On sensitivity to initial conditions and uniqueness of conjugacies for structurally stable diffeomorphisms

Jorge Rocha1 and Paulo Varandas2,3

1 Departamento de Matemática, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
2 Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170-110 Salvador, Brazil

E-mail: jrocha@fc.up.pt and paulo.varandas@ufba.br

Received 24 March 2017, revised 21 August 2017
Accepted for publication 19 September 2017
Published 18 December 2017

Abstract
In this paper we study C^1-structurally stable diffeomorphisms, that is, C^1 Axiom A diffeomorphisms with the strong transversality condition. In contrast to the case of dynamics restricted to a hyperbolic basic piece, structurally stable diffeomorphisms are in general not expansive and the conjugacies between C^1-close structurally stable diffeomorphisms may be non-unique, even if there are assumed C^0-close to the identity. Here we give a necessary and sufficient condition for a structurally stable diffeomorphism to admit a dense subset of points with expansiveness and sensitivity to initial conditions. Moreover, we prove that the set of conjugacies between elements in the same conjugacy class is homeomorphic to the C^0-centralizer of the dynamics. Finally, we use this fact to deduce that any two C^1-close structurally stable diffeomorphisms are conjugated by a unique conjugacy C^0-close to the identity if and only if these are Anosov.

Keywords: structural stability, C^0-centralizers, conjugacy classes, uniform hyperbolicity

Mathematics Subject classification numbers: primary 37F15, secondary 37D20, 37C15

(Some figures may appear in colour only in the online journal)

* Dedicated to Welington de Melo.
3 Author to whom any correspondence should be addressed.
1. Introduction

One of the leading problems considered by the dynamical systems community has been to provide a global view of the space of dynamical systems. In fact, based on the pioneering works of Andronov, Pontryagin, Peixoto and Smale, in the 1990s Palis proposed a conjecture that roughly describes the complement of uniform hyperbolicity as the space of diffeomorphisms that are approximated by those exhibiting either homoclinic tangencies or heteroclinic cycles. This program has been carried with success in the C^1-topology, where perturbation tools as the Pugh closing lemma, the Franks’ lemma, the Hayashi’s connecting lemma or the Mañé’s ergodic closing lemma are available (see e.g. [11, 16, 20] and references therein). Uniform hyperbolicity helped to coin the idea of stability that is, to characterize the dynamics that persist and behave similarly under small perturbations. The stability theorem for isolated hyperbolic sets asserts that any isolated hyperbolic basic set Λ for a C^1-diffeomorphism f admits a continuation Λ_g for any C^1-small perturbation g of the original dynamics, whose dynamics is topologically conjugate to $f |_{\Lambda_g}$; there exists a unique homeomorphism $h_g : \Lambda_g \to \Lambda_g$ that is C^1-close to the identity and so that $h_g \circ f = g \circ h_g$. The uniqueness of the conjugacy h_g at finite distance to the identity reflects the rigidity of hyperbolicity and can be obtained, via Banach fixed point theorem, as a fixed point for the operator $L(h) = g^{-1} \circ h \circ f$ acting on the space $\text{Homeo}(M)$ of homeomorphisms in a compact manifold M.

A question that arises naturally in the vein of the stability for uniformly hyperbolic dynamics is to understand if hyperbolicity is a necessary and sufficient condition to characterize structurally stable diffeomorphisms. Recall that a C^1-diffeomorphism f is called structurally stable if there exists an open neighborhood \mathcal{U} of f in the C^1-topology such that for any $g \in \mathcal{U}$ there exists a homeomorphism $h_g : M \to M$ such that h_g conjugates the dynamics, that is, $h_g \circ f = g \circ h_g$. After the first examples of Ω-explosions there was a clear idea that heteroclinic cycles and tangencies constitute obstructions to structural stability and that uniform hyperbolicity should play a key role (see e.g. [28]). Robbin, Robinson and Mañé [24, 25, 16] completed the proof that C^1-structural stability is equivalent to the Axiom A and the strong transversality conditions (in dimension two this was obtained by de Melo [5]). In particular, if f is structurally stable, then there exists a Df-invariant decomposition $T_{\Omega(f)}M = E^s \oplus E^u$ and constants $C > 0$ and $\lambda \in (0, 1)$ such that

$$\|Df^n(x)\|_{E^s} \leq C\lambda^n \quad \text{and} \quad \|Df^{-n}(x)\|_{E^u} \leq C\lambda^n,$$

for every $n \geq 1$ and every x in the non-wandering set $\Omega(f)$, and $\Omega(f)$ coincides with the closure of the periodic points. Moreover, the non-wandering set of a structurally stable diffeomorphism can be decomposed as a finite set of hyperbolic sets whose basins of attraction cover the entire manifold. A priori, such decomposition could suggest that the rigidity of the conjugacies on each hyperbolic basic set would ‘spread’ to the manifold or, in other words, that the global conjugacy could be completely determined by the conjugacies of each of the hyperbolic basic pieces.

Our purpose here is to revisit structurally stable diffeomorphisms, discussing both expansiveness properties as their space of conjugacies given, as starting point, the (local) Ω-stability of hyperbolic basic pieces. In the context of structural stability the notion of expansiveness is associated to a very rigid phenomenon, because a C^1-structurally stable diffeomorphism is expansive if and only if it is Anosov [17]. In the context of compact surfaces, all expansive homeomorphisms on surfaces are conjugate to Anosov diffeomorphisms if $M = \mathbb{T}^2$ and are pseudo-Anosov if the genus is larger or equal to two [12, 13]. Thus, \mathbb{S}^2 admits structurally stable diffeomorphisms but admits no expansive homeomorphisms. In view of the later result it is natural to ask wether subsets of points with some expansiveness can be topologically
large. Although there are structurally stable diffeomorphisms that admit no dense subset of points with expansiveness (see e.g. example 7.1) we prove that all structurally stable diffeomorphisms whose topological basins of trivial attractors and repellers in \(\Omega(f) \) do not intersect admit a dense subset of points with expansiveness (see theorem 1). In rough terms, dense expansiveness holds if and only if some north-pole south-pole kind of dynamics cannot be embedded in the original dynamical system, and this condition implies the sensitivity to initial conditions.

The second part of our work concerns the study of the set of conjugacies appearing naturally in the context of structural stability. If \(f \) is a structurally stable diffeomorphism there exists an open neighborhood \(U \) of \(f \) in the \(C^1 \)-topology such that for any \(g \in U \) there exists a homeomorphism \(h_g : M \to M \) such that \(h_g \) conjugates both dynamics, that is, \(h_g \circ f = g \circ h_g \). It is natural to ask under which conditions this conjugacy can be taken unique \(C^0 \)-close to the identity. Our approach to this problem is to relate the set of all such conjugacies with the \(C^0 \)-centralizer of the dynamics by proving that for any diffeomorphism \(g \) in the conjugacy class of a given diffeomorphism \(f \) the space \(H_{f,g} \) of conjugacies between \(f \) and \(g \) is homeomorphic to the \(C^0 \)-centralizer \(Z^0(f) = \{ h \in \text{Homeo}(M) : h \circ f = f \circ h \} \) of \(f \) (see theorem 2). This leads to the comprehension of the \(C^0 \)-centralizer of \(C^1 \)-structurally stable diffeomorphisms.

In his seminal paper [29], Smale asked whether ‘most’ dynamical systems would have trivial \(C^1 \)-centralizer. Although this is not yet completely understood, there are evidences that Smale’s question has an affirmative answer and some important contributions in that direction include e.g. [1, 2, 4, 7, 15, 19]. From the purely topological viewpoint, one cannot expect an affirmative answer to Smale’s question to hold. Indeed, \(C^0 \)-centralizers are larger and there are open sets of surface \(C^1 \)-Anosov diffeomorphisms whose \(C^0 \)-centralizer is discrete but non-trivial [26]. We refer the reader to section 2 for precise definitions and a more detailed discussion. We include some examples (see examples 7.1 and 7.2) to illustrate that even in the absence of trivial basic pieces of the non-wandering set the conjugacies may contain a continuum of homeomorphisms \(C^0 \)-close to the identity. We prove that the \(C^0 \)-centralizer of a structurally stable diffeomorphism is discrete if and only if it is an Anosov diffeomorphism (see theorem 3). As a consequence, we deduce that the Mañé characterization is optimal: there exist structurally stable diffeomorphisms with an invariant and dense set of points with expansiveness which are not Anosov (see example 7.2).

The paper is organized as follows. In section 2 we recall the notions and some results about uniformly hyperbolic sets, homoclinic classes and structural stability. In section 3 we state our main results. The proofs of the two main results will appear from sections 4 to 6. Section 7 is devoted to examples.

2. Preliminaries

In this section we recall some results about uniformly hyperbolic sets, homoclinic classes and structurally stable diffeomorphisms. Throughout, let \(M \) be a compact Riemannian manifold, let \(d \) denote the Riemannian distance on \(M \), and let \(\text{Diff}^r(M) \ (r \geq 1) \) denote the space of \(C^r \)-diffeomorphisms on \(M \).

2.1. Hyperbolic sets, expansiveness and sensitivity to initial conditions

Given \(f \in \text{Diff}^r(M) \ (r \geq 1) \), let \(\text{Per}(f) \) denote the set of periodic points for \(f \) and let \(\Omega(f) \subset M \) denote the non-wandering set of \(f \). We say that a compact \(f \)-invariant set \(\Lambda \subset M \) is a uniformly hyperbolic for \(f \) if there exists a \(Df \)-invariant splitting \(T_{\Lambda}M = E^s \oplus E^u \) and constants \(C > 0 \)
and \(\lambda \in (0, 1) \) so that \(\|Df^n(x)\|_{E_1} \leq C \lambda^n \) and \(\|Df^n(x)\|_{E_1}^{-1} \leq C \lambda^n \) for every \(x \in \Lambda \) and \(n \geq 1 \). A periodic point \(p \in \text{Per}(f) \) is hyperbolic if \(O(p) = \{ p, f(p), \ldots, f^{n-1}(p) \} \) is a hyperbolic set for \(f \), where \(n \) stands for the period of \(p \). Given an \(f \)-invariant set \(\Lambda \), we say that \(f | \Lambda \) is transitive if it has a dense orbit, that is, there exists \(x \in \Lambda \) so that \(O(x) := \{ f^n(x) : n \in \mathbb{Z} \} \) is dense in \(\Lambda \). Given a point \(x \in M \) and \(\varepsilon > 0 \) the \(\varepsilon \)-stable set of \(x \) is defined by \(W^s_\varepsilon(x) = \{ y \in M : d(f^n(y), f^n(x)) \leq \varepsilon \text{ for all } n \geq 0 \} \). Similarly, \(W^u_\varepsilon(x) = \{ y \in M : d(f^{-n}(y), f^{-n}(x)) \leq \varepsilon \text{ for all } n \geq 0 \} \) is the \(\varepsilon \)-unstable set of \(x \). Given a hyperbolic set \(\Lambda \) for \(f \) there exists a uniform \(\varepsilon > 0 \) so that the stable and unstable sets \(W^s_\varepsilon(x) \) and \(W^u_\varepsilon(x) \) are \(C^1 \) submanifolds tangent to \(E^s_\varepsilon \) and \(E^u_\varepsilon \), respectively, for every \(x \in \Lambda \). These are called, respectively, the local stable and local unstable manifolds at \(x \) of size \(\varepsilon \). A subset \(\Delta \subset W^s(x) \) is called a fundamental domain if for any \(z \in W^s(x) \setminus \{ x \} \) there exists a unique \(n = n(z) \in \mathbb{Z} \) so that \(f^n(z) \in \Delta \). We refer the reader to [27] for more details.

Given \(\varepsilon > 0 \) we have that \(\Lambda \subset M \) is a \(\varepsilon \)-expansive set for \(f \) if for any \(x \neq y \in \Lambda \) there exists \(n \in \mathbb{Z} \) so that \(d(f^n(x), f^n(y)) > \varepsilon \). Observe that no \(f \)-invariance condition is required. When no confusion is possible we will refer to these simply as sets of expansiveness. We say that \(f \) is densely expansive if there exists an \(\varepsilon \)-expansive dense set in \(M \), for some \(\varepsilon > 0 \). An homeomorphism \(f \) is expansive if the manifold \(M \) is a set of expansiveness for \(f \). Expansive homeomorphisms in compact manifolds of dimension smaller or equal to 2 are either Anosov or pseudo-Anosov (see e.g. [12, 13] and references therein). Thus, there are geometrical and topological obstructions for a manifold to admit expansive dynamics. Although there exists no complete classification of expansive homeomorphisms in dimension larger than 2, very important contributions in this direction have been obtained by Vieitez (see [30, 31] and references therein).

Finally we recall the notion of sensitivity to initial conditions. We say that \(f \) has sensitivity to initial conditions if there exists \(\varepsilon > 0 \) so that every \(x \in M \) is accumulated by a sequence of points \(\{ x_n \}_{n} \) in \(M \) such that \(\sup_{k \in \mathbb{Z}} d(f^k(x), f^k(x_n)) > \varepsilon \). This condition, weaker than expansiveness does not hold for all structurally stable diffeomorphisms (e.g. north-pole south-pole dynamics).

2.1. \(C^k \)-centralizers

Given \(f \in \text{Diff}^k(M) \), \(r \in \mathbb{N} \cup \{ \infty \} \) and \(0 \leq k \leq r \), the \(C^k \)-centralizer for \(f \) is the set \(Z^k(f) = \{ g \in \text{Diff}^k(M) : g \circ f = f \circ g \} \), where \(\text{Diff}^k(M) \) stands for the space \(\text{Homeo}(M) \). For every \(0 \leq k \leq n \), it is clear that \(Z^k(f) \) is a subgroup of \(\text{Diff}^k(M) \) and it contains the subgroup \(\{ f^n : n \in \mathbb{Z} \} \). Clearly, the following inclusion holds \(Z^l(f) \supset Z^j(f) \supset Z^i(f) \supset \cdots \supset Z^1(f) \supset \{ f^n : n \in \mathbb{Z} \} \). We say that \(f \in \text{Diff}^k(M) \) has trivial \(C^\infty \)-centralizer if the centralizer is the smallest possible, that is, \(Z^\infty(f) = \{ f^n : n \in \mathbb{Z} \} \). We say that the diffeomorphism \(f \in \text{Diff}^k(M) \) has discrete \(C^k \)-centralizer if there is \(\varepsilon > 0 \) so that \(d_0(h_1, h_2) > \varepsilon \) for every distinct \(h_1, h_2 \in Z^k(f) \). Walters [32] proved that expansive homeomorphisms have discrete \(C^\infty \)-centralizers. The centralizer of Komuro expansive flows (which include the Lorenz attractor) and \(\mathbb{R}^d \) actions on compact manifolds was described in [3].

2.1. Axiom A diffeomorphisms and homoclinic classes

In what follows we collect some results on Axiom A diffeomorphisms (proofs and more details can be found in [27]). We say that a diffeomorphism \(f \in \text{Diff}^r(M) \), \(r \geq 1 \), is Axiom A if (i) \(\overline{\text{Per}(f)} = \Omega(f) \) and (ii) \(\Omega(f) \) is a uniformly hyperbolic set. Clearly all periodic points of Axiom A diffeomorphisms are hyperbolic. We say that \(f \) is an Anosov diffeomorphism if the whole manifold \(M \) is a hyperbolic set for \(f \). If \(p \in \text{Per}(f) \) is a hyperbolic periodic point for \(f \) of period \(k \geq 1 \) then there exists a \(C^1 \)-neighborhood \(U \) of \(f \) and a neighborhood \(V \subset M \) of \(p \) so that any \(g \in U \) admits a unique hyperbolic periodic point \(p(g) \in V \cap \text{Per}(g) \) of period \(k \), referred as the
continuation of \(p \). Given a hyperbolic periodic point \(p \), the homoclinic class \(H(p,f) \) for \(p \) with respect to \(f \) is defined by \(H(p,f) = \overline{W^u(O(p))} \cap W^s(O(p)) \). By the spectral decomposition theorem, for any Axiom A diffeomorphism \(f \) there are finitely many (hyperbolic) periodic points \(p_{\ell} \) (\(1 \leq \ell \leq k \)) and hyperbolic homoclinic classes \(\Lambda_{\ell} = H(p_{\ell},f) \) so that \(\Omega(f) = \Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_k \) (spectral decomposition). For every \(C^1 \)-small perturbation \(g \) of \(f \) the hyperbolic set \(H(p_{\ell},f) \) admits a continuation \(H(p_{\ell}(g),g) \). Consider the partial order on the space \(\{ \Lambda_i : 1 \leq i \leq k \} \) given by \(\Lambda_i \succ \Lambda_j \) if and only if if \(W^s(\Lambda_i) \cap W^u(\Lambda_j) \neq \emptyset \). We say that \(f \) has no cycles if whenever \(\Lambda_{i_1} \succ \cdots \succ \Lambda_{i_s} \) and \(\Lambda_{i_s} = \Lambda_i \) then \(s = 1 \). Moreover, if \(f \) is Axiom A with no cycles then there exists a filtration adapted to \(\Omega(f) \): there exists a nested sequence \(\emptyset = M_0 \subset M_1 \subset \cdots \subset M_k = M \) of smooth codimension 0 submanifolds with boundary so that \(f(M_i) \subset \text{int}(M_i) \) and \(\bigcap_{i \in \mathbb{Z}} f^n(M_i \setminus M_{i-1}) \) consists of a finite union of basic pieces of \(\Omega(f) \) for every \(1 \leq i \leq k \). We say that an \(f \)-invariant, compact and transitive set \(\Lambda \) is an attractor if there exists an open neighborhood \(U \) of \(\Lambda \) so that \(\Lambda = \bigcap_{n \geq 0} f^n(U) \). An \(f \)-invariant set is a repellor if it is an attractor for \(f^{-1} \). Finally we say that a basic piece of the non-wandering set is trivial if it consists of a periodic orbit. Given an attractor \(\Lambda \) for \(f \), the topological basin of attraction is the set \(B(\Lambda) = \{ x \in M : \text{dist}(f^n x, \Lambda) \to 0 \text{ as } n \to \infty \} \). The topological basin of repulsion for some repellor \(\Lambda \) is defined as the topological basin of attraction for \(\Lambda \) with respect to \(f^{-1} \).

2.1.3. Conjugacy classes and structural stability. Given a \(C^r \)-diffeomorphism \(f \), \(r \geq 1 \), we define the conjugacy class of the diffeomorphism \(f \) as the set \(C_f = \{ g \in \text{Diff}^r(M) : \text{ there exists } h \in \text{Homeo}(M) \text{ s.th } f \circ h = g \circ f \} \). Consider \(H_f = \bigcup_{g \in C_f} H_{f,g} \) where \(H_{f,g} = \{ h \in \text{Homeo}(M) : h \circ f = g \circ h \} \). In other words, \(H_{f,g} \) denotes the space of all homeomorphisms that conjugate \(f \) and \(g \). Endow the space of homeomorphisms \(\text{Homeo}(M) \) on \(M \) with the distance \(d_0 \) defined by

\[
d_0(h_1, h_2) = \sup_{x \in M} d(h_1(x), h_2(x)) + \sup_{x \in M} d(h_1^{-1}(x), h_2^{-1}(x)),
\]

for all \(h_1, h_2 \in \text{Homeo}(M) \). Given \(f \in \text{Diff}^1(M) \), we say that \(f \) is structurally stable if there exists an open neighborhood \(U \) of \(f \) in the \(C^1 \)-topology such that for any \(g \in U \) there exists a homeomorphism \(h_g : M \to M \) such that \(h_g \) conjugates the dynamics, that is, \(h_g \circ f = g \circ h_g \). Robbin, Robinson and Mañé [16, 23, 25] proved that a \(C^1 \)-diffeomorphism is structurally stable if and only if it is Axiom A and satisfies the strong transversality condition: if \(E^u_+ = \{ v \in T_M : \lim_{n \to \infty} \| Df^n(x) v \| = 0 \} \) then \(T_M = E^u_+ + E^s_- \) for every \(x \in M \). Moreover, if \(f \) is an Axiom A diffeomorphism then the strong transversality condition is equivalent to the transversal intersection of every stable and unstable manifolds [23, proposition 7.5]. In the proof of the first part of the stability conjecture, Robbin [23], Robinson [25] used the strategy developed by Moser [18] (in the proof of the stability of Anosov diffeomorphisms) to construct conjugacies that vary continuously with the dynamical system:

Theorem 2.1 (Robbin, Robinson). Let \(f \) be a \(C^1 \) Axiom A diffeomorphism with the strong transversality condition. Then there exists an open neighborhood \(U \) of \(f \) and \(K > 0 \) such that, for any \(g \in U \):

(i) there exists \(h = h_g \in \text{Homeo}(M) \) so that \(h_g \circ f = g \circ h_g \); and
(ii) \(d_{C^2}(h_g, \text{id}) \leq Kd_{C^2}(f, g) \).

The proof of the previous theorem relies on Banach’s fixed point theorem for a family of operators \(L_f \) that vary continuously with the diffeomorphism \(g \) in a \(C^1 \)-neighborhood \(U \) of \(f \), but whose construction depends on some fixed neighborhoods of the basic sets and a partition of
unity for M (see [23]). For that reason the selected conjugacies can be chosen to depend continuously with respect to the dynamics but uniqueness is not guaranteed. In fact, uniqueness of conjugacies C^0-close to the identity may fail (see example 7.1). This is in a strong contrast with the fact that the conjugacy restricted to each basic piece of the non-wandering set is unique and Hölder continuous. Finally, for completeness we observe that if $f \in \text{Diff}^{2}(M)$ is C^1-structurally stable then there exists a C^1-open neighborhood U of f so that the conjugacy map $U \ni g \mapsto h_g \in \text{Homeo}(M)$ can be chosen to be C^1-differentiable [8, theorem 2].

3. Statement of the main results

This section is devoted to the statement of our main results.

3.1. Expansiveness

First we provide a necessary and sufficient condition for a structurally stable diffeomorphism to be densely expansive.

Theorem 1. Let $f \in \text{Diff}^1(M)$ be a structurally stable diffeomorphism. The following are equivalent:

1. the topological basins of trivial attractors and repellers in $\Omega(f)$ do not intersect;
2. f is densely expansive (i.e. there exists $\varepsilon > 0$ and a dense subset $D \subset M$ such that for any $x \neq y \in D$ there exists $n \in \mathbb{Z}$ satisfying $d(f^n(x), f^n(y)) > \varepsilon$);
3. f has sensitivity to initial conditions.

One should mention that whenever the topological basins of trivial attractors and repellers in $\Omega(f)$ do not intersect, in the proof of theorem 1, we construct a dense set of expansiveness $D \subset M$ which is not f-invariant and its saturated set $\bigcup_{n \in \mathbb{Z}} f^n(D)$ is not necessarily expansive.

3.2. Conjugacy classes and C^0-centralizers

The following simple result builds a bridge between the C^0-centralizer of a dynamical system f and set of conjugacies between diffeomorphisms in the same conjugacy class.

Theorem 2. Let $f \in \text{Diff}^r(M)$, $r \geq 0$. For every $g \in C_f$ and $h \in H_{f,g}$ the map

$$F_h: Z^0(f) \ni \tilde{f} \mapsto h \circ \tilde{f}$$

is a homeomorphism and satisfies $F_h(\tilde{f} \circ \tilde{g}) = F_h(\tilde{f}) \circ h^{-1} \circ F_h(\tilde{g})$ for every $\tilde{f}, \tilde{g} \in Z^0(f)$. In particular,

(i) $H_{f,g}$ is homeomorphic to $Z^0(f)$ for every $g \in C_f$;
(ii) H_f is homeomorphic to $C_f \times Z^0(f)$;
(iii) $H_{f,g}$ is a discrete subset of $\text{Homeo}(M)$ if and only if $Z^0(f)$ is a discrete subgroup of $\text{Homeo}(M)$.

Since the map F_h is a homeomorphism then the cardinality and topological properties of all sets $H_{f,g}$ coincide for every $g \in C_f$. This motivates the following definition. Given $r \geq 0$, let $N^0(f) \in \mathbb{N} \cup \{\infty\}$ denote the minimum number of generators for the subgroup $Z^0(f)$. We are interested in studying the regularity of the following function:
\[N^0 : \text{Diff}^r(M) \to \mathbb{N} \cup \{\infty\} \]
\[f \mapsto N^0(f) \]

The following is an immediate consequence of theorem 2:

Corollary 1. \(N^0(\cdot) \) is a topological invariant: if \(f \) and \(g \) are topologically conjugate then \(N^0(f) = N^0(g) \). In particular, \(N^0(\cdot) \) is a locally constant function restricted to the space of structurally stable diffeomorphisms.

As one could expect, the minimal cardinality \(N^1(\cdot) \) of generators for the \(C^1 \)-centralizer is not a topological invariant even among Anosov diffeomorphisms. Indeed, since \(C^1 \)-generic Anosov diffeomorphisms have trivial centralizer then \(N^1(f) = 1 \) for a \(C^1 \)-generic set in \(\text{Diff}^1(M) \). On the other hand, there are \(C^\infty \)-Anosov diffeomorphisms with a discrete but non-trivial \(C^1 \)-centralizer [22]. If \(f \) is structurally stable then theorem 2 implies that the uniqueness of conjugacies \(C^0 \)-close to the identity is equivalent to the \(C^0 \)-centralizer to be discrete. This, together with theorem 2.1, yields the following consequence.

Corollary 2. Let \(f \in \text{Diff}^1(M) \) be a structurally stable diffeomorphism. If \(Z^0(f) \) is discrete then there exists \(\varepsilon > 0 \) and an open neighborhood \(U \subset \text{Diff}^1(M) \) of \(f \) so that:

(a) for any \(g \in U \) there exists a unique conjugacy \(h_g \in \mathcal{H}_f \) (that is, \(h_g \circ f = g \circ h_g \)) which is \(\varepsilon \)-\(C^0 \)-close to the identity;

(b) the function \(U \ni g \mapsto h_g \in \text{Homeo}(M) \) is continuous;

(c) there exists \(K > 0 \) so that \(d_{C^0}(h_g, \text{id}) \leq Kd_{C^0}(g, f) \); and

(d) for any \(g \in U \) the map \(\Psi_{f,g} : Z^0(f) \to Z^0(g) \) given by \(\Psi_{f,g}(\tilde{f}) = h_g^{-1} \circ \tilde{f} \circ h_g \) is a homeomorphism.

The continuous dependence of the conjugacy map \(h_g \) on the diffeomorphism \(g \) follows from the work of Robbin and Robinson [24, 25]. In what follows we relate expansiveness to \(C^0 \)-centralizers for structurally stable diffeomorphisms. Our starting point is the following result due to Walters [32]:

Lemma 3.1. Take \(r \geq 0 \). Assume \(f \in \text{Diff}^r(M) \) has an \(f \)-invariant subset \(\Lambda \) for which \(f \mid_{\Lambda} \) is expansive. For every \(0 \leq k \leq r \), the subgroup \(Z^k(f \mid_{\Lambda}) \) of \(\text{Homeo}(\Lambda) \) is discrete. In particular, \(Z^0(f \mid_{\Omega(f)}) \) is discrete for every \(C^* \text{Axiom} \Lambda \text{ diffeomorphism} \) and \(1 \leq r \leq \infty \).

We observe that taking \(f \) restricted to the non-wandering set \(\Omega(f) \) above is necessary (see example 7.1) and that one cannot expect triviality of \(C^0 \)-centralizers even for Anosov diffeomorphisms [26].

3.3. Densely expansive structurally stable diffeomorphisms

We get back to expansiveness and structural stability. We start with the following characterization of structurally stable diffeomorphisms with discrete \(C^0 \)-centralizer.

Theorem 3. If \(f \in \text{Diff}^1(M) \) is a structurally stable diffeomorphism then the following are equivalent:

(i) \(Z^0(f) \) is discrete;

(ii) for any \(g \in \mathcal{C}_f \) there exists a unique conjugacy \(h_g \in \text{Homeo}(M) \) that is \(C^0 \)-close to the identity;
(iii) if \(\Lambda_i \succ \cdots \succ \Lambda_i \succ \Lambda_i \) is a maximal ordered chain of basic pieces in \(\Omega(f) \) then
\[\dim W^u(\Lambda_i) = \dim W^u(\Lambda_i) \] is constant for every \(1 \leq j \leq s \); and
(iv) \(f \) is an Anosov diffeomorphism.

Mañé [17] proved that an expansive structurally stable diffeomorphism is Anosov. The later result will be used to deduce that Mañé’s result in [17] is optimal: there are structurally stable diffeomorphisms with a dense subset of points of expansiveness which are not Anosov (see example 7.2). Theorems 1 and 3 together yield the following immediate consequence:

Corollary 3. Assume \(f \in \text{Diff}^1(M) \) is a structurally stable diffeomorphism so that the basins of trivial attractors and trivial repellers do not intersect and that there exists a maximal totally ordered chain \(\Lambda_i \succ \cdots \succ \Lambda_i \succ \Lambda_i \) of basic pieces in \(\Omega(f) \) satisfying
\[\dim W^u(\Lambda_i) > \dim W^u(\Lambda_i) \]. Then

(a) \(Z^0(f) \) is not discrete,
(b) \(f \) has sensitivity to initial conditions,
(c) \(f \) admits a dense set of expansiveness.

The topological description of the foliations and attractors for Axiom A diffeomorphisms is a hard topic not yet completely understood. Nevertheless, structurally stable diffeomorphisms that satisfy the assumptions of corollary 3 include: (i) structurally stable diffeomorphisms of a compact orientable surface that contains a one-dimensional basic set (because these always admit also periodic sources or sinks (see [21, 9])), and (ii) structurally stable diffeomorphisms on compact manifolds of dimension larger or equal to 3 with a codimension one orientable expanding attractor (since these have at least one periodic repellor and all remaining basic pieces in the spectral decomposition are periodic points as proved in [10]).

4. Dense expansiveness for structurally stable diffeomorphisms

This section is devoted to the proof of theorem 1. Let \(f \) be a structurally stable diffeomorphism. We first recall the dynamics of \(f \) on wandering points.

4.1. Points traveling through filtration elements

Since \(f \) is Axiom A, by the spectral decomposition, the non-wandering set is the union of transitive hyperbolic basic pieces: \(\Omega(f) = \bigcup_{i=1}^{n} \Lambda_i \). We denote by \(\mathcal{A}(f) \subset \Omega(f) \) the set of attractors for \(f \). The strong transversality condition implies that \(W^s(x) \) is transversal to \(W^u(y) \) for every \(x, y \in \Omega(f) \) which implies, if these have non-empty intersection, that
\[\dim E^s_x + \dim E^u_y \geq \dim M. \]

By the no cycles condition, hence existence of a filtration adapted to \(\Omega(f) \), any maximal totally ordered chain \(\Lambda_i \succ \cdots \succ \Lambda_i \succ \Lambda_i \) has at most \(k \) elements, the basic set \(\Lambda_i \) is a repeller, the set \(\Lambda_i \) is an attractor, and the remaining elements \(\Lambda_i \) are of saddle type (see e.g. [27]).

Remark 4.1. For any chain \(\Lambda_i \succ \cdots \succ \Lambda_i \succ \Lambda_i \) there are points \(x_i \in \Lambda_i \) so that
\[W^s(x_{i+1}) \cap W^u(x_i) \neq \emptyset \] for all \(j = 1, \ldots, s - 1 \). Since periodic points are dense in \(\Omega(f) \), invariant manifolds vary continuously on compact parts and transversality in compact parts is an open condition, we may assume the points \(x_i \) to be periodic.

The following instrumental lemma allow us to describe the set of points that accumulate, by backward orbits, on the basic sets of saddle type. First we need to introduce some notation. Given an attractor \(\Lambda \), let \(\mathcal{C}(\Lambda) \) denote the set of all maximal and totally ordered
chains $\Lambda_i \succ \cdots \succ \Lambda_j \succ \Lambda_i$ of basic pieces in the non-wandering set $\Omega(f)$ such that $\Lambda_i = \Lambda$. Observe that the set Λ_i is a repeller.

Lemma 4.1. Let $f \in \text{Diff}^1(M)$ be a structurally stable diffeomorphism and let $\Lambda \subset \Omega(f)$ be an attractor for f. Then for any periodic point $p \in \Lambda$, $W^s(p) \setminus \left[\bigcup_{\Lambda_i} \bigcup_{2 \leq j \leq s-1} W^u(\Lambda_i) \right]$ forms an f-invariant open and dense subset of $W^s(p)$. In particular, there exists an open and dense subset of points in $W^s(p)$ whose backward orbit accumulates in some of the repellers heteroclinically related to Λ.

Proof. Since $f \in \text{Diff}^1(M)$ is structurally stable, the basic pieces in $\Omega(f)$ are locally maximal and

$$M = \bigcup_{x \in \Omega(f)} W^s(x) = \bigcup_{x \in \Omega(f)} W^u(x).$$

Let $\Lambda \subset \Omega(f)$ be an attractor, p be a periodic point in Λ and let D be the set defined by (4.1). We claim that D is dense in $W^s(p)$. Given $x \in W^s(p)$, by (4.2) and the strong transversality condition, there exists $p_1 \in \Omega(f)$ so that $x \in W^s(p_1) \cap W^u(p)$. Let $\Lambda = \Lambda_1 \succ \cdots \succ \Lambda_s \in \mathcal{C}(\Lambda)$, $2 \leq j \leq s$. Define $\Lambda_{j_0} = \Lambda_{j_0+1}$ so that $\Lambda_{j_0} \subset \Lambda_{j_0+1}$ and $\Lambda_{j_0} = \Lambda_{j_0+1}$. If $j_0 = s$ then $d(f^{-k}(x), \Lambda_{j_0}) \to 0$ as $k \to \infty$, and so $x \in D$ and we are done. Otherwise $2 \leq j_0 < s$ and, by the denseness of periodic points in the non-wandering set and continuity of compact parts of stable and unstable manifolds, one can take periodic points $p_n \in \Lambda_{j_0}$ so that $p_n \to p$, and x is approximated by heteroclinic points $x_n \in W^u(p_n) \cap W^s(p)$. By remark 4.1 there are periodic points $\Lambda_{j_0} \subset \Lambda_{j_0+1}$ so that $W^u(\Lambda_{j_0+1}) \cap W^s(\Lambda_{j_0})$ for all $k = j_0, \ldots, s-1$. By the λ-lemma (see e.g. [27]), there exists a disk $V \subset W^s(p)$ of dimension equal to the stable index of Λ_{j_0+1} whose iterates by f^{-1} accumulate (in the C^1-topology) on a compact part of $W^s(x_{j_0+1})$. A recursive argument assures that x is accumulated by heteroclinic intersections between the stable manifold of p and unstable manifolds of periodic points in Λ_i. Since these homoclinic intersections belong to D, this proves that D is dense in $W^s(p)$.

Figure 1. Heteroclinic intersections associated to the basic pieces (on the left) and selection of a disk $V \subset W^s(x_{j_0})$ accumulating on $W^u(x_{j_0+1})$ by the λ-lemma (on the right).
We are left to prove that D is open in $W'(p)$. Given $x \in D$ arbitrary, let $n_0 \geq 1$ be so that $f^{-n_0}(x)$ belongs to the immediate topological basin the repeller. Since the later is an open set, by continuity of f^{-1}, there exists an open neighborhood V of x so that $f^{-n}(V)$ is also contained in the topological basin of the repeller. This implies that D is an open subset of $W'(p)$ and finishes the proof of the lemma.

Remark 4.2. This result asserts that ‘most’ wandering points travel along the elements of the filtration and converge by negative iteration to some of the repellers. Clearly, a similar statement holds for the repellers of f just by considering the previous lemma for the diffeomorphism f^{-1}.

4.2. Proof of theorem 1

Let $f \in \text{Diff}^1(M)$ be a C^1-structurally stable diffeomorphism.

4.2.1. First part: $(1) \Rightarrow (2)$. Assume that the topological basins of trivial attractors and repellers in $\Omega(f)$ do not intersect. Let $\Omega(f) = \text{Per}(f) = \bigcup_{i=1}^{k} \Lambda_i$ be the spectral decomposition for $\Omega(f)$, where each Λ_i is the homoclinic class associated to some periodic point $p_i \in \text{Per}(f) \cap \Lambda_i$. Since all periodic points of Λ_i are heteroclinically related then:

(i) $\Lambda_i = H(p_i)$ (hence $W'(\Omega(p_i))$ is dense in Λ_i) for every $i = 1 \ldots k$;
(ii) $W'(\Lambda_i) := \{x \in M : d(f^n(x), \Lambda_i) \to 0 \text{ as } n \to \infty\}$ is an open subset of M for every $\Lambda_i \in \text{A}(f)$, and
(iii) $W'(\Omega(p_i))$ is dense in $W'(\Lambda_i)$.

Moreover, if $\varepsilon_i > 0$ is given by the expansiveness property for $f |_{\Lambda_i}$ then we conclude that $f |_{\Omega(f)}$ is ε-expansive, for $\varepsilon = \min\{\varepsilon_i : 1 \leq i \leq k\} > 0$. We need the following useful selection of periodic points.

Claim 1. There exists a finite set $\Theta = \Theta_a \cup \Theta_r$ of periodic points,

\[\Theta_a \subset \bigcup_{\Lambda \in \text{A}(f)} \Lambda \quad \text{and} \quad \Theta_r \subset \bigcup_{\Lambda \in \text{A}(f^{-1})} \Lambda, \]

one of which is possibly empty, such that

1. $\bigcup_{p \in \Theta_a} W^s(p) \cup \bigcup_{p \in \Theta_r} W^u(p)$ is dense in M,
2. $\text{int}(W^s(\Omega(p))) \cap \text{int}(W^u(\Omega(q))) = \emptyset$ for every $p \in \Theta_a$ and $q \in \Theta_r$,
3. if $\Theta_a \neq \emptyset$ then:
 (a) for $p \in \Theta_a$, $W^s(\Omega(p))$ is dense in $W^u(H(p,f))$ and its closure contains an open set in the basin of some non-trivial repeller,
 (b) the union of the topological basins of the non-trivial repellers contains an open and dense subset of the stable manifolds $\bigcup_{p \in \Theta_a} W^s(p),$
4. if $\Theta_r \neq \emptyset$ then:
 (a) for $p \in \Theta_r$, $W^u(\Omega(p))$ is dense in $W^s(H(p,f))$ and its closure contains an open set in the basin of some non-trivial attractor,
 (b) the union of the topological basins of non-trivial attractors contains an open and dense subset of the unstable manifolds $\bigcup_{p \in \Theta_r} W^u(p)$.

Proof of claim 1. Let $A_+(f) \subset A(f)$ denote the set of non-trivial attractors of f. Since f is structurally stable (in particular Axiom A and satisfies the no-cycles condition) then it is well known that the union of the topological basins of the attractors (resp. repellers) is dense in M, that is,
\[
\bigcup_{\Lambda \in \mathcal{A}(f)} W^s(\Lambda) = \bigcup_{\Lambda \in \mathcal{A}(f^{-1})} W^u(\Lambda) = M. \tag{4.3}
\]

Since the basins of trivial attractors and repellers do not intersect, the union of the basins of non-trivial attractors and non-trivial repellers is open and dense in \(M\). In other words,
\[
\bigcup_{\Lambda \in \mathcal{A}_f(f)} W^s(\Lambda) \cup \bigcup_{\Lambda \in \mathcal{A}_f(f^{-1})} W^u(\Lambda) \text{ is open and dense in } M. \tag{4.4}
\]

The strategy used in the construction of the sets of periodic orbits \(\Theta_\alpha\) and \(\Theta_\tau\) is to collect periodic orbits primarily among the set of trivial attractors/repellers (under our assumptions this guarantees that (3)b and (4)b hold on the topological basin of trivial attractors/repellers) and then to select further periodic orbits among the non-trivial attractors/repellers in a way that conditions (1) and (2) in the claim are satisfied. For that reason periodic orbits in trivial attractors/repellers will always be selected.

Such a selection of periodic orbits (not necessarily unique) can be done as follows, selecting first some periodic orbits on the attractors and then selecting some periodic orbits among the repellers. Let \(\mathcal{A}(f) = \{\Lambda_1, \ldots, \Lambda_\ell\}\) be an enumeration of the attractors in \(\Omega(f)\) and \(\Theta^{(0)}_\alpha = \emptyset\). If \(\Lambda_1 = \{\mathcal{O}(p_1)\}\) is a trivial attractor take \(\Theta^{(1)}_\alpha = \{\mathcal{O}(p_1)\}\). Otherwise, \(\Lambda_1\) is non-trivial and there exists a finite number of repellers \(\Lambda \in \mathcal{A}(f^{-1})\) so that \(\Lambda \supseteq \Lambda_1\). If all such repellers \(\Lambda\) heteroclinically related to \(\Lambda_1\) are non-trivial take \(\Theta^{(1)}_\alpha = \{\mathcal{O}(p_1)\}\) (\(p_1\) is any periodic point in \(\Lambda_1\)) and, otherwise, set \(\Theta^{(1)}_\alpha = \emptyset\). Proceeding recursively, for any \(2 \leq j \leq \ell - 1\) if \(\Lambda_j = \{\mathcal{O}(p_j)\}\) is a trivial attractor then take \(\Theta^{(j)}_\alpha = \Theta^{(j-1)}_\alpha \cup \{\mathcal{O}(p_j)\}\) and, otherwise, take \(\Theta^{(j)}_\alpha = \Theta^{(j-1)}_\alpha \cup \{\mathcal{O}(p_j)\}\) or \(\Theta^{(j)}_\alpha = \Theta^{(j-1)}_\alpha\) depending if all repellers heteroclinically related to \(\Lambda_j\) are non-trivial (and \(p_j\) is any periodic point in \(\Lambda_j\)) or not, respectively. Take \(\Theta_\alpha = \Theta^{(\ell)}_\alpha\).

If \(\Theta_\alpha \neq \emptyset\) and \(\bigcup_{p \in \Theta_\alpha} W^u(p)\) is dense in \(M\) just take \(\Theta_\tau = \emptyset\). Otherwise, let \(\tilde{\Lambda}_1, \ldots, \tilde{\Lambda}_{s}\) be an enumeration of the repellers in \(\Omega(f)\) that are not heteroclinically related with any of the attractors that contain the periodic points in \(\Theta_\alpha\), and take \(\Theta_\tau = \{\mathcal{O}(q_1), \ldots, \mathcal{O}(q_s)\}\) be formed by periodic orbits with \(q_i \in \tilde{\Lambda}_i\), for \(1 \leq i \leq s\). In particular the sets \(\Theta_\alpha\) and \(\Theta_\tau\) cannot be simultaneously empty.

Items (1), (3)(a) and (4)(a) in the claim are immediate from (4.3) and the construction. Item (2) follows from the fact that the repellers determining \(\Theta_\tau\) are chosen not heteroclinically related to any point of \(\Theta_\alpha\). Finally, using (4.4) and lemma 4.1 we conclude that items (3)(b) and (4)(b) also hold. This proves the claim. \(\square\)

By construction, the union of topological basins of the non-trivial repellers contains an open and dense subset \(O_p \subset W^u(p)\) for any \(p \in \Theta_\alpha\) (and a similar statement holds for every \(p \in \Theta_\tau\) if \(\Theta_\tau\) is non-empty). For every \(p \in \Theta_\alpha\), resp. \(\Theta_\tau\), let \(P_p\) be the union of all periodic points in the (non-trivial) repellers, resp. attractors, of \(f\) that are heteroclinically related to \(H(p,f)\). In other words,
\[
P_p = \bigcup_{\Lambda \in H(p,f)} P_{p,\Lambda},
\]
where \(P_{p,\Lambda} = \text{Per}(f) \cap \Lambda\). Now, if \(P\) denotes the union of such periodic points taken over all points \(p \in \Theta_\alpha \cup \Theta_\tau\), then, since any countable infinite set is a disjoint countable union of countable infinite sets and \(\sharp(\Theta_\alpha \cup \Theta_\tau) < \infty\) we claim that there exists a (not necessarily unique) decomposition

303
\[P = \bigcup_{p \in \Theta_\alpha \cup \Theta_\gamma} \bigcup_{\ell \in \mathbb{Z}} P_{p, \ell}, \]
(4.5)

as a disjoint union of countable infinite sets \(P_{p, \ell} \subset P_p \) in such a way that for \(p \in \Theta_\alpha \) (resp. \(p \in \Theta_\gamma \)) the set \(P_{p, \ell} \) contains infinitely many periodic points in each of the non-trivial repellers whose basin intersects \(W^s(O(p)) \) (resp. non-trivial attractors whose basin intersects \(W^u(O(p)) \)). Indeed, given \(\Lambda \in A(f^{-1}) \) such that \(\Lambda \succ H(p, f) \), as there are countable infinitely many periodic points in \(\text{Per}(f) \cap \Lambda \) then there exists a bijection \(\ell_\Lambda : \mathbb{Z} \times \mathbb{Z} \to P_{p, \Lambda} \).

Then, for any \(\ell \in \mathbb{Z} \), the set
\[P_{p, \ell} := \bigcup_{\Lambda \succ H(p, f) : \Lambda \in A(f^{-1})} \ell_\Lambda((\ell) \times \mathbb{Z}) \subset P_p, \]

satisfies the requirements of the claim involving (4.5). We use the following key claim:

Claim 2. For every periodic point \(p \in \Theta_\alpha \) there exists a countable and dense subset \(D_p \subset W^s(O(p)) \) so that the following holds: for any \(x, y \in D_p \) there are periodic points \(p_x \neq p_y \) in \(D_p = \bigcup_{\ell \in \mathbb{Z}} P_{p, \ell} \) such that \(x \in W^a(p_x) \) and \(y \in W^u(p_y) \). In particular, there exists \(n = n_{xy} \geq 1 \) for which \(d(f^{-n}(x), f^{-n}(y)) > \frac{1}{2} \).

Since claim also holds for the periodic points in \(\Theta_\gamma \) (replacing \(f \) by \(f^{-1} \), in which case unstable manifolds for \(f \) become stable manifolds for \(f^{-1} \)), by the decomposition of periodic points in (4.5) we conclude that there exists a countable and dense subset of \(\bigcup_{p \in \Theta_\alpha} W^s(O(p)) \cup \bigcup_{p \in \Theta_\gamma} W^u(O(p)) \) formed by points that are \(\frac{1}{2} \) separated by either positive or negative iterations of \(f \). By item (1) above, the later set is dense in \(M \). Thus, in order to complete the proof of the first part of the theorem we are left to prove the claim.

Proof of claim 2. Fix \(p \in \Theta_\alpha \) and let \(\Delta \subset W^u(O(p)) \) be a fundamental domain of \(W^u(O(p)) \). Given \(\ell \in \mathbb{Z} \) define \(\Delta_\ell = f^\ell(\Delta) \). Observe that \(W^u(O(p)) \setminus \{O(p)\} = \bigcup_{\ell \in \mathbb{Z}} \Delta_\ell \).

Fix \(\ell \in \mathbb{Z} \) and set \(P_{\ell}^1 := P_{p, \ell} \subset P_p \). Given any open covering of \(\Delta_\ell \) by open balls of radius \(1/2 \), the compactness of the closure \(\Delta_\ell \) guarantees one can extract a finite covering \(\{B_i^\ell\} \). The \(\lambda \)-lemma (as used in the proof of lemma 4.1) implies all points in \(\Delta_\ell \) are accumulated by heteroclinic intersections between the unstable manifolds of every periodic point in \(P^1_\ell \) and the stable manifold of \(p \). Thus for every \(i \) there exists \(p_i^\ell \in P^1_\ell \) so that the intersection \(W^u(p_i^\ell) \cap W^s(p) \) contains some point \(x_{i,2} \) in \(B_i^\ell \). Since periodic points in the same homoclinic class are homoclinically related, we can choose the periodic points \(\{p_{i,2}\} \) to be distinct. Moreover, by construction, the set \(\{x_{i,2}\} \) (we omit the dependence on \(\ell \) for notational simplicity) is finite and \(1/2 \)-dense in \(\Delta_\ell \). Moreover the set \(P^2_\ell := P^1_\ell \setminus \bigcup_{i} \{p_i^\ell\} \) still has infinitely many periodic points in each of the repellers heteroclinically related to the attractor \(\Lambda \) that contains \(p \).

Proceeding recursively, for every \(m \geq 1 \) we obtain a finite number of periodic points \(\{p_m^\ell\} \in P_m^\ell \) whose heteroclinic intersections of the corresponding unstable manifolds with \(W^u(p) \) contains a \(1/m \)-dense set \(\{x_{m,2}\} \) of points in \(\Delta_\ell \), and the set \(P_{m+1}^\ell := P_m^\ell \setminus \bigcup_{i} \{p_i^\ell\} \) has still infinitely many periodic points in each of the repellers heteroclinically related to \(\Lambda \).

The resulting set \(D_{p, \ell} := \bigcup_{m \geq 1} \{x_{m,2}\} \), formed by points obtained by the heteroclinic intersections, is a countable dense subset in \(\Delta_\ell \) and the set \(D_p := \bigcup_{\ell \geq 1} D_{p, \ell} \) satisfies the requirements of the lemma: for any \(x, y \in D_p \) there are periodic points \(p_x \neq p_y \in \text{Per}(f) \) such that \(x \in W^u(p_x) \) and \(y \in W^s(p_y) \). In consequence,

\[d(f^{-n}(x), f^{-n}(y)) \geq d(f^{-n}(p_x), f^{-n}(p_y)) - d(f^{-n}(p_x), f^{-n}(x)) - d(f^{-n}(p_y), f^{-n}(y)), \]
can be taken larger that $\varepsilon / 2$ provided that n is large enough (here we used that the set $\text{Per}(f)$ is negatively expansive by f). This completes the proof of the lemma.

Second part: $(2) \Rightarrow (3)$. This is immediate.

Third part: $(3) \Rightarrow (1)$. We prove this by contradiction. Assume that there are periodic points p_1, p_2 so that $\Lambda_1 = \mathcal{O}(p_1)$ is a trivial repeller, $\Lambda_2 = \mathcal{O}(p_2)$ is a trivial attractor and $W^u(\Lambda_1) \cap W^s(\Lambda_2) \neq \emptyset$. By uniform continuity, f is sensitive to initial conditions if and only if $\hat{f}^k (1 \geq 1)$ is sensitive to initial conditions (although the constants of separability could change).

Hence, replacing f by some suitable iterate \hat{f}, we may assume without loss of generality that both p_1, p_2 are fixed points for f. Then the existence of a filtration guarantees that $W^u(\Lambda_1) \cap W^s(\Lambda_2)$ contains a non-empty open set V. We claim that for any $\varepsilon > 0$ there exists an open subset $V_{\varepsilon} \subset V$ of points so that $d(f^n(x), f^n(y)) < \varepsilon$ for all $n \in \mathbb{Z}$. Indeed, if $k = k(\varepsilon, V) \geq 1$ is so that $f^k(V) \subset B(p_2, \varepsilon)$ and $f^{-k}(V) \subset B(p_1, \varepsilon)$ for every $j \geq k$, and $x \in V$ it is enough to take the open set

$$V_{\varepsilon} = \{ y \in V : d(f^j(x), f^j(y)) < \varepsilon, \forall |j| \leq k \}.$$

This proves that there exists an open set of points whose iterates always remain ε-close. Since ε was chosen arbitrary this contradicts the sensitivity to initial conditions assumption on f. The proof of the theorem is now complete.

Example 4.1. Assume that $f : \mathbb{T}^2 \to \mathbb{T}^2$ is the standard derived from Anosov diffeomorphism (see e.g. [14, p 539]). It is well known that f is Axiom A and that $\Omega(f) = \{ p \} \cup \Lambda$, where p is a repeller and Λ is a non-trivial attractor. In this case it is trivial that $\Theta_r = \emptyset$ and $\Theta_a = \{ p \}$ satisfy the requirements (1)–(3) in the first part of the proof of theorem 1.

Example 4.2. Assume that $f : M \to M$ is an Axiom A diffeomorphism such that $\Omega(f) = \bigcup_{j=1}^5 \Lambda_j$, where $(\Lambda_j)_{j=1,2}$ are attractors and $(\Lambda_j)_{j=3,4,5}$ are repellers. Let p_j denote a periodic point in Λ_j for every $j \in \{ 1, 2, \ldots, 5 \}$. Assume further that

$$\Lambda_3 \succ \Lambda_1 \succ \Lambda_4 \succ \Lambda_1 \quad \text{and} \quad \Lambda_5 \succ \Lambda_2,$$

and that Λ_1 consists of a periodic sink. In this case, the sets $\Theta_a = \{ \mathcal{O}(p_1), \mathcal{O}(p_2) \}$ and $\Theta_r = \emptyset$ (chosen according to the selection process in the proof of the theorem) satisfy conditions (1)–(3). The diffeomorphism f^{-1} is also Axiom A and, in this case, we get $\Theta_a = \{ \mathcal{O}(p_5) \}$ and $\Theta_r = \{ \mathcal{O}(p_1) \}$.

5. C^0-conjugacy classes and C^0-centralizers of homeomorphisms

5.1. Proof of theorem 2

Fix $r \geq 0$ and $f \in \text{Diff}^r(M)$. For any $g \in C_f$ and $h \in \mathcal{H}_{f^r}$, consider the map

$$F_h : Z^0(f) \to \mathcal{H}_{f^r},$$

$$\hat{f} \mapsto h \circ \hat{f},$$

where the subsets $Z^0(f), \mathcal{H}_{f^r}$ of $\text{Homeo}(M)$ are endowed with the distance d_0. We claim that F_h is well defined. Indeed, for any $\hat{f} \in Z^0(f)$ it holds $\hat{f} \circ f = f \circ \hat{f}$. Thus $(h \circ \hat{f}) \circ f = h \circ (\hat{f} \circ f) = (h \circ f) \circ (g \circ h) \circ f = (g \circ (h \circ f)$. This can be also observed by the commutative diagram:
This proves that $h \circ \tilde{f}$ is also a C^0-conjugacy between f and g. We proceed to prove that F_h is indeed a homeomorphism. Since h is a homeomorphism then F_h is clearly injective. To prove the continuity of F_h, fix an arbitrary $\tilde{f} \in Z^0(f)$. By the uniform continuity of h, given $\varepsilon > 0$ there exists $0 < \delta < \varepsilon$ so that $d(h(x), h(y)) < \varepsilon$ for any points $x, y \in M$ satisfying $d(x, y) < \delta$.

In particular, if $\tilde{f}, \tilde{f} \in Z^0(f)$ and $d_0(\tilde{f}, \tilde{f}) < \delta$ then

$$d_0(F_h(\tilde{f}), F_h(\tilde{f})) = \max_{x \in M} \{ d(h(f(x)), h(f(x))), d(h(f^{-1}(x)), f^{-1}(h^{-1}(x))) \}$$

$$< \max\{\varepsilon, d_0(\tilde{f}, \tilde{f})\} = \varepsilon,$$

which proves the continuity of F_h. To prove that F_h is surjective, given $\tilde{h} \in \mathcal{H}_{f, \delta}$ write $\tilde{h} = h \circ (h^{-1} \circ \tilde{h})$ and note that $h^{-1} \circ \tilde{h}$ is a homeomorphism. Moreover

$$f \circ (h^{-1} \circ \tilde{h}) = (f \circ h^{-1}) \circ \tilde{h} = (h^{-1} \circ g) \circ \tilde{h} = h^{-1} \circ (g \circ \tilde{h}) = (h^{-1} \circ \tilde{h}) \circ f,$$

which can also be read from the commutative diagram

$$\begin{array}{ccc}
M & \xrightarrow{\tilde{f}} & M \\
\downarrow{f} & & \downarrow{f} \\
M & \xrightarrow{h} & M \\
\downarrow{\tilde{f}} & & \downarrow{\tilde{f}} \\
M & \xrightarrow{h^{-1}} & M
\end{array}$$

This proves that $h^{-1} \circ \tilde{h} \in Z^0(f)$, and so F_h is a continuous bijection whose inverse map is $F_{h^{-1}} : \mathcal{H}_{f, \delta} \to Z^0(f)$ given by $F_{h^{-1}}(\tilde{h}) = h^{-1} \circ \tilde{h}$. Since h^{-1} is continuous, hence uniformly continuous, then $F_{h^{-1}}$ is clearly continuous. Altogether this proves that F_h is a homeomorphism and finishes the proof of the first part of the proposition.

A simple computation shows that $F_h(f \circ \tilde{f}) = h \circ (f \circ \tilde{f}) = (h \circ \tilde{f}) \circ h^{-1} \circ (h \circ \tilde{f}) = F_h(\tilde{f}) \circ h^{-1} \circ F_h(\tilde{f})$ for every $\tilde{f}, \tilde{f} \in Z^0(f)$. Property (i) is immediate. Property (iii) is a direct consequence of the fact that homeomorphisms preserve discrete sets. We are left to prove property (ii). Since the elements in the decomposition $\mathcal{H}_{f} = \bigcup_{g \in C_f} \mathcal{H}_{f, g}$ are pairwise disjoint, for any $h \in \mathcal{H}_{f}$ there exists a unique $g \in C_f$ so that $h \in \mathcal{H}_{f, g}$ (we write for simplicity $h = h_g$).

The map

$$F : \mathcal{H}_{f} \to C_f,$$

$$h = h_g \mapsto g,$$

is continuous. Indeed, given $\varepsilon > 0$ take $\delta = \varepsilon/2$ and assume that $d_0(h, \tilde{h}) < \delta$, where $h = h_g$ and $\tilde{h} = \tilde{h}_g$. Observe that $g \circ (h_g \circ \tilde{h}_g^{-1}) = (h_g \circ \tilde{h}_g^{-1}) \circ \tilde{g}$ (in other words $\tilde{h} := h_g \circ \tilde{h}_g^{-1} \in \mathcal{H}_{f, g}$). Moreover, $d(h(x), x) = d(h_g(\tilde{h}_g^{-1} x), h_g(\tilde{h}_g^{-1} x)) < \delta$ for every $x \in M$. This, together with identical computations for h^{-1} implies that $d_0(\tilde{h}, id) < \delta$. Thus,
Thus, there exists
\[d_0(g, \bar{g}) = d_0(h \circ \bar{g} \circ \bar{h}^{-1}, \bar{g}) \leq d_0(h \circ \bar{g} \circ \bar{h}^{-1}, \bar{g} \circ \bar{h}^{-1}) + d_0(\bar{g} \circ \bar{h}^{-1}, \bar{g}) < \varepsilon.\]

This proves the continuity of \(F\). Since \(F^{-1}((g)) = \mathcal{H}_{f, g} \simeq Z^0(f)\) for every \(g \in \mathcal{C}_f\) then we conclude that \(\mathcal{H}_f\) is homeomorphic to \(\mathcal{C}_f \times Z^0(f)\). This proves (ii) and completes the proof of the proposition.

Although the argument used in the proof of lemma 3.1 is essentially contained in [32], we include it here for completeness.

5.2. Proof of lemma 3.1

Take \(r \geq 0\) and assume \(f \in \text{Diff}^r(M)\) has an \(f\)-invariant subset \(\Lambda\) such that \(f|\Lambda\) is expansive. Fix \(0 \leq k \leq r\). By the inclusion \(Z^0(f|\Lambda) \supset Z^k(f|\Lambda)\) it is enough to prove that \(Z^0(f|\Lambda)\) is a discrete subgroup of \(\text{Homeo}(\Lambda)\). Due to the subgroup structure in \(\text{Homeo}(M)\), in order to prove that \(Z^0(f|\Lambda)\) is discrete it is enough to prove that there exists \(\delta > 0\) so that any \(h \in Z^0(f|\Lambda)\) with \(d_0(h, \text{id}|\Lambda) < \delta\) coincides with the identity map \(\text{id}|\Lambda\). Let \(\varepsilon > 0\) be an expansiveness constant for \(f|\Lambda\) and \(\delta = \varepsilon/2\). Take \(h \in Z(f|\Lambda)\) so that \(d_0(h, \text{id}|\Lambda) < \delta\). Since \(\Lambda\) is an \(f\)-invariant set and \(h \circ f = f \circ h\) on \(\Lambda\) then

\[d(f^n(h(x)), f^n(x)) = d(h(f^n(x)), f^n(x)) \leq d_0(h, \text{id}) < \varepsilon/2,\]

for any \(x \in \Lambda\) and every \(n \in \mathbb{Z}\). By expansiveness it follows that \(h = \text{id}|\Lambda\). To finish the proof of the lemma, just observe that \(f\) is an Axiom A diffeomorphism then \(\Omega(f)\) consists of a finite number of hyperbolic, hence expansive, homoclinic classes. In particular, \(Z^0(f|\Omega(f))\) is discrete for every \(C'\) Axiom A diffeomorphism and \(1 \leq r \leq \infty\). This completes the proof of the lemma.

Remark 5.1. In the case of an Axiom A diffeomorphism \(f\) there exists \(\varepsilon > 0\) and a \(C^1\) neighborhood \(U\) of \(f\) so that the expansiveness constant \(\varepsilon|_\Omega(f)\) is uniformly bounded below by \(\varepsilon > 0\) for all \(g \in U\). Thus, there exists \(\varepsilon > 0\) so that \(d_0(h, \text{id}) > \varepsilon\) for any \(h \in Z^0(g|\Omega(p_i, \varepsilon))\) and \(g \in U\). This means that the smallest distance to identity in \(Z^0(f|\Omega(f)) \setminus \{\text{id}\}\) can be taken uniform in a small neighborhood of \(f\).

6. Dense expansiveness and conjugacies \(C^0\)-close to identity

The purpose of this section is to prove theorem 3 and its consequences.

6.1. Proof of theorem 3

Let \(f \in \text{Diff}^1(M)\) be a structurally stable diffeomorphism, hence Axiom A. It follows from the spectral decomposition theorem for Axiom A diffeomorphisms that \(\Omega(f) = \bigcup_{i=1}^s \Lambda_i\) where each \(\Lambda_i\) is a hyperbolic homoclinic class associated to a periodic point \(p_i \in \text{Per}(f)\). The equivalence between (i) and (ii) follows from theorem 2. Here we prove the remaining equivalences as follows:

6.1.1. (iii) \(\Rightarrow\) (iv). Assume that for any maximal totally ordered chain \(\Lambda_{i_0} \triangleright \cdots \triangleright \Lambda_{i_r} \triangleright \Lambda_{i_s}\) of basic pieces in \(\Omega(f)\) one has \(\dim W^s(\Lambda_{i_0}) = \dim W^u(\Lambda_{i_s})\) is constant for every \(1 \leq j \leq s\). Since \(f\) is Axiom A and satisfies the strong transversality condition, for any \(x \in M\) there exist \(y, z \in \Omega(f)\) uniquely determined so that \(x \in W^s(y) \cap W^u(z)\). In particular,
dim $W^u(y) + dim W^s(z) = dim M$ and there exists $\varepsilon_x > 0$ so that $F^u_{\varepsilon_x}(x) \cap F^s_{\varepsilon_x}(x) = \{x\}$, where $F^u_{\varepsilon_x}(x)$ denotes the ε_x-ball around x in $W^u(y)$ and $F^s_{\varepsilon_x}(x)$ denotes the ε_x-ball around x in $W^s(z)$. Since M is compact and the invariant foliations vary continuously with the point on compact parts then there exists $\varepsilon_0 > 0$ so that $F^u_{\varepsilon_0}(x) \cap F^s_{\varepsilon_0}(x) = \{x\}$ for every $x \in M$. As $\Omega(f)$ is a hyperbolic set, reducing ε_0 if necessary, we may assume that for every $x \in \Omega(f)$, the stable set

$$B^f_\infty(x, \varepsilon_0) := \{y \in M : d(f^n(x), f^n(y)) < \varepsilon_0 \text{ for every } n \in \mathbb{Z}_+\},$$

is contained in local stable manifold $F^s_{\varepsilon_0}(x)$ (see stable manifold theorem in [27]). We may reduce ε_0 if necessary so that $\min_{i \neq j} \text{dist}(\Lambda_i, \Lambda_j) > \varepsilon_0$.

We proceed to prove that f is expansive. We claim that ε_0 is an expansiveness constant for $f |_{\Omega(f)}$. Thus, if $x, y \in \Omega(f)$ satisfy $d(f^n(x), f^n(y)) < \varepsilon_0$ for every $n \in \mathbb{Z}$ then $y \in F^s_{\varepsilon_0}(x) \cap F^u_{\varepsilon_0}(x)$ and, consequently, $y = x$. This proves that ε_0 is an expansiveness constant for $f |_{\Omega(f)}$. Fix $0 < \varepsilon < \frac{\varepsilon_0}{2}$. Now we prove that $B^\pm_{\varepsilon}(x, \varepsilon) \subset F^\pm_{\varepsilon}(x)$ for every $x \in M \setminus \Omega(f)$. Assume that $x \in M \setminus \Omega(f)$ and that $y \in M$ is such that $d(f^n(x), f^n(y)) < \varepsilon$ for every $n \in \mathbb{Z}_+$. There are $p_t, p_s \in \Omega(f)$ so that $x \in W^s(p_s)$ and $y \in W^t(p_t)$ (see (4.2)). Recall, $\min_{i \neq j} \text{dist}(\Lambda_i, \Lambda_j) > \varepsilon_0$. By triangular inequality, there exists $N > 1$ large so that

$$d(f^n(p_t), f^n(p_s)) \leq d(f^n(x), f^n(y)) + d(f^n(y), f^n(p_s)) + d(f^n(x), f^n(p_t)) \leq \varepsilon + 2CN^s \varepsilon < \varepsilon_0.$$

for every $n \geq N$. This proves that $f^N(p_t) \in B^r_{\varepsilon}(x, \varepsilon) \subset F^r_{\varepsilon}(x) \subset W^t(f^n(p_t))$ and, consequently, $p_t \in W^t(p_s)$. This proves that $y \in F^u_{\varepsilon}(x)$, as desired. Finally, if $x, y \in M$ and $d(f^n(x), f^n(y)) < \varepsilon$ for every $n \in \mathbb{Z}$ then $y \in B^\pm_{\varepsilon}(x, \varepsilon) \cap B^\pm_{\varepsilon}(y, \varepsilon) \subset F^\pm_{\varepsilon}(x) \cap F^\pm_{\varepsilon}(y) = \{x\}$. This proves that f is ε-expansive. By [17], f is an Anosov diffeomorphism.

(iv) \Rightarrow (i).

Since every Anosov diffeomorphism is expansive, (i) follows from lemma 3.1. (i) \Rightarrow (iii).

If f is an Anosov diffeomorphism then both properties (i) and (iii) hold. For that reason we need only to consider C^1-structurally stable diffeomorphisms that are not Anosov. By structural stability, for any maximal totally ordered chain $\Lambda_1 > \cdots > \Lambda_i > \cdots$ of basic pieces in $\Omega(f)$ recall that $\dim W^u(\Lambda_j) = \dim W^u(\Lambda_{j+1})$ for every $1 \leq j \leq s - 1$. We prove this implication by contraposition. Assume that there exists a maximal totally ordered chain $\Lambda_1 > \cdots > \Lambda_i > \cdots$ of basic pieces in $\Omega(f)$ so that $\dim W^u(\Lambda_i) < \dim W^u(\Lambda_j)$. Our purpose is to prove that $Z^u(f)$ is not discrete.

Since $\Omega(f)$ is a hyperbolic set for f (hence $f |_{\Omega(f)}$ is expansive) there exists $\varepsilon_0 > 0$ an expansiveness constant for $f |_{\Omega(f)}$. Given any element $h \in Z^u(f)$ it preserves the non-wandering set of f, that is $h(\Omega(f)) = \Omega(f)$. Therefore, if in addition it satisfies $d_C(h, id) < \varepsilon_0$ then $h |_{\Omega(f)} = id$ (see lemma 3.1). Furthermore, since any element in $Z^u(f)$ preserves stable and unstable foliations then $h(W^s(x)) = W^s(x)$ and $h(W^u(x)) = W^u(x)$ for every $x \in \Omega(f)$. In particular h preserves heteroclinic points.

The remaining of the proof is constructive and we build a continuum of homeomorphisms C^0-close to the identity that belong to $Z^u(f)$. By lemma 4.1, there exists a periodic point in Λ_0 that is heteroclinically related to some periodic point in Λ_i. Moreover, since compact parts of stable and unstable manifolds vary continuously with the point and there exists a filtration, the argument used in the final part of the proof of lemma 4.1 guarantees that there exists an open set $U \subset M \setminus \Omega(f)$ so that $\text{dist}_U(f^n(U), \Lambda_i) \to 0$ and $\text{dist}_U(f^{-n}(U), \Lambda_i) \to 0$ as n tends to infinity (here dist_U denotes the Hausdorff distance). Since the sets Λ_i and Λ_j are locally maximal then $W^u(\Lambda_i) = \bigcup_{x \in \Lambda_i} W^u(x)$ and $W^u(\Lambda_j) = \bigcup_{y \in \Lambda_j} W^u(y)$. In particular every point in
U belongs to a stable manifold of some point of \(\Lambda_{i_1} \) and to an unstable manifold of some point of \(\Lambda_{is} \). Diminishing \(U \) if necessary, we may assume that the collection of compact sets \((\mathcal{f}^n(U))_{n \in \mathbb{N}} \) is pairwise disjoint, and that \(U \) is foliated by pieces of stable and unstable disks.

Since we assumed \(\dim \mathcal{W}_u(\Lambda_{i_1}) < \dim \mathcal{W}_u(\Lambda_{is}) \), then \(\dim \mathcal{W}_u(\Lambda_{is}) + \dim \mathcal{W}_s(\Lambda_{i_1}) > \dim M \) for every \(x \in U \). Let \(\alpha_x \subset U \) be a smooth submanifold of dimension one contained in the intersection \(\mathcal{F}^s(x) \cap \mathcal{F}^u(x) \) (see figure 3 below). Up to take a smaller \(U \) if necessary, by continuity of the intersections between invariant manifolds one may choose the family \((\alpha_x)_{x \in U} \) to vary continuously with \(x \) and to partition \(U \). By convention, \(\alpha_x = \alpha_z \) for every \(z \in \alpha_x \). Up to conjugacy by a homeomorphism on \(U \), there exist natural coordinate system given by arc length. More precisely, if \(\ell(\alpha_x) \) denotes the length of the one-dimensional submanifold \(\alpha_x \) and \(E \subset \mathcal{W}_u(\Lambda_{i_1}) \cap U \) is the continuous submanifold that intersects each submanifold \(\alpha_x \) exactly on its midpoint, the parametrization of \(\alpha_x \) by arc length with the same orientation for all points (which we denote by \(\alpha_x : [-\ell(\alpha_x)/2, \ell(\alpha_x)/2] \to M \) by some abuse of notation) induces a natural homeomorphism

\[
\varphi : U \to \tilde{U} := \{ (x, \ell) \in E \times \mathbb{R} : x \in E, -\ell(\alpha_x)/2 < \ell < \ell(\alpha_x)/2 \},
\]

where \(\alpha_z \cap E = \{ x \} \) and \(-\ell(\alpha_x)/2 < \ell < \ell(\alpha_x)/2 \) is unique so that \(\alpha_z(\ell) = z \). Now, let \(V \subseteq W \subseteq U \) be two small open sets so that \(V \subseteq V \subseteq W \subseteq W \subseteq U \) and \(\ell(\alpha_x) \geq \ell_0 > 0 \) for all points \(x \in V \) (see figure 4). Observe that \(\varphi \mid \overline{W} : \overline{W} \to \varphi(\overline{W}) \) and its inverse are uniformly

\[\text{Figure 2. Representation of } \frac{1}{m}\text{-dense heteroclinic intersections } \{x_m\} \text{ associated to periodic points in some non-trivial repeller in the fundamental domain } \Delta_\ell \text{ of } \mathcal{W}(p)\]
Since every element in the centralizer preserves heteroclinic points this motivates a perturbation of the identity map along this one-dimensional fibers. Fix a continuous ‘bump function’ \(\beta : \mathbb{R} \to [0, 1] \) so that \(\beta|_{[\ell_0/2, \ell_0/2]} \equiv 0 \) and \(\beta|_{[-\ell_0/4, \ell_0/4]} \equiv 1 \). Fix \(\zeta > 0 \) small and \(t \in [0, 1] \). For any \(z \in U \), consider the one-parameter family

\[
h_{0,t}(z) := \begin{cases}
\varphi^{-1} \circ H_t \circ \varphi(z), & \text{if } z \in W \\
\varphi(z), & \text{if } z \in U \setminus W
\end{cases}
\]

where \(H_t : W \to W \) is an given by \((x, \ell) \mapsto (x, \ell + \beta(\ell)\zeta) \) and \((x, \ell) = \varphi(z) \). In rough terms, the homeomorphism \(h_t \) on \(V \) pushes \(t \) along the direction determined by the oriented submanifolds \(\alpha, \beta \). For any \(z \in M \setminus \bigcup_{n \in \mathbb{Z}} f^n(U) \) define \(h_t(z) = z \) and, otherwise, define

\[
h_t(z) = f^{-n}(h_{0,t}(f^n(z))) \quad \text{where } n = n(z) \in \mathbb{Z}
\]

is (unique) so that \(f^n(z) \in U \).

By construction \(h_0 = \text{Id} \) and \((h_t)_{t \in [0,1]} \) is a continuous family such that \(f \circ h_t = h_t \circ f \) (equivalently \(h_t \in Z^0(f) \)) for every \(t \in [0, 1] \). In order to complete the proof of the theorem we are left to prove that \(h_t \) is a homeomorphism for every \(t \in [0, 1] \). Notice that \(h_t \) is invertible. We proceed to prove the following:

Claim. \(h_t \) is continuous

Proof of the claim. On \(M \setminus \bigcup_{n \in \mathbb{Z}} f^n(W) \) we have that \(h_t = \text{id} \) is clearly continuous. Since \(h_t \) is also continuous on each open set of the form \(f^n(W) \), \(n \in \mathbb{Z} \), it remains to prove the continuity on points that belong to either the attractor \(\Lambda_i \) or the repeller \(\Lambda_r \). Let \(\lambda \in (0, 1) \) denote a hyperbolicity constant for \(\Omega(f) \).

Fix \(x \in \Lambda_i \) (if \(x \in \Lambda_r \), the computations are analogous, replacing \(f \) by \(f^{-1} \)) and \(\varepsilon > 0 \). Pick \(0 < \delta < \varepsilon/2 \) small so that for any point \(y \in \bigcup_{n \in \mathbb{Z}} f^n(W) \) with \(d(x, y) < \delta \), the unique \(n_y \in \mathbb{Z} \) (and necessarily negative) so that \(f^n(y) \in U \) satisfies \(\lambda^{-n_y} \zeta < \varepsilon/2 \) (see figure 5). This holds because the number of iterates necessary for a point to enter the set \(W \) grows to infinity for points sufficiently close to the attractor \(\Lambda_i \). With this choice, if \(d(x, y) < \delta \) and \(y \notin \bigcup_{n \in \mathbb{Z}} f^n(W) \) then \(d(h(x), h(y)) = d(x, y) < \varepsilon/2 \). Now assume, otherwise, that \(d(x, y) < \delta \) and \(y \in \bigcup_{n \in \mathbb{Z}} f^n(W) \). By construction, \(h_{0,t}(f^n(y)) \in W(f^n(y)) \) and \(d(h_{0,t}(f^n(y)), f^n(y)) < \zeta \). Therefore, by triangular inequality together with the uniform contraction along stable leaves,

\[
d(h_t(x), h_t(y)) = d(f^{-n_t} \circ h_{0,t} \circ f^n(y))
\]

\[
= d(f^{-n_t} \circ f^n(x), f^{-n_t} \circ h_{0,t} \circ f^n(y)) \leq d(f^{-n_t} \circ f^n(x), f^{-n_t} \circ f^n(y)) + d(f^{-n_t} \circ f^n(y), f^{-n_t} \circ h_{0,t} \circ f^n(y))
\]

\[
\leq d(x, y) + \lambda^{-n_t} d(f^n(y), h_{0,t} \circ f^n(y)) \leq \delta + \lambda^{-n_t} \zeta < \varepsilon.
\]

This proves the continuity of \(h_t \) at \(x \), and completes the proof of the claim. \(\square \)
Since the continuity of \(h^{-1} \) is analogous we conclude that \(h_t \) is a homeomorphism \(C^0 \)-close to the identity and that \(h_t \in Z^0(f) \) for every \(t \in [0,1] \). Therefore, \(Z^0(f) \) is not discrete. This finishes the proof of the theorem.

7. Some examples

Our first example is a Morse–Smale diffeomorphism (hence structurally stable), in which case the \(C^0 \)-centralizer contains a continuum of homeomorphisms \(C^0 \)-close to identity.

Example 7.1. Let \(f: S^1 \to S^1 \) be a circle diffeomorphism so that the non-wandering set is \(\Omega(f) = \{N, S\} \), where \(N \) denotes the repelling fixed point and \(S \) denotes the contracting fixed point. \(f \) is clearly structurally stable. We claim that \(Z^0(f) \) contains a continuum \(C^0 \)-close to the identity. Since \(f \mid_{S^1 \setminus \{N\}} \) is homeomorphic to a linear contraction on the real line, we may assume without loss of generality that \(f(x) = \frac{1}{2}x \) and fix \(I = [-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1] \) as a fundamental domain. For every \(x \in S^1 \setminus \{N\} \) let \(n = n(x) \in \mathbb{Z} \) be the unique integer so that \(f^n(x) \in I \). Using that \(n(f(x)) = n(x) - 1 \) for every \(x \in \mathbb{R} \) it is not hard to check that every continuous increasing map \(h_0 : I \to I \) with \(h_0 \mid_{\partial I} = id \) determines an element in \(Z^0(f) \): the homeomorphism \(h : S^1 \setminus \{N, S\} \to S^1 \setminus \{N, S\} \) given by \(h(x) = f^{-n(x)}(h_0(f^n(x))) \) satisfies

\[
\begin{align*}
h(f(x)) &= f^{-n(f(x))}(h_0(f^n(f(x)))) = f^{-n(x)-1}(h_0(f^n(x)) = f(h(x)),
\end{align*}
\]

for every \(S^1 \setminus \{N, S\} \), and extends continuously to \(S^1 \) by \(h(N) = N \) and \(h(S) = S \). As a consequence of theorem 2, for every \(g \in C_f \) there exists a continuum of homeomorphisms conjugating \(f \) and \(g \) and that are \(C^0 \)-close to the identity. Moreover, for any \(\varepsilon > 0 \) there exists a ball \(B \) of radius \(\varepsilon \) so that \(\text{diam}^n(B) < \varepsilon \) for all \(n \in \mathbb{Z} \). This implies that the set of points of \(\varepsilon \)-expansiveness are not dense in \(S^1 \).

In the next example we exhibit an open set of densely expansive structurally stable diffeomorphisms with non-discrete \(C^0 \)-centralizer.

Example 7.2. Let \(f: S^1 \to S^1 \) be the Morse–Smale diffeomorphism from example 7.1 and let \(g: \mathbb{T}^2 \to \mathbb{T}^2 \) be an Anosov diffeomorphism. It is clear that the diffeomorphism \(f \times g: S^1 \times \mathbb{T}^2 \to S^1 \times \mathbb{T}^2 \) is an Anosov \(C^1 \)-diffeomorphism, the non-wandering set consists of two non-trivial basic pieces and that it satisfies the strong transversality condi-
tion. Moreover, $Z(f \times g) \supset Z(f) \times \{id\}$, thus it is not discrete. Then, theorem 2 guarantees there exists a continuum of conjugacies C^0-close to the identity between $f \times g$ and any C^1-diffeomorphism $F \in \mathcal{G}_{f \times g}$. By structural stability, theorem 2 implies that the later holds for a C^1-open neighborhood of the diffeomorphism $f \times g$. In contrast to example 7.1, the non-wandering set is formed by one attractor and one repeller, both non-trivial. By theorem 1, every C^1-small perturbation of $f \times g$ has sensitivity to initial conditions. Finally, observe that the set of points with expansiveness are dense in $\mathbb{S} \times \mathbb{T}$ while the centralizer is not discrete. This shows that dynamics with a dense subset of expansive points may have non-discrete C^0-centralizer and proves that Walters’ lemma is optimal (see lemma 3.1). Moreover, since this is a partially hyperbolic diffeomorphism with a one-dimensional central bundle then it is also entropy expansive (see [6] for definition and proof).

The following example shows that C^0 and C^1-centralizers can be both discrete but distinct for a locally C^1-Baire generic set of C^1-diffeomorphisms.

Example 7.3. Let f be a C^1-Anosov diffeomorphism on the two torus \mathbb{T}^2 with a unique fixed point. Then there exists a C^1-open neighborhood U of $f \in \text{Diff}^1(\mathbb{T}^2)$ formed subset of Anosov diffeomorphisms, topologically conjugate to f. The C^0-centralizer of f is discrete but non-trivial (it has two generators) see [26]. Since every C^1-diffeomorphism $g \in U$ is topologically conjugate to f then it follows from theorem 2 that the C^0-centralizer of g is discrete but non-trivial. Now, we recall that there exists a C^1-Baire residual subset $\mathcal{R} \subset U$ diffeomorphisms so that $Z^1(g)$ is trivial for every $g \in \mathcal{R}$ (see [2]). Thus there exists a C^1-Baire residual subset $\mathcal{R}_1 \subset U$ so that $Z^1(g) \supset Z^1(g) = \{g^n : n \in \mathbb{Z}\}$ for every $g \in \mathcal{R}_1$. In particular, the analogous affirmative statement to Smale’s question is no longer true for C^0-centralizers.

We also derive a consequence for reversible dynamics.

Example 7.4. Given an involution $R : M \to M$ (i.e. $R^2 = id$) let $\text{Homeo}_R(M)$ denote the set of homeomorphisms f so that $R \circ f = f^{-1} \circ R$. These are called R-reversible homeomorphisms. Notice that $f \in \text{Homeo}_R(M)$ if and only if f^{-1} belongs to the conjugacy class of $f \in \text{Homeo}(M)$ and that $R \in \mathcal{H}_{f^{-1}}$. Consider the (non-empty) set $\{h \in \text{Homeo}(M) : h \circ f = f^{-1} \circ h\}$ of conjugacies between f and f^{-1}. By theorem 2, the map $F_R : Z^0(f) \to \mathcal{H}_{f^{-1}}$ given by $F_R(f) = R \circ f$ is a homeomorphism. Thus, if $f \in \text{Homeo}_R(M)$ then $Z^0(f)$ is discrete if and only if there exists $\varepsilon > 0$ so that there is no conjugacy between f and f^{-1}, distinct from R that is ε-C^0-close to R. Clearly, both properties hold for reversible Anosov diffeomorphisms. Moreover, we deduce that if $Z^0(f)$ is trivial then every conjugation between f and f^{-1} is of the form $R \circ f^n$ for some $n \in \mathbb{Z}$.

Acknowledgments

The authors are grateful to V Araújo for useful comments and to the anonymous referee for valuable comments that really helped to improve the manuscript. Most of this work was developed during a visit of the second author to University of Porto, whose excellent research conditions are greatly acknowledged. JR and PV were partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020. JR was partially supported by PTDC/MAT-CAL/3884/2014. PV was partially supported by CNPq-Brazil.
References

[1] Bakker L and Fisher T 2014 Open sets of diffeomorphisms with trivial centralizer in the C^1-topology Nonlinearity 27 2859–85
[2] Bonatti C, Crovisier S and Wilkinson A 2009 The C^1-generic diffeomorphism has trivial centralizer Publ. Math. IHES 109 185–244
[3] Bonomo W, Rocha J and Varandas P 2016 The centralizer of expansive flows and Rd-actions and an application to singular-hyperbolic attractors (arXiv:1604.06516)
[4] Burslem L 2004 Centralizers of partially hyperbolic diffeomorphisms Ergod. Theory Dynamic. Syst. 24 55–87
[5] de Melo W 1973 Structural stability of diffeomorphisms on two-manifolds Invent. Math. 21 233–46
[6] Díaz J, Fisher T, Pacifico M and Vieitez J 2012 Entropy-expansiveness for partially hyperbolic diffeomorphisms Discrete Contin. Dyn. Syst. 32 4195–207
[7] Fisher T 2009 Trivial centralizers for codimension-one attractors Bull. London Math. Soc. 41 51–6
[8] Franks J 1973 Absolutely structurally stable diffeomorphisms Proc. Am. Math. Soc. 37 293–6
[9] Grines V 1997 Structural stability and asymptotic behavior of invariant manifolds of A-diffeomorphisms of surfaces J. Dyn. Control. Syst. 3 91–110
[10] Grines V and Zhuzhoma E 2005 On structurally stable diffeomorphisms with codimension one expanding attractors Trans. Am. Math. Soc. 357 617–67
[11] Hayashi S 1997 Connecting invariant manifolds and the solution of the C^1 stability and Ω-stability conjectures for flows Ann. Math. 145 81–137
[12] Hiraide K 1990 Expansive homeomorphisms of compact surfaces are pseudo Anosov Osaka J. Math. 27 117–62
[13] Lewowicz J 1989 Expansive homeomorphisms on surfaces Bol. Soc. Bras. Mat. Nova Ser. 20 113–33
[14] Katok A and Hasselblatt B 1995 Introduction to the Modern Theory of Dynamical Systems (Cambridge: Cambridge University Press)
[15] Kopell N 1970 Commuting diffeomorphisms Global Analysis, Proc. of Symp. in Pure Mathematics XIV (Berkeley, CA, 1968) (Providence, RI: American Mathematical Society) pp 165–84
[16] Mañé R 1988 A proof of the C^1 stability conjecture Publ. Math. IHES 66 161–210
[17] Mañé R 1975 Expansive Diffeomorphisms (Lecture Notes in Mathematics vol 468) (Berlin: Springer) pp 162–74
[18] Moser J 1969 On a theorem of Anosov J. Differ. Equ. 5 411–40
[19] Palis J and Yoccoz J-C 1989 Rigidity of centralizers of diffeomorphisms Ann. Sci. Norm. Sup. 22 81–98
[20] Pugh C 1967 The closing lemma Am. J. Math. 89 956–1009
[21] Pilykin R V 1974 Sources and sinks of α-diffeomorphisms on surfaces Math. USSR Sb. 23 233
[22] Pilykin R V 1988 The structure of the centralizers of Anosov diffeomorphisms of the torus Russ. Math. Surv. 53 1363–4
[23] Robbin J W 1971 A structural stability theorem Ann. Math. 94 447–93
[24] Robbin J W 1972 Topological conjugacy and structural stability for discrete dynamical systems Trans. Am. Math. Soc. 78 923–52
[25] Robinson C 1976 Structural stability of C^1-diffeomorphisms J. Diff. Equ. 22 28–73
[26] Rocha J 2008 A note on the C^0-centralizer of an open class of bidimensional Anosov diffeomorphisms Aequat. Math. 76 105–11
[27] Shub M 1987 Global Stability of Dynamical Systems (Berlin: Springer)
[28] Smale S 1970 The Ω-stability theorem Global Analysis Proc. Symp. Pure Mathematics vol 14 (Providence, RI: AMS)
[29] Smale S 1991 Dynamics retrospective: great problems, attempts that failed. Nonlinear science: the next decade (Los Alamos, NM, 1990) Physica D 51 267–73
[30] Vieitez J 1990 Three-dimensional expansive homeomorphisms Dynamical Systems (Santiago, 1990) (Pitman Research Notes in Mathematics Series vol 285) (Harlow: Longman Scientific & Technical) pp 299–323
[31] Vieitez J 2002 Lyapunov functions and expansive diffeomorphisms on 3D-manifolds Ergod. Theor. Dynam. Syst. 22 601–32
[32] Walters P 1970 Homeomorphisms with discrete centralizers and their ergodic properties Math. Syst. Theory 4 322–6