Application of computational fluid dynamics in the research on odorous-black water and physical treatment technology

Chao Guo¹,²,³,⁴,*, Yulu Wei¹,²,³,⁴, Siqi Liu¹,²,³,⁴

¹Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Shaanxi Xi’an 710071
²Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Shaanxi Xi’an 710071
³Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources., Shaanxi Xi’an 710071
⁴Shaanxi Provincial Land Consolidation Engineering Technology Research Center., Shaanxi Xi’an 710071

*Corresponding author: GCLRF@rdu.com

Abstract. As an extreme phenomenon of water pollution, odorous-black water not only cause ecological damage and threaten human health, but also severely restrict urban development. This paper mainly summarizes the main points, applicability, advantages and disadvantages of the current comprehensive treatment technology of odorous-black water, and analyzes the later development direction of odorous-black water treatment technology. It is considered that the treatment of odorous-black water is a systematic project, which involves many sources such as external source interception, water purification, quality assurance of living water, ecological restoration are the important technical means.

Keywords: Odorous-black water, comprehensive treatment, technical means.

1. Introduction
In recent years, due to the rapid development of industry, agriculture and urbanization, human production and living have intensified the total pollution of water resources. Not only natural lakes and reservoirs have been under great threat, but also artificial landscape lakes and reservoirs have been polluted to varying degrees [1]. A large amount of industrial, agricultural and domestic pollution discharge causes a series of water environment problems such as black and odorous water in the surrounding water, water quality deterioration, and even water bloom. Black and odorous water not only damages the river ecosystem, but also seriously affects the urban landscape and damages the urban living environment. The treatment of urban black and odorous water has always been a key problem in the research of domestic and foreign experts and scholars. At present, quite a few urban river sections in China are polluted to varying degrees [2]. At the same time, due to the lack of urban environmental infrastructure and the difficulties in the reconstruction of old urban areas, a large number of pollutants are discharged directly without treatment. In addition, More and more cities will use the tail water of sewage treatment plants that meet the Pollutant Discharge Standard for Urban...
Sewage Treatment Plants (GB 18918-2002) and the Water Standard for Landscape Environment of Urban Sewage Recycling (GB/T 18921-2002) as reclaimed water and serve as the water source for surface water such as lakes or wetlands [3]. The content of nitrogen and phosphorus pollutants (TN 15 mg/L, TP 0.5 mg/L) in the tail water of Grade A standard is relatively high, which does not meet the standard of Class V water quality (TN 2 mg/L, TP 0.4 mg/L) in The Environmental Quality Standard for Surface Water (GB 3838-2002). Moreover, it did not reach the internationally recognized critical value of eutrophication (TN 0.2mg /L, TP 0.2mg /L). As an extreme phenomenon of water pollution, black and odorous water not only cause ecological damage, have a serious impact on residents’ lives and the surrounding environment, but also seriously restrict urban development [4]. Therefore, the remediation of black and odorous water has become one of the hottest and most difficult environmental problems in water environmental protection and governance in China today [5].

2. Comprehensive remediation technology for black and smelly water
The primary task of urban black and smelly water remediation is to understand its causes and take effective measures to eliminate the "black and smelly" problem. The main causes of black and odorous water in urban inland rivers are the input of external pollutants (such as industrial wastewater, domestic sewage, garbage and non-point source pollution on both sides of the bank) and the input of internal source pollution from sediments. The environmental factors that cause black and odor mainly include: organic pollutants, nitrogen, phosphorus, iron, manganese, sulfide and other pollutants, water hypoxia, poor fluidity, etc. can further accelerate the black and odor of water. The treatment of black and odorous water should follow the technical route of "external source emission reduction, internal source dredging, water quality purification, clean water supply, and ecological restoration". External source emission reduction and internal source dredging are the foundation and prerequisite, water quality purification is a phased treatment method, and hydrodynamic improvement technology and ecological restoration are long-term guarantee measures. At present, there are many black and odorous water treatment technologies. According to different treatment methods and pollutant sources, the black and odorous water treatment technologies are divided into five categories, as shown in Table 1.

Table 1. The treatment technology of urban odorous-black water
Classification
Point source pollution control
High-efficiency first-level enhanced sewage treatment technology
Policy strengthening

Non-point source pollution control
Water purification technology
Method

Stabilization pond
Hydrodynamic improvement technology
Black and smelly water improvement
Ecological restoration technology
Improvement of black and smelly water and bottom mud
Biodiversity regulation technology
2.1. External source blocking technology

Blocking pollution sources is the key to controlling black and odorous water. Urban pollution sources mainly include point source pollution and non-point source pollution. For the treatment of external pollutants, many cities have done a lot of effective work, which can basically be achieved by improving the sewage pipe network, improving the efficiency of rain and sewage diversion, and the centralized sewage treatment and external discharge. At the same time, it can strengthen the administrative management. For example, the upgrading or shutting down of the sewage of key sewage companies, and improving the efficiency of garbage removal and transportation, can further improve the processing capacity and level of external pollutants [5]. For sewage that has no conditions for interception and pipelining, high-efficiency first-level enhanced sewage treatment technology or technology can be used in situ to avoid pollution of water by direct sewage discharge [9]. Urban non-point source pollution is an important source of black and smelly water. In the summer of 2007, the tap water in Wuxi City produced a severe pungent smell, mainly due to non-point source pollution caused by a large amount of chemical fertilizers near Taihu Lake, which flowed into the rivers and lakes, resulting in eutrophication of the water and a large number of cyanobacteria. Pollution occurs almost every 3 years. Event [6],[15]. Non-point source pollution control technologies mainly include various urban low-impact development (such as sponge city) technologies, initial rainwater control technologies and ecological bank protection technologies. The low-impact development technology mainly uses the backfill soil layer with good permeability and pollutant adsorption performance to naturally purify the pollutants carried by rainfall runoff through physical, chemical, and biological effects such as filler adsorption, filtration, ion exchange, and microbial degradation, and then infiltration to replenish groundwater or collect and reuse it has the comprehensive functions of mitigating urban waterlogging, purifying water quality and conserving groundwater resources. The initial rainwater control technology mainly uses infiltration tanks, sedimentation tanks, permeable paving, green roofs and other facilities to dispose of rainwater with high pollutant content in the early stage of rainfall, and then reuse it, which is effective for urban non-point source pollution control. measure. Ecological bank protection mainly uses plants or a combination of plants and civil engineering to protect the slope of the river. It has comprehensive effects such as flood control, ecology, landscape and water self-purification. It has the best effect when combined with non-point source pollution source treatment facilities. [10].

2.2. Water purification technology

Water purification technology is an important means to remove black and odorous water and reduce black and smelly. Water purification technologies for urban black and odorous water mainly include: constructed wetland technology, ecological floating islands, stable ponds, etc. Constructed wetlands mainly use fillers with better adsorption performance and a complete microbial system to adsorb and degrade pollutants and reduce the content of pollutants in water. The ecological floating island technology mainly uses aquatic plants with better adsorption performance to absorb nutrients in the water and relieve the eutrophication of the water. It is generally used before the water is black and smelly. The ecological floating island has good landscape value and is an application for water quality restoration in rivers and lakes. More technical means [16]. Stabilization pond technology is similar to constructed wetland and ecological filter ditch technology, mainly using filler adsorption, plant absorption, microbial degradation and other methods to remove nitrogen and phosphorus nutrients in the water. Because of its convenient operation and maintenance, low cost, and no secondary pollution, it is a common technical method for rural domestic sewage treatment [14]. In addition, the use of artificial aeration, oxygenation, and flocculation sedimentation technology can remove the ammonia nitrogen in the black and odorous water, and the addition of flocculants can generate incompatible precipitation of certain phosphorus and heavy metals and fix them in the river bottom mud. The methods of aeration and aeration are used in the management of the Saar River in Germany, the Thames River in the United Kingdom, the Swan River in Australia, and the Suzhou River in China.
2.3. Hydrodynamic improvement technology
Hydrodynamic improvement technology adopts methods such as running water and water transfer to improve the water quality of water. This technology has obvious effects for lakes and reservoirs with high pollution load, insufficient hydropower, and low environmental capacity. However, to use clean water to improve river water quality, unconventional water sources should be used as much as possible, and at the same time, new sources of pollution should be prevented in the process of water transfer.

2.4. Ecological restoration technology
Ecological restoration technology is to rebuild river and lake ecosystems through physical, chemical, and biological methods under effective control of external pollution. It is an important measure to improve black and odorous water and black and odorous sediments and a key technology to restore river and lake ecosystems. Ecological restoration technology mainly includes artificial control technology for algae growth, water ecological restoration technology and biodiversity regulation technology. Artificial algae growth control technology is used in polluted water with high phosphorus release. Through artificial salvage, algae inhibition and other methods, the growth of blue and green algae is controlled, and the eutrophication of the water is reduced. Water ecological restoration and biodiversity regulation technologies are mainly used to regulate animals, plants, and microorganisms in rivers and lakes, protect biodiversity, and create a good ecosystem. Ecological restoration technology is an advanced treatment process for black and odorous water in the later stage.

3. Conclusions and Outlook
In the future, black and smelly water treatment technology will establish a technological system for urban inland river black and smelly water treatment with the scientific logic of "internal treatment-ecological restoration" under the premise of "external source interception". In terms of point source treatment, we will develop high-efficiency nitrogen and phosphorus source control technologies, such as nitrogen and phosphorus resource recycling technologies, refractory industrial wastewater, and high-efficiency redox technologies for waste residues. In terms of non-point source treatment, it is necessary to integrate comprehensive urban non-point source control technologies, such as initial rainwater, surface interception, and pollution control technologies. Regarding the treatment of endogenous black and odorous bottom sludge, starting from the development of new materials and new equipment models, we will research and develop high-efficiency, low-risk, and low-cost in-situ control technologies for urban black and odorous river bottom sludge pollution, such as oxidizers and covering agents, Algae inhibitors, environmentally friendly ecological covering agents, etc. In terms of ecological restoration, the application of in-situ water quality improvement and biological ecological restoration technologies, such as high-efficiency composite microbial agents, and indigenous microbial growth-promoting technologies, should be the main application. In addition, reorganizing, extending and developing a series of new technologies based on the existing physical, chemical and biological remediation technologies will fundamentally solve the difficulties and technical key points of the black and odor problem of urban rivers, and help pollution control.

Acknowledgments
This research was financially supported by the Key Search and Development Program of Shaanxi (2020SF-420), the project of Shaanxi Provence Land Engineering Construction Group (DJNY2020-27).

References
[1] Wang Q, Gao H J. Chinese urban black and odorous water treatment status, problems and future direction[J]. Chinese Journal of Environmental Engineering, 2019, 13 (3):9-12.
[2] Wu S H. Research progress on key technologies of remote sensing monitoring of urban black and odorous water[J]. Chinese Journal of Environmental Engineering, 2019, (6):7-17.
[3] Zong M, Zheng X Q, Fang C T. Influence of Ecological Water Supply and Reclaimed Water
[4] Hao X D, Wang X Y, Jiang H, et al. Comprehensive benefit evaluation method of sewage treatment environment and case application [J]. China Water & Wastewater, 2019, 35(06):40-49.

[5] Lan X L. Study on Life Course and Integration Strategy of Urban Black and Odorous Water Treatment [J]. Social Sciences of Beijing, 2019, (4):23-36.

[6] He G J. Discussion on related problems and countermeasures of municipal rainwater and sewage pipeline diversion reconstruction project [J]. Construction & Design for Engineering, 2019, (12):72-73.

[7] Wang K L, Li Xue J. Analysis on the Defects of Environmental Protection Policies Related to Water Pollution in China [J]. China Soft Science, 2001, (01):25-29.

[8] Zhang Y F. Practice of Sponge City Construction Concept in the Treatment of Black and Smelly Water in Small and Medium-sized Rivers in Southern Built-up Areas [J]. Pearl River Water Transport, 2017, (16):89-90.

[9] Yuan X B, Zhang L, Zheng X Q, et al. Discussion on Initial Rainwater Pollution Control Technology in Urban New District [J]. Journal of Anhui Agricultural Sciences, 2015, (19):261-263+273.

[10] Cai J, Li X P, Chen X H. Pollution control of river ecological slope protection to surface runoff [J]. Acta Scientiae Circumstantiae, 2008, 28(7):1326-1334.

[11] Zhang S. Research on the Treatment of Rural Domestic Sewage by Intensified Reoxygenation Constructed Wetland [D]. Zhejiang University, 2011.

[12] Wang B. Study on Purification Performance and Microbiological Mechanism of Compound Constructed Wetland on Black and Odorous Water [D]. Harbin Institute of Technology, 2017.

[13] Fang Y Y, Liu J T, Dai G F, et al. Ecological floating island technology and its application in eutrophic water restoration [J]. Environmental Science and Management, 2019, (10):75-79.

[14] Cai L X, Wu W L, Gao Y, et al. Experimental study on the purification of black and smelly river wastewater by ecological floating island compound technology [J]. Environmental Pollution & Control, 2016, (12):17-21.

[15] Yu L, Zhang L, Chai L N. Research on Ecological Rehabilitation and Restoration Methods of Coastal Reclamation Area—A Case Study of Jigang Town, Dongtai City [J]. Environmental Science and Management, 2020, (1):151-155.

[16] Zhao L. Construction and Experimental Research on Ecological Floating Island for Water Purification in Shahe Reservoir [D]. Beijing Forestry University, 2019.