Supplementary Materials

Fruit quality characterization of new sweet cherry cultivars as a good source of bioactive phenolic compounds with antioxidant and neuroprotective potential

Fabiana Antognoni¹, Giulia Potente¹, Roberto Mandrioli¹,*, Cristina Angeloni², Michela Freschi¹, Marco Malaguti¹, Silvana Hrelia¹, Stefano Lugli³,⁴, Fabio Gennari³, Enrico Muzzi³, Stefano Tartarini³

¹ Department for Life Quality Studies, Alma Mater Studiorum – University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; fabiana.antognoni@unibo.it; giulia.potente@unibo.it; roberto.mandrioli@unibo.it; michela.freschi2@unibo.it; marco.malaguti@unibo.it; silvana.hrelia@unibo.it
² School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy; cristina.angeloni@unicam.it
³ Department of Agricultural and Food Science, Alma Mater Studiorum – University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; fabio.gennari3@unibo.it; enrico.muzzi@unibo.it; stefano.tartarini@unibo.it
⁴ Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, Via Giuseppe Campi 213/D, 41125 Modena, Italy; stefano.lugli61@unimore.it
* Correspondence: roberto.mandrioli@unibo.it; Tel.: +39-0541-434624
Figure S1. (A) Fruit weight; (B) fruit diameter; and (C) kernel weight of the different cultivars.
Figure S2. Color parameters of the different cultivars: (A) a^*; (B) b^*; (C) L^*; (D) chroma; (E) hue angle; (F) DA index.
Figure S3. Other chemical-physical properties of the different cultivars: (A) total soluble solids; (B) titratable acidity; and (C) pH.
Figure S4. Results of the GC analysis of organic acids in the different cultivars: (A) malic acid; (B) quinic acid; (C) succinic acid; and (D) total acids by GC.
Figure S5. Results of the GC analysis of sugars in the different cultivars: (A) glucose; (B) fructose; (C) sorbitol; and (D) total sugars by GC.
Figure S6. (A) Total Anthocyanin Index (TAI); and (B) Total Phenolic Acid Index (TPAI) in sweet cherry cultivars. Data are the mean ± SE of four biological replicates. Different letters indicate statistical significance (p < 0.05).
Figure S7. Effect of different concentrations of cherry extracts on SH-SY5Y cell viability as measured by the MTT assay. Each bar represents the mean ± SEM of at least three independent experiments. Data were analyzed by one-way ANOVA followed by Dunnett’s test.
Table S1. Correlations (Pearson’s and p) among fruit quality traits in cherry cultivars.

Fruit trait	Fruit size	Fruit weight	Cherry DA Index	Durofel	Firmness	Soluble solids (Brix)	Fruit pH	Titratable acidity	L*	a*
Fruit size	1.0000									
	p=---									
Fruit weight	0.9652	1.0000								
	p=0.000	p=---								
Cherry DA Index	0.2122	0.1595	1.0000							
	p=0.189	p=0.325	p=---							
Durofel	0.6744	0.6507	0.3117	1.0000						
	p=0.000	p=0.000	p=0.050	p=---						
Firmness	0.1093	0.0147	0.1953	0.6207	1.0000					
	p=0.502	p=0.928	p=0.227	p=---	p=---					
Soluble solids (Brix)	0.4811	0.3870	0.7396	0.5632	0.4487	1.0000				
	p=0.002	p=0.014	p=0.000	p=0.000	p=0.004	p=---				
Fruit pH	-0.5112	-0.5839	0.2255	-0.4646	-0.0749	0.0712	1.0000			
	p=0.001	p=0.000	p=0.162	p=0.003	p=0.000	p=0.000	p=0.000	p=---		
Fruit acidity	0.7007	0.6595	0.2389	0.5460	-0.0466	0.5273	-0.3779	1.0000		
	p=0.000	p=0.000	p=0.138	p=0.000	p=0.000	p=0.000	p=0.000	p=0.016	p=---	
L*	-0.1946	-0.0884	-0.8111	-0.1441	-0.1626	-0.6909	-0.3937	-0.2527	1.0000	
	p=0.229	p=0.588	p=0.000	p=0.375	p=0.316	p=0.000	p=0.000	p=0.012	p=---	p=1.16
a*	-0.1897	-0.1057	-0.9022	-0.1605	-0.1240	-0.7655	-0.2964	-0.2736	0.9305	1.0000
	p=0.241	p=0.516	p=0.000	p=0.322	p=0.446	p=0.000	p=0.000	p=0.088	p=0.000	p=0.000
b*	-0.4507	-0.3788	-0.8226	-0.2989	-0.0711	-0.7318	0.0095	-0.4756	0.8599	0.9227
	p=0.004	p=0.016	p=0.000	p=0.061	p=0.663	p=0.000	p=0.954	p=0.002	p=0.000	p=0.000
Chroma	-0.2076	-0.1239	-0.9012	-0.1706	-0.1223	-0.7671	-0.2789	-0.2871	0.9308	0.9997
	p=0.199	p=0.446	p=0.293	p=0.452	p=0.081	p=0.072	p=0.000	p=0.000	p=0.000	p=0.000
Hue angle	-0.7371	-0.7272	-0.3429	-0.5338	0.0320	-0.3644	0.6082	-0.7271	0.3191	0.3505
	p=0.000	p=0.000	p=0.030	p=0.000	p=0.844	p=0.021	p=0.000	p=0.000	p=0.045	p=0.000
Kernel weight	0.7764	0.7958	0.3168	0.6527	0.0534	0.4480	-0.4913	0.5312	-0.0221	-1.1408
	p=0.000	p=0.000	p=0.046	p=0.000	p=0.743	p=0.004	p=0.001	p=0.000	p=0.892	p=0.390
Table S2. Correlation (Pearson’s and p) among fruit pH, fruit acidity, succinic acid, malic acid, quinic acid and total acid content in cherry cultivars.

Trait	Fruit pH	Fruit acidity	Succinic acid	Malic acid	Quinic acid	Total acids by GC
Fruit pH	1.0000					
Fruit acidity	-0.3779	1.0000				
Succinic acid	0.2919	0.0358	1.0000			
Malic acid	-0.3835	0.8643	0.1233	1.0000		
Quinic acid	0.0817	0.4494	0.5321	0.6455	1.0000	
Total acids by GC	-0.3510	0.8540	0.2020	0.9967	0.6886	
Table S3. Correlation (Pearson’s and p) among fructose, glucose, sorbitol, other sugars, total sugars, and soluble solids (Brix) in cherry cultivars.

Trait	Fructose	Glucose	Sorbitol	Other sugars	Total sugars	Soluble solids (Brix)
Fructose	1.0000					
Glucose		0.9769				
Sorbitol			0.6804			
Other sugars				0.5826		
Total sugars					0.9763	
Soluble solids (Brix)					0.4106	

Values are shown as Pearson’s correlation coefficient and p-value.
Table S4. Correlation (Pearson’s and p) among anthocyanin levels, AA, and color parameters in cherry cultivars.

Trait	Cyanidin Glucoside	Cyanidin Rutinoside	Peonidin Glucoside	Peonidin Rutinoside	TAI	ORAC	L*	a*	b*	Chroma	Hue angle
Cyanidin Glucoside	1.0000										
p=---											
Cyanidin Rutinoside	0.0551	1.0000									
p=0.736	p=---										
Peonidin Glucoside	0.9390	0.0341	1.0000								
p=0.000	p=0.835	p=---									
Peonidin Rutinoside	-0.3839	0.5323	-0.3525	1.0000							
p=0.014	p=0.000	p=0.026	p=---								
TAI	0.3295	0.9595	0.2942	0.4336	1.0000						
p=0.039	p=0.000	p=0.065	p=0.005	p=---							
ORAC	0.5033	0.4603	0.5313	0.0382	0.5738	1.0000					
p=0.001	p=0.003	p=0.000	p=0.815	p=0.000	p=---						
L*	-0.1749	-0.5046	-0.1216	-0.3456	-0.5344	-0.1978	1.0000				
p=0.280	p=0.001	p=0.455	p=0.029	p=0.000	p=0.221	p=---					
a*	-0.2357	-0.4133	-0.1936	-0.3818	-0.4727	-0.1443	0.9305	1.0000			
p=0.143	p=0.000	p=0.231	p=0.015	p=0.002	p=0.375	p=0.001	p=---				
b*	0.0447	-0.2732	0.0725	-0.3857	-0.2603	0.0943	0.8599	0.9227	1.0000		
p=0.784	p=0.088	p=0.657	p=0.014	p=0.105	p=0.563	p=0.000	p=0.000	p=---			
Chroma	-0.2183	-0.4071	-0.1769	-0.3839	-0.4620	-0.1294	0.9308	0.9997	0.9318	1.0000	
p=0.176	p=0.009	p=0.275	p=0.014	p=0.003	p=0.426	p=0.000	p=0.000	p=0.000	p=---		
Hue angle	0.5989	0.0131	0.5957	-0.3054	0.1742	0.4627	0.3191	0.3505	0.6678	0.3719	1.0000
p=0.000	p=0.936	p=0.000	p=0.055	p=0.282	p=0.003	p=0.045	p=0.027	p=0.000	p=0.018	p=---	