Isotropization from Color Field Condensate in heavy ion collisions

Stefan Flörchinger (CERN)

RBRC Workshop on "The Approach to Equilibrium in Strongly Interacting Matter", BNL, April 2, 2014.
based on:
S. Floerchinger and C. Wetterich, *Isotropization from Color Field Condensate in heavy ion collisions*, [JHEP 03 (2014) 121].
ions are strongly Lorentz-contracted

some medium is produced after collision

medium expands in longitudinal direction and gets diluted
Evolution in time

- Non-equilibrium evolution at early times
 - initial state at from QCD? Color Glass Condensate? ...
 - thermalization via strong interactions, plasma instabilities, particle production, ...

- Local thermal and chemical equilibrium
 - strong interactions lead to short thermalization times
 - evolution from relativistic fluid dynamics
 - expansion, dilution, cool-down

- Chemical freeze-out
 - for small temperatures one has mesons and baryons
 - inelastic collision rates become small
 - particle species do not change any more

- Thermal freeze-out
 - elastic collision rates become small
 - particles stop interacting
 - particle momenta do not change any more
The puzzle of thermalization / isotropization

- Hydrodynamic description works well when started at $\tau_0 \approx 0.5$ fm/c.
- Perturbative time-scale for thermalization is much longer [Baier, Mueller, Schiff, Son (2001)].
- Effective hydrodynamic description for some quantities may also be possible without local equilibrium and detailed balance.
- Some quantities e.g. pressure may thermalize faster than others: “Prethermalization” [Berges, Borsanyi, Wetterich (2004)].
- In praxis hydro description does assume early local equilibrium and it works rather well with that.
- There must be some nontrivial mechanism of thermalization / isotropization to be understood.
- Another puzzle is: How does entropy and particle production work?
Could macroscopic / classical fields be the solution?

- Field expectation value or “classical field” has influence on quasi-particle excitations and leads to
 - modified vertices
 - modified dispersion relations / self energies
- That could lead to higher scattering rates and faster thermalization.
- Dynamical evolution of classical fields itself might also contribute to isotropization.
- Classical fields can also induce instabilities / particle production.
Large occupation numbers versus condensate

- In thermodynamic limit (stationary, infinite volume) a classical field corresponds to large occupation number of zero-mode: a condensate.

- For realistic heavy-ion collision one may have
 - non-equilibrium situation
 - finite size
 - finite number of gluons.

- Distinction between condensate and large occupation numbers for a few modes is not so clear.

- Nevertheless, condensate picture may be easiest way to capture important features of situation with large occupation numbers.

- Gluon condensate were also discussed in kinetic theory framework.
 [Blaizot, Gelis, Liao, McLerran, Venugopalan, Epelbaum, Berges, Schlichting, Sexty, Kurkela, Moore,...]
Is a homogeneous and isotropic color field possible?

- Expectation value for vector field \(\langle A_\mu \rangle \) breaks rotation invariance except for \(\mu = 0 \) component.
- But \(A_0 \) is gauge degree of freedom.
- One can choose Weyl or temporal gauge, \(A_0 = 0 \).
- Seems to suggest that homogeneous and isotropic color field is *not* possible.
Modified rotation symmetry

- One can combine rotations with gauge transformations into a modified rotation transformation [Reuter, Wetterich (1994)].
- Group theoretic: embed $SU(2) \in SU(3)$.
- Gauge singlets rotate in the normal way.
- There are two inequivalent embeddings of this type. For one of them Lie algebra of $SU(2)$ spanned by Gell-Mann matrices $\lambda_2, \lambda_5, \lambda_7$.
- Contains a singlet

$$ (A_j)_{mn} = \sigma \, \epsilon_{jmn} $$

- More general, temporal part A_0 transforms like

$$ 8 = 5 + 3, $$

and spatial part A_j like

$$ 24 = 7 + 2 \times 5 + 2 \times 3 + 1. $$
Field configurations with cylindrical symmetry

- There is only one candidate for isotropic condensate σ, i.e. a singlet under three-dimensional rotations.
- For cylindrical symmetry, i.e. reduced symmetry under
 - rotations in the transverse plane of x_1, x_2,
 - rotations of 180° around x_1 or x_2 axis,
 one has two more condensate candidates, $\tilde{\gamma}^A$ and $\tilde{\gamma}^B$.
- For space parity transformations $P(A_0, A_j) = (A_0, -A_j)$ one has
 \[
P \sigma = -\sigma, \quad P \tilde{\gamma}^A = -\tilde{\gamma}^A, \quad P \tilde{\gamma}^B = -\tilde{\gamma}^B.
 \]
- For color charge conjugation $C A_\mu = -A_\mu^*$ one has
 \[
 C \sigma = \sigma, \quad C \tilde{\gamma}^A = -\tilde{\gamma}^A, \quad C \tilde{\gamma}^B = \tilde{\gamma}^B.
 \]
 and accordingly for CP
 \[
 CP \sigma = -\sigma, \quad CP \tilde{\gamma}^A = \tilde{\gamma}^A, \quad CP \tilde{\gamma}^B = -\tilde{\gamma}^B.
 \]
Time evolution of condensates 1

- Time evolution of condensate in general quite complicated due to quantum effects.
- Qualitative guiding from classical Yang-Mills equations.
- For isotropic and homogeneous condensate σ

$$\partial_t^2 \sigma = -2g^2 \sigma^3.$$

Anharmonic oscillator, solution in terms of Jacobi elliptic functions.
Isotropic and cylindric condensates have coupled evolution equations.
Can be easily solved numerically.
Isotropic condensate σ can be generated from $\tilde{\gamma}^A$, $\tilde{\gamma}^B$. For example:
Energy-momentum tensor due to condensates

- Energy-momentum tensor due to condensates

\[T^{\mu \nu} = 2 \text{tr} F^{\rho \mu} F_{\rho \nu} - \frac{1}{2} g^{\mu \nu} \text{tr} F^{\alpha \beta} F_{\alpha \beta}. \]

- Assume that energy and momentum are dominated by this.

\[T^{\mu \nu} = \text{diag}(\epsilon, p_{tr}, p_{tr}, p_l). \]

For same example as above:

- Condensates can contribute to quick isotropization!
CP-even cylindrical condensate

- Initial condition with only $\tilde{\gamma}^A$ is CP symmetric.
- CP-breaking isotropic condensate σ not generated.
- Initial energy momentum tensor of the form

$$T^\mu\nu = \text{diag}(\epsilon, p_{tr}, p_{tr}, p_l) = \text{diag}(\epsilon, \epsilon, \epsilon, -\epsilon).$$

- Leads to oscillations between p_{tr} and p_l
Longitudinal expansion

- In realistic heavy ion collision the time evolution is modified by several effects, in particular by longitudinal expansion.
- Condensates will be diluted.
- That will probably hinder oscillations.
- Compare here only different scenarios for time evolution to $1/\tau^{1/3}$ dilution.
Consider now excitations of other field modes in the presence of isotropic condensate σ.

Classify them according to the transformation behavior under modified rotations.

Investigate in particular dispersion relations for excitations in the presence of isotropic condensate σ.
Decomposition of gauge field 1

Write spatial and temporal parts of gauge field

\[(A_j)_{mn} = \kappa_{jmn} + \gamma^A_{mk}\epsilon_{kjn} + \gamma^A_{nk}\epsilon_{kmj} + i\gamma^B_{jk}\epsilon_{kmn} + (\beta^A_m + i\beta^B_m)\delta_{jn} + (\beta^A_n - i\beta^B_n)\delta_{jm} - \frac{2}{3}\beta^A_j\delta_{mn} + i\sigma\epsilon_{jmn}\]

\[(A_0)_{mn} = \gamma^C_{mn} + i\beta^C_l\epsilon_{lmn}\]

with

- \(\kappa_{jmn}\) is real, completely symmetric, three-dimensional tensor of rank three, traceless with respect to all contractions,
- \(\gamma^A_{jk}, \gamma^B_{jk}\) and \(\gamma^C_{jk}\) are real, symmetric and traceless three-dimensional tensors,
- \(\beta^A_m, \beta^B_m\) and \(\beta^C_m\) are real, three-dimensional vectors.

In summary

\[24 = 7 + 2 \times 5 + 2 \times 3 + 1,\]
\[8 = 5 + 3.\]
Decomposition of gauge field 2

To analyze dispersion relations it is useful to decompose further

- vectors

\[\beta_m = \partial_m \beta + \hat{\beta}_m \]

- \(\beta \) is a real scalar,
- \(\hat{\beta}_m \) is a real, divergence-less vector.

- tensors of rank two

\[\gamma_{mn} = \hat{\gamma}_{mn} + \partial_m \hat{\gamma}_n + \partial_n \hat{\gamma}_m + (\partial_m \partial_n - \frac{1}{3} \delta_{mn} \partial_j^2) \gamma \]

- \(\hat{\gamma}_{mn} \) is real, traceless and divergence-less tensor
- \(\hat{\gamma}_m \) is real, divergence-less vector
- \(\gamma \) is a real scalar.

- and tensors of rank three

\[\kappa_{jmn} = \hat{\kappa}_{jmn} + \partial_j \hat{\kappa}_{mn} + \partial_m \hat{\kappa}_{jn} + \partial_n \hat{\kappa}_{jm} + \ldots \]
Decomposition of gauge field 3

- Discrete symmetries C and P classify fields further.
- Fields in different representations do not mix on linear level.
- Gauge fixing to Weyl gauge implies $A_0 = 0$ or $\gamma^C_{mn} = \beta^C_m = 0$.
- At this point we are left with
 - C-even scalars $\sigma, \beta^B, \gamma^B$
 - C-odd scalars $\beta^A, \gamma^A, \kappa$
 - C-even vectors $\hat{\beta}^B_m, \hat{\gamma}^B_m$
 - C-odd vectors $\hat{\beta}^A_m, \hat{\gamma}^A_m, \hat{\kappa}_m$
 - C-even rank-two tensors $\hat{\gamma}^B_{mn}$
 - C-odd rank-two tensors $\hat{\gamma}^A_{mn}, \hat{\kappa}_{mn}$
 - C-odd rank-three tensor $\hat{\gamma}_{jmn}$

 which makes 24 real degrees of freedom.
- To reduce to 16 d.o.f. one needs the Gauss constraint.
Variation of action with respect to A_0 yields the Gauss constraint

$$\partial_j (E_j)_{mn} - ig(A_j)_{mk}(E_j)_{kn} + ig(E_j)_{mk}(A_j)_{kn} = D_j(E_j)_{mn} = 0.$$

Linearize this around constant background σ and decomposed further

- tensor constraint

$$\partial_0 \left[\partial_j \kappa_{jmn} + \epsilon_{kjn} (\partial_j \gamma^A_{mk}) + \epsilon_{kjm} (\partial_j \gamma^A_{nk})
+ \partial_m \beta^A_n + \partial_n \beta^A_m - \frac{2}{3} \partial_j \beta^A_j \delta_{mn} - 6 g \sigma \gamma^A_{mn} \right] = 0,$$

- vector constraint

$$\partial_0 \left[\partial_k \gamma^B_{jk} + \epsilon_{jmn} \partial_n \beta^B_m + \partial_j \delta \sigma - 2 g \sigma \beta^B_j \right] = 0.$$
Instabilities and particle production

One can now determine the dispersion relations for independent excitation modes. For example, for symmetric tensor of rank three $\hat{\kappa}_{jmn}$

$$p_0^2 = \vec{p}^2 + 2g^2\sigma^2 \pm 4pg\sigma,$$

- One mode gapped with $\Delta = \sqrt{2g^2\sigma^2}$.
- Other mode has Nielsen-Olesen instability for intermediate momenta.
- Particles will be produced in that momentum regime.
- Time scale for particle production $\tau_{pp} \approx 1/\sqrt{g^2\sigma^2} \approx 1\text{ fm/c}$.

![Graph showing $p_0^2/(g^2\sigma^2)$ vs $p/(g\sigma)$]
Dispersion relations 1

C-odd tensors of rank two

\[p_0^2/(g^2 \sigma^2) \]

\[p/(g \sigma) \]
Dispersion relations 2

C-even tensors of rank two

\[p_0^2/(g^2 \sigma^2) \]

\[p/(g\sigma) \]
Dispersion relations 3

C-odd scalars

\[p_0^2 / (g^2 \sigma^2) \]
Dispersion relations 4

C-even scalars

\[p_0^2 / (g^2 \sigma^2) \]

\[\text{p}/(g\sigma) \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \]
Conclusions

- Color field condensate may be simple qualitative description for state with high gluon occupation numbers.
- Modified rotation symmetry (involving a gauge transformation) provides powerful ordering principle.
- Collective dynamics provides efficient mechanism for approximate isotropization.
- Nielsen-Olesen type instabilities can trigger decay of color field condensate into quasi-particle excitations.
- Particle production from decay of isotropic condensate can be approximately isotropic, as well.
BACKUP
Alternative embedding of $SU(2) \in SU(3)$

- Lie algebra of $SU(2)$ spanned by Gell-Mann matrices $\lambda_1, \lambda_2, \lambda_3$.
- Contains singlets
 - in spatial part
 \[
 (A_j)_{mn} = \sigma(\lambda_j)_{mn}.
 \]
 - in temporal part
 \[
 (A_0)_{mn} = \sigma'(\lambda_8)_{mn}.
 \]
- More general decomposition of gauge field according to
 - temporal part $8 = 3 + 2 \times 2 + 1$,
 - spatial part $24 = 5 + 2 \times 4 + 2 \times 3 + 2 \times 2 + 1$.
Parametric resonances

- Here we considered excitations around constant background σ.
- For oscillating condensate one has additional parametric resonance phenomenon leading to an additional instability band [Berges et al, PRD 85, 034507 (2012)].
- Parametric resonance instability subleading compared to Nielsen-Olesen instability.