Bio

Sean Follmer is an Assistant Professor of Mechanical Engineering and Computer Science (by courtesy) at Stanford University. His Research in Human Computer Interaction, Haptics, and Human Robot Interaction explores the design of novel tactile physical interfaces and novel robotic devices. Dr. Follmer directs the Stanford Shape Lab and is a faculty member of the Stanford HCI Group. He is a core faculty member of the Design Impact masters program focusing on innovation and human centered design at Stanford.

The Shape Lab explores how we can interact with digital information in a more physical and tangible way. Towards our goal of more human centered computing, we believe that interaction must be grounded in the physical world and leverage our innate abilities for spatial cognition and dexterous manipulation with our hands. We develop advanced technologies in robotics, mechatronics, and sensing to create interactive, dynamic physical 3D displays and haptic interfaces that allow 3D information to be touched as well as seen. We are specifically interested in using these novel interfaces to support richer remote collaboration, computer aided design, education, and interfaces for people with visual impairments. In pursuit of these goals, we use a design process grounded in iterative prototyping and human centered design and look to create new understanding about human perception and interaction through controlled studies.

Our research in Human Computer Interaction and Human Machine Interaction currently directed the following areas:
- Shape Changing and Tangible User Interfaces
- Haptic Interaction
- Accessible User Interfaces for People who Are Blind and Visually Impaired
- Shape Changing Robotics
- Design and Debugging Tools for Physical Computing and Robotic Systems

Dr. Follmer received a PhD and a Masters from the MIT Media Lab in 2015 and 2011 (respectively) for his work in human-computer interaction, and a BS in Engineering with a focus on Product Design from Stanford University. His talk featured on TED.com was named one of the best science and tech TED talks of 2015 and has been viewed more than 1.5 million times. He has received numerous awards for his research and design work such as an Alfred P. Sloan Fellowship, NSF CAREER Award, Google Faculty Research Award, 17 Best Paper Awards and nominations from premier conferences in human-computer interaction (including Five Best papers at ACM UIST, Two Best Papers at ACM CHI and an IMWUT Distinguished Paper Award), Fast Company Innovation By Design Award, Red Dot Design Award, and a Laval Virtual Award. His work has been shown at the Smithsonian Cooper Hewitt Design Museum, Ars Electronica Center, and the Milan Design Week.
ACADEMIC APPOINTMENTS
• Assistant Professor, Mechanical Engineering
• Assistant Professor (By courtesy), Computer Science
• Member, Bio-X
• Faculty Affiliate, Institute for Human-Centered Artificial Intelligence (HAI)

HONORS AND AWARDS
• Best Paper Award, ACM CHI 2023 (2023)
• NSF CAREER Award, National Science Foundation (2022)
• Best Paper Award, ACM CHI 2021 (2021)
• Sloan Research Fellowship, Alfred P. Sloan Foundation (2021)
• Best Short Paper Award, ACM VRST (2019)
• Distinguished Paper Award, ACM IMWUT Volume 2 (2019)
• Best Paper Award, ACM UIST 2017 (2017)
• Google Faculty Research Award, Google (2017)
• Best Demo Award, ACM UIST 2016 (2016)
• Best Paper Award (x2), ACM UIST 2016 (2016)
• Google Faculty Research Award, Google (2016)
• Best Paper Award, ACM UIST 2013 (2013)
• Best Paper Award, ACM UIST 2012 (2012)

PROGRAM AFFILIATIONS
• Symbolic Systems Program

PROFESSIONAL EDUCATION
• Postdoctoral Associate, MIT Media Lab (2015)
• PhD, MIT Media Lab (2015)
• S.M., MIT Media Lab (2011)

LINKS
• Shape Lab Site: http://shape.stanford.edu
• Talk on TED.com: https://www.ted.com/talks/sean_follmer_shape_shifting_tech_will_change_work_as_we-know-it

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS
Human Computer Interaction, Haptics, Robotics, Human Centered Design

Teaching

COURSES
2022-23
• MS Design Capstone Project 1: DESIGN 361A, ME 316A (Aut)
• MS Design Capstone Project 2: ME 316B (Win)
• MS Design Capstone Project 3: DESIGN 361C, ME 316C (Spr)
• Product Design Methods: DESIGN 141, ME 115B (Win)

2021-22
• Human-Computer Interaction Seminar: CS 547 (Aut)
• Product Design Methods: ME 115B (Win)

2020-21
• Design Impact Master's Project I: ME 316A (Aut)
• Design Impact Master's Project II: ME 316B (Win)
• Design Impact Master's Project III: ME 316C (Spr)
• Product Design Methods: ME 115B (Spr)

2019-20
• Design Impact Master's Project I: ME 316A (Aut)
• Introduction to the Design of Smart Products: CS 377N, ME 216M (Spr)
• Product Design Methods: ME 115B (Win)

STANFORD ADVISEES
Doctoral Dissertation Reader (AC)
Hojung Choi, Lawrence Domingo, Amar Hajj-Ahmad, Kenneth Hoffmann, Aya Mouallem

Orals Chair
Sean Liu

Doctoral Dissertation Advisor (AC)
Elyse Chase, Savannah Cofer, Wing-Sum Law, Ahad Rauf, Olivia Tomassetti, Elizabeth Vasquez

Orals Evaluator
Jingyi Li

Master's Program Advisor
Gabriella Dweck, Ayisha Jackson, Maria Metzger, Francis Santiago, Jasmine Shih, Graciela Smet, Elysia Smyers, Alexandra Suarez, Liliana Taylor

Doctoral Dissertation Co-Advisor (AC)
Chris Ford, Summer Jung, Eunyoung Kim, Jingyi Li, Alessandra Napoli

Doctoral (Program)
Dan Fan, Alessandra Napoli, Yujie Tao, Sofia Wyetzner

Publications

PUBLICATIONS
• The Accessibility of Data Visualizations on the Web for Screen Reader Users: Practices and Experiences During COVID-19 ACM TRANSACTIONS ON ACCESSIBLE COMPUTING
 Fan, D., Siu, A., Rao, H., Kim, G., Vazquez, X., Greco, L., O'Modhrain, S., Follmer, S.
 2023; 16 (1)

• Detecting Touch and Grasp Gestures Using a Wrist-Worn Optical and Inertial Sensing Network IEEE ROBOTICS AND AUTOMATION LETTERS
Cofer, S., Chen, T. N., Yang, J., Follmer, S.
2022; 7 (4): 10842-10849

- An All-Soft Variable Impedance Actuator Enabled by Embedded Layer Jamming *IEEE-ASME TRANSACTIONS ON MECHATRONICS*
 Do, B. H., Choi, I., Follmer, S.
 2022

- Robotic Presence: The Effects of Anthropomorphism and Robot State on Task Performance and Emotion *IEEE ROBOTICS AND AUTOMATION LETTERS*
 Kim, L. H., Domova, V., Yao, Y., Huang, C., Follmer, S.; Paredes, P. E.
 2022; 7 (3): 7399-7406

- Beyond Being Real: A Sensorimotor Control Perspective on Interactions in Virtual Reality
 Abtahi, P., Hough, S. Q., Landay, J. A., Follmer, S., ACM
 ASSOC COMPUTING MACHINERY. 2022

- A Model Predictive Control Approach for Reach Redirection in Virtual Reality
 Gonzalez, E. J., Chase, E. Z., Kotipalli, P., Follmer, S., ACM
 ASSOC COMPUTING MACHINERY. 2022

- Slide-Tone and Tilt-Tone: 1-DOF Haptic Techniques for Conveying Shape Characteristics of Graphs to Blind Users
 Fan, D., Siu, A., Law, W., Zhen, R., O'Modhrain, S., Follmer, S., ACM
 ASSOC COMPUTING MACHINERY. 2022

- Supporting Accessible Data Visualization Through Audio Data Narratives
 Siu, A., Kim, G., O'Modhrain, S., Follmer, S., ACM
 ASSOC COMPUTING MACHINERY. 2022

- Augmenting Perceived Softness of Haptic Proxy Objects Through Transient Vibration and Visuo-Haptic Illusion in Virtual Reality *IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS*
 Choi, I., Zhao, Y., Gonzalez, E. J., Follmer, S.
 2021; 27 (12): 4387-4400

- Generating Legible and Glanceable Swarm Robot Motion through Trajectory, Collective Behavior, and Pre-attentive Processing Features *ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION*
 Kim, L. H., Follmer, S.
 2021; 10 (3)

- Hybrid Actuation With Unidirectional Clutches for Handheld Haptic Controllers *IEEE ROBOTICS AND AUTOMATION LETTERS*
 Choi, I., Gonzalez, E. J., Follmer, S.
 2021; 6 (3): 4827-4834

- COVID-19 highlights the issues facing blind and visually impaired people in accessing data on the web *W4A: Web Accessibility*
 Siu, A. F., Fan, D., Kim, G. S., Rao, H. V., O'Modhrain, S., Follmer, S.
 2021: 1-15

- Balloon Animal Robots: Reconfigurable Isoperimetric Inflated Soft Robots
 Stuart, A. D., Hammond, Z. M., Follmer, S., IEEE
 IEEE. 2021: 6941-6947

- Grasp Analysis and Manipulation Kinematics for Isoperimetric Truss Robots
 Hammond, Z. M., Usevitch, N. S., Follmer, S., IEEE
 IEEE. 2021: 6140-6146

- Acoustic Communication and Sensing for Inflatable Modular Soft Robots
 Drew, D. S., Devlin, M., Hawkes, E., Follmer, S., IEEE
 IEEE. 2021: 11827-11833

- A Causal Feeling: How Kinesthetic Haptics Affects Causal Perception
 Chase, E. Z., Wolff, P., Gerstenberg, T., Follmer, S., IEEE
 IEEE. 2021: 347
HIGH FORCE DENSITY MULTI-STAGE ELECTROHYDRODYNAMIC JETS USING FOLDED LASER MICROFABRICATED ELECTRODES
Drew, D. S., Follmer, S., IEEE
IEEE.2021: 54-57

Lightweight High Voltage Generator for Untethered Electroadhesive Perching of Micro Air Vehicles IEEE ROBOTICS AND AUTOMATION LETTERS
Park, S., Drew, D. S., Follmer, S., Rivas-Davila, J.
2020; 5 (3): 4485–92

An untethered isoperimetric soft robot. Science robotics
Usevitch, N. S., Hammond, Z. M., Schwager, M., Okamura, A. M., Hawkes, E. W., Follmer, S.
2020; 5 (40)

An untethered isoperimetric soft robot SCIENCE ROBOTICS
Usevitch, N. S., Hammond, Z. M., Schwager, M., Okamura, A. M., Hawkes, E. W., Follmer, S.
2020; 5 (40)

Foxels: Build Your Own Smart Furniture
Perteneder, F., Probst, K., Leong, J., Gassler, S., Rendl, C., Parzer, P., Fluch, K., Gauleitner, S., Follmer, S., Koike, H., Haller, M., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2020: 111–22

User-Defined Swarm Robot Control Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Kim, L. H., Drew, D. S., Domova, V., Follmer, S.
Association for Computing Machinery.2020: 13

Design and Analysis of High-Resolution Electrostatic Adhesive Brakes Towards Static Refreshable 2.5D Tactile Shape Display IEEE TRANSACTIONS ON HAPTICS
Zhang, K., Gonzalez, E. J., Guo, J., Follmer, S.
2019; 12 (4): 470–82

Beyond The Force: Using Quadcopters to Appropriate Objects and the Environment for Haptics in Virtual Reality
Abtahi, P., Landry, B., Yang, J., Pavone, M., Follmer, S., Landay, J. A., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019

Investigating the Detection of Bimanual Haptic Retargeting in Virtual Reality
Gonzalez, E. J., Follmer, S., Spencer, S. N.
ASSOC COMPUTING MACHINERY.2019

shapeCAD: An Accessible 3D Modelling Workflow for the Blind and Visually-Impaired Via 2.5D Shape Displays
Siu, A. F., Kim, S., Miele, J. A., Follmer, S., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019: 342–54

Tactile Code Skimmer: A Tool to Help Blind Programmers Feel the Structure of Code
Falase, O., Siu, A. F., Follmer, S., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019: 536–38

Evaluating the Minimum Jerk Motion Model for Redirected Reach in Virtual Reality
Gonzalez, E. J., Abtahi, P., Follmer, S., ACM
ASSOC COMPUTING MACHINERY.2019: 4–6

Editing Spatial Layouts through Tactile Templates for People with Visual Impairments
Li, J., Kim, S., Miele, J. A., Agrawala, M., Follmer, S., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019

Pinpoint: A PCB Debugging Pipeline Using Interruptible Routing and Instrumentation
Strasnick, E., Follmer, S., Agrawala, M., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019

SwarmHaptics: Haptic Display with Swarm Robots
Kim, L. H., Follmer, S., Assoc Comp Machinery
ASSOC COMPUTING MACHINERY.2019
• Dynamic Composite Data Physicalization Using Wheeled Micro-Robots. *IEEE transactions on visualization and computer graphics*
 Goc, M. L., Perin, C., Follmer, S., Fekete, J., Dragicevic, P.
 2018

• Electrostatic Adhesive Brakes for High Spatial Resolution Refreshable 2.5D Tactile Shape Displays
 Zhang, K., Follmer, S., Kuchenbecker, K. J., Gerling, G. J., Visell, Y.
 IEEE.2018: 319–26

• An Accessible CAD Workflow Using Programming of 3D Models and Preview Rendering in A 2.5D Shape Display
 Siu, A. F., Miele, J., Follmer, S., Assoc Comp Machinery
 ASSOC COMPUTING MACHINERY.2018: 343–45

• Investigating Tangible Collaboration for Design Towards Augmented Physical Telepresence
 DESIGN THINKING RESEARCH: MAKING DISTINCTIONS: COLLABORATION VERSUS COOPERATION
 Siu, A. F., Yuan, S., Pham, H., Gonzalez, E., Kim, L. H., Le Goc, M., Follmer, S., Plattner, H., Meinel, C., Leifer, L.
 2018: 131–45

• Designing Line-Based Shape- Changing Interfaces
 IEEE PERVASIVE COMPUTING
 Nakagaki, K., Follmer, S., Dementyev, A., Paradiso, J. A., Ishii, H.
 2017; 16 (4): 36–46

• shiftIO: Reconfigurable Tactile Elements for Dynamic Affordances and Mobile Interaction
 Strasnick, E., Yang, J., Tanner, K., Olwal, A., Follmer, S., ACM
 ASSOC COMPUTING MACHINERY.2017: 5075–86

• Shape Displays: Spatial Interaction with Dynamic Physical Form
 IEEE COMPUTER GRAPHICS AND APPLICATIONS
 Leithinger, D., Follmer, S., Olwal, A., Ishii, H.
 2015; 35 (5): 5-11

• Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices
 UIST'12: PROCEEDINGS OF THE 25TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY
 Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.
 2012: 519-528

• TessalTable: Tile-based Creation of Patterns and Images
 4th International Conference on Tangible, Embedded and Embodies Interaction
 Allison, A., Follmer, S., Raffle, H.
 ASSOC COMPUTING MACHINERY.2010: 203–204

• d.note: Revising User Interfaces Through Change Tracking, Annotations, and Alternatives
 28th Annual CHI Conference on Human Factors in Computing Systems
 Hartmann, B., Follmer, S., Ricciardi, A., Cardenas, T., Klemmer, S. R.
 ASSOC COMPUTING MACHINERY.2010: 493–502

• Family Story Play: Reading with Young Children (and Elmo) Over a Distance
 CHI2010: PROCEEDINGS OF THE 28TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4
 Raffle, H., Ballagas, R., Reveille, G., Horii, H., Follmer, S., Go, J., Reardon, E., Mori, K., Kaye, J. ‘., Spasojevic, M.
 2010: 1583-1592