Anuran diversity of four taxocenoses of the subtropical Atlantic Forest from Santa Catarina and Paraná states Brazil

Lucas Ribeiro Mariotto¹

¹ Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia (DB), Programa de Pós-Graduação em Biologia Comparada. Ribeirão Preto, SP, Brasil. ORCID: http://orcid.org/0000-0002-9397-4001. E-mail: lucasmariotto@gmail.com

Abstract. Local fauna inventories provide primary key information on diversity and distribution of species for conservation purposes. The Atlantic Forest holds 50% of anuran species in the country and the main threats to the conservation of this fauna are habitat reduction and fragmentation. The present study brings information on the local richness and species composition of four anuran taxocenoses from the subtropical Atlantic Forest of Paraná and Santa Catarina states, Brazil. Data collection included breeding sites surveys (N = 56) and literature review. Richness and beta diversity were compared through rarefaction/extrapolation curves, local contribution to beta diversity (LCBD), beta partitioning and cluster analysis. Anuran from 46 species were registered and local richness differences were observed on the rarefaction/extrapolation curves and on asymptotic analysis. Nevertheless, the LCBD did not detect differences in species composition among the four taxocenoses. The turnover was the predominant component of beta diversity. The geographical distances explain species composition for all localities compiled in this study. The differences among local richness may be related to environmental impacts, emphasizing the need for conservation of biodiversity in the remnants of Atlantic forest.

Key-Works. Species richness; Species composition; Inventory; Atlantic Forest; Conservation.

INTRODUCTION

Brazil withholds one of the highest diversity of anurans in the world (Segalla et al., 2019), where-as 530 species are found in the Atlantic Forest and 85% of these species are endemic of this biome (Haddad & Prado, 2005; Haddad et al., 2013). The original forest covered 150 million hectares of the Brazilian northeast coast to the south of the country, going as far as Paraguay and Argentina with formations of Interior and Araucaria Forests. Nowadays, only 11.73% of the original forest remains, in a fragmented landscape formed in its majority by small fragments (< 50 hectares) (Ribeiro et al., 2009), making it one of the 25 hotspots for the conservation of world-wide biodiversity (Myers et al., 2000). Anuran diversity suffers a negative impact with the fragmentation of habitats (Silvano et al., 2003). Habitats that are better preserved possess greater environmental heterogeneity and high number of micro environments improves the coexistence of species (Sazima & Eterovick, 2000; Vasconcelos et al., 2009; Silva et al., 2012a, b). Therefore, the diminishing habitat quality, fragmentation, homogenization and loss of habitats are considered the main causes of the decline of anuran populations and biodiversity loss in Brazil and in the world (Young et al., 2001; Cushman, 2006; ICMBio, 2018; IUCN, 2020).

Southern Brazil is mostly included in the subtropical Atlantic Forest which is divided by sub-regions, wherein a valuable diversity of anurans still resides: Atlantic Coast Restingas of Brazil – 79 species, seven exclusive species (Garcia et al., 2007); Araucaria Forest 129 species, 13 being endemic (Conte, 2010); Serra do Mar 165 species, being 38 endemic (Garcia et al., 2007); and the Interior Forests 111 species, being only five endemic (Garcia et al., 2007).

Environmental studies that perform local inventories and use parameters of richness and species composition to describe taxocenoses allow us to access information on biodiversity, as well as to carry through a diagnosis on the conservation status and conduct actions of biodiversity preservation (Verdade et al., 2012). Therefore, this work aims to make an anuran inventory of four areas of the subtropical Atlantic Forest and to compare them, through local richness and species composition parameters, with other anuran taxocenoses from southern Brazil.
MATERIAL AND METHODS

Study Areas

The states of Rio Grande do Sul, Santa Catarina and Paraná are mostly located in the subtropical region, in the Atlantic Tropical Morphoclimatic Domain and in the Araucaria Plateau (Ab’Saber, 1977) (Fig. 1). Four areas in the eastern region of Santa Catarina and Paraná states, Brazil (Fig. 2) were sampled for this study. The first area (BR-470), which included phytosociological communities of the Lowland Dense Ombrophilous Forest (Veloso et al., 2012), was sampled along the BR-470 highway, between the municipalities of Ilhota and Indaial, Santa Catarina state. The second studied location (MGAN) included Sub-montane Dense Ombrophilous Forest (Veloso et al., 2012) lying between the municipalities of Major Gercino and Angelina, in the state of Santa Catarina, close to a small hydropower plant reservoir. The third area (SC-370) included the Mixed Ombrophilous Forest’s phytosociological community (Veloso et al., 2012) along the SC-370 highway located in Uruçuí municipality, Santa Catarina state. Finally, the fourth area (BR-116) included the Mixed Ombrophilous Forest phytosociology (Veloso et al., 2012), sampled along BR-116 highway, between the municipalities of Curitiba and Mandirituba, Paraná state. The search for frogs was conducted in several breeding sites (streams, permanent ponds and temporary swamps) found in open areas and forest fragments (Fig. 2, see Appendix 1).

Sampling

The fieldworks were conducted from 2010 to 2013: the BR-470 was sampled in 2010, SC-370 and MGAN in 2010-2011 and BR-116 in 2012-2013, constituting one
campaign of five days per trimesters and an effort of about 20 hours of search for each campaign. The samples occurred within the four seasons in each area, except for the winter campaign in SC-370 which was not held. The BR-116 was sampled twice during each season (see Appendix 2).

The Visual Encounters and Surveys at Breeding Sites were used as the standard sampling methods (Crump & Scott Jr., 1994; Scott Jr. & Woodward, 1994). The richness and abundance of species were registered for each breeding site sampled in each area: BR-470 (n = 16), MGAN (n = 13), SC-370 (n = 14) and BR-116 (n = 13) (Fig. 2, Appendix 1). The collected specimens were anesthetized, euthanized with lidocaine (CFMV № 714/2002), fixed in a solution of formalin 10%, preserved in a solution of alcohol 70% and deposited in the Coleção Zoológica da Universidade Regional de Blumenau (Appendix 3).

Data analysis

The sum of the higher abundance recorded for each species in each breeding site during sampling campaigns was used as the value of abundance of each area for the following diversity analysis (Table 1).

Rarefaction curves based on abundance were done using the iNEXT package (Hsieh et al., 2016) in R environment (R Core Team, 2020) to compare local richness among the four taxocenoses. In this analysis, the curves were generated by rarefaction/extrapolation of the values of richness and abundance from each taxocenose (Hill’s number q = 0), resulting in a curve with the value of observed and estimated richness (the standard function remained, with it being twice the sample size) (Chao et al., 2014). This analysis also calculates the index of Chao’s richness which is an asymptote analysis (Hsieh et al., 2016). To evaluate whether the anuran taxocenoses were well represented by the sampling effort in all localities, the sample completeness curves analysis was performed using the iNEXT package (Hsieh et al., 2016) in R environment (R Core Team, 2020).

The LCBD (Local Contribution of Beta Diversity – comparative indicators of the ecological uniqueness of the site) and SCBD (Species contribution of Beta Diversity – associated to degree of abundance, occupancy, niche position, niche breadth and species traits) (Heino &
Table 1. List of species with their respective abundance values of anuran taxocenoses sampled in four studied localities: BR-470 highway between Ilhota and Indaiá municipalities (BR-470), Santa Catarina state; Angelina and Major Gercino municipalities (MGAN), Santa Catarina state; SC-370 highway between Curitiba and Mandirituba municipalities (BR-116), Paraná state.

Family	Taxon	BR-470	MGAN	SC-370	BR-116
Family Brachycephalidae (2)	Ichnocnema hensoldi (Peters, 1870)	0	1	1	4
	Ichnocnema manciniho (Garcia, 1996)	0	1	0	0
Family Bufonidae (2)	Rhinella aber (Baldissera, Caramaschi & Haddad, 2004)	9	2	0	5
	Rhinella xerica (Spix, 1824)	1	3	12	4
Family Centrolenidae (1)	Vitranura ununusrospa (Müller, 1924)	0	10	3	4
Family Cycloramphidae (1)	Cycloramphus bolitoglossus (Werner, 1897)	0	0	0	1
Family Craugastoridae (1)	Haddadus innotatus (Spix, 1824)	0	1	0	0
Family Hemiphractidae (1)	Fritsiana mitus Walker, Wachlewski, Nogueira da Costa, Nogueira-Costa, Garcia & Haddad, 2018	2	15	0	0
Family Hyliidae (22)	Aplastodiscus alboscognus (Lutz & Lutz, 1938)	0	0	0	13
	Aplastodiscus pervinidis Lutz, 1950	0	0	2	9
	Boana albopunctata (Spix, 1824)	0	0	0	16
	Boana bischoffii (Boulenger, 1887)	10	10	12	17
	Boana faber (Wedd-Neuwall, 1821)	9	17	7	3
	Boana gemerleri (Boulenger, 1886)	16	0	0	0
	Boana joaquini (Lutz, 1968)	0	0	5	0
	Boana prasina (Burmeister, 1856)	0	0	0	5
	Bokermannohyla circumdata (Cope, 1871)	0	0	0	3
	Bokermannohyla hylax (Heyer, 1985)	0	1	0	0
	Dendropsophus micros (Peters, 1872)	15	20	0	3
	Dendropsophus minutus (Peters, 1872)	8	20	39	21
	Dendropsophus nadheremi (Lutz & Bokermann, 1963)	0	5	31	10
	Dendropsophus sandornii (Schmidt, 1944)	0	0	0	29
	Dendropsophus werneri (Cochran, 1952)	20	20	0	0

Grönroos, 2016) were used to compare the species composition of four sampled taxocenoses using the data of richness and abundance with the function beta.div (Legendre & Cáceres, 2013). In this analysis, the abundance data was transformed by the Hellinger method (Legendre & Legendre, 2012).

These four taxocenoses were compared with other taxocenoses of the southern region of Brazil (Machado et al., 1999; Bernarde & Machado, 2000; Machado & Bernarde, 2002; Conte & Machado, 2005; Conte & Rossa-Feres, 2006; Machado & Bernarde, 2006; Conte & Rossa-Feres, 2007; Deiques et al., 2007; Colombo et al., 2008; Hartmann et al., 2008; Lucas & Forte, 2008; Armstrong & Conte, 2010; Kwet et al., 2010; Iop et al., 2011; Lucas & Marocco, 2011; Garey & Hartmann, 2012; Giasson, 2012; Bastiani & Lucas, 2013; Bolzan et al., 2014; Crivellari et al., 2014; Moreira et al., 2014; Santos & Conte, 2014; Wachlevski & Rocha, 2014; Nazaretti & Conte, 2015; Bolzan et al., 2016; Leivas & Hiert, 2016; Santos-Pereira et al., 2016; Ceron et al., 2017; De Lucca et al., 2017) to observe how are they grouped only using the data on richness (presence-absence). Only the species which have been identified to a specific level were used to compose the richness of the aforementioned studies, therefore the unidentified species affinis and confer were excluded from the analysis. The βjac (overall beta diversity – Jaccard dissimilarity) was calculated using betapart function (Baselga, 2010). In this analysis the beta diversity is partitioned in two components: turnover (βjtu) and nestedness (βjne). In the beta partitioning analysis these two components will give the proportional information of species substitution (turnover) and species loss (nestedness) of the overall beta diversity (βjac) and identify which component is predominant (Baselga, 2010). A cluster analysis was made only using the βjac index with the same dissimilarity matrix from beta partitioning analysis, adopting as a criterion a dissimilarity value of 40%. This analysis was performed with the MASS package (Venables & Ripley, 2002) in R (R Core Team, 2020). The Mantel test was used to identify the influence of geographical distances in species composition, using a dissimilarity matrix of geographical distances (euclidean distances), with latitudinal and longitudinal coordinates of each location and with the dissimilarity matrices (βjac, βjtu, βjne) from the beta partitioning analysis. This analysis was performed with the vegan and MASS packages.
A total of 46 species of anurans were registered in this study: BR-116 (30 spp., 65% of the total), MGAN (29 spp., 63%), BR-470 (22 spp., 47%) and SC-370 (18 spp., 39%) (Table 1). The sample completeness curves showed the diversity of anuran taxocenoses were well represented by the sampling effort (Fig. 3).

The rarefaction/extrapolation curves showed a difference of richness within the anuran taxocenoses of BR-116 and MGAN in relation of the anuran taxocenoses of BR-470 and SC-370, both on interpolation and on extrapolation (Fig. 4). Only the MGAN and BR-116 taxocenoses differed in the values of Chao’s richness in the asymptotic analysis (Table 2).

The species composition was not different among the four taxocenoses by LCBD index (Table 3). The sum of squares (total SS) was of 1,41 and the beta diversity was of 0,47 (total BD). The eight species that better contributed to the beta diversity with the biggest SCBD scores were: *Dendropsophus sanborni* (0,062), *D. nahdereri* (0,061), *Physalaemus aff. gracilis* (0,054), *Adenomera nana* (0,049), *A. araucaria* (0,048), *Scinax imbegue* (0,047), *S. tymbamirim* (0,047) and *D. werneri* (0,046) (see Appendix 4 for all species).

The overall beta diversity for all taxocenoses from the southern region of Brazil was 0,962 (βjac) and the turnover component (βtu = 0,949) was predominant to nestedness component (βjne = 0,012). The species composition is influenced by the geographical distances (Mantel – r = 0,669, p < 0,01) as well as the turnover component (Mantel – r = 0,636, p < 0,01), but not the nestedness component (Mantel – r = -0,264, p = 1,00).
Geral of Santa Catarina and Paraná (RN Salto Morato, Morretes/PR, SC-370, Siderópolis-SC, BR-470, PE da Serra Furada, PE Guaratêla, PE Vila Velha, PE Caçambú), among the grassland areas of Paraná and the first paranaense plateau (upper Tibagi river, Palmeira/PR, PE Guartelá, PE Caxambú, PE Vila Velha, PE Caçambú, PE Guaratêla, PE Palmeira-PR, upper Tibagi river, Serra Guaúcha, PN Aparados da Serra, RV Silvestre de Palmas, PE Serra do Tabuleiro, MGAN), among the western Santa Catarina, Paraná and Rio Grande Do Sul areas (PE Turvo, PN das Araucárias, PE Santa-Clara, UHE Quebra-Queixo, FLONA Chapecó, Rio Ipanema) and among the medium and low Tibagi river areas (Ribeirão Claro/PR, medium Tibagi river, PE Rio Guarani, low Tibagi river, medium Tibagi river) (Fig. 5).

DISCUSSION

BR-116 and MGAN presented the highest richness, and BR-470 and SC-370 the lowest richness among the study areas. All sampled breeding sites at MGAN were at small rural properties, away from large urban centers and highways, in a countryside region near the Serra do Tabuleiro in the Santa Catarina state. Most of the sampled breeding sites were in well preserved permanent preservation areas (APP) of a small hydropower plant reservoir between Major Gercino and Angelina municipalities. The other areas are urban centers and highways with medium to great flow of vehicles within these three areas, with many commercial, industrial and agricultural properties. The fieldworks in these areas were conducted along the highways. The high richness of anuran species at BR-116 might be explained by many breeding sites being a little farther away from the highway, in forest environments or on the edge of well preserved fragments. The other two areas (BR-470 and SC-370) have less species richness with similar environmental impacts (many disturbed open land environments). Nevertheless, in remark of the LCBD among these four taxocenoses, none of them have a unique species composition (Legendre & Cáceres, 2013).

The species that better contributed to the beta diversity (SCBD) are less generalist and present narrow niches (Heino & Grönroos, 2016). Taking that into account, the SCBD analysis for the four studied taxocenoses showed some interesting ecological aspects. First in relation to the species distribution, where *Scinax imbegue*, *S. tymbamirim* and *Dendropsophus werneri* are distributed in lowlands and coastal regions of Serra do Mar in Atlantic Forest (Pombal Jr. & Bastos, 1998; Nunes et al., 2012).
These three species were registered with higher abundance at the breeding sites of BR-470 and MGAN (Table 1). *D. nahdereri* and *Physalaemus aff. gracilis* are distributed in highlands and mountain regions of subtropical Atlantic Forest (Nascimento et al., 2005; Conte et al., 2010; Kwet et al., 2010). These two species were registered with higher abundance at the breeding sites of SC-370 and BR-116 (Table 1). *D. sanborni* is distributed in highlands and grassland vegetation from the central-west to southern Brazil (Gavira et al., 2016). This species was registered with higher abundance at the breeding sites of BR-116 (Table 1). However, these six species are characterized by their tendency to occupy open land or edge forest breeding sites. *Adenomera araucaria* and *A. nana* are distributed in lowlands and highlands of subtropical Atlantic Forest and found only in forest breeding sites, even in urban forest fragments (Kwet & Angulo, 2002; Conte et al., 2010), due to their terrestrial reproduction mode (Heyer, 1973; Kwet et al., 2010). The two *Adenomera* species were registered with higher abundance at forest fragments of MGAN and BR-470 (Table 1).

The influence of geographic distances in anuran species composition was also evidenced in other studies (Bertoluci et al., 2007; Lucas & Fortes, 2008; Iop et al., 2011; Almeida-Gomes & Rocha, 2014; Bolzan et al., 2014) and the turnover is the major component that explains the differences of species composition of subtropical Atlantic Forest. The association between the turnover and geographical distances may be related to the differences in climate, phytophysionomy and landscape (Vasconcelos et al., 2014), in which the groups of cluster analysis have some correlation with the sub-regions of subtropical Atlantic Forest (Garcia et al., 2007).

The few similarities within species composition of the areas studied may be also associated to habitat quality. The BR-116 and MGAN anuran taxocenoses are similar to two other taxocenoses within well preserved localities: Parque Estadual da Serra do Tabuleiro and Tijucas do Sul/PR, while the BR-470 anuran taxocenose (northern region of Santa Catarina state) is grouped with the anuran taxocenose of Siderópolis (southern region of Santa Catarina state). There is coal mining in the Siderópolis region, which is an activity that negatively affects the environment (De Lucca et al., 2017). Thus, this area is grouped, but not similar to the impacted area and the differences of species composition might be related to the effect of environmental impacts.

CONCLUSIONS

The subtropical anuran taxocenoses differences on species composition seem associated to changes of phytophysionomy, landscape and geographic distances. The highest richness at BR-116 and MGAN may relate to habitats of higher quality, as these taxocenoses are similar to other well preserved areas from the subtropical Atlantic Forest. The lowest richness found in the BR-470 and SC-370 anuran taxocenoses may be related to low habitat quality. Regardless, the data gathered points to the importance of preservation and maintenance of forest fragments, even in agricultural and urban environments due to the possibility that these fragments may hold valuable biodiversity.

ACKNOWLEDGEMENTS

For the opportunity to carry out theses studies, I am grateful André Felipe Testoni, Célio Testoni, Diego Pérez and Josias Alan Rezini; to the IBAMA for the collecting permits (№ 233/2010, № 80/2010-NUF/ SC, № 173/2010-NUF/SC, № 05/2012); for helping during the field works, I am grateful to Josias Alan Rezini, Fernando Venâncio, Beatrice Stein, Carlos Alberto Borchardt-Júnior, Danilo Capela and Guilherme Grazzini; to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq processes 167888/2014-5); and for the English revision, I am grateful to Camila Tortul Ferriolli.

REFERENCES

Ab’saber, A.N. 1977. Os domínios morfoclimáticos na América do Sul. Geomorfologia, São Paulo, 52: 1-23.

Almeida-Gomes, M. & Rocha, C.F.D. 2014. Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology, 29(1): 29-40. DOI

Armstrong, C.G. & Conte, C.E. 2010. Taxocenose de anuros (Amphibia: Anura) em uma área de Floresta Ombrófila Densa no sul do Brasil. Biota Neotropica, 10(1): 39-46. DOI

Bascella, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19: 134-143.

Bastiani, V.I.M.D. & Lucas, E.M. 2013. Anuran diversity (Amphibia, Anura) in a Seasonal Forest fragment in southern Brazil. Biota Neotropica, 13: 255-264. DOI

Bernarde, P.S. & Machado, R.A. 2000. Riquezas de espécies, ambientes de reprodução e temporada da vocalização anurofauna em três barras do Paraná, Brasil (Amphibia: Anura). Cadernos de Herpetologia, 14(2): 93-104.

Bertoluci, J.; Brassaloti, R.A.; Ribeiro-Júnior, J.W.; Vilela, V.M.D.F.N. & Sawakuchi, H.O. 2007. Species composition and similarities among anuran assemblages of forest sites in southeastern Brazil. Scientia Agricola, 64(4): 364-374. DOI

Bolzan, A.M.R.; Hartmann, P.A. & Hartmann, M.T. 2014. Diversidade de anfíbios anuros de uma área de Pampa no município de São Gabriel, Rio Grande do Sul, Brasil. Iheringia, Série Zoologia, 104(3): 277-283. DOI

Bolzan, A.M.R.; Saccoll, S.A. & Santos, T.G.D. 2016. Composition and diversity of anurans in the largest conservation unit in Pampa biome, Brazil. Biota Neotropica, 16(2): e20150113. DOI

Ceron, K.; Lucas, E.M. & Zacche, J.J. 2017. Anurans of Parque Estadual da Serra Furada, Santa Catarina, Southern Brazil. Herpetology Notes, 10: 287-296. http://www biotaxa org/hn/article/view/23873.

Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K. & Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1): 45-67.

Colombo, P.; Kindel, A.; Vincoprova, G. & Krause, L. 2008. Composição e ameaças à conservação dos anfíbios anuros do Parque Estadual de
Nazaretti, E.M. & Conte, C.E. 2015. Anurofauna an altered remant of mesophytic semideciduous forest the banks of the Paranapanema River. *Iheringia, Série Zoologia*, 105(4): 420-429. DOI

Nunes, I.; Kwet, A. & Pombal, J.P. 2012. Taxonomic Revision of the Scinax alter Species Complex (Anura: Hylidae). *Copeia*, 2012(3): 554-569.

Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. & Wagner, H. 2019. vegan: Community Ecology Package. *R package version 2.5-6. https://CRAN.R-project.org/package=vegan.*

Pombal Jr., J.P. & Bastos, R.P. 1998. Nova espécie de *Hyla* Laurenti, 1768 do centro-oeste brasileiro e a posição taxonômica de *H. microcephala werneri* Cochran, 1952 e *H. microcephala meridiana* B. Lutz, 1952 (*Anura, Hylidae*). *Boletim do Museu Nacional, série Zoologia*, 390: 1-13.

R Core Team. 2020. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J. & Hirota, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. *Biological Conservation*, 142(6): 1141-1153.

Santos, E.J. & Conte, C.E. 2014. Richness and temporal distribution of anurans (*Amphibia: Anura*) in a Mixed Ombrophile Forest fragment. *Iheringia, Série Zoologia*, 104(3): 323-333. DOI

Santos-Pereira, M.; Milani, D.; Barata-Bittencourt, L.F.; Iapp, T.M. & Rocha, C.F.D. 2016. Anuran species of the Salto Morato Nature Reserve in Paraná, southern Brazil: review of the species list. *Check List*, 12(3): 1-11. DOI

Sazima, I. & Eterovick, P.C. 2000. Structure of an anuran community in a montane meadow in southeastern Brazil: effects of seasonality, habitat, and predation. *Amphibia-Reptilia*, 21(4): 439-461.

Scott Jr., N.J. & Woodward, B.D. 1994. Surveys at Breeding Sites. *In:* Heyer, W.R.; Donnelly, M.A.; McIarnid, R.W.; Hayek, L.A.C.; Foster, M.S. (Eds.). *Measuring and monitoring biological diversity standard methods for amphibians*. Washington, D.C., Smithsonian Institution Press. p. 118-125.

Segalla, M.V.; Caramaschi, U.; Cruz, C.A.G.; Garcia, P.C.A.; Grant, T.; Haddad, C.F.B.; Santana, D.J.; Toledo, L.F.; Lagone, J.A. 2019. Brazilian amphibians: list of species. *Herpetologia Brasileira*, 8: 65-96.

Silva, F.R.; Candeia, C.P. & Rossa-Feres, D.C. 2012a. Dependence of anuran diversity on environmental descriptors in farmland ponds. *Biodiversity and Conservation*, 21: 1411-1424.

Silva, F.R.; Oliveira, T.A.L.; Gibbs, J.P. & Rossa-Feres, D.C. 2012b. An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil. *Landscape Ecology*, 27: 87-96.

Silvano, D.L.; Colli, G.R.; Dino, M.B.O.; Pimenta, B.V.S. & Wiederhecker, H.C. 2003. Anfíbios e répteis. *In:* Rambaldi, D.M.; Oliveira, D.A.S. (Eds.). *Fragmentação de ecossistemas: causas, efeitos sobre a biodiversidade e recomendações de políticas públicas*. Brasília, Ministério do Meio Ambiente/Secretaria de Biodiversidade e Florestas. p. 183-200.

Vasconcelos, T.S.; Prado, V.H.M.; Silva, F.R. & Haddad, C.F.B. 2014. Biogeographic Distribution Patterns and Their Correlates in the Diverse Frog Fauna of the Atlantic Forest Hotspot. *PloSOne*, 9(8): e104130. DOI

Vasconcelos, T.S.; Santos, T.G.; Rossa-Feres, D.C. & Haddad, C.F.B. 2009. Influence of the environmental heterogeneity of breeding ponds on anuran assemblages from southeastern Brazil. *Canadian Journal of Zoology*, 87(8): 699-707. DOI

Veloso, H.P.; Oliveira-Filho, L.D.; Vaz, A.M.S.F.; Lima, M.P.M.; Marquete, R. & Brazao, J.E.M. 2012. *Manual técnico da vegetação brasileira*. Rio de Janeiro, IBGE.

Venables, W.N. & Ripley, B.D. 2002. *Modern Applied Statistics with S*. New York, Springer.

Verdade, Y.K.; Valduzo, P.H.; Carnaval, A.C.; Schiesari, L.; Toledo, L.F.; Mott, T.; Andrade, G.V.; Eterovick, P.C.; Menin, M.; Pimenta, B.V.S.; Nogueira, C.; Lisboa, C.S.; Paula, C.D. & Silvano, D.L. 2012. A leap further: the Brazilian Amphibian Conservation Action Plan. *Alytes*, 29(1-4): 28-43.

Wachlevski, M. & Rocha, C.F.D. 2014. Anfíbios anuros em uma área de Mata Atlântica da Serra do Tabuleiro, Santa Catarina. *Biotemas*, 27(2): 97-107. DOI

Young, B.E.; Lips, K.R.; Reaser, J.K.; Ibáñez, R.; Salas, A.W.; Cedeño, J.R.; Coloma, L.A.; Ron, S.; La Marca, E.; Meyer, J.R.; Muñoz, A.; Bolaños, F.; Chaves, G. & Romo, D. 2001. Population declines and priorities for Amphibian conservation in Latin America. *Conservation Biology*, 15(5): 1213-1223.
APPENDIX 1

Habitat and vegetation characterization for the sampled points for each studied locality: BR-470 – BR-470 highway between Ilhota and Indaial municipalities, Santa Catarina state; MGAN – between Angelina and Major Gercino municipalities, Santa Catarina state; SC-370 – SC-370 highway in Urubici municipality, Santa Catarina state; and BR-116 – BR-116 highway between Curitiba and Mandirituba municipalities, Paraná state.

Locality	Site	Coordinates	Habitat	Aquatic Environment	Vegetation
BR-470	BR01	26°50'16.14", 48°46'54.42" W	forest edge	permanent lentic	taboos, grass and shrubs
	BR02	26°50'16.50", 48°47'17.04" W	forest edge	permanent lentic	grass and shrubs
	BR03	26°50'13.90", 48°47'18.43" W	forest	permanent lotic	arboreal and shrubs
	BR04	26°50'21.96", 48°47'21.00" W	open area	permanent lentic	grass
	BR05	26°50'16.74", 48°47'18.72" W	open area	permanent lentic	grass
	BR06	26°50'34.74", 48°47'42.96" W	open area	permanent lentic	grass and taboos
	BR07	26°52'43.44", 48°50'05.10" W	open area	permanent lentic	rice paddies
	BR08	26°53'26.28", 48°53'03.90" W	open area	temporary lentic	no vegetation
	BR09	26°51'52.68", 49°02'38.64" W	forest edge	permanent lentic	arboreal, shrub and grass
	BR10	26°51'57.66", 49°02'32.94" W	open area	permanent lentic	shrub and grass
	BR11	26°52'00.18", 49°02'32.46" W	forest edge	permanent lentic	arboreal, shrub and grass
	BR12	26°52'34.56", 49°10'40.56" W	forest edge	permanent lentic	arboreal, shrub and grass
	BR13	26°52'33.18", 49°10'39.24" W	forest edge	permanent lentic	arboreal, shrub and grass
	BR14	26°52'32.70", 49°10'42.00" W	forest interior	permanent lentic	arboreal, shrub, grass and aquatic plants
	BR15	26°56'18.61", 49°17'28.53" W	forest interior	permanent lentic	arboreal and shrubs
	BR16	26°56'19.68", 49°17'30.14" W	open area	permanent lentic	shrub and grass
MGAN	MA01	27°28'26.46", 48°58'26.64" W	open area	permanent lentic	shrub and grass
	MA02	27°28'24.90", 48°58'26.40" W	forest edge	permanent lentic	arboreal, shrub and grass
	MA03	27°28'23.64", 48°58'26.88" W	open area	temporary lentic	shrub and grass
	MA04	27°28'24.30", 48°58'27.78" W	forest interior	permanent lotic	arboreal and shrubs
	MA05	27°28'19.38", 48°58'25.96" W	forest edge	temporary lentic	shrub and grass
	MA06	27°28'12.90", 48°58'27.24" W	forest interior	temporary lentic	arboreal and shrubs
	MA07	27°27'49.68", 48°58'31.74" W	forest edge	temporary lentic	shrub, grass and taboos
	MA08	27°27'60.00", 48°58'41.22" W	forest interior	permanent lentic	shrub and grass
	MA09	27°27'55.50", 48°58'54.06" W	forest edge	permanent lentic	arboreal and shrubs
	MA10	27°27'47.52", 48°58'46.02" W	forest edge	permanent lentic	shrub and grass
	MA11	27°27'23.22", 48°59'24.96" W	forest interior	permanent lentic	arboreal and shrubs
	MA12	27°26'24.24", 48°58'45.96" W	forest edge	permanent lentic	arboreal and shrubs
	MA13	27°27'21.90", 48°58'52.50" W	forest edge	temporary lentic	grass between rocks
SC-370	SC01	28°00'38.88", 49°32'00.36" W	open area	permanent lentic	grass
	SC02	28°00'37.86", 49°32'01.38" W	open area	temporary lentic	grass
	SC03	28°00'36.78", 49°32'09.34" W	forest interior	permanent lotic	arboreal and shrubs
	SC04	28°00'37.86", 49°32'10.92" W	forest edge	permanent lentic	arboreal, shrub and grass
	SC05	28°00'43.74", 49°31'59.32" W	forest edge	permanent lentic	arboreal and shrubs
	SC06	28°02'22.47", 49°28'32.86" W	forest edge	permanent lentic	arboreal and shrubs
	SC07	28°02'23.94", 49°28'14.82" W	forest interior	temporary lentic	shrub and grass
	SC08	28°02'23.70", 49°28'11.64" W	forest edge	permanent lentic	arboreal and shrubs
	SC09	28°02'54.72", 49°27'57.38" W	open area	temporary lentic	shrub and grass
	SC10	28°02'57.36", 49°27'35.04" W	open area	temporary lentic	shrub and grass
	SC11	28°03'12.90", 49°25'49.80" W	open area	temporary lentic	grass
	SC12	28°03'12.52", 49°25'27.90" W	open area	permanent lentic	grass
	SC13	28°03'24.78", 49°25'28.44" W	open area	permanent lentic	shrub and grass
	SC14	28°03'26.10", 49°25'23.82" W	open area	temporary lentic	shrub and grass
BR-116	FZ01	25°56'04.35", 49°19'13.12" W	forest edge	permanent lentic	arboreal, shrub and grass
	FZ02	25°55'53.03", 49°18'36.68" W	open area	temporary lentic	shrub and grass
	FZ03	25°55'53.34", 49°18'36.65" W	forest interior	permanent lotic	arboreal and shrubs
	FZ04	25°57'03.31", 49°18'59.51" W	open area	permanent lentic	grass and aquatic plants
	FZ05	25°57'10.24", 49°18'57.33" W	open area	permanent lentic	grass and aquatic plants
	FZ06	25°56'32.88", 49°19'33.48" W	forest edge	permanent lentic	arboreal, shrub and grass
	FZ07	25°57'00.20", 49°19'08.01" W	forest edge	permanent lentic	arboreal, shrub and grass
	FZ08	25°43'06.00", 49°19'03.63" W	open area	permanent lentic	shrub and grass
	FZ09	25°43'10.00", 49°19'00.31" W	forest interior	permanent lotic	arboreal and shrubs
	FZ10	25°44'03.62", 49°19'00.47" W	open area	permanent lentic	shrub and grass
	FZ11	25°44'49.66", 49°19'07.01" W	open area	permanent lentic	shrub e graminea
	FZ12	25°44'48.29", 49°19'13.45" W	forest edge	permanent lentic	arboreal, shrub and grass
	FZ13	25°44'53.61", 49°19'23.05" W	forest interior	permanent lentic	arboreal, shrub and taquaral
APPENDIX 2

Sampling effort in each studied locality: BR-470 – BR-470 highway between Ilhota and Indaial municipalities, Santa Catarina state; MGAN – between Angelina and Major Gercino municipalities, Santa Catarina state; SC-370 – SC-370 highway in Urubici municipality, Santa Catarina state; and BR-116 – BR-116 highway between Curitiba and Mandirituba municipalities, Paraná state.

Locality	Data	Number of campaigns	Sampling effort
BR-470	2010	4	80 hours
MGAN	2010-2011	4	80 hours
SC-370	2010-2011	3	60 hours
BR-116	2012-2013	8	160 hours

APPENDIX 3

Voucher numbers of collected anuran specimens from MGAN, BR-470, BR-116 and SC-370.

APPENDIX 4

Species contribution of Beta Diversity (SCBD) of anuran species of four sampled taxocenoses: BR-470 – BR-470 highway between Ilhota and Indaial municipalities, Santa Catarina state; MGAN – between Angelina and Major Gercino municipalities, Santa Catarina state; SC-370 – SC-370 highway in Urubici municipality, Santa Catarina state; and BR-116 – BR-116 highway between Curitiba and Mandirituba municipalities, Paraná state.