Table S1. Sex ratios of Danaus chrysippus collected as eggs, Athi River Plains, Nairobi, 1986–1994. (Expected numbers if the true sex ratio is stable at 74.5% female in parentheses).

Date	Males	Females	Totals	% Female	Deviation from Mean	χ^2
January 1986	5 (14.25)	52 (42.75)	57	91.2	+	8.005
April–May 1987	66 (47.0)	122 (141.0)	188	64.9	–	10.241
July–August 1987	20 (13.0)	32 (39.0)	52	61.5	–	5.025
November 1988	24 (15.5)	38 (46.5)	62	61.3	–	6.215
February 1989	20 (34.75)	119 (104.25)	139	85.6	+	8.348
January 1994	8 (15.5)	54 (46.5)	62	87.1	+	4.839
Totals	143	417	560	74.5	0	42.673

Against a mean expectation that the sex ratio is stable at 74.5% female, $\sum \chi^2 = 42.673$, p for heterogeneity is <0.00001; thus, the sex ratio is unstable and varies with season.

Table S2. Disassortative (negative non-random) mating for C locus genotype (expected numbers in parentheses if mate choice is random) in D. chrysippus at Kitengela, Kenya, May–July 2015.

Genotypes	Males in copula	Males free flying	Total males	Females in copula	Females free flying	Total females	Total in copula	Total unmated	Totals
CC	32 (16.0)	24	51	0 (16.0)	0	0	32 (32)	24	51
Cc	16 (27.5)	5	26	39 (27.5)	282	321	55 (55)	287	347
cc	4 (8.5)	1	5	13 (8.5)	53	66	17 (17)	54	71
n			52	52	335	387	104	365	469

$\sum \chi^2$ for negative non-random mating = 46.328; $p < 0.00001$. All mate females carried the Wbc (neoW chromosome) and are Cc or cc, whereas a majority of mating males (61.5%) are CC. The sex ratio estimate (82.5% female) does not differ from the mean sex ratio for May–September 2015 of 81.2% female ($n = 531$). Given the mean spermatophore count of 1.7 for females dissected ($n = 260$), each male must mate on average 8.5 times.
Figure S1. (a) Histograms showing the frequencies (per cent) of (A) females and (B–D) the three homozygous recessive phenotypes aa (B), bb (C) and cc (D) at Nairobi. Symbols on the co-ordinate: J = January, F = February, A = April, M = May, J/A = July/August, N = November. \bar{x} = the mean value of the six samples [13]; (b) Frequencies (per cent) as three-month moving averages for the cc genotype (o) and females (•) in monthly samples of $D. chrysippus$ from February 1972 to September 1975 on the campus of the University of Dar es Salaam, Tanzania. The approximate durations of wet seasons (dashed lines indicating periods that are variable) and the two monsoons (SE = south-east, NE = north-east) are shown at the top [13].