Review – Urothelial Cancer

Oncological Outcomes of Laparoscopic Nephroureterectomy Versus Open Radical Nephroureterectomy for Upper Tract Urothelial Carcinoma: An European Association of Urology Guidelines Systematic Review

Benoit Peyronnet a,*, Thomas Seisen b, Jose-Luis Dominguez-Escrig c, Harman Max Bruins d, Cathy Yuhong Yuan e, Thomas Lam f, Steven Maclennan g, James N’dow h, Marko Babjuk i, Eva Comperat i, Richard Zigeuner j, Richard J. Sylvester k, Maximilian Burger l, Hugh Mostafid m, Bas W.G. van Rhijn n, Paolo Gontero o, Joan Palou p, Sharokh F. Shariat q, Morgan Roupret b

*Department of Urology, CHU Rennes, Rennes, France; b Department of Urology, La Pitié-Salpêtrière Hospital, Paris, France; c Department of Urology, Fundación Instituto Valenciano de Oncología, Valencia, Spain; d Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; e Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON, Canada; f Academic Urology Unit, University of Aberdeen, Aberdeen, UK; g Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK; h Department of Urology, Hospital Motol, Second Faculty of Medicine, Charles University, Praha, Czech Republic; i Department of Pathology, Tenon Hospital, Paris, France; j Department of Urology, Medical University of Graz, Graz, Austria; k European Association of Urology Guidelines Office, Brussels, Belgium; l Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany; m Department of Urology, Royal Surrey County Hospital, Guildford, UK; n Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; o Department of Urology, University of Turin, Turin, Italy; p Department of Urology, Fundació Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain; q Department of Urology, Medical University of Vienna, Vienna, Austria

Article info

Article history:
Accepted October 10, 2017

Associate Editor:
Christian Gratze

Keywords:
Recurrence
Survival
Ureter
Ureteral neoplasms
Upper tract
Urothelial carcinoma
Laparoscopy

Abstract

Context: Most series have suggested better perioperative outcomes of laparoscopic radical nephroureterectomy (RNU) over open RNU. However, the oncological safety of laparoscopic RNU remains controversial.

Objective: To systematically review all relevant literature comparing oncological outcomes of open versus laparoscopic RNU.

Evidence acquisition: A systematic literature search using the Medline, Embase, and Cochrane databases and clinicaltrial.gov was performed in December 2014 and updated in August 2016. Randomised controlled trials (RCTs) and prospective or retrospective non-randomised comparative studies comparing the oncological outcomes of any laparoscopic RNU with those of open RNU were included. The primary outcome was cancer-specific survival. The risk of bias (RoB) was assessed using Cochrane RoB tools. A narrative synthesis of the evidence is presented.

Evidence synthesis: Overall, 42 studies were included, which accounted for 7554 patients: 4925 in the open groups and 2629 in the laparoscopic groups. Most included studies were retrospective comparative series. Only one RCT was found. RoB and confounding were high in most studies. No study compared the oncological outcomes of robotic RNU with those of open RNU. Bladder cuff excision in laparoscopic groups was performed via an open approach in most studies, with only three studies reporting laparoscopic removal of the bladder cuff. Port-site metastasis rates ranged from 0% to 2.8%. No significant difference

https://doi.org/10.1016/j.euf.2017.10.003
2405-4589/© 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
1. Introduction

Upper tract urothelial carcinomas (UTUCs) are relatively rare tumours with an incidence of 1.2 cases/100 000 inhabitants per year in Europe, which accounts for 5 – 10% of all urothelial carcinomas [1]. Radical nephroureterectomy (RNU) with bladder cuff excision is currently considered the standard of care for the curative management of high-risk UTUC [2]. First described in the early 1990s by Clayman et al [3], laparoscopic RNU has become widely popular during the past decade. Since then, various laparoscopic techniques of RNU have been described, such as the retroperitoneal route [4], hand-assisted laparoscopic RNU [5], or laparoendoscopic single-site RNU [6]. Several ways to manage the bladder cuff during laparoscopic RNU have also been proposed: through an open approach (either intravesical or extravesical excision), a laparoscopic approach (standard excision, endoGIA, Ligasure), or an endoscopic approach (transurethral resection with ureter stripping) [2]. More recently, a robot-assisted laparoscopic approach has been advocated by several authors in order to facilitate distal ureter management [7]. However, even though most series have suggested better perioperative outcomes using the laparoscopic route [8,9], its oncological safety remains controversial, as cases of port-site metastases and tumour cell implantation have been reported [10], which may be due to a higher risk of tumour dissemination and seeding when manipulating UTUC under CO₂ pneumoperitoneum [11]. Based on these considerations, there is an obvious need for evaluating the available evidence to define the optimal surgical approach for RNU. The primary objective of this systematic review (SR) was to assess the oncological outcomes of open RNU compared with those of laparoscopic RNU.

2. Evidence acquisition

2.1. Search strategy

A systematic literature search using the Medline, Embase, and Cochrane databases as well as clinicaltrial.gov was performed and updated by a research librarian in December 2014 and August 2016, respectively. The full search strategy was based on a free text protocol and is presented in the Supplementary material. Searches were limited to studies published from 1995 onwards and were conducted without language restrictions. Translation of any relevant non-English manuscripts was obtained from the European Association of Urology (EAU) Guidelines Office. Cited references from selected studies were also sought. The study protocol was registered in PROSPERO in April 2015 (CRD42015020737).

2.2. Inclusion and exclusion criteria

Studies were assessed using the PICOS approach in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines [12]: patient, intervention, comparator, outcome, and study design.

2.2.1. Types of patients included

The study population consisted of adult patients (>18 yr old) diagnosed with any grade and clinical stage (Tany, Nany, M0) UTUC treated with RNU. Populations excluded from this SR were individuals diagnosed with any clinical M+, noncurative nephroureterectomy (NU), NU performed during excision of extra–upper tract tumour with local extension to the upper tract (eg, colon, duodenum, etc.), and NU with concomitant radical cystectomy.

2.2.2. Types of interventions and comparators included

Studies were considered eligible for this review if they compared the following:

1. Laparoscopic RNU (including robotic, laparoscopic, laparoscopic hand-assisted, and laparoendoscopic single-site RNU) with laparoscopic, endoscopic, or open bladder cuff excision
2. Open RNU with open or endoscopic bladder cuff excision

Laparoscopic RNU was categorised according to distal ureter management as pure laparoscopic RNU when bladder cuff was removed through laparoscopy, combined
RNU when bladder cuff was removed through an open approach, laparoscopic RNU with endoscopic bladder cuff excision when bladder cuff was excised through an endoscopic approach, and unspecified laparoscopic RNU when no details regarding the approach for distal ureter management were provided or when several different approaches were used in the cohort.

2.2.3. Types of outcome measures included
Our primary outcome to measure oncological effectiveness was cancer-specific survival (CSS) at 1, 3, 5, and 10 yr. The secondary outcomes of interest were overall survival (OS), bladder recurrence-free survival (BRFS), recurrence-free survival (RFS), and port-site metastasis occurrence.

2.2.4. Types of study designs included
Randomised controlled trials (RCTs), as well as prospective or retrospective nonrandomised comparative studies, were included in this SR. Noncomparative studies, case reports, editorials, letters, review articles, and meeting abstracts were excluded during the review process. Studies also had to comply with the following inclusion criteria: a minimum follow-up of 1 yr to assess the primary outcome, a minimum of 10 participants in each arm, and an appropriate comparison (ie, survival analysis) with at least one of the aforementioned oncological outcomes. Finally, if two or more studies reported outcomes of overlapping series (ie, by the same surgical team), the one with the largest sample size was selected.

2.3. Study selection process
After removal of duplicates, three authors (B.P., T.S., and J.L. D.E.) independently screened the titles and abstracts of 2363 records for eligibility. The full texts of 121 potentially eligible studies were retrieved and screened independently by two authors using a standardised form. Any disagreement was resolved by consulting the senior EAU Guidelines Associate (H.M.B.). According to the above-mentioned inclusion criteria, 41 studies were deemed relevant for this SR [5,9,13–51]. A PRISMA flowchart describing the study selection process is presented in Fig. 1.

Fig. 1 - A PRISMA flowchart describing the study selection process. PRISMA = Preferred Reporting Items for Systematic reviews and Meta-Analysis.
2.4. Data extraction

Data from all selected studies were independently extracted by the same three authors who performed the study selection (T.S., B.P., and J.L.D.E.), and whom subsequently cross checked them to ensure accuracy. A standardised data extraction form was created and used to collect the following data: study design, number of patients, surgical approach (ie, laparoscopic, open, hand assisted, and robotic), surgical route (ie, transperitoneal or retroperitoneal), distal ureteral management (categorised as clipping, endoscopic, open extravesical, open intravesical, laparoscopic extravesical, or laparoscopic intravesical), pre- and postoperative clinicopathological characteristics, occurrence of port-site metastasis, and survival data, including estimated rates of CSS, OS, RFS, and BRFS at the time points available in the papers, as well as their corresponding unadjusted and adjusted hazard ratios (HRs) with 95% confidence intervals (CIs).

2.5. Assessment of risk of bias

The risk of bias (RoB) for each study was independently evaluated by three reviewers (B.P., T.S., and J.L.D.E.) during data collection and according to the principles outlined in the “Cochrane Handbook for Systematic Review of Interventions” [52]. The reviewers assessed the reports in terms of allocation, sequence generation and concealment, blinding of participants and personnel and outcome assessors, completeness of outcome data, selective outcome reporting, and other sources of bias. In addition, the main confounders for the primary outcome (CSS) were identified a priori by the EAU UTUC Guidelines Panel. The reviewers assessed if each prognostic confounder had been considered by the authors and whether it was balanced across the groups or controlled for in multivariate analysis. The risk of confounding bias was considered to be high if the confounder was not reported or if it was reported but unbalanced among the treatment groups. Conversely, the risk of confounding bias was considered low if the confounder was reported and balanced among the treatment groups, or if it was unbalanced but adjusted for statistically. A RoB summary (Fig. 2) was generated using Cochrane RevMan software v5.3 (Informatics and Knowledge Management Department, Cochrane, London, UK).

2.6. Data analysis

A narrative synthesis of included studies was carried out. Descriptive statistics were used to report baseline characteristics. Continuous variables were described using mean and standard deviation, or alternatively, median and interquartile range. Proportions were used to report categorical variables. Crude rates of the above-mentioned survival outcomes were reported, as well as corresponding unadjusted and adjusted HRs. Statistical significance was defined as \(p < 0.05 \). Studies were analysed separately according to the approach used for bladder cuff excision in the laparoscopic group (pure laparoscopic RNU, combined RNU, laparoscopic RNU with endoscopic bladder cuff excision, or unspecified laparoscopic RNU).

![Fig. 2 – The RoB and confounding assessment for all included studies. CIS = carcinoma in situ; RoB = risk of bias.](image)

3. Evidence synthesis

3.1. Characteristics of included studies

Overall, the 42 included studies enrolled 7554 patients: 4925 in the open group and 2629 in the laparoscopic...
groups. The studies and patient characteristics are summarised in Table 1. The vast majority of included studies were retrospective comparative series. Only one prospective RCT was reported [9]. The retrospective series were multicentre studies [22,23,34,41,44,49] and single-centre studies [5,13–21,24–33,35–40,42,43,45–48,50,51] in six and 34 cases, respectively. Most studies had small sample sizes (only six studies included over 100 patients in each treatment arm [34,41,44,49–51]).

3.2. RoB and quality assessment of included studies

The RoB and confounding assessment for all included studies are shown in Fig. 2. Owing to their retrospective design, most included studies carried a high RoB across most fields of the Cochrane Collaboration tool. The issue of confounding was also poorly addressed by most studies as statistical adjustment was performed in only 11 out of 41 retrospective series, through multivariate analyses and match-paired comparison in nine and two cases, respectively, and all confounders were rarely taken into account. As an example, only two studies [9,44] adjusted for the use of adjuvant chemotherapy.

3.3. Results of comparisons of interventions

3.3.1. Surgical techniques

Seven studies reported the oncological outcomes of hand-assisted laparoscopic versus open RNU [5,15,16,21,22,29,35], 33 studies compared laparoscopic with open RNU [9,13,14,17–20,23–28,30–34,36–45,47–51], and one study compared both laparoscopic and hand-assisted laparoscopic RNU with open RNU [46]. No studies compared the oncological outcomes of robotic RNU with those of open RNU. Laparoscopic RNU was performed through a transperitoneal route in 14 studies [5,9,13,15,24–26,35–37,39,41,48,50], through a retroperitoneal route in 13 studies [14,16,18–20,23,26,28,29,31,32,47,51], and through either a transperitoneal or a retroperitoneal route in four studies [37,42,43,49]. The other studies did not report the route that was used (ie, transperitoneal or retroperitoneal). Lymph node dissections were rarely performed and homogeneously distributed between open and laparoscopic groups.

3.3.2. Distal ureter management

Bladder cuff excision in laparoscopic groups was performed via an open approach in most studies (16/33, combined RNU), with only three studies reporting laparoscopic extra-vesical removal of the bladder cuff in all patients [9,36,47] (pure laparoscopic RNU) and four studies reporting laparoscopic removal of the bladder cuff in a minority of patients [19,30,32,38]. The distal ureter was managed endoscopically in four studies [13–15,30] (laparoscopic RNU with endoscopic bladder cuff excision). The approach for bladder cuff removal was not specified or heterogeneous in 15 studies (unspecified laparoscopic RNU). Only two studies reported no bladder cuff excision in some patients: it accounted for over a half of either open or laparoscopic cases in Capitanio et al’s study [34], and only 1% and 3% of laparoscopic and open procedures, respectively, in the series by Kitamura et al [46].

3.3.3. Lymph node dissection

Only 22 studies reported whether a lymph node dissection was performed or not in each group, and none detailed the templates used. Of these 22 series, five reported a 100% rate of lymph node dissection in both groups [18,25,26,30,35] and three studies reported a 0% rate of lymph node dissection in each group [9,26,28]. Three of the 14 remaining studies reported significantly lower rates of lymphadenectomy in the laparoscopic group [34,41,44], while rates of lymphadenectomy were similar between the open and laparoscopic cases in the other series. Only one study reported a significant difference regarding the number of lymph nodes removed, favouring the open over the laparoscopic approach [19].

3.3.4. Pathological findings

No statistically significant differences in positive surgical margin (PSM) rates between the open and laparoscopic groups were reported in any studies. PSM rates ranged from 0% [15,24,29,32,33] to 17.4% [27] in laparoscopic cohorts and from 0% [24,29,32,33,36] to 15% [14] in open cohorts. The reported pN+ rate was below 20% in all studies and comparable in open and laparoscopic groups. Advanced disease (pT3/pT4) accounted for over half of the cases in only two studies [35,49]. It is noteworthy that the rate of renal pelvic tumour (vs ureter) was significantly higher in the laparoscopic group in three studies [21,34,39].

3.3.5. Port-site metastasis and tumour seeding

Comparisons of oncological outcomes are summarised in Table 2. Out of 18 studies that reported on port-site metastasis, four studies reported a total of six port-site metastases [9,23,41,42]. Port-site metastasis rates ranged from 0% to 2.8% [42]. No case of peritoneal or retroperitoneal carcinomatosis was reported.

3.3.6. Combined versus open RNU

Out of 16 studies, all retrospective, assessing combined RNU versus open RNU, only one study reported significantly different oncological outcomes between the two approaches [50]. In this single-centre series, Kim et al [50] compared 271 open RNU with 100 combined RNU and found significantly poorer OS (5-yr OS: 59.1% vs 75.2%, p = 0.03) and CSS (5-yr CSS: 66.1% vs 80.2%, p = 0.01) in the laparoscopic group. On stratifying patients according to tumour stages, significant differences in OS and CSS between the two surgical approaches were observed only in patients with locally advanced disease (pT3/T4), which was confirmed in multivariate analyses (HR = 2.59, p = 0.001 and HR = 2.50, p = 0.005 for overall death and cancer-specific death, respectively). Conversely, in a large multicentre French study, Ariane et al [41] reported a trend towards better CSS in patients who underwent combined RNU in univariate (5-yr CSS: 90.7% vs 78%, p = 0.06) and multivariate analyses (HR = 0.51, 95% CI: 0.25–1.01, p = 0.06).
Study	Year	Study design	LE	Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	>pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)								
Combined laparoscopic RNU vs. open RNU																					
Kawauchi et al [16]	2002	Single-centre retrospective	3	Open	34	Transperitoneal: 18% Stripping: 21% Retropertoneal: 82% NR: 79%	Mean: 48.8	G1: 11.8%	G2: 50%	G3: 38.2%	G1: 14.7%	G2: 58.8%	G3: 26.5%	38.2%	NR	NR	NR				
						Laparoscopic hand-assisted	34	Retropertoneal	Open extravesical: 92% Endoscopic: 8%	Mean: 48.8	G1: 4.3%	G2: 65.2%	G3: 30.4%	G1: 8%	G2: 68%	G3: 24%	35.3%	NR	NR	NR	
Okegawa et al [20]	2006	Single-centre retrospective	3	Open	24	NR	NR	Mean: 29.2	G1: 4.3%	G2: 65.2%	G3: 30.4%	G1: 8%	G2: 68%	G3: 24%	35.3%	NR	NR	NR			
						Laparoscopic	25	Retroperitoneal	Open extravesical	Mean: 24.3	G1: 4.3%	G2: 65.2%	G3: 30.4%	G1: 8%	G2: 68%	G3: 24%	16%	NR	NR	NR	
Sato et al [21]	2006	Single-centre retrospective	3	Open	23	NR	NR	Mean: 30	G1: 34.6%	G2: 50%	G3: 15.4%	G1: 0%	G2: 54.3%	G3: 45.3%	39.3%	0%	0%	NR			
						Laparoscopic hand-assisted	36	NR	Open extravesical	60	G1: 21.7%	G2: 60.9%	G3: 17.4%	G1: 16.7%	G2: 66.6%	G3: 16.7%	30.4%	NR	4.3%	NR	
Roupret et al [24]	2007	Single-centre retrospective	3	Open	26	NR	NR	Mean: 78	Low grade: 26.9% High grade: 73.1%	G1: 34.6%	G2: 50%	G3: 15.4%	G1: 0%	G2: 54.3%	G3: 45.3%	39.3%	0%	0%	NR		
						Laparoscopic	20	Transperitoneal	Open extravesical	Mean: 69	Low grade: 60% High grade: 40%	G1: 21.7%	G2: 60.9%	G3: 17.4%	G1: 16.7%	G2: 66.6%	G3: 16.7%	33.4%	NR	2.8%	NR
Lee et al [25]	2007	Single-centre retrospective	3	Open	29	NR	NR	Mean: 30	G1: 34.6%	G2: 50%	G3: 15.4%	G1: 0%	G2: 54.3%	G3: 45.3%	39.3%	0%	0%	NR			
						Laparoscopic	22	Transperitoneal	Open extravesical	Mean: 13.7	G1: 4.3%	G2: 65.2%	G3: 30.4%	G1: 8%	G2: 68%	G3: 24%	33.4%	NR	2.8%	NR	
Chung et al [26]	2007	Single-centre retrospective	3	Open	41	NR	NR	Mean: 62	G1: 2.4%	G2: 56.1%	G3: 41.5%	G1: 4%	G2: 52%	G3: 44%	22%	100%	NR	NR			
						Laparoscopic	25	Retroperitoneal	Open extravesical	Mean: 32	G1: 4.3%	G2: 56.1%	G3: 41.5%	G1: 4%	G2: 52%	G3: 44%	28%	100%	NR	NR	
Kong et al [27]	2007	Single-centre retrospective	3	Open	22	NR	NR	Mean: 29	NR	NR	21.7%	NR	NR	9%	0%	NR	17.4%	NR			
Koda et al [28]	2007	Single-centre retrospective	3	Open	27	NR	NR	Mean: 46.2	G1: 11.1%	G2: 59.3%	G3: 29.6%	G1: 12.7%	G2: 41.8%	G3: 45.6%	25.9%	100%	0%	NR			
						Laparoscopic	79	Retroperitoneal	Open extravesical	Mean: 16.4	NR	NR	21.7%	NR	NR	9%	0%	NR	17.4%	NR	
Nakashima et al [29]	2007	Single-centre retrospective	3	Open	37	NR	NR	Mean: 56	G1: 35.1%	G2: 41.5%	G3: 41.5%	G1: 35.1%	G2: 41.5%	G3: 41.5%	29.7%	NR	NR	0%	NR		
						Laparoscopic hand-assisted	35	Retroperitoneal	Open extravesical	Mean: 23	NR	NR	37.1%	NR	NR	0%	NR	0%			
Study	Year	Study design	LE	Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	≥pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)								
-----------------------	------	----------------------------------	-----	---------------------	-------------------	---------------	------------------------	--------------------------	------------------------	----------------	-------------------------------	----------------	-------------------------------								
Chung et al [26]	2007	Single-centre retrospective	3	Open	36	NR	NR	59.5	G1: 2.8%	16.7%	0%	5.3%	NR								
				Laparoscopic	39	Transperitoneal	Open extravesical	48	G2: 55.6%	30.8%	0%	10.5%	NR								
Taweemonkongsap et al [31]	2008	Single-centre retrospective	3	Open	29	Retroperitoneal	Open extravesical	Mean: 26.4	Low grade: 34.5%	13.8%	70%	10.3%	NR								
				Laparoscopic	31	Retroperitoneal	Open extravesical	Mean: 27.9	Low grade: 58.1%	16.1%	35.5%	3.2%	NR								
Waldert et al [33]	2008	Single-centre retrospective	3	Open	59	Retroperitoneal	Open intravesical	Mean: 41	Low grade: 33.9%	33.9%	20.3%	10.2%	0%								
				Laparoscopic	43	NR	Open intravesical	Mean: 41	Low grade: 41.9%	41.9%	30.2%	16.3%	0%								
Chung et al [35]	2009	Single-centre retrospective matched paired comparison	3	Open	31	Retroperitoneal	Open extravesical	115	G1: 22.6%	100%	0%	0%	NR								
				Laparoscopic hand-assisted	21	Transperitoneal	Open extravesical	Mean: 72	G2: 32.2%	100%	0%	0%	NR								
Ariane et al [41]	2011	Multicentre retrospective	3	Open	459	NR	Open extravesional: 96% Stripping: 4%	27	G1: 22.6%	39.6%	52.5%	10.2%	NR								
				Laparoscopic	150	Transperitoneal	Open extravesional: 95% Stripping: 5%	NR	G2: 36.2%	36.6%	70%	4.7%	NR								
Lotrecchiano et al [42]	2012	Single-centre retrospective	3	Open	32	NR	NR	Mean: 42	High grade: 40.6%	21.9%	62.5%	6.2%	NR								
				Laparoscopic	36	Retroperitoneal: 69%	Open extravesional: 59%	Mean: 23	Low grade: 59.4%	8.3%	83.3%	5.6%	NR								
Kim et al [50]	2016	Single-centre retrospective	3	Open	271	NR	Open extravesical	57.6	Low grade: 35.1%	41.3%	79%	3.7%	4.1%								
				Laparoscopic	100	Transperitoneal	Open extravesical	38.8	Low grade: 64.9%	34%	87%	0%	3%								
Pure laparoscopic RNU vs. open RNU				Open	40	Retroperitoneal	Open extravesical	44	Low grade: 37.5%	32.5%	100%	0%	NR								
Simone et al [9]	2009	Randomized controlled trial	1	Open	40	Open extravesal	Laparoscopic extravesical	60	Low grade: 42.5%	30%	100%	0%	NR								
Study	Year	Study design	LE	Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	≥pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)								
-----------------------------	--------	-------------------	---------------	--------------------	--------------------	---------------------------------	------------------------	--------------------------	-------------------------	----------------	-------------------------------	----------------	-----------------------------								
Greco et al [36]	2009	Single-centre retrospective	3 Open	Retropitoneal	70	Open extravesical	60	G1: 24.3%	G2: 64.3%	G3: 11.4%	1.4%	NR	NR	0%							
						Laparoscopic		G1: 21.5%	G2: 67.1%	G3: 11.4%	4.2%	NR	NR	1.4%							
Fang et al [47]	2014	Single-centre retrospective	3 Open	Laparoscopic	36	NR	Mean: 30.8	NR	NR	NR	NR	NR	NR								
						Retroperitoneal	Mean: 22.4	NR	NR	NR	NR	NR	NR								
						Laparoscopic extravesical		G1: 21.5%	G2: 67.1%	G3: 11.4%	4.2%	NR	NR	1.4%							
						unnamed		G1: 24.3%	G2: 64.3%	G3: 11.4%	1.4%	NR	NR	0%							
						unnamed		G1: 21.5%	G2: 67.1%	G3: 11.4%	4.2%	NR	NR	1.4%							
Unspecified/Heterogeneous laparoscopic vs. open RNU						unnamed		G1: 24.3%	G2: 64.3%	G3: 11.4%	1.4%	NR	NR	0%							
Kim et al [17]	2005	Single-centre retrospective	3 Open	Laparoscopic	17	NR	Mean: 25.6	NR	NR	NR	20%	NR	NR								
						NR	Mean: 19	NR	NR	NR	10%	NR	NR								
Tsujihata et al [18]	2006	Single-centre retrospective	3 Open	Laparoscopic	24	NR	22.1	G1: 4.2%	G2: 45.8%	G3: 50%	16.7%	0%	0%	NR							
Hattori et al [19]	2006	Single-centre retrospective	3 Open	Laparoscopic	60	NR	35	G1: 10%	G2: 60%	G3: 30%	38.3%	12%	NR	0%							
Raman et al [5]	2006	Single-centre retrospective	3 Open	Laparoscopic	38	Retropitoneal	Mean: 51	Low grade: 63.5%	High grade: 36.5%	NR	NR	NR	NR								
						Mean: 17	60%	Low grade: 60.5%	High grade: 39.5%	NR	NR	NR	NR								
						Open extravesal: 40%	Laparoscopic extravesal: 60%	G1: 15.7%	G2: 53.5%	G3: 34.8%	30.3%	13.5%	NR	0%							
						Open extravesal: 61%	Open intravesal: 39%	G1: 10%	G2: 60%	G3: 30%	38.3%	12%	NR	0%							
						Open extravesal: 58%	Open intravesal: 53%	G1: 15.7%	G2: 53.5%	G3: 34.8%	30.3%	13.5%	NR	0%							
						Open intravesal: 21%	Endoscopic: 21%	G1: 15.7%	G2: 53.5%	G3: 34.8%	30.3%	13.5%	NR	0%							
Hsueh et al [22]	2007	Multicentre retrospective	3 Open	Laparoscopic	77	NR	Mean: 53.6	G1: 3.9%	G2: 50.6%	G3: 45.5%	22.1%	NR	NR								
						Laparoscopic hand-assisted	Mean: 37.6	G1: 1.5%	G2: 39.4%	G3: 59.1%	24.2%	NR	NR								
						unnamed		G1: 9%	G2: 52.4%	G3: 38.6%	48.2%	NR	NR								
						unnamed		G1: 6.9%	G2: 53.4%	G3: 39.7%	41.4%	NR	NR								
Manabe et al [23]	2007	Multicentre retrospective	3 Open	Laparoscopic	166	NR	Mean: 28	G1: 9%	G2: 52.4%	G3: 38.6%	48.2%	NR	NR								
						Laparoscopic	Mean: 13.6	G1: 6.9%	G2: 53.4%	G3: 39.7%	41.4%	NR	NR								
Study	Year	Study design	LE	Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	≥pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)								
------------------	---------	-------------------------------	--------	--------------------	--------------------	---------------	-----------------------	---------------------------	------------------------	----------------	--------------------------------	----------------	-------------------------------								
Hemal et al [32]	2008	Single-centre retrospective	3	Open	27	Retroperitoneal	Open extravesical	57	G1: 29.6%	G2: 48.1%	G3: 22.2%		11.1%								
											9.5%	28.6%	4.8%								
											29.6%	7.4%	0%								
Capitanio et al	2009	Multicentre retrospective	3	Open	979	NR	Open extra or intravesical: 41%	63	Low grade: 40.3%	G1: 5.7%	G2: 44.1%	G3: 50%	35.2%								
							No bladder cuff: 59%				24.2%	57%	9.6%								
											24.2%	5.9%	NR								
Aguilera et al	2009	Single-centre retrospective	3	Open	31	Transperitoneal: 43%	Open extravesical: 43%	52.7	G1: 5.7%	G2: 44.1%	G3: 50%		G1: 12%								
							Retropertioneal: 57%				24.2%	57%	9.6%								
											20%	88%	0%								
Favretto et al	2010	Single-centre retrospective	3	Open	109	Retropertioneal	Open extravesical	23	Low grade: 12%	G1: 12%	G2: 38.5%	G3: 30.4%	13%								
							Open or laparoscopex: 66%				32%	30%	13%								
							Retropertioneal: 75%				17	32%	NR								
Stewart et al	2011	Single-centre retrospective	3	Open	39	Transperitoneal	NR	177	G1: 10.2%	G2: 51.2%	G3: 38.5%		G1: 2%								
											33.6%	77%	6.8%								
											33.6%	77%	6.8%								
Walton et al	2011	Multicentre retrospective	3	Open	703	NR	Endoscopic: 13%	36	G1: 12.4%	G2: 31.2%	G3: 36.3%		G1: 15.7%								
							NR: 87%				32.8%	70%	2.9%								
											13%	32.8%	2.9%								
Hamada et al	2013	Single-centre retrospective	3	Open	50	Transperitoneal: 32%	NR	55	G1: 4%	G2: 14%	G3: 62%		41.2%								
							Retropertioneal: 68%				41.2%	6%	NR								
											46%	0%	NR								
Study	Year	Study design	LE Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	≥pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)									
---------------------	------	--------------------	------------------------	--------------------	-----------------------------------	-------------------------------	---------------------------	-------------------------	----------------	-------------------------------	----------------	-------------------------------									
Fairey et al [44]	2013	Multicentre retrospective	3 Open	403 NR	Open extravesical: 42% Open intravesical: 51% Endoscopic: 4% NR: 3%	26 Low grade: 31% High grade: 69%	NR		31%	68%	10%	11%									
					Laparoscopic: 446 NR																
Izumi et al [45]	2013	Single-centre retrospective	3 Open	19 NR	No bladder cuff: 3% No bladder cuff: 1% Endoscopic: 11% NR: 8%	60 G1: 5.3% G2: 78.9% G3: 15.8% G1: 6.5% G2: 63% G3: 30.5%	NR		36.7%	42.1%	15.8%	NR									
					Laparoscopic: 46 NR																
Kitamura et al [46]	2014	Single-centre retrospective	3 Open	34 NR	No bladder cuff: 3% No bladder cuff: 1% Endoscopic: 11% NR: 8%	60 G1: 3% G2: 41% G3: 56% G1: 3% G2: 50% G3: 47.3%	NR		47%	NR	NR	NR									
					Laparoscopic: 74 NR																
					Laparoscopic hand-assisted: 12%																
Zou et al [48]	2014	Single-centre retrospective	3 Open	101 Transperitoneal	NR	53 Low grade: 53.6% High grade: 46.5% Low grade: 57.1% High grade: 42.9%	NR		22.8%	NR	NR	2%									
					Laparoscopic: 21 Transperitoneal																
Miyazaki et al [49]	2016	Multicentre retrospective	3 Open	527 Transperitoneal: 19.8% Extraperitoneal: 80.2% Transperitoneal: 14% Extraperitoneal: 86%	NR	39 Low grade: 53.6% High grade: 46.5% Low grade: 57.1% High grade: 42.9%	NR		70.8%	63.6%	11.4%	NR									
					Laparoscopic: 222 Transperitoneal																
Shan et al [51]	2015	Single-centre retrospective	3 Open	118 NR	Open extravesical Open extravesical: 43.2 Open extravesical: 40.7% Open extravesical: 42.9% Open extravesical: 43.4% Open extravesical: 43.7%	NR		7.6%	4.2%	NR	4.2%										
					Laparoscopic: 100 Retroperitoneal																
Study	Year	Study design	LE	Surgical approaches	Number of patients	Surgical route	Bladder cuff excision	Median follow-up (months)	Pathological grade (%)	≥pT3 stage (%)	No lymph node dissection (%)	pN + stage (%)	Positive surgical margins (%)								
-----------------------------	------	------------------	-----	---------------------	--------------------	-------------------------------------	--------------------------------	-------------------------	------------------------	----------------	-------------------------------	----------------	-----------------------------								
Shalhav et al [13]	2000	Single-centre	3	Open	17 NR	NR	Mean: 43	G1: 29%	G2: 47%	G3: 24%	NR	NR	NR	NR	Laparoscopic 25 Transperitoneal Endoscopic: 96% stripping: 4% JR	Laparoscopic 42 Retroperitoneal Endoscopic Mean: 11.1 G1: 17% G2: 29% G3: 46% Unknown: 8% G1: 21% G2: 24% G3: 55%	22% NR 5% 7%				
Gill et al [14]	2000	Single-centre	3	Open	35 NR	NR	Mean: 34.4	G1: 17%	G2: 29%	G3: 46%	NR	NR	NR	NR	Laparoscopic 42 Retroperitoneal Endoscopic Mean: 11.1 G1: 17% G2: 29% G3: 46% Unknown: 8% G1: 21% G2: 24% G3: 55%	22% NR 5% 7%					
Stifelman et al [15]	2001	Single-centre	3	Open	17 Retroperitoneal	NR	Mean: 17	Low grade: 9%	High grade: 91%	High grade: 82%	NR	NR	NR	NR	Laparoscopic 11 Transperitoneal Endoscopic Mean: 13 Low grade: 9% High grade: 91% Low grade: 18% High grade: 82%	Laparoscopic 11 Transperitoneal Endoscopic Mean: 13 Low grade: 9% High grade: 91% Low grade: 18% High grade: 82%	NR NR 9%				
Muller et al [30]	2007	Single-centre	3	Open	19 Transperitoneal	16% Open extraskeletal: 74%	Mean: 24	Low grade: 26.3%	High grade: 52.6%	Low grade: 82%	0%	0%	5.3% NR	10.5% NR	Laparoscopic 19 Transperitoneal: 84% Open extraskeletal: 26%	Low grade: 26.3% High grade: 52.6% Low grade: 47.4% High grade: 42.1%	0% 0%				

LE = level of evidence; NA = Not applicable; NR = not reported; RNU = radical nephroureterectomy.
Study	Surgical approaches	Number of patients	Port-site metastasis 5-yr cancer-specific survival	p value	5-yr overall survival	p value	5-yr recurrence-free survival	p value	HR (LNU vs ONU) 95% CI	p value	Multivariable Cox regression analysis
Combined laparoscopic RNU vs open RNU											
Kawauchi et al [16]	Open Laparoscopic hand assisted	34	NA	NR	NR	NR	NR	NR	NR	49 mo: 38.2%	NR
Study	Surgical approaches	Number of patients	Port-site metastasis	5-yr cancer-specific survival	5-yr overall survival	5-yr recurrence-free survival	5-yr bladder recurrence-free survival	Multivariable Cox regression analysis			
---	---	---	---	---	---	---	---	---	---	---	---
Hattori et al [19]	Open	60	NA	78%	0.89	NR	71%	0.91	66%	0.38	NR
	Laparoscopic	89	0	81%	NR	NR	71%	0.91	51%	NR	NR
Raman et al [5]	Open	38	NA	NR	NR	NR	NR	61 mo: 34.6%	32 mo: 28.9%	NR	NR
	Laparoscopic hand assisted	52	0	NR	NR	NR	NR	NR	54 mo: 24.7%	38 mo: 20%	NR
Hsueh et al [22]	Open	77	NA	NR	0.98	NR	0.74	2 yr: 73%	2 yr: 77%	95%	5 mo: 11.1%
	Laparoscopic hand assisted	66	0	NR	NR	NR	NR	NR	54 mo: 9.5%	NR	BRFS (LNU vs ONU): 2.05–14.6
Manabe et al [23]	Open	166	NA	2 yr: 87%	0.89	2 yr: 83.6%	0.53	NR	NR	NR	28 mo: 38%
	Laparoscopic	16	1 (1.7%)	NR	85.2%	NR	88.8%	57 mo: 111%	11 mo: 4%	NR	NR
Hemal et al [32]	Open	979	NA	73.1%	0.008*	NR	76.2%	86.8%	NR	NR	NR
	Laparoscopic	66	NR	NR	NR	NR	NR	NR	NR	NR	NR
Capitanio et al [34]	Open	31	NA	NR	NR	NR	NR	NR	NR	NR	NR
	Laparoscopic	21	0	NR	NR	NR	NR	NR	NR	NR	NR
Fairey et al [44]	Open	403	NA	71%	0.32	67%	0.39	44%	NR	NR	NR
	Laparoscopic	446	NR	76%	68%	33%	0.06	NR	NR	NR	NR
Izumi et al [45]	Open	19	NA	NR	NR	NR	0.41	NR	0.17	NR	0.80
	Laparoscopic	46	NR	NR	NR	NR	NR	NR	NR	NR	NR
Kitamura et al [46]	Open	34	NA	74.2%	0.56	NR	57.2%	65.8%	0.04*	71.1%	0.002*
	Laparoscopic hand assisted	74	NR	72.9%	88.7%	NR	NR	NR	107%	98%	62%
Zou et al [48]	Open	101	NA	79.2%	0.56	NR	57.2%	65.6%	0.04*	71.1%	0.002*
	Laparoscopic	21	NR	85.7%	NR	NR	NR	NR	NR	NR	NR
Miyazaki et al [49]	Open	527	NA	3 yr: 73%	0.09	3 yr: 69.5%	0.13	3 yr: 72.4%	NR	NR	NR
	Laparoscopic	222	NR	3 yr: 76%	66%	33%	0.10	77%	0.75	NR	NR
Shan et al [51]	Open	118	NA	NR	83.8%	69%	66%	79%	NR	NR	NR
	Laparoscopic	100	NR	80.8%	66%	66%	54%	79%	0.75	NR	NR
Laparoscopic RNU with endoscopic bladder cuff excision vs open RNU											
Shalhav et al [13]	Open	17	NA	42 mo: 90%	0.56	NR	40 mo: 81%	NR	NR	NR	NR
	Laparoscopic	25	0	24 mo: 90%	NR	NR	24 mo: 90%	NR	NR	NR	NR
Gill et al [14]	Open	35	NA	34 mo: 87%	0.59	34 mo: 94%	0.59	34 mo: 77%	NR	NR	NR
	Laparoscopic	42	NR	11 mo: 97%	NR	NR	NR	NR	NR	NR	NR
Stifelman et al [15]	Open	11	NA	NR	NR	NR	NR	NR	NR	NR	NR
	Laparoscopic hand assisted	17	0	NR	NR	NR	NR	NR	17 mo: 36.4%	13 mo: 27.3%	NR
Müller et al [30]	Open	19	NA	67%	0.53	67%	0.53	2 yr: 49.5%	2 yr: 55.1%	NR	NR

CI = confidence interval; HR = hazard ratio; LNU = laparoscopic nephroureterectomy; HALNU = hand-assisted laparoscopic nephroureterectomy; ONU = open nephroureterectomy; BRFS = bladder recurrence-free survival; RFS = recurrence-free survival; OS = overall survival; CSS = cancer-specific survival; NR = not reported; NA = not applicable; NS = not statistically significant; RNU = radical nephroureterectomy.
3.3.7. Pure laparoscopic versus open RNU

The only RCT included in this SR was also one of the three studies comparing pure laparoscopic RNU with open RNU [9]. In this RCT, 80 patients were randomly assigned to laparoscopic RNU (n = 40) or open RNU (n = 40). CSS, BRFS, and metastasis-free survival (MFS) were found to be similar between the two groups when the entire cohort was considered (p = 0.2, p = 0.86, and p = 0.12, respectively). However, in the subgroups of pT3 UTUC and high-grade tumours, the authors reported better CSS and MFS in open, compared with laparoscopic, RNU (p = 0.04 and p = 0.004, respectively, for pT3; p = 0.01 and p = 0.01, respectively, for high-grade disease) [9]. Greco et al [36] retrospectively compared 70 laparoscopic RNU with 70 open RNU, and found similar CSS but poorer RFS in the open group (5-yr RFS: 73% vs 75%, p = 0.04). Finally, in a small retrospective series without statistical adjustment, Fang et al [47] reported no significant differences between laparoscopic and open RNU regarding oncological outcomes.

3.3.8. Unspecified/heterogeneous laparoscopic versus open RNU

Most of the 19 studies comparing unspecified/heterogeneous laparoscopic RNU with open RNU reported comparable oncological outcomes between both groups, notably two series with a relatively large sample size and statistical adjustment through multivariate analysis (HR = 0.88, p = 0.6 and HR = 1.48, p = 0.13 for RFS, respectively, in the studies of Favaretto et al [38] and Walton et al [40]). However, in a multicentre series, Fairey et al [44] found a trend towards an independent association between laparoscopic RNU and poorer RFS in univariate and multivariate analysis (HR = 1.24, p = 0.08). In the largest series published to date, Capitanio et al [34] reported better CSS and RFS in laparoscopic RNU in univariate analysis (p = 0.008 and p < 0.001, respectively), but this difference was attributed to a selection bias favouring the laparoscopic group (ie, lower tumour grades and stages in the laparoscopic group). On multivariate analysis, a tendency towards an adverse impact of laparoscopy on survival was observed (HR = 1.54 for CSS, HR = 1.44 for RFS, p = 0.10 in both cases). Finally, in a single-centre study including 108 patients in total, Kitamura et al [46] reported similar oncological outcomes between laparoscopic and open RNU, but significantly poorer BRFS in laparoscopic hand-assisted RNU than in open RNU (5-yr BRFS: 12.5% vs 71.1%, p = 0.002), which was confirmed in multivariate analysis (HR = 5.52, p = 0.001). Interestingly, endoscopic ureteral management was performed in most laparoscopic hand-assisted RNU (66.7%), while bladder cuff and distal ureter were removed through an open approach in laparoscopic RNU [46].

3.3.9. Laparoscopic RNU with endoscopic bladder cuff excision versus open RNU

None of the four studies comparing laparoscopic RNU with endoscopic bladder cuff excision to open RNU reported statistically significant differences between the two approaches in terms of CSS, OS, RFS, or BRFS [13–15,30]. However, it should be noted that all were small-sample, retrospective, single-centre series.

3.3.10. Subgroups of locally “advanced diseases”

Ten studies assessed the oncological efficacy of laparoscopic versus open NU in the subgroup of advanced diseases defined as pT3/pT4 and/or pN+ and/or high-grade tumours [9,22,34,35,38,40,41,44,49,50]. The results of these subgroup analyses are summarised in Table 3. Four studies reported significantly poorer oncological outcomes with laparoscopic RNU compared with open RNU in advanced diseases [9,41,44,50]. As mentioned above, in a prospective RCT including 80 patients, Simone et al [9] reported better OS and RFS in pT3 (p = 0.04 and p = 0.004, respectively) and high-grade tumours (p = 0.01 and p = 0.01, respectively) for open compared with laparoscopic RNU. In a single-centre retrospective series, Kim et al [50] observed poorer CSS and OS using the laparoscopic approach in pT3/pT4 UTUC in univariate (p = 0.007 and p = 0.005, respectively) and multivariate analyses (p = 0.005 and p = 0.001, respectively). Similarly, Ariane et al [41] reported significantly better CSS with the open approach for pT3/pT4 tumours (p = 0.05) and Fairey et al [44] reported better RFS for open RNU in pN+ tumours (HR = 1.3, p = 0.03). None of the 10 studies compared the local recurrence rates of open versus laparoscopic RNU in the subgroup of “high-risk” patients.

3.4. Discussion

Oncological efficacy of laparoscopy for the surgical management of urothelial carcinomas has raised concerns throughout the urological community for many years because of the expected higher risk of urine spillage [11]. While the perioperative benefits of laparoscopic RNU are supported by a large body of evidence [53], there is still controversy regarding its oncological safety. In a recent meta-analysis that assessed oncological outcomes of open versus laparoscopic RNU, published in 2012, Ni et al [10] included 21 studies and performed cumulative analyses. They found no significant differences between the two approaches in terms of OS, CSS, and RFS and concluded that laparoscopic RNU could offer comparable oncological efficacy to open RNU [10]. In the most recent meta-analysis, Zhang et al [54] found that laparoscopic NU could provide equivalent prognostic effects for UTUC, and could be associated with better extravesical RFS and CSS compared with open RNU. However, it should be emphasised that such a meta-analysis of retrospective data has inherent methodological flaws. Firstly, the authors pooled results from very heterogeneous series, analysing multiple surgical techniques (notably regarding distal ureter management) with different study designs (RCT or retrospective reports). Secondly, the selection bias favouring the laparoscopic group observed in most of the included studies [5,9,13–51] could not be statistically overcome by the meta-analytic approach. Conversely, in the present SR, given the low quality of available data in general, only a narrative analysis of included studies was performed. As opposed to the studies by Ni et al [10] and Zhang et al [54], in our SR some evidence emerged suggesting that laparoscopic RNU may not be as safe as open RNU, notably when the bladder cuff is
Table 3 - Subgroup analysis in “advanced diseases” (pT3/pT4 and/or high-grade and/or pN+).

Study	Surgical approaches	Number of patients	Subgroup	5-yr cancer-specific survival	p value	5-yr overall survival	p value	5-yr recurrence-free survival	p value	5-yr bladder recurrence-free survival	p value	Multivariable Cox regression analysis		
												HR (LNU vs ONU) 95% CI p value		
Hsueh et al [22]	Open Laparoscopic hand assisted	11 13	pT3	NR	0.48	NR	0.12	NR	NR	NR	NR	NR		
			G3	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Capitanio et al [34]	Open Laparoscopic	34 38	NA	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Simone et al [9]	Open Laparoscopic	40 40	High grade	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Simone et al [9]	Open Laparoscopic	40 40	pT3	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Chung et al [35]	Open Laparoscopic hand assisted	31 21	pT3N0	82.6% 94.7%	0.17	67.7% 79.6%	0.57	NR	0.19	115 mo: 32.3% 72 mo: 19%	NR	NR		
Favaretto et al [38]	Open Laparoscopic	35 17	pT3/pT4	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Walton et al [40]	Open Laparoscopic	48 2	pN+	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Walton et al [40]	Open Laparoscopic	236 23	pT3/pT4	HR: 0.77 95% CI: 0.32–1.83	0.88	HR: 0.91 95% CI: 0.32–1.83	0.88	HR: 0.91 95% CI: 0.32–1.83	0.88	HR: 0.91 95% CI: 0.32–1.83	0.88	HR: 0.91 95% CI: 0.32–1.83	0.88	HR: 0.91 95% CI: 0.32–1.83
Ariane et al [41]	Open Laparoscopic	237 55	pT3/pT4	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Fairey et al [44]	Open Laparoscopic	42 18	pT and pN+	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Fairey et al [44]	Open Laparoscopic	111 120	PT3/pT4 pN0	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Miyazaki et al [49]	Open Laparoscopic	379 167	pT3/pT4 and/or pN+	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		
Kim et al [50]	Open Laparoscopic	112 34	pT3/pT4	NR	0.88	NR	0.88	NR	NR	NR	NR	NR		

BRFS = bladder recurrence-free survival; CI = confidence interval; HR = hazard ratio; RFS = recurrence-free survival; OS = overall survival; CSS = cancer-specific survival; LNU = laparoscopic nephroureterectomy; NR = not reported; NA = not applicable; ONU = open nephroureterectomy.
excised laparoscopically [9,46] and in patients with advanced (pT3/pT4) or high-grade disease [9,50].

In recent years, several studies have suggested a critical role for distal ureter management during RNU from an oncological standpoint [55,56]. Most studies included in the present SR reported a combined technique of laparoscopic RNU (i.e., laparoscopic nephrectomy with open excision of the bladder cuff and distal ureter). Given that one out of three studies assessing pure laparoscopic (i.e., with laparoscopic excision of the bladder cuff and distal ureter) versus open RNU—which was also the only randomised trial included in this review—reported poorer oncological outcomes in subgroups of patients treated with laparoscopic RNU [9], one could assume that laparoscopic bladder cuff removal may negatively impact the oncological outcomes of laparoscopic RNU. Two suppositions could be made to explain this finding. Firstly, as the laparoscopic dissection of the lower ureter may be technically challenging, the distal ureter could be incompletely excised with part of the intramural ureter and the ureteral orifice left behind, thus increasing the risk of local recurrence [57]. Although several studies have suggested the opposite [57], this risk of incomplete resection mainly concerns the laparoscopic extravesical technique [57], which was the technique used in the three series included in this review [9,36,47]. Another explanation for the presumed adverse impact of laparoscopic bladder cuff removal could be the increased risk of entering the collecting system due to the technical difficulty of such dissection, or to an opening in the bladder because of inadequate closure. As a result, laparoscopic bladder cuff removal could favour tumour spillage and tumour cell implantation [57].

Robotic RNU has spread significantly over the past few years and accounts for about a third of all RNU performed in the USA, according to recent data [58]. Given the ease of accessing the retrotrigonal region and the additional degrees of articulation afforded by EndoWrist instruments for closing the cystotomy [7], the potential benefit of the robotic approach over the laparoscopic approach for RNU would be to facilitate the laparoscopic excision of the distal ureter and bladder cuff. A key finding of the present SR is that, despite the recent surge in robotic RNU, no data were identified comparing the oncological outcomes of robotic RNU with those of open or laparoscopic RNU. Data comparing the oncological efficacy of robotic and open RNU are, therefore, urgently needed in order to address the concerns raised by the present report regarding the oncological safety of laparoscopic bladder cuff removal.

An important finding of the present SR is that in locally advanced high-risk UTUC (pT3/pT4 and/or high grade), laparoscopic RNU may result in inferior oncological outcomes compared with open RNU. Tumour biology and immunosuppression status have been shown to be the main risk factors of local recurrence [59]. Our results suggest that the potential for seeding may also be directly related to tumour aggressiveness. Another possible assumption to explain this finding is that quality of lymph node dissection may be better when performing open versus laparoscopic RNU and that this difference might, at least partly, explain the poorer oncological outcomes with laparoscopic RNU in locally advanced disease [60]. Consequently, careful patient selection based on tumour stage and grade might be paramount to ensure satisfactory oncological outcomes of laparoscopic RNU. Nonetheless, such selection could be challenging, as most of the subgroup analyses performed in the included studies were based on tumour grade and stage from the definitive pathological specimen [9,50], and it is well established that there is a poor correlation between clinical and pathological stage [61,62] even though the correlation might be better for tumour grade [63]. Another issue related to this finding is that the above-mentioned criteria that were used to define subgroups do not use the definition of risk groups according to current EAU guidelines [2], which makes it difficult to transpose these results to daily practice.

Several shortcomings of the present work should be emphasised. Firstly, very few retrospective series (nine out of 41) performed statistical adjustment for confounders, which made their findings difficult to interpret given the selection bias favouring the laparoscopic group in most of these series. Moreover, as highlighted by their large CIs and small sample size, most studies were underpowered to detect a difference in oncological efficacy between the two approaches. Another important shortcoming of this SR is that no series comparing oncological outcomes of open and robotic RNU were found, even though the latter approach, whose main theoretical advantage is the laparoscopic removal of the bladder cuff, has become increasingly popular during the past few years [58]. Furthermore, in none of the large multicentre studies, was a description of the approach used for bladder cuff removal provided. This negatively impacted our analysis as distal ureter management appeared to be a key factor of laparoscopic RNU oncological outcomes. This also prevented an assessment of the impact of bladder cuff management on oncological outcomes in each subgroup. None of the included series accounted for surgeon and hospital volume, which may be regarded as a shortcoming, as these two parameters have been shown to impact oncological outcomes of numerous surgical procedures [64]. Finally, the planned meta-analysis was not possible because of the heterogeneity of available data.

4. Conclusions

All but one of the included studies were retrospective series, and most reported similar oncological outcomes between laparoscopic and open RNU. In view of the current evidence base, and notably the only randomised trial available, the oncological equivalence of laparoscopic and open RNU is likely in most cases, but cannot be established when the bladder cuff is excised laparoscopically as well as in patients with locally advanced high-risk UTUC (pT3/pT4 and/or high grade). Distal ureter management (open vs laparoscopic) and patient selection based on tumour stage and grade could be the key points to ensure oncological efficacy of laparoscopic RNU, but these assumptions rely mostly on poor-quality data. Data comparing the oncological efficacy
of robotic and open RNU are urgently needed, as there is a recent surge in robotic RNU, the main advantage in which lies in facilitating the laparoscopic excision of the distal ureter and bladder cuff.

Author contributions: Benoit Peyronnet had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Peyronnet, Roupret, Seisen, Bruins, Dominguez-Escrig, Babjuk.

Acquisition of data: Peyronnet, Seisen, Bruins, Dominguez-Escrig, Yuan.

Analysis and interpretation of data: Peyronnet, Seisen, Bruins, Dominguez-Escrig, Roupret.

Drafting of the manuscript: Peyronnet, Seisen, Roupret, Bruins, Dominguez-Escrig.

Critical revision of the manuscript for important intellectual content: Babjuk, Comperat, Zigeuner, Sylvester, Burger, Mostafid, van Rhijn, Gontero, Palou, Shariat.

Statistical analysis: None.

Obtaining funding: None.

Administrative, technical, or material support: N’Dow, MacLennan, Lam, Yuan.

Supervision: N’Dow, MacLennan, Lam.

Other: None.

Financial disclosures: Benoit Peyronnet certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: B. Peyronnet: company consultant for Astellas and Boston scientific; trial participation in Ipsen and Allergan. T. Lam: company consultant for Pfizer, GSK, Astellas, and Ipsen; receipt of company speaker honorarium from Pfizer, GSK, Astellas, and Ipsen. M. Babjuk: company consultant for Astellas and Ipsen; receipt of company speaker honorarium from Ferring and GSK; trial participation in Sotio. R. Zigeuner: receipt of company speaker honorarium from Pfizer, Bayer Healthcare, Roche, Novartis, Ipsen, Glaxo Smithkline, and Amgen; receipt of fellowship and travel grants from Bayer Healthcare, Pfizer, Amgen, Novartis, Glaxo Smithkline, Astellas, and Takeda; receipt of grants/research supports from Bayer Healthcare; company consultant for Pfizer. M. Burger: company consultant for Astellas, BMS, Ipsen Pharma, Janssen, Pfizer, Springer, Thieme, Cepheid, and Merck Sharp Dome; receipt of company speaker honorarium from Astellas, BMS, Ipsen Pharma, Janssen, Pfizer, Springer, Thieme, and Bayer; trial participation in Photocure SA and Ipsen. H. Mostafid: company consultant for Kyowa Hakko UK; receipt of company speaker honorarium from Prostrakan; spouse/partner of Combat Medical; trial participation in MSD. B. van Rhijn: company consultant for Astellas 2015. P. Gontero: company consultant for Andromedical; trial participation in Astellas. J. Palou: company consultant for Olympus, Allergan, IBSA, and Olympus; receipt of company speaker honorarium from Sanofi-Pasteur and General Electric; trial participation in Combat Medical and Presurg. S. Shariat: company consultant for Astellas, Olympus, Wolf, Ipsen, Cepheid, and Janssen; receipt of company speaker honorarium from Lilly, Astellas, Ipsen, Olympus, Wolff, and Janssen; trial participation in Alere Inc. trials on NMP22, Roche, MSD, and BMS; participation in a company-sponsored speaker’s bureau in BMS, MSD, Roche. Ipsen, and Olympus; other interests in BMS, Janssen, Wolff, Olympus, Astellas, and MSD; receipt of honoraria or consultation fees from Astellas, Olympus, Wolf, Ipsen, Janssen, and Roche; receipt of grants/research supports from Astellas and Sanofi; patents: 2001 Shariat S. and Slawin K.: Methods to determine prognosis after therapy for prostate cancer. U.S. Patent Application Serial Number: Docket#60/266,976. Filed May 31, 2001; 2001 Shariat S., Lerner S. and Slawin K.: Methods to determine prognosis after therapy for bladder cancer. U.S. Patent Application Serial Number: Docket#675.003US1. Filed June 1, 2001; 2002 Shariat S., Slawin K., Kattan M., and Scardino P.: Pre- and posttreatment nomograms for predicting recurrence in patients with clinically localized prostate cancer that includes the blood markers interlukin-6 soluble receptor and transforming growth; 2003 Slawin K., Kattan M., Shariat S., Stephenson A., and Scardino P.: Nomogram for predicting outcome of salvage radiotherapy for suspected local recurrence of prostate cancer after radical prostatectomy. U.S. patent application serial number: Docket#:Fi 2005 Shariat S. M. Rouprêt: company consultant for Lilly, GSK, Ipsen, Astellas, Takeda, and Sanofi Pasteur; trial participation in GSK, Pfizer, and Roche; receipt of company speaker honorarium from Roche and Zambon. J.-L. Dominguez-Escrig, T. Seisen, H.M. Bruins, J. N’Dow, E. Comperat, R. Sylvester, S. MacLennan, CY. Yuan have nothing to declare.

Funding/Support and role of the sponsor: None.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.euf.2017.10.003.

References

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.
[2] Rouprêt M, Babjuk M, Compérat E, et al. European Association of Urology Guidelines on upper urinary tract urothelial cell carcinoma: 2015 update. Eur Urol 2015;68:868–79.
[3] Clayman RV, Kavoussi LR, Figerhau RS, Chandoke PS, Albala DM. Laparoscopic nephroureterectomy: initial clinical case report. J Laparoendosc Surg 1991;1:343–9.
[4] Tan BJ, Ost MC, Lee BK. Laparoscopic nephroureterectomy with bladder-cuff resection: techniques and outcomes. J Endourol 2005;19:664–76.
[5] Raman JD, Palese MA, Ng CK, et al. Hand-assisted laparoscopic nephroureterectomy for upper urinary tract transitional cell carcinoma. JSLS 2006;10:432–8.
[6] Rais-Bahrami S, Kavoussi LR, Richstone L. Laparoscopic single site (LESS) nephroureterectomy: an overview of techniques & outcomes. Arch Esp Urol 2012;65:311–7.
[7] Zargar H, Krishnan J, Auturino R, et al. Robotic nephroureterectomy: a simplified approach requiring no patient repositioning or robot redocking. Eur Urol 2014;66:769–77.
[8] Hanna N, Sun M, Trinh QD, et al. Propensity-score-matched comparison of perioperative outcomes between open and laparoscopic nephroureterectomy: a national series. Eur Urol 2012;61:715–21.
[9] Simone G, Papalia R, Guaglianone S, et al. Laparoscopic versus open nephroureterectomy: perioperative and oncologic outcomes from a randomised prospective study. Eur Urol 2009;56:520–6.
[10] Ni S, Tao W, Chen Q, et al. Laparoscopic versus open nephroureterectomy for the treatment of upper urinary tract urothelial carcinoma: a systematic review and cumulative analysis of comparative studies. Eur Urol 2012;61:1142–53.
[11] Rouprêt M, Smyth G, Irani J, et al. Oncological risk of laparoscopic surgery in urothelial carcinomas. World J Urol 2009;27:81–8.
[12] Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
[13] Shahlaei AL, Dunn MD, Portis AJ, Elbahnasy AM, McDougall EM, Clayton RV. Laparoscopic nephroureterectomy for upper tract transitional cell cancer: the Washington University experience. J Urol 2000;163:1100–4.

[14] Gill IS, Sung GT, Hobart MG, et al. Laparoscopic radical nephroureterectomy for upper tract transitional cell carcinoma: the Cleveland Clinic experience. J Urol 2000;164:1513–22.

[15] Stifelman MD, Hyman MJ, Shichman S, Sosa RE. Hand-assisted laparoscopic nephroureterectomy versus open nephroureterectomy for the treatment of transitional-cell carcinoma of the upper urinary tract. J Endourol 2001;15:391–5.

[16] Kawachi A, Fujito A, Ukimura O, Yoneda K, Mizutani Y, Miki T. Hand assisted retroperitoneal nephroureterectomy: comparison with the open procedure. J Urol 2003;169:890–4.

[17] Kim DW, Ryu DS, Oh TH. Initial experience of retroperitoneal nephroureterectomy for upper urinary tract transitional cell carcinoma. Korean J Urol 2005;46:382–7.

[18] Tsujihata M, Nonomura N, Tsujiura A, Yoshimura K, Miyagawa Y, Okuyama A. Laparoscopic nephroureterectomy for upper tract transitional cell carcinoma: comparison of laparoscopic and open surgery. Eur Urol 2006;49:332–6.

[19] Hattori R, Yoshino Y, Gotoh M, Katoh M, Kamihira O, Ono Y. Laparoscopic nephroureterectomy for transitional cell carcinoma of the renal pelvis and ureter: Nagoya experience. Urology 2006;67:701–5.

[20] Okegawa T, Odagane A, Ide H, Horie S, Nutahara K, Higashihara E. Oncological outcome of retroperitoneoscopic nephroureterectomy for upper urinary tract transitional cell carcinoma. Int J Urol 2006;13:493–7.

[21] Sato Y, Nanbu A, Tanda H, et al. Comparison of surgical outcome and the systemic inflammatory response syndrome score between retroperitoneoscopic hand-assisted nephroureterectomy and open nephroureterectomy. Hinyokika Kiyo 2006;52:903–9.

[22] Hsueh TY, Huang YH, Chiu AW, Huan SK, Lee YH. Survival analysis in patients with upper urinary tract transitional cell carcinoma: a comparison between open and hand-assisted laparoscopic nephroureterectomy. BJU Int 2007;99:632–6.

[23] Manabe D, Saita T, Ebata S, et al. Comparative study of oncologic outcome of laparoscopic nephroureterectomy and standard nephroureterectomy for upper urinary tract transitional cell carcinoma. Urology 2007;69:457–61.

[24] Roupéret M, Hupertan V, Sanderson KM, et al. Oncologic control after open or laparoscopic nephroureterectomy for upper urinary tract transitional cell carcinoma: a single center experience. Urology 2007;69:656–61.

[25] Lee JN, Kim HT, Kwon TG. Transperitoneal laparoscopic nephroureterectomy for upper urinary tract transitional cell carcinoma: a comparison with open nephroureterectomy. Korean J Urol 2007;48:371–5.

[26] Chung SD, Huang CY, Chueh SC, et al. Intermediate follow-up of hand-assisted retroperitoneoscopic nephroureterectomy for management of upper urinary tract urothelial carcinoma: comparison with open nephroureterectomy. Urology 2007;69:1030–4.

[27] Kong GS, Bae SR, Cho SH, Sung GT. Laparoscopic nephroureterectomy in patient with upper urinary tract transitional cell carcinoma: safety and efficacy. Korean J Urol 2007;48:252–8.

[28] Koda S, Mita K, Shigeta M, Usui T. Risk factors for intravesical recurrence following urothelial carcinoma of the upper urinary tract: no relationship to the mode of surgery. Jpn J Clin Oncol 2007;37:296–301.

[29] Nakashima K, Fujiyama C, Tokuda Y, et al. Oncologic assessment of hand-assisted retroperitoneoscopic nephroureterectomy for urothelial tumors of the upper tract: comparison with conventional open nephroureterectomy. J Endourol 2007;21:583–8.

[30] Müller B, Braud G, Tillou X, Karam G, Bouchot O, Rigaud J. Comparison of the oncological results of laparoscopic and open surgical total nephroureterectomy. Prog Urol 2007;17:1328–32.

[31] Taweeuponkongsap T, Nualyong C, Amornresvutkit T, et al. Outcomes of surgical treatment for upper urinary tract transitional cell carcinoma: comparison of retroperitoneoscopic and open nephroureterectomy. World J Surg Oncol 2008;6:3.

[32] Hemal AK, Kumar A, Gupta NP, Seth A. Retroperitoneal nephroureterectomy with excision of cuff of the bladder for upper urinary tract transitional cell carcinoma: comparison of laparoscopic and open surgery with long-term follow-up. World J Urol 2008;26:381–6.

[33] Waldert M, Remzi M, Klingler HC, Mueller L, Marberger M. The oncological results of laparoscopic nephroureterectomy for upper urinary tract transitional cell carcinoma are equal to those of open nephroureterectomy. BJU Int 2009;103:66–70.

[34] Capitaniou U, Shariat SF, Isbarn H, et al. Comparison of oncologic outcomes for open and laparoscopic nephroureterectomy: a multi-institutional analysis of 1249 cases. Eur Urol 2009;56:1–9.

[35] Chung SD, Chen SC, Wang SM, et al. Long-term outcome of hand-assisted laparoscopic nephroureterectomy for pathologic T3 upper urinary tract urothelial carcinoma. J Endourol 2009;23:75–80.

[36] Greco F, Wagner S, Hoda RM, Hamza A, Fornara P. Laparoscopic vs. open radical nephroureterectomy for upper urinary tract urothelial cancer: oncological outcomes and 5-year follow-up. BJU Int 2009;104:1274–8.

[37] Aguilera A, Pérez-Utrilla M, Giron M, Cansino R, Gil A, de la Peña J. Open and laparoscopic nephroureterectomy for urothelial tumors of the upper urinary tract: initial experience. Actas Urol Esp 2009;33:1078–82.

[38] Favaretto RL, Shariat SF, Chade DC, et al. Comparison between laparoscopic and open radical nephroureterectomy in a contemporary group of patients: are recurrence and disease-specific survival associated with surgical technique? Eur Urol 2010;58:645–51.

[39] Stewart GD, Humphries KJ, Cutress ML, Riddick AC, McNeill SA, Tolley DA. Long-term comparative outcomes of open versus laparoscopic nephroureterectomy for upper urinary tract urothelial-cell carcinoma after a median follow-up of 13 years*. J Endourol 2011;25:1329–35.

[40] Walton TJ, Novara G, Matsumoto K, et al. Oncologic outcomes after laparoscopic and open radical nephroureterectomy: results from an international cohort. BJU Int 2011;108:406–12.

[41] Ariane MM, Colin P, Ouzzane A, et al. Assessment of oncologic control obtained after open versus laparoscopic nephroureterectomy for upper urinary tract urothelial carcinomas (UUT-UCs): results from a large French multicenter collaborative study. Ann Surg Oncol 2012;19:301–8.

[42] Lotrecchiano G, Delle Cave A, Tripodi V, et al. Oncological outcomes of laparoscopic and open treatment (nephroureterectomy) for urothelial tumors of the upper urinary tract. Urologia 2012;79 (Suppl (19)):82–5.

[43] Hamada S, Ito K, Takahashi M, et al. Evaluation of clinical results in patients undergoing laparoscopic nephroureterectomy. Hinyokika Kiyo 2013;59:217–23.

[44] Fairey AS, Kassouf W, Estey E, et al. Comparison of oncological outcomes for open and laparoscopic radical nephroureterectomy: results from the Canadian Upper Tract Collaboration. BJU Int 2013;112:791–7.

[45] Izumi K, Itai S, Takahashi Y, et al. Factors predictive of oncological outcome after nephroureterectomy: comparison between laparoscopic and open procedures. Anticancer Res 2013;33:5501–6.

[46] Kitamura H, Maeda T, Tanaka T, et al. Comparison of laparoscopic, hand-assisted, and open surgical nephroureterectomy. JSLS 2014;18:288–93.
[47] Fang Z, Li L, Wang X, Chen W, et al. Total retroperitoneal laparoscopic nephroureterectomy with bladder-cuff resection for upper urinary tract transitional cell carcinoma. J Invest Surg 2014;27:354–9.

[48] Zou L, Zhang L, Zhang H, Jiang H, Ding Q. Comparison of postoperative intravesical recurrence and oncological outcomes after open versus laparoscopic nephroureterectomy for upper urinary tract urothelial carcinoma. World J Urol 2014;32:565–70.

[49] Miyazaki J, Nishiyama H, Fujimoto H, et al. Laparoscopic versus open nephroureterectomy in muscle-invasive upper tract urothelial carcinoma: subanalysis of the multi-institutional national database of the Japanese Urological Association. J Endourol 2016;30:520–5.

[50] Kim HS, Ku JH, Jeong CW, Kwak C, Kim HH. Laparoscopic radical nephroureterectomy is associated with worse survival outcomes than open radical nephroureterectomy in patients with locally advanced upper tract urothelial carcinoma. World J Urol 2016;34:859–69.

[51] Shan H, Wang X, Sun Q, et al. Oncologic results of retroperitoneoscopic versus open surgery for T2 upper tract urothelial carcinoma. Clin Genitourin Cancer 2015;13:568–73.

[52] Cochrane Handbook for Systematic Reviews of Interventions. http://handbook.cochrane.org.

[53] Rai BP, Shelley M, Coles B, Somani B, Nabi G. Surgical management for upper urinary tract transitional cell carcinoma (UUT-TCC): a systematic review. BJU Int 2012;110:1426–35.

[54] Zhang S, Luo Y, Wang C, Fu SJ, Yang L. Long-term oncologic outcomes of laparoscopic nephroureterectomy versus open nephroureterectomy for upper tract urothelial carcinoma: a systematic review and meta-analysis. Peer J 2016;4:e2063.

[55] Krabbe LM, Westerman ME, Bagrodia A, et al. Surgical management of the distal ureter during radical nephroureterectomy is an independent predictor of oncological outcomes: results of a current series and a review of the literature. Urol Oncol 2014;32(54):e19–26.

[56] Xylinas E, Rink M, Cha EK, et al. Impact of distal ureter management on oncologic outcomes following radical nephroureterectomy for upper tract urothelial carcinoma. Eur Urol 2014;65:210–7.

[57] Seisen T, Granger B, Colin P, et al. A systematic review and meta-analysis of clinicopathologic factors linked to intravesical recurrence after radical nephroureterectomy to treat upper tract urothelial carcinoma. Eur Urol 2015;67:1122–33.

[58] Tinay I, Gelpi-Hammerschmidt F, Leow JJ, et al. Trends in utilisation, perioperative outcomes, and costs of nephroureterectomies in the management of upper tract urothelial carcinoma: a 10-year population-based analysis. BJU Int 2016;117:954–60.

[59] Rassweiler J, Tsivian A, Ravi Kumbar AV, et al. Oncological safety of laparoscopic surgery for urological malignancy: experience with more than 1,000 operations. J Urol 2003;169:2072–5.

[60] Seisen T, Shariat SF, Cussenet O, et al. Contemporary role of lymph node dissection at the time of radical nephroureterectomy for upper tract urothelial carcinoma. World J Urol 2017;35:535–48.

[61] Nison L, Bozzini G, Rouprêt M, Traxer O, Colin P. Clinical, ureteroscopic and photodynamic diagnosis of urothelial carcinomas of the upper tract: state-of-the-art review for the yearly scientific report of the French National Association of Urology. Prog Urol 2014;24:977–86.

[62] Soria F, Shariat SF, Lerner SP, et al. Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). World J Urol 2017;35:379–87.

[63] Yamany T, van Batavia J, Ahn J, Shapiro E, Gupta M. Ureterorenoscopy for upper tract urothelial carcinoma: how often are we missing lesions? Urology 2015;85:311–5.

[64] Tilki D, Huland H, Graeven M. Centralization and quality control of elective surgery improve outcome: aren't we ethically obliged to force the pace of creating high-volume centers? Eur Urol 2015;68:30–1.