TWO-STEP TREATMENT
OF PATIENT WITH DEBAKEY TYPE III DISSECTION

Veselin Petrov¹, Plamen Panayotov², Chavdar Bachvarov³, Emil Yordanov¹, Martina Sapundzhieva¹

¹Clinic of Vascular Surgery, St. Marina University Hospital, Varna, Medical University of Varna
²Clinic of Cardiac Surgery, St. Marina University Hospital, Varna, Medical University of Varna
³Department of Angiographic Diagnostics, St. Marina University Hospital, Varna, Medical University of Varna

ABSTRACT
Aortic dissection is part of the acute aortic syndrome. Dissection was described for the first time during the autopsy of the British king George II in the 18th C. The disease represents blood entering between the layers of the aortic wall, leading to the formation of two parts of the lumen – a true and a false one. A lot of predisposing factors threaten the aortic wall entirety and are a reason for dissection onset: arterial hypertension, hereditary connective tissue disease (Marfan, Ehlers-Danlos), atherosclerosis, vasculitis, iatrogenic factors (aortic catheterization), etc. Different classifications are used to describe the dissection type: De Bakey and Stanford. A total of 60% of dissections involve the ascending aorta (DeBakey I, II; Stanford A). A total of 40% are type III DeBakey, B Stanford and are divided into complicated and uncomplicated. The complicated type B AAD is associated with ruptures, organ malperfusion, and a rapid increase of aortic diameter. Type B complicated dissections need operative treatment.

Keywords: aortic dissection type III, stent graft, anatomic debranching

INTRODUCTION
Aortic dissection is part of the acute aortic syndrome. Dissection was described for the first time during the autopsy of the British king George II in the 18th C. The disease represents blood entering between the layers of the aortic wall, leading to the formation of two parts of the lumen – a true and a false one. A lot of predisposing factors threaten the aortic wall entirety and are a reason for dissection onset: arterial hypertension, hereditary connective tissue disease (Marfan, Ehlers-Danlos), atherosclerosis, vasculitis, iatrogenic factors (aortic catheterization), etc. Different classifications are used to describe the dissection type: De Bakey and Stanford.
на и са причина са възникването на последващата дисекция: артериална хипертония, вродени съединителнотъканни заболявания (синдром на Marfan, Ehlers-Danlos), атеросклероза, васкулите, ятrogenни фактори (аортна катетеризация) и др.

Използват се две класификационни системи за определяне типа дисекции: DeBakey и Stanford. 60% от дисекциите обхващат асцендентната аорта (DeBakey I, II; Stanford A). 40% са дисекации тип III DeBakey, В Stanford, които от своя страна се обособяват на усложнени и неусложнени. Усложнените тип В AAD се асоциират с руптура, органна малперфузия, бързо нарастване на аортния диаметър. Усложнените тип В дисекции налагат оперативно лечение.

CLINICAL CASE

We present a 58-year-old male patient admitted to Clinic of Cardiac Surgery due to complaints of sudden acute retrosternal pain. The diagnostics established aortic dissection type III DeBakey/B Stanford. The patient reported arterial hypertension with usual values of 160/100 mmHg. The patient had undergone a nephrectomy in the past because of hypernephroma.

Examination

The man was in a visibly impaired general condition, RR 165/75mmHg. The laboratoty results were normal as well as the immunology ones. The angiological condition was characterized by a preserved peripheral pulse in all accessible anatomical points. Computed tomography (CT) angiography showed intimal flap in the initial part of the aorta immediately after the left subclavian ostium: The dissection spread until the left common iliac artery, causing a critical stenosis of its true lumen. An additional pathology included bilateral pleural effusions and ascites (Fig. 1).

CLINICAL DISCUSSION

It was considered that a hybrid intervention would be used. It consisted of debranching of left subclavian ar-

Fig. 1. Volume-rendering technique (VRT) – dissection of thoracic aorta after the left subclavian arterial ostium

Fig. 2. Left aorta-carotid bypass

Stanford. A total of 60% of dissections involve the ascending aorta (DeBakey I, II; Stanford A). A total of 40% are type III DeBakey, B Stanford and are divided into complicated and uncomplicated. The complicated type B AAD is associated with ruptures, organ malperfusion, and a rapid increase of aortic diameter. Type B complicated dissections need operative treatment.
Two-Step Treatment of Patient with DeBakey Type III Dissection

КЛИНИЧНО ОБСЪЖДАНЕ

Прецени се, че е уместно да се извърши хибридно лечение на дисекцията – Debranching на лявата обща каротидна артерия и поставяне на stentgraft за оклузия на entry point на дисекцията, който се откри дистално от лявата обща каротидна артерия. Необходимостта от debranching бе обусловена от нуждата landing зоната на стентграфта да бъде по-проксимално от отдалечението на лявата обща каротидна артерия. Въз е решение за хибридна двуетапна интервенция. Първия ден се извърши възстановяване на кръвоожаката към лява каротидна артерия, като се направи аорто-каротиден байпас с дакро-

tery and an insertion of a stent graft with the aim to close the entry point, which was revealed distally of the left subclavian artery. The necessity of debranching was determined by the need of a stent graft landing zone to be positioned proximal to left subclavian arterial ostium. A decision was made for hybrid treatment. On the first day a blood flow repair in the left subclavian artery was done with a construction of an aorto-carotid bypass with an 8 mm graft (Fig. 2).

On the second day the second stage of the treatment, TEVAR of the descending aorta through a right femoral access, was carried out. Under general anesthesia using transbrachial access a 5 Fr catheter was placed in order to conduct an aortography. The examination showed the truncus brachiocephalicus, aorto-carotid bypass, normal left subclavian artery and vertebral arteries. Trough right femoral access was present the femoral artery. After an arteriotomy a 4 Fr catheter was placed reaching to the infrarenal aorta. First, the guide was visualized in the false lumen. A reposition was made and the guide was correctly situated in the true lumen until it reached the aortic arcus where the stent graft was deployed. During the procedure the left subclavian ostium was covered. The final angiography demonstrated a total recovery of the blood flow in the true thoracic aortic lumen (Fig. 3).

RESULTS

The postoperative period ran a difficult course. There was malignant hypertension, rhythm disruptions, because of which a pacemaker was placed. The patient was discharged without a neurological symptoms.
 nuevas protesas 8 mm (Fig. 2).

На следващия ден се извърши вторият етап от хи-
брридното лечение – TEVAR на десен десен аор-
та през десен феморален достъп. Под обща анес-
tезия чрез трансбрехилален достъп с 5 Fr дезиле за
артериография. На ангиографията се визуализи-
раха truncus brachiocephalicus, аорто-каротидни-
ят байпас, нормална ляв a. subclavia и нормални
вертебрални артерии. Чрез отворена хирургия и
отпрепариране на дясната обща бедрена артерия
в ингвиналната гънка се постави дезиле 4 Fr, под
рентгеноскопичен контрол се въведе водач, кой-
то в зоната на енфравенилната аорта попада във
фалшивия лумен. След репозиция водачът се пла-
sира в истинския лумен, като се достигна аортна-
ta дъга и върху металния водач се разгъна стент-
graft. При това се покри устието на лявата обща
каротидна артерия и лявата подключична артерия.
Постпроцедурната ангиография показа пълно въз-
становяване на кръвния ток в истинския лумен на
tоракалната аорта. Въпреки наличата дисекция
на лявата обща илична артерия, кръвотокът дву-
странно в иличните артерии бе нормален, съдово-
те бяха с нормален лумен и с бърз кръвоток (Фиг.
3).

The color Doppler ultrasonography established an in-
tact bypass with excellent blood flow characteristics
(Fig. 4).
The control CT angiography presented patent aorto-
carotid reconstruction, thrombosing false lumen, and
normal blood flow in the lower extremities arteries
and visceral branches (Fig. 5).
The patient was discharged in a good general con-
tition, with healed wounds, and compensated hemody-
namics of all arteries of the upper and lower extremi-
ties and visceral branches (Fig. 6).

CONCLUSION
The presented case needed a hybrid approach that led
to reduction of the operative time and the trauma. The
anatomical debranching was a better option in regard
to long-term results. The carotid-carotid debranching
is associated with postoperative discomfort. Severe
complications are possible - infection, hemorrhage,
rethrombosis, which are avoided with the anatomical
debraunching. The patient was followed up for a year
with the control CT visualizing correct stent graft po-
sition and intact arteries.
REFERENCES

1. G.A. Antoniu, K.E. Sakka, M. Hamady, J.H.N. Wolfe. Hybrid treatment of complex aortic arch disease with supra-aortic debranching and endovascular stent graft repair. European Journal of Vascular & Endovascular Surgery; June 2010, volume 39 issue 6, pages 683 – 690.

2. Ernst Weigang, Jack Parker, Martin Czerny, Ali.A. Peyvandi, et al. Endovascular aortic arch repair after aortic arch debranching. The Annals of Thoracic Surgery, February 2009, vol.87, issue 2, pages 603 – 607.

3. R.A. Yoshida, R. Kolvenbach, W.B. Yoshida, et al. Total endovascular debranching of the aortic arch. European Journal of Vascular & Endovascular Surgery; November 2011, volume 42, issue 5, pages 627 – 630.

Address for correspondence:

Prof. Veselin Petrov
Clinic of Vascular Surgery
St. Marina University Hospital
1 Hristo Smirnenski Blvd
9000 Varna
e-mail: vesko_petrov@abv.bg

Изход от заболяването:
Следоперативният период протече затягнато – малигнена хипертония, ритъмни нарушения, които наложиха поставяне на пейсмейкър. Пациентът бе без отпадна неврологична симптоматика. Ехо-доплеровото изследване следоперативно показа проходим байпас с много добри характеристики на кръвния ток (Фиг. 4).
Контролният CT скенер показа интактна аорта-каротидна реконструкция, тромбоизирал фалшив аортен лumen, интактен кръвоток в артерии на долни крайници и висцерални браншове (Фиг. 5).
Пациентът бе изписан на 23-тия следоперативен ден в много добро общо състояние, с първично компенсирани хемодинамика на всички артерии на горни и долни крайници и висцерални органи (Фиг. 6).

ЗАКЛЮЧЕНИЕ

Представеният клиничен случай изисква хибриден подход, което позволява намаляване на оперативното време и травма за протезиране на аортата и възстановяване кръвотока в каротидната артерия (1). Извършването на анатомичен дебранчинг е по-добър вариант според нас по отношение дългосрочната перспектива за лечение (2). Каротидо-каротидният дебранчинг е свързан с много дискомфорт за пациента следоперативно. Възможни са и сериозни усложнения – инфекция, хеморагия, ретромбоза, които се избягват при извършване на анатомичен дебранчинг (3). Добрият изход бе проследен една година след операцията, като контролният скенер показва правилно позициониране, без миграция на стентграфта и проходими артерии.

Адрес за кореспонденция:

проф. Веселин Петров
Клиника по съдова хирургия
УМБАЛ „Света Марина” – Варна
бул. „Христо Смирненски” 1
e-mail: vesko_petrov@abv.bg