Data Article

Draft genome sequencing data of the moderately halophilic bacterium, *Allobacillus halotolerans* SKP2-8 from shrimp paste (*ka-pi*)

Engkarat Kingkaew\(^a\), Supalurk Yiamsombut\(^a\), Saranporn Poonthong\(^a\), Wenyu Shi\(^b\), Linhuan Wu\(^b\), Juncai Ma\(^b\), Somboon Tanasupawat\(^{a,\ast}\)

\(^a\) Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
\(^b\) World Data Center for Microorganisms (WDCM), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China

A R T I C L E I N F O

Article history:
Received 23 June 2022
Revised 18 July 2022
Accepted 17 August 2022
Available online 22 August 2022

Dataset link: Allobacillus sp. SKP2-8, whole genome shotgun sequencing project (Original data)

Keywords:
Allobacillus
Draft genome
Fermented food
Moderately halophile
Shrimp paste

A B S T R A C T

A moderately halophilic, Gram-stain-positive, spore-forming rod-shaped bacterium, designated SKP2-8 was isolated from a traditional fermented shrimp paste (*Ka-pi*) collected from the market in Samut Sakhon province, Thailand. This isolate SKP2-8 was closely related to *Allobacillus halotolerans* LMG 24826\(^T\) with 99.56\% similarity based on 16S rRNA gene sequence. The draft genome of SKP2-8 was 2.53 Mb with 2,515 coding sequences with an average G+C content of 39.5 mol\%. The ANib, ANlm, AAI and the digital DNA-DNA hybridization values of isolate SKP2-8 were 97.22\%, 97.64\%, 97.75\% and 78.0\%, respectively, compared with *A. halotolerans* LMG 24826\(^T\). Based on the phenotypic characteristics, DNA-DNA relatedness and phylogenomic analysis, it was identified as *Allobacillus halotolerans*. The genome sequence data of this isolate provide information for further analysis of the potential biotechnological use of this microorganism and guide the characterization. The draft genome was deposited at DDBJ/EMBL/GenBank (DNA Databank of Japan/European Molecular Biology Laboratory/Genbank) (VMHF00000000).

\(^{\ast}\) Corresponding author.

E-mail address: somboon.t@chula.ac.th (S. Tanasupawat).

https://doi.org/10.1016/j.dib.2022.108549

2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Biology
Specific subject area	Microbiology, Genomics, Biotechnology
Type of data	Table, Figure, Excel Sheets, Datasets (Word)

How the data were acquired
- SEM, Illumina Miseq, RAST annotation, DFAST annotation, PATRIC annotation, PathogenFinder, PlasmidFinder, The Comprehensive Antibiotic Resistance Database

Data format
- Analyzed and deposited

Description of data collection
- Allobacillus sp. SKP2-8 was cultivated on JCM No.377 medium. Genomic DNA was extracted from a pure culture of Allobacillus sp. SKP2-8. The obtained sequencing data were used for genome analysis, identification, and search of stress tolerance and lipase-, esterase- associated genes.

Data source location
- City/Town/Region: Samut Sakhon
- Country: Thailand
- Shrimp paste (ka-pi)

Data accessibility
- The whole genomes were deposited at DDBJ/EMBL/GenBank under the accession number Isolate SKP2-8 (VMHF00000000) (https://www.ncbi.nlm.nih.gov/nuccore/VMHF00000000.1/), and isolate LMG 24856\(^T\) (JAHLZF0000000000) (https://www.ncbi.nlm.nih.gov/nuccore/JAHLZF0000000000.1/)
- The description characteristics of isolate SKP2-8, (https://doi.org/10.6084/m9.figshare.20124134.v1)
- The lipase activity (in vitro) analysis and lipase gene, (https://doi.org/10.6084/m9.figshare.20128685.v2)
- The scanning electron micrograph (SEM) of isolate SKP2-8 and LMG 24826\(^T\) (https://doi.org/10.6084/m9.figshare.20116040.v1)
- The safety and pathogenicity assessment (https://doi.org/10.6084/m9.figshare.20117243.v2)
- The stress tolerance and lipase-, esterase- associated genes (https://doi.org/10.6084/m9.figshare.20116103.v1)

Related research article
- Yiamsombut S, Kanchanasin P, Phongsopitanun W, Kuncharoen N, Savarajara A, Shi W, Wu L, Ma J, Tanasupawat S. Allobacillus salarius sp. nov., and Allobacillus saliphilus sp. nov., isolated from shrimp paste (ka-pi) in Thailand. Arch Microbiol. 2021 Dec 24;204(1):71. doi: 10.1007/s00203-021-02694-9. PMID: 34951663.

Value of the Data

• These data provide the source for the description of Allobacillus halotolerans that was originally published only single isolate.
• These data are fundamental to environmental and clinical microbiology.
• These data serve to conduct comparative genomics in moderate-halotolerant related gene and allow a better understanding of the mechanisms involved in osmotic stress.
• This study provides the genome analysis of lipase and esterase genes.

1. Data Description

The genus Allobacillus, a moderately halophilic rod-shaped, isolated from shrimp paste in Taiwan, Republic of China, was proposed by Sheu et al., and Allobacillus halotolerans was the type
species [1]. *Allobacillus salarius* and *Allobacillus saliphilus* isolated from shrimp paste (Ka-pi) in Thailand are proposed as the second and third species [2].

The description of characteristics of isolate SKP2-8 is described in supplementary file 1 (https://doi.org/10.6084/m9.figshare.20124134.v1) and the scanning electron micrograph (SEM) of isolate SKP2-8 and LMG 24826ᵀ is shown in supplementary file 2 (https://doi.org/10.6084/m9.figshare.20116040.v1) [2]. In addition, the Table 1 described the results of the genomic features of SKP2-8 and LMG 24826ᵀ. The draft genome sequence of isolate SKP2-8 was 2,533,751 bp, with a genomic G+C content of 2,515 coding sequences, 65 RNAs and genome coverage of 500×. The total number of genes after annotation was 2,580, of which 2,475 were coding sequences, 3 were ribosomal RNAs, and 57 tRNAs.

Based on full 16S rRNA gene sequence, the isolate SKP2-8 (1,464 bp) was closely related to *A. halotolerans* LMG 24826ᵀ with 99.56% similarity. The phylogenomic analysis demonstrated the cluster formation of isolate SKP2-8 with the *A. halotolerans* LMG 24826ᵀ (Fig. 1).

The ANIb and ANIm values of the draft genomes between isolate SKP2-8 and *A. halotolerans* LMG 24826ᵀ were 97.22 and 97.64%, respectively. The average amino acid identity (AAI) value between isolate SKP-2-8 and *A. halotolerans* LMG 24826ᵀ was 97.75% (from 2,446 proteins), [3]. In addition, the dDDH value of the draft genome between isolate SKP2-8 and *A. halotolerans* LMG 24826ᵀ, was 78% (C.I. 75 – 80.7%) [4].

The safety and pathogenicity evaluation of isolate SKP2-8 and LMG 24828ᵀ are shown in supplementary file 3 (https://doi.org/10.6084/m9.figshare.2017243.v2). From the RAST (Fig. 2), DFAST, and PATRIC annotation, the isolate SKP 2-8 and LMG 24828ᵀ contained halotolerant-associated and lipase/esterase-associated genes and they was described in supplementary file 4 (https://doi.org/10.6084/m9.figshare.20116103.v1) which are responsible for osmotic-stress response, fatty acids, lipids, and isoprenoids metabolism [5–8]. Furthermore, the analysis of the lipase activity (*in vitro*) and *in silico* analysis is shown in supplementary file 5 (https://doi.org/10.6084/m9.figshare.20128685.v2) [8].

Table 1

Genomic features of *Allobacillus halotolerans* SKP2-8 and *Allobacillus halotolerans* LMG 24826ᵀ.

Attribute	SKP2-8	LMG 24826ᵀ
Isolation source	Shrimp paste (ka-pi)	Shrimp paste
Genbank accession	VMHP00000000	JAHLP00000000
Biosample accession	SAM12329002	SAM19700765
Bioproject accession	PRJNA555754	PRJNA737595
Genome size (bp)	2,533,751	2,726,708
G+C content (%)	39.5	39.5
Genome coverage	500x	300x
Total genes	2,580	2,854
Total CDss	2,515	2,776
Total proteins	2,475	2,744
rRNA	2, 1, 1 (5S, 16S, 23S)	4, 6, 7 (5S, 16S, 23S)
tRNA	57	57
ncRNA	4	4
N50	58,702	104,182
L50	14	8
Contig	49	96
Fig. 1. Phylogenomic tree based on whole genome sequence data result of SKP2-8 and closely related type strain reconstructed on the Type (Strain) Genome Server (TYGS).
Fig. 2. Subsystem distribution of *Allobacillus halotolerans* SKP2-8 constructed from the RAST annotation server.
2. Experimental Design, Materials and Methods

Allobacillus halotolerans SKP2-8 was isolated from shrimp paste collected from the market in Samut Sakhon province, Thailand by using spread-plate technique duplicate on modified JCM medium no.377 agar plates. Lipase activity was screened and determined [8]. Whole genome sequence was performed using an Illumina Miseq platform (Illumina, Inc., San Diego, US-CA) by the World Data Center for Microorganisms (WDCM) under the Global Catalogue of Microorganisms (GCM) 2.0 project. Assembling the reads to contigs were accomplished by using SPAdes 3.12 [9]. The genomic quality was qualified by CheckM [10]. The genome was annotated by using the DFAST sever [11], Rapid Annotation Server Technology (RAST) [12], PATRIC [13], the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). A phylogenetic tree based on whole-genome sequence was constructed by using TYGS web server (https://tygs.dsmz.de/) [14]. Antibiotic resistance genes were determined using the Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) [15]. The pathogenicity was predicted by PathogenFinder web-based tool [16] and plasmid was detected by PlasmidFinder [17]. Average nucleotide identity (ANI) values were calculated with pairwise genome alignment of the draft genome sequences of *Allobacillus halotolerans* LMG 24826T (JAHLF000000000) by using the ANI-BLAST (ANIm) and ANI-MUMmer (ANIm) algorithms [18] implemented within the JSpeciesWS web service [19]. The average amino acid identity (AAI) was calculated by web-based (http://enve-omics.ce.gatech.edu/aai) [3]. Calculation of the digital DNA-DNA hybridization (dDDH) values was achieved by using the Genome-to-Genome Distance Calculator (GGDC 2.1) using the BLAST+ method [20]. Results were based on the recommended formula 2 (identities/HSP length), which is useful when dealing with incomplete draft genomes.

Ethics Statements

No ethical issue.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Allobacillus sp. SKP2-8, whole genome shotgun sequencing project (Original data) (NCBI).

CRediT Author Statement

Engkarat Kingkaew: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – original draft, Visualization; *Supalurk Yiamsombut*: Methodology, Validation, Formal analysis, Investigation, Resources; *Saranporn Poothong*: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – original draft, Visualization; *Wenyu Shi*: Software, Formal analysis, Resources, Project administration; *Linhuan Wu*: Software, Formal analysis, Resources; *Juncai Ma*: Software, Formal analysis, Resources; *Somboon Tanasupawat*: Conceptualization, Validation, Resources, Data curation, Writing – review & editing, Supervision, Project administration, Funding acquisition.
This study was supported by the Grant for International Research Integration: Research Pyramid, Ratchadapiseksomporn Endowment Fund (CUGRP-61-01-33-01), Chulalongkorn University and the International Partnership Program of Chinese Academy of Sciences (Grant No. 153211KYSB 201900211).

Acknowledgments

This study was supported by the Grant for International Research Integration: Research Pyramid, Ratchadapiseksomporn Endowment Fund (CUGRP-61-01-33-01), Chulalongkorn University and the International Partnership Program of Chinese Academy of Sciences (Grant No. 153211KYSB 201900211).

References

[1] S.-Y. Sheu, A.B. Arun, S.-R. Jiang, C.-C. Young, W.-M. Chen, *Allobacillus halotolerans* gen. nov., sp. nov. isolated from shrimp paste, Int. J. Syst. Evol. Microbiol. 61 (5) (2011) 1023–1027.

[2] S. Yiamsombut, P. Kanchanasin, W. Phongsopitanun, N. Kuncharoen, A. Savarajara, W. Shi, L. Wu, J. Ma, S. Tanasupawat, *Allobacillus saltius* sp. nov. and *Allobacillus saliphilus* sp. nov., isolated from shrimp paste (ka-pi) in Thailand, Arch. Microbiol. 204 (1) (2022) 1–6.

[3] L.M. Rodriguez-R, K.T. Konstantinidis, Bypassing cultivation to identify bacterial species, Microbe 9 (3) (2014) 111–118.

[4] S.W. Ahn, S.H. Lee, H.-S. Son, S.W. Roh, Y.-E. Choi, Genomic analysis of halophilic bacterium, *Lentibacillus* sp. CBA3610, derived from human feces, Gut Pathog. 13 (1) (2021) 41, doi: 10.1186/s13099-021-00436-2.

[5] C.J. Gregory, E.F. Boyd, Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from *Vibrioaceae*, Comput. Struct. Biotechnol. 19 (2021) 1014–1027, doi: 10.1016/j.csbj.2021.01.030.

[6] L. Matarredona, M. Camacho, B. Zafrilla, M.-J. Bonete, J. Espeaz, The role of stress proteins in halooarchaea and their adaptive response to environmental shifts, Biomolecules 10 (10) (2020) 1390.

[7] Y.-H. Chen, Y.-T. Shyu, S.-S. Lin, Characterization of candidate genes involved in halotolerance using high-throughput omics in the halotolerant bacterium *Virgibacillus chiguensis*, PLoS One 13 (8) (2018) e0201346-e0201346, doi: 10.1371/journal.pone.0201346.

[8] F. Cardenas, E. Alvarez, M.-S. de Castro-Alvarez, J.-M. Sanchez-Montero, M. Valmaseda, S.W. Elson, J.-V. Sinisterra, Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases, J. Mol. Catal. B Enzym. 14 (4-6) (2001) 111–123.

[9] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 19 (5) (2012) 455–477.

[10] D.H. Parks, M. Imelfort, C.T. Skennerton, P. Hugenholtz, G.W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res. 25 (7) (2015) 1043–1055.

[11] Y. Tanizawa, T. Fujisawa, Y. Nakamura, DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication, Bioinformatics 34 (6) (2018) 1037–1039.

[12] R.K. Aziz, D. Bartels, A.A. Best, M. Dejongh, T. Disz, R.A. Edwards, K. Formosa, S. Gerdes, E.M. Glass, M. Kubal, The RAST Server: rapid annotations using subsystems technology, BMC Genom. 9 (1) (2008) 1–15.

[13] J.J. Davis, A.R. Wattam, R.K. Aziz, T. Brettin, R. Butler, R.M. Butler, P. Chiplenski, N. Conrad, A. Dickerman, E.M. Dietrich, The PATRIC bioinformatics resource center: expanding data and analysis capabilities, Nucleic Acids Res. 48 (D1) (2020) D606–D612.

[14] J.P. Meier-Kolthoff, M. Göker, TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy, Nat. Commun. 10 (1) (2019) 1–10.

[15] B.P. Alcock, A.R. Raphenya, T.T.Y. Lau, K.K. Tsang, M. Bouchard, A. Edalatmand, H. Huynh, A.-L.V. Nguyen, A.A. Cheng, S. Liu, CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database, Nucleic Acids Res 48 (D1) (2020) D517–D525.

[16] S. Cosentino, M. Voldby Larsen, F. Møller Aarestrup, O. Lund, PathogenFinder-distinguishing friend from foe using bacterial whole genome sequence data, PLoS one 8 (10) (2013) e77302.

[17] A. Carattoli, E. Zankari, A. García-Fernandez, M.V. Larsen, O. Lund, L. Villa, F.M. Aarestrup, H. Hasman, PlasmidFinder and pMLST: in silico detection and typing of plasmids, Antimicrob. Agents Chemother. 58 (7) (2014) 3895–3903.

[18] M. Richter, R. Rosselló-Móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. 106 (45) (2009) 19126–19131.

[19] M. Richter, R. Rosselló-Móra, F. Oliver Glöckner, J. Peplies, JSpeciesWS: a web server for prokaryotic species circumcision based on pairwise genome comparison, Bioinformatics 32 (6) (2016) 929–931.

[20] J.P. Meier-Kolthoff, A.F. Auch, H.-P. Klenk, M. Göker, Genome sequence-based species delimitation with confidence intervals and improved distance functions, BMC Bioinformatics 14 (1) (2013) 1–14.