Classifying spaces with virtually cyclic stabilizers for linear groups

Dieter Degrijse, Ralf Köhl and Nansen Petrosyan

February 20, 2014

Abstract

We show that every discrete subgroup of $GL(n, \mathbb{R})$ admits a finite dimensional classifying space with virtually cyclic stabilizers. Applying our methods to $SL(3, \mathbb{Z})$, we obtain a four dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its group ring.

1 Introduction

A classifying space of a discrete group Γ for a family of subgroups \mathcal{F} is a Γ-CW complex X with stabilizers in \mathcal{F} such that X^n_H is contractible for every $H \in \mathcal{F}$. Such a space is also called a model for $E_{\mathcal{F}} \Gamma$. A model for $E_{\mathcal{F}} \Gamma$ always exists for any given discrete group Γ and a family of subgroups \mathcal{F}, but it need not be of finite type or finite dimensional (see [17]). The smallest possible dimension of a model for $E_{\mathcal{F}} \Gamma$ is the geometric dimension of Γ for the family \mathcal{F}, denoted by $gd_{\mathcal{F}}(\Gamma)$. When \mathcal{F} is the family of finite, respectively, virtually cyclic subgroups of Γ, $E_{\mathcal{F}} \Gamma (gd_{\mathcal{F}}(\Gamma))$ is denoted by $E_{\mathcal{F}} \Gamma (gd(\Gamma))$, respectively, $E_{\mathcal{F}} \Gamma (gd(\Gamma))$.

For any group Γ, one always has $gd(\Gamma) \leq gd(\Gamma) + 1$ (see [20]). In all examples known so far, a group Γ admits a finite dimensional model for $E_{\mathcal{F}} \Gamma$ if it admits a finite dimensional model for $E_{\mathcal{F}} \Gamma$. However, it is still an open problem whether this is always the case. It is known that the invariant $gd(\Gamma)$ can be arbitrarily larger than $gd(\Gamma)$ (see [8]).

Questions concerning finiteness properties of $E_{\mathcal{F}} \Gamma$ and $E_{\mathcal{F}} \Gamma$ have been especially motivated by the Farrell–Jones isomorphism conjecture in K- and L-theory (see below and [6, 13, 19]). Finding models for $E_{\mathcal{F}} \Gamma$ with good finiteness properties has been proven to be much more difficult than for $E_{\mathcal{F}} \Gamma$. So far, such models have been found for polycyclic-by-finite groups [20], word-hyperbolic groups [11], relatively hyperbolic groups [14], countable elementary amenable group of finite Hirsch length [7, 8] and groups acting isometrically with discrete orbits on separable complete $CAT(0)$-spaces, such as mapping class groups and finitely generated linear groups over fields of positive characteristic [9, 18].

Here, we will show that certain subgroups of $GL(n, \mathbb{C})$ admit a finite dimensional classifying space with virtually cyclic stabilizers.

*supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92)
Theorem A. Let Γ be a discrete subgroup of $\text{GL}(n, \mathbb{R})$ such that the Zariski closure of Γ in $\text{GL}(n, \mathbb{R})$ has dimension m. Then Γ admits a model for $E\Gamma$ of dimension $m + 1$.

Recall that a subgroup Γ of $\text{GL}(n, \mathbb{C})$ is said to be of integral characteristic if the coefficients of the characteristic polynomial of every element of Γ are algebraic integers. It follows that Γ has integral characteristic if and only if the characteristic roots of every element of Γ are algebraic integers (see [22] §2). The standard embedding $\Gamma \hookrightarrow \text{GL}(n, \mathbb{C}) \hookrightarrow \text{SL}(n+1, \mathbb{C})$ allows one to consider Γ as a subgroup of integral characteristic of $\text{SL}(n+1, \mathbb{C})$.

Theorem B. Let Γ be a finitely generated subgroup of $\text{GL}(n, \mathbb{C})$ of integral characteristic such that there is an upper bound on the Hirsch lengths of its finitely generated unipotent subgroups. Then Γ admits a finite dimensional model for $E\Gamma$.

Corollary. Let \mathbb{F} be an algebraic number field and suppose Γ is a subgroup of $\text{GL}(n, \mathbb{F})$ of integral characteristic. Then Γ admits a finite dimensional model for $E\Gamma$.

Theorems A and B and the Corollary will be proven in Section 4.

The K-theoretical Farrell–Jones conjecture (e.g. see [6,19]) predicts that for a group Γ and a ring R, the assembly map
\[\mathcal{H}_n^L(E\Gamma; K_R) \to \mathcal{H}_n^L(\{\ast\}; K) = K_n(R[\Gamma]) \]
is an isomorphism for every $n \in \mathbb{Z}$. Here $K_n(R[\Gamma])$ is the algebraic K-theory of the group ring $R[\Gamma]$ and $\mathcal{H}_n^L(\{\ast\}; K_R)$ is a generalized equivariant homology theory defined using the K-theory spectrum K_R. This conjecture has been proven for many important classes of groups (and rings), including $\text{SL}(n, \mathbb{Z})$ when R is finitely generated as an abelian group (see [4]).

Using the universal property of classifying spaces for families, one can construct a Γ-equivariant inclusion of $E\Gamma$ into $F\Gamma$. By a result of Bartels (see [3] Th. 1.3.1) this inclusion induces a split injection $\mathcal{H}_n^L(E\Gamma; K_R) \to \mathcal{H}_n^L(F\Gamma; K_R)$. Hence, there is an isomorphism
\[\mathcal{H}_n^L(E\Gamma; K_R) \cong \mathcal{H}_n^L(E\Gamma; K_R) \oplus \mathcal{H}_n^L(F\Gamma, E\Gamma; K_R). \]

If $\Gamma = \text{SL}(3, \mathbb{Z})$, the term $\mathcal{H}_n^L(E\Gamma; K_R)$ can be computed using a 3-dimensional cocompact model for $F\Gamma$ constructed by Soulé (see [24]). In Theorem 5.4 we describe the term $\mathcal{H}_n^L(E\Gamma, E\Gamma; K_R)$ using a 4-dimensional model for $E\Gamma$ we construct in Section 5.

2 A push-out construction

A general method to obtain a model for $E\Gamma$ from a model for $F\Gamma$ is given by Lück and Weiermann in [20] §2. We will briefly recall this method.

Let Γ be a discrete group and consider the set \mathcal{S} of all infinite virtually cyclic subgroups of Γ. Two infinite virtually cyclic subgroup of Γ are said to be equivalent if they have infinite intersection in Γ. One easily verifies that this defines an equivalence relation on \mathcal{S}. If $H \in \mathcal{S}$, then its equivalence class will be denoted by $[H]$.

The set of all equivalence classes of elements of \mathcal{S} will be denoted by $[\mathcal{S}]$. Note
that the conjugation action of Γ on \mathcal{H} passes to $[\mathcal{H}]$. The stabilizer of an $[H] \in \mathcal{H}$ under this action is the subgroup

$$N_\Gamma[H] = \{ g \in \Gamma \mid |H \cap H^g| = \infty \}$$

of Γ. By definition, $N_\Gamma[H]$ only depends on the equivalence class of $[H]$ of H. We may therefore always assume that $[H]$ is represented by an infinite cyclic group $H = \langle t \rangle$. Hence, one can write

$$N_\Gamma[H] = \{ g \in \Gamma \mid \exists n, m \in \mathbb{Z} \setminus \{ 0 \} : g^{-1} t^n g = t^m \}.$$

This group is called the commensurator of H in Γ. Some references, e.g. [8], actually denote this group by $\text{Comm}_\Gamma[H]$ instead of $N_\Gamma[H]$. Note that $N_\Gamma[H]$ always contains H as a subgroup.

Let \mathcal{I} be a complete set of representatives $[H]$ of the orbits of the conjugation action of Γ on \mathcal{H}. For each $[H] \in \mathcal{I}$, let $\mathcal{F}[H]$ be the family of subgroups of $N_\Gamma[H]$ containing all finite subgroup of $N_\Gamma[H]$ and all infinite virtually cyclic subgroup of $N_\Gamma[H]$ that are equivalent to H.

Theorem 2.1 ([20, Theorem 2.3]). Let

$$\bigsqcup_{[H] \in \mathcal{I}} \Gamma \times N_\Gamma[H] E_{\mathcal{F}[H]} N_\Gamma[H] \xrightarrow{i} E \Gamma \xrightarrow{\pi} \bigsqcup_{[H] \in \mathcal{I}} \Gamma \times N_\Gamma[H] E_{\mathcal{F}[H]} N_\Gamma[H] \xrightarrow{\downarrow \downarrow} Y$$

be a Γ-equivariant push-out diagram of Γ-CW-complexes such that for each $[H] \in \mathcal{I}$, the map $f_{[H]}$ is cellular and $N_\Gamma[H]$-equivariant and i is a cellular inclusion of Γ-CW-complexes. Then the push-out Y is a model for $E \Gamma$.

Using ([20, Remark 2.5], one arrives at the following corollary.

Corollary 2.2 ([20, Remark 2.5]). If there exists a natural number d such that for each $[H] \in \mathcal{I}$,

- $\text{gd}(N_\Gamma[H]) \leq d - 1$,
- $\text{gd}_{\mathcal{F}[H]}(N_\Gamma[H]) \leq d$,

and such that $\text{gd}(\Gamma) \leq d$, then $\text{gd}(\Gamma) \leq d$.

3 On the structure of $N_\Gamma[H]$ in linear groups

We recall that a real algebraic group is the set of real points of a linear algebraic group defined over \mathbb{R}. Throughout this section, we will use some basic facts about (real) algebraic groups for which we refer to [5]. For any subgroup K of $\text{GL}(n, \mathbb{R})$, we will denote the Zariski closure of K in $\text{GL}(n, \mathbb{R})$ by \overline{K}. The notions “connected” and “discrete” will refer to the Hausdorff topology and not to the Zariski topology.

The following result was kindly communicated to us by Herbert Abels.

Proposition 3.1 (H. Abels). Let G be a real algebraic group and suppose R is its algebraic radical. Suppose Γ is a discrete subgroup of G such that the $\pi(\Gamma)$ is Zariski dense in G/R, where $\pi : G \to G/R$ is the natural quotient map. Then $\pi(\Gamma)$ is discrete.
Proof. Denote by C the identity component of the closure of the group $\pi(\Gamma)$ in G/R in the Hausdorff topology. We need to show that C is trivial. By Corollary 1.3 of [1], it is solvable. Since C is normalised by $\pi(\Gamma)$, it is also normalised by its Zariski closure G/R. We obtain that C is a (Hausdorff and hence Zariski) connected solvable normal subgroup of the semisimple group G/R and hence it is trivial. \hfill \Box

Now, let us assume that Γ is a discrete subgroup of $GL(n,\mathbb{R})$ and let $[H]$ be an equivalence class of infinite virtually cyclic subgroups of Γ.

Lemma 3.2. There is a representative $H \in [H]$ such that \overline{H} is a Zariski connected abelian normal subgroup of $N^c[H] \leq GL(n,\mathbb{R})$ and $N^c[H] = N^c(H)$, the normaliser of H in Γ.

Proof. Let $H \in [H]$. An algebraic group has only finitely many Zariski connected components. Up to passing to a finite-index subgroup of H we may therefore assume that \overline{H} is a Zariski connected algebraic group. Moreover, since H is abelian, so is \overline{H}. Let $x \in N^c[H]$. By definition, $H^x \cap H$ is a finite index subgroup of H. This implies that $\overline{H}^x \cap \overline{H}$ is an algebraic subgroup of \overline{H} of the same dimension. Because \overline{H} is Zariski connected, we conclude that $\overline{H}^x = \overline{H}$. Since $N^c[H]$ normalizes \overline{H}, it follows that \overline{H} is normal in $N^c[H]$. From this we deduce that $\overline{H} \cap N^c[H]$ is a normal abelian subgroup of $N^c[H]$. Since every discrete subgroup of a finite dimensional abelian Lie group is finitely generated (e.g. see [23] Proposition 3.8), the structure theorem of finitely generated abelian groups implies that up to passing to a finite-index subgroup, H is contained in an finite rank free abelian subgroup A of $\overline{H} \cap N^c[H]$ that is normal in $N^c[H]$. But this implies that H is also normal in $N^c[H]$. Indeed, take $g \in N^c[H]$. Since A is normal in $N^c[H]$, conjugation by g induces an automorphism φ of A. Note that H has a finite index infinite cyclic overgroup H' in A that has a primitive generator h, meaning that h is not a proper power of any other element in $A \cong \mathbb{Z}'$. Because $g \in N^c[H] = N^c[H']$, there exists $s, t \in \mathbb{Z} \setminus \{0\}$ such that $s \varphi(h) = th$. Since $\varphi(h)$ is also a primitive element, it now follows that s must divide t and vice versa. Hence $s = \pm t$. It follows that H' is normal in $N^c[H]$ and so is H. \hfill \Box

We continue assuming that \overline{H} is a Zariski connected abelian normal subgroup of $N^c[H]$ and $N^c[H] = N^c(H)$. Let m be the dimension of Γ.

Recall also that the notion of Hirsch length $h(S) \in \mathbb{Z}_{\geq 0}$ is defined for all virtually solvable groups S. The Hirsch length is stable under passing to finite index subgroups. It behaves additively with respect to group extensions of virtually solvable groups and satisfies $h(\mathbb{Z}) = 1$. It also satisfies the relation $h(S) = \sup\{h(S') | S' \}$ is a finitely generated subgroup of S.

Proposition 3.3. There exists a short exact sequence

$$1 \rightarrow N \rightarrow N^c[H]/H \rightarrow Q \rightarrow 1$$

where Q is a discrete subgroup of a k-dimensional semisimple algebraic group and N is a finitely generated solvable group of Hirsch length $h(N) \leq m - k - 1$.

Proof. Let R be the algebraic radical of the Zariski closure $\overline{N^c[H]} \leq GL(n,\mathbb{R})$. There is a short exact sequence

$$1 \rightarrow R \rightarrow \overline{N^c[H]} \xrightarrow{\pi} S \rightarrow 1$$
where \(S = \mathbb{N}_c[H]/R \) is semisimple. Since \(\mathbb{N}_c[H] \) is Zariski dense in \(\mathbb{N}_c[H] \) we conclude that \(Q = \pi(\mathbb{N}_c[H]) \) is Zariski dense in \(S \). Hence, by Proposition 2.1 it follows that \(\pi(\mathbb{N}_c[H]) \) is a discrete subgroup of the semisimple real algebraic group \(S \). Since the Zariski connected abelian normal subgroup \(H \) of \(\mathbb{N}_c[H] \) has finitely many Hausdorff connected components, up to passing to a finite-index subgroup, we may assume that \(H \) is contained in \(R \). Denoting \(N = (R \cap \mathbb{N}_c[H])/H \), we obtain a short exact sequence

\[
1 \rightarrow N \rightarrow \mathbb{N}_c[H]/H \rightarrow Q \rightarrow 1.
\]

Since every discrete subgroup of a connected solvable Lie group is finitely generated (see [23, Proposition 3.8]) and \(R \), being an algebraic group, has finitely many connected components, it follows that \(N \) is a finitely generated solvable group. Suppose \(S \) had dimension \(k \). Then \(R \) has dimension \(m - k \). The dimension of \(R \) is an upper bound for \(\text{gd}(R \cap \mathbb{N}_c[H]) \) (e.g. see \([17, \text{Theorem } 4.4]\)). Moreover, \(\text{gd}(R \cap \mathbb{N}_c[H]) \) is bounded from below by the Hirsch length of \(R \cap \mathbb{N}_c[H] \), since the Hirsch length of a solvable group coincides with its rational homological dimension (see \([26]\)). It follows that \(h(R \cap \mathbb{N}_c[H]) \leq m - k \). Hence, the Hirsch length of \(N \) is at most \(m - k - 1 \).

4 \hspace{1em} The proofs of the main theorems

We are now ready to prove Theorems A and B and their Corollary.

Proof of Theorem A. Since the dimension of the Zariski closure of \(\Gamma \) in \(GL(n, \mathbb{R}) \) is an upper bound for \(\text{gd}(\Gamma) \) (e.g. see \([17, \text{Theorem } 4.4]\)), we have \(\text{gd}(\mathbb{N}_c[H]) \leq \text{gd}(\Gamma) \leq m \) for every infinite cyclic subgroup \(H \) of \(\Gamma \). Now fix \([H] \in \mathcal{S}\) and consider the exact sequence

\[
1 \rightarrow N \rightarrow \mathbb{N}_c[H]/H \rightarrow Q \rightarrow 1
\]

resulting from Proposition 3.3. By \([8, \text{Lemma } 4.2]\), we have \(\text{gd}_{\mathcal{S}[H]}(\mathbb{N}_c[H]) = \text{gd}(\mathbb{N}_c[H]/H) \) for every \([H] \in \mathcal{S}\). If the Hirsch length of \(N \) is at most 1, then since \(N \) is finitely generated it follows that \(N \) is virtually cyclic. So, every finite extension \(T \) of \(N \) must be virtually cyclic as well. In this case one has \(\text{gd}(T) \leq 1 \). If the Hirsch length of \(N \) is a least 2, then it follows from \([10, \text{Corollary } 4]\) that every finite extension \(T \) of \(N \) has \(\text{gd}(T) \leq h + 1 \). Since \(\text{gd}(S) \leq k \) by \([17, \text{Theorem } 4.4]\), it follows from \([8, \text{Corollary } 2.3]\) that \(\text{gd}_{\mathcal{S}[H]}(\mathbb{N}_c[H]) \leq (m - k - 1) + 1 + k = m \) for every \([H] \in \mathcal{S}\). The theorem now follows from Corollary 2.2.

Proof of Theorem B. We may assume that \(\Gamma \) is a subgroup of \(SL(n, \mathbb{C}) \) of integral characteristic. Let \(A \) be the finitely generated unital subring of \(\mathbb{C} \) generated by the matrix entries of a finite set of generators of \(\Gamma \) and their inverses. Then \(\Gamma \) is a subgroup of \(SL(n, A) \).

Let \(\mathcal{F} \) denote the quotient field of \(A \). Proceeding as in the proof of Theorem 3.3 of \([23]\), we obtain an epimorphism \(\rho : \Gamma \rightarrow H_1 \times \cdots \times H_r \) such that the kernel \(U \) of \(\rho \) is a unipotent subgroup of \(H \) and for each \(1 \leq i \leq r \), \(H_i \) is a subgroup of some \(GL(n, \mathcal{F}) \) of integral characteristic where the canonical action of \(H_i \) on \(\mathcal{F}^n \) is irreducible. Following the proof of Proposition 2.3 of \([24]\), we have that for each subgroup \(H_i \), there exists a finite field extension \(L_i \) of \(\mathbb{Q} \) such that \(H_i \) is isomorphic to a subgroup \(H_i' \) of some \(GL(n_i, L_i) \), which is absolutely irreducible and of integral characteristic. Now, according to the proof of Proposition 2.1 of
[2], each H_i' embeds as a discrete subgroup of $\text{GL}(m_i, \mathbb{R})^{s_i} \times \text{GL}(m_i, \mathbb{C})^{h_i}$ for some nonnegative integers r_i and s_i. So, by Theorem A, we have that $gd(H_1 \times \cdots \times H_r) < \infty$. Applying Corollary 6.1 of [28], we obtain that

$$gd(\Gamma) \leq gd(H_1 \times \cdots \times H_r) + h + 3$$

where h is the Hirsch length of U.

Proof of Corollary. As in the proof of Theorem B, Γ fits into an extension

$$1 \to U \to \Gamma \to H_1 \times \cdots \times H_r \to 1$$

where U is a unipotent subgroup and for each $1 \leq i \leq r$, H_i is a subgroup of integral characteristic of some $\text{GL}(n_i, \mathbb{F})$ such that the canonical action of H_i on \mathbb{F}^n is irreducible. Following the proof of Proposition 2.1 of [2], we obtain that each H_i is isomorphic to a discrete subgroup of $\text{GL}(m_i, \mathbb{R})^{s_i} \times \text{GL}(m_i, \mathbb{C})^{h_i}$ for some positive integers r_i and s_i. By considering the upper central series of the subgroup of strictly upper triangular matrices $\text{Tr}(n, \mathbb{F})$ of $\text{GL}(n, \mathbb{F})$ and noticing that the additive group of \mathbb{F} has finite Hirsch length because it is isomorphic to a finite direct product of copies of $(\mathbb{Q}, +)$, it follows that $\text{Tr}(n, \mathbb{F})$ has finite Hirsch length. Since the subgroup U of Γ is conjugate in $\text{GL}(n, \mathbb{C})$ to a subgroup of $\text{Tr}(n, \mathbb{F})$, it also has finite Hirsch length. Just as in the proof of Theorem B, we now conclude that $gd(\Gamma) < \infty$. □

5 **The case of SL(3, Z)**

Consider the group $\text{SL}(3, \mathbb{Z})$ and let \mathcal{J} be a set of representatives of the orbits of the conjugation action of $\text{SL}(3, \mathbb{Z})$ on the set of equivalence classes of infinite virtually cyclic subgroups of $\text{SL}(3, \mathbb{Z})$ (see Section 2). We note that the infinite virtually cyclic subgroups of $\text{SL}(3, \mathbb{Z})$ are listed, up to isomorphism, in [25] and [27]. From this classification it follows that every infinite virtually cyclic subgroup V of Γ that is not isomorphic to \mathbb{Z} or $\mathbb{Z} \oplus \mathbb{Z}_2$ fits into a short exact sequence

$$1 \to \mathbb{Z} \oplus \mathbb{Z}_2 \to V \to \mathbb{Z}_2 \to 1.$$

Definition 5.1. We define the following subsets of \mathcal{J}.

(a) The set \mathcal{J}_1 contains all $[H] \in \mathcal{J}$ such that $[H]$ has a representative whose generator has two complex conjugate eigenvalues and one real eigenvalue different from 1;

(b) The set \mathcal{J}_2 contains all $[H] \in \mathcal{J}$ such that $[H]$ has a representative whose generator has exactly one eigenvalue that is a root of unity.

(c) The set \mathcal{J}_3 contains all $[H] \in \mathcal{J}$ such that $[H]$ has a representative with a generator all of whose eigenvalues are real and not equal to ±1;

(d) The set \mathcal{J}_4 contains all $[H] \in \mathcal{J}$ such that $[H]$ has a representative with a generator all of whose eigenvalues equal 1 and which cannot be conjugated into the center of the strictly upper triangular matrices in $\text{SL}(3, \mathbb{Z})$.

(e) The set \mathcal{J}_5 contains all $[H]$ such that $[H]$ has a representative with a generator that can be conjugated into the center of the strictly upper triangular matrices in $\text{SL}(3, \mathbb{Z})$.

6
Lemma 5.2. One can write \(\mathcal{I} \) as a disjoint union
\[
\mathcal{I} = \mathcal{I}_1 \sqcup \mathcal{I}_2 \sqcup \mathcal{I}_3 \sqcup \mathcal{I}_4
\]
and the set \(\mathcal{I}_3 \) contains exactly one element.

Proof. This is left as an easy exercise to the reader. \(\square \)

The group \(\Gamma = \text{SL}(3, \mathbb{Z}) \) is a discrete subgroup of \(\text{GL}(3, \mathbb{R}) \). Hence, we know from Lemma 3.2 that for every equivalence class \([H] \) of infinite virtually cyclic subgroups of \(\Gamma \), there exists an representative \(H \) such that \(N_\Gamma[H] = N_\Gamma(H) \). Using this fact, we will now determine for each \([H] \in \mathcal{I} \) the structure of the group \(N_\Gamma[H] \).

Lemma 5.3. For each \([H] \in \mathcal{I} \), the following holds.

(a) If \([H] \in \mathcal{I}_1 \), then \(N_\Gamma[H] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \).

(b) If \([H] \in \mathcal{I}_2 \), then \(N_\Gamma[H] \) has a subgroup of index at most two isomorphic to \(\mathbb{Z}_2 \oplus \mathbb{Z} \).

(c) If \([H] \in \mathcal{I}_3 \), then \(N_\Gamma[H] \cong \mathbb{Z}_2 \oplus \mathbb{Z}^2 \).

(d) If \([H] \in \mathcal{I}_4 \), then \(N_\Gamma[H] \) has a subgroup of index at most two isomorphic to \(\mathbb{Z}_2 \).

(e) If \([H] \in \mathcal{I}_5 \), then \(N_\Gamma[H] \) is isomorphic to \(\text{Tr}(3, \mathbb{Z}) \rtimes \varphi \left(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \right) \), where
\[
\text{Tr}(3, \mathbb{Z}) = \left\{ x, y, z \mid [x, y] = z, [x, z] = e, [y, z] = e \right\}
\]
is isomorphic to the group of strictly upper triangular integral matrices,
\[
\varphi((1, 0))(x) = x^{-1}, \varphi((1, 0))(y) = y^{-1}, \varphi((1, 0))(z) = z
\]
and
\[
\varphi((0, 1))(x) = x^{-1}, \varphi((0, 1))(y) = y, \varphi((0, 1))(z) = z^{-1}.
\]

Proof. Take \([H] \in \mathcal{I} \) and let \(A \in \Gamma \) be an infinite order matrix such that \(N_\Gamma[H] = N_\Gamma(H) \), where \((A) = H \). Note that we may replace \(A \) by a power of \(A \) in order to assume that \(A \) does not have any eigenvalues that are non-trivial roots of unity.

First assume that \([H] \in \mathcal{I}_1 \sqcup \mathcal{I}_2 \). This means that all eigenvalues of \(A \) are different from 1. The characteristic polynomial \(p(x) \) of \(A \) is therefore irreducible over \(\mathbb{Q} \). Indeed, if \(p(x) \) was reducible over \(\mathbb{Q} \), then \(A \) would have a rational eigenvalue \(\mu \). But since \(A \in \text{SL}(3, \mathbb{Z}) \), it follows from the rational root theorem that \(\mu = \pm 1 \), which is a contradiction. Also note that the normalizer of \(H \) must equal the centralizer of \(H \). Indeed, an element of the normalizer of \(H \) that does not commute with \(A \) must send a eigenvector of \(A \) with eigenvalue \(\mu \) to an eigenvector of \(A \) with eigenvalue \(\mu^{-1} \), which would imply that \(A \) has an eigenvalue equal to 1. As illustrated for example in [12] Prop. 3.7 and [22] section 4], an application of the Dirichlet unit theorem shows that the centralizer \(C_\Gamma(H) \) of \(A \) in \(\Gamma \) equals \(\mathbb{Z}^{r+s-1} \oplus \mathbb{Z}_2 \), where \(r \) is the number of real roots of \(p(x) \) and \(2s \) is the number of complex roots of \(p(x) \). Hence, if all eigenvalues of \(A \) are real then \(N_\Gamma(H) \cong \mathbb{Z}^2 \oplus \mathbb{Z}_2 \) and if \(A \) has two complex conjugate eigenvalues then \(N_\Gamma(A) \cong \mathbb{Z} \oplus \mathbb{Z}_2 \). This proves (a) and (c).
Secondly, assume that \([H] \in \tilde{\mathcal{H}}\). Then \(A\) has exactly one eigenvalue equal to 1. Hence, \(A\) is conjugate in \(\text{SL}(3, \mathbb{Z})\) to a matrix of the form

\[
\begin{bmatrix}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & M
\end{bmatrix}.
\]

Since we are only interested in the structure of the normalizer of \(H\) up to isomorphism, we may as well assume that \(A\) is of this form. If a matrix \(B \in \text{SL}(3, \mathbb{Z})\) commutes with \(A\) it must preserve the 1-dimensional eigenspace of \(A\) with eigenvalue 1. Therefore, this is also an eigenspace of \(B\), with eigenvalue \(\pm 1\). We conclude that \(B\) must be of the form

\[
B = \begin{bmatrix}
\pm 1 & x & y \\
0 & 1 & 0 \\
0 & 0 & N
\end{bmatrix}.
\]

By elementary matrix computations, one checks that such a matrix \(B\) commutes with \(A\) if and only if it is of the form

\[
(M^t - \text{Id}) \begin{bmatrix} x \\ y \end{bmatrix} = (N^t - \text{Id}) \begin{bmatrix} a \\ b \end{bmatrix}.
\]

Since \((M^t - \text{Id})\) is an invertible matrix, \(B\) is completely determined by \(N\) and the fact that its commutes with \(N\). We therefore obtain an isomorphism \(C_{\Gamma}(A) = C_{\text{GL}(2, \mathbb{Z})}(M)\). By analyzing centralizers in \(\text{GL}(2, \mathbb{Z})\), for example using the Dirichlet unit theorem, it follows that the centralizer \(C_{\Gamma}(A)\) is \(\mathbb{Z}_2 \oplus \mathbb{Z}\). This proves (b).

Finally, assume that all eigenvalues of \(A\) equal 1. In this case \(A\) can be conjugated inside \(\text{SL}(3, \mathbb{Z})\) to a strictly upper triangular matrix. Hence, we may again assume that \(A\) is a strictly upper triangular matrix. If \(A\) is of the form

\[
\begin{bmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{bmatrix}
\]

where \(a\) and \(b\) are both non-zero, then one may check by elementary matrix computations that a matrix \(B \in \text{SL}(3, \mathbb{Z})\) commutes with \(A\) if and only if it is of the form

\[
\begin{bmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{bmatrix}
\]

where \(ay - bx = 0\). This shows that in this case the centralizer of \(H\) in \(\Gamma\) is isomorphic to \(\mathbb{Z}^2\), and hence the normalizer \(N_{\Gamma}(H)\) has a subgroup of index at most two isomorphic to \(\mathbb{Z}^2\). If on the other hand, \(A\) is of the form (1) where \(ab = 0\) then \(A\) can be conjugated in \(\text{SL}(3, \mathbb{Z})\) to matrix of the form (1) where \(a\) and \(b\) are both zero. In this case the centralizer \(C_{\Gamma}(H)\) is isomorphic to the group

\[
\left\{ \begin{bmatrix}
\pm 1 & x & z \\
0 & 1 & y \\
0 & 0 & \pm 1
\end{bmatrix} \bigg| x, y, z \in \mathbb{Z} \right\}.
\]
One can now easily verify via explicit matrix computation that the normalizer \(N_\Gamma(H) \) is isomorphic to a semi-direct product of \(C_\Gamma(H) \) with

\[
\left\{ \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}.
\]

It follows that \(N_\Gamma(H) \) is isomorphic to the semi-direct product

\[
\text{Tr}(3, \mathbb{Z}) \rtimes \left(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \right).
\]

In \([24]\), a 3-dimensional model \(X \) for \(E\Gamma \) is constructed. This model has the property that the orbit-space \(\Gamma \setminus X = B\Gamma \) is contractible. Moreover, this model is of minimal dimension since \(\Gamma \) contains the strictly upper triangular matrices \(\text{Tr}(3, \mathbb{Z}) \), which has cohomological dimension 3. Since for each \([H] \in \mathcal{H} \), \(N_\Gamma[H] \) is either virtually-\(\mathbb{Z} \), virtually-\(\mathbb{Z}^2 \) or virtually-\(\text{Tr}(3, \mathbb{Z}) \) by the lemma above, a model for \(E_\mathcal{H}[H] \) can be chosen to be either \(\mathbb{R} \), \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \), respectively (see, e.g., \([17]\) Ex. 5.26). Moreover, \(H \) can be chosen to be normal in \(N_\Gamma[H] \) in which case a model for \(E_\mathcal{H}[H] \) is given by a model for \(E_\mathcal{H}[H]/H \), where the action is obtained via the projection \(N_\Gamma[H] \to N_\Gamma[H]/H \). Hence, a model for \(E_\mathcal{H}[H] \) can be chosen to be either \(\{ \ast \} \), \(\mathbb{R} \) or \(\mathbb{R}^2 \), respectively. Using the universal property of classifying spaces for families, one obtains a cellular \(\Gamma \)-equivariant map

\[
f : \bigsqcup_{[H] \in \mathcal{H}} \Gamma \times N_\Gamma[H] E_\mathcal{H}[H] \to X
\]

Note that the mapping cylinder \(M_f \) of \(f \) is a 4-dimensional model for \(E\Gamma \), since \(E_\mathcal{H}[H] \) is at most 3-dimensional and \(M_f \) is \(\Gamma \)-homotopy equivalent to \(X \). We obtain an equivariant cellular inclusion

\[
i : \bigsqcup_{[H] \in \mathcal{H}} \Gamma \times N_\Gamma[H] E_\mathcal{H}[H] \to M_f.
\]

Using \(i \) and the models for \(E_\mathcal{H}[H] \) described above, one can construct a \(\Gamma \)-equivariant push-out diagram that by Theorem \([2.1]\) produces a 4-dimensional model \(Y \) for \(E\Gamma \). We claim that this model is of minimal dimension. Indeed, take \(\Gamma \)-orbits of the push-out diagram constructed above and consider the long exact Mayer–Vietoris cohomology sequence with \(\mathbb{Q} \)-coefficients obtained from the resulting push-out diagram. This leads to the exact sequence

\[
H^3(B\Gamma, \mathbb{Q}) \to H^3(BN_\Gamma[H], \mathbb{Q}) \to H^4(B\Gamma, \mathbb{Q}) \to 0,
\]

where \([H] \in \mathcal{H} \). Since \(B\Gamma \) is contractible and \(N_\Gamma[H] \cong \text{Tr}(3, \mathbb{Z}) \rtimes \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) by the lemma above , we obtain an isomorphism

\[
H^3(\text{Tr}(3, \mathbb{Z}) \rtimes \mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Q}) \cong H^4(B\Gamma, \mathbb{Q}).
\]

As we are working with \(\mathbb{Q} \)-coefficients, an application of the Lyndon–Hochschild–Serre spectral sequence tells us that

\[
H^3(\text{Tr}(3, \mathbb{Z}) \rtimes \mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Q}) \cong H^3(\text{Tr}(3, \mathbb{Z}), \mathbb{Q})^\mathbb{Z}_2 \oplus \mathbb{Z}_2.
\]
Moreover, since \(\text{Tr}(3, \mathbb{Z}) \) fits into the central extension
\[
1 \to \mathbb{Z} \cong \langle z \rangle \to \text{Tr}(3, \mathbb{Z}) \to \mathbb{Z}^2 \cong \langle x, y \rangle \to 0,
\]
another application of the Lyndon–Hochschild–Serre spectral sequence yields
\[
H^3(\text{Tr}(3, \mathbb{Z}), \mathbb{Q}) \oplus \mathbb{Z}_2 \cong H^3((x, y), H^1((z), \mathbb{Q}))^{\mathbb{Z}_2}.
\]
Using the explicit description of the map \(\varphi : \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to \text{Aut}(\text{Tr}(3, \mathbb{Z})) \) in the lemma above, and the fact that
\[
H^3((x, y), H^1((z), \mathbb{Q})) = \text{Hom}(\Lambda^3((x, y)), \text{Hom}(\Lambda^1((z)), \mathbb{Q}) \cong \mathbb{Q},
\]
one checks that the action of \(H \) on \(H^3((x, y), H^1((z), \mathbb{Q})) \) is trivial. We conclude that \(H^3(\mathbb{B} \Gamma, \mathbb{Q}) \cong \mathbb{Q} \), proving that there cannot exists a model for \(\mathbb{E} \Gamma \) of dimension strictly smaller than 4.

As mentioned in the introduction, for \(\Gamma = \text{SL}(3, \mathbb{Z}) \), the Farrell–Jones conjecture implies that for any ring \(R \) that is finitely generated as an abelian group, one has
\[
K_n(R[\Gamma]) \cong \mathcal{K}_n(\mathbb{E} \Gamma; R) \oplus \mathcal{K}_n(\mathbb{E} \Gamma; K_0)
\]
for every \(n \in \mathbb{Z} \). Using the model \(Y \) for \(\mathbb{E} \Gamma \) constructed above and Lemma 5.3 we obtain a description of the term \(\mathcal{K}_n(\mathbb{E} \Gamma; R) \). We summarize this description in the following theorem. Note that given a \(\Gamma \)-map \(f : X \to Y \), the homology group \(\mathcal{H}_n^\Gamma(Y, X; K_0) \) is by definition the relative homology group \(\mathcal{H}_n^\Gamma(M_f, X; K_0) \), where \(M_f \) is the mapping cylinder of \(f \).

Theorem 5.4. Let \(\Gamma = \text{SL}(3, \mathbb{Z}) \) and let \(R \) be a ring that is finitely generated as an abelian group. Then,
\[
K_n(R[\Gamma]) \cong \mathcal{K}_n(\mathbb{E} \Gamma; K_0) \oplus \mathcal{K}_n(\mathbb{E} \Gamma; \mathbb{R}; K_0) \oplus \mathcal{K}_n(\mathbb{E} \Gamma; \mathbb{Z}; K_0)
\]
where,

(a) for \([H] \in \mathcal{A}_1 \), \(N_{\Gamma}[H] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \), \(E_{N_{\Gamma}}[H] = \{ \ast \} \), \(E_{N_{\Gamma}}[H] = \mathbb{R} \) and
\[
\mathcal{K}_n(\mathcal{A}_1) = \bigoplus_{[H] \in \mathcal{A}_1} \mathcal{K}_n^N([H] \{ \ast \}, \mathbb{R}; K_0),
\]

(b) for \([H] \in \mathcal{A}_1 \), \(N_{\Gamma}[H] \) has a subgroup of index at most two isomorphic to \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \), \(E_{N_{\Gamma}}[H] = \{ \ast \} \), \(E_{N_{\Gamma}}[H] = \mathbb{R} \) and
\[
\mathcal{K}_n(\mathcal{A}_1) = \bigoplus_{[H] \in \mathcal{A}_1} \mathcal{K}_n^{N_{\Gamma}}([H] \{ \ast \}, \mathbb{R}; K_0),
\]

(c) for \([H] \in \mathcal{A}_2 \), \(N_{\Gamma}[H] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \), \(E_{N_{\Gamma}}[H] = \mathbb{R} \), \(E_{N_{\Gamma}}[H] = \mathbb{R} \) and
\[
\mathcal{K}_n(\mathcal{A}_2) = \bigoplus_{[H] \in \mathcal{A}_2} \mathcal{K}_n^{N_{\Gamma}}([H], \mathbb{R}; K_0),
\]
(d) for $[H] \in \tilde{\mathcal{I}}_2$, $N_f[H]$ has a subgroup of index at most two isomorphic to \mathbb{Z}^2, $E_{\mathcal{F}[H]}N_f[H] = EN_f[H]/H = \mathbb{R}$, $EN_f[H] = \mathbb{R}^2$ and

$$\mathcal{M}_n(\tilde{\mathcal{I}}_2) = \bigoplus_{[H] \in \tilde{\mathcal{I}}_2} \mathcal{M}_n^{N_f[H]}(\mathbb{R}, \mathbb{R}^2; K_R),$$

(e) for $[H] \in \tilde{\mathcal{I}}_3$, $N_f[H] \cong \text{Tr}(3, \mathbb{Z}) \rtimes \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $E_{\mathcal{F}[H]}N_f[H] = EN_f[H]/H = \mathbb{R}^2$, $EN_f[H] = \mathbb{R}^3$ and

$$\mathcal{M}_n(\tilde{\mathcal{I}}_3) = \mathcal{M}_n^{N_f[H]}(\mathbb{R}^2, \mathbb{R}^3; K_R).$$

Acknowledgement

We would like to thank Herbert Abels for helpful communications that led to the proof of Proposition 3.1. The second-named author expresses his gratitude to the research group Algebraic Topology & Group Theory at KU Leuven, Campus Kortrijk for their hospitality in spring 2013.

References

[1] Abels, H., On a theorem of Auslander, preprint, http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb14002.pdf
[2] Alperin, R.C. and Shalen, P.B., Linear Groups of finite cohomological dimension. Invent. Math. Vol. 66 (1982), 89–98.
[3] Bartels, A., On the domain of the assembly map in algebraic K-theory Algebra Geom. Topol 3(1) (2003), 1037–1050.
[4] Bartels, A., Lück, W., Reich H. and Rüping H., K- and L-theory of group rings over $\text{GL}(n, \mathbb{Z})$, Publ. Math. IHES. (to appear).
[5] Borel, A., Linear algebraic groups, Graduate text in mathematics, Vol. 126, 2nd Edition (1991), Springer-Verlag New York.
[6] Davis, J. F. and Lück, W., Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory, K-theory 15 (1998), 201–252.
[7] Degrijse, D. and Petrosyan, N., Commensurators and classifying spaces with virtually cyclic stabilizers, Groups, Geometry, and Dynamics Vol. 7(3) (2013), 543–555.
[8] Degrijse, D. and Petrosyan, N., Geometric dimension of groups for the family of virtually cyclic subgroups, Journal of Topology (to appear).
[9] Degrijse, D. and Petrosyan, N., Bredon cohomological dimensions for groups acting on CAT(0)-spaces preprint, (2013).
[10] Flores, R.J. and Nucinkis, B.E.A., On Bredon homology of elementary amenable groups, Proc. Am. Math. Soc. Vol. 135, Nr. 1 (2007), 5–12.
Juan-Pineda, D., and Leary, I. J., *On classifying spaces for the family of virtually cyclic subgroups*, Recent developments in alg. top., Vol. 407 Contemp. Math., Am. Math. Soc. (2006), 135–145.

Katok, A., Katok, S. and Schmidt, K., *Rigidity of measurable structure for \mathbb{Z}^d-actions by automorphisms of a torus*, Commentarii Mathematici Helvetici Vol. 77(4) (2002), 718–745.

Lafont, J. F., *Construction of classifying spaces with isotropy in prescribed families of subgroups*, L'Enseign. Math. (2) 54 (2008), 127–130.

Lafont, J. F., and Ortiz, I. J., *Relative hyperbolicity, classifying spaces, and lower algebraic K-theory*, Topology, Vol. 46 Nr. 6 (2007), 527–553.

Long, D. and Reid. A., *Small subgroups of SL(3,\mathbb{Z})*, Experimental Math. 20 (2011), 412–425.

Lück, W., *The type of the classifying space for a family of subgroups*, J. Pure Appl. Algebra 149 (2000), 177–203.

Lück, W., *Survey on classifying spaces for families of subgroups*, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Springer (2005), 269–322.

Lück, W., *On the classifying space of the family of virtually cyclic subgroups for CAT(0)-groups*, Münster J. of Math. 2 (2009), 201–214.

Lück, W. and Reich H., *The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory*, Handbook of K-theory. Vol. 2, Springer, Berlin (2005), 703–842.

Lück, W. and Weiermann, M., *On the classifying space of the family of virtually cyclic subgroups*, Pure and Applied Mathematics Quarterly, Vol. 8(2) (2012), 497–555.

Martínez-Pérez, C., *A spectral sequence in Bredon (co)homology*, J. Pure Appl. Algebra 176 (2002), 161–173.

Mikami, K, and Weinstein, A., *Self-similarity of Poisson structures on tori*, Banach Center Publications (Polish Academy of Sciences) Vol. 51 (2000), 211–217

Raghunathan, M.S., *Discrete subgroups of Lie groups*, (1972), Springer-Verlag New York

Soulé, C., *The cohomology of SL(3,\mathbb{Z})*, Topology Vol. 17 (1978), 1–22.

Stamm, R., *The K- and L-theory of certain discrete groups*, Ph. D. thesis, Universität Münster, (1999).

Stammbach, U., *On the weak homological dimension of the group algebra of solvable groups*, J. Lond, Math. Soc. Vol. 2(3) (1970), 567–570.

Upadhyay, S., *Controlled algebraic K-theory of integral group ring of SL(3,\mathbb{Z})*. K-Theory, Vol. 10(4) (1996), 413–418.