} w)(t) = (\mathcal{I}_0^\gamma D_0^\gamma w)(t) = w(t) - \mathcal{I}_0^{1-\gamma(0+)} \frac{t^{\gamma-1}}{\Gamma(\gamma)} \quad \text{for a.e. } t \in I.
\]

Corollary 1. Let \(h \in C_\gamma(I) \). Then the linear Cauchy problem

\[
\begin{cases}
(D_0^{\alpha,\beta} u)(t) = h(t); \quad t \in I, \\
(\mathcal{I}_0^{1-\gamma} u)(t)|_{t=0} = \phi,
\end{cases}
\]

has a unique solution given by

\[
u(t) = \frac{\phi}{\Gamma(\gamma)} t^{\gamma-1} + (\mathcal{I}_0^\gamma h)(t).
\]

From the above corollary, we have the following lemma.
Lemma 2.7. Consider the maps $F_i : I \times E \times E \to \mathcal{P}(E)$, $i = 1, 2$, such that $S_{F_i u} \subset C_{\gamma_1}$ for any $u \in C_{\gamma_1}$ and $S_{F_2 v} \subset C_{\gamma_2}$ for any $v \in C_{\gamma_2}$. Then solving the system (1)–(2) is equivalent to the finding the solutions of the system of integral equations
\[
\begin{align*}
u(t) &= \frac{\phi_1}{\Gamma(\gamma_1)} t^{\gamma_1 - 1} + (I_0^{\alpha_1} w_1)(t), \\
u(t) &= \frac{\phi_2}{\Gamma(\gamma_2)} t^{\gamma_2 - 1} + (I_0^{\alpha_2} w_2)(t),
\end{align*}
\]
where $w_1 \in S_{F_1 u}$ and $w_2 \in S_{F_2 v}$.

The symbol \mathcal{M}_X will stand for the class of all bounded subsets of a metric space X.

Definition 2.8. Let X be a complete metric space. A function $\mu : \mathcal{M}_X \to [0, \infty)$ is said to be a measure of noncompactness on X if the following conditions are satisfied for all $B, B_1, B_2 \in \mathcal{M}_X$:
(a) Regularity, i.e., $\mu(B) = 0$ if and only if B is precompact;
(b) Invariance under closure, i.e., $\mu(B) = \mu(\overline{B})$;
(c) Semi-additivity, i.e., $\mu(B_1 \cup B_2) = \max\{\mu(B_1), \mu(B_2)\}$.

Example 1 ([8], Example 1, p. 19). Let X be a metric space. The map $\phi : \mathcal{M}_X \to [0, \infty)$ is a discrete measure of noncompactness if
\[
\phi(B) = \begin{cases} 0 & \text{if } B \text{ is relatively compact}, \\ 1 & \text{otherwise}. \end{cases}
\]

Definition 2.9 ([9]). Let E be a Banach space and let Ω_E denote the family of bounded subsets of E. If
\[
\mu(M) = \inf\{\epsilon > 0 : M \subset \bigcup_{j=1}^n M_j, \text{diam}(M_j) \leq \epsilon\}, \quad M \in \Omega_E,
\]
then the map $\mu : \Omega_E \to [0, \infty)$ is called the Kuratowski measure of noncompactness.

Properties.
(1) $\mu(M) = 0$ if and only if \overline{M} is compact (M is relatively compact).
(2) $\mu(M) = \mu(\overline{M})$.
(3) $M_1 \subset M_2$ implies $\mu(M_1) \leq \mu(M_2)$.
(4) $\mu(M_1 + M_2) \leq \mu(M_1) + \mu(M_2)$.
(5) $\mu(cM) = |c|\mu(M)$, $c \in \mathbb{R}$.
(6) $\mu(\text{conv } M) = \mu(M)$.

Theorem 2.10 ([18]). Let E be a Banach space. Let $C \subset L^1(I)$ be countable set with $|u(t)| \leq h(t)$ for a.e. $t \in J$ and every $u \in C$, where $h \in L^1(I, \mathbb{R}^+)$, Then $\phi(t) = \mu(C(t)) \in L^1(I, \mathbb{R}^+)$ and
\[
\alpha\left(\left\{\int_0^T u(s) \, ds : u \in C\right\}\right) \leq 2 \int_0^T \mu(C(s)) \, ds.
\]

Lemma 2.11 ([27]). Let I be a compact real interval, let F be a Carathéodory multivalued map, and let Θ be a continuous linear map from $L^1(I) \to C(I)$. Then the operator
\[
\Theta \circ S_{Fou} : C(I) \to \mathcal{P}_{cp,c}(C(I)), \quad u \mapsto (\Theta \circ S_{Fou})(u) = \Theta(S_{Fou})
\]
is a closed graph operator in $C(I) \times C(I)$.

We now recall the set-valued version of Mönch’s fixed point theorem.
Theorem 2.12 ([28]). Let E be Banach space, $K \subset E$ be a closed and convex set, U be a relatively open subset of K, and $N : \overline{U} \to \mathcal{P}(K)$. Assume that N maps compact sets into relatively compact sets, $\text{graph}(N)$ is closed, and for some $x_0 \in U$, we have:

(i) $M \subset \overline{U}$, $M \subset \text{conv}(x_0 \cup N(M))$, and $\overline{M} = \overline{U}$ with C a countable subset of M, implies \overline{M} is compact;

(ii) $x \notin (1 - \lambda)x_0 + \lambda N(x)$ for all $x \in \overline{U} \setminus U$ and $\lambda \in (0, 1)$.

Then there exists $x \in \overline{U}$ with $x \in N(x)$.

3. Coupled system of Hilfer fractional differential inclusions. First, we define what we mean by a solution of the system (1)--(2).

Definition 3.1. By a solution of the system (1)--(2) we mean a pair of measurable functions $(u, v) \in \mathcal{C}$ that satisfy conditions (2) and the inclusions (1) on I.

In the sequel, we will need the following conditions.

(H$_1$) The multivalued maps $F_i : I \times E \times E \to \mathcal{P}_{sp,c}(E)$, $i = 1, 2$, are Carathéodory.

(H$_2$) There exist functions $p_i \in L^\infty(I, [0, \infty))$, $i = 1, 2$, such that

$$\|F_1(t, u, v)\|_P = \sup \{\|w_1\|_{C_{\gamma_1}} : w_1(t) \in F_1(t, u, v)\} \leq p_1(t)$$

and

$$\|F_2(t, u, v)\|_P = \sup \{\|w_2\|_{C_{\gamma_2}} : w_2(t) \in F_2(t, u, v)\} \leq p_2(t)$$

for a.e. $t \in I$ and $u, v \in E$.

(H$_3$) For each bounded and measurable set $B_i \subset C_{\gamma_i}$, $i = 1, 2$, and for each $t \in I$, we have

$$\mu(F_i(t, B_1(t), B_2(t))) \leq p_i(t)\mu(B_i(t)), \quad i = 1, 2,$$

where $B_i(t) = \{u(t) : u \in B_i\}$, $i = 1, 2$.

(H$_4$) The function $\Phi = (\phi_1, \phi_2) \equiv (0, 0)$ is the unique solution in \mathcal{C} of the inequalities

$$\Phi_i(t) \leq 2p_i^*(I_{0}^{\alpha_i} \phi_i)(t),$$

where

$$p_i^* = \text{ess} \sup_{t \in I} p_i(t), \quad i = 1, 2.$$

We now prove our main result in this section on the existence of solutions to the system (1)--(2).

Theorem 3.2. Assume that (H$_1$)--(H$_4$) hold. Then the system (1)--(2) has at least one solution defined on I.

Proof. Define the multivalued operators $N_1 : C_{\gamma_1} \to \mathcal{P}(C_{\gamma_1})$ and $N_2 : C_{\gamma_2} \to \mathcal{P}(C_{\gamma_2})$ by

$$N_1(u) = \left\{ h_1 \in C_{\gamma_1} : h_1(t) = \frac{\phi_1}{\Gamma(\gamma_1)} t^{\gamma_1 - 1} + \int_{0}^{t} (t - s)^{\alpha_1 - 1} \frac{w_1(s)}{\Gamma(\alpha_1)} ds, \quad w_1 \in S_{F_1, ou} \right\}$$

and

$$N_2(v) = \left\{ h_2 \in C_{\gamma_2} : h_2(t) = \frac{\phi_2}{\Gamma(\gamma_2)} t^{\gamma_2 - 1} + \int_{0}^{t} (t - s)^{\alpha_2 - 1} \frac{w_2(s)}{\Gamma(\alpha_2)} ds, \quad w_2 \in S_{F_2, ov} \right\}.$$
Clearly, the fixed points of N are solutions of the system (1)–(2). We shall show that the multivalued operator N satisfies all the assumptions of Theorem 2.12. The proof will be given in several steps.

Step 1. $N(u,v)$ is convex for each $(u,v) \in C$.

If $(h_1,k_1), (h_2,k_2) \in N(u,v)$, then there exist $w_1, w_2 \in S_{F_{ou}}$ and $z_1, z_2 \in S_{F_{ov}}$ such that for each $t \in I$, we have

$$h_i(t) = \frac{\phi_{t_i}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-1} \frac{w_i(s)}{\Gamma(\alpha_i)} ds, \quad i = 1, 2,$$

and

$$k_i(t) = \frac{\phi_{t_i}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-2} \frac{z_i(s)}{\Gamma(\alpha_i)} ds, \quad i = 1, 2.$$

Let $0 \leq \lambda \leq 1$; then, for each $t \in I$,

$$(\lambda h_1 + (1-\lambda)h_2)(t) = \frac{\phi_{t}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-1} \frac{\lambda w_1(s) + (1-\lambda)w_2(s)}{\Gamma(\alpha_i)} ds.$$

Since $S_{F_{ou}}$ is convex (because F_1 has convex values), we have $\lambda h_1 + (1-\lambda)h_2 \in N_1(u)$. Also, for each $t \in I$, we have

$$(\lambda k_1 + (1-\lambda)k_2)(t) = \frac{\phi_{t_i}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-2} \frac{\lambda z_1(s) + (1-\lambda)z_2(s)}{\Gamma(\alpha_i)} ds.$$

Since $S_{F_{ov}}$ is convex (because F_2 has convex values), we have $\lambda k_1 + (1-\lambda)k_2 \in N_2(v)$. Hence, $\lambda(h_1,k_1) + (1-\lambda)(h_2,k_2) \in N(u,v)$.

Step 2. For each compact $M \subseteq C$, $N(M)$ is relatively compact.

Let (h_n,k_n) be any sequence in $N(M)$ with $M \subseteq C$ and M compact. To apply the Arzelà-Ascoli compactness criterion on C, we will show that (h_n,k_n) has a convergent subsequence. Since $(h_n,k_n) \in N(M)$ there exist $(u_n,v_n) \in M$, $w_n \in S_{F_{ou}}$, and $z_n \in S_{F_{ov}}$ such that

$$h_n(t) = \frac{\phi_{t_i}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-1} \frac{w_n(s)}{\Gamma(\alpha_i)} ds$$

and

$$k_n(t) = \frac{\phi_{t_i}}{\Gamma(\gamma_i)} t^{\gamma_i-1} + \int_0^t (t-s)^{\alpha_i-2} \frac{z_n(s)}{\Gamma(\alpha_i)} ds.$$

Using Theorem 2.10 and the properties of the Kuratowski measure of noncompactness, we have

$$\mu(\{h_n(t)\}) \leq \frac{2}{\Gamma(\alpha_i)} \int_0^t \mu(\{(t-s)^{\alpha_i-1}w_n(s)\}) ds \quad (6)$$

and

$$\mu(\{k_n(t)\}) \leq \frac{2}{\Gamma(\alpha_i)} \int_0^t \mu(\{(t-s)^{\alpha_i-2}z_n(s)\}) ds. \quad (7)$$

On the other hand, since M is compact, the sets $\{w_n(s) : n \geq 1\}$ and $\{z_n(s) : n \geq 1\}$ are compact. Consequently, $(\mu(\{w_n(s) : n \geq 1\}), \mu(\{w_n(s) : n \geq 1\})) = (0,0)$ for a.e. $s \in I$. Furthermore,

$$\mu(\{(t-s)^{\alpha_i-1}w_n(s)\}) = (t-s)^{\alpha_i-1} \mu(\{w_n(s) : n \geq 1\}) = 0$$

and

$$\mu(\{(t-s)^{\alpha_i-2}z_n(s)\}) = (t-s)^{\alpha_i-2} \mu(\{z_n(s) : n \geq 1\}) = 0$$

for a.e. $t, s \in I$. Now from (6) and (7) we obtain that $\{h_n(t) : n \geq 1\}$ and $\{k_n(t) : n \geq 1\}$ are relatively compact for each $t \in I$.
For each $t_1, t_2 \in I$ with $t_1 < t_2$, we have
\[
\|t_2^{-\gamma}h_n(t_2) - t_1^{-\gamma}h_n(t_1)\|
\leq \|t_2^{-\gamma}\int_0^{t_2} (t_2-s)^{\alpha_1-1}w_n(s)\frac{d s}{\Gamma(\alpha_1)} - t_1^{-\gamma}\int_0^{t_1} (t_1-s)^{\alpha_1-1}w_n(s)\frac{d s}{\Gamma(\alpha_1)}\|
\leq T^{1-\gamma}\int_{t_1}^{t_2} (t_2-s)^{\alpha_1-1}\frac{p_1^*_s}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\]
\[
+ \int_0^{t_1} |t_2^{-\gamma}(t_2-s)^{\alpha_1-1} - t_1^{-\gamma}(t_1-s)^{\alpha_1-1}|\frac{p_1(s)}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\leq \frac{p_1^*T^{1-\gamma}}{\Gamma(\alpha_1)}\int_{t_1}^{t_2} (t_2-s)^{\alpha_1-1}ds
\]
\[
+ \int_0^{t_1} |t_2^{-\gamma}(t_2-s)^{\alpha_1-1} - t_1^{-\gamma}(t_1-s)^{\alpha_1-1}|\frac{p_1(s)}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\leq \frac{p_1^*T^{1-\gamma}}{\Gamma(\alpha_1)}(t_2 - t_1)^{\alpha_1}
\]
\[
+ \int_0^{t_1} |t_2^{-\gamma}(t_2-s)^{\alpha_1-1} - t_1^{-\gamma}(t_1-s)^{\alpha_1-1}|\frac{p_1(s)}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\tag{8}
\]
Similarly,
\[
\|t_2^{-\gamma_2}k_n(t_2) - t_1^{-\gamma_2}k_n(t_1)\|
\leq \frac{p_2^*T^{1-\gamma_2}}{\Gamma(1+\alpha_2)}(t_2 - t_1)^{\alpha_2}
\]
\[
+ \frac{p_2^*}{\Gamma(\alpha_2)}\int_0^{t_1} |t_2^{-\gamma_2}(t_2-s)^{\alpha_2-1} - t_1^{-\gamma_2}(t_1-s)^{\alpha_2-1}|ds.
\tag{9}
\]
As $t_1 \to t_2$, the right-hand sides of the inequalities (8) and (9) tend to zero. This shows that $\{(h_n, k_n): n \geq 1\}$ is equicontinuous. Consequently, $\{(h_n, k_n): n \geq 1\}$ is relatively compact in C.

Step 3. The graph of N is closed.
Let $((u_n, v_n), (h_n, k_n)) \in \text{graph}(N)$, $n \geq 1$, with $\|(u_n, v_n) - (u, v)\|_C$, $\|(h_n, k_n) - (h, k)\|_C \to 0$ as $n \to \infty$. We must show that $((u, v), (h, k)) \in \text{graph}(N)$. Now $((u_n, v_n), (h_n, k_n)) \in \text{graph}(N)$ means that $(h_n, k_n) \in N(u_n, v_n)$, which in turn implies there exists $w_n \in S_{F_1\circ u_n}$ and $z_n \in S_{F_2\circ v_n}$ such that for each $t \in I$,
\[
h_n(t) = \frac{\phi_1}{\Gamma(\gamma_1)}t^{\gamma_1-1} + \int_0^t (t-s)^{\alpha_1-1}\frac{w_n(s)}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\]
and
\[
k_n(t) = \frac{\phi_2}{\Gamma(\gamma_2)}t^{\gamma_2-1} + \int_0^t (t-s)^{\alpha_2-1}\frac{z_n(s)}{\Gamma(\alpha_2)}\frac{d s}{\Gamma(\alpha_2)}.
\]
Consider the continuous linear operators $\Theta_i : L^1(I) \to C_\gamma$, $i = 1, 2$, defined by
\[
\Theta_1(w)(t) \mapsto h_n(t) = \frac{\phi_1}{\Gamma(\gamma_1)}t^{\gamma_1-1} + \int_0^t (t-s)^{\alpha_1-1}\frac{w_n(s)}{\Gamma(\alpha_1)}\frac{d s}{\Gamma(\alpha_1)}
\]
and
\[
\Theta_2(z)(t) \mapsto k_n(t) = \frac{\phi_2}{\Gamma(\gamma_2)}t^{\gamma_2-1} + \int_0^t (t-s)^{\alpha_2-1}\frac{z_n(s)}{\Gamma(\alpha_2)}\frac{d s}{\Gamma(\alpha_2)}.
\]
Clearly, $||(h_n(t), k_n(t)) - (h(t), k(t))||_C \to 0$ as $n \to \infty$. From Lemma 2.11 it follows that $\Theta_i \circ S_{F_i}, i = 1, 2$, are closed graph operators. Moreover, $h_n(t) \in \Theta_1(S_{F_1\circ u_n})$, $k_n(t) \in \Theta_2(S_{F_2\circ v_n})$.
and \(k_n(t) \in \Theta_2(S_{F_{2\cup n}})\). Since \((u_n, v_n) \to (u, v)\), Lemma 2.11 implies that

\[
h(t) = \frac{\phi_1}{\Gamma(\gamma_1)} t^{\gamma_1-1} + \int_0^t (t-s)^{\alpha_1-1} \frac{w(s)}{\Gamma(\alpha_1)} ds
\]

for some \(w \in S_{F_1\cup u}\), and

\[
k(t) = \frac{\phi_2}{\Gamma(\gamma_2)} t^{\gamma_2-1} + \int_0^t (t-s)^{\alpha_2-1} \frac{z(s)}{\Gamma(\alpha_2)} ds
\]

for some \(z \in S_{F_2\cup v}\).

Step 4. \(M = M_1 \times M_2\) is relatively compact in \(C\).

Let \(M \subseteq \overline{U}\), where \(M \subseteq \text{conv}\{0\} \cup N(M)\), and for some countable set \(C \subseteq M\), let \(\overline{M} = C\). In view of (8), it is easy to see that \(N(M)\) is equicontinuous. Therefore, \(M \subseteq \text{conv}\{0\} \cup N(M)\) implies \(M\) is equicontinuous. It remains to apply the Arzelà-Ascoli theorem to show that for each \(t \in I\) the set \(M(t)\) is relatively compact. Taking into account that \(C\) is countable and \(C \subseteq \text{conv}\{0\} \cup \{0\}\), we can find a countable set \(H = \{(h_n, k_n) : n \geq 1\} \subseteq N(M)\) such that \(C \subseteq \text{conv}\{0\} \cup H\).

Then, there exist \((u_n, v_n) \in M\) and \((w_n, z_n) \in S_{F_{1\cup u}} \times S_{F_{2\cup v}}\) with

\[
h_n(t) = \frac{\phi_1}{\Gamma(\gamma_1)} t^{\gamma_1-1} + \int_0^t (t-s)^{\alpha_1-1} w_n(s) \frac{1}{\Gamma(\alpha_1)} ds
\]

and

\[
k_n(t) = \frac{\phi_2}{\Gamma(\gamma_2)} t^{\gamma_2-1} + \int_0^t (t-s)^{\alpha_2-1} z_n(s) \frac{1}{\Gamma(\alpha_2)} ds.
\]

Taking into account Theorem 2.10 and the fact that \(M \subseteq \overline{C} \subseteq \text{conv}\{0\} \cup H\), we obtain

\[
\mu(M(t)) \leq \mu(\overline{C}(t)) \leq \mu(H(t)) = \mu(\{(h_n(t), k_n(t)) : n \geq 1\}).
\]

Using (6), we obtain

\[
\mu(t^{1-\gamma_1} M_1(t)) \leq \frac{2}{\Gamma(\alpha_1)} \int_0^t \mu(t^{1-\gamma_1}(t-s)^{\alpha_1-1} w_n(s)) ds
\]

and

\[
\mu(t^{1-\gamma_2} M_2(t)) \leq \frac{2}{\Gamma(\alpha_2)} \int_0^t \mu(t^{1-\gamma_2}(t-s)^{\alpha_2-1} z_n(s)) ds.
\]

Now, since \((w_n, z_n) \in S_{F_{1\cup u}} \times S_{F_{2\cup v}}\) and \((u_n(s), v_n(s)) \in M(s) := M_1(s) \times M_2(s)\), we have

\[
\mu(t^{1-\gamma_1} M_1(t)) \leq \frac{2}{\Gamma(\alpha_1)} \int_0^t \mu(t^{1-\gamma_1}(t-s)^{\alpha_1-1} w_n(s) : n \geq 1) ds
\]

and

\[
\mu(t^{1-\gamma_2} M_2(t)) \leq \frac{2}{\Gamma(\alpha_2)} \int_0^t \mu(t^{1-\gamma_2}(t-s)^{\alpha_2-1} z_n(s) : n \geq 1) ds.
\]

Also, since \((w_n, z_n) \in S_{F_{1\cup u}} \times S_{F_{2\cup v}}\) and \((u_n(s), v_n(s)) \in M(s)\), from \(H_3\) we have

\[
\mu(t^{1-\gamma_1}(t-s)^{\alpha_1-1} w_n(s) : n \geq 1) = t^{1-\gamma_1}(t-s)^{\alpha_1-1} p_1(s) \mu(M_1(s))
\]

and

\[
\mu(t^{1-\gamma_2}(t-s)^{\alpha_2-1} z_n(s) : n \geq 1) = t^{1-\gamma_2}(t-s)^{\alpha_2-1} p_2(s) \mu(M_2(s)).
\]
It follows that
\[\mu(M(t)) \leq \left(\frac{2p_1^1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} + \frac{2p_2^2}{\Gamma(\alpha_2)} \int_0^t (t-s)^{\alpha_2-1} \right) \mu(M(s))ds. \]

Consequently by (H4), the function Φ given by $\Phi(t) = \mu(M(t))$ satisfies $\Phi \equiv (0,0)$; that is, $\mu(M(t)) = 0$ for all $t \in I$. Now, by the Arzelà-Ascoli theorem, M is relatively compact in C.

Step 5. A priori estimate.

Let $(u,v) \in C$ be such that $(u,v) \in \lambda N(u,v)$ for some $\lambda \in (0,1)$. Then for each $t \in I$, we have
\[
\begin{align*}
 u(t) &= \frac{\lambda \phi_1}{\Gamma(\gamma_1)} t^{\gamma_1-1} + \frac{\lambda}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1-1} w(s)ds \\
 v(t) &= \frac{\lambda \phi_2}{\Gamma(\gamma_2)} t^{\gamma_2-1} + \frac{\lambda}{\Gamma(\alpha_2)} \int_0^t (t-s)^{\alpha_2-1} z(s)ds
\end{align*}
\]
for some $w \in S_{F_{1,ou}}$, and
\[
\begin{align*}
 v(t) &= \frac{\lambda \phi_2}{\Gamma(\gamma_2)} t^{\gamma_2-1} + \frac{\lambda}{\Gamma(\alpha_2)} \int_0^t (t-s)^{\alpha_2-1} z(s)ds
\end{align*}
\]
for some $z \in S_{F_{2,ov}}$. On the other hand,
\[
\begin{align*}
 t^{1-\gamma_1} \|u(t)\| &\leq \frac{\|\phi_1\|}{\Gamma(\gamma_1)} + t^{1-\gamma_1} \|w(t)\| ds \\
 &\leq \frac{\|\phi_1\|}{\Gamma(\gamma_1)} + T^{1-\gamma_1} \|w(\gamma_1)\| + \frac{\|\phi_1\|}{\Gamma(\gamma_1)} + \frac{p_1^1 T^{1-\gamma_1 + \gamma_1}}{\Gamma(1 + \alpha_1)},
\end{align*}
\]
and similarly,
\[
\begin{align*}
 t^{1-\gamma_2} \|v(t)\| &\leq \frac{\|\phi_2\|}{\Gamma(\gamma_2)} + \frac{p_2^2 T^{1-\gamma_2 + \gamma_2}}{\Gamma(1 + \alpha_2)}.
\end{align*}
\]
Thus,
\[
\begin{align*}
 \|(u,v)\| &\leq \frac{\|\phi_1\|}{\Gamma(\gamma_1)} + \frac{p_1^1 T^{1-\gamma_1 + \alpha_1}}{\Gamma(1 + \alpha_1)} + \frac{\|\phi_2\|}{\Gamma(\gamma_2)} + \frac{p_2^2 T^{1-\gamma_2 + \alpha_2}}{\Gamma(1 + \alpha_2)} := d.
\end{align*}
\]
Set
\[
U = \{(u,v) \in C : \|(u,v)\| < d + 1\}.
\]
Condition (ii) in Theorem 2.12 is satisfied by our choice of the open set U. From Steps 1–5 and Theorem 2.12, we conclude that N has at least one fixed point $(u,v) \in C$ which in turn is a solution of the system (1)–(2).

4. **Coupled system of Hilfer-Hadamard fractional differential inclusions.**

In this section, we study the existence of solutions for the system (3)–(4).

Set $C := C([1, T])$. Denote by
\[
C_{\gamma_1, in}([1, T]) = \{w(t) : (\ln t)^{1-\gamma} w(t) \in C\}
\]
the weighted space of continuous functions equipped with the norm
\[
\|w\|_{C_{\gamma_1, in}} := \sup_{t \in [1, T]} \|w(t)\|.
\]
Let $C' := C_{\gamma_1, in} \times C_{\gamma_2, in}$ be the product weighted space with the norm
\[
\|(u, v)\|_{C'} = \|u\|_{C_{\gamma_1, in}} + \|v\|_{C_{\gamma_2, in}}.
\]

We recall some definitions and properties of Hadamard fractional integration and differentiation. We refer to [23] for more detailed analysis.
Definition 4.1 ([23], Hadamard fractional integral). The Hadamard fractional integral of order \(q > 0 \) of the function \(g \in L^1([1,T]) \) is defined as
\[
(\mathcal{H}I^q_1 g)(x) = \frac{1}{\Gamma(q)} \int_1^x \left(\ln \frac{x}{s} \right)^{q-1} g(s) \frac{ds}{s},
\]
provided the integral exists.

Example 2. Let \(0 < q < 1 \). Then
\[
\mathcal{H}I^q_1 \ln t = \frac{1}{\Gamma(2 + q)}(\ln t)^{1+q}, \text{ for a.e. } t \in [0,e].
\]

Set
\[
\delta = x \frac{d}{dx}, \quad q > 0, \quad n = \lfloor q \rfloor + 1,
\]
where \(\lfloor q \rfloor \) denotes the greatest integer less than or equal to \(q \), and
\[
AC^n_\delta := \{ u : [1,T] \to E : \delta^{n-1}[u(x)] \in AC(I) \}.
\]

Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional derivative is defined in terms of the Hadamard fractional integral in the following way.

Definition 4.2 ([23], Hadamard fractional derivative). The Hadamard fractional derivative of order \(q > 0 \) of the function \(w \in AC^n_\delta \) is defined as
\[
(\mathcal{H}D^q_1 w)(x) = \delta^n (\mathcal{H}I^{n-q}_1 w)(x).
\]

In particular, if \(q \in (0,1] \), then
\[
(\mathcal{H}D^q_1 w)(x) = \delta (\mathcal{H}I^{1-q}_1 w)(x).
\]

Example 3. Let \(0 < q < 1 \). Then
\[
\mathcal{H}D^q_1 \ln t = \frac{1}{\Gamma(2 - q)}(\ln t)^{1-q}, \text{ for a.e. } t \in [0,e].
\]

It is known (see, e.g., Kilbas [22, Theorem 4.8]) that in the space \(L^1(I,E) \), the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.,
\[
(\mathcal{H}D^q_1)(\mathcal{H}I^q_1 w)(x) = w(x).
\]

From [23, Theorem 2.3], we have
\[
(\mathcal{H}I^q_1)(\mathcal{H}D^q_1 w)(x) = w(x) - \frac{(\mathcal{H}I^{1-q}_1 w)(1)}{\Gamma(q)}(\ln x)^{q-1}.
\]

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional derivative is defined in the following way.

Definition 4.3 (Caputo-Hadamard fractional derivative). The Caputo-Hadamard fractional derivative of order \(q > 0 \) of the function \(w \in AC^n_\delta \) is defined as
\[
(\mathcal{H}_c D^q_1 w)(x) = (\mathcal{H}I^{n-q}_1 \delta^q w)(x).
\]

In particular, if \(q \in (0,1] \), then
\[
(\mathcal{H}_c D^q_1 w)(x) = (\mathcal{H}I^{1-q}_1 \delta w)(x).
\]

Based on the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative (introduced for the first time in [29]) is defined in the following way.
Assume that the following conditions hold:

Theorem 4.6.

The Hilfer-Hadamard fractional derivative is defined as

\[
(H D_1^{\alpha,\beta} w)(t) = \left(H I_1^{\beta(1-\alpha)} (H D_1^\alpha w) \right)(t) = \left(H I_1^{\beta(1-\alpha)} \delta (H I_1^{\gamma-\gamma} w) \right)(t) \text{ for a.e. } t \in [1, T].
\] (10)

This new fractional derivative (10) may be viewed as interpolating the Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. Indeed for \(\beta = 0 \), this derivative reduces to the Hadamard fractional derivative, and if \(\beta = 1 \), we recover the Caputo-Hadamard fractional derivative, i.e.,

\[H D_1^{\alpha,0} = H D_1^\alpha \text{ and } H D_1^{\alpha,1} = H c D_1^\alpha. \]

From [30, Theorem 21], we conclude the following lemma.

Lemma 4.5. Let \(F : [1, T] \times \mathbb{R} \to \mathcal{P}(\mathbb{R}) \) be such that \(S_{Fou} \subset C_{\gamma,ln}([1, T]) \) for any \(u \in C_{\gamma,ln}([1, T]) \). Then the problem (3) is equivalent to the Volterra integral equation

\[u(t) = \frac{\phi_0}{\Gamma(\gamma)} (\ln t)^{\gamma-1} + (H I_1^\alpha v)(t), \]

where \(v \in S_{Fou} \).

We now give without proof an existence result for system (3)–(4).

Theorem 4.6. Assume that the following conditions hold:

(H1) The multivalued maps \(G_i : [1, T] \times E \times E \to \mathcal{P}_{cp,c}(E) \), \(i = 1, 2 \), are Carathéodory.

(H2) There exist two functions \(q_i \in L^\infty([1, T], [0, \infty)) \), \(i = 1, 2 \), such that

\[\| G_1(t, u, v) \|_P = \sup \{ \| w \|_{C_{\gamma_1,ln}} : w(t) \in G_1(t, u, v) \} \leq q_1(t) \]

and

\[\| G_2(t, u, v) \|_P = \sup \{ \| z \|_{C_{\gamma_2,ln}} : z(t) \in G_2(t, u, v) \} \leq q_2(t) \]

for a.e. \(t \in [1, T] \) and \(u, v \in E \).

(H3) For each bounded and measurable set \(B_i \subset C_{\gamma,ln} \) and for each \(t \in [1, T] \), we have

\[\mu(G_1(t, B_1(t), B_2(t))) \leq q_i(t) \mu(B_i(t)), \quad i = 1, 2. \]

(H4) The function \(\Lambda = (\Lambda_1, \Lambda_2) \equiv (0, 0) \) is the unique solution in \(C' \) of the inequalities

\[\Lambda_i(t) \leq 2q_i^* (H I_1^{\alpha_i} \Lambda_i)(t), \]

where

\[q_i^* = \text{ess sup}_{t \in [1, T]} q_i(t); \quad i = 1, 2. \]

Then the system (3)–(4) has at least one solution defined on \([1, T]\).
5. **Example.** To illustrate our results, let

\[E = l^1 = \left\{ w = (w_1, w_2, \ldots, w_n, \ldots) : \sum_{n=1}^{\infty} |w_n| < \infty \right\} \]

be the Banach space with the norm

\[\|w\|_E = \sum_{n=1}^{\infty} |w_n|. \]

Consider the coupled system of Hilfer fractional differential inclusions

\[
\begin{aligned}
\left\{ \begin{array}{l}
(H D_{0^+}^{\alpha_1} u_n)(t) \in F_n(t, u(t), v(t)), \quad t \in [0, e], \\
(H D_{0^+}^{1+\beta_1} v_n)(t) \in G_n(t, u(t), v(t)), \quad t \in [0, e], \\
(H I_{0^+}^{\gamma_1} u)(t)|_{t=0} = (1, 0, \ldots, 0, \ldots), \\
(H I_{0^+}^{\gamma_1} v)(t)|_{t=0} = (1, 0, \ldots, 0, \ldots),
\end{array} \right.
\end{aligned}
\]

where

\[
F_n(t, u(t), v(t)) = \frac{ce^{-2}}{1 + \|u(t)\|_E + \|v(t)\|_E} [u_n(t) - 1, u_n(t)], \quad t \in [0, e],
\]

and

\[
G_n(t, u(t), v(t)) = \frac{ct^2e^{-4-t}}{1 + \|u(t)\|_E + \|v(t)\|_E} [v_n(t), 1 + v_n(t)], \quad t \in [0, e],
\]

with

\[u = (u_1, u_2, \ldots, u_n, \ldots), \quad v = (v_1, v_2, \ldots, v_n, \ldots), \quad \text{and} \quad c := \frac{e^3}{8} \Gamma \left(\frac{1}{2} \right). \]

Set

\[F = (F_1, F_2, \ldots, F_n, \ldots), \quad G = (G_1, G_2, \ldots, G_n, \ldots), \]

and \(\alpha_i = \beta_i = \frac{1}{2}, \quad i = 1, 2, \) so that \(\gamma_i = \frac{3}{4}. \) We assume that \(F \) and \(G \) are closed and convex valued. For each \(u, v \in E \) and \(t \in [0, e], \) we have

\[\|F(t, u, v)\|_p \leq ce^{-2} \]

and

\[\|G(t, u, v)\|_p \leq ct^2e^{-t-4}. \]

Hence, condition (H2) is satisfied with \(p_1^* = p_2^* = ce^{-2}. \) Simple computations show that the remaining hypotheses of Theorem 3.2 are satisfied. Hence, the system (11) has at least one solution defined on \([0, e].\)

REFERENCES

[1] S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, *Math. Slovaca*, 67 (2017), 875–894.

[2] S. Abbas, M. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, *Discus. Math. Diff. Incl., Contr. Optim.*, 36 (2016), 155–179.

[3] S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear.

[4] S. Abbas, M. Benchohra and G. M. N’Guérékata, *Topics in Fractional Differential Equations*, Springer, New York, 2012.

[5] S. Abbas, M. Benchohra and G. M. N’Guérékata, *Advanced Fractional Differential and Integral Equations*, Nova Science Publishers, New York, 2015.
[6] J. P. Aubin and A. Cellina, *Differential Inclusions*, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
[7] J. P. Aubin and H. Frankowska, *Set-Valued Analysis*, Birkhäuser, Boston, 1990.
[8] J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, *Measures of Non-compactness in Metric Fixed Point Theory*, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997.
[9] J. Banas and K. Goebel, *Measures of Noncompactness in Banach Spaces*, Dekker, New York, 1980.
[10] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, *J. Math. Anal. Appl.*, 338 (2008), 1340–1350.
[11] M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, *Commun. Appl. Anal.*, 12 (2008), 419–428.
[12] M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, *Electron. J. Differential Equations*, 2012 (2012), 8 pp.
[13] K. Deimling, *Multivalued Differential Equations*, De Gruyter, Berlin-New York, 1992.
[14] K. M. Furati and M. D. Kassim, Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, *Electron. J. Differential Equations*, 235 (2013), 10 pp.
[15] K. M. Furati, M. D. Kassim and N. e.- Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, *Comput. Math. Appl.*, 64 (2012), 1616–1626.
[16] J. R. Graef, N. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, *Studia Universitatis Babeș-Bolyai Mathematica*, 62 (2017), 427–438.
[17] J. R. Graef, N. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, *Surv. Math. Appl.*, 13 (2018), 27–40.
[18] H. P. Heinz, On the behaviour of measure of noncompactness with respect of differentiation and integration of vector-valued function, *Nonlinear. Anal.*, 7 (1983), 1351–1371.
[19] R. Hilfer, *Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.
[20] Sh. Hu and N. Papageorgiou, *Handbook of Multivalued Analysis, Theory*, De Gruyter, Berlin, 2000.
[21] R. Kamocki and C. Obczński, On fractional Cauchy-type problems containing Hilfer’s derivative, *Electron. J. Qual. Theory Differ. Equ.*, 50 (2016), 1–12.
[22] A. A. Kilbas, Hadamard-type fractional calculus, *J. Korean Math. Soc.*, 38 (2001), 1191–1204.
[23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier Science B.V., Amsterdam, 2006.
[24] V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, *Eur. J. Pure Appl. Math.*, 1 (2008), 38–45.
[25] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, *Nonlinear Anal.*, 69 (2008), 2677–2682.
[26] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, *Appl. Math. Lett.*, 21 (2008), 828–834.
[27] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, *Bull. Accad. Pol. Sci., Ser. Sci. Math. Astronom. Phys.*, 13 (1965), 781–786.
[28] D. O’Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, *J. Math. Anal. Appl.*, 245 (2000), 594–612.
[29] M. D. Qassim, K. M. Furati and N.-e. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, *Abstr. Appl. Anal.*, Vol. 2012, Article ID 391062, 17 pages, 2012.
[30] M. D. Qassim and N.-e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, *Abstr. Appl. Anal.*, Vol. 2013, Article ID 605029, 12 pages, 2013.
[31] S. G. Samko, A. A. Kilbas and O. I. Marichev, *Fractional Integrals and Derivatives. Theory and Applications*, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[32] V. E. Tarasov, *Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media*, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
[34] J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859.

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

Received October 2017; revised January 2018.

E-mail address: said.abbas@univ-saida.dz, abbasmsaid@yahoo.fr
E-mail address: benchohra@univ-sba.dz
E-mail address: John-Graef@utc.edu