LncRNA Expression Profiling of Ischemic Stroke During the Transition From the Acute to Subacute Stage

Wenli Zhu 1,2†, Lili Tian 1,2†, Xuanye Yue 1, Jingyi Liu 3, Ying Fu 2 and Yaping Yan 1,2*†

1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 2 Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China, 3 Department of Biochemistry, Smith College, Northampton, MA, United States

Ischemic stroke induces profound effects on the peripheral immune system, which may participate the infectious complications. However, the exact function and mechanism of immune reaction in stroke development are not well-eluciated. Recently, several long non-coding RNAs (LncRNAs) are reported to affect ischemic stroke process, especially the immunological response after stroke. In the present study, we investigated the profile of LncRNAs in human ischemic stroke during the transition from the acute to subacute stage, when the state of the peripheral immune system changes from activation to systemic immunosuppression. In this study, we analyzed the RNA-sequencing (RNA-seq) datasets obtained at two time points (24 h and 7 days) from the peripheral blood mononuclear cells of ischemic patients. Vascular risk factor-matched healthy adults were enrolled as controls. A total of 3,009 LncRNAs and 3,982 mRNAs were identified as differentially expressed 24 h after stroke. Furthermore, 2,034 LncRNAs and 1,641 mRNAs were detected to be differentially expressed on day 7. Bioinformatics analyses, including GO, KEGG pathway enrichment analysis, and network analysis, were performed for the identified dysregulated genes. Our study reveals that ischemic stroke can influence the expression of LncRNAs and mRNAs in the peripheral blood at both the acute and subacute stages; the level of LncRNAs in the antigen processing and presentation pathway was clearly upregulated at 24 h and had recovered to normal levels on day 7 after stroke. Moreover, inflammatory mediator regulation of TRP channels and GABAergic synapses were two specifically downregulated pathways on day 7 after stroke. Our findings provide a valuable resource for further study of the role of LncRNAs in peripheral immune system changes following ischemic stroke.

Keywords: ischemic stroke, LncRNA profiling, mRNA profiling, peripheral immune reaction, RNA-seq

INTRODUCTION

Acute ischemic stroke (IS) is a major cause of mortality and disability worldwide, and the incidence is increasing (1). Despite advances in the cause and acute treatment of ischemic stroke, its exact pathophysiologic mechanisms are still not completely understood. However, accumulating evidence has shown that long non-coding RNAs (LncRNAs) play critical roles in the pathogenesis of rodent (2, 3) and human ischemic stroke (4).
LncRNAs, which are defined as transcripts of more than 200 nucleotides that are not translated into proteins, have historically been regarded as junk DNA. However, with the development of high-throughput technologies, recent studies have revealed that many non-coding RNAs play critical roles in cellular homeostasis (5, 6). The functions of LncRNAs have been proposed to include organization of nuclear domains, cis-, or transregulation of transcription, regulation of proteins or RNA molecules, and even encoding of small proteins (7–9). Moreover, several LncRNAs have been shown to play roles in animal models of stroke and oxygen-glucose deprivation (OGD) cell models (2, 10). Using genome-wide RNA-seq, Bhattarai et al. found that transient focal ischemia induces widespread changes in the expression of LncRNAs in the mouse cortex, and a plethora of those LncRNAs were unannotated (11). After exposure to OGD, which mimics ischemic conditions in vitro, the expression of LncRNAs changed significantly in mouse brain microvascular endothelial cells (12).

As there is a species difference between rodents and humans, the LncRNA profile after ischemic stroke in patients definitely needs to be investigated. However, recent studies on the issue focused only on a limited number of LncRNAs, such as H19 (10) and antisense non-coding RNA in the INK4 locus (ANRIL) (13). While a large number of LncRNAs remain undiscovered in human ischemic stroke, the functions of most LncRNAs have not yet been elucidated (6, 14). Thus, we used next-generation sequencing technology to characterize the systemic gene expression of peripheral blood mononuclear cells (PBMCs) in ischemic stroke patients.

In addition, ischemic stroke induces profound effects on the peripheral immune system, the state of which changes from activation to systemic immunosuppression during the transition from the acute to subacute stage (15). However, why and how the peripheral immune system participates in stroke pathology and whether LncRNAs take part in stroke pathology are largely unknown. To address this gap in knowledge, in this work, we used unbiased high-throughput RNA-seq to determine the genome-wide expression of LncRNAs in PBMCs from patients following acute ischemic stroke and investigated changes in LncRNA expression over the acute to subacute transition phase of ischemic stroke.

MATERIALS AND METHODS

Study Subjects

Acute ischemic stroke patients and control subjects were recruited between 2015 and 2016 from Tianjin Medical University General Hospital, China. The present study was approved by the Ethics Committee of Tianjin Medical University General Hospital, and written informed consent was provided by the participants or their proxy. We enrolled 5 patients (10 samples) between the ages of 50 and 75 years with first-ever acute ischemic stroke defined as acute lesion on diffusion-weighted image (DWI), corresponding acute neurological deficit and anterior or middle cerebral artery occlusion proved by magnetic resonance angiography (MRA), who arrived at the hospital between 4.5 to 24 h after symptom onset (Table 1). The criteria for exclusion included hemorrhagic stroke; hemorrhagic transformation or recurrent stroke; myocardial infarction, atrial fibrillation and other cardiovascular diseases; treatments with thrombolytic or anticoagulants; evidence of other diseases of the central nervous system; tumor(s); the presence of recent infection; immune diseases; concomitant use of antineoplastic, immunosuppressive or immune-modulating therapies; abnormal renal or liver function; blood disorders; or diabetes mellitus. The control group consisted of 5 healthy adults matched for age, sex and vascular risk factors, including body mass index, hypertension, and hyperlipidemia.

OCCLUSION SITE, N (%)
Terminal internal carotid artery
First segment of middle cerebral artery
Second segment of middle cerebral artery

MEDICATION, N (%)
Antiplatelet agent
Median NIHSS score at baseline (IQR)

Mean age (SD), yr 61 ± 11.3
Sex, male (%) 4 (80)
Body mass index (BMI) 25 ± 0.8

TABLE 1 | Clinical characteristics of ischemic stroke patients and vascular risk factor-matched controls.

	IS patients (n = 5)	Controls (n = 5)	P-value
Mean age (SD), yr	61 ± 11.3	59 ± 6.2	0.795
Sex, male (%)	4 (80)	4 (80)	1.000
Body mass index (BMI)	25 ± 0.8	24 ± 1.1	0.642
MEDICAL HISTORY			
Hypertension, n (%)	2 (40)	3 (60)	1.000
Hyperlipidemia, n (%)	4 (80)	2 (40)	0.521
Current smoking, n (%)	4 (80)	3 (60)	0.782
MORTALITY, N (%)			
Antithrombotic agent	1 (20)	2 (40)	0.660
Median NIHSS score at baseline (IQR)	12 (6–21)	0	

IS, ischemic stroke; NIHSS, National Institutes of Health Stroke Scale; IQR, interquartile range.

Hypertension was defined as systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg or use of antihypertensive agents; Hyperlipidemia was defined as a total serum cholesterol level > 5.72 mmol/L and/or triglycerides >1.7 mmol/L or use of antihyperlipidemic medication.

Blood Collection and RNA Extraction

Blood was collected within 24 h and 7 days after symptom onset. For control samples, blood was collected only once. Blood samples were obtained in PaxGene tubes containing a reagent to stabilize RNA. Total RNA was extracted and purified from PBMCs using TRIzol reagent (Invitrogen, Grand Island, USA) according to the manufacturer’s standard protocol. The concentration of RNA was determined with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, USA), and quality assessment was made by an Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Germany). No samples were removed from the RNA-seq analysis due to disqualification of the blood sample or a low total RNA yield.

Library Preparation for IncRNA Sequencing and Data Analysis

RNA extracted by TRIzol reagent with RIN>8.0 was utilized to construct a ribosomal RNA (rRNA) depletion library.
[VAHTSTM Total RNA-seq (H/M/R)], according to the manufacturer’s recommendations. In this experiment, 15 samples from 10 individuals were used for pair-end RNA sequencing with Illumina HiSeq 4000 platform. Raw data of each samples obtained more than 10 G bases and Q30 were >95% totally. Next, clean reads were obtained by removing the adaptor sequences, reads with >5% ambiguous bases (noted as N) and low-quality reads containing more than 20 percent of bases with qualities of <20 from raw data. Then, the clean data were mapped to the human genome (GRCh38 database, NCBI) utilizing HISAT2, and HTSeq was used to calculate the gene count of mRNA and lncRNA. RNA-seq data were analyzed by Novel Bioinformatics Company (Shanghai, China).

Prediction of Target Genes

The cis- and transregulatory effects of LncRNAs were used to target the positions of protein-coding genes and predict their functions. In the present study, protein-coding genes located within 10 kb upstream or downstream of the given LncRNAs were classified as LncRNAs of cis-regulated target genes. Furthermore, we analyzed the coexpression of LncRNAs and coding genes by calculating Pearson’s correlation coefficient.

Differential Expression Analysis

The EB-Seq algorithm was used to test the differential expression of both LncRNAs and coding genes among the groups (16). R programming was applied to analyze the lncRNA-gene pairs. The differentially expressed genes were chosen as follows: fold change >2 or <0.5; P-value <0.05 and false discovery rate (FDR) <0.05. Hierarchical clustering was performed based on the normalized expression of LncRNAs and mRNAs from all groups using Cluster 3.0. Heatmaps were completed with Java TreeView.

GO and KEGG Enrichment Analysis

Gene ontology (GO) enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were applied for functional annotation. The GO analysis was implemented with the UniProt and AmiGO databases (http://www.uniprot.org and http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi). The KEGG database is the resource for understanding high-level functions and effects of biological systems (http://www.genome.jp/kegg/). Significance P-values were defined by Fisher’s exact test, and FDR was calculated by the BH test. Differentially expressed genes were considered to be significantly enriched for GO and KEGG terms with p < 0.05.

Coexpression Network Construction

We constructed the lncRNA-mRNA coexpression network to identify the interactions among differentially expressed LncRNAs and mRNAs (17). We calculated Pearson’s correlations and chose the significant correlation between each pair of genes to construct the network. In gene coexpression networks, we chose degree centrality to determine the relative importance of a gene within a network. Degree centrality is defined as the link numbers one node has with the other. Moreover, to locate core regulatory genes, k-cores in graph theory were introduced as a method of simplifying graph topology analysis. A k-core of a protein-protein interaction network usually contained cohesive groups of proteins (18).

Quantitative PCR Analysis

To verify the RNA-seq data, we randomly selected 6 differentially expressed LncRNAs and detected their expression changes by quantitative PCR (qPCR) (n=10, 5 patients with acute ischemic stroke and 5 healthy controls). Total RNA was extracted from PBMCs with TRIzol® reagent (Invitrogen, USA) following the manufacturer’s instructions. RNA quantity was determined with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, USA), and quality assessment was made by an Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Germany). The total RNA was then reverse transcribed to cDNA using EasyScript First-Strand cDNA synthesis SuperMix (Transgen, Beijing, China) according to the manufacturer’s instructions. SYBR Green (Roche, Basel, Switzerland) was used for qPCR. β-Actin mRNA was used as an internal control. The results were analyzed according to the 2−ΔΔCt method. The 6 LncRNAs and qPCR primers are provided in Table 2. Statistical analysis was performed using Student’s t-test, and p < 0.05 was considered to indicate statistical significance.

RESULTS

Clinical Characteristics of IS Patients

We collected 15 samples (10 ischemic stroke and 5 controls). The mean score on the National Institutes of Health Stroke Scale (NIHSS) was 12 ± 9, and the infarct volume was 42 ± 5 ml at inclusion (24 ± 0.6 h after ischemia). The mean time from stroke onset to blood collection was 24 ± 0.6 h and 7 ± 0.2 days. Baseline characteristics were generally balanced between the two groups (Table 1). Patients with acute ischemic stroke had an older age (61 vs. 59), a higher median body mass index (25 vs. 24) and hyperlipemia (4 vs. 2), although these potential differences were not statistically significant (Table 1).

TABLE 2 | List of primers for qRT-PCR.

Name	Forward Primer (5’-3’)	Reverse Primer (5’-3’)
β-Actin	CCAGGGCGGCTTATGGAAGGCA	TCCATACTGTTCACAGGTTGGT
SCARNA10	GGT CTG TAA TCT TGG TGG GCG	AGG ACC CCT GGC CCT QAT
TFRC	CAC TGC CAT CCG GAA GAG TTG	ACT GGC TCC GTT CCT CT
LINC01481	CGT CAC CGT CAC CTC CTG AGT AG	GGA TAG AGG AAC TTC ACA
FLJ23867	TGA CGA GGC TTC TGC GAG ACC	ATG AGG CCA AGG CTG GAG
H3F3AP6	AGC TCC AGC CGA AGG AGA AGG	TCA CGG AGC GCC ACA GCA
TNPO1P1	TGC CTA TCT TCA GTT GCC ACA GC	AGT TTG CCT CCA AGT CCT

By combining RNA-seq data with qPCR analysis, we were able to identify and validate the expression of LncRNAs that may play crucial roles in the pathogenesis of ischemic stroke.
Differentially Expressed LncRNAs and mRNAs in IS Patients

Total RNA from PBMCs of all five patients (at two time points) and controls were isolated and sequenced. A total of 438 million (IS-24 h), 448 million (IS-7 d), and 433 million (control) raw reads were obtained by RNA-seq (Table 3). After quality control, approximately 415 million and 424 million clean reads were isolated from ischemic stroke patients at 24 h and 7 days, respectively, and 409 million clean reads were obtained for the control group. The sequence reads were used to map known human gene types. Approximately 86.0% (IS-24 h) and 88.9% (IS-7 d) of the clean reads were uniquely mapped to the reference genome, and in the control group, approximately 91.3% of the clean reads were uniquely mapped to the reference human genome (Table 3).

To evaluate the consistency of the sample collection and investigate the transcriptomic relationship between the 24-h and 7-day time points in the stroke patients, we performed hierarchical clustering and principal component analysis (PCA) for these samples using RNA-seq data. Both analyses can provide an overview of the similarities and dissimilarities between samples. The expression level in each sample showed no differences in terms of reads per kilobase per million (RPKM) values (Figure 1A). In the 3D-PCA plot, the PBMC samples from control subjects were grouped together (Figure 1B), which was in agreement with the hierarchical clustering analysis. In ischemic stroke patients, the PBMC samples from the two time points were grouped together with slight variation, which is acceptable considering individual differences (Figure 1B).

To investigate the key LncRNAs and mRNAs involved in ischemic stroke development, RNA-seq was performed to detect the differentially expressed LncRNAs and genes between ischemic stroke patients and the control group. The EB-Seq algorithm was used to identify the different LncRNAs and coding genes. Lastly, 3,009 LncRNAs were found to be differentially expressed, including 455 upregulated and 2,554 downregulated LncRNAs at 24 h after stroke. Moreover, there were 3,982 differentially expressed mRNAs including 1,750 upregulated and 2,232 downregulated genes. The heatmap is displayed in Figure 1C. However, the numbers of both differentially expressed LncRNAs and genes decreased at 7 days after stroke. There were 2,034 differentially expressed LncRNAs, composed of 1,859 downregulated and 175 upregulated LncRNAs. In addition, 1,641 mRNAs, consisting of 1,028 downregulated and 613 upregulated mRNAs, were detected at 7 days. The differentially expressed LncRNAs and mRNAs are demonstrated as a heatmap (Figure 1D). Comparing IS 24 h and IS 7 days, 73 differentially expressed LncRNAs (55 up- and 18 downregulated) and 36 differentially expressed mRNAs (22 up- and 14 downregulated) were identified, and the heatmap is shown in Figure 1E.

The GO and KEGG Enrichment of Differentially Expressed mRNAs

To evaluate the functions of differentially expressed mRNAs, GO and KEGG pathway enrichment analyses were conducted. In the 24 h group, GO analysis was performed on 3,382 significantly dysregulated mRNAs, and the top 20 results are presented in Figure 2A. In the analysis of upregulated mRNAs, 275, 113, and 96 GO terms were significantly enriched in biological process, cell component and molecular function, respectively. In the analysis of downregulated mRNAs, 263, 66, 110 GO terms were significantly enriched in biological process, cell component and molecular function, respectively. Biological processes clustered in transcriptional and translational regulation were the most significantly enriched GO annotations at 24 h after stroke. Similarly, the top 10 results of the KEGG analysis are presented in Table 4. KEGG analysis showed that 35 pathways were included in the mRNA upregulation and that 44 pathways related to

Subjects	Raw reads	Clean reads	Total mapped	Uniquely mapped
IS 24h-1	93266260	88229484	85737538	77314172 (84.2%)
IS 24h-2	84579048	80309938	79940077	72561277 (87.2%)
IS 24h-3	85099148	80991756	80976131	73478271 (87.5%)
IS 24h-4	82115336	77887870	78227999	70670320 (87.2%)
IS 24h-5	93048884	88083076	88743881	77803726 (83.9%)
IS 7d-1	86821228	81949002	81737184	76647999 (91.2%)
IS 7d-2	101448746	96386482	95903673	86618669 (86.6%)
IS 7d-3	82956746	77636230	77461460	71018180 (88.4%)
IS 7d-4	87137944	82831000	81892575	75828101 (89.0%)
IS 7d-5	90385706	85835948	84945035	78942332 (89.5%)
IS 24h-1	87788642	83192158	82064394	77357885 (91.1%)
IS 24h-2	88253988	83340744	82096597	77763616 (91.6%)
IS 7d-1	84161688	79856224	78060291	73549421 (90.2%)
IS 7d-2	83484700	78827834	77872308	74052126 (92.2%)
IS 7d-3	89547908	83945934	82706071	78385062 (91.6%)

IS, ischemic stroke.
downregulated mRNAs were significantly enriched. Among these significantly enriched pathways, ribosome and lysine degradation were the most significant pathways (Table 4).

For day 7, 1,308 significantly differentially expressed mRNAs were analyzed using the GO database. The top 20 results of the GO analysis are demonstrated in Figure 2B. In the analysis of
FIGURE 2 | GO enrichment of differentially expressed mRNAs. Significantly enriched Gene Ontology (GO) terms of differentially expressed mRNAs in patients at 24 h (A) and 7 days (B) after stroke. The y-axis shows GO terms, and the x-axis presents counts of differentially expressed mRNAs in IS patients enriched for GO terms. The color scale represents the –log P-value.
upregulated mRNAs, 215, 64, and 93 GO terms were significantly enriched in biological process, cell component and molecular function, respectively. In the analysis of downregulated mRNAs, 323, 35, and 134 GO terms were significantly enriched in biological process, cell component and molecular function, respectively. Biological processes clustered in transcriptional regulation and nucleosome assembly were the most significantly enriched GO annotations at 7 days after stroke. Moreover, the top 10 results of the KEGG analysis are shown in Table 4. KEGG analysis indicated that 19 pathways were involved in mRNA upregulation and 32 pathways related to downregulated mRNAs were significantly enriched. As expected, ribosome and lysine degradation were among the top 3 significantly enriched pathways (Table 4). However, the inflammatory mediator regulation of TRP channels and GABAergic synapses were two specifically downregulated pathways among the top 10 significantly enriched pathways compared with the 24 h group. These data suggested that inflammation might play an important role in the development of ischemic stroke.

Venn Analysis

We constructed a Venn diagram to further analyze the interactions among differentially expressed LncRNAs. A total of 1,383 and 318 LncRNAs were specifically expressed in ischemic stroke patients after 24 h and 7 days, respectively. In addition, 2,539 and 200 specifically expressed mRNAs in the aforementioned comparison were used to construct a Venn diagram. As shown in Figures 3A,B, 3,135 differentially expressed genes (1,716 LncRNAs and 1,419 mRNAs) were common in the two comparisons.

To determine the potential functions of differentially expressed LncRNAs in the Venn diagrams, we predicted the possible targets of these LncRNAs in cis-regulatory relationships. We identified protein-coding genes 10 kb upstream and downstream of the differentially expressed LncRNAs. Comparing the IS 24 h patient and healthy control samples, we found 840 LncRNAs that were transcribed close to (<10 kb) 155 protein-coding neighbors. However, only 12 cis-target protein-coding genes were found to be coexpressed with 182 LncRNAs compared between the IS 7 d patient and healthy control samples (Table 5). Pathway analysis revealed that several KEGG pathways were related only to the 24 h after ischemic stroke, such as the systemic lupus erythematosus pathway, adherent junction pathway, and tight junction pathway.

The Coexpression Network

To explore the potential interplay between LncRNAs and mRNAs, we calculated the coexpression association between the dysregulated LncRNAs and their target mRNAs based on the Venn diagrams. In total, 1,312 differentially expressed LncRNAs and 2,539 differentially expressed mRNAs were included in the coexpression network for ischemic stroke patients at 24 h and healthy controls. These differentially expressed genes constructed 3,923 network nodes and 420,593 connections comparing ischemic stroke patients at 24 h and healthy controls. However, comparing ischemic stroke patients at 7 days and healthy controls, the coexpression network profile consisted of 518 network nodes among 301 differentially expressed LncRNAs and 200 differentially expressed mRNAs with 8,185 connections (Figures 3C,D).

Table 4 | Top 10 significant KEGG pathways for differentially expressed LncRNAs and mRNAs.

Term	Regulation	Count	P-value
IS 24h			
Lysine degradation	Down	17	3.40E-06
Insulin signaling pathway	Down	32	4.48E-06
FoxO signaling pathway	Down	29	2.44E-05
Thyroid hormone signaling	Down	24	0.000
pathway			
Adherens junction	Down	17	0.000
Renal cell carcinoma	Down	16	0.001
Osteoclast differentiation	Down	25	0.001
Neurotrophin signaling	Down	24	0.002
pathway			
mRNA surveillance pathway	Down	18	0.003
Prostate cancer	Down	17	0.005
Ribosome	Up	72	1.75E-36
Systemic lupus erythematosus	Up	71	3.57E-35
Alcoholism	Up	64	2.88E-20
Oxidative phosphorylation	Up	47	4.90E-15
Huntington's disease	Up	52	5.58E-12
Alzheimer's disease	Up	49	8.57E-12
Parkinson's disease	Up	42	1.84E-10
Non-alcoholic fatty liver disease	Up	38	1.15E-07
Metabolic pathways	Up	166	2.40E-06
Viral carcinogenesis	Up	43	4.85E-06
IS 7d			
Lysine degradation	Down	9	0.000
Inflammatory mediator regulation of TRP channels	Down	12	0.000
Parkinson's disease	Down	14	0.001
Melanogenesis	Down	11	0.002
Phototransduction	Down	5	0.004
FoxO signaling pathway	Down	12	0.005
beta-Alanine metabolism	Down	5	0.005
GABAergic synapse	Down	9	0.007
Oxytocin signaling pathway	Down	13	0.007
mRNA surveillance pathway	Down	9	0.008
Systemic lupus erythematosus	Up	26	1.95E-13
Alcoholism	Up	26	1.51E-10
Ribosome	Up	17	1.95E-06
Alzheimer's disease	Up	19	2.98E-06
Oxidative phosphorylation	Up	14	0.000
Huntington's disease	Up	17	0.000
Viral carcinogenesis	Up	18	0.000
Parkinson's disease	Up	13	0.001
Transcriptional misregulation in cancer	Up	14	0.003
p38 signaling pathway	Up	7	0.007
Validation of the RNAs
To validate our RNA-seq data independently, we randomly selected six differentially expressed LncRNAs and examined their expression patterns in ischemic stroke patients and healthy controls by qPCR. With regard to the upregulated transcripts, RNA-seq appeared to be more sensitive than qPCR. Based on the qPCR results, three LncRNAs (SCARNA10, TERC, LINC01481) exhibited higher expression ($p < 0.01$), and three LncRNAs (FLJ23867, H3F3AP6, TNPO1P1) exhibited lower expression ($p < 0.05$) in ischemic stroke patient PBMCs than in healthy control PBMCs. As shown in Figure 4, the qPCR results for all of the evaluated LncRNAs probes were concordant with the RNA-seq data. This agreement confirmed the accuracy of the RNA-seq results.

DISCUSSION
This is the first prospective study to demonstrate longitudinal changes in the expression of LncRNAs in human blood following acute ischemic stroke. A specific set of LncRNAs was observed to change expression over time. Notably, we found that the level of LncRNAs in the pathway of antigen processing and presentation...
TABLE 5 | Top 20 differentially expressed LncRNAs and adjacent coexpressed mRNAs.

lncRNA Expression	FDR	Protein-coding gene name	Regulation
IS 24h			
LOC642852 Down	0	POFUT2	Down
LOC30784 Down	0	POLR1A	Down
RPL10AP8 Down	0	PTCD2	Down
FGDS5-AS1 Down	0	NR2C2	Down
LOC100133091 Down	0	SPDYE16	Up
LOC107984305 Down	0	ILK	Up
LOC1053777303 Down	6.25E-12	PRDM8	Down
LOC101060212 Down	8.31E-12	TBC1D3G	Down
LOC107984036 Down	1.44E-10	RAB33B	Down
LOC105373041 Down	2.19E-10	TPS6BP2	Down
LOC105371449 Down	5.14E-10	PMVK	Up
CCDC58P4 Down	7.19E-10	HIGD1A	Up
RPS10P1 Down	4.25E-08	HIST1H2BF/	Up/Up
		HIST1H4E	
AK4P4 Down	5.36E-08	KIAA026	Down
LOC100419838 Down	7.31E-08	ZNF320	Down
RPS10P7 Down	9.28E-08	LOC10798524B	Down
LOC91450 Down	1.15E-07	TBC1D2B	Down
SNORA7B Down	1.18E-07	EFCAB12	Up
LOC107984754 Down	2.81E-07	ANK2D1A	Down
LOC729867 Down	5.94E-07	PEA15	Up
RMRP Up	0	SIT1	Up
SNORA59A Up	0	VPS13D	Down
SCARN12 Up	0	PHB2/EMG1	Up/Up
TEN1-CDK3 Down	5.55E-16	CDK3	Down
SNORD32A Down	5.15E-13	RPL13A	Up
ILF3-AS1 Down	7.42E-12	SLC44A2	Down
SNORA5A Down	4.09E-11	TBRG4	Up
MIF6732 Down	2.18E-10	ZC3H12A	Up
LINC01126 Down	9.07E-10	ZFP36L2	Up
SNORA7A Up	1.97E-08	RPL32	Up
THAP7-AS1 Down	2.78E-08	THAP7	Up
LOC101929431 Down	3.32E-08	CCDC7	Up
SCARN21 Up	1.06E-07	CHD3	Down
RASSF1-AS1 Down	2.34E-07	ZMYND10	Down
RPL24P4 Up	3.42E-06	GNMT	Down
TMEM191A Down	1.03E-05	PIKA	Up
EIF4EP2 Down	1.68E-05	PHB	Up
B4GALT1-AS1 Down	1.78E-05	B4GALT1	Down
FLJ38576 Down	2.43E-05	CYP4V2	Down
LOC105371038 Down	6.13E-05	MCRIP2	Up

IS 7d			
RNJ6-384P Down	4.06E-06	LOC10798541B	Down
LOC105373836 Down	4.50E-05	CFLAR	Down
VN2R16P Down	0.000	ZNF490	Down
LOC102724273 Down	0.000	CNOT3	Down
PMS2P9 Down	0.000	SPDYE18	Down
MIR6740 Down	0.012	ELF3	Down

(Continued)
RNA-seq technology, this study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke as well. In addition, we investigated whether the expression of LncRNAs in PBMCs changed over time by serially drawing blood from every subject. Using microarray analysis, Dykstra-Aiello et al. found that 299 and 97 LncRNAs were differentially expressed in whole-blood RNA samples from male and female Canadian stroke patients, respectively, over a wide range of time points (4.4–156.0 h). Similarly, by using high-throughput technologies, our study revealed that the expression levels of LncRNAs were altered in ischemic stroke patients in a Chinese Han population. Compared to microarrays, RNA-seq analysis provides a more comprehensive coverage of whole transcriptomes. As a result, we found 3,009 LncRNAs and 3,982 mRNAs that were differentially expressed in the PBMCs of patients at 24 h after stroke. On the 7th day, the number of differentially expressed LncRNAs and mRNAs decreased to 2,034 and 1,641, respectively. The expression of LncRNAs suggested an increase in stroke risk in both studies. Especially in this study, we found that the level of LncRNAs in the pathway of antigen processing and presentation was upregulated at 24 h and the level of LncRNAs in TRP and GABAergic synapses were downregulated on day 7 after stroke.

Pathway analysis showed that genes participating in the intestinal immune network for IgA production were significantly upregulated 24 h after stroke. An animal study of the intestinal flora proved that intestinal dysbiosis ameliorated ischemic brain injury through an increase in regulatory T cells and a reduction in IL-17+γδ T cells (20). Again, the LncRNA levels related to the pathway of the intestinal immune network for IgA production decreased to normal at day 7 in this study. Although the underlying signaling process that results in widespread immunosuppression after stroke is not well-understood, this result suggested that LncRNA may be part of the process. To provide another hope for treatment of systemic infections following immunosuppression, this result needs to be prospectively confirmed in patients with infection after stroke.

A strength of the study is the homogenous stroke population that included moderate-to-severe acute ischemic stroke subjects with anterior or middle cerebral artery occlusion presenting within 4.5–24 h of symptom onset. This study also used samples with assigned blood draw times (24 h and 7 days after stroke).

The sample size of this study was small, which may have limited our ability to identify differences between groups. In addition, evaluation of multiple genes as performed in the data analysis of RNA-seq would increase the risk of false discovery. Although correction for multiple comparisons was performed and six differentially expressed LncRNAs were validated by qPCR in this study, confirmation by an independent study is required.

In conclusion, we explored for the first time that ischemic stroke can influence the expression of LncRNAs and mRNAs in human PBMCs. GO and KEGG pathway analyses revealed that peripheral immunity may participate in the brain injury of acute ischemic stroke. Our results provide a framework for further study on the role of LncRNAs in peripheral immune system changes following ischemic stroke.

DATA AVAILABILITY STATEMENT

The datasets generated or analyzed during the current study are available from the corresponding author (Yaping Yan, Email: yaping.yan@snnu.edu.cn) on reasonable request.

RECOMMENDED AND REQUIRED REPOSITORIES

The underlying sequence data used in the study have been deposited with the Gene Expression Omnibus (GEO) under the project accession number GSE122709.

AUTHOR CONTRIBUTIONS

YY formulated the study concept and acquired funding for the study. LT and XY collected data. YF analyzed the data. YY formulated the study concept and acquired funding for the study. LT and XY collected data. YF analyzed the data. WZ performed laboratory experiments. YY and LT wrote the manuscript. JL edited the manuscript. All authors read and approved the final manuscript.

FUNDING

This study was supported by the National Natural Science Foundation of China (81571596, 81771279) and the Fundamental Research Funds for the Central Universities (GK201701009).

REFERENCES

1. Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. (2007) 6:182–7. doi: 10.1016/S1474-4422(07)70031-5
2. Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke (2012) 43:2800–2. doi: 10.1161/STROKEAHA.112.669465
3. Liu J, Zhang KS, Hu B, Li SG, Li Q, Luo YP, et al. Systematic analysis of RNA regulatory network in rat brain after ischemic stroke. Biomed Res Int. (2018) 2018:8534530. doi: 10.1155/2018/8534530
4. Dykstra-Aiello C, Ikling GC, Ander BP, Shroff N, Zhan X, Liu D, et al. Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke (2016) 47:2896–903. doi: 10.1161/STROKEAHA.116.013869
5. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature (2012) 489:101–8. doi: 10.1038/nature11233
6. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell (2018) 172:393–407. doi: 10.1016/j.cell.2018.01.011
7. Ulitsky I, Bartel DP. LincRNAs: genomics, evolution, and mechanisms. Cell (2013) 154:26–46. doi: 10.1016/j.cell.2013.06.020
8. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell (2015) 160:595–606. doi: 10.1016/j.cell.2015.01.009
9. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. Mtorc1 and muscle regeneration are regulated by the linc00961-encoded
spar polypeptide. Nature (2017) 541:228–32. doi: 10.1038/nature21034

10. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long noncoding RNA h19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent m1 microglial polarization. Stroke (2017) 48:2211–21. doi: 10.1161/STROKEAHA.117.017387

11. Bhattacharj S, Pontarelli E, Prendergast E, Dharap A. Discovery of novel stroke-responsive LncRNAs in the mouse cortex using genome-wide RNA-seq. Neurobiol Dis. (2017) 108:204–12. doi: 10.1016/j.nbd.2017.08.016

12. Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, et al. Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol. (2016) 277:162–70. doi: 10.1016/j.expneurol.2015.12.014

13. Zhang W, Chen Y, Liu P, Chen J, Song L, Tang Y, et al. Variants on chromosome 9p21.3 correlated with anril expression contribute to stroke risk and recurrence in a large prospective stroke population. Stroke (2012) 43:14–21. doi: 10.1161/STROKEAHA.111.625442

14. Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev. (2015) 36:25–64. doi: 10.1210/er.2014-1034

15. Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, et al. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity (2017) 46:474–87. doi: 10.1016/j.immuni.2017.02.015

16. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. Ebseq: an empirical bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013) 29:1035–43. doi: 10.1093/bioinformatics/btt087

17. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. (2007) 39:1338–49. doi: 10.1038/ng.2007.2

18. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. (2004) 5:101–13. doi: 10.1038/nrg1272

19. Moore DF, Li H, Jeffries N, Wright V, Cooper RA Jr, Elkahloun A, et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation (2005) 111:212–21. doi: 10.1161/01.CIR.0000152105.79665.C6

20. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. (2016) 22:516–23. doi: 10.1038/nm.4068

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Zhu, Tian, Yue, Liu, Fu and Yan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.