complete resection is uncommon, having been reported in only approximately 10% of cases(5).

REFERENCES
1. Saab ST, McClain CM, Coffin CM. Fibrous hamartoma of infancy: a clinicopathologic analysis of 60 cases. Am J Surg Pathol. 2014;38:394–401.
2. Reye RD. A consideration of certain subdermal fibromatous tumours of infancy. J Pathol Bacteriol. 1956;72:149–54.
3. Dickey GE, Sotelo-Avila C. Fibrous hamartoma of infancy: current review. Pediatr Dev Pathol. 1999;2:236–43.
4. Eich GF, Hoeppel JC, Tschäppeler H, et al. Fibrous tumours in children: imaging features of a heterogeneous group of disorders. Pediatr Radiol. 1998;28:500–9.
5. Jesus LE, Gameiro VS, Novelli RJ, et al. Hamartoma fibroso infantil: lesão volumosa com envolvimento de plexo braquial. Acta Ortop Bras. 2006;14:229–30.
6. Laffan EE, Ngan BY, Navarro OM. Pediatric soft-tissue tumors and pseudotumors: MR imaging features with pathologic correlation: part 2. Tumors of fibroblastic/myofibroblastic, so-called fibrohistiocytic, muscular, lymphomatous, neurogenic, hair matrix, and uncertain origin. Radiographics. 2009;29:e36.

Vagner Moysés Vilela¹, Valéria Mota Ribeiro², Jairo Campos Paiva³, Diego Demolinari Pires¹, Lucas Scodeler Santos¹

¹. Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil. Mailing address: Dr. Lucas Scodeler Santos, Rua Marquês de Itu, 679, ap. 24, Vila Buarque. São Paulo, SP, Brazil, 01223-000. E-mail: lucasscodeler@yahoo.com.br.

Dear Editor,

A 40-year-old woman presented with a five-month history of pain in a portion of the mesogastrium and in the left side. She reported recent weight loss (of 5 kg) after having had dengue fever. She also reported no comorbidities and stated that she was not using contraceptives. The physical examination revealed Giordano’s sign on the left side. The results of the blood count and urinalysis were normal. Computerized tomography of the abdomen showed compression of the left renal vein (LRV) caused by the uncinate process of the pancreas pressing against the aorta, leading to dilation of the proximal segment, with an intraluminal thrombus (Figures 1A and 1B), dilation of the collateral perirenal venous system, dilation of the gonadal veins, and ipsilateral pelvic varices (Figures 1C and 1D). The patient was treated with oral anticoagulants for four months and declined to have a stent placed in the LRV.

Vascular compressive syndromes occur in less than 1% of the cases and represent vascular trapping between rigid surfaces, which lead to manifestations caused by hypertension, venous congestion, thrombosis, and arterial ischemia(1–4).

The causes of compression of the LRV include expansive retroperitoneal formations, anatomical variations, and nutcracker syndrome (NCS)(2). NCS is usually caused by the trapping of the LRV between the superior mesenteric artery and the abdominal

Figure 1. A,B: Contrast-enhanced arterial-phase CT of the abdomen, in the axial plane and in sagittal reconstruction, respectively, characterizing clots within the proximal portion of the LRV (white arrowhead), showing a reduction in its caliber at the aortomesenteric compression (black arrows), close to its junction with the inferior vena cava (VC), due to the extrinsic compression exerted by the uncinate process of the pancreas (asterisk) against the aorta (AO). Additional finding: diffuse hypointense signal in the hepatic parenchyma, suggesting fatty infiltration. C,D: Contrast-enhanced arterial-phase CT of the abdomen, in the axial plane and in sagittal reconstruction, respectively, showing dilation of the pelvic vessels (arrowheads) near the left lateral aspect of the uterus and the left gonadal vein (black arrow), with dilated collateral veins in the ipsilateral perirenal space (white arrow).
Dear Editor,

A 43-year-old female patient with no known diseases sought medical attention complaining of increased abdominal volume. The patient underwent ultrasound and subsequent magnetic resonance imaging (MRI) of the pelvis (Figure 1), which showed an expansive cystic lesion, with heterogeneous content, measuring 16.0 x 16.0 x 10.0 cm and containing numerous oval formations of various sizes. The lesion was hyperdense on ultrasound and mobile upon a change in patient position. The oval formations showed intermediate signal intensity on T1- and T2-weighted MRI scans, with no evidence of signal loss in fat-saturated sequences or signal drop on an out-of-phase T1-weighted gradient-echo sequence. These imaging findings, although uncommon, are pathognomonic of mature cystic teratoma (MCT). The patient underwent surgery, and the diagnosis was confirmed by histopathological analysis of the surgical specimen.

Also known as a dermoid cyst, MCT is the most common benign ovarian tumor, accounting for 10–25% of cases in adult patients and 50% of those in pediatric patients[1–3]. MCTs are typically asymptomatic and slow-growing[1,3]. They are usually seen in women of reproductive age and are rarely diagnosed before puberty. Its growth ceases at menopause[4–7]. An MCT typically contains well-differentiated tissues of the three germ layers[1,5]: the ectoderm, (derived from the skin and neural tissues); the mesoderm (osteomuscular and adipose tissues); and the endoderm (ciliated and mucinous epithelium). The diversity of tissues in teratomas results in a wide variety of characteristics in imaging studies.

In most cases, pelvic tumors do not present imaging features that are considered diagnostic[8–12]. However, MCTs often present typical imaging features, which facilitate the diagnosis. Among such features, one of the most common is that of a fatty tumor[3]. In such cases, the most common ultrasound finding is that of a cystic mass with an echogenic tubercle (a Rokitansky nodule), presenting posterior acoustic shadowing secondary to calcifications, strands of hair, or foci of fat[4,5,7].

Characteristic findings on computed tomography include areas of fat attenuation, with or without foci of calcification. On