A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries

Yi Pei1,9, Qing Chen1,9, Meiyu Wang2, Pengjun Zhang3, Qingyong Ren4,5, Jingkai Qin1, Penghao Xiao6, Li Song3, Yu Chen4, Wen Yin4,5, Xin Tong4,5, Liang Zhen1,7, Peng Wang2,8 & Cheng-Yan Xu1,7

The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a Li1.46Ni0.32Mn1.2O4-x material capable of forming a medium-entropy state spinel phase with partial cation disordering after initial delithiation. Via physicochemical measurements and theoretical calculations, we demonstrate the structural disorder in delithiated Li1.46Ni0.32Mn1.2O4-x, the direct shuttling of Li ions from octahedral sites to the spinel structure and the charge-compensation Mn3+/Mn4+ cationic redox mechanism after the initial delithiation. When tested in a coin cell configuration in combination with a Li metal anode and a LiPF6-based non-aqueous electrolyte, the Li1.46Ni0.32Mn1.2O4-x-based positive electrode enables a discharge capacity of 314.1 mA h g-1 at 100 mA g-1 with an average cell discharge voltage of about 3.2 V at 25 ± 5 °C, which results in a calculated initial specific energy of 999.3 Wh kg-1 (based on mass of positive electrode’s active material).

The development of Li-ion batteries (LIBs) has recently motivated innovation moving from internal combustion engine vehicles toward battery electric vehicles (BEVs), and the requirement to further improve the cruising distance of BEVs calls for cathode materials with higher energy/power densities. Although 3d transition metal (TM)-based lithium transition metal oxides (Li_xTM_yO_2, 0 < x, y < 2, TM = Ni, Mn, Co, etc) can deliver a theoretical capacity of >270 mA h g-1, such high-capacity operation triggers the migration of TM or Li ions and brings about structural (e.g., symmetry) changes (Fig. 1). Therefore, the high-capacity operation of Li_xTM_yO_2 is always accompanied by continuous phase evolution, such as layer to spinel, layer to rocksalt, and spinel to T1/T2 phase transitions in high-capacity operated (>200 mA h g-1) LiCoO_2, LiNi0.5Mn1.5O_4 (a + b + c = 1), Li1-xTM_xO_2 (0 < x < 1), and LiNi0.5Mn1.5O_4, resulting in unsatisfactory cycling stability and rate performance in most high-capacity cathodes. Consequently, a critical direction in the establishment of a high-energy...
density cathode is the prevention of the continuous reordering of cations upon high-capacity operation of Li$_x$TM$_{2}$O$_4$.

The symmetry changes of Li$_x$TM$_{2}$O$_4$ have been revealed to be driven by the shift in site energies under different states$^{26-38}$, and the thermodynamically stable phase of Li$_x$TM$_{2}$O$_4$ polytypes generally varies with the Li concentration (Supplementary Fig. 1). For most 3d TM-based Li$_x$TM$_{2}$O$_4$ with cation ordering, namely, low-entropy state phases, such cation disordering is thermodinamically inevitable during high-capacity operation ($>$200 mA h g$^{-1}$). Recently, specific discharge capacity values higher than 300 mA h g$^{-1}$ (at low specific currents, e.g., <20 mA g$^{-1}$, and for a very limited number of cycles) are reported in the literature using disordered rocksalt (DRX) cathodes and applying a low cutoff voltage of 1.5 V22. In these materials, all the cations are randomly distributed in the 4a sites to form a higher entropy state than that of cation-ordered Li$_x$TM$_{2}$O$_4$. The principle of entropy increase prevents the reordering of cations in DRX, thus effectively avoiding symmetry changes upon high-capacity operation ($>$200 mA h g$^{-1}$). However, the thermodynamic trend of cation disordering is found to be strongly associated with the type of TM ion27 and chemical composition32,33, while the reaction kinetics depend on the synthesis conditions. Our calculations also indicate that cation disordering is thermodynamically unfavorable in 3d TM-based Li$_{1-x}$Ni$_{0.25}$Mn$_{0.75}$O$_2$ (0 < x < 1) under 1 A g$^{-1}$ (Supplementary Fig. 1). Moreover, although DRX with rapid Li$^+$ diffusion kinetics could be achieved through tailored synthetic strategy30,31, Li$^+$ diffusion through the percolation path in these high-entropy state DRX phases is restricted by the Li$^+$ concentration and local conditions32, resulting in a great challenge in achieving suitable DRX towards practical application33,34.

In this work, we demonstrate that the high-capacity operation of Li$_x$TM$_{2}$O$_4$ (0 < x, y < 2, TM = Ni, Mn) could be achieved by establishing a partial cation-disordered medium-entropy state. To break the thermodynamically driven TM ion ordering, we prepared the defective Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$ (0 < x < 4) through proton exchange followed by manipulated cation reordering in Li-rich layered oxides (layered-type: Li$_{1.2}$Ni$_{0.2}$Mn$_{0.6}$O$_2$, denoted as LLO, details are shown in the Methods section and Supplementary Note 1, Phase evolution details shown in Supplementary Figs. 2–4), while the untreated LLO, commercial spinel oxides (spine-type: LiNi$_{0.5}$Mn$_{1.5}$O$_4$), were also tested for comparison. Transmission electron microscopy (TEM) images revealed a nanosheet morphology of the CD-LNMO (Supplementary Fig. 5), and the chemical composition, mostly the ratio of LiMnNi of CD-LNMO, was confirmed by inductively coupled plasma–mass spectrometry (ICP–MS). As shown in Supplementary Table 1, the decreased Ni and Li contents in CD-LNMO suggest the preferential substitution of Ni and Li by protons, most likely associated with the lower binding energies of Li$^-$O$^-$ and Ni$^2+$O$^2-$ than that of Mn$^{3+}$-O2$. We, therefore, define the stoichiometric ratio of O as 4–x to accommodate the uncertainty arising from the probable valence change of TM ions. Interestingly, even though the Li:TM ratio in CD-LNMO is situated between LLO and LNMO, the electrochemical behavior of CD-LNMO (Fig. 2a) is different from that of the LLO/LNMO composites in previous reports27,28. After the electrochemical removal of Li ions during the initial charging process, CD-LNMO showed two discharge plateaus at ~4.6 V and ~2.7 V, which are associated with the insertion of Li ions into tetrahedral sites and octahedral sites in the spinel-type structure, respectively27. Generally, for LNMO, Li$_{1.2}$Mn$_{1.5}$O$_4$, and Li$_{1.2}$Mn$_{1.5}$O$_4$ with ideal spinel-type ordering (full-occupied 16d sites and empty 16c sites), the inserted Li ions will first occupy all of the 8a tetrahedral sites (discharge plateaus of ~4.6 or 4.0 V) and then migrate into the neighboring 16c octahedral sites (discharge plateau

Results

Long- and short-term atomic ordering of defective Li$_{1-x}$Ni$_{0.25}$Mn$_{0.75}$O$_{2+x}$

The defective Li$_{1-x}$Ni$_{0.25}$Mn$_{0.75}$O$_{2+x}$ (0 < x < 4) cathode (CD-LNMO) was prepared by proton exchange followed by manipulated cation reordering in Li-rich layered oxides (layered-type: Li$_{1.2}$Ni$_{0.2}$Mn$_{0.6}$O$_2$, denoted as LLO, details are shown in the Methods section and Supplementary Note 1, Phase evolution details shown in Supplementary Figs. 2–4), while the untreated LLO, commercial spinel oxides (spine-type: LiNi$_{0.5}$Mn$_{1.5}$O$_4$), were also tested for comparison. Transmission electron microscopy (TEM) images revealed a nanosheet morphology of the CD-LNMO (Supplementary Fig. 5), and the chemical composition, mostly the ratio of LiMnNi of CD-LNMO, was confirmed by inductively coupled plasma–mass spectrometry (ICP–MS). As shown in Supplementary Table 1, the decreased Ni and Li contents in CD-LNMO suggest the preferential substitution of Ni and Li by protons, most likely associated with the lower binding energies of Li$^-$O$^-$ and Ni$^2+$O$^2-$ than that of Mn$^{3+}$-O2. We, therefore, define the stoichiometric ratio of O as 4–x to accommodate the uncertainty arising from the probable valence change of TM ions. Interestingly, even though the Li:TM ratio in CD-LNMO is situated between LLO and LNMO, the electrochemical behavior of CD-LNMO (Fig. 2a) is different from that of the LLO/LNMO composites in previous reports27,28. After the electrochemical removal of Li ions during the initial charging process, CD-LNMO showed two discharge plateaus at ~4.6 V and ~2.7 V, which are associated with the insertion of Li ions into tetrahedral sites and octahedral sites in the spinel-type structure, respectively27. Generally, for LNMO, Li$_{1.2}$Mn$_{1.5}$O$_4$, and Li$_{1.2}$Mn$_{1.5}$O$_4$ with ideal spinel-type ordering (full-occupied 16d sites and empty 16c sites), the inserted Li ions will first occupy all of the 8a tetrahedral sites (discharge plateaus of ~4.6 or 4.0 V) and then migrate into the neighboring 16c octahedral sites (discharge plateau
of ~2.7 V) concurrent with the rapid structural degradation caused by the cubic to tetragonal symmetry change. However, we found a much longer 2.7 V plateau than that of 4.6 V in the discharge profile of CD-LNMO, implying that the majority of Li ions are directly inserted into the octahedral sites of delithiated CD-LNMO. Note that this feature also distinguishes it from the \(\text{I}_4\text{I}_4\) or \(\text{Li}_{x}\text{Mn}_3\text{O}_4\) phases formed during the structural degradation of Li-rich layered oxides, as the latter phase undergoes solid-solution or conversion reactions without a plateau at ~2.7 V. In the following cycles, CD-LNMO shows a noticeable voltage hysteresis that is constantly observed in high-capacity cathodes. Based on previous literature, this hysteresis is likely to suggest different reaction kinetics between the charge and discharge processes.

The evolution of long-term cation ordering in CD-LNMO during the first cycle was explored through ex situ SXRD, and the XRD patterns of LLO and LNMO are shown as references for the layered-type and spinel-type ordering of TM ions. As shown in Fig. 2b, the as-synthesized CD-LNMO is a layered/spinel composite, while the reflection of the fully delithiated sample (charged to 4.8 V) shifts toward pure spinel-type ordering without impurity phases. Such a trend implies localized reordering during the removal of Li ions, and the diminished layered phase is considered indicative of TM ion migration. The fully lithiated sample (discharged to 2.0 V) retains the spinel-type ordering without the formation of the \(\text{T}_1/\text{T}_2\) phase, confirming the suppressed cubic to tetragonal symmetry change in conventional LNMO. Moreover, compared to the conventional LNMO, we found a weakened (111) reflection in the cycled electrodes, implying partial cation disordering in the cycled CD-LNMO.
NiO$_6$ ordering, which may be associated with the highly defective structure. Therefore, it is likely that breaking TMO$_6$ ordering will aggravate the distortion of TMO$_6$ ligands and promote the splitting of TM ions. In the inset of Fig.2c, we found that the occupancy of TM ions in the Li layer resulted in substantial distortion of the adjacent MnO$_6$ ligand.

We further conducted Mn/Ni-K-edge extended X-ray absorption fine structure (EXAFS) measurements on the as-synthesized CD-LNMO and LLO to detect the short-term ordering of cations. Compared to the Mn and Ni-K-edge EXAFS spectra of LLO with a single Mn/Ni-O scattering path in the first shell (-1.45 Å for MnO and -1.58 Å for Ni-O), the coexistence of two Mn/Ni-O bonds in the EXAFS spectra of as-synthesized CD-LNMO (Fig. 2c and Supplementary Fig. II) implied an altered localized configuration of TM ions after the creation of defects. It is worth mentioning that such a short-term configuration is unlikely to be traced from the distinction of TM-O bonds in layered and spinel structures, and the MnO bond length difference (~0.4 Å) is larger than that between the Mn$^{4+}$-O2 bonds in MnO$_2$ and the Mn$^{3+}$-O$^-$ bond in MnO. Instead, such a configuration suggests the breaking of Mn/Ni-O$_6$ ordering, which may be associated with the highly defective state in CD-LNMO. Our DFT calculations comparing the MnO bond lengths in a Li$_{1.2}$Ni$_0.2$Mn$_{1.2}$O$_2$ crystal with partial interlayer Li/TM mixing further supported this result (Supplementary Fig. 12). As shown in the inset of Fig. 2c, we found that the occupancy of TM ions in the Li layer resulted in substantial distortion of the adjacent MnO$_6$ ligand traced from the much stronger TM-TM Coulombic repulsion than that of Li-TM, giving rise to an increased MnO bond length deviation (0.33 Å) compared to that in Li$_{1.2}$Ni$_0.2$Mn$_{0.8}$O$_2$ without Li/TM mixing (0.19 Å). Therefore, it is likely that breaking TMO$_6$ ordering will aggravate the distortion of TMO$_6$ ligands and promote the splitting of the TM-O scattering peak.

Considering the low scattering factor (f) of Li under X-ray measurements (f$_{Li} < 2.0$), ND measurements were performed to probe the occupancy of Li ions undercharged and discharged states (Fig. 2d, e). The TM ion occupancies obtained from the refinement of the SXRD patterns were adopted for the ND refinements, and the occupancies of Li ions in the 4.8 V charged and 2.0 V discharged samples are listed in Supplementary Table 2. The refinement revealed negligible Li-ion content in the 4.8 V charged sample, while most of the Li ions were inserted into the octahedral sites in the 2.0 V discharged sample (Supplementary Note 2, Supplementary Figs. 13 and 14, Supplementary Table 3). Therefore, we can conclude that delithiation of CD-LNMO promotes the formation of a medium-entropy state spinel phase with partial cation disordering, within which the Li ions are inserted/extracted primarily from the octahedral sites.

TEM and HAADF-STEM images of the as-synthesized CD-LNMO display the coexistence of two regions with different contrasts (Fig. 3a–c). The FFT-filtered HAADF-STEM image revealed a 3D spinel-type ordering in dispersive low-contrast regions, while the high-contrast regions were likely to retain a disordered layer phase with partial TM ion disordering. This disordered layer phase was previously observed as an intermediate phase during the 2D to 3D reordering of layered oxides, indicating cation disordering in CD-LNMO. An electron energy loss spectroscopy (EELS) scan witnessed the lower valence state of Mn in the spinel phase regions (Supplementary Fig. 15), which is consistent with the lower valence state of Mn in the nonstoichiometric spinel phase. The removal of Li ions from CD-LNMO during the charging process facilitated the 3D ordering of TM ions (Fig. 3d). As shown in Fig. 3e–g, detailed HAADF-STEM signal profiles showcase the occupancies of TM ions in both the 16c and 16d sites of the spinel-type framework, confirming the partially disordered spinel structure after delithiation. The highly defective state of the as-synthesized CD-LNMO promotes partial cation disordering during the initial delithiation, and this process is highly dependent on the degree of cation ordering in CD-LNMO. Combining the electrochemical and XRD/ND characterizations, we can speculate that the medium-entropy state of delithiated CD-LNMO with partial cation disordering altered the Li-ion storage mechanism in the following cycles, while the majority of the Li ions remained in the octahedral sites.
ions were shuttled from the octahedral sites of the medium-entropy state phase.

Electrochemical characterization of defective Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$

Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$ coin cells were utilized to investigate the electrochemical properties of CD-LNMO. The cells were cycled within 2.0–4.8 V at 25 ± 5 °C. As shown in Fig. 4a, CD-LNMO represents a moderate voltage degradation of ~1.6 mV per cycle, which is comparable to that of LNMO but much smaller than that of LLO (~9.4 mV per cycle). Upon cycling, the discharge capacity of CD-LNMO, LLO, and LNMO increase in the initial cycles (Fig. 4b–e), which may be associated with the gradual activation of electrodes. The reversible capacity of CD-LNMO reached 314.1 mA h g$^{-1}$ (at 9th cycle) under a specific current of 100 mA g$^{-1}$, indicating more removable Li ions than those from LLO (244.5 mA h g$^{-1}$, at specific current of 100 mA g$^{-1}$ for 80 cycles) and LNMO (187.3 mA h g$^{-1}$, at 100 mA g$^{-1}$ for 80 cycles). Taking rocksalt as the reference, partial cation sites in Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$ were unoccupied due to the release of protons; therefore, more Li ions could be intercalated upon further discharge. The high capacity of CD-LNMO electrode is benefited from the partial cation disorder that enables Li-ion storage in the abundant 16c octahedral sites, and the calculated specific energy of the cathode material in Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$ was unoccupied of the cathode material in Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$. In contrast, the increase in spinel-type ordering in the CD-LNMO-H phase gives rise to a lower reversible capacity (243.5 mA h g$^{-1}$, at 100 mA g$^{-1}$ for 50 cycles) and specific energy (766.7 Wh kg$^{-1}$, Supplementary Fig. 16), indicating the crucial role of the entropy state on the electrochemical performance of Li$_{1.46}$Ni$_{0.32}$Mn$_{1.2}$O$_4$. Moreover, CD-LNMO-H suffers from a rapid capacity decay with a specific capacity retention of 74.6% within 50 cycles (initial discharge capacity of 221.8 mA h g$^{-1}$, discharge capacity of 165.1 mA h g$^{-1}$ after 50 cycles, Supplementary Fig. 16), which is much lower than that of CD-LNMO (88.5% within 50 cycles, initial discharge capacity of 250.1 mA h g$^{-1}$, discharge capacity of 221.3 mA h g$^{-1}$ after 50 cycles).

Considering the higher work window of LNMO than that of LLO, LNMO is also cycled within 2.0–5.2 V to provide a comprehensive comparison (Supplementary Fig. 17a, b). The discharge capacity of LNMO reaches 279.3 mA h g$^{-1}$ at a low specific current (30 mA g$^{-1}$), indicating the reversible shuttling of ~1.9 Li$^+$ ions per formula. Such a high depth of discharge promotes the phase transition from cubic to tetragonal phases (the discharge plateau located at ~2.0 V) that has been previously revealed to bring higher distortion25,28. Therefore, the capacity of LNMO decreasing rapidly with 36.9% (initial discharge capacity of 279.3 mA h g$^{-1}$, discharge capacity of 103.1 mA h g$^{-1}$ after 80 cycles) retained after 80 cycles. For CD-LNMO, the 2.0 V plateau raised by the cubic to tetragonal phase transition in the spinel phase could barely be observed (Fig. 4b). This suppressed phase transition is consistent with the aforementioned XRD/ND results, which facilitates improved cycling stability in CD-LNMO (71.5% capacity retention after 80 cycles at 100 mA g$^{-1}$, initial discharge capacity of 250.1 mA h g$^{-1}$, and discharge capacity of 178.7 mA h g$^{-1}$ after 80 cycles, Fig. 4e) compared to that of conventional spinel (within 2.0–5.2 V at 30 mA g$^{-1}$, 36.9% capacity retention after 80 cycles, initial discharge capacity of 279.3 mA h g$^{-1}$, discharge capacity of 103.1 mA h g$^{-1}$ after 80 cycles; within 2.0–4.8 V at 100 mA g$^{-1}$, 63.9% capacity retention after 80 cycles, initial discharge capacity of 154.1 mA h g$^{-1}$, discharge capacity of 98.5 mA h g$^{-1}$ after 80 cycles, Supplementary Fig. 17b, c) and previously reported high-capacity cathodes (Supplementary Table 4). Upon cycling, the Coulombic efficiency (CE) gradually increased from ~94% in the second cycle to ~99% in the first 30 cycles (at 200 mA g$^{-1}$, Supplementary Fig. 18), which is likely associated with the probable side reactions, e.g., the formation of solid electrolyte interphase, cathode–electrolyte interphase, and the evolution of gas in the initial cycles30,34. Operando DEMS was performed to investigate possible side reactions in CD-LNMO (Supplementary Fig. 19), from which we found a noticeable amount of CO$_2$ evolution initiated at ~4.5 V. The release of CO$_2$ has been consistently revealed in previous work on high-voltage cathodes9,19, and a significant portion of the CO$_2$ evolution is considered to be raised by side reactions like alkali carbonate decomposition9,19. The irreversible release of O$_2$, which is one of the
most critical issues of Li₂TMₓO₂y was found to be relatively low in CD-LNMO (-29.1 nmol mg⁻¹) compared to that in the previous literature (34), indicating that only partial O²⁻ is oxidized into O₂ during the CD-LNMO charging process. The charge–discharge profiles of CD-LNMO in Fig. 4b show the voltage hysteresis among the first two charging processes, which we speculate is associated with a discrepant redox behavior and a crystallographic change after the initial charging process of CD-LNMO. This is consistent with the observation of cation reordering after initial delithiation revealed by XRD and HAADF/STEM. To visualize the shift of the redox center from partial cation disorder, cyclic voltammetry (CV) tests were performed and are shown in Fig. 5a–c and Supplementary Fig. 20. The CV curves of CD-LNMO, CD-LNMO-H, and LNMO present two distinct cationic redox peaks centered at ~4.7/4.6 V and ~3.0/2.7 V, corresponding to the Ni²⁺/Ni⁴⁺ and Mn³⁺/Mn⁴⁺ redox reactions, respectively. Compared to those of CD-LNMO-H and LNMO, the weak Ni⁴⁺/Ni²⁺ along with strong Mn⁴⁺/Mn³⁺ reduction peaks in the CV curve of CD-LNMO are consistent with the short 4.6 V plateau and long 2.7 V plateau in the discharge profile, implying different electrochemical behavior of CD-LNMO. As the energy level of the Ni⁴⁺/Ni²⁺ redox is lower than that of Mn⁴⁺/Mn³⁺ in the TMO₆ configuration, this shifted redox center in CD-LNMO implies incomplete Ni⁴⁺/Ni²⁺ oxidation within 2.0–4.8 V. It is worth mentioning that the Mn⁴⁺/Mn³⁺ reduction potential varies with the different localized configurations of Li ions (~4.0 V for Li₂O₃ and ~2.7 V for LiO₂), reflected as the two-step Mn⁴⁺/Mn³⁺ reduction in Li₂MnO₄⁵ and Li₂MnO₂⁴. In contrast, the CV curve of CD-LNMO shows a negligible Mn⁴⁺/Mn³⁺ reduction peak at 4.0 V, suggests the electrochemical behavior is different from that of LiMn₂O₄ and Li₂MnO₂. In comparison, both the CD-LNMO-H and LNMO electrodes present more of the Ni⁴⁺/Ni²⁺ reduction reaction than CD-LNMO (Supplementary Fig. 20b), which represents the altered redox reaction after entropy manipulation. Moreover, the scan rate-dependent CV measurements (Supplementary Fig. 21) revealed diffusion-controlled faradaic behavior in the charging process and the coexistence of non-faradaic and faradaic behavior upon discharging, suggesting at least a partial surface redox reaction in the low voltage region. Benefiting from the rapid Li⁺ diffusion along the 0-TM path under TM-poor conditions and in the spinel framework, Li||CD-LNMO coin cells show promising rate performance with reversible capacities of 273.1 mA h g⁻¹, 204.9 mA h g⁻¹ and 153.6 mA h g⁻¹ under increased specific currents (200 mA g⁻¹, 400 mA g⁻¹, and 1 A g⁻¹), which results in calculated specific energy values of 803.9, 634.6 and 420.9 Wh kg⁻¹ for the cathode active material in coin cells, respectively (Fig. 5d). The rate performances of LLO and LNMO (Supplementary Fig. 22) were substantially restricted by the sluggish reaction kinetics of the positive electrodes and, and the calculated specific energy values of the cathode materials in Li-metal coin cell were 303.9 and 154.2 Wh kg⁻¹ (at a specific current of 1 A g⁻¹), respectively.

Ex situ physicochemical characterizations and atomistic calculations of Li₁.₄₄Ni₀.₃₂Mn₁.₂O₄₋ₓ-based electrodes
Ex situ Mn and Ni K-edge X-ray absorption near-edge structure (XANES) measurements were then adopted to probe the oxidation state change of Mn and Ni in CD-LNMO during the initial cycle. The absorption edges of Mn and Ni in the as-synthesized CD-LNMO are close to those of MnO₂ and NiO, indicating the near +4 and +2 valence states for Mn and Ni, respectively (Fig. 6a and Supplementary Fig. 23). During the initial cycle, the valence state of Mn barely changed during the charging process but approached +3 in the fully lithiated state (2.0 V). Moreover, the slight shift of the absorption edges in the Ni K-edge XANES spectra revealed the partially Ni²⁺/Ni⁴⁺ redox reaction (Supplementary Fig. 23). Thus, it is likely that the initial charging process is mostly charge compensated by anionic oxidation, while the accompanying structural evolution triggers Mn⁴⁺/Mn³⁺ redox during...
the discharge process. The high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS), which enables the direct observation of oxidized oxygen67,68, was therefore conducted on the fully charged electrode to detect the reversible anion redox. As shown in Fig. 6b and Supplementary Fig. 24, the mRIXS of the 4.8 V charged sample represents a strong O− (n < 2) feature at ~531 eV excitation and -524 eV emission (marked by red arrow), suggesting considerable oxidized oxygen in the lattice of fully delithiated CD-LNMO. Combining with the DEMS and ex situ O 1s XPS results (Supplementary Fig. 25), we can confirm the presence of a reversible anion redox in the initial cycle of CD-LNMO. The change in TM-O bonding in the initial cycle was also characterized by ex situ O K-edge soft X-ray absorption spectroscopy (sxas) measurements. The energy of the ligand K-edge pre-edge reflects the energy level of the lowest unoccupied molecular orbital (LUMO), which is dominated by the t_{2g} and e_g orbitals of Mn/Ni64. Therefore, the increased intensity of pre-edge peaks upon charging indicates strengthened TM-O hybridization, while the slight shift in the first pre-edge peak in the fully lithiated sample (2.0 V) reflects the reduction of Mn/Ni ions (Supplementary Fig. 26)4. To elucidate the correlation between cation disorder and the electrochemical properties of CD-LNMO, we performed DFT calculations to investigate the crystal and electronic structures of CD-LNMO. Herein, both cation disordering and Li over-stoichiometry were considered in the LiNi\textsubscript{0.5}Mn\textsubscript{1.5}O\textsubscript{4} structure (space group: Fd3m), which helps to investigate the localized crystal and electronic structural changes in CD-LNMO. The modeling and calculation steps are illustrated in Supplementary Note 3 and Supplementary Fig. 28. As shown in Fig. 7a, we found that cation mixing in stoichiometric LNMO, marked as CD-LNMO-L, is thermodynamically unfavorable (formation energy (E_f) of 2.008 eV). In contrast, the formation of CD-LNMO, whose fully lithiated state was proven in the above experiment to be a Li-rich spinel with cation disordering, is more favorable than that of CD-LNMO-L. This is attributed to the substitution of TM ions by an excess of Li ions, which reduces the Coulombic repulsion between nearby octahedral sites and thermodynamically facilitates cation disordering in Li-rich LNMO. The influence of cation disordering on the Li-ion storage mechanism was then explored by comparing the site energies of the 16c octahedral sites (Li\textsubscript{oct}) and 8a tetrahedral sites (Li\textsubscript{tet}). As shown in Fig. 7b, the site energy of Li\textsubscript{oct} is 0.373 eV, lower than that of Li\textsubscript{tet} in
LNMO, which is consistent with previous understanding and implies a preferential insertion of Li ions into the tetrahedral sites. In contrast, the lowest site energies of Li_{tet} are 1.431 eV and 0.354 eV higher than those of Li_{oct} in CD-LNMO-1 and CD-LNMO, respectively, indicating the prioritized occupation of octahedral sites. Such variation in the site energy can be traced from TM ion migration from the 16d to 16c sites. Specifically, the occupancy of 16c interstitial sites results in thermodynamically unfavorable face sharing of the TMO6 ligand with the adjacent LiO4 ligand, which raises the site energies of Li_{tet}, while the created 16d vacancy reduces the site energies of the nearby Li_{oct}. This site energy variation prevents the insertion of Li ions into the Li_{tet} sites, consistent with the shortened 4.7 V plateau and prolonged 2.7 V plateau in the previous paragraphs.

Cation disordering and an excess of Li inevitably alter the localized condition of oxygen ions. For LNMO, all of the oxygen ions are coordinated by 3TMIli, whereas new localized oxygen conditions coordinated by 2TMIli (oxygen ions near the 16d vacancy), 2TM2li (oxygen ions near the excess Li in 16d sites), and 1TM2li (oxygen ions between the vacancy and excess Li ions) are generated in CD-LNMO. These were labeled as O1 (3TMIli), O2 (2TMIli), O3 (2TM2li), and O4 (1TM2li), respectively. As shown in the inset of Fig. 7c, the calculated electron localization function shows the O-2p lone pair orbitals (lO2p) on O2, O3, and O4, implying a higher energy level of the anionic reaction on these oxygen ions. This was further proven by the reduced Bader charge (per atom) upon full delithiation of CD-LNMO (Fig. 7c), in which the oxygen ions coordinated with fewer TM ions, representing a higher degree of oxidation. Moreover, no O-O dimer was formed in the fully delithiated CD-LNMO (Supplementary Fig. 29), suggesting that the anionic reaction is insufficient to trigger oxygen release and thus contributes a reversible capacity.
In summary, the ex situ X-ray measurements support the claim of the change in the redox center and the migration of Mn ions in the initial cycle, and the DFT calculations revealed the altered Li storage mechanism and anodic redox in the medium-entropy state phase. These results are in line with the aforementioned STEM and electrochemical observations and therefore help us build an outline of the crystal and electronic structures of CD-LNMO upon cycling. As shown in Fig. 7d, anodic oxidation dominates charge compensation in the first charge, and the observation of IO\textsubscript{3}- in CD-LNMO reveals a higher energy level of O2-/O2+ than that of Ni2+/Ni4+, suggesting at least partial O2- ions located in a TM-poor spinel structure. Upon removal of the Li ions, the migration of TM ions and anodic oxidation trigger irreversible structural changes that lower the energy level of the O2- ions, therefore enabling reversible Mn4+/Mn3+ redox accompanied by Li ions inserted/extracted mostly from the octahedral sites. This endows reversible cycling through both cationic and anionic redox, and the shuttling of Li ions through octahedral sites not only gives rise to the boosted capacity but also effectively avoids symmetry changes upon high-capacity operation.

Discussion

Regarding the wide gap between the practical and theoretical capacities of Li\textsubscript{x}Ti\textsubscript{4}Mn\textsubscript{1-x}O\textsubscript{4} cathodes, the intrinsic symmetry change of Li\textsubscript{1-x}TM\textsubscript{x}O\textsubscript{2} upon high-capacity operation is one of the most crucial challenges to be overcome. Herein, we demonstrated that a suitable entropy level could effectively suppress the undesired symmetry change, enabling high-capacity operation through a 3D Li-ion diffusion path. We found that a medium-entropy state generated through partial cation disordering alters the Li-ion storage mechanism and circumvents the symmetry change in the conventional spinel phase. The ex situ XAS and ND measurements revealed shuttling of Li ions from octahedral sites and the diminished spinel to Ti/T2 phase transitions upon cycling, while the XPS, XAS, DEMS, and DFT calculations coherently revealed the oxidation of O2- in the initial cycle and the Mn4+/Mn3+ reduction reaction during discharge. These findings indicate that the entropy state would effectively tune the crystallographic and electronic structures of cathode materials; therefore, an appropriate entropy level is crucial to reach an optimized electrochemical performance in each system. Looking forward, the entropy manipulation strategy presented in this work is a potential direction to overcome the thermodynamically driven atomic evolution upon the insertion/extraction of Li ions, and the cation-disordered spinel structure opens up a large space for exploring medium-entropy compounds.

Methods

Materials synthesis

Layered-type Li\textsubscript{1.46}Ni\textsubscript{0.32}Mn\textsubscript{1.2}O\textsubscript{4} was synthesized through a co-precipitation method with sodium sulfide nonahydrate (Na\textsubscript{2}S-9H\textsubscript{2}O, 99.99%) and sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}, 99.5%) as precipitating agents. Stoichiometric manganese sulfate monohydrate (MnSO\textsubscript{4}·H\textsubscript{2}O, 98%, 2 mmol) and nickel sulfate hexahydrate (NiSO\textsubscript{4}·6H\textsubscript{2}O, 98%, 6 mmol) was dissolved into 10 mL deionized water as the source of TM ions, the migration of TM ions and anodic oxidation trigger irreversible structural changes that lower the energy level of the O2- ions, therefore enabling reversible Mn4+/Mn3+ redox accompanied by Li ions inserted/extracted mostly from the octahedral sites. This endows reversible cycling through both cationic and anionic redox, and the shuttling of Li ions through octahedral sites not only gives rise to the boosted capacity but also effectively avoids symmetry changes upon high-capacity operation.

In summary, the ex situ X-ray measurements support the claim of the change in the redox center and the migration of Mn ions in the initial cycle, and the DFT calculations revealed the altered Li storage mechanism and anodic redox in the medium-entropy state phase. These results are in line with the aforementioned STEM and electrochemical observations and therefore help us build an outline of the crystal and electronic structures of CD-LNMO upon cycling. As shown in Fig. 7d, anodic oxidation dominates charge compensation in the first charge, and the observation of IO\textsubscript{3}- in CD-LNMO reveals a higher energy level of O2-/O2+ than that of Ni2+/Ni4+, suggesting at least partial O2- ions located in a TM-poor spinel structure. Upon removal of the Li ions, the migration of TM ions and anodic oxidation trigger irreversible structural changes that lower the energy level of the O2- ions, therefore enabling reversible Mn4+/Mn3+ redox accompanied by Li ions inserted/extracted mostly from the octahedral sites. This endows reversible cycling through both cationic and anionic redox, and the shuttling of Li ions through octahedral sites not only gives rise to the boosted capacity but also effectively avoids symmetry changes upon high-capacity operation.

Discussion

Regarding the wide gap between the practical and theoretical capacities of Li\textsubscript{1-x}TM\textsubscript{x}O\textsubscript{2} cathodes, the intrinsic symmetry change of Li\textsubscript{1-x}TM\textsubscript{x}O\textsubscript{2} upon high-capacity operation is one of the most crucial challenges to be overcome. Herein, we demonstrated that a suitable entropy level could effectively suppress the undesired symmetry change, enabling high-capacity operation through a 3D Li-ion diffusion path. We found that a medium-entropy state generated through partial cation disordering alters the Li-ion storage mechanism and circumvents the symmetry change in the conventional spinel phase. The ex situ XAS and ND measurements revealed shuttling of Li ions from octahedral sites and the diminished spinel to Ti/T2 phase transitions upon cycling, while the XPS, XAS, DEMS, and DFT calculations coherently revealed the oxidation of O2- in the initial cycle and the Mn4+/Mn3+ reduction reaction during discharge. These findings indicate that the entropy state would effectively tune the crystallographic and electronic structures of cathode materials; therefore, an appropriate entropy level is crucial to reach an optimized electrochemical performance in each system. Looking forward, the entropy manipulation strategy presented in this work is a potential direction to overcome the thermodynamically driven atomic evolution upon the insertion/extraction of Li ions, and the cation-disordered spinel structure opens up a large space for exploring medium-entropy compounds.

Methods

Materials synthesis

Layered-type Li\textsubscript{1.46}Ni\textsubscript{0.32}Mn\textsubscript{1.2}O\textsubscript{4} was synthesized through a co-precipitation method with sodium sulfide nonahydrate (Na\textsubscript{2}S-9H\textsubscript{2}O, 99.99%) and sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}, 99.5%) as precipitating agents. Stoichiometric manganese sulfate monohydrate (MnSO\textsubscript{4}·H\textsubscript{2}O, 98%, 2 mmol) and nickel sulfate hexahydrate (NiSO\textsubscript{4}·6H\textsubscript{2}O, 98%, 6 mmol) was dissolved into 10 mL deionized water as the source of TM ions, the migration of TM ions and anodic oxidation trigger irreversible structural changes that lower the energy level of the O2- ions, therefore enabling reversible Mn4+/Mn3+ redox accompanied by Li ions inserted/extracted mostly from the octahedral sites. This endows reversible cycling through both cationic and anionic redox, and the shuttling of Li ions through octahedral sites not only gives rise to the boosted capacity but also effectively avoids symmetry changes upon high-capacity operation.

Discussion

Regarding the wide gap between the practical and theoretical capacities of Li\textsubscript{1-x}TM\textsubscript{x}O\textsubscript{2} cathodes, the intrinsic symmetry change of Li\textsubscript{1-x}TM\textsubscript{x}O\textsubscript{2} upon high-capacity operation is one of the most crucial challenges to be overcome. Herein, we demonstrated that a suitable entropy level could effectively suppress the undesired symmetry change, enabling high-capacity operation through a 3D Li-ion diffusion path. We found that a medium-entropy state generated through partial cation disordering alters the Li-ion storage mechanism and circumvents the symmetry change in the conventional spinel phase. The ex situ XAS and ND measurements revealed shuttling of Li ions from octahedral sites and the diminished spinel to Ti/T2 phase transitions upon cycling, while the XPS, XAS, DEMS, and DFT calculations coherently revealed the oxidation of O2- in the initial cycle and the Mn4+/Mn3+ reduction reaction during discharge. These findings indicate that the entropy state would effectively tune the crystallographic and electronic structures of cathode materials; therefore, an appropriate entropy level is crucial to reach an optimized electrochemical performance in each system. Looking forward, the entropy manipulation strategy presented in this work is a potential direction to overcome the thermodynamically driven atomic evolution upon the insertion/extraction of Li ions, and the cation-disordered spinel structure opens up a large space for exploring medium-entropy compounds.

Methods

Materials synthesis

Layered-type Li\textsubscript{1.46}Ni\textsubscript{0.32}Mn\textsubscript{1.2}O\textsubscript{4} was synthesized through a co-precipitation method with sodium sulfide nonahydrate (Na\textsubscript{2}S-9H\textsubscript{2}O, 99.99%) and sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}, 99.5%) as precipitating agents. Stoichiometric manganese sulfate monohydrate (MnSO\textsubscript{4}·H\textsubscript{2}O, 98%, 2 mmol) and nickel sulfate hexahydrate (NiSO\textsubscript{4}·6H\textsubscript{2}O, 98%, 6 mmol) was dissolved into 10 mL deionized water as the source of TM ions, the migration of TM ions and anodic oxidation trigger irreversible structural changes that lower the energy level of the O2- ions, therefore enabling reversible Mn4+/Mn3+ redox accompanied by Li ions inserted/extracted mostly from the octahedral sites. This endows reversible cycling through both cationic and anionic redox, and the shuttling of Li ions through octahedral sites not only gives rise to the boosted capacity but also effectively avoids symmetry changes upon high-capacity operation.
by the elastic peak. The RIXS spectra were collected for 90 s at each excitation energy.

Synchrotron X-ray and neutron diffraction

The SXRD tests were performed on the BSRF, which used dual-focus monochromatic X-rays provided by the IWIA beamline. The wavelength of the X-ray was 1.54 Å. The time-of-flight ND measurements of the charged and discharged \(\text{Li}_{1.46}\text{Ni}_{0.32}\text{Mn}_{0.22}\text{O}_2 _x \) were carried out on the Multiple-Physics Instrument beamline at the China Spallation Neutron Source. The ND patterns were collected at 298 K. For the ex situ SXRD and ND measurements, the charged and discharged \(\text{Li}_{1.46}\text{Ni}_{0.32}\text{Mn}_{0.22}\text{O}_2 _x \) were prepared by assembling Li-metal pouch cells with the total active material of ~500 mg. The pouch cells were cycled under 20 mA g\(^{-1}\) to ensure thorough delithiation and lithiation, and assembled immediately inside an Ar-filled glovebox \((\text{H}_2\text{O} < 0.05 \text{ ppm}) \) at given voltages. The electrodes were immersed in dimethyl carbonate \((50 \text{ mL}, 99\%, \text{Sigma-Aldrich Reagent}) \) for 24 h, followed by five times rinsing by dimethyl carbonate to remove surface residuals. The samples were scraped from Al foil for the following tests. For SXRD measurements, the samples are sealed by Kapton tape \((8 \text{ µm}, \text{SPEX}) \) inside an Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \), and the sealed samples are directly transferred onto the sample holder and detection chamber in air. For ND measurements, the samples are placed onto the sample holder before being transferred into the detection chamber, and the whole process was conducted in an Ar atmosphere to avoid potential air exposure. As the neutron flux is much lower than that of X-ray, most of the active materials \((\sim 50\%) \) were sealed inside a vanadium can for the ND measurements, while the remaining \((\sim 20\%) \) were sealed by Kapton tape for SXRD tests. Both the SXRD and ND refinements were refined by GSAS-II software, and the refinements are performed sequentially (first SXRD, then ND). During the SXRD refinement, we performed a two-step refinement that refined and subtracted the background from Kapton tape and the fluorescence effect of Ni and Mn before the final refinement; the lattice constants, atomic occupancies of TM ions, instrument parameters, and peak broadening were refined, while the obtained parameters (lattice constants, and atomic occupancies of TM ions) were utilized in the following ND refinements. The ND refinements were carried out to analysis the occupancies of Li ions, therefore the lattice constants, atomic occupancies of Li ions, instrument parameters, and peak broadening were refined with fixed atomic positions and occupancies of TM ions.

Differential electrochemical mass spectrometer measurements

The gas release was detected on a Differential Electrochemical Mass Spectrometer (d-DEMS 100). The specific Swagelok-type cylindrical cell with an inner diameter of 22 mm was assembled in an Ar-filled glovebox \((\text{H}_2\text{O} < 0.01 \text{ ppm}, \text{O}_2 < 0.01 \text{ ppm}) \), with the CD-LNMO electrode \((75 \text{ wt}\% \text{ active materials, } 1 \times 1 \text{ cm}^2 \text{ square, } -1 \text{ mg, thickness of } -10 \mu\text{m}) \) and a Li foil \((99\%, \text{16} \times 0.5 \text{ mm}, \text{China Energy Lithium}) \) as the working electrode and counter/reference electrode, respectively. The cell was filled with 100 µL 1 M LiPF\(_6\) in ethylene carbonate (EC)/dimethyl carbonate (DMC) \((\text{H}_2\text{O} < 20 \text{ ppm}, \text{LBC502A50, CAPCHEM}) \), and the measurement utilized Argon \((99.9999\%) \) as carrier gas with the flow rate of 0.9 ml min\(^{-1}\). Electrochemical measurements were performed on a Landt battery tester (LANHE, Wuhan) with a specific current of 60 mA g\(^{-1}\) (based on the weight of the positive electrode’s active material). At the same time, the released \(\text{O}_2 \) and \(\text{CO}_2 \) were collected and quantified by the mass spectrometer.

HAADF-STEM and EELS characterization

A double aberration-corrected STEM (FEI Titan Cubed G\(^2\) 60−300) operated at 300 kV was explored to perform the HAADF and EELS measurements. The contrast of the HAADF image is determined by the average atomic number of the atomic columns \((Z^2 \text{ to } Z^2) \). The pristine sample for STEM measurement was ground and sonicated in an ethanol solution, and the supernatant was collected by the carbon grid. To prepare the fully charged sample for STEM tests, the Li-metal coin cell was disassembled immediately after charged to 4.8 V in the initial cycle, followed by rinsing with the same procedure of ex situ XPS/XAS samples. The active materials were scraped from the Al foil and ground in anhydrous hexane \((50 \text{ mL}, 95\%, \text{Sigma-Aldrich Reagent}) \) for 30 min before being deposited onto the carbon grid \((\text{carbon membrane purity of } >99\%, \text{thickness of } 3−5 \text{ nm}, \text{200 mesh, Electron Microscopy China}) \). All the procedures are carried out inside an Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \). To avoid possible oxidation, the carbon grid was sealed into an Ar-filled container and stored in Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \) before being transferred into the sample holder and the STEM column.

Electrochemical measurements

The positive electrodes of Li-metal cells were prepared by mixing 75 wt% active materials, 15 wt% conductive carbon additive \((>90\%, \text{average particle size of } \sim 40 \text{ nm, MTI}) \), and 10 wt% poly (vinylidene fluoride) (PVDF, Alfa Aesar) in the N-methyl-2-pyrrolidone \((99.5\%, \text{Alfa Aesar}) \) solution. The obtained slurry was spread onto the current collector (Al foil, \(>99\%, 0.1 \text{ mm}, \text{Times Aluminum Foil}) \) and dried at 60 °C overnight. Before being transferred into the Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \), the electrodes were cut into \(0.5 \times 0.5 \text{ cm}^2 \) squares with the loading of \(-1 \text{ mg cm}^{-2} \) (thickness of \(-10 \mu\text{m}) \) and dried at 120 °C for 10 h in a vacuum oven. The Li-metal cells (coin cell, CR2025) were assembled inside an Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \), Li foil \((>99\%, 16 \text{ mm diameter and thickness 500 } \mu\text{m}, \text{China Energy Lithium}) \), Celgard 2400 membrane \((25 \mu\text{m, average pore size of } 0.043 \mu\text{m, porosity of } 41\%) \), and 0.18 mL 1 M LiPF\(_6\) in EC/DMC \((\text{H}_2\text{O} < 20 \text{ ppm}, \text{LBC502A50, CAPCHEM}) \) were utilized as the anode, separator, and electrolyte, respectively. The galvanostatic charge/discharge tests were performed on CTZ001A battery test systems (LAND Wuhan Corp., China), and the CV data were collected on an electrochemical workstation (CHI 660 C) (Shanghai Chenhua Instrument Corp., China) with the scan rate of 0.05 mV s\(^{-1}\). The scan rate depended CV was performed with the scan rates of 0.2, 0.4, 0.5, 0.8, and 1.0 mV s\(^{-1}\) within 2.0−4.8 V. All the electrochemical tests are performed in the room without climatic/environmental chamber, while the temperature is 25 ± 5 °C (controlled by central air-conditioning). The specific energies of cathode materials were calculated based on the integral area on the discharge profile of Li-metal cells, and the weight was based on the positive electrode’s active material to make a parallel comparison with that in previous works (Supplementary Table 4). The pouch cells for ex situ SXRD and ND measurements are assembled within the \(-6 \times 12 \text{ cm}^2\) Al bags. The electrodes were single-side coated, and were cut into \(-4 \times 8 \text{ cm}^2\) squares with the loading of \(-15 \text{ mg cm}^{-2} \) (thickness of \(-80 \mu\text{m}) \) before drying at 120 °C for 10 h in a vacuum oven. The Li-metal pouch cells were assembled inside an Ar-filled glovebox \((\text{H}_2\text{O} < 0.5 \text{ ppm}) \), and each cell employs one single-side coated electrode. Li foil \((>99\%, -5 \times 9 \text{ cm}^2, 0.2 \text{ mm, China Energy Lithium}) \), Celgard 2400 membrane and 0.64 mL 1 M LiPF\(_6\) in ECDMC \((\text{H}_2\text{O} < 20 \text{ ppm}, \text{LBC502A50, CAPCHEM}) \) were utilized as the anode, separator, and electrolyte, respectively. The pouch cells were cycled under 20 mA g\(^{-1}\) at 25 ± 5 °C to ensure thorough delithiation and lithiation.

DFT calculations

The structure construction with various configurations was illustrated in the Supplementary Information (Supplementary Fig. 28). The energy of structures and the information of electronic structure were obtained by DFT calculations, which were performed in the Vienna ab initio simulation package\(^{1}\). The projector augmented wave (PAW) framework was used to describe the core electrons\(^2\). The exchange-correlation energy was evaluated using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof functional\(^3\). The rotationally averaged Hubbard U correction was used to correct the self-interaction error in GGA calculations. Effective U values of 6.0
and 3.9 eV were chosen for the d electrons of Ni and Mn atoms, as these have been reported to produce reasonable results. The energy cutoff of the plane wave basis set was set at 520 eV. Gamma-centered k-points meshes with a density of 1000 divided by the number of atoms were used for Brillouin-zone integration. Each structural optimization fully relaxed the cell parameters and atomic positions until the force per atom in the supercell was <0.01 eV/Å.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in Source data. Extra data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References
1. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).
2. Chen, Q. et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nat. Commun. 11, 3411 (2020).
3. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).
4. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).
5. Mohanty, D. et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014).
6. Pei, Y. et al. Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects. Nano Energy 71, 104644 (2020).
7. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the U.S. department of energy’s “Deep Dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2913–2921 (2015).
8. Zuo, Y. et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv. Mater. 30, e1707255 (2018).
9. Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).
10. Li, S. et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew. Chem. Int. Ed. Engl. 59, 22092–22099 (2020).
11. Yang, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).
12. Zheng, J. et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015).
13. Pei, Y. et al. Cationic-anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. J. Mater. Chem. A 9, 2325–2333 (2021).
14. Pei, Y. et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv. Funct. Mater. 27, 1604349 (2017).
15. Lee, E.-S., Nam, K.-W., Hu, E. & Manthiram, A. Influence of cation ordering and lattice distortion on the charge–discharge behavior of Li0.80MnO2 spinel between 5.0 and 2.0 V. Chem. Mater. 24, 3610–3620 (2012).
16. Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).
17. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).
18. Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solids Chem. 25, 1–71 (1997).
19. Zhang, J. et al. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 12, 3071 (2021).
20. Liu, X. et al. Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange. J. Am. Chem. Soc. 142, 19745–19753 (2020).
21. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganine spinels. Mat. Res. Bull. 18, 461–483 (1983).
22. Li, N. et al. Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nat. Commun. 12, 2348 (2021).
23. Zhao, E. et al. Stabilizing the oxygen lattice and reversible oxygen redox chemistry through structural dimensionality in lithium-rich cathode oxides. Angew. Chem. Int Ed. Engl. 58, 4323–4327 (2019).
24. Lun, Z. et al. Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 8, 153–168 (2020).
25. Clément, R. J., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).
26. Urban, A., Matts, I., Abdellahi, A. & Ceder, G. Computational design and preparation of cation-disordered oxides for high energy-density Li-ion batteries. Adv. Energy Mater. 6, 1600488 (2016).
27. Kim, S. et al. Material design of high-capacity Li-rich layered-oxygen electrodes: Li2MnO3 and beyond. Energy Environ. Sci. 10, 2201–2211 (2017).
28. Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition metal oxide cathode materials. Adv. Energy Mater. 8, 1701533 (2018).
29. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).
30. Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2432–2442 (2019).
31. Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).
32. Yan, P. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li0.8Ni0.2Mn0.5O2 cathode material for lithium ion batteries. Nano Lett. 15, 514–522 (2015).
33. Kitchaev, D. A. et al. Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes. Energy Environ. Sci. 11, 2159–2171 (2018).
34. Assat, G., Glazier, S. L., Delacourt, C. & Tarascon, J.-M. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat. Energy 4, 647–656 (2019).
35. Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).
36. Cai, Z. et al. Realizing continuous cation order-to-disorder tuning in a class of high-energy spinel-type Li-ion cathodes. Matter 4, 1–20 (2021).
37. Bhaskar, A. et al. Synthesis and characterization of high-energy, high-power spinel-layered composite cathode materials for lithium-ion batteries. Adv. Energy Mater. 5, 1401156 (2015).
38. Lee, J. et al. Controlled atomic solubility in Mn-rich composite material to achieve superior electrochemical performance for Li-ion batteries. Adv. Energy Mater. 10, 1902231 (2019).
39. Kang, S. H. et al. The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3-0.5Li4.4Co0.25Mn0.31O2 electrodes in lithium cells. J. Electrochem. Soc. 153, A1186–A1192 (2006).
40. Lee, E.-S., Hug, A., Chang, H.-Y. & Manthiram, A. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem. Mater. 24, 600–612 (2012).

41. Cheng, F., Chen, J., Zhou, H. & Manthiram, A. Structural and electrochemical characterization of (NH₄)₂HPO₄-treated lithium-rich layered Li₁ₓNi₀.₅Mn₁.₅O₄ cathodes for lithium-ion batteries. J. Electrochem. Soc. 160, A1661–A1664 (2013).

42. Zhang, X. et al. A study of high-voltage LiNi₀.₅Mn₁.₅O₄ and high-capacity Li₁₋₀.₂Ni₀.₅Mn₀.₅O₂₀.₇ cathode materials. J. Electrochem. Soc. 160, A1079–A1083 (2013).

43. Wang, D. et al. The control and performance of LiMn₂O₄ and Li₂MnO₃ phase ratios in the lithium-rich cathode materials. Electrochem. Acta 190, 1142–1149 (2016).

44. Li, S. et al. Thermally aged Li-Mn-O cathode with stabilized hybrid cation and anion redox. Nano Lett. 21, 4176–4184 (2021).

45. Huang, Y. et al. Lithium manganese spinel cathodes for lithium-ion batteries. Adv. Energy Mater. 11, 2000997 (2020).

46. Lin, M. et al. Insight into the atomic structure of high-voltage spinel LiNi₀.₅Mn₁.₅O₄ cathode material in the first cycle. Chem. Mater. 27, 292–303 (2015).

47. Tang, D. et al. Surface structure evolution of LiMn₂O₄ cathode material upon charge/discharge. Chem. Mater. 26, 3535–3543 (2014).

48. Liu, Y. et al. Low-temperature synthesized LiₓMn₂O₄-like cathode with hybrid cation- and anion-redox capacities. Chem. Commun. 55, 8118–8121 (2019).

49. Yu, S. H. et al. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 51, 273–281 (2018).

50. Luo, K. et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[LiₓNi₂₋ₓMnₓO₄]. J. Am. Chem. Soc. 138, 1121–11218 (2016).

51. Lee, J. et al. A new class of high capacity cathion-dissolved oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ. Sci. 8, 3255–3265 (2015).

52. Freire, M. et al. A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

53. Deng, C. et al. Li-substituted layered spinel cathode material for sodium ion batteries. Chem. Mater. 30, 8145–8154 (2018).

54. Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

55. Croy, J. R. et al. Countering the voltage decay in high capacity xLi₂MnO₂(1−x)LiMnO₂; electrodes (M=Mn, Ni, Co) for Li-ion batteries. J. Electrochem. Soc. 159, A781–A790 (2012).

56. Zhan, C. et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganese-carbon systems. Nat. Commun. 4, 2437 (2013).

57. Yan, P., Zheng, J., Zhang, J. G. & Wang, C. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 17, 3946–3951 (2017).

58. Duncan, H. et al. Relationships between Mn⁺⁻⁻ content, structural ordering, phase transformation, and kinetic properties in LiNi₀.₅Mn₁.₅O₄ cathode materials. Chem. Mater. 26, 5374–5382 (2014).

59. Lee, J. et al. Reversible Mn⁺⁻⁻ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

60. Zhu, X. et al. LiMnO₂ cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4, 392–401 (2020).

61. Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

62. Shimoda, K. et al. Delithiation/lithiation behavior of LiNi₀.₅Mn₁.₅O₄ studied in situ and ex situ ²Li NMR spectroscopy. J. Phys. Chem. C 119, 13472–13480 (2015).

63. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

64. Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

65. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019).

66. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

67. Qiao, R., Chuang, Y. D., Yan, S. & Yang, W. Soft x-ray irradiation effects of Li₂O₂, Li₂CO₃, and Li₂O revealed by absorption spectroscopy. PLoS One 7, e59182 (2012).

68. Qiao, R. et al. High-efficiency in situ resonant inelastic x-ray scattering (RIXS) endstation at the advanced light source. Rev. Sci. Instrum. 88, 033106 (2017).

69. Roychoudhury, S. et al. Deciphering the oxygen absorption pre-edge: a caveat on its application for probing oxygen redox reactions in batteries. Energy Environ. Mater. 4, 246–254 (2021).

70. Zhao, Y. et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv. Funct. Mater. 26, 4760–4767 (2016).

71. Kohn, W., Becke, A. D. & Parr, R. G. Density functional theory of electronic structure. J. Chem. Phys. 100, 12974–12980 (1996).

72. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 24, 17953–17979 (1998).

73. Liechtenstein, A. I. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 8, R5467–R5470 (1995).

74. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

75. Hautier, G. et al. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012).

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 52102227, 11874199, 5210236, and U2032177), Shenzhen Science and Technology Innovation Committee (JCYJ20200109113212238), and Guangdong Basic and Applied Basic Research Foundation (grant no. 2021B1515140014). The authors gratefully acknowledge Rui Gao from the University of Chinese Academy of Sciences for DEMS measurement, Mrs. Xiaoyan Wang, and Prof. Xiaojuan Kuang from Guilin University of Technology for in-situ XRD measurements. We thank Hefei Synchrotron Radiation Facility (MCD-A and MCD-B Soochow Beamline for Energy Materials at NSRL).

Author contributions

Y.P. and Q.C. designed the experiments and wrote the manuscript. L.Z., P.W., and C.Y.X. initiated and supervised the project. Y.P. synthesized and electrochemically tested the samples. Q.C., Y.P., and P.H.X. conducted the DFT calculations and the correlated analysis. M.Y.W. performed the TEM measurements with the help of P.W. P.J.Z and carried out the SXAS measurements with the help of L.S. Q.Y.R., W.Y., and X.T. conducted the ND tests and helped the correlated analysis. Y.C. collected and analyzed the SXRD measurements. Q.Y.R., J.K.Q., P.H.X., P.W., and C.Y.X. contributed to the discussion and the processing of experimental results. All authors took part in the discussion and editing of the manuscript.

Competing interests

The authors declare no competing interests.
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33927-0.

Correspondence and requests for materials should be addressed to Liang Zhen, Peng Wang or Cheng-Yan Xu.

Peer review information Nature Communications thanks anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022