Local phase invariance of the free-particle Schrödinger equation in momentum space

Boyan Obreshkov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussee 72, Sofia 1784, Bulgaria
(Dated: October 10, 2018)

The local phase-invariance of the momentum-space Schrödinger equation for free-particle has been used to construct quantum kinematics that describes a motion of the particle in external $U(1)$ background gauge field. The gauge structure over the momentum space of the particle is interpreted in terms of geometrical phase accumulated by nuclear quadrupole resonance spectra [5].

II. QUANTUM KINEMATICS OF A FREE PARTICLE

In momentum representation, the free-particle Schrödinger equation is

$$\left(\frac{p^2}{2} - E\right)\psi(p) = 0, \quad (1)$$

where E is the kinetic energy of the particle, and p is the momentum, which is a multiplication operator. Eq. (1) is invariant under local change of the phase of the wave-function

$$\psi(p) \to \psi(p)e^{-i\Lambda(p)}, \quad (2)$$

which is because the momentum p does not change

$$e^{-i\Lambda(p)}\hat{p}e^{i\Lambda(p)} = p. \quad (3)$$

Therefore the phase of the wave-function is not fixed by Eq. (1). Under an infinitesimal local phase transformation of Eq. (2), the wave-function changes as

$$\delta\psi(p) = -i\Lambda(p)\psi(p), \quad (4)$$

however the derivative

$$\delta[\nabla_p \psi] = -i\Lambda(p)\nabla_p \psi(p) - i(\nabla_p \Lambda(p))\psi(p) \quad (5)$$

do not change in the same way. Since the description of the free-particle motion is independent on the choice of phase, we introduce a derivative that transforms covariantly under $U(1)$ phase transformations

$$D = \nabla_p + ie\Lambda(p). \quad (6)$$
where \(e \) is a coupling constant (not necessarily \(e = 1 \)), and \(A(p) \) is a compensating gauge field, that transforms according to

\[
A(p) \rightarrow A(p) + \frac{1}{e} \nabla_p A(p),
\]

and ensures that

\[
D \delta \psi = \delta [\nabla_p \psi] + ie(\delta A) \psi + ieA \delta \psi = -i \Lambda(p) D \psi(p) \tag{8}
\]

nothing depends on the arbitrary local phase factor. A gauge-invariant one-particle displacement operator \(R = iD \) can be introduced, which satisfies the commutation relations

\[
[R_i, p_j] = i \delta_{ij}, \quad [R_i, R_j] = -ieF_{ij}(p) \tag{9}
\]

where \(F_{ij} \) is anti-symmetric second-rank tensor of the displacement field strength

\[
F_{ij} = \frac{\partial}{\partial p_i} A_j - \frac{\partial}{\partial p_j} A_i = \varepsilon_{ijk} B_k, \tag{10}
\]

\(\varepsilon_{ijk} \) is the Levi-Civita symbol and \(B_k(p) \) labels the components of the background magnetic-like field. Gauge-invariant angular momentum operator can be introduced \(L = R \times p \), however its components do not satisfy canonical commutation relations

\[
[L_i, L_j] = i \varepsilon_{ijk} L_k - i e \varepsilon_{ikl} \varepsilon_{jmn} p_l p_m F_{km} \tag{11}
\]

and \(\{L_i\} \) are not generators of spatial rotations. The canonical angular momentum algebra \([L_i, L_j] = i \varepsilon_{ijk} L_k \) can be restored when the background magnetic-like field is rotation-symmetric \(B(p) = B(p) \hat{p} \) by the transformation

\[
L = R \times p + ep^2 B(p) \hat{p}, \tag{12}
\]

The form-factor \(B(p) \) can be determined from the requirement that the displacement operator transforms as a vector \([L_i, R_j] = i \varepsilon_{ijk} R_k \), which is only satisfied when \(B(p) = g/p^2 \), where \(g \) is a field-strength constant. The conserved gauge-invariant rotation operator is given by

\[
L = R \times p + eg \hat{p}. \tag{13}
\]

Eq. (13) is momentum-space analogue to the angular momentum operator \(r \times (p - eA(r)) - eg \hat{r} \) of a charged particle in an external magnetic field of point monopole charge of strength \(g \). The rotation symmetry restoration term \(eg \hat{p} \) is related to the generator of gauge transformations of the wave-function \(W = eg \hat{p} \cdot \mathbf{n} \) which compensates for the non-symmetric response of the gauge-field \(A(p) \) to rotations about the unit-vector \(\mathbf{n} \).

Analogously, a gauge-invariant extension of the generator of Galilei boost transformations can be based on the operators

\[
K = p t - R, \tag{14}
\]

where \(t \) is the time evolution parameter. The boost operator components do not commute

\[
[K_i, K_j] = [R_i, R_j] = -ieF_{ij}(p) \tag{15}
\]

but are simply related to the conventional generators by change of coordinates

\[
K \rightarrow K + eA = pt - R \tag{16}
\]

Under an infinitesimal boost transformation generated by the operators \(\{K_i\} \), the coordinates \(R \) change as

\[
\delta R = \delta r - e\delta A = i[\delta \mathbf{v}, K] = \delta \mathbf{v} t + \frac{eg}{p^2} \delta \mathbf{v} \times \hat{p}, \tag{17}
\]

The first term \(\delta \mathbf{v} t \) is the infinitesimal Galilei transformation, which is supplemented by a term, which describes an apparent rotation of the momentum \(\mathbf{p} \) about the direction of the boost \(\mathbf{v} \). The accompanying rotation effect is normally suppressed at high kinetic energies \(p^2 \gg eg \). The canonical coordinates \(r \) change in conventional way as \(\delta r = \delta \mathbf{v} t \), since the variation of the gauge-field \(\delta \mathbf{A} \) can be compensated by re-definition of the phase of the wave-function.

The representation of the modified boost operators in the Hilbert space of states is based on exponentials

\[
U(v) = \exp(-iv \cdot R), \tag{18}
\]

depending on a velocity vector \(v \), with the following action onto the wave-function

\[
U(v) \psi(p) = \exp(-iv \cdot R) \exp(i(v \cdot r) \psi(p + v). \tag{19}
\]

The product of the two exponentials can be expressed by a straight-line integral

\[
\exp(-iv \cdot R) \exp(iv \cdot r) = \exp \left(ie \int_p^{p + v} dk \cdot A(k) \right) \tag{20}
\]

that connects the points \(p \) with \(p + v \). The composition law for the generalized boost transformations takes the form

\[
U(v_1) U(v_2) = \exp[i \omega_2(p, v_1, v_2)] U(v_1 + v_2), \tag{21}
\]

where

\[
\omega_2(p, v_1, v_2) = e \int_{\Delta_2} dk \cdot A(k) \tag{22}
\]

is the Berry’s phase, which is the flux of the background magnetic-like field \(B(p) \) through the triangle \(\Delta_2 \) formed by the vertices of the momenta \(p, p + v_1 \), and \(p + v_1 + v_2 \). The phase factor violates associativity of the gauge-invariant boost transformations (cf. [10]), since

\[
[U(v_1) U(v_2)] U(v_3) = e^{i\omega_3(p, v_1, v_2, v_3)} U(v_1) U(v_2) U(v_3) \tag{23}
\]
where a three co-cycle phase ω_3

$$\omega_3(p, v_1, v_2, v_3) = e \oint \oint \Delta_3 \mathbf{B} \cdot d\mathbf{S}$$ \hspace{1cm} (24)$$

is the flux of the background magnetic-like field through a tetrahedron Δ_3 formed by the vertices of the momenta $p, p + v_1, p + v_1 + v_2$ and $p + v_1 + v_2 + v_3$. Associativity can be restored when a Dirac-type quantization condition is satisfied

$$\omega_3(p, v_1, v_2, v_3) = 2\pi n,$$ \hspace{1cm} (25)$$

Applying the Stokes theorem to Eq. (24) gives

$$e \int \int \int d^3k \nabla_k \cdot \mathbf{B}(k) = 4\pi eg = 2\pi n$$ \hspace{1cm} (26)$$

which implies quantization of the product of the two coupling constants $eg = n/2$.

Since the background magnetic-like field is rotation symmetric, it can not be written as $\mathbf{B} = \nabla_p \times \mathbf{A}(p)$ over the entire momentum space. Locally, we can look for a gauge field $\mathbf{A}(p)$ in the form

$$\mathbf{A}(p) = A(\theta)\nabla_p \varphi,$$ \hspace{1cm} (27)$$

where (θ, φ) are the spherical coordinates of the momentum $p = (p, \theta, \varphi)$, the equation $\mathbf{B} = \nabla_p \times \mathbf{A}$ is solved by

$$A(\theta) = -g(1 + \cos \theta)$$ \hspace{1cm} (28)$$

The gauge field \mathbf{A} exhibits unremovable coordinate-type Dirac string singularity along the line $\theta = 0$. Singularity-free gauge fields can be defined on two overlapping momentum space patches

$$\mathbf{A}_N = \frac{g}{p} \frac{1 - \cos \theta}{\sin \theta} \hat{\varphi}, \quad R_N : 0 \leq \theta < \frac{\pi}{2} + \epsilon,$$

$$\mathbf{A}_S = -\frac{g}{p} \frac{1 + \cos \theta}{\sin \theta} \hat{\varphi}, \quad R_S : \frac{\pi}{2} - \epsilon < \theta \leq \pi$$ \hspace{1cm} (29)$$

where \mathbf{A}_N is regular on the northern momentum-space hemi-sphere R_N, while \mathbf{A}_S has support on the southern hemi-sphere R_S. Near the equator $R_N \cap R_S$, where the gauge-field has a discontinuity, the pair of potentials can be related by a gauge transformation

$$\mathbf{A}_S \rightarrow \mathbf{A}_S - ie^{-im\varphi} \nabla_p e^{im\varphi} = \mathbf{A}_N.$$ \hspace{1cm} (30)$$

Since the gauge-field is not globally defined, the rotation operator \mathbf{L} is not globally defined either. The component of the rotation operator onto the space-fixed z-axis is two-valued, since

$$L_z = -i\partial_\varphi + eg, \quad (\theta, \varphi) \in R_N$$ \hspace{1cm} (31)$$

or

$$L_z = -i\partial_\varphi - eg, \quad (\theta, \varphi) \in R_S$$ \hspace{1cm} (32)$$

depending on the orientation of the wave-vector p. However, the rotation-symmetric term that restores conventional angular momentum algebra

$$s = eg\hat{p}$$ \hspace{1cm} (33)$$

is conserved and does not depend on the momentum space patching. It is related to the helicity of the particle by

$$\mathbf{L} \cdot \hat{p} = s \cdot \hat{p} = eg = n/2,$$ \hspace{1cm} (34)$$

which is quantized topologically with integer or half integer numbers. The free-particle wave-functions of definite helicity $\mu = eg$ are eigen-functions of the operators \mathbf{L}^2 and L_z. The square of the angular momentum operator in Eq. (23) for the northern patch is then given by

$$L^2|lm\mu\rangle = l(l + 1)|lm\mu\rangle, \quad L_z|lm\mu\rangle = m|lm\mu\rangle,$$ \hspace{1cm} (36)$$

for $l = |\mu|, |\mu| + 1, \ldots$ and $-l \leq m \leq l$. Wave-functions are given by sectional (spin-weighted) Wu-Yang monopole harmonics

$$Y_{lm\mu}(\theta, \varphi) = \langle \theta, \varphi|lm\mu\rangle$$ \hspace{1cm} (37)$$

or equivalently expressed by the Jacobi polynomials $P_n^{(\alpha, \beta)}(z)$

$$Y_{lm\mu}(\theta, \varphi) = N_{lm\mu}e^{i(\mu + m)\varphi}(1 - z)^{-(\mu + m)/2} \times (1 + z)^{-(\mu - m)/2} P_{l+m}^{\mu-m, -\mu-m}(z),$$ \hspace{1cm} (38)$$

where $z = \cos \theta$ and $N_{lm\mu}$ are normalization constants. The wave-functions $Y_{lm\mu}$ of half-integer angular momentum $\mu = n/2$ correspond to spinor representations of the rotation group, since they are related to the Wigner’s rotation functions by $Y_{lm\mu}(\theta, \varphi) = D_{lm\mu}^0(\varphi, \theta, \varphi)$. The total one-particle wave-function, that is an eigen-function of H, \mathbf{L}^2, L_z is characterized by four quantum numbers and given by

$$\psi_{klm\mu}(p) = \frac{\delta(p - k)}{2K} Y_{lm\mu}(\hat{p}),$$ \hspace{1cm} (39)$$

where $k = \sqrt{2E}$ is a characteristic wave-number. When $\mu = 0$, these wave-functions reduce to the conventional spherical harmonics $Y_{lm}(\theta, \varphi)$.
III. HELCITITY AND SPIN OF A FREE PARTICLE

The effects of the gauge-field can be expressed by the non-integrable phase factor

$$\exp \left(i \int_p^q \mathbf{k} \cdot \mathbf{A}(k) \right)$$

(40)

which accompanies the translation motion of the free-particle. The gauge-potential one-form $A = \mathbf{k} \cdot \mathbf{A}(k)$ is singular and can not be defined globally over the two-dimensional unit sphere S^2. A description that avoids gauge patching of the momentum space can be based on constructing a Hopf bundle [11] [12] over the two-dimensional unit sphere S^2. We further restrict our analysis to the minimal non-trivial helicity quantum numbers $\mu = +1/2$ and $\mu = -1/2$. A regular gauge potential one-form can be defined on the three-dimensional unit sphere S^3 in four-dimensional Euclidean space \mathbb{R}^4. The 3-sphere can be parametrized by four coordinates

$$
p_1 = \cos \frac{\theta}{2} \cos \alpha
\quad p_2 = \cos \frac{\theta}{2} \sin \alpha
\quad p_3 = \sin \frac{\theta}{2} \cos(\varphi + \alpha)
\quad p_4 = \sin \frac{\theta}{2} \sin(\varphi + \alpha)
$$

(41)

such that $p_1^2 + p_2^2 + p_3^2 + p_4^2 = 1$. These four coordinates can be grouped into a pair of complex numbers (z_1, z_2) as

$$z_1 = p_1 + ip_2 = \cos \frac{\theta}{2} e^{i\alpha}, \quad z_2 = p_3 + ip_4 = \sin \frac{\theta}{2} e^{i(\varphi + \alpha)}$$

(42)

These complex coordinates are related to the spherical coordinates $\mathbf{p}(\theta, \varphi)$ on S^2 by the Hopf projection map $\pi : S^3 \to S^2$

$$n_1 = z_1^* z_2 + z_2^* z_1 = \sin \theta \cos \varphi$$
$$n_2 = i(z_2^* z_1 - z_1^* z_2) = \sin \theta \sin \varphi$$
$$n_3 = |z_1|^2 - |z_2|^2 = \cos \theta$$

(43)

where (n_1, n_2, n_3) are the Cartesian coordinates of the unit wave-vector \mathbf{p}. Since locally the 3-sphere has a product form $S^2 \times S^1$, the Hopf projection has the property to eliminate the dependence on the third angle α by mapping the unit circle S^1 parameterized by α to a single point on $S^2(\theta, \varphi)$. The pair of complex coordinates can be grouped into a two-component spinor to label the points on S^3

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta/2) e^{i\alpha} \\ \sin(\theta/2) e^{i(\varphi + \alpha)} \end{pmatrix}$$

(44)

In these coordinates the Hopf projection map in Eq. (43) is written more simply

$$\mathbf{p}(\theta, \varphi) = z^\dagger \sigma z,$$

(45)

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are the three Pauli matrices. A globally-defined connection one-form in these coordinates is given by

$$\omega = -iz^\dagger dz = p_1 dp_2 - p_2 dp_1 + p_3 dp_4 - p_4 dp_3 = d\alpha + \frac{1}{2} (1 - \cos \theta) d\varphi$$

(46)

which looks like the Wu-Yang potential one-form on the northern patch supplemented by an exact one-form $d\alpha$. The S^3 one-form is invariant under global $U(2)$ transformations of the spinor coordinates, i.e.

$$z \to U z, \quad U^\dagger U = 1, \quad \omega \to \omega$$

(47)

The $SU(2)$ subgroup acts by the matrices

$$U(\Omega, n) = \exp(i\Omega \mathbf{n} \cdot \sigma),$$

(48)

and the result projected onto the two-sphere through the Hopf map as

$$z^\dagger(U^\dagger \sigma U)z = \mathbf{p} \cos \Omega + (n \times \mathbf{p}) \sin \Omega$$

(49)

generates rotation of the unit-vector \mathbf{p} on an angle Ω about the vector \mathbf{n}. Though the group $\{ A \in SL(2, \mathbb{C}) | \det A = 1 \}$ of linear transformations of the spinor coordinates also acts on these states, the S^3 connection one-form ω is not invariant under such transformations. In orthogonal coordinates $(\theta, \xi = \varphi + \alpha)$ that diagonalize the metric on the unit 3-sphere

$$ds^2 = \frac{1}{4} d\theta^2 + \cos^2 \frac{\theta}{2} d\alpha^2 + \sin^2 \frac{\theta}{2} d\xi^2$$

(50)

the gauge-potential one-form in Eq. (46) is

$$\omega = \frac{1}{2} \omega_\theta d\theta + \cos \frac{\theta}{2} \omega_\alpha d\alpha + \sin \frac{\theta}{2} \omega_\xi d\xi,$$

(51)

non-singular with components

$$\omega_\theta = 0, \quad \omega_\alpha = \cos \frac{\theta}{2}, \quad \omega_\xi = \sin \frac{\theta}{2}$$

(52)

The corresponding gauge-field strength two-form

$$F = d\omega = -iz^\dagger \wedge dz = \frac{1}{2} \sin \theta d\theta \wedge d\varphi$$

(53)

is exact and closed two-form $(dF = 0)$ on S^3. It gives half of the volume of the two-dimensional unit sphere S^2 and therefore the topology of the 3-sphere can be characterized by the first Chern number

$$c_1 = \frac{1}{2\pi} \int_{S^2} F = 1.$$

(54)

which corresponds to a conserved helicity quantum number $\mu = +1/2$. The reduction to the Wu-Yang monopole gauge potentials over the 2-sphere can be obtained by taking sections of the 3-sphere. Local sections of S^3 can be taken if a particular value for the phase angle α is
fixed, such that the metric on the 3-sphere reduces to the metric on the 2-sphere $ds^2 = d\theta^2 + \sin^2 \theta d\phi^2$ in the north $R_N: (\theta/2 \to \theta)$ and south $R_S: (\pi - \theta)/2 \to \theta$ hemispheres, respectively. These two choices correspond to fixing $\alpha = 0$ and $\alpha = -\varphi$ in Eq. (51) and leading to the Wu-Yang monopole potentials on the two local patches

$$A_N = \frac{1}{2}(1 - \cos \theta) d\varphi, \quad A_S = \frac{1}{2}(1 + \cos \theta) d\varphi,$$

respectively. Using the property of the Hopf projection map, the regular S^3 connection one-form can be written in more compact way in terms of projection operators

$$\omega = d\alpha z^\dagger \frac{1}{2}(1 + \sigma_3) z + d\xi z^\dagger \frac{1}{2}(1 - \sigma_3) z$$

(56)

where $\sigma_3 = \text{diag}(+1, -1)$ is the third Pauli matrix. The eigen-states of σ_3

$$\frac{1}{2}\sigma_3 |\sigma\rangle = \sigma |\sigma\rangle$$

(57)

for $\sigma = \pm 1/2$ are two-component spinors

$$\begin{align*}
(1,0)^T &= |+\rangle, \\
(0,1)^T &= |–\rangle
\end{align*}$$

(58)

which can represent the North $N = (0, 0, 1)$ and south poles $S = (0, 0, -1)$ on S^2, as follows from the property of the Hopf map (cf. Eq. (43)). In terms of these two states, the S^3 gauge-potential one-form

$$\omega = d\alpha |(+z)^2| + d\xi |(–z)^2|$$

(59)

is written as a sum of separate probabilities for an S^3 point z to have two different signatures ±. For fixed θ, the two circle variables ξ, α parameterize a one-dimensional complex torus $T^2 = S^1 \times S^1(e^{i\alpha}, e^{i\xi})$ in S^3, and hence locally ω is viewed as one-form over the torus. The changes of θ generate a family of tori $T^2(\theta)$. A linear equi-variation of the phase angles on a curve $\gamma(s) = (\alpha(s) = s, \xi(s) = s)$ gives

$$\omega = ds,$$

(60)

i.e. ω reduces locally to an exact one-form. The unit Euclidean four-momentum changes as

$$n(s) = (\cos \frac{\theta}{2} \cos s, \cos \frac{\theta}{2} \sin s, \sin \frac{\theta}{2} \cos s, \sin \frac{\theta}{2} \sin s)$$

(61)

and describes a helix which lies in the flat torus $p_1^2 + p_2^2 = \cos^2 \theta/2, p_3^2 + p_4^2 = \sin^2 \theta/2$. When the phase angle changes are not equi-variant $\alpha \neq \xi$, the helical paths the particle follows deform continuously. The two-component spinors $z(\theta, \xi, \alpha)$ can be used to represent a quantum state of additional spin-projection variable σ that takes only two values $\sigma = \pm 1/2$. This is because, when the particle propagates north $\hat{p} = (0, 0, 1)$, and a local section onto the north hemisphere is taken

$$A_N = d\varphi |(–z)^2| = 0,$$

(62)

then σ ”points” north, since $|(+z)^2| = 1$. Analogously, setting $\hat{p} = (0, 0, -1)$ and taking southern local section

$$-A_S = d\varphi |(+z)^2| = 0,$$

(63)

shows that the variable σ is ”pointing” south $|(-z)^2| = 1$. In all cases, this can be written as

$$A_\sigma = \sigma d\varphi (1 - 2 \sigma \cos \theta)$$

(64)

where the discrete variable $\sigma = \pm 1/2$ labels the two-coordinate patches. Therefore four coordinates $(p, \theta, \varphi, \sigma)$ can be used to parameterize the space, where the wave-function takes values. The invariant property of the gauge-field that correlates the spin and momentum as given by Eqs. (52) and (63) can be made explicit, by noting that the sectional spin-states $\{z(\theta, \xi, \alpha), \alpha = 0, -\varphi\}$ defined locally over the two-sphere, are eigen-states of the operator of the helicity, i.e.

$$R_N : \frac{1}{2} \hat{p} \cdot z(\theta, \varphi, 0) = \mp \frac{1}{2} z(\theta, \varphi, 0),$$

(65)

and

$$R_S : \frac{1}{2} \hat{p} \cdot z(\theta, 0, -\varphi) = \mp \frac{1}{2} z(\theta, 0, -\varphi),$$

(66)

i.e. the helicity is conserved and can be identified with the first Chern number of the Hopf bundle $c_1/2 = +1/2$. That is because the flux of the “background magnetic-like field” B through the 2-sphere is the flux of the local spin vector field $s(\theta, \varphi) = z^\dagger(\sigma/2) z = +\hat{p}(\theta, \varphi)/2$ ((cf. also Eq. (53))

$$\frac{1}{2\pi} \oint_{S^2} B \cdot dS = \int \int \frac{d\Omega}{2\pi} \hat{p} \cdot s(\theta, \varphi) = 1$$

(67)

where $d\Omega = \sin \theta d\theta d\varphi$ is the area element on the two-sphere and \hat{p} is the outward surface normal. In terms of the sectional spin states $\{z(\theta, \varphi), \}$, the spin-gauge fields on S^2 can be written as

$$A(\sigma) = -\langle \sigma(\theta, \varphi) | i \nabla_p | \sigma(\theta, \varphi) \rangle$$

(68)

The angular momentum operator in Eq. (13) takes the simpler form

$$L = r \times p + \langle \sigma(\theta, \varphi) | \left(r \times p + \frac{1}{2} \sigma \right) | \sigma(\theta, \varphi) \rangle,$$

(69)

and makes explicit the underlying total angular momentum operator folded between the states $| \pm (\theta, \varphi) \rangle$

$$J = r \times p + \frac{1}{2} \sigma$$

(70)

to be the conventional kinematic angular momentum $l = r \times p$ supplemented by a non-kinematic angular momentum operator $\frac{1}{2} \sigma$ acting on the sectional spin states $\pm (\theta, \varphi)$. Therefore, the total gauge-invariant one-particle
wave-function has an adiabatic form and representable by a product of orbital and spin-dependent factor
\[\psi(\pm)(\theta, \varphi) = Y^{(\pm)}_{lm}(\theta, \varphi) | \pm(\theta, \varphi) \]
(71)
where \(Y_{lm}(\theta, \varphi) \) are the Wu-Yang wave-functions. The total wave-function is gauge-invariant, since when the \(U(1) \) phase of the sectional spinor \(| \pm(\theta, \varphi) \) is locally changed, the phase of the angular wave-function rotates oppositely, and the total wave-function remains gauge-invariant.

A dual Hopf bundle \(H_{-1}(= S^3) \) corresponding to definite helicity quantum number \(\mu = \epsilon g = -1/2 \), or equivalently first Chern number \(c_1 = -1 \) can be defined in terms of the conjugate left-handed spinors \(\tilde{z} = (-z_2^*, z_1^*) \), which satisfy \(\sigma \cdot \tilde{p}\tilde{z}(\theta, \varphi) = -\tilde{z}(\theta, \varphi) \). Then the flux of the local spin vector field is
\[\oint \oint \mathbf{B} \cdot d\mathbf{s} = \int \int d\Omega \hat{p} \cdot \mathbf{s}(\theta, \varphi) = -2\pi, \]
(72)
and that is why the flux of the "background magnetic-like field" has a negative sign, since the spin-vector \(\mathbf{s} \) points oppositely to the particle momentum \(\mathbf{p} \). Though the displacement operator \(\nabla_p \) can couple points of different helicity \(\mu = \pm 1/2 \), these states exhibit opposite Chern character \(c_1 = +1 \) and \(c_1 = -1 \) and are topologically distinct. For free-particle states, the helicity \(\mu = \pm 1/2 \) is conserved.

It can be pointed out, that the one-particle formalism can be generalized to a system of \(N \) non-interacting particles, when the momentum space is \(3N \) dimensional. The description involves a gauge-potential one-form
\[A = dp^\mu A_\mu(p) \]
(73)
over \(\mathbb{R}^{3N} \), where \((\mu = 1, 2, \ldots, 3N) \) and \(p = (p_1, p_2, \ldots, p_{3N}) \) labels the points in \(\mathbb{R}^{3N} \). However, different and more complex cooperative effects occur, since \(A_\mu \) correlates the actions of single-particle angular momenta operators in non-trivial way. In particular, this cooperative effect, could describe the effect of particle inter-change and statistics.

IV. SCREENING

When there is an external potential field \(U(\mathbf{r}) \) present, the single-particle Hamiltonian is
\[H = \frac{1}{2} \mathbf{p}^2 + U(\mathbf{r}) \]
(74)
and the corresponding Schrödinger equation for the eigen-states is
\[H|\Psi\rangle = E|\Psi\rangle, \]
(75)
By assuming that helicity is conserved adiabatically, i.e. assume that a selection-rule \(\Delta \mu = 0 \) is satisfied. That is because the external field \(U(\mathbf{r}) \) is assumed to be topologically trivial, such that it can not change the helicity of the particle \(\mu \). On each patch, the total spin wave-function exhibits an adiabatic product form
\[\Psi(\mathbf{p}) = \psi(\mathbf{p}) |z(\theta, \varphi)\rangle \]
(76)
and that is why the patch label is suppressed. The orbital part of the wave-function can be expanded over complete set of monopole wave-functions
\[\psi(\mathbf{p}) = \sum_{lm} F_{lm}(\mu)p Y_{lm}(\theta, \varphi) \]
(77)
where \(\mu = \epsilon g \) is the helicity, \(l = |\mu|, |\mu| + 1, \ldots \) is the orbital angular momentum quantum number and \(m = -l, \ldots, l \) is the azimuthal quantum number. Expanding the external potential over Fourier components
\[U(\mathbf{r}) = \sum_{\mathbf{q}} U(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} \]
(78)
substituting Eq. (76) into Eq. (75), and projecting the result onto a helicity eigenstate, we obtain the equation for the orbital part of the wave-function
\[(p^2/2 - E)\psi_E(\mathbf{p}) + \sum_{\mathbf{q}} U(\mathbf{q}) F_p(\mathbf{q}) \psi_E(\mathbf{p} - \mathbf{q}) = 0, \]
(79)
and a form-factor has been introduced
\[F_p(\mathbf{q}) = \langle z(\mathbf{p})|e^{i\mathbf{q} \cdot \mathbf{r}}|z(\mathbf{p})\rangle = \langle z(\mathbf{p})|z(\mathbf{p} - \mathbf{q})\rangle, \]
(80)
which has the effect to screen the Fourier components of the external potential \(U(\mathbf{q}) \rightarrow U_{eff}(\mathbf{q}, \mathbf{p}) = U(\mathbf{q}) F_p(\mathbf{q}) \). The spin-dependent form-factor can be computed from the function
\[F(t) = \langle z(\mathbf{p})|z(\mathbf{p}(t))\rangle \]
(81)
on a straight line path \(\mathbf{p}(t) = \mathbf{p}(1-t) + (\mathbf{p} - \mathbf{q})t, (0 \leq t \leq 1) \) inter-connecting the wave-vectors \(\mathbf{p} \) and \(\mathbf{q} \). The function \(F(t) \) satisfies the initial condition \(F(t = 0) = 1 \) and \(F(t = 1) = F_p(\mathbf{q}) \) gives the form-factor. Differentiating Eq. (81) with respect to the parameter \(t \) gives
\[\dot{F}(t) = \dot{\mathbf{p}} \cdot (z(\mathbf{p})|\nabla_\mathbf{p}|z(\mathbf{p}(t))) \]
(82)
and using that \(|z(\mathbf{p}(t))| = F(t)|z(\mathbf{p}(0))| \), an equation for the Berry’s phase is obtained
\[\dot{F}(t) = \frac{1}{i} \dot{\mathbf{p}} \cdot A(\mathbf{p}(t)) F(t), \]
(83)
where \(A(\mathbf{p}) = (z(\mathbf{p})|\nabla_\mathbf{p}|z(\mathbf{p})) \) is the gauge field. Eq. (83) can be integrated along the straight line to give at the end point \(t = 1 \) the form-factor
\[F(t = 1) = F_{q}(\mathbf{p}) = \exp \left(i \int_{\mathbf{p} - \mathbf{q}}^{\mathbf{p}} d\mathbf{k} \cdot A(\mathbf{k}) \right). \]
(84)
The Schrödinger equation reduces to a pair of coupled equations for the wave-functions on the patches

$$(p^2/2 - E)\psi_N(p) + \sum_{q \in R_N} U(p - q) F_N(p, q) \psi_N(q) + \sum_{q \in R_S} U(p - q) F_{NS}(p, q) \psi_S(q) = 0$$

and

$$(p^2/2 - E)\psi_S(p) + \sum_{q \in R_S} U(p - q) F_S(p, q) \psi_S(q) + \sum_{q \in R_N} U(p - q) F_{SN}(p, q) \psi_N(q) = 0$$

(85)

where the patch label $N(S)$, instead of $\sigma = \pm 1/2$, is used. The form-factor for the northern patch is

$$F_N(p, q) = \exp \left(i \int_q^p dk \cdot A_N(k) \right),$$

and similarly on the southern patch it is

$$F_S(p, q) = \exp \left(i \int_q^p dk \cdot A_S(k) \right).$$

These form-factors can be evaluated from the overlap of the sectional spinors $\langle \pm(q) | \pm(p) \rangle$, for instance

$$F_N(q, p) = \cos \frac{\theta}{2} \cos \frac{\theta'}{2} + \sin \frac{\theta}{2} \sin \frac{\theta'}{2} e^{i(\varphi - \varphi')}.$$

(88)

where $q = (q, \theta', \varphi')$ and $p = (p, \theta, \varphi)$. When the integration path crosses the equator, the spin projection σ onto the z-axis flips, i.e. the coordinate patches interchange, and the phase-factor is evaluated from (cf. also Ref. [13])

$$F_{NS}(p, q) = F_N(p, k_E) e^{i\varepsilon_{NS}(p,q)} F_S(k_E, q)$$

(89)

Here k_E is an equatorial vector in the overlap region of the two patches. It is determined from the crossing of the straight line interconnecting the pair (q, p) with the equatorial plane ($\theta = \pi/2$). Explicitly k_E is given by

$$k_E = -q \frac{p_z - q_z}{p_z - q_z} + p \frac{q_z}{p_z - q_z} = (p \times q) \times n \frac{p \cdot n - q \cdot n}{p \cdot n - q \cdot n}$$

(90)

where $n = (0, 0, 1)$ is the unit-vector pointing along the z-axis. The azimuthal angle φ_{NS} is given by

$$\tan \varphi_{NS}(p, q) = \frac{k_y}{k_x} = \frac{p_y q_z - q_y p_z}{p_z q_x - q_z p_x}$$

(91)

The spin-transition form-factor F_{SN} can be obtained from symmetry relation $F_{SN}(p, q) = F_{NS}^*(-p, q)$.

The matrix elements $U_{lm\pm l'm'}(p, q)$ of the screened potential are evaluated in basis of monopole harmonics $Y_{lm\pm l}^{\pm}(\theta, \varphi)$ and coupled integral equations for the partial-wave amplitudes $F_{lm}(p)$ must be integrated numerically. This mathematical formalism can be applied to the case of simple harmonic oscillator potential $U(r) = r^2/2$, when numerical computation is not needed. The effective Hamiltonian for this particular case is

$$H_{\text{eff}} = \frac{1}{2} (i \nabla_p - A(p))^2 + \frac{1}{2} p^2$$

(92)

and can be diagonalized in the basis of the spin-weighted Wu-Yang monopole harmonics, i.e.

$$\psi(p) = Y_{lm\pm l}(\theta, \varphi) F_l(p).$$

(93)

where $\mu = \pm 1/2$ is the helicity, $l = 1/2, 3/2, \ldots$ is the orbital angular momentum quantum number and $m = -l, -l + 1, \ldots, l$. The effective Hamiltonian for radial motion is

$$H_l(p) = \frac{1}{2} \frac{d^2}{dp^2} e^{ilp} - \frac{l}{2} + \frac{l + 1}{2} - 1/4 + \frac{1}{2} p^2,$$

(94)

i.e. the gauge-field only changes the effective centrifugal barrier for radial motion. The wave-functions of Eq.(84) are analytic and given by means of generalized Laguerre polynomials

$$F_{ul}(p) = p^{l^*} e^{-p^2/2} L_{l^*+1/2}^{l^*}(p^2),$$

(95)

where $l^* = \sqrt{l(l+1)} - 1/2$ is an effective fractional angular momentum and $u = 0, 1, 2, \ldots$ is a vibrational quantum number, which counts the nodes of the momentum-space wave-functions. The energy levels of the helicity-carrying oscillator eigen-states are l-dependent

$$E_{ul} = 2v + \sqrt{l(l+1) + 1}$$

(96)

and for a given v, levels are $(2l+1)$-fold degenerate, corresponding to their independence on the magnetic quantum number m. In the simplest case, when the particle is spin-less $\mu = eg = 0$, the harmonic oscillator energy levels are given by $2v + l_0 + 3/2$ for $l_0 = 0, 1, 2, \ldots$. These states can be labeled by a single quantum number $N = 2v + l_0$. Each level of principal quantum number N is $(N+1)(N+2)/2$-fold degenerate. In opposite, when the particle is carrying a helicity $\mu = \pm 1/2$, this degeneracy is lifted, and states can not be classified by a single quantum number N. This is because the effective orbital angular momentum $l^* = \sqrt{l(l+1)} - 1/2$ is fractional. Therefore the principal effect of the gauge-field is to lift degeneracy of conventional harmonic oscillator energy levels, which split depending on both the vibration quantum number $v = 0, 1, 2, \ldots$ and the orbital angular momentum quantum number $l = 1/2, 3/2, \ldots$

In the case of hydrogen atom, represented by a Coulomb potential Ze^{-1}, similar effect of splitting of the energy levels can occur due to the screening of the Coulomb field by the helicity-carrying particle. We expect that the effect of energy-level splitting is small, as the observed fine-structure of energy levels of hydrogen shows, and numerical computation must be made in order to verify if such an effect of spin-dependent screening is small or negligible.
V. CONCLUSION

The local phase invariance of the momentum-space Schrödinger equation has been used to describe the motion of a non-relativistic particle with spin and helicity. As a byproduct, effective one-particle Schrödinger equation of motion in external field is derived, which predicts an effect of spin-dependent screening of the external potential. The approach is applied for simple harmonic oscillator potential and shown that the effect of screening affects rotation energy level splittings.

[1] F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[2] M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[3] A. Shapere and F. Wilczek, Geometric phases in physics (World Scientific, Singapore, 1989).
[4] A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[5] R. Tycko, Phys. Rev. Lett. 58, 2281 (1987).
[6] G. Delacrétaz, E. Grant, R. Whetten, L. Wöste, J. W. Zwanziger, Phys. Rev. Lett. 56, 2598 (1986).
[7] Z. Fang, N. Nagaosa, K. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 3, Vol. 302, no. 5642, pp. 92-95 (2003).
[8] Y. Zhang, Yan-Wen Tan, Horst L. Stormer, Philip Kim, Nature 438, 201-204 (2005).
[9] R. Jackiw, Int. J. Mod. Phys. A, 3, pp. 285-297 (1988).
[10] R. Jackiw, Phys. Rev. Lett. 54, 159 (1985).
[11] Ya. Shnir, Magnetic monopoles (Springer-Verlag, Berlin, Heidelberg, 2005).
[12] I. J. R. Aichison, Acta Physica Polonica, B 18, p.207 (1987).
[13] T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).