Evaluation of biochemical defense response to Spodoptera litura infestation in cotton (Gossypium hirsutum L.) genotypes

Arslan Hafeez (✉ arslanhafeezuaf@gmail.com)
University of the Free State - Bloemfontein Campus: University of the Free State https://orcid.org/0000-0003-0053-091X

Samina Jam Nazeer Ahmad
University of Agriculture Faisalabad

Jam Nazeer Ahmad
University of Agriculture Faisalabad

Muhammad Imran Tipu
Nuclear Institute for Agriculture and Biology

Tanwir Ahmad Malik
University of Agriculture Faisalabad

Research

Keywords: Antioxidant enzymes, chlorophyll, cotton, lipid peroxidation, osmolytes, phenolics, Spodoptera litura

DOI: https://doi.org/10.21203/rs.3.rs-94515/v1

License: ☺ ☀ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The cotton armyworm (*Spodoptera litura*) is one of the most devastating pests of many economically important crops including cotton which cause substantial yield losses due to its feeding pattern on leaves and other plant parts. Plants respond to herbivore damage through an array of defense responses to ensure their survival. This study was aimed to appraise biochemical defense responses of cotton genotypes to *S. litura* infestation.

Methods: Two Bt cotton cultivars namely Bt-886 and CIM-622 and one non-Bt PB-896 cultivar were used in the study. The experiment was conducted in greenhouse conditions. Leaf samples for biochemical analysis were collected after 24 hrs of infestation by third instar larvae.

Results: Data revealed that infestation caused significant reduction in chlorophyll pigments of all cultivars. Infestation caused a marked increase in hydrogen peroxide and malondialdehyde concentrations as well as activities of various antioxidant enzymes such as superoxide dismutase, peroxidase and catalase. The levels of other secondary metabolites such as phenolics, proline and glycine betaine were also found to be higher after infestation.

Conclusion: Among the cotton cultivars, cv. PB-896 was found to be considerably resistant to pest attack due to an efficient antioxidant system, lower chlorophyll degradation, and lesser accumulation of hydrogen peroxide and malondialdehyde that manifested minimal oxidative injury.

Introduction:

Plants being sessile face many abiotic and biotic stresses from the natural environment. Biotic stresses coming from herbivores and pathogens are significant constraints that adversely affect plant growth and yield (Bruce, 2010). Plants have developed an intricate morphological, physiochemical and molecular defense mechanism to cope with herbivore attack (LIU et al., 2020; Palial et al., 2018; Tian et al., 2018). However, the capacity of defense response varies from plant species to species (Rathinam et al., 2019).

Infestation led to the generation of *in planta* reactive oxygen species (ROS) such as superoxide radicle (O2•-), hydrogen peroxide (H2O2) and hydroxyl radicles (OH•-) which cause oxidative stress in cellular environment (Moloi and van der Westhuizen 2006; O’Brien et al. 2012). Production of ROS is an early response to pest damage and is believed to provide a signal for plant-insect interaction (Saed-Moucheshi et al., 2014a; Scheler et al., 2013). Accumulation of ROS in response to infestation damage activates NADPH (Nicotinamide Adenine Dinucleotide Phosphate) oxidases located on plasma membrane which in turn reduces oxygen through NADPH as an electron donor (Apel and Hirt, 2004; Saed-Moucheshi et al., 2014b). Also, excessive production of ROS above threshold level leads to DNA damage, lipid peroxidation, denaturation of proteins and pigment oxidation leading to substantial cellular damage (Ashraf et al., 2015).
To survive ROS-mediated oxidative injury, plant uses defensive mechanisms that include production of enzymatic or non-enzymatic antioxidants. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) are major enzymatic antioxidants (Mahawar and Shekhawat, 2019; Rasheed et al., 2020). For instance, *S. litura* feeding causes considerable inflation in SOD, POD and CAT activities in infested cotton plants (Usha Rani and Pratyusha, 2013). In this context, the defensive responses of plant against insect attack have been reported in various studies (Abbate et al., 2018; Li et al., 2018; Mitra et al., 2019; Timbó et al., 2014; Zhang et al., 2019). Induction of these enzymes plays a significant role in homeostasis and detoxification of lethal ROS, enabling signal transduction and starting a cascade of defenses against herbivore attack through mediating the plant's secondary metabolites (Gulsen et al., 2010; Mai et al., 2013). Plants also accumulate organic osmolytes such as proline and glycine betaine under environmental stresses, which play role in osmotic adjustment as well as cyto-protection through enhanced antioxidant system (Mittler, 2002). Kaur et al. (2015) reported increased level of proline in pigeon pea plants as a response of induced defense response to the *Helicoverpa armigera* infestation. The role of glycine betaine as an osmo-protectant under abiotic stress is extensively reported in the literature, however, its role in biotic stress tolerance is not well understood yet.

Cotton (*Gossypium hirsutum* L.) is a source of natural plant fiber for the textile industry and plays a pivotal role in the country's economy with a significant contribution to GDP (10%) and foreign exchange earnings (55%) of Pakistan (Afridi et al., 2016; Rehman et al., 2019, 2015). It is usually referred to as white gold in Pakistan. Substantial yield losses in cotton production have been recorded in the tropical and subtropical regions due to biotic and abiotic stress, including pest attack. The cotton armyworm, *S. litura* is among major polyphagous pests causing significant yield loss in crops (Saleem et al., 2016). This insect feeds on a broad range of valuable crops including cotton (Ashfaq et al., 2011) causing severe leaf damage to the plant. *S. litura* induced biochemical changes have been reported earlier in various plants (Usha Rani and Pratyusha, 2013; Vijaya and Rani, 2017). Therefore, this study was performed to appraise the biochemical mechanisms of resistance manifested by cotton during *S. litura* feeding. Such information may be useful for breeding programs to produce tolerant plants.

Materials And Methods

Plants

Three cotton cultivars namely Bt-886, CIM-622 and PB-896 were used for this experiment. Seeds of all three cotton cultivars were immersed in water for 10 h and incubated at 28°C for a day. The germinated seeds were planted in plastic pots (23.5 x 29 cm) each containing 10 kg of soil in a greenhouse (35 ± 10º C) and watered every two days. This was followed by weekly fertilizer treatment (N: P: K = 20: 20: 20). The trial was carried out under greenhouse at Postgraduate agriculture research station (PARS), Department of Botany, University of Agriculture, Faisalabad, Pakistan.

Insects and pest feeding
The eggs of *S. litura* was procured from the fields of Faisalabad and reared in the laboratory on agar-based artificial diet. This was done in a climate-controlled insectary (25 ± 2 °C, 75 ± 5% R.H. and 16:8 (L:D) light: dark photoperiod) in plastic box (10 L capacity) with proper ventilation in the IGCDB laboratory at the Entomology department, University of Agriculture Faisalabad, Pakistan. During early hours of the day, top fully expanded leaves of 45 days old cotton plants were allowed for infestation with pre-starved 3rd instar larvae for 24 hrs confined by enclosing with a muslin bag. Infested leaves were detached and immediately frozen in liquid nitrogen and stored at -20°C for further biochemical analysis. Leaves from un-infested plants were used as the controls.

Chlorophyll content

Measurement of chlorophyll *a, b* pigments and total chlorophyll contents were done by using the Arnon (1949) protocol. The leaf sample (0.1 g) was homogenized in 80% pure acetone (marked the final volume up to 5 mL). Supernatant absorbance was monitored at 645, 663 and 480 nm spectrophotometrically (Hitachi, U-2900, Japan).

Proline estimation

Free proline estimation was done following Bates et al. (1973) protocol. Leaf material (0.1 g) was crushed in 5 mL of 3% aqueous sulfo-salicylic acid. Filtrate (1 mL) was transferred to a test tube and diluted with 1 mL of acid ninhydrin followed by 1 mL of glacial acetic acid. Mixture was maintained in a water bath at 100 °C for 10 minutes and cooled on ice. Toluene (4 mL) was added to the mixture and shaken vigorously for 20s and absorbance was taken at 520 nm by using a spectrophotometer (Hitachi U-2900 Japan). Standard curve was used to calculate free proline concentration as μmol g−1 fresh weight.

Hydrogen peroxide (H₂O₂) concentration

Velikova et al. (2000) protocol was used for the estimation of endogenous H₂O₂ concentration. Leaf tissue (0.1 g) was homogenized in 1 mL of 0.1 % trichloroacetic acid (TCA) (w/v) at 4°C and centrifuged at 10,000 x g for 10 min. The supernatant (0.5 mL) taken and was added with 0.5 mL potassium phosphate buffer (10 mM; pH 7.0) and 1 mL potassium iodide (1M) and gently vortexed. The absorbance was taken at 390 nm using spectrophotometer (Hitachi U-2900 Japan). H₂O₂ content was calculated from the H₂O₂ standard curve and expressed as μmol g-1 fresh weight.

Determination of Malondialdehyde (MDA)

Concentration of MDA in leaf tissue was measured using Cakmak and Horst (1991) protocol. Plant leaf sample (0.5 g) was ground in 10 mL of 6% trichloroacetic acid (TCA, w/v) and centrifuged at 11,000 x g for 20 min. Supematant taken was equally mixed with 4ml of 0.5 % thiobarbituric acid (TBA). The reaction sample was maintained in a water bath at 95°C for 30 min and allowed to cool at room
temperature. After cooling, reaction mixture was centrifuged at 8000 x g for 5 min and absorbance was read at 532 and 600 nm.

Antioxidant enzymes activities

Leaf sample (0.5 g) was grinded in liquid nitrogen and dissolved in 10ml of 100 mM chilled potassium phosphate (K-P) buffer (pH 7.5). The mixture was centrifuged at 10,000 x g at 4 °C for 15 minutes and the supernatant collected was referred to as enzyme extract.

Superoxide dismutase (SOD) activity

Giannopolitis and Ries (1977) protocol was used to observe SOD activity. The reaction solution constitutes nitro-blue tetrazolium (NBT; 50 µM), riboavin (1.3 µM), methionine (13 mM), potassium phosphate buffer (100 mM) with pH 7.5 and enzyme extract (0.1 ml). The reaction solution was irradiated at 77 µmol m⁻² s⁻¹ for 20 min using a fluorescent lamp. Later, the mixture absorbance was recorded at 560 nm through spectrophotometer (Hitachi U-2900, Japan). The enzyme activity was expressed in U mg⁻¹ protein.

Catalase (CAT) and Peroxidase (POD) activity

Activities of CAT and POD were evaluated following protocol by Chance and Maehly (1955). The reaction solution for CAT activity constitutes potassium phosphate buffer (100 mM; 7.5 pH), enzyme extract (0.1 mL) and H₂O₂ (5.9 mM). The absorbance of reaction solution was observed at 240 nm for every 20 sec intervals. The POD reaction mixture (0.1 mL) contained potassium phosphate buffer (50 mM; pH 7.5), guaiacol (20 mM) and H₂O₂ (40 mM). The change in absorbance was measured spectrophotometrically at 470 nm for every 20 sec. The enzymatic activities were expressed in U mg⁻¹ protein.

Phenolics

Julkunen-Tiitto (1985) protocol was used for the determination of phenolic content. Plant leaf tissue (0.5 g) was grinded in 5 mL of 80 % acetone and centrifuged at 10,000 x g for 10 min. Supernatant (0.1 mL) taken was homogenized with milli-Q water (2 mL) and Follin-ciocalteu phenol reagent (1 mL) and gently mixed. Subsequently, 5 mL sodium carbonate (Na₂CO₃; 20 %) was added and the final volume was raised to 10 mL by adding distilled H₂O. This was followed by vigorous vortexing (5-10 s) and incubation for 20 minutes at room temperature. Absorbance was measured spectrophotometrically (Hitachi U-2900, Japan) at 720 nm.

Estimation of total soluble protein (TSP)

Leaf material was grinded in 10 mL of cooled K-phosphate buffer (100 mM; pH 7.5) and centrifuged at 10,000 x g for 15 min at 4°C. After centrifugation, supernatant was collected for the analysis. Total soluble protein concentration was estimated by following Bradford (1976) method.
Glycine Betaine (GB) content

Leaf glycine betaine contents were estimated by using protocol given by Grieve and Grattan (1983). Leaf material (0.5 g) was homogenized in de-ionized water (20 mL) and mechanically shaken for 24 h at 25°C. Homogenate (1 mL) was filtered and diluted with 2N H$_2$SO$_4$ (1 mL). Of this, 0.5 mL was added to a centrifuge tube, cooled on ice for 1 h. The mixture was added up with per iodide solution (0.20 mL) and vortexed gently. The tubes were maintained at 4 °C for 16 h. Later, tubes were centrifuged for 15 minutes at 10,000 x g, carefully aspirated the supernatant. To dissolve per-iodide crystals, 9 ml of 1,2-dichloromethane was added. The reaction was kept at ambient temperature for 2 h. The absorbance of reaction mixture was read spectrophotometrically at 365 nm.

Statistical analysis

All data from the completely randomized experiment (three-independent replications) regarding above-mentioned parameters were statistically analyzed using COSTAT 6.303 window software (Cohort Software, Monterey, CA, USA). Analysis of Variance (ANOVA) technique at P≤0.05 was applied to analyze all data gathered. Graphical representation of the correlation plot was carried out using R studio software.

Results

Photosynthetic pigments:

The infestation by *S. litura* caused a notable reduction (P≤0.001) in the chlorophyll *a* content in all cotton cultivars. The cv. PB-896 had relatively higher chlorophyll *a* after infestation (Fig. 1A). Although cultivars were not significantly different for chlorophyll *b*, yet infestation led to a noticeable reduction (P≤0.001) in chlorophyll *b* contents for all cotton cultivars (Fig. 1B). In parallel to Chlorophyll *a* and Chlorophyll *b*, infestation led to a substantial reduction (P≤0.001) in total chlorophyll content with minimum reduction observed in cv. PB-896 as compared to the other two cultivars (Fig. 1C).

Oxidative stress indicators (H$_2$O$_2$ and MDA):

Consequent upon the Infestation by *S. litura*, there was a considerable increase (P≤0.001) in the endogenous level of H$_2$O$_2$ for all three cultivars. The cultivars varied significantly (P≤0.001) for this parameter. The endogenous level of H$_2$O$_2$ was higher in the cv. Bt-886 while the minimal increase was observed in cv. PB-896 under infestation (Fig. 2A). Insect feeding had a significant effect (P≤0.001) in the accumulation of MDA content in all infested cotton plants. The MDA contents were higher in cv. Bt-886 as compared to CIM-622 and PB-896. The minimal values for MDA contents were observed in cv. PB-896 infested plants (Fig. 2B).

Antioxidant enzymes activities:

Infested plants showed significantly higher (P≤0.001) SOD activity for all three cotton cultivars. Insect damaged plants of cv. PB-896 had markedly higher SOD activity over CIM-622 and Bt-886. Cv. Bt-886 had
higher values for this attribute (Fig. 3A). Plants of three cultivars exposed to *S. litura* infestation manifested a remarkable increase (P ≤ 0.001) in POD activity. Among the three cultivars tested, cv. PB-896 showed considerably higher POD activity in infested plants than that of Bt-886 and cv. CIM-622 (Fig. 3B). *S. litura* infested cotton plants exhibited significantly enhanced (P ≤ 0.001) CAT activity for all cultivars. There existed notable differences (P ≤ 0.001) among cultivars for this variable. Cv. PB-896 displayed maximal CAT activity over cv. Bt-886 and CIM-622 in infested plants (Fig. 3C).

Proline

The accumulation of proline among the three cotton cultivars was significantly affected (P ≤ 0.001) by *S. litura* infestation as compared with controls. All cultivars performed significantly different (P ≤ 0.001) for this variable. In this regard, more proline accumulation was noted in the infested plants of cv. PB-896, while the lowest was in the infested plants of cv. CIM-622 (Fig. 4A).

Leaf phenolics and GB contents

Infestation leads to the significant (P ≤ 0.001) accumulation of phenolic contents in all three cultivars. There existed considerable (P ≤ 0.001) differences between cotton cultivars for this parameter. Significantly higher (P ≤ 0.001) phenolic contents were observed in cv. PB-896 infested plants compared with the other two cultivars (Bt-886 and CIM-622) (Fig. 4B). Infestation caused distinguishable enhancement (P ≤ 0.001) in the accumulation of GB contents in damaged plants of all cultivars. However, cotton cultivars did not vary significantly for this attribute. Maximal GB contents were recorded in cv. PB-896 while minimal in cv. CIM-622 (Fig. 4C).

Total soluble proteins (TSP)

As a result of *S. litura* infestation, TSP increased considerably (P ≤ 0.001) in plants exposed to infestation by *S. litura*. All three cultivars had a significant difference (P ≤ 0.001) for TSP contents. For instance, the maximal level of TSP contents was observed in cv. PB-896 while minimal in cv. Bt-886 (Fig. 4D).

Correlation analysis

The Pearson correlation analysis was conducted to evaluate the relationship between various studied attributes in cotton plants under *S. litura* infestation (Fig. 5). Oxidative stress indicators (H$_2$O$_2$ and MDA) are negatively correlated with photosynthetic pigments. However, antioxidant enzymes (SOD, POD, CAT), TSP, Proline and GB are positively correlated with each other and with oxidative stress indicators but negatively correlated with photosynthetic pigments. This correlation exhibited a close connection between chlorophyll pigments, oxidative stress indicators and antioxidant enzymes in different cotton cultivars.

Discussion
The present results showed that infestation by *S. litura* has a significantly negative impact on individual (chl a and chl b) and total chlorophyll content in all cotton cultivars. Similar findings were reported by Nagrare et al. (2017) that chl a, chl b and total chlorophyll content were reduced to 21.2%, 19.1% and 23.7% respectively in the cotton plants infested by mealybug. Our results are corroborated with Hengmoss et al. (2003) that *Diuraphis noxia* (Russian wheat aphid) feeding caused a marked decrease in Chl. a, b and carotenoid contents of susceptible wheat isolines as compared to resistant lines. Huang et al. (2013) also observed significant decline in chlorophyll contents of tomato leaves due to mealybug infestation. This loss of chlorophyll contents may be attributed towards the supressed pigment biosynthesis due to deficiency of Mg (a major constituent of chlorophyll), herbivory induced damaged chloroplasts in palisade tissues, loss of assimilates due to insect feeding or ROS damage to the pigments (Khattab, 2007). In addition, Goławska et al. (2010) reported significantly less chlorophyll synthesis in stressed plants as compared to unstressed plants as a mechanism of defense response towards pest.

S. litura feeding markedly influenced the levels of the antioxidant enzymes in infested cotton plants. A considerable rise in SOD activity was recorded in all cotton cultivars in response to *S. litura* feeding. SOD play role as the first line defense system involved in the detoxification and conversion of superoxide radicles into oxygen and hydrogen peroxide (Cavalcanti et al., 2007; Raychaudhuri and Deng, 2000) generated either by Mehler’s reaction or photorespiration under various stresses (Khattab and Khattab 2005; Rani and Jyothsna 2010). Similar to our findings, War et al. (2013) noticed a considerably increased activity of SOD in groundnut plants challenged with both *Helicoverpa armigera* and *Aphis craccivora* herbivory. Elevated POD activity has been regarded as an immediate response of plants to insect attack through cell wall strengthening as it is considered as a critical enzyme involved in lignin biosynthesis (Duan et al., 2014; He et al., 2011; Mehyd, 1994; Moloi and van der Westhuizen, 2006). In addition, POD together with phenols act as toxin to the pest and discourage its feeding and health (Duffey and Stout, 1996; Ni et al., 2009; Tan et al., 2011; Zhang et al., 2008). Moreover, POD is reported to cause immediate toxicity in the gut of herbivore (Zhu-Salzman et al., 2008). Similarly, in the present investigation, POD activity was significantly enhanced in the infested cotton plants, which is corroborated to an earlier investigation of Ni et al. (2001) in which they found significantly higher POD activity in resistant wheat cultivars as compared to susceptible cultivars infested with RWA (Russian wheat aphid). Catalase (CAT) is one of the important components of ROS scavenging system that converts H$_2$O$_2$ into water and oxygen (Bittner et al., 2017). Also, an increased CAT level is known to play role in cell wall strengthening and act as a signal transducer to induce defense genes (Chen et al., 1993). In this study, higher activity of CAT was observed in *S. litura* infested cotton plants. A similar observation was reported by Bi and Felton (1995) in soybean plants damaged by *Helicoverpa zea* and in rice plants infested by yellow stem borer and leaf roller (Rani and Jyothsna, 2010). Overall, in the present experiment, increased activities of SOD, POD and CAT after *S. litura* infestation in cotton confers resistant to *S. litura* feeding.

An efficient antioxidant system readily scavenges ROS (H$_2$O$_2$) and protects membranes which is evident in terms of minimal MDA accumulation. H$_2$O$_2$ is produced after herbivore feeding (Mithöfer et al., 2004). In the present experiment, an increased level of H$_2$O$_2$ was observed in infested cotton plants. These
results are corroborated with other authors (Argandoña et al., 2001; Maffei et al., 2006; Walling, 2000; War et al., 2012a, 2011). Higher levels of H₂O₂ in plants considered to be damaging for insect gut through oxidative damage in infested plants (Orozco-Cardenas and Ryan, 1999). Kaur et al. (2014) reported a negative correlation (r = -0.73) regarding CAT activity and H₂O₂ contents in infested leaves, indicating that the higher CAT activity decreases H₂O₂ accumulation as CAT transforms H₂O₂ into H₂O and O₂.

Increased level of proteins is a typical response occurring in plants under biotic and abiotic stress (Broz et al., 2010). Our results exhibited significantly increased levels of total soluble proteins (TSP) in leaves of infested cotton plants as compared with non-infested plants. Similarly, War et al. (2012b) reported an increased level of protein content in insect-infested plants of three groundnut genotypes as compared to non-infested plants. Also, Usha Rani and Pratyusha (2013) found higher expression of TSP in infested cotton plants as compared to healthy control plants. An increased protein concentration in response to insect infestation is attributed to the generation of defense-related enzymes and proteins under stressful conditions (Chen et al., 2009; Helmi and Mohamed, 2016; Lawrence and Koundal, 2002).

Plants tend to accumulate phenolic compounds in response to herbivory (Rani and Jyothsna, 2010; Sharma et al., 2009). In our study, it was observed that S. litura influenced a marked increase in the accumulation of phenolic compounds in plants exposed to herbivory. Kaur et al. (2014) observed similar findings in infested pigeon pea genotypes. Phenolic compounds with antioxidant potential reduce highly reactive oxygen radicles (Ashraf, 2009) and are toxic to insects (Bhonwong et al., 2009; Walling, 2000).

Glycine betaine is a quaternary organic compound that protects plants under various stresses via stabilizing proteins, maintaining the integrity of membranes (Habib et al., 2012) as well as modulation of several physiochemical mechanisms in plants (Kurepin et al., 2017). However, its role in biotic stress tolerance is not well understood. In the present study, higher contents of GB were observed in infested cotton plants as compared to control. Kaur et al. (2017) reported an average mean of GB in chickpea resistant and susceptible genotypes challenged by Helicoverpa armigera infestation as 2149.34 ug/g and 1760.5 ug/g respectively. They also observed 27.07% higher GB in the pod wall of resistant chickpea plants as compared with susceptible plants.

Free proline play role as an osmo-protectant as well as contributes to stabilization of proteins and membranes by attenuating ROS adverse activity, probably playing a role in plant adaptation to unfavorable conditions (Ashraf and Foolad, 2007; Kmiec et al., 2014). In this experiment, Increased proline content was observed in cotton plants as a result of pest damage. Phenacoccus peruvianus feeding on Bougainvillea glabra induced higher proline content than the un-infested plants (Abbate et al., 2018). Our experimental results manifested significantly higher content of proline in all infested cotton cultivars, however, PB-896 still had higher proline.

Conclusions
In conclusion, the antioxidant enzymes such as SOD, POD and CAT are involved in \textit{S. litura} resistance response. The accumulation of total soluble proteins, phenolics, proline and glycine betaine also formed an integral part of cotton resistance response towards pest damage. Cv. PB-896 showed prominently higher accumulation of defense related biochemicals and thus could be considered to have better defense response over cv. Bt-886 and cv. CIM-622. Our results may help improve the understanding of the underlying biochemical mechanisms of \textit{S. litura} resistance in cotton, which can be helpful in crop protection and integrated pest management.

\textbf{Declarations}

\textbf{Ethics approval and consent to participate}

Not applicable

\textbf{Competing interest}

The authors declare that they have no competing interests.

\textbf{Consent for publication}

Not applicable

\textbf{Acknowledgements}

The researcher would like to acknowledge the International PAK-NORWAY Institutional Cooperation Program (ICP) run by Dr. Jam Nazeer Ahmad and Dr. Samina Jam Nazeer Ahmad for providing financial support.

\textbf{Authors contribution}

Hafeez A conducted the experiment and drafted the manuscript. Ahmad SJN designed and supervised the experiment and revised the manuscript. Ahmad JN provided lab facility and assisted in biochemical analysis. Tipu MI helped with methodology. Malik TA provided seeds of the cotton cultivars. All authors read and approved the final manuscript.

\textbf{References}

Abbate, C., Toscano, S., Arcidiacono, R., Romano, D., Russo, A., Mazzeo, G., 2018. Induced responses of Bougainvillea glabra Choisy (Nyctaginaceae) against Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) attack: preliminary results. Arthropod. Plant. Interact. 12, 41–48. https://doi.org/10.1007/s11829-017-9550-4

Afridi, G.S., Abdul, S., Zahoor ul, H., Tariq, S.A., Muhammad, I., 2016. Exploring potential and opportunities for Pakistan's cotton export. Pakistan J. Agric. Res. 29, 188–201.
Apel, K., Hirt, H., 2004. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Argandoña, V.H., Chaman, M., Cardemil, L., Muñoz, O., Zúñiga, G.E., Corcuera, L.J., 2001. Ethylene production and peroxidase activity in aphid-infested barley. J. Chem. Ecol. 27, 53–68. https://doi.org/10.1023/A:1005615932694

Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24, 1. https://doi.org/10.1104/pp.24.1.1

Ashfaq, S., Khan, I. a L.I., Saeed, M., Ur, A., Saljoqi, R., 2011. Population Dynamics of Insect Pests of Cotton and Their Natural Enimies. Sarhad J. Agric. 27, 2009–2011.

Ashraf, M., 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003

Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Ashraf, M.A., Rasheed, R., Hussain, I., Iqbal, M., Haider, M.Z., Parveen, S., Sajid, M.A., 2015. Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch. Agron. Soil Sci. 61, 507-523. https://doi.org/10.1080/03650340.2014.938644

Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205-207. https://doi.org/10.1007/BF00018060

Bhonwong, A., Stout, M.J., Attajarusit, J., Tantasawat, P., 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm helicoverpa armigera and beet armyworm spodoptera exigua. J. Chem. Ecol. 35, 28–38. https://doi.org/10.1007/s10886-008-9571-7

Bi, J.L., Felton, G.W., 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21, 1511-1530. https://doi.org/10.1007/BF02035149

Bittner, N., Trauer-Kizilelma, U., Hilker, M., 2017. Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245, 993–1007. https://doi.org/10.1007/s00425-017-2654-3

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Broz, A.K., Broeckling, C.D., De-la-Peña, C., Lewis, M.R., Greene, E., Callaway, R.M., Sumner, L.W., Vivanco, J.M., 2010. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 10, 1-14. https://doi.org/10.1186/1471-2229-10-115

Bruce, T.J.A., 2010. Tackling the threat to food security caused by crop pests in the new millennium. Food Secur. 2, 133–141. https://doi.org/10.1007/s12571-010-0061-8

Cakmak, I., Horst, W.J., 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

Cavalcanti, F.R., Santos Lima, J.P.M., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G., 2007. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J. Plant Physiol. 164, 591–600. https://doi.org/10.1016/j.jplph.2006.03.004

Chance, B., Maehly, A.C., 1955. Assay of catalases and peroxidases. Methods Enzymol. 2, 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

Chen, Y., Ni, X., Buntin, G.D., 2009. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. J. Chem. Ecol. 35, 297–306. https://doi.org/10.1007/s10886-009-9600-1

Chen, Z., Silva, H., Klessig, D.F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 262, 1883–1886. https://doi.org/10.1126/science.8266079

Duan, C., Yu, J., Bai, J., Zhu, Z., Wang, X., 2014. Induced defense responses in rice plants against small brown planthopper infestation. Crop J. 2, 55-62. https://doi.org/10.1016/j.cj.2013.12.001

Duffey, S.S., Stout, M.J., 1996. Antinutritive and Toxic Components of Plant Defense Against Insects. Arch. Insect Biochem. Physiol. 32, 3–37. https://doi.org/10.1002/(SICI)1520-6327(1996)32:1<3::AID-ARCH2>3.0.CO;2-1

Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309-314. https://doi.org/10.1104/pp.59.2.309

Golawska, S., Krzyzanowski, R., Łukasik, I., 2010. Relationship between aphid infestation and chlorophyll content in fabaceae species. Acta Biol. Cracoviensia Ser. Bot. 52, 76–80. https://doi.org/10.2478/v10182-010-0026-4

Grieve, C.M., Grattan, S.R., 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307. https://doi.org/10.1007/BF02374789

Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G., Lee, D., 2010. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod. Plant. Interact. 4, 45–55. https://doi.org/10.1007/s11829-010-9086-3
Habib, N., Ashraf, M., Ali, Q., Perveen, R., 2012. Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. South African J. Bot. 83, 151–158. https://doi.org/10.1016/j.sajb.2012.08.005

He, J., Chen, F., Chen, S., Lv, G., Deng, Y., Fang, W., Liu, Z., Guan, Z., He, C., 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 168, 687-693. https://doi.org/10.1016/j.jplph.2010.10.009

Helmi, A., Mohamed, H.I., 2016. Biochemical and ultrastructural changes of some tomato cultivars after infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiyah, Egypt. Gesunde Pflanz. 68, 41–50. https://doi.org/10.1007/s10343-016-0361-9

Huang, J., Zhang, P.-J., Zhang, J., Lu, Y.-B., Huang, F., Li, M.-J., 2013. Chlorophyll Content and Chlorophyll Fluorescence in Tomato Leaves Infested With an Invasive Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) . Environ. Entomol. 42, 973-979. https://doi.org/10.1603/en12342

Julkunen-Tittoo, R., 1985. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food Chem. 33, 213-217. https://doi.org/10.1021/jf00062a013

Kaur, A., Grewal, S.K., Singh, R., Bhardwaj, R.D., 2017. Induced defense dynamics in plant parts is requisite for resistance to Helicoverpa armigera (Hubner) infestation in chickpea. Phytoparasitica. 45, 559–576. https://doi.org/10.1007/s12600-017-0615-9

Kaur, R., Gupta, A.K., Taggar, G.K., 2015. Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L.) following Helicoverpa armigera (Hübner) herbivory. Pest Manag. Sci. 71, 770–782. https://doi.org/10.1002/ps.3851

Kaur, R., Gupta, A.K., Taggar, G.K., 2014. Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiol. Plant. 36, 1513–1527. https://doi.org/10.1007/s11738-014-1528-6

Khattab, H., 2007. The Defense Mechanism of Cabbage Plant Against Phloem-Sucking Aphid (Brevicoryne brassicae L.). Aust. J. Basic Appl. Sci. 1, 56–62.

Khattab, H., Khattab, A.I., 2005. Responses of Eucalypt Trees to the Insect Feeding (Gall-Forming Psyllid). Int. J. Agric. Biol. 07, 979–984.

Kmieć, K., Kot, I., Rubinowska, K., Łagowska, B., Golan, K., Górska-Drabik, E., 2014. Physiological reaction of Phalaenopsis × hybridum “Innocence” on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Sci. Pol. Hortorum Cultus 13, 85–95.

Kurepin, L. V., Ivanov, A.G., Zaman, M., Pharis, R.P., Hurry, V., Hüner, N.P.A., 2017. Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress,
Photosynthesis: Structures, Mechanisms, and Applications. https://doi.org/10.1007/978-3-319-48873-8_9

Lawrence, P.K., Koundal, K.R., 2002. Plant protease inhibitors in control of phytophagous insects. Electron. J. Biotechnol. 5, 93–109. https://doi.org/10.2225/vol5-issue1-fulltext-3

Li, J. yu, Shi, M. zhu, Fu, J. wei, He, Y. chao, Perović, D.J., Wang, T., 2018. Physiological and biochemical responses of Camellia sinensis to stress associated with Empoasca vitis feeding. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-017-9554-0

Liu, F. hua, Kang, Z. wei, Tan, X. ling, Fan, Y. liang, Tian, H. gang, Liu, T. xian, 2020. Physiology and defense responses of wheat to the infestation of different cereal aphids. J. Integr. Agric. 19, 1464–1474. https://doi.org/10.1016/S2095-3119(19)62786-3

Maffei, M.E., Mithöfer, A., Arimura, G.I., Uchtenhagen, H., Bossi, S., Bertea, C.M., Cucuzza, L.S., Novero, M., Volpe, V., Quadro, S., Boland, W., 2006. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol. 140, 1022–1035. https://doi.org/10.1104/pp.105.071993

Mahawar, L., Shekhawat, G.S., 2019. EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region. Physiol. Mol. Biol. Plants. 25, 895-904. https://doi.org/10.1007/s12298-019-00663-7

Mai, V.C., Bednarski, W., Borowiak-Sobkowiak, B., Wilkaniec, B., Samardakiewicz, S., Morkunas, I., 2013. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry. 93, 49–62. https://doi.org/10.1016/j.phytochem.2013.02.011

Mehdy, M.C., 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. https://doi.org/10.1104/pp.105.2.467

Mithöfer, A., Schulze, B., Boland, W., 2004. Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett. 566, 1–5. https://doi.org/10.1016/j.febslet.2004.04.011

Mitra, S., Mobarak, S.H., Karmakar, A., Barik, A., 2019. Activities of antioxidant enzymes in three species of Ludwigia weeds on feeding by Altica cyanea. J. King Saud Univ. - Sci. https://doi.org/10.1016/j.jksus.2019.04.008

Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

Moloi, M.J., van der Westhuizen, A.J., 2006. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 163, 1118–1125. https://doi.org/10.1016/j.jplph.2005.07.014
Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Sarath, G., Klucas, R., Baxendale, F., 2009. Oxidative Responses of Resistant and Susceptible Cereal Leaves to Symptomatic and Nonsymptomatic Cereal Aphid (Hemiptera: Aphididae) Feeding. J. Econ. Entomol. 94, 743-751. https://doi.org/10.1603/0022-0493-94.3.743

O'Brien, J.A., Daudi, A., Butt, V.S., Bolwell, G.P., 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 236, 765-779. https://doi.org/10.1007/s00425-012-1696-9

Orozco-Cardenas, M., Ryan, C.A., 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 6553–6557. https://doi.org/10.1073/pnas.96.11.6553

Palial, S., Kumar, S., Sharma, S., 2018. Biochemical changes in the Brassica juncea-fruticulosa introgression lines after Lipaphis erysimi (Kaltenbach) infestation. Phytoparasitica. 46, 499-509. https://doi.org/10.1007/s12600-018-0686-2

Rani, P.U., Jyothsna, Y., 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol. Plant. 32, 695–701. https://doi.org/10.1007/s11738-009-0449-2

Rasheed, R., Yasmeen, H., Hussain, I., Iqbal, M., Ashraf, M.A., Parveen, A., 2020. Exogenously applied 5-aminolevulinic acid modulates growth, secondary metabolism and oxidative defense in sunflower under water deficit stress. Physiol. Mol. Biol. Plants. 1-11. https://doi.org/10.1007/s12298-019-00756-3

Rathinam, M., Mishra, P., Mahato, A.K., Singh, N.K., Rao, U., Sreevathsa, R., 2019. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol. Biol. 101, 163–182. https://doi.org/10.1007/s11103-019-00899-7

Raychaudhuri, S. Sen, Deng, X.W., 2000. The role of superoxide dismutase in combating oxidative stress in higher plants. Bot. Rev. 66, 89–98. https://doi.org/10.1007/bf02857783

Rehman, A., Jingdong, L., Chandio, A.A., Hussain, I., Wagan, S.A., Memon, Q.U.A., 2019. Economic perspectives of cotton crop in Pakistan: A time series analysis (1970–2015) (Part 1). J. Saudi Soc. Agric. Sci. 18, 49–54. https://doi.org/10.1016/j.jssas.2016.12.005

Rehman, A., Jingdong, L., Shahzad, B., Chandio, A.A., Hussain, I., Nabi, G., Iqbal, M.S., 2015. Economic perspectives of major field crops of Pakistan: An empirical study. Pacific Sci. Rev. B Humanit. Soc. Sci. 1, 145–158. https://doi.org/10.1016/j.psrb.2016.09.002

Saed-Moucheshi, A., Pakniyat, H., Pirasteh-Anosheh, H., Azooz, M.M., 2014a. Role of ROS as Signaling Molecules in Plants, in: Oxidative Damage to Plants: Antioxidant Networks and Signaling. Academic Press. https://doi.org/10.1016/B978-0-12-799963-0.00020-4
Saed-Moucheshi, A., Shekoofa, A., Pessarakli, M., 2014b. Reactive Oxygen Species (ROS) Generation and Detoxifying in Plants. J. Plant Nutr. 37, 1573-1585. https://doi.org/10.1080/01904167.2013.868483

Saleem, M., Hussain, D., Ghouse, G., Abbas, M., Fisher, S.W., 2016. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Prot. 79, 177–184. https://doi.org/10.1016/j.cropro.2015.08.024

Scheler, C., Durner, J., Astier, J., 2013. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16, 534-539. https://doi.org/10.1016/j.pbi.2013.06.020

Sharma, H.C., Sujana, G., Manohar Rao, D., 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod. Plant. Interact. 3, 151–161. https://doi.org/10.1007/s11829-009-9068-5

Tan, W., Meng, Q. wei, Brestic, M., Olsovska, K., Yang, X., 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168, 2063-2071. https://doi.org/10.1016/j.jplph.2011.06.009

Tian, Y., Zhao, Y., Zhang, L., Mu, W., Zhang, Z., 2018. Morphological, Physiological, and Biochemical Responses of Two Tea Cultivars to Empoasca onukii (Hemiptera: Cicadellidae) Infestation. J. Econ. Entomol. 111, 899-908. https://doi.org/10.1093/jee/toy011

Timbó, R.V., Hermes-Lima, M., Silva, L.P., Mehta, A., Moraes, M.C.B., Paula, D.P., 2014. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS One. 9, e109735. https://doi.org/10.1371/journal.pone.0109735

Usha Rani, P., Pratyusha, S., 2013. Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J. Asia. Pac. Entomol. 16, 131–136. https://doi.org/10.1016/j.aspen.2013.01.001

Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 151, 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

Vijaya, M., Rani, P.U., 2017. Defensive responses in Capsicum annuum (L) plants, induced due to the feeding by different larval instars of Spodoptera litura (F). Arthropod. Plant. Interact. 11, 193–202. https://doi.org/10.1007/s11829-016-9479-z

Walling, L.L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19, 195–216. https://doi.org/10.1007/s003440000026

War, A.R., Paulraj, M.G., Ignacimuthu, S., Sharma, H.C., 2013. Defensive Responses in Groundnut Against Chewing and Sap-Sucking Insects. J. Plant Growth Regul. 32, 259–272. https://doi.org/10.1007/s00344-012-9294-4
War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2012a. Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiol. Plant. 34, 343–352. https://doi.org/10.1007/s11738-011-0833-6

War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2012b. Differential defensive response of groundnut germplasms to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Plant Interact. 7, 45–55. https://doi.org/10.1080/17429145.2011.587898

War, A.R., Paulraj, M.G., War, M.Y., Ignacimuthu, S., 2011. Jasmonic Acid-Mediated-Induced Resistance in Groundnut (Arachis hypogaea L.) Against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Plant Growth Regul. 30, 512–523. https://doi.org/10.1007/s00344-011-9213-0

Zhang, S.Z., Hua, B.Z., Zhang, F., 2008. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod. Plant. Interact. 2, 209–213. https://doi.org/10.1007/s11829-008-9044-5

Zhang, Y., Fu, Y., Fan, J., Li, Q., Francis, F., Chen, J., 2019. Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC Plant Biol. 19, 547. https://doi.org/10.1186/s12870-019-2148-5

Zhu-Salzman, K., Luthe, D.S., Felton, G.W., 2008. Arthropod-inducible proteins: Broad spectrum defenses against multiple herbivores. Plant Physiol. 146, 852–858. https://doi.org/10.1104/pp.107.112177

Figures
Figure 1

A-B Effect of Spodoptera litura infestation on hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentration in three cotton cultivars. Values are means ± SE (n=3). Cvs, cultivars; T, Treatment (Infestation); ns, non-significant; *, ** and *** = significant at 0.05, 0.01 and 0.001 levels, respectively.
Figure 2

A-C Effect of Spodoptera litura infestation on photosynthetic pigments in three cotton cultivars. Bars represent the means ± SE (n=3). Cvs, cultivars; T, Treatment (Infestation); ns, non-significant; *, ** and *** = significant at 0.05, 0.01 and 0.001 levels, respectively.
A-C Effect of Spodoptera litura infestation on superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in three cotton cultivars. Bars represents Mean ± SE (n=3). Values are means ± SE (n=3). Cvs, cultivars; T, Treatment (Infestation); ns, non-significant; *, ** and *** = significant at 0.05, 0.01 and 0.001 levels, respectively.

Figure 3
Figure 4

A-D Effect of Spodoptera litura infestation on leaf free proline content, phenolics, glycine betaine (GB) and total soluble proteins (TSP) in three cotton cultivars. Bars represent the means ± SE (n=3). Cvs, cultivars; T, Treatment (Infestation); ns, non-significant; *, ** and *** = significant at 0.05, 0.01 and 0.001 levels, respectively.
Figure 5

Correlation of S. litura infestation with chlorophyll pigments and biochemical attributes in cotton (Gossypium hirsutum L.) plants. Chl. a (Chlorophyll a), Chl. b (Chlorophyll b), Tot. chl. (Total chlorophyll contents), H2O2 (Hydrogen peroxide), MDA (Malondialdehyde), SOD (Superoxide dismutase), POD (Peroxidase), CAT (Catalase), TSP (Total soluble proteins) and GB (Glycine betaine).