Acute Post-Bariatric Surgery Increase in Orexin Levels Associates with Preferential Lipid Profile Improvement

Abhishek Gupta¹,², Pierre Miegueu¹, Marc Lapointe¹, Paul Poirier¹,³, Julie Martin¹,³, Marjorie Bastien¹,³, Sunita Tiwari², Katherine Cianflone¹*
¹Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada, ²Department of Physiology, King George’s Medical University, Lucknow, India, ³Faculté de pharmacie, Université Laval, Québec, Canada

Abstract

Context: Orexin is a recently identified neuropeptide hormone.

Objectives: Acute and long-term post-bariatric changes in Orexin and relationship to post-operative metabolic outcomes.

Design and Participants: Men and women undergoing biliopancreatic diversion with duodenal switch bariatric surgery (n = 76, BMI = 35 kg/m²) were evaluated for body composition and plasma parameters at baseline, acutely (1 and 5 days) and long-term (6 and 12 months) post-surgery.

Setting: University Hospital Centre, Canada.

Interventions and Main Outcome Measures: Groups were subdivided based on acute (average 1 and 5 day) changes in Orexin prior to weight loss: (i) >10% Orexin decrease (n = 33, OrexinDEC) and (ii) >10% Orexin increase (n = 20, OrexinINC), to evaluate impact on long-term changes.

Results: Both groups had comparable preoperative Orexin levels, BMI, age, sex distribution, diabetes and lipid lowering medication, plasma glucose and lipid parameters except for apolipoproteinB (p < 0.007). Orexin increase was rapid and maintained throughout one year, while OrexinINC subjects remained significantly lower compared to OrexinDEC group (p = 0.001). Similarly, plasma cholesterol, triglyceride, LDL-C and HDL-C decreased at 1-day, increased slightly (5-day), except HDL-C, then decreased over 1 year, with greater decreases in OrexinINC group relative to OrexinDEC group.

Conclusion: Rapid postoperative increases in plasma Orexin are associated with better improvement of glucose and lipid profiles following bariatric surgery.

Introduction

With the present state of knowledge, it is difficult to treat and manage obesity using drug regimens. Currently, the best treatment method to achieve and sustain weight loss by inducing a negative balance between energy intake (or absorption) and energy expenditure, is bariatric surgery [1]. The weight loss obtained by bariatric surgery is primarily due to either a mechanical restriction of food intake (gastric banding) or a combination of restrictive and malabsorptive procedures (gastric bypass/biliopancreatic diversion). Bariatric surgery has become a common strategy used in the treatment of severely obese patients with a body mass index (BMI) >40 or >35 kg/m² with co-morbidities. The effectiveness in improving abnormalities in insulin and glucose metabolism ranges from 48% with gastric banding to 99% with biliopancreatic diversion with or without duodenal switch [2,3]. Interestingly, in restriction/malabsorption procedures, improved insulin sensitivity (“curing” diabetes) occurs before there is any significant weight loss, with studies reporting 80–100% remission rates within days (1 week) of surgery (Nandagopal 12;p671, 2010; Thomas 25:p175, 2010). Little is known of the exact mechanisms involved, but several have been proposed such as the “foregut hypothesis” and the “hindgut hypothesis” (Lafante 145;p549, 2008) which include physical anatomical changes, circulating hormonal changes and...
postoperative caloric restriction. As well, the potential involvement of neurohormonal feedback loops has been suggested [1]. Many peptide hormones have been recently recognized and a number of them, such as apelin, orexin, ghrelin, and leptin to name but a few, have been implicated in obesity pathophysiology, associated metabolic alterations and energy balance [4].

Orexin-A and B were identified in 1998 as endogenous ligands for the Orexin-1 (HCRT1) and Orexin-2 (HCRT2) G-protein coupled receptors [5] and both peptides originate from a single precursor produced by the prepro-orexin (PPO) gene. These peptides are identical to two hypothalamic peptides designated hypocretin-1 and hypocretin-2, that share a high degree of homology with the gastrointestinal peptide secretin [6]. Orexin-A is highly conserved among human, pig, dog, rat and mouse sequences whereas orexin-B differs in amino acid residues in rats and mouse from human. The structure of Orexin-A is more complex than that of Orexin-B, and Orexin-A may therefore be resistant to inactivating peptidases [7]. During the last decade Orexin receptors were identified within the lateral and posterior hypothalamic area as well as the enteric nervous system, adipose tissue, pancreas and the gut [8,9,10].

Orexin not only acts as an appetite stimulator, but also acts to regulate feeding behavior [11] which is linked to food intake, energy homeostasis and sleep [12]. Previous studies have shown that an increase in Orexin levels was related to an increase in food consumption and metabolic rate [13] [5,15]. Orexin levels have also been shown to increase during low energy conditions and decrease when energy levels are high [3,14]. In other words, soaring Orexin levels trigger wakefulness, vigilance and hunger; reduced levels induce inactivity and somnolence. In addition to promoting wakefulness and regulating food intake, Orexin-A has been implicated in diabetes mellitus and obesity [16,17,18].

Given the controversy surrounding the mechanisms involved in metabolic improvement prior to weight loss, identification of factors which change acutely (1–5 days) and are associated with subsequent improvements in metabolic profile (weight loss, glucose homeostasis or lipid profile) would provide valuable information on the functionality of these peptides as well as being useful as biomarkers. In the present study, we conducted a comprehensive investigation of short-term and long-term (up to one year) changes in plasma Orexin levels and the association with metabolic changes following biliopancreatic diversion with duodenal switch (BPD-DS) bariatric surgery.

Materials and Methods

Study Subjects

Subjects scheduled to undergo bariatric surgery (BPD-DS) were recruited through the bariatric surgery clinic of the Institut...
Université de Cardiologie et de Pneumologie de Québec (IUCPQ), Laval University, Québec, Canada. Subjects were randomly selected (in chronological order of surgeries, regardless of diabetic status or current medication) for participation based on inclusion criteria: Subjects (male and female) 18 years of age, BMI ≥ 40 kg/m² or BMI ≥ 35 kg/m² with associated comorbidities, and surgeries were performed between 2006–2009. Subjects who had previously undergone bariatric surgery or those bearing a pacemaker were excluded (patients with a pacemaker cannot undergo electrical bioimpedance assessment). Only subjects who completed the study (5 time points, with blood samples collected) were included for subsequent biochemical analysis. Laboratory procedures were completed before statistical analysis was performed. The experimental protocol was approved by the ethics committee of the IUCPQ and all patients gave their written informed consent.

Anthropometric Measurements

Subjects were assessed preoperatively and postoperatively (24 hours, 5 days, 6 months and 12 months). Blood samples were collected between July 2009 and May 2012. Height was measured using a stadiometer (SECA, 216 1814009, Brooklyn, NY, USA). Total body mass, body mass index (BMI), lean and fat masses were evaluated by electrical bio-impedance balance (Tanita TBF-310, Tokyo, Japan) following a 12-hour fast. BMI was calculated as weight (kg)/height (m²).

Glucose homeostasis

Parameters	ACUTE-OREXIN DECREASE (n = 33)	ACUTE-OREXIN INCREASE (n = 20)	P value
Orexin (ng/mL)	3.31 ± 0.31	2.92 ± 0.28	pNS

Distribution of subjects

Distribution	ACUTE-OREXIN DECREASE	ACUTE-OREXIN INCREASE	P value
Male/Female	10/22	8/12	NS
Diabetic/Non-diabetic	15/18 (45%)	11/9 (55%)	NS

Anthropometric variables

Age (years)	44.2 ± 2.1	38.3 ± 2.1	NS
Weight (kg)	136.6 ± 3.8	130.6 ± 6.9	NS
BMI (kg/m²)	50.5 ± 1.0	49.9 ± 1.9	NS
Fat Mass (kg)	70.8 ± 2.4	67.4 ± 4.4	NS
Lean Mass (kg)	65.8 ± 1.8	63.2 ± 3.1	NS
Fat Percentage (%)	51.7 ± 0.7	51.5 ± 1.2	NS

Lipid profile

Parameters	ACUTE-OREXIN DECREASE (n = 33)	ACUTE-OREXIN INCREASE (n = 20)	P value
Cholesterol (mmol/L)	4.6 ± 0.15	5.1 ± 0.21	NS
Triglyceride (mmol/L)	1.53 ± 0.12	1.95 ± 0.34	NS
LDL-C (mmol/L)	2.59 ± 0.13	2.91 ± 0.14	NS
HDL-C (mmol/L)	1.29 ± 0.04	1.31 ± 0.09	NS

Biochemical variables

Parameters	ACUTE-OREXIN DECREASE (n = 33)	ACUTE-OREXIN INCREASE (n = 20)	P value
ApoB (g/L)	0.74 ± 0.03	0.87 ± 0.03	0.007
hsCRP (mmol/L)	7.36 ± 0.95	16.1 ± 6.5	NS

The values are presented as mean ± s.e.m., where significant differences were analyzed by Student’s t-test (or Mann-Whitney for non-normally distributed variables) for Acute-Orexin-Decrease vs Acute-Orexin-Increase, where “p value” indicates significance and p ≥ 0.05 is non-significant (NS). For distribution of subjects between male/female, diabetic/non-diabetic and lipid lowering therapy, results were analyzed by χ² test. Abbreviations: ApoB: Apolipoprotein B; BMI: body mass index; HbA1c: Hemoglobin A1c; HOMA-IR: Homeostatic model assessment index-insulin resistance; hsCRP: high-sensitivity C-reactive protein; LDL-C and HDL-C: low density and high density lipoprotein cholesterol.

doi:10.1371/journal.pone.0084803.t001

Table 1. Baseline parameters in groups separated based on average of 1-Day and 5-Day acute Orexin changes.
Changes in BMI and Body Composition Following BPD-DS Surgery

Within the first few days following the surgery (up to 5 days), there was no significant change in body composition between Orexin-INC and Orexin-DEC groups (Figure 2A and 2B). However, at 6 months, there were marked decreases in BMI in both groups by 25–27%, reflecting a decrease in both fat mass (22–24%, Fig. 2B) and lean mass (data not shown), but with comparable changes in both groups. This was also true at 12 months, with further decreases in BMI (36% to 37%) and percent body fat (average 36%) although the patient weight status still remained within the obese range.

Rapid Change in Glucose Homeostasis

Out of 33 Orexin-DEC subjects, 15 (45%) were diabetic as indicated in Table 1. In the Orexin-INC group, of 20 patients total, 11 (55%) were diabetic, similar to the other group. Post-operatively, over time, there was a marked reduction in the diabetic status, but there was no difference between groups. However, although changes in weight and % fat mass were comparable between both groups, the response to various glucose and lipid parameters was not the same. Fasting glucose increased significantly immediately post-operatively (1D), decreasing rapidly (5D) thereafter, then moderately for up to one year (12M) (Figure 3A). However in the Orexin-INC group, the rapid glucose
increase was not as pronounced, and the subsequent values remained significantly lower as compared to the Orexin-DEC group (p = 0.0013). This improved glucose profile in the Orexin-INC group was achieved in the presence of relatively lower insulin levels (which increased, then decreased post-operatively, Figure 3B, p = 0.009 between groups). Fasting fructosamine levels decreased acutely at day 1 then partially rebounded, although remaining lower than baseline at 5 days, 6 months and 12 months post-bariatric surgery (Figure 3C), again with lower relative levels in the Orexin-INC group (p = 0.0014). While HbA1c decreased over time, although there was no significant difference between the two groups (Figure 3D).

Rapid Improvement in Lipid Profile
In the Orexin-DEC group at baseline, 15 (45%) were being treated with lipid lowering therapy, while 10 (50%) patients were being treated in the Orexin-INC group (Table 1). Postoperatively, there was a reduction in those being treated, which was comparable between the two groups. However, there were both acute (1 and 5 days) and long-term (6 and 12 months) changes in lipid profiles, with overall greater changes in the Orexin-INC group relative to the Orexin-DEC group (Figure 4). Specifically, plasma cholesterol, triglyceride, LDL-C and HDL-C decreased at day 1 and increased at 5 days (except HDL-C) in both groups, at which point none were on lipid-lowering therapy. However the Orexin-INC group had significantly greater decreases in plasma total cholesterol (Figure 4A, p = 0.008), plasma triglyceride (Figure 4B, p<0.0001), and plasma LDL-C (Figure 4D, p = 0.01) and maintained higher plasma HDL-C (Figure 4C, p<0.001). Over the long-term (at 6 months and 12 months), there was a significant continued reduction of fasting cholesterol, triglyceride and LDL-cholesterol, again with greater changes in the Orexin-INC group, while HDL-C increased (Figure 4C).

Long Term Changes in Apolipoprotein B and hsC-Reactive Protein Levels
Over the long term (at 6 months and 12 months), ApoB levels were significantly decreased at both 6 months and 12 months, with significantly greater decreases in the Orexin-INC group (Figure 4E, p = 0.004). By contrast, the inflammatory marker hsCRP was decreased comparably at 6 and 12 months in both groups (Figure 4F, p = NS).

Discussion and Conclusion
In the present study, we performed a comprehensive investigation of metabolic changes and their acute and long-term (up to one year) effects in severely obese patients following BPD-DS surgery. This type of bariatric surgery is well known for its long-term effects on weight loss and improvements in metabolic profile, although not all patients improve to the same degree [21]. Interestingly, even before acute weight loss, during the early post-operative period (<1 week), subjects benefit from the surgical intervention with a reduction in overt diabetic status and improved insulin sensitivity within days of bariatric surgery and this, before any observed weight loss [22]. However, important questions still
remain such as (i) the mechanism for the rapid resolution of diabetes in the early post-operative period, even before weight loss and (ii) an explanation for the variability in subsequent metabolic profile in spite of comparable weight loss. Thus, identifying early post-operative changes, and the relation to subsequent metabolic improvements could provide important biomarkers for targeting.

The major novel findings of our present investigation are, first, that there are early acute changes in orexin levels prior to weight loss, and these changes are present in some but not all patients. Further, the early orexin changes were maintained consistently within subjects throughout the observation period (one year). Lastly, notwithstanding comparable long-term weight decreases, the early changes in orexin are associated with differential improvements in lipid and glucose profiles throughout the one-year postoperative period.

As reviewed recently [27,28], chronic states of obesity, ageing and depression, as well as narcolepsy, traumatic brain injury and lipopolysaccharides (LPS) are all associated with reduced orexin levels. Increased orexin levels are associated with pregnancy, chronic obstructive pulmonary disease, obstructive sleep apnea-hypopnea syndrome and hemodialysis [27,29,30]. However, none of these features are likely responsible for the acute changes in orexin in the present study. On the other hand, food restriction, amino acids, gut hormones (such as ghrelin and glucagon-like peptide-1 [GLP-1]), and high-fat diets, are all known to increase

![Figure 4. Rapid and long-term improvement in lipid profile after BPD-DS bariatric surgery.](image)

Changes in plasma total cholesterol (A), triglyceride (B), HDL-C (C), LDL-C (D), ApolipoproteinB (E), and C-Reactive Protein (F) were found at 6 and 12 months between Orexin-INC and Orexin-DEC groups. Significance was determined by two-way repeated measures ANOVA followed by Holm-Sidak post-hoc test. Values are presented as mean ± s.e.m., where *P<0.05, and **P<0.01.

doi:10.1371/journal.pone.0084803.g004

- Acute Orexin Increase ○ Acute Orexin Decrease
biphasic effects on adipose tissue lipolytic activity mediated adipogenesis [9]. Further, central administration of orexin has suggesting a role for orexins in adipose tissue metabolism and orexin receptors has been demonstrated in human adipose tissue, glucose uptake, lipid accumulation and adiponectin secretion in [31,27]. These differential effects of glucose may relate to the pattern of Orexin-INC or Orexin-DEC noted in our subjects, a pattern that is also reflected by differential glucose, insulin and fructosamine levels between these two groups, and a difference that was maintained throughout the one-year follow-up period. With respect to glucose, the higher orexin coupled to lower glucose and insulin may relate to an interesting feedback regulation. While glucose increases both insulin and orexin secretion from the pancreas [27], orexin suppresses insulin secretion [34], and this may be an effect that is maintained throughout the one-year follow-up period.

In terms of function, orexin has been shown to increase glucose uptake and promote insulin-induced glucose uptake and glycogen synthesis in skeletal muscle by activating the sympathetic nervous system [35], as well as protected against development of peripheral insulin resistance induced by ageing or high-fat feeding in mice [36].

Finally, in adipose tissue, orexin has direct in vitro effects on glucose uptake, lipid accumulation and adiponecin secretion in mouse 3T3 and rat adipocytes [37] and the presence of functional orexin receptors has been demonstrated in human adipose tissue, suggesting a role for orexins in adipose tissue metabolism and adipogenesis [9]. Further, central administration of orexin has biphasic effects on adipose tissue lipolytic activity mediated through sympathetic nerve activity [38]. Conversely, in orexin-deficient mice, there are abnormalities in energy homeostasis, with insulin resistance in the hypothalamus and liver with ageing [39,40]. Altogether, these data support the proposed hypothesis that in the long-term, altered orexin may promote obesity resistance [31].

The strengths and limitations of this study should be noted. In the present study, there was no comparison to a weight loss group induced by non-surgical means, although diet studies rarely achieve weight and fat mass loss of this magnitude. Further, all of the subjects in the current study were severely obese, and even at one-year following surgery, the body size of these subjects would still fall within the obese range. Therefore there were no non-obese surgical patients evaluated over a similar time range. Finally, the associated changes can only be correlative, and are not proof of cause and effect. On the other hand, these subjects were thoroughly evaluated at multiple time points (five time points), with a comprehensive metabolic and physical evaluation, allowing intra-individual comparison of changes over 1 year.

In conclusion, the results of this study indicate that an acute post-bariatric surgery increase in orexin levels is associated with a maintenance of increased orexin throughout the one-year follow-up period, and predicts a better lipid profile improvement. This post-operative increase in orexin levels is also associated with rapid improvement in glucose metabolism. The present study provides valuable information on potential biomarkers for targeting in therapy.

Acknowledgments

We appreciate the technical and manuscript assistance of Mélanie Giaulfone.

Author Contributions

Conceived and designed the experiments: KC. Performed the experiments: AM ML PP JM MB ST KC. Contributed reagents/materials/analysis tools: AG PM ML PP JM MB ST KC. Analyzed the data: AG PM ML PP JM MB ST KC. Wrote the paper: AG PM ML PP JM MB ST KC.

References

1. Brolin RE (2002) Bariatric surgery and long-term control of morbid obesity. JAMA 288: 2795–2796.
2. Buchwald H, Easton K, Fahrbach K, Banel D, Jensen MD et al. (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122: 248–256.
3. Poirier P, Cornier MA, Mazzore T, Sules C, Cummings S et al. (2011) Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation 123: 1683–1701.
4. Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 300: 239–242.
5. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chernelli RM et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G-protein-coupled receptor that regulate feeding behavior. Cell 92: 373–383.
6. de Lecca L, Kilduff TS, Peyron C, Gao X, Foye PE et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci 95: 322–327.
7. Nahred A, Ram PK, Brooks WA, Mintz ED, Hossain MA et al. (2008) Clinical value of Tubex and Typhidot rapid diagnostic tests for typhoid fever in an urban community clinic in Bangladesh. Diagn Microbiol Infect Dis 61: 301–306.
8. Kirchsengen AL, Liu M (1999) Orexin synthesis and response in the gut. Neuron 24: 941–951.
9. Digby JE, Chen J, Tang YJ, Lehnert H, Mantheo RN et al. (2006) Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B. J Endocrinol 191: 129–136.
10. Vosin T, Rouet-Benitez P, Reuter N, Laburthe M (2005) Orexins and their receptors: structural aspects and role in peripheral tissues. Cell Mol Life Sci 60: 72–87.
11. Ganjiy H, Shapiro CM (2007) Hypocretin/Orexin: a molecular link between sleep, energy regulation, and pleasure. J Neuropsychiatry Clin Neurosci 19: 413–419.
12. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M et al. (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827: 243–260.
13. de Lecca L, Suriclle JG (1998) The hypocretins/orxinc novel hypothalamic neuropeptides involved in different physiological systems. Cell Mol Life Sci 56: 475–480.
14. CaiXJ, Widdowson PS, Harrod J, Wilson S, Buckingham RE et al. (1999) Hypothalamicorexinexpression: modulation by blood glucose and feeding. Diabetes 48: 2132–2137.
15. Haynes AC, Jackson B, Ovend P, Buckingham RE, Wilson S et al. (1999) Effects of single and chronic intraacellular/ventricular administration of the orexins on feeding in the rat. Peptides 20: 1099–1105.
16. Suriclle JG, de-Lecca L (2002) The hypocretins: setting the arousal threshold[J]. Nat Rev Neurosci 3: 339–349.
17. Campbell LA, Smith MJ (1999) The pathogenesis of obesity. Baillieres Best Pract Res Clin Endocrinol Metab 13: 13–30.
18. Wilson BD, Bagnol D, Kaerl CB, Orlandi MM, Ganz I et al. (1999) Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology 140: 2387–2397.
19. Martin J, Bergeron S, Pharot P, Bastien M, Biertho L et al. (2013) Impact of Bariatric Surgery on N-Terminal Fragment of the Prohybroene Brain Natriuretic Peptide and Left Ventricular Diastolic Function. Can J Cardiol [Epub ahead of print].
20. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration low density lipoprotein-cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499–502.
21. O’Brien PE, McPhail T, Chaston TB, Dixon JB (2006) Systematic review of medium-term weight loss after bariatric operations. Obes Surg 16: 1032–1040.
22. Scherntzhan G, Morton JM (2008) Bariatric surgery in patients with morbid obesity and type 2 diabetes. Diabetes Care 31: S297–S302.
23. Komaki G, Matsumoto Y, Nishikata H, Kawaki K, Nozaki T et al. (2001) Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol 144: 645–651.

24. Adam JA, Menheere PP, van Dielen FM, Soeters PB, Buurman WA et al. (2002) Decreased plasma orexin-A levels in obese individuals. Int J Obes Relat Metab Disord 26: 274–276.

25. Baranowska B, Wolinska-Witort E, Martynska L, Chmielowska M, Baranowska Bik A (2005) Plasma orexin A, orexin B, leptin, neuropeptide Y (NPY) and insulin in obese women. Neuro Endocrinol Lett 26: 295–296.

26. Bronsky J, Nedvídčková J, Zamrazilová H, Pechová M, Chada M et al. (2007) Dynamic changes of orexin A and leptin in obese children during body weight reduction. Physiol Res 56: 89–96.

27. Adeghate E (2012) Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm 89: 111–133.

28. Higuchi S, Usui A, Murasaki M, Matsushita S, Nishioka N et al. (2002) Plasma orexin-A is lower in patients with narcolepsy. Neurosci Lett 318: 61–64.

29. Zhu LY, Summah H, Jiang HN, Qu JM (2011) Plasma orexin-A levels in COPID patients with hypoxic respiratory failure. Mediators Inflamm 2011: 754987.

30. Igarashi N, Tasumi K, Nakamura A, Sakao S, Takiguchi Y et al. (2003) Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest 124: 1381–1385.

31. Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J et al. (2012) Brain orexin promotes obesity resistance. Ann N Y Acad Sci 1264: 72–86.

32. Cummings DE, Overduin J, Foster-Schubert KE (2004) Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 89: 2608–2615.

33. Perello M, Sakata I, Birnbaum S, Chuang JC, Osborne-Lawrence S et al. (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67: 880–886.

34. Cussens AJ, Stuckey BG, Watts GF (2006) Cardiovascular disease in the polycystic ovary syndrome: new insights and perspectives. Atherosclerosis 185: 227–239.

35. Shitachi T, Hase M, Okamoto S, Inoue T, Kageyama H et al. (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10: 466–480.

36. Tsuneki H, Wada T, Sasaoa T (2013) Role of orexin in the regulation of glucose homeostasis. Acta Physiol (Oxf) 198: 335–348.

37. Skrzypski M, T Le T, Kaczmarek P, Pruszyńska-Oszmalk E, Pietrzak P et al. (2011) Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54: 1841–1852.

38. Shen J, Tanida M, Yao JF, Nijima A, Naqai K (2008) Biphase effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci Lett 444: 166–171.

39. Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61: 162–176.

40. Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E et al. (2008) Age-related insulin resistance in hypothalamic and peripheral tissues of orexin knockout mice. Diabetologia 51: 657–667.