Supplemental information

Metabolic modeling of single bronchoalveolar macrophages reveals regulators of hyperinflammation in COVID-19

Qiuchen Zhao, Zhenyang Yu, Shengyuan Zhang, Xu-Rui Shen, Hao Yang, Yangyang Xu, Yang Liu, Lin Yang, Qing Zhang, Jiaqi Chen, Mengmeng Lu, Fei Luo, Mingming Hu, Yan Gong, Conghua Xie, Peng Zhou, Li Wang, Lishan Su, Zheng Zhang, and Liang Cheng
Supplementary Figures and Legends

Figure S1. Metabolic heterogeneity of immune subpopulations from BALF, related to Figure 1.
(A-B) A schematic diagram shows principal component analysis (A) and t-SNE visualization of subpopulations (B) in BALF from one healthy control based on all gene expression profiles.
(C-E) A schematic diagram shows principal component analysis (C) and t-SNE visualization of subpopulations (D and E) in BALF from one healthy control based on expression levels of 1526 metabolic genes.
(F) Bar plot shows the relative contributions of cell subpopulations in each cluster in figure D.

Figure S2. Metabolic reprogramming of macrophages in patients with mild or severe COVID-19, related to Figure 2.
(A) Metabolic pathway activities in macrophages from each mild or severe COVID-19 patient. Statistically non-significant values (random permutation test p>0.01) were shown as blank.
(B) Distribution of pathway activities in macrophages and key clinical data for each COVID-19 patient.
(C) Expression levels of 1526 metabolic gene expression in macrophages from different groups.
(D) Metabolic gene set enrichment analysis of macrophages from severe versus mild patients.

Figure S3. Metabolic reprogramming of macrophages in patients with 2 mild and 20 severe COVID-19 patients in another cohort, related to Figure 2 and 5.
(A) Metabolic pathway activity analysis in macrophages from BALFs of 2 mild and 20 severe COVID-19 patients. Statistically non-significant values (random permutation test p>0.05) were shown as blank.
(B) Distribution of pathway activities in macrophages from different groups.
(C) Metabolic gene set enrichment analysis of macrophage from BALF of severe patients versus mild patients.
Gene ontology analysis of upregulated pathways (D) and downregulated pathways (E) in macrophage from severe patients versus mild patients.

Figure S4. Metabolic pathway and flux balance analysis comparing macrophages with or without SARS-CoV-2 transcripts from severe patients to macrophages from HC and mild patients, related to Figure 2 and 3.

(A) Feature plots show macrophages from HC, mild and severe patients (left panel) and macrophages with or without SARS-CoV-2 transcripts (right panel).

(B) Distribution of pathway activities in macrophages from HC and mild patients, and macrophages from severe patients with or without SARS-CoV-2 transcripts.

(C) Metabolic pathway activity analysis of macrophages from HC and mild patients, and macrophages from severe patients with or without SARS-CoV-2 transcripts. Statistically non-significant values (random permutation test p>0.01) were shown as blank.

(D) Single-cell flux balance analysis (scFBA) analysis of macrophages from HC and mild patients, and macrophages from severe patients with or without SARS-CoV-2 transcripts.

Figure S5. Metadata analysis of plasma metabolites in mild and severe COVID-19 patients, related to Figure 3.

Metadata (by Su et al. 2020) analysis of plasma metabolites. Each dot corresponds to an individual patient.

(A) Violin plots show levels of indicated amino acids in plasma of COVID-19 patients.

(B) Violin plots show levels of indicated lipids in plasma of COVID-19 patients.

(C) Violin plots show levels of ornithine, urea and kynurenine in plasma of COVID-19 patients.

Figure S6. t-SNE visualization of cells from paired PBMCs, related to Figure 4.

(A-C) A schematic diagram shows principal component analysis (A) and t-SNE visualization of subpopulations (B and C) in PBMCs of mild (n=2) and severe (n=5) COVID-19 patients based on all gene expression profiles. Different colors indicate distinct cell types (B) and patient groups (C).

(D-F) A schematic diagram shows principal component analysis (D) and t-SNE visualization of subpopulations (E and F) in PBMCs of mild (n=2) and severe (n=5) COVID-19 patients based on 1420 metabolic genes expression profiles. Different colors indicate distinct cell types (E) and patient groups (F). The dash circles indicate position of monocytes on each plot.
Figure S7. Distinct metabolic reprogramming during monocyte to macrophage transition in mild versus severe COVID-19, related to Figure 4.

(A) Metabolic pathway activities of monocytes (PBMC-Monocyte) and macrophages (BALF-macrophage) from PBMCs and BALF of paired mild (n=2) and severe (n=5) COVID-19 patients. Statistically non-significant values (random permutation test p>0.01) were shown as blank.

(B) Distribution of pathway activities in monocytes and macrophages from different groups.

(C) Heatmap shows expression of 1441 metabolic genes in PBMC-Monocyte and BALF-Macrophage from different groups.

(D-E) Trajectory (D) and inference (E) of pseudo time ordering of PBMC-Monocyte and paired BALF-Macrophage from mild patients visualized in the DDRTree based reduced dimensional space.

(F) Pearson correlation plot of metabolic scores and pseudo time in PBMC-Monocyte and paired BALF-Macrophage from mild COVID-19 patients.

(G-I) Trajectory(G), inference of pseudo time ordering (H) and Pearson correlation analysis (I) of PBMC-Monocyte and paired BALF-Macrophage from severe COVID-19 patients.

Figure S8. Inhibition of glycolysis by 2-DG reduces pro-inflammatory cytokines and chemokines production in macrophages, related to Figure 6.

(A-B) Human primary macrophages cultured in complete medium or medium without glutamine and pyruvate were stimulated with R848 (A). IL-6, CCL2, CCL3 and IL-1β levels in culture supernatant were detected by ELISA (B).

(C-D) Human primary macrophages cultured with or without 2-DG were stimulated with R848 (C). IL-6, CCL2, CCL3 and TNF-α levels in culture supernatant were detected by ELISA 24 hours after stimulation(D).

Shown are representative data (n=6 for each group) from 2 independent donors with mean values. ***p < 0.001. One-way analysis of variance (ANOVA) and Bonferroni’s post hoc test were performed to compare between groups.
A

Metabolism Pathways
Riboflavin metabolism
Arginine biosynthesis
Pentose and glucuronate interconversions
Glycosphingolipid biosynthesis – lacto and neolacto series
Steroid hormone biosynthesis
Glycoamino-sugar biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis
Neomycin, kanamycin and gentamicin biosynthesis
Other lipid metabolism
Tyrosine metabolism
Porphyrin and chlorophyll metabolism
Galactose metabolism
Sphingolipid metabolism
Pyruvate metabolism
Amino sugar and nucleotide sugar metabolism
Arginine and proline metabolism
Thiamine metabolism
N-Glycan biosynthesis
Selenocompound metabolism
Retinol metabolism
Phenylalanine metabolism
Cysteine and methionine metabolism
Fatty acid degradation
Folate biosynthesis
Citrate cycle (TCA cycle)
Pyrimidine metabolism
Other glycan degradation
Glycoamino-sugar biosynthesis – chondroitin sulfate / dermatan sulfate
Purine metabolism
Metabolism of xenobiotics by cytochrome P450
Glyoxylate and dicarboxylate metabolism
Terpenoid backbone biosynthesis
Glycosphingolipid (GPI)-anchor biosynthesis
Glycosphingolipid metabolism
Oxidative phosphorylation
Valine, leucine and isoleucine degradation
Lysine degradation
Glutathione metabolism
Glycolysis / Gluconeogenesis
Pentose phosphate pathway
Neolactosulfate phosphoribosyltransferase metabolism

B

Comparison of pathway activity in mild vs severe. The graph shows the normalized enrichment score for different metabolisms in mild and severe conditions.

C

Comparison of pathway activity in severe vs mild. The graph shows the normalized enrichment score for different metabolisms in severe and mild conditions.

D

Up regulated

- Interleukin-10 signaling
- Hallmark hypoxia
- Positive regulation of apoptotic signaling pathway
- Granulocyte migration
- Neutrophil degranulation
- Cell chemotaxis
- Response to lipopolysaccharide
- Positive regulation of inflammatory response
- Chemokine-mediated signaling pathway
- Hallmark Inflammation via ROR2

E

Down regulated

- Cholesterol metabolism
- Regulated exocytosis
- Hallmark complement
- Plasma lipoprotein clearance
- Translocation of SLC2A4 (GLUT4) to the plasma membrane
- Myeloid cell activation involved in immune response
- Phagosome
- Antigen processing and presentation
- Lysosome
- Interferon Signaling

Normalized Enrichment Score

- **Mild**
 - Severe
 - **Normalized Enrichment Score**
 - 0.02
 - 0.04
 - 0.06

Gene number

- **0**
 - 10
 - 15
 - 20
 - 25
 - 30
 - Enrichment ratio

Gene number

- **0**
 - 10
 - 15
 - 20
 - 25
 - 30
 - Enrichment ratio
Table 1: Metabolic Pathways and Activities

Pathway Description	Activity Level
Other types of C-glycan biosynthesis	High
Pentofuranose and UDP-glycosylation	Mild
Sphingosine and sphingolipid metabolism	Severe
Primary bile acid biosynthesis	Mild
Steroid and sterol biosynthesis	Severe
Serine biosynthesis	Mild
Arginine biosynthesis	Severe
Arginine and proline biosynthesis	Mild
Glycine, serine and threonine biosynthesis	Severe
Urea cycle	Mild
Glutamate metabolism	Severe
Alanine, aspartate and glutamate metabolism	Mild
Folate biosynthesis	Severe
D-Glutamine and D-glutamate metabolism	Mild
Thiamine biosynthesis	Severe
Pyruvate metabolism	Mild
Butanoate metabolism	Severe
Valine, leucine and isoleucine degradation	Mild
Glycosphingolipid biosynthesis − gangliosides	Severe
Pentose and glucuronate interconversions	Mild
Porphyrin and chlorophyll metabolism	Severe
Arginine biosynthesis	Mild
Pyrimidine metabolism	Severe
Selenocompound metabolism	Mild
Galactose metabolism	Severe
beta-Alanine metabolism	Mild
Glycosaminoglycan biosynthesis − keratan sulfate	Severe
Vitamin B6 metabolism	Mild
Arachidonic acid metabolism	Severe
Arginine and proline biosynthesis	Mild
Glycine, serine and threonine biosynthesis	Severe
Citrate cycle (TCA cycle)	Mild
Pheynylalanine metabolism	Severe
Glycosphingolipid biosynthesis − lacto and neolacto series	Mild
Nitrogen metabolism	Severe
Fatty acid degradation	Mild
Glycan, asparagine and glutamine metabolism	Severe
Fatty acid elongation	Mild
Metabolism of xenobiotics by cytochrome P450	Severe
Drug metabolism − cytochrome P450	Mild
Retinol metabolism	Severe
Histidine metabolism	Mild
N-Glycan biosynthesis	Severe
Fatty acid degradation	Mild
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	Severe
Terpenoid backbone biosynthesis	Mild
Fatty acid biosynthesis	Severe
Sphingolipid metabolism	Mild
Glycerolipid metabolism	Severe
Purine metabolism	Mild
Other glycan degradation	Severe
Drug metabolism − other enzymes	Mild
Amino sugar and nucleotide sugar metabolism	Severe
Sulfur metabolism	Mild
Nicotinate and nicotinamide metabolism	Severe
Phosphonate and phosphinate metabolism	Mild
Fructose and mannose metabolism	Severe
Ether lipid metabolism	Mild
One carbon pool by folate	Severe
Glycine, serine and threonine biosynthesis	Mild
Glycosaminoglycan synthetase − keratan sulfate	Severe
Glycosaminoglycan synthetase − chondroitin sulfate / dermatan sulfate	Mild

Figure S7: Pseudotime Trajectories and Metabolic Scores

- **A**: Heatmap showing metabolic pathway activity across different conditions.
- **B**: Heatmap comparing metabolic scores between PBMC-Monocyte and BALF-Macrophage.
- **C**: Heatmap showing the distribution of metabolic scores across different conditions.
- **D-E**: Scatter plots depicting pseudotime trajectories for different conditions.
- **F**: Scatter plot showing metabolic scores with R = 0.55.
- **G-H**: Scatter plots depicting pseudotime trajectories for different conditions.
- **I**: Scatter plot showing metabolic scores with R = 0.12.
