A weak maximum principle-based approach for input-to-state stability analysis of nonlinear parabolic PDEs with boundary disturbances

Jun Zheng · Guchuan Zhu

Received: 15 June 2019 / Accepted: 28 April 2020 / Published online: 27 May 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In this paper, we introduce a weak maximum principle-based approach to input-to-state stability (ISS) analysis for certain nonlinear partial differential equations (PDEs) with certain boundary disturbances. Based on the weak maximum principle, a classical result on the maximum estimate of solutions to linear parabolic PDEs has been extended, which enables the ISS analysis for certain nonlinear parabolic PDEs with certain boundary disturbances. To illustrate the application of this method, we establish ISS estimates for a linear reaction–diffusion PDE and a generalized Ginzburg–Landau equation with mixed boundary disturbances. Compared to some existing methods, the scheme proposed in this paper involves less intensive computations and can be applied to the ISS analysis for a wide class of nonlinear PDEs with boundary disturbances.

Keywords Input-to-state stability · Boundary disturbance · Weak maximum principle · Maximum estimate · Nonlinear PDEs

1 Introduction

Originally introduced by Sontag in the late 1980’s for finite-dimensional systems, input-to-state stability (ISS) is one of the central notions in the modern theory of nonlinear robust control. It aims at ensuring that disturbances can only induce, in the worst case, a proportional perturbation on the amplitude of the system trajectory. It has been shown that the ISS is an important tool for describing the robust stability...
property of infinite dimensional systems governed by partial differential equations (PDEs), and considerable efforts on the study of this subject have been reported in the recent years, see, e.g., [2–6,18,27–32,34,37,40].

It is worth noting that the extension of the notion of ISS to PDEs with respect to (w.r.t.) distributed in-domain disturbances seems to be straightforward, while the investigation on the ISS properties w.r.t. boundary disturbances is much more challenging. The main difficulty lies in the fact that when the disturbances act on the boundaries, the considered systems will usually be governed PDEs with unbounded control operators, which represents an obstacle in the establishment of ISS.

To tackle this issue, different solutions have been developed recently for ISS analysis of PDEs with boundary disturbances, including:

(i) the semigroup and admissibility methods for the ISS of linear parabolic PDEs [9–13], or certain semilinear parabolic PDEs [35] inspired by [42];
(ii) the approach of spectral decomposition and finite-difference scheme for the ISS of parabolic PDEs governed by Sturm–Liouville operators [14–17,19];
(iii) the Riesz-spectral approach for ISS of Riesz-spectral systems [22,23];
(iv) the monotonicity-based method for the ISS of nonlinear parabolic PDEs with Dirichlet boundary disturbances [33];
(v) the method of De Giorgi iteration for the ISS w.r.t boundary disturbances of nonlinear parabolic PDEs with Dirichlet boundary disturbances [41,43];
(vi) variations of Sobolev embedding inequalities for the ISS of linear or nonlinear PDEs with certain Robin boundary disturbances [40,42–44];
(vii) the application of the maximum principle for the ISS of certain specific parabolic PDEs with linear boundary conditions [45].

The methods in (i) can be used to conduct ISS analysis for certain linear or nonlinear parabolic PDEs (or other types of infinite dimensional systems), e.g., parabolic diagonal systems. The techniques in the category (ii)–(iii) are effective for linear PDEs over 1-dimensional spatial domains, whereas these approaches may involve heavy computations for PDEs on multidimensional spatial domains or nonlinear PDEs. It should be mentioned that the methods in the categories (iv)–(vi) can be applied to the establishment of ISS properties for certain nonlinear PDEs with boundary disturbances, or over multidimensional spatial domains. However, none of them can be used to deal with PDEs with boundary conditions as the one given in (30b) or (31b) of this paper. It is noticed that there is a significant progress on the application of the Lyapunov method to the study of the ISS for infinite-dimensional systems in the recent literature. For example, combined with the monotonicity method, the Lyapunov method was used in [33] for certain parabolic PDEs with Dirichlet boundary conditions. The applicability of the Lyapunov method combined with the semigroup and admissibility method was analyzed in [35] for semilinear parabolic PDEs. Moreover, the Lyapunov method used in [42–44] is applicable for certain parabolic PDEs with Robin or Neumann boundary conditions. It is worth noting that the method of non-coercive ISS Lyapunov functions has been proposed to deal with different types of boundary disturbances, in particular, for Dirichlet disturbances for linear parabolic PDEs in [10,32]. The ISS of some first-order hyperbolic systems with disturbances has been analyzed by the Lyapunov arguments in [37]. Nevertheless, it is still challenging to establish ISS properties by the
Lyapunov method for nonlinear systems with different types of boundary disturbances at the same time.

This paper presents a weak maximum principle-based approach, which was originally proposed in [45], for the ISS analysis of a class of nonlinear parabolic PDEs with different types of boundary disturbances. We will show that, combined with the weak maximum principle-based approach, the Lyapunov method can still be used to establish ISS estimates for certain nonlinear parabolic PDEs with different types of boundary disturbances at the same time. It should be noted that the weak maximum principle was originally used to establish maximum estimates for solutions to elliptic PDEs and has been extensively applied to regularity theory of evolutional PDEs (see, e.g., [38]). However, the classical method of the weak maximum principle cannot be directly applied to the ISS analysis for PDE systems. For this reason, we have developed in this work a new estimate for solutions to linear parabolic PDEs (see (11) and Remark 4). The application of this method is further illustrated in Sect. 4 through the establishment of ISS for linear parabolic PDEs and generalized Ginzburg–Landau equations, with mixed boundary disturbances, respectively. It is noticed that the weak maximum principle was also used in [33] to obtain a comparison principle and to establish ISS estimates for monotone parabolic PDEs with Dirichlet boundary disturbances. Different from [33], the weak maximum principle used in this paper and [45] is for establishing the maximum estimates of the solutions to parabolic PDEs as a crucial step in ISS analysis for nonlinear parabolic PDEs with different types of boundary disturbances. An advantage of the weak maximum principle-based ISS analysis is that it involves much less computations compared to the aforementioned methods. Moreover, it allows dealing with PDEs with more generic types of boundary disturbances.

Notation In this paper, \(\mathbb{R}_+ \) denotes the set of positive real numbers, \(\mathbb{R}_{\geq 0} := \{0\} \cup \mathbb{R}_+ \), and \(\mathbb{R}_{\leq 0} := \mathbb{R} \setminus \mathbb{R}_+ \).

Let \(\mathcal{K} = \{ \gamma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} | \gamma(0) = 0, \gamma \) is continuous, strictly increasing\}; \(\mathcal{K}_\infty = \{ \theta \in \mathcal{K} | \lim_{s \to \infty} \theta(s) = \infty \} \); \(\mathcal{L} = \{ \gamma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} | \gamma \) is continuous, strictly decreasing, \(\lim_{s \to \infty} \gamma(s) = 0 \} \); \(\mathcal{KL} = \{ \mu : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} | \mu \in \mathcal{K}, \forall t \in \mathbb{R}_{\geq 0}, \) and \(\mu(s, \cdot) \in \mathcal{L}, \forall s \in \mathbb{R}_+ \} \).

For any \(T > 0 \), let \(Q_T = (0, 1) \times (0, T) \) and \(\partial_p Q_T \) be the parabolic boundary of \(Q_T \), i.e., \(\partial_p Q_T = ([0, 1] \times (0, T)) \cup ([0, 1] \times \{0\}) \).

2 Problem setting and main result

We consider a class of nonlinear parabolic PDEs with Robin boundary disturbances of the form:

\[
\begin{align*}
 u_t - au_{xx} + bu_x + cu + h(u) &= f(x, t), \quad (x, t) \in (0, 1) \times \mathbb{R}_+, \quad (1a) \\
 \alpha_0 u(0, t) - \beta_0 u_x(0, t) &= d_0(t), \quad t \in \mathbb{R}_+, \quad (1b) \\
 \alpha_1 u(1, t) + \beta_1 u_x(1, t) &= d_1(t), \quad t \in \mathbb{R}_+, \quad (1c) \\
 u(x, 0) &= \phi(x), \quad x \in (0, 1), \quad (1d)
\end{align*}
\]
where \(a \in \mathbb{R}_+ \), \(b, c \in \mathbb{R} \), \(h \) is a nonlinear term in the equation, \(f \) and \(d_0, d_1 \) are disturbances distributed over the domain \((0, 1)\) and on the boundaries \(x = 0, 1 \), \(\phi \) is the initial value, and \(\alpha_i, \beta_i (i = 0, 1) \) are nonnegative constants.

For the sake of technical development of the scheme proposed in this paper, we always suppose that
\[
f \in C^2([0, 1] \times \mathbb{R}_{\geq 0}), \quad d_0, d_1 \in C^2(\mathbb{R}_{\geq 0}), \quad \phi \in C^2([0, 1]),
\]
\[
a \in \mathbb{R}_+, \quad b, c \in \mathbb{R} \text{ with } \frac{b^2}{4a} + c > 0,
\]
\[
\alpha_i, \beta_i \in \mathbb{R}_{\geq 0} \text{ with } \alpha_i + \beta_i > 0, \quad i = 0, 1.
\]

Furthermore, we assume that
\[
\begin{aligned}
-4 \left(\frac{\alpha_0}{\beta_0} - \frac{b}{2a} \right) &< \frac{b^2}{4a} + c \quad \text{if } \begin{array}{l}
\beta_0 > 0, \\
\alpha_0 - \frac{b}{2a} \beta_0 \leq 0,
\end{array} \\
- \left(\frac{\alpha_0}{\beta_0} - \frac{b}{2a} \right) & \leq a
\end{aligned} \quad (2a)
\]
\[
\begin{aligned}
-4 \left(\frac{\alpha_1}{\beta_1} + \frac{b}{2a} \right) &< \frac{b^2}{4a} + c \quad \text{if } \begin{array}{l}
\beta_1 > 0, \\
\alpha_1 + \frac{b}{2a} \beta_1 \leq 0.
\end{array} \\
- \left(\frac{\alpha_1}{\beta_1} + \frac{b}{2a} \right) & \leq a
\end{aligned} \quad (2b)
\]

For the nonlinearity, we assume that \(h \in C^2(\mathbb{R}) \) satisfying
\[
\begin{aligned}
h(0) &= 0, \quad (3a) \\
h(|s|) + h(s) &\geq 0, \quad \forall s \in \mathbb{R}, \quad (3b) \\
\frac{b^2}{4a} + c + 2h'(s) &\geq 0, \quad \forall s \in \mathbb{R}_{\leq 0}, \quad (3c) \\
h'(s) &\geq 0, \quad \forall s \in \mathbb{R}_+.
\end{aligned}
\]

Besides, we always assume that the following compatibility conditions are satisfied:
\[
d_i'(t) + cd_i(t) + \alpha_i h \left(\frac{d_i(t)}{\alpha_i} \right) = \alpha_i f(i, t), \quad \forall t \in \mathbb{R}_+, \text{ for } \beta_i = 0, i = 0 \text{ or } 1, \quad (4)
\]
and
\[
\alpha_i \phi(i) - (-1)^i \beta_i \phi_x(i) = d_i(0) = 0, \text{ for } \beta_i \neq 0, i = 0 \text{ or } 1, \quad (5)
\]

Remark 1 We provide some remarks on the structural conditions and well-posedness of a classical solution.
Lemma 1 We introduce first two technical lemmas used in the development of the main result.

Proof of the main result

Remark 2 Although the ISS properties obtained in this paper is in the sense of L^2-norm, we can treat as in [43] to obtain the ISS in L^{2p}-norm for $p \geq 1$. Besides, it is worth noting that the ISS estimate given in Theorem 1 has to involve the L^{∞}-norm of the disturbances due to the usage of the weak maximum principle, which results in the maximum estimates of solutions of parabolic PDEs.

3 Proof of the main result

We introduce first two technical lemmas used in the development of the main result.

Lemma 1 Suppose that $u \in C^1([a, b]; \mathbb{R})$, then we have

\[u^2(c) \leq \frac{2}{b-a} \|u\|^2 + (b-a)\|u_x\|^2 \quad \text{for any } c \in [a, b]. \]
Lemma 2 (Weak maximum principle [38, page 237]) Suppose that a, b, c, f are continuous functions on Q_T, and $c ≥ 0$ is a bounded function on Q_T. If $u ∈ C^{2,1}(Q_T) ∩ C(\overline{Q_T})$ satisfies $L_t u := u_t - au_{xx} + bu_x + cu = f(x, t) ≤ 0$ (resp. $≥ 0$) in Q_T, then

$$\max_{\overline{Q_T}} u ≤ \max_{\partial_p Q_T} u^+ \left(\text{resp.} \min_{\overline{Q_T}} u ≥ \min_{\partial_p Q_T} u^- \right),$$

where $u^+ = \max\{0, u\}$ and $u^- = \max\{0, -u\}$.

Now we prove the main result of this paper based on the weak maximum principle approach and the Lyapunov method.

Proof of Theorem 1 We proceed in four steps.

Step 1 (transforming and splitting) In order to get rid of the term bu_x, we use the technique of transforming. Let $\tilde{\gamma} = \frac{b^2}{4a} + c, \tilde{\alpha}_0 = \alpha_0 - \frac{b}{2a} \beta_0, \tilde{\alpha}_1 = \alpha_1 + \frac{b}{2a} \beta_1$ and $\tilde{\beta}_i = \beta_i, i = 0, 1$. Using $\tilde{u}(x, t) = e^{-\frac{b}{2a} t} u(x, t), \tilde{h}(u) = e^{-\frac{bh}{2a}} h(u), \tilde{\phi}(x) = e^{-\frac{bh}{2a}} \phi(x), \tilde{f}(x, t) = e^{-\frac{bh}{2a}} f(x, t), \tilde{d}_i(t) = e^{-\frac{bh}{2a}} d_i(t), i = 0, 1$, we transform (1) into the following system:

$$\tilde{u}_t - a\tilde{u}_{xx} + \tilde{c}u + \tilde{h}(e^{\frac{bh}{2a}}(\tilde{u})) = \tilde{f}(x, t), \ (x, t) ∈ (0, 1) × \mathbb{R}_+, \quad (7a)$$
$$\tilde{\alpha}_0\tilde{u}(0, t) - \tilde{\beta}_0\tilde{u}_x(0, t) = \tilde{d}_0(t), \ t ∈ \mathbb{R}_+, \quad (7b)$$
$$\tilde{\alpha}_1\tilde{u}(1, t) + \tilde{\beta}_1\tilde{u}_x(1, t) = \tilde{d}_1(t), \ t ∈ \mathbb{R}_+, \quad (7c)$$
$$\tilde{u}(x, 0) = \tilde{\phi}(x), \ x ∈ (0, 1), \quad (7d)$$

In order to deal with the nonlinear term $h(u)$ and apply the weak maximum principle for linear systems, we use the technique of splitting as in [7], which was applied to ISS analysis of parabolic PDEs based on the approach of De Giorgi iteration in [41]. For any $T > 0$, we split (7) by $\tilde{\nu} + \tilde{w} = \tilde{u}$ into two subsystems over the domain $Q_T = (0, 1) × (0, T)$:

$$\tilde{\nu}_t - a\tilde{\nu}_{xx} + \tilde{c}\tilde{\nu} = \tilde{f}(x, t), \ (x, t) ∈ Q_T, \quad (8a)$$
$$\tilde{\alpha}_0\tilde{\nu}(0, t) - \tilde{\beta}_0\tilde{\nu}_x(0, t) = \tilde{d}_0(t), \ t ∈ (0, T), \quad (8b)$$
$$\tilde{\alpha}_1\tilde{\nu}(1, t) + \tilde{\beta}_1\tilde{\nu}_x(1, t) = \tilde{d}_1(t), \ t ∈ (0, T), \quad (8c)$$
$$\tilde{\nu}(x, 0) = 0, \ x ∈ (0, 1), \quad (8d)$$

and

$$\tilde{w}_t - a\tilde{w}_{xx} + \tilde{c}\tilde{w} + \tilde{h}(e^{\frac{bh}{2a}}(\tilde{\nu} + \tilde{\nu})) = 0, \quad (9a)$$
$$\tilde{\alpha}_0\tilde{w}(0, t) - \tilde{\beta}_0\tilde{w}_x(0, t) - \tilde{\nu}(0, t) = 0, \quad (9b)$$
$$\tilde{\alpha}_1\tilde{w}(1, t) + \tilde{\beta}_1\tilde{w}_x(1, t) - \tilde{\nu}(1, t) = 0, \quad (9c)$$
$$\tilde{w}(x, 0) = \tilde{\phi}(x), \ x ∈ (0, 1), \quad (9d)$$
where \(\tilde{k}_i (i = 0, 1) \) are nonnegative constants satisfying

\[
\begin{cases}
\tilde{k}_i = 0, & \text{if } \tilde{\alpha}_i > 0 \text{ or } \tilde{\beta}_i = 0 \\
\tilde{\alpha}_i + \tilde{k}_i > 0, & \text{else}
\end{cases}
\tag{10}
\]

Step 2 (maximum estimate of \(\tilde{v} \)) For (8), we establish the following maximum estimate of \(\tilde{v} \) based on the weak maximum principle (Lemma 2):

\[
\max_{\tilde{Q}_T} |\tilde{v}| \leq \max \left\{ \frac{1}{\tilde{c}} \sup_{\tilde{Q}_T} |\tilde{f}|, \frac{1}{\tilde{\alpha}_0 + \tilde{k}_0} \sup_{(0, T)} |\tilde{d}_0|, \frac{1}{\tilde{\alpha}_1 + \tilde{k}_1} \sup_{(0, T)} |\tilde{d}_1| \right\}. \tag{11}
\]

Let \(\tilde{M} = \max \left\{ \frac{1}{\tilde{c}} \sup_{\tilde{Q}_T} |\tilde{f}|, \frac{1}{\tilde{\alpha}_0 + \tilde{k}_0} \sup_{(0, T)} |\tilde{d}_0|, \frac{1}{\tilde{\alpha}_1 + \tilde{k}_1} \sup_{(0, T)} |\tilde{d}_1| \right\} \) and \(\tilde{v} = \tilde{M} \pm \tilde{v} \). Then we have

\[
\tilde{v}_t - a\tilde{v}_{xx} + \tilde{c}\tilde{v} = \tilde{c}\tilde{M} \pm (\tilde{v}_t - a\tilde{v}_{xx} + \tilde{c}\tilde{v}) = \tilde{c}\tilde{M} \pm \tilde{f} \geq \frac{\tilde{c}}{\tilde{M}} \sup_{\tilde{Q}_T} |\tilde{f}| \geq 0.
\]

By the weak maximum principle (Lemma 2), if \(\tilde{v} \) has a negative minimum, then \(\tilde{v} \) attains the negative minimum on the parabolic boundary \(\partial_p \tilde{Q}_T \). On the other hand, noting that \(\tilde{v}(x, 0) = \tilde{M} \geq 0 \) in \((0, 1) \), then \(\tilde{v} \) attains the negative minimum on \(\{0, 1\} \times (0, T) \), i.e., there exists a point \((x_0, t_0) \in \{0, 1\} \times (0, T) \), such that \(\tilde{v}(x_0, t_0) \) is the negative minimum. Thus,

\[
\tilde{v}_x(x_0, t_0) \geq 0, \quad \text{if } x_0 = 0,
\]

\[
\tilde{v}_x(x_0, t_0) \leq 0, \quad \text{if } x_0 = 1.
\]

Then, at the point \((x_0, t_0) \), we have

\[
0 > (\tilde{\alpha}_0 + \tilde{k}_0)\tilde{v}(x_0, t_0) - \tilde{\beta}_0\tilde{v}_x(x_0, t_0) = (\tilde{\alpha}_0 + \tilde{k}_0)\tilde{M} \pm \tilde{d}_0 \\
\geq (\tilde{\alpha}_0 + \tilde{k}_0) \times \frac{1}{\tilde{\alpha}_0 + \tilde{k}_0} \sup_{(0, T)} |\tilde{d}_0| \pm \tilde{d}_0 \geq 0, \quad \text{if } x_0 = 0,
\]

or

\[
0 > (\tilde{\alpha}_1 + \tilde{k}_1)\tilde{v}(x_0, t_0) + \tilde{\beta}_1\tilde{v}_x(x_0, t_0) = (\tilde{\alpha}_1 + \tilde{k}_1)\tilde{M} \pm \tilde{d}_1 \\
\geq (\tilde{\alpha}_1 + \tilde{k}_1) \times \frac{1}{\tilde{\alpha}_1 + \tilde{k}_1} \sup_{(0, T)} |\tilde{d}_1| \pm \tilde{d}_1 \geq 0, \quad \text{if } x_0 = 1,
\]

both of which lead to a contradiction. Therefore, there must be \(\tilde{v} \geq 0 \) in \(\tilde{Q}_T \), which yields \(|\tilde{v}| \leq \tilde{M} \) in \(\tilde{Q}_T \).
Step 3 (L^2-estimate of \tilde{w}) For (9), we establish the L^2-estimate of \tilde{w} by the Lyapunov method and (11), and show that for any $T > 0$:

$$\|\tilde{w}(\cdot, T)\| \leq \|\phi\|e^{-\tilde{\gamma}T} + \tilde{F}(\sup_{Q_T} |\tilde{f}|) + \tilde{F}_0(\sup_{(0, T)} |\tilde{a}_0|) + \tilde{F}_1(\sup_{(0, T)} |\tilde{d}_1|),$$

(12)

where $\tilde{F}, \tilde{F}_0, \tilde{F}_1 \in \mathcal{K}$ are given by

$$\tilde{F}(s) = \tilde{\mu}s + \tilde{\sigma}h(\tilde{\tau}s), \quad \tilde{F}_i(s) = \tilde{\mu}_is + \tilde{\sigma}_ih(\tilde{\tau}_is), \quad i = 0, 1, \forall s \geq 0,$$

with positive constants $\tilde{\alpha}, \tilde{\mu}, \tilde{\sigma}, \tilde{\tau}, \tilde{\mu}_i, \tilde{\sigma}_i, \tilde{\tau}_i (i = 0, 1)$ not depending on T.

Indeed, multiplying (9) with \tilde{w} and integrating by parts over $(0, 1)$, we obtain

$$\frac{1}{2} \frac{d}{dt} \|\tilde{w}\|^2 + a|\tilde{w}_x|^2 + \tilde{c}|\tilde{w}|^2 = a\tilde{w}_x\tilde{w}|_0^1 - \int_0^1 h(e^{\tilde{\tau}s}(\tilde{v} + \tilde{w}))\tilde{w}dx.$$

(13)

There are four cases: (i) $\tilde{\beta}_0 > 0$ and $\tilde{\beta}_1 > 0$; (ii) $\tilde{\beta}_0 > 0$ and $\tilde{\beta}_1 = 0$; (iii) $\tilde{\beta}_0 = 0$ and $\tilde{\beta}_1 > 0$; (iv) $\tilde{\beta}_0 = 0$ and $\tilde{\beta}_1 = 0$.

First, in the case (i), we obtain by (9)

$$\tilde{w}_x\tilde{w}|_0^1 = \frac{1}{\tilde{\beta}_1}\left(\tilde{k}_1\tilde{v}(1, t) - \tilde{\alpha}_1\tilde{w}(1, t)\right)\tilde{w}(1, t) - \frac{1}{\tilde{\beta}_0}\left(\tilde{\alpha}_0\tilde{w}(0, t) - \tilde{k}_0\tilde{v}(0, t)\right)\tilde{w}(0, t)

= \frac{\tilde{k}_1}{\tilde{\beta}_1}\tilde{v}(1, t)\tilde{w}(1, t) - \frac{\tilde{\alpha}_1}{\tilde{\beta}_1}\tilde{w}^2(1, t) - \frac{\tilde{\alpha}_0}{\tilde{\beta}_0}\tilde{w}^2(0, t) + \frac{\tilde{k}_0}{\tilde{\beta}_0}\tilde{v}(0, t)\tilde{w}(0, t)

\leq \frac{\tilde{k}_1}{\tilde{\beta}_1}\left(1 + \frac{1}{2\tilde{\epsilon}_1}\right)\tilde{v}^2(1, t) + \frac{\tilde{\alpha}_0}{\tilde{\beta}_0}\tilde{w}^2(0, t) + \frac{\tilde{k}_0}{\tilde{\beta}_0}\tilde{v}^2(0, t) + \frac{\tilde{k}_0}{\tilde{\beta}_0}\tilde{v}^2(0, t)

- \frac{\tilde{\alpha}_1}{\tilde{\beta}_1}\tilde{w}^2(1, t) + \frac{\tilde{\alpha}_0}{\tilde{\beta}_0}\tilde{w}^2(0, t)

= \left(\frac{\tilde{k}_1\tilde{\epsilon}_1}{2\tilde{\beta}_1} - \frac{\tilde{\alpha}_1}{\tilde{\beta}_1}\right)\tilde{v}^2(1, t) + \left(\frac{\tilde{k}_0\tilde{\epsilon}_0}{2\tilde{\beta}_0} - \frac{\tilde{\alpha}_0}{\tilde{\beta}_0}\right)\tilde{w}^2(0, t)

+ \frac{\tilde{k}_1}{2\tilde{\beta}_1\tilde{\epsilon}_1}\tilde{v}^2(1, t) + \frac{\tilde{k}_0}{2\tilde{\beta}_0\tilde{\epsilon}_0}\tilde{v}^2(0, t).$$

(14)

where $\tilde{\epsilon}_0, \tilde{\epsilon}_1 > 0$ are small enough.

If $\tilde{\alpha}_i > 0$ with $i = 0$ or 1, by the choice of \tilde{k}_i [see (10)], it follows that

$$\left(\frac{\tilde{k}_i\tilde{\epsilon}_i}{2\tilde{\beta}_i} - \frac{\tilde{\alpha}_i}{\tilde{\beta}_i}\right)\tilde{w}^2(i, t) \leq 0 \text{ and } \frac{\tilde{k}_i}{2\tilde{\beta}_i\tilde{\epsilon}_i}\tilde{v}^2(i, t) = 0, \quad i = 0 \text{ or } 1.$$

(15)
If $\tilde{\alpha}_i \leq 0$ with $i = 0$ or 1, by Lemma 1-(i), we have

$$
\left(\frac{k_i \varepsilon_i}{2\beta_i} - \frac{\tilde{\alpha}_i}{\beta_i} \right) \tilde{w}^2(i, t) \leq \left(\frac{k_i \varepsilon_i}{2\beta_i} - \frac{\tilde{\alpha}_i}{\beta_i} \right) (2\|\tilde{w}\|^2 + \|\tilde{w}_x\|^2), \ i = 0 \text{ or } 1. \quad (16)
$$

Note that as $\alpha_i, \beta_i \geq 0, \ i = 0, 1$, it is impossible that $\tilde{\alpha}_0 \leq 0$ and $\tilde{\alpha}_1 \leq 0$ at the same time. Considering (14), (15) and (16), we have

$$
\tilde{w}_x \tilde{w}|_0^1 \leq \begin{cases}
\left(\frac{k_1 \varepsilon_1}{2\beta_1} - \frac{\tilde{\alpha}_1}{\beta_1} \right) (2\|\tilde{w}\|^2 + \|\tilde{w}_x\|^2) + \frac{\tilde{k}_1}{2\beta_1 \varepsilon_1} \tilde{w}^2(1, t), \text{ if } \tilde{\alpha}_0 > 0, \tilde{\alpha}_1 \leq 0, \\
\left(\frac{k_0 \varepsilon_0}{2\beta_0} - \frac{\tilde{\alpha}_0}{\beta_0} \right) (2\|\tilde{w}\|^2 + \|\tilde{w}_x\|^2) + \frac{\tilde{k}_0}{2\beta_0 \varepsilon_0} \tilde{w}^2(0, t), \text{ if } \tilde{\alpha}_0 \leq 0, \tilde{\alpha}_1 > 0.
\end{cases} \quad (17)
$$

Now we estimate $-\int_0^1 \tilde{h}(e^{bx/\sqrt{2}} (\tilde{v} + \tilde{w})) \tilde{w}dx$ in (13). By the Mean Value Theorem, there exists $\xi(x)$ between $e^{bx/\sqrt{2}} (\tilde{v} + \tilde{w})$ and $e^{bx/\sqrt{2}} \tilde{v}$ such that

$$
-\int_0^1 \tilde{h}(e^{bx/\sqrt{2}} (\tilde{v} + \tilde{w})) \tilde{w}dx = -\int_0^1 \left(\tilde{h}(e^{bx/\sqrt{2}} (\tilde{v} + \tilde{w})) - \tilde{h}(e^{bx/\sqrt{2}} \tilde{v}) \right) \tilde{w}dx \\
- \int_0^1 \tilde{h}(e^{bx/\sqrt{2}} \tilde{v}) \tilde{w}dx \\
= -\int_0^1 \tilde{h}'(\xi) e^{bx/\sqrt{2}} \tilde{w} \tilde{w}dx - \int_0^1 \tilde{h}(e^{bx/\sqrt{2}} \tilde{v}) \tilde{w}dx \\
= -\int_0^1 h'(\xi) \tilde{w}^2dx - \int_0^1 e^{bx/\sqrt{2}} h(e^{bx/\sqrt{2}} \tilde{v}) \tilde{w}dx \\
\leq -\int_0^1 h'(\xi) \tilde{w}^2dx + \int_0^1 e^{bx/\sqrt{2}} |h(e^{bx/\sqrt{2}} \tilde{v})| \cdot |\tilde{w}|dx \\
\leq \frac{c}{2} \|\tilde{w}\|^2 + \int_0^1 e^{bx/\sqrt{2}} h(|e^{bx/\sqrt{2}} \tilde{v}|) \cdot |\tilde{w}|dx \\
\leq \frac{c}{2} \|\tilde{w}\|^2 + \frac{1}{2e} e^{\frac{b}{a}} \int_0^1 h^2(|e^{bx/\sqrt{2}} \tilde{v}|)dx + \frac{\varepsilon}{2} \|\tilde{w}\|^2 \\
\leq \left(\frac{c}{2} + \frac{\varepsilon}{2} \right) \|\tilde{w}\|^2 + \frac{1}{2e} e^{\frac{b}{a}} h^2 \left(e^{bx/\sqrt{2}} \max_{[0,1]} |\tilde{v}| \right). \quad (18)
$$

where we used (3), and $\varepsilon > 0$ will be chosen later.
We deduce from (13), (17) and (18) that

\[
\frac{1}{2} \frac{d}{dt} \| \tilde{w} \|^2 + a \| \tilde{w}_x \|^2 + c \| \tilde{w} \|^2 \\
\leq \begin{cases} \\
\left(\frac{\tilde{c}}{2} + \frac{\varepsilon}{2} \right) \| \tilde{w} \|^2 + \tilde{C}_i(t), & \text{if } \tilde{\alpha}_0 > 0, \tilde{\alpha}_1 > 0, \\
2 \tilde{C}_i + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} \| \tilde{w} \|^2 + \tilde{C}_1 \| \tilde{w}_x \|^2 + \tilde{C}_h(t) + \tilde{V}_1(t) \quad \text{if } \tilde{\alpha}_0 > 0, \tilde{\alpha}_1 \leq 0, \\
2 \tilde{C}_1 + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} \| \tilde{w} \|^2 + \tilde{C}_0 \| \tilde{w}_x \|^2 + \tilde{C}_h(t) + \tilde{V}_0(t) \quad \text{if } \tilde{\alpha}_0 \leq 0, \tilde{\alpha}_1 > 0,
\end{cases}
\]

(19)

where

\[
\tilde{C}_i = \frac{\bar{k}_i \varepsilon}{2 \beta_i}, \tilde{V}_i(t) = \frac{\bar{k}_i}{2 \beta_i \varepsilon} \bar{v}^2(i, t), i = 0, 1,
\]

\[
\tilde{C}_h(t) = \frac{1}{2 \varepsilon} e^{\frac{|w|}{h^2}} \left(e^{\frac{|w|}{2h}} \max_{x \in [0,1]} |\tilde{v}(x, t)| \right).
\]

Note that by (2), one can choose \(\varepsilon, \varepsilon_i, i = 0, 1, \) small enough, such that

\[
\tilde{c} + \frac{\varepsilon}{2} < \tilde{c}, \quad \text{(20a)}
\]

\[
2 \tilde{C}_1 + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} < \tilde{c}, \quad \text{and} \quad \tilde{C}_1 \leq a, \quad \text{if } \tilde{\alpha}_0 > 0, \tilde{\alpha}_1 \leq 0, \quad \text{(20b)}
\]

\[
2 \tilde{C}_0 + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} < \tilde{c}, \quad \text{and} \quad \tilde{C}_1 \leq a, \quad \text{if } \tilde{\alpha}_0 \leq 0, \tilde{\alpha}_1 > 0. \quad \text{(20c)}
\]

Then, we infer from (19) that

\[
\frac{d}{dt} \| \tilde{w}(\cdot, t) \|^2 \leq -2 \tilde{\lambda} \| \tilde{w}(\cdot, t) \|^2 + 2(\tilde{C}_h(t) + \tilde{V}_1(t) + \tilde{V}_0(t)), \quad \forall t \in (0, T), \quad \text{(21)}
\]

where \(\tilde{\lambda} = \min_{i=0,1} \{ \tilde{\lambda}_i \}, \tilde{\lambda}_i = \tilde{c} - \left(2 \tilde{C}_i + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} \right) > 0, \quad i = 0, 1. \)

By Gronwall’s inequality, it follows that

\[
\| \tilde{w}(\cdot, t) \|^2 \leq \| \tilde{\phi} \|^2 e^{-2 \tilde{\lambda} t} + 2 \int_0^t (\tilde{C}_h(s) + \tilde{V}_1(s) + \tilde{V}_0(s)) e^{-2 \tilde{\lambda} (t-s)} ds
\]

\[
\leq \| \tilde{\phi} \|^2 e^{-2 \tilde{\lambda} t} + 2 \max_{0 \leq s \leq t} (\tilde{C}_h(s) + \tilde{V}_1(s) + \tilde{V}_0(s)) \int_0^t e^{-2 \tilde{\lambda} (t-s)} ds
\]

\[
\leq \| \tilde{\phi} \|^2 e^{-2 \tilde{\lambda} t} + 2 \max_{0 \leq s \leq t} (\tilde{C}_h(s) + \tilde{V}_1(s) + \tilde{V}_0(s)). \quad \text{(22)}
\]
By (11), it follows that

\[
\max_{x \in [0, 1]} |\tilde{v}(x, t)| \leq \max \left\{ \frac{1}{c} \sup_{Q_T} |\tilde{f}|, \frac{1}{\alpha_0 + k_0} \sup_{(0, T)} |\tilde{a}_0|, \frac{1}{\alpha_1 + k_1} \sup_{(0, T)} |\tilde{a}_1| \right\},
\]

which yields

\[
\tilde{V}_i(s) \leq \frac{\tilde{k}_i}{2\beta_i e_i} \left(\frac{1}{c} \sup_{Q_T} |\tilde{f}|^2 + \frac{1}{(\alpha_0 + k_0)^2} \sup_{(0, T)} |\tilde{a}_0|^2 + \frac{1}{(\alpha_1 + k_1)^2} \sup_{(0, T)} |\tilde{a}_1|^2 \right),
\]

and

\[
\tilde{C}_h(s) = \frac{1}{2e} e^{\frac{|\beta|}{\alpha}} h^2 \left(e^{\frac{|\beta|}{\alpha}} \max_{x \in [0, 1]} |\tilde{v}(x, s)| \right)
\leq \frac{1}{2e} e^{\frac{|\beta|}{\alpha}} h^2 \left(\max \left\{ e^{\frac{|\beta|}{\alpha}} (\frac{1}{c} \sup_{Q_T} |\tilde{f}|, \frac{1}{\alpha_0 + k_0} \sup_{(0, T)} |\tilde{a}_0|, \frac{1}{\alpha_1 + k_1} \sup_{(0, T)} |\tilde{a}_1|) \right\} \right)
\leq \frac{1}{2e} e^{\frac{|\beta|}{\alpha}} \left(h^2 \left(e^{\frac{|\beta|}{\alpha}} \sup_{Q_T} |\tilde{f}| \right) + h^2 \left(e^{\frac{|\beta|}{\alpha}} \sup_{(0, T)} |\tilde{a}_0| \right) \right)
\leq \frac{1}{2e} e^{\frac{|\beta|}{\alpha}} \left(h^2 \left(e^{\frac{|\beta|}{\alpha}} \sup_{Q_T} |\tilde{f}| \right) + h^2 \left(e^{\frac{|\beta|}{\alpha}} \sup_{(0, T)} |\tilde{a}_1| \right) \right).
\]

By (22), (23) and (24), we find that for any \(t \in (0, T) \), it holds that

\[
\|\tilde{w}(\cdot, t)\| \leq \|\phi\| e^{-\tilde{\Gamma}_T} + \tilde{\Gamma}_0 \left(\sup_{Q_T} |\tilde{f}| \right) + \tilde{\Gamma}_0 \left(\sup_{(0, T)} |\tilde{a}_0| \right) + \tilde{\Gamma}_1 \left(\sup_{(0, T)} |\tilde{a}_1| \right).
\]

where \(\tilde{\Gamma}_T, \tilde{\Gamma}_0, \tilde{\Gamma}_1 \in K \) are given by

\[
\tilde{\Gamma}_T(s) = \frac{1}{c} \left(\sqrt{\frac{k_0}{\lambda \beta_0 e_0}} + \sqrt{\frac{k_1}{\lambda \beta_1 e_1}} \right) s + \sqrt{\frac{1}{c} \lambda \beta \lambda \beta e^s} h \left(\frac{1}{c} \lambda \beta \lambda \beta e^s \right), \forall s \geq 0,
\]

\[
\tilde{\Gamma}_0(s) = \frac{1}{\alpha_0 + k_0} \left(\sqrt{\frac{k_0}{\lambda \beta_0 e_0}} + \sqrt{\frac{k_1}{\lambda \beta_1 e_1}} \right) s + \sqrt{\frac{1}{\lambda \beta} \lambda \beta e^s} h \left(\frac{1}{\alpha_0 + k_0} \lambda \beta e^s \right), \forall s \geq 0,
\]

\[
\tilde{\Gamma}_1(s) = \frac{1}{\alpha_1 + k_1} \left(\sqrt{\frac{k_0}{\lambda \beta_0 e_0}} + \sqrt{\frac{k_1}{\lambda \beta_1 e_1}} \right) s + \sqrt{\frac{1}{\lambda \beta} \lambda \beta e^s} h \left(\frac{1}{\alpha_1 + k_1} \lambda \beta e^s \right), \forall s \geq 0.
\]
Finally, by the continuity of \(\tilde{w}(x, t) \) and \(e^{-\tilde{\lambda} t} \) at \(t = T \), it follows that
\[
\| \tilde{w}(\cdot, T) \| \leq \phi \| e^{-\tilde{\lambda} T} + \tilde{\Gamma} \left(\sup_{Q_T} |\tilde{f}| \right) + \tilde{\Gamma}_0 \left(\sup_{(0, T)} |\tilde{d}_0| \right) + \tilde{\Gamma}_1 \left(\sup_{(0, T)} |\tilde{d}_1| \right) ,
\]
which completes the proof of Case (i).

In the case of (ii) [or (iii)], i.e., \(\tilde{\beta}_i > 0 \) and \(\tilde{\beta}_{1-i} = 0, i = 0 \) (or 1), it suffices to set \(\tilde{k}_1 = \tilde{k}_{1-i} = \tilde{\alpha}_1 = \tilde{\alpha}_0 = 0, i = 0 \) (or 1), in the proof of Case (i), and to obtain (25) with \(\tilde{\Gamma}, \tilde{\Gamma}_0, \tilde{\Gamma}_1 \in \mathcal{K} \) given by
\[
\tilde{\Gamma}(s) = \frac{1}{c} \sqrt{\frac{k_i}{\lambda \beta_i}} s + \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{c} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]
\[
\tilde{\Gamma}_0(s) = \frac{1}{\tilde{\alpha}_i + k_i} \sqrt{\frac{k_i}{\lambda \beta_i}} s + \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{\tilde{\alpha}_i + k_i} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]
\[
\tilde{\Gamma}_1(s) = \frac{1}{\tilde{\alpha}_1} \sqrt{\frac{k_i}{\lambda \beta_i}} s + \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{\tilde{\alpha}_1} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]
where \(i = 0 \) (or 1).

Similarly, in Case (iv), i.e., \(\tilde{\beta}_0 = \tilde{\beta}_1 = 0 \), we obtain (25) with \(\tilde{\Gamma}, \tilde{\Gamma}_0, \tilde{\Gamma}_1 \in \mathcal{K} \) given by
\[
\tilde{\Gamma}(s) = \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{c} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]
\[
\tilde{\Gamma}_0(s) = \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{\tilde{\alpha}_0} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]
\[
\tilde{\Gamma}_1(s) = \sqrt{\frac{1}{\lambda c} e^{\frac{|\beta|}{\alpha}} h \left(\frac{1}{\tilde{\alpha}_1} e^{\frac{|\beta|}{\alpha}} s \right) } , \ \forall s \geq 0 ,
\]

Step 4 We establish the ISS estimate in \(L^2 \)-norm for (1). Indeed, noting that \(u = e^{\frac{\beta}{\alpha}} \tilde{u}(x, t) \) and \(\tilde{u} = \tilde{v} + \tilde{w} \), by (11) and (12), we get for any \(T > 0 \)
\[
\| u(\cdot, T) \| \leq e^{\frac{|\beta|}{\alpha}} \| \tilde{u}(\cdot, T) \|
\]
\[
\leq e^{\frac{|\beta|}{\alpha}} \left(\| \tilde{v}(\cdot, T) \| + \| \tilde{w}(\cdot, T) \| \right)
\]
\[
\leq e^{\frac{|\beta|}{\alpha}} \| \phi \| e^{-\tilde{\lambda} T} + e^{\frac{|\beta|}{\alpha}} \left(\frac{1}{c} \sup_{Q_T} |\tilde{f}| + \tilde{\Gamma} \left(\sup_{Q_T} |\tilde{f}| \right) \right)
\]
\[
+ e^{\frac{|\beta|}{\alpha}} \left(\frac{1}{\tilde{\alpha}_0 + k_0} \sup_{(0, T)} |\tilde{d}_0| + \tilde{\Gamma}_0 \left(\sup_{(0, T)} |\tilde{d}_0| \right) \right)
\]
\[
\begin{align*}
&\leq e^{\|h\|} \left(\frac{1}{\alpha_1 + k_1} \sup_{(0,T)} |\tilde{a}_1| + \tilde{\gamma}_1 \left(\sup_{(0,T)} |\tilde{a}_1| \right) \right) \\
&= e^{\|h\|} \|\phi\| e^{-\lambda T} + \gamma \left(\sup_{Q_T} |f| \right) + \gamma_0 \left(\sup_{(0,T)} |d_0| \right) + \gamma_1 \left(\sup_{(0,T)} |d_1| \right),
\end{align*}
\]

where

\[
\begin{align*}
\gamma(s) &= e^{\|h\|} \left(\frac{1}{c} e^{\|h\|} s + \tilde{\gamma} \left(e^{\|h\|} s \right) \right), \quad \forall s \geq 0, \\
\gamma_0(s) &= e^{\|h\|} \left(\frac{1}{\alpha_0 + k_0} s + \tilde{\gamma}_0(s) \right), \quad \forall s \geq 0, \\
\gamma_1(s) &= e^{\|h\|} \left(\frac{1}{\alpha_1 + k_1} e^{\|h\|} s + \tilde{\gamma}_1 \left(e^{\|h\|} s \right) \right), \quad \forall s \geq 0, \\
\lambda = \tilde{\lambda} &= \min_{i=0,1} \{ \tilde{\lambda}_i \} = \min_{i=0,1} \left\{ \tilde{c} - \left(2 \tilde{C}_i + \frac{\tilde{c}}{2} \right) \right\} > 0, \quad i = 0, 1, \\
\text{with} \\
\tilde{C}_i &= \begin{cases} \\
\frac{\tilde{k}_i \tilde{e}_i}{2 \tilde{\beta}_i} - \frac{\tilde{\alpha}_i}{\tilde{\beta}_i}, & \text{if } \tilde{\beta}_i > 0, \\
0, & \text{if } \tilde{\beta}_i = 0
\end{cases}, \quad i = 0, 1,
\end{align*}
\]

\(\tilde{k}_i\) determined by (10), and \(\tilde{e}, \tilde{e}_i\) determined by (20), \(i = 0, 1\). \qed

Remark 3 It is worth noting that the requirement of \(C^2\)-continuity on \(h, f, d_0, d_1, \phi\) and the compatibility conditions (4) and (5) are only for ensuring the existence of classical solutions of the system (1) and the subsystem (8), which can eventually be relaxed for the ISS analysis if weak solutions of (1) are considered. Indeed, it suffices to impose certain conditions to guarantee a weak solution of (1) and a classical solution of the linear \(\tilde{v}\)-subsystem (8) in Sect. 3. For example, we can weaken the assumptions on \(f, d_0, d_1\) to be “\(f \in C^{l+\frac{1}{2}}(\{0, 1\} \times \mathbb{R}_\geq 0)\), \(d_0, d_1 \in C^l(\mathbb{R}_\geq 0)\) with some constant \(l > 0\),” and relax the compatibility conditions (4) and (5) to be:

\[
d'_i(t) + c d_i(t) = \alpha_i f(i, t), \quad \forall t \in \mathbb{R}_+, \quad \text{for } \beta_i = 0, \quad i = 0 \text{ or } 1,
\]

\[
d_i(0) = 0, \quad \text{for } \beta_i \neq 0, \quad i = 0 \text{ or } 1,
\]

then (8) has a unique solution belonging to \(C^{l+2, l+1}(\mathbb{Q}_T)\), see, e.g., [21, Theorem 5.2 and 5.3, Chapter IV]. For a weak solution of (9), we can relax the assumptions on \(h, \phi\) to be “\(h \in C^1(\mathbb{R})\) and \(\phi \in L^2(0, 1)\)” Noting that by the structural condition (3), we always have

\[
-h(s)s = -h'(\xi)s \leq \frac{1}{2} \left(\frac{b^2}{4a} + c \right) |s|, \quad \forall s \in \mathbb{R},
\]
where ξ is between 0 and s. Then the existence of a unique weak solution of (1) can be obtained by proceeding exactly as in [24, Theorem 6.5, 6.39 and 6.46] with the usual approximation argument based on \textit{a priori} estimates.

Remark 4 A crucial step in the proof lies in the maximum estimates for the solutions of parabolic equations. It should be mentioned that the result of the maximum estimate given by (11) is different from the classical maximum estimate of solutions to parabolic equations. For example, in [38, page 239], a classical maximum estimate of the solutions to linear parabolic equations in a finite time interval $(0, T)$ is given as below:

Assume that $c \geq 0$ is bounded in Q_T. If $u \in C^{2,1}(Q_T) \cap C(\overline{Q}_T)$ satisfies $L_t u := u_t - au_{xx} + bu_x + cu = f$ in Q_T, then $\max_{Q_T} |u| \leq \sup_{\partial p Q_T} |u| + T \sup_{Q_T} |f|$.

A main improvement obtained in (11) is that the coefficients of $\sup_{Q_T} |\tilde{f}|$, $\sup_{Q_T} |\tilde{d}_0|$ and $\sup_{Q_T} |\tilde{d}_1|$ do not depend on T. It is an essential feature for the establishment of ISS properties for PDEs with boundary disturbances.

Remark 5 It should be mentioned that Lemma 2 cannot be used directly to establish the maximum estimate for the solution of (8) if $\tilde{\alpha}_i \leq 0, i = 0$ or 1. To overcome this difficulty, additional terms $\tilde{k}_i \tilde{\nu}(i, t)(i = 0, 1)$ are added on the boundaries to guarantee that $\tilde{\alpha}_i + \tilde{k}_i \tilde{\nu} > 0$ when we use the technique of splitting. Thus, $\tilde{k}_i \tilde{\nu}(i, t)$ can be seen as a stabilizing feedback control with boundary disturbances or nonhomogeneous boundary conditions. The idea of using this type of compensation comes from the so-called penalty method in mathematics (see, e.g., [20]) and its applications in singular free boundary problems (see, Sections 2 and 3 in [39]), and the ISS for nonlinear PDEs with nonlinear boundary disturbances (see [44]).

Remark 6 If the boundary disturbance $\tilde{d}_1(t)$ is replaced by $\int_0^1 k(1, y) \tilde{\nu}(y, t) dy + \tilde{d}_1(t)$, where $k \in C^2([0, 1] \times [0, 1])$, then the condition $b^2 + c > 0$ can be weakened in the proof of Theorem 1. Indeed, using the technique of backstepping and Volterra integral transformation (see, e.g., [25,26,36]), one can transform (8) into a new system of the following form:

$$
\begin{align*}
\tilde{\nu}_t - a\tilde{\nu}_{xx} + c\tilde{\nu} &= \tilde{f}(x, t), \\
(\tilde{\alpha}_0 + \tilde{k}_0)\tilde{\nu}(0, t) - \tilde{\beta}_0\tilde{\nu}_x(0, t) &= \tilde{d}_0(t), \\
(\tilde{\alpha}_1 + \tilde{k}_1)\tilde{\nu}(1, t) + \tilde{\beta}_1\tilde{\nu}_x(1, t) &= \tilde{d}_1(t), \\
\tilde{\nu}(x, 0) &= 0, \quad x \in (0, 1),
\end{align*}
$$

where $\tilde{c} > 0$ can be an arbitrary constant. Then using the techniques in this paper and arguing as [41, Section V], one may establish the maximum estimate for the solution of the above system, and hence for (8).

Remark 7 We would like to mention that the method proposed in this paper can be applied to a wider class of parabolic PDEs with nonlinear boundary conditions as shown in [46], where certain nonlinear higher dimensional parabolic PDEs with...
variable coefficients and nonlinear boundary conditions over a ball are considered. Therefore, it is of interest to extend the weak maximum principle-based approach presented in this paper and [46] to nonlinear parabolic PDEs defined over a domain and having a more general form and nonlinear boundary conditions, e.g.,

\[
\begin{align*}
 u_t - \text{div}(a(x, t, u)\nabla u) + h(x, t, u, \nabla u) &= 0, \quad (x, t) \in \Omega \times \mathbb{R}_+ , \\
 a(x, t, u)\nabla u \cdot n + \Psi(x, t, u) &= d, \quad (x, t) \in \partial \Omega \times \mathbb{R}_+ , \\
 u(x, 0) &= \phi, \quad x \in \Omega ,
\end{align*}
\]

where \(a(x, t, u)\) is a nonlinear function defined on \(\overline{\Omega} \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^N\) such that the above equation is uniformly parabolic, \(h, \Psi\) are nonlinear functions defined on \(\overline{\Omega} \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^N\) and \(\overline{\Omega} \times \mathbb{R}_+ \times \mathbb{R}\), respectively, \(\phi\) is a function defined on \(\Omega\), \(\Omega\) is an open bounded domain in \(\mathbb{R}^N (N \geq 1)\), and \(n\) is the unit outer normal vector at the point on the boundary of \(\Omega\).

Due to the nonlinearities on the boundaries and in the domain, much more arguments are needed to obtain the maximum estimates for solutions of parabolic equations with a general form when the weak maximum principle is used. Finally, one may find that the approach presented in this work can be also extended to ISS analysis of other nonlinear (abstract) systems by estimating the solution \(\tilde{w}\) of the subsystem (9) in an abstract form as in [35, Section 3].

4 Illustrative examples

4.1 1-D linear reaction–diffusion equation

We consider the following 1-D linear reaction–diffusion PDE with mixed boundary conditions:

\[
\begin{align*}
 u_t - au_{xx} + bu_x + cu &= f(x, t), \quad (x, t) \in (0, 1) \times \mathbb{R}_+ , \quad (30a) \\
 u(0, t) = d_0(t), u_x(1, t) &= -K_1 u(1, t) + d_1(t), \quad t \in \mathbb{R}_+ , \quad (30b) \\
 u(x, 0) &= \phi(x), \quad x \in (0, 1) . \quad (30c)
\end{align*}
\]

Assume that \(a, K_1 \in \mathbb{R}_+, b, c \in \mathbb{R}\) with \(\frac{b^2}{4a} + c > 0, K_1 > \frac{|b|}{2a}\).

For (30), we have

\[
\begin{align*}
 \tilde{c} &= \frac{b^2}{4a} + c, \quad h(s) \equiv 0, \forall s \in \mathbb{R}, \\
 \alpha_0 &= 1, \quad \beta_0 = 0, \quad \alpha_1 = K_1, \quad \beta_1 = 1, \\
 \tilde{\alpha}_0 &= \alpha_0 - \frac{b}{2a} \beta_0 = 1, \quad \tilde{\beta}_0 = \beta_0 = 0, \\
 \tilde{\alpha}_1 &= \alpha_1 + \frac{b}{2a} \beta_1 = K_1 + \frac{b}{2a} > 0, \quad \tilde{\beta}_1 = \beta_1 = 1.
\end{align*}
\]
Then, (2b) and (3) hold. Therefore, (30) is EISS.

Furthermore, according to (29) and (28d) [and noting that $\tilde{k}_0 = \tilde{k}_1 = 0$ in (10)], it follows that

$$
\tilde{C}_0 = 0, \tilde{C}_1 = -\frac{\tilde{\alpha}_1}{\tilde{\beta}_1} = -K_1 - \frac{b}{2a} < 0,
$$

$$
\lambda = \tilde{\lambda} = \min \left\{ \frac{\tilde{c}}{2} - \frac{\varepsilon}{2}, \tilde{c} - \left(2\tilde{C}_1 + \frac{\tilde{c}}{2} + \frac{\varepsilon}{2} \right) \right\}
$$

$$
= \frac{1}{2} \left(\frac{b^2}{4a} + c \right) + 2 \left(K_1 + \frac{b}{2a} \right) - \frac{\varepsilon}{2} > 0,
$$

where we choose $\varepsilon > 0$ such that $2(K_1 + \frac{b}{2a}) - \frac{\varepsilon}{2} > 0$.

By (26) and $\tilde{k}_1 = 0$, we have

$$
\tilde{\Gamma}(s) = \tilde{\Gamma}_0(s) = \tilde{\Gamma}_1(s) = 0, \forall s \geq 0,
$$

which implies that in (28)

$$
\gamma(s) = \frac{4ae^{\frac{|b|}{2a}}}{b^2 + 4ac}s, \quad \gamma_0(s) = e^{\frac{|b|}{2a}s}, \quad \gamma_1(s) = \frac{2ae^{\frac{|b|}{2a}}}{2aK_1 + b}s, \forall s \geq 0.
$$

Finally, the ISS estimate of (30) is given by

$$
\|u(\cdot, T)\| \leq e^{\frac{|b|}{2a}} \|\phi\|e^{-\left(\frac{1}{2}(\frac{b^2}{4a} + c) + 2(K_1 + \frac{b}{2a}) - \frac{\varepsilon}{2} \right)T}
$$

$$
+ \frac{4ae^{\frac{|b|}{2a}}}{b^2 + 4ac} \sup_{(0,1) \times (0,T)} |f| + e^{\frac{|b|}{2a}} \sup_{(0,T)} |d_0| + \frac{2ae^{\frac{|b|}{2a}}}{2aK_1 + b} \sup_{(0,T)} |d_1|, \forall T > 0.
$$

4.2 Ginzburg–Landau equations with real coefficients

Consider the generalized Ginzburg–Landau equation (see, e.g., [8]) with the following boundary and initial conditions:

$$
\begin{align*}
&u_t - au_{xx} + bu_x + c_1 u + c_2 u^3 + c_3 u^5 = f(x, t), \quad (x, t) \in (0, 1) \times \mathbb{R}_+, \quad (31a) \\
&u(0, t) = d_0(t), \quad u_{x}(1, t) = d_1(t), \quad t \in \mathbb{R}_+, \quad (31b) \\
&u(x, 0) = \phi(x), \quad x \in (0, 1), \quad (31c)
\end{align*}
$$

where $a, c_2, c_3 \in \mathbb{R}_+$ and $b, c_1 \in \mathbb{R}$ with $\frac{b^2}{4a} + c_1 > 0$.

For (31), we have

$$
c = c_1, \quad \tilde{c} = \frac{b^2}{4a} + c_1 > 0,
$$

$$
h(s) = c_2 s^3 + c_3 s^5, \quad h'(s) = 3c_2 s^2 + 5c_3 s^4 \geq 0, \quad \forall s \in \mathbb{R},
$$

\[\text{ Springer} \]
\[\alpha_0 = 1, \alpha_1 = 0, \beta_0 = 0, \beta_1 = 1 \text{ (note that } -u_x(0, t) = -d_0(t)) , \]

\[\begin{align*}
\tilde{\alpha}_0 &= \alpha_0 - \frac{b}{2a} \beta_0 = 1, \tilde{\beta}_0 = \beta_0 = 0, \\
\tilde{\alpha}_1 &= \alpha_1 + \frac{b}{2a} \beta_1 = \frac{b}{2a}, \tilde{\beta}_1 = \beta_1 = 1.
\end{align*} \]

If we assume further that

\[-\frac{2b}{a} < \frac{b^2}{4a} + c_1, \quad -\frac{b}{2a} \leq a, \quad \text{(32)} \]

then (2b) and (3) hold. Therefore, (31) is EISS. According to (29) and (28d) [and noting that \(k_0 = 0, k_1 > 0 \) such that \(k_1 + \frac{b}{2a} > 0 \) in (10)], it follows that

\[\begin{align*}
\tilde{C}_0 &= 0, \quad \tilde{C}_1 = \frac{\tilde{k}_1 e_1}{2} - \frac{b}{2a}, \\
\lambda &= \tilde{\lambda} = \min \left\{ \frac{\tilde{c}}{2} - \frac{\varepsilon_1}{\varepsilon}, \frac{\tilde{c}}{2} + 2 \tilde{C}_1 - \frac{\varepsilon}{2} \right\},
\end{align*} \]

where \(\varepsilon, \varepsilon_1 > 0 \) are small enough such that \(\lambda > 0 \).

By (26) and \(\tilde{k}_0 = 0 \), we have

\[\begin{align*}
\tilde{\Gamma}(s) &= \frac{4a}{b^2 + 4ac_1} \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} s + \sqrt{\frac{1}{\lambda \varepsilon}} h \left(\frac{4a}{b^2 + 4ac_1} e^{[\varepsilon]} s \right), \quad \forall s \geq 0, \\
\tilde{\Gamma}_0(s) &= \frac{2a}{b + 2ak_1} \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} s + \sqrt{\frac{1}{\lambda \varepsilon}} h \left(\frac{2a}{b + 2ak_1} e^{[\varepsilon]} s \right), \quad \forall s \geq 0, \\
\tilde{\Gamma}_1(s) &= \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} s + \sqrt{\frac{1}{\lambda \varepsilon}} h \left(e^{[\varepsilon]} s \right), \quad \forall s \geq 0,
\end{align*} \]

which shows that the \(\kappa \)-functions in the ISS estimate of (31) are given by:

\[\begin{align*}
\gamma(s) &= \frac{4a}{b^2 + 4ac_1} e^{[\varepsilon]} \left(\sqrt{\frac{1}{\lambda \varepsilon}} + \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} \right) s + \sqrt{\frac{1}{\lambda \varepsilon}} e^{[\varepsilon]} h \left(\frac{4a}{b^2 + 4ac_1} e^{[\varepsilon]} s \right), \quad \forall s \geq 0, \\
\gamma_0(s) &= e^{[\varepsilon]} \left(1 + \frac{2a}{b + 2ak_1} \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} \right) s + \sqrt{\frac{1}{\lambda \varepsilon}} e^{[\varepsilon]} h \left(\frac{2a}{b + 2ak_1} e^{[\varepsilon]} s \right), \quad \forall s \geq 0, \\
\gamma_1(s) &= e^{[\varepsilon]} \left(\frac{2a}{b + 2ak_1} e^{[\varepsilon]} + \sqrt{\frac{\tilde{k}_1}{\lambda \varepsilon}} \right) s + \sqrt{\frac{1}{\lambda \varepsilon}} e^{[\varepsilon]} h \left(e^{[\varepsilon]} s \right), \quad \forall s \geq 0,
\end{align*} \]

Remark 8 It should be mentioned that due to the nonlinear terms in (31) and the use of splitting, the gains obtained above are nonlinear and depend on \(h \). Moreover, they
tend to infinity as ε (or ε_1) tends to 0^+. Therefore, it is still a question on how to obtain ISS estimates in L^2-norm with uniformly bounded gains for nonlinear PDEs with Neumann boundary disturbances by the Lyapunov method.

5 Concluding remarks

This paper presented a new method for the establishment of ISS properties w.r.t. in-domain and boundary disturbances for certain nonlinear parabolic PDEs with different types of boundary conditions at the same time. The proposed approach for achieving the ISS estimates of the solution is based on the technique of splitting and the weak maximum principle for parabolic PDEs, and is combined with the Lyapunov method. The results show that this method is a convenient tool for the study of ISS properties of PDEs with different types of boundary disturbances, and it can be applied to stability and regularity analysis for a wider class of nonlinear PDEs with boundary disturbances.

Acknowledgements The authors would like to thank the reviewers for providing us with valuable comments and suggestions, which helped us to improve the quality of presentation of this paper. This work is supported in part by NSFC under Grant NSFC-11901482 and in part by NSERC under Grant RGPIN-2018-04571.

References

1. Amann H (1989) Dynamic theory of quasilinear parabolic equations-III. Global existence. Math Z 202:219–250
2. Argomedo FB, Witrant E, Prieur C (2012) D^1-input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances. In: American control conference, Montreal, Que, pp 2978–2983
3. Argomedo FB, Prieur C, Witrant E, Bremond S (2013) A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients. IEEE Trans Autom Control 58(2):290–303
4. Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction diffusion systems. In: IEEE Conference on Decision and Control. Atlanta, Georgia, USA, pp 6547–6552
5. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25(1):1–35
6. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of nonlinear impulsive systems. SIAM J Control Optim 51(3):1962–1987
7. Fabre C, Puel JP, Zuazua E (1995) Approximate controllability of the semilinear heat equation. Proc R Soc Edinb Sect A Math 125(1):31–C61
8. Guo B, Gao H (1994) Finite dimensional behavior of generalized Ginzburg–Landau equation. Prog Nat Sci 4(4):423–434
9. Jacob B, Mironchenko A, Partington JR, Wirth F (2018) Remarks on input-to-state stability and non-coercive Lyapunov functions. In Proceedings of the 57th IEEE conference on decision and control, Miami Beach, USA, pp 4803–4808
10. Jacob B, Mironchenko A, Partington JR, Wirth F (2019) Non-coercive Lyapunov functions for input-to-state stability of infinite-dimensional systems. arXiv:1911.01327
11. Jacob B, Nabiullin R, Partington JR, Schwenninger FL (2016) On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems. In: Proceedings of the 55th IEEE conference on decision and control, Las Vegas, USA, pp 2265–226
12. Jacob B, Nabiullin R, Partington JR, Schwenninger FL (2018) Infinite-dimensional input-to-state stability and Orlicz spaces. SIAM J Control Optim 56(2):868–889
13. Jacob B, Schwenninger FL, Zwart H (2018) On continuity of solutions for parabolic control systems and input-to-state stability. J Differ Equ 266(10):6284–6306
14. Karafyllis I, Krstic M (2014) On the relation of delay equations to first-order hyperbolic partial differential equations. ESAIM Control Optim Calc Var 20(3):894–923
15. Karafyllis I, Krstic M (2016) Input-to-state stability with respect to boundary disturbances for the 1-D heat equation. In: the IEEE 55th conference on decision and control (CDC), Las Vegas, USA
16. Karafyllis I, Krstic M (2016) ISS with respect to boundary disturbances for 1-D parabolic PDEs. IEEE Trans Autom Control 61(12):3712–3724
17. Karafyllis I, Krstic M (2017) ISS in different norms for 1-D parabolic PDEs with boundary disturbances. SIAM J Control Optim 55(3):1716–1751
18. Karafyllis I, Krstic M (2018) Input-to-state stability for PDEs. Springer, London
19. Karafyllis I, Krstic M (2018) Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica 87:226–237
20. Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Academic Press, New York
21. Ladyzenskaja OA, Solonnikov VA, Uralceva NN (1968) Linear and quasi-linear equations of parabolic type. American Mathematical Society, Providence
22. Lhachemi H, Saussié D, Zhu G, Shorten R (2020) Input-to-state stability of a clamped-free damped string in the presence of distributed and boundary disturbances. IEEE Trans Autom Control 65(3):1248–1255
23. Lhachemi H, Shorten R (2019) ISS property with respect to boundary disturbances for a class of riesz-spectral boundary control systems. Automatica 109:1–13
24. Lieberman GM (2005) Second order parabolic differential equations. World Scientific, Singapore
25. Liu W (2003) Boundary feedback stabilization of an unstable heat equation. SIAM J Control Optim 42(3):1033–1043
26. Liu W, Krstic M (2000) Backstepping boundary control of Burgers’ equation with actuator dynamics. Syst Control Lett 41(4):291–303
27. Logemann H (2013) Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback. SIAM J Control Optim 51(2):1203–1231
28. Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Relat Fields 1(2):231–250
29. Mironchenko A (2016) Local input-to-state stability: characterizations and counterexamples. Syst Control Lett 87:23–28
30. Mironchenko A, Ito H (2015) Construction of Lyapunov functions for interconnected parabolic systems: an iISS approach. SIAM J Control Optim 53(6):3364–3382
31. Mironchenko A, Ito H (2016) Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Math Control Relat Fields 6(3):447–466
32. Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Autom Control 63(6):1692–1707
33. Mironchenko A, Karafyllis I, Krstic M (2019) Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. SIAM J Control Optim 57(1):510–532
34. Prieur C, Mazenc F (2012) ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math Control Signals Syst 21(1):111–134
35. Schwenninger F (2019) Input-to-state stability for parabolic boundary control: linear and semi-linear systems. arXiv:1908.08317
36. Smyshlyaev A, Krstic M (2004) Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans Autom Control 34(12):435–443
37. Tanwani A, Prieur C, Tarbouriech S (2017) Disturbance-to-state stabilization and quantized control for linear hyperbolic systems. arXiv:1703.00302v1
38. Wu Z, Yin J, Wan C (2006) Elliptic an parabolic equations. World Scientific Publishing, Singapore
39. Zheng J, Feng B, Zhao P (2018) A remark on the two-phase obstacle-type problem for the p-Laplacian. Adv Calc Var 11(3):325–334
40. Zheng J, Lhachemi H, Zhu G, Saussie DA (2018) ISS with respect to boundary and in-domain disturbances for a coupled beam-string system. Math Control Signals Syst. https://doi.org/10.1007/s00498-018-0228-y
41. Zheng J, Zhu G (2018) A De Giorgi iteration-based approach for the establishment of ISS properties of a class of semi-linear parabolic PDEs with boundary and in-domain disturbances. IEEE Trans Autom Control 64(8):3476–3483
42. Zheng J, Zhu G (2018) Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. Automatica 97:271–277
43. Zheng J, Zhu G (2018) Input-to-state stability with respect to different boundary disturbances for Burgers’ equation ISS with respect to in-domain and boundary disturbances. In: 23rd international symposium on mathematical theory of networks and systems. China, Hong Kong, pp 562–569
44. Zheng J, Zhu G (2018) ISS with respect to in-domain and boundary disturbances for a generalized Burgers’ equation. In: 57th IEEE conference on decision and control. Miami Beach, FL, USA, pp 3758–3764
45. Zheng J, Zhu G (2019) A maximum principle-based approach for input-to-state stability analysis of parabolic equations with boundary disturbances. In: 58th IEEE conference on decision and control. Nice, France, pp 4977–4983
46. Zheng J, Zhu G (2020) A note on the maximum principle-based approach for ISS analysis of higher dimensional parabolic PDEs with variable coefficients. arXiv:2005.11042

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.