Intestinal parasitic infections and associated factors among pregnant women in Ethiopia: a systematic review and meta-analysis

Zelalem Animaw 1*, Addisu Melese 2, Habtamu Demelash 3, Girma Seyoum 4 and Abiy Abebe 5

Abstract

Background: Intestinal parasitic infections (IPIs) are public health problems widely distributed in the world and cause significant morbidity and mortality; many of which occur among women of reproductive age. IPIs caused by helminthes and protozoan parasites are common among pregnant women. Data on the national pooled prevalence of intestinal parasites and associated factors during pregnancy is not documented well in Ethiopia. This review aims at summarizing evidences on the burden of IPIs and associated factors among pregnant women in Ethiopia.

Methods: Published and unpublished studies were thoroughly searched at MEDLINE/PubMed, EMBASE, Google Scholar, CINAHL, Cochrane library and Science Direct. In addition, repositories of Addis Ababa, Gondar and Jimma Universities were searched. Eligible studies were selected following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline. The pooled prevalence of intestinal parasites and summary odds ratios (ORs) were determined with 95% confidence intervals (CI). Sub-groups analyses were done based on study region, types of parasites, methods of stool examination and study setting. The statistical analyses were performed using STATA version 14.0 software.

Results: Among 168 retrieved studies, 31 studies with a total population of 12,118 pregnant women were included. The estimated pooled prevalence of IPIs among pregnant women in Ethiopia was 27.32% (95% CI: 20.61, 33.87%). In the subgroup analysis, Oromia and Amhara regions had the highest prevalence with a 29.78% (95% CI: 15.97, 43.60) and 29.63% (95% CI: 15.37, 43.89); respectively. In addition, studies conducted in the community showed higher prevalence than institution based studies (49.93% Vs 24.84%; respectively). The most prevalent type of intestinal parasite identified were Hookworm followed by Ascaris lumbricoides with a pooled prevalence of 11.2 and 10.34% respectively. In our analysis; residence, being bare footed, lack of hand washing habit and eating uncooked/raw vegetables were significantly associated with IPIs among pregnant women in Ethiopia.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: zelalem.a01@gmail.com
1Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia

Full list of author information is available at the end of the article

Animaw et al. BMC Pregnancy and Childbirth (2021) 21:474
https://doi.org/10.1186/s12884-021-03908-0
Conclusions: Prevalence of IPIs during pregnancy is relatively high in Ethiopia. Poor hygienic practices were identified as risk factors. Based on our finding, targeted preventive measures shall be considered so as to prevent morbidity and mortality due to IPIs.

Keywords: Intestinal parasites, pregnant women, systematic review, meta-analysis, pregnancy, Ethiopia

Background

IPIs are public health problems widely distributed throughout the world causing significant morbidity, many of which occur among women of reproductive age. Pregnant women are one of high-risk population for these infections [1]. IPIs caused by helminths and protozoan parasites are common among pregnant women and experience more severe infections [2]. However, the severity depends on different factors, including parasitic load, species, inter-pregnancy intervals, nutritional status, poor hygiene and lack of safe drinking water, climate, poverty, immunity status, and the presence of co-existing infections [2–8].

Physiological changes during pregnancy modify the maternal immunity that brings tolerance to the growing fetus and susceptibility to different infections. IPIs are common during pregnancy that aggravates the effect leading to “a double burden to carry” and causes serious problems to the mother as well as to the embryo/fetus [1, 9]. Moreover, IPIs might cause anemia; induce deficiencies of iron, total energy, protein, folate and zinc all of which results in low pregnancy weight gain and intrauterine growth retardation (IUGR), greater risks of infection, low birth weight (LBW) and higher perinatal mortality rates [1, 10–13].

IPIs are reportedly identified as the leading causes of maternal mortality in developing countries especially in the tropics and subtropics [9, 14, 15]. A recent systematic review and Meta-analysis on global prevalence and associated risk factors of IPIs revealed that IPIs in pregnant women is high especially in low and middle income countries [16]. Many other studies were conducted to assess the burden of soil-transmitted helminths (STH) and their effect during pregnancy. Preventive chemotherapy (PC) was introduced as a control program in order to reduce the burden of the infection, but it has been neglected for at-risk women of reproductive ages. The overall coverage of PC was reported as less than 75 % in Ethiopia [17] howing the possibility of the high burden of intestinal parasites. Although it is expected to be high, data on the national pooled prevalence of intestinal parasites and associated factors during pregnancy is not yet documented well in Ethiopia. Therefore; this systematic review and Meta-analysis aims at providing summarized evidence on the burden of IPIs and associated factors among pregnant women in Ethiopia.

Methods

Data Bases and Search strategy

Both Published and unpublished studies regarding the magnitude of IPIs and associated factors among pregnant women in Ethiopia were thoroughly searched by two authors (ZA and AM) at databases of MEDLINE/PubMed, EMBASE, Google Scholar, CINAHL, Cochrane Library and Science Direct. Additionally, repositories of Addis Ababa University, University of Gondar and Jimma University were searched manually to get unpublished student research works related to the topic. Reference lists of eligible studies were checked to maximize the inclusion of relevant studies. The search was not bounded by year of publication. As a result, all articles published and/or reported up to 25th May, 2020 were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was strictly followed to select potential studies (Fig. 1).

“Prevalence”, “Magnitude”, “Epidemiology”, “Intestinal Parasite”, “Intestinal parasitosis”, “Helmenthiasis”, “Hookworm” “Ascaris lumbricoides OR A. lumbercoids”, “Schistosomia Mansoni OR S. mansoni”, “Giardia lamblia OR G. lambilla”, “Strongyloides stercolaris OR S. stercolaris”, “Entamoeba histolytica OR E. histolytica”, “Trichuris trichiura OR T. trichiura”, “Hymenolepis nana OR H. nana”, “Taenia species”, “Enterobius vermicularis OR E. vermicularis”, “Associated Factors”, “Determinants” “Pregnant Women”, “Pregnant Mother” and “Ethiopia” were the key searching terms employed independently and/or in combination by Boolean operators: “OR” or/and “AND” to bring key concepts together to identify relevant papers. Particularly, studies from MEDLINE/PubMed database were searched by using the following Medical Science Heading (MeSH) terms: ("parasitic infection"[All Fields] OR “intestinal parasite”[All Fields]) OR ("intestinal diseases, parasitic/epidemiology"[MeSH Terms] OR “intestinal diseases, parasitic”[MeSH Terms]) AND ("pregnant women"[All Fields] OR “pregnant mothers”[All Fields]) OR “pregnant mothers attending anc”[All Fields] AND “pregnant women attending anc”[All Fields] OR (“pregnant women”[MeSH Terms] OR “pregnant women/epidemiology”[MeSH Terms]) OR “mothers”[MeSH Terms]) AND “Ethiopia”[All Fields]. EndNote X7 was also used to manage duplication of articles.
Inclusion criteria
- Language of publication/written: English.
- Year of publication/report: Up to May 25th of 2020.
- Study design: observational studies (cross-sectional, case-control and cohort).
- Outcome: magnitude of IPIs and/or associated factors.
- Study population: Pregnant women.
- Study setting: At (institution or community based).
- Study country: Ethiopia.
- Diagnostic modality: Stool examination (either wet mount or concentration or both).
- Type of parasite: Either protozoa or helminthes or both
- Types of articles: Both published and unpublished.
- Types of publication: Peer reviewed, full text articles.
- Inaccessible full text articles due to non-responsiveness of the corresponding authors upon frequent inquiry through email by two authors (ZA and AM).
- Systematic reviews and meta-analysis.
- Articles that did not provide calculable prevalence or ORs for associated factors.

Exclusion criteria
- Articles which failed to report the number of study participants and number of cases.

Data extraction
Data pertaining authors’ to name with publication year, study period, study design, study setting, study area/region, technique of stool examination, sample size, numbers of pregnant women infected with intestinal parasites and or prevalence of IPIs and species of parasites isolated were extracted from the eligible articles using Microsoft Excel 2013 sheet especially designed for this study. Similarly, a separate data extraction tool was developed for each identified associated factors which contain authors name and publication year. Two by wo tables were also employed to obtain the odds ratio from each study. All associated factors reported by at least two studies were included for pooled analysis.
Table 1: General characteristic of the included articles for systematic review and meta-analysis pertaining magnitude and associated factors of IPIs among pregnant women in Ethiopia

Author, publication year	Study period	Study design	Study setting	Study area/Region	Technique of stool examination	Sample size	Cases	Prevalence (%)	Parasite species isolated
Feleke and Jember, 2018 [20]	November 2015 to January 2016	cross-sectional	Community based	Mecha, Amhara	formalin-ether Concentration	783	595	76.0	A. lumbricoides, S. mansoni, Hookworm, S. stercoralis
Bolka and Gebremedhin, 2019 [23]	June and July 2018	cross-sectional	Institution based	Wondo Genet, SNNPR	formalin-ether Concentration	349	135	38.7	Hookworm, S. mansoni, A. lumbricoides, T. trichiura, G. lamblia, E. histolytica,
Desso et al., 2016 [4]	November 2013 to January 2014	cross-sectional	Institution based	Felege Hiwot Hospital, Amhara	formalin-ether Concentration	384	121	31.5	Hookworm, S. mansoni, A. lumbricoides, S. stercoralis, T. trichiura, G. lamblia, E. histolytica, H. nana, Taenia species
Yesuf et al., 2019 [24]	April 1 to May 3, 2019	cross-sectional	Institution based	Four Health centers in Lalo Nile, Oromia	Both	315	138	43.8	Hookworm, A. lumbricoides, S. stercoralis, T. trichiura, G. lamblia
Alem et al., 2013 [25]	February to May 2011	cross-sectional	Institution based	Azezo Health Center, Amhara	formalin-ether Concentration	384	55	14.3	Hookworm, S. mansoni, A. lumbricoides, G. lamblia, E. histolytica, H. nana, Taenia species
Lebso et al., 2017 [26]	May-June 2015	cross-sectional	Community based	Lemo, SNNPR	Direct wet mount	504	161	31.9	Hookworm, T. trichiura, A. lumbricoides, Taenia species
Kefyalew et al., 2014 [12]	March to June 2013	cross-sectional	Institution based	Bishidimo Hospital, Oromia	Both	258	96	37.2	Not reported
Bekele et al., 2016 [27]	February 16 to April 8, 2015	cross-sectional	Institution based	Arba Minch hospital, SNNPR	formalin-ether Concentration	332	40	12.0	Hookworm, A. lumbricoides, G. lamblia, E. histolytica, Taenia species
Gedefaw et al., 2015 [28]	January to March 2014	cross-sectional	Institution based	Otona Hospital, SNNPR	Direct wet mount	363	69	19.0	Hookworm, S. mansoni, A. lumbricoides, T. trichiura, G. lamblia, E. histolytica, E. vermicularis
Asrie, 2017 [10]	January to March 2015	cross-sectional	Institution based	Aymiba health center, Amhara	Direct wet mount	206	16	7.8	Hookworm, E. vermicularis, A. lumbricoides,
Getahun et al., 2017 [29]	March 01 – April 30 2015	cross-sectional	Institution based	Butaja hospital, SNNPR	Both	217	28	12.9	Not reported
Ejeta et al., 2014 [5]	April to May, 2014	cross-sectional	Institution based	Nekemte Hospital, Oromia	Direct wet mount	286	22	7.7	Not reported
Zekarias et al., 2017 [43]	April 3 to May 3, 2017	cross-sectional	Institution based	Mzan Tepi hospital, SNNPR	Direct wet mount	306	70	22.9	Not reported
Melku et al., 2014 [38]	March 1 to April 30, 2012	cross-sectional	Institution based	Gondar University Hospital Amhara	Direct wet mount	302	80	26.5	Hookworm, E. histolytica, A. lumbricoides,
Tefaye, 2015 [42]	October 1 to 30, 2013	cross-sectional	Institution based	Nigist Eleni hospital, SNNPR	formalin-ether Concentration	258	76	29.5	Hookworm, T. trichiura, A. lumbricoides, H. nana, Taenia species
Mengist et al., 2017 [13]	November 2015 and January 2016	cross-sectional	Institution based	Five Health Centers in Wollega, Oromia	Both	372	92	24.7	Hookworm, S. stercoralis, A. lumbricoides, H. nana, Taenia species
Getachew et al., 2013 [32]	August to September, 2011	cross-sectional	Community based	Gilge Gibe, Oromia	formalin-ether Concentration	388	162	41.8	Hookworm, T. trichiura, H. nana, E. vermicularis, A. lumbricoides,
Tefera, 2014 [41]	April 1 – June 30, 2014	cross-sectional	Institution based	Sher-Ethiopia hospital, Oromia	Both	748	436	58.3	A. lumbricoides, T. trichiura, Hook worm, S. mansoni
Kamera et al., 2018 [36]	July to August 2016	cross-sectional	Institution based	Debre Markos Hospital, Amhara	Both	234	64	27.4	Hookworm, E. histolytica A. lumbricoides, G. lamblia,
Kebede et al., 2018 [22]	April 1 – 30, 2018	cross-sectional	Institution based	Suhl hospital, Tigray	Not mentioned	480	35	7.3	Not reported
Berhe et al., 2019 [30]	April to September 2018	cross-sectional	Institution based	Adigrat Hospital, Tigray	Direct wet mount	304	54	17.8	E. histolytica, G. lamblia,
He lion Belay et al., 2020 [34]	January 11 to February 20, 2017	cross-sectional	Institution based	Health centers in Dembia, Amhara	Not mentioned	685	158	23.1	Not reported
Kenea et al., 2018 [35]	January to July 2016	cross-sectional	Institution based	Mettu, Bedele, and Darimu	Not mentioned	416	32	7.7	Not reported
Table 1 General characteristic of the included articles for systematic review and meta-analysis pertaining magnitude and associated factors of IPIs among pregnant women in Ethiopia (Continued)

Author, publication year	Study period	Study design	Study setting	Study area/Region	Technique of stool examination	Sample size	Cases	Prevalence (%)	Parasite species isolated
Fasil, 2016 [21]	December 2015 to February 2016	cross-sectional	Institution based	Amhara	Not mentioned	480	35	7.3	Not reported
Shiferaw et al., 2017 [40]	March to June, 2015	cross-sectional	Institution based	Arbete health center, Amhara	Direct wet mount	180	38	21.1	Hookworm, S. mansoni
Kuma et al., 2018 [37]	January to February 2016	cross-sectional	Institution based	University of Gondar Hospital, Amhara	Both	402	126	31.3	Hookworm, E. histolytica, A. lumbricoides, H. nana, G. lamblia, S. stercoralis, S. mansoni, Tanea species
Tulu et al., 2019 [11]	September 7 to October 25, 2017	case control	Institution based	Health facilities in Horo Guduru, Oromia	formalin-ether Concentration	573	101	17.6	Hookworm, T. trichiura, H. nana, A. lumbricoides
Gebrehiwet et al., 2019 [31]	Not described	cross-sectional	Institution based	Maytsebri Hospital, Tigray	Kato-Katz	448	229	51.1	Hookworm, T. trichiura, A. lumbricoides
Hallu et al., 2019 [33]	February to June, 2017	cross-sectional	Institution based	Health centers in W/Gojiam, Amhara	Formal-ether concentration	743	276	37.1	Hookworm, E. histolytica, G. lambia, A. lumbricoides
Weldekidan et al., 2018 [44]	February 16 to May 8, 2017	case control	Institution based	Health facilities in Durame, SNNPR	formalin-ether Concentration	333	92	25.2	Hookworm, G. lambia, A. lumbricoides
Gebregziabher et al., 2014 [19]	October 2012 to July 2012	cross-sectional	Institution based	Mekelle, Ayder, Semen Health center, Tigray	Direct wet mount	85	30	35.3	T. trichiura, E. histolytica, A. lumbricoides, H. nana, G. lambia, S. mansoni, E. vermicularis

Quality assessment
Three authors, (ZA, AM and HD), rated the quality of included studies utilizing Newcastle – Ottawa Scale which enables to assess the quality of each article by their methodological merit, comparability caliber and outcome excellence [18]. In due process, arguments between the authors were settled through in-depth discussion and articles were included upon consensus.

Statistical analysis
The extracted data were transferred to STATA software version 14.0 to analyze the pooled prevalence of IPIs and odds ratios of the associated factors. Heterogeneity among included studies was assessed using percentage of variance (I^2) and P-values. Random effect model was employed to estimate the pooled prevalence of intestinal parasites and summary odds ratios of factors associated with infections.

Begg’s rank test and Egger’s regression intercept tests were also carried out to indicate the correlation between the effect sizes and sampling variance in order to determine publication bias.

Subgroup analysis was done based on study region, types of parasites (helminthic, protozoa or both species), technique of stool examination (formalin-ether concentration, direct wet mount, or both and others) and study setting (institution or community based).

Protocols and registration
This systematic review and Meta-analysis is registered on PROSPERO under a registration number of CRD42020189115 and can be accessed at https://www.crd.york.ac.uk/PROSPERO.

Results
Characteristics of the included articles
A total of 31 studies were included in this systematic review and meta-analysis. The number of pregnant women participated in the studies ranged from 85 to 783 [19, 20] constituting a total population of 12,118. The reported prevalence of IPIs was ranging from 7.3% [21, 22] to 76.0% [20]. Twenty nine studies [4, 5, 10, 12, 19–43] were cross-sectional while the rest two were case-controls [11, 44]. The studies were published from 2013 up to 2020. Regarding geographical distribution, 10 studies were reported from Amhara region [4, 10, 20, 25, 33, 34, 36–38, 40], 8 from SNNPR [23, 26–29, 42–44], 8 from Oromia [5, 11, 12, 24, 32, 35, 39, 41], 4 from Tigray [19, 22, 30, 31] and One from Addis Ababa [21] (Table 1).
Pooled prevalence of intestinal parasitic infection among pregnant women in Ethiopia

The estimated pooled prevalence of IPIs among pregnant women in Ethiopia is 27.32% (95% CI: 20.61, 33.87; $I^2 = 98.9\%$ $p < 0.001$) (Fig. 2). Statistically significant heterogeneity was observed in the estimation of this pooled prevalence. Begg’s rank and Egger’s regression tests were carried out to statistically determine publication bias [45]. Based on the results, absence of significant publication bias was declared objectively with $P = 0.068$ and $P = 0.063$, consecutively.

IPIs and anemia

Among the included articles 16 of them [5, 10–13, 21, 22, 25, 26, 28, 33, 35, 37, 38, 41, 44] reported that IPIs are significantly associated with anemia during pregnancy while 4 studies [27, 29, 34, 43] revealed that there is no association between occurrence of anemia among pregnant mothers who contracted IPIs. A single study disclosed that IPIs during pregnancy are significantly associated with maternal under-nutrition [36].

Types of intestinal parasite

In this study, the most prevalent type of intestinal parasite identified was *Hookworm* followed by *Ascaris lumbricoides* with a prevalence of 11.12% (95% CI: 8.21, 14.02) and 10.34 (95% CI: 7.09, 13.59); respectively. The least reported parasites are *Enterobius vermicularis* and *Taenia species* (Table 2).

Subgroup analysis

A subgroup analysis based on study regions revealed that Oromia had the highest prevalence estimate accounting 29.78% (95% CI: 15.97, 43.60) closely followed by Amhara region 29.63% (95% CI: 15.37, 43.89), Tigray region 27.74% (95% CI: 6.56, 48.93) and SNNPR 24.23%...
Types of parasites	Species of parasite	No of studies	Pooled prevalence (95 % CI)	I²	P-values
Helminthic	Hookworm	22	11.2 % (8.21, 14.02)	97.3 %	< 0.001
	Ascaris lumbricoides	20	10.34 % (7.09, 13.59)	97.9 %	< 0.001
	Schistosoma mansoni	10	3.42 % (1.82, 5.01)	95.3 %	< 0.001
	Strongyloides stercoralis	5	1.56 % (0.31, 2.82)	91.7 %	< 0.001
	Trichuris trichiura	11	2.85 % (1.76, 3.94)	84.3 %	< 0.001
	Hymenolepis nana	8	1.09 % (0.56, 1.63)	50.8 %	0.047
	Taenia species	7	0.94 % (0.57, 1.31)	65.4 %	0.022
	Enterobius vermicularis	4	0.81 % (0.02, 1.63)	58.31	0.031
Protozoa	Giardia lamblia	13	5.25 % (3.41, 7.09)	89.5 %	< 0.001
	Entamoeba histolytica	11	6.89 % (4.07, 9.71)	94.0 %	< 0.001
Mixed	Mixed infection	11	7.08 % (4.18, 9.98)	95.6 %	< 0.001

Fig. 3 Forest plot of subgroup analysis based on regions
(95 % CI: 17.61, 30.85) (Fig. 3). Another subgroup analysis by study setting showed higher prevalence in studies done in the community than studies done in institutions with a pooled prevalence of 49.93 % (95 %CI: 20.49, 79.37) and 24.84 % (95 %CI: 19.51, 30.17); respectively (Fig. 4). A similar analysis depending on the technique of stool examination indicates a combination of formalin-ether concentration and direct wet mount reported a higher prevalence of IPIs (35.99 %; 95 % CI: 26.22, 45.78) than studies that used a single stool examination to diagnose intestinal parasites (Fig. 5).

Factors associated with intestinal parasitic infection among pregnant women in Ethiopia

Our analysis identified that residence area, being barefooted, hand washing habit and eating uncooked/raw vegetables have significant association with the occurrence of IPIs among pregnant women. Pregnant women from rural areas were 6.3 more likely to develop IPIs when compared to urban dwellers (OR = 6.31; 95 % CI: 20, 32.99; P = 0.002) (Fig. 6 A). Likewise, a barefooted women were 2.79 times more likely to be infected with IPIs than those who wore shoes (OR = 2.79; 95 % CI: 1.82, 9.48; P = 0.01) (Fig. 6 B). Similarly, pregnant women who had no hand washing habit and who consumed uncooked/raw vegetables were more likely to be infected with intestinal parasites compared to their counterparts (OR = 3.02; 95 % CI: 1.64, 5.33; P < 0.001) (Fig. 6 C) and (OR = 1.24; 95 % CI: 1.65, 2.37; P < 0.001) (Fig. 6 D); respectively.

Discussion

Women living in low-income countries are at a higher risk of acquiring IPIs that leads to severe anemia. This scenario will put both the mother and the baby at higher risk of morbidity and mortality. This study was conducted to summarize the current evidence of IPIs and associated factors among pregnant women in Ethiopia.

31 eligible studies that have quantified the magnitude of IPIs were included. Accordingly, the pooled prevalence of IPIs among pregnant women in Ethiopia was estimated to be 27.32 %. However, this pooled prevalence...
is less than studies from Brazil, where 57.1% pregnant women were harbored at least one parasite [46], Cameroon (31.91%) [47], India (42.67%) [48] and Colombia (41%) [49].

But, our finding is higher than reports from Kenya (24 and 13.8%) [50, 51], Ghana (23.0%) [52], Nigeria (20.8%) [53], Sudan (13.0%) [54] and other multi-county studies (20%) [55]. These differences might be attributed to socioeconomic status, poor hygiene and sanitary facilities, weather, climate and environmental factors in the countries. It is also estimated that more than one-third of Sub-Sahara population are infected with at least one species of helminths [56]. Though pregnant women are vulnerable to IPIs, being pregnant was not yet regarded as a significant risk factor for acquiring enteric parasitic infections in Benin [57].

Hookworm and Ascarasis infection were the most prevalent in this review. Similarly, a global systematic review and meta-analysis identified Hookworm and Ascaris lumbricoides as the leading helminths affecting pregnant women while Giardia lamblia and Entamoeba histolytica lead protozal infection [16]. The most prevalent types of intestinal parasite identified among pregnant women were Ascaris lumbricoides followed and Hookworm in Kenya and Benin [51, 57]. Another study in Kenya identified Hookworm as one of the most common infestation at the first ANC visit [50]. Giardia lamblia and Ascaris lumbricoides in Colombia [49], Schistosoma mansoni and Trichuris Trichiura in Ghana [58] were the most prevalent parasitic infections. Trichuris trichiura was reported as a predominant parasite followed by A. lumbricoides in other study [59] and A. lumbricoides was dominantly identified parasites followed by T. trichiura Venezuela [60].

In addition, our subgroup analysis indicated that the rates of IPIs among pregnant women varied across different regions of the country, study settings and technique of stool examination. As a result, the prevalence is higher in Oromia and Amhara regional state.
Studies conducted in the community showed a higher prevalence than studies done in institutions with a pooled prevalence of 49.93% (95% CI: 20.49, 79.37) and 24.84% (95% CI: 19.51, 30.17); respectively. This might be related with inadequate water supply and poor sanitation [61]. On the other hand, studies that used a combination of formalin-ether concentration and direct wet mount stool examination techniques reported a higher prevalence of IPIs (35.99%; 95% CI: 26.22, 45.78) than studies that used a single stool examination to diagnose intestinal parasites. This evidenced that the detection rate of intestinal parasites improved by concentrating stool samples [39].

Different factors for IPIs were analyzed and the pooled odds ratio was summarized. As a result, rural residents, being barefoot, poor hand washing habits and eating uncooked/raw vegetables have significant association with the occurrence of IPIs among pregnant women in Ethiopia. Similarly, the high occurrence of parasitic infection has been related to the poor hygiene condition [46] and residence area [16, 47] in other studies. It is also evidenced that factors influencing the continuous transmission of IPIs in sub-Saharan countries include poor sanitation and hygiene and non-availability of potable water for domestic use [53]. In line with our analysis, pregnant women who practiced hand washing regularly had lesser infection in India, Kenya and Benin [48, 51, 57].

Contradicting to this view, the prevalence of intestinal parasites was almost same in both rural and urban pregnant women in India [48]. The finding of this review was consistent with studies in Benin where pregnant women who consume uncooked/raw vegetables from food vendors were more likely to be infected with intestinal parasites. However, in contrary to our review result; being barefooted was not significantly affect the prevalence of IPIs [57]. Consuming unwashed vegetable and being barefooted were associated with IPIs among pregnant women [59].

In line with a review conducted in Sub-Saharan countries [53, 56], we also found that the odds of IPIs were found to be higher in pregnant mothers living in rural areas. Because, place of residence, usually determines people's lifestyles, income, social and cultural activities, and most notably their health conditions.

Strengths and limitations
Our meta-analysis tried to elucidate a national figure on prevalence of IPIs during pregnancy. It included studies...
Conclusions
Our systematic review and meta-analysis has estimated a high prevalence of IPIs during pregnancy in Ethiopia. The result indicates the need for priority interventions targeted to improve maternal health during pregnancy. Investing in maternal health is also a key strategy to reduce low birth weight and preterm birth. Apart from socio-economic factors, IPIs during pregnancy are related with poor hygienic practices, being barefooted and eating habits of raw vegetables. Therefore, an optimal personal hygiene and developing shoes wearing habit by the mothers is essential to meet both maternal and child requirements and reduce adverse health consequences in addition to spaced pregnancy. To prevent anemia, pregnant women are advised to take iron, folate supplements, eat iron-rich foods, and prevent intestinal worms.

Acknowledgements
We would like to acknowledge all academic staffs of Addis Ababa University, Debre Tabor University and Bahir Dar University who helped us in this particular study.

Authors’ contributions
ZA responsible for design, article selection, data extraction, statistical analysis and manuscript drafting. AM, HD, GS were involved in selection of articles, statistical analysis and manuscript editing. AA reviewed the protocols, tools, analysis and manuscript editing. All the authors read and approved the final draft of the manuscript.

Funding
‘No funding was obtained for this study.’

Availability of data and materials
The datasets used during the current study are available at the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
‘Not applicable’.

Consent for publication
‘Not applicable’.

Competing interest
‘The authors declare that they have no competing interests’.

References
1. Alfonso J. Rodríguez-Morales RABea. Intestinal Parasitic Infections among pregnant women in Venezuela. Infectious Diseases in Obstetrics Gynecology. 2006;2006:1–5.
2. Nipunre Roopal PS, Koticha Avani N, Gita, Mehta Preeti. Correlation of sociodemographic factors and intestinal parasites in pregnant women. Int J Res Med Sci. 2020;8(1):244–51.
3. H. MPAIRW REAE. Pregnancy and helminth infections. Parasite Immunol. 2014;36:328–37.
4. Derso A, Nibert E, Munshea A. Prevalence of intestinal parasitic infections and associated risk factors among pregnant women attending antenatal care center at Felege Hiwot Referral Hospital, northwest Ethiopia. BMC Infect Dis. 2016;16(1):530.
5. Ejeta E, Alemebew B, Fikadu A, Fikadu M, Tesfaye L, Birhanu T, et al. Prevalence of anemia in pregnant women and associated risk factors in Western Ethiopia. Food Sci Qual Manag. 2014;31(6):82–91.
6. Susana Vaz Nery AJP, Ebba, Abate, et al The role of water, sanitation and hygiene interventions in reducing soil-transmitted helminths: interpreting the evidence and identifying next steps. Parasites Vectors. 2019;12(273):1–8.
7. Akinbo FOOT, Okala CE, Oriakhi MO. Co-infection of malaria and intestinal parasites among pregnant women in Edo State, Nigeria. J Med Trop. 2017;1943–8.
8. Nigatu Tuasha1 EH, Berhanu Erko and Beyene Petros. Comorbidity of intestinal helminthiases among malaria outpatients of Wondo Genet health centers, southern Ethiopia. BMC Infectious Diseases. 2019;19(659):1–8.
9. Ntomabela JMT-GaNP. A double load to carry: Parasites and Pregnancy. South Afr J Infect Dis. 2014;29(2):52–5.
10. Arije F. Prevalence of anemia and its associated factors among pregnant women receiving antenatal care at Aymiba Health Center, northwest Ethiopia. Journal of blood medicine. 2017;8:35.
11. Tulu BD, Atomisia EM, Mengist HM. Determinants of anemia among pregnant women attending antenatal care in Ho Guduru Wollega Zone, West Ethiopia: Unmatched case-control study. PloS one. 2019;14(10): e0224514.
12. Kefyalew F, Zemene E, Asres Y, Gedefaw L. Anemia among pregnant women in Southeast Ethiopia: prevalence, severity and associated risk factors. BMC Res Notes. 2014(7):171.
13. Mengist HM, Zewdie O, Belew A. Intestinal helminthic infection and anemia among pregnant women attending ante-natal care (ANC) in East Wollega, Oromia, Ethiopia. BMC Res Notes. 2017(10):440.
14. Samuel Crowther Kofi Tay EANaWW. Parasitic infections and maternal anaemia among expectant mothers in the Dangme East District of Ghana. BMC Res Notes. 2017;10(3):1–9.
15. Hopkins CH. Pregnant with Parasites: Assessing Parasitic Infections in Pregnant Women of the Kwale District. Independent Study Project (ISP) Collection, 1491. 2013.
16. Taghipour A, Ghodsian S, Jabbari M, Olaffatifar M, Abdoli A, Ghaffarifar F. Global prevalence of intestinal parasitic infections and associated risk factors in pregnant women: a systematic review and meta-analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2020.
17. WHO. 2030 targets for soil-transmitted helminthiasis control programmes. Geneva: World Health Organization. CC BY-NC-SA 3.0 IGO. Neglected tropical diseases. 2019.
18. Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analysis: advantages and limitations of the Newcastle Ottawa Scale. World J Meta-Anal. 2017;5:1–48.
19. Gebregeziabiher D, Desta K, Desalegn G, Howe R, Abebe M. The effect of maternal helminth infection on maternal and neonatal immune function and immunity to tuberculosis. PloS one. 2014;9(4):1–7.
20. Feleke BE, Jember TH. Prevalence of helminthic infections and determinant factors among pregnant women in Mecha district, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis. 2018;18(1):373.
21. Fasil R. Prevalence of Anemia Among Pregnant Women Attending Antenatal Care at Selam Health Center. Addis Ababa Addis Ababa University, 2016.
22. Kebede A, Gerensea H, Amare F, Tesfay T, Teklay G. The magnitude of anemia and associated factors among pregnant women attending public institutions of Shire Town, Shire, Tigray, Ethiopia N. 2018. BMC research notes. 2018;11(1):235.
23. Bolk A, Gebremedhin S. Prevalence of intestinal parasitic infection and its association with anemia among pregnant women in Wondo Genet district, Southern Ethiopia: a cross-sectional study. BMC Infect Dis. 2019;19(1):483.
24. Yesuf DA, Abdissa LT, Gerbi EA, Tola EK. Prevalence of intestinal parasitic infection and associated factors among pregnant women attending antenatal care at public health facilities in Lalo Kile district, Oromia, Western Ethiopia. BMC Res Notes. 2019;12(1):235.
25. Alem M, Enamegbu B, Gelaw A, Kena T, Seid M, Olkeba Y. Prevalence of anemia and associated risk factors among pregnant women attending antenatal care in Azezo Health Center Gondar town, Northwest Ethiopia. 2013.
26. Ledso M, Anato A, Loha E. Prevalence of anemia and associated factors among pregnant women in Southern Ethiopia: A community based cross-sectional study. PloS one. 2017;12(1):1–11.
27. Bekele A, Tilahun M, Mekuria F. Prevalence of anemia and its associated factors among pregnant women attending antenatal care in public health facilities at Durame Town: unmatched case control study. Anemia. 2018;2018.
28. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74(3):855–95.
29. Maria Celia Dos Santos JMC-C, Carvalho-Neto, Marcus C. M. Lima and Marisa Cristina. Enteric Parasites and Commensal in Pregnant Women Seen at the University Hospital Federal University of Uberlandia, State of Minas Gerais, Brazil, 1998:40(3):193–9.
30. Calvin Tonga CNB. Flore Chanceline Tchanga, Jacqueline Félicité Vengué, Godlove Bunda Weprnie, Hervé Nyabueyu Nyabueyu, Lafortune Kangam, Larissa Nonou Koudjip, Patrick Ntong Akono, Leopold Gustave. Schistosomiasis among pregnant women in Njombe-Penja health district, Cameroon. J Infect Dev Ctries. 2019;13(12):1150–8.
31. Nipunre Roopal PS, Koticha, Avani. Nataraj Gita and Mehta Preeti. Correlation of sociodemographic factors and intestinal parasites in pregnant women. International Journal of Research in Medical Sciences. 2019;8(1):244–51.
32. Angola FE, Aranzales KR, Guenter Froeschl. Angela Maria Pinzón Rondón and Maria Delius. Prevalence and risk factors for intestinal parasitic infections in pregnant women residing in three districts of Bogotá, Colombia. BMC Public Health. 2018;2018:1–15.
33. Elizabeth M, McClure SRM, Mungai P, Malhotra I, King CL, Goldenberg RL, Huguenin MG, Anna Maria Siega-Riz, Arlene E. Dent. The Association of Parasitic Infections in Pregnancy and Maternal and Fetal Anemia: A Cohort Study in Coastal Kenya. PLOS Neglected Tropical Diseases. 2014(2):1–8.
34. Wekesa AW, Muleke CSMC, and R. Odihambo4. Intestinal Helminth Infections in Pregnant Women Attending Antenatal Clinic at Kitala District Hospital, Kenya. Journal of Parasitology Research. 2014;2014:1–5.
35. Godwin Fursein DE. Bugre Guma Kalifa and Dave Knight. Plasmodium and intestinal helminths distribution among pregnant women in the Kassen-Nanka District of Northern Ghana. Entomology and Nematology. 2010; 1(2):19–24.
36. Abiola Fatimah Adenwoya BEO. Bolakpo Idiat Ogunyinkia and Abideni Paul Kappora. Impact of human schistosomiasis in sub-Saharan Africa. b r a z i l i a n i n f e c t d i s 2015;19(2):196–205.
37. Olafehraneh Khalid MAA, Abellatif Ashmaig AM, Ibrahim, Abdel-Aziz M, Ahmed I Adam. Schistosoma mansoni infection among prenatal attendees at a secondary-care hospital in central Sudan. International Journal of Gynecology and Obstetrics. 2012;116(2012).
38. WHO. Guideline: preventive chemotherapy to control soil-transmitted helmint lesions in at-risk population groups. Geneva. Licence; CC BY-NC-SA 30 IGO. 2017.
39. Dada HODAAR. Burden and determinants of malnutrition among pregnant women in Africa: A systematic review and meta-analysis. PLOS ONE. 2019;14(9):1–19.
40. Frederick Oluosegun Akinko EO. Adedapo Babatunde and Inibabare Ande. Intestinal Nematodes Infection among Pregnant Women in Benin City, Nigerian Journal of Experimental and Clinical Biosciences. 2020;3(2):65–70.
58. NANI EA. IMPACT OF SCHISTOSOMIASIS AND SOIL TRANSMITTED HELMINTH INFECTION AMONG PREGNANT WOMEN IN THE DANGME EAST DISTRICT, GREATER ACCRA REGION. 2014.

59. Albert Njeru FMaSM. Status of Soil-transmitted helminthiasis among pregnant women attending antenatal clinic in Kilifi county hospital, Kenya. 2019.

60. Rodríguez-Morales AJ, Barbella RA, Case C, Ania M, Ravelo M, Perez H, et al. Intestinal parasitic infections among pregnant women in Venezuela. Infectious diseases in obstetrics and gynecology. 2006;2006.

61. Jeff rey Bethony SB, Marco Albonico, Stefan M Geiger, Alex Loukas, David Diemert, Peter J Hotez. <Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm.pdf>. lancet. 2006;367:1521–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.