Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μ-var Disease

William L. King1,2, Nachshon Siboni2, Nathan L. R. Williams1, Tim Kahlke2, Khue Viet Nguyen1,2, Cheryl Jenkins3, Michael Dove4, Wayne O’Connor4, Justin R. Seymour2 and Maurizio Labbate1*

1 The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia, 2 Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia, 3 NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia, 4 NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia

Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 μ-var) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 μ-var affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 μ-var disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 μ-var disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 μ-var disease outbreaks.

Keywords: Crassostrea gigas, microbiome, ostreid herpesvirus, disease resistance, Vibrio, POMS
INTRODUCTION

The Pacific oyster, *Crassostrea gigas* is a globally cultivated oyster species, but the cultivation of this species has been increasingly impacted by disease events (Azéma et al., 2015). These disease events are largely caused by viral and bacterial etiological agents (Friedman et al., 2005; Garnier et al., 2007; Segarra et al., 2010; King et al., 2019), but in some instances no clear etiological agent is identifiable (Go et al., 2017; King et al., 2018). A major pathogen of *C. gigas* is the ostreid herpesvirus 1 (OsHV-1), and its micro variant form (OsHV-1 µvar) (Davison et al., 2005; Segarra et al., 2010). This virus has caused severe mortality outbreaks over the last two decades (Friedman et al., 2005; Burge et al., 2006; Segarra et al., 2010; Jenkins et al., 2013; Mortensen et al., 2016), with some outbreaks resulting in over 90% mortality and leading to the death of many millions of oysters (ASI, 2015).

To combat the impact of OsHV-1 µvar, a variety of approaches including modifying husbandry practices (e.g., increased oyster cultivation height) and breeding disease resistant oysters have been applied, with varying degrees of success (Dégrenmont, 2011; Paul-Pont et al., 2013; Whittington et al., 2015). Breeding programs generally involve breeding oyster genetic lines that have greater survival rates following exposure to OsHV-1 (Dégrenmont, 2011, 2013; Dégrenmont et al., 2015b; Camara et al., 2017). While these breeding programs have shown some success, resistant families still experience varying degrees of mortality (juvenile oysters 5–19%; larvae up to 86%) (Dégrenmont, 2011; Dégrenmont et al., 2013, 2016b), and the mechanism(s) underpinning resistance are often not easily distinguishable.

A number of studies have characterized the physiological and immunological factors driving OsHV-1 and OsHV-1 µvar resistance in selectively bred oysters (Sauvage et al., 2009; Dégrenmont, 2011, 2013; Azéma et al., 2015; Dégrenmont et al., 2015a, 2016a,b). Factors such as increased oyster size and weight are associated with increased resistance to infection, but why this occurs is currently unclear (Dégrenmont, 2013; Dégrenmont et al., 2015b). Other studies have determined that resistant oysters have a greater capacity to clear OsHV-1 from their tissues and suppress virus replication (Dégrenmont, 2011; Segarra et al., 2014). When examined from an immunologic perspective, resistant oysters appear to have greater capacity to induce autophagy genes when infected by OsHV-1 compared to susceptible oysters (Moreau et al., 2015).

Another contributing factor that has received less attention is the oyster microbiome. A previous study has shown that despite being positive for OsHV-1 µvar, antibiotic-treated oysters displayed significantly reduced mortalities in comparison to untreated oysters (Petton et al., 2015). Furthermore, the total bacterial load, including the *Vibrio* community, is significantly elevated following OsHV-1 µvar infection and this elevation is necessary to cause mortality (de Lorgeril et al., 2018). *Vibrio* bacteria are commonly isolated from OsHV-1 infected oysters (Segarra et al., 2010; García et al., 2011; Jenkins et al., 2013; Keeling et al., 2014), with a recent study concluding that OsHV-1 µvar infection causes immune-suppression of the oyster host, allowing opportunistic bacteria (including *Vibrio* species) to infect the oyster (de Lorgeril et al., 2018). In other organisms, studies have implicated the host microbiome as modulating the immune system, suggesting it is critical in host defense and overall health (reviewed by Shreiner et al., 2015) and in influencing host behavior (Shin et al., 2011).

To better understand how breeding for OsHV-1 µvar disease resistance affects the *C. gigas* microbiome and to elucidate whether specific taxa are associated with susceptibility and resistance, we examined the microbiome of 35 *C. gigas* families with varying degrees of disease-resistance. To remove the confounding effects of time and location, these oysters were deployed at a single location and sampled at the same time. In addition, the comparison of distinct *C. gigas* families provided the opportunity to determine whether they harbored distinct microbial community assemblages and whether persistent bacterial taxa (core microbiome) common across the families could be identified.

MATERIALS AND METHODS

Sources and Sampling of C. gigas

Australian Seafood Industries (ASI) is an oyster aquaculture industry-owned company that since the first OsHV-1 µvar outbreak in 2010 has been breeding *C. gigas* families for OsHV-1 µvar disease resistance through field exposure. In 2016, ASI deployed 35 (n = 35) 5th generation families (5 consecutive years of biparental breeding) of juvenile *C. gigas* into three areas known to harbor the OsHV-1 virus, the Georges River (NSW, Australia; 34.035S, 151.145E), Pipe Clay Lagoon (TAS, Australia; 42.970S, 147.525E) and Pittwater (TAS, Australia; 42.802S, 147.509E) (Kube et al., 2018). Based on these field disease-exposure studies, expected breeding values (EBVs) were calculated by ASI. These EBVs are an estimation of how well the oysters will perform for a particular trait and the likelihood of passing those traits to their progeny. For the purposes of this study, families were classified into ‘resistance groups’ (RG) based on their OsHV-1 µvar disease resistance EBV. Families with an EBV greater than 0.6 were placed into RG1 (high disease-resistance), those with an EBV greater than 0.3 and less than 0.6 were placed into RG2 (medium disease-resistance), and families with an EBV less than 0.3 were placed into RG3 (low disease-resistance) (Table 1). The estimated heritability is the likelihood of the offspring demonstrating a particular trait, in this case OsHV-1 µvar disease resistance. Resistance is determined by the combination of many genes, since the stock used are derived from a number of genetically distinct families, each family differs in its resistance, and crosses between families differ.

In addition to disease-resistance, EBVs of other oyster traits were also provided by ASI. These traits include: meat condition, the ratio of wet meat to the total weight; depth index, the ratio of shell depth to shell length; shell length; oyster weight, including the oyster shell; and width index, the ratio of shell width to shell length. As EBV’s are proprietary information, rather than providing absolute values for each index, we generated a ‘rank’ system to categorize families according to each index, with ranks of 1 being the highest (Table 1).
into the Georges River (34.035S, 151.145E) on the 16th estuaries across Australia. Expected breeding values (EBVs), including OsHV-1 Survival data was found after deployment in three different OsHV-1 µvar disease-resistance, are shown as a rank number out of 35. Family µvar line resistance group (RG) condition index Meat Depth Shell Oyster Width index F_01 8 RG2 22 6 28 7 7 F_02 25 RG3 20 1 29 10 10 F_03 6 RG2 17 18 21 13 13 F_07 16 RG2 6 4 34 1 1 F_10 26 RG3 16 10 32 5 5 F_11 24 RG3 11 7 31 6 6 F_15 29 RG3 6 4 34 1 1 F_16 31 RG3 3 14 11 23 23 F_19 17 RG2 17 18 21 13 13 F_20 28 RG3 4 20 9 13 13 F_23 15 RG2 13 28 19 19 19 F_25 20 RG2 6 21 19 20 20 F_26 32 RG3 12 8 25 22 22 F_27 22 RG3 25 2 27 17 17 F_29 7 RG2 27 31 2 35 35 F_30 18 RG2 23 30 3 33 33 F_35 34 RG3 1 27 10 8 8 F_36 10 RG3 9 24 17 24 24 F_37 12 RG2 4 9 30 11 11 F_39 27 RG3 2 15 17 9 9 F_40 11 RG2 17 12 26 21 21 F_43 19 RG2 20 10 21 28 28 F_51 23 RG3 14 28 13 12 12 F_61 30 RG3 14 35 1 34 34 F_62 33 RG3 24 24 7 17 17 F_65 13 RG2 30 31 3 30 30 F_66 1 RG1 30 31 3 30 30 F_67 9 RG2 30 31 3 30 30 F_68 3 RG1 30 16 15 25 25 F_69 5 RG1 30 16 15 25 25 F_72 2 RG1 35 21 13 16 16 F_77 4 RG1 26 24 8 25 25 F_80 21 RG3 29 23 12 29 29 F_84 14 RG2 28 2 33 3 3 F_86 35 RG3 10 13 24 4 4 Survival data was found after deployment in three different OsHV-1 µvar positive estuaries across Australia. Expected breeding values (EBVs), including OsHV-1 µvar disease-resistance, are shown as a rank number out of 35.

For this microbiome study, the families were deployed into the Georges River (34.035S, 151.145E) on the 16th of August 2016 and sampled 2 months after deployment date. The 2-month deployment time was the first opportunity to sample the deployed juvenile oysters and was sufficient time to ensure no evidence of disease or morbidity. Oysters were deployed in a resolvable incomplete block design to account for micro-geographic variation, blocks were subsections of a replicate and there were three replicates for each family, with each family stocked into a subsection of the tray (Kube et al., 2018). Five oysters from each of the 35 families (total = 175 samples) were sampled and immediately placed on ice and transported to the laboratory where they were stored at −80°C until further processing.

DNA Extraction, Sequencing, and Bioinformatics

The outer shell of the five sampled oysters was rinsed under running tap water to remove any remaining mud and debris. Defrosted oysters were then shocked with sterilized shocking knives and approximately 25 mg of adductor muscle tissue was aseptically removed using sterile scalpels blades.

The Qiagen DNeasy blood and tissue kit (catalogue: 69506) was used to extract DNA samples, as per the manufacturer’s instructions. Microbial community composition within samples was subsequently assessed using 16S rRNA amplicon sequencing, whereby the ribosomal 16S rRNA V1–V3 region was targeted using the 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 519R (5′-GWATTACGGCAGCGTCT-3′) primer pair. The PCR cycling conditions were as follows: 95°C for 3 min, 25 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 30 s, and a final extension at 72°C for 5 min. Amplicons were sequenced using the Illumina MiSeq platform (2 × 300 bp) using standard approaches (Ramaciotti Centre for Genomics at the University of New South Wales, Sydney, NSW, Australia). Raw data files in FASTQ format were deposited in the NCBI Sequence Read Archive (SRA) under the Bioproject number PRJNA497763.

Briefly, 16S rRNA paired-end DNA sequences were joined using Flash (Magoc and Salzberg, 2011) and subsequently trimmed using Mothur (Schloss et al., 2009) (Parameters: maxhomop = 5, maxambig = 0, minlength = 432, maxlength = 506). The resulting fragments were clustered into operational taxonomic units (OTUs) at 97% sequence identity, and chimeric sequences were identified using vsearch (Rognes et al., 2016). Taxonomy was assigned in QIIME (Caporaso et al., 2010) using the uclust algorithm (Edgar, 2010) against the Silva v128 database. Mitochondrial and chloroplast data were filtered out of the dataset and the remaining data were rarefied to allow for even coverage across all samples (Supplementary Data Sheet 2). OTUs representing less than 0.1% relative abundance in an individual sample were also filtered from the dataset (Supplementary Tables 1, 2).

Core Microbiome Analysis

To determine whether a core oyster microbiome could be characterized, we examined the microbiome of oysters at three different thresholds. First, for individual families, then for RGs, then for all samples together. A core OTU was defined as an OTU that was present in at least all but one replicate (to account for outliers) within a family. To achieve this, the panbiom.py script was used as detailed in Kahlke (2017). Briefly, the final biom file generated during the QIIME analysis was used in conjunction with a treatment file that identifies which samples are replicates within a family. The panbiom.py arguments were
as follows: a replicate threshold of 1 (-r parameter) and an outlier threshold of ‘x’ (-x parameter). The -x parameter treats the replicate threshold value as an outlier threshold value, simply put, it can be absent in one replicate sample (indicated by -r = 1 and -x = x).

Quantitative PCR (qPCR)
Due to the potential role of Vibrio in OsHV-1 μvar disease dynamics (Segarra et al., 2010; Jenkins et al., 2013; Lemire et al., 2015; Petton et al., 2015; de Lorgeril et al., 2018), quantitative PCR (qPCR) was used to examine patterns in Vibrio abundance across the RGs. qPCR was performed using an epMotion 5075i Automated Liquid Handling System on a Bio-Rad CFX384 Touch Real-Time PCR Detection System with a six-point calibration curve and negative controls on every plate. The calibration curve was built from a known amount of amplicon DNA measured by Qubit, followed by a 10-fold dilution to fill out the calibration curve. All sample analyses were performed with three technical replicates, using the following reaction mixture: 2.5 μL iTaq Universal SYBR Green supermix, 0.4 μM of each forward and reverse primer, 1 μL of diluted (1:15) template DNA, and the remainder made up with water. To quantify abundance of the Vibrio community, the Vibrio-specific 16S rRNA primers Vib1-f (5'-GGCGTAAAGGCGATGCAGGT-3') and Vib2-r (5'-GAATTCTACCCCCCTACAG-3') were used (Thompson et al., 2004; Vezzulli et al., 2011; Siboni et al., 2016). The qPCR cycling conditions were as follows: 95°C for 3 min followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. The resulting data were normalized to both elution volume (200 μL) and tissue weight. A coefficient of variation (CV) was then calculated for the technical triplicates, and samples with CV > 10% were removed from the analysis. A melting curve was added to the end of every run to confirm the presence of a single PCR product.

Statistical Analysis
Comparisons of alpha diversity were performed with a one-way ANOVA followed by a Tukey’s pairwise test. Normalized [square root (x)] data were used to compare community compositions using a non-metric multidimensional scaling analysis (nMDS) with a Bray–Curtis similarity index. To determine significantly different microbial assemblage between families and RGs, and to compare qPCR data, a one-way PERMANOVA was used. To examine which OTUs contributed to differences between RGs, a SIMPER analysis with a Bray–Curtis similarity index was used. To define associations between breeding values and OTUs, breeding values were normalized (x-mean/standard deviation) and used within a canonical correspondence analysis (CCA). All analyses were performed using the PAST statistical software (Hammer et al., 2001). To determine whether an OTU was significantly elevated in a particular RG, the group_significance.py script using the default analysis (Kruskal–Wallis ANOVA) was used in QiIME. To examine correlations between EBVs, we performed a maximal information-based non-parametric exploration (MINE) analysis (Reshef et al., 2011).

RESULTS

The C. gigas Microbiome
Following data filtering and rarefaction, a total of 3294 OTUs were observed across the entire dataset, and of these, 68.5% occurred at below 1% of the total relative abundance. Conversely, across all samples and spanning all RGs, a member of the Pseudomonas genus (OTU 2034) was found to be the most relatively abundant OTU comprising 5.6% of the bacterial community. This was followed by OTUs matching an uncultured bacterium in the Psychrobacter genus (OTU 1488) and an uncultured bacterium in the Mycoplasma genus (OTU 3150), which represented 4.8 and 4% of the C. gigas microbiome across the whole dataset respectively (Figure 1).

Variability in the C. gigas Microbiome Across Different Resistance Lines
To determine whether breeding for disease resistance influences the C. gigas microbiome, the microbiome of oysters assigned to RGs were characterized and compared. Alpha diversity, quantified using Shannon’s diversity index was significantly higher in RG2 when compared to the RG3 RG (F(1,141) = 6.8, p = 0.025), but did not vary significantly when compared to RG1 (F(1,93) = 0.4, p = 0.51). Species richness (Chao1) did not differ significantly between any of the RGs (RG1 vs. RG2 – F(1,93) = 0.03, p = 0.85; RG1 vs. RG3 – F(1,94) = 1.3, p = 0.26; RG2 vs. RG3 – F(1,141) = 1.08, p = 0.30).

Comparisons of microbiome composition (beta diversity) across different RGs revealed that the microbiomes of RG1 and RG2 were both significantly different to the least disease resistant group, RG3 (p = 0.019 and p = 0.0001; F(93,141) = 1.47 and F(1,141) = 2.93 respectively). No significant difference was found between the microbiomes of RG1 and RG2 (F(1,93) = 1.29, p = 0.055). Statistical comparisons between RG2 and RG3 appeared to be stronger than those between RG1 and RG3, possibly due to more families being assigned to RG2, therefore potentially adding more microbiome variability to this group. No clear dissimilarity in the microbiome of the RGs was apparent in a 3D nMDS (Stress = 0.34), or a PCoA (Supplementary Figure 1). SIMPER comparisons showed that the composition of the microbiomes associated with RG1 and RG2 were 81.83 and 82.12% dissimilar to RG3 respectively (Supplementary Tables 3, 4).

As the RG with the lowest level of disease-resistance (RG3) was found to have a significantly different microbial assemblage to both RG2 and RG1, we examined which OTUs were responsible for driving the differences in microbiome structure between these groups (Figure 2). An OTU assigned to the Pseudomonas genus (OTU 2034; the most abundant OTU in the entire dataset) was over-represented in the RG3 microbiome relative to both RG1 (H(1,94) = 7.6, p = 0.0058) and RG2 (H(1,141) = 15, p = 0.0001). Conversely, an OTU assigned to the Tenacibaculum genus (OTU 2636) and two separate OTUs assigned to the Dokdonia genus (OTUs 2162 and 1526) were all significantly under-represented in RG3 (Tenacibaculum RG1 H(1,94) = 4.5, p = 0.033 and RG2...
Notably, a member of the *Vibrio* genus (OTU 412) was found to be significantly over-represented in the least disease-resistant group (RG3) relative to the most disease-resistant group (RG1) \((H(1,94) = 4.4, p = 0.036) \). Due to the previously demonstrated importance of *Vibrio* species in OsHV-1 µ var infection (Segarra et al., 2010; Jenkins et al., 2013; de Lorgeril et al., 2018), we subsequently employed a *Vibrio*-specific 16S rRNA qPCR assay to compare total abundances of *Vibrio* across RGs. A significant elevation of *Vibrio* 16S rRNA gene copies was observed in RG3 compared to RG1 \((F(1,94) = 2.86, p = 0.027) \) and RG2 \((F(1,141) = 3.25, p = 0.014) \) (average of 179, 107, and 75 gene copies mg of tissue\(^{-1}\)) respectively; **Supplementary Figure 2**. Furthermore, OTUs assigned to the *Vibrio* genus were removed and the RG beta diversity comparison was reperformed. When doing this, we observed a slight weakening of the statistical comparison between RG1 and RG3, from \((F(1,94) = 1.47, p = 0.019) \) to \((F(1,94) = 1.46, p = 0.024) \).

A CCA was used to highlight associations between specific OTUs, OsHV-1 µ var disease-resistance and EBVs of other traits (**Figure 3**). OTUs matching the *Capriavidus* (OTU 2182) and *Psychrilyobacter* (OTU 5046) genera were closely coupled with disease-resistance, followed by a member of the *Tenacibaculum* (OTU 2153) genus and an uncultured bacterium in the *Frankiales* order (OTU 5180). While OTUs assigned to members of the *Photobacterium* (OTU 1063; OTU 654; OTU 1053), *Vibrio* (OTU 651; OTU 653) and *Aliivibrio* (OTU 1248) genera were negatively associated with disease-resistance, but strongly associated with meat condition. Furthermore, members of the *Streptococcus* (OTU 814) and *Roseovarius* (OTU 7180) genera were closely associated with depth and width index, and also negatively associated with disease-resistance. The community composition was largely influenced by the

\[H_{(1,141)} = 15.2, p = 0.0056; \] *Dokdonia* RG1 \(H_{(1,94)} = 7.7, p = 0.0001 \) and RG2 \(H_{(1,141)} = 30.3, p < 0.0001 \).

FIGURE 1
Heatmap of scaled OTU relative abundance for the 30 most abundant OTUs, as well as the remaining summed lowly abundant OTUs. Families ordered by OsHV-1 µ var disease-resistance. Heatmap was made using the R statistical environment using scaled data with the gplots and RColorBrewer packages (Neuwirth, 2014; Waines et al., 2016; R Core Team, 2017).
first axis, driven by growth related EBVs. A MINE analysis identified a negative correlation between disease resistance and width index \((p = 0.047;\) linear regression = \(-0.34\)), and a positive correlation between disease resistance and oyster weight \((p = 0.038;\) linear regression = 0.15). Shell length and depth index had the strongest negative correlation \((p = < 0.001;\) linear regression = \(-0.92\)), while oyster weight and shell length had the strongest positive correlation \((p = 0.002;\) linear regression = 0.74; Supplementary Table 5).

Defining the Core C. gigas Microbiome Across Different Resistance Lines

Due to the dynamic nature of oyster microbiomes, identifying a core microbiome can provide insights into which members may be driving the within-microbiome interactions and possibly shaping the community composition. While we were unable to identify a universal core microbiome across all samples, analyses of individual families revealed that each family had a small core microbiome (9–109 OTUs), with many of these OTUs shared across families. Families 30 and 84, within RG2, shared the most core OTUs (4) (Supplementary Figure 3). In contrast, family 19 of RG2 had the most unique core OTUs (27), that is those core OTUs not shared with any other family. To determine how many unique core OTUs were present in each oyster family (and therefore each RG), we compiled all of the core OTUs from the core analysis and removed duplicate bacteria. When doing this, a total of 9, 54, and 16 unique OTUs were assigned to RG1, RG2, and RG3 respectively (Table 2). When performing a separate core analysis on each RG as a whole, RG1 was comprised of two core members, a member of the *Winogradskyella* genus (OTU 1511) and a member of the *Bradyrhizobiaceae* family (OTU 6417). While, no core bacterial members were found for RG2 or RG3 microbiomes.

DISCUSSION

The principal goal of this study was to identify patterns in the *C. gigas* microbiome across 35 oyster families with differing levels of resistance to OsHV-1 µ var disease, with the objective of elucidating microbial taxa associated with disease resistance. Immunosuppression from OsHV-1 µ var infection allows opportunistic bacteria within the oyster’s microbiome to induce bacteremia, killing the host (Petton et al., 2015; de Lorgeril et al., 2018). Characterizing these interactions and gaining insights into the oyster microbiome is essential to further understand the dynamic interplay between the microbiome,
OsHV-1 µvar and disease. A significant difference in the structure of the microbiome of oysters exhibiting different levels of resistance to OsHV-1 µvar disease was observed. Specifically, the microorganisms associated with the oysters showing the most resistance to OsHV-1 µvar disease (RG1) and moderately resistant oysters (RG2) were significantly different to the most disease susceptible (or least resistant) group (RG3). When considering disease resistance, we observed a strong negative association between the OsHV-1 µvar disease resistance of oyster hosts and the occurrence of OTUs assigned to the *Vibrio* (OTUs 651 and 653), *Photobacterium* (OTUs 1063, 654, and 1053), *Aliivibrio* (OTU 1248), *Streptococcus* (OTU 814) and *Roseovarius* (OTU 7180) genera, while on the other hand, the microorganisms of the most resistant families had an over-representation of OTUs assigned to the *Cupriavidus* (OTU 2182), *Psychrilyobacter* (OTU 5046), and *Tenacibaculum* (OTU 2153) genera.

The association between the occurrence of *Vibrio* and disease susceptibility was further supported by a significant elevation of an uncharacterized member of the *Vibrio* in RG3, and the results of a *Vibrio*-specific qPCR assay. These results are consistent with growing evidence implicating a role of the *Vibrio* community in oyster disease (Sugumar et al., 1998; Waechter et al., 2002; Garnier et al., 2007; Saulnier et al., 2010; Lemire et al., 2015; Petton et al., 2015; Green et al., 2018; King et al., 2018). Specifically, there is previous evidence that prior to oyster disease onset, the native *Vibrio* community is replaced by pathogenic *Vibrio* species (Lemire et al., 2015). Further, in corals, small shifts in the *Vibrio* community are sufficient to shift the microbiome metabolism (Thurber et al., 2009). Our data provides a new perspective on this interaction, whereby the total load of *Vibrio* differs between disease susceptible and resistant oyster families. This is supported by a recent study, which demonstrated that the *Vibrio* load following OsHV-1 µvar infection was significantly higher in disease-susceptible oysters (de Lorgeril et al., 2018). An increased *Vibrio* community size may provide further potential for pathogenic species to replace benign colonizers. On the other hand, a higher background load of *Vibrio* may become important under periods of stress, such...
TABLE 2 | Unique core bacterial members from individual oyster families collated into their respective resistance groups (RG).

Resistance group	Combined unique core members from individual family lines
RG1	Acinetobacter OTU_2667
	Ambiguous taxa Cellulophaga OTU_3496
	Brevundimonas OTU_6676
	Ambiguous taxa Marinomonas OTU_1295
	Ambiguous tax Ilumatobacter OTU_4817
	Rhodobacteraceae OTU_6650
	Ambiguous taxa Marinomonas OTU_1295
	Roseobacter OTU_6715
	Rhodobacteraceae OTU_7212
RG2	Uncultured Salinmonas OTU_6618
	Planctomycetaceae OTU_4123
	Ambiguous taxa
	Gammaproteobacteria Incertae Sedis OTU_465
	Uncultured bacterium
	Anaerolineaceae OTU_4681
	Uncultured bacterium
	Gammaproteobacteria
	OTU_5902
	Croceatella OTU_2175
	Uncultured bacterium
	Halanaeriales
	OD1230B5.23 OTU_4816
	Oceanospirillaceae OTU_1577
	Pseudalteromonadaceae
	OTU_3257
	Uncultured bacterium
	Flavobacteriaceae OTU_4587
	Uncultured bacterium
	Acidobacteria Subgroup 21
	OTU_5711
	Rhodobacteraceae OTU_6481
	Ambiguous taxa Sva0996
	marine group OTU_4477
	Ambiguous taxa Ilumatobacter OTU_4840
	Ambiguous taxa Sva0996
	marine group OTU_4982
	Uncultured bacterium
	Ardenticanetia OTU_5150
	Rhodobacteraceae OTU_6148
	Rhodobacteraceae OTU_6485
	Sphingomonadales OTU_6620
	Marivita OTU_6626
	Beijerinckia OTU_6658
	Paucicrenarchaeota marine benthic group OTU_699
	Andersseniella OTU_7182
	Ambiguous taxa
	Sandaracinaceae OTU_1154
	Ambiguous taxa Thiogranum OTU_1467
	Ambiguous taxa Holophagaceae
	Subgroup 23 OTU_251
	Candidatus Thiobios OTU_8008
	JTB255 marine benthic group OTU_1566
	OM190 OTU_2018
	Uncultured bacterium
	Holophagaceae Subgroup 23
	OTU_240
	Uncultured bacterium
	Belgica2005-10-ZG-3 OTU_25
	Ambiguous taxa Roseibacillus OTU_2529
	OM60 (NOR6) clade OTU_3504
	Uncultured bacterium
	Desulfobulbus OTU_404
	Ambiguous taxa Sva0996
	marine group OTU_4976
	Ambiguous taxa Acidobacteria
	Subgroup 17 OTU_785
RG3	Rhizobiales OTU_6848
	Uncultured bacterium
	Rickettsiaceae OTU_5903

(Continued)

TABLE 2 | Continued

Resistance group	Combined unique core members from individual family lines
	Vibronaceae OTU_655
	Ambiguous taxa
	Sphingobacterium OTU_1241
	Ambiguous taxa Marine group OTU_2698
	Pseudoomonas OTU_3032
	Gammaproteobacteria
	OTU_3505
	Roseovarius OTU_7180
	Uncultured bacterium
	Maribacter OTU_1486

Each family was found to have a core microbial community, the displayed core OTUs are those not shared with any other family line. RG1 is the most disease RG, RG2 is an intermediate RG, and RG3 is the most disease susceptible group.

as with OsHV-1 μvar infection, resulting in duel infection, as has recently been described (de Lorgeril et al., 2018). This is also indirectly supported by a previous study which observed reduced mortality in OsHV-1 infected oysters that were treated with antibiotics (Petton et al., 2015).

Increases in the abundance of OTUs assigned to the Photobacterium genus, as were observed here, often co-occur with an increase in the Vibrio community in oyster microbiomes (Wegner et al., 2013; Lokmer and Wegner, 2015). While members assigned to this genus have been identified as pathogens of other aquatic organisms (Pedersen et al., 2009; Liu et al., 2016), to our knowledge, no species of Photobacterium has been identified as an oyster pathogen. Members of the Streptococcus and Aliivibrio genera are known pathogens of fish and crabs (Pappalardo and Boemare, 1982; Egidius et al., 1986; Creeper and Buller, 2006; Urbanczyk et al., 2007), while a member of the Roseovarius genus is the causative agent of roseovarius oyster disease (formally juvenile oyster disease) in Crassostrea virginica (Boetcher et al., 2005; Maloy et al., 2007), yet to our knowledge these genera have not been implicated in disease of C. gigas previously, despite being over-represented in the most disease susceptible oyster families.

On the other hand, a strong positive association was observed between levels of disease resistance and the occurrence of OTUs assigned to the Capriavidus (OTU 2182), Psychriylobacter (OTU 5046) and Tenacibaculum (OTU 2153). Currently, little is known about the role of these genera in oysters. Capriavidus species are commonly isolated from plants and soil (Cuadrado et al., 2010; Estrada-De Los Santos et al., 2014), but members of the Psychriylobacter and Tenacibaculum have previously been observed in C. gigas microbiomes (Lee et al., 2009; Fernandez-Piquet et al., 2012; Wegner et al., 2013). Psychriylobacter was observed in C. gigas microbiomes from Tasmania, Australia (Fernandez-Piquet et al., 2012), which is perhaps notable given that the oysters used in this study were initially sourced from Tasmania. In addition, we have previously identified an over-representation of a Tenacibaculum OTU in oyster microbiomes that were unaffected by a summer mortality outbreak (King et al., 2018).
as already stated, a significant elevation of OTUs belonging to the Vibrio and Photobacterium genera abundance in disease susceptible oysters has also been previously observed (de Lorgeril et al., 2018), supporting our findings. However, while we identified members of the Psychrolobacter and Tenacibaculum genera to be associated with disease resistance, the same study (de Lorgeril et al., 2018) observed an increase in these same genera in an experimental infection experiment using disease susceptible oysters. Differences in bacterial taxabundance and taxonomic assignment could be attributed to contrasting sequencing techniques and data analysis. For example, we used the V1–V3 hypervariable region, and clustered OTUs at the 97% identity level, compared to V3–V4 and having OTUs clustered at a three-nucleotide difference threshold (de Lorgeril et al., 2018). Furthermore, this study deployed oysters to the field, while the aforementioned study carried out their experiments in tanks. Tank based studies are known to significantly alter the oyster microbiome composition compared to oysters sourced from the environment (Lokmer et al., 2016a).

The oyster microbiome is dynamic in nature, changing in response to stressors such as disease, antibiotics, translocation, and heat (Wegner et al., 2013; Lokmer and Wegner, 2015; Lokmer et al., 2016b; de Lorgeril et al., 2018; Green et al., 2018; King et al., 2018). The microbiome assemblage can also be influenced by the oyster life stage, the genetics of the host oyster, and spatial location (Trabal et al., 2012; Wegner et al., 2013; Lokmer et al., 2016a; King et al., 2018). Because we only have one sampling point, our study would not capture the dynamic nature of the oyster microbiome, and thus the oyster microbiome could change before the onset of disease. To fully capture the importance of the taxa identified in this study, a temporal study in the field encompassing a disease outbreak would be needed. However, as disease outbreaks are often very sudden, capturing a disease outbreak in the environment can be difficult.

In addition to identifying OTUs that are over- or under-represented within the microbiomes of oysters with different levels of disease-resistance, another way to identify putatively important bacteria within the microbiome of a host organism involves the identification of “core” microbiome members (Ainsworth et al., 2015). Identifying which bacterial members are consistent and stable across microbial communities is important in unraveling the functional contribution of these core bacteria (Ainsworth et al., 2015). Notably, we could not define a universal core microbiome across all of the studied oyster families at the OTU level, suggesting significant heterogeneity in oyster microbiome structure, or possible differences in microgeographic variation. However, we identified core microbiome members within each family microbiome, whereby a number of ‘unique’ core members often occurred exclusively in the core microbiome of a family. This is in accordance with previous observations that the composition of an oyster’s microbiome is partially governed by oyster genetics, particularly for shaping the rare specialist bacterial community (<1% abundance) (Wegner et al., 2013), although we have no information pertaining to the genetic differentiation between the studied oyster families. However, when examining the core microbiome across all of the families comprising the most highly disease-resistant group (RG1), we identified two core members, which included OTUs classified as members of the Winogradskyella genus (OTU 1511) and Bradyrhizobiaceae family (OTU 6417). OTUs assigned to the Bradyrhizobiaceae family have previously been observed in oysters (Sakowski, 2015), however, due to the coarse taxonomic assignment of this OTU, it is unclear what potential role this member of the Bradyrhizobiaceae family might have. Winogradskyella species are commonly found in numerous marine organisms, including oysters (Valdenegro-Vega et al., 2013; Park et al., 2015; Lee et al., 2017; Schellenberg et al., 2017; Franco et al., 2018), and are known for their role in amoebic-induced fish gill diseases (Embar-Gopinath et al., 2005, 2006). However, it is uncertain what function(s) Winogradskyella species play in oysters. We currently know little about the potential role, if any, of these core microbiome members in resistance, but these observations provide candidate target organisms for focused examinations of potential beneficial microbes within OsHV-1 µvar disease-resistance.

CONCLUSION

We have shown that the microbiome of C. gigas displays significantly different microbial assemblage structure according to oyster disease-resistance. This study provides insights into the C. gigas microbiome within the context of oysters bred for disease-resistance and highlights the potential involvement of the oyster microbiome in disease-resistance. Members of the Vibrio, Photobacterium, Aliivibrio, Streptococcus, and Roseovarius genera were over-represented features of the microbiome of oysters with high OsHV-1 µvar disease susceptibility, which is consistent with previous studies implicating Vibrio in oyster disease dynarnics. Furthermore, a significant elevation of Vibrio 16S rRNA gene copies in disease-susceptible oyster families could indicate a lack of immune response against Vibrio pathogens. However, further research is required to elucidate the role of these bacteria in oyster disease dynamics. Examination of ‘core’ bacteria identified species assigned to the Winogradskyella genus and Bradyrhizobiaceae family as core members of microbiomes assigned to RG1 and may also play a role in OsHV-1 µvar disease resistance. These results deliver evidence that the C. gigas microbiome differs between oysters with different levels of susceptibility to OsHV-1 µvar disease and identifies putative microbial determinants in disease onset and resistance.

DATA AVAILABILITY

The datasets generated for this study can be found in NCBI SRA, PRJNA497763.

AUTHOR CONTRIBUTIONS

WK and KN carried out the fieldwork. WK and NW processed the samples. WK and NS analyzed the data. CJ, MD, WOC,
JS, and ML conceived and designed the study. TK produced the core microbiome analysis. WK, JS, and ML wrote the manuscript.

FUNDING
This research was supported by an Australian Research Council Linkage Project (LP160101795) to JS and ML; a Cooperative Research Centre Project (CRC-P 2016-805; Future Oysters), led by the Australian Seafood Industry Pty Ltd. in partnership with a number of Australian Research Organisations; and Ausgem, a research partnership initiated between the University of Technology Sydney and the New South Wales Department of Primary Industries.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00473/full#supplementary MATERIAL

REFERENCES
Ainsworth, T. D., Krause, L., Bridge, T., Torda, G., Raina, J.-B., Zakrzewski, M., et al. (2015). The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9, 2261–2275. doi: 10.1038/ismej.2015.39

AS! (2015). Australian Seafood Industries Oyster Breeding Programs. Available at: http://www.asiostysters.com.au/breeding-program.html

Azéma, P., Travers, M. A., De Lorgier, J., Tourbiez, D., and Dégremont, L. (2015). Size and genotype affect resistance to mortality caused by OsHV-1 in Crassostrea gigas. Aquaculture 398–399, 37–43. doi: 10.1016/j.aquaculture.2014.01.029

Dégremont, L., Nourry, M., and Maurouard, E. (2015b). Mass selection for survival and resistance to OsHV-1 infection in Crassostrea gigas spat in field conditions: response to selection after four generations. Aquaculture 446, 111–121. doi: 10.1016/j.aquaculture.2015.04.029

Dégremont, L., Leduc, C., Maurouard, E., Nourry, M., and Benabdellouma, A. (2016a). Effect of ploidy on the mortality of Crassostrea gigas spat caused by OsHV-1 in France using unselected and selected OsHV-1 resistant oysters. Aquac. Res. 47, 777–786. doi: 10.1111/are.12536

Dégremont, L., Morga, B., Trancart, S., and Pépin, J. F. (2016b). Resistance to OsHV-1 infection in Crassostrea gigas larvae. Front. Mar. Sci. 3:15. doi: 10.3389/fmars.2016.00015

Dégremont, L., Tanguy, G., Delphine, T., and Jean-François, P. (2013). Is horizontal transmission of the Ostreid herpesvirus OsHV-1 in Crassostrea gigas affected by unselected or selected survival status in adults to juveniles? Aquaculture 408–409, 51–57. doi: 10.1016/j.aquaculture.2013.05.025

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Egidius, E., Wiik, R., Andersen, K., Hoff, K. A., and Hjeltnes, B. (1986). Vibrio salmonicida sp. nov., a new fish pathogen. Int. J. Syst. Evol. Microbiol. 36, 518–520. doi: 10.1099/00207713-36-4-518

Embar-Gopinath, S., Butler, R., and Nowak, B. (2005). Influence of salmonid gill bacteria on development and severity of amoebic gill disease. Dis. Aquat. Org. 67, 55–60. doi: 10.3354/dao067055

Embar-Gopinath, S., Crosbie, P., and Nowak, B. F. (2006). Concentration effects of Winogradskyella sp. on the incidence and severity of amoebic gill disease. Dis. Aquat. Org. 73, 43–47. doi: 10.3354/dao073043

Estrada-De Los Santos, P., Solano-Rodríguez, R., Matsumura-Paz, L. T., Vásquez-Murrieta, M. S., and Martínez-Aguilar, L. (2014). Cupriavidus plantarum sp. nov., a plant-associated species. Arch. Microbiol. 196, 811–817. doi: 10.1007/s00203-014-1018-7

Fernandez-Piquer, J., Bowman, J. P., Ross, T., and Tapmlin, M. L. (2012). Molecular analysis of the bacterial communities in the live Pacific oyster (Crassostrea gigas) and the influence of postharvest temperature on its structure. J. Appl. Microbiol. 112, 1134–1143. doi: 10.1111/j.1365-2672.2012.05287.x

Franco, A., Busse, H. J., Schubert, P., Wilke, T., Kampfer, P., and Glaeser, S. P. (2018). Winogradskyella pocillopora sp. nov. isolated from healthy tissue of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 68, 1689–1696. doi: 10.1099/ijsem.0.02731

Friedman, C. S., Estes, R. M., Stokes, N. A., Burge, C. A., Hargove, J. S., Barber, B. J., et al. (2005). Herpes virus in juvenile Pacific oysters Crassostrea gigas from Tomales Bay, California, coincides with summer mortality episodes. Dis. Aquat. Org. 63, 33–41. doi: 10.3354/dao063030

Garnier, M., Labreuche, Y., Garcia, C., Robert, M., and Nicolas, J. L. (2007). Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196. doi: 10.1007/s00248-006-9061-9

Go, J., Deutscher, A., Spiers, Z., Dahle, K., Kirkland, P., and Jenkins, C. (2017). An investigation into mass mortalities of unknown aetiology in Pacific oysters,
Crassostrea gigas, in Port Stephens, New South Wales, Australia. *Dis. Aquat. Organ.* 125, 227–242. doi: 10.3354/dao03146

Green, T. J., Siboni, N., King, W. L., Labbate, M., Seymour, J. R., and Raftos, D. (2018). Simulated marine heat wave alters abundance and structure of *Vibrio* populations associated with the Pacific Oyster resulting in a mass mortality event. *Microb. Ecol.* 75:1367. doi: 10.1007/s00248-018-1242-9 [Epub ahead of print].

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. *Palaeontol. Electron.* 4, 1–9.

Jenkins, C., Hick, P., Gabor, M., Spiers, Z., Fell, S. A., Gu, X., et al. (2013). Identification and characterisation of an oyster herpesvirus-1 microvariant (OHiV-1 micro-var) in *Crassostrea gigas* (Pacific oysters) in Australia. *Dis. Aquat. Organ.* 105, 109–126. doi: 10.3354/dao02623

Kahlke, T. (2017). *Panbion*. Available at: https://github.com/timkahlke/panbion

Keeling, S. E., Brosnahan, C. L., Williams, R., Gias, E., Hannah, M., Bueno, R., Lokmer, A., Kuenzel, S., Baines, J. F., and Wegner, K. M. (2016b). The role of tissue-homeostasis in health and disease. *Front. Microbiol.* 65, 2890–2895. doi: 10.3389/fmicb.2009.00350

Park, S., Park, J. M., Won, S. M., and Yoon, J. H. (2015). *Winogradskyella crassostrear*ae sp. nov., isolated from an oyster (*Crassostrea gigas*). *Int. J. Syst. Evol. Microbiol.* 65, 2890–2895. doi: 10.1099/ijs.0.000350

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. *Palaeontol. Electron.* 4, 1–9.

Jenkins, C., Hick, P., Gabor, M., Spiers, Z., Fell, S. A., Gu, X., et al. (2013). Identification and characterisation of an oyster herpesvirus-1 microvariant (OHiV-1 micro-var) in *Crassostrea gigas* (Pacific oysters) in Australia. *Dis. Aquat. Organ.* 105, 109–126. doi: 10.3354/dao02623

Kahlke, T. (2017). *Panbion*. Available at: https://github.com/timkahlke/panbion

Keeling, S. E., Brosnahan, C. L., Williams, R., Gias, E., Hannah, M., Bueno, R., Lokmer, A., Kuenzel, S., Baines, J. F., and Wegner, K. M. (2016b). The role of tissue-homeostasis in health and disease. *Front. Microbiol.* 65, 2890–2895. doi: 10.3389/fmicb.2009.00350

Park, S., Park, J. M., Won, S. M., and Yoon, J. H. (2015). *Winogradskyella crassostrear*ae sp. nov., isolated from an oyster (*Crassostrea gigas*). *Int. J. Syst. Evol. Microbiol.* 65, 2890–2895. doi: 10.1099/ijs.0.000350

Paul-Pont, I., Dhond, N. K., and Whittington, R. J. (2013). Influence of husbandry practices on OHSV-1 associated mortality of Pacific oysters *Crassostrea gigas*. *Aquaculture* 412, 413–221. doi: 10.1016/j.aquaculture.2013.07.038

Pederesen, K., Skall, H. F., Lassen-Nielsen, A. M., Bjerrum, L., and Olesen, N. J. (2009). *Photobacterium damselae* subsp. *damselae*, an emerging pathogen in Danish rainbow trout, *Oncorhynchus mykiss* (Walbaum), mariculture. *J. Fish Dis.* 32, 465–472. doi: 10.10111/1565-2761.2009.0141.x

Petton, B., Bruto, M., James, A., Labreuche, Y., Alunno-Bruscia, M., and Le Roux, F. (2015). *Crassostrea gigas* mortality in France: the usual suspect, a herpes virus, may not be the killer in this poly-microbial opportunistic disease. *Front. Microbiol.* 6:686. doi: 10.3389/fmicb.2015.00686

R Core Team (2017). *R: A Language and Environment for Statistical Computing*. Vienna: R Foundation for Statistical Computing.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., Mcvean, G., Turnbaugh, P. J., et al. (2011). Detecting novel associations in large data sets. *Science* 334, 1518–1524. doi: 10.1126/science.1205438

Rognès, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584

Sakowski, E. G. (2015). *The Microbiome of the Eastern Oyster, Crassostrea virginica*, in *Health and Disease*. Ph.D. thesis, University of Delaware, Newark, DE.

Saulnier, D., De Decker, S., Hoffner, P., Cobret, L., Robert, M., and Garcia, C. (2010). A large-scale epidemiological study to identify bacteria pathogenic to Pacific Oyster *Crassostrea gigas* and correlation between virulence and metalloprotease-like activity. *Microbiol. Ecol.* 59, 787–798. doi: 10.1007/s00248-009-9620-y

Saucier, C., Pepin, J. F., Lapugue, S., Boudry, P., and Renault, T. (2009). Oyster herpesvirus 1 infection in families of the Pacific oyster, *Crassostrea gigas*, during a summer mortality outbreak: Differences in viral DNA detection and quantification using real-time PCR. *Virus Res.* 142, 181–187. doi: 10.1016/j.virusres.2009.02.013

Schellenberg, J., Busse, H. J., Hardt, M., Schubert, P., Wilke, T., Kämpfer, P., et al. (2017). *Winogradskyella haliconae* sp. Nov., isolated from a marine sponge of the genus *Halicona*. *Int. J. Syst. Evol. Microbiol.* 67, 4902–4910. doi: 10.1099/ijsem.0.02192

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541. doi: 10.1128/AEM.01541-09

Segarra, A., Mauduit, F., Faury, N., Trancart, S., Dégremont, L., Tourbize, D., et al. (2014). Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to oyster herpesvirus 1. *BMC Genomics* 15:380. doi: 10.1186/1471-2164-15-580

Segarra, A., Pepin, J. F., Azul, I., Morga, B., Faury, N., and Renault, T. (2010). Detection and description of a particular Osterid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, *Crassostrea gigas*, in France in 2008. *Virus Res.* 153, 92–99. doi: 10.1016/j.virusres.2010.07.011

Shin, S. C., Kim, S. H., You, H., Kim, B., Kim, A. C., Lee, K. A., et al. (2011). *Drosophila* microbiome modulates host developmental and metabolic homeostasis via insulin signaling. *Science* 334, 670–674. doi: 10.1126/science.1212782

Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut microbiome in health and in disease. *Curr. Opin. Gastroenterol.* 31, 69–75. doi: 10.1097/MOG.0000000000000139

Siboni, N., Balaraju, V., Carney, R., Labbate, M., and Seymour, J. R. (2016). Spatialtemporal dynamics of *Vibrio* spp. within the Sydney Harbour estuary. *Front. Microbiol.* 7:460. doi: 10.3389/fmicb.2016.00460

Sugumar, G., Nakai, T., Hirata, Y., Matsubara, D., and Muroga, K. (1998). *Vibrio splendidus* biovar II as the causative agent of bacillary necrosis of Japanese oyster
Crassostrea gigas larvae. *Dis. Aquat. Organ.* 33, 111–118. doi: 10.3354/dao033111

Thompson, J. R., Randa, M. A., Marcelino, L. A., Tomita-Mitchell, A., Lim, E., and Polz, M. F. (2004). Diversity and dynamics of a North Atlantic coastal *Vibrio* community. *Appl. Environ. Microbiol.* 70, 4103–4110. doi: 10.1128/AEM.70.7.4103–4110.2004

Thurber, R. V., Willner-Hall, D., Rodriguez-Mueller, B., Desnues, C., Edwards, R. A., Angly, F., et al. (2009). Metagenomic analysis of stressed coral holobionts. *Environ. Microbiol.* 11, 2148–2163. doi: 10.1111/j.1462-2920.2009.01935.x

Trabal, N., Mazon-Suastegui, J. M., Vazquez-Juarez, R., Asencio-Valle, F., Morales-Bojorquez, E., and Romero, J. (2012). Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites. *Microb. Ecol.* 64, 555–569. doi: 10.1007/s00248-012-0039-5

Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J., and Dunlap, P. V. (2007). Reclassification of *Vibrio fischeri*, *Vibrio logei*, *Vibrio salmonicida* and *Vibrio wodanis* as *Aliivibrio fischeri* gen. nov., *Aliivibrio logei* comb. nov., *Aliivibrio salmonicida* comb. nov. and *Aliivibrio wodanis* comb. nov. *Int. J. Syst. Evol. Microbiol.* 57, 2823–2829. doi: 10.1099/ijs.0.65081-0

Valdenegro-Vega, V., Naeem, S., Carson, J., Bowman, J. P., Tejedor Del Real, J. L., and Nowak, B. (2013). Culturable microbiota of ranched southern bluefin tuna (*Thunnus maccoyii* Castelnau). *J. Appl. Microbiol.* 115, 923–932. doi: 10.1111/jam.12286

Vezzulli, L., Brettar, I., Pezzati, E., Reid, P. C., Colwell, R. R., Höfte, M. G., et al. (2011). Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. *ISME J.* 6, 21–30. doi: 10.1038/ismej.2010.189

Waechter, M., Le Roux, F., Nicolas, J. L., Marissal, E., and Berthe, F. (2002). Characterisation of *Crassostrea gigas* spat pathogenic bacteria. *C. R. Biol.* 325, 231–238. doi: 10.1016/S1631-0691(02)01428-2

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., et al. (2016). gplots: Various R Programming Tools for Plotting Data. *R Package Version 3.0.1*. Available at: https://mran.microsoft.com/snapshot/2017-04-11/web/packages/gplots/index.html

Wegner, K. M., Volkenborn, N., Peter, H., and Eiler, A. (2013). Disturbance induced decoupling between host genetics and composition of the associated microbiome. *BMC Microbiol.* 13:252. doi: 10.1186/1471-2180-13-252

Whittington, R. J., Dhand, N. K., Evans, O., and Paul-Pont, I. (2015). Further observations on the influence of husbandry practices on OsHV-1 µVar mortality in Pacific oysters *Crassostrea gigas*: age, cultivation structures and growing height. *Aquaculture* 438, 82–97. doi: 10.1016/j.aquaculture.2014.12.040

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 King, Siboni, Williams, Kahlke, Nguyen, Jenkins, Dove, O’Connor, Seymour and Labbate. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.