Benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate
Jin Mizuguchi, Yohei Sato, Kazuya Uta and Kazuyuki Sato

Copyright © International Union of Crystallography
Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.
Benzyltributylammonium 4-hydroxy-naphthalene-1-sulfonate

The title compound, C_{19}H_{34}N^+\cdotC_{10}H_7O_4S^-\text{-}C_1, is a charge-control agent used in electrophotography. The anions form chains along the b axis through O–H···O hydrogen bonding.

Comment

The title compound, (I), is an ammonium salt used widely as a charge-control agent (CCA) of the positive type for toners in electrophotography (Taniaka, 1995). CCAs are usually added to toners to create a desired charge level and polarity (Nash et al., 2001). However, the charge-control mechanism of CCA is not fully understood at the moment. We have, therefore, determined the title crystal structure as a step to elucidating the mechanism.

Fig. 1 shows the asymmetric unit of (I). The ions have no crystallographically imposed symmetry. Fig. 2 shows a hydrogen-bonded chain along the b axis, formed by O–H···O hydrogen bonding (Table 1).

Experimental

Compound (I) was obtained from Orient Chemical Industries Ltd, and was recrystallized from a methanol solution. After 48 h, a number of colorless crystals were obtained in the form of blocks.

Crystal data

C_{19}H_{34}N^+\cdotC_{10}H_7O_4S^-\text{-} C_1

Mr = 499.70

Monoclinic, $P2_1/n$

$\alpha = 14.3810$ (11) Å

$\beta = 9.8124$ (7) Å

$\gamma = 19.7757$ (15) Å

$\beta = 92.560$ (5)$^\circ$

$V = 2787.8$ (4) Å3

$Z = 4$

Cu Kα radiation

$\mu = 1.29$ mm$^{-1}$

$T = 296.1$ K

0.20 × 0.20 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

$T_{\text{min}} = 0.745$, $T_{\text{max}} = 0.772$

24226 measured reflections

4902 independent reflections

3490 reflections with $F^2 > 2\sigma(F^2)$

$R_{\text{int}} = 0.036$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$

$wR(F^2) = 0.162$

$\chi^2 = 1.19$

4902 reflections

347 parameters

H-atom parameters constrained

$\Delta\rho_{\text{max}} = 0.45$ e Å$^{-3}$

$\Delta\rho_{\text{min}} = -0.24$ e Å$^{-3}$
Table 1
Hydrogen-bond geometry (Å, °).

D—H—A	D—H	H—A	D—A	D—H—A
O4—H4	0.82	1.85	2.657 (2)	169

Symmetry code: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$

C4, C5 and C6 were found to be disordered over two sites each. The site occupancies for C4A/C4B are 0.742 (7):0.258 (7), whereas those for C5A/C5B and C6A/C6B are 0.460 (6):0.540 (6). These atoms were isotropically refined. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene), and O—H = 0.82 Å; $U_{eq}(H) = 1.2U_{eq}$(parent atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 17th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364. Springfield, Virginia: Society for Imaging Science and Technology.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Tanaka, K. (1995). Proc. Inst. Electrost. Jpn., 19, 15–21.