Evaluation of Contractors Performance in Iraqi Construction Projects Using Multiple Criteria Complex Proportional Assessment Method (COPRAS)

Nidal Adnan Jasim

Assistant Professor, Department of Civil Engineering, University of Diyala, Baquba, Diyala, Iraq

Email: nidaladnan100@gmail.com

Abstract The construction industry is a significant part of every economy and that performance assessment holds the key to its success in national socio-economic goals. Successful Construction projects are closely related to contractor’s performance, where increases a suitable contractor the chances of satisfactory completion of a project in time, cost and quality specified. Contractors’ performance can provide robust benchmarks for contractors and help to identify ways towards performance improvement. Contractor performance can be defined by the level and quality of projects delivered to clients. The objective of this research work is to study evaluate contractor performance for construction projects, and how it can be employed technical grounds (The Method Of Multiple Criteria Complex Proportional Assessment) in the assessment of contractors performance for construction projects, through the identification of criteria used to select the best contractor in terms performance as well as determining the list contractors of to choose the optimal contractor of these terms. For achieving the goal of the research its data collecting from the literature that addressed the factors Affecting Contractor Performance and method of multiple criteria complex proportional assessment (COPRAS), and finally personal interviews of engineers, contractors and owners qualified. The results of data analysis for the sample and then Rank Order Centroid method (ROC) and distinctive in their application showed that criteria of the quality of work, project management, technical knowledge, and timeliness of performance are the most important criteria for bilateral comparisons between contractors. Finally, and by calculating the relative importance, priorities of alternatives, and the benefit degree we find that the C1 has received the largest share of the benefit and importance.

In the end, was a set of conclusions and recommendations of various aspects of the topic from accelerating the application of techniques of decision- making multi-criteria in the evaluation of contractors performance in addition to expediting the application of the systems proposed by the researcher for the evaluation of contractors performance.

Key words: Contractor Performance ,multiple criteria decision making (MCDM), complex proportional assessment of alternatives (COPRAS)
1. Introduction

The construction industry serves as a catalyst to drive the economic development of a nation and the industry is referred to as a growth engine. Numerous government studies have however criticized the weak performance of the industry in terms of production, efficiency and quality systems. Implement many construction companies an integrated framework to ensure continuity and better building efficiency [1]. Poor performance of contractors results in poor quality of the products and time delay in construction resulting in cost and time overrun. This can be avoided by the proper choice of contractors when past performance data is available. Performance evaluation of contractors provides a base for the selection of contractors based on the importance of work and capability of the contractor. Comparison provides a base for improvements in the performance of contractors [2]. In construction projects public or private then the goal of all parties (owners, consultants, contractors, subcontractors, and suppliers) is to complete the project on schedule, within the planned budget, with the quality high, and most safely [3]. The client’s selection is made depending on the evaluation of contractors performance. So, contractors must be creators in their work and always looking for a better method to completion t their work accurately [4]. Project success reflects a good contractor and its skills in site management and project failure indicates a lack of expertise and a poor communication skill among the employees. Usually, the performance of the contractor is responsible for either negative or positive factors impacting the performance of the project [5]. The author of the study decided to analyze the problem of evaluating the performance of contractors companies by following a multi-criteria approach, and use the COBRAS method. COPRAS (COnplex PRoportional ASsessment) method was firstly presented by is presented by Zavadskas and Kaklauskas as a multiple-criteria decision-making method (Zavadskas et al., 1994) [6]. COPRAS approach uses the systematic rating and evaluation of alternative procedures in terms of their importance and degree of utility [7]. Explanation of COPRAS methods and possibilities of its use are published in a great number of papers as follows: Arzu Organ et al. (2016) applied COPRAS to the performance evaluation of the research assistant [8]. Jaber (2018) used COPRAS to assessment risk in construction projects in Iraq [9]. George et al. (2019) used COPRAS for selecting the best supplier of construction projects [10]. Jasim (2016) used COPRAS to assessment of design quality management for diyala city projects [11]

2. Objectives of study

Regular use technology to be supportive of the multiple Criteria decision-making process such as:

1. To study contractor performance and their best practices for construction projects.
2. To identify the factors affecting the performance of contractor construction projects.
3. Select the best contractor in terms of performance.
4. To give suggestions and recommendations for the effective performance of the contractor in construction projects.

3. Methodology of study

The research objective was achieved by following the steps as shown in Figure 1 below:

1. A literature review is conducted for previous studies related to the scope of research, including books, papers, websites, and theses.
2. The practical part of the research includes a questionnaire and personal interviews with specialists in the field of contracting.
3. Application of the COPRAS method to assess the performance of contractors in Iraqi construction projects.
Figure 1. Process Evaluation of Contractors Performance

4. Steps to implement COPRAS Method
Method of the COPRAS includes several steps [8, 10-13]:

Step 1. Construction of Decision Matrix
As in all decision-making problems of multiple criteria, first of all decision matrix is constructed. The matrix of decision is as follows:
\[
X = \begin{bmatrix}
 x_{12} & x_{12} & \ldots & x_{1n} \\
 x_{21} & x_{22} & \ldots & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m1} & x_{m2} & \ldots & x_{mn}
\end{bmatrix}
\]

(1)

Where \(x_{ij}\) is the \(i\)-th alternative assessment value with respect to the \(j\)-th criterion, \(m\) is the number of alternatives and \(n\) is the number of criteria.

Step 2: Normalization of decision matrix using the equation below:

\[
R = \begin{bmatrix}
 r_{ij}
\end{bmatrix}_{m \times n} = \frac{x_{ij}}{\sum_{j=1}^{m} x_{ij}}
\]

(2)

Step 3: Determination of the weighted normalized decision matrix, \(D\), by using the following equation:

\[
D = \begin{bmatrix}
 y_{ij}
\end{bmatrix}_{n \times m} = r_{ij} \cdot w_{j}, \quad (i = 1, \ldots, m \text{ and } j = 1, \ldots, n)
\]

(3)

Where \(y_{ij}\) is the normalized performance value of \(i\)-th alternative on \(j\)-th criterion and \(w_{j}\) is the weight of \(j\)-th criterion.

The sum of weighted normalized values of each criterion is equal to the weight for that criterion:

\[
\sum_{i=1}^{m} y_{ij} = w_{j}
\]

(4)

Step 4: In this step the sums of weighted normalized values are calculated for both the beneficial and non-beneficial criteria by using the following equations:

\[
S_{+i} = \sum_{j=1}^{n} y_{+ij} \quad \quad S_{-i} = \sum_{j=1}^{n} y_{-ij} \quad i = 1; \ldots; n \quad j = 1; \ldots; m
\]

(5)

Where \(y_{+ij}\) and \(y_{-ij}\) are the weighted normalized values for the beneficial and non-beneficial criteria, respectively.

Step 5: Determination the relative significances of the alternatives, \(Q_{i}\), by using the following equation:

\[
Q_{i} = \frac{S_{+i}}{S_{-i}} + \frac{\min S_{-i} \sum_{i=1}^{m} \left(\frac{S_{-i}}{S_{-i}} \right)}{\sum_{i=1}^{m} \left(\frac{S_{-i}}{S_{-i}} \right)}, \quad i = 1; \ldots; m
\]

(6)

Where \(S_{\text{min}}\) is the minimum value of \(S_{-i}\).

Step 6: Calculation of the quantitative utility, \(U_{i}\), for \(i\)-th alternative by using the following equation:

\[
U_{i} = \left(\frac{Q_{i}}{Q_{\text{max}}} \right) \times 100\%
\]

(7)

Where \(Q_{\text{max}}\) is the maximum relative significance value.

The degree of utility of the alternative is determined by comparing the analyzed alternatives with the most efficient alternative. All the benefits of the degree of benefit related to the analyzed alternatives will range from 0% to 100%.

5. Calculation of the criteria importance

There are several methods used to calculate the importance of criteria, in this research we used (Rank Order Centroid Method) (ROC), it was used first used by (Barron and Barrett) in 1996 [14]. This method is uncomplicated way to give weight to a number of paragraphs arranged depending to their importance, and the decision-makers can arrange the properties or criteria far easier than to give them weight, this method takes that arrangement as inputs and turns it into weights for each of those criteria.

The first step is to arrange the properties or criteria from the most important to the least important, and then each ROC value is assigned a value that reflects its weight, according to the following formula [15-17].
6. Factors Identification

The comprehensive literature on contractor performance methodology has been reviewed, factors affecting the contractor's performance have been identified, summarized, and included below [2-4, 18-20].

1. Quality of work.
2. Timeliness of performance.
3. Project satisfaction.
4. Safety and health compliance.
5. Budget management.
6. Project management.
7. Technical knowledge.
8. Stress in work.
9. Tender problems.
10. Human related factor.
11. Communication Issues.
12. External factors.

Table 1: The criteria and sub-criteria adopted in evaluating contractors Performance

7. Performance Evaluation of Contractors by COPRAS Method

By following the steps of the COPRAS technology described in the previous sections, the primary objective is to assess the contractor performance of the construction projects and the criteria that have been adopted [2-5,18-21] they are:

Project management (X1), Timeliness of performance (X2), Technical knowledge (X3), Quality of work (X4), Budget management (X5), Stress in work (X6), External factors (X7), Resource Availability (X8), Tender problems (X9), Human related factor (X10), Communication Issues (X11), Safety and health compliance (X12).

As for the sub-criteria that were approved for this evaluation, which were taken from previous research [14,15], through which decision makers can determine the preferences of each alternative decision in terms of their contribution to each criterion, as shown in the Table 1.

To evaluate contracting companies Performance have been chosen four of the contracting companies (alternatives) that work within Diyala University projects, and their names were as follows:

Ard Al-Sharifi Company (C1), Ard Al-Nashma Company (C2), Hatharat Al- Aamgad Company (C3), Al-Ghaith Company (C4). The performance of the contracting companies in Iraq has been evaluated by conducting a field questionnaire that includes the criteria approved in the evaluation, and the companies that will be evaluated to choose the best ones in terms of performance.

Then the results of the questionnaire were scheduled in the light of the answers obtained, as shown in Tables 2 and 3. To calculate the importance of the criteria of performance, and depending on what was mentioned in the steps to implement the Rank Order Centroid Method (ROC) in the previous steps and then performing the important calculations of the criteria as shown in the Table 4 and Figure 2.

Based on what was mentioned in the steps of implementing the COPRAS technique in steps (4,5,6), the calculations were made for the companies within the criteria of Performance as shown in Table 5.
Table 1: The criteria adopted in evaluating contractors' Performance

No	criteria	Code	Sub-criteria
1	Project management	X1	strong monitoring, effectiveness of coordination, adequate team selection, Training, effective project scheduling and budgeting, Effective communication, development and motivation, project manager competence, decision making skills, Troubleshooting, Project conformed to contract requirements, Presence of an Organizational structure, Site preparation time, Coordination of contractors work in a timely manner, Timely decision making.
2	Timeliness of performance	X2	Average delay in regular payments, Delays in schedule tackled in an efficient manner, Timely performance of the tasks, Timely completion of project with sophisticated schedule, Timely performance of tasks, Personnel assigned to the project are well versed and experienced for the work, Overall technical capability of the personnel is good.
3	Technical knowledge	X3	Experienced managers and technical personnel available to resolve problems, Contractor experience, Good quality of materials supplied at required time, Quality in workmanship, Frequent inspections carried out in site, Proper training programs conducted for workers, Project works in compliance with drawings and specifications.
4	Quality of work	X4	Project conformed to contract requirements, Efforts made to overcome deviations and deficiencies, Quality of equipment and raw materials, Quality assessment system in organization, Suitability of equipment, Conformance to specification, availability of competent staff, Timely documentation.
5	Budget management	X5	effectiveness of cost control system.
---	--------------------------------	---	
6	Stress in work	X6	
	Budget adherence to target cost		
	Accurate and reliable budget estimate		
	Escalation of material price		
	Excessive variation orders		
	Adherence to target costs on the contract level		
	Proper planning and scheduling of works		
	Labors subjected to stresses in various complex activities		
	Stress-free work environment		
	Workers ability to concentrate on performing their work		
	Productivity problems due to stress		
	Physical conditions		
	level of technological advancement		
7	External factors	X7	
	Economic influence (economic climate)		
	policy Government		
	conditions weather		
	availability of modern equipment		
	Equipment in good operating condition		
	Timely supply of materials and manpower		
	Availability manpower skilled		
	Experience of workers		
	Quality Control of material		
	Understanding peoples requirements and needs		
	Tendering procedures followed as per by law		
8	Resource Availability	X8	
	Issues in quoting rates for the project solved smoothly		
	Overcome issues in the approval of tender		
	Management of tender problems		
	Subcontractors, sub consultants, suppliers and labor force well managed		
	client satisfaction		
9	Tender problems	X9	
	contractor characteristics		
	Stakeholder relationship		
	Adherence to target costs on the contract level		
	Good Supplier		
	Experienced managers and technical personnel available to resolve problems		
10	Human Related Factor	X10	
	Communication issues	X11	
	Communication lines are established effectively		
	Good communication and coordination speed of information flow		
	Safety precautions are provided for workers		
12	Resource Availability	X12	
	Safety and health policies forms a part of company core values		
	Implementation of safety and health policies		
Table 2: Decision Matrix

Criteria	Contractors (Alternatives)	C1	C2	C3	C4	SUM
X1		70	65	65	60	260
X2		65	65	65	55	250
X3		70	60	60	60	250
X4		80	70	60	55	265
X5		75	75	65	60	275
X6		80	75	60	60	275
X7		75	70	65	60	270
X8		70	70	65	55	260
X9		80	70	70	60	280
X10		75	70	65	60	270
X11		70	70	55	50	245
X12		75	70	60	60	265

Table 3: Normalized matrix & weight calculation

Criteria	Contractors	C1	C2	C3	C4
X1		0.269	0.25	0.25	0.231
X2		0.26	0.26	0.26	0.22
X3		0.28	0.24	0.24	0.24
X4		0.302	0.264	0.226	0.208
X5		0.273	0.273	0.263	0.218
X6		0.29	0.273	0.218	0.218
X7		0.278	0.259	0.241	0.222
X8		0.269	0.269	0.25	0.212
X9		0.286	0.25	0.25	0.214
X10		0.278	0.259	0.241	0.222
X11		0.286	0.286	0.224	0.204
X12		0.283	0.264	0.226	0.226

Table 4: Calculation of the criteria importance

Criteria	Criteria Arrangement	Criteria Arrangement	\(\sum_{i=1}^{M} 1/m \)	\(\frac{1}{M} \sum_{i=1}^{M} 1/m \)
X1	2	1/2	2.103	0.175
X2	4	1/4	1.27	0.106
X3	3	1/3	1.603	0.134
X4	1	1	3.103	0.259
X5	5	1/5	1.02	0.085
X6	12	1/12	0.083	0.007
X7	11	1/11	0.174	0.015
X8	6	1/6	0.82	0.068
X9	9	1/9	0.385	0.032
Criteria	**	Weight	Contractors	
----------	-----	--------	-------------	
X1	+	0.175	C1: 0.047	
			C2: 0.044	
			C3: 0.044	
			C4: 0.040	
X2	+	0.106	C1: 0.028	
			C2: 0.028	
			C3: 0.028	
			C4: 0.023	
X3	+	0.134	C1: 0.038	
			C2: 0.029	
			C3: 0.029	
			C4: 0.029	
X4	+	0.259	C1: 0.078	
			C2: 0.068	
			C3: 0.059	
			C4: 0.054	
X5	+	0.085	C1: 0.023	
			C2: 0.023	
			C3: 0.022	
			C4: 0.019	
X6	+	0.007	C1: 0.002	
			C2: 0.002	
			C3: 0.002	
			C4: 0.002	
X7	+	0.015	C1: 0.004	
			C2: 0.004	
			C3: 0.004	
			C4: 0.003	
X8	+	0.068	C1: 0.018	
			C2: 0.018	
			C3: 0.017	
			C4: 0.014	
X9	+	0.032	C1: 0.009	
			C2: 0.008	
			C3: 0.008	
			C4: 0.007	
X10	+	0.043	C1: 0.012	
			C2: 0.011	
			C3: 0.01	
			C4: 0.01	
X11	+	0.023	C1: 0.007	
			C2: 0.007	
			C3: 0.005	
			C4: 0.005	
X12	+	0.054	C1: 0.015	
			C2: 0.014	
			C3: 0.012	
			C4: 0.012	
S+		0.281	C1: 0.256	
			C2: 0.24	
			C3: 0.218	
S-		-	C1: -	
Qi	Relative importance	0.281	0.256	
Rank	1	2	3	4
Ui	100	91.1	85.4	77.58

* The sign (*) indicates the value of the largest or smallest criterion, which is of the greatest importance to the beneficiaries.

Table 5: Index value, performance value & ultimate ranking of alternatives

Figure 2. Compare the relative importance of criteria.
Figure 3. Compare the relative importance of alternatives (contractors)

8. Conclusions
The author of the article used the COPRAS method to analyze the problem of evaluating the performance of contractors in construction projects is very important where the presence of contractors having high efficiency increases the company’s success and gives supremacy in competition. Where the current study presented successfully a new criterion for the evaluation of contractors performance in Iraq.

This study identified 12 criteria for assessment Contractors Performance in Iraqi construction projects assessment based on the literature review and interviews with experts. The ROC method was applied to obtain the weights of these criteria. The results of the ROC assessment showed that X4: quality of work, X1: project management, X3: technical knowledge, and X2: timeliness of performance were the top four criteria with weights of 0.259, 0.175, 0.134, and 0.106 respectively.

Then the researcher analyzed four contractors symbolized as C1, C2, C3, C4 by application of the COPRAS method, and the results of the research using the complex multi-criteria ratio technique showed that the lowest value is a relative importance in terms of performance is C4 he got (21.8%) and with a quantitative utility (77.58%). As for the highest relative importance value, it is C1 at (28.1%) and with a benefit amount of (100%). In the end, it is established that contractor symbolized as C1 has the best performance and therefore we can say that the rank of contractors as follows: C1 > C2 > C3 > C4.

References
[1] Avhad A R MMD 2018 To Investigate Factors Affecting Contractor Performance for High Rise Building Project Technology and Management 8-10.
[2] Tharanya P 2016 A Comparative Study on Contractors Performance in Government International Journal of Modern Trends in Engineering and Research (IJMTER) 03 (03).
[3] Abiodun OE, Segbenu N and Oluseye O. 2017. Factors Affecting Contractors’ Performance in Construction Project Delivery in Akure Ondo State Nigeria Journal of Knowledge Management Economics and Information Technology, 7 (4) 1 23.
[4] Abidali R and Ali Y 2018 Factors Affecting on the Performance of Contractors in Construction Project Bagdad Iraq Journal of University of Babylon for Engineering Sciences 26 (6) 257-65.

[5] Sweis RJ, Bisharat SM, Bisharat L and Sweis G 2014 Factors affecting contractor performance on public construction projects Life Science Journal 11(4s) 28-39.

[6] Podvezko V 2011 The comparative analysis of MCDA methods SAW and COPRAS Engineering Economics 22 (2)134-46.

[7] Zavadskas EK, Kaklauskas A, Turskis Z, Tamosaitiene J and editors 2008 Contractor selection multi-attribute model applying COPRAS method with grey interval numbers 20th International Conference/Euro Mini Conference on Continuous Optimization and Knowledge-Based Technologies (EuroOPT 2008).

[8] Organ A and Yalçın E 2016 Performance evaluation of research assistants by COPRAS method. European Scientific Journal 12 (10) 102-9.

[9] Jaber AZ 2019 Assessment Risk in Construction Projects in Iraq Using COPRAS-SWARA Combined Method Journal of Southwest Jiaotong University 54 (4).

[10] George J and Badoniya P 2019 A decision support system for selecting best supplier for multiple criteria decision making problems using entropy weight method and COPRAS Method National Journal of Advanced Research 5 (3) 01-3.

[11] Adnan Jasim N 2016 Assessment of Design Quality Management for Diyala City Projects Using the Method of Multiple Criteria Complex Proportional Assessment (COPRAS) Diyala Journal of Engineering Sciences 9 (1) 13-30.

[12] I NH 2012 Assessment of Quality Management for Diyala University Projects Using the Method of Multiple Criteria Complex Proportional Assessment (COPRAS) Diyala journal of engineering sciences 5 (2) 10-29.

[13] Popovic G, Stanujkic D and Stojanovic S 2012 Investment Project Selection by Applying Copras Method and Imprecise Data. Serbian Journal of Management.;7(2):257-69.

[14] Barron FH and Barrett BE 1996 Decision Quality Using Ranked Attribute Weights. Management science 42 (11) 1515-23.

[15] A PLK 2019 Critical Analysis on Rank-Order-Centroid (ROC) and Rank-Sum (RS) weights in Multicriteria-Decision Analysis VUB - BUTO Working Document Faculty of Economics Social Sciences and Solvay Business School.

[16] Saeid M GA and Selamat H 2011 Rank-Order Weighting of Web Attributes for Website Evaluation The International Arab Journal of Information Technology 8 (1).

[17] Danielson M, Ekenberg L and editors 2016. Trade-offs for ordinal ranking methods in multi-criteria decisions International Conference on Group Decision and Negotiation Springer.

[18] Lee M, Ismail S and Hussaini M 2014 Contractor’s Performance for Construction Project A Review International Journal of Engineering Research and Applications 4 (4) 131-7.

[19] Deep S, Simon L, Asim M, Rahimzadeh A and Al-Hamdani S 2018 An analytiscal study of critical factors affecting contractor efficiency in construction projects in Indian scenario Organization technology & management in construction an international journal 10 (1) 1794-802.

[20] Helen Ifedolapo Babalola OJO 2016 An Investigation into Factors Affecting the Performance of Public Construction Projects in Ondo State Southwestern, Nigeria Civil and Environmental Research 8 (1).

[21] Enshassi A, Mohamed S and Abushaban S 2009 Factors affecting the performance of construction projects in the Gaza strip. Journal of Civil Engineering and Management 15 (3) 269-80.