Non-thermal Dark Matter in String Compactifications

Rouzbeh Allahverdi\(^1\), Michele Cicoli\(^2,3,4\), Bhaskar Dutta\(^5\), and Kuver Sinha\(^6\)

\(^1\) Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
\(^2\) Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
\(^3\) INFN, Sezione di Bologna, 40126 Bologna, Italy
\(^4\) Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy
\(^5\) Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
\(^6\) Department of Physics, Syracuse University, Syracuse, NY 13244, USA

Non-thermal cosmological histories are capable of greatly increasing the available parameter space of different particle physics dark matter (DM) models and are well-motivated by the ubiquity of late-decaying gravitationally coupled scalars in UV theories like string theory. A non-thermal DM model is presented in the context of LARGE Volume Scenarios in type IIB string theory. The model is capable of addressing both the moduli-induced gravitino problem as well as the problem of overproduction of axionic dark radiation and/or DM. We show that the right abundance of neutralino DM can be obtained in both thermal under and overproduction cases for DM masses between \(O(\text{GeV})\) to \(O(\text{TeV})\). In the latter case the contribution of the QCD axion to the relic density is totally negligible, while in the former case it can be comparable to that of the neutralino thus resulting in a multi-component DM scenario.

I. INTRODUCTION

The standard paradigm of thermal dark matter (DM) assumes DM in thermal equilibrium following an initial inflationary era. Subsequently, the DM particle drops out of thermal equilibrium and its abundance freezes out when annihilation becomes inefficient at a temperature of order \(T_i \approx m_{\text{DM}}/20\). Due to the lack of direct observations of the history of the universe before Big Bang Nucleosynthesis (BBN), it is important to go beyond the standard thermal paradigm. In fact, non-thermal DM is well-motivated both from a bottom-up and a top-down point of view.

From a bottom-up approach, non-thermal DM scenarios vastly enlarge the parameter space available in particle physics models. The most obvious example is the Minimal Supersymmetric Standard Model (MSSM), where neutralino DM candidates typically give too much (Bino DM) or too little (Higgsino/Wino DM) relic density. The correct thermal relic density is only satisfied for very specific cases: (i) Bino DM with co-annihilation, Higgs resonance, or \(t\)-channel slepton exchange or (ii) Well-tempered Bino/Higgsino or Bino/Wino DM. The first case is typically fine-tuned, while the second is being increasingly constrained by direct detection experiments. There is also the possibility of multi-component Higgsino or Wino DM, but this requires additional physics. In a non-thermal scenario \(^1\), both cases with thermal under (Wino/Higgsino) and overabundance (Bino) can be accommodated. Non-thermal production of Wino DM \(^2\) provides an explicit example. Another important example is pure Higgsino DM \(^3\), which is motivated by naturalness conditions \(^4\).

Furthermore, light DM with mass \(\sim O(10)\text{ GeV}\), motivated by results from recent direct detection experiments \(^5,6\), typically has an annihilation cross-section that is smaller in the context of most models due to the exchange of \(O(\text{TeV})\) particles \(^7\) which leads to overabundance of dark matter in the current epoch in the thermal scenarios. Also, for DM with mass \(\lesssim 40\text{ GeV}\) the annihilation cross-section is constrained to be less than the thermally required value by the gamma ray flux from dwarf spheroidal galaxies and galactic center \(^10,11\).

From a top-down approach, the ubiquity of gravitationally coupled moduli in string theory makes the scenario of a late-decaying scalar quite generic. Late-time decay will typically erase any previously produced DM relic density as well as baryon asymmetry, necessitating non-thermal production. The modulus should decay before BBN and late enough to produce interesting effects on IR physics. Hence non-thermal physics requires \(T_{\text{BBN}} \lesssim T_{\text{rh}} < T_i\), where \(T_{\text{rh}}\) is the modulus reheat temperature and \(T_{\text{BBN}} \approx 3\text{ MeV}\) is the lower bound required by the success of BBN. This typically places upper and lower bounds on the mass of the modulus. However, given that the scale of soft masses also depends on the moduli masses, the requirement of TeV-scale supersymmetry (SUSY) to solve the hierarchy problem, generically forces the moduli to be light enough to decay at temperatures below \(T_i\). Thus, from the point of view of string theory, non-thermal DM scenarios seem to be more generic than standard thermal ones \(^12\).

The purpose of this paper is to explore non-thermal DM in string compactifications, specifically sequestered models in the context of type IIB LARGE Volume Scenarios (LVS) \(^13\). Several problems associated with non-thermal scenarios are readily addressed in this context: the moduli-induced gravitino problem \(^14\) and the overproduction of axionic dark radiation (DR) \(^15,17\) and DM \(^18\). Broadly speaking, the gravitino problem is solved by kinematic suppression since in these models the gravitino is much heavier than the modulus while...
still yielding TeV-scale superpartners. Axionic DR overproduction can be addressed either by suitable coupling of the modulus to the visible sector, or by removing dangerous axions via anomalous $U(1)$ symmetries. On the other hand, axionic DM overproduction can be avoided either by a sufficiently low reheat temperature, or by considering open string axions with a low decay constant $f_a \sim 10^{12}$ GeV. Moreover, it is possible to accommodate cases of both thermal DM over and underproduction. Both cases can be realized using neutralinos for masses between $O(\text{GeV})$ to $O(\text{TeV})$. In the underproduction case, if needed, the QCD axion can be utilized to satisfy the abundance.

The plan of the paper is as follows. In Section II we describe non-thermal scenarios from moduli decays and their main challenges. In Section III we briefly review sequestered LVS models where these problems are addressed. Finally in Section IV we work out the production of non-thermal DM in these models before ending with our Conclusions.

II. CHALLENGES FOR NON-THERMAL SCENARIOS

There are two ubiquitous problems of any string compactification which are particularly relevant for us:

1. Cosmological moduli problem (CMP) [19]: the moduli start oscillating around their minimum at $H_{\text{osc}} \sim m_{\text{mod}}$ with an initial displacement at the end of inflation of order M_P. Redshifting as matter, they quickly come to dominate the energy density, and so they reheat our universe when they decay. Being gravitationally coupled scalars, they decay very late when $H_{\text{dec}} \sim \epsilon^2 m_{\text{mod}}$ where $\epsilon \sim m_{\text{mod}}/M_P$. In order to prevent any distortion of the successful BBN predictions, the resulting reheat temperature $T_{\text{rh}} \sim \epsilon^{1/2} m_{\text{mod}}$ must be above T_{BBN}. This sets a lower bound on the moduli masses of order $m_{\text{mod}} \gtrsim 10$ TeV.

2. Axionic DM overproduction [18]: string compactifications give rise in 4D to many axion-like particles whose number is controlled by the topology of the extra-dimensions, and it is generically of order a few hundred. Some of these axions can be projected out from the low-energy spectrum, can be eaten up by anomalous $U(1)$s or can get large masses from non-perturbative effects, but generically some of them will remain light [20]. One of these light axions, if it has the right coupling to QCD, can then play the rôle of the QCD axion. Its decay constant turns out to be set by the string scale $f_a \sim M_s/\sqrt{4\pi}$ which is generically very high, $M_s \gtrsim 10^{15}$ GeV, resulting in the overproduction of axionic cold DM for $f_a \gtrsim 10^{14}$ GeV.

There seems to be a tension between these two problems since in order to make the moduli heavier than 10 TeV, one has to raise all the scales in the model, so increasing also the axion decay constant. However, if $m_{\text{mod}} > 10$ TeV, the heavy moduli decaying in the window $T_{\text{BBN}} \lesssim T_{\text{rh}} < T_1$ would dilute any previous relic. In particular:

1. Axionic DM is diluted if $T_{\text{rh}} < \Lambda_{\text{QCD}} \sim 200$ MeV, so avoiding any overproduction [21]. The maximum dilution is obtained for T_{rh} very close to T_{BBN} allowing a decay constant of order $f_a \sim 10^{14}$ GeV without fine-tuning the initial misalignment angle.

2. Standard thermal DM is also diluted if $T_{\text{rh}} < T_1 \sim \mathcal{O}(10)$ GeV. DM would then be produced non-thermally by the moduli decay. There are two viable mechanisms depending on the value of T_{rh}. If T_{rh} is close to T_1, one has to consider the ‘annihilation scenario’, with a very abundant initial production of Wino- or Higgsino-like DM particles and a subsequent very efficient annihilation process. On the other hand, if T_{rh} is close to T_{BBN}, a smaller initial abundance of DM particles is produced and strong annihilation effects would lower it even further. Thus, in this case, one is in the ‘branching scenario’ where the right amount of Bino-like DM is produced directly from the moduli decay without any subsequent annihilation.

3. Any matter-antimatter asymmetry produced before the moduli decay would also be diluted. This could be a welcomed effect if baryogenesis occurs in the early universe via the Affleck-Dine mechanism which tends to be too efficient. On the other hand, if no matter-antimatter asymmetry is left over after the moduli decay, this scenario opens up the possibility to explain the cosmic coincidence puzzle, i.e. why the DM abundance is of the same order of the one of ordinary baryons. In fact, both of them could be produced from the moduli decay into new heavy coloured particles with baryon number and CP-violating couplings [22].

In summary, the moduli decay can solve the problem of axionic DM overproduction, can give rise to non-thermal DM, and finally can be responsible also for baryogenesis. This seems to be the generic situation for string compactifications where the moduli are stabilised by breaking SUSY and no CMP is present, since in this case both the mass of the lightest modulus m_{light} and the scale of the soft terms M_{soft} generated by gravity mediation are controlled by the gravitino mass: $M_{\text{soft}} \lesssim m_{\text{light}} \sim m_{3/2}$. Thus the reheat temperature from the lightest modulus decay scales as $T_{\text{rh}} \gtrsim M_{\text{soft}} \sqrt{M_{\text{soft}}/M_P}$. In order to make it larger than Λ_{QCD}, the soft terms should be larger than $\mathcal{O}(500)$ TeV, so losing the possibility to rely on low-energy SUSY to solve the hierarchy problem. A possibly different situation is the one where the visible sector is ‘sequestered’ from SUSY breaking so that $M_{\text{soft}} \ll m_{\text{light}}$ since in this case TeV-scale SUSY could be compatible
with a reheat temperature above T_f. In what follows we shall however show that this is not the case.

Let us finally mention that the decay of the moduli could in principle also introduce two problems:

- **Gravitino problem**\(^{[14]}\): If $m_{3/2} < m_\text{light}$ the gravitino is produced by the light modulus decay. If $m_{3/2} \lesssim 10$ TeV, the gravitino decays after BBN, otherwise if $m_{3/2} \gtrsim 10$ TeV, the gravitini could annihilate into DM causing its overproduction.

- **Dark radiation overproduction**\(^{[13,17]}\): The moduli are gauge singlets and so they do not prefer to decay into visible sector fields. Thus, if light hidden sector degrees of freedom like axion-like particles exist, the branching ratio into them could not be negligible, so giving a number of effective relativistic species which is above the tight bounds from cosmological observations, $\Delta N_\text{eff} \approx 0.5$ \(^{[23]}\).

In the next section we present a string model where the moduli masses and couplings can be computed explicitly and these two problems can be easily evaded.

III. SEQUESTERED LVS MODELS

A very promising moduli stabilisation mechanism in type IIB string theory is the LARGE Volume Scenario \(^{[13]}\). In this framework, all the moduli are fixed by background fluxes, D-terms from anomalous $U(1)$s, and the interplay of non-perturbative and α' effects. The simplest realisation involves an internal volume of the form (for explicit constructions see \(^{[24]}\)):

$$\mathcal{V} = \tau_{\text{big}}^{3/2} - \tau_{\text{np}}^{3/2} - \tau_{\text{inf}}^{3/2} - \tau_{\text{vs}}^{3/2},$$

where the τ's are Kähler moduli parameterising the size of internal 4-cycles. The visible sector (a chiral MSSM- or GUT-like theory) is built via space-time filling D3-branes sitting at the singularity obtained by shrinking τ_{vs} to zero size by D-terms \(^{[25]}\). On the other hand, the cycle τ_{np} supports non-perturbative effects which fix it in terms of the string coupling: $\langle \tau_{\text{np}} \rangle \approx g_s^{-1}$. For $g_s \approx 0.1$ in the perturbative regime, τ_{np} is of order 10 in string units. The ‘big’ cycle τ_{big} is instead stabilised by α' plus non-perturbative effects at $\langle \mathcal{V} \rangle \approx \langle \tau_{\text{big}} \rangle^{3/2} \approx W_0 e^{2\pi/(N g_s)}$ where W_0 is the flux-generated superpotential and N is the rank of the condensing gauge group. This minimum breaks SUSY spontaneously. Minkowski vacua can be obtained by either D-terms \(^{[26]}\) or non-perturbative effects at singularities \(^{[27]}\). The modulus τ_{inf} behaves similarly to τ_{np}, and by displacing it from its minimum, it can drive 60 e-folds of inflation, generating a red spectrum and the right amount of density perturbations for $\mathcal{V} \approx 10^7$ \(^{[28]}\).

Since the volume is exponentially large, it is easy to generate such large numbers for natural values of the underlying parameters. An important scale in the model is the mass of the soft terms M_{soft} generated by gravity mediation. Given that $\langle \tau_{\text{vs}} \rangle = 0$, this modulus has a vanishing F-term as opposed to all the other moduli which develop non-zero F-terms. As a consequence, the visible sector is sequestered and the soft terms are significantly suppressed with respect to $m_{3/2}$. All the relevant energy scales in the model are set by value of \mathcal{V} \(^{[25]}\):

- Reduced Planck scale: $M_P = 2.4 \times 10^{18}$ GeV
- GUT-scale: $M_{\text{GUT}} \approx M_P/\mathcal{V}^{1/3}$
- String-scale and τ_{vs}: $M_s \approx m_{\tau_{\text{vs}}} \approx M_P/\mathcal{V}^{1/2}$
- Kaluza-Klein scale: $M_{\text{KK}} \approx M_P/\mathcal{V}^{2/3}$
- Inflaton and τ_{med}: $m_{\tau_{\text{med}}} \approx m_{\tau_{\text{med}}} \approx m_{3/2} \ln \mathcal{V}$
- Gravitino mass: $m_{3/2} \approx W_0 M_P/\mathcal{V}$
- Big modulus: $m_{\text{big}} \approx m_{3/2}/\mathcal{V}^{1/2}$
- Soft-terms: $M_{\text{soft}} \approx m_{3/2}/\mathcal{V}$.

Setting $W_0 \approx 0.1$ and $\mathcal{V} \approx 10^7$, one obtains $M_{\text{GUT}} \approx 10^{16}$ GeV, $M_s \approx 10^{15}$ GeV, $M_{\text{KK}} \approx 5 \times 10^{13}$ GeV, $m_{\tau_{\text{med}}} \approx 10^{11}$ GeV, $m_{3/2} \approx 10^{10}$ GeV, $m_{\text{big}} \approx 5 \times 10^6$ GeV and $M_{\text{soft}} \approx 1$ TeV.

An interesting observation is that for $\mathcal{V} \approx 10^7$, one can get both inflation and low-energy SUSY. Moreover, all the moduli are heavy, and so there is no CMP. The gravitino problem is also avoided since $m_{3/2} \gg m_{\text{big}}$.

As far as the moduli couplings are concerned, the leading decay channels for τ_{big} are to Higgses and charged string axions. Denoting as ϕ the canonically normalised modulus τ_{big}, the various decay rates of this modulus are (see \(^{[15]}\) for details):

- **Decays to Higgs bosons**: the decays $\phi \rightarrow H_u H_d$ are induced by the Giudice-Masiero term in the Kähler potential, $K \supset Z H_u H_d$, where Z is an $\mathcal{O}(1)$ parameter. The corresponding decay rate is:

$$\Gamma_{\phi \rightarrow H_u H_d} = \frac{2Z^2 m_\phi^3}{48\pi M_P^2}.$$ \(^{(2)}\)

- **Decays to bulk axions**: the axionic partner a_{big} of the big modulus is almost massless, and so τ_{big} can decay into this particle with decay width:

$$\Gamma_{\phi \rightarrow a_{\text{big}} a_{\text{big}}} = \frac{1}{48\pi M_P^2} m_\phi^3,$$ \(^{(3)}\)

- **Decays to local closed string axions**: τ_{big} can decay also to closed string axions a_{loc} localised at the singularity hosting the visible sector with decay rate:

$$\Gamma_{\phi \rightarrow a_{\text{loc}} a_{\text{loc}}} = \frac{9}{16} \frac{1}{48\pi M_P^2}.$$ \(^{(4)}\)
Decays to gauge bosons: given that the holomorphic gauge kinetic function does not depend on τ_{big} due to the localisation of the visible sector at a singularity, this modulus couples to gauge bosons only due to radiative corrections, inducing a loop suppressed decay width:

$$\Gamma_{\phi \to A^\mu A^\nu} = \lambda \frac{(\alpha_{\text{SM}})}{4\pi} \frac{m_\phi^3}{M_P^2},$$

where $\lambda \sim O(1)$ and α_{SM} is the corresponding coupling constant.

Decays to other visible sector fields: the decays to matter scalars, fermions, gauginos and Higgsinos (commonly denoted as ψ) are all mass suppressed since their corresponding decay rates scale as:

$$\Gamma_{\phi \to \psi \psi} \propto \frac{M_\phi^2 m_\phi}{M_P^2} \ll \frac{m_\phi^3}{M_P^2}. \tag{6}$$

Decays to local open string axions: the decays to light open string axions which are the phase θ of a matter field $C = \varphi e^{i\theta}$ arise from the coupling:

$$\left(\frac{\langle \rho \rangle}{M_P}\right)^2 \phi \theta \Box \theta, \tag{7}$$

and so are suppressed by both the tiny mass of the axion and the fact that $(\langle \rho \rangle/M_P)^2 \approx 1/\sqrt{\lambda} \ll 1$.

As pointed out in [15], the unsuppressed decays to bulk and local closed string axions can cause problems with DR overproduction. However, globally consistent brane constructions in explicit Calabi-Yau examples have revealed that both the light bulk axion a_{big} and all the local closed string axions a_{loc} tend to be eaten up by anomalous $U(1)$s [24]. We shall therefore not consider it as a serious problem. On the other hand, the QCD axion can have different phenomenological features according to its origin as a closed or an open string mode [20]:

Closed string QCD axion: If at least one local closed string axion is not eaten up by any anomalous $U(1)$, it can play the role of the QCD axion. Given that its decay constant is set by the string scale, $f_a \simeq M_s/\sqrt{4\pi} \simeq 10^{14} \text{ GeV}$, it needs to be diluted by the decay of τ_{big} (otherwise one has to fine-tune the initial misalignment angle). Moreover, one has to make sure that it does not cause any problem with DR overproduction.

Open string QCD axion: If the QCD axion is the phase of a matter field, then the modulus decay rate to this particle is subleading, so leading to no DR production. Furthermore, in this case the axion decay constant gets reduced with respect to the string scale, $f_a \simeq M_s/\sqrt{\alpha}$ with $0 < \alpha < 1$. For $\alpha \approx 1/2$, one has $f_a \simeq 10^{11} \text{ GeV}$, perfectly within the QCD axion allowed window $10^9 \text{GeV} \lesssim f_a \lesssim 10^{12} \text{GeV}$.

IV. NON-THERMAL DARK MATTER FROM LIGHTEST MODULUS DECAY

The lightest modulus τ_{big} serves as the source of non-thermal DM. The modulus interacts gravitationally with other fields, leading to a decay width given by:

$$\Gamma_{\phi} = \frac{c}{2\pi} \frac{m_\phi^3}{M_P^2}, \tag{8}$$

where c is a constant that depends on the decay modes of the modulus. The modulus decays when $H \sim \Gamma_{\phi}$ and reheats the universe to a temperature:

$$T_{\text{rh}} = c^{1/2} \left(\frac{10.75}{g_*} \right)^{1/4} \left(\frac{m_\phi}{50 \text{ TeV}} \right)^{3/2} T_{\text{BBN}},$$

where $T_{\text{BBN}} \simeq 3 \text{ MeV}$ and g_* is the number of relativistic degrees of freedom at T_{rh}. The modulus decay dilutes the abundance of existing DM particles by at least a factor of order $(T_3/T_{\text{rh}})^3$, where T_3 is freeze-out temperature of DM annihilation. This can be easily a factor of 10^6 or larger, hence requiring DM production from modulus decay in order to explain the DM content of the universe. \footnote{For a scenario with a mild dilution of thermally overproduced DM by modulus decay, see [24].}

The abundance of DM particles produced in this way is:

$$n_{\text{DM}} \frac{s}{g} = \min \left[\left(\frac{n_{\text{DM}}}{s} \right) \frac{\langle \sigma_{\text{ann}} v \rangle_{\text{obs}}^{\text{th}}}{\langle \sigma_{\text{ann}} v \rangle_{\text{f}}^{\text{th}}} \left(\frac{T_3}{T_{\text{rh}}} \right), Y_{\phi} \frac{\text{BR}_{\text{DM}}}{\text{DM}} \right], \tag{9}$$

where $\langle \sigma_{\text{ann}} v \rangle_{\text{th}} \simeq 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ is the value needed in the thermal case to match the observed DM abundance:

$$\frac{n_{\text{DM}}}{s} \frac{\langle v \rangle_{\text{obs}}}{\langle v \rangle_{\text{f}}} \simeq 5 \times 10^{-10} \left(\frac{1 \text{ GeV}}{m_{\text{DM}}} \right)^{3/2}, \tag{10}$$

whereas the yield of particle abundance form ϕ decay is:

$$Y_{\phi} = \frac{3T_{\text{rh}}}{4m_\phi} = \frac{0.9}{\pi} \sqrt{\frac{c m_\phi}{M_P}}. \tag{11}$$

BR_{DM} denotes the branching ratio for ϕ decays into R-parity odd particles which subsequently decay to DM.

The first term on the right-hand side of eq. (9) is the Annihilation Scenario since DM particles produced from the modulus decay undergo some annihilation. This can happen when $\langle \sigma_{\text{ann}} v \rangle_{\text{f}} = (\sigma_{\text{ann}} v)_{\text{th}} (T_3/T_{\text{rh}})$. Since $T_{\text{rh}} < T_3$, this scenario can yield the correct DM abundance only if $\langle \sigma_{\text{ann}} v \rangle_{\text{f}} > (\sigma_{\text{ann}} v)_{\text{th}}$ (as for Higgsino DM). The second term on the right-hand side of eq. (9) is the Branching Scenario where the residual annihilation of DM particles is inefficient and the final DM abundance is the same as that produced form the modulus decay. This happens if $\langle \sigma_{\text{ann}} v \rangle_{\text{f}} < (\sigma_{\text{ann}} v)_{\text{th}} (T_3/T_{\text{rh}})$. We note that
this is always the case for \(\langle \sigma_{\text{ann}} v \rangle_f < \langle \sigma_{\text{ann}} v \rangle_f^{\text{th}} \) (like in the case of Bino DM). It may also happen for \(\langle \sigma_{\text{ann}} v \rangle_f > \langle \sigma_{\text{ann}} v \rangle_f^{\text{th}} \) if \(T_{\text{rh}}/T_f \) is too small.

The Fermi results, based on data from dwarf spheroidal galaxies and the galactic center, have already placed tight constraints on the “annihilation scenario”. The limits from dwarf galaxies \([10]\) indicate that \(T_f \lesssim 30 T_{\text{rh}} \) for \(m_{\text{DM}} > 40 \text{ GeV} \), which implies \(T_{\text{rh}} > 70 \text{ MeV} \). For \(m_{\text{DM}} < 40 \text{ GeV} \), the Fermi bounds require \(\langle \sigma_{\text{ann}} v \rangle_f < \langle \sigma_{\text{ann}} v \rangle_f^{\text{th}} \), if DM annihilates into \(b\bar{b} \) with S-wave domination, implying that the “annihilation scenario” cannot work in this case. The constraints become stronger when galactic center data \([11]\) are included.\(^2\)

As a result, the “branching scenario” is strongly preferred as the only option in the mass range \(m_{\text{DM}} < 40 \text{ GeV} \). Since \(5 \times 10^{-3} \lesssim B_{\text{DM}} \lesssim 1 \), with the lower bound set by three-body decay of \(\phi \) into \(R \)-parity odd particles \([22]\), we need \(Y_\phi \lesssim 10^{-8} \) in order to obtain the correct DM abundance within this scenario. For \(m_\phi \approx 5 \times 10^6 \text{ GeV} \), \(Y_\phi \lesssim 10^{-8} \) requires \(T_{\text{BBN}} \lesssim T_{\text{rh}} \lesssim 70 \text{ MeV} \).

Based on the above arguments, we find that there are two interesting regimes for \(T_{\text{rh}} \):

1. Annihilation scenario for \(T_f/30 \lesssim T_{\text{rh}} < T_f \);
2. Branching scenario for \(T_{\text{BBN}} \lesssim T_{\text{rh}} \lesssim 70 \text{ MeV} \).

We shall now discuss these two cases in more detail.

A. Annihilation Scenario for High \(T_{\text{rh}} \)

In the regime \(T_f/30 \lesssim T_{\text{rh}} < T_f \) the annihilation scenario is at work. As we have seen in section\([33]\) \(\phi \) decays primarily to Higgses, giving \(c = Z^2/12 \). Inserting this value and in eq. \((9)\) together with the modulus mass \(m_\phi \approx 5 \times 10^6 \text{ GeV} \) that gives TeV-scale SUSY, we find a reheat temperature of order \(T_{\text{rh}} \approx 0.8\,Z \text{ GeV} \).

Focusing on situations where bulk axions are removed from the spectrum, the QCD axion can either be a closed or an open string mode:

1. The QCD axion is a local closed string mode \(a_{\text{loc}} \) with \(f_a \approx 10^{14} \text{ GeV} \):
 - \(\phi \to a_{\text{loc}} a_{\text{loc}} \) is a leading decay channel, and so we need to suppress the contribution to \(\Delta N_{\text{eff}} \approx 1/Z^2 \)\(^3\). In order to have \(\Delta N_{\text{eff}} \approx 0.5 \) we need \(Z \approx \sqrt{2} \), which gives \(T_{\text{rh}} \approx 1 \text{ GeV} \).
 - In order to have \(T_{\text{rh}} < T_f \), one needs \(m_{\text{DM}} > 20 T_{\text{rh}} \approx 20 \text{ GeV} \).
 - The reheat temperature is larger than the QCD scale, \(T_{\text{rh}} \approx 1 \text{ GeV} > \Lambda_{\text{QCD}} \), and so axion cold DM is not diluted. Hence one has either to tune the initial misalignment angle or to remove \(a_{\text{loc}} \) from the spectrum with the help of an anomalous \(U(1) \) (the QCD axion has then to be an open string mode).
 - Tuning the misalignment angle suitably it is possible to make multicomponent DM (Wino/Higgsino-like + closed string axions)\(^3\).

2. The QCD axion is an open string mode \(\theta \) with \(f_\theta \approx 10^{11} \text{ GeV} \):
 - \(\phi \to \theta \theta \) is a subleading decay channel, and so no DR is produced.
 - Due to the high value of \(T_{\text{rh}} \) the modulus decay does not result in any dilution of axion oscillations, but since \(f_\theta \) is intermediate, we do not need to tune the initial misalignment angle to avoid axionic DM overproduction.
 - Again DM is generically multi-component (Wino/Higgsino-like + open string axions). The open string axion contribution to the DM abundance reduces as \(f_\theta \) becomes smaller than \(10^{12} \text{ GeV} \).

In summary, in the annihilation scenario the lightest neutralino (Wino/Higgsino type) can satisfy the relic density. If, however, the abundance is small, the QCD axion can be utilized to form a multi-component DM scenario\([31]\).

B. Branching Scenario for Low \(T_{\text{rh}} \)

In order to have a low \(T_{\text{rh}} \) (3 MeV \(\lesssim T_{\text{rh}} \lesssim 70 \text{ MeV} \)) the modulus decay width has to be very small. However, as we have seen in the previous section, if the QCD axion is a closed string mode, then we will need \(Z \gtrsim \sqrt{2} \) in order to avoid the DR problem. This in turn sets \(T_{\text{rh}} \gtrsim 1 \text{ GeV} \). In order to lower \(T_{\text{rh}} \) one could consider smaller values of \(m_\phi \) which would however imply \(M_{\text{soft}} \ll 1 \text{ TeV} \). Hence the only way-out is to focus on cases where the closed string axions are absorbed by anomalous \(U(1)s \), and the QCD axion is realised as an open string mode \(\theta \). Due to its suppressed coupling to \(\phi \), \(\theta \) does not cause any DR problem, allowing very low values of \(T_{\text{rh}} \ll \Lambda_{\text{QCD}} \). Thus in this case the modulus decay will dilute the axion oscillations, leading to a negligible contribution of the QCD axion to DM.

There are two ways to lower the reheat temperature:

1. If the Giudice-Masiero term is forbidden by some symmetries then \(Z = 0 \). In this case the leading decay channel is to gauge bosons via a two-body

\(^2\) See also \([22]\) for the effect of a non-thermal phase on inflationary observables.

\(^3\) Considering different astrophysical observations, the viability of non-thermal Wino DM may be very constrained \([12]\).
final state with a loop-suppressed decay rate, giving $c = \lambda^2 m_\phi^2$ (see eq. (3)). If $\lambda \approx 1$, $\alpha_{\text{SM}} \approx 1/137$, and $m_\phi \approx 5 \times 10^6$ GeV, the reheat temperature is $T_{\text{rh}} \approx 4$ MeV (slightly above BBN), giving $Y_\phi \approx 6 \times 10^{-10}$. Two-body decays to gauginos and other MSSM particles are instead mass suppressed in this case. However, gauginos are inevitably produced in three-body decays of the modulus (e.g., $\phi \rightarrow 1$ gluon + 2 gluinos) with $B_{\text{DM}} \sim 5 \times 10^{-3}$. Then $B_{\text{DM}} \sim 5 \times 10^{-3}$ results in a DM abundance which matches the observed value for $m_{\text{DM}} \approx 165$ GeV. The DM mass is inversely proportional to $Y_\phi \propto \sqrt{\lambda m_\phi}$. Larger values of m_ϕ would require smaller values of m_{DM} but in this situation the soft terms would become larger than the TeV-scale. On the other hand, smaller values of m_ϕ would imply larger values of m_{DM} but then $M_{\text{soft}} \ll 1$ TeV. Hence we shall keep m_ϕ fixed at $m_\phi \lesssim 5 \times 10^6$ GeV and try to vary λ. The requirement $T_{\text{rh}} \gtrsim 3$ MeV implies $\lambda \gtrsim 0.01$ and in turn $m_{\text{DM}} \lesssim 900$ GeV.

2. In the absence of symmetries forbidding the decay of ϕ to Higgses, it is still possible to have low T_{rh} for $Z \approx 0.1$. In this case, for $m_\phi \approx 5 \times 10^6$ GeV, we would have $T_{\text{rh}} \approx 80$ MeV, which implies $m_{\text{DM}} \approx 10$ GeV. Larger values of m_{DM} require smaller values of Z keeping m_ϕ fixed to get TeV scale SUSY particles. Values of Z as small as $Z \approx 0.01$ would give $m_{\text{DM}} \approx 100$ GeV. Note that in this case where ϕ decays mainly to Higgses, the production of R-parity odd particles in three-body decays requires the heavy and/or light Higgs decay to a gaugino/Higgsino pairs to be blocked kinematically.

In summary, in the branching scenario the lightest neutralino can be any mixture of Bino, Wino, and Higgsino and both thermal over and underproduction cases can be accommodated. The abundance of the QCD axion is totally negligible due to dilution by modulus decay at $T_{\text{rh}} \ll \Lambda_{\text{QCD}}$.

V. CONCLUSIONS

In this paper we showed how sequestered LVS models give rise naturally to non-thermal DM from the decay of the lightest modulus ϕ. Moreover, there is no modulino-induced gravitino problem since $m_{3/2} \approx 10^{10}$ GeV $\gg m_\phi \approx 5 \times 10^6$ GeV. Thanks to sequestering, the superpartner spectrum is still in the TeV range even with such a heavy gravitino. Depending on the way in which ϕ couples to the visible sector, there are two regimes for the reheat temperature T_{rh}. The case of high $T_{\text{rh}} \approx 1$ GeV is realised when ϕ decays mainly to Higgses, and corresponds to the “annihilation scenario”. Axionic DR overproduction is avoided either by the presence of anomalous $U(1)$s which eat dangerous axions or by allowing suitable couplings in the Giudice-Masiero term. The resulting non-thermal DM has two components: Wino/Higgsino-like neutralinos with masses $m_{\text{DM}} \gtrsim 40$ GeV and QCD axions (we note that indirect detection may limit the viability of non-thermal Wino DM [10]). The reheat temperature can instead be lowered to $T_{\text{rh}} \approx 10$ MeV if ϕ decays mainly to gauge bosons (or if the decay to Higgses is suppressed). This is the case of the “branching scenario” where the QCD axion can only be an open string mode whose abundance is diluted by the decay of ϕ since $T_{\text{rh}} \ll \Lambda_{\text{QCD}}$. Both thermal over and underabundance cases can be accommodated in this scenario and the DM mass can vary from \mathcal{O}(GeV) to \mathcal{O}(TeV).

VI. ACKNOWLEDGEMENTS

The work of B.D. is supported by DE-FG02-95ER40917. K.S. is supported by NASA Astrophysics Theory Grant NNH12ZDA001N. R.A., B.D., and K.S. would like to thank the Center for Theoretical Underground Physics and Related Areas (CETUP* 2013) in South Dakota for its hospitality and for partial support during the completion of this work.

[1] J. D. Barrow, Nucl. Phys. B 208, 501 (1982); M. Kamionkowski and M. S. Turner, Phys. Rev. D 42, 3310 (1990);
[2] T. Moroi and L. Randall, Nucl. Phys. B 570, 455 (2000) [hep-ph/9906527].
[3] R. Allahverdi, B. Dutta and K. Sinha, Phys. Rev. D 86, 095016 (2012) [arXiv:1208.0115 [hep-ph]].
[4] M. Papucci, J. T. Ruderman and A. Weiler, arXiv:1110.6926 [hep-ph]; L. J. Hall, D. Pinner and J. T. Ruderman, JHEP 1204, 131 (2012) [arXiv:1112.2703 [hep-ph]].
[5] H. Baer, V. Barger, P. Huang and X. Tata, JHEP 1205, 109 (2012) 109 [arXiv:1203.5559 [hep-ph]].
[6] CDMS Collaboration, arXiv:1304.3708 [astro-ph.CO].
[7] CoGeNT Collaboration, arXiv:1208.5737 [astro-ph.CO].
[8] L. Stodolsky, G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, C. Cienniak and G. Deuter et al., J. Phys. Conf. Ser. 384, 012013 (2012).
[9] R. Bernabei et al. [DAMA and LIBRA Collaborations], Eur. Phys. J. C 67, 39 (2010) [arXiv:1002.1028 [astro-ph.GA]].
[10] R. Allahverdi, B. Dutta, R. N. Mohapatra and K. Sinha, arXiv:1305.0287 [hep-ph].
[11] A. Geringer-Sameth and S. M. Koushiappas, Phys. Rev. Lett. 107, 241303 (2011) [arXiv:1108.2914 [astro-ph.CO]].
[12] D. Hooper, C. Kelso and F. S. Queiroz, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015 [astro-ph.HE]].
[13] B. S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao and S. Watson, JHEP 0806, 064 (2008) [arXiv:0804.0863].
[hep-ph]; B. S. Acharya, G. Kane, S. Watson and P. Kumar, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430 [astro-ph.CO]]; B. Dutta, L. Leblond and K. Sinha, Phys. Rev. D 80, 035014 (2009) [arXiv:0904.3773 [hep-ph]]; B. S. Acharya, G. Kane and E. Kuflik, [arXiv:1006.3272 [hep-ph]].

[13] V. Balasubramanian, P. Berghlund, J. P. Conlon and F. Quevedo, JHEP 0503, 007 (2005) [arXiv:hep-th/0502058].

[14] M. Endo, K. Hamaguchi and F. Takahashi, Phys. Rev. Lett. 96 (2006) 211301 [hep-ph/0602061]; S. Nakamura and M. Yamaguchi, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081].

[15] M. Cicoli, J. P. Conlon and F. Quevedo, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562 [hep-ph]].

[16] B. Dutta, T. Kamon, N. Kolev, K. Sinha, K. Wang and S. Wu, Phys. Rev. D 87 (2013) 095007 [arXiv:1302.3231 [hep-ph]]; T. Cohen, M. Lisanti, A. Pierce and T. R. Slatyer, [arXiv:1307.4082 [hep-ph]]; J. Fan and M. Reece, [arXiv:1307.4400 [hep-ph]].

[17] T. Higaki and F. Takahashi, JHEP 1211 (2012) 125 [arXiv:1208.3563 [hep-ph]]; T. Higaki, K. Nakayama and F. Takahashi, JHEP 1307 (2013) 005 [arXiv:1304.7987 [hep-ph]].

[18] J. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. B 120 (1983) 127; L. F. Abbott and P. Sikivie, Phys. Lett. B 120 (1983) 133.

[19] G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby and G. G. Ross, Phys. Lett. B 131 (1983) 59; T. Banks, D. B. Kaplan and A. E. Nelson, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292]; B. de Carlos, J. A. Casas, F. Quevedo and E. Roulet, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325].

[20] M. Cicoli, M.Goodsell, A. Ringwald, JHEP 1210 (2012) 146 [arXiv:1206.0819 [hep-th]].

[21] P. Fox, A. Pierce and S. D. Thomas, hep-th/0409059.

[22] R. Allahverdi, B. Dutta and K. Sinha, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286 [hep-ph]].

[23] P. A. R. Ade et al. [Planck Collaboration], [arXiv:1303.5076 [astro-ph.CO]].

[24] M. Cicoli, C. Mayrhofer and R. Valandro, JHEP 1202 (2012) 062 [arXiv:1110.3333 [hep-th]]; M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, [arXiv:1206.5237 [hep-th]].

[25] R. Blumenhagen, J. P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, JHEP 0909 (2009) 007 [arXiv:0906.3207 [hep-th]].

[26] D. Cremades, M. -P. Garcia del Moral, F. Quevedo and K. Suruliz, JHEP 0705 (2007) 100 [hep-th/0701154].

[27] M. Cicoli, A. Maharana, F. Quevedo and C. P. Burgess, JHEP 1206 (2012) 011 [arXiv:1203.1750 [hep-th]].

[28] J. P. Conlon and F. Quevedo, JHEP 0601 (2006) 146 [hep-th/0509012]; C. P. Burgess, M. Cicoli and F. Quevedo, [arXiv:1306.3512 [hep-th]].

[29] D. Hooper, [arXiv:1307.0826 [hep-ph]].

[30] R. Easther, R. Galvez, O. Ozsoy and S. Watson, [arXiv:1307.2453 [hep-ph]]; R. Jinno, T. Moroi and K. Nakayama, [arXiv:1307.3010 [hep-ph]].

[31] H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, JCAP 1106, 031 (2011) [arXiv:1103.5413 [hep-ph]].