A.E. MULTIPLE RECURRENCE FOR WEAKLY MIXING COMMUTING ACTIONS

I. ASSANI

ABSTRACT. Let \((X, \mathcal{A}, \mu)\) be a probability measure space and let \(T_i, 1 \leq i \leq H\), be commuting invertible measure preserving transformations on this measure space. We prove the pointwise convergence of the averages

\[
\frac{1}{N} \sum_{n=1}^{N} f_1(T_1^n x) f_2(T_2^n x) \cdots f_H(T_H^n x)
\]

for every function \(f_i \in L^\infty(\mu)\) when each transformation is weakly mixing. This result is a consequence of a more general result for commuting measure preserving homeomorphisms on compact metric spaces.

1. INTRODUCTION

Let \((X, \mathcal{A}, \mu)\) be a probability measure space. Let \(T_i, 1 \leq i \leq H\), be invertible measure preserving transformations on this measure space. For \(f_i \in L^\infty(\mu), 1 \leq i \leq H\), we look at the well known open problem of the pointwise convergence of the nonconventional ergodic averages

\[
\frac{1}{N} \sum_{n=1}^{N} \prod_{i=1}^{H} f_i(T_i^n x).
\]

The case \(H = 1\) corresponds to the classical ergodic averages for which the pointwise convergence is known by Birkhoff ergodic theorem. In [10], H. Furstenberg asked if for a measure preserving transformation \(T\) on \((X, \mathcal{A}, \mu)\), bounded functions \(f, g\) and \(m\) a positive

Department of Mathematics, UNC Chapel Hill, NC 27599, assani@email.unc.edu.
integer \(m \neq 1 \) the averages \(\frac{1}{N} \sum_{n=1}^{N} f(T^n x)g(T^{mn} x) \) converge a.e. J. Bourgain [7] proved that this was indeed the case. The natural question then became; for any positive integer \(H \), and bounded functions \(f_1, f_2, \ldots, f_H \) do we have the pointwise convergence of the averages \(\frac{1}{N} \sum_{n=1}^{N} f_1(T^n x) \cdots f_H(T^{Hn} x) \)? Partial results were obtained in [9] for K-systems and in [1] for weakly mixing systems \(T \) for which the restriction to the Pinsker algebra had singular spectrum. The arguments in this last paper relied in part on J. Bourgain result [7]. We provided a simplification of Bourgain’s proof for a class of ergodic dynamical systems in [3] and gave some consequences of this simplification in [2]. Beyond these results little progress has been made in this direction.

For the norm convergence the situation is pretty much settled. In their initial work, J.P. Conze and E. Lesigne [8] proved the norm convergence of the averages \(\frac{1}{N} \sum_{n=1}^{N} f \circ T_1^n f_2 \circ T_2^n \) for commuting measure preserving transformations \(T_1 \) and \(T_2 \) on the same probability measure space. In [11], B. Host and B. Kra and independently T. Ziegler [13], proved the norm convergence of the averages \(\frac{1}{N} \sum_{n=1}^{N} f_1 \circ T_1^n f_2 \circ T_2^n \cdots f_H \circ T_H^n \). In [12], T. Tao extended their result by proving that for commuting measure preserving transformations \(T_i \), \(1 \leq i \leq H \) on the same probability measure space the averages \(\frac{1}{N} \sum_{n=1}^{N} f_1 \circ T_1^n f_2 \circ T_2^n \cdots f_H \circ T_H^n \) converge in norm for every bounded function \(f_i \), \(1 \leq i \leq H \). See also [5] for another proof. M. Walsh [15] extended Tao’s result to the case where the maps \(T_i \), \(1 \leq i \leq H \) generate a nilpotent group. In view of the negative result provided by V. Bergelson and A. Leibman [6] for solvable groups this is the best possible case for convergence in norm.

Our goal is to present a new approach to the pointwise convergence of these non-conventional ergodic averages. This approach will enable us to prove the following results.
Theorem 1. Let \((X, A, \mu)\) be a probability measure space and let \(H\) be a positive integer. Let \(T_i, 1 \leq i \leq H\) be \(H\) commuting weakly mixing transformations on \((X, A, \mu)\). For every bounded functions \(f_i, 1 \leq i \leq H\) the averages \(\frac{1}{N} \sum_{n=1}^{N} \prod_{i=1}^{H} f_i(T_i^n x)\) converge a.e. to \(\prod_{i=1}^{H} \int f_i d\mu\).

Theorem 1 is a consequence of the following theorem.

Theorem 2. Let \(X\) be a compact metrizable space and let \(A\) its Borelian \(\sigma\)-algebra. Let \(T_i, 1 \leq i \leq H\) be commuting homeomorphims on \(X\) each preserving the same Borel measure \(\mu\). We denote by \(\phi : X^H \to X^H\) the homeomorphism given by the equation \(\phi(z) = (T_1 z_1, T_2 z_2, ..., T_H z_H)\). We denote by \(\mu_\Delta\) the diagonal measure on \((X^H, A^H)\) and by \(\nu\) the probability measure defined on \((X^H, A^H)\) by

\[
\nu(A) = \frac{1}{3} \sum_{n=-\infty}^{\infty} \frac{1}{2|n|} \mu_\Delta(\phi^{-n}(A)).
\]

Assume that

\[
(1) \quad \nu\{z \in X^H : \{\phi^n z ; n \in \mathbb{Z}\} \text{ is dense in } X^H\} = 1.
\]

Then for every function \(f_i \in L^\infty(\mu), 1 \leq i \leq H\), the averages

\[
\frac{1}{N} \sum_{n=1}^{N} f_1(T_1^n x)f_2(T_2^n x)\cdots f_H(T_H^n x)
\]

converge \(\mu\) a.e.

We first give a proof of Theorem 2. Then we will show how to derive from it Theorem 1.
2. Proof of Theorem 2 for H=2

2.1. Preliminaries- Notations. We assume that X is a compact metric space, \mathcal{A} is the set of Borelian subsets of X and T_1 and T_2 are commuting homeomorphisms on X preserving the same measure μ on \mathcal{A}^2.

We consider now the diagonal measure μ_Δ as the unique measure defined on $(X \times X, \mathcal{A}^2)$ by the equation

$$\mu_\Delta(A) = \int 1_A(x, y) d\mu_\Delta = \int 1_A(x, x) d\mu$$

for any measurable subset A of $X \times X$. In particular we have for each measurable function f and g,

$$\int f(x)g(x) d\mu = \int f(x)g(y) d\mu_\Delta.$$ \hspace{1cm} (2)

We denote by \mathcal{L} the algebra of finite linear combinations of product functions $f_i \otimes g_i$ defined on $X \times X$ where f_i and g_i are bounded and measurable on X. The norm convergence result for two commuting measure preserving transformations gives us an operator R defined on \mathcal{L} such that for all function $F \in \mathcal{L}$ and for all measurable subset $W \in \mathcal{A}^2$

$$\lim_{L} \int 1_W(x, x) \frac{1}{L} \sum_{l=0}^{L-1} F(T_1^n x, T_2^n y) d\mu = \lim_{L} \int 1_W(x, y) \frac{1}{L} \sum_{l=0}^{L-1} F(T_1^n x, T_2^n y) d\mu_\Delta$$

$$= \int 1_W(x, y) R(F)(x, y) d\mu_\Delta$$ \hspace{1cm} (3)

More can be said about the limit function R.

Lemma 1. For any two invertible commuting measure preserving transformations, T_1 and T_2 on the probability measure space (X, \mathcal{A}, μ) and any two $L^\infty(\mu)$ functions, f_1 and f_2, let us denote by $R(f_1 \otimes f_2)$ the norm limit of the averages

$$\frac{1}{N} \sum_{n=0}^{N-1} f_1 \circ T_1^n f_2 \circ T_2^n.$$
If \mathcal{I} is the σ-algebra of the invariant sets for the measure transformation $T_1 \circ T_2^{-1}$ we have

$$\lim_N \int \left(\frac{1}{N} \sum_{n=0}^{N-1} f_1(T_1^n x) f_2(T_2^n x) \right) d\mu(x) = \int \mathbb{E}[f_1|\mathcal{I}] \mathbb{E}[f_2|\mathcal{I}] d\mu.$$

So there exists a measure ω on $(X \times X, \mathcal{A}^2)$ defined by

$$(4) \quad \omega(f_1 \otimes f_2) = \int \mathbb{E}[f_1|\mathcal{I}] \mathbb{E}[f_2|\mathcal{I}] d\mu = \int R(f_1 \otimes f_2)(x, y) d\mu_{\Delta}.$$

In particular if $T_1 \circ T_2^{-1}$ or $T_2 \circ T_1^{-1}$ is ergodic then $\omega = \mu \otimes \mu$.

Proof. This follows from the commuting property of the transformations T_1 and T_2 and the mean ergodic theorem as the limit is equal to

$$\lim_N \int f_1(x) \frac{1}{N} \sum_{n=0}^{N-1} f_2(T_2 \circ T_1^{-1})^n(x) d\mu = \int f_1 \mathbb{E}(f_2|\mathcal{I}) d\mu.$$

where \mathcal{I} is the σ-algebra of invariant subsets of \mathcal{A} for the transformation $T_2 \circ T_1^{-1}$. The equation

$$\omega(f_1 \otimes f_2) = \int \mathbb{E}[f_1|\mathcal{I}] \mathbb{E}[f_2|\mathcal{I}] d\mu$$

easily defines a measure on $(X \times X, \mathcal{A}^2)$. The remaining part of the lemma follows directly from the equation (4). Finally if $T_1 \circ T_2^{-1}$ is ergodic then the conditional expectations $\mathbb{E}[f_1|\mathcal{I}]$ and $\mathbb{E}[f_2|\mathcal{I}]$ are respectively the integral of f_1 and f_2 with respect to the measure μ. The equality $\omega = \mu \otimes \mu$ follows easily from this last remark.

In the setting we defined above lemma 1 applies to continuous function F defined on X^2. We have the following inequalities

$$(5) \quad \int F(x, y) d\omega = \lim_L \int \frac{1}{L} \sum_{l=0}^{L-1} F(T_1^l x, T_2^l x) d\mu.$$
Furthermore for any open subset O of X^2 we have

$$
\int 1_O(x,y)\,d\omega \leq \liminf L \sum_{l=0}^{L-1} 1_O(T_1^lx, T_2^l)\,d\mu.
$$

The last equation follows from the fact that the characteristic function of an open set is an increasing limit of continuous functions. From now on we fix ε a positive real number and f_1 and f_2 two continuous real valued functions on X. We denote by F the function defined on X^2 as $f_1 \otimes f_2$ and by $M_L(F)(z)$ the averages $\frac{1}{L} \sum_{n=0}^{L-1} F(T_1^n x, T_2^n y) = \frac{1}{L} \sum_{n=0}^{L-1} F(\phi^n(z))$ where $z = (x,y)$ and $\phi^n(z) = (T_1^n x, T_2^n y)$. Our main goal is to transfer the problem of the pointwise convergence of the averages $\frac{1}{L} \sum_{n=0}^{L-1} f_1(T_1^n x)f_2(T_2^n x)$ with respect to μ to the one on X^2 for the averages $M_L(F)(z)$ with respect to a probability measure on (X^2, \mathcal{A}^2) for which ϕ is nonsingular. To this end we start with the diagonal measure μ_Δ and introduce the measure $\nu : \mathcal{A}^2 \to [0,1]$ where $\nu(A) = \frac{1}{3} \sum_{n=-\infty}^{\infty} \frac{1}{2|n|} \mu_\Delta(\phi^{-n}(A))$. It is simple to check that if $\nu(A) = 0$ then $\nu(\phi^{-1}(A)) = 0$ property which makes ϕ nonsingular with respect to ν.

Therefore we put ourselves in the setting of the nonsingular transformation ϕ and the measure space $(X^2, \mathcal{A}^2, \nu)$. We note that a null set for ν is also a null set for μ_Δ and so establishing the pointwise convergence with respect to ν will automatically imply the same result with respect to μ_Δ.

The second main new idea in our approach is the quantity $\inf_{k \in \mathbb{Z}} M^*(F)(\phi^k z)$.

Definition 1. Given F a continuous function on X^2 and $M^*(F)(z) = \sup_N \frac{1}{N} \sum_{n=1}^{N} F(\phi^n z)$ we denote by $V(F) : X^2 \to \mathbb{R}$ the quantity defined pointwise by the equation $V(F)(z) = \inf_{k \in \mathbb{Z}} M^*(F)(\phi^k z)$.
Lemma 2. Let \((Y, \mathcal{G}, \rho, S)\) be a measure preserving system and \(F\) a \(L^1(\rho)\) function. If \(\mathcal{J}\) denotes the \(\sigma\) algebra of the invariant subsets of \(\mathcal{G}\) then for a.e. \(\rho\) we have \(V(F)(y) = \inf_{k \in \mathbb{Z}} M^*F(\phi^k y) = \mathbb{E}(F|\mathcal{J})(y)\) where \(\mathbb{E}(F|\mathcal{J})(y)\) denotes the conditional expectation of \(F\) with respect to \(\mathcal{J}\) and \(M^*F(y) = \sup_N \frac{1}{N} \sum_{n=1}^N F(S^ny)\).

Proof. Without loss of generality we can assume that the map \(S\) is ergodic (by taking an ergodic decomposition of \(\rho\)). We have the inequality

\[
V(F)(y) \geq \limsup_N \frac{1}{N} \sum_{n=1}^N F(S^ny) = \int Fd\rho
\]

by the pointwise ergodic theorem.

The invariance of \(V(F)\) added to the ergodicity of \(S\) with respect to \(\rho\) gives us a constant \(\alpha\) such that \(\alpha = V(F)(y)\) for \(\rho\) a.e. We just need to show that \(\alpha \leq \int Fd\rho\). To this end we use the maximal inequality which says that

\[
\lambda \rho\{y : M^*F(y) > \lambda\} \leq \int_{\{y: M^*F(y) > \lambda\}} Fd\rho
\]

for each \(\lambda \in \mathbb{R}\). This inequality follows from the inequality \(\int_{\{M^*F(y) > \lambda\}} Fd\rho \geq 0\) and applying it to \(F - \lambda\). By taking \(\lambda = \alpha\) we obtain the inequality \(\alpha \leq \int Fd\rho\). Combining this with (7) we get the equality \(V(F)(y) = \int Fd\rho\). \(\square\)

2.2. End of the proof of Theorem 2 for \(H=2\). We consider \(F = f_1 \otimes f_2\) where \(f_i\) for \(1 \leq i \leq 2\) is a continuous function on \(X\). The measure \(\omega\) in Lemma 1 is invariant with respect to \(T_1 \times T_2\), which implies that we have

\[
V(F)(y) = \mathbb{E}[F|\mathcal{W}(y)]
\]
for \(\omega \) a.e. \(y \in X^2 \), where \(\mathcal{W} \) denotes the \(\sigma \)-algebra of functions invariant with respect to \(\phi \).

We fix \(\varepsilon > 0 \). We denote by \(A_N \) the set \(\{ z : M^*(F)(z) \leq \sup_{1 \leq n \leq N} M_n(F)(z) + \varepsilon \} \). Since the function \(M^*(F) \) is lower semicontinuous each set \(A_N \) is closed. Furthermore we have \(\bigcup_{N=1}^\infty A_N = X^2 \). By Baire’s theorem one of these sets \(A_N \) contains a non empty open ball \(B(\gamma, \delta) \). We have the inequality

\[
1_{B(\gamma, \delta)} M^*(F) \leq 1_{B(\gamma, \delta)} \left(\sup_{1 \leq n \leq N} M_n(F) + \varepsilon \right)
\]

(10)

Applying \(\phi \) to both sides we get

\[
1_{B(\gamma, \delta)} \circ \phi M^*(F) \circ \phi \leq 1_{B(\gamma, \delta)} \circ \phi \left(\sup_{1 \leq n \leq N} M_n(F) \circ \phi + \varepsilon \right).
\]

(11)

By combining both inequalities if we denote by \(M^*_N(F) \) the quantity \(\sup_{1 \leq n \leq N} M_n(F) \) we conclude that

\[
1_{B(\gamma, \delta) \cup \phi^{-1}(B(\gamma, \delta))} \min(M^*(F), M^*(F) \circ \phi) \leq 1_{B(\gamma, \delta) \cup \phi^{-1}(B(\gamma, \delta))} \left(\min(M^*_N(F), M^*_N(F) \circ \phi) + \varepsilon \right).
\]

By induction on \(k \in \mathbb{Z} \) we derive the inequality

\[
1_{\bigcup_{k \in \mathbb{Z}} \phi^k (B(\gamma, \delta))} V(F) \leq 1_{\bigcup_{k \in \mathbb{Z}} \phi^k (B(\gamma, \delta))} \left(\inf_{k \in \mathbb{Z}} M^*_N(F) \circ \phi^k + \varepsilon \right).
\]

(12)

If \((O_n)_n \) is a countable basis for the topology on \(X^2 \), the set of points \(z \in X^2 \) having a dense orbit is equal to \(D(\phi) = \bigcap_n \bigcup_{m=-\infty}^\infty \phi^m(O_n) \). Note that \(\nu(D(\phi)) = 1 \). Noticing that each of the points \(z \) having a dense orbit must be contained in \(\mathcal{O} = \bigcup_{k \in \mathbb{Z}} \phi^k (B(\gamma, \delta)) \) we conclude that \(\nu(\mathcal{O}) = 1 \). Going back to (12) and picking a point \(z \in D(\phi) \) we have \(V(F)(z) \leq \inf_{k \in \mathbb{Z}} M^*_N(F)(\phi^k z) + \varepsilon \). If we take any point \(y \in X^2 \) the continuity of the function \(M^*_N(F) \) implies that \(V(F)(z) \leq M^*_N(F)(y) + \varepsilon \), for every \(y \in X^2 \). The point \(y \)
being arbitrary we also have $V(F)(z) \leq M^s_k(F)(\phi^k y) + \epsilon$ for each $k \in \mathbb{Z}$. As a consequence for every $z \in D(\phi)$ and every $y \in X^2$ we get the inequality

$$V(F)(z) \leq V(F)(y) + \epsilon$$

To get rid of ϵ we just need to let ϵ ranges through a countable sequence ϵ_r converging to zero. Each ϵ_r corresponds to an open set O_r with ν measure 1 which contains $D(\phi)$. By taking z in $D(\phi)$ and letting ϵ_r go to 0 we derive the inequality

$$V(F)(z) \leq V(F)(y)$$

for all $y \in X^2$ and $z \in D(\phi)$. Using (9) we get for every $z \in D(\phi)$ and for ω a.e $y \in X^2$, (the null set here is independent of z), $V(F)(z) \leq E[F|W](y)$. Noticing that the invariance of $\limsup M_n(F)$ with respect to ϕ implies the inequality

$$\limsup_n M_n(F)(z) \leq V(F)(z) \leq E[F|W](y).$$

So we can integrate with respect to ν and ω. This gives us the inequality

$$\int \limsup_n M_n(F)(z)d\nu(z) \leq \int F(y)d\omega.$$

Finally observing that the diagonal measure μ_Δ and ν take the same value on invariant sets we obtain

$$\int \limsup_n M_n(F)(x)d\mu \leq \int F(y)d\omega.$$

It remains to prove the reverse inequality. It is derived from the norm convergence of the averages $M_N(F)$ with respect to μ to $R(F)$ We can find a subsequence $M_{N_k}(F)$ converging
μ a.e. to \(R(F) \). We conclude that \(\int Fd\omega \leq \int \limsup_n M_n(F)(x)d\mu \). So we have shown that

\[
\int \limsup_n M_n(F)(x)d\mu = \int Fd\omega.
\]

To get the pointwise convergence of the averages it is enough to apply (16) to the function \(-F\). We get \(-\int \liminf_n M_n(F)(x)d\mu = -\int Fd\omega \) and this combined with (18) proves that \(\int \limsup_n M_n(F)(x)d\mu = \int \liminf_n M_n(F)(x)d\mu \). This concludes the proof of Theorem 2 for \(H = 2 \).

2.3. **Proof of Theorem 2 for** \(H \geq 2 \). The reader can observe that the arguments developed for the case \(H = 2 \) apply equally well to the general case.

We only sketch them. We start with the new Lemma 1 that we state in the general context of invertible measure preserving transformations as we did for the case \(H = 2 \).

Lemma 3. Let \(T_i, 1 \leq i \leq H \) be commuting invertible measure preserving transformations on the probability measure space \((X, \mathcal{A}, \mu)\). Let \(f_i, 1 \leq i \leq H \) be functions in \(L^\infty(\mu) \). We denote by \(R(f_1, f_2, \cdots, f_H) \) the limit in norm of the averages \(\frac{1}{N} \sum_{n=1}^{N} f_1 \circ T_1^n f_2 \circ T_2^n \cdots f_H \circ T_H^n \). Then there exists a measure \(\omega \) defined on \((X^H, \mathcal{A}^H)\) and invariant under \(T_1 \times T_2 \cdots \times T_H \) such that \(\int R(f_1, f_2, \cdots, f_H)d\mu = \int f_1 \otimes f_2 \cdots \otimes f_H d\omega \). Furthermore if each \(T_i \) is weakly mixing then the limit in norm, \(R(f_1, f_2, \cdots, f_H) \) is equal to \(\prod_{i=1}^{H} \int f_i d\mu \).

Now we assume that the transformations \(T_i \) are commuting homeomorphisms defined on the compact metric space \(X \). We assume that preserve the same probability measure on \((X, \mathcal{A})\) where denotes the \(\sigma \)-field of Borelian subsets of \(X \).

Step 1

We define the homeomorphism \(\phi : X^H \to X^H \) which sends \(z = (z_1, z_2, \cdots, z_H) \) to \(\phi(z) = \)
We also define the measure \(\nu : A \in \mathcal{A}^H \rightarrow [0,1] \) such that
\[
\nu(A) = \frac{1}{3} \sum_{n=-\infty}^{\infty} \frac{1}{2^n} \mu_\Delta(\phi^n(A))
\]

Step 2

We take \(H \) continuous functions \(f_i \) on \(X \) and denote by \(F \) the function on \(X^H \) equal to \(f_1 \otimes f_2 \otimes \cdots \otimes f_H \). By the same argument as the one given at the end of the case \(H = 2 \), for \(\varepsilon > 0 \), by Baire’s theorem, we can find an open set \(O \) invariant under \(\phi \) which contains the set \(D(\phi) \) of points \(z \in X^H \) having dense orbit in \(X^H \).

Step 3

This last property leads to the inequality
\[
V(z) \leq V(y)
\]
for each \(z \in D(\phi) \) and every \(y \in X^H \), where \(V(z) = \inf_{k \in \mathbb{Z}} M^*(F)(\phi^k z) \).

Step 4

Integrating both sides with respect to \(\mu_\Delta \) we get
\[
\int \lim \sup_n M_n(F) d\mu = \int \lim \sup_n M_n(F) d\nu \leq \int F d\omega.
\]

Step 5

Finally by changing \(F \) to \(-F\) in the last equation we obtain the equation
\[
\int \lim \inf_n M_n(F) d\mu = \int F d\omega = \int \lim \sup_n M_n(F) d\mu \text{ and so } M_n(F)(x) \text{ converges } \mu \text{ a.e.}
\]

3. Proof of Theorem 💫

In this section we want to show how to derive Theorem 💫 from Theorem 2. We just do it in the case \(H = 2 \), the general case being similar. We start then with two weakly mixing commuting invertible transformations \(T_1, T_2 \) on the probability measure space \((X, \mathcal{A}, \mu)\). Both preserve the measure \(\mu \). To avoid a trivial case we assume that \(T_1 \neq T_2 \). We can observe that the action of the group generated by \(T_1 \) and \(T_2 \) is ergodic as one member of
this group is ergodic. Therefore we can use B. Weiss’ generalization of Jewett and Krieger isomorphism theorem for \mathbb{Z}^2-actions. Under this isomorphism we get the following properties.

1. First the new maps that we denote again by T_1 and T_2 are commuting homeomorphisms on a compact metrizable space. These homeomorphisms are weakly mixing preserving a new measure that we also denote by μ.

2. Secondly this new measure μ is such that for any not empty open set $V \subset X$ we have $\mu(V) > 0$.

3. Thirdly the measure ω given by Lemma 1 is the product measure $\mu \otimes \mu$.

In order to apply Theorem 2 we need to show that the assumption (1) is satisfied. Because the set of points $D(\phi)$ in X^2 having a dense orbit is invariant, its ν measure is the same as its μ_Δ measure. We recall that if O_n is a countable basis of open sets for the topology of X^2 the set $D(\phi)$ is equal to $\cap_m \cup_{n=-\infty}^{\infty} \phi^n(O_m)$. It is enough to show that each open set $P_m = \cup_{n=-\infty}^{\infty} \phi^n(O_m)$ has μ_Δ measure equal to one. By the mean ergodic theorem (which is much simpler to prove in the weakly mixing case) [12], we can extract after a diagonal process a subsequence of integers N_k such that for any continuous functions F on X^2 we have $\lim_k \frac{1}{N_k} \sum_{n=1}^{N_k} F(T_1^n x, T_2^n x) = \int F d\mu \otimes \mu$. off a single null set for μ. As the characteristic function of an open set is an increasing limit of continuous functions we derive that $1_{P_m}(x, x) = \limsup_k \frac{1}{N_k} 1_{P_m}(T_1^n x, T_2^n x) \geq \mu \otimes \mu(P_m) > 0$ because in this setting the measure of a non empty open set is positive. The map $T_1 \times T_2$ being ergodic with respect to $\mu \otimes \mu$ we have $\mu \otimes \mu(P_m) = 1$. We conclude that $\mu_\Delta(P_m) = 1$ and this implies that $\mu_\Delta(\cap_m P_m) = 1$.
Remarks

The proof of Theorem 1 can be used to show that in the general setting of commuting measure preserving homeomorphisms, we have the pointwise convergence of the averages $M_n(F)$ on the $D(\phi)$ part of the space X^H. This is done more explicitly in [1].

References

[1] I. Assani: “Multiple recurrence and almost sure convergence for weakly mixing dynamical systems” Israel J. Math. 103 (1998), 111-124.

[2] I. Assani: “Pointwise convergence of nonconventional averages,” Colloq. Math. 102 (2005), no. 2, 245-262.

[3] I. Assani: “Wiener Wintner Dynamical Systems” Erg. Th. and Dyn. Syst. 23, 1637-1654, 2003.

[4] I. Assani: “Pointwise multiple recurrence for commuting measure preserving transformations. preprint 2013.

[5] T. Austin: “On the norm convergence of non-conventional ergodic averages,” Ergod. Th. and Dynam. Sys. 30 (2010), 321-338.

[6] V. Bergelson, A. Leibman: “A nilpotent Roth Theorem”, Invent. Math. 147 (2) (2002), 429-470.

[7] J. Bourgain: “Double recurrence and almost sure convergence,” J. Reine Angew. Math. 404 (1990), 140 161.

[8] J-P. Conze, E. Lesigne: “Theoremes ergodiques pour des mesures diagonales”, Bull. Soc. Math. France 112 (1984), no. 2, 143175.

[9] J-M. Derrien, E. Lesigne: “Un theoreme ergodique polynomial ponctuel pour les endomorphismes exacts et les K-systemes,” Ann. Inst. H. Poincare Probab. Statist. 32 (1996), no. 6, 765-778.

[10] H. Furstenberg: “Recurrence in ergodic theory and combinatorial number theory,” Princeton University Press, Princeton, (1981).
[11] **B. Host, B. Kra**: “Nonconventional ergodic averages and nilmanifolds,” Ann. of Math. (2) 161 (1) (2005), 397-488. diagonales,” Bull. Soc. Math. France 121 (1993), no. 3, 315351. Theory Dynam. Systems 23 (2003), 11731198.

[12] **T. Tao**: “Norm convergence of multiple ergodic averages for commuting transformations,” Ergodic Theory Dynam. Systems 28 (2008), no. 2, 657688.

[13] **T. Ziegler**: “Universal characteristic factors and Furstenberg averages,” J. Amer. Math. Soc. 20 (2007), 53-97.

[14] **B. Weiss**: “Strictly ergodic models for dynamical systems”. Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 143146.

[15] **M. Walsh**: “Norm convergence of nilpotent ergodic averages” Annals of Math, Volume 175 (2012), Issue 3, 1667-1688 (2012).