513. Transmission of Carbapenem-Resistant Enterobacteriaceae in a Community-Based, Residential Care Setting: Nevada, 2018

Danica Gomes, MD, MSc1; Ana Bardosy, MD2; Andrew Gorzalski, PhD2; Heather Holmstadt, RN3; Sandra Larson, MPH2; Alison L. Halpin, PhD2; Lei Chen, PhD3; Kimisha Causey, MPH2; Chidumba V. Nsukka, MHA3; Nimalie D. Stone, MD MS4; Abimbola Ogundimu, DrPH5; RN, CIC2; Heather Moulton-Meissner, PhD1; Gillian A. McAllister, BS1; Paige Gable, BS1; Nick Vlachos, MS1; Maroya S. Walters, PhD1; Lauren Epstein, MD MSc1 and Adrian Forero, BS Health Ecology2,1; Centers for Disease Control and Prevention, Atlanta, Georgia; 2Nevada State Public Health Lab, Reno, New Jersey; 3Washoe County Health District, Reno, Nevada; 4Nevada Department of Health and Human Services, Las Vegas, Nevada; 5Retired Epidemiology Program Manager, Washoe County Health District, Reno, Nevada; 6Nevada Division of Public and Behavioral Health, Las Vegas, Nevada; 7Office of Public Health Investigations and Epidemiology, Las Vegas, Nevada; 8CDC, Atlanta, Georgia; 9Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia; 10Office of Public Health Informatics and Epidemiology, Las Vegas, Nevada

Session: 55. HAI: MDRO – GNR Transmission

Thursday, October 3, 2019: 12:15 PM

Background. Klebsiella pneumoniae carbapenemase-producing organisms (KPCOs) are often multidrug-resistant, and the KPC resistance determinant can be transmitted between bacteria. KPCOs are associated with healthcare facility exposures; identification in community-based, residential care settings is uncommon. In September 2018, the Washoe County Health District was notified of a KPC-producing Escherichia coli from a group home (GH) resident. We investigated the source of this KPCO and evaluated transmission in the GH.

Methods. A case was defined as detection of KPCO from a GH resident or staff from June 1 to November 30, 2018. Staff included caregivers who provided daily care (including toileting, bathing, feeding) and visiting healthcare workers. Residents and staff were offered KPCO screening to assess colonization status. Exposures were assessed by medical record review and interviews. Genetic relatedness of KPCOs was evaluated by whole-genome sequencing (WGS).

Results. Overall, six cases were identified, including the index, two of seven staff, and three of six residents screened. Three residents with KPCOs had recent hospitalizations and shared a bathroom in the GH; one overlapped on the same hospital unit as a patient with KPC-producing Klebsiella oxytoca. Staff with KPCOs were caregivers who had extensive contact with residents and their environment and no IPC training. Gaps in hand hygiene and environmental cleaning were observed. Observation was recovered from 4 positive screening tests as well as from blood cultures from the index case; all were KPC-producing E. coli. WGS showed that the five E. coli isolates were closely related, consistent with transmission, and harbored the same KPC variant as the K. oxytoca. No new cases occurred after IPC was improved.

Conclusion. A GH resident likely acquired KPCOs during a recent hospitalization, and transmission in the GH was impacted by IPC. It is likely that KPCOs were introduced into the GH and transmitted among staff and residents, with limited spread to visitors.

Disclosures. All authors: No reported disclosures.

514. Shedding of Multidrug-Resistant Gram-Negative Bacilli by Colonized Patients During Procedures and Patient Care Activities

Heba Alhmidi, MD1; Jennifer Cadnum, BS2; Annette Jenson, MT, CIC3; Robert A. Bonomo, MD3; Bridig Wilson, PhD7; Jeanmarie Mayer, MD4; Matthew H. Samore, MD5 and Curtis Donksey, MD6; 1Northeast Ohio VA Healthcare System, Cleveland, Ohio; 2Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; 3University of Utah School of Medicine, Sandy, Utah; 4University of Utah, Salt Lake City, Utah; 5Cleveland VA Medical Center, Cleveland, Ohio

Session: 55. HAI: MDRO – GNR Transmission

Thursday, October 3, 2019: 12:15 PM

Background. Contaminated environmental surfaces contribute to transmission of healthcare-associated pathogens such as multidrug-resistant gram-negative bacilli. We hypothesized that medical procedures and patient care activities facilitate environmental dissemination of multidrug-resistant gram-negative bacilli in hospitalized patients.

Methods. We conducted a cohort study of hospitalized patients in contact precautions for carriage of extended spectrum β-lactamase (ESBL)–producing or carbapenem-resistant gram-negative bacilli (CR-GNB) to determine the frequency of environmental shedding during procedures and care activities. Perirectal, wound, and skin were cultured for the gram-negative bacilli of interest. Prior to each procedure or activity, surfaces in the room and portable equipment used for procedures were disinfected. After procedures, high-touch surfaces and portable equipment were cultured; negative cultures were collected after 1 hour in the absence of a procedure.

Results. Of 60 participants, 38 (63%) were in contact precautions for ESBL-producing γ- or β-lactamase-negative bacilli and 22 (37%) for CR-GNB. Thirty-four (57%) participants had positive perirectal, wound, or skin cultures. Contamination of surfaces with the colonizing multidrug-resistant gram-negative bacilli occurred frequently during procedures and activities such as wound care, assistance with meals, and urinary catheter or colonoscopy care (11% to 29% of procedures/activities), whereas contamination was rare in the absence of a procedure (1%). Contamination was recovered from 6 of 56 (10%) portable devices used for procedures.

Conclusion. Environmental shedding of multidrug-resistant gram-negative bacilli occurs frequently during medical and non-medical procedures in hospitalized patients. Our results suggest that there is a need for effective strategies to disinfest surfaces and equipment after procedures.

Disclosures. All authors: No reported disclosures.

515. Acquisition of Antibiotic-Resistant Gram-Negative Bacteria in the Benefits of Universal Gloves and Gowns (BUGG) Cluster Randomized Trial

Anthony Harris, MD, MPH1; Daniel Morgan, MD, MS2; Lisa Harris, MA3; Laurence S. Magder, PhD MPH1; Lyndsay M. O’Hara, PhD, MPH1 and Kristie Johnson, PhD4; 1University of Maryland School of Medicine, Baltimore, Maryland; 3University of Maryland and VA Maryland Health Care System, Baltimore, Maryland; 4University of Maryland Dept of Epidemiology and Public Health, Baltimore, Maryland; 5University of Maryland School of Medicine, Baltimore, Maryland; 6University of Maryland Medical Center, Baltimore, Maryland

Session: 55. HAI: MDRO – GNR Transmission

Thursday, October 3, 2019: 12:15 PM

Background. The Benefits of Universal Gloves and Gowns (BUGG) randomized trial compared interventions: increase in MRSA screening, no effect on VRE acquisition and no increase in adverse events with the intervention of wearing gloves and gowns for all patient contact in the intensive care unit (ICU). The objective of the study was to assess whether wearing gloves and gowns for all patient contact in the ICU decreases the acquisition of antibiotic-resistant Gram-negative bacteria.

Methods. Design: Secondary study of the BUGG cluster-randomized trial.

Participants: 20 medical and surgical ICUs in 20 US hospitals.

Intervention: Healthcare workers were required to wear gloves and gowns when entering any patient room compared with standard care; Main outcomes and measures: The primary composite outcome was acquisition of any antibiotic-resistant Gram-negative bacteria based on surveillance cultures collected on admission and discharge. Secondary outcomes were acquisition of carbapenem-resistant Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacteriaceae, or ESBL-producing Enterobacteriaceae.

Results. For the primary outcome, the intervention had a RR of 0.90 (95% CI 0.71 to 1.12, P = 0.34). Effects on the secondary outcomes were: carbapenem-resistant Entrobacteriaceae [RR 0.86 (95% CI, 0.60 to 1.34), P = 0.43], carbapenem-resistant Acinetobacter [RR 0.81 (95% CI, 0.52 to 1.27) P = 0.36], carbapenem-resistant Pseudomonas [RR 0.88 (95% CI, 0.55 to 1.42) P = 0.62], ESBL producing bacteria [RR 0.94, (95% CI, 0.71 to 1.24) P = 0.67].

Conclusion. The association of universal glove and gown use in the ICU with acquisition of antibiotic-resistant Gram-negative bacteria was inconclusive. The observed rate ratios for all five outcomes suggest that the intervention was protective, however, none were statistically significant. The study was likely underpowered to detect statistical significance for the effect sizes found. Individual hospitals should consider implementing the intervention based on the importance of these organisms at their hospital, effect sizes, confidence intervals, and cost.

Disclosures. All authors: No reported disclosures.