A rare case of ovarian adenomyoma mimicking primary invasive ovarian cancer with a contralateral serous borderline ovarian tumor: A case report and review of the literature

Viola Liberale, Alessandra Surace, Lorenzo Daniele, Luca Liban Mariani

1. Introduction

An extraterine adenomyoma is a circumscribed, nodular aggregate of smooth muscle, endometrial glands and endometrial stroma originating outside the uterus. This rare type of benign tumor has been described in pararectal spaces, ovaries, broad ligament, peritoneum, cornus medullaris, bowel and liver [1, 2]. The ultrasound appearance is typically that of malignant ovarian tumors due to the prevalent solid component and atypical vascularization. Herein, we describe a clinical case of an ovarian adenomyoma in a symptomatic woman without a previous history of pelvic endometriosis and we provided a review of the inherent literature.

2. Case

A 40-year-old woman para 0000 was referred to our Institution for a pelvic pain irradiated to the left flank. Her medical history was unremarkable and she did not assume regular medications. She did not report any general surgical procedure except for a cesarean section in 2015 for breech presentation. Her family history for gynecological malignancies was negative. At admission, she denied dyspepsia, bowel or urinary habits changes and she had regular menses. The pelvic pain onset was intermittent and persistent over the previous three weeks.

Vital parameters were regular and the patient was afebrile. Clinical examination revealed a left iliac firm and painful mass with tenderness exacerbated by bimanual mobilization. On palpation the uterus and right adnexa appeared physiological and no blood nor atypical vaginal discharge was recorded. Blood tests were all in normal ranges. Alpha-fetoprotein, carcinoembryonic antigen, CA-19.9, CA-15.3, were all negative. Serum cancer antigen-125 was elevated, reaching 680.8 UI/ml.

Transvaginal scan was performed by using a 5–7 MHz transvaginal transducers (Affiniti 70 - Philips). IOTA (International Ovarian Tumor Analysis) terms and definitions were adopted to describe the ovarian lesion. The ultrasound (US) examination confirmed the presence of an irregular dishomogeneous solid mass of $63 \times 62 \times 60$ mm, arising from the left ovary, with two hypoechoic cysts and regular margins (Figure 1).

The operator attributed a color score of 4 (highly vascularized) due to the presence of a single dominant vessel crossing the central part of the mass with multiple branches distributing to the periphery and surrounding the cystic areas (Figure 2, video 1).
A positive sliding sign was present between the uterus and the pelvic sidewall. Furthermore, the right adnexa appeared to have an increased volume (55 × 31 mm) with an inner hemorrhagic area and an adjacent unilocular cystic lesion with irregular borders, multiple papillary structures and color score 3 (Figures 3 and 4, video 2); the bigger papillary projection measured 11 × 11 mm. The ultrasound aspect was presumed suggestive for at least a serous borderline ovarian tumor (sBOT). The uterus had an irregular myometrial-endometrial junction with hyper-echoic areas dispersed in the myometrium, a mild and diffuse ultrasound beam absorption, overall suggesting the presence of adenomyosis. No abnormalities of the bladder, ureters in the pelvic tract, or kidneys were detected. No free fluid was detected in the Douglas pouch. The overall features of the left ovarian lesion, were highly suspicious for an invasive epithelial ovarian cancer. This result was also supported by ADNEX model analysis [3] retrieving a risk of ovarian cancer of 90.1% with a risk of II - IV stage of 73.3% for the left ovary mass (Figure 5).

An overall staging was completed with thorax and a whole abdominal computed tomography (CT), which confirmed the finding of an inhomogeneous adnexal solid-cystic left mass with an irregular contour, high contrast enhancement and a smaller contralateral solid-cystic lesion. No additional lesions were reported in the remaining abdomen nor in the thorax.

Upon gross examination, the left ovary lesion was greyish, lobulated, with a smooth surface, an irregular shape and had solid-elastic consistency. On the cut section, the mass showed a prevalent solid component.
with gray cystic areas filled with brown-chocolate fluid. Microscopy revealed the presence of two endometriotic cysts surrounded by a variable thickness of smooth muscle layers lined with endometrial glands and stroma without nuclear atypia resembling normal uterine myometrium and endometrium. These findings were consistent with uterus-like extrauterine adenomyoma associated with ovarian endometriomas (Figures 6, 7, 8 and 9). In the same ovary a cystic-hemorrhagic corpus luteum was also found. On the cut section, right ovary mass showed a prevalent cystic component filled with clear fluid and projecting papillary structures. The diagnosis of right atypical proliferative serous tumor (according to the last WHO classification of ovarian neoplasm) was established. [5] All other specimens were negative for premalignant or malignant cells. The patient was discharged from hospital 4 days after surgery in good condition. Informed consent for scientific publication was obtained from the patient.

3. Discussion

An extrauterine adenomyoma is a rare type of benign tumor, mainly located in ovaries. Since it was first described by Cozzutto et al. in 1981 [6] subsequent cases were reported with various names as “uterus-like mass”, “extrauterine adenomyoma” and “endomyometriosis”. The pathogenesis behind extrauterine proliferation of adenomyomas is not yet well understood.

Figure 5. ADNEX model of left ovary mass.

Figure 6. Adenomyoma with uterine-like features. Endometrial cyst cavity with blood inside is lined by typical endometrial glandular epithelium and stroma surrounded by hypertrophied smooth muscle resembling that of the myometrium.

Figure 7. Microscopic analysis revealing the interface between hyperplastic smooth muscle layer and epithelial capsule of endometriotic cyst. The multiple vessels interspersed in the muscular layer account for high vascularization observed on ultrasound examination.

Figure 8. The thickened muscular layer is composed of normal, organized myometrial-type smooth muscle. The differential diagnosis is between the typical endometriomas which may also show some degree of smooth muscle metaplasia and extrauterine leiomyoma where the muscular layer is predominant with only few endometrial-type glands and stroma inside.

Cozzutto in his paper, proposed the theory in which adenomyomas could originate after a process of metaplastic transformation of endometriotic cells into smooth muscle, but this theory could not explain whole cases published later. Four other theories, from Rosai, Redman, Batt and Belmarz, have been proposed for explaining the pathophysiology of extrauterine adenomyomas and are described below.
Rosai [7] suggested the theory of defective müllerian duct fusion. This theory explains cases of extrauterine adenomyoma accompanying congenital urogenital abnormalities like renal agenesis and double excretory system associated with anomalies of the genital tract. Abnormalities of the uterus, such as rudimentary horn or uterine duplications, could lead, after a process of detachment, to an implant of a uterus-like mass in the abdominal cavity [1, 25, 52]. Since some extrauterine adenomyomas responded to hormonal treatment, in 2005 Redman et al. [25, 32, 33] suggested the theory of sub-coelomic mesenchymal metaplasia according to which multipotent cells, contained below the mesothelial layer of the peritoneum, could differentiate and grow under estrogen impulse, leading to the formation of a supernumerary müllerian uterus-like structure.

Batt et al. [8, 9] proposed the theory of mullerianosis which states that a heterotrophic organoid structure of embryonic origin composed of müllerian cell rests may get incorporated into normal organs at the time of organogenesis. The müllerianosis’ theory was particularly suitable for providing an explanation for extrauterine lesions that occurred in unusual sites outside the pelvic and lower abdominal cavities. Newsworthy Belmaz et al. [54] in 2019, describing a patient with leiomyomatosis peritonealis disseminata and extrauterine adenomyomas, shed light on the possibility of a similar pathogenetic theory. Both of these pathologies could arise by deposits of iatrogenic dropped cells within the abdomen and pelvis during hysterectomy or myomectomy.

Most patients with ovarian adenomyoma had a presumptive ultrasound diagnosis of ovarian endometrioma. Moreover, most ovarian adenomyomas arise in the left ovary according to our case report. Several Authors [10, 11, 12] observed higher frequency and/or more severe pelvic endometriotic lesions on the left pelvic side due to the presence of sigma causing an anatomical distortion for the refluxing menstruation. The back-flow hypothesis may therefore, be suitably applied to ovarian adenomyoma in patients with a concomitant endometriotic lesions reinforcing Cozzutto’s theory [6]. Guerriero et al. defined typical ultrasound features of ovarian endometriomas as unilocular, ground-glass cyst, with or scarce vascularity (color score 1 and 2, respectively) [13]. More recently Van Holsbeke [14] revised the previous definition reporting that most endometriomas are premenopausal, 1-4 loculi, ground glass cysts with or without papillary projections, not vasculated. It is noteworthy that ovarian endometriomas may change their ultrasound appearance across different ages. Indeed as age increases, multiocular cysts and cysts with papillations and other solid components become more common, while the typical ground glass echogenicity of cyst fluid and tender mass on an ultrasound scan become less common [15]. These morphological changes are typically found during the fourth and fifth decades. This observation accounts for the confusion with other benign ovarian lesions or with ovarian malignancy [16]. In our case the prevalent solid component and the high and atypical vascularity (single dominant vessel with multiple branching) oriented towards a malignant lesion. Additional misleading factors were no history of pelvic endometriosis nor infertility. Moreover, ultrasound examination did not find any sign indicative or suspicious for endometriosis (i.e. uterine adenomyosis, kissing ovaries, ground glass ovarian cyst, pelvic adhesions with negative sliding signs) [17].

Notwithstanding the patient complained of pelvic pain which is a symptom often associated with endometriosis and a parameter introduced in LR1 (Logistic Regression) model of IOTA group to identify benign ovarian masses [18, 19]. The suspicious ultrasound features appear to stem from the microscopical analysis of ovarian adenomyoma as opposed to endometriomas. Indeed, several Authors depicted primary ovarian adenomyoma as a mass with central cavities lined by endometrial-type glands and stroma surrounded by well-formed and thick smooth muscles layers [20, 21]. In the present case, the final aspect of the left ovary mass was even more misleading due to the concomitant presence of endometriomas and a suspicious lesion contralaterally.

In 2018, a review of literature of extraterine adenomyoma was published by Paul [1] and our analysis supplements Paul’s review with the last published literature (Table 1). To the best of our knowledge only 42 cases of primary ovarian adenomyoma, including our case report, were published.

Analyzing the past medical history reported, we could classify each case report basing on pathogenesis: Mullerianosis’ theory was respected in 52% of cases (22/42), Belmaz’s theory (previous gynecological surgery) in 33% of cases (14/42), Cozzuto’s theory (coexistence of endometriosis) in 19% of cases (8/42), subcoelomic mesenchymal metaplasia’s theory (pelvic treatment response) in 9.5% of cases (4/42) and Rosai’s theory (genito-urinary anomalies association) in 2.4% of cases (1/42).

In nearly one-fifth of cases (8/42), no theory fits with the past medical history and the clinical presentation of each case reported. Due to the lack of data on this rare pathology, no theory is able to globally explain the pathogenesis of extra-uterine adenomyoma so far and more cases collection is needed.

Analyzing the characteristic of extrauterine adenomyoma, abdominopelvic pain is the most common clinical sign at presentation. Endometriosis was reported in the medical history of eleven out of forty-two patients (26%), substantially according to the previous literature review [22] in which endometriotic cyst were identified in the residual ovarian parenchyma of overall 21% of cases. Interesting, slightly more than half of patients (52%) had a previous history of gynaecological surgery for benign pathologies such as hysterectomy, myomectomy or ovarian cystectomy.

Surgical management was the treatment approach in all cases of extra-uterine adenomyomas but only in 2 cases out of 42 a diagnosis of extra-uterine adenomyoma was correctly suspected in the preoperative phase by imaging. Ultrasonography was the most common imaging modality adopted as single diagnostic procedure (66% of the cases, 28/42); more than one radiological staging technique (such as US, CT and MRI) was used in 50% of the cases (21/42).

In sixteen cases out of 42 a preoperative diagnosis was postulated, according to radiological findings or preoperative biopsies: malignancies in 7/16, ovarian thecoma/fibroma in 1/16, ovarian mass torsion in 1/16, myoma in 2/16, endometrioma in 2/16, serous cystadenoma in 1/16, leiomyomatosis peritonei/carcinomatosis in 1/16, and inguinal adenopathy in 1/16. Preoperative biopsies were performed in two cases, reporting extrauterine adenomyoma in one case and a suspect of adenomyosis versus endometriosis in the other one.

Including our presented case, 4 cases (9.7%) were associated with malignancy. Torres et al. [44] reported clear cell adenocarcinoma in a case of broad ligament adenomyoma. Ullm et al. [45] reported focal endometrioid adenocarcinoma in extrauterine endometrioma (round ligament) with concurrent stage 1 uterine endometrioid adenocarcinoma. Rahilly et al. [23] reported a concurrent occurrence of ovarian adenomyoma with ovarian endometrioid carcinoma and uterine endometrial cancer.
Table 1. Description of extrauterine adenomyomas. RIF- Right iliac fossa, TAH with BSO- Total abdominal hysterectomy with bilateral salpingo-oophorectomy, HRT-Hormone replacement therapy, CT-Computerized tomography, USG-Ultrasoundography, IVP-Intravenous pyelography, MRI-Magnetic resonance imaging, IVU-Intravenous urography, TLH with BSO-Total laparoscopic hysterectomy with bilateral salpingo-oophorectomy, PID-Pelvic inflammatory disease, LSO-Left salpingo-oophorectomy, RSO- Right salpingo-oophorectomy, DUB- Dysfunctional uterine bleeding, GnRH- Gonadotropin releasing hormone, SCH-Supracervical hysterectomy, C- Cozzutto’s theory, R- Rosai’s theory, S- sub-coelomic mesenchymal metaplasia, M-mullerianosis’s theory, B- Belmarez’ theory. Courtesy of Paul et al.

Sr.n	Study (Year)	Size and location	Age	Past history	Presenting complaints	Imaging modalities	Suspected pre-operative diagnosis	Surgical intervention	Pathogenic Theory	
1	Rahilly et al. [23]	5 cm, right ovary	38		RIF and pelvic pain	IVP	TAH with BSO	-		
2	Horie et al. [24]	14 × 11 cm, small bowel mesentery	59		Lower abdomen mass	not reported	Surgical excision	M		
3	Redman et al. [25]	5 cm, pararectal	50		TAH with BSO + HRT	Dysuria, suprapubic and pelvic pain	CT, USG, IVP	Excision + left ureteric stenting	B, M	
4	Bayar et al. [26]	7.5 cm, left ovary	38		Gonaladotropin treatment	Infertility and pelvic pain	USG	Laparoscopic excision	-	
5	Choudhrie et al. [27]	0.8 cm, left ovarian ligament	57		Lump lower abdomen and pelvic pain	USG, IVU	TAH with BSO	M		
6	Kim et al. [28]	10.5 × 9.5 cm, pararectal	42		Lower abdominal pain	CT	Surgical excision	M		
7	Menn et al. [29]	6 × 4 cm, right broad ligament	37		Myomeotomy and polypectomy	Right quadrant pain and intermenstrual spotting	USG, MRI	TAH	B	
8	Kaufman et al. [30]	7 × 5 cm, right pelvic wall	39	Subfertility, PID	Dysmenorrhea, pain and menorrhagia	USG, CT	Laparoscopic excision	R		
9	Kaufman et al.	10.5 × 9 cm, right pelvic wall	57		RSO, TAH + LSO for wall endometriosis + HRT	RIF pain, suprapubic pain and backache	USG, CT, IVP	Laparoscopic excision + oral medroxyprogesterone	M, C, S	
10	Stewart et al. [31]	6 × 4.5 cm, left paravesicular mass	40		TAH for DUB	Left iliac fossa pain	USG	Laparoscopic excision	-	
11	Stewart et al.	6.3 × 4 cm, right parametrial mass	65	PID, breast cancer	Pelvic mass	USG	Hysterectomy with BSO with mass excision	-		
12	Carinelli et al. [32]	10 cm sigmoid, 6 cm pelvic, 4 cm ileal, 1 cm paraileal and paravesical	46		Myomeotomy	Abdominal pain and constipation	USG, CT	Excision, hysterectomy with partial colectomy and Meckel diverticulum resection + GnRH agonist	M, B	
13	Carinelli et al.	3 cm sigmoid, 3.5 cm right ovary endometriosis	39		Left ovariectomy for ovary endometriosis	Dysmenorrhea, chronic abdominopelvic pain	USG, CT, MRI	Laparoscopic excision. Partial colectomy with colostomy 7 days later + GnRH agonist for relapse	M, C, B	
14	Liang et al. [33]	4 cm, left broad ligament	17		Mesosalpinx cystectomy	Dysmenorrhea and pelvic pain	USG, CT	Excision	-	
15	Sinodja et al. [34]	5.5 × 5.3 cm, right ovarian ligament	56		Dyusiria, lower abdominal pain, vaginal bleeding	USG, IVP	TAH with BSO	-		
16	Moon et al. [35]	7 × 6 cm, pararectal	41	SCH and right salpingectomy	USG, MRI	Excision and LSO	M, B			
17	Seki et al. [36]	3.8 × 2 cm, left inguinal region	44		Left oophorectomy, Endometriosis	Abdominal pain	USG, MRI	Surgical excision	M	
18	Takeda et al. [37]	3.8 × 3.7 cm, left ovarian ligament	39		Pain lower abdomen	CT, MRI, IVP	Laparoscopic excision	-		
19	Moghadamfalahi et al. [38]	6 cm, pararectal; 7.5 cm, upper abdomen	39		SCH, cervical myomeotomy, endometriosis	Abdominal pain and rectal bleeding	CT	Surgical Excision	M, C	
20	Carvalho et al. [39]	Few mm to 50 mm, pelvic and abdominal peritoneum and omentum, left ovary	32		Hysteroscopic myomeotomy	USG, CT, MRI	Excision + Goserelin + Anastrazole	M, S		

(continued on next page)
Sr.n	Study (Year)	Size and location	Age	Past history	Presenting complaints	Imaging modalities	Suspected pre-operative diagnosis	Surgical intervention	Pathogenic Theory
21	Carvalho et al. Case 2	Few mm to 20 mm, pelvic and abdominal peritoneum and omentum	41		Dysmenorrhea and pelvic pain, proctalgia		LSO with partial excision of nodules + Medroxy progesterone acetate		M, S
22	Kim et al. [21]	2 × 1.5 cm, appendix	46		Supracervical hysterectomy	USG, CT	Surgical excision		B
23	Huanwen et al. [40]	3.6 × 2.6 cm, liver	29		Myomectomy	USG, CT	Surgical excision		B, M
24	Bulut et al. [41]	5–10 cm, bilateral broad ligament, ectopic adrenal tissue	56		Menorrhagia and pelvic pain	USG, MRI	Large necrotic leiomyoma without an exclusion of malignancy	TAH with BSO and excision of intraligamentary masses	M
25	Na et al. [42]	Caecum, descending colon and mesocolon	39		Total hysterectomy with LSO, RSO for endometriosis	USG, CT	Ovarian endometriosis	Colonoscopic and laparoscopic resection	M, B, C
26	Ulm et al. [43]	3 cm, right round ligament	49		Metromenorrhagia	CT	Inguinal adenopathy	TAH with BSO and lymph node dissection	M
27	Torres et al. [44]	4 cm, right broad ligament	58		Post menopausal bleeding	USG, CT	Malignancy	Total Robotic hysterectomy with bilateral salpingo-oophorectomy	M
28	Sopha et al. [45]	1.4 cm, liver	47		RS0 for teratoma, SCH + HRT	CT		Laparoscopic excision biopsy	S, B
29	Ko et al. [46]	4 cm, right adnexa	64		Recurrent thigh sarcoma	MRI		Laparoscopic BSO	
30	He et al. [2]	7 × 4.6 cm, left broad ligament	43		Acute lower abdominal pain and hypomenorrhea	USG	Pelvic mass torsion	Surgical excision	M
31	Khurana et al. [47]	13 × 9 cm, abdominopelvic	47		Subtotal Hysterectomy for fibroids, bilateral oophorectomy for endometriosis	CT	Leiomyosarcoma	Surgical excision	C, B
32	Tandon et al. [48]	6 × 4.5 cm, liver	50		Laparoscopic hysterectomy with unilateral salpingectomy, endometriosis	CT	Cystic malignancy, metastatic disease or abscess (CT); endometriosis/adenomyosis (liver biopsy)	Surgical excision	M
33	Sampaio et al. [49]	5 cm, abdominal wall	70		Melanoma	CT	Leiomyoma (CT); extravasation adenomyoma (biopsy)	USG guided core biopsy	M
34	Goswami et al. [50]	20 cm, right broad ligament	46		Swelling and pain abdomen	USG, CT	Serous cystadenoma	TAH + BSO	M
35	Paul et al. [1] Case 1	10 cm, pararectal	3		Laparoscopic right ovarian cystectomy 2 years back, endometriosis	USG	Heavy menstrual bleeding, mid-cycle pain and difficulty in initiating micturition	TLH, right oophorectomy, left ovarian cystectomy and excision of pararectal mass	C, B
36	Paul et al. Case 2	3 cm, right round ligament	45		Laparoscopic left ovarian cystectomy 20 years back, SCH 12 yrs back and laparoscopic RS0 and left salpingectomy 4 years back, endometriosis	USG	Right lower quadrant pain	Laparoscopic left oophorectomy and excision of the round ligament mass	C, B
37	Paul et al. Case 3	6 cm, pararectal mass; 3 cm, ovarian mass	37		Laparoscopic myomectomy 5 years back, endometriosis	USG	Subfertility, intermenstrual spotting, dysmenorrhea, constipation	Laparoscopic excision and left ovarian cystectomy	C
Table 1 (continued)

Surgical pre-operative	Pathogenic Theory
Total abdominal hysterectomy, B	Endometriosis
Laparoscopic salpingo-oophorectomy, B	Endometriosis
Left salpingectomy, right salpingo-oophorectomy, B	Endometriosis
Peritoneal dialysis, tubal salpingo-oophorectomy, B	Endometriosis
Peritoneal dialysis, tubal salpingo-oophorectomy, B	Endometriosis

4. Conclusion

Extrauterine adenomyoma is still a major challenge. The data available so far bring out the difficulties to correctly diagnose this rare entity preoperatively, due to the lack of a typical ultrasonographic pattern of presentation. This type of ovarian lesion may appear in middle aged women with no previous history of pelvic pain suggestive for endometriosis. The case herein presented shed light on the possibility that ovarian adenomyoma associated with endometriotic cysts may resemble the ultrasound features of ovarian malignancy according to validated IOTA models. The lack of knowledge of this rare entity may eventually lead to unnecessary diagnostic procedures and improper surgical approach.

Declarations

Author contribution statement

All authors listed have significantly contributed to the investigation, development and writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] P.G. Paul, G. Gulati, H. Shintre, et al., Extrauterine adenomyoma: a review of the literature, Eur. J. Obstet. Gynecol. Reprod. Biol. 228 (2018) 130–136.
[2] J. He, J. Xu, H.Y. Zhou, Uterus-like mass: a very rare and elusive entity: a case report, Medicine 95 (2016) 39.
[3] Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group, Ultrasound Obstet. Gynecol. 36 (2) (2010) 224–234.
[4] S.J. Seong, D.H. Kim, M.K. Kim, et al., Controversies in borderline ovarian tumors, J. Gynecol. Oncol. 26 (4) (2015) 343–349.
[5] I. Meinhold-Heerlein, C. Fotopoulou, P. Harter, et al., The new WHO classification of ovaeras, fallopian tube, and primary peritoneal cancer and its clinical implications, Arch. Gynecol. Obstet. 293 (2016) 695–700.
[6] C. Cozzuto, Uterus-like mass replacing ovary: report of a new entity, Arch. Pathol. Lab Med. 105 (1981) 508–511.
[7] J. Rossii, Uterus like mass replacing ovary, Arch. Pathol. Lab Med. 106 (1982) 364–365.
[8] R.E. Batt, Pathogenesis of a parauterine uterus-like mass: developmentally misplaced müllarian tissue-mullerianosis, Fertil. Steril. 94 (2010) e45.
[9] R.E. Batt, R.A. Smith, G.M. Buck Louis, et al., Mullerian disorders: a review of the literature, Eur. J. Obstet. Gynecol. Reprod. Biol. 228 (2018) 130–136.
[10] I.M. Matalliotakis, H. Cakmak, E.E. Koumantakis, et al., Arguments for a left lateral predisposition of endometriosis, Fertil. Steril. 91 (4) (2009) 975–978.
[11] P. Vercellini, G. Almi, O. De Giorgi, et al., Is cystic ovarian endometriosis an asymmetric disease? Br. J. Obstet. Gynaecol. 105 (1998) 1018–1021.
[12] S. Kissler, K. Marx, M. Scholtes, et al., Predisposition of subtle endometriotic lesions predominantly on the left side assessed by transvaginal hydrolaparoscopy (THL), Eur. J. Obstet. Gynecol. Reprod. Biol. 158 (2) (2011) 285–288.
[13] S. Guerrieri, S. Ajossa, V. Mais, et al., The diagnosis of endometriomas using colour Doppler energy imaging, Hum. Reprod. 13 (6) (1998) 1691–1695.
[14] C. Van Holbeke, B. Van Calster, S. Guerrieri, et al., Endometriomas: their ultrasound characteristics, Ultrasound Obstet. Gynecol. 35 (2010) 730–740.
[15] S. Guerrieri, B. Van Calster, E. Somigliana, et al., Age-related differences in the sonographic characteristics of endometriomas, Hum. Reprod. 31 (8) (2016) 1725–1731.
[16] C. Exacoustos, I. Mangano, E. Zupi, Imaging for the evaluation of endometriosis and adenomyosis, Best Pract. Res. Clin. Obstet. Gynaecol. 28 (2014) 655–681.
[17] C. Exacoustos, E. Zupi, E. Piccione, Ultrasound imaging for ovarian and deep infiltrating endometriosis, Semin. Reprod. Med. 35 (1) (2017) 5–24.
[18] D. Timmermann, A.C. Testa, T. Bourne, et al., Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicentric study by the International Ovarian Tumor Analysis Group, J. Clin. Oncol. (2005).

[19] D. Timmerman, B. Van Calster, A.C. Testa, et al., Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group, Ultrasound Obstet. Gynecol. 36 (2010) 226–234.

[20] R.A. McDougal, L.M. Roth, Ovarian adenomyoma associated with an endometriotic cyst, South. Med. J. 79 (3) (1986) 640–642.

[21] J.O. Kim, J.M. Baek, I.C. Jeung, et al., A case of primary ovarian adenomyoma mimicking ovarian malignancy, Eur. J. Gynaecol. Oncol. 32 (1) (2011) 103–106.

[22] K. Na, S.Y. Park, H.S. Kim, Clinicopathological characteristics of primary ovarian adenomyoma: a single-institutional experience, Anticancer Res. 37 (2017) 2565–2574.

[23] M.A. Rahilly, A. Al-Nafussi, Uterus-like mass of the ovary associated with endometrioid carcinoma, Histopathology 18 (1991) 549–551.

[24] V. Horie, M. Kato, Uterus-like mass of the small bowel mesentery, Pathol. Int. 50 (2000) 76–80.

[25] R. Redman, E.J. Wilkinson, N.A. Massoll, Uterus-like mass with features of an extrarectal adenomyoma presenting 22 years after total abdominal hysterectomy-bilateral salpingo-oophorectomy, Arch. Pathol. Lab Med. 129 (2005) 1041–1042.

[26] U. Bayar, E. Demirtas, A. Usubutun, et al., Ovarian adenomyoma following gondadotrophin treatment for infertility, Reprod. Biomed. Online 13 (2006) 676–679.

[27] L. Choudhrie, N.N. Mahajan, Ovarian adenomyoma mimicking an ovarian mass: a case report and literature review, Int. J. Surg. Pathol. 17 (1) (2009 23)

[28] L. Choudhrie, N.N. Mahajan, Ovarian adenomyoma mimicking an ovarian mass: a case report and literature review, Int. J. Surg. Pathol. 17 (1) (2009 23)

[29] J.A. Belmar, H.R. Latifi, Extrauterine adenomyoma mimicking uterine synechiae: a case of a rare condition, J. Magn. Reson. Imag. 26 (2007) 162.

[30] M.C. Sopha, G.N. Rosado Flavia, J.J. Smith, et al., Hepatic uterus-like mass: a case report and literature review, Cor. J. Pathol. 47 (2) (2013) 177–181.

[31] M. Ulm, D. Robins, E. Thorpe, et al., Endometrioid adenocarcinoma in an extrapulmonary adenomyoma, Obstet. Gynecol. 124 (2014) 445–448.

[32] D. Torres, L. Parker, M. Moghadamfalahi, et al., Clear cell adenocarcinoma arising in an adenomyoma of the broad ligament, Int. J. Surg. Pathol. 23 (2) (2015) 140–143.

[33] S.C. Sopha, G.N. Rosado Flavia, J.J. Smith, et al., Hepatic uterus-like mass: a case report and literature review, Int. J. Surg. Pathol. 17 (1) (2009 23)

[34] J.K.Y. Ko, Y.Y.T. Cheung, Uterus-like mass: issues on pathogenesis, J. Minim. Invasive Gynecol. 22 (7) (2015) 1133–1134.

[35] A. Khurana, A. Mehta, M. Sardana, Extrarectal adenomyoma with uterus like features: a rare entity presenting 17 years post hysterectomy, Indian J. Pathol. Microbiol. 54 (2011) 572–573.

[36] N. Tandon, J. Showalter, S. Sultana, et al., Extrarectal adenomyoma of the liver in a 50 year old female with pelvic endometriosis, Ann. Clin. Lab. Sci. 47 (2) (2017) 208–212.

[37] A. Takeda, S. Imoto, M. Mori, et al., Uterus-like mass of ovarian adenocarcinoma: image diagnosis and management by laparoscopic single-site surgery, J. Obsot. Gynecol. Res. 37 (2011) 1895–1899.

[38] M. Moghadamfalahi, D.S. Metzinger, Multiple extrarectal adenomyomas presenting in upper abdomen and pelvic: a case report and brief review of the literature, Case Rep. Obstet. Gynecol. 2012 (2012) 565901.

[39] F.M. Carvalho, J.P. Carvalho, M.A. Pereira Ricardo, et al., Leiomyomatosis peritonealis disseminata associated with endometriosis and multiple uterus-like mass: report of two cases, Clin. Med. Insights Case Rep. 5 (2012) 63–68.

[40] W. Huwenn, Z. Hui, X. Xiaowei, et al., Extraretinal adenomyoma of the liver with a focally cellular smooth muscle component occurring in a patient with a history of myometrectomy: case report and review of the literature, Diagnost. Pathol. 8 (2013) 131. Huwenn et al.

[41] A.S. Balut, T.U. Sipahi, Abscessed uterine and extraretrenal adenomyomas with uterus-like features in a 56-year-old woman, Case Rep. Obstetr. Gynecol. (2013) 5 Article ID 238156.

[42] K.Y. Na, G.Y. Kim, K.Y. Won, et al., Extrapelvic uterus-like masses presenting as colonic submucosal tumor: a case study and review of the literature, Kor. J. Pathol. 47 (2) (2013) 177–181.

[43] M. Ulm, D. Robins, E. Thorpe, et al., Endometrioid adenocarcinoma in an extrapulmonary adenomyoma, Obstet. Gynecol. 124 (2014) 445–448.

[44] D. Torres, L. Parker, M. Moghadamfalahi, et al., Clear cell adenocarcinoma arising in an adenomyoma of the broad ligament, Int. J. Surg. Pathol. 23 (2) (2015) 140–143.

[45] S.C. Sopha, G.N. Rosado Flavia, J.J. Smith, et al., Hepatic uterus-like mass: a case report and literature review, Int. J. Surg. Pathol. 17 (1) (2009 23)

[46] J.K.Y. Ko, Y.Y.T. Cheung, Uterus-like mass: issues on pathogenesis, J. Minim. Invasive Gynecol. 22 (7) (2015) 1133–1134.

[47] A. Khurana, A. Mehta, M. Sardana, Extrarectal adenomyoma with uterus like features: a rare entity presenting 17 years post hysterectomy, Indian J. Pathol. Microbiol. 54 (2011) 572–573.

[48] N. Tandon, J. Showalter, S. Sultana, et al., Extrarectal adenomyoma of the liver in a 50 year old female with pelvic endometriosis, Ann. Clin. Lab. Sci. 47 (2) (2017) 208–212.

[49] R. Sampaio, J.P. Garcia, C.S. Macedo, et al., A 22nd case report of extraretrenal adenomyoma of the abdominal wall, Case Rep. Clin. Pathol. 4 (2017) 11.

[50] M. Goswami, A rare case of giant uterus-like mass arising from broad ligament: a case report with review of histogenesis, Indian J. Pathol. Microbiol. 54 (2011) 572–573.

[51] M. Gruttaduria, X. Wen, W.M. Burke, Extraretrenal adenomyomas presenting in a 47 year old woman with a previous cesarean section, Gynecol. Oncol. Rep. 31 (2019) 106524.

[52] O. Api, B. Ergen, A.E. Gul, et al., Primary ovarian adenomyoma in a woman with endometrial polyp: a case report and review of the literature, Arch. Gynecob. Obstet. 280 (3) (2009) 445–448.

[53] J.A. Belmar, H.R. Latifi, W. Zhang, et al., Simultaneously occurring disseminated peritoneal leiomyomatosis and multiple extraretrenal adenomyomas following hysterectomy, Proc (Bayl Univ Med Cent) 32 (1) (2019) 126–128.

[54] M. Moghadamfalahi, D.S. Metzinger, Multiple extraretrenal adenomyomas presenting in upper abdomen and pelvic: a case report and brief review of the literature, Case Rep. Obstet. Gynecol. 2012 (2012) 565901.