Overview of Radon Background Correction Technology for Airborne Gamma Spectrometry

Chenhao Zeng1,2, Wanchang Lai1, Xiaojie Feng2, Chen Fan1, Jinfei Wu1,3 and Runqiu Gu1,4

1The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
2Dept. of Military Installation, Army Logistical University of PLA, Chongqing 401311, China
3School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
4Radiation Detection & Protection Institute of Nuclear Industry, Chengdu 610503, Sichuan, China

zchsilver@126.com

Abstract. In radiometric measurements, the radiation characteristics of radon and its daughters will increase the detection background value and affect the detection results. Research institutes in various regions of the world have studied the effects of radon and its daughters, and have done a lot of work according to the special climate, geological conditions and characteristics of radioactive events in their regions. In the view of the influence of radon background in airborne gamma-ray spectrometry measurement, this paper summarizes the research results of radon background correction in gamma-ray spectrometry measurement from three aspects in the world scope: environmental radiation monitoring, radiation monitoring instruments and nuclear emergency monitoring. In the aspect of environmental radiation monitoring, the research unit mainly considers the climatic factors such as rainfall, temperature and humidity, atmospheric and hydrological changes and seasonal changes, geological factors such as altitude, mineral types, and measurement means such as alpha measurement and inverse derivation gamma measurement. In terms of radiation monitoring instruments, radon and its daughters are mainly considered to reduce the impact and improve the measurement accuracy. In the aspect of nuclear emergency monitoring, the main consideration is how to improve the accuracy of measurement and avoid false alarm. On this basis, the research trend and development direction of radon background correction in airborne gamma-ray spectrometry are put forward.

1. Introduction

Background correction, stripping correction and height correction must be carried out in airborne gamma-ray spectrometry. Radon background has great influence on the measurement process. Researchers in various countries are devoted into radon correction. At present, researchers in China use 3 methods to correct radon background in aeronaautical measurement[1-6]. The first method is the upper method[7]. The IAEA-323 technical document recommends that the attached detector be placed above the main detector to measure radon in atmosphere. The second method is energy spectrum ratio
method[8]. The method recommend to use the relative height of uranium series photoelectric peak to evaluate the contribution of airborne radon to the observed energy spectrum. The third method is the full spectrum[9], which is proposed by Dickson et al. (1981). For a specific aerial survey height, the energy spectrum fitting method is used to calculate the atmospheric radon background.

With the continuous development of science and technology, radiation detection equipment and monitoring technology are changing rapidly. Researchers around the world are gradually studying the radon background correction method for the measurement of gamma spectrum from different aspects. In this paper, the advanced radon background correction technology in the world is investigated in combination with research needs. The radon background correction techniques for gamma-ray spectrometry are reviewed from three aspects: environmental radiation monitoring, radiation monitoring instruments and nuclear emergency monitoring. The research trend and development direction of radon background correction for airborne gamma-ray spectrometry are presented.

2. Environmental radiation monitoring

2.1. Rainfall influence

Many researchers have done a lot of practical measurement and analysis of the rainfall effects on radon and its daughter activities. The impact of radon progeny 210Pb and 214Bi on environmental gamma measurement after rainfall is very important[10]. The influence of radon accumulation in stable boundary layer on environmental gamma measurement is secondary[11, 12]. Thirdly, hydrological movement at sites with high radon fluxes may represent a source of false alarms about radioactive contamination[12].

The environmental gamma dose during rainfall is temporarily lower than the background value, sometimes due to water accumulation in the surface soil, which is part of the natural radioactivity in the soil gamma shielding and preventing radon emission[13-16]. The concentration of radon progeny in precipitation is a very complex function (distribution in the low altitude atmosphere)[17, 18]. Corresponding increases in near-surface environmental gamma doses appear to be inconsistent with rainfall rates, duration of rainfall events, precipitation, or other meteorological parameters[19-21]. However, it is often reported that there is an inverse relationship between its concentration and rainfall rate[20-22].

The National Institute of Physics and Nuclear Engineering of Romania tested a simple model for predicting Rainfall-Related enhancement of environmental gamma doses based on rainfall observations of events of comparative duration and intensity[10]. The Health Bureau of Ottawa, Canada, and the Radiation Protection Agency use rebound trajectory analysis, environmental gamma doses and rainwater data to obtain estimates of relative radon emission rates far from actual detection points[11]. Environmental Geology Research Institute of Italy use automatic NaI or CsI total gamma spectroscopy systems for monitoring radioactive contamination, hydrometeors forming at the ESHs in sites with a high radon flux could represent a relevant source of false alarms of radioactive contamination[12].

2.2. Geological factors

222Rn, which is almost chemically inert, is released from soil and rock into the atmosphere for diffusion and convective transport, unaffected by atmospheric removal, and is therefore depleted primarily by radioactive decay[23, 24]. The atmospheric abundance of 222Rn is closely related to its emission rate, usually 0.2 to 1.5 atoms cm$^{-2}$ s$^{-1}$[25]. It is affected by soil type, grain size, water content, porosity and permeability in turn[26-28]. Because of the complexity of geology, the effect of radon is very different[29]. In particular, pay attention to some special mining areas, such as the thorium mine area[30]. The basic release and transport mechanism between radon and thorium is the same[31]. According to the UNSCEAR report, thorium (including daughters) usually contributes 0.1 mSv, 10% or less of the radon dose[32, 33]. In addition, the marine contribution should be also paid attention to [34].
Atmospheric ^{214}Bi measurements were carried out at University of Ferrara in Italy to assess the feasibility of its abundance and vertical distribution. In this context, direct measurement of radon is carried out to verify its mode [23]. Ground gamma radiation from the Netherlands National Radiation Monitoring Network and soil radionuclides are compared in detail by the Institute of Energy and Sustainability at the University of Groningen in Nijmegen, the Institute of Earth Energy and the Groningen Isotope Research Centre. It enables the development of reliable and accurate radon flux maps in countries with little or no information on radon flux values[28]. Radon potential maps of the Oslo region have been produced by the Avalonian Geophysical College in the United Kingdom, using geological experiments, combined with indoor radon measurements and airborne gamma spectrometer measurements. Their work shows that the map provides the best indication of radon hazard in the whole area[29]. Researchers in India conducted field measurements of radon and thorium emission from thorium development zones in the coastal areas of Kerala to compare radon and thorium emission rates. The spatial variability of the thorium emanation rate on the beach was measured in situ. In addition, the gamma radiation was investigated in detail, the outdoor gamma dose was calculated, and the correlation between the two parameters was found[30].

3. Radiation monitoring instrument
Radon is produced by the decay of radium, which is part of the original decay chain of thorium and uranium, and exists in many structural materials used in detectors[35]. The radioactive daughter isotope of ^{222}Rn is one of the most dangerous pollutants in small signal detection. Since the half-life of ^{222}Rn is relatively long. It is uniformly distributed in the target, and its attenuation can simulate signal events. This background source will become the main source of large-scale experiments in the future.

A new anti-radon system based on high-purity germanium detectors has been developed by the underground laboratory of Camfranco and the low-activity Laboratory of the University of Zaragoza in Spain to provide ultra-low background and copper electroforming technical services to obtain high-purity copper parts[36]. This is a method worth learning to prevent radon.

Cryogenic distillation technology is also an important way to reduce radon's influence on liquid xenon detectors. The literature[37-39] shows that researchers have done a lot of research on cryogenic distillation technology, effectively reducing the impact of radon. In addition, cryogenic distillation is already successfully applied in the separation of xenon from ^{85}Kr, which is another important internal background source in liquid xenon experiments[40, 41].

4. Nuclear emergency monitoring
A large number of beta and gamma emitters, such as ^{90}Sr and ^{137}Cs, appeared during the nuclear accident. There are a large number of beta and gamma emitters, accompanied by alpha particle emitters like plutonium isotopes (38Pu, 249Pu and 240Pu)[42-44]. In order to detect plutonium isotopes in high-beta and gamma background fields, the IAEA, the Graduate School of Medicine of Nagoya University and the Institute of Engineering of Hokkaido University require alpha particle detectors with low beta and gamma ray sensitivity and good energy resolution to distinguish plutonium isotopes from Radon and its daughters. Taking the contaminated area of Fukushima Nuclear Power Station as the research area, they developed a new type of detector (gadolinium gallium garnet (GAGG) scintillator combined with silicon photomultiplier tube (SiPM)), which is of great practical significance for detecting places with high beta and gamma background (such as plutonium pollution in the contaminated area of Fukushima)[45].

In order to improve the early warning capability of the Czech Republic radiation monitoring network, the Czech National Conservation Institute upgraded the large-capacity aerosol sampler by placing the NaI (TI) detector directly above the aerosol filter, and subtracted the background effect caused by radon decay products accurately based on principal component regression (PCR)[46].

In addition, many other researchers are committed to studying the impact of radon reduction in nuclear emergency monitoring.
5. Conclusions
Radon is a very important element in nature. Radon and its progeny can not be ignored. In this paper, the effects of radon on environment, detection means and application of radiation monitoring are reviewed. The results and technical of research institutes around the world are summarized. In the future, radon correction will develop more and more. First of all, there are many factors affecting climate, not only rainwater, air flow, temperature and humidity, but also artificial climate changes can be studied in depth to create conditions for experiments. Secondly, the complexity of geological conditions will bring new topics to radon correction research. Finally, in-depth study from particle physics detection is an important way to reduce the influences of radon and its progeny.

Acknowledgments
The authors wish to thank to The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Contract 2017YFC0602105 for the financial support of this study.

References
[1] Zhang Q, Ge L, Gu R, Zeng G, Wang G, Xu H 2009 Method discussion about radon background correction in airborne gamma-ray spectrometry (Nuclear electronics & detection technology vol 29(2)) pp 349-352
[2] Ge L, Gu R, Zhang Q, Ma Y, Cheng F 2010 Radon background correlation using spectral-ratio method in natural gamma-ray spectrometry (Nuclear techniques vol 33(11)) pp 844-848
[3] He Z, Xiao D, Zhao G, Qiu S, Shan J, Fu Y, et al. 2013 Theoretical calculation and experimental determination of iterative correction factor for continuous measurement radon method (Atomic energy science and technology vol 47(6)) pp 1040-1043
[4] Fang J 2017 Study on the evaluation method of baseline measurement about airborne gamma ray spectrometry (Computing techniques for geophysical and geochemical exploration vol 39(4)) pp 490-499
[5] Wang J, Gao G, Yang J, Cai W, An Z, Ni W 2017 The estimation of radon background in the data processing of UAV gamma-ray spectrometry (Uranium geology vol 33(1)) pp 37-44
[6] Yang Y, Wu H, Liu Y, Liu Y, Meng F, Zhang S 2018 Study on artificial radioactivity information extraction from airborne gamma-ray spectrum (Nuclear techniques vol 41(2)) pp 020201-1-020201-7
[7] IAEA 1991 Airborne Gamma Ray Spectrometer Surveying (Vienna Technical Reports Series No. 323)
[8] Minty BRS 1998 Multichannel models for the estimation of radon background in airborne gamma-ray spectrometry (GEOPHYSICS vol 63(6)) pp 1986-1996
[9] H. DB, C. BR, L. GR 1981 Utilizing multichannel airborne gamma-ray spectra (Can J Earth Sci vol 18(12)) pp 1793-1801
[10] Melintescu A, Chambers SD, Crawford J, Williams AG, Zorila B, Galeri D 2018 Radon-222 related influence on ambient gamma dose (Journal of environmental radioactivity vol 189) pp 67-78
[11] Mercier JF, Tracy BL, d'Amours R, Chagnon F, Hoffman I, Korpach EP, et al. 2009 Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass (Journal of environmental radioactivity vol 100(7)) pp 527-33
[12] Voltaggio M 2012 Radon progeny in hydrometeors at the earth's surface (Radiation protection dosimetry vol 150(3)) pp 334-41
[13] Blauboer RO, Smetsers RCGM 1997 Outdoor concentrations of the equilibrium-equivalent decay products of 222Rn in The Netherlands and the effect of meteorological variables (Radiation protection dosimetry vol 69(1)) pp 7-18
[14] Smetsers RCGM 1995 An automated gross alpha beta activity monitor applied to time-resolved quantitative measurements of 222Rn progeny in air (Health Physics Society vol 68) pp 546-552
[15] Smetsers RCGM, van Lunenburg APPA 1994 Evaluation of the Dutch radioactivity monitoring network for nuclear emergencies over the period 1990-1993 (Radiation protection dosimetry vol 55(3)) pp 165-172
[16] Smetsers RCGM, Blaauboer RO 1994 Time-resolved monitoring of outdoor radiation levels in The Netherlands (Radiation protection dosimetry vol 55(3)) pp 173-181
[17] Williams AG, Zahorowski W, Chambers S, Griffiths A, Hacker JM, Element A, et al. 2011 The Vertical Distribution of Radon in Clear and Cloudy Daytime Terrestrial Boundary Layers (Journal of the Atmospheric Sciences vol 68(1)) pp 155-174
[18] Chambers SD, Zahorowski W, Williams AG, Crawford J, Griffiths AD 2013 Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories (Journal of Geophysical Research: Atmospheres vol 118) pp 1-13
[19] Cortés G, Sempau J, Ortega X 2001 Automated measurement of radon daughters Bi-214 and Pb-214 in rainwater (NUKLEONIKA vol 469(4)) pp 161-164
[20] Fujinami N 1996 Observational study of the scavenging of radon daughters by precipitation from the atmosphere (Environment International vol 22(1)) pp 181-185
[21] Greenfield MB, Domondon AT, Tsuchiya S, Tomiyama M 2003 Monitoring precipitation rates using γ rays from adsorbed radon progeny as tracers (Journal of Applied Physics vol 93(9)) pp 5733-5741
[22] Paatero J 2000 Wet deposition of radon-222 progeny in northern Finland measured with an automatic precipitation gamma analyser (Radiation protection dosimetry vol 87(4)) pp 273-280
[23] Baldoncini M, Albéri M, Bottardi C, Minty B, Raptis KGC, Strati V, et al. 2017 Exploring atmospheric radon with airborne gamma-ray spectroscopy (Atmospheric Environment vol 170) pp 259-268
[24] Jacobi W, André K 1963 The vertical distribution of radon 222, radon 220 and their decay products in the atmosphere (Journal of Geophysical Research vol 68(13)) pp 3799-3814
[25] Beck HL 1974 Gamma radiation from radon daughters in the atmosphere (Journal of Geophysical Research vol 79(15)) pp 2215-2221
[26] Turekian KK, Nozaki Y, Benninger LK 1977 Geochemistry of atmospheric radon and radon products (Annual Review of Earth and Planetary Sciences vol 5(1)) pp 227-255
[27] Szegvary T, Conen F, Ciais P 2009 European 222Rn inventory for applied atmospheric studies (Atmospheric Environment vol 43(8)) pp 1536-1539
[28] Manohar SN, Meijer HAJ, Herber MA 2013 Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides (Atmospheric Environment vol 81(1)) pp 399-412
[29] Smethurst MA, Watson RJ, Baranwal VC, Rudjord AL, Finne I 2017 The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping (Journal of environmental radioactivity vol 166(Pt 2)) pp 321-340
[30] Midhun M, Mathew S, Rejith RS, Jojo PJ, Sahoo BK 2017 Comparison of thoron (220Rn) content and gamma radiation level in high background radiation area of Kollam district in Kerala, India (Journal of Radioanalytical and Nuclear Chemistry vol 314(1)) pp 177-185
[31] Tanner A 1980 Radon migration in the ground: a supplementary review (Natural radiation environment vol 1(1)) pp 5-56
[32] UNSCEAR 1993 Sources and effect of ionizing radiation (United Nations, New York)
[33] UNSCEAR 2010 Sources and effects of ionizing radiation (NSCEAR 2008 report volume I: Sources) (United Nations, New York)
[34] Schery SD 2004 An estimate of the global distribution of radon emissions from the ocean (Geophysical Research Letters vol 31(19)) pp L19104-1-4
[35] Rupp N 2018 Radon background in liquid xenon detectors (Journal of Instrumentation vol 13(02)) pp C02001-C02001
[36] Bandac I, Borjabad S, Ianni A, Nunez-Lagos R, Perez C, Rodriguez S, et al. 2017 Ultra-low background and environmental measurements at Laboratorio Subterraneo de Canfranc (LSC) (Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine vol 126) pp 127-129

[37] Bruenner S, Cichon D, Lindemann S, Undagoitia TM, Simgen H 2017 Radon depletion in xenon boil-off gas (The European Physical Journal C vol 77(3)) pp 143

[38] Aprile E, Aalbers J, Agostini F, Alfonsi M, Amaro FD, Anthony M, et al. 2017 Online Rn removal by cryogenic distillation in the XENON100 experiment (The European Physical Journal C vol 77(6)) pp 358

[39] Aprile E, Aalbers J, Agostini F, Alfonsi M, Amaro FD, Anthony M, et al. 2017 First Dark Matter Search Results from the XENON1T Experiment (Physical review letters vol 119(18)) pp 181301

[40] Aprile E, Aalbers J, Agostini F, Alfonsi M, Amaro FD, Anthony M, et al. 2017 Removing krypton from xenon by cryogenic distillation to the ppq level (The European Physical Journal C vol 77(5)) pp

[41] Wang Z, Bao L, Hao X, Ju Y 2014 Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors (The Review of scientific instruments vol 85(1)) pp 015116

[42] Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, et al. 2015 Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident (Journal of environmental radioactivity vol 139) pp 308-319

[43] Cao L, Ishii N, Zheng J, Kagami M, Pan S, Tagami K, et al. 2017 Vertical distributions of Pu and radiocesium isotopes in sediments from Lake Inba after the Fukushima Daiichi Nuclear Power Plant accident: Source identification and accumulation (Applied Geochemistry vol 78) pp 287-294

[44] Schneider S, Bister S, Christl M, Hori M, Shozugawa K, Synal H-A, et al. 2017 Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: Forensic search for the “Forgotten” contaminants Uranium-236 and plutonium (Applied Geochemistry vol 85) pp 194-200

[45] Morishita Y, Yamamoto S, Izaki K, Kaneko JH, Hoshi K, Torii T 2018 Optimization of thickness of GAGG scintillator for detecting an alpha particle emitter in a field of high beta and gamma background (Radiation Measurements vol 112) pp 1-5

[46] Hyza M, Rulik P 2017 Low-level atmospheric radioactivity measurement using a NaI(Tl) spectrometer during aerosol sampling (Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine vol 126) pp 225-227