Original article

Khamira Banafsha for the symptomatic treatment of Covid-19 Disease

Mohammad Zakir1*, Mohd Naushad2, Wasim Ahmad3, Tasleem Ahmad4, Syeda Hajra Fatima5, Md Aftab Alam6, Ghazala Javed7

Abstract

Respiratory illness is one of the most important public health problems in many countries worldwide. Even though most of the ailments are treatable with normal care, respiratory-related mortality continues to increase year after year. The global situation is deteriorating as a result of the COVID-19 epidemic. Numerous Unani formulations are beneficial against a variety of respiratory disorders, but they must be clinically researched before they can obtain widespread acceptance in the modern world. At the moment, no antiviral medication is either available for each respiratory disease or is costly and not easy to use in pandemics like COVID-19 on large scale, although Unani medicines may be considered an option. Khamira Banafsha (KB) is a semi-solid blend of three dried flowers, Viola odorata L., Borago officinalis L., and Rosa damascena Mill and the distillate of Rosa damascena, and sugar. The components in this formulation are well-known and frequently utilized in the treatment of respiratory problems. The formulation has been used to treat a wide range of illnesses for decades. This review will discuss the pharmacology, ethnopharmacology, and repurposing of KB as an adjuvant or symptomatic treatment for Covid-19 illness. The chemical composition of the ingredients may be evaluated In-silico to identify their eligibility for Covid-19 disease symptomatic management.

Keywords: Antiviral, Antipyretic; Covid-19; Herbal medicine; Khamira Banafsha; Repurposing; Respiratory diseases; Unani medicine

Introduction

In addition to the rhinoviruses and coronaviruses, the common cold is caused by many other viruses and mostly affects the upper respiratory system1. It is a prevalent condition worldwide that affects the population of all age groups particularly younger people in adulthood2. Acute respiratory infection is the second most commonly recognized disease entity in medical facilities3 and also the most typical diagnosis in emergency rooms4. A quarter of respondents in the United States said they had

1. Mohammad Zakir, Assistant Professor, Department of Ilmul Advia (Pharmacology), National Research Institute of Unani Medicine for skin Disorders (NRIUMSD), Hyderabad, India.
2. Mohd Naushad, Assistant Professor, Department of Ilmul Advia (Pharmacology), Uttranchal Unani Medical College & Hospital, Mustafabad (Padratha), Haridwar, India
3. Wasim Ahmad, Assistant Professor, Department of Kulliyyat-e-Tibb, National Institute of Unani Medicine (NIUM), Bangalore, India
4. Tasleem Ahmad, Research Officer, Department of Biochemistry, National Research Institute of Unani Medicine for Skin Disorders (NRIUMSD), Hyderabad, India
5. Syeda Hajra Fatima, Research Officer, Department of Pathology, National Research Institute of Unani Medicine for Skin Disorders (NRIUMSD), Hyderabad, India
6. Md Aftab Alam, MD Scholar, Department of Ilmul Advia (Pharmacology), National Research Institute of Unani Medicine for Skin Disorders (NRIUMSD), Hyderabad, India
7. Ghazala Javed, Research Officer, Central Council for Research in Unani Medicine, New Delhi, India

Correspondence: Mohammad Zakir, Assistant Professor, Department of IlmulAdvia(Pharmacology), National Research Institute of Unani Medicine for skin Disorders (NRIUMSD), Hyderabad, India. e-mail: urzakir@rediffmail.com (Dr.Mohammad Zakir)
taken a cough or cold drug followed by a sedating or non-sedating antihistamine in the previous week for the management of respiratory diseases. One of the most common reasons to take vitamins and herbs is to help prevent colds and influenza. In a study conducted by telephone or personal interview to estimate the prevalence of recent OTC medication use in a national sample of 3-year-old preschool-age children. Total 8145 children were interviewed by their mothers about OTC medications given in the last 30 days and the type of medication given. In the last 30 days, 53.7% of all 3-year-olds in the US received OTC medications. Among OTC medication users, acetaminophen (66%) and cough/cold medicine were most commonly reported (66.7 percent). The successful use of herbal drugs, from Unani and Ayurveda to enhance immunity and deal with Coronavirus signs and symptoms, has provided an opportunity to prove its strength and develop an effective and safe remedy for respiratory viral infections. The Unani system of medicine (USM) is holistic and treats the whole body rather than the virus or causative organism. There are several single and compound formulations that Unani physicians are using for centuries to treat respiratory diseases. It is high time that these formulations should be tested clinically for each indication and also for new indications like Coronavirus. The Coronavirus affects the respiratory system, so the drugs used in respiratory diseases may be tried. An important formulation Khamira Banafsha is chosen here to discuss its possible use in Coronavirus prevention and treatment.

Methodology

The details of Khamira Banafsha in Unani medical practice have been gleaned from Qarabadeen Ahsani (Urdu), while the information regarding its ingredients was collected from various books including Aljameul Mufradat Al-Adviwal-Aghzia; Khazain-ul-Adviya; Al-Qanunfi’l Tibb; Bustanul Mufradat; Makhzanul Mufradat; Tajul Mufradat and National Formulary of Unani Medicine. We conducted a systematic review of contemporary research on ingredients of the formulation about their pharmacological studies, clinical trials, and ethnopharmacology, using online resources such as PubMed, Scopus, Science Direct, and Google Scholar. Keywords such as Antiviral, Antipyretic, Covid-19, Herbal medicine, Khamira Banafsha, Repurposing, Respiratory diseases, Unani medicine, and ethnopharmacology were used.

Clinical Presentation and Epidemiology

COVID-19 has a wide range of clinical symptoms, from asymptomatic to acute respiratory distress syndrome and multi-organ failure. Fever, cough, sore throat, dyspnea, myalgia or fatigue, sputum production, headache, hemoptysis, and diarrhea are among the first symptoms of Covid-19. Conjunctivitis has also been described. Only a few patients did not have a fever when the disease was still in its early stages. Nearly 30% of patients developed acute respiratory distress syndrome (ARDS), (12%) developed an acute cardiac injury, 7% developed acute kidney injury (AKI), and 7% developed shock. As a result, they are difficult to distinguish from other respiratory infections. In a small percentage of patients, the condition can develop to pneumonia, respiratory failure, and mortality by the end of the first week.

COVID-19 has been confirmed in approximately 3.2 crore people worldwide as of September 2021. Because only a fraction of acute infections is detected and reported, the reported case counts understate the actual burden of COVID-19. After accounting for probable false positives or negatives, seropositivity suggests that the rate of past exposure to SARS-CoV-2, as expressed by seropositivity, surpasses the incidence of reported cases by around 10-fold or more, according to seroprevalence surveys in the United States and Europe. Modern Medical interventions

Medications for SARS, MERS, HIV/AIDS, and malaria have been repurposed as successful COVID-19 treatments. Rather than researching novel medicines, medication repurposing can save time and money. It appears that the catalytic sites of 2019-nCoV enzymes that potentially be antiviral targets are substantially conserved, with strong sequence similarity to the SARS and MERS enzymes. Structural analysis of viral enzymes suggests that drug-binding pockets are conserved in 2019-nCoV, SARS, and MERS. Thus, existing MERS and SARS inhibitors were repurposed for 2019-nCoV. Listed below are licensed medications or experimental compounds that have already been evaluated in clinical trials for other diseases. Several approved and investigational nucleoside analogs (favipiravir, ribavirin) may be effective against 2019-nCoV. Adenine or guanine derivatives target the RNA-dependent RNA polymerase and inhibit viral RNA synthesis in RNA viruses, including human coronaviruses. Favipiravir
(T-705), a guanine analog licensed for influenza treatment, can efficiently inhibit the RNA-dependent RNA polymerase of RNA viruses such as influenza, Ebola, yellow fever, chikungunya, norovirus, and enterovirus, and recently against 2019-nCoV (EC50 = 61.88 M in Vero E6 cells). Remdesivir exhibits broad-spectrum activity against RNA viruses such as MERS and SARS. 2019-nCoV was suppressed by remdesivir (EC50 = 0.77 M in Vero E6 cells), and in January, 2019-nCoV patient in the US recovered after receiving intravenous remdesivir. An approved immune modulator, chloroquine, shows inhibitory effects against 2019-nCoV (EC50 = 1.13 μM in Vero E6 cells) and is being evaluated in an open-label trial (ChiCTR2000029609). Nitazoxanide, approved for diarrhea treatment, could also inhibit 2019-nCoV (EC50 = 2.12 μM in Vero E6 cells). Remdesivir was also discovered to exhibit antiviral activity against other RNA viruses, particularly those belonging to the Coronaviridae family, such as SARS-CoV, MERS-CoV, and COVID-19. Grein et al. published the most comprehensive study to date, reporting on the compassionate use of Remdesivir 22 in 61 patients, 53 of whom had complete follow-up. There was an improvement in oxygen support in 36 of 53 patients (68%). Even though there is a general dearth of prospective randomized studies at the moment, Remdesivir continues to demonstrate very encouraging results.

Convalescent plasma therapy with COVID-19 survivor antibodies has been used in many trials, most notably in case-based settings. Shen et al. reported on the use of convalescent plasma in five critically ill patients with ARDS who were ventilated mechanically (age range, 36-65 years). Additionally, Zhang et al. described significant clinical improvement in four patients treated with convalescent plasma. Ye et al. recently reported on six COVID-19 patients from Wuhan, China, who had a favourable outcome in terms of signs and symptoms improvement. The combination of chloroquine, hydroxychloroquine, and azithromycin has gained considerable popularity and the promise for effective treatment; however, there are some disagreements and divergences between research and results.

II-6 monoclonal antibodies were launched for the treatment of COVID-19-associated cytokine release syndrome and have been utilized in just a few case series worldwide, with generally favourable results. Statins are also regarded safe, and they have significant preventative benefits on the prevalence of atherosclerosis, plaque stabilization, and endothelial dysfunction recovery.

**Natural Therapies**

Traditional Chinese Medicine (TCM) based treatments improved symptoms and enhanced immunity in COVID-19 patients. Patients respond well to combining TCM and Western medicine methods on COVID-19. Approximately 3100 TCM personnel had been deputed to the Hubei district at the time of the epidemic. TCM was formally accepted by Chinese guidelines to treat COVID-19. The decoction, Chinese patent medicine, acupuncture, and other TCM-specific therapies were all utilised extensively, with the majority of cases being treated based on syndrome differentiation. Specific TCM wards have been developed, as well as a recognized hospital; also, the TCM staff participates in treatment collaboratively.

TCM has advocated providing prescriptions that are likely to be successful based on existing treatment outcomes, such as qingfeipaidu decoction (QPD), gancaoganjiang decoction, sheganmahuang decoction, and qingfeitouxiuzheng recipe. QPD, which is composed of approximately 21 herbs, has been advocated in China as a general prescription for the diagnosis and treatment of COVID-19. Among the 701 confirmed patients treated with QPD, 130 cases were cured and discharged, 51 cases had their clinical symptoms resolved, 268 cases had their symptoms improved, and 212 cases had their symptoms remained stable without aggravation. QPD has a cure rate of more than 90% against COVID-19. The primary location of the pharmacological activity is the lung. Additionally, it has been shown to protect the heart, kidneys, and other organs. Among the identified potential targets, the majority co-expressed ACE-2, the COVID-19 receptor, implying the possibility of improving COVID-19. It prevents the replication of COVID-19 by interfering with various ribosomal proteins. QPD may regulate and alleviate excessive immune response and inflammation by modifying immune and cytokine-related pathways, as demonstrated by functional enrichment analysis. Additionally, molecular docking suggested that the patchouli alcohol, ergosterol, and shionone components of the formula would have a greater anti-COVID-19 effect, leading to the discovery of novel molecule structures for the creation of new medications. The results of molecular docking indicated that the phytocompounds in *Arq Ajib* (a
multi-ingredient Unani formulation) have a high affinity for and contact with the S glycoprotein and 3CLpro. Quercetin and isorhoifolin were found as interesting candidates from Menthaarvenensis for their ability to bind with 3CLpro and spike glycoprotein and thereby impede viral replication and entry into the host 39.

**Unani Medicines**

*Khamira Banafsha* is a compound formulation containing the decoction of three important flowers, i.e., Gul-e-Banafsha (flowers of *Viola odorata* L.), Gul-e-Gaozaban (flowers of *Borago officinalis* L.), and Gul-e-Surkh (flowers of *Rosa damascena* Mill.) [40]. Khamira is a semisolid preparation made up of decoction of plant parts in the base (*Qiwam*) made of purified sugar. The composition of the KhamiraBanafsha is given in Table-1.

**Table-1: Composition of KhamiraBanafsha**

| S. No | Name of Medicine | Scientific name | Part used | Total Quantity |
|-------|------------------|-----------------|-----------|----------------|
| Gul-e Banafsha | *Viola odorata* L. | Flower | 36 gm |
| Gul-e Surkh | *Rosa damascena* Mill. | Flower | 36 gm |
| Gul-e Gaozaban | *Borago officinalis* L. | Flower | 36 gm |
| QandSaif | Sugar | Sugar | 375 gm |
| AraqGulab | *Rosa damascena* Mill. | Distillate | 500 ml |

Therapeutic uses: Khamira Banafsha is recommended in *Amrad-i-Sadr* (diseases of lungs), *Dhāt al-Ri’a* (pneumonia), *Dhāt al-Janb* (pleurisy), and it expels *Khilt Safra* (yellow bile).

**Ethnopharmacology of ingredients of Khamira Banafsha**

1. **Gul-e Banafsha (Flowers of *Viola odorata* L.)**

It is the flower of *Viola odorata* L. frequently used in USM in various formulations. There are several formulations where it is the main ingredient while in other as subsidiary ingredient.

**Therapeutic actions (Afa’al)**

Therapeutic actions of Banafshaas mentioned in Unani literature are *Muhallil-i-Waram* (anti-inflammatory), *Mu’arriq* (diaphoretic), *Muqawwi* (tonic), *Musakkin-i-Dimāgh* (sedative), *Munaffith-i-Balgham* (expectorant), *Mulaṭṭif* (demulcent), *Mumallis* (emollient), *Dafi ’i- Hummā* (antipyretic), *Musakkin-i-Suda* (relieve the headache), and *Musaffi-i-Dam* (blood purifier)41; 42; 43; 44; 45.

**Therapeutic Uses**

Banafsha is used to treat the following conditions: *Su’al* (cough), *Nazla* (coryza), *Suda* (headache), *Hummāmurakkhaba* (complex fever), *Dhāt al-Janb* (pleurisy), *Dhāt al-Ri’a* (pneumonia), *Khushūna al-Halaq* (irritation of throat), and *Sozish-i-Halaq* (burning in the throat)41; 42; 43; 44; 45. Additionally, it is used in the household as a remedy for coughs, sore throats, and hoarseness of voice. It is also prescribed in conjunction with various aperients such as tamarinds (*Tamarindusindica* L.) and myrobalans (*Terminaliachebula* Gaertn. Retz.)46. When applied directly to the head, Banafsha relieves headaches caused by high heat. If dry Banafsha is combined with sugar, severe purgation is likely. Banafsha leaves are traditionally used to cure stomach discomfort, eye edema, and other organ swellings. It is well-known for its efficacy in treating infantile seizures (*Umm al-Sibyān*) and Ludwig’s angina (*Khunāq*)47.

**Important formulations of GB**

In Unani Medicine, drugs from the plant, mineral, and animal origin have been used either as a single entity or in a combination of more than one drug in specific proportion mentioned in Unani Pharmacopoeias and National formularies. If more than one drug has been mixed in a specific proportion by a particular method, it is called compound formulation. The following compound formulations contain Banafsha (*Viola odorata* L.) as an ingredient.

- *Habb-e-Banafsha* has been used to treat *Suda* (headache), *Dhiq al-Nafas* (asthmatic bronchitis), and *Su’al* (cough).
- *Dayaqooza* has been used to treat *Su’al* (cough) and *Nazla-o-Zukam* (coryza and catarrh).
- *Habb-e-Ghariqoon* has been used to treat *Dhiq al-Nafas* (asthmatic bronchitis).
- *Habb-e-Luban Qawi* has been used to treat *Su’ali-Nazli* (cough due to coryza).
- *Habb-e-Sīl* has been used to treat *Sīl* (phthisis).
- *Itrifal-e-Zamani* has been used to treat *Su’al* (cough), *Nazla-o-Zukam* (coryza and catarrh).
- *Majoon-e-Antaki* has been used to treat *Suda* (headache).
- *Mufeed Joshanda* has been used to treat *Nazla-o-Zukam* (coryza and catarrh) and *Hummā* (fever).
- *Qairooti Bazr-e-Katan* has been used to treat *Dhāt al-Janb* (pleurisy) and *Dhāt al-Ri’a* (pneumonia).
Gul-e Surkh (GS) (Flowers of \textit{Rosa damascena} Mill.)

It is the flower of \textit{Rosa damascena} Mill. They are commonly used in USM in various forms. There are several formulations where it is the main ingredient, like Gulqand (a mixture of flowers with sugar), Araq Gulab (a distillate of flowers), Roghan-e Gul (oil obtained from flowers), and also used as an ingredient in several formulations.

Therapeutic actions (\textit{Afa’al})

It has several therapeutic actions such as Dafi’-i-Ta’affun (antiseptic), Musakkin-i-Alam (analgesic), Muqawwī-i-Badan (general tonic), Mushil, Muqawwī (tonic), Mufarrah-i-Waram (anti-inflammatory)\textsuperscript{41; 45; 46; 47; 54; 55}.

Therapeutic Uses

Based on its various therapeutic actions, it is used to treat various diseases such as \textit{Duf’ al- A’dā’ Ra’isa} (weakness of vital organ), \textit{Duf’ al-Badan} (general weakness), Khafaqān (palpitation), Khushūna al-Berg-e-Gaozaban (irritation of throat), Sozish-i-Halaq (burning in the throat), Suda (headache), Waram al-Lawzatayn (tonsillitis), Hummā (fever), Ghashi (syncope), Nafith al-Dam (hepatoptysis). Gul-e-surkh taken with \textit{Sharbat-e-Banafsa} (syrup a compound formulation) ineffective in asthma\textsuperscript{41; 45; 46; 47; 54; 55}.

Important formulations of GS

- \textit{Araq Gulab} has been used to treat \textit{Duf’ al-A’dā’ Ra’isa} (weakness of vital organ) and Khafaqān (palpitation).
- \textit{Dawa-ul-Misk Barid Jawahar Wali} has been used to treat \textit{Duf’ al-A’dā’ Ra’isa} (weakness of vital organ).
- \textit{Dawa-ul-Misk Motadil Jawahar Wali} has been used to treat \textit{Duf’ al- A’dā’ Ra’isa} (weakness of vital organ).
- \textit{Itirifal Muqawwi Dimāgh} has been used to treat Nazla (coryza), and Sudā’ (headache).
- \textit{Itirifal Ustukhuddus} has been used to treat Suda (headache), Nazla Muzmin (chronic coryza),
- \textit{Itirifal-e-Zamani} has been used to treat \textit{Su’āl} (cough), Nazla-o-Zukam (coryza and catarrh).
- Jawarish Zaruni Ambari has been used to treat \textit{Su’āl Balghami} (phlegmatic cough) and \textit{Niqris} (gout)).
- Khameera Abresham Arshadwala has been used to treat \textit{Duf’ al-A’dā’ Ra’isa} (weakness of vital organ) and Khafaqān (palpitation).
- Khamira Mufarrī Shaikh-e-Kalan has been used to treat \textit{Duf’ al-Qalb} (weakness of the heart) and Khafaqān (palpitation).
- Mufarrah Shaikh-ur-Rais and Mufarreh Yaqooti Motadil have been used to treat \textit{Duf’ al-Qalb} (weakness of the heart).
- Qurs Kafoor has been used to treat Hummā Diqqiyaa (hectic fever) and Hummā-i-Muḥarrīqa (high-grade fever).
- Qurs-e-Saran-Kafoori has been used to treat Hummā (fever), Diq (asthma), Sill (phthisis), and Surfa (cough).
- Qurs-e-Ward has been used to treat Hummā Balghamiyya (fever due to phlegm), and Sharbat Faryad Rash has been used to treat \textit{Su’āl} (cough) and Nazla (coryza)\textsuperscript{49; 50; 51; 52}.

2. Gul-e Gaozaban (Flowers of \textit{Borago officinalis} L.)

The flowers and leaves of \textit{Borago officinalis} L. are commonly used in the USM as Gul-e Gaozaban (GG) and Berg-e-Gaozaban (BG), respectively. The GG is the main ingredient in several formulations,
while in many a subsidiary ingredient. In Khamira Banafsha, flowers are used. The therapeutic actions, therapeutic uses, and essential formulations used to treat respiratory diseases mentioned in Unani literature are described here.

**Therapeutic actions (Afa’al)**

Dafī’-i-Hummā (antipyretic), Muqawwi-i-A’da’ Ra’īsa (tonic for vital organs), Muqawwi-i-Qalb (cardio tonic) and Munaffith-i-Balgham (expectorant)41; 42; 44; 45; 46; 47.

**Therapeutic Uses**

Dhīq al-Nafas (asthmatic bronchitis), Surfa Yubsiyya (dry cough), Khafaqān (palpitation), Su’al (cough), and Nazla-o-Zukam (coryza and catarrh)41; 42; 44; 45; 46; 47.

**Important formulations of GG**

- Ambari has been used to treat Du’f al-A’dā’ Ra’īsa (weakness of vital organ), Du’f al-Badan (general weakness).
- Araq-e-Gaozaban has been used to treat Nazla-o-Zukam (coryza and catarrh), Du’f al- A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Dawa-ul-Misk has been used to treat Du’f al-A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Dawa-ul-Misk Barid Jawahar Wali has been used to treat Du’f al- A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Dawa-ul-Misk Motadil Jawahar Wali has been used to treat Du’f al- A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Dayaqooza has been used to treat Su’al (cough), and Nazla-o-Zukam (coryza & catarrh).
- Habb-e-Jawahar Kafoori and Habb-e-Jawahar Moalli have been used to treat Sill (phthisis), and Diq (asthma).
- Khamira Abresham Sada has been used to treat Du’f al- A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Khamira Gaozaban Ambari Jawahirwala has been used to treat NazlaMuzmin (chronic coryza) and Khafaqān (palpitation).
- Khamira Nazli Jawahirwala has been used to treat Nazla (coryza), Zukam (coryza).
- Laoq Zeequn Nafas Qawi has been used to treat Dhīq al-Nafas (asthmatic bronchitis).
- Majoon Rahul-momineen has been used to treat Diq al-Nafas (bronchial asthma).
- Mufarreh braid has been used to treat Du’f al-Qalb (cardiac insufficiency), and Khafaqān (palpitation).
- Mufarrehsosambari has been used to treat Du’f al-Qalb (cardiac insufficiency).
- Mufarreh Yaqooti Barid has been used to treat Du’f al-Qalb (cardiac insufficiency), and Naqāhat (debility/convalescence).
- Mufarrehyaqootimotadil has been used to treat Naqāhat (debility/convalescence), Du’f al-A’dā’ Ra’īsa (weakness of vital organ), and Khafaqān (palpitation).
- Sharbatdeenar has been used to treat Dhāt al-Janb (pleurisy).
- Zehbi has been used to treat Du’f al-Qalb (cardiac insufficiency), and Khafaqān (palpitation) [48; 50; 51; 52; 53].

**Discussion**

Coronavirus disease is a viral respiratory illness in which the elderly and those with medical conditions such as cardiovascular disease, diabetes, lung disease, and cancer are more likely to become seriously ill. The symptoms of COVID-19 can be classified into three categories: the more frequently such as fever, dry cough, and tiredness; the less common include aches, sore throat, diarrhea, conjunctivitis, headache, loss of taste or scent, and a rash on the skin, as well as discoloration of fingers or toes. The severe symptoms include breathing difficulties or shortness of breath, chest pain or discomfort, and speech or movement loss56.

There is no drug available for the prophylaxis and management of active COVID-19 infection, although several antiviral drugs were used during the COVID-19 pandemic. Natural drugs’ success in boosting immunity during the pandemic has shown a way to discover a natural way to treat viral infections. The USM is holistic and treats the body as a unit instead of killing the virus or bacteria. The basic concept is to help the body to fight against the antigen and to restore normal homeostasis. The management of respiratory diseases in USM is given in detail, and several single and compound formulations are mentioned in the literature57.

In Unani literature, GB is indicated as a Muhallil-
i-Waram (anti-inflammatory), Munaffith-i-Balgham (expectorant), Musaffī-i-Dam (blood purifier), and Daft‘i-iHummiyat (antipyretic). It is used to treat various ailments such as cough, coryza, headache, pleurisy, pneumonia, throat irritation, and complex fever. It is used to treat various pharmacological properties and has been studied for its antipyretic, anti-inflammatory, antioxidant, vascular protective, neuroprotective, antihypertensive, antidyslipidemic, hepatoprotective, antitussive, anti-asthmatic, and antibacterial activity. The GG is presented as a Muqawwi (tonic), Munaffith-i-Balgham (expectorant), Daft‘i-i-Humma (antipyretic), and Du‘f al- A‘dā’ Ra‘isa (weakness of vital organ). It is used to treat asthmatic bronchitis, dry cough, palpitation, coryza, and catarrh. The GG has been studied for its antioxidant, antinociceptive, and it has also shown anti-asthmatic activity in a clinical trial. The GS is designated as Dafi‘i-Ta‘affun (antiseptic), Musakkin-i-Alam (analgesic), Muqawwī-i-Badan (general tonic), Muhallil-i-Waram (anti-inflammatory), It is used in the management of tonsillitis, fever, irritation of the throat, headache, general weakness, palpitation, weakness of vital organ, and hemoptysis. The GS has been studied for its antioxidant, analgesic, anti-inflammatory activity, and use in dementia. It has also shown antibacterial potential.

Conclusion

Khamira Banafsha is a unique Unani herbal formulation that is used for respiratory ailments. It has three commonly used components that can be used individually and in formulations that treat respiratory problems. The ingredients also possess general tonic and immune-boosting activities, which may add up to its usefulness in the management of COVID-19 as a prophylactic and therapeutic application. The clinical trial for its efficacy and safety in coronavirus infection may be carried out to validate its actions and uses.

Acknowledgment

The authors are very thankful to the Director-General, CCRUM, Ministry of AYUSH, to write this article.

References:

1. Heikkinen T, Järvinen A. The common cold. The Lancet. 2003;361(9351):51-59.
2. GwaltneyJr JM. Viral infection of humans. Rhinoviruses. Edited by Evans. New York: Springer US; 1982. 491-518.
3. Woodwell DA, Cherry DK. National ambulatory medical care survey: 2002 summary. Advance Data. 2004;346:1-44.
4. McCaig LF, Burt CW. National Hospital Ambulatory Medical Care Survey: 2004 emergency department summary. Advance Data. 2004;340:1-34.
5. Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. Jama. 2002;287(3):337-44.
6. Kogan MD, Pappas G, Stella MY, Kotelchuck M. Over-the-counter medication use among US preschool-age children. Jama. 1994;272(13):1025-30.
7. Nikhat S, Fazil M. Overview of Covid-19; its prevention and management in the light of Unani medicine. Sci Total Environ. 2020;728:138859.
8. Talwar S, Sood S, Kumar J, Chauhan R, Sharma M, Tuli HS. Ayurveda and Allopathic Therapeutic Strategies in
Coronavirus Pandemic Treatment 2020. *CurrPharmacol Rep*. 2020 Oct 22:1-10.

9. Natarajan S, Anbarasi C, Sathiayarajeswaran P, Manickam P, Geetha S, Kathiravan R, et al. The efficacy of Siddha Medicine, KabasuraKudineer (KSK) compared to Vitamin C & Zinc (CZ) supplementation in the management of asymptomatic COVID-19 cases: A structured summary of a study protocol for a Randomised Controlled trial. *Trials*. 2020;21(1):1-2.

10. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *The Lancet Respiratory Medicine*. 2020 1;8(5):475-81.

11. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia Wuhan, China: a descriptive study. *Lancet*. 2020;395:507–13.

12. Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Bayssony H, De Ridder D, Petrovic D, Schrempt S, Marcus K, Yerly S. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. *The Lancet*. 2020 Aug 1;396(10247):313-9.

13. Centers for Disease Control and Prevention (CDCP). Commercial Laboratory Seroprevalence Survey Data. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html (accessed on October 28, 2020).

14. Havers FP, Reed C, Lim T, Montgomery JM, Klena JD, Hall AJ, Fry AM, Cannon DL, Chiang CF, Gibbons A, Krapuinya I. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23-May 12, 2020. *JAMA internal medicine*. 2020 Dec 1;180(12):1576-86.

15. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020 Mar;19(3):149-150.

16. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. *ChemBiochem*. 2020 Mar 2;21(5):730. https://doi.org/10.1002/cbic.202000047

17. De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. *Chemistry—An Asian Journal*. 2019 Nov 18;14(22):3962-8.

18. Zhengli S. Team of 10 researchers at the WIV (4 February 2020). “Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro”. *CellResearch*. 30(3):269-71.

19. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkersen S, Tural A, Diz G. First case of 2019 novel coronavirus in the United States. *New England Journal of Medicine*. 2020;382:929-936.

20. Wang R, Zhang X, Irwin DM, Shen Y. Emergence of SARS-like coronavirus poses a new challenge in China. *Journal of Infection*. 2020 Mar 1;80(3):350-71.

21. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trancheva I, Bannister R. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. *Science translational medicine*. 2017 Jun 28;9(396).

22. Grein J, Ohmagari N, Shin D, Diz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, Nicasir E. Compassionate use of remdesivir for patients with severe Covid-19. *New England Journal of Medicine*. 2020 Jun 11;382(24):2327-36.

23. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. *Jama*. 2020 Apr 28;323(16):1582-9.

24. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X, Zou Y. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infections. *Chest*. 2020 Jul 1;158(1):e9-13.

25. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, Xia X, Lv T. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. *Journal of medical virology*. 2020 Oct;92(10):1890-901.

26. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S. In vivo antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). *Clinical infectious diseases*. 2020 Jul 28;71(15):732-9.

27. Gautret P, Lagier JC, Parola P, Meddeb L, Sevestre J, Mailhe M, Doudier B, Aubry C, Amrane S, Seng P, Hoquart M. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. *Travel medicine and infectious disease*. 2020 Mar 1;34:101663.

28. Piva S, Filippini M, Turla F, Cattaneo S, Margola A, De Fulvii S, Nardiello I, Beretta A, Ferrari L, Trota R, Erbici G. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. *Journal of critical care*. 2020 Aug 1;58:29-33.
29. Di Giambenedetto S, Ciccullo A, Borghetti A, Gambassi G, Landi F, Visconti E, Dal Verme LZ, Bernabei R, Tamburrini E, Cauda R, Gasharrini A. Off-label use of tocilizumab in patients with SARS-CoV-2 infection. Journal of medical virology. 2020 Apr 16.

30. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circulation research. 2017 Jan 6;120(1):229-43.

31. Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacological research. 2020 May;155:104743.

32. Cui HT, Yu-Ting L, Li-Ying G, Xiang-Guo L, Miao J, Zhai-Yi Z, Wang L, Hong-Wu W. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review. Traditional Medicine Research. 2020;5(2):65.

33. Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for Ayurveda intervention. Journal of Ayurveda and Integrative medicine. 2020 Apr 23.

34. National Health Commission of the People's Republic of China (NHCPRC).<Guideline on diagnosis and treatment of COVID-19 (Trial 6th edition). http://www.nhc.gov.cn/xcszhengewj/202002/8334a8326dd94d329df351d7da8aefc2.shtml (accessed Feb 23, 2020; in Chinese).

35. Publicity Department of the People's Republic of China. Press conference of the joint prevention and control mechanism of the state council on Feb 17, 2020. http://www.nhc.gov.cn/xcsfkdt202002/f12a62d10ce2a48c6895edf2fae6e1f.shtml (accessed Feb 23, 2020; in Chinese).

36. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020 Apr 1;8(4):420-2.

37. Zhao J. Investigating mechanism of Qing-Fei-Pai-Du-Tang for treatment of COVID-19 by network pharmacology. Chinese Traditional and Herbal Drugs. 2020:829-35.

38. Wu H, Wang JQ, Yang YW, Li TY, Cao YJ, Qu YX, Jin YJ, Zhang CN, Sun YK. Preliminary exploration of the mechanism of QingfeiPaidu Decoction against novel coronavirus pneumonia based on network pharmacology and molecular docking technology. Acta Pharm Sin. 2020;55(3):374-83.

39. Ahmed, N. Zeheer, John Davis, G. Dicky, Khan, Asim Ali, Prabhakar, Lavanya, Ram Pratap, Meena, Afnaan, Zeba, Devi Sri, Meera and Anwar, Noman. “ArqAjib – a wonder Unani formulation for inhibiting SARS-CoV-2 spike glycoprotein and main protease – an in-silico approach” Journal of Complementary and Integrative Medicine, vol., no. , 2021. pp. 000010151520210241. https://doi.org/10.1515/jcim-2021-0241

40. Hakim AA. QarabadeenAhsani (urdu). Kanpur, India: Matba’ Nizami; 1871. 62.

41. Ghani N. KhazainulAdvia. New Delhi: IdaraKitab us Shifa; 2002; 39,. 1116-17, 1133-35.

42. Hakim MA. BustanulMufradat. New Delhi: IdaraKitab us Shifa; 2002. 138-139: 476-77.

43. Dymock W, Warden CJH, Hooper D. PharmacographiaIndica. I. New Delhi: M/s Periodical Experts, VivekVihar; 140-141.

44. Anonymous. The Wealth of India ‘Raw Materials’ Vol-I. New Delhi: Council of Scientific &Industrial Research; 1950;1:202-514-16.

45. Khare CP. Indian Medicinal Plants. New Delhi: Springer India Private Limited. 2007; 97: 555, 706.

46. Pullaiah T. Encyclopedia of world medicinal plants. New Delhi: Regency Publication; 2006;1:340

47. ibnBaiytar, Aljame al-Mufradat al-Adviawal-Aghzia (Urdu translation), Vol-I. New Delhi: Central Council for Research in Unani Medicine; 2003; 248-49, 287-89, 416-419.

48. Anonymous. National Formulary of Unani Medicine, Part-I. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2006a.

49. Anonymous. National Formulary of Unani Medicine,. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2007;1:

50. Anonymous. National Formulary of Unani Medicine, Part-IV. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2006b.

51. Anonymous. National Formulary of Unani Medicine, Part-V. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2008.

52. Anonymous. National Formulary of Unani Medicine, Part-VI. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2011.

53. Anonymous. National Formulary of Unani Medicine, Part-III. New Delhi: Dept. of AYUSH, Ministry of H & FW, Govt. of India; 2001.

54. Chopra RN, Nayar SL, and Chopra IC. Glossary of Indian Medicinal Plants. New Delhi: Council of Scientific & Industrial Research; 1956;I: 215.

55. Tarique NA. TajulMufradat. New Delhi: IdaraKitab us Shifa; 2010; 607-08.

56. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med.
57. Ibn Sina. Al-Qanoon fil Tib (Urdu translation by G.H. Kantoori). New Delhi: Idara Kitab us Shifa; 2010.

58. Khattak SG, Gilani SN, Ikram M. Antipyretic studies on some indigenous Pakistani medicinal plants. J Ethnopharmacol. 1985;14(1):45-51.

59. Drozdova IL, Bubenchikov RA. Composition and antinflammatory activity of polysaccharide complexes extracted from sweet violet and low mallow. Pharm Chem J. 2005;39(4):197-200.

60. Jamshed H, Siddiqi HS, Gilani AU, Arslan J, Qasim M, Gul B. Studies on antioxidant, hepatoprotective, and vasculoprotective potential of Viola odorata and Wrightia tinctoria. Phytother Res. 2019;33(9):2310-8.

61. Tayarani-Najaran Z, Yazdian-Robati R, Amini E, Salek F, Arasteh F, Emami SA. The mechanism of the neuroprotective effect of Viola odorata against serum/glucose deprivation-induced PC12 cell death. Avicenna J Phytomedicine. 2019;9(6):491-98.

62. Siddiqui HS, Mehmood MH, Rehman NU, Gilani AH. Studies on the antihypertensive and antidiislipidemic activities of Viola odorata leaves extract. Lipids Health Dis. 2012;11(1):1-12.

63. Qadir MI, Ali M, Saleem M, Hanif M. Hepatoprotective activity of aqueous methanolic extract of Viola odorata against paracetamol-induced liver injury in mice. Bangladesh J Pharmaco1. 2014;9(2):198-202.

64. Qasemzadeh MJ, Sharifi H, Hamedanian M, Gharehbeglou M, Heydari M, Sardari M, et al. The effect of Viola odorata flower syrup on the cough of children with asthma: a double-blind, randomized controlled trial. J Evid Based Complement Alternat Med. 2015;20(4):287-91.

65. Gautam SS, Bithel N, Kumar S, Painuly D, Singh J. A new derivative of ionone from aerial parts of Viola odorata Linn. and its antibacterial role against respiratory pathogens. ClinPhytoscience. 2017;2(1):1-5.

66. Khattab HA, Abdallah IZ, Yousef FM, Kuwait EA. Efficiency of borago seeds oil against gamma irradiation-induced hepatotoxicity in male rats: possible antioxidant activity. Afr JTradit Complement Altern Med. 2017;14(4):169-79.

67. Shahraki MR, Ahmadimoghadm M, Shahraki AR. The antinociceptive effects of hydroalcoholic extract of Borago officinalis flower in male rats using formalin test. Basic ClinNeurosci. 2015;6(4):285-90.

68. Mirdadraee M, Moghaddam SK, Saeedi P, Ghaflari S. Effect of Borago officinalis extract on moderate persistent Asthma: A phase two randomized, double-blind, placebo-controlled clinical trial. Tanaffos. 2016;15(3):168.

69. Nikolova G, Karamalakova Y, Gadjeva V. Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol Rep. 2019;6:267-71.

70. Fatemi F, Golbodagh A, Hojihosseini R, Dadkhah A, Akbarzadeh K, Dini S, Malayeri MR. Anti-inflammatory effects of deuterium-depleted water plus rosadamascena mill. Essential oil via cyclooxygenase-2 pathway in rats. Turkish J Pharm Sci. 2020;17(1):99-107.

71. Demirbolat I, Ekinci C, Nuhoglu F, Kartal M, Yıldız P, Geçer MO. Effects of Orally Consumed Rosa damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats. Molecules. 2019;24(22):4069.

72. Mohammadi A, Fallah H, Gholamhosseinian A. Antihyperglycemic effect of Rosa damascena is mediated by PPAR. γ gene expression in an animal model of insulin resistance. Iran J Pharm Res. 2017;16(3):1080-88.

73. Hajhashemi V, GhannadiA, Hajiloo M. Analgesic and anti-inflammatory effects of Rosa damascenahydroalcoholic extract and its essential oil in animal models. Iran J Pharm Res. 2010;9(2):163-68.

74. Mahabob N, Mohan J. Preparation of mouthwash and gel from Rosa damascena Mill and evaluating its effectiveness - An in vivo analysis. J Pharm Bioallied Sci. 2019;11(Suppl 2):S198-202.

75. Esfandiary E, Abdolali Z, Omanifard V, Ghanadian M, Bagherian-Sararoud K, Karimipour M, et al. Novel effects of Rosa damascena extract on patients with neurocognitive disorder and depression: A clinical trial study. Int J Prev Med. 2018;9.

76. Batool R, Kalsoom A, Akbar I, Arshad N, Jamil N. Antilisterial Effect of Rosa damascena and Nymphaea alba in Musculus. BioMed Res Int. 2018;2018.