Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Infection, Genetics and Evolution 103 (2022) 105318

In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19

SeyedehMozhdeh Mirmohammadi a,b,1, Anvarsadat Kianmehr a,b,1, Amir Sabbaghian c, Alireza Mohebbi d, Hamid Shahbazmohammadi e, Mehdi Sheykharabi f, Zahra Bazzi h

a Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
b Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
c Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
de Vista Aria Rena Gene Inc., 4913817644 Gorgan, Iran
f Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
g Department of Medical Nanotechnology, School of Advanced technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran

* Corresponding author at: Department of Medical Biotechnology, School of Advanced technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
E-mail address: kiabiotpro@yahoo.com (A. Kianmehr).
1 These authors have equal contribution.

ARTICLE INFO
Keywords:
COVID-19
SARS-CoV-2
Transcriptomics
Drug repurposing
In silico

ABSTRACT
COVID-19 pathogenesis is mainly attributed to dysregulated antiviral immune response, the prominent hallmark of COVID-19. As no established drugs are available against SARS-CoV-2 and developing new ones would be a big challenge, repurposing of existing drugs holds promise against COVID-19. Here, we used a signature-based strategy to delve into cellular responses to SARS-CoV-2 infection in order to identify potential host contributors in COVID-19 pathogenesis and to find repurposable drugs using in silico approaches. We scrutinized transcriptomic profile of various human alveolar cell sources infected with SARS-CoV-2 to determine up-regulated genes specific to COVID-19. Enrichment analysis revealed that the up-regulated genes were involved mainly in viral infectious disease, immune system, and signal transduction pathways. Analysis of protein-protein interaction network and COVID-19 molecular pathway resulted in identifying several anti-viral proteins as well as 11 host pro-viral proteins, ADAR, HBEGF, MMP9, USP18, JUN, FOS, IRF2, ICAM1, IFI35, CASP1, and STAT3. Finally, molecular docking of up-regulated proteins and all FDA-approved drugs revealed that both Hydrocortisone and Benzhydrocodone possess high binding affinity for all pro-viral proteins. The suggested repurposed drugs should be subject to complementary in vitro and in vivo experiments in order to be evaluated in detail prior to clinical studies in potential management of COVID-19.

1. Introduction

The ongoing outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose a massive threat to public health across the globe. SARS-CoV-2 infection was first reported in Wuhan, China, in December 2019 and dubbed a pandemic by the world health organization (WHO) within a short period after the disease outbreak. Together with its highly pathogenic predecessors, SARS and Middle East respiratory syndrome coronavirus (MERS) causing similar infections during last two decades, SARS-CoV-2 belongs to beta-coronaviruses. Beta-coronaviruses possess enveloped, positive-sense single-stranded RNA with 5′-cap structure and 3′-poly-A tail as a typical genomic structure of coronaviruses (CoVs). Indeed, SARS-CoV-2 genome encodes 4 main structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N); it also contains 16 nonstructural proteins (nsp1–16), as well as 7 accessory proteins (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, and ORF10) (Mirmohammadi et al., 2020; Ortiz-prado et al., 2020; Ribero et al., 2020). COVID-19 proved to be heterogeneous in its clinical course, as what have made the clinicians puzzled; the majority of SARS-CoV-2 infected patients (nearly 80%) show, if not asymptomatic, a range of mild to moderate symptoms (e.g., cough, fever, etc) which do not require...
hospitalization. Of the rest 20%, half of the COVID-19 patients may develop severe pneumonia and acute respiratory distress syndrome (ARDS), and/or multi-organ failure; but, although the underlying mechanism has not been clearly resolved, a mistimed and inadequate antiviral response is supposed to be the reason behind COVID-19 pathogenesis (Lei et al., 2020; Maddah and Modanloo, 2020; Mckechnie and Blish, 2020; Mokhtari et al., 2020). Notably, SARS-CoV-2 infection may contribute to unbalanced immune response, characterized by low levels of type I and III interferons (IFN) expression together with a superfluous pro-inflammatory cytokine response; the latter, so-called as...
cytokine storm, accompanied by impaired adaptive host responses has been blamed for extensive local and systemic tissue damages in severe cases of COVID-19 (Balajelini et al., 2020; Blanco-Melo et al., 2020; Catanzaro et al., 2020; Zhou et al., 2020). In essence, the key element in its success for infecting the host cell, as it’s true for many respiratory viruses, is either suppressing or evading innate immune response, or using an elaborate integrated strategy to dampen host defenses. As such, SARS-CoV-2 makes best use of host factors for its proliferation and subsequent pathogenesis through driving changes in host gene expression leading to delayed IFN response, which initially plays a vital role in early innate immune response against viruses. Thus, dissecting gene expression profiles of cells infected with SARS-CoV-2, unveiling the perturbations of their transcriptome, may provide valuable insights into dynamics of host immune response as well as critical host contributors (Loganathan et al., 2020). Accordingly, developing effective therapeutic strategies against SARS-CoV-2 requires understanding and analyzing the host transcriptomic data following its infection. On the other hand, drug repurposing provides a unique opportunity to identify new therapies for diseases in a shorter time while it’s feasible at lower costs compared with de novo drug development.

Here, we applied an integrative in silico approach basically using transcriptomic RNA-seq data of COVID-19 to detect differentially expressed genes to elucidate the dynamic transcriptional changes that could underlie the process. We carried out gene-ontology based pathway analysis followed by protein-protein interaction (PPI) network analysis that uncovered upstream proteins and hub proteins as potential targets, respectively. Ultimately, we conducted molecular docking analysis of candidate proteins through the thesaurus of FDA approved drugs to find repurposed drugs interacting with host target proteins with high affinity.

2. Methods and materials

Based on our hypotheses, we conducted pathway and network analysis on genetic profile of SARS-CoV-2 infected cells in order to find the critical up-regulated genes potentially involving in pathogenesis of COVID-19. In next step, all FDA-approved drugs were docked with our list of proteins selected in terms of their contribution to viral pathogenesis. Fig. 1 shows the workflow briefly. In following sections, we will illustrate these steps in detail.

2.1. Extracting expression profile datasets

Gene expression datasets for SARS-CoV-2 infected samples, GSE147507 (9) and GSE153970 (Vanderheiden et al., 2020), were obtained from Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo), a freely available public repository of high-throughput datasets (Barrett et al., 2013).

2.2. Identification of differentially expressed genes (DEGs)

We analyzed each RNA-seq dataset separately by using Galaxy platform (https://usegalaxy.eu). First, FastQC 0.11.6 was used to evaluate the sequence reads quality. Then, the Trim Galore (version 0.4.3.1) was employed for adaptor detection and reads were aligned to the reference genome (GRCh38) using HISAT2 (version 2.1.0). The differential expression of genes was calculated using DESeq2 (version 2.11.40.6) followed by selecting genes with log2 fold change >1 and adjusted P-value <0.05 as up-regulated ones. Ultimately, the genetic signature of disease was obtained by recognizing the common up-regulated genes in all datasets.

2.3. Gene ontology and pathway enrichment analysis

Gene set enrichment analysis (GSEA) was done to detect the functional annotation of common significantly up-regulated genes, using Enrichr (https://maayanlab.cloud/Enrichr/), a web based tool visualizing the functional analysis of gene sets (Chen et al., 2013; Kuleshov et al., 2016). Mined data from Kyoto Encyclopedia of Genes and Genome (KEGG) and Gene Ontology (GO) were applied to clarify the potential contribution of up-regulated genes in COVID-19 pathogenesis. Then, significant pathways and GO terms containing those up-regulated genes

Table 1
The characteristics of RNA-Seq datasets on various SARS-CoV-2 infected samples.

GEO accession number	Sample type	Sample size	Infected samples	Control size	Description
GSE147507 A549 cell line	24	12	12		Independent biological triplicates of transformed lung alveolar (A549) cells were mock treated or infected with SARS-CoV-2 (USA-WA1/2020).
GSE147507 Calu3 cell line	6	3	3		Transformed lung-derived Calu-3 cells with a vector expressing human ACE2, were mock treated or infected with SARS-CoV-2 (USA-WA1/2020).
GSE147507 Lung biopsy	16	8	8		Uninfected human lung biopsies were derived from one male (age 72) and one female (age 60) and used as biological replicates. Additionally, lung samples derived from a single male COVID19 deceased patient (age 74) were processed in technical replicates.
GSE147507 Normal Human Bronchial Epithelial Cells (NHBE)	24	12	12		Independent biological triplicates of primary human lung epithelium (NHBE) were mock treated or infected with SARS-CoV-2 (USA-WA1/2020).
GSE153970 Primary human airway epithelial cultures	12	6	6		Primary human airway epithelial cultures were either mock infected (PBS) or infected with SARS-CoV-2.
were selected applying adjusted \(P \)-value < 0.05.

2.4. Protein-protein interactions (PPIs) network analysis

In order to conduct a PPI network and find the hub genes, significantly up-regulated genes were analyzed using STRING (version 11.0; https://string-db.org/), an online protein association network web resource (Szklarczyk et al., 2019). Text mining, experiments, databases, co-expression and co-occurrence were all used as interaction sources and confidence score \(\geq 0.9 \) as minimum required interaction score. Results were then analyzed and visualized using Cytoscape (version 3.7.2) by applying degree, betweenness centrality, and combined score to the node fill color, node diameter, and edge thickness, respectively (Shannon et al., 2003). Nodes possessing high betweenness centrality and
5 degree were selected as hub genes. Genes with the degree of equal or >10 and betweenness centrality of equal or >0.001 were chosen as hub genes.

2.5. Pathway analysis

Pathway analysis was conducted in order to find upstream proteins of pathway whose inhibition might lead to disturbed function of downstream proteins. For this purpose, up-regulated genes were mapped in COVID-19 pathway using “Search & Color Pathway” from KEGG mapping online tools (https://www.genome.jp/kegg/mapper/) (Kanehisa and Sato, 2020).

2.6. Evaluating upstream proteins and hub genes

Since the pathological nature of COVID-19 has not been fully understood, previously investigated upstream proteins and hub genes were evaluated based on the evidence indicating their contribution to either COVID-19 or any other viral diseases.

2.7. Preparation of candidate proteins’ structure and FDA approved drugs

The sequences of candidate proteins were obtained from UniProt (www.uniprot.org) and prediction of 3D structures from amino acid sequence was done using RaptorX (http://raptorx.uchicago.edu/) web server (Källberg et al., 2012). Also, the structures of all FDA approved drugs were extracted from DrugBank (https://go.drugbank.com/).

2.8. Docking software and parameters

Accordingly, the open-source tool Autodock Vina (Trott and Olson, 2010) was applied in the setting of PaDEL-ADV (www.yapcwsof.t.com/dd/padeladv/). Vina is a quick and precise tool for ligand-receptor docking accompanied with PaDEL-ADV that allows high-throughput screenings of several ligands in one run. Then, target proteins were treated as receptor in the MGLTools 1.5.6 software.

Gene	Log2 FC (mean)	Count of datasets
SAA2	2.49372	5
OAS2	3.733138	4
CSF2	3.711084	4
HSAD2	3.506331	4
CXCL10	3.477373	4
IFI44L	3.403838	4
XAF1	3.390731	4
CXCL11	3.339592	4
CXCL8	2.812778	4
OAS1	2.799663	4
CXCL2	2.729947	4
INHBA	2.678362	4
OAS3	2.664064	4
KYNU	2.36684	4
HELZ2	2.286049	4
TNFSF14	1.76611	4
LIF	1.710306	4
HBEGF	1.564305	4
CXCL1	1.550704	4
S100A9	1.540737	4

Table 2: Common up-regulated genes among 4 and 5 datasets. This table demonstrates the 20 common genes which are significantly up-regulated in at least 4 datasets. Genes are sorted by the mean of Log2 FC with descending order. The third column shows the count of datasets in which each gene is significantly up-regulated.

Fig. 3. Bar graph of common up-regulated genes. Graph represents the count of common genes among different combination of datasets. Collectively, there are 359 genes common between two datasets (yellow bar), 57 genes among three datasets (blue bar), 19 genes among four datasets (green bar), and only one gene which is common among all 5 datasets (red bar). There are also 2676 genes that are up-regulated in one dataset (not shown). Overall, there are 436 genes up-regulated at least in 2 datasets which termed as “common up-regulated genes” used for further analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(Molecular Graphics Laboratory, The Scripps Research Institute). As such, a grid-box was defined in 3D dimension to include the entire protein. The number of grid points and the spacing were kept to default values. Docking results for each protein were ranked by binding affinity and the affinity of less than 12 kcal/mol was considered high.

3. Results

3.1. Differential gene identification

The detailed characteristics of SARS-CoV-2 infected samples have been presented in Table 1. We analyzed the transcriptomics of each SARS-CoV-2 infected dataset using Galaxy platform. The integrative analysis by DESeq2 revealed 2472, 522, 500, 51, and 101 differentially expressed protein coding genes in A549, Calu3, lung biopsy, NHBE, as well as primary human airway epithelial culture, respectively (Fig. 2). For enriching our list of common genes possibly involving in COVID-19 pathogenesis, we incorporated up-regulated genes which at least exist in two datasets (Fig. 3). DEGs commonly expressed in at least 4 datasets are brought in Table 2 and all common DEGs are presented in Supplementary Table S1 in detail.

3.2. Functional enrichment analysis

To further explore the functional characteristics of common up-regulated genes, we carried out a GO and KEGG pathway enrichment using Enrichr online tool. Considering adjusted \(P \)-value < 0.05, we identified a total of 46 pathways which are significantly enriched in these 436 up-regulated genes. Significant over-presented pathways largely fell into 3 distinct groups: (1) viral infectious disease such as molecular responses to Influenza A, Herpes simplex virus 1 and Kaposi sarcoma-associated herpesvirus infection (Fig. 4B) (2) immune system and disease such as pathways like NOD-like receptor signaling pathway, IL-17 signaling pathway, and Rheumatoid arthritis, and (3) signal transduction pathways such as TNF signaling pathway, MAPK signaling pathway, and JAK-STAT signaling pathway. Table S2

![Gene set enrichment analysis](A)

Fig. 4. Gene set enrichment analysis: (A) Gene ontology enrichment of common up-regulated genes. The graphs represent top 10 significantly (adjusted \(p \)-value < 0.05) enriched biological process and molecular function as well as all significantly enriched cellular component terms, with darker red indicating greater significance. Count of genes are shown in x-axis, while the y-axis represents the GO terms. (B) KEGG pathway enrichment of common up-regulated genes. Significantly enriched viral infection pathways are indicated here with darker blue standing for greater significance; x-axis shows count of genes involving in each over-presented pathway and y-axis represents the KEGG terms.
Infection, Genetics and Evolution 103 (2022) 105318

Results of GO analysis indicated that upregulated genes were expressively enriched in biological processes (BP), such as cytokine-mediated signaling pathway, regulation of transcription from RNA polymerase II promoter, and positive regulation of transcription; in molecular function (MF), such as RNA binding and DNA binding; and in significant cell component (CC),

Fig. 4. (continued).

Fig. 5. PPI network analysis of common up-regulated genes. Nodes represent the proteins and edges represent the protein-protein association based on text mining, experiments, databases, co-expression and co-occurrence. The degree, betweenness centrality and combined score are applied to the node fill color, node diameter and edge thickness, respectively. The larger the node diameter, the more the degree; the larger the edge thickness, the more the combined score.

shows the enriched pathways and genes in detail. Results of GO analysis indicated that upregulated genes were expressively enriched in biological processes (BP), such as cytokine-mediated signaling pathway,
such as nuclear body and cytoplasmic ribonucleoprotein granule (Fig. 4A). Table S3 represents the enriched ontologies and genes in such as nuclear body and cytoplasmic ribonucleoprotein granule of betweenness centrality.

Table 3

Hub gene	Betweenness centrality	Degree
IRF1	0.034676	36
IRF9	0.027837	35
IRF2	0.025367	35
OASL	0.024146	34
ILA-B	0.024814	33
OAS1	0.009873	33
OAS2	0.009747	33
OAS3	0.007155	32
TRIM25	0.073805	29
ISG15	0.012916	29
B2M	0.08053	28
IFIT3	0.009114	27
MX1	0.007065	27
RSK2D	0.06993	26
TRIM21	0.029485	26
STAT1	0.125145	25
HERC5	0.032096	25
MX2	0.005832	25
IFIT2	0.002126	23
DDX58	0.051766	22
EGR1	0.2003	22
JUN	0.163334	21
PML	0.035144	21
ICAM1	0.023862	21
GBP1	0.013701	21
CD44	0.010007	20
IFI15	0.004453	20
CXCL8	0.045278	18
CXCL1	0.020933	18
IFIH1	0.032595	17
JAK2	0.152983	16
SOCS3	0.040662	16
MMP9	0.045439	14
IL1B	0.066334	13
FOS	0.035632	13
CXCL10	0.029658	13
ANXA1	0.006606	13
NFKBA	0.161759	12
SMAD3	0.11005	12
CXCL2	0.003424	12
NEDD4L	0.016034	11
DTX3L	0.002662	11
IFNB1	0.017094	10
USP18	0.001043	10

3.5. Target protein classification

Based on supporting evidence for contribution of hub genes and upstream proteins in COVID-19 and other viral infections, we categorized them into pro- and anti-viral genes (Table 5). Fig. 7 shows the expression level of genes coding target proteins in each dataset.

3.6. Assessment of FDA approved drugs interactions with candidate genes

As shown in Table 6, out of 2470 FDA-approved drugs 68 compounds have high affinity for all of the pro-viral proteins. These 68 compounds were then docked against anti-viral proteins to find the drugs that have low interaction energy for almost all of anti-viral proteins. The results indicated that Hydrocortisone and Benzhydrocodone interacted strongly with all pro-viral proteins; also, they demonstrated low affinity for more than half of anti-viral proteins. These two compounds could be introduced as potentially effective blockers with probable negative influence on ADAR, HBEGF, MMP9, USP18, JUN, FOS, IRF2, ICAM1, IFI35, CASP1, and STAT3 with therapeutic benefits. Table 7 represents the characteristics of these two drugs in details.

4. Discussion

To date, therapeutic approaches toward SARS-CoV-2 infection mainly encompass either antiviral agents or immunomodulatory therapy (Ortiz-prado et al., 2020). Several lines of research suggest the host inflammatory response as the main source of clinical symptoms and, at the same time, as a promising therapeutic target. Although, our knowledge concerning host defense against SARS-CoV-2 is mounting, there still seems a lot to explore when it comes to seeking a robust remedy (Mckechnie and Blish, 2020; Shi et al., 2020; Tufan et al., 2020). Typically, significant changes in host transcriptome following viral infection could result in abnormal metabolism of host cells, which in turn set the stage for viral multiplication and its subsequent pathogenesis (Blanco-Melo et al., 2020). Here, an exhaustive human-SARS-CoV-2 interactome was established using RNA-Seq transcriptomes of the lung epithelial cells infected with SARS-CoV-2 versus mock infected cells. In line with previous findings, our initial GO analysis based on DEGs depicted significant enrichment of biological processes mainly pivoting around innate immune response to viral infections and inflammatory pathways, including cytokine-cytokine receptor interaction, TNF signaling, interferon signaling, IL-17 signaling, NF-kB signaling, and chemokine signaling (Blanco-Melo et al., 2020; Zhou et al., 2020). As expected, pathway enrichment was predominated by viral diseases, namely, Influenza A, Measels, Hepatitis B and C, Epstein-Barr virus infection, Human papillomavirus infection, and so on. These pathways clearly underline immune system's involvement in host response to SARS-CoV-2 infection via early innate immune response, pointing to a huge avenue which provides unique drug repurposing opportunities in COVID-19. Recent findings suggest that SARS-CoV-2 infection defies the prevailing paradigm of antiviral immunity, in which IFN-mediated antiviral defenses normally precede the pro-inflammatory response; in other words, SARS-CoV-2 infection triggers pro-inflammatory cascade far earlier than IFN-mediated antiviral responses; indeed, initial IFN response found to be stronger in patients with mild to moderate COVID-19 than the ones in critical condition (Galanti et al., 2021). This unusual order observed during SARS-CoV-2 infection, unlike influenza virus, helps explain some of its unique properties observed in COVID-19 (e.g., delayed or reduced IFN production may account for longer viral incubation period in upper respiratory tract). Not surprisingly, SARS-CoV-2 has evolved strategies mainly focused on inhibiting type I/III IFN production pathway, i.e. several SARS-CoV-2 proteins antagonize IFN production via distinct mechanisms. In particular, we found up-regulated genes largely among interferon-stimulated genes (ISGs) having different functions directly or indirectly in host's combat against SARS-CoV-2. As the sensors of viral DNA and RNA structures, termed as...
Fig. 6. Pathway of COVID-19 represented in KEGG. Common up-regulated genes were located in the proposed pathway of COVID-19 using KEGG mapper online tool. Colored genes are shown to be significantly up-regulated in our study and intensity of color shows the Log2 FC. Red shows the highest and yellow shows the lowest Log2 FC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
pattern-recognition receptors (PRRs), DDX58 (RIGI), IFIH1 (MDA5), EIF2AK2 (PKR), and TLR3 all are among ISGs found to be activated in SARS-CoV-2-infected samples. However, each one recognizes a distinct viral nucleic acid structure, inducing separate intracellular signaling pathways. Influenza A virus (IAV) infection has been shown to trigger both TRL3, a dsRNA sensor, leading to a pro-inflammatory response, and DDX58/RIG-I, sensing ssRNA with free 5′-triphosphate end, activating type 1 IFN-mediated antiviral signaling as well as pro-inflammatory response (Le Goffic et al., 2007). Of note, DDX58-RIG-I and IFIH1/MDA5 both trigger their signaling pathways via common adaptor mitochondrial antiviral signaling protein (MAVS), located on mitochondrial outer membrane, to induce a series of antiviral genes including type I IFN (Mirmohammadi et al., 2020). Further, the IFN-regulatory factor (IRF) family proteins, as transcription factors, function to bridge the sensing of microbial signatures to the expression of IFNs and pro-inflammatory cytokines (Samuel, 2001). The resulting IFNs, including IFN-α, IFN-β, and IFN-γ, trigger ISG expression to promote antiviral responses through the activation of IFN receptor-associated Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway (Lee and Shin, 2020; Park and Iwasaki, 2020)

Upstream protein	Downstream protein/proteins
HBGF	EGFR
NFκBIA (IκB)	IL10, IL8, CSF2 (GMSGF), CCL10 (IP10)
STAT3	IL10, IL8, CSF2 (GMSGF), CCL10 (IP10)
TLR3	IFNβ
CASP1	IL10, IL8, CSF2 (GMSGF), CCL10 (IP10)
IFNα, β	STAT1, IRF9, ADAR, OAS1, OAS2, OAS3, MX1 (MOA), EIF2AK2 (PKR)
ISG15	IFNβ
IFIH1 (MDA5)	IFNβ
DDX58 (RIGI)	IFNβ

Table 4
Pathway analysis results. It shows upstream proteins and corresponding downstream proteins which could be affected. For inhibition, upstream proteins only are targeted, except the ones that activate both anti- and pro-viral proteins (e.g. IFN α/β activation leads to activation of various anti-viral (STAT1, IRF9, OAS1, OAS2, OAS3, MX1, EIF2AK2) and pro-viral proteins (ADAR). In this case, only ADAR is a target of inhibition.)

4.1. Potential host proteins as candidates for inhibition
In addition to up-regulated antiviral genes, expression of some pro-viral genes involving in virus-mediated infection was found to be increased as well. We based our interpretation on previous studies on other viruses that may point to these proteins as likely contributors in SARS-CoV-2 infection and as potential targets for drug repurposing, including ADAR, HBGF, MMP9, USP18, JUN, FOS, IRF2, ICAM1, IFI35, CASP1, and STAT3.

In an earlier study on SARS-CoV-induced lung fibrosis using mice models, authors found that amphiregulin (AREG) and heparin-binding EGF-like growth factor (HB-EGF) were among up-regulated genes in SARS-CoV infected mice. They further indicated that persistent activation of EGFR via AREG and HB-EGF caused lung tissue fibrosis (Venkataraman et al., 2017).

(continued on next page)
and migration, activation of the inflammatory response and increase in mucus production (Venkataraman and Frieman, 2017). In line with a recent work (Hazra et al., 2020), our results demonstrate that EGFR signaling is a key regulator of SARS-CoV-induced lung damage and that targeting this response could protect against the development of pulmonary fibrosis caused by respiratory viruses such as SARS-CoV. Matrix metalloproteinase 9 (MMP9), also known as gelatinase B; type IV collagenase, is expressed by epithelial cells, endothelial cells, and all leukocytes. It regulates acute lung injury, disrupts airway epithelial barrier function, and degrades a broad spectrum of extracellular matrix (ECM) proteins as well (Yoshizaki et al., 1998). Two separate studies on influenza virus A (IVA) models concluded that the MMP9 increased expression during IAV infection resulted in enhanced mortality due to acute lung injury and pulmonary inflammation (Rojas-Quintero et al., 2018; Villeret et al., 2020).

Similar works reported improved survival rates in IAV-infected MMP9 knock-out compared to wild type mice; this has been attributed to some factors as likely explanation including lower lung viral burden, enhanced pulmonary adaptive immune response, and less severe lung injury (Herold et al., 2015; Quintero et al., 2010). The adenosine deaminases acting on RNA (ADARs) are double-stranded RNA (dsRNA) binding enzymes that catalyze RNA editing of viral dsRNAs from adenosine to inosine (A-to-I). The ADAR1 gene is expressed in most human tissues; it serves as master regulator of cytoplasmic innate immunity regulating multiple microbial nucleic acid sensors, such as MD5, RIG-I, OAS and PKR, which detect intracellular dsRNA of viruses including SARS-CoV-2 (Gélinas et al., 2011). Intercellular adhesion molecule 1 (ICAM-1), a member of the immunoglobulin super-gene family, is an adhesive ligand for leukocytes. The endothelial expression of ICAM-1 was significantly higher in the COVID-19 group than H1N1 and control groups. The activated endothelial cells can express the ICAM-1 molecules to transmit intracellular signals causing prolonged pro-inflammatory status. The proinflammatory condition would result in a systemic endothelial dysfunction and lead to the loss of its integrity via endothelial cell death. Thus, persistent inflammatory signaling of these adhesion molecules would also contribute to later thrombotic events (Jin et al., 2020; Nagashima et al., 2020). Importantly, ubiquitin-specific protease 18 (USP18) has the major ISG15 specific protease activity which counteracts ISG15 conjugation, thereby removing ISG15 from ISG15-conjugated proteins (Ritchie et al., 2004). Loss of USP18 in mice led to resistance to the cytopathic effects caused by some viruses including lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), and Sindbis virus (Kim et al., 2008). The broad array of physiological functions and regulation of ISG15 and USP18 offers a variety of potential intervention strategies which could be of therapeutic use.

COVID-19 drug repurposing was done by docking hub and upstream proteins with FDA-approved drugs. As mentioned earlier hub and upstream proteins fell into two groups, pro-virals and anti-virals. Our criteria for selecting a FDA-approved drug potentially effective in controlling COVID-19 were: (1) High binding affinity for all pro-viral proteins and (2) Low binding affinity for all (or at least half of) anti-viral proteins.

Among pro-viral proteins, we selected ADAR, HBEFG, MMP9, USP18, ICAM1, CASP1, STAT3, IRF2, FOS, JUN, and IFI35. EGR1 was eliminated because it was in the down-stream of STAT3 activation. Among 2470 FDA-approved drugs, peptides were eliminated and a list of 2413 small molecules was selected for further analysis. Docking analysis of FDA-approved drugs with these eleven proteins resulted in varied affinities that were filtered (< -12 kcal/mol) and a list of 68 drugs capable of binding to all pro-viral proteins were obtained. In the next step, these drugs were docked with anti-viral proteins and results revealed that two drugs, Hydrocodone and Benzhydrocodone, had low affinity for more than half of anti-viral proteins.

5. Conclusion

Currently, effective COVID-19 management encountered shortcomings in vaccine supply, public compliance, undefined duration of immunity, and potential for mutation of vaccine targets all suggest the

Protein	Function	Reference
FOS	Nuclear phosphoprotein which forms a tight but non-covalently linked complex with the JUN/AP-1 transcription factor	[61]
IRF2	A transcription factor playing role in suppressing IFNs	[29]
ICAM1	Ligand for the leukocyte adhesion protein LFA-1	[57]
IRF5	Negative regulation of RIG-I-mediated antiviral signaling	[61]
CASP1	Initiates a proinflammatory response through the cleavage of the two inflammatory cytokines IL1B and IL18	[61]

Fig. 7. Heatmap of differential expression of critical genes in each dataset. It summarizes expression data for genes considered as contributors of COVID-19 pathogenesis. Color intensity represents log 2 fold change. Red and green colors show down-, and up-regulation of genes in SARS-CoV-2 infected samples vs. control in each dataset. While white means that the gene has no significant change in expression level during viral infection. (For interpretation of the colors show downstream proteins fall into two groups, pro-virals and anti-virals. Our criteria for selecting a FDA-approved drug potentially effective in controlling COVID-19 were: (1) High binding affinity for all pro-viral proteins and (2) Low binding affinity for all (or at least half of) anti-viral proteins.

Protein	Function	Reference
ADAR		
ANXA1		
CASP1		
CD44		
CXCL1		
CXCL10		
CXCL2		
CXCL8		
DDX58		
DTX4L		
EGR1		
EIF2AK2		
FOS		
GBP1		
HBEFG		
HERC5		
ICAM1		
IFI35		
IFI1		
IFIT2		
IFIT5		
IFNB1		
IL1B		
IRF1		
IRF2		
ISG15		
JUN		
MMP9		
MX1		
MX2		
NALAD		
NFKBIA		
OAS1		
OAS2		
OAS3		
PML		
RASA2		
SMAD3		
SOD3		
STAT1		
TLR9		
TRIM21		
TRIM25		
USP18		
Table 6
Docking results. In this table, the results of docking FDA-approved drug and antiviral proteins with high affinity (less than –12 kcal/mol) are presented. The first column represents the generic name of the docking drug, and in the other columns, antiviral proteins and their affinity for each drug are brought.

Drugs	ADAR	HBGEG	MMP9	USP18	JUN	FOS	IRF2	ICAM1	IF35	CAPS1	STAT3
Fluorometholone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Natamycin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Irinotecan	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Rifabutin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Oxandrolone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Nystatin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
amphotericin B	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Fluorouracil	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Etoposide	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Hydrocortisone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Idoxuridine	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Rifampicin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Candidin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Vincristine	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Doxorubicin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Tubocurarine	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Rifampicin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Rifaximin	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Dexamethasone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Betamethasone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Medrolodone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Triamcinol	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Corticosterone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Fluorinated corticosterone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Fluricortisone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Hydrocortisone phosphate	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Prednisolone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Dexamethasone phosphate	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Betamethasone phosphate	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
Benzhydrocortone	14.011	-12.25	16.3556	-12.6667	12.16	-12.35	12.35	-12.35	13.16	-12.35	12.35
In the context of viral respiratory diseases (i.e., MERS, SARS, Influenza A, Measles, Hepatitis B and C) and main in COVID-19 management attempts. Through docking all FDA-approved responses whose inhibition may provide some perspectives into the ICAM1, IFI35, CASP1, and STAT3) is mainly involved in inflammatory evaluated based on their contribution to viral respiratory diseases (i.e. TNF, IL-17, NF-kB, and TLR signaling path ways. PPI network analysis of up-regulated protein coding genes revealed 44 hub genes. Up-regulated genes were also spotted in the published pathway of COVID-19 in KEGG and upstream proteins were identified. These target proteins (hub proteins and upstream proteins either to be inhibited or not) in response to SARS-CoV-2 infection were investigated thoroughly in terms of efficacy via wet-lab experiments followed by clinical studies.

Funding

This work was supported by the Deputy of Research and Technology, Golestan University of Medical Sciences [grant number: 111497].

CRediT authorship contribution statement

SeyedehMozhdeh Mirmohammadi: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Supervision, Writing – original draft. Anvarsadat Kianmehr: Funding acquisition, Project administration, Data curation, Formal analysis, Investigation, Methodology, Supervision, Visualization, Writing – original draft. Amir Sabbaghian: Data curation, Formal analysis, Investigation, Software, Visualization. Alireza Mohbibi: Data curation, Investigation, Methodology, Software, Supervision. Hamid Shahbazmohammadi: Conceptualization, Investigation,
Software, Visualization. Mehdi Sheykharabi: Conceptualization, Methodology, Supervision. Zahra Bazzi: Conceptualization, Methodology.

Declaration of Competing Interest
None.

Acknowledgments
We express our gratitude to Infectious Diseases Research Centers, Golestan University of Medical Sciences.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.meegid.2022.105318.

References
Balalnejadi, M., Mammad, A., Vakili, R., Mohammadi, M., Tabarzadi, A., Hosseini, S.M., 2020. Recovery of Olfactory and Gustatory Dysfunctions in COVID-19 Patients in Iran: A Prospective Cohort Study. https://doi.org/10.21203/rs.3.rs-13229/v1.

Barrett, T., Willhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashewsky, M., Mitchell, K.A., Phillips, A.D., Sherman, P.M., Holo, H., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A., 2013. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991–D995. https://doi.org/10.1093/nar/gks1193.

Bizzotto, J., Sanchis, P., Abbate, M., Lage-Vickers, S., Lavignolle, R., Toro, A., Rosblino, D., Sanches-Sanmiguel, H., Unigarro, L., Zalakeviciute, R., Gadian, N., 2020. Structured reviews of biomarkers in COVID-19: assessing the evidence and application to combat COVID-19. Cell Microbe 27, 870–878. https://doi.org/10.1002/cmi.869.

Quintero, P.A., Knolle, M.D., Cala, L.F., Zhuang, Y., Owen, C.A., 2010. Matrix metalloproteinase-9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: a network-based meta-analysis. Life Sci. 87, 580–581. https://doi.org/10.1016/j.lfs.2010.05.099.

Mirmohammadi, S., Kianmehr, A., Arefi, M., Mahrooz, A., 2020. Biochemical parameters and pathogenesis of SARS-CoV-2 infection in vital organs: COVID-19 outbreak in Iran. New microves in Infect. 38, 100792. https://doi.org/10.1016/j.nmic.2020.100792.

Mokhtari, T., Hassani, F., Ghaffari, N., Ebrahimir, B., Yarahmadi, A., 2020 and multiorgan failure: a narrative review on potential mechanisms. J. Mol. Histol. 51, 613–628. https://doi.org/10.1007/s10031-020-09915-3.

Naganova, S., Mladen, M.C., Camargo Martins, A.P., Borges, N.H., Godoy, T.M., Miggiorato, A.F.R.D.S., da Silva Dezidério, F., Machado-Souza, C., de Noronha, L.R., 2020. Endothelial dysfunction and thrombosis in patients with COVID-19 brief report. Arterioscler. Thromb. Vasc. Biol. 40, 2404–2407. https://doi.org/10.1161/ATVBAHA.119.354607.

Ortiz-prado, E., Simbata-rivera, K., Barrero, L.G., Rubio-neira, M., Guzman, L.P., Kyrkidas, N., Muslin, C., Maria, A., Jaramillo, G., Barba-ostria, C., Cevallos-rodrain, D., Sanchen-sanmiguel, H., Unigarro, L., Zalakievertzitis, R., Gadian, N., Lopez-cortes, A., 2020. Clinical, Molecular, and Epidemiological Characterization of the SARS-CoV-2 Virus and the Coronavirus Disease 2019 (COVID-19), A Comprehensive Literature Review. Park, K., 2020. Artificial Intelligence: COVID-19. Available at: https://doi.org/10.1161/JAHA.119.013660.

S. Mirmohammadi et al.
Vanderheiden, A., Ralfs, F., Chirkova, T., Upadhyay, A.A., Zimmerman, M.G., Bedoya, S., Aoued, H., Tharp, G.M., Pellegrini, K.L., Manfredi, C., Sorscher, E., Mainou, B., Lobby, J.L., Kohlmeier, J.E., Lowen, A.C., Shi, P.-Y., Menachery, V.D., Anderson, L.J., Grakoui, A., Bosinger, S.E., Suthar, M.S., 2020. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 94 https://doi.org/10.1128/JVI.00985-20.
Venkataraman, T., Frieman, M.B., 2017. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antivir. Res. 143, 142–150. https://doi.org/10.1016/j.antiviral.2017.03.022.
Venkataraman, T., Coleman, C.M., Frieman, M.B., 2017. Overactive epidermal growth factor receptor signaling leads to increased fibrosis after severe acute respiratory syndrome coronavirus infection. J. Virol. 91 https://doi.org/10.1128/JVI.00182-17.
Verhelst, J., Parthoens, E., Schepens, B., Fiers, W., Saelens, X., 2012. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 86, 13445–13455. https://doi.org/10.1128/JVI.01682-12.

Yoshizaki, T., Sato, H., Furukawa, M., Pagano, J.S., 1998. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc. Natl. Acad. Sci. U. S. A. 95, 3621–3626. https://doi.org/10.1073/pnas.95.7.3621.
Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Gao, L., Yang, J., Jing, Wang, C., Jiang, S., Yang, D., Zhang, C., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, Jian, Dong, J., Liu, B., Zhang, X., Wang, W., He, K., Jin, Q., Li, M., Wang, J., 2020. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890.e2. https://doi.org/10.1016/j.chom.2020.04.017.
Update

Infection, Genetics and Evolution
Volume 104, Issue , October 2022, Page

DOI: https://doi.org/10.1016/j.meegid.2022.105361
Corrigendum to “In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19” [Infection, Genetics and Evolution 103 (2022) 105318]

Seyedeh Mozhdeh Mirmohammadia,b,1, Anvarsadat Kianmehra,b,*, Amir Sabbaghianc, Alireza Mohebbid, Hamid Shahbazmohammadie, Mehdi Sheikharabif, Zahra Bazzib

a Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
b Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
c Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
d Vista Aria Rena Gene Inc., 4913817644 Gorgan, Iran
e Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
f Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran

The authors regret the change of affiliation details for Hamid Shahbazmohammadi.

The authors would like to apologise for any inconvenience caused.

DOI of original article: https://doi.org/10.1016/j.meegid.2022.105318.

* Corresponding author at: Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
E-mail address: kiabiopro@yahoo.com (A. Kianmehr).

1 These authors have equal contribution.

https://doi.org/10.1016/j.meegid.2022.105361