Phase separation in thermal systems: LB study and morphological characterization

Yanbiao Gan1,2,3, Aiguo Xu2*, Guangcai Zhang2, Yingjun Li3†

1, State Key Laboratory for GeoMechanics and Deep Underground Engineering, SMCE,
China University of Mining and Technology (Beijing), Beijing 100083, P.R.China

2, National Key Laboratory of Computational Physics,
Institute of Applied Physics and Computational Mathematics,
P. O. Box 8009-26, Beijing 100088, P.R.China

3, North China Institute of Aerospace Engineering, Langfang 065000, P.R.China

(Dated: June 13, 2011)

* Corresponding author. E-mail: Xu_Aiguo@iapcm.ac.cn
† Corresponding author. E-mail: lyj@aphy.iphy.ac.cn
Abstract

We investigate thermal and isothermal symmetric liquid-vapor separations via an FFT-thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth; while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: \(\sigma = \sigma_0[(T_c - T)/(T_c - T_0)]^{3/2} \), where \(T_c \) is the critical temperature and \(\sigma_0 \) is the interfacial stress at a reference temperature \(T_0 \), which is the main reason for the prolonged SD stage and the lower growth exponent in thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with isothermal case, the local flow velocity depends not only on viscosity but also on temperature.

PACS numbers: 47.11.1j, 47.20.Hw, 05.70.Ln

Keywords: lattice Boltzmann method; liquid-vapor separation; FFT; morphological characterization
I. INTRODUCTION

Multiphase flows and heat transfers are ubiquitous in natural, industrial processes, as well as daily life, e.g., oil-water systems, bubble flows, petroleum processing, paper-pulping, and power plants, etc [1]. Therefore, establishing accurate prediction models to investigate the underlying physical essence of these phenomena, is of great academic significance and industrial practical value. However, due to the complex nature and inherent nonlinearities of multiphase flows, theoretical solutions are usually limited to a small class of problems in one-dimension and with numerous simplifying assumptions and generalizations [2]. On the other hand, experimental approaches for multiphase flows are generally expensive and some problems are still being unsolved in accurate measurement technology (e.g., interfacial area measurement) for this process [3]. Consequently, it is reasonable to consider numerical simulation, to some extent, as a primarily useful tool in studying the underlying physics of multiphase flows and providing some insights into understanding the kinetic process, that are difficult to obtain from theoretical analysis or experiments.

Molecular dynamics (MD) is a nice microscopic approach, but it is too computationally expensive to access dynamic behaviors with spatiotemporal scales comparable with experiments [4]. Moreover, many macroscopic behaviors are, in fact, not sensitive to degrees of freedom at the molecular level. Traditional fluid dynamics does not work well for systems where non-equilibrium effects are pronounced, for example, multiphase system. In addition, from the computational expenses point of view, the direct simulation of fluid behaviors in such a system is also a challenging work, since it is not easy to track the deformable macroscopic interfaces and the incorporate complex microscopic interactions [5].

Between these two approaches, as a mesoscopic approach, the lattice Boltzmann (LB) method, has enjoyed substantial development and has become a very promising and versatile tool for simulating complex phenomena in various fields during the past two decades [6], ranging from magnetohydrodynamics [7, 8], to compressible flows [9-11], wave propagations [12], hydrodynamic instabilities [13, 14], etc. Apart from fields listed above, the versatile method is particularly promising in the area of multiphase systems [15-33]. This is mainly owing to its intrinsic kinetic nature, which makes the inter-particle interactions (IPI) be incorporated easily and flexibly and, in fact, the IPI is the underlying microscopic physical reason for phase separation and interfacial tension in multiphase systems. So far, many LB
models for multiphase flows have been proposed, among which the three well-known ones are the Chromodynamic model by Gunstensen et al. [15], the pseudo-potential model by Shan and Chen [16, 29], and the free energy model by Swift et al. [17].

The aforementioned models have been successfully applied to study a wide variety of multiphase flow problems in science and engineering, such as contact line motion [18, 19], wetting [20, 21], drop breakup [22, 23], drop collision [24], chemically reactive fluid [25], phase separation and phase ordering [15–17, 26, 27, 32], etc. Despite this, to date, most studies focus on the isothermal systems, because, in these models, only mass and momentum conservations are kept, hydrodynamic behaviors due to temperature field are not taken into account. However, thermal effects are significant, even dominant, in many cases. Examples are referred to phase separations in boiling process, distillation and condensation process, and thermal nuclear reactor, etc. In these systems, the evolutions of the temperature field and flow field is spontaneously coupled with each other [34, 35]. Therefore, it is a fundamental and essential work to develop thermal LB (TLB) models for multiphase system. But due to the complexity of this problem, the progress has been rather slow.

The most obvious obstacle lies in the fact that, when the interparticle forces are incorporated, how to ensure the total energy conservation becomes challenging in the discrete model. To overcome this difficulty, extensive efforts have been made over the past years. But until very recently, only a few TLB models for multiphase flows have been proposed, and can be roughly divided into two approaches. The first is the passive scalar approach [36, 37]. In this approach, evolutions of the density field and the momentum field are solved by an isothermal LB model, while the temperature evolution is determined by an additional passive-scalar equation. The coupling of these two parts is through a suitably defined body force in the isotherm LB equation. This approach is conceptually rather simple and as stable as the isothermal LB models, because the energy conservation is not explicitly implemented. Meanwhile, it can produce a non-ideal gas equation of state (EOS) and capture the temperature field. However, it should be pointed out that, in the passive scalar approach, the viscous dissipation and compression work done by the pressure are neglected [37].

The second is the multispeed approach, which implements energy conservation by using larger and more isotropic sets of velocities and by including higher order velocity terms in the equilibrium distribution. Examples for ideal gas include the works of Alexander et al. [38], Watari et al. [9], Xu et al. [10, 14], and so on. However, applications of this approach
for thermal flows with high Mach number or flows with high Knudsen number still have some challenges. The challenges arise from the insufficient truncation in the equilibrium distribution function and the insufficient isotropy in the discrete-velocity-model (DVM). In an alternative way, using the Hermite expansion approach, Shan et al. [39] presented a systematic theoretical framework for constructing TLB models that approximate the continuum Boltzmann equation with higher accuracy. With the Hermite expansion approach, hydrodynamic moments at various levels can be determined in a straightforward way at a given order of truncations of the Hermite polynomials. Almost simultaneously, similar results were obtained by Philippi et al. [40] using a different procedure. Although the above-mentioned TLB models only work for ideal gas systems, they can be extended to multiphase flows by the extra force method. The one developed by Gonnella, Lamura, and Sofonea (GLS) [41] is typical. In this model, an extra term I_{ki}, accounting for inter-particle forces, is added into the LB equation to describe the van der Waals (VDW) fluids. From the point of view of the IPI, it can be considered as a bottom-up approach, similar to the Shan-Chen model. To describe system with interfaces, gradient contributions to free energy due to the inhomogeneity of fluid density are also included. Compared with the passive scalar approach, all observable fields, e.g., density, velocity, temperature, and pressure are directly derived from the same distribution function, as in the standard kinetic theory.

In a recent work [42], we further develop GLS model so that the total energy conservation can be better held and the spurious velocities can be damped to negligible scale in the numerical simulations. In the improved model, spatial derivatives in the convection term and the force term are calculated via the fast Fourier transformation (FFT) and its inverse (IFFT). For convenience of description, we refer to this model as FFT-TLB model. Via the FFT-TLB model, we study the effects of temperature and viscosity on liquid-vapor phase separation in two-dimensional case. It is known that, spatial domains of homogeneous phases evolving during spinodal decomposition (SD) show a large variety of complex spatial patterns and the system is globally in a nonequilibrium state. How to effectively describe and pick up information from such a complex system is still an open problem. In the present work, besides the rheological behavior, we use the Minkowski functionals [43] to characterize the isothermal and thermal phase separations and conduct a comparison study on the similarities and differences between these two cases.

The following part of the paper is planned as follows. The Minkowski functionals and the
FFT-TLB model are briefly reviewed in Secs. II and III, respectively. Simulation results and corresponding physical interpretations are given in Sec. IV. Sec. V presents conclusions and discussions.

II. MORPHOLOGICAL CHARACTERIZATION

In this section, we briefly review the set of statistics known as Minkowski functionals [43], which will be used to characterize the physical fields in Sec. IV. Such a description has been well known in digital picture analysis [44] and successfully adapted to characterize the reaction-diffusion systems [45], shocked porous materials [46], and patterns in phase separation of complex fluids [47, 48], etc.

According to a general theorem of integral geometry, all properties of a d-dimensional convex set, which satisfy motion invariance and additivity, are contained in $d + 1$ numerical values [49]. For a pixelized map $\psi(x)$, we consider the excursion sets of the map, defined as the set of all map pixels with value of ψ greater than some threshold ψ_{th}, where x is the position, ψ can be a state variable like density ρ, temperature T, or pressure P; ψ can also be the velocity u or its components, or some specific stress, etc. Then the $d + 1$ functionals of these excursion sets completely describe the morphological properties of the underlying map $\psi(x)$. In the case of two- or three-dimensions, the Minkowski functionals have intuitive geometric interpretations. For a two-dimensional density map $\rho(x)$, the three Minkowski functionals correspond geometrically to the fractional area A of the high density domains, the boundary length L between the the high and low density domains, and the Euler characteristic χ.

In this work, we probe the effects of temperature and velocity on phase separation by checking the density map $\rho(x, t)$ and velocity map $u(x, t)$, where time t is explicitly denoted. When the density $\rho(x, t)$ is beyond the threshold value ρ_{th}, the grid node at position x is regarded as a white vertex, otherwise it is regarded as a black one. For the square lattice, a pixel possesses four vertices. A region with connected white (black) pixels is defined as a white (black) domain. Two neighboring white and black domains present an interface or boundary. When the threshold contour level ρ_{th} increase from the lowest density ρ_{min} to the highest one ρ_{max}, the white area fraction $A = \frac{N_A^w}{N}$ will decrease from 1 to 0, and the qualitative features of the patterns will vary drastically, where N_A^w is the number of
pixels with a density larger than ρ_{th}, $N = N_x \times N_y$ is the total number of pixels, N_x and N_y are the lattice numbers along the x and y directions; the boundary length $L = N_L/N$ is defined as the ratio between the pixels separating the black and white domains, and the total number of pixels. With the increasing of ρ_{th}, boundary length L first increases from 0 at $\rho_{th} = \rho_{min}$, then arrives at a maximum value L_{max} and, finally decreases to 0 again at $\rho_{th} = \rho_{max}$; the third morphological quantity is the Euler characteristic χ, defined as the difference of the number of connected white domains N^w and black domains N^b normalized by N, $\chi = (N^w - N^b)/N$. In contrast to the white area A and boundary length L, the Euler characteristic χ describes the connectivity of the domains in a purely topological way. It is negative (positive) if many disconnected black (white) regions dominate the image. A vanishing Euler characteristic indicates a highly connected structure with equal numbers of black and white domains. Despite having global meaning, the Euler characteristic χ can be calculated in a local way using the additivity relation [45, 48]. Since the measures are normalized by N, they can be used to compare systems with different sizes.

III. FFT-TLB MULTIPHASE MODEL

In this section, we present the FFT-TLB model for simulating thermal liquid-vapor system. The model is a further development of the one proposed by GLS [41]. GLS introduced an appropriate inter-particle force term to describe the VDW fluids. Our contribution is to propose an appropriate FFT scheme, which is used to calculate the convection term and the force term. With this new model, the non-conservation problem of total energy due to spatiotemporal discretizations is much better solved and spurious currents in equilibrium interfaces are significantly reduced in the numerical simulations.

A. TLB multiphase model by GLS

The GLS model includes the following two parts: (i) TLB model by Watari-Tsutahara (WT) [9]; (ii) an appropriate inter-particle force, I_{ki}. The original WT model works only for ideal gas. It uses the following DVM:

$$v_0 = 0, \quad v_{ki} = v_k[\cos\left(\frac{i-1}{4}\pi\right), \sin\left(\frac{i-1}{4}\pi\right)], \quad k = 1, 2, 3, 4; \quad i = 1, 2...8,$$

(1)
where subscript k indicates the k-th group of particle velocities whose speed is v_k and i indicates the direction of particle’s speed. Different from the standard LB model, WT model uses a second upwind finite-difference (FD) scheme to calculate the convection term in the LB equation. The FD LB model breaks the combination of discretizations of space and time, which makes the particle speeds more flexible. The values of the speeds v_k may be determined in such a way that the temperature gets a large interval around the critical temperature T_c, under which the simulation is stable. This is of great importance for phase separation studies where long lasting simulations are needed to determine the growth behavior [26].

Compared to WT model, the main contribution of GLS model is the introduction of the extra term I_{ki}, which accounts for inter-particle forces

$$\frac{\partial f_{ki}}{\partial t} + v_{ki} \cdot \frac{\partial f_{ki}}{\partial r} = -\frac{1}{\tau} [f_{ki} - f_{ki}^{eq}] + I_{ki},$$

where f_{ki}^{eq} is the local equilibrium distribution function; r is the spatial coordinate; τ is the relaxation time related to the kinematic viscosity. The distribution function f_{ki}^{eq} is related to the local density ρ, fluid velocity u, and temperature T through the following moments:

$$\rho = \sum_{ki} f_{ki}^{eq},$$

$$\rho u = \sum_{ki} v_{ki} f_{ki}^{eq},$$

$$\rho T = \sum_{ki} \frac{1}{2} (v_{ki} - u)^2 f_{ki}^{eq}.$$

I_{ki} in Eq. (2) takes the following form:

$$I_{ki} = -[A + B_\alpha (v_{kia} - u_\alpha) + (C + C_q)(v_{kia} - u_\alpha)^2] f_{ki}^{eq},$$

with

$$A = -2(C + C_q)T,$$

$$B_\alpha = \frac{1}{\rho T} [\partial_\alpha (P_w - \rho T) + \partial_\beta \Lambda_{\alpha\beta} - \partial_\alpha (\zeta \partial_\gamma u_\gamma)],$$

$$C = \frac{1}{2\rho T^2} \{ (P_w - \rho T) \partial_\gamma u_\gamma + \Lambda_{\alpha\beta} \partial_\alpha u_\beta - (\zeta \partial_\gamma u_\gamma) \partial_\alpha u_\alpha$$

$$+ \frac{9}{8} \rho^2 \partial_\gamma u_\gamma + K \left[-\frac{1}{2} (\partial_\gamma \rho) (\partial_\gamma \rho) (\partial_\alpha u_\alpha)$$

$$- \rho (\partial_\gamma \rho) (\partial_\gamma \partial_\alpha u_\alpha) - (\partial_\gamma \rho) (\partial_\gamma u_\alpha) (\partial_\alpha \rho) \right],$$

where subscript k indicates the k-th group of particle velocities whose speed is v_k and i indicates the direction of particle’s speed. Different from the standard LB model, WT model uses a second upwind finite-difference (FD) scheme to calculate the convection term in the LB equation. The FD LB model breaks the combination of discretizations of space and time, which makes the particle speeds more flexible. The values of the speeds v_k may be determined in such a way that the temperature gets a large interval around the critical temperature T_c, under which the simulation is stable. This is of great importance for phase separation studies where long lasting simulations are needed to determine the growth behavior [26].

Compared to WT model, the main contribution of GLS model is the introduction of the extra term I_{ki}, which accounts for inter-particle forces

$$\frac{\partial f_{ki}}{\partial t} + v_{ki} \cdot \frac{\partial f_{ki}}{\partial r} = -\frac{1}{\tau} [f_{ki} - f_{ki}^{eq}] + I_{ki},$$

where f_{ki}^{eq} is the local equilibrium distribution function; r is the spatial coordinate; τ is the relaxation time related to the kinematic viscosity. The distribution function f_{ki}^{eq} is related to the local density ρ, fluid velocity u, and temperature T through the following moments:

$$\rho = \sum_{ki} f_{ki}^{eq},$$

$$\rho u = \sum_{ki} v_{ki} f_{ki}^{eq},$$

$$\rho T = \sum_{ki} \frac{1}{2} (v_{ki} - u)^2 f_{ki}^{eq}.$$

I_{ki} in Eq. (2) takes the following form:

$$I_{ki} = -[A + B_\alpha (v_{kia} - u_\alpha) + (C + C_q)(v_{kia} - u_\alpha)^2] f_{ki}^{eq},$$

with

$$A = -2(C + C_q)T,$$

$$B_\alpha = \frac{1}{\rho T} [\partial_\alpha (P_w - \rho T) + \partial_\beta \Lambda_{\alpha\beta} - \partial_\alpha (\zeta \partial_\gamma u_\gamma)],$$

$$C = \frac{1}{2\rho T^2} \{ (P_w - \rho T) \partial_\gamma u_\gamma + \Lambda_{\alpha\beta} \partial_\alpha u_\beta - (\zeta \partial_\gamma u_\gamma) \partial_\alpha u_\alpha$$

$$+ \frac{9}{8} \rho^2 \partial_\gamma u_\gamma + K \left[-\frac{1}{2} (\partial_\gamma \rho) (\partial_\gamma \rho) (\partial_\alpha u_\alpha)$$

$$- \rho (\partial_\gamma \rho) (\partial_\gamma \partial_\alpha u_\alpha) - (\partial_\gamma \rho) (\partial_\gamma u_\alpha) (\partial_\alpha \rho) \right],$$
\[C_q = \frac{1}{2\rho T^2} \partial_\alpha [2q\rho T(\partial_\alpha T)]. \] (10)

\[P^w = 3\rho T/(3 - \rho) - 9\rho^2/8 \] is the VDW EOS. Since the pressure is not monotonic in density, thermodynamic phase transition may occur in such a system. By setting \[\partial P^w/\partial \rho = 0, \quad \partial^2 P^w/\partial \rho^2 = 0, \] we obtain the critical point \(T_c = \rho_c = 1 \). \(\Lambda_{\alpha\beta} = M \partial_\alpha \rho \partial_\beta \rho - [\rho T \partial_\alpha \rho \partial_\alpha (M/T)] \delta_{\alpha\beta} - M(\rho \nabla^2 \rho + |\nabla \rho|^2/2) \delta_{\alpha\beta} \) is the contribution of density gradient to pressure tensor and \(M = K + HT \) allows a dependence of the surface tension on temperature, where \(K \) is the surface tension coefficient and \(H \) is a constant. It is worth pointing out that, in this model, the Prandtl number \(\text{Pr} = \eta/\kappa_T = \tau/2(\tau - \eta) \) can be changed by adjusting the parameter \(q \) in the term \(C_q \).

It has been shown that [41], under the Chapman-Enskog expansion, the above LB model recovers the following equations for VDW fluids:

\[\partial_t \rho + \partial_\alpha (\rho u_\alpha) = 0, \] (11)

\[\partial_t (\rho u_\alpha) + \partial_\beta (\rho u_\alpha u_\beta + \Pi_{\alpha\beta} - \sigma_{\alpha\beta}) = 0, \] (12)

\[\partial_t e_T + \partial_\alpha [e_T u_\alpha + (\Pi_{\alpha\beta} - \sigma_{\alpha\beta}) u_\beta - \kappa_T \partial_\alpha T] = 0, \] (13)

where \(\Pi_{\alpha\beta} = P^w \delta_{\alpha\beta} + \Lambda_{\alpha\beta} \) is the non-viscous stress, and \(\sigma_{\alpha\beta} = \eta(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \partial_\gamma u_\gamma \delta_{\alpha\beta}) + \zeta \partial_\gamma u_\gamma \delta_{\alpha\beta} \) is the dissipative tensor with the shear and bulk viscosities \(\eta \) and \(\zeta \). \(e_{\text{tot}} = \rho T - 9\rho^2/8 + K |\nabla \rho|^2/2 + \rho u^2/2 \) is the total energy density. It should be mentioned that the force term also accounts for the potential energy \(-9/8\rho^2 \) and interfacial energy \(K |\nabla \rho|^2/2 \), which are sources of the kinetic energy.

B. Our contribution: spatial discretization with FFT

In this subsection, we will review our improvements to the TLB multiphase model: spatial derivatives in the convection term \(\mathbf{v}_{ki} \cdot \partial f_{ki}/\partial \mathbf{r} \) and in the external force term \(I_{ki} \) are calculated via the FFT scheme and its inverse.

To illustrate the necessity, we present simulation results for a thermal phase separation process by various numerical schemes. Here the time derivative is calculated using the first-order forward Euler FD scheme. Spatial derivatives in \(I_{ki} \) are calculated using the second-order central difference (2nd-CD) scheme. Spatial derivatives in convection term \(\mathbf{v}_{ki} \cdot \partial f_{ki}/\partial \mathbf{r} \) are calculated using the the 2nd-CD scheme, the Lax-Wendroff (LW) scheme, the
FIG. 1: (Color online) Variations of total energy density $\Delta e_{\text{tol}}(t) = e_{\text{tol}}(t) - e_{\text{tol}}(0)$ for a phase-separating system obtained from the GLS model with various schemes. Initial conditions are set as $\rho = 1 + \Delta$, $T = 0.85$, $u_x = u_y = 0$, where Δ is a random density with an amplitude of 0.01. The remaining parameters are as follows: $v_1 = 1.00$, $v_2 = 1.90$, $v_3 = 2.90$, $v_4 = 4.30$, $\tau = 10^{-2}$, $dx = dy = 1/256$, $dt = 10^{-5}$, $K = 5 \times 10^{-6}$, $H = 0$, $\zeta = 0$, $q = -0.004$. Periodical boundary conditions (PBC) are imposed on x and y directions.

non-oscillatory and non-free-parameter dissipation (NND) scheme [50], and the fifth-order weighted essentially non-oscillatory scheme (5th-WENO) [51], respectively. As a result, we find that the total energy density $e_{\text{tol}}(t)$ is not conservative in simulations, even though it is in theoretical analysis (see Fig. 1). The non-conservation of energy is caused by errors of spatiotemporal discretizations.

Aiming to solve the problem of energy non-conversation, we proposed a new algorithm based on FFT and its inverse [42]. This approach is especially powerful for periodic system and also provides spatial spectral information on field quantities. For completeness, let us start with the definition of Fourier transform of a discrete function $f(x_j)$

$$\tilde{f}(k) = \Delta x \sum_{j=0}^{N-1} f(x_j)e^{-ikx_j},$$

and its inverse

$$f(x_j) = \frac{1}{L} \sum_{n=-N/2}^{N/2-1} \tilde{f}(k)e^{ikx_j},$$

10
In Eq. (15), \(k = \frac{2\pi n}{L} \) and \(L = N \Delta x \) is the length of the system divided into \(N \) equal segments. A general theorem of derivative based on FFT states that \([52,54]\)

\[
\tilde{f}'(k) = ik \times \tilde{f}(k), \tag{16}
\]

where \(\tilde{f}'(k) \) is the Fourier transform of \(f'(x_j) \), \(k \) is the module of wave vector \(\mathbf{k} \), and \(i \) is an imaginary unit. The theorem provides a way to calculate the spatial derivative \(f'(x_j) \), composed of the following steps: (i) transform \(f(x_j) \) in real space into \(\tilde{f}(k) \) in reciprocal space; (ii) multiply \(\tilde{f}(k) \) with \(ik \); (iii) take the inverse Fourier transform (IFT) of \(\tilde{f}'(k) \), then the spatial derivative \(f'(x_j) \) can be obtained. Higher-order derivative, such as the \(n \)th derivative \(f^{(n)}(x_j) \) \((n \geq 2) \), can be obtained from a similar procedure only if we multiply \(\tilde{f}(k) \) with \((ik)^n \),

\[
\tilde{f}^{(n)}(k) = (ik)^n \times \tilde{f}(k). \tag{17}
\]

High order derivatives can be calculated from this convenient way is a main merit of FFT over FD schemes, otherwise, we should choose more stencils (more points) to approximate high order derivatives.

The FFT approach has excellent accuracy properties, typically well beyond that of standard discretization schemes. In principle, it gives the exact derivative with infinite order accuracy if the function is infinitely differentiable \([53,56]\). In our manuscript, using this virtue, the FFT scheme is designed to approximate the true spatial derivatives, as a result, to eliminate spurious velocities near the interface region and to guarantee energy conservation. However, the trouble in proceeding in this manner is that, in many cases, it is difficult to ensure that the infinite differentiability condition is satisfied. For example, the function \(f'(x_j) \) may have a discontinuity of the same character as the square wave. Then the discontinuity will induce oscillations, known as the Gibbs phenomenon. The Gibbs phenomenon influences the accuracy of the FFT not only in the neighborhood of the point of singularity, but also over the entire computational domain. Since the Gibbs phenomenon is related to the slow decay of the Fourier coefficients of the discontinuous function, it is nature to use smoothing procedures, which attenuate higher order Fourier coefficients to damp the oscillations \([53,55,57,58]\). A straightforward way is to multiply each Fourier coefficients by a smoothing factor \(\sigma_k \), for instance, the Lanczos smoothing factor, the raised cosine smoothing factor, or the Fejer smoothing factor, etc \([53,57,58]\).
In the recent work [42], we presented a way to construct smoothing factors. Firstly, we expand k in Taylor series

$$k = \frac{\arcsin[\sin(k\Delta x/2)]}{\Delta x/2}$$

$$= \frac{1}{\Delta x/2} \left[\sin(k\Delta x/2) + \frac{1}{6} \sin^3(k\Delta x/2) + \frac{3}{40} \sin^5(k\Delta x/2) + \frac{5}{112} \sin^7(k\Delta x/2) + \ldots \right]$$

$$= \frac{1}{\Delta x/2} \sum_{n=0}^{\infty} \frac{\Gamma(n/2) \delta_0(\Theta(n) \varepsilon(-1 + n))}{\sqrt{\pi n \Gamma(n+1/2)}} \sin^n(k\Delta x/2),$$

(18)

where $\Gamma(n) = \int_0^\infty t^{n-1}e^{-t}dt$ is the Gamma function, $\Theta(n) = \text{Mod}[-1 + n, 2]$ is the Mod function and $\varepsilon(-1 + n)$ is the unit step function. Next, in order to refrain the Gibbs oscillation, we should filter out more high frequency waves, or at least, damp the strengths of high frequency waves. Therefore, k may take the form of an appropriately truncated Taylor series expansion of $\sin(k\Delta x/2)$. For example, k can take the following forms:

$$k_1 = \frac{\sin(k\Delta x/2)}{\Delta x/2},$$

(19)

$$k_2 = k_1 + \frac{\sin^3(k\Delta x/2)/6}{\Delta x/2},$$

(20)

$$k_3 = k_2 + \frac{3\sin^5(k\Delta x/2)/40}{\Delta x/2},$$

(21)

and

$$k_4 = k_3 + \frac{5\sin^7(k\Delta x/2)/112}{\Delta x/2},$$

(22)

and then the calculated spatial derivative is second-order, fourth-order, sixth-order, and eighth-order in precision, respectively. It is found that k_1 is consistent with the one used in Ref. 59. Finally, smoothing factor for k_1 can be expressed as

$$\sigma_1 = \frac{k_1}{k} = \frac{\sin(j\pi/N_x)}{j\pi/N_x}, \quad j = -N_x/2, \ldots, N_x/2,$$

(23)

and the ones for k_2, k_3, and k_4 can be formulated in a similar way.

As reported in our recent work [42], the lower-order smoothing factors, such as σ_1 and σ_2, are much more effective to damp the strengthens of high frequency waves and may result in excessively smeared approximations, which are unfaithful representations of the truth physics. On the other hand, the higher-order smoothing factors, such as σ_3 and σ_4, can reserve more higher frequency waves but may not damp the Gibbs phenomenon when the discontinuities are strong enough, then cause numerical instability. This is especially true for
FIG. 2: (Color online) Variations of density $\Delta \rho(t)$, momentum $\Delta(\rho u)(t)$, and total energy $\Delta e_{\text{tot}}(t)$ for the phase-separating system described in Fig. 1.

the case with shock waves and/or discontinuities. The smoothing factors should survive the dilemma of stability versus accuracy. In other words, they should be minimal but make the evolution stable. In the present study, we focus on the liquid-vapor system without shock waves and strong discontinuities. Therefore, the FFT scheme with higher-order smoothing factor, σ_4, is used throughout our simulations.

For comparisons, we verify the proposed FFT algorithm with the same problem described in Fig. 1 and display variations of density $\Delta \rho(t)$, momentum $\Delta(\rho u)(t)$, and total energy density $\Delta e_{\text{tot}}(t)$ in Fig. 2, respectively. It is observed that, when the FFT scheme with σ_4 is adopted, variations of density and momentum nearly decrease to machine accuracy. For $\Delta e_{\text{tot}}(t)$, it oscillates at the beginning then goes to nearly a constant. Behaviors of $\Delta e_{\text{tot}}(t)$ can be interpreted as follows. At the beginning of phase separation, the fluids spontaneously separate into small regions with higher and lower densities, and more liquid-vapor interfaces appear. Subsequently, spatial discretization errors induced by the interfaces (density gradients) arrive at their maxima, accounting for the initial oscillations. As time evolves further, under the action of surface tension, the total liquid-vapor interface length decreases owing to the coalesce of small domains, then the discretization errors, together with the amplitude of $\Delta e_{\text{tot}}(t)$ decrease.
After about 10^6 time steps, the maximum derivation of e_{tol} is only about 1.5×10^{-7}, indicating that the FFT scheme has more advantage to guarantee energy conservation. Furthermore, we find that $\Delta e_{\text{tol}}(t)$ decreases with decreasing the initial random density Δ. When Δ decreases to 0.001, the maximum of $\Delta e_{\text{tol}}(t)$ will further decreases to 3×10^{-8} (not shown here). Numerically, this is owing to the smaller density gradients in the interface regions as Δ decreases that reduce the spatial discretization errors. Actually, $\Delta = 0.001$ (0.1% of the initial density) is enough to generate phase separation and is more appropriate. When Δ is large, or the initial temperature is far below the critical one, the initial state of the system is very far from the equilibrium and we may encounter large values of the fluid velocity in the early stage of simulations. Since the initial values of the velocity is zero everywhere, this process is responsible for a strong decrease of the local temperature (see Fig. 3).

Another interesting phenomenon is illustrated in Fig. 3. The mean and maximum temperatures rise sharply at the initial period of phase separation, while the minimum temperature decrease significantly at first and rise rapidly at later times. The difference between the minimum and the maximum temperatures $\Delta T = T_{\text{max}} - T_{\text{min}}$ arrives at its maximum at about $t = 0.25$. After that, ΔT decreases with time, and goes to a constant value (nearly vanishing) when $t > 8$. The reasons for behaviors of temperatures are that: at the initial stage, the potential energy $-9/8 \rho^2$, a part of the free energy, is high, so the system will
relax. During phase separation, part of the potential energy transforms into the kinetic energy, namely latent heat is locally released and conducts to the entire region. This is the main reason why temperatures are rising during simulations and the main difference from isothermal case, where latent heat is extracted from the system by fixing the temperature in all lattice nodes. Besides, viscous dissipation is another mechanism of heat generation. More precisely, heat is dissipated locally due to the friction between fluid flows when the fluid velocity is different from zero. After phase separation, interfaces forms and the fluid velocities go to zero everywhere. Then the kinetic energy transforms into thermal energy totally.

In our recent work, the FFT-TLB multiphase model has been validated successfully by two sets of typical benchmarks [42]. Simulation results demonstrated that the FFT-TLB model can capture both qualitatively and quantitatively the interface properties in accord with the VDW theory. Besides that, with the new model, spurious velocities near the liquid-vapor interface are significantly reduced, and, as a result, phase diagrams of the liquid-vapor system obtained from simulations are more consistent with that from theoretical calculations.

IV. SIMULATION RESULTS, RHEOLOGICAL AND MORPHOLOGICAL CHARACTERIZATIONS

When a system is suddenly quenched into the two-phase region, the original single phase becomes unstable, then phase separation occurs through the formation and the subsequent growth of domains. Eventually, the system arrives at a new equilibrium state. In the past few decades, this phenomenon has been extensively studied [6, 16, 17, 27, 34, 35, 60–65], by theoretical derivations, experiments, and numerical simulations. Among others, the most significant finding is the domain growth law, which states that, at late times, the characteristic domain size $R(t)$ grows as a power with time t, $R(t) \sim t^\alpha$. The value of exponent α is believed to be universal, depending only on the growth mechanism, and has been well known in isothermal system, $\alpha = 1/2$ and $2/3$ for high and lower viscosities, respectively [27, 61, 62, 65]. However, behaviors of phase separation with temperature field are far from clear. The aim of this section is to clarify effects of temperature dynamics on both the rheological and morphological behaviors of phase separation.
A. Patterns for isothermal and thermal cases

Simulations for isothermal and thermal phase separations are performed on lattices with $N_x \times N_y = 512 \times 512$ nodes. PBC are imposed on both directions. Here, we only consider symmetric mixtures, namely we set liquid:vapor mass fractions to 1:1, for which at late times these domains will form a bicontinuous structure with sharp interfaces [66, 67]. Therefore, the initial conditions are set as follows:

$$(\rho, u_x, u_y, T) = (1.042 + \Delta, 0.0, 0.0, 0.9),$$

where 1.042 is the mean density of liquid and vapor at $T = 0.9$, and Δ is a random density noise with an amplitude of 0.001. Parameters are set to be $\tau = 10^{-3}$, $\Delta t = 10^{-5}$, $K = 5 \times 10^{-6}$, $\Delta x = \Delta y = 1/256$, and others are unchanged. Density distribution patterns at representative times $t = 0.4, 1.0, 2.5,$ and 8.0 are shown in Fig. 4 for isothermal case (see Figs. 4I(a)-I(d)) and thermal case (see Figs. 4II(a)-II(d)). For the isothermal case, after about 25000 time steps, the fluid has begun to separate spontaneously into small regions with higher and lower densities. As time evolves, the small domains merge with each other and larger domains appear under the action of surface tension at $t = 0.4$. From patterns at $t = 0.4, 1.0,$ and 2.5, as excepted, higher and lower densities domains evolve in an equal way, leading to an interwoven bicontinuous pattern. The growth of domains continues at $t = 8.0$, and, eventually, the system will reach a completely separated state for a large enough time.

Compared with configurations in the isothermal case, several distinctive differences can be found in the thermal case: (i) the average size of domains in each case tends to increase in an effort to decrease the interfacial energy, while at the same moment, in the isothermal case, it is bigger than its counterpart, which demonstrates that the domains grow faster in this case; (ii) for the isothermal case, interfaces between vapor and liquid are much clearer, which shows that the interfaces in this case are much narrower; (iii) density difference between the maximum and minimum densities $\Delta \rho = \rho_{\text{max}} - \rho_{\text{min}}$ in the isothermal case is much larger than the one in thermal case, indicating that phase separation in this case is deeper; (iv) contrary to interpenetrating bicontinuous structures formed in the isothermal case, isolated and nearly circle vapor droplets suspending in the liquid phase are appeared in thermal case. These differences are interesting and meaningful. In the following subsections, we will analysis these differences with the help of rheological description and Minkowski functionals.
FIG. 4: (Color online) Snapshots in two processes of phase separations. The temperature is fixed at $T = 0.9$ in process I. See Figs. I(a)-I(d). The initial temperature in process II is $T = 0.9$. See Figs. II(a)-II(d). The relaxation time is fixed at $\tau = 10^{-3}$ in the two processes. The time $t = 0.4$, 1.0, 2.5, and 8.0 in (a), (b), (c), and (d), respectively. The lattice size here is 512×512.
FIG. 5: (Color online) Spherically averaged structure factor $S(k, t)$ versus wave number k for the procedures shown in Fig. 4. Figure (a) is for the isothermal case and Fig. (b) is for the thermal case. In each figure, $S(k, t)$ at times $t = 0.25, 0.3, 0.5, 0.6, \text{ and } 0.8$ are shown in the inset, while those at times $t = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, \text{ and } 8.0$ are shown in the main frame.

B. Rheological characterization

In order to further quantify the results shown in Fig. 4, time evolution of the circularly averaged structure factor $S(k, t)$ is employed, which is defined as the Fourier transform of the density-density correlation function. For a discrete system, it can be stated as

$$S(k, t) = \left\langle \sum_{\mathbf{x}} (\rho(\mathbf{x}, t) - \bar{\rho}(t)) e^{i\mathbf{k} \cdot \mathbf{x}} \right\rangle / N, \quad (25)$$

where $\mathbf{k} = (2\pi/N)(m\hat{i} + n\hat{j})$ is the wave vector in the reciprocal space with $m = 1, 2, \ldots N_x$, $n = 1, 2, \ldots N_y$. $S(k, t)$ is further smoothed by averaging over an entire shell in k space to obtain the circularly averaged structure factor

$$S(k, t) = \sum_k S(k, t) / \sum_k 1. \quad (26)$$

In Fig. 5, we present the time evolutions of $S(k, t)$ for isothermal case in (a) and thermal case in (b), respectively. All curves in Fig. 5 can be roughly divided into two different time regimes: the SD stage and the domain growth (DG) stage. From Fig. 5(a), at early times, such as $t = 0.25 \text{ and } 0.3$, we observe that the peak in $S(k, t)$ increases in height without the position of the peak changing in time. This behavior is indicative of the initial sharpening
of domains, without detectable phase separation taking place. In the second stage, the peak of $S(k, t)$ increases in height and shifts to smaller wave number, indicating the coarsening of domains. At $t = 0.5, 0.6,$ and 0.8, we observe the appearance of a second peak in $S(k, t)$, which merges with the main peak later on. This behavior manifests that there is more than one typical domain size at that moment. From $t = 6.0$ onwards, the peak seems to stop drifting to the left but only oscillates in amplitude, which means that the finite size effects are pronounced.

Similar results can also be found in the thermal case. Nevertheless, careful comparisons of these two cases will show you some distinctions: (i) the first stage continues up to $t = 0.8$, which is longer than the isothermal case. The existence of temperature field significantly decelerate the speed of domain formation, an effect which has also been seen in Fig. 4; (ii) over the period from $t = 4.0$ to $t = 6.0$, the peak of $S(k, t)$ only varies in height but very little in wave number. This phenomenon is usually observed at the initial stage of phase separation, leading us to think that the system has steered to a new SD stage before reaching the final late time stage. Essentially, during this stage, the dynamics is mainly making the interfaces thinner while the average domain sizes barely change; (iii) at the same time, the peak of $S(k, t)$ in isothermal case is much larger than the one in thermal case, but the corresponding wave number is much smaller, which demonstrate that both the density difference between the two phases and the characteristic domain size are much larger in the isothermal case. These results agree with the information obtained from Fig. 4.

Next, the characteristic domain size $R(t)$ is used to further describe the kinetic process quantitatively. $R(t)$ is derived from the inverse first moment of $S(k, t)$,

$$R(t) = 2\pi \sum_k S(k, t)/\sum_k kS(k, t).$$

(27)

In Fig. 6, we show the growth of $R(t)$ versus iterations for, $\tau = 10^{-3}$ in (a), and $\tau = 10^{-4}$ in (b), in a log-log scale. In each figure, the top and bottom scatter symbols correspond to the simulation results for the isothermal and thermal cases, respectively. Straight lines in each plot are linear fits of the simulation results. Discarding both the early time transient regime and the very late time regime, where finite-size effects are pronounced, we find, for isothermal case, the behaviors of $R(t)$ during the DG stage are $R(t) \sim t^{0.52}$ for $\tau = 10^{-3}$, and $R(t) \sim t^{0.64}$ for $\tau = 10^{-4}$. These results are in good agreement with the generally accepted theoretical predictions of $R(t) \sim t^{1/2}$ and $R(t) \sim t^{2/3}$ at high and low viscosities.
FIG. 6: (Color online) Domain growths in isothermal and thermal systems with $\tau = 10^{-3}$ in (a) and $\tau = 10^{-4}$ in (b). The squares and diamonds are for results from FFT-TLB simulations. Lines are shown in each plot to guide the eyes.

by the Allen-Cahn theory \[68\] and LB models \[27, 61, 62, 65\]. But for the thermal case, the growth exponents decrease to 0.46 for $\tau = 10^{-3}$, and 0.58 for $\tau = 10^{-4}$, respectively. This can be regarded as another proof for our conclusion, which states that domains grow faster at lower temperature. In addition to the above differences, another piece of information also deserves our attention. For the isothermal case with $\tau = 10^{-3}$, the SD stage lasts about for 25000 time steps (see the upper horizontal solid line in Fig. 6(a)). Nevertheless, for the thermal case, it lasts for 80000 time steps (see the lower horizontal dash dot line in Fig. 6(b)). Similar results can also be found in the case with $\tau = 10^{-4}$. These findings suggest that, compared to the isothermal case, the SD stage is significantly prolonged by the existence of temperature field. In the following part, the morphological functionals are used to verify similarities and differences between the two cases, and the corresponding physical interpretations are given.

C. Morphological characterization and physical interpretations

1. Similarities and differences

To perform Minkowski functionals analysis for the density map, we choose a density threshold ρ_{th} and pixelize the map into high density regions (with $\rho > \rho_{th}$) and low density
regions (with \(\rho < \rho_{th} \)). Figure 7 shows the time evolutions of Minkowski measures for the procedures shown in Fig. 4. From Fig. 7I(a) for the isothermal case, we see that, when \(\rho_{th} = 0.40 \), the white area fraction \(A \) keeps nearly 1.0 during the whole procedure shown here, which means no local density is lower than 0.40 in the system up to \(t = 8.0 \). However, when the threshold increases to 1.70, the white area fraction \(A \) keeps nearly zero during the whole process. Thus, no local density is higher than 1.70 in the system. As a direct
consequence of SD, A increases with time t when $\rho_{th} > 1.0$, while it decreases when $\rho_{th} < 1.0$. Consequently, most curves (except for the uppermost curve for $\rho_{th} = 0.40$ and the lowermost curve for $\rho_{th} = 1.70$) toward the horizontal central line from about $t = 0.25$. Afterwards, at the DG stage, the curve for $\rho_{th} = 1.05$ (mean density of the system) overlaps with the horizontal central line and other curves are symmetric to it. The outer two curves are for the cases with $\rho_{th} = 0.45$ (the red ball) and $\rho_{th} = 1.60$ (the dark yellow hexagon), respectively. We mention that these two densities are just the equilibrium densities of vapor and liquid at $T = 0.9$. Obviously, the outer two curves mark the reach of the correct equilibrium state. As time evolves, proportion between the two curves decreases, as a consequence of the coarsening of the high/low density domains. Moreover, the proportion between any two curves can be conveniently obtained from Fig. 7I(a).

Now we go to the second and the third Minkowski measures, the boundary length L and Euler characteristic χ. As shown in Fig. 7I(b), for each case, L increases sharply to its maximum at about $t = 0.25$, then decreases slowly. The first increase and the subsequent decrease in L are due to the appearance of the liquid-vapor interface during the SD stage and the following decrease in interfacial area during the DG stage, respectively. At the SD stage, when $\rho_{th} < 1.0$, χ decreases to be evidently less than zero, which indicates that the number of domains with $\rho < \rho_{th}$ increases. On the contrary, when $\rho_{th} > 1.0$, χ increases to be evidently larger than zero, which indicates that the number of domains with $\rho > \rho_{th}$ increases. These results show that the phase separation process is in progress. We mention that, at about $t = 0.25$, the case with $\rho_{th} = 0.45$ has the minimum Euler characteristic and the case with $\rho_{th} = 1.60$ has the maximum one, but the two cases get the minimum boundary length L. These results indicate the following information: for the first case, many scattered black domains with $\rho_{th} < 0.45$ appear in the high density background with $\rho_{th} > 0.45$, while for the second case, the high density domains with $\rho_{th} > 1.60$ are scattered in the low density background with $\rho_{th} < 1.60$. These domains are so small that the total boundary length is nearly zero. From Figs. 4I(c)-I(d), we observe that the density maps show highly connected structures with nearly equal and very small numbers of black and white domains. Hence, the Euler characteristic χ keeps close to zero in the DG stage (see Fig. 7I(c)).

From Figs. 7II(a)-II(c), for thermal case, one can also distinguish two different stages. At early times ($t < 0.8$), due to the growth of density fluctuations and the build up of interfaces, the density area fraction A belonging to the liquid phase increases, while the one belonging
to the vapor phase decreases. The changes also result in the increase in boundary length L (see Fig. 7II(b)). The appearance of liquid-vapor interfaces has an additional effect. They separate the system with disconnected minority domains. As a result, the absolute value of Euler characteristic χ increases in the SD stage. In contrast to the first stage, as a direct consequence of the coalescence of relatively small domains, the characteristic length scale increases but the number of domains decreases, therefore, the DG stage ($t > 0.8$) is characterized by the decrease in L and χ.

In the end of the second stage, an interesting phenomenon occurs. There are two small proportions for $\rho < 0.65$ and $\rho > 1.35$ during the second stage and reach their maxima at about $t = 3.0$ (see Fig. 7II(a)), but are gradually diminishing afterwards. This phenomenon shows that a recombination process is taking place owing to the increasing temperature that interrupts the original process and forces the system evolves to a new equilibrium state decided by the variable temperature.

Compared with figures shown in Fig. 7, main differences between these two cases are analysed and listed as follows: (i) for isothermal case, the domain with a density between $[0.45, 1.60]$ only accounts for 20% at $t = 4$, and decreases further with time. But for thermal case, the domain with a density between $[0.75, 1.25]$ reaches to 50% of the whole domain at $t = 8$. The difference demonstrates that the separation depth in thermal case is much shallower, while the interface width is much wider, which can be clearly seen in Fig. 7II(b); (ii) the maxima of L and χ can be used to mark the transition from the SD stage to DG stage. The transition time for isothermal case is about 0.25, but for thermal case, it increases to about 0.8. The result further confirms our conclusion that: phase separation occurs faster in the isothermal case. From another point of view, this conclusion can also be obtained from the $A(t)$ curve. For most cases, after the initial quick changing period, the changing of A with time t shows a slowing down. The slope of the $A(t)$ curve corresponds approximately to the speed of phase separation. For the same density threshold, the slopes of $A(t)$ curves in the two cases are quite different. For example, when $\rho_{th} = 0.65$, the $A(t)$ curve decreases sharply in isothermal case, while for the thermal case, it decreases much more slowly. So we can say that, in isothermal case, the process of phase separation is much faster; (iii) connectivity of patterns in isothermal case is much better than that in thermal case. This feature can be achieved from the evolution of χ. χ decreases enormously and almost vanishes at about $t = 0.5$ in the isothermal case, but it is negative for the vapor
structure until about $t = 6.0$ in the thermal case, which is consistent with density patterns in Fig. 4 (see Fig. 4II(d)).

2. **Physical interpretations of the prolonged SD stage and the lower growth exponent in thermal case: effects of temperature and viscosity**

In Sec. IV, we find, compared to isothermal case, the SD stage is significantly prolonged and the growth exponent is lowered in thermal case. In this subsection, effects of temperature and viscosity are investigated to provide proper interpretations.

Firstly, in Fig. 8, we display the density and the corresponding temperature gradient distributions at two representative times for the thermal case with $\tau = 10^{-3}$. To illustrate the structure of the temperature gradient fields clearly, the lengths of the vectors are multiplied by 400 in (a) and 4000 in (b), respectively. As shown in Fig. 8(a), many tiny droplets and bubbles appear in the system, and the temperature gradient vectors are toward the droplets. Thus, the local temperatures within droplets are slightly higher than the mean temperature of the system, while the local temperatures within bubbles are slightly lower than the mean temperature. With the separating process, the local temperatures in the two phases deviate more from the mean temperature and an overshoot phenomenon is observed. This procedure
FIG. 9: (Color online) Density (a) and enthalpy (b) distributions at $t = 6.0$ for the thermal case with $\tau = 10^{-3}$.

continues up to an extent, after which the local phases with high (low) temperatures partly begin to transform back from liquid (vapor) to vapor (liquid). In this way, both the local high temperatures and low temperatures approach the mean temperature, and the system approaches thermodynamical equilibrium quickly at lower Pr number ($\text{Pr} = 0.1$ for $\tau = 10^{-3}$). This process is evident by Fig. 8(b), where there is no determinate relationship between temperature gradients and liquid (vapor) domains. Moreover, the temperature difference between the highest and lowest decreases to 0.014. The system approaches to thermodynamical equilibrium so quickly that the temperature difference becomes so small during the phase separation process. Therefore, in this case, temperature can not be regarded as an ideal physical quantity to describe this process.

In another way, we employ enthalpy and latent heat to describe this process, and the enthalpy is defined by

\[
h = \epsilon + P/\rho, \tag{28}\]

where $\epsilon = \rho T - 9/8\rho^2 + K |\nabla \rho|^2/2$ is the internal energy density including the gradient contribution. The difference of enthalpy between two states determines the latent heat L_h

\[
L_h = h_2 - h_1. \tag{29}\]

Figure 9 shows the density and enthalpy distributions at $t = 6.0$ for the thermal case with $\tau = 10^{-3}$. Comparison of the two figures illustrates that the enthalpy of vapor is relatively
higher than that of liquid. In order to study the dynamic characteristics of the pattern, we show the spatial distribution of latent heat $L_h = h_{t=8.0} - h_{t=3.0}$ in Fig. 10(a) and density change $\Delta \rho = \rho_{t=8.0} - \rho_{t=3.0}$ between these two states in Fig. 10(b). Careful observations between these two figures suggest that when the latent heat L_h is positive, the corresponding density difference $\Delta \rho$ is negative. Droplets (Bubbles) absorb latent heat and evaporation occur simultaneously. Subsequently, the density decreases. A negative L_h corresponds to an increase of density, then the droplets (bubbles) have a coagulation trend. It should be noted that, owing to the transformation of potential energy into thermal energy, the total latent heat is released during the whole process. The released heat conducts over the entire region rapidly at low Pr number, and increases the mean temperature of the system (see Fig. 11). While in isothermal system, latent heat is extracted from this system by fixing the temperature in all lattice nodes.

As well, another piece of information can be obtained from Fig. 11. The mean temperature scarcely grows at the first stage due to no detectable phase separation is taking place and no remarkable latent heat is released. Subsequently, in the next stage, the temperature rapidly increases to 0.97 and, later, keeps almost zero growth. Afterwards, under the almost unchanged temperature, phase separation evolves in accord with the isothermal case.

So far, we have not discussed in detail the surface tension. For a planar interface, it can
be computed from the following formula \[69–71\]:

\[
\sigma = K \int_{-\infty}^{\infty} \left(\frac{\partial \rho}{\partial z} \right)^2 dz, \tag{30}
\]

or from the VDW theory \[72–74\]

\[
\sigma = \left(\frac{a K}{b^2} \right)^{1/2} \sigma^* = \left(\frac{2 a K}{b^2} \right)^{1/2} \int_{\rho^t}^{\rho^*} \left[\Phi^*(\rho^*) - \Phi^*(\rho^t) \right]^{1/2} d\rho^*, \tag{31}
\]

where

\[
\Phi^* = \rho^* \xi - \rho^* T^* [\ln(1/\rho^*) + 1] - \rho^2, \tag{32}
\]
\[\xi = T^* \ln\left(\frac{1}{\rho^*_s} - 1\right) - \rho^*_s T^* \left(\frac{1}{1 - \rho^*_s} + 2\rho^*_s\right), \quad s = v, l \]

(33)

\(\rho^* = \rho b, \quad T^* = bT/a \), with \(a = 9/8 \) and \(b = 1/3 \) in this model. It is pointed out that Eq. (31) is especially convenient, since it can be evaluated directly without determining the density profile. Now, we calculate surface tension with Eq. (30) for both the isothermal and thermal cases from profiles along the \(x \)-axis and, at the same time, calculate theoretical values from Eq. (31). These results are plotted in Fig. 12. It is shown that, in the isothermal case, after the formation of liquid-vapor interface, the surface tension keeps nearly a slightly oscillating constant around the exact value. While in thermal case, the surface tension is much smaller than the theoretical one before interfaces are well formed (before the mean temperature reach to 0.96). After that, it decreases obviously with the increase of temperature, and can be verified in the following form:

\[\sigma = \sigma_{0.9} \left(\frac{T_c - T}{T_c - 0.9}\right)^{3/2}, \]

(34)

where \(\sigma_{0.9} \) is the surface tension at \(T = 0.9 \). The increasing temperature lowers the density gradient, as well as the surface tension, which is the driving force for diffusive growth. As a result, domains grow more slowly than in the isothermal case.

Essentially, during the whole process, compared to the isothermal case, two competition mechanisms exist. The first one is heat generation and conduction mechanism, or temperature rising mechanism. The release of latent heat results in a rising temperature and the rising temperature results in a new dependence of pressure-density. In other words, it leads to a new local mechanical balance. The second one is the hydrodynamic flow generation and development mechanism, or liquid-vapor equilibrium mechanism, decided by viscosity, diffusivity of the fluid, etc. They compete and influence with each other, deciding the finical morphology jointly.

Besides the temperature effects, we now consider how the hydrodynamic flows influence both the morphology of the phase separating system and the growth exponent. Figure 13 shows the time evolution of the high velocity \(|u| \) area fraction for the procedures shown in Fig. 4. From it, also, two stages can be found, corresponding to the nearly-zero value of white area fraction for all \(|u|_{th} \), the rapidly increase and the subsequent slowly decrease. For isothermal case, \(|u| \in [0, 0.09] \), while for thermal case, \(|u| \in [0, 0.02] \). This implies that velocities are not only damped by viscosity but also by the rising temperature. The maximum velocity in the isothermal case can reach to 0.09 or even higher. Consequently, in contrast
FIG. 13: (Color online) High flow velocity area fraction A versus time t for the procedures shown in Fig. 4. Figure (a) is for the isothermal process and Fig. (b) is for the thermal case.

FIG. 14: (Color online) High flow velocity area fraction A versus time t for two phase separation procedures. Figure (a) is for the isothermal process and Fig. (b) is for the thermal case. Here, the relaxation time is set to be $\tau = 10^{-4}$.

to thermal case, hydrodynamic effects can not be totally neglected in the isothermal case. The appearance of larger flow velocities offers more opportunities for coalescence between domains. Under the action of diffusion and hydrodynamic flows, a faster DG process is taking place, and a bigger growth exponent can be observed. Figure 14 shows the same trend of the hydrodynamic flows, when τ decreases to 10^{-4}. Due to the lower viscosity, velocities are more sufficiently developed. Figures 13 and 14 demonstrate that, in the thermal case, compared to the thermodynamic and diffusion mechanisms, hydrodynamic flows are less important than that in the isothermal case and, therefore, can not be regarded as a dominant factor governing the growth exponent.
FIG. 15: (Color online) Time evolution of each part of total energy for the procedures shown in Figs. 4II(a)-II(d).

In Fig. 15, we display the time evolution of each part of total energy for the procedures shown in Figs. 4II(a)-II(d), which presents a clear image about energy evolution during phase separation. It is found that, ρT and $-9/8\rho^2$ are the main parts of total energy, and evolve in the opposite way. Kinetic energy and surface energy are much smaller than the two former ones. The maximum of $K|\nabla \rho|^2/2$ corresponds to the appearance of nuclei and formation of small domains. Afterwards, it decreases gradually due to the increasing temperature and the decreasing interfacial area. The macroscopic kinetic energy $\rho u^2/2$ is so small that the viscous dissipation induced by it can be neglected. Therefore, in thermal case, compared to latent heat, the effects of kinetic energy on temperature are less important.

V. CONCLUSIONS AND DISCUSSIONS

Thermal and isothermal symmetric liquid-vapor separations are simulated via the FFT-TLB method. Structure factor, domain size, and Minkowski functionals are used to describe the density and velocity fields and, at the same time, to understand the configurations and the kinetic processes. Simulations and physical analysis present the following scenario for the thermal phase separation. When the separation starts, many tiny droplets and bubbles appear in the system. The local temperatures within droplets are slightly higher than the one within bubbles. With separating, neighboring droplets (bubbles) coalesce and the mean
domain size increases. The local temperatures in the two phases deviate more from the mean temperature. This procedure continues up to a stage, after which the local phases with high (low) temperatures partly begin to transform back from liquid (vapor) to vapor (liquid). In this way, both the local high temperatures and low temperatures approach the mean temperature, and the system approaches thermodynamical equilibrium.

Simulation results also indicate that the phase separation in thermal and isothermal cases can be generally divided into two stages: the SD stage and the DG stage. Different from the isothermal case, the SD stage is significantly prolonged, and different rheological and morphological behaviors are induced by the variable temperature field in the thermal case. After the transient procedure, both the thermal and isothermal separations show power-law scalings in the domain growth; while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while, the thermal system presents more likely configurations with scattered bubbles.

Compared with the isothermal case, heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Latent heat, is released during the separating process, which is the main reason for the rising temperature. The changing of local temperature results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium more quickly. The increasing local temperature has an additional effect. It makes the interfacial stress lower. This behavior in simulations is quantitatively verified by the theoretical formula, $\sigma = \sigma_0\left[\left(\frac{T_c - T}{T_c - T_0}\right)\right]^{3/2}$, where T_c is the critical temperature and σ_0 is the interfacial stress at a reference temperature T_0. Besides thermodynamics, we find that the local viscosities also influence the morphology of the phase separating system. For both the isothermal and thermal cases, growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with isothermal case, the local flow velocities in thermal case not only depend on viscosity but also temperature. In future studies, we will increase the depth of separation which the FFT-TLB model can undergo, and investigate quantitatively how the Prandtl number affects the separation procedure.
Acknowledgements

The authors sincerely thank the anonymous reviewer for her/his valuable comments and suggestions, and we warmly thank Dr. Victor Sofonea for many instructive discussions, and also Dr. Qinli Zhang, and Dr. Bohai Chen for many useful suggestions. AX and GZ acknowledge support of the Science Foundations of LCP and CAEP [under Grant Nos. 2009A0102005, 2009B0101012], National Natural Science Foundation of China [under Grant No. 11075021]. YG and YL acknowledge support of National Basic Research Program (973 Program) [under Grant No. 2007CB815105], National Natural Science Foundation of China [under Grant No. 11074300], Fundamental research funds for the central university [under Grant No. 2010YS03], Technology Support Program of LangFang [under Grant Nos. 2010011029/30/31], and Science Foundation of NCIAE [under Grant No. 2008-ky-13].

[1] C. Brennen, *Fundamentals of Multiphase Flow* (Cambridge University Press, Cambridge, 2005).
[2] V. Starikovicius, Berichte des Fraunhofer ITWM, Nr 55 (2003).
[3] R. Held and M. Celia, Adv. Water Resour. 24, 325 (2001).
[4] J. Horbach and S. Succi, Phys. Rev. Lett. 96, 224503 (2006).
[5] Z. Guo and T. Zhao, Phys. Rev. E 68, 035302(R) (2003).
[6] S. Succi, *The Lattice Boltzmann Equation for Fluid Dynamics and Beyond* (Oxford University Press, New York, 2001).
[7] S. Succi, M. Vergassola, and R. Benzi, Phys. Rev. A 43, 4521 (1991).
[8] V. Sofonea and W. Früh, Eur. Phys. J. B 20, 141 (2001).
[9] M. Watari and M. Tsutahara, Phys. Rev. E 67, 036306 (2003).
[10] A. Xu, Phys. Rev. E 71, 066706 (2005); Europhys. Lett. 71, 651 (2005).
[11] F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett. 90, 54003 (2010); F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A 375, 2129 (2011).
[12] G. Yan, J. Comput. Phys. 161, 61 (2000); J. Zhang, G. Yan, and X. Shi, Phys. Rev. E 80, 026706 (2009).
[13] X. He, S. Chen, and R. Zhang, J. Comput. Phys. 152, 642 (1999).
[14] Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E 83, 056704 (2011).
[15] A. Gunstensen, D. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A 43, 4320 (1991).
[16] X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993); ibid. 49, 2941 (1994).
[17] M. Swift, W. Osborn, and J. Yeomans, Phys. Rev. Lett. 75, 830 (1995); G. Gonnella, E. Orlandini, and J. Yeomans, ibid. 78, 1695 (1997); A. Wagner and J. Yeomans, ibid. 80, 1429 (1998); D. Marenduzzo, E. Orlandini, and J. Yeomans, ibid. 92, 188301 (2004).
[18] A. Briant, A. Wagner, and J. Yeomans, Phys. Rev. E 69, 031602 (2004).
[19] H. Huang, D. Thorne, M. Schaap, and M. Sukop, Phys. Rev. E 76, 066701 (2007).
[20] J. Hyväröma, P. Raiskinmäki, A. Jäberg, A. Koponen, M. Kataja, and J. Timonen, Phys. Rev. E 73, 036705 (2006).
[21] J. Hyväröma, T. Turpeinen, P. Raiskinmäki, A. Jäberg, A. Koponen, M. Kataja, and J. Timonen, Phys. Rev. E 75, 036301 (2007).
[22] H. Xi and C. Duncan, Phys. Rev. E 59, 3022 (1999).
[23] A. Kalarakis, V. Burganos, and A. Payatakes, Phys. Rev. E 65, 056702 (2002).
[24] K. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); Phys. Fluids 17, 122105 (2005).
[25] K. Furtado and J. Yeomans, Phys. Rev. E 73, 066124 (2006).
[26] A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E 67, 056105(2003); 74, 011505 (2006); Physica A 331, 10 (2004); 344, 750 (2004); 362, 42 (2006); A. Xu, G. Gonnella, A. Lamura, G. Amati, and F. Massaioli, Europhys. Lett. 71, 651 (2005).
[27] V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E 70, 046702 (2004); A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Comm. Comp. Phys. 7, 350 (2010).
[28] X. He and G. Doolen, J. Stat. Phys. 107, 309 (2002).
[29] X. Shan, Phys. Rev. E 73, 047701 (2006).
[30] P. Yuan and L. Schaefer, Phys. Fluids 18, 042101 (2006).
[31] T. Lee and P. Fischer, Phys. Rev. E 74, 046709 (2006).
[32] T. Seta and K. Okui, J. Fluid Sci. Technol. 2, 139 (2007).
[33] M. Sbragaglia, R. Benzi, L. Biferale, X. Shan, H. Chen, and S. Succi, J. Fluid Mech. 628, 299 (2009).
[34] A. Onuki, *Phase Transition Dynamics* (Cambridge University Press, Cambridge, 2002).
[35] A. Onuki, Phys. Rev. Lett. 94, 054501 (2005); Phys. Rev. E 75, 036304 (2007); R. Teshigawara
and A. Onuki, Europhys. Lett. 84, 36003 (2008); Phys. Rev. E 82, 021603 (2010).

[36] R. Zhang and H. Chen, Phys. Rev. E 67, 066711 (2003).

[37] P. Yuan, Ph.D. thesis, University of Pittsburgh, 2005.

[38] F. Alexander, S. Chen, and J. Sterling, Phys. Rev. E 47, R2249 (1993).

[39] X. Shan, X. Yuan, and H. Chen, J. Fluid Mech. 550, 413 (2006).

[40] P. Philippi, L. Hegele, L. Santos, and R. Surmas, Phys. Rev. E 73, 056702 (2006); D. Siebert, L. Hegele, R. Surmas, L. Santos, and P. Philippi, Int. J. Mod. Phys. C 18, 546 (2007); R. Surmas1, C. Pico Ortiz, and P. Philippi, Eur. Phys. J. Spec. Top 171, 81 (2009).

[41] G. Gonnella, A. Lamura, and V. Sofonea, Phys. Rev. E 76, 036703 (2007).

[42] Y. Gan, A. Xu, G. Zhang, and Y. Li, arXiv:1011.3582v3 (2011).

[43] H. Minkowski, Math. Ann. 57, 447 (1903).

[44] A. Rosenfeld and A. Kak, Digital Picture Processing (Academic Press, New York, 1976).

[45] K. Mecke, Phys. Rev. E 53, 4794 (1996).

[46] A. Xu, G. Zhang, X. Pan, P. Zhang, and J. Zhu, J. Phys. D 42, 075409 (2009); A. Xu, G. Zhang, Y. Ying, P. Zhang, and J. Zhu, Phys. Scri. 81, 055805 (2010).

[47] A. Aksimentiev, K. Moorthi, and R. Holyst, J. Chem. Phys. 112, 1 (2000).

[48] K. Mecke and V. Sofonea, Phys. Rev. E 56, R3761 (1997); V. Sofonea and K. Mecke, Eur. Phys. J. B 8, 99 (1999).

[49] H. Hadwiger, Abh. Math. Sem. Univ. Hamburg 20, 136 (1956); Math. Z. 71, 124 (1959).

[50] H. Zhang and M. Shen, Computational Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods (National defense industry Press, Beijing, 2003) (in Chinese).

[51] G. Jiang and C. Shu, J. Comput. Phys. 126, 202 (1996).

[52] K. Liang, Methods of Mathematical Physics (Higher Education Press, Beijing, 1998) (in Chinese).

[53] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, London, 1987).

[54] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (Adam Hilger, Bristol, 1991).

[55] J. Boyd, Chebyshev and Fourier Spectral Methods (Dover Publications, New York, 2000).

[56] S. Orszag, Phys. Rev. Lett. 26, 1100 (1971).

[57] M. Hussaini, D. Kopriva, and M. Salas, T. Zang, AIAA J. 23, 64 (1985).
[58] Y. Sun, Y. Zhou, S. Li, and G. Wei, J. Comput. Phys. 214, 466 (2006).
[59] C. Shu, NASA/CR-97-206253 ICASE Report No. 97-65 (1997).
[60] A. Bray, Adv. Phys. 43, 357 (1994).
[61] F. Alexander, S. Chen, and D. Grunau, Phys. Rev. B 48, 634 (1993).
[62] W. Osborn, E. Orlandini, M. Swift, J. Yeomans, and J. Banavar, Phys. Rev. Lett 75, 4031 (1995).
[63] D. Grunau, T. Lookman, S. Chen, and A. Lapedes, Phys. Rev. Lett. 71, 4198 (1993).
[64] S. Chen and T. Lookman, J. Stat. Phys. 81, 223 (1995).
[65] J. Yeomans, Ann. Rev. Comp. Phys. VII, 61 (2000).
[66] V. Kendon, J. Desplat, P. Bladon, and M. Cates, Phys. Rev. Lett. 83, 576 (1999).
[67] N. González-Segredo, M. Nekovee, and P. Coveney, Phys. Rev. E 67, 046304 (2003).
[68] S. Allen and J. Cahn, Acta Metall. 27, 1085 (1979).
[69] J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).
[70] T. Inamuro, N. Konishi, and F. Ogino, Comput. Phys. Commun 129, 32 (2000).
[71] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi, J. Comput. Phys. 198, 628 (2004).
[72] V. Bongiorno and H. Davis, Phys. Rev. A 12, 2213 (1975).
[73] B. McCoy and H. Davis, Phys. Rev. A 20, 1201 (1979).
[74] E. Kikkinides, A. Yiotis, M. Kainourgiakis, and A. Stubos, Phys. Rev. E 78, 036702 (2008).