Observation of the critical end point in the phase diagram for hot and dense nuclear matter

Roy A. Lacey1

1Depts. of Chemistry & Physics, Stony Brook University, NY 11794

(Dated: December 9, 2014)

Excitation functions for the Gaussian emission source radii difference \((R_{\text{out}}^2 - R_{\text{side}}^2)\) obtained from two-pion interferometry measurements in Au+Au \((\sqrt{s_{NN}} = 7.7 - 200\text{ GeV})\) and Pb+Pb \((\sqrt{s_{NN}} = 2.76\text{ TeV})\) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential \((T, \mu_B)\) plane of the nuclear matter phase diagram. A Finite-Size Scaling (FSS) analysis of these data indicate a second order phase transition with the estimates \(T^{\text{cep}} \sim 165\text{ MeV}\) and \(\mu_B^{\text{cep}} \sim 95\text{ MeV}\) for the location of the critical end point. The critical exponents \((\nu \sim 0.66\) and \(\gamma \sim 1.2)\) extracted via the same FSS analysis, places the CEP in the 3D Ising model universality class.

PACS numbers: 25.75.Dw

One of the most fundamental phase transitions is that between the hadron gas and the Quark Gluon Plasma (QGP). This Deconfinement Phase Transition (DPT) is usually depicted in the plane of temperature vs. baryon chemical potential \((T, \mu_B)\) in the conjectured phase diagram for Quantum Chromodynamics (QCD) [1,4]. The detailed character of this QCD phase diagram is not known and current theoretical knowledge is restricted primarily to the \(\mu_B = 0\) axis.

Lattice QCD calculations indicate a crossover quark-hadron transition at small \(\mu_B\) or high collision energies \((\sqrt{s_{NN}})\) [3,4]. Similar calculations for much larger \(\mu_B\) values have been hindered by the well known sign problem [7]. However, several model approaches [8–12], as well as mathematical extensions of lattice techniques [13–16], indicate that the transition at large values of \(\mu_B\) (lower beam energies [17]) is strongly first order, suggesting the existence of a critical end point (CEP). Pinpointing the location of the phase boundaries and the CEP is central to ongoing efforts to map the QCD phase diagram and to understand the properties of strongly interacting matter under extreme conditions.

The matter produced in ultrarelativistic heavy ion collisions can serve as an important probe for the phase boundaries and the CEP [1,4]. Indeed, a current experimental strategy at the Relativistic Heavy Ion Collider (RHIC) is centered on beam energy scans which enable a search for non-monotonic excitation functions over a broad domain of the \((T, \mu_B)\)-plane. The rationale is that the expansion dynamics of the matter produced in these beam energy scans, is strongly influenced by the path of the associated reaction trajectories in the \((T, \mu_B)\)-plane. Trajectories which are close to the CEP or cross the coexistence curve for the first order phase transition, are expected to be influenced by anomalies in the dynamic properties of the medium. Such anomalies can drive abrupt changes in the transport coefficients and relaxation rates to give a non-monotonic dependence of the excitation function for the specific viscosity \(\frac{\eta}{s}\) i.e. the ratio of the shear viscosity \(\eta\) to entropy density \(s\) [18,20].

An emitting system produced in the vicinity of the CEP would also be subject to the influence of a divergence in the compressibility of the medium, resulting in a precipitous drop in the sound speed and a collateral increase in the emission duration. Such effects could also give rise to non-monotonic dependencies in the excitation functions for the expansion speed [21,22], as well as for the difference between the Gaussian emission source radii \((R_{\text{out}}^2 - R_{\text{side}}^2)\) extracted from two-pion interferometry measurements [21,22]. The latter is linked to the emission duration.

In recent work [26,27], a striking pattern of viscous damping, compatible with the expected minimum in the excitation function for \(\frac{\eta}{s}\) [19,20], was reported for Au+Au \((\sqrt{s_{NN}} = 7.7 - 200\text{ GeV})\) and Pb+Pb \((\sqrt{s_{NN}} = 2.76\text{ TeV})\) collisions. An excitation function for \((R_{\text{out}}^2 - R_{\text{side}}^2)\) extracted for central collisions from the same data sets, also indicated a striking non-monotonic pattern attributed to decay trajectories close to the CEP [27,28]. Nonetheless, it remains a crucial open question as to whether these non-monotonic patterns are indeed linked to the deconfinement phase transition and the CEP?

In the limit of an infinite volume, the deconfinement phase transition is characterized by singularities which reflect the divergences in the derivatives of the thermodynamic potential, eg., the specific heat and various susceptibilities \((\chi)\). Discontinuities in the first and second derivatives signal the first order and second order phase transitions respectively. These singularities are smeared into finite peaks with modified positions and widths, for more restricted volumes [32,33].

The correlation length \(\xi\) diverges near the transition temperature \(T^{\text{cep}}\) as \(\xi \propto |T - T^{\text{cep}}|^{-\nu}\) for an infinite volume;
\[\tau = T - T^\text{cep}. \]

However, for a system of size \(L^d \) (\(d \) is the dimension) this second order phase transition is expected to show a pseudocritical point for correlation length \(\xi \approx L \). This leads to a characteristic power law volume (\(V \)) dependence of the magnitude \((\chi^\text{max}_T) \) of the susceptibility [32];

\[
\begin{align*}
\chi^\text{max}_T(V) & \sim L^{\gamma/\nu}, \\
\delta T(V) & \sim L^{-\frac{1}{\nu}}, \\
\tau_T(V) & \sim T^\text{cep}(V) - T^\text{cep}(\infty) \sim L^{-\frac{1}{\nu}},
\end{align*}
\]

\((1)\) \((2)\) \((3)\)

where \(\nu \) and \(\gamma \) are critical exponents which characterize the divergence of \(\xi \) and \(\chi_T \) respectively. The reduction of the magnitude of \(\chi^\text{max}_T(V) \) \((\chi^\text{max}_T(V) \leq \chi^\text{max}_{cep}) \) as the volume decreases. A similar set of volume or finite-size dependencies is expected for the first order phase transition, but with unit magnitudes for the critical exponents [22]. Thus, a profitable route for locating the CEP is to search for, and utilize the characteristic finite-size scaling patterns associated with the deconfinement phase transition [32–33].

In this Letter, we use the Gaussian radii \((R_{\text{out}} \text{ and } R_{\text{side}})\) extracted from two-pion interferometry measurements, to first construct non-monotonic excitation functions for \((R^2_{\text{out}} - R^2_{\text{side}})\) as a function of collision centrality. We then use them to perform validation tests for the characteristic finite-size scaling patterns commonly associated with the deconfinement phase transition and the CEP. We find clear evidence for these scaling properties and use a Finite-Size Scaling (FSS) analysis to extract initial estimates for the \((T, \mu_B)\) location of the CEP and the critical exponents associated with it.

The data employed in the present analysis are taken from interferometry measurements by the STAR collaborations for \(\text{Au+Au} \) collisions spanning the range \(\sqrt{s_{NN}} = 7.7 - 200 \text{ GeV} [29] \), and by the ALICE collaboration for \(\text{Pb+Pb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} [30, 51] \). The STAR measurements have been reported to be in very good agreement with similar PHENIX measurements obtained at \(\sqrt{s_{NN}} = 39, 62.4 \text{ and } 200 \text{ GeV} [27, 28] \). The systematic uncertainties for these measurements are also reported to be relatively small [28–31].

The geometric quantities employed in our Finite-Size Scaling analysis were obtained from a Monte Carlo Glauber (MC-Glauber) calculation [34–36], performed for several collision centralities at each beam energy. In each of these calculations, a subset of the nucleons become participants \((N_{\text{part}})\) in each collision by undergoing an initial inelastic \(\text{N+N} \) interaction. The transverse distribution of these participants in the \(\text{X-Y} \) plane has RMS widths \(\sigma_x \) and \(\sigma_y \) along its principal axes. We define and compute \(\vec{R} \), the characteristic initial transverse size, as \(1/R = \sqrt{(1/\sigma_x^2 + 1/\sigma_y^2)} \) [37]. The systematic uncertainties for \(R \), obtained via variation of the model parameters, are less than 10\% [32–36].

Figure 1 shows a representative set of excitation functions for \((R^2_{\text{out}} - R^2_{\text{side}})\), obtained for the broad selection of centrality cuts indicated. These excitation functions, which are linked to the compressibility of the medium, all show the non-monotonic dependence previously conjectured to reflect reaction trajectories close to the critical end point [27, 28]. They also exhibit several characteristic trends: (i) the magnitude of the peaks decrease with increasing centrality or decreasing transverse size, (ii) the positions of the peaks shift to lower values of \(\sqrt{s_{NN}} \) with an increase in centrality and (iii) the width of the distributions grow with centrality. These trends are made more transparent in Fig. 2 where a direct comparison of the excitation functions for \((R^2_{\text{out}} - R^2_{\text{side}})\) is shown. We attribute these qualitative patterns to the

FIG. 1. (Color online) \(\sqrt{R^2_{\text{out}} - R^2_{\text{side}}} \) vs. \(\sqrt{s_{NN}} \) for 0-5\%, 5-10\%, 10-20\%, 30-40\%, 40-50\% and 50-60\% \(\text{Au+Au} \) and \(\text{Pb+Pb} \) collisions for \(m_T = 0.26 \text{ GeV} \) and 0.29 GeV respectively. The data are taken from Refs. [29–31].
finite-size scaling effects expected for the deconfinement phase transition (cf. Eqs. 1–3) and employ the excitation functions in a more quantitative Finite-Size Scaling (FSS) analysis as discussed below.

Validation tests for finite-size scaling were carried out for the full set of excitation functions as follows. First, we exploit the phenomenology of thermal models [38–41] for the freeze-out region and associate \((T, \mu_B)\) combinations with \(\sqrt{s_{NN}}\). Second, we associate \((R^2_{\text{out}} - R^2_{\text{side}})\) combinations with \(\sqrt{s_{NN}}\). Consequently, we assign the location of the CEP to the inverse power dependence shown in Fig. 3. The fit gives the values \(\sqrt{s_{NN}(\infty)} \sim 47.5\) GeV and \(\nu \sim 0.66\). Note that this value of \(\sqrt{s_{NN}(\infty)}\) is compatible with the striking pattern observed in the excitation function for viscous damping [26, 27]. This pattern is akin to that expected for \(\frac{\sqrt{\nu}}{\pi} (T, \mu_B)\) close to the CEP [19, 20].

Figure 4 illustrates the results of the finite-size scaling test made for the extracted peak positions \(\langle \sqrt{s_{NN}(V)} \rangle\). Panel (a) shows the peak positions vs. \(R\) while panel (b) shows the same peak positions vs. \(1/R^{1.5}\). The dashed curve in (b), which represents a fit to the data in (a) with Eq. 5, confirms the expected inverse power law dependence of these peaks on \(R\). The fit gives the values \(\sqrt{s_{NN}(\infty)} \sim 47.5\) GeV and \(\nu \sim 0.66\). Note that the trend of this dependence is opposite \(\gamma\) and \(R\).

The magnitudes of the extracted values for the critical exponents \(\nu \sim 0.66\) and \(\gamma \sim 1.2\), are different from the unit values expected for a first order phase transition [32]. However, they are compatible with the critical exponents for the second order deconfinement phase transition for the 3D Ising model universality class [12, 43]. Consequently, we assign the location of the CEP to the extracted value \(\sqrt{s_{NN}(\infty)} \sim 47.5\) GeV and use the parametrization for chemical freeze-out in Ref. [38] to ob-
tain the estimates $\mu_B^{cep} \sim 95$ MeV and $T^{cep} \sim 165$ MeV for its location in the (T, μ_B)-plane.

A crucial crosscheck for the location of the CEP and its associated critical exponents, is the requirement that finite-size scaling for different transverse sizes, should lead to data collapse onto a single curve for robust values of T^{cep}, μ_B^{cep} and the critical exponents ν and γ:

$$R^{−\gamma/\nu} \times (R_{out}^{2} - R_{side}^{2}) \text{ vs. } \bar{R}_{T}^{1/\nu} \times t_{T},$$

$$R^{−\gamma/\nu} \times (R_{out}^{2} - R_{side}^{2}) \text{ vs. } \bar{R}_{\mu_B}^{1/\nu} \times t_{\mu_B},$$

where $t_T = (T - T^{cep})/T^{cep}$ and $t_{\mu_B} = (\mu_B - \mu_B^{cep})/\mu_B^{cep}$ are the reduced temperature and baryon chemical potential respectively.

The validation of this crosscheck is illustrated in Fig. 5 where data collapse onto a single curve is indicated for the RHIC excitation functions shown in Fig. 4. The parametrization for chemical freeze-out [38] is used in conjunction with μ_B^{cep} and T^{cep} to determine t_T and t_{μ_B}.

![FIG. 4. (Color online) (a) $(R_{out}^{2} - R_{side}^{2})_{max}$ vs. \bar{R}. (b) $(R_{out}^{2} - R_{side}^{2})_{max}$ vs. \bar{R}^{2}. The $(R_{out}^{2} - R_{side}^{2})_{max}$ values are obtained from the Gaussian fits shown in Fig. 2. The dashed curve in (b) shows the fit to the data in (a).](image)

![FIG. 5. (Color online) (a) $R^{−\gamma/\nu} \times (R_{out}^{2} - R_{side}^{2})$ vs. $\bar{R}_{T}^{1/\nu} \times t_{T}$. (b) $R^{−\gamma/\nu} \times (R_{out}^{2} - R_{side}^{2})$ vs. $\bar{R}_{\mu_B}^{1/\nu} \times t_{\mu_B}$. The $(R_{out}^{2} - R_{side}^{2})_{max}$ values are the same as those in Fig. 2. The parametrization for chemical freeze-out [38] is used in conjunction with μ_B^{cep} and T^{cep} to determine t_T and t_{μ_B}.)](image)

phase diagram. The observed centrality dependent nonmonotonic excitation functions, validate the characteristic finite-size scaling patterns expected for the deconfinement phase transition and the critical end point. An initial Finite-Size Scaling analysis of these data suggest a second order phase transition with $T^{cep} \sim 165$ MeV and $\mu_B^{cep} \sim 95$ MeV for the location of the critical end point. The critical exponents ($\nu \sim 0.66$ and $\gamma \sim 1.2$) extracted in the same FSS analysis, places the CEP in the 3D Ising model universality class. Further detailed studies at RHIC are crucial to make a more precise determination of the location of the CEP and the associated critical exponents, as well as to confirm these observations for other collision systems.

ACKNOWLEDGMENTS

The author thanks J. Jia, E. Fraga, B. Schenke and R. Venugopalan for valuable discussions, and for pointing out several important references. This research is supported by the US DOE under contract DE-FG02-87ER40331.A008.

[1] N. Itoh, Prog. Theor. Phys. 44, 291 (1970).
[2] E. V. Shuryak, CERN-83-01 (1983).
[3] M. Asakawa and K. Yazaki, Nucl. Phys. A504, 668 (1989).
[4] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998), hep-ph/9806219.
[5] Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, Nature 443, 675 (2006), hep-lat/0611014.
[6] T. Bhattacharya, M. I. Buchoff, N. H. Christ, H. T. Ding, R. Gupta, et al., Phys.Rev.Lett. 113, 082001 (2014), 1402.5175.
[7] P. de Forcrand, PoS LAT2009, 010 (2009), 1005.0539.
[8] J. Berges and K. Rajagopal, Nucl.Phys. B538, 215 (1999), hep-ph/9804233.
[9] Y. Hatta and T. Ikeda, Phys.Rev. D67, 014028 (2003), hep-ph/0210284.
[10] M. A. Stephanov, Prog.Theor.Phys.Suppl. 153, 139 (2004), hep-ph/0402115.
[11] M. Asakawa and C. Nonaka, Nucl.Phys. A774, 139 (2006), nucl-th/0509091.
[12] S. Ejiri, Phys.Rev. D78, 074507 (2008), 0804.3227.
[13] Z. Fodor and S. Katz, JHEP 0404, 050 (2004), hep-lat/0402006.
[14] A. Li, A. Alexandru, and K.-F. Liu, Phys.Rev. D84, 071503 (2011), 1103.3045.
[15] K. Nagata, K. Kashiwa, A. Nakamura, and S. M. Nishigaki (2014), 1410.0783.
[16] P. de Forcrand, J. Langelage, O. Philipsen, and W. Unger, Phys.Rev.Lett. 113, 152002 (2014), 1406.4397.
[17] The baryon chemical potential increases with the decrease in the beam energy while the chemical freeze-out temperature increases with increase in beam energy.
[18] R. A. Lacey, N. Ajitanand, J. Alexander, P. Chung, W. Holzmann, et al., Phys.Rev.Lett. 98, 092301 (2007), nucl-ex/0609025.
[19] L. P. Csernai, J. Kapusta, and L. D. McLerran, Phys.Rev.Lett. 97, 152003 (2006), nucl-th/0604032.
[20] R. A. Lacey et al. (2007), 0708.3512.
[21] C. Hung and E. V. Shuryak, Phys.Rev.Lett. 75, 4003 (1995), hep-ph/9412360.
[22] D. H. Rischke and M. Gyulassy, Nucl.Phys. A608, 479 (1996), nucl-th/9606039.
[23] S. Pratt, Phys.Rev.Lett. 53, 1219 (1984).
[24] S. Chapman, P. Scott, and U. W. Heinz, Phys.Rev.Lett. 74, 4400 (1995), hep-ph/9408207.
[25] U. A. Wiedemann, P. Scott, and U. W. Heinz, Phys.Rev. C53, 918 (1996), nucl-th/9508040.
[26] R. A. Lacey, A. Taranenko, J. Jia, D. Reynolds, N. Ajitanand, et al., Phys. Rev. Lett. 112, 082302 (2014).
[27] R. A. Lacey (2014), 1408.1343.
[28] A. Adare et al. (PHENIX Collaboration) (2014), 1410.2559.
[29] L. Adamczyk et al. (STAR Collaboration) (2014), 1403.4972.
[30] K. Aamodt et al. (ALICE Collaboration), Phys.Lett. B696, 328 (2011), 1012.4035.
[31] A. Kisiel (ALICE Collaboration), PoS WPCF2011, 003 (2011).
[32] M. Ladrem and A. Ait-El-Djoudi, Eur.Phys.J. C44, 257 (2005), hep-ph/0412407.
[33] L. Palhares, E. Fraga, and T. Kodama, J.Phys. G38, 085101 (2011), 0904.4830.
[34] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
[35] R. A. Lacey, R. Wei, N. Ajitanand, and A. Taranenko, Phys.Rev. C83, 044902 (2011), 1009.5230.
[36] A. Adare et al. (PHENIX Collaboration) (2013), 1310.4793.
[37] R. Bhalerao, J.-P. Blaizot, N. Borghini, and J.-Y. Ollitrault, Phys.Lett. B627, 49 (2005), nucl-th/0508009.
[38] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, J.Phys. G32, S165 (2006), hep-ph/0607164.
[39] A. Andronic, P. Braun-Munzinger, and J. Stachel, Acta Phys.Polon. B40, 1005 (2009), 0901.2990.
[40] F. Becattini, M. Bleicher, T. Kollegger, M. Mitrosvki, T. Schuster, et al., Phys.Rev. C85, 044921 (2012), 1201.6349.
[41] A. N. Tawfik, Int.J.Mod.Phys. A29, 1430021 (2014), 1410.0372.
[42] E. V. Andrea Pelissetto, Phys.Rept. 368, 549 (2002), 012164.
[43] H. Kleinert, Phys.Rev.D 60, 085001 (1999).