Design, Synthesis, in Vitro Antioxidant, Anti-Inflammatory and Antidiabetic Evaluation of New N-Substitutedbenzylidene-5-(4-Formylphenyl)-(3-Hydroxyphenyl)-4,5-Dihydropyrazole-1-Carbothioamide Derivatives

Sucheta Singh Singh
Department of Pharmaceutical Sciences M.D.University, Rohtak

Sumit Tehlan Tehlan
Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research

Prabakar kumar Verma (vermapk422@rediffmail.com)
Faculty of Pharmaceutical sciences. M.D.University, Rohtak, Haryana, INDIA

Research article

Keywords: Pyrazole derivatives, Antioxidant, Anti-inflammatory, Antidiabetic

DOI: https://doi.org/10.21203/rs.3.rs-44195/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

A series of N-substitutedbenzylidene-5-(4-formylphenyl)-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide derivatives was designed, synthesized and examined for their therapeutical potential against prooxidant (oxidative stress), inflammation and diabetes. Biological results showed antioxidant activity with IC$_{50}$ value 37.68 mol/L, anti-inflammatory activity with IC$_{50}$ value 26.40 mol/L and antidiabetic activity with IC$_{50}$ value 17.12 mol/L. The results of antioxidant activity showed that compounds Y_9 and Y_{17} exhibited excellent antioxidant activity with IC$_{50}$ values 17.43 mol/L and 18.98 mol/L, results of anti-inflammatory activity showed that compounds Y_2, Y_3 and Y_7 exhibited excellent anti-inflammatory activity with IC$_{50}$ values 23.23 mol/L, 22.09 mol/L and 19.05 mol/L respectively and results of antidiabetic activity showed that compounds Y_1, Y_5 and Y_6 exhibited excellent antidiabetic activity with IC$_{50}$ values 17.08 mol/L, 8.36 mol/L and 13.50 mol/L. When compared with ascorbic acid, aspirin and acarbose as standard drug respectively. Heterocyclic compounds have diversity in their structure which makes them broad and economical therapeutic agents. Pyrazole is a five membered ring containing three carbon and two neighboring nitrogen atoms. Pyrazole and its derivatives have various biological as well as clinical potential thus considered for further research. Due to wide range of therapeutical activities pyrazole makes interest among researcher to explore it further for more activities. Pyrazole is present in various biological moieties eg. antimicrobial, antidiabetic, anti-inflammatory, antioxidant, antiviral, anticonvulsant, anticancer, anti-HIV and anti-tuberculosis agents.

Introduction

Antioxidants protects against the oxidative stress and damage produced by ROS (reactive oxygen species). Living organisms have antioxidant defense systems that protects against oxidative damage by removal or repair of damaged molecules [1]. Oxidative stress occurs due to imbalance between the levels of ROS and antioxidants in living system. Free radicals form due to oxidation and high concentration of free radicals leads to precipitate pathological condition. At inflamed site, ROS like superoxide radical anion, hydrogen peroxide and hydroxyl radical are produced by leukocytes, where they synthesis prostaglandins and convert arachidonic acid into proinflammatory intermediates mediated by COX (cyclooxygenase) and LOX (lipoxygenase) [2]. Oxidative stress has been implicated in pathological conditions of various diseases such as inflammation, cancer, dementia and physiological aging. Role of antioxidant as pharmacotherapy has been emerged to minimize the bimolecular damage caused by ROS attack on vital constituents of living organisms.

Persistent increase in blood glucose level leads to Diabetes Mellitus (DM). DM is basically of two types; Type-1 i.e., Insulin dependent and Type-2 i.e., Insulin independent. DM is a syndrome having symptoms like abnormality in lipoprotein, elevated basal metabolic rate and blood glucose level, decrease in the ROS scavenging enzymes leads to increase in oxidative stress which destruct pancreatic beta cells. It has been indicated that increase in blood glucose level cause oxidative stress which may add up in the
pathogenesis of further diabetic complications. Oxidative stress, occurs due to increase in free radical concentration, damages various organs and affecting normal biological functioning [3].

Pain is an unpleasant sensation. Inflammation is the result of concerted participation of a large number of vasoactive, chemotactic and proliferative factors at different stage. Non Steroidal Anti-inflammatory Drugs (NSAIDs) are used to treat pain due to inflammation. The main target of NSAIDs is to inhibit COX. There are two isoforms of COX i.e., COX-1 and COX-2 present in almost all the tissues. COX-1 is responsible for prostaglandins production whereas COX-2 is responsible for the increased production of prostaglandins during inflammation [4]. Inhibition of COX-2 should be specific as COX-1 inhibition may leads to alter its housekeeping function [5,6].

Pyrazole is a heterocyclic compound containing five membered ring and has various therapeutical intensity because of its biological and synthetic applications. A number of pyrazole derivatives have been reported for many therapeutical effects such as antimicrobial [7], antidiabetic [8], antioxidant [9], anti-inflammatory [10,11], antituberculosis [12], anticancer [13], analgesics [14], antiepileptic [15], antihypertensive [16], ulcerogenic [17]. Due to its wide range of therapeutic effects it attracts researcher to explore it further for its potential as therapeutic agent in various disease.

\[
\begin{align*}
&\text{Pyrazole moiety} \\
&\text{Chemistry} \\
\end{align*}
\]

Results And Discussion

Chemistry

In the research work, we have synthesized new series of \(N\)-substitutedbenzylidene-5-(4-formylphenyl)-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide analogues using direct condensation of aromatic aldehydes and substituted acetophenone. Synthetic steps of this series have been shown in Scheme-1. The structure of synthesized derivatives was examined by \(^1\text{H-NMR}\), FT-IR, MS and Elemental analysis. In Table 1, physiochemical properties of pyrazole derivatives have been presented. The physiochemical properties included molecular formula, molecular weight, melting points, percentage yield and \(R_f\) value of synthesized analogues.

Antioxidant activity

The antioxidant activity of the newly synthesized analogues was examined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay using free radical scavenging method (spectrophotometrically). DPPH, on reaction with hydrogen donors, a free radical with maximal absorption at 517 nm is reduced to hydrazine
(corresponding compound) indicating deep violet color of DPPH change to yellow, showing a considerable decrease in absorption. DPPH solution (3 μg/ml) was prepared in methanol and DPPH (in 1:1) solution was used for blank reference. 25 μg/ml, 50 μg/ml, 75 μg/ml, 100 μg/ml of each synthesized analogues and ascorbic acid (standard) was prepared in methanol. Then, equal amount of each concentration and DPPH was taken in a test tube. Afterwards, absorbance was taken at 517 nm by UV spectrophotometer of the solution mixture by stirring it for 5 min and stored at dark place for half an hour at room temperature [18]. The % inhibition was evaluated as follow

\[
\text{% Inhibition} = \frac{A_{\text{Control}} - A_{\text{Sample}}}{A_{\text{Control}}} \times 100
\]

Where,

- \(A_{\text{Control}}\) = absorbance of the control reaction.
- \(A_{\text{Sample}}\) = absorbance of the test compound.

IC\(_{50}\) value was calculated from the graph shown in Figures 3-5 which indicates % inhibition and synthesized compounds. The results of antioxidant activity explained that compounds Y\(_9\) and Y\(_{17}\) having maximum in vitro antioxidant potency with IC\(_{50}\) values 17.43 mol/L and 18.98 mol/L, in comparison with ascorbic acid (standard drug). The presented results are showing in Table 2.

Antidiabetic activity

All the synthesized derivatives were investigate for the \(\alpha\)-amylase inhibitory activity by using diastase based on colorimetric method [19]. For preparing enzyme solution, 1 mg diastase (amylase enzyme) was taken in 100 mL of 20 mM phosphate buffer. 25 μg/ml, 50 μg/ml, 75 μg/ml, 100 μg/ml concentration of synthesized compounds was prepared in DMSO. 0.25g potato starch was taken and adding in 50 mL of 20 mM phosphate buffer for potato starch solution by heating 15 min. The colour reagent was prepared by mixing 20 mL of 96 mM 3,5 dinitrosalicylic acid with 5.31 M sodium potassium tartrate in 8 mL of 2 M sodium hydroxide and 12 mL distilled water. After preparation of valuable solutions that needed for activity, 1 mL of synthesized derivatives solution and 1 mL of enzyme solution incubated in 25 °C temp. for 10 min. After that taken 1 mL of this mixture and added 1 mL of potato starch solution in test tube, incubated in 25 °C temp. for 10 min. Then test tubes was closed after adding 1 mL colour reagent and placed at water bath at 85 °C for 15 min. When reaction mixture was cooled diluted with 9 mL of distilled water and taken absorbance at 540 nm in UV spectrophotometer. % inhibition was calculated as follow.
% Inhibition = \frac{A_{Control} - A_{Sample}}{A_{Control}} \times 100 \quad \text{Equation 1}

IC_{50} value was calculated from the graph shown in Figures 6-8 which indicates % inhibition and synthesized compound. The evaluation of antidiabetic activity explain that compounds \(Y_1, Y_5\) and \(Y_6\) exhibited excellent antidiabetic potency with IC_{50} values 17.08 mol/L, 08.36 mol/L and 13.50 mol/L respectively, in comparison with acarbose (standard drug). The presented results are showing in Table 3.

Anti-inflammatory activity

All the synthesized derivatives were investigated for the protein albumin denaturation [20,21]. Different concentration of test compounds was prepared (10 \(\mu\)g/ml, 30 \(\mu\)g/ml, 50 \(\mu\)g/ml, 70 \(\mu\)g/ml and 100 \(\mu\)g/ml) in methanol. After preparation of test samples 1 % aqueous solution of bovine albumin serum in 0.05 M tris buffer saline and pH (7.6 at 25 °C) of reaction mixture was adjusted by adding small amount of 1 N HCl. The blank solution was taken is methanol. Then equal amount of test and protein was taken in the test tube and incubated for 20 min. at 37 °C. After incubation the reaction mixture was heated for 20 min. at 57 °C temperature and cooling the reaction mixture, the turbidity was measured at 660 nm in UV spectrophotometer. Percent inhibition of protein denaturation was calculated as follows:

% Inhibition = \frac{A_{Control} - A_{Sample}}{A_{Control}} \times 100 \quad \text{Equation 1}

IC_{50} value was calculated from the graph shown in Figures 9-11 which indicates % inhibition and synthesized compound. The results of anti-inflammatory activity showed that compounds \(Y_2, Y_3\) and \(Y_7\) exhibited excellent anti-inflammatory activity with IC_{50} values 23.23 mol/L, 22.09 mol/L and 19.05 mol/L respectively, in comparison with aspirin (standard drug). The presented results are showing in Table 4.

SAR (Structure Activity Relationship) studies:

From the antioxidant, antidiabetic and anti-inflammatory testing evaluation of newly synthesized \(N\)-substitutedbenzylidene-5-(4-formylphenyl)-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide derivatives, the ensuing structure activity relationship showed in fig 12.

1. Presence of electron withdrawing and releasing group (-OH and -Cl, Compounds \(Y_9\) and \(Y_{17}\)) on benzylidene portion enhanced the antioxidant potency of the synthesized compounds.
2. Presence of electron withdrawing and releasing group (-CHO and -OCH_3, Compounds \(Y_1, Y_5\) and \(Y_6\)) on benzylidene portion enhanced the antidiabetic activity and (Compounds \(Y_2, Y_3\) and \(Y_7\)) anti-inflammatory activity of the synthesized compounds.
Experimental section

In Scheme-1, synthetic procedure of pyrazole derivatives has been explained. The scheme was drawn via ChemDraw Ultra 8.03. The completion of reaction was examined by TLC (Thin Layer Chromatography) by using silica gel glass plate. Open capillary tube method was used to examine melting point of synthesized analogues. Attenuated total reflection (ATR-IR) spectrophotometer of Bruker FTIR 12060280 (Software: OPUS 7.2.139.1294) was used for evaluating chemical structure of synthesized analogues by recording IR spectra. Bruker Avance III 600 NMR spectrometer was used for 1H/13CNMR (Nuclear Magnetic Resonance). The spectra was recorded in ppm (δ) with suitable deuterated solvent like DMSO and internal solvent like tetramethyl silane and data have shown s, singlet; d, doublet; t, triplet; m, multiplet (multiplicity), number of proton and carbon values. Mass spectra were recorded by Waters Micromass Q-ToF Micro spectrophotometer. Perkin-Elmer 2400 was used for elemental analysis.

General procedure for the synthesis of N-substitutedbenzylidene-5-(4-formylphenyl)-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide derivatives (Y_1-Y_{26})

Step I: Synthesis of 4-(3-(4-hydroxyphenyl)-3-oxoprop-1-enyl)benzaldehyde (intermediate 1)

An equal quantity of 4-hydroxy acetophenone and terephthaldehyde (0.01 mol) was taken in a 20 mL ethanol and stirred for few minutes until it get mixed. A 10 mL fraction of 40% aqueous solution of KOH was prepared and slowly mixed drop wise in a reaction mixture. The reaction mixture stirred for a day at room temperature. When reaction was completed, the reaction mixture was acidied with diluted HCl and precipitate was formed, collected by filtration. The completion of reaction was monitored by using TLC.

Step II: Synthesis of 3,5-bis(4-hydroxyphenyl)-4,5-dihydropyrazole-1-caebothioamide (intermediate 2)

A mixture of intermediate 1 (0.01 mol), thiosemicarbazide (0.01 mol) and KOH (0.0025 mol) in 50 mL ethanol were taken in RBF and refluxed for 72 hours. When reaction was completed, the reaction mixture was acidified with HCl and to yield solid precipitate, filtered, washed out by water, dried and recrystallized with ethanol. By using TLC, reaction completion was examined [22].

Step III: Synthesis of N-substitutedbenzylidene-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide derivatives

A mixture of intermediate 2 (0.01 mol), substituted benzaldehyde (0.01 mol) in 50 mL ethanol were taken in RBF and refluxed for some time then 1 mL glacial acetic acid was added drop wise in a reaction mixture and refluxed for 48 hours. When reaction was completed, the resulting mixture was cooled, poured in water to yield solid precipitate, filtered, dried and recrystallized with ethanol. By using TLC, reaction completion was examined.

Spectral data of synthesized pyrimidine derivatives
Compound Y₁: 5-(4-Formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3135 (C-H str., benzene), 1438 (C=C str., benzene), 1359 (C=N str., pyrazole moiety), 1088 (N-N str., pyrazole moiety), 1274 (C-N str., carbonyl), 3225 (OH str., aromatic), 1749 (CHO str., aromatic), 1217 (C=S str., aliphatic), 3012 (NH₂ str., aliphatic);

¹H NMR: 6.81-7.76 (s, 8H, Ar-H), 1.95-4.01 (s, 3H, pyrazole), 9.12 (s, 1H, Ar-CHO), 5.02 (s, 1H, Ar-OH), 2.12 (s, 1H, amine); ¹³C-NMR: 40.3, 66.5, 115.2, 118.2, 121.9, 127.6, 129.8, 130.5, 134.8, 135.5, 149.5, 151.9, 168.7, 173.3, 191.5; MS ES + (ToF): m/z 326 [M⁺+1].

Compound Y₂: (E)-N-(4-Formylbenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3153 (C-H str., benzene), 1599 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1090 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3503 (OH str., aromatic), 1751 (CHO str., aromatic), 1215 (C=S str., aliphatic), 1619 (C=C str., aliphatic), 1028 (-NH- str., aliphatic); ¹H NMR: 6.52-8.24 (s, 8H, Ar-H), 1.81-3.82 (s, 3H, pyrazole), 9.82 (s, 1H, Ar-CHO), 5.12 (s, 1H, Ar-OH), 8.12 (s, 1H, CH (aliphatic)); ¹³C-NMR: 40.5, 66.9, 115.3, 118.3, 121.7, 127.5, 129.2, 130.3, 134.9, 135.6, 149.3, 151.3, 163.4, 168.6, 187.3, 191.3; MS ES + (ToF): m/z 440 [M⁺+1].

Compound Y₃: (E)-N-(3-Formylbenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3146 (C-H str., benzene), 1592 (C=C str., benzene), 1358 (C=N str., pyrazole moiety), 1090 (N-N str., pyrazole moiety), 1274 (C-N str., carbonyl), 3202 (OH str., aromatic), 1746 (CHO str., aromatic), 1228 (C=S str., aliphatic), 1647 (C=C str., aliphatic), 1015 (-NH- str., aliphatic); ¹H NMR: 6.02-8.54 (s, 8H, Ar-H), 2.08-3.42 (s, 3H, pyrazole), 9.72 (s, 1H, Ar-CHO), 5.32 (s, 1H, Ar-OH), 8.02 (s, 1H, CH (aliphatic)); ¹³C-NMR: 40.0, 66.3, 115.0, 118.5, 121.6, 127.9, 129.1, 130.4, 132.1, 134.8, 135.6, 137.0, 149.5, 151.1, 163.5, 168.7, 187.2, 191.5; MS ES + (ToF): m/z 442 [M⁺+1].

Compound Y₄: (E)-N-(4-Hydroxy-3-methoxybenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3144 (C-H str., benzene), 1592 (C=C str., benzene), 1356 (C=N str., pyrazole moiety), 1088 (N-N str., pyrazole moiety), 1275 (C-N str., carbonyl), 3202 (OH str., aromatic), 1716 (CHO str., aromatic), 1218 (C=S str., aliphatic), 1650 (C=C str., aliphatic), 1028 (-NH- str., aliphatic), 2852 (C-OCH₃ str., aromatic); ¹H NMR: 6.02-8.27 (s, 8H, Ar-H), 1.01-3.18 (s, 3H, pyrazole), 9.22 (s, 1H, Ar-CHO), 5.15 (s, 1H, Ar-OH), 8.14 (s, 1H, CH (aliphatic)); ¹³C-NMR: 40.5, 56.5, 66.5, 114.3, 115.5, 117.2, 118.7, 121.8, 122.7, 127.6, 129.8, 130.7, 134.2, 135.8, 149.5, 151.8, 163.3, 168.9, 187.0, 191.4; MS ES + (ToF): m/z 460 [M⁺+1].

Compound Y₅: (E)-N-(3-Methoxybenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3077 (C-H str., benzene), 1600 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1275 (C-N str., carbonyl), 3506 (OH str., aromatic), 1752 (CHO str., aromatic), 1221 (C=S str., aliphatic), 1691 (C=C str., aliphatic), 1029 (-NH- str., aliphatic), 2845 (C-OCH₃ str., aromatic); ¹H NMR: 6.22-8.00 (s, 8H, Ar-H), 1.00-3.21 (s, 3H, pyrazole), 9.54 (s, 1H, Ar-CHO), 5.55 (s,
 Compound Y₆: (E)-N(4-Methoxybenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3085 (C-H str., benzene), 1601 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1276 (C-N str., carbonyl), 3205 (OH str., aromatic), 1793 (CHO str., aromatic), 1219 (C=S str., aliphatic), 1651 (C=C str., aliphatic), 1028 (-NH- str., aliphatic), 2820 (C-OCH₃ str., aromatic); ¹H NMR: 6.24-8.25 (s, 8H, Ar-H), 1.04-3.38 (s, 3H, pyrazole), 9.62 (s, 1H, Ar-CHO), 5.65 (s, 1H, Ar-OH), 8.54 (s, 1H, CH (aliphatic)); ¹³C-NMR: 40.9, 56.2, 66.1, 113.3, 115.5, 116.7, 119.0, 121.5, 127.5, 129.8, 130.0, 134.2, 135.6, 149.3, 151.6, 160.4, 163.6, 187.9, 191.9; MS ES + (ToF): m/z 444 [M⁺+1].

 Compound Y₇: (E)-N(2-Methoxybenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3125 (C-H str., benzene), 1600 (C=C str., benzene), 1358 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1279 (C-N str., carbonyl), 3511 (OH str., aromatic), 1747 (CHO str., aromatic), 1219 (C=S str., aliphatic), 1652 (C=C str., aliphatic), 1021 (-NH- str., aliphatic), 2836 (C-OCH₃ str., aromatic); ¹H NMR: 6.62-8.71 (s, 8H, Ar-H), 1.61-3.43 (s, 3H, pyrazole), 9.62 (s, 1H, Ar-CHO), 5.45 (s, 1H, Ar-OH), 8.44 (s, 1H, CH (aliphatic)); ¹³C-NMR: 44.5, 55.7, 66.4, 114.7, 115.2, 118.1 121.4, 126.7, 127.0, 129.4, 130.8, 134.7, 135.9, 149.4, 151.2, 163.1, 187.5, 191.0; MS ES + (ToF): m/z 442 [M⁺+1].

 Compound Y₈: (E)-N(3,4-Dimethoxybenzylidene)-5-(4-formylphenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3116 (C-H str., benzene), 1597 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1272 (C-N str., carbonyl), 3204 (OH str., aromatic), 1770 (CHO str., aromatic), 1222 (C=S str., aliphatic), 1645 (C=C str., aliphatic), 1017 (-NH- str., aliphatic), 2800 (C-OCH₃ str., aromatic); ¹H NMR: 6.21-7.99 (s, 8H, Ar-H), 1.51-3.17 (s, 3H, pyrazole), 9.72 (s, 1H, Ar-CHO), 5.55 (s, 1H, Ar-OH), 8.54 (s, 1H, CH (aliphatic)); ¹³C-NMR: 41.0, 65.2, 66.2, 114.4, 115.4, 118.8, 121.9, 122.5, 127.1, 129.6, 130.4, 134.4, 135.7, 149.9, 151.1, 152.2, 168.5, 187.5, 191.4; MS ES + (ToF): m/z 472 [M⁺+1].

 Compound Y₉: (E)-N(4-Hydroxybenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3091 (C-H str., benzene), 1600 (C=C str., benzene), 1358 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1277 (C-N str., carbonyl), 3514 (OH str., aromatic), 1755 (CHO str., aromatic), 1220 (C=S str., aliphatic), 1646 (C=C str., aliphatic), 1028 (-NH- str., aliphatic); ¹H NMR: 6.23-7.99 (s, 8H, Ar-H), 1.81-3.58 (s, 3H, pyrazole), 9.72 (s, 1H, Ar-CHO), 5.18 (s, 1H, Ar-OH), 8.64 (s, 1H, CH (aliphatic)); ¹³C-NMR: 41.0, 65.2, 115.9, 116.2, 119.4, 122.2, 126.4, 127.9, 129.4, 131.1, 134.4, 135.9, 149.4, 152.1, 160.7, 162.6, 167.3, 187.9, 191.6; MS ES + (ToF): m/z 430 [M⁺+1].

 Compound Y₁₀: (E)-N(3-Nitrobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3137 (C-H str., benzene), 1596 (C=C str., benzene), 1355 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1280 (C-N str., carbonyl), 3509 (OH str., aromatic), 1735 (CHO str., aromatic), 1219 (C=S str., aliphatic), 1651 (C=C str., aliphatic), 1028 (-NH- str., aliphatic); ¹H NMR: 7.28-8.10 (s, 8H, Ar-H), 1.47-3.25 (s, 3H, pyrazole), 9.62 (s, 1H, Ar-CHO), 5.65 (s, 1H, Ar-OH), 8.54 (s, 1H, CH (aliphatic)); ¹³C-NMR: 41.0, 56.2, 115.9, 116.2, 119.4, 122.2, 126.4, 127.9, 129.4, 131.1, 134.4, 135.9, 149.4, 152.1, 160.7, 162.6, 167.3, 187.9, 191.6; MS ES + (ToF): m/z 430 [M⁺+1].
aromatic), 1215 (C=S str., aliphatic), 1689 (C=C str., aliphatic), 1003 (-NH- str., aliphatic), 1509 (C-NO$_2$ str., aromatic);

1H NMR: 6.72-8.21 (s, 8H, Ar-H), 1.96-3.32 (s, 3H, pyrazole), 9.82 (s, 1H, Ar-CHO), 5.19 (s, 1H, Ar-OH), 8.74 (s, 1H, CH (aliphatic)); 13C-NMR: 40.9, 66.9, 155.7, 118.3, 121.2, 123.9, 124.4, 127.9, 129.0, 130.9, 134.4, 135.7, 148.2, 149.9, 152.1, 164.0, 168.9, 187.4, 191.2; MS ES + (ToF): m/z 457[M$^+$+1].

Compound Y$_11$: (E)-N-(2-Nitrobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3121 (C-H str., benzene), 1602 (C=C str., benzene), 1343 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1277 (C-N str., carbonyl), 3520 (OH str., aromatic), 1746 (CHO str., aromatic), 1218 (C=S str., aliphatic), 1651 (C=C str., aliphatic), 1028 (-NH- str., aliphatic), 1574 (C-NO$_2$ str., aromatic)

1H NMR: 6.52-8.25 (s, 8H, Ar-H), 1.97-3.98 (s, 3H, pyrazole), 9.82 (s, 1H, Ar-CHO), 5.13 (s, 1H, Ar-OH), 8.18 (s, 1H, CH (aliphatic)); 13C-NMR: 40.9, 66.1, 115.3, 118.5, 121.2, 123.9, 124.5, 127.2, 129.5, 130.1, 135.2, 135.8, 148.7, 149.5, 150.6, 151.6, 163.2, 168.3, 187.2, 191.0; MS ES + (ToF): m/z 458 [M$^+$+1].

Compound Y$_12$: (E)-N-(4-Nitrobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3145 (C-H str., benzene), 1601 (C=C str., benzene), 1342 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1277 (C-N str., carbonyl), 3207 (OH str., aromatic), 1731 (CHO str., aromatic), 1217 (C=S str., aliphatic), 1651 (C=C str., aliphatic), 1029 (-NH- str., aliphatic), 1574 (C-NO$_2$ str., aromatic)

1H NMR: 6.62-8.97 (s, 8H, Ar-H), 2.01-3.90 (s, 3H, pyrazole), 9.20 (s, 1H, Ar-CHO), 5.14 (s, 1H, Ar-OH), 8.19 (s, 1H, CH (aliphatic)); 13C-NMR: 40.5, 66.9, 115.5, 118.8, 121.0, 123.6, 124.4, 126.3, 127.5, 129.0, 130.7, 132.4, 134.7, 135.3, 148.9, 149.4, 151.8, 163.5, 168.0, 187.0, 190.9; MS ES + (ToF): m/z 459 [M$^+$+1].

Compound Y$_13$: (E)-N-(3-Bromobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3147 (C-H str., benzene), 1595 (C=C str., benzene), 1356 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1276 (C-N str., carbonyl), 3206 (OH str., aromatic), 1748 (CHO str., aromatic), 1217 (C=S str., aliphatic), 1650 (C=C str., aliphatic), 1017 (-NH- str., aliphatic), 617 (C-Br str., aromatic)

1H NMR: 6.23-8.21 (s, 8H, Ar-H), 1.05-3.08 (s, 3H, pyrazole), 9.02 (s, 1H, Ar-CHO), 5.16 (s, 1H, Ar-OH), 8.20 (s, 1H, CH (aliphatic)); 13C-NMR: 40.9, 66.5, 115.5, 118.4, 121.7, 123.7, 127.3, 128.5, 129.2, 130.1, 131.5, 134.6, 135.6, 149.2, 151.2, 163.0, 187.5, 191.9; MS ES + (ToF): m/z 491 [M$^+$+1].

Compound Y$_14$: (E)-N-(4-Bromobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3152 (C-H str., benzene), 1588 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1277 (C-N str., carbonyl), 3208 (OH str., aromatic), 1739 (CHO str,
1 H NMR: 6.24-8.22 (s, 8H, Ar-H), 1.06-3.28 (s, 3H, pyrazole), 9.31 (s, 1H, Ar-CHO), 5.17 (s, 1H, Ar-OH), 8.02 (s, 1H, CH (aliphatic)); 13 C-NMR: 40.3, 66.6, 115.8, 118.0, 121.3, 123.8, 127.6, 128.3, 129.8, 130.2, 131.6, 134.5, 135.9, 149.7, 151.8, 163.6, 187.6, 191.8; MS ES + (ToF): m/z 493 [M^+1].

Compound Y_{15}: (E)-N-(2-Chlorobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3152 (C-H str., benzene), 1591 (C=C str., benzene), 1358 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3248 (OH str., aromatic), 1747 (CHO str., aromatic), 1218 (C=S str., aliphatic), 1650 (C=C str., aliphatic), 1049 (-NH- str., aliphatic), 718 (C-Cl str., aromatic);

1 H NMR: 6.34-8.32 (s, 8H, Ar-H), 1.07-3.38 (s, 3H, pyrazole), 9.33 (s, 1H, Ar-CHO), 5.18 (s, 1H, Ar-OH), 8.06 (s, 1H, CH (aliphatic)); 13 C-NMR: 41.3, 65.9, 114.3, 117.5,120.9, 127.5, 129.5, 130.4, 132.9, 133.9, 134.5, 135.7, 149.4, 151.8, 163.5, 187.0, 191.3; MS ES + (ToF): m/z 446 [M^+1].

Compound Y_{16}: (E)-N-(3-Chlorobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3147 (C-H str., benzene), 1599 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3215 (OH str., aromatic), 1725 (CHO str., aromatic), 1220 (C=S str., aliphatic), 1659 (C=C str., aliphatic), 1012 (-NH- str., aliphatic), 703 (C-Cl str., aromatic);

1 H NMR: 6.34-8.52 (s, 8H, Ar-H), 2.06-3.29 (s, 3H, pyrazole), 9.33 (s, 1H, Ar-CHO), 5.12 (s, 1H, Ar-OH), 8.16 (s, 1H, CH (aliphatic)); 13 C-NMR: 40.3, 66.9, 114.9, 117.9, 120.0, 127.6, 129.3, 130.8, 132.3, 133.5, 134.8, 135.3, 149.1, 151.0, 163.2, 187.9, 191.5; MS ES + (ToF): m/z 445 [M^+1].

Compound Y_{17}: (E)-N-(4-Chlorobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3147 (C-H str., benzene), 1599 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3215 (OH str., aromatic), 1725 (CHO str., aromatic), 1220 (C=S str., aliphatic), 1659 (C=C str., aliphatic), 1012 (-NH- str., aliphatic), 709 (C-Cl str., aromatic);

1 H NMR: 6.44-8.24 (s, 8H, Ar-H), 1.26-3.20 (s, 3H, pyrazole), 9.71 (s, 1H, Ar-CHO), 5.37 (s, 1H, Ar-OH), 8.22 (s, 1H, CH (aliphatic)); 13 C-NMR: 41.6, 65.2, 115.3, 118.5, 121.9, 127.9, 129.3, 130.8, 132.0, 133.1, 134.6, 135.4, 149.7, 151.2, 163.9, 187.7, 191.0; MS ES + (ToF): m/z 448 [M^+1].

Compound Y_{18}: (E)-N-(2,4-Dichlorobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3059 (C-H str., benzene), 1602 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1279 (C-N str., carbonyl), 3203 (OH str., aromatic), 1725
(CHO str., aromatic), 1218 (C=S str., aliphatic), 1656 (C=C str., aliphatic), 1049 (-NH- str., aliphatic), 719 (C-Cl str., aromatic);

\(^{1}H\) NMR: 6.44-7.92 (s, 8H, Ar-H), 2.16-3.28 (s, 3H, pyrazole), 8.99 (s, 1H, Ar-CHO), 5.15 (s, 1H, Ar-OH), 8.52 (s, 1H, CH (aliphatic)); \(^{13}C\) NMR: 40.9, 66.0, 115.4, 118.9, 121.5, 127.3, 129.7, 130.9, 132.1, 133.6, 134.6, 135.7, 149.8, 151.9, 163.9, 187.9, 191.0; MS ES + (ToF): m/z 482 [M\(^{+}\),MS + (ToF): m/z 482 [M\(^{+}\)].

Compound Y\(_{19}\): (E)-N-(2-Hydroxy-4-methoxybenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3151 (C-H str., benzene), 1592 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1275 (C-N str., carbonyl), 1502 (OH str., aromatic), 1746 (CHO str., aromatic), 1223 (C=S str., aliphatic), 1650 (C=C str., aliphatic), 1031 (-NH- str., aliphatic), 2854 (OCH\(_3\) str., aromatic);

\(^{1}H\) NMR: 5.99-8.02 (s, 8H, Ar-H), 1.66-3.08 (s, 3H, pyrazole), 9.42 (s, 1H, Ar-CHO), 5.02 (s, 1H, Ar-OH), 8.52 (s, 1H, CH (aliphatic)); \(^{13}C\) NMR: 40.9, 55.3, 66.9, 102.4, 107.2, 110.9, 115.5, 118.4, 121.8, 127.6, 129.5, 130.0, 131.6, 134.7, 135.9, 149.9, 152.0, 163.6, 164.9, 168.6, 187.0, 191.7; MS ES + (ToF): m/z 460 [M\(^{+}\), MS ES + (ToF): m/z 460 [M\(^{+}\)].

Compound Y\(_{20}\): (E)-N-(4-(Dimethylamino)benzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3155 (C-H str., benzene), 1588 (C=C str., benzene), 1356 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1276 (C-N str., carbonyl), 3207 (OH str., aromatic), 1740 (CHO str., aromatic), 1229 (C=S str., aliphatic), 1650 (C=C str., aliphatic), 1031 (-NH- str., aliphatic), 2818 (C-(CH\(_3\))\(_2\)N str., aromatic); \(^{1}H\) NMR: 6.74-8.45 (s, 8H, Ar-H), 1.72-3.42 (s, 3H, pyrazole), 9.26 (s, 1H, Ar-CHO), 5.37 (s, 1H, Ar-OH), 8.42 (s, 1H, CH (aliphatic)); \(^{13}C\) NMR: 40.3, 66.3, 114.5, 115.9, 118.4, 121.8, 127.6, 129.5, 130.0, 131.6, 134.7, 135.9, 149.9, 152.0, 162.2, 163.6, 164.9, 168.6, 187.0, 191.7; MS ES + (ToF): m/z 457 [M\(^{+}\), MS ES + (ToF): m/z 457 [M\(^{+}\)].

Compound Y\(_{21}\): (E)-N-(4-(Diethylamino)benzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3139 (C-H str., benzene), 1586 (C=C str., benzene), 1352 (C=N str., pyrazole moiety), 1170 (N-N str., pyrazole moiety), 1274 (C-N str., carbonyl), 3207 (OH str., aromatic), 1721 (CHO str., aromatic), 1245 (C=S str., aliphatic), 1654 (C=C str., aliphatic), 1032 (-NH- str., aliphatic); \(^{1}H\) NMR: 6.92-8.42 (s, 8H, Ar-H), 1.72-3.25 (s, 3H, pyrazole), 9.27 (s, 1H, Ar-CHO), 5.27 (s, 1H, Ar-OH), 8.47 (s, 1H, CH (aliphatic)); \(^{13}C\) NMR: 13.5, 91.2, 40.6, 44.7, 66.6, 114.3, 115.9, 118.4, 121.1, 123.5, 127.3, 129.4, 130.2, 13.4, 135.2, 139.4, 148.5, 151.9, 163.6, 187.0, 191.2; MS ES + (ToF): m/z 483 [M\(^{+}\), MS ES + (ToF): m/z 483 [M\(^{+}\)].

Compound Y\(_{22}\): (E)-N-((E)-4-(4-(4-Styrylbenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3058 (C-H str., benzene), 1598 (C=C str., benzene), 1354 (C=N str., pyrazole moiety), 1169 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3202 (OH str., aromatic), 1763 (CHO str., aromatic), 1169 (C=S str., aliphatic), 1693 (C=C str., aliphatic), 1031 (-NH- str., aliphatic); \(^{1}H\) NMR: 7.24-8.47 (s, 8H, Ar-H), 1.92-3.27 (s, 3H, pyrazole), 9.54 (s, 1H, Ar-CHO), 5.22 (s, 1H, Ar-OH), 8.23 (s,
1H, CH (aliphatic)); 13C-NMR: 44.3, 66.2, 115.3, 118.2, 119.5, 121.1, 126.3, 127.5, 128.5, 129.6, 130.0, 134.6, 135.9, 140.7, 149.9, 151.0, 163.7, 168.0, 187.7, 191.9; MS ES + (ToF): m/z 516 [M$^+$+1].

Compound Y$_{23}$: (E)-N-(3-Methylbenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3153 (C-H str., benzene), 1589 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1277 (C-N str., carbonyl), 3202 (OH str., aromatic), 1721 (CHO str., aromatic), 1237 (C=S str., aliphatic), 1641 (C=C str., aliphatic), 1016 (-NH- str., aliphatic), 3011 (CH$_3$ str., aromatic);

1H NMR: 6.28-8.86 (s, 8H, Ar-H), 1.97-3.25 (s, 3H, pyrazole), 9.24 (s, 1H, Ar-CHO), 5.32 (s, 1H, Ar-OH), 8.13 (s, 1H, CH (aliphatic)); 13C-NMR: 24.5, 44.0, 65.9, 116.2, 119.9, 121.0, 127.4, 129.8, 129.9, 130.8, 134.5, 135.9, 140.7, 149.5, 151.9, 163.7, 168.2, 187.7, 191.3; MS ES + (ToF): m/z 426 [M$^+$+1].

Compound Y$_{24}$: (E)-N-(3,4,5-Trimethoxybenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3154 (C-H str., benzene), 1595 (C=C str., benzene), 1356 (C=N str., pyrazole moiety), 1168 (N-N str., pyrazole moiety), 1269 (C-N str., carbonyl), 3206 (OH str., aromatic), 1722 (CHO str., aromatic), 1238 (C=S str., aliphatic), 1265 (C=C str., aliphatic), 1017 (-NH- str., aliphatic), 2859 (OCH$_3$ str., aromatic);

1H NMR: 6.65-8.87 (s, 8H, Ar-H), 1.98-3.24 (s, 3H, pyrazole), 9.52 (s, 1H, Ar-CHO), 5.66 (s, 1H, Ar-OH), 8.21 (s, 1H, CH (aliphatic)); 13C-NMR: 40.3, 56.6, 66.3, 106.6, 115.9, 118.5, 121.3, 127.5, 128.9, 129.1, 130.9, 134.2, 135.7, 149.4, 150.3, 151.9, 164.1, 168.3, 187.7, 192.0; MS ES + (ToF): m/z 504 [M$^+$+1].

Compound Y$_{25}$: (E)-N-(2,6-Dichlorobenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3128 (C-H str., benzene), 1592 (C=C str., benzene), 1356 (C=N str., pyrazole moiety), 1169 (N-N str., pyrazole moiety), 1274 (C-N str., carbonyl), 3505 (OH str., aromatic), 1739 (CHO str., aromatic), 1216 (C=S str., aliphatic), 1641 (C=C str., aliphatic), 1016 (-NH- str., aliphatic), 709 (C-Cl str., aromatic);

1H NMR: 6.29-8.18 (s, 8H, Ar-H), 1.29-3.27 (s, 3H, pyrazole), 9.28 (s, 1H, Ar-CHO), 5.26 (s, 1H, Ar-OH), 8.04(s, 1H, CH (aliphatic)); 13C-NMR: 40.1, 66.4, 115.0, 118.2, 121.8, 127.5, 129.7, 130.3, 131.9, 133.9, 134.9, 135.4, 149.3, 151.8, 163.7, 168.9, 187.0, 191.1; MS ES + (ToF): m/z 481 [M$^+$+1].

Compound Y$_{26}$: (E)-N-(3-Hydroxybenzylidene)-5-(4-formylphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide, IR: 3024 (C-H str., benzene), 1602 (C=C str., benzene), 1357 (C=N str., pyrazole moiety), 1167 (N-N str., pyrazole moiety), 1278 (C-N str., carbonyl), 3505 (OH str., aromatic), 1727 (CHO str., aromatic), 1220 (C=S str., aliphatic), 1649 (C=C str., aliphatic), 1031 (-NH-str., aliphatic); 1H-NMR: 6.92-8.91 (s, 8H, Ar-H), 1.21-3.77 (s, 3H, pyrazole), 9.87 (s, 1H, Ar-CHO), 5.26 (s, 1H, Ar-OH), 8.22 (s, 1H, CH (aliphatic)); 13C-NMR: 40.4, 66.4, 115.3, 118.8, 121.9, 127.9, 129.5, 130.5, 134.5, 135.9, 149.5, 151.3, 158.3, 163.2, 168.7, 187.5, 191.9; MS ES + (ToF): m/z 430 [M$^+$+1].
Conclusion

We may summarized that the synthesized compounds S_9 and S_{17} displayed appreciable anti-oxidative potential and compounds S_1, S_5 and S_6 was found to be excellent antidiabetic activity due to the presence of e` withdrawing and donating groups (-CHO and –CHO$_3$) on phenyl nucleus. Compounds S_2, S_3 and S_7 was found to be excellent anti-inflammatory activity due to the presence of e` withdrawing and donating groups (-CHO and –CHO$_3$) on phenyl nucleus. These analogues may be extended for its further elaboration to develop a novel therapeutic agent.

Abbreviations

ROS: Reactive oxygen species; COX: Cycloxygenase; LOX: Lipoxygenase
DM: Diabetes Mellitus; NSAIDs: Non-steroidal anti-inflammatory drugs; R_f: Retention factor
DPPH: 1,1-diphenyl-2-picrylhydrazyl, HCl: Hydrochloric acid, IR: Infrared EA: Elemental analyzer. MS: Mass spectroscopy, NMR: Nuclear magnetic resonance, Ppm: Parts per million, TLC: Thin layer chromatography.

Declarations

Authors’ contributions.

PKV- designed and finalized the scheme; S S performed review work and wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

Thanks to Head, Department of Pharmaceutical Sciences, M. D. University, Rohtak for kind support for providing internet facilities etc.

Competing interests

The author(s) confirms that this article content has no competing interest.

Availability of data and materials

We have presented all our main data in the form of tables and figures.

Funding

Not available of any type of funding source

References
1. Kumar GV, Govindaraju M, Renuka N, Pavithra G, Mylarappa BN and Kumar KA. *In vitro* evaluation of antioxidant and antimicrobial activity of series of new pyrazole derivatives; a study on the structure-activity relationship. Inter J Pharm Sci Res 2012;3(12):4801-4806.

2. Thalassitis A, Katsori AM, Dimas K, Hadjipavlou-Litina DJ, Pyleris F, Sakellaridis N and Konstantinos E. Synthesis and biological evaluation of modified purine homo-N-nucleosides containing pyrazole or 2-pyrazoline moiety. Litinas J Enzyme Inhib Med Chem 2014;29(1):109–117.

3. Kaushik N, Kumar N and Kumar A. Synthesis, antioxidant and antidiabetic activity of 1-[(5-substituted phenyl)-4,5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole. Indian J Pharm Sci 2016;78(3):352-359.

4. Eweas AF, El-Nezhawy AO, Abdel-Rahman RF and Baiuomy AR. Design, synthesis, *in vivo* anti-inflammatory, analgesic activities and molecular docking of some novel pyrazolone derivatives. Med chem 2015;5(10):458-466.

5. El-Moghazy SM, Barsoum FF, Abdel-Rahman HM and Marzouk AA. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med Chem Res 2012;21:1722–1733.

6. Selvam TP, Kumar PV, Saravanan G and Prakash CR. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives. J Saudi Chem Soc 2014;18:1015-1021.

7. Brahmbhatt H, Molnar M and Pavi V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Int J Modern Sci 2018;1-7.

8. Faidallah HM, Al-Mohammadi MM, Alamry KA and Khan KA. Synthesis and biological evaluation of fluoro pyrazole sulfonylurea and thiourea derivatives as possible antidiabetic agents. J Enzyme Inhib Med Chem 2016;31(S1):157–163.

9. Badgujar JR, More DH and Meshram JS. Synthesis, antimicrobial and antioxidant activity of pyrazole based sulfonamide derivatives. Indian J Microbiol 2018;58(1):93–99.

10. Singh DI. Synthesis of newly substituted pyrazole derivative and their antiinflammatory activity. Europ J Pharma Med Res 2018;5(11):452-456.

11. Kumar RS, Arif IA, Ahamed A, Idhayadhulla A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J Bio Sci 2016;23:614–620.

12. Harikrishna N, Isloor AM, Ananda K, Obaid A and Fun HK. Synthesis, and antitubercular and antimicrobial activity of 10-(4-chlorophenyl)pyrazole containing 3,5-disubstituted pyrazoline derivatives. New J Chem 2016;40:73-76.

13. Hassan AS, Moustafa GO and Awad HM. Synthesis and *in vitro* anticancer activity of pyrazolo[1,5-a]pyrimidines and pyrazolo[3,4-d][1,2,3]triazines. Syn Communi 2017;47(21):1963–1972.

14. Patra PK, Patra CN, Pattnaik S. Synthesis and screening of analgesic activity of some novel pyrazole. Int J Pharmaceut Sci Res 2014;5(5):1874-83.

15. Anandarajagopal K, Sunilson AJ, Illavarasu A, Thangavelpandian N and Kalirajan R. Antiepileptic and antimicrobial activities of novel 1-(unsubstituted/substituted)-3,5-dimethyl-1H-pyrazole derivatives. Int J Chem Tech Res 2010;2:45-49.
16. E1-Hamouly WS, E1-Khamry AMA and Abbas EMH. Synthesis of new 4-aryl-isoxazolo[5,4-d]pyrimidin-6-one(thione) and 4-aryl-pyrazolo[3,4-d]-pyrimidin-6-one derivatives of potential antihypertensive activity. Indian J Chem 2006;45B:2091-2098.

17. Amir M and Kumar S. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of 3,5- dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3,5- disubstituted pyrazolines. Indian J Chem 2005;44B:2532-2537.

18. Mukherjee DPK. Pharmacological screening of herbal drugs. Quality control of Herbal Drugs 2012;564

19. Nickavar B and Amin G. Bioassay-guided separation of an alpha-amylase inhibitor anthocyanin from vaccinium arctostaphylos berries. Z Natuforsch 2010;65(9-10):567-570.

20. Sakat S, Juvekar AR and Gambhire MN. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Inter J Pharma Pharmacol Sci 2010; 2(1):146-155.

21. Mizushima Y and Kobayashi M. Interaction of anti-inflammatory drugs with serum preoteins, especially with some biologically active proteins. J Pharma Pharmacol 1968;20:169- 173.

22. Singh V, Argal A, Mishra V, Raghuvanshi R, Agnihotri S. Synthesis, structural analysis and biological evaluation of anticonvulsant activity of pyrazole derivatives containing thiourea. Inter J Res Pharm Sci 2011;1(3):125-146.

Tables

Table 1: The physicochemical properties of newly synthesized derivatives (Y1-Y26):
Compound	M. Formula	M. Wt.	M.pt. (°C)	Rf Value*	% Yield
Y₁	C₁₇H₁₅N₃O₂S	325.38	145-147	0.52	68.47
Y₂	C₂₅H₁₉N₃O₃S	441.50	115-118	0.31	62.44
Y₃	C₂₅H₁₉N₃O₃S	441.50	122-125	0.42	56.45
Y₄	C₂₅H₂₁N₃O₄S	459.51	110-114	0.81	60.31
Y₅	C₂₅H₂₁N₃O₃S	443.51	120-125	0.26	60.09
Y₆	C₂₅H₂₁N₃O₃S	443.51	98-100	0.42	70.18
Y₇	C₂₅H₂₁N₃O₃S	443.51	120-125	0.45	63.30
Y₈	C₂₆H₂₃N₃O₄S	473.54	146-150	0.18	53.33
Y₉	C₂₄H₁₉N₃O₃S	429.49	110-115	0.32	64.21
Y₁₀	C₂₄H₁₈N₄O₄S	458.48	80-85	0.46	86.88
Y₁₁	C₂₄H₁₈N₄O₄S	458.48	130-135	0.38	65.11
Y₁₂	C₂₄H₁₈N₄O₄S	458.48	150-154	0.48	76.88
Y₁₃	C₂₄H₁₈BrN₃O₂S	492.38	97-102	0.44	27.96
Y₁₄	C₂₄H₁₈BrN₃O₂S	492.38	140-143	0.36	78.67
Y₁₅	C₂₄H₁₈ClN₃O₂S	447.93	160-165	0.42	51.36
Y₁₆	C₂₄H₁₈ClN₃O₂S	447.93	105-110	0.52	74.77
Y₁₇	C₂₄H₁₈ClN₃O₂S	447.93	160-164	0.23	61.81
Y₁₈	C₂₄H₁₇Cl₂N₂O₂S	483.38	148-152	0.32	48.63
Y₁₉	C₂₅H₂₁N₃O₄S	459.51	135-140	0.28	38.80
Y₂₀	C₂₆H₂₄N₄O₂S	456.55	115-120	0.30	43.87
Y₂₁	C₂₈H₂₈N₃O₂S	484.62	120-125	0.44	54.42
Y₂₂	C₃₂H₂₅N₃O₃S	515.62	210-215	0.46	54.43
Y₂₃	C₂₅H₂₁N₃O₂S	427.51	165-170	0.52	62.38
Y₂₄	C₂₇H₂₅N₃O₅S	503.57	145-151	0.48	39.47
	Formula	Molecular Weight	Melting Point	pKa (water)	pKa (DMSO)
---	--------------	-----------------	-------------	------------	------------
Y₂₅	C₂₄H₁₇Cl₂N₃O₂S	482.38	144-149	0.40	46.41
Y₂₆	C₂₄H₁₉N₃O₃S	429.49	127-132	0.34	44.31

Table 2: *In vitro* antioxidant activity of newly synthesized derivatives (Y₁-Y₂₆)
Compounds	% Inhibition	IC₅₀			
	25 µg/ml	50 µg/ml	75 µg/ml	100 µg/ml	
Y₁	23.81	42.40	49.40	66.42	70.87
Y₂	35.35	59.04	87.50	90.23	39.18
Y₃	11.19	36.07	43.45	92.26	66.76
Y₄	27.38	71.42	80.53	83.80	40.40
Y₅	34.52	40.11	57.14	67.54	62.93
Y₆	16.66	26.78	41.66	84.52	71.26
Y₇	11.90	34.52	52.14	84.52	67.05
Y₈	21.42	32.61	56.78	83.92	64.10
Y₉	56.33	60.35	85.71	91.07	17.43
Y₁₀	38.33	80.35	85.71	91.07	26.03
Y₁₁	46.54	63.33	85.71	90.47	27.64
Y₁₂	35.11	78.57	89.88	95.23	30.31
Y₁₃	50.00	59.28	69.04	82.73	27.21
Y₁₄	47.16	62.02	82.73	85.11	26.74
Y₁₅	19.64	77.38	80.30	86.95	42.91
Y₁₆	22.61	70.95	80.35	83.35	43.85
Y₁₇	45.35	77.38	83.33	88.69	18.98
Y₁₈	40.11	70.71	82.14	88.69	30.06
Y₁₉	23.81	42.40	49.40	66.42	70.87
Y₂₀	33.33	56.30	87.50	88.90	41.68
Y₂₁	44.88	60.35	86.90	94.64	31.67
Y₂₂	35.95	68.57	82.73	88.69	34.99
Y₂₃	45.95	62.73	83.92	89.28	28.69
	48.80	56.90	64.28	85.11	32.92
Y_{24}					
---	---	---	---	---	---
Y_{25}	51.90	60.47	88.69	90.47	22.78
Y_{26}	18.45	41.66	50.59	82.14	64.73
Ascorbic acid	36.90	62.50	83.33	95.83	37.68

Table 3: *In vitro* antidiabetic activity of newly synthesized derivatives (Y_1-Y_{26})
Compounds	% Inhibition	IC₅₀			
	25 µg/ml	50 µg/ml	75 µg/ml	100 µg/ml	
Y₁	46.32	68.36	69.38	71.42	**17.08**
Y₂	36.73	56.12	58.16	69.38	49.75
Y₃	13.26	21.42	57.14	69.38	74.41
Y₄	38.77	46.93	60.20	68.36	53.79
Y₅	55.10	58.16	67.34	72.44	**8.36**
Y₆	52.04	54.08	61.22	62.24	**13.50**
Y₇	43.87	46.93	60.20	68.36	48.55
Y₈	41.83	45.91	58.16	65.30	54.41
Y₉	34.69	55.10	59.18	81.63	49.36
Y₁₀	44.89	60.20	67.34	69.38	30.12
Y₁₁	28.16	41.42	55.57	77.34	61.60
Y₁₂	30.40	43.46	59.70	70.50	66.59
Y₁₃	28.36	30.61	58.77	82.85	62.34
Y₁₄	25.30	35.51	43.87	48.97	99.14
Y₁₅	11.22	16.32	35.71	58.16	91.16
Y₁₆	22.04	42.65	55.71	76.93	63.52
Y₁₇	11.22	22.44	43.46	76.53	75.91
Y₁₈	21.22	32.44	38.77	58.16	88.97
Y₁₉	14.28	25.51	33.67	72.44	81.07
Y₂₀	19.18	40.20	55.16	82.65	63.39
Y₂₁	43.26	64.28	79.59	82.65	29.88
Y₂₂	40.20	68.38	70.40	88.57	33.84
Y₂₃	42.44	66.53	81.63	83.67	29.06
	53.06	55.10	75.51	94.89	28.88
	Y_{24}	Y_{25}	Y_{26}	Acarbose	
-----	--------	--------	--------	----------	
	50.20	63.26	76.53	83.67	22.04
	41.83	52.04	68.36	78.57	42.37
	50.71	50.92	63.26	69.79	17.12

Table 4: *In vitro* anti-inflammatory activity of newly synthesized derivatives (Y_{1}-Y_{26})
Compounds	% Inhibition	IC₅₀				
	10µg/ml	30µg/ml	50 µg/ml	70 µg/ml	100 µg/ml	
Y₁	36.28	46.97	60.40	81.80	91.73	31.51
Y₂	37.09	57.98	69.64	71.80	86.64	**23.23**
Y₃	37.09	58.11	68.49	74.60	81.09	**22.09**
Y₄	37.09	48.78	64.35	75.62	91.09	30.06
Y₅	36.59	40.02	50.66	85.87	88.09	36.65
Y₆	28.37	51.55	64.47	75.11	85.24	34.16
Y₇	45.82	54.73	65.87	71.22	87.70	**19.05**
Y₈	35.69	40.15	53.07	64.99	78.16	43.21
Y₉	36.84	49.77	61.55	72.06	81.34	31.36
Y₁₀	32.64	46.59	50.40	66.64	77.45	42.43
Y₁₁	38.75	51.80	64.47	85.80	91.81	25.60
Y₁₂	37.73	40.15	53.07	63.71	81.73	41.72
Y₁₃	34.19	47.98	61.04	73.33	80.33	34.15
Y₁₄	24.55	49.77	60.15	71.55	81.80	39.58
Y₁₅	27.48	48.58	64.73	76.38	87.78	35.44
Y₁₆	34.93	49.38	50.40	62.56	70.33	42.77
Y₁₇	30.61	44.68	57.98	68.47	88.72	39.32
Y₁₈	20.61	46.84	59.38	76.31	88.72	40.72
Y₁₉	20.02	36.20	51.34	66.69	78.72	51.17
Y₂₀	21.17	33.33	57.15	71.73	87.96	46.54
Y₂₁	23.91	41.55	51.80	73.38	85.67	44.47
Y₂₂	28.11	38.75	59.13	61.17	71.66	48.46
Y₂₃	27.86	48.11	51.85	76.44	88.47	39.34
	26.18	46.13	61.67	70.27	73.79	**41.38**
Figures

Figure 1

Different activities of pyrazole derivatives
Figure 2

Some marketed drugs that contain pyrazole moiety
Figure 3

Standard graph of ascorbic acid

Figure 4

Graph of potent antioxidant compounds Y9 and Y17
Figure 5

Graph of potent antioxidant compounds Y9 and Y17

Figure 6

Standard graph of acarbose
Figure 7

Graph of potent antidiabetic compounds Y1, Y5 and Y6

Figure 8

IC50 values of compounds Y1, Y5 and Y6 compared to acarbose
Figure 9
Standard graph of aspirin

Figure 10
Graph of potent anti-inflammatory compounds Y2, Y3 and Y7
Figure 11

IC50 values of compounds Y2, Y3 and Y7 compared to aspirin

Figure 12

Structural activity relationship studies of synthesized derivatives