Особенности симптоматики и патогенеза повреждения центральной нервной системы при COVID-19 по данным клинических исследований (обзор)

Н. В. Цыган1,2,3, А. П. Трашков1,2, А. В. Рябцев1,2, В. А. Яковлева1,2,3, А. Л. Коневега1,2, А. Г. Васильев4, В. Н. Цыган3, М. М. Одинак3, И. В. Литвиненко3

1 Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт», Россия, 188300, Ленинградская обл., г. Гатчина, мкр. Орлова роща, д. 1.
2 Национальный исследовательский центр «Курчатовский институт», Россия, 123182, г. Москва, пл. Академика Курчатова, д. 1.
3 Военно-медицинская академия им. С. М. Кирова Министерства обороны России, Россия, 194044, г. Санкт-Петербург; ул. Академика Лебедева, д. 6.
4 Санкт-Петербургский государственный университет педагогический медицинский университет Минздрава России, Россия, 194100, г. Санкт-Петербург; ул. Литовская, д. 2.

Signs and Symptoms of Central Nervous System Involvement and Their Pathogenesis in COVID-19 According to The Clinical Data (Review)

Nikolay V. Tsygan1,2,3, Alexandr P. Trashkov1,2, Alexandr V. Ryabtsev1,2,3, Victoria A. Yakovleva1,2,3, Andrey L. Konevega1,2, Andrey G. Vasiliev4, Vasily N. Tsygan3, Miroslav M. Odinak3, Igor V. Litvinenko3

1 Konstantinov St. Petersburg Institute for Nuclear Physics, National Research Center «Kurchatov Institute», 1 mkr. Orlova roshcha, Gatchina, Leningrad region, 188300, Russia
2 National Research Center «Kurchatov Institute», 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
3 Kirov Military Medical Academy, 6 Akademika Lebedeva Str., 194044 Saint Petersburg, Russia
4 Saint Petersburg State Pediatric Medical University, 2 Litovskaya Str., 194100 St. Petersburg, Russia

Для цитирования: Н. В. Цыган, А. П. Трашков, А. В. Рябцев, В. А. Яковлева, А. Л. Коневега, А. Г. Васильев, В. Н. Цыган, М. М. Одинак, И. В. Литвиненко. Особенности симптоматики и патогенеза повреждения центральной нервной системы при COVID-19 по данным клинических исследований (обзор). Общая реаниматология. 2021; 17 (3): 65–77. https://doi.org/10.15360/1813-9779-2021-3-65-77 [На русск. и англ.]

Резюме

Актуальность пристальной клинической оценки поражения центральной нервной системы вирусом SARS-CoV-2 определяется низкой специфичностью ряда неврологических симптомов, сложностью объективизации жалоб пациента, неоднородной осведомленностью и настороженностью по поводу имеющегося спектра неврологических симптомов COVID-19, низкой частотой патологических изменений по данным нейровизуализации.

Цель обзора. Выявление особенностей симптоматики и патогенеза поражения центральной нервной системы при COVID-19 на основе анализа данных клинической практики.

Из более 200 первично отобранных источников литературы различных баз данных (Scopus, Web of science, РИНЦ и др.) для анализа выбрали 80 источников, из них — 72 источника, опубликованных в течение последних лет (2016–2020 гг.). Критерием исключения источников служили малая информативность и устаревшие данные.

Клиническая картина поражения центральной нервной системы при COVID-19 включает в себя: нарушение обоняния (5–98% случаев), нарушение вкусовой чувствительности (6–89%), дисфонию (28%), дисфагию (19%), количественные и качественные нарушения сознания (3–53%), головную боль (0–70%), головокружение (0–20%), менее 3% случаев — нарушение зрения, слуха, атаксию, судорожный приступ, инсульт. Анализ данных литературы позволил выделить следующие значимые механизмы воздействия высококонтагиозных коронавирусов (в том числе вируса SARS-CoV-2) на цент-
ральную нервную систему: нейродегенерация (в том числе цитокин-индуцированная); церебральный тромбоз и церебральная тромбоэмболия; повреждение нейрососудистой единицы; иммуноопосредованное поражение нервной ткани, приводящее к развитию инфекционно-аллергического демиелинизирующего процесса.

Рассмотрели симптомы поражения нервной системы при COVID-19, такие как головная боль, головокружение, нарушение обоняния и вкусовых ощущений, изменение уровня сознания, бульбарные нарушения (дисфагия, дисфония). Соответственно, проанализировали данные о возможных путях проникновения SARS-CoV-2 в центральную нервную систему и механизмы поражения нервной ткани.

По результатам проведенного анализа отечественной и зарубежной литературы показали высокую частоту и полиморфность симптомов поражения центральной нервной системы, а также важную роль сосудистого поражения головного мозга и нейродегенерации в патогенезе COVID-19.

Ключевые слова: COVID-19; SARS-CoV-2; центральная нервная система; центральная гипертермия; гипоксия; нейродегенерация

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Работа выполнена при поддержке НИЦ «Курчатовский институт» (приказ №1363 от 25.06.2019 г.).

Summary

Detailed clinical assessment of the central nervous system involvement in SARS-CoV-2 infection is relevant due to the low specificity of neurological manifestations, the complexity of evaluation of patient complaints, reduced awareness of the existing spectrum of neurological manifestations of COVID-19, as well as low yield of the neurological imaging.

The aim. To reveal the patterns of central nervous system involvement in COVID-19 and its pathogenesis based on clinical data.

Among more than 200 primary literature sources from various databases (Scopus, Web of Science, RSCI, etc.), 80 sources were selected for evaluation, of them 72 were published in the recent years (2016–2020). The criteria for exclusion of sources were low relevance and outdated information.

The clinical manifestations of central nervous system involvement in COVID-19 include smell (5–98% of cases) and taste disorders (6–89%), dysphonia (28%), dysphagia (19%), consciousness disorders (3–53%), headache (0–70%), dizziness (0–20%), and, in less than 3% of cases, visual impairment, hearing impairment, ataxia, seizures, stroke. Analysis of the literature data revealed the following significant mechanisms of the effects of highly contagious coronaviruses (including SARS-CoV-2) on the central nervous system: neurodegeneration (including cytokine-induced); cerebral thrombosis and thromboembolism; damage to the neurovascular unit; immune-mediated damage of nervous tissue, resulting in infection and allergy-induced demyelination.

The neurological signs and symptoms seen in COVID-19 such as headache, dizziness, impaired smell and taste, altered level of consciousness, bulbar disorders (dysphagia, dysphonia) have been examined. Accordingly, we discussed the possible routes of SARS-CoV-2 entry into the central nervous system and the mechanisms of nervous tissue damage.

Based on the literature analysis, a high frequency and variability of central nervous system manifestations of COVID-19 were revealed, and an important role of vascular brain damage and neurodegeneration in the pathogenesis of COVID-19 was highlighted.

Keywords: COVID-19; SARS-CoV-2; central nervous system; hypoxia; neurodegeneration

Conflict of interest. The authors declare no conflict of interest. The manuscript (or any part of it) has not been published previously or is not under consideration for publication elsewhere.

Acknowledgments. The work was supported by the NRC «Kurchatov Institute» (order №1363).

DOI:10.15360/1813-9779-2021-3-65-77
Существительности [1]. Актуальность пристальной клинической оценки поражения центральной нервной системы (ЦНС) вирусом SARS-CoV-2 определяется также низкой специфичностью ряда неврологических симптомов, сложностью объективизации жалоб пациента, неоднородной осведомленностью и настороженностью по поводу имеющегося спектра неврологических симптомов COVID-19, низкой частотой патологических изменений по данным нейровизуализации.

С учетом вышеизложенного целью обзора является выявление особенностей симптоматики и патогенеза поражения центральной нервной системы при COVID-19 на основе анализа данных клинической практики.

Анализ отечественной и зарубежной литературы демонстрирует преимущественно описательный характер исследований (в том числе международных многоцентровых исследований), отсутствие единой концепции патогенеза поражения нервной системы вирусом SARS-CoV-2 и недостаточность сведений об отдаленных неврологических последствиях COVID-19.

К симптомам COVID-19, традиционно рассматриваемым в структуре синдром общей инфекционной интоксикации, при этом возможно связанным с поражением ЦНС, относятся гипертермия (более 90% случаев), повышенная утомляемость (45%), головная боль (8–70%), головокружение (до 20% случаев). Гипертермия является частым симптомом в структуре синдрома общей инфекционной интоксикации при острых респираторных заболеваниях, однако при COVID-19 отмечается низкая эффективность применения жаропонижающих средств, что характеризует преимущественно центральный генез гипертермии.

Клиническая картина поражения ЦНС при COVID-19 включает нарушение обоняния (5–98% случаев), нарушение вкусовой чувствительности (6–89%), дисфonia (28%), дисфагию (19%), количественные и качественные нарушения сознания (3–53%), менее 3% случаев — нарушение зрения, слуха, атаксию, судорожный приступ, инсульт.

Нарушение обоняния является одним из самых распространенных симптомов повреждений нервной системы при COVID-19 (до 98% случаев) [1–21]. Появление гипо- и аносмии обычно происходит в первые дни заболевания [2, 6, 7, 15, 19], длительность нарушений в среднем составляет 1–2 недели [6–8, 13, 15, 17, 19]. Наибольший объем выборки имело исследование Lechien J. R. с соавт. (2020) [1420 пациентов, средний возраст пациентов — 39 лет], частота гипо- и аносмии составила 70% [8]. Все включенные в анализ исследования выполнены в одно время (первая половина 2020 г.), SARS-CoV-2 infection is also due to the low specificity of many neurological signs and symptoms, the complexity of standardized patient symptom evaluation, reduced awareness of COVID-19 neurological manifestations and low yield of neuroimaging tests.

Therefore, the aim of this review is to reveal the clinical manifestations of central nervous system involvement in COVID-19 and their mechanisms based on the analysis of clinical data.

Analysis of Russian and international literature shows mainly descriptive studies (including international multicenter studies), lack of a unified pathogenesis concept of SARS-CoV-2-associated nervous system damage and insufficient data on the long-term neurological consequences of COVID-19.

The symptoms of COVID-19 traditionally considered as intoxication-related and possibly associated with CNS damage include fever (over 90% of cases), fatigue (45%), headache (8–70%), and dizziness (up to 20% of cases). Fever is a frequent sign of infection-related intoxication in acute respiratory diseases, but in COVID-19 the efficacy of antipyretics is low, which suggests a predominantly central origin of hyperthermia.

The clinical manifestations of central nervous system damage in COVID-19 include olfactory impairment (5–98% of cases), gustatory disorders (6–89%), dysphonia (28%), dysphagia (19%), altered consciousness (3–53%), and, in less than 3% of cases, visual or hearing disorders, ataxia, seizures or stroke.

Smell disorders are among the most common signs of nervous system involvement in COVID-19 (up to 98% of cases) [1–21]. Hypo- and anosmia usually occur in the first days of the disease [2, 6, 7, 15, 19] and persist for an average of 1–2 weeks [6–8, 13, 15, 17, 19]. The study by Lechien J. R. et al. (2020) [1420 patients with the mean age of 39 years], the frequency of hypo- and anosmia was 70% [8]. All the studies included in the analysis were performed at the same time (first half of 2020), so the wide variation in the frequency of olfactory disorders is unlikely to be explained by altered properties of the SARS-CoV-2 over time. In studies with a sample size of more than 100 observations in East Asian countries, the frequency of olfactory disorders was less than 50% [2, 11], while in Western countries it was as high as 86% [3, 5, 8].

A similar situation is seen with taste disorders. In studies with a sample size of more than 100 observations, the prevalence of dys- and ageusia ranged from 5% to 89% [2–8, 10–14, 16, 20, 21], with lower rates in East Asian countries (5–34%) [2, 11] and quite high ones in Western countries (54–89%) [3, 5, 8]. Differences in olfactory and gustatory assessment tools may account for the variability in the results obtained. Noticeably, the high-
Bulbar disorders in COVID-19 were reported only by Lechien J. R. et al. (2020), who included patients from Europe (mean age 39 years): the frequency of dysphonia was 28%, the one of dysphagia was 19% [5]. In other studies included in the analysis, dysphonia and dysphagia were not reported, which is most probably attributable to the targeted assessment of swallowing and vocalization done by specialized otolaryngological examination in the study by Lechien J. R. et al.

Dysphonia and dysphagia may be part of bulbar and pseudobulbar syndromes, which, in turn, result from either brainstem or bilateral supranuclear damage. According to Helms J. et al. (2020), patients with COVID-19 rarely demonstrate acute brain lesions on MRI [27], therefore dysphonia and dysphagia are unlikely to be caused by pseudobulbar syndrome. However, dysphonia and dysphagia as part of bulbar syndrome without focal brain abnormalities on MRI are often found in neurodegenerative diseases, primarily amyotrophic lateral sclerosis, which suggests a role of neurodegeneration in CNS damage by SARS-CoV-2. Taking into account the previous data on highly contagious coronaviruses infections and extrapolating them to SARS-CoV-2, we should note that, in experiments with mice, the MERS virus when injected intranasally was able to reach the brain stem and thalamus through olfactory nerves [28], whereas the SARS-CoV-2 virus triggers neuronal death with no signs of inflammation in brain [29] suggesting a typical neurodegenerative process. Several studies have confirmed the association between SARS-CoV and a higher risk of Parkinson’s disease and multiple sclerosis [30–37]. Another probable cause of dysphonia and dysphagia in COVID-19 may be pre-
гии не были представлены, что наиболее вероятно объясняется прицельной оценкой глотания и голосообразования в рамках ортополинеоглологического осмотра в исследовании Lechien J. R. с соавт.

Дисфония и дисфагия могут входить в структуру бульбарного и псевдобульбарного синдромов, которые, в свою очередь, являются проявлением поражения либо ствола головного мозга, либо двустороннего надъядерного поражения. По данным Helms J. с соавт. (2020), у пациентов с COVID-19 по результатам магнитно-резонанской томографии крайне редко выявляются острые патологические изменения вещества головного мозга [27], следовательно, предположить, что причиной развития дисфонии и дисфагии является псевдобульбарный синдром вряд ли возможно. Однако дисфония и дисфагия в структуре бульбарного синдрома без очевидных изменений вещества головного мозга по данным магнитно-резонансной томографии часто встречаются при нейродегенеративных заболеваниях, прежде всего, боковым амиотрофическим склерозе, что позволяет предположить роль нейродегенерации в поражении ЦНС вирусом SARS-CoV-2. Принимая во внимание полученные ранее данные о высококонтагиозных коронавирусных инфекциях и экспополириру их на вирус SARS-CoV-2, необходимо отметить, что, по данным экспериментальных исследований на лабораторных мышах, вирус MERS при интратанальным введении способен достигать ствола головного мозга и таламуса через обонятельные нервы [28], а вирус SARS-CoV инициирует гибель нейронов в отсутствие признаков воспалительных изменений вещества головного мозга [29], что также характеризует типовой нейродегенеративный процесс. В ряде исследований подтверждена связь между вирусом SARS-CoV и более высоким риском развития болезни Паркинсона и рассеянного склероза [30–37]. Еще одной вероятной причиной дисфонии и дисфагии при COVID-19 может являться преимущественно демиелинизирующее поражение черепных нервов практикой. Патофизиологическое поражение периферической нервной системы при COVID-19 может являться причиной ряда симптомов (миалгии, нестойкого онемения в конечностях по мозаичному типу), что требует оценки по данным электронейромиографии, однако в доступной отечественной и зарубежной литературе отсутствуют сведения о результатах электрофизиологических исследований периферических нервов при COVID-19 (за исключением случаев развития синдрома Гийена—Барре).

Распространенность бульбарного синдрома у пациентов с COVID-19 составляет 0–70% [1–4, 6, 8–11, 24, 25, 38–63], головокружение...
вые ишемические повреждения разной
включают: диффузные гипоксические и очаго-
ного мозга у пациентов с COVID-19 подробно
ливать его уязвимость при COVID-19 [75, 76].
щене анаэробного метаболизма;
окружением нервной системы и желудочно-кишечного
тракта [72]. Предполагается, что, проникая рет-
роваго через механорецепторы и хеморецеп-
тельной системы и желудочно-кишечного
тракта [43] и имеет
низкую частоту при отсутствии радиологиче-
ских данных о поражении легких [44].
вых наряду с общешумовой симптоматикой, может сопровождать острые респираторные заболевания, в особенностях грипп. Частота миалгии при COVID-19 состав-
ляет 0–70% [1, 4, 8, 9, 23–25, 38–40, 40–42, 46–48, 50, 51, 54–56, 58–60, 62–71]. Интересно, что у
пациентов с трансплантированной почкой
частота выявления миалгии при COVID-19 составила 5% [64], что наиболее вероятно обусловлено сопутствующей интенсивной
иммуносупрессивной терапией.
Потенциальные пути проникновения
вируса SARS-CoV-2 в ЦНС включают в себя гематогенное распространение в сочетании с
повышением проницаемости гематоэнцефали-
ческого барьера, ретроградную передачу через
обонятельные нейроны [2], ретроградную
передачу через блуждающий нерв из дыха-
tельной системы и желудочно-кишечного
тракта [72]. Предполагается, что, проникая рет-
роградно через механорецепторы и хеморецеп-
tоры легких, вирус SARS-CoV-2 может пора-
жать дыхательный и сосудодвигательный
центры продолговатого мозга, что может
спровоцировать нейрогенную дыхательной
недостаточностью [72, 73].
Наиболее полное представление о патоге-
незе влияния высокооконтагиозной коронави-
русной инфекции на ЦНС представили Wu Y. с
соавт. (2020) [74]. По мнению авторов, к основ-
ным механизмам повреждения нервной систе-
мы, приводящим к развитию токсической
инфекционной энцефалопатии, вирусному
энцефалиту и острым цереброваскулярным
заболеваниям, можно отнести:
— непосредственно вирусное поврежде-
ние за счет нарушения циркуляции крови и
демиелинизации;
— гипоксическое повреждение и повы-
шение анаэробного метаболизма;
— взаимодействие с рецепторами антио-
tензинпревращающего фермента-2;
— иммунное повреждение с развитием
синдрома системного воспалительного ответа.
Рецепторы ангиотензинпревращающего
фермента-2 представлены в микроциркулятор-
ном русле головного мозга, что может обусло-
ывать его уязвимость при COVID-19 [75, 76].
Патоморфологические изменения голов-
ного мозга у пациентов с COVID-19 подробно
описаны Зайратьянц О. В. с соавт. (2020) [77] и
включают: диффузные гипоксические и очаго-
вые ишемические повреждения разной
териал thrombosis), microangiopathy, vasculitis, di-
apedetic and confluent hemorrhages, sometimes
progressing to hemorrhagic infarcts and less com-
monly to intracerebral hematomas. In some cases,
the differential diagnosis of manifestations and
complications of COVID-19 with cerebrovascular
diseases can be challenging, especially in comorbid
patients. Another issue to consider is specific en-
cephalitis and meningitis potentially causing lym-
phoid perivascular and meningeal infiltration (sep-
sis can be absent as well).
Analysis of the literature data highlighted the
following significant mechanisms of the impact of
highly contagious coronaviruses (including SARS-
CoV-2) on central nervous system: neurodegener-
ation (including cytokine-induced), cerebral
thrombosis and thromboembolism, damage to the
neurovascular unit, immune-mediated damage of
nervous tissue, leading to the infection-induced
and allergic demyelination.
Few reports of neuroimaging features of SARS-
CoV-2 associated brain damage were made available.
In March 2020, radiological evidence of COVID-19
brain damage manifested as acute hemorrhagic
ehrocating encephalopathy was published. Politi L.
S. et al. (2020) demonstrated topically correlated cor-
tical changes in COVID-19-induced anosmia for the
first time in vivo using neuroimaging studies [78],
in which combination with the above-mentioned as-
sumed leading role of receptor damage suggests a
secondary injury of olfactory neurons involved in the
pathogenesis of COVID-19-induced anosmia.
According to Mao L. et al. (2020) who examined
214 patients hospitalized for COVID-19, the
incidence of acute stroke was 2.8% (6 cases, includ-
ing 5 ischemic ones), while in severe COVID-19 it
reached 5.7% (5 cases, including 4 ischemic ones) [2].
In 2 out of 6 cases, the stroke developed
without typical COVID-19 presentations, however
the clinical, laboratory, and radiological manifesta-
tions appeared several days later.
COVID-19 can associate with an increased risk
of cerebrovascular accidents and subsequent ad-
verse clinical outcome. In medical and surgical
practice, the perioperative period has a similar pat-
tern. Among intrahospital strokes, 30% are periop-
erative, which can be considered as a clinical model
of cerebrovascular accident because this type of
stroke has a pre-defined time of onset. Pathogene-
sis, prevention and treatment of perioperative
stroke have been studied in detail, as well as the
pattern of postoperative cerebral dysfunction [79, 80]
(see figure).
Embolism, hypoperfusion, hypoxia, cerebral
microhemorrhage, and systemic inflammatory re-
sponse play a key role in the pathogenesis of periop-
erative stroke and postoperative cerebral dysfunc-
tion, which corresponds to the main mechanisms of
vascular brain damage in COVID-19. The similarity

https://doi.org/10.15360/1813-9779-2021-3-65-77
Reviews

https://www.reanimatology.com

GENERAL REANIMATOLOGY, 2021, 17; 3
влияния, вплоть до развития ишемических инфарктов (при тромбозах крупных артерий); микроангиопатию; васкулит; диапедезные и сливающие кровоизлияния, иногда прогредиентные до геморрагических инфарктов и реже внутримозговых гематом. В ряде случаев серьезную проблему представляет дифференциальная диагностика проявлений и осложнений COVID-19 с цереброваскулярными заболеваниями, особенно у коморбидных пациентов, а также невозможность исключить специфический энцефалит и менингит как причину лимфоидной периваскулярной и оболочечной инфильтрации (в том числе и в отсутствие сепсиса).

Анализ данных литературы позволил выделить следующие значимые механизмы воздействия высококонтагиозных коронавирусов (в том числе вируса SARS-CoV-2) на ЦНС: нейродегенерация (в том числе цитокининдукцированная); церебральный тромбоз и церебральная тромбоэмболия; повреждение нейрососудистой единицы; иммуноопосредованное поражение нервной ткани, приводящее к развитию инфекционно-аллергического демиелинизирующего процесса.

В литературе представлены немногочисленные наблюдения нейровизуализационных особенностей поражения ЦНС вирусом SARS-CoV-2. В марте 2020 г. были опубликованы радиологические данные о поражении головного мозга при COVID-19 в виде острой геморрагической некротизирующей энцефалопатии. Politi L. S. с соавт. (2020) по данным нейровизуализации впервые in vivo продемонстрировали при аносмии вследствие COVID-19 топически корреспондирующие изменения коры головного мозга [78], что в сочетании с вышеизложенными предпосылками к ведущей роли of the main therapeutic targets makes it possible to use the results of studies on the prevention and treatment of perioperative stroke and postoperative cerebral dysfunction (including the preventive use of a combination succinic acid-based antihypoxic drug) [79] to outline the preventive and therapeutic strategies for cerebral vascular damage in COVID-19.

Conclusion

Thus, the analysis of available literature has shown a high frequency and variability of neurological COVID-19 manifestations, as well as an important role of cerebral vascular damage and neurodegeneration in the pathogenesis of COVID-19.
поражения рецепторного аппарата позволяет предположить вторичное поражение обонятельных нейронов в патогенезе аномии при COVID-19.

По данным Mao L. и соавт. (2020), по результатам обследования 214 пациентов, госпитализированных по поводу COVID-19, частота острого нарушения мозгового кровообращения составила 2,8% (6 случаев, из них 5 — по ишемическому типу), а при тяжелом течении COVID-19 — 5,7% (5 случаев, из них 4 — по ишемическому типу) [2]. Из 6 случаев мозгового инсульта в 2 случаях инсульт дебютировал в отсутствие типичных симптомов COVID-19, однако эти клинические, лабораторные и рентгенологические признаки появились через несколько дней.

Причина болезни COVID-19 сопровождается повышенным риском развития острого нарушения мозгового кровообращения, которое, в свою очередь, в значительной степени повышает риск неблагоприятного клинического исхода COVID-19. В клинической и хирургической практике аналогичной особенностью обладает периперационный период. Среди внутрипостановочных инсультов 30% составляют периперационные инсульты, которые могут быть рассмотрены в качестве клинической модели острого сосудистого события, поскольку это единственный вид инсульта, который имеет заранее очерченные сроки дебюта. Особенности патогенеза, профилактики и лечения периперационного инсульта подробно изучены в том числе в структуре послеоперационной мозговой дисфункции [79, 80] (рисунок). Ключевую роль в патогенезе периперационного инсульта и послеоперационной мозговой дисфункции играют эмболия, гипоперфузия, гипоксия, церебральные микрокровоизлияния и системный воспалительный ответ, что соответствует основным механизмам сосудистого повреждения вещества головного мозга при COVID-19. Идентичность основных терапевтических мишеней позволяет использовать результаты исследований по профилактике и лечению периперационного инсульта и послеоперационной мозговой дисфункции (в том числе профилактического применения комплексного антигипоксантного препарата на основе разработанной кислоты) [79] для определения тактики профилактики и лечения сосудистого поражения головного мозга при COVID-19.

Заключение

Таким образом, по результатам проведенного анализа описанных и зарубежной литературы показана высокая частота и полиформность симптомов поражения ЦНС, а также важная роль сосудистого поражения головного мозга и нейродаегенерации в патогенезе COVID-19.

Литература
1. Moein S.T., Hashemian S.M., Mansouraghaei B., Khorram-Tousi A., Tabarsi P., Doty R.L. Smell dysfunction: a biomarker for COVID-19. Int. Forum of Allergy Rhinol. 2020; 10 (8): 944–950. DOI: 10.1002/iau.22567. PMID: 32301284.
2. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Miao X., Li Y., Hu B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology. 2020; 77 (8): 683–690. DOI: 10.1001/jamaneurol.2020.1127.
3. Yan C.H., Faraji F., Prapapati D.P., Ostrander B.T., DeConde A.S. Self-reported olfactory loss associated with COVID-19. Int. Forum of Allergy Rhinol. 2020; 10 (7): 821–831. DOI: 10.1002/iau.22592. PMID: 32329222.
4. Yan C.H., Faraji F., Prapapati D.P., Boone C.E., DeConde A.S. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int. Forum of Allergy Rhinol. 2020; 10 (7): 806–813. DOI: 10.1002/iau.22579. PMID: 32379441.
5. Lechien J.R., Chiea-Estomba C.M., De Satis D.R., Hors M., Le Bon S.D., Rodriguez A., Dequanter D., Bleic S., El Afia F., Distinguin L., Chekkouri-Idrissi Y., Hams S., Delgado I.L., Calvo-Herraez C., Lavigne P., Falanga C., Barillari M.R., Cannaruto G., Khalife M., Leich P., Souchay C., Rossi C., Journe F., Hsieh J., Edjlali M., Carlier R., Ris L., Lovato A., De Filippis C., Coppee F., Fakhry N., Ayad T., Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. arch. otorhinolaryngol. 2020; 277 (8): 2251–2261. DOI: 10.1007/s00405-020-05965-1. PMID: 32253535.
6. Vatia L.A., Salzano G., Ris G.D. The importance of olfactory and gustatory disorders as early symptoms of coronavirus disease (COVID-19). Br. J. Oral Maxillofac. Surg. 2020; 58 (5): 615–616. DOI: 10.1016/j.bjoms.2020.04.024. PMID: 32362452.
7. Beltrán-Corbellini Á., Chico-García J.L., Martínez-Poles J., Rodríguez-Jorge F., Natera-Villalba E., Gómez-Corral J., Gómez-López A., Monreal E., Parra-Díaz P., Curtís-Cuevas J.L., Galán J.C., Fragola-Arana C., Porta-Etessam J., Masjuan J., Alonso-Cánovas A. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur. J. Neurol. 2020; 27 (9): 1378–1374. DOI: 10.1111/ene.14273. PMID: 32449247.
8. References
9. Moein S.T., Hashemian S.M., Mansouraghaei B., Khorram-Tousi A., Tabarsi P., Doty R.L. Smell dysfunction: a biomarker for COVID-19. Int. Forum of Allergy Rhinol. 2020; 10 (8): 944–950. DOI: 10.1002/iau.22567. PMID: 32301284.
10. Yan C.H., Faraji F., Prapapati D.P., Ostrander B.T., DeConde A.S. Self-reported olfactory loss associated with coronavirus disease 2019 in patients presenting with influenza-like symptoms. Int. Forum of Allergy Rhinol. 2020; 10 (7): 821–831. DOI: 10.1002/iau.22592. PMID: 32329222.
11. Yan C.H., Faraji F., Prapapati D.P., Boone C.E., DeConde A.S. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int. Forum of Allergy Rhinol. 2020; 10 (7): 806–813. DOI: 10.1002/iau.22579. PMID: 32379441.
12. Lechien J.R., Chiea-Estomba C.M., De Satis D.R., Hors M., Le Bon S.D., Rodriguez A., Dequanter D., Bleic S., El Afia F., Distinguin L., Chekkouri-Idrissi Y., Hams S., Delgado I.L., Calvo-Herraez C., Lavigne P., Falanga C., Barillari M.R., Cannaruto G., Khalife M., Leich P., Souchay C., Rossi C., Journe F., Hsieh J., Edjlali M., Carlier R., Ris L., Lovato A., De Filippis C., Coppee F., Fakhry N., Ayad T., Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. arch. otolaryngol. 2020; 277 (8): 2251–2261. DOI: 10.1007/s00405-020-05965-1. PMID: 32253535.
13. Vatia L.A., Salzano G., Ris G.D. The importance of olfactory and gustatory disorders as early symptoms of coronavirus disease (COVID-19). Br. J. Oral Maxillofac. Surg. 2020; 58 (5): 615–616. DOI: 10.1016/j.bjoms.2020.04.024. PMID: 32362452.
14. Beltrán-Corbellini Á., Chico-García J.L., Martínez-Poles J., Rodríguez-Jorge F., Natera-Villalba E., Gómez-Corral J., Gómez-López A., Monreal E., Parra-Díaz P., Curtís-Cuevas J.L., Galán J.C., Fragola-Arana C., Porta-Etessam J., Masjuan J., Alonso-Cánovas A. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur. J. Neurol. 2020; 27 (9): 1378–1374. DOI: 10.1111/ene.14273. PMID: 32449247.
8. Lechien J.R., Chiesa-Estomba C.M., Place S., Lefebvre M., Baran D., Chary E., Carsuzaa F., Trijolet J.P., Capitaine A.L., Roncato-Saberan J.-N., Fouet K., Cazenave-Roblot F., Catroux M., Allix-Beguec C., Dufour C., Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

9. Tostmann A., Bradley J., Boussena T., Yiek W.K., Holwerda M., Bleeker-Rovero C., Oever J., Meijer C., Bahamondes Largenardo J., Hopman J., Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

10. Bénézi E, Turner PL, Declerck C, Paillé CL, Bevest M, Dubé V, Tattevin P, Arvieux C, Baldeyrou M, Place S, Laethem YV, Cabaraux S, Fouet K, Cazenave-Roblot F, Catroux M, Allix-Beguec C, Dufour C, Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

11. Bénézi E, Turner PL, Declerck C, Paillé CL, Bevest M, Dubé V, Tattevin P, Arvieux C, Baldeyrou M, Place S, Laethem YV, Cabaraux S, Fouet K, Cazenave-Roblot F, Catroux M, Allix-Beguec C, Dufour C, Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

12. Bénézi E, Turner PL, Declerck C, Paillé CL, Bevest M, Dubé V, Tattevin P, Arvieux C, Baldeyrou M, Place S, Laethem YV, Cabaraux S, Fouet K, Cazenave-Roblot F, Catroux M, Allix-Beguec C, Dufour C, Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

13. Martin-Sanz E, Riestra J, Yebra L, Larran A, Mancino F, Yanes-Diaz J, Garrate M, Colmereno M, Montiel E, Molina C, Moreno D, Rodriguez A, Monedero G, Sanz-Fernandez R, Gonzalez R, Espinosa J. COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Med. J. Islam. Repub. Iran. 2020; 34: 47. DOI: 10.34171/mjiri.34.47. PMID: 32865816.

14. Bagheri S.H., Asghari A., Farhadi M., Shamshiri A.R., Kabir A., Kam-Liang Y., Xu J., Chu M., Mai J., Lai N., Tang W., Yang T., Zhang S., Guan S. Clinical and epidemiological characteristics of 1420 European patients with mild to moderate coronavirus disease 2019. J. Intern. Med. 2020; 288 (3): 335–344. DOI: 10.1111/j.1365-0918.2009.01389. PMID: 32352202.

15. Tostmann A., Bradley J., Boussena T., Yiek W.K., Holwerda M., Bleeker-Rovero C., Oever J., Meijer C., Bahamondes Largenardo J., Hopman J., Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.

16. Bénézi E, Turner PL, Declerck C, Paillé CL, Bevest M, Dubé V, Tattevin P, Arvieux C, Baldeyrou M, Place S, Laethem YV, Cabaraux S, Fouet K, Cazenave-Roblot F, Catroux M, Allix-Beguec C, Dufour C, Geest-Blankert N. van der, Werthem J. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro. Surveill. 2020; 25 (16): 2000568. DOI: 10.2807/1560-7917.ES.2020.25.16.2000568. PMID: 32347200.
Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Godaert L., Proye E., Demoustier-Tampere D., Coulibaly P., Hequet Salmi A., Ziola B., Hovi T., Reunanen M.

Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S.

Yeh E.A., Collins A., Cohen M.E., Duffner P.K., Faden H.

Burks J.S., DeVald B.L., Jankovsky L.D., Gerdes J.C.

Jin X., Lian J.S., Hu J.H., Gao J., Zheng L., Zhang Y.M., Hao S.R., Jia H.Y., Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P., Xiao W., Wang Y.N., Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu N., Neuman P., Mead S., Brian D., Cabirac G.F.

Murray R.S., Brown B., Brian D., Cabirac G.F.

Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R., Gibson-Corley K.N., Meyerholz D.K., McCray P.B.

Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y., Shi J., Zhou M., Wu B., Yang Z., Zhang C., Yue J., Zhang Z., Ren H., Liu X., Xie J., Xie M., Zhou J.

Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020; 145 (1): 110–118. DOI: 10.1016/j.jaci.2019.11.006. PMID: 3294485.

Godaert L., Proye E., Demoustier-Tampere D., Coulibaly P.S., Hequet E, Dramé M.

Clinical characteristics of older patients: The experience of a geriatric short-stay unit dedicated to patients with COVID-19 in France. J. Infect. 2020; 81 (1): e93–e94. DOI: 10.1016/j.jinf.2020.04.009. PMID: 32935489.

Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kumieruk C., Collange O., Boulay F., Fañf K., Oubah M., Anholt M., Me- ziani E.

Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020; 382 (23): 2286–2270. DOI: 10.1056/NEJMoa2008597. PMID: 3294339.

Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R., Gibson-Corley K.N., Meyerholz D.K., McCray P.B.

Clinical characteristics of 30 medical workers infected with SARS-Cov-2 outside of Wuhan, China: retrospective case series. BMJ. 2020; 368 (368): 1–21. DOI: 10.1136/bmj.m2485. PMID: 32705786.

Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y., Shi J., Zhou M., Wu B., Yang Z., Zhang C., Yue J., Zhang Z., Ren H., Liu X., Xie J., Xie M., Zhou J.

Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020; 145 (1): 110–118. DOI: 10.1016/j.jaci.2019.11.006. PMID: 3294485.

Godaert L., Proye E., Demoustier-Tampere D., Coulibaly P.S., Hequet E, Dramé M.

Clinical characteristics of older patients: The experience of a geriatric short-stay unit dedicated to patients with COVID-19 in France. J. Infect. 2020; 81 (1): e93–e94. DOI: 10.1016/j.jinf.2020.04.009. PMID: 32935489.

Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kumieruk C., Collange O., Boulay F., Fañf K., Oubah M., Anholt M., Me- ziani E.

Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020; 382 (23): 2286–2270. DOI: 10.1056/NEJMoa2008597. PMID: 3294339.

Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R., Gibson-Corley K.N., Meyerholz D.K., McCray P.B.

Clinical characteristics of 30 medical workers infected with SARS-Cov-2 outside of Wuhan, China: retrospective case series. BMJ. 2020; 368 (368): 1–21. DOI: 10.1136/bmj.m2485. PMID: 32705786.

Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y., Shi J., Zhou M., Wu B., Yang Z., Zhang C., Yue J., Zhang Z., Ren H., Liu X., Xie J., Xie M., Zhou J.

Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020; 145 (1): 110–118. DOI: 10.1016/j.jaci.2019.11.006. PMID: 3294485.

Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kumieruk C., Collange O., Boulay F., Fañf K., Oubah M., Anholt M., Me- ziani E.

Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020; 382 (23): 2286–2270. DOI: 10.1056/NEJMoa2008597. PMID: 3294339.

Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R., Gibson-Corley K.N., Meyerholz D.K., McCray P.B.

Clinical characteristics of 30 medical workers infected with SARS-Cov-2 outside of Wuhan, China: retrospective case series. BMJ. 2020; 368 (368): 1–21. DOI: 10.1136/bmj.m2485. PMID: 32705786.

Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y., Shi J., Zhou M., Wu B., Yang Z., Zhang C., Yue J., Zhang Z., Ren H., Liu X., Xie J., Xie M., Zhou J.

Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020; 145 (1): 110–118. DOI: 10.1016/j.jaci.2019.11.006. PMID: 3294485.

Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kumieruk C., Collange O., Boulay F., Fañf K., Oubah M., Anholt M., Me- ziani E.

Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020; 382 (23): 2286–2270. DOI: 10.1056/NEJMoa2008597. PMID: 3294339.
Wang X., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.

Zhu B., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.

Zhu B., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.

Zhu B., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.

Zhu B., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.

Zhu B., Li Y.T., Liu J., Zhao H., Zhang X., Yu L., Guo Y.Z., Su J.W., Tao J.J., Lang G.J., Wu X.X., Wu W.R., Qe T.T., Xiang D.R., Yi P., Shi D., Chen Y., Ren Y., Qiu V.J., Li J.J., Shen J., Yang X., Wang Y. Epidemiological, clinical, and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1082–1089. DOI: 10.1136/gutjnl-2020-323455. PMID: 32345438.
55. Du W, Yu J, Wang H, Zhang X, Zhang S, Li Q, Zhang C. Clinical characteristics of COVID-19 in children compared with adults in Shangdong Province, China. Infection. 2020; 1–8. DOI: 10.1007/s15010-020-01427-2. PMID: 32301099.

56. Ma J, Yin J, Qian Y, Wu Y. Clinical characteristics and prognosis in cancer patients with COVID-19: A single center’s retrospective study. J Infect. 2020; 81 (2): 318–356. DOI: 10.1016/j.jinf.2020.04.006. PMID: 32298677.

57. Chen T, Dai Z, Mo P, Li X, Ma Z, Song S, Chen X, Luo M, Liang K, Gao S, Zhang Y, Deng L, Xiong Y. Clinical characteristics and outcomes of Older patients with Coronavirus Disease 2019 (COVID-19) in Wuhan: A Single-Centered, Retrospective Study. J. Gerontol. A. Biol. Sci. Med. Sci. DOI: 10.1093/gerona/glaa089. PMID: 32279081.

58. Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of COVID-19 in Changsha. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (6): 3440–3410. DOI: 10.26355/eurrev_202003_0711. PMID: 32271459.

59. Wang L, He W, Yu X, Du B, Mao L, Liu H, Zhang J, Hu H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020; 80 (6): 639–645. DOI: 10.1016/j.jinf.2020.04.019. PMID: 32406707.

60. Wang X, Fang J, Zhu Y, Chen L, Ding F, Zhou R, Ge L, Wang F, Chen Q, Zhang Y, Zhou Q. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin. Microbiol. Infect. 2020; 26 (8): 1063–1068. DOI: 10.1016/j.cmi.2020.03.032. PMID: 32351842.

61. Win S, Yang X, Feng W, Zheng Y, Li B, Hu Y, Lang C, Huang D, Sun Q, Xiao Y. Clinical characteristics and outcomes of 214 COVID-19 patients in Wuhan, China. Int. J. Infect. Dis. 2020; 97 (7): 979–806. DOI: 10.1016/j.ijid.2020.03.073. PMID: 32198767.

62. Wang L, He W, Yu X, Du B, Mao L, Liu H, Zhang J, Hu H. Coronavirus characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infection Pneumonia in Wuhan. JAMA. 2020; 323 (11): 1061–1069. DOI: 10.1001/jama.2020.1585. PMID: 32381570.

63. Yu X, Sun X, Cui P, Pan H, Lin S, Han R, Jiang C, Feng Q, Kong D, Zhu Y, Zheng Y, Gong X, Xiao W, Mao S, Su J, Wu H, Fu C. Epidemiological characteristics and clinical features of 333 confirmed cases with coronavirus disease 2019 in Shanghai, China. Transbound. Emerg. Dis. 2020; 67 (4): 1097–1070. DOI: 10.1111/tbed.13604. PMID: 32531037.

64. Allerberger F, Delbarba E, Masoni G, Ermoslino L, Pala A, Maffett C, Possenti S, Zambetti N, Moscati M, Venturini M, Affaitato S, Gigliotti M, Bossini N, Scalara E. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV-2 pneumonia. Kidney Int. 2020; 97 (6): 1083–1088. DOI: 10.1016/j.kint.2020.04.002. PMID: 32354634.

65. Yan J, Guo J, Fan C, Juan J, Xu Y, Li L, Peng F, Li C, Chen H, Qiao Y, Li D, Liu D, Wang C, Xiang G, Xiao E, Peng J, Xu J, Wang S, Chen D, Zhang Y, Poon L.C. Yang H. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. Am. J. Obstet. Gynecol. 2020; 223 (1): 111.e1–111.e14. DOI: 10.1016/j.ajog.2020.04.014. PMID: 32305553.

66. Pereira M.R., Mohan S., Cohen D.J., Husain S.A., Dube G.K., Ratner L.E., Alberici F., Delbarba E., Manenti C., Econimo L., Valerio L., Pola A., Maffett C., Possenti S., Zambetti N., Moscati M., Venturini M., Affaitato S., Gigliotti M., Bossini N., Scalara E. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV-2 pneumonia. Kidney Int. 2020; 97 (6): 1083–1088. DOI: 10.1016/j.kint.2020.04.002. PMID: 32354634.

67. Han C, Duan C, Zhang S, Spiegel B, Shi H, Wang W, Zhang L, Lin R, Liu J, Ding Z, Hou X. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Prevalence, RNA Testing, and Outcomes. Am. J. Gastroenterol. 2020; 115 (6): 916–923. DOI: 10.14309/ajg.0000000000000664. PMID: 32301761.

68. Feng Y, Ling Y, Bao T, Xie Y, Huang J, Li, Xiong W, Yang D, Chen R, Ren R, Lu E, Liu X, Chen Y, Li X, LiY, Sunmarr H.D., Lin H, Jin Z, Zhou M, Li H, Lu J. Q. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. J. Clin. Res. Crit. Care Med. 2020; 201 (7): 1380–1388. DOI: 10.11606/rcrcm.202002-0445.SOC. PMID: 32725452.

69. Cao J, Tu WJ, Cheng W, Yu L, Liu YK, Hu X, Liu Q. Clinical Features and Short-outcomes of 102 Patients with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Infect. 2020; 71 (5): 748–755. DOI: 10.1093/cid/ciaa243. PMID: 32391217.

70. Zhang L, Zhu F, Xie X, Liang W, Wang J, Chen R, Jia P, Guan H-Q, Peng L, Chen Y, Peng E, Zhang P, Chu Q, Shen Q, Wang Y, Xu Y, Zhao J-P, Zhou M. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Oncot. 2020; 29 (31): 894–901. DOI: 10.1016/j.jonc.2020.03.296. PMID: 32224151.

71. Chu J, Yang N, Wei Y, Yue H, Zhang F, Zhao J, He L, Sheng G, Chen P, Li G, Wu S, Zhang Z, Wang S, Cui X, Li J, Liu W, Zhang H. The clinical characteristics of 48 medical staff with COVID-19: A retrospective study in a single center in Wuhan, China. J. Med. Virol. 2020; 92 (7): 807–813. DOI: 10.1002/jmv.25793. PMID: 32228806.

72. Toljan K. Letter to the Editor Regarding the Viewpoint «Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanism». ACS Chem. Neurosci. 2020; 11 (6): 1192–1194. DOI: 10.1021/acschemneuro.0c00174. PMID: 32333443.
73. Li Y., Bai W., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020. DOI: 10.1002/jmv.25728

74. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L., Liu C., Yang C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020; 87: 18–22. DOI: 10.1016/j.bbi.2020.03.031. PMID: 32240762.

75. Gusev E.I., Martynov M.Yu., Bokin A.N., Voinov I.A., Lisov N.Yu., Savicheva S.A., Stepanishin N.N., Shymalov I.A. Novel coronavirus infection (COVID-19) and nervous system involvement: pathogenesis, clinical manifestations, organization of neurological care. Zh. Nevrol. Psikiatr. Im. S. S. Korsakova. 2020; 120 (6): 7–16. DOI: 10.17116/jnevro20201200617. PMID: 32678542 [In Russ.]

76. Chen R., Wang K., Yu J., Howard D., French L., Chen Z., Wen C., Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. bioRxiv. 2020. DOI: 10.1101/2020.04.07.030650.

77. Zairatyants O., Samsonova M., Mikhaleva L., Chernyaev A., Mishnev O., Krupnov N., Kalyazin D. Pathological anatomy of COVID-19: Atlas. M.: GBU NIIOZMM DZM 2020. ISBN 978-5-907251-57-1 [In Russ.]

78. Politi L.S., Salsano E., Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020; 77 (8): 1028–1029. DOI: 10.1001/jamaneurol.2020.2125. PMID: 32469400.

79. Tsigan N.V., Odinak M.M., Khubulava G.G., Tsigan V.N., Peleshok A.S., Andreev R.V., Kursiev E.S., Lysyanov I.V. Postoperative cerebrovascular disorder. Zhurnal nevropatologii i psikhiatrii im. S.S. Korzhykova. 2017; 117 (4): 34–39. DOI: 10.17116/jneuro20171174334-39. PMID: 28615736.

80. Tsigan N.V., Andreev R.V., Peleshok A.S., Kolomenets S.V., Yakovleva V.A., Rybtsev A.V., Lysyanov I.V. Perioperative stroke in heart valve surgery: pathogenesis, clinical findings, diagnosis, prevention, treatment. Zh. Nevrol. Psikiatr. Im. S. S. Korsakova. 2018; 118 (4): 52–60. DOI: 10.17116/jneuro20181184152-60. PMID: 29863693. Поступила 13.12.20

https://doi.org/10.15360/1813-9779-2021-3-65-77

GENERAL REANIMATOLOGY, 2021, 17; 3 www.reanimatology.com