Cyclic generalizations of two hyperbolic icosahedral manifolds

P. Cristofori - T. Kozlovskaya - A. Vesnin

February 18, 2022

Abstract

We discuss two families of closed orientable three-dimensional manifolds which arise as cyclic generalizations of two hyperbolic icosahedral manifolds listed by Everitt. Everitt’s manifolds are cyclic coverings of the lens space $L_{3,1}$ branched over some 2-component links. We present results on covering properties, fundamental groups, and hyperbolic volumes of the manifolds belonging to these families.

keywords: 3-manifold, cyclic branched covering, lens space, links in manifolds

MSC 2008: 57M25, 57M12

Introduction

Various examples of three-dimensional spherical, Euclidean, or hyperbolic manifolds arise from pairwise isometrical identifications of faces of convex regular polyhedra in corresponding 3-spaces: S^3, E^3, or H^3. The most famous examples are the spherical and hyperbolic dodecahedral manifolds constructed by Weber and Seifert in 1933 [20]. The whole set of such examples for every spherical, Euclidean, or hyperbolic convex regular polyhedron was listed by Everitt [6]. The list contains eight manifolds M_{15}, \ldots, M_{22}, arising from a regular hyperbolic dodecahedron with dihedral angles $2\pi/5$, and six manifolds M_{23}, \ldots, M_{28}, arising from a regular hyperbolic icosahedron with dihedral angles $2\pi/3$. It can be checked directly from the gluing schemata that M_{15} is the Weber – Seifert manifold from [20], and M_{23} is the Fibonacci manifold from [8], uniformized by the Fibonacci group $F(2, 10)$. Both manifolds have cyclic symmetries induced by symmetries of the polyhedra, such that M_{15} is an 5-fold cyclic
covering of the 3-sphere S^3, branched over the Whitehead link, and M_{23} is the 5-fold cyclic covering of S^3, branched over the figure-eight knot. Cyclic generalizations of these manifolds were constructed in [9] and [8]: the n-fold strongly-cyclic coverings of S^3, branched over the Whitehead link, and the n-fold cyclic coverings of S^3, branched over the figure-eight knot, respectively. Explicit formulae for hyperbolic volumes of manifolds of these two classes are given in [13] and [12].

It was observed by Cavicchioli, Spaggiari and Telloni [3] that the manifolds M_{24} and M_{25}, arising from the $2\pi/3$-icosahedron, are 3-fold cyclic branched coverings of the lens space $L_{3,1}$ branched over some 2-component links. In the present paper we will consider two families of 3-manifolds which are cyclic generalizations of M_{24} and M_{25}. One family of manifolds, namely $M_{24}(n)$, $n \geq 1$, is a generalization of the manifold M_{24} from [6]. The manifolds $M_{24}(n)$, where $M_{24}(3) = M_{24}$, were independently constructed by Cavicchioli, Spaggiari and Telloni [4] for $n \geq 3$ and by Kozlovskaya [10, 11] for $n \geq 2$. In both cases $M_{24}(n)$ was defined via pairwise identifications of the faces of a 3-complex. These manifolds are natural generalizations of M_{24} in the following sense: $M_{24}(n)$, $n > 1$, is an n-fold strongly-cyclic branched covering of the lens space $L_{3,1}$, branched over the same link as M_{24}. The proof of this fact, presented in [3, 4], is based on results by Stevens [18] and by Osborne and Stevens [16]. In Theorem 1 we give a purely topological proof of this fact: we consider a Heegaard diagram for the quotient space of $M_{24}(n)$ by its cyclic symmetry and we reduce it to the standard genus one Heegaard diagram for $L_{3,1}$. The manifold $M_{24}(3)$ is hyperbolic since, by construction, it is obtained from the hyperbolic $2\pi/3$-icosahedron gluing its faces by isometries. It is stated in [4], without proof, that for $n > 3$ the manifolds $M_{24}(n)$ are hyperbolic and a formula for their volumes is given. However the formula turns out to be wrong even for $n = 4$. In fact, in Proposition 4 we will present the correct values of volumes for the initial list of manifolds $M_{24}(n)$, calculated by the computer program Recognizer

Another family of manifolds, namely $M_{25}(n)$, $n \geq 1$, is a generalization of the manifold M_{25} from [6]. As well as M_{24}, M_{25} can be constructed from the $2\pi/3$-icosahedron. It is written in [4] p. 931] that “one can construct an analogous \mathbb{Z}_n- symmetric description for $M_{25}(n)$ in the same manner” as $M_{24}(n)$, with $M_{25}(3) = M_{25}$. Unfortunately, [4] doesn’t contain an explicit description of $M_{25}(n)$ for arbitrary n, but only the presentation for the fundamental group induced by face pairings. In this paper we reconstruct $M_{25}(n)$ by means of the face pairing corresponding to the presentation for $\pi_1(M_{25}(n))$ announced in [4]. We prove that, for

[1] Three-manifold Recognizer is a computer program developed by the research group of S. Matveev in the Department of Computer Topology and Algebra of Chelyabinsk State University, available on the webpage http://www.matlas.math.csu.ru
1 The family of manifolds $M_{24}(n)$

Denote by P_3 an icosahedron with all dihedral angles $2\pi/3$. It is well-known that P_3 can be realized in the hyperbolic space H^3. Recall that P_3 has 12 vertices, 30 edges and 20 faces. We will present P_3 as in Fig. 1 where left and right sides, both denoted by $P_1R_1S_1$, are supposed to be identified. The following pairwise identification φ_3 of the faces of P_3, with the given ordering of vertices on the faces, can be found in [6]:

\[
\begin{align*}
 a_i: & A_i \rightarrow \tilde{A}_i & [P_iP_{i+1}Q_i \rightarrow R_{i+2}P_{i+2}Q_{i+1}], & b_i: & B_i \rightarrow \tilde{B}_i & [R_iP_iQ_i \rightarrow S_iS_{i+1}R_{i+1}], \\
 c_i: & C_i \rightarrow \tilde{C}_i & [S_iR_iQ_i \rightarrow R_{i+1}Q_{i+1}], & d: & D \rightarrow \tilde{D} & [P_iP_2P_3 \rightarrow S_3S_1S_2],
\end{align*}
\]

(1)

where $i = 1, 2, 3$ and all indices are taken mod 3. Obviously, the face identification $\varphi_3 = \{a_i, b_i, c_i, d\}$ induces equivalent relations on the sets of vertices, edges, and faces of P_3. Since φ_3 can be realized as isometries of H^3, the quotient space P_3/φ_3 is a compact orientable hyperbolic 3-manifold, that was denoted by M_{24} in [3, 4, 6]. It was shown in [4] that M_{24} has
the following interesting property: it is a 3-fold cyclic branched covering of the lens space $L_{3,1}$ branched over a 2-component link.

To generalize the construction of M_{24}, let us consider the complex P_n, $n \geq 1$, having $4n$ vertices, $10n$ edges, and $6n + 2$ faces, presented in Fig. 2. In particular, P_3 is the icosahedron as above. Define the pairwise identification φ_n of faces of P_n by formulae (1) for $i = 1, \ldots, n$, with the following correction:

$$d : D \to \bar{D} \quad [P_1P_2 \ldots P_{n-1}P_n \to S_3S_4 \ldots S_1S_2],$$

and denote the corresponding quotient space by $M_{24}(n)$. The following result was stated in [4] and [10, 11].

Proposition 1 For each $n \geq 1$ the quotient space $M_{24}(n) = P_n/\varphi_n$ is a manifold.

Proof. Denote by σ_k for $k = 0, 1, 2, 3$ the number of k-dimensional cells in $M_{24}(n)$. Obviously, $\sigma_3 = 1$. Moreover, $\sigma_2 = 3n + 1$, since there are the following classes of equivalent faces: $A_i \equiv A_i$, $B_i \equiv B_i$, $C_i \equiv C_i$, where $i = 1, \ldots, n$, and $D \equiv \bar{D}$. Also, $\sigma_1 = 3n + 1$, since all 1-cells are separated in four types of equivalence classes:

$$\begin{align*}
(I_i) \quad & P_iP_{i+1} \xrightarrow{a_i} R_{i+2}P_{i+2} \xrightarrow{b_{i+2}} S_{i+2}S_{i+3} \xrightarrow{d_{i+1}} P_iP_{i+1}; \\
(II) \quad & P_iQ_i \xrightarrow{a_i} R_{i+2}Q_{i+1} \xrightarrow{c_{i+1}} S_{i+1}R_{i+1} \xrightarrow{b_{i+1}} P_iQ_i; \\
(III) \quad & Q_iR_i \xrightarrow{c_i} S_iQ_i \xrightarrow{c_i} R_{i+1}S_i \xrightarrow{b_{i+1}} Q_iR_i; \\
(IV) \quad & P_2Q_1 \xrightarrow{a_1} P_3Q_2 \xrightarrow{a_2} \ldots P_nQ_{n-1} \xrightarrow{a_{n-1}} P_1Q_n \xrightarrow{a_n} P_2Q_1,
\end{align*}$$

where $i = 1, \ldots, n$. It is easy to check that, by the action of φ_n, all vertices of P_n are equivalent, and so, $\sigma_0 = 1$. Thus, the Euler characteristic of the quotient space is $\chi(M_{24}(n)) = 0$, \[\begin{align*}
&\end{align*}\]

\[\begin{align*}
&\end{align*}\]

\[\begin{align*}
&\end{align*}\]

\[\begin{align*}
&\end{align*}\]
and by \[M_{24}(n) \] \(M_{24}(n) \) is a manifold.

We recall that a presentation for the fundamental group of a closed 3-manifold is geometric if it corresponds to a Heegaard diagram. The following presentation for the fundamental group of \(M_{24}(n) \) was found in [11].

Proposition 2 The fundamental group of \(M_{24}(n) \), \(n \geq 1 \), has the following geometric presentation:

\[
\pi_1(M_{24}(n)) = \langle a_1, \ldots, a_n; b_1, \ldots, b_n; c_1, \ldots, c_n, d \mid a_1a_2 \ldots a_n = 1, \\
a_ib_{i+2}d^{-1} = 1, \quad a_ic_i^{-1}b_i^{-1} = 1, \quad c_i^2b_i^{-1} = 1, \quad i = 1, \ldots, n \rangle.
\]

(3)

Proof. An open Heegaard diagram for \(M_{24}(n) \) arises from Fig. 2 with discs corresponding to faces of \(P_n \) and segments of curves being dual to edges of \(P_n \). Thus, \(\pi_1(M_{24}(n)) \) is generated by \(a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n, d \). Obviously, passing along curves on the open Heegaard diagram we get defining relations as (I), (II), (III) and (IV) in Proposition 1:

\[a_ib_i+b_i+2d-1 = 1, \]
\[a_ic_i^{-1}b_i^{-1} = 1, \]
\[c_i^2b_i^{-1} = 1, \]
\[a_1a_2 \ldots a_n = 1, \]

respectively.

\[\square \]

Corollary 1 The fundamental group of \(M_{24}(n) \), \(n \geq 1 \), has the following presentation:

\[
\langle c_1, \ldots, c_n \mid \prod_{j=1}^{n} c_j^3 = 1, \quad c_i^2c_{i+1}c_{i+2}^2 = c_{i+1}^2c_{i+2}c_{i+3}^2, \quad i = 1, \ldots, n \rangle.
\]

(4)

Proof. Let us start with the group presentation given in Proposition 2. Since \(b_i = c_i^2 \), we get \(a_i = c_i^2c_{i+1} \) for \(i = 1, \ldots, n \), with indices taken mod \(n \). Substituting these expressions into \(a_1 \ldots a_n = 1 \), we get \(\prod_{j=1}^{n}(c_j^2c_{j+1}) = 1 \), and eliminating \(d \) from \(a_ib_{i+2}d^{-1} = 1 \), we get \(d = c_i^2c_{i+1}c_{i+2}^2 \) for \(i = 1, \ldots, n \), with indices taken mod \(n \).

\[\square \]

A presentation for \(\pi_1(M_{24}(n)) \), which is dual to (3), was given in [4]:

\[
\pi_1(M_{24}(n)) = \langle x_1, \ldots, x_n; y_1, \ldots, y_n; z_1, \ldots, z_n; u \mid x_1x_2 \ldots x_n = 1, \\
x_iu = y_i, \quad x_iy_{i+2} = z_{i+2}, \quad z_i^2y_{i-1} = 1, \quad i = 1, \ldots, n \rangle.
\]

(5)

Here the relations correspond to the boundaries of the 2-faces, as shown for \(M_{24}(3) \) in Fig. 1.
2 Covering properties and volumes of manifolds \(M_{24}(n)\)

Let \(M, M'\) be compact connected orientable 3-manifolds and \(L'\) a disjoint union of closed curves properly embedded in \(M'\). Let \(p : M \rightarrow M'\) denote a cyclic covering of \(M'\) by \(M\) branched over \(L'\). We say that the branched covering \(p\) is strongly-cyclic if the stabilizer of each point of the singular set \(p^{-1}(L')\) is the whole group of covering transformations.

The following property of \(M_{24}(n)\) was observed in [4]. We will give a new proof, which, unlike the one in [4], does not use results of [16] and [18].

Theorem 1 For each \(n \geq 2\), the manifold \(M_{24}(n)\) is an \(n\)-fold strongly-cyclic branched covering of the lens space \(L_{3,1}\), branched over a 2-component link. Moreover, \(M_{24}(1)\) is the lens space \(L_{3,1}\).

Proof. Denote by \(\rho_n\) the rotational symmetry of \(P_n\) sending \(X_i\) to \(X_{i+1}, i = 1, \ldots, n\), with indices taken mod \(n\), where \(X\) belongs to the set of letters used for the notations of the vertices: \(\{P, Q, R, S\}\). This symmetry induces a cyclic symmetry of the quotient space \(M_{24}(n) = P_n/\varphi_n\), and we denote it by \(\rho_n\), too. The quotient space \(M_{24}(n)/\rho_n\) is an orbifold whose underlying manifold is \(M_{24}(1)\). Its singular set \(L\) consists of two components: \(L = \ell_1 \cup \ell_2\). According to the description of the equivalence classes of the edges given in Proposition 1, the first component \(\ell_1\) corresponds to the class (IV) of edges. The second component \(\ell_2\) corresponds to the axis of rotation \(\rho_n\). Both components have singularity index \(n\). Through the Heegaard diagram of \(M_{24}(n)/\rho_n\), we understand the Heegaard diagram of \(M_{24}(1)\) with information about the singular set \(L\) presented.

The equivalence transformations of Heegaard diagrams from \(M_{24}(n)/\rho_n\) to \(L_{3,1}\) are drawn in Fig. 3. Here the first component \(\ell_1\) of the singular set is represented by a dashed segment connecting the discs \(A\) and \(\bar{A}\); the second component \(\ell_2\) by a dashed segment, connecting the discs \(D\) and \(\bar{D}\). Both components have branching index \(n\). Thus, the branched covering is strongly-cyclic. At the first step we identify the discs \(A\) and \(\bar{A}\), forming an 1-handle. The dashed segment (which also corresponds to \(\ell_1\)), connecting these discs, will give a 2-handle to glue up this 1-handle (i.e. they form a pair of complementary handles). Thus, \(\ell_1\) is a trivial knot; we are not drawing it in the next figures. At the second step we cancel the discs \(D\) and \(\bar{D}\), since they are connected only with the discs \(B\) and \(\bar{B}\), respectively, and the connecting segments are glued together. At the third step we cut along the curve shown by the dotted line to form a new pair of discs \(F\) and \(\bar{F}\) and then identify the discs \(C\) and \(\bar{C}\). After that we easily get a genus one Heegaard diagram, with the discs \(F\) and \(\bar{F}\), which is the standard diagram for the lens space \(L_{3,1}\), where the dotted line represents \(\ell_2\).

\(\square\)
Figure 3: Heegaard diagrams from $M_{24}(n)/\rho_n$ to $L_{3,1}$.

Proposition 3 $M_{24}(2)$ is the Seifert manifold $(S^2; (3, 1), (3, 2), (3, 2), (1, -1))$.

Proof. By Corollary $\mathbf{1}$, $\pi_1(M_{24}(2)) = \langle c_1, c_2 | c_1^3 c_2^3 = 1, c_1^2 c_2 c_1 c_2 = c_1 c_2 c_1^2, c_1 c_2 c_1^2 \rangle$. The second relation is equivalent to $c_2^2 c_1^2 c_2 c_1^2 = c_1 c_2$; after multiplication by c_1, we obtain $c_1^2 c_2^2 = c_1 c_2 c_1^2 c_2 c_1^2$ and by using the first relation, i.e. $c_1^3 = c_2^{-3}$, we have $c_1^2 c_2^2 = c_1^3 (c_2 c_1^2)^2$ and thus $c_1^2 c_2^2 = (c_2 c_1^2)^2$. Let us set $c_1 = a$, $b = c_2 c_1^2$ and so $c_2 = ba^{-2}$. Then, we have the following presentation:

$$\pi_1(M_{24}(2)) = \langle a, b | a^3 (ba^{-2})^3 = 1, a^{-2} (ba^{-2})^2 = b^2 \rangle$$

$$= \langle a, b | a^3 a^2 b^2 ba^{-2} = 1, (ba^{-2})^2 = a^2 b^2 \rangle$$

$$= \langle a, b | a^3 b^4 = 1, (ba^{-2})^2 = a^2 b^2 \rangle.$$

Consider the Seifert manifold $M = (S^2; (3, 1), (3, 2), (3, 2), (1, -1)) = (S^2; (3, 1), (3, 2), (3, -1))$. The standard presentation of $\pi_1(M)$ is as following (see $[15]$):

$$\langle x, y, z, h | xyz = 1, \ xh = hx, \ yh = hy, \ zh = hz, \ x^3 h = 1, \ y^3 h^2 = 1, \ z^3 h^{-1} = 1 \rangle.$$

We obtain $h = z^3$ from the last relation, $y = x^{-1} z^{-1}$ from the first one and we get

$$\pi_1(M) = \langle x, z | xz^3 = z^3 x, \ x^{-1} z^3 = z^3 x^{-1}, \ x^3 z^3 = 1, \ z^6 = (x^{-1} z^{-1})^{-3} \rangle.$$
Since the first two relations come from the third, we have
\[
\pi_1(M) = \langle x, z \mid x^3z^3 = 1, \quad z^6 = (zx)^3 \rangle = \langle x, z \mid x^3z^3 = 1, \quad z^5 = xzxz \rangle = \langle x, z \mid x^3z^3 = 1, \quad z^2x^2 = xz^2z^{-1} \rangle = \langle x, z \mid x^3z^3 = 1, \quad z^2x^2 = (xz^{-2})^2 \rangle,
\]
which is the same presentation as above, i.e. the fundamental groups of \(M_{24}(2) \) and \(M \) are isomorphic.

As a consequence, note that, since \(M \) is irreducible, \(M_{24}(2) \) is irreducible, too. Furthermore, since \(M \) is a large Seifert manifold, \(\pi_1(M_{24}(2)) = \pi_1(M) \) contains an infinite cyclic normal subgroup (generated by \(h \), see \cite{13}). Therefore, by a result of \cite{1} and \cite{7} (see also \cite{19}), \(M_{24}(2) \) is Seifert fibered and, consequently, \(M_{24}(2) \) and \(M \) are homeomorphic.

\[\square \]

Since \(M_{24}(2) \) is \((S^2; (3, 1), (3, 2), (3, 2), (1, -1)) \), it admits Nil geometry and its first homology group is \(\mathbb{Z}_3 \oplus \mathbb{Z}_4 \). Moreover, \(M_{24}(2) \) can be obtained by Dehn surgeries with parameters \((-1, 2), (-2, 1), (-7, 2)\) on the link \(6_1^3 \) (chain link), as well as with parameters \((6, 1), (1, 1), (3, 1)\) on \(6_2^3 \) (Borromean rings).

Theorem 3.1 from \cite{4} states that for \(n \geq 3 \) the manifolds \(M_{24}(n) \) are hyperbolic, although for \(n > 3 \) the authors do not present explicitly any proof of hyperbolicity. Moreover, the authors give the following volume formula: \(\text{vol } M_{24}(n) = (n/3) \cdot (4.686034274\ldots) \). However, even for small \(n > 3 \) the above formula turns out to be wrong. It would be right if the polyhedron \(P_n \) could be obtained by gluing isometrically \(n \) copies of the \(1/3 \)-piece of the hyperbolic \(2\pi/3 \)-icosahedron \(P_3 \). This is obviously not true, since the dihedral angle around the image of the axis of rotation \(\rho_n \) in \(P_n/\rho_n \) must be equal to \(2\pi/n \), that is, it differs from \(2\pi/3 \) if \(n > 3 \). The correct values of \(\text{vol } M_{24}(n) \) are presented below.

Proposition 4 The hyperbolic volumes and the first homology groups of \(M_{24}(n) \), for \(3 \leq n \leq 6 \), are as follows:

manifold	volume	homology group
\(M_{24}(3) \)	4.686034273803\ldots	\(\mathbb{Z}_9 \)
\(M_{24}(4) \)	9.702341514665\ldots	\(\mathbb{Z}_3 \oplus \mathbb{Z}_{12} \)
\(M_{24}(5) \)	14.319926985892\ldots	\(\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{15} \)
\(M_{24}(6) \)	18.649157163789\ldots	\(\mathbb{Z}_3 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{18} \)

Proof. Results are obtained by using the computer program Recognizer. \[\square \]
3 The family of manifolds $M_{25}(n)$

The following pairwise identification ψ_3 of faces of \mathcal{P}_3, with notations according to Fig. 4, can be found in [6]:

$$a_i : A_1 \rightarrow \tilde{A}_1 \quad [P_i P_{i+1} Q_i \rightarrow P_{i+2} R_{i+2} Q_{i+2}], \quad b_i : B_1 \rightarrow \tilde{B}_1 \quad [Q_i R_{i+1} P_{i+1} \rightarrow R_{i+2} S_{i+2} S_{i+1}],$$

$$c_i : C_i \rightarrow \tilde{C}_i \quad [Q_{i-1} R_i S_{i-1} \rightarrow S_i Q_i R_i], \quad d : \mathcal{D} \rightarrow \tilde{\mathcal{D}} \quad [P_1 P_2 P_3 \rightarrow S_3 S_1 S_2],$$

(6)

where $i = 1, 2, 3$ and all indices are taken mod 3. The quotient space \mathcal{P}_3/ψ_3 is a compact orientable hyperbolic 3-manifold denoted by M_{25} in [3, 4, 6]. It was shown in [4] that M_{25} is a 3-fold cyclic branched covering of the lens space $L_{3,1}$ branched over a 2-component link.

As one can see from Fig. 4, the boundaries of the faces of \mathcal{P}_3 are in correspondence with the following relations:

$$x_1 x_2 x_3 = 1, \quad x_i y_i = u, \quad y_i z_i = x_{i-1}, \quad z_{i-1} z_i = y_{i-1}, \quad i = 1, 2, 3. \quad (7)$$

To generalize the construction of M_{25}, it is natural to consider the complex \mathcal{P}_n, $n \geq 1$, pictured in Fig. 5 and define the pairwise identification ψ_n of the faces of \mathcal{P}_n by formulae (6) for $i = 1, \ldots, n$, with the following correction:

$$d : \mathcal{D} \rightarrow \tilde{\mathcal{D}} \quad [P_1 P_2 \ldots P_{n-1} P_n \rightarrow S_3 S_4 \ldots S_1 S_2]. \quad (8)$$

This is equivalent to the generalization from M_{25} to $M_{25}(n)$ considered in [4], were the face identifications of \mathcal{P}_n are defined by the boundary relations corresponding to the defining relations for the following group presentation:

$$G(n) = \langle x_1, \ldots, x_n; y_1, \ldots, y_n; z_1, \ldots, z_n; u \mid x_1 x_2 \ldots x_n = 1, \quad x_i y_i = u, \quad y_i z_i = x_{i-1}, \quad z_{i-1} z_i = y_{i-1}, \quad i = 1, \ldots, n \rangle. \quad (9)$$

![Figure 4: Identification ψ_3 of faces of \mathcal{P}_3.](image)
Let us denote the corresponding quotient space \mathcal{P}_n/ψ_n by $M_{25}(n)$.

Proposition 5 For each $n \geq 1$, the quotient space $M_{25}(n) = \mathcal{P}_n/\psi_n$ is a manifold.

Proof. Let σ_k be the number of k-cells in $M_{25}(n)$, $k = 0, 1, 2, 3$. Obviously, $\sigma_3 = 1$. Moreover, $\sigma_2 = 3n + 1$, since there are the following classes of equivalent faces: $A_i \equiv \bar{A}_i$, $B_i \equiv \bar{B}_i$, $C_i \equiv \bar{C}_i$, where $i = 1, \ldots, n$, and $D \equiv \bar{D}$. We have the following three types of classes of equivalent edges, with n classes of each type:

(I) $P_i P_{i+1} \xrightarrow{a_i} P_{i+2} R_{i+2} \xrightarrow{b_i+1} S_{i+2} S_{i+3} \xrightarrow{d^{-1}} P_{i+1} P_{i+1};$

(II) $P_{i+1} Q_{i} \xrightarrow{a_i} R_{i+2} Q_{i+2} \xrightarrow{c_{i+2}^{-1}} S_{i+1} R_{i+2} \xrightarrow{b_i^{-1}} P_{i+1} Q_{i};$

(III) $Q_{i-1} R_{i} \xrightarrow{c_i} S_{i} Q_{i} \xrightarrow{c_{i+1}} R_{i+1} S_{i+1} \xrightarrow{b_i^{-1}} Q_{i-1} R_{i};$

where $i = 1, \ldots, n$. Remark that $P_i Q_{i} \xrightarrow{a_i} P_{i+2} Q_{i+2}$. Thus, if n is odd, then the set of edges $\{P_1 Q_1, \ldots, P_n Q_n\}$ will form one class of equivalent edges:

$$P_1 Q_1 \xrightarrow{a_1} P_3 Q_3 \xrightarrow{a_3} \ldots P_n Q_n \xrightarrow{a_n} P_2 Q_2 \xrightarrow{a_2} \ldots P_{n-1} Q_{n-1} \xrightarrow{a_{n-1}} P_1 Q_1.$$

Hence $\sigma_1 = 3n + 1$. Moreover, in this case all vertices of \mathcal{P}_n are equivalent, so $\sigma_0 = 1$. If n is even, we get two classes of equivalent edges:

$$P_1 Q_1 \xrightarrow{a_1} P_3 Q_3 \xrightarrow{a_3} \ldots P_{n-1} Q_{n-1} \xrightarrow{a_{n-1}} P_1 Q_1; \quad P_2 Q_2 \xrightarrow{a_2} P_4 Q_4 \xrightarrow{a_4} \ldots P_n Q_n \xrightarrow{a_n} P_2 Q_2.$$

Hence $\sigma_1 = 3n + 2$. Moreover, in this case all vertices of \mathcal{P}_n are separated in two classes of equivalence, so $\sigma_0 = 2$. Thus, in both cases, the Euler characteristic of the quotient space is $\chi(M_{25}(n)) = 0$, and so $M_{25}(n)$ is a manifold.

\square
Proposition 6 The fundamental group of $M_{25}(n)$, $n \geq 1$, has the following geometric presentation:

$$
\pi_1(M_{25}(n)) = \langle a_1, \ldots, a_n; b_1, \ldots, b_n; c_1, \ldots, c_n; d \mid a_1a_3 \ldots a_n a_3 \ldots a_n = 1, \\
a_i b_i d^{-1} = 1, a_i c_i^{-1} b_i^{-1} = 1, c_i c_{i+1} b_{i-1}^{-1} = 1, \quad i = 1, \ldots, n \rangle.
$$

(10)

if n is odd, and

$$
\pi_1(M_{25}(n)) = \langle a_1, \ldots, a_n; b_1, \ldots, b_n; c_1, \ldots, c_n; d \mid a_1a_3 \ldots a_n a_3 \ldots a_n = 1, \\
a_i b_i d^{-1} = 1, a_i c_i^{-1} b_i^{-1} = 1, c_i c_{i+1} b_{i-1}^{-1} = 1, \quad i = 1, \ldots, n \rangle.
$$

(11)

otherwise.

Proof. If n is odd, an open Heegaard diagram for $M_{25}(n)$ arises from Fig. 5 with the discs corresponding to the faces of \mathcal{P}_n and the segments of curves being dual to the edges of \mathcal{P}_n. Thus, $\pi_1(M_{25}(n))$ is generated by $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n, d$. Obviously, passing along the curves of the Heegaard diagram we get defining relations as (I), (II), and (III) in Proposition 5: $a_i b_i d^{-1} = 1$, $a_i c_i^{-1} b_i^{-1} = 1$, and $c_i c_{i+1} b_{i-1}^{-1} = 1$, with the additional relation $a_1 a_3 \ldots a_n a_3 \ldots a_n = 1$.

If n is even, the discs corresponding to the faces of \mathcal{P}_n still give a complete system of meridian discs for a Heegaard surface F of $M_{25}(n)$. The system of curves, defined on F, by the edges dual to the edges of \mathcal{P}_n is proper but not reduced: in fact, by cutting F along these curves, we get two discs. As a consequence, the two systems of curves on F define a generalized Heegaard diagram for M (see [2] for details).

Again this diagram yields a presentation for $\pi_1(M_{25}(n))$, whose generators are $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n, d$ and whose relations are still (I), (II), and (III) in Proposition 5: $a_i b_i d^{-1} = 1$, $a_i c_i^{-1} b_i^{-1} = 1$, and $c_i c_{i+1} b_{i-1}^{-1} = 1$, with two additional relations: $a_1 a_3 \ldots a_n a_3 \ldots a_n = 1$ and $a_2 a_4 \ldots a_n = 1$.

Therefore, both for n odd and for n even, the presentations are geometric in the sense that they correspond to (generalized) Heegaard diagrams.

\[\square \]

Corollary 2 The fundamental group of $M_{25}(n)$, $n \geq 1$, has presentation:

$$
\langle c_1, \ldots, c_n \mid \prod_{j=0}^{k-1} (c_2+2j c_3+2j)^{k-1} \prod_{j=0}^{k-1} (c_3+2j c_4+2j) = 1, \quad c_i c_{i+1} c_{i+2} = c_{i+1} c_{i+2} c_{i+3}, \quad i = 1, \ldots, n \rangle,
$$

(12)
if \(n = 2k + 1 \), and

\[
\langle c_1, \ldots, c_n \mid \prod_{j=0}^{k-1} (c_{2+2j}c_{3+2j}) = 1, \quad \prod_{j=0}^{k-1} (c_{3+2j}c_{4+2j}) = 1, \quad c_ic_{i+1}c_{i+2} = c_{i+1}c_{i+2}c_{i+3}, \quad i = 1, \ldots, n \rangle
\]

if \(n = 2k \), where indices are considered mod \(n \).

Proof. Let us start with the group presentation given in Proposition 6. Since \(b_{i-1} = c_ic_{i+1} \), we get \(a_i = c_{i+1}c_{i+2} \) for \(i = 1, \ldots, n \); moreover, \(d = c_{i+1}c_{i+2}c_{i+3} \), for all \(i = 1, \ldots, n \) (all indices are taken mod \(n \)).

\(\square \)

It is stated in [4, p. 391] that for \(n \geq 3 \) the group \(G(n) \) with the presentation (9), where the relations correspond to the boundaries of the 2-faces, as shown for \(M_{25}(3) \) in Fig. 4 is the fundamental group of \(M_{25}(n) \). We observe that \(G(n) \) is isomorphic to \(\pi_1(M_{25}(n)) \) only if \(n \) is odd. This is the case when the quotient space \(P_n/\psi_n \) has exactly one vertex. If there is more than one vertex, more careful considerations are necessary (see, for example, [17, Section 62]).

If \(n = 2k \), then, as was already pointed out above, all vertices of \(P_n \) will form two classes of equivalence (see Fig. 6 for \(M_{25}(4) \) where one class of vertices is marked by ■ and another by ♦) and all its edges will form \((3n+2) \) classes of equivalence. For example, as we can see from

![Figure 6: Equivalence of faces in the construction of M_{25}(4).](image)

the polyhedral schemata for \(M_{25}(4) \) in Fig. 6, there are two edges in the class \(u \), and two edges in the class \(v \); on the contrary, from the presentation (9), four edges in the class \(u \) would be expected. Actually, for \(n \) even, we must add a relation corresponding to a maximal tree of the 1-skeleton of the complex, i.e. an edge. For instance we suppose \(v = 1 \): indeed \(v \) is an
edge connecting a vertex from class □ with a vertex from class ♦. Therefore, for \(n = 2k \), the fundamental group \(\pi_1(M_{25}(n)) \) is isomorphic to \(H(n) \) with the following presentation:

\[
H(n) = \langle x_1, \ldots, x_n; y_1, \ldots, y_n; z_1, \ldots, z_n; u \mid x_1x_2\ldots x_n = 1, \\
y_iz_i = x_{i-1}, \quad z_{i-1}z_i = y_{i-1}, \quad i = 1, \ldots, n, \quad x_{2j-1}y_{2j-1} = u, \quad x_{2j}y_{2j} = 1, \quad j = 1, \ldots k \rangle.
\] (14)

4 Covering properties and volumes of manifolds \(M_{25}(n) \)

Proposition 7 The manifold \(M_{25}(2) \) is the lens space \(L_{3,1} \).

Proof. Let us contract the edges of \(P_2 \) labelled by \(z_2 \) to deform it to a fundamental polyhedron whose quotient by \(\psi_2 \) has one vertex (see Fig. 7). We are using the dual on this new polyhedra to get a Heegaard diagram for \(M_{25}(2) \). The transformations of Heegaard diagrams from \(M_{25}(2) \) to \(L_{3,1} \) are drawn in Fig. 8.

Figure 7: Two-vertex and one-vertex fundamental polyhedra for \(M_{25}(2) \).

With regard to the covering properties of \(M_{25}(n) \), we must distinguish again the case \(n \) even from that of \(n \) odd.

Theorem 2 (1) For every \(n \) odd, \(n \geq 3 \), the manifold \(M_{25}(n) \) is an \(n \)-fold strongly-cyclic branched covering of the lens space \(L_{3,1} \), branched over a 2-component link. Moreover, \(M_{25}(1) \) is the lens space \(L_{3,1} \).

(2) For every \(n = 2k \), \(k \geq 2 \), the manifold \(M_{25}(n) \) is a \(n/2 \)-fold strongly-cyclic branched covering of the lens space \(L_{3,1} \), branched over a 3-component link.
Figure 8: Heegaard diagrams from $M_{25}(2)$ to $L_{3,1}$.

Proof. (1) Suppose that n is odd. Denote by ρ_n the rotational symmetry of \mathcal{P}_n sending X_i to X_{i+1} with indices taken mod n, $i = 1, \ldots, n$, where X belongs to the set of letters used for the notations of vertices: \{P, Q, R, S\}. This symmetry induces a cyclic symmetry of the quotient space $M_{25}(n) = \mathcal{P}_n/\psi_n$, and we denote it by ρ_n, too. The quotient space $M_{25}(n)/\rho_n$ is an orbifold whose underlying manifold is $M_{25}(1)$ with a 2-component singular set $L_{\text{odd}} = \ell_1 \cup \ell_2$. According to the description of the equivalence classes of edges given in Prop. 5, the first component ℓ_1 of L_{odd} corresponds to the class of edges $\{P_1Q_1, \ldots, P_nQ_n\}$. Only one element from this class will appear in the quotient space, so ℓ_1 has singularity index n. The second singular curve ℓ_2, also having singularity index n, corresponds to the axis of rotation ρ. Through the Heegaard diagram of $M_{25}(n)/\rho_n$ we understand the Heegaard diagram of $M_{25}(1)$ with information about the singular set L_{odd} presented.
The transformations of Heegaard diagrams from $M_{25}(n)/\rho_n$ to $L_{3,1}$ are drawn in Fig. 9. Here the first component of the singular set is represented by a dashed segment connecting the discs A and \overline{A}; the second component by a dashed segment, connecting the discs D and \overline{D}. Both components have branching index n, thus the cyclic covering is strongly cyclic. At the first step we identify discs A and \overline{A}, forming an 1-handle. The dashed segment (which corresponds to the first component of the singular set) connecting these discs will give a 2-handle to glue up this 1-handle (i.e. they form a pair of complementary handles). Thus, the first component is a trivial knot; we are not drawing it in next figures. At the second step we cancel the discs D and \overline{D}, since they are connected only with the discs B and \overline{B}, respectively, and the connecting segments are glued together. At the third step we cut along the curve represented by the dotted line to form a new pair of discs F and \overline{F} and then identify the discs C and \overline{C}. After that, we easily get a genus one Heegaard diagram, with the discs F and \overline{F}, which is the standard diagram for the lens space $L_{3,1}$, where the dotted line represents the second component of the singular set L_{odd}.

(2) Suppose $n = 2k$, $k \geq 2$. Denote by ρ_k the rotational symmetry of P_n sending X_i to X_{i+2}, $i = 1, \ldots, n$, with indices taken mod n, where X belongs to the set of letters used for the notations of vertices: $\{P, Q, R, S\}$. This symmetry induces a cyclic symmetry of the
quotient space $M_{25}(n) = \mathcal{P}_n/\psi_n$, and we denote it by ρ_k, too. The quotient space $M_{25}(n)/\rho_k$ is an orbifold whose underlying manifold is $M_{25}(2)$. We observe that the singular set $\mathcal{L}_{\text{even}}$ of the orbifold $M_{25}(n)/\rho_k$ has three components: $\mathcal{L}_{\text{even}} = \ell'_1 \cup \ell'_2 \cup \ell'_3$. Indeed, according to the description of the equivalence classes of the edges given in Prop. 5 for the case of n even, the first component ℓ'_1 corresponds to the class of edges $\{P_1Q_1, P_3Q_3, \ldots, P_{n-1}Q_{n-1}\}$. Only one element from this class will be represented in the quotient space, so it will produce a singular curve with singularity index $k = n/2$. Analogously, the second component ℓ'_2 corresponds to the class of edges $\{P_2Q_2, P_4Q_4, \ldots, P_nQ_n\}$ and its singularity index equals $k = n/2$, too. The third component ℓ'_3 corresponds to the axis of rotation ρ_k and its singularity index equals $k = n/2$. Through the Heegaard diagram of $M_{25}(n)/\rho_k$ we understand the Heegaard diagram of $M_{25}(2)$ with information about the singular set $\mathcal{L}_{\text{even}}$ presented. The final step of the proof is based on the fact, proved in Prop. 7, that $M_{25}(2)$ is homeomorphic to $L_{3,1}$.

Theorem 3.1 from [4] states that for $n \geq 3$ the manifolds $M_{25}(n)$ are hyperbolic, although for $n > 3$ the authors do not present explicitly any proof of hyperbolicity. Moreover, they give the following volume formula $\text{vol} M_{25}(n) = (n/3) \cdot (4.686034274\ldots)$. However, the given formula turns out to be wrong even for small $n > 3$: it would be right if the polyhedron \mathcal{P}_n could be obtained by gluing isometrically n copies of the $\frac{1}{3}$-piece of the hyperbolic $2\pi/3$-icosahedron \mathcal{P}_3. This is obviously not true, since the dihedral angle around the image of the axis of rotation ρ_n in \mathcal{P}_n/ρ_n must be equal to $2\pi/n$, that is, it differs from $2\pi/3$ if $n > 3$. The correct values of $\text{vol} M_{25}(n)$ for small n are presented below.

Proposition 8 The hyperbolic volumes and the first homology groups of $M_{25}(n)$, for $n \leq 6$, are as follows:

manifold	volume	homology group
$M_{25}(3)$	4.686034273803\ldots	$\mathbb{Z}_2 \oplus \mathbb{Z}_{18}$
$M_{25}(4)$	3.970289623891\ldots	$\mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_6$
$M_{25}(5)$	14.319926985892\ldots	$\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{15}$
$M_{25}(6)$	14.004768920617\ldots	$\mathbb{Z}_8 \oplus \mathbb{Z}_{72}$

Proof. The results are obtained by using the computer program Recognizer.
Acknowledgements

Work performed under the auspices of the GNSAGA of the CNR (National Research Council) of Italy and the Russian Foundation for Basic Research (grants 10-01-00642 and 10-01-91056). The third named author thanks University of Modena and Reggio Emilia and Abdus Salam School of Mathematical Sciences, GC University Lahore for the hospitality.

References

[1] A. Casson, D. Jungreis, Convergence groups and Seifert fibered 3-manifolds. Invent. math. 118 (1994), 441–456.

[2] A. Cattabriga, M. Mulazzani, A. Vesnin, Complexity, Heegaard diagrams and generalized Dunwoody manifolds, J. Korean Math. Soc. 47 (2010), 585-599.

[3] A. Cavicchioli, F. Spaggiari, A.I. Telloni, Topology of compact space forms from Platonic solids. I. Topology Appl. 156 (2009), 812–822.

[4] A. Cavicchioli, F. Spaggiari, A.I. Telloni, Topology of compact space forms from Platonic solids. II. Topology Appl. 157 (2010), 921–931.

[5] P. Cristofori, M. Mulazzani, A. Vesnin, Strongly-cyclic branched coverings of knots via \((g,1)\)-decompositions. Acta Math. Hungarica. 116 (2007), 163–176.

[6] B. Everitt, 3-manifolds from compact space forms from Platonic solids. Topology Appl. 138 (2004), 253–263.

[7] D. Gabai, Convergence groups are Fuchsian groups. Ann. of Math. (2) 136 (1992), 447–510.

[8] H. Helling, A.C. Kim, J.L. Mennicke, A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), 1–23.

[9] H. Helling, A.C. Kim, J.L. Mennicke, Some-honey combs in hyperbolic 3-space, Comm. Algebra 23 (1995), 5169–5206.

[10] T.A. Kozlovskaya, Branched cyclic coverings of lens spaces. Abstracts of the 41 All-Russian Young Scientists School–Conference “Problems of Theoretical and Applied Mathematics”, held on in Institute of Mathematics and Mechanics UrO RAN, Ekaterinburg, February 1–5, 2010. P. 127–130 (In Russian). Available at http://home.imm.uran.ru/digas/School-2010_A5.pdf
[11] T.A. Kozlovskaya, Branched cyclic coverings of lens spaces. Abstracts of the All-Russian Conference “Toponogov Readings – 2010”, held on in Sobolev Institute of Mathematics, Novosibirsk, March 6, 2010. (In Russian) Available at http://math.nsc.ru/conference/Geomap2010/Abstracts/kozlovskaya.pdf

[12] A. Mednykh, A. Vesnin, Hyperbolic volumes of the Fibonacci manifolds, Siberian Math. J. 36(2) (1995), 235-245.

[13] A. Mednykh, A. Vesnin, On the volume of hyperbolic Whitehead link cone-manifolds, SCIENTIA, Series A: Mathematical Science, 8 (2002), 1-11.

[14] M. Mulazzani, A. Vesnin, The many faces of cyclic branched coverings of 2-bridge knots and links, Atti Sem. Mat. Fis. Univ. Modena, Supplemento al Vol. IL (2001), 177–215.

[15] P. Orlik, Seifert manifolds. Lecture Notes in Mathematics 291, Springer-Verlag, Berlin-New York, 1972.

[16] R.P. Osborne, R.S. Stevens, Group presentations corresponding to spines of 3-manifolds. II. III. Trans. Amer. Math. Soc. 234 (1977), 213-243, 245-251.

[17] H. Seifert, W. Threlfall, A textbook on topology. Academic Press, 1980.

[18] R.S. Stevens, Classification of 3-manifolds with certain spines, Trans. Amer. Math. Soc. 205 (1975), 151-166.

[19] P. Scott, There are no fake Seifert fibre spaces with infinite π1. Ann. of Math. (2) 117 (1983), 35–70.

[20] H. Seifert, C. Weber, Die Beiden Dodekaederäume. Math. Z. 37 (1933), 237–253.

[21] A. Vesnin, T. Kozlovskaya, Cyclic branched covering of lens spaces. Siberian Math. J. 52(3) (2011), 426–435.

Department of Mathematics, University of Modena and Reggio Emilia, Italy
Novosibirsk State University, Novosibirsk, 630090, Russia
Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia