Comment on “σ-meson: Four-quark versus two-quark components and decay width in a Bethe-Salpeter approach”

B. Blankleider

College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia

A. N. Kvinikhidze

Andrea Razmadze Mathematical Institute of Tbilisi State University, 6, Tamarashvili Str., 0186 Tbilisi, Georgia

(Dated: March 2, 2021)

Abstract

In a recent paper by N. Santowsky et al. [Phys. Rev. D 102, 056014 (2020)], covariant coupled equations were derived to describe a tetraquark in terms of a mix of four-quark states $2q2\bar{q}$ and two-quark states $q\bar{q}$. These equations were expressed in terms of vertices describing the disintegration of a tetraquark into identical two-meson states, into a diquark-antidiquark pair, and into a quark-antiquark pair. We show that these equations are inconsistent as they imply a $q\bar{q}$ Bethe-Salpeter kernel that is $q\bar{q}$-reducible.
In 2012, Heupel, Eichmann and Fischer (HEF) \cite{1} developed covariant equations describing a tetraquark using a model where the two-quark plus two-antiquark \((2q2\bar{q})\) system is described by four-body \((4q)\) Faddeev-like equations of Khvedelidze and Kvinikhidze \cite{2}, and where the dynamics is dominated by the formation of either two identical mesons or a diquark-antidiquark pair. These equations are represented graphically in Fig. 1 and relate the form factors \(\phi_M\) and \(\phi_D\) of the tetraquark, describing its disintegration into two identical mesons, and a diquark-antidiquark pair, respectively. As is evident from Fig. 1 the input interactions to these equations consist of vertices for the transitions between a meson \((M)\) and a quark-antiquark pair \((q\bar{q}\leftrightarrow M)\), a diquark \((D)\) and a quark-quark pair \((qq\leftrightarrow D)\), and between an antidiquark \(\bar{D}\) and an antiquark-antiquark pair \((\bar{q}\bar{q}\leftrightarrow \bar{D})\). Missing from these equations is the phenomenon of quark-antiquark annihilation which would result in coupling to two-body \((2q)\) \(q\bar{q}\) states.

There have since been two attempts to extend the equations of HEF to include coupling to \(q\bar{q}\) channels. The first of these was our derivation of 2014 \cite{3} where disconnected contributions were added to the usual connected part of the \(q\bar{q}\) interaction. The second was a recent derivation of Santowsky et al. (SEFWW) \cite{4} where coupling to \(q\bar{q}\) channels was included phenomenologically. The tetraquark equations of SEFWW are represented graphically in Fig. 2 and include an additional tetraquark form factor \(\Gamma^*\), describing the disintegration of a tetraquark into a \(q\bar{q}\) pair.

For the tetraquark equations of Fig. 2 to be meaningful, it is essential that the form factor \(\Gamma^*\) be identified with the residue of the \(q\bar{q}\) Green function \(G^{(2)}\) describing the formation of the tetraquark in the scattering of a quark from an antiquark; that is, as \(P^2 \to M^2\), where \(P\) is the total momentum of the \(q\bar{q}\) system and \(M\) is the mass of the tetraquark,

\[
G^{(2)} \to \frac{G_0^{(2)} \Gamma^* \Gamma^* G_0^{(2)}}{P^2 - M^2},
\]

where \(G_0^{(2)}\) is the fully disconnected \(q\bar{q}\) propagator corresponding to the independent propagation of \(q\) and \(\bar{q}\) in the \(s\) channel. This implies that \(\Gamma^*\) satisfies the bound state equation

\[
\Gamma^* = K_{ir} G_0^{(2)} \Gamma^*
\]

where \(K_{ir}\) is the \(q\bar{q}\)-irreducible Bethe-Salpeter kernel for the \(q\bar{q}\) system.

Here we would like to point out that the tetraquark equations of SEFWW cannot be correct as they imply a kernel \(K_{ir}\) that is \(q\bar{q}\)-reducible. To show this, we write the three coupled

\[
\phi_M = \phi_M + \phi_D
\]

\[
\phi_D = \phi_M
\]

FIG. 1. Tetraquark equations without coupling to \(q\bar{q}\) channels, as first developed in Ref. \cite{1}. Tetraquark form factors \(\phi_M\) (displayed in red) couple to two mesons (dashed lines), and tetraquark form factors \(\phi_D\) (displayed in blue) couple to diquark and antidiquark states (double-lines).
FIG. 2. The tetraquark equations of SEFWW [4] which include coupling to $q\bar{q}$ channels. In addition to the tetraquark form factors as in Fig. 1, these equations involve the tetraquark form factor Γ^* (displayed in yellow) that couples to $q\bar{q}$ states (solid lines). The amplitude $K^{(2)}$ (displayed in light blue) represents the $q\bar{q}$ kernel in a theory without $q\bar{q}$ annihilation.

equations corresponding to Fig. 2 as

\[\Phi_M = V_{MM} G_0^0 \Phi_M + V_{MD} G_0^0 \Phi_D + N_M G_0^{(2)} \Gamma^*, \] (3a)

\[\Phi_D = V_{DM} G_0^0 \Phi_M + N_D G_0^{(2)} \Gamma^*, \] (3b)

\[\Gamma^* = K^{(2)} G_0^{(2)} \Gamma^* + N_M G_0 G_0^{(2)} \Phi_M + K^{(2)} G_0^{(2)} N_D G_0^{(2)} \Phi_D, \] (3c)

where V_{MM}, V_{MD}, and V_{DM}, are quark-exchange potentials for the processes $MM \leftarrow MM$, $MM \leftarrow DD$, and $DD \leftarrow MM$, respectively, and where N_M, N_D, \bar{N}_M, and \bar{N}_D describe the transitions between $4q$ and $2q$ states via the processes $MM \leftarrow q\bar{q}$, $DD \leftarrow q\bar{q}$, $q\bar{q} \leftarrow MM$, and $q\bar{q} \leftarrow DD$. Note that these equations also involve a $q\bar{q}$ kernel $K^{(2)}$ which should not be confused with $K^{(2)}$ as it does not contain terms that involve $2q \leftrightarrow 4q$ transitions.

Writing Eqs. (3) in matrix form as

\[\Phi = VG^0 \Phi + NG_0^{(2)} \Gamma^*, \] (4a)

\[\Gamma^* = K^{(2)} G_0^{(2)} (\Gamma^* + \bar{N} G^0 \Phi), \] (4b)

where

\[\Phi = \begin{pmatrix} \Phi_M \\ \Phi_D \end{pmatrix}, \quad G^0 = \begin{pmatrix} G_0^0 & 0 \\ 0 & G_0^0 \end{pmatrix}, \] (5)

\[N = \begin{pmatrix} N_M \\ N_D \end{pmatrix}, \quad \bar{N} = \begin{pmatrix} \bar{N}_M \\ \bar{N}_D \end{pmatrix}, \] (6)

and

\[V = \begin{pmatrix} V_{MM} & V_{MD} \\ V_{DM} & 0 \end{pmatrix}, \] (7)

\[^{1} \text{For simplicity, we ignore all symmetry factors in Eqs. (3) as they do not affect our argument.} \]
one can solve Eq. (4a) for Φ and substitute the result into Eq. (4b) to obtain
\[
\Gamma^* = \left[K^{(2)} + K^{(2)} G_0^{(2)} \bar{N} G^0 (1 - V G^0)^{-1} N \right] G_0^{(2)} \Gamma^*.
\] (8)

Comparison with Eq. (2) shows that
\[
K_{ir} = K^{(2)} + K^{(2)} G_0^{(2)} \bar{N} G^0 (1 - V G^0)^{-1} N,
\] (9)

which is in conflict with the very definition of a $q\bar{q}$ kernel since this expression for K_{ir} is $q\bar{q}$ reducible (notice the presence of the $q\bar{q}$ propagator $G_0^{(2)}$). For this reason the tetraquark equations of Ref. [4] are inconsistent.

[1] W. Heupel, G. Eichmann, and C. S. Fischer, Tetraquark Bound States in a Bethe-Salpeter Approach, Phys. Lett. B718, 545 (2012), arXiv:1206.5129 [hep-ph].
[2] A. M. Khvedelidze and A. N. Kvinikhidze, Pair interaction approximation in the equations of quantum field theory for a four-body system, Theor. Math. Phys. 90, 62 (1992).
[3] A. N. Kvinikhidze and B. Blankleider, Covariant equations for the tetraquark and more, Phys. Rev. D 90, 045042 (2014) arXiv:1406.5599 [hep-ph].
[4] N. Santowsky, G. Eichmann, C. S. Fischer, P. C. Wallbott, and R. Williams, σ-meson: Four-quark versus two-quark components and decay width in a Bethe-Salpeter approach, Phys. Rev. D 102, 056014 (2020) arXiv:2007.06495 [hep-ph].