Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Chiotellis, H. Ahmed, T. Betzel, M. D. Tanriver, C. J. White, H. Song, S. Da Ros, R. Schibli, J. W. Bode and S. M. Ametamey, Chem. Commun., 2019, DOI: 10.1039/C9CC08645E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A new prosthetic group is reported for 18F-labelling of peptides and proteins based on the chemoselective ligation of potassium acytrifluoroborates (KATs) and hydroxylamines without any detectable 18F/19F isotope exchange at the acytrifluoroborate moiety. The new building block is appended via a common amide bond at room temperature with no need for protecting groups which enables an effective orthogonal 18F-radiolabelling.

Positron emission tomography (PET) can visualise, characterise and quantify biological processes at the cellular and molecular levels in vivo non-invasively, with high sensitivity and spatial resolution. It has evolved into a powerful imaging tool, contributing decisively in both basic research and medical decision-making. Fluorine-18 is the most frequently utilised radionuclide for diagnostic PET imaging since its decaying properties (18F; β⁺ 0.635 MeV, 97% abundance, t1/2 = 109.8 min) provide significant advantages over other PET radionuclides. The ever-increasing use of biomolecular vector-based imaging agents has brought forth a high demand for 18F-radiosynthesis strategies that are fast, mild and selective. However, the harsh conditions required for direct 18F-labelling (high temperatures, basic pH, dry organic solvents), the extremely low concentration levels of 18F and its relatively fast radioactive decay make the development of 18F radiopharmaceuticals of complex molecules a challenging task.

Prosthetic groups have expanded the field of radioactive bioconjugation in recent years. These are small bifunctional molecules that can be radiolabelled with a radionuclide and subsequently appended to biomolecules. The great majority of prosthetic groups have relied upon reactions with natural amino acids (most notably couplings between activated carboxyl groups and lysines and Michael additions between maleimides and cysteines)7,9. However, the complete loss of regiochemical control during the labelling of a biomolecule when more than one (unprotected) lysine or cysteine are present requiring time-consuming protection and/or purification steps prompted radiochemists to shift their attention towards ligations of higher specificity. As such, a wide panel of chemoselective ligation reactions have been used in PET radioligand development10. Lately, the oxime-ligation methodology has gained increased attention.11

The fairly recent discovery of (almost) ideal orthogonal ligations gave a new impetus in the development of advantageous 18F-labelling prosthetic groups. Among these reactions, the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC, azides-cyclooctynes) and the inverse electron-demand Diels-Alder reaction (IEDDA) are the most prevalent. The selectivity, ease and modularity of these ligations make them well-suited for the construction of complex 18F-labelled tracers. But despite their utility, these reactions exhibit several flaws that limit their universal application (e.g. use of toxic additives for CuAAC and formation of bulky hydrophobic linkages for SPAAC and IEDDA). Therefore novel approaches...
to facilitate 18F-labelling and diversify the pre-existing library of 18F-radiotracers are still needed.16

In 2012, Bode and Molander showed that the reaction between potassium acyltrifluoroborates (KATs) and various hydroxylamines leads to the formation of amide bonds under aqueous conditions at room temperature with a second-order rate constant of 20 M$^{-1}$ s$^{-1}$. The reaction shows excellent chemoselectivity and tolerates all common unprotected functional groups typically found on proteins and peptides. KAT ligation is faster than the majority of the ligations in common use and it has the distinct advantage of using chemically stable, easily handled functional groups.18 The Bode group successfully used this method for the modification of recombinant proteins. In order to harness the advantages of the KAT ligation for radiochemistry applications, we sought to develop a new 18F-labelling prosthetic group based on this chemistry.

Despite the advantages of KATs for rapid and chemoselective ligation, installation of the prosthetic group based on this chemistry. The precursors were subjected to typical conditions for nucleophilic aromatic substitution – 18F-fluoride ions would favour nucleophilic aromatic substitution over 18F-fluoride ions. As noted, Perrin and co-workers have employed 18F/19F isotopic exchange on trifluoroborates for PET imaging.21, 22 Their studies showed that alkyl trifluoroborate lose a fluoride with a long solvolysis half-life of >2000 min.23 We hypothesised that 18F-fluoride ions would favour nucleophilic aromatic substitution over 18F/19F isotopic exchange under non-aqueous solvents at higher pH, as these isotopic exchange reactions are usually carried out under aqueous acidic conditions or with strong Lewis acids.6, 24, 25

For the purpose of this study, five precursors were evaluated for 18F-incorporation (Table 1): KAT derivatives 1a-d and monofluoroacetylboronate 1e. For the substrate scope, we selected targets likely to be metabolically stable and not prone to defluorination, in contrast to alkyl fluoride.26, 27 Defluorination is particularly undesired in the context of in vivo PET imaging, due to bone uptake of free 18F-fluoride.

All precursors for the radiolabelling (Table 1) were heated at 150 °C for 10 min.

Entry	Precursor	Labelled prosthetic group	18F-incorporation yield	18F-incorporation without DABCO$^{[a]}$	18F-incorporation with DABCO (140 mM)$^{[a]}$
1	1a	2a	0%	n/a	35.5% ± 6.8, n=5
2	1b	2b	3.5% ± 2.5, n=3	35.5% ± 6.8, n=5	44.7% ± 6.2, n=4
3	1c	2c	2.3% ± 1.1, n=3	3.2% ± 0.7, n=3	44.7% ± 6.2, n=4
4	1d	2d	23.6% ± 1.1, n=3	44.7% ± 6.2, n=4	44.7% ± 6.2, n=4
5	1e	2e	12.0% ± 3.1, n=3	n/a	44.7% ± 6.2, n=4

[a] 10 μmol 1a-1e, $[^{18}]$F$^{-}$/CsF-K$_2$CO$_3$, dry DMSO (300 μL), 150 °C, 10 min; n = number of trials.

During the course of our experiments, Pike et al. reported the enhancing effects of 1,4-diazabicyclo[2.2.2]octane (DABCO) on 18F-radiolabelling of substituted 2-halopyridines.28 As anticipated, the addition of DABCO (140 mM) to the reaction mixture of the chloro-precursor 1c only marginally improved 18F-incorporation (entry 3), as this method is effective only for 2-halopyridines. In contrast, a remarkable improvement was observed for precursor 1b and 1d (entries 2 and 4), with product 2d exhibiting the highest 18F-incorporation of 44.7%. In light of these findings, 1d became the precursor for our new prosthetic group 2d, termed $[^{18}]$FPAT (6-fluoroglyridyl acyltrifluoroborate).

Subsequently, further optimisation experiments were performed, the results of which are summarized in the SI. We first established that the same high radiochemical conversions could be obtained at 120 °C with a lower amount of the precursor (1 mg, 3.4 μmol). Furthermore, aqueous DMSO (0.1–2% H$_2$O v/v) had a positive impact on 18F-incorporation. Most importantly, the yield could be enhanced by avoiding the conventional azetrop drying step. We were delighted to see that these optimisations significantly improved the conversion to 71.1% ± 12.5 (n=11). This increase in yield can be attributed to less adsorption and higher availability of 18F-fluoride in the reaction medium. Moreover, the tolerance towards H$_2$O could be rationalised by the strong charge interactions between the free 18F-fluoride ion and the positively charged quaternary nitrogen of DABCO at the expense of weaker interactions with 18F-fluoropropionamide.
water. Employing these conditions with NBu₄HCO₃ instead of Cs₂CO₃ further improved the radiochemical conversion to 90.5% ± 5.2 (n=6). However, this caused broadening of the peaks and poor separation of [¹⁸F]FPAT during the HPLC purification.

Exchanging the base to K₂CO₃ afforded [¹⁸F]FPAT with 84.2% ± 1.2 (n=5) ¹⁸F-incorporation while maintaining a clean HPLC purification profile. This procedure was deemed optimal for [¹⁸F]FPAT, affording the prosthetic group in good molar activities of 81 ± 26 (n=7) GBq/μmol and isolated RCYs of 58% ± 2.5 (decay corrected, n=3). Unlike similarly structured ¹⁸F-nicotinamide based prosthetic groups (e.g. [¹⁸F]FPy-TFP) and other amine reactive building blocks (e.g. ¹⁸F-SFB), which all non-selectively react with Lys residues, [¹⁸F]FPAT reacts chemoselectively with hydroxylamines without the need for protecting groups.

We were also curious to see whether the acyltrifluoroborate engages in ¹⁸F/¹⁸F isotopic exchange. There was no observable radiosignal corresponding to the bromo-precursor 1d (10.3 min) on the HPLC after ¹⁸F-incorporation (Figure 1). The high ¹⁸F-incorporation yields indicated that overall there was a strong preference for nucleophilic substitution over isotopic exchange under the radiolabelling conditions. The origin of the remarkably slow exchange of the fluorides on the KAT moiety is under further investigation.

![Figure 1](image1.png)

Figure 1 ¹⁸F-labelling of bromo-precursor 1d. a) UV-HPLC chromatogram; b) γ-HPLC chromatogram (crude).

We next evaluated the ligation efficiency of [¹⁸F]FPAT at ambient temperature with various hydroxylamine substrates 3a-c (results summarised in the SI). For all succeeding experiments, [¹⁸F]FPAT was purified to avoid competing reactions with excess remaining precursor. These ligations were performed in aqueous medium with organic solvents (BuOH or DMSO) as additives for solubilising the substrates. Aqueous oxalic acid was also added since KAT ligations are faster under acidic conditions. Complete conversion of [¹⁸F]FPAT to amide 4a was observed within 3 min at 10 mM and 1 mM concentrations of the precursor. Decreasing the concentration to 0.1 mM led to 87% conversion in 15 min and full conversion after 30 min (Scheme 2).

![Scheme 2](image2.png)

Scheme 2 Radiolabelling of hydroxylamine 3a with [¹⁸F]FPAT. Yields determined by γ-UPLC.

In order to establish that this method could be used to introduce ¹⁸F into biologically relevant molecules, we selected a short eight-residue peptide. The peptide VSPTYRYL was synthesised by standard Fmoc-SPPS on a Rink Amide resin, and the N,N-diethylcarbamoylhydroxylamine functional group introduced at the N-terminus. ¹⁸F-labelling of 3b was carried out with [¹⁸F]FPAT (1–4 GBq) using peptide concentrations typically reported for similar substrates (Scheme 3). At 800 μM and 400 μM, the ligation afforded the labelled peptide 4b quantitatively after only 15 min. Reducing the concentration to 200 μM resulted in 20% incorporation after 15 min. To further extend this method towards larger biomolecules, we modified sfGFP(S147C) with a maleimide functionality bearing the hydroxylamine group at the exposed cysteine residue (Scheme 4). Due to the low concentrations of the protein used, small amounts of [¹⁸F]FPAT (50–100 MBq) were used respectively to avoid interference of the cold [¹⁸F]FPAT. At 70 μM, the reaction successfully afforded the labelled protein 4c in quantitative yields, while a three-fold lower concentration led to 80% conversion to the conjugation product.

![Scheme 3](image3.png)

Scheme 3 Radiolabelling of hydroxylamine peptide 3b with [¹⁸F]FPAT. Yields determined by γ-HPLC.

In order to confirm that [¹⁸F]FPAT is resistant towards defluorination in vivo, which is particularly important for applications in pretargeting, [¹⁸F]FPAT was injected into a C57BL/6 mouse for a pilot PET/CT study (Figure 2). No bone uptake was observed over the 90-minute time period, establishing that no defluorination of the prosthetic group was evident, indicating the high stability of the [¹⁸F]fluoride incorporated into this scaffold. In summary, we developed a new radioconjugation strategy for the ¹⁸F-radiolabelling of peptides and proteins based on KAT ligation. The novel prosthetic group [¹⁸F]FPAT was prepared in...
radiochemical yield and good molar activity without any detectable 18F/19F isotopic exchange. $[^{18}F]$FPAT coupled selectively within minutes in aqueous medium with O-diethylcarbamoylhydroxylamines at low concentrations with excellent conversions. Compared to modern orthogonal ligation approaches (e.g. SPAAC, IEDDA) where building blocks are appended to the biomolecules with bulky hydrophilic linkages, $[^{18}F]$FPAT is tethered via a robust and innocuous amide bond which is expected to constitute a minimal perturbation of the native biomolecule. Moreover, compared to the increasingly used oxime ligation methodology, $[^{18}F]$FPAT appears advantageous since its conjugation with hydroxylamine-functionalized biomolecules is unconditionally fast, and the amide adducts are expected to possess increased stability over a wide pH range in contrast to oxime conjugation products. Therefore, this approach meets all criteria of an effective orthogonal radiolabelling strategy and has the potential to become a method of choice for the 18F-radiolabelling of biomolecules. Implementation of this novel radiolabelling strategy to peptides and proteins of biological interest is currently under investigation, as well as for applications in pretargeting.

This work was supported by ETH Research Grant ETH-44 17-2. The authors thank Dr. Adrienne Müller Herde and Ms. Claudia Keller for performing the PET/CT scans, and Dr. Hidetoshi Noda for his contributions in the early stages of this project.

Conflicts of interest

There are no conflicts to declare.

Notes and references

1. G. Muehllehner and J. S. Karp, Phys Med Biol, 2006, 51, R117-137.
2. S. M. Ametamey, M. Honer and P. A. Schubiger, Chem Rev, 2008, 108, 1501-1516.
3. R. Schirrmacher, B. Wangler, J. Bailey, V. Bernard-Gauthier, E. Schirrmacher and C. Wangler, Semin Nucl Med, 2017, 47, 474-492.
4. S. Liu, T. P. Lin, D. Li, L. Leamer, H. Shan, Z. Li, F. P. Gabbai and P. S. Conti, Theranostics, 2013, 3, 183-189.
5. Z. Liu, M. Pourghiasian, M. A. Radtke, J. Lau, J. Pan, G. M. Dias, D. Yapp, K. S. Lin, F. Benard and D. M. Perrin, Angew Chem Int Ed Engl, 2014, 53, 11876-11880.
6. O. Jacobson, D. O. Kiesewetter and X. Chen, Bioconjug Chem, 2015, 26, 1-18.
7. Y. S. Chang, J. M. Jeong, Y. S. Lee, H. W. Kim, G. B. Rai, S. J. Lee, D. S. Lee, J. K. Chung and M. C. Lee, Bioconjug Chem, 2005, 16, 1329-1333.
8. T. Toyokuni, J. C. Walsh, A. Dominguez, M. E. Phelps, J. R. Barrio, S. S. Gambhir and N. Satyamurthy, Bioconjug Chem, 2003, 14, 1253-1259.
9. I. Koslosky, J. Mercer and F. Wuest, Org Biomol Chem, 2010, 8, 4730-4735.
10. C. Wangler, R. Schirrmacher, P. Bartenstein and B. Wangler, Current Medicinal Chemistry, 2010, 17, 1092-1116.
11. D. K. Kolmel and E. T. Kool, Chem Rev, 2017, 117, 10358-10376.
12. J. Y. Choi and B. C. Lee, Nucl Med Mol Imaging, 2015, 49, 258-267.
13. N. J. Agard, J. A. Prescher and C. R. Bertozzi, J Am Chem Soc, 2004, 126, 15046-15047.
14. M. L. Blackman, M. Royzen and J. M. Fox, J Am Chem Soc, 2008, 130, 13518-13519.
15. J. P. Meyer, P. Adumeau, J. S. Lewis and B. M. Zeglis, Bioconjug Chem, 2016, 27, 2791-2807.
16. M. G. Campbell, J. Mercier, C. Genicot, V. Gouverneur, J. M. Hooker and T. Ritter, Nat Chem, 2016, 9, 1-3.
17. A. M. Dumas, G. A. Molander and J. W. Bode, Angew Chem Int Ed Engl, 2012, 51, 5683-5686.
18. F. Saito, H. Noda and J. W. Bode, ACS Chem Biol, 2015, 10, 1026-1033.
19. H. Noda, G. Eros and J. W. Bode, J Am Chem Soc, 2014, 136, 5611-5614.
20. C. J. White and J. W. Bode, ACS Cent Sci, 2018, 4, 197-206.
21. U. auf dem Keller, C. L. Bellac, Y. Li, Y. Lou, P. F. Lange, R. Ting, C. Harwig, R. Kappelhoff, S. Dedhar, M. J. Adam, T. J. Ruth, F. Wuest, D. S. Lee, J. K. Chung and M. C. Lee, Semin Nucl Med, 2017, 47, 492.
22. D. M. Perrin, Acc Chem Res, 2016, 49, 1333-1343.
23. Z. Liu, D. Chao, Y. Li, R. Ting, J. Oh and D. M. Perrin, Chemistry, 2015, 21, 3924-3928.
24. Z. Li, K. Chansaenpak, S. Liu, C. R. Wade, P. S. Conti and F. P. Gabbai, MedChemComm, 2012, 3, 1305-1308.
25. Z. Liu, K. S. Lin, F. Benard, M. Pourghiasian, D. O. Kiesewetter, D. M. Perrin and X. Chen, Nat Protoc, 2015, 10, 1423-1432.
26. S. Preshlock, M. Tredwell and V. Gouverneur, Chem Rev, 2016, 116, 719-766.
27. V. W. Pike, Curr Med Chem, 2016, 23, 1818-1869.
28. G. R. Naumiec, L. Cai, S. Lu and V. W. Pike, European J Org Chem, 2017, 2017, 6593-6603.
29. D. E. Olberg, J. M. Arukwe, D. Grace, O. K. Hjelstuen, M. Solbakken, G. M. Kindberg and A. Cuthbertson, J Med Chem, 2010, 53, 1732-1740.
30. G. Vaidyanathan and M. R. Zalutsky, Nat Protoc, 2006, 1, 1655-1661.
31. A. Chiotellis, F. Sladojevich, L. Mu, A. Muller Herde, I. E. Valverde, V. Tolmachev, R. Schibli, S. M. Ametamey and T. L. Mindt, Chem Commun (Camb), 2016, 52, 6083-6086.