Distribution and invasive potential of the black-tufted marmoset *Callithrix penicillata* in the Brazilian territory

Distribuição e potencial de invasão do mico estrela *Callithrix penicillata* no território brasileiro

C. A. Vale¹; L. Menini Neto²; F. Prezoto¹

¹Departamento de Zoologia/Laboratório de Ecologia Comportamental e Bioacústica, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora-MG, Brasil
²Departamento de Botânica, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora-MG, Brasil
carolineavale@gmail.com

(Received on 07 de setembro de 2019; accepted on 18 de abril de 2020)

Biological invasions are one of the greatest existing threats to biodiversity. Invasive species can cause economic and environmental damage. *Callithrix penicillata* is naturally found in the Brazilian savanna and Caatinga. Its introduced populations have become a conservation problem due to its high occupancy potential, native fauna predation, competition with native primates, congeners and hybridization. We used Species Distribution Modeling (SDM) through the Maxent software in this study in order to identify areas with a higher probability of *C. penicillata* occurrence. The AUC value was close to 1 (AUC=0.966), with a curve value close to 1. Through the Jackknife test we observed that temperature seasonality was the variable most related to distribution (AUC=0.86), which agrees with other studies that show climatic variables influencing primate distribution. The Atlantic Forest in the Southeast and South regions of Brazil was indicated as susceptible to invasion by *C. penicillata*. The marmoset *C. penicillata* has become a successful invader of Atlantic Forest areas, causing depreciation in many native species and other problems. However, biological invasions might be mitigated or even extinguished through successful interventions and management.

Keywords: Ecosystem impact, Species Distribution Modeling, Primates.

Invasões biológicas são uma das maiores ameaças a biodiversidade, espécies invasoras podem causar prejuízos econômicos e ambientais. *Callithrix penicillata* é naturalmente encontrado no cerrado brasileiro e caatinga. Suas populações introduzidas tornaram-se um problema de conservação devido ao seu alto potencial de ocupação, predação da fauna nativa, competição com congêneres nativos e hibridação. Neste estudo utilizamos a Modelagem de Distribuição de Espécies (MEDE) através do software Maxent para identificar áreas com maior probabilidade de ocorrência de *C. penicillata*. O valor encontrado foi de AUC = 0,966, com valor da curva próximo a 1. Por meio do teste Jackknife, observamos que a sazonalidade da temperatura foi a variável mais relacionada à distribuição (AUC = 0,86), indo de acordo com outros estudos que demonstram que variáveis climáticas influenciam a distribuição de primatas. A Floresta Atlântica nas regiões Sudeste e Sul do Brasil foram as suscetíveis à invasão por *C. penicillata*. O sagui *C. penicillata* se tornou um invasor bem sucedido na Floresta Atlântica, onde vem causando vários danos e prejuízos para a fauna nativa desse bioma. No entanto invasões biológicas podem ser mitigadas ou mesmo quantidades quando são realizadas intervenções e manejo adequado.

Palavras-chave: Impacto nos ecossistemas, modelagem de Distribuição de Espécies, Primatas.

1. INTRODUCTION

Biological invasions are responsible for significant environmental alterations and are one of the greatest existing threats to biodiversity [1]. Once settled in a new habitat, the invasive species threatens the native biodiversity, being able to cause potentially irreparable economic and environmental losses [1]. In order to mitigate this global problem, tools have developed that enable us to predict invasion events [2]. Among these, Species Distribution Modeling (SDM) has become increasingly important for predict biological invasions [3, 4]. Species distribution models have been used in biogeography, conservation, ecological and paleontological studies [5].

Species Distribution Modeling can be designed promptly and with a low budget, helping to identify areas in which a species has a higher probability of occurring [6]. Precisely identifying areas that may be successfully occupied by invasive species is one of the greatest challenges when studying biological invasions [1]. Data used to determine the distribution of a species in a given geographical area is usually scarce and incomplete, which hinders conservation and management projects [7]. These projects are only made possible by knowing which areas have already been

052401 – 1
invaded and which ones are more susceptible to invasion. In this way, management strategies can be focused on areas of high-risk areas of invasion [1, 2].

The *Callithrix penicillata* (É Geoffroy 1812) is a well-known invasive species for some areas in Brazil [8]. The species is a small-sized arboreal primate that inhabits many vegetal physiognomies and may occur in secondary or disturbed vegetation, typical in Cerrado (Brazilian savannas) and Caatinga areas in the states of Bahia (reaching the northern borders of the Grande and São Francisco rivers in its northern distribution), Minas Gerais, Goiás, southwestern Piauí, Maranhão and northern São Paulo (north to the Tietê and Piracicaba rivers) [9].

This species was introduced in the states of Rio de Janeiro, Espírito Santo, São Paulo, Paraná and Santa Catarina, and also in some areas in eastern Minas Gerais, mainly in the Atlantic forest [9]. The Atlantic Forest is a world hotspot, with some of the highest rates of endemism and biodiversity in the entire planet. It originally spread approximately 1,300,000 km², but currently, only 22% of the original coverage exists [10, 11]. Most of its territory is found in the Southeast and South regions, which have the greatest demographic densities in Brazil. The forest is therefore threatened by urbanization, industrialization, deforestation, fragmentation, anthropic occupation, and recently biological invasions [10, 12].

Such sites include Conservation Units which function is to ensure the representativeness of significant and ecologically viable samples of different populations, habitats and ecosystems by preserving the existing biological patrimony [13]. Introduced *C. penicillata* populations have become a concerning issue for environmental conservation due to their general diet, tolerance for fragmentation and tendency to increase their density, especially in defaunated areas [14, 15] where they impact the native fauna, transmit diseases and hybridize with native congeners of the Atlantic Forest [16].

Negative impacts on avifauna by invasive marmosets have mainly been reported for birds and eggs predation [14, 17, 18, 19, 20]. Studies on the decline of bird populations, especially on islands, have pointed to the introduced marmosets as one of those responsible [20, 21, 22]. Conversely, invasive marmosets can play important ecological roles in outdated areas where there are no native primates, such as dispersers or maintaining important ecological relationships [23, 24]

Callithrix penicillata was chosen due to its relevance in the conservation scenario and the need for further investigations, since the existing studies [see 16, 20, 25] are limited to report on their local damage, such as predation record on native fauna and recorded hybridization with native congeners, but with no in-depth approach to the problem. Our goals were to discriminate the actual distribution of the *C. penicillata* and through the SDM modelling Maxent (Maximum Entropy) software to predict which areas are more probable to invasions by this species and to discuss the ecological relevance of invaded areas, as well as the losses caused by the marmoset in such sites. Finally, to provide data about the biological invasion and demonstrate the importance of predictive modelling in management and conservation actions for invasive species.

2. MATERIAL AND METHODS

We used the Maxent software (www.cs.princeton.edu/~schapire/maxent/) in order to estimate the potential species distributions. This algorithm requires the entry of a set of layers or environmental variables (e.g., precipitation rates, altitude, etc.) and a set of georeferenced occurrence locations in order to generate a SDM of a given species [7, 26], as used bellow.

The marmoset occurrence locations (302 occurrence points) (Figure 1) were attained through an extensive literature review in the Web of Science (apps-webofknowledge.ez25.periodicos.capes.gov.br), Scielo – Scientific Electronic Library Online (www.scielo.org/php/index.php), and Academic Google (scholar.google.com.br) databases, as well as consultations to biological collections (Appendix I) and in the Global Biodiversity Information Facility (gbif.sibbr.gov.br), Mammal Networked Information System (https://ecologicaldata.org/wiki/mammal-networked-information-system), SpeciesLink (splink.cria.org.br) and Táxeus (taxeus.com.br) databases. Unreferenced data was georeferenced through the Geoloc tool (splink.cria.org.br/geoloc) and Google Earth. Records with inaccurate information about the locality were discarded.
The environmental variables used in this study were the 19 listed by Hijmans et al. (2005) [27], attained from consulting the WordClim database (www.worldclim.org). Additionally, data on the altitude and vegetation of biomes were attained from the Instituto Nacional de Pesquisas Espaciais – INPE (www.dpi.inpe.br/Ambdata/index.php). In order to reduce overfitting, which tends to be larger with larger number of dimensions, through principal component analysis (PCA), we used six variables that together explained 99% of the data variation, BIO 4 (temperature seasonality), BIO 5 (Max Temperature of Warmest Month), BIO 10 (Mean Temperature of Warmest Quarter), BIO 11 (temperature mean of the coldest quarter), BIO 12 (Annual Precipitation) and BIO 15 (Precipitation Seasonality).

An independent dataset was then built and divided into training data and testing data in order to assess the quality and reliability of the model. The testing dataset was created by using a 25% randomization of the presence points (totaling 227 training points and 75 test points). The adjustment measure in the model was a random prediction with an AUC value = 0.5.

Two other statistical parameters were taken into account, the omission rate and the binomial proportion [28]. These parameters help us understand how much the model failed to predict the occurrence of test points and how statistically significant it is. Complementary analysis of data overlay in the marmoset occurrence in Conservation Units, phytogeographic domains and priority conservation areas (www.mapas.mma.gov.br/i3geo/datadownload.htm) were carried out using the DIVA-GIS software (www.diva-gis.org/download).
3. RESULTS AND DISCUSSION

Our results show that the sites which are more susceptible to *C. penicillata* invasion outside their likely occurrence area are in the Southeast of the Atlantic Forest (Figure 2).

The calculated values regarding the model’s reliability were AUC=0.923. Pearce & Ferrier (2000) [29] consider that values over 0.75 are indicators of good model performance, and therefore the closer the area under the curve is to 1, the smaller the probability of the model being a result from a random prediction. The model presented low values for both the omission rate (0.000) and the binomial test (0), indicating that the generated models are significantly different from those generated at random.

![Figure 2 - Geographical representation of the potential distribution for Callithrix penicillata in the Brazilian territory; white dots represent locations used to generate the model (training) and purple dots represent the locations used to test the model.](image)

Regarding the environmental variables that most influenced the model prediction, the Jackknife test showed that the species distribution is closely related with the variables: Max Temperature of Warmest Month (BIO 5) AUC=0.84, and Temperature Seasonality (BIO 4) AUC=0.83, followed by Annual Precipitation (BIO 12) AUC= 0.82. The influence of these variables on the species distribution is due to its natural habitat being the Cerrado, which has differences in the temperature seasonality throughout the year. Two distinct seasons are markedly present: the hot and rainy season (from October to April), in which 75% of the precipitation takes place and temperatures
range from 20°C to 28°C, and the cold and dry season (from May to September), with temperatures going as low as 16°C and relative air humidity getting close to 20% during droughts [30]. The Atlantic forest presents the highest potential for invasion, where the predominant climate is the humid tropical climate, which is marked by medium to high temperatures and high air humidity throughout the year and regular and well distributed rainfall [31]. The characteristics of this biome favor the occupation of *C. penicillata* in these areas. Climatic and environmental factors may interfere in the marmoset distribution in the Brazilian territory, thus creating areas with higher or lower invasion probability. However, it is necessary to consider that results are limited to the data currently available on locations of occurrence of the species who are mainly from the southeastern region of Brazil.

Other primate studies have shown the existence of an influence between environmental variables and the distribution limits, as well as the use of space [see 25, 32, 33]. For instance, the distribution limits for *Brachyteles arachnoides* (É. Geoffroy, 1806) are influenced by climatic factors (AUC=0.994) such as temperature and precipitation [34]. The environmental variables that most influenced the *B. arachnoides* distribution were temperature seasonality (AUC=0.96), followed by annual temperature mean (AUC=0.93) and maximum temperature of the hottest month (AUC=0.93). As found in our study, temperature seasonality was the variable most correlated to distribution. For *Callithrix flaviceps* (Thomas 1903), study with model attained through logistic regression (with a 95.6% concordance value) showed that climatic factors seem to limit its distribution, suggesting that there are areas with higher probabilities (> 40%) of species occurrence [25]. The occurrence of *C. flaviceps* was positively related to relative humidity (0.8057, sd ± 0.0229), and it seemed to show a preference for Ombrophilous forest areas (more than 50% of the occurrence was in Ombrophilous Forests).

In order to understand the impact of *C. penicillata* invasion, we analyze its distribution area throughout the country along with the Protected Areas (PA, Conservation Units – CU in Brazil) (Figure 3), Priority Conservation Areas and the Atlantic Forest domain itself (Figure 4). When *C. penicillata* occurrence is overlaid with Brazilian Conservation Units, it is evident that the species has invaded Conservation Units belonging to the Atlantic Forest (Appendix I).
Figure 3 - Protected Areas (blue): Federal, state and Municipal, Atlantic Rain Forest (dark blue) versus Callithrix penicillata occurrence (red dots) (Appendix I). This figure was generated in the DIVA-GIS 7.5.0 software [35].
The black-tufted marmoset (C. penicillata) is a generalist invader [14], with a plastic diet, a high habitat occupation potential, and a capability of occurring in a widely variety of phytophysiognomies such as disturbed areas or secondary vegetation [36]. Additionally, Callithrix genus is also one of the most frequent in illegal trade, commonly commercialized as pet [37]. It has great potential on the predation of the native fauna (bird eggs and birds, amphibian and serpent hatchlings) [14, 20, 38]. Causing many problems in the Atlantic Forest areas where they were introduced [13], as direct competition with native primate species for habitat and resources [39] and hybridization (H) with the endemic Callithrix ssp. which may result in the loss of unique genotypes, endemism suppression and population depreciation [40], as well as the transmission of diseases to both native primates and human beings [41].

Primates of the Callithrix genus are reservoir for diseases that afflict primates, including humans, and are often potential transmitters. Marmosets are classified by the National Health Foundation (Fundação Nacional de Saúde – FUNASA) as a host species and/or a possible biological risk parasite reservoir, and therefore are monitored by the Surveillance and Control Coordination of Biological Risk Factors (Coordenação de Vigilância e Controle dos Fatores de Risco Biológico) in order to prevent and avoid any changes in key and conditional environmental factors related to human health [42]. Records dating back to 1930 describe diseases being transmitted from primates down to humans, with encephalomyelitis (from Herpesvirus simiae) being one of the first [43]. Still, diseases from fungal, viral, bacterial and helminthic origins are currently described as cycling
between humans and other primates, such as rabies, herpes B, monkeypox, common cold, poliomyelitis, measles, yellow fever, dengue and others [42, 43].

Dozens of marmosets have been diagnosed with rabies, and human deaths have been caused by marmoset-transmitted rabies [44]. The Callithrix genus was the second most stricken by yellow fever among non-human primates [45] in the recent outbreaks of wild yellow fever that hit the southeast of the country between 2017-2018, the area most susceptible to invasion, caused high mortality of marmosets. The death of these animals mainly in urban areas with high population and occurrence of the Aedes aegypti mosquito increased the concern of health agencies about the risk of reurbanization of the disease in the country [46, 47]. Moreover, intestinal parasites may be transmitted by marmosets down to humans in urban areas frequented by marmosets and humans (such as parks or squares) [48].

While researching marmosets living in urban and forest areas, Verona (2008) [43] verified the presence of bacteria such as Escherichia coli (which may cause gastroenteritis, urinary infection, and meningitis in humans), Klebsiella oxytoca (causes infections in the urinary tract, and septicemia), Klebsiella pneumoniae (pneumonia), Sphingomonas paucimobilis (may cause peritonitis, cerebral abscesses, cervical adenopathy, respiratory infections, urinary infections, and meningitis) and Salmonella enteritidis (gastroenteritis). Aside from microfilaria, fungi, parasite eggs and nematode larva [43, 49].

Callithrix ssp. generally has the ability to survive in fragmented areas [5, 10]. Disturbed environments, especially when close to urban areas, are susceptible to colonization by generalist primates as the Callithrix genus [5, 9]. In southeast of the country, especially in the invaded areas, primates are living in environments near human settlements, they opportunistically interact with people aiming to supplement their diet [50]. This greater proximity then increases the risks of transmitting diseases for humans, and also increase the exposure of marmosets to parasites, risk attack by domestic animals, hunting for pets and susceptible to roadkill and electrocution when using power lines [19, 30, 31].

4. CONCLUSION

The Atlantic Forest is vulnerable to biological invasions since it is already under of pressure coming from urbanization, and degradation and environmental fragmentation. The marmoset Callithrix penicillata has become a successful invader of Atlantic Forest areas, causing depreciation in many native species, which already deal with various other pressures. Factors linked with urbanization and industrialization are harder to control since the human expansion process is not likely to be contained. However, biological invasions might be mitigated or even extinguished through successful interventions and management strategies when well applied can bring excellent results [sec: 51, 52].

The generated model reached desirable reliability rates and may be used to help plan the control of C. penicillata invasions. Further studies are needed in order to design better control measurements. Our results provide data that may contribute to the conservation of the Atlantic Forest by helping and clarifying the potential biological invasion process by the C. penicillata, outlining the current invasion profile, based on environmental characteristics. Showing, therefore, which regions are more likely to be invaded, as well as which environmental conditions may contribute to or limit the invasion; data which may be used in future conservation and management projects.

5. REFERENCES

1. Matthews S. América do Sul invadida: A crescente ameaça de espécies exóticas invasoras. Nairobi: Global Invasive Species Programme; 2005. 81 p.
2. Kulhanek SA et al. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl. 2011 Jan;21(1):203-213, doi: 10.1890/09-1639.1
3. Uden DR et al. Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions. 2015;17(10):2831-2850.
4. Wang L, Jackson DA. Shaping up model transferability and generality of species distribution modeling for predicting invasions: implications from a study on Bythotrephes longimanus. Biol Invasions. 2014;16(10):2079-2103.

5. Giannini TC et al. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia. 2012 Jul;63(3):733-749, doi: 10.1590/S2175-78602012000300017

6. Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning 2004. p. 83.

7. Elith JCH et al. Novel methods improve prediction of species distributions from occurrence data. Ecography. 2006 Mar;29(1):129-151, doi: 10.1111/j.2006.0906-7590.04596.x

8. Rylands AB, Coimbra-Filho AF, Mittermeier RA. The systematics and distributions of the marmosets (Callithrix, Callibella, Cebuella, and Mico) and Callimico (Callimico) (Callithricidae, Primates). Springer, Boston, MA 2009. p. 25-61.

9. Oliveira GR, Amora DT, Reis NR, Peracchi AL, Rosa GM. Gênero Callithrix. In Reis NR (ed). Primatas do Brasil. Londrina: Technical Books; 2015. p. 64-77.

10. MMA. Biomas: Mata Atlântica. Ministério do Meio Ambiente. 2016. Disponível em http://www.mma.gov.br/biomas/mata-Atlantica. Acesso 2 janeiro 2019.

11. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv. 2009;142(6):1141-1153, doi: 10.1016/j.biocon.2009.02.021.

12. Fabricante J et al. Invasão biológica de Arctocarpus heterophyllus Lam. (Moraceae) em um fragmento de Mata Atlântica no Nordeste do Brasil: impactos sobre a fitodiversidade e os solos dos sítios invadidos. Acta Bot Bras. 2012 Apr;26(2):399-407, doi: 10.1590/S0102-86502012000200015

13. MMA. Unidades de Conservação. Ministério do Meio Ambiente. 2016. Disponível em http://www.mma.gov.br/areas-protégidas/unidades-de-conservacao/o-que-sao. Acesso 20 de setembro 2019.

14. Vale CA, Prezoto F. Invasões biológicas: o caso do mico estrela (Callithrix penicillata). CES Rev. 2015 Jan;29(1):58-76.

15. Vale CA, Prezoto F. Papel dos primatas do gênero Callithrix na manutenção das relações ecológicas em áreas defaunadas na Floresta Atlântica. CES Rev. 2016 Ago;30(2):19-33.

16. Carvalho RS et al. Molecular identification of a Buffy-tufted-ear marmoset (Callithrix aurita) incorporated in a group of invasive marmosets in the Serra dos Órgãos National Park, Rio de Janeiro–Brazil. Forensic Sci Int Genet. 2013;4(1):230-231, doi: 10.1016/j.fsigen.2013.10.118

17. Begotti RA, Landesmann LF. Predação de ninhos por um grupo híbrido de sagüis (Callithrix Jacchus e Callithrix Penicillata) introduzidos em área urbana: implicações para a estrutura da comunidade. Neotrop Primates. 2008 Jan;15(1):28-29.

18. Silva IO. Occasional field observations of the predation on mice, dove and ants by black-tufted-ear marmosets (Callithrix penicillata). Neotrop Primates. 2008 Ago;15(2):59-62.

19. Galetti M et al. Hyper abundant mesopredators and bird extinction in an Atlantic forest island. Rev Bras Zool. 2009 Jun;26(2):288-298.

20. Alexandridno ER et al. Nest stolen: the first observation of nest predation by an invasive exotic marmoset (Callithrix penicillata) in an agricultural mosaico. Biota neotrop. 2012 Apr;12(2):211-215.

21. Bovendorp RS, Galetti M. Density and population size of mammals introduced on a land-bridge island in southeastern Brazil. Biol Invasions. 2007 Apr;9(3):353-357.

22. Santos C, Moraes MM, Oliveira MM, Mikich SB, Ruiz-Miranda CR, Moore KPL. A Primatologia no Brasil. Porto Alegre: SBPR/EDIPUCRS; 2007. Ecologia, comportamento e manejo de primatas invasores e populações problema; p. 101-118.

23. Oliveira-Silva LRB et al. Can a non-native primate be a potential seed disperser? A case study on Saimiri sciureus in Pernambuco state, Brazil. Folia Primatol. 2008;89(2):138-149.

24. Silva MAF, Verona CE, Conde M, Pires AS. Frugivory and potential seed dispersal by the exotic-invasive marmoset Callithrix jacchus (Primates, Callitrichidae) in an urban Atlantic Forest, Rio de Janeiro, Brazil. Mammalia. 2018;82(4):343-349.

25. Silva FDFR et al. A survey of wild and introduced marmosets (Callithrix: Callitrichidae) in the southern and eastern portions of the state of Minas Gerais, Brazil. Primate Conserv. 2018;32:1-18.

26. Phillips SJ et al. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006 Jan;190(4):231-259, doi: 10.1016/j.ecolmodel.2005.03.026

27. Hijnans RJ et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005 Dec;25(15):1965-1978, doi: 10.1002/joc.1276

28. Pearson RG. Specie’s distributions modeling for conservation educators and practitioners. Nat Sci Found. 2007;1-50.
29. Pearce J, Ferrier S. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model. 2000 Apr;128(2):127-147, doi: 10.1016/S0304-3800(99)00227-6
30. Tannus RN. Funcionalidade e sazonalidade sobre o cerrado e sobre o ecótono floresta-cerrado: uma investigação com dados micrometeorológico de energia e CO2 [dissertation]. São Paulo (SP): Universidade de São Paulo, 2005. 112 p.
31. SOS Mata Atlântica. Mata Atlântica. Fundação SOS Mata Atlântica: São Paulo, 1992.
32. Lopes RC, Grelle CEV. Modelagem da distribuição potencial de Brachyteles arachnoides com base em variáveis climáticas. In: Annals 8th Congresso de Ecologia do Brasil; 2010; Caxambu, Minas Gerais, p. 230-231.
33. Howard AM et al. A maximum entropy model of the bearded capuchin monkey habitat incorporating topography and spectral unmixing analysis. Spatial Inf Sci. 2012 Jul;1(2):7-11, doi: 10.5194/isprsannals-I-2-7-2012.
34. Kinzey WG. New World Primates: ecology, evolution and behavior. Aldine de Gruyter, Inc: New York; 1997.
35. Hijmans RJ, Guarino L, Cruz M, Rojas E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Gen Res Newsletter. 2001;15-19.
36. Stevenson MF, Rylands AB, Marmosets, genus Callithrix. In Mittermeier RA, Rylands AB, Coimbra-Filho A, Fonseca GAB, (eds), Ecology and Behavior of Neotropical Primates, vol. 2. Sociedade Brasileira de Primatologia (SBPr), World Wide Fund for Nature (WWF), Centro de Primatologia do Rio de Janeiro (CPRJ). 1988. Littera Maciel, Contagem, p. 131-222.
37. Levacov D, Jerusalinsky L, Fialho MS. Levantamento dos primatas recebidos em Centros de Triagem e sua relação com o tráfico de animais silvestres no Brasil. In Melo FR, Mourthé I. (eds) A Primatologia no Brasil, vol. 11. Sociedade Brasileira de Primatologia: Belo Horizonte, 2011; p. 281-305.
38. Beltrão-Mendes R, Caldas FLS, Rocha PA, Santana DO. Predation of Bouna raniceps (Cope, 1862) by the common marmoset Callithrix jacchus (Linnaeus, 1758) in northeastern Brazil. Herpetol Notes. 2018;11:1069-1074.
39. Detogne N, Ferreguetti ÁC, Mello JHF et al. Spatial distribution of buffy-tufted-ear (Callithrix aurita) and invasive marmosets (Callithrix spp.) in a tropical rainforest reserve in southeastern Brazil. Am J Primatol. 2017;79(12):e22718.
40. Axiomoff IA, Soares HM, Pissinatti A, Bueno C. Records of Callithrix aurita (Primates, Callitrichidae) and its hibríds in the Itatiaia National Park. Oecol Aust. 2016;20(4):520-525.
41. Kindlovits A. Clínica e terapêutica em primatas neotropicais. Juiz de Fora: Editora UFJF; 1999. 260 p.
42. Fundação Nacional de Saúde. Vigilância Ambiental em Saúde. Brasília: Fundação Nacional de Saúde; 2002. 42 p.
43. Verona CES. Parasitos em saguí-de-tufo-branco (Callithrix jacchus) no Rio de Janeiro [thesis]. Rio de Janeiro (RJ): Fundação Oswaldo Cruz; 2008. 116 p.
44. De Sousa MS et al. Transmissão da Raiva por Sagui (Callithrix jacchus) no Estado do Ceará, Brasil. Rev Bras Hig Sanid Anim. 2013 Ago;7(2):270-287, doi: 10.5935/1981-2965.20130024.
45. Araújo FAA et al. Epizootias em primatas não humanos durante reemergência do vírus da febre amarela no Brasil, 2007 a 2009. Epidemiol Serv Saúde. 2011;20(4):527-536, doi: 10.5123/S1679-49742011000400012.
46. Vale CA, Prezoto F. A culpa não é do macaco: os primatas e a febre amarela. Multiverso. 2017;2(1):1-12.
47. Vale CA, Sanches Junior V, Prezoto F. Febre amarela: o mosquito, o macaco e o ser humano. CES Rev. 2018;32(2):1-27.
48. Paula HMG et al. Estudos preliminares da presença de saguis no município de Bauru, São Paulo, Brasil. Neotrop Primates. 2005;13(3):6-11, doi:10.1896/1413-4705.13.3.6
49. Mafra CRM et al. Occurrence of Ehrlichia canis in free-living primates of the genus Callithrix. Rev Bras Parasitol Vet. 2015;24(1):78-81.
50. Ribeiro CV, Vale CA, Andriolo A, Prezoto F. Caracterização das interações entre sagüs (Callithrix penicillata) e humanos. Neotrop Primates. 2018;24(1):17-21.
51. FordThompson AE, Snell C, Saunders G, White PC. Stakeholder participation in management of invasive vertebrates. Conserv Bio. 2012;26(2):345-356.
52. Bryce R, Oliver MK, Davies L, Gray H, Urquhart J, Lambin X. Turning back the tide of American mink invasion at an unprecedented scale through community participation and adaptive management. Biol Conserv. 2011;144(1):575-583.
Appendix I

Records of the species *Callithrix penicillata* used in this study.

#	State	Provenance	Coordinates (WGS-84)	Source	
1	ES	Linhares	-19.45671/-40.08198	MEL-M099	
2	ES	Linhares	-19.45671/-40.08198	MEL-M100	
3	ES	Vitória	-20.319444/-40.33777	MBML-Mamíferos 187	
4	ES	Vitória	-20.319444/-40.33777	MBML-Mamíferos 367	
5	ES	Santa Teresa	-19.86111/-40.56111	UFES-MAM -3291	
6	ES	Itapemirim	-21.01667/-40.8	UFES-MAM 3292	
7	ES	Rio Preto	-20.70000/-41.8333	MZUFV -1096	
8	ES	Santa Leopoldina	-20.2333/-42.0333	Nicolaevsky, 2011	
9	MG	Thomaz Gonzaga	-18.4333/-44.3000	manisnet.org	
10	MG	Indianópolis, UHE Miranda	-19.03860/-47.916900	MCN-N -177	
11	MG	Indianópolis	-19.03860/-47.916900	MCN-N -174	
12	MG	Indianópolis	-19.0386/-47.9169	MCN-N -178	
13	MG	Catas Altas	-20.07743/-43.41819	MCN-N -3099	
14	MG	Salinas	-16.17029/-42.29029	MCN-N -038	
15	MG	Rio Piracicaba	-19.9296/-43.1700	MCN-N -2470	
16	MG	Santana do Riacho	-19.33/-43.73	MCN-N -1952	
17	MG	Belo Horizonte	-19.94923/-43.904585	UFMG-BDT -000208	
18	MG	Lagoa Santa	-19.633333/-43.883335	ZUEC-MAM 1840	
19	MG	Lagoa Santa	-19.6272/-43.8894	ZUEC-MAM 1840	
20	MG	Passos	-20.7191/-46.6094	ZUEC-MAM 1601	
21	MG	Pirapora	-17.3449/-44.9418	FNJV -7893	
22	MG	Araponga	-20.6667/-42.5333	MZUFV -03032	
23	MG	Fervedouro	-20.7258/-42.2789	MZUFV -687	
24	MG	Viçosa	-20.7539/-42.8819	MZUFV -686	
25	MG	Ponte Nova	-20.24583/-42.770833	Silva et al., 2018	
26	MG	Rio Novo	-21.4833/-43.1333	MZUFV -487	
27	MG	Viçosa	-20.7539/-42.8819	MZUFV -486	
28	MG	Nova Ponte	-19.1528/-47.6744	MZUFV -484	
29	MG	Viçosa	-20.745556/-43.01472	MZUFV -792	
30	MG	Baldim	-19.288333/-43.956944	UFMG-BDT-958	
31	MG	Clube de Caça e Pesca Itororó de Uberlândia	-18.46/-48.3	Vilela & Del Claro, 2011	
32	MG	Muriaé, Horto Florestal	-21.12170/-42.369136	Fausto, 2009	
33	MG	Lavras	-21.25/-45	Silva & Passamani, 2009	
34	MG	Lavras	-21.3541/-44.8894	Silva et al., 2018	
35	MG	Juiz de Fora, Fazenda Floresta	-21.7432/-43.3098	Neto et al., 2009	
36	MG	Juiz de Fora, Jardim Botânico	-21.7378/-43.3716	Vale, 2013	
37	MG	Juiz de Fora, Praça Jardas de Lery Santos	-21.7716/-43.3522	Vale et al., 2018	
38	MG	Juiz de Fora, Campus Universitário	-21.7754/-43.3711	Ribeiro et al., 2018	
39	MG	Carangola	-20.7333/-42.0333	MZUFV -455	
40	MG	Leopoldina	-21.5333/-42.6333	MZUFV -485	
41	MG	Belo Horizonte, Horto Florestal	-19.887875/-43.917919	gbif.sibbr.gov.br	
42	MG	Santa Rita do Ibitipoca	-21.700000/-43.900000	Nogueira et al., 2009	
43	MG	Ouro Preto	-20.38698/-43.581354	gbif.sibbr.gov.br	
44	MG	Ouro Preto, Parque Estadual do Ibacolomi	-20.4159/-43.5196	Melo et al., 2009	
45	MG	Belo Horizonte	-19.62722/-43.88972	Goulart et al., 2010	
46	MG	Belo Horizonte, Parque das Mangabeiras	-19.94/-43.9	Câmara & Lessa, 1994	
47	MG	Viçosa, Mata do Paraíso	-20.79516/-42.87782	Pereira, 2012	
48	MG	Viçosa, Mata da Biologia	-20.7558/-42.8594	Pereira, 2012	
49	MG	Viçosa, Mata da Dendrologia	-20.7688/-42.8775	Pereira, 2012	
50	MG	Viçosa, Mata Funarbe	-20.7761/-42.8702	Pereira, 2012	
51	MG	Viçosa, Barrinha II	-20.7469/-42.9166	Pereira, 2012	
52	MG	Viçosa	-20.75486/-42.87587	gbif.sibbr.gov.br	
53	MG	Augusto Lima	-18.000/-44.000	gbif.sibbr.gov.br	
54	MG	Conceição de Alagoas	-20.02/-48.23	gbif.sibbr.gov.br	
55	MG	Contagem	-19.900158/-44.110667	taxeu.com.br	
56	MG	Lagoa Formosa	-18.784933/-46.441994	taxeu.com.br	
57	MG	Perdigão	-19.944028/-45.081678	taxeu.com.br	
58	MG	Santo Antônio do Monte	-20.075486/-45.279922	taxeu.com.br	
59	MG	Buritis	-15.5540/-46.2720	Nikolaevsky, 2011	
60	MG	Januária, Riacho da Cruz	-15.3355/-44.2461	Nikolaevsky, 2011	
61	MG	Nepomuceno	-21.24467/-45.25070	taxeu.com.br	
62	MG	Paraopeba	-19.23477/-44.38157	taxeu.com.br	
63	MG	Nova Lima	-19.979031/-43.84304	taxeu.com.br	
64	MG	Belo Horizonte	-19.78688/-43.95731	taxeu.com.br	
65	MG	Maricá	-22.92651/-42.85205	taxeu.com.br	
66	MG	Perdizes	-19.3500/-47.2917	Nikolaevsky, 2011	
67	MG	Cristália	-16.8002/-42.8622	Nikolaevsky, 2011	
68	MG	Almenara	-16.04963/-40.859092	Neves, 2008	
69	MG	Bambuí	-20.042467/-45.953567	taxeu.com.br	
70	MG	Conselheiro Lafaiete	-20.639417/-43.779158	Silva et al., 2018	
71	MG	Capim Branco	-19.546414/-44.147528	taxeu.com.br	
72	MG	Caratinga	-19.812689/-42.122158	taxeu.com.br	
73	MG	Dores do Indaiá	-19.460771/-45.596489	gbif.sibbr.gov.br	
74	MG	Formiga	-45.426389/-20.464444	UFMG-BDT-999	
75	MG	Santo Antônio	-20.325067/-42.605606	taxeu.com.br	
76	MG	Campus da Universidade de Belo Horizonte	-19.62722/-43.88972	UFMG-BDT-3823	
77	MG	Itacarambi	-15.12142/-44.256669	gbif.sibbr.gov.br	
78	MG	Mata entre Jacinto e Santo Antônio do Jacinto	-16.223243/-30.306451	Neves, 2008	
79	MG	Santo Antônio do Jacinto	-16.102408/-30.350346	Neves, 2008	
80	MG	Várzea da Palma, Serra do Onça	-17.2355/-44.4455	UFMG-BDT-1009	
81	MG	Aparecida do Taboado	-20.1200/-51.0700	Nikolaevsky, 2011	
82	MG	Lagoa Santa Rio das Velhas	-19.62719/-43.889701	splink.cria.org.br	
83	MG	Lagoa Santa Rio das Velhas	-19.6300/-43.8800	splink.cria.org.br	
84	MG	São João do Glória	-20.7200/-46.6200	manisnet.org	
85	MG	Januária	-15.4833/-44.3667	manisnet.org	
86	MG	Água suja	-18.88/-47.63	manisnet.org	
87	MG	São João Del Rei	-21.143056/-44.285556	Silva et al., 2018	
88	MG	Barbacena	-21.227125/-43.767894	Silva et al., 2018	
89	MG	Araguari	-18.4833/-48.4333	manisnet.org	
	Estado	Localização	Latitude	Longitude	Autor e Ano
---	--------	-------------	----------	-----------	-------------
90	MG	São Roque, Fazenda Gameleira	-20.24527/-46.365833	UFMG-BDT -1040	Nicolaevsky, 2011
91	MG	Araguari, Rio Jordão	-18.6509/-48.1854	-	Nicolaevsky, 2011
92	MG	Araguari	-18.6300/-48.1800	-	Nicolaevsky, 2011
93	MG	Veríssimo	-19.7000/-48.3000	-	Nicolaevsky, 2011
94	MG	Romaria	-18.8837/-47.5637	-	Nicolaevsky, 2011
95	MG	Uberaba	-19.7500/-47.9200	-	Nicolaevsky, 2011
96	MG	São João Batista	-20.6300/-46.5000	-	Nicolaevsky, 2011
97	MG	Pedras de Maria	-15.5000/-44.3500	-	Nicolaevsky, 2011
98	MG	Pirapora	-17.3449/-44.9418	-	Nicolaevsky, 2011
99	MG	Lassance	-17.9000/-44.5700	-	Nicolaevsky, 2011
100	MG	Curvelo	-18.7500/-44.4200	-	Nicolaevsky, 2011
101	MG	Morada Nova de Minas	-18.8300/-45.1800	-	Nicolaevsky, 2011
102	MG	Pompeu, Fazenda Bugio	-19.2244/-44.93527	UFMG-BDT -956	Silva et al., 2018
103	MG	São Paulo	-19.2808/-44.07111	-	Silva et al., 2018
104	MG	Conceição do Mato Dentro	-18.814444/-44.47778	Silva et al., 2018	
105	MG	Almenara, Fazenda Estância	-16.0167/-40.8500	-	Nicolaevsky, 2011
106	MG	José Gonçalves, Fazenda Irmãos Athachi	-16.5830/-42.6333	-	Nicolaevsky, 2011
107	MG	Pará de de Minas	-19.785278/-44.651667	Silva et al., 2018	
108	MG	Fazenda Canabrana, Augusto Lima	-18.034722/-44.236667	Silva et al., 2018	
109	MG	Mata do Catingueira, Patos de Minas	-18.58/-46.52	Reis et al., 2014	
110	MG	Parque Nacional da Serra do Cipó	-19.3333/-43.5667	Leal et al., 2008	
111	MG	Parque Nacional das Sermepes Vivas	-17.9021/-43.7729	Leal et al., 2008	
112	MG	Parque Estadual Serra do Rola Moça	-20.0769/-44.0267	Leal et al., 2008	
113	MG	Aproveitamento Hidrelétrico de Queimado	-16.19/-47.27	Prints & Malta, 2007	
114	MG	Acauá Reserve, Turmalina	-17.13/-42.77	Silva et al., 2018	
115	MG	Botumirim	-17.13/-43.22	Silva et al., 2018	
116	MG	Alfenas	-21.408056/-46.003333	Silva et al., 2018	
117	MG	Parque Estadual Fernão Dias	-19.9333/-44.0667	De Melo Júnior & Fernando, 2007	
118	MG	Córrego Contendas, Cristália	-16.75/-42.87	Silva, 2014	
119	MG	Fazenda Mandasai, Grão Mogol	-16.57/-43.2	Silva, 2014	
120	MG	Ipatinga	-19.371389/-26.05556	Silva et al., 2018	
121	MG	Virgem da Lapa	-16.67/-41.98	Silva, 2014	
122	MG	Fazenda Santa Maria, Itinga	-16.6/-41.93	Silva, 2014	
123	MG	Santana do Riacho	-19.33/-43.73	Silva, 2014	
124	MG	Flexiândia	-18.76/-44.9	UFMG-BDT -726	
125	MG	Patos de Minas, Jadin Paraíso	-18.583796/-45.51038	UFMG-BDT -322	
126	MG	Varginha	-21.346389/-45.522778	Silva et al., 2018	
127	MG	Parque Municipal Américo Renne Giannetti, BH	-19.920796/-43.93780	Duarte et al., 2011	
128	MG	Reserva Volta Grande, Conceição das Alagoas	-20.02/-48.23	Silva, 2014	
129	MG	Veríssimo	-19.7/-48.3	Silva, 2014	
130	MG	Água Suja	-18.88/-47.63	Silva, 2014	
131	MG	Uberaba	-19.75/-47.92	UFMG-BDT -531	
132	MG	Buenopolis	-17.9000/-44.1833	Nicolaevsky, 2011	
Code	Location	Latitude	Longitude	Author(s)	
------	--	----------	-----------	----------------------------	
MG	Barra do Paraopeba	-18.83/-45.18	Silva, 2014		
MG	Barão de Guaçu, Diamantina	-18.36/-43.74	Silva, 2014		
MG	Fazenda do Geraldo, Diamantina	-18.38/-43.69	Silva, 2014		
MG	Itamogi	-21.082107/47.041427	gbif.sibbr.gov.br		
MG	Estrela do Indaiá	-19.53922//45.797581	Silva, 2014		
MG	Itaverava	-20.677394/-43.617881	Silva, 2014		
MG	Virgem da Lapa, Porto de Madacarú	-16.6220/-42.2194	Nicolaevsky, 2011		
MG	Capitólio	-20.64808/-46.226199	gbif.sibbr.gov.br		
MG	São Roque	-20.2437/-46.3652	UFMG-BDT-964		
MG	Morro da Garçã	-18.5469/-44.6027	Nicolaevsky, 2011		
MG	São João Batista do Glória	-20.6300/46.5000	Nicolaevsky, 2011		
MG	Araxá	-19.611038/46.915762	gbif.sibbr.gov.br		
RJ	Guapimirim	-22.48134/-42.986369	gbif.sibbr.gov.br		
RJ	Silvânia	-22.6130/-42.4036	De Morais Jr et al., 2008		
RJ	Teresópolis	-22.33358/-42.983906	gbif.sibbr.gov.br		
RJ	Parque Nacional da Serra dos Órgãos	-22.40044/-42.830010	Carvalho et al., 2013		
RJ	Angra dos Reis, Ilha Grande	-23.156786/-44.180866	Modesto & Bergallo, 2008		
RJ	Reserva Biológica Poço das Antas	-22.52394/-42.3129	De Morais Jr et al., 2008		
RJ	Parque Nacional do Itatiai	-22.74360/-44.57241	Aximoff et al., 2016		
RJ	Rio Bonito	-22.73333/-42.55875	De Morais Jr et al., 2008		
RJ	Rio de Janeiro	-22.952269/-43.211761	gbif.sibbr.gov.br		
RJ	Petrópolis, Cascata do Imbuí	-22.420793/-43.145759	gbif.sibbr.gov.br		
RJ	Petrópolis	-22.503181/-43.172643	gbif.sibbr.gov.br		
SP	Luís Antônio, Jataí	-21.5833/-47.799999	Nicolaevsky, 2011		
SP	Barretos	-20.5500/-48.5500	Nicolaevsky, 2011		
SP	São Paulo	-23.695907/-46.666731	gbif.sibbr.gov.br		
SP	Campinas	-22.8999/-47.0600	FNJV -7911		
SP	Campinas	-22.8999/-47.0600	FNJV -7912		
SP	Araçoiabada Serra	-23.520265/-47.565766	gbif.sibbr.gov.br		
SP	Iperó	-23.4344/-47.656575	gbif.sibbr.gov.br		
SP	Jundiaí	-23.17169/-46.898639	gbif.sibbr.gov.br		
SP	Bauru	-22.31445/-49.058695	gbif.sibbr.gov.br		
SP	Parque Ecológico do Tietê	-23.4941/-46.5221	Pereira et al., 2001		
SP	Ribeirão Preto	-21.170401/-47.810324	gbif.sibbr.gov.br		
SP	Ubatuba	-23.42789/-45.082872	De Melo Júnior & Fernando, 2007		
SP	Piracicaba, Campus da Esalq	-22.71322/-47.6313	Alexandrino et al., 2012		
SP	Bosque de Campinas	-22.89999/-47.060001	splink.cria.org.br		
SP	Araraquara	-21.742423/-48.17302	gbif.sibbr.gov.br		
SP	Jandira	-23.550000/-46.866667	Begotti & Landesmann, 2008		
SP	São José do Rio Preto, Campus Unesp	-20.786061/-49.35880	Gomes & Lima-Gomes, 2011		
SP	Cotia	-23.7149/-46.9454	taxeux.com.br		
SP	Bauru, APA Vargem Limpa	-22.33333/49.016667	De Paula, 2005		
SP	Ilha Anchieta	-23.53945/45.06357	taxeux.com.br		
SP	São Carlos	-21.9833/-47.8583	Nicolaevsky, 2011		
SP	Divinolândia	-21.6/-46.733299	gbif.sibbr.gov.br		
Code	State	City	Coordinates	Source	
------	-------	------	-------------	--------	
SP	Franca	-20.504575/-47.379647	taxeus.com.br		
SP	Americana	-22.7299/-47.3300	FNIV - 7915		
SP	Ribeirão Preto	-21.170389/-47.860519	taxeus.com.br		
SP	Itu	-18.957058/-49.431467	taxeus.com.br		
SP	Patrocínio Paulista	-20.639061/-47.267758	taxeus.com.br		
SP	Guará	-20.441036/-47.761714	taxeus.com.br		
SP	São Joaquim da Barra	-20.573431/-47.816872	taxeus.com.br		
SP	Santana de Parnaíba	-23.434819/-46.915603	taxeus.com.br		
SP	Tucuruvi	-23.483213/-46.61359	gbif.sibbr.gov.br		
SP	Tapiraiba	-30.5167/-46.7833	splink.cria.org.br		
SP	Ubatuba, Parque Estadual Ilha Anchieta	-45.016667/-23.533333	De Melo Júnior & Fernando, 2007		
SP	Luís Antônio	-21.5833/-47.8	splink.cria.org.br		
SP	Pedregulho	-20.256901/-47.4767	Nicolaevsky, 2011		
SP	São Sebastião da Grama	-21.7167/-46.700001	splink.cria.org.br		
SP	Divinolândia	-21.6/-46.7333	splink.cria.org.br		
SP	Estação Ecológica de Jataí	-21.5000/-47.7500	Talamoni et al., 2000		
SP	Estação Experimental de Luiz Antonio	-21.56972/-47.735000	Talamoni et al., 2000		
SP	Mairiporã	-23.328245/-46.683462	taxeus.com.br		
SP	Campinas, Ribeirão das Cabras	-22.8855875/-46.9608089	Lima, 2008		
SP	Joaquim Egídeo	-22.873183/-46.935008	Lima, 2008		
SP	Souzas	-22.848366/-47.012925	Lima, 2008		
SP	Jardim Botânico de São Paulo	-23.638777/-46.625038	gbif.sibbr.gov.br		
DF	Reserva Ecológica do IBGE	-15.9597/-47.8764	Miranda & Faria, 2001		
DF	Brasília	-15.72941/-47.858824	gbif.sibbr.gov.br		
DF	Parque Nacional de Brasília	-15.740999/-47.923286	gbif.sibbr.gov.br		
DF	Jardim Botânico de Brasília	-15.86677/-47.8333	Miranda & Faria, 2001		
DF	Brasília, Reserva Ecológica do Roncador	-15.83/-47.83	Vilela & Faria, 2004		
DF	Mata do Açúdinho, Fazenda Sucupira	-15.92/-48.03	Vilela, 2007		
GO	Santa Leopoldina	-20.2333/-42.0333	Nicolaevsky, 2011		
GO	Santa Helena de Goiás	-17.834811/-50.568283	taxeus.com.br		
GO	Aruana	-14.934817/-50.100306	taxeus.com.br		
GO	Mundo Novo de Goiás	-13.774975/-50.264947	taxeus.com.br		
GO	São Miguel do Araguaia	-13.272800/-50.143919	taxeus.com.br		
GO	Novo Crixas	-14.541153/-49.975594	taxeus.com.br		
GO	Barro Alto	-15.92/-48.03	manisnet.org		
GO	Inhumas	-16.3700/-49.5000	Nicolaevsky, 2011		
GO	Goiânia	-16.6799/-49.2550	Nicolaevsky, 2011		
GO	Itumbiara	-18.4200/-49.2200	Nicolaevsky, 2011		
GO	Catalão	-18.1700/-47.9500	Nicolaevsky, 2011		
GO	Anápolis	-16.3261/-48.9506	splink.cria.org.br		
GO	Hidrolândia	-16.9700/-49.2200	Nicolaevsky, 2011		
GO	Carmo do Rio Verde	-15.4500/-49.7300	Nicolaevsky, 2011		
GO	Jaraguá	-15.7500/-49.3300	Nicolaevsky, 2011		
GO	Goiânia, Fazenda São José, Campus II	-16.7339/-49.2161	Nicolaevsky, 2011		
GO	Aragarças, Rio Araguaia	-15.9583/-52.1981	Nicolaevsky, 2011		
GO	Jaraguá	-15.7500/-49.3300	Nicolaevsky, 2011		
Código	Estado	Informação Geográfica	Localização Geográfica		
--------	--------	-----------------------	-----------------------		
224	GO	Parque Municipal Grande Retiro	-16.668889/-49.181111 Grande, 2012		
225	GO	Morro do Macaco	-15.777222/-48.939444 Grande, 2012		
226	GO	Morro do Medanha	-16.662222/-49.345000 Grande, 2012		
227	GO	Jardim Madri	-16.745556/-49.346667 Grande, 2012		
228	GO	Madre Germânia	-16.833889/-49.361111 Grande, 2012		
229	GO	Parque Estadual Altamiro de Moura Pacheco	-16.5237/-49.1416 Grande, 2012		
230	GO	Pilar	-14.68/-49.45 Nicolaevsky, 2011		
231	GO	Veadeiros, Rio Corumbá	-14.12/-47.52 Nicolaevsky, 2011		
232	GO	Rio Uruhu	-15.45/-49.73 Nicolaevsky, 2011		
233	GO	Planaltina	-15.62/-47.67 Nicolaevsky, 2011		
234	GO	Goiânia, ECSJ da Universidade Católica de Goiás	-16.74/-49.05 Silva et al., 2008		
235	GO	Inhumas	-16.37/-49.5 Nicolaevsky, 2011		
236	GO	Itumbiara, Rio Paraíba	-18.42/-49.22 Nicolaevsky, 2011		
237	GO	Trindade	-16.6700/-49.5000 Nicolaevsky, 2011		
238	GO	Caldas Novas	-17.7500/-48.6300 Nicolaevsky, 2011		
239	GO	Nerópolis	-16.4200/-49.2300 Nicolaevsky, 2011		
240	GO	Alto Paraíso	-14.14349/-47.489616 gbf.sibbr.gov.br		
241	GO	Pirenópolis	-15.84593/-48.957375 gbf.sibbr.gov.br		
242	GO	Formosa, Fazenda São Manoel	-15.5372/-47.3344 Nicolaevsky, 2011		
243	MS	Terenos	-20.73/-54.92 Nicolaevsky, 2011		
244	MS	Campo Grande	-20.39/-54.59 Nicolaevsky, 2011		
245	MT	Jarina, Peixoto de Azevedo	-10.333333/-53.2 MCN 164		
246	BA	Malhada, Fazenda Belém	-9.4833/-37.9667 manisnet.org		
247	BA	Castelo Novo	-14.64159/-39.20671 manisnet.org		
248	BA	Ilhéus, Fazenda Pirataquise	-14.8167/-39.0333 manisnet.org		
249	BA	Pontal	-14.7892/-39.0492 splink.cria.org.br		
250	BA	Itaeté, Macaco seco	-12.9800/-41.1200 Nicolaevsky, 2011		
251	BA	Malhada, Faz. da Serra	-14.3000/-43.7333 Nicolaevsky, 2011		
252	BA	São Gonçalo	-12.4500/-38.9500 Nicolaevsky, 2011		
253	BA	Itinga, Fazenda Santana	-16.5000/-41.7719 Nicolaevsky, 2011		
254	BA	Pindobaçu	-10.7694/-40.3528 Nicolaevsky, 2011		
255	BA	San Salvador	-12.9833/-38.5167 manisnet.org		
256	BA	Lamarão	-10.77/-40.35 manisnet.org		
257	BA	Barreiras	-12.1300/-45.0000 Nicolaevsky, 2011		
258	BA	Rio Jucuruçu	-17.35/-39.22 Nicolaevsky, 2011		
259	BA	Sebastião Laranjeiras	-14.632778/-42.9425 manisnet.org		
260	BA	Belmonte	-15.859796/-38.886904 manisnet.org		
261	BA	Curral Velho	-9.9107303/-40.6583157 manisnet.org		
262	BA	Itaberaba	-12.525806/-40.296151 manisnet.org		
263	BA	Lençois	-12.553003/-41.39755 manisnet.org		
264	BA	Ilhéus, Fazenda São Caetano	-14.7892/-39.0492 manisnet.org		
265	BA	Guaíbim, município de Valença	-13.269572/-38.945311 Neves, 2008		
266	BA	Mata na estrada entre Itapetinga e Catiba	-15.08380/-40.340205 Neves, 2008		
267	BA	Mata entre Nova Canaã e Poções,	-14.784812/-40.212699 Neves, 2008		
268	BA	Riachão das Neves	-11.8000/-44.7300 Nicolaevsky, 2011		
269	BA	Bom Jesus da Lapa	-13.2500/-43.4200 Nicolaevsky, 2011		
BA	Reserva da Michelin, município de Ituberá	-13.819411/-39.158224	Neves, 2008		
BA	Mata logo após a balsa do rio de Contas em Itacaré	-14.261560/-39.001363	Neves, 2008		
BA	Mata na região do Piracanga, distrito de Maraú	-14.219353/-38.992872	Neves, 2008		
BA	Mata na região do Piracanga, distrito de Maraú	-14.076325/-38.958686	Neves, 2008		
BA	Mata na estrada entre Maraú e o distrito de Algodões	-14.12558/-38.991948	Neves, 2008		
BA	Mata na estrada entre Maraú e Ubaitaba	-14.215853/-39.198629	Neves, 2008		
BA	Mata na estrada entre Camamú e o distrito de Travesão	-13.988347/-39.165719	Neves, 2008		
BA	REBIO Mata Escura, município de Jequitinhonha	-16.341856/-41.012016	Neves, 2008		
BA	Iraquara	-12.24635/-41.622157	gbif.sibbr.gov.br		
PE	Recife	-8.05389/-34.881099	splink.cria.org.br		
TO	Canabrava, Rua Tocantins	-9.2300/-48.2000	Nicolaevsky, 2011		
TO	Porto Nacional, Rio Tocantins	-10.7000/-48.4200	Nicolaevsky, 2011		
TO	Barrolândia	-9.8300/-48.7300	Nicolaevsky, 2011		
TO	BR 101	-9.800186/-47.867007	Santiago et al., 2019		
TO	PONTE	-9.700184/-48.350361	Santiago et al., 2019		
TO	LARES	-11.000202/-48.550371	Santiago et al., 2019		
TO	LAMON	-9.883520/-48.350361	Santiago et al., 2019		
TO	MANAL	-11.583546/-47.000306	Santiago et al., 2019		
TO	ENERM	-12.233554/-48.383699	Santiago et al., 2019		
TO	ENERR	-12.633560/-47.867011	Santiago et al., 2019		
TO	Paranã	-12.5500/-47.7000	Nicolaevsky, 2011		
SC	Florianópolis	-27.583333/-48.500000	Silva et al., 2009		
SC	Joinville	-26.323886/-48.895783	taxeus.com.br		
SC	Florianópolis, Campeche	-27.676062/-48.486223	gbif.sibbr.gov.br		
SC	Blumenau, Água Verde	-26.908782/-49.13484	gbif.sibbr.gov.br		
SC	Florianópolis, Parque Ecológico do Córrego Grande	-27.59900/-48.5130	Nakamura, 2015		
PR	Cianorte	-23.66333/-52.605000	Passos et al., 2006		
PR	Curitiba	-25.425462/-49.3066	gbif.sibbr.gov.br		
PR	Paranaguá, Floresta Estadual do Palmito	-25.520000/-48.509167	Passos et al., 2006		
PR	São José dos Pinhais	-25.53472/-49.206389	Passos et al., 2006		
PR	Maringá	-23.425278/-51.938611	MZEUM s/nº		
PR	Parque Barigúi, Curitiba	-25.427778/-49.273056	Passos et al., 2006		
PR	Mercês, Curitiba	-25.417551/-49.30819	gbif.sibbr.gov.br		

Abbreviations:

MEL-Museu Elias Lorenzutti
MZUFV-Museu de Zoologia João Moojen, Universidade Federal de Viçosa
MCN-Coleção de Mastozologia do Museu de Ciências Naturais PUC- MINAS
UFMG-BDT Centro de coleções taxonômicas UFMG
ZUEC-MAM Museu de Zoologia da Universidade Estadual de Campinas
FNJV-Fonoteca Neotropical Jacques Vielliard e Museu de Zoologia Adão José Cardoso, Universidade Estadual de Campinas
MBML-Mamíferos Museu de Biologia Professor Mello Leitão
UFES-MAM Coleção de Mamíferos da Universidade Federal do Espírito Santo
References

Alexandrinu ER et al. Nest stolen: the first observation of nest predation by an invasive exotic marmoset (Callithrix penicillata) in an agricultural mosaic. Biota Neotrop. 2012;12(2):211-215.

Aximof I et al. Registros de Callithrix aurita (Primates, Callitrichidae) e seus híbridos no Parque Nacional do Itatiaia. Oecol Australis. 2016;20(4):520-525.

Begotti RA, Landesmann LF. Predação de ninhos por um grupo híbrido de sagüís (Callithrix jacchus/penicillata) introduzidos em área urbana: implicações para a estrutura da comunidade. Neotrop Primates. 2008;15(1):28-29.

Câmara EM, Lessa LG. Inventário dos mamíferos do Parque das Mangabeiras, Belo Horizonte, Minas Gerais, Brasil. BIOS. 1994;2(2):31-35.

Carvalho RS, et al. Molecular identification of a Buffy-tufted-ear marmoset (Callithrix aurita) incorporated in a group of invasive marmosets in the Serra dos Orgaos National Park, Rio de Janeiro–Brazil. Forensic Science International: Genet Suppl Series. 2013;4(1):230-e231.

De Paula HMG et al. Estudos preliminares da presença de sagüís no município de Bauru, São Paulo, Brasil. Neotrop Primates. 2005;13(3):6-11.

De Melo Júnior TA, Fernando JZ. Black-tufted-ear Marmoset Callithrix penicillata (Primates: Callitrichidae) Following the Army Ant Labidus praedator (Formicidae: Ectoninae) in the Cerrado and the Atlantic Forest, Brazil. Neotro Primates. 2007;14(1):32-33.

De Morais Jr MM et al. Os sagüís, Callithrix jacchus e penicillata, como espécies invasoras na região de ocorrência do mico-leão dourado. Conservação do mico-leão dourado, 2008; v. 28, 86 p.

Duarte MHL et al. Noisy human neighbours affect where urban monkeys live. Biol letters. 2011;7(6):840-842.

Fausto SF. Ecologia da exploração do habitat e comportamento por Callithrix penicillata na mata do horto florestal de Muriaé – MG. Anais... IX Congresso de Ecologia do Brasil, 2009, São Lourenço, MG.

Gomes FBR, De Lima-Gomes RC. Registro ocasional da predação da pomba-de-bando (Zenaida auriculata des Murs, 1847) pelo sagüí-do-cerrado (Callithrix penicillata É. Geoffroy, 1812) no interior de São Paulo, SP. Neotrop Primates. 2011;18(2):68-70.

Goulart VD, Teixeira CP, Young RJ. Analysis of callouts made in relation to wild urban marmosets (Callithrix penicillata) and their implications for urban species management. European J Wildl Res. 2010;56(4):641-649.

Grandê TO et al. Ocupação de fragmentos florestais e uso da matriz por primatas na paisagem urbanizada de Goiânia, Goiás. Dissertação (Mestrado em Ecologia). Universidade Federal de Goiás, 2012.

Guedes EA et al. levantamento de mastofauna ocorrente na fazenda canabrana, município de Augusto de Lima, Minas Gerais. Anais...VI Simpósio do Meio Ambiente, 2010 Viçosa- MG

Leal KPG. et al. Mamíferos registrados em três unidades de conservação na Serra do Espinhaço: Parque Nacional da Serra do Cipó, Parque Nacional das Sempre Vivas e Parque Estadual da Serra do Rola Moça. Sinapse Amb. 2008;5(1):40-50.

Melo FR, Oliveira AF, Souza SM, Ferraz DF. A fauna de mamíferos e o plano de manejo do Parque Estadual do Itacolomi, Ouro Preto, Minas Gerais. MG Biota. 2009;1(6):18-41.

Miranda GHB, Faria DS. Ecological aspects of black-pincelled marmoset (Callithrix penicillata) in the cerradão and dense cerrado of the Brazilian central plateau. Braz J Biol. 2001;61(3):397-404.

Modesto TC, Bergallo HG. Ambientes diferentes, diferentes gastos do tempo entre atividades: o caso de dois grupos mistos do exótico Callithrix spp. na Ilha Grande, RJ, Brasil. Neotrop Biol Conserv. 2008;3(3):112-118.

Nakamura EM. Convívio entre sagüis e pessoas: Experiências no parque ecológico do córrego grande e entorno, Florianópolis-SC. Trabalho de Conclusão de Curso, Graduação em Ciências Biológicas, UFSC, 2015.

Neto OJB et al. Mamíferos de um fragmento florestal particular periurbano de Juiz de Fora, Minas Gerais, Brasil. Rev Bras Zool. 2009;26(3):269-276.

Neves LG. Distribuição geográfica e conservação de Callithrix kuhlii (Coimbra-Filho, 1985) no Sul da Bahia, Brasil. Dissertação de Mestrado (Mestrado em Zoologia). Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 93 p. 2008.

Nicolaevsky B. Distribuição geográfica e modelagem de habitat das espécies do gênero Callithrix (Primates, Callitrichidae). Dissertação de Mestrado (Mestrado em Biologia Animal) Universidade Federal do Espírito Santo, Vitória. 54 p. 2011.

Nogueira DF, Ferraz DS, Melo FR. Situação atual do muriquí-do-norte Brachyteles hypoxanthus kuhl (1820) no entorno do Parque Estadual do Itirimá, Lima Duarte, Minas Gerais. MG Biota. 2009;1(6):1-17.

Passos FC et al. Distribuição e ocorrência de primatas no Estado do Paraná, Brasil. A Primatologia no Brasil, 2006;10:119-149.
Pereira LE et al. Arbovírus Ilheus em aves silvestres (*Sporophila caerulescens e Molothrus bonariensis*). Rev Saúde Públ. 2001;35:119-123.

Pereira AM. Composição, distribuição, densidade e riqueza de primatas em fragmentos florestais no Município de Viçosa- MG. Dissertação de Mestrado (Mestrado em Biologia Animal), Universidade Federal de Viçosa, Viçosa, 81f. 2012.

Printes RC, Malta MCC. Translocação de duas fêmeas de bugio-preto (*Alouatta caraya* Humboldt, 1812) do lago da Hidrelétrica de Queimado, Minas Gerais, Brasil. A Primatologia no Brasil. 2007;10:207-223.

Reis MVO, Silva WAA, Alves DMD. Sistema social e uso do hábitat do mico-estrela (*Callithrix penicillata*) e macaco-prego (*Cebus libidinosus*) em remanescentes urbano Mata do Catingueiro, Patos de Minas-MG. 2014. In X Congresso Mineiro de Formação de Professores Para a Educação Básica. Belo Horizonte, MG

Ribeiro CV, Vale CA, Andriolo A, Prezoto F. Caracterização das interações entre saguis (*Callithrix penicillata*) e humanos. Neotr Primates. 2018;24(1):17-21.

Santiago WTV et al. Species composition and frequency of habitat use by medium and large-sized mammals in the Brazilian Cerrado biome. State of Tocantins. Acta Scientiarum. Biol Sci. 2019;41:e45684.

Silva JO, Alvarenga AB, Boere V. Occasional field observations of the predation on mice, dove and ants by black-tufted-ear marmosets (*Callithrix penicillata*). Neotr Primates. 2008;15(2):59-62.

Silva LD, Passamani M. Mamíferos de médio e grande porte em fragmentos florestais no município de Lavras, MG. Rev Bras Zooc. 2009;11(2):137-144.

Silva LZ et al. Ecologia e comportamento de *Callithrix penicillata* (E. Geoffroy, 1812) introduzidos em fragmento urbano na ilha de Santa Catarina. 2009. Trabalho de Conclusão de Curso (Graduação em Ciências Biológicas), Universidade Federal de Santa Catarina, Florianópolis, 33 f., 2009.

Silva FFR, et al. A survey of wild and introduced marmosets (*Callithrix*: Callitrichidae) in the southern and eastern portions of the state of Minas Gerais, Brazil. Primate Conserv. 2018;32:1-18.

Silva FR. Distribuição do gênero *Callithrix* no estado de Minas Gerais: introdução de espécies e hibridação. 2014. Tese de Doutorado. Universidade Federal de Viçosa.

Talamoni SA, Motta-Junior JC, Dias MM. Fauna de mamíferos da Estação ecológica de Jataí e da Estação Experimental de Luiz Antônio. Estudos integrados em ecossistemas, Estação Ecológica de Jataí, 2000, 1: 317-329.

Vale CA et al. Leucismo em *Callithrix penicillata* (É. Geoffroy, 1812) (Primates: Cebidae) em uma área urbana. Rev Bras Zoot. 2018;19(3):181-187.

Vale CA. Levantamento de Primatas do Jardim Botânico da Universidade Federal de Juiz de Fora, Minas Gerais, Brasil. Trabalho de Conclusão de Curso (Graduação em Ciências Biológicas), Universidade Federal de Juiz de Fora, Juiz de Fora, 36f, 2013.

Vilela AA, Del-Claro K. Feeding behavior of the black-tufted-ear marmoset (*Callithrix penicillata*) (Primata, Callitrichidae) in a tropical cerrado savanna. Sociobiol. 2011;58(2):1-6.

Vilela SL. Simpatria e dieta de *Callithrix penicillata* (Hershkovitz)(Callitrichidae) e *Cebus libidinosus* (Spix)(Cebidae) em matas de galeria do Distrito Federal, Brasil. Rev Bras Zool. 2007;24(3):601-607.

Vilela SL, Faria DS. Seasonality of the activity pattern of *Callithrix penicillata* (Primates, Callitrichidae) in the cerrado (scrub savanna vegetation). Braz J Biol. 2004;64(2):363-370.