Multiple phosphorylation events regulate the activity of the mannitol transcriptional regulator MtlR of the Bacillus stearothermophilus phosphoenolpyruvate-dependent mannitol phosphotransferase system
Henstra, S.A; Duurkens, R.H.T.; Robillard, G.T.

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.275.10.7037

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Henstra, S. A., Duurkens, R. H. T., & Robillard, G. T. (2000). Multiple phosphorylation events regulate the activity of the mannitol transcriptional regulator MtlR of the Bacillus stearothermophilus phosphoenolpyruvate-dependent mannitol phosphotransferase system. The Journal of Biological Chemistry, 275(10), 7037 - 7044. https://doi.org/10.1074/jbc.275.10.7037

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Multiple Phosphorylation Events Regulate the Activity of the Mannitol Transcriptional Regulator MtlR of the Bacillus stearothermophilus Phosphoenolpyruvate-dependent Mannitol Phosphotransferase System*

Sytske A. Henstra, Ria H. Duurkens, and George T. Robillard†

From the Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

Many bacteria transport D-mannitol and other carbohydrates via a phosphoenolpyruvate-dependent phosphotransferase system (PTS). The genes involved in mannitol uptake in this bacterium is regulated by the transcriptional regulator MtlR, a DNA-binding protein whose affinity for DNA is controlled by phosphorylation by the PTS proteins HPr and IICB^{mtl}. The mutational and biochemical studies presented in this report reveal that two domains of MtlR, PTS regulation domain (PRD)-I and PRD-II, are phosphorylated by HPr, whereas a third IIA-like domain is phosphorylated by IICB^{mtl}. An involvement of PRD-I and the IIA-like domain in a decrease in affinity of MtlR for DNA and of PRD-II in an increase in affinity is demonstrated by DNA footprint experiments using MtlR mutants. Since both PRD-I and PRD-II are phosphorylated by HPr, PRD-I needs to be dephosphorylated by IICB^{mtl} and mannitol to obtain maximal affinity for DNA. This implies that a phosphoryl group can be transferred from HPr to IICB^{mtl} via MtlR. Indeed, this transfer can be demonstrated by the phosphoenolpyruvate-dependent formation of [3H]mannitol phosphate in the absence of IIA^{mtl}. Phosphoryl transfer experiments using MtlR mutants revealed that PRD-I and PRD-II are dephosphorylated via the IIA-like domain. Complementation experiments using two mutants with no or low phosphoryl transfer activity showed that phosphoryl transfer between MtlR molecules is possible, indicating that MtlR-MtlR interactions take place. Phosphorylation of the same site by HPr and dephosphorylation by IICB^{mtl} have not been described before; they could also play a role in other PRD-containing proteins.

EXPERIMENTAL PROCEDURES

Materials—Restriction enzymes, T4 DNA polymerase, nucleotides, oligonucleotide kinase, pyruvate kinase, and isopropyl-1-thio-β-D-galactopyranoside were purchased from Roche Molecular Biochemicals. [γ-³²P]ATP (3000 Ci/mmole) and [3H]mannitol (15–30 Ci/mmole) were obtained from Amersham Pharmacia Biotech and ICN, respectively. RNase-free RQ1 DNase I was obtained with the Promega Core Footprinting system, and N₂-nitroliatrocinic acid-agarose was from QIA-GEN Inc. Primers were synthesized by Eurosequence B. V. Groningen. P-enolpyruvate and yeast tRNA were purchased from Sigma. Site-directed mutagenesis was performed with the QuickChange kit from Stratagene. α-Chymotrypsin (50.5 units/mg) was obtained from Worth-
The B. steareothermophilus Mannitol Regulator MtlR

ingon. Anti-His tag and anti-mouse antibodies were purchased from Amersham Pharmacia Biotech and Sigma, respectively.

Purification of B. steareothermophilus E1, HPr, IAA, IICB, and MtlR—MtlR and mutants of MtlR were overexpressed in *Escherichia coli* BL21(DE3) (9); B. steareothermophilus E1 and HPr were expressed in *E. coli* ZS12LHAC (10); and B. steareothermophilus ICA was expressed in *E. coli* MJ101 (11). These proteins were purified as described by Henstra et al. (7). The *B. steareothermophilus* mannitol transporter ICB was expressed in the mannitol deletion *E. coli* strain LGS322 (12) and purified as described by Henstra et al. (4). PTO protein activities were measured as mannitol phosphorylation activity as described by Robillard and Blauw (13).

General Methods—DNA was isolated from agarose gels using the gel extraction kit from Qiagen Inc. Protein concentrations were determined according to Bradford (14). General DNA manipulations were performed as described by Sambrook et al. (15). Sequence data base searches were performed using the program BLAST at NCBI (16).

MtlR Mutants—The mutants of MtlR that were made following the Quickchange kit protocol of Stratagene are listed in Table I. Two complementary primers containing the mutation were created and used in a PCR amplifying 25 ng of the MtlR expression plasmid pETMtlRHis. The sequences of one strand of each of the complementary primers are listed in Table II. The PCR mixture was first incubated for 10 min at 94 °C, followed by 18 cycles of 1-min denaturation at 94 °C, 1-min annealing at 62 °C and 16-min extension at 68 °C. Methylated template DNA was digested by DpnI, and the remaining PCR product was precipitated and re-dissolved in 2 μl of triple-distilled water. After transformation to *E. coli* XLI-Blue, the plasmid was isolated and checked for the mutation by restriction analysis. After checking the entire MtlR sequence of a mutant, the plasmid was transformed to the T7 expression strain BL21(DE3). Double mutants of MtlR were created in a second round using one of the single mutants as template exactly as described above.

DNA Footprinting—DNA footprinting was performed essentially as described by Henstra et al. (7). A single-end 32P-labeled DNA probe of the mannitol promoter region was synthesized in a PCR in which one of the primers was labeled with 100 Ci of [32P]P-enolpyruvate. The labeled forward primer was purified by chloroform/phenol and chloroform extractions followed by ethanol precipitation.

RESULTS

Two domains, PRD-I and PRD-II, are expected to contain the phosphorylation sites involved in the regulation of MtlR. To demonstrate their involvement, mutants were made in which one or two of the conserved histidines were replaced by alanine. Wild-type MtlR and mutant MtlR were expressed in *E. coli* BL21(DE3) and purified by Ni2⁺ chelating chromatography. The expression levels, yield, and purity of all the mutants are comparable to those of the wild-type protein (data not shown). The purified proteins were used in [32P]P-enolpyruvate-dependent phosphorylation and footprint experiments to examine the effects of the mutation on HPr- and IICB-dependent phosphorylation and the binding properties of the protein for the mannitol operator.

Table I

List of MtlR mutants used
Plasmid
pETMtlRHis
pETMtlR-AHHH
pETMtlR-HAHH
pETMtlR-HAHH
pETMtlR-AHHH
pETMtlR-AHAA
pETMtlR-HAHA
pETMtlR-AAAA
pETMtlR-AAAAH

Table II

Mutation	Primer	Restriction site
H236A	3′-CGTATATTGGTGTCGCTGGCTGCTTTGGCCTAGTTAAGG -5′	NheI
H295A	3′-CGGAGATCAGGCTATTACAGGTTAAGGAGCGAACCCATCG -5′	NcoI
H348A	3′-CGGAGATTGTTGGTCTGGCTGGCTTTGGCCTAGTTAAGG-5′	DdeI
H405A	3′-CGGATTTATTTTCGCTGGCTTTGGCCTAGTTAAGG-5′	PstI
H508A	3′-CGGAGATCAGGCTATTACAGGTTAAGGAGCGAACCCATCG -5′	NheI

Sequences of one strand of each of the complementary primers used to create His-to-Ala mutants of MtlR

Bases changed are indicated in boldface; the codon of the alanine is underlined; and the position of the restriction site that was created or removed is in italics.
Fig. 1. Localization and alignment of the putative phosphorylation sites of MtlR with those of other PRD-containing proteins and IIA proteins of the fructose family. A schematic presentation of the locations of PRD-I, PRD-II, and the IIA-like domain in the sequence of MtlR is shown in A. The location of the a-chymotrypsin cleavage site (Tyr-307) of the experiment described in the legend of Fig. 3 is indicated by the arrow. The regions containing the putative phosphorylation sites of PRD-I (B), PRD-II (C), and the IIA-like domain (D) of MtlR are aligned with other PRD-containing proteins and IIA components of the fructose family of the PTS. Sequences used in the alignments are MtlR and IIANt of *B. stearothermophilus* (bsu, b.ste), Sacr, Sacy, LicT, LicR, LevR, MtIR, and HABCNt of *B. subtilis* (bsu, b.sub); and BglG, IIAFr, IIANt, and IIAC of *E. coli* (eco, E.coli). HTH, helix-turn-helix.

![Diagram of protein localization and alignment](image)

Table 1. Localization and alignment of the putative phosphorylation sites of MtlR with those of other PRD-containing proteins and IIA proteins of the fructose family.

Protein	PRD-I	PRD-II	IIA-like
MtlR			
IIAfr			
IIAmtl			
IIABCfru			

Note: PRD-I and PRD-II are phosphorylation targets of IICBmtl. However, all of the mutants with replacement proteins in PRD-I or PRD-II could still be phosphorylated using [32P]P-enolpyruvate, followed by partial digestion of the phosphorylated protein by HPr, whereas mutations in PRD-I did not noticeably affect HPr-dependent phosphorylation. This indicates that both histidines of PRD-II are essential for MtlR phosphorylation by HPr. It is possible that PRD-I is the phosphorylation target of IICBmtl. However, all of the mutants with replacements in PRD-I or PRD-II could still be phosphorylated by ICBmtl, including the H236A/H598A and H295A/H405A double mutants, in which a histidine is replaced in both PRD-I and PRD-II. This indicates that there is another or an additional phosphorylation target for ICBmtl on the protein.

A careful analysis of the MtlR sequence was performed to identify additional putative phosphorylation sites. A sequence with low identity to IIA proteins of the fructose family, including IIANt of *B. stearothermophilus*, was found at the C terminus of MtlR (Fig. 1D). IIA proteins or domains are responsible for the transfer of the phosphoryl group from HPr to the B domain of the transporter. The new putative phosphorylation site is His-598 since it aligns with the active-site phosphohistidines of the IIA proteins. To test whether His-598 is involved in PTS-dependent phosphorylation, H598A mutants were made, and [32P]P-enolpyruvate-dependent phosphorylation was performed as described for the PRD mutants. Based on these experiments (Fig. 2B), HPr-dependent phosphorylation was not affected by the H598A, H236A/H598A, or H295A/H598A mutation. On the other hand, the ICBmtl-dependent phosphorylation levels of all H598A mutants were affected; they did not exceed the HPr background phosphorylation. These data indicate that the H598A mutation strongly reduces or completely inhibits ICBmtl-dependent phosphorylation.

The phosphorylation experiments described above do not exclude HPr-dependent phosphorylation of PRD-I. We must consider whether mutations in PRD-II have reduced the efficiency of phosphorylation of PRD-I by HPr. Initial protease digestion experiments showed that MtlR can be primarily cut at sites in between PRD-I and PRD-II (data not shown). This implied that the phosphorylation of PRD-I by HPr or IICBmtl could be resolved using limited proteolysis of MtlR. This was done by phosphorylation of wild-type MtlR by HPr or IICBmtl using [32P]P-enolpyruvate, followed by partial digestion of the phosphorylated protein by a-chymotrypsin. Phosphorylated fragments were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose. The phosphorylated fragments were visualized using a PhosphorImager (Fig. 3A). Fragments containing the N-terminal His tag were colored using His tag-specific antibodies (Fig. 3B). The mass of each fragment was determined using a partial CNBr digest of MtlR as a reference.

D Digestion of the intact protein, phosphorylated by HPr (Band I in Fig. 3A, lane 1) and digested by a-chymotrypsin, resulted in two new labeled fragments with masses of 44 and 36 kDa (Bands II and III, respectively, in Fig. 3A, lane 2). The 36-kDa band was identified as an N-terminal fragment by the anti-His tag antibodies (Fig. 3B, lane 2). Both bands are probably the result of a single cut of MtlR at tyrosine 329 (tyrosine 307 in the non-His-tagged protein) since the masses of both bands add up to that of the intact protein. This implies that HPr can phosphorylate Band III containing PRD-I and Band II containing PRD-II and the IIA-like domain. Both fragments were phos-
Additional cleavage products containing the IICBmtl phospho-
protein (Fig. 3), are probably phosphorylated degradation products
of MtlR (7). Since mutations affecting PTS-de-
phorylation was carried out with 8 μM \([32P]\)P-enolpyruvate, 0.04 mg/ml
EI, and 5 μM HPr. In the middle panels, phosphorylation was carried out with 8 μM \([32P]\)P-enolpyruvate, 0.04 mg/ml EI, 0.5 μM HPr, 0.4 μM IIAmtl, and
0.02 μM IICBmtl. In the lower panels, a reaction without IICBmtl was performed for each mutant to determine the background of HPr-dependent
phosphorylation (HPr Backgr.) in the IICBmtl phosphorylation experiment. The mixtures were incubated for 5 min at 30 °C, and the reactions were
then started by the addition of 0.09 mg/ml MtlR or MtlR mutant. After 20 min at 30 °C, the reactions were stopped with 0.4 volume of denaturation
buffer.

![Figure 2](image2.png)

Fig. 2. Phosphorylation of MtlR and MtlR mutants by HPr and IICBmtl. Shown is the phosphorylation of MtlR and MtlR mutants with single or double mutations of putative histidine phosphorylation sites replaced by alanine in PRD-I and PRD-II (A) and the IIA-like domain (B). Replacement of histidine by alanine is indicated by a above the lanes. The positions (pos.) of these residues are indicated to the left. The control experiment without MtlR is presented in lane 10. In the upper panels, phosphorylation was carried out with 8 μM \([32P]\)P-enolpyruvate, 0.04 mg/ml EI, and 5 μM HPr. In the middle panels, phosphorylation was carried out with 8 μM \([32P]\)P-enolpyruvate, 0.04 mg/ml EI, 0.5 μM HPr, 0.4 μM IIAmtl, and
0.02 μM IICBmtl. In the lower panels, a reaction without IICBmtl was performed for each mutant to determine the background of HPr-dependent
phosphorylation (HPr Backgr.) in the IICBmtl phosphorylation experiment. The mixtures were incubated for 5 min at 30 °C, and the reactions were
then started by the addition of 0.09 mg/ml MtlR or MtlR mutant. After 20 min at 30 °C, the reactions were stopped with 0.4 volume of denaturation
buffer.

![Figure 3](image3.png)

Fig. 3. Limited proteolysis of MtlR phosphorylated by HPr
and IICBmtl. MtlR was phosphorylated by HPr (lanes 1 and 2) and
IICBmtl (lanes 3 and 4) exactly as described for Fig. 2A. Part of the
phosphorylated MtlR protein was digested by α-chymotrypsin for 2 min.
Both uncleaved MtlR (lanes 1 and 3) and cleaved MtlR (lanes 2 and 4)
were analyzed by SDS-polyacrylamide gel electrophoresis as described
under “Experimental Procedures.” The autoradiogram presenting
phosphorylated peptides is shown in A, and the Western blot showing only
the N-terminal His-tagged peptides is shown in B. Band I is uncleaved
MtlR, and Bands II and III are cleavage products of interest. His-tagged
MtlR, partly cleaved by CNBr, was used as a reference. The positions
(Pos.) of the N-terminal His-tagged peptides in the CNBr digest are
indicated to the right. For each CNBr cleavage fragment, the cleavage
location in the sequence and the mass of the peptide are given.

When the protein was phosphorylated by IICBmtl, only Band II, containing
PRD-II and the IIA-like domain, was phosphorylated. This
excludes a possible phosphorylation of PRD-I by IICBmtl.

The weak bands, visible in lanes containing the uncut pro-
tein (Fig. 3), are probably phosphorylated degradation products
of MtlR that could not be removed during purification (7). Additional
cleavage products containing the IICBmtl phosphorylation site His-598 could
explain the additional labeled polypeptides such as fragment IV present only in digests of
MtlR phosphorylated by IICBmtl (Fig. 3A, lane 4).

**Phosphorylation and the Affinity of MtlR Mutants for DNA
Binding**—The affinity of MtlR for DNA is dependent on its
phosphorylation state (7). Since mutations affecting PTS-de-
pendent phosphorylation would also affect the response of the protein to different phosphorylation conditions, we performed
quantitative DNA footprint experiments using several mu-
tants. Four different phosphorylation conditions per mutant
were examined: 1) dephosphorylation of MtlR in the presence of
EI, HPr, IIAmtl, IICBmtl, and mannitol (Fig. 4, □); 2) phospho-
ylation of MtlR by HPr in the presence of P-enolpyruvate, EI,
and HPr (○); 3) phosphorylation of MtlR by HPr and IICBmtl
in the presence of P-enolpyruvate, EI, HPr, IIAmtl, and IICBmtl
(△); and 4) phosphorylation of MtlR by HPr in the presence of
P-enolpyruvate, EI, and HPr and simultaneous dephosphory-
ation by IICBmtl and mannitol (◇). Since MtlR was purified in
a phosphorylated form, MtlR and its mutants were first de-
phosphorylated by incubation at pH 6.5 for 2 h at 30 °C. After
incubation of MtlR and the mutant proteins under the different
phosphorylation conditions, the proteins were diluted to vari-
os concentrations using the same phosphorylation mixtures to
maintain identical phosphorylation conditions during the DNA
binding experiments for all dilutions. Binding of MtlR to DNA
was followed by measuring the intensity of the footprint located
at positions −46 to −41 (7). The level of protection of this
region at each protein concentration was calculated from the
decrease in intensity of this area compared with that of the
unprotected DNA. These values are plotted against the loga-
Rithm of the protein concentration for each phosphorylation
condition and each mutant in Fig. 4. The midpoint of the
sigmoidal curves represents the concentration of MtlR that
gives a protection level of 50% and is a measure of the affinity
of the protein for DNA. Wild-type MtlR (Fig. 4A) behaved under
the four phosphorylation conditions as observed previously (7).
Phosphorylation by HPr resulted in a small increase, whereas
phosphorylation by HPr and IICBmtl resulted in a decrease in
binding affinity compared with the non-phosphorylated
protein. Maximal stimulation was observed with the combination of phosphor-
ylation of MtlR by HPr and dephosphorylation via
IICBmtl and mannitol.

When one of the conserved histidines in PRD-I was replaced
(Fig. 4, B and C), the affinity of these mutants, when phosho-
phorylated by HPr (○) alone or by HPr and IICBmtl (△), increased
4–5-fold compared with the affinity of wild-type MtlR under
MtlR and MtlR mutants were dephosphorylated or phosphorylated by adding different components of the PTS, including P-enolpyruvate and mannitol, as described under “Results.” After incubation, the samples were diluted to different concentrations of MtlR, and the binding to DNA was determined by DNA footprinting as described under “Experimental Procedures.” For each phosphorylation condition, the relative protection is plotted against the logarithm of the concentration of MtlR or MtlR mutant. The relative protection is a measure of the number of DNA molecules bound in the presence and absence of phosphorylated MtlR. A linear increase in the level of P-enolpyruvate-dependent reaction was determined by linear regression and is a measure for the phosphoryl transfer rate from P-enolpyruvate to [3H]mannitol via the PTS.

MtlR-dependent Phosphoryl Transfer from HPr to IICB

It was suggested that HPr could play a dual role in the regulation of MtlR since maximal stimulation of DNA binding was observed when MtlR was both phosphorylated by HPr and dephosphorylated by IICB. Diphosphorylation of one of the PRDs by IICB could be a possible explanation. When a site can be phosphorylated by HPr and subsequently dephosphorylated by IICB, P-enolpyruvate-dependent phosphoryl transfer from HPr to IICB via this site on MtlR must be possible. The transfer of a phosphate group from P-enolpyruvate via EI, HPr, MtlR, and IICB to mannitol can be followed by measuring the formation of [3H]mannitol phosphate as described under “Experimental Procedures.” The formation of mannitol phosphate was followed against time (Fig. 5). The P-enolpyruvate-dependent component of the [3H]mannitol phosphate by 0.04 mg/ml EI, 1.5 μM HPr, 0.02 μM IICB, and 5 mM mannitol. The mutant used is indicated in each panel.

If one or both conserved histidines of PRD-II was replaced by alanine (Fig. 4, E–G), the positive effects of phosphorylation by HPr disappeared (△ and ○). Phosphorylation by HPr alone (○) resulted even in a decrease in affinity for the DNA compared with the non-phosphorylated protein (△). The negative effects of phosphorylation by IICB appeared to be unaffected in these mutants (△). The observed negative effect of phosphorylation by HPr (○) on these mutants disappeared if the protein was simultaneously dephosphorylated by IICB and mannitol (△). However, under these conditions, the affinity of the protein did not exceed that of the non-phosphorylated protein (compare △ and □). Replacement of His-598 by alanine had a dramatic effect on the regulation of MtlR by the PTS. The H598A mutant had a low affinity under all phosphorylation conditions, comparable to that of wild-type MtlR phosphorylated by HPr and IICB.

It was suggested that HPr could play a dual role in the regulation of MtlR since maximal stimulation of DNA binding was observed when MtlR was both phosphorylated by HPr and dephosphorylated by IICB. Diphosphorylation of one of the PRDs by IICB could be a possible explanation. When a site can be phosphorylated by HPr and subsequently dephosphorylated by IICB, P-enolpyruvate-dependent phosphoryl transfer from HPr to IICB via this site on MtlR must be possible. The transfer of a phosphate group from P-enolpyruvate via EI, HPr, MtlR, and IICB to mannitol can be followed by measuring the formation of [3H]mannitol phosphate as described under “Experimental Procedures.” The formation of mannitol phosphate was followed against time (Fig. 5, △ and ○) in the presence (○) and absence (△) of P-enolpyruvate. In the absence of P-enolpyruvate, formation of mannitol phosphate to a certain level was observed, indicating that one or several of the added proteins were already phosphorylated. The P-enolpyruvate-independent phosphorylation of mannitol was not observed if MtlR was replaced by IIA and IICB, indicating that MtlR is the phosphoryl donor in the P-enolpyruvate-independent phosphorylation reaction (Table III). The end level of the P-enolpyruvate-independent reaction is a measure for the number of phosphate groups present on MtlR. A linear increase in the level of mannitol phosphate was observed (△) when the difference between the reaction with (○) and without (△) P-enolpyruvate was plotted against the reaction time. The P-enolpyruvate-dependent phosphoryl transfer rate can be calculated from the slope of this line and is dependent on the MtlR concentration used (data not shown). The phosphoryl transfer via MtlR is not efficient
TABLE III
P-enolpyruvate-dependent and -independent phosphoryl transfer activities of MtlR and its mutants

Mutant	PEP-dependent activity	PEP-independent phosphorylation level
	nmol min⁻¹ g⁻¹	mol P/mol MtlR
Wild-type	29	0.9
H236A	18	0.6
H295A	46	0.7
H236A/H295A	32	0.5
H348A	11	0.8
H405A	11	0.8
H348A/H405A	7.1	0.9
H236A/H348A	3.5	0.6
H295A/H405A	4.7	0.6
H508A	0.3	0.0
H598A + H348A/H405A	37	0.8
IIA⁰⁺⁺	7600	0.0

* PEP, P-enolpyruvate.

compared with the phosphoryl transfer by IIA⁻⁺⁺. The turnover via IIA⁻⁺⁺ is ~45 times higher than that via MtlR.

To assign domains in MtlR responsible for the observed phosphoryl transfer, P-enolpyruvate-dependent and -independent phosphorylation experiments were performed using the MtlR mutants. The plateau level of the P-enolpyruvate-independent reaction and the P-enolpyruvate-dependent phosphoryl transfer rate are listed in Table III. The phosphoryl transfer rate was decreased and increased by 50% for the PRD-I single mutants H236A and H295, respectively, whereas the activity was unaffected in the H236A/H295A double mutant. The H348A, H405A, and H348A/H405A histidine mutations in PRD-II resulted in decreased phosphoryl transfer activity to 36, 39, and 24%, respectively, compared with wild-type activity. Mutations in both PRD-I and PRD-II led to even further decreases in activity to 12 and 16% of wild-type activity for the H236A/H348A and H295A/H405A mutants, respectively. In the H598A mutant, phosphoryl transfer activity was completely absent, indicating that His-598 is essential for the observed phosphoryl transfer activity. In addition, the H598A mutant was the only mutant that had no P-enolpyruvate-independent phosphorylation activity. The protein is either not phosphorylated or cannot be dephosphorylated by IICB⁻⁺⁺ and mannitol. For all other mutants and wild-type MtlR, comparable P-enolpyruvate-independent phosphoryl transfer levels were observed. Since the initial phosphorylation levels are not known, the number of phosphorylation sites per MtlR molecule cannot be determined with this method.

The E. coli β-glucoside regulator BglG has been observed as a monomer or a dimer, depending on its phosphorylation state (19). The formation of di- or multimers could also play a role in the regulation of the activity of MtlR. Complementation experiments were performed to test whether phosphoryl transfer from one MtlR molecule to another can take place in these putative MtlR multimers as described in the legend of Table III. In these experiments, we determined the P-enolpyruvate-dependent phosphoryl transfer rate of a mixture of the inactive H598A mutant and the PRD-II H348A/H405A double mutant with an activity of 24% compared with the wild-type protein. Combination of equal amounts of the PRD-II H348A/H405A mutant and the inactive H598A mutant resulted in the recovery of phosphorylation activity. 127% of wild-type activity was found when the activity was calculated as the phosphorylation rate/mg of one of the mutants (Table III). The double amount of
intact PRD-I domain in the complementation reaction compared with the reaction of wild-type MtlR could explain a complementation beyond 100% activity.

DISCUSSION

**Interplay between HPr- and IICBmtl-dependent Phosphorylation and Dephosphorylation in the Regulation of MtlR—MtlR senses the presence of mannitol and the need to utilize this substrate by monitoring the phosphorylation state of HPt and IICBmtl. Depending on the amounts of HPt, phospho-HPt, IICBmtl, and phospho-IICBmtl, phosphorylation or dephosphorylation of the individual domains of MtlR in the cell will lead to the stimulation or reduction of the expression of the mannitol operon as shown in Fig. 6. The phosphorylation level of HPt is dependent on the rate of uptake of all PTS carbohydrates, whereas that of IICBmtl is dependent only on the uptake rate of mannitol. At low PTS activities, phospho-HPt accumulates. MtlR is phosphorylated on both PRDs, resulting only in a slight stimulation of binding to DNA (Fig. 6A). Before full stimulation of MtlR by phosphorylated PRD-II can take place, PRD-I needs to be dephosphorylated by IICBmtl and mannitol (Fig. 6B). In the absence of phospho-HPt, MtlR is not phosphorylated on PRD-II and will not be stimulated to bind to the mannitol promoter region (Fig. 6C).

Location of the HPt- and IICBmtl-dependent Phosphorylation Sites in MtlR—Phosphorylation reactions with MtlR mutants indicated that both His-348 and His-405 of PRD-II are involved in the stable HPt-dependent phosphorylation. Whether PRD-I was phosphorylated by HPt could not be concluded from such experiments. Instead, α-chymotrypsin cleavage of wild-type MtlR at a location in between PRD-I and PRD-II was employed. It revealed that PRD-I was phosphorylated by HPt, however, the process was dependent on a functional PRD-II. Single mutations in PRD-II strongly reduced the total HPt-dependent phosphorylation of MtlR, whereas PRD-I and PRD-II were phosphorylated to the same order of magnitude when phosphorylation of the wild-type protein was studied in the α-chymotrypsin digestion experiments. In contrast, mutations in PRD-I seemed not to affect phosphorylation of PRD-II by HPt. A similar relation between a mutation in one PRD and the phosphorylation of another PRD has been observed for SacY and BglG (20–22). These observations suggest that phosphorylation of PRD-I and that of PRD-II are not independent reactions. Even the two phosphorylation sites within one PRD are not phosphorylated independently. In the case of PRD-II, a single mutation of either of the two phosphorylation sites results in the loss of HPt-dependent phosphorylation.

HPt-dependent Regulation of MtlR—The affinity of MtlR for its DNA-binding site is regulated by phosphorylation via HPt or IICBmtl. Our previous work suggested that phosphorylation by HPt could have two effects, one leading to an increase and the other to a decrease in the affinity of MtlR for DNA (7). The current study shows that HPt phosphorylates both PRD-I and PRD-II. The increased affinity is probably due to phosphorylation of PRD-II because, when phosphorylation sites are removed from this domain, phosphorylation of MtlR by HPt no longer results in an increased affinity for DNA. Similarly, the decreased affinity is due to the phosphorylation of PRD-I; removal of phosphorylation sites from this domain results in a protein that, when phosphorylated by HPt, possesses much higher affinities than wild-type MtlR for DNA.

The relationship between positive and negative regulation and phosphorylation of PRD-II and PRD-I, respectively, correlates with that of the anti-terminator SacT and probably LicT. SacT is involved in the activation of the sacPA operon of *Bacillus subtilis*. Mutations in PRD-1 of SacT result in the loss of negative control by the PTS upon expression of the sacPA operon (23, 24). The involvement of PRD-II in the positive regulation of SacT was suggested by site-directed mutagenesis studies.² For the anti-terminator LicT, the involvement of PRD-II with positive regulation has been confirmed (25). Whether PRD-I in this protein is responsible for the observed negative control by the PTS is still unclear (26–28). In contrast with LicT, SacT, and MtlR, phosphorylation of PRD-II in BglG and LevR is correlated with a negative regulation of these proteins (21). PRD-I is responsible for the positive regulation of LevR (29, 30).

IICBmtl-dependent Regulation of MtlR—The affinity of wild-type MtlR is decreased by phosphorylation by IICBmtl. Analysis of the chymotrypsin cleavage data indicated that PRD-II is phosphorylated in a IICBmtl-dependent manner that is contingent on the presence of His-598 in the IIA-like domain. This same analysis showed that PRD-I is not phosphorylated by IICBmtl. Nevertheless, the affinity of PRD-I mutants phosphorylated by HPt can be reduced by additional phosphorylation by IICBmtl. This points to a negative control site outside of PRD-I that can be phosphorylated by IICBmtl. The most likely candidate is His-598 in the IIA-like domain. Mutation of His-598 to alanine was expected to release the negative effect of phosphorylation by IICBmtl, but instead resulted in low affinity under all phosphorylation conditions. The mutation of His-598 could influence the structure of MtlR, resulting in the low affinity of this mutant. The possible inability of this mutant to dephosphorylate the site involved in negative control, PRD-I, is a less likely explanation since the H236A/H598A double mutant gives a similar result compared with the H598A single mutant in DNA binding experiments (data not shown).

IICBmtl is also needed for the release of negative control. Maximal HPt-dependent stimulation of MtlR-DNA binding is observed only in the presence of IICBmtl and the substrate mannitol. Dephosphorylation of sites of MtlR involved in negative control such as PRD-I by IICBmtl and mannitol could be an explanation. A relation between the response to an available substrate and the corresponding permease is also found for other PRD-containing proteins, as demonstrated for the combinations BglG/BglF, SacY/SacX, LicT/BglP, GlcT/IICBAglc, and LevR/LevE (28, 31–34). Mutations affecting the phosphorylation of these permeases resulted in constitutive expression of the genes under control of the corresponding transcriptional activators. Whether a IICBmtl mutation in *B. stearothermophilus* will lead to constitutive expression of the mannitol operon is questionable since the *in vitro* DNA binding of MtlR phosphorylated in the absence of IICBmtl is only slightly stimulated by HPt compared with the non-phosphorylated protein.

Dephosphorylation of the PRDs by IICBmtl via the IIA-like Domain in MtlR—The above-proposed dephosphorylation of PRD-I by IICBmtl implies that phosphorylation sites on PRD-I are directly or indirectly accessible to both HPt and IICBmtl. This is confirmed by the observed phosphoryl transfer from HPt to IICBmtl via MtlR. Internal phosphoryl transfer from one site to the other within MtlR is likely since HPt and IICBmtl have different phosphorylation targets on MtlR. Indeed, both the PRDs and His-598 appear to be involved in the phosphoryl transfer, as was demonstrated using MtlR mutants. His-598 is essential, indicating an important role for the IIA-like domain in this process. Mutations in PRD-I and PRD-II also affect phosphoryl transfer; however, phosphoryl transfer was not abolished for any of the PRD mutants, including the H236A/H295A and H348A/H405A double mutants, demonstrating that phosphoryl transfer is not solely dependent on one of the two PRDs. Probably both PRD-I and PRD-II can be dephospho-

² M. Arnaud, unpublished results.
rylated by IICBmtl. Even PRD-1/PRD-2 double mutants showed some phosphoryl transfer activity. At this point, direct phosphoryl transfer from HPr to the IIA-like domain cannot be excluded completely. Mutations in PRD-I and PRD-II could affect this process and explain the observed differences in the phosphoryl transfer rates of the various mutants.

An indication that phosphoryl transfer from the PRDs to the IIA-like domain takes place is the complementation observed when two mutant proteins, the PRD-II mutant H348A/H405A and the IIA-like domain mutant H598A, were combined. The low activity of the PRD-II double mutant could be restored by the inactive H598A mutant. This demonstrates that the phosphoryl groups can be transferred between MtlR molecules and could be seen as evidence for a functional interaction between two MtlR molecules with transfer occurring over the MtlR-MtlR interface. An increase in phosphoryl transfer activity was observed for the PRD-I mutant H295A compared with the inactive H598A mutant. This suggests a higher association state of MtlR that might be excluded completely. Mutations in PRD-I and PRD-II could affect this process and explain the observed differences in the phosphoryl transfer rates of the various mutants.

Conclusion—MtlR and the PTS provide a regulatory system that can monitor the presence of the substrate and the need to utilize it. MtlR is the first protein in the class of PRD-containing transcriptional regulators for which a dual effect on the activity of MtlR by HPr-dependent phosphorylation has been shown. Also, the phosphorylation of one or more sites by HPr and the subsequent dephosphorylation of these sites via IICBmtl have not been described before. Whether other proteins in this class have similar properties is still unclear. For LicR and MtlR of \textit{B. subtilis}, a similar mechanism can be expected since they are homologous to MtlR and contain two PRDs and a IIA-like domain as well. An interesting observation is the effect of PRD-II single mutations on the phosphorylation level of PRD-I. Mutations in PRD-II could influence the conformation of PRD-I and reduce its ability to be phosphorylated by HPr. However, the transfer of a phosphoryl group from PRD-II to PRD-I could be an alternative explanation. The phosphoryl transfer reaction between the PRDs and the IIA-like domain suggests a higher association state of MtlR that might be changed upon phosphorylation. The influence of phosphorylation on this association state will be the subject of further study.

REFERENCES

1. Lolkema, J. S., and Robillard, G. T. (1992) \textit{New Compr. Biochem.} 21, 135–168 (abstr.)

2. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993) \textit{Microbiol. Rev.} 57, 543–594

3. Robillard, G. T., Boer, H., Haris, P. I., Meijberg, W., Swaving-Dijkstra, D., Schuurman-Walters, G. K.,ten Hoeve Duurkens, R. H., Chapman, D., and Broos, J. (1996) in \textit{Transport Processes in Eukaryotic and Prokaryotic Organisms} (Koning, W. N., Kaback, H. R., and Lolkema, J. S., eds) pp. 549–572, Elsevier Science Publishers B. V., Amsterdam R. H. H.

4. Henstra, S. A., Tolner, B., ten Hoeve Duurkens, R. H., Koning, W. N., and Robillard, G. T. (1999) \textit{J. Bacteriol.} 178, 5586–5590

5. Reizer, J., Hauschen, C., Tiggesmeyer, F., Rivolta, C., Rabus, R., Stulke, J., Karamata, D., Saier, M. H., and Hillen, W. (1998) \textit{Mol. Microbiol.} 27, 1157–1169

6. Hurek, C. J., and Hillen, W. (1995) \textit{Mol. Microbiol.} 15, 395–401

7. Henstra, S. A.,Tuinhof, M., Duurkens, R. H., and Robillard, G. T. (1999) \textit{J. Biol. Chem.} 274, 4754–4770

8. Stulke, J., Arnaud, M., Rapoport, G., and Martin-Verstraete, I. (1998) \textit{Mol. Microbiol.} 29, 865–874 (abstr.)

9. Studier, F. W., and Moffatt, B. A. (1986) \textit{J. Mol. Biol.} 189, 113–130

10. Mao, Q., Schunk, T., Gertz, S., and Erni, B. (1995) \textit{J. Biol. Chem.} 270, 18295–18300

11. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) \textit{Gene (Amst.)} 33, 103–119

12. Grisafi, P. L., Scholle, A., Sugiyama, J., Briggs, C., Jacobson, G. R., and Lengeler, J. W. (1989) \textit{J. Bacteriol.} 171, 2719–2727

13. Robillard, G. T., and Blaas, M. (1987) \textit{Biochemistry} 26, 5796–5803

14. Bradford, M. M. (1976) \textit{Anal. Biochem.} 72, 248–254

15. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) \textit{Molecular Cloning: A Laboratory Manual}, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

16. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) \textit{J. Mol. Biol.} 215, 403–410

17. Roossien, F. F., Brink, J., and Robillard, G. T. (1983) \textit{Biochim. Biophys. Acta} 760, 185–187

18. Schagger, H., and von Jagow, G. (1987) \textit{Anal. Biochem.} 166, 368–379

19. Amster-Choder, O., and Wright, A. (1992) \textit{Science} 257, 1395–1398

20. Amster-Choder, O., Houman, F., and Wright, A. (1989) \textit{Cell} 58, 847–855

21. Chen, Q., Engelberg Kulka, H., and Amster-Choder, O. (1997) \textit{J. Biol. Chem.} 272, 17263–17268

22. Tortosa, P., Aymerich, S., Lindner, C., Saier, M. H., Jr., Reizer, J., and Le Coq, D. (1997) \textit{J. Bacteriol.} 272, 17230–17237

23. Arnaud, M., Debarbouille, M., Rapoport, G., Saier, M. H., Jr., and Reizer, J. (1996) \textit{J. Biol. Chem.} 271, 18966–18972

24. Arnaud, M., Vary, P., Zagurec, M., Klier, A., Debarbouille, M., Postma, P., and Rapoport, G. (1992) \textit{J. Bacteriol.} 174, 3161–3170

25. Lindner, C., Galinier, A., Hecker, M., and Deutscher, J. (1999) \textit{Mol. Microbiol.} 31, 995–1006

26. Kruger, S., Gertz, S., and Hecker, M. (1996) \textit{J. Bacteriol.} 178, 2637–2644

27. Kruger, S., and Hecker, M. (1995) \textit{J. Bacteriol.} 177, 5590–5597

28. Le Coq, D., Lindner, C., Kruger, S., Steinmetz, M., and Stulke, J. (1995) \textit{J. Bacteriol.} 177, 1527–1535

29. Martin-Verstraete, I., Charrier, V., Stulke, J., Galinier, A., Erni, B., Rapoport, G., and Deutscher, J. (1998) \textit{Mol. Microbiol.} 28, 293–303

30. Stulke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J., and Rapoport, G. (1995) \textit{J. Bacteriol.} 177, 6928–6936

31. Bachem, S., and Stulke, J. (1998) \textit{J. Bacteriol.} 180, 5319–5326

32. Crutz, A. M., Steinmetz, M., Aymerich, S., Richter, R., and Le Coq, D. (1990) \textit{J. Bacteriol.} 172, 1043–1050

33. Martin-Verstraete, I., Klier, A., and Rapoport, G. (1995) \textit{J. Bacteriol.} 177, 6919–6927

34. Schnetz, K., and Rak, B. (1996) \textit{Proc. Natl. Acad. Sci. U. S. A.} 87, 5074–5078