Letter

Imaging quantum dot formation in MoS$_2$ nanostructures

S Bhandari1, K Wang2, K Watanabe3, T Taniguchi3, P Kim1 and R M Westervelt1

1School of Engineering and Applied Sciences and Department of Physics, Harvard University, MA 02138, United States of America
2School of Physics and Astronomy, University of Minnesota, MN 55455, United States of America
3National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

E-mail: sbhandar@fas.harvard.edu

Received 21 May 2018, revised 26 June 2018
Accepted for publication 2 August 2018
Published 14 August 2018

Abstract
Among two-dimensional materials, semiconducting ultrathin sheets of MoS$_2$ are promising for nanoelectronics. We show how a scanning probe microscope (SPM) can be used to image the flow of electrons in a MoS$_2$ Hall bar sample at 4.2 K allowing us to understand device physics at the nanoscale. The SPM tip acts as a movable gate and capacitively couples the SPM tip to the device below. By measuring the change in device conductance as the tip is raster scanned across the sample, spatial maps of the device conductance can be obtained. We present images showing the characteristic ‘bullseye’ pattern of Coulomb blockade conductance rings around a quantum dot formed in a narrow contact as the carrier density is depleted with a backgate. These images show that multiple dots are created by the disorder potential in MoS$_2$. From these SPM images, we estimate the size and position of these quantum dots using a capacitive model.

Keywords: scanning probe microscope, MoS$_2$, quantum dots, imaging quantum dots

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultrathin sheets of MoS$_2$, which are only a few atoms thick, conduct well and display electronic properties including a thickness- and strain-dependent bandstructure, valley Hall effects and spin-valley physics [1–6]. For graphene, covering both sides of a graphene sheet with layers of hexagonal boron nitride (hBN) greatly enhances the carrier mobility, resulting in ballistic transport [7]. However, the measured mobility in hBN-encapsulated MoS$_2$ devices is limited to moderate values (500–2000 cm2 V$^{-1}$ s$^{-1}$) by scattering from lattice defects, charged impurities, and substrate adsorbates [8–15]. Direct imaging of electron motion in MoS$_2$ devices can give us vital information about device physics at the nanoscale, helping us to develop better devices. In previous research, we used our cooled SPM to image quantum dots formed in a GaAs 2DEG [16] and in an InAs/InP nanowire [17] by using the tip as a scanning gate to tune the number of electrons on the dot, creating rings of high conductance about the dot that correspond to Coulomb blockade conductance peaks [16, 17].

In this paper, we have adapted our SPM technique to image electron flow and characterize disorder in a MoS$_2$ device. We present conductance images that reveal quantum dot formation in a three layer MoS$_2$ device at 4.2 K, by using the tip to locally gate the quantum dot. The device is a hBN-MoS$_2$-hBN sandwich patterned into a Hall bar geometry, shown in figure 1(a). As the carrier density is reduced toward the charge neutral point, we find that quantum dots are created in the small side contact indicated in figure 1(a) by the
white square, characterized by ‘bullseye’ pattern of Coulomb conductance peaks around each dot. From the spacing between the conductance rings and their dependence on backgate, we locate each dot and determine its radius.

2. Methods

2.1. Device fabrication

Using a dry transfer technique, we assembled a van der Waals heterostructure consisting of a few layer MoS2 sheet contacting graphene sheets on all sides encased by two insulating hBN layers. The assembly is then transferred to a heavily doped silicon wafer covered with a SiO2 layer that is 285 nm thick. The device is subsequently vacuum-annealed at 350 °C to reduce structural inhomogeneity. Finally, the Hall bar geometry is defined by reactive ion etching and a 1D edge contact to each graphene layer is fabricated with Cr/Pd/Au (1.5 nm/5 nm/120 nm) metal deposition.

Figure 1(a) shows an optical image of the Hall bar MoS2 sample; the white square indicates the regions of image scans. The Hall bar is patterned from a hBN/MoS2/hBN sandwich. It has dimensions $5.0 \times 11.0 \mu m^2$, with two narrow (1.0 μm) contacts along each side, separated by 3.0 μm, and large source and drain contacts (width 3.0 μm) at either end. The heavily doped Si substrate acts as a backgate, covered by a 285 nm insulating layer of SiO2. The backgate capacitance is $C_G = 11.5 \text{nF}$. The density n can be tuned by applying a voltage V_G between the backgate and the MoS2 channel. The density n is determined by hall measurements, using the side contacts.

2.2. Cooled scanning probe microscope (SPM)

We use a home-built cooled SPM to image quantum dot formation in our sample [16, 17]. The microscope assembly consists of a head assembly where the tip is attached and a cage assembly enclosing the piezotube translator that scans a sample fixed on top in the X, Y and Z directions. Scans are performed by actuating the piezotube with home-built electronics including an X–Y position controller for scanning, and a feedback Z controller for topological scans of the sample surface. The microscope assembly is placed in an insert inside a liquid He Dewar; the insert is filled with 3.0 mbar of He exchange gas to cool the sample and SPM. For the transport measurements, standard lock-in amplifiers are used. For the scanning gate measurements, an SPM tip of 10 nm radius was held at a fixed height 10 nm above the BN surface, which is approximately 50 nm above MoS2 layer.

To image quantum dot formation using our cooled SPM, a voltage V_s is applied between a side contact and the grounded source of the device. At each tip position, the sample conductance $G = I_s/V_s$ is measured by the current I_s. The work function on the tip changes the chemical potential of a dot located inside the MoS2 channel with a corresponding potential (figure 1(b)) that tunes the number of electrons in the dot, producing a change ΔG in the conductance. An image of rings of high conductance about the dot corresponding to Coulomb blockade conductance peaks is created by displaying ΔG as the tip is raster scanned above the sample at a constant height h.

2.3. Circuit model for tip-dot-backgate capacitance

Using a simple circuit model (figure 1(c)) we derive an expression to measure the radius of the quantum dot from the SPM images such as those shown in figure 4. The circuit includes the small tip-to-dot capacitance C_{td} and the large backgate-to-dot capacitance C_{gd} associated with the heavily doped Si substrate. The dot potential is V_{dot}, the backgate potential is V_G and the tip potential is V_{tip}. Using a standard model, the conical tip is modeled by two conducting spheres at the same potential: a small sphere with the tip radius d_{tip}
and a much larger sphere representing the top of the cone. When the tip is scanned across the sample, the distance is larger than the tip diameter, but generally small compared with the large sphere radius; the tip motion provides the contrast, while the top of the cone provides a background level. The tip-to-dot capacitance is given by:

\[
C_{td} = \frac{4\pi \varepsilon_0 a_{dot} a_{tip}}{r_{td}},
\]

(1)

where \(a_{dot}\) is the dot radius, \(a_{tip}\) is the tip radius, and \(r_{td}\) is the distance between the tip and the dot. Similarly, the backgate-to-dot capacitance is given by:

\[
C_{gd} = \frac{4\pi \varepsilon_0 a_{dot}^2}{2d}.
\]

(2)

From the circuit model in figure 4(c), the dot charge \(q_{dot}\) is:

\[
q_{dot} = (C_{gd} V_{tip} + C_{gd} V_G).
\]

(3)

We apply two methods to induce a change \(\Delta q_{dot}\) in the dot charge. Method 1 involves changing the tip position by \(\Delta r_{td}\) to induce a change in dot charge \(\Delta q_{dot}\) while keeping the backgate voltage \(V_G\) fixed. For this case

\[
\Delta q_{dot} = \frac{d q_{dot}}{d r_{td}} \Delta r_{td} = \frac{d C_{gd}}{d r_{td}} \Delta r_{td}.
\]

(4)

Therefore, charge induced in the dot by a change in tip position \(\Delta r_{td}\) becomes

\[
\Delta q_{dot} = (V_{tip} + V_G) \frac{4\pi \varepsilon_0 a_{dot} a_{tip}}{r_{td}^2} (\Delta r_{td}).
\]

(5)

Method 2 involves inducing \(\Delta q_{dot}\) by a change in the backgate voltage \(V_G\) keeping the tip position fixed. For this method

\[
\Delta q_{dot} = \frac{d q_{dot}}{d V_G} \Delta V_G = C_{gd} \Delta V_G.
\]

(6)

3. Results and discussion

3.1. Experimental results

As the electron gas inside the MoS\(_2\) device is depleted, the SPM images reveal the presence of quantum dots associated with pools of electrons at low points in the background potential. Figure 3(a) shows an image of \(\Delta G\) taken inside the narrow contact at the upper left side (figure 1(a)). A clear bullseye pattern of concentric rings are Coulomb blockade conductance peaks associated with a quantum dot at the center. (b) As the density is increased for \(V_G = 5.29\) V an additional quantum dot appears at a different location.

Figure 3. Spacing \(\Delta r_{td}\) between conductance rings versus radial distance \(r_{td}\) between the tip and bullseye center. The measured dot radius is \(a_{dot} = 180\) nm.

3.2. Estimation of dot radius

Cooled SPM images of bullseye pattern of conductance rings are shown in figures 2(a) and (b). In these images, the backgate voltage is kept fixed at \(V_G = 4.80\) V and \(V_G = 5.29\) V,
respectively. In figure 2(a), a single quantum dot is located at the center of the bullseye. Each conductance ring corresponds to an electron being added to the dot \(\Delta q_{\text{dot}} = e \), where \(e \) is the electron charge, by changing the tip-to-dot capacitance via tip motion. Using Method 1, from the spacing between these rings and their distance from the center, we can compute the size and position of the dot. In figure 3, the plot of the ring spacing \(\Delta r_{\text{td}} \) versus \(r_{\text{td}}^2 \) shows a linear dependence which agrees well with equation (5).

The slope determines the dot radius \(a_{\text{dot}} = 180 \text{ nm} \), using \(V_{\text{tip}} = -1.00 \text{ V} \) and \(a_{\text{tip}} = 10 \text{ nm} \).

For Method 2, we keep the tip position fixed and change the backgate voltage \(V_G \). figures 4(a)–(h) shows a series of SPM images of \(\Delta G \) in the same location as figure 4 for backgate voltages ranging from (a) \(V_G = 4.80 \text{ V} \) to (b) \(V_G = 5.29 \text{ V} \). An additional quantum dot appears as the density is increased.

To measure the effect of changing \(V_G \), we pick a fixed tip position \(X = -0.5 \mu\text{m}, Y = 0.5 \mu\text{m} \). Figure 5 plots \(\Delta G \) at this tip position versus \(V_G \). Figure 5 shows five peaks, and each peak corresponds to the addition of one electron charge \(e \) to the quantum dot. To get the peak spacing, the peak position in \(V_G \) versus the peak number is plotted. The slope of this line gives the average peak spacing \(\Delta V_G = 50 \text{ mV} \). By putting the average peak spacing in \(V_G \) into equation (6), we obtain the quantum dot radius \(a_{\text{dot}} = 150 \text{ nm} \), in good agreement with the dot radius found by Method 1.

4. Conclusion

In our imaging experiment, a cooled SPM shows quantum dots formation in the narrow side contacts in a MoS2 Hall bar device at low electron density. We observe the characteristic bullseye pattern of Coulomb conductance peaks from two quantum dots formed in the narrow contact at the upper left of figure 1(a). Using a capacitive model, we estimate the dot radius using two methods to be \(a_{\text{dot}} = 180 \text{ nm} \) and \(a_{\text{dot}} = 150 \text{ nm} \), in good agreement. The quantum dots are presumably formed by pools of electrons at minima in the background potential.

This paper demonstrates how a cooled SPM can image the presence of quantum dots created at low densities by roughness in the background potential, giving their location and radius, using our previously developed technique [16, 17]. By combining SPM imaging with photoluminescence and Raman microscopy, investigators will be able to probe the sources of non-uniformity in MoS2. This approach could be extended to sheets of other semiconducting transition metal dichalcogenide materials.
Acknowledgments

The SPM imaging experiments and the ray-tracing simulations were supported by the US DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under grant DE-FG02-07ER46422. The MoS\textsubscript{2} sample fabrication was supported by Air Force Office of Scientific Research contract FA9550-14-1-0268 and Army Research Office contract W911NF-14-1-0247. Growth of hexagonal boron nitride crystals was supported by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas No. 2506 ‘Science of Atomic Layers’ from JSPS. Nanofabrication was performed in the Center for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award ECCS-1541959.

ORCID iDs

S Bhandari © https://orcid.org/0000-0003-1007-9034
R M Westervelt © https://orcid.org/0000-0001-9836-3923

References

[1] Kim S et al 2012 Nat. Commun. 3 1011
[2] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489–92
[3] Mak K F et al 2012 Nat. Nanotechnol. 7 494–8
[4] Conley H J et al 2013 Nano Lett. 13 3626–30
[5] Han P et al 2018 Nanotechnology 29 20
[6] Zhang Y et al 2012 Nano Lett. 12 1136–40
[7] Dean C R et al 2010 Nat. Nanotechnol. 5 722–6
[8] Xiao D, Liu G-B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[9] Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2013 Nano Lett. 13 4212–6
[10] Cui X et al 2015 Nat. Nanotechnol. 10 6
[11] Oiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
[12] Ayari A, Cobas E, Ögundadege O and Fuhrer M S 2007 J. Appl. Phys. 101 014507
[13] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815–20
[14] Zhao P et al 2018 2D Mater. 5 3
[15] Yan C et al 2018 Nanotechnology 29 195704
[16] Fallahi P, Bleszynski A C, Westervelt R M, Huang J, Walls J D, Heller E J, Hanson M and Gossard A C 2007 Nano Lett. 5 223–6
[17] Bleszynski A C, Froberg L E, Bjork M T, Trodahl H J, Samuelson L and Westervelt R M 2008 Phys. Rev. B 77 245327