Direct observation and manipulation of hot electrons at room temperature

Hailu Wang1,5†, Fang Wang1,5†, Hui Xia1,5*, Peng Wang1,5,6, Tianxin Li1,5, Juzhu Li1, Zhen Wang1,5,6, Jiemin Sun2, Peisong Wu1,5, Jiafu Ye1,5, Qiandong Zhuang3, Zaixing Yang2, Lan Fu4, Weida Hu1,5*, Xiaoshuang Chen1,5*, Wei Lu1,5*

1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2School of Microelectronics, Shandong University, Jinan 250100, China
3Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
4Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
5University of Chinese Academy of Sciences, Beijing 100049, China
6Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding author: huix@mail.sitp.ac.cn; (H. Xia); wdhu@mail.sitp.ac.cn (W. Hu); xschen@mail.sitp.ac.cn; (X. Chen); luwei@mail.sitp.ac.cn, (W. Lu)

†H. Wang and F. Wang contributed equally to this work.

Abstract

In modern electronics and optoelectronics, hot electron behaviors are highly concerned since they determine the performance limit of a device or system, like the associated thermal or power constraint of chips, the Shockley-Queisser limit for solar cell efficiency. Up-to-date, however, the manipulation of hot electrons is mostly based on conceptual interpretations rather than a direct observation. The problem arises
from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility, and even its path. Such a process is accomplished through the scanning-photocurrent-microscopy (SPCM) measurements by activating the intervalley-scattering events and one-dimensional charge-neutrality rule. Findings discovered here may provide a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.

Keywords: hot electrons, valley-transfer, photogating, scanning photocurrent mapping

INTRODUCTION

In all the existing transistors, electrons are easily warmed up to a temperature higher than the crystal lattice, denoted as nonequilibrium or hot electrons. When flowing through the conduction channel, these hot electrons collide with the host lattice and transfer energies to the latter inevitably. It makes a transistor continuously give off heat to the environment and accounts for the heat-dissipation constraints of chips. Similarly, hot carriers in solar cells were commonly considered to cause great loss (~42%) of efficiency. Because these hot carriers, typically generated by absorbing high-energy photons (above bandgap of the semiconductor), tend to
dissipate excess energies through the relaxation process7,8. Resolving those problems, nowadays, should rely on a direct observation and thorough understanding of the hot carrier dynamic and kinetic processes, which, however, could be a great challenge9.

Fundamentally, difficulties in experimental approaches to such a microscopic process arise from the fact that hot electrons are only separated from cold ones in the momentum-energy space but behave the same way (similar transmission path or acceleration process) as cold electrons in real space at most times10. It makes the output electrical-signal can only reflect an average conductance of those energy-differential electrons11.

Efforts lately are devoted to imaging plasmon-induced hot electrons with various approaches, like photoconductive atomic force microscopy12, pump-probe spectroscopy13,14, and surface chemistry modification15,16 for tracing the hot electron related photocurrent or surface molecules reduction/generation. Yet, these approaches can’t be easily applied to other systems (like transistors and other state-of-art electronic devices) due to the very specific application scenarios: surface plasmon and hot electron transfer at heterointerface12-17. The lack of experimental information also accounts for the problems in physical modeling and analyzing. For example, in a quite long period time, an average velocity of electrons is the only information that can provide for the theoretical analysis of hot electrons, which dramatically increases the difficulties in resolving such typical nonequilibrium problems10,11,18.

Herein, we develop a distinct and simple approach to characterize hot-electron behaviors in both momentum and real spaces. The study was performed based on
semiconductor nanowire (NW) transistor, since it confines charge carriers for a quasi-one-dimensional transport (rather than a zigzag motion in bulk counterpart), that will significantly enhance the chances of locating hot electrons, for example by their unique mobility, velocity, or transport pathway. Note that semiconductor NW is also one of the most promising conduction-channel materials in the post-Moore-era19,20, in which the 3D design allows gate electrodes to closely control the current flow, for example, a higher on-off ratio and lower power consumption as compared with the rival planar-MOSFET and FinFET19. Another key point to distinguish hot electrons is the scanning-photocurrent-microscopy measurements, a non-disruptive photoelectric characterization method, that is commonly employed to confirm junction location21-23, electrical-contacts configuration24, the origin of photoresponse25,26, etc. Here, SPCM is used to activate the intervalley scattering events as well as the one-dimensional charge neutrality rule, as a means of spatial separation of hot electrons from cold ones.
RESULTS AND DISCUSSION

Figure 1. Electrical and photoelectric properties of GaAs NW transistor. (a) SEM image of back-gated GaAs NW (p-doped) transistor, with ~100 nm in diameter and ~4.7 μm in channel length. (b) Schematic show of the SPCM measurement setup. (c) SPCM images of a GaAs NW transistor at increasing bias-voltages on the bottom electrodes as indicated. The top electrode is kept ground. The photocurrent magnitude is represented by the color scale that increases from black (0) through orange to white (1). (d) Linear $I_{ds}-V_{ds}$ curves in dark and under 450 nm laser illumination. (e) Semi-logarithm $I_{ds}-V_{gs}$ characteristics at different V_{ds}. (f) Photocurrent profiles along the axial direction of the NW extracted from the SPCM images. The solid brown (red) line is exponentially (linearly) fitted to the photocurrent versus distance at $V_{ds}=5$ V and 0.2 V.

Figure 1a shows the scanning electron microscopy (SEM) image of back-gated p-type gallium arsenide nanowire (GaAs NW) transistor, with ~100 nm in diameter and ~4.7 μm in channel length. During the device fabrication process, NWs have been physically transferred onto a Si/SiO$_2$ (280 nm) substrate, followed by a chemical etching process (to remove the native oxide layer on GaAs NW surface). Right after that, source and drain electrodes (15
nm Cr/45 nm Au) were prepared by electron-beam lithography, thermal evaporation, lift-off, and metallization processes; and the back gate was contacted by Au on the heavily doped Si substrate (details in the Methods section). As depicted in Figure 1d, the linear I_{ds}-V_{ds} curves in both dark and illuminated conditions indicate the excellent ohmic contacts between GaAs NW and the source/drain electrode. Meanwhile, transfer characteristic plots (Figure 1e) confirm the dominant role of holes in NW conductance. All electrical and photoelectric characterizations in this work were performed at room temperature and ambient conditions.

As schematically shown in Figure 1b, SPCM images were obtained by a focused laser spot (with 450 nm in light-wavelength, ~1 µm in spot size) scanning over the nanowire-device (~5 µm × 2 µm) with the output photocurrent recorded in real-time. The movements of the laser spot in X and Y directions were controlled by two vibrating mirrors, as displayed in Supplementary Figure S12. In general, SPCM experiments provide an optical probe to test the photoresponse of each segmented part of the nanowire transistor (More experimental details about SPCM measurement setup can be found in Supplementary Section 8). By this means, the dependence of photoresponse on the spatial localization is derived. Experimental results are shown in Figure 1c. One can find that there are typical "hot spots" in the SPCM images which shift from near the cathode (through the entire NW channel) to the anode with an increasing bias-voltage (Here, to show the direction of
carriers movement, we employ the "cathode"/"anode" to represent the holes/electrons collector, corresponding to the top/bottom electrode in Figure 1c). Electric fields in the opposite direction have also been applied, where SPCM patterns are correspondingly reversed (see Supplementary Figure S1). It helps to exclude the influence of non-uniform doping or asymmetric electrodes. SPCM measurements under very small voltages (10 and 20 mV, Supplementary Figure S4) have also been performed to confirm the absence of space charge region and contact-related photocurrent effects, which have been observed in two dimensional materials22,23,26. Figure 1f shows the one-dimensional photocurrent profiles taken from SPCM images, which gives a quantitative description of such characteristics. At small bias-voltage (0.2 V), there is only one peak of photocurrent locates near the cathode (x=3.8 µm, denoted as feature A). With the increasing of biased voltage, however, another hot spot can be identified in the other direction (x=1.2 µm, denoted as feature B), and starts to dominate the photocurrent response. Also, it should be noted that completely different decay-curves are observed in peak A and B. More specifically, the photocurrent degrades linearly from the peak position to both sides at V_{ds}=0.2 V (see the solid red fitting curve in the bottom panel of Figure 1f), but it would decrease exponentially at V_{ds}=5 V (see the solid brown fitting line in the top panel of Figure 1f). This detailed information is critical to understand the underlying physics, which will be discussed later.
The above phenomena deviate from previous observation, in which only one hot spot exists in SPCM images and it shouldn’t pass the midpoint of the channel (no matter how high or low the voltage bias is)27,28. A visual perspective of such a process is that there is only one optimal solution for photocarriers with opposite polarity to reach anode and cathode simultaneously. It is determined by the charge neutrality principle, that can be written as
\[\mu_e E t + \mu_h E t = L, \]
where \(E \) is the external electric field, \(t \) is the carrier transit time, \(L \) is the channel length, \(\mu_e \) and \(\mu_h \) represent electron and hole mobility, respectively. Generally, the mobility of electrons is higher than that of holes, making electrons take on more path length (\(P_e \), equal to \(\mu_e E t \)). It explains why the hot spot should localize at a half-section of the NW28. A more quantitative description of this behavior relies on a rigorous simulation. Here we utilize Sentaurus TCAD, a commercial software package, to simulate the charge carrier transport in NW transistor. Some key parameters29,30 are summarized in Supplementary Table S1, and more details could be found in the Methods section. Figure 2a shows the calculated photocurrent profiles at different bias-voltages. Obviously, there is only one photocurrent peak (hot spot), and it is always close to one certain electrode (cathode here, electrode setup is identical to that of experiments). Note that a shift of photocurrent peak from near the midpoint (dashed line in Figure 2a) to the cathode can be identified. It arises from a widened gap between electron and hole velocities/path-length, \((\mu_e - \mu_h)E \), with an increased external-electric-field.
Figure 2. Physics and reproduction of the distinct hot spots in SPCM images. (a) Photocurrent profiles along the axial direction of NW by TCAD simulation. The mobility of electrons and holes in the simulation were 380 cm2/V·s and 90 cm2/V·s (from ref. 29 and 30). (b) Dependence of drift velocity on the electric field for hole (Reproduced with permission32. Copyright 1971, AIP Publishing) and electron (Reproduced with permission10. Copyright 1980, Elsevier, Ltd.) in GaAs. The black arrows are extra-added to show the electric field strength that applies in Figure 1c and f. (c) and (d) First column: Population of electrons in minimum Γ- and the upper L- valleys at a weak (c) and high electric field (d). Second column: photocurrent mapping images obtained by the simulation at $V_{ds}=1.6$ V under the conditions of $\mu_e=380$ cm2/V·s and $\mu_e=15$ cm2/V·s. Third column: simulated photocurrent profiles along the NW extracted from SPCM images. The midpoint of the NW is marked by black dashed lines.

For transistors with reduced dimension, there is one critical issue that couldn’t be neglected: the high field induces a hot electron effect, which may lead to the negative differential mobility and drift velocity31 in GaAs materials. Figure 2b shows the dependence of carrier drift velocity on the external electric field in bulk GaAs (from ref. 10 and 32), the black arrows are added in this work to show the electric field strength that applies in Figure 1c and f (given the channel length of 4.7 µm). One can find that ~3.5 kV/cm (1.6 V) is a turning point, after which the electron drift velocity/mobility degrades significantly. Such a character arises from the hot electron valley transfer, from Γ to L satellite
valley (Figure 2c and d, accompanied by 13.5 times increase in density-of-states effective mass). By contrast, the hole drift velocity wouldn’t saturate until the electric field reaches 10^4 kV/cm, ~4 orders of magnitude higher than that of electrons. It means that the hole mobility is a constant within the scope of this study. In consideration of this effect, two kinds of electron states are included in the numerical simulation, which nicely reproduces the experimental results. As shown in Figure 2c and d, cold electrons, located at Γ valley with mobility of 380 cm2/V·s, contribute to the hot spot on the upper half of NW, while hot electrons, located at L valley with a mobility of 15 cm2/V·s (rigorously, equivalent mobility of below 30 cm2/V·s is estimated), lead to a hot spot on the lower half of NW. A more detailed discussion about the hot spot location and its dependence on electron mobility could be found in Supplementary Section 5.

At this moment, the unique spatial resolved photoresponse properties of NW transistors have been resolved except for one thing: the origin of exponential and linear photocurrent decay profiles (Figure 1f). To address this issue, we first focus on the classic drift-diffusion model. As stated earlier, there is only one solution for one-dimensional photocarriers transport while electron and hole mobilities are fixed. In other words, photocarriers at a distant apart cannot contribute to the photocurrent of NW except by diffusing into the hot spot location, from where they are promised to follow the one-dimensional carrier transport rule (electrons and holes are simultaneously collected by anode and cathode, imposed by the charge neutrality principle). Since diffusion plays
a dominant role in the process, an exponential dependence of photocarriers/photocurrent on spatial location is thus derived. The numerical simulation also supports this conclusion (Figure 3a).

Figure 3. Carrier transport modes in GaAs NW transistor. (a) Simulated photocurrent profiles along NWs at $V_{ds}=0.2$ V by drift-diffusion model and surface-gating model, respectively. (b) Schematically showing the surface effect dominated carrier transport process when a laser spot is focused onto a small section of the NW. (c) Long channel (~7.5 µm) GaAs NW transistor: photocurrent versus distance for NW biased at $V_{ds}=0.2$ V and $V_{ds}=3$ V, respectively. Solid black (red) line is linearly (exponentially) fitted to the photocurrent profiles. The insets are corresponding SPCM images.

Then, the concept of photogating is introduced to interpret the linear decay profile at lower biases. As depicted in Figure 3b, photocarriers are devoted to passivate NW surface (an effect similar to a positive bias on the NW channel),
instead of being collected by the terminal electrode. Assuming that a laser spot is focused onto any section of the NW, recorded as x_n. When a positive bias is applied to the right electrode, photocarriers (electrons) generated at x_n position will be electrically swept to passivate the NW surface. But note that only those areas with $x>x_n$ will be photo-passivated, and the left-hand side ($x<x_n$) is still in dark depletion status. In this case, the conductance of NW can be written as:

$$G = \frac{G_d x_n}{L} + \frac{(G_d + \Delta G)(L-x_n)}{L},$$

where G_d is the conductance in dark condition, L is the channel length, ΔG is the peak photoconductance of the NW, $\frac{G_d x_n}{L}$ thus represents the conductance on the left-hand side of the laser spot, and $\frac{(G_d + \Delta G)(L-x_n)}{L}$ stands for the conductance on the right-hand side of the laser spot. The equation can be simplified as

$$G = G_d + \Delta G - \frac{\Delta G x_n}{L},$$

which then shows a linear dependence on the spatial location. Such characteristic is well-reproduced in numerical simulation (Figure 3a, bottom panel), where the model is modified by adding fixed charges on the NW surface. According to the simulation, the photo-generated minority carriers are rapidly swept to passivate the NW surface, which subsequently suppresses the surface depletion and enhances the conductance. It is similar to a forward gate bias on the NW channel34-37. Such effect directly leads to a spatially linear decay of photocurrent.

We further prepared a long channel (~7.5 μm) transistor with SPCM images and profiles shown in Figure 3c. Similarly, almost the entire channel has a photoresponse at $V_{ds}=0.2$ V while the photoresponse is highly localized at $V_{ds}=3$ V, which is caused by slow linear decay (see the solid black fitting line in
the left panel of Figure 3c) and fast exponential decay (see the solid red fitting curve in the right panel of Figure 3c), respectively. For an NW transistor, the driving force that tunes carrier transport from photogating to the traditional drift-diffusion model is the strong external electric field. Although the mobility has been significantly reduced at 5 V, the electron velocity is improved at least 3 times, and the density-of-states effective mass increases by 13.5 times, as compared with a 0.2 V biased case (Figure 2b). It thus increases the probability of hot electrons escaping from surface trapping and finally travelling through the whole NW.

The distinct photoresponse observed here offers a unique opportunity to quantitatively resolve the carrier population and dynamic processes. As electrons located at Γ and L valleys are spatially separated from each other during the photoresponse process (A and B sites in Figure 1f), the spatially-resolved photocurrent profile thus can be used to evaluate the occupation status of electrons in each valley. Specifically, \(I_A / (I_A + I_B) \) is used to calculate the fractional ratio of the electron population in the bottom Γ valley, where \(I_A \) and \(I_B \) are the peak photocurrent of features A and B. For accuracy, linear and exponential fits are utilized to distinguish the photoresponse coming from Γ and L valley electrons, especially when both contributions coexist. Figure 4a shows the ratio of electron population in the Γ valley for 4.7 and 7.5 µm GaAs NWs. Obviously, those experimental results deviate from the theoretical predictions (from ref. 10 and 11), which are based on Monte Carlo methods for a weighted estimate of
electron mobility and velocity. One distinguishing feature is that the Γ valley easily loses electrons, for example, ~25% at an electric field of ~0.5 kV/cm, which is 5-7 times earlier than the previous cognition. In other words, electrons are demonstrated more easily warmed up and transferred to upper satellite valleys. We would like to emphasize another distinguishing feature in the experiments: Γ valley electrons are fully exhausted at an electric field of below 10 kV/cm. It deviates from the classical interpretation of carrier dynamics, where charge carrier scattering (by crystal lattice and defect atoms) is inevitable, leading to a balance between the upward transfer and downward relaxation processes. For this reason, there should be a rest of the electrons (10-17%) in the bottom Γ valley. However, this preserved region (marked in gray in Figure 4a) is nonexistent in experiments. We attribute those behaviors to a much lower probability of scattering events for hot electrons. As theoretically predicted, the mean free path of electrons in the Γ valley is ~150 nm, whereas the length scale is prolonged to ~670 and ~900 nm for L and X valley electrons. It indicates that electrons at upper valleys are less sensitive to the scattering, explaining why they turn up earlier and little of them relax to the bottom valley.
Figure 4. Quantifying electron population in the momentum-energy space. (a) Fractional ratio of electron population in the bottom Γ valley (scatter lines, derived from the photocurrent ratio: $I_A/(I_A + I_B)$, where I_A and I_B are the peak photocurrent of feature A and B in Figure 1f. Error bars: showing the deviation in extracting the photocurrent value. It is critical when both features coexist and a linear or exponential fit is used to distinguish their contributions) and a comparison with the theoretical predictions (dashed lines). Orange dashed line. Reproduced with permission10. Copyright 1980, Elsevier, Ltd. Brown dashed line. Reproduced with permission11. Copyright 1968, American Physical Society. Note that calculations predict at least 10% electrons left in the Γ valley at an electric field up to 10 kV/cm. This preserved region (marked in gray), however, is nonexistence in experiments. (b) Ratio of electrons population in L valley and its dependence on the accelerated distance (a distance that electrons have to accelerate before getting energy of 0.29 eV for climbing over the potential barrier between Γ and L valleys minimum). The dashed line is the fitting curve based on a double-exponential function: $\Lambda \exp(-x/L_1) + B \exp(-x/L_2)$.

Figure 4b shows the electron population ratio for the L valley versus the accelerate distance (a distance that electrons have to accelerate before getting energy, 0.29 eV, to climb over the potential barrier between Γ and L valleys minimum). By fitting the curve with a double-exponential function: $\Lambda \exp(-x/L_1) + B \exp(-x/L_2)$, a short decay length scale (L_1) of 180 and 170 nm are derived in 4.7 and 7.5 µm NW, respectively (the result of the 7.5 µm
device is plotted in Supplementary Figure S11). It is very close to the value of the electron mean free path of the bottom valley at room temperature (~150 nm)10. Such character implies that electron acceleration within the range of a mean-free-path could be decisive for the carrier population and transport properties of GaAs NW.

III-V semiconductors possess a similar conduction band structure, where minimum Γ valley is surrounded by upper satellite ones, including X and L valleys38. Meanwhile, the nature of high mobility makes charge carriers easily warmed up, and the surface charge density is orders of magnitude higher than silicon and some other semiconductors39. These features indicate that carrier transport in III-V NW transistors could exhibit similar behaviors. To verify this, SPCM experiments on gallium antimonide nanowire (GaSb NW) were performed. GaSb NW characterized here is self-organized by chemical vapor deposition, the hole mobility is demonstrated up to 1028 cm2/V·s in our previous study40. As shown in Figure 5b, the whole channel can respond to illumination at low bias while only sections close to the anode are photo-sensitive at large voltage, consistent with GaAs NW transistor (Figure 3c). But note that the electric field required for the valley-transfer is 2-3 times less (more results in supplementary information). It should arise from a ~3 times decrease in the energy gap between Γ and L valleys as compared with GaAs. It is ~84 and ~290 meV for GaSb and GaAs, respectively1,41. It is worthy to note that similar results are expected in a variety of material systems (not just
limited to III-V semiconductor), once an intervalley scattering has been observed, including Ge, CdTe, InP, InAs, InSb and so on.42

\textbf{Figure 5.} P-doped GaSb NW transistor. (a) Conduction band structure of GaSb with typical energy gap of \(\approx 84\text{ meV}\) between \(\Gamma\) and \(L\) valleys. (b) SPCM images of GaSb NW (\(\approx 40\text{ nm}\) in diameter and \(\approx 6\text{ \(\mu\)m}\) in channel length) at 0.2, 0.3, 0.5, 1 and 2V, respectively.

In summary, we comprehensively analyze the carrier dynamic and kinetic behavior induced by localized light excitation in a one-dimensional NW structure under both the radial and axial electric fields, from both theoretical and experimental perspectives. In III-V semiconductor NW transistors, two competing hot spots are observed in SPCM images, which originates from cold and hot electrons, respectively, as a result of electron valley transfer and one-dimensional carrier transport rule. This behavior clearly shows a striking fact that hot electrons can be artificially (spatially) separated from cold ones in NW transistors. It allows us to verify when electrons are warmed up, where they locate, and how the electron occupied states, mobility, energy, and the transport path evolve. Equally important, there is a direct observation on the microscopic process of the photogating effect in this study. For such effect, photocarriers contribute to the photoresponse by passivating the NW surface, which causes deviation from the drift-diffusion model. As a result, the photocurrent shows a linear dependence on the spatial location (deviating from the conventional exponential...
decay profile).

Finally, experiments indicate that hot electrons (in upper satellite valleys) possess a much longer mean-free-path compared with cold ones (in bottom Γ valleys). We highlight it for both electronic and optoelectronic applications. In a transistor, for example, electrons can be accelerated and scattered into upper valleys, where the long mean-free-path enables hot electrons to transit through the conduction channel with a low loss. Note that similar effects, like overshooting of hot electrons and nonlocal heat dissipation, have been observed in our previous study\(^4\). Together, those features might provide a particular perspective in reducing the power consumption and heat dissipation pressure of chips. Meanwhile, long-range hot-carriers transport is considered as a great potential to exceed the Shockley-Queisser limit of solar cells\(^4\). The concept of the hot-carrier solar cell has been proposed, where the cooling of photoexcited hot-carriers is intentionally slowed down, thus offering an opportunity to recover the energy loss (~42%) due to thermalization\(^4\). It is conceptually superior to traditional architecture. However, there is still no clear route to realize such functionality. Very recently, Hamidreza et al. reports the intervalley-scattering type solar cells, where photoexcited hot electrons are designed to occupy the upper valley states instead of relaxing to the bottom Γ valley\(^5\). Our study suggests that such a strategy may be much more feasible since hot electrons at upper satellite valleys are long-lived and show a much longer mean-free-path.
METHODS

GaAs NWs synthesis

The GaAs NWs were grown on silicon (111) substrates using the Ga droplet self-catalysis growth method through an MBE system. Before the growth, the silicon wafer was treated for 30 s to remove the native oxide layer by a dilute hydrofluoric acid (HF) solution (12%) and loaded into the growth chamber immediately. The NW growth started with Ga deposition at 200 °C for 3 monolayer (ML) to form Ga droplets. Then, the substrate was heated to 600 °C for GaAs NW growth with a Ga growth rate of 0.3 ML/s under an As$_4$ beam equivalent pressure (BEP) of ~10$^{-6}$ mbar. After the NW growth, Ga and As shutters were both closed completely and the substrate was cooled down to room temperature.

GaSb NWs synthesis

The GaSb NWs used in this work were synthesized on Si/SiO$_2$ substrate through the surfactant-assisted solid-source CVD method. Before the NW growth, a 400 nm Sn film was deposited on the substrate, which takes the responsibility of both catalyst and p-type dopants. In a dual-zone horizontal tube furnace, the GaSb powder source, substrate, and sulfur surfactant were placed in the upstream zone, the downstream zone, and the middle of two zones, respectively. NWs growth started when the source temperature raised to 750 °C and the substrate was heated to a temperature of 550 °C. The pressure of the chamber in the growth process is kept at ~3 × 10$^{-3}$ Torr. High-purity hydrogen was employed as the carrier gas at a rate of 200 sccm. After the
growth, the heating of the source and substrate was turned off together and cooled down under the hydrogen flow.

Device Fabrication and Characterization

Electron-beam lithography (EBL, JEOL 6510 with an NPGS System) were used to define the source/drain electrode. Before metallization, NWs were immersed into a 2% HF solution for approximately 5 s to remove the native oxide layer on the NW surface at room temperature and loaded into the chamber of thermal evaporation system immediately, ensuring the high-quality contact between metal electrodes and NWs. Next, NW transistors were fabricated by depositing Cr/Au metals and conducting lift-off processes. A semiconductor analyzer (Agilent-B1500) combined with a probe station (Lake Shore TTPX) was employed to performed I_{ds}-V_{ds} curves measurements in dark and under the illumination of 450 nm.

Device Simulation

All numerical simulations for GaAs NWs in this work were performed using Sentaurus TCAD, a commercial package, where SDE and SDEVICE modules were employed to build up the one-dimensional structure and carried out finite element calculation, respectively. Referring to the experimental setup, the diameter and length of p-type GaAs NW in the simulation were set to 100 nm and 4.7 μm; the value of electron/hole mobility and lifetime was set to 380/90 cm2/V·s and 0.5/1 ns (from Ref. 26 and 27); the excitation light was set to 450 nm in wavelength and 1 μm in spot diameter. A p-type doping of 1×10^{14}/cm3 for GaAs NW was considered. The spatial location of light spot is tunable to simulate the scanning behavior of laser-probe on
NW. When drift-diffusion model was considered, a coupled solution of Poisson, electron and hole continuity equations was performed. By contrast, the photogating effect was involved by additionally setting positive fixed charges of $4.5 \times 10^{10}/\text{cm}^2$ on the NW surface (Note that the doping concentration was subsequently raised to $1 \times 10^{16}/\text{cm}^3$, which makes sure that the static hole concentration is close to $1 \times 10^{14}/\text{cm}^3$, consistent with the counterpart of the drift-diffusion model).

FUNDING

This work was supported by the Royal Society-Newton Advanced Fellowship (NA170214), the National Natural Science Foundation of China (61725505, 61521005, 61975224, 61904184, 61874043, 11991063 and 11574336), the Shanghai Science and Technology Committee (19XD1404100, 18ZR1445800, 18ZR1445900, 18JC1420401, 19ZR1465700 and 20ZR1474000), the Youth Innovation Promotion Association CAS (2018276), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB43010200).

AUTHOR CONTRIBUTIONS

H. Xia, W. Hu, X. Chen, and W. Lu supervised the project, proposed the idea, and designed the experiments. H. Wang and F. Wang contributed equally to this work. H. Xia and H. Wang analyzed the data and prepared the manuscript. H. Xia constructed the analytical model. H. Wang fabricated nanowire transistors and performed all the measurements. Q. Zhuang contributed to the growth of GaAs nanowires. J. Sun and Z. Yang synthesized the GaSb nanowires. P. Wang contributed to adjusting the SPCM system. J. Li, P. Wu, and J. Ye helped to prepare nanowire devices. T. Li, L. Fu and Z. Wang discussed and commented on the manuscript.

Conflict of interest statement. None declared.

References

1. Reggiani L and Baranger H. *Hot-Electron Transport in Semiconductors*. Berlin: Spring-Verlag, 1985.
2. Yu Z, Sun Z and Wang R et al. Hot carrier degradation-induced dynamic variability in FinFETs: experiments and modeling. *IEEE Trans. Electron Devices*
3. Grasser T. *Hot Carrier Degradation in Semiconductor Devices*. New York: Springer, 2014.
4. Polman A and Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. *Nat. Mater.* 2012; **11**:174-177.
5. Esmaeilpour H, Dorman K R and Ferry D K *et al.* Exploiting intervalley scattering to harness hot carriers in III-V solar cells. *Nat. Energy* 2020; **5**:336-343.
6. Guo Z, Wan Y and Yang M *et al.* Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. *Science* 2017; **356**:59-62.
7. Nozik A J. Utilizing hot electrons. *Nat. Energy* 2018; **3**:170-171.
8. Tregnago G. Electrons stay hot. *Nat. Energy* 2018; **3**:1021-1021.
9. Cortes E, Xie W and Cambiasso J *et al.* Plasmonic hot electron transport drives nano-localized chemistry. *Nat. Commun.* 2017; **8**:14880.
10. Požela J and Reklaitis A. Electron transport properties in GaAs at high electric fields. *Solid-state Electron.* 1980; **23**:927-933.
11. Conwell E M and Vassell M O. High-field transport in n-type GaAs. *Phys. Rev.* 1968; **166**:797-821.
12. Lee H, Lee H and Park J Y. Direct imaging of surface plasmon-driven hot electron flux on the Au nanoprism/TiO$_2$. *Nano Lett.* 2019; **19**:891-896.
13. Harutyunyan H, Martinson A B and Rosenmann D *et al.* Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. *Nat. Nanotechnol.* 2015; **10**:770-774.
14. Wu K, Chen J and Mcbride J R *et al.* Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. *Science* 2015; **349**:632-635.
15. Brongersma M L, Halas N J and Nordlander P. Plasmon-induced hot carrier science and technology. *Nat. Nanotechnol.* 2015; **10**:25-34.
16. Simoncelli S, Li Y and Cortés E *et al.* Nanoscale control of molecular self-assembly induced by plasmonic hot-electron dynamics. *ACS Nano* 2018; **12**:2184-2192.
17. Jang Y J, Chung K and Lee J. S. *et al.* Plasmonic hot carriers imaging: promise and outlook. *ACS Photonics* 2018; **5**:4711-4723.
18. Arora V K, Mui D S L and Morkoc H. Mobility degradation and transferred electron effect in gallium arsenide and indium gallium arsenide. *IEEE Trans. Electron Devices* 1987; **34**:1231-1238.
19. Colinge J P, Lee C and Afzalian A *et al.* Nanowire transistors without junctions. *Nat. Nanotechnol.* 2010; **5**:225-229.
20. Su C J, Tsai T and Liou Y *et al.* Gate-all-around junctionless transistors with
heavily doped polysilicon nanowire channels. IEEE Electron Device Lett. 2011; 32:521-523.

21. Britnell L, Ribeiro R M and Eckmann A et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013; 340:1311-1314.

22. Howell S L, Jariwala D and Wu C et al. Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Nano Lett. 2015; 4: 2278-2284.

23. Miao J, Liu X and Jo K et al. Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Lett. 2020; 20:2907-2915.

24. Lee E J, Balasubramanian K and Weitz R T et al. Contact and edge effects in graphene devices. Nat. Nanotechnol. 2008; 3:486-490.

25. Buscema M, Barkelid M and Zwiller V et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013; 13:358-363.

26. Wu C, Jariwala D and Sangwan V et al. Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. J. Phys. Chem. Lett. 2013;4:2508-2513.

27. Gu Y, Romankiewicz J P and David J K et al. Quantitative measurement of the electron and hole mobility-lifetime products in semiconductor nanowires. Nano Lett. 2006; 6:948-952.

28. Fu D, Zou J J and Wang K et al. Electrothermal dynamics of semiconductor nanowires under local carrier modulation. Nano Lett. 2011; 11:3809-3815.

29. Boland J L, Casadei A and Tütüncüoglu G et al. Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping. ACS Nano 2016; 10:4219-4227.

30. Gutsche C, Regolin I and Blekker K et al. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 2009; 105:024305.

31. Houston P A and Evans E G. Electron drift velocity in n-GaAs at high electric fields. Solid-state Electron. 1977; 20:197-204.

32. Dalal V L, Dreeben A B and Triano A. Temperature dependence of hole velocity in p-GaAs. J. Appl. Phys. 1971; 42:2864-2867.

33. Heiblum M, Calleja E and Anderson I M et al. Evidence of hot-electron transfer into an upper valley in GaAs. Phys. Rev. Lett. 1986; 56:2854.

34. Dan Y, Zhao X and Chen K et al. A photoconductor intrinsically has no gain. ACS Photonics 2018; 5:4111-4116.

35. Karimi M, Zeng X L and Witzigmann B et al. High Responsivity of InP/InAsP nanowire array broadband photodetectors enhanced by optical gating. Nano Lett. 2019; 19:8424-8430.

36. He J, Chen K X and Huang C L et al. Explicit gain equations for single crystalline photoconductors. ACS Nano 2020; 14:3405-3413.
37. Fang H and Hu W. Photogating in low dimensional photodetectors. *Adv. Sci.* 2017; 4:1700323.
38. Krishnamurthy S and Sher A. Velocity-field characteristics of III-V semiconductor alloys: band structure influences. *J. Appl. Phys.* 1987; 61:1475.
39. Adachi S. *Physical Properties of III-V Semiconductor Compounds.* New York: John Wiley & Sons, 1992.
40. Sun J, Peng M and Zhang Y S et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. *Nano Lett.* 2019; 19:5920-5929.
41. Kim Y S, Marsman M and Kresse G et al. Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. *Phys. Rev. B* 2010; 82:205212.
42. Sze S M and Ng K K. *Physics of Semiconductor Devices.* New York: John Wiley & Sons, 2006.
43. Weng Q, Komiyama S and Yang L et al. Imaging of nonlocal hot-electron energy dissipation via shot noise. *Science* 2018; 360:775-778.
44. Li M, Fu J and Xu Q et al. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. *Adv. Mater.* 2019; 31:1802486.