The Status of AMoRE Double Beta Decay Experiment

Kyungmin Seo
On behalf of AMoRE Collaboration
Center for Underground Physics, IBS
Department of Physics, Sejong University

Topics in Astroparticle and Underground Physics
@ Toyama International Conference Center
Sep. 9th – 13th 2019
Contents

• 0vbb & AMoRE
• AMoRE-Pilot Detector
• AMoRE-Pilot data analysis
• Detector improvements during AMoRE-Pilot
• Background & simulation
• Physics results
• Next phases
• Summary
Introduction: AMoRE

• AMoRE: Advanced Mo-based Rare process Experiment
• Search for neutrinoless double beta decay using Molybdenum-100 based scintillation crystals

• Molybdenum-100: high Q-value (3034 keV), high natural abundance (~9.7 %) and relatively short half-life expected in theoretical calculation
Introduction: AMoRE

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Mass [kg]	1.9	~6.1	~200
Channels	12	36	~1000
BKG goal [ckky]	0.01	0.001	0.0001
Sensitivity [year]	~10^{24}	~10^{25}	~5×10^{26}
Sensitivity [meV]	380 to 640	120 to 200	17 to 29
Location	Y2L	Y2L	Yemilab
schedule	2017 to 2018	2019~	2021~
Introduction: Y2L

Yangyang Underground Laboratory (Y2L)

YangYang Pumped Storage Power Plant

KIMS/COSINE (Dark Matter Search)
AMoRE (Double Beta Decay Experiment)

Minimum depth: 700 m / Access to the lab by car (~2km)
Introduction: Detector

- Detector

Scintillating crystal
- $^{48}\text{Ca}^{100}\text{MoO}_4$
- ^{100}Mo enriched: > 95 %
- ^{48}Ca depleted: < 0.001 %

MMC & SQUID
- MMC: Metallic Magnetic Calorimeter
- Magnetization changes with temperature
- Magnetization change (flux) can be measured as a voltage by SQUID

Detection process:
Energy → Temperature → Magnetization → Magnetic flux → **Voltage signal**
Shield & Muon counters

Muon candidate ~2000 /day

Total: 10 panels & 28 PMTs (w/o bottom)
DAQ

- FADC for CMO detectors
 - 18-bit resolution
 - input: 10 Vpp
 - continuous data taking
- SADC for muon counters
 - 64 MHz ADC
- TCB
 - timing resolution: ~7 ns
Analysis: waveform parameters

Phonon channel parameter
- Pulse height (RAW / filtered)

Phonon channel parameters
- Pulse height (RAW / filtered)
- Rise-time
- Mean-time
- Fall-time

Particle identification parameters
- Rise-time
- Light/Heat ratio
Particle identification: β/γ selection

- For the β/γ selection, the following selection functions were applied:

 \[
 t_{\text{rise}} = p_1 \exp\left(\frac{E}{p_2}\right) + p_3 E + p_4 \quad \text{for Risetime (}t_{\text{rise}}\text{)}
 \]
 \[
 R_{L/H} = p_1 \exp\left(\frac{E}{p_2}\right) + p_3 \quad \text{for L/H ratio (}R_{L/H}\text{)}
 \]

Gamma event can be selected by risetime & L/H ratio function (red line).
\(\alpha \) tagging

\[
\begin{align*}
\text{36\% } \alpha\text{-decay} & \quad \text{Q-value } = 6.21 \text{ MeV} \\
T_{1/2} = 60.6 \text{ min} & \quad \text{64\% } \beta\text{-decay} \\
& \quad \text{Q-value } = 2.25 \text{ MeV} \\
212\text{Bi} & \quad T_{1/2} = 0.299 \mu\text{s} \\
212\text{Po} & \quad \alpha\text{-decay} \\
& \quad \text{Q-value } = 8.95 \text{ MeV} \\
208\text{Tl} & \quad \beta\text{-decay} \\
& \quad \text{Q-value } = 5.00 \text{ MeV} \\
208\text{Pb} & \\
\end{align*}
\]

Reject the event within 15 minute window after the alpha tagging.

Image source: Thorium SVG image by Wikipedia contributor BatesIsBack.
Detector improvements during AMoRE-Pilot

• Improvement between setup 1 to 2
 - High background components were removed / moved away from the crystals
 (Pin connector, PCB, sensor holder, ...)

• Improvement between setup 2 to 3
 - Neutron shields were added
 (boric acid powder, Borated PE & PE blocks)
Background

Range [MeV]	Setup 1 [ckky]	Setup 2 [ckky]	Setup 3 [ckky]	Reduction [%]
2.8 to 3.2	0.456±0.131	0.171±0.080	0.143±0.088	~69
3.2 to 8	0.062±0.014	0.050±0.013	0.007±0.006	~89
Background & simulation

Setup 1 data & simulation with a likelihood fit

The analysis for other setups are in progress
Physics results

• Latest result of AMoRE-pilot

Using setup1 data, we obtained:
- \(T_{1/2}^{0\nu} > 9.5 \times 10^{22} \text{ y (90 \% C.L.)} \)
- \(m_{\beta\beta} < 1.2 - 2.1 \text{ eV} \)

To be updated: using all AMoRE-Pilot data
Next phases: AMoRE-I

- AMoRE-I preparation is ongoing
 - Crystals
 - 18 crystals (13 CMOs and 5 LMOs, 100Mo enriched)
 - Total mass \sim6.1 kg
 - Passive shields
 - 20 cm inner lead shield (5 cm increase)
 - Boric acid silicon rubber surrounding outer vacuum chamber
 - 3 cm borated PE & 30 cm PE blocks
 - Muon counter
 - 10 more muon counters will cover bottom and upper gap
 - DAQ upgrade
 - less noise level
Next phases: AMoRE-II

- Will be installed in Yemilab (~1000 m overburden)
- ^{100}Mo based crystals ~200 kg (^{100}Mo net mass ~ 100 kg)
- Dimension: 1000 (D) × 1950 (H) mm
- Detector temperature ~ 10 mK

Mt. Yemi (EL 998m)

2. Men-riding cage (600 m long)
3. The New Underground Laboratory
4. Surface office

1. Access Tunnel
782 m long

Yemilab in Jeongseon, Korea
Summary

• AMoRE is to search for neutrinoless double beta decay using 100Mo-based scintillating crystals.

• From Aug. 2017 to Dec. 2018, we conducted AMoRE-Pilot data measurements (with ~2 kg of 48Ca100MoO$_4$) for about 1.5 years.

• The detector configuration was changed twice to reduce background.

• The background was reduced by 69% (89%) in the energy interval 2.8-3.2 MeV (3.2-8 MeV).

• Background simulation being updated using all the data.

• Preparation of AMoRE-I is in progress (installation will begin this month).

• AMoRE-II will be installed in Yemilab with ~200 kg.
Backup
Detector constructions

• Difference between Setup 1 & 2

Kapton-based flexible PCB

- Total Thickness: 115 ± 5μm
- Roll size: 250/500m x 100m

Copper foil: MITSUI ED 1oz (35μm)
Adhesive: HANWHAFL Exadex-free Adhesive (10μm)
Polyamide film: SKCZKOLON (25μm)
Adhesive: HANWHAFL Exadex-free Adhesive (10μm)
Copper foil: MITSUI ED 1oz (35μm)

No pin connector near the detectors
Sensor holder design, screws and reflectors changed

Components that make high background have been removed / moved out
Detector constructions

• Difference between Setup 2 & 3
 - neutron shielding installed

Inside of lead box
 (Boric acid powder)

Outside of detector
 (Borated PE & PE)
Particle identification: α selection

• For the α selection, there are no distinguishable low energy peaks (below 4 MeV).

• So alpha like events were selected using both of separation parameters (RT & LH ratio).
\(\beta/\gamma \) distribution comparison (1)

- Events **from 2.8 MeV to 3.2 MeV** were used for background comparison.
β/γ distribution comparison (2)

2.8 to 3.2	Setup 1 [ckky]	Setup 2 [ckky]	Setup 3 [ckky]	Reduction [%]
SB28	0.279±0.114 (6)	.	.	
S35	0.376±0.133 (8)	0.046±0.046 (1)	0.089±0.089 (1)	76.33
SS68	0.406±0.109 (14)	0.115±0.082 (2)	.	
SE01	0.402±0.152 (7)	0.233±0.095 (6)	.	
SB29	0.589±0.139 (18)	.	.	
SE02	0.682±0.142 (23)	0.289±0.097 (9)	0.157±0.079 (4)	76.98
Average	**0.456±0.131**	**0.171±0.079**	**0.123±0.084**	**73.03**

3.2 to 8.0	Setup 1 [ckky]	Setup 2 [ckky]	Setup 3 [ckky]	Reduction [%]
SB28	0.066±0.016 (17)	.	.	
S35	0.047±0.014 (12)	0.023±0.009 (6)	0.007±0.007 (1)	85.11
SS68	0.077±0.014 (32)	0.043±0.014 (9)	.	
SE01	0.048±0.015 (10)	0.068±0.015 (21)	.	
SB29	0.057±0.013 (21)	.	.	
SE02	0.079±0.014 (32)	0.067±0.013 (25)	0.007±0.005 (2)	91.14