On Itô formulas for jump processes

István Gyöngy1 - Sizhou Wu2

Received: 14 February 2020 / Revised: 14 February 2020 / Accepted: 28 June 2021 / Published online: 16 August 2021 © The Author(s) 2021

Abstract

A well-known Itô formula for finite-dimensional processes, given in terms of stochastic integrals with respect to Wiener processes and Poisson random measures, is revisited and is revised. The revised formula, which corresponds to the classical Itô formula for semimartingales with jumps, is then used to obtain a generalisation of an important infinite-dimensional Itô formula for continuous semimartingales from Krylov (Probab Theory Relat Fields 147:583–605, 2010) to a class of L_p-valued jump processes. This generalisation is motivated by applications in the theory of stochastic PDEs.

Keywords Itô formula · Random measures · Lévy processes

Mathematics Subject Classification Primary 60H05 · 60H15; Secondary 35R60 · 60H30

1 Introduction

This is a review paper on some Itô formulas in finite- and infinite-dimensional spaces. First we consider finite-dimensional Itô–Lévy processes, which are \mathbb{R}^M-valued stochastic processes $X = (X_t)_{t \geq 0}$ given in terms of stochastic integrals with respect to Wiener processes and Poisson random measures. They play important roles in modelling stochastic phenomena when jumps may occur at random times; see, for example, [4,5]. Chain rules, called Itô formulas, for their transformations $\phi(X_t)$ by sufficiently smooth functions ϕ are basic tools in the investigations of stochastic phenomena mod-
elled by Itô–Lévy processes; see, for example, [13] and the references therein. It is therefore important to have Itô formulas for large classes of processes X and functions ϕ. Note that classical Itô’s formula (2.4) holds only under some restrictive conditions, which are not satisfied in important applications, for example in applications to filtering theory of partially observed jump diffusions. Therefore, we revisit the chain rule (2.4) for finite-dimensional Itô–Lévy processes, discuss its limitations and derive formula (2.12) from it, which corresponds to a well-known Itô formula for general semimartingales, and is valid without restrictive conditions on the Itô–Lévy processes X and on the functions ϕ.

In the second part of the paper, we discuss infinite-dimensional generalisations of the Itô formula (2.12) from the point of view of applications in stochastic PDEs (SPDEs). In the theory of parabolic SPDEs, arising in nonlinear filtering theory, the solutions $v = v_t(x)$ of SPDEs have the stochastic differentials

$$d v_t(x) = \left(f_t^0(x) + \sum_{i=1}^d \frac{\partial}{\partial x_i} f_t^i(x) \right) dt + \sum_r g_t^r(x) dm_t^r \quad (1.1)$$

with appropriate random functions f^α and g^r of $t \in [0, T]$ and $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$, and a sequence of martingales $(m_t^i)_{i=1}^\infty$. This stochastic differential is understood in a weak sense, i.e. for each smooth function φ with compact support on \mathbb{R}^d we have the stochastic differential

$$d(v_t, \varphi) = \left((f_t^0, \varphi) \frac{\partial}{\partial x_i} + \sum_i \left(f_t^i, \varphi \right) \right) dt + \sum_r (g_t^r, \varphi) dm_t^r,$$

where (u, v) denotes the Lebesgue integral over \mathbb{R}^d of the product uv for functions u and v of $x \in \mathbb{R}^d$. In the L_2-theory of SPDEs f^α and g^r are $L_2(\mathbb{R}^d, \mathbb{R})$-valued functions of (ω, t), satisfying appropriate measurability conditions, and to get ‘a priori estimates’, a suitable formula for $|v_t|^2_{L_2}$ plays crucial roles. Such a formula in an abstract setting was first obtained in [18] when $(m_t^i)_{i=1}^\infty$ is a sequence of independent Wiener processes. The proof in [18] is connected with the theory of SPDEs developed in [18]. A direct proof was given in [17], which was generalised in [8] to the case of square integrable martingales $m = (m_t^i)_{i=1}^\infty$. A nice short proof was presented in [15], and further generalisations can be found, for example, in [9,19]. The above results on Itô formula are used in the L_2-theory of linear and nonlinear SPDEs to obtain existence, uniqueness and regularity results under various assumptions; see, for example, [7,17–20]. To have a similar tool for studying solvability, uniqueness and regularity problems for solutions in L_p-spaces for $p \neq 2$ one should establish a suitable formula for $|v_t|_{L_p^p}$, which was first achieved in Krylov [14] for $p \geq 2$ when $(m_t^i)_{i=1}^\infty$ is a sequence of independent Wiener processes.
In Sect. 3, we present a generalisation of the main result from Krylov [14] to the case when the stochastic differential of \(v_t\) is of the form

\[
dv_t(x) = \left(f_t^0(x) + \sum_{i=1}^d \frac{\partial}{\partial x_i} f_t^i(x) \right) dt + \sum_{r} g_t^r(x) dw^r_t + \int_{\mathcal{Z}} h_t(z, x) \tilde{\pi}(dz, dt),
\]

(1.2)

where \(\tilde{\pi}(dz, dt)\) is a Poisson martingale measure with a \(\sigma\)-finite characteristic measure \(\mu\) on a measurable space \((\mathcal{Z}, \mathcal{G})\) and \(h\) is a function on \(\Omega \times [0, T] \times \mathcal{Z} \times \mathbb{R}^d\). This is Theorem 3.1, which is a slight generalisation of Theorem 2.2 on Itô’s formula from [10] for \(|v_t|^p\) for \(p \geq 2\). We prove it by adapting ideas and methods from Krylov [14]. In particular, we use the finite-dimensional Itô’s formula (2.19) for \(|v_t^i(x)|^p\) for each \(x \in \mathbb{R}^d\), where \(v_t^i\) is an approximation of \(v_t\) obtained by smoothing it in \(x\). Hence, we integrate both sides of the formula for \(|v_t^i(x)|^p\) over \(\mathbb{R}^d\), change the order of deterministic and stochastic integrals, integrate by parts in terms containing derivatives of smooth approximations of \(f^i\), and finally, we let \(\varepsilon \to 0\). Though the idea of the proof is simple, there are several technical difficulties to implement it. We sketch the proof of Theorem 3.1 in Sect. 3; further details of the proof can be found in [10]. Theorem 3.1 plays a crucial role in proving existence, uniqueness and regularity results in [11] for solutions to stochastic integro-differential equations. In [11], instead of a single random field \(v_t(x)\) we have to deal with a system of random fields \(v_t^i(x)\) for \(i = 1, 2, \ldots, M\), and we need estimates for \(|\sum_i |v_t^i|^2|^{1/2}\)\(|L_p\). This is why in Theorem 3.1 we consider a system of random fields \(v^i, i = 1, 2, \ldots, M\).

There are known theorems in the literature on Itô’s formula for semimartingales with values in separable Banach spaces; see, for example, [3,21–24]. In some directions, these results are more general than Theorem 3.1, but they do not cover it. In [3,22], only continuous semimartingales are considered and their differential does not contain \(D_i f^i dt\) terms. In [21,23,24], semimartingales containing stochastic integrals with respect to Poisson random measures and martingale measures are considered, but they do not contain terms corresponding to \(D_i f^i\). Thus, the Itô formula in these papers cannot be applied to \(|v_t|^p\) when the stochastic differential \(dv_t\) is given by (1.2).

In conclusion, we present some notions and notation. All random elements are given on a fixed complete probability space \((\Omega, \mathcal{F}, P)\) equipped with a right-continuous filtration \((\mathcal{F}_t)_{t \geq 0}\) such that \(\mathcal{F}_0\) contains all \(P\)-zero sets of \(\mathcal{F}\). The \(\sigma\)-algebra of the predictable subsets of \(\Omega \times [0, \infty)\) is denoted by \(\mathcal{P}\). We are given a sequence \(w = (w^1_t, w^2_t, \ldots)_{t \geq 0}\) of \(\mathcal{F}_t\)-adapted independent Wiener processes \(\mathcal{W} = (w^i_t)_{t \geq 0}\), such that \(w^i_t - w^i_s\) is independent of \(\mathcal{F}_s\) for any \(0 \leq s < t\). For an integer \(m \geq 1\), we are given also a sequence of independent Poisson random measures \(\pi^k(dz, dt)\) on \([0, \infty) \times \mathbb{Z}^k\), with intensity measure \(\mu^k(dz) dt\) for \(k = 1, 2, \ldots, m\), where \(\mu^k\) is a \(\sigma\)-finite measure on a measurable space \((\mathbb{Z}^k, \mathcal{G}^k)\) with a countably generated \(\sigma\)-algebra \(\mathcal{G}^k\). We assume that the process \(\pi^k_t(\Gamma) := \pi^k(\Gamma \times (0, t])\), \(t \geq 0\), is \(\mathcal{F}_t\)-adapted and \(\pi_t^k(\Gamma) - \pi_s^k(\Gamma)\) is independent of \(\mathcal{F}_s\) for any \(0 \leq s \leq t\) and \(\Gamma \in \mathcal{G}^k\) such that \(\mu^k(\Gamma) < \infty\). We use the notation \(\tilde{\pi}^k(dz, dt) = \pi^k(dz, dt) - \mu^k(dz) dt\) for the compensated Poisson random measure and set \(\tilde{\pi}^k_t(\Gamma) = \tilde{\pi}^k(\Gamma \times (0, t]) = \pi^k_t(\Gamma) - t \mu^k(\Gamma)\) for \(t \geq 0\) and \(\Gamma \in \mathcal{G}\) such that \(\mu^k(\Gamma) < \infty\). If \(m = 1\), then we write \(\pi, \tilde{\pi}, Z, \mathcal{G}\) and \(\mu\) in place of \(\pi^1, \tilde{\pi}^1, Z^1, \mathcal{G}^1\) and \(\mu^1\), respectively. For basic results concerning stochastic integrals
with respect to Poisson random measures and Poisson martingale measures, we refer to [1,12,16].

Let $M > 0$ be an integer. The space of sequences $v = (v^1, v^2, \ldots)$ of vectors $v^k \in \mathbb{R}^M$ with finite norm

$$|v|_{\ell_2} = \left(\sum_{k=1}^{\infty} |v^k|^2 \right)^{1/2}$$

is denoted by $\ell_2 = \ell_2(\mathbb{R}^M)$ and by l_2 when $M = 1$. We use the notation D_i to denote the ith derivative, i.e.

$$D_i = \frac{\partial}{\partial x_i}, \quad i = 1, 2, \ldots, M.$$

For vectors v from Euclidean spaces, $|v|$ means the Euclidean norm of v. The space of smooth functions with compact support in \mathbb{R}^M is denoted by $C_\infty^0(\mathbb{R}^M)$. For integers $k \geq 1$, the notation $C^k(\mathbb{R}^M)$ means the space of functions on \mathbb{R}^M whose derivatives up to order k exist and are continuous, and $C_b^k(\mathbb{R}^M)$ denotes the space of functions on \mathbb{R}^M whose derivatives up to order k are bounded continuous functions. When we talk about the derivatives up to order k of a function f, then among these derivatives we always consider the ‘zeroth-order derivative’ of f, i.e. f itself.

2 Itô formulas in finite dimensions

We consider an \mathbb{R}^M-valued semimartingale $X = (X^1_t, \ldots, X^M_t)_{t \geq 0}$ given by

$$X_t = X_0 + \int_0^t f_s \, ds + \int_0^t g^f_s \, dw^f_s$$

$$+ \sum_{k=1}^m \int_0^t \int Z^k(z) \, \pi^k(\,dz, \, ds) + \sum_{k=1}^m \int_0^t \int Z^k(z) \, \tilde{\pi}^k(\,dz, \, ds), \quad \text{for } t \geq 0,$$

(2.1)

where X_0 is an \mathbb{R}^M-valued \mathcal{F}_0-measurable random variable, $f = (f^i_t)_{t \geq 0}$ and $g = (g^i_t)_{t \geq 0}$ are predictable processes with values in \mathbb{R}^M and $\ell_2 = \ell_2(\mathbb{R}^M)$, respectively, $\tilde{h}^k = (\tilde{h}^{i,k}_s(z))_{t \in [0,T]}$ and $h^k = (h^{i,k}_s(z))_{t \geq 0}$ are \mathbb{R}^M-valued $\mathcal{P} \otimes \mathcal{Z}$-measurable functions on $\Omega \times \mathbb{R}_+ \times Z$ for every $k = 1, 2, \ldots, m$, such that almost surely for every $k = 1, 2, \ldots, m$

$$\tilde{h}^{i,k}_s(z)h^{j,k}_t(z) = 0 \quad \text{for } i, j = 1, 2, \ldots, M, \quad \text{for all } t \geq 0 \text{ and } z \in Z, \quad (2.2)$$

and

\[\mathcal{S} \] Springer
\[
\sum_{k=1}^{m} \left(\int_0^T \int_{Z_k} |\tilde{h}^k(z)| \pi^k(dz, dt) + \int_0^T \int_{Z_k} |h^k(z)|^2 \mu^k(dz) dt \right) < \infty,
\]
\[
\int_0^T |f_i| + |g_i|^2_{\ell^2} dt < \infty
\]
(2.3)

for every \(T > 0 \). Here and later on, unless otherwise indicated, the summation convention with respect to repeated integer-valued indices is used, i.e. \(g_s^r d\omega^r \) means \(\sum_r g_s^r d\omega^r \).

The following Itô’s formula is well known for \(m = 1 \).

Theorem 2.1 Let conditions (2.2) and (2.3) hold and assume there is a constant \(K \) such that \(|h^k| \leq K \) for all \((\omega, t, z) \in \Omega \times \mathbb{R}_+ \times \mathbb{Z} \) and \(k = 1, 2, \ldots, m \). Then, for any \(\phi \in C^2(\mathbb{R}^M) \), the process \((\phi(X_t))_{t \geq 0}\) is a semimartingale such that

\[
\phi(X_t) = \phi(X_0) + \int_0^t f_s^i D_i \phi(X_s) + \frac{1}{2} g_s^r g_s^s D_i D_j \phi(X_s) ds + \int_0^t g_s^r D_i \phi(X_s) d\omega^r_s
\]
\[
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} (\phi(X_{s-} + h^k(z)) - \phi(X_{s-}) \pi^k(dz, ds)
\]
\[
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} \phi(X_{s-} + h^k(z)) - \phi(X_{s-}) \tilde{\pi}^k(dz, ds)
\]
\[
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} \left(\phi(X_s + h^k(z)) - \phi(X_s) - h^k(z) D_i \phi(X_s) \right) \mu^k(dz) ds
\]
(2.4)

holds almost surely for all \(t \geq 0 \).

Proof This theorem with a finite-dimensional Wiener process \(w = (w^1, \ldots, w^{d_1}) \) in place of an infinite sequence of independent Wiener processes and for \(m = 1 \) is proved, for example, in [12]; see Theorem 5.1 in chapter II. Following this proof with appropriate changes, one can easily prove the above theorem as follows: Since \(\mu^k \) is \(\sigma \)-finite for \(k = 1, 2, \ldots, m \), for each \(k \) we have an increasing sequence \((Z^{k,n}_n)_{n=1}^\infty \) of sets \(Z^k_n \in \mathcal{Z}^k \) such that \(Z^k = \bigcup_{n=1}^\infty Z^k_n \) and \(\mu^k(Z^{k,n}_n) < \infty \) for every \(n \). For a fixed integer \(n \geq 1 \), let \(\rho^k_1 < \rho^k_2 < \ldots \) denote the increasing sequence of times where the jumps of \(N^k := (\pi^k(Z^{k,n}_n))_{t \geq 0} \) occur. Similarly, let \(t_1 < t_2 < \ldots \) be the jump times of the process \(N = \sum_{k=1}^{m} N_k \). Then \(\rho^k_i \) and \(t_i \) are stopping times for every \(k = 1, 2, \ldots, m \) and \(i \geq 1 \), and for almost every \(\omega \in \Omega \), the set of time points \(\{t_i(\omega) : i \geq 1\} \) contains all points of discontinuities of \((X^n_t(\omega))_{t \geq 0}\), where the process \(X^n \) is defined by

\[
X^n_t = X_0 + \int_0^t f_s^i ds + \int_0^t g_s^r d\omega^r_s + \sum_{k=1}^{m} \int_0^t \int_{Z_k} \tilde{h}^k(z) \mathbf{1}_{Z_k^n}(z) \pi^k(dz, ds)
\]
\[
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} h^k(z) \mathbf{1}_{Z_k^n}(z) \pi^k(dz, ds) - V^n_t \text{ for } t \geq 0
\]
(2.5)
with

$$V^n_t := \sum_{k=1}^m \int_0^t \int_{Z^k} h^k_s(z) \, 1_{Z^k_n}(z) \, \mu^k(dz) \, ds.$$

Clearly, $\phi(X^n_t) = \phi(X^n_0) + A^n_t + B^n_t$ with

$$A^n_t = \sum_{i \geq 1} (\phi(X^n_{\tau_{t,i} \wedge t}) - \phi(X^n_{\tau_{t,i-1} \wedge t})), \quad B^n_t = \sum_{i \geq 1} (\phi(X^n_{\tau_{t,i} \wedge t -}) - \phi(X^n_{\tau_{t,i-1} \wedge t})).$$

where we set $\tau_0 := 0$ and $X^n_{\tau_{t,i} \wedge t -} := X^n_{\tau_{t,i} -}$ for $t \geq \tau_i$ and $X^n_{\tau_{t,i-1} \wedge t} := X^n_t$ for $t < \tau_i$.

By Itô’s formula for Itô processes, we have

$$\phi(X^n_{\tau_{t,i} \wedge t}) - \phi(X^n_{\tau_{t,i-1} \wedge t}) = \int_{\tau_{t,i-1} \wedge t}^{\tau_{t,i} \wedge t} D_t \phi(X^n_s) f_s^l + \frac{1}{2} D_{jl} \phi(X^n_s) g^{jr} g^{jr} \, ds$$

$$+ \int_{\tau_{t,i-1} \wedge t}^{\tau_{t,i} \wedge t} D_t \phi(X^n_s) g^{jr} \, dw^r_s - \int_{\tau_{t,i-1} \wedge t}^{\tau_{t,i} \wedge t} D_{jl} \phi(X^n_s) \, dV^n_s,$$

which gives

$$B^n_t = \int_0^t D_t \phi(X^n_s) f_s^l + \frac{1}{2} D_{jl} \phi(X^n_s) g^{jr} g^{jr} \, ds$$

$$+ \int_0^t D_t \phi(X^n_s) g^{jr} \, dw^r_s - \int_0^t D_{jl} \phi(X^n_s) \, dV^n_s. \quad (2.6)$$

Notice that ρ^k_i has a density with respect to the Lebesgue measure for $i \geq 1$, and ρ^k_i and ρ^l_j are independent for $k \neq l$. Hence, $P(\rho^k_i = \rho^l_j) = 0$ for $k \neq l$ and positive integers i, j. Consequently, for almost every $\omega \in \Omega$ we have $\{\tau_i(\omega) : i \geq 1\} = \bigcup_{k=1}^m \{\rho^k_i(\omega) : i \geq 1\}$ such that the sets in the union are almost surely pairwise disjoint. Hence, taking also into account condition (2.2), we get that almost surely

$$A^n_t = \sum_{k=1}^m \sum_{i \geq 1} (\phi(X^n_{\rho^k_i \wedge t}) - \phi(X^n_{\rho^k_{i-1} \wedge t}))) = \tilde{A}^n_t + \tilde{\tilde{A}}^n_t$$

for all $t \geq 0$, where

$$\tilde{A}^n_t = \sum_{k=1}^m \int_0^t \int_{Z^k} \left(\phi(X^n_{s-} + \tilde{h}^k_s(z)) - \phi(X^n_{s-}) \right) 1_{Z^k_n}(z) \, \pi^k(dz, ds),$$

$$\tilde{\tilde{A}}^n_t = \sum_{k=1}^m \int_0^t \int_{Z^k} \left(\phi(X^n_{s-} + \tilde{\tilde{h}}^k_s(z)) - \phi(X^n_{s-}) \right) 1_{Z^k_n}(z) \, \pi^k(dz, ds)$$

$$= \sum_{k=1}^m \int_0^t \int_{Z^k} \left(\phi(X^n_{s-} + \tilde{h}^k_s(z)) - \phi(X^n_{s-}) \right) 1_{Z^k_n}(z) \, \tilde{\pi}^k(dz, ds).$$
Combining this with (2.6) we get

\[
\phi(X_t^n) = \phi(X_0) + \int_0^t D_l \phi(X_s^n) f^l_s + \frac{1}{2} D_{jl} \phi(X_s^n) g^{jr}_s g^{jr}_s ds + \int_0^t D_l \phi(X_s^n) g^{lr}_s dW^r_s
\]

\[
+ \sum_{k=1}^m \int_0^t \int_{Z_k} (\phi(X_{s-}^n + \tilde{h}_s^k(z)) - \phi(X_{s-}^n)) \mathbf{1}_{Z_k^c}(z) \tilde{\pi}_k(dz, ds)
\]

\[
+ \sum_{k=1}^m \int_0^t \int_{Z_k} (\phi(X_{s-}^n + h_s^k(z)) - \phi(X_{s-}^n)) \mathbf{1}_{Z_k}(z) \pi_k(dz, ds),
\]

\[
- D_l \phi(X_s^n) h_l^k_s(z)) \mathbf{1}_{Z_k^n}(z) \mu_k(dz) ds.
\]

Hence, we can finish the proof by letting \(n \to \infty \) and using standard facts about convergence of Lebesgue integrals and stochastic integrals with respect to Wiener processes and random measures. \(\square \)

In some publications, only the natural conditions (2.2) and (2.3) are assumed in the formulation of the above theorem, but these conditions are not sufficient for (2.4) to hold, as the following simple example shows.

Example 2.1 Consider a one-dimensional semimartingale \((X_t)_{t \in [0, T]}\) given by (2.1) with \(f = 0, g = 0, \tilde{h} = 0 \) and \(h_t(z) = 1_{t > 0} t^{-1/2}, t \geq 0, z \in Z = \mathbb{R} \setminus \{0\} \), when \(\pi(dz, dt) \) is the measure of jumps of a standard Poisson process and \(\tilde{\pi}(dz, dt) = \pi(dz, dt) - \mu(dz) dt \) is its compensated measure, where \(\mu = \delta_1 \) is the Dirac measure on \(Z \) concentrated at 1. Then obviously conditions (2.2) and (2.3) hold, and for \(\phi(x) = x^4 \), the last integrand in (2.4) is

\[
|X_{s-} + h_s(z)|^4 - |X_{s-}|^4 - 4X_{s-}^3 h_s(z) = \sum_{i=1}^3 c_i(s, z)
\]

with

\[
c_1(s, z) = 6|X_{s-}|^2 1_{s > 0} s^{-1/2}, \quad c_2(s, z) = 4X_{s-} 1_{s > 0} s^{-3/4}, \quad c_3(s, z) = 1_{s > 0} s^{-1}.
\]

Clearly,

\[
\int_0^t \int_Z |c_i(s, z)| \mu(dz) ds < \infty \quad \text{for } i = 1, 2, \quad \text{and} \quad \int_0^t \int_Z c_3(s, z) \mu(dz) ds = \infty
\]
for every \(t > 0 \), which shows that the last integral in (2.4) is infinite. Similarly, one can show that almost surely

\[
\int_0^t \int_Z (|X_{s-} + h_s(z)|^4 - |X_{s-}|^4)^2 \mu(dz) \, ds = \infty \quad \text{for every } t > 0,
\]

which means the stochastic integral with respect to \(\tilde{\pi}(dz, ds) \) in (2.4) does not exist.

It is easy to see that the last two integrals in (2.4) are well defined as Itô and Lebesgue integrals, respectively, under the additional boundedness assumption on \(h \).

Instead of this extra condition on \(h \), one can make additional assumptions on \(\phi \) to ensure that formula (2.4) holds. It is sufficient to assume that the derivatives of \(\phi \) up to second order are bounded. Such a condition, however, excludes the applicability of Itô’s formula to power functions \(\phi(x) = |x|^p \) for \(p \geq 2 \). Notice that for any \(\phi \in C^2(\mathbb{R}^M) \) the conditions

\[
\sum_{k=1}^m \int_0^T \int_{Z_k} |\phi(X_s + h_s^k(z)) - \phi(X_s)|^2 \mu^k(dz) \, ds < \infty \quad (2.7)
\]

and

\[
\sum_{k=1}^m \int_0^T \int_{Z_k} |\phi(X_s + h_s^k(z)) - \phi(X_s) - h_s^k(z) \nabla \phi(X_s)| \mu^k(dz) \, ds < \infty \quad \text{(a.s.)} \quad (2.8)
\]

ensure the existence of the last two integrals in (2.4), respectively. Thus, we can expect that under conditions (2.2)–(2.3) and (2.7)–(2.8) formula (2.4) is valid.

Theorem 2.2 Let conditions (2.2)–(2.3) and (2.7)–(2.8) hold. Assume \(\phi \in C^2(\mathbb{R}^M) \). Then \(\phi(X_t) \) is a semimartingale such that (2.4) holds almost surely for all \(t \geq 0 \).

Proof This theorem is a slight generalisation of Theorem 5.2 in [2]. For the convenience of the reader we deduce this theorem from Theorem 2.1 here. For notational simplicity, we assume \(m = 1 \); with additional indices the case \(m > 1 \) can be proved in the same way.

For vectors \(a = (a^1, \ldots, a^M) \in \mathbb{R}^M \) and functions \(\phi \in C^2(\mathbb{R}^M) \), we define the functions \(I^a \phi \) and \(J^a \phi \) by

\[
I^a \phi(v) = \phi(v + a) - \phi(v), \quad J^a \phi(v) = \phi(v + a) - \phi(v) - a^i D_i \phi(v), \quad v \in \mathbb{R}^M.
\]

Assume first \(\phi \in C^2_b(\mathbb{R}^M) \). Approximate \(h \) by \(h^{(n)} = (h_1^{(n)}, \ldots, h_M^{(n)}) \) and define

\[
X_t^{(n)} = X_0 + \int_0^t f_s \, ds + \int_0^t g_s^z \, dw_s^z + \int_0^t \int_Z \tilde{h}_s(z) \pi(dz, ds) + \int_0^t \int_Z h_s^{(n)}(z) \tilde{\pi}(dz, ds)
\]
for integers \(n \geq 1 \), where \(h_t^{i,(n)} = -n \vee h_t^i \wedge n \). Then (2.4) holds with \(X_t^{i,(n)} \) and \(h_t^{i,(n)} \)

in place of \(X_t^i \) and \(h_t^i \), respectively, for each \(i = 1, 2, \ldots, M \). Clearly,

\[
\int_0^T \int_Z |h_s^{(n)}(z) - h_s(z)|^2 \mu(dz) \, ds \to 0 \quad \text{(a.s.)} \quad \text{for each } T > 0,
\]

which implies

\[
\int_0^t \int_Z h_s^{(n)}(z) \tilde{\pi}(dz, ds) \to \int_0^t \int_Z h_s(z) \tilde{\pi}(dz, ds)
\]

in probability uniformly in \(t \in [0, T] \). Consequently, for each \(T > 0 \) we have

\[
\sup_{t \in [0,T]} |X_t^{(n)} - X_t| \to 0
\]

in probability. It is easy to see

\[
\int_0^t f_s^i D_i \phi(X_t^{(n)}) + \frac{1}{2} g_s^{ir} g_s^{jr} D_i D_j \phi(X_t^{(n)}) \, ds \to \int_0^t f_s^i D_i \phi(X_t) + \frac{1}{2} g_s^{ir} g_s^{jr} D_i D_j \phi(X_t) \, ds,
\]

\[
\int_0^t g_s^{ir} D_i \phi(X_t^{(n)}) \, dw^r_s \to \int_0^t g_s^{ir} D_i \phi(X_t) \, dw^r_s,
\]

\[
\int_0^t \int_Z I_{h_s^{(n)}}(z) \phi(X_t^{(n)}) \pi(dz, ds) \to \int_0^t \int_Z I_{h_s}(z) \phi(X_t) \pi(dz, ds)
\]

in probability uniformly in \(t \in [0, T] \) for \(T > 0 \). Furthermore, by Taylor’s formula we have

\[
|J_{h_s^{(n)}}(z) \phi(X_t^{(n)})| \leq \int_0^1 (1 - \theta) |h_s^{i,(n)}(z) h_s^{j,(n)}(z) D_{ij} \phi(X_t^{(n)}) + \theta h_s^{(n)}(z))| \, d\theta
\]

\[
\leq C |h_s(z)|^2,
\]

\[
|I_{h_s^{(n)}}(z) \phi(X_t^{(n)})|^2 \leq \int_0^1 |\nabla \phi(X_t^{(n)}) + \theta h_s^{(n)}(z)) h_s^{(n)}(z)|^2 \, d\theta \leq C |h_s(z)|^2
\]

with a constant \(C \) independent of \(n \). Hence, by Lebesgue’s theorem on dominated convergence for \(T > 0 \) we have

\[
\int_0^T \int_Z |J_{h_s^{(n)}}(z) \phi(X_t^{(n)}) - J_{h_s^{(n)}}(z) \phi(X_t)| \mu(dz) \, ds \to 0 \quad \text{for } T \geq 0
\]

and

\[
\int_0^T \int_Z |I_{h_s^{(n)}}(z) \phi(X_t^{(n)}) - I_{h_s^{(n)}}(z) \phi(X_t)|^2 \mu(dz) \, ds \to 0 \quad \text{for } T \geq 0
\]

 Springer
in probability, which implies
\[\int_0^t \int_Z h_s(z) \phi(X_{s-}) \bar{\pi}(dz, ds) \to \int_0^t \int_Z h_s(z) \phi(X_{s-}) \bar{\pi}(dz, ds) \]
in probability uniformly in \(t \in [0, T] \) for each \(T > 0 \). Hence, letting \(n \to \infty \) in (2.4) with \(h^{(n)} \) and \(X^{(n)} \) in place of \(h \) and \(X \), respectively, we prove the theorem for \(\phi \in C^2_b(\mathbb{R}^M) \). For \(\phi \in C^2(\mathbb{R}^M) \), we define \(\phi_n \) for integers \(n \geq 1 \) by \(\phi_n(x) = \phi(x) \xi(x/n) \), \(x \in \mathbb{R}^M \), where \(\xi \) is a smooth function on \(\mathbb{R}^M \) with values in \([0, 1] \) such that \(\xi(x) = 1 \) for \(|x| \leq 1 \) and \(\xi(x) = 0 \) for \(|x| \geq 2 \). Then \(\phi_n \in C^2_b(\mathbb{R}^M) \), and therefore, (2.4) holds with \(\phi_n \) in place of \(\phi \). Thus, it remains to take limit as \(n \to \infty \) for each term in (2.4) with \(\phi_n \) in place of \(\phi \). Clearly, as \(n \to \infty \), we have
\[\phi_n(x) \to \phi(x), \quad D_i \phi_n(x) \to D_i \phi(x), \quad D_{ij} \phi_n(x) \to D_{ij} \phi(x) \]
uniformly on compact subsets of \(\mathbb{R}^M \) for \(i, j = 1, 2, \ldots, M \). Hence, it is easy to see
\[\int_0^t \int_Z h_s D_i \phi_n(X_s) + \frac{1}{2} g^{ir}_s g^{jr}_s D_i D_j \phi_n(X_s) ds \to \int_0^t \int_Z h_s D_i \phi(X_s) \]
\[+ \frac{1}{2} g^{ir}_s g^{jr}_s D_i D_j \phi(X_s) ds \]
and
\[\int_0^t \int_Z g^{ir}_s D_i \phi_n(X_s) dw_s^r \to \int_0^t \int_Z g^{ir}_s D_i \phi(X_s) dw_s^r \]
in probability, uniformly in \(t \in [0, T] \) as \(n \to \infty \). Using the simple identity
\[I^a(\varphi \phi)(x) = \phi(x) I^a \varphi(x) + \varphi(x + a) I^a \phi(x), \quad a, x \in \mathbb{R}^M \]
with \(\varphi = \phi_n \) and \(a = h_s(z) \), we get
\[|I^{h_s(z)} \phi_n(X_s) - I^{h_s(z)} \phi(X_s)| \leq |\phi(X_s)||I^{h_s(z)} \xi_n(X_s)| \]
\[+ |1 - \xi_n(X_s + h_s(z))||I^{h_s(z)} \phi(X_s)| \]
\[\leq \frac{C}{n} |\phi(X_s)||h_s(z)| \]
\[+ |1 - \xi_n(X_s + h_s(z))||I^{h_s(z)} \phi(X_s)| \]
\[\leq \frac{C}{n} |\phi(X_s)||h_s(z)| + |I^{h_s(z)} \phi(X_s)| \quad (2.10) \]
with a constant \(C \) independent of \(n \), and since \(\lim_{n \to \infty} |1 - \xi_n(X_s + h_s(z))| = 0 \), we have
\[\lim_{n \to \infty} \sup_{(\omega, s, z)} |I^{h_s(z)} \phi_n(X_s) - I^{h_s(z)} \phi(X_s)| = 0 \quad \text{for every } (\omega, s, z). \]
Hence, by (2.10), taking into account conditions (2.3) and (2.7) on h and $I^{h_s(z)} \phi(X_s)$, we can apply Lebesgue’s theorem on dominated convergence to obtain

$$\lim_{n \to \infty} \int_0^T \int_Z |I^{h_s(z)} \phi(X_s) - I^{h_s(z)} \phi_n(X_s)|^2 \mu(dz) \, ds = 0 \quad \text{(a.s.)},$$

which implies that for $n \to \infty$ we have

$$\int_0^t \int_Z |I^{h_s(z)} \phi_n(X_s) - I^{h_s(z)} \phi(X_s)| \pi(dz, ds) \to \int_0^t \int_Z |I^{h_s(z)} \phi(X_s) \tilde{\pi}(dz, ds)$$

in probability uniformly in $t \in [0, T]$ for each $T > 0$. Similarly, we get

$$\lim_{n \to \infty} \int_0^T \int_Z |I^{\tilde{h}_s(z)} \phi_n(X_s) - I^{\tilde{h}_s(z)} \phi(X_s)| \pi(dz, ds) = 0 \quad \text{(a.s.)}$$

for every $T \geq 0$. Using the identity

$$J^a(\varphi \phi)(x) = \phi(x) J^a \varphi(x) + \varphi(x) J^a \phi(x) + I^a \varphi(x) I^a \phi(x), \quad a, x \in \mathbb{R}^M$$

with $\varphi = \phi_n$ and $a = h_s(z)$, we get

$$J^{h_s(z)} \phi(X_s) - J^{h_s(z)} \phi_n(X_s)$$

$$= (1 - \zeta_n(X_s)) J^{h_s(z)} \phi(X_s) + \phi(X_s) J^{h_s(z)} \zeta_n(X_s) + I^{h_s(z)} \phi(X_s) I^{h_s(z)} \zeta_n(X_s).$$

Hence, taking into account $|(1 - \zeta_n(X_s))| \leq 1$,

$$|J^{h_s(z)} \zeta_n(X_s)| \leq \int_0^1 (1 - \theta)|h_s(z) h_i(z) D_{ij} \zeta_n(X_s + \theta h_s(z))| \, d\theta \leq \frac{C}{n} |h_s(z)|^2,$$

$$|I^{h_s(z)} \phi(X_s) I^{h_s(z)} \zeta_n(x)| \leq \frac{C}{n} |I^{h_s(z)} \phi(X_s)| |h_s(z)| \leq \frac{C}{n} (|I^{h_s(z)} \phi(X_s)|^2 + |h_s(z)|^2)$$

and $\lim_{n \to \infty} |(1 - \zeta_n(X_s))| = 0$, we obtain

$$|J^{h_s(z)} \phi(X_s) - J^{h_s(z)} \phi_n(X_s)|$$

$$\leq |J^{h_s(z)} \phi(X_s)| + \frac{C}{n} (|\phi(X_s)| |h_s(z)|^2 + |I^{h_s(z)} \phi(X_s)|^2 + |h_s(z)|^2) \quad (2.11)$$

with a constant C independent of n, and

$$\lim_{n \to \infty} |J^{h_s(z)} \phi(X_s) - J^{h_s(z)} \phi_n(X_s)| = 0 \quad \text{for all } (\omega, s, z).$$
Thus, by virtue of (2.11) and conditions (2.2), (2.7) and (2.8) on $h, t^h(X_s)$ and $J^h(X_s)$, we can use Lebesgue’s theorem on dominated convergence again to get

$$\lim_{n \to \infty} \int_0^T \int_Z |J^{h(z)} \phi_n(X_s) - J^{h(z)} \phi(X_s)| \mu(dz) \, ds \quad (\text{a.s.})$$

for every $T \geq 0$, which completes the proof of Theorem 2.2.

\[\square\]

Remark 2.1 The above theorem is useful if one can check that conditions (2.7)–(2.8) are satisfied. If $D_i \phi$ and $D_{ij} \phi$ are bounded functions for every $i, j = 1, 2, \ldots, M$, then conditions (2.7)–(2.8) are always satisfied, since for every $t > 0$

\[
\int_0^t \int_Z |J^{h(z)} \phi(X_s)|^2 \mu(dz) \, ds = \int_0^t \int_Z \left| \int_0^1 \nabla \phi(X_s + h_s(z)) \, dh_s(z) \right|^2 \mu(dz) \, ds \\
\leq C \int_0^t \int_Z |h_s(z)|^2 \mu(dz) \, ds < \infty \quad (\text{a.s.})
\]

and

\[
\int_0^t \int_Z |J^{h(z)} \phi(X_s)| \mu(dz) \, ds = \int_0^t \int_Z \left| \int_0^1 (1 - \theta) h_s^i(z) h_s^j(z) D_{ij} \phi(X_s) \\
+ \theta h_s(z) \, d\theta \right| \mu(dz) \, ds \\
\leq C \int_0^t \int_Z |h_s(z)|^2 \mu(dz) \, ds < \infty \quad (\text{a.s.})
\]

with a constant C. Thus, by virtue of the above theorem, under the conditions (2.2) and (2.3) Itô formula (2.4) holds if the first- and second-order derivatives of ϕ are bounded continuous functions. As Example 2.1 shows, Theorem 2.2 is not applicable to $\phi(x) = |x|^p$ for $p \geq 2$.

Next we formulate an Itô formula which holds under the natural conditions (2.2)–(2.3).

Theorem 2.3 Let conditions (2.2) and (2.3) hold, and let ϕ from $C^2_2(\mathbb{R}^M)$. Then $\phi(X_t)$ is a semimartingale such that

\[
\phi(X_t) = \phi(X_0) + \int_0^t D_i \phi(X_s) g_s^{ir} \, dw_r^i + \int_0^t D_i \phi(X_s) f_s^{ij} \\
+ \frac{1}{2} D_i D_j \phi(X_s) g_s^{ir} g_s^{jr} \, ds \\
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} \phi(X_{s-} + \tilde{h}_s^k(z)) - \phi(X_{s-}) \pi^k(dz, ds) \\
+ \sum_{k=1}^{m} \int_0^t \int_{Z_k} D_i \phi(X_{s-}) h_s^{ik} \tilde{\pi}^k(dz, ds)
\]
\[+ \sum_{k=1}^{m} \int_{Z_k} \int_{t_0}^{t} \phi(X_s + h^k_s(z)) - \phi(X_s) ds \]
\[- D_i \phi(X_s) h^k_s(z) \pi^k(dz, ds) \] \hspace{1cm} (2.12)

almost surely for all \(t \geq 0 \).

Proof We prove Theorem 2.3 by rewriting Itô formula (2.4) into Eq. (2.12) under the additional condition that \(h \) is bounded, and then we dispense with this condition by approximating \(h \) by bounded functions. For notational simplicity we assume \(m = 1 \), for \(m > 1 \) the proof goes in the same way. First, in addition to the conditions (2.2) and (2.3), assume there is a constant \(K \) such that \(|h| \leq K \). By Taylor’s formula for \(I^a \phi(v) \) and \(J^a \phi(v) \), introduced in (2.9), for each \(v, a \in \mathbb{R}^M \) we have

\[|I^a \phi(v)| \leq \sup_{|x| \leq |a|+|v|} |D \phi(x)| |a|, \quad |J^a \phi(v)| \leq \sup_{|x| \leq |a|+|v|} |D^2 \phi(x)||a|^2, \] \hspace{1cm} (2.13)

where \(|D \phi|^2 := \sum_{i=1}^{M} |D_i \phi|^2 \) and \(|D^2 \phi|^2 := \sum_{i=1}^{M} \sum_{j=1}^{M} |D_i D_j \phi|^2 \). Since \((X_t)_{t \geq 0} \) is a cadlag process, \(R := \sup_{t \leq T} |X_t| \) is a finite random variable for each fixed \(T \). Thus, we have

\[\int_{0}^{T} \int_{Z} |J^{h_t(z)} \phi(X_{t-})| \mu(dz) \mu(dt) \leq \sup_{|x| \leq R+K} |D^2 \phi(x)| \int_{0}^{T} \int_{Z} |h_t(z)|^2 \mu(dz) \mu(dt) < \infty \] \hspace{1cm} (2.14)

and

\[\int_{0}^{T} \int_{Z} |J^{h_t(z)} \phi(X_{t-})|^2 \mu(dz) \mu(dt) \leq \sup_{|x| \leq R+K} |D^2 \phi(x)|^2 K^2 \int_{0}^{T} \int_{Z} |h_t(z)|^2 \mu(dz) \mu(dt) < \infty \] \hspace{1cm} (2.15)

almost surely. Clearly,

\[\int_{0}^{T} \int_{Z} |D_i \phi(X_{t-}) h^i_t(z)| \mu(dz) \mu(dt) \leq \sup_{|x| \leq R} |D \phi(x)|^2 \int_{0}^{T} \int_{Z} |h_t(z)|^2 \mu(dz) \mu(dt) < \infty \ (a.s.). \]

Hence, by virtue of (2.15) the stochastic Itô integral

\[\int_{0}^{t} \int_{Z} \phi(X_{s-} + h_t(z)) - \phi(X_s) \tilde{\pi}(dz, ds) = \int_{0}^{t} \int_{Z} I^{h_t(z)} \phi(X_{s-}) \tilde{\pi}(dz, ds) \]

can be decomposed as

\[\int_{0}^{t} \int_{Z} I^{h_t(z)} \phi(X_{s-}) \tilde{\pi}(dz, ds) = \int_{0}^{t} \int_{Z} J^{h_t(z)} \phi(X_{s-}) \tilde{\pi}(dz, ds) \]
+ \int_0^t \int_Z D_t \phi(X_{s-}) h_s^i(z) \tilde{\pi}(dz, ds),

and by virtue of (2.14) and (2.15),

\[
\int_0^t \int_Z J h_s(z) \phi(X_{s-}) \tilde{\pi}(dz, ds) + \int_0^t \int_Z J h_s(z) \phi(X_{s-}) \mu(dz) ds = \int_0^t \int_Z D_t \phi(X_{s-}) h_s(z) \tilde{\pi}(dz, ds) + \int_0^t \int_Z J h_s(z) \phi(X_{s-}) \pi(dz, ds).
\]

Hence,

\[
\int_0^t \int_Z J h_s(z) \phi(X_{s-}) \tilde{\pi}(dz, ds) + \int_0^t \int_Z J h_s(z) \phi(X_{s-}) \mu(dz) ds = \int_0^t \int_Z D_t \phi(X_{s-}) h_s(z) \tilde{\pi}(dz, ds) + \int_0^t \int_Z J h_s(z) \phi(X_{s-}) \pi(dz, ds),
\]

which shows that Theorem 2.3 holds under the additional condition that \(|h|\) is bounded. To prove the theorem in full generality, we approximate \(h\) by \(h^{(n)} = (h^{1(n)}, \ldots, h^{M(n)})\), where \(h_t^n = -n \vee h_t^1 \wedge n\) for integers \(n \geq 1\), and define

\[
X_t^{(n)} := X_0 + \int_0^t f_s ds + \int_0^t g^r_s d\omega^r_s + \int_0^t \int_Z \tilde{\pi}(dz, ds)
\]

\[
+ \int_0^t \int_Z h_s^{(n)}(z) \tilde{\pi}(dz, ds), \quad t \in [0, T].
\]

Clearly, for all \((\omega, t, z)\)

\[
|h^{(n)}| \leq \min(|h|, nM) \quad \text{and} \quad h^{(n)} \to h \quad \text{as} \quad n \to \infty.
\]

Therefore, Theorem 2.3 for \(X^{(n)}\) holds, and

\[
\lim_{n \to \infty} \int_0^T \int_Z |h_t^{(n)}(z) - h_t(z)|^2 \mu(dz) dt = 0 \quad \text{(a.s.)},
\]

which implies

\[
\sup_{t \leq T} |X_t^{(n)} - X_t| \to 0 \quad \text{in probability as} \quad n \to \infty.
\]

Thus, there is a strictly increasing subsequence of positive integers \((n_k)_{k=1}^{\infty}\) such that

\[
\lim_{k \to \infty} \sup_{t \leq T} |X_t^{(n_k)} - X_t| = 0 \quad \text{(a.s.)},
\]

\(\Box\) Springer
which implies

\[\rho := \sup_{k \geq 1} \sup_{t \leq T} |X_t^{(nk)}| < \infty \text{ (a.s.)}. \]

Hence, it is easy to pass to the limit \(k \to \infty \) in \(\phi(X_t^{(nk)}) \) and in the first two integral terms in the equation for \(\phi(X_t^{(nk)}) \) in Theorem 2.3. To pass to the limit in the other terms in this equation notice that since \(\pi(dz, dt) \) is a counting measure of a point process, from the condition for \(\bar{h} \) in (2.3) we get

\[\xi := \pi - \text{ess sup} |\bar{h}| < \infty \text{ (a.s.)}, \tag{2.16} \]

where \(\pi - \text{ess sup} \) denotes the essential supremum operator with respect to the measure \(\pi(dz, dt) \) over \(Z \times [0, T] \). Similarly, from the condition for \(h \) we have

\[\eta := \pi - \text{ess sup} |h| < \infty \text{ (a.s.)}. \tag{2.17} \]

This can be seen by noting that for the sequence of predictable stopping times

\[\tau_j = \inf \left\{ t \in [0, T] : \int_0^t \int_Z |h_s(z)|^2 \mu(dz) \, ds \geq j \right\}, \quad j = 1, 2, \ldots, \]

we have

\[E \int_0^T \int_Z 1_{t \leq \tau_j} |h_t(z)|^2 \pi(dz, dt) = E \int_0^T \int_Z 1_{t \leq \tau_j} |h_t(z)|^2 \mu(dz) \, dt \leq j < \infty, \]

which gives

\[\int_0^T \int_Z |h_t(z)|^2 \pi(dz, dt) < \infty \text{ almost surely on } \Omega_j = \{ \omega \in \Omega : \tau_j \geq T \} \text{ for each } j \geq 1. \]

Since \((\tau_j)_{j=1}^\infty \) is an increasing sequence converging to infinity, we have \(P(\cup_{j=1}^\infty \Omega_j) = 1 \), i.e.

\[\int_0^T \int_Z h_t^2(z) \pi(dz, dt) < \infty \text{ (a.s.)}, \tag{2.18} \]

which implies (2.17). By (2.16) and the first inequality in (2.13), we have

\[|I_{\bar{h}_t(z)}(X_t^{(nk)})| + |I_{\bar{h}_t(z)}(X_t)\phi(X_t-)| \leq 2 \sup_{|x| \leq \rho + \xi} |D\phi(x)||\bar{h}_t(z)| < \infty \]
almost surely for \(\pi(dz, dt) \)-almost every \((z, t) \in Z \times [0, T]\). Hence, by Lebesgue’s theorem on dominated convergence we get

\[
\lim_{k \to \infty} \int_0^T \int_Z |I^h_s(z) \phi(X_s^{(nk)}) - I^h_s(z) \phi(X_s^{-})| \pi(dz, ds) = 0 \quad \text{(a.s.)},
\]

which implies that, for \(k \to \infty \),

\[
\int_0^t \int_Z I^h_s(z) \phi(X_s^{(nk)}) \pi(dz, ds) \to \int_0^t \int_Z I^h_s(z) \phi(X_s^{-}) \pi(dz, ds)
\]

almost surely, uniformly in \(t \in [0, T] \). Clearly,

\[
|D_t \phi(X_t^{(nk)})h_t^{i(nk)}(z)|^2 + |D_t \phi(X_t^{-})h_t^i(z)|^2 \leq 2 \sup_{|x| \leq \rho} |D \phi(x)|^2 |h_t(z)|^2
\]

almost surely for all \((z, t) \in Z \times [0, T]\). Hence, by Lebesgue’s theorem on dominated convergence,

\[
\lim_{k \to \infty} \int_0^T \int_Z |D_t \phi(X_t^{(nk)})h_t^{i(nk)}(z) - D_t \phi(X_t^{-})h_t^i(z)|^2 \mu(dz) dt = 0 \quad \text{(a.s.)},
\]

which implies that, for \(k \to \infty \),

\[
\int_0^t \int_Z D_t \phi(X_t^{(nk)})h_t^{i(nk)}(z) \bar{\pi}(dz, ds) \to \int_0^t \int_Z D_t \phi(X_t^{-})h_t^i(z) \bar{\pi}(dz, ds)
\]

in probability, uniformly in \(t \in [0, T] \). Finally, note that by using the second inequality in (2.13) together with (2.17) we have

\[
|J^h_t^{i(nk)}(z) \phi(X_t^{(nk)})| + |J^h_t(z) \phi(X_t^{-})| \leq 2 \sup_{|x| \leq \rho + \eta} |D^2 \phi(x)||h_t(z)|^2
\]

almost surely for \(\pi(dz, dt) \)-almost every \((z, t) \in Z \times [0, T]\). Hence, taking into account (2.18), by Lebesgue’s theorem on dominated convergence we obtain

\[
\lim_{k \to \infty} \int_0^T \int_Z |J^h_t^{i(nk)}(z) \phi(X_t^{(nk)}) - J^h_t(z) \phi(X_t^{-})| \pi(dz, dt) = 0 \quad \text{(a.s.)},
\]

which implies that, for \(k \to \infty \),

\[
\int_0^t \int_Z J^h_t^{i(nk)}(z) \phi(X_t^{(nk)}) \pi(dz, ds) \to \int_0^t \int_Z J^h_t(z) \phi(X_t^{-}) \pi(dz, ds)
\]

almost surely, uniformly in \(t \in [0, T] \) for every \(T > 0 \), which finishes the proof of the theorem.
Remark 2.2 One can give a different proof of Theorem 2.3 by showing that for finite measures μ^k, the Itô formula for general semimartingales, Theorem VIII.27 in [6], applied to $(X_t)_{t \geq 0}$, can be rewritten as Eq. (2.12). Hence, by an approximation procedure one can get the general case of σ-finite measures μ^k.

Corollary 2.4 Let conditions (2.2) and (2.3) hold. Then for any $p \geq 2$ the process $|X_t|^p$ is a semimartingale such that

$$\begin{align*}
|X_t|^p &= |\psi|^p + p \int_0^t |X_s|^{p-2} X^i_s \tilde{g}^i_s \, dv^r_s + \frac{p}{2} \int_0^t \left(2|X_s|^{p-2} X^i_s f^i_s + (p - 2)|X_s|^{p-4} |X^i_s g^i_s|^2 l^2_s + \sum_{i=1}^M |X_s|^{p-2} |g^i_s|^2 l^2_s \right) ds \\
&\quad + \sum_{k=1}^m p \int_0^t \int_{Z_k} |X_{s-}|^{p-2} X^i_{s-} h^i_k(z) \tilde{\pi}^k(dz, ds) \\
&\quad + \sum_{k=1}^m \int_0^t \int_{Z_k} (|X_{s-} + \tilde{h}^k_s|^p - |X_{s-}|^p) \pi^k(dz, ds) \\
&\quad + \sum_{k=1}^m \int_0^t \int_{Z_k} (|X_{s-} + h^k_s|^p - |X_{s-}|^p - p|X_{s-}|^{p-2} X^i_{s-} h^i_k) \pi^k(dz, ds)
\end{align*}$$

(2.19)

almost surely for all $t \geq 0$, where, and through the paper, the convention $0/0 := 0$ is used whenever it occurs.

Proof Notice that $\phi(x) = |x|^p$ for $p \geq 2$ belongs to $C^2(\mathbb{R}^M)$ with

$$D_i |x|^p = p|x|^{p-2} x^i, \quad D_j D_i |x|^p = p(p - 2)|x|^{p-4} x^i x^j + p|x|^{p-2} \delta_{ij},$$

where $\delta_{ij} = 1$ for $i = j$ and $\delta_{ij} = 0$ for $i \neq j$. Hence, it is easy to see that Theorem 2.3 applied to $\phi(x) = |x|^p$ gives the corollary.

The above corollary will be used to obtain an Itô’s formulas for jump processes in L_p-spaces presented in the next section.

3 Itô formula in L_p spaces

Itô formulas in infinite-dimensional spaces play important roles in studying stochastic PDEs. Our theorem below is motivated by applications in the theory of stochastic integro-differential equations arising in nonlinear filtering theory of jump diffusions. To present it first we need to introduce some notation, where T is a fixed positive number, and $d \geq 1$ and $M \geq 1$ are fixed integers.

The Borel σ-algebra of a topological space V is denoted by $\mathcal{B}(V)$. For $p, q \geq 1$ we denote by $L_p = L_p(\mathbb{R}^d, \mathbb{R}^M)$ and $\mathcal{L}_q = \mathcal{L}_q(\mathbb{Z}, \mathbb{R}^M)$ the Banach spaces of \mathbb{R}^M-valued Borel-measurable functions of $f = (f^i(x))_{i=1}^M$ and \mathbb{Z}-measurable functions.
\[h = (h^i(z))_{i=1}^M \text{ of } x \in \mathbb{R}^d \text{ and } z \in Z, \] respectively, such that

\[|f|^p_{L_p} = \int_{\mathbb{R}^d} |f(x)|^p \, dx < \infty \quad \text{and} \quad |h|^q_{\mathcal{L}_q} = \int_Z |h(z)|^q \, \mu(dz) < \infty. \]

The notation \(\mathcal{L}_{p,q} \) means the space \(\mathcal{L}_p \cap \mathcal{L}_q \) with the norm

\[|v|_{\mathcal{L}_{p,q}} = \max(|v|_{\mathcal{L}_p}, |v|_{\mathcal{L}_q}) \quad \text{for} \quad v \in \mathcal{L}_p \cap \mathcal{L}_q. \]

As usual, \(W^1_p \) denotes the space of functions \(u \in L_p \) such that \(D_i u \in L_p \) for every \(i = 1, 2, \ldots, d \), where \(D_i v \) means the generalised derivative of \(v \) in \(x^i \) for locally integrable functions \(v \) on \(\mathbb{R}^d \). The norm of \(u \in W^1_p \) is defined by

\[|u|_{W^1_p} = |u|_{L_p} + \sum_{i=1}^d |D_i u|_{L_p}. \]

We use the notation \(L_p = L_p(\ell_2) \) for \(L_p(\mathbb{R}^d, \ell_2) \), the space of Borel-measurable functions \(g = (g^i) \) on \(\mathbb{R}^d \) with values in \(\ell_2 \) such that

\[|g|^p_{L_p} = \int_{\mathbb{R}^d} |g(x)|^p_{\ell_2} \, dx < \infty. \]

For \(p, q \in [0, \infty) \), we denote by \(L_p = L_p(\mathcal{L}_{p,q}) \) and \(L_p = L_p(\mathcal{L}_q) \) the Banach spaces of Borel-measurable functions \(h = (h^i(x, z)) \) and \(\tilde{h} = (\tilde{h}^i(x, z)) \) of \(x \in \mathbb{R}^d \) with values in \(\mathcal{L}_{p,q} \) and \(\mathcal{L}_q \), respectively, such that

\[|h|^p_{L_p} = \int_{\mathbb{R}^d} |h(x, \cdot)|^p_{\mathcal{L}_{p,q}} \, dx < \infty \quad \text{and} \quad |\tilde{h}|^p_{L_p} = \int_{\mathbb{R}^d} |\tilde{h}(x, \cdot)|^p_{\mathcal{L}_q} \, dx < \infty. \]

For \(p \geq 2 \) and a separable real Banach space \(V \), we denote by \(\mathbb{L}_p = \mathbb{L}_p(V) \) the space of predictable \(V \)-valued functions \(f = (f_t) \) of \((\omega, t) \in \Omega \times [0, T] \) such that

\[|f|^p_{\mathbb{L}_p} = E \int_0^T |f_t|^p_V \, dt < \infty. \]

In the sequel, \(V \) will be \(L_p(\mathbb{R}^d, \mathbb{M}), L_p(\mathbb{R}^d, \ell_2) \) or \(L_p(\mathbb{R}^d, \mathcal{L}_{p,2}) \). When \(V = L_p(\mathbb{R}^d, \mathcal{L}_{p,2}) \), then for \(\mathbb{L}_p(V) \) the notation \(\mathbb{L}_{p,2} \) is also used. For \(\varepsilon \in (0, 1) \) and locally integrable functions \(v \) of \(x \in \mathbb{R}^d \), we use the notation \(v^{(\varepsilon)} \) for the mollifications of \(v \),

\[v^{(\varepsilon)}(x) = \int_{\mathbb{R}^d} v(x-y)k_\varepsilon(y) \, dy, \quad x \in \mathbb{R}^d, \quad (3.1) \]

where \(k_\varepsilon(y) = \varepsilon^{-d}k(y/\varepsilon) \) for \(y \in \mathbb{R}^d \) with a fixed function \(k \in C_0^\infty \) of unit integral. If \(v \) is a locally Bochner integrable function on \(\mathbb{R}^d \), taking values in a Banach space, then the mollification of \(v \) is defined as (3.1) in the sense of the Bochner integral.
Recall that the summation convention with respect to integer-valued indices is used throughout the paper.

Assumption 3.1 Let \(\psi^i \) be an \(L_p(\mathbb{R}^d, \mathbb{R}) \)-valued \(\mathcal{F}_0 \)-measurable random variable, \((u^i_t)_{t \in (0, T)}\) be a progressively measurable \(L_p \)-valued process and let \(f^{i\alpha}, g^i = (g^{i\alpha})_{r=1}^{\infty} \) and \(h^i \) be predictable functions on \(\Omega \times [0, T] \times Z \) with values in \(L_p(\mathbb{R}^d, \mathbb{R}) \), \(L_p(\mathbb{R}^d, l_2) \) and \(L_p(\mathbb{R}^d, L_{p,2}) \), respectively, for each \(i = 1, 2, \ldots, M \) and \(\alpha = 0, 1, \ldots, d \), such that the following conditions are satisfied for each \(i = 1, 2, \ldots, M \):

(i) We have \(u^i_t \in W^1_p \) for \(P \otimes dt \)-a.e. \((\omega, t) \in \Omega \times [0, T] \) such that

\[
\int_0^T |u^i_t|^p_{W^1_p} dt < \infty \quad \text{(a.s.)}. \tag{3.2}
\]

(ii) Almost surely

\[
\mathcal{K}_p^M(T) := \sum_{i=1}^M \int_0^T \int_{\mathbb{R}^d} \sum_{\alpha} |f^{i\alpha}_t(x)|^p + |g^i_t(x)|^p_{l_2} + |h^i_t(x)|^p_{L^p_{p,2}} dx dt < \infty. \tag{3.3}
\]

(iii) For every \(\varphi \in C^\infty_0(\mathbb{R}^d) \), we have

\[
(u^i_t, \varphi) = (\psi^i, \varphi) + \int_0^t (f^{i\alpha}_s, D^*_\varphi) ds + \int_0^t (g^{i\alpha}_s, \varphi) dw^r_s \\
+ \int_0^t \int_Z (h^i(z), \varphi) \tilde{\pi}(dz, ds) \tag{3.4}
\]

for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T] \), where \(D^*_\alpha = -D_\alpha \) for \(\alpha = 1, 2, \ldots, d \) and \(D^*_\alpha \) is the identity operator for \(\alpha = 0 \).

In Eq. (3.4), and later on, we use the notation \((v, \phi)\) for the Lebesgue integral over \(\mathbb{R}^d \) of the product \(v \phi \) for functions \(v \) and \(\phi \) on \(\mathbb{R}^d \) when their product and its integral are well defined. Below \(u \) stands for \((u^1, \ldots, u^M)\).

Theorem 3.1 Let Assumption 3.1 hold with \(p \geq 2 \). Then there is an \(L_p(\mathbb{R}^d, \mathbb{R}^M) \)-valued adapted c.d.l.g. process \(\bar{u} = (\bar{u}^i_t)_{t \in [0, T]} \) such that Eq. (3.4), with \(\bar{u} \) in place of \(u \), holds for each \(\varphi \in C^\infty_0(\mathbb{R}^d) \) almost surely for all \(t \in [0, T] \). Moreover, \(u = \bar{u} \) for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T] \), and almost surely

\[
|\bar{u}^i_t|_{L_p}^p = |\psi^i|^p_{L_p} + p \int_0^t \int_{\mathbb{R}^d} |\bar{u}^i_s|^p - 2 \bar{u}^i_s g^{i\alpha}_s dx dw^r_s \\
+ \frac{p}{2} \int_0^t \int_{\mathbb{R}^d} 2|u^i_s|^p - 2 |u^i_s|^{p-2} D_k u^i_s f^{i\alpha}_s \\
- (p-2)|u^i_s|^{p-4} u^{i\alpha}_s f^{i\alpha}_s D_k |u^i_s|^2 dx ds \\
+ \frac{p}{2} \int_0^t \int_{\mathbb{R}^d} (p-2)|u^i_s|^{p-4} |u^{i\alpha}_s g^{i\alpha}_s|_{l_2}^2 + |u^i_s|^{p-2} \sum_{i=1}^M |g^{i\alpha}_s|_{l_2}^2 dx ds
\]
for all $t \in [0, T]$, where \bar{u}_{s-} means the left-hand limit in L_p of \bar{u} at s. If $f^i = 0$ for $i = 1, 2, \ldots, d$, then the above statements hold if Assumption 3.1 is satisfied with (i) replaced in it with the weaker condition that

$$
\int_0^T |u^i_t|^p \, dt < \infty \quad \text{(a.s.)}. \tag{3.6}
$$

Notice that for $M = 1$ Eq. (3.5) has the simpler form

$$
|\bar{u}^i_t|_{L_p^p} = |\psi^i|^p_{L_p} + p \int_0^t \int_{\mathbb{R}^d} |u^s|^p - 2u^s g^s_{x} \, dx \, du^s_s \tag{3.7}
$$

Theorem 3.1 generalises Theorem 2.1 from [14], and we use ideas and methods from [14] to prove it. The basic idea in [14] adapted to our situation can be explained as follows: Assume first that $f^{i\alpha} = 0$ for $\alpha = 1, 2, \ldots, d$, and suppose from (3.4) we could show the existence of a random field $\bar{u} = \bar{u}(t, x)$ and suitable modifications of the integrals of $f^i := f^i_s(x), \ g = g^i_{s}(x)$ and $h^i_s(x, z)$ against ds, dw_s^r and $\bar{\pi}(dz, ds)$, respectively, satisfying appropriate measurability conditions such that the equation

$$
\bar{u}^i_t(x) = \psi^i_t(x) + \int_0^t f^i_s(x) \, ds + \int_0^t g^i_{s}(x) \, dw^r_s + \int_0^t h^i_s(x, z) \, \bar{\pi}(dz, ds) \tag{3.8}
$$

holds for every $x \in \mathbb{R}^d$ and $i = 1, 2, \ldots, M$. Then applying Itô’s formula (2.19) from Corollary 2.4 to $|\bar{u}^i_t(x)|^p = (\sum |\bar{u}^i_t(x)|^2)^{p/2}$ for every $x \in \mathbb{R}^d$, then integrating over \mathbb{R}^d, and finally, using suitable stochastic Fubini theorems, we could obtain (3.5) when $f^{i\alpha} = 0$ for $\alpha \geq 1$. When $f^{i\alpha} \neq 0$, we could take

$$
\bar{u}^{i(\varepsilon)}, \ \psi^{i(\varepsilon)}, \ f^{i(\varepsilon)} := f^{i0(\varepsilon)} + \sum_{k=1}^d D_k f^{ik(\varepsilon)}, \ g^{i(\varepsilon)} \quad \text{and} \quad h^{i(\varepsilon)}
$$
instead of \(u^i, \psi^i, f^i, g^{ir} \) and \(h^i \) above, respectively, to apply the theorem in the special case, and let \(\varepsilon \to 0 \) in the corresponding Itô formula after integrating by parts in the terms containing \(D_k f^{ik(\varepsilon)} \) for \(k = 1, \ldots, d \). Notice that we can formally obtain Eq. (3.8) from (3.4) with \(f^1 = \cdots = f^d = 0 \) and a suitable process \(\tilde{u} \) in place of \(u \), by substituting \(\delta_x \), the Dirac delta at \(x \), in place of \(\varphi \). Clearly, we cannot substitute \(\delta_x \), but we can substitute approximations \(k \varepsilon (x - \cdot) \) of it to get

\[
\tilde{u}^{i(\varepsilon)}_t(x) = \psi^{i(\varepsilon)}_t(x) + \int_0^t f^{i(\varepsilon)}_s(x) \, ds + \int_0^t \delta^{ir(\varepsilon)}_s(x) \, dw^r_s + \int_0^t \int_Z h^{i(\varepsilon)}_s(x, z) \tilde{\pi}(dz, ds)
\]

(3.9)
in place of (3.8). Therefore, the above strategy is modified as follows: One chooses suitable representative of the stochastic integrals in (3.9) so that one could apply Itô’s formula (2.19) to \(|\tilde{u}^{i(\varepsilon)}_t(x)|^p \) for each \(x \in \mathbb{R}^d \), integrate the obtained formula over \(\mathbb{R}^d \), then intercal the order of the integrals, and finally let \(\varepsilon \to 0 \) to prove Eq. (3.5) when \(f^{ik} = 0 \) for \(i = 1, 2, \ldots, M \) and \(k = 1, 2, \ldots, d \).

To implement the above idea we fix a \(p \geq 2 \) and introduce a class of functions \(U_p \), the counterpart of the class \(U_p \) given in [14]. Let \(U_p \) denote the set of \(\mathbb{R}^M \)-valued functions \(u = u_t(x) = u_t(\omega, x) \) on \(\Omega \times [0, T] \times \mathbb{R}^d \) such that

(i) \(u \) is \(\mathcal{F} \otimes \mathcal{B}([0, T]) \otimes \mathcal{B}(\mathbb{R}^d) \)-measurable,
(ii) for each \(x \in \mathbb{R}^d \), \(u_t(x) \) is \(\mathcal{F}_t \)-adapted,
(iii) \(u_t(x) \) is cadlag in \(t \in [0, T] \) for each \((\omega, x) \),
(iv) \(u_t(\omega, \cdot) \) as a function of \((\omega, t) \) is \(L_p \)-valued, \(\mathcal{F}_t \)-adapted and cadlag in \(t \) for every \(\omega \in \Omega \).

The following lemmas present suitable versions of Lebesgue and Itô integrals with values in \(L_p \). The first two of them are obvious corollaries of Lemmas 4.3 and 4.4 in [14].

Lemma 3.2 Let \(f \in \mathbb{L}_p(V) \) for \(V = L_p(\mathbb{R}^d, \ell_2) \). Then there exists a function \(m \in U_p \) such that for each \(\varphi \in C_0^\infty \) almost surely

\[
(m_t, \varphi) = \int_0^t (f_s, \varphi) \, ds
\]

holds for all \(t \in [0, T] \). Furthermore, we have

\[
E \int_{\mathbb{R}^d} \sup_{t \leq T} |m_t(x)|^p \, dx \leq NT^{p-1}E \int_0^T |f_s|^p_{L_p} \, ds,
\]

with a constant \(N = N(p, M) \).

Lemma 3.3 Let \(g \) be from \(\mathbb{L}_p(V) \) for \(V = L_p(\mathbb{R}^d, \ell_2) \). Then there exists a function \(a \in U_p \) such that for each \(\varphi \in C_0^\infty \) almost surely

\[
(a_t, \varphi) = \sum_{r=1}^{\infty} \int_0^t (g^r_s, \varphi) \, dw^r_s
\]

\(\odot \) Springer
holds for all $t \in [0, T]$. Furthermore, we have

$$E \int_{\mathbb{R}^d} \sup_{t \leq T} |a_t(x)|^p \, dx \leq NT^{(p-2)/2} E \int_0^T |g_s|_{L_p}^p \, ds$$

with a constant $N = N(p, M)$.

The proof of the following lemma can be found in [10].

Lemma 3.4 Let $h \in L_{p,2}$. Then there exists a function $b \in U_p$ such that for each real-valued $\varphi \in L_q(\mathbb{R}^d)$ with $q = p/(p - 1)$, almost surely

$$E \int_0^T \int_Z (h_s, \varphi) \tilde{\pi}(dz, ds)$$

for all $t \in [0, T]$, and

$$E \sup_{t \leq T} |(b_t, \varphi)| \leq 3T^{(p-2)/(2p)} |\varphi|_{L_p} \left(E \int_0^T |h_t|_{L_p(L_2)}^p \, dt \right)^{1/p}. \quad (3.10)$$

Furthermore,

$$E \int_{\mathbb{R}^d} \sup_{t \leq T} |b_t(x)|^p \, dx \leq NE \int_0^T |h_t|_{L_p(L_2)}^p \, dt + NT^{(p-2)/2} E \int_0^T |h_t|_{L_p(L_2)}^p \, dt$$

$$\leq N'|h|^p_{L_{p,2}} \quad (3.12)$$

with constants $N = N(p, M)$ and $N' = N'(p, M, T)$.

We are now in a position to sketch the proof of Theorem 3.1. Technical details can be found in [10].

Proof of Theorem 3.1 (Sketch) By using standard stopping time arguments, we may assume $E|\psi^i|_{L_p}^p < \infty$ and that

$$E \int_0^T |u_t^i|_{W_p}^p \, dt < \infty, \quad EK_p^p(T) < \infty \quad \text{and} \quad E \int_0^T |u_t^i|_{L_p}^p \, dt < \infty$$

hold in place of (3.2), (3.3) and (3.6), respectively, for every $i = 1, 2, \ldots, M$. We prove first the last sentence of the theorem. We have $f^{ik} = 0$ for $i = 1, 2, \ldots, M$, $k = 1, 2, \ldots, d$ and use the notation $f^i := f^{i0}$. By Lemmas 3.2, 3.3 and 3.4, there exist $a = (a^i)$ and $b = (b^i)$ and $m = (m^i)$ in U_p such that for each $\varphi \in C_0^\infty$ almost surely

$$(a^i_t, \varphi) = \int_0^t (f^i_s, \varphi) \, ds, \quad (b^i_t, \varphi) = \int_0^t (g^{ir}_s, \varphi) \, dw^r_s$$
and

\[(m^i_t, \varphi) = \int_0^t \int_Z (h^i_s, \varphi) \tilde{\pi}(dz, ds)\]

for all \(t \in [0, T]\) and \(i = 1, \ldots, M\). Thus, \(a + b + m\) is an \(L_P\)-valued adapted cadlag process such that for \(\tilde{u}_t := \psi + a_t + b_t + m_t\) we have \((\tilde{u}_t, \varphi) = (u_t, \varphi)\) for each \(\varphi \in C_0^\infty\) for \(P \otimes dt\) almost every \((\omega, t) \in \Omega \times [0, T]\). Hence, by taking a countable set \(\Phi \subset C_0^\infty\) such that \(\Phi\) is dense in \(L_q\), we get that \(\tilde{u} = u\) for \(P \otimes dt\) almost everywhere as \(L_P\)-valued functions. Moreover, for each \(\varphi \in C_0^\infty\)

\[(\tilde{u}^i_t, \varphi) = (\psi, \varphi) + \int_0^t (f^i_s, \varphi) ds + \int_0^t (g^i_r, \varphi) dw^r_s + \int_0^t \int_Z (h^i_s(z), \varphi) \tilde{\pi}(dz, ds)\]

(3.13)

almost surely for all \(t \in [0, T], i = 1, 2, \ldots, M\), since on both sides we have cadlag processes. By the estimates of Lemmas 3.2, 3.3 and 3.4,

\[
E \int_{\mathbb{R}^d} \sup_{t \leq T} |u_t(x)|^p\ dx
\leq N \left(E|\psi|^p_{L_P} + \int f^P_{L_p} + |g_s|^p_{L_p} + |h|^p_{L_{p,2}} \right) < \infty, \tag{3.14}
\]

where \(N = N(p, M, T)\) is a constant. Substituting \(k_\varepsilon(x - \cdot)\) in place of \(\varphi\) in Eq. (3.13), for \(\varepsilon > 0\) and \(x \in \mathbb{R}^d\) we have (3.9) almost surely for all \(t \in [0, T]\) for \(i = 1, 2, \ldots, M\). Hence, by Corollary 2.4 for each \(x \in \mathbb{R}^d\) we have almost surely

\[
|\tilde{u}^{(\varepsilon)}_t(x)|^p = |\psi^{(\varepsilon)}(x)|^p + \int_0^t p|\tilde{u}^{(\varepsilon)}_{s-}(x)|^{p-2} \tilde{u}^{(\varepsilon)}_{s-}(x) g^{i(\varepsilon)}_s(x) dw^r_s
+ \int_0^t \int_Z (p - 2)|\tilde{u}^{(\varepsilon)}_{s-}(x)|^{p-4} \tilde{u}^{(\varepsilon)}_{s-}(x) g^{i(\varepsilon)}_s(x) d\pi(dz, ds)
+ \int_0^t \int_Z J_h^{(\varepsilon)}(x, z) |\tilde{u}^{(\varepsilon)}_{s-}(x)|^p \pi(dz, ds), \tag{3.15}
\]

for all \(t \in [0, T]\), where the notation

\[
J^a|v|^p := |v + a|^p - |v|^p - a^i D_i|v|^p = |v + a|^p - |v|^p - pa^i|v|^{p-2} v^i
\]

is used for vectors \(a = (a^1, \ldots, a^M) := \tilde{u}^{(\varepsilon)}_{s-}(x)\) and \((v^1, \ldots, v^M) := h^{(\varepsilon)}_s(x, z) \in \mathbb{R}^M\). Furthermore, integrating (3.15) over \(\mathbb{R}^d\) and using deterministic and stochastic
Fubini theorems, see [10], we get

\[
|u^{(e)}_t|_{L^p}^p = |\psi^{(e)}|_{L^p}^p + \int_0^t \int_{\mathbb{R}^d} p|u^{(e)}_s|^{p-2}u^{(e)}_s f^{(e)}_i ds dw^r_s \\
+ \frac{p}{2} \int_0^t \int_{\mathbb{R}^d} 2|u^{(e)}_s|^{p-2}u^{(e)}_s f^{(e)}_i ds + (p-2)|u^{(e)}_s|^{p-4}|u^{(e)}_s g^{(e)}_s|^2 ds \\
+ |u^{(e)}_t|^{p-2}g^{(e)}_s l_2 ds \\
+ \int_0^t \int_{\mathbb{R}^d} p|u^{(e)}_{s^-}|^{p-2}u^{(e)}_{s^-} h^{(e)}_s ds \\
+ \int_0^t \int_{\mathbb{R}^d} J_h^{(e)} |u^{(e)}_{s^-}|^p ds \pi (dz, ds)
\]

(3.16)

almost surely for all \(t \in [0, T] \). Finally, by taking \(\varepsilon \to 0 \) in (3.16), we obtain (3.5) with \(f^{ik} = 0 \) for \(i = 1, 2, \ldots, M \) and \(k = 1, 2, \ldots, d \).

Let us prove now the other statements of the theorem. By taking \(\varphi^{(e)} \) in place of \(\varphi \) in Eq. (3.4), we get

\[
(u^{i(e)}_t, \varphi) = (\psi^{i(e)}, \varphi) + \int_0^t (f^{i(e)}_s, \varphi) ds + \int_0^t (g^{i(e)}_s, \varphi) dw^r_s \\
+ \int_0^t \int_{\mathbb{R}^d} (h^{i(e)}_s, \varphi) \hat{\pi} (dz, ds)
\]

(3.17)

for \(P \otimes dt \) almost every \((\omega, t) \in \Omega \times [0, T] \) for each \(\varphi \in C^\infty_0 \), \(i = 1, 2, \ldots, m \), where

\[
f^{i(e)}_s := \sum_{k=1}^d D_k f^{i(k)(e)}_s + f^{i(0)(e)}_s, \quad i = 1, 2, \ldots, M, \quad k = 1, 2, \ldots, d.
\]

Hence, by virtue of what we have proved above we have an \(L^p \)-valued adapted cadlag process \(\tilde{u}^{(e)} = (\tilde{u}^{i(e)}) \) such that for each \(\varphi \in C^\infty_0 \) almost surely (3.17) holds with \(\tilde{u}^{i(e)} \) in place of \(u^{i(e)} \) for all \(t \in [0, T] \). In particular, for each \(\varphi \in C^\infty_0 \) we have \((u^{(e)}, \varphi) = (\tilde{u}^{e}, \varphi) \) for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T] \). Thus, \(u^{(e)} = \tilde{u}^{e} \), as \(L^p \)-valued functions, for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T] \), and almost surely (3.16) holds for all \(t \in [0, T] \). Moreover, using that by integration by parts

\[
\int_{\mathbb{R}^d} |u^{(e)}_s|^{p-2}u^{(e)}_s D_k f^{i(k)(e)}_s ds = - \int_{\mathbb{R}^d} |u^{(e)}_s|^{p-2}f^{i(k)(e)}_s D_k u^{(e)}_s ds \\
- \frac{p-2}{2} \int_{\mathbb{R}^d} |u^{(e)}_s|^{p-4}D_k |u^{(e)}_s|^2 f^{i(k)(e)}_s u^{(e)}_s ds
\]

for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T] \), we get

\[
|\tilde{u}^{e}_t|_{L^p}^p = |\psi^{(e)}|_{L^p}^p + p \int_0^t \int_{\mathbb{R}^d} |\tilde{u}^{e}_s|^{p-2}\tilde{u}^{e}_s g^{(e)}_s ds dw^r_s
\]
\begin{align*}
&+ p \int_0^t \int_{\mathbb{R}^d} |\tilde{u}_s|^p - 2 |\tilde{u}_s| \int_0^s f_{ik}(e) D_k u_s^{(e)} \, dx \, ds \\
&- \frac{p}{2} \int_0^t \int_{\mathbb{R}^d} (p - 2) |u_s^{(e)}|^{p-4} D_k |u_s^{(e)}|^2 f_{ik}(e) u_s^{(e)} \, dx \, ds \\
&+ \int_0^t \int_{\mathbb{R}^d} (p - 2) |u_s^{(e)}|^{p-4} |\tilde{u}_s - \delta_s|^2 \, ds + |\tilde{u}_s - \delta_s|^{p-2} g_s^{(e)}_i \, dx \, ds \\
&+ p \int_0^t \int_{\mathbb{R}^d} |\tilde{u}_s - \delta_s|^p \pi (dz, ds) \\
&\quad = (\psi^{(e)}, \varphi) + \int_0^t (f_s^{i(0)}(e), \varphi) \, ds - \int_0^t (f_s^{ik}(e), D_k \varphi) \, ds + \int_0^t (g_s^{ir}(e), \varphi) \, dw_s^{r} \\
&\quad + \int_0^t \int_{\mathbb{R}^d} (h_s^{(e)}, \varphi) \, dz \, ds
\end{align*}

almost surely for all $t \in [0, T]$. Hence, by Davis', Minkowski and Hölder inequalities, using standard estimates we obtain

\begin{align*}
E \sup_{t \leq T} |\tilde{u}_t^{(e)}|_{L_p}^p &\leq 2 E \psi^{(e)}_{L_p}^p + NE \int_0^T \|h_t^{(e)}\|_{L_p(L_p)}^p \, dt + NT^{p-1/2} \|f_{0(0)}^{(e)}\|_{L_p}^p \\
&\quad + NT^{(p-2)/2} \left(|g(e)|_{L_p}^p + E \int_0^T |h_t^{(e)}|_{L_p(L_2)}^p \, dt + \sum_{\alpha=1}^d |f^{\alpha(e)}|_{L_p}^p + \sum_{\alpha=1}^d |D_{\alpha} u^{(e)}|_{L_p}^p \right)
\end{align*}

with a constant $N = N(p, d)$, where $f^{\alpha(e)} := (f^{1\alpha(e)}, \ldots, f^{M\alpha(e)})$, and recall that $|\pi|_{L_p}$ means the L_p-norm of $|\sum_{i=1}^M |\pi|^2|^{1/2}$ for \mathbb{R}^M-valued functions $\pi = (\pi^1, \ldots, \pi^M)$ on \mathbb{R}^d. Hence,

$$E \sup_{t \leq T} |\tilde{u}_t^{(e)} - \tilde{u}_t^{(e)}|_{L_p}^p \to 0 \quad \text{as} \quad e, e' \to 0.$$

Consequently, there is an L_p-valued adapted cadlag process $\tilde{u} = (\tilde{u}_t)_{t \in [0, T]}$ such that

$$\lim_{\varepsilon \to 0} E \sup_{t \leq T} |\tilde{u}_t - \tilde{u}_t^{(e)}|_{L_p}^p = 0.$$

Thus, for each $\varphi \in C^0(\mathbb{R}^d)$ we can take $e \to 0$ in

$$(\tilde{u}_t^{(e)}, \varphi) = (\psi^{(e)}, \varphi) + \int_0^t (f_s^{i(0)}(e), \varphi) \, ds + \int_0^t (g_s^{(i}\varphi)(e), \varphi) \, dw_s^{r}$$

$$+ \int_0^t \int_{\mathbb{R}^d} (h_s^{(e)}, \varphi) \, dz \, ds$$

$$= (\psi^{(e)}, \varphi) + \int_0^t (f_s^{i(0)}(e), \varphi) \, ds - \int_0^t (f_s^{ik}(e), D_k \varphi) \, ds + \int_0^t (g_s^{ir}(e), \varphi) \, dw_s^{r}$$

$$+ \int_0^t \int_{\mathbb{R}^d} (h_s^{(e)}, \varphi) \, dz \, ds.$$
and it is easy to see that we get
\[
(\tilde{u}_t^i, \varphi) = (\psi^i, \varphi) + \int_0^t (f^i_s, D^*_\alpha \varphi) \, ds + \int_0^t (g^i_s, \varphi) \, dw^r_s + \int_0^t \int_Z (h^i_s, \varphi) \tilde{\pi}(dz, ds)
\]
a almost surely for all \(t \in [0, T] \). Hence, \(\tilde{u} = u \) for \(P \otimes dt \)-almost every \((\omega, t) \in \Omega \times [0, T]\). Finally letting \(\varepsilon \to 0 \) in (3.18), we obtain (3.7). \(\square \)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)
2. Bensoussan, A., Lions, J.L.: Impulse Control and Quasi-Variational Inequalities. Bordas (1984)
3. Brzeźniak, Z., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differ. Equ. 245, 30–58 (2008)
4. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman and Hall/CRC, London (2003)
5. Debicki, K., Mandjes, M.: Queues and Lévy Fluctuation Theory. Universitext. Springer (2015)
6. Dellacherie, C., Meyer, P-A.: Probability and Potential B: Theory of Martingales, North-Holland Mathematics Studies, vol. 72, Elsevier Science Ltd (1982)
7. Gyöngy, I.: On stochastic equations with respect to semimartingales III. Stochastics 7, 231–254 (1982)
8. Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales II, Itô formula in Banach spaces. Stochastics 6, 153–173 (1982)
9. Gyöngy, I., Šiška, D.: Itô formula for processes taking values in intersection of finitely many Banach spaces. Stoch. Partial Differ. Equ. Anal. Comput. 5(3), 428–455 (2017)
10. Gyöngy, I., Wu, S.: Itô’s formula for jump processes in \(L_p \)-spaces. ArXiv:1904.12898
11. Gyöngy, I., Wu, S.: On \(L_p \)-solvability of stochastic integro-differential equations. ArXiv:1907.04876v1
12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (2011)
13. Konstantopoulos, T., Last, G., Lin, S.: On a class of Lévy stochastic networks. Queueing Syst. 46, 409–437 (2004)
14. Krylov, N.V.: Itô’s formula for the \(L_p \)-norm of stochastic \(W^1_p \)-valued processes. Probab. Theory Relat. Fields 147, 583–605 (2010)
15. Krylov, N.V.: A relatively short proof of Itô’s formula for SPDEs and its applications. Stoch. Partial Differ. Equ. Anal. Comput. 1, 152–174 (2013)
16. Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge (2018)
17. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981)
18. Pardoux, E.: Equations aux dérivées partielles stochastiques non linéaries monotones. Étude des solutions forte de type Itô. Thèse Université de Paris Sud, Orsay (1975)
19. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)
20. Rozovskii, B.L.: Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluwer, Dordrecht (1990)
21. Rüdiger, B.: Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces. Stoch. Int. J. Probab. Stoch. Process. 78(6), 377–410 (2006)
22. van Neerven, J.M.A.M., Veraar, M.: On the stochastic Fubini theorem in infinite dimensions. In: Stochastic Partial Differential Equations and Applications–VII. Lect. Notes Pure Appl. Math., vol. 245, pp. 323–336. Chapman & Hall/CRC, Boca Raton (2006)
23. Zhu, J., Brzeźniak, Z., Hausenblas, E.: Maximal inequalities for stochastic convolutions driven by compensated Poisson random measures in Banach spaces. Annales de l’Institut Henri Poincaré-Probabilités et Statistiques 53(2), 937–956 (2017)
24. Zhu, J., Brzeźniak, Z., Liu, W.: Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with applications to stochastic quasi-geostrophic equations. SIAM J. Math. Anal. 51(3), 2121–2167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.