Hölder continuity of absolutely continuous spectral measure for the extended HARPER’S model

Xin Zhao

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Department of Mathematics, University of California, Irvine, United States of America
E-mail: njuzhaox@126.com

Received 5 July 2020, revised 27 January 2021
Accepted for publication 23 February 2021
Published 10 May 2021

Abstract
We establish sharp results on Hölder continuity of the distribution of the spectral measure for the extended Harper’s model in the absolutely continuous spectrum regime.

Keywords: sharp Hölder continuity; distribution of individual spectral measure; the extended Harper’s model; quantitative almost reducibility
Mathematics Subject Classification numbers: 81Q10, 47B39.

1. Introduction
In this paper, we consider the following extended Harper’s model (EHM):

$$(H_{\lambda,\alpha,\theta} u)_n = c(\theta + n\alpha) u_{n+1} + \tilde{c}(\theta + (n-1)\alpha) u_{n-1} + 2 \cos 2\pi(\theta + n\alpha) u_n$$

where $\theta \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$ is the phase, $\alpha \in \mathbb{T}$ is the frequency, $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ is the coupling constant and

$$c(\theta) := \lambda_1 e^{-2\pi i (\theta + \frac{\pi}{2})} + \lambda_2 + \lambda_3 e^{2\pi i (\theta + \frac{\pi}{2})},$$
$$\tilde{c}(\theta) := \lambda_1 e^{2\pi i (\theta + \frac{\pi}{2})} + \lambda_2 + \lambda_3 e^{-2\pi i (\theta + \frac{\pi}{2})}.$$
to hop to both nearest (expressed through λ_2) and next-nearest neighboring interaction between lattice sites (expressed through λ_1 and λ_3). Since this operator is symmetric in λ, one may always assume $0 \leq \lambda_2, 0 \leq \lambda_1 + \lambda_3$ and at least one of $\lambda_1, \lambda_2, \lambda_3$ to be positive.

The EHM is a generalization of the following central model in quasi-periodic Schrödinger operators called almost Mathieu operator (AMO) (in the physics literature also known as Harper’s model):

$$ (H_{\lambda, \alpha, \theta} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n. $$

To see this, one only needs to take $\lambda_1 = \lambda_3 = 0$.

Recently, there are several progresses in the studying of spectral type of EHM, see [7, 21, 22, 28, 45], the structure of the spectrum, see [20, 37, 44], the fractal dimension of the spectral measure of the EHM, see [23], and the regularity of Lyapunov exponents (LE)1, see [27, 31, 41]. All these results show that in general, although various spectral properties of EHM are similar to those of AMO, this model is technically more complicated to deal with. The complexity comes from the so-called singularities (i.e. the zeroes of $c(\theta)$) of quasi-periodic Jacobi cocycles.2

In the present paper, we mainly focus on the regularity of the universal spectral measure $\mu_{\theta} = \mu_{\lambda, \alpha, \theta} + \mu_{\lambda, \alpha, \theta}(\text{see section 2.2 for details})$ for EHM. Note that if $\mu_\theta = \mu^p_\theta$, then the distribution of μ_θ is not even continuous. Thus a more suitable question is the regularity of the distribution of μ_{θ} when $\mu_{\theta} = \mu_{\text{ac}}$. This question was answered by Avila and Jitomirskaya [6] for one-frequency Schrödinger operator under the assumption that the frequency is diophantine3.

Note that the result in [6] works for one-frequency quasi-periodic Jacobi operators, since a crucial technique in [6] is almost reducibility developed by Avila and Jitomirskaya in [5] based on quantitative Aubry duality and it seems non-trivial to generalize the method in [5] to multi-frequency case. The results in [6] was recently generalized by Zhao in [47] to the multi-frequency case based on the classical KAM theory developed in [12–15, 17, 26, 33], since results in [12–14, 17, 33] do work in any dimension. In this paper, we generalize the results in [6, 47] to the EHM which indicates the KAM theory also works for Jacobi operators.

More precisely, if one formulates Avila and Jitomirskaya’s result [6] for the AMO, one can get the result that if the frequency is diophantine, then the spectral measure of subcritical AMO ($|\lambda| < 1$) is $1/2$ Hölder continuous. We will show that the same result holds for subcritical EHM. Since the EHM is more complicated (its coupling constant is a three dimensional vector), let us first explain the meaning of subcritical. The definition of subcritical comes from Avila’s global theory [2]. In [31], for EHM, Jitomirskaya and Marx explicitly computed the Lyapunov exponent (consult section 2.4 for details.) for all λ and all irrational α. They showed the subcritical regime of EHM is exact as follow:

$$ \Lambda = \Lambda_2 \cup \Lambda_3, $$

$$ \Lambda_2 = \{0 \leq \lambda_1 + \lambda_3 < \lambda_2, \lambda_2 > 1\}, $$

1See section 2.3 for the definition.

2See section 2 for more explanations.

3\(\alpha \in \mathbb{T}^d\) is called diophantine, denoted by $\alpha \in DC_d(\kappa, \tau)$, if there exist $\kappa > 0$ and $\tau > d - 1$ such that

$$ DC_d(\kappa, \tau) := \left\{ \alpha \in \mathbb{T}^d, \inf_{j \in \mathbb{Z}} |(n, \alpha) - j| > \frac{\kappa}{|n|^{\tau}}, \forall n \in \mathbb{Z} \setminus \{0\} \right\}. $$

Let $DC_d = \bigcup_{\kappa > 0, \tau > d} DC_d(\kappa, \tau)$.

3357
\[
\Lambda_3 = \{ \max \{ 1, \lambda_2 \} < \lambda_1 + \lambda_3, \lambda_2 > 0 \} \cap \{ \lambda_1 \neq \lambda_3 \}.
\]

Our main theorem is

Theorem 1.1. Assume \(\alpha \in DC_1 \) and \(\lambda \in \Lambda_2 \), there exists \(C = C(\lambda, \alpha) \) such that for any \(E \in \mathbb{R} \), there holds

\[
\mu_\theta(E - \epsilon, E + \epsilon) \leq C\epsilon^{\frac{1}{2}},
\]

for any \(\epsilon > 0 \) and any \(\theta \in \mathbb{T} \).

Actually, based on Avila’s solution to the famous almost reducibility conjecture (ARC) [3], we also have

Theorem 1.2. Assume \(\alpha \in DC_1 \) and \(\lambda \in \Lambda \), there exists \(C = C(\lambda, \alpha) \) such that for any \(E \in \mathbb{R} \), there holds

\[
\mu_\theta(E - \epsilon, E + \epsilon) \leq C\epsilon^{\frac{1}{2}},
\]

for any \(\epsilon > 0 \) and any \(\theta \in \mathbb{T} \).

Remark 1.1. The \(\frac{1}{2} \)-modulus of continuity is sharp even for the integrated density of states (IDS). One may see [36] for an argument for quasi-periodic Schrödinger operators.

Remark 1.2. In general, one can’t expect any Hölder continuity of the spectral measure in the singular spectrum region. See [8, 11] for counterexamples. Since if \(\lambda \notin \Lambda \), \(\mu_\theta \) has singular part, our result is also sharp in the aspect.

We now give a brief review of the histories on the regularity of LE (IDS) for quasi-periodic Schrödinger/Jacobi operators. For analytic quasi-periodic potentials, in the positive Lyapunov exponent regime, Goldstein and Schlag [18] proved that for real analytic potentials with strong diophantine frequency, LE is Hölder continuous (one-frequency) or weak Hölder continuous (multi-frequency). For the AMO, Bourgain [10] proved that for diophantine \(\alpha \) and large enough \(\lambda \), LE is \(\frac{1}{2} - \epsilon \)-Hölder continuous for any \(\epsilon > 0 \). Later, Goldstein and Schlag [19] generalized Bourgain’s result [10], and proved that if the potential is in a small \(L^\infty \) neighborhood of a trigonometric polynomial of degree \(k \), then the IDS is \(\frac{1}{2} - \epsilon \)-Hölder continuous for all \(\epsilon > 0 \). Moreover, they further proved ([19]) that IDS is absolutely continuous for a.e. \(\alpha \). Recently, Goldstein and Schlag’s result [19] was further improved by Ge, You and Zhao in [16]. We refer the reader to [24, 46] for some recent results on the regularity of LE in the positive Lyapunov regime.

In the zero Lyapunov exponent regime, based on Eliasson’s perturbative KAM scheme [14], Amor [1] got \(\frac{1}{2} \)-Hölder continuity of IDS for quasi-periodic cocycles in \(SL(2, \mathbb{R}) \) with diophantine frequency. Besides, Avila and Jitomirskaya [5] used almost localization and Aubry duality to obtain the same result with one frequency in the non-perturbative regime. A recent breakthrough belongs to Avila [2]: for one-frequency Schrödinger operators with general analytic potentials and irrational frequency, Avila [2] has established the fantastic global theory saying that Lyapunov exponent is a \(C^\omega \)-stratified function of the energy.

For analytic quasi-periodic Jacobi operators, in the positive Lyapunov exponent regime, Tao [40], Tao and Voda [41] proved that the Lyapunov exponent is the Hölder continuous if the frequency is diophantine. Recently, Jian and Shi [27] proved 1/2 Hölder continuity of Lyapunov exponent for EHM with Liouvillean frequencies.

For the lower regularity case, Klein [32] proved that for Schrödinger operators with potentials in some Gevrey class, the Lyapunov exponent is weak Hölder continuous in the positive
Lyapunov regime. Recently, Wang and Zhang [43] obtained the weak Hölder continuity of Lyapunov exponent as a function of energies, for a class of C^2 quasi-periodic potentials and for any diophantine frequency. More recently, Cai, Chavaudret, You and Zhou [12] proved sharp Hölder continuity of Lyapunov exponent for quasi-periodic Schrödinger operator with small finitely differential potentials and diophantine frequencies.

Up to now, the regularity result of the distribution of individual spectral measure for quasi-periodic Schrödinger operators is few. We mention that recently, Avila and Jitomirskaya [6] proved finitely differential potentials and diophantine frequencies.

Hölder continuity of Lyapunov exponent as a function of energies, for a class of C^2 quasi-periodic potentials and diophantine frequencies. Later, Liu and Yuan [34] generalized this result to Liouvillean frequencies. Zhao [47] generalized this result to the multi-frequency case and Sun–Wang [39] generalized this result to the smooth case. Munger and Ong [35] showed Hölder continuity of spectral measure for extended CMV matrix (another class of Jacobi operators).

Finally, we give the structure of this paper. Some basic concepts and propositions are given in section 2. In section 3, we obtain some quantitative estimates by the KAM scheme developed in [12, 33]. Based on these quantitative estimates on conjugation transformation and constant matrix, the proof of the main theorem with some arguments in [6, 47] is given in section 4.

2. Preliminaries

For a given function f defined on a strip $\{ |\Re z| < h \}$, we define $|f|_{h} := \sup |f(z)|$. Analogously, for f defined on \mathbb{T}, we set $|f|_{0} := \sup |f(\alpha)|$. For any $\theta \in \mathbb{R}$, we also set $\|\theta\|_{\mathbb{T}} := \inf_{\ell \in \mathbb{Z}} |\theta - \ell|$.

2.1. Continued fraction expansion

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Suppose $\{\frac{p_n}{q_n}\}_n$ to be the best rational approximations of α, we have $\|k\alpha\|_{\mathbb{T}} \geq \|q_{n-1}\alpha\|_{\mathbb{T}}, \quad \forall 1 \leq k < q_n$, and

$$\frac{1}{2q_{n+1}} \leq \|q_n\alpha\|_{\mathbb{T}} \leq \frac{1}{q_{n+1}}.$$

Denote $\beta(\alpha) := \lim sup_{n \to \infty} \frac{\ln q_{n+1}}{q_n}$. Equivalently, we have

$$\beta(\alpha) = \lim sup_{n \to \infty} \frac{1}{n} \ln \frac{1}{\|n\alpha\|_{\mathbb{T}}}.$$

We can deduce if $\alpha \in DC$, then $\beta(\alpha) = 0$.

2.2. Extended Harper’s model

For any $\psi \in \ell^2(\mathbb{Z})$, let $\mu^0_{\lambda,\alpha,\theta}$ be the spectral measure of $H_{\lambda,\alpha,\theta}$ corresponding to ψ:

$$\langle (H_{\lambda,\alpha,\theta} - E)^{-1} \psi, \psi \rangle = \int_{\mathbb{R}} \frac{1}{E - E'} d\mu^0_{\lambda,\alpha,\theta}(E'), \quad \forall E \in \mathbb{C} \setminus \Sigma_{\lambda,\alpha}.$$

We denote $\mu_{\theta} := \mu^0_{\lambda,\alpha,\theta} + \mu^1_{\lambda,\alpha,\theta}$, where $\{e_n\}_{n \in \mathbb{Z}}$ is the canonical basis of $\ell^2(\mathbb{Z})$. This measure can serve as a universal spectral measure for $H_{\lambda,\alpha,\theta}$. More precisely, for any $\psi \in \ell^2(\mathbb{Z})$ we can use the cyclic property to prove $\mu_{\lambda,\alpha,\theta}$ is absolutely continuous with respect to μ_{θ}.

We introduce another operator $H_{\lambda,\alpha,\theta}$ which is unitary equivalent to $H_{\lambda,\alpha,\theta}$ but its entries are real as follows

$$(\tilde{H}_{\lambda,\alpha,\theta} u_n) = |c|(|\theta + n\alpha| u_{n+1} + |c|(|\theta + (n - 1)\alpha| u_{n-1} + 2 \cos 2\pi(\theta + n\alpha)) u_n,$$

3359
The Lyapunov exponent is defined by
\[\alpha = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log |c(\theta)|. \]

Thus \(H_{\lambda, \alpha, \theta} \) and \(\tilde{H}_{\lambda, \alpha, \theta} \) share the same spectral property. So if we want to study the property of spectrum (from topology or measure theory) we could study \(\tilde{H}_{\lambda, \alpha, \theta} \) instead of \(H_{\lambda, \alpha, \theta} \).

The IDS is the function \(N_{\lambda, \alpha} : \mathbb{R} \to [0, 1] \) defined by
\[N_{\lambda, \alpha}(E) = \int_{\mathbb{T}} \mu_{\lambda, \alpha, \theta}^{\mathbb{C}}(-\infty, E) d\theta. \]

It is a continuous non-decreasing surjective function. Let \(\tilde{N}_{\lambda, \alpha} \) be the IDS of \(\{ \tilde{H}_{\lambda, \alpha, \theta} \}_{\theta \in \mathbb{T}} \). We have \(N_{\lambda, \alpha}(E) = \tilde{N}_{\lambda, \alpha}(E) \) (see [22]).

2.3. Quasi-periodic cocycles

Let \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \) and \(A \in C^0(\mathbb{T}, M_2(\mathbb{C})) \) be measurable with log \(\| A(x) \| \in L^1(\mathbb{T}) \). The quasi-periodic cocycle \((\alpha, A)\) is the dynamical system on \(\mathbb{T} \times \mathbb{C}^2 \) defined by \((\alpha, A)(x, v) = (x + \alpha, A(x)v)\). The iterates of \((\alpha, A)\) are of the form \((\alpha, A)^n = (n\alpha, An)\), where
\[
An(x) := \begin{cases}
A(x + (n - 1)\alpha) \ldots A(x + \alpha)A(x), & n \geq 0 \\
A^{-1}(x + n\alpha)A^{-1}(x + (n + 1)\alpha) \ldots A^{-1}(x - \alpha), & n < 0.
\end{cases}
\]

The Lyapunov exponent is defined by \(\lambda(\alpha, A) := \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{T}} \log \| An(x) \| dx \).

Assume now that \(A \in C^0(\mathbb{T}, \text{SL}(2, \mathbb{R})) \) is homotopic to the identity. Then there exist \(\phi : \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \to \mathbb{R} \) and \(v : \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}^+ \) such that
\[
A(x) \begin{pmatrix} \cos 2\pi y \\ \sin 2\pi y \end{pmatrix} = v(x, y) \begin{pmatrix} \cos 2\pi(y + \phi(x, y)) \\ \sin 2\pi(y + \phi(x, y)) \end{pmatrix}.
\]

The function \(\phi \) is called a lift of \(A \). Let \(\mu \) be any probability on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \) which is invariant under the continuous map \(T : (x, y) \to (x + \alpha, y + \phi(x, y)) \), projecting over Lebesgue measure on the first coordinate. Then the number
\[
\rho(\alpha, A) = \int \phi \, d\mu \mod \mathbb{Z}
\]
is independent of the choices of \(\phi \) and \(\mu \), and is called the \textit{fibered rotation number} of \((\alpha, A)\).

We say that \((\alpha, A)\) is uniformly hyperbolic if for every \(x \in \mathbb{T} \), there exists a continuous splitting \(\mathbb{C}^2 = E^s(x) \oplus E^u(x) \) such that for every \(n \geq 0 \),
\[
|An(x)v| \leq Ce^{-cn} |v|, \quad v \in E^s(x),
\]
\[
|An(x)^{-1}v| \leq Ce^{-cn} |v|, \quad v \in E^u(x + n\alpha),
\]
for some constants \(C, c > 0 \). This splitting is invariant by the dynamics, i.e.,
\[
A(x)E^s(x) = E^s(x + \alpha), \quad * = "s" \text{ or } "u", \quad \forall x \in \mathbb{T}.
\]

We consider the cocycle \((\alpha, A, E)\) associated with EHM \(\{ H_{\lambda, \alpha, \theta} \}_{\theta \in \mathbb{T}} \). Any formal solution of \(H_{\lambda, \alpha, \theta}u = Eu \) satisfies
\[(u_{n+1} / u_n) = A_{\lambda,E}(\theta + n\alpha) \left(u_n / u_{n-1} \right), \quad \forall n \in \mathbb{Z}, \]

where
\[
A_{\lambda,E}(\theta) = \frac{1}{c(\theta)} \begin{pmatrix} E - 2 \cos 2\pi \theta & -c(\theta - \alpha) \\ c(\theta) & 0 \end{pmatrix}.
\]

We introduce a normalized cocycle \((\alpha, \tilde{A}_{\lambda,E})\) associated with the operator \(\tilde{H}_{\lambda,\alpha,\theta}\), where
\[
\tilde{A}_{\lambda,E}(\theta) = \frac{1}{\sqrt{|c(\theta)| c(\theta - \alpha)}} \begin{pmatrix} E - 2 \cos 2\pi \theta & -|c(\theta - \alpha)| \\ |c(\theta)| & 0 \end{pmatrix}
= Q^e_{\lambda} (\theta + \alpha) A_{\lambda,E}(\theta) Q_{\lambda}(\theta),
\]

where \(Q_{\lambda}\) is analytic on \(|\theta| \leq h(\lambda)\) for some \(h\) that is independent of \(E\) when \(\lambda\) belongs to the subcritical region (see [22]).

2.4. Avila’s global theory and its application to extended Harper’s model

Let us make a short review of Avila’s global theory of one frequency \(SL(2, \mathbb{R})\)-cocycles [2]. Suppose that \(A \in C^\infty(T, SL(2, \mathbb{R}))\) admits a holomorphic extension to \(|\Im z| < h\). Then for \(|\epsilon| < h\), we define \(A_\epsilon \in C^\infty(T, SL(2, \mathbb{C}))\) by \(A_\epsilon(\cdot) = A(\cdot + i\epsilon)\). The cocycles which are not uniformly hyperbolic are classified into three classes: subcritical, critical, and supercritical. In particular, \((\alpha, A)\) is said to be subcritical if there exists \(h > 0\) such that \(L(\alpha, A_\epsilon) = 0\) for \(|\epsilon| < h\).

A cornerstone in Avila’s global theory is the ARC, which says that \((\alpha, A)\) is almost reducible if it is subcritical. Recall that the cocycle \((\alpha, A)\) is said to be almost reducible if there exist \(h_* > 0\), and a sequence \(B_n \in C^\infty(T, \text{PSL}(2, R))\) such that \(B_n^{-1}(\theta + \alpha)A(\theta)B(\theta)\) converges to constant uniformly in \(|\theta| < h_*\). The complete solution of ARC was recently given by Avila [3, 4], in the case \(\beta(\alpha) = 0\), it is the following:

Theorem 2.1. For \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\) with \(\beta(\alpha) = 0\), and \(A \in C^\infty(T, SL(2, \mathbb{R}))\), \((\alpha, A)\) is almost reducible if it is subcritical.

For the EHM, Jitomirskaya and Marx [31] identified subcritical, critical, and supercritical energies for all values of \(\lambda\) and all irrational \(\alpha\) via an explicit computation of the complexified Lyapunov exponent. In Avila, Jitomirskaya and Marx’s paper [7], they summarized the results in the following theorem,

Theorem 2.2. ([7, 31]). For \(\alpha\) irrational, all energies in the spectrum of EHM are

(a) Supercritical for all \(\lambda \in \Gamma \cup \{\lambda_1 + \lambda_3 = 0, 0 < \lambda_2 < 1\},\)
(b) Subcritical for all \(\lambda \in \Gamma \cup \{\lambda_1 + \lambda_3 = 0, \lambda_2 > 1\},\)
(c) Subcritical for all \(\lambda \in \Gamma \) if \(\lambda_1 \neq \lambda_3,\)
(d) Critical for all \(\lambda \in \Gamma \) if \(\lambda_1 = \lambda_3,\)
(e) Critical for all \(\lambda \in \Lambda_1 \cup \Lambda_2 \cup \Lambda_3,\)

where
- **region I:** \(0 \leq \lambda_1 + \lambda_3 \leq 1, 0 < \lambda_2 \leq 1,\)
- **region II:** \(0 \leq \lambda_1 + \lambda_3 \leq \lambda_2, 1 \leq \lambda_2,\)
- **region III:** \(\max \{\lambda_1, \lambda_2\} \leq \lambda_1 + \lambda_3, \lambda_2 > 0,\)

and
(a) \(\lambda_1 + \lambda_3 = 1, 0 < \lambda_1 \leq 1 \),
(b) \(\lambda_1 + \lambda_3 = 2, 0 < \lambda_3 \leq 1 \),
(c) \(\lambda_1 + \lambda_3 = 3, 0 < \lambda_2 \leq 1 \).

They also gave the precise computation of the singularities of EHM in the following proposition,

Proposition 2.1. ([7]). Letting \(z = \theta + i\epsilon, \theta \in \mathbb{T} \), \(c(z) \) has at most two zeros. Necessary conditions for real roots are \(\lambda_1 = \lambda_3 \) or \(\lambda_1 + \lambda_3 = \lambda_2 \). Moreover,

(a) For \(\lambda_1 = \lambda_3, c(z) \) has real roots if and only if \(2\lambda_3 \geq \lambda_2 \), determined by

\[
2\lambda_3 \cos \left(2\pi \left(\theta + \frac{\alpha}{2} \right) \right) = -\lambda_2,
\]

and giving rise to a double root at \(\theta = \frac{\pi}{2} - \frac{\alpha}{2} \) if \(\lambda_2 = 2\lambda_3 \).

(b) For \(\lambda_1 \neq \lambda_3, c(z) \) has only one simple real root at \(\theta = \pm \frac{\pi}{2} - \frac{\alpha}{2} \) if \(\lambda_1 + \lambda_3 = \lambda_2 \).

Remark 2.1. Thus, if \(\lambda \) belongs to \(\Lambda \), \(|c(\cdot)\tilde{c}(\cdot)| \in \mathbb{C} \setminus (-\infty, 0] \).

2.5. \(m \) function for singular Jacobi operators

The Borel transform of the spectral measure \(\mu_\theta \) takes the form

\[
M(z) := F_\mu(z) = \int \frac{d\mu(E)}{E - z} = \langle e_0, (H_{\lambda, \alpha, \theta} - zI)^{-1}e_0 \rangle + \langle e_1, (H_{\lambda, \alpha, \theta} - zI)^{-1}e_1 \rangle.
\]

It is standard that \(M(z) \) has a close relation to the well-known Weyl–Titchmarsh \(m \)-function. Given \(z \in \mathbb{C}^+ \), then there are non-zero solutions \(u^\pm_z \) of \(H_{\lambda, \alpha, \theta}u^\pm_z = zu^\pm_z \) which are \(\ell^2 \) at \(\pm \infty \).

The Weyl–Titchmarsh \(m \)-functions are defined by

\[
m^\pm_z = \mp \frac{u^\pm_z(1)}{u^\pm_z(0)}.
\]

We refer readers to consult [29, 30] for more details of the definitions.

As discussed in [30],

\[
M(z) = \frac{m^+_z m^-_z - 1}{m^+_z + m^-_z}.
\]

For \(k \in \mathbb{Z}^+ \) and \(E \in \mathbb{R} \), let

\[
P_k(E) = \sum_{j=1}^{k} A_{2j-1}(E) A_{2j-1}(E),
\]

where \(A_k(E) = A_{\lambda, \theta}(\theta + (n - 1)\alpha) \cdots A_{\lambda, \theta}(\theta + \alpha) A_{\lambda, \theta}(\theta) \).

The following propositions which were proved in [6] for Schrödinger operators are very important for our applications. They also work for Jacobi operators. For completeness, we give the proof in the Appendix.

Proposition 2.2. ([6]). For any \(E \in \mathbb{R} \) and \(\epsilon_k = \sqrt{\det P_k(E)} \), we have

\[
\mu(E - \epsilon_k, E + \epsilon_k) \leq 2\epsilon_k |M(E + i\epsilon_k)| \leq 4(5 + \sqrt{24})\epsilon_k^2 \|P_k(E)\|.
\]
Proposition 2.3. ([6]). For any $E \in \mathbb{R}$ and $\epsilon_k = \sqrt{\frac{1}{\det P_k(E)}}$, let $(u_n^\beta)_{n \geq 0}$ satisfy

$$A_{\lambda,E}(\theta + n\alpha) \begin{pmatrix} u_n^\beta \\ u_{n+1}^\beta \end{pmatrix} = \begin{pmatrix} u_{n+1}^\beta \\ u_n^\beta \end{pmatrix},$$

$$u_0^\beta \cos \beta + u_1^\beta \sin \beta = 0, \quad |u_0^\beta|^2 + |u_1^\beta|^2 = 1.$$

Then we have

$$\det P_k(E) = \inf_\beta \|u^\beta\|_2^2 \|u^{\beta + \pi/2}\|_2^2,$$

where for any integer L

$$\|u\|_L = \left(\sum_{n=1}^L |u_n|^2 \right)^{1/2}.$$

The following proposition is proved in [6, 47], we write it here for completeness.

Proposition 2.4. ([6, 47]). Assume that

$$T = \begin{pmatrix} e^{2\pi i \theta} & c \\ 0 & e^{-2\pi i \theta} \end{pmatrix},$$

let $X_k = \sum_{j=1}^k (T^{2j-1})^* (T^{2j-1})$, then

$$X_k = \begin{pmatrix} k & x_{k,1} \\ x_{k,1} & x_{k,2} \end{pmatrix}$$

where

$$x_{k,1} = c e^{-2\pi i \theta} \sum_{j=1}^k \frac{e^{-4\pi i \theta (2j-1)}}{e^{-4\pi i \theta} - 1} - 1,$$

$$x_{k,2} = k + |c|^2 \sum_{j=1}^k \frac{\sin 2\pi (2j-1)\theta}{\sin 2\pi \theta}^2.$$

3. Quantitative almost reducibility

3.1. Global to local reduction

In this subsection, we introduce some reducibility results. Firstly by Avila’s well-known (ARC, see theorem 2.1) we have the following corollary,

Corollary 3.1. Let $\alpha \in DC_1$ and $\lambda \in \Lambda$. There exists $r = r(\lambda, \alpha) > 0$ such that for any $\eta > 0$, $E \in \Sigma_{\lambda,\alpha}$, there exist $\Phi_E \in C^r(T, \text{PSL}(2, \mathbb{R}))$ and $\Gamma = \Gamma(\lambda, \alpha, \eta)$ such that

$$\Phi_E(\theta + \alpha)^{-1}A_{\lambda,E}(\theta)\Phi_E(\theta) = R_{\alpha(\theta)}e^{\frac{\epsilon_k}{2} \theta}.$$ (3.1)

Moreover, $\|\Phi_E\|_{\epsilon} \leq \Gamma$ and $\|f_E\|_{\epsilon} \leq \eta$.

3363
Remark 3.1. Note that if \(F_E \in C^r_\ast (\mathbb{T}, \mathfrak{gl}(2, \mathbb{R})) \) is small, we always can find some \(f_E \in C^r_\ast (\mathbb{T}, \mathfrak{sl}(2, \mathbb{R})) \) such that \(R_{\alpha(E)}(\theta) + F_E(\theta) = R_{\alpha(E)}e^{f(\theta)} \).

Remark 3.2. The case of \(\lambda \in \Lambda_2 \) can be proved without Avila’s ARC, because the almost reducibility theorem in \(\Lambda_2 \) was proved by Han in [20].

Proof. The crucial fact in this corollary is that we can choose \(\eta, \xi, \) and choose \(\eta \) to be independent of \(E \). The ideas of the proof are essentially contained in propositions 5.1 and 5.2 of [33], we include the proof here for completeness.

For any \(E \in \Sigma_{\lambda_0} \) and \(\lambda \in \Lambda \), the cocycle \((\alpha, A_{\lambda E}) \) is subcritical, hence it is almost reducible by theorem 2.1, i.e., there exists \(h_0 = h_0(\lambda, \alpha, E) > 0 \), such that for any \(\eta > 0 \), there are \(\Phi_E \in C^r_{\lambda_0}(\mathbb{T}, \mathfrak{sl}(2, \mathbb{R})) \), \(F_E \in C^r_{\lambda_0}(\mathbb{T}, \mathfrak{gl}(2, \mathbb{R})) \) and \(\phi(E) \in \mathbb{T} \) such that

\[
\Phi_E(\theta + \alpha)^{-1}A_{\lambda E}(\theta)\Phi_E(\theta) = R_{\alpha(E)} + F_E(\theta),
\]

with \(\|F_E\|_{h_0} < \eta/2 \) and \(\|\Phi_E\|_{h_0} < \tilde{\eta} \) for some \(\tilde{\eta} = \Gamma(\lambda, \alpha, \eta, E) > 0 \). As a consequence, for any \(E' \in \mathbb{R} \), one has

\[
\left\|\Phi_E(\theta + \alpha)^{-1}A_{\lambda E}(\theta)\Phi_E(\theta) - R_{\alpha(E)}\right\|_{h_0} < \frac{\eta}{2} + \frac{1}{\sqrt{|\phi(E)|}} \left| E - E' \right| \|\Phi_E\|_{h_0}.
\]

It follows that with the same \(\Phi_E \), we have

\[
\left\|\Phi_E(\theta + \alpha)^{-1}A_{\lambda E}(\theta)\Phi_E(\theta) - R_{\alpha(E)}\right\|_{h_0} < \eta
\]

for any energy \(E' \) in a neighborhood \(l(E) \) of \(E \). Since \(\Sigma_{\lambda_0} \) is compact, by compactness argument, we can select \(h_0(\lambda, \alpha, E), \Gamma(\lambda, \alpha, \eta, E) > 0 \) to be independent of the energy \(E \).

3.2. Local quantitative almost reducibility

In this section, we concentrate on the following analytic quasi-periodic \(\text{SL}(2, \mathbb{R}) \) cocycle:

\[
(\alpha, A_0e^{f(\theta)}): \mathbb{T}^d \times \mathbb{R}^2 \to \mathbb{T}^d \times \mathbb{R}^2, (\theta, v) \mapsto (\theta + \alpha, A_0e^{f(\theta)} \cdot v),
\]

where \(f_0 \in C^r_{\lambda_0}(\mathbb{T}^d, \mathfrak{sl}(2, \mathbb{R})), r_0 > 0, d \in \mathbb{N}^+ \), and \(\alpha \in DC_d \). Notice that \(A_0 \) has eigenvalues \(\{e^\xi, e^{-\xi}\} \) with \(\xi \in \mathbb{C} \).

The following quantitative almost reducibility proposition is proved in [47].

Proposition 3.1. ([47]). For any \(0 < r < r_0, \kappa > 0, \tau > d - 1 \). Suppose that \(\alpha \in DC_d(\kappa, \tau) \). Then there exist \(B_n \in C^r_{\lambda_0}(\mathbb{T}^d, \text{PSL}(2, \mathbb{R})) \) and \(A_n \in \text{SL}(2, \mathbb{R}) \) satisfying

\[
B_n^{-1}(\theta + \alpha)A_0e^{f(\theta)}B_n(\theta) = A_ne^{f(\theta)},
\]

provided that \(\|f_0\|_r < \epsilon, \) for some \(\epsilon > 0 \) depending on \(A_0, \kappa, \tau, r, r_0, d, \) with the following estimates

\[
\|f_n\|_r \leq \epsilon_n, \quad (3.2)
\]

\[
\|B_n\|_0 \leq \epsilon_{\frac{\kappa}{r_0}} \cdot \epsilon_n, \quad (3.3)
\]

Moreover, there exists unitary \(U_n \in \text{SL}(2, \mathbb{C}) \) such that

\[
B_n^{-1}(\theta + \alpha)A_0e^{f(\theta)}B_n(\theta) = A_ne^{f(\theta)}.
\]
\[U_\alpha A_n U_n^{-1} = \begin{pmatrix} e^{i\xi_n} & c_n \\ 0 & e^{-i\xi_n} \end{pmatrix}, \]

and

\[|c_n| \|B_n\|^8_0 \leq 4 \|A_0\|, \tag{3.4} \]

with \(\xi_n, c_n \in \mathbb{C} \).

Remark 3.3. \(\varepsilon_* \) doesn’t depend on \(A_0 \) as \(A_0 \) is a rotation matrix.

3.3. Global quantitative almost reducibility

Proposition 3.2. Let \(\alpha \in DC_1 \) and \(\lambda \in \Lambda \). Then there exist \(B_n \in C^r_\omega (\mathbb{T}, \text{PSL}(2, \mathbb{R})) \) and \(A_n \in \text{SL}(2, \mathbb{R}) \) satisfying

\[B_n^{-1}(\theta + \alpha)A_{\lambda, E}(\theta)B_n(\theta) = A_n e^{f_E(\theta)}, \]

with the following estimates

\[\|f_n\|_r \leq \varepsilon_n, \tag{3.5} \]

\[\|B_n\|_0 \leq C(\lambda, \alpha) \varepsilon_n^{\frac{1}{800}}. \tag{3.6} \]

Moreover, there exists unitary \(U_n \in \text{SL}(2, \mathbb{C}) \) such that

\[U_\alpha A_n U_n^{-1} = \begin{pmatrix} e^{i\xi_n} & c_n \\ 0 & e^{-i\xi_n} \end{pmatrix}, \]

and

\[|c_n| \|B_n\|^8_0 \leq C(\lambda, \alpha), \tag{3.7} \]

with \(\xi_n, c_n \in \mathbb{C} \).

Proof. Since \(r_0(\lambda, \alpha) \) in corollary 3.1 is fixed, and it is independent of \(\eta \), then one can always take \(\eta \) small enough such that

\[\eta \leq \varepsilon_*(\alpha, r, r_0), \]

where \(\varepsilon_* \) is the constant defined in proposition 3.1 with \(d = 1 \). Note that by remark 3.3, the constant \(\varepsilon_* \) given by proposition 3.1 can be taken uniformly with respect to \(R_0 \in \text{SO}(2, \mathbb{R}) \). By corollary 3.1, there exists \(\Phi_E \in C^r_{r_0}(\mathbb{T}, \text{PSL}(2, \mathbb{R})) \) such that

\[\Phi_E^{-1}(\theta + \alpha)\hat{A}_{\lambda, E}(\theta)\Phi_E(\theta) = \Phi_E^{-1}(\theta + \alpha)Q_\lambda^{-1}(\theta + \alpha)A_{\lambda, E}(\theta)Q_\lambda(\theta)\Phi_E(\theta) = R_{\alpha E} e^{f_E(\theta)}. \]

with

\[\|\Phi_E\|_{r_0} \leq \Gamma, \tag{3.8} \]

and \(\|f_E\|_{r_0} \leq \eta \). By our selection, \(\|f_E\|_{r_0} \leq \eta \leq \varepsilon_*(\alpha, r_0, r) \), then we can apply proposition 3.1, and obtain \(B_n \in C^r_\omega (\mathbb{T}, \text{PSL}(2, \mathbb{R})) \) and \(A_n \in \text{SL}(2, \mathbb{R}) \), such that
with the following estimates
\[\| f_n \| \leq \epsilon_n, \quad (3.9) \]
\[\| B_n \|_0 \leq \epsilon_n^{-\frac{1}{800}n - 1}, \quad (3.10) \]
Moreover, there exists unitary \(U_n \in \text{SL}(2, \mathbb{C}) \) such that
\[U_n A_n U_n^{-1} = \left(\begin{array}{cc} \text{e}^{i\xi_n} & c_n \\ 0 & \text{e}^{-i\xi_n} \end{array} \right), \]
and
\[|c_n| \| \bar{B}_n \|_8^8 \leq 4, \quad (3.11) \]
with \(\xi_n, c_n \in \mathbb{C} \).
Let \(B_n(\theta) = Q_\lambda(\theta)\Phi_\mathcal{E}(\theta)\bar{B}_n(\theta) \), then
\[B_n(\theta + \alpha)^{-1} A\lambda,\mathcal{E}(\theta)B_n(\theta) = A\mathcal{E}e^{\mathcal{E}(\theta)}. \]
By (3.8) and (3.10), we have
\[\| B_n \|_0 = \| Q_\lambda \Phi_\mathcal{E} \bar{B}_n \|_0 \leq \| Q_\lambda \| \Gamma \epsilon_n^{-\frac{1}{800}n - 1} \leq C(\lambda, \alpha, r_0, r)\epsilon_n^{-\frac{1}{800}n}. \]
By (3.8), (3.10) and (3.11), we have
\[|c_n| \| \bar{B}_n \|_8^8 \leq |c_n| \| Q_\lambda \Phi_\mathcal{E} \bar{B}_n \|_8^8 \leq 4\| Q_\lambda \| _8^8 \Gamma \epsilon_n \leq C(\lambda, \alpha, r_0, r). \]
Since \(r_0, r \) only depend on \(\lambda, \alpha \), thus \(C \) only depends on \(\lambda, \alpha \). We finish the whole proof. \(\Box \)

4. Proof of theorems 1.1 and 1.2

We only give the proof of theorem 1.2, since the proof of theorem 1.1 is exactly the same. We denote by
\[P_k(E) = \sum_{j=1}^{k} ((A_{\lambda,\mathcal{E}}(\theta))_{2j-1})^*(A_{\lambda,\mathcal{E}}(\theta))_{2j-1}. \]
To prove theorem 1.2, we only need to prove the following lemma.

Lemma 4.1. Assume \(\alpha \in DC_1 \) and \(\lambda \in \Lambda \), there exists \(C = C(\lambda, \alpha) > 0 \) for any \(E \in \Sigma_{\lambda,\alpha} \), we have \(\| P_k(E) \| \leq C \| P_k^{-1}(E) \|^{-1/2}. \)

Proof of theorem 1.2. Since \(P_k(E) \) is a self-adjoint matrix, we have \(\| P_k(E) \| = \det P_k(E) \| P_k^{-1}(E) \| \). If we let \(\det P_k(E) = \frac{1}{\epsilon_k^2} \), by lemma 4.1, we have
\[\| P_k(E) \| = \frac{1}{4\epsilon_k^2} \| P_k^{-1}(E) \| \leq \frac{C}{\epsilon_k^2} \| P_k(E) \|^{-1/2}, \]
thus

\[\| P_k(E) \| \leq C_\epsilon^{-\frac{1}{2}}. \]

By proposition 2.2, we have

\[\frac{\mathcal{M}(E + i\epsilon_k)}{\epsilon_k} \leq C \epsilon_k^{-\frac{1}{2}}. \]

On the one hand, since \(\| A_{\lambda,E} \|_0 \leq C(\lambda, \alpha) \) for any \(\lambda \in \Lambda \), thus any solution \(u \) we have \(\| u \|_{2k+1} \leq C(\lambda, \alpha) \| u \|_2 \), by proposition 2.3 we have \(\det P_{k+1}(E) \leq C \det P_k(E) \), thus \(\epsilon_{k+1} \geq c \epsilon_k \). On the other hand, we can check easily in (5.1) that \(\frac{\mathcal{M}(E + i\epsilon)}{\epsilon} \) is monotonic with respect to \(\epsilon \), thus for any \(\epsilon > 0 \), there exists \(k \) such that \(\epsilon_{k+1} < \epsilon < \epsilon_k \), combining this with the fact \(\epsilon_{k+1} \geq c \epsilon_k \), we have

\[\frac{\mathcal{M}(E + i\epsilon)}{\epsilon} \leq \frac{\mathcal{M}(E + i\epsilon_{k+1})}{\epsilon_{k+1}} \leq C \epsilon_{k+1}^{-\frac{1}{2}} \leq C \epsilon_k^{-\frac{1}{2}} \leq C \epsilon^{-\frac{1}{2}}. \]

By (5.2), we have

\[\mu_\theta(E - \epsilon, E + \epsilon) \leq 2\epsilon \mathcal{M}(E + \epsilon) \leq C \epsilon^\frac{3}{2}, \quad (4.1) \]

for \(E \in \Sigma_{\lambda, \alpha} \) and \(\theta \in \mathbb{T} \).

For any \(E \in \mathbb{R} \), we have the following two cases

Case 1: \((E - \epsilon, E + \epsilon) \cap \Sigma_{\alpha, \lambda} = \emptyset\), we have

\[\mu_\theta(E - \epsilon, E + \epsilon) = 0 \leq C \epsilon^\frac{1}{2}. \]

Case 2: \((E - \epsilon, E + \epsilon) \cap \Sigma_{\alpha, \lambda} \neq \emptyset\), there exists \(E' \in (E - \epsilon, E + \epsilon) \cap \Sigma_{\alpha, \lambda} \), then

\[(E - \epsilon, E + \epsilon) \subset (E' - 2\epsilon, E' + 2\epsilon). \]

Thus

\[\mu_\theta(E - \epsilon, E + \epsilon) \leq \mu_\theta(E' - 2\epsilon, E' + 2\epsilon) \leq C(2\epsilon)\frac{3}{2} \leq C \epsilon^\frac{1}{2}. \]

Proof of lemma 4.1. Note that the proof of lemma 4.1 is similar to the proof in [47]. However, there are two differences. The first one is for EHM there is a normalization transformation. The second one is in the almost reducible theorem of EHM, there is a global to local reduction. Thankfully, both of these two transformations only depend on \(\lambda, \alpha \) (do not depend on \(E \) !). The details are the followings:

Since \(\alpha \in DC_1 \) and \(\lambda \in \Lambda \), by proposition 3.2, there exist \(r > 0 \), \(B_n \in C^r(\mathbb{T}^d, PSL(2, \mathbb{R})) \) and \(A_n \in SL(2, \mathbb{R}) \) satisfying

\[B_n^{-1}(\theta + \alpha)A_{\lambda,E}(\theta)B_n(\theta) = A_n e^{f_n(\theta)}, \]

with the following estimates

\[\| f_n \|_r \leq \epsilon_n, \quad (4.2) \]

\[\| B_n \|_0 \leq C(\lambda, \alpha) \epsilon_n^{-\frac{1}{2}}, \quad (4.3) \]
Moreover, there exists unitary $U_n \in \text{SL}(2, \mathbb{C})$ such that

$$U_n A_n U_n^{-1} = \begin{pmatrix} e^{\xi_n} & c_n \\ 0 & e^{-\xi_n} \end{pmatrix},$$

and

$$|c_n| \|B_n\|_0^2 \leq C(\lambda, \alpha), \tag{4.4}$$

with $\xi_n, c_n \in \mathbb{C}$.

For $E \in \Sigma_{\lambda, \alpha}$, we always have that $|\Im \xi_n| \leq \frac{1}{e_n}$ since $(\alpha, A_n e^{i\theta})$ is not uniformly hyperbolic.

Let $\hat{B}_n(\theta) = B_n(\theta) U_n^{-1} \in C^r(\mathbb{T}, \text{PSL}(2, \mathbb{C}))$ we have

$$\hat{B}_n^{-1}(\theta + \alpha) A_n e^{\hat{f}(\theta)} \hat{B}_n(\theta) = \tilde{A}_n e^{\hat{f}(\theta)}, \tag{4.5}$$

where $\tilde{A}_n = \begin{pmatrix} e^{2\gamma_n} & \tilde{c}_n \\ 0 & e^{-2\gamma_n} \end{pmatrix}$ with $\gamma_n = \frac{\theta_n}{2e_2}$ and

$$\|\hat{f}_n\|_r \leq \epsilon_n^2, \tag{4.6}$$

$$\|\hat{B}_n\|_0 \leq \|B_n\|_0 \|U_n^{-1}\| = \|B_n\|_0 \leq C(\lambda, \alpha) e_n^{-1}, \tag{4.7}$$

$$|\tilde{c}_n| \|\hat{B}_n\|_0^2 \leq C(\lambda, \alpha). \tag{4.8}$$

For any $k \in (\epsilon_n, \infty)$, we denote by

$$X_k = \sum_{j=1}^k (\tilde{A}_n^{2j-1})^* \tilde{A}_n^{2j-1}, \quad k \in I_n := \left(\epsilon_{n-1}, \epsilon_{n} \right),$$

$$\tilde{X}_k(\theta) = \sum_{j=1}^k ((\tilde{A}_n e^{\hat{f}(\theta)})^{2j-1})^* (\tilde{A}_n e^{\hat{f}(\theta)})^{2j-1}, \quad k \in I_n := \left(\epsilon_{n-1}, \epsilon_{n} \right).$$

We divide the remaining proof into three steps.

STEP 1: estimation of X_k. The following proposition is essentially proved by Avila and Jitomirskaya (lemma 4.3 in [6]). See also Zhao (step 1 on page 13 in [47]) for the present form.

Proposition 4.1. ([6, 47]). For any $k \in I_n$, we always have

$$\|(X_k)^{-1}\|^{-1} \geq ck, \tag{4.9}$$

$$\|X_k\| \leq C k (1 + k^2 |\tilde{c}_n|^2). \tag{4.10}$$

STEP 2: estimation of $\tilde{X}_k(\theta)$.

We need the following lemma in [6],

Lemma 4.2. ([6]). Assume $T = \begin{pmatrix} e^{2\epsilon\theta} & c \\ 0 & e^{-2\epsilon\theta} \end{pmatrix} \in \text{SL}(2, \mathbb{C})$ and $\bar{T} \in C^4(\mathbb{T}^d, \text{SL}(2, \mathbb{C}))$, let

$$\bar{T}_k(x) = \sum_{j=1}^k \bar{T}_{2j-1}(x) \bar{T}_{2j-1}(x)$$

and $T_k = \sum_{j=1}^k (T_{2j-1})^* T_{2j-1}$, if $\|\bar{T} - T\|_0 \leq \frac{1}{100} k^{-2} (1 + 2ck)^{-2}$, we have

$$\|\bar{T}_k - T_k\|_0 \leq 1.$$
Note that by (4.6) we have $\|A_n e^{\tilde{\gamma} n} - \tilde{A}_n\|_0 \leq 2\epsilon_n^2$. Since $k \in I_n$, we have $\epsilon_n^2 \leq \frac{1}{160} k^{-2}(1 + 2\tilde{c}_n k)^{-2}$, by lemma 4.2, we have

$$\|X_k - X_k\|_0 \leq 1,$$

thus

$$\|(X_k)^{-1} - (X_k)^{-1}\|_0 \leq \|X_k - X_k\|_0 (X_k)^{-1} \leq 1.$$

By (4.9) and (4.10), for any $k \in I_n$, we have

$$\|(\tilde{X}_k)^{-1} - (X_k)^{-1}\|_0 \leq \|\tilde{X}_k - X_k\|_0 (X_k)^{-1} \leq 1.$$

STEP 3: estimation of $P_k(E)$.

For $k \in I_n$, by equation (4.5), we have

$$\|P_k(E)\|_0 \leq \|\tilde{B}_n\|_0 \|\tilde{X}_k\|_0 \leq C\|\tilde{B}_n\|_0 k(1 + k^2|\tilde{c}_n|^2),$$

$$\|P_k^{-1}(E)\|_0^{-1} \geq \|\tilde{B}_n\|_0^{-4} ||(\tilde{X}_k)^{-1}||_0^{-1} \geq c\|\tilde{B}_n\|_0^{-4} k,$$

thus

$$\frac{\|P_k(E)\|_0}{\|P_k^{-1}(E)\|_0^{-1}} \leq C\|\tilde{B}_n\|_0^{-16} |\tilde{c}_n|^2 + C\|\tilde{B}_n\|_0^{-16} k^{-2}.$$

On the one hand, $k^{-2} \leq \epsilon_n^{-1}$, by (4.7), we have $C\|\tilde{B}_n\|_0^{-16} k^{-2} \leq C(\lambda, \alpha)$. On the other hand, by (4.8), we have $C\|\tilde{B}_n\|_0^{-16} |\tilde{c}_n|^2 \leq C(\lambda, \alpha)$, thus for any $k \in (\epsilon_0^{-\frac{1}{16}}, \infty)$

$$\frac{\|P_k(E)\|_0}{\|P_k^{-1}(E)\|_0^{-1}} \leq C(\lambda, \alpha). \quad (4.11)$$

For $k \in (0, \epsilon_0^{-\frac{1}{16}})$, it is obvious that there exists $C = C(\lambda, \alpha)$ such that

$$\frac{\|P_k(E)\|_0}{\|P_k^{-1}(E)\|_0^{-1}} \leq C. \quad (4.12)$$

(4.11) and (4.12) imply that for all $k \in \mathbb{N}$, we have

$$\frac{\|P_k(E)\|_0}{\|P_k^{-1}(E)\|_0^{-1}} \leq C(\lambda, \alpha).$$

This finishes the proof of lemma 4.1.

Acknowledgments

We are indebted to Professor Svetlana Jitomirskaya and Professor Yiqian Wang for their enthusiastic help. We are also grateful to Lingrui Ge for his careful reading of the manuscript and many useful suggestions which gave us positive hints. X Zhao was supported by China Scholarship Council (CSC) (No.201906190072). This work was supported by NSF DMS-1901462 and NSFC Grant (11771205).
Appendix

In this section, we give the proof of several propositions in the preliminary.

Proof of proposition 2.2. By (2.3), for any $\epsilon > 0$, we have

$$\mathcal{M}(E + i\epsilon) = \int \frac{\epsilon}{(E' - E)^2 + \epsilon^2} \, d\mu(E'),$$ \hspace{1cm} (5.1)

thus

$$\mathcal{M}(E + i\epsilon) \geq \int_{E - \epsilon}^{E + \epsilon} \frac{\epsilon}{(E' - E)^2 + \epsilon^2} \, d\mu(E') \geq \frac{1}{2\epsilon} \int_{E - \epsilon}^{E + \epsilon} d\mu(E')$$

$$= \frac{1}{2\epsilon} \mu(E - \epsilon, E + \epsilon).$$ \hspace{1cm} (5.2)

We denote $\psi(z) = \sup_{\beta} |z - \beta/2\pi|$, by the argument in section 4.1 in [6], one has

$$|\mathcal{M}(E + i\epsilon)| \leq \psi(m_{E + i\epsilon}).$$ \hspace{1cm} (5.3)

By lemma 4.2 in [6], one has

$$\psi(m_{E + i\epsilon}) \leq 2(\sqrt{24} + 5) \epsilon k \|P_k(E)\|.$$ \hspace{1cm} (5.4)

(5.2)–(5.4) imply that

$$\mu(E - \epsilon, E + \epsilon) \leq 2\epsilon \mathcal{M}(E + i\epsilon) \leq 2\epsilon \psi(m_{E + i\epsilon}) \leq 4(\sqrt{24} + 5) \epsilon k \|P_k(E)\|.$$

Proof of proposition 2.3. By the definition of $P_k(E)$, we have

$$\|u^\beta\|_{2k}^2 = \langle P_k(E) \begin{pmatrix} u_{\beta 0}^0 \\ u_{\beta 0}^1 \end{pmatrix}, \begin{pmatrix} u_{\beta 0}^0 \\ u_{\beta 0}^1 \end{pmatrix} \rangle.$$

Since $P_k(E)$ is self-adjoint, it immediately follows that

$$\det P_k(E) = \inf_{\beta} \|u^\beta\|_{2k}^2 \|u^\beta + \pi/2\|_{2k}^2.$$

References

[1] Amor S H 2009 Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2, \mathbb{R}) \textit{Commun. Math. Phys.} 287 2009 565–88

[2] Avila A 2015 Global theory of one-frequency Schrödinger operators \textit{Acta Math.} 215 1–54

[3] Avila A 2010 Almost reducibility and absolute continuity (arXiv: 1006.0704)

[4] Avila A KAM, Lyapunov exponents and the spectral dichotomy for one-frequency Schrödinger operators (in preparation)

[5] Avila A and Jitomirskaya S 2010 Almost localization and almost reducibility \textit{J. Eur. Math. Soc.} 12 93–131

4 Although Avila and Jitomirskaya proved lemma 4.2 for Schrödinger operator, their results work for Jacobi operators without any change of the proof.
[6] Avila A and Jitomirskaya S 2011 Hölder continuity of absolutely continuous spectral measures for one-frequency Schrödinger operators Commun. Math. Phys. 301 563–81
[7] Avila A, Jitomirskaya S and Marx C A 2017 Spectral theory of extended Harper’s model and a question by Erdős and Szekeres Invent. Math. 210 283–339
[8] Avila A, Last Y, Shamis M and Zhou Q On the abominable properties of the almost Mathieu operator with well approximated frequencies (in preparation)
[9] Bellissard J 1989 Almost periodicity in solid state physics and C*-algebras The Harald Bohr Centenary vol 42 ed C Berg and B Flugede (Copenhagen: The Danish Royal Academy of Sciences) pp 35–75
[10] Bourgain J 2000 Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime Lett. Math. Phys. 51 83–118
[11] Bourgain J 2005 Green’s Function Estimates for Lattice Schrödinger Operators and Applications (Annals of Mathematics Studies) vol 158 (Princeton, NJ: Princeton University Press) p x+173
[12] Cai A, Chavaudret C, You J and Zhou Q 2019 Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles Math. Z. 291 931–58
[13] Dinaburg E and Sinai Y 1975 The one dimensional Schrödinger equation with a quasi-periodic potential Funkt. Anal. Appl. 9 279–89
[14] Eliasson L H 1992 Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation Commun. Math. Phys. 146 447–82
[15] Ge L and You J 2020 Arithmetic version of Anderson localization via reducibility Geomet. Funct. Anal. 30 1370–401
[16] Ge L, You J and Zhou X 2020 Hölder regularity of the integrated density of states for quasi-periodic long-range operators on $\ell^2(\mathbb{Z}^d)$ (arXiv:2009.08004)
[17] Ge L, You J and Zhou Q 2019 Exponential dynamical localization: criterion and application (arXiv:1901.04258)
[18] Goldstein M and Schlag W 2001 Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions Ann. Math. 154 155–203
[19] Han R 2018 Dry ten Martini problem for the non-self-dual extended Harper’s model Trans. Am. Math. Soc. 370 197–217
[20] Han R 2018 Absence of point spectrum for the self-dual extended Harper’s model Int. Math. Res. Not. 2018 2801–9
[21] Han R and Jitomirskaya S 2017 Full measure reducibility and localization for quasiperiodic Jacobi operators: a topological criterion Adv. Math. 319 224–50
[22] Han R, Yang F and Zhang S 2018 Spectral dimension for β-almost periodic singular Jacobi operators and the extended Harper’s model (arXiv:1804.04322)
[23] Han R and Zhang S 2020 Large deviation estimates and Hölder regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles Int. Math. Res. Not. mz319
[24] Hou X and You J 2012 Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems Invent. Math. 190 209–60
[25] Jian W and Shi Y 2018 Hölder continuity of the integrated density of states for extended Harper’s model with Liouville frequency Acta Math. Sci. 39 1240–54
[26] Jitomirskaya S, Koslover D A and Schulteis M S 2005 Localization for a family of one-dimensional quasiperiodic operators of magnetic origin Ann. Henri Poincaré 6 103–24
[27] Jitomirskaya S and Last Y 1999 Power-law subordinacy and singular spectra I. Half-line operators Acta Math. 183 171–89
[28] Jitomirskaya S Y and Last Y 2000 Power law subordinacy and singular spectra II. Line operators Commun. Math. Phys. 211 643–58
[29] Jitomirskaya S Y and Marx C A 2012 Analytic quasi-periodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model Commun. Math. Phys. 316 237–67
[30] Klein S 2014 Localization for quasiperiodic Schrödinger operators with multivariable Gevrey potential functions J. Spectr. Theory 4 431
[31] Leguil M, You J, Zhao Z and Zhou Q 2017 Asymptotics of spectral gaps of quasi-periodic Schrödinger operators (arXiv:1712.04700)
[34] Liu W and Yuan X 2015 Hölder continuity of the spectral measures for one-dimensional Schrödinger operator in exponential regime J. Math. Phys. 56 012701
[35] Munger P E and Ong D C 2014 The Hölder continuity of spectral measures of an extended CMV matrix J. Math. Phys. 55 093507
[36] Puig J 2006 A nonperturbative Eliasson’s reducibility theorem Nonlinearity 19 355–76
[37] Shi Y and Yuan X 2019 Exponential decay of the lengths of the spectral gaps for the extended Harper’s model with a liouvillean frequency J. Dyn. Differ. Equa. 31 1921–53
[38] Shubin M A 1994 Discrete magnetic laplacian Commun. Math. Phys. 164 259–75
[39] Sun M and Wang X 2020 Hölder continuity of spectral measures for the finitely differentiable quasi-periodic Schrödinger operators Anal. Theor. Appl. 36 33–51
[40] Tao K 2014 Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators Bull. Soc. Math. Fr. 142 655–71
[41] Tao K and Voda M 2017 Hölder continuity of the integrated density of states for quasi-periodic Jacobi operators J. Spectr. Theory 7 361–86
[42] Thouless D J 1983 Bandwidths for a quasiperiodic tight-binding model Phys. Rev. B 28 4272–6
[43] Wang Y and Zhang Z 2015 Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasiperiodic Schrödinger cocycles J. Funct. Anal. 268 2525–85
[44] Xu X, Zhao X and Zhao X 2020 Exponential upper bounds on the spectral gaps and homogeneous spectrum for the non-critical extended Harper’s model Discrete Continuous Dyn. Syst. - Ser. A 40 4777–800
[45] Yang F 2018 Spectral transition line for the extended Harper’s model in the positive Lyapunov exponent regime J. Funct. Anal. 275 712–34
[46] You J and Zhang S 2014 Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycle with weak Liouville frequency Ergod. Theor. Dynam. Syst. 34 1395–408
[47] Zhao X 2020 Hölder continuity of absolutely continuous spectral measure for multi-frequency Schrödinger operators J. Funct. Anal. 278 108508