A NOTE ON A THEOREM OF H. CARTAN

JOSÉ M. ISIDRO
Universidad de Santiago de Compostela

Abstract. We prove that if $D \subset \mathbb{C}^n$ is a bounded domain with real analytic boundary, and D is either pseudoconvex or it satisfies condition R, then the compact open topology in $\text{Aut}(D)$, the group of holomorphic automorphisms of D is the topology of uniform convergence on D.

0 Introduction

Let D be a bounded domain in \mathbb{C}^n with $n \geq 1$, and let $\text{Aut}(D)$ denote the group of holomorphic automorphisms of D. It was shown by H. Cartan [2, Chap. 9, th. 4] that $\text{Aut}(D)$, endowed with the compact open topology (that is, the topology of local uniform convergence on D), is a real Lie group whose Lie algebra $\text{aut}(D)$ consists of all complete holomorphic vector fields $X: D \to \mathbb{C}^n$, and that the natural action

$$\text{Aut}(D) \times D \to D, \quad (f, z) \mapsto f(z)$$

is real analytic in joint variables. This result is no longer valid if \mathbb{C}^n is replaced by an arbitrary complex Banach space E; however, it is still valid if we assume that $D \subset E$ is a bounded symmetric domain ([4], [5]).

It is remarkable that no assumptions on the smoothness of the boundary ∂D is needed either in the \mathbb{C}^n setting or in the infinite dimensional case. This leads naturally to the question of whether every f in $\text{Aut}(D)$ extends holomorphically beyond ∂D. Affirmative answers to this question have been found, in the \mathbb{C}^n setting, by S. Chen S. Jang in [1, th.1.2] assuming that D has real analytic boundary and that either D is pseudoconvex or that condition (R) holds on D. By condition (R) we mean that the Bergmann projector (that is, the orthogonal projection from $L^2(D)$ onto the the closed subspace $O^2(D)$ of square integrable holomorphic functions) maps $C^\infty(D)$ continuously into itself. In the infinite dimensional context, an affirmative answer has been established in [6] for bounded circular domains with no restrictions on the boundary.

In turn, the possibility of extending every element f in $\text{Aut}(D)$ to a neighbourhood of \overline{D} gives new information about the topology of $\text{Aut}(D)$. Indeed, it has been proved in [6] that for bounded circular domains D in a Banach space E, the topology on $\text{Aut}(D)$ of local uniform convergence over D is actually the topology of uniform convergence on D. In this note we use the results in [1] to prove the following theorem:

Theorem Let $D \subset \mathbb{C}^n$, where $n \geq 1$, be a bounded domain with real analytic boundary, and suppose that either D is pseudoconvex or it satisfies condition (R). Then the compact open topology on $\text{Aut}(D)$ is the same as the topology of uniform convergence over D.
For a domain $D \subset \mathbb{C}^n$, we let $\text{Hol}(D, \mathbb{C}^n)$ denote the vector space of all holomorphic mappings $h: D \to \mathbb{C}^n$, and the subset $\text{Hol}(D)$ consists of the mappings such that $f(D) \subset D$. A set $S \subset D$ is a vanishing set for D if the relations $f \in \text{Hol}(D, \mathbb{C}^n)$ and $f|_S = 0$ entail $f = 0$. We say that ∂D is an algebraically determining set for $\text{Aut}(D)$ if the relations $f, g \in \text{Aut}(D)$ and $f = g$ on ∂D entail $f = g$. Similarly, the expression ∂D is a topologically determining set for $\text{Aut}(D)$ means that whenever $(f_n)_{n \in \mathbb{N}}$ and f are respectively a sequence and an element in $\text{Aut}(D)$ such that $f_n \to f$ uniformly over ∂D we have $f_n \to f$ in $\text{Aut}(D)$. Obvious changes give us the meaning of the expressions $S \subset D$ is an algebraically or topologically determining set for $\text{aut}(D)$, see [3]

1 The main result.

1.1 Theorem. Let $D \subset \mathbb{C}^n$, where $n \geq 1$, be a bounded domain with real analytic boundary, and suppose that either D is pseudoconvex or it satisfies condition (R). Then for every sequence $(f_n)_{n \in \mathbb{N}}$ in $\text{Aut}(D)$ and every f in $\text{Hol}(D)$ the following conditions are equivalent:

1. $f \in \text{Aut}(D)$ and there is a neighbourhood Ω of \overline{T} in \mathbb{C}^n such that $(f_n)_{n \in \mathbb{N}}$ converges to f uniformly on Ω.

2. $f \in \text{Aut}(D)$ and $(f_n)_{n \in \mathbb{N}}$ converges to f in the group $\text{Aut}(D)$.

3. There are a non void open subset $U \subset D$ and a point $a \in U$ such that $(f_n(z))_{n \in \mathbb{N}}$ converges to $f(z)$ pointwise on U and $f(a) \notin \partial D$.

Proof. We only need to prove $3 \implies 1$. By the identity principle, U is a vanishing set for D. Also the family $(f_n)_{n \in \mathbb{N}}$ is uniformly bounded in D. Therefore by Vitali’s theorem [2, Chap. 1 prop. 7] the sequence $(f_n)_{n \in \mathbb{N}}$ converges to f uniformly on each compact subset $K \subset D$. Since $f(a) \notin \partial D$, we have $f \in \text{Aut}(D)$ by Cartan’s theorem [2, Chap. 5 th. 4]. On the other hand, since D is a pseudocompact set or it satisfies condition (R), by [1, th. 1.2] there are a neighbourhood \mathcal{V}_f of f in $\text{Aut}(D)$ and a neighbourhood Ω_f of \overline{T} in \mathbb{C}^n such that every $g \in \mathcal{V}_f$ extends to some $\tilde{g} \in \text{Hol}(\Omega_f)$ and the action

$$\mathcal{V}_f \times \Omega_f \to \mathbb{C}^n, \quad (g, z) \mapsto \tilde{g}(z)$$

is real analytic on $\mathcal{V}_f \times \Omega_f$. By restricting ourselves to smaller neighbourhoods $W \subset \mathcal{V}_f$ and $\Omega \subset \Omega_f \subset \Omega_f$ we may assume that \overline{W} and $\overline{\Omega}$ are compact and that the latter is connected. Since $f_n \to f$ in $\text{Aut}(D)$, we have $f_n \in W$ for n large enough, say $n \geq n_0$ and so

$$\sup_{n \geq n_0, z \in \Omega} \|f_n(z)\| \leq M < \infty,$$

and a new application of Vitali’s theorem yields that $f_n \to f$ uniformly on each compact subset of Ω_1, in particular on Ω. \qed

1.2 Corollary. Let the domain $D \subset \mathbb{C}^n$ satisfy the assumptions in (1.1). Then

1. The compact open topology on $\text{Aut}(D)$ coincides with the topology of uniform convergence over \overline{T} and with the topology of uniform convergence over ∂D.

2. ∂D is a determining set for the topological group $\text{Aut}(D)$.

3. If D is a bounded convex domain with real analytic boundary, then every element in $\text{Aut}(D)$ has a fixed point in \overline{T}.

Proof. (1): It is clear from the above proof that on $\text{Aut}(D)$ uniform convergence over the compact subsets of D is the same as uniform convergence over \overline{T}, which in turn is the same as uniform convergence over ∂D as a consequence of the maximum modulus theorem. (2) and (3): Extend to \overline{T} the elements in $\text{Aut}(D)$ and apply respectively the maximum modulus theorem and Brower’s fixed point theorem. \qed

We now consider the similar problems at the Lie algebra level.
1.3 Theorem. Let $D \subset \mathbb{C}^n$, where $n \geq 1$, be a bounded domain with real analytic boundary, and suppose that either D is pseudoconvex or it satisfies condition (R). Then there are a neighbourhood \mathcal{M}_0 of 0 in $\text{aut} (D)$ and a neighbourhood Ω_0 of \overline{D} in \mathbb{C}^n such that every vector field $X \in \mathcal{M}_0$ extends to some $\tilde{X} \in \text{Hol} (\Omega_0, \mathbb{C}^n)$ that is the infinitesimal generator of a local one-parameter group of holomorphic transformations on Ω_0.

Proof. Choose a neighbourhood V_{id} of id in the group $\text{Aut} (D)$ and a neighbourhood Ω_0 of \overline{D} in \mathbb{C}^n such that every element $f \in V_{\text{id}}$ extends to a holomorphic mapping \tilde{f} in Ω_0 and the action

$$V_{\text{id}} \times \Omega_0 \rightarrow \mathbb{C}^n, \quad (f, z) \mapsto \tilde{f}(z)$$

is real analytic on $V_{\text{id}} \times \Omega_0$. The exponential mapping \exp defines a homeomorphism of a neighbourhood W_{id} of id in $\text{Aut} (D)$ onto a neighbourhood of 0 in $\text{aut} (D)$. Let $U_0 := V_{\text{id}} \cap W_{\text{id}}$ and set $M_0 := \exp^{-1}U_0$. We may assume that M_0 is balanced hence connected. Let $X \in M_0$ and let $f_t := \exp tX \in \text{Aut} (D)$ denote the one-parameter group corresponding to X. For small values of t, say $|t| < \tau$, we have $f_t \in U_0$, hence f_t extends to a holomorphic mapping $f_t \in \text{Hol} (\Omega_0, \mathbb{C}^n)$. By the identity principle we have $f_t \circ f_s = f_{t+s}$ whenever $|t+s| < \tau$. Thus $t \mapsto f_t$ is a local one-parameter group of holomorphic transformations on Ω_0 and so its infinitesimal generator $\tilde{X} = \frac{d}{dt}|t=0}f_t$ is a holomorphic mapping on Ω_0 that extends X. □

1.4 Corollary. Let the domain $D \subset \mathbb{C}^n$ satisfy the assumptions in (1.3). Then ∂D is a determining set for $\text{aut} (D)$, and for every sequence $(X_n)_{n \in \mathbb{N}}$ in $\text{aut} (D)$ and every function $X \in \text{Hol} (D, \mathbb{C}^n)$ the following conditions are equivalent:

1. $X \in \text{aut} (D)$ and there is a neighbourhood Ω of \overline{D} in \mathbb{C}^n such that $X_n \rightarrow X$ uniformly on Ω.
2. $X \in \text{aut} (D)$ and $(X_n)_{n \in \mathbb{N}}$ converges to X in the Lie algebra $\text{aut} (D)$.
3. $(X_n(z))_{n \in \mathbb{N}}$ is uniformly bounded in D and $X_n \rightarrow X$ pointwise on some open non void subset $U \subset D$.

Proof. Clearly 1 \implies 2. Suppose that (2) holds; then a repetition of the arguments made in the proof of (1.3) show that X and all X_n extend holomorphically to a suitable neighbourhood Ω of \overline{D} and $X_n \rightarrow X$ uniformly over Ω, hence in particular $(X_n)_{n \in \mathbb{N}}$ is uniformly bounded on D. Now suppose (3) holds; by Vitali’s theorem we have $X_n \rightarrow X$ uniformly over the compact subset of D, hence $X \in \text{aut} (D)$, and by (1.3) all X_n and X extend holomorphically to some neighbourhood Ω of \overline{D}. A new application of Vitali’s theorem gives the result. The other claim is now obvious. □

References

1. Chen So-Chin & Jang Shin-Biau, An extension of H. Cartan theorem, Proc. Amer. Math. Soc. 127 (1999), 2265-2271.
2. Narasimhan, R., Several Complex Variables, Chicago Lectures in Mathematics, The University of Chicago Press, 1970.
3. Isidro, J. M. & Kaup, W., Determining Boundary Sets of Bounded Symmetric Domains, Manuscripta Math. 81 (1993), 149-159.
4. Upmeier, H., Über the Automorphismengruppen von Banachmannigfaltigkeiten mit invarianter Metrik, Math. Ann. 223 (1976), 279-288.
5. Vigué, J. P., Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe, Ann. Sci. Ecole Norm. Sup. s’erie IV 9 (1976), 203-282.
6. Vigué, J. P., Le groupe des automorphismes analytiques d’un domaine borné cerclé, Bull. Sc. Math. 2 s’erie 106 (1982), 417-426.
E-mail address: jmisidro@zmat.usc.es