Seroprevalence of Human Toxocariasis in Relation to Socio-economic Status: A Case Study of Six Hospitals, Adamawa State, Nigeria

Terry Thomas Luka
Chief Technologist, Department of Biomedical and Pharmaceutical Technology
Federal Polytechnic, Mubi, Adamawa State, Nigeria

Ayuba John
Senior Laboratory Technologist, Department of Biological Science,
Federal Polytechnic, Mubi, Adamawa State Nigeria

Hussaini Bello
Lecturer, Department of Chemical Science Technology,
Federal Polytechnic, Mubi, Adamawa State Nigeria

Abstract:
Study on the Seroprevalence of Human Toxocara canis (T.canis) Antibody Titre using ELISA Technique was conducted in Six Government Hospitals (General Hospitals) of Adamawa State Nigeria, between the months of January to June 2018. Five Hundred and sixty-four (564) whole blood samples were collected using non-randomised sampling technique for convenience. Five millilitres (5ml) of serum after separation of the whole blood was used for analysis. Statistical analyses were carried out using Statistix 9. Results obtained from the study indicates that under care (Children under one year) had higher prevalence of 69.69%, while farmers had lower prevalence of 60.31%

Keywords: Antibody, Seroprevalence, Socio-economic status, Correlation, Adamawa, Pork, Toxocara canis and Seropositivity

1. Introduction
Toxocariasis is a neglected infection that has a worldwide distribution. T. canis is the most relevant agent due to its frequent occurrence in humans. Over the years, this disease has drawn much attention because of its surprisingly high prevalence (Anna et al., 2018). Parasite eggs are commonly found in soil and canine fur, dirty hands, consumption of vegetables contaminated with embryonated eggs or consumption of embryonated egg in paratenic hosts such as chicken, beef from cattle, pork and other small animals. Previous studies have reported varying seroprevalence rates in different locations which agree with the findings in this study. The overall seroprevalence rate in this study was 63.63% though higher agrees with similar work earlier conducted by Alonso et al. (2000), who reported a positivity of 37.9% in Argentina; Epinoza et al. (2008) in Peru and Brazil (32.4%) positivity. Similarly, Ajayi et al. (2014) reported 29.8% positivity in Jos, Nigeria. Other findings showed 1.6% in Japan, 2.4% in Denmark, 6.3% in Australia, 7% in Sweden, 14% in USA and 19.6% in Malaysia (Guangxu et al., 2018).

2. Materials and Methods

2.1. Study Area
Adamawa State is located at the North Eastern part of Nigeria. It lies between latitude 7° and 11° N of the equator and between longitude 11° and 14° E of the Greenwich meridian. It shares boundary with Taraba State in the South and West, Gombe State in the Northwest and Borno to the North. Adamawa State has an international boundary with the Cameroon Republic along the Eastern border. The State covers a land area of about 38,741km with a population of about 2,102,053 people according to the 1991 census. Adamawa State is divided into 21 Local Government Areas Fig 3.1 (Adebayo and Tukur 1999).
Study Design and Sample Collections

One hundred (100) whole blood samples each were collected from the Six Hospitals in the Study Areas using nonrandomised sampling technique for convenience, whole blood was collected through the venous puncture with the aid of sterile syringe and approximately 5ml of whole blood was obtained and emptied into plain gel vac-container tubes pre-labelled with information on Age, Sex, Location, Socioeconomic Status, Tribe, Religion and whether the Patient's own dog(s) or not. The blood samples were then centrifuged to separate serum from the red cells, the serums were then used for analysis.

2.2. Laboratory Analysis

Enzyme Link Immunoabsorbent Assay (ELISA) *Toxocara canis* Antigen Kit product No.8206-35 supplied by Diagnosis Automation/Cortez Diagnostics Inc. Woodland Hills California USA were used for analysis which was carried out in the Haematology Laboratory of the Federal Medical Centre Yola, Adamawa State, Nigeria.

2.3. Statistical Analysis

Statistix 9.1 (2012) Statistical package for scientist and engineers, USA, was used for statistical analysis.

3. Results/ Discussion

Finding in this study based on socioeconomic status indicates that under care (Children under one year) had higher prevalence of 69.69%, while farmers had lower prevalence of 60.31%; similar result was recorded by Mazur-Melewksa et al., 2012 where it was reported that Children within this age range spend a considerable amount of time playing in soil that could be contaminated with *Toxocara canis* eggs, and exposed to infection. Children within this age range are known to have the habit of playing with dogs so much so that sometimes they share their meal stalk less of their habit of eating sand (geophagia) which could have increased their risk of infection. Children socio-economic level is a factor that influences *Toxocara* seroprevalence as reported by (Nash, 2000; Magnaval, 2001). While some studies report that *Toxocara* Seroprevalence increases with low socio-economic status (Magnaval, et al., 1994; Alonso et al., 2000; Kanafi et al., 2006; Dar et al., 2008), there are others which claim that it does not change (Buiks et al., 1994; Sadjjadi et al, 2000), this contradiction can be explained with the presence of different socio-economic factors influencing the seroprevalence of Toxocarasis like dog and cat ownership, presence of untreated host, pet population, personal and social hygiene, education, faecal contamination of drinking water, contaminated soil in play grounds and in homes. These factors are
commonly obtained in socioeconomically disadvantage communities thereby increasing the risk of infection with *Toxocara canis*.

In the current study, Odds ratio result indicated that there was an increase in the chances of infection with decrease in level of educational as recorded, students had 49% chances when compared with business men, housewives and farmers with 50%, 58%, and 65% chances respectively, this finding agrees with an earlier result reported by Lynch et al., 1988; Genchi et al, 1990 and Havasiova et al, 1993.

Findings in this study that shows that socio-economic status of individuals is statistically non-significant (P=0.196) to *Toxocara canis* infection agrees with an earlier report by Filho et al. (2002), in Brazil; which showed a non-significant effect of socio-economic parameters on human infection rates with Toxocariasis. Similar findings have also been reported by Tina et al., (2016); where it was reported that educational level, dwelling place be it rural or urban and the personal hygiene status of individuals coupled with the factors such as environmental contamination and presence of untreated dogs and cats, which are mostly seen in low socio-economic areas than high socio-economic areas and the combination of favourable climate and poor sanitation results in a high transmission pressure. On the other hand, it should not be underestimated that one feature which constitutes an important risk factor for a region or country may not be the most important risk factor for another region. It is likely that Toxocariasis will be one of the diseases about which we will be writing and talking in the future as long as human live with dogs and cats

Though findings in this study have indicated that farmers had lower prevalence rate, Odds Ratio result indicated that farmer had higher chances of infection, this could be attributed to their roles in farming activities as such activities exposes them to soils probably contaminated with *Toxocara* eggs. It is also recommended that further studies on Molecular Diagnosis be carried out to ascertain the Gene Markers responsible for the Pathology caused to the host by *T. canis*.

In conclusion the study showed that there is a very high Seroprevalence of *Toxocara canis* Antibody Titre amongst the studied population, with Children at a high risk of getting infected

It is therefore recommended that Anti-Toxocara Antibody Screening be included in the routine Medical Diagnosis. It is also recommended that further studies on Molecular Diagnosis be carried out to ascertain the Gene Markers responsible for the Pathology caused to the host by *T. canis*.

Authors wish to acknowledge the contributions of the Management, Laboratory Scientist of the Federal Medical Centre Yola, Adamawa State Nigeria, Adamawa State Ministry of Health and State Hospital Management Board for approving the Ethical Clearance that made the research possible.

1. Adebayo, A. A and Tukur, A.I. (1999). Adamawa State in map 1stEdition Paraclete publishers Yola. 1-3
2. Ajayi, O.O. Duhulinska, D.D., Agwale, M. and Njoku, M (2000). Frequency of Human Toxocariasis in Jos Plateau State, Nigeria. *Mem institute Oswaldo Cruz* 95(2):147-149
3. Alcanta-r-Nerves, N.M., Veiga, R.V., Dattoli, V.C., Fiaccone, R.L., Esquivel, R., Cruz, A.A et al. (2011). The effect of single and multiple infections on atopy and wheezing children. *Journal Allergy Clinical Immunology*, 129: 359-367, e351-353
4. Alonso, J.M, Bojanich, M. V. L., Chamora, M. and Gorodher, J.O. (2000). Toxocara seroprevalence in children from Subtropical City in Agentina. *Review of Institute of Medicine in Tropics*, 42, 235-237.
5. Anna, K, Kacper, T, Eizbieta, O and Artuk. (2018). Toxocariasis in Children: Poor Hygiene habits and contact with dogs is related to longer treatment: Parasitology *Research http://doi.org/10.1007/500436-018-5833-7.*
6. Espinoza, Y.A., Huapaya, P.H., Roldan, W.H., Jimennez, S., Arce, Z., Lopez, E. (2008). Clinical and Serological Evidence of Toxocara infection in School Children from Morrope district, Lambayeque, Peru. *Review of Institute of Medicine in Tropics*, 50:105-105
7. Filho, F.A., Chieffi, C. R. S., Correa et al. (2002). Human Toxocariasis: a Seroepidemiological survey in the municipality of Campinas (spp), Brazil. Revista do Instituto de Medica Tropical de Sao Paulo, 44 (6):303-307.
8. Good, B, Hollan, C.V., Taylor, M.R., Larragy, J., Moriarty, P. and O'Regan, M. (2004). Ocular Toxocariasis in School Children. *Clinical Infections diseases*, 39:173-178
9. Guangxu, M, Celia, V.H., Tao, W., Andreas, H, Chia-Kwung, F., Rick, M.M., Peter, J. Het al. (2018). Human Toxocariasis. *The Lancet*, 18: 16-17.
10. Klepec, T and Borecka, A. (2012). Contamination of vegetables, fruits and soil with geofohelmiths eggs on organic farm in Poland. *Annals of Agricultural and Environmental Medicine*, 19: 421-425.
11. Medonca, L.R., Veiga, R.V., Dattoli, V.C. Figueiredo, C.A., Fiaccone, R. Santos, J, et al. (2012). Toxocara Seropositivity, atopy in wheezing Children living in poor neighbourhood in urban Latin America. *PLOS Neglected Tropical Diseases*, 11. 1888.
12. Pius, S.E., Raymond, J, Ndahi, M. D., Patrick, N. and Monica, M. (2012). Prevalence and risk factors for zoonotic helmith infection among humans and animals- Jos Nigeria, 2005-2009. *Pan African Medical Journal*, 12:6.
xiii. Susana, A., Graciela, I.S., Reinaldo, F., Graciela, C., Lola, B and Nilda, (2014). Toxocariasis: Seroprevalence in abandoned- institutionalized children and infants, 46(1):3-6.

xiv. Tina, M., Mahani-Oskouei, M., Fallah, E., Safiyan, A and Mahami-Oskouei, L. (2016). Latent an Asymptomatic Toxocara Infection among young population in Northwest Iran: The necessity of informing people as a potential Health Risk. *Scientifica*, 1-5.

xv. Wolfe, Aand Wright, J. P. (2003). Human Toxocariosis and direct contact with Dogs. *Veterinary Research*, 152(14): 419-422.