Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Cruz, Nelly M., Yang Yuan, Barrett D. Leehy, Rinku Baid, Uday Kompella, Margaret M. DeAngelis, Pascal Escher, and Neena B. Haider. 2014. “Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease.” PLoS ONE 9 (1): e87942. doi:10.1371/journal.pone.0087942. http://dx.doi.org/10.1371/journal.pone.0087942.

Published Version
doi:10.1371/journal.pone.0087942

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879915

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease

Nelly M. Cruz1,2, Yang Yuan3, Barrett D. Leehy1, Rinku Baid4, Uday Kompella4,5, Margaret M. DeAngelis6, Pascal Escher7, Neena B. Haider1,2,*

1 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America, 2 Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America, 4 Nanomedicine and Drug Delivery Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America, 5 Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America, 6 Ophthalmology and Visual Sciences, John A. Moran Eye Center, Center for Translational Medicine, University of Utah, Salt Lake City, Utah, United States of America, 7 Institute for Research in Ophthalmology, Grand-Champlain, Sion, Switzerland

Abstract

Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3-associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.

Citation: Cruz NM, Yuan Y, Leehy BD, Baid R, Kompella U, et al. (2014) Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease. PLoS ONE 9(1): e87942. doi:10.1371/journal.pone.0087942

Editor: Thomas Langmann, University of Cologne, Germany

Received November 4, 2013; Accepted December 30, 2013; Published January 31, 2014

Copyright: © 2014 Cruz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the following funding agencies: NIH-NCRR P20-RRO18788-03 (NBH), NIH-NEI R01EY017653 (NBH), NIH-NEI R01EY017653-01A251 (NBH), NIH-NEI T32EY007145-14 (NMC), Hope for Vision (NBH), Edward N. & Della L. Thome Memorial Foundation (NBH, MMD), Massachusetts Lions Eye Research Fund (NBH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-authors Neena B, Haider and Margaret D. Angelis are PLOS ONE Editorial Board Members. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: neena_haider@meei.harvard.edu

Introduction

Genetic heterogeneity (identical mutations with variable clinical presentation of disease) is a common feature for many Mendelian disorders [1]. While the underlying mechanisms causing such variations are case specific, it is clear that environmental factors, allelic heterogeneity, genetic modifiers, or a combination of these, can have a profound impact in disease expressivity. Genetic modifiers are allelic variants distinct from the disease-causing gene that can alter disease onset, progression or the clinical features for that particular disease [2]. Since genetic modifiers can result in either increasing or reducing disease severity, identification of modifier loci is important for understanding disease pathophysiology, predicting disease progression and developing novel therapeutic strategies. Modifier loci have been mapped for several diseases in both human and mouse, including cystic fibrosis, epilepsy, Huntington’s disease, hearing loss and retinal degeneration [3–14]. The availability of extensive genomic tools and multiple inbred strains of mouse models provide a unique platform to uncover genetic modifiers that strongly influence phenotypic variation in human disease [15]. As such, identification of these modifier genes also provides powerful and novel therapeutics.

While significant disease variability is observed for inherited retinal degenerative diseases, the underlying causes for such variations are largely undiscovered [13,16–19]. Mutations in the nuclear hormone receptor NR2E3, also known as photoreceptor-specific nuclear receptor (PNR), have been associated with several retinal diseases including enhanced S-cone syndrome (ESCS), Goldmann-Favre syndrome and retinitis pigmentosa [20–25]. NR2E3 functions as dual activator and suppressor of gene expression and, together with transcription factors such as NRL, CRX and NR1D1, modulates photoreceptor cell fate and...
NR2E3 is also expressed in mature photoreceptors where it regulates expression of genes essential for proper function, such as phototransduction genes [31,32]. The NR2E3 protein contains four evolutionary conserved domains that are shared by the nuclear hormone receptor family; namely the highly variable A/B domain, N terminal DNA binding domain, a flexible hinge region and the ligand-binding and dimerization domain in the C terminus [33,34]. More than 30 disease-causing mutations have been identified in NR2E3, most of which are located within the DNA binding domain and the ligand-binding domain [20–25]. While most NR2E3 mutations have a recessive mode of inheritance, a c.166G>A (p.G56R) mutation in the NR2E3 gene is associated with autosomal dominant retinitis pigmentosa [25]. These data show significant phenotypic variation in patients with NR2E3 associated retinal degeneration. Interestingly, variable clinical presentation is observed even in patients harboring the same mutation and within the same family, suggesting that modifier genes modulate disease outcome in these patients [21,33,36].

The retinal degeneration 7 (rd7) mouse is a model for Nr2e3 associated retinal disease [37,38]. We utilize the Nr2e3^{rd7/rd7} mouse model to study the genetic heterogeneity observed in Nr2e3 associated retinal degeneration and to identify genetic modifiers that contribute to such variation. Mice homozygous for the rd7 mutation develop retinal dysplasia, with whorls and rosettes apparent at postnatal day 10 (P10) and retinal spots detectable by fundus examination at eye opening (P14) [37–39]. Similar to patients with Nr2e3 mutations, rd7 mice exhibit significant increase of S-cones and progressive degeneration of rod and cone photoreceptor cells [38]. Our previous studies demonstrated that the rd7 phenotype is highly variable depending on genetic background [40]. We observe complete penetrance in the B6.Cg-Nr2e3^{rd7/rd7} strain, while suppression occurs in crosses with the genetically divergent and inbred strains AKR/J, CAST/EiJ and NOD.NOH-H2_{nb1}, revealing that modifier alleles are present in these various genetic backgrounds. Specifically, complete suppression of rd7 by backcrossing F2 progeny from our B6.Cg-Nr2e3^{rd7/rd7} x AKR/J cross to the C57BL/6J inbred strain for six consecutive generations. Congenic animals carry the modifier loci from AKR/J on a C57BL/6J genetic background. Approximately 65% of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} N6 F2 animals homozygous for the rd7 mutation did not exhibit the retinal spotting normally observed in B6.Cg-Nr2e3^{rd7/rd7} animals, compared to 49% of F2 animals from the initial intercross of B6.Cg-Nr2e3^{rd7/rd7} x AKR/J, suggesting a single modifier gene is sufficient for rd7 suppression. A genome wide analysis of the congenic F2 animals confirmed that approximately 95% of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} genome harbored C57BL/6J alleles in the N6 generation. Two-thirds of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} suppressed mice were heterozygotes across the Mor7 locus, indicating that the AKR/J Mor7 allele acts as a dominant protective allele. Consistent with our previous results, the suppressed B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} mice harboring the modifier allele showed restored retinal morphology (Figures 1A and B) and normal expression of S-cone opsin (Opn1sw), compared to affected littermates harboring the susceptible allele (Figures 1C and D). Through our fine mapping analysis, we refined the Mor7 suppressor locus to a 3.3 cM region in chromosome 11. This region is flanked by markers D11Mit145 and D11Mit360 and contains approximately 200 genes.

Identification of Nr1d1 as a Genetic Modifier of rd7

We utilized a candidate approach to identify the Mor7 gene responsible for conferring rd7 suppression. Through rigorous in silico analysis using several publicly available resources (http://blat.ncbi.nlm.nih.gov, http://www.ensembl.org/index.html, http://pipeline.lbl.gov/cgi-bin/gateway2, http://www.ncbi.nlm.nih.gov/geo/), we determined that 95 of the approximately 200 genes that lie within the Mor7 locus are expressed in the retina, 10 of which are transcription factors (Figure 1E). We hypothesized that the Mor7 modifier gene functions in the same or parallel pathway as Nr2e3. Three of the identified genes, thyroid hormone receptor alpha (Thrha), retinoid acid receptor alpha (Rara) and retinoid acid receptor alpha (Rara) were members of the nuclear hormone receptor family. Given that several members of this family have been described as key regulators of retinal development and function, Thrha, Rara and Nr1d1 were considered strong candidates for Mor7 and their coding as well as upstream regions were sequenced to identify allelic variants between C57BL/6J and AKR/J. While allelic variants were not found in either Thrha or Rara, two single nucleotide polymorphisms (SNPs) were identified in Nr1d1 at homozygous state (Figure 2).

The SNPs identified in Nr1d1 are located in both the translated and untranslated regions of the gene. A non-synonymous SNP at position 12229p was identified in Nr1d1, resulting in replacement of the consensus Arginine at position 408 by Glutamine in the AKR/J Nr1d1 protein (Figures 2A and B). This SNP is located within the highly conserved ligand-binding domain (LBD) of the NR1D1 nuclear hormone receptor. Specifically, the SNP lies within the binding domain for the NR1D1 co-repressor N-CoR, also known as X domain [41]. A second SNP was identified at position +105 (Figures 2C and D), within the Nr1d1 promoter region [42,43]. Specifically, the AKR/J genome harbors a thymidine at this position whereas a cytosine residue is found in C57BL/6J. Sequence alignment of the Nr1d1 gene across species revealed that T is the evolutionary conserved allele at this position (Figure 2B). As this SNP resides within the putative promoter region.

Results

Genetic Fine Mapping of rd7 Modifier Locus on AKR/J Chromosome 11

Our previous studies revealed that genetic background strongly influences penetrance of Nr2e3^{rd7/rd7} phenotypes [37,40]. Specifically, complete suppression of rd7 retinal degeneration was observed in outcrosses of B6.Cg-Nr2e3^{rd7/rd7} mice to AKR/J, CAST/EiJ or NOD.NOH-H2_{nb1} mice and several modifier loci that were unique for each strain were identified [40]. Two suggestive quantitative trait loci (QTL) located on chromosomes 7 and 11 were found to be associated with suppression in the AKR/J genetic background [40]. To determine if a single modifier gene is able to ameliorate rd7 associated retinal degeneration, we generated an incipient congenic strain that harbors the AKR/J modifier locus on chromosome 11, named Mor7 for modifier of rd7, by backcrossing F2 progeny from our B6.Cg-Nr2e3^{rd7/rd7} x AKR/J cross to the C57BL/6J inbred strain for six consecutive generations. Genetic congenicity carries the modifier loci from AKR/J on a C57BL/6J genetic background. Approximately 65% of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} N6 F2 animals homozygous for the rd7 mutation did not exhibit the retinal spotting normally observed in B6.Cg-Nr2e3^{rd7/rd7} animals, compared to 49% of F2 animals from the initial intercross of B6.Cg-Nr2e3^{rd7/rd7} x AKR/J, suggesting a single modifier gene is sufficient for rd7 suppression. A genome wide analysis of the congenic F2 animals confirmed that approximately 95% of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} genome harbored C57BL/6J alleles in the N6 generation. Two-thirds of the B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} suppressed mice were heterozygotes across the Mor7 locus, indicating that the AKR/J Mor7 allele acts as a dominant protective allele. Consistent with our previous results, the suppressed B6.Cg-Mor7^{AKR}-Nr2e3^{rd7/rd7} mice harboring the modifier allele showed restored retinal morphology (Figures 1A and B) and normal expression of S-cone opsin (Opn1sw), compared to affected littermates harboring the susceptible allele (Figures 1C and D). Through our fine mapping analysis, we refined the Mor7 suppressor locus to a 3.3 cM region in chromosome 11. This region is flanked by markers D11Mit145 and D11Mit360 and contains approximately 200 genes.
region of *Nr1d1*, we examined whether *Nr1d1* mRNA expression varies in C57BL/6J versus AKR/J retinas. Quantitative real-time PCR confirmed that *Nr1d1* mRNA expression is upregulated by 3 fold in the AKR/J retina, compared to C57BL/6J (*P* = 0.0024, Figure 2E). This difference in expression may account for the suppressed effect observed in AKR/J genetic background. CAST/EJ and NOD.NOH-H2^ab_1 genetic backgrounds also confer resistance to *rd7* associated retinal degeneration; however, genetic modifiers on these backgrounds mapped to independent chromosomal locations. [40]. Quantitative real-time PCR shows that while *Nr1d1* mRNA levels are increased in CAST/EJ and NOD.NOH-2^ab_1 wild-type mice compared to B6 (Figure 2F), it is only a slight increase compared to the differences observed for AKR/J vs B6. Thus, the increased levels of *Nr1d1* in CAST/EJ and NOD-NOH-2^ab_1 may contribute to *rd7* suppression; however, the overall modification of the *rd7* phenotype in those strains is likely due to the presence of other modifier genes.

Nr1d1 Delivery Restores Retinal Integrity in rd7

NR1D1 regulates many processes such as differentiation, metabolism, and the circadian rhythm [44]. Recently, our studies and those of others have demonstrated a role for NR1D1 in the retina. NR1D1 forms a complex with NR2E3, CRX and NRL, key transcriptional regulators of retinal development and function [26]. Importantly, NR1D1 binds the NR2E3 protein directly and acts synergistically to regulate transcription of photoreceptor-specific genes [26]. Further, our work identified a number of genes co-regulated by NR2E3 and NR1D1 in the developing and adult retina [43]. Thus, *Nr1d1* is a strong candidate to modify the effects of *N2e3*-associated retinal degeneration.

In vivo electroporation was performed to deliver *Nr1d1* alleles from either C57BL/6J or AKR/J into the retina of neonatal rd7 mice and determine whether NR1D1 can modulate *rd7* associated retinal degeneration. The vector used has GFP to detect expression at the site of delivery. One month after delivery, GFP expression was present in both the outer nuclear layer, composed of the cell bodies of rod and cone photoreceptors, and in the inner nuclear layer of the retina (Figure 3). One month after injection, animals were examined clinically by indirect ophthalmoscopy for detection of the characteristic *rd7* pan-retinal spotting. While spotting of the fundus was clearly observable in the eyes electroporated with the control GFP vector at P30.5, electroporation of GFP.Nr2e3_B6 resulted in suppression of the phenotype (Figures 4C and D). Delivery of either GFP.Nr1d1_B6 (B6 allele, without the LBD SNP) or GFP.Nr1d1_AKR/J (AKR/J allele, with the LBD SNP) also resulted in rescue of the pan-retinal spotting phenotype (Figures 4E and F). Further, the absence of retinal spotting correlated with absence of retinal dysplasia in histological sections (Figures 4G–J). A subset of the electroporated animals were aged to 4 months and electroretinograms (ERGs) were performed to examine visual function. Significant improvements were observed in both scotopic (dark-adapted) and photopic (light-adapted) ERG response were observed in B6.Cg-Nr2e3^rd7/rd7_1 eyes injected with GFP.Nr1d1_AKR/J, compared to GFP injected eyes (Figures 4K and L). These studies demonstrate that the dosage of *Nr1d1* is sufficient for rescue of *N2e3*-associated retinal disease irrespective of the allelic variant in the ligand-binding domain; thus the promoter SNP is likely the protective allele-mediating rescue of disease.

Nr1d1 delivery results in the molecular rescue of rd7 misregulated genes

NR1D1, a regulator of circadian clock metabolism, also functions as a cofactor of NR2E3 and regulates expression of a number of genes in the retina [26,45]. We previously characterized the expression profile of the retinas of *rd7* animals and identified 30 genes that are misregulated in *N2e3* deficient retinas, 24 of which are directly regulated by NR2E3, NR1D1 or co-regulated by both nuclear hormone receptors [32]. We therefore hypothesized that NR1D1 is able to suppress *rd7* associated retinal degeneration through molecular rescue of key developmental and functional pathways that are misregulated in the *rd7* retina. We specifically focused on evaluating the expression of *Opn1sw* (the S-cone specific opsin) and *Gnat2* (cone photoreceptor specific transducin); key components of the cone phototransduction cascade that are significantly upregulated in *rd7*. We performed quantitative RT-PCR to assay expression of *Opn1sw* and *Gnat2* in the retina of *rd7* animals 30 days after GFP.Nr1d1_AKR/J delivery. Expression of *Opn1sw* was 1.5 fold increased in the
retina of untreated rd7 animals (left eye, n = 3) compared to C57BL/6J, consistent with previous reports (p = 0.004, Figure 5). GFP.Nr1d1AKR/J delivery to the right eye of the same rd7 animals resulted in a significant reduction in Opn1sw expression (p = 0.035, Figure 5). Furthermore, Opn1sw levels in GFP.Nr1d1AKR/J injected eyes were not significantly different from those present in wild-type C57BL/6J retinas (p = 0.86), indicating that Nr1d1 delivery rescues Opn1sw expression to near normal levels. Gnat2 was also significantly decreased in eyes injected with GFP.Nr1d1AKR/J, compared to un.injected eyes from the same animals (p = 0.005, Figure 5). These results suggest that Nr1d1 up-regulation is able to suppress Nr2e3 associated retinal degeneration by redirecting the biological networks that modulate photoreceptor development and function.

Discussion

Photoreceptor biogenesis and homeostasis are directed by key transcription factors that modulate expression of gene networks in an ordered fashion both during development and in the mature retina. Moreover, specific combinations of those transcription factors to regulatory regions are an important mechanism of...
transcriptional regulation. Several members of the nuclear receptor family, such as NR2E3, regulate key transcriptional networks during these processes. NR1D1 has recently been identified as yet another nuclear receptor important for proper function of the mammalian retina. NR1D1 interacts with NR2E3 and functions in the same transcriptional network [26,32,45]. Our previous studies show that acute knockdown of NR1D1 by shRNA targeting in the mouse retina results in retinal degeneration similar to that observed in rd7 animals [45]. In the present study, we show that Nr1d1 is a genetic modifier able to ameliorate N2e3 associated retinal degeneration and confirm that NR1D1 and NR2E3 act synergistically to regulate genes involved in retinal development and function.

Delivery of Nr1d1 alleles from AKR/J and C57BL/6J strains was able to rescue disease in rd7. The data presented here strongly suggests that rescue is mediated by an increase in Nr1d1 gene dosage and is not dependent on the SNP located in the ligand-binding domain. It is likely that in the AKR/J suppressed animals the promoter SNP results in increased levels of Nr1d1 that are sufficient to compensate for N2e3 loss. Consistent with this hypothesis, increased Nr1d1 mRNA expression is observed in the AKR/J retina compared to C57BL/6j. CAST/Ej and NOD.-NOH-H2nb1 have slightly higher Nr1d1 levels compared to C57BL/6j, but the difference is minimal compared to that of AKR/J. We previously showed that outcrossing rd7 to CAST/Ej and NOD.NOH-H2nb1 leads to suppression of the rd7 phenotype. Genetic mapping identified unique modifier loci for each strain, distinct from the Nr1d1-containing loci that significantly associated with the suppression in ARK/J mice. The minimal increased levels of Nr1d1 in CAST/Ej and NOD.NOH-H2nb1 thus likely does not influence overall modification of the rd7 phenotype in these strains, however it may provide some resistance [40].

Nr1d1 and N2e3 are members of the nuclear hormone receptor family and as such they have a similar gene structure [46]. Further, the NR1D1 and NR2E3 proteins interact with each other directly and regulate common genes/gene networks [26,45]. This interaction is important for the regulation of gene promoter activation complexes including the proteins NRL and CRX. Therefore, higher Nr1d1 expression may lead to rescue of rd7 by increasing active complexes that regulate transcription of genes important for photoreceptor homeostasis and function. This increase in active complexes may lead to an increased activation of low affinity Nr1d1 response elements that are also N2e3 targets.

As a circadian rhythm regulator, the cellular levels of Nr1d1 are tightly regulated and are a major determinant of circadian gene expression program [47,48]. In the retina, both N2e3 and Nr1d1 mRNA levels oscillate over a 24-hour period [45]. The retina contains an intrinsic circadian clock that regulates many aspects of retinal physiology [49]. More than 2,500 retinal genes have been identified to have circadian expression, including key photoreceptor genes regulated by N2e3 and Nr1d1 [50]. Therefore, it is likely for changes in Nr1d1 concentration to result in altered photoreceptor gene expression. We show that delivery of Nr1d1 to the rd7 retina re-regulates two key genes required for proper retinal function: Opn1sw and Gnat2. Both Opn1sw and Gnat2 function in the phototransduction process whereby the retina converts light to an electrical stimulus and as such are essential to vision. We chose to examine these two genes in rescued eyes because they are significantly misregulated in rd7 animals and are known direct targets of NR2E3. Our data strongly suggest that NR1D1-mediated regulation of key gene networks disrupted by NR2E3 loss contributes to rescue of retinal integrity and function in rd7 animals.

Our study illustrates that modifier genes capable of modulating a disease state provide viable therapeutic options with broad applicability. We provide evidence that rescue of disease can be achieved by delivering a modifier gene rather than replacing the disease-causing gene. Gene therapy clinical trials have resulted in tremendous success for treating patients with Leber’s congenital amaurosis (LCA), an inherited retinal disease [51–55]. These studies demonstrated the safety and efficacy of gene transfer through adeno-associated viral (AAV) delivery and have led to great advancements towards the use of gene therapy in the clinic. We predict that exploiting modifier genes as candidates for gene therapy may significantly broaden the therapeutic potential of AAV to treat retinal diseases and other diseases altered by genetic modifiers.

In summary, this study demonstrates that modifier genes play an integral role in disease presentation and as such can be used as powerful tools for gene therapy that can alter both disease progression and outcome. Future studies will focus on exploring the applicability of using Nr1d1 gene delivery for treating N2e3-associated retinal degeneration at advanced stages of disease, as well as retinal disease with other genetic causes. Specifically, this therapeutic approach has a powerful mechanism to treat diseases caused by mutations in different genes that converge on specific nodes or pathways within a common signaling network and as such has a much broader impact than single gene replacement therapy. Further, novel drugs and therapeutics distinct from gene therapy can be developed to exploit the use of genetic modifiers in the clinic.

Materials and Methods

Ethics Statement

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal use and procedures were approved by the University of Nebraska Medical Center Animal Care and Use Committee and the Schepens Eye Research Institute Animal Care and Use Committee (Permit Number: S302-0614) in compliance with the Animal Welfare Act Regulations. All efforts were made to minimize animal suffering.

Animal Maintenance

Animals were housed in vivariums at the Schepens Eye Research Institute and the Nebraska Medical Center. C57BL/6J and AKR/J mice were obtained from Jackson Laboratories, Bar
Nr1d1 Prevents Nr2e3 Associated Retinal Disease

A B6
B rd7
C rd7-GFP
D rd7-B6.Nr2e3
E rd7-AKR/JNr1d1
F rd7-B6.Nr1d1

G L eye, GFP
H R eye, Nr2e3^B6^

I L eye, GFP
J R eye, Nr1d1^AKR/J^

K Scotopic

L Photopic
Harbor, ME. B6.Cg-Nr2e3rd7d7 has been previously described [40]. B6.Cg-Nr1d1AKR/J-Nr2e3rd7d7 mice were generated by out-crossing B6.Cg-Nr2e3rd7d7 x AKR/J F2 mice to C57BL/6J, followed by backcrossing of the F2 progeny to C57BL/6J for six consecutive generations. Genotyping for the Nr2e3rd7d7 mutation was performed as previously described [38].

Construction of Expression Vectors

cDNA from C57BL/6J or AKR/J mice was used to amplify the Nr1d1 allele specific constructs (designated as GFP.Nr1d1B6 and GFP.Nr1d1AKR/J) were delivered by subretinal injection into the right eye of P0.5 rd7 animals using the electroporation method developed by Matsuda et al. [56]. The Nr2e3 allele from C57BL6/J (GFP.Nr2e3B6) was electroporated into rd7 animals as a positive control, while electroretinography tests of empty GFP expression vector or no injection to the left eye served as a negative control. 1 µg of naked DNA was injected subretinally, followed by electroporation immediately with tweezer electrodes at five 80 V pulses of 50 ms duration, with 950 ms intervals, using a square wave electroretinograph.

Clinical Examination

Animals were examined by indirect ophthalmology at P30 as previously described [40]. Briefly, pupils of animals were dilated with 1% Atropine and a Keeler Vantage indirect ophthalmoscope with a 60-diopter lens was used for fundus examinations. Animals were examined by indirect ophthalmology at P30 as previously described. A 60-diopter lens was used for fundus examinations. Anesthetized mice were examined with a 60-diopter lens using a Keeler Vantage indirect ophthalmoscope.

Quantitative Real Time PCR

Gene expression analysis was performed using quantitative RT-PCR as previously described [32]. Briefly, retinas were dissected rapidly after eye enucleation and placed in Trizol (Life Technologies, Carlsbad, CA) for RNA extraction. Extracts were consistently collected in the early afternoon for each animal in order to eliminate variability due to circadian expression. Two micrograms of total RNA was reverse transcribed using Rетroscript (Ambion, Austin, TX). Real-time PCR was performed in technical triplicates with a minimum of three biological replicates using SYBR Green PCR master mix (Applied Biosystems, Warrington, UK). The following primer were used: Nr1d1 (F: CGGCTCAGCGTCACTCGGTCAAATGGA, R: GTGTCGCTTGCGTGACTGTGA; Opt1sw (F: ACCCTTAACAGGGGTGCTTG, R: GCCCGAGGGGTCTGCA); Gnat2 (F: CAGGCTGAACTCCAGTACACAG, R: CAGGGTGCTCCCACGTCCAGCA); and b-Actin (F: ATGCCATTGGCCCGAGGCAGA, R: CCAGGGTACCCCTCCCGCCCA; and b-Actin (F: ATGCCATTGGCCCGAGGCAG, R: CCAGGGTACCCCTCCCGCCCA). Reactions were quantified using a Roche 480 LightCycler real time PCR instrument. Relative expression levels were normalized to the amount of b-Actin expressed and fold change relative to wild-type C57BL/6J control was calculated using the delta Ct method. Standard error was calculated to determine statistical significance.

Statistical Analysis

Statistical analysis for Figures 2 and 4 was performed using the two-tailed Student’s t test, with significance defined as P<0.05. At minimum 3 biological replicates were included in the each experiment.

Electroretinography

Electroretinography analysis was performed on 7 mice of each strain (4 month-old), as described previously [40]. Mice were anesthetized with an intraperitoneal injection of a saline carrier (10 mg/g body weight) containing ketamine (1 mg/mL) and xylazine (0.4 mg/mL). Mice were dark adapted for at least six hours and then anesthetized prior to recording. Dark-adapted...
responses were recorded to short wavelength ($\lambda_{max} = 470$ nm; Watten 47A filter) flashes of light over a 4.0 log unit range of intensities (0.3 log unit steps) up to the maximum allowable by the photic stimulator. Light-adapted responses were obtained with white flashes (0.3 step) on the rod-saturating background after 10 min of exposure to the background light to allow complete light adaptation. Signal processing was performed using EM for Windows v7.1.2. Signals were sampled every 0.8 ms over a response window of 200 ms. Responses were averaged for each stimulus condition with up to 50 records for the weakest signals.

References

1. Wolf U (1997) Identical mutations and phenotypic variation. Hum Genet 100: 305–321.
2. Houlton RS, Tomlinson IP (1998) Modifier genes in humans: strategies for identification. Eur J Hum Genet 6: 80–88.
3. Cutting GR (2010) Modifier genes in Mendelian disorders: the example of cystic fibrosis. Am NY Acad Sci 1214: 57–69.
4. Collaco JM, Cutting GR (2008) Update on gene modifiers in cystic fibrosis. Curr Opin Pulm Med 14: 559–566.
5. Bergan SK, Chen S, Galecki A, Kearney JA (2005) Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a. Mammm Genome 16: 683–690.
6. Djoussé L, Knowlton B, Hayden MR, Brinkman RR, et al. (2004) Evidence for a modifier of age at onset in Huntington disease linked to the HD gene. Neurogenetics 5: 109–114.
7. Li JH, Hayden MR, Almquist EW, Brinkman RR, Durr A, et al. (2003) A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study. Am J Hum Genet 73: 682–687.
8. Ljusfors A, Dragleva E, Teed A, Espinoz E, Fossale E, et al. (2006) Genetic background modifies nuclear receptor mutant huntingtin accumulation and HD CAG repeat instability in Huntington’s disease knock-in mice. Hum Mol Genet 15: 2013–2024.
9. Metzger S, Bauer P, Tompkin J, Laccone F, Didonato S, et al. (2006) The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington’s disease. Neurogenetics 7: 27–30.
10. Metzger S, Bauer P, Tompkin J, Laccone F, Didonato S, et al. (2006) Genetic analysis of modifier genes modifying the age-at-onset in Huntington’s disease. Hum Mol Genet 120: 205–292.
11. Kearney JA (2011) Genetic modifiers of neurological disease. Curr Opin Genet Dev 21: 349–353.
12. Haider NB, Berda A, Naggett JK, Nishima PM (2002) Genetic modifiers of vision and hearing. Hum Mol Genet 11: 1195–1206.
13. Yan D, Liu XZ (2010) Modifiers of hearing impairment in humans and mice. Curr Genomics 11: 269–276.
14. Marziali R et al. (2012) Modifier genes and the plasticity of genetic networks in mice. PLoS Genet 8: e1002644.
15. Zernant J, Kolm M, Dharmaraj S, den Hollander AI, Perrault I, et al. (2005) Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of a new modifier gene. Invest Ophthalmol Vis Sci 46: 3052–3059.
16. Passerini I, Sodi A, Giambene B, Merchini U, Torricelli F (2007) Phenotypic intrafamilial variability associated with S212G mutation in the RDS/peripherin gene. Eur J Ophthalmol 17: 1000–1003.
17. Walia S, Fishman GA, Swaroop A, Branham KE, Lindeman MD, et al. (2008) Discordant phenotypes in fraternal twins having an identical mutation in exon ORF15 of the RPRG gene. Arch Ophthalmol 126: 379–384.
18. Fahim AT, Bowne SJ, Sullivan LS, Webb KD, Williams JT, et al. (2011) Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One 6: e23021.
19. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streib LM, et al. (2000) Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 24: 127–131.
20. Schorderet DF, Escher P (2009) NR2E3 mutations in enhanced S cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum Mutat 30: 1475–1485.
21. Gerber S, Rozet JM, Takezawa SI, dos Santos LC, Lopes I, et al. (2000) The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition. Hum Mutat 107: 276–294.
22. Sharon S, Sandberg MA, Caruso RC, Berson EL, Dryja TP (2003) Shared mutations in NR2E3 in enhanced S cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol 121: 1316–1323.
23. Cippitelli F, Levoy BP, Bysens D, Hellemans J, De Boscher K, et al. (2007) Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet 81: 147–157.
24. Gire A, Sullivan LS, Bowne SJ, Birch DG, Doughan-Wheaton D, et al. (2007) The G86Arg mutation in NR2E3 accounts for 1–2% of autosomal dominant retinitis pigmentosa. Mol Vis 13: 1970–1975.
25. Cheng H, Khanna H, Oh EC, Hicks D, Mitton KP, et al. (2004) Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet 13: 1563–1575.
26. Haider NB, Denardo P, Nystuen AM, Huang X, Smith RS, et al. (2006) The transcription factor NR2E3 functions in retinal progenitors to suppress cone cell development. Vis Neurosci 23: 917–929.
27. Dyka HD, Ahmad O, Ahmad F, Liu J, Chen S (2005) The photoreceptor-specific nuclear receptor NR2E3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 14: 747–764.
28. Corbo JC, Cepko CL (2005) A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome. PLoS Genet 1: e11.
29. Ecker P, Gouzas P, Roduit R, Tahl I, Belay S, et al. (2009) Mutations in NR2E3 can cause dominant or recessive retinal degenerations in the same family. Hum Mutat 30: 342–351.
30. Bandtah D, Merin S, Ashihab M, Banin E, Sharon D (2009) The spectrum of retinal diseases caused by NR2E3 mutations in Israeli and Palestinian patients. Arch Ophthalmol 127: 297–302.
31. Akhmedov NR, Piriev NC, Chang B, Rapoport AL, Hawes NL, et al. (2000) A deletion in a photoreceptor-specific nuclear receptor mRNAs causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci U S A 97: 5531–5536.
32. Haider NB, Naggett JK, Nishima PM (2001) Excess cone cell proliferation due to a lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 10: 1619–1626.
33. Yanaji Y, Takeda S, Kato S (2002) Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development. Invest Ophthalmol Vis Sci 43: 3489–3494.
34. Haider NB, Zhang W, Hurdl R, Berda A, Nystuen AM, et al. (2008) Mapping of genetic modifiers of Nr2e3 rd7/rd7 that suppress retinal degeneration and restore blue cone cells to normal quantity. Mammm Genome 19: 145–154.
35. Zamiri I, Harding HP, Atkins GB, Hoelein A, Glass CK, et al. (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct expression domains. Mol Cell Biol 16: 5450–5465.
36. Adelman G, Regue A, Stelichen D, Lauder V (1996) A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repression activity. Proc Natl Acad Sci U S A 93: 3553–3558.
37. Kakizawa T, Nishio S, Triqueneaux G, Bertrand S, Rambaud J, et al. (1999) Retina-specific nuclear receptor: A potential regulator of cellular retinaldehyde-binding protein expressed in retinal pigment epithelium and Muller glial cells. Proc Natl Acad Sci U S A 96: 15149–15154.
38. Escher P, Gouzas P, Roduit R, Tahl I, Belay S, et al. (2009) Mapping of genetic modifiers of Nr2e3 in establishing photoreceptor identity during mammalian retinal development. Hum Mol Genet 18: 522–532.
39. Forrest D, Swaroop A (2012) Minireview: the role of nuclear receptors in transcriptional networks in the retina. PLoS One 6: e17494.

Acknowledgments

We would like to thank Arne Nystuen for intellectual discussions, and Connie Cepko who kindly provided us with vectors for in vivo electroporation constructs.

Author Contributions

Conceived and designed the experiments: NBH. Performed the experiments: NBH NMC YY BDL. Analyzed the data: NBH NMC YY BDL. Contributed reagents/materials/analysis tools: RB UK MMD PE. Wrote the paper: NBH NMC.
47. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311: 1002–1005.
48. Yin L, Wu N, Lazar MA (2010) Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 8: e001.
49. Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19: 91–102.
50. Storch KF, Piz C, Siporovitch J, Raviola E, Pawlyk B, et al. (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130: 730–741.
51. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, et al. (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358: 2240–2248.
52. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, et al. (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20: 999–1004.
53. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, et al. (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361: 725–727.
54. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18: 643–650.
55. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, et al. (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130: 9–24.
56. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101: 16–22.