Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with Converse

Rajeev Goré1 and Florian Widmann1,2

1Logic and Computation Group
2,* NICTA The Australian National University
Canberra, ACT 0200, Australia,
\{Rajeev.Gore,Florian.Widmann\}@anu.edu.au

Abstract. We give an optimal (\textsc{exptime}), sound and complete tableau-based algorithm for deciding satisfiability for propositional dynamic logic with converse (CPDL) which does not require the use of analytic cut. Our main contribution is a sound method to combine our previous optimal method for tracking least fix-points in PDL with our previous optimal method for handling converse in the description logic $ALCI$. The extension is non-trivial as the two methods cannot be combined naively. We give sufficient details to enable an implementation by others. Our OCaml implementation seems to be the first theorem prover for CPDL.

1 Introduction

Propositional dynamic logic (PDL) is an important logic for reasoning about programs. Its formulae consist of traditional Boolean formulae plus “action modalities” built from a finite set of atomic programs using sequential composition (;), non-deterministic choice (\cup), repetition (\ast), and test (?). The logic CPDL is obtained by adding converse (\texttt{\neg}), which allows us to reason about previous actions. The satisfiability problem for CPDL is \textsc{exptime}-complete \cite{1}.

De Giacomo and Massacci \cite{2} give an \textsc{nexptime} tableau algorithm for deciding CPDL-satisfiability, and discuss ways to obtain optimality, but do not give an actual \textsc{exptime} algorithm. The tableau method of Nguyen and Szalas \cite{3} is optimal. Neither method has been implemented, and since both require an explicit analytic cut rule, it is not at all obvious that they can be implemented efficiently. Optimal game-theoretic methods for fix-point logics \cite{4} can be adapted to handle CPDL \cite{5} but involve significant non-determinism. Optimal automata-based methods \cite{6} for fix-point logics are still in their infancy because good optimisations are not known. We know of no resolution methods for CPDL.

We give an optimal tableau method for deciding CPDL-satisfiability which does not rely on a cut rule. Our main contribution is a sound method to combine our method for tracking and detecting unfulfilled eventualities as early as possible.
Table 1. Smullyan’s α- and β-notation to classify formulae

	α	β
1	ϕ ∧ ψ	ϕ ∨ ψ
2	ϕ [γ ∪ δ]	ϕ ⟨γ⟩ ∪ ϕ ⟨δ⟩
1	(ψ?)φ	(γ?; δ?)φ
2	(ψ)φ	(ψ; δ)φ
1	(γ)φ	(γ)φ
2	(γ)φ	(γ)φ
1	(γ)φ	(γ)φ
2	(γ)φ	(γ)φ
1	(γ)φ	(γ)φ
2	(γ)φ	(γ)φ

in PDL [7] with our method for handling converse for ALCI [8]. The extension is non-trivial as the two methods cannot be combined naively.

We present a mixture of pseudo code and tableau rules rather than a set of traditional tableau rules to enable easy implementation by others. Our unoptimised OCaml implementation appears to be the first automated theorem prover for CPDL (http://rsise.anu.edu.au/~rpg/CPDLTabProver/). A longer version with full proofs is available at http://arxiv.org/abs/1002.0172.

2 Syntactic Preliminaries

Definition 1. Let AFml and APrg be two disjoint and countably infinite sets of propositional variables and atomic programs, respectively. The set LPrg of literal programs is defined as LPrg := APrg ∪ {a− | a ∈ APrg}. The set Fml of all formulae and the set Prg of all programs are defined mutually inductively as follows where p ∈ AFml and l ∈ LPrg:

Fml ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ⟨γ⟩φ | [γ]φ
Prg γ ::= l | γ | γ ∪ γ | γ* | ϕ? .

A ⟨lp⟩-formula is a formula ⟨γ⟩φ where γ ∈ LPrg is a literal program.

Implication (→) and equivalence (↔) are not part of the core language but can be defined as usual. In the rest of the paper, let p ∈ AFml and l ∈ LPrg.

We omit the semantics as it is a straightforward extension of PDL [7] and write M, w ⊩ ϕ if ϕ ∈ Fml holds in the world w ∈ W of the model M.

Definition 2. For a literal program l ∈ LPrg, we define l− as a if l is of the form a−, and as l− otherwise. A formula ϕ ∈ Fml in negation normal form if the symbol ¬ appears only directly before propositional variables. For every ϕ ∈ Fml, we can obtain a formula nnf(ϕ) in negation normal form by pushing negations inward such that ϕ ↔ nnf(ϕ) is valid. We define ∼ϕ := nnf(¬ϕ).

We categorise formulae as α- or β-formulae as shown in Table 1 so that the formulae of the form α ↔ α1 ∧ α2 and β ↔ β1 ∨ β2 are valid. An eventuality is a formula of the form ⟨γ1⟩ ... ⟨γk⟩⟨γ*⟩φ, and Ev is the set of all eventualities. Using Table 1, the binary relation “⇝” relates a ⟨⟩-formulae α (respectively β), to its reduction α1 (respectively β1 and β2). See [7, Def. 7] for their formal definitions.

3 An Overview of our Algorithm

Our algorithm builds an and-or graph G by repeatedly applying four rules (see Table 2) to try to build a model for a given ϕ in negation normal form. Each
node x carries a formula set Γ_x, a status sts_x, and other fields to be described shortly. Rule 1 applies the usual expansion rules to a node to create its children. These expansion rules capture the semantics of CPDL. We use Smullyan’s α/β-rule notation for classifying rules and nodes. As usual, a node x is a ("saturated") state if no α/β-rule can be applied to it. If x is a state then for each $\langle l \rangle \xi$ in Γ_x, we create a node y with $\Gamma_y = \{ \xi \} \cup \Delta$, where $\Delta = \{ \psi \mid [l] \psi \in \Gamma_x \}$, and add an edge from x to y labelled with $\langle l \rangle \xi$ to record that y is an l-successor of x.

If Γ_x contains an obvious contradiction during expansion, its status becomes “closed”, which is irrevocable. Else, at some later stage, Rule 2 determines its status as either “closed” or “open”. “Open” nodes contain additional information which depends on the status of other nodes. Hence, if a node changes its status, it might affect the status of another (“open”) node. If the stored status of a node does not match its current status, the node is no longer up-to-date. Rule 3, which may be applied multiple times to the same node, ensures that “open” nodes are kept up-to-date by recomputing their status if necessary. Finally, Rule 4 detects eventualities which are impossible to fulfil and closes nodes which contain them.

We first describe the various important components of our algorithm separately.

Global State Caching. For optimality, the graph G never contains two state nodes which carry the same set of formulae [8]. However, there may be multiple non-states which carry the same set of formulae. That is, a non-state node x carrying Γ which appears while saturating a child y of a state z is unique to y. If a node carrying Γ is required in some other saturation phase, a new node carrying Γ is created. Hence the nodes of two saturation phases are distinct.

Converse. Suppose state y is a descendant of an l-successor of a state x, with no intervening states. Call x the parent state of y since all intervening nodes are not states. We require that $\{ \psi \mid [l^-] \psi \in \Gamma_y \} \subseteq \Gamma_x$, since y is then compatible with being a l-successor of x in the putative model under construction. If some $[l^-] \psi \in \Gamma_y$ has $\psi \notin \Gamma_x$ then x is “too small”, and must be “restarted” as an alternative node x^+ containing all such ψ. If any such ψ is a complex formula to which an α/β-rule is applicable then x^+ is not a state and may have to be “saturated” further. The job of creating these alternatives is done by special nodes [8]. Each special node monitors a state and creates the alternatives when needed.

Detecting Fulfilled and Unfulfilled Eventualities. Suppose the current node x contains an eventuality e_x. There are three possibilities. The first is that e_x can be fulfilled in the part of the graph which is “older” than x. Else, it may be possible to reach a node z in the parts of the graph “newer” than x such that z contains a reduction e_z of e_x. Since this “newer” part of the graph is not fully explored yet, future expansions may enable us to fulfil e_x via z, so the pair (z, e_z) is a “potential rescuer” of e_x. The only remaining case is that e_x cannot be fulfilled in the “older” part of the graph, and has no potential rescuers. Thus future expansions of the graph cannot possibly help to fulfil e_x since it cannot reach these “newer” parts of the future graph. In this case x can be “closed”. The technical machinery to maintain this information for PDL is from [7]. However,
the presence of “converse” and the resulting need for alternative nodes requires a more elaborate scheme for CPDL.

4 The Algorithm

Our algorithm builds a directed graph G consisting of nodes and directed edges. We first explain the structure of G in more detail.

Definition 3. Let X and Y be sets. We define $X^\perp := X \uplus \{\perp\}$ where \perp indicates the undefined value and \uplus is the disjoint union. If $f : X \rightarrow Y$ is a function and $x \in X$ and $y \in Y$ then the function $f[x \mapsto y] : X \rightarrow Y$ is defined as $f[x \mapsto y](x') := y$ if $x' = x$ and $f[x \mapsto y](x') := f(x')$ if $x' \neq x$.

Definition 4. Let $G = (V, E)$ be a graph where V is a set of nodes and E is a set of directed edges. Each node $x \in V$ has six attributes: $\Gamma_x \subseteq \text{Fml}$, $\text{ann}_x : \text{Ev} \rightarrow \text{Fml}^\perp$, $\text{pst}_x \in V^\perp$, $\text{ppr}_x \in \text{LPrg}^\perp$, $\text{idx}_x \in \text{Nat}^\perp$, and $\text{sts}_x \in \mathcal{G}$ where $\mathcal{G} := \{\text{unexp}, \text{undef}\} \cup \{\text{closed}(\text{alt}) \mid \text{alt} \subseteq \mathcal{P}(\text{Fml})\} \cup \{\text{open}(\text{prs}, \text{alt}) \mid \text{prs} : \text{Ev} \rightarrow (\mathcal{P}(\text{V} \times \text{Ev}))^\perp \& \text{alt} \subseteq \mathcal{P}(\text{Fml})\}$. Each directed edge $e \in E$ is labelled with a label $l_e \in (\text{Fml} \cup \mathcal{P}(\text{Fml}) \cup \{\text{cs}\})^\perp$ where cs is just a constant.

All attributes of a node $x \in V$ are initially set at the creation of x, possibly with the value \perp (if allowed). Only the attributes idx_x and sts_x are changed at a later time. We use the function create-new-node(Γ, ann, pst, ppr, idx, sts) to create a new node and initialise its attributes in the obvious way.

The finite set Γ_x contains the formulae which are assigned to x. The attribute ann_x is defined for the eventualities in Γ_x at most. If $\text{ann}_x(\varphi) = \varphi'$ then $\varphi' \in \Gamma_x$ and $\varphi \rightarrow \varphi'$. The intuitive meaning is that φ has already been “reduced” to φ' in x. For a state (as defined below) we always have that ann_x is undefined everywhere since we do not need the attribute for states.

The node x is called a *state* iff both attributes pst_x and ppr_x are undefined. For all other nodes, the attribute pst_x identifies the, as we will ensure, unique ancestor $p \in V$ of x such that p is a state and there is no other state between p and x in G. We call p the *parent state* of x. The creation of the child of p which lies on the path from p to x (it could be x) was caused by a (lp)-formula $(l)\varphi$ in Γ_p. The literal program l which we call the *parent program* of x is stored in ppr_x. Hence, for nodes which are not states, both pst_x and ppr_x are defined.

The attribute sts_x describes the *status* of x. Unlike the attributes described so far, its value may be modified several times. The value unexp, which is the initial value of each node, indicates that the node has not yet been expanded. When a node is expanded, its status becomes either $\text{closed}(\cdot)$ if it contains an immediate contradiction, or undef to indicate that the node has been expanded but that its “real” status is to be determined. Eventually, the status of each node is set to either $\text{closed}(\cdot)$ or $\text{open}(\cdot, \cdot)$. If the status is $\text{open}(\cdot, \cdot)$, it might be modified several times later on, either to $\text{closed}(\cdot)$ or to $\text{open}(\cdot, \cdot)$ (with different arguments), but once it becomes $\text{closed}(\cdot)$, it will never change again.

We call a node *undefined* if its status is unexp or undef and *defined* otherwise. Hence a node is undefined initially, becomes defined eventually, and
then never becomes undefined again. Furthermore, we call \(x \) closed iff its status is \(\text{closed}(\Delta) \) for some \(\Delta \subseteq \mathcal{P}(\text{Fml}) \). In this case, we define \(\Delta_x := \Delta \). We call \(x \) open iff its status is \(\text{open}(\mathfrak{p}, \Delta) \) for some \(\mathfrak{p} : \text{Ev} \rightarrow (\mathcal{P}(V \times \text{Ev}))^\perp \) and some \(\Delta \subseteq \mathcal{P}(\text{Fml}) \). In this case, we define \(\mathfrak{p}_x := \mathfrak{p} \) and \(\Delta_x := \Delta \). To avoid some clumsy case distinctions, we define \(\Delta_x := \emptyset \) if \(x \) is undefined.

The value \(\text{closed}(\Delta) \) indicates that the node is “useless” for building an interpretation because it is either unsatisfiable or “too small”. In the latter case, the set \(\Delta \) of alternative sets contains information about missing formulae. Finally, the value \(\text{open}(\mathfrak{p}, \Delta) \) indicates that there is still hope that \(x \) is “useful” and the function \(\mathfrak{p}_x \) contains information about each eventuality \(e_x \in \Gamma_x \) as explained in the overview. Although \(x \) itself may be useful, we need its alternative sets in case it becomes closed later on. Hence it also has a set of alternative sets.

The attribute \(\text{idx}_x \) serves as a time stamp. It is set to \(\perp \) at creation time of \(x \) and becomes defined when \(x \) becomes defined. When this happens, the value of \(\text{idx}_x \) is set such that \(\text{idx}_x > \text{idx}_y \) for all nodes \(y \) which became defined earlier than \(x \). We define \(y \sqsubseteq x \) iff \(\text{idx}_y \neq \perp \) and either \(\text{idx}_x = \perp \) or \(\text{idx}_y < \text{idx}_x \). Note that \(y \sqsubseteq x \) depends on the current state of the graph. However, once \(y \sqsubseteq x \) holds, it will do so for the rest of the time.

To track eventualities, we label an edge between a state and one of its children by the \(\langle l \rangle \)-formula \(\langle l \rangle \varphi \) which creates this child. Additionally, we label edges from special nodes (see overview) to their corresponding states with the marker cs. We also label edges from special nodes to its alternative nodes with the corresponding alternative set.

Definition 5. Let \(\text{ann}^\perp : \text{Ev} \rightarrow \text{Fml}^\perp \) and \(\mathfrak{p}^\perp : \text{Ev} \rightarrow (\mathcal{P}(V \times \text{Ev}))^\perp \) be the functions which are undefined everywhere. For a node \(x \in V \) and a label \(l \in \text{Fml} \cup \mathcal{P}(\text{Fml}) \cup \{\text{cs}\} \), let \(\text{getChild}(x, l) \) be the node \(y \in V \) such that there exists an edge \(e \in E \) from \(x \) to \(y \) with \(l_e = l \). If \(y \) does not exist or is not unique, let the result be \(\perp \). For a function \(\mathfrak{p} : \text{Ev} \rightarrow (\mathcal{P}(V \times \text{Ev}))^\perp \), a node \(x \in V \), and an eventuality \(\varphi \in \text{Ev} \), we define the set \(\text{reach}(\mathfrak{p}, x, \varphi) \) of eventualities as follows:

\[
\text{reach}(\mathfrak{p}, x, \varphi) := \left\{ \psi \in \text{Ev} \mid \exists k \in \mathbb{N}_0. \exists \varphi_0, \ldots, \varphi_k \in \text{Ev}. \left(\psi = \varphi_k \& (x, \varphi_0) \in \mathfrak{p}(\varphi) \& \forall i \in \{0, \ldots, k-1\}. (x, \varphi_{i+1}) \in \mathfrak{p}(\varphi_i) \right) \right\}.
\]

The function \(\text{defer} : V \times \text{Ev} \rightarrow \text{Fml}^\perp \) is defined as follows:

\[
\text{defer}(x, \varphi) := \begin{cases}
\psi & \text{if } \exists k \in \mathbb{N}_0. \exists \varphi_0, \ldots, \varphi_k \in \text{Fml}. \left(\varphi_0 = \varphi \& \varphi_k = \psi \& \forall i \in \{0, \ldots, k-1\}. (x, \varphi_i) \in \text{Ev} \& \text{ann}_x(\varphi_i) = \varphi_{i+1} \right) \\
\perp & \text{otherwise}.
\end{cases}
\]

The function \(\text{getChild}(x, l) \) retrieves a particular child of \(x \). It is easy to see that, during the algorithm, the child is always unique if it exists.

Intuitively, the function \(\text{reach}(\mathfrak{p}, x, \varphi) \) computes all eventualities which can be “reached” from \(\varphi \) inside \(x \) according to \(\mathfrak{p} \). If a potential rescuer \((x, \psi)\) is
Procedure \textbf{is-sat}(\phi) for testing whether a formula \(\phi\) is satisfiable

\textbf{Input}: a formula \(\phi \in \text{Fml}\) in negation normal form

\textbf{Output}: true iff \(\phi\) is satisfiable

\(G := \) a new empty graph; \(\text{idx} := 1\)

let \(d \in \text{APrg}\) be a dummy atomic program which does not occur in \(\phi\)

rt := create-new-node((\(\{d\}\), \(\text{ann}^+, \bot, \bot, \bot, \text{unexp}\))

insert rt in \(G\)

while one of the rules in Table 2 is applicable do

apply any one of the applicable rules in Table 2

if \(\text{sts}_x = \text{open}(\cdot, \cdot)\) then return true else return false

Table 2. Rules used in the procedure \textbf{is-sat}

Rule	Condition	Action
1	\(\exists x \in V. \text{sts}_x = \text{unexp}\)	expand\(x\)
2	\(\exists x \in V. \text{sts}_x \neq \text{det-status}(x)\)	\(\text{sts}_x := \text{det-status}(x)\) & \(\text{idx}_x := \text{idx}\) & \(\text{idx} := \text{idx} + 1\)
3	\(\exists x \in V. \text{open}(\cdot, \cdot) = \text{sts}_x\)	\(\text{sts}_x := \text{det-status}(x)\)
4	\(\exists x \in V. \text{sts}_x = \text{open}(\text{prs}_x, \text{alt}_x)\) & \(\forall \varphi \in \text{Ev} \cap \Gamma_x. \text{prs}_x(\varphi) = \emptyset\)	\(\text{sts}_x := \text{closed}(\text{alt}_x)\)

contained in \(\text{prs}(\varphi)\), the potential rescuers of \(\psi\) are somehow relevant for \(\varphi\) at \(x\). Therefore \(\psi\) itself is relevant for \(\varphi\) at \(x\). The function \(\text{reach}(\text{prs}, x, \varphi)\) computes exactly the transitive closure of this relevance relation.

Intuitively, the function defer\((x, \varphi)\) follows the “ann\(_x\)-chain”. That is, it computes \(\varphi_1 := \text{ann}_x(\varphi), \varphi_2 := \text{ann}_x(\varphi_1),\) and so on. There are two possible outcomes. The first outcome is that we eventually encounter a \(\varphi_k\) which is either not an eventuality or has \(\text{ann}_x(\varphi_k) = \bot\). Consequently, we cannot follow the “ann\(_x\)-chain” any more. In this case we stop and return defer\((x, \varphi) := \varphi_k\). The second outcome is that we can follow the “ann\(_x\)-chain” indefinitely. Then, as \(\Gamma_x\) is finite, there must exist a cycle \(\varphi_0, \ldots, \varphi_n, \varphi_0\) of eventualities such that \(\text{ann}_x(\varphi_i) = \varphi_{i+1}\) for all \(0 \leq i < n\), and \(\text{ann}_x(\varphi_n) = \varphi_0\). In this case we say that \(x\) (or \(\Gamma_x\)) contains an “at a world” cycle and return defer\((x, \varphi) := \bot\).

Next we comment on all procedures given in pseudocode.

Procedure \textbf{is-sat}(\phi) is invoked to determine whether a formula \(\phi \in \text{Fml}\) in negation normal form is satisfiable. It creates a root node rt and initialises the graph \(G\) to contain only rt. The dummy program \(d\) is used to make rt a state so that each node in \(G\) which is not a state has a parent state. The global variable idx is used to set the time stamps of the nodes accordingly.
Procedure expand(x) for expanding a node x

Input: a node $x \in V$ with $sts_x = \text{unexp}$

if $\exists \varphi \in \Gamma_x. \sim \varphi \in \Gamma_x$ or $(\varphi \in \text{Ev} \& \text{defer}(x, \varphi) = \bot)$ then
 idx$_x$:= idx; idx := idx + 1; $sts_x := \text{closed}(\emptyset)$
else (* x does not contain a contradiction *)
 sts_x := undef
 if $\text{pst}_x = \bot$ then (* x is a state *)
 let $(l_1)\varphi_1, \ldots, (l_k)\varphi_k$ be all of the $\langle lp \rangle$-formulae in Γ_x
 for $i \leftarrow 1$ to k do
 $\Gamma_i := \{ \varphi_i \} \cup \{ \psi \mid [l_i]\psi \in \Gamma_x \}$
 $y_i := \text{create-new-node}(\Gamma_i, \text{ann}_i, l_i, \bot, \text{unexp})$
 insert y_i, and an edge from x to y_i labelled with $(l_i)\varphi_i$, into G
 else if $\exists \alpha \in \Gamma_x. \{ \alpha_1, \ldots, \alpha_k \} \not\subseteq \Gamma_x$ or $(\alpha \in \text{Ev} \& \text{ann}_x(\alpha) = \bot)$ then
 $\Gamma := \Gamma_x \cup \{ \alpha_1, \ldots, \alpha_k \}$
 $\text{ann} := \text{if } \alpha \in \text{Ev} \text{ then } \text{ann}_x[\alpha \mapsto \alpha_1] \text{ else } \text{ann}_x$
 $y := \text{create-new-node}(\Gamma, \text{ann}, \text{pst}_x, \text{ppr}_x, \bot, \text{unexp})$
 insert y, and an edge from x to y, into G
 else if $\exists \beta \in \Gamma_x. \{ \beta_1, \beta_2 \} \cap \Gamma_x = \emptyset$ or $(\beta \in \text{Ev} \& \text{ann}_x(\beta) = \bot)$ then
 for $i \leftarrow 1$ to 2 do
 $\Gamma_i := \Gamma_x \cup \{ \beta_i \}$
 $\text{ann}_i := \text{if } \beta \in \text{Ev} \text{ then } \text{ann}_x[\beta \mapsto \beta_i] \text{ else } \text{ann}_x$
 $y_i := \text{create-new-node}(\Gamma_i, \text{ann}_i, \text{pst}_x, \text{ppr}_x, \bot, \text{unexp})$
 insert y_i, and an edge from x to y_i, into G
 else (* x is a special node *)
 if $\exists y \in V. \Gamma_y = \Gamma_x \& \text{pst}_y = \bot$ then (* state already exists in G *)
 insert an edge from x to y labelled with cs into G
 else (* state does not exist in G yet *)
 $y := \text{create-new-node}(\Gamma_x, \text{ann}^{+}, \bot, \bot, \bot, \text{unexp})$
 insert y, and an edge from x to y labelled with cs, into G

While at least one of the rules in Table 2 is applicable, that is its condition is true, the algorithm applies any applicable rule. If no rules are applicable, the algorithm returns satisfiable iff rt is open.

Rule 1 picks an unexpanded node and expands it. Rule 2 picks an expanded but undefined node and computes its (initial) status. It also sets the correct time stamp. Rule 3 picks an open node whose status has changed and recomputes its status. Its meaning is, that if we compute $\text{det-status}(x)$ on the current graph then its result is different from the value in sts_x, and consequently, we update sts_x accordingly. Rule 4 is only applicable if all nodes are up-to-date. It picks an open node containing an eventuality φ which is currently not fulfilled in the graph and which does not have any potential rescuers either. As this indicates that φ can never be fulfilled, the node is closed.

This description leaves several questions open, most notably: “How do we check efficiently whether Rule 3 is applicable?” and “Which rule should be taken if several rules are applicable?”. We address these issues in Section 5.
Procedure det-status(\(x\)) for determining the status of a node \(x\)

Input: a node \(x \in V\) with \(\text{unexp} \neq \text{sts}_x \neq \text{closed}(\cdot)\)

- if \(x\) is an \(\alpha\)-or a \(\beta\)-node then \(\text{sts}_x := \text{det}-\text{sts}-\beta(x)\)
- else if \(x\) is a state then \(\text{sts}_x := \text{det}-\text{sts}-\text{state}(x)\)
- else (\(x\) is a special node, in particular \(\text{pst}_x \neq \bot \neq \text{ppr}_x \))
 \[
 \Gamma_{\text{alt}} := \{\varphi \mid [\text{ppr}_x \vdash \varphi] \in \Gamma_x\} \setminus \Gamma_{\text{pst}_x} \\
 \text{if } \Gamma_{\text{alt}} = \emptyset \text{ then } \text{sts}_x := \text{det}-\text{sts}-\text{spl}(x) \text{ else } \text{sts}_x := \text{closed}(\{\Gamma_{\text{alt}}\})
 \]

Procedure expand(\(x\)) expands a node \(x\). If \(\Gamma_x\) contains an immediate contradiction or an “at a world” cycle then we close \(x\) and set the time stamp accordingly. For the other cases, we assume implicitly that \(\Gamma_x\) does not contain either of these.

If \(x\) is a state, that is \(\text{pst}_x = \bot\), then we do the following for each \(\langle \text{lp}\rangle\)-formula \(\langle l_i \rangle \varphi_i\). We create a new node \(y_i\) whose associated set contains \(\varphi_i\) and all \(\psi\) such that \([l_i] \psi \in \Gamma_x\). As none of the eventualities in \(\Gamma_{y_i}\) is reduced yet, there are no annotations. The parent state of \(y_i\) is obviously \(x\) and its parent program is \(l_i\). In order to relate \(y_i\) to \(\langle l_i \rangle \varphi_i\), we label the edge from \(x\) to \(y_i\) with \(\langle l_i \rangle \varphi_i\). We call \(y_i\) the successor of \(\langle l_i \rangle \varphi_i\).

If \(x\) is not a state and \(\Gamma_x\) contains an \(\alpha\)-formula \(\alpha\) whose decompositions are not in \(\Gamma_x\), or which is an unannotated eventuality, we call \(x\) an \(\alpha\)-node. In this case, we create a new node \(y\) whose associated set is the result of adding all decompositions of \(\alpha\) to \(\Gamma_x\). If \(\alpha\) is an eventuality then \(\text{ann}_y\) extends \(\text{ann}_x\) by mapping \(\alpha\) to \(\alpha_1\). The parent state and the parent program of \(y\) are inherited from \(x\). Note that \(\text{pst}_x\) and \(\text{ppr}_x\) are defined as \(x\) is not a state. Also note that \(\Gamma_y \supseteq \Gamma_x\) or \(\alpha\) is an eventuality which is annotated in \(\text{ann}_y\) but not in \(\text{ann}_x\).

If \(x\) is neither a state nor an \(\alpha\)-node and \(\Gamma_x\) contains a \(\beta\)-formula \(\beta\) such that neither of its immediate subformulae is in \(\Gamma_x\), or such that \(\beta\) is an unannotated eventuality, we call \(x\) a \(\beta\)-node. For each decomposition \(\beta_i\) we do the following. We create a new node \(y_i\) whose associated set is the result of adding \(\beta_i\) to \(\Gamma_x\). If \(\beta\) is an eventuality then \(\text{ann}_{y_i}\) extends \(\text{ann}_x\) by mapping \(\alpha\) to \(\beta_i\). The parent state and the parent program of \(y\) are inherited from \(x\). Note that \(\text{pst}_x\) and \(\text{ppr}_x\) are defined as \(x\) is not a state. Also note that \(\Gamma_{y_i} \supseteq \Gamma_x\) or \(\beta\) is an eventuality which is annotated in \(\text{ann}_{y_i}\) but not in \(\text{ann}_x\).

If \(x\) is neither a state nor an \(\alpha\)-node nor a \(\beta\)-node, it must be fully saturated and we call it a special node. Intuitively, a special node sits between a saturation phase and a state and is needed to handle the “special” issue arising from converse programs, as explained in the overview. Like \(\alpha\)- and \(\beta\)-nodes, special nodes have a unique parent state and a unique parent program. In this case we check whether there already exists a state \(y\) in \(G\) which has the same set of formulae as the special node. If such a state \(y\) exists, we link \(x\) to \(y\); else we create such a state and link \(x\) to it. In both cases we label the edge with the marker cs since a special node can have several children (see below) and we want to uniquely identify the cs-child \(y\) of \(x\). Note that there is only at most one state for each set of formulae and that states are always fully saturated since special nodes are.
Procedure det-sts-\(\beta(x)\) for determining the status of an \(\alpha\)- or a \(\beta\)-node

\begin{verbatim}
Input: an \(\alpha\)- or a \(\beta\)-node \(x \in V\) with unexp \(\neq\) sts \(\neq\) closed(·)
Output: the new status of \(x\)

let \(y_1, \ldots, y_k \in V\) be all children of \(x\)

\(\text{alt} := \bigcup_{i=1}^{k} \text{alt}_{y_i}\)

if \(\forall i \in \{1, \ldots, k\}. \text{sts}_{y_i} = \text{closed}(\cdot)\) then return \(\text{closed}(\text{alt})\)
else (\(\ast\) at least one child is not closed \(\ast\))

\(\text{prs} := \text{prs}^\perp\)
\(\text{foreach } \varphi \in \Gamma_x \cap \text{Ev} \text{ do} \)
\(\text{for } i \leftarrow 1 \text{ to } k \text{ do } \Lambda_i := \text{det-prs-child}(x, y_i, \varphi)\)
\(\Lambda := \text{if } \exists i \in \{1, \ldots, k\}. \Lambda_i = \perp \text{ then } \perp \text{ else } \bigcup_{i=1}^{k} \Lambda_i\)

\(\text{prs} := \text{prs}[\varphi \mapsto \Lambda]\)
\(\text{prs'} := \text{filter}(x, \text{prs})\)

return \(\text{open}(\text{prs'}, \text{alt})\)
\end{verbatim}

Procedure det-status(\(x\)) determines the current status of a node \(x\). Its result will always be \(\text{closed}(\cdot)\) or \(\text{open}(\cdot, \cdot)\). If \(x\) is an \(\alpha/\beta\)-node or a state, the procedure just calls the corresponding sub-procedure. If \(x\) is a special node, we determine the set \(\Gamma_{\text{alt}}\) of all formulae \(\varphi\) such that \([\text{ppr}_x^\perp]\varphi\) is in \(\Gamma_x\) but \(\varphi\) is not in the set of the parent state of \(x\). If there is no such formula, that is \(\Gamma_{\text{alt}}\) is the empty set, we say that \(x\) is compatible with its parent state \(\text{pst}_x\). Note that incompatibilities can only arise because of converse programs.

If \(x\) is compatible with \(\text{pst}_x\), all is well, so we determine its status via the corresponding sub-procedure. Else we cannot connect \(\text{pst}_x\) to a state with \(\Gamma_x\) assigned to it in the putative model as explained in the overview, and, thus, we can close \(x\). That does not, however, mean that \(\text{pst}_x\) is unsatisfiable; maybe it is just missing some formulae. We cannot extend \(\text{pst}_x\) directly as this may have side-effects elsewhere; but to tell \(\text{pst}_x\) what went wrong, we remember \(\Gamma_{\text{alt}}\). The meaning is that if we create an alternative node for \(\text{pst}_x\) by adding the formulae in \(\Gamma_{\text{alt}}\), we might be more successful in building an interpretation.

Procedure det-sts-\(\beta(x)\) computes the status of an \(\alpha\)- or a \(\beta\)-node \(x \in V\). For this task, an \(\alpha\)-node can be seen as a \(\beta\)-node with exactly one child. The set of alternative sets of \(x\) is the union of the sets of alternative sets of all children. If all children of \(x\) are closed then \(x\) must also be closed. Otherwise we compute the set of potential rescuers for each eventuality \(\varphi\) in \(\Gamma_x\) as follows. For each child \(y_i\) of \(x\) we determine the potential rescuers of \(\varphi\) which result from following \(y_i\) by invoking det-prs-child. If the set of potential rescuers corresponding to some \(y_i\) is \(\perp\) then \(\varphi\) can currently be fulfilled via \(y_i\) and \(\text{prs}_x(\varphi)\) is set to \(\perp\). Else \(\varphi\) cannot currently be fulfilled in \(G\), but each child returned a set of potential rescuers, and the set of potential rescuers for \(\varphi\) is their union. Finally, we deal with potential rescuers in \(\text{prs}\) of the form \((x, \chi)\) for some \(\chi \in \text{Ev}\) by calling filter.

Procedure det-sts-state(\(x\)) computes the status of a state \(x \in V\). We obtain the successors for all \(\langle \text{lp}\rangle\)-formulae in \(\Gamma_x\). If any successor is closed then \(x\) is closed with the same set of alternative sets. Else the set of alternative sets of \(x\) is the union of the sets of alternative sets of all children and we compute the potential
Procedure det-sts-state(x) for determining the status of a state

Input: a state $x \in V$ with unexp \neq stst \neq closed(

Output: the new status of x

let $\langle l_1 \rangle \varphi_1, \ldots, \langle l_k \rangle \varphi_k$ be all of the (lp)-formulae in Γ_x
for $i \leftarrow 1$ to k do $y_i :=$ getChild($x, \langle l_i \rangle \varphi_i$)
if $\exists i \in \{1, \ldots, k\}$. stst$_{y_i} = \text{closed(alt)}$ then return closed(alt)
else (* no child is closed *)

alt := $\bigcup_{i=1}^k$ alt$_{y_i}$
prs := prs$^+$
for $i \leftarrow 1$ to k do
 if $\varphi_i \in \text{Ev}$ then
 $\Lambda :=$ det-prs-child(x, y_i, φ_i)
 prs := prs[$\langle l_i \rangle \varphi_i \mapsto \Lambda$]
 $\text{prs}^\prime := \text{filter}(x, \text{prs})$
return open($\text{prs}^\prime, \text{alt}$)

rescuers for each eventuality $\langle l_i \rangle \varphi_i$ in Γ_x by invoking det-prs-child. Finally, we deal with potential rescuers in prs of the form (x, χ) for some $\chi \in \text{Ev}$ by calling filter. Note that we do not consider eventualities which are not (lp)-formulae. The intuitive reason is that the potential rescuers of such eventualities are determined by following the annotation chain (see below). However, different special nodes which have the same set, and hence all link to x, might have different annotations. Hence we cannot (and do not need to) fix the potential rescuer sets for eventualities in x which are not (lp)-formulae.

Procedure det-sts-spl(x) computes the status of a special node $x \in V$. First, we retrieve the state y_0 corresponding to x, namely the unique cs-child of x. For all alternative sets Γ_i of y_0 we do the following. If there does not exist a child of x such that the corresponding edge is labelled with Γ_i, we create a new node y_i whose associated set is the result of adding the formulae in Γ_i to Γ_x. The annotations, the parent state, and the parent program of y_i are inherited from x. We label the new edge from x to y_i with Γ_i. In other words we unpack the information stored in the alternative sets in alt$_{y_0}$ into actual nodes which are all children of x. Note that each $\Gamma_i \neq \emptyset$ by construction in det-status. Some children of x may not be referenced from alt$_{y_0}$, but we consider them anyway.

The set of alternative sets of x is the union of the sets of alternative sets of all children; with the exception of y_0 since the alternative sets of y_0 are not related to pst$_x$ but affect x directly as we have seen. If all children of x are closed then x must also be closed. Otherwise we compute the set of potential rescuers for each eventuality φ in Γ_x as follows.

First, we determine $\varphi' :=$ defer(x, φ). Note that φ' is defined because the special node x cannot contain an “at a world” cycle by definition. If φ' is not an eventuality then φ' is fulfilled in x and prs(φ) remains \perp. If φ' is an eventuality, it must be a (lp)-formula as x is a special node. We use φ' instead of φ since only (lp)-formula have a meaningful interpretation in prs$_{y_0}$ (see above). For each child y_i of x we determine the potential rescuers of φ' by invoking
Procedure det-sts-spl\((x)\) for determining the status of a special node

Input: a special node \(x \in V\) with \(\text{unexp} \neq \text{sts}_x \neq \text{closed}()\)

Output: the new status of \(x\)

\[
y_0 := \text{getChild}(x, cs)
\]

let \(\Gamma_1, \ldots, \Gamma_j\) be all the sets in the set \(\text{alt}_{y_0}\)

for \(i \leftarrow 1\) to \(j\)

\[
y_i := \text{getChild}(x, \Gamma_i)
\]

if \(y_i = \bot\) then (* child does not exist *)

\[
y_i := \text{create-new-node}(\Gamma_x \cup \Gamma_i, \text{ann}_x, \text{pst}_x, \bot, \text{unexp})
\]

insert \(y_i\), and an edge from \(x\) to \(y_i\) labelled with \(\Gamma_i\), into \(G\)

let \(y_{j+1}, \ldots, y_k\) be all the remaining children of \(x\)

\[
\text{alt} := \bigcup_{i=1}^k \text{alt}_{y_i}
\]

if \(\forall i \in \{0, \ldots, k\}. \text{sts}_{y_i} = \text{closed}()\) then return \(\text{closed}(\text{alt})\)

else (* at least one child is not closed *)

\[
\text{prs} := \text{prs}^\perp
\]

foreach \(\varphi \in \Gamma_x \cap \text{Ev}\)

\[
\varphi' := \text{defer}(x, \varphi)
\]

if \(\varphi' \in \text{Ev}\) then

\[
\text{for } i \leftarrow 0\text{ to } k \text{ do } A_i := \text{det-prs-child}(x, y_i, \varphi')
\]

\[
\Lambda := \text{if } \exists i \in \{0, \ldots, k\}. A_i = \bot \text{ then } \bot \text{ else } \bigcup_{i=0}^k A_i
\]

\[
\text{prs} := \text{prs}[\varphi \mapsto \Lambda]
\]

\[
\text{prs}' := \text{filter}(x, \text{prs})
\]

return \(\text{open}(\text{prs}', \text{alt})\)

det-prs-child. If the set of potential rescuers corresponding to some \(y_i\) is \(\bot\) then \(\varphi'\) can currently be fulfilled via \(y_i\) and so \(\text{prs}_y(\varphi)\) is set to \(\bot\). Otherwise \(\varphi'\) cannot currently be fulfilled in \(G\), but each child returned a set of potential rescuers, and the set of potential rescuers for \(\varphi\) is their union. Finally, we deal with potential rescuers in \(\text{prs}\) of the form \((x, \chi)\) for some \(\chi \in \text{Ev}\) by calling \(\text{filter}\).

Procedure det-prs-child\((x, y, \varphi)\) determines whether an eventuality \(\psi \in \Gamma_x\), which is not passed as an argument, can be fulfilled via \(y\) such that \(\varphi\) is part of the corresponding fulfilling path; or else which potential rescuers \(\psi\) can reach via \(y\) and \(\varphi\). If \(y\) is closed, it cannot help to fulfill \(\psi\) as indicated by the empty set. If \(y\) is undefined or did not become defined before \(x\) then \((y, \varphi)\) itself is a potential rescuer of \(x\). Else, if \(\varphi\) can be fulfilled, i.e. \(\text{prs}_y(\varphi) = \bot\), then \(\psi\) can be fulfilled too, so we return \(\bot\). Otherwise we invoke the procedure recursively on all potential rescuers in \(\text{prs}_y(\varphi)\). If at least one of these invocations returns \(\bot\) then \(\psi\) can be fulfilled via \(y\) and \(\varphi\) and the corresponding rescuer in \(\text{prs}_y(\varphi)\). If all invocations return a set of potential rescuers, the set of potential rescuers for \(\psi\) is their union. The recursion is well-defined because if \((z_i, \varphi_i) \in \text{prs}_y(\varphi)\) then either \(z_i\) is still undefined or \(z_i\) became defined later than \(y\).

Each invocation of **det-prs-child** can be uniquely assigned to the invocation of **det-sts-β**, **det-sts-state**, or **det-sts-spl** which (possibly indirectly) invoked it. To meet our complexity bound, we require that under the same invocation of **det-sts-β**, **det-sts-state**, or **det-sts-spl**, the procedure
det-prs-child is only executed at most once for each argument triple. Instead of executing it a second time with the same arguments, it uses the cached result of the first invocation. Since det-prs-child does not modify the graph, the second invocation would return the same result as the first one. An easy implementation of the cache is to store the result of det-prs-child in the node \(y \) together with \(\varphi \) and a unique id number for each invocation of det-sts-\(\beta \), det-sts-state, or det-sts-spl.

Procedure filter\((x, \text{prs})\) deals with the potential rescuers for each eventuality of a node \(x \) which are of the form \((x, \psi)\) for some \(\psi \in \text{Ev} \). The second argument of filter is a provisional prs for \(x \). If an eventuality \(\varphi \in \Gamma_x \) is currently fulfillable in \(G \) there is nothing to be done, so let \((x, \psi) \in \text{prs}(\varphi)\). If \(\psi = \varphi \) then \((x, \varphi)\) cannot be a potential rescuer for \(\varphi \) in \(x \) and should not appear in \(\text{prs}(\varphi) \). But what about potential rescuers of the form \((x, \psi)\) with \(\psi \neq \varphi \)? Since we want the nodes in the potential rescuers to become defined later than \(x \), we cannot keep \((x, \psi)\) in \(\text{prs}(\varphi) \); but we cannot just ignore the pair either.

Intuitively \((x, \psi) \in \text{prs}(\varphi)\) means that \(\varphi \in \Gamma_x \) can “reach” \(\psi \in \Gamma_x \) by following a loop in \(G \) which starts at \(x \) and returns to \(x \) itself. Thus if \(\psi \) can be fulfilled in \(G \), so can \(\varphi \); and all potential rescuers of \(\psi \) are also potential rescuers of \(\varphi \). The function reach\((\text{prs}, x, \varphi)\) computes all eventualities in \(x \) which are “reachable” from \(\varphi \) in the sense above, where transitivity is taken into account. That is, it detects all self-loops from \(x \) to itself which are relevant for fulfilling \(\varphi \). We add \(\varphi \) as it is not in reach\((\text{prs}, x, \varphi)\). If any of these eventualities is fulfilled in \(G \) then \(\varphi \) can be fulfilled and is consequently undefined in the resulting \(\text{prs}' \). Otherwise we take all their potential rescuers whose nodes are not \(x \).

Theorem 6 (Soundness, Completeness and Complexity). Let \(\phi \in \text{Fml} \) be a formula in negation normal form of size \(n \). The procedure is-sat\((\phi)\) terminates, runs in \(\text{EXPTIME} \) in \(n \), and \(\phi \) is satisfiable iff is-sat\((\phi)\) returns true.

5 Implementation, Optimisations, and Strategy

It should be fairly straightforward to implement our algorithm. It remains to show an efficient way to find nodes which are not up-to-date. It is not too hard to see that the status of a node \(x \) can become outdated only if its children change their status or det-prs-child\((x, y, \cdot)\) was invoked when \(x \)'s previous status was determined and \(y \) now changes its status. If we keep track of nodes of the second kind by inserting additional “update”-edges as described in [7], we can use a queue for all nodes that might need updating. When the status of a node is modified, we queue all parents and all nodes linked by “update”-edges.

We have omitted several refinements from our description for clarity. The most important is that if a state \(s \) is closed, all non-states which have \(s \) as a parent state are ignorable since their status cannot influence any other node \(t \) unless \(t \) also has \(s \) as a parent state. Moreover, if every special node parent \(x \) of a state \(s' \) is incompatible or itself has a closed parent state, then \(s' \) and the nodes having \(s' \) as parent state are ignorable. This applies transitively, but if \(s' \) gets a new parent whose parent state is not closed then \(s' \) becomes “active” again.
Another issue is which rule to choose if several are applicable. As we have seen, it is advantageous to close nodes as early as possible. Apart from immediate contradictions, we have Rule 4 which closes a node because it contains an unfulfillable eventuality. If we can apply Rule 4 early while the graph is still small, we might prevent big parts of the graph being built needlessly later. Trying to apply Rule 4 has several consequences on the strategy of how to apply rules.

First, it is important to keep all nodes up-to-date since Rule 4 is not applicable otherwise. Second, it is preferable that a node \(x \) cannot reach open nodes which became defined (or will be defined) after \(x \) did. Hence, we should try to use Rule 2 on a node only if all children are already defined.

6 An Example

To demonstrate how the algorithm works, we invoke it on the satisfiable toy formula \(\langle a \rangle \phi \) where \(\phi := \langle a^* \rangle [a^-] p \). To save space, Fig. 1 only shows the core subgraph of the tableau. Remember that the order of rule applications is not fixed but the example will follow some of the guidelines given in Section 5.

The nodes in Fig. 1 are numbered in order of creation. The annotation ann is given using “\(\mapsto \)” in \(\Gamma \). For example, in node (3), we have \(\Gamma_3 = \{ \phi, [a^-] p \} \), and ann maps the eventuality \(\phi \) to \([a^-] p \) and is undefined elsewhere. The bottom line of a node contains the parent state and the parent program on the left, and the time stamp on the right. We do not show the status of a node since it changes during the algorithm, but explain it in the text. If we write \(\text{sts}_x = \text{open}(\Lambda, \cdot) \) where \(\Lambda \subseteq V \times \text{Ev} \), we mean that \(\text{prs}_x \) maps all eventualities in \(\Gamma_x \), with the exception of non-\(\langle \text{lp} \rangle \)-formulae if \(x \) is a state, to \(\Lambda \) and is undefined elsewhere.

We only consider the core subgraph of \(\phi \) and start by expanding node (1) which creates (2). Then we expand (2) and create (3) and (4) which are both special nodes. Next we expand (3) and create the state (5). Expanding (5) creates no new nodes since \(\Gamma_5 \) contains no \(\langle \text{lp} \rangle \)-formula. Now we define (5) and then (3). This results in setting \(\text{sts}_5 := \text{open}(\text{prs}^\perp, \emptyset) \) according to \(\text{det-sts-state} \), and \(\text{sts}_3 := \text{closed}(\{p\}) \) since (3) is not compatible with its parent state (1). Expanding (4) inserts the edge from (4) to (1) and defining (4) sets \(\text{sts}_4 := \text{open}(\{(1, \langle a \rangle \phi)\}, \emptyset) \) according to \(\text{det-sts-spl} \). Note that (6) does not exist yet. Next we define (2) and then (1) which results in setting \(\text{sts}_2 := \text{open}(\{(1, \langle a \rangle \phi)\}, \{p\}) \) according to \(\text{det-sts-β} \) and \(\text{sts}_1 := \text{open}(\emptyset, \{p\}) \) thanks to \(\text{filter} \).

Note that \(\langle a \rangle \phi \in \Gamma_1 \) has an empty set of potential rescuers. In PDL, we could thus close (1), but converse programs complicate matters for CPDL as reflected by the fact that Rule 4 is not applicable for (1) because (4) is not up-to-date. Updating (4) creates (6) and sets \(\text{sts}_4 := \text{open}(\{(1, \langle a \rangle \phi), (6, \langle a \rangle \phi)\}, \emptyset) \). Updating (2) and then (1) sets \(\text{sts}_2 := \text{open}(\{(1, \langle a \rangle \phi), (6, \langle a \rangle \phi)\}, \{p\}) \) and \(\text{sts}_1 := \text{open}(\{(6, \langle a \rangle \phi)\}, \{p\}) \). Now all nodes are up-to-date, but Rule 4 is not applicable for (1) because the set of potential rescuers for \(\phi \) is no longer empty.

Next we expand (6), which creates (7), then (7), which creates (8), then (8), which creates (9) and (10), and finally (9), which creates no new nodes. Node (9)
Procedure \(\text{det-prs-child}(x, y, \varphi)\) for passing a prs-entry of a child to a parent

Input: two nodes \(x, y \in V\) and a formula \(\varphi \in \Gamma_y \cap \text{Ev}\)

Output: \(\bot\) or a set of node-formula pairs

Remark: if \(\text{det-prs-child}(x, y, \varphi)\) has been invoked before with exactly the same arguments and under the same invocation of \(\text{det-sts-}\beta\), \(\text{det-sts-state}\) or \(\text{det-sts-spl}\), the procedure is not executed a second time but returns the cached result of the first invocation. We do not model this behaviour explicitly in the pseudocode.

\[
\begin{align*}
\text{if } \text{sts}_y = \text{closed}(&) \text{ then return } \emptyset \\
\text{else if } \text{sts}_y = \text{unexp} \text{ or } \text{sts}_y = \text{undef} \text{ or not } y \subseteq x \text{ then return } \{(y, \varphi)\} \\
\text{else (} * \text{sts}_y = \text{open}(\cdot, \cdot) \text{ & } y \subseteq x * \) \\
& \text{if } \text{prs}_y(\varphi) = \bot \text{ then return } \bot \\
& \text{else (} * \text{prs}_y(\varphi) \text{ is defined } * \) \\
& \text{let } (z_1, \varphi_1), \ldots, (z_k, \varphi_k) \text{ be all of the pairs in } \text{prs}_y(\varphi) \\
& \text{for } i \leftarrow 1 \text{ to } k \text{ do } \Lambda_i := \text{det-prs-child}(x, z_i, \varphi_i) \\
& \text{if } \exists j \in \{1, \ldots, k\}. \Lambda_j = \bot \text{ then return } \bot \text{ else return } \bigcup_{i=1}^k \Lambda_i
\end{align*}
\]

Fig. 1. An example: The graph \(G\) just before setting the status of node (2)
Procedure \(\text{filter}(x, \text{prs}) \) for handling self-loops in \(\text{prs} \) chains in \(G \)

Input: a node \(x \in V \) and a function \(\text{prs} : \text{Ev} \rightarrow (\mathcal{P}(V \times \text{Ev}))^\perp \)

Output: \(\text{prs} \) where self-loops have been handled

\[
\text{prs}' := \text{prs}\upharpoonright
\]

\[
\text{foreach } \varphi \in \Gamma_x \cap \text{Ev} \text{ such that } \text{prs}(\varphi) \neq \bot \text{ do}
\]

\[
\Delta := \{ \varphi \} \cup \text{reach} (\text{prs}, x, \varphi)
\]

\[
\text{if not } \exists \chi \in \Delta. \text{prs}(\chi) = \bot \text{ then}
\]

\[
\Lambda := \bigcup_{\chi \in \Delta} \{(z, \psi) \in \text{prs}(\chi) \mid z \neq x\}
\]

\[
\text{prs}' := \text{prs}[\varphi \mapsto \Lambda]
\]

\[
\text{return } \text{prs}'
\]

is similar to (3), but unlike (3), it is compatible with its parent state (7) which results in \(\text{sts}_9 := \text{open}(\bot, \emptyset) \). Using our strategy from the last section, we would now expand (10) so that (8) can become defined after both its children became defined. Since (9) fulfills all its eventualities, we choose to define (8) instead and set \(\text{sts}_8 := \text{open}(\bot, \emptyset) \). Next we define (7) and then (6) which sets \(\text{sts}_7 := \text{open}(\bot, \emptyset) \) and \(\text{sts}_6 := \text{open}(\bot, \emptyset) \). The status of (4) is not affected since (6) was defined after (4), giving “(6) \(\not\subseteq (4) \)” in \(\text{det-prs-child}(4, 6, \langle a \rangle \varphi) \).

We expand (10) which inserts the edge from (10) to (1). Then we define (10) which creates (11) and sets \(\text{sts}_{10} := \text{open}(\bot, \emptyset) \). Note that the invocation of \(\text{det-prs-child}(10, 1, \langle a \rangle \varphi) \) in the invocation \(\text{det-sts-spl}(10) \) leads to the recursive invocation \(\text{det-prs-child}(10, 6, \langle a \rangle \varphi) \). Expanding and defining (11) yields \(\text{sts}_{11} := \text{open}(\bot, \emptyset) \). Finally, no rule is applicable in the shown subgraph.

References

1. Vardi, M.Y.: The taming of converse: Reasoning about two-way computations. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 413–424. Springer, Heidelberg (1985)
2. De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for Converse-PDL. Inf. and Comp. 162, 117–137 (2000)
3. Nguyen, L.A., Szalas, A.: An optimal tableau decision procedure for Converse-PDL. In: Proc. KSE-09, pp. 207–214. IEEE Computer Society, Los Alamitos (2009)
4. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal logic. In: Proc. LICS-01, pp. 357–365. IEEE Computer Society, Los Alamitos (2001)
5. Lange, M.: Satisfiability and completeness of Converse-PDL replayed. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 79–92. Springer, Heidelberg (2003)
6. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logics of programs. Journal of Computer and System Sciences 32(2), 183–221 (1986)
7. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 437–452. Springer, Heidelberg (2009)
8. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidelberg (2009)