Pancreatic injury in patients with septic shock: A literature review

Anis Chaari, Karim Abdel Hakim, Kamel Bousselmi, Mahmoud Etman, Mohamed El Bahr, Ahmed El Saka, Eman Hamza, Mohamed Ismail, Elsayed Mahmoud Khalil, Vipin Kauts, William Francis Casey

Abstract

Sepsis and septic shock are life threatening condition associated with high mortality rate in critically-ill patients. This high mortality is mainly related to the inadequacy between oxygen delivery and cellular demand leading to the onset of multiorgan dysfunction. Whether this multiorgan failure affect the pancreas is not fully investigated. In fact, pancreatic injury may occur because of ischemia, overwhelming inflammatory response, oxidative stress, cellular apoptosis and/or metabolic derangement. Increased serum amylase and/or lipase levels are common in patients with septic shock. However, imaging test rarely reveal significant pancreatic damage. Whether pancreatic dysfunction does affect the prognosis of patients with septic shock or not is still a matter of debate. In fact, only few studies with limited sample size assessed the clinical relevance of the pancreatic injury in this group of patients. In this review, we aimed to describe the epidemiology and the physiopathology of pancreatic injury in septic shock patients, to clarify whether it requires specific management and to assess its prognostic value. Our main finding is that pancreatic injury does not significantly affect the outcome in septic shock patients. Hence, increased serum pancreatic enzymes without clinical features of acute pancreatitis do not require further imaging investigations and specific therapeutic intervention.

Key words: Septic shock; Pancreas; Lipase; Amylase; Prognosis

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pancreatic injury is common in septic shock patients. Tissue hypoperfusion is the main leading cause of pancreatic insult. Other factors such as oxidative stress...
and cellular apoptosis have been reported to enhance the pancreatic damage. The clinical relevance of increased level of pancreatic enzymes is not well established. In fact, hyperamylasemia and/or hyperlipasemia are not associated with higher mortality. Moreover, most of the imaging investigations do not show significant morphological changes of the pancreas. Hence, disturbed serum pancreatic enzymes without clinical evidence of acute pancreatitis should not trigger any specific therapy.

INTRODUCTION

Severe sepsis and septic shock are common life-threatening conditions in critically-ill patients. Despite recent therapeutic advances and the establishment of internationally accepted guidelines regarding the management of patients suffering from septic shock, the overall mortality in these patients ranges from 30% to 60%. This high mortality is usually associated with the onset of multiple organ dysfunction. In fact, a few studies have reported that the worsening of organ function as well as the increase in the number of the failing organs is significantly associated with poor outcome in both adult and pediatric patients. Accordingly, it has been reported that the onset of acute kidney injury is associated with a significant rise in the intensive care unit (ICU) mortality up to 50%-70% and that the highest mortality has been in patients with a high score on the severity of illness scale and/or in those who require renal replacement therapy. Similarly, hypoxic liver injury in patients with septic shock has been reported to be associated with a mortality as high as 50%. Experimental and clinical studies also suggest that gut ischemia is one of the hallmarks of septic shock. However, whether pancreatic exocrine function is also impaired in septic shock patients has not been fully investigated. Moreover, there is still debate regarding the optimum modality for management of pancreatic insult as well as its prognostic value.

The aim of this review is to describe the epidemiology and the physiopathology of pancreatic injury in septic shock patients, to clarify whether it requires specific management and to assess its prognostic value.

RESEARCH

A systematic literature search was conducted through PubMed by using the following Medical Subheadings terms: Septic shock, sepsis, lipase, amylases and acute pancreatitis. Different Boolean operator combinations (AND/OR) were attempted. Overall, 97 articles were selected for this review. We didn’t proceed to any language restriction and only the studies published between 1996 and 2016 were considered.

EPIDEMIOLOGY OF PANCREATIC INJURY IN SEPTIC SHOCK

The incidence of pancreatic injury in critically-ill patients is extremely variable according to the used definition. High levels of amylase levels have been reported in 32% to 79% of patients admitted in medical or surgical ICUs. However, most of these studies have concluded that this elevation is not always due to pancreatic involvement. In fact, the proportion of non-pancreatic isoamylase in patients with hyperamylasemia has been reported to range from 30% to 74% of the total serum amylase. Hence, other markers have been used to assess the exocrine pancreatic dysfunction in critically-ill patients. Lipase is one such marker which is more specific for the diagnosis of pancreatitis. Similar to hyperamylasemia, increased lipase serum level is also common in critically-ill patients. In fact, Manjuck et al reported that hyperlipasemia is found in 40% of the patients requiring ICU admission. Similarly, Denz et al reported increased serum lipase levels in 57% of critically-ill patients. Recent guidelines have highlighted that the rise of one or both of these two enzymes should be higher than three times the upper limit of normal range to be considered as a useful criterion for acute pancreatitis. However, only a limited number of patients admitted to the ICU with a diagnosis other than pancreatitis fulfill this definition and/or have significant morphological changes in pancreatic anatomy on imaging tests. Only a few studies have focused on the exocrine pancreatic dysfunction in the subgroup of critically-ill patients with septic shock. Hence, epidemiological data regarding the pancreatic function impairment in this group of patient is lacking.

PHYSIOPATHOLOGY OF PANCREATIC INJURY IN SEPTIC SHOCK

The pathophysiology of pancreatic injury in septic shock patients is not fully understood. The most commonly accepted hypothesis is pancreatic ischemia. However, few experimental and human studies have suggested that other mechanisms might also be involved such as cell apoptosis, increased release of nitric oxide by the endothelial cells, platelets activation, ischemia - reperfusion phenomenon, elevated triglyceride levels and the development of biliary sludge.

Pancreatic ischemia

Severe hypotension and tissue hypoperfusion are the main hallmarks of septic shock. Experimental studies have shown that gut perfusion is severely impaired in the early stages of septic shock. In a porcine model of septic shock caused by fecal peritonitis, ljungdahl et al.
have reported that the oxygen consumption of the gut, including that of pancreas, is markedly increased in this condition. This is accompanied by a significant decrease in the gut intramucosal pH which occurs even before the lactate rises in the arterial blood. The pancreas is particularly sensitive to hypotension. In fact, a temporary ischemia for 40 min has been shown to be sufficient to cause significant pancreatic injury on histological examination, presenting mainly as peripheral necrosis of the lobules\(^{(27)}\). Several studies have suggested that the impairment of pancreatic perfusion is more pronounced in septic shock. In fact, in an experimental animal model study, Raper et al\(^{(28)}\) reported that the cardiac output is increased during the hyper dynamic phase of septic shock. Concomitantly, the systemic blood flow is increased in the gallbladder and the colon whereas it is markedly decreased in the pancreas. This demonstrates that the oxygen delivery to the pancreatic cells is significantly decreased despite the considerable increase of their oxygen requirement\(^{(26)}\).

Beside these macro-circulatory abnormalities, pancreatic injury related to septic shock can also be explained by micro-circulatory and cellular dysfunctions\(^{(38)}\). In fact, severe sepsis and septic shock are commonly associated with coagulation abnormalities, usually manifested as disseminated intravascular coagulation\(^{(39,40)}\). Several forensic studies have reported ischemic and necrotic changes in various organs. These include occlusion and fibrin deposition in small and mid-size vessels, observed in patients who die from septic shock\(^{(41)}\). These abnormalities are triggered mainly by an overwhelming inflammatory reaction which is orchestrated by the immune host defense in response to the endotoxin aggression\(^{(34,39)}\). The expression of the tissue factor by the mononuclear, polymorphonuclear and endothelial cells activates the coagulation cascade\(^{(42,43)}\). Activation of platelets, down-regulation of anticoagulant pathways and reduced fibrin removal due to inhibition of fibrinolysis enhances microvascular thrombosis\(^{(39)}\). Experimental studies have shown that the pancreatic microcirculation is deeply disturbed in septic shock. In fact, in a model of fecal peritonitis, Hiltebrand et al\(^{(27)}\) reported that the microcirculatory flow is reduced by 50% in various splanchnic organs within 240 min. The flow normalizes after fluid resuscitation in all the organs, except in the pancreas.

Although the most widely accepted hypothesis used to explain pancreatic dysfunction in patients with septic shock is pancreatic ischemia, significant pancreatic injury has also been reported in normotensive sepsis model. This suggests that other mechanisms may also be responsible for causing pancreatic ischemia\(^{(44)}\).

Cellular apoptosis

Delayed and inappropriate management of septic shock is associated with a worse outcome due to multiple organ dysfucntion syndrome (MODS)\(^{(45-48)}\). The main cause of MODS in this condition is the uncontrolled inflammatory storm caused by overwhelming host immune response\(^{(49)}\). Beside the deleterious effect of this reaction on the macrocirculation and microcirculation, as described above, the pro-inflammatory cytokines-mainly interleukine (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α - also activate the NF-κB pathway. This causes cellular self-destruction and apoptosis\(^{(50)}\). This has been demonstrated in the hepatocytes and the immune cells with severe Gram-negative bacterial infection\(^{(50,51)}\).

Experimental studies have shown that the exposure of pancreatic cells to lipopolysaccharide is associated with apoptosis and increased release of TNF-α, IL-1β and IL-8. Damage to the Acinar cells consists of nuclear fragmentation, abnormal cytoplasmic vacuoles and cellular swelling\(^{(28,39,52,53)}\). Unlike these experimental studies, there is no evidence to suggest that apoptosis is a major cause of exocrine pancreatic dysfunction in patients suffering from septic shock. In fact, histological studies performed in patients who died from septic shock and multiorgan failure have shown that the apoptosis of acinar cells is seen only in a scattered manner\(^{(54)}\).

Other mechanisms

Other hypothesis that may explain pancreatic injury in patients suffering from septic shock.

The oxidative stress

Oxidative stress has been demonstrated in patients suffering from septic shock patients\(^{(55)}\). The main causes of mitochondrial dysfunction and increased release of reactive oxygen species are ischemia/reperfusion phenomenon and inflammation\(^{(55,56)}\). Other factors, such as the activation of the phagocytic cells and the production of nitric oxide by the endothelial cells, have been shown to aggravate the oxidative stress\(^{(57)}\). The cellular damage in sepsis is enhanced by the depletion of antioxidants and scavenger enzymes such as glutathione and thiamine in the plasma\(^{(56,58)}\). Several studies have suggested that the oxidative stress can induce pancreatic damage in septic shock\(^{(32,59)}\).

Triglycerides

Serum triglyceride level has been reported to be significantly increased in septic shock\(^{(59,60)}\). Moreover, compared to those patients who survived septic shock, patients who died from it have been found to have a higher serum triglyceride level over the first 7 d of their illness\(^{(61)}\). Whether the high level of serum triglyceride seen in patients with septic shock is enough to induce pancreatic cell damage need to be investigated.

CLINICAL RELEVANCE OF PANCREATIC INJURY

The clinical relevance of increased amylase and/or lipase in patient with septic shock has been poorly investigated. Whether pancreatic injury is only a satellite phenomenon or a major condition affecting the prognosis of this group of patients is still a matter of debate. In fact, only a few studies, most of them with a small number of patients, have investigated pancreatic dysfunction in critically-
ill patients. Pezzilli et al. have reported that amylase and lipase levels are significantly increased in patients with septic shock in comparison to a control group. However, none of the included patients met the criteria of acute pancreatitis and no significant correlation was found with mortality. These findings have been corroborated by post-mortem pancreatic tissue sample examination which has not shown significant morphological changes.

Available data suggest that imaging tests should not be requested for all critically-ill patients with deranged pancreatic enzymes as long as the clinical assessment does not suggest acute pancreatitis. In fact, Denz et al. reported that contrast enhanced computed tomography performed for all patients with a serum lipase level higher than 450 U/L was positive only in 35% of the patients. None of these patients had severe necrotizing pancreatitis which required specific management. However, the authors have reported that imaging abnormalities are more common in patients with increased blood levels of pancreatitis-associated protein. This raises the question: Which marker can be considered as a reliable test to assess the pancreatic dysfunction?

Even though the available data shows that the increase in the levels of pancreatic enzymes does not affect the mortality in critically-ill patients, the pancreatic dysfunction may cause malnutrition in patients with prolonged stay in intensive care units. In fact, the pancreatic secretory function is important for the digestion and absorption of fats, protein and carbohydrates. In a prospective cross-sectional study of 563 critically-ill patients, Wang et al. reported that the prevalence of exocrine pancreatic insufficiency in these patients is 52.2% although only 34.9% of these patients had increased serum lipase levels and only 30.2% had increased serum amylase levels. The definition of exocrine pancreatic insufficiency in their study was based on decreased fecal elastase-1 concentration (< 200 mcg/g). The authors have also found that both shock and sepsis are independent factors which predict exocrine pancreatic insufficiency. Tribl et al. have reported similar results as they found that the concentration of amylase and chymotrypsin in the duodenal juice is significantly lower in patients with sepsis or septic shock than in healthy volunteers. Moreover, the concentration of trypsin is significantly lower in septic shock patients than sepsis patients without shock. The therapeutic implications of these findings need to be investigated by further studies.

CONCLUSION

Pancreatic injury is common in patients suffering from septic shock. Increase in levels of pancreatic enzymes does not significantly affect the outcome. Only those patients who show clinical features of acute pancreatitis need to undergo further radiological investigations. However, pancreatic dysfunction may affect the nutritional state of patients receiving enteral feeding and requiring prolonged ICU stay. Whether specific treatment should be considered to avoid malnutrition in these patients need to be investigated further.

REFERENCES

1. Dellinger RP, Levy MM, Carlet JM, Bion JF, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36: 296-327 [PMID: 18158437 DOI: 10.1097/01.ccm.00003246-200107000-00002]
2. Angus DC, Linde-Zwirble WT, Lindicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303-1310 [PMID: 11445675 DOI: 10.1097/0003246-200107000-00002]
3. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546-1554 [PMID: 12700374 DOI: 10.1056/NEJMoa02129] 84
4. Sasse KC, Nauenberg E, Long A, Anton B, Tucker HJ, Hu TW. Long-term survival after intensive care unit admission with sepsis. Crit Care Med 1995; 23: 1040-1047 [PMID: 7774214 DOI: 10.1097/0003246-199506000-00008]
5. Annane D, Aegeert J, Jars-Guincestre MC, Guidet B. Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med 2003; 168: 165-172 [PMID: 12851245 DOI: 10.1164/rccm.2201087]
6. Moemen ME. Prognostic categorization of intensive care septic patients. World J Crit Care Med 2012; 1: 67-79 [PMID: 24701404 DOI: 10.5492/wjccm.v1.i3.67]
7. Leteurtre S, Duhamel A, Deken V, Lacroix J, Leclerc F. Daily state of patients receiving enteral feeding and requiring prolonged ICU stay. Whether specific treatment should be considered to avoid malnutrition in these patients need to
study. *Intensive Care Med* 1997; 23: 282-287 [PMID: 9083230 DOI: 10.1007/s001340050329]

16 Rattner DW, Gu ZY, Vilahakes GJ, Warshaw AL. Hyperamylasemia after cardiac surgery. Incidence, significance, and management *Surg Rpt 1989; 209: 270-283 [PMID: 2466447]

17 Vitale GC, Larson GM, Davidson PR, Bouwman DL, Weaver DW. Analysis of hyperamylasemia in patients with severe head injury. *J Surg Rpt 1987; 43: 226-233 [PMID: 2442498 DOI: 10.1001/0022-3480(1987)90007-5]

18 Weaver DW, Busuito MJ, Bouwman DL, Wilson RF. Interpretation of serum amylase levels in the critically ill patient. *Crit Care Med 1985; 13: 532-533 [PMID: 2408820 DOI: 10.1097/00003246-198507000-00003]

19 Denz C, Siegel L, Lehmann KJ, Daggorn JC, Fiedler F. Is hyperamylasemia in critically ill patients of clinical importance? An observational CT study. *Intensive Care Med 2007; 33: 1633-1636 [PMID: 17949712 DOI: 10.1007/s00134-007-0668-1]

20 Treacy J, Williams A, Bais R, Willson K, Worthley C, Reece J, Bessell J, Thomas D. Evaluation of amylase and lipase in the diagnosis of acute pancreatitis. *ANZ J Surg 2001; 71: 577-582 [PMID: 11552931 DOI: 10.1111/j.1445-2197.2001.02220.x]

21 Manjek J, Zein J, Carpait C, Astiz M. Clinical significance of increased lipase levels on admission to the ICU. *Chest 2005; 127: 246-250 [PMID: 15653991 DOI: 10.1378/chest.127.1.246]

22 Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/ APA evidence-based guidelines for the management of acute pancreatitis. *Panreatology 2013; 13: e1-e15 [PMID: 24054878 DOI: 10.1016/j.pan.2013.07.068]

23 Pizzilli R, Barassi A, Imbrogno A, Fabbri D, Pigna A, Morselli-Labate AM, Corinaldesi R, Melzi d’Eril G. Is the pancreas affected in patients with septic shock?–a prospective study. *Hepatobiliary Pancreat Dis Int 2011; 10: 191-195 [PMID: 21459727 DOI: 10.1016/S1449-3872(11)60030-1]

24 Tribi B, Madl C, Mazal PR, Schneider B, Spitzauer S, Vogelsang K, Nucling. A novel protein associated with NF-κB, regulates induced pancreatitis. *Dig Surg 2000; 17: 3-14 [PMID: 10720825 DOI: 10.1159/00018793]

25 Steinberg W, Tenner S. Acute pancreatitis. *N Engl J Med 1994; 330: 1198-1210 [PMID: 7811319 DOI: 10.1056/NEJM199408313070601]

26 Angus DC, van der Poll T. Severe sepsis and septic shock. *N Engl J Med 2013; 369: 2063 [PMID: 24256390 DOI: 10.1056/NEJMc120623]

27 Ellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. *Intensive Care Med 2013; 39: 165-228 [DOI: 10.1007/s00134-012-2796-9]

28 Grum CM. Tissue oxygenation in low flow states and during hypoxemia. *Crit Care Med 1993; 21: S44-S49 [PMID: 8428497 DOI: 10.1097/00006676-199302000-00009]

29 Sporman H, Sokolowski A, Letko G. Effect of temporary ischemia upon development and histological patterns of acute pancreatitis in the rat. *Pathol Res Pract 1989; 184: 507-513 [PMID: 2748466 DOI: 10.1016/S0344-0338(98)01438-4]

30 Zhou ZG, Chen YD. Influencing factors of pancreatic microcirculatory impairment in acute pancreatitis. *World J Gastroenterol* 2002; 8: 406-412 [PMID: 12046059 DOI: 10.3748/wjg.v8.i3.406]

31 Levi M, van der Poll T. Inflammation and coagulation. *Crit Care Med 2010; 38: S26-S34 [PMID: 20863910 DOI: 10.1097/01.CCM.0000382982.11260.42]

32 Hauke R, Bondermann D, Bohrmann B, Badimon JH, Himber J, Riederer MA, Nemerson Y. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. *Blood 2000; 96: 170-175 [PMID: 10989447]

33 Tribi B, Bateman RM, Milikovich S, Sibbald WJ, Ellis CG. Effect of nitric oxide on capillary hemodynamics and cell injury in the pancreas during Pseudomonas pneumonia-induced sepsis. *Am J Physiol Heart Circ Physiol 2004; 286: H340-H345 [PMID: 12969889 DOI: 10.1152/ajpheart.00234.2003]

34 Dhainaut JF, Maisonneuve P, Marsac F. The coagulopathy of acute sepsis. *Circulation* 1999; 99: 2251-2255 [PMID: 10083269 DOI: 10.1161/01.CIR.99.14.2251]

35 Huang MF, Landry F, Maier LS, Ginnings G, Workman J, Lussier A, Green K, Plouffe M, Cote A, Hogg J, et al. Early versus delayed administration of norepinephrine in patients with severe sepsis with or without overt disseminated intravascular coagulation. *J Thromb Haemost* 2004: 2 286-292 [PMID: 15550023 DOI: 10.1111/j.1538-7866.2004.00955.x]

36 Simmons J, Pittet JF. The coagulopathy of acute sepsis. *Curr Opin Anaesthesiol* 2015; 28: 227-236 [PMID: 25590467 DOI: 10.1097/A00.00000000000163]

37 Bai X, Yu W, Ji W, Lin Z, Tan S, Duan K, Dong Y, Xu L, Li N. Early versus delayed administration of norepinephrine in patients with septic shock. *Crit Care 2014; 18: 532 [PMID: 25277635 DOI: 10.1186/s13054-014-0532-y]

38 Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early versus delayed administration of norepinephrine in patients with severe sepsis with or without overt disseminated intravascular coagulation. *J Thromb Haemost* 2004; 2: 1924-1933 [PMID: 15550023 DOI: 10.1111/j.1538-7866.2004.00955.x]

39 Rossaint R, Zarbock A. Pathogenesis of Multiple Organ Failure in Sepsis. *Crit Rev Immunol 2015; 35: 277-291 [PMID: 26757392 DOI: 10.1615/CritRevImmunol.2013015461]

40 Kim SM, Sakai T, Dang HV, Tran NH, Ono K, Ishimura K, Fukui K. Nueling, a novel protein associated with NF-κB, regulates
endotoxin-induced apoptosis in vivo. J Biochem 2013; 153: 93-101 [PMID: 23071121 DOI: 10.1093/jb/mvs119]

Roger PM, Hyvernat H, Ticchioni M, Kumar G, Dellamonica J, Bernardin G. The early phase of human sepsis is characterized by a combination of apoptosis and proliferation of T cells. J Crit Care 2012; 27: 384-393 [PMID: 22824083 DOI: 10.1016/j.jcrc.2012.04.010]

Li YY, Lu S, Li K, Feng JY, Li YN, Gao ZR, Chen CJ. Down-regulation of HSP60 expression by RNAi increases lipopolysaccharide- and cerulein-induced damages on isolated rat pancreatic tissues. Cell Stress Chaperones 2010; 15: 965-975 [PMID: 20574674 DOI: 10.1007/s12192-010-0207-9]

Wang XL, Li Y, Kuang JS, Zhao Y, Liu P. Increased heat shock protein 70 expression in the pancreas of rats with endotoxic shock. World J Gastroenterol 2006; 12: 780-783 [PMID: 16521195 DOI: 10.3748/wjg.v12.i5.780]

Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG, Karl IE. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27: 1230-1251 [PMID: 10446814 DOI: 10.1097/00024382-199907000-00002]

Crimi E, Sica V, Slatsky AS, Zhang H, Williams-Ignarro S, Ignarro LJ, Napoli C. Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radic Res 2006; 40: 665-672 [PMID: 16983993 DOI: 10.1080/10715760600669612]

Costa NA, Gut AL, de Souza Doma M, Pimentel JA, Cozollino SM, Azevedo PS, Fernandes AA, Zornoff LA, de Paiva SA, Minicucci MF. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. J Crit Care 2014; 29: 249-252 [PMID: 24412011 DOI: 10.1016/j.jcrc.2013.12.004]

Oldham KM, Bowen PE. Oxidative stress in critical care: is antioxidant supplementation beneficial? J Am Diet Assoc 1998; 98: 1001-1008 [PMID: 9739800 DOI: 10.1016/S0002-8223(98)00230-2]

Huet O, Cherreau C, Nico C, Dupic L, Coni M, Borderie D, Pene F, Vicaut E, Benhamou D, Mira JP, Duranteau J, Batteux F. Pivotal role of glutathione depletion in plasma-induced endothelial oxidative stress during sepsis. Crit Care Med 2008; 36: 2328-2334 [PMID: 18664787 DOI: 10.1097/CCM.0b013e3181800387]

Wray GM, Hinds CJ, Thiemermann C. Effects of inhibitors of poly(ADP-ribose) synthetase activity on hypotension and multiple organ dysfunction caused by endotoxin. Shock 1998; 10: 13-19 [PMID: 9688085 DOI: 10.1097/00024382-199807000-00003]

Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med 2007; 33: 25-35 [PMID: 17093984 DOI: 10.1007/s00134-006-0433-x]

Murch O, Collin M, Hinds CJ, Thiemermann C. Lipoproteins in inflammation and sepsis. I. Basic science. Intensive Care Med 2007; 33: 13-24 [PMID: 17093985 DOI: 10.1007/s00134-006-0432-y]

Lee SH, Park MS, Park BH, Jung WJ, Lee IS, Kim SY, Kim HY, Jung KY, Kang YA, Kim YS, Kim SK, Chang J, Chung KS. Prognostic Implications of Serum Lipid Metabolism over Time during Sepsis. Biomed Res Int 2015; 2015: 789298 [PMID: 26351639 DOI: 10.1155/2015/789298]

Domínguez-Muñoz JE. Pancreatic exocrine insufficiency: diagnosis and treatment. J Gastroenterol Hepatol 2011; 26 Suppl 2: 12-16 [PMID: 21323992 DOI: 10.1111/j.1440-1746.2010.06600.x]

Wang S, Ma L, Zhuang Y, Jiang B, Zhang X. Screening and risk factors of exocrine pancreatic insufficiency in critically ill adult patients receiving enteral nutrition. Crit Care 2013; 17: R171 [PMID: 23924602 DOI: 10.1186/cc12850]

P- Reviewer: Kleeff J, Tjora E, Wan QQ S- Editor: Gong ZM L- Editor: A E- Editor: Lu YJ
