MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

Arpit Bansal
Department of Electrical and Computer Engineering
University of Maryland, College Park
bansal01@umd.edu

Micah Goldblum
Department of Computer Science
University of Maryland, College Park
goldblum@umd.edu

Valeriia Cherepanova
Department of Mathematics
University of Maryland, College Park
vcherepa@umd.edu

Avi Schwarzschild
Department of Mathematics
University of Maryland, College Park
avi1@umd.edu

C. Bayan Bruss
Capital One
Center for Machine Learning
bayan.bruss@capitalone.com

Tom Goldstein
Department of Computer Science
University of Maryland, College Park
tomg@umd.edu

Abstract

Class-imbalanced data, in which some classes contain far more samples than others, is ubiquitous in real-world applications. Standard techniques for handling class-imbalance usually work by training on a re-weighted loss or on re-balanced data. Unfortunately, training overparameterized neural networks on such objectives causes rapid memorization of minority class data. To avoid this trap, we harness meta-learning, which uses both an “outer-loop” and an “inner-loop” loss, each of which may be balanced using different strategies. We evaluate our method, MetaBalance, on image classification, credit-card fraud detection, loan default prediction, and facial recognition tasks with severely imbalanced data, and we find that MetaBalance outperforms a wide array of popular re-sampling strategies.

1 Introduction

Deep learning researchers typically compare their classification models on standard benchmark tasks, but these well-curated datasets are overwhelmingly class-balanced [Krizhevsky et al., 2009; Russakovsky et al., 2015]. In contrast, real-world datasets are often highly imbalanced. For example, in applications such as cancer detection or environmental disaster prediction, a disproportionate amount of data available comes from negative cases [Kail et al., 2020; Fotouhi et al., 2019]. To make matters worse, methods designed for balanced datasets often fail on imbalanced ones.

When the training data is severely skewed, neural networks tend to memorize a small number of samples from minority classes and do not generalize at inference. This shortcoming is particularly harmful since the minority classes are often the ones we care most about. The most common methods to handle class imbalance work by re-sampling data to achieve better balance in the training set or by re-designing the loss to attend more strongly to minority class data. However, these methods do not prevent rapid overfitting to minority class data and are sub-optimal when applied to highly over-parameterized models that memorize data quickly.
We propose MetaBalance, an algorithm that uses meta-learning for training deep neural networks on class-imbalanced data. Intuitively, the proposed training scheme finds a set of network parameters such that, when fine-tuned for one iteration, the model achieves good performance on balanced data. We compare our algorithm to common re-sampling techniques and find that MetaBalance significantly outperforms existing methods on all four imbalanced tasks we consider, namely image classification, credit-card fraud detection, loan default prediction, and facial recognition. Finally, we explain why deep neural networks trained with MetaBalance achieve better generalization on class-imbalanced data.

2 Background

Class imbalance is problematic because classes with poor representation may be ignored by a model at inference time. Consider, for example, a corpus of credit-card transactions in which only 1% of transactions are fraudulent. In this case, a fraud classifier can trivially achieve 99% accuracy simply by predicting that every transaction is non-fraudulent. When identifying fraudulent transactions is difficult, this is often the optimal strategy for a classifier to take. For this reason, data scientists often care about optimizing the performance on a more balanced dataset that does not promote this strong bias. However, when minority class examples are scarce, forming a balanced training set in a naive way requires one to ignore a huge amount of useful examples from the majority class. Indeed, we show below that this strategy is highly sub-optimal when training data-hungry neural models.

In this section, we review existing methods, both classical and recently proposed, for training in situations of extreme class imbalance. We also give a brief overview of the meta-learning literature as it forms the foundation for our method.

2.1 Learning on class imbalanced data

Existing methods for handling class imbalance can be broadly split into three groups: re-sampling methods that increase the numbers of minority class samples, methods for reducing majority class samples, and classifier-level methods that modify the training routine to shift the model’s focus towards minority samples during training. In proposing our model we introduce a entirely new category of methods that leverage meta-learning.

Oversampling methods focus on generating new minority class samples from the available unbalanced data. A naive approach is to simply replicate points from the minority class, however this does not produce new information about the minority class and is known to lead to severe overfitting to over-sampled examples. To address this problem, Chawla et al. [2002] propose SMOTE, which attempts to create more diversity among minority class data by generating unique samples. This is done by linearly interpolating between the existing observations from minority classes. SMOTE has become quite popular, and several improvements to SMOTE can be made with the goal of generating additional training data in a way that results in better decision boundaries after training [Han et al., 2005, Nguyen et al., 2011, He et al., 2008]. For example, SVMSmote generates the new minority examples along the boundary found by a support vector machine [Han et al., 2005].

SMOTE and its modifications are intended for tabular data and not for high-dimensional data such as images. However, some strong data augmentation techniques designed for preventing overfitting on images operate in similar ways. For example, mixup generates new images by taking a convex combination of images in the dataset [Zhang et al., 2017]. SMOTE is closely related to mixup, with the main difference being that SMOTE only performs mixing within the minority class, while mixup intermingles samples between all classes. A related method called CutMix blends two images by cutting a patch from one image and inserting it into another [Yun et al., 2019]. Both mixup and CutMix produce labels for the new samples by taking a weighted average of labels of the blended images. Finally, there is a growing body of work proposing GANs for generating realistic samples from minority classes, but training GANs is difficult, and these models are notorious for performing poorly on diverse datasets or memorizing their training data [Shamsolmoali et al., 2020, Deepshikha and Naman, 2020, Ali-Gombe and Elyan, 2019].

A PyTorch implementation of MetaBalance is available at https://github.com/Arpit97Bansal/Meta-Balance
Undersampling is another common technique for handling class-imbalance. In contrast to over-sampling, which adds minority class data, undersampling removes from the majority class to form a balanced dataset. Undersampling methods typically remove data at random and therefore risk losing critical data points in the majority class. Thus, several works propose methods for cleverly choosing majority samples that can be removed without losing important information about majority classes [Lin et al., 2017b, Wilson, 1972, Tomek et al., 1976]. Wilson [1972] proposes an Edited Nearest Neighbours algorithm (ENN), where majority class data points that do not agree with the predictions of the KNN algorithm are removed. Another method, Cluster Centroids, undersamples by replacing clusters of the majority class, found with a k-means algorithm, by their respective centroids [Lin et al., 2017b]. These methods are problematic when data is extremely high-dimensional, as nearest-neighbor classifiers tend to become uninformative in this regime (e.g. ℓ_2 distance is generally not a good measure of similarity between images). Furthermore, undersampling prevents the user from leveraging the abundance of majority class data to learn better feature representations.

Classifier-level methods modify the training routine to emphasize the minority class samples. Several disparate techniques exist in this category. For example, cost-sensitive learning works by altering the loss on minority class points either through re-weighting the loss or by altering the learning rate [Elkan, 2001, Kukar et al., 1998, Cui et al., 2019]. Intuitively, applying different weights to training samples is similar to over-sampling those data points with the appropriate frequencies. Other classifier-level methods include regularizers which promote large margins on minority class data or impose constraints on the “balanced performance” as measured on a small balanced dataset [Sangalli et al., 2021, Huang et al., 2016, Li et al., 2019]. Finally, there are post-processing methods designed to re-scale the scores output by a classifier to achieve better performance [Richard and Lippmann, 1991, Chan et al., 2019].

2.2 Meta-learning

Meta-learning algorithms, originally designed for few-shot learning, train on a battery of “tasks” (e.g., classification problems with different label spaces) with the goal of learning a common feature extractor that can be quickly fine-tuned for high performance on new tasks using little data. Model-Agnostic Meta-Learning (MAML), a popular algorithm for few-shot learning, is compatible with any model and can be adapted to a variety of training algorithms [Finn et al., 2017]. The MAML pipeline contains an inner and an outer loop. At the beginning of an episode, a task accompanied by small support and query datasets are sampled. In the inner loop, the model’s initial meta-parameters are fine-tuned on support data in order to perform well on the sampled task. Then, in the outer loop, the model is evaluated on query data, and its meta-parameters are updated so that the model performs better on the query data after fine-tuning on support data. The outer loop thus requires unrolling the inner fine-tuning procedure and computing the gradient with respect to the meta-parameters. The resulting meta-parameters have the property that they are easily adaptable to new tasks with little data.

The original MAML algorithm was designed to create models that learn quickly from few-shot data when samples are scarce in a new domain. Our algorithm, MetaBalance, is based on the MAML algorithm and exploits the few-shot performance of meta-learning to handle the case where minority-class data is scarce. Despite this superficial similarity, our application differs from the original setting of MAML, not only in the application we are targeting (class imbalance), but also because we train on only one task rather than on an array of tasks. As a result, the mechanics of our method, such as how we formulate data batches and compute losses, diverge considerably from the original MAML algorithm.

Several works have applied meta-learning strategies for tasks other than class imbalance, the most relevant examples being MAML variants for enforcing fairness constraints in a few-shot setting [Slack et al., 2020, Zhao et al., 2020]. Note that the goal of fairness methods is fundamentally different from ours; the goal of fairness is to achieve parity across groups (e.g., having the same false positive rate across two groups), rather than maximal overall performance, by removing biases that are learned from the training data or the loss function. Often these biases can be learned from perfectly balanced data [Wang et al., 2019]. In fact, it is known that balancing datasets is not an effective way to achieve fairness for applications such as facial recognition [Albiero et al., 2020]. In contrast, our goal is to attain high accuracy despite training on class imbalanced data, even if parity across groups is not achieved.
Algorithm 1 MetaBalance

Require: Initial parameter vector, θ, outer learning rate, γ, inner learning rate, η.

for $epochs = 1, \ldots, epoch$ do
 $Loss_Z = 0$
 for $step = 1, \ldots, metaStep$ do
 Sample unbalanced support batch, X, and balanced query batch, Z
 Evaluate $\nabla_\theta L_X f(\theta)$
 Compute adapted parameters with gradient descent:
 $\theta' = \theta - \gamma \nabla_\theta L_X f(\theta)$
 Accumulate the loss over Z: $Loss_Z = Loss_Z + L_Z f(\theta') + \beta L_X f(\theta)$
 end for
 Update $\theta \leftarrow \theta - \eta \nabla_\theta Loss_Z$
end for

3 MetaBalance

Our algorithm, MetaBalance is based on Model-Agnostic Meta-Learning (MAML), an approach designed for few-shot learning [Finn et al., 2017]. Standard meta-learning schemes consist of “inner” and “outer” loops, each with their own, potentially distinct, loss function. In the inner loop, the model is fine-tuned by minimizing a loss function defined by a set of support data. The outer loop evaluates the fine-tuned model on a batch of query data from the same task.

Our proposed MetaBalance method exploits the fact that meta-learning decouples the inner- and outer-loop loss functions, allowing us to use different class balancing strategies for each. We often find that using the natural class (im)balance on the inner loop support set is optimal, as it prevents the optimizer from aggressively overfitting to minority class data. At the same time, we can use re-balanced data in the query set, which guides the algorithm to achieve high accuracy on class-balanced data as training proceeds. This allows us to simultaneously combine the benefits of training on imbalanced data (prevention of over-fitting) with the benefits of training on balanced data (minority classes don’t get ignored).

To formalize the MetaBalance algorithm, consider neural network f with parameters θ that maps samples to predictions. In the inner loop of the MetaBalance training routine, we minimize the loss over sampled batch X to obtain new parameters $\theta' = \theta - \alpha \nabla_\theta L_X (f_\theta)$. Then, in the outer loop, we evaluate the model on a new balanced sample Z based on new parameters θ' and compute a loss L_Z on those predictions as well. We accumulate the outer loss over multiple support and query batches, fine-tuning individually on each support batch, and we finally update θ to minimize the query loss. See Algorithm 1 for details.

Sampling strategies in the inner and outer loops: The benefits of MetaBalance come from the fact that we can choose different sampling strategies for sampling support and query data in the inner and outer loops. We can improve the performance beyond baselines, often dramatically, by using complementary sampling strategies for the two losses. For each loss, we consider using the natural class balance, over sampling, undersampling, SMOTE, SVMSmote, ENN, and CC [Chawla et al., 2002, Nguyen et al., 2011, Wilson, 1972, Li et al., 2019]. Results are presented and discussed in the following sections.

4 Experimental Setup

We evaluate MetaBalance on 4 tasks: image classification, fraud detection, loan default prediction, and facial recognition. In this section, we describe the datasets, models, and metrics we utilize in each of our experiments.

4.1 Data

Fraud detection: We consider a tabular dataset for predicting fraudulent credit-card transactions [Dal Pozzolo et al., 2014]. This dataset contains 284,807 transactions of which only 492 (0.172%)
are fraudulent. The released data has been transformed under PCA to avoid releasing the original (possibly private) transaction features. We randomly split the data, reserving 80% for training and the remaining 20% for testing.

Loan-default prediction: We use another tabular dataset with 8,046 data points in the majority class and 1,533 in the minority class. Although this imbalance is not as severe as other datasets we consider, we have found this classification problem to be more difficult than the credit-card fraud prediction problem (see Table 1). As above, we randomly split the data, reserving 80% for training and the remaining 20% for testing.

Image classification: For image classification experiments, we use the CIFAR-10 dataset, which contains 10 classes with 5,000 images per class in the training set [Krizhevsky et al., 2009]. We simulate class-imbalance problems in two ways, each with one majority class containing 5,000 images and nine minority classes containing fewer images. In the “severely imbalanced” scenario, minority classes contain five images per class at train time, while in the “moderately imbalanced” scenario, minority classes contain five to 50 images, selected randomly. The test set used to evaluate the models is balanced with 1000 images per class.

Facial recognition: Finally, we evaluate our method on the Celeb-A dataset containing images of 10,177 celebrities, out of which 1,000 identities are kept in the test set [Liu et al., 2015]. Celeb-A contains labels for identities, gender, and age group as well as other non-sensitive attributes. We artificially unbalance the training set with respect to gender by randomly removing 90% of images from female identities while still ensuring that at least 2 images per identity are still present. As we show below, models trained naively on such an imbalanced face dataset exhibit lower test accuracy on females than on males. Nonetheless, facial recognition systems are known to be resilient to dataset imbalance since they are designed to test on different distributions, and in fact identities, than those in their training data. In this work, we consider the facial identification task rather than the simpler one-to-one facial verification task. We aim to reduce the accuracy gap arising from class-imbalance via MetaBalance. In the next section, we show that even though facial recognition systems are somewhat resistant to imbalance, we are able to improve their performance in this setting.

4.2 Models

On the credit-card fraud detection task and the loan default prediction task, we train feed-forward neural networks with five fully-connected layers and two fully-connected layers, respectively, using binary cross-entropy loss. On CIFAR-10, we train ResNet-18 models using cross-entropy loss [He et al., 2016]. Finally, for facial recognition, we train a ResNet-18 model with the CosFace head using focal loss [Lin et al., 2017a; Wang et al., 2018]. For a complete description of hyperparameters, see Appendices A.1 and A.4.

4.3 Metrics

For tasks with balanced test sets, specifically image classification and facial recognition, we evaluate all models using accuracy. However, accuracy may not be informative in cases where data is imbalanced since it is dominated by the performance on majority classes. Therefore, we use ROC-AUC to report performance of credit-card fraud detection and loan default prediction models. For facial recognition, we evaluate models in the identification (one-to-many classification) setting on test identities that do not overlap with training identities and we report rank-1 accuracy. That is, for each image in the test set (probe photo), we find a nearest test-set-neighbor in the feature space using cosine similarity; the model is correct only if the matched image is a photo of the same identity. We then repeat this procedure for every image in the test set and report average accuracy.

5 Results

5.1 Credit-card fraud detection

Credit-card fraud detection is a tabular binary classification problem with positive samples being the fraudulent transactions and negative samples being legitimate transactions. Positive samples

[https://www.kaggle.com/sarahvch/predicting-who-pays-back-loans]
Table 1: ROC-AUC of various training algorithms on the credit-card fraud detection and loan default prediction tasks. MetaBal refers to the MetaBalance routine with undersampling in the outer loop and MS-MetaBal indicates the use of the best performing samplers in both loops. Bold figures reflect the row maximum.

Dataset	Naive	Over-S	Under-S	Smote	SVMSmote	ENN	CC	MetaBal	MS-MetaBal
CC Fraud	0.967	0.949	0.977	0.963	0.970	0.959	0.979	0.979	0.985
Loan Default	0.648	0.592	0.647	0.587	0.607	0.660	0.547	0.667	0.672

Table 2: Comparison of ROC-AUC across models trained with the MetaBalance algorithm with various combinations of sampling strategies in the inner and outer loops on the loan default prediction task. Each column denotes a single outer loop sampling strategy, while each row denotes a single inner loop strategy.

Inner	Outer	Naive	Over-S	Under-S	Smote	SVMSmote	ENN	CC	Naive	Over-S	Under-S	Smote	SVMSmote	ENN	CC
Naive		0.656	0.631	0.667	0.605	0.637			0.672	0.580					
Over-S		0.654	0.640	0.648	0.625	0.623	0.667	0.577							
Under-S		0.653	0.639	0.657	0.614	0.644	0.667	0.568							
Smote		0.662	0.651	0.665	0.614	0.624	0.659	0.567							
SVMSmote		0.658	0.620	0.665	0.613	0.635	0.668	0.577							
ENN		0.656	0.646	0.660	0.604	0.630	0.669	0.569							
CC		0.655	0.646	0.664	0.603	0.627	0.663	0.568							

constitute only 0.172% of all data. We train shallow feed-forward neural networks using MetaBalance and compare the results with naive training and with various re-sampling techniques, such as random over-sampling, undersampling, SMOTE, SVMSmote, Edited Nearest Neighbors (ENN), and Cluster Centroids (CC). SMOTE and SVMSmote are algorithms for generating new points for minority classes, while EEN and CC are methods for undersampling by removing the least useful examples from the majority class.

We report performance under two modifications of the MetaBalance routine. The first uses undersampling exclusively in the outer batch and the second utilizes the data samplers discussed above in both inner and outer loops. We call the second method Mixed Strategy MetaBalance or MS-MetaBalance. We try different combinations of sampling strategies in both loops and choose the best one. On credit-card fraud detection, MS-MetaBalance uses undersampling in both inner and outer batches. MS-MetaBalance outperforms all considered methods with at least 0.6% improvement in ROC-AUC. Even the model trained with the simple version of MetaBalance, using undersampling only in the outer loop, achieves the same performance as the best among baseline non-meta methods. Table 1 depicts numerical results and shows that MetaBalance can improve results even when other methods already perform well. Appendix Table 7 contains comparisons with additional baselines, and Appendix Table 6 contains error bars for these experiments.

5.2 Loan Default Detection

Similar to credit-card fraud detection, loan default prediction is a binary classification problem with positive samples (loan default) constituting 19% of the training data. We once more evaluate the same training schemes as above. Again, we find that MetaBalance outperforms other popular re-sampling methods for handling class imbalance. MetaBalance shows improvements of at least 1.9% ROC-AUC. Moreover, replacing undersampling ENN for balancing the data in the outer loop further improves the performance of models trained with MS-MetaBalance. With this variant of our method, we see a 2.4% increase in ROC-AUC compared to the naive training. Interestingly, naive training outperforms re-sampling methods on this task. See Tables 1 and 2. Appendix Table 6 contains error bars corresponding to experiments from Table 1.

5.3 Image Classification

In our experiments on CIFAR-10, we simulate two class-imbalance scenarios. First, in the severely imbalanced case, the minority classes contain only 5 training images. Second, the moderately
Table 3: Comparison of test accuracy (%) on CIFAR-10. Naive indicates training without re-sampling and Over-S and Under-S denote oversampling of minority classes and undersampling of majority classes, respectively. Meta-B denotes MetaBalance. MetaBalance outperforms all other methods.

Method	Naive	Over-S	Under-S	mixup	CutMix	OS-mixup	OS-CutMix	Meta-B
Moderate Imbalance	31.52	29.62	36.53	25.84	23.98	31.04	17.92	40.59
Severe Imbalance	16.14	14.59	23.34	12.92	12.64	12.47	10.63	29.88

The imbalanced case is where the minority classes contain a random number of images between 5 and 50. When a ResNet-18 model is trained on such data in a naive way, without any re-sampling or strong data augmentation techniques, it achieves 31.52% and 16.14% accuracy on the moderate and severe imbalance scenarios, respectively. In contrast, a model trained with MetaBalance using naive sampling in the inner loop and random oversampling in the outer loop achieves 40.59% accuracy in the moderate case and 29.88% for the severely imbalanced data, see Table 3.

We compare MetaBalance with other popular techniques for handling class-imbalance problems such as random over-sampling of minority classes and random undersampling of majority class. In addition, we consider strong data augmentation techniques such as mixup and CutMix. Finally, we consider combinations of strong data augmentation techniques with oversampling of minority classes, and we denote such training schemes by OS-mixup and OS-CutMix.

Interestingly, we find that naively trained models outperform models trained using re-sampling methods or data augmentations in both imbalanced scenarios and MetaBalance significantly outperforms every other method. See the results provided in Table 3.

We compare MetaBalance with other popular techniques for handling class-imbalance problems such as random over-sampling of minority classes and random undersampling of majority class. In addition, we consider strong data augmentation techniques such as mixup and CutMix. Finally, we consider combinations of strong data augmentation techniques with oversampling of minority classes, and we denote such training schemes by OS-mixup and OS-CutMix.

Interestingly, we find that naively trained models outperform models trained using re-sampling methods or data augmentations in both imbalanced scenarios and MetaBalance significantly outperforms every other method. See the results provided in Table 3.

Note 1 Although we cannot apply AUC on a multi-class classification problem, test accuracy might seem like an unfair metric for comparing models in this setting since there might be a majority-minority accuracy trade-off. To compare these models in a fair manner, we additionally explore threshold adjustment and a Bayesian prior re-weighting in Section 6. In these experiments, we find that MetaBalance consistently outperforms other methods.

5.4 Facial Recognition

In these experiments, we simulate imbalance by removing 90% of female images from Celeb-A. Even though facial recognition systems are already designed to handle a distributional mismatch between training and testing data, MetaBalance still reduces the performance disparity between males and females from 8.43% to 6.09% by boosting performance on females, the minority class. By improving performance on female data, MetaBalance significantly raises overall accuracy. Table 5 in the Appendix contains the full results of these experiments.

6 MetaBalance Prevents Overfitting

When training data is not uniformly distributed across classes, overfitting becomes even more problematic since models overfit disproportionally to minority class data, resulting in high performance gaps between majority and minority classes at inference. We hypothesize that MetaBalance is effective at handling the class imbalance partly because it prevents severe overfitting. In this section, we analyze the overfitting behavior of a naively trained model, a model trained with oversampling, and a model trained with MetaBalance on the imbalanced version of CIFAR-10.

In Figures 1 and 2, we show that models trained naively or with oversampling overfit on both minority and majority classes. However, the test time accuracy of these models is lower than random on minority classes and close to 100% for the majority class. In fact, this model achieves near perfect accuracy on the majority data in a trivial manner by placing nearly all images into the majority training class. This indicates that the model does not learn meaningful decision boundaries, even to distinguish points in the majority class from those outside of it. Instead, the model memorizes minority class instances and gerrymanders the decision boundary around them. In contrast, the model trained with MetaBalance achieves only 60% accuracy on the majority class both at train and test time. At the same time, the accuracy on minority classes averages around 30%, a huge increase.
compared to naively trained models. See Figure 2 for comparisons of training and testing accuracy during training.

One might hypothesize that the naively trained model performs worse on test data primarily because the prior probabilities it learns from training data are highly concentrated on the majority class, while test data is perfectly balanced. Keeping in mind that neural networks trained with softmax cross-entropy loss estimate the posterior distribution over classes, we can improve the performance by adjusting the model’s priors to the test distribution. To this end, we divide the confidence scores output by the naively trained model by the frequencies of classes in the training data. We find that re-adjusting the priors indeed improves the test accuracy of the naive model from 16.14% to 22.78% and results in 98.3% accuracy on majority class and 14.3% accuracy on the minority class. However, as can be seen from the Table 3, MetaBalance still achieves superior performance with 29% overall accuracy. This experiment indicates that the naively trained model does not simply learn the wrong prior probabilities over the classes, but it does not actually learn to recognize the patterns contained in minority classes, and it instead blindly classifies inputs into the majority class.

In an effort compare the naive method with MetaBalance on a level playing field, we set the decision threshold of the naive model to match the accuracy of MetaBalance on the majority class. Note that this strategy is not viable in practice and only serves as a object of scientific study, since setting the threshold for the naive method requires knowledge of the full testing set along with its ground-truth labels. We find that in this case, the accuracy of the naive model grows from 16.14% to 27.03%, but it is still lower than the accuracy of the model trained with MetaBalance.

Finally, undersampling causes massive information loss as we must discard the bulk of majority class training data in order the balance the training set. Intuitively, we expect that discarding so much majority class data when data is already not overly abundant is sub-optimal. Thus, while models trained with undersampling perform well on minority classes, they perform very poorly on the majority class, see Figure 4. This phenomenon stands in contrast to naive and oversampling routines which cause models to perform poorly on minority classes. We conclude that a valuable training routine for handling class imbalance should perform better on minority classes than oversampling and naive models while also outperforming undersampling models on majority classes, and it should achieve higher overall test accuracy than these competing methods. In our experiments MetaBalance clears these bars.

7 Discussion

A vast body of real-world problems demand that deep learning systems accommodate highly imbalanced training data in order to be useful for practitioners. In this paper, we introduce a new method to handle class-imbalance, motivated by meta-learning. Specifically, we exploit the benefits of having an
inner and outer loop in the meta-learning, so that we are consequently able to decouple the sampling strategies in the two loops. We demonstrate that our method, MetaBalance, improves performance over existing methods across various datasets from diverse domains. While investigating the reasons behind this method’s success, we observe that it prevents overfitting to majority classes.

8 Limitations and Broader Impact

While MetaBalance performs well in our experiments, practitioners should be cautious since real-world datasets are heterogeneous, and their own datasets might not reflect those in our experiments. Moreover, models ranging from RNNs to transformers may exhibit unique behavior. Even though MetaBalance appears to outperform existing methods, we note that class imbalance problems can be extremely difficult, and even the performance of our own method may not satisfy deployment expectations in some critical use-cases.

References

Vítor Albiero, Kai Zhang, and Kevin W Bowyer. How does gender balance in training data affect face recognition accuracy? In 2020 IEEE International Joint Conference on Biometrics (IJCB), pages 1–10. IEEE, 2020.

Adamu Ali-Gombe and Eyad Elyan. Mfc-gan: class-imbalanced dataset classification using multiple fake class generative adversarial network. Neurocomputing, 361:212–221, 2019.

Robin Chan, Matthias Rottmann, Fabian Hüger, Peter Schlicht, and Hanno Gottschalk. Application of decision rules for handling class imbalance in semantic segmentation. arXiv preprint arXiv:1901.08394, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9268–9277, 2019.

Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Waterschoot, and Gianluca Bone- tempi. Learned lessons in credit card fraud detection from a practitioner perspective. Expert systems with applications, 41(10):4915–4928, 2014.

Kumari Deepshikha and Anugunj Naman. Removing class imbalance using polarity-gan: An uncertainty sampling approach. arXiv preprint arXiv:2012.04937, 2020.

Charles Elkan. The foundations of cost-sensitive learning. In International joint conference on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd, 2001.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *International Conference on Machine Learning*, pages 1126–1135. PMLR, 2017.

Sara Fotouhi, Shahrokh Asadi, and Michael W Kattan. A comprehensive data level analysis for cancer diagnosis on imbalanced data. *Journal of biomedical informatics*, 90:103089, 2019.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In *International conference on intelligent computing*, pages 878–887. Springer, 2005.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In *2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)*, pages 1322–1328. IEEE, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for imbalanced classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5375–5384, 2016.

Roman Kail, Alexey Zaytsev, and Evgeny Burnaev. Recurrent convolutional neural networks help to predict location of earthquakes. *arXiv preprint arXiv:2004.09140*, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Matjaz Kukar, Igor Kononenko, et al. Cost-sensitive learning with neural networks. In *ECAI*, volume 15, pages 88–94. Citeseer, 1998.

Zeju Li, Konstantinos Kamnitsas, and Ben Glocker. Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 402–410. Springer, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pages 2980–2988, 2017a.

Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-Shang Jhang. Clustering-based undersampling in class-imbalanced data. *Information Sciences*, 409:17–26, 2017b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced data classification. *International Journal of Knowledge Engineering and Soft Data Paradigms*, 3(1): 4–21, 2011.

Michael D Richard and Richard P Lippmann. Neural network classifiers estimate bayesian a posteriori probabilities. *Neural computation*, 3(4):461–483, 1991.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge, 2015.

Sara Sangalli, Ertunc Erdil, Andreas Hoetker, Olivio Donati, and Ender Konukoglu. Constrained optimization for training deep neural networks under class imbalance. *arXiv preprint arXiv:2102.12894*, 2021.

Pourya Shamsolmoali, Masoumeh Zareapoor, Linlin Shen, Abdul Hamid Sadka, and Jie Yang. Imbalanced data learning by minority class augmentation using capsule adversarial networks. *Neurocomputing*, 2020.
Dylan Slack, Sorelle A Friedler, and Emile Givental. Fairness warnings and fair-maml: learning fairly with minimal data. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 200–209, 2020.

Ivan Tomek et al. An experiment with the edited nearest-neighbor rule. 1976.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5265–5274, 2018.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations. In Proceedings of the IEEE International Conference on Computer Vision, pages 5310–5319, 2019.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, (3):408–421, 1972.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Chen Zhao, Changbin Li, Jincheng Li, and Feng Chen. Fair meta-learning for few-shot classification. In 2020 IEEE International Conference on Knowledge Graph (ICKG), pages 275–282. IEEE, 2020.
A Appendix

A.1 Credit-card fraud detection

For credit-card fraud detection, we train a five-layer feed-forward network, and the numbers of channels in each layer is shown in Table 4. This model has 29 input features and hidden layers of sizes 16, 24, 20, and 24 followed by an binary classification output that predicts fraud. We also use dropout after the second layer with a probability of 0.5. After each layer (other than the last) there is a ReLU nonlinearity. With every method other than MetaBalance, we use the ADAM optimizer with a learning rate of 0.001, and we train for 100 epochs. We split the original dataset into training and testing data with an 80%/20% split and we use a batch size of 24. For MetaBalance, we use SGD with Nesterov momentum with a coefficient of 0.9, a weight decay coefficient of 5e-2, and an initial learning rate of 0.1. θ' is calculated as described in Algorithm 1 with a constant γ of 0.01, and the losses are accumulated with a constant β of 0. The losses are accumulated until 80 meta steps before updating θ. We use support batch size 24 and query batch size 16.

A.2 Loan default detection

For this task, we train a two-layer feed-forward network. The first layer takes in an input of length 12 and outputs 25 features, while the second layer is the output layer that predicts loan default. We use a ReLU activation function. With every method other than MetaBalance, we employ the ADAM optimizer with a learning rate of 0.001, and we train networks for 100 epochs. Again, we split the original dataset into training and testing data with an 80%/20% split and we use a batch size of 24. We use the same hyperparameters irrespective of the data modification technique used to train. For MetaBalance, we train with the Nesterov accelerated SGD optimizer, with a learning rate of 0.1, momentum of 0.9 and weight decay of 0.0005. θ' is calculated as described in 1 with a constant γ of 0.01 and the losses are accumulated with $\beta = 0.01$. The losses are accumulated until the 80 meta steps before updating θ. We use support batch size 24 and query batch size 16.

A.3 Image classification

We train a ResNet-18 with Nesterov accelerated SGD and a learning rate of 0.01, momentum of 0.9, and weight decay of 0.0005. We train the neural network for 350 epochs with a cosine annealing scheduler and a batch size of 20. For MetaBalance, θ' is calculated as described in 1 with a constant γ of 0.01, and the losses are accumulated with a constant β of 0. The losses are accumulated over 80 meta steps before updating θ. We use support batch size 20 and query batch size 30.

A.4 Facial recognition

We train a Resnet-18 with SGD, a learning rate of 0.1, momentum of 0.9, and weight decay of 0.0005 computed only on parameters without batch normalization. We train the neural network for 120 epochs with a multi step scheduler (stages - 35, 65 and 95) and a batch size of 128. For MetaBalance, we train the model with same optimizer as in the above setting but with learning rate drops at stages 50 and 100. We use support batch size 128 and query batch size 128, formed by concatenating 2 batches each of size 64 sampled separately from both genders. θ' is calculated as described in 1 with a constant γ of 0.01 and the losses are accumulated with a constant β of 0. The losses are accumulated over 4 meta steps before updating θ. Performance on facial recognition can be found in Table 5.

A.5 Error bars

Table 6 shows the standard error over 10 runs of each technique on the fraud and loan datasets. Table 6 shows the standard error over 4 runs of different techniques on the Cifar 10 class imbalance experiments.

A.6 Compute resources

In order to train using MetaBalance, for both severe and moderate class imbalance on CIFAR-10, we require approximately 100 Nvidia GeForce RTX 2080Ti GPU hours. For both credit card fraud
Table 4: The number of channels in each layer of the feed-forward neural networks used for credit-card fraud detection.

Input Size	First Layer	Second Layer	Third Layer	Fourth Layer	Output Layer
29	16	24	20	24	1

Table 5: Facial recognition accuracy.

Sampling Method	Total Accuracy	Male Accuracy	Female Accuracy
Naive	90.12%	95.31%	86.88%
Oversampling	84.67%	92.98%	79.48%
Meta-Balance	**91.90%**	**95.65%**	**89.56%**

Table 6: Standard error of ROC-AUC for credit card fraud detection

Sampling Method	Dataset	Naive	Over-S	Under-S	Smote	SVM-Smote	ENN	CC	Meta-Bal	MS-Meta-Bal
	CC Fraud	0.006	0.003	0.003	0.008	0.003	0.003	0.004	0.004	0.002
	Loan Default	0.009	0.013	0.004	0.008	0.011	0.002	0.009	0.003	0.004

Table 7: ROC-AUC for other training algorithms on the credit-card fraud detection and loan default prediction tasks.

Dataset	Sampling Method	BorderlineSMOTE	ADASYN	NearMiss	AllKNN	SMOTEENN
CC Fraud		0.942	0.970	0.929	0.967	0.947
Loan Default		0.591	0.580	0.603	0.650	0.603

Table 8: The Standard Errors of Test Accuracy for the Cifar 10 Experiments

Method	Sampling Method	Naive	Over-S	Under-S	mixup	CutMix	OS-mixup	OS-CutMix	Meta-B
Moderate Imbalance		0.806	0.837	0.096	0.523	0.299	0.471	0.352	0.321
Severe Imbalance		0.238	0.358	0.309	0.109	0.095	0.340	0.070	0.165

and loan detection we require less than 2 hours of 2080Ti compute time. For facial recognition, we require 52 2080Ti GPU hours.