Silicon microcavity arrays with open access and a finesse of half a million

Georg Wachter1,2, Stefan Kuhn1, Stefan Minniberger1, Cameron Salter1, Peter Asenbaum1, James Millen1,5, Michael Schneider3, Johannes Schalko3, Ulrich Schmid3, André Felgner4, Dorothee Hüser4, Markus Arndt1 and Michael Trupke1,2

Abstract

Optical resonators are essential for fundamental science, applications in sensing and metrology, particle cooling, and quantum information processing. Cavities can significantly enhance interactions between light and matter. For many applications they perform this task best if the mode confinement is tight and the photon lifetime is long. Free access to the mode center is important in the design to admit atoms, molecules, nanoparticles, or solids into the light field. Here, we demonstrate how to machine microcavity arrays of extremely high quality in pristine silicon. Etched to an almost perfect parabolic shape with a surface roughness on the level of 2 Å and coated to a finesse exceeding \(F = 500,000 \), these new devices can have lengths below 17 µm, confining the photons to 5 µm waists in a mode volume of \(88 \lambda^3 \). Extending the cavity length to 150 µm, on the order of the radius of curvature, in a symmetric mirror configuration yields a waist smaller than 7 µm, with photon lifetimes exceeding 64 ns. Parallelized cleanroom fabrication delivers an entire microcavity array in a single process. Photolithographic precision furthermore yields alignment structures that result in mechanically robust, pre-aligned, symmetric microcavity arrays, representing a light-matter interface with unprecedented performance.
of cavity light into higher-order modes and free space, resulting in photon loss14. In addition, the cavity performance depends on the mirror alignment; displacements or tilts can lead to clipping losses. For many applications, such as cooling or detection of nanoparticles, it is also important to have free access to the optical mode. This necessity is a geometric challenge in a microdesign with strict alignment requirements.

To precisely manufacture low-loss silicon mirrors with well-controlled curvature, we use a complementary metal–oxide–semiconductor compatible etching process, as depicted in Fig. 1a. The mirror geometry, including its curvature and depth, are carefully engineered by the choice of parameters in a two-step dry etching process. We achieved a surface quality approaching the atomic limit by further applying a series of oxidation and HF-etching steps15 (see Methods and Supplementary Information).

The mirror chips are coated with high-reflectivity dielectric layers ($T<5$ ppm) on their microstructured side and with an antirefection coating with a reflectivity of $\rho<0.1\%$ on the other side. Figure 1b shows a chip containing 100 micromirrors, all with different curvatures to demonstrate the versatility of the method. The same coatings are applied to a set of planar silicon chips. These chips allow us to realize two different cavity geometries: plano-concave (PC) cavity arrays (see Fig. 1d), with a minimal mode volume down to 330 fL, and symmetric concave–concave (CC) cavities, with an alignment spacer (see Fig. 1e) to optimize the light-matter coupling by stronger mode confinement at the cavity center.

For both configurations, we determined the properties of the microcavity array by measuring the infrared transmission through a single-mirror pair. By scanning a laser (Toptica CTL) between 1520 nm and 1630 nm we measured the free spectral range (FSR) to determine the cavity length $L = c/2\text{FSR}$, where c is the speed of light (Fig. 2a). In the PC design, L ranges from 17 μm to 24 μm. In the CC design, $L = 140$ μm – 160 μm and can be controlled by choice of the thickness of the spacer.

From the frequency separation of higher-transverse cavity modes (see Fig. 2a) we found that the mirror radii range between 123 μm and 289 μm (see Methods). To further assess the mirror quality, we measured the finesse (F) of the individual cavities using both cavity ring-down and sideband modulation spectroscopy. In the first scheme, a fiber-based acousto-optic modulator is used to rapidly switch off the pump laser field while the cavity is locked close to resonance. The photon lifetime or cavity decay can then be directly monitored on a fast photodiode.
(150 MHz bandwidth), as shown in Fig. 2b. Alternatively, we used a fiber-based electro-optic modulator to imprint well-defined frequency sidebands onto the carrier beam, which is then scanned across the cavity resonance. Using the frequency separation of the sidebands we can directly determine the cavity linewidth in a fit to the transmission spectrum, as shown in the inset of Fig. 2b.

Figure 2c shows the finesse of all 100 individual cavities on a PC array, where the etch mask radius increases from 6.2 µm to 26 µm in steps of 20 nm from row 1, column 1 to row 10, column 10. Figure 2d, e shows that a high level of performance is achieved for the entire array. Our measurements yielded a maximum finesse of $F = (5.0 \pm 0.1) \times 10^5$ for $L = 16.8 \, \mu m$ and $R = 166 \, \mu m$. This mirror was formed with an initial mask opening radius of 9.8 µm. This geometry results in a mode volume of only $V = 330 \, \mu l$ or as little as 88λ^3, while achieving an optical quality factor of $Q = (1.1 \pm 0.05) \times 10^7$. These values compare favorably with those achieved for micropillar structures used to generate single photons from integrated quantum dots16.

Furthermore, we created rigidly assembled arrays of concave mirror pairs. The accurate and robust alignment of the cavities is achieved by applying lithographically precise micromachining to form through-etched alignment holes in the mirror chips. In a separate fabrication run, spacer chips with a thickness of 100 µm are created with 20 µm high micropillars to fit into the alignment holes. This arrangement provides precise, lithographically defined alignment and controlled spacing between the mirror chips (see Methods). The finesse for a selection of CC cavities is plotted in Fig. 3a, with a peak value of $F = (4.0 \pm 0.1) \times 10^5$ for a cavity with $R = 201 \, \mu m$ and $L = 150 \, \mu m$. These values correspond to $Q = 7.9 \times 10^7$. The fact that such high finesse could be achieved at a value of $L/R = 0.75$ indicates that the micromachined cavity pre-alignment avoids clipping losses of the optical mode at the mirror edges.

A remarkable feature of our optical resonators is their low birefringence, which is comparable to the cavity linewidth for all tested cavities. A useful measure for birefringence is the differential phase shift ($\delta \phi$) per
roundtrip accumulated between the orthogonal polarizations of the light field. This value is given by the ratio of the frequency splitting (δf) between the polarization-dependent modes to the FSR: $\delta \phi = 2 \pi \delta f / \text{FSR}$. It correlates with the finesse, as shown in Fig. 3a. The high performance achieved in both parameters constrains possible imperfections to a small, long range surface roughness with a spatial frequency on the order of the mode waist. For our best CC cavities, the phase shift corresponds to less than $\delta \phi = 23 \mu \text{rad}$ per roundtrip. This value is comparable to the best values reported for laser machined mirror cavities. The value suggests that R is nearly constant in all polar directions, which is consistent with isotropic etching and precise alignment.

A finesse of $F > 5 \times 10^5$, as found for our PC cavities, is very close to the value of $F = 6.3 \times 10^5$, which is expected from the target transmission in the coating process. Losses due to microscopic surface roughness or shape deformations must therefore be smaller than 2.8 ppm for our best cavities (see Fig. 2e and Methods). This small value must be taken as an upper limit, since it neglects residual absorption by the reflective coating and loss induced by the flat mirror. For a large fraction of CC cavities, we find a comparably low-loss value, which corroborates our assumption that the microfabrication precision fulfills its purpose and ensures high alignment quality. In the future, a finesse of $F = 10^6$ appears possible via absorption limited coatings.

The outstanding performance of our microcavities will be of great utility for a wide range of applications. Their high finesse, strong field confinement and narrow linewidth will be important for manipulating the internal states of effective two-level systems, such as atoms or solid-state emitters or the motional states of...
optomechanical systems, such as levitated nanoparticles and membranes3,4,8.

In many applications, the relevant figure of merit is the cooperativity parameter $C = \frac{g^2}{\kappa y}$, which compares the light-matter coupling frequency g in atoms, the Rabi frequency to the cavity and the matter-related damping terms κ and y. Large values of C are desirable for an efficient energy exchange between the cavity and the particles. Regardless of the specific system, it can be maximized by the cavity parameters as

$$C = \frac{3\lambda^2}{\pi^2} \frac{\beta}{w_c^2},$$

with the mode waist

$$w_c = \sqrt{\frac{N_c}{LR(N_c - L/R)}}.$$

This expression is valid for PC cavities with $N_c = 1$ and for symmetric CC cavities with $N_c = 2$. Therefore, high cooperativity requires a high F and a strong mode confinement. For open-access, FP cavities using micromirrors, a small waist combined with a high finesse is only achievable for short cavities due to diffraction-induced clipping losses19. This limitation results in an inherent trade-off between photon lifetime and cooperativity.

In Fig. 3b, we plotted C against the photon lifetime $\tau = 1/2\kappa$ for a variety of microcavity systems, where we selected FP resonators with a length below 1 mm. We included micromachined and macroscopic SiO$_2$ mirrors, buckled-dome cavities and silicon micromirrors. For the purpose of comparison, we recalculated all cooperativity values for $\lambda = 1$ μm. Due to the strong mirror curvature and high optical finesse, our cavities simultaneously attain extremely large cooperativity and photon lifetimes of several tens of nanoseconds, corresponding to MHz-range linewidths, as required for many of the applications mentioned above.

Higher cooperativity can be achieved by further reducing the mirrors’ radii-of-curvature. This reduction requires adapting the etching parameters; however, previous measurements indicate that a reduction by an order of magnitude is realistic7. A further increase of C is possible by stretching the cavity length (L) for longer photon lifetimes. This improvement is possible by combining a micromirror of $R = 169$ μm with a macroscopically curved substrate, e.g., with $R = 50$ mm, both coated for $F = 5 \times 10^5$. Such a device would enable a cooperativity of 2.8×10^3 with a linewidth of only $\kappa/\pi = 6$ kHz.

In summary, the micromirrors and open-access microcavity structures presented combine extremely low losses and strong mode confinement with scalable micromachining methods and precise alignment. These features are beneficial for fundamental science and applied quantum technologies9,20,21. Future spacer designs can integrate quantum emitters, light guides, detector structures or optomechanical systems within the cavity frame, enabling precise overlap of the cavity field with the desired system to fully exploit the high performance of the microcavity arrays.

Methods

Fabrication

The micromirrors are etched into a single-crystal silicon wafer with (100) cut and weak n-doping to approximately 50 Ω cm$^{-1}$. The etch masks are formed by adding three layers of photoresist (AZ6624), with 3 μm thickness each. The etching is performed in an SF$_6$ plasma at a flow rate of 100 sccm, a temperature of 30 $^\circ$C, an inductively coupled plasma power of 2 kW and a table power of 15 W. The masked etch step lasts for 320 s. The photoresist is then removed in ultrapure acetone, and the entire wafer is etched for another 45 min using the same recipe. We derive a rate of 4.2 μm/min for the masked etch. The mask-less etch rate is reduced to 0.9 μm/min due to the increased consumption of plasma by the far greater exposed silicon surface. A smoothing procedure using wet oxidation to a thickness of 2 μm, followed by oxide removal using hydrofluoric acid, is repeated twice to improve the surface quality of the mirror substrate. Bosch etching was used to create the circular holes in the chips and to separate the devices in a single step. The spacer chips and the alignment pillars on them were created by two further Bosch processes. To facilitate the final assembly, the chips were subjected to a 30 s isotropic etch. This step rounds off the edges of the pillars, and results in a reduction of the pillar radius by 0.5 μm. Taking into account this reduction, and the intrinsic precision of lithographic processing, we expect the relative positional accuracy of two opposing mirrors to be better than 1 μm.

Lastly, the microchips were secured in an aluminum mount for coating. A Bragg mirror coating, consisting of 36 alternating $\lambda/4$-layers of silicon dioxide ($n = 1.45$) and tantalum pentoxide ($n = 2.04$) was applied to the front of the chips. The back side was broadband antireflection coated with an optimized five-layer coating, using the same materials.

Cavity waist

The waist of the optical mode in a FP type resonator22 depends on the radius of curvature of both mirrors R_1 and R_2 and their separation L

$$w_c = \sqrt{\frac{\lambda}{\pi n} \sqrt{\frac{L(R_1 - L)(R_2 - L)(R_1 + R_2 - L)}{(R_1 + R_2 - 2L)^2}}}.$$
The radius of curvature is then given by

\[R = \frac{F_{SR}}{1 + \left(\cos \frac{nC}{m+n} \right)^{2/N_{C}}} \]

where \(N_{C} = 1 \) for a PC geometry and \(N_{C} = 2 \) for a CC cavity geometry. The beam divergence limits the maximal possible finesse, due to the finite mirror size.

Radius of curvature

The radius of curvature of a mirror in a FP cavity can be determined by measuring the frequency spacing of higher-order modes (see Fig. 3a). The frequency \(f \) of a mode with longitudinal index \((l) \) and transverse indices \((m, n) \) is given by

\[f(l, m + n) = \frac{c}{2L} \left(l + \frac{1 + m + n}{\pi} \cos^{-1} \left(\sqrt{1 - \frac{L}{R_{1}} \sqrt{1 - \frac{L}{R_{2}}}} \right) \right) \]

For PC and symmetric CC cavities, the frequency difference \(\Delta f \) between the \(m + n \) transverse mode and the fundamental mode can be divided by the free spectral range to yield

\[\Delta f = \frac{f(l, m + n) - f(l, 0)}{F_{SR}} = \frac{m + n}{\pi} \cos^{-1} \left(1 - \frac{L}{R} \right)^{N_{C}/2} \]

The radius of curvature is then given by

\[R = \frac{L}{1 + \left(\cos \frac{nC}{m+n} \right)^{2/N_{C}}} \]

Measurement of finesse

The finesse of all cavities is determined first by measuring their linewidth. Since this method may underestimate \(F \) as laser noise and mechanical noise can increase the measured linewidth, we measured the photon lifetime using cavity ring-down for the selected resonators. This technique may overestimate the finesse, since electronic response functions will be convolved with the optical signal. In Fig. 4, we show an example measurement of one PC cavity. The statistics of both methods were compared to the properties of the coating, as specified by the manufacturer, taking 1 ppm of additional scattering losses into account.

The distributions confirm the expected trends for both procedures and allow us to draw two important conclusions: first, the electronic slew rate does not limit the ring-down measurements, since the significantly shorter photon lifetime at 1604 nm is clearly retrievable. Second, the finesse values stated in the main text can be considered conservative.

Acknowledgements

We thank Felix Donnerbauer for assistance during the measurements. We gratefully acknowledge the Austrian Science Fund (FWF) within project P-27297 (CaviCool) and W1210-N25 (COQUS), and I 3167-N27 (SC-EiC); the WWTF within the project ICT12-041 (PhoCluDi) and the TU Innovative Projekte for financial support. SK acknowledges financial support from the Erwin Schrödinger Center for Quantum Science & Technology (ESQ) of the Austrian Academy of Sciences in the project ROTOQUOP. We furthermore thank R. Lalezari and R. Patterson for useful discussions.

Author details

1Faculty of Physics, University of Vienna, VCU, Boltzmanngasse 5, 1090 Vienna, Austria. 2Institute for Atomic and Subatomic Physics, TU Wien, VCU, Stadionallee 2, 1020 Vienna, Austria. 3Institute for Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. 4Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany. 5Present address: Department of Physics, King’s College London, Strand, London WC2R 2LS, UK

Author contributions

G.W. and J.S. performed the fabrication of the chips. S.K., J.M., and G.W. performed the optical resonator characterization. A.F. and D.H. performed the surface characterization. S.K. and M.T. analyzed the data. M.A. and M.T. provided support for the work. M.T., P.A., S.K., and M.A. initiated the work. M.T. designed the devices, coordinated the work, and drafted the paper. All authors discussed the results and contributed to the interpretation of the data and writing of the paper.
Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary information is available for this paper at https://doi.org/10.1038/s41377-019-0145-y.

Received: 11 October 2018 Revised: 4 March 2019 Accepted: 18 March 2019
Published online: 10 April 2019

References
1. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 6, 687–692 (2012).
2. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010).
3. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
4. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
5. Zhi, Y., Yu, X.-C., Gong, Q., Yang, L. & Xiao, Y.-F. Single nanoparticle detection using optical microcavities. Adv. Mater. 29, 1604920 (2017).
6. Maluf, N. & Williams, K. An Introduction to Microelectromechanical Systems Engineering. 2nd edn. (Artech House, Boston, 2004).
7. Derri, C. et al. Arrays of open, independently tunable microcavities. Opt. Express 22, 22111–22120 (2014).
8. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
9. Kuhn, S. et al. Nanoparticle detection in an open-access silicon microcavity. Appl. Phys. Lett. 111, 253107 (2017).
10. Lai, C. K. & Kimble, H. J. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997).
11. Kiesel, N. et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl Acad. Sci. 110, 14180–14185 (2013).
12. Asenbaum, P. et al. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 4, 2743 (2013).
13. Miller, J. et al. Cavity cooling a single charged levitated nanoparticle. Phys. Rev. Lett. 114, 123602 (2015).
14. Kiedel, D. et al. Diffraction-limited high-finesse optical cavities. Phys. Rev. A 81, 043814 (2010).
15. Biedermann, G. W. et al. Ultrasmooth microfabricated mirrors for quantum information. Appl. Phys. Lett. 97, 181110 (2010).
16. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
17. Takahashi, H. et al. Novel laser machining of optical fibers for long cavities with low birefringence. Opt. Express 22, 31317–31328 (2014).
18. Uphoff, M. et al. Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities. New J. Phys. 17, 013053 (2015).
19. Hunger, D. et al. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12, 065038 (2010).
20. Dilts, A. M. et al. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).
21. Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).
22. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics. Vol 5 (John Wiley & Sons, New York, 1991).
23. Tripke, M. et al. Microfabricated high-finesse optical cavity with open access and small volume. Appl. Phys. Lett. 87, 211106 (2005).
24. Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007).
25. Khudaverdyan, M. et al. Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator. New J. Phys. 10, 073023 (2008).
26. Muller, A. et al. Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity. Opt. Lett. 35, 2293–2295 (2010).
27. Potts, C. A. et al. Tunable open-access microcavities for on-chip cavity quantum electrodynamics. Appl. Phys. Lett. 108, 041103 (2016).
28. Najer, D., Renggli, M., Riedel, D., Starosielec, S. & Warburton, R. J. Fabrication of mirror templates in silica with micron-sized radii of curvature. Appl. Phys. Lett. 110, 011101 (2017).