The GERDA experiment: results and perspectives

Carla Macolino\(^1\) on behalf of the GERDA Collaboration

INFN, Laboratori Nazionali del Gran Sasso, L’Aquila, Italy

E-mail: carla.macolino@lngs.infn.it

Abstract. The Germanium Detector Array, GERDA, at Laboratori Nazionali del Gran Sasso (Italy), is designed to search for Majorana neutrinos via neutrinoless double beta (0\(^\nu\beta\beta\)) decay of \(^{76}\text{Ge}\). GERDA completed the Phase I in 2013, after an exposure of 21.6 kg·yr and with a background of about 0.01 cts/(keV·kg·yr): no signal was found and a limit on the half-life of \(T_{0\nu1/2}\) > 2.1 \cdot 10^{25} \text{ yr (90\% C.L.)} was established. The previous claim of 0\(^\nu\beta\beta\) observation for \(^{76}\text{Ge}\) is strongly disfavoured in a model independent way. The commission for GERDA Phase II is currently ongoing and about 20 kg of additional enriched Ge diodes will be deployed. Pulse-shape analysis, together with the liquid argon instrumentation will allow to reach a background level one order of magnitude lower than in Phase I. In this paper the measurement of the half-life of 0\(^\nu\beta\beta\) decay from GERDA Phase I and the expected sensitivity for Phase II are discussed.

1. Introduction
The observation of neutrinoless double beta decay (0\(^\nu\beta\beta\)) probes fundamental questions about lepton number violation and neutrino properties, indeed it would give direct information on the possible “Majorana” nature of the neutrino and could determine the absolute neutrino mass complementary to other techniques. 0\(^\nu\beta\beta\) decay could be observed experimentally as a narrow peak at the end-point of the 2\(^\nu\beta\beta\) decay energy spectrum, corresponding to the Q-value (\(Q_{\beta\beta}\)) of the decay, given by the sum energy of the two emitted electrons. The GERDA experiment [1, 2, 3] searches for neutrinoless double beta decay of \(^{76}\text{Ge}\), in which \(^{76}\text{Ge}\) (Z=32) would decay into \(^{76}\text{Se}\) (Z=34) and two electrons. GERDA detectors are germanium semiconductors with an enrichment fraction in \(^{76}\text{Ge}\) of about 86\%. The crystals act as both the decay source and a 4\(\pi\) detector and their very good energy resolution translate in a narrow 0\(^\nu\beta\beta\) peak at \(Q_{\beta\beta}=2039 \text{ keV}\).

2. The GERDA experiment
The GERDA experimental setup consists of an array of bare \(^{enr}\text{Ge}\) (Ge detectors enriched in \(^{76}\text{Ge}\)) semiconductors, placed in strings into a cryostat filled with liquid argon (LAr) and surrounded by an additional shield of ultra-pure water. Liquid argon is the cooling medium for the \(^{enr}\text{Ge}\) detectors and also acts as shield against external gamma radiation from the cryostat walls. The water buffer provides the Cherenkov medium for the muon veto, attenuates the flux of the external \(\gamma\) radiation and absorbs neutrons. Further details about the GERDA experimental setup are reported in ref. [3]. Data acquisition of GERDA Phase I started in November, 2011 with nine p-type \(^{enr}\text{Ge}\) semi-coaxial (HPGe) detectors (from the previous HdM

\(^1\) presently also at INFN, Gran Sasso Science Institute, L’Aquila, Italy
and IGEX experiments) with a total mass of about 20.7 kg (17.7 kg enriched and 3 kg not enriched). Five Broad Energy GErmanium diodes \(^2\) (BEGes), were deployed on July 2012, with total mass of about 3.6 kg. The energy scale is determined by calibrating the detectors with \(^{228}\)Th sources on a weekly basis. The exposure-weighted average energy resolution (FWHM), extrapolated at \(Q_{\beta\beta}\), is \((4.8\pm0.2)\) keV for semi-coaxial detectors and \((3.2\pm0.2)\) keV for BEGes. Events in the region of interest (in the interval \(Q_{\beta\beta}\pm20\) keV) were kept “blinded”, i.e. not processed, until the calibration was finalized and all the selection cuts and analyses were fixed. The experimental energy spectra for the enriched and natural detectors are shown in fig. 1. The green boxes indicate the blinded window at \(Q_{\beta\beta}\pm20\) keV. Visible gamma peaks are from \(^{40}\)K and \(^{42}\)K decays and from the decay chains of \(^{226}\)Ra and \(^{232}\)Th. The low energy part of the spectrum is dominated by the \(\beta\)-decay of \(^{39}\)Ar and events from \(2\nu\beta\beta\) decay populate the range from 600 to 1800 keV; the half-life of \(2\nu\beta\beta\) decay for \(^{76}\)Ge has been measured after collecting an exposure of 5.04 kg·yr (see ref. [5]). Above 4000 keV the background is dominated by \(\alpha\) decays of \(^{210}\)Po and \(^{226}\)Ra. The energy spectrum from semi-coaxial and BEGe detectors is fitted to a background model in the range between 570 and 7500 keV (for further details see ref. [6]): the background is mainly due to sources close to the detectors or on the detector surface and no peak is expected to appear in the region of interest. In this region, with the exclusion of \(\pm5\) keV around the expected position of the single escape peak from \(^{208}\)Tl (2104 keV) and of the \(\gamma\) line from \(^{214}\)Bi (2119 keV), the interpolated value for the background index (BI) is \(BI=1.75^{+0.26}_{-0.24}\times10^{-2}\) cts/(keV·kg·yr) for semi-coaxial detectors and \(BI=3.6^{+1.3}_{-1.6}\times10^{-2}\) cts/(keV·kg·yr) for the BEGe detectors. Detector signals are read out independently by a charge sensitive amplifier; the signal is then digitized by 100 MHz Flash ADCs and physical parameters like energy and risetime of the signal are reconstructed by digital filters [7]. The specific pulse shape of \(0\nu\beta\beta\) events in GERDA detectors is used to discriminate them from background events. In GERDA Phase I two different methods for Pulse Shape Discrimination (PSD) have been developed, according to the different characteristics of the pulses and electric field distributions of semi-coaxial and BEGe detectors [8]. For a review of the GERDA experiment see also ref. [9].

\(^2\) manufactured by Canberra in Olen, Belgium
TABLE I. Parameters for the three data sets with and without the pulse shape discrimination (PSD). “bkg” is the background index, calculated as bkg/($E_{\nu}^2 + 100$ keV), where E_{ν} is the measured energy. Epilepsia: the 90% C.L. limit estimated by GERDA Phase I (blue). In the lower panel the energy window used for the background interpolation is indicated. Plot from ref. [4].

The event in the BEGe data set is rejected by the A/E with the expectation. Five of the six events have the detectors, three are classified as SSE by ANN, consistent before the PSD, to be compared to 5 events allowed region. The likelihood ratio is only evaluated for the physically and 1 energetic resolution and energy scale are folded in with a as shown in Fig. 1. This can be compared with three events detected with the corresponding limit on the half-life is $T_{1/2} > 2.0 \times 10^{25}$ yr. The 90% C.L. limit, given the background levels and the efficiencies, is $T_{1/2} > 2.4 \times 10^{25}$ yr. The systematic uncertainties due to detector parameters, selection efficiency, energy resolution and energy scale, were folded into the half-life estimation; they weaken the limit by about 1.5%. A Bayesian analysis [10] was also performed (using the BAT toolkit [11]) with the same fit and a flat prior distribution for $1/T_{1/2}^0$ between 0 and 10^{-24} yr$^{-1}$. The corresponding result for the limit is $T_{1/2}^0 > 1.9 \times 10^{25}$ yr, with a median sensitivity of $T_{1/2}^0 > 2.0 \times 10^{25}$ yr. The GERDA result does not support the previous claim of $0\nu\beta\beta$ decay observation in 76Ge [12]. The Bayes factor, i.e. the ratio between the probability that the observed data D are produced according to the model H_1 ($0\nu\beta\beta$ with half-life $T_{1/2}^0$) from ref. [12]) and the probability that they are produced according to the model H_0 ($0\nu\beta\beta$ with half-life $T_{1/2}^0$).

3. Results on $0\nu\beta\beta$ decay of 76Ge

After the collection of an exposure of 21.6 kg-yr from GERDA Phase I, a limit on the half-life of $0\nu\beta\beta$ decay in 76Ge was established [4]. Phase I data were divided into three different sets: data from the BEGe detectors (“BEGe” set), data from semi-coaxial detectors in the time period when the BEGe detectors were deployed (“silver” set) and remaining data from semi-coaxial detectors (“golden” set). “Unblinded” data showed a flat background in the region of interest, with seven events observed while 5.1±0.5 were expected from background interpolation. After the PSD was applied, three events from the semi-coaxial detectors and the one from the BEGe detector were classified as background. No event remains in the energy window $Q_{\beta\beta} \pm \sigma_E$ and the corresponding BI becomes 10^{-2} cts/(keV-kg-yr). The observed spectrum was fitted with a profile likelihood fit; the fitted function contains three constant terms for the background (for the three data sets) and a Gaussian peak, centered at $Q_{\beta\beta}$ and with standard deviation according to the energy resolution. The four corresponding parameters of the function were the three terms for the background and $1/T_{1/2}^0$. The limit on the half-life is $T_{1/2}^0 > 2.1 \times 10^{25}$ yr (90% C.L.) and the best fit value for the number of $0\nu\beta\beta$ events is N_{ν}=0. The corresponding limit on the number of signal events is $N_{\nu}^0 < 3.5$ counts. The median sensitivity for the 90% C.L. limit, given the background levels and the efficiencies, is $T_{1/2}^0 > 2.4 \times 10^{25}$ yr. The systematic uncertainties due to detector parameters, selection efficiency, energy resolution and energy scale, were folded into the half-life estimation; they weaken the limit by about 1.5%. A Bayesian analysis [10] was also performed (using the BAT toolkit [11]) with the same fit and a flat prior distribution for $1/T_{1/2}^0$ between 0 and 10^{-24} yr$^{-1}$. The corresponding result for the limit is $T_{1/2}^0 > 1.9 \times 10^{25}$ yr, with a median sensitivity of $T_{1/2}^0 > 2.0 \times 10^{25}$ yr. The GERDA result does not support the previous claim of $0\nu\beta\beta$ decay observation in 76Ge [12]. The Bayes factor, i.e. the ratio between the probability that the observed data D are produced according to the model H_1 ($0\nu\beta\beta$ with half-life $T_{1/2}^0$ from ref. [12]) and the probability that they are produced according to the model H_0 ($0\nu\beta\beta$ with half-life $T_{1/2}^0$).
H_0 (only background), is $P(D|H_1)/P(D|H_0) = 0.024$. In fig. 2 the “unblinded” spectrum is shown, together with the likelihood fit and the expectation based on the claim from ref. [12]. A combined profile likelihood fit, when GERDA data are combined with data from the Hdm [13] and IGEX [14] experiments, gives again $N^{0
u} = 0$ as best fit and $T_{1/2}^{0
u} > 3.0 \cdot 10^{25}$ yr (90% C.L.). Considering this limit, the phase-space factor for the 76Ge [15] and the nuclear matrix element calculations reported in refs. from [16] to [22] (scaling the different g_A and R_A parameters according to ref. [23]), the derived upper limits on the effective electron neutrino mass range between 0.2 and 0.4 eV. A Bayesian analysis gives the same limit and a Bayes factor equal to $P(D|H_1)/P(D|H_0) = 2 \cdot 10^{-4}$.

4. Phase II upgrades

The main goal of GERDA Phase II is to increase the sensitivity with respect to Phase I, by lowering the background level and increasing the total collected exposure. The background level will be reduced thanks to the implementation of a LAr scintillation veto and the procurement of 30 additional enriched BEGe detectors, to achieve a total mass of about 40 kg. The scintillation veto consists of the detection of the 128 nm scintillation light generated in liquid argon by radioactive background decays or cosmic muons, accompanied with the emission of gamma particles which eventually excite the argon. A curtain made of light-guiding fibers surrounding the detector strings will collect the light, eventually read out by Silicon Photo-Multipliers (SiPMs) on the top of the array. In addition, light will be also directly detected by PMTs coated by wavelength shifter and placed on top and bottom of the detector array. Residual background contamination will be rejected by the Pulse Shape Discrimination, as described in ref. [8]. The expected background index for GERDA Phase II, when the combination of LAr veto and Pulse Shape Discrimination is used, is of the order of 10^{-3} cts/(keV-kg-yr). The commissioning of the Phase II upgrade of GERDA is presently ongoing. The sensitivity of GERDA as a function of the total collected exposure is shown in fig. 3. With the increased total mass of enriched germanium an exposure of 100 kg-yr will be reached in about 3 years. The corresponding sensitivity on the half-life of $0\nu\beta\beta$ decay is $T_{1/2}^{0\nu} \simeq 1.4 \cdot 10^{26}$ yr.

References

[1] The GERDA collaboration 2004 Letter Of Intent
[2] The GERDA collaboration 2004 Proposal http://www.mpi-hd.mpg.de/GERDA
[3] The GERDA collaboration 2013 Eur. Phys. J. C 73 2330
[4] The GERDA collaboration 2013 Phys. Rev. Lett. 111 122503
[5] The GERDA collaboration 2013 J. Phys. G: Nucl. Part. Phys. 40 035110
[6] The GERDA collaboration 2013 Eur. Phys. J. C 74 2764
[7] Agostini M et al. 2011 J. Instrum. 6 P08013
[8] The GERDA collaboration 2013 Eur. Phys. J. C 73 2583
[9] Macolino C on behalf of the GERDA collaboration 2014 Mod. Phys. Lett. A29 1430001
[10] Caldwell A and Kröniger K 2006 Phys. Rev. D 74 092003
[11] Caldwell A, Kollar D and Kröniger K 2009 Comput. Phys. Commun. 180 2197
[12] Klapdor-Kleingrothaus H V et al. 2004 Phys. Lett. B 586 198
[13] Klapdor-Kleingrothaus H V et al. 2001 Eur. Phys. J. A 12 147
[14] Alseth C E et al. 2002 Phys. Rev. D 65 092007
[15] Kotila J and Iachello F 2012 Phys. Rev. C 85 034316
[16] Rodriguez T R and Martinez-Pinedo G 2010 Phys. Rev. Lett. 105 252503
[17] Menendez J et al. 2009 Nucl. Phys. A 818 139
[18] Barea J, Kotila J and Iachello F 2013 Phys. Rev. C 87 014315
[19] Suhonen J and Civitarese O 2010 Nucl. Phys. A 847 267
[20] Meroni A, Petcov S T and Simkovic F 2013 JHEP 1302 25
[21] Simkovic F, Rodin V, Faessler A and Vogel P 2013 Phys. Rev. C 87 045501
[22] Mustonen M T and Engel J 2013 Phys. Rev. C 87 064302
[23] Smolnikov A and Grabmayr P 2010 Phys. Rev. C 81 028502