9-1-2005

Application of the extended pairing model to heavy isotopes

V. G. Gueorguiev

Lawrence Livermore National Laboratory

Feng Pan

Liaoning Normal University

J. P. Draayer

Louisiana State University

Follow this and additional works at: https://digitalcommons.lsu.edu/physics_astronomy_pubs

Recommended Citation

Gueorguiev, V., Pan, F., & Draayer, J. (2005). Application of the extended pairing model to heavy isotopes. European Physical Journal A, 25 (SUPPL. 1), 515-516. https://doi.org/10.1140/epjad/i2005-06-108-y

This Conference Proceeding is brought to you for free and open access by the Department of Physics & Astronomy at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Application of the Extended Pairing Model to Heavy Isotopes

V. G. Gueorguiev1,2, Feng Pan3, and J. P. Draayer2

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
3 Department of Physics, Liaoning Normal University, Dalian, 116029, P. R. China

Received: October 21, 2004 / Revised version: November 11, 2004

Abstract. Relative binding energies (RBEs) within three isotopic chains (100−130Sn, 152−181Yb, and 181−202Pb) have been studied using the exactly solvable extended pairing model (EPM) \cite{1}. The unique pairing strength G, which reproduces the experimental RBEs, has been determined. Within EPM, $\log(G)$ is a smooth function of the model space dimension $\dim(A)$, as expected for an effective coupling strength. In particular, for the Pb and Sn isotopes G can be described by a two parameter expression that is inversely proportional to the dimensionality of the model space, $G = \alpha \dim(A)^{-\beta}$ with $\beta \approx 1$.

PACS. 21.10.Dr Binding energies – 71.10.Li Pairing interactions in model systems – 21.60.Cs Shell model

In many applications the infinite dimensionality of the quantum mechanical Hilbert space is an obstacle; to overcome it, one has to restrict the model space to a finite dimensional subspace and construct an appropriate effective Hamiltonian. This in turn leads from a two-body to a many-body interaction terms. Nonetheless, the effective Hamiltonian approach has been very successful and even pointed to the importance of three-body nuclear interaction terms that are non-perturbative, the contribution from a three-body nuclear interaction is an obstacle; to over- come it, one has to restrict the model space to a finite dimensional subspace and construct an appropriate effective Hamiltonian. This in turn leads from a two-body to a many-body interaction terms. Nonetheless, the effective Hamiltonian approach has been very successful and even pointed to the importance of three-body nuclear interactions \cite{2}. The recently introduced exactly solvable extended pairing model \cite{1} provides a framework for study of Hamiltonians with many-body interaction terms:

\begin{equation}
\hat{H} = \sum_{j=1}^{p} c_{j} n_{j} - G \sum_{i,j=1}^{P} B_{i}^{\dagger} B_{j} - G \sum_{\mu=2}^{P} \frac{1}{(p!)^{2}} \times \sum_{i_{1} \neq \cdots \neq i_{2p}} B_{i_{1}} \cdots B_{i_{p}} B_{i_{p+1}} \cdots B_{i_{2p}}. \tag{1}
\end{equation}

Ideally, one should be able to calculate binding energies and other observables \textit{ab-initio} using the exact nucleon interaction. However, we are still lacking this capability. Instead, we use different models for binding energies and excitation energies. Conventionally, the liquid-drop model is the zeroth order approximation to the binding energies while the two-body pairing interaction gives the shell model corrections. The extended pairing model (EPM) \cite{1} has terms beyond the standard Nilsson plus pairing Hamiltonian; these terms provide an alternative description of the relative binding energies (RBEs) of neighboring nuclei within the same valence space. As we will discuss below, EPM is well suited to provide description of the RBEs only within the shell-model since the equations are insensitive to the binding energy of the core nucleus.

\begin{equation}
|k; \zeta; j_{1} \cdots j_{m}| = \sum_{i_{1} \leq \cdots \leq i_{k}} C_{i_{1} \cdots i_{k}}^{(k)} B_{i_{1}}^{\dagger} \cdots B_{i_{k}}^{\dagger} |j_{1} \cdots j_{m}|, \tag{2}
\end{equation}

where $C_{i_{1} \cdots i_{k}}^{(k)}$ are expansion coefficients to be determined. It is assumed that the level indices j_{1}, \ldots, j_{m} should be excluded from the summation in (2). For simplicity, we focus only on the seniority zero case ($m = 0$).

Although Hamiltonian \cite{1} contains many-body interaction terms that are non-perturbative, the contribution of the higher and higher energy configurations is more and more suppressed due to the structure of the equation that needs to be solved to determine the eigensystem of...
the Hamiltonian \(H\). The eigenstates \(E_k^{(C)}\) and \(C^{(C)}_{i_1i_2...i_k}\) depend on only one parameter \(\zeta^{(C)}\), where the quantum number \(\zeta\) is understood as the \(\zeta\)-th solution of \(5\):

\[
E_k^{(C)} = \zeta^{(C)} - G(k - 1),
\]

\[
C^{(C)}_{i_1i_2...i_k} = \frac{1}{z^{(C)} - E_{i_1...i_k}}, \quad E_{i_1...i_k} = \sum_{\mu=1}^{k} 2\epsilon_{i_\mu},
\]

\[
1 = \sum_{i_1<i_2<...<i_k} G \frac{E_{i_1...i_k} - z^{(C)}}{E_{i_1...i_k}}.
\]

Due to the space limitations many details and results of the current application of this exactly solvable model are omitted, however, a more detailed paper is available \(1\). For the current application the single-particle energies are calculated using the Nilsson deformed shell model with parameters from \(1\). Experimental BEs are taken from \(2\).

Theoretical RBE are calculated relative to a specific core, \(^{152}\text{Yb}, ^{168}\text{Sn}, \text{and} ^{208}\text{Pb}\) for the cases considered. The RBE of the nucleus next to the core is used to determine an energy scale for the Nilsson single-particle energies. For an even number of neutrons, we considered only pairs of particles (hard bosons). For an odd number of neutrons, we apply Pauli blocking to the Fermi level of the last unpaired fermion and considered the remaining fermions as if they were an even fermion system. The valence model space consists of the neutron single-particle levels between two closed shells with magic numbers 50-82 and 82-126. By using \(3\) and \(4\), values of \(G\) are determined so that the experimental and theoretical RBE match exactly.

Figure 1 shows results for the \(^{181-202}\text{Pb}\) isotopes. The RBEs are relative to \(^{208}\text{Pb}\) which is set to zero, and the core nucleus is chosen to be \(^{164}\text{Pb}\). For the Yb and Sn isotopes the core nucleus is also the zero RBE reference nucleus \((^{108}\text{Sn} \text{and} ^{152}\text{Yb})\). In this respect, the calculations for the Pb-isotopes are different because the core nucleus \((^{164}\text{Pb})\) and the zero binding energy reference nucleus \((^{208}\text{Pb})\) are not the same. One can see from Figure 1 that a quadratic fit to \(\ln(G)\) as function of \(A\) fits the data well. In this particular case, the pairing strength \(G(A)\) for all 21 nuclei in the range \(A=181-202\) was also fit to a simple two-parameter function that is inversely proportional to the dimensionality of the model space \(\dim(A)\), namely, by \(G(A) = \alpha \dim(A)^{-\beta}\). Similar results have been obtained for the Sn-isotopes as well using \(^{132}\text{Sn}\) as zero.

In conclusion, we studied RBEs of nuclei in three isotopic chains, \(^{100-130}\text{Sn}, ^{152-181}\text{Yb}, \text{and} ^{181-202}\text{Pb}\), within the recently proposed EPM \(1\) by using Nilsson single-particle energies as the input mean-field energies. Overall, the results suggest that the model is applicable to neighboring heavy nuclei and provides, within a pure shell-model approach, an alternative mean of calculating a RBE. In order to achieve that, the pairing strength is allowed to change as a smooth function of the model space dimension. It is important to understand that the A-dependence of \(G\) is indirect, since \(G\) only depends on the model space dimension, which by itself is different for different nuclei. In particular, in all the cases studied \(\ln(G)\) has a smooth quadratic behavior for even and odd \(A\) with a minimum in the middle of the model space where the dimensionality of the space is a maximal; \(\ln(G)\) for even \(A\) and odd \(A\) are very similar which suggests that further detailed analyses may result in the same functional form for even \(A\) and odd \(A\) asotopes as found in the case of the Pb-isotopes and Sn-isotopes. It is a non-trivial result that \(G\) is inversely proportional to the space dimension \(\dim(A)\) in the two cases found (Pb-isotopes and Sn-isotopes) which requires further studies.

Financial support provided by the U.S. National Science Foundation, the Natural Science Foundation of China, and the Education Department of Liaoning Province. Some of the work was also performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

References

1. F. Pan, V. G. Gueorguiev, and J. P. Draayer, Phys. Rev. Lett. 92, 112503 (2004) (see also this proceedings).
2. P. Navratil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
3. V. G. Gueorguiev, F. Pan, and J. P. Draayer, nucl-th/0403055.
4. P. Møller, J. R. Nix and K. L. Kratz, Atomic Data Nucl. Data Tables 66, 131 (1997).
5. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A624, 1 (1997).