The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus

Laurence Mousson, Karima Zouache, Camilo Arias-Goeta, Vincent Raquin, Patrick Mavingui, Anna-Bella Failloux

To cite this version:
Laurence Mousson, Karima Zouache, Camilo Arias-Goeta, Vincent Raquin, Patrick Mavingui, et al.. The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus. PLoS Neglected Tropical Diseases, Public Library of Science, 2012, 6 (12), pp.e1989. 10.1371/journal.pntd.0001989. pasteur-01680937

HAL Id: pasteur-01680937
https://hal-pasteur.archives-ouvertes.fr/pasteur-01680937
Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus

Laurence Mousson1, Karima Zouache1, Camilo Arias-Goeta1, Vincent Raquin2, Patrick Mavingui2, Anna-Bella Failloux1*

1 Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France, 2 UMR CNRS 5557, USC INRA 1193, VetAgro Sup, Ecologie Microbienne, Université de Lyon, Villeurbanne, France

Abstract

Background: The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, A. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV).

Methods/Principal Findings: To understand the weak vectorial status of A. albopictus towards DEN, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DEN infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DEN replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-infected Ae. albopictus, 14 days after the infectious blood-meal.

Conclusions: We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in A. albopictus from La Reunion Island. The extension of this conclusion to other Aedes albopictus populations should be investigated.

Introduction

Dengue is the most important arboviral disease in tropical and subtropical areas where 2.5 billion people are at risk of infection. The four dengue virus serotypes (DENV-1, -2, -3, -4) are transmitted by Aedes genus mosquitoes, mainly Aedes aegypti and Aedes albopictus. A. aegypti presents feeding preferences restricted to humans and is considered the main epidemic vector of DENV. A. albopictus is rather regarded as a secondary vector, although it has been implicated in several dengue outbreaks, and its geographic expansion is proceeding through tropical and temperate regions [1]. Currently, no specific antiviral therapy or vaccines are available against dengue. Thus, vector population control remains the principal tool for dengue prevention. Nevertheless, classical control methods such as the use of insecticides are failing to prevent a global increase in the incidence of dengue, and new approaches against this disease are needed.

Wolbachia can induce reproductive distortions in their hosts [2] increasing the reproductive success of infected females, thus enhancing their maternal transmission [3]. The ability of some Wolbachia strains to reduce the A. aegypti mosquito lifespan and to interfere with the replication of several pathogens, including arboviruses in this mosquito, has promoted this symbiotic bacterium as one of the most promising tools to limit virus transmission [4,5].

To be transmitted successfully to the next host, DENV must replicate and disseminate in the mosquito’s hemocoel before reaching the salivary glands. This period within the mosquito is called the extrinsic incubation period (EIP), and it determines how long a mosquito has to survive after having ingested the infectious blood-meal before becoming competent to transmit the virus. Only female mosquitoes that live longer than the EIP are of epidemiological interest. Therefore, a reduction in the number of old mosquitoes in a population may break disease transmission [6,7].

Wolbachia strains can protect Drosophila flies from different RNA viruses resulting in infections showing lower titers and less associated pathologic effects [8,9]. Infection of the naturally Wolbachia-free A. aegypti with different Wolbachia strains generates mosquitoes with increased resistance to viral infection and a
Author Summary

Aedes albopictus is an invasive species that is expanding its natural range of geographic distribution. While it was previously considered a secondary vector of different arboviruses, this mosquito species is involved in the most recent outbreaks of chikungunya but contributes weakly to dengue outbreaks. *Ae. albopictus* naturally carries two strains of the bacterium *Wolbachia*, *w*AlbA and *w*AlbB. Present in 20% of insect species, *Wolbachia* is an obligate intracellular symbiont mainly transmitted through females. When inoculated into some mosquito hosts, *Wolbachia* is able to shorten the adult life span and to block arbovirus transmission. We have previously shown that *Wolbachia* is not capable of limiting chikungunya replication in the mosquito vector. In this study, we show that the native *Wolbachia* is able to limit dengue transmission by restricting the delivery of infectious viral particles from the mosquito saliva when biting. Therefore, our results might explain the low vector competence of *Ae. albopictus* for dengue, and thus its weak contribution as an epidemic dengue vector.

shortened lifespan [10–12]. However, *Wolbachia*-mediated antiviral protection is not ubiquitous [13]. Natural *Wolbachia* strains that infect their native mosquito hosts have also been shown to induce resistance to viruses, although at a lower level than mosquito-transinfected strains [14].

Wolbachia is commonly found in mosquitoes including *Ae. albopictus*. This species is naturally super-infected with two *Wolbachia* strains, *w*AlbA and *w*AlbB [15,16] and is able to transmit both DENV and chikungunya virus (CHIKV). On La Reunion Island, *Ae. albopictus* is the only species capable of sustaining an arboviral strain, whereas a lesser extent, of DENV [1].

On La Reunion Island, *Ae. aegypti* is naturally super-infected with two *Wolbachia* strains, *w*AlbA and *w*AlbB strains and the apysymbiotic line generated by antibiotic treatments of *ALPROV* (tetracycline for larval stage and rifampicin for adult stage) [26]. The ALPROV strain was generated from eggs collected in ovitraps placed in different houses in the “La Providence” neighborhood in the city of Saint-Denis. Obtained adults were maintained on a 10% sucrose at 28°C and 80% of relative humidity with a 16/8 light/dark cycle. Larvae were reared in pans with 200 larvae in 1 L of dechlorinated water, and fed with 1 yeast tablet every 2 days. The resulting adults were continuously provided with 10% sucrose. For routine colony maintenance, females were blood-fed three times a week on anesthetized mice.

Experimental infections with DENV-2

The DENV-2 strain provided by Prof. Leon Rosen was isolated from a human serum collected in Bangkok (Thailand) in 1974. This virus had been passed in different mosquito species (*Tsevorkhynites amboinensis*, *Ae. albopictus* and *Ae. aegypti*) by intrathoracic inoculation [28]. Viral production and titration are described in [29]. Blood-meals consisted of 1 mL of viral suspension in L-15 medium supplemented with 2% fetal bovine serum (FBS) and 2 mL of washed rabbit erythrocytes supplemented with ATP (5 × 10⁻³ M) as a phagostimulant. The infectious blood was transferred to a glass feeder maintained at 37°C and placed on top of plastic boxes containing 60 one-week-old mosquitoes that had been starved for 24 hours before the blood-meal. Mosquitoes from each box were allowed to feed for 20 min. Fully engorged females were transferred into cardboard containers and supplied with 10% sucrose at 28°C before being assayed.

qRT-PCR and q-PCR assays

Individual mosquitoes and dissected organs (midguts, wings, and salivary glands) were used to extract total nucleic acids. At different days post-infection (pi), 5–9 mosquitoes were washed in 70% ethanol, and then rinsed twice in sterile PBS. The midgut, wings, and salivary glands were dissected in sterile PBS. Each organ was rinsed individually in PBS before being transferred separately into tubes containing 350 μL RAL solution (NucleoSpin RNA II kit, Macherey-Nagel), then homogenized with the mixer Mill MM 300 (Qiagen). Needles used for dissection were decontaminated after each set of mosquitoes. Total RNA/DNA was extracted using the NucleoSpin RNA/DNA buffer set (Macherey-Nagel) coupled to the NucleoSpin RNA II kit. DNA was used to determine viral load by qRT-PCR, and DNA to measure *Wolbachia* (*w*AlbA and *w*AlbB) density and actin gene content by qPCR.

To measure the number of DENV-2 genome copies, the total RNA extracted was eluted into 40 μL RNase-free water and 5 μL were used in a one-step RT-PCR reaction performed with a Power SYBR Green RNA-to-Ct one step kit (Applied Biosystem) in a volume of 25 μL. The reaction contained 5 μL RNA template, 12.5 μL 2 × Power SYBR Green I RT-PCR Mix, 0.625 μL sense primer (10 μM), 0.625 μL anti-sense primer (10 μM), 0.2 μL RT enzyme mix and 6.02 μL ddH₂O. Primers were selected in the capsid structural protein coding region and on live mice [see permit numbers at http://webcampus.pasteur.fr/jcms/c_97619/agrements-des-animaleries] in compliance with the French regulations on care and protection of the Laboratory Animals. This study was approved by the relative IACUC at the Institut Pasteur.

Mosquito rearing

Two mosquito strains were used in experiments: the F2 generation of the wild-type superinfected *Ae. albopictus* ALPROV (La Reunion Island) with *w*AlbA and *w*AlbB strains and the apysymbiotic line generated by antibiotic treatments of ALPROV. The ALPROV strain was generated from eggs collected in ovitraps placed in different houses in the “La Providence” neighborhood in the city of Saint-Denis. Obtained adults were maintained on a 10% sucrose at 28°C and 80% of relative humidity with a 16/8 light/dark cycle. Larvae were reared in pans with 200 larvae in 1 L of dechlorinated water, and fed with 1 yeast tablet every 2 days. The resulting adults were continuously provided with 10% sucrose. For routine colony maintenance, females were blood-fed three times a week on anesthetized mice.

Materials and Methods

Ethics statement

The Institut Pasteur animal facility has received accreditation from the French Ministry of Agriculture to perform experiments...
were: sense D1-Lm/C/153/+ (GAG AAA CCG CGT GTC AAC TG) and anti-sense TS2-Lm/C/219/- (GGA AAC GAA GGA ATG CCA CC). The PCR program was: 48 °C for 30 min, 95 °C for 10 min; 40 cycles of 95 °C for 15 s, and 60 °C for 1 min; 90 °C for 15 s with a final ramping of 19 min 59 sec. The size of the PCR product was 113 bp. A standard curve was generated using duplicates of 10² to 10⁸ synthetic RNA transcripts per reaction. Quantification of viral RNA was achieved by comparing the threshold cycle (Ct) values of samples to those of standards according to the DCt analysis. RNA viral copy number can give an overestimation of infectious viral particles and are more appropriate to describe viral dissemination than to estimate transmission probability.

To quantify Wolbachia (wAlbA and wAlbB) and actin genes, total DNA was extracted and used for q-PCR. The Wolbachia genome copy number was normalized using the nuclear actin gene. A plasmid (pQuantAlb), provided by Weill M [30] containing the three wAlbA, wAlbB wsp genes and the Ae. albopictus actin gene, was diluted from 10² to 10⁸ copies/reaction and used to generate standard curves. Primers were: actAlb-dir (GCA AAC GTG GTA TCC TGA C) and actAlb-rev (GTC AGG AGA ACT GGG TGC T), QAdir1 (GGG TTG ATG TTG AAG GAG) and QArev2 (CAG CAG GTT TTA CTT GAC C), 183F (AAG GAA CCG AAG TGT ATG) and QBrev2 (AGT TGT GAG TAA AGT CCC), for wAlbA, wAlbB and actin, respectively. From 60 µL DNA solution extracted from one mosquito, 2 µL DNA was mixed with 0.3 µM of each primer and 12.5 µL FastStart Universal SYBR Green Master (Roche). PCR was run for 40 cycles (95 °C for 10 min, 95 °C for 15 sec, 60 °C for 1 min). The mean number of wAlbA and wAlbB genomes was given per actin copy.

Transmission assay
Mosquitoes exposed to a DENV-2 blood-meal were assayed for transmission at days 8 and 14 pi [31] by collecting saliva using the forced salivation technique [32]. Briefly, mosquitoes were anesthetized on ice to remove their legs and wings. Then the proboscis was inserted into a capillary tube containing 5 µL of fetal bovine serum. After 45 min, saliva was transferred into 45 µL of L15 medium.

Forming assay on C6/36 cells
Saliva samples were titrated by fluorescent focus assay on C6/36 Ae. albopictus cell culture. Samples were serially diluted and inoculated into C6/36 cells in 96-well plates. After incubation at 28 °C for 5 days, plates were stained using hyper-immune ascetic fluid specific to DENV-2 as the primary antibody and a goat antimouse conjugate as the second antibody.

Fluorescence in situ hybridization (FISH)
Salivary glands were dissected from mosquitoes 14 days after exposure to an infectious blood-meal at a titer of 10⁷ FFU/mL (fluorescent focus units)/mL. Preparations of samples were as described [30]. Briefly, organs were fixed for 20 min in freshly prepared 4% formaldehyde in PBS, and then washed once with PBS. Samples were incubated for 16 hours at 37 °C in hybridization buffer [formamide 50%, SSC 5x, dextran sulfate 200 mg·ml⁻¹, poly(A) 250 mg·ml⁻¹, salmon sperm DNA 250 mg·ml⁻¹, tRNA
250 mg ml⁻¹, DTT 0.1 M, Denhardt’s solution 0.5 M containing 10 ng of two *Wolbachia* probes [30,31] and two DENV specific probes [33]. Samples were washed twice in 1× SSC-10 mM DTT and twice in 0.5× SSC-10 mM DTT at 55°C for 15 min. Samples were then rinsed in PBS, mounted on a glass slide with glycerol and viewed under a confocal microscope (LSM510, Zeiss) at the Microscopy Centre of University Lyon I.

Survival assay

1-week-old *Wolbachia*-infected and *Wolbachia*-uninfected females were fed on a DENV-2 blood-meal as described previously [29]. Engorged females were individually isolated in 50 mL tubes, maintained at 28°C and fed with 10% sucrose until death. Dead mosquitoes were scored daily to estimate the female life duration following exposure to an infectious blood-meal at a titer of 10⁷ FFU/mL.

Statistical analysis

Statistical analyses were performed with Stata software (Stata-Corp LP, Texas, and USA). Means were compared using the Kruskal-Wallis test and the Khi² test was used to compare rates.

Results

Wolbachia does not affect DENV-2 replication in *Ae. albopictus*

To determine whether *Wolbachia* in *Ae. albopictus* affects DENV-2 replication, we fed *Wolbachia*-infected and *Wolbachia*-uninfected mosquitoes on a blood-meal proposed at two viral titers, 10⁵ and 10⁷ FFU/mL, and determined DENV-2 dynamics in mosquitoes. At a given viral titer of blood-meal, the number of DENV-2 genome copies in whole individuals was not significantly different between *Wolbachia*-infected and *Wolbachia*-uninfected strains (Mann-Whitney test: \(p > 0.05 \)) (Figure 1). Later, we compared DENV-2 loads in mosquitoes between *Wolbachia*-infected and *Wolbachia*-uninfected *Ae. albopictus* exposed to four viral titers, 10⁴, 10⁵, 10⁶, and 10⁷ FFU/mL. At days 2, 8, and 14 pi, the number of DENV-2 genome copies estimated by qRT-PCR was not significantly different between *Wolbachia*-infected and *Wolbachia*-uninfected mosquitoes at a given viral titer of blood-meal (Mann-Whitney test: \(p > 0.05 \)) (Figure 2). Concomitantly, at days 2, 0, and 14 pi, the loads of w*AlbA* (Figure 3A) and w*AlbB* (Figure 3B) remained roughly similar whatever the viral titer of blood-meal (Kruskall-Wallis test: \(p > 0.05 \)), albeit the *Wolbachia* densities were highly variable between mosquito individuals and day pi. Nevertheless, it was interesting to note that when a slight increase of w*AlbA* loads was observed between day 8 pi and day 14 pi, a concomitant decrease of w*AlbB* loads was detected. This result was not in line with previous findings with CHIKV [26].

Wolbachia restricts densities of DENV-2 in *Ae. albopictus* salivary glands

Since the overall DENV-2 replication in *Ae. albopictus* did not differ between *Wolbachia*-infected and *Wolbachia*-uninfected mos-
quitoes, we compared the capacity of DENV to disseminate from the midgut to secondary organs by estimating viral loads in wings and salivary glands at days 2, 8, and 14 days after exposure of mosquitoes to blood-meals provided at four viral titers: 10^4, 10^5, 10^6, and 10^7 FFU/mL. The viral load in the midgut increased with the titer of the ingested blood-meal and the duration post-infection. In Wolbachia-infected mosquitoes, although virus dissemination to the wings was correlated with the blood-meal titer and day pi (Figure 4A). However, a strong reduction of viral load was observed in wings of Wolbachia-infected mosquitoes compared to Wolbachia-uninfected ones, suggesting that virions produced in the midgut epithelial cells were not massively

Figure 3. Wolbachia densities in Ae. albopictus after a DENV-2 blood-meal provided at different titers. At days 2, 8 and 14 pi, 4–9 mosquitoes were individually used for DNA extraction. q-PCR was conducted using primers targeting the wAlbA (A) and wAlbB (B) genes. The Wolbachia copy number was normalized with the Ae. albopictus actin gene. A plasmid (pQuantAlb) containing the three loci wAlbA, wAlbB, and the Ae. albopictus actin gene was serially diluted to build standard curves. Error bars represent standard errors. doi:10.1371/journal.pntd.0001989.g003
released into the hemocoel. Thus, the occurrence of a midgut escape barrier in *Wolbachia*-infected *Ae. albopictus* can be suggested. Finally, salivary glands were only heavily infected at day 14 pi at the highest blood-meal titer assessed of 10^7 FFU/mL. Failure of DENV-2 to infect salivary glands might be due to low viral loads detected in the hemolymph (e.g. wings). On the other hand, in *Wolbachia*-uninfected mosquitoes, profiles observed in the different organs were significantly different with those observed in *Wolbachia*-infected mosquitoes (Kruskall-Wallis test: p<0.05). Indeed, DENV-2 loads in the midgut started to increase intensively from a blood-meal at 10^5 FFU/mL (Figure 4B). Dissemination from the midgut to wings and salivary glands remained relatively high at different titers in *Wolbachia*-uninfected individuals. Therefore, in *Wolbachia*-uninfected mosquitoes, DENV-2 did not seem to be restricted for dissemination to secondary organs suggesting the occurrence of a weak midgut escape barrier. Higher viral loads were found in *Wolbachia*-uninfected organs than in *Wolbachia*-infected ones, including salivary glands. Using specific FISH probes, we detected DENV-2 genomic RNA (green) (Figure 5, panels A, B, and C) and *Wolbachia* DNA (red) (Figure 5, panels D, E, and F). A co-localization of both *Wolbachia* and DENV-2 was detected in salivary glands (Figure 5, panel H). However, DENV-2 signals were relatively higher in *Wolbachia*-uninfected salivary glands (Figure 5, panel A) compared to a few dots in *Wolbachia*-infected ones (Figure 5, panel B), which is in agreement with PCR quantification data. As expected, no hybridization signal was observed in the salivary glands of DENV-uninfected and *Wolbachia*-uninfected individuals used as negative controls (Figure 5, panels C and F respectively).

Wolbachia limits DENV-2 transmission in *Ae. albopictus*

30–40 mosquitoes that survived until day 14 pi were examined for transmission. DENV-2 particles were only detected in the saliva of *Wolbachia*-uninfected *Ae. albopictus*, 14 days after an infectious blood-meal at a titer of 10^5 FFU/mL; only 12.5% of mosquitoes (among 32 tested) were able to deliver viral particles (mean ± standard deviation: 18±28) (data not shown). This suggests that a salivary gland escape barrier preventing the release of virus from salivary glands operates in *Wolbachia*-uninfected *Ae. albopictus*. In addition, *Wolbachia’s* effect depends on the viral titer of the blood-meal.
Wolbachia does not increase the longevity of DENV-2 infected *Ae. albopictus*

Removing *Wolbachia* did not affect *Ae. albopictus* survival when non-infected with DENV (data not shown). Then, to determine whether removing *Wolbachia* has an effect on DENV-2 infected mosquitoes, we compared the survival of *Wolbachia*-infected and *Wolbachia*-uninfected mosquitoes after infection with DENV-2 in two trials (Figure 6). Neither mosquito strains showed any difference in survival curves (logrank test: $p>0.05$). These results indicated that *Wolbachia* did not affect the longevity of *Ae. albopictus* when mosquitoes are infected with DENV-2.
Considering the overlapping distribution of Wolbachia and DENV in non-reproductive tissues of mosquitoes, such as midgut and salivary glands, we conducted experiments to characterize the role of Wolbachia in DENV-2 transmission by Ae. albopictus. Our results show that Wolbachia naturally infecting Ae. albopictus limits DENV-2 dissemination and the infection of salivary glands in the ALPROV strain, suggesting that Ae. albopictus is a poor epidemic vector of DENV in La Reunion Island [1].

Figure 6. Survival of Wolbachia-infected and Wolbachia-uninfected Ae. albopictus after infection with DENV-2. Mosquitoes were fed on a DENV-2 blood-meal at a titer of 10^7 FFU/mL and maintained at 28°C. Two replicates (A, B) are shown. The survival curves were not significantly different between Wolbachia-infected and Wolbachia-uninfected mosquitoes fed with DENV-2 (logrank test, p>0.05). In brackets, the number of females is given.
doi:10.1371/journal.pntd.0001989.g006
Wolbachia and DENV Transmission

Wolbachia is present in the midgut and salivary glands, two organs crucial for viral transmission [34]. DENV penetrates into the midgut epithelial cells of mosquitoes following an infectious blood-meal. After replication and release of virions from the midgut, secondary organs such as salivary glands are subsequently infected. Infectious viral particles are then released from the salivary glands through saliva when the mosquito bites [35]. Replication of DENV reaches a maximum in the mosquito at day 7–8, as was observed for the principal DENV vector Ae. aegypti [31]. Wolbachia densities in Ae. albopictus were not affected by the blood-meal titer; when increasing the blood-meal titer, wAlbA and wAlbB remained stable. This was consistently observed at different days pi (2, 8, and 14). Nevertheless, high levels of variation of Wolbachia densities were observed between individuals of the recently laboratory-established population of Ae. albopictus from La Réunion, as has been reported with mosquitoes from Thailand [20]. When examining the midgut infection, we found that the viral loads in the midgut increased when the titer of the ingested blood-meal increased, as observed for other arboviruses [36,37]. In addition, virus dissemination to wings and salivary glands was correlated with the virus titer of blood-meals. Interestingly, we found that Wolbachia might have an inhibitory effect on DENV-2 dissemination. Indeed, the dissemination of infectious virions from the midgut to secondary organs, such as wings and salivary glands, was affected, suggesting the presence of a midgut escape barrier. Nevertheless, such a barrier could be overwhelmed when the blood-meal is provided at a titer higher than 10^6–10^7 FFU/mL. Later, the release of virus from salivary glands into the saliva of Wolbachia-infected mosquitoes at day 14 pi was completely inhibited suggesting the existence of a salivary gland escape barrier, possibly exerted by Wolbachia [38]. Probably, at higher titers of blood-meals, this barrier may be less efficient. Thereby, a speculative suggestion can be made: if Ae. albopictus naturally carrying Wolbachia receives a high titer of blood-meal (>10^7 FFU/mL), the inhibition exerted by Wolbachia on DENV can be overcome. Thus viral transmission from a viremic patient to a mosquito vector is more likely to occur when high titers of blood-meals are provided. This can happen with the invasion and expansion of a new viral clade, resulting in high viremias in humans. Consequently, this leads to an enhanced mosquito transmission for the newly introduced viral lineage [39,40]. These invasive lineages causing higher viral titers are usually associated with more severe symptoms in humans [41]. Conversely, in Wolbachia-uninfected mosquitoes, midgut infection was intensive and dissemination to wings and salivary glands was not strongly limited. Virus was only detected in saliva at day 14 pi in 12.5% of Wolbachia-uninfected mosquitoes. Contrary to Wolbachia-infected Ae. albopictus, Wolbachia-uninfected mosquitoes do not show the inhibition caused by a midgut escape barrier as well as a salivary gland escape barrier. Therefore, removing Wolbachia from Ae. albopictus also removes the inhibition exerted by Wolbachia on DENV-2 in Ae. albopictus. Low transmission to saliva might explain the low vector competence of Ae. albopictus for DENV. However, increasing the incubation period may favor transmission; in Ae. albopictus from Lebanon, virus was only detected at day 21 pi with 38% of mosquitoes delivering 174±455 (mean ± standard deviation) viral particles, whereas no viral particles were detected in the saliva at day 14 pi (Haddad N et al., unpublished data). Thus, the extended extrinsic incubation period of DENV in Ae. albopictus which requires that females live longer to be capable of transmitting, may contribute to reduce the potential for transmission of Ae. albopictus populations and weaken the role of the species as epidemic dengue vector.

The inhibitory effect of Wolbachia on different pathogens including DENV was demonstrated in the vector Ae. aegypti [11,12]. Similar interference was not found in Ae. albopictus naturally infected by Wolbachia. Both strains, wAlbA and wAlbB, are benign to Ae. albopictus [42] and contrary to reports on Drosophila [8,9], it is not clear whether Wolbachia is able to remain a benign symbiont simply by maintaining a very low replication rate independent of the host cell or whether the bacterium actively coordinates its replication with the host through specific immune mechanisms. Immune responses to Wolbachia infection have only been observed in hosts artificially infected with new strains of Wolbachia [11,43,44]. However, responses might not be solely due to the Wolbachia infection but could reflect a consequence of the new host-symbiont combination such as elevated, unnatural Wolbachia densities [45]. High densities of Wolbachia can provide high levels of protection whereas low densities provide limited protection [13,24]. Interference could also result from a direct competition between DENV and Wolbachia for the same resources or from an indirect disturbance by Wolbachia on the cellular environment required by DENV for its replication. Interestingly, replication of CHIKV in Ae. albopictus was concomitant with a decrease of Wolbachia densities [26], in contrast with the DENV replication pattern observed in the present study. The intensive replication of CHIKV in Ae. albopictus reaching up to 10^9 viral RNA from day 3 pi [32] induced negative effects on mosquito survival [37]. Contrary to DENV, CHIKV has seemingly developed a subtle balance between intense replication and adverse effects in mosquitoes, though limited enough to maintain a high transmission capacity.

To conclude, our study showed that native Wolbachia was able to limit transmission of DENV in Ae. albopictus. Presumably, introducing an additional infection to the preexisting infection [46] or a new Wolbachia type in Wolbachia-free Ae. albopictus [25,47] might lead to a blockade of viral replication and dissemination making Ae. albopictus refractory to DENV.

Acknowledgments

We thank the ARS “Agence Régionale de Santé” in the Indian Ocean for providing mosquito strains. We also wish to thank Marie Vazeille for technical help. We are also grateful to Katherine Kean and Richard Paul for revision of our manuscript.

Author Contributions

Conceived and designed the experiments: ABF PM. Performed the experiments: LM KZ CAG VR. Analyzed the data: KZ CAG ABF. Wrote the paper: ABF KZ PM.

References

1. Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.
2. Landmann F, Orsi GA, Loprin B, Sullivan W (2009) Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 5: e1000343.
3. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751.
4. Walker T, Johnson PH, Moreira LA, Iurube-Ormaetxe J, Frenitía FD, et al. (2011) The αMel Wolbachia strain blocks dengue and invades Aedes aegypti populations. Nature 476: 450–453.
5. Hoffmann AA, Montgomery BL, Popovic J, Iurube-Ormaetxe I, Johnson PH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–457.
6. Brownstein JS, Hsu E, O’Neill SL (2003) The potential of viral infection to Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84: 24–29.

PLOS Neglected Tropical Diseases | www.plosntds.org December 2012 | Volume 6 | Issue 12 | e1989
7. Sinkins SP, O’Neill SL (2000) Wolbachia as a vehicle to modify insect populations. Boca Raton, FL, USA: CRC Press.
8. Hedges LM, Brownle JG, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322: 702.
9. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e2.
10. McMeniman CJ, Lane RV, Casas BN, Fong AW, Sidhu M, et al. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141–144.
11. Moreira LA, Inoue-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278.
12. Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6: e1000353.
13. Osborne SE, Leong YS, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 5: e1000656.
14. Glaser RL, Meola MA (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5: e11977.
15. Sinkins SP, Breig HR, O’Neill SL (1995) Wolbachia superinfections and cytoplasmic incompatibility. Proc Biol Sci 261: 325–330.
16. Zhou W, Rouset F, O’Neill SL (1996) Phylogeny and PCR based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509–515.
17. Salvan M, Mouchet J (1994) The bacterial symbiont Wolbachia induces resistance to dengue virus in Aedes aegypti. Insect Mol Biol 3: 187–193.
18. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, et al. (2007) Two Wolbachia strains in the mosquito Aedes albopictus. FEMS Microbiol Ecol 53: 489–506.
19. Martin E, Moutailler S, Madec Y (2010) Differential responses of the mosquito Aedes albopictus to infection with dengue, Chikungunya and Plasmodium. BMC Ecol 10: 8.
20. Focks DA, Daniell E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489–506.
21. Martin E, Moutailler S, Madec Y (2010) Differential responses of the mosquito Aedes albopictus to infection with dengue, Chikungunya and Plasmodium. BMC Ecol 10: 8.
22. Black WC45, Bennett KE, Gorrochio/égu-Escalante N, Basillas-Mury CV, Fernández-Salas I, et al. (2002) Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33: 379–388.
23. Hanley KA, Nelson JT, Schirzinger EE, Whitehead SS, Hanson GT (2008) Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol 8: 1.
24. Lambrecs I, Fansiri T, Pongziri A, Thaisomboonsk B, Khungthong C, et al. (2012) Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 86: 1553–1561.
25. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 2–9.
26. Dobson SL, Fox CW, Jiggins FM (2002) The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc Biol Sci 269: 437–45.
27. Hussain M, Frenot FD, Moreira LA, O’Neill SL, Auger S (2011) Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci USA 108: 9250–9255.
28. Pan X, Zhou G, Wu J, Bian G, Lu P, et al. (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 109: E23–31.
29. McGraw EA, Merrell DJ, Dreller JR, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 99: 2918–2923.
30. Fu Y, Gavotte L, Mercer DR, Dobson SL (2010) Artificial triple Wolbachia infection in Aedes albopictus yields a new pattern of unidirectional cytoplasmic incompatibility. Appl Environ Microbiol 76: 5907–5911.
31. Sun LV, Riegler M, O’Neill SL (2003) Development of a physical and genetic map of the virulent Wolbachia strain aMelPop. J Bacteriol 185: 7077–7084.