Review of literature: genes related to postaxial polydactyly

Prashant Kumar Verma1 and Ashraf A. El-Harouni1,2*

1 Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
2 Department of Clinical Genetics, National Research Center, Cairo, Egypt

Background: Postaxial polydactyly (PAP) is one of the commonest congenital malformations and usually is associated to several syndromes. There is no primary investigational strategy for PAP cases with single gene disorder in literature. PAP cases with single gene disorder can be classified according to common pathways and molecular basis. Molecular classification may help in diagnostic approach.

Materials and Methods: All single gene disorders associated with PAP reported on PubMed and OMIM are analyzed and classified according to molecular basis.

Results: Majority of genes related to cilia structure and functions are associated with PAP; so we classified them as ciliopathies and non-ciliopathies groups. Genes related to Shh–Gli3 pathway was the commonest group in non-ciliopathies.

Conclusion: Genes related to cilia are most commonly related to PAP due to their indirect relationship to Shh–Gli3 signaling pathway. Initially, PAP may be the only clinical finding with ciliopathies so those cases need follow up. Proper diagnosis is helpful for management and genetic counseling. Molecular approach may help to define pleiotropy.

Keywords: postaxial polydactyly, molecular approach, hedgehog protein, sonic hedgehog, signal pathways, gene, cilia, investigation, approach

INTRODUCTION

Postaxial polydactyly (PAP) is defined as an extra digit or a part of digit on the ulnar or fibular side of hand or foot. A small projection of tissue or scar mark just below the proximal interphalangeal crease can also be the only clinical finding. Prevalence of PAP is 1–2/1000 live births with some difference in ethnic groups (1, 2).

PAP is more common (75%) than preaxial polydactyly (25%). About 8% of cases with bilateral PAP in upper and lower limbs are considered as isolated familial PAP (3). PAP is clinically classified into type A with fully developed extra digit and type B with incompletely developed digit (4). Type B PAP is commonly associated with isolated familial PAP (5).

Many congenital malformations associated to PAP are reported in literature (6–12). There are no reported guidelines or protocols for investigating these malformation syndromes.

Limb growth is controlled by a set of genes. The limb buds grow in three directions. The axis of growth is proximal to distal, dorsal to ventral, and anterior to posterior (first to fifth digit). Although a set of genes for limb growth are interacted to each other but the genes more specifically related to anterior to posterior axis shown in Figure 2 (13–27) are strongly related to molecular basis of PAP. Shh–Gli pathway is the well known pathway related to anterior to posterior growth pattern. Single gene disorders associated with PAP may be directly or indirectly related to Shh–Gli pathway. Classification of all reported single gene disorders associated with PAP on the basis of molecular association may help in making a common approach for investigation and genetic counseling of PAP.

MATERIALS AND METHODS

By using Mesh term “postaxial AND polydactyly” in searching PubMed and OMIM, we got total 667 entries. We included genetically well known syndromes with PAP and classified on the basis of common pathways and molecular association. We did not include single case reports and cases without molecular study. We also did not describe all phenotypic series of particular syndrome if genes are functionally related as Meckel, Bardet–Biedl syndrome (BBS), etc. As for clinical and molecular references for syndromes with PAP, we used NCBI resources like OMIM number, Gene ID, and relevant references related to gene function. We tried to define interactions between these genes for understanding the molecular mechanism how to PAP as related phenotype with particular gene.

RESULTS

Total of 36 genetically well known syndromes and entries were identified in which 16 (44%) related to ciliopathies group (Table 1) and 20 (56%) were unrelated groups and we classified them as non-ciliopathies group (Table 2). Most of the genes related to formation of PAP, we used NCBI resources like OMIM number, Gene ID, and etc. As for clinical and molecular references for syndromes with PAP, we used NCBI resources like OMIM number, Gene ID, and relevant references related to gene function. We tried to define interactions between these genes for understanding the molecular mechanism how to PAP as related phenotype with particular gene.

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; BMP, bone morphogenetic protein; DHCRC, 7-dehydrocholesterol reductase; FGFR2, fibroblast growth factor receptor 2; GDF5, growth/differentiation factor 5; GLI3, GLI-Kruppel family member 3; GLIR and GLIJA, GLI-Kruppel family member 3 activators and GLI-Kruppel family member 3 repressors; LMBR1, limb region 1, mouse, homolog of; MOL, mode of inheritance; OFD 1, orofaciodigital syndrome 1; PAP, post axial polydactyly; PTCH 1, patched, homolog of; Shh, sonic hedgehog; SMO, smoothened, Drosophila, homolog of; TGFBR1, 2, transforming growth factor, beta type 1,2 receptor; WNT7A, wingless-type MMTV integration site family, member 7A; XD, X-linked dominant; Xr, X-linked recessive.

www.frontiersin.org

February 2015 | Volume 3 | Article 8 | 1
and development of embryo. Shh–Gli3 signaling pathway was the commonest pathway involved with PAP. PAP is more frequently associated with ciliopathy.

DISCUSSION

Postaxial polydactyly is one of the most common congenital malformations and a key feature for dysmorphic syndromes. Genetic syndromes related to cilia dysfunction are called ciliopathies, and the majority of this group is associated with PAP. Most of ciliopathies related genes work together as common unit and any defect in one component leads to dysfunction of overall cilia function, either directly or indirectly. This is the cause for overlapping clinical phenotypes of different ciliopathies. We were not discussing the complex genetics of human ciliopathies but focusing more on the molecular mechanism for PAP association with ciliopathies.

Genes associated with anterior to posterior patterning may be responsible for molecular etiology of PAP (Figure 2). Cilia should be involved with the genes associated with anterior to posterior patterning of the limb. The Shh–Gli3-activated Ptc transcription pathway is the most important pathway related to control anterior to posterior patterning and associated with PAP. Shh, Ptc1, Smo, and Gli3 are the main genes in Shh–Gli3 pathway. Bone morphogenetic protein (BMP) and retinoic acid are also needed for anterior to posterior patterning but their association with PAP is not reported in the literature.

Sonic hedgehog mutations are usually not reported with PAP in humans because most of these mutations are heterozygous. Haploinsufficiency of Shh gene does not affect the long range process of patterning (72).

Ptc1 and Smo are the other intermediate genes in this pathway and both of them have an inhibitory function in Shh–Gli3 pathway. Mutations in these genes were not reported with PAP. Homozygous mutations in Ptc1 and Smo are lethal during embryonic development and haploinsufficiency do not affect long range process of patterning (73, 74).

Gli3 gene is the most important gene in this pathway and mutations in this gene are reported with PAP. Gli3R is a repressor form without Shh signaling. Smo activated Gli3R to an activated Gli3A form after Shh–Ptc interaction due to loss of inhibitory effect of Ptc on Gli3 (Figure 3). Gli3 works as a dual function transcription factor. These two forms of Gli3R and Gli3A and their proportion of Gli3R/Gli3A forms directly are related to digit types and number (75, 76). Complete regulatory mechanism of the Gli3R/Gli3A ratio is still unclear. There is no exact genotype and phenotype correlation with Gli3 mutations due to complex interaction to other genes and bifunctional transcriptional switch (77, 78).
Table 1 | Ciliopathies (genes related to cilia biogenesis, structure, and functions).

S. No.	Genetic disorder	OMIM No.	MOI*	Gene	Gene ID	Gene function	Reference
1.	Acrocallosal syndrome	200990	AR	KIF7	374654	Negative and positive regulator of Shh pathway	(28)
2.	Asphyxiating thoracic dysplasia (Jeune syndrome) type II	611263	AR	IFT80	57560	Cilia motility and sensation	(29)
3.	Bardet–Biedl syndrome (I–XV)	614099	AR	IFT43	614068	Cilia transport	(31)
4.	Cone–rod dystrophy 16	614500	AR	C8orf37	157657	Cilia function	(32)
5.	Ellis-van Creveld (chondroectodermal dysplasia)	225500	AR	EVC	2121	Positive mediator of Shh	(33, 34)
6.	Hydrolethalus 1 and 2	236680	AR	HYLS1 and KIF 7	219844	Core centriolar protein	(35)
7.	Joubert 20	614970	AR	TMEM231	79583	Diffusion barrier between the cilia and plasma membrane	(36)
8.	Joubert 14	614424	AR	TMEM237	65062	Ciliogenesis	(37)
9.	Kaufman–McKusick syndrome	236700	AR	MKKS or BBS6	8195	Ciliogenesis (mediator of BBSome complex assembly)	(38, 39)
10.	Meckel syndrome (1–10 types)	249000	AR	MKS 1 to MKS 10 except MKS4 by CEP290	Ciliogenesis	(40)	
11.	Oral–facial–digital syndrome I	311200	XD	OFD 1	8481	Component of the centrioles	(41)
12.	Oral–facial–digital syndrome IV	258860	AR	TCTN3	26123	Ciliogenesis, Hedgehog signal transduction	(42)
13.	Short rib–polydactyly syndrome type II A	263520	AR	NEK1	4750	Involved in cell cycle cilium assembly	(43)
14.	Short rib–polydactyly syndrome type IIB and III	615087	AR	DYNC2H1	79659	Functions in cilia biogenesis intraflagellar retrograde transport	(44)
15.	Weyers acrofacial dysostosis	193530	AR	EVC	2121	Positive mediator of Shh	(45)

*Mode of inheritance (MOI) of most ciliopathies is autosomal recessive.

Sonic hedgehog pathway needs cilia for signaling (79, 80) (Figure 3). So, Shh–Gli3 signaling pathway is affected with most of the ciliopathies with PAP association and that may be due to altered Gli3R/Gli3A ratio. Cell lacking cilia or alteration of intraflagellar transport (IFT) cause changes in Gli3 processing and unable them to proceed Shh signaling (81, 82). Those single gene disorders associated with PAP directly or indirectly alter Gli3 signaling causing them to have some rational pleiotropy for PAP association.

Besides PAP, there were few cases reported overlapping in their clinical features with Gli3 and ciliopathies (83). For example, acrocallosal syndrome has some overlapping features with GCP5 (Greig cephalopolysyndactyly syndrome). This may be due to KIF7 gene, which has negative or positive regulator mechanism in Shh pathway and needs molecular testing to confirm the diagnosis (84). PAP may be the only external malformation appreciated at birth, while other features may develop later in many ciliopathies. So, we made an investigation approach chart (Figure 4) during the first visit of any patient with PAP to the genetic clinic. Any patient with non-familial symmetrical PAP, even without congenital malformations, should be thoroughly investigated to rule out associated complications of ciliopathies (85) (Table 3). The recurrence risk for all ciliopathies is 25% per each pregnancy except OFD 1, which inherited as an X linked dominant trait.

Single gene disorders other than ciliopathies associated with PAP were classified as non-ciliopathies. In this group, functionally related genes to Shh–Gli3 pathways are Gli3, LMBR1, and DHCR7. GDF5 and TGFBR1, 2 genes are belonging to TGF-β signaling pathways. While WNT7A and FGFR2 genes are belonging to Wnt and FGF signaling pathways. Although WNT7A and FGFR2 genes interact with Shh pathway during limb development, but the exact molecular mechanism for PAP is still unclear. Most of other genes in this group belongs to gene families, which were not yet included in a specific pathway.

We also tried to find out the type of pleiotropy for PAP association. Pleiotropy is defined as multiple distinct phenotypic variants caused by a single gene. Most of these genes with PAP association
S. No.	Genetic disorder	OMIM No.	MOI	Gene	Gene ID	Gene function	Reference
1.	Apert syndrome	101200	AD	FGFR2	2263	Embryonic patterning, limb bud development, etc.	(46)
2.	C syndrome	211750	AR	CD96	10225	Adhesive interactions of activated T and NK cells	(47)
3.	Carpenter syndrome 1/2	201000, 614976	AR	RAB23	51715, 1954	Silence the Shh pathway in dorsal neural cells	(48)
4.	Chondrodysplasia punctata, X-linked dominant	302960	XLD	EBP	10682	Transport of cationic amphiphilics as integral protein of ER	(49)
5.	Chondrodysplasia, grebe type	200700	AR	GDF5	8200	Regulator of cell growth and differentiation in both embryonic and adult tissues	(50)
6.	Endocrine-cerebroosteodysplasia	612651	AR	ICK	22858	Intestinal epithelial cell proliferation and differentiation	(51)
7.	Fuhrmann syndrome	228930	AR	WNT7A	7476	During embryogenesis regulation of cell fate and patterning	(52, 53)
8.	Greig cephalopolysyndactyly, Pallister hall syndrome, PAP type A1 and type B	175700, 146510, 174200	AD	GLI3	2737	Mediators of Shh signaling	(54)
9.	Guttmacher syndrome	176305	AD	HOXA13	3209	DNA binding TF regulate during embryonic development like digit patterning	(55)
10.	IFAP syndrome with or without BRESHECK syndrome	308205	XR	MBTPS2	51360	Essential in development for activation of signal protein	(56, 57)
11.	Joubert syndrome 1	213300	AR	INPP5E	56623	Regulate Golgi-vesicular trafficking	(58)
12.	Loeys–Dietz syndrome, type 1A and 1B	609192, 61068	AD	TGFB1/TGFB2	7046, 7048	Signaling for transcription of genes related to cell proliferation	(59, 60)
13.	Megalencephaly-polymicrogyria-polydactyly hydrocephalus syndrome (MPPH)	603387	AD	PIK3R2	5296, 10000	Second messengers important in growth signaling pathways	(56)
14.	Otopalatodigital syndrome, type II (RARE)	304120	XD	FLNA	2316	Remodeling the cytoskeleton to effect changes in cell shape and migration	(62)
15.	Postaxial polydactyly (PAP) type A	–	AR	ZNF141	7700	Not known	(63)
16.	Syndactyly, type IV	186200	AD	LMBR1	64327	Cis-acting regulatory module for Shh	(64)
17.	Simpson–Golabi–Behmel syndrome, type 1	304120	AR	GPC3	7700	Cell division and growth regulation, inhibited soluble hedgehog activity	(65, 66)
18.	Schinzel–Giedion midface retraction syndrome	269150	AD	SETBP1	26040	Involved in DNA replication	(67)
19.	Smith–Lemli–Opitz syndrome	270400	AR	DHCR7	1717	Cholesterol biosynthesis and so indirectly for Shh signaling	(68)
20.	Ulnar-mammary syndrome	181450	AD	TBX3	6926	Anterior/posterior axis of the tetrapod forelimb	(69–71)

are related to embryonic patterning and development. Rational and mosaic are the two most common types of pleiotropy. Genes, which have a molecular mechanism for explaining particular trait, are called rational pleiotropy whereas those not having it are called mosaic pleiotropy (86). In our study, we found out rational pleiotropy for PAP association only with syndromes is related to Shh–Gli3 pathway. Other syndromes may be having mosaic pleiotropy for PAP association.
Recurrence risk for familial autosomal dominant (AD) PAP is up to 50% per each pregnancy with variable expressivity. Non-familial case should be kept in follow up (Figure 4). Cytogenetic studies should be done for multiple congenital anomalies associated with PAP without specific dysmorphology. Chromosomes abnormalities in 2, 3, 4, 7, 13, 14, and 18 were reported with PAP (87–97). Single gene testing is not acceptable to most of ciliopathies disorders because of genetic heterogeneity, oligogenic inheritance, and age dependent penetrance. So, initially most of the cases are classified upon the clinical basis but further more investigations are necessary for proper diagnosis and genetic counseling.

CONCLUSION

Genes related to anterior to posterior patterning are responsible for PAP. Dysregulation or mutations of the Gli3 gene was associated with PAP. Genes related to cilia are most commonly related to PAP.
due to their indirect relationship to Shh–Gli3 signaling pathway. Initially, PAP may be the only clinical findings with ciliopathies so due to their indirect relationship to Shh–Gli3 signaling pathway.

REFERENCES

1. Zhou GX, Dai L, Zhu J, Miao L, Wang YP, Liang J, et al. "[Epidemiological analysis of polydactyly in Chinese perinatals]." Sichuan Da Xue Xue Bao Yi Xue Ban (2004) 35(4):578–81.

2. Boening M, Paiva Lde C, Garcia Gde L, Roth Mda G, Santos IS. "[Epidemiology of polydactyly: a case-control study in the population of Pelotas-RS]." J Pediatr (Rio J) (2001) 77(2):147–52. doi:10.2223/JPED.1996.83(4):359–363. doi:10.1002/jped.20443

3. Castilla EE, Lugarinho da Fonseca R, da Graca Dutra M, Bermejo E, Cuevas LM, Martinez-Frias ML. "Epidemiological analysis of rare polydactyly. Am J Med Genet 1996; 65(2):285–303. doi:10.1002/(SICI)1096-8628(19961111)65:4<295::AID-AJMG10>3.0.CO;2-P

4. Tantamay S, McKusick VA. The genetics of hand malformations. Birth Defects Orig Artic Ser (1978) 14(1):1–619.

5. Watson BT, Henrikus WL. Postaxial type-β polydactyly. Prevalence and treat-ment. J Bone Joint Surg Am (1979) 61(1):68–72.

6. Planas S, Pico R, Rubio R, Villamor R, Sera A, Carreras R. A new report of mesomelic camptodactyly, polydactyly and Dandy-Walker complex. Am J Med Genet (2001) (34 Pt 2):604–5. doi:10.1002/ajmg.a.20443

7. Roman Corona-Rivera J, Corona-Rivera E, Fragoso-Herrera R, Nuno-Arana I, Loera-Castaneda V. "Probable new syndrome in a Mexican family with congenital palmar polyonychia and postaxial limb defects." Am J Med Genet 2004; 125A:205–9. doi:10.1002/ajmg.a.20443

8. Voelg A, Rodriguez C, Wzorek W, Liapis Belmonte JC. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature (1995) 378(6558):716–20. doi:10.1038/378716a0

9. Logan C, Horinbrouc A, Campbell I, Lumsden A. The role of engrailed in establishing the dorsoventral axis of the chick limb. Development (1997) 124(2):2317–24.

10. Loomis CA, Harris E, Michaud I, Wurts W, Hawks M, Joyner AL. The mouse engrailed-1 gene and ventral limb patterning. Nature (1996) 382(6589):360–3. doi:10.1038/382360a0

11. Sugiura Y, Lenz W. New type of synpolydactyly of hands and feet in two unre-ported siblings. J Bone Joint Surg Am (2001) 83(2):295–303. doi:10.2270/jbjs.2001.00032

12. Sonoda T. "[Scalp defects-postaxial polydactyly]." Ryoikibetsu Shokogun Shirizu 1979; 34(2):219–22.

13. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Dev Biol (1993) 157(2):157–69. doi:10.1006/dbio.1993.1070

14. Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates anterior/posterior patterning of the developing vertebrate limb. Cell (1994) 77(7):244–57. doi:10.1016/0092-8674(94)90078-0

15. Varga N, Hooper D, Tabin C. The role of sonic hedgehog during mouse limb development. J Biol Chem (2000) 275(24):18599–604. doi:10.1074/jbc. M0000002020000024

16. Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb mor-phogenesis. Development (1978) 79:993–1003. doi:10.1242/dev.00910

17. Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the first two digits in developing chick limbs by secreted FGF-4. Cell (1994) 77(5):787–95. doi:10.1016/0092-8674(94)90077-8

18. Planas S, Pico R, Rubio R, Villamor R, Sera A, Carreras R. A new report of mesomelic camptodactyly, polydactyly and Dandy-Walker complex in siblings. J Bone Joint Surg Am (1995) 77(7):791–6. doi:10.2270/jbjs.1995.00156-4

19. Riddle RD, Nelson CE, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Dev Biol (1993) 157(2):157–69. doi:10.1006/dbio.1993.1070

20. Chang DT, Lopez A, von Kessler DP, Chiang C, Simandl BK, Zhao R, et al. Prod-ucts of the sox11 and gata3 loci synergize to establish the dorsal interdigital dermoe-pith. Development (1998) 125(6):1137–48.

21. Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmx1 by Wnt7a establishes dorsoventral pattern in the vertebrate limb. Cell (1995) 83(4):631–40. doi:10.1016/0092-8674(95)00315-3

22. Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polar-ity of D-V and A-P axes of mouse limb. Nature (1995) 374(6520):350–3. doi:10.1038/374350a0
45. Howard TD, Gutmacher AE, McKinnon W, Sharma M, McKusick VA, Jabs EW. Autosomal dominant postaxial polydactyly, nail dystrophy, and dental abnormalities map to chromosomes 4p16, in the region containing the Ellis-van Creveld syndrome locus. *Am J Hum Genet* (1997) 61(4):1405–12. doi:10.1086/301643

46. Wilkie AO, Slaney SE, Oldridge M, Poole MD, Ashworth CJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. *Nat Genet* (1995) 9(2):165–72. doi:10.1038/ng0295-165

47. Kaname T, Yanagi K, Chinen Y, Makita Y, Okamoto N, Maehara H, et al. Mutations in CD96, a member of the immunoglobulin superfamily, cause a form of the C (Opitz trigonocephaly) syndrome. *Am J Hum Genet* (2007) 81(4):835–41. doi:10.1086/520144

48. Eggeschulzer WT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. *Nature* (2001) 412(6843):194–8. doi:10.1038/35084089

49. Labit-Le Bouteiller C, Jamme MF, David M, Silve S, Lanau C, Dhers C, et al. Antiproliferative effects of SR1747A in animal cell lines are mediated by inhibition of cholesterol biosynthesis at the sterol isomerase step. *Eur J Biochem* (1998) 256(3):432–9. doi:10.1111/j.1432-1328.1998.05243.x

50. Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Mutations in the C (Opitz trigonocephaly) syndrome. *Am J Hum Genet* (2007) 81(4):835–41. doi:10.1086/520144

51. Tomasek H, Zeman J, Tuma L, Zunovcova L, Zvosecky P. Identification and characterization of SEB, a novel protein that binds to the germ-line competency of induced pluripotent stem cells. *Nature* (2010) 463(7284):1096–100. doi:10.1038/nature08735

52. Tumpel S, Sanz-Ezquerro JJ, Isaac A, Eblaghie MC, Dobson J, Tickle C. Regulation of Tbx3 expression by anteroposterior signalling in vertebrate limb development. *Dev Biol* (2002) 250(2):251–62. doi:10.1006/dbio.2002.0762

53. Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, et al. Mutations in CD96, a member of the immunoglobulin superfamily, cause a form of the C (Opitz trigonocephaly) syndrome. *Hum Mol Genet* (1995) 4(1):11630. doi:10.1006/hmg.2000.0302

54. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of GLI3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. *Cell* (2000) 100(4):423–34. doi:10.1016/S0092-8674(00)00678-9

55. Sheth R, Marcon L, Bastaia MF, Junco M, Quintana L, Dahn R, et al. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. *Science* (2012) 338(6113):1476–80. doi:10.1126/science.1226804

56. Zelenki NS, Rawson RB, Brown MS, Goldstein JL. Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. *J Biol Chem* (1999) 274(31):21973–80. doi:10.1074/jbc.274.31.21973

57. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATMs by the same proteases that process SREBFs. *Mol Cell* (2000) 6(6):1355–64. doi:10.1016/S1097-2765(00)01353-7

58. Kisseleva MV, Wilson MP, Majerus PW. The isolation and characterization of a novel zinc-finger gene ZNF141 associated with autosomal dominant postaxial polydactyly type IV and postaxial polydactyly type A/B; no phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type IV and postaxial polydactyly type A/B. *Hum Mol Genet* (2006) 15(10):2028–36. doi:10.1093/hmg/ddg180

59. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Shh promote the activity of smoothened. *Nature* (2002) 418(6901):979–83. doi:10.1038/nature01033

60. Hui CC, Angers S. Gli proteins in development and disease. *Annu Rev Cell Dev Biol* (2011) 27:513–37. doi:10.1146/annurev-cellbio-092910-154048

61. Biesecker LG. What you can learn from one gene: GLI3. *Orphanet J Rare Dis* (2006) 1:5. doi:10.1186/1750-1172-1-5

62. Biesecker LG. The Greig cephalopolysyndactyly syndrome. *Am J Med Genet* (2006) 140B(2):165–72. doi:10.1002/ajmg.b.300535

63. Kos S, Roth K, Korinth D, Zeilinger G, Eich G. Hydrometrocolpos, postaxial polydactyly type II, and malformations of the female genitalia. *Pediatr Nephrol* (2004) 19(8):902–6. doi:10.1007/s00467-008-0870-5

64. Corbit KC, Anstadt P, Singla V, Norman AR, Stainier DY, Reiter JE. Vertebrate smoothened functions at the primary cilium. *Nature* (2005) 437(7066):1018–21. doi:10.1038/nature04117

65. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. GLI2 and GLI3 localize to cilia and require the intracellular transport protein polars for processing and function. *PLoS Genet* (2005) 1(4):e33. doi:10.1371/journal.pgen.0010035

66. Ochina PJ, Anderson KV. Intracellular transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. *Dev Dyn* (2008) 237(7):2030–8. doi:10.1002/dvdy.21551

67. Sos S, Roth K, Korinth D, Zeilinger G, Eich G. Hydrometrocolpos, postaxial polydactyly, and hypothyroidism-hamartoma in a patient with confirmed Pallister-Hall syndrome: a clinical overlap with McKusick-Kaufman syndrome. *Pediatr Radiol* (2008) 38(8):902–6. doi:10.1007/s00247-008-0870-5

68. Biesecker LG. The Greig cephalopolysyndactyly syndrome. *Orphanet J Rare Dis* (2008) 3:10. doi:10.1186/1750-1172-3-10

69. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. *Pediatr Nephrol* (2011) 26(7):1039–56. doi:10.1007/s00467-010-1731-7
Verma and El-Harouni

Postaxial polydactyly

86. Stearns FW. One hundred years of pleiotropy: a retrospective. Genetics (2010) 186(3):767–73. doi:10.1534/genetics.110.122549
87. Haddad V, Aboua R, Tosca L, Goediche N, Mas AE, L’Hermine AC, et al. Tetrasomy 13q31.1qter due to an inverted duplicated neocentric marker chromosome in a fetus with multiple malformations. Am J Med Genet A (2012) 158A(4):894–900. doi:10.1002/ajmg.a.35258
88. Hahn GK, Barth RF, Schauer GM, Reiss R, Opitz JM. Trisomy 2p syndrome: a fetus with anencephaly and postaxial polydactyly. Am J Med Genet (1999) 87(1):45–8. doi:10.1002/(SICI)1096-8628(19991105)87:1<45::AID-AJMG9>3.0.CO;2-V
89. Hayashi S, Okamoto N, Makita Y, Hata A, Imoto I, Inazawa J. Heterozygous deletion at 14q22.1-q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am J Med Genet A (2008) 146A(22):2905–10. doi:10.1002/ajmg.a.30134
90. Higginbottom MC, Mascarello JT, Hassin H, McCord WK. A second patient with partial deletion of the short arm of chromosome 3: karyotype 46,XY,del(3)(p25). J Med Genet (1982) 19(1):71–3. doi:10.1136/jmg.19.1.71
91. Lurie IW, Schwartz MF, Schwartz S, Cohen MM. Trisomy 7p resulting from isochoromosome formation and whole-arm translocation. Am J Med Genet (1995) 55(1):62–6. doi:10.1002/ajmg.1320550117
92. Pfeiffer RA, Santelmann R. Limb anomalies in chromosomal aberrations. Birth Defects Orig Artic Ser (1977) 13(1):319–37.
93. Ounap K, Ilus T, Bartsch O. A girl with inverted triplication of chromosome 3q25.3 – q29 and multiple congenital anomalies consistent with 3q duplication syndrome. Am J Med Genet A (2005) 134(4):434–8. doi:10.1002/ajmg.a.30134
94. Paskulin GA, Birgel M, Machado Rosa RF, Graziaido C, Garzola Zen PR. Interstitial deletion of 7q31.32 – q33 secondary to a paracentric inversion of a maternally deleted 7q. Eur J Med Genet (2011) 54(2):181–5. doi:10.1016/j.ejmg.2010.10.012
95. Makrythanasis P, Gimelli S, Bena F, Dahoun S, Morris MA, Antonarakis SE, et al. Homozygous deletion of a gene-free region of 4p15 in a child with multiple anomalies: could bi-allelic loss of conserved, non-coding elements lead to a phenotype? Eur J Med Genet (2012) 55(1):63–6. doi:10.1016/j.ejmg.2011.11.001
96. Lumaka A, Van Hole C, Castexs I, Ortibus E, De Wolf V, Vermeesch JR, et al. Variability in expression of a familial 2.79 Mb microdeletion in chromosome 14q22.1-22.2. Am J Med Genet A (2012) 158A(6):1381–7. doi:10.1002/ajmg.a.35353
97. Kessell E, Pfeiffer RA, Baish C, [Postaxial polydactyly: a symptom of partial trisomy of the long arm of chromosome 13: Two new observations with 46,XX, t (22;13) (q13;q31) and 46,XY, Dup (13) (pter-q34;q22-qter) (author’s transl)]. Klin Padiatr (1980) 192(1):85–90. doi:10.1055/s-2008-1033863

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 October 2014; accepted: 26 January 2015; published online: 11 February 2015.

Citation: Verma PK and El-Harouni AA (2015) Review of literature: genes related to postaxial polydactyly. Front. Pediatr. 3:8. doi: 10.3389/fped.2015.00008

This article was submitted to Genetic Disorders, a section of the journal Frontiers in Pediatrics.

Copyright © 2015 Verma and El-Harouni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.