CONTRIBUTIONS TO THE STUDY OF THE EARLY JURASSIC PETRIFIED FOREST OF HOLBAV AND CRISTIAN AREAS (BRAȘOV REGION, SOUTH CARPATHIANS, ROMANIA), 2nd PART.

Stănilă Iamandei¹, Eugenia Iamandei² & Eugen Grădinaru²

Received: 1 July 2021 / Accepted: 9 September 2021 / Published online: 1 October 2021

Abstract: The present paper represents the second part of the palaeoxytolomical study on the “Grădinaru Collection” that is housed by the National Museum of Geology, Bucharest. By the study of a new material collected from the Getic domain of the South Carpathians, Romania, the following taxa were identified and discussed in detail: Protocupressinoxylon dragastanii, Protojuniperroxylon holbavicu sp. nov., Brachyxyloxy holbamicum, B. cristianicum, Palaeoginkgoxyilon sp., Bucklandia sp. A, and Bucklandia sp. B. All the studied specimens suggest to a tropical Early Jurassic petrified forest. Thus, the new data have not only palaeobotanical importance, but they also contribute to the palaeobiogeographic, palaeoecologic and palaeoclimatologic knowledge of the Mesophytic.

Keywords: Early Jurassic Flora, Petrified Forest, Gymnosperms, new taxa.

INTRODUCTION

The present paper continues the study of the "Grădinaru Collection" that is housed by the National Museum of Geology, Bucharest, which is affiliated to the Geological Institute of Romania. Detailed information on the geological setting and stratigraphic data regarding the newly described material have been provided in the first part of our study, devoted to the petrified woods found in the Lower Jurassic coaly deposits from the Holbav and Cristian areas, which are located in the easternmost part of the Getic domain, in South Carpathians (see Iamandei et al., 2018).

In addition to the older material collected by EG more than 50 years ago, new material collected in 2008 from the Holbav area, during fieldwork by the authors, is studied here. The age of the coaly deposits in the Holbav area is Hettangian to early Toarcian, documented by palynological dating done by Antonescu (1973) and Antonescu (in Sândulescu et al., 1984), and also by Toarcian ammonoids found by EG in the overlying marine deposits (see Iamandei et al., 2018). On the contrary, in the Cristian area the coaly deposits are dated as Hettangian-Sinemurian, with the first marine transgression during the Pliensbachian, as indicated by a diverse and abundant fauna of bivalves, belemnites and ammonoids (see Iamandei et al., 2018).

Several Early Jurassic lignotaxa have been described in the first part of our study (Iamandei et al., 2018), as follows: Agathoxylon holbamicum Iamandei, Iamandei and Grădinaru, Brachyxyloxy holbamicum Iamandei, Iamandei and Grădinaru, Brachyxyloxy cristianicum Iamandei, Iamandei and Grădinaru, Prototaxodaysia holbamicum Iamandei, Iamandei and Grădinaru and Palaeoginkgoxyilon sp. The present palaeoxytolomical study represents an advance in the study of Early Jurassic petrified woods from the easternmost part of the Getic domain in the South Carpathians. Alongside already described lignotaxa, such as Brachyxyloxy holbamicum, B. cristianicum, and Palaeoginkgoxyilon sp. (in Iamandei et al., 2018), some new Early Jurassic lignotaxa are described here, as follows: Protocupressinoxylon dragastanii Iamandei and Iamandei 2000, Protojuniperroxylon holbavicu sp. nov., Bucklandia sp. A and Bucklandia sp. B.

MATERIAL AND METHODS

The studied fossil wood material was collected in the mid-section of the Maiului brook (coordinates: 45°39'12.74" N; 25°22'51.02" E, elev. 776 m), which is a tributary of the Holbav valley (see Fig. 2 in Iamandei et al. 2018), coming from the lower part of the effusive pyroclastic sequence of the Lower Jurassic deposits of the Holbav area.

The fossil wood material is represented by fragments of petrified trunks, sometimes partially charcoalified and subsequently silicified, being encased in volcanic lahars deposits. The original dimensions of the petrified trunk fragments are variable, from decimetric to metric. The samples of petrified wood were firstly macroscopically studied and the directions of standard oriented sections were carefully marked. Then, slabs were cut and thin sections of petrographic type were made in the specialized laboratory of the Geological Institute of Romania, in Bucharest. The mounting of lamella was replaced by the application of a transparent lacquer pellicle (even with nail-polish). The sections have been studied under a microscope with transmitted light (NIKON - Eclipse E400), and micropho-

¹ Geological Institute of Romania, 1st, Caransebeş Street, 012271 – Bucharest, Romania. iamandei@gmail.com
² University of Bucharest, Department of Geology, 1st, Bălcescu Nicolae Blvd., 010041, Bucharest, Romania. egradinaru@gmail.com
* Corresponding author
tos of structural details were taken with a digital camera "EverFocus". Then, for each specimen, plates with microphotographs were compiled using "PaintShopPro" program, combined with "StarOffice5.2-Presentation".

During the microscopic study, description of the xylotomical details with possible taxonomic value was done, for every specimen, in all the three standard orientated sections.

In the section of "Affinities and discussions" we compare our studied structures with published xylotomically described fossil forms, in order to identify the studied fossil wood as a known taxon, or a new taxon.

The xylotomic description generally followed the nomenclatural code for gymnosperm woods of IAWA Committee (2004) and Ruffinatto et al. (2015) and the genera assignment of Philippe and Bamford (2008) and also, the suprageneric taxonomy of Gymnosperms of Christenhuisz et al. (2011) and Lu et al. (2014).

SYSTEMATICS

Gymnosperms
Division Pinophyta Cronquist, Takhtajan and Zimmermann ex Reveal, 1996
Order Cupressales Link, 1829
Family Hirmeriellaceae Harris, 1979
Genus Protocupressinoxylon Eckhold 1923, nom. cons. prop., (Bodnar, 2017)

Protocupressinoxylon dragustanii Iamandei and Iamandei, 2000
Fig. 1, a-i.

Material
The studied material is represented by 14 samples of silicified wood collected from the Holbav area. All studied samples are fragments of trunk or thick branches, of decimeter size, dark to black color and by magnifying glass or even by naked eye, the regular fibrous structure without vessels suggesting a conifer wood. The described specimens attributed to this taxon have very similar details and have the following field-numbers within the "Grădinaru Collection": 1074, 1077, 1082, 1084, 1086, 1088, 1092, 1097, 1098, 1099, 1100, 1104, 1106, 1109 and are stored at the National Museum of Geology, in Bucharest, under the inventory numbers: 27691, 27692, 27693, 27694, 27695, 27696, 27697, 27698, 27699, 27700, 27701, 27702, 27720, 27721.

Microscopic description

Growth rings – in the studied samples represent secondary xylem, which is tracheiodoxic. Thus, in cross-section they appear more or less well developed, sometimes wide with more than 60 cells, showing a fairly abrupt or gradual transition from early- to late-wood and distinct boundaries of the growth-rings. Normal or traumatic axial resin canals absent.

Tracheids – in cross-section appear large and with relatively thin walls in the early-wood, having quasi-polygonal cross-section (4-5 sides), and are sometimes deformed by compression. They have radial/tangential diameters of 30-60(70) / 25-60(70) μm and the wall thickness of 4-7 μm double wall. Where gradual size transition is present, a well-developed transitional wood is visible, with tracheids gradually diminishing their section and tracheidal wall becoming progressively thicker, until the final 3-5 rows of the late-wood, which consist of smaller radially flattened cells (with r/tg diameters of 20-25 / 10-20 μm) and thicker walled, of 8-10 μm across the double-wall, marking the growth-ring boundary. Between two successive rays, 1-9 radial rows of tracheids can be counted. Sometimes, radial rows of smaller-sized tracheids are intermingled. The density is between 750-1216 tracheids / mm². In longitudinal view, tracheids have on the radial walls 1-2-seriate pits, sometimes contiguous, and of mixed type, because when are biseriate the pits are often alternately arranged. Sometimes crassulae are present. The pits are of abietinean type, have 10-12 μm diameter and round to oval apertures, of 5-6 μm. No details about torus. On the tangential walls, pits are usually absent, or rarely present, as poorly preserved, uniseriate, small round pits, of 5-6 μm in diameter, with small round to oval aperture. Inside the tracheids, organic deposits are sometimes present as dark remains. Average tracheid length is difficult to measure. Helical thickenings on tracheids are absent.

Axial parenchyma – in the cross sections is usually absent or rarely present, as dispersed thin-walled cells with dark content. In longitudinal view it appears as rows of rectangular cells, with the horizontal wall thin and smooth, rarely feebly nodular and with some dark remains inside.

Rays – usually appear thin in cross section while in tangential sections appear exclusively uniseriate, sometimes with some biseriate storeys, having up to 15 cells in height, sometimes more. Their density is 6-9 rays per tangential millimeter. In radial view the rays show homocellular aspect, with parenchymal cells all procumbent, 18-20 μm tall, marginals slightly taller, of 25-30 μm. The horizontal ray-cell walls are smooth or slightly rough and usually pitted, and are relatively thin (2-3.5 μm double wall); the tangential end-walls are relatively thick, of 1.5-2 μm the simple wall, smooth or slightly nodular, but usually poorly preserved. The indentures are missing or difficult to notice. Spiral thickenings were not observed, most probably are absent. The cross-field pitting is of cupressoid type, showing 1-2(4-5) pits, in 1-2 rows horizontally arranged, and sometimes irregular or even to slightly alternate aspect. The pits are oculiopores of cupressoid type, 8-10 μm in diameter, with slit-like or lens-like apertures of 2-5 μm. Sometimes cross-field pitting is difficult to observe, due to poor preservation or to the presence of organic content.

Radial or axial resin canals – are absent.

Mineral inclusions – usually are not present.
Fig. 1 *Protocupressinoxylon dragastanii* Iamandei and Iamandei, 2000 (inventory no. 27699).

a-c: Cross section - tracheids polygonal with rounded corners, linear rays and diffuse parenchyma; d-f: Tangential section - uniseriate rays with polygonal ray-cells, sometimes with biseriate storeys; g-i: Radial section - radial pitting on tracheids 1-2-seriate, of mixed-type; when biseriate, pits are alternate (g, i); cross-fields with 1-2(4) cupressoid pits, when more - are slightly irregular or alternate, in two superposed rows (g, h).
Affinities and discussion

The xylotomy of the here studied 14 specimens is definitely pycnoxylic and homoxylic (or tracheoidoxylic – *sensu* Creber, 1972), having tracheids with radial pitting of mixed type, no resin canals, little or no parenchyma, exclusively uniseriate rays and cross-fields with 1-2(4-5) cupressoid pits with slit-like inclined apertures, arranged in one or two horizontal rows, which are slightly irregularly to even alternately arranged; all these characters are evidence of a typical cupressaceous structure. Such details as: radial pitting on tracheids of mixed type, cupressoid pits in cross-fields, to fairly araucarioid arrangement, axial parenchyma showing few and radial pitting of tracheids of mixed type in a Mesozoic wood structure indicate a wood-type from “Cheirolepídaceae family”, as defined by Alvin et al. (1981) and Alvin (1982).

The synthetic description of all the studied specimens was compared with the diagnoses of Mesozoic genera with cupressoid ocuipores in the cross-fields as described by Phillips (1941), Kräusel (1949), Vogellehner (1967, 1968), Müller Stoll and Schultz-Motel (1989), Philippe (1995, 2002), Bodnar (2017), and it appears that our material is mostly consistent, at generic level, with *Protocupressinoxylon* wood-type. In fact, the Mesozoic conifers were grouped, a long time ago, based on anatomical features, in the "Protopinacea family" (Krausel, 1917. This family name was noted by Bamford et al. (2016) as having a dubious taxonomic status, and they recommended its abandon.

However, the name Cheirolepídaceae, attributed to Turutanova-Ketova (see Fossil works – online), is not a valid name, as remarked by Doweld (2020), who considered an alternative name as being more correct for the Mesozoic gymnosperms characterized by pollen of *Classopollis*-type. Thus, he applied the valid family name Hirmeriel-laceae Harris, 1979 - and proposed this family name “for conservation against Cheirolepídaceae”, the latter being considered as "inadmissible, being based on the illegitimate later homonym *Cheirolepis* Schimper, and thus, itself illegitimate" (see Doweld, 2020).

This genus name, *Protocupressinoxylon*, was established by Eckhold (1922, pp. 490-491), to designate Mesozoic fossil conifer wood-types described like this: “wood with annual rings more or less distinct, tracheid pitting in various transitional arrangements, both horizontal and end walls of ray parenchyma cells smooth, resin canals absent, axial parenchyma occasionally present, cross-field pits cupressoid”, but not specifying their number and arrangement.

Initially, Eckhold (1922) included seven species in the protologue: *Protocupressinoxylon cupressoides*, *P. jurasicum*, *P. potomacense*, *P. eboracense*, *P. koettlizii*, *P. vectense* and *P. mesozoicum*, but without designation of a clear generotype. Only later, Andrews (1955) designated *Protocupressinoxylon cupressoides* (Holden) Eckhold, 1922 (not 1923, see Jomans and Dijkstra, 1974, p. 794) - as the species-type for that generic name. However, the species *Protocupressinoxylon eboracense* which was initially assigned as type-species of the *Protobrachyoxylon* genus (Holden, 1913) was included by Eckhold (1921) along with other species in the protologue of *Protocupressinoxylon* genus. But the original material seems to be lost, and the analysis of Holden’s description and figuration suggest either identity with *Protocupressinoxylon* Eckhold, 1921 or with *Brachyoxylon* Hollick and Jeffrey, 1909 (see Bamford and Philippe 2001, Philippe, 2002).

Recently, Bodnar (2017) proposed the genus name *Protocupressinoxylon* to be conserved, together with a proposed generotype – *P. malayense* Roggeveen, 1932. Also, she proposed the necessity of a systematic revision of several described taxa, since abnormal details were described for some species of Kräusel (1949), like resin ducts in *Protocupressinoxylon potomacense*, *P. solmsi*, *P. vectense*, *P. lucernense*, or multiseriate rays, like in *P. weidlingense* (in Kräusel, 1949, pp. 183-185).

For this genus many species of fossil wood from all over the world ranging from Permian to Cretaceous have been described, especially after Kräusel (1949), who admitted it as valid genus, and he even has described two species: *P. dockumense* (Torrey) Kräusel and *P. coromandelinum* (Sanhi) Kräusel.

Later, new European species were described, as for example: *Protocupressinoxylon catenatum* Schultz-Motel 1960 (see also Iamandei and Iamandei, 2001), *P. liassium* Schultz-Motel 1960, *P. leonardianum* (Charrier) Vogellehner 1968, *P. rhaeticum* Vogellehner 1968, *P. munense* Shilkina and Blokhina (in Blokhina, 1975), *P. purbeckensis* Francis 1983, *P. carentanensis* Barale (in Philippe, 1995).

Also, Iamandei and Iamandei (2000, 2005) have described an Early Cretaceous species from Dobrogea, Romania: *Protocupressinoxylon dragastanii* Iamandei et Iamandei, which has radial pitting uni- to biseriate, opposite or alternate, no parenchyma, rays of mid tall, uniseriate or partially biseriate and cross fields of cupressoid type, sometimes with an araucarioid tendency (i.e. alternate pits).

More recently, Correa et al. (2018) studying an abundant population of wood remains (58 permineralized trunks) from Argentina, described a new species as *Protocupressinoxylon carrizalense*, and made a comparative table of 32 species. They observed that only 24 from them fit the generic diagnosis, but eight species (i.e. *Protocupressinoxylon alternans*, *P. cenomanicum*, *P. mesozoicum*, *P. lucernense*, *P. jurassicum*, *P. koettlizii*, *P. potomacense* and *P. vectense*) present cross-fields pits that are different from the cupressoid type: either not bordered, or typical taxodioid (see Correa et al., 2018).

Since the specific details inside the genus *Protocupressinoxy- lonom* are very similar, it is very difficult to discriminate between them, but through comparative study of their descriptions, and using also the comparative table from Correa et al. (2018), we tried to identify our material, which present these clear xylotomical features: tra-
cheidoxylic secondary wood, having radial pitting 1-2 seriate, of mixed type on tracheids, few parenchyma or absent and uniseriate rays with cross-fields of 1-2(4-5) cupressoid pits per field, spaced arranged in 1-2 horizontal rows when more, to irregular, or to slightly alternate. These xylotomical details are very similar with those described by Iamandei and Iamandei (2000 and 2005) for the species Protocupressinoxylon dragastanii from the Early Cretaceous of South Dobrogea, Romania. Thus, based on the above discussion, we attribute all the 14 studied specimens to the species Protocupressinoxylon dragastanii Iamandei and Iamandei, 2000, as another Mesozoic European taxon.

Genus Protjuniperoxylon Eckhold, 1922
Protojuniperoxylon holbavicum sp. nov.

Fig. 2. a-j.

Material
The studied material is represented by 7 samples of silicified wood, collected from the Holbav area, on Maiului brook. All studied samples are fragments of trunk or thick branches, of decimetric size, dark to black color. Viewing through a hand lens, or even by naked eye, it is possible to see the regular fibrous structure without vessels, which indicate a conifer wood. The specimens attributed to this species have very similar details and have the following field numbers within the "Grădinaru Collection": 1078, 1083, 1085, 1087, 1091, 1095, 1110 – and are stored at the National Museum of Geology, in Bucharest, under the inventory numbers: 27704, 27705, 27706, 27707, 27708, 27709, 27710.

Microscopic description

Growth rings – well developed in the studied samples, representing the secondary xylem which is tracheidoxyl, showing a fairly gradual transition but sometimes abrupt, from early- to late-wood, and has distinct growth ring boundaries. Normal or traumatic axial resin canals are absent.

Tracheids – in cross section appear quasi-polygonal, usually quadrangular, and with moderately thick walls in the early-wood. They have radial / tangential diameters of 25-60 / 25-55 μm in the early-wood and wall thickness of 3-7 μm double wall. When gradual transition is present, the tracheids gradually diminish in section and usually the tracheidal wall in the late-wood becomes slightly thicker, of 7-9 μm in the final 3-8 rows of smaller sized and radially flattened cells, with r/tg diameters of 10-25 / 20-25 μm, marking the growth-ring boundary. Between two successive rows, 2-12 radial rows of tracheids can be counted. The density ranges 750-1216 tracheids / mm². Longitudinally, the tracheids have, on the radial walls, uniseriate pits, often with biseriate portions, often contiguous, or biseriate of mixed type, sometimes separated by crassulae. The pits are of abietinean type, have 14-21 μm in diameter and round apertures of 4-5 μm. Details on torus not observed. On the tangential walls, pits are usually absent. Organic deposits - absent. Average tracheids length difficult to measure. Helical thickenings usually absent, or rarely appear.

Axial parenchyma – in the cross sections is absent, or rarely present as dispersed thin-walled cells with dark content. In longitudinal view, the parenchyma appears as vertical rows of rectangular cells, with the horizontal wall thin and smooth or feebly nodular and with some dark remains inside.

Rays – usually thin in cross section, appear in tangential section as uniseriate, but sometimes with some biseriate storeys, or even as 2-3-seriate rays. The ray height varies from 2-32 to up to 56 cells (average height - 16 cells). The ray cells appear ovoid-rectangular, with 26–39 μm in height and 23–30 μm in width. Lateral triangular spaces are present. Their density is 6-9 rays on tangential millimeter. In radial section, the rays appear heterogeneous, because they have thicker walled cells, as ray tracheids, beside the thinner-walled parenchymal body cells, and are all procumbent. The ray cells have 8-20 μm tall, the marginals are slightly taller, of 25-30 μm. The horizontal walls of the ray cells are smooth and usually pitted, and the tangential end-walls are relatively thick, of 1.5-2 μm the simple wall and are nodular, as typical juniperoid thickenings. The ray tracheids are located in the ray-body or marginally, and have smooth or slightly rough thick walls. The indentures are missing or difficult to observe. Spiral thickenings are usually absent. The cross-fields are typical cupressoid, with 1-2(4-6) cupressoid oculipores of 8-10 μm in diameter, usually in vertical pairs arranged, and with slit-like inclined apertures, of 2-5 μm.

Radial or axial resin canals – are absent.

Mineral inclusions – are not present.

Affinities and discussion
The cupressaceous xylotomy of the 7 specimens studied here, assigned to the genus Protojuniperoxylon Eckhold, are definitely pycnoxylic and homoxyllyc (or tracheidoxyl – sensu Creber, 1972), having radial pitting on tracheids of mixed type, no resin canals, rare parenchyma but with nodular horizontal walls, rays exclusively uniseriate and cross-fields with 1-2(4-6) cupressoid pits with slit-like inclined apertures, arranged in 1-2 vertical pairs, or irregularly to slightly alternately and with nodular tangential end-walls of ray cells as typical juniperoid nodules (i.e. juniperoid thickenings).
We have discussed above the current status of “Protopeninaeae family” and of “Cheirlepidiaceae family” and, lastly, the proposal to be accepted as valid - the family name “Hirmeriellaceae” (Harris, 1979), which is considered correct and valid to be used for the Mesozoic gymnosperms characterized by pollen of Classopollis-type, and was proposed for taxonomic conservation (see Doweld, 2020).

The genus name Protojuniperoxylon was established by Eckhold in his PhD Thesis (Eckhold, 1921, 1922, p.491), to designate Mesozoic cupressaceous wood of Juniperus-type, described like this: “Annual rings more or less
Fig. 2 *Protojuniperoxylon holbavicum* sp. nov. (inventory no. 27706).

a-c: Cross section - tracheids polygonal with rounded corners, and linear rays; **d-f**: Tangential section - uniseriate rays with biseriate storeys with polygonal ray-cells, with lateral empty spaces; unpitted tracheids; **g-j**: Radial section — uniseriate radial pitting on tracheids as hexagonal pits; araucarioid cross-fields with vertical pairs of pits or slightly irregular; end-wall with juniperoid thickenings (see arrow).
marked, tracheid pits in various transitional arrangements, ‘Abietineentüpfelung’ absent, but ‘Juniperustüpfelung’ present, no resin canals, cupressoid pits in cross-field, axial parenchyma occasionally present” (Eckhold, 1921 fide Bodnar, 2017).

In fact, few species were described for this genus, sometimes revised, as follows:

Protojuniperoxylon maidstonense (Stopes) Eckhold, 1921 was taken as type-species, even if, initially, this wood type was described from the Cretaceous of Maidstone (Great Britain), as a species of *Cedroxylon*, by Stopes (1915). It has uniseriate radial pitting on tracheids, few axial parenchyma with nodular end wall, and cupressoid cross-fields (see Bodnar and Artabe, 2007).

Protojuniperoxylon hornei (Seward and Bancroft) Eckhold, 1921 was initially described as Jurassic species of *Cedroxylon* and later, of *Scotoxylon* (Vogelhelmer, 1968), so, it could be doubtful for comparison.

However, Zhang et al. (2000) described a *Scotoxylon yanqingense* Zhang and Zengh, a Late Jurassic Chinese species, as representing secondary wood of *Protojuniperoxylon*-type, but devoid of axial parenchyma.

Protojuniperoxylon ischigualastensis (Bonetti 1966) Bodnar and Artabe, 2007 is a Triassic wood from Argentina, which has mixed radial pitting on tracheids, cupressoid cross fields, juniperoid thickenings on the end walls of ray parenchymal cells and nodules on the horizontal walls axial parenchyma, which are typical for *Juniperus* wood-type.

Protojuniperoxylon arcticum Selling, 1951 described on some Mesozoic root-wood remains from Hope Island (Svalbard, Norway) is poorly identified, for it is most probably a bennettitalean taxon (*Cycadeoides* Buckland), showing interactions with chytrid fungi and bacteria (see Strullu-Derrien et al., 2012; McLoughlin and Strullu-Derrien, 2016).

Ruiz and Bodnar (2019) revised a Mid Triassic species of *Cupressinoxylon* of Bodnar et al. (2015) as *Juniperoxylon zamunerae* (Bodnar et al.) Ruiz and Bodnar, and made an extensive discussion on the wood structure of *Juniperus*-type including in a table the described species of *Protojuniperoxylon* together with Mesozoic and Cenozoic species of *Juniperoxylon*, all of them characterized by the presence of nodular ray parenchyma end-walls (i.e. ‘Juniperustüpfelung’), details also observed in our material. Also, very useful is the discussion of Akkemik (2021), who described and identified an Early Miocene species of *Juniperoxylon* from Turkey, as having typical xylotomy of *Juniperus* type, proposing even an identification key that includes also some species of *Protojuniperoxylon*. Our material displays the typical xylotomical features of *Juniperus* type as cupressaceous wood with mixed 1-2 seriate radial pitting on tracheids, rare or absent parenchyma, and usually uniseriate rays with cupressoid cross-fields in vertical pairs and juniperoid nodules on the tangential walls of the ray cells. Evaluating these details comparatively with those included in Table 1 from Ruiz and Bodnar (2019), and using the identification key of Akkemik (2021), we observe that our specimens are not identical to any described species. Thus, we describe a new species named here *Protojuniperoxylon holbavicum* sp. nov. The designated holotype is the sample 27706 (inventory number), kept in “Grădinaru Collection”, hosted by National Geological Museum, from Bucharest.

The diagnosis of the species *Protojuniperoxylon holbavicum* sp. nov.

Secondary tracheidoxyl wood, with thick-walled tracheids with uniseriate pitting, or even biseriate of mixed type, parenchyma absent or few and with nodular horizontal walls, heterogeneous uniseriate rays with juniperoid nodules on tangential walls or ray cells, cross-fields with 1-2(4-6) small cupressoid pits per field, as 1-2 vertical pairs pits and when more, slightly irregular or alternate, and having slit-like inclined apertures.

Genus *Brachyoxylon* Hollick and Jeffrey, 1909

Brachyoxylon holbavicum Iamandei, Iamandei and Grădinaru, 2018

Fig. 3, a-i.

Material

The studied material is represented by 7 samples of silicified wood collected from the Holbav locality, on Maiului brook. All the studied samples are fragments of trunk or thick branches, with decimetric size and dark to black colored. By hand lens or even by naked eye, the regular fibrous structure without vessels suggests a conifer wood. The specimens, with the following field numbers: 1089, 1090, 1093, 1094, 1096, 1102, 1105, belong to "Grădinaru Collection", and are stored at the National Museum of Geology, in Bucharest, under the inventory numbers: 27711, 27712, 27713, 27714, 27715, 27716, 27718.

Microscopic description

Growth rings – well developed, with tracheidoxyl structure, abrupt or gradual transition, distinct boundaries, no resin canals.

Tracheids – with polygonal cross section, usually quadrangular with rather thick and slightly corrugated walls in the early-wood, diameters of 20-40(60) μm and wall thickness of 5-7(8) μm (double wall), quite similar in the late-wood. Between two successive rays, 1-12 radial regular rows tracheids appear and intercellular spaces are present. Density is 836-1520 tracheids per square mm. On tangential walls the pitting is usually absent. The radial pits are of mixed type, either uniseriate, with round pits, spaced or contiguous and variably flattened (flattening index: d/D=0.79-0.88), or biseriate, with round to oval pits, of 19-24 μm the diameter, with round to oblique-elliptic apertures of 7-10/3-5 μm, in opposite or alternate arrangement, sometimes contiguous, combined with short uniseriate portions. There are no crassulae or helical thickenings, but sometimes striations are present.

Axial parenchyma – is absent.
Fig. 3 *Brachyoxylon holbavicum* Iamandi, Iamandi and Grădinaru, 2018. (inventory no. 27711).

a-c: Cross section - tracheids polygonal with rounded corners, and linear rays; **d-f**: Tangential section - pitting on tracheids - absent; rays uniseriate; **g-i**: Radial section – radial pitting of mixed type on tracheids, pits hexagonal and, when biseriate, alternate; cross-fields with 2-3(4) cupressoid to araucarioid in 1 row or, when more numerous, in 2-3 superposed rows.
Microscopic description

Growth rings – in cross-section show a tracheidoxyl structure without resin canals, usually with abrupt transition from early- to late-wood, and with rather distinct growth-ring boundary. Resin canals absent.

Tracheids – with polygonal (quadrangular) cross-section with rounded corners, unequal in size, diameters of 20-35-(45-65) μm and with thick walls, of 5-8(9) μm the double wall, usually curled by compression. The late-wood is represented by 2-3 rows of thick-walled and radially flattened cells (radial diameter of 5-10 μm). Intercellular spaces are present. The interradial bundles have 1-10 radial regular rows of tracheids. Density of 992-1518 tracheids per mm². Tangential pitting is absent. Radial pitting is usually uniseriate or biseriate of mixed type. When biseriate, the pits appear alternate or opposite and contiguous on short rows often continued by uniseriate portions and do not occupy all the length of the wall. The pits have round to hexagonal borders, diameters...
Fig. 4 *Brachyoxylon cristianicum* Iamandei, Iamandei and Grădinaru, 2018 - inventory no. 27690(field no. 1113b).

a-c: Cross section - thick-walled tracheids, polygonal, with rounded corners and curled walls; dispersed parenchyma cells; linear rays; d-f: Tangential section - uniseriate rays with polygonal ray-cells and biseriate storeys; unpitted tracheids; parenchyma with end-walls smooth or nodular and resin content inside; g-i: Radial section - radial pitting on tracheids of mixed type; cross-fields with 2-3 cupressoid or araucarioid in a single row or, when more numerous, in 2-3 superposed rows.
of 18-22 μm, and are variably flattened when contiguous (d/D=0.65-0.88), bearing round or tilted elliptic apertures of 7.5-10 / 2-3 μm. Sometimes crassulae or helical thickenings can appear.

Axial parenchyma – in cross-section appear few, dispersed, often difficult to identify among the tracheids. Vertically, sometimes they can show simple pits. The horizontal walls are thin and smooth, or slightly nodular. Sometimes, a resin content is present inside the cells, as plugs or granules.

* Rays –* in cross-section appear usually uniseriate and linear. In tangential section, the rays show 1-20(–25) cells in height (i.e. 30-570(-650) μm). The taller uniseriate rays have biseriations, which give sometimes a fusiform aspect. The ray-cells have polygonal rounded to oval section, marginal spaces and sometimes have dark content. The ray density is of 5-11 rays per horizontal millimeter. The rays appear homogeneous, with cells procumbent, of 20-30 μm tall, relatively thick walled, of 4-5(7) μm the double wall. Within the marginal rows, but not only, the ray cells are taller, of 30-40 μm, and have slightly corrugated outer walls. The cross-fields are of araucarioid type, have 1-6(-8) pits, hexagonal or slightly rounded to oval, of cupressoid type, tending to podocarpoid or araucarioid. They have 15-19/8-12 μm in diameters, and show circular or short elliptic tilted apertures of 10-14/5-7 μm. The pits are arranged in 1-2(3) rows per cross field, within ray body fields, or in the marginal fields and are alternate to slightly irregular.

* Resin canals –* are absent.

* Mineral inclusions –* are absent.

Affinities and discussion

From the microscopic study of all the standard oriented thin sections, we selected 13 specimens having similar generic characters, represented by tracheidoxylic structure, radial pitting of mixed type on tracheids and araucarioid cross-fields, which are consistent with the structure of *Brachyoxylon* wood-type (see Philippe, 1993; Philippe and Bamford, 2008), but a slightly different from the above-described species. We do not repeat the discussion from above on the genus creation and about the previously described species, but, consulting the comparative Table 1, from Iamandei et al. (2018), we observed beside the generic characters some other specific details that are different of those of the above-described species.

Thus, we observed that the radial tracheidal pitting of mixed type are commonly discontinuous, the axial parenchyma is present, as dispersed cells with slightly nodular horizontal walls and with resin content inside.

Other features are: the relatively tall uniseriate rays with biseriations, up to fusiform aspect, homogeneous and with cross-fields with 1-6(-8) hexagonal to rounded cupressoid oculipores, alternately arranged (araucarioid) to slightly irregular. All these details almost identical to those of the species *Brachyoxylon cristianicum*, which was previously described from the same area (Iamandei et al., 2018).

From these characteristics, we attribute all the 13 here studied specimens coming from Holbav and Cristian to the above specified form: *Brachyoxylon cristianicum* Iamandei, Iamandei and Grădinaru, 2018.

Division *Ginkgophyta* Bessey, 1907

Class *Ginkgopsida* Engl., 1897 (in Engler and Prantl, 1897)

Subclass *Ginkgoidae* Engl., 1897

Order *Ginkgoales* Gorozhankin, 1904

Family *Ginkgoaceae* Engl., 1897

Genus *Palaeoginkgoxylon* Feng, Wang and Rößler, 2010

Palaeoginkgoxylon sp.
Fig. 5, a-i.

Material

The studied material is represented by two samples of silicified wood, of decimetric dimensions, found in the Holbav locality area, on the Mauiului brook. The studied samples are trunk or thick-branch fragments, dark to black color and by hand lens or even by naked eye a regular fibrous structure is visible. These two samples have the field-numbers 1032, 1036 in "Grădinaru Collection" and are stored under the inventory numbers 27674 and 27675, at the National Museum of Geology, in Bucharest.

Microscopic description

* Growth rings –* in cross sections show a tracheidoxylic structure with rather indistinct boundaries, with few parenchyma and sometimes with axial canals, most likely mucilaginous. And, the structure is marked by the presence of some swollen mucilaginous cells among the tracheids and also, inside the rays.

* Tracheids –* with polygonal cross-section, unequal in size and with rounded corners, with quite abrupt transition from the early- to the late-wood; thus, they have 25-35 / 35-40 μm r/tg diameters in the early-wood, smaller in the late-wood, and with relatively thick walls, of 4-7 μm the double wall. Between two successive rays there are 2-12 radial regular rows of tracheids, and the density is 1360-1728 tracheids per mm². The tangential walls of the tracheids are usually unpitted. On the radial walls the pitting is of mixed type, with pits polygonal to slightly rounded, spaced or contiguous, in a single vertical row or, rarely, biseriate, alternate or slightly irregular to opposite. The bordered pits are slightly flattened, relatively small, of 8-10(15) μm in diameter. Often, only the pit chamber is visible, the aperture is small round to short elliptic, of 1.5-2(3.5) μm. Crassulae or helical thickenings were not observed. In radial view sometimes the endings of the tracheids appear slightly bended, overlapping each other and bear some dark content inside.

* Axial parenchyma -* is visible in cross-section, sometimes as swollen cells dispersed among the axial tracheids, most probably with mucilages, commonly close to rays, or...
Fig. 5 *Palaeoginkgoxylon* sp. - inventory no. 27674 (field no. 1032).

a-c: Cross section - tracheids polygonal with rounded corners; disperse mucilaginous cells; linear rays with mucilaginous ray-cells;

d-f: Tangential section - unpitted tracheids; uniseriate rays with inflated secretory ray-cells;

g-i: Radial section - radial pitting on tracheids usually uniseriate, of mixed type, with hexagonal pits or rounded; cupressoid cross-fields with 2-3 superposed rows of 1-3 pits.
isolated, or in short vertical rows, sometimes difficult to observe due to poor preservation.

Rays – are thin, linear in transversal view, with inflated secretory cells inside, and have simple pits. Tangentially, the rays are uniseriate and have 1-7(-16) cells, (i.e. 20-180(350) μm high). Sometimes, the taller rays have some few biseriate storeys. The ray-cells have polygonal to rounded shape or seem inflated and full of white substance, most probably mucilaginous. In some cases, on the tangential walls, simple pits are present. Ray density is 7-12 rays per horizontal tangential millimeter. In radial section the rays appear heterogeneous, because, beside the normal parenchymal cells, secretory cells occur, the cells are all procumbent; 19-20(-28) μm high and with moderately thick-walled: 3.6.5 μm the double wall. The cells of marginal rows are slightly taller, of 28-30(-40) μm. The cross-fields are of cupressoid type, having 1-4(-6) pits or more, as rounded to oval cupressoid pits of 4-8(-13) μm in diameter, with circular or short elliptic inclined apertures of 1.3.5 μm. Their arrangement is alternate or slightly irregular, on 1-2(-3) rows. In some cases, the walls of ray cells seem to be slightly wrinkled, but few details can be observed, due to poor preservation.

Axial canals - rarely were found, and only partially, probably at the limit of the vascular cylinder with the pith (Fig.5, photo a, arrow).

Affinities and discussion

Some xylotomical features, such as presence of inflated axial parenchyma cells, idioblasts, tracheids with curved tips and with opposite pit pairs separated by crassulae, cupressoid cross-fields, with irregular aspect, which are evidence of a wood structure similar to the current *Ginkgo*, a living fossil naturally surviving in China.

There are several fossil stem genera described by the study of remains of fossil ginkgophyte trunks found in different Mesozoic sites in the world: *Ginkgoxyylon* (Saporta) Süss 2003; *Proginogkxyylon* (Khudairberdev) Zheng and Zhang (in Zheng et al., 2008); *Szeioxylon* Wang, Jiang et Qin, 1994; *Sinopalaeospiroxylon* Zhang et Zheng, 2006 (in Zhang et al., 2006); *Palaeoginkxyylon* Süss, Rößler, Boppré and Fischer, 2009; *Palaeoginkxyylon* Feng, Wang and Rößler, 2010; and *Baieroxyylon* Greguss, 1961 (see in Martínez and Lutz, 2007).

Taking into account the observed xylotomical details of our specimens which are very similar to *Palaeoginkxyylon* of Feng, Wang and Rößler (2010), we compared the description of our specimens with the diagnosis and description of *Palaeoginkxyylon*, which has primary structure and pith (absent in our material), and also a well-developed pycnoxylic secondary xylem, with tracheids slightly irregularly arranged. In radial section, the tracheids show bent ends overlapping each other, close to the intersection with rays, and have radial pitting usually uniseriate; the ray cells are irregularly pitted on the horizontal walls and the cross-field pits are cupressoid; also, some axial parenchyma is present.

We have studied two fragmentary specimens that represent only the secondary wood, and showing similar features, even though they are rather badly preserved. Thus, we observed the radial pitting usually 1-2 seri ate of mixed type on tracheids, the cross fields with numerous cupressoid pits, irregularly or alternately arranged and the presence of swollen parenchyma cells. The central part of the stem is absent. In the first part of our study (see Iamandei et al., 2018) we described some other wood remains found in Holbav area, having similar anatomical features, and were attributed to *Palaeoginkxyylon* sp.

The studied two new specimens were collected from the same area and show a very similar xylotomy; for this reason, we assign them to the same form, *Palaeoginkxyylon* sp., hoping for a better-preserved material in order to be described at species level.

In this context, we mention that Gigivulescu and Czier (1990) gave firstly a short macroscopic description and figuration of a well preserved *Ginkgoites* leaf from the Şuncuiuş area (Apuseni Mountains). However, it is worth to mention, that some years after, Czier (1994, 1998, 2000, 2005) has restudied the material, has revised the entire *Ginkgo* foliage literature of the Carpathian Basin, described and figured both macro- and microscopically numerous new specimens, new species and combinations, and has elaborated for the ginkgoalean leaves a new determination method based on mathematics. Finally, Czier (1998) proposed the transfer of *Ginkgoites* and *Baiera* to the genre *Ginkgo*. Czier's proposal seems to be correct, and we support it as acceptable, because in addition to the similar foliage structure of these genera, our Jurassic material is very similar in its xylotomic features to the current *Ginkgo* wood.

Division: Cycadeoidophyta Taylor 1981
Class: Cycadeoidopsida Scott, 1923
Order: Bennettitales (Engler, 1892) Meyen, 1984 (=Cycadeoidales Berry, 1916)
Family: Williamsoniaceae (Carruthers, 1870) Nathorst, 1913
Genus: Bucklandia Brongniart, 1828
Bucklandia sp. A.

Fig. 6, a-i; Fig. 7, a-i.

Material

The studied material is represented by a piece of silicified wood collected from Holbav area, on Maiului brook. This specimen has the field-number 1107, in "Grădinaru Collection", and is stored now at the National Museum of Geology in Bucharest, under the inventory number 27719.

Microscopic description

In cross-section, the structure of the wood is of gymnospermous type, and some details (such as the presence of the typical idioblasts and axial mucilaginous canals) suggest a cycadeoid ployxylic stem structure, which is also supported by the presence of scalariform thickenings of
Fig. 6 Buckladia sp. A. - inventory no. 27719 (field no. 1107).

a-f: Cross section - gymnosperm structure with tracheids rectangular with rounded corners, thin curled walls in the early-wood, thick walled in the late-wood; idioblasts between tracheids; d-e: Numerous secondary rays; g-i: Tangential section - unpitted tracheids; uniseriate rays.
Contributions to the study of the Early Jurassic petrified forest

Fig. 7 Buckladia sp. A - inventory no. 27719 (field no. 1107).

a-i: Radial section - d-g: - scalariform thickenings of Zamia type on tracheids, with reticular aspect; g-i: - araucarioid cross-fields with alternate in 2-3 superposed rows.
Zamia type on the tracheids in vertical view (Greguss, 1968), so, the xylotomic description will be adequate: Pith – unfortunately, is absent in our fragmentary samples which does not retain the axial part of the stem, so we did not have the possibility to describe its component elements (as parenchyma cells, idioblasts, medullary vascular bundles and mucilaginous canals). Cylindrical vascular system – in cross section, is represented by some alternative growth rings of secondary xylem and phloem (not as annual rings) and numerous thin secondary rays, so giving a polyxylic structure (Fig. 6a), crossed by wide multiseriate primary medullary rays which connect the axial pith with the cortex (but this aspect does not appear in our sections). The cambial cells are recognized with difficulty, since they are very similar to the neighboring cells. The xylem has rectangular or square tracheids, in gradual transition from early- to the late-wood, with r/tg diameter of 25-65 / 10-15-30 μm, with relatively thick walls, of 4-8 μm the double wall, (Fig. 6a–f). Their walls are often corrugated, by compression. On the radial walls, the tracheids show uniseriate bordered pits, rounded to hexagonal, contiguous and flattened, sometimes alternate, when biseriate (Fig. 7g, arrow). The pits have diameters of 9-12 /8-15 μm, with round to elliptical apertures. Very obvious are the scalariform thickenings of Zamia type, which are often connected by inclined bars, giving a reticular appearance (Fig. 7a–e). No perforations were observed. The tangential walls are not pitted (Fig. 6g–i). The phloem has parenchymal cells, (unclear if they are sieve cells), thick-walled fibres, secretory idioblasts, and sclerenchymal cells (Fig. 6d–e).

Rays – in transversal and tangential sections, the primary rays were not observed in our fragmentary material, but numerous secondary rays appear, giving a monoxylary aspect to the structure. They are uniseriate, sometimes 2-(-3)-seriate, of low to mid tall, and are composed of parenchyma cells and few secretory idioblasts, so they are heterogeneous. The ray cells are rounded to rectangular in outline, the idioblasts are similar or are slightly elongate and, in radial view, appear all procumbent. In cross-fields they have 2-6(9) oculi pores usually in two superposed rows arranged (Fig. 7d–i).

Cortex – is not present in our sample, so parenchymal cells, idioblasts, mucilage canals and leaf traces, were not observed.

Affinities and discussion
Evaluating the general image of the wood structure in cross section, we noticed some details that indicated a possible cycadeoid stem-structure of polyxylic type, by the presence of idioblasts and mucilaginous canals. Thus, we searched for more xylotomical details in order to identify the unknown structure.
As is known, the Cycadeoidophyta is a Mesozoic extinct taxon, which include two families: Cycadeoidaceae Buck. (or Bennettitaceae Engl.) – with the genera Cycadeoidea Buck. (or Bennettites Caruthers) and Monanthesia Wieland; they have a barrel-shaped trunk, like a large pineapple, with a crown of leaves; the second family, Williamsoniaceae (Caruthers) Nathorst - with Williamsonia Caruthers as type genus, a form with a columnar trunk with frond like leaves at branch tips (see Stockey and Rothwell, 2003). This family includes a lot of described genera of plant-parts, variably named, which send sometimes to a current Cycadalean genus, as follows: Williamsoniella, Nilssoniopteris, Bennettitanthus, Cycadochaphalus, Fredlinia, Ischnophyton, Lyssoxylon, Serenopsis, Weltrichia, Zamites, Anomozamites, Otozamites, Podozamites, Ceratozamites, Banatozamites, Pterophyllum, Wielandella, Crossozamia, Dioonites, Eostangeria, Palaeoecus, Pseudoctenis, Ticoa, and many others (see Taylor et al., 2009; Martínez et al., 2012, 2017). Numerous fossil remains of Bennettitales were described from Romania. Thus, in the Holbav-Cristian-Vulcan- Codlea area Givulescu (1991) cited an Early Jurassic flora (or “Liasic flora”) with the presence of Zamites, Nilssoniopteris and Pterophyllum (from Bennettitales) and Phoenicopsis (Ginkgoaceae). In recent decades, Dragastan and Popa (1997), Popa (1997a, 1998, 2000a,b), and Popa and van Konijnenburg-van Cittert (1999, 2006) contributed more to the Early Jurassic flora in the Holbav area, describing Nilssonia cf. undulata, Paracycas sp., Ctenis grandifolia (Cycadales) and Ptilophyllum rigidum, Pterophyllum magotii, P. neaguai (as Bennettitales) and beside them - Taeniopteris sp. (Ginkgoales), Phoenicopsis potoniei (Czekanowskiales) and Geinitzia sp. (Conifers). Also, from the Cristian area were described Pachypteris grădinarui, Otozamites mandelslohi, O. molinianus and a Desmiophyllum sp. which belongs, probably, to Czekanowskiales. Also, Dragastan and Popa (1997) and Czér (2016b) advanced some phytosstratigraphic schemes based on the Early Jurassic foliar material identified in the Holbav area.
However, there are few genera described in the world from the study of fossil stem remains, often with local importance and with names related to the original fossiliferous site or people (see list in Martínez et al., 2012, 2017; Zhang et al., 2012). For example, Martínez et al. (2017), have described a well-preserved Jurassic bennettitalean specimen from Patagonia, as Zamuneria amyla Martinez, Iglesias and Artabe, and made a carefully documented comparison with the xylotomy of the extant cycadalean genera and also, with all Mesozoic Bennettitalean genera. The studied specimens show a cycadeoid polyxylic structure with scalariform thickenings on tracheids which indicate similarities with stem of Bucklandia type (see Bosse, 1953; Sharma, 1967, 1969, 1973, 1991; Saiki and Yoshida, 1999) or even with Sahnioxyton (see in Philippe et al. 1999) - the latter being considered “nomen illegitimum” (see IFPNI - www.fossilplants.info/genus.htm?id=D46FC51A-7AEB-421E-4AF52-1A3FP0515E43).
Because the structure of our specimen indicates a columnar polyxylic stem, the sample does not preserve the pith from the central part of the stem and also the cortical zone, both of parenchymal tissue, which were likely easily destroyed during the early stages of fossilization. We cannot see typical parenchymal cells, idioblasts, medullary vascular bundles, mucilaginous canals, and transfusion cells or leaf bases, in the cortex. However, the polyxylic cycadeoid structure with idioblasts and scalariform thickenings on tracheids, that resemble those in the current Zamia, Ceratozamites (see Greguss, 1968) and are partially similar to the structure of the Jurassic genera Bucklandia Brongniart, Zamuneria Martínez, Iglesias and Artabe and Lioxylon Sharma (see Martínez et al., 2017), which are also characterized by polyxylic stem with centripetal and centrifugal vascular systems and by the presence of numerous idioblasts in the structure.

In the studied Mesozoic areas of Romanian Carpathians, many fossil macro-remains have been described and attributed especially to taxa from Zamites group: Anomozamites, Otozamites, Podozamites, Ceratozamites, Bannatozamites (see Givulescu, 1991; Dragastan and Popa, 1997; Popa, 1997, 1998, 2000b; Popa and van Konijnenburg-van Cittert, 1999, 2006; Czner, 1999, 2001, 2008, 2009, 2016a,c, 2018), and such taxa have also been commonly described in Europe (see Barbacka et al., 2014). Thus, from the Lower Jurassic of Anina, Banat region, Romania, Czner (2009) described two Bennetitalean species: Bannatozamites calvus Czner, by the study of leaf impressions and Bucklandia annaenensis Czner, by the study of a small stem with petioles, interpreted to belong to the same plant; they have fine longitudinal ridges, and rows of rectangular to rounded-elongated cells. The specimen studied here has details that resemble a Zamia-type structure (see above), especially due to presence of scalariform thickenings on tracheids, even with reticular appearance (see Greguss, 1968). Also due to the presence of idioblasts and mucilaginous canals, we assign it to Bucklandia sp. A, probably representing wood of an extinct form from the Zamites group, commonly present in the Romanian Carpathians (see above).

Regarding the genus Bucklandia, erected by Brongniart (1828), we consider it as a still valid genus, because it was proposed by Doweld (2012) to be conserved. However, Herbst and Crisafulli (2016) ignoring this proposal, described a new genus, Buckya Herbst and Crisafulli, to replace the old genus Bucklandia Brongniart, recommending transfer of all the species previously described to the new proposed genus, as nov. comb. (see Herbst and Crisafulli, 2016, p. 97-98). But, we observed that there is another possible problem of this name, Buckya, which could become illegitimate, since there are two quasi-homonyms: Buckia Cobos, 1956, which is the name of a current insect from the Order Coleoptera L., and Buckia Rios, Gallego and Guerra, (see in GBIF-online), but is also used to describe a moss, a homotypic synonym for Hypnum Hedw. (Order Hypnales Buck. and Vitt.).

Bucklandia sp. B
Fig. 8, a-i.

Material
The studied material is represented by three small (centimetric) samples of silicified wood, collected from around Holbav locality area, on Mâului brook. These samples have the field-numbers: 1037, 1038 and 1079, in "Grădinaru Collection" and are stored now at the National Museum of Geology, in Bucharest, under the inventory numbers 27676, 27677 and 27683.

Microscopic description
Cross-sections of the studied specimens show a wood structure of gymnospermous type (Fig. 8a), with some details indicative of a cycadeoid stem structure, due to the presence of idioblasts and mucilaginous canals (Fig. 8c, h); the xylotomical description is appropriate, in order to identify the unknown structure. The pith – is not present in our sections because the axial part of the stem is absent in our fragmentary samples. The cylindrical vascular system – in cross section, appears to consist of some alternate growth rings of secondary xylem and phloem, which indicate a polyxylic structure, traversed by numerous thin secondary rays (Fig. 8a). The wide multiseriate primary medullary rays appear only locally, in contact with the xylem of growth ring (see Fig. 8b). Through the xylem and phloem cells, obvious idioblasts appear, carrying mucilages or crystals often grouped as druses (Fig. 8d-f). The cambium cells are difficult to recognize. The xylem has rectangular to square tracheids (ra/tg diameters of 18-50/20-45 μm), with rounded corners, with often slightly wavy walls, 3-6 μm as a double wall. On the radial walls, the tracheids show uni- to biseriate bordered pits, rounded or hexagonal, of 6-8 μm, with round to elliptic apertures and are contiguous and flattened (Fig. 8i), usually alternate, where they are biseriate. Perforations were not seen. The tangential walls are not pitted. The phloem appears as parenchymal cells, with secretory idioblasts and sclerenchymal cells often with large crystals, or druses (Fig. 8d-e). At the border with the pith area, mucilaginous canals appear, lined by rows of epithelial cells. The rays – in cross- and tangential sections the secondary rays appear numerous and thin, giving a manoxylic appearance to the structure. The primary rays were not observed; but they do appear in cross-section, in contact with xylem (see Fig. 8b). The secondary rays are usually uniseriate, very numerous and are composed of parenchymal cells, and few secretory idioblasts, so that the rays are heterogeneous (Fig.8g). The ray cells have rounded to rectangular outlines, the idioblasts are similar, or slightly elongate and, in radial view, are all procumbent. The cross-fields show 2-6 oculipores, in one or two superposed rows and are slightly alternately arranged.
Fig. 8 Bucklandia sp. B - inventory no. 27676 and 27677 (field no. 1037 a-f, 1038g-i).

a-f: Cross section – **b:** tracheids polygonal with rounded corners, and linear rays; primary ray in contact with xylem; **c:** mucilaginous canals lined by secretory epithelial cells; **d-e:** phloem cells with idioblasts bearing mucillages; **f:** or crystals (f); **g:** Tangential section - uniseriate rays with biseriate storeys with polygonal ray-cells; unpitted tracheids; **h-i:** Radial section – mucilaginous canal (h); araucarian radial pitting on tracheids with uniseriate hexagonal pits (i), cross-fields with 2-3 superposed rows of hexagonal pits (h-i).
Axial canals - appear at the border with the pith area, as large mucilaginous canals, with diameters of 360-930 μm, lined by secretory epithelial cells (Fig. 8c, h).

Affinities and discussion
Having a cycadeoid stem structure, indicated by the presence of idioblasts with druses and of mucilaginous canals, we searched also for other xylotomical details, but the absence of scalariform thickenings on tracheids makes it different from the above-described form, and indicated a resemblance to a type close to the current Cycas (see Greguss, 1968).

In the Early Jurassic flora from Holbav, species of Nils- sonia, Paracycas, Ctenis, Ptilophyllum, Pterophyllum appear, in addition to forms of Zamites-group (see Drag- gastan and Popa, 1997; Popa, 1997, 1998, 2000a, b).

Comparing to wood description of Zamuneria amyla (see Martinez et al., 2017) and, also, their identification key, we observed that our studied specimens indicate a col- umnar polyxylic stem, with several growth rings in the cylin- drical vascular system, and with idioblasts and mucil- laginous canals, similar to the genus Bucklandia Bosse, 1953, which is a stem of Williamsonia Caruthers, as it was described by Stockey and Rothwell (2003).

Our specimens have a structure similar to a Jurassic stem described by Zhang et al. (2012) as Sinocyadoxylon, which is also characterized by a polyxylic vascular cylin- der with centrifugal rings of secondary xylem and arau- carioid radial pitting on the tracheids.

Also, Iamandei et al. (2003) studied a fragmentary fossil wood from the Upper Jurassic of Hâghimâl Mts., Eastern Carpathians, which is identified as Cycadoxylon sp., which has a xylotomy very similar to our studied speci- mens.

Thus, the studied specimens show details that indicate a columnar form of Cycas-type (see Greguss, 1968), as is discussed above, so we assign them to Bucklandia sp. B, clearly different from the form described above.

CONCLUSIONS

The petrified woods found in the Holbav and Cri- stian areas, in the Brașov region, constitute the most significant collection of Early Jurassic lignoflora in the Romanian Carpathians, and the present study represents an im- portant advance in the knowledge of the Mesozoic flora in the Carpathian area.

In the first part of our study (Iamandei et al., 2018), five species were taxonomically identified and described: Agathoxylon holbavicum Iamandei, Iamandei and Grădi- naru, 2018, Brachyoxylon holbavicum Iamandei, Iamandei and Grădinaru, 2018, Brachyoxylon cristanicum Iamandei, Iamandei and Grădinaru, 2018, Protophyllo- cladoxylon holbavicum Iamandei, Iamandei and Grădi- naru, 2018, and Palaeoginkgoxylon sp.

In the second part of our study, besides Brachyoxylon wood-types and of Palaeoginkgoxylon, already described in the first part, there are described two "cupressaceous" wood types, as species of Protocupressinoxylon and of Protoujuniperoxylon, the last one as a new species. In addition, two Bennettitalean forms were described, as members of Buklandia genus, which represents a novelty for the studied region. The list of the new identifications includes the following taxa:

Order Pinales
- Protocupressinoxylon dragastanii Iamandei and Iam- ndei, 2000
- Protoujuniperoxylon holbavicum Iamandei, Iamandei and Grădinaru, sp. nov.
- Brachyoxylon holbavicum Iamandei, Iamandei and Grădinaru, 2018
- Brachyoxylon cristanicum Iamandei, Iamandei and Grădinaru, 2018

Order Ginkgoales
- Palaeoginkgoxylon sp.

Order Bennettiales
- Bucklandia sp. A
- Bucklandia sp. B

The present study of the fossil petrified woods material from the Lower Jurassic sedimentary deposits in the Holbav and Cristian areas significantly improves the palaeobiogeographic, palaeoenvironmental, palaeoecologic and palaeoclimatic reconstructions, not only in the Ro- manian Carpathians, but also at the continental scale.

The paleo-latitude of the South Carpathians during the Late Jurassic was about 18° N, from palaeomagnetic data given in 1996 by Hambach et al. (fide Panaioiu, 1998). Since the latitude of the Tropic, during that time, was about 23° 26’ 22″ North, it is obvious that there was a tropical paleoclimate in the studied area, located in the Tethys Realm (see Lawver et al., 2015).

This was the optimal environment for the so-called tropical plants such as the Bennettitales were during the Mes- ophytic, but this does not mean that all the plants from the Tethys Realm were of 'tropical' type. According to Czier (2017), the Romanian Bennettitales that mainly represent a European autochthonous group, are indicators of warm environment, especially owing to the hypoder- mis structure and physiology of their leaves, and of the structure of their cuticles. However, other plants, like many allochthon pteridophytes, are present also in Eastern and Western 'temperate' regions (e.g. Clathropteris, of which the global migration pattern suggests North American origin).

ACKNOWLEDGEMENTS

Many thanks to reviewers for their important help to im- prove this paper, especially to Dr. Zoltán Czier (Hungary, Independent Senior Researcher), who made important observations on systematics and references. We are very grateful to Prof. Stephen Kershaw, of Brunel University London, for useful observations and for improving the English style of our manuscript.
REFERENCES

Akemik, Ü., 2021. A new species of Juniperoxylon from the Early Miocene of Northwestern Turkey. Acta Palaeontologica Romaniae, 17(1): 15-26. https://doi.org/10.35463/j.apr.2021.01.02

Alvin, K.L., 1982. Cheiropteridaceae: Biology, structure and paleoecology. Review of Palaeobotany and Palynology, 37: 71–98.

Alvin, K.L., Fraser, C.J. and Spicer, R.A., 1981. Anatomy and paleoecology of Pseudofrenelopsis and associated conifers in the English Wealden. Palaeontology, 24: 759–778.

Andrews, H.N., Jr. 1955. Index of generic names of fossil plants, 1820–1950. [U.S.] Geological Survey Bulletin, 1013: 1-262.

Antonescu, E., 1973. Quelques données sur la palynologie du Lias sous faciès de Gresten de Roumanie. Palynology of Mesophyte. Proceedings of the 3rd International Palynological Conference, Nauka, Moskow: 13-17.

Bamford, M.K. and Philippe, M., 2001. Jurassic–Early Cretaceous Gondwanan homoxylous wood: a nomenclatural revision of the genera with taxonomic notes. Review of Palaeobotany and Palynology, 113: 287–297.

Bamford, M.K., Philippe, M. and Thévenard, F., 2016. Long overdue extinction of the Protopinacaceae. Review of Palaeobotany and Palynology, 234: 25-30.

Barbacka, M., Bodor, E., Jarzynka, A., Kustatscher, E., Pacyna, G., Popa, M.E, Scanu, G. G., Thevenard, F. and Ziaja, J., 2014. European Jurassic floras: statistics and palaeoenvironmental proxies. Acta Palaeobotanica, 54: 173-195.

Berry, E.W., 1916. The geological history of Gymnosperms. The Plant World, 19(2): 27-41. Published by: Wiley on behalf of the Ecological Society of America.

Bessey, C.E., 1907. A synopsis of plant phyla. University Studies of the University of Nebraska, 7: 275-373.

Blokhina, N.I., 1975. New species of conifers from the Jurassic of North Siberia (Fossil woods). Proceedings of Institute of Biology and Pedology, Vladivostok, n. sr., 27(130): 47-54. [in Russian]

Bodnar, J., Escapa, I., Cúneo, N.R., Gnaedinger, S., 2013. First record of conifer wood from the Canadon Asfal Formation (Early-Middle Jurassic), Chubut Province, Argentina. Ameghiniana, 50: 227-239.

Bodnar, J., 2017. (2575) Proposal to conserve the name Protocupressinoxylon with a conserved type against Protobrachyoxylon (fossil plants). Taxon (Journal of IAPT), 66(6): 1480-1481. https://doi.org/10.12705/666.25

Bodnar, J. and Artabe, A.E., 2007. Estudio sistemático y paleodendrológico del leño de una Cupressaceae triásica de la Formación Ischigualasto, provincia de San Juan, Argentina. Ameghiniana, 44: 303–319.

Bonetti, M.I.R., 1966. Protojuniperoxylon ichigualastensis sp. nov. del Triásico de Ischigualasto (San Juan). Ameghiniana, 4: 211–218.

Bosse, M.N. 1953. Bucklandia sahnii sp. nov. from the Jurassic of the Rajmahal Hills, Bihar. Palaeobotanist, 2: 41–50.

Boureau, E. and Serra, C., 1961. Sur les structures normales et traumatiques d'un bois mésozoïque du Cambodge, le Brachyoxylon saurini, n.sp. Revue générale de botanique, 68: 373-393.

Brongniart, A., 1828. Prodrome d'une histoire des végétaux fossiles, pp. 1-223; Paris.

Carruthers Esq. Win, F.L.S., F. G.S., 1870. XVIII. On Fossil Cycadean Stems from the Secondary Rocks of Britain. Transactions of the Linnean Society of London, 26(4): 675-708. https://doi.org/10.1111/j.1096-3642.1870.tb00201.x

Cevallos-Ferriz, S.R.S., 1992. Tres Maderas de Gimnospermens Cretácicas del Norte de Mexico. Anales del Instituto de Biologia Universidad Nacional Autonoma de Mexico, Serie Botanica, 63(2): 111-137.

Christenhusz, M.J.M., Reveš, J.L., Farjon, A., Gardner, M.F., Mill, R.R. and Chase, M.W., 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19: 55–70.

Cobos, A.S., 1956. Nuevos géneros y especies de Eucnemidae (Insecta, Coleoptera) de la fauna neotropical. Bulletin del Instituto Royal des Sciences Naturelles de Belgique, 32 (no.41): 1–16.

Correa, G., Bodnar, J., Colombi, C., and Paula Santi Malnis, P.S., Praderio, A., Martínez, R., Apaldetti, C., Fernández, E., Abellón, D. and Alcober, O., 2019. Systematics and taphonomy of fossil woods from a new locality in the Upper Triassic Carzial Formation of the El Gigantillo area (Marayes-El Carzial Basin), San Juan, Argentina”. Journal of South American Earth Sciences, 90: 94-106. https://doi.org/10.1016/j.jsames.2018.11.027

Creger, G.T., 1972. Gymnospermous wood from the Kimeridgian of East Sutherland and from the Sandringham Sands of Norfolk. Palaeontology, 15(4): 655–661.

Czier, Z., 1994. A Körösi-vidék és a Bánság liász flórája. Dr. Univ. doktori diszsertáció. 229 p. (vol. 1), 211 p. (vol.2), Budapest (Eötvös Loránd Tudományegyetem, Természettudományi Kar).

Czier, Z., 1998. Ginkgo foliage from the Jurassic of the Carpathian Basin. Palaeontology, 41 (2): 349-381.

Czier, Z., 1999. Biostratigraphy of the Lower Jurassic from Romania, based on the macroflora fossil record. Nymphaea, Folia naturae Bihariae, 27: 43-58.

Czier, Z., 2000. Macroflora liasica din România, cu privire specială asupra Pădurii Craiuului. 260 p., Oradea (Editura Imprimeriei de Vest).

Czier, Z., 2001. Rezumatul tezei de doctorat „Flora liasica din Crişana și Banat”. (Universitatea Eötvös Loránd - Budapesta, 1994). Nymphaea, Folia naturae Bihariae, 28: 27-46.
Czier, Z., 2005. Plante fosile din colecția Muzeului Țării Crișurilor, propuse pentru categoria tezaur. Nymphaea, Folia naturae Bihariae, 31: 133-155.

Czier, Z., 2008. *Bananotzamites remotus* Czier sp. nov. (Cycadeoidales) from the Lower Jurassic of Anina, Romania. Nymphaea, Folia naturae Bihariae, 35: 5-26.

Czier, Z., 2009. *Bananotzamites calvus* Czier sp. nov. and *Bucklandia annaenaesis* Czier sp. nov. from the Lower Jurassic of Anina, Romania. Nymphaea, Folia naturae Bihariae, 36: 5-26.

Czier, Z., 2016a. The Bennettitaen genus *Pterophyllum* in the fossil flora of Romania, and the global phytosratigraphic–paleogeotypographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.

Czier, Z., 2016b. Probleme de stratigrafie cu privire la depozitele continentale ale Jurasicului inferior din România. In: Moisa, G., Goman, I., Şipoş, S. (coord.), Omagiu Chiriac Aurel. Fragmentarium, studii inter-disciplinare: 538-573, Oradea (Editura Muzeului Țării Crișurilor).

Czier, Z., 2016c. European Paleofloristic Affinities of the Romanian Jurassic Macroflora. Nymphaea, Folia naturae Bihariae, 43: 13-66.

Czier, Z., 2018. The Genus *Zamites* Brongniart 1828 emend. Harris 1969 (Bennettitales) in the fossil flora of Romania. Nymphaea Folia naturae Bihariae, 45: 5–34.

Dragastan, O.N. and Popa, M.E., 1997. Early Jurassic Phytostratigraphy of the Holbav Formation, Getic Nappe, Brasov County. Revue Roumaine de Géologie, 41: 51-60.

Doweld, A.B., 2012. (2099) Proposal to conserve the name *Bucklandia* Brongn. against *Bucklandia* Sternb. and *Conites* (fossil Gymnospermae, Cycadeoideopsida). Taxon, 61(5): 1131–1132

Doweld, A.B., 2020. The controversial nomenclature of the fossil plant names *Cheirolepis*, *Cheirolepidium* and *Hirmeriella* (Cheirolepidaceae / Cheirolepidiaceae / Hirmeriellaceae). 69(5): 1092-1098.

Eckhold, W., 1921. Die Hof tüpfel bei rezenten und fossilen Koniferen. [PhD Thesis] Breslau Schlesische Fridrich-Wilhelms Universität (Univ. of Wroclaw, Poland).

Eckhold, W., 1922. Die Hof tüpfel bei rezenten und fossilen Coniferen. Jahrbuch Königliche Preussische Geologische Landesanstalt, 42: 472–505.

Engler, H.G.A., 1892. Syllabus der Vorlesungenübersp cielle und medicinisch-pharmaceutischen Botanik. Eine Übersicht über das gesammte Pflanzen system mit Berücksichtigung der Medicinal- und Nutzpflanzen (1st ed.). Berlin: Verlag Grüber Borntraeger, 233pages.

Engler, H.G.A. and Prantl, K.A.E., 1897. Die Natürlichen Pflanzen familien nebstden Gattungen und wichtigeren Arten. Nachträge, I-IV: Unterabteilung Gymnospermae [II(1)] p. 6. Leipzig: W. Engelmann Verlag.

Feng, Z., Wang, J. and Rößler, R., 2010. *Palaeoginkgoxylon zhoui*, a new ginkophyte wood from the Guadalupian (Permian) of China and its evolutionary implications. Review of Palaeobotany and Palynology, 162: 146–158.

Fossil works – online. Gateway to the Paleobiology Database - Fossilworks: Cheirolepidiaceae.

Francis, J.E., 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology, 26: 277-294.

Garcia, J.-P., Philippe, M. and Gaumet, F., 1998. Fossil wood in Middle-Upper Jurassic marine sedimentary cycles of France: relations with climate, sea-level dynamics, and carbonate-platform environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 141(3-4): 199-214.

GBIF online – *Buckia vaucheri* (mindat.org); *Buckia vaucheri* (Lesq.) D.Rios, M.T.Gallego and J.Guerra (gbif.org)

Givulescu, R., 1991a. *Zamites vachrameevii* Doludenko 1969 in dem Unteren Lias, Rumänien. Acta Palaeobotanica, 31(1-2): 17-21.

Givulescu, R., Czier, Z., 1990. Neue Untersuchungen über die Floren des Unteren Lias (Rumänien). Documenta naturae, 59: 8-19.

Gorozhankin, I.N., 1904. Gingkoales. (Published in: Lektssii po Morfologii I Sistematike Archegonialnykh Rastenij. II. Pteridophyta I. Archispermae. Moscow: A.I. Mamontov) (Russian scientific publication usually cited as: Lekts. Morf. Sist. Archegon.), 73: p.93. [in Russian]

Greguss, P., 1961. Permische fossile Holzer aus Ungarn. Palaeontographica, Abt. B, Palaeophytopla, 109: 131-146.

Greguss, 1968. Xylotomy of the living Cycads, with a description of their leaves and epidermis. 1-260 pages, Akadémiai Kiadó.

Hambach, U., Panaioth, C. and Panaioth, C. E., 1996. Gondwana origin of the Tisza-Dacia unit? Arguments from paleomagnetism. PANCARDI Workshop 1996 (abstract). Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten Österreichs, 41: 101-148.

Harris, T.M., 1979. The Yorkshire Jurassic Flora. 5. Conifers. British Museum Natural History, London, 167 pp.

Herbst, R. and Crisafulli, A., 2016. La flora trisica del grup El Tranquilo, provincia de Santa Cruz (Patagonia): leños fósiles. Ameghiniana, 48(3): 78-102.

Hickey, L.J., Hu, S. and Skinner, B.J., 2011. A New ginkgolean conifer wood from the Late Triassic of Romania, and the global phytostratigraphy of the Holbav Formation, Getic–Banatozamites calvus paleophytogeographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.

Hickey, L.J., Hu, S. and Skinner, B.J., 2011. A new ginkgolean conifer wood from the Late Triassic of Romania, and the global phytostratigraphy of the Holbav Formation, Getic–Banatozamites calvus paleophytogeographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.

Hickey, L.J., Hu, S. and Skinner, B.J., 2011. A New ginkgolean conifer wood from the Late Triassic of Romania, and the global phytostratigraphy of the Holbav Formation, Getic–Banatozamites calvus paleophytogeographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.

Hickey, L.J., Hu, S. and Skinner, B.J., 2011. A New ginkgolean conifer wood from the Late Triassic of Romania, and the global phytostratigraphy of the Holbav Formation, Getic–Banatozamites calvus paleophytogeographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.

Hickey, L.J., Hu, S. and Skinner, B.J., 2011. A New ginkgolean conifer wood from the Late Triassic of Romania, and the global phytostratigraphy of the Holbav Formation, Getic–Banatozamites calvus paleophytogeographic context. Vestnik TvGU, Seriya Biologiya i Ekologiya, 3: 133-184.
Memoirs of the New York Botanical Garden, 3: 1-137.
Iamandei E. and Iamandei S., 2000. Bois fossiles de Conifères dans l’Aptien de Dobroudja de Sud, Romania. Acta Palaeontologica Romanae, 2(1999): 191-199.
Iamandei, S., Iamandei, E. and Țibuleac, P., 2001. Fossil Wood from Coal-layer "B" ofVoltphanian Formation in Leușeni - Fălticeni area. Analele Științifice ale Universității "Al.I.Cuza" (s.n.), Geologie, 47: 211-218.
Iamandei E., Iamandei S. and Grinea, D., 2003, Open, Svalbard Silicified lebenderlantae. Pars. 85, Gymnospermae. (Gingko–upper Jurassic of Gambia). Geologisches Jahrbuch II: Pteridosperm Inferred from Single - Copy Nuclear Genes. PLoS ONE, 9(9): 1-15.
https://doi.org/10.1371/journal.pone.0107679

Martínez L.C.A. and Lutz, A.I., 2007. Especies nuevas de Baileyoxylon Greguss y Circroporoxyylon Krüssel en las formaciones Rayoso y Huincul (Cretáceo), provincia del Neuquén, Argentina. Ameghiniana, 44(3): 537-546.
Martínez, L., Artabe, A. and Bodnar, J. 2012. A new Cycad stem from the Cretaceous in Argentina and its phylogenetic relationships with other Cycadales. Botanical Journal of the Linnean Society, 170: 436-458.
Martínez, L.C.A., Iglesias, A., Artabe A.E., Varela A.N. and Apesteguía, S., 2017. A new Euphorbiaceae trunk (Cycadales) from the Cretaceous of Patagonia (Mata Amarilla Formation, Austral Basin), Argentina. Cretaceous Research, 72: 81-94

McLoughlin, S. and Strullu-Derrien, C. 2016. Biota and palaeoenvironment of a high middle-latitude Late Triassic peat-forming ecosystem from Hopen, Svalbard archipelago. Geological Society, London, Special Publications, 434: 87-112.
https://doi.org/10.1144/SP434.4

Müller-Stoll, W.R. and Schulzte-Motel, J., 1989. Gymnospermen-Hölzer des Deutschen Jura. Teil 2: Die Prototinoiden Hölzer. Zeitschrift der Deutschen Geologischen Gesellschaft, 140: 53–71.

IFPNI - The International Fossil Plant Names Index -; www.fossilplants.info/genus.htm?id=D46FC51A

Philippe, M., 1995. Nomenclature générique des trachéidoxyles mésozoïques à champs araucarioïdes. Taxon, 44: 74-80.
Philippe, M., 1995. Bois fossiles du Jurassique de Franche-Comté (NE-France). Palaeontographica Abt. B, 236: 45-103.
Philippe, M., 2002. Reappraisal of five genera designed for fossil coniferous woods by early American wood anatomists. IAWA Journal, 23: 319–326.
Philippe, M. and Bamford, M.K., 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology, 148: 184-207.

46
Contributions to the study of the Early Jurassic petrified forest

Torres, T. and Zamuner, A., 2004. Biogeographic analysis of Jurassic–Early Cretaceous wood assemblages from Gondwana. Review of Palaeobotany and Palynology, 129: 141-173.

Philippe, M., Cuny, G., Bamford, M., Jaillard, E. and Barale, 2011. Révision de Brachyxyylon rotnaense Mathiesen, description de B. serrae n.sp. et conséquences pour la stratigraphie du Crétacé inférieur d’Asie du Sud-Est. Geodiversitas, 33: 25–32.

Phillips, E.W.J., 1941. The identification of coniferous woods by their microscopic structure. Journal of the Linnean Society of London, Botany, 25: 259–320.

Popa, M.E., 1997. Coryospermal pteridosperms in the Liassic continental deposits of Romania. Acta Palaeontologica Romanae, 1: 81-87.

Popa, M.E., 1998. The Liassic continental flora of Romania: Systematics, Stratigraphy and paleoecology. Acta Botanica Horti Bucurestiensis: 177-184.

Popa, M.E., 2000a. Aspects of Romanian Early Jurassic palaeobotany and palynology. Part III. Phytostratigraphy of the Getic Nappe. Acta Palaeontologica Romaniae, 2: 377-386.

Popa, M.E., 2000b. Early Jurassic land flora of the Getic Nappe. PhD thesis, University of Bucharest, 258 pp., Bucharest.

Popa, M.E. 2000a. Aspects of Romanian Early Jurassic palaeobotany and palynology. Part I. In situ spores from the Getic Nappe, Banat, Romania. Acta Palaeobotanica, Suppliment 2: 181-193. Proceedings of 5th EPPC: W. Szafer Institute of Botany, Krakow.

Popa, M.E. and van Konijnenburg-van Cittert, J.H.A., 2006. Aspects of Romanian Early Miocene palaeobotany and palynology. Part VII. Successions and floras. Progress in Natural Sciences, 16 (Special Issue): 203-212.

Reveal, J.L., 1996. Newly required suprageneric names in Magnoliophyta. Phytologia, 79: 68–76.

Roggeveen, P.M., 1932. Mesozoisches Koniferenholz (Protocupressinoxylon malayense n.s.) von der Insel Soegi im Riouw Archipel. Niederländisch Ost Indien. Proceedings of the Section of Science, Koninklijke (Nederlandse) Akademie van Wetenschappene Amsterdam, 35: 580–584.

Ruffinatto, F., Crivellaro, A. and Wiedenhöft, A.C., 2015. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal, 36(2): 208–241.

Ruíz, D.P. and Bodnar, J., 2019. The oldest record of Juniperoxyxon, a cupressaceous fossil wood from the Middle Triassic of Argentina. Acta Palaeontologica Polonica, 64(3): 481–488.

Sáiki, K. and Yoshida, Y., 1999. A New Bennettitalean Trunk with Unilacunar Five-Trace Nodal Structure from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany, 86(3): 326-332. https://doi.org/10.2307/2656754; https://www.jstor.org/stable/2656754

Sândulescu, M., Antonescu Em., Popa El., Tomescu, C., 1984. Cercetări pentru reevaluarea perspectivelor de cărbuni liasici din Țara Bîrsii. Tema 1.1.b. Raport Arhiva Institutului de Geologie și Geofizică. [in Romanian].

Schultze-Motel, J., 1960. Gymnospermen Holzer aus den Oberen Kreide von Quedlinburg. Paläontologische Zeitschrift, 34: 1-15.

Scott, D.H. 1923. Studies in fossil botany. Vol. 2, 3rd Ed. A. and C. Black, London.

Selling, O.H., 1951. On Protojuniperoxylon arcticum. Journal of Paleontology, 25(4): 538-539.

Sharma, B. D. 1967. Investigations on the Jurassic flora of Rajmahal Hills, India. 4. On a new species of Indian Bucklandia, B. guptai, with remarks on B. sahini of Bose. Ameghiniana, 4: 35-46.

Sharma, B. D. 1969. Bucklandia dichotoma sp. nov. from the Middle Jurassic of Rajmahal Hills, India. Ameghiniana, 6: 303-308.

Sharma, B.D., 1973. Anatomy of petrified racihises collected from the Jurassic of Amarjola in the Rajmahal Hills, India. The Proceedings of the Linnean Society of NSW, 98:43–49.

Sharma, B. D. 1991. Indian Williamsoniaceae – an overview. Paleobotanist, 4: 260-265

Stokes, M., 1915. Catalogue of the Mesozoic plants in the British Museum - The Cretaceous flora, Part 2, Lower Greensand (Aptian) plants of Britain: London, British Museum (Natural History), 360 p.

Stackey, R. and Rothwell, G.W., 2003. Anatomically Preserved Williamsonia (Williamsoniaceae): Evidence for Bennettitalean Reproduction in the Late Cretaceous of Western North America. International Journal of Plant Sciences 164(2):251-262. https://doi.org/10.1086/346166

Strullu-Derrien, C., McLoughlin, S., Philippe, M., Mørk, A. and Strullu, D.G., 2012. Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeography Palaeoclimatology Palaeoecology 348–349: 45–58. https://doi.org/10.1016/j.palaeo.2012.06.006

Süss, H., 2003. Zwei neue fossile Hölzer der Morphogattung Ginkgoxylon Saporta emend. Süss aus Tertiären Schichten der Insel Lesbos, Griechenland, mitteiner Übersichtüber Fossilien mit ginkgoaler Holzstruktur. Feddes Repertorium, 114(5-6): 301-319. DOI: 10.1002/fedr.200311001 [in German]

Süss, H., Rößler, R., Boppré, M. and Fischer, O.W., 2009. Drei neue fossile Hölzer der Morphogattung Primoginkgoxylon gen. nov. aus der Trias von Kenia. Feddes Repertorium, 120(5-6): 273–292; https://doi.org/10.1002/fedr.200911108

Taylor, T.N., 1981. Paleobotany. An Introduction to Fossil Plant Biology. xiii + 589 pp. Publisher: McGraw-Hill. ISBN 0070629544.

47
Taylor, T.N., Taylor, E. and Krings, M., 2009. Paleobotany. The Biology and Evolution of Fossil Plants. Edition: 2nd, 1252p. Publisher: Academic Press / Elsevier. https://doi.org/10.2307/1223352

Turutanova-Ketova, A., 1963. Williamssoniaee in Soviet Union. Trudy botaniki, Institut Akademii Nauka, SSSR, ser. 8, Paleobotanika, 4: 7-55, 12 figs. Pls. 1-7 [in Russian]

Vera, E.I. and Césari, S.N., 2012. Fossil woods (Coniferales) from the Baqueró Group (Aptian), Santa Cruz Province, Argentina. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences), 84(3): 617-625.

Vogellehner, D., 1967. Zur Anatomie und Phylogenie de Mesozoischer Gymnospermenhölzer, 7: Prodromus zu einer Monographie de Protopinaceae. I. Die Protopinoiden Hölzer des Trias. Palaeontographica Abt. B, 121(1-3): 30-51.

Vogellehner, D., 1968. Zur Anatomie und Phylogenie de Mesozoischer Gymnospermenhölzer, 7: Prodromus zu einer Monographie de Protopinaceae. II. Die Protopinoiden Hölzer des Jura. Palaeontographica Abt. B, Stuttgart, 124(4-6): 125-162.

Wang, S.J., Jiang, Y.F. and Qin, Y., 1994. A new petrified wood from Taiyuan Formation, Xuzhou coalfield, Jiangsu province. Acta Botanica Sinica, 36: 194-198.

Zhang, W., Li Y., Zheng, S.L., Li, N., Wang, Y.D., Yang, X.J., Yi, T.M., Yang, J.J. and Fu, X.P., 2006. Fossil woods of China (Chinese ed.). China Forestry Publishing House, Beijing, 1-356 p.

Zhang W., Yang X.-J., Fu X.-P., Zheng S.-L. and Wang Y.-D., 2012. A polyxylic cycad trunk from the Middle Jurassic of western Liaoning, China, and its evolutionary implications. Review of Palaeobotany and Palynology, 183: 50-60.

Zheng, S.L., Li, Y., Zhang, W., Li, N., Wang, Y.D., Yang, X.J., Yi, T.M., Yang, J.J. and Fu, X.P., 2008. Fossil woods of China (English edition). China Forestry, Beijing: 1-356.