INVESTIGATION OF THE EFFECT OF SEVERAL PARAMETERS ON THE APPLICABILITY OF MAGNETIC SEPARATION METHOD

Purpose. This research investigates the separation process performed by a magnetic separator. The magnetic separation process is used to isolate ferrous materials from those which are not. Hence, a prototype of a dry magnetic separator is designed. It should be said that this study defines the effect of different parameters (roll speed, magnetic force, and mass of silica sand particle) on separation efficiency.

Methodology. The influence of several parameters of the magnetic separator such as magnetic force, centrifugal force, and properties of particle (mass, shape, etc.) were studied theoretically and simulated by SolidWorks software. The optimum conditions of the magnetic separator were obtained, and several trials were performed to find the point that results in a lower effect of roller speed and a higher effect of the magnetic force on the particle in order to achieve higher separating efficiency.

Findings. The results show that the centrifugal force are the most important variable influencing separating efficiency. Moreover, it was found that blade angle magnitude of (174) degree with magnetic force between (1.7E–05 to 6.3E–05 N) and roll speed from (84 to 105 rpm) are the optimum separating conditions to reach higher rate of the separating process.

Originality. This is the first time that the effect of the gap distance between the magnet and the feeding particles on the magnetic force has been studied. Furthermore, the effect of centrifugal force on magnetic separator force is investigated theoretically and numerically in order to be compared for different parameters.

Practical value. The new prototype design of the magnetic separating unit is promising and efficient since the parameters can be varied based on the type and characteristics of materials. It is also revealed that separating time of the materials is reduced. Hence, this type of construction of a magnetic separator is recommended for industrial applications.

Keywords: magnetic separator, centrifugal force, flux density, angular velocity

Introduction. For the magnetic separation research purposes, silica sand samples were prepared from the vertical vibrating milling machine, which is available at the laboratories of the Department of Mechanical Engineering at Al-Balqa Applied University – Faculty of Engineering Technology. Using the milling process, it is expected that the steel balls are being corroded hence, contaminating the silica sand with iron powder [1].

The main goal of this research work is to compare the SolidWorks software results with those which were obtained by utilizing the empirical formulas. Empirical formulas were used in direct separation of the iron contaminant caused by the corrosion action caused by friction between the steel balls and silica sand in addition to the separation of the iron content in the silica sand [1].

The mixture obtained was placed in a magnetic separator machine for purification process in order to use it in various aspects. The differences in magnetic susceptibility of minerals is one of the most important factors utilized in magnetic separation process which aims at mineral concentration. It should be mentioned that Mineral particles are usually classified into three different categories; paramagnetic, ferromagnetic, and diamagnetic.

Ferromagnetic minerals are widely treated in a highly efficient magnetic separator where separation of minerals based on magnetic susceptibility can be performed as wet or dry and by different machine configurations. It should be mentioned that selecting the machine/technology depends on multiple factors including particle size, assembly of minerals, and magnetic susceptibility [2].

Theoretical study of magnetic separation mechanism of particles is well discussed in literature [3], where application of dry high-intensity magnetic separation was frequently used lately which produced new concepts of application approaches and design concepts in the separators considered. However, there are different separators which have been designed to facilitate separating minerals to be treated based on the required magnetic field along with other criteria. Magnetic separators are classified into two groups; first dry and wet processing. In this research the dry magnetic separation method was completely used [4].

Depending on the previous studies on different types of magnetic separators, it is found that the best type corresponding with the current work is the dry drum low-intensity magnetic separator with magnetic induction (0.3–1.2 T) due to its low capital, operating cost and maintenance cost, simple design, and good separation efficiency. However, in order to enhance the separation efficiency of this type of magnetic separators, a drum dry High-intensity magnetic separator with magnetic induction (1.5–3 T) is used.

Fig.1 shows the main components of the magnetic separator, which is designed and manufactured at Al-Balqa Applied University. The different thing in this device is feeding rate where the particles going from plate or blade to the roll by the vibration forces 6 that act on the blade 8 installed on four springs to be separated. When the motor’s 5 shaft starts rotating the rotating masses start rotating with motor speed that will give us an amplitude to make the particle moving down by vibration forces.

A simple and basic approach to eliminate tramp iron from material on a transport line is through an attractive head pulley, these are accessible both in perpetual magnet and electromagnetic development, they are moderately reasonable, simple to introduce, and achieve nonstop vagrant iron evacuation. Material carried on the transport disregards the attractive pulley which holds the attractive particles until they leave the district of the attractive field while the non-attractive material is released over the pulley.

Theoretical studies on Magnetic Separator. Literature review. Mineralogical analyses conducted, showed that hematite and goethite are considered as the major iron minerals in the ore. Moreover, simulation results revealed that Fe recovery of about 80 % and a concentration up to 60.45 % of Fe grade can be obtained for a cyclone plant with 3.1 g/cm³ separation density and ~9.5 ±0.5 mm feed size [5].

The authors (S. Bouabdallah, et al.) and Y. C. Tosun, et al., studied the main parameters affecting leaching process in var-

© Tariq Al-Azab, Jamil Haddad, Fadi Alfaqs, 2021

1 – Materials Engineering Department, Faculty of Engineering College, Al-Balqa Applied University, Al-Salt, Jordan
2 – Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, Jordan, e-mail: dr.jamil@bau.edu.jo

https://doi.org/10.33271/nvngu/2021-4/069
The effect of blade angle on separation process was investigated by Mert Terzi where it was concluded that the best degree of blade angle is 130° [9].

In case of using the belt in dry high intensity magnetic separator, the best belt speed is found as 73 RPM, and in case of using a shaking table device the best result is 4.13° of inclination angle, 2.5 cm stroke length and feed rate 307.6 Gm/min [10]. Furthermore, in case of using drum dry magnetic separation instead of roll dry magnetic separation, the best speed of the drum is measured as 154 RPM [12]. While using two stage perm roll separation the recovery of chlorite in the non-magnetic tailings was probably about 20 to 30% [15].

Previous theoretical studies mentioned above investigated the effect of several parameters on magnetic separation, but did not study the effect of the gap distance between the magnet and the feeding particles on the magnetic force or the effect of centrifugal force on magnetic force. Therefore, these two parameters are studied in this research in order to observe their effect on the magnetic flux density and magnetic force.

Simulation and results. The results showed that Magnetic Flux density decreases as the gap distance increases where every magnet contains a constant magnetic flux density. The magnetic field lines density decreases when the distance is increased. That means the magnetic force decreased with decreasing the magnetic flux density. The attractive power is inversely proportional to the distance squared \(F \propto \frac{1}{r^2} \), where \(r \) is the distance between the magnets.

In order to find out magnetic force that will affect the particles, position of these particles should be selected since the force will vary according to their position.

Effect of magnetic flux density. The intensity of permanent magnet is related to the magnet material and pole gap. As the magnetic flux is inversely proportional to the square of the air gap, the higher value of magnetic field is obtained for a smaller air gap [16]

\[
 f_m = \frac{XmHV}{B}
\]

where \(m \) is mass of particle; \(X \) is mass magnetic susceptibility; \(H \) is magnetic flux density; \(B \) is magnetic field gradient.
Effect of roll speed. The rotor speed is one of the most important variables affecting magnetic separator efficiency since it controls centrifugal force that acts on the particle. Centrifugal force is directly proportional with the rotor’s radius and square of angular velocity as shown in equation. Hence, should the rotor speed increases, the centrifugal force will increase as a result [16]

\[f_c = m\omega^2 R, \]

where \(m \) is mass of the particle; \(\omega \) is angular velocity of the rotor; \(R \) is radius of the rotor.

Effect of feed rate. Feed rate is a parameter concerned with the thickness of layer at the roll surface. It should be said that a thicker layer produces less separation process efficiency since a higher number of particles will not be subjected to magnetic field.

Effect of particle size. The particle size affects directly the gravitational force as shown in equation since the particle mass is proportional to its size, to the magnetic flux density and the gravitational force, when the size increased, the mass will be increased, which means the gravitational force will be increased [16]

\[f_g = mg, \]

where \(m \) is mass of particle; \(g \) is gravity acceleration.

Fig. 4 shows magnetic flux density for 1mm particle diameter with the number of particles = 12.

It should be said that SolidWorks software shows force density at each particle considered.

Fig. 5 illustrates the effect of magnetic flux density at particles due to their position on the roll surface for 4 positions: 1, 3, 6 and 9. Know that this analysis was done on a material size of 1 and 0.7 mm.

Comparison between SolidWorks output and theoretical results is presented in Table 1 and Fig. 6 for particle diameter 1 mm, where good agreement was found.

Fig. 7 presents the relation between, centrifugal force induced in the magnet separator and the magnetic force where it is clearly seen that increasing centrifugal force, the effect of magnetic force decreases. As a result, optimum values should be taken at the lowest values of centrifugal force and highest values of magnetic force. However, increasing roll velocity leads to centrifugal force rise since the angular velocity increases as well.

Fig. 8 shows the effect of magnetic flux density on particles with respect to their position on the roll surface for particle diameter 0.7 mm. However, the numerical values obtained in SolidWorks software and theoretical values were compared in Table 2 and Fig. 9, where good agreement was observed.

The effect of particle size on centrifugal force was investigated for magnetic force variation (5E–12 to 8E–5 N) as seen in Fig. 10. It should be observed that should the particle diameter increase, centrifugal force needed for separation increases for magnetic

Table 1
Simulation and theoretical values for 1mm diameter

SolidWorks Values	Theoretically values	Accuracy		
Force density (N/m³)	Force (N)	Force (N)	Force density (N/m³)	Accu. %
100 000	5.24E–05	6.86E–05	1.31E+05	68.90
90 900	4.76E–05	6.24E–05	1.19E+05	68.88
81 800	4.28E–05	5.62E–05	1.07E+05	68.87
72 700	3.81E–05	4.99E–05	9.53E+04	68.85
63 600	3.33E–05	4.37E–05	8.34E+04	68.82
54 500	2.85E–05	3.74E–05	7.15E+04	68.79
45 500	2.38E–05	3.12E–05	5.96E+04	69.03
36 400	1.91E–05	2.49E–05	4.77E+04	69.21
27 300	1.43E–05	1.87E–05	3.58E+04	69.21
18 200	9.53E–06	1.25E–05	2.38E+04	69.21
9090	4.76E–06	6.24E–06	1.19E+04	68.88
force variation considered. However, for each particle size considered, centrifugal force drops when magnetic force increases. Similarly, it can be clearly seen that increasing roll speed leads to centrifugal force increase for both particle sizes considered as depicted in Fig. 11. On the other hand, increasing the particle diameter leads to centrifugal force drop for roll speed variation considered. Hence, it is concluded that particle size plays a vital role in magnetic separation process since it is directly proportional to particle mass.

It should be mentioned that the best experimental results are obtained at minimum values of centrifugal force and maximum values of magnetic force at the same instance. The positive values of resultant force mean that the magnetic force is larger than centrifugal force, thus the particles are separated whereas negative values indicate that the magnetic force is lower than the centrifugal force, thus, the particles are not attracted. Therefore, increasing resultant force leads to increase in the separation efficiency.

Conclusions. For particles with 1mm diameter, the mass of particle is 4.121E–06 kg. Optimum experimental result occurs at

Force density (N/m²)	Force (N)	Force (N)	Force density (N/m²)	Accu. %
100 000	1.80E–05	2.35E–05	1.40E+05	69.44
90 900	1.63E–05	2.14E–05	1.27E+05	68.71
81 800	1.47E–05	1.93E–05	1.14E+05	68.71
72 700	1.30E–05	1.71E–05	1.01E+05	68.46
63 600	1.14E–05	1.50E–05	8.90E+04	68.42
54 500	9.78E–06	1.28E–05	7.63E+04	69.12
45 500	8.17E–06	1.07E–05	6.36E+04	69.03
36 400	6.53E–06	8.56E–06	5.08E+04	68.91
27 300	4.90E–06	6.42E–06	3.57E+04	68.98
18 200	3.27E–06	4.28E–06	2.54E+04	69.11
9 900	1.63E–06	2.14E–06	1.27E+04	68.71
Анализ влияния витков на параметры для исследования метода магнитной сепарации

Тарик Аль-Азаб, Джахил Хадад, Фади Альфакс

1 – Кафедра материалов, факультет инженерного коледжа, Аль-Балка прикладной университет, Ат-Салт, Йордания
2 – Кафедра машиностроения, факультет инженерных технологий, Аль-Балка прикладной университет, м. Амман, Йордания

1. Haddad, J. (2020). Experimental Study of the Effect of Ball Diameter, Rotating Mass and Input Grain Size of Silica Sand on the Efficiency of Milling in Vertical Vibrating Mill. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(1), 355-368. https://doi.org/10.24247/ijmperdfeb202030.
2. Ioan S. Esterle (2008). Chapter 3 – Mining and Beneficiation. In Israel Szűcs-Ruiz, & John C. (Eds.). Creding. Applied Coal Petrology. (pp. 61-83). Elsevier. https://doi.org/10.1016/B978-0-08-045051-3.00003-8.
3. Prokopiev, S.A., Pelevin, A.E., Prokopiev, E.S., & Ivanova, K.K. (2019). Increasing the Integrity of Iron-Ore Raw Material Use with a Screw Separation. Izvestiya Vysshikh Uchebnykh Zavedenii. Chemical Problems of Mineral Processing, 54, 54-61. https://doi.org/10.1088/1757-899x/60/1/012033.
4. Sunil Kumar Tripathy, P. K. Banerjee, Nikkam Suresh, Y. Rama Murthy, & Veerendra Singh (2017). High-High Intensity Magnetic Separation In Mineral Industry. A Review Of Present Status And Future Prospects. Mineral Processing and Extractive Metallurgy Review, 38(6), 339-364. https://doi.org/10.1016/j.mpem.2017.12.001.
5. A. Aghlmandi Harzanagh, Ergün, Ş.L. (2015). Beneficiation of Lignite by High Intensity Dry Magnetic Separation. Procedia Chemistry, 15, 150-156. https://doi.org/10.1080/073493499089475599.
6. Kleiv, R. A., & Thornhill, M. (2011). Dry magnetic separation of olivine sand. Physicochemical Problems of Mineral Processing, 47, 213-228.
7. A. Aghlmandi Harzanagh, & Ergün, Ş.L. (2015). Beneficiation of Lignite by High Intensity Dry Magnetic Separation. Procedia Chemistry, 15, 150-156. https://doi.org/10.1080/073493499089475599.
8. Фаді Альфакс

Мета. Ця робота досліджує процес поділу, що вико- нується магнітним сепаратором. Процес магнітної сепа- рації використовується для відділення чорних металів від інших. Таким чином, оброблення протитипу сухого маг- нітного сепаратора. Слід сказати, що це дослідження ви- значає вплив різних параметрів (швидкості обертання валка, магнітної сили і маси частинок кварцового піску) на ефективність розділення.

Методика. Вплив декількох параметрів магнітного сепа- ратора, таких як магнітна сила, відцентрована сила та властивості частинок (маса, форма і т. д.), було теоретично вивчено та змоделювано за допомогою програмного забезпечення SolidWorks. Були отримані оптимальні умови магнітного сепаратора, і було проведено кілька випробувань, щоб знайти точку, яка призводить до меншого впли- ву швидкості ролика на частинки кварцового піску і на ефективність розділення.

Результати. Результати показують, що відцентрована сила є найбільш важливою змінною, яка впливає на ефективність розділення. Більш того, було виявлено, що величина кута диска (174 градусів з магнітною силою від 1,71E05 до 6,3E05 H) і швидкістю валка (від 84 до 105 об/хв) є оптимальними умовами поділу для досягнення більш високої швидкості процесу поділу.

Наукова новизна. Це перший раз, коли вивчаються впливи зазору між валком і частинками, що подаються, на магнітну сітку. Крім того, відцентровану силу на силу магнітного сепаратора досліджено теоретично і чи- сельно з метою порівняння для різних параметрів.

Практична значимість. Новий прототип установки маг- нітної сепарації перспективний і ефективний, так як пара- метри можуть варіюватися в залежності від типу та характер- ристик матеріалів. Також виявлено, що час поділу матеріа- лів скорочується. Отже, така конструкція магнітного сепа- ратора рекомендується для прийняття рішень.

Ключові слова: магнітний сепаратор, відцентрована сила, швидкість валка, пісок, кварц.