The EurOPDX Data Portal: an open platform for patient-derived cancer xenograft data sharing and visualization

Zdenka Dudová1†, Nathalie Conte2†, Jeremy Mason2, Dalibor Stuchlík1, Radim Peša1, Csaba Halmayi2, Zinaida Perova2, Abayomi Mosaku2, Ross Thorne2, Alex Follett2, Luboslav Pivarc1, Radim Šašinka1, Muhammad Usman1, Steven Neuhauser9, Dale A. Begley3, Debra M. Krupke3, Massimiliano Frassà4, Alessandro Fiori10, Riccardo Corsi5, Luca Vezzadini5, Claudio Isella4, Andrea Bertotti5, Carol Bult3, Helen Parkinson2, Enzo Medico4,6, Terrence Meehan2 and Aleš Křenek1*†

Abstract

Background: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons – ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium.

Main body: In this paper we describe the main features of the EurOPDX Data Portal (https://dataportal.europdx.eu/), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views.

(Short) Conclusion: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users’ interests.

Keywords: PDX, Molecular data analysis, Data harmonization, Research infrastructure, Database

Background

Patient-derived xenografts (PDX) become increasingly important as they provide a new approach for preclinical cancer research. PDX are in vivo models in which human cancer tissues are implanted in animal hosts, typically immunocompromised mice [1]. Exploration of cancer molecular features and drug response in PDX models has yielded a huge amount of information, in some cases leading to changes in cancer patient management [2, 3].

Since the number of researchers working with PDX mice models across Europe is rising quickly, as well as the number of models generated, there was a need to organize information about European PDX mice models. To avoid duplication of efforts, enable extensive...
collaboration, and to set up shared standards suitable for the PDX mice model facilities in Europe and beyond (to allow for cross-validation studies, among other reasons), the EurOPDX Consortium was established in 2013. Sharing biospecimens, data sets and standardization of laboratory procedures following high quality standards have been the main objectives of the Consortium [2].

To fulfill these goals, EurOPDX has started building a distributed infrastructure for PDX research providing services to other research groups, including PDX mice models biobanking and delivery, as well as drug efficacy testing. The first step towards construction of the EurOPDX Research Infrastructure (RI) has been the joint collection, harmonization and display of PDX-related data from partners, according to existing and newly developed standards. The work we present here is the current status of the EurOPDX Data Portal which enables integrative search, browsing and exploration of more than a thousand PDX models for preclinical, clinical and molecular information.

Construction and content

Main features of the EurOPDX Data Portal

Through its Data Portal, the EurOPDX Consortium provides access to three main types of PDX-related data: (i) metadata, i.e., all annotations related to PDX model construction, tumor of origin, preclinical and clinical features as specified in the PDX-Minimal Information (PDX-MI) standard [4], (ii) processed molecular data, including cytogenetics and gene expression, mutation and copy number alterations, (iii) additional data, such as model’s drug dosing and patient treatment data.

Figure 1 illustrates the data flow, from partners owning and providing the models and related data, to the end user of the Portal, through the Data Platform.

The current data loading process is semi-automatic and occurs through four main steps: (i) EurOPDX data providers fill in a metadata template. (ii) The data is checked for consistency and harmonized (e.g., unifying the gene symbols, diagnoses identifiers etc.) before ingesting into the database. Any additional datasets such as processed molecular data or drug dosing studies are collected in separate files. (iii) Metadata template and datasets are processed and validated by loader components developed within the PDX Finder

1 https://dataportal.europdx.eu/
catalogue [5], (iv) and uploaded into the EurOPDX Data Hub. Details on the whole process are given in the following sections. Technically, the same process and software is used to populate the database of the standalone PDX Finder (see Fig. 1).

Currently, the Portal displays models and data for a total of 1010 PDXs from 9 PDX providers, across seven European Countries (Table 1).

These models represent several cancer systems listed in Table 2.

Most of the models represent adult cancer models (93%), in 7% of cases age was not specified by the provider.

Figure 2 shows coverage of the models by additional data (molecular, treatment etc.). Gene mutation and copy number alteration are already available for half of the models or more, while other data are being introduced gradually.

EurOPDX Data can be browsed and retrieved by the end user through two main graphical interfaces: the Data Portal Search Interface (see Fig. 1) and the EurOPDX cBioPortal Interface. While the Search interface allows mainly searching models by metadata, the cBioPortal interface allows in-depth search and analysis of gene-level molecular data [6, 7], see examples at Fig. 5.

Table 1 Overview of EurOPDX partners providing the data sets, cancer types and number of PDX mice models represented by these data sets

Institute (acronym)	Cancer Type (data set acronym)	Number of PDX Models
Candiolo Cancer Institute, FPO-IRCCS (IRCC), Italy	Colorectal Cancer (IRCC-CRC)	639
Candiolo Cancer Institute, FPO-IRCCS (IRCC), Italy	Gastric Cancer (IRCC-GC)	76
Cancer Research UK, University of Cambridge, UK	Breast Cancer (UOC-BC)	59
Curie Institute - Preclinical Investigation Laboratory, France	Breast Cancer (Curie-BC)	5
Curie Institute - Preclinical Investigation Laboratory, France	Lung Cancer (Curie-LC)	6
Curie Institute - Preclinical Investigation Laboratory, France	Ovarian Cancer (Curie-OV)	5
Luxembourg Institute of Health - NORLUX laboratory	Glioma (LIH)	40
Netherlands Cancer Institute	Breast Cancer (NKI)	7
TRACE - Patient Derived Tumor Xenograft Platform, KU Leuven and UZ Leuven, Belgium	Breast Cancer, Cutaneous Melanoma, Uterine Cancer (TRACE)	31
Vall d’Hebron Institute of Oncology, Spain	Breast Cancer (VHIO-BC)	5
Vall d’Hebron Institute of Oncology, Spain	Colorectal Cancer (VHIO-CRC)	74
Vall d’Hebron Institute of Oncology, Spain	Pancreatic Cancer (VHIO-PC)	43
University of Manchester, UK	Breast Cancer (UOM-BC)	12
University Medical Center Groningen, Netherlands	Ovarian Cancer (UMCG)	8

Table 2 PDX models available at the EurOPDX Data Portal listed according to cancer system

Cancer System	Number of PDX Models
Digestive system	842
Breast	346
Nervous system	40
Reproductive system	21
Connective and soft tissue	8
Skin	8
Thoracic	6

2 http://pdxfinder.org/
3 https://dataportal.europdx.eu/search
4 https://cbioportal.europdx.eu/
PDX mice models and sample Metadata templates

- Basic Metadata template collecting patients’ clinical and PDX mice models metadata
- Sample Metadata template collecting metadata for molecular data

Individual templates for data (molecular and treatment)

- Molecular datasets templates
 ° Cytogenetics
 ° Mutation
 ° Copy number alterations
 ° Fusion
 ° Transcriptomic
- Treatment template (patient and PDX mice models)
 ° Patient treatment
 ° Drug Dosing of the PDX mice models

Processing layer

Metadata provided by partners are validated for adherence to the PDX-MI standard [4]. Metadata harmonization is achieved by mapping biologically identical histological concepts provided by different sources. Specifically, to support consistent searching across resources, we use different attributes such as original histological term and the primary tissue provided by the resource.

For example, histological concepts “Adenosquamous”, “adenosquamous carcinoma”, “Ad and SC carcinoma” share the same primary tissue “lung” and are mapped to the National Cancer Institute thesaurus (NCIt) [8] ontological label “Adenosquamous Lung Carcinoma”. Moreover, concepts are aggregated based on meaningful groupings like cancer by anatomical system or cell morphology. This approach allows a search for “lung cancer” models to display hits across all subclasses of lung cancer models in a single query.

Processed Molecular Data Sets are retrieved by the EMBL-EBI team from existing repositories/locations as provided by the data owners. Data is then validated and uploaded to a Neo4j database (details in the following section). To populate the database a bespoke Java Extraction-Transformation-Loading (ETL) pipeline was written to extract relevant attributes corresponding to the PDX-MI standard from the data provided by the PDX mice models providers. Software is freely available on GitHub5 under an Apache 2.0 license.6

A major bottleneck to molecular data integration is the heterogeneity of the data produced from multiple sources that involves a variety of sequencing platforms, laboratory protocols and analyses. This heterogeneity introduces strong technological biases and causes data inconsistencies, hindering data integration efforts. To control this technical variability, we have developed a service to remap all PDX mutation data to the same genome

5 https://github.com/pdxfinder
6 https://www.apache.org/licenses/LICENSE-2.0
assembly (GRCh38). We then re-annotated variants on a single annotator (Variant Effect Predictor – VEP). This harmonization provides accurate and standardized annotation of variants, following Human Genome Variation Society (HGVS) standards, and it ensures consistent searching and linking to cancer annotation databases like CivicDB, OpenCravat, and COSMIC.

In addition to the PDX-MI standard, data from the models in the EurOPDX Data Portal comply with other nomenclature and metadata standards accepted by the community: NCI thesaurus for cancer type, diagnosis and other cancer attributes, Human Genome Organization Gene Nomenclature Committee standards for the names and symbols of the human genes, and International Committee on Standardized Genetic Nomenclature for Mice for host mouse strain nomenclature. NCIt, ChEBI, CHEMBL, and PubChem are used to standardize drugs and compound names.

Storage layer

The EurOPDX Data Hub constitutes the repository layer of the RI and provides an application programming interface (API) for exporting selected data sets to chaining tools like cBioPortal, see Fig. 3.

The Data Hub is designed to handle multiple types of datasets and databases. Three types of data are stored:

1. Clinical data that contain pseudonymized information about patients (e.g., age at the collection, sex, diagnosis) and about PDX mice models (stage of cancer, site of the tumor, primary/metastasis status).

2. Metadata which describe how and where the PDX mice models were created/prepared (e.g., implant site of engraftment, an identifier of the mouse).

3. Genomic data – this comprises an enormous set of different data types. Currently expression, copy number alteration, and mutation.

The storage is based on a Neo4J database (DB) that follows the structure from PDX Finder’s Neo4J DB records of EurOPDX partners/data providers (the N4J DB schema is shown in Fig. 4) models, patients, clinical data, and molecular data. Besides Neo4J there is a MySQL DB for storing temporary data in Data Hub, and eventual extensions not covered by the PDX Finder data schema (it is not required currently but it was the case of the previous version before gene expression data became supported by PDX Finder).

Data loading tools of PDX Finder – including automated standardization and harmonization – are used for loading data to the shared database of the Hub. The Hub design is not restricted to using the Neo4J database only. On the contrary, the previous versions complemented it with a relational database to store additional data, being populated with other tools. The current setup is the result of unification developments.

The RESTful API of the Hub provides a unified way for export of clinical data, metadata and molecular data for a specified set of PDX models. This API is designed to be complete in the sense that any chained visualization on data processing tool (cBioPortal currently, GenomCruzer foreseen) can retrieve all data it needs via this API. In this way, strict consistency of the data among the tools is ensured. Technically, we manage the tool integration by wrapper scripts, which retrieve the data using the

7 https://www.ensembl.org/info/docs/tools/vep/index.html
8 https://varnomen.hgvs.org
9 https://app.swaggerhub.com/apis-docs/RadimPesa/datahub/v1
10 http://www.genomecruzer.com/
API, format them appropriately, and feed to the wrapped tools.

The Data Hub API is based on Python's Flask framework. To ensure automated deployment and effective maintenance, the Data Hub runs with its components (Neo4J, MySQL, API and Proxy) within Docker containers managed by docker-compose [17].

Output layer
The user interface of the above-described database is integrated with EurOPDX Data Portal web pages in Umbraco Content Management System [18]. The principal entry point[11] is based on branded PDX Finder software with minor extensions (classifying models by their availability for Trans-national access via the EurOPDX RI, search by specific model identifiers, etc.). This interface allows search and selection of the models by metadata (origin, diagnosis, treatment, etc.). An example of the search screen is shown in Fig. 6.

The same data are available by the EurOPDX cBioPortal interface, populated by a setup procedure which calls the Data Hub API as described above. This interface is focused on more complex analyses and visualizations of the molecular data (gene expression charts, mutations, and their correlations), see Fig. 5 for several examples of the visualization tools available within the cBioPortal platform.

User registration and authentication
The Portal is freely accessible to any researcher from the internet after a lightweight, self-service registration, required for maintaining minimalistic records of the service usage enforced by policies of the underlying cloud service provider, as well as to keep track of users' agreement to the terms of Acceptable Use Policy (which is, besides forbidding unlawful use, mostly informative only, not restricting the use of data for non-commercial purposes), and to offer personalized services eventually. We adopted the technical solution developed in the ELIXIR research infrastructure [19], which merges the possibility

[11] https://dataportal.europdx.eu/search
to use the user identity of any institution supporting the eduGAIN12 federation, as well as social identities (Google, LinkedIn, ORCID); migration to the emerging European Life-Science authentication infrastructure is foreseen.

Utility and discussion

User interface

Users can reach the EurOPDX Data Portal homepage at https://dataportal.europdx.eu/. This page displays information about competitive calls by the EurOPDX RI for access to PDX models, model data availability and a link to the Search page at https://dataportal.europdx.eu/search.

User registration/login is required to access the Search page.

As Shown in Fig. 6, the Search page is subdivided into two sections. On the left, multiple filters allow selection of models by basic features, molecular data, treatment data, and patient/tumor data. Each filter category is further subdivided into sub-categories, and the filters can be mixed for accurate queries based on the user’s needs. For users interested in accessing models through the EurOPDX RI, a filter enables selection of models available for Trans-national access.13 Models are also accessible on a collaborative basis, by contacting the PDX owners.

The right part of the Search page displays the results of the query in tabular format, with each model in a separate row. Key features of the models are presented in columns and include model identifier (ID) and its original provider, tumor histological classification, site of primary tumor, collection site, and links to available datasets (Table 3).

Users can navigate to a model/patient/tumor page or to the data of interest by clicking on the unique PDX Model ID or data links in each row. At the lower-right corner of the page, users find options to download search results in a tabular format or to export them to a dedicated instance of cBioPortal for Cancer Genomics [6, 7].

12 https://edugain.org

13 https://www.europdx.eu/europdxi-ri-ta
for deeper investigation of available molecular data, as described in the next section. A pre-compiled instance of the EurOPDX cBioPortal, including all main datasets currently stored in the Hub is publicly available at https://cbioportal.europdx.eu/.

A video tutorial containing the Portal functionalities can be found on EurOPDX RI YouTube channel next to other informative videos, please see https://youtu.be/l2AfjcfT2Y.

Tool chaining and consistent data availability

While the Data Portal allows to search and select models and samples according to certain criteria, the cBioPortal provides additional visualization and analysis capabilities. To link these two services, we leveraged the thorough design of the Data Hub API to extract a model selection in Data Portal and create a dedicated cBioPortal populated only with the data associated to the specific models selected. In order to speed up the startup time of such cBioPortal personalized to a user’s interest, snapshots of partially prepared (namely populated with all static data) cBioPortal Docker containers are reused.

Conclusions

The EurOPDX Data Portal provides essential search functionality as well as complex molecular data analysis and visualization for cancer researchers interested in accessing PDX mice models. In particular, the Portal is
the primary entry point for users interested in the free-of-charge research services offered by the EurOPDX RI. Indeed, from the perspective of the user looking for PDX models that are relevant to his/her research, retrieval of this information in the Portal serves as a background to request specific trans-national access services provided by the EurOPDX RI -- frozen PDX tumour samples shipment, in vivo studies on the selected PDX model(s), deposition of PDX model(s) (unlike the open access to data in the Portal, these services may be subject to further restrictions). The Portal is populated with curated data, special attention is paid to their thorough harmonization so that queries across multiple studies are possible. The procedure of data curation is well-defined and automated as much as possible to both speed up the process and avoid unintentional human errors. The data are shared among the Portal components, making sure by technical means that they are always mutually consistent.

At the time of writing this article, the Portal offers data on 1010 PDX models referring to 7 distinct cancer types, and the number models is expected to grow steadily. As such, the Portal provides the technical prerequisites to achieve the principal missions of the EurOPDX Consortium, which is to enable data sharing among the partners as well as to the broader research community, thereby improving the efficiency of PDX research and reducing duplication of efforts and unnecessary animal experiments.

Acknowledgements

The authors acknowledge Emilie Vinolo, Mauro Paschetta and Massimiliano Borsani for supporting this work and the development of the EurOPDX Data Portal.

Cloud computational and storage resources were supplied by the project “e-Infrastruktura ČZ” (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures.

Authors' contributions

EM, AK, and TM conceived the idea. AK, ZD, NC, DS designed the portal and coordinated work. MF, AF2, CI, AB contributed significantly to the design and development of the portal data model and its wrapping software layer, bringing in their long experience with data models of PDX-related data. RC and LV, as principal developers of GenomeCruzer, which is one of planned future extensions of the Data Portal, contributed with design of internal interfaces that will allow those integrations. RP, DS, RL, MU built and maintain the IT infrastructure behind the Data Portal. HP defined the needs of the PDX user community, which were reflected in the design of the functionality and the model search user interface. NC, JM, CH, ZP, AM, RT, AF1, TM developed the PDX Finder platform integrated within the Portal and customized PDX Finder platform outputs to EurOPDX consortium needs. SN, DAB, DMK, and CB collaborated on the PDX Finder development and customization. NC, ZP collected data from consortium partners. DS, RS, ZD processed the data to be visualized at the Portal. HP, TM, and AK coordinated the cooperation between involved teams. ZD, ZP, EM, AK, DS wrote the paper draft and drew figures. All authors read and approved the final manuscript.

Authors' information

Not applicable.
Funding
This work has been funded by the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement no. #731105), Project EDI-ReX - EuroPDX Distributed Infrastructure for Research on patient-derived cancer Xenografts. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Most datasets included in the EuroPDX Data Portal are available after free authentication. The EuroPDX Data Portal is open however the downloading and re-use of data is subject to an Acceptable Use Policy and Conditions of Use (https://dataportal.europdx.eu/about/aup) as PDX models & associated data hosted by the EuroPDX Data Portal remain the property of the PDX developers, who retain all rights, title, and interest in and to the PDX models and data. Table 3 lists the original datasets that are publicly available, including their links. Besides those, several datasets included in Data Portal (IRCC-CRC, IRCC-GC, UOC-BC, Curie-BC, Curie-LC, NKI, VHI-OBC, UOM-BC) were not published yet. They are available on request from their providers, who can be contacted with the “Contact provider” button on each sample detail page in the portal.

Declarations

Ethics approval and consent to participate
The patient-derived cancer xenograft models, which data are included in the EuroPDX Data Portal have been established in strict compliance with applicable national, European, and international laws. In particular, the use of human samples for PDX establishment was approved by ethics committees relevant to PDX owners (Candiolo Cancer Institute, Italy: Comitato Etico IRCCS di Candiolo; TRACE PDX Platform, RU Leuven, Belgium: Ethics Committee Research UZ/1 RU Leuven; Carlos Caldas Laboratory, University of Cambridge: NHS Cambridgeshire 2 Research Ethics Committee; Institut Curie: Comité de Revue Institutionnel de l’Institut Curie, Direction Générale de la Recherche et de l’Innovation du Ministère de l’Enseignement Supérieur et de la Recherche (DGRiS); Vall d’Hebron University of Oncology: Comitè Etico di Investigación Clínica del Hospital Universitario Vall d’Hebron; Netherlands Cancer Institute: NKI-AIV. Institutional Review Board, University of Manchester: NHS Tameside and Glossop Local Research Ethics Committee or Manchester Cancer Research Centre Biobank Management Board, University Medical Center Groningen: Medische Ethische Toetsingscommissie van het UMCG, Luxembourg Institute of Health: Comité National d’Ethique de Recherche (CNER)). The written consent or non-opposition of the patients was established, as approved by the ethics committee, however, written consent has since then been generalized.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Computer Science, Masaryk University, Sumavská 15, 60200 Brno, Czech Republic. 2European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 3The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA. 4Department of Oncology, University of Toronto, 100060 Candiolo, TO, Italy. 5Kairo3D via Agostino da Montefeltro 2, 10134 Turin, Italy. 6Candiolo Cancer Institute, FPO-IRCCS, S.P. 142, km 3,95, 10060 Candiolo, TO, Italy.

Received: 23 August 2021 Accepted: 3 February 2022 Published online: 22 February 2022

References
1. Inveva F, Rovito R, Torchia E, Pettì C, Ielisa C, Medico E. Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotech. 2020;63:151–6. https://doi.org/10.1016/j.copbio.2020.01.003 Epub 2020 Feb 18. PMID: 32079860.
2. Byrne AT, Alférez DG, Amanti F, Annibali D, Arribas J, Blankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):54–68. https://doi.org/10.1038/nrc.2016.140 Epub 2017 Jan 20. Erratum in: Nat Rev Cancer. 2017 Sep 15; PMID: 28104906.
3. Santore-Bianchi A, Trusolino L, Martino C, Bencardino K, Loranidi S, Bergamo F, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(6):738–46. https://doi.org/10.1016/S1470-2045(16)00150-9 Epub 2016 Apr 20. Erratum in: Lancet Oncol. 2016 Oct 17 (10):e420. PMID: 27108240.
4. Meehan TF, Conte N, Goldstein T, Inghirami G, Murakami MA, Braetzel S, et al. PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Res. 2017;77(21):662–7. https://doi.org/10.1158/0008-5472.CAN-17-0582 PMID: 29092942; PMCID: PMC5738926.
5. Conte N, Mason JC, Halmagyi C, Neuhauser S, Mosaka A, Yordanova G, et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 2019;47(D1):D1073–9. https://doi.org/10.1093/nar/gky984.
6. Cerami E, Gao J, Dogrusoz U, Gross B, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https://doi.org/10.1158/2159-8290.CD-12-0095 Epub 2012 Oct 10; PMID: 22358877; PMCID: PMC3956037.
7. Gao J, Aksoy BA, Dogrusoz U, Drescher G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. https://doi.org/10.1126/scisignal.2004088 PMID: 23552010; PMCID: PMC4160307.
8. de Coronado S, Wright LV, Fragogio G, Haber MW, Hahn-Dantona EA, Hartel FW, et al. The NCI thesaurus quality assurance life cycle. J Biomed Inform. 2009;42(3):530–9. https://doi.org/10.1016/j.jbi.2009.01.003 PMID: 19475726.
9. Griffith M, Speirs NC, Kysyak K, McMichael JF, Coffman AC, Danos AM, et al. CIVIC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017;49(2):170–4. https://doi.org/10.1038/ng.3774 PMID: 28138153; PMCID: PMC5336263.
10. Pagel KA, Kim R, Moak D, Busby B, Zheng L, Tököheim C, et al. Integratedinformatics analysis of cancer-related variants. JCO Clin Cancer Inform. 2020;4:310–7. https://doi.org/10.1200/JCOI.19.00132 PMID: 32228626; PMCID: PMC7113103.
11. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–11. https://doi.org/10.1093/nar/gku1075 Epub 2014 Oct 29. PMID: 25355519; PMCID: PMC4383913.
12. Yates B, Brashchi B, Gray KA, Seal RL, Tweeddie S, Bruford EA. Gene names.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2017;45(D1):D619–25. https://doi.org/10.1093/nar/gkw951 Epub 2016 Oct 30. PMID: 27799471; PMCID: PMC5210531.
13. Davison MT. Rules and guidelines for genetic nomenclature in mice: an excerpted version. Committee on Standardized Genetic Nomenclature for Mice. Transgenic Res. 1997;6(3):309–19. https://doi.org/10.1023/a:1018846830035 PMID: 9322368.
14. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. CheBL in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44(D1):D1214–9. https://doi.org/10.1093/nar/gkt1031 Epub 2015 Oct 13. PMID: 26646749; PMCID: PMC4702775.
15. Bento AP, Gauttron A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The CheMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(Database issue):D1083–90. https://doi.org/10.1093/nkx1013 Epub 2013 Nov 7. PMID: 24214965; PMCID: PMC3965067.
16. Kini S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13. https://doi.org/10.1093/nkx1051 Epub 2015 Sep 22. PMID: 26400175; PMCID: PMC4702940.
17. Merkel D. Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014;2014(239):2.
18. Umbraco content management system. https://umbraco.com/. Accessed 20 July 2021.
19. Linden M, Procházka M, Lappalainen I, Bucík D, Vyskocil P, Kuba M, et al. Common ELIXIR service for researcher authentication and authorisation. F1000Res. 2018;7(ELIXIR):1199. https://doi.org/10.12688/f1000research.15161.1.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.