High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa [version 3; peer review: 2 approved]

Kwadwo Asamoah Kusi, Augustina Frimpong, Frederica Dedo Partey, Helena Lamptey, Linda Eva Amoah, Michael Fokuo Ofori

Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana

Abstract

Following the coronavirus outbreaks described as severe acute respiratory syndrome (SARS) in 2003 and the Middle East respiratory syndrome (MERS) in 2012, the world has again been challenged by yet another corona virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infections were first detected in a Chinese Province in December 2019 and then declared a pandemic by the World Health Organization in March 2020. An infection caused by SARS-CoV-2 may result in asymptomatic, uncomplicated or fatal coronavirus disease 2019 (COVID-19). Fatal disease has been linked with the uncontrolled “cytokine storm” manifesting with complications mostly in people with underlying cardiovascular and pulmonary disease conditions. The severity of COVID-19 disease and the associated mortality has been disproportionately lower in terms of number of cases and deaths in Africa and also Asia in comparison to Europe and North America. Also, persons of colour residing in Europe and North America have been identified as a highly susceptible population due to a combination of several socioeconomic factors and poor access to quality healthcare. Interestingly, this has not been the case in sub-Saharan Africa where majority of the population are even more deprived of the aforementioned factors. On the contrary, sub-Saharan Africa has recorded the lowest levels of mortality and morbidity associated with the disease, and an overwhelming proportion of infections are asymptomatic. Whilst it can be argued that these lower number of cases in Africa may be due to challenges associated with the diagnosis...
of the disease such as lack of trained personnel and infrastructure, the number of persons who get infected and develop symptoms is proportionally lower than those who are asymptomatic, including asymptomatic cases that are never diagnosed. This review discusses the most probable reasons for the significantly fewer cases of severe COVID-19 disease and deaths in sub-Saharan Africa.

Keywords
SARS-CoV-2, COVID-19, immunity, tolerance, trained immunity, Africa

This article is included in the Coronavirus (COVID-19) collection.
Background
The 2019 novel human coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of seven coronaviruses that cause respiratory and intestinal diseases in humans. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and this respiratory infection was declared a global pandemic in March 2020. The novel virus infects the host by using its surface (S) protein to interact with the host angiotensin-converting enzyme 2 (ACE2) receptors found in the lungs and other organs and subsequently fuses with the host cell membrane. Clinical symptoms of SARS-CoV-2 infection generally include fever, headache, loss of one’s sense of smell, malaise, sore throat and muscular pain, which appear within 2–14 days post-infection. These symptoms are usually followed by a dry cough and difficulty in breathing, and can rapidly progress to more life-threatening events such as respiratory failure and acute respiratory distress syndrome. Infected persons may not necessarily exhibit all of these symptoms, but do exhibit a combination of these symptoms.

COVID-19 has exposed weaknesses in health systems globally and pointed to the need to strengthen these health systems and also put a significant emphasis on disease prevention. Emerging literature shows that there are wide geographic and demographic differences in the symptoms and presentation of the disease. The most at-risk groups include older persons above 60 years, the immunocompromised and persons of all ages who have some underlying conditions including diabetes, high blood pressure and other cardiovascular conditions. There are, however, a significant number of infected persons who remain asymptomatic or develop only mild self-limiting symptoms. For example, while an estimated 80% of SARS-CoV-2 infections are asymptomatic or result in mild disease, the remaining 20% of patients can become severely ill, although the majority in this latter category may have co-morbidities with conditions such as diabetes and hypertension. Mortality is therefore disproportionately high in infected persons with underlying comorbidities.

Association between race and SARS-CoV-2 infection outcomes
Current evidence from Europe and the Americas suggests that people of African descent living in these areas are more susceptible to the severe forms of COVID-19 and more often die from COVID-19 related causes compared to other races, especially Caucasians. The high levels of morbidity and mortality in persons of African descent living in Europe and the Americas have been partly attributed to the relatively higher incidence of co-morbid conditions and low socio-economic status resulting in low access to appropriate healthcare and good housing, high housing density and limited access to healthy foods. This greater susceptibility of people of African descent is, however, in sharp contrast with the growing observation that a significant majority of SARS-CoV-2 infections in sub-Saharan Africa are asymptomatic or only develop very mild symptoms. An intriguing factor to consider here is that the predisposing socioeconomic factors that have been associated with the greater susceptibility of people of African descent who are resident in Europe and the Americas are even more pronounced in sub-Saharan Africa. Therefore, neither these socioeconomic factors nor genetic factors can explain the observed significant disparities in SARS-CoV-2 infection outcomes between Africans living in sub-Saharan Africa and those elsewhere.

At the population level, SARS-CoV-2 infections in Europe and the Americas have resulted in a significantly higher number of deaths compared to cases in sub-Saharan Africa. While Africa’s younger population and hence relatively lower prevalence of underlying conditions that have been identified as COVID-19 risk factors may be an important explanatory variable, this alone cannot fully explain the observed wide differences in COVID-19 case severity and mortality between sub-Saharan Africa and the developed world. There is therefore an urgent need to unravel the aetiologic basis of SARS-CoV-2 infection and progression to disease states in different populations. Also, within a given population, it is essential to identify factors aside from co-morbidities that account for why some individuals become severely ill while others only show mild symptoms or remain asymptomatic throughout the infection.

Immunity and immunopathology in COVID-19 patients
Infection with SARS-CoV-2 elicits both innate and adaptive immune responses, although the underlying mechanisms are just beginning to be dissected. Non-specific defense molecules secreted by several immune cells upon stimulation by pathogen antigens result in the induction of inflammation, which is a natural immune response that is required to control the spread and multiplication of the pathogen. Highly activated cells of the innate immune system, including macrophages, neutrophils and dendritic cells have been shown to predominate in the lung tissues of COVID-19 patients. Dendritic cells and macrophages express toll-like receptors that are used in sensing viral RNA and lead to the activation of the nuclear factor kappa B (NF-kB) pathway and the induction of pro-inflammatory cytokines. Cytokines such as interleukin-1 beta (IL-1β) are important in the development of the virus-induced inflammation associated with disease severity. Excessive inflammation, however, can result in collateral damage to normal host cells. In severely sick COVID-19 patients, there seems to be an infection-related disproportionate increase in the numbers of innate cells such as neutrophils, monocytes and macrophages, relative to the number of lymphocytes. It has
also been observed that there is a heightened expression of inflammatory molecules in the lung tissues of COVID-19 patients compared to regular pneumonia patients and healthy controls. Our current understanding of life-threatening disease aetiology relates to the development of severe disease symptoms as a result of the induction of a cytokine storm which causes/aggravates the observed lung pathology. The non-specific immune responses, mostly from innate immune cells, are therefore more likely to be associated with the observed immunopathology.

Pathogen-induced immunological tolerance to inflammation

Clinical pathology associated with some infectious diseases can be traced to a dysregulation of the immune responses that are elicited against the infecting pathogens. Persistent or chronic exposure of persons to these infectious pathogens, however, causes a state of immunological tolerance to pathogen-induced inflammation. For disease conditions such as malaria, the inflammatory immune response mounted against the parasite can result in immunopathology if not properly regulated. There is, however, growing evidence that in areas with sustained high transmission, persons with increased or frequent exposure to malaria parasites develop a high tolerance threshold to inflammation compared to persons with a low parasite burden. Adults who have experienced repeated infections are also more tolerant to high parasitaemia compared to young children. There is also evidence for the induction of immunological tolerance by other pathogens, including helminths, bacterial and viral infections. For lung infections, the induction and relevance of immunological tolerance to the survival of infected patients have been reviewed recently.

During SARS-CoV-2 infection, severe clinical symptoms including pulmonary pneumonia and bronchitis which can ultimately lead to acute respiratory distress syndrome and respiratory failure are aetiologically associated with an unregulated production of pro-inflammatory cytokines in lung tissues which results in a cytokine storm. In persons whose systems have been primed by repeated exposure to infectious agents and are hence able to effectively regulate the production of high levels of pro-inflammatory mediators, SARS-CoV-2 infections may not exhibit the same cytokine storm features as is seen in persons with limited exposure to infectious agents. The capacity to exhibit greater immunological tolerance to subsequent infections, therefore, protects against the development of severe clinical symptoms as a result of SARS-CoV-2 infections.

In addition to the above, a recent study by Tso and colleagues examining pre-COVID-19 plasma has demonstrated that individuals from Tanzania and Uganda harbor significantly high human coronavirus (HCoV)-specific antibodies that cross-react with SARS-CoV-2 nucleocapsid and spike proteins compared to US volunteers. The high disease burden in Sub-Saharan Africa could lead to prior exposure to other widely circulating human coronaviruses where immunity acquired against other HCoVs protects against the novel COVID-19. It is worth noting that although the HCoV antibodies were shown to cross-react with SARS-COV-2, the functional abilities of the cross-reactive antibodies and whether they are protective remain unknown. A larger pre-COVID-19 sample size with longitudinal sampling points will be needed for comprehensive analysis of cross-reactive B cells and T cell function and their correlation with COVID-19 clinical outcomes and disease epidemiology.

Live attenuated vaccines and the concept of trained immunity

Vaccines that are based on attenuated whole pathogens are known to trigger components of both the innate and adaptive immune systems. Live attenuated vaccines that have conserved pathogen associated molecular patterns (PAMPs) are able to enhance non-specific effector responses of the activated immune cells and do elicit bystander effects. There is growing evidence that innate immune cells can be primed by PAMPs from one pathogen and develop into a memory phenotype that can recall responses to similar PAMPs from other pathogens. This phenomenon, called trained immunity, enables these innate cells to mount a “secondary” response to PAMPs from other pathogens and thereby protect against infections caused by these other pathogens. Recent studies show that innate immune cells rely on epigenetic reprogramming to obtain memory from previous exposure to an infectious agent. Thus, innate immune cells are trained to recognize these conserved pathogen molecules and retained memory in hematopoietic stem cell precursors in the bone marrow, resulting in the establishment of long-lasting memory after several exposures to the same antigens from other infections.

The bacillus Calmette-Guérin (BCG) vaccine is a live attenuated vaccine that is used for the prevention of tuberculosis (TB), and this vaccine has the attenuated bacterium Mycobacterium bovis as the vaccine agent. Bacterial cell wall PAMPs trigger Toll-like receptors on cell types such as macrophages, neutrophils and dendritic cells at the sites of injection to induce potent, non-specific pro-inflammatory responses. For lung, the live Mycobacterium is internalized by dendritic cells and can live up to two weeks within these cells during which specific BCG antigens have been shown to trigger the prolonged production of the pro-inflammatory mediators including tumor necrosis factor, IL-6 and IL-1-β, all of which play a vital role in anti-viral immunity. Bickett et al. also show in a mouse model that BCG is a potent innate immune regulator that elicits long-lived T cell-independent protection against pulmonary TB. Thus, BCG vaccination generally increases the homeostatic threshold of local inflammation in the lungs, and this may make SARS-CoV-2-infected persons more tolerant to the virus-induced local inflammation in the lungs.

It has already been shown that BCG vaccination in children has a significant effect in reducing about 50% of the mortality associated with the incidence of sepsis and other respiratory infections. This mechanism of protection has been
Concluding remarks

The SARS-CoV-2 pandemic has so far resulted in significant numbers of deaths in the developed world and the same was expected to happen in sub-Saharan Africa. However, this has not been the case and there are several theories that have been postulated to explain the low prevalence of symptomatic SARS-CoV-2 infection in the sub-region. Factors such as the significantly younger population, warm weather conditions, poor healthcare surveillance systems and pre-existing immunity from exposure to other coronaviruses may all make some contribution to this observation\(^{46-49}\). However, the available literature suggests that the high infectious disease burden on the African continent could be a very significant factor that can explain the high proportion of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. This is buttressed by findings that significantly high proportions of many African populations, especially in highly populous urban areas, do test positive for SARS-CoV-2-specific antibodies and are mostly asymptomatic\(^{50,51}\). Indeed, some of these infected persons are sometimes even unaware of their exposure status and do not get tested, hence are not captured by their health systems\(^{46}\). The high infectious disease burden and frequent exposure to infectious agents may mediate the asymptomatic SARS-CoV-2 infection status in two major ways. The first is through the induction of immunological tolerance and the consequent resistance to the development of immunopathology. Thus, although there is the induction of inflammatory responses against SARS-CoV-2 in infected persons, these responses may be well balanced homeostatically such that they do not induce the pathology that is known to be associated with severe infections, and which predispose to death.

Aside BCG, the Measles Mumps Rubella (MMR) live attenuated vaccine has been associated with providing non-specific protection against SARS-CoV-2 infection\(^{35,36,34}\). The MMR vaccine has been reported to elicit a heightened innate inflammatory response such as IFN-\(\gamma\), IL-6 and TNF\(\alpha\) that are associated with protective efficacy whereas mutations within innate immune genes such as the TLRs have been associated with a poor immune response following vaccination\(^{52}\). Besides, these innate responses have been associated with the concept of trained immunity\(^{40,56}\) that provides cross-protection against other infectious diseases. It has been suggested that a defect in the innate anti-viral immune response increases susceptibility to SARS-CoV-2 disease\(^{40}\). This interesting observation has been ascribed to several factors including a possible similarity in the structural proteins in the measles virus and SARS-CoV-2. For example, such similarities have been described between the fusion glycoprotein of the measles virus and the spike protein of SARS-CoV-2\(^{55,58}\). These structural similarities may result in both having similar epitopes that are targeted by the same immune effectors. The presumed cross protection elicited by MMR vaccine against SARS-CoV-2 is also affirmed by the recent observation of a negative correlation between antibody titres against the mumps virus and SARS-CoV-2 disease severity\(^{58}\). Aside the BCG and MMR vaccines, cross-protection against COVID-19 and other infectious diseases has also been postulated for the live oral polio vaccine, and the mechanisms of protection are most likely to be related\(^{59}\). These observations thus collectively affirm an important role of increased pathogen exposure in protection against SARS-CoV-2.
Africa despite the inherent protective mechanisms and recent introduction of vaccines. The recent emergence of mutant viral forms with increased transmissibility and possibly disease severity in the United Kingdom, South Africa, Brazil and India"—clear is a clear testament to this. It will be critical for African countries to strengthen their capacity in genomic surveillance in order to detect emerging SARS-CoV-2 variants of concern to aid the effective control of disease transmission.

Data availability
Underlying data
No data are associated with this article.

Acknowledgements

KAK is an Affiliate of the African Academy of Sciences.

References

1. Caroll-Arnt P: Neurological complications of coronavirus and COVID-19. Rev Neurol. 2020; 70(9): 311-3.

2. Chen Y, Liu Q, Guo D: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 416-423.

3. Du L, He Y, Zhou Y, et al.: The spike protein of SARS-CoV-2 targets for vaccine and therapeutic development. Nat Rev Microbiol. 2009; 7(3): 226-36.

4. Wrapp D, Wang N, Corbett KS, et al.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-1263.

5. Dong L, Yang Y, Zhou Y, et al.: MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017; 21(2): 131-143.

6. Huang C, Wang Y, Li X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10233): 497-506.

7. Chan JF, Yuan S, Kok KH, et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395(10233): 514-519.

8. Mbao M, Leif B, Jochems SP, et al.: COVID-19 in Africa: Dampering the storm? Science. 2020; 369(6504): 624-626.

9. Kirby T: Evidence mounts on the disproportionate effect of COVID-19 on ethnic minorities. Lancet Respir Med. 2020; 8(6): 585-596.

10. Selden TM, Berdahl TA: Hypothesis for potential pathogenesis of SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; 54: 62-75.

11. Costela-Ruíz VJ, Illescas-Montes R, Puerta-Puerta JM, et al.: SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; 54: 62-75.

12. Lin L, Lu L, Cao W, et al.: Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020; 9(1): 727-732.

13. Wong ISM, Wu A, To KF, et al.: Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003; 326(7403): 1358-62.

14. Xu Z, Shi L, Wang Y, et al.: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-422.

Publisher Full Text | Free Full Text

15. Tabata S, Imai K, Kawanos S, et al.: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis. Lancet Infect Dis. 2020; 20(9): 1043-1050.

Publisher Full Text | Free Full Text

16. Felsenstein S, Herbert JA, McNamara PS, et al.: COVID-19: Immunology and treatment options. Clin Infectious. 2020; 71(3): 1084-1044.

Publisher Full Text | Free Full Text

17. Lin L, Lu L, Cao W, et al.: Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020; 9(1): 727-732.

Publisher Full Text | Free Full Text

18. Wong ISM, Wu A, To KF, et al.: Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003; 326(7403): 1358-62.

Publisher Full Text | Free Full Text

19. Sánchez-Ramón S, Conjero L, Netea MG, et al.: Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum

Publisher Full Text | Free Full Text

Publisher Full Text | Free Full Text
Anti-infectious Formulations. Front Immunol. 2018; 9: 2936.
Published Abstract | Publisher Full Text | Free Full Text

38. Bickett TE, McLean J, Creissen E, et al: Characterizing the BCG Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Front Immunol. 2020; 11: 1202.
Published Abstract | Publisher Full Text | Free Full Text

39. Dockrell HM, Smith SG: What Have We Learnt about BCG Vaccination in the Last 20 Years? Front Immunol. 2017; 8: 1134.
Published Abstract | Publisher Full Text | Free Full Text

40. Covian C, Fernández-Fierro A, Retamal-Díaz A, et al: BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol. 2019; 10: 2806.
Published Abstract | Publisher Full Text | Free Full Text

41. Chinnaswamy S: SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol. 2020; e23504.
Published Abstract | Publisher Full Text | Free Full Text

42. Kumar R, Ng S, Engwaera C: The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol. 2019; 10: 229.
Published Abstract | Publisher Full Text | Free Full Text

43. Tsuji S, Matsumoto M, Takeuchi O, et al: Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol. 2008; 181(11): 7948-7957.
Published Abstract | Publisher Full Text | Free Full Text

44. Bertholen S, Ireton GC, Kahr M, et al: Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol. 2002; 168(3): 1294-307.
Published Abstract | Publisher Full Text | Free Full Text

45. Kleinmijnhuis J, Quintin J, Preiers F, et al: Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014; 6(2): 152-158.
Published Abstract | Publisher Full Text | Free Full Text

46. Kristensen I, Aaby P, Jensen H: Routine vaccinations and child survival: follow up study in Guinea-Bissau, West Africa. BMJ. 2000; 321(7274): 1435-1438.
Published Abstract | Publisher Full Text | Free Full Text

47. Garly ML, Martins CL, Baïlé C, et al: BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG Vaccine. 2003; 21(21-22): 2762-90.
Published Abstract | Publisher Full Text | Free Full Text

48. Netea MG, Joosten LAB, Latz E, et al: Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352(6284): aaf1098.
Published Abstract | Publisher Full Text | Free Full Text

49. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andrés J, et al: Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell. 2020; 181(5): 969-977.
Published Abstract | Publisher Full Text | Free Full Text

50. Miller A, Reandelar Mj, Fasigioni K, et al: Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. medRxiv. 2020; 2020.03.24.20042937. (Unpublished)
Published Abstract | Publisher Full Text | Free Full Text

51. Roser M, Ritchie H: Burden of disease. Our World in Data. 2016. Reference Source

52. Yamamoto N, Arai Y, Nishida N, et al: SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE2 I/D genotype. Gene. 2020; 758: 144944.
Published Abstract | Publisher Full Text | Free Full Text

53. Yengil E, Onlen Y, Ozer C, et al: Effectiveness of Booster Measles-Mumps-Rubella Vaccination in Lower COVID-19 Infection Rates: A Retrospective Cohort Study in Turkish Adults. Int J Gen Med. 2021; 14: 1757-1762.
Published Abstract | Publisher Full Text | Free Full Text

54. Dhiman N, Ovsyannikova IG, Vierkant RA, et al: Associations between SNPs in toll-like receptors and differentially expressed molecules and immune responses to measles vaccine: preliminary results. Vaccine. 2008; 26(14): 1731-1736.
Published Abstract | Publisher Full Text | Free Full Text

55. Roser M, Ritchie H: Burden of disease. Our World in Data. 2016. Reference Source

56. Abdool Karim SS, de Oliveira T: New SARS-CoV-2 Variants — Clinical, Public Health, and Vaccine Implications. N Engl J Med. 2021; 384(19): 1866-1868.
Published Abstract | Publisher Full Text | Free Full Text

57. Jr da Silva Francisco R, Bentires LF, Lamarcia AP, et al: Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021; 296: 198345.
Published Abstract | Publisher Full Text | Free Full Text

58. Fontanet A, Autran B, Lina B, et al: SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet. 2021; 397(10278): 952-954.
Published Abstract | Publisher Full Text | Free Full Text

59. Chinnaswamy S: SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol. 2020; e23504.
Published Abstract | Publisher Full Text | Free Full Text

60. Wamai RG, Hirsch JL, Van Damme W, et al: What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? Int J Environ Res Public Health. 2021; 18(6): 8638.
Published Abstract | Publisher Full Text | Free Full Text

61. Tox-Py, Lidenge SJ, Peña PB, et al: High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int J Infect Dis. 2021; 102: 577-583.
Published Abstract | Publisher Full Text | Free Full Text

62. Diop BZ, Ngom M, Biyong CP, et al: The relatively young and rural population may limit the spread and severity of COVID-19 in Africa: a modelling study. BMJ Global Health. 2020; 5(0): e002699.
Published Abstract | Publisher Full Text | Free Full Text

63. Tsemassa SK, Nkenagason JN: Understanding COVID-19 in Africa. Nat Rev Immunol. 2021; 21(8): 469-470.
Published Abstract | Publisher Full Text | Free Full Text

64. Nwosu K, Fokam L, Wanda F, et al: SARS-CoV-2 antibody seroprevalence and associated risk factors in an urban district in Cameroon. Nat Commun. 2021; 12(1): 5851.
Published Abstract | Publisher Full Text | Free Full Text

65. Kikwasa MG, Jere KC, Kamiringa R, et al: High SARS-CoV-2 seroprevalence in health care workers but relatively low numbers of deaths in urban Malawi. medRxiv. 2020; 2020.07.30.20164970. (Unpublished)
Published Abstract | Publisher Full Text | Free Full Text

66. Usuf E, Roca A: Seroprevalence surveys in sub-Saharan Africa: what do they tell us? Lancet Glob Health. 2021; 9(6): e724-e725.
Published Abstract | Publisher Full Text

67. Burki T: Understanding variants of SARS-CoV-2. Lancet. 2021; 397(10273): 462.
Published Abstract | Publisher Full Text | Free Full Text

68. WHO: SARS-CoV-2 Variants. WHO. 2020. Reference Source

69. Abdoon Karim SS, de Oliveira T: New SARS-CoV-2 Variants — Clinical, Public Health, and Vaccine Implications. N Engl J Med. 2021; 384(19): 1866-1868.
Published Abstract | Publisher Full Text | Free Full Text

70. de la Silva Francisco R, Bentires LF, Lamarcia AP, et al: Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021; 296: 198345.
Published Abstract | Publisher Full Text | Free Full Text

71. Fontanet A, Autran B, Lina B, et al: SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet. 2021; 397(10278): 952-954.
Published Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✓ ✓

Version 3

Reviewer Report 18 October 2021

https://doi.org/10.21956/aasopenres.14445.r28954

© 2021 Heraud J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jean-Michel Heraud
Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal

I do not have any more comments regarding this latest version.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Virology, Public health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 07 October 2021

https://doi.org/10.21956/aasopenres.14364.r28914

© 2021 Heraud J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jean-Michel Heraud
Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal

In this interesting manuscript, the authors postulate some hypotheses explaining the relative lower impact in terms of the disease burden associated with SARS-CoV-2 in sub-Saharan Africa. The manuscript is well written and easy to read. The pillar of the observed low number of severe COVID-19 cases and associated mortality is explained, according to authors, to particular
immunity of African populations which, the immune systems have been “trained” by the microbial environment inherent of African setting.

This hypothesis is possible and acceptable but I doubt that it is this typical characteristic that is the basis for the observed high frequency of asymptomatic and I would appreciate some addition from authors that proposed other potential co-factors.

For that reason, I have some minor revisions before the indexing of the manuscript:

1. I don’t think that the title is fully relevant. Indeed, the authors assumed that frequency of asymptomatic is higher in sub-Saharan Africa. Although it can be true, to my knowledge there is no clear demonstration and it is well known for other diseases that patients in particular amongst adults are less prompt to consult for mild and paucisymptomatic clinical presentation, due to several factors (behaviour, limited access to health care, low income, etc.). I would rather prefer a title that mentioned lower severe SARS-CoV-2 infections. I also prefer to mention the “particular microbial environment” in Africa instead of the High infectious disease burden since we can’t be sure that some diseases could explain all and “protect” individuals from severe COVID-19. Indeed, HIV is highly prevalent in Africa and has no protective effect.

2. The paragraph regarding cross protection from previous HCoV infection should be included in the section “Pathogen-induced immunological tolerance to inflammation”.

3. In the discussion, I would like the authors to clearly mention that their hypothesis is one of the explanation and the relative lower burden of COVID-19 in Africa is probably multi-factorial (lower population density and mostly rural, climatic drivers? few elderly living in residential homes …). Moreover, as mentioned by the authors, it is important to highlight the need to conduct studies aiming at estimating the real “toll” and burden of COVID-19 in African settings. Authors could mention recently published serological studies from sub-Saharan African (Kenya, Madagascar, …)

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Virology, Public health
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 10 August 2021
https://doi.org/10.21956/aasopenres.14364.r28647

© 2021 Bongiovanni M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Marco Bongiovanni
Internal Medicine Unit, Department of Medicine, Ospedale di Circolo di Rho, ASST Rhodense, Milan, Italy

The authors implemented into their paper my suggestions, therefore the article can now be accepted.

Is the topic of the review discussed comprehensively in the context of the current literature?
Partly

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Partly

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious Diseases, COVID-19

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Marco Bongiovanni
Internal Medicine Unit, Department of Medicine, Ospedale di Circolo di Rho, ASST Rhodense, Milan, Italy

This is an interesting paper that evaluates and discusses the high prevalence of asymptomatic COVID-19 infections in Sub Saharan Africa. In my opinion, it should also discuss other points that can be explained by this observation.

1. Usually, people living in Sub Saharan Africa are young and it is well known that age is one of the most important predictors of mortality in COVID patients.

2. Another possible point to be discussed deeply is the possible absence of diagnosis especially in very poor countries with very limited health resources.

3. The impact of COVID-19 infection in large crowded cities and sparsely inhabited villages should be further differentiated.
I would ask the authors to discuss also these points in their conclusions.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious Diseases, COVID-19

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
We are grateful for the reviewer’s comments as this has served as basis for us to improve upon the manuscript. We agree that the factors mentioned will all contribute to explaining the observation of high asymptomatic COVID-19 infections in Africa to some degree, our paper identifies the high infectious disease burden as the major contributor to explaining these observations.

We have however addressed the comments raised by the reviewer and made updates to other sections of the manuscript to reflect the current state of knowledge of the pandemic.

Competing Interests: None