Distribution of Mutual Information

Marcus Hutter

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch, http://www.idsia.ch/~marcus

NIPS-2001, December 3–8
Consider (Dependent) Random Variables

- \(p_{ij} = \) joint probability of \((i, j)\), \(i \in \{1, \ldots, r\} \) and \(j \in \{1, \ldots, s\} \).
- \(p_{i+} = \sum_j p_{ij} = \) marginal probability of \(i \),
- \(p_{+j} = \sum_i p_{ij} = \) marginal probability of \(j \).

(In)Dependence of Random Variables \(i \) and \(j \)

Widely used measure: Mutual Information (= CrossEntropy)

\[
I(p) = \sum_{i=1}^{r} \sum_{j=1}^{s} p_{ij} \log \frac{p_{ij}}{p_{i+}p_{+j}}
\]

Example Application: Connecting Nodes in Bayesian Nets
Contingency Table

Data:

- \(n_{ij} = \# \) of times \((i, j)\) occurred.
- \(n_{i+} = \sum_j n_{ij} = \# \) of times \(i\) occurred.
- \(n_{+j} = \sum_i n_{ij} = \# \) of times \(j\) occurred.
- \(n = \sum_{ij} n_{ij} \) = size of data set.

\(j \) \(\backslash \) \(i \)	1	2	\(\cdots \)	\(r \)
1	\(n_{11} \)	\(n_{12} \)	\(\cdots \)	\(n_{1r} \)
2	\(n_{21} \)	\(n_{22} \)	\(\cdots \)	\(n_{2r} \)
\(\vdots \)	\(\vdots \)	\(\vdots \)	\(\ddots \)	\(\vdots \)
\(s \)	\(n_{s1} \)	\(n_{s2} \)	\(\cdots \)	\(n_{rs} \)

Sample Frequency (Point) Estimate of \(p_{ij} \)

\[
p_{ij} \approx \hat{p}_{ij} := \frac{n_{ij}}{n}
\]
Problems of Point Estimate

- $I(\hat{p})$ gives no information about its accuracy.
- $I(\hat{\theta}) \neq 0$ can have two origins:
 - a true dependency of the random variables i and j
 - just a fluctuation due to the finite sample size.

Questions of Interest

What is the probability that

- the true mutual information $I(p)$ is larger/smaller than a given threshold I^*,
- the estimate $I(\hat{p})$ is (in)consistent with $I(p) = 0$,
Baysian Solution: 2nd Order Prior

Change convention to avoid confusion: \(p_{ij} \sim \theta_{ij} \).

Prior distribution \(p(\theta_{ij}) \) for the unknown \(\theta_{ij} \) on the probability simplex. (e.g. non-informative Dirichlet prior).

\[\Rightarrow \text{Posterior: } p(\theta|n) \propto p(\theta) \cdot \prod_{ij} \theta_{ij}^{n_{ij}} \text{ (the } n_{ij} \text{ are multinomially distributed)}. \]

\[\Rightarrow \text{Posterior probability density of the mutual information is:} \]

\[p(I|n) = \int \delta(I(\theta) - I)p(\theta|n)d^{rs}\theta \]

Hard to Compute:

- Monte Carlo (slow),
- Exact (partially possible)
- Wild approximation (unreliable)
- Systematic expansion in \(1/n \) (fast and sufficiently accurate)
Results for I under Dirichlet P(oste)rior

- Exact expression for mean:

$$E[I] = \frac{1}{n} \sum_{ij} n_{ij} \left[\psi(n_{ij} + 1) - \psi(n_i + 1) - \psi(n_j + 1) + \psi(n + 1) \right], \quad \psi(n) = \sum_{k=1}^{n-1} \frac{1}{k}$$

- Leading and next to leading order (n.l.o.) term for variance:

$$\text{Var}[I] = \frac{1}{n} \sum_{ij} n_{ij} \left(\log \frac{n_{ij}n_i}{n_i+n_j} \right)^2 - \frac{1}{n} \left(\sum_{ij} n_{ij} \log \frac{n_{ij}n_i}{n_i+n_j} \right)^2 + n.l.o. + O(n^{-3}).$$

- For n.l.o. variance and leading order for skewness and kurtosis (3^{rd} and 4^{th} central moments) come to my poster or read the paper.

- Computation time: $O(r \cdot s)$, i.e. as fast as point estimate.

- Systematic expansion of all moments to arbitrary order possible, but cumbersome.

- Leading order is as exact as one can specify prior knowledge.
Mutual Information Density Example Graph

\[p(I|n) = \int \delta(I(\theta) - I) \prod_{ij} \theta^{n_{ij}} \delta(\theta_{++} - 1) \, d\theta \]

\[I = 0..I_{\text{max}} = [\log(\min(r,s))] \]