Short proof of the sharpness of the phase transition for the random-cluster model with $q = 2$

Yacine Aoun

Université de Genève

December 8, 2020

Abstract: The purpose of this modest note is to provide a short proof of the sharpness of the phase transition for the Random-cluster model with $q = 2$ by extending the approach developed by Duminil-Copin and Tassion [3] for $q = 1$. This in particular implies the exponential decay of the two point-correlation function in the subcritical Ising model.

1 Introduction

Let us start by defining the nearest neighbor random-cluster measure on \mathbb{Z}^d. For a finite subgraph $\Lambda = (V, E)$ of \mathbb{Z}^d, a percolation configuration $\omega = (\omega)_{e \in E}$ is an element of $\{0, 1\}^E$. A configuration ω can be seen as a subgraph of Λ with vertex-set V and edge-set given by $\{\{x, y\} \in E : \omega_{x,y} = 1\}$. If $\omega_{x,y} = 1$, we say that $\{x, y\}$ is open. Let $k(\omega)$ be the number of connected components in ω and $o(\omega)$ (respectively $f(\omega)$) the number of open (respectively closed) edges in ω.

Fix $p \in [0, 1], q > 0$. Let $\mu_{\Lambda, p, q}$ be a measure defined for any $\omega \in \{0, 1\}^E$ by

$$\mu_{\Lambda, p, q}(\omega) = \frac{q^{k(\omega)} p^{o(\omega)} (1 - p)^f(\omega)}{Z},$$

where Z is a normalizing constant introduced in such a way that $\mu_{\Lambda, p, q}$ is a probability measure. The measure $\mu_{\Lambda, p, q}$ is called the random-cluster measure on Λ with free boundary conditions. For $q \geq 1$, the model undergoes a phase transition: there exists $p_c \in [0, 1]$ satisfying

$$\mu_{\mathbb{Z}^d, p_c}(0 \leftrightarrow \infty) = \begin{cases} 0 & \text{if } p < p_c, \\ > 0 & \text{if } p > p_c. \end{cases}$$

A very nice idea introduced in [3] is to define a new critical parameter \tilde{p}_c for which it is easier to prove sharpness, which will in turn imply that $p_c = \tilde{p}_c$ (see Theorem 1 below). For a finite subset S of \mathbb{Z}^d, let ΔS be the set of edges with exactly one endpoint in S and define

$$\phi_p(S) := p \sum_{\{x,y\} \in \Delta S} \mu_{S, p, q}(0 \leftrightarrow x).$$

Then define the following critical parameter
$\tilde{p}_c := \sup\{p \in [0,1] : \varphi_p(S) < 1 \text{ for some finite } S \subset \mathbb{Z}^d \text{ containing 0}\}.$

The main theorem of this note is the following one.

Theorem 1.

1. For $p > \tilde{p}_c$, $\mu_{\mathbb{Z}^d, p, 2}(0 \leftrightarrow \infty) \geq \frac{p - \tilde{p}_c}{p}$.

2. For $p < \tilde{p}_c$, there exists $c = c(p) > 0$ such that for every $x \in \mathbb{Z}^d$

$$\mu_{\mathbb{Z}^d, p, 2}(0 \leftrightarrow x) \leq \exp(-c|x|).$$

Corollary 1. We have $p_c = \tilde{p}_c$. In particular, the phase transition for the random-cluster model with $q = 2$ is sharp.

Corollary 2. In the Ising model, the two-point correlation function decays exponentially fast with distance.

Corollary 1 follows directly from Theorem 1. Corollary 2 follows from the Edward-Sokal coupling (see \cite{5}).

2 Proof of Theorem 1

We will write $\mu_{\Lambda, p}$ instead of $\mu_{\mathbb{Z}^d, p, 2}$. Let us start by proving the second item of Theorem 1. Firstly, we will need the following lemma.

Lemma 1 (Modified Simon’s inequality). Let S be a finite set of \mathbb{Z}^d containing 0. For every $z \notin S$,

$$\mu_{\mathbb{Z}^d, p}(0 \leftrightarrow z) \leq p \sum_{\{x,y\} \in \Delta S} \mu_{S, p}(0 \leftrightarrow x) \mu_{\mathbb{Z}^d, p}(y \leftrightarrow z).$$

A similar inequality was proved for the Ising model in \cite{3}. Lemma 1 follows from the latter by the Edward-Sokal coupling by remarking that $\tanh(-\frac{1}{2} \log(1 - p)) \leq p$.

Fix $p < \tilde{p}_c$ and S a finite set containing 0 such that $\varphi_p(S) < 1$. Let Λ_n be the box of size n around 0 for the norm $| \cdot |$. Fix Λ_L such that $S \subset \Lambda_L$. Then, using Lemma 1, we can write

$$\mu_{\mathbb{Z}^d, p}(0 \leftrightarrow z) \leq p \sum_{\{x,y\} \in \Delta S} \mu_{S, p}(0 \leftrightarrow x) \mu_{\mathbb{Z}^d, p}(y \leftrightarrow z) \leq \varphi_p(S) \max_{y \in \Lambda_L} \mu_{\mathbb{Z}^d, p}(y \leftrightarrow z).$$

Note that $|y - z| \geq |z| - L$. If $|y - z| \leq L$, we bound $\mu_{\mathbb{Z}^d, p}(y \leftrightarrow z)$ by 1, otherwise we apply (4) to y and z instead of 0 and z. Iterating $[|z|/L]$ this strategy yields

$$\mu_{\mathbb{Z}^d, p}(0 \leftrightarrow z) \leq \varphi_p(S)^{|z|/L},$$

which proves the second item of Theorem 1.

We now turn to the proof of the first item of Theorem 1. Let $p > \tilde{p}_c$ and $\partial \Lambda_n$ be the boundary of Λ_n. We will prove the following differential inequality.

Lemma 2. Fix $p > \tilde{p}_c$. Then

$$\frac{d}{dp} \mu_{\Lambda_n, p}(0 \leftrightarrow \partial \Lambda_n) \geq \frac{1}{p} (1 - \mu_{\Lambda_n, p}(0 \leftrightarrow \partial \Lambda_n)).$$

Integrating this inequality between \tilde{p}_c and p and taking n to infinity yields the first item of Theorem 1. We will therefore focus on proving Lemma 2. Let $E(\Lambda_n)$ be the set of edges whose endpoints are in Λ_n. We will need the following result.
Lemma 3. Let A be an increasing event depending on edges of Λ_n only. Then
\[
\frac{d}{dp}\mu_{\Lambda_n,p}(A) = \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(A|\omega_e = 1) - \mu_{\Lambda_n,p}(A|\omega_e = 0).
\] (6)

The proof is a straightforward computation. Recall that an edge e is pivotal for a configuration ω and an event A if $\omega(c) \notin A$ and $\omega^{(e)} \in A$, where $\omega(e)$ (respectively $\omega^{(e)}$) is the same configuration as ω except maybe for e where we close the edge e in $\omega(c)$ (respectively open the edge e in $\omega^{(e)}$). We can use Lemma 3 and the FKG inequality to see that
\[
\frac{d}{dp}\mu_{\Lambda_n,p}(A) = \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(A|\omega_e = 1) - \mu_{\Lambda_n,p}(A|\omega_e = 0)
\geq \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(\omega^{(e)} \in A) - \mu_{\Lambda_n,p}(\omega_e \in A)
= \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(e \text{ pivotal for } A).
\]

Set $A := \{0 \leftrightarrow \partial\Lambda_n\}$. Define the following random set
\[
\gamma := \{z \in \Lambda_n : z \text{ not connected to } \Lambda_n^c\}.
\]

By inclusion of events, we get
\[
\sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(e \text{ pivotal for } 0 \leftrightarrow \partial\Lambda_n) \geq \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(e \text{ pivotal for } 0 \leftrightarrow \partial\Lambda_n, 0 \leftrightarrow \partial\Lambda_n)
= \sum_{0 \in S} \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(e \text{ pivotal for } 0 \leftrightarrow \partial\Lambda_n, \gamma = S),
\]
where we decomposed with respect to all possibilities for γ in the last line. Remark that $\gamma = S$ and $e = xy$ is pivotal for $0 \leftrightarrow \partial\Lambda_n$ if and only if $\gamma = S$, $0 \leftrightarrow x$ and $y \notin S$. Moreover, the event $\{0 \leftrightarrow x\}$ is measurable with respect to the edges in S and the event $\{\gamma = S\}$ is measurable with respect to the edges that have at least one endpoint outside of S. Finally, all the edges in ΔS are closed. Thus
\[
\mu_{\Lambda_n,p}(e \text{ pivotal for } 0 \leftrightarrow \partial\Lambda_n, \gamma = S) = \mu_{\Lambda_n,p}(0 \leftrightarrow x, \gamma = S) = \mu_{S,p}(0 \leftrightarrow x)\mu_{\Lambda_n,p}(\gamma = S),
\]
where the last equality follows from the Markov property. Plugging this into the inequality above gives
\[
\sum_{0 \in S} \sum_{e \in E(\Lambda_n)} \mu_{\Lambda_n,p}(e \text{ pivotal for } 0 \leftrightarrow \partial\Lambda_n, \gamma = S) = \frac{1}{p} \sum_{0 \in S} \sum_{xy \in \Delta S} p \varphi_p(S) \mu_{\Lambda_n,p}(\gamma = S)
= \frac{1}{p} \varphi_p(S) \mu_{\Lambda_n,p}(\gamma = S)
\geq \frac{1}{p} \mu_{\Lambda_n,p}(0 \leftrightarrow \partial\Lambda_n),
\]
where we used that $\varphi_p(S) \geq 1$ since $p > \bar{p}_c$. Therefore, by combining all the inequalities, we get (5), which finishes the proof of Lemma 2.
3 Concluding remarks

1. It is natural to ask whether this approach can be further generalized for bigger values of q. The proof of (5) does not use the fact that $q = 2$ and is valid for all $q \geq 1$, which implies $\hat{\rho}_c(q) \geq \rho_c(q)$. However, it is easy to see that the susceptibility with free boundary conditions is always infinite at $\hat{\rho}_c$, i.e.

$$\sum_{x \in \mathbb{Z}^d} \mu_{\mathbb{Z}^d, \hat{\rho}_c, q}(0 \leftrightarrow x) = \infty.$$

But the susceptibility is known to be finite at ρ_c for $q > 4$ on \mathbb{Z}^2 (see [4, 2]) and is conjectured to be finite for $q > 2$ on \mathbb{Z}^d with $d \geq 3$ (for q large enough, this result is proved in [6]). This in turn implies that $\rho_c < \hat{\rho}_c$ and therefore Corollary 1 is not longer true in these cases.

2. The argument presented here can be extended to any finite-range coupling constants $(J_{x,y})_{x,y \in \mathbb{Z}^d}$, see [3].

3. For infinite-range coupling constants decaying sub-exponentially fast, the second item of Theorem 1 doesn’t hold. However, as in [3], one can still prove that Lemma 2 holds and that the susceptibility with free boundary conditions is finite for every $p < \hat{\rho}_c$, which implies $\hat{\rho}_c = \rho_c$. One can then use the same reasoning as in [1] to deduce that $\mu_{\mathbb{Z}^d, \rho_c, 2}(0 \leftrightarrow x) \leq cJ_0, x$ for every $p < \rho_c$ and for some positive constant c depending on p. Note that the use of the exponential decay of the volume of the connected component of 0 in [1] can be replaced by the existence of S such that $\varphi_p(S) < 1$.

References

[1] Y. Aoun. Sharp asymptotics of correlation functions in the subcritical long-range random-cluster and Potts models, 2020. arXiv:2007.00116.

[2] H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. Discontinuity of the phase transition for the planar random-cluster and Potts models with $q > 4$. 2016. arXiv:1611.09877.

[3] H. Duminil-Copin and V. Tassion. A new proof of the sharpness of the phase transition for bernouilli percolation and the ising model. Communications in Mathematical Physics, 343:725–745, 2016.

[4] Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Continuity of the phase transition for planar random-cluster and potts models with $1 \leq q \leq 4$. Communications in Mathematical Physics, 349(1):47–107, October 2016.

[5] G. Grimmett. The random-cluster model. Springer-Verlag, 2006.

[6] Lahoussine Laanait, Alain Messager, Salvador Miracle-Solé, Jean Ruiz, and Senya Shlosman. Interfaces in the Potts model. I. Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Comm. Math. Phys., 140(1):81–91, 1991.