with antimycobacterial discovery and development challenged by resistance, there is an unmet need for new drugs against tuberculosis, caused by the pathogenic bacterium *Mycobacterium tuberculosis*. Previously, we reported a large-scale chemical-genetic interaction screening strategy called PROSPECT, which resulted in identification of BRD-8000, an inhibitor of a novel target, EfpA. Leveraging the chemical genetic interaction profile of BRD-8000, we identified BRD-9327 as another, structurally distinct EfpA inhibitor. We now show that BRD-9327 is synergistic with BRD-8000, but with distinct mode of action and resistance mechanisms. Notably, due to their unique interactions, high-level resistance to BRD-9327 reduces the emergence of resistance to BRD-8000. Thus, the combination of BRD-9327 and BRD-8000 could represent a novel strategy for antitubercular chemotherapy in which mutual collateral sensitivity is exploited through drug combination or cycling.

Keywords: antimicrobial resistance, tuberculosis, chemical-genetics, drug discovery, collateral sensitivity, synergy

Diseases caused by mycobacteria are a significant public health burden, with *Mycobacterium tuberculosis* (Mtb) in particular causing >1.6 million deaths from tuberculosis (TB) annually. The standard of care for drug-susceptible TB is a six-month regimen of rifampin, isoniazid, pyrazinamide, and ethambutol, but increasing incidence of multi-drug resistant (MDR) TB is forcing deployment of less effective but longer, more expensive, and more toxic regimens, although improved regimens are in development. With antimycobacterial discovery and development struggling to fill the gaps created by emerging resistance, there is an unmet need for new drugs against TB.

New strategies for discovering novel drug candidates are needed. Primary chemical screening using biochemical, target-based assays have yielded compounds lacking whole-cell activity, while hit compounds from conventional whole-cell assays using wild-type bacteria can be refractory to mechanism of action (MOA) elucidation, thereby hampering compound prioritization and progression. The all-too-few successful cases for Mtb underscore this challenge, with hit compounds repeatedly targeting two proteins (MmpL3 and DprE1), leaving the majority of Mtb’s ~625 essential proteins unexploited.

Previously, we reported a sequencing-based, large-scale chemical-genetic screening strategy, PRimary Screening Of Strains to Prioritize Expanded Chemistry and Targets (PROSPECT), which generated chemical-genetic interaction profiles (CGIPs) that characterized the fitness of 150 multiplexed, genetically-barcoded hypomorph mutants (strains depleted of individual essential gene products) of Mtb H37Rv in response to ~50,000 compounds (Figure 1A). PROSPECT quantifies the fitness changes of genetically barcoded hypomorph strains on compound treatment; the vector of fitness changes, measured as log(fold-change) of abundance of barcodes of a particular hypomorph after treatment with a compound of interest relative to a vehicle control, is known as a CGIP (Figure 1A). Since PROSPECT probes hypersensitivity of strains depleted in essential genes (hypomorphs), it can identify chemical matter that has undetectable wild-type activity but which could be optimized through medicinal chemistry. Addressing the need for MOA diversity in tackling antimicrobial resistance, PROSPECT can also be used to prioritize compounds from primary phenotypic screening data based on their putative MOA, instead of simply their potency. We illustrated PROSPECT’s strengths in the discovery of BRD-8000, an uncompetitive inhibitor of a novel target, EfpA (Rv2846c), an essential efflux pump in Mtb. Though BRD-8000 itself lacked potent activity against wild-type Mtb (MIC$_{90}$ ≥ 50μM), chemical optimization yielded BRD-8000.3, a narrow-spectrum, bactericidal antimycobacterial agent with good wild-type activity (Mtb MIC$_{90}$ = 800 nM, Figure 1B).
A fundamental strength of PROSPECT is its generation of a large panel of chemical-genetic interactions (7.5 million in the previously reported screen) that can be iteratively and retrospectively mined for new interactions of interest. For example, upon validation of a new a novel inhibitor’s mechanism of action (MOA), its CGIP can be used as a reference for the subsequent discovery of additional scaffolds that work by inhibiting the same target. Taking this approach, we used the CGIP of BRD-8000 to retrospectively identify and prioritize additional putative EfpA inhibitors from the same primary screening data based on their CGIP correlation with BRD-8000’s CGIP (Figure 1C). The chemically distinct molecule BRD-9327 emerged as another possible EfpA inhibitor.

Here, we demonstrate that BRD-9327 is indeed an uncompetitive inhibitor of EfpA, synergistic with BRD-8000 in both efflux inhibition and mycobacterial growth inhibition. Interestingly, mutations conferring high-level resistance to either of the two compounds, despite only arising in efpA, are mutually exclusive and do not confer cross-resistance; in fact, high-level resistance mutations for either compound can cause hypersensitivity to the other compound, thereby lowering the spontaneous resistance frequency to BRD-8000 in a BRD-9327-resistant background. Together, these observations point to the compounds having distinct interactions with EfpA and a strategy in which the pair could be utilized together in a resistance-suppressing combination or resistance cycling regimen. The discovery of BRD-9327 and its interaction with BRD-8000 is a proof-of-principle of discovery acceleration afforded by PROSPECT, demonstrating its ability to rapidly prioritize new classes of inhibitors and identify synergistic combinations that enable a new strategy for combating resistance.

EfpA is an attractive antimycobacterial target since its inhibition was bactericidal and its activity is narrow spectrum (EfpA is only present in the Actinomycetes); we therefore sought to expand the chemical scaffold space by identifying new chemotypes for EfpA inhibition. Our previous identification and validation of BRD-8000 and BRD-8000.3 as specific EfpA inhibitors allowed us to leverage their CGIPs as references for EfpA inhibition. We identified new chemotypes that inhibit EfpA by prioritizing additional putative EfpA inhibitors from the original primary screening data based on their CGIP correlation with the CGIP of BRD-8000 (Figure 1C). This strategy yielded the identification of chemically distinct BRD-9327 as another possible EfpA inhibitor. BRD-9327 showed very weak Mtb wild-type activity (> 50µM) but moderate activity against the EfpA hypomorph (6.25 µM, Figure 1D).

To determine if BRD-9327 is a specific inhibitor of the EfpA efflux pump in Mtb, we took advantage of ethidium bromide (EtBr), a known substrate of EfpA, to measure the impact of BRD-9327 on EtBr efflux rates. EtBr is ∼30-fold more fluorescent when intracellular than when extracellular; this property can be leveraged to measure the efflux-mediated decrease in intracellular EtBr concentration over time (Figure 2A). In the presence of varying inhibitor concentrations, we measured intracellular EtBr fluorescence over time at varying initial EtBr concentration. We then globally fit a modified Michaelis-Menten equation (accounting for Fick diffusion as well as efflux) to the data, obtaining best-fit parameter estimates for the kinetic substrate-free inhibition constant (K_i) and substrate-bound inhibition constant (K_{is}) (Figure 2B).
Figure 2. Validating EfpA as the target of BRD-9327 using an EtBr efflux assay.

(A) Overview of molecular basis of the EtBr assay for determining kinetic inhibition parameters. In intracellular, EtBr (orange) is ~30-fold more fluorescent than extracellular; thus, EtBr fluorescence is a proxy for intracellular concentration. In living cells, a compound which is simply a substrate of efflux pumps (green hexagon) will exhibit a competitive mode of EtBr efflux inhibition, since it competes with EtBr for flux through the pumps. However, a compound which has a specific interaction with EfpA (blue hexagon) might also appear to inhibit EtBr efflux competitively, but will exhibit an additional non- or un-competitive modality. In the absence of EfpA, as in a null mutant, this non- or un-competitive modality will be abolished.

(B) EtBr fluorescence decay over time (demonstrating varying efflux rates) at ten starting intracellular concentrations and two BRD-9327 concentrations in Msm. Curves corresponding to global best-fit Michaelis-Menten parameter estimates are shown in red.

(C) Global best-fit Michaelis-Menten parameter estimates (+ standard deviation) of EtBr efflux inhibition by BRD-9327.

We measured EtBr efflux rates in *Mycobacterium smegmatis* MC155 (Msm), a related mycobacterial species, rather than *Mtb* directly, because *Msm*’s growth is not affected by BRD-8000 or BRD-9327, presumably because its EfpA homolog (MSMEG_2619) is not essential. We could thus remove the confounding effects of compounds on cellular viability to more cleanly study their direct effect on efflux. However, in addition to EfpA, Msm has a set of other non-essential multi-drug efflux pumps that efflux EtBr. Thus, in order to determine the dependence of the efflux inhibition kinetic parameters on EfpA specifically (Figure 2A), we compared EtBr efflux in a Msm strain containing *efpA* and a strain in which *efpA* had been deleted (MsmΔefpA).

In MsmΔefpA, we found that BRD-9327 is a competitive inhibitor of EtBr efflux by the other multi-drug efflux pumps, with a collective \(K_i/K_i' = 0.6 \) (Figure 2C; \(K_i/K_i' < 1 \) characterizes competitive inhibition). In contrast, BRD-9327 inhibited efflux in the presence of EfpA in wild-type Msm with a \(K_i/K_i' = 5.3 \) (\(K_i/K_i' \geq 1 \) characterizes non- or un-competitive inhibition; Figure 2C). A mixed or uncompetitive inhibition modality in the presence of EfpA but competitive inhibition in its absence would suggest that while BRD-9327 can be a general efflux substrate of the other efflux pumps, it is a specific, allosteric inhibitor of EtBr efflux by EfpA. Complementation of MsmΔefpA with the *Mtb* *efpA* homolog showed even more dramatic uncompetitive inhibition (\(K_i/K_i' = 100 \)), compared to the wild-type Msm allele, and definitively demonstrated that BRD-9327 is an inhibitor of *Mtb* EfpA.

We had previously identified a single *efpA* allele in *Mtb* that confers resistance to BRD-8000 with the V319F amino acid substitution abolishing BRD-8000 binding to mutant EfpA. Interestingly, when we complemented MsmΔefpA with the *efpA* (V319F) allele, while competitive efflux inhibition is observed BRD-8000.3 (due to its activity at the background multi-drug efflux pumps in Msm), we observed uncompetitive efflux inhibition by BRD-9327 (Figure 2C). This uncompetitive inhibition of EfpA(V319F) revealed that BRD-9327 interacts with this mutant EfpA in a manner that must be distinct from BRD-8000’s interaction with EfpA. We therefore tested EtBr efflux inhibition by a combination of BRD-8000.3 and BRD-9327 and found these compounds to be synergistic by excess-over-Bliss (EoB) (Figure S1A).

Having discovered that an allele of *Mtb* *efpA* that confers resistance to BRD-8000 does not confer biochemical cross-resistance to BRD-9327, we sought to determine if resistance to BRD-9327 would result in cross-resistance to BRD-8000. Because BRD-9327 had not been chemically optimized like the BRD-8000 series to have potent *Mtb* activity (MIC of BRD-9327 ≥ 50 µM), we turned to *Mycobacterium marinum* M (Mmar), another related, pathogenic mycobacterial species, that was more sensitive to BRD-9327 (MIC = 25 µM, Figure 3D).

We first re-generated BRD-8000.3-resistant mutants in Mmar to provide a baseline comparison of BRD-8000-resistance conferring mutations in Mtb and Mmar. We plated exponentially growing bacteria on agar containing BRD-8000.3 at 2×, 4×, and 8× the broth microdilution MIC (6.25 µM in Mmar; Figure 3A) to obtain resistance at a frequency of \(~4 \times 10^{-8} \). We then confirmed shifts in the broth microdilution MIC of selected colonies, and performed whole genome sequencing (WGS) of resistant clones on the Illumina MiSeq or HiSeq platform. Whereas we had only observed a single resistance-conferring variant in Mtb (V319F), we isolated two different Mmar resistance variants, both containing alterations in Mmar *efpA*, V319M and A415V (Figure 3B) which conferred a 16-fold increase in MIC (Figure 3A). Although there is no experimentally-determined structure of EfpA, a homology model constructed with I-TASSER\(^{11}\) suggested that Val319 and Ala415 are on neighboring α-helices, and that these mutations could implement the same resistance mechanism (Figure 3C). Consistent with our finding that the *efpA* (V319F) allele of Mtb did not confer functional, biochemical cross-resistance to BRD-9327, BRD-8000.3-resistant mutants of Mmar were not resistant to BRD-9327. In fact, surprisingly, Mmar *efpA* (V319M) had a four-fold lower MIC of 6.25 µM than wild-type Mmar (25 µM; Figure 3D). Interestingly, although both BRD-8000 resistant mutants’ growth was inhibited by BRD-9327 concentrations below the wild-type Mmar MIC (25 µM), these strains showed unrestricted growth at BRD-9327 concentrations above this concentration.
Figure 3. Evolution of Mmar mutants resistant to BRD-8000.3 or BRD-9327.

(A) Broth microdilution dose response assay of Mmar and its BRD-8000.3-resistant mutants against BRD-8000.3, demonstrating their high-level resistance to this compound. Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4).
(B) Amino acid sequence alignment of highly conserved EfpA in Mtb, Mmar, and MsM, with sites conferring resistance to BRD-8000.3 (green) or BRD-9327 (orange) highlighted.
(C) Homology model of EfpA with mutations conferring resistance to BRD-8000.3 (green) or BRD-9327 (orange) highlighted. Mesh outlines show possible binding sites of BRD-8000.3 (green) and BRD-9327 (orange), as determined by docking using AutoDock Vina.
(D) Broth microdilution dose response assay of Mmar mutants resistant to BRD-8000.3 against BRD-9327, demonstrating the hypersensitivity of Mmar efpA(V319M) and Mmar efpA(A415V). Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4).
(E) Excess-over-Bliss (EoB) of Mmar growth inhibition at varying combined concentrations of BRD-9327 and BRD-8000.3, demonstrating synergy between the two EfpA inhibitors.

We next sought to identify Mmar efpA alleles that confer resistance to BRD-9327. While BRD-9327 is more potent against Mmar than Mtb, its corresponding MIC₉₀ is nevertheless too high to allow straightforward selection. Instead, inspired by the efflux synergy of BRD-8000.3 with BRD-9327, we performed a checkerboard assay for growth inhibition of Mmar by the two compounds in combination, and found that they were synergetic by EoB (Figure 3E, Figure S1B). We therefore selected mutants on agar containing 50 µM BRD-9327 supplemented with 3 µM BRD-8000.3. Since colonies that grew on this combination could escape selection pressure by evolving resistance to either compound, we picked and screened 21 colonies for resistance to each compound individually using a broth microdilution assay. WGS revealed efpA variants G328C, G328D, A339T, and F346L, which conferred high-level resistance to BRD-9327 but not BRD-8000.3 (Figure 3A). The same homology model of EfpA suggested that these mutated amino acids appeared to reside on neighboring α-helices, again indicating that they could implement the same resistance mechanism (Figure 3C). We identified an additional mutation resulting in a L108Q substitution in mmar_1007, the homolog of Rv0678, a transcriptional regulator of multidrug efflux pump MmpL5 in Mtb¹² (Figure S2A) which conferred low-level resistance to both BRD-9327 and BRD-8000.3 (Figure 4A-B), as well as clofazimine (Figure S2B), by increasing expression of MmpL5 and thus efflux of BRD-8000.3 and BRD-9327 (Figure S2C).

In parallel to the mutants resistant to BRD-8000 but hypersensitive to BRD-9327, the resistant mutants of BRD-9327 containing different efpA alleles did not exhibit cross-resistance to BRD-8000, and instead, some were hypersensitive to BRD-8000.3. The efpA(G328C), efpA(G328D), and efpA(A339T) mutants showed a two-fold decrease in MIC₉₀ for BRD-8000.3, while the other mutants with high-level BRD-9327 resistance behaved similarly to wild-type Mmar (Figure 4B). The unique interactions of the two EfpA inhibitors with EfpA, as revealed by their mutual collateral sensitivity, pointed to each having a narrow, target-specific resistance space, with mutations that disrupt interactions with one compound exacerbating interactions to the other.

Given the mutual collateral sensitivity in the interaction of the two EfpA inhibitors, we speculated that these compounds could be used in a strategy to prevent emergence of high-level resistance. To test this idea, we compared the resistance frequencies for BRD-8000.3 at 12.5 µM, 25 µM, and 50 µM in wild-type Mmar with those in the BRD-9327-resistant Mmar mutants. At 12.5 µM BRD-8000.3, while the resistance frequency of Mmar efpA(F346L) was 10⁻⁸ (a four-fold decrease compared to wild-type Mmar), the resistance frequency of Mmar efpA(G328D) was 2 × 10⁻⁹ (a 20-fold decrease; Figure 4C). Whereas the wild-type resistance frequencies were 6 × 10⁻⁹ and 2 × 10⁻⁹ for 25 µM and 50 µM BRD-8000.3, no colonies could be recovered at all for efpA(F346L) on 25 µM BRD-8000.3 or higher, nor efpA(G328D) on 50 µM BRD-8000.3, indicating that BRD-9327 resistance lowers the probability of evolving BRD-8000 resistance (Figure 4C). The efpA mutant strains do not have an intrinsically lower mutation rate since the resistance frequencies for isoniazid were identical to wild-type (3 × 10⁻⁹).
Eachan O. Johnson et al., Discovery of a novel synergistic antimycobacterial combination

Figure 4. Resistance to BRD-9327 lowers resistance frequency to BRD-8000.3.

(A) Broth microdilution dose response assay of Mmar and its BRD-9327-resistant mutants against BRD-9327, demonstrating the high-level resistance of efpA4 mutants, and low-level resistance of the mmar_1007 mutant. Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4).

(B) Broth microdilution dose response assay of Mmar mutants resistant to BRD-9327 against BRD-8000.3, demonstrating the hypersensitivity of Mmar efpA4(G328D) and Mmar efpA4(A339T). Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4).

(C) Frequency of wild-type or BRD-9327-resistant mutant colonies growing on agar containing 2×, 4×, or 8× MIC90 of INH (left) or BRD-8000.3 (right). Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4). The dashed line indicates the limit of detection.

(D) Growth inhibition from broth microdilution assay of Mmar (left) and the calculated excess-over-Bliss (EoB, right) at varying combined concentrations of BRD-9327 and verapamil, demonstrating synergy between the two compounds. Broth microdilution dose response assay of wild-type Mmar against BRD-9327, verapamil, or the synergistic combination of BRD-9327 with 5 µM verapamil. (E) Frequency of wild-type or BRD-8000.3 resistant mutant colonies growing on agar containing 2×, 4×, or 8× MIC90 of INH (left) or BRD-9327 supplemented with verapamil (right). Filled circles show the mean and error bars indicate the 95% confidence interval (n = 4). The dashed line indicates the limit of detection.

When we sought to perform the converse experiment to compare the resistance rates for BRD-9327 in wild-type Mmar with the rates in the BRD-8000 resistant Mmar efpA4(319M) mutant, using verapamil as a synergistic potentiator of BRD-9327 to lower its MIC90 and permit resistance selection in Mmar (Figure 4D), we again identified a barrier to resistance generation, now for evolving BRD-9327 resistance in a BRD-8000-resistant background. While wild-type Mmar showed unrestricted growth on 6.25 µM and 12.5µM BRD-9327 in the presence of 3 µM verapamil, and the resistance frequency for Mmar efpA4(A415V) was comparable with wild-type Mmar (~10^-9 at 25 µM), no BRD-9327-resistant mutants could be isolated at any concentration for Mmar efpA4(V319M) (Figure 4E).

The power of large-scale chemical-genetics as a primary screening modality, as implemented in PROSPECT, lies in its ability to incorporate putative MOA information into the prioritization of compounds, moving away from selection simply based on potency. After initial identification of an inhibitor of a new antimycobacterial target, EfpA, PROSPECT allowed for rapid target validation and iterative diversification of chemical scaffold space. With the identification of two chemically distinct EfpA inhibitors, BRD-8000 and BRD-9427, interestingly we identified disjoint sets of target mutations conferring high-level resistance to the two scaffolds. Importantly, resistance to either compound mutually inflicts collateral sensitivity to the other, thereby raising the barrier against resistance to the combination.

The combination of BRD-8000.3 and BRD-9327 is a demonstration of restricting resistance space to a single essential gene, while inhibiting a single target by two different modalities in a manner that makes high-level resistance mutually exclusive. Their unique synergistic interaction illustrates the strategy for combining or cycling therapeutics, with the ability to increase the barriers to drug resistance even in the pursuit of a single target. As the use of combination therapy is a critical characteristic of tuberculosis drug regimens in response to the evolutionarily inevitable resistance that emerges to any single agent, which has resulted in the current drug resistance crisis, the identification of particular drug combinations or targets that can increase the barrier to resistance will be invaluable. This work identifies EfpA as one such valuable target because of its ability to be inhibited by BRD-8000 and BRD-9327 by mutually exclusive mechanisms. Whether EfpA is singularly unique, one of a small number of targets that are amenable to this strategy, or represents a common theme that could be exploited more broadly remains to be seen. Importantly, the ability of PROSPECT to rapidly expand the diversity of scaffolds hitting a single target will enable the potential discovery of complementary inhibitors with variable mechanisms of action and facilitate greater exploration and expansion of this targeting strategy not only to target Mtb, but also more generally to target other resistant pathogens and diseases such as cancer.
Hung, D. T., Large C.; Ioerger, T. R.; Lander, E. S.; Hubbard, B. K.; Serrano M.; Thompson, M.; Trujillo, C.; Wakabayashi, S.; Wallach, J. B.; Watson, M.; Golas, A. J.; Guinn, K. M.; Kennedy, N.; Betancourt, N.; Delano, K.; Silva, I.; Davis, J.; Gallo, C.; Gardner, N. O.; Johnson, E. O.; LaVerriere, E.; Office, E.; Stanley, M.; Angel, G.; Levy, R. E. O.; Wheeler transform.

Notes

The authors declare no competing interest.

Acknowledgments

Funding was provided by the Broad Institute TB Gift Donors and Pershing Square Foundation.

1. W.H.O. Global Tuberculosis Report 2018; World Health Organization: Geneva, 2018.

2. Conradie, F.; Diacon, A. H.; Everitt, D.; Mendel, C.; van Niekerk, C.; Howell, P.; Comins, K.; Spigelman, M., The Nix-Tb Trial Of Pretomanid, Bedaquiline And Linezolid To Treat Xdr-Tb. The Nix-Tb Trial Of Pretomanid, Bedaquiline And Linezolid To Treat Xdr-Tb. In Conference on Retroviruses and Opportunistic Infections, Seattle, WA, 2017.

3. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L., Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery 2006, 6 (1), 29-40.

4. de Jesus, M. A.; Gerrick, E. R.; Xu, W.; Park, S. W.; Long, J. E.; Boutte, C. C.; Rubin, E. J.; Schnappinger, D.; Ehr, T.; Fortune, S. M.; Sassetti, C. M.; loerger, T. R., Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 2018, 8 (1).

5. Griffith, J. E.; Gawronski, J. D.; de Jesus, M. A.; loerger, T. R.; Akerley, B. J.; Sassetti, C. M., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011, 7 (9), e1002251–e1002251.

6. Sassetti, C. M.; Boyd, D. H.; Rubin, E. J., Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (22), 12712-7.

7. Johnson, E. O.; LaVerriere, E.; Office, E.; Stanley, M.; Meyer, E.; Kawate, T.; Gomez, J. E.; Audette, R. E.; Bandopyadhyay, N.; Betancourt, N.; Delano, K.; Silva, I.; Davis, J.; Gallo, C.; Gardner, M.; Golas, A. J.; Guinn, K. M.; Kennedy, J. A.; McConnell, J. A.; Moss, C. E.; Murphy, K. C.; Nietupski, R. M.; Papavinasasundaram, K. G.; Pinkham, J. T.; Pino, P. A.; Proulx, M. K.; Riecker, N.; Song, N.; Thompson, M.; Trujillo, C.; Wakabayashi, S.; Wallach, J. B.; Watson, C.; loerger, T. R.; Lander, E. S.; Hubbard, B. K.; Serrano-Wu, M. H.; Ehr, T.; Fitzgerald, M.; Rubin, E. J.; Sassetti, C. M.; Schnappinger, D.; Hung, D. T., Large-scale chemical–genetics yields new M. tuberculosis inhibitor classes. Nature 2019, 571 (7763), 72-78.

8. Paixão, L.; Rodrigues, L.; Couto, I.; Martins, M.; Fernandes, P.; de Carvalho, C.; Monteiro, G. A.; Sansenetty, F.; Amaral, L.; Viveiros, M., Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J. Biol. Eng. 2009, 3 (1), 18.

9. Strelow, J.; Dewe, W.; Iversen, P. W.; Brooks, H. B.; Radding, J. A.; McGee, J.; Weidner, J., Mechanism of Action Assays for Enzymes. Mechanism of Action Assays for Enzymes. J. Biol. Eng. 2004, 8 (4), 2415-23.

10. Li, X. Z.; Zhang, L.; Nikaido, H., Efflux pump-mediated intrinsc drug resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 2004, 48 (7), 2145-23.

11. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y., The I-TASSER Suite: protein structure and function prediction. Nat. Methods 2014, 12 (1), 7-8.
visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25 (13), 1605-1612.

Methods

Strains
The bacterial strains we used and designated as wild-type were M. tuberculosis H37Rv, M. smegmatis mc^1^5^1^5^1^5, and M. marinum M. Construction of the M. smegmatis ΔefpA strain and expression constructs for M. tuberculosis efpA and efpA(V319F) were described previously^1^,^1^5^.

Compounds
BRD-8000 and BRD-8000.3 were synthesized and characterized as described previously^7^, BRD-9327 was purchased from ChemBridge (catalog #7025440).

Efflux assay
Efflux rates were measured as previously described^6^, Briefly, Msm strains were grown in Middlebrook 7H9 medium (M7H9) supplemented with oleic acid, albumin, dextrose, and catalase (OADC; BD) to an OD^600^ of 0.4-0.6. Cultures were then centrifuged for 5 min at 3500 rpm. The pellet was washed once with phosphate buffered saline (PBS) at 37 °C and resuspended in 37 °C PBS to give a final OD^600^ of 0.4. Cultures were split into eight and EtBr was added at a final concentration of 0.2-1.95 µg/mL and bacteria were incubated for 30 min (Msm) at 37 °C. After EtBr treatment, cells were centrifuged for 5 min at 3500 rpm and resuspended in 37 °C PBS to give a final OD^600^ of 0.8. A white 96-well plate (Corning) was prepared with serially diluted compound and 50 µL PBS containing 0.8% w/v glucose. 50µL dye and 1 µL of each 100× compound DMSO stock. 50 µL exponential phase bacterial cultures were pelleted and resuspended in 37 °C PBS to give a final OD^600^ of 0.8. After EtBr treatment, cells were centrifuged for 5 min at 3500 rpm and resuspended in 37 °C PBS to give a final OD^600^ of 0.8. A white 96-well plate (Corning) was prepared with serially diluted compound and 50µL PBS containing 0.8% w/v glucose. 50µL dye-loaded bacteria were added to each well of the plate. Fluorescence was read at 37 °C in a SpectraMax M5 plate reader using 530 nm excitation and 585 nm emission wavelengths for EtBr and was recorded every 30 s for 2 h (Msm).

To infer kinetic parameters, we modeled the rate of fluorescence decay as a modified Michaelis-Menten equation, which included a term for Fick diffusion^1^6^ between the cytoplasm and extracellular milieu, as previously described^6^, Initial efflux rates to determine synergy were calculated by fitting a spline (function smooth.spline^1^7 in R) to each time-course and calculating the first derivative at 480 seconds (to avoid knots in the spline).

Broth microdilution assays
The minimum inhibitory concentration of compounds was determined in a 96-well plate (Corning), filled with 49 µL of M7H9-OADC, and 1 µL 100× compound DMSO stock. 50 µL exponential-phase bacterial culture diluted to an OD^600^ of 0.005 was added. Plates were incubated at 37 °C in a humified container for 3 d for Mmar, and 14 d for Mtb. OD^600^ was measured using a SpectraMax M5 plate reader (Molecular Dimensions). Normalized percent outgrowth (NPO) was reported using NPO = (x_i - µ_m) / (µ_p - µ_m), where µ_p is the mean positive control value, µ_m is the mean negative control value, and x_i is the value of compound i.

Checkerboard assays and synergy
A 96-well plate (Corning) was filled with 48 µL of M7H9-OADC, and 1 µL of each 100× compound DMSO stock. 50 µL exponential-phase bacterial culture was diluted to an OD^600^ of 0.005 before being added. Synergy was calculated using excess-over-Bliss, which compares the expectation of independent compound effects to the observed combined effect:

\[E = f_{AB} - (1 - (1-f_A) (1-f_B)) \]

where E is excess-over-Bliss, f_AB is the observed, combined fractional inhibition by the two compounds, and f_A and f_B are the observed individual fractional inhibition by each compound. The Z-score of EoB was calculated as E / s_E, where s_E is the estimated standard deviation of the EoB, calculated by propagating the standard deviations of the underlying growth or efflux rate measurements.

Evolution of resistant mutants
Mid-exponential growth phase bacterial cultures were pelleted and resuspended at 2 × 10^10^ cfu mL^-1_ in M7H9-OADC. 50 µL (10^8 CfU) was plated in duplicate on 6 mL M7H10-OADC agar containing 2×, 4× or 8× MIC^eff^ of test compound. Plates were incubated at 37 °C in a humidified container. This was repeated on two separate days. At 14 d, agar was checked every 7 d for colonies, which were transferred into 10 mL M7H9-OADC cultures which were grown to mid-exponential phase before testing for resistance in a broth microdilution assay. Resistant mutants were then subjected to whole genome sequencing.

Whole genome sequencing of Mycobacteria
10 µL of bacterial culture was combined with 10 µL 10% v/v DMSO in a 96-well clear round-bottom plate (Corning). Plates were heat-inactivated at 80 °C for 2 h. Genomic DNA (gDNA) was separated from intact cells and cell debris using AMPure XP (Beckman), eluting in 40 µL MilliQ water. 1.5 µL gDNA was amplified using 6 µM random primers (Invitrogen) and q29 DNA Polymerase (NEB) 10 µL reaction volume at 30 °C for 24 h. Amplified gDNA was purified using AMPure XP and subjected to Nextera XT NGS library construction (Illumina) before 150-cycle paired-end sequencing on the Illumina MiSeq platform. Reads were aligned to the CP000854 reference sequence^18_ using the BWA-mem^19_ algorithm and mutations were called using the Genome Analysis Toolkit (GATK)^20_.

Computational modeling of proteins and ligands
A homology model of EfpAs was built using the I-TASSER algorithm^11_ which builds a model from an ensemble of templates, each of which has some sequence homology to a region of the query. For the essential efflux pump, EfpA, I-TASSER used peptide and oligopeptide transporters (PDB 4IKV^21_), 4O65^22_, 4W6V^23_, 6E13^24_, 6GS1^25_, human glucose transporter GLUT1 (4YPY^26_), E. coli multidrug transporter MdfA (4ZOW^27_), and E. coli organic ion transporter DgoT (6E9N^28_) as templates. Possible binding sites of BRD-8000.3 and BRD-9327 in the I-TASSER model were calculated using the AutoDock Vina^29_ extension of UCSF Chimera^30_.