The *Aspergillus fumigatus* Secretome Alters the Proteome of *Pseudomonas aeruginosa* to Stimulate Bacterial Growth: Implications for Co-infection

Authors
Anatte Margalit, James C. Carolan, David Sheehan, and Kevin Kavanagh

Correspondence
kevin.kavanagh@mu.ie

In Brief
The growth of *Pseudomonas aeruginosa* increased exponentially when exposed to the culture filtrates produced by *Aspergillus fumigatus* and by co-cultures of *A. fumigatus* and *P. aeruginosa* in a nutrient-poor, nitrate-rich medium. Qualitative proteomic analysis of the *A. fumigatus* culture filtrates identified several secreted proteases and peptidases, including known human allergens. LFQ proteomics performed on *P. aeruginosa* exposed to the culture filtrates identified changes in several pathways and processes including an increase in outer-membrane proteins and stress response proteins.

Highlights
- *Pseudomonas aeruginosa* growth increases in *Aspergillus fumigatus* culture filtrates.
- *A. fumigatus* culture filtrates are characterized by a range of peptidases and proteases.
- LFQ proteomics characterizes the response of *P. aeruginosa* to *A. fumigatus* culture filtrates.
- *A. fumigatus* creates an environment for *P. aeruginosa* to proliferate.
The Aspergillus fumigatus Secretome Alters the Proteome of Pseudomonas aeruginosa to Stimulate Bacterial Growth: Implications for Co-infection

Anatte Margalit, James C. Carolan, David Sheehan, and Kevin Kavanagh*

Individuals with cystic fibrosis are susceptible to co-infection by Aspergillus fumigatus and Pseudomonas aeruginosa. Despite the persistence of A. fumigatus in the cystic fibrosis lung, P. aeruginosa eventually predominates as the primary pathogen. Several factors are likely to facilitate P. aeruginosa colonization in the airways, including alterations to the microbial environment. The cystic fibrosis airways are hypoxic, nitrate-rich environments, and the sputum has higher amino acid concentrations than normal. In this study, significant growth proliferation was observed in P. aeruginosa when the bacteria were exposed to A. fumigatus culture filtrates (CuF) containing a high nitrate content. Proteomic analysis of the A. fumigatus CuF identified a significant number of environment-altering proteases and peptidases. The molecular mechanisms promoting bacterial growth were investigated using label-free quantitative (LFQ) proteomics to compare the proteome of P. aeruginosa grown in the A. fumigatus CuF and in CuF produced by a P. aeruginosa-A. fumigatus co-culture, to that cultured in P. aeruginosa CuF. LFQ proteomics revealed distinct changes in the proteome of P. aeruginosa when cultured in the different CuFs, including increases in the levels of proteins involved in denitrification, stress response, replication, amino acid metabolism and efflux pumps, and a down-regulation of pathways involving ABC transporters. These findings offer novel insights into the complex dynamics that exist between P. aeruginosa and A. fumigatus. Understanding the molecular strategies that enable P. aeruginosa to predominate in an environment where A. fumigatus exists is important in the context of therapeutic development to target this pathogen.

The airways of cystic fibrosis patients are chronically colonized by a diverse range of microbial pathogens, the composition of which changes throughout life (1, 2). Alteration to the pulmonary environment caused by inter-microbial interactions and pathogen-host interactions influence the type of microbes that can engage in sustained infection (3). The opportunistic bacterial pathogen Pseudomonas aeruginosa is the primary cause of morbidity and mortality among individuals with cystic fibrosis and it is estimated that 60–80% of cystic fibrosis patients experience chronic P. aeruginosa infection by the age of 20 years (4, 5). P. aeruginosa owes its success as a human pathogen to its relatively large genome (~6.3 Mbp), which encodes a variety of virulence factors and regulatory proteins that enable this bacterium to rapidly adapt to, and colonize multiple niches, including the hypoxic environment of the cystic fibrosis lung (6, 7).

Aspergillus fumigatus is the most prevalent fungal pathogen isolated from cystic fibrosis airways, affecting up to 57% of patients (8–10). It is the causative agent of allergic bronchopulmonary aspergillosis (ABPA), a hypersensitivity disorder resulting from the inhalation of fungal conidia. Although co-colonization of the cystic fibrosis airways by P. aeruginosa and A. fumigatus is rare (3.1–15.8%) disease prognosis is poor when both are present (6, 11). However, sequential infection with A. fumigatus and P. aeruginosa is more common and despite the prevalence and persistence of A. fumigatus in younger cystic fibrosis patients (12), P. aeruginosa predominates as the primary pathogen from the second decade of life. This suggests that interactions with other pathogens such as A. fumigatus may influence the pathogenicity of P. aeruginosa by altering its virulence, for example by increasing the production of elastases (13).

P. aeruginosa produces a range of products that inhibit A. fumigatus growth including pyoverdin, an iron chelator that deprives A. fumigatus of iron from the environment thereby inhibiting fungal biofilm formation (14). A. fumigatus counteracts the effects of pyoverdin with its own siderophores which cannot be exploited by P. aeruginosa (15). P. aeruginosa phenazines, Phenazine-1-carboxylic acid and 1-hydroxyphenazine (1-HP), inhibit growth of A. fumigatus by inducing reactive oxygen species (ROS) production and chelating iron, respectively (16). The accumulation of ROS may inhibit A. fumigatus biofilm by mediating apoptosis in the fungal biofilm.
Although direct contact with \textit{P. aeruginosa} has an inhibitory effect on \textit{A. fumigatus} growth, volatile organic compounds released by the bacteria are believed to stimulate the growth of \textit{A. fumigatus} \cite{18, 19}. \textit{A. fumigatus} may also influence \textit{P. aeruginosa} growth through the production of gliotoxin, a secondary metabolite with anti-bacterial activity \cite{20}.

We report here the changes that occur in the growth and to the proteome of \textit{P. aeruginosa} when exposed to the culture filtrate produced by \textit{A. fumigatus}. It was hypothesized that \textit{A. fumigatus} creates an environment that promotes a metabolic-driven increase in \textit{P. aeruginosa} growth that results in it out-competing the fungus. Qualitative analysis using mass spectrometry and RP-HPLC was performed to analyze this environment and to characterize the contents of the \textit{A. fumigatus} culture filtrate. Label-free quantitative (LFQ) proteomics was employed to characterize changes to the proteome of \textit{P. aeruginosa} when exposed to the culture filtrate of (1) \textit{A. fumigatus} alone (2) the culture filtrate of an \textit{A. fumigatus}-\textit{P. aeruginosa} co-culture and (3) the culture filtrate of \textit{P. aeruginosa} alone. The results offer novel insights into the biological pathways and processes that enable \textit{P. aeruginosa} to out-compete \textit{A. fumigatus} and hence predominate as the primary pathogen under these conditions.

Experimental Procedures

Experimental Design and Statistical Rationale—The effect of culture filtrates (CuF) produced in Czapek-Dox liquid media by (1) \textit{P. aeruginosa} (control), (2) \textit{A. fumigatus} or (3) \textit{A. fumigatus} - \textit{P. aeruginosa} co-cultures (where 24-hour cultures of \textit{A. fumigatus} and \textit{P. aeruginosa} were co-incubated for a further 24 h) on \textit{P. aeruginosa} growth was measured by determining the optical density (OD$_{600}$) of bacterial cultures. The concentration of gliotoxin produced by \textit{A. fumigatus} ATCC 26933 and \textit{A. fumigatus} Af293 was ascertained by hemocytometry and conidia were added to Czapek-Dox liquid media (Duchefa) at a final concentration of 5 \times 108/ml. The cultures were incubated for 24, 48, 72, and 96 h at 37 °C in an orbital incubator, at 200 rpm. After each time point, the hyphal mass was harvested, and the wet weight was recorded. The \textit{A. fumigatus} culture filtrates (CuF) were filter-sterilized using 0.2 μm filter S filters (Sarstedt).

Extraction of Gliotoxin from \textit{A. fumigatus} Culture Filtrate—The CuF of \textit{A. fumigatus} ATCC 26933 type and \textit{A. fumigatus} Af293 strains were mixed with an equal volume (20 ml) chloroform (Fisher Scientific) and mixed for 2 h. The chloroform fraction was collected and dried by rotary evaporation in a Büchi rotavapor evaporator (Brinkmann Instruments; Westbury, NY). Dried extracts were dissolved in 500 μl HPLC grade methanol (Fisher Scientific) and stored at $-20 \, ^\circ$C.

Quantification of Gliotoxin by RP-HPLC—Gliotoxin was detected by Reversed Phase-HPLC (Shimadzu). The mobile phase was 34.9% (v/v) acetonitrile (Fisher Scientific), 0.1% (v/v) trifluoroacetic acid (TFA) (Sigma Aldrich) and 65% (v/v) HPLC grade deionized water (ddH$_2$O). Gliotoxin extract (20 μl) (Sigma Aldrich) was injected onto a Lunar Omega, 5 μm polar C18, LC column (Phenomenex). Peaks were visualized at 254 nm. A standard curve of peak area versus gliotoxin concentration was constructed using gliotoxin standards (0.1, 0.25, 0.5, 1.0, 10 μg/100 μl) dissolved in methanol.

Effect of \textit{A. fumigatus} CuF on \textit{P. aeruginosa} Growth—\textit{P. aeruginosa} (PA01) was cultivated overnight in nutrient broth (Oxoid). Bacterial suspension (100 μl, OD$_{600}$ 0.1) was added to each well of a 96-well plate (Corning). Czapek-Dox (100 μl) or 100 μl of the 24-, 48-, 72-, and 96-hour \textit{A. fumigatus} CuF was added to each row. The plate was incubated at 37 °C for 24 h and read in a plate reader (Bio-Tek Synergy HT) at 600 nm. OD 1.0 (600 nm) equates to 3×10^6 CFU/ml.

Preparation of \textit{P. aeruginosa} Culture Filtrate—\textit{P. aeruginosa} was cultivated on nutrient agar (Oxoid) at 37 °C. A sterile loop was used to inoculate Czapek-Dox liquid media with the bacteria. Bacterial cultures were incubated for 48 h at 37 °C in an orbital incubator, at 200 rpm. The concentration of the bacterial suspension was quantified by obtaining the optical density at 600 nm (OD_{600}). Bacterial densities were measured after 48 h incubation (OD 0.19 ± 0.022). Bacteria were separated from the supernatant by centrifugation (15 min, 2000 g). \textit{P. aeruginosa} culture filtrates were sterilized using 0.2 μm filter S filters (Sarstedt) and are hereafter referred to as \textit{P. aeruginosa} CuF.

Preparation of Co-culture Culture Filtrate—\textit{A. fumigatus} conidia (5 \times 105 conidia/ml) and \textit{P. aeruginosa} (loopful) were cultured in Czapek-Dox liquid media for 24 h at 37 °C in an orbital incubator at 200 rpm. Prior to co-incubation with \textit{A. fumigatus} cultures, \textit{P. aeruginosa} density was determined to ensure similar densities across the groups (OD_{600} 0.2 ± 0.0087). The co-culture was incubated under the same conditions for a further 24 h to give a total incubation period of 48 h for each pathogen to match the total incubation time applied for the fungal- and bacterial-only cultures. The hyphae were removed from the culture and the bacteria were removed by centrifugation (20 min at 2000 g). The Co-culture culture filtrates were sterilized using 0.2 μm filter S filters (Sarstedt) and are hereafter referred to as Co-culture CuF. \textit{A. fumigatus} CuF, \textit{P. aeruginosa} CuF and Co-culture CuF were prepared for multiple samples across all four groups using a permutation-based FDR of 5% and below to indicate statistically significant differentially abundant (SSDA) proteins. Enrichment analysis was performed on the Gene Ontology terms for the major protein clusters identified by hierarchical clustering using a Fisher's exact test (Benjamini-Hochberg corrected FDR of 4%).
CuF were also produced as described above in minimal media (MM) and synthetic cystic fibrosis medium (SCFM) (21).

Analysis of P. aeruginosa Growth in Czapek-Dox Media—Czapek-Dox liquid media was inoculated with P. aeruginosa using a sterile loop and incubated at 37 °C in an orbital incubator. The growth of the bacterial suspension was measured at 4, 18, 24, 48, 72, and 96 h by obtaining the optical density at 600 nm (OD600).

Analysis of Amino Acid Concentration Culture Filtrates—Culture filtrates from A. fumigatus, P. aeruginosa and Co-cultures were analyzed for amino acids using 2% nihydrogin (Sigma) dissolved in ethanol (22). A. fumigatus 48-hour CuF and sterile Czapek-Dox media were hydrolyzed with HCl (6 m) by microwave (CEM Discoverer Microwave Synthesizer) for one hour at 110 °C (23). Amino acid standards (Amino acid standard H, Pierce™), Czapek-Dox media and CuF were PITC-derivitized according to the manufacturer’s instructions (Pierce™). Amino acid identification was performed by RP-HPLC under the same gradient conditions as for the gliotoxin analysis and visualized at 254 nm.

Exposure of P. aeruginosa to A. fumigatus CuF, P. aeruginosa CuF, Co-culture CuF or Amino Acids—P. aeruginosa was cultured in Czapek-Dox, MM or SCFM (25 ml) for 24 h, to stationary phase. Bacterial density (OD600) was determined to ensure equal densities across all groups. Where necessary, bacterial culture densities were adjusted to give a final value of OD 0.1 in 25 ml prior to incubation with culture filtrates produced by A. fumigatus, P. aeruginosa or the co-cultures in corresponding growth media (50 ml). To investigate the effect of amino acids on bacterial growth, P. aeruginosa suspensions cultured in Czapek-Dox for 24 h (25 ml, adjusted to OD 0.1) were exposed to sterile Czapek-Dox (50 ml) or Czapek-Dox supplemented with amino acids; aspartic acid (2.37 × 10⁻¹⁰ pmol/ml), glutamic acid (8.99 × 10⁻⁵ pmol/ml), serine (8.82 × 10⁻⁶ pmol/ml), threonine (8.93 × 10⁻⁶ pmol/ml), methionine (1.17 × 10⁻⁶ pmol/ml), valine (1.14 × 10⁻⁶ pmol/ml) and leucine (1.58 × 10⁻⁶ pmol/ml). Bacterial cultures were incubated for a further 24 h at 37 °C in an orbital incubator, at 200 rpm. Growth of the over-night cultures were measured by obtaining the optical density at 600 nm prior to, and post exposure to the supplemented liquid media.

Preparation of A. fumigatus CuF and P. aeruginosa Proteins for Mass Spectrometry A. fumigatus CuF Proteins—Proteins from 48-hour A. fumigatus CuF produced in Czapek-Dox were concentrated by centrifugation (Vivaspin 20, 3kDa MWCO PES, Sartorius). Protein was quantified using the Quibit™ quantification system (Invitrogen), following the manufacturer’s instructions. Ammonium bicarbonate (125 µl, 50 mM) was added to the remaining 20 µl of each sample. The protein sample was reduced by adding 1 µl 0.5 M dithiothreitol (DTT) and incubated at 56 °C for 20 min, followed by alkylation with 0.55 M iodoacetamide at room temperature, in the dark for 15 min. Protease Max Surfactant Trypsin Enhancer (Promega) (1 µl, 1% w/v) and Sequence Grade Trypsin (Promega) (0.5 µg/µl) was added to the proteins and incubated at 37 °C for 18 h. Digestion was terminated by adding TFA (1 µl, 100%) to each trypptic digest sample, and incubated at room temperature for 5 mins. Samples were centrifuged for 10 min at 14,500 × g and purified for mass spectrometry using C18 Spin Columns (Pierce), following the manufacturer’s instructions. The eluted peptides were dried in a SpeedyVac concentrator (Thermo Scientific Savant DNA120) and resuspended in 2% v/v acetonitrile and 0.05% v/v TFA to give a final peptide concentration of 1 µg/µl. The samples were sonicated for 5 mins to aid peptide resuspension, followed by centrifugation for 5 mins at 14,500 × g. The supernatant was removed and used for mass spectrometry. Four independent biological replicates for each group were analyzed in this study.

Mass Spectrometry: LC/MS Xcalibur Instrument Parameters for P. aeruginosa Proteomic Data Acquisition—Digested proteins (500 ng) isolated from A. fumigatus CuF and 750 ng of each digested P. aeruginosa protein sample were loaded onto a QExactive (Thermo Fisher Scientific) high-resolution accurate mass spectrometer connected to a Dionex Ultimate 3000 (RSLCNano) chromatography system. Peptides were separated by an increasing acetonitrile gradient on a 50 cm EASY-Spray PepMap C18 column with 75 µm diameter (2 µm particle size), using a 65 min reverse phase gradient for the A. fumigatus CuF and a 133 min reverse phase gradient for the P. aeruginosa proteins at a flow rate of 300 nL/min⁻¹. All data were acquired with the mass spectrometer operating in an automatic dependent switching mode. A full MS scan at 70,000 resolution and a range of 400–1600 m/z, was followed by an MS/MS scan at 17,500 resolution, with a range of 200–2000 m/z to select the 15 most intense ions prior to MS/MS.

Qualitative analysis of the proteome arising from the A. fumigatus CuF was investigated using Proteome Discoverer 1.4 and Sequest HT (SEQUST HT algorithm, Thermo Scientific). Identified proteins were searched against the UniProtKB database (Neosartorya fumigata: downloaded 18/05/2018; 9647 entries). Search parameters applied for protein identification were as follows: (1) enzyme name - trypsin, (2) an allowance of up to two missed cleavages, (3) peptide mass tolerance set to 0.02 Da, (4) MS/MS mass tolerance set to 10 ppm, (5) methionine oxidation set as a variable modification (24). Peptide probability was set to high confidence (with an FDR < 0.01%) as determined by Percolator validation in Proteome Discoverer. Peptides with minimum score of two and fewer than three unique peptides were excluded from further analysis. The MS proteomics data and Proteome Discoverer search output files have been deposited to the ProteomeXchange Consortium (25) via the PRIDE partner repository with the data set identifier PXD018112.

Quantitative analysis (protein quantification and LFQ normalization of the MS/MS data) of the P. aeruginosa proteome arising from exposure to the different CuFs, was performed using MaxQuant version 1.5.3.3 (http://www.maxquant.org) following the general procedures and settings outlined in (26). The Andromeda search algorithm incorporated in the MaxQuant software was used to correlate MS/MS data against the Uniprot-SWISS-PROT database for P. aeruginosa PA01 and A. fumigatus Af293 (downloaded 11/09/2018; 15286 entries). The following search parameters were used: first search peptide tolerance of 20 ppm, second search peptide tolerance 4.5 ppm with cysteine carbamidomethylation as a fixed modification.
and N-acetylation of protein and oxidation of methionine as variable modifications and a maximum of two missed cleavage sites allowed. False discovery rate (FDR) was set to 1% for both peptides and proteins, and the FDR was estimated following searches against a target-decoy database. Peptides with minimum length of seven amino acid length were considered for identification and proteins were only considered identified when observed in three replicates of one sample group.

Data Analysis of the P. aeruginosa Proteome—Perseus v.1.5.5.3 (www.maxquant.org) was used for data analysis, processing and visualization. Normalized LFQ intensity values were used as the quantitative measurement of protein abundance for subsequent analysis. The data matrix was first filtered for the removal of contaminants and peptides identified by site. LFQ intensity values were log2 transformed and each sample was assigned to its corresponding group, i.e. P. aeruginosa exposed to P. aeruginosa CuF (control) versus P. aeruginosa exposed to A. fumigatus CuF or Co-culture CuF. Proteins not found in four out of four replicates in at least one group were omitted from the analysis. A data-Imputation step was conducted to replace missing values with values that simulate signals of low abundant proteins chosen randomly from a distribution specified by a downshift of 2 times the mean standard deviation (S.D.) of all measured values and a width of 0.3 times this S.D.

Normalized LFQ intensity values were used for a principal component analysis (PCA). Exclusively expressed proteins (those that were uniquely expressed or completely absent in one group) were identified from the pre-imputation data set and included in subsequent analyses. Gene ontology (GO) mapping was also performed in Perseus using the UniProt gene ID for all identified proteins to query the Perseus annotation file (downloaded September 2018) and extract terms for gene ontology biological process (GOBP), gene ontology cellular component (GOCC), gene ontology molecular function (GOMF) and Kyoto Encyclopedia of Genes and Genomes (KEGG) name.

To visualize differences between two samples, pairwise Student’s t-tests were performed for all using a cut-off of $p < 0.05$ on the post-imputed data set. Volcano plots were generated in Perseus by plotting negative log p values on the y axis and log$_2$ fold-change values on the x axis for each pairwise comparison. The ‘categories’ function in Perseus was utilized to highlight and visualize the distribution of various pathways and processes on selected volcano plots. Statistically significant (ANOVA, $p < 0.05$) and differentially abundant proteins (SSDA), i.e. with relative fold change of plus or minus 2.0 were chosen for further analysis. The log$_2$ transformed LFQ intensities for all SSDA proteins were Z-score normalized and used for hierarchical clustering of samples and SSDA proteins using Euclidean distance and average linkage.

GO and KEGG term enrichment analysis was performed on the major protein clusters identified by hierarchical clustering using a Fisher’s exact test (a Benjamini-Hochberg corrected FDR of 4%) for enrichment in Uniprot Keywords, GOBP, GOCC, GOMF and KEGG (FDR <4%). The MS proteomics data and MaxQuant search output files have been deposited to the ProteomeXchange Consortium (25) via the PRIDE partner repository with the data set identifier PXD015056.

RESULTS

Analysis of the Effect of A. fumigatus culture filtrate on P. aeruginosa growth—The ability of P. aeruginosa to grow in Czapek-Dox, a sucrose-based medium with sodium nitrate as the sole nitrogen source was investigated. P. aeruginosa growth increased in a time-dependent manner until reaching stationary phase at 48 h (supplemental Fig. S1). To examine the effect of the A. fumigatus secretome produced in this media on the growth of P. aeruginosa, A. fumigatus culture filtrates (CuFs) were isolated from cultures grown in Czapek-Dox for 24, 48, 72, and 96 h. Toxicity assays revealed that the 24-, 48-, and 72-hour A. fumigatus CuFs had a growth-promoting effect on P. aeruginosa compared with the control (sterile Czapek-Dox), but supernatants from the 96-hour CuF had a growth inhibiting effect (Fig. 1A). Czapek-Dox is frequently used with A. fumigatus as a growth medium for the production of gliotoxin. Because of this, the levels of gliotoxin in the A. fumigatus CuFs used for the toxicity assays here were quantified by RP-HPLC. The highest concentration of gliotoxin (2.29 µg ± 0.06/mg hyphae, $p < 0.05$) was detected in the 96 h CuF (supplemental Fig. S2A) and correlated with the growth inhibition of P. aeruginosa in Fig. 1A. To confirm that gliotoxin was causing the growth inhibitory effect, a gliotoxin-deficient strain of A. fumigatus, which lacks the GIZ gene responsible for gliotoxin production, was cultured for 24, 48, 72, and 96 h. Gliotoxin deficiency was confirmed by
Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

![Graph showing growth of P. aeruginosa CFU/ml cultured in Czapek-Dox media for 48 h compared with growth of A. fumigatus cultured in Czapek-Dox media supplemented with P. aeruginosa CuF, A. fumigatus CuF and Co-culture CuF. Changes in bacterial growth were greatest where P. aeruginosa was exposed to Co-culture CuF. ***: p < 0.001 **: p < 0.01 *: p < 0.05 ns: non-significant.](image)

Fig. 2. Growth of P. aeruginosa (CFU/ml) cultured in Czapek-Dox media for 48 h compared with growth of A. fumigatus cultured in Czapek-Dox media supplemented with P. aeruginosa CuF, A. fumigatus CuF and Co-culture CuF. Changes in bacterial growth were greatest where P. aeruginosa was exposed to Co-culture CuF. *: p < 0.001 **: p < 0.01 *: p < 0.05 ns: non-significant.**

RP-HPLC (supplemental Fig. S2B). P. aeruginosa was exposed to the CuFs produced by the ∆gliZ mutant. Bacterial growth was somewhat greater when exposed to the CuFs produced by the ∆gliZ strain at all time-points compared with that where bacteria were exposed to CuFs produced by the wild-type strain (Fig. 1A and 1B). Differences in the parental origin of the strains may account for the variation in growth rate. Bacterial growth in cultures exposed to the 96-hour CuF produced by the ∆gliZ strain was comparable to the growth of bacteria exposed to the CuF produced by the wild-type strain at 48 h, thereby confirming that gliotoxin was the cause of bacterial growth inhibition (Fig. 1A and 1B). Because the CuF produced by the wild-type fungus at 48-hours induced the greatest increase in growth of P. aeruginosa, the material from this time point was chosen for further investigation.

The effect on growth of P. aeruginosa when exposed to A. fumigatus CuF, was compared with that exposed to CuF produced in a co-culture of A. fumigatus and P. aeruginosa and with CuF produced by P. aeruginosa. To produce these CuFs, a 24-hour culture of bacteria was co-incubated with a 24-hour culture of A. fumigatus for a further 24 h so that the total incubation period was 48 h. Similarly, the 48-hour time point with which to allow P. aeruginosa to produce a CuF was chosen to maintain consistency with the time points at which the other CuFs were produced and had the greatest effect on bacterial growth. The growth of P. aeruginosa increased by 4-fold and 7-fold when cultured in Czapek-Dox supplemented with A. fumigatus CuF and Co-culture CuF respectively compared with that which was cultured in Czapek-Dox supplemented with P. aeruginosa CuF (Fig. 2).

To assess whether this growth effect was media-specific, P. aeruginosa was cultured for 24 h in minimal media supplemented with culture filtrates (CuFMM) produced in this media (P. aeruginosa CuFMM, A. fumigatus CuFMM and Co-Culture CuFMM). No significant changes in growth were detected in bacteria cultured in the different CuFMM (supplemental Fig. S3A). P. aeruginosa was cultured in an amino acid-rich defined medium, synthetic cystic fibrosis medium (SCFM), supplemented with P. aeruginosa CuF or Co-culture CuF produced in SCFM (CuFSCFM). No significant differences in growth were detected between P. aeruginosa exposed to Co-culture CuFSCFM and P. aeruginosa CuFSCFM (supplemental Fig. S3B).

Proteomic Analysis of A. fumigatus 48-hour Culture Filtrate—Mass spectrometry-based proteomics was performed on proteins collected from the 48 h-A. fumigatus CuF in order to investigate the components that may be promoting bacterial growth (supplemental Data set S1). The majority of proteins detected were enzymes associated with protein metabolism (e.g. l-amino acid oxidase, Tripeptidyl-peptidase sed2), cell wall biosynthesis (e.g. Protein ecm33, 1,3-beta-glucanase), Peroxiredoxin, Asp f3, Superoxide dismutase) and gliotoxin production (e.g. Thioredoxin reductase gilT, Cobalamin-independent methionine synthase). A number of proteins detected were involved in sugar metabolism (e.g. Beta-fructofuranosidase, Mannitol-1-phosphate S-dehydrogenase, Gluco-oligosaccharide oxidase), and several proteins were associated with virulence (Alkaline protease 1, Alkaline protease 2, Aspergillopepsin-1, Major allergen Asp f 2). Additionally, several glucanases were detected in the culture filtrate (supplemental Data set S1).

A. fumigatus Generates An Amino Acid Rich Environment in Czapek-Dox—Because Czapek-Dox does not contain amino acids in the original medium preparation, it was hypothesized the abundance of proteases and peptidases in the A. fumigatus CuF (supplemental Data set S1) was causing elevated levels of free amino acids or peptides in the culture filtrates and this was stimulating bacterial growth. The amino acid concentration in the culture filtrates was measured by the ninhydrin assay (supplemental Fig. S4). The ninhydrin test detected an amino acid concentration of 40 μg ±2.1/ml in the A. fumigatus CuF and 28 μg ±1.2/ml in the Co-culture CuF. Amino acids were not detected in the P. aeruginosa CuF or in the A. fumigatus CuF produced in MM which may explain why increased rates of bacterial growth were not observed in these media. To investigate the amino acid profile of the CuF, A. fumigatus CuFs were hydrolyzed and subjected to derivitization before being analyzed by RP-HPLC. Several amino acids were detected in the CuF including aspartic acid glutamic acid, serine threonine, methionine, valine, and leucine (Fig. 3A). To determine the role of such amino acids in driving bacterial growth, an overnight culture of P. aeruginosa was exposed to Czapek-Dox supplemented with the amino acids in the concentrations at which they were detected in the A. fumigatus CuF (aspartic acid (2.37 × 10^5 ± 5.27 × 10^5)
Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

pmol/ml, glutamic acid (8.99 \times 10^5 \pm 1.3 \times 10^5 \text{ pmol/ml}), serine (8.82 \times 10^5 \pm 1.31 \times 10^5 \text{ pmol/ml}), threonine (8.93 \times 10^5 \pm 8.81 \times 10^4 \text{ pmol/ml}), methionine (1.17 \times 10^6 \pm 6.1 \times 10^5 \text{ pmol/ml}), valine (1.14 \times 10^5 \pm 1.37 \times 10^4 \text{ pmol/ml}) and leucine (1.58 \times 10^5 \pm 3.39 \times 10^4 \text{ pmol/ml}). An increase in the growth of P. aeruginosa cultured in the amino acid-supplemented media compared with un-supplemented media indicates that amino acids in the media promote bacterial growth (Fig. 3B).

The Effect of A. fumigatus CuF and Co-culture CuF on the Proteome of P. aeruginosa—Label-free quantitative (LFQ) proteomics was employed to examine the whole cell proteomic response of P. aeruginosa exposed to P. aeruginosa CuF, A. fumigatus CuF or Co-culture CuF, and to investigate the proteins and pathways involved in regulating bacterial growth under these conditions. In total, 2317 proteins were initially identified, of which 1665 remained after filtering and processing (supplemental Data set S2A). Of the 1665 proteins identified post-imputation, 677 proteins in the A. fumigatus CuF-treated group (supplemental Data set S2B) and 611 proteins in the Co-culture CuF-treated group (supplemental Data set S2C) were determined to be statistically significant (p < 0.05) differentially abundant (SSDA) with a fold change of \pm 2. A principal component analysis (PCA) was performed on all filtered proteins and identified distinct proteomic differences between the groups (Fig. 4A). Components 1 and 2 accounted for 71.3% of the total variance within the data, and all replicates resolved into their corresponding samples, with little variability between each sample. The groups exposed to P. aeruginosa CuF (control) displayed a clear divergence to those that were challenged with A. fumigatus CuF or Co-culture CuF. A distinct separation between the groups cultured in A. fumigatus CuF or Co-culture CuF was also observed.

Hierarchical clustering was performed on the Z-scored normalized LFQ intensity values for 1005 SSDA proteins identified (ANOVA; Benjamini Hochberg procedure, FDR cut-off value of \leq 0.05). All four biological replicates resolved into their respective groups. Based on protein abundance profile similarities, nine protein clusters (A–I) were also resolved (Fig. 4B). GO and KEGG term enrichment analysis was performed on all protein clusters. Six clusters contained enriched terms (Cluster A, C, D, G–I; supplemental Data set S3B), with each cluster having a representative process or pathway characteristic to that group (Fig. 4B and 4C). Details of all clusters are included in the supplemental material (supplemental Data set S3A). Enriched terms contained in the clusters included membrane and integral to membrane (Cluster A), ABC transporters and periplasmic space (Cluster C), periplasmic space, (Cluster D), membrane and outer membrane proteins (Cluster G), nucleotide binding and transcription (Cluster H), cell division and amino acid metabolism (Cluster I).

Volcano plots were produced by pairwise Student’s t-tests (p < 0.05) to determine the differences in protein abundance between two samples and to depict the changes in pathways and processes in which those proteins are involved (Fig. 5A–5G). The changes in biological pathways and processes observed in the volcano plots mirror the trends in the heat map (Fig. 4B).

The proteomic data arising from the Student’s t-tests (p < 0.05) identified a significant increase in the relative abundance of proteins associated with cell division and cell wall formation in bacteria cultured in A. fumigatus CuF and Co-culture CuF, compared with P. aeruginosa CuF. There were no significant
Changes in these processes between bacteria cultured in A. fumigatus CuF and Co-culture CuF. The most abundant proteins associated with these processes are listed in supplemental Table 1A. The relative abundance of several components from the nucleotide biosynthesis pathway was increased in bacteria cultured in A. fumigatus CuF and Co-culture CuF compared with that exposed to P. aeruginosa CuF. SSDA proteins included in this pathway are listed in supplemental Table 1B and are highlighted in Fig. 5A and 5B. Student’s t-tests performed on these groups, identified an increase in the relative abundance of SSDA proteins with the KEGG term “cellular amino acid biosynthesis” in bacteria exposed to A. fumigatus CuF and Co-culture CuF compared with that exposed to P. aeruginosa CuF. This included the metabolism of valine, leucine, isoleucine, lysine, glutamine, cysteine, proline, serine and arginine (supplemental Table 1C, Fig. 5A and 5B).

In general, the relative abundance of proteins associated with ABC transporters were decreased in the bacteria exposed to A. fumigatus CuF and Co-culture CuF compared with bacteria exposed to P. aeruginosa CuF (supplemental Table 1D). Most of these proteins were substrate binding proteins and ATP binding components of ABC transporters involved with the transport of amino acids, carbohydrates and lipids. Within this group, the three proteins with the greatest decrease in relative abundance were probable amino acid binding protein (PA3858; −17.1-fold), probable binding protein component of ABC iron transporter (PA5217; −38.6-fold) and binding protein component of ABC ribose transporter (rbsB; −57.7-fold). Of the 35 ABC-transport proteins listed, four were increased in abundance. Three of these, nitrate ABC transporter substrate-binding protein (nasS; +23.9-fold), probable ATP-binding component (PA4862; +13.2-fold) and molybdenum import ATP-binding protein (modC; +2.7-fold) are associated with the import of nitrate, urea and molybdate respectively. The full list of these proteins is included in supplemental Table 1D.

Pairwise t-tests identified increases and decreases in the relative abundance of proteins associated with a stress response and DNA damage repair in P. aeruginosa exposed to A. fumigatus CuF and Co-culture CuF compared with bacteria exposed to P. aeruginosa CuF (Table I). Xenobiotic reductase B (Xen B), Lon protease (lon), Alkyl hydroperoxide reductase subunit F (ahpF) and Bi-functional enzyme CysN/CysC (CysNC) showed the greatest fold-change in P. aeruginosa exposed to A. fumigatus CuF and Co-culture CuF compared with that which was exposed to P. aeruginosa CuF. Except for Xen B, there were no significant changes in the relative abundance of these proteins between the groups exposed to A. fumigatus CuF and Co-culture CuF. Catalase HPII (katE),...
magD (magD) and cold-shock protein (CspD) showed the greatest decrease in relative abundance in bacteria exposed to *A. fumigatus* CuF and Co-culture CuF compared with *P. aeruginosa* CuF-exposed groups. The proteomic data arising from the Student’s t-tests \((p < 0.05)\) identified a significant increase in the abundance of proteins associated with anaerobic respiration, including denitrification enzymes, and a decrease in the levels of proteins associated with aerobic respiration in bacteria exposed to *A. fumigatus* CuF and Co-culture CuF compared with *P. aeruginosa* CuF-exposed groups.

The proteomic data arising from the Student’s t-tests \((p < 0.05)\) identified a significant increase in the abundance of proteins associated with anaerobic respiration, including denitrification enzymes, and a decrease in the levels of proteins associated with aerobic respiration in bacteria exposed to *A. fumigatus* CuF and Co-culture CuF compared with *P. aeruginosa* CuF-exposed groups. Functionally annotated SSDA proteins with the greatest differential increase or decrease in abundance involved in anaerobic or aerobic respiration respectively, are listed in Table I. Student’s t-tests on the post-imputation data set revealed distinct changes in the relative abundance of outer membrane proteins (OMPs) and efflux pumps between *P. aeruginosa* cultures exposed to *A. fumigatus* CuF and *P. aeruginosa* CuF, Co-culture CuF and *P. aeruginosa* CuF. There was a clear increase in the number of, and the relative abundance of several OMPs in *P. aeruginosa* exposed to *A. fumigatus* CuF compared with the other groups (Table I, Fig. 5C).

DISCUSSION

The clinical importance of co-infection with *A. fumigatus* and *P. aeruginosa* in the cystic fibrosis lung has been highlighted in several reports because of its association with deteriorating lung function (8, 9, 11). Despite the ability of *A. fumigatus* to survive and persist in the hostile environment of the cystic fibrosis lung, *P. aeruginosa* predominates as the primary pathogen and is the leading cause of poor patient outcome (8, 27). The objective of the current study was to characterize the factors that enable *P. aeruginosa* to outcompete *A. fumigatus*.

Fig. 5. Volcano plots derived from pairwise comparisons between *P. aeruginosa* cultured in (A) *A. fumigatus* CuF and *P. aeruginosa* CuF, (B) Co-culture CuF and *A. fumigatus* CuF and (C) Co-culture CuF and *P. aeruginosa* CuF. The distribution of quantified proteins according to the \(p\) value \((- \log p\) value\) and fold change \((\log_2\) mean LFQ intensity difference\) are shown. Proteins above the line are considered statistically significant \((p \text{ value} < 0.05)\). Protein components of amino acid metabolism (green) and nucleotide biosynthetic process (blue) and response to stress (orange) are more abundant in bacteria cultured in *A. fumigatus* CuF and Co-culture CuF than in *P. aeruginosa* CuF. The relative abundance of proteins associated with the periplasmic space and ABC transporters (purple) was decreased in bacteria cultured in *A. fumigatus* CuF and Co-culture CuF compared with *P. aeruginosa* CuF. The relative abundance of outer membrane proteins (yellow) was greater in bacteria exposed to *A. fumigatus* CuF compared with *P. aeruginosa* CuF and lower in Co-culture CuF compared with *A. fumigatus* CuF and *P. aeruginosa* CuF.
Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

Pathways that are most affected by bacterial culture conditions. Differential expression of proteins associated with a stress response and DNA damage repair, respiration and outer membrane proteins in *P. aeruginosa*: statistically significant proteins and associated relative fold difference arising from pairwise Student’s t-tests (*p* < 0.05) between *P. aeruginosa* exposed to *A. fumigatus* CuF and *P. aeruginosa* CuF, Co-culture CuF. A.f.; *A. fumigatus* CuF, P.a.; *P. aeruginosa* CuF, Cc; Co-culture CuF. n.s.

Pathway	Gene	Protein	Relative fold difference
Stress response	xenB	Xenobiotic reductase B	A.f. v P.a. 156 –1.9
	ion	Lon protease	Cc v P.a. 156 –1.9
	ahpF	Alkyl hydroperoxide reductase subunit F	Cc v A.f. 16.3 ns
	cysNC	Bilifunctional enzyme CysN/CysC	A.f. v P.a. 13.8 ns
	uvrB	UvrABC system protein B	A.f. v P.a. 12.6 ns
	cysI	Sulfite reductase	A.f. v P.a. 10 ns
	recA	Protein RecA	A.f. v P.a. 7.6 ns
	trxB2	Thioredoxin reductase	A.f. v P.a. 5.5 ns
	polA	DNA polymerase I	A.f. v P.a. 4.9 ns
	ppx	Exopolyporphosphate	A.f. v P.a. 4.7 ns
	ruvB	Holliday junction ATP-dependent DNA helicase RuVB	A.f. v P.a. 4.5 ns
	katE	Catalase HPI	A.f. v P.a. 13.6 ns
	magD	magD	A.f. v P.a. 12.2 ns
	csrD	Cold-shock protein CspD	A.f. v P.a. 9.7 ns
	mtrB	Peptide methionine sulfoxide reductase	A.f. v P.a. 5.3 ns
	SenC	SenC	A.f. v P.a. 5 ns
	osmC	Osmotically inducible protein OsmC	A.f. v P.a. 4.3 ns
	phoB	Phosphate regulon transcriptional regulator	A.f. v P.a. 3.8 ns
	PA0838	Glutathione peroxidase	A.f. v P.a. 2.3 ns
	gor	Glutathione reductase	A.f. v P.a. 1.7 ns
	lexA	LexA repressor	A.f. v P.a. 1.6 ns
Respiration	PA5190	Probable nitroreductase	A.f. v P.a. 58.5 1.5
	narG	Respiratory nitrate reductase alpha chain	A.f. v P.a. 53.8 ns
	cccO2	Cytochrome c oxidase, cbb3-type, CcoO subunit	A.f. v P.a. 48.5 2.4
	maoB1	Molybdenum cofactor biosynthesis protein B	A.f. v P.a. 43.2 ns
	nosZ	Nitrous-oxide reductase	A.f. v P.a. 39 ns
	hemN	Oxygen-independent coproporphyrinogen-III oxidase	A.f. v P.a. 29.7 2
	nirB	Assimilatory nitrite reductase large subunit	A.f. v P.a. 25.6 3.9
	narH	Respiratory nitrate reductase beta chain	A.f. v P.a. 19.3 ns
	nirD	Assimilatory nitrite reductase small subunit	A.f. v P.a. 11.2 3.9
	moeA1	Molybdopterin molybdenum transferase	A.f. v P.a. 8.98 ns
	exaB	Cytochrome c550	A.f. v P.a. 286.3 ns
	exaA	Quinoprotein alcohol dehydrogenase (cytochrome c)	A.f. v P.a. 47.6 3.7
	PA2171	Hemerythrin-domain containing protein	A.f. v P.a. 90.5 ns
	napA	Periplasmic nitrate reductase	A.f. v P.a. 34.8 –5
	napB	Periplasmic nitrate reductase, electron transfer subunit	A.f. v P.a. 5.83 ns
	bkbD	Lipoamide acyltransferase	A.f. v P.a. 24.1 –9
	bkbA1	2-oxo-isovalerate dehydrogenase subunit alpha	A.f. v P.a. 48.9 –5.2
	pdhA	Pyruvate dehydrogenase E1 component subunit alpha	A.f. v P.a. 7 –2.4
	PA3415	Dihydrolipoamide acetyltransferase	A.f. v P.a. 16.4 –4.7
	lpdV	Dihydrolipoil dehydrogenase	A.f. v P.a. 15.4 –8.2
Outer membrane	MexE	RND multidrug efflux membrane fusion protein	A.f. v P.a. 47.27 ns
	oprC	Outer membrane efflux protein OprC	A.f. v P.a. 38.6 –15.7
	oprG	Outer membrane protein OprG	A.f. v P.a. 4.9 –3.5
	oprM	Outer membrane protein OprM	A.f. v P.a. 9.8 –16.3
	MexF	Efflux pump membrane transporter	A.f. v P.a. 10.2 ns
	oprE	Anaerobically-induced outer membrane porin OprE	A.f. v P.a. 3.2
	oprJ	Outer membrane protein OprJ	A.f. v P.a. 2.7 ns
	oprO	Porin O	A.f. v P.a. 2.45 ns
	oprB6	Outer membrane protein assembly factor BamA	A.f. v P.a. 2.3 ns
	oprH	Channel protein ToC	A.f. v P.a. 2 ns
	MexC	RND multidrug efflux membrane fusion protein	A.f. v P.a. 3.1
	oprF	Outer membrane porin F	A.f. v P.a. 1.2 ns
	oprQ	Outer membrane protein OprQ	A.f. v P.a. 23.5 –9.1
	oprD	Porin D	A.f. v P.a. 5.6 ns
	oprI	Major outer membrane lipoprotein	A.f. v P.a. 3.5
	oprH	PhoP/Q & low Mg2 inducible outer membrane protein	A.f. v P.a. 3.5
	MexB	Multidrug resistance protein MexB	A.f. v P.a. 2.28 ns
The sputum of individuals with cystic fibrosis is characterized by high nitrate content and is thus conducive to the growth of denitrifying microorganisms such as P. aeruginosa (28, 29). Czapek-Dox is a defined synthetic media used for the cultivation of microorganisms that can utilize sodium nitrate as the only source of nitrogen and provides a nutrient-limiting, nitrogen-rich environment. Because of the poor nutritional content, it is frequently used for inducing the production of fungal secondary metabolites, such as fumagillin and gliotoxin (30, 31). Although cultivation of P. aeruginosa in Czapek-Dox is possible, A. fumigatus grows faster in this media. As such, we sought to investigate how culture filtrates produced by A. fumigatus in Czapek-Dox would affect the growth and proteome of P. aeruginosa. The results presented here demonstrate a role for A. fumigatus in promoting the growth of P. aeruginosa by altering the environment.

We observed a significant increase in bacterial growth when exposed to A. fumigatus culture filtrates (CuF) produced in Czapek-Dox after 48 h. A. fumigatus CuF produced at 96 h inhibited bacterial growth. To investigate this finding further, the A. fumigatus CuFs were analyzed for gliotoxin, which has been reported to have anti-P. aeruginosa activity (20). RP-HPLC analysis determined that gliotoxin concentrations were highest in the 96-hour CuF, which may explain why P. aeruginosa growth was inhibited at this time point. To confirm that gliotoxin was the source of growth inhibition, P. aeruginosa was exposed to A. fumigatus CuF produced by a gliotoxin mutant lacking the GliZ gene (ΔgliZ). GliZ is indispensable for gliotoxin production (32) and gliotoxin was undetectable by RP-HPLC from the 96-hour CuF produced by the fungal strains in Czapek-Dox. Bacterial growth was greater in cultures exposed to the 96-hour CuF produced by ΔgliZ strains, indicating that gliotoxin was the cause of P. aeruginosa growth inhibition in the CuF produced by the wild-type strain.

Qualitative mass spectrometry-based proteomics was used to identify the contents of the 48-hour A. fumigatus CuF with a view to characterizing the secreted fungal products that may be influencing the growth of P. aeruginosa. A large proportion of the proteins detected were secreted enzymes associated with peptide metabolism, i.e. proteases and peptidases, including tripeptidyl-peptidase sed2, alkaline protease 1 and aspergillopepsin-1 (33–36). A. fumigatus assimilates exogenous amino acids via membrane transporters and thus secretes a range of proteases to digest larger peptides and proteins prior to import into the cell (37). In the cystic fibrosis lung, secreted proteins are major contributors to allergic responses and virulence in ABPA (37–39). These include Aspergillopepsin, alkaline protease and Asp f 2 and Asp f 4 proteases. Analysis of cystic fibrosis sputum has shown that it contains higher concentrations of amino acids than control sputum (40, 41). Synthetic cystic fibrosis medium (SCFM) contains an amino acid content comparable to that found in the sputum of cystic fibrosis patients (21). In this study, the growth rate of P. aeruginosa was significantly greater when cultured in sterile SCFM, a growth medium rich in amino acids, than that in Czapek-Dox, suggesting that the amino acid content of the culture media influences the rate of bacterial growth.

Qualitative proteomic analysis of the 48-hour A. fumigatus CuF identified an abundance of peptide-metabolizing enzymes, indicating the presence of amino acids in the liquid medium. This was confirmed by the ninhydrin test, which detected free amino acids in the A. fumigatus CuF and in the Co-culture CuF. Amino acids were not detected in the P. aeruginosa CuF or in any culture filtrates produced in MM. This may explain why the same rate of bacterial growth observed in A. fumigatus and Co-culture CuF was not observed in P. aeruginosa CuF or in culture filtrates produced in MM. The amino acid profile of the A. fumigatus CuF was further analyzed by RP-HPLC. A range of amino acids were identified by this method, including aspartic acid, glutamic acid, serine, threonine, methionine and the branched-chain amino acids, valine and leucine. These results indicate that A. fumigatus creates an amino acid-rich environment in which P. aeruginosa can proliferate, possibly by metabolizing the medium to produce substrates more easily assimilated by the bacteria.

Label-free quantitative (LFQ) proteomics involves the simultaneous identification and quantification of thousands of proteins (the ultimate determinants of phenotypes) from a single sample. This approach has previously been employed to characterize the P. aeruginosa proteome in response to iron limiting conditions (42). In this study, LFQ proteomics was utilized to investigate the determinant mechanisms that enable P. aeruginosa to proliferate in an environment containing A. fumigatus secondary metabolites, degradative enzymes, and limited nutrients.

The proliferation of growth observed in P. aeruginosa exposed to A. fumigatus CuF and Co-culture CuF compared with P. aeruginosa CuF was reflected by an increase in the relative abundance of proteins associated with DNA replication (DNA gyrase subunit B and Ribonucleoside-diphosphate reductase), cell division (e.g. Cell division protein FtsZ and ZapE) and cell wall biosynthesis (Mur enzymes).

There were significant changes in the abundance of proteins associated with the metabolism and transport of amino acids in bacteria exposed to A. fumigatus CuF and Co-culture CuF compared with those exposed to P. aeruginosa CuF. In addition to its requirement for growth, amino acid metabolism in P. aeruginosa is necessary for the intracellular synthesis of quorum sensing (QS) molecules which mediate cell-cell communication in a cell density-dependent manner and for the biosynthesis of secondary metabolites such as phenazine-1-carboxylic acid and pyocyanin (40, 43, 44).

The proteomic data identified several ATP-binding cassette (ABC) transporters involved with the transport of amino acids detected in the A. fumigatus CuF by RP-HPLC, including branched-chain amino acids, glutamate, aspartate, and methionine. The relative abundance of proteins associated with

Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

Mol Cell Proteomics (2020) 19(8) 1346–1359 1355
ABC transporters was significantly less in *P. aeruginosa* grown in Co-culture CuF and *Aspergillus fumigatus* CuF compared with bacteria cultured in *P. aeruginosa* CuF. Most of these ABC transporters were importers associated with the import of nutrients such as amino acids and carbohydrates into the cell. The import of substrates is tightly regulated and the expression of ABC transporters is increased or decreased depending on the nutrient availability and nutritional requirements of the organism (45, 46). A decrease in the relative abundance of amino acid ABC transporters in bacteria exposed to Co-culture CuF and *A. fumigatus* CuF compared with *P. aeruginosa* CuF indicate a greater need for uptake of nutrients from the environment in *P. aeruginosa* cells exposed to the latter. This suggests the availability of nutrients in the CuF produced by *A. fumigatus* was greater than that generated by *P. aeruginosa* in Czapek-Dox.

Interestingly, ABC transporters involved in the uptake of nitrate and molybdate were two of the four ABC transporters increased in *P. aeruginosa* exposed to Co-culture CuF. The increase in nitrate and molybdate ABC transporters in *P. aeruginosa* exposed to Co-culture CuF indicate anaerobic growth. Molybdate is required for the formation of molybdoenzymes such as nitrate reductases, which are essential for the use of nitrate during anaerobic respiration (47), so much so, that mutants for molybdate ABC transporters (ModABC) are unable to grow anaerobically and are less virulent under aerobic and anaerobic conditions (48).

P. aeruginosa is a facultative anaerobe and can perform denitrification under anaerobic conditions and in the presence of nitrate (49). The reduction of nitrate to nitrite by nitrate reductases contributes to energy production more than nitrite reduction (50, 51). Membrane nitrate reductases (NarGHI) are essential for anaerobic growth and are expressed at the expense of periplasmic nitrate reductases (NapAB) (51). Our data identified a decrease in the relative abundance of NapA and NapB in bacteria grown in *A. fumigatus* CuF and Co-culture CuF compared with *P. aeruginosa* CuF, and an increase in the relative abundance of NarG and NarH, the levels of which were highest in *P. aeruginosa* grown in Co-culture CuF. The relative abundance of the assimilatory nitrite reductases NirB and NirD, which catalyze the reduction of nitrite to ammonium (50), were greatest in bacteria exposed to Co-culture CuF. Taken together, these data suggest that co-incubation of *A. fumigatus* and *P. aeruginosa* create a nitrate-rich environment under which *P. aeruginosa* can adapt by upregulating the denitrification pathway.

The cystic fibrosis airway is characterized by low oxygen availability and high nitrate content because of oxygen consumption by pro-inflammatory immune cells (49). Cystic fibrosis sputum contains levels of nitrate sufficient to support anaerobic growth of *P. aeruginosa* and membrane nitrate reductases are essential for bacterial survival under these levels of nitrates (49, 52). High levels of nitric oxide (resulting from denitrification) can result in nitrosative stress which *P. aeruginosa* counteracts through a variety of detoxification systems (53). Among the most abundant proteins detected in *P. aeruginosa* exposed *A. fumigatus* CuF and Co-culture CuF were the RND family efflux membrane protein MexE and xenobiotic reductase (XenB). These proteins are induced by nitrosative stress thereby suggesting a defensive mechanism against high NO levels that occur during denitrification (54, 55).

The proteomic results identified an increase in the relative abundance of several other protective enzymes in *P. aeruginosa* exposed to *A. fumigatus* CuF and Co-culture CuF, including Lon protease and Alkyl hydroperoxide reductase subunit F (AhpF). Lon protease regulates biofilm formation, motility and is essential for virulence (56, 57). AhpF is associated with detoxification of benzene derivatives and increased tolerance to zinc-containing compounds (58).

Differences in the relative abundance of outer membrane proteins (OMPs) were identified in bacteria exposed to *A. fumigatus* CuF compared with that of Co-culture CuF. This suggests alterations in the regulatory responses to the environment created by *A. fumigatus* in the absence or presence of *P. aeruginosa*. OMPs regulate the influx and efflux of nutrients and potentially toxic compounds in and out of the cell. The greatest changes in the relative abundance of OMP were observed in OprC, OprG and OprM. OprC regulates the influx of copper ions into the cell (59, 60). OprG is up-regulated under anaerobic conditions and is associated with amino acid import (61, 62). OprG forms the ejection component of the MexAB-OprM efflux system and is responsible for resistance against β-lactams and quinolones, among others (63, 64). In *P. aeruginosa* cultures exposed to *A. fumigatus* CuF or Co-culture CuF, the relative abundance of OprD was decreased. Down-regulation of this protein has been associated with resistance to carbapenems (65). In general, the increase in OMP expression indicates a greater need to expel potentially potent compounds from the bacterial cell exposed to *A. fumigatus* CuF and perhaps suggests a less toxic secretome in the medium in which *A. fumigatus* had been co-cultured with *P. aeruginosa*. These data highlight some changes that occur in the proteomic profile of *P. aeruginosa* upon exposure to the CuF produced by *A. fumigatus* in the presence or absence of the bacteria. This may be important in the context of infection as the bacterial phenotype, which is dictated in part by its environment, plays a critical role in the outcome for the host (7, 66).

CONCLUSION

This study demonstrates that the presence of *A. fumigatus* has the potential to stimulate *P. aeruginosa* growth and pathogenesis by creating an environment that promotes bacterial growth, a result which, in the context of cystic fibrosis, has important clinical relevance, as co-infection with these pathogens is associated with poor patient outcome (8, 11). We employed LFQ proteomics to characterize the response of
Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

P. aeruginosa to an environment previously inhabited by A. fumigatus. We reveal that A. fumigatus altered this environment to favor the growth of, and confer fitness to P. aeruginosa under conditions known to exist in the cystic fibrosis airways, such as high nitrate and amino acid content. This is the first study that examines the whole-cell proteomic response of P. aeruginosa under these conditions. The results presented here can be used to understand the dynamics that occur between P. aeruginosa and A. fumigatus at a molecular level. Understanding the strategies that permit P. aeruginosa to dominate as the primary pathogen in the cystic fibrosis lung is critical for the identification of potential targets for therapeutic interventions.

DATA AVAILABILITY
Proteomic data can be accessed in the PRIDE partner repository with the data set identifiers: PXD015056 (LFQ proteomic data of P. aeruginosa proteome) and PXD018112 (Qualitative proteomic data of A. fumigatus culture filtrates).

Acknowledgments—We thank Dr. Rebecca Owens for assistance with the RP-HPLC and mass spectrometry and Dr. Harlei Martin for assistance with sample hydrolysis. We thank Prof. Nancy Keller, University of Wisconsin-Madison, for provision of the gliZ mutant strain of Aspergillus fumigatus (Af293).

Funding and additional information—Annette Margalit is the recipient of an Irish Research Council Doctoral scholarship. Q-Exact mass spectrometer was funded under the SFI Research Infrastructure Call 2012; Grant Number: 12/RI/2346 (3). David Sheehan was funded by a Wellcome Trust Biomedical Vacation Scholarship (Scholarship number: WELLCOME 213358/Z/18Z_SHEEHAN).

Author contributions—A.M. and D.S. performed research; A.M., J.C.C., and K.K. analyzed data; A.M., J.C.C., and K.K. wrote the paper; J.C.C. and K.K. designed research.

Conflict of interest—Authors declare no competing interests.

Abbreviations—The abbreviations used are: ABPA, Allergic bronchopulmonary aspergillosis; ANOVA, Analysis of variance; ABC, ATP-binding cassette; BP, Biological process; CC, Cellular component; CuF, culture filtrate; CFU, Colony forming units; FDR, False Discovery Rates; GO, Gene Ontology; KEGG, Kyoto Encyclopaedia of Genes and Genomes; LFQ, Label-free quantitative; ns, non-significant; MF, Molecular function; OMP, Outer membrane protein; PCA, principal component analysis; PCN, Pyocyanin; ROS, Reactive oxygen species; RP-HPLC, Reverse-phase high performance liquid chromatography; SSDA, Statistically significant differentially abundant; 1–HP, 1-hydroxyphenazine.

Received March 24, 2020, and in revised form, May 7, 2020 Published, MCP Papers in Press, May 23, 2020, DOI 10.1074/mcp.RA120.002059

REFERENCES
1. Cox, M. J., Allgaier, M., Taylor, B., Baek, M. S., Huang, Y. J., Rebecca, A., Karaoz, U., Andersen, G. L., Brown, R., Fujimura, K. E., et al. (2010) Airway microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients. PLoS ONE 5, e11044
2. Coburn, B., Wang, P. W., Caballerio, J. D., Clark, S. T., Brahma, V., Donaldson, S., Zhang, Y., Surendra, A., Gong, Y., Tullis, D. E., et al. (2015) Lung microbiota across age and disease stage in cystic fibrosis. Sci. Rep. 5, 10241
3. Filkins, L. M., and O’Toole, G. A. (2015) Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 11, e1005258
4. Parkins, M. D., Somayaji, R., and Waters, V. J. (2018) Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin. Microbiol. Rev. 31, e00119-18
5. Bhagirath, A. Y., Li, Y., Somayajula, D., Dadashi, M., Badr, S., and Duan, K. (2016) Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 15, 174
6. Ari, H. (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2, 1–13
7. Moradali, M. F., Ghods, S. and Rehm, B. H. A. (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell Infect. Microbiol. 7, 39
8. Reece, E., Segurado, R., Jackson, A., McClean, S., Renwick, J., and Greally, P. (2017) Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: An Irish registry analysis. BMC Pulm. Med. 17, 1–8
9. Amin, R., Dupuis, A., Aaron, S. D., and Ratjen, F. (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137, 171-176
10. Stevens, D. A., Moss, R. B., Kurup, V. P., Knutsen, A. P., Greenberger, P., Judson, M. A., Denning, D. W., Cramer, R., Brody, A. S., Light, M., et al. (2003) Allergic bronchopulmonary Aspergillosis in cystic fibrosis—state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. 37, S225–S264
11. Zhao, J., Cheng, W., He, X., and Liu, Y. (2018) The co-colonization prevalence of Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis: A systematic review and meta-analysis. Microb. Pathog. 125, 122–128
12. Reece, E., McClean, S., Greally, P., and Renwick, J. (2019) The prevalence of Aspergillus fumigatus in early cystic fibrosis disease is underestimated by culture-based diagnostic methods. J. Microbiol. Meth. 164, 105663
13. Smith, K., Rajendran, R., Kerr, S., Lappin, D. F., Mackay, W. G., Williams, C., and Ramage, G. (2015) Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med. Mycol. 53, 645–655
14. Sass, G., Nazik, H., Penner, J., Shah, H., Ansari, S. R., Clemons, K., Groleau, M.-C., Dietl, A.-M., Visca, P., Haas, H., et al. (2018) Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. J. Bacteriol. 200, 1–24
15. Sass, G., Ansari, S. R., Dietl, A.-M., Déziel, E., Haas, H., and Stevens, D. A. (2019) Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS ONE 14, e0216085
16. Briard, B., Bomme, P., Lechner, B. E., Mislin, G. L. A., Lair, V., Prévost, M. C., Latgé, J. P., Haas, H., and Beauvais, A. (2015) Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci. Rep. 5, 8220
17. Shirazi, F., Ferreira, J. A. G., Stevens, D. A., Clemons, K. V., and Kontoyiannis, D. P. (2016) Biofilm filtrates of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients inhibit preformed Aspergillus fumigatus biofilms via apoptosis. PLoS ONE 11, e0150155
18. Mowat, E., Rajendran, R., Williams, C., McCulloch, E., Jones, B., Lang, S., and Ramage, G. (2010) Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol. Lett. 313, 96–102
Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

19. Briard, B., Heddergott, C., and Latgé, J.-P. (2016) Volatile compounds emitted by Aspergillus fumigatus stimulate growth of the fungal pathogen Aspergillus fumigatus. MBio 7, 1–5

20. Reece, E., Doyle, S., Greally, P., Renwick, J., and McClean, S. (2018) Aspergillus fumigatus inhibits Pseudomonas aeruginosa in co-culture: Implications of a mutually antagonistic relationship on virulence and inflammation in the CF airway. Front. Microbiol. 9, 1–14

21. Parker, K. L., Aye, L. M., and Whiteley, M. (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087

22. Yemm, E. W., Cocking, E. C., and Ricketts, R. E. (1955) The determination of amino acids with ninhydrin. Analyst 80, 209–214

23. Ingle, E. S., and Lill, J. R. (2007) P138-T microwave-assisted protein hydrolysis. J. Biol. Techn. 18, 48

24. Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, H. W. P., van Breukelen, B., Heck, A., Markert, N., and Marats, L. (2012) The PRoteomics IDEntification (PRIDE) Converter 2 Frame-work: an improved suite of tools to facilitate data submission to the PRIDE Database and the ProteomeXchange Consortium. Mol. Cell. Proteom. 11, 1682–1689

25. Côté, R. G., Griss, J., Diénes, J. A., Wang, R., Wright, J. C., van den Toorn, H. W. P., van Breukelen, B., Heck, A. J. R., Hulstaert, N., Martens, L., and Peters, R. (2012) The PRoteomics IDEntification (PRIDE) Converter 2 Framework: an improved suite of tools to facilitate data submission to the PRIDE Database and the ProteomeXchange Consortium. Mol. Cell. Proteom. 11, 1682–1689

26. Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., Hyman, A., and, Mann, M. (2010) Quantitative proteomics combined with BAC Transgeneomics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754

27. Sordé, R., Pahissa, A., and Rello, J. (2011) Management of refractory Pseudomonas aeruginosa infection in cystic fibrosis. Infect. Drug Resist. 4, 31–41

28. Grassmann, H., Ioannidis, I., Tomkiewicz, R. P., de Groot, H., Rubin, B. K., and, Katji, J. F. (1998) Nitric oxide metabolites in cystic fibrosis lung disease. Arch. Dis. Child. 78, 49–53

29. Kolpen, M., Kuhl, M., Bjarnsholt, T., Moser, C., Hansen, C. R., Liengard, L., Kharazmi, A., Pressler, T., Holby, N., and Jensen, P. (2014) Nitric oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS ONE 9, e84355

30. Owens, R. A., Hammel, S., Sheridian, K. J., Jones, G. W., and, Doyle, S. (2014) A proteome approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus. PLoS ONE 9, e106942

31. Dingra, S., Lind, A. L., Lin, H. C., Tang, Y., Rokas, A., and, Calvo, A. M. (2013) The fumagillin gene cluster, an example of hundreds of genes and secondary metabolite functionality in Aspergillus fumigatus. PLoS ONE 8, e66201

32. Bok, J. W., Chung, M., Balajee, S. A., Marr, K. A., Andes, D., Nielsen, K. F., Kharazmi, A., Pressler, T., Holby, N., and Jensen, P. (2014) Nitrous oxide synthase from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J. Med. Microbiol. 45, 110–116

33. Farnell, E., Rousseau, K., Thomson, D. J., Bowen, P., and, Herrick, S. E. (2012) Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates. Fungal Biol. 116, 1003–1012

34. Knutsen, A. P., Hutcheson, P. S., Slavin, R. G., and, Kurup, V. P. (2004) IgE antibody to Aspergillus fumigatus recombinant allergens in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 59, 198–203

35. Banerjee, B., Greenberger, P. A., Fink, J. N., and, Kurup, V. P. (1998) Immunological characterization of Asp f 2, a major allergen from Aspergillus fumigatus associated with allergic bronchopulmonary aspergillosis. Infect. Immun. 66, 5175–5182

36. Sriramulu, D. D. (2010) Amino acids enhance adaptive behaviour of Aspergillus fumigatus. BMC Res. Notes 4, 1–10

37. Defoirdt, T. (2019) Amino acid – derived quorum sensing molecules controlling the virulence of vibrios (and beyond). PLoS Pathog. 15, 1–8

38. Palmer, K. L., Brown, S. A., and Whiteley, M. (2007) Membrane-bound PrrF controls the expression of mpx and mpr in Pseudomonas aeruginosa. Mol. Microbiol. 65, 1133–1144

39. Penet, S., Levet, M., Chabert, J. S., and Lovecque, R. C. (2016) Molybdate transporter ModABC is important for Pseudomonas aeruginosa infection in the cystic fibrosis lung environment. BMC Res. Notes 9, 1–9

40. Leveque, C., Péra, C., and Courbier, B. (2013) Physiological levels of nitrate support anoxic growth of Pseudomonas aeruginosa. J. Bacteriol. 195, 1–16

41. Van Alst, N. E., Sherrill, L. A., Igleswai, B. H., and, Haidaris, C. G. (2009) Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PA01 in the absence of membrane nitrate reductase. Can. J. Microbiol. 55, 1133–1144

42. Palmer, K. L., Brown, S. A., and Whiteley, M. (2007) Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J. Bacteriol. 189, 4449–4455

43. Arai, H., Hayashi, M., Kuroi, A., Ishii, M., and Igarashi, Y. (2005) Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa. Front. Microbiol. 2, 3960–3968

44. Petar, H., Gilmour, C., Klinos, R., Daigle, D. M., and, Coole, P. (2011) mnxF-opn multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexF activator in response to nitrosative stress and chloramphenicol. Antimicrob. Agents Chemother. 55, 508–514

45. Choi, P. S., Naal, Z., Moore, C., Casado-rivera, A., Ehr, E. H. D., and, Heidelberg, J. J., and, Shapleigh, J. P. (2006) Assessing the impact of denitrifier-produced nitric oxide in other bacteria. App. Environ. Microbiol. 72, 2200–2205

46. Breidenstein, E. B. M., Janot, L., Strehmel, J., Fernandez, L., Taylor, P. K., Kukavica-iburch, Gellaty, I. S. L., Levesque, R. C., Overhage, J., and, Hancock, R. E. W. (2012) The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS ONE 7, e49123
57. Marr, A. K., Overhage, J., Bains, M., and Hancock, R. E. W. (2007) The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. *Microbiology* **153**, 474–482
58. Mu, S., Cierniak, P., and Ju, M. (2013) Insights into mechanisms and proteomic characterisation of Pseudomonas aeruginosa adaptation to a novel antimicrobial substance. *PLoS ONE* **8**, e66862
59. Quintana, J., Novoa-aponte, L, Argüello, J. M. (2017) Copper Homeostasis Networks in the bacterium Pseudomonas aeruginosa. *J. Biol. Chem* **292**, 15691–15704
60. Yoneyama, H., and Nakae, T. (1996) Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. *Microbiology* **142**, 2137–2144
61. Sanganna Gari, R. R., Seelheim, P., Marsh, B., Kiessling, V., Creutz, C. E., and Tamm, L. K. (2018) Quaternary structure of the small amino acid transporter OprG from Pseudomonas aeruginosa. *J. Biol. Chem. Available at: http://www.jbc.org/content/early/2018/09/20/jbc.RA118.004461.abstract*
62. Mophee, J. B., Tamber, S., Bains, M., Maier, E., Gellatly, S., Lo, A., and Hancock, R. E. W. (2009) The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation-selective channel. *FEMS Microb. Lett.* **296**, 241–247
63. Wang, H., Meng, J., Jia, M., He, G., Yu, J., Wang, R., Bai, H., Hou, Z., and Luo, X. (2010) oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. *FEMS Immunol. Med. Microbiol.* **60**, 1–8
64. Horna, G., López, M., Guerra, H., and SYand, R. J. (2018) Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. *Sci. Rep.* **8**, 16463
65. Farra, A., Islam, S., Str, A., Mikael, S., and Wretlind, B. (2008) Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. *Int. J. Antimicrob. Ag.* **31**, 427–433
66. Schröter, L., and Dersch, P. (2019) Phenotypic diversification of microbial pathogens—cooperating and preparing for the future. *J. Mol. Biol.* **431**, 4645–4655

Aspergillus fumigatus Culture Filtrates Promote the Growth of Pseudomonas aeruginosa

Mol Cell Proteomics (2020) 19(8) 1346–1359