Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame

Fei Tenga and Bo Fengb,c

aDepartment of Physics and Astronomy, University of Utah,
115 South 1400 East, Salt Lake City, UT 84112, USA
bZhejiang Institute of Modern Physics, Department of Physics, Zhejiang University,
No. 38 Zheda Road, Hangzhou 310027, P.R. China
cCenter of Mathematical Science, Zhejiang University,
No. 38 Zheda Road, Hangzhou 310027, P.R. China.

E-mail: Fei.Teng@utah.edu, fengbo@zju.edu.cn

ABSTRACT: Using the Cachazo-He-Yuan (CHY) formalism, we prove a recursive expansion of tree level single trace Einstein-Yang-Mills (EYM) amplitudes with an arbitrary number of gluons and gravitons, which is valid for general spacetime dimensions and any helicity configurations. The recursion is written in terms of fewer-graviton EYM amplitudes and pure Yang-Mills (YM) amplitudes, which can be further carried out until we reach an expansion in terms of pure YM amplitudes in Kleiss-Kuijf (KK) basis. Our expansion then generates naturally a spanning tree structure rooted on gluons whose vertices are gravitons.

We further propose a set of graph theoretical rules based on spanning trees that evaluate directly the pure YM expansion coefficients.

KEYWORDS: Scattering Amplitudes
1 Introduction

Recently, non-trivial relations between Einstein-Yang-Mills (EYM) and pure Yang-Mills (YM) amplitudes\footnote{Unless otherwise noted, we only consider tree level single trace color ordered EYM amplitudes.} have been studied in several papers [1–8]. These works have more or less the same goal: to find the relations that expand the EYM amplitude with n gluons and m gravitons in terms of a linear sum of $(n + m)$-point pure YM amplitudes, although it is studied from different points of view. The starting point of our paper is the Cachazo-He-Yuan (CHY) formulation [9–14], which is the same as most of the above mentioned discussions. The key idea in this pursuit is to use various identities to reformulate the CHY integrand for EYM into an appropriate form. In particular, the cross-ratio identity and other off-shell identities of integrands [15, 16] play a very crucial rule\footnote{See Appendix of [17] for summary of these identities.}. With the help of these techniques, the explicit expansions of EYM amplitudes with up to three gravitons have been provided in [2]. Based on these explicit results, an recursive expansion for EYM amplitudes with an arbitrary number of gravitons has been conjectured in [8], using the gauge invariance principle advocated in [18–21].
One of the main subjects in this paper is to investigate directly in the CHY frame the aforementioned recursive structure proposed in [8]. Especially, we want to see how this structure appears at the level of CHY integrands. Intuitively, we believe that the CHY formalism sets one of the best frameworks to understand such a recursive structure. The reason is that the information related to graviton polarizations is packed into a Pfaffian, which can be recursively evaluated by the Laplace expansion: for a $2n \times 2n$ antisymmetric matrix $M = (m_{ij})$, its Pfaffian can be calculated by

$$\text{Pf}(M) = \sum_{j=1, j\neq i}^{2n} (-1)^{i+j+1+\theta(i-j)}m_{ij} \text{Pf}(M_{ij}^{ij}),$$

(1.1)

where $\theta(i-j)$ is a step function and M_{ij}^{ij} denotes the matrix obtained from M by deleting the i-th and j-th row and column. As we will see later in Section 3 and 4, such a Laplace expansion of the m-graviton EYM integrand always contains an $(m-1)$-graviton integrand, plus other algebraic minors. Then if we can prove that those additional algebraic minors reduce to a linear combination of pure YM and EYM integrands with $m-2$ gravitons at most, we essentially derive a recursive structure! The proof requires an elegant arrangement of the Laplace expansion for Pfaffian, and a proper use of various on-shell and off-shell identities, to be spelled out later. This technique can possibly be generalized to a variety of theories constructed in, for example, [13, 14, 22].

Knowing the recursive relation, we can perform the expansion of generic EYM amplitudes level by level in a well-controlled way. Eventually, this process leads to an expansion in terms of pure YM Kleiss-Kuijf (KK) basis [23]. Although the final result involves a huge number of terms, it is actually very well-organized and enjoys a very elegant spanning tree structure. We find that our recursive relation derives an algorithm that evaluates directly the spanning trees, yielding the expansion coefficients we want. Spanning tree structures have appeared in the literature before for EYM and gravity in four dimensional spacetime with the MHV helicity configuration [5, 24, 25]. In contrary, the algorithm we propose here works in arbitrary spacetime dimensions for EYM amplitudes with general helicity configurations. Since EYM amplitudes can be realized as a double copy of YM and YM-scalar, even at multitrace levels [14, 26, 27], a very promising application of this technique will be the direct evaluation of Bern-Carrasco-Johansson (BCJ) numerators [28, 29] for YM and YM-scalar.

The structure of this paper is the following. In Section 2, we give the essential background knowledge of the CHY formalism. The emphasis is put on the definition of the tree level YM and single trace EYM integrand. Then in Section 3 we give several explicit examples, up to four gravitons, on how to expand the EYM integrands, such that one can clearly observe the pattern and summarize it into a recursive relation for generic cases, which is then proved by induction in Section 4. We propose in Section 5 a set of graphic rules based on spanning trees to evaluate directly the expansion coefficients of EYM amplitudes in terms of pure YM ones in the KK basis [23]. These rules of course come from the recursive relation we proved in Section 4, which is demonstrated in Appendix A. Finally, we give the conclusion and discussion in Section 6.
2 CHY integrand for Yang-Mills, Einstein-Yang-Mills and gravity

The central object we are going to study is the tree-level single trace color ordered EYM amplitude with \(n\) gluons and \(m\) gravitons, denoted by

\[A_{n,m}^{\text{EYM}}(12\ldots n | h_{m} h_{m-1} \ldots h_{1}). \tag{2.1} \]

For convenience, we define the gluon and graviton set as

\[G = \{12\ldots n\} \quad H = \{h_{m} h_{m-1} \ldots h_{1}\}. \]

The CHY integrand for this amplitude is \[13\]

\[\mathcal{I}_{\text{EYM}}(12\ldots n | h_{m} h_{m-1} \ldots h_{1}) = \text{PT}(12\ldots n) \text{Pf}(\Psi_{H}) \text{Pf}'(\Psi), \tag{2.2} \]

where the Parke-Taylor factor:

\[\text{PT}(12\ldots n) = \frac{1}{\sigma_{12} \sigma_{23} \ldots \sigma_{n1}} \quad \sigma_{ij} \equiv \sigma_{i} - \sigma_{j} \tag{2.3} \]

encodes the color ordering of the gluons. The \(2n \times 2n\) matrix \(\Psi\) is defined as:

\[\Psi = \begin{pmatrix} A & -C^{T} \\ C & B \end{pmatrix}. \tag{2.4} \]

The three \(n \times n\) matrices \(A, B\) and \(C\) have the form:

\[
A_{ab} = \begin{cases}
\frac{k_{a} \cdot k_{b}}{\sigma_{ab}} & a \neq b \\
0 & a = b
\end{cases}, \quad
B_{ab} = \begin{cases}
\frac{\epsilon_{a} \cdot \epsilon_{b}}{\sigma_{ab}} & a \neq b \\
0 & a = b
\end{cases}, \quad
C_{ab} = \begin{cases}
\frac{\epsilon_{a} \cdot k_{b}}{\sigma_{ab}} & a \neq b \\
-\sum_{c \neq a} \frac{\epsilon_{a} \cdot k_{c}}{\sigma_{ac}} & a = b
\end{cases}, \tag{2.5} \]

where the indices \(a, b\) and \(c\) takes value within \(G \cup H\). The reduced Pfaffian of \(\Psi\) is defined as:

\[\text{Pf}'(\Psi) = \frac{(-1)^{i+j}}{\sigma_{ij}} \text{Pf}(\Psi_{ij}^{i}) \quad 1 \leq i < j \leq n + m. \tag{2.6} \]

The matrix \(\Psi_{ij}^{i}\) is reduced from \(\Psi\) by deleting the \(i\)-th and \(j\)-th row and column. Finally, the \(2m \times 2m\) matrix \(\Psi_{H}\) is defined as:

\[\Psi_{H} = \begin{pmatrix} A_{H} & -(C_{H})^{T} \\ C_{H} & B_{H} \end{pmatrix}, \tag{2.7} \]

where \(A_{H}, B_{H}\) and \(C_{H}\) are respectively the \(m \times m\) submatrices of \(A, B\) and \(C\) whose rows and columns take value only within \(H\). In order to obtain the amplitude \(A_{n,m}^{\text{EYM}}\), we integrate over the measure \(\Omega_{\text{CHY}}\) that localizes all the \(\sigma\)’s to the solutions of the scattering equation for \(n + m\) massless particles:

\[A_{n,m}^{\text{EYM}}(12\ldots n | h_{m} h_{m-1} \ldots h_{1}) = (-1)^{\frac{m(m+1)}{2}} \int \Omega_{\text{CHY}} \mathcal{I}_{\text{EYM}}(12\ldots n | h_{m} h_{m-1} \ldots h_{1}). \tag{2.8} \]
The expression of Ω_{CHY} is not needed in this work, and we refer the interested readers to the original works of CHY [9–14]. Similarly, we have the following integrands for tree-level YM and Einstein gravity:

$$I_{\text{YM}}(12\ldots n) = \mathcal{P}T(12\ldots n) \text{Pf}'(\Psi) \quad I_{\text{GR}}(12\ldots n) = \text{Pf}'(\Psi) \times \text{Pf}'(\Psi), \quad (2.9)$$

from which the amplitudes are obtained through a similar integration as in Eq. (2.8). Then Eq. (2.2) and (2.9) suggest that there should exist an expansion of the tree-level EYM integrands in terms of the YM ones, namely:

$$\mathcal{P}T(12\ldots n) \text{Pf}(\Psi_{\mathcal{H}}) = \sum_{\alpha \in S_{n+m-2}} C_\alpha \mathcal{P}T(1, \alpha \{2\ldots n-1, h_1\ldots h_m\}, n), \quad (2.10)$$

where the equal sign holds when the σ_i’s are solutions to the scattering equations.

The general expansion\footnote{The results with one, two and three gravitons were first worked out in [2], but the forms cited here were given in [8].} at the amplitude level has been proposed in a recent paper [8] based on the gauge invariance. Let us first recall some examples:

• With only one graviton, the expansion is given by:

$$A_{n,1}^{\text{EYM}}(1, 2, \ldots, n | p) = \sum_{\omega} (\epsilon_p \cdot Y_p) A_{n+1}^{\text{EYM}}(1, \{2, \ldots, n-1\} \sqcup \{p\}, n), \quad (2.11)$$

where \sum_ω is over the shuffle product $\rho \sqcup \omega$ of two ordered sets ρ and ω (i.e., all the permutations of $\rho \cup \omega$ that preserving the ordering of ρ and ω respectively), and Y_p denotes the sum of the momenta of all the gluons ahead of the leg p in the color-ordered YM amplitude. Thus Y_p depends on the orderings contained in the shuffle product. We keep this dependence implicit throughout this work in order not to make our notation too cluttered.

• With two gravitons, the expansion is given by:

$$A_{n,2}^{\text{EYM}}(1, 2, \ldots, n | p, q) = \sum_{\omega} (\epsilon_p \cdot Y_p) A_{n+1,1}^{\text{EYM}}(1, \{2, \ldots, n-1\} \sqcup \{p\}, n | q)$$

$$+ \sum_{\omega} (\epsilon_p \cdot F_q \cdot Y_q) A_{n+2}^{\text{EYM}}(1, \{2, \ldots, n-1\} \sqcup \{q, p\}, n). \quad (2.12)$$

where we have used the field strength tensor:

$$(F_q)^{\mu
u} \equiv (k_q)^{\mu}(\epsilon_q)^\nu - (\epsilon_q)^{\mu}(k_q)^\nu. \quad (2.13)$$
With three gravitons, the result is:

\[
A_{n,3}^{EYM}(1, \ldots, n \mid p, q, r) = \sum_{\omega} (\epsilon_p \cdot Y_p) A_{n+1,2}^{EYM}(1, \{2, \ldots, n - 1\} \uplus \{p\}, n \mid q, r) \\
+ \sum_{\omega} (\epsilon_p \cdot F_q \cdot Y_q) A_{n+2,1}^{EYM}(1, \{2, \ldots, n - 1\} \uplus \{q, p\}, n \mid r) \\
+ \sum_{\omega} (\epsilon_p \cdot F_r \cdot Y_r) A_{n+2,1}^{EYM}(1, \{2, \ldots, n - 1\} \uplus \{r, p\}, n \mid q) \\
+ \sum_{\omega} (\epsilon_p \cdot F_q \cdot F_r \cdot Y_r) A_{n+3,1}^{YM}(1, \{2, \ldots, n - 1\} \uplus \{q, r, p\}, n) \\
+ \sum_{\omega} (\epsilon_p \cdot F_r \cdot F_q \cdot Y_q) A_{n+3,1}^{YM}(1, \{2, \ldots, n - 1\} \uplus \{q, r, p\}, n).
\] (2.14)

All the above relations are written in terms of amplitudes. However, using Eq. (2.8), we can rewrite them in terms of CHY integrands, making the pattern even more transparent. With one graviton, we get:

\[
\text{PT}(12 \ldots n) \text{Pf}(\Psi_p) = - \sum_{\omega} (\epsilon_p \cdot Y_p) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{p\}, n),
\] (2.15)

which can be interpreted as turning the graviton into a gluon. With two gravitons, we get:

\[
\text{PT}(12 \ldots n) \text{Pf}(\Psi_{pq}) = \sum_{\omega} (\epsilon_p \cdot Y_p) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{p\}, n) \text{Pf}(\Psi_q) \\
- \sum_{\omega} (\epsilon_p \cdot F_q \cdot Y_q) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{q, p\}, n).
\] (2.16)

With three gravitons, we get:

\[
\text{PT}(12 \ldots n) \text{Pf}(\Psi_{pqr}) = - \sum_{\omega} (\epsilon_p \cdot Y_p) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{p\}, n) \text{Pf}(\Psi_{qr}) \\
- \sum_{\omega} (\epsilon_p \cdot F_q \cdot Y_q) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{q, p\}, n) \text{Pf}(\Psi_r) \\
- \sum_{\omega} (\epsilon_p \cdot F_r \cdot Y_r) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{r, p\}, n) \text{Pf}(\Psi_q) \\
+ \sum_{\omega} (\epsilon_p \cdot F_q \cdot F_r \cdot Y_r) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{q, r, p\}, n) \\
+ \sum_{\omega} (\epsilon_p \cdot F_r \cdot F_q \cdot Y_q) \text{PT}(1, \{2, \ldots, n - 1\} \uplus \{q, r, p\}, n).
\] (2.17)

Now it is clear that the general patterns observed in [8] indicates a pattern for CHY integrand expansion. In Section 3 and 4, we will derive explicitly how this pattern appears. We note that the sign difference between the amplitude/integrand expansion originates from the phase factor in Eq. (2.8).
3 Some examples

In this section, we will use various on-shell and off-shell identities to show the pattern of CHY integrand expansion with some examples, from which one can easily find the generalization. To make our discussion clear, we will carefully distinguish the identities we derive. The off-shell identities are those that hold at the pure algebraic level. The on-shell identities are true only when certain on-shell conditions have been imposed. These on-shell conditions can be further divided into two types: the first type is the momentum conservation and the transverse condition of polarization vectors, and the second type is that the σ's in the integrands are solutions to the scattering equations. To manifest the distinction, we will use \doteq for off-shell identities, $\overset{\circ}{=} \frac{\epsilon_{h_1} \cdot k_i}{\sigma_{h_1 i}}$. For on-shell identities of the first type and $\overset{\circ}{=} \frac{\epsilon_{h_1} \cdot k_i}{\sigma_{h_1 i}}$.

3.1 One graviton

The relevant part of the EYM integrand $I_{\text{EYM}}(12 \ldots n | h_1)$ is

$$ \text{PT}(12 \ldots n) \text{Pf}(\Psi_{h_1}), $$

where $\text{Pf}(\Psi_{h_1})$ can be easily calculated as:

$$ \text{Pf}(\Psi_{h_1}) = \text{Pf} \left(\begin{array}{cc} 0 & -C_{h_1 h_1} \\ C_{h_1 h_1} & 0 \end{array} \right) = -C_{h_1 h_1} = \sum_{i=1}^{n} \frac{\epsilon_{h_1} \cdot k_i}{\sigma_{h_1 i}}. \quad (3.2) $$

To move on, we need the following very useful identity:

$$ \frac{\text{PT}(12 \ldots n)}{\sigma_{h_1}} = \text{PT}(12 \ldots i, h_1, i + 1 \ldots n) + \frac{\text{PT}(12 \ldots n)}{\sigma_{i+1, h_1}}. \quad (3.3) $$

The proof is very simple:

$$ \frac{\text{PT}(12 \ldots n)}{\sigma_{h_1 i}} = \text{PT}(12 \ldots i, h_1, i + 1 \ldots n) \left(\frac{\sigma_{h_1 i+1}}{\sigma_{i, i+1}} \right). $$

$$ = \text{PT}(12 \ldots i, h_1, i + 1 \ldots n) + \frac{\sigma_{h_1 i}}{\sigma_{i, i+1}} \text{PT}(12 \ldots i, h_1, i + 1 \ldots n) $$

$$ = \text{PT}(12 \ldots i, h_1, i + 1 \ldots n) + \frac{\text{PT}(12 \ldots n)}{\sigma_{i+1, h_1}}. \quad (3.4) $$

where we have used $\sigma_{h_1 i+1} = \sigma_{h_1 i} + \sigma_{i, i+1}$ to go from the first line to second. We want to remark that many papers use instead $C_{ii} = \sum_{j \neq i} \epsilon_i \cdot k_j \left(\frac{\sigma_{ji}}{\sigma_{ji} \sigma_{jj}} \right)$. Although this equivalent form has the right $SL(2, \mathbb{C})$ weight for the i-th node, we find that our form of C_{ii} is more convenient for our purpose, for example, the recursive manipulation in Eq. (3.4). Furthermore, we emphasize that Eq. (3.3) holds at the algebraic level for arbitrary set of σ's, not necessarily those of the solutions to the scattering equations. In this sense, it is an off-shell identity.
Now with the help of Eq. (3.3), we find that

\[
C_{h_1 h_1} \text{PT}(12 \ldots n) = \text{PT}(12 \ldots n) \left(\frac{\epsilon_{h_1} \cdot k_1}{\sigma_{1h_1}} + \ldots + \frac{\epsilon_{h_1} \cdot k_n}{\sigma_{nh_1}} \right)
\]

\[= \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT}(1, \{2 \ldots n - 1\} \cup \{h_1\}, n) + \epsilon_{h_1} \cdot \left(\sum_{i=1}^{n} k_i \right) \frac{\text{PT}(12 \ldots n)}{\sigma_{n,h_1}}
\]

\[\doteq \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT}(1, \{2 \ldots n - 1\} \cup \{h_1\}, n), \tag{3.5}
\]

where we have used the on-shell condition $\epsilon_{h_1} \cdot \left(\sum_{i=1}^{n} k_i \right) = -\epsilon_{h_1} \cdot k_{h_1} = 0$ at the second line. Therefore, Eq. (3.5) holds under the on-shell condition of the first type, as indicated by the \doteq sign in the last line. With the help of Eq. (3.5), we arrive at

\[
Pf(\Psi_{h_1}) \text{PT}(12 \ldots n) \doteq - \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT}(1, \{2 \ldots n - 1\} \cup \{h_1\}, n), \tag{3.6}
\]

or, in terms of the amplitudes,

\[
A_{h_1}^{\text{EYM}}(12 \ldots n | h_1) = \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) A_{h_1}^{\text{YM}}(1, \{2 \ldots n - 1\} \cup \{h_1\}, n). \tag{3.7}
\]

This is nothing but (2.15). The sign change is accounted by the phase factor of Eq. (2.8).

For future use, we define the following level-zero-current CHY integrand T^μ

\[
T^\mu [1, \{2 \ldots n - 1\} \cup \{h_1 \ldots h_i\}, n | \emptyset] \equiv \sum_{\omega} Y_{h_1}^{\mu} \text{PT}(1, \{2 \ldots n - 1\} \cup \{h_1 \ldots h_i\}, n), \tag{3.8}
\]

Like the usual CHY integrands, T^μ has weight two for all legs, so it is well defined even without imposing the scattering equations. However, T^μ has some special properties. First, its parameters are divided to two parts. The first part contains two ordered sets $\{2 \ldots n - 1\}$ and $\{h_1 \ldots h_i\}$. The second part contains an unordered set. For Eq. (3.8) it is the empty set \emptyset, and this is the reason why Eq. (3.8) is called the level-zero-current. Secondly, Eq. (3.8) contains the Lorentz indices through $Y_{h_1}^{\mu}$. It is worth to notice that h_1 is the first element of the ordered list $\{h_1, \ldots, h_i\}$. With this new notation, Eq. (3.6) can be written as:

\[
Pf(\Psi_{h_1}) \text{PT}(12 \ldots n) \doteq -\epsilon_{h_1} \cdot T [1, \{2 \ldots n - 1\} \cup \{h_1\}, n | \emptyset]. \tag{3.9}
\]

3.2 Two gravitons

The relevant part of the EYM integrand $I_{\text{EYM}}(12 \ldots n | h_2 h_1)$ is given by

\[
\text{PT}(12 \ldots n) Pf(\Psi_{h_2 h_1}). \tag{3.10}
\]
To continue, we expand \(\text{Pf}(\Psi_{h_2 h_1}) \) as

\[
\text{Pf}(\Psi_{h_2 h_1}) = \text{Pf} \begin{pmatrix}
0 & A_{h_2 h_1} & -C_{h_2 h_2} & -C_{h_1 h_2} \\
A_{h_1 h_2} & 0 & -C_{h_2 h_1} & -C_{h_1 h_1} \\
C_{h_2 h_2} & C_{h_1 h_2} & 0 & B_{h_2 h_1} \\
C_{h_1 h_2} & C_{h_1 h_1} & B_{h_2 h_1} & 0
\end{pmatrix} = C_{h_2 h_2} \text{Pf}(\Psi_{h_1}^{n+2}) - C_{h_2 h_1} \text{Pf} \begin{pmatrix}
0 & -C_{h_1 h_2} \\
C_{h_1 h_2} & 0
\end{pmatrix} + B_{h_2 h_1} \text{Pf} \begin{pmatrix}
0 & A_{h_2 h_1} \\
A_{h_1 h_2} & 0
\end{pmatrix},
\]

(3.11)

where the superscript \(n + 2 \) in \(\Psi_{h_1}^{n+2} \) is to remind us that we are now working with the \((n + 2)\)-particle kinematics, although the form of \(\Psi_{h_1}^{n+2} \) resembles the \(\Psi_{h_1} \) in Section 3.1. Similar to Eq. (3.5), when \(C_{h_2 h_2} \) hits \(\text{PT}(12 \ldots n) \), we get:

\[
C_{h_2 h_2} \text{PT}(12 \ldots n) = \text{PT}(12 \ldots n) \left(\frac{\epsilon_{h_2} \cdot k_1}{\sigma_{1 h_2}} + \ldots + \frac{\epsilon_{h_2} \cdot k_n}{\sigma_{n h_2}} + \frac{\epsilon_{h_2} \cdot k_{h_1}}{\sigma_{h_1 h_2}} \right)
\]

\[
\sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \text{PT}(1, \{2 \ldots n - 1\} \bigcup \{h_2\}, n)
\]

\[
+ \frac{\epsilon_{h_2} \cdot \sum_{i=1}^{n} k_i}{\sigma_{n h_2}} \text{PT}(12 \ldots n) + \text{PT}(12 \ldots n) \frac{\epsilon_{h_2} \cdot k_{h_1}}{\sigma_{h_1 h_2}}
\]

\[
\cong \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \text{PT}(1, \{2 \ldots n - 1\} \bigcup \{h_2\}, n) - \frac{\sigma_{n h_1}}{\sigma_{n h_2}} C_{h_2 h_1} \text{PT}(12 \ldots n).
\]

(3.12)

Now we give some remarks to this equation. First, when using Eq. (3.3) to insert \(h_2 \) into gluons, only the gluon momenta contribute, so we get \(\epsilon_{h_2} \cdot Y_{h_2} \). Secondly, going from the second equality to the third, we have used the momentum conservation and \(\epsilon_{h_2} \cdot k_{h_2} = 0 \), as indicated by the \(\cong \) symbol. Thirdly, the above manipulation is, in fact, the action of changing one graviton to gluon, which results in the first term of Eq. (3.12). However, in the presence of other gravitons, we need some corrections [such as the second term in Eq. (3.12)]. As we will see shortly, the recursive structure is hidden in these corrections.

The relation (3.12) can be easily generalized to the cases with more gravitons as

\[
C_{h, h_i} \text{PT}(12 \ldots n) \cong \sum_{\omega} (\epsilon_{h_i} \cdot Y_{h_i}) \text{PT}(1, \{2 \ldots n - 1\} \bigcup \{h_i\}, n) - \sum_{j=1 \atop j \neq i}^{m} \frac{\sigma_{n h_j} C_{h_i h_j}}{\sigma_{n h_i}} \text{PT}(12 \ldots n),
\]

(3.13)

for any \(h_i \in H = \{h_m h_{m-1} \ldots h_1\} \). We will use (3.13) in later computations again and again. A further observation is that, when we make the replacement \(\epsilon_{h_i} \to k_{h_i} \) and impose the scattering equations, we will make \(C_{h_i h_i} \to 0 \) at the left hand side, such that Eq. (3.13) leads to:

\[
\sum_{\omega} (k_{h_i} \cdot Y_{h_i}) \text{PT}(1, \{2 \ldots n - 1\} \bigcup \{h_i\}, n) \cong \sum_{j=1}^{m} \frac{\sigma_{n h_j} A_{h_i h_j}}{\sigma_{n h_i}} \text{PT}(12 \ldots n).
\]

(3.14)

We have used the \(\cong \) symbol to emphasize that this equation holds only under the on-shell condition of the second type, namely, localizing \(\sigma \)'s to be the solutions to the scattering equations.
Now plugging Eq. (3.12) back into Eq. (3.10), we can rewrite Eq. (3.10) into:

\[
\text{PT}(12 \ldots n) \, \text{Pf}(\Psi_{h_2 h_1}) \doteq \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \, \text{Pf}(\Psi_{h_1}^{n+2}) \, \text{PT}(1, \{2 \ldots n-1\} \sqcup \{h_2\}, n)
\]

\[
- C_{h_2 h_1} \left[\frac{\sigma_{n h_1}}{\sigma_{n h_2}} \text{Pf}(\Psi_{h_1}^{n+2}) + \text{Pf} \left(\begin{array}{c} 0 \\ C_{h_1 h_2} \\ 0 \end{array} \right) \right] \, \text{PT}(12 \ldots n)
\]

\[
+ B_{h_2 h_1} \text{Pf} \left(\begin{array}{c} 0 \\ A_{h_1 h_2} \\ 0 \end{array} \right) \, \text{PT}(12 \ldots n) .
\]

(3.15)

The first line of Eq. (3.15) is now in its final form, which gives:

\[
- \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \, A_{n+1,1}(1, \{2 \ldots n-1\} \sqcup \{h_2\}, n \mid h_1)
\]

after the CHY integration. Now we consider the second line of (3.15), which contains two terms. The first term contains the factor

\[
\text{Pf}(\Psi_{h_1}^{n+2}) \, \text{PT}(12 \ldots n) .
\]

It would just be the one-graviton case solved in Section 3.1, had \(h_2\) joined in the Parke-Taylor factor. This observation guides us to turn PT(12 \ldots n) into PT(12 \ldots nh_2) by inserting the factor \(\sigma_{n1}/(\sigma_{nh_2}\sigma_{h_2})\), such that the previous result can be used directly:

\[
\frac{\sigma_{n1}}{\sigma_{nh_2}} \text{Pf}(\Psi_{h_1}^{n+2}) \, \text{PT}(12 \ldots n) = \frac{\sigma_{n1}}{\sigma_{nh_1}} \frac{\sigma_{nh_2}}{\sigma_{h_2}} \text{Pf}(\Psi_{h_1}^{n+2}) \, \text{PT}(12 \ldots nh_2)
\]

\[
= - \frac{\sigma_{n1}}{\sigma_{nh_1}} \frac{\sigma_{nh_2}}{\sigma_{h_2}} \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \, \text{PT}(1, \{2 \ldots n\} \sqcup \{h_1\}, h_2)
\]

\[
= - \frac{\sigma_{n1}}{\sigma_{nh_1}} \frac{\sigma_{nh_2}}{\sigma_{h_2}} \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \, \text{PT}(1, \{2 \ldots n-1\} \sqcup \{h_1\}, n) + C_{h_1 h_2} \, \text{PT}(12 \ldots n) .
\]

(3.16)

To go from the second line to third line, we have separated the orderings in the shuffle \(\{2 \ldots n\} \sqcup \{h_1\}\) into two groups, in which: (1) \(n\) being the last element; (2) \(h_1\) being the last element. The first group gives the first term in the third line of (3.16). For the second group, we get

\[
- \frac{\sigma_{n1}}{\sigma_{nh_1}} \frac{\sigma_{nh_2}}{\sigma_{h_2}} \left(\epsilon_{h_1} \cdot \sum_{i=1}^{n} k_i \right) \, \text{PT}(12 \ldots nh_1 h_2) = \frac{\epsilon_{h_1} \cdot k_{h_2}}{\sigma_{h_1 h_2}} \, \text{PT}(12 \ldots n) = C_{h_1 h_2} \, \text{PT}(12 \ldots n) .
\]

Putting (3.16) back into the second row of Eq. (3.15), we get:

\[
- C_{h_2 h_1} \left[\frac{\sigma_{n1}}{\sigma_{nh_1}} \text{Pf}(\Psi_{h_1}^{n+2}) - C_{h_1 h_2} \right] \, \text{PT}(12 \ldots n)
\]

\[
= \frac{\sigma_{n1}}{\sigma_{nh_1}} (\epsilon_{h_2} \cdot k_{h_1}) \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \, \text{PT}(1, \{2 \ldots n-1\} \sqcup \{h_1\}, n)
\]

\[
= -(\epsilon_{h_2} \cdot k_{h_1}) \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \, \text{PT}(1, \{2 \ldots n-1\} \sqcup \{h_1 h_2\}, n) ,
\]

(3.17)
which is its final form. To derive the last line of (3.17), we have to use an insertion relation, which can be derived as follows:

\[
\frac{\sigma_{h_1n}}{\sigma_{h_1h_2}\sigma_{h_2n}} = \left(\int_{\sigma_{h_1}}^{\sigma_{i+1}} + \int_{\sigma_{i+1}}^{\sigma_{i+2}} + \ldots + \int_{\sigma_{n-1}}^{\sigma_n} \right) \frac{d\sigma}{(\sigma - \sigma_{h_2})^2}
= \frac{\sigma_{h_1,i+1}}{\sigma_{h_1h_2}\sigma_{h_2,i+1}} + \frac{\sigma_{i+1,i+2}}{\sigma_{i+1,h_2}\sigma_{h_2,i+2}} + \ldots + \frac{\sigma_{n-1,n}}{\sigma_{n-1,h_2}\sigma_{h_2n}},
\]
(3.18)

We want to emphasize that Eq. (3.18) is an off-shell identity. This manipulation can be generalized to

\[
\frac{\sigma_{h_1n}}{\sigma_{h_1h_2}\sigma_{h_2n}} \sum_{\omega} Y_{h_1}^{\mu} \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1 \ldots h_1\}, n \right)
= \sum_{\omega} Y_{h_1}^{\mu} \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1 \ldots h_j\}, n \right),
\]
(3.19)

where the set \(\{h_1 \ldots h_1\}\) does not contain \(h_j\). This identity will be very useful later.

Now we come to calculate the last row of Eq. (3.15). Actually, the result can be immediately read out from our previous calculations. After we replace \(\epsilon_{h_1}\) by \(k_{h_1}\) into Eq. (3.16), we get zero in the left hand side, since \(\text{Pf}(\Psi_{h_1}^{n+2}) \rightarrow 0\) under this replacement, if \(\sigma\)'s are the solutions to the scattering equations. Thus we obtain:

\[
A_{h_1h_2} \text{PT} (12 \ldots n) \approx \frac{\sigma_{h_1n}}{\sigma_{h_1h_2}\sigma_{h_2n}} \sum_{\omega} (k_{h_1} \cdot Y_{h_1}) \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1\}, n \right),
\]
(3.20)

With this equation, the last row of Eq. (3.15) becomes

\[
-B_{h_2h_1} A_{h_1h_2} \text{PT} (12 \ldots n) \approx (\epsilon_{h_2} \cdot \epsilon_{h_1}) \frac{\sigma_{h_1n}}{\sigma_{h_1h_2}\sigma_{h_2n}} \sum_{\omega} (k_{h_1} \cdot Y_{h_1}) \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1\}, n \right)
\approx (\epsilon_{h_2} \cdot \epsilon_{h_1}) \sum_{\omega} (k_{h_1} \cdot Y_{h_1}) \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1h_2\}, n \right).
\]
(3.21)

In fact, the relation between the second line and the third line of Eq. (3.15) can be more easily seen by noticing that \(\text{Pf}(\Psi_{h_1}^{n+2}) \rightarrow 0\) under this replacement, if \(\sigma\)'s are the solutions to the scattering equations. Thus we obtain:

\[
\left[\frac{\sigma_{h_1n}}{\sigma_{h_1h_2}\sigma_{h_2n}} \text{Pf}(\Psi_{h_1}^{n+2}) + \text{Pf} \left(\begin{array}{cc} 0 & -C_{h_1h_2} \\ C_{h_1h_2} & 0 \end{array} \right) \right]_{\epsilon_{h_1} \rightarrow k_{h_1}} \approx \text{Pf} \left(\begin{array}{cc} 0 & A_{h_1h_2} \\ A_{h_1h_2} & 0 \end{array} \right).
\]
(3.22)

Putting together Eq. (3.17) and (3.21), we can write down the final result for Eq. (3.15):

\[
\text{PT} (12 \ldots n) \text{Pf}(\Psi_{h_2h_1}) \approx \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+2}) \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_2\}, n \right)
- \sum_{\omega} (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} \left(1, \{2 \ldots n-1\} \cup \{h_1h_2\}, n \right),
\]
(3.23)

where we have used the definition (2.13) to combine the second and third line of Eq. (3.15). Namely, we can expand the two-graviton EYM integrand in terms of one-graviton integrands and pure gluon ones.
Eq. (3.23) leads to the following amplitude relation:

$$A_{n,2}^{\text{EYM}}(12 \ldots n \mid h_2 h_1) = \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) A_{n+1,1}^{\text{EYM}}(1, \{2 \ldots n-1\} \uplus \{h_2\}, n \mid h_1)$$

$$+ \sum_\omega (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n-1\} \uplus \{h_1 h_2\}, n)$$

(3.24)

The sign difference between Eq. (3.24) and Eq. (3.23) is correctly adjusted according to the phase factor in the CHY integration (2.8) for EYM amplitudes.

Similar to what we have done in Eq. (3.8), we define the following level-one-current CHY integrand

$$T^\mu [1, \{2 \ldots n-1\} \uplus \{h_2 \ldots h_i\}, n|\{h_1\}] = \sum_\omega Y_{h_2}^\mu \text{Pf}(\Psi_{h_1}^{n+i}) \text{PT}(1, \{2 \ldots n-1\} \uplus \{h_2 \ldots h_i\}, n)$$

$$- (F_{h_1})^\mu \nu T_\nu [1, \{2 \ldots n-1\} \uplus \{h_1 h_2 \ldots h_i\}, n| \emptyset]$$

(3.25)

It is easy to see that after using Eq. (3.8) at the second line, we can re-express Eq. (3.23) as:

$$\text{PT}(12 \ldots n) \text{Pf}(\Psi_{h_2 h_1}) \cong \epsilon_{h_2} \cdot T [1, \{2 \ldots n-1\} \uplus \{h_2\}, n|\{h_1\}],$$

(3.26)

which holds for an arbitrary number of gluons.

3.3 Three gravitons

As the first nontrivial example, we come to expand the three-graviton EYM integrand:

$$\text{PT}(12 \ldots n) \text{Pf}(\Psi_{h_3 h_2 h_1}).$$

We first expand \(\text{Pf}(\Psi_{h_3 h_2 h_1})\) into the following form:

$$\text{Pf}(\Psi_{h_3 h_2 h_1}) = \text{Pf}

\begin{pmatrix}
0 & A_{h_3 h_2} & A_{h_3 h_1} & -C_{h_3 h_2} & -C_{h_3 h_3} & -C_{h_3 h_1} \\
A_{h_2 h_3} & 0 & A_{h_2 h_1} & -C_{h_2 h_3} & -C_{h_2 h_2} & -C_{h_2 h_1} \\
A_{h_1 h_3} & A_{h_1 h_2} & 0 & -C_{h_1 h_3} & -C_{h_1 h_2} & -C_{h_1 h_1} \\
C_{h_3 h_3} & C_{h_3 h_2} & C_{h_3 h_1} & 0 & B_{h_3 h_2} & B_{h_3 h_1} \\
C_{h_2 h_3} & C_{h_2 h_2} & C_{h_2 h_1} & B_{h_2 h_3} & 0 & B_{h_2 h_1} \\
C_{h_1 h_3} & C_{h_1 h_2} & C_{h_1 h_1} & B_{h_1 h_3} & B_{h_1 h_2} & 0
\end{pmatrix}

= -C_{h_3 h_3} \text{Pf}(\Psi_{h_2 h_1}^{n+3}) + C_{h_3 h_2} \text{Pf}[\psi(32|1)] + C_{h_3 h_1} \text{Pf}[\psi(31|2)]

- B_{h_3 h_2} \text{Pf}[\overline{\psi}(32|1)] - B_{h_3 h_1} \text{Pf}[\overline{\psi}(31|2)].

(3.27)

In this equation, the matrix \(\psi(32|1)\) is given by:

$$\psi(32|1) \equiv

\begin{pmatrix}
0 & A_{h_3 h_1} & -C_{h_3 h_3} & -C_{h_3 h_2} \\
A_{h_1 h_3} & 0 & -C_{h_1 h_2} & -C_{h_1 h_1} \\
C_{h_3 h_2} & C_{h_2 h_1} & 0 & B_{h_3 h_2} \\
C_{h_1 h_3} & C_{h_1 h_2} & C_{h_1 h_1} & B_{h_1 h_2}
\end{pmatrix}.

(3.28)$$

4This expansion comes from the standard Laplace formula Eq. (1.1), with some additional re-arrangements in the algebraic minors so that those associated with \(C\) and \(B\) elements share the same sign.
Namely, $\psi(32|1)$ is obtained from $\Psi_{h_3h_2h_1}$ by deleting the row and column intersected at $\pm C_{h_3h_2}$. Then $\psi(31|2)$ is obtained from $\psi(32|1)$ by the exchange $h_2 \leftrightarrow h_1$. On the other hand, the matrix $\overline{\psi}(32|1)$ is obtained from $\psi(32|1)$ by the replacement $\epsilon_{h_2} \rightarrow k_{h_2}$, and similarly for $\overline{\psi}(31|2)$. Now using Eq. (3.13) for the first term of (3.27) to turn the graviton h_3 into a gluon, we arrive at:

$$
\begin{align*}
\text{PT} (12 \ldots n) \text{Pf} (\Psi_{h_3h_2h_1}) & \doteq -\sum_\omega (\epsilon_{h_3} \cdot Y_{h_3}) \text{Pf} (\Psi_{h_2h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_3\}, n) \\
& \quad + C_{h_3h_2} \left(\frac{\sigma_{nh_2}}{\sigma_{nh_3}} \text{Pf} (\Psi_{h_2h_1}^{n+3}) + \text{Pf} (\psi(32|1)) \right) \text{PT} (12 \ldots n) \\
& \quad + C_{h_3h_1} \left(\frac{\sigma_{nh_1}}{\sigma_{nh_3}} \text{Pf} (\Psi_{h_2h_1}^{n+3}) + \text{Pf} (\psi(31|2)) \right) \text{PT} (12 \ldots n) \\
& \quad - B_{h_3h_2} \text{Pf} (\overline{\psi}(32|1)) \text{PT} (12 \ldots n) \\
& \quad - B_{h_3h_1} \text{Pf} (\overline{\psi}(31|2)) \text{PT} (12 \ldots n) . \\
\end{align*}
$$

At this moment, after comparing Eq. (3.29) with (3.15), one can see a pattern starting to emerge. Another thing we want to point out is the relative sign difference between the first line of (3.29) and (3.15).

In Eq. (3.29), the first row is already in our desired form. We then focus on the second row, while the third row can be obtained by simply exchanging h_1 and h_2. We would like to reuse Eq. (3.23) to expand $\text{Pf} (\Psi_{h_2h_1}^{n+3}) \text{PT} (12 \ldots n)$. To do so, we again use the trick of inserting h_3 into the Parke-Taylor factor. Then using Eq. (3.23), we obtain

$$
\begin{align*}
\text{Pf} (\Psi_{h_2h_1}^{n+3}) \text{PT} (12 \ldots nh_3) \doteq & \sum_\omega (\epsilon_{h_3} \cdot Y_{h_3}) \text{Pf} (\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n\} \uplus \{h_2\}, h_3) \\
& \quad - \sum_\omega (\epsilon_{h_1} \cdot Y_{h_1}) \text{Pf} (\Psi_{h_2}^{n+3}) \text{PT} (1, \{2 \ldots n\} \uplus \{h_1\}, h_3) .
\end{align*}
$$

In this equation, we treat h_3 as a gluon, playing the same role as n in Eq. (3.23). In the first line of Eq. (3.30), the shuffle product can be divided into two groups: one with n near h_3 and the other with h_2 near h_3:

$$
\{2 \ldots n\} \uplus \{h_2\} = \{2 \ldots n - 1\} \uplus \{h_2\} n + \{2 \ldots nh_2\} .
$$

After this separation, the first line of Eq. (3.30) becomes:

$$
\begin{align*}
\sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf} (\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n\} \uplus \{h_2\}, h_3) \\
\doteq & \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf} (\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2\}, n, h_3) \\
& \quad - [\epsilon_{h_2} \cdot (k_{h_1} + k_{h_3})] \text{Pf} (\Psi_{h_2}^{n+3}) \text{PT} (12 \ldots nh_2h_3) \\
\doteq & \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf} (\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2\}, n, h_3) \\
& \quad + [\epsilon_{h_2} \cdot (k_{h_1} + k_{h_3})] \sum_\omega (\epsilon_{h_1} \cdot X_{h_1}) \text{PT} (1, \{2 \ldots nh_2\} \uplus \{h_1\}, h_3) ,
\end{align*}
$$

(3.31)
where the momentum conservation \(\sum_{i=1}^{n} k_i = -k_{h_1} - k_{h_2} - k_{h_3} \) has been used to derive the expression after the first equal sign. The final expression is then obtained by acting \(\text{Pf}(\Psi_{h_1}^{n+3}) \) onto \(\text{PT}(12\ldots nh_2 h_3) \) using Eq. (3.6). In the last line of Eq. (3.31), we have introduced a new symbol \(X_{h_1} \). This is because when we apply (3.6) here, \(h_1 \) will view \(h_2 \) as a gluon, so we use the \(X_{h_1} \) instead of \(Y_{h_1} \) to emphasize this difference. From now on, we will use \(X_i \) to stand for the sum of momenta of all the legs at the left hand side of leg \(i \) in the color ordering. With this explanation, we can expand the last line of (3.31) as:

\[
\sum_{\omega} (\epsilon_{h_1} \cdot X_{h_1}) \text{PT}(1,\{2\ldots nh_2\} \uplus \{h_1\}, h_3) \doteq \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT}(1,\{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \\
- \epsilon_{h_1} \cdot (k_{h_2} + k_{h_3}) \text{PT}(12\ldots nh_1 h_2 h_3) \\
- (\epsilon_{h_1} \cdot k_{h_3}) \text{PT}(12\ldots nh_2 h_1 h_3),
\]

so that the final result of Eq. (3.31) is:

\[
\sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT}(1,\{2\ldots n\} \uplus \{h_2\}, h_3) \\
\doteq \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT}(1,\{2\ldots n-1\} \uplus \{h_2\}, n, h_3) \\
+ [\epsilon_{h_2} \cdot (k_{h_1} + k_{h_3})] \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT}(1,\{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \\
- [\epsilon_{h_2} \cdot (k_{h_1} + k_{h_3})] [\epsilon_{h_1} \cdot (k_{h_2} + k_{h_3})] \text{PT}(12\ldots nh_1 h_2 h_3) \\
- [\epsilon_{h_2} \cdot (k_{h_1} + k_{h_3})] (\epsilon_{h_1} \cdot k_{h_3}) \text{PT}(12\ldots nh_2 h_1 h_3).
\]

Now we move to the second row of Eq. (3.30). Again we separate the shuffle product into three groups

\[
\{2\ldots n\} \uplus \{h_1 h_2\} = \{2\ldots n-1\} \uplus \{h_1 h_2\} n + \{2\ldots n-1\} \uplus \{h_1\} nh_2 + \{2\ldots nh_1 h_2\}.
\]

This separation leads to:

\[
- \sum_{\omega} (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT}(1,\{2\ldots n\} \uplus \{h_1 h_2\}, h_3) \\
= - \sum_{\omega} (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT}(1,\{2\ldots n-1\} \uplus \{h_1 h_2\}, n, h_3) \\
- \sum_{\omega} (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT}(1,\{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \\
+ [\epsilon_{h_2} \cdot F_{h_1} \cdot (k_{h_2} + k_{h_3})] \text{PT}(12\ldots nh_1 h_2 h_3)
\]

(3.34)
Summing up Eq. (3.33) and (3.34), we find that after a few algebras, Eq. (3.30) becomes:

$$
Pf(\Psi_{h_2h_1}^{n+3}) \text{PT} (12\ldots nh_3) \sum_{\omega} (\epsilon_{h_2} \cdot Y_{h_2}) Pf(\Psi_{h_1}^{n+3}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_2\}, n, h_3)
$$

$$
- \sum_{\omega} (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_1h_2\}, n, h_3)
$$

$$
+ (\epsilon_{h_2} \cdot k_{h_3}) \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \quad (3.35a)
$$

$$
- (\epsilon_{h_2} \cdot k_{h_3}) \epsilon_{h_1} \cdot (k_{h_2} + k_{h_3}) \text{PT} (12\ldots nh_1h_2h_3) \quad (3.35b)
$$

$$
- (\epsilon_{h_2} \cdot k_{h_3}) \epsilon_{h_1} \cdot k_{h_3} \text{PT} (12\ldots nh_2h_1h_3) \quad (3.35c)
$$

$$
- (\epsilon_{h_2} \cdot k_{h_3}) \epsilon_{h_1} \cdot k_{h_3} \text{PT} (12\ldots nh_2h_1h_3) \quad (3.35d)
$$

$$
+ (\epsilon_{h_2} \cdot \epsilon_{h_1}) \sum_{\omega} (k_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \quad (3.35e)
$$

$$
- (\epsilon_{h_2} \cdot \epsilon_{h_1}) k_{h_1} \cdot (k_{h_2} + k_{h_3}) \text{PT} (12\ldots nh_1h_2h_3). \quad (3.35f)
$$

The first two lines of this equation are in our desired form, while the rest of them look very messy at first glance. Very remarkably, they can actually be organized into Pf[\psi(32|1)]. To show this, we first use the identity:

$$
Pf(\Psi_{h_1}^{n+3}) \text{PT} (12\ldots nh_2h_3) \equiv - \sum_{\omega} (\epsilon_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3)
$$

$$
+ \epsilon_{h_1} \cdot (k_{h_2} + k_{h_3}) \text{PT} (12\ldots nh_1h_2h_3)
$$

$$
+ (\epsilon_{h_1} \cdot k_{h_3}) \text{PT} (12\ldots nh_2h_1h_3) \quad (3.36)
$$

to group Eq. (3.35a), (3.35b) and (3.35c) into:

$$(3.35a) + (3.35b) + (3.35c) \equiv - (\epsilon_{h_2} \cdot k_{h_3}) Pf(\Psi_{h_1}^{n+3}) \text{PT} (12\ldots nh_2h_3)
$$

$$
- \left(\frac{\sigma_{n1}}{\sigma_{nh_2}\sigma_{h_3}} \right) C_{h_2h_3} Pf(\Psi_{h_1}^{n+3}) \text{PT} (12\ldots n). \quad (3.37)
$$

Next, by extracting h_2 and h_3 out of the Parke-Taylor factor, we can write Eq. (3.35d) as:

$$(3.35d) = - \left(\frac{\sigma_{n1}}{\sigma_{nh_2}\sigma_{h_3}} \right) C_{h_2h_3} C_{h_1h_3} \text{PT} (12\ldots n)
$$

$$
= \left(\frac{\sigma_{n1}}{\sigma_{nh_2}\sigma_{h_3}} \right) C_{h_2h_1} Pf \begin{pmatrix} 0 & -C_{h_1h_3} \\ C_{h_1h_3} & 0 \end{pmatrix} \text{PT} (12\ldots n). \quad (3.38)
$$

As the last step, we replace the ϵ_{h_i} by k_{h_i} in Eq. (3.36), which leads to the on-shell identity:

$$
\sum_{\omega} (k_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2\ldots n-1\} \uplus \{h_1\}, n, h_2, h_3) \cong k_{h_1} \cdot (k_{h_2} + k_{h_3}) \text{PT} (12\ldots nh_1h_2h_3)
$$

$$
+ (k_{h_1} \cdot k_{h_3}) \text{PT} (12\ldots nh_2h_1h_3). \quad (3.39)
$$
With the help of this result, Eq. (3.35e) and (3.35f) combine into:

\[
(3.35e) + (3.35f) \cong - \left(\frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \right) B_{h2h1} A_{h3h1} \text{PT}\ (12 \ldots n) \nonumber \\
= - \left(\frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \right) B_{h2h1} \text{Pf} \left(\begin{array}{cc} 0 & A_{h3h1} \\ A_{h1h3} & 0 \end{array} \right) \text{PT}\ (12 \ldots n). \tag{3.40}
\]

Now collecting Eq. (3.37), (3.38) and (3.40), one can show with some algebras that the last six lines of Eq. (3.35) can be combined to:

\[
(3.35a) + (3.35b) + (3.35c) + (3.35d) + (3.35e) + (3.35f)
\cong - \frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \left[C_{h2h3} \text{PT}\ (\Psi_{h1}^{n+3}) - C_{h2h1} \text{Pf} \left(\begin{array}{cc} 0 & -C_{h3h1} \\ C_{h1h3} & 0 \end{array} \right) + B_{h2h1} \text{Pf} \left(\begin{array}{cc} 0 & A_{h3h1} \\ A_{h1h3} & 0 \end{array} \right) \right] \text{PT}\ (12 \ldots n)
= - \left(\frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \right) \text{Pf}\[\psi(32|1)] \text{PT}\ (12 \ldots n). \tag{3.41}
\]

Namely, we have proved the following identity:

\[
Pf\(\Psi_{h1}^{n+3}\) \text{PT}\ (12 \ldots nh3) + \frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \text{Pf}\[\psi(32|1)] \text{PT}\ (12 \ldots n)
\cong \sum_{\omega} (\epsilon_{h2} \cdot Y_{h2}) \text{Pf}\(\Psi_{h1}^{n+3}\) \text{PT}\ (1, \{2 \ldots n - 1\} \uplus \{h2\}, n, h3)
- \sum_{\omega} (\epsilon_{h2} \cdot F_{h1} \cdot Y_{h1}) \text{PT}\ (1, \{2 \ldots n - 1\} \uplus \{h1h2\}, h3). \tag{3.42}
\]

With all these preparations, we can now return to tackle the second row of Eq. (3.29). Using Eq. (3.42), we find that:

\[
C_{h3h2} \left[\frac{\sigma_{nh2}}{\sigma_{nh3}} \text{Pf}\(\Psi_{h2h1}^{n+3}\) + \text{Pf}[\psi(32|1)] \right] \text{PT}\ (12 \ldots n)
= C_{h3h2} \left(\frac{\sigma_{nh2} \sigma_{h31}}{\sigma_{n1}} \right) \left[\text{Pf}\(\Psi_{h2h1}^{n+3}\) \text{PT}\ (12 \ldots nh3) + \frac{\sigma_n}{\sigma_{nh2} \sigma_{h31}} \text{Pf}\[\psi(32|1)] \text{PT}\ (12 \ldots n) \right]
\cong - (\epsilon_{h3} \cdot k_{h2}) \left(\frac{\sigma_{h2n}}{\sigma_{h2h3} \sigma_{h3n}} \right) \left[\sum_{\omega} (\epsilon_{h2} \cdot Y_{h2}) \text{Pf}\(\Psi_{h1}^{n+3}\) \text{PT}\ (1, \{2 \ldots n - 1\} \uplus \{h2\}, n)
- \sum_{\omega} (\epsilon_{h2} \cdot F_{h1} \cdot Y_{h1}) \text{PT}\ (1, \{2 \ldots n - 1\} \uplus \{h1h2\}, n) \right]. \tag{3.43}
\]
Finally, using the insertion identity (3.18), we get:

\[
C_{h_3h_2} \left[\frac{\sigma_{nh_2}}{\sigma_{nh_3}} \text{Pf}(\Psi_{h_2h_1}^{n+3}) + \text{Pf}[\psi(32|1)] \right] \text{PT} (12 \ldots n)
\]
\[
\cong - (\epsilon_{h_3} \cdot k_{h_2}) \left[\sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2h_3\}, n)
- \sum_\omega (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_1h_3\}, n) \right].
\]

(3.44)

Next, noting that the fourth line of (3.29) can be obtained from the second line by the exchange \(\epsilon_{h_2} \leftrightarrow k_{h_2}\) [just like Eq. (3.22)], we can write down the result directly from Eq. (3.44) as:

\[
B_{h_3h_1} \text{Pf} [\psi(32|1)] \text{PT} (12 \ldots n)
\]
\[
\cong - (\epsilon_{h_3} \cdot \epsilon_{h_2}) \left[\sum_\omega (k_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2h_3\}, n)
- \sum_\omega (k_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_1h_3\}, n) \right].
\]

(3.45)

Thus combining (3.44) and (3.45) together, we arrive at:

\[
C_{h_3h_2} \left[\frac{\sigma_{nh_2}}{\sigma_{nh_3}} \text{Pf}(\Psi_{h_2h_1}^{n+3}) + \text{Pf}[\psi(32|1)] \right] \text{PT} (12 \ldots n) - B_{h_3h_1} \text{Pf} [\psi(32|1)] \text{PT} (12 \ldots n)
\]
\[
\cong - \sum_\omega (\epsilon_{h_3} \cdot F_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2h_3\}, n)
+ \sum_\omega (\epsilon_{h_3} \cdot F_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_1h_3\}, n).
\]

(3.46)

Then the third and fifth line of Eq. (3.29) can be obtained by replacing \(h_2 \leftrightarrow h_1\) in the above equation. Finally, putting everything altogether, we reach the following result:

\[
\text{PT} (12 \ldots n) \text{Pf}(\Psi_{h_3h_2h_1}) \cong - \sum_\omega (\epsilon_{h_3} \cdot Y_{h_3}) \text{Pf}(\Psi_{h_2h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_3\}, n)
- \sum_\omega (\epsilon_{h_3} \cdot F_{h_2} \cdot Y_{h_2}) \text{Pf}(\Psi_{h_1}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2h_3\}, n)
- \sum_\omega (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1}) \text{Pf}(\Psi_{h_2}^{n+3}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_1h_3\}, n)
+ \sum_\omega (\epsilon_{h_3} \cdot F_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_1h_2h_3\}, n)
+ \sum_\omega (\epsilon_{h_3} \cdot F_{h_1} \cdot F_{h_2} \cdot Y_{h_2}) \text{PT} (1, \{2 \ldots n - 1\} \uplus \{h_2h_1h_3\}, n).
\]

(3.47)
It is wroth noting that after considering the relative signs encoded in Eq. (2.8), this result indeed gives Eq. (2.14) after the CHY integration.

Eq. (3.47) demonstrates a very clear recursive structure, while we can make it more compact by defining the level- \((m-1)\)-current CHY integrand [like the one given in Eq. (3.25)]:

\[
T^\mu [1, \{2 \ldots n - 1 \} \cup \{ h_1 \ldots h_i \}, n \{ h_1, \ldots, h_{m-1} \} \\
\equiv \sum_{\omega} Y^\mu_{h_m} \text{Pf}(\Psi^{n+i}_{h_1 \ldots h_{m-1}}) \text{PT} (1, \{2 \ldots n - 1 \} \cup \{ h_m \ldots h_i \}, n)
\]

\[\quad + (-1)^{m-1} \sum_{s=1}^{m-1} (F_{h_s})^\mu_{T^\nu} [1, \{2 \ldots n - 1 \} \cup \{ h_s h_m \ldots h_i \}, n \{ h_{m-1} \ldots h_s \ldots h_{m-1} \}]. \tag{3.48}
\]

This is a recursive definition, and one can move down by reducing the number of gravitons in the right list until it becomes the empty set. Then Eq. (3.8) terminates the whole recursive construction. We can use \(T^\mu\) to rewrite Eq. (3.47) as:

\[
\text{Pf}(\Psi_{h_3 h_2 h_1}) \text{PT} (12 \ldots n) \equiv (-1)^3 \epsilon_{h_3} \cdot T [1, \{2 \ldots n - 1 \} \cup \{ h_3 \}, n \{ h_2 h_1 \}]. \tag{3.49}
\]

This three-graviton example makes the recursive pattern very clear. Our next job is of course to prove that it works for arbitrary number of gravitons. To get more confidence and insight, we do one more example with four gravitons. The techniques used in this calculation can be very easily generalized to prove the generic case, presented in Section 4.

3.4 Four gravitons

As the last example, we expand the Pfaffian part of the four-graviton integrand \(\text{Pf}(\Psi_{h_4 h_3 h_2 h_1}) \text{PT} (12 \ldots n)\) as follows:

\[
\text{Pf}(\Psi_{h_4 h_3 h_2 h_1}) = C_{h_4 h_3} \text{Pf}(\Psi^{n+4}_{h_4 h_3 h_2 h_1})
- C_{h_4 h_3} \text{Pf} [\psi(43|21)] - C_{h_4 h_2} \text{Pf} [\psi(42|31)] - C_{h_4 h_1} \text{Pf} [\psi(41|32)]
+ B_{h_4 h_3} \text{Pf} [\psi(43|21)] + B_{h_4 h_2} \text{Pf} [\psi(42|31)] + B_{h_4 h_1} \text{Pf} [\psi(41|32)]. \tag{3.50}
\]

where \(\Psi^{n+4}_{h_4 h_3 h_2 h_1}\) has a very similar form to that of Eq. (3.27). However, now the \(\sigma\)’s satisfy instead the \(n+4\) point scattering equations, while in the diagonal \(C\) elements, the summation is over all the \(n+4\) particles. The matrix \(\psi(43|21)\) is obtained from \(\Psi_{h_4 h_3 h_2 h_1}\) by deleting the column and row intersected at \(\pm C_{h_4 h_3}\):

\[
\psi(43|21) = \begin{pmatrix}
0 & A_{h_4 h_2} & A_{h_4 h_1} & -C_{h_3 h_4} & -C_{h_2 h_4} & -C_{h_1 h_4} \\
A_{h_3 h_4} & 0 & A_{h_3 h_1} & -C_{h_2 h_3} & -C_{h_1 h_3} & -C_{h_1 h_2} \\
A_{h_2 h_4} & A_{h_2 h_3} & 0 & -C_{h_1 h_2} & -C_{h_1 h_3} & -C_{h_1 h_4} \\
-C_{h_3 h_4} & C_{h_3 h_2} & C_{h_3 h_1} & 0 & B_{h_3 h_2} & B_{h_3 h_1} \\
C_{h_2 h_4} & C_{h_2 h_3} & C_{h_2 h_1} & B_{h_2 h_3} & 0 & B_{h_2 h_1} \\
C_{h_1 h_4} & C_{h_1 h_2} & C_{h_1 h_1} & B_{h_1 h_3} & B_{h_1 h_2} & 0
\end{pmatrix}, \tag{3.51}
\]
while $\psi(42|31)$ and $\psi(41|32)$ are obtained from this matrix by exchanging the index h_3 with h_2 and h_1 respectively. The matrix $\psi(\ldots s|\ldots)$ is obtained from the corresponding $\psi(\ldots s|\ldots)$ by the replacement $e_{h_s} \to k_{h_s}$.

We start from the first line of Eq. (3.50). When combining $C_{h_4h_4}$ with the Parke-Taylor factor, we can turn the graviton h_4 into a gluon with some extra pieces:

$$C_{h_4h_4} \text{PT} (12\ldots n) = \sum_{\omega} (\epsilon_{h_4} \cdot Y_{h_4}) \text{PT} (1, \{2\ldots n - 1\} \sqcup \{h_4\}, n) - \sum_{s=1}^{3} \frac{\sigma_{nh_s} C_{h_4h_s}}{\sigma_{nh_4}} \text{PT} (12\ldots n). \quad (3.52)$$

Putting it back to (3.50) and reorganizing, we get:

$$\text{Pf}(\Psi_{h_4h_3h_2h_1}) \text{PT} (12\ldots n)$$

$$= \sum_{\omega} (\epsilon_{h_4} \cdot Y_{h_4}) \text{PT} (1, \{2\ldots n - 1\} \sqcup \{h_4\}, n) \text{Pf}(\Psi^{n+4}_{h_3h_2h_1})$$

$$+ \left\{ -C_{h_4h_3} \left[\frac{\sigma_{nh_3} \sigma_{h_4}}{\sigma_{nh_4}} \text{Pf}(\Psi^{n+4}_{h_3h_2h_1}) + \text{Pf} [\psi(43|21)] \right] + B_{h_4h_3} \text{Pf} [\tilde{\psi}(43|21)] \right\} \text{PT} (12\ldots n)$$

$$+ (h_3 \leftrightarrow h_2) + (h_3 \leftrightarrow h_1). \quad (3.53)$$

We only focus on the case $s = 3$, as explicitly shown in the second line from the bottom in this equation. The other two terms in the last line can be obtained from the trivial replacements $h_3 \leftrightarrow h_2$ and $h_3 \leftrightarrow h_1$.

First, according to Eq. (3.49), we have:

$$\frac{\sigma_{nh_3} \sigma_{h_4}}{\sigma_{nh_4}} \text{Pf}(\Psi^{n+4}_{h_3h_2h_1}) \text{PT} (12\ldots n) \equiv - \left(\frac{\sigma_{nh_3} \sigma_{h_4}}{\sigma_{nh_1}} \right) \epsilon_{h_3} \cdot T^\mu [1, \{2\ldots n\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}] . \quad (3.54)$$

The expansion of $T^\mu [1, \{2\ldots n\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}]$ involves the shuffle products of the form:

$$\{\ldots n\} \sqcup \{***h_3\} = \{\ldots n - 1\} \sqcup \{***h_3\} n + \{\ldots n\} \sqcup \{***h_3\} ,$$

such that it can be separated in the following way, according to the definition (3.48):

$$T^\mu [1, \{2\ldots n\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}] = T^\mu [1, \{2\ldots n - 1\} \sqcup \{h_3\}, n, h_4 | \{h_2h_1\}]$$

$$- \left[\sum_{s=1}^{4} (k_{h_s})^\mu \right] \text{Pf}(\Psi^{n+4}_{h_2h_1}) \text{PT} (12\ldots nh_3h_4)$$

$$+ (F_{h_2})^\mu T^\nu [1, \{2\ldots n\} \sqcup \{h_2\}, h_3, h_4 | \{h_1\}]$$

$$+ (F_{h_1})^\mu T^\nu [1, \{2\ldots n\} \sqcup \{h_1\}, h_3, h_4 | \{h_2\}] \quad (3.55)$$
Now using the following identities proved in the three-graviton example:\footnote{The matrix $\psi(432|1)\ [\psi(43|2)]$ is obtained from $\psi(43|2)$ by deleting the row and column intersected at $\pm C_{h_3h_2} (\pm C_{h_3h_1}).$}

$$-\epsilon_{h_2} \cdot T [1, \{2 \ldots n\} \sqcup \{h_2h_4\}, h_3 | \{h_1\}] \cong \frac{1}{\sigma_{h_2h_2}} \left[\sigma_{h_2h_2}^{n+4} \sigma_{h_3h_4} \Psi_{h_2h_1}^{n+4} + \Psi(432|1) \right] \text{PT} (12 \ldots n)$$

$$-k_{h_2} \cdot T [1, \{2 \ldots n\} \sqcup \{h_2h_4\}, h_3 | \{h_1\}] \cong \frac{1}{\sigma_{h_2h_2}} \left[\Psi(432|1) \right] \text{PT} (12 \ldots n)$$

$$-\epsilon_{h_1} \cdot T [1, \{2 \ldots n\} \sqcup \{h_1h_4\}, h_3 | \{h_2\}] \cong \frac{1}{\sigma_{h_1h_1}} \left[\sigma_{h_1h_1}^{n+4} \sigma_{h_3h_4} \Psi_{h_2h_1}^{n+4} + \Psi(431|2) \right] \text{PT} (12 \ldots n)$$

$$-k_{h_1} \cdot T [1, \{2 \ldots n\} \sqcup \{h_1h_4\}, h_3 | \{h_2\}] \cong \frac{1}{\sigma_{h_1h_1}} \left[\Psi(431|2) \right] \text{PT} (12 \ldots n), \quad (3.56)$$

and Eq. (3.19), we can derive that:

$$\epsilon_{h_2} \cdot T [1, \{2 \ldots n\} \sqcup \{h_2\}, h_3, h_4 | \{h_1\}] \cong \text{PT} (12 \ldots n)$$

$$\sigma_{h_2h_2}^{n+4} \sigma_{h_1h_1}^{n+4} \Psi(432|1) \text{PT} (12 \ldots n)$$

$$k_{h_2} \cdot T [1, \{2 \ldots n\} \sqcup \{h_2\}, h_3, h_4 | \{h_1\}] \cong \frac{1}{\sigma_{h_2h_2}^{n+4} \sigma_{h_1h_1}^{n+4}} \Psi(432|1) \text{PT} (12 \ldots n), \quad (3.57)$$

After we replace the T’s in the last two lines of Eq. (3.55) by the above equation, and dot the entire Eq. (3.55) with ϵ_{h_3}, it becomes:

$$\epsilon_{h_3} \cdot T [1, \{2 \ldots n\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}]$$

$$\cong \epsilon_{h_3} \cdot T [1, \{2 \ldots n - 1\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}]$$

$$+ \frac{1}{\sigma_{h_2h_2}^{n+4} \sigma_{h_1h_1}^{n+4}} \left[- C_{h_3h_4} \text{PF} (\Psi_{h_2h_1}^{n+4}) + C_{h_3h_2} \text{PF} (\Psi(432|1)) + C_{h_3h_1} \text{PF} (\Psi(431|2)) - B_{h_3h_4} \text{PF} (\Psi(432|1)) - B_{h_3h_2} \text{PF} (\Psi(432|1)) \right] \text{PT} (12 \ldots n)$$

$$\cong \epsilon_{h_3} \cdot T [1, \{2 \ldots n - 1\} \sqcup \{h_3\}, h_4 | \{h_2h_1\}] + \frac{1}{\sigma_{h_3h_2} \sigma_{h_3h_4} \sigma_{h_1h_1}} \text{PF} (\Psi(43|2)) \text{PT} (12 \ldots n). \quad (3.58)$$

If we put them back into Eq. (3.54) and then Eq. (3.53), we get:

$$C_{h_3h_2} \left[\frac{\sigma_{h_3h_4}^{n+4} \sigma_{h_1h_1}}{\sigma_{h_1h_1}^{n+4}} \text{PF} (\Psi_{h_3h_2h_1}^{n+4}) + \text{PF} (\Psi(43|2)) \right] \text{PT} (12 \ldots n)$$

$$\cong (\epsilon_{h_3} \cdot k_{h_3}) \epsilon_{h_3} \cdot T [1, \{2 \ldots n - 1\} \sqcup \{h_3h_4\}, n | \{h_2h_1\}] . \quad (3.59)$$

If we make the replacement $\epsilon_{h_3} \rightarrow k_{h_3}$ above, we then get:

$$\frac{1}{\sigma_{h_3h_3}} \text{PF} (\Psi(43|2)) \cong k_{h_3} \cdot T [1, \{2 \ldots n - 1\} \sqcup \{h_3h_4\}, n | \{h_2h_1\}] . \quad (3.60)$$
The \((h_3 \leftrightarrow h_2)\) and \((h_3 \leftrightarrow h_1)\) term of Eq. (3.53) can then be obtained by making the corresponding exchange in Eq. (3.59) and (3.60). The final result of Eq. (3.53) is thus:

\[
Pf(\Psi_{h_4h_3h_2h_1}) \, PT(12\ldots n) \equiv \sum_{\bar{\mu}} (\epsilon_{h_4} \cdot Y_{h_4}) \, Pf(\Psi_{h_3h_2h_1}^{n+4}) \, PT(1,\{2\ldots n-1\} \sqcup \{h_4\},n) \\
- \epsilon_{h_4} \cdot F_{h_3 \cdot T} \left[1,\{2\ldots n-1\} \sqcup \{h_3h_4\},n\{h_2h_1\}\right] \\
- \epsilon_{h_4} \cdot F_{h_2 \cdot T} \left[1,\{2\ldots n-1\} \sqcup \{h_2h_4\},n\{h_3h_1\}\right] \\
- \epsilon_{h_4} \cdot F_{h_1 \cdot T} \left[1,\{2\ldots n-1\} \sqcup \{h_1h_4\},n\{h_3h_2\}\right]. \tag{3.61}
\]

Finally, using the definition (3.48), one can express the four-graviton EYM integrand as:

\[
Pf(\Psi_{h_4h_3h_2h_1}) \, PT(12\ldots n) \equiv (-1)^{4} \epsilon_{h_4} \cdot T \left[1,\{2\ldots n-1\} \sqcup \{h_4\},n \{h_3h_2h_1\}\right]. \tag{3.62}
\]

The recursive nature of this construction is now clear, and we are going to prove the generic recursive relation for expanding EYM integrands with an arbitrary number of gravitons.

4 General recursive relation

The calculations in Section 3, especially the cases of three and four gravitons, suggest us to construct the recursive definition (3.48), which we recall here as:

\[
T^{\mu} \left[1,\{2\ldots n-1\} \sqcup \{h_m \ldots h_i\},n \{h_{m-1} \ldots h_1\}\right] \\
\equiv \sum_{\bar{\mu}} Y^{\mu}_{h_m} \, Pf(\Psi_{h_{m-1} \ldots h_1}^{n+i}) \, PT(1,\{2\ldots n-1\} \sqcup \{h_m \ldots h_i\},n) \\
+ (-1)^{m-1} \sum_{s=1}^{m-1} (F_{h_s})^{\mu
u T_{\nu}} \left[1,\{2\ldots n-1\} \sqcup \{h_s h_m \ldots h_i\},n \{h_{m-1} \ldots h_1\}\right]. \tag{4.1}
\]

This recursion finally lands on \(T[\ldots \varnothing]\) defined in Eq. (3.8), for arbitrary \(i \geq m\). This definition gives a well defined weight two integrand for \(n+i\) particles. One crucial point we want to mention is that

\[
T^{\mu} \left[1,\{2\ldots n-1\} \sqcup \{h_m \ldots h_i\},n \{h_{m-1} \ldots h_1\}\right]
\]

has the manifest gauge invariance for the gravitons \(\{h_1h_2\ldots h_{m-1}\}\). In this section, we are going to prove by induction a very important result:

\[
Pf(\Psi_{H}) \, PT(12\ldots n) \equiv (-1)^{m} \epsilon_{h_m} \cdot T \left[1,\{2\ldots n-1\} \sqcup \{h_m\},n \{h_{m-1} \ldots h_1\}\right] \tag{4.2}
\]

for \(H = \{h_m h_{m-1} \ldots h_1\}\). In this representation, \(h_m\) is singled out as the row along which we choose to expand the Pfaffian. Because of this choice, the gauge invariance for \(\{h_1 \ldots h_{m-1}\}\) is manifest, but not for \(h_m\). Only after we fully expand it to pure YM amplitudes, can we check the gauge invariance of \(h_m\) with various KK and generalized BCJ relations [28].
The $m = 1, 2, 3$ and 4 cases have been explicitly checked in the previous section. Now suppose that Eq. (4.2) holds for p gravitons with $p \leq m - 1$, as our induction assumption, then we move to the case of m gravitons. The $2m \times 2m$ matrix Ψ_H has the following form:

$$
\Psi_H = \begin{pmatrix}
0 & A_{hm,hm-1} & \cdots & -C_{hm,hm} & -C_{hm-1,hm} & \cdots \\
A_{hm-1,hm} & 0 & \cdots & -C_{hm,hm-1} & -C_{hm-1,hm-1} & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
C_{hm,hm} & C_{hm-1,hm} & \cdots & 0 & B_{hm-1,hm} & \cdots \\
C_{hm-1,hm} & C_{hm-1,hm-1} & \cdots & B_{hm-1,hm-1} & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots
\end{pmatrix}.
$$

(4.3)

To calculate the Pfaffian, we expand along the row starting with $C_{hm,hm}$ [which is the $(m+1)$-th row]:

$$
(-1)^m \text{Pf}(\Psi_H) = C_{hm,hm} \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) - \sum_{s=1}^{m-1} C_{hm,h_s} \text{Pf}[\psi(m, s | m - 1 \ldots \hat{s} \ldots 1)]

+ \sum_{s=1}^{m-1} B_{hm,h_s} \text{Pf}[\psi(m, s | m - 1 \ldots \hat{s} \ldots 1)].
$$

(4.4)

In this expansion, $\Psi^{n+m}_{hm-1..h_1}$ is obtained from Ψ_H by deleting the rows and columns intersected at the $\pm C_{hm,hm}$. We note that $\Psi^{n+m}_{hm-1..h_1}$ is part of the EYM integrand with $m - 1$ gravitons, while h_m has been turned into a gluon. The matrix $\psi(m, m - 1 | m - 2 \ldots 1)$ is obtained from Ψ_H by deleting the rows and columns intersected at the $\pm C_{hm,hm-1}$, while the other $\psi(m, s | m - 1 \ldots \hat{s} \ldots 1)$ can be generated by exchanging h_{m-1} and h_s. In the last row of Eq. (4.4), we have:

$$
\bar{\psi}(m, s | m - 1 \ldots \hat{s} \ldots 1) = \psi(m, s | m - 1 \ldots \hat{s} \ldots 1)_{\epsilon_{h_s} \rightarrow k_h}.
$$

After multiplying Eq. (4.4) with the Parke-Taylor factor $\text{PT}(12\ldots n)$, the first term yields:

$$
C_{hm,hm} \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) \text{PT}(12\ldots n) \equiv \sum_{\nu} (\epsilon_{h_m} \cdot Y_{h_m}) \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) \text{PT}(1, \{2\ldots n - 1\} \cup \{h_m\}, n)

- \sum_{s=1}^{m-1} \frac{\sigma_{h_s}}{\sigma_{nm}} C_{hm,h_s} \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) \text{PT}(12\ldots n),
$$

(4.5)

with the help of Eq. (3.13). Then from Eq. (4.4), we get:

$$
(-1)^m \text{Pf}(\Psi_H) \text{PT}(12\ldots n)

\equiv \sum_{\nu} (\epsilon_{h_m} \cdot Y_{h_m}) \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) \text{PT}(1, \{2\ldots n - 1\} \cup \{h_m\}, n)

- \sum_{s=1}^{m-1} \frac{\epsilon_{h_m} \cdot k_{h_s}}{\sigma_{h_m}} \left[\frac{\sigma_{h_s}}{\sigma_{nm}} \text{Pf}(\Psi^{n+m}_{hm-1..h_1}) + \text{Pf}[\psi(m, s | m - 1 \ldots \hat{s} \ldots 1)] \right] \text{PT}(12\ldots n)

+ \sum_{s=1}^{m-1} \frac{\epsilon_{h_m} \cdot \epsilon_{h_s}}{\sigma_{h_m}} \text{Pf}[\bar{\psi}(m, s | m - 1 \ldots \hat{s} \ldots 1)] \text{PT}(12\ldots n).
$$

(4.6)
Our proof completes if we can prove the following two identities:

\[
\frac{1}{\sigma_{h_h,h_s}} \left[\frac{\sigma_{nh_s}}{\sigma_{nh_m}} \text{PF}(\Psi^{n+m}_{h_{m-1}...h_1}) + \text{PF}[\psi(m,s \mid m - 1 \ldots \not\in \mathcal{F})] \right] \text{PT}(12 \ldots n) \]

\[
\approx (-1)^m e_{h_s} \cdot T[1, \{2 \ldots n - 1\} \uplus \{h_s h_m\}, n \mid \{h_{m-1} \ldots \not\in \mathcal{F} \ldots h_1\}] , \quad (4.7)
\]

\[
\frac{1}{\sigma_{h_h,h_s}} \text{PF}[\psi(m,s \mid m - 1 \ldots \not\in \mathcal{F})] \text{PT}(12 \ldots n) \]

\[
\approx (-1)^m k_{h_s} \cdot T[1, \{2 \ldots n - 1\} \uplus \{h_s h_m\}, n \mid \{h_{m-1} \ldots \not\in \mathcal{F} \ldots h_1\}] . \quad (4.8)
\]

We still follow an inductive scheme and assume that they hold for \(p \) gravitons with \(p \leq m - 1 \) gravitons. The \(m = 2, 3 \), and 4 cases have been explicitly calculated in Section 3. For details, one can see the derivation of Eq. (3.17), (3.21), (3.44), (3.59) and (3.60). It is sufficient to only work with \(s = m - 1 \), since other values of \(s \) can be obtained by a trivial exchange of indices. Like the calculation performed in Section 3.4, we start with the expansion:

\[
\frac{\sigma_{nh_{m-1}}}{\sigma_{nh_m}} \text{PF}(\Psi^{n+m}_{h_{m-1}...h_1}) \text{PT}(12 \ldots n) \]

\[
\approx \frac{\sigma_{nh_{m-1}} \sigma_{h_{m-1}}}{\sigma_{n_1}} (-1)^{m-1} e_{h_{m-1}} \cdot T[1, \{2 \ldots n\} \uplus \{h_{m-1}\}, h_m \mid \{h_{m-2} \ldots h_1\}] \]

\[
\approx \frac{\sigma_{nh_{m-1}} \sigma_{h_{m-1}}}{\sigma_{n_1}} (-1)^{m-1} e_{h_{m-1}} \cdot T[1, \{2 \ldots n - 1\} \uplus \{h_{m-1}\}, n, h_m \mid \{h_{m-2} \ldots h_1\}] \]

\[
- (-1)^{m+1} C_{h_{m-1}h_m} \text{PF}(\Psi^{n+m}_{h_{m-2}...h_1}) \text{PT}(12 \ldots n) \]

\[
+ (-1)^m \left(\frac{\sigma_{nh_{m-1}} \sigma_{h_{m-1}}}{\sigma_{n_1}} \right) \sum_{t=1}^{m-2} C_{h_{m-1}h_t} \left[\frac{\sigma_{h_{m-1}h_t}}{\sigma_{h_{m-1}h_m}} \text{PF}(\Psi^{n+m}_{h_{m-2}...h_1}) \text{PT}(12 \ldots nh_{m-1}) \right] \]

\[
- \sigma_{h_{m-1}h_{t}} (-1)^{m-1} e_{h_{t}} \cdot T[1, \{2 \ldots n\} \uplus \{h_{t} h_m\}, h_{m-1} \mid \{h_{m-2} \ldots \not\in \mathcal{F}_t \ldots h_1\}] \]

\[
- \left(\frac{\sigma_{nh_{m-1}} \sigma_{h_{m-1}}}{\sigma_{n_1}} \right) \sum_{t=1}^{m-2} B_{h_{m-1}h_t} \sigma_{h_{m-1}h_t} k_{h_t} \cdot T[1, \{2 \ldots n\} \uplus \{h_t h_m\}, h_{m-1} \mid \{h_{m-2} \ldots \not\in \mathcal{F}_t \ldots h_1\}] \quad (4.9)
\]

Now our inductive assumption says:\(^6 \)

\[
\frac{1}{\sigma_{h_{m-1}h_t}} \left[\frac{\sigma_{h_{m-1}h_t}}{\sigma_{h_{m-1}h_m}} \text{PF}(\Psi^{n+m}_{h_{m-2}...h_1}) + \text{PF}[\psi(m,m - 1,t \mid m - 2 \ldots f \ldots 1)] \right] \]

\[
\approx (-1)^{m-1} e_{h_t} \cdot T[1, \{2 \ldots n\} \uplus \{h_t h_m\}, h_{m-1} \mid \{h_{m-2} \ldots \not\in \mathcal{F}_t \ldots h_1\}] , \]

\[
\frac{1}{\sigma_{h_{m-1}h_t}} \text{PF}[\psi(m,m - 1,t \mid m - 2 \ldots f \ldots 1)] \]

\[
\approx (-1)^{m-1} k_{h_t} \cdot T[1, \{2 \ldots n\} \uplus \{h_t h_m\}, h_{m-1} \mid \{h_{m-2} \ldots \not\in \mathcal{F}_t \ldots h_1\}] . \quad (4.10)
\]

\(^6\)The matrix \(\psi(m,m - 1,t \mid m - 2 \ldots f \ldots 1) \) is obtained from \(\psi(m,m - 1 \mid m - 2 \ldots 1) \) by deleting the row and column intersected at \(\pm C_{h_{m-1}h_t} \).
As a result, we get:

\[
\begin{align*}
\frac{\sigma_{n_{h_{m-1}}}}{\sigma_{n_{h_{m}}}} & \frac{\sigma_{n_{h_{m}}}}{\sigma_{n_{h_{m}}}} - 1 \sigma_{n_{h_{m}}}, \text{Pf}(\Psi_{h_{m-1}} + m) T [1, \{2 \ldots n - 1\} \cup \{h_{m-1}, n, h_{m} \mid \{h_{m-2} \ldots h_{1}\}\}] \\
& \sim \frac{\sigma_{n_{h_{m}}}}{\sigma_{n_{h_{m}}}} - 1 \cdot \text{Pf}(\Psi_{h_{m-1}} + m) T [1, \{2 \ldots n - 1\} \cup \{h_{m-1}, n, h_{m} \mid \{h_{m-2} \ldots h_{1}\}\}] \\
& \sim \frac{\sigma_{n_{h_{m-1}}}}{\sigma_{n_{h_{m-1}}}} - 1 \cdot \text{Pf}(\Psi_{h_{m-1}} + m) T [1, \{2 \ldots n - 1\} \cup \{h_{m-1}, n, h_{m} \mid \{h_{m-2} \ldots h_{1}\}\}] \\
& - \text{Pf}(\Psi_{h_{m-1}} + m) T [1, \{2 \ldots n - 1\} \cup \{h_{m-1}, n, h_{m} \mid \{h_{m-2} \ldots h_{1}\}\}] ,
\end{align*}
\]

which proves Eq. (4.7). Then replacing \(\epsilon_{h_{m-1}}\) by \(k_{h_{m-1}}\), we also proves Eq. (4.8):

\[
(1 - 1)^{m} k_{h_{m-1}} \cdot T [1, \{2 \ldots n - 1\} \cup \{h_{m-1} h_{m}\}, n! \{h_{m-2} \ldots h_{1}\}] \\
\sim \frac{1}{\sigma_{h_{m-1} h_{m}} \sigma_{n_{h_{m-1}}}} \text{Pf}(\bar{\psi}(m, m - 1, m - 2 \ldots 1)) \text{Pf}(12 \ldots n).
\]

With the help of these two equations, we can immediately see that Eq. (4.6) gives exactly our statement:

\[
(1 - 1)^{m} \text{Pf}(\Psi_{H}) \text{Pf}(12 \ldots n) \approx \epsilon_{h_{m}} \cdot T [1, \{2 \ldots n - 1\} \cup \{h_{m}\}, n! \{h_{m-1} \ldots h_{1}\}] ,
\]

We have now completed the proof of our general recursive relation Eq. (4.2).

5 Expansion in terms of pure YM amplitudes

If we keep using the recursive relation (4.2), we can finally expand generic EYM tree amplitudes in terms of pure YM amplitudes. In this representation, the final expression does not enjoy the explicit permutation invariance of the gravitons. The reason is that in Eq. (4.2), we have defined a standard graviton order \(\{h_{m} h_{m-1} \ldots h_{1}\}\). At each level of recursion, we always convert the first graviton remained in this standard order into a gluon according to the definition of \(T\), which breaks the explicit permutation invariance. In this section, we give these expansions a graph theory picture, derived from our recursive expansion (4.2). More details on this derivation is presented in Appendix A

\[7\] The permutation invariant expression can be recovered after a straightforward, although tedious, symmetrization. We will not discuss it in this paper.
5.1 Some expansion examples

In this part, we will give the expansions of the EYM amplitudes with two and three gravitons. It serves two purposes: (1) establishing our convention; (2) providing explicit expressions to compare with known results as well as a better understanding of the graphic rules.

Let us start with the example of two gravitons, whose recursive construction is given in Eq. (3.24). Since the last term of Eq. (3.24) contains only YM amplitudes. We only need to further expand the first term using Eq. (3.7):

\[
\sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) A_{n+1,1}^{\text{EYM}}(1, \{2 \ldots n - 1\} \shuffle \{h_2\}, n \mid h_1) = - \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot X_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_2\} \shuffle \{h_1\}, n), \tag{5.1}
\]

where \(Y_{h_i}\) is defined as the sum of all original gluon momenta before the graviton \(h_i\) in each ordering of the shuffle product. The important difference between \(Y_{h_i}\) and \(X_{h_i}\) is that \(X_{h_i}\) is the sum of all momenta before \(h_i\), including those gluons converted from gravitons. Now using the associativity of the shuffle product:

\[
\{2 \ldots n - 1\} \shuffle \{h_2\} \shuffle \{h_1\} = \{2 \ldots n - 1\} \shuffle \{h_2h_1\} + \{2 \ldots n - 1\} \shuffle \{h_2h_1\}, \tag{5.2}
\]

we can write the second line of Eq. (5.1) as

\[
- \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_1h_2\}, n) - \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1} + \epsilon_{h_1} \cdot k_{h_2}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_2h_1\}, n). \tag{5.3}
\]

Therefore, if we further expand Eq. (3.24) down to the pure YM level, we get:

\[
(-1)A_{n,2}^{\text{EYM}}(12 \ldots n \mid h_2h_1) = \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_1h_2\}, n)
+ \sum_\omega (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_1h_2\}, n)
+ \sum_\omega (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_1h_2\}, n)
+ \sum_\omega (\epsilon_{h_1} \cdot k_{h_2}) (\epsilon_{h_2} \cdot Y_{h_2}) A_{n+2}^{\text{YM}}(1, \{2 \ldots n - 1\} \shuffle \{h_2h_1\}, n). \tag{5.4}
\]

We want to emphasize that in the above expansion, the coefficients contain only the kinematic variables \(\epsilon_{h_i}, k_{h_i}\), and \(Y_{h_i}\).

\[- 24 - \]
Similar manipulations can be performed for EYM amplitudes with three gravitons. By recursively using Eq. (2.12) and (2.11) to Eq. (2.14), one can write the final result as:\footnote{From now on, we are going to use the boldface σ to stand for an ordered set, while $\sigma(i)$ denotes the i-th element in the set σ. Please do not confuse them with the solutions to the scattering equations.}

$$A_{n,3}^{\text{EYM}}(12 \ldots n \mid h_3 h_2 h_1) = \sum_{\sigma \in S_3} \sum_{\mu} C_{321}^{\sigma}(\sigma) A_{n+3}^{\text{YM}}(1, \{2 \ldots n - 1\} \sqcup \{h_{\sigma(1)} h_{\sigma(2)} h_{\sigma(3)}\}, n).$$

(5.5)

For each graviton permutation σ, the coefficient $C_{321}^{\sigma}(\sigma)$ has the following expression:

$$C_{321}^{\sigma}(123) = (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1}) + (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1})$$

$$+ (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_2}) + (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) (\epsilon_{h_3} \cdot Y_{h_3})$$

$$+ (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot k_{h_2} + (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot k_{h_1})$$

(5.6)

$$C_{321}^{\sigma}(213) = (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_2}) + (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_1})$$

$$+ (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_2}) + (\epsilon_{h_1} \cdot k_{h_2} (\epsilon_{h_3} \cdot k_{h_3} \cdot (\epsilon_{h_2} \cdot k_{h_2}) + (\epsilon_{h_1} \cdot k_{h_2} (\epsilon_{h_3} \cdot k_{h_3} \cdot (\epsilon_{h_2} \cdot k_{h_3})$$

(5.7)

$$C_{321}^{\sigma}(321) = (\epsilon_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_3} \cdot Y_{h_3}) + (\epsilon_{h_3} \cdot k_{h_2}) (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_3} \cdot Y_{h_3})$$

$$+ (\epsilon_{h_1} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2}) + (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot Y_{h_1})$$

$$+ (\epsilon_{h_1} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot k_{h_2}) + (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2})$$

(5.8)

$$C_{321}^{\sigma}(132) = (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot Y_{h_1}) + (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot Y_{h_1})$$

$$+ (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1}) (\epsilon_{h_3} \cdot Y_{h_3}) + (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot Y_{h_2})$$

$$+ (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot k_{h_3}) + (\epsilon_{h_3} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_2} \cdot k_{h_3})$$

(5.9)

$$C_{321}^{\sigma}(231) = (\epsilon_{h_1} \cdot Y_{h_1} (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2}) + (\epsilon_{h_1} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2})$$

$$+ (\epsilon_{h_1} \cdot k_{h_2}) (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_3} \cdot Y_{h_3}) + (\epsilon_{h_3} \cdot F_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1})$$

$$+ (\epsilon_{h_1} \cdot k_{h_2}) (\epsilon_{h_3} \cdot F_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1})$$

(5.10)

$$C_{321}^{\sigma}(312) = (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot Y_{h_1} (\epsilon_{h_3} \cdot Y_{h_3}) + (\epsilon_{h_2} \cdot F_{h_1} \cdot Y_{h_1} (\epsilon_{h_3} \cdot Y_{h_3})$$

$$+ (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot Y_{h_1}) + (\epsilon_{h_1} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_2} \cdot Y_{h_2})$$

$$+ (\epsilon_{h_2} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3}) (\epsilon_{h_1} \cdot k_{h_2}) + (\epsilon_{h_2} \cdot F_{h_1} \cdot k_{h_3}) (\epsilon_{h_3} \cdot Y_{h_3})$$

(5.11)

The subscript [321] stands for the standard reference order of converting the gravitons into gluons, whose role will be discussed later. Note that these coefficients under the standard order [321] do not enjoy the explicit permutation invariance, namely,

$$C_{321}^{\sigma}(213) \neq C_{321}^{\sigma}(123) \mid_{h_1 \leftrightarrow h_2} \quad C_{321}^{\sigma}(321) \neq C_{321}^{\sigma}(123) \mid_{h_1 \leftrightarrow h_3}.$$
for example. This is because the expansion basis is KK, which has some redundancy, such that a certain
gauge choice is allowed.

It is worth to compare our $C_{[321]}(\sigma)$ with the results given in a previous paper [8], where the kinematic
variable Z has been used and the coefficients contain different number of terms. Here, although $C_{[321]}(\sigma)$
are not symmetric under relabeling, the total number of terms contained in each $C_{[321]}(\sigma)$ is the same,
namely, $6 = 3!$ terms for this three-graviton example. In fact, with some further observations, we find the
following features:

- In terms of only the ϵ, F, and Y variables, each coefficient is given by a sum of six terms. Then each
 of these six terms is a product of a few scalar factors, enclosed in parentheses.

- Now we count the number of elements in each parenthesis. For examples, $(\epsilon_{h_3} \cdot F_{h_2} \cdot F_{h_1} \cdot Y_{h_1})$ has 4
 elements, $(\epsilon_{h_2} \cdot F_{h_1} \cdot k_{h_3})$ has 3 and $(\epsilon_{h_3} \cdot Y_{h_3})$ has 2. Then we find that for each term that appears
 in any $C_{[321]}(\sigma)$, we have:

$$\sum_{\text{all factors}} (n_i - 1) = 3.$$ \hfill (5.12)

If we represent each graviton by a vertex, and supplement them with a common root, we can then associate
each factor with a path starting at a graviton vertex labeled by ϵ and ending at either a graviton vertex
(labeled by k) or the root (labeled by Y), while n_i is just the number of vertices along the path. One can
immediately observe that each term of $C_{[321]}(\sigma)$ provides a tree structure. The sum $\sum_{\text{all factors}} (n_i - 1)$ gives
nothing but the total number of gravitons. This observation motivates us to construct the following graph
theory rules based on spanning trees.

5.2 Graphic rules for coefficients of pure YM expansion

In this part, we propose a set of graphic rules for a direct reading of the pure YM expansion coefficients, based
on spanning trees. The recursive relation (4.2) indicates that for a generic m-graviton EYM amplitude, we
can always expand it in terms of pure YM amplitudes in the KK basis, with the following form:

$$A_{n,m}^{\text{EYM}}(12\ldots n | h_1 h_2 \ldots h_m) = \sum_{\sigma \in S_m} \sum_{\rho \in \omega} C_{\rho}(\sigma) A_{n+m}^{\text{YM}}(1, \{2\ldots n - 1\} \uplus \sigma, n),$$ \hfill (5.13)

where σ is a permutation of the m gravitons $\{h_1 \ldots h_m\}$ and ρ is a reference order. The coefficients $C_{\rho}(\sigma)$
can be evaluated from the spanning trees of $m + 1$ vertices. Among these vertices, m of them correspond
to the gravitons $\{h_1, h_2 \ldots h_m\}$, and a single vertex g as the root, representing the gluon set $\{2\ldots n - 1\}.$
The coefficients $C_{\rho}(\sigma)$ can be read out by the following algorithm:

Step 1: constructing the trees contributing to the order σ. We construct the *increasing trees* with

9As kept implicit here, $C_{\rho}(\sigma)$ also depends on the shuffle product, since it contains Y_{h_i}, the sum of gluon momenta before
h_i in $\{2\ldots n - 1\} \uplus \sigma$.

respect to the order σ, i.e., $g \prec h_{\sigma(1)} \prec h_{\sigma(2)} \prec \ldots \prec h_{\sigma(m)}$. Such trees can be obtained by arranging vertices $h_{\sigma(1)}, h_{\sigma(2)}, \ldots, h_{\sigma(m)}$ from the left to right and then drawing all possible tree diagrams after avoiding the following situations: if two vertices $A \prec B$ are connected by a path originated from the root, then B cannot be the one closer to the root. We emphasize that the construction of the trees only depends on σ, not the reference order ρ.

For example, when there are three gravitons, we have the following trees contributing to $\sigma = \{123\}$:

$$
\begin{align*}
\text{trees that contribute to } \sigma = \{123\} & \quad \begin{array}{c}
\text{tree 1} \\
\text{tree 2} \\
\text{tree 3}
\end{array} \\
\end{align*}
$$

In these trees, all vertices in a path starting from the root and ending at a leaf respect the order σ. There are exactly $m!$ such trees. This can be easily seen by a recursive construction. For example, from each tree shown in Eq. (5.14), we can construct exactly four increasing trees for $\{1234\}$ by either connecting h_4 to any h_i, with $i = 1, 2, 3$, or connecting h_4 directly to the root. More explicitly, the first tree gives:

$$
\begin{align*}
\begin{array}{c}
\text{tree 1} \\
\text{tree 2} \\
\text{tree 3}
\end{array} & \quad \begin{array}{c}
\text{tree 4} \\
\text{tree 5} \\
\text{tree 6}
\end{array}
\end{align*}
$$

Step 2: Reading out the expression for a tree. Having constructed the increasing trees, we assign an expression to each tree. At this moment, the choice of ordering ρ will play an important role. We will accomplish it by following steps:

- First, we draw ordered paths. We will start from $\rho(1)$, the first graviton in list ρ, and then draw a path from the root g to $\rho(1)$. If there are ℓ vertices along this path, we will set $\phi_1 = \rho(1)$, and the subsequent vertices ϕ_2, ϕ_3, etc, until the root $\phi_\ell = g$. We will denote such a path by $P[1] = \{\rho(1), \phi_2, \ldots, \phi_{\ell-1}, g\}$.

- Second, we read out the expression for each tree. Each tree corresponds to a specific ordering of the gravitons. The expression for each tree is obtained by concatenating the weights of all internal vertices along the path from the root to the leaf.
An illustration of such path $\mathcal{P}[1]$ is given as the following:

\[
\begin{array}{c}
\text{g} \\
\phi_{\ell-1} \cdots \phi_i \cdots \phi_3 \phi_2 \phi_1
\end{array}
\quad \mathcal{P}[1]. \tag{5.16}
\]

It is worth to emphasize that $\rho(1)$ may or may not be a leaf.

- As the first path is done, we construct the second path from the remaining vertices:

\[
\rho_1 \equiv \rho \setminus \{\phi_1 \ldots \phi_{\ell-1}, g\}, \tag{5.17}
\]

Now we construct $\mathcal{P}[2]$ by considering the path from the root g to the first element of ρ_1, denoted as $\rho_1(1)$. Let us denote this tentative path as \mathcal{T}_2. Starting from the root, the path \mathcal{T}_2 will in general coincide with other previous constructed paths until the vertex V_2, the last vertex (counted from the root) along \mathcal{T}_2 that belongs to previous constructed paths. The crossroad vertex V_2 can either be a graviton or just the root. Now the part of \mathcal{T}_2 from V_2 and beyond, until $\rho_1(1)$, is our $\mathcal{P}[2]$. It has the form $\mathcal{P}[2] = \{\tilde{\phi}_1, \tilde{\phi}_2, \ldots, \tilde{\phi}_t, V_2\}$, where $\tilde{\phi}_i \in \rho_1$ but $V_2 \not\in \rho_1$. This process is illustrated as:

\[
\begin{array}{c}
\text{g} \\
\phi_{\ell-1} \cdots \phi_i \cdots \phi_3 \phi_2 \phi_1
\end{array}
\quad \mathcal{P}[2] \\
(\text{V}_2)
\]

- Repeat this procedure until we have exhausted all the graviton vertices.

- Now we assign each path a factor. The first element in the path is replaced by ϵ, the middle element by F. For the last element, if it is the root, then we replace it by by Y_t if it is the root g (the t is the next-to-last element); if it is a graviton vertex a, we replace it by k_a. Finally, multiplying all these factors together, we get the term contributed by the tree under our consideration.

- We emphasize that given a tree, the evaluation only depends on the reference order ρ. Actually, a tree can contribute to more than one σ in general, which will be further clarified later in this section.

To demonstrate how these rules work, we again take $\rho = \{321\}$ and consider the six trees given in (5.14)
as an example. These trees all contribute to $\sigma = \{123\}$. It is easy to see that we have

- tree 1: $P[1] = \{h_3, g\}$; $P[2] = \{h_2, g\}$; $P[3] = \{h_1, g\}$;
- tree 2: $P[1] = \{h_3, g\}$; $P[2] = \{h_2, h_1, g\}$;
- tree 3: $P[1] = \{h_3, h_2, g\}$; $P[2] = \{h_1, g\}$;
- tree 4: $P[1] = \{h_3, h_1, g\}$; $P[2] = \{h_2, g\}$;
- tree 5: $P[1] = \{h_3, h_1, g\}$; $P[2] = \{h_2, h_1\}$;
- tree 6: $P[1] = \{h_3, h_2, h_1, g\}$; (5.19)

Using our rules, we can write down six coefficients given in Eq. (5.19)

- tree 1: $(\epsilon h_3 \cdot Y_{h_3}) \times (\epsilon h_2 \cdot Y_{h_2}) \times (\epsilon h_1 \cdot Y_{h_1})$;
- tree 2: $(\epsilon h_3 \cdot Y_{h_3}) \times (\epsilon h_2 \cdot F_{h_1} \cdot Y_{h_1})$;
- tree 3: $(\epsilon h_3 \cdot F_{h_2} \cdot Y_{h_2}) \times (\epsilon h_1 \cdot Y_{h_1})$;
- tree 4: $(\epsilon h_3 \cdot F_{h_1} \cdot Y_{h_1}) \times (\epsilon h_2 \cdot Y_{h_2})$;
- tree 5: $(\epsilon h_3 \cdot F_{h_1} \cdot Y_{h_1}) \times (\epsilon h_2 \cdot k_{h_1})$;
- tree 6: $(\epsilon h_3 \cdot F_{h_2} \cdot F_{h_1} \cdot Y_{h_1})$; (5.20)

One can check that they exactly reproduce the $C_{[321]}(123)$ given in Eq. (5.6). With the reference order $\rho = \{321\}$, another example is

\[
\begin{align*}
 P[1] = \{h_3, g\}; & \quad P[2] = \{h_2, h_1, g\}; \\
 h_1 & \quad h_2 & \quad h_3 \\
 & \quad g
\end{align*}
\]

\[= (\epsilon h_3 \cdot Y_{h_3}) \cdot (\epsilon h_2 \cdot k_{h_3}) \cdot (\epsilon h_1 \cdot k_{h_2}). \quad (5.21)\]

This tree contributes to $\sigma = \{321\}$ only. As some less trivial examples, we consider several typical trees that appear in the evaluation of the coefficients for four-graviton EYM amplitudes. With the reference order $\rho = \{4321\}$, we have:

\[
\begin{align*}
 P[1] = \{h_3, g\}; & \quad P[2] = \{h_2, h_3, h_4\}; \\
 h_1 & \quad h_2 & \quad h_3 & \quad h_4 \\
 & \quad g
\end{align*}
\]

\[= (\epsilon h_4 \cdot F_{h_3} \cdot Y_{h_3}) \cdot (\epsilon h_2 \cdot k_{h_3}) \cdot (\epsilon h_1 \cdot k_{h_4}).\]

\[
\begin{align*}
 P[1] = \{h_3, g\}; & \quad P[2] = \{h_2, h_3, h_4\}; \\
 h_1 & \quad h_2 & \quad h_3 & \quad h_4 \\
 & \quad g
\end{align*}
\]

\[= (\epsilon h_4 \cdot Y_{h_4}) \cdot (\epsilon h_3 \cdot k_{h_4}) \cdot (\epsilon h_2 \cdot k_{h_3}) \cdot (\epsilon h_1 \cdot k_{h_4}).\]
In the above discussion, we have given the graphic rule to read out the corresponding coefficients of a given KK basis. In Eq. (5.13), there are $m!$ coefficients $C_\rho(\sigma)$, each of which contains $m!$ terms given by $m!$ increasing trees. Thus naively we would expect that there are in all $(m!)^2$ trees involved. However, there are only $(m + 1)^{m-1}$ distinct spanning trees for $m + 1$ vertices (m graviton vertices and a gluon root). Since $(m!)^2 > (m + 1)^{m-1}$ for $m \geq 2$, some trees must contribute to multiple $C_\rho(\sigma)$ coefficients. The next problem we want to address is that given a spanning tree, how to find out all the $C_\rho(\sigma)$ coefficients it can contribute to.

The answer to this question is simple: suppose we define the set of all the increasing trees respecting the order σ as $\text{IT}(\sigma)$, then given a spanning tree T, it will contribute to all those σ’s whose $\text{IT}(\sigma)$ contains T. These σ’s can be read out in the following way. First let us define the level structure of a spanning tree, demonstrated by Figure 1:

- From the root, there are three outgoing arrows, so we have three subsets in the first level.
- The subsets of a and b are simple, which are $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ respectively.

\[
\begin{align*}
\text{level 1} & \quad \text{level 2} & \quad \text{level 3} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \

Figure 1. The rooted tree with three levels.

\[
\begin{align*}
\text{level 1} & \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&

\begin{align*}
= (\epsilon_{h_4} \cdot F_{h_3} \cdot Y_{h_4}) & (\epsilon_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot k_{h_2}) \\
= (\epsilon_{h_4} \cdot Y_{h_4}) & (\epsilon_{h_3} \cdot F_{h_2} \cdot Y_{h_2}) (\epsilon_{h_1} \cdot k_{h_3})
\end{align*}
\]

(5.22)
• For the middle subset, it is much more complicated. Along the arrow, first we have \(\{c_1, c_2, c_3\} \). However, there are two outgoing branches starting from \(c_3 \). Thus we have a second level with two branches: one is \(\{d_1, d_2\} \) and the other is \(\{e_1, e_2\} \). Again, starting from \(e_2 \) there are two branches: \(\{f_1, f_2\} \) and \(\{g_1, g_2\} \), which give us the third level.

• Putting everything together, we have the following level structure:

\[
\begin{align*}
\{a_1, a_2, a_3\} & \cup \{b_1, b_2, b_3\} \\
\{c_1, c_2, c_3\} & \cup \{d_1, d_2\} \\
\{e_1, e_2\} & \cup \{f_1, f_2\} \cup \{g_1, g_2\}
\end{align*}
\]

(5.23)

After reading out the level structure, we can write down the orderings each level gives by shuffle actions. First, there are two branches at level 3, such that this level gives:

\[
\text{level3} = \{d_1, d_2\} \cup \{g_1, g_2\},
\]

Then at the second level, there are also two branches. The first is simply \(\{d_1, d_2\} \), while the second one is \(\{e_1, e_2\} \) concatenating level3. The orderings given by this level are:

\[
\text{level2} = \{d_1, d_2\} \cup \{e_1, e_2, \text{level3}\}.
\]

Finally, at the first level, we have:

\[
\text{level1} = \{a_1, a_2, a_3\} \cup \{b_1, b_2, b_3\} \cup \{c_1, c_2, c_3, \text{level2}\}.
\]

After the shuffle products are fully expanded, level1 gives the set of orderings this tree contributes to.

Next, we check this rule with our three-graviton expressions. In Eq. (5.14), the first tree only has one level, such that

\[
(\epsilon_h \cdot Y_h) (\epsilon_h \cdot Y_h) (\epsilon_h \cdot Y_h) \hspace{1cm} \text{contributes to} \hspace{1cm} \{h_1\} \cup \{h_2\} \cup \{h_3\} = \{h_1 h_2 h_3\} + \{h_1 h_3 h_2\} + \{h_2 h_1 h_3\} + \{h_2 h_3 h_1\} + \{h_3 h_1 h_2\} + \{h_3 h_2 h_1\}
\]

(5.24)

Indeed, this term is contained in all six \(C_\rho(\sigma) \), given in Eq. (5.6) to (5.11). For tree 5 in Eq. (5.14), there is only one branch at level one but two branches at level two, such that

\[
(\epsilon_h \cdot F_h \cdot Y_h) (\epsilon_{h_2} \cdot k_{h_1}) \hspace{1cm} \text{contributes to} \hspace{1cm} \{h_1, h_2\} \cup \{h_3\} = \{h_1 h_2 h_3\} + \{h_1 h_3 h_2\}
\]

(5.25)
This expression can only be found in $C_{[321]}(123)$ and $C_{[321]}(132)$ as expected. Last but not least, the tree in Eq. (5.21) only has one level, contributing only to the order $\{321\}$. Again, the corresponding term can only be found in $C_{[321]}(321)$.

Using the above understanding, we also give two four-graviton examples:

\begin{equation}
\begin{aligned}
\text{contributes to} & \quad \{h_4, \{h_1\} \sqcup \{h_3h_2\} \} \\
& = \{h_4h_1h_3h_2\} + \{h_4h_3h_1h_2\} + \{h_4h_3h_2h_1\}
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\text{contributes to} & \quad \{h_2h_1\} \sqcup \{h_3h_4\} \\
& = \{h_2h_1h_3h_4\} + \{h_2h_3h_1h_4\} + \{h_2h_3h_4h_1\} \\
& + \{h_3h_4h_2h_1\} + \{h_3h_2h_4h_1\} + \{h_3h_2h_1h_4\}
\end{aligned}
\end{equation}

Before closing this section, we note that the above rules can be recursively defined for generic trees. First, the level splitting happens only when a branch in the tree splits. Then for a subtree with the structure of Figure 2, it will contribute to the following set of orderings:

\begin{equation}
\begin{aligned}
\{1, 2 \ldots i, \text{Branch1} \sqcup \text{Branch2} \sqcup \ldots \sqcup \text{BranchN}\},
\end{aligned}
\end{equation}

where, for example, Branch1 is the set of orderings contributed by the first branch, etc, which can be recursively constructed using the above relation, until the highest level.

6 Conclusion and discussion

In this paper, we have established a recursive expansion (4.2) for tree level single trace EYM amplitudes with m gravitons and n gluons, facilitated by expanding the CHY integrand $\text{Pf}(\Psi_H)$ along one row. It works for arbitrary number of gravitons and gluons, as we have proved in Section 4. This recursive construction agrees with the one proposed in a recent paper [8], which is observed simply by imposing gauge invariance. Our paper gives a firm proof of the observation. We note that our recursive expansion holds only on-shell, namely, the momentum conservation, transversal condition and scattering equations should all be satisfied.
Very remarkably, once we fully expand the m-graviton and n-gluon EYM amplitudes in terms of pure YM amplitudes with $n + m$ gluons in the KK basis, all the expansion coefficients can be written down through a set of elegant graph theory rules. To be specific, the coefficient of each KK basis amplitude contains exactly $m!$ terms, each of which corresponds to an increasing tree with respect to the order of the gravitons in a certain KK basis amplitude. Then the evaluation of each tree relies on a reference order. On one hand, the origin of this reference order is how we expand $\text{Pf}(\Psi_H)$ step by step. On the other hand, it serves as a “gauge choice” in the over-complete KK basis YM amplitudes.

From these results, one very promising direction is of course the construction BCJ numerators \cite{28, 29}. It is pointed out in \cite{8} that the YM integrand $\text{Pf}'(\Psi)$ can be readily expanded in terms of the EYM integrands with polynomial coefficients. Then our results essentially provides a working algorithm to write down the polynomial BCJ numerators for tree level YM, especially the spanning tree structure which has not been explicitly spelled out in this paper. This study may shed lights on new understandings of the numerator algebra, and also on possible new formulations of YM that manifest the numerator algebra. Such a formulation already exists for NLSM \cite{30}, and it will be fascinating if it also exists for YM.

Our work shows that a controlled expansion of CHY integrands can produce very fruitful results. It will be interesting to see, for example, how the expansion of $\text{Pf}'(A)$, the CHY integrand for NLSM\footnote{Such an expansion of the NLSM integrand should give us a set of BCJ numerators in the KK basis. It is also interesting to compare this result with known forms of the NLSM BCJ numerators \cite{31–33}.}, interplays with \cite{30}. One can also try the CHY integrand at the one-loop level for YM theory \cite{34–36}. Another topic that worths more attention is the study of multitrace EYM integrands \cite{2, 4, 14}, and its relation with the known results constructed from double copy \cite{26, 27}.

Note added During the final completion of this work, we came aware of \cite{37}, which partially overlaps with our results.

Acknowledgments

We would like to thank Yi-Jian Du, Chih-Hao Fu and Rijun Huang for valuable discussions. BF is supported by Qiu-Shi Funding and the National Natural Science Foundation of China (NSFC) with Grant No.11575156, No.11135006 and No.11125523.

A **Understanding the graphic rules**

This appendix is devoted to show how our graphic rules given in Section 5 emerge from our recursive relation (4.2). Suppose we are about to expand the m-graviton integrand

$$(-1)^m \text{Pf}(\Psi_H) \text{ PT}(12 \ldots n),$$

we have to make a choice on along which row do we expand the Pfaffian. Throughout our discussion in this paper, we have consistently chosen h_m, namely,

$$(-1)^m \text{Pf}(\Psi_H) \text{ PT}(12 \ldots n) = \epsilon_{h_m} \cdot T[1, \{2 \ldots n - 1\} \sqcup \{h_m\}, n | \{h_{m-1} \ldots h_1\}] \quad (A.1)$$
Of course the value of this integrand will not change should we choose any other graviton to perform the expansion, although the final pure YM expansion coefficients may have a different form. Now we carry out the expansion one step further, according to Eq. (4.2):

\[\epsilon_{h_m} \cdot T[1, \{2\ldots n-1\} \uplus \{h_m\}, n | \{h_{m-1}\ldots h_1\}] = \sum_{\omega} (\epsilon_{h_m} \cdot Y_{h_m}) \text{Pf}(\Psi_{h_m-1|h_1}^{n+m}) \text{PT}(1, \{2\ldots n-1\} \uplus \{h_m\}, n) + (-1)^{m-1} \sum_{s=1} \epsilon_{h_m} \cdot F_{h_s} \cdot T[1, \{2\ldots n-1\} \uplus \{h_s h_m\}, n | \{h_{m-1}\ldots h_s\ldots h_1\}] \]

(A.2)

In the first term, the factor \((\epsilon_{h_m} \cdot Y_{h_m})\) can be viewed as connecting the graviton vertex \(h_m\) to the root, while in the second term, \((\epsilon_{h_m} \cdot F_{h_s})^\mu\) can be interpreted as connecting \(h_m\) to another graviton \(h_s\), since in the ordering \(\{h_s h_m\}\), \(h_s\) is at the left hand side of the \(h_m\). For the second term, further expansion will again lead to two term, one with \(F_{h_s}\) connected to the root, giving \((\epsilon_{h_m} \cdot F_{h_s} \cdot Y_{h_s})\) and an \((m-2)\)-graviton EYM integrand:

\[\sum_{\omega} (\epsilon_{h_m} \cdot F_{h_s} \cdot Y_{h_s}) \text{Pf}(\Psi_{h_m-1|h_1}^{n+m}) \text{PT}(1, \{2\ldots n-1\} \uplus \{h_s h_m\}, n | \{h_{m-1}\ldots h_s\ldots h_1\}) , \]

and the other with \(F_{h_s}\) connected to yet another graviton, giving

\[\epsilon_{h_m} \cdot F_{h_s} \cdot F_{h_t} \cdot T[1, \{2\ldots n-1\} \uplus \{h_t h_s h_m\}, n | \{h_{m-1}\ldots h_s\ldots h_t\ldots h_1\}] . \]

We can do it recursively and this procedure gives, in fact, a construction of those increasing trees presented in Step 1 in the Section 5. Furthermore, the starting vertex \(h_m\) plays the role of \(\rho(1)\) in the reference order \(\rho\). For convenience, we show this expansion process schematically in Figure 3.

Now we work out more details for the above construction by an example. We first keep following the red arrows in Figure 3 to connect more gravitons until the vertex \(\phi_\ell\), which is then connected to the gluon.
Generally, we have:

\[
\sum_{\omega} (\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_m} \cdot Y_{\phi_m}) P_{\Psi_{\phi_1}^{n+m}} (1, \{2 \ldots n-1\} \sqcup \{\phi_1 \ldots \phi_t\}, n),
\]

where we have defined the first vertex \(\phi_1 \equiv h_m\). In the scheme of Figure 3, terminating a graviton chain at the gluon root essentially means that we switch to a blue arrow and arrive at the block

\[
\sum_{\omega_1} \sum_{\omega_2} (\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_{\ell}} \cdot Y_{\phi_{\ell}}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{t}} \cdot X_{\theta_{t}}) P_{\Psi_{\theta_1}^{n+m}} (1, \{2 \ldots n-1\} \sqcup \{\phi_1 \cdots \phi_{\ell}\} \sqcup \{\theta_1 \ldots \theta_{t}\}).
\]

Since we have treated \(\{\phi_1 \ldots \phi_{\ell}\}\) as gluons when expanding the \(\theta\)-chain, we need to include \(k_{\phi_i}\) into \(X_{\theta_{\ell}}\) if there are some \(\phi_i\) before \(\theta_i\):

\[
X_{\theta_{i}} = Y_{\theta_{i}} + \sum_{\phi_i < \theta_i} k_{\phi_i}.
\]

After fully expanding the shuffle \(\{\phi_1 \ldots \phi_i\} \sqcup \{\theta_1 \ldots \theta_i\}\), one can notice that the factor \((\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{i}} \cdot Y_{\theta_{i}})\) is contained in the coefficients of all the corresponding KK basis:

\[
(\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_{\ell}} \cdot Y_{\phi_{\ell}}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{i}} \cdot Y_{\theta_{i}}) \subset \{\phi_1 \ldots \phi_{\ell}\} \sqcup \{\theta_1 \ldots \theta_{i}\}.
\]

In addition, the factor \((\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{i}} \cdot k_{\phi_i})\) appears when \(\phi_i\) is ahead of \(\theta_i\):

\[
(\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_{i}} \cdot Y_{\phi_{i}}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{i}} \cdot k_{\phi_i}) \subset \{\phi_1 \ldots \phi_{i-1} \cdots \phi_{1}\} \sqcup \{\theta_1 \ldots \theta_{i}\}.
\]

Generally, we have:

\[
(\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_{i}} \cdot Y_{\phi_{i}}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_{i}} \cdot k_{\phi_i}) \subset \{\phi_1 \ldots \phi_{i-1} \ldots \phi_{1}\} \sqcup \{\theta_1 \ldots \theta_{i}\}.
\]
Now one can understand how the structure of increasing tree emerges. We can graphically represent Eq. (A.6) to (A.8) as follows:

\begin{equation}
\gamma \phi_\ell \phi_{\ell-1} \cdots \phi_2 \phi_1 = (\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_m} \cdot Y_{\phi_\ell}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_t} \cdot Y_{\theta_t}), \quad (A.9)
\end{equation}

\begin{equation}
\gamma \phi_\ell \phi_{\ell-1} \cdots \phi_i \cdots \phi_2 \phi_1 = (\epsilon_{\phi_1} \cdot F_{\phi_2} \cdots F_{\phi_m} \cdot Y_{\phi_\ell}) (\epsilon_{\theta_1} \cdot F_{\theta_2} \cdots F_{\theta_t} \cdot k_{\phi_i}). \quad (A.10)
\end{equation}

It is interesting to observe that the tree in (A.9) is an increasing tree respecting any \(\sigma \in \{\phi_\ell, \ldots, \phi_1\} \cup \{\theta_t, \ldots, \theta_1\} \). Similarly, the tree in (A.10) is an increasing tree respecting any \(\sigma \in \{\phi_\ell, \ldots, \phi_i, \phi_{i-1}, \ldots, \phi_1\} \cup \{\theta_t, \ldots, \theta_1\} \). Our derivation also shows that the terms evaluated from Eq. (A.9) and (A.10) do contribute to all such \(\sigma \)'s represented by the two trees. Finally, this example shows how we should close a chain that ends on a graviton vertex, as given in Step 2 in Section 5.

The above two-chain calculation demonstrates how the graph theory rules presented in Section 5, in their primitive forms, originate from our recursive relation. Of course, we have already refined these rules into a set of algorithms in Section 5 such that they can be applied to the most generic cases.

References

[1] S. Stieberger and T. R. Taylor, New relations for Einstein-Yang-Mills amplitudes, *Nucl. Phys.* B913 (2016) 151–162, [1606.09616].

[2] D. Nandan, J. Plefka, O. Schlotterer and C. Wen, Einstein-Yang-Mills from pure Yang-Mills amplitudes, *JHEP* 10 (2016) 070, [1607.05701].

[3] L. de la Cruz, A. Kniss and S. Weinzierl, Relations for Einstein-Yang-Mills amplitudes from the CHY representation, *Phys. Lett.* B767 (2017) 86–90, [1607.06036].

[4] O. Schlotterer, Amplitude relations in heterotic string theory and Einstein-Yang-Mills, *JHEP* 11 (2016) 074, [1608.00130].

[5] Y.-J. Du, F. Teng and Y.-S. Wu, Direct Evaluation of \(n \)-point single-trace MHV amplitudes in 4d Einstein-Yang-Mills theory using the CHY Formalism, *JHEP* 09 (2016) 171, [1608.00883].

[6] D. Nandan, J. Plefka and W. Wormsbecher, Collinear limits beyond the leading order from the scattering equations, *JHEP* 02 (2017) 038, [1608.04730].

[7] S. He and O. Schlotterer, Loop-level KLT, BCJ and EYM amplitude relations, 1612.00417.

[8] C.-H. Fu, Y.-J. Du, R. Huang and B. Feng, Expansion of Einstein-Yang-Mills Amplitude, 1702.08158.

[9] F. Cachazo, S. He and E. Y. Yuan, Scattering in Three Dimensions from Rational Maps, *JHEP* 10 (2013) 141, [1306.2962].
[10] F. Cachazo, S. He and E. Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D90 (2014) 065001, [1306.6575].

[11] F. Cachazo, S. He and E. Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys.Rev.Lett. 113 (2014) 171601, [1307.2199].

[12] F. Cachazo, S. He and E. Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 1407 (2014) 033, [1309.0885].

[13] F. Cachazo, S. He and E. Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP 01 (2015) 121, [1409.8256].

[14] F. Cachazo, S. He and E. Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149, [1412.3479].

[15] N. E. J. Bjerrum-Bohr, J. L. Bourjaily, P. H. Damgaard and B. Feng, Analytic representations of Yang-Mills amplitudes, Nucl. Phys. B913 (2016) 964–986, [1605.06501].

[16] C. Cardona, B. Feng, H. Gomez and R. Huang, Cross-ratio Identities and Higher-order Poles of CHY-integrand, JHEP 09 (2016) 133, [1606.00670].

[17] R. Huang, Y.-J. Du and B. Feng, Understanding the Cancelation of Double Poles in the Pfaffian of CHY-formulism, 1702.05840.

[18] R. H. Boels and R. Medina, Graviton and gluon scattering from first principles, Phys. Rev. Lett. 118 (2017) 061602, [1607.08246].

[19] N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and Unitarity from Singularities and Gauge Invariance, 1612.03885.

[20] L. Rodina, Uniqueness from locality and BCFW shifts, 1612.03885.

[21] L. Rodina, Uniqueness from gauge invariance and the Adler zero, 1612.06342.

[22] F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170, [1604.03893].

[23] R. Kleiss and H. Kuijf, Multi - Gluon Cross-sections and Five Jet Production at Hadron Colliders, Nucl. Phys. B312 (1989) 616–644.

[24] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, The Tree Formula for MHV Graviton Amplitudes, JHEP 07 (2010) 045, [0907.2276].

[25] B. Feng and S. He, Graphs, determinants and gravity amplitudes, JHEP 10 (2012) 121, [1207.3220].

[26] M. Chiodaroli, M. Gunaydin, H. Johansson and R. Roiban, Scattering amplitudes in $\mathcal{N} = 2$ Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081, [1408.0764].

[27] M. Chiodaroli, M. Gunaydin, H. Johansson and R. Roiban, Spontaneously Broken Yang-Mills-Einstein Supergravities as Double Copies, 1511.01740.

[28] Z. Bern, J. J. M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011, [0805.3993].
[29] Z. Bern, J. J. M. Carrasco and H. Johansson, *Perturbative Quantum Gravity as a Double Copy of Gauge Theory*, Phys. Rev. Lett. **105** (2010) 061602, [1004.0476].

[30] C. Cheung and C.-H. Shen, *Symmetry and Action for Flavor-Kinematics Duality*, 1612.00868.

[31] Y.-J. Du and C.-H. Fu, *Explicit BCJ numerators of nonlinear sigma model*, JHEP **09** (2016) 174, [1606.05846].

[32] J. J. M. Carrasco, C. R. Mafra and O. Schlotterer, *Abelian Z-theory: NLSM amplitudes and alpha’-corrections from the open string*, 1608.02569.

[33] J. J. M. Carrasco, C. R. Mafra and O. Schlotterer, *Semi-abelian Z-theory: NLSM + phi^-3 from the open string*, 1612.06446.

[34] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, *Loop Integrands for Scattering Amplitudes from the Riemann Sphere*, Phys. Rev. Lett. **115** (2015) 121603, [1507.00321].

[35] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, *One-loop amplitudes on the Riemann sphere*, JHEP **03** (2016) 114, [1511.06315].

[36] F. Cachazo, S. He and E. Y. Yuan, *One-Loop Corrections from Higher Dimensional Tree Amplitudes*, JHEP **08** (2016) 008, [1512.05001].

[37] M. Chiodaroli, M. Gunaydin, H. Johansson and R. Roiban, *Explicit Formulae for Yang-Mills-Einstein Amplitudes from the Double Copy*, 1703.00421.