Ordering uniform supertrees by their spectral radii

Xiying Yuan∗†

February 24, 2015

Abstract

A connected and acyclic hypergraph is called a supertree. In this paper we mainly focus on the spectral radii of uniform supertrees. Li, Shao and Qi determined the first two k-uniform supertrees with large spectral radii among all the k-uniform supertrees on n vertices [H. Li, J. Shao, L. Qi, The extremal spectral radii of k-uniform supertrees, arXiv:1405.7257v1, May 2014]. By applying the operation of moving edges on hypergraphs and using the weighted incidence matrix method we extend the above order to the fourth k-uniform supertree.

AMS classification: 15A42, 05C50

Keywords: uniform hypergraph, adjacency tensor, spectral radius, uniform supertree, uniform hypertree.

1 Introduction

Let G be an ordinary graph, and A(G) be its adjacency matrix. Denote by ρ(G) the spectral radius of graph G, i.e., the largest eigenvalue of A(G). As usual, denote by S_n, P_n, the star on n vertices, the path on n vertices, respectively.

We will take some notation from [9] and [11]. We denote the set {1, 2, · · · , n} by [n]. Hypergraph is a natural generalization of an ordinary graph (see [1]). A hypergraph H = (V (H), E(H)) on n vertices is a set of vertices say V (H) = {1, 2, · · · , n} and a set of edges, say E(H) = {e_1, e_2, · · · , e_m}, where e_j = {i_1, i_2, · · · , i_l}, i_j ∈ [n], j = 1, 2, · · · , l. If |e_i| = k for any i = 1, 2, · · · , m, then H is called k-uniform hypergraph. A vertex v is said to be incident to an edge e if v ∈ e. The degree d(i) of vertex i is defined as d(i) = |{e_j : i ∈ e_j ∈ E(H)}|. A vertex of degree one is called a pendent vertex. For a k-uniform hypergraph H, an edge e ∈ E(H) is called a pendent edge if e contains exactly k − 1 pendent vertices.

An order k dimension n tensor A = (A_{i_1i_2···i_k}) ∈ C^{n×n×···×n} is a multidimensional array with n^k entries, where i_j ∈ [n] for each j = 1, 2, · · · , k. To study the properties of uniform hypergraph by algebraic methods, adjacency matrix of an ordinary graph is naturally generalized to adjacency tenor (it is called adjacency hypermatrix in [9]) of a hypergraph (see [5] [16]).

Definition 1 Let H = (V (H), E(H)) be a k-uniform hypergraph on n vertices. The adjacency tensor of H is defined as the k-th order n-dimensional tensor A(H) whose (i_1 · · · i_k)-entry is:

\[A(H)_{i_1i_2···i_k} = \begin{cases} \frac{1}{(k-1)!} & \text{if } \{i_1, i_2, · · · , i_k\} \in E(H) \\ 0 & \text{otherwise.} \end{cases} \]

The following general product of tensors, is defined in [17] by Shao, which is a generalization of the matrix case.

∗Department of Mathematics, Shanghai University, Shanghai 200444, China; email: xiyingyuan2007@hotmail.com
†Research supported by National Science Foundation of China (No. 11101263), and by a grant of "The First-class Discipline of Universities in Shanghai".
Definition 2 Let A and B be order $m \geq 2$ and $k \geq 1$ dimension n tensors, respectively. The product AB is the following tensor C of order $(m-1)(k-1)+1$ and dimension n with entries:

$$C_{\alpha_1\cdots \alpha_{m-1}} = \sum_{i_2, \ldots, i_m \in [n]} A_{i_2 \cdots i_m} B_{i_2 \alpha_1} \cdots B_{i_m \alpha_{m-1}}.$$

(1)

Where $i \in [n], \alpha_1, \cdots, \alpha_{m-1} \in [n] \times \cdots \times [n]$.

Let A be an order k dimension n tensor, let $x = (x_1, \ldots, x_n)^T \in \mathbb{C}^n$ be a column vector of dimension n. Then by (1) Ax is a vector in \mathbb{C}^n whose ith component is as the following

$$(Ax)_i = \sum_{i_2, \ldots, i_k = 1}^n A_{i_2 \cdots i_k} x_{i_2} \cdots x_{i_k}.$$

Let $x^{[k]} = (x_1^k, \ldots, x_n^k)^T$. Then (see [2] [16]) a number $\lambda \in \mathbb{C}$ is called an eigenvalue of the tensor A if there exists a nonzero vector $x \in \mathbb{C}^n$ satisfying the following eigenequations

$$Ax = \lambda x^{[k-1]},$$

and in this case, x is called an eigenvector of A corresponding to eigenvalue λ.

Let A be a kth-order n-dimensional nonnegative tensor. The spectral radius of A is defined as

$$\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}.$$

In this paper we call $\rho(A(H))$ the spectral radius of uniform hypergraph H, denoted by $\rho(H)$. For more details on the eigenvalues of a uniform hypergraph one can refer to [13] [7] and [14].

In [6], the weak irreducibility of nonnegative tensors was defined. It was proved in [6] and [18] that a k-uniform hypergraph H is connected if and only if its adjacency tensor $A(H)$ is weakly irreducible.

Theorem 3 [2] If A is a nonnegative tensor, then $\rho(A)$ is an eigenvalue with a nonnegative eigenvector x corresponding to it. If furthermore A is weakly irreducible, then x is positive, and for any eigenvalue λ with nonnegative eigenvector, $\lambda = \rho(A)$. Moreover, the nonnegative eigenvector is unique up to a constant multiple.

By Theorem 3 for a kth-order weakly irreducible nonnegative tensor A, it has a unique positive eigenvector x corresponding to $\rho(A)$ with $\|x\|_1 = 1$ and it is called the principal eigenvector of A ([11]).

Definition 4 [11] A supertree is a hypergraph which is both connected and acyclic.

A characterization of acyclic hypergraph has been given in Berge’s textbook [1], and we just state a version for uniform hypergraphs.

Proposition 5 [7] If H is a connected k-uniform hypergraph with n vertices and m edges, then it is acyclic if and only if $m(k-1) = n-1$.

The concept of power hypergraphs was introduced in [9]. Let $G = (V, E)$ be an ordinary graph. For every $k \geq 3$, the kth power of G, $G^k := (V^k, E^k)$ is defined as the k-uniform hypergraph with the edge set

$$E^k := \{e \cup \{i_e,1, \cdots, i_e,k-2\} | e \in E\}$$

and the vertex set

$$V^k := V \cup \cup_{e \in E}\{i_e,1, \cdots, i_e,k-2\}.$$

The kth power of an ordinary tree was called a k-uniform hypertree ([9] [11]). The following observations are clear. Any k-uniform hypertree is a supertree. A k-uniform supertree T with at least two edges is a k-uniform hypertree if and only if each edge of T contains at most two non-pendent vertices.
The kth power of S_n, denoted by S_n^k, is called hyperstar in [9]. Let $S(a,b)$ be the tree on $a+b+2$ vertices obtained from an edge e by attaching a pendent edge to one end vertex of e, and attaching b pendent edges to the other end vertex of e. Let $S^k(a,b)$ be the kth power of $S(a,b)$.

In [13], it was proved that the hyperstar S_n^k attains uniquely the maximum spectral radius among all k-uniform supertrees on n vertices, and $S^k(1,n'-3)$ attains uniquely the second largest spectral radius among all k-uniform supertrees on n vertices (where $n' = \frac{n-1}{k-1} + 1$).

Suppose that $m = \frac{n-1}{k-1}$, now we introduce a special class of supertrees with m edges, which are not hypertrees. Let $1 \leq t_1 \leq t_2 \leq t_3$ be three integers such that $t_1+t_2+t_3 = m-1$. Denote by $T(t_1,t_2,t_3)$ the k-uniform supertree containing exactly three non-pendent vertices, say u_1, u_2, u_3, incident to one edge, and $d(u_i) = t_i+1$ holding for each $i = 1, 2, 3$.

In this paper, we will determine the third and the fourth k-uniform supertree with the large spectral radii among all k-uniform supertrees on n vertices.

Theorem 6 Let T be a k-uniform supertree on n vertices (with $m = n'-1$ edges, where $n' = \frac{n-1}{k-1} + 1 \geq 5$). Suppose that $T \notin \{S_n^k, S^k(1,n'-3)\}$. Then we have

$$\rho(T) \leq \rho(S^k(2,n'-4)),$$

with equality holding if and if $T \cong S^k(2,n'-4)$.

Theorem 7 Let T be a k-uniform supertree on n vertices (with $m = n'-1$ edges, where $n' = \frac{n-1}{k-1} + 1 \geq 5$). Suppose that $T \notin \{S_n^k, S^k(1,n'-3), S^k(2,n'-4)\}$. Then we have

$$\rho(T) \leq \rho(T(1,1,m-3)),$$

with equality holding if and if $T \cong T(1,1,m-3)$.

The operation of moving edges on hypergraphs introduced by Li, Shao and Qi ([11]) and the weighted incidence matrix method introduced by Lu and Man ([13]) are crucial for our proofs. In Section 2 we will show them and other useful tools. In Section 3, we will give the proofs of our main results.

2 Several tools to compare spectral radii

A novel method (we call it weighted incidence matrix method) for computing (or comparing) the spectral radii of hypergraphs was raised by Lu and Man.

Definition 8 [13] A weighted incidence matrix B of a hypergraph $H = (V,E)$ is a $|V| \times |E|$ matrix such that for any vertex v and any edge e, the entry $B(v,e) > 0$ if $v \in e$ and $B(v,e) = 0$ if $v \notin e$.

Definition 9 [13] A hypergraph H is called α-normal if there exists a weighted incidence matrix B satisfying

1. $\sum_{e \in E} B(v,e) = 1$, for any $v \in V(H)$.
2. $\prod_{e \in E} B(v,e) = \alpha$, for any $e \in E(H)$.

Moreover, the weighted incidence matrix B is called consistent if for any cycle $v_0 e_1 v_1 e_2 \cdots v_l e_l v_0$

$$\prod_{i=1}^{l} \frac{B(v_i, e_i)}{B(v_{i-1}, e_i)} = 1.$$

Definition 10 [13] A hypergraph H is called α-subnormal if there exists a weighted incidence matrix B satisfying

1. $\sum_{e \in E} B(v,e) \leq 1$, for any $v \in V(H)$.

3
(2). \(\prod_{e \in E} B(v, e) \geq \alpha, \) for any \(e \in E(H). \)

Moreover, \(H \) is called strictly \(\alpha \)-subnormal if it is \(\alpha \)-subnormal but not \(\alpha \)-normal.

Definition 11 [13] A hypergraph \(H \) is called \(\alpha \)-supernormal if there exists a weighted incidence matrix \(B \) satisfying

1. \(\sum_{v \in e} B(v, e) \geq 1, \) for any \(v \in V(H). \)
2. \(\prod_{v \in e} B(v, e) \leq \alpha, \) for any \(e \in E(H). \)

Moreover, \(H \) is called strictly \(\alpha \)-supernormal if it is \(\alpha \)-supernormal but not \(\alpha \)-normal.

For a fixed \(k \)-uniform hypergraph \(H, \rho(H) \) defined here times constant factor \((k - 1)!\) is the value of \(\rho(H) \) defined in [13]. While this is not essential. Remembering this difference we modify Lemma 3 and Lemma 4 of [13] as the following Theorem 12.

Theorem 12 [13] Let \(H \) be a \(k \)-uniform hypergraph.

1. If \(H \) is strictly \(\alpha \)-subnormal, then we have \(\rho(H) < \alpha^{\frac{k}{2}}. \)
2. If \(H \) is strictly and consistently \(\alpha \)-supernormal, then \(\rho(H) > \alpha^{\frac{k}{2}}. \)

The following result reveals the numerical relationship between \(\rho(G^k) \) and \(\rho(G) \), where \(G^k \) is the \(k \)-th power of an ordinary graph \(G \).

Theorem 13 [10] Let \(G^k \) be the \(k \)th power of an ordinary graph \(G \). Then we have
\[
\rho(G^k) = (\rho(G))^k.
\]

Let \(F_n \) \((n \geq 5)\) be the tree obtained by coalescing the center of the star \(S_{n-4} \) and the center of the path \(P_5 \). Ordering the trees on \(n \) vertices according to their spectral radii was well studied in [10], [4] and [12]. We outline parts of the work in [10] as follows.

Theorem 14 [10] Let \(T \) be a tree on \(n \) vertices \((n \geq 5)\) and \(T \notin \{S_n, S(1, n-3), S(2, n-4), F_n\}\). Then we have
\[
\rho(S_n) > \rho(S(1, n-3)) > \rho(S(2, n-4)) > \rho(F_n) > \rho(T).
\]

Combining Theorems [13] and [14] we have the following corollary.

Corollary 15 Let \(T^k \) be the \(k \)th power of an ordinary tree \(T \). Suppose that \(T^k \) has \(n \) vertices, and \(n' = \frac{n-1}{k-1} + 1 \geq 5 \). Suppose \(T \notin \{S_{n',} S(1, n'-3), S(2, n'-4), F_{n'}\}\). Then we have
\[
\rho(S^k_{n'}) > \rho(S^k(1, n'-3)) > \rho(S^k(2, n'-4)) > \rho(F^k_{n'}) > \rho(T^k).
\]

Definition 16 [11] Let \(r \geq 1, G = (V, E) \) be a hypergraph with \(u \in V \) and \(e_1, \ldots, e_r \in E, \) such that \(u \notin e_i \) for \(i = 1, \ldots, r \). Suppose that \(v_i \in e_i \) and write \(e'_i = (e_i \setminus \{v_i\}) \cup \{u\} \) for \(i = 1, \ldots, r \). Let \(G' = (V', E') \) where \(E' = (E \setminus \{e_1, \ldots, e_r\}) \cup \{e'_1, \ldots, e'_r\} \). Then we say that \(G' \) is obtained from \(G \) by moving edges \((e_1, \ldots, e_r)\) from \((v_1, \ldots, v_r)\) to \(u \).

The effect on \(\rho(G) \) of moving edges was studied by Li, Shao and Qi (see Theorem 17). The following fact was pointed out in [11]. If \(G \) is acyclic and there is an edge \(e \in E(G) \) containing all the vertices \(u, v_1, \ldots, v_r \), then the graph \(G' \) defined as above contains no multiple edges.

Theorem 17 [11] Let \(r \geq 1, G \) be a connected hypergraph, \(G' \) be the hypergraph obtained from \(G \) by moving edges \((e_1, \ldots, e_r)\) from \((v_1, \ldots, v_r)\) to \(u \), and \(G' \) contain no multiple edges. If \(x \) is the principal eigenvector of \(A(G) \) corresponding to \(\rho(G) \) and suppose that \(x_u \geq \max_{1 \leq i \leq r} \{x_{v_i}\} \), then \(\rho(G') > \rho(G) \).
Denote by $N_2(T)$ the number of non-pendent vertices of T. By using Theorem 17 (or modifying parts of the proof of Theorem 21 of [11]), we have the following observation.

Lemma 18 Let T be a k-uniform supertree on n vertices with $N_2(T) \geq 2$. Then there exists a k-uniform supertree T' on n vertices with $N_2(T') = N_2(T) - 1$ and $\rho(T') > \rho(T)$.

Lemma 19 Let a, b, c, d be nonnegative integers with $a + b = c + d$. Suppose that $a \leq b$, $c \leq d$ and $a < c$, then we have $\rho(S^k(a, b)) > \rho(S^k(c, d))$.

Lemma 20 Let $1 \leq t_1 \leq t_2 \leq t_3$ be three integers with $t_1 + t_2 + t_3 = m - 1$. Then we have

$$\rho(T(1, 1, m - 3)) \geq \rho(T(t_1, t_2, t_3)),$$

with equality holding if and only if $t_2 = 1$.

Proof If $t_2 = 1$, the result is obvious. Now we suppose $t_2 > 1$, thus $t_3 > 1$. Let u_1, u_2 and u_3 be the (only) three non-pendent vertices of $T(t_1, t_2, t_3)$ with $d(u_i) = t_i + 1$, $i = 1, 2, 3$. It is easy to see that u_i is incident to t_i pendent edges, $i = 1, 2, 3$. Let x be the principal eigenvector of $A(T(t_1, t_2, t_3))$ corresponding to $\rho(T(t_1, t_2, t_3))$. Without loss of generality we suppose that $x_{u_i} = \max_{1 \leq i \leq 3} \{x_{u_i}\}$. Let G be obtained from $T(t_1, t_2, t_3)$ by moving $t_1 - 1$ pendent edges from u_1 to u_3, and moving $t_2 - 1$ pendent edges from u_2 to u_3. Then G is isomorphic to $T(1, 1, m - 3)$. Noting that $t_2 > 1$, by Theorem 17 we have $\rho(T(1, 1, m - 3)) > \rho(T(t_1, t_2, t_3))$.

By Theorem 18 we know that $\rho(S^k(2, n' - 4))$ is determined by $\rho(S(2, n' - 4))$, and $\rho(F^k_n')$ is determined by $\rho(F_n')$. We will use the weighted incidence matrix method to compare $\rho(T(1, 1, m - 3))$ with $\rho(S^k(2, n' - 4))$ and $\rho(F^k_n')$.

Lemma 21 Suppose that $n' = \frac{n - 1}{k} + 1$, $m = n' - 1 \geq 4$. We have

$$\rho(S^k(2, n' - 4)) > \rho(T(1, 1, m - 3)) > \rho(F^k_n').$$

Proof Denote by u_1, u_2 and u_3 three non-pendent vertices of $T(1, 1, m - 3)$. Label the m edges of $T(1, 1, m - 3)$ as follows. The unique non-pendent edge (the edge containing u_1, u_2 and u_3) is numbered e_0, the pendent edge containing u_1 is numbered e_1, the pendent edge containing u_2 is numbered e_2, and the pendent edges containing u_3 are numbered $e_3, \cdots, e_{m - 1}$. Now we construct an $n \times m$ matrix B. For any vertex v and any edge e of $T(1, 1, m - 3)$, let $B(v, e) = 0$ if $v \notin e$. For any pendent vertex v in an edge e, let $B(v, e) = 1$. For the non-pendent vertices u_1, u_2 and u_3, let $B(u_1, e_1) = \alpha$, $B(u_1, e_0) = 1 - \alpha$; $B(u_2, e_2) = \alpha$, $B(u_2, e_0) = 1 - \alpha$; and let $B(u_3, e_i) = \alpha$, for $i = 3, \cdots, m - 1$, $B(u_3, e_0) = 1 - (m - 3)\alpha$. According to the above rules, we say that for any vertex v of $T(1, 1, m - 3)$ we have

$$\sum_{e : v \in e} B(v, e) = 1. \tag{2}$$

For the pendent edge e_i ($i = 1, 2, \cdots, m - 1$), we have

$$\prod_{v : v \in e_i} B(v, e_i) = \alpha. \tag{3}$$

For the unique non-pendent edge e_0 we have

$$\prod_{v : v \in e_0} B(v, e_0) = (1 - \alpha)^2[1 - (m - 3)\alpha],$$

and then

$$\prod_{v : v \in e_0} B(v, e_0) - \alpha = -(m - 3)\alpha^3 + (2m - 5)\alpha^2 - m\alpha + 1. \tag{4}$$
(1). Write \(\rho = \rho(S(2, n' - 4)) \) for short. By Theorem 13 we have \(\rho(S^k(2, n' - 4)) = \rho^k \). It is easy to check that the tree \(S(2, n' - 4) \) contains \(m \) edges and the value \(\rho \) satisfies
\[
\rho^4 - m\rho^2 + 2(m - 3) = 0. \tag{5}
\]
As we all know that
\[
\rho > \sqrt{\Delta(S(2, n' - 4))} = \sqrt{n' - 3} = \sqrt{m - 2},
\]
where \(\Delta(S(2, n' - 4)) \) is the maximum degree of the tree \(S(2, n' - 4) \).

Take \(\alpha = \frac{1}{\rho^2} \). Then \(\alpha < \frac{1}{m-2} \) and
\[
1 - \alpha \geq 1 - (m - 3)\alpha > 1 - \frac{m - 3}{m - 2} > 0.
\]
So \(B(v, e) > 0 \) for any vertex \(v \) and any edge \(e \) of \(T(1, 1, m - 3) \) when \(v \in e \), i.e., the matrix \(B \) is a weighted incidence matrix of the supertree \(T(1, 1, m - 3) \) according to Definition 8. Now we will show \(T(1, 1, m - 3) \) is strictly \(\alpha \)-subnormal with \(\alpha = \frac{1}{\rho^2} \).

Combining (4) and (5), we only need to show
\[
\prod_{v: v \in e_0} B(v, e_0) > \alpha.
\]
In fact by (4) and (5) we have
\[
\prod_{v: v \in e_0} B(v, e_0) - \alpha = -(m - 3)\alpha^3 + (2m - 5)\alpha^2 - m\alpha + 1
\]
\[
= \frac{1}{\rho^6} [\rho^6 - m\rho^4 + (2m - 5)\rho^2 - (m - 3)]
\]
\[
= \frac{1}{\rho^6} [\rho^2 - (m - 3)]
\]
\[
> 0.
\]
So for the unique non-pendent edge \(e_0 \) we have
\[
\prod_{v: v \in e_0} B(v, e_0) > \alpha. \tag{6}
\]

By (1) of Theorem 12 we have
\[
\rho(T(1, 1, m - 3)) < \alpha^{-\frac{1}{k}} = \rho^\frac{k}{k} = \rho(S^k(2, n' - 4)).
\]

(2). Write \(\rho = \rho(F_{n'}) \) for short. By Theorem 13 we have \(\rho(F^k_{n'}) = \rho^k \). It is easy to see that the tree \(F_{n'} \) contains \(m \) edges and the value \(\rho \) satisfies
\[
\rho^4 - (m - 1)\rho^2 + (m - 4) = 0, \tag{7}
\]
and
\[
\rho > \sqrt{\Delta(F_{n'})} = \sqrt{n' - 3} = \sqrt{m - 2},
\]
where \(\Delta(F_{n'}) \) is the maximum degree of the tree \(F_{n'} \).

Take \(\alpha = \frac{1}{\rho^2} \). Then \(\alpha < \frac{1}{m-2} \) and
\[
1 - \alpha \geq 1 - (m - 3)\alpha > 1 - \frac{m - 3}{m - 2} > 0.
\]
So \(B(v, e) > 0 \) for any vertex \(v \) and any edge \(e \) of \(T(1, 1, m - 3) \) when \(v \in e \), i.e., the matrix \(B \) is a weighted incidence matrix of the supertree \(T(1, 1, m - 3) \). Now we will show \(T(1, 1, m - 3) \) is strictly
Clearly, the weighted incidence matrix B So for the unique non-pendent edge is acyclic. By (2) of Theorem 12, we have (4) and (7) we have

\[
\prod_{v: e \in e_0} B(v, e_0) < \alpha. \quad (8)
\]

Clearly, the weighted incidence matrix B of $T(1, 1, m - 3)$ is consistent, since the supertree $T(1, 1, m - 3)$ is acyclic. By (2) of Theorem 12 we have

\[
\rho(T(1, 1, m - 3)) > \alpha^{-\frac{1}{2}} = \rho(T_{\alpha}).
\]

The proof is complete. \square

3 The proofs of the main results

Suppose that $n' = \frac{m - 1}{k - 1} + 1$, and $m = n' - 1$. Recall that $N_2(T)$ is the number of non-pendent vertices of a supertree T. For a k-uniform supertree T on n vertices we have the following observations.

1. $N_2(T) = 1$ if and only if $T \cong S_{n'}^k$;
2. $N_2(T) = 2$ if and only if $T \cong S^k(a, b)$ for some integers a, b, where $b \geq a \geq 1$ and $a + b = n' - 2$;
3. $N_2(T) = 3$ and three non-pendent vertices incident to one edge if and only if $T \cong T(t_1, t_2, t_3)$ for some integers t_1, t_2, t_3, where $t_1 + t_2 + t_3 = m - 1$.

4. $N_2(T) = 3$ and three non-pendent vertices not incident to one edge, if and only if $T \cong T_k$ for some ordinary tree T and T containing three non-pendent vertices.

Proof of Theorem 6 Since $T \not\cong S_{n'}^k$, we have $N_2(T) \geq 2$.

If $N_2(T) = 2$, then $T \cong S^k(a, b)$ for some integers a, b, where $b \geq a \geq 1$ and $a + b = n' - 2$. Since $T \not\cong S^k(1, n' - 3)$, by Lemma 19 we have

\[
\rho(T) < \rho(S^k(2, n' - 4)),
\]

with equality holding if and if $T \cong S^k(2, n' - 4)$.

If $N_2(T) = 3$ and $T \cong T(t_1, t_2, t_3)$, then combining Lemmas 20 and 21 we have

\[
\rho(T) < \rho(T(1, 1, m - 3)) < \rho(S^k(2, n' - 4)).
\]

If $N_2(T) = 3$ and $T \cong T_k$ for some ordinary tree T, then T contains three non-pendent vertices and then $T \not\in \{S_{n'}, S(a, b)\}$. From Corollary 15 we have

\[
\rho(T) < \rho(S^k(2, n' - 4)).
\]
If $N_2(T) \geq 4$, then there exists a k-uniform supertree T' with $N_2(T') = 3$ and $\rho(T') > \rho(T)$ by Lemma 18. Thus we have

$$\rho(T) < \rho(T') < \rho(S^k(2, n' - 4)).$$

The proof is complete. □

Proof of Theorem 7 Since $T \not\cong S^k_n$, we have $N_2(T) \geq 2$.

If $N_2(T) = 2$, then $T \cong S^k(a, b)$ for some integers a, b, where $b \geq a \geq 1$, and $a + b = n' - 2$. Since $T \not\in \{S^k(1, n' - 3), S^k(2, n' - 4)\}$, by Lemma 19, Corollary 15 and Lemma 21, we have

$$\rho(T) \leq \rho(S^k(3, n' - 5)) < \rho(F^k_{n'}) < \rho(T(1, 1, m - 3)).$$

If $N_2(T) = 3$ and $T \cong T(t_1, t_2, t_3)$, then from Lemma 20 we have

$$\rho(T) \leq \rho(T(1, 1, m - 3)),$$

with equality holding if and only if $T \cong T(1, 1, m - 3)$.

If $N_2(T) = 3$ and $T \cong T^k$, then $T \not\in \{S^k_n, S(a, b)\}$. From Corollary 15 Lemma 21 we have

$$\rho(T) \leq \rho(F^k_{n'}) < \rho(T(1, 1, m - 3)).$$

If $N_2(T) \geq 4$, then there exists a k-uniform supertree T' with $N_2(T') = 3$ and $\rho(T') > \rho(T)$ by Lemma 18. Thus we have

$$\rho(T) < \rho(T') \leq \rho(T(1, 1, m - 3)).$$

The proof is complete. □

References

[1] C. Berge, Hypergraph. Combinatorics of Finite sets, third edition, North-Holland, Amsterdam, 1973.

[2] K.C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6(2008)507-520.

[3] K.C. Chang, L. Qi and T. Zhang, A survey on the spectral theory of nonnegative tensors, Numer. Linear Alg. Appl., 20 (2013) 891-912.

[4] A. Chang, Q. Huang, Ordering trees by their largest eigenvalues, Linear Algebra Appl. 370 (2003) 175-184.

[5] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268-3292.

[6] S. Friedland, A. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra Appl.,438 (2013) 738-749.

[7] S. Hu, Z. Huang, C. Ling, L. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput. 50 (2013) 508-531.

[8] S. Hu, L. Qi, J. Shao, Cored hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl. 439 (2013) 2980-2998.
[9] S. Hu, L. Qi and J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Alg. Appl., 439 (2013) 2980-2998.

[10] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260 (1997) 43-59.

[11] H. Li, Y. Shao, L. Qi, The external spectral radii of k-uniform supertrees, arXiv:1405.7257v1, May 2014.

[12] W. Lin, X. Guo, Ordering trees by their largest eigenvalues, Linear Algebra Appl. 418 (2006) 450-456.

[13] L. Lu, S. Man, Connected hypergraphs with small spectral radius, arXiv:1402.5402v3, Mar 2014.

[14] V. Nikiforov, Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455-535.

[15] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 40 (2005) 1302-1324.

[16] L. Qi, H^+-eigenvalue of Laplacian and signless Laplacian tensors, Commun. Math. Sci. 12(2014)1045-1064.

[17] Y. Shao, A general product of tensors with applications, Linear Algebra Appl. 439 (2013) 2350-2366.

[18] Y. Yang, Q. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv: 1111.0713 v3, 2011.

[19] J. Zhou, L. Sun, W. Wang, C. Bu, Some spectral properties of uniform hypergraphs, arXiv: 1407.5193 v1, Jul. 2014.