Tuberculosis in Upper and Lower Egypt before and after directly observed treatment short-course strategy: a multi-governorate study
Medhat F. Negmaa, Amira H. Allamb, Tbahany M. Godab, Mona Elawadyc

Background Tuberculosis (TB) is a major problem in developing countries. TB in Egypt is considered an important public health problem. Egypt is ranked among the mid-level incidence countries.

Objective To evaluate TB status in 19 governorates and to compare the TB situation in Upper and Lower Egypt over 20 years from 1992 to 2012 before and after the application of directly observed treatment short-course strategy (DOTS).

Patients and methods This is a retrospective study involving record review. The registered data were collected from TB registration units in the 19 governorates.

Results The highest percentage of TB cases was in the age group 15–30 years. Infection was higher in males than females and in rural areas more than urban areas. Pulmonary TB and smear positivity at diagnosis, second, third, and fifth month were higher in Lower Egypt. Treatment after failure or relapse was significantly higher in Upper Egypt, whereas default rate, failure rate, and death rate were significantly higher in Lower Egypt. Regarding treatment outcome, cure, complete treatment, and transfer out were significantly increased after DOTS than before DOTS. Upper Egypt included higher incidence rates of TB, new adult smear-positive cases, new extrapulmonary TB cases, and sputum conversion rate at the end of the initial phase of treatment. Cure rate and treatment success rate were significantly higher among patients of Upper Egypt, whereas transfer out rate and retreatment failure rate were significantly higher among Lower Egypt patients.

Conclusion TB is still a health problem in Egypt, with pulmonary TB more in Lower Egypt, whereas extrapulmonary TB more in Upper Egypt, but after the introduction of DOTS, there is a significant increase in cure and success rate, with markers of success being more in Upper Egypt.

Egypt J Bronchol 2019 13:722–729
© 2020 Egyptian Journal of Bronchology

Keywords: directly observed treatment short-course strategy, Egypt, Lower, tuberculosis, Upper

Introduction Tuberculosis (TB) is one of the major public health threats, competing with the HIV as the cause of death owing to infectious diseases worldwide [1]. According to the WHO, nearly 8.6 million cases were estimated to have occurred in 2012. Most cases are estimated to be in Asia and Africa (58 and 27%, respectively) [2].

Near the end of the 20th century, TB prevention and care in Egypt faced numerous issues. The most significant of these issues were the rejection of the patients with TB to be hospitalized for their management, high lost follow-up rate, rising levels of resistance against anti-TB drugs, and inadequate health education to both general population and healthcare workers [3].

Major progress in TB prevention and care followed the widespread implementation of directly observed treatment short-course (DOTS) strategy. Efforts must continue to pursue high-quality DOTS expansion and enhancement [4]. DOTS implies that a trained healthcare worker or other assigned individual provides prescribed anti-TB medications and watches the patient while taking each dose [5].

Aim The aim was to evaluate TB status in 19 governorates and to compare the TB situation in Upper and Lower Egypt over 20 years from 1992 to 2012 before and after the application of DOTS.

Patients and methods This is a retrospective study involving record review (from June 2017 to January 2018), which was carried out at 19 governorates. The registered data about all TB cases covering a period of 20 years (1992–2012) were
collected from the TB registration units in the 19 governorates. Governorates included in the study were based on accessibility of records. This period included two stages: before the application of DOTS and after it.

This research was accepted by research ethics committee of our institution. All the methodology performed was in agreement with the ethical standards of the institutional and/or national research council and with 1964 Helsinki assertion and its later amendments.

The gathered data entailed the following: TB registration code and the year; sociodemographic data, which included name, age, sex, and residence; forms of TB, either pulmonary (either smear positive or smear negative) or extrapulmonary (sites other than lungs, such as lymph node, intestine, meninges, breast, and renal); history of previous treatment if present (category of patients or type of the patient); new or relapse; treatment after failure; treatment after lost to follow-up; transfer in or others; and schedule of treatment (recommended standardized treatment regimen) according to NTP (2008) [6].

The recorded follow-up for smear-positive pulmonary TB included sputum smear microscopic examination for acid-fast bacilli, at the end of second month, fifth month, and at the end of treatment [7]. Outcomes included cure, treatment completed, treatment failure, died, lost to follow-up, and transfer out.

Statistical analysis
The recorded data were tabulated and analyzed using SPSS version 16 software (IBM Inc, Chicago, USA). Categorical data were displayed as number and percentages, whereas continuous variables were displayed as mean and SD. \(\chi^2 \)-Test, Fisher’s exact test, and Student \(t \)-test were used. Microstat software was used to calculate “Z” test for two proportions of two independent groups. \(P \) value less than 0.05 was considered significant.

Results
This study included data review of 120 094 cases with TB infection that were distributed among governorates of Lower and Upper Egypt, with 48.3% of the studied patients from Lower Egypt and 51.7% from Upper Egypt. Overall, 72.7% were detected after the application of DOTS in Cairo, Dakahlia, Kafrelsheikh, and El-Giza governorates. There was no patient records available before DOTS (Table 1).

Age distribution of patients was similar between Lower and Upper Egypt. The highest percentage of cases was

Table 1 Spatial distribution of cases of tuberculosis infection before and after application of directly observed treatment short-course strategy

Geographical Region	Before DOTS (32 792) [N (%)]	After DOTS (87 302) [N (%)]	Total (120 094)
Lower Egypt			
Elbhera	3404 (33.9)	6631 (66.1)	10 035
Damietta	481 (24.0)	1524 (76.0)	2005
Port Said	262 (17.2)	1260 (82.8)	1522
El Menoufia	2294 (56.9)	1741 (43.1)	4035
Alexandria	2068 (21.4)	7529 (78.6)	9597
Al Qalubia	934 (14.2)	5652 (85.8)	6586
Ismailia	763 (56.0)	600 (44.0)	1363
Cairo	0	6355 (100)	6355
Al Dakahlia	0	1736 (100)	1736
El Gharbia	1202 (34.0)	2329 (66.0)	3531
Kafrelsheikh	0	1723 (100)	1723
Fayoum	4070 (52.6)	3670 (47.4)	7740
Suze	916 (49.9)	919 (50.1)	1835
Total	16 394 (28.2)	41 669 (71.8)	58 063
Upper Egypt			
Banesuef	2285 (48.0)	2474 (52.0)	4759
El Giza	0	21 164 (100)	21 164
Elmenia	4144 (52.7)	3716 (47.3)	7860
Aswan	884 (22.3)	3079 (77.7)	3963
Sohag	4333 (32.7)	8900 (67.3)	13 233
Assyout	4752 (43.0)	6300 (57.0)	11 052
Total	16 398 (19.0)	45 633 (81.0)	62 031

DOTS, directly observed treatment short-course strategy.
between 15 to less than 30 years old (30.4 and 29.6% in Lower and Upper Egypt, respectively) and the least percentage was in extremes of age less than 15 years and after 60 years. Percentage was higher in males (66.1 and 62.7%, respectively). Rural percentages were more than urban regarding both Lower and Upper Egypt (Table 2).

Pulmonary TB was less in Upper Egypt (71.1%) than Lower Egypt (75.0%). With respect to the smear results at diagnosis, they were nearly equal (61.8% in Lower and 62.8% in Upper Egypt). The percentages of smear-positive cases at second, third, and fifth month and end of treatment were higher in Lower than Upper Egypt: 25.6, 19.5, 10.5, and 5.5%, respectively, in Lower and 17.9, 11.9, 3.6, and 0.8%, respectively, in Upper Egypt (Table 2).

According to the type of patient, treatment after failure and relapse were significantly higher in Upper Egypt. Regarding treatment outcome, the percentages of cure was significantly higher in Upper Egypt (55.8%) than Lower (45.4%). On the contrary, complete treatment, failure, death, lost to follow-up, and transfer out were higher in Lower Egypt (31.9, 6.6, 3.4, 8.8, and 3.8%, respectively) than in Upper (29.4, 3.8, 2.7, 5.5 and 2.8%, respectively) (Table 3).

Percentages of cure, lost to follow-up, transfer out, and death among urban patients (56.4, 4.6, 7.8 and 5.0%, respectively) were higher than rural patients (46.1, 1.6, 6.5 and 1.9%, respectively) whereas complete treatment and failure were higher among rural patients (37.2 and 6.7%, respectively) versus urban patients (22.8 and 3.4%, respectively) (Table 4).

After DOTS implementation, infection between younger ages (30 and 45 years) was significantly reduced (31.4 and 30.0% before, whereas 25.9 and 20.1% after DOTS). The ratio of infected females was less after DOTS than before (32.0 and 45.4%, respectively). Infection among urban patients was also reduced after DOTS than before (43.6 and 50.9%, respectively) whereas infection increased among rural patients (56.4 and 49.1%) after and before DOTS (Table 5).

Cases of pulmonary TB were less after the implementation of DOTS (68.6%) than before (84.8%). Concerning the smear results at diagnosis, they were 56.7% before DOTS and became 64.4% after. The percentages of smear-positive cases at second, third, and fifth month and end of treatment were lower after DOTS than before (19.2, 14.2, 13.5 and 7.2%, respectively, after DOTS and 28.7, 19.6, 13.5 and 7.2%, respectively, before DOTS) (Table 6).

According to patient type, new cases, treatment after failure, relapse, and treatment after lost to follow-up decreased significantly after the introduction of DOTS. In terms of treatment outcome, the percentages of cure, complete treatment, and transfer out significantly increased after DOTS (51.2, 31.5 and 7.6%, respectively) than before (49.6, 28.3 and 5.7%, respectively) \((P<0.001) \). On the contrary, failure, lost to follow-up, and death decreased after DOTS (4.7, 1.4 and 3.7%, respectively, after DOTS and 6.4, 7.2 and 2.8%, respectively) (Table 6).

Table 7 showed that cure rate and treatment success rate were significantly higher among patients of Upper Egypt \((P<0.001) \), whereas transfer out rate and retreatment failure rate were significantly higher among Lower Egypt patients.

Discussion

This study was aimed at comparing TB status in Upper Egypt versus Lower Egypt before and after the implementation of DOTS.
application of DOTS. Cases of TB infection were distributed among governorates of Lower and Upper Egypt, with 48.3% of the studied patients from Lower Egypt. Overall, 28.3% of cases were detected before DOTS, and the majority 72.7% were detected after the application of DOTS. This can be explained by the lack of efficient recording systems before DOTS implementation, such as in Cairo, Dakahlia, and El-Giza, where no patient records were available before DOTS application. This can be owing to the lack of health education and fear of TB stigma. Recently, TB stigma is slightly

| Table 3 Comparison between tuberculosis disease criteria in Lower Egypt and Upper Egypt |
|---|-------------------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|
| Site of tuberculosis | Lower Egypt (58 063) [N (%)] | Upper Egypt (62 031) [N (%)] | Total (120 094) | Z | P |
| Pulmonary | 43 551 (75.0) | 44 127 (71.1) | 87 678 | 1.95 | 0.03 |
| Extrapulmonary | 14 512 (25.0) | 17 904 (28.9) | 32 416 | 18.94 | 0.001 |
| Sputum smear at diagnosis | | | | | |
| Positive | 35 869 (61.8) | 38 933 (62.8) | 74 802 | 11.21 | <0.001|
| Negative | 22 194 (38.2) | 23 098 (37.2) | 45 292 | 4.25 | <0.001|
| Sputum smear at second month (74 802) | | | | | |
| Positive | 9193 (25.6) | 6967 (17.9) | 16 160 | 17.68 | <0.001|
| Negative | 20 113 (56.1) | 30 876 (79.3) | 50 989 | 48.76 | <0.001|
| Dropouts | 6563 (18.3) | 1090 (2.8) | 7653 | 89.51 | <0.001|
| Sputum smear at third month (74 802) | | | | | |
| Positive | 6995 (19.5) | 4639 (11.9) | 11 634 | 22.31 | <0.001|
| Negative | 21 886 (61.0) | 30 192 (77.6) | 52 078 | 36.87 | <0.001|
| Dropouts | 6988 (19.5) | 4102 (10.5) | 11 090 | 28.38 | <0.001|
| Sputum smear at fifth month (74 802) | | | | | |
| Positive | 3752 (10.5) | 1417 (3.6) | 5169 | 36.4 | <0.001|
| Negative | 23 216 (64.7) | 33 895 (87.1) | 57 111 | 45.49 | <0.001|
| Dropouts | 8901 (24.8) | 3621 (9.3) | 125 22 | 52.04 | <0.001|
| Sputum smear at end of treatment (74 802) | | | | | |
| Positive | 1968 (5.5) | 311 (0.8) | 2279 | 50.56 | <0.001|
| Negative | 27 209 (75.9) | 34 980 (89.8) | 62 189 | 31.41 | <0.001|
| Dropouts | 6692 (18.6) | 3642 (9.4) | 10 334 | 31.40 | <0.001|
| Type of patient | | | | | |
| New | 48 481 (83.5) | 49 818 (80.3) | 98 299 | 4.27 | <0.001|
| Treatment after failure | 2892 (5.0) | 4811 (7.8) | 7703 | 22.58 | <0.001|
| Relapse | 2677 (4.6) | 5263 (8.5) | 7940 | 30.70 | <0.001|
| Treatment after lost follow-up | 2782 (4.7) | 749 (1.2) | 3511 | 41.47 | <0.001|
| Transfer | 736 (1.3) | 398 (0.6) | 1134 | 10.52 | <0.001|
| Others | 515 (0.9) | 992 (1.6) | 1507 | 12.95 | <0.001|
| Treatment outcome | | | | | |
| Cure | 26 382 (45.4) | 34 590 (55.8) | 60 972 | 33.55 | <0.001|
| Complete | 18 531 (31.9) | 18 256 (29.4) | 36 787 | 1.43 | 0.08 |
| Failure | 3859 (6.6) | 2372 (3.8) | 6231 | 19.40 | <0.001|
| Death | 1951 (3.4) | 1663 (2.7) | 3614 | 4.81 | <0.001|
| Lost to follow-up | 5096 (8.8) | 3438 (5.5) | 8534 | 18.30 | <0.001|
| Transfer out | 2244 (3.8) | 1712 (2.8) | 3956 | 8.54 | <0.001|

| Table 4 Treatment outcome in urban and rural areas |
|---|-------------------------------|-------------------------------|-------------------|-------------------|-------------------|
| Urban (54 721) [N (%)] | Rural (65 373) [N (%)] | Total (120 094) | Z | P |
| Treatment outcome | | | | |
| Cure | 30 859 (56.4) | 30 113 (46.1) | 60 972 | 3.02 | 0.001 |
| Complete | 12 453 (22.8) | 24 334 (37.2) | 36 787 | 65.45 | <0.001|
| Failure | 1869 (3.4) | 4362 (6.7) | 6231 | 34.46 | <0.001|
| Lost to follow-up | 2541 (4.6) | 1073 (1.6) | 3614 | 26.72 | <0.001|
| Transfer out | 4263 (7.8) | 4271 (6.5) | 8534 | 0.09 | 0.47 |
| Death | 2736 (5.0) | 1220 (1.9) | 3956 | 26.10 | <0.001|
below the average among the Egyptian population, which can be owing to the widespread application of TB stop strategies [8].

Age distribution of patients was similar between Lower and Upper Egypt as the highest percentage of cases was between 15 and less than 30 years, and the lowest
percentage was for extremes of age less than 15 years and after 60 years. These results are in agreement with many individual Egyptian governorate studies that showed same results [9–21]. However, in Alexandria, the highest percentage of cases was in the age range 30–45 years [22]. A study by Eldahshan et al. [23], in Suez Canal showed that the highest age group was 30–50 years followed by patients more than 50 years. The explanation of increased TB cases in this age group (15–30) may be the increased smoking in this age group. In addition; poorness, inadequate nutrition, physical, mental stress, along with more exposure to infection may also contribute.

The highest percentage was in males (66.1 and 62.7%, respectively), with statistically significant difference between males and females (Table 2), which was in concordance with most individual governorate studies [9–23]. This difference may be owing to low notification rates in females as many female patients do not seek medical advice because of factors such as illiteracy and the traditions predominant in the society, which may prohibit them from going out and seeking medical advice. TB stigma is felt more strongly in females [24]. Moreover, notification rates in men are higher, indicating differences in exposure owing to more outdoor activities and contact. Progression from infection to disease owing to sex differences were related to other risk factors for TB such as cigarette and shisha smoking [13]. This finding was in disagreement with that of Mohamed et al. [25] who studied TB in patients admitted to Assiut Chest Hospital from 2005 to 2009, where it was 70.87% for females and 29.13% for males. They attributed the higher incidence of TB in females to males in their study to different conditions in Upper Egypt, where females especially farmers have a main role of work outside or inside the home, with higher chance of exposure to infection.

In this study, TB cases were more in urban (51.3 and 57.4%) than rural (42.6 and 48.7%) areas in both Lower and Upper Egypt, respectively. There is a difference in distribution of TB between governorates studies where El-Behira [13], Dakahlia [20], Qalyobia [9], Minofia [10], Assiut [25], Sohag [21], and Aswan [16] showed that TB cases were more in rural areas. Those studies explained the higher TB cases in rural areas owing to poverty, drinking contaminated milk, exposure to cough spray from infected cattle, or by close physical contact with infected animals. However, in Sharkia [19] and Ismailia [17], despite the rural population is more than the urban, TB cases were higher in the urban areas, and their explanation for that was the possibility of overcrowding at the urban areas, especially slums with lack of proper aeration and increase of air pollution, whereas the awareness among the rural population about TB especially after implementation of DOTS in all primary healthcare units may be the cause for lower percentage of cases. In Port Said, which is mainly urban governorate, cases were more common

Table 7 Indicators of tuberculosis in Lower and Upper Egypt

Indicator	Lower Egypt (58 063)	Upper Egypt (62 031)		
	Mean	SEM	Mean	SEM
1 Incidence rate: new cases	12.12 0.82	14.71 1.19	1.64 0.11	
2 Incidence rate: new and relapse cases	12.11 0.91	15.03 1.37	1.65 0.11	
3 Incidence rate: all cases	13.04 1.03	17.04 1.56	2.0 0.05	
4 Incidence rate new smear-positive pulmonary TB cases	5.26 0.35	5.76 1.22	0.778 0.44	
5 New pulmonary TB cases with no smear result	22.41 1.83	10.40 2.53	3.43 0.001	
6 New adult smear-positive cases	67.73 1.85	85.26 1.86	5.16 <0.001	
7 Retreatment TB cases	14.44 1.40	10.19 1.23	1.68 0.10	
8 New extrapulmonary TB cases	18.20 1.42	32.55 1.0	5.66 <0.001	
9 New TB cases with no smear conversion result	25.74 2.89	11.61 2.52	2.69 0.01	
10 Sputum conversion rate at the end of the initial phase of treatment	64.02 2.34	77.70 2.60	3.16 0.003	
11 Cure rate	60.03 2.96	73.14 1.81	2.50 0.016	
12 Treatment completion rate	12.89 0.93	9.10 0.67	2.28 0.03	
13 Treatment success rate	71.43 2.89	84.61 2.80	2.62 0.012	
14 Death rate	3.72 0.14	3.80 0.52	0.21 0.835	
15 Treatment failure rate	3.55 0.18	3.60 0.52	0.109 0.91	
16 Lost to follow-up	11.26 1.54	8.44 1.38	1.01 0.32	
17 Transfer out rate	8.04 1.31	2.06 0.25	2.62 0.012	
18 Retreatment failure rate (chronic TB rate)	30.98 5.77	9.69 1.54	2.38 0.03	

TB, tuberculosis.
among the urban areas. In addition to the reasons described by Nafae et al. [19], demographic changes with population growth in urban areas resulting from the migration of people from rural to urban areas could be a cause [15].

The study also revealed that the percentage of pulmonary TB was lower in Upper Egypt (71.1%) than Lower Egypt (75.0%). The percentages of smear-positive cases at the second, third, and fifth month and end of treatment were higher in Lower Egypt compared with Upper Egypt. This can be explained by heterogeneous population distribution, with the two largest Metropolitan cities Cairo and Alexandria lying in Lower Egypt; this leads to crowdedness, spread of slums, low socioeconomic conditions, poor housing with poor ventilation, and more exposure between people to the infectious aerosols [26–28].

According to the type of patient, treatment after failure and relapse were significantly higher in Upper Egypt. Moreover, the percentages of cure were significantly higher in Upper Egypt (55.8%) than Lower (45.4%) ($P < 0.001$). Conversely, increased failure rate, death, lost to follow-up, and transfer out were higher in Lower Egypt. These differences between Upper and Lower Egypt could be owing to the increased knowledge of the disease leading to increased percentage of people seeking medical care which increased the notified cases including relapse and treatment after failure in the Upper Egypt together with improvement and availability of health services per Capita which increased the percentage of cure cases relative to Lower Egypt which has more treatment failure rate and death rate. The increased death rate in Lower Egypt especially between urban more than rural areas can be attributed to the high demand for health services available in big cities such as Cairo and Alexandria; thus, many patients travel to these metropolitan areas to seek health treatment. When deaths occur, they are registered in these metropolitan areas, which results in higher death rate [29].

After DOTS implementation in 1996 [7], infection between younger ages (30 and 45) declined significantly (31.4 and 30.0% before DOTS and 25.9 and 20.1% after DOTS). There was significant decrease in infection among females after DOTS than before (32.0 and 45.4%, respectively). This reflects the improvement in health awareness between patients, especially among females, who could overcome the TB stigma and seek medical care. This reflects also the success of TB stop strategy to reach the productive young community and females. Infection among urban patients was also reduced after DOTS than before (43.6 and 50.9%, respectively), whereas increased among rural patients (56.4 and 49.1%, respectively) after DOTS than before. This could be a false increase owing to increased case notification as a result of increased health awareness and availability of primary health services in rural areas.

Pulmonary TB infection was lesser after the introduction of DOTS (68.6%) than before (84.8%). The percentages of smear-positive cases at second, third, and fifth month and end of treatment were decreased after DOTS than before (19.2, 14.2, 4.7, and 1.7%, respectively, after DOTS, whereas 28.7, 19.6, 13.5 and 7.2%, respectively, before DOTS). This reflects greater treatment success, which is because of new regimens of treatment with rifampicin for 6 months, direct observation of cases on treatment, and better follow-up of patients [15]. On the contrary, there was an increase in extrapulmonary cases from 15.2% before DOTS to 31.4% after DOTS. This could be owing to more availability of diagnostic techniques like specific radiographs, ultrasound (US), computed tomography (CT) scans, or biopsy procedures, which are essential for diagnosing extrapulmonary TB [20]. The smear positivity at diagnosis was 56.7% before DOTS and became 64.4% after; the rise in the smear positivity at diagnosis without increase in the overall pulmonary cases could be owing to improvement in the laboratory diagnosis, or increase in the notification rate of smear-positive cases.

Upper Egypt has higher incidence rates of new adult smear-positive cases, new extrapulmonary TB cases, and sputum conversion rate at the end of the initial phase of treatment, whereas new pulmonary TB cases, cases with no smear result, and new TB cases with no smear conversion result were significantly higher among TB residents of Lower Egypt ($P < 0.05$). This can be explained by better case notification, laboratory diagnosis of sputum smears, and follow-up of patients with sputum smear at second, third, and fifth month in Upper Egypt. Increased life expectancy may reactivate quiescent TB lesion from extrapulmonary areas, and more physical contact with infected animals by drinking or handling contaminated milk may also contribute [20].

Conclusion

TB is still a health problem in Egypt, which affects the young active age group with pulmonary TB more in
Lower Egypt, whereas extrapulmonary cases were more in Upper Egypt, especially in the rural community, but after the introduction of DOTS, there is a significant increase in cure and success rate with decrease in treatment failure and death rates, with markers of success being more in Upper Egypt.

Limitations
Owing to difficult accessibility to records, the study did not cover all the Egyptian governorates. Additionally, there was a lack of recording before DOTS in four governorates, and cultures were not done for all patients, and if done, results were inconclusive, so not added in the study. Multidrug resistant status was not studied owing to technical or recording problems.

Recommendations
Health education is a vital part in implementing DOTS strategy with focusing on removing the TB stigma and encouraging patients to seek medical advice with more efforts needed, especially in Lower Egypt. Moreover, better recording of cases is essential for follow-up DOTS and putting future plans. The use of new technologies in the diagnosis to improve culture results is needed and also for extrapulmonary disease diagnosis.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1 Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: epidemiology and control. Medit J Hematol Infect Dis 2014; 6:e2014070.
2 World Health Organization. Global tuberculosis report. Geneva, Switzerland: World Health Organization. 2013.
3 NTP, National Tuberculosis Control Program. Manual of tuberculosis control in Egypt. Cairo: Ministry of Health and Population. 2002.
4 Hussein AS, Mohammed AM. Trend of application of World Health Organization control strategy of tuberculosis in Egypt. J Epidemiol Glob Health 2014; 4:195–202.
5 Implementing The Stop TB Strategy. A handbook for national tuberculosis control programs. Geneva, Switzerland: World Health Organization. 2008.
6 NTP National Tuberculosis Program. Drug Management Guidelines, Egypt 2008. Available at: http://c.c.gov.eg/NTPDoc.pdf. [Access on Feb 2018].
7 NTP, National Tuberculosis Control Program, Egypt, programmatic management of TB, Egypt 2012. Available at: http://c.c.gov.eg/NTPDoc/pdf.
8 Gadallah M, Mokhtar A, El-Moghazy E, Fawzy M, Baker A, Rady M. Measuring tuberculosis related stigma and its determinants in Egypt: a community based study. Egypt J Commun Med 2016; 34:83–93.
9 Hendy MR, Yousef AA, Eissa AS, Salem SA. Assessment of Directly Observed Therapy Short course (DOTS) of Tuberculosis in Benha Chest Hospital, Master Degree, Benha University. Benha Faculty of Medicine Library. 2009. http://db4.eulc.edu.eg/eulc_v5/Libraries/Thesis/Browse ThesisPages.aspx?fn=PublicDrawThesis&BibId=10384443
10 Alwani AK, Al-Aarag AH, Omar MM, Abdelghaffar NA, Hibah MD. Incidence of tuberculosis before and after DOTS (direct observed therapy short course strategy) implementation in El-Behira Governarate, Egypt. Egyptian J Bronchol 2015; 9:101-108. DOI: 10.4103/1687-8426.153665
11 Khalla HK, Al-Aarag AH, Omar M. Tuberculosis situation in Gharbia Governarate (1994–2010) before and after direct observed therapy short course strategy (DOTS) (Thesis for Master degree), 2014.
12 Saad El Din WL, Okab AA, Essawy TS. Assessment of directly observed therapy short course (DOTS) of tuberculosis in Kafr-Al Sheikh Governarate from2006 to 2012 [thesis for Master degree in Chest Diseases and Tuberculosis]; Egypt: Benha Faculty of Medicine. 2014.
13 Alwania AK, Al-Aarag AH, Omar MM, Hibah NA. Incidence of tuberculosis before and after DOTS (direct observed therapy short course strategy) implementation in El-Behira Governarate, Egypt. Egyptian J Bronchol 2015; 9:101–108.
14 Zedan M, Al Wakeel E, Shaaraawy AT, Nour M. Pattern of tuberculosis in patients of a university hospital during the period (2004–2011). Egypt J Chest Dis Tuberc 2015; 64:85–89.
15 Abu Shabana SM, Omar MM, Al Mehy GF, Mohammad OE, Eldesouky RSH. Tuberculosis situation in Port Said governarate (1995–2011) before and after Direct Observed Therapy Short Course Strategy (DOTS). Egypt J Chest Dis Tuberc 2015; 64:441–447.
16 Sobi E, Kinawy SA, Abdelkarim YMA, Arafa MA. The pattern of tuberculosis in Aswan Chest Hospital, Egypt. Int J Mycobacteriol 2016; 5:333–340.
17 Negm MF, Al Mehy GF, Ali TM, AbdEffadil SS. Tuberculosis situation in Ismailia governarate (2002–2012) before and after direct observed therapy short course strategy (DOTS), Egypt J Chest Dis Tuberc 2016; 65:211–217.
18 Eissa SA, Okab AA, Essawy TS, El Ghany EA. Assessment of tuberculosis situation in Cairo governarate from2006 to 2012 after application of directly observed therapy short-course strategy. Egypt J Bronchol 2016; 10:52–57.
19 Nafaie RM, Eleshaham HM, Said AM, Ibrahim MA. Reviewing treatment outcomes of tuberculosis patients at Zagazig Chest Hospital (2008–2012). Egypt J Chest Dis Tuberc 2017; 66:623–630.
20 Negm MF, Allam AH, ElZehery AH. Assessment of directly observed therapy short-course (DOTS) of tuberculosis in Dakahlia governarate chest hospitals from2006 to 2011. Egypt J Chest Dis Tuberc 2017; 11: 88–97.
21 Mohammadien H, Alkhayat K, Hamed A, Shaaban M. Patterns, trends and treatment outcomes of extra-pulmonary tuberculosis in Sohag, Upper Egypt. Egypt J Chest Dis Tuberc 2017; 66:313–316.
22 Mohammad OE, Okaba AA, Zabki ME. Situation of multidrug-resistant pulmonary tuberculosis in Alexandria governarate fromJuly 2008 to December 2012. Egypt J Bronchol 2016; 10:64–66.
23 Eldahshan NA, Mohamed R, Abdelghaffar NA, Hamed ER. Assessment of TB stigma among patients attending chest hospital in Suez Canal University area, Egypt. MEJIFM 2015; 13:21–28.
24 Eastwood SV, Hill PC. A gender-focused qualitative study of barriers to accessing tuberculosis treatment in The Gambia, West Africa. Int J Tuberc Lung Dis 2004; 8:70–75.
25 Mohamed A, Mohamed G, Ahmed F, et al. A study of Tuberculosis cases admitted at Assiute Chest Hospital During Period (2005–2009), South Vally University, 2010. Thesis for MSc. degree in Chest disease. The publication was master degree thesis assessed through Benha Faculty of Medicine Library. http://db4.eulc.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibId=10364443. [Access on Feb 2018].
26 Smyth NK, Whalen C. Active case finding of undetected tuberculosis among chronic coughers in a slum setting in Kampala, Uganda. Int J Tuberc Lung Dis 2009; 13:508–512.
27 Banu S, Rahman MT, Uddin MKM, Khatun R, Ahmed T, et al. Epidemiology of tuberculosis in an urban slum of Dhaka city, Bangladesh. PLoS One 2013; 8:e77721.
28 Ragab AR, Girghi H, Zaki H, Osmam M, Al-Khorsazti N, Hamed R, et al. Population situation analysis Egypt 2016. 2016.
29 Ogбудие CL, Chukwu JN, Nwafor CC, Meka AO, Ekeke N, Madichie NO, et al. Reaching the underserved: active tuberculosis case finding in urban slums in southeastern Nigeria. Int J Mycobacteriol 2015; 4:18–24.