On Solutions of Stochastic Oscillatory Quadratic Nonlinear Equations Using Different Techniques, a Comparison Study

Magdy A. El-Tawil¹ and Amna S. Al-Jihany²

1. Cairo University, Faculty of Engineering, Engineering Mathematics Department, Giza, Egypt
2. Mathematics department, Faculty of teachers (girls), Makkah, KSA

E-mail: magdyeltawil@yahoo.com

Abstract. In this paper, nonlinear oscillators under quadratic nonlinearity with stochastic inputs are considered. Different methods are used to obtain first order approximations, namely; the WHEP technique, the perturbation method, the Pickard approximations, the Adomian decompositions and the homotopy perturbation method (HPM). Some statistical moments are computed for the different methods using mathematica 5. Comparisons are illustrated through figures for different case-studies.

1. Introduction

Quadratic oscillation arises through many applied models in applied sciences and engineering when studying oscillatory systems [1]. These systems can be exposed to a lot of uncertainties through the external forces, the damping coefficient, the frequency and/or the initial or boundary conditions. These input uncertainties cause the output solution process to be also uncertain. For most of the cases, getting the probability density function (p.d.f.) of the solution process may be impossible. So, developing approximate techniques (through which approximate statistical moments can be obtained) is an important and necessary work. There are many techniques which can be used to obtain statistical moments of such problems. The main goal of this paper is to compare some of these methods when applied to a quadratic nonlinearity problem.

2. Problem Formulation

In this paper, the following quadratic nonlinear oscillatory equation is considered as a comparison prototype equation for the application of the different solution techniques:

\[\ddot{x}(t;\omega) + 2\omega \zeta \dot{x} + \omega^2 x + \epsilon \omega^2 x^2 = F(t;\omega), t \in [0, T] \]

under stochastic excitation \(F(t;\omega) \) with deterministic initial conditions

\[x(0) = x_0, \quad \dot{x}(0) = \dot{x}_0, \]

1: To whom any correspondence should be addressed.
where
w: frequency of oscillation,
ζ: damping coefficient
ε: deterministic nonlinearity scale
ω ∈ (Ω, σ, P): a triple probability space with Ω as the sample space, σ is a σ-algebra on events in Ω and P is a probability measure.

Lemma:
The solution of equation (1), if exists, is a power series of ε.

Proof
Rewriting equation (1), it can take the following form
\[\dot{x}(t; \omega) + 2w \zeta x + w^2 x = F(t) - \varepsilon \omega^2 x^2 \]

Following Pickard approximation, the equation can be rewritten as
\[\dot{x}_{n+1}(t) + 2w \zeta x_{n+1} + w^2 x_{n+1} = F(t) - \varepsilon \omega^2 x_0^2, \quad n \geq 0 \]
where the solution at \(n = 0, x_0 \), is linear and corresponding for the case \(\varepsilon = 0 \).

At \(n = 1 \), the iteration takes the form:
\[\dot{x}_1(t) + 2w \zeta x_1 + w^2 x_1 = F(t) - \varepsilon \omega^2 x_0^2, \]
which has the following general solution
\[x_1(t) = \psi(t) - \varepsilon \omega^2 \int_0^t h(t - s) x_0^2(s) ds, \]
or
\[x_1(t) = x_1^{(0)} + \varepsilon x_1^{(1)}. \]

At \(n = 2 \), the iteration takes the form:
\[\dot{x}_2(t) + 2w \zeta x_2 + w^2 x_2 = F(t) - \varepsilon \omega^2 x_1^2, \]
which has the following general solution
\[x_2(t) = x_2^{(0)} + \varepsilon x_2^{(1)} + \varepsilon^2 x_2^{(2)} + \varepsilon^3 x_2^{(3)} . \]

Proceeding like this, one can get the following
\[x_n(t) = x_n^{(0)} + \varepsilon x_n^{(1)} + \varepsilon^2 x_n^{(2)} + \varepsilon^3 x_n^{(3)} + \ldots + \varepsilon^{n+m} x_n^{(n+m)} . \]

Assuming the solution exists, it will be
\[x(t) = \lim_{n \to \infty} x_n(t) = \sum_{j=0}^{\infty} \varepsilon^j x_j, \]
which is a power series of \(\varepsilon \).

As a direct result of this lemma, it is expected that the average, the variance as well as the covariance are also power series of \(\varepsilon \).

3. WHEP Technique
Since Meecham and his co-workers [2] developed a theory of turbulence involving a truncated Wiener-Hermite expansion (WHE) of the velocity field, many authors studied problems concerning turbulence [3-8]. A lot of general applications in fluid mechanics was also studied in [9,10,11]. Scattering problems attracted the WHE applications through many authors [12-16]. The nonlinear oscillators were considered as an opened area for the applications of WHE as can be found in [17-23]. There are a lot of applications in boundary value problems [24,25] and generally in different mathematical studies [26-29].

The application of the WHE aims at finding a truncated series solution to the solution process of differential equations. The truncated series composes of two major parts; the first is the Gaussian part which consists of the first two terms, while the rest of the series constitute the non-Gaussian part. In nonlinear cases, there exists always difficulties of solving the resultant set of deterministic integro-differential equations got from the applications of a set of comprehensive averages on the stochastic integro-differential equation obtained after the direct application of WHE. Many authors introduced different methods to face these obstacles. Among them, the WHEP technique was introduced in [22] using the perturbation technique to solve perturbed nonlinear problems.

The WHE method utilizes the Wiener-Hermite polynomials which are the elements of a complete set of statistically orthogonal random functions [30]. The Wiener-Hermite polynomial $H^{(i)}(t_1,t_2,...,t_i)$ satisfies the following recurrence relation:

$$H^{(i)}(t_1,t_2,...,t_i) = H^{(i-1)}(t_1,t_2,...,t_{i-1}).H^{(1)}(t_i)$$

$$- \sum_{m=1}^{i-1} H^{(i-2)}(t_{i-m},t_{i-2},...,t_1) \delta(t_{i-m} - t_1), i \geq 2$$

(2)

where

$$H^{(0)} = 1,$$

$$H^{(1)}(t) = n(t),$$

$$H^{(2)}(t_1,t_2) = H^{(1)}(t_1).H^{(1)}(t_2) - \delta(t_1 - t_2),$$

$$H^{(3)}(t_1,t_2,t_3) = H^{(2)}(t_1,t_2).H^{(1)}(t_3) - H^{(1)}(t_1).H^{(1)}(t_2).\delta(t_2 - t_3) - H^{(1)}(t_2).\delta(t_1 - t_3),$$

$$H^{(4)}(t_1,t_2,t_3,t_4) = H^{(3)}(t_1,t_2,t_3).H^{(1)}(t_4) - H^{(2)}(t_1,t_2).H^{(1)}(t_3).\delta(t_3 - t_4) - H^{(1)}(t_1,t_2).\delta(t_2 - t_4) - H^{(2)}(t_2,t_3).\delta(t_1 - t_4),$$

in which $n(t)$ is the white noise with the following statistical properties

$$E_n(t) = 0,$$

$$E_n(t_1)n(t_2) = \delta(t_1 - t_2),$$

(4)

where $\delta(\cdot)$ is the Dirac delta function and E denotes the ensemble average operator. The Wiener-Hermite set is a statistically orthogonal set, i.e.

$$E_n H^{(i)}.H^{(j)} = 0 \ \forall \ i \neq j.$$

(5)

The average of almost all H functions vanishes, particularly,

$$E_n H^{(i)} = 0 \ \text{for} \ i \geq 1.$$

(6)
Due to the completeness of the Wiener-Hermite set, any random function \(G(t, \omega) \) can be expanded as

\[
G(t, \omega) = G^{(0)}(t) + \int_{-\infty}^{\infty} G^{(1)}(t; t_1) H^{(1)}(t_1) dt_1 + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G^{(2)}(t; t_1, t_2) H^{(2)}(t_1, t_2) dt_1 dt_2 + \ldots \tag{7}
\]

where the first two terms are the Gaussian part of \(G(t, \omega) \). The rest of the terms in the expansion represent the non-Gaussian part of \(G(t, \omega) \). The average of \(G(t, \omega) \) is

\[
\mu_G = E G(t, \omega) = G^{(0)}(t) \tag{8}
\]

The covariance of \(G(t, \omega) \) is

\[
\text{Cov}(G(t, \omega), G(\tau, \omega)) = E(G(t, \omega) - \mu_G(t))(G(\tau, \omega) - \mu_G(\tau))
= \int_{-\infty}^{\infty} G^{(1)}(t; t_1) G^{(1)}(\tau, t_1) dt_1 + 2\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G^{(2)}(t; t_1, t_2) G^{(2)}(\tau, t_1, t_2) dt_1 dt_2 \tag{9}
\]

The variance of \(G(t, \omega) \) is

\[
\text{Var} G(t, \omega) = E(G(t, \omega) - \mu_G(t))^2 = \int_{-\infty}^{\infty} [G^{(1)}(t; t_1)]^2 dt_1 + 2\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [G^{(2)}(t; t_1, t_2)]^2 dt_1 dt_2 \tag{10}
\]

The WHEP technique can be applied on linear or nonlinear perturbed systems described by ordinary or partial differential equations. The solution can be modified in the sense that additional parts of the Wiener-Hermite expansion can always be taken into considerations and the required order of approximations can always be made depending on the computing tool. It can be even run through a package if it is coded in some sort of symbolic languages. The technique was successfully applied to several nonlinear stochastic equations, see [20,22,23,25].

3.1 Case-study:
The quadratic nonlinear oscillatory problem, equation (1), is solved using WHEP technique. The first order approximation of the solution process takes the following form:

\[
x(t, \omega) = x^{(0)}(t) + \int_{-\infty}^{\infty} x^{(1)}(t; t_1) H^{(1)}(t_1) dt_1 . \tag{11}
\]

Applying the WHEP technique, the following equations in the deterministic kernels are obtained:

\[
L x^{(0)}(t) + \varepsilon^2 (x^{(0)}(t))^2 + \varepsilon^2 \int_{-\infty}^{\infty} (x^{(1)}(t; t_1))^2 dt_1 = F^{(0)}(t) , \tag{12}
\]

\[
L x^{(0)}(t, t_1) + 2\varepsilon \int_{-\infty}^{\infty} x^{(0)}(t)x^{(1)}(t_1) = F^{(0)}(t, t_1) . \tag{13}
\]

Let us take the simple case of evaluating the only Gaussian part (first order approximation) of the solution process. The ensemble average is

\[
\mu_x(t) = x^{(0)}(t) , \tag{14}
\]

and the variance is

\[
\sigma_x^2(t) = \int_{-\infty}^{\infty} [x^{(1)}(t; t_1)]^2 dt_1 . \tag{15}
\]

The WHEP technique uses the following expansion for its deterministic kernels,

\[
x^{(i)}(t) = x_0^{(i)} + \varepsilon x_1^{(i)} + \varepsilon^2 x_2^{(i)} + \varepsilon^3 x_3^{(i)} + \ldots \ldots , i = 0,1 . \tag{16}
\]
where the first two terms consider the first correction (up to ε), the first three terms represent the second correction (up to ε^2) and so on. This means that we have a lot of corrections possibilities within each order of approximation.

3.1.1 Example.

Let us apply $F(t; \omega) = e^{-t} + \varepsilon n(t; \omega)$, in the previous case-study and then solve using the WHEP technique. Some results are illustrated in figures 1 and 2.

Figure 1-a. The first order approximation of the mean at $\varepsilon = .1$ for different correction levels.

Figure 1-b. The first order approximation of the mean at $\varepsilon = .3$ for different correction levels.

Figure 2-a. The first order approximation of the mean at $\varepsilon = .5$ for different correction levels.

Figure 2-b. The first order approximation of the mean at $\varepsilon = 1$ for different correction levels.

4. The Homotopy Perturbation Method (HPM)

In this technique [31-34], a parameter $p \in [0,1]$ is embedded in a homotopy function $v(r, p) : \phi \times [0,1] \rightarrow \mathbb{R}$ which satisfies
where \(u_0 \) is an initial approximation to the solution of the equation

\[
A(u) - f(r) = 0, \quad r \in \phi
\]

with boundary conditions

\[
B(u, \frac{\partial u}{\partial n}) = 0, \quad r \in \Gamma
\]

in which \(A \) is a nonlinear differential operator which can be decomposed into a linear operator \(L \) and a nonlinear operator \(N \), \(B \) is a boundary operator, \(f(r) \) is a known analytic function and \(\Gamma \) is the boundary of \(\phi \). The homotopy introduces a continuously deformed solution for the case of \(p=0 \), \(L(v) - L(u_0) = 0 \), to the case of \(p=1 \), \(A(v) - f(r) = 0 \), which is the original equation (1). This is the basic idea of the homotopy method which is to continuously deform from a simple problem (and easy to solve) into the difficult problem under study [35]. The HPM is widely used in solving many scientific problems, for example see [36-45].

The basic assumption of the HPM method is that the solution of the original equation (1) can be expanded as a power series in \(p \) as:

\[
v = v_0 + pv_1 + p^2v_2 + p^3v_3 +
\]

Now, setting \(p=1 \), the approximate solution of equation (21) is obtained as:

\[
u = \lim_{p \to 1} v = v_0 + v_1 + v_2 + v_3 +
\]

The rate of convergence of the method depends greatly on the initial approximation \(v_0 \) which is considered as the main disadvantage of HPM.

4.1 Example
Considering the same previous example as sub-section 3.1, one can get the following results w.r.t. homotopy perturbation:

\[
A(x) = L(x) + \epsilon v_0x^2, \quad L(x) = \ddot{x} + 2w \zeta x + \omega^2 x, \quad N(x) = \epsilon x^2, \quad f(r) = F(t; \omega).
\]

The homotopy function takes the following form:

\[
H(v, p) = (1 - p)[L(v) - L(u_0)] + p[A(v) - f(r)] = 0
\]

or equivalently,

\[
L(v) - L(u_0) + p[L(u_0) + \epsilon v_0x^2 - F(t; \omega)] = 0 .
\]

Letting \(v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \), substituting in equation (23) and equating the equal powers of \(p \) in both sides of the equation, one can get the following results:

i) \(L(v_0) = L(y_0) \), in which one may consider the following simple solution:

\[
v_0 = y_0, \quad y_0(0) = x_0, \quad \dot{y}_0(0) = \dot{x}_0.
\]

ii) \(L(v_1) = F(t; \omega) - L(v_0) - \epsilon v_0x^2 \), \(v_1(0) = 0, v_1(0) = 0 \).

iii) \(L(v_2) = -2\epsilon v_0x^2 + 2v_0', \quad v_2(0) = 0, v_2(0) = 0 \).

iv) \(L(v_3) = -\epsilon v_0x^2 + 2v_0', \quad v_3(0) = 0, v_3(0) = 0 \).
The approximate solution is

\[x(t; \omega) = \lim_{\rho \to 1} v_0 + v_1 + v_2 + v_3 + \ldots. \]

The following first order approximation expression is got.

\[
x(t; \omega) \equiv x_1 = v_0 + v_1 + \int_0^t h(t - s)(F(s; \omega) - L(v_0)(s) - \varepsilon \omega \gamma v_0^2(s))ds
\]

(24)
or zero initial conditions, we can choose \(v_0 = 0 \) which leads to the following results at \(w = 1 \) and \(\varsigma = .5 \):

![Figure 3-a. the first order approximation of the mean.](image)

![Figure 3-b. the first order approximation of the variance at different values of \(\varepsilon \).](image)

We can choose \(v_0 = t^2 \) which leads to the following results at \(w = 1 \) and \(\varsigma = .5 \):

![Figure 4-a. The first order approximation of the mean.](image)

![Figure 4-b. The first order approximation of the variance at different values of \(\varepsilon \).](image)

One can notice high deteriorations in the mean.
5. Pickard Approximation

In this technique, the linear part of the differential operator is kept in the left hand side of the equation whereas the rest of the nonlinear terms are moved to the right part. The successive Pickard approximation are processed according to let the L.H.S. as the $n+1$ approximation for the solution process depending on the n^{th} approximation in the R.H.S, $n \geq 0$. Let us illustrate the method through the following example.

5.1 Example:

Solving the quadratic nonlinear oscillatory problem in equation (1) with using Pickard technique, the following successive approximations are obtained:

$$ Lx_{n+1}(t; \omega) = F(t; \omega) - \varepsilon \omega^2 x_n^2(t; \omega) $$

which has the general iterative formula:

$$ x_{n+1}(t; \omega) = x_{n+1}(0) + x_{n+1}(0) + \int_0^t h(t-s)F(s)ds - \varepsilon \omega^2 \int_0^t h(t-s)x_n^2(s)ds $$

If the convergence of the process is insured, one can obtain the solution as an ε series in stochastic terms. Following the iterative formula (26), the first approximation is

$$ x_1(t; \omega) = x_1(0) + x_1(0) + \int_0^t h(t-s)F(s)ds - \varepsilon \omega^2 \int_0^t h(t-s)x_0^2(s)ds $$

where

$$ x_1(t; \omega) = x_1(0) + x_1(0) + \int_0^t h(t-s)F(s)ds $$

The ensemble average is

$$ E x_1(t; \omega) = x_1(0) + x_1(0) + \int_0^t h(t-s)EF(s)ds - \varepsilon \omega^2 \int_0^t h(t-s)Ex_0^2(s)ds $$

The covariance is

$$ Cov(x_1(t),x_1(\tau)) = \int_0^t h(t-s)h(\tau-z)Cov(F(s),F(z))dzds $$

The variance is

$$ Var(x_1(t)) = \int_0^t h(t-s)h(t-z)Cov(F(s),F(z))dzds $$

The second approximation is obtained in a similar way.

Let us take $F(t; \omega) = e^{-t} + \varepsilon n(t; \omega)$. In this case, the following results are obtained:
6. The direct Perturbation Method

The direct expansion of the solution process is the most conventional and direct one among all the approximation techniques. The basic assumption is

\[x(t; \omega) = x^{(0)}(t; \omega) + \varepsilon x^{(1)}(t; \omega) + \varepsilon^2 x^{(2)}(t; \omega) + \varepsilon^3 x^{(3)}(t; \omega) + \ldots \]

(31)

Substituting in the original equation (1) and equating the equal powers of \(\varepsilon \) in both sides of the resulting equation one can get a set of linear differential equations to be solved with their corresponding deterministic initial conditions.

6.1. Example

Applying in the prototype example of this paper, the following results are obtained:
7. **The Adomian Decomposition Method**

In this method, the differential operator is decomposed such that equation (1) is rewritten in the following form:

\[
Lx(t; \omega) = F(t; \omega) - R(x) - \varepsilon w^2 x^2(t; \omega),
\]

where

\[
Lx(t; \omega) = \frac{d^2x}{dt^2},
\]

\[
R(x) = (2w \xi \frac{d}{dt} + w^2)(x).
\]

These decompositions transform the problem into an easier one. The general solution procedure is got using the following:

\[
x = x(0) + \dot{x}(0)t + \int_0^t \int_0^t F(t; \omega) dt \, dt - \int_0^t \int_0^t R(x) \, dt \, dt - \varepsilon w^2 \int_0^t \int_0^t x^2(t) dt \, dt
\]

The method also decomposes the solution process into

\[
x = x^{(0)}(t; \omega) + x^{(1)}(t; \omega) + x^{(2)}(t; \omega) + ...
\]

Substituting from equation (36) into (35), one can get the following iterative equations in the unknown kernels of equation (36):

\[
x^{(0)}(t; \omega) = x(0) + \dot{x}(0)t + \int_0^t \int_0^t F(t; \omega) dt \, dt
\]

\[
x^{(1)}(t; \omega) = -\int_0^t \int_0^t R(x^{(0)}) dt \, dt - \varepsilon w^2 \int_0^t \int_0^t (x^{(0)})^2 dt \, dt
\]

7.1 **Example**

solving the prototype example, we get the following results:

Figure 7-a. The first order approximation of the mean.

Figure 7-b. The first order variance at different values of \(\varepsilon \).
One can notice how completely far the behaviour of the obtained results than that of the previous techniques.

8. Conclusions
Concerning the quadratic nonlinearity problem and the prototype example used for illustrating the efficiency of the processed approximation techniques, one may suggest the use of the Pickard approximation which is very rapidly convergent to the solution, if convergent, and when using an efficient computer with an efficient symbolic program. The direct perturbation method produces good results. The WHEP technique seems an efficient one because of its corrections possibilities in spite of being analytically lengthy. The HPM is the easiest in computations, but expectedly depends highly on the initial guess. Concerning only first order approximation, the Adomian decompositions method is the worst among all other executed techniques in this paper.

References
[1] Nayfeh A 1993 Problems in perturbation (Wiley N Y)
[2] Crow S and Canavan G 1970 J. Fluid. Mech. 41 387
[3] Saffman P 1969 Phys. Fluid. 12 1786
[4] Kahan W and Siegel A 1970 J. Fluid. Mech. 41 593
[5] Wang J and Shu S 1974 J. Fluid. Mech. 17 1130
[6] Hogge H and Meecham W 1978 J. Fluid. Mech. 85 325
[7] Doi, Masaaki, Imamura and Tsutomu 1979 J. Phys. Soc. Jpn. 46 1358
[8] Kambe, Ryouchi, Doi, Masaaki, Imamura and Tsutomu 1980 J. Phys. Soc. Jpn. 49 763
[9] Chorin and Alexandre J 1974 J. Fluid. Mech. 63 21
[10] Kayanuma and Yosuka 1985 J. Phys. Soc. Jpn. 54 2037
[11] Joelson M and Ramamonjiarisoa A 2003 J. Fluid. Mech. 496 313
[12] Eftimiu and Cornel 1988 Radio Sci. 23 769
[13] Gaol and Nakayama 1999 J Wave Random Media 9 53
[14] Tamura Y and Nakayama 2005 J Wave Random Media 15 269
[15] Tamura Y and Nakayama 2005 J Ieice. T. Electron. 88 713
[16] Skaropoulos N and Chrissoulidis D 1999 J. Math. Phys. 40 156
[17] Jahedi A and Ahmadi G 1983 J. Appl. Mech. 50 436
[18] Orabi, Ismail I, Ahmadi A and Goodarz 1987 Int. J. Nonlinear. Mech. 22 451
[19] Orabi and Ismail I 1988 Transaction of ASME 55 740
[20] Abdel Gawad E, El-Tawil M and Nassar M A 1989 Sim. Contr. B 23 55
[21] Orabi, Ismail I, Ahmadi A and Goodarz 1991 American society of mechanical engineers, design engineering division (publication) 37 147
[22] Gawad E and El-Tawil M 1993 Appl. Math. Mod. 17 329
[23] El-Tawil M and Mahmoud G 1999 Mech. Mechanica. Eng. 3 181
[24] Tamura Y and Nakayama J 2003 J Ieice. T. Electron. 86 1743
[25] El-Tawil M 2003 Int. J. Diff. Eq. Appl. 7 325
[26] Kayanuma Y and Noba K 2001 Chem. Phys. 268 177
[27] Kenny O and Nelson D 1997 Proceedings of SPIE- the international society for optical engineering 3162 48
[28] Isobe, Etsu, Sato and Shunsuke 1983 J. Appl. Probab 20 754
[29] Rubinstein R and Choudhari M 2005 Stud. Appl. Math. 114 167
[30] Imamura T,Meecham W and Siegel 1983 J. math. Phys. 6 695
[31] He J H 1999 Comput. Methods Appl. Mech. Engrg. 178 257
[32] He J H 2000 Int. J. Nonlinear Mech. 35 37
[33] He J H Homotopy perturbation method : a new nonlinear analytical technique, Applied math. And computations, 135, pp. 73-79(2003).
[34] He J H 2004 Appl Math. Computation 151 287
[35] He J H 2006 Int. J. Mod. Phys. B 20 1141
[36] Gorji M, Ganji DD and Soliemani S 2007 Int. J. Nonliear. Sci. 8 353
[37] Yusufoglu E 2007 Int. J. Nonliear. Sci. 8 319
[38] Biazar J, Eslami M and Ghazvini H 2007 Int. J. Nonliear. Sci. 8 413
[39] Sadighi A and Ganji DD 2007 Int. J. Nonliear. Sci. 8 435
[40] Ghori QK, Ahmed M and Siddiqui AM 2007 Int. J. Nonliear. Sci. 8 179
[41] Rana MA, Siddiqui AM and Ghori QK, et al, 2007 Int. J. Nonliear. Sci. 8 185
[42] Tari H, Ganji DD and Rostamian M 2007 Int. J. Nonliear. Sci. 8 203
[43] Ghorbani A and Saberi-Nadjafi J 2007 Int. J. Nonliear. Sci. 8 229
[44] Ozis T and Yildirim A 2007 Int. J. Nonliear. Sci. 8 239
[45] Ozis T and Yildirim A 2007 Int. J. Nonliear. Sci. 8 243