Abstract. This paper applies G. Lyubeznik’s notion of \(F \)-finite modules to describe in a very down-to-earth manner certain annihilator submodules of some top local cohomology modules over Gorenstein rings. As a consequence we obtain an explicit description of the test ideal of Gorenstein rings in terms of ideals in a regular ring.

1. Introduction

Throughout this paper \((R, m)\) will denote a regular local ring of characteristic \(p \), and \(A \) will be a surjective image of \(R \). We also denote the injective hull of \(R/m \) with \(E \) and for any \(R \)-module \(N \) we write \(\text{Hom}_R(N, E) \) as \(N^\vee \). We shall always denote with \(f : R \to R \) the Frobenius map, for which \(f(r) = r^p \) for all \(r \in R \) and we shall denote the \(e \)th iterated Frobenius functor over \(R \) with \(F^e_R(\cdot) \). As \(R \) is regular, \(F^e_R(\cdot) \) is exact (cf. Theorem 2.1 in [K]).

For any commutative ring \(S \) of characteristic \(p \), the skew polynomial ring \(S[T; f] \) associated to \(S \) and the Frobenius map \(f \) is a non-commutative ring which as a left \(R \)-module is freely generated by \((T^i)_{i \geq 0} \), and so consists of all polynomials \(\sum_{i=0}^{n} s_i T^i \), where \(n \geq 0 \) and \(s_0, \ldots, s_n \in S \); however, its multiplication is subject to the rule

\[Ts = f(s)T = s^pT \quad \text{for all } s \in S. \]

Any \(A[T; f] \)-module \(M \) is a \(R[T; f] \)-module in a natural way and, as \(R \)-modules, \(F^e_R(M) \cong RT^e \otimes_R M \).

It has been known for a long time that the local cohomology module \(H^{\dim A}_{m_A}(A) \) has the structure of an \(A[T; f] \)-module and this fact has been employed by many authors to study problems related to tight closure and to Frobenius closure. Recently R. Y. Sharp has described in [S] the parameter test ideal of \(F \)-injective rings in terms of certain \(A[T; f] \)-submodules of \(H^{\dim A}_{m_A}(A) \) and it is mainly this work which inspired us to look further into the structure of these \(A[T; f] \)-modules.

The main aim of this paper is to produce a description of the \(A[T; f] \)-submodules of \(H^{\dim A}_{m_A}(A) \) in terms of ideals of \(R \) with certain properties. We first do this when \(A \) is a
complete intersection. The \(F \)-injective case is described by Theorem 3.5 and as a corollary we obtain a description of the parameter test ideal of \(A \). Notice that for Gorenstein rings the test ideal the parameter test ideal coincide (cf. Proposition 8.23(d) in \[HH1\] and Proposition 4.4(ii) in \[Sm1\].) We then proceed to describe the parameter test ideal in the non-\(F \)-injective case (Theorem 5.3.) We generalise these results to Gorenstein rings in section 6.

2. Preliminaries: \(F \)-finite modules

The main tool used in this paper is the notion of \(F \)-modules, and in particular \(F \)-finite modules. These were introduced in G. Lyubeznik’s seminal work \[L\] and provide a very fruitful point of view of local cohomology modules in prime characteristic \(p \).

One of the tools introduced in \[L\] is a functor \(\mathcal{H}_{R, A} \) from the category of \(A[T; f] \)-modules which are Artinian as \(A \)-modules to the category of \(F \)-finite modules. For any \(A[T; f] \)-module \(M \) which is Artinian as an \(A \)-module the \(F \)-finite structure of \(\mathcal{H}_{R, A}(M) \) is obtained as follows. Let \(\gamma : RT \otimes_R M \to M \) be the \(R \)-linear map defined by \(\gamma(rT \otimes m) = rT m \); apply the functor \(\vee \) to obtain \(\gamma^\vee : M^\vee \to F_R(M)^\vee \). Using the isomorphism between \(F_R(M)^\vee \) and \(F_R(M^\vee) \) (Lemma 4.1 in \[L\]) we obtain a map \(\beta : M^\vee \to F_R(M^\vee) \) which we adopt as a generating morphism of \(\mathcal{H}_{R, A}(M) \).

We shall henceforth assume that the kernel of the surjection \(R \to A \) is minimally generated by \(u = (u_1, \ldots, u_n) \). We shall also assume until section 6 that \(A \) is a complete intersection. We shall write \(u = u_1 \cdot \ldots \cdot u_n \) and for all \(t \geq 1 \) we let \(u^t R \) be the ideal \(u_t R + u_{t+1} R + \cdots + u_n R \).

To obtain the results in this paper we shall need to understand the \(F \)-finite module structure of

\[
\mathcal{H}_{R, A} \left(\mathbb{H}^{\dim R}_{m A} A(R) \right) \cong \mathbb{H}^{\dim R - \dim A(R)}_{u R};
\]

this has generating root

\[
\begin{array}{ccc}
R & \overset{u^{p-1}}{\longrightarrow} & R \\
\downarrow & & \downarrow \\
u R & \overset{u^{p-1}}{\longrightarrow} & u^p R
\end{array}
\]

(cf. Remark 2.4 in \[L\].)

Definition 2.1. Define \(\mathcal{I}(R, u) \) to be the set of all ideals \(I \subseteq R \) containing \((u_1, \ldots, u_n) R \) with the property that

\[
u^{p-1} (I + u R) \subseteq I^{[p]} + u^p R .
\]

Lemma 2.2. Consider the \(F_R \)-finite \(F \)-module \(M = \mathbb{H}^n_{u R}(R) \) with generating root

\[
\begin{array}{ccc}
R & \overset{u^{p-1}}{\longrightarrow} & R \\
\downarrow & & \downarrow \\
u R & \overset{u^{p-1}}{\longrightarrow} & u^p R
\end{array}
\]
(a) For any $I \in \mathcal{I}(R, u)$ the F_R-finite module with generating root
\[
\frac{I + uR}{uR} \xrightarrow{u^{p-1}} \frac{I[p] + u^pR}{u^pR} \cong F_R \left(\frac{I + uR}{uR} \right)
\]
is an F-submodule of M and every F_R-finite F-submodule of M arises in this way.

(b) For any $I \in \mathcal{I}(R, u)$ the F_R-finite module with generating morphism
\[
\frac{R}{I + uR} \xrightarrow{u^{p-1}} \frac{R}{I[p] + u^pR} \cong F_R \left(\frac{R}{I + uR} \right)
\]
is an F-module quotient of M and every F_R-finite F-module quotient of M arises in this way.

Proof. (a) For any $I \in \mathcal{I}(R, u)$, the map
\[
\frac{I + uR}{uR} \xrightarrow{u^{p-1}} \frac{I[p] + u^pR}{u^pR}
\]
is well defined and is injective; now the first statement follows from Proposition 2.5(a) in [L]. If N is any F_R-finite F-submodule of M, the root of N is a submodule of the root of M, i.e., the root of N has the form $(I + uR)/uR$ for some ideal $I \subseteq R$ (cf. [L], Proposition 2.5(b)) and the structure morphism of N is induced by that of M, i.e., by multiplication by u^{p-1}, so we must have $u^{p-1}I \subseteq I[p] + u^pR$, i.e., $I \in \mathcal{I}(R, u)$.

(b) For any $I \in \mathcal{I}(R, u)$, the map
\[
\frac{R}{I + uR} \xrightarrow{u^{p-1}} \frac{R}{I[p] + u^pR} \cong F_R \left(\frac{R}{I + uR} \right)
\]
is well defined and we have the following commutative diagram with exact rows
\[
\begin{array}{ccccccccc}
0 & \rightarrow & I + uR & \rightarrow & R & \rightarrow & R & \rightarrow & 0 \\
\downarrow u^{p-1} & & \downarrow u^{p-1} & & \downarrow u^{p-1} & & \downarrow u^{p(p-1)} & & \downarrow u^{p(p-1)} & & \downarrow u^{p(p-1)} \\
0 & \rightarrow & F_R \left(\frac{I + uR}{uR} \right) & \rightarrow & F_R \left(\frac{R}{uR} \right) & \rightarrow & F_R \left(\frac{R}{I + uR} \right) & \rightarrow & 0 \\
\end{array}
\]
Taking direct limits of the vertical maps we obtain an exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ which establishes the first statement of (b).

Conversely, if M'' is a F-module quotient of M, say, $M'' \cong M/M'$ for some F-submodule M' of M use (a) to find a generating root of M' of the form
\[
\frac{I + uR}{uR} \xrightarrow{u^{p-1}} \frac{I[p] + u^pR}{u^pR}
\]
for some $I \in \mathcal{I}(R, u)$. Looking again at the direct limits of the vertical maps in (1) we establish the second statement of (b).

\[R \rightarrow \frac{R}{I + uR} \xrightarrow{\mu^p} \frac{R}{I^p + u^pR} \cong F_R \left(\frac{R}{I + uR} \right). \]

Definition 2.3. For all $I \in \mathcal{I}(R, u)$ we define $N(I)$ to be the F-module quotient of $H^p_\mathcal{I}(R)$ with generating morphism

\[\frac{R}{I + uR} \xrightarrow{\mu^p} \frac{R}{I^p + u^pR} \]

Lemma 2.4. Assume that R is complete. Let H be an Artinian $A[T; f]$-module and write $M = \mathcal{H}_{R, A}(H)$. Let N be a homomorphic image of M with generating morphism N_0. Then N_0^\vee is an $A[T; f]$-submodule of H and $N \cong \mathcal{H}_{R, A}(N_0^\vee)$.

Proof. Notice that M (and hence N) are F-finite modules (cf. [L], Theorems 2.8 and 4.2). Let N_0 be root of N and M_0 a root of M so that we have a commutative diagram with exact rows

\[
\begin{array}{ccc}
M_0 & \xrightarrow{\mu} & N_0 \\
\downarrow{\mu} & & \downarrow{\nu} \\
F_R(M_0) & \xrightarrow{\nu} & F_R(N_0) \\
\end{array}
\]

where the vertical arrows are generating morphisms. Apply the functor $\text{Hom}(-, E)$ to the commutative diagram above to obtain the following commutative diagram with exact rows

\[
\begin{array}{ccc}
0 & \rightarrow & F_R(N_0)^\vee \\
\downarrow{\mu^\vee} & & \downarrow{\nu^\vee} \\
0 & \rightarrow & N_0^\vee \\
\end{array}
\]

and recall that M_0 is isomorphic to H^\vee (cf. [L], Theorems 2.8 and 4.2). Since R is complete, $(H^\vee)^\vee \cong H$ and we immediately see that N_0^\vee is a R-submodule of H. We now show that N_0^\vee is an $A[T; f]$-submodule of H by showing that $T N_0^\vee \subseteq N_0^\vee$.

The construction of the functor $\mathcal{H}_{R, A}(-)$ is such that for any $h \in H \cong M_0^\vee$, Th is the image of $T \otimes_R h$ under the map

\[F_R(M_0)^\vee \xrightarrow{\mu^\vee} M_0^\vee \]

and so for $h \in N_0^\vee$, Th is the image of $T \otimes_R h$ under the map

\[F_R(N_0)^\vee \xrightarrow{\nu^\vee} N_0^\vee \]

and hence $Th \in N_0^\vee$.

Now the fact that $N \cong \mathcal{H}_{R, A}(N_0^\vee)$ follows the construction of the functor $\mathcal{H}_{R, A}(-)$. □
Notation 2.5. Let M be a left $A[T, f]$-module. We shall write $AT^\alpha M$ for the A-module generated by $T^\alpha M$. Note that $AT^\alpha M$ is a left $A[T, f]$-module. We shall also write $M^* = \bigcap_{\alpha \geq 0} AT^\alpha M$.

Lemma 2.6. Assume that R is complete. Let H be an $A[T, f]$-module and assume that H is T-torsion-free. Let $I, J \subseteq A$ be ideals. If, for some $\alpha \geq 0$,

$$AT^\alpha \text{ann}_H IA[T, f] = AT^\alpha \text{ann}_H JA[T, f]$$

then $\text{ann}_H IA[T, f] = \text{ann}_H JA[T, f]$.

Proof. Both $AT^\alpha \text{ann}_H IA[T, f]$ and $AT^\alpha \text{ann}_H JA[T, f]$ are left $A[T, f]$-submodules. Now for every T-torsion-free $A[T, f]$-module M, and every ideal $K \subseteq A$, if

$$\left(\bigoplus_{i \geq 0} KT^i \right) AT^\alpha M = \left(\bigoplus_{i \geq 0} KT^{i+\alpha} \right) M$$

vanishes then so does

$$\left(\bigoplus_{i \geq 0} K[p^\alpha]T^{i+\alpha} \right) M = \left(\bigoplus_{i \geq 0} T^\alpha KT^i \right) M = T^\alpha \left(\bigoplus_{i \geq 0} KT^i \right) M$$

and since M is T-torsion-free,

$$\left(\bigoplus_{i \geq 0} KT^i \right) M = 0.$$

We deduce that gr-ann $AT^\alpha M = gr-ann M$. Now

$$gr-ann AT^\alpha(\text{ann}_H IA[T, f]) = gr-ann \text{ann}_H IA[T, f],$$

$$gr-ann AT^\alpha(\text{ann}_H JA[T, f]) = gr-ann \text{ann}_H JA[T, f]$$

and Lemma 1.7 in [S] shows that $\text{ann}_H IA[T, f] = \text{ann}_H JA[T, f]$. \ hfill \Box

3. The $A[T, f]$ Module Structure of Top Local Cohomology Modules of F-injective Gorenstein Rings

Definition 3.1. As in [Sm1] we say that an ideal $I \subseteq A$ is an F-ideal if $\text{ann}_{H^{\dim(A)}(A)} I$ is a left $A[T, f]$-module, i.e., if $\text{ann}_{H^{\dim(A)}(A)} I = \text{ann}_{H^{\dim(A)}(A)} IA[T, f]$.

Theorem 3.2. Assume that R is complete. Consider the F_R-finite F-module $M = H^{\alpha}_{uR}(R)$ with generating root

$$R \xrightarrow{u^{p-1}} R \xrightarrow{wR}$$

and consider the Artinian $A[T, f]$ module $H = H^{\dim(A)}(A)$. Let N be a homomorphic image of M.

(a) $M = \mathfrak{K}_{R,A}(-)(H)$ and has generating root $H^\vee \cong R/uR \xrightarrow{u^{p-1}} R/u^pR \cong F_R(H^\vee)$.

(b) If N has generating morphism
\[
\frac{R}{I + uR} \xrightarrow{u^{p-1}} \frac{R}{I[p^p] + u^pR}
\]
then IA is an F-ideal, $N \cong \mathfrak{K}_{R,A}(\text{ann}_H IA[T; f])$. If, in addition, H is T-torsion free then $\text{gr-ann} \, \text{ann}_H IA[T; f] = IA[T; f]$ and I is radical.

(c) Assume that H is T-torsion free (i.e., $H_r = H$ in the terminology of [L]). For any ideal $J \subset R$, the F-finite module $\mathfrak{K}_{R,A}(\text{ann}_H JA[T; f])$ has generating morphism
\[
\frac{R}{I + uR} \xrightarrow{u^{p-1}} \frac{R}{I[p^p] + u^pR}
\]
for some ideal $I \in \mathfrak{I}(R, u)$ with $\text{ann}_H IA[T; f] = \text{ann}_H JA[T; f]$.

Proof. The first statement is a restatement of the discussion at the beginning of section 2.

Notice that Lemma 2.2 implies that N must have a generating morphism of the form given in (b) for some $I \in \mathfrak{I}(R, u)$.

Since A is Gorenstein, H is an injective hull of A/mA which we denote E. Lemma 2.4 implies that $N \cong \mathfrak{K}_{R,A}(L)$ where $L = \left(\frac{R}{I + uR}\right)^\vee$ is a $A[T; f]$-submodule of $H = E$. But
\[
\left(\frac{R}{I + uR}\right)^\vee = \text{ann}_E (I + uR) = \text{ann}_{(\text{ann}_u R)} I = \text{ann}_E I.
\]

But L is a $A[T; f]$-submodule of E and so IA is an F-ideal and $L = \text{ann}_E IA[T; f]$. Also,
\[
(0 :_R \text{ann}_E IA[T; f]) = (0 :_R \text{ann}_E I) = (0 :_R (R/I)^\vee) = (0 :_R (R/I)) = I
\]
(where the third equality follows from 10.2.2 in [BS]) If H is T-torsion free, Proposition 1.11 in [S] implies that $I = \text{gr-ann} \, \text{ann}_E IA[T; f]$ and Lemma 1.9 in [S] implies that I is radical.

To prove part (c) we recall Lemma 2.2 which states that $\mathfrak{K}_{R,A}(\text{ann}_H JA[T; f])$ has generating morphism
\[
\frac{R}{I + uR} \xrightarrow{u^{p-1}} \frac{R}{I[p] + u^pR}
\]
for some $I \in \mathfrak{I}(R, u)$ and we need only show that $\text{ann}_H IA[T; f] = \text{ann}_H JA[T; f]$.

Part (b) implies that \(\mathcal{H}_{R,A}(\text{ann}_H JA[T; f]) = \mathcal{H}_{R,A}(\text{ann}_H IA[T; f]) \) for some \(I \in \mathcal{I}(R, u) \) and Theorem 4.2 (iv) in [L] implies
\[
\bigcap_{i=0}^{\infty} AT^i(\text{ann}_H JA[T; f]) = \bigcap_{i=0}^{\infty} AT^i(\text{ann}_H IA[T; f])
\]
and since \(H \) is Artinian there exists an \(\alpha \geq 0 \) for which \(AT^\alpha(\text{ann}_H JA[T; f]) = AT^\alpha(\text{ann}_H IA[T; f]) \) and the result follows from Lemma 2.6.

Remark 3.3. Theorem 3.2 can provide an easy way to show that \(H = H_{\text{dim}(A)} \) is not \(T \)-torsion free. As an example consider \(R = \mathbb{K}[x, y, a, b] \), \(u = x^2a - y^2b \) and \(A = R/uR \). It is easy to verify that \((x, y, a^2)R \in \mathcal{I}(R, u) \) when \(\mathbb{K} \) has characteristic 2, and we deduce that \(H^3_{(x, y, a^2)}(A) \) is not \(T \)-torsion free.

Theorem 3.4. Assume that \(R \) is complete and that \(H_{\text{dim}(A)} \) is \(T \)-torsion free.

(a) For all \(A[T; f] \)-submodules \(L \) of \(H_{\text{dim}(A)} \),
\[
L^\ast = \bigcap_{i=0}^{\infty} AT^i L
\]
has the form \(AT^\alpha M \) where \(\alpha \geq 0 \) and \(M \) is a special annihilator submodule in the terminology of [S].

(b) The set \(\{ N(I) \mid I \in \mathcal{I}(R, u) \} \) is finite.

Proof. (a) Let \(L \) be a \(A[T; f] \)-submodule of \(H_{\text{dim}(A)} \). Pick a \(I \in \mathcal{I}(R, u) \) such that \(N(I) = \mathcal{H}_{R,A}(L) \). Now use part (b) of Theorem 3.2 and deduce that \(N(I) \cong \mathcal{H}_{R,A}(\text{ann}_H IA[T; f]) \).

Now the result follows from Theorem 4.2 (iv) in [L].

(b) Theorem 3.2(b) implies that
\[
\{ N(I) \mid I \in \mathcal{I}(R, u) \} = \{ \mathcal{H}_{R,A}(\text{ann}_{H^i_{\text{dim}(A)}}(A) IA[T; f]) \mid I \in \mathcal{I}(R, u) \};
\]
now Corollary 3.11 and Proposition 1.11 in [S] imply that the set on the right is finite.

The following Theorem reduces the problem of classifying all \(F \)-ideals of \(A \) (in the terminology of [Sm1]) or all special \(H_{\text{dim}(A)} \)(-ideals (in the terminology of [S]) in the case where \(A \) is an \(F \)-injective complete intersection, to problem of determining the set \(\mathcal{I}(R, u) \).

Theorem 3.5. Assume \(H := H_{\text{dim}(A)} \) is \(T \)-torsion free and let \(\mathcal{B} \) be the set of all \(H \)-special \(A \)-ideals (cf. §6 in [S]).

(a) The map \(\Psi : \mathcal{I}(R, u) \to \mathcal{B} \) given by \(\Psi(I) = IA \) is a bijection.
(b) There exists a unique minimal element \(\tau \) in \(\{ I \mid I \in \mathcal{I}(R, u), \text{ht} IA > 0 \} \) and that \(\tau \) is a parameter-test-ideal for \(A \).

(c) \(A \) is \(F \)-rational if and only if \(\mathcal{I}(R, u) = \{0, R\} \).

Proof. (a) Assume first that \(R \) is complete. Theorem \(\mathbb{S} \) (b) implies that \(\Psi \) is well defined, i.e., \(\Psi(I) \in \mathcal{B} \) for all \(I \in \mathcal{I}(R, u) \), and, clearly, \(\Psi \) is injective. The surjectivity of \(\Psi \) is a consequence of Theorem \(\mathbb{S} \) (c).

Assume now that \(R \) is not complete, denote completions with \(\hat{\ } \) and write \(\hat{\mathcal{H}} = H_{m\mathcal{A}}^{\dim(\mathcal{A})} \). If \(I \) is a \(\hat{\mathcal{H}} \)-special \(\hat{\mathcal{A}} \)-ideal, i.e., if there exists an \(\hat{\mathcal{A}}[T; f] \)-submodule \(N \subseteq \hat{\mathcal{H}} \) such that gr-ann \(N = IA[T; f] \) then \(I = (0 :_\mathcal{A} N) \) (cf. Definition 1.10 in \(\mathbb{S} \)). But recall that \(\hat{\mathcal{H}} = \mathcal{H} \) and \(N \) is an \(A[T; f] \)-submodule of \(\mathcal{H} \); now \(I = (0 :_\mathcal{A} N) = (0 :_A N)\hat{\mathcal{A}} \). If we let \(\hat{\mathcal{B}} \) be the set of \(H_{m\mathcal{A}}^{\dim(\mathcal{A})} \)-special \(\hat{\mathcal{A}} \)-ideals, we have a bijection \(\Upsilon : \mathcal{B} \rightarrow \hat{\mathcal{B}} \) mapping \(I \) to \(I\hat{\mathcal{A}} \). This also shows that all ideals in \(\mathcal{I}(\hat{R}, u) \) are expanded from \(R \), and now since \(\hat{R} \) is faithfully flat over \(R \), we deduce that all ideals in \(\mathcal{I}(\hat{R}, u) \) have the form \(I\hat{R} \) for some \(I \in \mathcal{I}(R, u) \). We now obtain a chain of bijections

\[
\mathcal{I}(R, u) \longleftrightarrow \mathcal{I}(\hat{R}, u) \longleftrightarrow \hat{\mathcal{B}} \longleftrightarrow \mathcal{B}.
\]

(b) This is immediate from (a) and Corollary 4.7 in \(\mathbb{S} \).

(c) If \(A \) is \(F \)-rational, \(H_{m\mathcal{A}}^{\dim(\mathcal{A})}(A) \) is a simple \(A[T; f] \)-module (cf. Theorem 2.6 in \(\mathbb{S} \)) and the only \(H \)-special \(A \)-ideals must be 0 and \(A \). The bijection established in (a) implies now \(\mathcal{I}(R, u) = \{0, R\} \).

Conversely, if \(\mathcal{I}(R, u) = \{0, R\} \), part (b) of the Theorem implies that 1 \(\in A \) is a parameter-test-ideal, i.e., for all systems of parameters \(x = (x_1, \ldots, x_d) \) of \(A \), \((xA)^* = (xA)^F = xA \) where the second equality follows from the fact that \(F_{m\mathcal{A}}^{\dim(\mathcal{A})}(A) \) is \(T \)-torsion free.

\(\square \)

4. Examples

Throughout this section \(\mathbb{K} \) will denote a field of prime characteristic.

Example 4.1. Let \(R \) be the localization of \(\mathbb{K}[x, y] \) at \((x, y) \), \(u = xy \) and \(A = R/uR \). Then \(H_{xyR}(R) = \mathcal{I}_{R, A}(H_{xA+yA}^1(A)) \) ought to have four proper \(F \)-finite \(F \)-submodules corresponding to the elements 0, \(xR \), \(yR \) and \(xR + yR \) of \(\mathcal{I}(R, xy) \).

We verify this by giving an explicit description the \(A[T; f] \)-module structure of

\[
H := H_{xA+yA}^1(A) \cong \lim_{\longrightarrow} \left(\begin{array}{c}
A/(x-y)A \\
A/(x-y)^2A \\
A/(x-y)^3A \\
\end{array} \right) \rightarrow \left(\begin{array}{c}
x-y \\
x-y/A \\
x-y/(x-y)^2A \\
\end{array} \right) \rightarrow \left(\begin{array}{c}
x-y/(x-y)^3A \\
x-y/(x-y)^4A \\
\end{array} \right) \rightarrow \cdots
\]
First notice that in \(H \), for all \(n \geq 1 \) and \(0 < \alpha \leq n \), \(x^\alpha + (x-y)^nA = x + (x-y)^{n-\alpha+1} \)
and \(y^\alpha + (x-y)^nA = y + (x-y)^{n-\alpha+1} \) so \(H \) is the \(\mathbb{K} \)-span of \(\{x+(x-y)A\} \cup X \cup Y \cup U \)
where
\[
X = \{x+(x-y)^nA | n \geq 2\}, \\
Y = \{y+(x-y)^nA | n \geq 2\}, \\
U = \{1+(x-y)^nA | n \geq 1\}
\]
and notice also that the action of the Frobenius map \(f \) on \(H \) is such that \(T(x^\alpha + (x-y)^nA) = x^{\alpha p} + (x-y)^{np}A \) and \(T(y^\alpha + (x-y)^nA) = y^{\alpha p} + (x-y)^{np}A \) for all \(\alpha \geq 0 \).

Next notice that any \(A[T,f]-\)submodule \(M \) of \(H \) which contains an element \(1 + (x-y)^nA \in U \) must coincide with \(H \): for \(1 \leq m < n \) we have \((x-y)^{n-m}(1+(x-y)^nA) = (x-y)^{n-m} + (x-y)^nA = 1 + (x-y)^mA \), whereas for \(m > n \), pick an \(e \geq 0 \) such that \(np^e > m \), write
\[
T^e(1+(x-y)^nA) = 1 + (x-y)^{np^e}A \in M
\]
and use the previous case \((m < n) \) to deduce that \(1 + (x-y)^mA \in M \). Since now \(U \subseteq M \), we see that \(M = H \).

We now show that there are only three non-trivial \(A[T,f]-\)submodules of \(H \), namely \(\text{Span}_K X \) and \(\text{Span}_K Y \), and \(\text{Span}_K \{x+(x-y)A\} \cup X \). By symmetry, it is enough to show that, if \(M \) is an \(A[T,f]-\)submodule of \(H \) and \(x+(x-y)A \in M \) for some \(n \geq 2 \), then \(X \subseteq M \). If \(1 \leq m < n \),
\[
x^{n-m}(x+y)^nA = x^{n-m+1} + (x-y)^nA = x + (x-y)^{(n-m)}A = x + (x-y)^mA
\]
whereas, if \(m > n \geq 2 \), pick an \(e \geq 0 \) such that \(np^e - p^e + 1 > m \) and write
\[
T^e(x+(x-y)^nA) = x^{p^e} + (x-y)^{np^e}A = x + (x-y)^{np^e-p^e+1}A \in M
\]
and using the previous case \((m < n) \) we deduce that \(x + (x-y)^mA \in M \).

Example 4.2. Let \(R \) be the localization of \(\mathbb{K}[x,y,z] \) at \(\mathfrak{m} = (x,y,z) \), \(u = x^2y + xyz + z^3 \) and \(A = R/uR \). Fedder’s criterion (cf. Proposition 2.1 in [F]) implies that \(A \) is \(F \)-pure, and Lemma 3.3 in [F] implies that the \(A[T; f] - \)module \(H_{\mathfrak{m}A}^1(A) \) is \(T \)-torsion-free.

Here \(J(R, u) \) contains the ideals 0, \(xR + zR \) and \(xR + yR + zR \). We deduce that \(A \) is not \(F \)-rational and that its parameter-test-ideal is \(xR + zR \). Also, Theorem 3.5(b) implies that the only proper ideals in \(J(R, u) \) are the ones listed above.

Example 4.3. Let \(R \) be the localization of \(\mathbb{K}[x,y,z] \) at \(\mathfrak{m} = (x,y,z) \) and assume that \(\mathbb{K} \) has characteristic 2. Let \(u = x^3 + y^3 + z^3 + xyz \) and \(A = R/uR \). Notice that we can factor
$u = (x + y + z)(x^2 + y^2 + z^2 + xy + xz + yz)$. Fedder’s criterion implies that A is F-pure, and Lemma 3.3 in [F] implies that the $A[T; f]$ module $H_{mA}^1(A)$ is T-torsion-free.

Here

$$J(R, u) \supseteq \{0, (x + y + z)R, (x^2 + y^2 + z^2 + xy + xz + yz)R, (x + z, y + z)R, (x + y + z, y^2 + yz + z^2)R, (x, y, z)R\}.$$

The images in A of the first three ideals have height zero while the images in A of the fourth and fifth ideals have height 1. Using 3.5(b) we conclude that the parameter test-ideal of A is a sub-ideal of

$$J = (x + z, y + z)A \cap (x + y + z, y^2 + yz + z^2)A = (x^2 + yx, y^2 + xz, z^2 + xy)A.$$

But this ideal defines the singular locus of A and Theorem 6.2 in [HH2] implies that the parameter test-element of A contains J, so J is the parameter test-ideal of A.

5. The non-F-injective case

In this section we extend the results of the previous section to the case where A is not F-injective. First we produce a criterion for the F-injectivity of A.

Definition 5.1. Define

$$J_0(R, u) = \{L \in J(R, u) \mid u^{(p-1)(1+p^{e-1})} \in L^p + u^e R \text{ for some } e \geq 1\}.$$

Proposition 5.2. (a) For any $L \in J(R, u)$, $N(L) = 0$ if and only if $L \in J_0(R, u)$.

(b) $H_{mA}^{\dim(A)}(A)$ is T-torsion free if and only if $J_0(R, u) = \{R\}$.

Proof. (a) Recall that the F-finite module $N(L)$ has generating morphism

$$\frac{R}{L + uR} \xrightarrow{u^{p-1}} \frac{R}{L^p + u^e R} \cong F_R\left(\frac{R}{L + uR}\right).$$

Proposition 2.3 in [L] implies that $N(L) = 0$ if and only if for some $e \geq 1$ the composition

$$\frac{R}{L + uR} \xrightarrow{u^{p-1}} \frac{R}{L^p + u^e R} \xrightarrow{u^{(p-1)p}} \frac{R}{L^{p^2} + u^e R} \cdots \xrightarrow{u^{(p-1)p^{e-1}}} \frac{R}{L^{p^{e-1}} + u^e R}$$

vanishes, i.e., if and only if $u^{(p-1)(1+p^{e-1})} \in L^p + u^e R$ for some $e \geq 1$.

(b) Write $H = H_{mA}^{\dim(A)}(A)$. If H is T-torsion free, the existence of the bijection described in Theorem 3.5(a) implies that for any non-unit $L \in J_0(R, u)$, $\text{ann}_H LA[T; f] \neq \text{ann}_H A[T; f] = 0$. Theorem 3.2(b) implies $N(L) \cong \mathcal{H}_{R,A}(\text{ann}_H LA[T; f])$ so $\mathcal{H}_{R,A}(\text{ann}_H LA[T; f]) = 0$. But Theorem 4.2(ii) in [L] now implies that $\text{ann}_H LA[T; f]$ is nilpotent, a contradiction.
Assume now that H is not T-torsion free, i.e., $H_n \neq 0$. The short exact sequence

$$0 \rightarrow H_n \rightarrow H \rightarrow H/H_n \rightarrow 0$$

yields the short exact sequence

$$0 \rightarrow (H/H_n)^\vee \rightarrow \frac{R}{uR} \rightarrow H_n^\vee \rightarrow 0.$$

Notice that as the functor $\text{Hom}(\cdot, E)$ is faithful, $H_n^\vee \neq 0$, and so $H_n^\vee \cong R/I$ for some ideal $uR \subseteq I \subset R$. Now $\mathcal{K}_{R,A}(H_n)$ is the F-finite quotient of H with generating morphism

$$\frac{R}{T} \xrightarrow{u^{p-1}} \frac{R}{T[p]}$$

and this vanishes because of Theorem 4.2(ii) in [L], i.e., $I \in \mathcal{J}_0(R, u)$. □

We now describe the parameter test ideal of A. Henceforth we shall always denote $H_{m_A}^{\text{dim}(A)}(A)$ with H.

Theorem 5.3. Assume that R is complete. The parameter test ideal of A is given by

$$\bigcap \{ I \in \mathcal{J}(R, u) \mid \text{ht} IA > 0 \}.$$

Proof. Write τ for the parameter test ideal of A and let τ be its pre-image in R. Recall that τ is an F-ideal (Proposition 4.5 in [Sm1]), i.e., $\text{ann}_H \tau$ is an $A[T; f]$-submodule of H, and $\mathcal{K}_{R,A}(\text{ann}_H \tau)$ has generating morphism

$$(\text{ann}_H \tau)^\vee \xrightarrow{u^{p-1}} F_R ((\text{ann}_H \tau)^\vee).$$

But

$$(\text{ann}_H \tau)^\vee \cong ((A/\tau)^\vee)^\vee \cong R/(\tau + uR)$$

so the generating morphism of $\mathcal{K}_{R,A}(\text{ann}_H \tau)$ is

$$R/(\tau + uR) \xrightarrow{u^{p-1}} R/(\tau[p] + u^p R)$$

and so we must have $\tau \in \mathcal{J}(R, u)$.

As A is Cohen-Macaulay, $\tau = (0 :_A 0_H)$ (cf. Proposition 4.4 in [Sm1].)

By Theorem 3.2(b), for each $I \in \mathcal{J}(R, u)$, the ideal IA is an F-ideal and, if $\text{ht} I > 0$, $\text{ann}_H IA = \text{ann}_H IA[T; f] \subseteq 0_H$ and so

$$\tau = (0 :_A 0_H) \subseteq \bigcap \{ (0 :_A \text{ann}_H IA) \mid IA \in \mathcal{J}(R, u), \text{ht} IA > 0 \}.$$

But H is an injective hull of A/mA so

$$(0 :_A \text{ann}_H IA) = (0 :_A \text{Hom}(A/IA, H)) = (0 :_A A/IA) = IA$$
and
\[\tau \subseteq \bigcap \{ IA \mid IA \in \mathcal{I}(R, u), \text{ht} IA > 0 \}. \]

But as \(\tau \) is one of the ideals in this intersection, we obtain \(\tau = \bigcap \{ IA \in \mathcal{I}(R, u) \mid \text{ht} IA > 0 \} \).

6. The Gorenstein case

In this section we generalise the results so far to the case where \(A \) is Gorenstein.

Write \(\delta = \dim R - \dim A \) and \(\mathcal{E} = E_A(A/\mathfrak{m}A) \). Local duality implies \(\text{Ext}^k_R(A, R) = H^{\dim A}(A)^\vee \cong \text{Hom}(H^{\dim A}(A), \mathcal{E}) \) and since \(A \) is Gorenstein this is just \(A = R/\mathfrak{u}R \).

Now \(\text{Ext}^k_R(R/\mathfrak{u}R, A) \cong R/\mathfrak{u}R, \text{Ext}^k_R(R/\mathfrak{u}^pR, A) \cong R/\mathfrak{u}^pR \) and \(H_{R,A}(H^{\dim A}) = H^0_{R}(R) \) has generating morphism \(R/\mathfrak{u} \rightarrow R/\mathfrak{u}^pR \) given by multiplication by some element of \(R \) which we denote \(\varepsilon(u) \) (this is unique up to multiplication by a unit.) Unlike the complete intersection case, the map \(R/\mathfrak{u} \overset{\varepsilon(u)}{\rightarrow} R/\mathfrak{u}^pR \) may not be injective, i.e., this generating morphism of \(H^0_{R}(R) \) is not a root. However, if define
\[K_u := \bigcup_{e \geq 0} (\mathfrak{u}^{e+1} R : R \varepsilon(u)^{e+p+\cdots+p^e}) \]
we obtain a root \(R/K_u \overset{\varepsilon(u)}{\rightarrow} R/K_u^{[p]} \) (cf. Proposition 2.3 in [4].)

We now extend naturally our definition of \(\mathcal{I}(R, u) \) when \(A \) is Gorenstein as follows.

Definition 6.1. If \(A = R/\mathfrak{u}R \) is Gorenstein we define \(\mathcal{I}(R, u) \) to be the set of all ideals \(I \) of \(R \) containing \(K_u \) for which \(\varepsilon(u)I \subseteq I^{[p]} \).

Now a routine modification of the proofs of the previous sections gives the following two theorems.

Theorem 6.2. Assume \(A \) is Gorenstein and that \(H^{\dim A}_{mA}(A) \) is \(T \)-torsion-free.

(a) The map \(I \mapsto IA \) is a bijection between \(\mathcal{I}(R, u) \) and the \(A \)-special \(H^{\dim A}_{mA}(A) \)-ideals.

(b) There exists a unique minimal element \(\tau \) in \(\{ I \mid I \in \mathcal{I}(R, u), \text{ht} IA > 0 \} \) and that \(\tau \) is a parameter-test-ideal for \(A \).

(c) \(A \) is \(F \)-rational if and only if \(\mathcal{I}(R, u) = \{ 0, R \} \).

Theorem 6.3. Assume that \(R \) is complete and that \(A \) is Gorenstein. The parameter test ideal of \(A \) is given by
\[\bigcap \{ I \in \mathcal{I}(R, u) \mid \text{ht} IA > 0 \}. \]
Acknowledgement

My interest in the study of local cohomology modules as modules over skew polynomial rings was aroused by many interesting conversations with Rodney Sharp, during one of which I learnt about Example 4.1.

References

[BS] M. P. Brodmann and R. Y. Sharp. *Local cohomology: an algebraic introduction with geometric applications*. Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998.

[F] R. Fedder. *F-purity and rational singularity*. Transactions of the AMS, 278 (1983), no. 2, pp. 461–480.

[HH1] M. Hochster and C. Huneke. *Tight closure, invariant theory, and the Brianon-Skoda theorem*. Journal of the AMS 3 (1990), no. 1, 31–116.

[HH2] M. Hochster and C. Huneke. *F-regularity, test elements, and smooth base change*. Transactions of the AMS, 346 (1994), no. 1, pp. 1–62.

[K] E. Kunz. *Characterizations of regular local rings for characteristic p*. American Journal of Mathematics 91 (1969), pp. 772–784.

[L] G. Lyubeznik. *F-modules: applications to local cohomology and D-modules in characteristic p > 0*. J. Reine Angew. Math. 491 (1997), pp. 65–130.

[S] R. Y. Sharp. *Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure*. Preprint.

[Sm1] K. E. Smith. *Test ideals in local rings*. Transactions of the AMS 347 (1995), no. 9, pp. 3453–3472.

[Sm2] K. E. Smith. *F-rational rings have rational singularities*. American Journal of Mathematics 119 (1997), no. 1, pp. 159–180.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom, Fax number: +44-(0)114-222-3769

E-mail address: M.Katzman@sheffield.ac.uk