Material handling selection for vise manufacturing using Hassan algorithm

Muhammad Haikal Sitepu*, Tania Alda, Andri Nasution, Meilita Tryana Sembiring Suci Amalia and Anggi Ridho Habibi

Industrial Engineering Department, Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia, 20155

*Email: mhd_haikalkarana@usu.ac.id

Abstract. One type of transportation in industrial companies, for moving raw materials, semi-finished goods or finished goods from their original place to destination can be called as material handling. There are several material handling equipment available for manufacturing industry such as forklift, crane, conveyor, hand truck and trolley. However, not all material handling equipment are appropriate for specific manufacturing such as vise manufacturing. The selection of appropriate and efficient material handling equipment is important for reducing material handling cost. Around 20% of production cost is allocated for material handling activities. Vise consists of several part with different processes and materials. As the result, the flow of materials between processes are high. This paper aims to select appropriate material handling for vise manufacturing. Hassan's algorithm is used as a method for selecting material handling that consider various factors such as price, time and distances. Four types of material handling namely trolley, hand truck, wheeled rack, and hand pallet, are selected in this paper.

1. Introduction
Material handling is a function of moving the right material to the right place, at the right time, in the right amount, sequentially and at the right position or condition to minimize production costs. The aim of material handling is to facilitate transportation and speed up the production process. Based on the formulation by the American Material handling Society (AMHS), the notion of material handling is stated as an art and science that includes handling, moving, packaging or packaging, storing as well as controlling or controlling (controlling) controlling) from materials or materials in all its forms [1]. There is several material handling equipment available for manufacturing such as crane, forklift, conveyor and hand truck. However, not all material handling equipment is appropriate for specific manufacture such as vise manufacturing. The use of inappropriate material handling might increase material handling cost and production time. Hence, the selection of appropriate material handling equipment is necessary [2]. This paper aims to choose the suitable material handling for vise manufacturing.

The Hassan algorithm is a way of selecting material handling by taking into account various factors such as the price of the tool, operating costs, operator costs, tool speed, tool dimensions, tool capacity, hauling distance, and transportation time. Then all types of data are calculated using Hassan algorithm calculations so that the most suitable type of material handling can be selected based on the results of the Hassan algorithm iteration.
At The Plant Layout and Material Transfer Laboratory in the Department of Industrial Engineering, Universitas Sumatera Utara, material handling selection was carried out as one of the practicum activity where the students calculated the appropriate material handling selection based on the design of the production floor [3]. The product unit used is vise, so the design of material handling selection in this study focuses on the selection of material handling for vise manufacturing where there are 9 stations on the production floor and 7 work stations, and 25 displacement in the production process. Four types of material handling are selected for the transportation of material from one station to the next in the design of this vise factory, namely trolley, hand truck, wheeled rack, and hand pallet, where each material handling has a price, cost, dimensions, speed, and capacity differ based on price and speed references obtained from data collection [4].

2. Methodology
An experiment is used as a research methodology. Experiment is good to use when the research focuses to investigate the impact of alternatives into system performance. In this research, the impacts of different material handling equipment on cost of material handling are observed. The inappropriate material handling selection have occurred for several times in manufacturing becomes a reason to conduct this experiment.

2.1. Research Process
To achieve the aim of the research, this research has been divided into three stages. Stages 1 focuses on collecting data and information required to calculate the Hassan Algorithm such as the references for the calculation of the price, cost, dimension, velocity, and capacity of each material handling. In stage 2, the focus of the research is to define the distance of each work station using aisle distance methodology, and then calculate the material handling selection using Hassan algorithm. Then, this is followed by stage 3 that is focused on choosing the selected material handling for each workstation in the production floor. Figure 1 displays the research process used in this research.

![Figure 1. Research process](image-url)
2.2. Algoritma Hassan

This section focuses to introduce the equations for each calculation model in this paper. Each calculation model has different formulation due to different factors that are considered in developing the algorithm. Table 1 shows those equations for each algorithm model [5].

Algorithm Models	Equations	Number of Equations
For each equipment type, calculate the number of units that would be needed if the equipment performs all the moves	$Y_i = \sum_{j} \frac{h_{ij}}{K_j}$	(1)
Calculate the total cost of material handling for each equipment type as	$\lambda_t = [Y_t] + 1$	(2)
Calculate the average cost for each equipment type per move as	$Z_i = \lambda_t K_i + \sum_{i,j} W_{ij}$	(3)
Calculate the average cost for each equipment type per move as	$\bar{Z}_i = \frac{Z_i}{q_i}$	(5)

First, select the equipment with the smallest Z_i and resolve ties by selecting the equipment with the smallest Z_t. If ties persist, resolve them by selecting in order of ascending [6]. For the selected equipment type, arrange the moves that can be performed by it in increasing order of operating cost. Assign the moves to the selected equipment starting with the move having the smallest operating cost. After each assignment, check whether the sum of h_{ij} is equal to Hi or within a tolerance Ei of it. If the sum of h_{ij} is equal to Hi, go to the next step; otherwise, check either of the following two cases: If the moves are the only remaining moves or cannot be assigned to another piece of equipment, leave the assignment as it is. If the sum of h_{ij} is greater than Hi (or a multiple of Hi depending on the number of units required of the equipment so far), check the difference between the least integer multiple of H (making it greater than the sum of hi) and the sum of h_{ij}. If the difference, which represents idle time, is less than or equal to $E2$ (a specified acceptable idle time), leave the assignment as it is. If the difference is larger than $E2$, remove moves from the equipment starting with the last assigned move, until the acceptable utilization level is achieved.

3. Result and discussion

This section presents results from the implementation of the hassan algorithm in the vise plant, the results of displacement totaling 25 displacements, 7 iterations and from 4 types of material handling selected and calculated, and 2 types of material handling for the production floor design at the vise factory namely trolley and wheeled shelves.

The following is the selection of material handling using the hassan algorithm:

- Salary / annual salary = IDR. 31.2 million
- Monthly salary / wage = IDR. 31,200,000 / 12 months = IDR. 2,600,000
- Salary / wage per day = IDR. 2,600,000 / 26 days = IDR. 100,000
- Hourly salary / wage = IDR. 100,000 / 7 hours = IDR. 14,286

Table 2 below shows the specification of material handling equipment used in this research.
Table 2. Data Handling Material Used

No	Material Handling	Price (IDR)	Dimension (mm)	Speed (m/minute)
1	Trolley	312.000	110 cm x 63 cm	100
2	Hand Truck	305.000	65 cm x 45 cm	98
3	Wheeled Rack	219.000	62 cm x 36 cm	66
4	Hand Pallet	2.860.000	115 cm x 52 cm	58

The following is the result of calculating displacement distance using the aisle distance method from another station in the vise factory based on the production process carried out.

Table 3. Distance between Stations

Displacement	Distance (m)	Displacement distance (m)	Displacement distance (m)	Displacement distance (m)			
G-D	18	T-G	18	G-S	18	B-D	27
D-S	18	G-D	18	S-D	18	D-G	18
S-D	18	D-S	18	D-G	18	B-G	18
D-M	27	S-G	18	S-D	18	G-A	27
M-A	18	S-D	18	D-M	27		
S-D	18	D-T	27	M-T	18		
D-T	27	T-G	18	T-G	18		

The following is an example of the calculation of the material handling trolley operating costs on the G-D Displacement part.

\[
C = \frac{\text{Tool Dimensions}}{\text{Material Dimensions}} = \frac{110 \times 63}{24 \times 12.1} = 23.280 \approx 24
\]

\[
f = \frac{\text{Total Material}}{\text{Amount of Material}} = \frac{24}{4 \text{ unit/hour}} = 0.174 \approx 1
\]

\[
\text{Operational costs/minute} = \frac{\text{Cost}}{d} = \frac{1438}{66} = \text{IDR 216,455}
\]

Operational costs = \(r \times f \times \frac{\text{Operation cost}}{\text{m}} = 18 \times 1 \times 216.455 = 3896.180 \approx \text{IDR 3,896} \) (4)

Where:
- \(C \) = Carrying capacity (unit)
- Tool dimension = The size of the conveyance
- Material Dimension = The size of the unit to be moved
- \(f \) = transfer frequency
- Amount of Material = Number of units moved
- \(C \) = Carrying capacity
- Operating costs / m = Transport costs / meters (IDR / m)
- Cost = Operator Cost
- \(d \) = Speed of conveyance
- \(r \) = displacement distance
- \(f \) = displacement frequency
- \(m \) = transport cost / meter

The following is an example of calculating the operating time of a material handling hand truck on the G-D Displacement part.
The following calculation of operating costs and operating time of each move can be seen in Table 2.13.

Table 4. Calculation of Operating Costs and Operating Times

No	Displacement	Part	Distanc (m)	Trolley Operating Cost (Cij)	Trolley Operation Time (Wij)	Hand Truck Operating Cost (Cij)	Hand Truck Operation Time (Wij)	Wheeled Rack Operating Cost (Cij)	Wheeled Rack Operation Time (Wij)	Hand Pallet Operating Cost (Cij)	Hand Pallet Operation Time (Wij)
1	G-D	Base	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
2	D-S	Base	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
3	S-D	Base	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
4	D-M	Base	27	5844	0.270	3936	0.276	5844	0.409	6650	0.466
5	M-A	Base	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
6	S-D	Left clamping body	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
7	D-T	Left clamping body	27	5844	0.270	3936	0.276	5844	0.409	6650	0.466
1	B-G	Handle	18	3896	0.180	2624	0.184	3896	0.273	4434	0.310
2	G-A	Handle	27	5844	0.270	3936	0.276	5844	0.409	6650	0.466
		Total		109093	5.040	7347	1.543	1090	7.636	124140	8.690

An example of calculating the total cost of a trolley is as follows.

Initial Cost = Rounding Operating Time x material handling costs
= 6 x IDR 312,000
= IDR 1,872,000

Total Cost = Initial Cost + Total Operating Cost
= IDR 1,872,000 + IDR 109,093
= IDR 1,981,093

An example of Bi calculation is as follows.

The following table defines Bi Iteration 1.

Table 5. Determination of Bi Iteration 1

Material Handling Type	Total of Displacement	Total Equipment	Rounding	Initial Cost	Total of Operating Costs	Total Cost	Bi
Trolley	25	5.040	6	1872000	109093	1981093	79244
Hand Truck	25	5.143	6	1830000	73471	1903471	76139
Wheeled Rack	25	7.636	8	1752000	109093	1861093	74444
The following is a table of displacement and parts that experience displacement with the lowest operating costs.

Table 6. Displacement and Parts that Have Displacement with the Smallest Operating Costs

MH Type	Part	Displacement	Operating Costs (Cij)	Operation Time (Wij)	Total of Operation Time (Wij)
Wheeled Rack	Base	G-D	3896	0.273	0.273
Wheeled Rack	Base	D-S	3896	0.273	0.545
Wheeled Rack	Base	S-D	3896	0.273	0.818

So for the above displacement, from stations G to D, D to S and S to D for the base parts, material handling wheel racks are used. Then all of the above calculations are carried out to obtain 7 iterations and each material handling selected. The following is a recapitulation table for each material handling selected for each material handling selected.

Table 7. The Recapitulation of Material Handling Selection

No	Displacement	Part	Material Handling Equipment
1	G-D	Base	Wheeled Rack
2	D-S	Base	Wheeled Rack
3	S-D	Base	Wheeled Rack
4	D-M	Base	Wheeled Rack
5	M-A	Base	Hand Truck
6	S-D	Left clamping body	Hand Truck
7	D-T	Left clamping body	Wheeled Rack
8	T-G	Left clamping body	Hand Truck
9	G-D	Left jaw clamp	Hand Truck
10	D-S	Left jaw clamp	Hand Truck
11	S-G	Left jaw clamp	Hand Truck
12	S-D	Right clamping body	Hand Truck
13	D-T	Right clamping body	Wheeled Rack
14	T-G	Right clamping body	Hand Truck
15	G-S	Right jaw clamp	Hand Truck
16	S-D	Right jaw clamp	Hand Truck
17	D-G	Right jaw clamp	Hand Truck
18	S-D	Rotation body	Hand Truck
19	D-M	Rotation body	Wheeled Rack
20	M-T	Rotation body	Hand Truck
21	T-G	Rotation body	Hand Truck
22	B-D	Crater body	Wheeled Rack
23	D-G	Crater body	Hand Truck
24	B-G	Handle	Wheeled Rack
25	G-A	Handle	Wheeled Rack
4. Conclusion

Based on the results, some conclusions are obtained as follows

- Selection of the right material handling can reduce unnecessary waste on the production floor.
- In the calculation of material handling using the hassan data algorithm needed, among others, price, operating costs, operator costs, dimensions, speed and material handling capacity.
- There are 25 displacement distances for the entire vise production process, the distance is obtained based on the distance calculation method using the aisle distance method on the production floor.
- There are 7 iterations to get all material handling selected for each work station on the production floor.
- Of the four types of material handling determined, material handling is chosen, namely the wheel rack and handtruck based on the results of calculations and iterations using the hassan algorithm.

References

[1] Sitecraft 2009 Material Handling Equipment Product Guide
[2] Toyota. Material Handling Hand Pallet Truck BT Pro Lifter L-Series LHT100
[3] Adisuwiryo S, dkk. Perbaikan Tata Letak Dan Material Handling Lantai Produksi PT. Hamson Indonesia Untuk Mencapai Target Produksi Dengan Menggunakan Metode Pairwise Exchange Dan Simulasi Jurnal Teknik Industri ISSN: 1411-6340
[4] Sukania I, dkk. 2016 Usulan Perbaikan Tata Letak Pabrik Dan Material Handling Pada PT. XYZ. Jurnal Ilmiah Teknik Industri Vol. 4 No. 3, 141 – 148
[5] Hassan M M D, Hogg G L, and Smith D R 1985 A Construction Algorithm for The Selection and Assignment of Materials Handling Equipment International Journal of Production Research 23 (2) pp 381-392
[6] Bouh M A and Riopel D 2015 Material Handling Equipment Selection: New Classifications of Equipments and Attributes