Iles, Ray K., Oliver, R. T. D., Kitau, M., Walker, C. and Chard, Tim (1987) In vitro secretion of human chorionic gonadotrophin by bladder tumour cells. British journal of cancer, 55 (6) . pp. 623-626. ISSN 0007-0920 [Article]

This version is available at: https://eprints.mdx.ac.uk/6112/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
In vitro secretion of human chorionic gonadotrophin by bladder tumour cells

R.K. Iles¹, R.T.D. Oliver¹, M. Kitau², C. Walker³ and T. Chard²

¹Medical Oncology Unit, Department of Urology, The London Hospital Medical College, London; ²Department of Reproductive Physiology and Obstetrics and Gynaecology, St. Bartholomew’s Hospital Medical College and the London Hospital Medical College, London; and ³Department of Histopathology, Institute of Urology, St. Paul’s Hospital, London, UK.

Summary Human chorionic gonadotrophin (hCG) and alphafetoprotein (AFP) were measured in culture media from a panel of 29 cell lines including 9 bladder carcinomas, 5 normal bladder epithelia, 10 germ cell tumours, and 5 miscellaneous tumours and normal cell lines. In 7 of the 9 bladder carcinomas and 4 of the 5 normal bladder epithelia, the media contained hCG at levels ranging from between 34 and 3,600 IU/l. All other cell lines, including the 10 germ cell tumour lines gave negative results for hCG. These findings indicate that in vitro secretion of hCG is a common feature of normal and neoplastic bladder transitional epithelia, and support the hypothesis that parts of the genito-urinary epithelium have a potential for hCG production.

The high incidence of elevated levels of human chorionic gonadotrophin (hCG) and alphafetoprotein (AFP) in association with testicular germ cell tumours is well recognised in vivo (Seppala et al., 1986), but this phenomenon is relatively uncommon during culture of these tumours (Andrews et al., 1980). Ectopic production of hCG is also a well-recognised phenomenon in some non-gonadal epithelial tumours (Braunstein et al., 1973; McManus et al., 1976; Bellet et al., 1980). This is particularly common in gastric (24%), hepatic (17%) and pancreatic (50%) cancers (reviewed by Baylin & Mendelsohn, 1980; Heydeman et al., 1985; Seppala, 1986). The incidence may be even higher with malignant non-gonadal cells in vitro; in one such study (Rosen et al., 1980) 19 of 32 tumour cell lines secreted hCG (including one bladder carcinoma line). A few isolated cases of in vivo elevated hCG levels in serum and urine in association with bladder cancer have been reported (Civantos & Rywlin, 1972; Kawamura et al., 1978; Rodenberg et al., 1985; Norman et al., 1985). Very recently measurement of hCG has been used as a marker for monitoring metastatic bladder disease; 28 of 92 patients demonstrated measurable levels in blood (Dexexus et al., 1986). Immunohistochemical studies suggest that ectopic production of hCG is relatively unusual in bladder tumours with reports varying from 5 of 13 to 12 of 104 cases (Rodenburg et al., 1985; Shah et al., 1986). In the present study we have examined hCG and AFP secretion by normal and neoplastic bladder and testicular germ cell tumours in vitro.

Materials and methods

A total of 29 cell lines were examined in this study (Table 1). They included: 14 lines of urothelial origin (9 neoplastic (see Table 1), 5 normal); 10 germ cell tumours (gonadal) and 5 miscellaneous tumours and normal controls. The American Type Culture Collection (ATCC) and other lines held at the London Hospital were grown in a medium consisting of Leibowitz L-15 RPMI1640 (50:50, v/v) containing 20% heat inactivated foetal calf serum (FCS), transferrin (4 µg ml⁻¹), hydrocortisone (4 ng ml⁻¹), insulin (4 µg ml⁻¹), and penicillin-streptomycin (1,000 U ml⁻¹) (Gibco Ltd., Paisley, Scotland). Cell lines from the Institute of Urology were grown RPMI1640 plus 5% FCS (Gibco). Incubation was carried out at 37°C in a mixture of 95% air and 5% CO₂. The cell lines were grown to confluence in culture flasks (75cm² adherence area; Falcon Labware).

Table 1	Cell lines used in study.			
Cell lines	**Origin**	**Source**	**Beta-hCG (IU l⁻¹)**	**AFP (U ml⁻¹)**
(A) Urothelial Lines				
T24	TcE bladder	ATCC	<25	<10
382	TcE bladder	ATCC	56	<10
RT4	TcE bladder	ATCC	34	<10
TccSUP	TcE bladder	ATCC	34	<10
ScaBER	Soc bladder	ATCC	2400	<10
5637	TcE bladder	ATCC	220	<10
RT112	TcE bladder	ATCC	220	<10
HT1376	TcE bladder	Inst Ur	<25	<10
TccDeS	TcE bladder	LH(1)	3600	<10
(B) Germ Cell Tumours and Controls				
GCT				
GCT27	GCT	Inst Ur	<25	<10
1618K	GCT	Inst Ur	<25	<10
HL	GCT	Inst Ur	<25	<10
833K	GCT	Inst Ur	<25	<10
GH	GCT	Inst Ur	<25	<10
TERA II	GCT	ATCC	<25	<10
TERA I	GCT	ATCC	<25	<10
SuSa	GCT	Inst Ur	<25	18
WG007	GCT	LH(1)	<25	<10
PJ077	GCT	LH(1)	<25	<10
Controls				
'Normal'				
UV/K14	Skin (keratinocyte)	LH(2)	<25	<10
Melme 3	Skin (fibroblast)	ATCC	<25	<10
Neoplastic				
Wtu013	Wilms tumour	LH(1)	<25	13
BrCaPE	Breast carcinoma	LH(1)	<25	<10
MJ003	Breast carcinoma	LH(1)	<25	<10

Tcc = Transitional cell carcinoma. Scc = Squamous cell carcinoma. TcE = Transitional cell epithelium. GCT = Germ cell tumour. ATCC = American Type Culture Collection. Inst Ur = Institute of Urology. LH(1) = London Hospital originated by R. Iles. LH(2) = London Hospital originated by I. Leigh & P. Purks, Department of Dermatology.

NB. Cell lines NB/AJ, NB/UI, NB/U2 used at Passage 3 of origin and cell line TccDeS at pre-passage primary cultures.

Correspondence: T. Chard. Received 19 December 1986; and in revised form, 6 March 1987.
At this stage the medium (10 ml) was exchanged and the culture continued for a further 96 h. The medium was then harvested and, after removal of debris by centrifugation, was stored at −30°C until assayed. AFP was measured by radioimmunoassay (RIA) (Chard, 1978) and hCG by RIA directed to the beta subunit of this molecule (Norman et al., 1985). The minimal detection limit of the latter assay is 25 IU l−1.

Results

Media from 7 of the 9 bladder cancer cell lines contained detectable levels of beta-hCG (Table IA; Figure 1). In 2 of these (TccSUP and RT4) the concentrations were only marginally above controls but in the remainder the levels were substantially raised. Four of the 5 ‘normal’ bladder epithelial cell lines also showed levels of beta-hCG that were markedly elevated. The media from the germ cell tumours and other cell lines examined all gave negative results (Figure 1). Media containing hCG levels greater than 50 IU l−1 were also assessed using a semi-quantitative two-site immunoassay (Hybritech ICON). All gave negative results. Within the bladder cell lines there appeared to be a general association of epithelial morphology and high levels of beta-hCG (Table II). The occasional positive level of AFP (Table I) was only marginally different from the ‘noise’ level of the assay.

Discussion

There is good evidence that hCG may be produced by normal tissues (Yoshimoto et al., 1977, 1979b). Furthermore, using assays of exceptional sensitivity and specificity (i.e. as low as 0.01 ng ml−1), hCG can be detected in the urine of some normal non-pregnant subjects, post-menopausal females and women using oral contraceptive agents (Chen et al., 1976; Armstrong et al., 1984; Huang et al., 1984). Significant amounts of hCG (and other oncoplacental proteins) are also found in seminal plasma (Salem et al., 1984). These studies have led to the proposal that most tissues are capable of synthesising hCG, and especially some of the epithelia bordering the genito-urinary tract.

The present study confirms previous observations on the secretion of hCG by non-gonadal malignant cells in vitro (Rosen et al., 1980) and highlights the lack of in vitro secretion by the testicular germ cell tumour lines in long term culture (Andrews et al., 1980; Cotte et al., 1981). Given the basic ability of all cells to synthesise hCG and the derepression of this ability in many tumours (Yoshimoto, 1979b) it is not surprising that we have observed hCG secretion by bladder tumour cells in vitro. However, the secretion by ‘normal’ urothelial cell lines implies an innate capacity for hCG secretion. This is further supported by the apparent high frequency of this phenomenon (7 of 9 bladder carcinoma cell lines and 4 of 5 ‘normal’ bladder epithelia), especially when other cell lines, including the testicular germ cell tumours, were negative in this respect. If hCG secretion is a characteristic feature of bladder epithelial cells in culture, it would support the hypothesis that hCG secretion is a characteristic of the normal and neoplastic urothelium. The primary cell line TccDeS (beta-hCG 3,600 IU l−1) provides a link between the in vivo and in vitro situation. It was isolated from the pleural effusion of a patient with metastatic bladder cancer who had substantial levels of hCG in both blood and pleural fluid (760 and 2,700 IU l−1 respectively).

The apparent discrepancy between the secretion of hCG by germ cell tumours in vitro and in vivo may be a consequence of the very different micro-environment in vivo allowing the tumour cells to differentiate into trophoblast (Bronson et al., 1983; Vogelzang et al., 1983; McIlhinney, 1983). At the same time, a marginal increase of AFP does seem to be a feature of germ cell tumours in vitro (Table IB; Andrews et al., 1980).

We have not as yet attempted a full molecular characterisation of the ‘hCG’ detected in the cell media.

Table II
Bladder cancer cell lines – morphology and histology

Cell line	Cell morphology	Grade	Stage	hCG levels (IU l−1)
SCABER	Large regular epithelial cells		T3	2400
5637	Small regular epithelial cells	NR	NR	220
RT112	Small regular epithelial cells	I/II	NR	220
RT4	Small irregular epithelial cells	I/II	T1	34
JR2	Mixed epithelial and fibroblastic-like cells	III	T3	56
TccSUP	Mixed epithelial and fibroblastic-like cells	IV+	T4	34
T24	Mixed epithelial and fibroblastic-like cells	III	NR	<25
HT1376	Variable sized regular epithelial cells	III	T2/3	<25
TccDeS	Variable sized regular epithelial cells	I/III	T4	5000

NR = not reported. Histology survey: Hepburn & Masters, 1983; Masters et al., 1986. *Institute of Pathology, The London Hospital.
Nevertheless, the fact that high levels were determined by an assay which is specific for the beta-chain, while negative results were obtained with a two-site assay specific for intact hCG, strongly suggests that the material consists principally of the beta subunit or fragments thereof. It is interesting that of the five ATCC (1985 catalogue) cell lines listed as hCG secreters, 4 are of placental/foetal origin (3 choriocarcinomas and one line of SV/40 transformed normal placental cells) and one is a cervical epidermoid carcinoma. The latter non-embryonal tumour cell line (CaSk1) is reported to secrete the beta subunit than intact hCG (Pattillo et al., 1977). In a previous study, the hCG-like material found in urine and blood from patients with germ cell tumours appeared to be mainly intact hCG, while material from the patient with a metastatic bladder tumour consisted principally of free beta subunit (Norman et al., 1985). Variability of the relative concentration of intact hormone and free subunits, together with heterogeneous glycosylation of the protein chains, has also been reported in studies on patients with a variety of other tumour types (Weintraub & Rosen, 1973; Rosen & Weintraub, 1974; Kahn et al., 1977; Yoshimoto et al., 1979b). The degree of glycosylation affects various biochemical characteristics and also the rate of metabolism in vivo (Van Hall et al., 1971; Tsuruhara et al., 1972).

Independent production of subunit and intact hormone is not surprising as there is evidence that the genes for the alpha and beta subunits may be on different chromosomes. Thus, the alpha chain has been cloned (Fiddes & Goodman, 1979) and tentatively assigned to chromosome 6 (Naylor et al., 1984), whereas the beta chain, also cloned (Fiddes et al., 1980) has been mapped to chromosome 19 (Julier et al., 1984). Furthermore, the beta hCG 'gene' is itself very heterogeneous consisting of a cluster of at least eight genes arranged in tandem and inverted pairs; one of this cluster is the gene for the beta chain of luteinising hormone (LH) (Boorstein et al., 1982; Talmadge et al., 1983).

The significance of this genetic complexity is unclear at the present time (Talmadge et al., 1984; Whitfield & Kourides, 1985) but may partly explain the very variable results reported here and in the literature.

References
ANDREWS, P.W.; BRONSON, D.L.; BENHAM, F.; STRICKLAND, S. & KNOWLES, B.B. (1980). A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int. J. Cancer., 26, 269.
ARMSTRONG, E.G.; ERLICH, P.H.; BIRKEN, S. & others (1984). Use of a highly sensitive and specific immunoradiometric assay for detection of human choriocarcinoma tissue in urine and normal, non-pregnant and pregnant individuals. J. Clin. Endocrinol. Metab., 59, 867.
BAYLIN, S.B. & MENDELSOHN, G. (1980). Ectopic (inappropriate) hormone production by tumors; mechanisms involved and the biological and clinical implications. Endoc. Rev., 1, 45.
BELLET, D.; ARANG, J.M.; CONTESTO, G.; GAILLARD, J.M. & BOHUON, C. (1980). Localization of the beta-subunit of human chorionic gonadotrophin on various tumours. Eur. J. Cancer, 16, 433.
BOORSTEIN, W.R.; VAMVAKOPOULOS, N.S. & FIDDES, I.C. (1982). Human chorionic gonadotrophin beta subunit is encoded by at least eight genes arranged in tandem and inverted pairs. Nature, 300, 419.
BRAUNSTEIN, G.D.; NAITUKAITS, J.L.; CARBONE, P.P. & ROSS, G.T. (1987). Ectopic production of human chorionic gonadotrophin by neoplasms. Ann. Intern. Med., 78, 39.
BRONSON, D.L.; ANDREWS, P.W.; VESSELLA, R.L. & FRALEY, E.E. (1983). In Teratocarcinoma Stem Cells, Silver, L.M. et al. (eds) 10, p. 597 (Coldspring Harbour Conferences on Cell Proliferation) New York.
CHARD, T. (1978). The assay of alpha-fetoprotein. In Prevention of Neural Tube Defects, Crandall, B.F. and Brasier, A.D. (eds) p. 141. Academic Press; New York.
CHEN, H.C.; HODGEN, G.D.; MATSUWARA, S. & others (1976). Evidence for a gonadotrophin from non-pregnant subjects that has physical, immunological and biological similarities to human choriocarcinoma gonadotrophin. Proc. Natl Acad. Sci. USA, 73, 2885.
CIVANTOS, F. & RYWLIN, A.M. (1972). Carcinoma with trophoblastic differentiation and secretion of chorionic gonadotrophins. Cancer, 29, 789.
COTTE, C.A.; EASTY, G.C. & NEVILLE, A.M. (1981). Establishment and properties of human germ cell tumours in tissue culture. Cancer Res., 41, 1422.
DIDEUS, F.; LIGOTHEITIS, C.; HOSSAN, E. & SAMUELS, M.L. (1986). Carcinoembryonic antigen and beta-human chorionic gonadotrophin as serum markers for advanced urothelial malignancies. J. Urol., 136, 403.
FIDDES, J.C. & GOODMAN, H.M. (1979). Isolation, cloning and sequence analysis of the cDNA for the alpha subunit of human chorionic gonadotrophin. Nature, 281, 351.
FIDDES, J.C. & GOODMAN, H.M. (1980). The cDNA for the beta subunit of human chorionic gonadotrophin suggests evolution of a gene by readiness into the 3' untranslated region. Nature, 286, 684.
HEPBURN, P.J. & MASTERS, J.R.W. (1983). In The Pathology of Bladder Cancer, Bryan, G.T. & Cohen, S.M. (eds) 2, p. 213. CRC Press Inc.
SALEM, H.T., MENABWEY, M., SEPPALA, M., SHAABAN, M.M. & CHARD, T. (1984). Human seminal plasma contains a wide range of trophoblast-specific proteins. Placenta, 5, 413.

SEPPALA, M., IINO, K. & RUTANEN, E.-V. (1986). Placental proteins in oncoology. Clin. Obstet. Gynaecol., 14, 593.

SHAH, U.M., NEWMAN, J., CROCKER, J. & 4 others (1986). Ectopic beta human chorionic gonadotrophin production by bladder urothelial neoplasia. Arch. Pathol. Lab. Med., 110, 107.

TALMADGE, K., BOORSTEIN, W.R. & FIDDES, J.C. (1983). The human genome contains seven genes for the beta subunits of chorionic gonadotrophin but only one gene for the beta subunit of luteinizing hormone. DNA., 2, 281.

TALMADGE, K., BOORSTEIN, W.R., VAMUKAPOULOS, N.C., GETHING, M.J. & FIDDES, J.C. (1984). Three of the seven human chorionic gonadotrophin beta subunit genes can be expressed in the placenta. Nucleic Acids Res., 12, 8415.

TSURUHARA, T., DUF AU, M.L. & HICKMAN, J. (1972). Biological properties of hCG after removal of terminal sialic acid and lactose residues. Endocrinology, 91, 296.

VAN HALL, E.V., VAITUKAITIS, J.L. & ROSS, G.T. (1971). Immunological and biological activity of hCG following progressive desialation. Endocrinology, 88, 456.

VOLGELZANG, N.S., BRONSON, D.L., SAVINO, D. & FRALEY, E.E. (1983). In Teratocarcinoma Stem Cells, Silver, L.M. et al. (eds) 10, p. 607 (Cold Spring Harbour Conferences on Cell Proliferation) New York.

WEINTRAUB, B.D. & ROSEN, S.W. (1973). Ectopic production of the isolated beta subunit of human chorionic gonadotrophin. J. Clin. Invest., 52, 3135.

WHITFIELD, G.K. & KOURIDES, I.A. (1985). Expression of chorionic alpha and beta genes in normal and neoplastic human tissues: relationship to deoxyribonucleic acid structure. Endocrinology, 117, 231.

YOSHIMOTO, Y., WOLFSEN, A.R. & ODELL, W.D. (1977). Human chorionic gonadotrophin-like substance in nonendocrine tissues of normal subjects. Science, 197, 575.

YOSHIMOTO, Y., WOLFSEN, A.R., HIROSE, F. & ODELL, W.D. (1979a). Human chorionic gonadotrophin-like material: presence in normal tissues. Amer. J. Obstet. Gynecol., 134, 729.

YOSHIMOTO, Y., WOLFSEN, A.R. & ODELL, W.D. (1979b). Glycosylation: a variable in hCG production by cancers. Am. J. Med., 67, 414.