Brief Communications

The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

Verena Wolfram,1 Tony D. Southall,2 Cengiz Günay,3 Astrid A. Prinz,3 Andrea H. Brand,3 and Richard A. Baines1

1Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, 2The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, United Kingdom, and 3Department of Biology, Emory University, Atlanta, Georgia 30322

Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K⁺ channel (K_{1,1}). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca²⁺, the fast K⁺ current is carried solely by Sh channels (unlike neurons in which a second fast K⁺ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression.

Key words: aCC; central nervous system; Drosophila; muscle; RP3; Shaker

Introduction

The development of embryonic neurons is regulated by factors that are intrinsic or extrinsic to individual cells. It is, however, in the early stages of development, before axonal growth and circuit formation, that intrinsic factors predominate (Spana et al., 1995; Grosskortenhaus et al., 2005; Grosskortenhaus et al., 2006). These factors, which are likely determined by clonal lineage, control aspects of both morphological and functional (electrical) development. Studies on motoneuron specification, from flies to mammals, have shown that early developmental decisions, such as subclass identity, are dictated, at least in part, by a combinatorial code of LIM-HD transcription factors (TFs) (Thor and Thomas, 1997; Landgraf et al., 1999; Dasen et al., 2005; Landgraf and Thor, 2006; Dasen et al., 2008; De Marco García and Jessell, 2008). However, whether early neuron-type specific ion channel gene expression is similarly influenced through combinatorial activity of these same TFs remains to be demonstrated.

Embryonic Drosophila motoneurons express a stereotypic mix of identified TFs, which are evolutionary conserved with mammals (Thor and Thomas, 1997; Thaler et al., 1999; Moran-Rivard et al., 2001; Esmaeili et al., 2002; Thaler et al., 2002). For example, the RP subgroup of motoneurons (RPs 1, 3–5), which innervate ventral and lateral muscles, express the TFs Isl (also known as Tail-up), Lim3, and Hb9 (also known as Extra-extra). Motoneurons (e.g., aCC) that project dorsally express Eve (Thor and Thomas, 1997; Landgraf et al., 1999; Landgraf and Thor, 2006). The presence or absence of individual TFs, particularly Isl and Eve, is a known determinant for both axonal projection, neurotransmitter phenotype, and neuron type-specific expression of ion channels (Thor and Thomas, 1997; Landgraf et al., 1999; Pym et al., 2006; Wolfram et al., 2012).

Our previous studies used DNA adenine methyltransferase identification (DamID) (van Steensel and Henikoff, 2000) to identify ion channel genes, in particular slowpoke (slo) and Sh, as targets of Eve and Islet, respectively (Pym et al., 2006; Wolfram et al., 2012). Here we now report the complete identified DamID-derived binding sites for Hb9 and Lim3, together with a reassessment of DamID data previously obtained for Eve and Isl, using Flybase release 5.47. Our analysis identifies ion channel genes as
targets of all four TFs, and shows that some ion channel genes (e.g., Sh) are bound by multiple TFs (in this instance, Isl and Lim3). We further show that the combined action of Isl and Lim3, in regulating Sh expression, is additive. As such, these findings provide first direct experimental evidence to support combinatorial regulation of a specific ion channel gene.

Materials and Methods

Fly stocks. Flies were maintained under standard conditions. For larval collections, flies were allowed to lay eggs onto grape juice agar plates. GAL4-UAS (homozygous viable on the second chromosome) was used to express Isl (2× UAS-isl, third chromosome) or Lim3 (1× UAS-Lim3, second chromosome) in body wall muscle (both kindly supplied by Dr. Stefan Thor). Co-expression was achieved using a genetic cross containing both transgenes (2× UAS-isl and 1× UAS-Lim3). Embryos of either sex were kept at 18°C to avoid embryonic lethality, which occurs with expression of either transgene in muscle at 25°C.

DamID analysis. The construction of DamID constructs and transgenic Drosophila lines has been previously described (Pym et al., 2006; Wolfram et al., 2012). Briefly, the full-length TF-coding sequences were PCR-amplified from an embryonic cDNA library and cloned into pUASTattB-NDam. Preparation of Dam-methylated DNA from stage 17 embryos was performed as previously described (Pym et al., 2006) and gene-targets identified (Wolfram et al., 2012) using Flybase release 5.47 and a stringent false discovery rate (FDR) of 0.1%.

Electrophysiology. Hatched larvae (1–4 h old) were dissected and the CNS removed (Wolfram et al., 2012). Muscles were treated with 1 mg/ml collagenase (Sigma) for 0.5 to 1 min before whole-cell patch recording. Larvae were visualized using a water-immersion lens (total magnification, 600×) combined with DIC optics (BX51W1 microscope; Olympus). Recordings were made from muscle 6 in segments A3–4 using a Multiclamp 700B amplifier controlled by pClamp 10.2 (Molecular Devices).

Recordings were sampled at 20 kHz and filtered at 2 kHz. The voltage protocol used a maintained holding potential of −60 mV and a −90 mV prepulse for 200 ms before a 50 ms step to 40 mV. Leak currents were subtracted online (P/4). Recordings were done in at least 4 animals, and at least 8 muscles were recorded from in total for each manipulation. Cell capacitance was determined by integrating the area under the capacity transients evoked by stepping from −60 to −90 mV (checked before and after recordings). External saline (stewart et al., 1994) consisted of (in mM): 70 NaCl, 5 KCl, 0.1 CaCl2, 20 MgCl2, 1 NaHCO3, 5 HEPES, 115 sucrose, 5 trehalose, pH 7.2. The calcium concentration was kept low to prevent activation of Ca2+/H11002/H11005/H11002- and after recordings). External saline (Wu and Haugland, 1985) consisted of (in mM): 70 NaCl, 5 KCl, 0.1 CaCl2, 20 MgCl2, 1 NaHCO3, 5 HEPES, 115 sucrose, 5 trehalose, pH 7.4.

Under conditions of low external Ca2+, recorded traces contained two types of K+ conductances: Kfast (K) inactivating type (carried by Sh) and a Kslow (Ks) nonactivating type. These can be separated based on holding potential: Kf is inactivated by sustained depolarization because it reflects the observed overlap in neuron expression of these transcription factors. Lim3, Isl, and Hb9 are found colocalized in many motoneurons, whereas Eve is expressed in relatively larger number of gene targets than does Eve. Analysis of targets indicates that these three TFs share a large number of common putative targets. In contrast, overlap with targets of Eve is relatively much smaller. This is predictable and validates our analysis because it reflects the observed overlap in neuron expression of these transcription factors. Lim3, Isl, and Hb9 are found colocalized in many motoneurons, whereas Eve is expressed in relatively few (Landgraf and Thor, 2006).

Consistent with the possibility of combinatorial regulation, many of target genes are bound by more than one TF (Fig. 1; Table 1). Gene ontology analysis reveals that targets include ion channels and also genes associated with both morphology (axonal and dendritic) and synapse formation (Table 1). This latter subset includes beat-Ic, Dsca, fra, Fas2, robo, and Senaila, which have been studied in some detail (Baines et al., 2002; Corty et al., 2009; Mauss et al., 2009; Timofeef et al., 2012). One gene in
Our DamID shows that some genes are potentially bound by Combinatorial transcription factors share the same targets is restricted.

Of the ion channel gene targets identified, there is considerable evidence to show that the voltage-gated K\(^+\) channel genes, Sh, Shal, Shab, the Ca\(^{2+}\)-dependent K\(^+\) channel gene slo, and the Ca\(^{2+}\)-channel gene Ca-\(\alpha1D\) are expressed in motoneurons (Byerly and Leung, 1988; Leung and Byerly, 1991; Martínez-Padrón and Ferrus, 1997; Baines and Bate, 1998; Engel and Wu, 1998; Worrell and Levine, 2008). Synaptic excitation of motoneurons is also cholinergic (Baines et al., 1999); and in this regard, it is significant that our analysis identifies 5 nicotinic receptor-subunits (of a total of 10) (Sattelle et al., 2002). These genes are nAChR-30D, nAChR-7E, nAChR-34E, nAChR-96Aa, and nAChR-96A. We have previously validated three of the identified ion channel genes, Sh and slo/nAChR-96Aa, as targets of Isl and Eve, respectively (Pym et al., 2006; Wolfram et al., 2012). It should be noted, however, that slo is now only identified (using stricter reassessment criteria) when we relax the FDR to \(\pm 0.5\%\), indicative that our current target list (derived from an FDR of \(\pm 0.1\%\)) is restricted.

Combinatorial transcription factors share the same targets

Our DamID shows that some genes are potentially bound by more than one TF. For example, Sh is a validated target of Isl (Wolfram et al., 2012) but also a putative target of Lim3 (Fig. 2; Table 1). Significantly, a mammalian Isl1:LkX3 (Isl/Lim3 homologs) ATTAGTTAATT “dimer” motif (Lee et al., 2008) underlies both Isl and Lim3 binding sites at this locus (Fig. 2). This overlap is consistent with the hypothesis of combinatorial regulation. We tested for this experimentally.

To determine how Lim3 influences expression of Sh and whether its effect is additive to that of Isl, we used body wall muscle in which Kf is carried entirely by Sh channels (in low external Ca\(^{2+}\)) (Singh and Wu, 1990). Such analysis would be complicated in neurons because of the expression of an additional Kf encoded by Shal (Tsunoda and Salkoff, 1995) and homeostatic mechanisms (Baines et al., 2001), which maintain consistency in action potential firing through adjustment of ionic conductances. By contrast, muscle does not exhibit this type of homeostasis. To determine the amplitude of Kf in muscle whole-cell recordings, we modeled Kf and Ks, which allowed us to computationally determine peak conductances for both (see Materials and Methods). As previously shown, expression of isl in muscle is sufficient to reduce both the magnitude of Kf (Sh-dependent) (Fig. 3A–C) and the abundance of Sh transcript (Fig. 3D) consistent with transcriptional regulation (Wolfram et al., 2012). Expression of isl led to a significant reduction of Kf (0.17 ± 0.02 vs 0.11 ± 0.01 nS, \(p = 0.01, n = 8\), mean ± SE) and transcript (0.91 ± 0.03-fold difference, \(p = 0.02, n = 6\)). By contrast, expression of Lim3 did not statistically affect either Kf (0.13 ± 0.01 nS, \(p = 0.08, n = 10\)) or Sh transcript level (0.94 ± 0.03-fold reduction, \(p = 0.1\); Fig. 2), even though the Lim3 transgene was expressed at increased levels relative to isl (~30-fold compared with an ~15-fold increase relative to control, no transgenic expression). Coexpression of both isl and Lim3 was, however, suf-

Table 1. Selected genes identified by DamID as putative targets of Islet, Lim3, Hb9, and Eve

Gene	Islet	Lim3	Hb9	Eve
Sh	√	√	√	
Shab	√	√		
Shawl	√			
Shal	√	√		
slo	√			
SK		√		
KCNQ			√	
Ih			√	
Ca-alpha1T				√
Ca-alpha1D				√
Ca-beta				√
nAChR-7E				√
nAChR-30D				√
nAChR-34E				√
nAChR-96Aa				√
nAChR-96A				√
beat-la				√
beat-Ib				√
beat-lc				√
beat-lla				√
beat-ilb				√
beat-illla				√
beat-ilc				√
beat-Vb				√
beat-Vc				√
beat-VI				√
beat-VII				√
Sema-1a				√
Sema-1b				√
Sema-2a				√
Sema-2b				√
Sema-5c				√
NetA				√
NetB				√
fra				√
unc-5				√
robo3				√
Dscam				√
Fas1				√
Fas2				√
Fas3				√
comm				√
lar				√
shot				√

Figure 1. Overlap of putative gene targets of Isl, Lim3, Hb9, and Eve determined by DamID. A four-way Venn diagram showing numbers of gene targets identified for each TF and overlap.
Combinatorial Regulation of Shaker Expression

Wolfram et al., 2006

Figure 2. DamID demonstrates direct binding of Isl and Lim3 to the Sh locus. The transcription unit of Sh is shown in blue; arrow indicates direction of transcription. Sh exons are shown immediately below in brown. Putative binding of each TF to this locus is indicated by the average of normalized log2-transformed ratios from multiple independent DamID experiments. Areas in red (marked by the black boxes) represent a significant binding peak within the dataset (FDR < 0.1%) for both Isl and Lim3. No binding peaks were detected for Hb9 and Eve. Open red arrow indicates the location of a mammalian Isl1:LhX3 (Isl/Lim3 homologs) ATTAGTTAATT “dimer” motif (Lee et al., 2008).

Figure 3. Isl and Lim3 act combinatorially to regulate Sh expression. A. The fast K⁺ current (Kf) in body wall muscle is carried entirely by the Sh channel (in conditions of low Ca²⁺). Traces represent membrane current produced under voltage clamp for a step from −90 to 40 mV for 50 ms in control muscle and when Isl, Lim3, or both are expressed. Recordings are normalized to cell capacitance. B. Modelling of the outward K⁺ conductance allows Kf (carried by Sh) and Kslow (Ks) to be differentiated. Green line indicates model fit to capacitance-adjusted data (control muscle); model-derived Kf and Ks are shown. C. Model-derived peak conductances for Kf show that expression of Isl is sufficient to suppress the Sh-dependent Kf current, whereas Lim3 expression has no statistically significant effect. Cooexpression of both Isl and Lim3 reduces Kf current (Kf) in body wall muscle (Haugland and Wu, 1990). Attempts to verify this through higher TF transgene expression, often achieved by raising the temperature to 25°C, was not possible in our experiments because of lethality at this temperature. Thus, we conclude that repression of Sh expression by coexpressing both isl and Lim3 is additive, which is both predictive and supportive of combinatorial regulation.

Discussion

In contrast to specification of neuron identity, little is known concerning how embryonic neurons regulate ion channel gene expression before formation of neural networks. Recent studies, in a range of animals, suggest that members of a defined set of LIM-HD TFs regulate this early phase of expression. Collectively, these studies have led to the proposition that early neuron-type specific properties, including axonal and dendritic morphology, choice of synaptic target and expression of ion channels, are set by a combinatorial activity of TFs (Landgraf and Thor, 2006; Pym et al., 2006; Wolfram et al., 2012). For example, the presence of Lim3 is seemingly sufficient to subdivide Drosophila Isl-positive motoneurons into the ISNb and ISNd classes (Thor et al., 1999). Although there is evidence to show that ion channels are also regulated by LIM-HD TFs (Wolfram and Baines, 2013), definitive evidence to show combinatorial regulation is lacking. In this study, we show that the activity of two early expressed combinatorial TFs, Isl and Lim3, is additive such that their combined effect to suppress expression of the Sh K⁺ channel is significantly greater than either alone.

To show that Sh expression is regulated by both Isl and Lim3, we exploited muscle as a model tissue. There are several advantages of using muscle over neurons. First, Kf in muscle (in conditions of low external Ca²⁺) is carried solely by Sh channels (Singh and Wu, 1990). Second, muscle is isopotential (Jan and Jan, 1976), which significantly minimizes the impact of space clamp problems, which, in neurons, can be particularly problematic for fine-scale analysis of ionic currents. Third, studies in neurons can be complicated by up-regulated by ~8- and ~12-fold, relative to control. It should be noted that DamID shows that Lim3 is bound by Isl, which likely explains the significantly lower expression level compared with when Lim3 was overexpressed alone.

Together, our results are consistent with the previous demonstration of a direct gene–dosage relationship between Sh transcript and Sh-dependent Kf expressed in body wall muscle (Haugland and Wu, 1990). Attempts to verify this through higher TF transgene expression, often achieved by raising the temperature to 25°C, was not possible in our experiments because of lethality at this temperature. Thus, we conclude that repression of Sh expression by coexpressing both isl and Lim3 is additive, which is both predictive and supportive of combinatorial regulation.

Discussion

In contrast to specification of neuron identity, little is known concerning how embryonic neurons regulate ion channel gene expression before formation of neural networks. Recent studies, in a range of animals, suggest that members of a defined set of LIM-HD TFs regulate this early phase of expression. Collectively, these studies have led to the proposition that early neuron-type specific properties, including axonal and dendritic morphology, choice of synaptic target and expression of ion channels, are set by a combinatorial activity of TFs (Landgraf and Thor, 2006; Pym et al., 2006; Wolfram et al., 2012). For example, the presence of Lim3 is seemingly sufficient to subdivide Drosophila Isl-positive motoneurons into the ISNb and ISNd classes (Thor et al., 1999). Although there is evidence to show that ion channels are also regulated by LIM-HD TFs (Wolfram and Baines, 2013), definitive evidence to show combinatorial regulation is lacking. In this study, we show that the activity of two early expressed combinatorial TFs, Isl and Lim3, is additive such that their combined effect to suppress expression of the Sh K⁺ channel is significantly greater than either alone.

To show that Sh expression is regulated by both Isl and Lim3, we exploited muscle as a model tissue. There are several advantages of using muscle over neurons. First, Kf in muscle (in conditions of low external Ca²⁺) is carried solely by Sh channels (Singh and Wu, 1990). Second, muscle is isopotential (Jan and Jan, 1976), which significantly minimizes the impact of space clamp problems, which, in neurons, can be particularly problematic for fine-scale analysis of ionic currents. Third, studies in neurons can be complicated by
homeostatic mechanisms, which maintain consistency in action potential firing. These mechanisms, not present in muscle, can modify expression of other channels to compensate for any enforced perturbation to membrane excitability that would be caused, in this instance, by manipulation of Sh expression (Baines et al., 2001; Wolfram et al., 2012). Validation of the effects we report here in muscle will, of course, require analysis of the effect of TF expression in central neurons. An attractive possibility, if endogenous levels of individual TFs can be accurately determined, is to use our understanding of Isl and Lim3 to predict levels of Sh-dependent K⁺ current in individual motoneurons, which can be subsequently confirmed by electrophysiology.

An important question to be addressed is how coexpression of Isl and Lim3 differs from expression of Isl alone in being able to repress Sh expression. The mammalian homologs, Isl1 and LhX3, have been shown to form a hexameric complex, together with the self-dimerizing cofactor NLI, to promote motoneuron fate (Lee et al., 2012). Although the LhX3/Isl1 complex and Isl1 or LhX3 response elements share A/T-rich sequences, each site is unique (Lee et al., 2008). Isl1 binds a DNA motif containing a core TAAT sequence (Yaden et al., 2005; Lee et al., 2008; Mazzoni et al., 2013). TAAT motif sites occur at a very high frequency in the genome; therefore, examining this site alone is not particularly informative. The first report to describe an Isl1 binding site (Boam and Docherty, 1989) identified a CTAATG, which is present at one of the sites of Isl binding at the Sh locus. Lee et al. (2008) reported a predicted site for LhX3 binding (AATATGAATT), which is bound by Isl1:LhX3 and concomitantly suppresses the interneuron programs. Proc Natl Acad Sci USA 109:3383–3388. CrossRef Medline

Lee HT, Byerly L (1991) Characterization of single calcium channels in Drosophila embryonic nerve and muscle cells. J Neurosci 11:3047–3059. Medline

Martinez-Padrón M, Ferrús A (1997) Presynaptic recordings from Drosophila: correlation of macroscopic and single-channel K⁺ currents. J Neurosci 17:3412–3424. Medline

Mauss A, Trippodi M, Evers JF, Landgraf M (2009) Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 7:e1000200. CrossRef Medline

Mazzoni EO, Mahony S, Closser M, Morrison CA, Nedelee S, Williams DJ, An D, Gifford DK, Wichterle H (2013) Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat Neurosci 16:1219–1227. CrossRef Medline

Morgan-Rivard L, Kagawa T, Sauferessig H, Gross MK, Burill J, Goulding M (2001) Evx1 is a postmitotic determinant of v0 interneuron identity in the NB7-1 lineage. Dev Cell 14:877–889. CrossRef Medline

Pym EC, Southall TD, Mee CJ, Brand AH, Baines RA (2006) The homeobox gene Dmr-A specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. Proc Natl Acad Sci USA 103:3383–3388. CrossRef Medline

References

Baines RA, Bate M (1998) Electrophysiological development of central neurons in the Drosophila embryo. J Neurosci 18:4673–4683. Medline

Baines RA, Robinson SG, Fujikata M, Jaynes JB, Bate M (1999) Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila. Curr Biol 9:1267–1270. CrossRef Medline

Byerly L, Leung HT (1988) Ionic currents of Drosophila neurons in embryonic cultures. J Neurosci 8:4379–4399. Medline

Corty MM, Matthews BJ, Gruener WB (2009) Molecules and mechanisms of dendrite development in Drosophila. Development 136:1049–1061. CrossRef Medline

Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491. CrossRef Medline

Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM (2008) Hox repression for motor neuron identity is gated by a single accessory factor, FoxP1. Cell 134:304–316. CrossRef Medline

Engel JE, Wu CF (1998) Genetic dissection of functional contributions of specific potassium channel subunits in habituation of an escape circuit in Drosophila. J Neurosci 18:2254–2267. Medline

Esmaeili B, Ross JM, Neades C, Miller DM 3rd, Ahringer J (2002) The C. elegans even-skipped homologue, val-7, specifies DB motoneuron identity and axon trajectory. Development 129:853–862. Medline

Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ (2005) Regulation of temporal identity transitions in Drosophila neuroblast. Dev Cell 8:193–202. CrossRef Medline

Grosskortenhaus R, Robinson KJ, Doe CQ (2006) Pdm and Castor specify late-born motor neuron identity in the NB-7-1 lineage. Genes Dev 20:2618–2627. CrossRef Medline

Haugland FN, Wu CF (1990) A voltage-clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila. J Neurosci 10:1357–1371. Medline

Jan LY, Jan YN (1976) Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 262:189–214. Medline

Landgraf M, Thor S (2006) Development of Drosophila motoneurons: specification and morphology. Semin Cell Dev Biol 17:3–11. CrossRef Medline

Landgraf M, Roy S, Prokop A, VijayRaghavan K, Bate M (1999) Even-skipped determines the dorsal growth of motor axons in Drosophila. Neuron 22:43–52. CrossRef Medline

Lee S, Lee B, Joshi K, Paff SL, Lee JW, Lee SK (2008) A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 14:877–889. CrossRef Medline

Lee S, Cuviéllier JM, Lee B, Shen R, Lee JW, Lee SK (2012) Fusion protein Isl1-LhX3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. Proc Natl Acad Sci USA 109:3383–3388. CrossRef Medline

Lee HT, Byerly L (1991) Characterization of single calcium channels in Drosophila embryonic nerve and muscle cells. J Neurosci 11:3047–3059. Medline

Mauss A, Trippodi M, Evers JF, Landgraf M (2009) Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 7:e1000200. CrossRef Medline

Mazzoni EO, Mahony S, Closser M, Morrison CA, Nedelee S, Williams DJ, An D, Gifford DK, Wichterle H (2013) Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat Neurosci 16:1219–1227. CrossRef Medline

Nataraj L, Kagawa T, Sauferessig H, Gross MK, Burill J, Goulding M (2001) Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron 29:385–399. CrossRef Medline

Pym EC, Southall TD, Mee CJ, Brand AH, Baines RA (2006) The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Dev 1:3. CrossRef Medline

Sattelle DB, Calefaro E, Grauso M, Raymond V, Franks CJ, Towers P (2002) Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Neuroritns Found Symp 245:250–257; discussion 257–260.
Singh S, Wu CF (1990) Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers. J Exp Biol 152: 59–76. Medline
Spana EP, Kopczynski G, Goodman CS, Doe CQ (1995) Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121:3489–3494. Medline
Stewart BA, Atwood HL, Renger JI, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 175:179–191. CrossRef Medline
Thaler JP, Lee SK, Jurata LW, Gill GN, Pfaff SL (2002) LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110:237–249. CrossRef Medline
Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23:675–687. CrossRef Medline
Thor S, Thomas JB (1997) The Drosophila islet gene governs axonpathfinding and neurotransmitter identity. Neuron 18:397–409. CrossRef Medline
Thor S, Andersson SG, Tomlinson A, Thomas JB (1999) A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397:76–80. CrossRef Medline
Timofeyev K, Joly W, Hadjieconomou D, Salecker I (2012) Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron 75:80–93. CrossRef Medline
Tsunoda S, Salkoff L (1995) Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J Neurosci 15:1741–1754. Medline
van Steensel B, Henkoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428. CrossRef Medline
Wolfram V, Baines RA (2013) Blurring the boundaries: developmental and activity-dependent determinants of neural circuits. Trends Neurosci 36: 610–619. CrossRef Medline
Wolfram V, Southall TD, Brand AH, Baines RA (2012) The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron 75:663–674. CrossRef Medline
Worrell JW, Levine RB (2008) Characterization of voltage-dependent Ca(2+) currents in identified Drosophila motoneurons in situ. J Neurophysiol 100:868–878. CrossRef Medline
Wu CF, Haugland FN (1985) Voltage-clamp analysis of membrane currents in larval muscle fibers of Drosophila: alteration of potassium currents in Shaker mutants. J Neurosci 5:2626–2640. Medline
Yaden BC, Savage JJ, Hunter CS, Rhodes SJ (2005) DNA recognition properties of the LHX3b LIM homeodomain transcription factor. Mol Biol Rep 32:1–6. CrossRef Medline