An Extensive Literature Review and New Proposal on Optimal Capacitor Placement in Distribution Systems

S. M. Golam Mostafa\textsupercirc{1*}, Jai Govind Singh\textsupercirc{2} and H.M. Enamul Haque\textsupercirc{2}

\textsupercirc{1}Department of Electrical and Electronics Engineering, International Islamic University, Chittagong, Bangladesh
\textsupercirc{2}Department of Energy, Environment and Climate Change, Asian Institute of Technology, SERD, Khlong Luang, Thailand

Received: November 30, 2020, Revised: December 17, 2020, Accepted: December 18, 2020, Available Online: December 21, 2020

ABSTRACT

The main goal of power utilities is to supply reliable and quality power to the end-users and fulfill their total demands at all possible locations. Most of the loads are connected in the distribution systems are inductive. The excessive reactive power demand over the distribution network causes tremendous reactive power losses and changes the voltage profile, hence the system's reliability. Shunt Capacitor Bank (SCB) is widely used in the distribution system for reactive power support, voltage profile, and system performance improvement. But there are some challenges to employ SCB in the distribution network; among them, ensuring the most optimum location and size is a big challenge to get the maximum benefits. Some existing techniques showed better loss reduction but needed either larger SCBs sizes or cause improper node voltage. In this research study, the first section provides an extensive literature review of optimal SCBs placement and sizing. Later on, a new technique called Combinatorial Method has been developed for sizing and sitting of optimal Shunt Capacitors to reduce the distribution loss significantly. The developed method was tested for different case studies using Indian practical 22-bus and IEEE-69-bus network. The results were compared with DSA, Fuzzy GA, and TLBO method and found better distribution feeder loss minimization and voltage profile improvement.

Keywords: Distribution feeders; Shunt Capacitor Bank; Distribution Losses; SCBs Sizing and Sitting; Voltage Profile Improvement (VPI); Combinatorial Method.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

Table of Contents

1. Introduction ... 151
 1.1 Minimizing the Power Losses ... 151
 1.2 The Impact of Reactive Power (QCap) in the Vertically Unbundled Electricity Market 151
 1.3 Incorporation of DGs in Distribution System and Reactive Power Management by SCBs 152
 1.4 Voltage Profile Improvement (VPI) .. 152
2. Optimum Shunt Capacitor Placement Techniques— A Review .. 152
 2.1 Analytical Methods ... 152
 2.2 Numerical Programming Methods ... 153
 2.3 Heuristics Methods .. 153
 2.4 Artificial Intelligent Methods .. 156
 2.5 Multi-dimensional Problems .. 158
 2.6 Evaluation of the Methods .. 159
3. Combinatorial Method .. 159
 3.1 22-bus Radial Practical Test System .. 160
 3.2 69-bus Radial Practical Test Systems .. 162
4. Conclusion ... 163
 4.1 Future Study .. 163
Acknowledgments .. 164
References .. 164

*Corresponding Author Email Address: mostafa_93eee@yahoo.com

Published by: SciEn Publishing Group
1. Introduction

The concept of the electricity market, hence the restructuring and deregulation in existing utilities, had disintegrated the vertically integrated electrical power divisions. The power sectors had unbundled into three main parts: distribution, transmission, and generation sectors. Most power consumers are directly connected to the distribution side though some big customers feed by transmission lines. The reliability and security of distribution feeders are reduced because inductive loads cause greater feeder losses by lagging current. Consequently, any malfunctions or disconnection in any portion of the distribution side will cause a severe effect on reliable and secure power supply in consumer ends. So, it is a vital task of power utilities to reduce the feeder losses and maintain reliability and, hence, the power systems' security. Various FACTS devices and compensators are employed in distribution systems for these reasons [1].

To get the profits of feeder loss minimization, voltage profile enhancements, power factor (p.f.) improvements to a great extent at different scenarios, it is an inevitable task to power engineers to find the optimum placement of Shunt Capacitor Banks (SCBs) with suitable size. To reduce the distribution feeder losses, the SCBs are widely used near the Sub Station (SS). This capacitive compensation reduces the losses and improves the bus voltage and power factor up to the point of common coupling. To achieve a better benefit, it is wise to employ reactive compensating devices at the load center or near the loads. Nowadays, it is possible to connect SCBs at the primary distribution side through available pole-mounted devices and equipment [2]-[6].

In SCBs, the capacitors units are the main building blocks connected in series-parallel combinations in such a manner that keeps over and under voltage limits within 10% above or below from the nominal values [3]. The total reactive power \(Q_{\text{Cap}}\) supplied by the SCBs depends on the capacitive reactance \(X_{\text{Cap}}\) and the supplied voltage \(V_s\) that has been depicted by equation (1) [7]. The recent blackout reported in [8], [9] due to redundancy inadequate reactive power \(Q_{\text{Cap}}\) also draws more attention to manage reactive power \(Q_{\text{Cap}}\) in the system by employing SCBs locally. The researchers proposed a Shunt Capacitor Bank Series Group Shorting (CAPS) method in various low voltage conditions such as generator scheduling, direct load tripping, or in case of line restoration. In this method, the reactive power supplied by shorting various series groups of SCBs units, and these are approximately 20%-30% of the total capacitance of CAPS. The feasibility of CAPS incorporation on High Voltage (HV) and Extra High Voltage (EHV) has been studied in [10]. The optimal allocation of SCBs is the solution of feeder loss minimization, and voltage drop problems can be solved using voltage regulators' placement optimally [4].

\[
Q_{\text{Cap}} = \frac{V_s^2}{X_{\text{Cap}}} \tag{1}
\]

The necessity of reactive power \(Q_{\text{Cap}}\) in distribution systems can be segregated for the following reasons.

1.1 Minimizing the Power Losses

There are two main problems usually found in distribution systems – voltage profile deterioration and higher power losses. Losses in distribution systems are classified as technical and non-technical losses [11], [12]. Technical losses are losses between the main sub-station to end users through various substation transformers, distribution transformers, primary and secondary lines, voltage regulators, surge arresters. The details of loss measurement have been described in the literature. According to the research conclusion of Energy Information Administration (EIA) and Electric Power Research Institute (EPRI) of America, the distribution losses vary between 33.7% - 64.9%. EPRI research shows the distribution losses in Fig. 1. Around 38% of total distribution losses occurred in primary and 54% distribution transformers, considering both copper and iron losses, whereas service and secondary loss found 9%. Fig. 1 depicts that many distribution transformers are the prime reason for higher distribution losses [13], [14].

![Fig. 1 Various distribution losses estimation, according to EPRI](image)

Hence, it became mandatory to minimize line losses in primary lines at a considerable amount. A different study shows that voltage limits and thermal limits are constrained by higher losses in distribution power systems where maximum loading is limited by mainly voltage limit rather than the thermal limit [15]. To avoid the penalty due to an inferior power factor (p.f.), the SCBs are used. To improve the p.f. three techniques are used, such as centralized compensation, group compensation, and individual compensation. Three different compensation techniques are available in the literature, including individual compensation, group compensation, and centralized compensation to improve the power factor. To get maximum advantages in p.f. correction all the methods, as mentioned earlier, can be used [16]. Synchronous condensers can also be used instead of static SCBs [19] because manufacturers want to produce equipment with improved power factor and higher efficiency [17].

1.2 The Impact of Reactive Power (QCap) in the Vertically Unbundled Electricity Market.

Due to the expansion of the electricity market, the unbundled electricity power system is now regulated by Regional Transmission Organizations (RTO) and Independent System Operator (ISO) to assure security, reliability, and quality of the electrical power services. The restructured power market parted as Generation Company (GenCOs), Distribution Company (Discos), and Transmission Company (TransCOs) [18]-[20]. The existing power systems became limited to transmit generated power from central generation to distribution systems due to aging because most of the power systems are more than 40 years old. Hence, these systems unable to cope up
with growing demands. Besides, transmission investment has reduced at an alarming rate for the last few decades. [21]. Transmission congestion can be relieved by employing FACTS devices, SCBs, Distributed Generations (DGs), voltage regulators, etc., rather than installing new transmission lines [22], [23]. But to supply extra kVAR, it is inevitable to sacrifice real power output. In the real scenario, the utilities prefer to generate more real power for profit maximization [24]. As in the real power market, reactive power is not easy to generate since it does not travel far. Consequently, reactive power has to generate locally [25].

Thus compensation of reactive power (Qcp) becomes vital because of deregulation in the power market and conversion of the Network from passive to active. SCBs will be the most cost-effective solution for reactive power compensation because of the lower initial investment, and there is no personnel and maintenance cost. The optimal allocation and sizing of SCBs became a very attractive topic among researchers since non-optimal sizing and sitting will cost real power losses in distribution feeder as capacitive MVAr and losses have deep bath curve relation [26].

1.3 Incorporation of DGs in Distribution System and Reactive Power Management by SCBs

We can call the Distributed Generation (DG) a small-scale generation. It is connected to the distribution level and is a real active power generating unit. Electricity production facilities are necessarily small with respect to central plants, according to IEEE. As a result, it facilitates the interconnection at any close point in the electric power system, as disperse resources. The DGs are considered an electric power generation source connected to the consumer site or the distribution network [27]. They can afford electricity at a cheap price by maintaining higher security and reliability and less environmental pollution than the old-style power generation. In addition, since DGs are not dependent on the main power grid, it can deliver power to a vast number of public services. For instance, educational institutions, airports, hospitals, military bases, police stations, natural gas distribution, transmission systems communication sectors, etc. Virginia Tech's Consortium on Energy Restructuring defines the distribution power network in two categories: the local and endpoint levels. The local generating power plants mostly consists of RE technologies that depend on site such as solar PV systems, WT-DG, geothermal power plant, hydro-thermal generating stations.

On the contrary, at the end-point level, the different customers can apply the same technology. For instance, the modular combustion engine can furnish as home back up and at the same time to other buildings. Hence, disperse generators contribute in a small amount to the main power grid. The main focus of DGs is -friendly to the environment, efficient, and economically viable. These distributed generation based power plants needed reactive power to maintain proper node voltage. Locally generated reactive power from SCBs will be the right choice in this regard.

1.4 Voltage Profile Improvement (VPI)

Generally, DGs are treated to supply active power [28]; voltage profile deterioration is a remarkable challenge to the utility due to high DGs penetration at heavy system loading. To maintain a voltage profile at an acceptable limit, certain reactive power always has to be maintained [29]. In the vertically unbundled electricity market, the responsibilities rested on ISO to keep voltage profile in preferable limits by GenCOs. The reactive power supply can be controlled in numerous ways, such as: changing the excitation, by changing tap changing transformers, or by removing reactors and adding capacitive type devices. Voltage control equipment must adhere to DGs because at light load DGs will cause voltage rise problems [30]. Due to environmental pollution and the Greenhouse effect, non-conventional energy resources based on power generation have become popular such as wind and solar energy. Asynchronous induction generator in case wind power generation must need a local reactive power supply, but this problem can have addressed with Doubly Fed Induction Generator (DFIG). Various reactive power compensation technique has been described in [31] along with SCBs, over-excited synchronous motor, etc. STATCOMs. SVCs and other recent reactive power enhancement devices can be used at the generation level.

2. Optimum Shunt Capacitor Placement Techniques— A Review

Different researchers have proposed various formulas and techniques for optimum placement of SCBs considering numerous fitness functions such as power loss minimization, VPI, installation cost reduction, burden reduction on existing lines, maximization of system stability, etc. SCBs are placed in two different ways of fixed and variable (switched) combinations. The variable capacitors' size depends on the difference between existing reactive power demand and available fixed capacitive power. In contrast, fixed capacitors rely on average reactive power needed by the electric power systems. To control the variable SCBs, special control techniques are employed. SCBs (Qcap) are found in discrete sizes that are multiples of a minimum capacitor size Qmin that has been given in equation (2) [32], [33]. Both fixed and variable combinations of SCBs are used for continuous sizes. The absolute value of SCBs is achieved by employing a variable capacitor bank.

\[Q_{cap} = n \times Q_{min} \]

The authors suggested various SCBs sitting problems in different research articles that have been discussed below. Moreover, multidimensional problems also have been addressed in some other research articles considering DGs, reconfiguration of the Network, and voltage regulators. The common algorithm of sitting and sizing of SCBs have demonstrated in Fig. 2.

2.1 Analytical Methods

A calculus-based analytical method was proposed at the early stage when suitable computational resources were not available, and computational procedures were reduced by considering approximation. These analytical methods were also had used SCBs sizing and sitting. The work has begun with placing single and multiple capacitors by Neagle in Non-uniform and uniform load conditions. He proposed SCBs to place at 1-(1/2) distance from the main substation (SS) [2]. Cook developed a more realistic algorithm considering the average Q load using fixed SCBs for uniformly distributed load conditions [34]. He proposed that the optimum location of a capacitor bank would be 2/3. The author also extended his work using variable
SCBs [35]. After that, several analytical methods were also proposed in various literature [36], [37]. Extended research of Cook [34] was done by Schmil [38] with equations for sizing and setting of N number of capacitors with a uniformly distributed load on a uniform feeder. The optimal conditions of setting and sizing for single or double SCBs on a feeder also considered discrete loads and Non-uniform resistance. In this literature, an iterative process had proposed to address the problem. Uniform and a concentrated end load on the distributed feeder was suggested by Chang et al. [39], [40]. Schmil had determined the optimum place of SCB based on the calculation of energy losses and peak power losses, whereas total savings determined the size.

In Numerical Programming methods, the mathematical models are formulated and solved arithmetically. It is an iterative process that can minimize or maximize the particular objective function of decision variables with some constraints. The application of Numerical Programming methods has been increased in power systems because of available larger memory chips and fast computation skills [49], [50]. In optimum sizing and setting of SCBs problems, the researchers suggested various mathematical models and employed Numerical Programming methods to find optimum locations and sizes. The optimal location of SCBs was determined by Duran et al. using dynamic programming and accomplished Schmil work [38] for uniformly and randomly distributed load. The author used discrete capacitors and energy loss reduction, was the objective function [51]. Fawzi et al. extended Duran’s work [51] and incorporated the extra kVA as a savings function [52]. The local variations method proposed by Ponnavisiko and Rao used the variable SCBs included the effects of variable load growth [53]. Lee developed an optimization technique that incorporates both fixed and variable SCBs to provide net monetary savings [50]. Baran and Wu used the mixed-integer programming approach for SCBs placement and sizing [54], [55]. The complete power flow model was used by Sharaf et al. used the full load flow model to find the optimum place of SCBs in a distribution feeder [56]. The author also said that the model developed in [57] is not suitable for optimal placement of SCBs since end-user bus voltage decreased as the system load increased quadratically. Overall energy savings were considered the objective function in the mixed-integer linear problem model proposed by Khodr for SCBs placement problems [58]. In [59], [60], the authors considered Monte Carlo Simulation to deal with stochastic load variations, and the objective function was minimizing was power losses. S. Soto applied the proposed MCS model in a practical sub-transmission system [59], and M.B. Jannat applied it in a 35kV real distribution system [60].

2.3 Heuristics Methods

Heuristics methods are called rules of thumb because they are based on suggestions or hints and were developed on experiences, senses, and judgments. These methods minimize the exhaustive search space and furnish almost real and quick decisions and give optimal results with full confidence [61], [62]. Hence, this method-based technique widely applies to optimum SCBs sitting and sizing [63]-[67]. In [63], the authors developed a heuristic method that identified the sensitive node and placed SCBs to reduce the feeder losses in a significant amount. Chis et al. had elaborated Abdel-Salam et al.’s work considering the cost of SCBs and minimization of energy and peak power loss [64]. The bus bar Sensitivity Index has considered fixing the optimal position and size of SCBs in [65]. Hamouda et al. had used the node voltage stability index to select the optimum location. The objectives of this research were to maximize the net savings and capacitor investment due to the different size of SCBs [66].
Table 1 Summary of Analytical Methods.

Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
1956	[2]	Fixed	Location	Uniform and Non-uniform distributed load	1-1/2kVA/kVar rule	Feeder loss reduction	Primary feeders
1959	[34]	Fixed	Location	Distributed load	2/3 rule	Feeder loss reduction	Primary feeders
1961	[35]	Fixed+Switched	Location	Uniform distributed load	Energy loss equation	Feeder loss reduction	Primary feeders
1965	[38]	Both	Location +Size	Uniform & Random distributed load	Iterative approach	Feeder active & reactive loss reduction	Distribution feeder
1969	[39]	Switched	Location +Size	Uniform load	Computer-based new iterative approach	Optimization of total monetary savings	Primary feeders
1972	[40]	Switched	Location +Size	Concentrated and uniformly distributed load	Determining generalized loss equation	Economic savings	Distribution feeder
1978	[36]	Fixed	Location	Uniform distributed load	General loss equation	Yearly loss reduction	Distribution feeder
1981	[37]	Both	Location +Size	Uniform distributed load	Equal area criterion	Loss reduction	Distribution feeder
1985	[43]	Switched	Location +Size	Varying load condition	Step by step calculation	Peak power loss and energy loss reduction	Distribution feeder
1985	[42]	Switched	Location +Size	Uniform feeder with an end-load	General loss equation	Peak power loss and energy loss reduction	Distribution feeder
1997	[45]	Both	Location +Size	Time-varying load	Three-phases load flow	Minimizing the loss	Taiwan LY-37, BX33
1999	[44]	Switched	Location +Size	Time-varying load	Iterative approach	Significant loss savings	15-bus & 33-bus
2009	[156]	Fixed	Location +Size	Fixed load	BHBC & BCBV based new method	Minimizing power loss	12, 34, 69-bus
2016	[46]	Fixed	Location	Non-uniform load	Improved Modal Analysis with RCI	Achieve stable condition & Minimize power loss	IEEE 30-bus
2019	[47]	Fixed	Location +Size	Stochastic Load variation	PLFRDS method	Loss reduction & improve Voltage profile	30, 85-bus
2019	[48]	Fixed	Location +Size	Average load	Analytical expression & exhaustive method	P & Q Loss reduction & improve Voltage profile	IEEE 37-bus

Table 2 Summary of Numerical Programming Methods.

Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
1968	[51]	Switched	Location +Size	Discrete lumped loads	Dynamic programming	Minimize the power loss	Distribution feeder
1981	[37]	Both	Location +Size	Non-uniform load	Iterative technique	Net monetary savings	A certain point on feeder
1983	[52]	Switched	Location	Uniform & Random distributed load	Dynamic programming	Minimize the power loss	Rural Distribution, Egypt
1983	[53]	Both	Location +Size	Load growth with varying load	Local variation method	Minimize the power loss	Indian Distribution feeder
1989	[54]	Both	Size	Time-varying load	non-linear programming	Power loss minimization & Voltage regulation	Distribution feeder
1989	[55]	Switched	Location +Size	Uniform concentrated end load	Mixed-integer program	Peak power loss and energy loss reduction	TS1, TS2 Distribution feeder
1996	[56]	Switched	Location +Size	Distributed load	FLFM, EGSLM model	Cost minimization	18-bus system
2008	[58]	Switched	Location +Size	Single load problem	mixed-integer linear problem	Minimize the power loss	15-bus, 33bus test
2016	[59]	Fixed	Location	Stochastic Load	MCS	Power loss minimization	Real sub-transmission system
2016	[60]	Fixed	Location	Random Load	MCS	Active energy loss minimization	35kV real distribution network
To fix the optimum place of SCBs, the weakest line has taken as candidate bus, and the optimum size was selected by using PSO that gave minimum feeder losses. Raju et al. proposed the DSA algorithm that assures net savings maximization and voltage profile improvement. The optimal size and location of fixed and variable SCBs were determined in the radial feeder by applying the DSA algorithm [67]. To determine location and size, both fixed and variable SCBs have been used in articles [68]-[71]. Accelerated PSO has been used to reduce net benefits, and Cuckoo Search Algorithm (CSA) has been used to minimize system operating & improve voltage profiles at different load levels [67], [68]. SSO algorithm used for Cost minimization due to energy loss & reactive power compensation [70] and Modified Gbest-guided Artificial Bee Colony (MGABC) algorithm has applied for minimization of power loss, total annual expense and voltage deviation [70] in 34 & 118-bus distribution systems. Researchers also proposed numerous SCBs algorithms and methods such as the HCODECQ method [72], BFOA method [73], Crow Search Algorithm (CSA) [74], HSA-PABC algorithm [75]. A. Mujezinović et al. developed a Load flow calculation algorithm and integer genetic algorithm on a 10 kV distribution network in Bosnia & Herzegovina that reduce power losses and improve bus voltages [76].

Table 3 Summary of Heuristics Methods.

Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
1994	[63]	Fixed	Size	Variable load	New loss reduction technique	Minimize reactive loss	45-bus
1997	[64]	Fixed	Location + Size	Average load	Sensitive node searching	Minimize the power loss	34-bus
2008	[65]	Fixed	Location	Different load conditions	HCA algorithm	Net annual savings	70, 476-bus
2012	[26]	Both	Location + Size	Different load conditions	RVI V Indexing method	Minimize the power loss	12,33,69-bus
2012	[67]	Both	Location + Size	Average load	Direct Search Algorithm	Net savings and improve voltage profiles	22,69,85-bus
2013	[66]	Both	Location + Size	Average load	Heuristic search method	Net savings and improve voltage profiles	10,22,69-bus
2014	[68]	Both	Location + Size	Different load conditions	Accelerated PSO	Maximize net benefits	34 & 118-bus
2014	[69]	Both	Location + Size	Different loading levels	Cuckoo Search Algorithm	Minify system operating & improve voltage profiles	69 & 118-bus
2015	[70]	Fixed	Location	Average load	HCODECQ method	Power loss minimization	33, 66 ,132-bus
2015	[73]	Switched	Location + Size	Different loading levels	BFOA method	Minimize the power loss	34 & 85-bus
2016	[74]	Fixed	Location	Different load conditions	Crow Search Algorithm	Minimize power losses and improve voltage profiles	9 & 33-bus
2016	[70]	Both	Location + Size	Average load	Shark Smell Optimization (SSO) algorithm	Cost minimization due to energy loss & reactive power compensation	34 & 118-bus
2018	[71]	Both	Location + Size	Various load levels	MGABC algorithm	minimization of power loss, total annual expense, and voltage deviation	34, 118-bus
2018	[75]	Switched	Location + Size	Voltage-dependent load models	HSA-PABC algorithm	Power loss reduction, voltage stability improvement, and net annual savings	69, 118-bus
2019	[76]	Fixed	Location + Size	Average load	Load flow calculation algorithm & integer genetic algorithm	Minimize power losses and improve voltage profiles	10 kV dist. real Network in Bosnia

S. M. G. Mostafa et. al. /JEA Vol. 01(04) 2020, pp 150-169
2.4 Artificial Intelligent Methods

Exhaustive search is the simplest search algorithm in the optimization technique since it searches all probable solutions from a set of predefined values. But this method is considered an inefficient technique because it needed higher computational time and space. Kokash proposed a new special class of heuristic techniques based on nature, intelligence, and greedy known as the Artificial Intelligent (AI) method [77]. This AI method has been employed to find the optimal place and size of SCBs on distribution systems. Many researchers use AI methods as one of the most potent methods to solve power system problems, but it is needed higher computation time and memory space [78]. Different researcher has been proposed various algorithm such as: GA [79]-[84], Fuzzy [85],[86], Fuzzy-GA [87]-[88], Particle Swarm Optimization (PSO) [89]-[90], Immune Algorithm (IA) [91], Plant Growth Simulation Algorithm (PGSA) [92], Tabu Search (TS) [93], Memetic-Algorithm Approach [94], TLBO algorithm [95], Ant Colony [96], Graph Search Algorithm (GSA) [97]-[98], Artificial Bee Colony (ABC) [99], and Hybrid Algorithm [100]-[102]. The authors proposed CSA Optimization [68], a new algorithm of Inclusion and interchange of variables [103], Flower Pollination Algorithm [104] in the various distribution network to minify total cost. Moreover, to improve net savings and bus voltage, the researcher suggested different methods to connect fixed and switched SCBs that given as Fuzzy-Real Coded GA algorithm [105], BA and CS method [106], Loss sensitivity approach [107], GAs and SA analysis [108], PSO and Improved BSFS [109], WOA Algorithm [110].

Table 4 Summary of Artificial intelligent Methods.

Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
1990	[113]	Fixed	Size	Linear and time-invariant load	Numerical algorithm	Minimize the power loss	Radial Dist. Feeder
1993	[83]	Fixed	Location	Differential load pattern	GA method	Minimize power loss	69-bus
1994	[79]	Both	Location + Size	Average load	GA method	Minimize the power loss	9,30-bus
1995	[114]	Both	Size	Different load levels	MSS method	Cost and substation Harmonic reduction	23 kV distributor
1999	[102]	Fixed	Location + Size	Various load levels	Basic search technique	Minimize system cost	Distribution feeder
2000	[82]	Fixed	Location	Differential load pattern	GA & Fast energy loss reduction technique	Overall power and energy loss minimization	Single feeder fed by 24 kV, 15MVA
2000	[85]	Fixed	Size	Average load	Approximate reasoning with FES	Net energy savings	34-bus
2000	[91]	Fixed	Location	Different load levels	IA based optimization	Minimize power loss	69-bus
2000	[97]	Both	Location + Size	Average load	Graph search algorithm	Overall savings	Practical feeder
2001	[100]	Fixed	Location + Size	Different load levels	Hybrid method	Cost savings	9,65,135-bus
2001	[132]	Switched	Location	Different load levels	Simulated annealing technique	Minimize power loss and improve voltage profiles	IEEE 3-feeder system
2002	[80]	Both	Size	Varying load	GA method	Minimize reactive loss	69-bus
2002	[117]	Both	Location + Size	Linear and nonlinear loads	HARMFLOW algorithm and MSS method	Minimize system losses and capacitor cost	18-Bus IEEE Distorted System
2004	[111]	Fixed	Location	Different load levels	NSGA method	Power loss reduction, p.f. correction	Distribution feeder
2004	[115]	Switched	Location + Size	Different load levels	PSO algorithm	Minimize capacitor cost, energy & power loss	IEEE 9-bus
2004	[116]	Fixed	Location	Average load	New GA approach	Minimize energy, power loss, and capacitor cost	6 & 18-Bus IEEE Distorted System
2004	[118]	Both	Location + Size	Different load levels	MSS-LV optimization	Minimize capacitor cost, energy & power loss	IEEE 18-bus distorted System
2004	[119]	Fixed	Location + Size	Linear and nonlinear loads	Fuzzy based approach	Minimize system losses and capacitor cost	18-Bus IEEE Distorted System
2005	[93]	Fixed	Location	Different load levels	Tabu Search approach	Minimize power loss and capacitor cost	94-bus practical system
Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
-----------	------	----------	------------------	--------------	--------	-------------------	-------------
2005	[94]	Fixed	Location + Size	Average load	Evolutionary algorithms	Annual cost savings	9,69-bus
2007	[81]	Both	Location + Size	Uncertain and time varying loads	GA method with new coding	Minimize power loss and improve voltage profiles	37,69-bus, a real Iranian network
2007	[87]	Both	Location + Size	Different load levels	Fuzzy-GA method	Net savings and improve voltage profiles	69-bus
2009	[86]	Fixed	Location + Size	Different loading conditions	A fuzzy based new method	Minimize power loss and improve voltage profiles	10,23,34-bus
2011	[101]	Switched	Size	Average load	Fuzzy-DE, Fuzzy-MAPSO methods	Minimize power loss and improve voltage profiles	15,34-bus
2012	[89]	Both	Location + Size	Different load levels	PSO static and dynamic sensitivity	Minimize capacitor cost function & energy loss	70 & 135-bus
2012	[92]	Both	Location + Size	Different load levels	Plant Growth-Based Optimization	Emission decrement & power loss improvement	69,123 & 17-bus Taipower company
2013	[96]	Fixed	Location + Size	Load growth model	Multi period dynamic model	Minimizing the total	69-bus
2014	[95]	Both	Location + Size	Different load levels	TLBO approach	Minimize power loss and energy cost	22,69, 85 & 141-bus
2014	[68]	Both	Location + Size	Different loading conditions	CSA Optimization	Minify operating cost	69 & 118-bus
2014	[69]	Both	Location + Size	Different load levels	Fuzzy-Real Coded GA	Enhance voltage stability & Net savings	33-bus
2015	[84]	Fixed	Location + Size	Average load	GA	Improve voltage profiles & Minimize power loss	34-bus
2015	[106]	Both	Location + Size	Different load levels	BA and CS method	Minimize power loss & maximize network savings	34, 85-bus
2015	[107]	Switched	Location + Size	Time varying ZIP loads	Loss sensitivity approach	Minimize power loss and improve voltage profiles	38-bus UK distribution System
2015	[90]	Fixed	Location + Size	Different load levels	PSO method	Reduce peak power loss and improve node voltage	69-bus
2015	[98]	Fixed	Location + Size	Average load	GSA method	Minimize kW loss and maximize net savings	33, 69, 85, 141-bus
2016	[108]	Fixed	Location + Size	Average load	GAs and SA analysis	Minimize power loss and improve voltage profiles	34, 70-bus
2016	[109]	Switched	Location + Size	Different load levels	PSO and Improved BSFS	Maximize the net annual returns	A real unbalanced MV network
2016	[88]	Both	Location + Size	Various load levels	Fuzzy GA Method	Improve the substation power factor	51, 69-bus
2016	[121]	Switched	Location + Size	Future load and contingency	EBFO Method	Thermal re-rating of critical cables	Real-world 110 kV sub-trans. net.
2016	[122]	Fixed	Location + Size	Different load models	PFPGA algorithm	Cost reduction & power quality improvement	18, 69, 141-bus
2017	[120]	Both	Location + Size	Different load levels	MSPSO algorithm	Maximize net savings, THD of voltage	18, 69-bus
2017	[110]	Fixed	Location + Size	Average load	WOA Algorithm	Operating cost and power loss minimization	34, 85-bus
2017	[103]	Both	Location + Size	Different load states	Algorithm of Inclusion and interchange of variables	Minimize the annual total cost	69-bus
2017	[112]	Fixed	Location + Size	Average load	NSGA II	Power loss and the THD minimization	9, 85-bus
2018	[104]	Fixed	Location + Size	Average load	Flower Pollination Algorithm (FPA)	Minimize the total power loss and cost of capacitor installation	33, 34, 69, 85-bus
A multi-criteria SCBs placement problem had proposed using the Non-dominated Sorting Genetic Algorithm (NSGA) in [111]. It is needed to optimize the number of objectives simultaneously in NSGA. Moreover, in NSGA, any objective can be optimized without deterioration of other objective functions. So, Pareto-Optimal solutions are considered to fulfill the objective function [10]. Baghzouz and Wu had developed a method to optimize the size of SCBs in radial distribution feeder considering r.m.s. voltage and their corresponding total harmonic distortion. NSGS-II was introduced in [112] to reduce power losses and ensure the THD maintains power quality. The authors found that the optimal sizing of SCBs will cause unexpected distortion in voltage profiles when harmonic distortion is neglected [113]-[114]. The researcher used the PSO algorithm for finding the optimum size, location, and type considering non-linear loads in [115]. Yu et al. applied the GA algorithm to address the SCBs placement and sizing problem by incorporating the impact of voltage and current harmonics [116]. The researcher had demanded that the applied method minimized THD and confirm higher annual benefits in contrast with [117]-[119]. MSPSO algorithm was applied in [120] where the fitness function was a net yearly benefit, maximum THD of voltage, maximum voltage deviation, and a resistance constraint. A.M. Othman developed the EBFO technique that incorporates maximum voltage deviation, and a re-function was a net yearly benefit, maximum THD of voltage, [119].

2.5 Multi-dimensional Problems

In some research articles, authors considered other power system problems with SCBs such as: Placement of Distributed Generations (DGs) [123]-[131], reconfiguration of the Network [132]-[140], load tap changer [141], placement of voltage regulators [142]-[148], etc. Voltage regulator and SCBs placement performed simultaneously to control voltage and var [142]-[144]. Hung et al. proposed a multidimensional algorithm that associated SCBs, DGs, and network reconfiguration in a single objective function to reduce distribution feeder losses significantly [149]. Adel et al. proposed a Water Cycle Algorithm (WCA) to size and sit of SCBs and DGs that reduce power losses, voltage deviation, electrical energy cost, and total emissions [150]. WCA was also incorporated in the article [151], where the authors suggested two load power factor models to minimize feeder losses and voltage profile enhancement. GA interfaced with COM model has developed for optimal phase reconfiguration and SCBs placement [152]. In [153], a Hybrid WIPO-GSA algorithm has been proposed in distribution systems considering feeder failure rate. Feeders reconfiguration and SCBs placement done by Mixed-integer second-order cone programming model [154]. The authors proposed a methodology for the sustainable operation of distribution systems along with sitting and sizing of SCBs and dispatchable DGs. Sensitivity analysis based on voltage stability index has been employed to minimize feeder current, power loss, and improve voltage profiles [155].

Table 5 Summary of Multi-dimensional problems.

Published	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
1985	[142]	Both	Location +Size	Variable load conditions	Analytical Method	Minimize the peak power and energy losses	23 kV Carolina Power & Light Co. sys.
1995	[137]	Switched	Location	Variable loads	Dynamic Programming Techniques	Power loss minimization & network reconfiguration	20kV, 63-node dist. Feeder
1996	[145]	Switched	Location	Different load conditions	A Neural Network (NN)	Minimize FR losses and maintain all bus voltages	30-bus
2002	[135]	Fixed	Location	Average load	MNV & GA algorithm	Power loss reduction	69-bus
2006	[146]	Fixed	Location +Size	Non-linear and Unbalanced Loads	Genetic Algorithm	Minimize power loss and harmonic distortion	34-bus
2008	[136]	Switched	Location	Average load	Ant Colony Search Algorithm (ACSA).	Minimize power loss	3-feeder dist. System
2009	[125]	Fixed	Location +Size	Linear and nonlinear load models	Genetic Algorithms (GA)	Power and energy losses minimization	11 kV, 30-node feeder
2010	[138]	Fixed	Location	Different load levels	Mixed-integer non-linear programming	Minimize the energy loss	16, 33 & 83-bus
2011	[134]	Fixed	Location	Average load	Harmony Search (HA)	Minimization of losses cost and reliability cost	83-bus
2012	[124]	Switched	Location	Different load levels	SAIDI, SAIFI	Minimize capacitor investment & energy cost	Tabriz power electric dist., Iran
2012	[147]	Both	Location	Different load levels	GA and OPF	Multi objectives	70-bus
2013	[123]	Fixed	Location +Size	Different load levels	Memetic algorithm	Minimize power loss and improve voltage profiles	34-bus
2013	[148]	Fixed	Location +Size	Different load levels	Mixed-integer LP	Minimize power loss and improve voltage profiles	136 & 69-bus
2.6 Evaluation of the Methods

It is easy for the implementation of the analytical method, and its execution is faster. Since it takes a simple presumption and considers one snapshot of an electric power system loading condition, their results are suggestive. The strength of the Exhaustive Search (ES) method is -it is assured to the finding of global optimum, but it does not itself a simulation technique and appropriate for the large electric system. Hence, in a dynamic programming method, this ES method is not suitable. All Heuristic methods are robust. It can furnish very accurate solutions for optimal SCBs placement for large and complex systems. They needed huge computations. Nevertheless, this drawback is not essential that much critical in the applications of SCBs placement. The most frequently applied methods are AI methods for SCBs placement because it finds optimum solutions very fast. Most of the current researches is running based on AI methods and employed in Multi-dimensional problem solutions for their accuracy and fast convergence characteristics.

3. Combinatorial Method

The Combinatorial Method (CM) is for radial distribution system with source (substation) bus as slack bus and all other load buses taken as PQ buses. The algorithm proposed is described in the following steps shown in Fig. 3 for deciding the optimal sizes of the capacitors in terms of standard sizes available in the market and their locations (only load buses):

(i). Input Data and Initialization: The distribution system data is initialized in this step
(ii). Base Case Results: The “Forward/Backward Sweep” method of the Deterministic Load Flow (DLF) is carried out for the base case study to store the base case results, which will be used to compare the results with (1).
(iii). Generation of Combinations: All possible combinations of different commercially available capacitors are generated. Similarly, all possible combinations of the node are created.
(iv). Capacitor Placement: Each capacitor of the first combination is kept at corresponding load buses of the first combination of node and run the DLF to get the feeder loss. Similarly, DLF is performed to get the loss by placing capacitors

year	Ref.	SCB type	Design variables	Load profiles	Method	Objective function	Test systems
2013	[141]	Both	Location + Size	Different load levels	Modified Discrete PSO	Minimize capacitor investment & energy cost	33, 37-bus
2014	[126]	Switched	Location + Size	Different load levels	ICA/GA hybrid method	Multi objectives	33 & 69-bus
2014	[127]	Fixed	Size	Linear and non-linear loads	Genetic algorithm	Minimize THD, power loss & improve voltage profiles	33-bus
2015	[128]	Fixed	Location + Size	Uncertain load variations	MOPSO method	Minimize power lost and improve bus voltage	33, 94-bus
2016	[129]	Switched	Location + Size	Average load	IMDE algorithm	Minimize power loss	33, 69-bus
2017	[139]	Both	Location + Size	Discrete load levels	HS-PABC algorithm	Minimize power loss and improve bus voltage	69, 118-bus
2017	[130]	Fixed	Location + Size	Two Different load level	IVM & PLI algorithm	Minimize power loss	33, 85-bus
2017	[131]	Switched	Location + Size	Variable load levels	MOEA/D algorithm	Minimizing system real and reactive power losses	33, 69,83, 119-bus
2018	[150]	Switched	Location + Size	Average load	Water Cycle Algorithm	Minimizing power losses, voltage deviation, electrical energy cost, total emissions	33, 69-bus & real Egyptian system
2018	[140]	Fixed	Location + Size	Average load	Multi-Objective Optimization Problem	Minimized losses & reduced voltage unbalancing	IEEE-37 and 123-node
2019	[151]	Fixed	Location + Size	Average load	Water Cycle Algorithm (WCA)	Minimize power loss and improve bus voltage	33-bus
2019	[152]	Fixed	Location + Size	Voltage-dependent load	GA interfaced with COM model	Minimize power loss and improve voltage profiles	IEEE-13,37-bus
2019	[153]	Switched	Location + Size	Average load	Hybrid WIPSO-GSA algorithm	Maximization of total cost benefit	33-bus & Indian 85-bus
2019	[154]	Both	Location + Size	Voltage-dependent load	The mixed-integer second-order cone programming model	Minimize power loss and improve voltage profiles	69,2313-node dist. Sys.
2019	[155]	Fixed	Location + Size	Different load condition	Sensitivity analysis based on voltage stability index	Minimize feeder current, power loss and improve voltage profiles	33-bus dist. System
from the first combination to the second, third until the last combination of nodes, and getting the losses. After finishing, the second combination of the capacitor is placed to all combinations corresponding to the same previous procedures to get the losses. This procedure is repeated for all capacitors combination.

(v). The program is terminated when DLF is performed at all node combinations by each capacitor of all capacitor combinations. Finally, the minimum feeder loss and a corresponding combination of the capacitor and node are determined.

Since every capacitor combination is checked with all node combinations, the program needs huge computational time. Still, it has given more accurate results comparatively with another capacitor placement algorithm. In this study, two standard test systems are considered for analysis and demonstrating the above algorithm with practical Indian 22-bus and IEEE 69-bus system.

Standard capacitor sizes available in the literature (in kVAr): 150, 300, 450, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 1950, 2100, 2250, 2400, 2550, 2700, 2850, 3000, 3150, 3300, 3450, 3600, 3750, 3900, 4050.

3.1 22-bus Radial Practical Test System

The data for the 22-bus agricultural test system is given in [67]. This 22-bus system belongs to a small part of India's Eastern Power Distribution system with 11 kV base voltage. It has a 662.311 kW real power load and 667.40 kVAr reactive power load comprised of 21 branches and 22-buses in Fig. 4. This practical test system is rated with voltage 11 kV, Vmax =1.1 pu, and Vmin = 0.9 pu, along with a base 10 MVA complex power rating.

The optimal locations are found at node-9, 13, 17, and node-20 with 150 kVAr in every node for the nominal load (100%) after completing the simulation using the proposed combinatorial method. The minimum loss is 9.30 kW, and the lowest voltage is 0.9817 pu at node-22, but for the light load (50%) condition, the loss became 2.39 kW that have 0.9904 pu voltage at node-22 while optimal location found node-9 and node-17 with 150 kVAr each. Besides, for peak load (160%) condition, feeder loss is 24.41 kW, and lowest voltage at node is 22 with 0.9700 pu using a total of 900 kVAR capacitor bank in four optimal locations (Table 7).

The real power loss in the whole feeder is 17.7 kW, 4.30 kW, and 46.08 kW for nominal, light, and peak load, respectively, by the analytical method without using any capacitor compensation. It is found that simulations carried out using Combinatorial Method provide a better total cost, cost of energy loss, and cost of capacitor installation than that obtained from the Direct Search Algorithm (DSA) found in the literature. Also, it is seen that there is more minimization in power loss in nominal (100%) and peak (160%) load conditions with respect to DSA and TLBO, but voltage level reduced a little bit in every load condition.

Fig. 3 Algorithm of the combinatorial method based capacitor placement.

Fig. 4 22-bus agricultural practical Indian agricultural test system.
Table 7 Real power loss and voltage profile with different load scenarios in 22-bus.

22-bus system	DSA [67]	TLBO [95]	Combinatorial Method (CM)			
1. Nominal load (100%)						
Optimal Placement	Location	Size (kVAR)	Location	Size (kVAR)	Location	Size (kVAR)
4	150	9	150	9	150	
13	300	14	150	13	150	
16	150	17	150	17	150	
17	150	20	150	20	150	
Minimum voltage node	22	22	22			
Minimum voltage (pu)	0.9824	0.9822	0.9817			
Power Loss (kW)	9.66	9.31	9.30			
2. Light load (50%)						
Optimal Placement	Location	Size (kVAR)	Location	Size (kVAR)	Location	Size (kVAR)
4	0	9	150	9	150	
13	150	14	0	13	0	
16	150	17	150	17	150	
17	0	20	0	20	0	
Minimum voltage node	22	22	22			
Minimum voltage (pu)	0.9909	0.9903	0.9904			
Power Loss (kW)	2.39	2.39	2.39			
3. Peak load (160%)						
Optimal Placement	Location	Size (kVAR)	Location	Size (kVAR)	Location	Size (kVAR)
4	150	9	150	9	150	
13	450	14	300	13	300	
16	300	17	150	17	150	
17	150	20	300	20	300	
Minimum voltage node	22	22	22			
Minimum voltage (pu)	0.9701	0.9712	0.9700			
Power Loss (kW)	24.89	24.43	24.41			
Ratings of the installed capacitor (maximum one) kVAR	150, 450, 300, 150 (Total=1050)	150, 300, 150, 300 (Total=900)	150, 300, 150, 300 (Total=900)			
Capacitor cost ($)	1050*3=3,150	900*3=2,700	900*3=2,700			
The energy lost cost ($)	5575.59	5421.53	5421.53			
Total cost with capacitor ($)	8,725.59	8,121.53	8,121.53			

Comparison of voltage profiles has demonstrated in Fig. 5 for different loading conditions. It is seen that the voltage level has improved due to the employment of SCBs except for peak load conditions. It is because extra loads cause more voltage deviation than nominal load, and without reactive compensation, the scenario will be worse. Comparison of percentage improvement of voltage profile and total feeder loss minimization for DSA, TLBO, and CM methods have shown in Fig. 6. There are remarkable improvements in power loss reduction after SCBs connection where CM gives 47.42% loss reduction than without SCBs compensation. This figure is much better than DSA (45.39%) and TLBO (47.37%) at nominal load. A similar loss reduction pattern has been maintained for light load and peak load conditions. Voltage profiles also improved, but in peak load, the condition the amount is appreciable than nominal and load. CM shows more voltage level enhancement than DSA and TLBO in the 22-bus distribution system.

Per unit cost of energy has taken $0.06/kWh, and the cost of capacitor bank has been considered $3.0/kVAR [67] in cost calculations. Without installing the capacitor bank, the total cost of energy loss in different load conditions is $10,249.32/year. After using capacitors, it became $8,121.53/year that saved $2,127.79 annually, and this amount is better than the DSA ($8,725.59/year) techniques (Table 7).

![Fig. 5 The contrast of voltage profile employing SCBs at different loading conditions.](image)
Different groupings of 150 kVAr, 300 kVAr, 450 kVAr, 750 kVAr, and 1050 kVAr commercially available static capacitors have been used to generate combinations using three optimal places to get the lowest real power loss and voltage profile. Node-61, 64, 18 with 1050 kVAr, 300 kVAr, and 300 kVAr rating gives the minimum 146.50 kW loss that maintains 0.9330 pu voltage level that is a better result than Fuzzy GA [87] and DSA [67].

The simulated output using the combinatorial method and backward-forward power flow is assessed with DSA and Fuzzy GA. The minimum loss locations and sizes are given in Table 8, considering three different loadings. The real power loss 146.50 kW for the nominal load (100%), 34.36 kW for the light load (50%), and 417.60 kW for peak load (160%) with no additional reactive power supply. It is observed that simulation performing with combinatorial method furnished relatively than Fuzzy GA and DSA. Besides, it is found that there is more minimization in power loss in nominal and light load conditions rather than GA and DSA techniques. Meanwhile, the voltage profile is slightly decreased in light and peak load but shows an improved level than in nominal load condition (0.9330 p.u.) than DSA. Without installing the capacitor bank, the total cost of feeder energy loss in various loading conditions is $135,936.00/year (Table 8). After using capacitors, it became $87,999.3/year that saved $41,636.70 annually, and this amount is better than the Fuzzy GA and DSA techniques.
Table 8 Real power loss and voltage profile with different load scenarios in 69-bus.

69-bus system	Fuzzy GA [87]	DSA [67]	TLBO [95]	Combinatorial Method (CM)				
1. Nominal load (100%)	Location	Size (kVAr)						
Optimal Placement	59	100	15	450	22	300	61	1050
	61	700	60	450	61	1050	64	300
	64	800	61	900	62	300	18	300
Minimum voltage node	65	65	65	65	65	65		
Minimum voltage (pu)	0.93693	0.9318	0.9321	0.9330				
Power Loss (kW)	156.52	147.00	146.80	146.50				
2. Light load (50%)	Location	Size (kVAr)						
Optimal Placement	59	0.00	15	300	22	150	61	450
	61	0.00	60	300	61	450	64	150
	64	300	61	450	62	150	18	150
Minimum voltage node	65	65	65	65	65	65		
Minimum voltage (pu)	0.9622	0.9683	0.9662	0.9666				
Power Loss (kW)	40.48	35.52	34.43	34.36				
3. Peak load (160%)	Location	Size (kVAr)						
Optimal Placement	59	1100	15	900	22	300	61	1050
	61	800	60	900	61	1050	64	750
	64	1200	61	1800	62	750	18	300
Minimum voltage node	65	65	65	65	65	65		
Minimum voltage (pu)	0.90014	0.8936	0.8795	0.8818				
Power Loss (kW)	460.45	427.30	417.28	417.60				
Ratings of the installed capacitor (maximum one)	Location	Size (kVAr)						
(kVAr)	1100, 800, 1200, (Total=3100)	900, 900, 1800, (Total=3600)	1050, 750, 300, (Total=2100)	1050, 750, 300, (Total=2100)				
Capacitor cost ($)	3100*3=9,300	3600*3=10,800	3150*3=6,300	3150*3=6,300				
The energy lost cost ($)	95727.00	89,112.60	87,999.30	87,999.30				
Total cost with capacitor ($)	105,027.00	99,912.60	94,299.30	94,299.30				

4. Conclusion

In this paper, the second section has presented an in-depth comparative review of SCBs placement and sizing that included types, design variables, load profiles, methods, and test distribution systems sequentially through classification and analyzation of present and future trends. There are four types of SCBs problems that have been reviewed; however, Analytical methods and Numerical methods have provided the most robust solution, but these methods needed higher computational time. Contrary, AI methods seek the optimum solution that depends on the searching ability of the algorithm hence save computational time. The most frequently applied methods are the AI method for SCBs placement in recent research due to its computational characteristics.

A new approach called Combinatorial Method has developed for optimal placement and sizing of SCBs in distribution systems in the third section. The locations and sizes have been determined by generating random combinations and running deterministic load flow each time. The results obtained from the proposed technique have been compared with DSA and FGA, and TLBO algorithm. The research study has been carried out on modified Indian practical 22-bus and IEEE 69-bus system. The results showed that around forty-seven percent loss minimized in the 22-bus system, and almost thirty-five percent loss was reduced in 69-bus radial distribution systems. Besides, reactive compensation still maintains a satisfactory voltage level at all buses and SCB connection points. The proposed algorithm saved more in terms of money annually than the DSA and Fuzzy GA and TLBO method by optimal sizing and sitting of SCBs. Though the proposed CM method is time-consuming, this method would help the researcher achieve better results for planning purposes. Due to feeder loss minimization and voltage profile improvement in distribution feeders, both utilities and individual owners will be encouraged to accommodate more DGs.

4.1 Future Study

Though many works are already done for optimal sitting and sizing of SCBs, further research is necessary to enhance the performance and capability of SCBs to solve more complex problems.
problems introduced by renewable energy integration on the existing grid. Wind velocity and solar radiations are not the only uncertain parameters, but there are other Distributed Energy Resources (DERs) and metrics that are stochastic such as: market price, future capital cost, fuel price, future fuel supply system, future load growth, and power of plug-in Electric Vehicles (EVs). Moreover, Network reconfiguration, optimal sitting, and sizing of DGs, Protective device placement, optimal allocation of Energy Storage System (ESS), substation, and line expansion also need to investigate simultaneously with optimal SCBs sitting and sizing. However, in the optimal SCBs placement problem, ancillary services should be considered. Because to maintain reliable grid operation, optimal SCBs placement can provide ancillary services by supplying necessary reactive power to the grid when needed. Finally, more robust and fast programming methods are required that give more accurate measures with minimum memory requirement.

Acknowledgments

The first author would like to thanks ADB-JSP for providing the scholarship to pursue his master's degree and carry out this work at the Asian Institute of Technology, Thailand.

References

[1] Arulraj, R. and Kumarappan, N., 2019. Optimal economic-driven planning of multiple DG and capacitor in distribution network considering different compensation coefficients in feeder’s failure rate evaluation. Engineering Science and Technology, an International Journal, 22(1), pp.67-77.

[2] Neagle, N.M. and Samson, D.R., 1956. Loss reduction from capacitors installed on primary feeders [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 75(3), pp.950-959.

[3] Kasztenny, B., Schaefer, J. and Clark, E., 2007, March. Fundamentals of adaptive protection of large capacitor banks. In 2007 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources (pp. 154-186). IEEE.

[4] Segura, S., Romero, R. and Rider, M.J., 2010. Efficient heuristic algorithm used for optimal capacitor placement in distribution systems. International journal of electrical power & energy systems, 32(1), pp.71-78.

[5] Lidula, N.W.A. and Rajapakse, A.D., 2011. Microgrids research: A review of experimental microgrids and test systems. Renewable and Sustainable Energy Reviews, 15(1), pp.186-202.

[6] Eltawil, M.A. and Zhao, Z., 2010. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renewable and sustainable energy reviews, 14(1), pp.112-129.

[7] Taylor, C.W., 2003. Shunt Compensation for Voltage Stability. IFAC Proceedings Volumes, 36(20), pp.43-48.

[8] Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J. and Schulz, R., 2005. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE transactions on Power Systems, 20(4), pp.1922-1928.

[9] Pereira, L., 2004. Cascade to black [system blackouts]. IEEE Power and Energy Magazine, 2(3), pp.54-57.

[10] Bruns, D.P., Newcomb, G.R., Miske, S.A., Taylor, C.W., Lee, G.E. and Edris, A., 2001. Shunt capacitor bank series group shorting (CAPS) design and application. IEEE Transactions on Power Delivery, 16(1), pp.24-32.

[11] Dortolina, C.A. and Nadira, R., 2005. The loss that is unknown is no loss at all: A top-down/bottom-up approach for estimating distribution losses. IEEE Transactions on Power Systems, 20(2), pp.1119-1125.

[12] Targosz, R., Belmans, R., Declercq, J., De Keulenaer, H., Furuya, K., Karmarkar, M., Martinez, M., McDermott, M. and Pinkiewicz, I., 2005. The potential for global energy savings from high efficiency distribution transformers. Leonardo Energy Transformer–European Copper Institute.

[13] EPRI. Assessment of transmission and distribution losses in New York.

[14] Ela, 2011. Annual Energy Outlook 2011. Available from (http://www.eia.gov/forecasts/archive/aeo11/) Last Accessed on: 20-Dec-2020. Information Administration, Washington, DC, 2011.

[15] Prada, R.B. and Souza, L.J., 1998. Voltage stability and thermal limit: constraints on the maximum loading of electrical energy distribution feeders. IEEE Proceedings-Generation, Transmission and Distribution, 145(5), pp.573-577.

[16] ENERGI. Guidelines to install, operate and maintain ht capacitors & its associated equipment (http://www.energegroup.com/CapacitorManual.pdf).

[17] Aman, M.M., Jasmon, G.B., Mokhlis, H. and Bakar, A.H.A., 2013. Analysis of the performance of domestic lighting lamps. Energy policy, 52, pp.482-500.

[18] Milligan M, Ela E, Hein J, Schneider T, Brinkman G, Denholm P., 2012. Exploration of high-penetration renewable electricity futures. Vol. 4 of renewable electricity futures. NREL/TP-6A20-52409-4. Golden, CO: National Renewable Energy Laboratory.

[19] EURELECTRIC. Power outages in 2003-global regulatory Network.

[20] Mostafa, S.M.G., Singh, J.G., Masrur, H. and Ullah, M.S., 2016, October. A prospective model of Bangladesh electricity market. In 2016 International Conference on Innovations in Science, Engineering and Technology (ICISET) (pp. 1-5). IEEE.

[21] Root, C.E., 2006. The future beckons [electric power industry]. IEEE Power and Energy Magazine, 4(1), pp.24-31.

[22] Singh, H., Hao, S. and Papalexopoulos, A., 1998. Transmission congestion management in competitive electricity markets. IEEE Transactions on power systems, 13(2), pp.672-680.

[23] Hemmati, R., Hooshmand, R.A. and Khodabakhshian, A., 2013. State-of-the-art of transmission expansion planning: Comprehensive review. Renewable and Sustainable Energy Reviews, 23, pp.312-319.
Analysis of capacitor application as age control and loss distribution on feeders. Grainger, J.J. and Lee, S.H., 1981. Optimum size and allocation on distribution primary feeders. IEEE Transactions on Power Apparatus and Systems, 1983. New approach for the application of shunt capacitors in radial distribution feeders a dynamic feeder model. Hackam, R., 1985. Control of reactive power in distribution systems with an end-load and varying load condition. IEEE transactions on power apparatus and systems, 1985. Control of reactive power in distribution systems by considering customer load patterns and simplified feeder model. IEE Proceedings-Generation, Transmission and Distribution, 1997. Fixed/switched type shunt capacitor planning of distribution systems by considering customer load patterns and simplified feeder model IEEE Proceedings-Generation, Transmission and Distribution. Bale, H., 1968. Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Transactions on Power Apparatus and Systems, 1993. New approach for the application of shunt capacitors to the primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1995. Capacitor placement in radial distribution systems for loss reduction. IECON 2011 37th Annual Conference of the IEEE Industrial Electronics Society, pp. 985-990. Maximising penetration of wind generation in existing distribution networks. IEEE Proceedings-Generation, Transmission and Distribution, 149(3), pp.256-262. Options for control of reactive power by distributed photovoltaic generators. The IEEE, 99(6), pp.1063-1073. Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm. International journal of electrical power & energy systems, 33(5), pp.1133-1139. Load flow solution of radial distribution feeders: a new contribution. International journal of electrical power & energy systems, 24(9), pp.701-707. Analysis of capacitor application as affected by load cycle. Transactions of the American Institute of Electrical Engineers, Part III: Power Apparatus and Systems, 78(3), pp.950-956. Optimizing the application of shunt capacitors for reactive-volt-ampere control and loss reduction. Transactions of the American Institute of Electrical Engineers, Part III: Power Apparatus and Systems, 80(3), pp.430-441. Analytical method of capacitor allocation on distribution primary feeders. IEEE Transactions on Power Apparatus and Systems, 1981. Optimum size and location of shunt capacitors for reduction of losses on distribution feeders. IEEE Transactions on Power Apparatus and Systems, (3), pp.1105-1118.
Optimal sizing of networks using geneticors in radial distribution systems. IEEE Transactions on power delivery, 4(1), pp.735-743.

Baran, M. and Wu, F.F., 1989. Optimal capacitor placement on radial distribution systems. IEEE Transactions on power delivery, 4(1), pp.725-734.

Sharaf, A.M. and Ibrahim, S.T., 1996. Optimal capacitor placement in distribution networks. Electric power systems research, 37(3), pp.181-187.

Jasmon, G.B. and Lee, L.H.C.C., 1991. Distribution network reduction for voltage stability analysis and loadflow calculations. International Journal of Electrical Power & Energy Systems, 13(1), pp.9-13.

Khodr, H.M., Olsina, F.G., De Oliveira-De Jesus, P.M. and Yusta, J.M., 2008. Maximum savings approach for location and sizing of capacitors in distribution systems. Electric Power Systems Research, 78(7), pp.1192-1203.

Soto, S. and Hinojosa, V., 2016. Stochastic optimal allocation of reactive power banks for system loss minimization. IEEE Latin America Transactions, 14(4), pp.1980-1987.

Jannat, M.B. and Savić, A.S., 2016. Optimal capacitor placement in distribution networks regarding uncertainty in active power load and distributed generation units production. IET Generation, Transmission & Distribution, 10(12), pp.3060-3067.

Minsky, M.L., 1958, November. Some methods of artificial intelligence and heuristic programming. In Proc. Symposium on the Mechanization of Thought Processes, Teddington.

Ng, H.N., Salama, M.M.A. and Chikhani, A.Y., 2000. Classification of capacitor allocation techniques. IEEE Transactions on power delivery, 15(1), pp.387-392.

Abdel-Salam, T.S., Chikhani, A.Y. and Hackam, R., 1994. A new technique for load reduction using compensating capacitors applied to distribution systems with varying load condition. IEEE Transactions on Power Delivery, 9(2), pp.819-827.

Chis, M., Salama, M.M.A. and Jayaram, S., 1997. Capacitor placement in distribution systems using heuristic search strategies. IEE Proceedings-Generation, Transmission and Distribution, 144(3), pp.225-230.

da Silva, I.C., Carneiro, S., de Oliveira, E.J., de Souza Costa, J., Pereira, J.L.R. and Garcia, P.A.N., 2008. A heuristic constructive algorithm for capacitor placement on distribution systems. IEEE Transactions on Power Systems, 23(4), pp.1619-1626.

Hamouda, A. and Sayah, S., 2013. Optimal capacitors sizing in distribution feeders using heuristic search based node stability-indices. International Journal of Electrical Power & Energy Systems, 46, pp.56-64.

Raju, M.R., Murthy, K.R. and Ravindra, K., 2012. Direct search algorithm for capacitive compensation in radial distribution systems. International Journal of Electrical Power & Energy Systems, 42(1), pp.24-30.

El-Fergany, A.A. and Abdelaziz, A.Y., 2014. Capacitor allocations in radial distribution networks using cuckoo search algorithm. IET Generation, Transmission & Distribution, 8(2), pp.223-232.

El-Fergany, A.A. and Abdelaziz, A.Y., 2014. Efficient heuristic-based approach for multi-objective capacitor allocation in radial distribution networks. IET Generation, Transmission & Distribution, 8(1), pp.70-80.

Gnanasekaran, N., Chandramohan, S., Kumar, P.S. and Imran, A.M., 2016. Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Engineering Journal, 7(2), pp.907-916.

Dixit, M., Kundu, P. and Jariwala, H.R., 2018. Optimal integration of shunt capacitor banks in distribution networks for assessment of techno-economic asset. Computers & Electrical Engineering, 71, pp.331-345.

Chiou, J.P. and Chang, C.F., 2015. Development of a novel algorithm for optimal capacitor placement in distribution systems. International Journal of Electrical Power & Energy Systems, 73, pp.684-690.

Devabalaji, K.R., Ravi, K. and Kothari, D.P., 2015. Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm. International Journal of Electrical Power & Energy Systems, 71, pp.383-390.

Askarzadeh, A., 2016. Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. IET Generation, Transmission & Distribution, 10(14), pp.3631-3638.

Muthukumar, K. and Jayalalitha, S., 2018. Multiobjective hybrid evolutionary approach for optimal planning of shunt capacitors in radial distribution systems with load models. Ain Shams Engineering Journal, 9(4), pp.1975-1988.

Mujezinović, A., Turković, N., Daubabišć, N., Dedović, M.M. and Turković, I., 2019, March. Use of Integer Genetic Algorithm for Optimal Allocation and Sizing of the Shunt Capacitor Banks in the Radial Distribution Networks. In 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-6). IEEE.

Kokash, N., 2005. An introduction to heuristic algorithms. Department of Informatics and Telecommunications. University of Trento.

Aman, M.M., Jasmon, G.B., Bakar, A.H.A., Mokhli, H. and Karimi, M., 2014. Optimum shunt capacitor placement in distribution system—A review and comparative study. Renewable and Sustainable Energy Reviews, 30, pp.429-439.

Sundhararajan, S. and Pahwa, A., 1994. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE transactions on Power Systems, 9(3), pp.1499-1507.

Das, D., 2002. Reactive power compensation for radial distribution networks using genetic algorithm. International journal of electrical power & energy systems, 24(7), pp.573-581.

Haghifam, M.R. and Malik, O.P., 2007. Genetic algorithm-based approach for fixed and switchable
capacitors placement in distribution systems with uncertainty and time varying loads. *IET generation, transmission & distribution, 1*(2), pp.244-252.

[82] Levitin, G., Kalyuzhny, A., Shenkman, A. and Chertkov, M., 2000. Optimal capacitor allocation in distribution systems using a genetic algorithm and a fast energy loss computation technique. *IEEE Transactions on Power Delivery, 15*(2), pp.623-628.

[83] Boone, G. and Chiang, H.D., 1993. Optimal capacitor placement in distribution systems by genetic algorithm. *International Journal of Electrical Power & Energy Systems, 15*(3), pp.155-161.

[84] Pazouki, S., Mohsenzadeh, A., Haghigham, M.R. and Ardalan, S., 2015. Simultaneous allocation of charging stations and capacitors in distribution networks improving voltage and power loss. *Canadian Journal of Electrical and Computer Engineering, 38*(2), pp.100-105.

[85] Ng, H.N., Salama, M.M.A. and Chikhani, A.Y., 2000. Capacitor allocation by approximate reasoning: fuzzy capacitor placement. *IEEE transactions on power delivery, 15*(1), pp.393-398.

[86] Bhattacharya, S.K. and Goswami, S.K., 2009. A new fuzzy based solution of the capacitor placement problem in radial distribution system. *Expert systems with applications, 36*(3), pp.4207-4212.

[87] Das, D., 2008. Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method. *International Journal of Electrical Power & Energy Systems, 30*(6-7), pp.361-367.

[88] Gampa, S.R. and Das, D., 2016. Optimum placement of shunt capacitors in a radial distribution system for substation power factor improvement using fuzzy GA method. *International Journal of Electrical Power & Energy Systems, 77*, pp.314-326.

[89] Singh, S.P. and Rao, A.R., 2012. Optimal allocation of capacitors in distribution systems using particle swarm optimization. *International Journal of Electrical Power & Energy Systems, 43*(1), pp.1267-1275.

[90] Kanwar, N., Gupta, N., Swarnkar, A., Niazi, K.R. and Bansal, R.C., 2015. New sensitivity based approach for optimal allocation of shunt capacitors in distribution networks using PSO. *Energy Procedia, 75*, pp.1153-1158.

[91] Huang, S.J., 2000. An immune-based optimization method to capacitor placement in a radial distribution system. *IEEE Transactions on Power Delivery, 15*(2), pp.744-749.

[92] Huang, S.J. and Liu, X.Z., 2012. A plant growth-based optimization approach applied to capacitor placement in power systems. *IEEE Transactions on Power Systems, 27*(4), pp.2138-2145.

[93] Pires, D.F., Martins, A.G. and Antunes, C.H., 2005. A multiobjective model for VAR planning in radial distribution networks based on tabu search. *IEEE Transactions On Power Systems, 20*(2), pp.1089-1094.

[94] Mendes, A., Franca, P.M., Lyra, C., Pissarra, C. and Cavellucci, C., 2005. Capacitor placement in large-sized radial distribution networks. *IEEE Proceedings-Generation, Transmission and Distribution, 152*(4), pp.496-502.

[95] Sultana, S. and Roy, P.K., 2014. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. *International Journal of Electrical Power & Energy Systems, 54*, pp.387-398.

[96] Kaur, D. and Sharna, J., 2013. Multiperiod shunt capacitor allocation in radial distribution systems. *International Journal of Electrical Power & Energy Systems, 52*, pp.247-253.

[97] Carlisle, J.C. and El-Keib, A.A., 2000. A graph search algorithm for optimal placement of fixed and switched capacitors on radial distribution systems. *IEEE Transactions on Power Delivery, 15*(1), pp.423-428.

[98] Shuaib, Y.M., Kalavathi, M.S. and Rajan, C.C.A., 2015. Optimal capacitor placement in radial distribution system using gravitational search algorithm. *International Journal of Electrical Power & Energy Systems, 64*, pp.384-397.

[99] Abu-Mouti, F.S. and El-Hawary, M.E., 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. *IEEE transactions on power delivery, 26*(4), pp.2090-2101.

[100] Gallego, R.A., Monticelli, A.J. and Romero, R., 2001. Optimal capacitor placement in radial distribution networks. *IEEE Transactions On Power Systems, 16*(4), pp.630-637.

[101] Kannan, S.M., Renuga, P., Kalyani, S. and Muthukumaran, E., 2011. Optimal capacitor placement and sizing using Fuzzy-DE and Fuzzy-MAPSO methods. *Applied Soft Computing, 11*(8), pp.4997-5005.

[102] Goswami, S.K., Ghose, T. and Basu, S.K., 1999. An approximate method for capacitor placement in distribution system using heuristics and greedy search technique. *Electric Power Systems Research, 51*(3), pp.143-151.

[103] Abril, I.P., 2017. Algorithm of inclusion and interchange of variables for capacitors placement. *Electric Power Systems Research, 148*, pp.117-126.

[104] Tamliselvan, V., Jayabarathi, T., Raghunathan, T. and Yang, X.S., 2018. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. *Alexandria engineering journal, 57*(4), pp.2775-2786.

[105] Abul’Wafa, A.R., 2014. Optimal capacitor placement for enhancing voltage stability in distribution systems using analytical algorithm and Fuzzy-Real Coded GA. *International Journal of Electrical Power & Energy Systems, 55*, pp.246-252.

[106] Injeti, S.K., Thunuguntla, V.K. and Shareef, M., 2015. Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms. *International Journal of Electrical Power & Energy Systems, 69*, pp.441-455.

[107] Murty, V.V.S.N. and Kumar, A., 2015. Capacitor allocation in radial distribution system with time varying ZIP load model and energy savings. *Procedia Computer Science, 70*, pp.377-383.

[108] da Rosa, W.M., Rossoni, P., Teixeira, J.C., Belati, E.A. and Asano, P.T.L., 2016. Optimal allocation of
capacitor banks using genetic algorithm and sensitivity analysis. *IEEE Latin America Transactions*, 14(8), pp.3702-3707.

[109] Askarzadeh, A., 2016. Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology. *IET Generation, Transmission & Distribution*, 10(14), pp.3631-3638.

[110] Prakash, D.B. and Lakshminarayana, C., 2017. Optimal siting of capacitors in radial distribution network using whale optimization algorithm. *Alexandria Engineering Journal*, 56(4), pp.499-509.

[111] Milosevic, B. and Begovic, M., 2004. Capacitor placement for conservative voltage reduction on distribution feeders. *IEEE transactions on power delivery*, 19(3), pp.1360-1367.

[112] Javadi, M.S., Nezhad, A.E., Siano, P., Shafie-khah, M. and Catalão, J.P., 2017. Shunt capacitor placement in radial distribution networks considering switching transients decision making approach. *International Journal of Electrical Power & Energy Systems*, 92, pp.167-180.

[113] Baghzouz, Y. and Ertem, S., 1990. Shunt capacitor sizing for radial distribution feeders with distorted substation voltages. *IEEE Transactions on Power Delivery*, 5(2), pp.650-657.

[114] Wu, Z.Q. and Lo, K.L., 1995. Optimal choice of fixed and switched capacitors in radial distributors with distorted substation voltage. *IEEE Proceedings-Generation, Transmission and Distribution*, 142(1), pp.24-28.

[115] Yu, X.M., Xiong, X.Y. and Wu, Y.W., 2004. A PSO-based approach to optimal capacitor placement with harmonic distortion consideration. *Electric Power Systems Research*, 71(1), pp.27-33.

[116] Masoum, M.A., Ladjevardi, M., Jafari, A. and Fuchs, E.F., 2004. Optimal placement, replacement and sizing of capacitor banks in distorted distribution networks by genetic algorithms. *IEEE transactions on power delivery*, 19(4), pp.1794-1801.

[117] Masoum, M.A.S., Ladjevardi, M., Fuchs, E.F. and Grady, E.M., 2002. July. Optimal placement and sizing of fixed and switched capacitor banks under nonsinusoidal operating conditions. In *IEEE Power Engineering Society Summer Meeting*, (Vol. 2, pp. 807-813). IEEE.

[118] Masoum, M.A.S., Ladjevardi, M., Fuchs, E.F. and Grady, W.M., 2004. Application of local variations and maximum sensitivities selection for optimal placement of shunt capacitor banks under nonsinusoidal operating conditions. *International Journal of Electrical Power & Energy Systems*, 26(10), pp.761-769.

[119] Masoum, M.A., Jafarzadeh, A., Ladjevardi, M., Fuchs, E.F. and Grady, W.M., 2004. Fuzzy approach for optimal placement and sizing of capacitor banks in the presence of harmonics. *IEEE Transactions on Power Delivery*, 19(2), pp.822-829.

[120] Ayoubi, M., Hooshmand, R.A. and Esfahani, M.T., 2017. Optimal capacitor placement in distorted distribution systems considering resonance constraint using multi-swarm particle swarm optimisation algorithm. *IET Generation, Transmission & Distribution*, 11(13), pp.3210-3221.

[121] Othman, A.M., 2016. Optimal capacitor placement by Enhanced Bacterial Foraging Optimization (EBFO) with accurate thermal re-rating of critical cables. *Electric Power Systems Research*, 140, pp.671-680.

[122] Vuletić, J. and Todorovski, M., 2016. Optimal capacitor placement in distorted distribution networks with different load models using Penalty Free Genetic Algorithm. *International Journal of Electrical Power & Energy Systems*, 78, pp.174-182.

[123] Sajjadi, S.M., Haghifam, M.R. and Salehi, J., 2013. Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index. *International Journal of Electrical Power & Energy Systems*, 46, pp.366-375.

[124] Mahaei, S.M., Sani, T., Shilebaf, A. and Jafarzadeh, J., 2012. May. Simultaneous placement of distributed generations and capacitors with multi-objective function. In *2012 Proceedings of 17th Conference on Electrical Power Distribution* (pp. 1-9). IEEE.

[125] Madi, I.B., 2009. Optimal sizing of capacitor banks and distributed generation in distorted distribution networks by genetic algorithms. *IEEE/ICEED*, pp.1-4.

[126] Moradi, M.H., Zeinalzadeh, A., Mohammadi, Y. and Abedini, M., 2014. An efficient hybrid method for solving the optimal sitting and sizing problem of DG and shunt capacitor banks simultaneously based on imperialist competitive algorithm and genetic algorithm. *International Journal of Electrical Power & Energy Systems*, 54, pp.101-111.

[127] Biswas, S., Goswami, S.K. and Chatterjee, A., 2014. Optimal distributed generation placement in shunt capacitor compensated distribution systems considering voltage sag and harmonics distortions. *IET Generation, Transmission & Distribution*, 8(5), pp.783-797.

[128] Zeinalzadeh, A., Mohammadi, Y. and Moradi, M.H., 2015. Optimal multi objective placement and sizing of multiple DGs and shunt capacitor banks simultaneously considering load uncertainty via MOPSO approach. *International Journal of Electrical Power & Energy Systems*, 67, pp.336-349.

[129] Khodabakhshian, A. and Andishgar, M.H., 2016. Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. *International Journal of Electrical Power & Energy Systems*, 82, pp.599-607.

[130] Dixit, M., Kundu, P. and Jariwala, H.R., 2017. Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits. *Engineering Science and Technology, an International Journal*, 20(2), pp.482-493.

[131] Biswas, P.P., Mallipeddi, R., Suganthan, P.N. and Amaratunga, G.A., 2017. A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. *Applied Soft Computing*, 60, pp.268-280.

[132] Su, C.T. and Lee, C.S., 2001. Feeder reconfiguration and capacitor setting for loss reduction of distribution...
systems. Electric power systems research, 58(2), pp.97-102.

[133] Jiang, D. and Baldick, R., 1996. Optimal electric distribution system switch reconfiguration and capacitor control. IEEE transactions on Power Systems, 11(2), pp.890-897.

[134] Rezaei, P., Vakilian, M. and Hajipour, E., 2011, September. Reconfiguration and capacitor placement in radial distribution systems for loss reduction and reliability enhancement. In 2011 16th International Conference on Intelligent System Applications to Power Systems (pp. 1-6). IEEE.

[135] Rong, Z., Xiuyan, P., Jinliang, H. and Xinfu, S., 2002, October. Reconfiguration and capacitor placement for loss reduction of distribution system. In 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCON’02. Proceedings. (Vol. 3, pp. 1945-1949). IEEE.

[136] Chang, C.F., 2008. Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. IEEE Transactions on Power Systems, 23(4), pp.1747-1755.

[137] Peponis, G.J., Papadopoulos, M.P. and Hatziargyriou, N.D., 1995. Distribution network reconfiguration to minimize resistive line losses. IEEE Transactions on Power Delivery, 10(3), pp.1338-1342.

[138] de Oliveira, L.W., Carneiro Jr, S., De Oliveira, E.J., Pereira, J.L.R., Silva Jr, I.C. and Costa, J.S., 2010. Optimal reconfiguration and capacitor allocation in radial distribution systems for energy losses minimization. International Journal of Electrical Power & Energy Systems, 32(8), pp.840-848.

[139] Muthukumar, K. and Jayalalitha, S., 2017. Integrated approach of network reconfiguration with distributed generation and shunt capacitors placement for power loss minimization in radial distribution networks. Applied Soft Computing, 52, pp.1262-1284.

[140] Mehmood, K.K., Kim, C.H., Khan, S.U. and Haider, Z.M., 2018. Unified Planning of Wind Generators and Switched Capacitor Banks: A Multiagent Clustering-Based Distributed Approach. IEEE Transactions on Power Systems, 33(6), pp.6978-6988.

[141] Ziari, I., Ledwich, G. and Ghosh, A., 2013. A new technique for optimal allocation and sizing of capacitors and setting of LTC. International Journal of Electrical Power & Energy Systems, 46, pp.250-257.

[142] Grainger, J.J. and Civanlar, S., 1985. Volt/var control on distribution systems with lateral branches using shunt capacitors and voltage regulators part I: The overall problem. IEEE Transactions on Power Apparatus and Systems, (11), pp.3278-3283.

[143] Civanlar, S. and Grainger, J.J., 1985. Volt/Var control on distribution systems with lateral branches using shunt capacitors and voltage regulators Part II: The solution method. IEEE transactions on power apparatus and systems, (11), pp.3284-3290.

[144] Civanlar, S. and Grainger, J.J., 1985. Volt/Var control on distribution systems with lateral branches using shunt capacitors and voltage regulators Part III: The numerical results. IEEE transactions on power apparatus and systems, (11), pp.3291-3297.

[145] Gu, Z. and Rizy, D.T., 1996. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems. IEEE transactions on power delivery, 11(4), pp.1921-1928.

[146] Carpinelli, G., Noce, C., Proto, D. and Varilone, P., 2006. Voltage regulators and capacitor placement in three-phase distribution systems with non-linear and unbalanced loads. International journal of Emerging electric power systems, 7(4).

[147] Szuvovivski, I., Fernandes, T.S.P. and Aoki, A.R., 2012. Simultaneous allocation of capacitors and voltage regulators at distribution networks using genetic algorithms and optimal power flow. International Journal of Electrical Power & Energy Systems, 40(1), pp.62-69.

[148] Franco, J.F., Rider, M.J., Lavorato, M. and Romero, R., 2013. A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems. International Journal of Electrical Power & Energy Systems, 48, pp.123-130.

[149] Hung, D.Q., Mithulananthan, N. and Bansal, R.C., 2015. A combined practical approach for distribution system loss reduction. International Journal of Ambient Energy, 36(3), pp.123-131.

[150] Abou El-Ela, A.A., El-Sehiemy, R.A. and Abbas, A.S., 2018. Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Systems Journal, 12(4), pp.3629-3636.

[151] Saleh, A.A., Mohamed, A.A.A., Hemeida, A.M. and Ibrahim, A.A., 2019, February. Multi-Objective Whale Optimization Algorithm for Optimal Allocation of Distributed Generation and Capacitor Bank. In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 459-465). IEEE.

[152] Laconico, K.C.C. and Aguirre, R.A., 2019, March. Optimal Load Balancing and Capacitor Sizing and Siting of an Unbalanced Radial Distribution Network. In 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia) (pp. 939-944). IEEE.

[153] Arulraj, R. and Kumarapppan, N., 2019. Optimal economic-driven planning of multiple DG and capacitor in distribution network considering different compensation coefficients in feeder’s failure rate evaluation. Engineering Science and Technology, an International Journal, 22(1), pp.67-77.

[154] Home-Ortiz, J.M., Vargas, R., Macedo, L.H. and Romero, R., 2019. Joint reconfiguration of feeders and allocation of capacitor banks in radial distribution systems considering voltage-dependent models. International Journal of Electrical Power & Energy Systems, 107, pp.298-310.

[155] Das, S., Das, D. and Patra, A., 2019. Operation of distribution network with optimal placement and sizing of dispatchable DGs and shunt capacitors. Renewable and Sustainable Energy Reviews, 113, p.109219.

[156] Gözel, T. and Hocaoglu, M.H., 2009. An analytical method for the sizing and siting of distributed generators in radial systems. Electric power systems research, 79(6), pp.912-918.