Article type: Clinical study

Title: Prenatal exposure to glucocorticoids and the prevalence of overweight or obesity in childhood

Authors: Kristina Laugesen,¹ Henrik Toft Sørensen,¹ Jens Otto L Jørgensen,² Irene Petersen¹,³

Affiliations:

¹Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Olof Palmes Allé 43-45, 8200, Aarhus, Denmark

²Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark

³Department of Primary Care and Population Health, University College London, London, Gower Street, WC1E 6BT, London, UK

Corresponding author: Kristina Laugesen, Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200 Aarhus, Denmark. Email: Kristina.laugesen@clin.au.dk. Telephone number: +45 871 68063

Short title: Glucocorticoid prenatal exposure

Key words: Glucocorticoids; Prenatal Exposure Delayed Effects; Pregnancy; Overweight; Obesity

Word count: 3,125
Abstract

Objective: Prenatal exposure to excess cortisol can affect postnatal metabolic health by epigenetic mechanisms. We aimed to investigate if prenatal exposure to pharmacological glucocorticoids increases the risk of overweight/obesity in childhood.

Design: A nationwide population registry-based cohort study.

Methods: We identified 383,877 children born in Denmark (2007–2012), who underwent routine anthropometric evaluation at 5 - 8 years of age. Prenatal exposure to glucocorticoids was divided into systemic and topical glucocorticoids, cumulative systemic dose, and use by trimester. The comparison cohort included children without exposure, born to maternal never-users. Negative control exposures were used to investigate confounding from underlying disease or unmeasured characteristics. Such exposures included children without glucocorticoid exposure born to maternal users of non-steroidal anti-inflammatory drugs or immunotherapy during pregnancy, maternal former users of glucocorticoids, or paternal users of glucocorticoids during the pregnancy of their partner. We estimated sex-stratified adjusted prevalence ratios (aPR) of overweight/obesity at age 5-8 years, as epigenetic modifications have shown to be sex-specific.

Results: 21,246 (11%) boys and 27,851 (15%) girls were overweight/obese at 5-8 years of age. Overall, neither systemic nor topical glucocorticoids were associated with overweight/obesity. In boys, high-dose systemic glucocorticoids was associated with higher prevalence of overweight/obesity vs. the comparison cohort [aPR 1.41 (95% CI: 1.07-1.86), prevalence 16% vs. 11%]. Negative control exposures indicated robustness to confounding.
Conclusion: Overweight/obesity might be an adverse effect of prenatal exposure to high-dose systemic glucocorticoids in boys. We found no association for neither prenatal exposure to lower doses of systemic nor topical glucocorticoids. These results merit clinical attention.
Introduction

Overweight and obesity affect around 10-20% of children in Western countries (www.who.int/dietphysicalactivity/childhood/en/. Accessed August 6 2021). Susceptibility is determined by genetic, epigenetic, and environmental risk factors. Evidence suggests that predisposition may be founded in utero via epigenetic changes and fetal programming. Consequently, it has been questioned if prenatal exposure to excess endogenous cortisol or synthetic glucocorticoids impacts obesity risk in an obesogenic postnatal environment. Cortisol is a major determinant of fetal development, and intrauterine bioactivity is tightly regulated by placental 11ß-hydroxysteroid dehydrogenase 2 (11b-HSD2). Synthetic prednisolone is also substrate for 11b-HSD2, but enzymatic saturation after high-dose or long-term treatment can lead to greater placental bypass. Further, certain synthetic glucocorticoids are not substrates. The prenatal glucocorticoid environment affects fetal epigenetics and impacts postnatal physiology. Such effects include changes in the sensitivity of the hypothalamic-pituitary-adrenal (HPA) axis, decreased insulin sensitivity, and alterations in adipocyte biology. Numerous human studies have showed that prenatal exposure to excess cortisol (stress) modulates metabolic health and increases obesity risk later in life with observed odds ratios between 1.1 and 2.0. Animal studies suggest similar effects for synthetic glucocorticoids. Pharmacological glucocorticoid use is prevalent in pregnant women with autoimmune or inflammatory diseases, but whether such use increases obesity risk in offspring remains unknown.

We conducted a nationwide population registry-based cohort study to investigate if prenatal exposure to pharmacological glucocorticoids was associated with increased
prevalence of overweight/obesity at 5-8 years of age as well as body mass index (BMI) z-scores.

Materials and Methods

Setting
Denmark has approximately 65,000 births annually. The Danish healthcare system provides tax-supported health services to all residents, guaranteeing access to healthcare free of charge.(17) A unique identity number is assigned to all Danish residents at birth or emigration. This number is used in all health care contacts and is a key identifier in all registries, which allows continuous population surveillance and accurate and unambiguous linkage of relevant registries at the individual level.(18)

Study cohort
We identified all children born alive in Denmark between 1 January 2007 and 31 December 2012 in the Danish Medical Birth Register, who underwent routine anthropometric evaluation at 5 - 8 years of age (at time of enrollment in primary school), and registered in the Danish National Children’s database (Figure 1).(19) The Danish Medical Birth Register holds information on all births in Denmark since 1973 collected by the midwife or physician overseeing the delivery. Information collected includes the personal identity numbers of the infant, mother, and father, as well as information related to the pregnancy, the delivery, and infant characteristics.(19) The Danish National Children’s database contains data on anthropometric variables (e.g. height and weight) of Danish school children from 2009 and onwards, measured by school nurses at enrolment in primary school, at check-ups, and at time of graduation from primary school. The database is complete from 2012 and onwards.

Exposure and comparison cohorts
Using the Danish National Prescription Registry and the National Patient Registry, we defined prenatal glucocorticoid exposure as maternal redeemed prescriptions for glucocorticoids or a maternal hospital record of glucocorticoid treatment during pregnancy. (20) Onset of pregnancy was defined as the first day of the last menstrual period, using the gestational age of the child at birth. We assessed both systemic and topical formulations, but they were analyzed separately (Supplementary Table 1). Since 1995, the Prescription Registry has recorded pharmacy customers’ personal identity number, the classification code of the dispensed medication [using the Anatomical Therapeutic Chemical (ATC) classification system of the World Health Organization (WHO)], date of dispensing, number of packages and tablets dispensed, and tablet strength among others. (20) The Prescription Registry is considered complete and with valid information on medications dispensed in community pharmacies, but does not hold information on medications administered to hospitalized patients. Few drugs used for in-hospital treatment are recorded in the Patient Registry by procedure codes, including antenatal treatment with betamethasone for imminent preterm birth and other immunotherapies, such as biological treatments for rheumatic or inflammatory bowel disease (Supplementary Table 1). (21) In-hospital glucocorticoid treatment, besides antenatal betamethasone, is not captured in any Danish registry.

We defined exposure categories as follows:

- **Children exposed any time during the pregnancy:** if the mother redeemed one or more prescriptions or had a hospital record of glucocorticoid treatment any time from start of pregnancy until delivery.

This overall category was further divided according to timing of systemic exposure into:
- **Children exposed during the 1st trimester only:** if the mother redeemed one or more prescriptions during the first 84 days of pregnancy, with no further prescriptions or hospital records of glucocorticoid treatment during the remainder of the pregnancy.

- **Children exposed during the 2nd trimester only:** if the mother redeemed one or more prescriptions or had a hospital record of glucocorticoid treatment between day 85 and day 196, and no further prescriptions or hospital records during the remainder of the pregnancy.

- **Children exposed during the 3rd trimester only:** if the mother redeemed one or more prescriptions or had a hospital record of glucocorticoid treatment between day 197 and the delivery date, with no prescriptions or hospital records during the first trimesters of the pregnancy.

- **Children exposed during multiple trimesters:** if the mother redeemed prescriptions or had a hospital record in more than one trimester.

We further assessed the cumulative systemic glucocorticoid dose expressed in prednisolone-equivalents (peq), calculated as the total number of tablets/injections dispensed during pregnancy multiplied by the strength of the tablets/injections and the peq conversion factor (Supplementary Table 2). This calculation led to discrete values of cumulative systemic exposure dose (Supplementary Table 3). Based on the exposure distribution, we categorised cumulative peq dose as follows: <250 mg, 250 mg- 499 mg, and ≥500 mg. High-dose glucocorticoid exposure was defined as cumulative exposure peq dose ≥500 mg.

The comparison cohort consisted of children without prenatal exposure born to maternal never-users of glucocorticoids.
Negative control exposure cohorts

We established four negative control exposure cohorts of children without prenatal exposure to glucocorticoids defined as following:

- **Children without prenatal glucocorticoid exposure but with prenatal NSAID or immunotherapy exposure**: if the mother redeemed at least one prescription for these agents or was treated in hospital settings with these agents any time during pregnancy and had no glucocorticoid use during pregnancy.

Children without prenatal glucocorticoid exposure born to maternal former users divided into:

- **Children whose mothers used glucocorticoids > 6 – 24 months before pregnancy**: the mother redeemed her most recent prescription 6-24 months before the start of pregnancy and had no prescriptions or hospital records from 6 months before the start of pregnancy until delivery.

- **Children whose mothers used glucocorticoids > 24 months before pregnancy**: the mother redeemed her most recent prescription > 24 months before the start of pregnancy and had no prescriptions or hospital records from 24 months before the start of pregnancy until delivery.

Due to uncertainty of exposure status, children whose mothers used glucocorticoids 0-6 months before pregnancy were not included in the analyses. The oocyte may have been exposed to glucocorticoids in the periconceptional critical window of development, and it is therefore ambiguous if the mothers used glucocorticoids in beginning of the pregnancy or not.
- **Children without prenatal glucocorticoid exposure but with prenatal paternal use of systemic glucocorticoids:** if the father redeemed one or more prescriptions for systemic glucocorticoids during the pregnancy of his partner, but never before the start of pregnancy (i.e., only new users). The 'new use' criteria was applied to ensure that these children served solely as a negative control exposure cohort since some evidence suggest that fetal glucocorticoid programming may be transmitted via paternal germline lineages.\(^\text{(22)}\) The paternal negative control exposure cohort aimed to identify potential genetic or family-related confounding.

The purpose of the negative control cohorts was to investigate potential confounding from factors such as underlying disease, underlying disease severity, or unmeasured characteristics in the main analysis (assessing the exposure and comparison cohorts). For example, maternal glucocorticoid users during pregnancy, maternal former users of glucocorticoids, and maternal users of NSAIDs or immunotherapy during pregnancy may share common traits, such as treatment indication. We expected no causal associations when comparing the negative control exposure cohorts vs. the comparison cohort. Hence, findings of an associations would indicate confounding in our main analysis.

Body mass index, overweight and obesity

We used the Danish National Children’s Database to obtain data on height and weight of children in our study cohort at 5-8 years of age. BMI was calculated by dividing an individual’s weight in kilograms by the square of height in meters. The Extended International (IOTF) BMI cut-offs were used to define overweight or obesity (BMI ≥ IOTF-25) (www.worldobesity.org/about/about-obesity/obesity-classification). Accessed
August 6 2021).(23) The WHO 2007 reference data and macro were used to obtain BMI z-scores (www.who.int/toolkits/growth-reference-data-for-5to19-years/application-tools. Accessed August 6 2021).

Descriptive characteristics and covariates

For descriptive purposes only (i.e. not confounding control), we assessed the following delivery and birth characteristics, as captured in the Danish Medical Birth Registry: sex of the child, birth order (1, ≥2), gestational age (<28, 28-31, 32-36, ≥37 weeks), birth weight, small for gestational age, Apgar score after 5 minutes (<7, 7-10), and caesarean section status.

We used directed acyclic graphs (DAGs) to identify confounding based on a priori knowledge (Supplementary Figure 1). Potential confounding variables included maternal age at birth, maternal BMI at start of pregnancy, smoking (yes/no), potential treatment indications [obstructive pulmonary disease including asthma or chronic obstructive pulmonary disease, inflammatory bowel disease, rheumatic disease, renal disease, and skin disease], maternal comorbidities such as maternal type I or II diabetes, polycystic ovarian syndrome, psychiatric illnesses, and infections or antibiotic use during pregnancy. Treatment indications were identified based on hospital records (in- and outpatient). As measure of disease severity, we assessed number of hospital contacts for each treatment indication within two years before birth (0, 1-4, >4). Comorbidities were detected by either relevant drug prescribing or hospital records (in- and outpatient) (Supplementary Table 4). Highest maternal educational level at the birth of the child was obtained from the Danish social and demographic registries. Highest educational level was classified as low (primary and lower secondary
education), medium (upper secondary education or professional degree), and high
(university education at the bachelor’s degree level or higher).

Statistical analyses

We described the study cohort according to exposure status, birth characteristics and
maternal characteristics. As fetal programming may be sex-dependent(4, 13, 24), we
stratified all analyses by sex.

We reported prevalence of overweight or obesity (combined) according to prenatal
exposure status. Using robust Poisson regression with generalized estimating equations
(family poisson and link as log), we estimated crude and adjusted prevalence ratios
(aPRs), comparing the exposure cohort with the comparison cohort. We further
examined the associations by trimester and cumulative systemic glucocorticoid dose.
Likewise, the negative control exposure cohorts were compared with the comparison
cohort. Due to few outcomes, we were unable to assess overweight and obesity as two
separate outcomes. We calculated BMI z-scores using the WHO 2007 reference data and
macro and verified that these were normally distibuted. We estimated crude and
adjusted differences in mean BMI z-scores, comparing the exposure cohort with the
comparison cohort, using generalized estimating equations with robust standard errors
(family gauss and link as identity). Again, we computed mean differences by trimester
and cumulative systemic glucocorticoid dose. The adjusted models were adjusted for
confounding factors as described above (Supplementary figure 1).

In a supplemental analysis, we investigated the association between maternal
characteristics and glucocorticoid exposure as well as offspring overweight/obesity.
Further, to account for unmeasurable in-hospital glucocorticoid treatment, we
conducted a sensitivity analysis and excluded mothers with potential in-hospital
treatment during pregnancy. These mothers were defined as being hospitalised with a glucocorticoid treatment indication during pregnancy (Supplementary Table 4).

Statistical analyses were conducted using Stata version 16.

Results

Study cohort

We identified 442,278 children born alive in Denmark between 2007 and 2012. Of these, 383,877 (87%) underwent routine anthropometric evaluation at 5-8 years of age (Figure 1). Children with and without anthropometric evaluation did not differ with regard to exposure frequency (Supplementary Table 5). In our study cohort, 3,883 (1.0%) were prenatally exposed to systemic glucocorticoids (median cumulative dose 200 mg peq) and 43,131 (11%) were prenatally exposed to topical glucocorticoids only (Table 1). The most frequent hospital-based treatment indications were asthma (11%), inflammatory bowel disease (6.4%), and rheumatic disease (6.0%). The negative control exposure cohorts consisted of children without glucocorticoid exposure, of whom 32,872 (8.6%) were born to maternal former users of systemic glucocorticoids, 713 (0.2%) were born to maternal users of NSAIDs or immunotherapies during pregnancy, and 6,500 (1.7%) were born to paternal users of systemic glucocorticoids (Figure 1).

Characteristics

Children prenatally exposed to systemic glucocorticoids were more likely to be small for gestational age at birth (14%) versus children in the comparison cohort (9.5%) or negative control exposure cohorts (8.4-9.4%). Likewise, prenatally exposed children
were less likely to be born at term (59% vs. 93% in the comparison cohort and 91-94% in the negative control exposure cohorts) (Table 2a).

Maternal BMI was similar in all cohorts (median 23-24) (Table 2b). Infections/use of antibiotics during pregnancy (32-41% vs. 29%) as well as psychiatric disease (28-37% vs. 24%) were more frequent among both maternal systemic glucocorticoid users and among mothers in the negative control exposure cohorts compared to maternal never-users. Further, the frequency of diabetes was higher among maternal systemic glucocorticoid users (11%) compared to all other cohorts (5.3-7.3%) (Table 2b). The associations shown in Supplementary 6 confirmed our predefined confounding (Supplementary Figure 1). Almost all selected covariates, including maternal age, educational level, BMI, smoking status and comorbidities, were associated with overweight/obesity in the child as well as prenatal glucocorticoid exposure. The strongest predictors of overweight/obesity in the child were maternal BMI, diabetes, and antipsychotic drug use.

Overweight/obesity

21,246 (11%) boys and 27,851 (15%) girls were overweight/obese at age 5-8 years. Overall, neither systemic nor topical glucocorticoids were associated with overweight/obesity in childhood (Figure 2 and Figure 3). In boys, prenatal exposure to high-dose systemic glucocorticoids was associated with higher prevalence of overweight/obesity vs. the comparison cohort at age 5-8 years [aPR 1.41 (95% CI: 1.07-1.86), prevalence 16% vs. 11%] (Figure 2). Difference in mean BMI z-scores was 0.12 (95% CI: 0.0061-0.25) for high-dose systemic exposure vs. the comparison cohort (Figure 2). We observed rather imprecise estimates for trimester exposure, but found the strongest association for 2nd trimester exposure (Figure 2). No association between
glucocorticoid exposure and overweight/obesity was observed in girls across either measures (Figure 3). All negative control exposure analyses yielded null associations (Figure 2 and Figure 3). Further, when we excluded women with potential unmeasured in-hospital glucocorticoid treatment during pregnancy, the results were almost unchanged (Supplementary Table 7).

Discussion

In boys, prenatal exposure to cumulative high-dose systemic glucocorticoids was associated with 1.4-fold increased prevalence of overweight or obesity at age 5-8 years of age compared to children without exposure. We found no association for neither prenatal exposure to lower doses of systemic nor topical glucocorticoids.

Our study was conducted in a universal free tax-supported healthcare system and nationwide coverage of registries and databases enabled us to assess BMI in a large proportion of Danish children.(17) Around 13% of eligible children did not have routine anthropometric evaluation at age 5-8 years. Children with and without anthropometric evaluation did not differ in terms of exposure frequency, hence selection bias is unlikely to explain our findings. As a proxy for maternal glucocorticoid use, we used prescription redemption. The Prescription Registry is considered complete for medications dispensed in community pharmacies, but does not hold information on in-hospital medication use.(20) In-hospital glucocorticoid treatment, besides antenatal treatment with betamethasone for imminent preterm birth, is not captured in the Danish registries. A small proportion of maternal glucocorticoid users could therefore have been misclassified as non-users. Further, non-users may have been misclassified as users if they redeemed a prescription but did not adhere to the treatment. Exposure misclassification was likely independent of the outcome and thus non-differential. Non-
differential misclassification might lead to bias towards the null for our binary comparisons (e.g. any systemic glucocorticoid use vs. the comparison cohort) and thus attenuate the prevalence ratios, but bias in an unpredictable direction for our non-binary comparisons (such as the dose-response analyses). We controlled for measured confounding, including treatment indications, comorbidity, educational level, and lifestyle (BMI, smoking). Further, our negative control exposure analyses confirmed the robustness of our findings in the context of shared confounding between the cohorts, such as maternal underlying disease, or other shared characteristics. The paternal negative control exposure cohort showed null results, indicating robustness to potential genetic or family-related confounding. Still, residual confounding from morbidity, lifestyle, or genetics cannot be entirely ruled out. We did not include information on breastfeeding of the baby or postnatal lifestyle. A former study, however, showed that diet and physical activity did not differ substantially between glucocorticoid users and non-users in women of reproductive age.(25)

Mechanisms that underlie programming by prenatal excess glucocorticoid exposure include epigenetic changes, notably affecting tissue-specific expression of the glucocorticoid receptor. This may permanently alter tissue glucocorticoid signaling and the sensitivity of the HPA axis to increased basal and stress-induced cortisol levels,(4, 5, 8-10) diminished pancreatic beta-cell mass, decreased insulin sensitivity, and change in adipocyte biology.(26) Further, some of the effects may be mediated through intrauterine growth restriction, which is a predictor of metabolic disease later in life (the Barker hypothesis) (2, 3, 27, 28) in accordance with which we observed a higher prevalence of small for gestational age in prenatally exposed children. Further, glucocorticoid treatment may induce hyperglycaemia, which is associated with
increased risk of obesity in the offspring.(29) Mediation analysis (by e.g. small for gestational age or hyperglycaemia) was out of the scope of this study and also not possible due to sparse data, but may be of interest for future studies. We observed an association in boys but not girls. Differences in vulnerability to glucocorticoid-induced fetal programming between sexes have been described earlier.(4, 13, 24) The mechanism behind such difference is not fully understood, but may due to sex-specific placental responsivity.(24) We observed rather imprecise estimates for trimester exposure, but found the strongest association for 2nd trimester exposure, which aligns with a recent study, showing that overweight in offspring was associated with higher maternal saliva cortisol levels during 2nd trimester of pregnancy.(9)

The implications of this study largely affect pregnant women with autoimmune or inflammatory diseases, for which clinicians may consider glucocorticoid-sparring strategies as an alternative. However, risks should be weighed against benefits, as inadequately treated maternal disease may also affect both mother and fetus. Neither prenatal exposure to lower doses of systemic nor topical glucocorticoids was associated with overweight/obesity in childhood. Yet, overweight and obesity are potential adverse effects of prenatal exposure to high-dose systemic glucocorticoids in boys. Future research needs to elucidate causality and potential mechanism for our findings.

\textbf{Declaration of interests:} All authors declare no conflicts of interest. The Department of Clinical Epidemiology, Aarhus University Hospital, receives funding for other studies from companies in the form of research grants to (and administered by) Aarhus University. None of these studies have any relation to the present study.
Funding: This work was supported by a grant from Novo Nordisk Fonden (grant no. 058005). The funding source had no role in the design of the study; the collection, analysis, and interpretation of the data; or the decision to submit the finished manuscript for publication.

Author contribution statement: All authors contributed to the study's conception. KL wrote the initial manuscript and the performed statistical analyses. KL had full access to all study data and takes responsibility for the integrity of the data and the accuracy of the data analysis. IP, HTS, and JOLJ contributed to the interpretation of results and revised the manuscript critically. All authors approved the final manuscript. KL is the guarantor for the study.

Ethical approval: This study was approved by the Danish Data Protection Agency (Record number: 2016-051-000001, serial number 1804). According to Danish legislation, informed consent or approval from an ethics committee is not required for registry-based studies.

Data sharing: Not permitted
REFERENCES

1. Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanika S, Robinson TN, Scott BJ, St Jeor S, Williams CL. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111(15):1999-2012.

2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61-73.

3. Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond). 2008;32 Suppl 7:S62-71.

4. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: Outcomes. Nature reviews Endocrinology. 2014;10(7):391-402.

5. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: Mechanisms. Nature reviews Endocrinology. 2014;10(7):403-11.

6. Reynolds RM. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. The Journal of steroid biochemistry and molecular biology. 2010;122(1-3):3-9.

7. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004;151 Suppl 3:U49-62.

8. Hohwü L, Li J, Olsen J, Sørensen TI, Obel C. Severe maternal stress exposure due to bereavement before, during and after pregnancy and risk of overweight and obesity in young adult men: a Danish National Cohort Study. PLoS One. 2014;9(5):e97490.

9. Hohwü L, Henriksen TB, Grønborg TK, Hedegaard M, Sørensen TI, Obel C. Maternal salivary cortisol levels during pregnancy are positively associated with overweight children. Psychoneuroendocrinology. 2015;52:143-52.

10. Braun T, Challis JR, Newnham JP, Sloboda DM. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev. 2013;34(6):885-916.
11. Facchi JC, Lima TAL, Oliveira LR, Costermani HO, Miranda GDS, de Oliveira JC. Perinatal programming of metabolic diseases: The role of glucocorticoids. Metabolism. 2020;104:154047.
12. Fasting MH, Oken E, Mantzoros CS, Rich-Edwards JW, Majzoub JA, Kleinman K, Rifas-Shiman SL, Vik T, Gillman MW. Maternal levels of corticotropin-releasing hormone during pregnancy in relation to adiponectin and leptin in early childhood. J Clin Endocrinol Metab. 2009;94(4):1409-15.
13. Ingstrup KG, Schou Andersen C, Ajslev TA, Pedersen P, Sørensen TI, Nohr EA. Maternal Distress during Pregnancy and Offspring Childhood Overweight. Journal of obesity. 2012;2012:462845.
14. Dancause KN, Laplante DP, Fraser S, Brunet A, Ciampi A, Schmitz N, King S. Prenatal exposure to a natural disaster increases risk for obesity in 5½-year-old children. Pediatric research. 2012;71(1):126-31.
15. Eberle C, Fasig T, Brüseke F, Stichling S. Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: A systematic scoping review. PLoS One. 2021;16(1):e0245386.
16. Lamichhane N, Olsen NJ, Mortensen EL, Obel C, Heitmann BL, Händel MN. Associations between maternal stress during pregnancy and offspring obesity risk later in life-a systematic literature review. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2020;21(2):e12951.
17. Schmidt M, Schmidt SAJ, Adelborg K, Sundboll J, Laugesen K, Ehrenstein V, Sorensen HT. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563-91.
18. Schmidt M, Pedersen L, Sorensen HT. The Danish Civil Registration System as a tool in epidemiology. European journal of epidemiology. 2014;29(8):541-9.
19. Bliddal M, Broe A, Pottegard A, Olsen J, Langhoff-Roos J. The Danish Medical Birth Register. Eur J Epidemiol. 2018;33(1):27-36.
20. Pottegard A, Schmidt SA, Wallach-Kildemoes H, Sorensen HT, Hallas J, Schmidt M. Data Resource Profile: The Danish National Prescription Registry. International journal of epidemiology. 2016.

21. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sorensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clinical epidemiology. 2015;7:449-90.

22. Moisiadis VG, Constantinof A, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Modifies Endocrine Function and Behaviour for 3 Generations Following Maternal and Paternal Transmission. Scientific reports. 2017;7(1):11814.

23. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj. 2000;320(7244):1240-3.

24. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(36):9055-65.

25. Laugesen K, Petersen I, Pedersen L, Breinholt Larsen F, Jorgensen JOL, Sorensen HTT. Prevalence of lifestyle characteristics in glucocorticoid users and non-users: a Danish population-based cross-sectional study. BMJ Open. 2019;9(10):e030780.

26. Blondeau B, Lesage J, Czernichow P, Dupouy JP, Breant B. Glucocorticoids impair fetal beta-cell development in rats. American journal of physiology Endocrinology and metabolism. 2001;281(3):E592-9.

27. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. The American journal of clinical nutrition. 2005;82(5):980-7.

28. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. Bmj. 1991;303(6809):1019-22.
29. Lawlor DA, Lichtenstein P, Långström N. Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation. 2011;123(3):258-65.
FIGURE LEGENDS

Figure 1. Study cohort.

Figure 2. The association between prenatal exposure to glucocorticoids and the prevalence of overweight or obesity and BMI z-scores in 195,689 boys at age 5-8 years of age.

Adjusted for maternal age at birth (restricted cubic spline with 3 knots), maternal body mass index (BMI) at start of pregnancy (restricted cubic spline with 3 knots), smoking (yes/no), treatment indications, number of hospital contacts with treatment indications within two years prior to birth, maternal type I, II, or gestational diabetes, polycystic ovarian syndrome, psychiatric illnesses, and infections or antibiotic use during pregnancy. Abbreviations: BMI, body mass index. CI, confidence interval. GC, glucocorticoids. NSAIDs, Non-steroidal anti-inflammatory drugs. PR, prevalence ratio.

Figure 3. The association between prenatal exposure to glucocorticoids and the prevalence of overweight or obesity and BMI z-scores in 188,188 girls at age 5-8 years of age.

Adjusted for maternal age at birth (restricted cubic spline with 3 knots), maternal body mass index (BMI) at start of pregnancy (restricted cubic spline with 3 knots), smoking (yes/no), treatment indications, number of hospital contacts with treatment indications within two years prior to birth, maternal type I, II, or gestational diabetes, polycystic ovarian syndrome, psychiatric illnesses, and infections or antibiotic use during pregnancy. Abbreviations: BMI, body mass index. CI, confidence interval. GC, glucocorticoids. NSAIDs, Non-steroidal anti-inflammatory drugs. PR, prevalence ratio.
Table 1. Prenatal exposure.

Exposure	All children	Boys	Girls
All	383,877 (100)	195,689 (100)	188,188 (100)
Exposed to systemic glucocorticoids	3,883 (1.0)	2,011 (1.0)	1,872 (1.0)
Timing of exposure			
1st trimester only	1,179 (0.3)	601 (0.3)	578 (0.3)
2nd trimester only	638 (0.2)	341 (0.2)	287 (0.2)
3rd trimester only	1,709 (0.5)	884 (0.5)	825 (0.4)
Multiple-trimester exposure	357 (0.09)	185 (0.09)	172 (0.09)
Generic systemic glucocorticoid type			
Prednisolone only	1,498 (0.4)	778 (0.4)	720 (0.4)
Prednisone only	273 (0.07)	132 (0.07)	141 (0.07)
Methylprednisolone only	149 (0.04)	75 (0.04)	74 (0.04)
Betamethasone only	1,842 (0.5)	986 (0.5)	874 (0.5)
Dexamethasone only	0	0	0
Hydrocortisone only	42 (0.01)	18 (0.01)	24 (0.01)
Triamcinolone only	NA	NA	NA
Multiple types	68 (0.02)	35 (0.02)	33 (0.02)
Cumulative systemic glucocorticoid dose in prednisolone-equivalents\(a\), median (IQR)	200 mg (200-500 mg)	200 mg (200-500 mg)	200 mg (200-500 mg)
High-dose systemic exposure (≥500 mg peq)	593 (0.2)	309 (0.2)	284 (0.2)
Exposed to topical glucocorticoids only	43,131 (11)	22,261 (11)	20,970 (11)
Former maternal systemic use (< 6 months since most recent prescription)\(b\)	3,393 (0.9)	1,727 (0.9)	1,666 (0.9)
Former maternal systemic use (6-24 months since most recent prescription)	6,931 (1.8)	3,500 (1.8)	3,431 (1.8)
Former maternal systemic use (≥ 24 months since most recent prescription)	25,941 (6.8)	13,178 (6.7)	12,763 (6.8)
Maternal use of NSAIDs or immunotherapy during pregnancy	713 (0.2)	367 (0.2)	346 (0.2)
Paternal systemic glucocorticoid use	6,500 (1.7)	3,318 (1.7)	3,182 (1.7)

\(a\)The cumulative systemic glucocorticoid dose in prednisolone-equivalents was calculated by multiplying the number of pills/injections, dose per pill/injection, and prednisolone conversion factor for the cumulative prescriptions during pregnancy. \(b\)Not included in the analyses due to uncertainty in exposure status.

Abbreviation: IQR, interquartile range. NA, Not applicable due to data legislation. NSAIDs, Non-steroidal anti-inflammatory drugs
Table 2 Birth and infant as well as parental characteristics of 383,877 children according to prenatal exposure. Data are presented as n (%) or as median (IQR).

Birth and infant characteristics	Prenatally exposed to systemic glucocorticoids	Children without prenatal exposure	Comparison cohort	Maternal former use (>24 months before pregnancy)	Maternal former use (6-24 months before pregnancy)	Maternal use of NSAIDs or immunotherapy during pregnancy	Negative control exposure cohorts	Paternal use of systemic glucocorticoids
All births	3,883 (100)	343,729 (100)	25,941 (100)	6,931 (100)	713 (100)	6,500 (100)		
Sex								
Male	2,011 (52)	175,273 (51)	13,178 (51)	3,500 (51)	367 (51)	3,318 (51)		
Gestational age, weeks								
< 28	251 (6.5)	446 (0.1)	39 (0.2)	19 (0.3)	0 (0)	7 (0.1)		
28 to 31	331 (8.5)	2,164 (0.6)	193 (0.7)	37 (0.5)	NA	34 (0.5)		
32 to 36	1,016 (26)	19,840 (5.7)	1,742 (6.7)	516 (7.4)	59 (8.3)	327 (5.0)		
≥ 37	2,285 (59)	321,279 (93)	23,967 (92)	6,359 (92)	652 (91)	6,132 (94)		
Birth weight in g								
Missing	24 (0.6)	6,213 (1.8)	286 (1.1)	56 (0.8)	8 (1.1)	91 (1.4)		
SGA	558 (14)	32,477 (9.5)	2,404 (9.3)	646 (9.3)	60 (8.4)	613 (9.4)		
Apgar score after 5 minutes								
<7	88 (2.3)	2,072 (0.6)	166 (0.6)	58 (0.8)	6 (0.8)	49 (0.8)		
≥7-10	3,779 (97)	335,640 (98)	25,504 (98)	6,823 (98)	699 (98)	6,362 (98)		
Missing	16 (0.4)	6,017 (1.8)	271 (1.0)	50 (0.7)	8 (1.1)	89 (1.4)		
Caesarean section	724 (32)	69,203 (20)	6,353 (24)	1,889 (27)	248 (35)	1,368 (21)		
Multiple birth	893 (23)	13,297 (3.9)	1,283 (5.0)	308 (4.4)	9 (1.3)	180 (2.8)		
Parental characteristics								
All births	3,883 (100)	343,729 (100)	25,941 (100)	6,931 (100)	713 (100)	6,500 (100)		
Maternal characteristics								
Age(years) at birth	32 (29-36)	30 (27-34)	31 (28-34)	31 (28-34)	30 (28-34)	30 (27-34)		
Parity								
1	2,156 (55)	151,745 (44)	10,764 (42)	2,937 (42)	364 (51)	2,687 (41)		
≥2	1,651 (43)	181,095 (53)	14,601 (56)	3,845 (55)	334 (47)	3,647 (56)		
Missing	76 (2.0)	10,889 (3.2)	576 (2.2)	149 (2.2)	15 (2.1)	166 (2.6)		
Highest educational level								
Low	567 (15)	56,222 (16)	3,228 (12)	1,158 (17)	91 (13)	1,119 (17)		
Medium	1,457 (38)	139,740 (41)	11,408 (44)	3,116 (46)	313 (44)	2,970 (46)		
High	1,764 (45)	139,740 (41)	11,001 (42)	2,493 (36)	301 (42)	2,288 (35)		
Missing	95 (2.5)	8,550 (2.5)	304 (1.2)	114 (1.6)	8 (1.1)	123 (1.9)		
BMI (kg/m²) at start of pregnancy	23 (21-26)	23 (21-26)	24 (21-27)	24 (21-28)	23 (21-27)	23 (21-27)		
<18.5	171 (4.4)	14,355 (4.2)	846 (3.3)	238 (3.4)	23 (3.2)	230 (3.5)		
Age Group	Count (Percent)							
-----------	----------------	----------------	----------------	----------------	----------------			
18.5-24	2,360 (61)	202,516 (59)	14,402 (56)	3,640 (53)	407 (57)			
25-29	726 (19)	66,828 (19)	5,598 (22)	1,577 (23)	146 (20)			
≥ 30	429 (11)	38,615 (11)	3,849 (15)	1,145 (17)	111 (16)			
Missing	187 (4.8)	21,415 (6.2)	1,246 (4.8)	331 (4.8)	26 (3.7)			

Smoking during pregnancy

Smoking	Count (Percent)				
Yes	430 (11)	44,235 (13)	3,193 (12)	984 (14)	109 (15)
Missing	180 (4.6)	12,479 (3.6)	807 (3.1)	213 (3.1)	14 (2.0)

Hospital diagnosed treatment indications

Condition	Count (Percent)				
Obstructive pulmonary disease	443 (11)	11,323 (3.3)	3,401 (13)	939 (14)	41 (5.8)
Inflammatory bowel disease	247 (6.4)	2,563 (0.8)	1,233 (4.8)	354 (5.1)	293 (41)
Rheumatic disease	231 (6.0)	2,038 (0.6)	522 (2.0)	180 (2.6)	119 (17)
Renal disease	76 (2.0)	1,394 (0.4)	229 (0.9)	55 (0.8)	12 (1.7)
Skin disease	93 (2.4)	5,563 (1.6)	555 (2.2)	174 (2.5)	26 (3.7)

Comorbidities

Condition	Count (Percent)				
Diabetes (type 1, 2, gestational)	445 (11)	18,158 (5.3)	1,845 (7.1)	507 (7.3)	38 (5.3)
Gestational diabetes during pregnancy	239 (6.2)	9,560 (2.8)	915 (3.5)	273 (3.9)	27 (3.8)
Infections during pregnancy	1,526 (39)	99,636 (29)	8,397 (32)	2,636 (38)	295 (41)
Polycystic ovarian syndrome	76 (2.0)	4,201 (1.2)	455 (1.8)	121 (1.8)	8 (1.1)
Psychiatric illness	1,308 (34)	83,485 (24)	8,908 (34)	2,579 (37)	234 (33)
Mood or anxiety disorders	752 (19)	49,104 (1.4)	5,207 (20)	1,608 (23)	128 (18)
Substance use disorders	139 (3.6)	10,786 (3.1)	870 (3.4)	294 (4.2)	30 (4.2)
Use of antipsychotics during pregnancy	18 (0.46)	731 (0.21)	56 (0.22)	35 (0.50)	6 (0.84)

IQR, interquartile range. NSAIDs, Non-steroidal anti-inflammatory drugs. SGA, small for gestational age defined as birth weight < the 10th percentile for infants of the same gestational age, sex, and birth year. Children whose mothers used glucocorticoids 0-6 months before pregnancy were not included due to uncertainty in exposure status. Children prenatally exposed to systemic glucocorticoids were more likely to be SGA at birth and have an Apgar score < 7 versus children in the comparison cohort or negative control exposure cohorts. Moreover, prenatally exposed children were less likely to be born at term. Highest educational level at birth: low (primary and lower secondary education), medium (upper secondary education or professional degree) and high (university education at bachelor’s degree level or higher. Children whose mothers used glucocorticoids 0-6 months before pregnancy were not included due to uncertainty in exposure status. Infections/use of antibiotics during pregnancy as well as psychiatric disease were more frequent among both maternal systemic glucocorticoid users and among mothers in the negative control exposure cohorts compared to maternal never-users. Further, the frequency of diabetes was higher among maternal systemic glucocorticoid users compared to all other cohorts.
All children born in Denmark between 1 January 2007 and 31 December 2012
N = 444,163

All children born alive and with a valid civil registration number
N = 442,278

Prenatally exposed to systemic glucocorticoids
N = 3,883 (1.0%)

Born to maternal users of NSAIDs or immunotherapy
N = 713 (0.2%)

Born to maternal former users of systemic glucocorticoids
N = 32,872 (8.6%)

Born to paternal users of systemic glucocorticoids
N = 6,500 (1.7%)

Excluded due to stillbirth or invalid civil registration number
N = 1,885 (0.4%)

Born to maternal never-users of glucocorticoids
N = 343,729 (90%)

Lack of anthropometric evaluation at 5-8 years of age
N = 58,401 (13%)

Exposed

Children who underwent routine anthropometric evaluation at 5-8 years of age
N = 383,877

Negative control exposure cohorts of children without glucocorticoid exposure

Comparison cohort of children without glucocorticoid exposure

Exposed

Copyright © 2022 European Society of Endocrinology
Exposure	Prevalence (%) of overweight/obesity	Crude PR (95% CI)	Adjusted PR (95%)	Mean difference in BMI z-score (95% CI)
Comparison cohort	11	Ref	Ref	
Prenatal exposure to systemic GC	11	0.98 (0.84-1.09)	0.94 (0.80-1.05)	
Cumulative dose				
<250 mg	9.0	0.85 (0.72-1.01)	0.87 (0.68-1.02)	-0.12 (-0.18-0.011)
250-499 mg	10	0.92 (0.66-1.28)	0.89 (0.64-1.23)	-0.018 (-0.14-0.11)
>= 500 mg	16	1.46 (1.13-1.89)	1.41 (1.07-1.86)	0.12 (0.0061-0.25)
Timing				
1. trimester only	10	0.95 (0.75-1.20)	0.88 (0.69-1.14)	-0.045 (-0.13-0.044)
2. trimester only	16	1.49 (1.08-2.04)	1.31 (1.01-1.81)	0.14 (0.001-0.31)
3. trimester only	9.0	0.80 (0.64-1.03)	0.80 (0.62-1.01)	-0.20 (-0.28-0.021)
Multiple trimester exposure	17	1.55 (1.12-2.14)	1.55 (1.12-2.15)	0.10 (-0.072-0.28)
Exposure to topical GCs only	11	1.02 (0.98-1.07)	0.99 (0.95-1.03)	0.0037 (-0.011-0.019)
Negative control exposure analyses				
Maternal use of NSAIDs or immunotherapy	13	1.23 (0.95-1.60)	1.10 (0.86-1.51)	0.055 (-0.056-0.17)
Maternal former use				
> 6-24 months before pregnancy	12	1.11 (0.98-1.22)	1.00 (0.91-1.10)	-0.024 (-0.061-0.012)
>24 months before pregnancy	11	1.00 (0.95-1.06)	0.96 (0.91-1.02)	0.016 (-0.0040-0.035)
Paternal use of systemic GC	12	1.08 (0.98-1.19)	1.05 (0.95-1.16)	0.0034 (-0.035-0.42)
Exposure

Comparison cohort	15	Ref	Ref	Ref
Prenatal exposure to systemic GC	14	0.92 (0.82-1.03)	0.94 (0.84-1.06)	-0.087 (-0.13-0.039)

Cumulative dose

<250 mg	13	0.91 (0.79-1.05)	0.93 (0.80-1.07)	-0.12 (-0.18-0.0016)
250-499 mg	15	1.01 (0.77-1.32)	1.08 (0.83-1.41)	-0.029 (-0.13-0.081)
>= 500 mg	13	0.87 (0.65-1.18)	0.88 (0.65-1.21)	0.016 (-0.10-0.14)

Timing

1. trimester only	17	1.15 (0.96-1.39)	1.17 (0.98-1.40)	0.054 (-0.028-0.14)
2. trimester only	13	0.91 (0.69-1.22)	0.85 (0.63-1.16)	-0.22 (-0.35-0.0081)
3. trimester only	11	0.76 (0.62-1.03)	0.83 (0.68-1.01)	-0.15 (-0.23-0.0019)
Multiple trimester exposure	13	0.87 (0.57-1.30)	0.85 (0.55-1.26)	-0.025 (-0.17-0.12)
Exposure to topical GCs only	16	1.07 (0.99-1.11)	1.05 (0.99-1.08)	0.028 (-0.0014-0.042)

Negative control exposure analyses

Maternal use of NSAIDs or immunotherapy	16	1.09 (0.86-1.40)	1.03 (0.81-1.32)	0.0070 (-0.096-0.11)
Maternal former use				
> 6-24 months before pregnancy	17	1.14 (1.06-1.24)	1.05 (0.99-1.14)	0.011 (-0.024-0.045)
>24 months before pregnancy	15	1.00 (0.96-1.05)	0.96 (0.92-1.01)	-0.018 (-0.037-0.000)
Paternal use of systemic GC	15	1.04 (0.96-1.13)	1.03 (0.95-1.12)	0.0050 (-0.031-0.041)
Supplementary Table 1. Anatomical Therapeutic Chemical (ATC) Classification codes and procedure codes for relevant drug use.

Medication type	ATC codes	Procedure codes
Systemic glucocorticoids (oral or injectable)		
Betamethasone	H02AB01	BBHF3
Dexamethasone	H02AB02	
Methylprednisolone	H02AB04	
Prednisolone	H02AB06	
Prednisone	H02AB07	
Triamcinolone	H02AB08	
Hydrocortisone	H02AB09	
Inhaled glucocorticoids		
Beclomethasone	R03BA01	
Budesonide	R03BA02	
Flunisolide	R03BA03	
Fluticasone	R03BA05	
Mometasone	R03BA07	
Ciclosonide	R03BA08	
Glucocorticoids acting on the intestines		
Hydrocortisone	A07EA01	
Budesonide	A07EA02	A07EA06
Various topical glucocorticoids for haemorrhoids	C05AA	
Topical glucocorticoids for skin conditions	D07	
Negative control exposure cohort	M01A	
NSAIDS	L04	BOHJ
Immunotherapy	P01BA02	
	A07EC01	
Supplementary Table 2. Equivalency of systemic glucocorticoids and corresponding prednisolone conversion factors.

Equivalent glucocorticoid dose	Prednisolone conversion factor	
Hydrocortisone	20	0.25
Methylprednisolone	4	1.25
Prednisolone	5	1
Prednisone	5	1
Dexamethasone	0.75	6.67
Betamethasone	0.6	8.33
Triamcinolone	4	1.25

Cumulative dose calculation:

The cumulative prednisolone-equivalent dose was calculated by multiplying the number of pills/injections, dose per pill/injection, and prednisolone conversion factor for the drug of interest.
Supplementary Table 3. Distribution of cumulative systemic glucocorticoid dose expressed in prednisolone-equivalents (peq).

Cumulative systemic glucocorticoid dose (peq)	Number of prenatally exposed children (%)
All doses	3,3883 (100)
50	64 (1.7)
58	65 (1.7)
100	66 (1.7)
116	104 (2.7)
125	287 (7.4)
200	1,640 (42)
250	413 (11)
375	29 (0.8)
500	564 (15)
750	32 (0.8)
1000	123 (3.2)
1500	68 (1.8)
2000	57 (1.5)
2500	77 (2.0)
3000	62 (1.6)
4000	15 (0.4)

To comply with Danish legislation, we only report numbers >10.
Supplementary Table 4. Definition of covariates.

Potential glucocorticoid treatment indications	ICD-8 codes	ICD-10 codes	ATC codes
Obstructive pulmonary disease any time before birth	491, 492, 493	J40- J46	
Inflammatory bowel disease up any time before birth	56301, 56302, 56309, 56319	K50, K51	
Rheumatic disease any time before birth	44630, 44631, 44639, 71219, 71229, 71239, 71259, 69609, 71249, 73400, 73402-4, 73408, 73409, 69549, 73419, 44629, 28709, 44609	M315, M316, M353, M05, M06, M070, M073, L941, M351, M340-M349, M32, G737, N085, N164, M33, M350, M300, M313, D690, M310, I776, L95	
Renal disease any time before birth	24902, 250302, 403, 404, 580-584, 59320, 75311, 75311-19,	N00-08, N11, N14-N16, N18, N19, N26, N27, I12, I13, I150, I151, E102, E112, E142, Q611-Q614	
Skin disease any time before birth	694, 69300, 69308, 69309, 68400	L100, L02, L04, L120, L130, L00, L512, L11, L13, L14	

Comorbidities

Polycystic ovarian syndrome any time before birth	61520, 61521	E282	
Infections or use of antibiotics during pregnancy	O23, A00-A99, B00-B99	J01-J05	
Diabetes (type 1, 2 or gestational) any time before birth	249, 250	E10-E14, G632, O24, H360, N083	A10A, A10B
Psychiatric disease any time before birth	290-308	F00-F99	N05, N06A, N06B
Mood or anxiety disorders any time before birth	296, 29809, 300	F30-F48	N06A
Substance use disorders any time before birth	291, 303,304	F10-F19	
Use of antipsychotics during pregnancy		N05A	

Abbreviations: ATC: anatomic, therapeutic, chemical. ICD, international classification of diseases.
Supplementary Table 5. Comparison of exposure and baseline characteristics of children with and without anthropometric evaluation at 5-8 years of age.

	Children with anthropometric evaluation at 5-8 years of age	Children without anthropometric evaluation at 5-8 years of age
All births	383,877 (100)	58,401 (100)
Exposure to systemic glucocorticoids	3,883 (1.0)	808 (1.3)
Cumulative systemic glucocorticoid dose in mg prednisolone- equivalents, median (IQR)	200 (200-500)	200 (200-375)
Exposure to topical glucocorticoids only	43,131 (11)	5,833 (10)
Male	195,689 (51)	31,183 (53)
Parity, ≥2	203,201 (55)	30,463 (55)
Gestational age, weeks		
< 28	759 (0.20)	309 (0.53)
28 to 31	2,748 (0.72)	514 (0.88)
32 to 36	23,370 (6.1)	3,746 (6.4)
≥ 37	357,000 (93)	53,832 (92)
Birth weight in g, median (IQR)	3,500 (3,150-3,850)	3,460 (3,100-3,810)
SGA	36,418 (9.5)	6,095 (10)
Apgar score after 5 minutes, <7	2,409 (0.63)	1,224 (2.1)
Caesarean section	79,822 (21)	12,158 (21)
Multiple birth	15,980 (4.2)	2,903 (5.0)
Previous spontaneous abortions		
0	319,003 (83)	48,802 (84)
≥1	64,974 (17)	9,599 (16)
Maternal characteristics		
Age at birth (years), median and IQR	30 (27-34)	30 (27-34)
Highest educational level		
Low	61,786 (16)	10,703 (18)
Medium	157,291 (41)	21,561 (37)
High	155,670 (41)	19,886 (34)
Pre-pregnancy body mass index (kg/m²), median IQR	23 (21-26)	23 (21-27)
<18.5	15,738 (4.1)	2,604 (4.5)
18.5-24	224,757 (59)	32,990 (56)
25-29	75,471 (20)	11,240 (19)
≥30	44,578 (12)	6,963 (12)
Smoking during pregnancy, yes	49,296 (13)	7,773 (13)
Obstructive pulmonary disease	16,590 (4.3)	2,458 (4.2)
Inflammatory bowel disease	4,524 (1.2)	660 (1.1)
Rheumatic disease	3,035 (0.79)	418 (0.72)
Renal disease	1,782 (0.46)	305 (0.52)
Skin disease	6,469 (1.7)	986 (1.7)
Diabetes (type I, II, or gestational)	21,199 (5.5)	3,687 (6.3)
Gestational diabetes during pregnancy	11,093 (2.9)	1,879 (3.2)
Infections during pregnancy	113,551 (30)	16,987 (29)
Polycystic ovarian syndrome	4,902 (1.3)	820 (1.4)
Psychiatric illness	97,444 (25)	15,237 (26)
Disorder	N (Mean)	N (Median)
--------------------------------	----------	------------
Mood or anxiety disorders	57,374 (15)	9,675 (17)
Substance use disorders	12,205 (3.2)	2,103 (3.6)
Use of antipsychotics during pregnancy	835 (0.22)	193 (0.33)

Abbreviations: IQR, interquartile range. SGA, small for gestational age.
Supplementary Table 6. The association between the baseline characteristics with overweight/obesity in offspring and maternal use of systemic glucocorticoids during pregnancy.

Maternal characteristics	Prevalence ratio (95% CI) for overweight/obesity at age 5-8 years of age	Prevalence ratio (95% CI) for maternal use of glucocorticoids during pregnancy
Maternal age at birth, years		
<25	1 (ref)	1 (ref)
25-29	0.75 (0.73-0.77)	1.30 (1.16-1.47)
30-34	0.72 (0.70-0.73)	1.79 (1.60-2.00)
≥35	0.82 (0.79-0.84)	2.80 (2.49-3.15)
Highest educational level		
Low	1 (ref)	1 (ref)
Medium	0.70 (0.69-0.72)	1.00 (0.92-1.11)
High	0.46 (0.45-0.48)	1.23 (1.012-1.36)
Pre-pregnancy body mass index (kg/m²),		
<25	1 (ref)	1 (ref)
25-29	2.09 (2.05-2.13)	0.91 (0.84-0.99)
≥30	3.40 (3.33-3.47)	0.94 (0.85-1.04)
Smoking during pregnancy, yes	1.77 (1.74-1.81)	0.86 (0.77-1.00)
Obstructive pulmonary disease	1.10 (1.06-1.15)	2.85 (2.59-3.14)
Inflammatory bowel disease	1.01 (0.94-1.10)	5.70 (5.02-6.46)
Rheumatic disease	0.99 (0.90-1.09)	7.94 (6.98-9.02)
Renal disease	0.99 (0.88-1.12)	4.28 (3.43-5.35)
Skin disease	1.37 (1.30-1.44)	1.43 (1.17-1.76)
Diabetes (type I, II, or gestational)	1.63 (1.59-1.68)	2.21 (2.00-2.44)
Gestational diabetes during pregnancy	1.82 (1.76-1.89)	2.20 (1.94-2.51)
Infections during pregnancy	1.20 (1.18-1.22)	1.54 (1.45-1.64)
Polycystic ovarian syndrome	1.44 (1.35-1.52)	1.54 (1.23-1.93)
Psychiatric illness	1.16 (1.14-1.19)	1.49 (1.40-1.60)
Mood or anxiety disorders	1.20 (1.18-1.24)	1.37 (1.26-1.48)
Substance use disorders	1.23 (1.18-1.28)	1.13 (0.96-1.34)
Use of antipsychotics during pregnancy	1.66 (1.46-1.90)	2.13 (1.35-3.38)

Abbreviations: CI, confidence interval. Highest educational level at birth: low (primary and lower secondary education), medium (upper secondary education or professional degree) and high (university education at bachelor’s degree level or higher
Supplementary Table 7. Sensitivity analysis excluding mothers with potential unmeasured in-hospital glucocorticoid treatment (defined as being hospitalised with a glucocorticoid treatment indication during pregnancy).

	Boys (n = 194,233)	Girls (n = 186,766)				
	Prevalence (%)	Crude PR (95% CI)	aPR (95% CI)	Prevalence (%)	Crude PR (95% CI)	aPR (95% CI)
Comparison cohort	11 Ref	0.90 (0.77-1.03)	0.90 (0.74-1.00)	15 Ref	0.92 (0.82-1.03)	0.94 (0.84-1.06)
Exposure to systemic						
glucocorticoid						
1. trimester only	10	0.93 (0.73-1.19)	0.88 (0.68-1.14)	17	1.15 (0.96-1.38)	1.17 (0.98-1.40)
2. trimester only	12	1.31 (0.77-1.72)	1.40 (0.78-1.82)	17	0.92 (0.69-1.22)	0.86 (0.63-1.16)
3. trimester only	9.0	0.80 (0.62-1.01)	0.81 (0.63-1.14)	12	0.76 (0.62-1.02)	0.83 (0.68-1.03)
Multiple trimesters	17	1.62 (1.11-2.34)	1.72 (1.13-2.42)	16	0.91 (0.62-1.32)	0.90 (0.55-1.26)
Cumulative dose						
<250 mg	9.1	0.85 (0.72-1.01)	0.83 (0.68-0.99)	13	0.91 (0.79-1.32)	0.93 (0.80-1.07)
250-499 mg	9.0	0.85 (0.72-1.01)	0.82 (0.68-1.16)	15	1.00 (0.77-1.31)	1.07 (0.82-1.39)
≥ 500 mg	14	1.28 (0.92-1.79)	1.37 (0.90-1.97)	15	1.05 (0.73-1.53)	0.90 (0.82-1.21)
Exposure to topical						
glucocorticoids only	11	1.02 (0.97-1.06)	0.99 (0.95-1.03)	16	1.08 (0.99-1.12)	1.05 (0.98-1.10)

Adjusted for maternal age at birth (restricted cubic spline with 3 knots), maternal body mass index (BMI) at start of pregnancy (restricted cubic spline with 3 knots), smoking (yes/no), treatment indications, number of hospital contacts with treatment indications within two years prior to birth, maternal type I, II, or gestational diabetes, polycystic ovarian syndrome, psychiatric illnesses, and infections or antibiotic use during pregnancy. Abbreviations: BMI, body mass index. CI, confidence interval. PR, prevalence ratio.