CYCLIC SIEVING FOR CYCLIC CODES

ALEX MASON, VICTOR REINER, AND SHRUTHI SRIDHAR

Abstract. Prompted by a question of Jim Propp, this paper examines the cyclic sieving phenomenon (CSP) in certain cyclic codes. For example, it is shown that, among dual Hamming codes over \(F_q \), the generating function for codedwords according to the major index statistic (resp. the inversion statistic) gives rise to a CSP when \(q = 2 \) or \(q = 3 \) (resp. when \(q = 2 \)). A byproduct is a curious characterization of the irreducible polynomials in \(F_2[x] \) and \(F_3[x] \) that are primitive.

1. Introduction

The Cyclic Sieving Phenomenon describes the following enumerative situation. One has a finite set \(X \) having the action of a cyclic group \(C = \langle c \rangle = \{1, c, c^2, \ldots, c^{n-1} \} \) of order \(n \), and a polynomial \(X(t) \) in \(\mathbb{Z}[t] \) that not only satisfies \(\#X = X(1) \), but furthermore every element \(c^d \) in \(C \) satisfies

\[
\# \{ x \in X : c^d(x) = x \} = [X(t)]_{t=(e^{2\pi i n})^d}.
\]

In this case, one says that the triple \((X, X(t), C) \) exhibits the cyclic sieving phenomenon (CSP); see [8] for background and many examples. Frequently the polynomial \(X(t) \) is a generating function \(X_{\text{stat}}(t) := \sum_{x \in X} t^{\text{stat}(x)} \) for some combinatorial statistic \(X_{\text{stat}} \rightarrow \{0, 1, 2, \ldots\} \). Some of the first examples of CSPs (e.g., Theorem 3.1 below) arose for the cyclic \(n \)-fold rotation action on certain special collections \(X \) of words \(w = (w_1, \ldots, w_n) \) of length \(n \) in a linearly ordered alphabet, with \(X(q) = X_{\text{maj}}(t) \) or \(X_{\text{inv}}(t) \) being generating functions for the major index and inversion number statistics, defined as follows:

\[
\text{inv}(w) := \# \{(i, j) : 1 \leq i < j \leq n : w_i > w_j \},
\]

\[
\text{maj}(w) := \sum_{i : w_i > w_{i+1}} i.
\]

This prompted Jim Propp to ask the question [7] of whether there are such CSPs in which \(X \) is the set of codewords \(\mathcal{C} \) for a cyclic error-correcting code. He initially observed the following instances of CSP triples \((X, X_{\text{stat}}(t), C) \) where \(X = \mathcal{C} \) is a cyclic code inside \(\mathbb{F}_q^n \), and \(C = \mathbb{Z}/n\mathbb{Z} \) acts as \(n \)-fold cyclic rotation of words, and either \(\text{stat} = \text{maj} \) or \(\text{stat} = \text{inv} \):

- all repetition codes (trivially),
- the full codes \(\mathcal{C} = \mathbb{F}_q^n \),
- all parity check codes, and
- all binary cyclic codes of length 7.
After a quick review of cyclic codes in Section 2, a few simple observations about CSPs for cyclic actions on words in Section 3 will explain all of the above CSPs, and a few more.

Section 4 addresses the more subtle examples of dual Hamming codes. Among other things, it shows that either $X^{maj}(t)$ or $X^{inv}(t)$ give rise to a CSP for all binary dual Hamming codes, while $X^{maj}(t)$ also works for all ternary Hamming codes. The analysis leads to a curious characterization (Theorem 4.5(ii)) of which irreducible polynomials in $\mathbb{F}_2[x]$ or $\mathbb{F}_3[x]$ are primitive polynomials.

2. Preliminaries

We briefly review here the notions of linear codes, cyclic codes, and the examples that we will consider; see, e.g., Garrett \cite{G} or Pless \cite{P} for more background. Recall an \mathbb{F}_q-linear code of length n is an \mathbb{F}_q-linear subspace $C \subseteq \mathbb{F}_q^n$. One calls C cyclic if it is also stable under the action of the cyclic group $C = \{e, c, c^2, \ldots, c^{n-1}\} \cong \mathbb{Z}/n\mathbb{Z}$ whose generator c cyclically shifts codewords w as follows:

$$c(w_1, w_2, \ldots, w_n) := (w_2, w_3, \ldots, w_n, w_1).$$

It is convenient to rephrase this using the \mathbb{F}_q-vector space isomorphism

$$\begin{align*}
\mathbb{F}_q^n &\rightarrow \mathbb{F}_q[x]/(x^n - 1) \\
w = (w_1, \ldots, w_n) &\mapsto w_1 + w_2 x + w_3 x^2 + \cdots + w_n x^{n-1}.
\end{align*}$$

(2.1)

After identifying a code $C \subseteq \mathbb{F}_q^n$ with its image under the isomorphism in (2.1), the \mathbb{F}_q-linearity of C together with cyclicity means that C forms an ideal within the principal ideal ring $\mathbb{F}_q[x]/(x^n - 1)$. Hence C is the set $(g(x))$ of all multiples of some generating polynomial $g(x)$. This means that

$$C = \{h(x)g(x) \in \mathbb{F}_q[x]/(x^n - 1) : \deg(h) + \deg(g) < n\}$$

and therefore $k := \dim_{\mathbb{F}_q} C = n - \deg(g(x))$. The dual code C^\perp of a linear code C in \mathbb{F}_q^n is defined as

$$C^\perp := \{v \in \mathbb{F}_q^n : 0 = v \cdot w = \sum_{i=1}^n v_i w_i\}.$$

One has that C is cyclic with generator $g(x)$ if and only if C^\perp is cyclic with generator $g^\perp(x) := \frac{x^{n-1}}{g(x)}$, called the parity check polynomial for the primal code C. This implies $k = \dim_{\mathbb{F}_q} C = \deg(g^\perp(x))$.

Example 2.1. The cyclic code C having $g^\perp(x) = 1 + x + x^2 + \cdots + x^{n-1}$ is called the parity check code of length n (particularly when $q = 2$). As a vector space, it is the space of all vectors in \mathbb{F}_q^n with coordinate sum 0. Its dual code C^\perp consisting of the scalar multiples of $g^\perp(x) = 1 + x + x^2 + \cdots + x^{n-1}$ is the repetition code. For example, the ternary ($q = 3$) repetition code C^\perp and parity check code C of length $n = 2$, and their respective generator polynomials $g^\perp(x), g(x)$ inside $\mathbb{F}_3[x]/(x^2 - 1)$, are

$$C^\perp = \{[0,0], [1,1], [2,2]\}, \quad \text{generated by} \quad g^\perp(x) = 1 + x,$n

$$C = \{[0,0], [1,2], [2,1]\}, \quad \text{generated by} \quad g(x) = \frac{x^2 - 1}{1+x} = 1 + 2x.$$

Example 2.2. Recall that a degree k polynomial $f(x)$ in $\mathbb{F}_q[x]$ is called primitive if it is not only irreducible, but also has the property that the image \bar{x} of the variable x in the finite field $\mathbb{F}_q[x]/(f(x))$ has the maximal possible multiplicative order, namely $n := q^k - 1$. Equivalently, $f(x)$ is primitive when it is irreducible but divides none of the polynomials $x^d - 1$ for proper divisors d of n.

A cyclic code C generated by a primitive polynomial $g(x)$ in $\mathbb{F}_q[x]$ of degree k is called a Hamming code of length $n = q^k - 1$ and dimension $n - k$. Its dual C^\perp generated by $\frac{x^{n-1}}{g(x)}$ is a dual Hamming code of length n and dimension k. See Example 4.3 below for some examples with $q = 3$ (ternary codes) with $k = 2$ and length $n = 3^2 - 1 = 8$.
Theorem 3.1. Let $C = \mathbb{F}_q^n$ or the parity check codes $C = \{w \in \mathbb{F}_q^n : \sum_{i=1}^n w_i = 0\}$, since both are \mathfrak{S}_n-stable inside \mathbb{F}_q^n. We first explain why the CSPs for full codes of length n for every σ in \mathfrak{S}_n. Then $(X, X^{\text{stat}}(t), C)$ exhibits the CSP, where either stat $= \text{maj}$ or stat $= \text{inv}$.

Note that Theorem 3.1 explains Propp’s observation of CSP triples involving either the full codes C or the parity check codes $C = \{w \in \mathbb{F}_q^n : \sum_{i=1}^n w_i = 0\}$, since both are \mathfrak{S}_n-stable inside \mathbb{F}_q^n.

The next proposition analyzes how $\text{maj}(w)$ changes \footnote{A much more sophisticated analysis may be found in Ahlbach and Swanson \cite{2}.} when applying the cyclic shift c to the word w, and similarly for $\text{inv}(w)$ if the alphabet A is binary. In the latter case, we assume $A = \{0, 1\}$ has linear order $0 < 1$, and will refer to the Hamming weight $\text{wt}(w)$, as the number of ones in w. We also use another statistic on words w in A^n, the number of cyclic descents

$$\text{cdes}(w) := \#\{i : 1 \leq i \leq n \text{ and } w_i > w_{i+1}\}$$

where we decree $w_{n+1} := w_1$ to understand the inequality $w_i > w_{i+1}$ when $i = n$. Lastly, define a t-analogue of the number n by this geometric series: $[n]_t := 1 + t + t^2 + \cdots + t^{n-1} = \frac{t^n-1}{t-1}$. The following proposition is then straightforward to check from the definitions.

Proposition 3.2. Let A be any linearly ordered alphabet, and w a word in A^n.

(i) The statistic $\text{cdes}(w)$ is constant among all words within the C-orbit of w, and

$$\text{maj}(c(w)) = \begin{cases} \text{maj}(w) + \text{cdes}(w) & \text{if } w_n \leq w_1, \\ \text{maj}(w) + \text{cdes}(w) - n & \text{if } w_n > w_1 \end{cases} \equiv \text{maj}(w) + \text{cdes}(w) \mod n.$$

(ii) In the binary case $A = \{0, 1\}$, one has

$$\text{inv}(c(w)) = \begin{cases} \text{inv}(w) + \text{wt}(w) & \text{if } w_n = 1, \\ \text{inv}(w) + \text{wt}(w) - n & \text{if } w_n = 0 \end{cases} \equiv \text{inv}(w) + \text{wt}(w) \mod n.$$

The congruences modulo n in Proposition 3.2 immediately imply the following.

Proposition 3.3. When w in A^n has free C-orbit, meaning that $\{w, c(w), c^2(w), \ldots, c^{n-1}(w)\}$ are all distinct, then one has the following congruence in $\mathbb{Z}[t]/(t^n - 1)$:

$$X^{\text{maj}}(t) \equiv t^{\text{maj}(w)} \cdot [n]_t^{\text{cdes}(w)} \mod t^n - 1.$$

In the binary case, one has

$$X^{\text{inv}}(t) \equiv t^{\text{inv}(w)} \cdot [n]_t^{\text{wt}(w)} \mod t^n - 1.$$
The next corollary then explains Propp’s observation about CSPs for binary cyclic codes $X = C$ of length $n = 7$ using either $X^{\text{maj}}(t)$ or $X^{\text{inv}}(t)$. The key point is that 7 is prime. We will also frequently use the fact that the following three conditions are equivalent for positive integers k, n:

- $\gcd(k, n) = 1$.
- $t^k[n]_t ≡ [n]_t \mod t^n − 1$ for all nonnegative integers ℓ.
- $t^k[n]_t$ vanishes upon evaluating t at any nth root-of-unity that is not 1.

Corollary 3.4. When n is prime, every C-stable subset $X \subset A^n$ gives rise to a CSP triple $(X, X^{\text{maj}}(t), C)$. If furthermore, $A = \{0, 1\}$, then one also has the CSP triple $(X, X^{\text{inv}}(t), C)$.

Proof. Since Proposition 3.3 implies the above sum is congruent modulo t, as in the proof of Corollary 3.4, for either statistic $\text{stat} = \text{maj}$ or $\text{stat} = \text{inv}$, the CSP holds if and only if $\gcd(n, \text{cdes}(w)) = 1$.

Remark 3.5. Note that Proposition 3.3 dashes any false hopes one might have that for binary words w in $\{0, 1\}^n$, the distributions $\sum_{j=0}^{n-1} t^{\text{maj}(c^j(w))}$ and $\sum_{j=0}^{n-1} t^{\text{inv}(c^j(w))}$ are congruent modulo $t^n − 1$. This can fail for non-prime n even when w has a free C-orbit. For example, $w = (1, 0, 1, 1, 1, 1)$ has

$$\sum_{j=0}^{n-1} t^{\text{maj}(c^j(w))} \equiv t^5[6]_t \neq t^7[6]_t \equiv \sum_{j=0}^{n-1} t^{\text{inv}(c^j(w))} \mod t^6 − 1.$$

Our discussion of dual Hamming codes will use another consequence of Proposition 3.3.

Corollary 3.6. Suppose that a C-stable subset $X \subseteq A^n$ of words has all non-constant words in X lying in a single free C-orbit, represented by the word w.

(i) Then $(X, X^{\text{maj}}(t), C)$ gives rise to a CSP triple if and only if $\gcd(n, \text{cdes}(w)) = 1$.

(ii) In the binary case, $(X, X^{\text{inv}}(t), C)$ gives rise to a CSP triple if and only if $\gcd(n, \text{wt}(w)) = 1$.

Proof. As in the proof of Corollary 3.3 for either statistic $\text{stat} = \text{maj}$ or $\text{stat} = \text{inv}$, the CSP holds if and only if $\sum_{j=0}^{n-1} t^{\text{stat}(c^j(w))}$ vanishes upon setting $t = \zeta_n^d$ for any nth root-of-unity $\zeta_n \neq 1$. Since Proposition 3.3 implies the above sum is congruent modulo $t^n − 1$ to $t^{\text{maj}(w)}[n]_{t^{\text{cdes}(w)}}$ when $\text{stat} = \text{maj}$, and to $t^{\text{inv}(w)}[n]_{t^{\text{wt}(w)}}$ in the binary case when $\text{stat} = \text{inv}$, the result follows. □
4. Dual Hamming codes

To understand when dual Hamming codes \(\mathcal{C} \) exhibit a CSP, it will help to have many ways to characterize them among cyclic codes. As a precursor step, it helps to first characterize the cyclic codes for which the cyclic action on nonzero codewords is free.

Proposition 4.1. A cyclic code \(\mathcal{C} \subset \mathbb{F}_q^n \) with parity check polynomial \(g^+(x) \) will have the \(C \)-action on \(\mathcal{C} \setminus \{0\} \) free if and only if \(\gcd(g^+(x), x^d - 1) = 1 \) for all proper divisors \(d \) of \(n \).

Proof. First note that, since \(C^n = 1 \), whenever a codeword \(w \) in \(\mathcal{C} \) is fixed by some element \(c^d \neq 1 \) in \(C \), without loss of generality, one may assume \(d \) is a proper divisor of \(n \); otherwise replace \(d \) by \(\gcd(d, n) \). When this happens, the polynomial \(h(x)g(x) \) representing \(w \) in \(\mathbb{F}_q[x]/(x^n - 1) \) has

\[
x^n h(x)g(x) \equiv h(x)g(x) \mod x^n - 1
\]

or equivalently \((x^d - 1)h(x)g(x)\) is divisible by \(x^n - 1 \) in \(\mathbb{F}_q[x] \). Canceling factors of \(g(x) \), this is equivalent to \((x^d - 1)h(x)\) being divisible by \(g^+(x) \) in \(\mathbb{F}_q[x] \). However, as discussed in Section 2, \(h(x) \) can be chosen with degree strictly less than \(k = \dim \mathcal{C} = \deg(g^+(x)) \), so the existence of such a nonzero \(h(x) \) is equivalent to \(g^+(x) \) sharing a common factor with \(x^d - 1 \). \(\square \)

The next result compiles various equivalent characterizations of the primitive polynomials within \(\mathbb{F}_q[x] \), or equivalently, the dual Hamming codes. Although many of the equivalences are well-known (see, e.g., Garrett [3] Chap. 21, [4] Chap. 16, Klein [5] Chap. 2 for some), we were unable to find a source for all of them in the literature, so we have included the proofs here. Some of the equivalences involve the linear feedback shift register (LFSR) associated to a monic polynomial \(f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{k-1} x^{k-1} + x^k \), which is the \(\mathbb{F}_q \)-linear map

\[
\mathbb{F}_q^k \xrightarrow{T_f} \mathbb{F}_q^k \quad T_f(x) = (x_1, \ldots, x_{k-1}, x_k)
\]

where \(x_k : = -(a_0 x_{k-1} + a_1 x_{k-2} + \cdots + a_{k-1} x_0) \). Starting with a seed vector \(s = (s_0, s_1, \ldots, s_{k-1}) \), since \(s \) and \(T_f(s) \) overlap in a consecutive subsequence of length \(k - 1 \), it is possible to create an infinite pseudorandom sequence \((s_0, s_1, \ldots, s_{k-1}, s_k, s_{k+1}, \ldots) \) containing as its length \(k \) consecutive subsequences all of the iterates \(T_f^n(s) = (s_{r+1}, s_{r+2}, \ldots, s_{r+k-1}) \).

Proposition 4.2. Let \(g^+(x) \) be any monic irreducible degree \(k \) polynomial in \(\mathbb{F}_q[x] \) that divides \(x^n - 1 \), where \(n := q^k - 1 \). Let \(\mathcal{C} \subset \mathbb{F}_q^n \) be the \(k \)-dimensional cyclic code generated by \(g(x) = \frac{x^n - 1}{g^+(x)} \). Then the following are equivalent:

(i) The \(C \)-action by \(n \)-fold cyclic shifts on \(\mathcal{C} \setminus \{0\} \) inside \(\mathbb{F}_q^n \) is simply transitive.

(ii) \(\gcd(g^+(x), x^d - 1) = 1 \) for all proper divisors \(d \) of \(n \).

(iii) \(g^+(x) \) is primitive, that is, \(\bar{x} \) has order \(n \) in \(\mathbb{F}_q[x]/(g^+(x)) \), so \(\mathcal{C} \) is dual Hamming.

(iv) The linear feedback shift register \(T_{g^+} : \mathbb{F}_q^k \to \mathbb{F}_q^k \) has order \(n \).

(v) With seed \(s := (0, \ldots, 0, 1) \) in \(\mathbb{F}_q^k \), the iterates \(\left\{ T_{g^+}^r(s) \right\}_{r=0,1,\ldots,n-1} \) exhaust \(\mathbb{F}_q^k \setminus \{0\} \).

(vi) The pseudorandom sequence generated by \(T_{g^+}(x) \) with seed \(s := (0, \ldots, 0, 1) \) is \(n \)-periodic, and each period contains each vector \(\mathbb{F}_q^k \setminus \{0\} \) as a consecutive subsequence exactly once.

(vii) The codeword \(w \) in \(\mathcal{C} \subset \mathbb{F}_q^n \) corresponding under \(T_{g^+} \) to \(g(x) \) in \(\mathbb{F}_q[x]/(x^n - 1) \), when repeated \(n \)-periodically, has each vector of \(\mathbb{F}_q^k \setminus \{0\} \) as a consecutive subsequence once per period.

Example 4.3. When \(q = 3 \) and \(k = 2 \), so \(n = 3^2 - 1 = 8 \), there are three degree two monic irreducibles \(g^+(x) \) in \(\mathbb{F}_3[x] \), each shown here with \(g(x) = \frac{x^n - 1}{g^+(x)} \) and its corresponding word \(w \) in \(\mathbb{F}_3^8 \).
The first choice is not primitive, while the second and third are primitive. The non-primitive first choice \(g^+(x) = x^2 + 1 \) has LFSR \(L_{g^+(x)} : (x_0, x_1) \mapsto (x_1, x_2) \) where \(x_2 = -(0 \cdot x_1 + 1 \cdot x_0) = -x_0 \). Starting with seed \((0, 1)\), it has only 4 different iterates

\[
(0, 1) \mapsto (1, 0) \mapsto (0, 2) \mapsto (2, 0) \mapsto (0, 1) \mapsto (1, 0) \mapsto (2, 0) \mapsto (0, 1) \mapsto \cdots
\]

and this pseudorandom sequence \((0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, \ldots)\), whose period is 4, not \(n = 8 \).

The primitive second choice \(g^+(x) = x^2 + x + 2 \) has LFSR \(L_{g^+(x)} : (x_0, x_1) \mapsto (x_1, x_2) \) where \(x_2 = -(1 \cdot x_1 + 2 \cdot x_0) = -x_1 + x_0 \). Starting with seed \((0, 1)\) it has 8 different iterates (all of \(\mathbb{F}_2^2 \setminus \{0\} \))

\[
(0, 1) \mapsto (1, 2) \mapsto (2, 2) \mapsto (2, 0) \mapsto (0, 2) \mapsto (2, 1) \mapsto (1, 1) \mapsto (1, 0) \mapsto (0, 1) \mapsto \cdots
\]

and pseudorandom sequence \((0, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, \ldots)\), whose period is \(n = 8 \).

Proof. (i) \(\iff \) (ii): Since both the cyclic group \(C \) and \(\mathbb{C} \setminus \{0\} \) have \(n = q^k - 1 \) elements, the \(C \)-action on \(\mathbb{C} \setminus \{0\} \) is simply transitive if and only if it is free. Proposition 4.1 then implies the equivalence.

(ii) \(\iff \) (iii): Since \(g^+(x) \) is an irreducible factor of \(x^n - 1 \), having \(\gcd(g^+(x), x^d - 1) \) for all proper divisors \(d \) of \(n \) is the same as saying \(g^+(x) \) does not divide \(x^d - 1 \) for any proper divisor \(d \) of \(n \). The latter is the same as saying \(\bar{x} \) has order \(n \) inside \(\mathbb{F}_q \langle x \rangle / (g^+(x)) \).

(iii) \(\iff \) (iv): The matrix for \(T_{g^+(x)} \) acting in the standard basis for \(\mathbb{F}_q^n \) is the transpose of the matrix for multiplication by \(\bar{x} \) acting in the ordered basis \((1, \bar{x}, \bar{x}^2, \ldots, \bar{x}^{k-1})\) for \(\mathbb{F}_q \langle x \rangle / (g^+(x)) \), that is, the usual companion matrix for \(g^+(x) \). Therefore they have the same multiplicative order.

(iv) \(\Rightarrow \) (v): Since \(T_{g^+(x)} \) has the same multiplicative order as multiplication by \(\bar{x} \) in \(\mathbb{F}_q \langle x \rangle / (g^+(x)) \), and since \(g^+(x) \) divides \(x^n - 1 \), the latter order divides \(n \). However, if the iterates \(\{T_{g^+(x)}(e_k)\}_{r=0,1,\ldots,n-1} \) exhaust \(\mathbb{F}_q^k \setminus \{0\} \), then there are \(n \) of them, so \(T_{g^+} \) has order at least \(n \), and hence exactly \(n \).

(ii) \(\Rightarrow \) (v): Assume (v) fails, that is, the \(n \) iterates \(\{T_{g^+(x)}(e_k)\}_{r=0,1,\ldots,n-1} \) do not exhaust the set \(\mathbb{F}_q^k \setminus \{0\} \) of cardinality \(n \), so two of them are equal. Since \(T_{g^+} \) is invertible, this means \(T_{g^+}^d(x) = x \) for some \(x \neq 0 \) and \(1 \leq d < n \). Thus \(T_{g^+} \) has an eigenvalue \(\alpha \) in \(\mathbb{F}_q \) which is a \(d^\text{th} \) root-of-unity for some proper divisor \(d \) of \(n \), and hence its characteristic polynomial \(g^+(x) \) has \(\alpha \) as a root. But this would contradict (ii): primitivity of \(g^+(x) \) implies that any of its roots \(\alpha \) gives rise to an isomorphism \(\mathbb{F}_q \langle x \rangle / (g^+(x)) \cong \mathbb{F}_q[\alpha] \) sending \(\bar{x} \mapsto \alpha \), so \(\alpha \) should have order \(n \).

(v) \(\iff \) (vi): By construction the \(n \)-periodicity of the pseudorandom sequence comes from the fact that \(T_{g^+} \) had the same order \(n \) as \(\bar{x} \). The rest of (vi) is then a restatement of (v).

(vi) \(\iff \) (vii): We claim that the word \(w \) in (vii) is the reverse of the pseudorandom sequence in (vi). This is because the equation

\[
x^n - 1 = g^+(x)g(x) = \left(x^k + \sum_{i=0}^{k-1} a_i x^i\right) \left(\sum_{j=1}^{n} w_j x^{j-1}\right)
\]
defining \(g(x) \) via \(g^\pm(x) \) makes the coefficient of \(x^m \) vanish on both sides for \(1 \leq m \leq n - 1 \), so

\[
w_{m-k+1} = -(a_{k-1}w_{m-k+2} + \cdots + a_1w_m + a_0w_{m+1}) = T_{g^+}(w_{m+1}, w_m, \ldots, w_{m-k+2}).
\]

Also, since \(g(x) \) is monic of degree \(n - k \), the reverse \((w_n, w_{n-1}, \ldots, w_2, w_1) \) of \(w \) will start with its initial \(k \) terms being \(\langle w_n, w_{n-1}, \ldots, w_{n-k+2}, w_{n-k+1} \rangle = (0, 0, \ldots, 0, 1) \). In other words, this reverse of \(w \) is the pseudorandom sequence of length \(n \) generated by \(T_{g^+}(x) \) with seed \((0, 0, \ldots, 0, 1) \).

Proposition 4.4. Let \(X = \mathbb{C} \subset \mathbb{F}_q^n \) be a \(k \)-dimensional dual Hamming code, so that \(n = q^k - 1 \), with generator \(g(x) \), and \(w \) in \(\mathbb{F}_q^n \) its corresponding word. Then

(i) \((X, X^{ma}(t), C) \) exhibits the CSP if and only \(\gcd(n, \text{cdes}(w)) = 1 \).

(ii) In the binary case, \((X, X^{inv}(t), C) \) exhibits the CSP if and only \(\gcd(n, \text{wt}(w)) = 1 \).

Proof. Combine the equivalence between Proposition 4.2 (i) and (iii) with Corollary 3.6.

This leads to the main result of this section, whose part (ii) we find surprising.

Theorem 4.5. Fix a positive integer \(k \) and prime power \(q \), and let \(n := q^k - 1 \).

(i) Any nonzero codeword \(w \) in a dual Hamming code in \(\mathbb{C} \subset \mathbb{F}_q^n \) has \(\text{cdes}(w) = \frac{q-1}{2} \cdot q^{k-1} \).

(ii) If \(q \in \{2, 3\} \), then a monic degree \(k \) irreducible \(g^\pm(x) \) in \(\mathbb{F}_q[x] \) is primitive if and only if the word \(w \) corresponding to \(\langle x = \frac{x-1}{g}(x) \rangle \) under the bijection (2.1) has \(\text{cdes}(w) = \frac{q-1}{2} \cdot q^{k-1} \).

(iii) If \(q \in \{2, 3\} \), then \((X, X^{ma}(t), C) \) gives a CSP for \(X = \mathbb{C} \) any dual Hamming code.

(iv) If \(q = 2 \), then \((X, X^{inv}(t), C) \) gives a CSP for \(X = \mathbb{C} \) any dual Hamming code.

Proof. For (i), note that part (i) of Proposition 4.2 shows that all nonzero words \(w \in \mathbb{C} \) lie in the same \(C \)-orbit, while part (iv) of the same proposition implies that the \(n \)-periodic extension of \(w \) contains every vector in \(\mathbb{F}_q^k \setminus \{0\} \) exactly once as a consecutive subsequence each period. Consequently, every possible pair \((w_{i-1}, w_i) \) (with subscripts taken modulo \(n \)) contributing to \(\text{cdes}(w) \) has its location uniquely determined within an \(n \)-period once we

- choose the values \(w_{i-1} > w_i \) in \(\{\frac{q-k}{2}\} \) ways, and then
- complete the length \(k \) subsequence preceding it as \(\langle w_{i-k+1}, \ldots, w_{i-2}, w_{i-1}, w_i \rangle \) by choosing the preceding \(k - 2 \) entries arbitrarily in \(q^{k-2} \) ways; this is not \(0 \) in \(\mathbb{F}_q \) since \(w_{i-1} > w_i \).

Thus \(\text{cdes}(w) = \left\{ \frac{q-k}{2} \right\} \cdot q^{k-2} = \frac{q-1}{2} \cdot q^{k-1} \).

For (ii), (iii), the crux is that if \(q \in \{2, 3\} \), then \(\frac{q-1}{2} q^{k-1} \) is a \(q \)-power, so \(\gcd\left(\frac{q-1}{2}, q^{k-1}, n\right) = 1 \).

To deduce (ii), assume \(q \in \{2, 3\} \) and \(\text{cdes}(w) = \frac{q-1}{2} q^{k-1} \). We know that in \(\mathbb{F}_q[x]/(g^\pm(x)) \), the element \(\tilde{x} \) has some multiplicative order \(d \) dividing \(n = q^k - 1 \), and want to show \(d = n \). Since the LFSR \(T_{g^+(x)} : \mathbb{F}_q^k \to \mathbb{F}_q^k \) also has order \(d \), the word \(w \) will be \(d \)-periodic, consisting of \(\frac{n}{d} \) repeats of some word of length \(d \). Hence \(\frac{n}{d} \) divides \(\text{cdes}(w) = \frac{q-1}{2} q^{k-1} \). Since \(\frac{n}{d} \) also divides \(n \), it divides \(\gcd\left(\frac{q-1}{2}, q^{k-1}, n\right) = 1 \). Hence \(d = n \) as desired.

To deduce (iv), Proposition 4.4 applies once we compute the Hamming weight \(\text{wt}(w) \). As the \(n \)-periodic extension of \(w \) has every binary sequence in \(\mathbb{F}_q^k \setminus \{0\} \) occurring exactly once consecutively in a period, this implies \(\text{wt}(w) = 2^{k-1} \), and hence \(\gcd(n, \text{wt}(w)) = \gcd(2^k - 1, 2^{k-1}) = 1 \), as desired.

Example 4.6. The assertion of Theorem 4.5 (ii) fails for \(q = 5 \) at \(k = 3 \). The cubic irreducible \(g^\pm(x) = 1 + x + x^3 \) in \(\mathbb{F}_5[x] \) is not primitive, since \(\tilde{x} \) has order \(d = 62 \) in \(\mathbb{F}_5[x]/(g^\pm(x)) \), rather than \(n = 5^3 - 1 = 124 \). However, one can check that the word \(w \) corresponding to \(g(x) = \frac{x^3 + 3x^2 + 1}{g^\pm(x)} \) still has \(\text{cdes}(w) = 50 = \frac{q-1}{2} \cdot 5^{k-1} \). Likewise the assertion fails for \(q = 7 \) at \(k = 2 \). The irreducible quadratic \(g^\pm(x) = 6 + x + x^2 \) in \(\mathbb{F}_7[x] \) is not primitive, as \(\tilde{x} \) has order 16 in \(\mathbb{F}_7[x]/(g^\pm(x)) \), not \(n = 7^2 - 1 = 48 \), but one can check that the word \(w \) corresponding to \(g(x) \) has \(\text{cdes}(w) = 21 = \frac{q-1}{2} \cdot 7^{k-1} \).
One can also check that the assertion of Theorem 4.5(iv) fails for \(q = 3 \) at \(k = 2 \), such as in Example 4.3 with the choice of primitive polynomial \(g^⊥(x) = x^2 + x + 2 \) as the parity check for a dual Hamming code \(X = C \): no matter how one orders the alphabet \(\mathbb{F}_3 = \{0, 1, 2\} \) to define inv in \(X^{\text{inv}}(t) \), the triple \((X, X^{\text{inv}}(t), C)\) does not exhibit the CSP.

5. Questions

We close with some questions that we have not seriously explored.

Question 5.1. Can one characterize the dual Hamming codes \(X = C \) for which \((X, X^{\text{maj}}(t), C)\) or \((X, X^{\text{inv}}(t), C)\) exhibits a CSP? To what extent does this depend upon the choice of primitive polynomial parity check polynomial \(g^⊥(x) \) and/or the linear ordering of \(\mathbb{F}_q \) used to define maj, inv?

Question 5.2. Do other cyclic codes (e.g., Reed-Solomon, BCH, Golay) exhibit interesting CSPs?

References

[1] C. Ahlbach and J.P. Swanson, Refined cyclic sieving on words for the major index statistic. *European J. Combin.* **73** (2018), 3760.
[2] A. Berget, S.-P. Eu, and V. Reiner, Constructions for cyclic sieving phenomena, *SIAM J. Discrete Math.* **25** (2011), 1297–1314.
[3] P. Garrett, Making, Breaking Codes: An Introduction to Cryptology, 2nd Edition. Prentice Hall, 2011.
[4] P. Garrett, The Mathematics of Coding: Information, Compression, Error Correction, and Finite Fields, www-users.math.umn.edu/~garrett/coding/CodingNotes.pdf.
[5] A. Klein, Stream ciphers. Springer, London, 2013.
[6] V. Pless, Introduction to the theory of error-correcting codes, 3rd edition. John Wiley & Sons, Inc., New York, 1998
[7] J. Propp, posting to the ”Dynamical Algebraic Combinatorics” list-server, dac@listserv.uml.edu, May 9, 2017.
[8] V. Reiner, D. Stanton, and D. White. The cyclic sieving phenomenon, *J. Combin. Theory Ser. A* **108** (2004), 17–50.