Validation of genome-wide intervertebral disk calcification associations in Dachshund and further investigation of the chromosome 12 susceptibility locus

Mette Sloth Mogensen1, Karsten Scheibye-Alsing1, Peter Karlskov-Mortensen1, Helle Friis Proschowsky1, Vibeka Frøkjær Jensen2, Mads Bak3, Niels Tommerup3, Haja N. Kadarmideen1 and Merete Fredholm1,*

1 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
2 National Food Institute, Technical University of Denmark, Lyngby, Denmark
3 Faculty of Health Sciences, Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen N, Denmark

*Correspondence:
Merete Fredholm, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Copenhagen, Denmark
e-mail: mf@sund.ku.dk

INTRODUCTION

In the dog, herniation of the intervertebral disk is a common cause of neurological dysfunction. Especially the Dachshund is predisposed with a relative risk 10–12 times higher than all other breeds (Priester, 1976; Goggin et al., 2000) and an estimated lifetime occurrence of 19% (Ball et al., 1982). The intervertebral disks lie between adjacent vertebrae in the vertebral column forming cartilaginous joints that allow slight movements between vertebrae. The disks are complex structures consisting of a gelatinous core called the nucleus pulposus, an outer fibrous ring called the annulus fibrosus, and the cartilaginous endplates representing the cranial and caudal boundaries of the intervertebral disk. In the Dachshund and other hypochondroplastic breeds the predisposition to intervertebral disk herniation is the result of an early degenerative process, which can result in disk calcification (Hansen, 1952). The degeneration is preceded by early chondroid metaplasia emerging from the perinuclear zone and affecting the majority of the nucleus pulposus and perinuclear annulus fibrosus with profound matrix changes occurring within the first year of life (Hansen, 1952; Ghosh et al., 1976). Dogs with several disk calcifications are at particular high risk of herniation, while herniation rarely occurs in dogs without disk calcifications (Stigen, 1996; Lappalainen et al., 2001). Herniation of the intervertebral disk is a common cause of neurological dysfunction in the dog, particularly in the Dachshund. Using the Illumina CanineHD BeadChip, we have previously identified a major locus on canine chromosome 12 nucleotide positions 36,750,205–38,524,449 that strongly associates with intervertebral disk calcification in Danish wire-haired Dachshunds. In this study, targeted resequencing identified two synonymous variants in MB21D1 and one in the 5′-untranslated region of KCNQ5 that associates with intervertebral disk calcification in an independent sample of wire-haired Dachshunds. Haplovew identified seven linkage disequilibrium blocks across the disease-associated region. The effect of haplotype windows on disk calcification shows that all haplotype windows are significantly associated with disk calcification. However, our predictions imply that the causal variant(s) are most likely to be found between nucleotide 36,750,205–37,494,845 as this region explains the highest proportion of variance in the dataset. Finally, we develop a risk prediction model for wire-haired Dachshunds. We validated the association of the chromosome 12 locus with disk calcification in an independent sample of wire-haired Dachshunds and identify potential risk variants. Additionally, we estimated haplotype effects and set up a model for prediction of disk calcifications in wire-haired Dachshunds based on genotype data. This genetic prediction model may prove useful in selection of breeding animals in future breeding programs.

Keywords: canine, intervertebral disk calcification, LD pattern, haplotype effects, resequencing

Herniation of the intervertebral disk is a common cause of neurological dysfunction in the dog, particularly in the Dachshund. Using the Illumina CanineHD BeadChip, we have previously identified a major locus on canine chromosome 12 nucleotide positions 36,750,205–38,524,449 that strongly associates with intervertebral disk calcification in Danish wire-haired Dachshunds. In this study, targeted resequencing identified two synonymous variants in MB21D1 and one in the 5′-untranslated region of KCNQ5 that associates with intervertebral disk calcification in an independent sample of wire-haired Dachshunds. Haplovew identified seven linkage disequilibrium blocks across the disease-associated region. The effect of haplotype windows on disk calcification shows that all haplotype windows are significantly associated with disk calcification. However, our predictions imply that the causal variant(s) are most likely to be found between nucleotide 36,750,205–37,494,845 as this region explains the highest proportion of variance in the dataset. Finally, we develop a risk prediction model for wire-haired Dachshunds. We validated the association of the chromosome 12 locus with disk calcification in an independent sample of wire-haired Dachshunds and identify potential risk variants. Additionally, we estimated haplotype effects and set up a model for prediction of disk calcifications in wire-haired Dachshunds based on genotype data. This genetic prediction model may prove useful in selection of breeding animals in future breeding programs.

Keywords: canine, intervertebral disk calcification, LD pattern, haplotype effects, resequencing

INTRODUCTION

In the dog, herniation of the intervertebral disk is a common cause of neurological dysfunction. Especially the Dachshund is predisposed with a relative risk 10–12 times higher than all other breeds (Priester, 1976; Goggin et al., 2000) and an estimated lifetime occurrence of 19% (Ball et al., 1982). The intervertebral disks lie between adjacent vertebrae in the vertebral column forming cartilaginous joints that allow slight movements between vertebrae. The disks are complex structures consisting of a gelatinous core called the nucleus pulposus, an outer fibrous ring called the annulus fibrosus, and the cartilaginous endplates representing the cranial and caudal boundaries of the intervertebral disk. In the Dachshund and other hypochondroplastic breeds the predisposition to intervertebral disk herniation is the result of an early degenerative process, which can result in disk calcification (Hansen, 1952). The degeneration is preceded by early chondroid metaplasia emerging from the perinuclear zone and affecting the majority of the nucleus pulposus and perinuclear annulus fibrosus with profound matrix changes occurring within the first year of life (Hansen, 1952; Ghosh et al., 1976). Dogs with several disk calcifications are at particular high risk of herniation, while herniation rarely occurs in dogs without disk calcifications (Stigen, 1996; Lappalainen et al., 2001). A radiographic evaluation of the number of calcified disks at 2 years of age is a good indicator for the severity of the degeneration and associates strongly with the occurrence of clinical disk herniation at a later age (Jensen et al., 2008). The severity of disk degeneration among breeds describes a continuous spectrum suggesting a multifactorial etiology involving the cumulative effects of several genes and environmental factors (Ball et al., 1982). Severe disk degeneration with calcification has previously been shown highly heritable in Dachshund with heritability estimates of 0.47–0.87 (Jensen and Christensen, 2000). To decrease the occurrence of clinical disk herniation in the Danish Dachshund population the Danish Dachshund Club (DDC) has established breeding guidelines. Based on radiographic examinations at 24–42 months of age the number of calcified disks is determined and since 2008, DDC has recommended excluding dogs with ≥5 calcified disks from breeding. Since 2009, screening of breeding dogs
has been mandatory and breeding values of disk calcification have been estimated, using a BLUP (Best Linear Unbiased Prediction) Animal model.

Within the past few years genome-wide association studies (GWAS) have identified numerous promising signals of association between genetic variants and human traits. The use of high density SNP arrays have also shown strength in disease mapping in dogs and has opened doors toward a greater understanding of the genetic architecture of several complex diseases (Wood et al., 2009; Wilke et al., 2010; Madsen et al., 2011). The genetic homogeneity existing within dog breeds and the spontaneous occurrence of specific diseases in different breeds indicate a breed specific accumulation of disease causing genetic factors. This provides the dog with some advantages in studying genetic diseases as fewer markers and individuals are needed when compared with human studies (Sutter et al., 2004; Lindblad-Toh et al., 2005). The association signals identified through GWAS most likely represents only markers of putative risk and not the causal variant itself. Therefore, to generate hypothesis about mechanisms underlying a specific phenotype it is important to identify the causal variants themselves. This is often a difficult task and requires extensive efforts. The dog provides an excellent model to study complex diseases through the use of GWAS due to the extensive LD and long haplotype blocks characteristic of single dog breeds. However, because of long ranging LD in the dog genome, disease-associated haplotype blocks are often large, hampering the identification of the causal variant. Consequently, while the high extent of LD existing in the dog population is an advantage in the initial GWAS it may complicate the subsequent identification of the causative variant(s) (Sutter et al., 2004).

To investigate the underlying genetic mechanisms behind disk calcification, blood samples from Danish Dachshunds were collected through collaboration with the DDC. Previously, based on a GWAS in 33 cases and 28 controls using the Illumina CanineHD BeadChip, we identified a major locus associating with intervertebral disk calcification in wire-haired Dachshunds on a genome-wide level on canine chromosome (CFA) 12 nucleotide positions 36,750,205–38,524,449. We discovered 36 markers within the genomic region with p-values between 0.00001 and 0.026 after correcting raw p-values for multiple testing by permutation. This provided clear evidence of the region harboring genetic components affecting the development of disk calcification and thus the risk of disk herniation in wire-haired Dachshunds (Mogensen et al., 2011). The associated locus however requires additional exploration to refine the location of the causal variant(s).

This study was performed within the LUPA project (LUPA)1 to validate the original GWAS finding and characterize the CFA12: 36,750,205–38,524,449 susceptibility locus. Targeted resequencing was performed to identify potential functional SNPs that could explain the association signal and the local LD pattern across the disease-associated region was defined. Furthermore, haplotype window effects on disk calcification were estimated, to pinpoint a sub region more likely to harbor the causal variant(s).

1 http://www.eurolupa.org/

RESULTS

The disease-associated region contains a total of seven annotated protein coding genes in Ensembl (version 66.2): RIMS1, KCNQ5, DPPA5, C6orf221, OOEP_CANFA, DDX43, and MB21D1. Furthermore, the region harbors a number of non-coding RNAs (ncRNAs): cfa-mir-30c-2, cfa-mir-30a as well as three novel ncRNAs. As none of these genes or ncRNAs have previously been known to influence disk calcification resequencing was used to generate a list of potential mutations that could explain the association signal. Using the NimbleGen Sequence Capture technology and the Illumina platform we enriched and sequenced the target region in one affected and one unaffected dog of wire-hair. A summary of the statistics describing the resequencing data is given in Table 1. Enrichment of the selected genomic region resulted in 631 and 356 fold enrichment for the affected and unaffected sample, respectively, compared to the non-enriched library. A high coverage was achieved for both samples with >96% of the target region being covered by at least one read and >70% of the reads mapping uniquely to the target region.

Using the MAQ software (Li et al., 2008) to infer variants from the alignment, we identified 4119 SNPs and 377 indels in the affected dog and 2956 SNPs and 250 indels in the unaffected dog compared to the reference sequence (CanFam2.0) for the domestic dog (Canis familiaris; female boxer). The case was homozygous for three SNPs in protein coding regions or untranslated regions (UTRs): two synonymous SNPs in MB21D1 and one SNP in the 5′-UTR of KCNQ5, see Table 2. These three variants where selected for genotyping in 56 unaffected and 28 affected wire-haired dogs of standard size. All three variants were found to associate with disk calcification with the SNP in the 5′UTR of KCNQ5 showing the strongest association with a p-value of 1.4 × 10−7, see Table 3. A list of the predicted functional effect on disk calcification for SNPs identified during resequencing can be found in Table A1 in Appendix. By genotyping the three SNPs in a sample of long- and smooth-haired Dachshund, we found no association to disk calcification, data not shown. Instead dogs of these two hair-varieties seem to be fixed for the genotype of affected wire-haired dogs.

The ~1.8-Mb genomic region on CFA12 associating with disk calcification in Danish wire-haired Dachshund (Mogensen et al.,

Table 1 | Resequencing statistics.

	Affected	Unaffected
Average fold enrichment	631	356
Total reads	28,515,913	31,995,941
Uniquely mapped reads	19,007,898	23,112,589
Percent of target region covered by 1+ reads	96.5	96.8
Percent of target region covered by 10+ reads	94.8	95.1
Mean per base coverage	529	648

Average fold enrichment: the PCR efficiency raised to the power of delta-crossing threshold value (delta-Ct). Total reads: the total number of reads. Uniquely mapped reads: reads were aligned to the target region CFA12: 36,702,118–38,574,449 on CanFam2.0 via Bowtie using default parameters. Percent of target region covered by 1+ or 10+ reads: percent of target bases covered by at least one or 10 reads. Mean per base coverage: average number of reads per base.
Table 2 | SNPs in protein coding regions and UTRs for which the case is homozygous.

SNP position	Gene involved	Type of SNP	Genotype	Sequencing reads covering the SNP (case/control)
37871,992	KCNQ5	5'UTR	GG/CC	(291/371)
38,513,135	MB21D1	Synonymous	CC/TT	(364/696)
38,514,745	MB21D1	Synonymous	TT/AA	(1043/1158)

SNP position according to Ensembl Canis familiaris version 64.2.

Table 3 | Test of association between SNPs and disc calcification.

Location	Gene	Genotypes and observed frequencies	χ^2	p-value
37871,992	KCNQ5	Controls: 7 (0.125) 37 (0.661) 12 (0.214)	31,575	1.4 x 10$^{-7}$
		Cases: 1 (0.036) 3 (0.107) 24 (0.857)		
38,513,135	MB21D1	Controls: 5 (0.090) 27 (0.482) 24 (0.428)	14,100	0.00087
		Cases: 1 (0.036) 3 (0.107) 24 (0.857)		
38,514,745	MB21D1	Controls: 5 (0.090) 18 (0.321) 33 (0.589)	8,141	0.01707
		Cases: 1 (0.036) 2 (0.071) 25 (0.893)		

DISCUSSION

We have previously shown that the CFA12: 36,750,205–38,524,449 genomic region associates with disc calcification in wire-haired Dachshund on a genome-wide level (Mogensen et al., 2011). However, a comprehensive study of sequence variation within the region is required to identify the causal variant(s) that might explain the association signal. In this study we have investigated genetic variation within the target region through targeted resequencing in order to identify potential risk variants and validate original GWAS findings. To further investigate the locus we have identified LD block pattern across the disease-associated region and estimated the genetic variation explained by the different haplotype windows. Finally, we have developed a risk prediction model for wire-haired Dachshunds, using the disk calcification and haplotype dataset.

Functional SNPs may have variable effect on protein sequence, transcriptional regulation, splicing, microRNA- and transcription factor binding sites depending on their position and flanking sequences. By targeted resequencing we have made a comprehensive list of potential causal variants that could explain the association signal. A ranking of these SNPs is necessary for follow-up studies to be possible. Numerous SNPs, identified in this study, are predicted to be located within transcription factor binding sites or microRNA-binding sites. Due to the high number of cases sharing the same haplotype we have focused on variants within protein coding regions or UTRs for which the case is homozygous. We have validated the association of one variant in the UTR.
FIGURE 1 | Association and LD block analysis of the CFA12: 36,750,205–38,524,449 susceptibility locus in wire-haired Dachshunds.

Detailed view of the CFA12 genomic region associating with disk calcification in wire-haired Dachshunds. The x-axis show the position on CFA12 in mega bases (Mb) and the p-values on the y-axis correspond to the p-values from the GWAS in wire-haired dogs corrected for multiple testing (Mogensen et al., 2011), as seen in Table A4 in Appendix. The horizontal dotted line represents the threshold of genome-wide significance. The graphical representation of the LD pattern across the region is generated in Haploview 4.2. LD is specified using the r^2-color scheme: $r^2 = 0$: white; $0 < r^2 < 1$: shades of gray; $r^2 = 1$: black. The black horizontal lines in the Manhatten plot correspond to the position of the LD blocks defined in Haploview.

Table 4 | Haplotype substitution effects for disc calcification scored as binary cases/control disc scores.

Haplotype window	Nucleotide position on CFA12	Linear model (%)	p-value	Logistic model	p-value
Hap 1	36,750,205–36,909,311	$R^2 = 73$	<0.001	$RMD = 0.64$	<0.001
Hap 2	37,056,901–37,119,086	$R^2 = 73$	<0.001	$RMD = 0.64$	<0.001
Hap 3	37,123,193–37,494,845	$R^2 = 76$	<0.001	$RMD = 0.46$	<0.001
Hap 4	37,710,073–37,826,314	$R^2 = 51$	<0.001	$RMD = 0.92$	<0.001
Hap 5	37,847,222–37,944,067	$R^2 = 68$	<0.001	$RMD = 0.75$	<0.001
Hap 6	37,968,884–38,019,502	$R^2 = 63$	<0.001	$RMD = 0.85$	<0.001
Hap 7	38,022,379–38,072,703	$R^2 = 63$	<0.001	$RMD = 0.82$	<0.001
Hap 8	38,079,788–38,229,535	$R^2 = 63$	<0.001	$RMD = 0.85$	<0.001
Hap 9	38,264,121–38,524,449	$R^2 = 62$	<0.001	$RMD = 0.76$	<0.001

R^2 = Percent variability in the data set accounted for by the fitted haplotype window model. *RMD, Residual mean deviance is an indicator for goodness of fit (the lower the RMD, the better is the model fit).

of KCNQ5 and two synonymous variants in MB21D1 in an independent sample of wire-haired Dachshunds hereby confirming the original GWAS and thus providing further evidence for the association of this region with disk calcification. Disk herniation is also seen in long- and smooth-haired Dachshunds. However, interestingly, both cases and controls within these two hair variants appear to be fixed for the haplotype found in wire-haired cases. Thus, presumably other loci must be involved in the development of the disease in long- and smooth-haired variants. This hypothesis is supported by the fact that when 18 controls and 15 cases of long- and smooth-hair were included in our original GWAS (Mogensen et al., 2011), an additional locus, not appearing when including only wire-haired dogs, was detected on CFA3. However, more dogs are needed to confirm this hypothesis. In terms of SNPs validated in the wire-haired dogs any of the three variants may have a potential functional impact on the phenotype in wire-haired dogs. However, it is more likely that these SNPs are markers in high LD with the actual causal variant(s). Resequencing of the target region in a larger number of affected and unaffected dogs might be necessary to eliminate some of the identified variants before a thorough follow-up on other highly ranked variants can be carried out.
To characterize the CFA12 locus and potentially narrow down the candidate region we looked at the LD block pattern. Haplovew identify seven LD blocks across the region associating with disk calcification. Several of the markers showing genome-wide significance are in strong LD ($r^2 > 0.8$) with genome-wide significant markers in other LD blocks indicating the presence of strong LD within the disease-associated region. That this genomic region falls into a segment of strong LD is further documented by 28 of the 33 cases in the GWAS sharing the same haplotype across all 36 genome-wide significant markers within this region (Mogensen et al., 2011). In addition several of the markers show more or less equivalent evidence of association for the given signal indicating that the markers are highly correlated. Given the high extent of LD within this region it is difficult to resolve whether two or more independent loci contribute independent effects to disk calcification.

Analyzing haplotype window effects could potentially pinpoint a haplotype window with a higher effect on disk calcification and thus define or narrow down the region of interest. By estimating the effect of the haplotype windows we have identified window 3 CFA12: 37,123,193–37,494,845 as explaining the largest part of the genetic variation between dogs in our dataset (76%) followed by haplotype window 1 and 2 explaining 73% of the genetic variation. From these results it therefore seems most likely that the causal genetic variant(s) are to be found within the CFA12: 36,750,205–37,494,845 genomic region, which harbors the ncRNA s cfa-mir-30c-2 and cfa-mir-30a as well as a part of the genomic region, which harbors the ncRNA variation.

From these results it therefore seems most likely that the causal genetic variant(s) are to be found within the CFA12: 36,750,205–37,494,845 genomic region, which harbors the ncRNAs cfa-mir-30c-2 and cfa-mir-30a as well as a part of RIMS1. However, all haplotype windows explain a fair proportion of the variance in the dataset, which is not surprising due to the large amount of LD within this region. Therefore one needs to be careful when narrowing down the region to these three haplotype windows.

A genetic prediction model for intervertebral disk calcification based on these haplotype effects analyses may form a valuable tool for genetic counseling in the wire-haired Dachshund population.

Genome-wide association studies has to a large extent focused on the detection of effects attributable to common SNPs. Other sequence variants such as rare variants (MAF of 1–5%) and structural variants are also expected to contribute to the genetic basis of common disease and efforts to detect these genetic variations should be included in future studies. Even when a true causal variant is identified challenges remain in reconstructing the molecular mechanisms whereby the variant have an impact on the phenotype of interest and even more work is necessary in translating these findings into advantages in clinical care. Based on a literature search no genes with a direct biological link is present within the disease-associated region one could speculate whether the region contains a regulatory element controlling the expression levels of a causal gene located either upstream or downstream of the candidate region identified here. One hypothesis is a regulatory variant affecting the expression level of COL9A3. This gene is located 1–1 Mb upstream of the disease-associated region and encodes one of the three alpha chains of collagen IX. Collagen IX serves as a minor component in the annulus fibrosus and the nucleus pulposus and is thought to be involved in maintaining network integrity in the normal disk. Mutations in COL9A2 and COL9A3 have previously been linked to human disk disease (Annunen et al., 1999; Paassilta et al., 2001) and studies in transgenic mice have further demonstrated that mutations in collagen IX can lead to disk degeneration but also degenerative joint disease (Kimura et al., 1996).

CONCLUSION

In the present study we validate the previously identified association of the locus CFA12: 36,750,205–38,524,449 with disk calcification in an independent sample of wire-haired Dachshund thus providing strong evidence that variation within this locus affect the development of disk calcification in wire-haired Dachshunds. Moreover, our results suggest that the locus falls within a region of strong LD hence complicating the identification of the causal variant. Our predictions on the effect of the nine different haplotype windows on disk calcification imply that the causal variant(s) are to be found within the CFA12: 36,750,205–37,494,845 genomic region, however care must be taken when drawing this conclusion as all haplotype windows explain a reasonable part of the variability in the disk calcification dataset.

MATERIALS AND METHODS

ANIMALS AND DIAGNOSTIC PROCEDURES

This study was confined to Dachshund registered in the DDC. All blood samples included in this study were collected by licensed veterinarians with owners’ consent. Inclusion criteria for sampling were based on radiographic examinations of intervertebral disk calcifications from the second cervical vertebra to the third sacral bone at age 24–42 months (Jensen and Erbsbøll, 2000). Information regarding size (standard, miniature, and rabbit), hair variant (wire-haired, long-haired and smooth-haired) sex, age, and pedigree records were obtained from the Danish Kennel Club registry. Disease status of cases and controls were scored based on standard protocol for radiographic examinations; cases were classified as dogs with either ≥6 disk calcifications or dogs that had undergone surgical treatment for disk herniations. Controls were classified as dogs with ≤1 disk calcification. For further information on the distribution of disk calcifications among cases and controls (see Mogensen et al., 2011).

NimbleGen SEQUENCE CAPTURE ARRAY DESIGN AND DATA ANALYSES

For targeted resequencing one affected and one unaffected dog was selected. The affected dog had 12 disk calcifications as evaluated from the radiographic examination and was homozygous across the 36 significantly associated markers in the disease-associated region. The unaffected dog had no disk calcifications and was homozygous for the opposite alleles of the affected dog across the entire region. Both were female standard wire-haired dogs and unrelated at great grandparental level. A custom tiling NimbleGen 38K sequence capture array targeting CFA12: 36,702,118–38,574,449 on CanFam2.0 was designed and manufactured by Roche NimbleGen, Madison, WI, USA. The probe set design was approved with the fraction of bases in the target region covered by probes being 96.5%. Genomic DNA was captured following the NimbleGen Sequence Capture protocol (Roche NimbleGen, Madison, WI, USA). In brief, 25 μg genomic DNA was fragmentized by sonication to blunt-ended fragments and hybridized to the custom array. Unbound fragments were...
washed away. The target-enriched pool was eluted and recovered from the array and amplified by ligation-mediated PCR. Quantitative fluorescence PCR (qPCR) was performed on pre- and post-enriched libraries to calculate relative-fold enrichment of the targeted region. A locus within the target region was selected for qPCR enrichment analysis using the Stratagene Mx3000P qPCR system using the following primers designed using Primer-BLAST (Primmer BLAST)²: F: 5’-TGGCTCTGTTGTCCACAGTCGA-3’; R: 5’-TGCTTGGGACCTCTGTCACC-3’. One microgram of captured libraries were subsequently sequenced on the Illumina Genome Analyzer platform as paired end 2 × 36 sequencing reads following the Genome Analyzer User Guide. Bowtie (Langmead et al., 2009) was used to align short read sequence data against the CanFam2.0 reference genome and sequence variants were identified running MAQ (Li et al., 2008) on the reads aligning uniquely to the region.

All SNPs identified from resequencing were evaluated according to their potential functional effect on disk calcification. The SNPs were compared to Ensembl Canis familiaris version 64.2 annotations and predictions and SNPs in protein coding regions or within or near predicted ncRNAs were identified. Further SNPs were evaluated based on a measure of conservation in dog, human, mouse, and rat, position according to transcription start site and end site and if the SNP was likely to change the predicted binding of transcription factors or predicted ncRNAs.

VALIDATION OF GWAS FINDINGS USING TAQMAN® SNP GENOTYPING ASSAYS

Three SNPs at nucleotide position 37,871,992, 38,513,135 and 38,514,745 were genotyped using Custom TaqMan® SNP Genotyping assays (Applied Biosystems, Foster City, CA, USA) in an independent sample of wire-haired dogs not included in the original GWAS. The sample included 56 controls and 28 cases that had undergone a thorough radiographic examination to determine affection status as described previously. The primers and probes obtained from the ABI assay kit are specified in Table A3 in Appendix. Reactions were carried out according to the manufacturer’s protocol. Briefly, PCR was performed in the presence of 10 ng genomic DNA, TaqMan® Universal PCR Master Mix, and the SNP Genotyping Assay specific for each SNP. The thermal cycling conditions on Mx3000P™ (Strategene) were 95°C for 10 min, followed by 60 cycles at 92°C for 15 s and 60°C for 1 min. Results were analyzed using the MxPro software and the SNPs were tested for genotypic associations with disk calcification using chi-square test statistics.

ANALYSIS OF LD PATTERN IN HAPLOVIEW

The LD pattern of all 117 SNPs covering the CFA12: 36,750,205–38,524,449 genomic region were analyzed in Haploview 4.2 (Barrett et al., 2005) using SNP genotyping data from the original GWAS with 33 wire-haired cases and 28 wire-haired controls. The four gamete test (Wang et al., 2002) implemented in Haploview using default parameters were used to define the LD block structure and create a graphical representation of the LD pattern. The level of LD is represented by r²-values.

ESTIMATION OF HAPLOTYPE EFFECTS ON DISK CALCIFICATION

The effect of haplotypes in nine haplotype windows was estimated using data from our previous GWAS on disk calcification (Mogensen et al., 2011). The 30 cases and 23 controls included in the analyses were all of standard size and wire-haired to keep the population as genetically homogeneous as possible. For the 36 genome-wide significant markers within the CFA12: 36,750,205–38,524,449 genomic region we defined haplotype windows with four-SNPs creating nine haplotype windows, see Table A4 in Appendix. The haplotype frequencies and most likely haplotype pair (linkage phase) for each dog were estimated from genotyping data using PHASE v.2.1.1 (Stephens et al., 2001). Since haplotypes are reconstructed from genotype data, there are always two haplotypes per dog for each haplotype window. From the PHASE data each dog was assigned a score of 0, 1, or 2 corresponding to 0 copies, 1 copy, or 2 copies of a given haplotype in a haplotype window. Using this haplotype count data, we estimated the effect of each window on disk calcification in dogs. Preparation of data files and methods used for estimating haplotype substitution effects were according to those described for allele substitution models by Kadarmideen et al. (2011) and Kadarmideen (2008). Estimations of haplotype effects on disk calcification was done on a binary scale as cases = 1 (classified as dogs with ≥6 disk calcifications) and controls = 0 (classified as dogs with 0 or 1 disk calcification). Information on sex was included as fixed effects. All analyses were performed in ASReml 3.0 (Gilmour et al., 2002). Linear and logistic regression models were fitted to binary case/control scores on disk calcification. A standard linear haplotype substitution model was:

\[
y_i = \alpha_0 + S_i + \sum_{j=1}^{p} \alpha_{ij} \cdot H_{ij} + \epsilon_i \quad (2)
\]

where, for individual i, \(\alpha_0 \) is the intercept, \(S_i \) is the sex, and \(\epsilon_i \) is the residual. The term \(H_{ij} \) is the number of copies (0, 1, or 2) of haplotype j (1 to p). The least common haplotype was set as a reference level (=\(\alpha_{0j} \)) and the effect of the other haplotypes represents the relative haplotype effect compared to this reference level.

To take the binomial distribution of case/control data we fitted a GLM using the logit link function. The model took the following form:

\[
\log \left(\frac{\pi_i}{1-\pi_i} \right) = \alpha_0 + S_i + \sum_{j=1}^{p} \alpha_{ij} \cdot H_{ij} \quad (3)
\]

where \(\pi_i \) is the probability of observing a case \(y_i = 1 - \pi_i \) is the of probability of observing a control \(y_i = 0 \). All analyses were conducted for each haplotype window one at a time. Significance of the model terms was assessed by F-test statistics and associated p-values for each haplotype in each haplotype window and other fixed effects. For the linear model (2), the overall model fit for a particular haplotype window was assessed by R² values expressed as percentage. This explains the proportion of variance in disk calcification explained by the corresponding haplotype window. Since there is no equivalent expression for R² in the GLM framework, the logistic model fit was assessed by the RMD. The RMD represent residual effects not explained by the model; hence the lower the RMD the better is the model fit. For both the linear model and

² http://ncbi.nlm.nih.gov/tools/primer-blast
GLM, the overall statistical significance was assessed by p-values. It should be noted that linear models (2) were applied to binary case/control data as if they were normally distributed. It has been shown that linear models are quite robust to violation of normality in gene or QTL mapping and association studies and that it is simple to apply and interpret in many studies (Kadarmideen et al., 2000). However, we also applied statistically appropriate GLM to case/control binary data.

ACKNOWLEDGMENTS

This work was supported by the European Commission (LUPA-GA-201370); and a Faculty of Life Sciences, University of Copenhagen PhD stipend. The authors thank Olav Nørgaard and Majbritt Hansen for blood sampling. In addition we thank the Danish Dachshund Club and dog owners for contributing and supporting this study.

REFERENCES

Annunen, S., Paassilta, P., Lohinvia, J., Perala, M., Philajatama, T., Karpipinen, L., et al. (1999). An allele in COL1A2 associated with intervertebral disc disease. Science 285, 409–412.

Ball, M. U., McGuire, J. A., Swain, S. A., case/control binary data. simple to apply and interpret in many studies (Kadarmideen et al., 2008). However, we also applied statistically appropriate GLM to case/control binary data.

Goggin, J. E., Li, A. S., and Franti, C. (2000). Canine intervertebral disc disease: characterization by age, sex, breed and anatomic site of involvement. Am. J. Vet. Res. 31, 1687–1692.

Hansen, H. J. (1952). A pathologic-anatomical study on disc degeneration in dog. Acta Orthop. Scand. 11, 1–120.

Jensen, V. E., Beck, S., Christensen, K. A., and Arnbjerg, J. (2008). Quantification of the association between intervertebral disc calcification and disc herniation in Dachshunds. J. Am. Vet. Med. Assoc. 223, 1090–1095.

Jensen, V. E., and Christensen, K. A. (2000). Inheritance of disc calcification in the dachshund. J. Vet. Med. A Physiol. Pathol. Clin. Med. 47, 331–340.

Jensen, V. F., and Ersbøll, A. K. (2000). Mechanical factors affecting the occurrence of intervertebral disc calcification in the dachshund. A population study. J. Vet. Med. A Physiol. Pathol. Clin. Med. 47, 283–296.

Kadarmideen, H. (2008). Biochemical, ECF1B1 and RVR1 gene polymorphisms and their associations with osteochondroses and disease and occurrence in pigs. Biochem. Genet. 46, 41–53.

Kadarmideen, H., Ali, A., Thomson, P., Muller, B., and Zintstag, I. (2011). Polymorphisms of the SLC1A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim. Genet. 42, 656–658.

Kadarmideen, H., Janss, L., and Dekkers, J. (2000). Power of quantitative trait locus mapping for polygenic traits using generalized and regression interval mapping in multi-family half-sib designs. Genet. Res. 76, 305–317.

Kimura, T., Nakata, K., Tsumaki, N., Miyamoto, S., Matsui, Y., Ebara, S., et al. (1996). Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int. Orthop. 20, 177–181.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

Lappalainen, A., Norrgård, M., Alm, E., Karlsson, E. K., Biagi, T., et al. (2001). A new statistical method for haplotypes reconstruction from population data. Am. J. Hum. Genet. 68, 78–98.

Stigen, Ø. (1996). Calcification of intervertebral discs and curvature of the vertebral column. Acta Orthop. Scand. 67, S8–S86.

Wilke, M., Jokinen, P., Truven, K., Sep- palu, E. H., Karlsson, E. K., Biagi, T., et al. (2010). Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex. Nat. Genet. 3, 250–254.

Wood, S. H., Ke, X., Nuttall, T., McEwan, N., Ollier, W. E., and Carter, S. D. (2009). Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 61, 765–772.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 24 August 2012; accepted: 08 October 2012; published online: 01 November 2012.

Citation: Mogensen MS, ScheiLy-Alsing K, Karlskov-Mortensen P, Proschowski HF, Jensen VP, Bak M, Tommerup N, Kadarmideen HN and Fredholm M (2012) Validation of genome-wide intervertebral disc calcification association mapping in Dachshund and further investigation of the chromosome 12 susceptibility locus. Front. Genet. 3:225. doi: 10.3389/fgene.2012.00225

This article was submitted to Frontiers in Genetic Architecture, a specialty of Frontiers in Genetics.

Copyright © 2012 Mogensen, ScheiLy-Alsing, Karlskov-Mortensen, Proschowski, Jensen, Bak, Tommerup, Kadarmideen and Fredholm. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
APPENDIX

Table A1 | Functional prediction of SNPs homozygous in the case sorted according to genomic position.

TaqMan SNPs*	Position	Case geno	Cons score	Comments*
36750513	GG	10	TSS PROXIMITY miRNA change TFBS change	
36751290	GG	19	TSS PROXIMITY	
36751590	TT	55	TSS PROXIMITY	
36753585	GG	16	TSS PROXIMITY miRNA change TFBS change	
36762341	TT	41	TSS PROXIMITY miRNA change	
36766398	CC	43	TSS PROXIMITY	
36801723	CC	23	TSS PROXIMITY	
36803655	CC	16	TFBS change	
36809769	CC	62	ncRNA PROXIMITY	
36810002	TT	27	TFBS change	
36814590	CC	58	TFBS change	
36823331	TT	12	miRNA change TFBS change	
36823332	GG	12	miRNA change TFBS change	
36824279	AA	14	miRNA change TFBS change	
36825704	AA	19	TFBS change	
36826666	CC	17	TFBS change	
36826888	CC	23	miRNA change	
36827844	GG	44	miRNA change TFBS change	
36840333	TT	23	TFBS change	
36846574	CC	14	miRNA change	
36847384	TT	13	TFBS change	
36850155	CC	12	TFBS change	
36853046	GG	13	miRNA change	
36853059	GG	14	TFBS change	
36853122	CC	16	miRNA change	
36860038	TT	16	miRNA change	
36871633	AA	11	miRNA change	
36886442	AA	14	miRNA change	
36887486	GG	12	miRNA change TFBS change	
36897624	AA	12	miRNA change	
36899830	AA	27	TFBS change	
36899834	AA	32	TFBS change	
36903284	AA	12	miRNA change TFBS change	
36904787	CC	20	TFBS change	
36906286	TT	18	miRNA change	
36925990	AA	13	TFBS change ncRNA PROXIMITY	
36926238	TT	49	TFBS change	
36928655	CC	17	TFBS change	
36933548	AA	26	miRNA change	
36939600	AA	10	miRNA change	
36941861	AA	14	miRNA change	
36943148	CC	16	miRNA change	
36943511	GG	25	TFBS change	
36951069	GG	11	miRNA change	
36955971	AA	64	TFBS change	
36962236	GG	11	miRNA change	
36962563	CC	51	miRNA change	
36964810	CC	71	TFBS change	
36965584	AA	11	TFBS change	

(Continued)
Table A1 | Continued

TaqMan SNPs^a	Position^b	Case geno^c	Cons score^d	Comments^e
36965676	GG	12	miRNA change	
36966849	CC	29	TFBS change	
36966628	CC	32	miRNA change	
36968474	AA	15	miRNA change	
36971526	AA	11	miRNA change	
36985376	CC	30	miRNA change	
36985633	GG	14	miRNA change	
37025881	CC	11	TSS PROXIMITY	
37028436	CC	49	TSS PROXIMITY	
37059275	CC	13	miRNA change	
37063231	GG	26	TFBS change	
37078527	GG	21	miRNA change	
37086384	AA	12	miRNA change	
37090854	AA	26	miRNA change	
37095837	CC	47	TFBS change	
37104620	AA	16	miRNA change	
37104814	TT	25	TFBS change	
37120008	CC	15	miRNA change	
37120009	CC	11	miRNA change	
37126044	TT	13	TFBS change	
37126067	GG	34	miRNA change	
37142283	AA	71	miRNA change	
37175327	TT	30	INTRONIC	
37188268	CC	67	INTRONIC	
37196342	GG	12	INTRONIC	
37200097	GG	48	INTRONIC	
37201457	CC	15	INTRONIC	
37205397	CC	34	INTRONIC	
37205451	TT	19	INTRONIC	
37206251	GG	15	INTRONIC	
37215701	GG	65	INTRONIC	
37219280	CC	33	INTRONIC	
37219351	CC	14	INTRONIC	
37225007	AA	97	INTRONIC	
37225286	TT	13	INTRONIC	
37226206	AA	10	INTRONIC	
37226855	CC	16	INTRONIC	
37228813	CC	11	INTRONIC	
37229626	GG	19	INTRONIC	
37233185	TT	13	INTRONIC	
37234742	AA	31	INTRONIC	
37236643	AA	15	INTRONIC	
37247325	GG	15	INTRONIC	
37250978	CC	80	INTRONIC	
37265749	GG	40	INTRONIC	
37266392	TT	13	INTRONIC	
37264796	TT	13	TFBS change	
37287964	GG	37	miRNA change	
37290783	CC	12	TFBS change	
37292386	AA	12	miRNA change	
37294131	CC	20	miRNA change	

(Continued)
TaqMan SNPs^a	Position^b	Case geno^c	Cons score^d	Comments^e
37343613	TT	12	mRNA change TFBS change	
37363999	GG	30	TFBS change	
37364553	AA	27	TFBS change	
37452057	GG	10	INTRONIC	
37452124	AA	22	INTRONIC	
37458708	CC	12	INTRONIC	
37458865	AA	10	INTRONIC	
37458971	AA	16	INTRONIC	
37459637	GG	40	INTRONIC	
37472355	GG	16	INTRONIC	
37472611	AA	47	INTRONIC	
37476579	TT	30	INTRONIC	
37477693	CC	12	INTRONIC	
37478601	GG	26	INTRONIC	
37480959	CC	30	INTRONIC	
37482457	GG	15	INTRONIC	
37491502	GG	33	INTRONIC	
37492736	AA	21	INTRONIC	
37493967	TT	10	INTRONIC	
37494406	AA	72	INTRONIC	
37494485	CC	14	INTRONIC	
37498910	TT	12	INTRONIC	
37499390	GG	10	INTRONIC	
37502647	GG	27	INTRONIC	
37506729	AA	20	INTRONIC	
37516868	AA	10	INTRONIC	
37521109	TT	87	INTRONIC	
37521868	CC	97	INTRONIC	
37522527	TT	25	INTRONIC	
37529231	TT	13	INTRONIC	
37529548	TT	14	INTRONIC	
37536096	AA	12	INTRONIC	
37538376	AA	16	INTRONIC	
37544162	TT	17	INTRONIC	
37555733	GG	12	INTRONIC	
37555819	CC	13	INTRONIC	
37558543	CC	13	INTRONIC	
37559087	TT	11	INTRONIC	
37561820	CC	27	INTRONIC	
37564422	AA	14	INTRONIC	
37566812	CC	12	INTRONIC	
37568806	CC	15	INTRONIC	
37570668	CC	13	INTRONIC	
37574392	CC	43	INTRONIC	
3754075	GG	10	INTRONIC	
37579188	TT	24	INTRONIC	
37582007	TT	19	INTRONIC	
37582312	GG	16	INTRONIC	
37585611	CC	45	INTRONIC	
37594353	CC	94	INTRONIC	
37598499	CC	57	INTRONIC	
37605138	AA	10	INTRONIC	
Table A1 | Continued

TaqMan SNPs*	Positionb	Case genoc	Cons scored	Comments*
37605139	TT	11	INTRONIC	
37605730	AA	15	INTRONIC	
37606719	GG	10	INTRONIC	
37627824	TT	10	INTRONIC	
37658166	TT	11	INTRONIC	
37710073	CC	29	TFBS change	
37714749	CC	26	TFBS change	
37716890	GG	94	TFBS change	
37738150	AA	31	miRNA change	
37744880	GG	16	miRNA change TFBS change	
37750938	AA	10	miRNA change TFBS change	
37754220	GG	17	miRNA change	
37754259	AA	12	miRNA change	
37755267	AA	15	TFBS change	
37770210	TT	77	miRNA change	
37824729	CC	39	TFBS change	
37849581	AA	34	miRNA change	
37856808	GG	11	TSS PROXIMITY miRNA change	
37856942	AA	20	TSS PROXIMITY	
37869861	TT	68	TSS PROXIMITY	
37871156	GG	55	TSS PROXIMITY miRNA change TFBS change	
37871992	GG	68	TSS PROXIMITY TES PROXIMITY miRNA change	
37872738	AA	28	TSS PROXIMITY miRNA change TFBS change	
37873638	AA	57	TSS PROXIMITY miRNA change	
37875270	GG	18	TSS PROXIMITY	
37877147	AA	19	TSS PROXIMITY miRNA change TFBS change	
37882662	AA	12	TSS PROXIMITY TFBS change	
37888494	AA	13	TSS PROXIMITY TFBS change	
37891712	AA	14	TSS PROXIMITY	
37940165	GG	16	TSS PROXIMITY TFBS change	
37940954	TT	17	TSS PROXIMITY	
37941830	AA	17	TSS PROXIMITY	
37944067	TT	12	TSS PROXIMITY TFBS change	
37948797	CC	14	TSS PROXIMITY TFBS change	
37951161	AA	20	TSS PROXIMITY TFBS change	
37951388	AA	85	TSS PROXIMITY	
37952197	TT	12	TSS PROXIMITY miRNA change	
37953673	TT	12	TSS PROXIMITY TES PROXIMITY	
37956685	AA	30	TSS PROXIMITY TFBS change	
37957180	AA	15	TSS PROXIMITY	
37958884	TT	76	TSS PROXIMITY	
37959750	CC	28	TSS PROXIMITY miRNA change	
37960878	CC	57	TSS PROXIMITY	
37965835	GG	37	TSS PROXIMITY	
37968559	GG	28	TSS PROXIMITY	
37969143	TT	10	TSS PROXIMITY	
37969840	GG	20	TSS PROXIMITY	
37970147	TT	21	TSS PROXIMITY	
37972395	AA	25	TSS PROXIMITY	
37973896	AA	16	TSS PROXIMITY TFBS change	
37978285	GG	20	miRNA change TFBS change	
37981482	GG	10	TFBS change	

(Continued)
Table A1 | Continued

TaqMan SNPs\(^a\)	Position\(^b\)	Case geno\(^c\)	Cons score\(^d\)	Comments\(^e\)	
37983410	TT	20	miRNA change	TFBS change	
37987832	TT	64	TFBS change		
37996273	CC	28	TFBS change		
38006534	GG	47	TFBS change		
38006866	AA	42	miRNA change	TFBS change	
38017895	GG	34	miRNA change	TFBS change	
38029263	TT	82	TFBS change		
38031354	TT	40	miRNA change		
38060116	AA	15	TFBS change		
38060996	CC	33	miRNA change		
38065657	AA	23	TFBS change		
38066137	CC	10	TFBS change		
38068479	AA	78	miRNA change		
38073660	AA	15	miRNA change		
38075216	TT	54	miRNA change	TFBS change	
38111851	AA	10	miRNA change		
38116133	CC	14	TFBS change		
38147726	AA	15	miRNA change		
38153973	TT	26	TFBS change		
38161074	AA	19	miRNA change		
38162115	GG	51	miRNA change		
38164334	GG	34	TFBS change		
38166479	TT	63	TFBS change		
38183981	AA	15	TSS PROXIMITY	miRNA change	
38183927	GG	17	TSS PROXIMITY	miRNA change	
38191074	CC	34	TSS PROXIMITY	miRNA change	
38192878	CC	23	TSS PROXIMITY	miRNA change	TFBS change
38195435	TT	46	INTRONIC		
38197486	CC	27	INTRONIC		
38199290	AA	10	INTRONIC		
38199291	AA	10	INTRONIC		
38207212	CC	17	INTRONIC		
38207509	AA	88	INTRONIC		
38201034	CC	19	INTRONIC		
38215979	GG	12	INTRONIC		
38219313	TT	26	INTRONIC		
38227102	TT	21	INTRONIC		
38227103	GG	23	INTRONIC		
38227485	TT	16	INTRONIC		
38228487	GG	21	INTRONIC		
38228535	TT	75	INTRONIC		
38236011	GG	39	INTRONIC		
38242115	AA	71	INTRONIC		
38247539	GG	25	INTRONIC		
38247787	CC	14	INTRONIC		
38247898	TT	40	INTRONIC		
38255808	CC	13	INTRONIC		
38255626	GG	10	INTRONIC		
38258165	CC	13	INTRONIC		
38264424	TT	30	INTRONIC		
38272464	AA	31	INTRONIC		
38277482	CC	98	INTRONIC		
Table A1 | Continued

TaqMan SNPsa	Positionb	Case genoc	Cons scored	Commentsd
38297034	GG	11	INTRONIC	
38297707	AA	71	INTRONIC	
38298904	TT	27	INTRONIC	
38299362	TT	14	INTRONIC	
38303738	TT	16	INTRONIC	
38305559	AA	27	INTRONIC	
38306634	TT	12	INTRONIC	
38309469	GG	12	INTRONIC	
38310641	CC	15	INTRONIC	
38311049	TT	55	INTRONIC	
38312454	GG	36	INTRONIC	
38314488	GG	13	INTRONIC	
38315461	TT	24	INTRONIC	
38316970	AA	33	INTRONIC	
38319784	GG	98	INTRONIC	
38319885	TT	56	INTRONIC	
38320086	GG	32	INTRONIC	
38321560	TT	11	INTRONIC	
38321904	CC	29	INTRONIC	
38325057	GG	32	INTRONIC	
38329848	AA	11	INTRONIC	
38340130	AA	22	INTRONIC	
38340847	GG	32	INTRONIC	
38344903	GG	27	INTRONIC	
38344904	TT	26	INTRONIC	
38348649	AA	31	INTRONIC	
38377727	CC	22	miRNA change	
38378296	GG	13	miRNA change	
38378319	AA	18	miRNA change	
38382903	GG	36	miRNA change	
38383075	TT	81	miRNA change	
38396494	TT	13	TSS PROXIMITY	
38397559	TT	16	TSS PROXIMITY, TFBS change	
38397797	AA	10	TSS PROXIMITY, miRNA change, TFBS change	
38400970	TT	54	TSS PROXIMITY	
38402819	TT	23	TSS PROXIMITY, TFBS change	
38402956	GG	12	TSS PROXIMITY, miRNA change, TFBS change	
38412488	GG	22	TSS PROXIMITY, miRNA change, TFBS change	
38412701	TT	17	TSS PROXIMITY, miRNA change	
38430308	CC	96	TSS PROXIMITY, miRNA change	
38433536	CC	29	TSS PROXIMITY, miRNA change, TFBS change	
38443159	TT	12	TSS PROXIMITY, TFBS change	
38445333	CC	14	INTRONIC	
38445882	CC	13	INTRONIC	
38452271	CC	99	TSS PROXIMITY	
38456066	CC	35	TSS PROXIMITY, miRNA change	
38456369	TT	18	TSS PROXIMITY, miRNA change	
38457028	TT	53	TSS PROXIMITY	
38457187	AA	24	TSS PROXIMITY, miRNA change	
38464347	TT	24	TSS PROXIMITY, TES PROXIMITY, miRNA change, TFBS change	
38466720	AA	36	TSS PROXIMITY, miRNA change	

(Continued)
Table A1 | Continued

TaqMan SNPs^a	Position^b	Case geno^c	Cons score^d	Comments^e
38466749	GG	93	TSS PROXIMITY miRNA change	
38470386	AA	12	TSS PROXIMITY miRNA change	
38490914	CC	15	INTRONIC	
38491832	AA	38	INTRONIC	
38507808	AA	22	TSS PROXIMITY	
38508991	CC	11	TSS PROXIMITY miRNA change	
38513135	CC	41	EXONIC	
38513883	TT	17	INTRONIC	
38514699	TT	40	INTRONIC	
38514745	TT	34	EXONIC	
38519825	CC	80	INTRONIC	

The table shows SNPs identified during resequencing within the CFA12: 36,750,205–38,524,449 genomic region for which the case is homozygous. SNPs that are homozygous in the case but without any further comments have been removed from the table. Further SNPs are only included in the table if Cons score ≥ 10. A paper describing details of the functional prediction of the SNPS is in preparation. ^aSNPs selected for TaqMan genotyping. ^bPosition according on CFA12 according to Ensembl Canis familiaris version 64.2. ^cGenotype from resequencing data. ^dConservation in dog, human, mouse, and rat are computed by UCSC’s phastCons and multiplied by 100. ^eEach SNP was annotated based on the following features: EXONIC, the SNP is in an annotated exon; INTRONIC, the SNP is in an annotated intron; TSS PROXIMITY, the SNP is close to a transcription start site; TES PROXIMITY, the SNP is close to a transcription end site; miRNA change, the SNP changes the predicted binding of miRNA; TFBS change, the SNP changes the predicted binding of a transcription factor; ncRNA, the SNP is in or near a predicted ncRNA. *Significance of 37971992 is 1.4 × 10^{−7}; 38513135 is 0.00087; 38514745 is 0.01707.
Table A2 | Haplotype substitution effects on linear and logistic scales for disc calcification scored as binary case/control.

Haplotypes	Haplotype window	Linear model	Logistic model
		$R^2 = 73\%$	$RMD^3 = 0.64$
$a_0 = H_4$	Hap 1	-0.49	-8.53
H1		0.71	5.93
H2		0.20	-5.28^{ns}
H3		-0.22^{ns}	-8.40^{ns}
$a_0 = H_3$	Hap 2	-0.36	-8.91
H1		0.63	6.14
H2		-0.27^{ns}	-8.24^{ns}
$a_0 = H_4$	Hap 3	-0.41	-22.97
H1		0.66	15.52
H2		0.39	12.06^{ns}
H3		0.03^{ns}	1.056^{ns}
$a_0 = H_3$	Hap 4	-0.41	-19.36
H1		0.63	11.08
H2		0.36	9.26
$a_0 = H_3$	Hap 5	-0.31	-7.03
H1		0.61	5.28
H2		-0.33	-6.13^{ns}
H3		-0.31^{ns}	-9.25^{ns}
$a_0 = H_2$	Hap 6	-0.31	-6.82
H1		0.60	4.73
$a_0 = H_3$	Hap 7	-0.32	-7.41
H1		0.61	5.35
H2		0.38	2.77^{ns}
$a_0 = H_2$	Hap 8	-0.31	-6.82
H1		0.59	4.73
$a_0 = H_4$	Hap 9	-0.40	-19.45
H1		0.64	11.01
H2		0.11^{ns}	0.94^{ns}
H3		0.14	7.68^{ns}

Tests of association of haplotypes (coded as H1, H2, etc.) from CFA12: 36,780,205–38,524,449; those haplotype effects that were not significant at $P < 0.01$ are marked with superscript ns in each haplotype window. 1Estimates on logit scale can be back transformed to probability of observing a case or control by $\pi = 1/(1 + e^{-\eta})$ where η is an estimate of haplotype effects. 2 R^2, percent variability in the data set that is accounted for by the fitted haplotype block model. 3RMD, residual mean deviance is an indicator for goodness of fit (lower is better).
Table A3 | Specification of the primers and probes in the SNP genotyping assays.

SNP location	Forward primer; reverse primer	Probes labeled with VIC™/FAM™ fluorescent dye
37,871,992	F: TTCGAATTGAGCTGTAAGCTAGAA; R: AACCAGCCCCGCTT	VIC: CCCTCTCGCCCCC; FAM: CCTCTCGCCCCC
38,513,135	F: AGACGCAAGATTATCTCAGCTTCTCG; R: AACAGGAAAGATTGCTTAAATGGTATTG	VIC: TTTCAATCTGTTTTC; FAM: CCAATCTGTTTTC
38,514,745	F: ACCTGCAAACCTTTCTCACTACCT; R: GACCTTTAAAAAGCTATGGCCAGT	VIC: TCACAGCAAGTTTTC; FAM: TCACAGCAAGTTTTC

SNP location in base pairs; F, forward primer; R, reverse primer; VIC, VIC™ fluorescent dye, FAM, FAM™ fluorescent dye.

Table A4 | Top allelic association hits in the GWAS on disc calcification in 33 wire-haired cases and 28 wire-haired controls, sorted by genomic position.

Haplotype window	Canine SNP	Chr	Pos	P_{genome}	AR / ANR
Hap 1	BICF2P1218920	12	36750205	0.02646	A/T
Hap 1	BICF2P9009271	12	36756197	0.02646	G/A
Hap 1	TIGRP2P163331	12	36770550	0.02646	G/T
Hap 1	BICF2S23234423	12	36909311	3.0E-5	T/C
Hap 1	TIGRP2P163344	12	37056901	3.0E-5	T/C
Hap 2	BICF2P1304914	12	37079212	3.0E-5	G/A
Hap 2	BICF2P211642	12	37099752	3.0E-5	A/C
Hap 2	BICF2P979506	12	37110965	3.0E-5	G/A
Hap 2	BICF2P161177	12	37123193	3.0E-5	T/G
Hap 2	BICF2P925806	12	37136350	3.0E-5	A/C
Hap 2	BICF2S23242450	12	37480969	1.0E-5	C/A
Hap 2	BICF2S23240923	12	37494845	8.7E-4	A/G
Hap 2	BICF2S23023749	12	37710073	0.00916	C/T
Hap 2	BICF2S23043206	12	37735957	0.00916	T/C
Hap 2	G74F34S150	12	37806613	0.00916	G/A
Hap 2	BICF2P717725	12	37826314	0.00916	T/G
Hap 2	BICF2P1197203	12	37847222	0.00916	G/A
Hap 2	TIGRP2P163387	12	37863936	0.00916	C/T
Hap 2	BICF2S2363751	12	37899159	9.0E-6	T/C
Hap 2	TIGRP2P163398	12	37944067	9.0E-6	T/G
Hap 2	TIGRP2P163406	12	37980930	9.0E-6	T/G
Hap 2	BICF2P478656	12	38003121	9.0E-6	C/T
Hap 2	BICF2P319497	12	38015502	9.0E-6	T/C
Hap 2	BICF2P31931	12	38022379	9.0E-6	C/A
Hap 2	BICF2S22962067	12	38042875	9.0E-6	T/C
Hap 2	BICF2P462048	12	38064467	0.00922	G/A
Hap 2	BICF2P1218920	12	38072703	9.0E-6	T/C
Hap 2	BICF2P319497	12	38079788	9.0E-6	A/C
Hap 2	BICF2P14736	12	38182743	9.0E-6	G/A
Hap 2	BICF2P354926	12	38202857	9.0E-6	G/A
Hap 2	BICF2P520498	12	38229535	9.0E-6	T/A
Hap 2	BICF2P1089702	12	38229535	9.0E-6	T/A
Hap 2	TIGRP2P163437	12	38264121	9.0E-6	A/G
Hap 2	BICF2S2241475	12	38348649	0.01039	A/C
Hap 2	TIGRP2P163478	12	38507494	0.00333	T/C
Hap 2	BICF2P1077702	12	38524449	0.00333	G/T

Chr, chromosome; Pos, physical position; P_{genome}, p-value corrected for multiple testing by permutation; AR, risk allele; ANR, non-risk allele.