an internally validated threshold for responders was established using pre-pandemic sera from healthy adults. A positive antibody response was defined as individuals with anti-Spike IgG levels above the 1.07 Normalized AEB threshold.

Disclosures. Amy Joyce, NP, Kadmon (Advisor or Review Panel member) Lewis A. Novack, MS, Lumicell Inc. (Scientific Research Study Investigator, Research Grant or Support) Precision Healing, Inc. (Scientific Research Study Investigator, Research Grant or Support) David Walt, PhD, Quanterix Corporation (Board Member, Shareholder) Robert Soiffer, MD, alexion (Consultant) gilead (Advisor or Review Panel member) Jazz (Advisor or Review Panel member) Juno/ bms (Advisor or Review Panel member) kiadis (Board Member) precision bioscience (Consultant) Rheos (Consultant) takeda (Consultant) Nicolas C. Issa, MD, AiCuris (Scientific Research Study Investigator) Astellas (Scientific Research Study Investigator) GSK (Scientific Research Study Investigator) Merck (Scientific Research Study Investigator)

26. Risk of Post–COVID-19 Dyspnea and Interstitial Lung Disease (ILD) in a Real-World Cohort of Patients Hospitalized with COVID-19 in the United States

Kelly Zalocusky, PhD; Devika Chawla, PhD MSPH; Margaret Neighbors, PhD; Shemra Rizzo, PhD; Larry Tsai, MD; Genentech, Inc., South San Francisco, California

Session: O-06. COVID-19 Complications, Co-infections and Clinical Outcomes 1

Background. While COVID-19 carries substantial morbidity and mortality, the extent of long-term complications remains unclear. Reports suggest that acute lung damage associated with severe COVID-19 can result in chronic respiratory dysfunction. This study: (1) estimated the incidence of dyspnea and ILD after COVID-19 hospitalization, and (2) assessed risk factors for developing dyspnea and ILD in a real-world cohort of patients hospitalized with COVID-19 using US electronic health records (EHR).

Methods. Patients in the Optum de-identified COVID-19 EHR database who were hospitalized for COVID-19 (lab confirmed or diagnosis code) between February 20 and July 2020 and had at least 6 months of follow-up were eligible for analysis. Dyspnea and ILD were identified using diagnosis codes. The effects of baseline characteristics and hospitalization factors on the risk of incident dyspnea or ILD 3 to 6 months’ post discharge were evaluated.

Results. Among eligible patients (n=26,339), 1705 (6.5%) had dyspnea and 220 (0.8%) had ILD 3 to 6 months after discharge. Among patients without prior dyspnea or ILD (n=22,613), 110 (0.5%) had incident ILD (Table 1) and 1036 (4.6%) had incident dyspnea (Table 2) 3 to 6 months after discharge. In multivariate analyses, median (IQR) length of stay (LOS; 5.0 [3.0, 9.0] days in patients who did not develop ILD vs 14.5 [6.0, 26.0] days in patients who developed ILD; RR: 1.12, 95% CI: 1.08, 1.15; P=4.34 x 10^-4) and age (RR: 1.02, 95% CI: 1.01, 1.03; P=4.63 x 10^-4) were significantly associated with ILD. Median (IQR) LOS (5.0 [3.0, 9.0] days in patients who did not develop dyspnea vs 7 [4.0, 14.0] days in patients who developed dyspnea; RR: 1.04, 95% CI: 1.02, 1.06; P=8.52 x 10^-3), number of high-risk comorbidities (RR: 1.18, 95% CI: 1.12, 1.24; P=3.85 x 10^-3), and obesity (RR: 1.52, 95% CI: 1.25, 1.86; P=2.59 x 10^-4) were significantly associated with dyspnea.

Table 1. Selected Baseline Risk Factors for Incident ILD

Risk Factors for Incident ILD	Missing	Overall	ILD (-)	ILD (+)	PValue
n	22,813	22,503	110		<0.001
Age, median (Q1, Q3), years	55.0 (40.0, 66.0)	54.0 (40.0, 66.0)	64.0 (58.0, 71.0)		<0.001
US region, n (%)					0.037
Midwest	728	7128	36.2	36.2	46.2
Northwest	7854	7784	35.8	35.7	41
South	4059	4014	21.3	21.3	17.5
West	1475	1467	6.7	6.6	5.4
African American	5222	5070	35.7	35.6	19.2
Race, n (%)					0.012
Asian	726	712	4.2	4.2	5.5
Caucasian	10.46	10.39	67	67	73.8
Ethnicity, n (%)					0.582
Hispanic	2289	2298	23.5	23.5	20.9
Non-Hispanic	15.540	15.463	77	77	77.9
Sex, n (%)					0.43
Female	0	11,230	49.7	49.7	49.5
Male	11,333	11,323	50.3	50.3	50
Overweight, n (%)	0	14.910	64.4	64.4	67.3
Yes	8103	8056	35.8	35.8	47.2

Table 2. Percent Responders after Vaccine Series Completion

Local Events	Systemic Events
Reaction	Reaction
Percentage	Percentage

Figure 1. Response Rate to COVID-19 Vaccination

Figure 2: Response Rate to COVID-19 Vaccination

Figure 3. Solicited Local and Systemic Adverse Events

An internally validated threshold for responders was established using pre-pandemic sera from healthy adults. A positive antibody response was defined as individuals with anti-Spike IgG levels above the 1.07 Normalized AEB threshold.

Disclosures. Amy Joyce, NP, Kadmon (Advisor or Review Panel member) Lewis A. Novack, MS, Lumicell Inc. (Scientific Research Study Investigator, Research Grant or Support) Precision Healing, Inc. (Scientific Research Study Investigator, Research Grant or Support) David Walt, PhD, Quanterix Corporation (Board Member, Shareholder) Robert Soiffer, MD, alexion (Consultant) gilead (Advisor or Review Panel member) Jazz (Advisor or Review Panel member) Juno/ bms (Advisor or Review Panel member) kiadis (Board Member) precision bioscience (Consultant) Rheos (Consultant) takeda (Consultant) Nicolas C. Issa, MD, AiCuris (Scientific Research Study Investigator) Astellas (Scientific Research Study Investigator) GSK (Scientific Research Study Investigator) Merck (Scientific Research Study Investigator)
Conclusion. In a real-world cohort, 4.6% and 0.5% of patients developed dyspnea and ILD, respectively, after COVID-19 hospitalization. Multivariate analyses suggested that LOS, age, obesity, and comorbidity burden may be risk factors for post-COVID-19 respiratory complications. Limitations included sensitivity of diagnosis codes, availability of labs, and care-seeking bias.

Disclosures. Kelly Zalocusky, PhD, F. Hoffmann-La Roche Ltd (Shareholder)Genentech, Inc. (Employee)Genentech, Inc. (Employee)Devika Chawla, PhD MSPH, F. Hoffmann-La Roche Ltd. (Shareholder)Genentech, Inc. (Employee)Margaret Neighbors, PhD, F. Hoffmann-La Roche Ltd. (Shareholder)Genentech, Inc. (Employee)Shemra Rizzo, PhD, F. Hoffmann-La Roche Ltd. (Shareholder)Genentech, Inc. (Employee)Larry Tsai, MD, F. Hoffmann-La Roche Ltd (Shareholder)Genentech, Inc. (Employee)

Session: O-06. COVID-19 Complications, Co-infections and Clinical Outcomes 1

Background. In-hospital antimicrobial use among COVID-19 patients is widespread due to perceived bacterial and fungal co-infections. We aim to describe the incidence of these co-infections and antimicrobial use in patients hospitalized with COVID-19 to elucidate data for guiding effective antimicrobial use in this population.

Methods. This retrospective study included all patients admitted with COVID-19 from January 1, 2020, to February 1, 2021 at any of the three teaching hospitals of the NYU Langone Health system. Variables of interest were extracted from the health system's de-identified clinical database. The nadir of hospital admissions between the first and second peaks of hospital admissions in the dataset was used to delineate the First Wave and Late Pandemic periods of observation. A cut-off of 48 hours after admission was used to differentiate Co-infections and Secondary infections respectively among isolates of clinically relevant bacterial or fungal pathogens in blood or sputum samples. Population statistics are presented as median with interquartile range (IQR) or total numbers with percentages.

Results. 663 of 7,213 (9.2%) inpatients were found to have a positive bacterial or fungal culture of the respiratory tract or blood during the entire course of their initial admission at our hospitals for COVID-19. Positive respiratory cultures were found in 437 (6.1%) patients, with 94 (1.3%) being collected within 48 hours of admission. Blood culture positivity occurred in 333 patients (4.6%), with 115 (1.6%) identified within 48 hours of admission. Infection-free survival decreased with duration of hospitalization, with rate of secondary infections steadily rising after the second week of hospitalization as seen in Figure 1. 70.2% of inpatients received antimicrobials for a median duration of 6 antimicrobial days (IQR 3.0 – 12.0) per patient. A higher proportion of patients received antimicrobials in the first wave than in the late pandemic period (82.6% vs. 51.8%).

Table 2. Selected Baseline Risk Factors for Incident Dyspnea

Risk Factors	Missing	Overall	Dyspnea	Dyspnea (%)	P Value	
Age, median (Q1, Q3), years	0	59.0	54.0	58.0	<0.001	
US region, n (%)	Midwest	728 (36.2)	750 (36.0)	418 (41.8)	<0.001	
Race, n (%)	Asian	726 (4.2)	686 (4.2)	28 (3.2)	0.11	
Ethnicity, n (%)	Hispanic	2290	4774 (23.5)	4625 (23.9)	149 (15.5)	0.075
Sex, n (%)	Male	11383	10980 (50.3)	543 (52.4)	<0.001	
Overweight, n (%)	Yes	8103 (35.8)	7628 (35.4)	475 (45.8)	<0.001	

Table 1. Co-infections and antimicrobial use in patients hospitalized with COVID-19

Number of subjects	First wave (n=4307)	Late Pandemic (n=7213)	Total (n=11510)
Blood culture sent	2454 (57.5%)	1540 (53.0%)	3994 (54.6%)
Blood cultures positive < 48 hours of admission	68 (1.5%)	47 (1.4%)	115 (1.6%)
Total positive blood cultures	236 (4.8%)	125 (4.3%)	361 (3.1%)
Sputum culture sent	768 (17.8%)	359 (12.4%)	1127 (15.9%)
Sputum cultures positive < 48 hours of admission	59 (1.2%)	25 (1.2%)	96 (1.3%)
Total positive sputum cultures	307 (7.1%)	130 (4.5%)	437 (3.8%)
Non-SARS-CoV-2 respiratory pathogens positive on multiplex PCR	16 (0.4%)	5 (0.2%)	21 (0.2%)
Antimicrobial received	3558 (72.6%)	1565 (51.1%)	5123 (44.6%)
Anti-inflammatory antimicrobial received	3051 (70.8%)	1465 (40.4%)	4516 (40.2%)
Anti-inflammatory steroid/LAXT prec honoured	1187 (27.6%)	627 (21.6%)	1814 (15.8%)
Antimicrobial Days Median (IQR)	6.0 (3.0 - 12.0)	6.0 (2.0 - 12.0)	6.0 (3.0 - 12.0)

Rates of co-infections and secondary infections classified by the first wave (before July 1, 2020) and late pandemic, along with rates of antimicrobial use observed during these respective periods of observation.