Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations

Niko Wanders1 and Eric F. Wood1

1) Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544 USA.

Supplementary Information

Table S1 North American Multi Model Ensemble phase 2 data availability and required reprocessing

Institute	CanCM3	CanCM4	FLOR-B01	CCSM4
Environment Canada	Environment Canada	GFDL	NCAR/University of Miami	
Temperature data availability	100%	100%	100%	71.4%
Precipitation data availability	100%	100%	100%	76.5%
Resampling	None	None	Bicubic	Bicubic
Ensemble members	10	10	12	10

Figure S1 The normalized mean relative difference between the parameters obtained with years of data and the parameters obtained in a bootstrapping procedure. Low values indicate identical parameters, while high values indicate large differences. The analysis is done for the constrained and unconstrained weighted mean, for all regions used in this study.
Figure S2 Sub-seasonal forecasts issued on 1st of March 2000 for temperature anomalies for the following year, including the November 2000 drought in Western Africa (lead 8 months). Top rows indicate the individual sub-seasonal model forecasts (ensemble mean, bold colour lines), individual ensemble members (grey lines) and the observed anomalies (bold black line). Bottom row indicates optimal weights applied to the individual models and the resulting multi-model forecast (dashed line) and observations (solid line.) Grey lines indicate confidence intervals at 10% increments. The total of the ensemble weights equals 1, and negative weights indicate that the original forecast anomaly is multiplied by a negative weight in the forecasted weighted ensemble. For all forecasts, anomaly correlation between the forecasts and observed anomalies are provided in the bottom left of each panel. The target year (in this case 2000) is not used in estimating the model weights.
Figure S3 Anomaly correlation between seasonal forecasted and observed precipitation anomalies. Forecasted anomalies are aggregated for specific lag times.

Figure S4 Anomaly correlation between seasonal forecasted and observed temperature anomalies. Forecasted anomalies are aggregated for specific lag times.
Figure S5 Anomaly correlation between sub-seasonal forecasted and observed precipitation anomalies. Forecasted anomalies are aggregated for specific lag times.

Figure S6 Anomaly correlation between sub-seasonal forecasted and observed temperature anomalies. Forecasted anomalies are aggregated for specific lag times.
Figure S7 Accumulated precipitation anomalies for the January 2011 Brazil floods (issued on July 2010). Top rows indicate the individual sub-seasonal model forecasts (ensemble mean, bold colour lines), individual ensemble members (grey lines) and the observed anomalies (bold black line). Bottom row indicates optimal weights applied to the individual models and the resulting multi-model forecast (dashed line) and observations (solid line.) Grey lines indicate confidence intervals at 10% increments. The total of the ensemble weights equals 1, and negative weights indicate that the original forecast anomaly is multiplied by a negative weight in the forecasted weighted ensemble. For all forecasts, anomaly correlation between the forecasts and observed anomalies are provided in the bottom left of each panel. The target year (in this case 2010) is not used in estimating the model weights.

Acknowledgements

We would like to acknowledge four anonymous reviewers that helped to improve the manuscript. NW was supported by a NWO Rubicon Fellowship 825.15.003 (Forecasting to Reduce Socio-Economic Effects of Droughts) and EFW was supported by the NOAA Climate Program Office under grant NA15OAR4310075 (Assessing NMME Phase-2 Forecasts for Improved Predictions of Drought and Water Management). The forecast data from the North American Multi-Model Ensemble phase 2 are freely available at http://earthsystemgrid.org/.