On gauge invariant regularization of fermion currents. *

R.E.Gamboa Saraví1 M.A.Muschietti2 J.E.Solomin2

Facultad de Ciencias Exactas, UNLP
1Departamento de Física
2Departamento de Matemática

Abstract

We compare Schwinger and complex powers methods to construct regularized fermion currents. We show that although both of them are gauge invariant they not always yield the same result.

e-mail address: quique@dartagnan.fisica.unlp.edu.ar

*Partially supported by CONICET, Argentina.
A difficulty specific to quantum field theories is the occurrence of infinities and hence the necessity of regularizing and renormalizing the theory. Whenever a field theory possesses a classical symmetry—and hence a conserved current—it is desirable to have at hand regularization procedures preserving that symmetry.1

The calculation of vacuum expectation values of vector currents involves the evaluation of the Green function for the particle fields at the diagonal, so a regularization is required. In a classical paper J. Schwinger introduced a point splitting method to regularize fermion currents maintaining gauge symmetry on the quantum level \[1\].

More recently, the so called ζ-function method, based on complex powers of pseudodifferential operators \[2\], has proved to be a very valuable gauge invariant regularizing tool (see for example \[3\]). Some time ago, we used it to get fermion currents in 2 and 3 dimensional models \[4\].

It is the aim of this work to compare the results obtained by the above mentioned methods.

Let $\mathcal{D} = i \partial + A$ be an Euclidean Dirac operator coupled with a gauge field A defined on an n-dimensional compact boundaryless manifold M. The operator \mathcal{D} is elliptic and, since its principal symbol has only real eigenvalues, it fulfills the Agmon cone condition \[2\]. Thus, the complex powers \mathcal{D}^s can be constructed following Seeley \[2\]. For $\text{Re} \ s < 0$ we can write

$$\mathcal{D}^s := \frac{i}{2\pi} \int_{\Gamma} \lambda^s (\mathcal{D} - \lambda)^{-1} d\lambda,$$

where Γ is a contour enclosing the spectrum of \mathcal{D}, and we define \mathcal{D}^s for $\text{Re} \ s \geq 0$ by using $\mathcal{D}^{s+1} = \mathcal{D}^s \circ \mathcal{D}$.

For each $s \in \mathbb{C}$, \mathcal{D}^s turns out to be a pseudodifferential operator of order s and so, if $\text{Re} \ s < -n$, its Schwartz kernel $K_s(x, y)$ is a continuous function. The evaluation at the diagonal $x = y$ of this kernel, $K_s(x, x)$, admits a meromorphic extension to the whole complex s-plane \mathbb{C}, with at most simple poles at $s \in \mathbb{Z}^-$. This extension will be also denoted by $K_s(x, x)$.

Since $K_{-1}(x, y)$ coincides with the Green function for $x \neq y$, the finite part of $K_s(x, x)$ at $s = -1$ can be used to obtain gauge invariant regularized

1As it is well known, not always it is possible to preserve all the classical symmetries present simultaneously and anomalies can arise.
fermion currents \[4\]:

\[J_\mu(x) = -\text{tr} \gamma_\mu \left(\text{FP} K_s(x,x) \right) \] \hfill (2)

In order to compare this regularizing procedure with Schwinger’s one, it is convenient to consider the kernels \(K_s(x,x) \) in the framework developed in \[5\]. Since we are interested in studying the behaviour of these kernels for \(s \to -1 \), we shall carry out our analysis just for \(-1 \leq \text{Re} \, s < 0\).

By considering the finite expansion (see for instance \[6\])

\[\sigma(\mathcal{D}^s) = \sum_{\ell=0}^{N} c_{s-\ell}(x,\xi) + r_N(x,\xi,s), \] \hfill (3)

with \(N = n - 1 \), of the symbol of the operator \(\mathcal{D}^s \), with \(c_{s-\ell}(x,\xi) \) positively homogeneous of degree \(s-\ell \) for \(|\xi| \geq 1 \), we can write, for \(s \neq -1 \) the Schwartz kernel of this operator as

\[K_s(x,y) = \sum_{\ell=0}^{N} H_{-n-s+\ell}(x,u) + R_N(x,u,s), \] \hfill (4)

where \(H_{-n-s+\ell}(x,u) \) is the Fourier transform in the variable \(\xi \) of \(\tilde{c}_{s-\ell}(x,\xi) \), the homogeneous extension of \(c_{s-\ell}(x,\xi) \), evaluated at \(u = x - y \), and consequently \(u \)-homogeneous of degree \(-n - s + \ell \) and \(R_N(x,u,s) \) is that of \(r_N(x,\xi,s) - \sum_{\ell=0}^{N} (\tilde{c}_{s-\ell} - c_{s-\ell})(x,\xi) \). Note that \((\tilde{c}_{s-\ell} - c_{s-\ell})(x,\xi) \equiv 0 \) for \(|\xi| \geq 1 \).

Now, for \(u \neq 0 \), simple poles can arise at \(s = -1 \) in \(H_{-n-s+N} \) and in \(R_N(x,u,s) \). Since \(K_s(x,x-u) \) is holomorphic in the variable \(s \) for \(u \neq 0 \), these poles cancel each other. In fact, they are just due to the singularity of \(\tilde{c}_{s-N}(x,\xi) \) at \(\xi = 0 \) and then

\[\text{res}_{s=-1} R_N(x,u,s) = -\text{res}_{s=-1} H_{-n-s+N}(x,u). \] \hfill (5)

Thus, for \(u \neq 0 \), we have for \(G(x,y) \), the Green function of \(\mathcal{D} \),

\[G(x,y) = \lim_{s \to -1} K_s(x,y) = \sum_{\ell=0}^{N} G_{-n+1+\ell}(x,u) + R_G(x,u), \] \hfill (6)
with \(G_{-n+1+\ell} (x, u) = \lim_{s \to -1} H_{-n-s+\ell} (x, u) \) for \(\ell < N \), \(G_{-n+1+N} (x, u) = \lim_{s \to -1} H_{-n-s+N} (x, u) \) and \(R_G(x, u) = \lim_{s \to -1} R_N(x, u, s) \).

Then, taking into account that, for \(s \neq -1 \), (see, for instance [5])

\[
K_s(x, x) = R_N(x, 0, s),
\]

we have

\[
\text{FP} K_s(x, x) = R_G(x, 0),
\]

On the other hand, the fermionic currents regularized according to Schwinger’s prescription are given by [1]

\[
J_\mu(x) = -\text{Sch-lim}_{y \to x} \left(\gamma_\mu G(x, y) e^{i \int_x^y A.dz} \right),
\]

where

\[
\int_x^y A.dz = - \int_0^1 A_\mu(x - tu) u_\mu dt.
\]

and Sch-lim (Schwinger limit) is the usual limit when it exists, it vanishes for \(u \)-homogeneous functions of negative degree and for logarithmic ones, and it coincides with the mean value at \(|u| = 1\) for \(u \)-homogeneous functions of zero degree. The exponential factor was introduced by Schwinger [1] in order to maintain gauge invariance.

From (2), (8) and (9) we see that both methods yield the same result for \(J_\mu \) if and only if

\[
\text{Sch-lim}_{y \to x} \left(\gamma_\mu \sum_{\ell=0}^N G_{-n+1+\ell} (x, u) e^{i \int_x^y A.dz} \right) = 0
\]

since, being \(R_G(x, u) \) continuous at \(x = y \),

\[
\text{Sch-lim}_{y \to x} \left(\gamma_\mu R_G(x, u) e^{i \int_x^y A.dz} \right) = \text{Sch-lim}_{y \to x} (\gamma_\mu R_G(x, u))
\]

\[
= \lim_{u \to 0} (\gamma_\mu R_G(x, u)) = \text{tr} \left(\gamma_\mu \text{FP} K_s(x, x) \right).
\]
Now, we shall see how this works in $n = 2, 3$ and 4. By computing the $G_{-n+1+\ell}(x, u)$'s we shall be able to establish when (11) holds and so, when both methods yield the same regularized currents.

In a local coordinate chart

$$\mathcal{D} = \gamma_\mu D_\mu = \gamma_\mu (i\partial_\mu + A_\mu),$$

where the algebra of the γ-matrices is

$$\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = \delta_{\mu\nu}. \quad (14)$$

Its symbol, $\sigma(\mathcal{D}; x, \xi)$, is

$$\sigma(\mathcal{D}; x, \xi) = -\xi - A(x). \quad (15)$$

The symbol of the resolvent, $\sigma((\mathcal{D} - \lambda)^{-1}; x, \xi)$, has an asymptotic expansion $\sum_\ell \tilde{C}_{-1-\ell}(x, \xi, \lambda)$, where $\tilde{C}_{-1-\ell}(x, \xi, \lambda)$ is homogeneous in ξ and λ of degree $-1 - \ell$. Then

$$(\mathcal{D} - \lambda)^{-1} \varphi(x) \sim \frac{1}{(2\pi)^{n/2}} \int \sum_\ell \tilde{C}_{-1-\ell}(x, \xi, \lambda) e^{i\xi x} \hat{\varphi}(\xi) \, d\lambda \, d\xi, \quad (16)$$

Applying $\mathcal{D} - \lambda$ to Equation (3) we get recursive equations for determining the $\tilde{C}_{-1-\ell}(x, \xi, \lambda)$'s:

$$-(\xi + \lambda) \tilde{C}_{-1}(x, \xi, \lambda) = 1,$$

$$\mathcal{D}_x \tilde{C}_{-1-\ell}(x, \xi, \lambda) - (\xi + \lambda) \tilde{C}_{-1-\ell-1}(x, \xi, \lambda) = 0. \quad (17)$$

Consequently,

$$\tilde{C}_{-1-\ell}(x, \xi, \lambda) = -\frac{(\xi - \lambda)}{\xi^2 - \lambda^2} \left[\mathcal{D}_x \frac{(\xi - \lambda)}{\xi^2 - \lambda^2} \right]^\ell. \quad (18)$$

Now, from equation (14),

$$H_{-n-s+\ell}(x, u) = \frac{1}{(2\pi)^n} \int \tilde{G}_{s-\ell}(x, \xi) e^{ix u} \, d\lambda \, d\xi$$

$$= \frac{i}{(2\pi)^{n+1}} \int \int_{\Gamma} \tilde{C}_{-1-\ell}(x, \xi, \lambda) \lambda^s e^{i\xi u} \, d\lambda \, d\xi, \quad (19)$$
where the contour Γ can be chosen as shown in Figure 1. Therefore,

$$H_{-n-s+\ell}(x, u)$$

$$\begin{align*}
&= \frac{-i}{(2\pi)^{n+1}} \int \int_{\Gamma} \frac{(g - \lambda)}{(\xi^2 - \lambda^2)^{\ell+1}} \left[\mathcal{D}_x (g - \lambda) \right]^\ell \lambda^s e^{i\xi \cdot u} \, d\lambda \, d\xi \\
&= \frac{-i}{(2\pi)^{n+1}} \int \int_{\Gamma} \frac{-i \, \phi_n - \lambda}{(\xi^2 - \lambda^2)^{\ell+1}} \left[\mathcal{D}_x (-i \, \phi_n - \lambda) \right]^\ell \lambda^s e^{i\xi \cdot u} \, d\lambda \, d\xi.
\end{align*}$$

(20)

Taking into account that, for any polynomial $P(\lambda)$,

$$\frac{i}{2\pi} \int_{\Gamma} \frac{\lambda^s P(\lambda)}{(\xi^2 - \lambda^2)^{\ell+1}} \, d\lambda$$

$$\begin{align*}
&= \frac{i}{2\pi} \left\{ \int_{\infty}^{0} \frac{(z \, e^{i\frac{\pi}{2}})^s \, P(iz)}{\xi^2 + z^2)^{\ell+1}} \, i \, dz + \int_{0}^{\infty} \frac{(z \, e^{-i\frac{3\pi}{2}})^s \, P(iz)}{(\xi^2 + z^2)^{\ell+1}} \, i \, dz \right\} \\
&= \frac{i}{\pi} \, e^{-iz} \sin(\pi s) \, P(-\partial_\alpha) \left[\int_{0}^{\infty} \frac{z^s \, e^{-iaz}}{\xi^2 + z^2)^{\ell+1}} \, dz \right]_{a=0},
\end{align*}$$

(21)
we can write
\[
H_{-n-s+\ell}(x, u) = \left(\frac{i}{\pi} \right) e^{-i\Phi s} \sin(\pi s)(-i \, \partial_u + \partial_a) \left[\mathcal{D}_x (\Phi u + \partial_a) \right]^\ell \\
\times \sum_{k=0}^{\ell+1} \frac{(-ia)^k}{k!} \int_0^\infty z^{s+k} \frac{1}{(2\pi)^n} \int_0^1 \frac{1}{(\zeta^2 + z^2)^{\ell+1}} e^{iz \xi u} \, d\xi \, dz \bigg|_{a=0}.
\]

(22)

Now, the integrals in (22) can be performed using the known identities
\[
\frac{1}{(2\pi)^n} \int (\zeta^2 + z^2)^s e^{iz \xi u} \, d\xi = \frac{2^{1+s}}{(2\pi)^{s+1}} \frac{1}{\Gamma(-s)} \left(\frac{z}{u} \right)^{s+1} K_{s+1}(zu)
\]

(23)

where \(K_{s+1} \) is a Bessel function (see for instance [8]), and
\[
\int_0^\infty z^\mu K_{s+1}(zu) \, dz = 2^{\mu-1} u^{-\mu-1} \Gamma \left(\frac{1+s+\mu}{2} \right) \Gamma \left(\frac{1+s-\mu}{2} \right),
\]

(24)

(see for example [7]).

Finally, we thus get the following expression for \(H_{-n-s+\ell}(x, u) \):
\[
H_{-n-s+\ell}(x, u) = \left(\frac{i}{\pi} \right) e^{-i\Phi s} \sin(\pi s) \sum_{k=0}^{\ell+1} \frac{(-ia)^k}{k!} \int_0^\infty z^{s+k} \frac{1}{(2\pi)^{s+1}} \frac{1}{\Gamma(-s)} \left(\frac{z}{u} \right)^{s+1} K_{s+1}(zu) \bigg|_{a=0}.
\]

(25)

The first four terms \(H_{-n-s+\ell}(x, u) \)'s, obtained from (25) after a straightforward but tedious computation just involving \(\gamma \)-matrices's algebra and derivatives, are shown in Table I. There, as usual, \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu = -i(D_\mu A_\nu - D_\nu A_\mu) \). It is worth noticing that the first terms of the exponential
\[
e^{-i \int_y^x A \cdot dz} = 1 + i(u.A) - \frac{(u.D)(u.A)}{2!} - \frac{i(u.D)(u.D)(u.A)}{3!} + \ldots
\]

(26)
Table 1: The first four $H_{n-s+i}(x,u)$'s.

$$H_{n-s}(x,u) = \frac{2^{s-1}}{\pi^{\frac{s}{2}+1}} e^{-i\frac{\pi}{2} s} \sin(\pi s)$$

$$\times \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s+1}{2} \right) u^{-n-s-1} \mu - \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s}{2} \right) u^{-n-s} \right]$$

$$H_{n-s+1}(x,u) = \frac{2^{s-1}}{\pi^{\frac{s}{2}+1}} e^{-i\frac{\pi}{2} s} \sin(\pi s)$$

$$\times \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s+1}{2} \right) u^{-n-s-1} \mu - \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s}{2} \right) u^{-n-s} \right] i(u.A)$$

$$H_{n-s+2}(x,u) = \frac{2^{s-1}}{\pi^{\frac{s}{2}+1}} e^{-i\frac{\pi}{2} s} \sin(\pi s)$$

$$\times \left\{ \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s+1}{2} \right) u^{-n-s-1} \mu - \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s}{2} \right) u^{-n-s} \right] \left(\frac{(u.D)(u.A)}{2!} \right) \right\}$$

$$+ \frac{i}{8} \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s-1}{2} \right) u^{-n-s+1} u_\rho \gamma_\mu \gamma_\rho \gamma_\nu + \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s-2}{2} \right) u^{-n-s+2} \gamma_\mu \gamma_\nu \right] F_{\mu\nu}$$

$$H_{n-s+3}(x,u) = \frac{2^{s-1}}{\pi^{\frac{s}{2}+1}} e^{-i\frac{\pi}{2} s} \sin(\pi s)$$

$$\times \left\{ \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s+1}{2} \right) u^{-n-s-1} \mu - \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s}{2} \right) u^{-n-s} \right] \left(-\frac{(u.D)(u.D)(u.A)}{6} \right) \right\}$$

$$+ \frac{i}{8} \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s-1}{2} \right) u^{-n-s+1} u_\rho \gamma_\mu \gamma_\rho \gamma_\nu + \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s-2}{2} \right) u^{-n-s+2} \gamma_\mu \gamma_\nu \right] F_{\mu\nu} i(u.A)$$

$$+ \frac{1}{24} \left[\Gamma \left(\frac{1+s}{2} \right) \Gamma \left(\frac{n+s-1}{2} \right) u^{-n-s+1} \left(-\frac{3}{2} u_\rho u_\sigma \gamma_\mu \gamma_\rho \gamma_\sigma \partial_\sigma F_{\mu\nu} - u_\mu u_\rho \gamma_\rho \partial_\nu F_{\mu\nu} + u_\mu u_\nu \gamma_\rho \partial_\rho F_{\mu\nu} \right) \right.$$

$$+ \left. \Gamma \left(\frac{2+s}{2} \right) \Gamma \left(\frac{n+s-2}{2} \right) u^{-n-s+2} \left(-\frac{3}{2} u_\mu \gamma_\nu \gamma_\rho \partial_\rho F_{\nu\mu} + u_\mu \partial_\nu F_{\nu\mu} \right) \right.$$
start to appear as an overall factor in the sum of the expansion (1) for $K_s(x, y)$.

Now, we shall compute the sum in expression (11) in order to see whether both methods coincide or not. Taking into account that $G_{-n+1+\ell} (x, u) = \lim_{s \to -1} H_{-n-s+\ell} (x, u)$ for $\ell < N$ and $G_{-n+1+N} (x, u) = \text{FP} H_{-n-s+N} (x, u)$, from Table I we get the following relations.

For $n = 2$, we have

$$\sum_{\ell=0}^{1} G_{-2+1+\ell} (x, u) e^{i\int_x^y A \, dz} = -\frac{i}{2\pi} \frac{\gamma\iota}{u^2} (1 + o(u^2)),$$ \hspace{1cm} (27)

so it is clear that (11) holds in this case.

For $n = 3$, we get

$$\sum_{\ell=0}^{2} G_{-3+1+\ell} (x, u) e^{i\int_x^y A \, dz} = -\frac{i}{4\pi} \frac{\gamma\iota}{u^3} (1 + o(u^3))$$

$$+ \frac{1}{16\pi} \left[\frac{u_\rho}{u} \gamma_\mu \gamma_\rho \gamma_\nu + \gamma_\mu \gamma_\nu \right] F_{\mu\nu},$$ \hspace{1cm} (28)

and so

$$\text{Sch-lim} \, \text{tr} \left(\gamma_\mu \sum_{\ell=0}^{2} G_{-3+1+\ell} (x, u) e^{i\int_x^y A \, dz} \right) = \frac{1}{16\pi} \text{tr} [\gamma_\mu \gamma_\rho \gamma_\nu] F_{\rho\nu},$$ \hspace{1cm} (29)

which vanishes or not depending on the γ's representation (it does not vanish if the 2×2 Pauli matrices are chosen).

Finally, we consider $n = 4$. In this case, a pole is present in $H_{-4-s+3}(x, u)$ at $s = -1$. After computing the finite part in order to get $G_{-4+1+3}(x, u)$ we have

$$\sum_{\ell=0}^{3} G_{-4+1+\ell} (x, u) e^{i\int_x^y A \, dz} = -\frac{i}{2\pi^2} \frac{\gamma\iota}{u^4} (1 + o(u^4))$$

$$+ \frac{1}{16\pi^2} \frac{u_\rho}{u^2} \gamma_\mu \gamma_\rho \gamma_\nu F_{\mu\nu} (1 + o(u^2))$$

$$- \frac{i}{48\pi^2} \frac{u_\rho u_\sigma}{u^2} (\gamma_\mu \gamma_\rho \gamma_\nu \partial_\sigma F_{\mu\nu} - \gamma_\rho \partial_\mu F_{\sigma\nu} + \gamma_\mu \partial_\mu F_{\sigma\nu})$$

$$- \frac{i}{24\pi^2} (\ln 2 - \ln u - \frac{i\pi}{2} + \Gamma'(1)) \gamma_\nu \partial_\mu F_{\mu\nu},$$ \hspace{1cm} (30)
which, in general, clearly yields a nonzero result for expression (11).

So, we see that although Schwinger and complex powers methods are both gauge invariant, they only coincide for the two-dimensional case. In 3 dimensions the coincidence depends on the representation chosen for the \(\gamma \)-matrices’s, while for \(n = 4 \) they in general disagree.

References

[1] Julian Schwinger, Phys. Rev. 128, 2425 (1962).
[2] R.T. Seeley, Am. J. Math. 91, 889 (1969).
[3] S. W. Hawking, Comm. Math. Phys. 55, 133 (1977).
[4] R.E. Gamboa Saraví, M.A. Muschietti, F.A. Schaposnik and J.E. Solomin, J. Math. Phys. 26, 2045 (1985).
[5] Maxim Kontsevich and Simeon Vishik, Determinants of elliptic pseudo-differential operators (1994).
[6] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin Heidelberg, (1987).
[7] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press Inc. (1980).
[8] I.M. Gel’fand and G.E. Shilov, Generalized functions. Academic Press Inc. (1964).