Making a Difference – Global Health Technology Success Stories: Overview of over 400 submissions from 125 Countries

By T Judd and Y David

1 IFMBE CED Chairman, Marietta, GA 30068, USA
2 Biomedical Engineering Consultants, LLC, Houston, TX 77004, USA

ABSTRACT

Health Technology (HT) is vital to global health care. The dependence of health, rehabilitation, and wellness programs on technology for the delivery of services has never been greater. It is essential therefore, that HT be optimally managed. Clinical and biomedical engineers have been recognized by World Health Organization (WHO) as essential to providing this critical management.

At the 1st International Clinical Engineering and HT Management Congress and Summit held in China in 2015, a resolution was adopted by the global Clinical Engineering (CE) country participants to identify and promote CE unique qualifications, and to record the CE contributions to the improvement of world health status. Review of published literature and submissions of case studies resulted in the first group of CE success stories. The review captured 150 stories from 90 countries – spanning over a period from the prior 10 years and the results were presented to health leaders at the WHO World Health Assembly in 2016. Last year, in 2017, additional 250 case studies from a total of 125 countries were added from the 2016-2017 period. This paper describes the evidence identified during the review, their sources and the 6 major categories they represent.

Keywords – Healthcare, Clinical Engineering, Technology Management, Safety, Efficacy, Outcomes, Innovation, Success Stories

INTRODUCTION

Health Technology (HT) is vital to health and the dependence of health, rehabilitation and wellness programs on HT for the delivery of their services has never been greater. Therefore, it essential that competent and trained professionals manage in an optimal and safe way for better response to the burden of diseases and resources. Trained clinical engineers are academically prepared and appropriately responsible for HT life-cycle management, fulfilling a critical role as members of the healthcare team focusing on availability and reliability of safe and effective technologies and outcomes.

Over the past 50 years growing concerns among Clinical Engineering (CE) professionals about lack of knowledge of government agencies and key stakeholders, coupled with the mute recognition for their vast contributions to the safe and effective creation and deployment of HT, led to programs that address these concerns. Knowledge about
and recognition for the professionals of CE community who provide critical services will help recruit students and future practitioners into this needed field. Is CE practice important for health, rehabilitation, and wellness programs and are their contributions recognized? This paper shares the methodology and the findings identified following a three-year examination of published evidence.

Following the international congress on CE and HT management in Hangzhou, China in 2015, a Global CE Summit took place to determine whether regional issues are shared across the world and present common international challenges requiring global strategy for optimal addressing of the critical issues. After order ranking of the issues that identified at the end of the Global CE Summit, the attending members voted that there were 2 major concerns: (1) a lack of understanding of and recognition for the CE contribution to improvements in healthcare delivery. (2) a lack of sufficient education and training for both those who would like to enter the field and for ongoing professional development. An action plan was devised to address these and other issues raised at the summit. At the second global CE summit in Sao Paulo, Brazil, in 2017, these challenges were reviewed and confirmed with attendees adopting resolutions seeking to continue to address these concerns. The action plans from the summit focused first on data collection identifying if CE contributions qualify as improvement to world health and wellness and can they be substantiated through evidence-based records. Addressing the second issue, an international survey of Body of Practice and Body of Knowledge was initiated and has been now completed.

METHODS

Rationale

A task force consisting of senior certified clinical engineers from IFMBE/CED issued a global call for submissions of evidence-supported case studies of CE contributions to the improvement of delivery of healthcare services or of patient outcomes. In addition, literature survey was performed in 2016, and of both sources, the literature and the submitted studies, an aggregate volume of 150 responses from 90 countries was examined and qualified as evidence-based contributions, (see http://global.icehtmc.com/publication/healthteachnology).

Results were rated and tabulated into categories (Innovation, Improved Access, Health Systems, HT Management, Safety & Quality, and e-Technology) and incorporated into document http://global.icehtmc.com/publication/globalsuccess that was submitted to WHO's World Health Assembly in May 2016.

We expanded our review in 2017, as submissions and publications continued to be collected, to include conference-accepted data that was presented and published at IFMBE sponsored events. Our examination methodology identified 250 additional stories from 35 more countries – now raising the total volume over 2 years to 400 publications from 125 countries. These CE success stories point to improved outcomes with benefit from HT, and present overall demonstration of complex integrated systems that must be effectively managed for their optimal and safe clinical and business impact to be realized. Clinical outcomes included change in human life quality, care management decisions support, improving 365×24×7 readiness, and improving operational efficiency.

Definitions

For the present study, we classified the collected database into 6 categories with definitions:

- **Innovation**
 Through provision of new HT solutions, adaptation of existing, or a combination to address several issues.

- **Improved Access**
 Ease in reaching HT-related health services or facilities in terms of location, time, and ease of approach.

- **Health Systems**
 Positive impact from more efficient and effective deployment of HT at national or policy level.

- **Safety & Quality**
 HT's positive impact on health services safety or quality outcomes, or through HT human resource development.

- **Healthcare Technology Management (HTM)**
 Establishing or improving HTM methodology resulting in improved population health or wellness.

- **e-Technology**
 Improvements achieved due to deployment of Internet-based HT tools.
Measures

During the first Global Clinical Engineering Summit in 2015 the question was raised whether evidence of successful HT innovation, management, accessibility, e-technology applications, safety, and quality outcomes can be identified. To accomplish this, a successful project (or submission) was defined as satisfying 2 objective measures developed by the sponsors. These measures included timeliness, cost saving, deployment or adoption by care providers, impact on services, and overall projection for success. Each success metric was evaluated using 3-point scale against a statement representing the success construct (1= strongly disagree; 3=strongly agree).

- Timeliness refers to whether the project/subscription was implemented in timely manner. This was measure by the statement “The submission will impact outcomes on present time.”
- The cost measure was evaluated by whether the submission’s overall costs were within budget constraints and reasonable for the conditions in the region. This was assessed by the statement, “The submission cost objectives can be met in the region.”
- The next 2 metrics were combined into the statements “The submission will be deployed by its intended users” and “The submission will have a positive impact on those who will adopt it.”
- Finally, overall submission success expectations were assessed with the statement “All things considered, the submission will be a success.”

Innovation is the beginning of the technology life cycle where new ideas offer solutions to current problems faced by healthcare providers or their patients. Clinical engineers are well positioned to understand the current problems and guide different or new approaches to resolve them. Innovation, in our category, means to demonstrate the team approach to solving problems all the way from the concept and building of a prototype, to continuing with clinical trials, and a demonstration of compliance with standards, regulations, and intended outcomes. Improved Access to services follows the innovation stage the same as the Safety and Quality category, e-Technology category, and HTM. Products and applications that are considered in successful deployment were rated high and included in the total count for the evidence-based category.

RESULTS

Summaries of the 6 categories of submissions database are described below. They come from the CED’s 2016 Health Technologies Resources document provided to the World Health Assembly, WHO’s May 2017, 3rd Global Forum on Medical Devices; (3), the CED’s September 2017 Sao Paulo II ICEHTMC (S), and others from 2016-2017 IFMBE published sources (O):

A new resource summary document of the findings – with links below – demonstrates that a benefit was registered in the 6 categories from every region around the world. Overall this review identified evidence from 400 case studies received from 125 countries where management of medical devices (main component of health technologies) made a positive difference over the past 12 years.

The 2007 WHO WHA Resolution 60.29 urges Member States to create national HT management plans in collaboration with biomedical engineers. WHO further clarified the definition of these personnel in 2017-2018 as part of a global survey (http://www.who.int/medical_devices/support/en/) in coordination with IFMBE CED.

“Trained and qualified biomedical engineering professionals are required to design, evaluate, regulate, maintain and manage medical devices, and train on their safe use in health systems around the world.” These occupations have various names in different countries like clinical engineers, medical engineers, ... and related professionals and technicians. [WHO and IFMBE CED surveys have identified over 800,000 of these global professionals in 2018.]

The case studies – grouped in 6 categories – aim to formulate national strategies and plans to improve use of health technologies and better manage costs. In several countries, this has best been achieved by developing a HT unit at the Ministry of Health level with CE leadership. The studies provide clear evidence that HT is beneficial; at times, presenting complex systems that must be effectively guided and managed for optimal impact to be realized.
The case studies are actually Health Technology Success Stories demonstrating, in a limited resource environment, that it is desirable to include professional HT expertise, such as clinical engineers, in national decision-making in order to maximize health systems’ services. Case studies from the links on the following pages demonstrate these benefits:

- **Access**: The Ministry of Health HT Unit-led project in Albania that doubled access to critical diagnostic services, such as computed tomography scanners, magnetic resonance and angiography imaging, while reducing equipment downtime to zero, and significantly reducing cost.

- **Health Systems**: Improved coordination between multiple stakeholders in the National Laboratory and its satellites in Colombia, led by the Ministry of Health and clinical engineers who partner with experts from academia and industry.

- **Quality & Safety**: A clinical engineer-led 122-hospital program in the Shanghai region that cooperates with officials, industry, and academic entities, resulting in improved device user satisfaction, tracking of emerging technologies, and closer partnerships with industry.

CONCLUSIONS

HT is vital to health and the dependence of health, rehabilitation, and wellness programs that rely on HT for the delivery of their services has never been greater. Beyond the ongoing healthcare burdens of population growth, political and economic instability, disease management, disasters, the refugee crisis, accidents, and terror attacks, world healthcare technological systems are facing enormous challenges to be innovative and optimally managed. The transition into health programs for the 21st century requires the employment of trained competent CE professionals. Disease prevention, treatment, and rehabilitation is more efficient and effective when health services are provided with appropriate tools. Along with World Health Organization (WHO), the International Federation for Medical and Biological Engineering (IFMBE) Clinical Engineering Division (CED) recognizes and emphasizes how important the use of appropriate, integrated, and safe health technologies (HT) is to successful outcomes for every healthcare delivery systems. In the May 2016 HT resource document that was prepared for the World Health Assembly (WHA), a recommendation was made: Health technologies must be managed to ensure full clinical benefit and expected financial return on investment.

It is critical, therefore, that with limited resources, HT must be professionally managed and its deployment over its life cycle be appropriately guided. This paper describes the extensive study of published data on the vast contributions by CE that positively impact patient outcomes. This study shows that every region of the world including low-resource regions face a challenge of improving health services while facing varied levels of infrastructure and human resources capacity challenges. CEs play vital roles in all stages of healthcare technology life-cycle management. From creation to planning, and from commissioning to utilization and integration; technology-based systems must and can be managed for optimal performance. In each of the technology life-cycle stages the requirement for trained and competent CE input makes critical difference as shown in the analyzed evidence reviewed here. It is our hope that government agencies and other interested parties will have better understanding of CEs role and thus will support their inclusion in the healthcare team of professionals.

RECOMMENDATION

To encourage the availability, recognition, and increased participation of clinical engineers as part of the health workforce in your national healthcare delivery programs.

REFERENCES

1. IFMBE Clinical Engineering Division (CED). [Internet] Health Technologies Resource. Available at: http://cedglobal.org/global-ce-success-stories/
2. World Health Organization. [Internet] Third Global Forum on Medical Devices, May 2017. Available at: http://www.who.int/medical_devices/global_forum/3rd_gfmd/en/

3. IFMBE CED. [Internet] 2nd International Clinical Engineering and Health Technology Management Congress (II ICEHTMC) Proceedings, September 2017. Available at: http://cedglobal.org/icehtmc2017-proceedings/

4. IFMBE. [Internet]. Other related CE papers. Available at: CEDGlobal.org.

5. World Health Organization. [Internet]. Medical devices: Biomedical engineering resources. Available at: http://www.who.int/medical_devices/support/en/

ADDITIONAL LINKS AND RESOURCES

- WHO HQ: http://www.who.int/medical_devices/en/
- WHO EMRO: http://www.emro.who.int
- WHO AMRO: http://www.who.int/about/regions/amro/en/
- WHO Digital Health: http://www.who.int/medical_devices/global_forum/TheDigitalHealthAtlas.pdf
- WHO Assistive Devices-GATE: https://mednet-communities.net/gate/
- WHO Emergency: http://www.who.int/medical_devices/global_forum/EssentialResourcesEmergencyCare.pdf
- WHO NCD Kit Refugees: http://www.who.int/medical_devices/global_forum/NCDKitRefugees.pdf
- IFMBE, CED, HTA: http://ifmbe.org/, http://cedglobal.org/, http://htad.ifmbe.org/
- PATH: https://www.path.org/ (Belgium, China, DRC, Ethiopia, Ghana, India, Kenya, Malawi, Mozambique, Myanmar, Peru, Senegal, RSA, Switzerland, Tanzania, Uganda, Ukraine, Vietnam, Zambia)
- AWHP: www.ahwp.info; Asian Harmonization Working Party - 30 countries, 3/17 Regulatory Authorities
- HTAi: https://www.htai.org/
RESOURCES REVIEWED

Focus Area	Title, authors, with active links
Afghanistan, Iraq, Libya, Occupied Palestinian Territory, Somalia, Sudan, Syria, and Yemen	Medical Devices for Emergency Kits (NCD Kit), Laura Alejandra Velez, Slim Slama
Australia	Phototherapy to Reduce Exchange Transfusions, Luciano Moccia, Gaston Arnolda, Daniele Trevisanuto
Australia	FREO2 oxygen solutions: the Low-Pressure Oxygen Storage system and FREO2 Siphon, Roger Rassool, Jim Black
Australia	BME development of non-electric portable blood/fluid warmer for roadside trauma, Anne-Louise Smith, Mark McEwen
Bangladesh	Health Technology enhancing rural Primary Care and eHealth, Ahmed Raihan Abir
Brazil	Dynamical Orthostatic Chair Development of a new method of lifting and locomotion for physically disabled people, Walef Robert Ivo Carvalho
Brazil	A multiband reflectance photometric device for reveal gestational age at birth, Rodney Guimaraes, Zilma Reis
Brazil	Prematurity detection by light, Zilma Reis, Rodney Nascimento Guimaraes, Gabriela Luiza Nogueira Vitral, Maria Albertina Santiago Rego, Ingrid Michelle Fonseca
Brazil	Actions travelling ECG for Telemedicine - a partnership of academic and public service, Kleber Teixeira de Souza et al
Brazil	Flow Analyzer for Blood Pump, L.R. Rodrigo, A.M. Marcelo and S. Anderson
Brazil	Principal Component Analysis usage in Biomedical Engineering to aid at diagnosing pathologies, E.F. Esmanhoto
Brazil	Digital Storage and System Management for Video surgery Records in a Network Platform, Benedito Fernandes De Lima et al
Brazil	Early stage strategic effectiveness evaluation of high flow nasal therapy (OPTIFLOW®) in the treatment of Acute Pediatric Respiratory Failure, Graziela de Araujo Costa et al
Brazil	Location of electromedical equipment in closed environment using wi-fi technology, William Knob de Souza
Brazil	Remote Equipment Monitoring System, A. Ricardo Maranho
Brazil	Model fitting and simulation of the respiratory control system under incremental exercise and altitude in healthy subjects, C. A. Sarmiento, A. M. Hernández, L. Y. Serna
Canada	Provincial Respiratory Outreach Program in the Province of British Columbia (BC), Anthony Chan, Esther Khor
Chile	Clinical Simulations using actors as a patients as part of a strategic plan to reduce risks associated to a “big bang” opening of a new hospital in Santiago, Francisco Acevedo
China	A novel automatic method of renal segmentation in GRF estimation, Xu Lei
Colombia	Modeling and simulation of ciprofloxacin pharmacokinetics: Electric circuits approach, J. D. Otálvaro, A. F. Zuluaga, A. M. Hernández
Focus Area	Title, authors, with active links
-------------	---
Colombia	Autoregressive models of electrocardiographic signal contaminated with motion artifacts: Benchmark for biomedical signal processing studies, F. A. Castaño, A. M. Hernández
Colombia	Parametric modeling of kinetic-kinematic polycentric mechanical knee, A. M. Cárdenas, J. Uribe, A. M. Hernández
Colombia	Motion artifacts recognition in electrocardiographic signals through artificial neural networks and support vector machines for personalized health monitoring, A. Castaño, A. Hernández
Colombia	Learning tool for mechanical ventilation during spontaneous breathing test on patients intoxicated with pesticides, M. B. Salazar Sánchez et al
Colombia	Optimization of spectral analysis of electrophysiological recordings of the subthalamic nucleus in Parkinson’s disease: A retrospective study, S. E. Valderrama-Hincapié et al
Colombia	Three dimensional reconstruction and airflow simulation in a realistic model of the human respiratory airways, A. E. Ruiz, J. K. Aristizábal
Colombia	Permanent magnets to enable highly-targeted drug delivery applications: A computational and experimental study, M. Mercado-M et al
Colombia	Brain functional connectivity in Parkinsons disease – EEG resting analysis, J. Carmona, J. Suarez, J. Ochoa
Colombia	Business Opportunities in HT Projects, Mario Castañeda
Croatia	Supporting Diabetic Patients with a Remote Patient Monitoring Systems, S. Zulj et al
Denmark, Norway	Impedance-based monitoring for tissue engineering applications, C. Canali et al
Ethiopia	Producing Oxygen Concentrators for Low Resource Settings, Mekdes Seyoum
Global	Development of an Innovative regulated Affordable Uterine Balloon Tamponade for the Management of Post-partum Hemorrhage, Elizabeth Abu-Haydar, Chris de Villiers
Global	How we drive innovation within medical devices, Kristoffer Gandrup-Marino, UNICEF
Global	A new handheld cordless thermal coagulator, W. Prendiville, S. Rengaswamy, B. Partha, P. Groesbeck, Wallace Dean, Pickett Tim, Riddle Mike, Juan Felix
Global	Safer medication administration for labor/delivery, Beth Kolko; Bradley Younggren
Global	Enabling and scaling early detection of breast cancer in lmics, Mihir Shah, et al
Global	Ultra-low-cost endoscopy for gastroesophageal cancer screening in low-income countries, Pietro Valdastri, Joseph Norton, Simone Caló’, Beatriz Plaza, Andrew Durkin, et al
Global	Unsupervised electronic stethoscope for childhood pneumonia diagnosis, Mohamed-Rida Benissa, J. Solà, F.Hugon,P.Starkov, F.Braun, S.Manzano, C.Verjus, A.Gervaix
Global	Field testing a neonatal phototherapy device: a novel approach, Donna Brezinski, et al
Global	Test for management of preeclampsia, Wendy Davis, et al
Global	Device to save postpartum-hemorrhaging women in advanced shock, M Guha, et al
Focus Area	Title, authors, with active links
------------	----------------------------------
Global	**Validity of a device for jaundice screening**, Anne Cc Lee, et al
Global	**CE-IT Innovation: How to Make Health Care Right**, Mario Castañeda, Tom Judd
Global	**WHO Priority Medical Devices**, Adriana Velazquez Berumen; Gabriela Jimenez Moyao, Antonio Migliori & Natalia Rodriguez, Adham Ismael Abdel, Alejandra Velez
Global	**Appropriate digital X-ray system with eHealth services**, Romain Sahli
Global	**Role of biomedical engineer in assessing medical devices**, Leandro Pecchia
Global	**Challenges in TB Diagnostics**, Christopher Gilpin
Global	**The Digital Health Atlas for Inventories and Routine Registration of Digital Health Investments**, Garrett Mehl
Global	**Global Cooperation on Assistive Technology: WHO Priority Assistive Products List**, Emma Tebbutt
Global	**Essential Resources for (Emergencies and) emergency care**, Teri Reynolds & Ian Norton
Global	**The role of biomedical engineers**, James Goh
Global	**Innovative appropriate technologies for low resource settings**, Adriana Velazquez
Global	**Access to medical devices for Universal Health Coverage and SDGs**, Adriana Velazquez
Global	**2014: WHO medical device list for Ebola care**, Adriana Velazquez
Global	**WHO Technical Specifications for Oxygen Concentrators, 2015**, Adriana Velazquez
Global	**Quick $2 test reveals if you caught a superbug in hospital**, Hakho Lee, BME MGH, Boston
India	**GANDHI: global affordable need driven health innovations**, Prashant Jha
India	**Hypothermia alert device: saving newborn lives**, Ratul Narain; Gini Morgan
India	**Novel Technology Policy: Integrating Service Delivery to Industry Promotion**, Jitendar Sharma
India	**Preventing apneas of prematurity**, Ratul Narain; Gini Morgan
India	**Remote monitoring for critical infants**, Ratul Narain; Gini Morgan
India	**MoH "Andhra Med Tech Zone" administering new medical devices manufacturing park**, Jitendar Sharma
India	**MoH Innovations project**, WHO 2GFMD, Jitendar Sharma, 2013
Focus Area	Title, authors, with active links
--------------------------------	---
Italy	Current and Future Trends in the HTA of Medical Devices, Oriana Ciani et al
Italy	HTA of a Large Tablet System in Digital Pathology, Daniele Giansanti et al
Italy	Rapid Clinical Evaluation of Robotic Surgery, Stefano Gidaro & Luca Radice, 2016
Macedonia, Haiti, China	CED Role in Linking Global HT Innovation and Standards: From the Research Lab to the Bedside, Yadin David, Fred Hosea, Tom Judd
Malaysia	Biomechanics of Long Distance Cycling of a Transtibial Amputee, Azman Hamid
Mexico	Semi Active Hand Orthosis, R. Itzel Flores-Luna, Ruben Valenzuela-Montes, David De-Jesus-Cruz, Hanna Garcia-Guerra, Alvaro Ayala Ruiz, Mariano Garcia del Gállego
Peru	Heavy-Metals Point of Care Detection HT to improve care, Herb Voigt, Fred Hosea
Senegal	Oxygen generators type PSA: solution for the supply of oxygen in Senegal, Awa Ndiaye Ep Diouf
Senegal	Innovative Diagnostics for Infectious Diseases, Catharina Boehme
South Africa	Medical device innovation–Local production of medical devices in Africa: characterizing the landscape and assessing feasibility, Mladen Poluta
Tanzania	Maternal Child Health medical devices: potential impact of disruptive technology in rural Tanzania, Mbuyita, Mbaruku, et al,
Uganda, India	Cross Border Learning: Catalyzing Medical Technology Innovation with LMICs, Alexis Steel, Molly Ward
UK	Automating the diagnosis of Childhood Pneumonia, Elina Naydenova, Climent Casals-Pascual, Thanasis Tsanas, Maarten De Vos
UNICEF	Medical Devices for Maternal, Neonatal and Child Care, Paul LaBarre
Uruguay	Clinical Engineering driving new public hospital design & construction, Franco Simini, 2016
WHO	WHO HT Innovations for Low Resource Countries, Adriana Velazquez
Focus Area	Title, authors, with active links
--------------------	---
Africa	**Medical Devices Situation in the Africa Region**, Stanislav Kniazkov
Albania	**HTM improves high technology diagnostics access**, Ledina Picari
Argentina	**HT improving Provincial Access**, 2015, German Giles
Australia & Canada	**Using Telehealth to improve Diabetes care**, E. Sloane, N. Wickramasinghe, S. Goldberg
Brazil	**Evaluation of production capacity, the healthcare coverage and the access of computerized tomography imaging in the Brazilian Public Health System**, Diana Lima et al
Brazil	**Distribution of mammographs by macroregion of Brazil**, Ana Claudia Patrocinio
Brazil	**The Role of Clinical Engineers for the Management of Healthcare Technologies in a Hospital Network**, Eduardo Jorge
China	**Survey of Prolonged Mechanical Ventilation in Intensive Care Units in Mainland China**, Li J et al
Cuba	**A Telemedicine System to follow-up the Evolution of Chronic Diseases in the Community**, R.I. Gonzalez-Fernandez et al
Denmark	**The mobile laboratory: bringing high-quality testing, to the patient**, Susanne Andresen
Global	**Market Dynamics: Supporting Country Decision- Making on Medical Devices**, Ray Cummings
Global	**Equipment Planning, Safety and Maintenance: Planning of Medical Imaging Services in Rural Health Centers**, Cari Borrás, Mario Forjaz Secca, Yadin David, (part2)
Global	**Surgery: indispensable interventions are not readily available**, Walt Johnson
Global	**International Atomic Energy Agency: Roadmap to Cancer-Free World**, Rajiv R Prasad
Global	**The importance of laboratory and pathology for a good diagnosis and treatment, need for recognition and availability**, Jagdish Butany
Global	**The Rise of Telehealth**, Yadin David et al
Global	**Linear Accelerators Case Studies**, Marcos Martins
India	**Prioritisation of medical devices and diagnostics in India**, Yogita Kumar, Gupta Madhur, Ameel Mohammed
India	**Ministry of Health (MoH) Mobile Medical Units**, Jitendar Sharma
India	**MoH Free Diagnostics Service Initiative**, Jitendar Sharma
India	**MoH National Dialysis Program**, Jitendar Sharma
India	**Telemedicine Reducing Blindness in South India**, Niranjan Khambete
Focus Area	Title, authors, with active links
------------	-----------------------------------
Kenya	Improving Universal Health Coverage Kenya PPP example, Gisela Abbam, Farid Fezoua
Mexico	CENETEC - National inventory of high-tech medical equipment as HTM tool for strategy planning, Roberto Ayala
Mozambique, Tanzania, Malawi, Togo, DR Congo	Global Healthcare Telemedicine, Michelangelo Bartolo
Paraguay	Innovative telediagnosis technology for universal coverage in remote locations without access to specialists, Pedro Galvin
Romania	Telemonitoring Systems and Technologies for Independent Life of Elderly, S. B. Sebesi
Slovakia	Telemedicine and mHealth System for Complex Management in T1DM and T2DM Patients: Results of 6 Months Study, Fedor Lehocki, Tomas Bacigal
Sudan, Egypt, Lebanon, Somalia, Afghanistan and Iraq	Strengthening Health Technologies & Medical Devices Management in EMRO, Adham R Ismail
Syria	Hemodialysis in Syria: a BME Approach, Lana Almohamad
WHO	WHO Cancer Care Initiative 2015-2016, Adriana Velazquez et al
Focus Area	Title, authors, with active links
-----------------------------	--
Benin, Burkina Faso, Burundi, Cameroon, DRC, Ethiopia, the Gambia, Ghana, Ivory Coast, Kenya, Nigeria, South Africa, Tanzania, Uganda, Zambia	THET NGO & South Africa enhancing 15 African HTM societies, Anna Worm & Mladen Poluta
Australia	In-house Endoscopy support, 2016, Anne-Louise Smith
Bangladesh	Clinical Engineering Approach to Improve Healthcare Technology Management for Enhancing Healthcare Delivery System in Middle Income Countries, A. Hossain et al
Benin	Evaluation of medical devices in Benin, Charles Pascal Sorohaye, Adjaratou Seidou Maliki, Marc Myszkowski
Benin	Maintenance management of medical devices in Benin: The case of Papané Hospital, Charles Pascal Sorohaye et al
Bhutan	Bhutan Health Technology Management (HTM) and HTA 2015, Tashi Penjore
Bosnia & Herzegovina	Testing of dialysis machines in healthcare institutions in Bosnia and Herzegovina, Lejla Gurbeta, Berina Alic, Zijad Dzemic, Almir Badnjevic
Botswana	Using HTM to improve care delivery, Bonnie Tlhomelang
Brazil	Impact of clinical engineering in primary healthcare, Priscila Avelar, Renato Garcia, Carlos Alberto Silva
Brazil	Logistics of medical devices for indigenous health care attending in remote sites at Brazilian amazon rain forest, Ryan Ferriera et al
Brazil	GETS System on CE-HTM, Jose Bassani
Brazil	Medical device manuals analysis using heuristic evaluation, J.C. Carneiro et al
Brazil	Proposed Calibration of Apheresis Equipment, A.S. Anderson et al
Brazil	Maternal Fetal Simulator, L.R. Rodrigo et al
Brazil	Evaluation of Sphygmomanometers: comparison between manual and digital measurement, Sousa et al
Brazil	Hospital Maintenance Management, A.S. Forte, J.E.Neto
Brazil	Study involving X-Ray Tube Life spam in Computed Tomography Equipment, Petrick Marcellus de Victorio et al
Brazil	HTA Applied to HTM through Clinical Engineering, Santos
Burkina Faso	The problem of acquisition and maintenance of biomedical equipment in Burkina Faso, Zida Ouambi Emmanuel
Chile	Activities of Clinical Engineering in the University of Valparaiso, Guillermo Avendano
Chile	The Chilean Navy Hospitals 15 years of CE, Francisco Acevedo
Focus Area	Title, authors, with active links
------------	----------------------------------
China	Preventive Maintenance of Fetal Monitors, LE He-qing
China	The Survey of 3 Departments in Guangdong Province Under New Regulations, Yang Shaozhou
China	Impact of national CE Certification on Health Technology, Zhou Dan
Colombia	CE and impact on financial management of the hospital, Paula Berrio
Colombia	Estimation of the optimal maintenance frequency of medical devices: A Monte Carlo simulation approach, Antonio Miguel Cruz et al
Colombia	Teaching maintenance of medical devices in simulation centers: a pilot study, Daniel Alejandro Quiroga Torres et al
Costa Rica	Clinical Engineering - Health Technology Management (HTM) key areas of challenge and progress in Costa Rica, Gabriela Murillo
Costa Rica	HTM in Costa Rica, G Murillo, M. Ingeana, (part2)
Cuba	Cuba Health Technology Management, Jorge Castro Medina
Dominica	Health Technology Management in Dominica, R. Williams
Ecuador	Development of Biomedical Engineering in the Honorable Junta de Beneficencia of Guayaquil, Freddy Matamoros
El Salvador	Health Technology Management in El Salvador, Juarez S.
Ethiopia	Managing Successful Medical Device Warranty Period Maintenance, Demeru Yeshitla Desta, Tegbar Yigzaw Sendeke, Sharon Kibwana, Mihereteab Teshome Tebeje
Ethiopia	Strengthening Utility and Maintenance of Medical Devices, Demeru Yeshitla Desta, Sharon Kibwana, Firew Ayalew, Ismael Cordero
Ghana	CMBES HTM Donations Study, 2015, Bradley, Yoon, Zahedi, Adusei-poku, Bill Gentles
Global	Medical device ownership models and maintenance contracting approaches, Lisa Smith, Michael Ruffo
Global	The Missing Link: The Role of BMETs Throughout the HTM Lifecycle, Anna Worm, THET; Ismael Cordero, Gradian
Global	Global HTM Update 2011, Binseng Wang et al
Global	Global HTM Update 2015, T. Judd, S. Calil, A. Hernandez, B. Gentles
Global	IFMBE CED Development of e-Courses for HTM training 2015-2016, Ernesto Iadanza
Global	Orbis International Global HTM Training, Ismael Cordero, (part2)
Global	ACCE Global HTM Seminars, 2013 2GFMD, Antonio Hernandez et al
Haiti	Using HTM to improve care delivery, Monette Valliere, Jean Chery, (part2)
Focus Area	Title, authors, with active links
-------------------	---
Italy	*Launch of the new WHO Collaborating Centre for Research and Training in CE and HTM*, Paolo Lago
Italy	*A Novel Approach to Improve the Technical Maintenance of Biomedical Equipment*, Daniele Bibbo et al
Jamaica	*Health Technology Management in Jamaica*, 2010, Keith Richards
Kenya	*MoH ophthalmic equipment support*, Philip Anyango, Mary Nguri & Joseph Rugut
Kenya	*MoH Device HydroCarbon Refrigeration Training BMETs*, J. Rugut
Kosovo	*HTM in Kosovo*, 2010, Agron Boshnjaku S. Ramiqi S, K. Hashani, (part2)
Kyrgyzstan	*HTM in Kyrgyzstan*, 2010, Kazbek Agibetov, (part2)
Laos	*HTM in Laos*, 2GFMD 2013, Thanom Insal
Lebanon	*HTM Implementation at Saint George Hospital – Lebanon*, Riad Farah
Lebanon	*Medical Devices Repair/Replacement Algorithm Model*, Riah Farah
Mexico	*Decodifying HTM in Mexican Private Hospitals*, Luis Fernandez
Nigeria	*Key areas of challenge and progress of CE-HTM in Nigeria*, Bukola Esan
Paraguay	*Health Technology Management in Paraguay*, Pedro Galvan, (part2)
Peru	*Fostering Clinical Engineering & HTM in Developing Countries: Alignment and Effectiveness in Peruvian Health Sector*, Rossana Rivas
Puerto Rico	*Health Technology Management update in Puerto Rico*, Oscar Misla, (part2)
Romania	*Prioritization of Medical Devices for Maintenance Decisions*, S. Taghjpour et al
Rwanda	*Medical device technician training*, A. Worm, Mpamije Tonkin, Mol, Kasaro
Saudi Arabia	*Creation of Health Technology Technical E-Library*, Salah Alkhallagi
Senegal	*Maintenance of medical devices and quality management in Senegal*, Dr. Mamadou Sow, Senegal, WHO 2GFMD
Sierra Leone	*Immediate impacts of inventory on procurement, donations, maintenance and use of medical equipment*, Kabia, Johnson, Ministry of Health, WHO 2GFMD, 2013
South Africa	*Math Model for Reliable Maintenance of Medical Equipment*, Baset Khalaf, 2015, (part2)
Sub-Saharan Africa	*The status of medical equipment in Sub-Sahara Africa*, Anna Worm, Theogene Nama-hungu, Harold Chimphope, Charles P. Sorohey }
Focus Area	Title, authors, with active links
---	---
Sudan	*Health Technology Management in Sudan*, Emad Edin Mohamed Hassan, (part2)
Taiwan	*Medical Devices Troubleshooting*, KP Lin
Taiwan	*The Benefit of In-Hospital Clinical Engineer Services for Medical Devices Maintenance*, Mei-Fen Chen et al
Taiwan	*Taiwan: An IM Strategy for In-House CE Department Based on Equipment Service Life-Cycle Model*, Chia-Hung Chien et al
Tanzania	*Health Technology Management in Tanzania*, Y Mkwizu & R Masanja, (part2)
Tanzania, Switzerland	*Building management capacities for essential equipment in Tanzania*, WHO 2GFMD, 2013, Reinhold Werlein, Swiss Tropical and Public Health Institute
The Gambia	*Medical Research Council HTM Unit*, Anna Kah, Ebrima Nyassi
Togo	*The governance problem in medical equipment donation projects: Case of Togo*, WHO 2GFMD, 2013, Komi Agbeko Tsolenyau, NGO Association for Maternal, Neonatal and Child Health
Uganda	*Using HT Policy and HTM to improve MoH care delivery*, Sitra Mulepo, Kataaha Edward
UK	*Apprenticeship model for clinical engineering workforce development*, Abdul Basit, Malcolm Birch
USA	*Kaiser Permanente Clinical Engineering Staffing Best Practices 2015*, Chris Ewing
Zambia	*Medical equipment maintenance personnel and training in Zambia*, S. Mullally, T. Bbuku, G. Musonda 2012
Focus Area	Title, authors, with active links
-----------------------------	---
Africa	The potential power of sub-Saharan Africa professional associations for biomedical/clinical engineering professionals, Anna Worm et al
Africa - 18 countries	The (improved) status of medical equipment in sub-Sahara Africa HTM: A. Worm, L. Jones, T. Namahungu, H. Chimphepo, P. Sorohey
Albania	Regulation, standards and market surveillance of medical devices and systems in Albania, Ledina Picari
Albania	MoH Health Technology (HT) Unit device legislation, Ledina Picari, 2016
Argentina	Present and Future of Clinical Engineering in Argentina, German Giles, Marcelo Lencina
Asia Pacific	Status of Biomedical Engineering education in the Asia Pacific, KP Lin et al
Bangladesh	Biomedical and clinical engineering development, Md Ashrafuzzaman et al
Bangladesh	Necessity of Clinical Engineering to Regulate the Medical Devices in Middle Income Countries, Anwar Hossain
Bosnia and Herzegovina	Medical devices in legal metrology framework, Lejla Gurbeta, Almir Badnjević
Brazil	Analysis of the Curriculum of Postgraduate Courses in Clinical Engineering in Brazil, Anderson A. Ramos et al
Brazil	Application of multiparameter method as an assistance to the evaluation of the need for replacement of medical equipment, M.A. Marciano, E.K. Souza
Brazil	Assistant Multi-Parametric Method to the Selection in the Process of Incorporation of Hospital Equipment, M.A. Marciano
Brazil	International Standards for Medical Device and The U.S. Food and Drug Administration, R.G. Fernandes
Brazil	Computed Tomography scanners productivity and examinations times, R.P. Santos et al
Brazil	Defibrillators in locations with a high concentration/movement of people in Bauru/Brazil, A.S. de Melo et al
Brazil	FDA Internationalization Under the Aspect of Medical Device Standards, R.G. Fernandes, S.J. Calil
Brazil	Medical equipment acquisition methodology in public procurement process, J. Martins et al
Brazil	Cost Estimate Methodology in procurement processes of Medical Equipment, V. O. Fagundes, R. Zaniboni, R. Garcia
Brazil	Study of Medical Device Purchasing Cycles through Temporal Series Analysis, J. C. Guerrero, J. H. García, A. M. Hernández
Brazil	RENEM – MoH HT list driving national investment, Murilo Conto
Cameroon	Development of the National Healthcare Technology Policy for Cameroon, J. Riha
Cameroon	Improvement in the use of medical devices and capitalization of investments in the HT sector in Cameroon, 2010, Vincent Ngaleu-Toko
Canada	Clinical Engineering/HTM in Canada, Mario Ramirez
Focus Area	Title, authors, with active links
------------	-----------------------------------
Chile	University of Valpariso Health Technology leadership, Cristian Diaz
China	Clinical Engineering in China, Bao Jiali, Zhu Chaoyang
China	HTM as key health planning discipline, Guanxin Gao
Colombia	Integrated model of universities to promote clinical engineering, Nelson Escobar, Javier Camacho, Javier García, Juan Barreneche, Beatriz Galeano, Mario Castañeda
Colombia	Interuniversity model of cooperation for the development of Clinical Engineering in Colombia, Beatriz Galeano
Colombia	Methodology Design for Biomedical Technology Replacement Planning, D. M. Torres-Velez
Colombia	Regional Nodes of Colombian Clinical Engineers, Andrea Garcia
Colombia	Identifying the needs in the integration of disciplines in the hospital infrastructure management in Colombia, M. Madroñal Ortiz, B. Galeano Upegui, N. Escobar Mora, L. Cruz Parra, I. Rios Cuartas
Colombia	HT Regulation, Policy, Management, 2015, Andrea García Ibarra, Rojas Morales, (part2)
Colombia	Clinical Engineering for non-engineers: acquisition of medical equipment, 2011, Tatiana Molina
Cuba	Trading barriers in the medical devices industry. Are these barriers hindering the development of this sector in Cuba? Y. Chaveco Salabarria, J. C. Rubio Romero, R. M. Guerra Bretaña
Czech Republic	Hospital Based HTA - Implementation for the Czech Republic, Ivana Kubátová, Veronika MatloDová
Ethiopia	Using HT Policy and HTM to improve care delivery, Mulugeta Mideksa, 2015
EU (28 Member States), EFTA/EEA: Norway, Liechtenstein, Iceland; Turkey; Switzerland	The Regulation of medical devices in the European Union, Carlo Pettinelli
Ghana	Clinical Engineering in Ghana, Nicholas Adjabu
Ghana, Canada	CMBES Donations Project, 2015, Nicolas Adjabu, John Zienna, Bill Gentles
Global	IFMBE/CED and Global CE-HTM Evidence Based Results, Yadin David, Ernesto Iadanza
Global	IFMBE/CED Role in Global BME/CE recognition, James Goh, Ernesto Iadanza
Global	Global CE-HTM Success Stories, Yadin David, Tom Judd
Global	Technical characterization of appropriate medical equipment, Maurice Page, Matthieu Gani, Mélanie Amrouche, Robin Walz, Blanc-Gonnet & Barbara Comte
Global	MSF medical equipment framework, Gabriela Jimenez Moyao, Oscar Rodriguez, Tom Lauwaert, Jean Claude Tewa, Belgium; Benoît Pierre Ligot, Paul Damien Chateau, MSF, France; Hugues Gaertner, MSF, Spain; Malcolm Townsend, MSF, Switzerland; Lizette Van De Kamp, Sean King, MSF, Netherlands
Focus Area	Title, authors, with active links
-----------	----------------------------------
Global	Assessment of medical devices in low-income settings, L. Pecchia, N. Pallikarakis
Global	The AHWP Playbook for Implementation of a Health Technology Regulatory Framework, An Overview, Ms. Joanna Koh et al
Global	Global Atlas of Medical Devices, Adriana Velazquez
Global	Medical Devices for universal health coverage and sustainable development, Marie-Paule Kiény
Global	The Book, Human Resources for Medical Devices, the Role of the Biomedical Engineer, Adriana Velazquez
Global	National medical equipment policies and planning for universal health coverage, Roberto Ayala
Global	Improving medical equipment donations: contribution of NGO Humatem, Cathy Blanc-Gonnet
Global	Health Technology Management Initiatives, Ernesto Iadanza
Global	Health Technology Assessment of innovative medical devices, Iñaki Gutiérrez-Ibarluzea
Global	IFMBE/Clinical Engineering Division projects for the advancement of the profession of clinical engineering, Ernesto Iadanza
Global	The importance of Technical Specifications, Adriana Velazquez
Global	The Role of HTM to the Universal Health Coverage, P. Galvan et al
Global	2009 WHO database of biomedical/clinical engineering teaching units and associations worldwide, Saide Calil
Global	Global HT Disaster Preparedness, Yadin David, Fred Hosea, (part2)
Global	Latin American & Caribbean Health Technology Training, 2013, Antonio Hernandez
Global	Role of IFMBE in medical equipment in developing countries, Worm, Linnenbank
Global	The importance of establishing a national policy for infrastructure, Africa Health, Andrei Issakov
Global	Need for Undergraduate Clinical Engineering Education, 2015, Herb Voigt
Global	MAKING IT WORK: Managing medical equipment in low-resource settings video, THET
Global	The role of HTM in WHO, to support access to medical devices for Universal Health Coverage and achievement of SDGs, Adriana Velazquez, (part2, part3)
Global	IFMBE HTA Division Filling the gap between HTA and HTM, Leandro Pecchia
Global	Global Health Technology Equity: How Emerging CE-HTM Leaders Can Help, Antonio Hernandez, Tom Judd
Focus Area	Title
-------------------------------------	---
Greece	**Medical equipment management**, Nicolas Pallikarakis, Institute of Biomedical Technology, Greece
India	**Generic Specifications for Medical Equipment in Developing Countries**, S.B.Sinha, A.R.Gammie and P.J.Mellon
India	**MoH HTM via Public Private Partnership**, 2015, Jitendar Sharma
India, Indonesia, Thailand	**South East Asia Regional Perspective**, Madhur Gupta
Indonesia	**Development of biomedical engineering education in Indonesia**, Cholid Badri
Italy	**The Italian Clinical Engineers Association: a success story**, Stefano Bergamasco, Paolo Lago, Lorenzo Leogrande, Umberto Nocco
Italy	**Assessing the impact of a CIS/PACS technology for a cardiology department using QFD methodology**, Alessio Luschi, Laura Caltagirone, Claudio Mondovecchio, Roberto Miniati, Ernesto Iadanza
Italy	**Model national CE society and impact on legislation**, Paolo Lago, Lorenzo Leogrande
Japan	**Roles of Clinical Engineering in medical device development**, Hiroki Igeta et al
Japan	**The Business Operations of CEs, Roles and Certifications**, Jun Yoshioka
Kenya	**Using HTM to improve MoH care delivery**, Philip Anyango Amoko, (part2)
Kyrgyzstan, Albania	**HT characteristics of countries in the WHO European region**, Tifenn Humbert
Latin America	**The status of Biomedical Engineering (BME) programs in Latin America**, Martha Zequera Diaz, A. P. Koch
Mexico	**Health Technology Project Value Chain**, Andrade Bravo Ignacio
Mexico	**Opportunities of the Mexican Biomedical Engineering Society to influence and adopt Clinical Engineering in Mexico**, Elliot Vernet
Mexico	**CENETEC- MoH HT Unit creates nation-wide HTM capacity**, Roberto Ayala
Mexico	**HTA, HT Regulation, HTM to improve care delivery**, Cardenas, de Alba, Orencio, Moreno, (part2)
Moldova	**Medical Devices Management Strategy in the Republic of Moldova**, V. Sontea, S. Morganoci, Gh. Turcanu, C. Pislaru
Nigeria	**Using HT Policy and HTM to improve care delivery**, Bukola Esan
Peru	**Improving Emergency Preparedness through Hybrid Interactive Training**, T. Clark, R. Rivas, Y. David
Peru	**A Comprehensive System for HTM**, L. Vilcahuaman, M. Cordova, J. Kalafatovich, R. Rivas
Peru	**MoH & National Institute of Health HT Unit care improvement strategies**, Rossana Rivas, Luis Vilcahuaman
Focus Area	Title, authors, with active links
------------	----------------------------------
Peru	Collaborative HT partnerships to improve care delivery 2015, Rossana Rivas
Portugal	Technology decision-making process: MRI purchase in Portugal, Maria Maia
Romania	Knowledge about materiovigilance in Cluj-Napoca, Romania, Simona Maria Mirel
Rwanda, Benin, Cameroon, Guinea, Nigeria, Sierra Leone	The odyssey of an HTM Expert, Mbole, Cameroon
Sierra Leone, Canada	Sierra Leone / Canada: Transnational Donations of Medical Equipment, Dinsie Williams, Jillian Kohler, University of Toronto
Singapore	Global BME Education Programs, 2016, Siew-Lok Toh
South Africa	Health Technology Management in the African Continent, Mladen Poluta
Suriname	Using HTM to improve care delivery, Gillian Jie
Taiwan	Intern programs of biomedical engineering education, Kangping Lin; Tsai, Chenglun
Taiwan	BME/Clinical Engineering (CE) Role for Policy Implementation of Medical Equipment regarding Post-Market Surveillance in Health Systems, KP Lin, (part2)
Taiwan	Accreditation of BME/CE in Taiwan, KP Lin, (part2)
Turkey	MoH HT Unit product tracking/surveillance/pricing & Country-wide HTM Data, Ugur Cunedioglu, Bilal Beceren
Turkey	HTM improving country-wide care delivery, Bilal Beceren
UK	Crisis, What Crisis? How Clinical Engineers will Solve the Billion Dollar Healthcare Funding Gap, Daniel Clark
UK, Global	Tropical Health Education Trust (THET) partnerships, A. Worm and Schofield
Vietnam	Survey of Personnel Who Are Operating, Repairing and Maintaining Medical Equipment in Some Hospitals in Vietnam, 2013, Tam
WHO	WHO HT Indicators for MoH, 2009, Joachim Nagel et al
WHO	WHO & International Labor Organization discussions 2015-2017, Adriana Velazquez
WHO AMRO	Development and initiatives of medical devices in the Americas, Alexandre Lemgruber
WHO EMRO	Strengthening Medical Devices Regulation in the Eastern Mediterranean Region of WHO, Adham R Ismail
Focus Area	Title, authors, with active links
----------------------	---
Brazil	**Telerradiology network in Amazonas rainforest**, Leonardo Melo, Alessandro Melo
Brazil	**Telecommunication innovation in mobile health units**, Leonardo Melo, Alessandro Melo
Brazil	**Business intelligence application in health management**, O.B. Souto et al
Brazil	**Geocoding dengue cases for spatial analysis**, J. L. S. Lustosa et al
Brazil	**Integration of the trans-operative information with the patient's electronic record**, E. K. Souza, M.A. Marciano
Brazil	**Dental Chair Unit Clinical Engineering management**, G. L.O. da Fonseca, F.S. Rosa, R. Garcia
Bulgaria, Greece	**Re-engineering a Medical Devices Management Software System: The web approach**, 2014, Malataras, Bliznakov et al
China	**Mobile control of risk factors of NCDs**, Bao Jiali, Zhu Chaoyang, Bao Jiaming, Zheng Xiuxiu
China	**Mutual recognition research of medical imaging remote intelligent quality control technology**, JingXin
Colombia	**Networking from Colombian clinical engineers**, Andrea Rocio Garcia Ibarra
Colombia	**Introducing IHE (Integrating the Healthcare Enterprise) into Colombia & Latin America**, 2015, Vladimir Quintero:
Georgia	**Becoming of Ubiquitous Sensors for Ubiquitous Healthcare**, S. Dadunashvili
Global	**Medical device service procedures mobile application**, Jean Ngoie, Kelsea Tomaino
Global	**Use of CMMS (Computerized Medical equipment Management System) in Low Resource Countries**, Bill Gentles, Claudio Meirovich, Martin Raab, Jitendra Sharma
Global	**Clinical and ICT (Information and Communication Technologies) Cybersecurity Overview and Cases**, Elliot Sloane
Global	**Integrated Health Solutions to deliver value-based Healthcare**, Frederic Noel
Global	**Conquering the leprosy last mile: the role of mobile-phones**, Phillip Olla
Global	**Appropriate CMMS systems – potential for health systems development**, Mr. Martin Raab, David Huser, Alexandre Vanobbhergen
Global	**Clinical Engineering, eHealth, and ICT Global Overview**, Elliot Sloane
Global	**Decision Support Systems: an all-around approach to healthcare management**, Ernesto Iadanza
Global	**Developments in Global Clinical Engineering-Information Technology**, Tom Judd, Ricardo Silva
Global	**Total Cost of Ownership**, Elliot Sloane
Focus Area	Title, authors, with active links
---------------	---
Global	**ICT training for Health Technology**, Elliot Sloane
Global	**CE: from Devices to Systems**, Roberto Miniati, Ernesto Iadanza, Fabrizio Dori, Italy
Global	**On-Line HTM Training in Latin America**, Tobey Clark et al, 2015
Global	**Using Clinical Engineering CMMS to improve care delivery**, Bill Gentles
Global	**Trends on Information Technology and Health Technology**, Antonio Hernandez, 2015
Global	**Medical Device and ICT Convergence**, Elliot Sloane
Greece	**Web-based medical equipment management system**, Nicolas Pallikarakis, Panayiotis Malataras, Aris Dermitzakis
Haiti	**Evidence-based Maternal Child Health Care enabled by Health Technology**, Tom Judd, Lee Jacobs, Brian Birch, and Matt Jansen
India	**Using Near-Patient Data in HTM**, Tracy Rausch, Yatin Mehta MD
India	**Designing MoH HTM IT systems in Developing Countries**, Jitendar Sharma, Prabhat Arora
India, USA	**Using Integrated Clinical Environment (ICE) Data for HTM (India pilot)**, Tracy Rausch, Tom Judd
Italy	**SILAM: Integrating Laboratory IS within the Liguria Region EHR**, 2014, A. Tagliati et al
Japan	**Study on Medical Equipment Location Systems that use RFID Technology**, Manabu Kawabe, Yasuyuki Miwa, Takashi Kano
Nigeria	**Developing an Appropriate and Affordable Expert System for Medical Diagnosis in Developing Countries**, 2015, K.I. Nkuma-Udah et al (part 2)
Portugal	**End-to-End QoS-Based Admission Control via Virtual Sensor Nodes**, Carlos Abreu et al
Romania	**Development of Wireless Biomedical Data Transmission and Real Time Monitoring System**, C. M. Fort, S. Gergely, A. O. Berar
Saudi Arabia, Macedonia, Global	**Digital hospital 21st century: you certainly can’t manage it if you don’t understand it**, WHO 2GFMD, 2013, Elliot Sloane, Tom Judd, Paul Sherman, Joseph Welch
Slovakia	**Electronic categorization of medical devices in Slovakia**, Dr. Jadud, Ministry of Health
South Africa	**Medical internet of things and embedded intelligence in healthcare**, Abdelbaset Khalaf
South Africa	**Wireless Body Sensor Network and ECG Android App eHealth**, Abdelbaset Khalaf
Spain, France	**Integrating an EHR Graphical User Interface into Nanoelectronic-Based Biosensor Technology**, Ana Maria Quintero et al
Uruguay	**CAMACUA: Low Cost Real Time Risk Alert and Location System for Healthcare Environments**, I. Decia et al
Focus Area	Title, authors, with active links
-------------------------	--
USA	**Assessing Risk in the Kaiser Permanente CE Program**, C Davis-Smith, F Painter, M Baretich
USA	**Medical Device Cybersecurity**, Steve Grimes, HIMSS 2016
USA	**Biomedical Device Integration into an Electronic Health Record**, Michael Fraai
Venezuela, Ecuador	**Intelligent System for Identification of patients in Healthcare**, Ricardo Silva, (part2)
Focus Area	Title, authors, with active links
-----------------	---
Australia	Medical Air Mis-connections, Anne-Louise Smith, Mark McEwen, 2016
Brazil	An observational study of the high incidence of false and nuisance alarms in an intensive care unit, LG Vaz, GC Vivas
Brazil	Evaluation of waste disposal inadequate management from health services, Larissa Teixeira de Oliveira, Ana Claudia Patrocínio
Brazil	Improving Health Technology Assessment in Cold Chain by Applying Clinical and Industrial Engineering, LFM Brito et al
Brazil	Improving Operational Reliability in Medical Washer Disinfector with the Use of FMEA Tool: A Quality Improvement Report, Marcelo Espinheira et al
Brazil	Medical devices proactive surveillance – trends and impact from field and enforcement actions in Brazil, MG Vincente
Brazil	Structuring the Radiological Report, D.M. Rocha et al
Brazil	Development of an ubiquitous management platform in air compressors used in primary healthcare, I.L. Santos, F.S. Rosa, R. Garcia
Brazil	The Clinical Engineering in Hospital Accreditation Case Study: Radiology Clinic, R.A.M. Sá et al
Brazil	Clinical Engineering/Health Technology regulation, evaluation & training to improve care delivery, Murilo Conto, Zeev Katz, (part2)
China	A Hospital-based Dynamic Warning System Medical Consumables Regarding Adverse Event Management, Sun-Lv-Feng
China	Case Study and Management Improvement of Medical Devices, Jing-ying Gao, Lei Wei, Yin-chun Lu
China	Survey and analysis of current state of ventilator alarms in ICU, Lin, Zheng Kun
China	Shanghai Region Medical Equipment Quality and Safety, Li Bin
China	Design of a Web-based Medical Equipment Management System for CE, 2015, Liu Shenglin, Zhang Qiang, Wu Hanxi, Zhang Xutian, Wang Guohong
Colombia	MoH Health Technology Management Regulations, Andrea Garcia-Ibarra
Dominican Republic	Medical – Surgical Vacuum and Anesthetic Residue Extraction Policy in the Dominican Republic, Diogenes Hernandez
Germany	Technological Surveillance and Integrity Monitoring of Infusion Systems, D. Grosse-Wentrup, U. M. Hoelscher
Global	A pneumonia prevention system, Peter Young; Maryanne Mariyaselam
Global	Global Professional Credentialing Project, Yadin David, Mario Medvedec, Jim Wear
Global	Adoption of medical-technologies in infrastructure-poor environments, Gisela Abbam, Vikram Damodaran, Sally Lee
Global	Hospital Integrated Networks Risk Management - Issues and Recommendations, Yadin David, (part2)
Focus Area	Title, authors, with active links
------------	----------------------------------
Global	*Skill development for growth in emerging markets*, Gisela Abbam, Marut Setia
Global	*Clinical Engineering Risk Management*, Frank Painter
Global	*CE Certification globally to improve care delivery*, Jim Wear, Mario Medvedec
Global	*Human Factors Engineering book - global resource*, Tony Easty et al
Global	*Global training partnerships*, Shauna Mullally
Global	*Promoting the Image of Biomedical Engineers and Improving Safety*, Michael Cheng
Global	*Managing the medical equipment lifecycle resource*, THET, Anna Worm
Global	*Medical Equipment Maintenance book*, 2013, Binseng Wang
Global	*Profile of Biomedical Engineering Education in Latin America*, SJ Calil et al
Global	*Preventable Adverse Events: How to?*, Yadin David
Global	*Medical Device Risk Management from a Human Factors Perspective*, Tony Easty
Global	*Medical Devices Vigilance and the European Union Regulations*, Nicolas Pallikarakis
Italy	*A new digital era of Clinical and Biomedical process*, Giulia and Stefano Marchesi
Italy, Egypt	*A New Approach for Preventive Maintenance Prioritization of Medical Equipment*, Ne- ven Saleh et al
Japan	*The role of policymakers for health technologies*, Dr. Masato Mugitani
Jordan	*Implementation of Six Sigma on Case Study at the Directorate of BME in the Jordanian MoH*, 2012, Adnan Al-Bashir, Akram Al-Tawarah
Kenya	*Roadmap to validation and verification of Intravenous Devices in Kenya*, Bintiomar Tsala, Abdulatif Ali, Abel Onyango
Kuwait	*Safe care: An initiative for regulations in Kuwait*, WHO 2GFMD, 2013, Ms. Hanan Al-awa- dhi, Association for Biomedical Engineers
Mexico	*Impact of State CE Directorate*, Ignacio Macias, 2016
Mozambique, Portugal	*Training program in Central Hospital of Maputo (2011-2016)*, Mario Forjaz Secca
Papua New Guinea	*Improving pediatric and neonatal care in rural district hospitals in the highlands of Papua New Guinea: a Quality Improvement approach*, M. Saavu, Trevor Duke, Sens Matai
Samoa, Fiji	*User Care of Medical Equipment*, Nehal Kapadia, Sunema Talapusi
Focus Area	Title, authors, with active links
--------------------------------	---
Saudi Arabia	**Unifying Efforts against Counterfeiting Medical Devices**, Nazeeh Alothmany
Taiwan	**Actions of medical device post-market surveillance**, KP Lin, Y-T Hung, Shiu- Huei Yeh
USA	**Application of Quality, Risk & Asset Management Principles to Clinical Engineering**, Bin-seng Wang, (part2)
Cape Verde, Senegal, The Gambia, Guinea Bissau, Guinea, Sierra Leone, Liberia, Mali, Ivory Coast, Ghana, Togo, Benin, Burkina Faso, Nigeria, Niger	**The West African Health Organization, Biomedical Engineering Curriculum**, Bobo-Dioulasso et al, (part2)