A Semi-supervised Type-based Classification of Adjectives: Distinguishing Properties and Relations

Matthias Hartung Anette Frank

Computational Linguistics Department
Heidelberg University

LREC 2010, Valletta
Motivation: Using Adjectives for Ontology Learning (1)

1. Learning Ontological Knowledge from Adjectives:

- **attributes**

 \[\text{grey donkey} \equiv \text{COLOR(donkey)} = \text{grey} \]

- **roles**, i.e. ”founded” attributes (cf. Guarino, 1992)

 \[\text{fast car} \equiv \text{SPEED(car)} = \text{fast} \]

- **relations**

 \[\text{economic crisis} \equiv \text{AFFECT(crisis, economy)} \]

Different types of adjectives require different ontological representations!
Motivation: Using Adjectives for Ontology Learning (2)

2. Using Adjectives for Clustering Nouns into Concepts:

Clustering Features (pattern-based):

- attribute nouns:
 - the ATTR of the NOUN
- adjectives denoting properties of the noun:
 - the ADJ NOUN

Results:

- best results by combination of attribute and adjective features
- problem: attributive position is too unrestrictive for identifying property-denoting adjectives

(Almuhareb, 2006)
Hypothesis: Classification is a prerequisite for ontology learning from adjectives.

We adopt an adjective classification scheme from the literature that reflects the ontological information we are interested in:

- **attributes** ≡ **basic** adjectives
 - e.g.: *grey donkey*
- **roles** ≡ **event-related** adjectives
 - e.g.: *fast car*
- **relations** ≡ **object-related** adjectives
 - e.g.: *economic crisis*

(Boleda 2007; Raskin & Nirenburg 1998)
Overview

1 Background & Motivation

2 Annotation Experiment
 - Initial Classification Scheme: BEO
 - Task Description
 - First Results
 - Results after Re-Analysis

3 Automatic Classification
 - Methodology
 - Experimental Settings
 - Evaluation Results

4 Conclusions
BEO Classification Scheme (1)

Basic Adjectives

- adjective denotes a value of an attribute exhibited by the noun
- values are either discrete or predications over a range of several values (depending on the concept being modified)

Examples

- red carpet \Rightarrow COLOR(carpet)=red
- oval table \Rightarrow SHAPE(table)=oval
- young bird \Rightarrow AGE(bird)=[?,?]
BEO Classification Scheme (2)

Event-related Adjectives
- there is an event the referent of the noun takes part in
- adjective functions as a modifier of this event

Examples
- **good knife** ⇒ *knife that cuts well*
- **fast horse** ⇒ *horse that runs fast*
- **interesting book** ⇒ *book that is interesting to read*
BEO Classification Scheme (3)

Object-related Adjectives
- The adjective is morphologically derived from a noun N/ADJ.
- N/ADJ refers to an entity that acts as a semantic dependent of the head noun N.

Examples
- **environmental destruction**

 N
 \Rightarrow destruction$_N$ [of] the environment$_N/ADJ$
 \Rightarrow destruction$(e, \text{AGENT: } x, \text{PATIENT: environment})$

- **political debate**

 N
 \Rightarrow debate$_N$ [about] politics$_N/ADJ$
 \Rightarrow debate$(e, \text{AGENT: } x, \text{TOPIC: politics})$
Annotation Study: Task Description and Methodology

Data Set
- list of 200 high-frequency adjectives from the British National Corpus
- random extraction of five example sentences from the written part of the BNC for each of the 200 adjectives

Methodology
- three annotators
- task: label each of the 1000 items with BASIC, EVENT, OBJECT or IMPOSSIBLE
- instructions: short description of the classes plus examples
BEO Classification: Fundamental Ambiguities

BASIC vs. EVENT

- ***fast horse***
 - BASIC reading: \(\text{SPEED}(\text{horse}) = \text{fast} \)
 - EVENT reading: *horse that runs fast*

- ***good knife***
 - BASIC reading: \(\text{QUALITY}(\text{knife}) = \text{good} \)
 - EVENT reading: *knife that cuts well*

Additional Instructions: Differentiation Patterns

If one of the following patterns holds for an ambiguous item, this indicates a property that is **founded** on an EVENT:

- ENT’s property of being **ADJ** is due to ENT’s ability to EVENT.
- If ENT was unable to EVENT, it would not be an ADJ ENT.
Category-wise Annotator Agreement

	BASIC	EVENT	OBJECT
\(\kappa \)	0.368	0.061	0.700

Table: Category-wise \(\kappa \)-values for all annotators

- overall agreement: \(\kappa = 0.4 \) (Fleiss 1971)
- separating the OBJECT class is quite feasible
- Can poor overall agreement be traced back to the ambiguities between BASIC and EVENT class?
Cases of Disagreement

	BASIC	EVENT	OBJECT
2:1 agreement	283	21	66
3:0 agreement	486	5	62

Table: Cases of Agreement vs. Disagreement

	1 voter		
	BASIC	EVENT	OBJECT
2 voters			
BASIC	−	172	16
EVENT	18	−	1
OBJECT	54	10	−

Table: Distribution of Disagreement Cases over Classes

BASIC/EVENT ambiguity is the **primary source of disagreement**!
People have substantial difficulties in distinguishing BASIC from EVENT adjectives!

Re-analysis: **binary classification scheme**
- adjectives denoting **properties** (BASIC & EVENT)
- adjectives denoting **relations** (OBJECT)

overall agreement after re-analysis: \(\kappa = 0.69 \)

	BASIC+EVENT	OBJECT
\(\kappa \)	0.696	0.701

Table: Category-wise \(\kappa \)-values for all annotators (after re-analysis)
Overview

1. Background & Motivation

2. Annotation Experiment
 - Initial Classification Scheme: BEO
 - Task Description
 - First Results
 - Results after Re-Analysis

3. Automatic Classification
 - Methodology
 - Experimental Settings
 - Evaluation Results

4. Conclusions
Methodology

- **task**: automatically classify adjectives according to their denotation: *properties* (ATTR) vs. *relations* (REL)
- **features**: set of *lexico-syntactic patterns* capturing systematic differences of these adjective classes in certain grammatical constructions
- **overcome feature sparsity**:
 - classification on the **type level**
 - **semi-supervised** approach: acquire enough training material on the type level by heuristic annotation projection
Features for Classification

Group	Feature	Pattern				
I	as	as JJ as				
	comparative-1	JJR NN				
	comparative-2	RBR JJ than				
	superlative-1	JJS NN				
	superlative-2	the RBS JJ NN				
	extremely	an extremely JJ NN				
	incredibly	an incredibly JJ NN				
	really	a really JJ NN				
	reasonably	a reasonably JJ NN				
	remarkably	a remarkably JJ NN				
	very	DT very JJ				
II	predicative-use	NN (WP	WDT)? is	was	are	were RB? JJ
	static-dynamic-1	NN is	was	are	were being JJ	
	static-dynamic-2	be RB? JJ				
III	one-proform	a/an RB? JJ one				
IV	see-catch-find	see	catch	find DT NN JJ		
		they saw the sanctuary desolate				
		Baudouin’s death caught the country unprepared				
VI	morph	adjective is morphologically derived from noun economy ← economy				

Table: Set of features used for classification
Experimental Settings

Data Set

- manually annotated seed data (A_s): 164 property-denoting, 18 relational adjective types
- heuristic annotation projection:
 - extract 5,000 sentences per type from ukWaC corpus (A_{acq})
 - for every adjective token in A_{acq}: project unanimous class label from the corresponding type in A_s

Evaluation

- several feature configurations:
 - all-feat: all features individually
 - all-grp: all features, collapsed into groups
 - no-morph: all features individually, without morph feature
- 10-fold cross validation
- baseline: label all instances with majority class (ATTR)
Experimental Results

ATTR	REL						
	P	R	F	P	R	F	Acc
all-feat	0.96	0.99	0.97	0.79	0.61	0.69	0.95
all-grp	0.96	0.99	0.97	0.85	0.61	0.71	0.95
no-morph	0.95	0.96	0.95	0.56	0.50	0.53	0.91
Baseline	0.90	1.00	0.95	0.00	0.00	0.00	0.90

Table: Precision, recall and accuracy scores for Boosted Learner (10-fold cross-validation)

- high precision for both classes
- recall on the REL class lags behind
- morph-feature is highly valuable for REL class
- boosting benefits from collapsing sparse features into groups
Selective Evaluation of Class Volatility

Type	ATTR Tokens	REL Tokens	IMPOSS Tokens
beautiful (ATTR)	50	0	0
black (ATTR)	35	7	8
bright (ATTR)	45	1	4
heavy (ATTR)	42	0	8
new (ATTR)	50	0	0
civil (REL)	0	49	1
commercial (ATTR)	5	44	1
cultural (REL)	2	48	0
environmental (REL)	0	48	2
financial (REL)	0	46	4

Table: Volatility of prototypical class members

- average class volatility on the token level: 8.6%
- rough estimate of the error introduced by raising the classification task to the type level
Prospects of adjective classification for ontology learning:

- attribute/role distinction on the basis of adjectives alone is difficult even for human judges
- property-denoting and relational adjectives can be automatically distinguished at high precision for both classes
 - even with small and skewed training data
 - even in the absence of a morphological lexicon (see paper)

What else?

- classification on the type level is justified by tolerable degree of class volatility
- shallow feature set should be easily applicable to specialized domains and adaptable to different languages
Thank you for your attention!
Any questions?