WEAK SOLUTIONS TO COMPLEX MONGE-AMPÈRE EQUATION ON HYPERCONVEX DOMAINS

SLIMANE BENELKOURCHI

ABSTRACT. We show a very general existence theorem to the complex Monge-Ampère type equation on hyperconvex domains.

1. INTRODUCTION

Let Ω be a bounded hyperconvex domain in \mathbb{C}^n and F a nonnegative function defined on $\mathbb{R} \times \Omega$. In the present note, we shall consider the existence and uniqueness of weak solution of the complex Monge-Ampère type equation

$$
(dd^c u)^n = F(u, \cdot) d\mu
$$

where u is plurisubharmonic on Ω and μ is a nonnegative measure. This problem has been studied extensively by various authors, see for example [2], [4], [9], [10], [12], [14], [15], [16], [19], [20], [21], [22]... and reference therein for further information about Complex Monge-Ampère equations.

It was first considered by Bedford and Taylor in [3]. In connection with the problem of finding complete Kähler-Einstein metrics on pseudoconvex domains, Cheng and Yau [16] treated the case $F(t, z) = e^{Kt} f(z)$. More recently, Czyż [17] treated the case F bounded by a function independent of the first variable and μ is the Monge-Ampère of a plurisubharmonic function v, generalizing some results of Cegrell [13], Kołodziej [21] and Cegrell and Kołodziej [14] [15]. In this paper we will consider a more general case. With notations introduced in the next section, our main result is stated as follows.

Main Theorem. Let Ω be a bounded hyperconvex domain and μ be a nonnegative measure which vanishes on all pluripolar subsets of Ω. Assume that $F : \mathbb{R} \times \Omega \to [0, +\infty)$ is a measurable function such that:

1) For all $z \in \Omega$ the function $t \mapsto F(t, z)$ is continuous and nondecreasing;

2) For all $t \in \mathbb{R}$, the function $z \mapsto F(t, z)$ belongs to $L^1_{\text{loc}}(\Omega, \mu)$;

2010 Mathematics Subject Classification. Primary 32W20; Secondary 32U05.

Key words and phrases. Complex Monge-Ampère operator, Dirichlet problem, plurisubharmonic functions.
3) There exists a function $v_0 \in \mathcal{N}^a$ which is a subsolution to (1.1) i.e.
$$(dd^c v_0)^n \geq F(v_0, \cdot) d\mu.$$ Then for any maximal function $f \in \mathcal{E}$ there exists a uniquely determined function $u \in \mathcal{N}^a(f)$ solution to the complex Monge-Ampère equation
$$(dd^c u)^n = F(u, \cdot) d\mu.$$ Note that the solution, as we will see in the proof, is given by the following upper envelope of all subsolutions;
$$u = \sup \{ v \in \mathcal{E}(\Omega); v \leq f \text{ and } (dd^c v)^n \geq F(v, \cdot) d\mu \},$$ where $\mathcal{E}(\Omega)$ is the set of non-positive plurisubharmonic functions defined on Ω for which the complex Monge-Ampère operator is well defined as nonnegative measure (a precise definition will be given shortly).

2. Background and Definitions

Recall that $\Omega \subset \mathbb{C}^n$, $n \geq 1$ is a bounded hyperconvex domain if it is a bounded, connected, and open set such that there exists a bounded plurisubharmonic function $\rho : \Omega \to (-\infty, 0)$ such that the closure of the set \{ $z \in \Omega : \rho(z) < c$ \} is compact in Ω, for every $c \in (-\infty, 0)$. We denote by $PSH(\Omega)$ the family of plurisubharmonic functions defined on Ω.

We say that a bounded plurisubharmonic function φ defined on Ω belongs to \mathcal{E}_0 if $\lim_{z \to \zeta} \varphi(z) = 0$, for every $\zeta \in \partial \Omega$, and $\int_{\Omega} (dd^c \varphi)^n < +\infty$. See [10] for details.

Let the class $\mathcal{E}(\Omega)$ be the set of plurisubharmonic functions u such that for all $z_0 \in \Omega$, there exists a neighborhood V_{z_0} of z_0 and $u_j \in \mathcal{E}_0(\Omega)$ a decreasing sequence which converges towards u in V_{z_0} and satisfies
$$\sup_j \int_{\Omega} (dd^c u_j)^n < +\infty.$$ U.Cegrell [10] has shown that the operator $(dd^c \cdot)^n$ is well defined on $\mathcal{E}(\Omega)$, continuous under decreasing limits and the class $\mathcal{E}(\Omega)$ is stable under taking maximum i.e. if $u \in \mathcal{E}(\Omega)$ and $v \in PSH^-(\Omega)$ then $\max(u, v) \in \mathcal{E}(\Omega)$. $\mathcal{E}(\Omega)$ is the largest class with these properties (Theorem 4.5 in [10]). The class $\mathcal{E}(\Omega)$ has been further characterized by Z.Błocki [7], [8].

The class $\mathcal{F}(\Omega)$ is the “global version” of $\mathcal{E}(\Omega)$: a function u belongs to $\mathcal{F}(\Omega)$ iff there exists a decreasing sequence $u_j \in \mathcal{E}_0(\Omega)$ converging towards u in all of Ω, which satisfies $\sup_j \int_{\Omega} (dd^c u_j)^n < +\infty$. Furthermore characterizations are given in [5] [6].
Define $\mathcal{N}(\Omega)$ the family of all functions $u \in \mathcal{E}(\Omega)$ which satisfies: if $v \in PSH(\Omega)$ is maximal and $u \leq v$ then $v \geq 0$, i.e. the smallest maximal psh function above u is null. In fact, this class is the analogous of potentials for subharmonic functions (see [9] for more details).

The class $\mathcal{F}^a(\Omega)$ (resp. $\mathcal{N}^a(\Omega)$, $\mathcal{E}^a(\Omega)$) is the set of functions $u \in \mathcal{F}(\Omega)$ (resp. $u \in \mathcal{N}(\Omega)$, $u \in \mathcal{E}(\Omega)$) whose Monge-Ampère measure $(dd^c u)^n$ is absolutely continuous with respect to capacity i.e. it does not charge pluripolar sets.

Finally, for $f \in \mathcal{E}$, we denote by $\mathcal{N}(f)$ (resp. $\mathcal{F}(f)$) the family of those $u \in PSH(\Omega)$ such that there exists a function $\varphi \in \mathcal{N}$ (resp. $\varphi \in \mathcal{F}$) satisfying the following inequality

$$\varphi(z) + f(z) \leq u(z) \leq f(z) \quad \forall z \in \Omega.$$

We shall use repeatedly the following well known comparison principle from [4] as well as its generalizations to the class $\mathcal{N}(f)$ (cf [1] [9]).

Theorem 2.1 ([1] [4] [9]). Let $f \in \mathcal{E}(\Omega)$ be a maximal function and $u, v, \in \mathcal{N}(f)$ be such that $(dd^c u)^n$ vanishes on all pluripolar sets in Ω. Then

$$\int_{(u<v)} (dd^c v)^n \leq \int_{(u<v)} (dd^c u)^n.$$

Furthermore if $(dd^c u)^n = (dd^c v)^n$ then $u = v$.

3. Proof of Main Theorem

Lemma 3.1 (Stability). Let μ be a finite nonnegative measure which vanishes on all pluripolar subsets of Ω and $f \in \mathcal{E}(\Omega)$ be a maximal function. Fix a function $v_0 \in \mathcal{E}(\Omega)$. Then for any $u_j, u \in \mathcal{N}^a(f)$ solutions to

$$(dd^c u_j)^n = h_j d\mu, \quad (dd^c u)^n = h d\mu$$

such that $0 \leq h d\mu, h_j d\mu \leq (dd^c v_0)^n$ and $h_j d\mu \rightarrow h d\mu$ as measures, we have that u_j converges towards u weakly.

The statement of the lemma fails if no control on the complex Monge-Ampère measures is assumed (see [15]).

Proof. It follows from the comparison principle that $u_j \geq v_0$, $\forall j \in \mathbb{N}$. Therefore by the general properties of psh functions $(u_j)_j$ is relatively compact in L^1_{loc}--topology. Let $\tilde{u} \in \mathcal{N}^a(f)$ be any closter point of the sequence u_j. Assume that $u_j \rightarrow \tilde{u}$ pointwise $d\lambda$--almost everywhere, here $d\lambda$ denotes the Lebesgue measure. By Lemma 2.1 in [11], after extracting a subsequence if
necessary, we have \(u_j \to \tilde{u} \, d\mu \)–almost everywhere. Then
\[
\tilde{u} = (\limsup_{j \to +\infty} u_j)^* = \lim_{j \to +\infty} (\sup_{k \geq j} u_k)^*.
\]
Now, consider the following auxiliary functions
\[
\tilde{u}_j = (\sup_{k \geq j} u_k)^* = (\lim_{l \to +\infty} (\sup_{l \geq k \geq j} u_k)^*).
\]
Observe that
\[
(dd^c \max(u_j, u_k))^n \geq \min(h_j, h_k) d\mu.
\]
Therefore
\[
(dd^c \tilde{u}_j)^n = \lim_{l \to +\infty} (dd^c \tilde{u}_j)^n \geq \lim_{l \to +\infty} \min_{l \geq k \geq j} h_k d\mu.
\]
We Let \(j \) converges to \(+\infty\) to get
\[
(dd^c \tilde{u})^n \geq h d\mu.
\]
Now, for the reverse inequality, pick \(\varphi \in E_0 \) a negative psh function. For any \(j \geq 1 \) and since \(u_j \leq \tilde{u}_j \), we have by integration by parts, which is valid in \(N^a(f) \) (cf [11]), that
\[
\int_{\Omega} -\varphi(dd^c u_j)^n \geq \int_{\Omega} -\varphi(dd^c \tilde{u}_j)^n.
\]
Therefore
\[
\lim_{j \to +\infty} \int_{\Omega} \varphi h_j d\mu \leq \lim_{j \to +\infty} \int_{\Omega} \varphi(dd^c \tilde{u}_j)^n = \int_{\Omega} \varphi(dd^c \tilde{u})^n.
\]
Together with the first inequality, we get
\[
\int_{\Omega} \varphi(dd^c \tilde{u})^n = \int_{\Omega} \varphi h d\mu, \quad \forall \varphi \in E_0.
\]
The set of test functions \(D(\Omega) \subset E_0 - E_0 \) (cf Lemma 2.1 in [11]) therefore the equality holds for any \(\varphi \in D(\Omega) \). Thence
\[
(dd^c \tilde{u})^n = h d\mu = (dd^c u)^n.
\]
Uniqueness in the class \(N^a(f) \) implies that \(\tilde{u} = u \) which concludes the proof.

Proof of Main Theorem. Assume first that \(F(t, .) \in L^1(d\mu) \). Then \(F(f, .) \in L^1(d\mu) \). It follows from [9] and [1] that the nonnegative measure \(F(f, .)d\mu \) is the Monge-Ampère measure of a function \(u_0 \) from the class \(F^a(f) \). Then
\[
(dd^c u_0)^n = F(f, .)d\mu \geq F(u_0, .)d\mu.
\]
We denote by \(A \) the set of all \(u \in F^a(f) \) such that \(u \geq u_0 \). The set \(A \) is convex and compact with respect to \(L^1(d\lambda) \)-topology, where \(d\lambda \) denotes the
Lebesgue measure in \mathbb{C}^n. Once more, by [9] (see also [1]), we have for each $u \in A$, there exists a unique $\hat{u} \in F^a(f)$ such that
\[(dd^c\hat{u})^n = F(u,.)d\mu.\]

Since $\hat{u} \leq f$ and F is nondecreasing in the first variable then
\[(dd^c\hat{u})^n = F(u,.)d\mu \leq F(f,.)d\mu = (dd^c\hat{u})^n.\]

The comparison principle yields that $\hat{u} \geq u \geq u_0$, hence $\hat{u} \in A$.

We define the map $T : A \to A$ by $u \mapsto \hat{u}$. By Schauder’s fixed point theorem, we are done as soon as we show that the map T is continuous. Let $u_j \in A$ be a sequence which converges towards $u \in A$. By Lemma 3.1, it’s enough to show that $F(u_j,.)d\mu \to F(u,.)d\mu$. After extracting a subsequence, we may assume that $u_j \to u \ d\lambda$-a.e. Applying Lemma 2.1. in [11], we get $u_j \to u \ d\mu$-a.e. By Lebesgue convergence theorem we have $F(u_j,.)d\mu \to F(u,.)d\mu$.

We now proceed to complete the proof of the general case. Let us consider the set
\[K := \{\varphi \in \mathcal{N}^a(f); (dd^c\varphi)^n \geq F(\varphi,.)d\mu\} .\]

Claim 1. K is not empty: It follows from the monotonicity of F
\[(dd^c\varphi_0 + f)^n \geq (dd^c\varphi_0)^n \geq F(\varphi_0,.)d\mu \geq F(\varphi_0 + f,.)d\mu .\]

Then the function $\varphi_0 := \varphi_0 + f$ belongs to K.

Let denote
\[K_0 := \{\varphi \in K; \varphi \geq \varphi_0\} .\]

Claim 2. K_0 is stable by taking the maximum: Let $\varphi_1, \varphi_2 \in K_0$. It’s clear that $\max(u_1, u_2) \geq \varphi_0$. Since $\mathcal{N}^a(f)$ is stable by taking the maximum then $\max(u_1, u_2) \in \mathcal{N}^a(f)$. On the other hand, from [18], we have
\[(dd^c\max(u_1, u_2))^n \geq \sum_{(u_1 \geq u_2)} (dd^c u_1)^n + \sum_{(u_1 < u_2)} (dd^c u_2)^n \geq \sum_{(u_1 \geq u_2)} F(u_1,.)d\mu + \sum_{(u_1 < u_2)} F(u_2,.)d\mu \geq F(\max(u_1, u_2),.)d\mu .\]

Which implies that $\max(u_1, u_2) \in K_0$.

Claim 3. K_0 is compact in $L^1_{loc}(\Omega)$: It’s enough to prove that it’s closed. Let $\varphi_j \in K_0$ be a sequence converging towards $\varphi \in \mathcal{N}^a(f)$. The limit function is given by $\varphi = (\limsup_{j \to \infty} \varphi_j)^*$. Then $\varphi_0 \leq \varphi \leq f$. The continuity of
the complex Monge-Ampère operator and the properties of F yield
\[
(dd^c \varphi)^n = \lim_{j \to +\infty} (dd^c \sup_{k \geq j} \varphi_k)^n \\
= \lim_{j \to +\infty} \lim_{l \to +\infty} (dd^c \max_{l \geq k \geq j} \varphi_k)^n \\
\geq \lim_{j \to +\infty} \lim_{l \to +\infty} F(\max_{l \geq k \geq j} \varphi_k, \cdot) \, d\mu.
\]

Therefore $\varphi \in K_0$.

Consider the following upper envelope
\[
\phi(z) := \sup \{ \varphi(z); \varphi \in K_0 \}.
\]

Notice that in order to get a psh function ϕ we should a priori replace ϕ by its upper semi-continuous regularization $\phi^*(z) := \limsup_{\zeta \to z} \phi(\zeta)$ but since $\phi^* \in K_0$ as well ϕ^* contributes to the envelope (i.e. $\phi^* \in K_0$) and then $\phi = \phi^*$.

Claim 4. ϕ is solution to Monge-Ampère equation (1.1): It follows from Choquet’s Lemma that there exists a sequence $\phi_j \in K_0$ such that
\[
\phi = (\limsup_{j \to +\infty} \phi_j)^*.
\]

Since the class K_0 is stable under taking the maximum, we can assume that ϕ_j is nondecreasing. We use the classical balayage procedure to prove that ϕ is actually a solution of (1.1). Pick $B \Subset \Omega$ a ball and define the function
\[
\phi^B_j(z) := \sup \{ v(z); v^* \leq \phi_j \text{ on } \partial B, \ v \in PSH(B) \}, \ \forall z \in B.
\]

By the first case, there exists a function $\tilde{\phi}_j \in \mathcal{F}^a(\phi_j^B, B)$ solution to the following equation
\[
(dd^c \tilde{\phi}_j)^n = \mathbf{1}_B F(\tilde{\phi}_j, \cdot) \, d\mu.
\]

In fact, the function $\tilde{\phi}_j$ is given by the following upper envelope
\[
\tilde{\phi}_j := \sup \{ w \in \mathcal{E}(B); w \leq \phi_j^B \text{ and } (dd^c w)^n \geq F(w, \cdot) \, d\mu \}.
\]

Indeed, if we denote by g the right hand side function, then $\tilde{\phi}_j \leq g \leq \phi_j^B$. Hence $g \in \mathcal{F}^a(\phi_j^B, B)$. It follows by Lemma 3.3 in [1] that
\[
\int_{\Omega} \chi(dd^c \tilde{\phi}_j)^n \leq \int_{\Omega} \chi(dd^c g)^n, \ \forall \chi \in \mathcal{E}_0.
\]

On the other hand, as before, we have $g = (\lim g_k)^*$ where $g_k \in \mathcal{E}(B)$ is a nondecreasing sequence satisfying $\phi_j^B \geq g_k \geq \phi_j$ and $(dd^c g_k)^n \geq F(g_k, \cdot) \, d\mu$. Therefore $(dd^c g)^n \geq F(g, \cdot) \, d\mu$. Then
\[
(dd^c \tilde{\phi}_j)^n = F(\tilde{\phi}_j, \cdot) \, d\mu \leq F(g, \cdot) \, d\mu \leq (dd^c g)^n.
\]

Combining (3.1) and (3.2), one get
\[
(dd^c \tilde{\phi}_j)^n = (dd^c g)^n,
\]
therefore, by the comparison principle, we have $\tilde{\phi}_j = g$.

Now, for $j \in \mathbb{N}$, let consider the function ψ_j defined on Ω by

$$
\psi_j(z) = \begin{cases}
\tilde{\phi}_j(z) & \text{if } z \in B \\
\phi_j(z) & \text{if } z \not\in B
\end{cases}.
$$

On B we have $\phi_j \leq \tilde{\phi}_j \leq \phi_j^B \leq f$ and on $\Omega \setminus B$ we have $\tilde{\phi}_j = \phi_j \leq f$. Hence $\psi_j \in \mathcal{N}^a(f)$. From the definition of ψ_j, we deduce that $(dd^c\psi_j)^n \geq F(\psi_j, \cdot) d\mu$. Therefore $\psi_j \in \mathcal{K}_0$ and

$$
\phi = (\lim_{j \to +\infty} \psi_j)^*.
$$

Since the complex Monge-Ampère operator is continuous under monotonic sequences and B is arbitrarily chosen, to conclude the proof of the claim it’s enough to observe that the sequence ψ_j is nondecreasing.

Uniqueness follows in a classical way from the comparison principle and the monotonicity of the function F. Indeed, assume that there exist two solutions φ_1 and φ_2 in $\mathcal{N}^a(f)$ such that

$$(dd^c\varphi_i)^n = F(\varphi_i, \cdot) d\mu, \quad i = 1, 2.$$

Since the function F is nondecreasing in the first variable, then

$$
F(\varphi_1, \cdot) d\mu \leq F(\varphi_2, \cdot) d\mu \quad \text{on} \quad (\varphi_1 < \varphi_2).
$$

On the other hand, by the comparison principle we have

$$
\int_{(\varphi_1 < \varphi_2)} F(\varphi_2, \cdot) d\mu = \int_{(\varphi_1 < \varphi_2)} (dd^c\varphi_2)^n \leq \int_{(\varphi_1 < \varphi_2)} (dd^c\varphi_1)^n = \int_{(\varphi_1 < \varphi_2)} F(\varphi_2, \cdot) d\mu.
$$

Therefore

$$
F(\varphi_1, \cdot) d\mu = F(\varphi_2, \cdot) d\mu \quad \text{on} \quad (\varphi_1 < \varphi_2).
$$

In the same way, we get the equality on $(\varphi_1 > \varphi_2)$ and then on Ω. Hence $(dd^c\varphi_1)^n = (dd^c\varphi_2)^n$ on Ω. Therefore uniqueness in the class $\mathcal{N}^a(f)$ yields $\varphi_1 = \varphi_2$ and the proof is completed.

Remarks. 1– We have no precise knowledge when the subsolution of the equation (1.1) exists. However, if there exists a negative function $\psi \in PSH(\Omega)$ such that

$$
\int_{\Omega} -\psi F(0, \cdot) d\mu < \infty,
$$

then (1.1) admits a subsolution $v \in \mathcal{N}^a$. This is an immediate consequence of Proposition 5.2 in [9].

2– The condition 2 in the Theorem is necessary.
Acknowledgements. The author is grateful to the referee for his comments and suggestions. This note was written during the author’s visit to Institut de Mathématiques de Toulouse. He likes to thank Vincent Guedj and Ahmed Zeriahi for fruitful discussions and the warm hospitality.

References

[1] P.Åhag, U.Cegrell, R.Czyż and H.H.Pham. Monge-Ampère measures on pluripolar sets; J. Math. Pures Appl. (9) 92, No. 6, 613-627 (2009).
[2] E.Bedford; B.A.Taylor: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37 (1976), no. 1, 1–44.
[3] E.Bedford; B.A.Taylor: The Dirichlet problem for an equation of complex Monge-Ampère type. Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), pp. 39–50, Lecture Notes in Pure and Appl. Math., 48, Dekker, New York, 1979.
[4] E.Bedford; B.A.Taylor: A new capacity for plurisubharmonic functions. Acta Math. 149 (1982), no. 1-2, 1–40.
[5] S.Benelkourchi: Weighted Pluricomplex Energy. Potential Analysis: Volume 31, Issue1 (2009), 1–20
[6] S.Benelkourchi; V.Guedj; A.Zeriahi: Plurisubharmonic functions with weak singularities, Complex Analysis and Digital Geometry Proceedings from the Kiselmanfest, 2006. Uppsalan Universitet, 2007 ISSN 0502-7454, 57–73.
[7] Z.Błocki: On the definition of the Monge-Ampère operator in \mathbb{C}^2. Math. Ann. 328 (2004), no. 3, 415–423.
[8] Z.Błocki: The domain of definition of the complex Monge-Ampère operator. Amer. J. Math. 128 (2006), no. 2, 519–530.
[9] U.Cegrell: A general Dirichlet problem for of the complex Monge-Ampère operator. Ann. Plon. Math. Ann. Polon. Math. 94 (2008), no. 2, 131–147.
[10] U.Cegrell: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 159–179.
[11] U.Cegrell: Convergence in capacity. Isaac Newton Institute for Mathematical Sciences preprint series NI01046-NPD (2001). arxiv:math/0505218v1
[12] U.Cegrell: Pluricomplex energy. Acta Math. 180 (1998), no. 2, 187–217.
[13] U.Cegrell: On the Dirichlet problem for the complex Monge-Ampère operator. Math. Z. 185 (1984), no. 2, 247–251.
[14] U. Cegrell; S. Kołodziej: The equation of complex Monge-Ampère type and stability of solutions. Math. Ann. 334 (2006), no. 4, 713–729.

[15] U. Cegrell, S. Kołodziej: The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation-invariant measures. Michigan Math. J. 41 (1994), no. 3, 563–569.

[16] Cheng, Shiu Yuen; Yau, Shing Tung: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544.

[17] R. Czyż: The complex Monge-Ampère operator in the Cegrell classes. Dissertationes Math. (Rozprawy Mat.) 466 (2009), 83 pp.

[18] J.-P. Demailly: Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, 115–193, Univ. Ser. Math., Plenum, New York (1993).

[19] S. Kołodziej: The complex Monge-Ampère equation. Acta Math. 180 (1998), no. 1, 69–117.

[20] S. Kołodziej: The complex Monge-Ampère equation and pluripotential theory. Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64 pp.

[21] S. Kołodziej: Weak solutions of equations of complex Monge-Ampère type. Ann. Polon. Math. 73 (2000), no. 1, 59–67.

[22] Yau, Shing Tung: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

Université de Montréal, Pavillon 3744, rue Jean-Brillant, Montréal QC H3C 3J7, Canada.

E-mail address: slimane.benelkourchi@umontreal.ca