Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells

Dongdong Chen, Emory University
Mingke Song, Emory University
Osama Mohamad, Emory University
Shan Yu, Emory University

Journal Title: BMC Cancer
Volume: Volume 14
Publisher: BioMed Central | 2014-09-26
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1471-2407-14-716
Permanent URL: https://pid.emory.edu/ark:/25593/s1sf1

Final published version: http://dx.doi.org/10.1186/1471-2407-14-716

Copyright information:
© 2014 Chen et al.; licensee BioMed Central Ltd.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Inhibition of Na\(^+\)/K\(^+\)-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells

Dongdong Chen, Mingke Song, Osama Mohamad and Shan Ping Yu

Abstract

Background: Glioblastoma multiforme (GBM) is very difficult to treat with conventional anti-cancer/anti-apoptotic drugs. We tested the hypothesis that inhibition of Na\(^+\)/K\(^+\)-ATPase causes a mixed or hybrid form of concurrent apoptosis and necrosis and therefore should enhance anti-cancer effects of chemotherapy on glioblastoma cells.

Methods: In human LN229 and drug-resistant T98G glioblastoma cell cultures, cell death and signal pathways were measured using immunocytochemistry and Western blotting. Fluorescent dyes were applied to measure intracellular Ca\(^{2+}\), Na\(^+\) and K\(^+\) changes.

Results: The specific Na\(^+\)/K\(^+\)-ATPase blocker ouabain (0.1 - 10 \(\mu\)M) induced cell death and disruption of K\(^+\) homeostasis in a time- and concentration-dependent manner. Annexin-V translocation and caspase-3 activation indicated an apoptotic component in ouabain cytotoxicity, which was accompanied with reduced Bcl-2 expression and mitochondrial membrane potential. Ouabain-induced cell death was partially attenuated by the caspase inhibitor Z-VAD (100 \(\mu\)M). Consistently, the K\(^+\) ionophore valinomycin initiated apoptosis in LN229 cells in a K\(^+\) efflux-dependent manner. Ouabain caused an initial cell swell, which was followed by a sustained cell volume decrease. Electron microscopy revealed ultrastructural features of both apoptotic and necrotic alterations in the same cells. Finally, human T98G glioblastoma cells that are resistant to the chemotherapy drug temozolomide (TMZ) showed a unique high expression of the Na\(^+\)/K\(^+\)-ATPase \(\alpha_2\) and \(\alpha_3\) subunits compared to the TMZ-sensitive cell line LN229 and normal human astrocytes. At low concentrations, ouabain selectively killed T98G cells. Knocking down the \(\alpha_3\) subunit sensitized T98G cells to TMZ and caused more cell death.

Conclusion: This study suggests that inhibition of Na\(^+\)/K\(^+\)-ATPase triggers hybrid cell death and serves as an underlying mechanism for an enhanced chemotherapy effect on glioblastoma cells.

Keywords: Na\(^+\) pump, Glioblastomas, Apoptosis, Hybrid cell death, K\(^+\) homeostasis, Intracellular Ca\(^{2+}\), Temozolomide
remains a critical issue in the failure of successful treat-
ment of cancer, especially in GBM patients.

Tumor-induced hypoxic barriers, existence of cancer stem cells, enhanced membrane transporter activities and other mechanisms may be important factors in drug resistance [7]. One way in which cancer cells can achieve resistance to anti-cancer drugs is by up-regulating the ATP-binding cassette transporter proteins which are responsible for the efflux of anti-cancer molecules from the intracellular compartment [8]. Another mechanism of resistance to chemotherapy involves the hypoxic conditions in the central portions of the tumor and the resultant over-expression of HIF-1α that enhances a cell's tolerance to insults including anti-cancer drugs. Furthermore, hypoxic cells may be less proliferative and thus less responsive to anti-cancer drugs that target rapidly proliferating cells [9]. We hypothesize that a new therapeutic approach that can simultaneously trigger more than one cell death program/mechanism may have a better chance of overcoming the drug resistance of glioblastoma cells.

Na\(^+\)/K\(^+\)-ATPase, also known as the Na\(^+\) pump or more accurately the Na\(^+\)/K\(^+\) pump, is a ubiquitously expressed transmembrane transporter composed of tetramers of alpha and beta subunits. A normal activity of Na\(^+\)/K\(^+\)-ATPase is essential for maintaining ionic homeostasis, cellular pH, and cell volume [10]. The catalytic alpha subunit is a large polypeptide of ~1,000 amino acid residues, which catalyzes the ion-dependent ATPase activity and carries the binding sites for ATP and the specific inhibitor ouabain. The beta subunit is a smaller polypeptide of about 300 residues, which regulates conformational stability and activity of the alpha subunit. The Na\(^+\)/K\(^+\) pump is critical in maintaining high extracellular Na\(^+\) (~145 mM) and high intracellular K\(^+\) (~150 mM) by pumping Na\(^+\) ions out of the cell and importing K\(^+\) ions into the cell [11]. By doing so, these Na\(^+\)/K\(^+\) pumps maintain a physiological electrochemical gradient that is essential for cell survival and for many cellular activities. Consistent with its pro-life role, Na\(^+\)/K\(^+\)-ATPase is highly expressed in cancer cells including glioblastoma cells [12-14]. The Na\(^+\)/K\(^+\) pump activity increases during the course of malignant cell transformation [15]. This increased expression and elevated activity suggest that Na\(^+\)/K\(^+\)-ATPase may serve as a biological marker and a therapeutic target of cancer cells. Along with the identification of its high expression in cancer cells and its critical roles in cell survival, proliferation, adhesion and migration, the clinical potential of Na\(^+\)/K\(^+\)-ATPase modulators such as cardiotonic steroids or digitals in oncology has drawn increasing attention in recent years [12,16]. Several cardenolides have been shown to display in vitro antitumor activities against various types of cancer cells [17-21], including glioma cells [22,23].

Cardiac glycosides including digoxin, marinobufagenin, telocinobufagin and ouabain, represent a group of compounds isolated from plants and animals [24]. Endogenous ouabain-like substances were also identified as a hormone or stress signal that responds to exogenous and endogenous stimuli such as physical exercise, stress, hypertension, hypoxia/ischemia, among many others [24]. These cardiac glycosides have been used in clinical therapies of heart failure and atrial arrhythmia for many years [19,24]. Meanwhile, digoxin acts as a specific neuroblastoma growth inhibitor in mice grafted with the neuroblastoma cell lines SH-SY5Y and Neuro-2a [25]. Blocking Na\(^+\)/K\(^+\)-ATPase using the exogenous cardiac glycoside ouabain is cytotoxic to a variety of cancer and non-cancerous cells; the sensitivity depends on the expression level of the functional Na\(^+\)/K\(^+\) pump and dosage used [26-29]. Ouabain and the specific knockdown of the Na\(^+\)/K\(^+\)-ATPase alpha subunit inhibits cancer cell proliferation and migration [13,22], sensitizes resistant cancer cells to anoikis and decreases tumor metastasis [30]. However, the cellular/molecular mechanisms underlying the cytotoxic effect of cardiac glycosides in tumor cells have been poorly defined. We noticed that blocking Na\(^+\)/K\(^+\)-ATPase has two direct and marked impacts on the cellular ionic homeostasis: increased intracellular Na\(^+\) concentration and decreased intracellular K\(^+\) concentration. The majority of previous studies have been focused on the intracellular Na\(^+\) increase and the consequent intracellular Ca\(^{2+}\) increases due to the enhanced reversal operation of the Na\(^+\)-Ca\(^{2+}\) exchanger [31-33]. On the other hand, increasing evidence from our groups and other’s have demonstrated that, in many noncancerous neuronal and non-neuronal cells, depletion of intracellular K\(^+\) is a prerequisite for apoptotic cell shrinkage, activation of caspases and initiation of apoptotic programing [34-36]. Consistently, attenuating the outward K\(^+\) current with tetraethylammonium or elevating extracellular K\(^+\) prevented apoptosis while treatment with the K\(^+\) ionophore valinomycin induced apoptosis [37,38]. There is also evidence that cytosolic Ca\(^{2+}\) levels may not directly regulate apoptotic cell death [11,39]. Therefore, besides the regulation by a series of apoptotic genes, apoptosis is regulated by an ionic mechanism closely associated with K\(^+\) homeostasis [11,39,40]. Up to now, little attention has been paid to the intracellular K\(^+\) loss in cancer cells.

We previously demonstrated in different noncancerous cells that inhibition of Na\(^+\)/K\(^+\)-ATPase induced a mixed form of cell death composed of concurrent necrotic and apoptotic components in the same cells, which we named hybrid death [41]. Specifically, the increases in intracellular Na\(^+\) and Ca\(^{2+}\) are associated with necrosis and K\(^+\) depletion is linked to apoptosis. These events may take place simultaneously and trigger activation of multiple
signaling pathways. The identification of hybrid cell death was also based on cellular/sub-cellular morphological changes, gene expression, and alterations in intracellular signaling pathways [11,41].

In this investigation, we tested the main hypothesis that inhibition of Na’/K’-ATPase could disrupt K’ and Na’/Ca2+ homeostasis and subsequently induce hybrid death in human glioblastoma cells. Ouabain was tested because of its high selectivity in blocking NA’/K’-ATPase. We also tested whether inhibition of Na’/K’-ATPase or deletion of its specific subunit could enhance the sensitivity of glioblastoma cells to TMZ in the drug-resistant T98G glioblastoma cells.

Methods

Cultures of human glioblastoma cells

Human glioblastoma cell lines LN229 and T98G (kindly supplied by Dr. Erwin G. Van Meir, Emory University, Winship Cancer Institute) were maintained in Dulbecco’s modified Eagle’s media supplemented with 10% fetal bovine serum (FBS).

Ethics statement

LN229 and T98G cells are established cell lines from glioblastoma of anonymous patients and are commercially available. These cells have been extensively used in cancer research and related information is publically available. Therefore, their use was not classified as human subject research, and no Institutional Review Board approval was needed.

Cell viability assay by MTT spectrophotometry

Cells were cultured at a density of 3000 cells/well in 96-well plates at 5% CO₂ and 37 °C. At 70% confluence, cells were treated with either ouabain or other drugs. At selected time points, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium (MTT) was added at final concentration of 0.5 mg/mL. After 4 hrs incubation, the reaction was stopped by adding a solubilization buffer (10% SDS, 10 μM HCl). After the mixture was incubated at 37°C for 2 hrs, the relative optical density for each well was determined at 570 nm by a microplate spectrophotometer (Bio-Tek, Winooski, Vermont).

Apoptosis detection by flow cytometry

Phosphatidylserine (PS) membrane translocation and caspase-3 activation were determined by flow cytometry using FITC Annexin V Apoptosis Detection Kit (BD Pharmingen, San Diego, CA). Cells were treated with 1 μM ouabain or 10 μM valinomycin for selected time points and then washed twice with phosphate-buffered saline (PBS). Staining procedures followed the standard protocol provided by the manufacturer. Briefly, 1 x 10⁶ cells were resuspended in 1 mL of binding buffer and then the 100 μL cell suspension was incubated with 1 μL Annexin-V-FITC and 1 μL propidium iodide (PI) for 15 min at room temperature in the dark. Propidium iodide was used as a marker of necrosis. The population of Annexin V-positive cells was evaluated by a BD Biosciences LSR II flow cytometer and analyzed by FlowJo Version 7.6 software (Tree Star, Ashland, OR).

Western blotting analysis

Cells were lysed in protein lysis buffer (25 mM Tris–HCl (pH 7.4), 150 mM NaCl, 5 mM EDTA, 0.1% SDS, 2 mM sodium orthovanadate, 100 mM NaF, 1% Triton, leupeptin, aprotinin, and pepstatin) containing protease inhibitor (Sigma, St Louis, MO). Protein concentration was determined using the Bicinchoninic Acid Assay (Sigma). 30 μg protein samples were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in a Hoefer Mini-Gel system (Amersham Biosciences, Piscataway, NJ) and transferred onto a PVDF membrane (BioRad, Hercules, CA). The blotting membrane was incubated with primary antibodies overnight: Bcl-2 and cleaved Caspase-3 (1:1000, Cell Signaling, Danvers, MA), Cytochrome c and Caspase-9 (1:500, Millipore, Billerica, MA), β-actin (1:5000, Sigma). The blots were incubated for 1 hr at room temperature with anti-mouse or anti-rabbit alkaline phosphatase-conjugated IgG antibodies (1:2000, Promega, Madison, WI). The signals were detected by the addition of 5-bromo-4-chloro-3-indolylphosphate/nitroblue tetrazolium (BCIP/NBT) solution (Sigma) and quantified and analyzed by the NIH imaging software Image J (NIH, Bethesda, MD). The level of protein expression was normalized to β-actin controls. The value of protein levels was designed as 1 in the control group. The results were expressed as mean proportion of the control group values.

Immunocytochemistry staining

Cells were fixed with 4% paraformaldehyde and then treated with 0.2% Triton-X 100 for 5 min. After blocking with 1% fish gel for 1 hr, cells were incubated with primary anti-body AIF overnight (1:500, Millipore). Cells were then incubated with secondary antibody Cy3-conjugated anti-rabbit IgG (1:2000, Promega, Madison, WI). The signals were detected by the Hoechst 33342 (1:20000, Invitrogen, Carlsbad, CA) for 1 hr at room temperature. Nuclei were stained with Hoechst 33342 (1:20000, Invitrogen). Staining was visualized by fluorescent and confocal microscopy (BX61; Olympus, Japan).

Fluorescent measurement of the mitochondrial membrane potential

Cells were treated with ouabain or valinomycin for 6 hrs and then loaded with 200 nM TMRM (Molecular Probes, Eugene, OR) for 30 min at 5% CO₂ and 37°C in the dark. Prior to imaging, cells were washed with DMEM medium.
twice. Fluorescent images were captured by a fluorescent microscope (Leica DMIRB, Germany) and fluorescent intensity was measured by the NIH imaging software Image J.

Cellular ion measurements

Intracellular K⁺ content was measured using the cell permeant potassium indicator PBFI-AM (Invitrogen, Molecular Probes). Cells were washed with HBSS and then loaded with 5 μM PBFI and 10 μM F-127 for 40 min at 5% CO₂ and 37 °C in the dark. Cells were washed with HBSS three times before imaging. Measurements were made by exciting PBFI at 340 nm while monitoring emission at 500 nm using a fluorescence microscope (Leica DMIRB, Germany) and the fluorescence intensity was measured using the NIH imaging software Image J.

Intracellular Na⁺ content was measured using the cell permeant sodium indicator SBFI-AM (Invitrogen, Molecular Probes). Cells were washed with HBSS and then loaded with 5 μM SBFI and 10 μM F-127 for 40 min at 5% CO₂ and 37 °C in the dark. After three HBSS washes, fluorescent imaging was carried out at room temperature using an inverted fluorescence microscope (Olympus IX81, Olympus America Inc., Center Valley, PA). Measurements were made by exciting SBFI at 340 nm while monitoring emission at 520 nm using a CCD camera. The imaging data were recorded with a digital camera Hamamatsu ORCA-ER (Hamamatsu Photonics K.K., Japan) and software Slidebook 4.1 for Windows (SciTech Pty Ltd., Australia).

Intracellular free Ca²⁺ was measured using the cell permeate Ca²⁺ sensitive dye Fluo-4-AM (Invitrogen; 5 μM in 100 μl HEPES buffered solution) for 50 min at 5% CO₂ and 37 °C in the dark. After three HBSS washes, fluorescent imaging was carried out at 480 nm light and images were obtained at 520 nm. The imaging data were collected by the same fluorescence microscopy system described for sodium imaging.

Cell volume assay

Cells were trypsinized after drug treatments. A 100 μL cell suspension of each sample was taken by Millipore Scepter™ Handheld Automated cell counter (Millipore). Cell volume was measured and analyzed by Scepter Software Pro 2.0.

Electron microscopic examination of ultrastructural changes

Cultures in 35 mm dishes were fixed in glutaraldehyde (1% glutaraldehyde, 0.1 M sodium cacodylate buffer, pH 7.4) for 30 min at 4 °C, washed with 0.1 M sodium cacodylate buffer, and post-fixed in 1.25% osmium tetroxide for 30 min. The staining and electron microscopy was performed at the Robert P. Apkarian Integrated Electron Microscopy Core (Emory University, Atlanta, GA).

Cytochrome c release assay

Cells were harvested by centrifugation at 200 g for 10 min at 4°C. Mitochondrial and cytoplasmic proteins were isolated using the Mitochondria Isolation Kit (Thermo Scientific, Rockford, IL) according to the kit's instructions. Cytochrome c released from the mitochondria was detected by Western blot.

Knockdown of the Na⁺/K⁺-ATPase α3 subunit

Na⁺/K⁺-ATPase α3 stealth RNAi™ siRNA duplex oligoribonucleotides were synthesized by Invitrogen. The sequences of the siRNA duplex were designed by Invitrogen Block-iT RNAi Designer:

Forward: 5'-ACG ACA ACC GAU ACC UGC UGG UGA U-3'
Reverse: 5'-AUC ACC AGC AGG UAU CGG UUG UCG U-3'

The T98G cells were transfected with Na⁺/K⁺-ATPase α3 stealth RNAi™ siRNA or stealth RNAi™ siRNA negative control (Invitrogen) using Lipofectamine™ 2000 (Invitrogen) according to the manufacturer's instruction. Briefly, 0.5 × 10⁵ T98G cells were plated in a 6-well plate and cultured overnight. 250 pmol siRNA duplex or siRNA negative control was mixed with 10 μL lipofectamine reagent in the serum free Opti-MEM medium and transfected the T98G cells for 6 hrs. 48 hrs later, the cells were harvested for the reverse transcriptase-polymerase chain reaction (PCR) to detect the expression of the α3 subunit.

Reverse transcriptase-polymerase chain reaction

Total RNA was extracted from human glioblastoma cells using the Trizol reagent (Invitrogen) according to the procedure suggested by the manufacturer. For cDNA synthesis, 1 μg of total RNA were reverse transcribed into cDNA using RNA to cDNA High Capacity kit (Invitrogen) and PCR was performed in a PTC-150 Minicycler (MJ Research Inc., Watertown, MA) with primer sets for target genes and a housekeeping gene, ribosomal protein large subunit 19 (RPL19) as an internal control for both cDNA quantity and quality. PCR primers, as listed below, were designed according to the sequences in a previous report [42]. All the primers were designed to amplify products that covered one or more exons.

Na⁺/K⁺-ATPase α1 forward 5'-GAA AGA AGT TTC TAT GGA TG-3'
reverse 5'-ATG ATT ACA ACG GCT GAT AG-3'
Na⁺/K⁺-ATPase α2 forward 5'-AGA GAA TGG GGG CGG CAA GAA G-3'
reverse 5'-TGG TTC ATC CTC CAT GGC AGC C-3'
Na⁺/K⁺-ATPase α3 forward 5'-CCT CAC TCA GAA CCG CAT GAC-3'
was calculated. The ratio of target gene to housekeeping gene, RPL19, was calculated.

The PCR products (25 μL) in TAE buffer were loaded onto 1.5% agarose gel and run at 36 V for 90 min. The Gel was scanned for quantitative analysis using the UnScan It program (Silk Scientific Inc., Orem, UT). The ratio of target gene to housekeeping gene, RPL19, was calculated.

Chemicals
The caspase inhibitor Z-VAD-FMK was purchased from Enzyme Systems Products [42]. BAPTA-AM was from Tocris Bioscience (Bristol, UK). Ouabain and valinomycin were from Sigma Aldrich (St. Louis, MO) [42].

Statistical analyses
One-way ANOVA followed by Tukey post-test was performed for multiple group comparisons. Two-way ANOVA followed by Bonferroni post-tests was used for multiple groups with multiple time points. Data were shown as mean ± SEM. Changes were identified as significant if \(p \) value was less than 0.05.

Results

Ouabain-induced cell volume changes and toxicity in LN229 cells
Exposure of glioblastoma LN229 cells to ouabain caused noticeable morphological changes including cell swelling and, as a sign of membrane deterioration, granule structures started to appear on the surface of the cell membrane (Figure 1A). A quantified analysis revealed that the cell swelling developed soon after exposure to ouabain (1 μM) and reached the peak around 3–6 hrs later (Figure 1B-C). Interestingly, the swollen cells gradually returned to the original size regardless of the continuous presence of ouabain in the medium (Figure 1B-C). Moreover, raising the extracellular K+ concentration from 5 to 25 mM showed no effect on cell swelling but prevented the belated cell volume reduction, implying that a K+ efflux mechanism mediated the cell volume decrease (Figure 1C).

As an initial test for ouabain induced cytotoxicity in human glioblastoma cells, we exposed LN229 cultures to different ouabain concentrations. The MTT assay showed that ouabain induced time- and concentration-dependent cell viability reduction in these cells (Figure 1D). At a low concentration of 0.1 μM that is sublethal to normal neuronal cells [43], ouabain caused 13.8%, 23.9% and 42.0% reduction in cell viability after 6-, 24- and 48-hr exposures, respectively. Increasing ouabain concentration from 0.1 to 1 μM significantly augmented the cytotoxic effect at all time points (Figure 1D). Even higher concentrations (2 and 5 μM) did not further increase the toxicity at 24 to 48 hrs (Figure 1D). In the following experiments, 1 μM ouabain was selected to produce toxic effect in LN229 cells.

Ouabain-induced activation of apoptotic cascade in LN229 cells
The translocation of phosphatidylserine (PS) from the cytoplasmic side of the plasma lipid membrane to the membrane outer surface is an early event in apoptosis. Annexin V has been widely used as a probe for detecting this PS translocation event. Ouabain-induced PS translocation in LN229 cells was inspected using flow cytometry. Annexin V-positive cells significantly increased after a 5-hr exposure to ouabain (1 μM) (Figure 2A). Meanwhile, ouabain treatment for 3 hrs significantly increased activation of caspase-3 and caspase-9 (Figure 2). The activation of caspases was also detected using Western blot analysis (Figure 2C to E). Maximal activation of both caspases-3 and caspase-9 occurred 3 hrs after ouabain treatment and then dropped to control levels after 24 hrs. The anti-apoptotic protein Bcl-2 expression was reduced 24 hrs after ouabain treatment (Figure 2F). In line with the apoptotic component in ouabain-induced death of LN229 cells, co-applied caspase pan inhibitor Z-VAD-FMK (100 μM) significantly attenuated the ouabain-induced cell death (Figure 2). There was a cell death component, however, that was not prevented by the high concentration of Z-VAD (IC50 ≤ 10 μM for caspase inhibition), suggesting that there were caspase-independent cell death mechanisms in ouabain cytotoxicity yet to be identified.

Ouabain-induced loss of mitochondrial membrane potential in LN229 cells
The loss of mitochondrial membrane potential is an early event indicating dysfunction of energy metabolism and cell damage associated with both apoptosis and necrosis [44-47]. Tetramethylrhodamine methyl ester (TMRM) is a cell membrane permeable cationic dye that is actively sequestered by live mitochondria and has been used to detect changes in mitochondrial membrane potential [48]. In LN229 cells, 6-hr exposure to 1 μM ouabain caused a marked decrease in orange-red fluorescence of TMRM, indicating a significant loss of mitochondrial membrane potential and damage to the cells (Figure 3A and B).
Valinomycin- and Ouabain-induced disruption in K⁺ homeostasis and its relation to apoptotic events

The disruption of K⁺ homeostasis has been linked to initiation of an apoptotic cascade in many non-cancer cells [11,34-36,39,40]. To detect whether the K⁺-mediated mechanism might contribute to ouabain-induced cell death in human glioblastoma cells, we measured the intracellular K⁺ content using the cell permeable K⁺ indicator PBFI-AM. As a control, we first treated LN229 cells with the K⁺ ionophore valinomycin that is well known for its highly specific selectivity for K⁺ flux through lipid membranes down the K⁺ electrochemical gradient [38]. As expected, valinomycin (10 μM) induced a dramatic depletion of intracellular K⁺, significant loss of the mitochondrial membrane potential, and noticeable cell shrinkage in LN229 cells (Figure 4). The PBFI fluorescent intensity dropped significantly at 6 hrs after ouabain treatment and continued dropping at 12 and 24 hrs. Thus, ouabain treatment resulted in a marked and continuous depletion of intracellular K⁺ that lasted for many hours,
leading to ~50\% K+ loss by 24 hrs (Figure 4B). We confirmed that valinomycin increased caspase-3 activation after 6-, 12- and 24-hr exposure, while significant caspase-9 activation was seen at 12 hrs after valinomycin exposure (Additional file 1: Figure S1 A-C). Meanwhile, the anti-apoptotic protein Bcl-2 expression decreased at 12 and 24 hrs (Additional file 1: Figure S1 D). Valinomycin also stimulated a nuclear translocation of the Apoptosis-Inducing Factor (AIF), which represents a caspase-independent apoptotic pathway (Additional file 1: Figure S1 E). These tests verified that, similar to many non-cancerous neuronal and non-neuronal cells, glioblastoma cells are sensitive to the K+ efflux mediated apoptosis.

Supporting the idea that excessive K+ efflux is critical in apoptotic cell death, attenuating K+ efflux by elevating extracellular K+ to 25 mM antagonized ouabain-induced cell death (Figure 4C). To exclude the possibility that the effect of high K+ medium was mediated via membrane depolarization associated Ca2+ influx, additional experiments were performed in the presence of the Ca2+ channel blocker nifedipine (1 \textmu M). This maneuver, however, did not eliminate the protective effect of the 25 mM K+ medium (data not shown, but see [11,41]). Another important point is that, as in the case with Z-VAD, the high K+ medium only partially attenuated ouabain toxicity, confirming there were other injurious mechanisms in ouabain-induced cell death.
Ouabain-induced intracellular Ca2+ and Na+ Changes in LN229 Cells

It is widely accepted that necrosis is triggered by increases in intracellular Ca2+ and Na+, while blocking the Na+/K+ pump is expected to cause accumulation of intracellular Na+ and Ca2+. This effect, however, has not been verified in human glioblastoma cells before. We thus measured the intracellular Na+ and Ca2+ using the cell permeable indicators SBFI-AM and Fluo-4-AM, respectively. As expected, SBFI imaging showed that ouabain increased intracellular Na+ as early as 5 min after addition of ouabain and the effect lasted for up to one hour (Additional file 2: Figure S2 A and B). Fluo-4-AM Ca2+ imaging showed that intracellular Ca2+ concentration ([Ca2+]\textsubscript{i}) doubled after 3–6 hr treatment with 1 μM ouabain (Additional file 2: Figure S2 C and D). The [Ca2+]\textsubscript{i} increase, however, subsided at 24 hrs after ouabain treatment. To determine the role of this [Ca2+]\textsubscript{i} increase in ouabain-induced cytotoxicity, the membrane permeable Ca2+ chelator BAPTA-AM was added into the media to prevent the increase in [Ca2+]\textsubscript{i}. BAPTA-AM (1 μM) effectively prevented ouabain-induced [Ca2+]\textsubscript{i} increases in LN229 cells (Additional file 2: Figure S2). However, addition of BAPTA-AM did not antagonize ouabain-induced cell death; rather it showed a trend of increasing ouabain-induced cell death in MTT assays. This was likely due to a toxic effect of BAPTA alone on the survival of LN229 cells (Additional file 2: Figure S2 E).

Figure 3 Ouabain and valinomycin induced mitochondrial membrane depolarization in LN229 cells. The mitochondrial membrane potential was assessed using the fluorescent dye TMRM in LN229 cells. A. TMRM (200 nM) was added into the medium to stain the live cells for 30 min. The intensity of TMRM fluorescence images is a reflection of the mitochondrial membrane potential. The reduction and disappearance of TMRM staining was seen 6 hrs after ouabain (1 μM) and valinomycin (10 μM) treatment. B. Quantification of TMRM fluorescence intensity after 6 hrs of ouabain treatment. Both ouabain and valinomycin induced a significant loss of the mitochondrial membrane potential in LN229 cells. DMSO was a vehicle negative control. The fluorescent intensity was quantified using the NIH Image J software. * P < 0.05 vs. controls.

Ouabain-induced ultrastructural changes of hybrid cell death in glioblastoma cells

Since the morphological changes, especially ultrastructural ones, have been regarded as a gold standard for distinguishing apoptosis from necrosis, we used electron microscopy to examine the ultrastructural features of ouabain-induced cell death. Electron microscopy imaging revealed that ouabain treatment (1 μM, 24 hrs) caused breakdown of the plasma membrane, while the nucleus showed shrinkage in the absence of absolute cell volume decrease. Cytosol swelling accompanied the appearance of many empty vacuoles in the cytoplasm (Figure 5). These subcellular alterations are typical in cells dying from the hybrid cell death mechanism previously observed in non-cancerous cells [41,43,49].

High expression of the Na+/K+-ATPase subunits in glioblastoma cells and its relation to resistance to TMZ

In an effort to understand a possible relationship between Na+/K+-ATPase and high resistance to chemotherapy drugs, we examined the expression of Na+/K+-ATPase subunits α1, α2 and α3 in TMZ-sensitive LN229 cells, TMZ-resistant T98G cells, as well as normal human astrocytes. While T98G cells expressed more α1 mRNA compared to LN229, the expression of α1 mRNA was not statistically different from human astrocytes (Figure 6A and B). It was then interesting to see that T98G cells expressed higher mRNA levels of the α2 and α3 subunits.
compared to LN229 cells and human astrocytes. α3 subunit level was more than doubled in T98G cells compared to LN229 cells and 4 folds the level in human astrocytes (Figure 6A to D).

More importantly, T98G cells were more sensitive to ouabain-induced cell death (0.1 to 5 μM) (Figure 6E), and were more resistant to TMZ compared to LN229 cells (Figure 6F). It is worth pointing out that the low concentration of 0.1 μM ouabain does not affect the viability of LN229 cells, normal astrocytes and non-cancerous neuronal cells [43], while it showed a significant killing effect on T98G cells. Meanwhile, TMZ at low concentrations induced negligible cell death in T98G cells, which instead kept proliferating in the presence of low dose TMZ (Figure 6F). Only when the TMZ concentration was elevated to 100 μM did T98G cells show a very mild cell death response (Figure 6F).

These data suggested a selective action of ouatain on TMZ-resistant tumor cells.

In the next experiment, we tested the TMZ killing effect on T98G and LN229 cells with and without Na⁺/K⁺-ATPase inhibition. At a relatively low dosage (0.1 μM), ouabain was coapplied with TMZ (100 μM). This co-application significantly augmented the death of T98G cells compared to TMZ treatment alone (Figure 6G). This data supported the idea that inhibition of the Na⁺/K⁺ pump activity with relatively low dosages of ouabain could increase the susceptibility of the drug-resistant T98G cells to TMZ.

Knockdown of the Na⁺/K⁺-ATPase α3 subunit sensitizes drug resistant T98G cells to TMZ

Due to the marked high expression of the Na⁺/K⁺-ATPase α3 subunit in T98G cells compared to LN229 and
astrocytes, we tested a possible relationship between Na\(^{+}/K^{+}\)-ATPase and TMZ sensitivity. To knockdown the Na\(^{+}/K^{+}\)-ATPase α3 subunit in T98G cells, cells were treated with stealth RNAi for 48 hrs to reduce the α3 subunit (Figure 7A). When tested in α3 subunit knockdown T98G cells, TMZ (100 μM, 48 hrs) caused significantly more cell death compared to control T98G cells or α3 knockdown T98G cells without TMZ exposure (Figure 7B). Western blot analysis showed that down regulation of the α3 subunit augmented cytochrome C release from mitochondria to the cytoplasm when cells were treated with TMZ (Figure 7C and D). On the other hand, translocation of AIF was not affected by this knockdown (Figure 7C).

Discussion

The present investigation shows for the first time in cancer cells that blocking or down regulation of Na\(^{+}/K^{+}\)-ATPase induces a cell death phenotype that has characteristics of both apoptosis and necrosis. We show that disruption of K\(^{+}\) homeostasis is a key factor in the induction of apoptosis in human glioblastoma cells. Contrary to what is widely believed that a cell may either die from apoptosis or necrosis, ouabain induced cell death does not have typical features of apoptosis or necrosis. Although strong apoptotic features such as phosphatidylserine translocation, caspase activation and Bcl-2 reduction were detected, ouabain-induced cell death in these cells exhibited necrotic features as well, including cell swelling, mitochondrial injury, \([Ca^{2+}]\) increase, deteriorated cellular organelles and breakdown of the plasma membrane. Consistent with the multifaceted ionic changes, ultrastructural alterations include both necrotic and apoptotic features. Since much higher expression of the Na\(^{+}/K^{+}\)-ATPase α2/α3 subunits exists in drug-resistant glioblastoma cells compared to drug-sensitive and normal human glial cells, our data indicate that the α2 and/or α3 subunits are potential targets for anti-cancer treatments. This was demonstrated by the different ouabain induced dose-responses of TMZ-sensitive LN229 cells, TMZ-resistant T98G cells and normal human astrocytes. This principle was also specifically demonstrated in the subunit knockdown experiment. Furthermore, the hybrid cell death mechanism of multiple targets helped to overcome the TMZ resistance of glioblastoma cells. Taken together, this investigation provides a better understanding of the ionic and cellular mechanisms underlying ouabain-induced cell death in human glioblastoma cells and suggests a potential therapeutic target for glioblastoma treatment.

We noticed that ouabain-induced apoptotic changes in LN229 cells were not typical of those caused after valinomycin exposure. For example, valinomycin caused gradual and progressive cell volume shrinkage while ouabain did not show the same volume change. Instead of apoptotic cell shrinkage, ouabain causes an initial cell swelling followed by a gradual decrease in cell volume. According
Figure 6 Expression of Na\(^+\)/K\(^+\)-ATPase subunits in LN229/T98G cells and human astrocytes. The expression of Na\(^+\)/K\(^+\)-ATPase three α subunits was detected using reverse transcriptase PCR analysis in glioblastoma cell lines LN229 and T98G as well as in human astrocytes. A. RT-PCR result shows different mRNA levels of α1, α2 and α3 subunits in the three cell types. Ribosomal protein-19 (RPL-19) was measured as a housekeeper gene for loading control. B. Quantified data in the bar graph show that T98G cells express higher α1 mRNA levels compared to LN229 cells but there is no difference in α1 mRNA levels compared to human astrocytes. N = 3 in each group; * P < 0.05 vs. human astrocytes; # P < 0.05 vs. LN229 cells. C and D. Quantified RT-PCR data on α2 (C) and α3 (D) subunits. Both subunits were highly expressed in T98G cells and were significant different from those in LN229 cells and human astrocytes. E. MTT assay of cell viability showed that ouabain treatment (0.1 - 5 μM for 6 hrs) significantly reduced the cell viability in T98G cells compared to LN229 cells. F. MTT assay confirmed a higher resistance of T98G cells to TMZ (0.01 - 100 μM for 24 hrs) compared to LN229 cells. G. MTT assay showed that co-treatment of ouabain (0.1 μM) and TMZ (100 μM) for 24 hrs significantly augmented the cell vulnerability to TMZ. * P < 0.05 vs. control, # P < 0.05 vs. TMZ alone.
to our previous research in non-cancerous cells and the data in this investigation, the initial cell swelling is attributable to intracellular Na\(^+\) and Ca\(^{2+}\) accumulation, while the gradual volume decrease is associated with the slower process of intracellular K\(^+\) depletion [36]. The early cell swelling followed by cell volume reduction during ouabain exposure was analogous to the hybrid cell death model (concurrent apoptosis and necrosis in the same cell) that we reported before in cortical neurons [41]. The acute increase in Ca\(^{2+}/Na\(^+\) accompanied with a gradual K\(^+\) depletion in glioblastoma cells are consistent with the unique time-dependent cell volume alterations. The ionic disruptions also can be linked to necrotic and apoptotic events in these cells.
Although extensive research has been focused on Na+/K+-ATPase in tumor cells in the past few years, virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.

In the present investigation, low concentrations of ouabain and the induced hybrid cell death mechanism effectively sensitize drug-resistant glioblastoma cells to the anti-cancer effect of TMZ. It is important to note that, in this anti-cancer strategy, only a low concentration of ouabain is needed to sensitize the drug-resistant cancer cells. At the level of Na+/K+ pump down-regulation, survival of normal neuronal cells or even drug-sensitive glioblastoma cells are not affected. This is most likely due to the fact that expression of Na+/K+-ATPase is virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.

In the present investigation, low concentrations of ouabain and the induced hybrid cell death mechanism effectively sensitize drug-resistant glioblastoma cells to the anti-cancer effect of TMZ. It is important to note that, in this anti-cancer strategy, only a low concentration of ouabain is needed to sensitize the drug-resistant cancer cells. At the level of Na+/K+ pump down-regulation, survival of normal neuronal cells or even drug-sensitive glioblastoma cells are not affected. This is most likely due to the fact that expression of Na+/K+-ATPase is virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.

In the present investigation, low concentrations of ouabain and the induced hybrid cell death mechanism effectively sensitize drug-resistant glioblastoma cells to the anti-cancer effect of TMZ. It is important to note that, in this anti-cancer strategy, only a low concentration of ouabain is needed to sensitize the drug-resistant cancer cells. At the level of Na+/K+ pump down-regulation, survival of normal neuronal cells or even drug-sensitive glioblastoma cells are not affected. This is most likely due to the fact that expression of Na+/K+-ATPase is virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.

In the present investigation, low concentrations of ouabain and the induced hybrid cell death mechanism effectively sensitize drug-resistant glioblastoma cells to the anti-cancer effect of TMZ. It is important to note that, in this anti-cancer strategy, only a low concentration of ouabain is needed to sensitize the drug-resistant cancer cells. At the level of Na+/K+ pump down-regulation, survival of normal neuronal cells or even drug-sensitive glioblastoma cells are not affected. This is most likely due to the fact that expression of Na+/K+-ATPase is virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.

In the present investigation, low concentrations of ouabain and the induced hybrid cell death mechanism effectively sensitize drug-resistant glioblastoma cells to the anti-cancer effect of TMZ. It is important to note that, in this anti-cancer strategy, only a low concentration of ouabain is needed to sensitize the drug-resistant cancer cells. At the level of Na+/K+ pump down-regulation, survival of normal neuronal cells or even drug-sensitive glioblastoma cells are not affected. This is most likely due to the fact that expression of Na+/K+-ATPase is virtually all investigations assume apoptosis is the underlying mechanism for its anti-cancer effect. In the effort to identify therapeutic targets, many studies have focused on the α1 subunit while only very few reports have looked at the role of the α3 subunit [50]. To understand the ionic mechanism mediating the anti-cancer property of cardiac glycosides, many research reports examined intracellular Na+ accumulation and the Na+-dependent Ca2+ increases (e.g. Ca2+ oscillations) via enhanced reverse operation of the Na+/Ca2+ exchanger [31-33]. This research focus, however, overlooks the most abundant intracellular cation K+ and disregards the K+ role in apoptotic cell volume regulation and in the induction of apoptotic cascade. This was most likely due to the influence of many early investigations that simply linked K+ gradient to membrane potential regulation and the consequent influence on Ca2+ influx [42]. Accumulating evidence in recent years, however, has endorsed that a pro-apoptotic K+ efflux is an integrated cellular event in the early stage of apoptosis in non-cancerous neuronal, glial and peripheral cells [34-36]. We now show new evidence that this K+-mediated apoptotic mechanism similarly takes place in glioblastoma cells.
Bcl-2, caspase-3 and caspase-9 at 6, 12 and 24 hrs after valinomycin (10 μM) treatment. B to D: Valinomycin treatment significantly increased caspase-3 and caspase-9 expression and reduced the anti-apoptotic protein Bcl-2 expression in LN229 treated cells. N = 3 in each group. * P < 0.05 vs. vehicle control (CTL). E: Immunohistochemical staining for apoptosis inducing factor (red) and nuclei (Hoechst, blue) showed that valinomycin induced transcription from cytoplasm to nucleus 6 hrs after valinomycin treatment.

Additional file 2: Figure S2. Ouabain-induced cellular Na⁺ and Ca²⁺ changes in LN229 cells. Intracellular Na⁺ and Ca²⁺ was assessed in LN229 cells using the Na⁺ dye SBFI-AM and Ca²⁺ fluorescent dye Fluo-4 AM, respectively. A and B: SBFI-AM fluorescent imaging showed a gradual increase in the intracellular Na⁺ content. B is the quantified analysis of Na⁺ imaging showing ouabain-induced acute increase in intracellular Na⁺ content of LN229 cells within 5–60 min after application of ouabain. C: Fluo-4-AM imaging detected [Ca²⁺]i increases in LN229 cells 1 to 3 hrs after application of 1 μM ouabain. Co-applied BAPTA-AM (1 μM) effectively protected the [Ca²⁺]i change. D: The intensity of Fluo-4 fluorescence was quantified using Image J software (NIH). Ouabain doubled the [Ca²⁺]i at 3 hrs after exposure and the Ca²⁺ level was gradually subsided. N = 240 cells from 3 independent assays. *p < 0.01 vs. time 0. E: MTT assay showed that although ouabain (1 μM, 24 hrs) reduced cell viability of LN229 cells, the addition of BAPTA-AM did not show a significant protection on ouabain-induced cell death. As an intracellular Ca²⁺ chelator, BAPTA-AM alone showed some toxicity to LN229 cells. N = 3 independent assays. * P < 0.01 vs. control.

Abbreviations
GBM: Glioblastoma multiforme; TMZ: Temozolomide; WHO: World Health Organization; CNS: Central nervous system; FBS: Fetal bovine serum; MITT: 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium; PS: Phosphatidylserine; PBS: Phosphate-buffered saline; TARM: Tetramethylrhodamine methyl ester; AIF: Apoptosis-inducing factor; ECGG: Epigallocatechin gallocatechin; TSC: Trans-sodium crocetinate.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
DC performed cell culture procedures, cell death assays, flow cytometry assay, and Western blot analysis. MS participated in cell culture and cell death experiments. OM participated in molecular biological experiments and helped to draft the manuscript. SY conceived of the study, developed the hypothesis and wrote the manuscript. All authors read and approved the final manuscript.

Authors' information
SY is the O. Wayne Rollins Professor in the Department of Anesthesiology and a Professor in the Department of Hematology and Oncology, Emory University School of Medicine.

Acknowledgement
This investigation was supported by grants from National Institute of Health, USA (NS052755 to SY); American Heart Association (Grant-in-Aid Award GRNTI206022 to SY); Predoctoral Fellowship PRE4430032 to OM, and Postdoctoral Fellowship POST12080252 to MS). It was also supported by the O. Wayne Rollins Endowed Chair appointment to SY.

Received: 3 July 2014 Accepted: 22 September 2014 Published: 28 September 2014

References
1. Desjardins A, Rich JN, Quinn JA, Verdenburgh J, Gururangan S, Sathornsumetee S, Reardon DA, Friedman AH, Bigner DD, Friedman HS: Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci 2005, 10:2645–2668.
2. Weller M: Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly 2011, 141:w13210.
3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curtisschmann J, Janzer RC, Ludwig SK, Gorlia T, Algieger A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352(10):987–996.
4. Lefranc F, Brotchi J, Kiss R: Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 2005, 23(10):2411–2422.
5. Giese A, Bjerkgård B, Berens ME, Westphal M: Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 2003, 21(6):1624–1636.
6. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME: Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 2005, 7(1):7–16.
7. Haar CP, Hebbel P, Wallace GCT, Das A, Vandergrift WA 3rd, Smith JA, Jiglio P, Patel SJ, Ray SK, Banik NL: Drug resistance in glioblastoma: a mini review. Neuromech Res 2012, 37(6):1192–1200.
8. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almoquist KC, Stewart AJ, Kurz EU, Duncan AM, Dreeky RG: Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992, 258(5088):1650–1654.
9. Teicher BA: Hypoxia and drug resistance. Cancer Metastasis Rev 1994, 13(2):159–168.
10. Jatoivich AA, Bentonello AM: Na⁺, K⁺-ATPase: an indispensable ion pumping-signaling mechanism across mammalian cell membranes. Semin Nephrol 2006, 26(5):386–392.
11. Yu SP: Na⁺, K⁺-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 2003, 66(8):1601–1609.
12. Mijatovic T, Inggrassia L, Facchini V, Kiss R: Na⁺/K⁺-ATPase alpha subunits as new targets in anticancer therapy. Expert Opin Ther Targets 2008, 12(11):1403–1417.
13. Xu ZW, Wang FM, Gao MJ, Chen XY, Hu WL, Xu RC: Targeting the Na⁺/K⁺-ATPase α1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting. Biol Pharm Bull 2010, 33(5):743–751.
14. Prassas I, Diamandis EP: Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 2008, 7(11):926–935.
15. Werdenmann H: Na⁺/K⁺-ATPase, endogenous ligands like compounds and cancer development – a hypothesis. Front Biosci 2005, 10:2165–2176.
16. Lefranc F, Kiss R: The sodium pump alpha 1 subunit as a potential target to combat apoptosis-resistant glioblastomas, Neoplasia 2008, 10(3):198–206.
17. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA: Cardiac glycosides stimulate Ca²⁺ increases and apoptosis in endogenous diabetic, metastatic human prostate adenocarcinoma cells. Cancer Res 2000, 60(14):3807–3812.
18. Huang Y, Chueh SC, Teng CM, Guh JH: Investigation of ouabain-induced anticancer effect in human endogenous prostate cancer PC-3 cells. Biochem Pharmacol 2004, 67(7):727–733.
19. Mijatovic T, Roland I, Van Quaquebeke A, Nilsson B, Mathieu A, Van Vynckt F, Daro F, Blanco G, Facchini V, Kiss R: The α1 subunit of the sodium pump could represent a novel target to combat non-small lung cancers. J Pathol 2007, 212(2):170–179.
20. Mijatovic T, Op De Beeck A, Van Quaquebeke E, Dewelje J, Daro F, de Lannoy Y, Kiss R: The cardiac enzyme UNS1450 is able to deactivate nuclear factor kappaB-mediated cytotoxic effects in human non-small lung cancer cells. Mol Cancer Ther 2006, 5(2):391–399.
21. Stenkivist B: Cardiolignoids and cancer. Ant-Cancer Drugs 2001, 12(7):635–638.
22. Lefranc F, Mijatovic T, Kondo Y, Savagio S, Roland I, Debever O, Kostic D, Varek V, Gallay P, Kondo S, Blanco G, Kiss R: Targeting the α1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery 2008, 62(2):211–212. discussion 221–212.
23. Van Quaquebeke E, Simon G, Andre A, Dewelje J, El Yazidi M, Bruneeuf N, Tutu J, Nacouma Q, Guissou P, Deaestecker C, Braemck J, Kiss R, Daro F: Identification of a novel cardiacine (12’-oxovorucarin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 2005, 48(3):849–856.
24. Schoner W, Schierer-Bobis G: Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007, 293(2):C539–C536.
Ouabain stimulates endothelin release and apoptosis

Saunders R, Scheiner-Bobis G:

Perez-Pinzon MA, Stetler RA, Fiskum G:

Kadenbach B, Ramzan R, Moosdorf R, Vogt S:

Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Ions, cell volume, and apoptosis.

Yu SP:

Xiao AY, Wei L, Xia S, Rothman S, Yu SP:

Heimlich G, Bortner CD, Cidlowski JA:

Pchejetski D, Taurin S, Der Sarkissian S, Lopina OD, Pshezhetsky AV, Chen et al. BMC Cancer

Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 1999, 76(1 Pt 1):465–477.

Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP: Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003, 116(Pt 10):2099–2110.

L i H, Wang P, Gao Y, Zhu X, Lu L, Cohen L, Meng Z, Yang P: Na+ / K+-ATPase alpha3 mediates sensitivity of hepatocellular carcinoma cells to bufalin. Oncol Rep 2011, 25(2):825–830.

Wolff JR, Schieweck C, Emmenegger H, Meier-Ruge W: Cerebrovascular ultrastructural alterations after intra-arterial infusions of ouabain, scilla-glycosides, heparin and histamine. Acta Neuropathol 1975, 31(1):45–58.

Rickman IA: Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 1992, 11(2):121–139.

Okada H, Mak TW: Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 2004, 4(8):592–603.

Sotelo J, Briceno E, Lopez-Gonzalez MA: Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2006, 144(5):337–343.

Skehan J, Cifarelli CP, Dassoulas K, Olson C, Rainey J, Han S: Trans-sodium crocinate enhancing survival and glioma response on magnetic resonance imaging to radiation and temozolomide. J Neurol 2010, 113(2):234–239.

Chen TC, Wang W, Golden EB, Thomas S, Sivakumar W, Hofman FM, Louie SJ, Schonhauser A, Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett 2011, 302(2):100–108.

Jain MV, Pacculla AM, Klionsch T, Dimba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palcharla VR, Maddika S, los M: Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013, 17(1):12–29.

Orogo AM, Gustafsson AB: Cell death in the myocardium: Heart we might not go on. JMB 2013, 65(6):651–656.

Yakovlev AG, Faden AI: Mechanisms of neural cell death: implications for development of neuroprotective therapeutic strategies. NeuroRx 2004, 1(1):5–16.

Liu J, Xie ZJ: The sodium pump and cardiotoxic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta 2010, 1802(1):1237–1245.

LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA: Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 2008, 11(1):32–50.

doI:10.1186/1471-2407-14-716

Cite this article as: Chen et al.: Inhibition of Na+ / K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 2014 14:716.

Submit your next manuscript to BioMed Central and take full advantage of:

Convenient online submission
Thorough peer review
No space constraints or color figure charges
Immediate publication on acceptance
Inclusion in PubMed, CAS, Scopus and Google Scholar
Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit