On the subword complexity of the fixed point of $a \rightarrow aab$, $b \rightarrow b$, and generalizations

Jean-Paul Allouche*
CNRS, IMJ-PRG, UPMC, 4 Pl. Jussieu, F-75252 Paris Cedex 05, France
jean-paul.allouche@imj-prg.fr

Jeffrey Shallit†
School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
shallit@cs.uwaterloo.ca

May 10, 2016

Abstract

We find an explicit closed form for the subword complexity of the infinite fixed point of the morphism sending $a \rightarrow aab$ and $b \rightarrow b$. This morphism is then generalized in three different ways, and we find similar explicit expressions for the subword complexity of the generalizations.

1 Introduction

In this paper we start by considering a certain morphism h over $\{a, b\}$, namely, the one where $h(a) = aab$ and $h(b) = b$. This morphism was previously studied by the authors and J. Betrema [2] and Firicel [6].

We can iterate h (or any endomorphism) as follows: set $h^0(a)$ and $h^n(a) = h(h^{n-1}(a))$ for $n \geq 1$. Note that for the particular morphism h defined above, we have $|h^n(a)| = 2^{n+1} - 1$ for $n \geq 0$, a fact that is easily proved by induction on n.

The infinite fixed point of h, which we denote by $h^\omega(a)$ is $\lim_{n \to \infty} h^n(a)$. It satisfies $h(h^\omega(a)) = h^\omega(a)$. We also define $z = h^\omega(a) = aabaabbaabaabbb\cdots$.

Let a be an infinite word, where $a = a_0a_1a_2\cdots$. We define $a[j] = a_j$. Let $[i..j]$ for integers $i \leq j - 1$ denote the sequence $i, i+1, \ldots, j$. By a factor of an infinite word we mean

*Author partially supported by the ANR project “FAN” (Fractals et Numération), ANR-12-IS01-0002.
†Author partially supported by NSERC.
a sub-block of the form \(a_ia_{i+1}\cdots a_j\) for \(0 \leq i \leq j + 1 < \infty\), which we write as \(a[i..j]\). If \(i = j + 1\) then the resulting subword is empty. Sometimes we need to distinguish between a factor (which is the word itself) and an occurrence of that factor in \(a\) (which is specified by a starting position and length). The subword complexity of an infinite word \(a\) is the function \(\rho = \rho_a\) that maps a natural number \(n\) to the number of distinct factors of \(a\) of length \(n\).

In this paper we prove the following exact formula for \(\rho_z(n)\):

Theorem 1. For \(n \geq 0\) we have \(\rho_z(n) = \sum_{0 \leq i \leq n} \min(2^i, n - i + 1)\).

Previously, upper and lower bounds were given by Firicel [6].

The first few values of \(\rho_z(n)\) are given in Table 1. It is sequence A006697 in Sloane’s Encyclopedia of Integer Sequences [10].

\(n\)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\(\rho_z(n)\)	1	2	4	6	9	13	17	22	28	35	43	51	60	70	81	93	106	120

Table 1: Subword complexity of \(z\)

Our method is based on the following factorization theorem for \(z\), which appears in [2]. Let \(k \geq 2\) be an integer, and define \(\nu_k(n)\) to be the exponent of the largest power of \(k\) dividing \(n\).

Theorem 2.

\[
z = \prod_{i \geq 1} a b^{\nu_2(i)} = \prod_{i \geq 1} a a b^{\nu_2(i)+1}.
\]

Remark 3. It is interesting to note that function \(n \rightarrow \sum_{0 \leq i \leq n} \min(2^i, n - i + 1)\) also counts the maximum number of distinct factors (of all lengths) that a binary string of length \(n\) can have [8, 9, 7]. We do not know any bijective proof of this fact, which we leave as an open problem for the reader.

We then generalize the morphism \(h\) in three different ways, and compute the subword complexity of each generalization.

2 The subword complexity of \(z\)

By a \(b\)-run, we mean a maximal occurrence of a block of consecutive \(b\)'s within a word. Here by “maximal” we mean that the block has no \(b\)'s to either the left or right. For example, the word \(baabbbaabb\) has three \(b\)-runs, of length 1, 3, and 2, respectively.

Given a factor \(w\) of \(z\), we call a \(b\)-run occurrence in \(w\) interior to \(w\) if it does not correspond to either a prefix or suffix of \(w\). For example, in \(baabbbaabb\) there is exactly one interior \(b\)-run, which is of length 3.
Given an occurrence of a length-n factor w of z, we define its cover to be the shortest factor of the form $\prod_{j \leq i \leq k} a b^{x(i)+1}$ for which w appears as a factor. The cover interval is defined to be the set $\{j, j+1, \ldots, k\}$. We call the integer j (resp., k) the left (resp., right) edge of the cover. For example, the underlined factor below has cover $aabbaabaabbb$ with left edge 2 and right edge 4:

$$aabbaabaabbaabaabbaabbaabbb \cdots.$$

Lemma 4. Let $n \geq 1$. If a factor of z is of length $\geq 2^{n+1} + n - 2$, then it must contain a b-run of length at least n.

Proof. We consider the longest possible factor w of z having all b-runs of length $< n$. Such a factor clearly occurs either (a) before the first b-run of length n in z, or (b) between two occurrences of a b-run of length $\geq n$ in z.

In case (a), the first b-run of length n occurs as a suffix of $h^n(a)$, which is of length $2^{n+1} - 1$. So by removing the last letter we get a factor of length $2^{n+1} - 2$ having no b-run of length n.

In case (b), w has a cover with left edge ℓ and right edge r, both of which are divisible by 2^n. All other integers in the cover interval are not divisible by 2^n, for if they were, w would have a b-run of length $\geq n$. So $r - \ell = 2^n$. The longest such w must then be of the form $w = b^{n-1}h^n(a)b^{-1}$, and the length of this factor is $2^{n+1} + n - 3$. (If $x = wa$ is a word, and a is a single letter, then by xa^{-1} we mean the word w.)

Definition 5. Define the function f from \mathbb{N} to \mathbb{N} as follows:

$$f(i) = j \text{ for } 2^{j+1} + j - 2 \leq i \leq 2^{j+2} + j - 2.$$

The first few values of the function f are given in Table 2.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$f(n)$	0	0	0	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3

Corollary 6. For $n \geq 0$ we have

(a) every factor of z of length n contains a b-run of length at least $f(n)$;

(b) at least one factor of z of length n has longest b-run of length exactly $f(n)$;

(c) the shortest factor of z having two occurrences of a b-run of length n is of length $2^{n+1} + n - 1$.

3
Proof. For (c), the shortest factor clearly will start and end with b-runs of length n; otherwise we could remove symbols from the start or end to get a shorter string with the same property. So the cover interval begins and ends with integers divisible by 2^{n-1}. The difference between these integers is therefore at least 2^{n-1}. So the cover interval is $nr^{n-1}(1)$. The string corresponding to this cover interval is $b^n h^n(a)$, which of length $2^{n+1} + n - 1$. \hfill \Box

Lemma 7. For every factor w of z, the longest b-run in w has at most one interior occurrence in w.

Proof. Let b^n be the longest b-run of w, and suppose w has at least two interior occurrences of b^n. Choose two such occurrences that are separated by the smallest number of symbols. By Theorem 2 these occurrences must correspond to $b^{\nu_2(i)+1}$ for some odd number m. Then in between these two b-runs there is a b-run corresponding to $i = 2^{n-1}(m + 1)$, which (since $m + 1$ is even) is of length at least $n + 1$, contradicting the assumption that b^n was the longest b-run in w. \hfill \Box

Corollary 8. A longest b-run in a factor w can have at most three occurrences. When it does have three, the occurrences must be a prefix, suffix, and a single interior occurrence. In this case the b-run must be of the form b^n for some $n \geq 1$ and the factor must be $b^n h^{n+1}(a)b^{-1}$, of length $2^{n+2} + n - 2$.

Lemma 9. If a factor w of z of length n has a b-run of length $> f(n)$, then this run occurs only once in w. Furthermore, there is exactly one such factor w corresponding to the choice of the starting position of this b-run.

Proof. First, suppose there were two occurrences of such a run of length $\geq f(n) + 1$ in w. Then from Corollary 6 (c), this means that w is of length at least $2^{f(n)+2} + f(n)$. So $n \geq 2^{f(n)+2} + f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2} + f(n) - 2$. This is a contradiction.

Next, suppose we fix the starting position of a b-run of length $> f(n)$ in w. This b-run is either (a) a prefix or suffix of w, or (b) is interior to w.

(a) If this b-run is a prefix (resp., suffix) of w, it corresponds to a left (resp., right) edge, divisible by $2^{f(n)}$, of a cover interval. This fixes the next (resp., previous) $2^{f(n)} - 1$ elements of the cover interval, and so the next (resp., previous) $|h^{f(n)+1}(a)|$ symbols of z (and hence w). Thus, including the prefix (resp., suffix), the total number of symbols determined is of length $f(n) + 1 + 2^{f(n)+2} - 1 = 2^{f(n)+2} + f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2} + f(n) - 2$. So all the symbols of w are determined, and there can only be one such factor.

(b) If this b-run is interior to w then, it corresponds to an element of the cover interval that is exactly divisible by $2^{f(n)}$. Then, as in the previous case, the $2^{f(n)+2} - 1$ symbols both preceding and following this b-run are determined. Again, this means all the symbols of w are determined, and there can be only one such factor. \hfill \Box
Corollary 10. There are exactly \(n - t + 1 \) factors of \(z \) of length \(n \) having longest \(b \)-run of length \(t \), for each \(t \) with \(f(n) < t \leq n \).

Proof. If \(t > f(n) \), then from Lemma 9 we know there is exactly one \(b \)-run of length \(t \) in every factor of length \(n \). Furthermore, there is a unique such factor having a \(b \)-run of length \(t \) at every possible position, and there are \(n - t + 1 \) possible positions.

The preceding corollary counts all length-\(n \) factors having longest \(b \)-run of length \(> f(n) \). It remains to count those factors having longest \(b \)-run of length equal to \(f(n) \).

Definition 11. Let the function \(g \) be defined as follows:

\[
g(n) = \begin{cases} 2^t - 1, & \text{if } 2^t + t - 3 \leq n \leq 2^t + t - 1; \\ 2^{t+1} + t - 2 - n, & \text{if } 2^t + t - 1 \leq n \leq 2^{t+1} + t - 3. \end{cases}
\]

The first few values of the function \(g \) are given in Table 3.

\(n \)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\(g(n) \)	1	1	3	3	3	2	1	7	7	7	6	5	4	3	2	1	15	15	15	14

Table 3: Values of the function \(g \)

Lemma 12. Let \(n \geq 1 \). The word \(z \) has exactly \(g(n) \) distinct length-\(n \) factors with longest \(b \)-run of length \(m = f(n) \).

Proof. Let \(w \) be a factor of length \(n \) of \(z \). If the longest \(b \)-run of \(w \) is of length \(m = f(n) \), then from Corollary 8 we know that \(w \) itself is a factor of \(b^m h^{m+1}(a)b^{-1} = b^m h^m(a)h^m(a) \). Now \(b^m h^m(a)h^m(a) \) is of length \(2^{m+2} + m - 2 \), so there are at most \(2^{m+2} + m - 1 - n \) positions at which such a factor could begin. If \(n = 2^{m+1} + m - 2 \), then it is easy to check that the factors of length \(n \) starting at the last two possible positions are the same as the first two; they are both \(b^m h^m(a)b^{-1} \) and \(b^m h^m(a) \). If \(n = 2^{m+1} + m - 1 \), then the factor of length \(n \) starting at the last possible position is the same as the first; they are both \(b^m h^m(a) \). Otherwise, in these cases and when \(n \leq 2^{m+2} + m - 2 \), all the factors are distinct (as can be verified by identifying the position of the first occurrence of \(b^m \)). This gives the result.

We are now ready to prove Theorem 1.

Proof. Totalling the factors described in Corollary 10 and Lemma 12, we see that

\[
\rho_z(n) = g(n) + \sum_{f(n) < t \leq n} (n - t + 1).
\]

We now claim that the right-hand-side equals \(\sum_{0 \leq i \leq n} \min(2^i, n - i + 1) \). To see this, note that for \(n = 2^i + j - 3 \) and \(n = 2^i + j - 2 \) we have \(g(f(n)) = 2^i - 1 \), while for \(2^i + j - 1 \leq n < 2^{i+1} + j - 2 \) we have \(g(f(n)) + g(f(n) + 1) = 2^{i+1} - 1 \).
Corollary 13. The first difference of the subword complexity of \(z \) is

\[
\prod_{i \geq 0} [2^i..2^{i+1}] = (1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, \ldots).
\]

This is sequence \textbf{A103354} in Sloane’s \textit{On-Line Encyclopedia of Integer Sequences} [10].

We can also recover a result of Firicel [5, 6]:

Corollary 14. There are \(\frac{n^2}{2} - n \log_2 n + O(n) \) distinct factors of length \(n \) in \(z_2 \).

Remark 15. This estimate was used by Firicel to prove that \(z \) is not \(k \)-automatic for any \(k \geq 2 \). (The proof in [2] proved this only for \(k = 2 \).)

Remark 16. Recall that the (principal branch of the) Lambert function \(W \) is defined for \(x \geq -1/e \) by \(y = W(x) \) if and only if \(x = ye^y \). Then, for \(i \in [0, n] \), we have \(2^i \leq n - i + 1 \) if and only if \(i \leq n + 1 - W((\log 2)2^{n+1})/(\log 2) \). Thus, defining the integer \(m \) by \(m := [n + 1 - W(2^{n+1})/(\log 2)] \), we get

\[
\rho_{z_2}(n) = (2(m + 1) - 1) + \frac{(n-m)(n-m+1)}{2}.
\]

This confirms M. F. Hasler’s conjecture about sequence \textbf{A006697} in Sloane’s \textit{On-Line Encyclopedia of Integer Sequences} [10].

We also can confirm the conjecture of V. Jovovic from September 192005 that \(z \) is the partial summation of Sloane’s sequence \textbf{A103354}, and is also equal to \textbf{A094913}(n) + 1.

3 The first generalization

The first and most obvious generalization of the morphism \(h \) is to \(h_q \) for \(q \geq 2 \), where \(a \rightarrow a^q b \) and \(b \rightarrow b \). Then \(h = h_2 \). Let the fixed point of \(h_q \) be \(z_q = z_q(0)z_q(1)z_q(2) \cdots \). Then \(z_q(n) = a \) if and only if \(n \) has a representation using the digits \(0, 1, \ldots, q - 1 \) in the system of weights \((q^i - 1)/(q - 1)\) of Cameron and Wood [3] using the system of weights \((q^i - 1)/(q - 1)\).

Theorem 17. For \(q \geq 2 \) the subword complexity of \(z_q \) is \(\sum_{0 \leq i \leq n} \min(q^i, n-i+1) \).

Proof. Exactly the same as for \(q = 2 \). \(\square \)

Remark 18. This result was conjectured in a 1997 email discussion between the second author and Lambros Lambrou.

Corollary 19. The first difference of the subword complexity of \(z_q \) is

\[
\prod_{i \geq 0} [q^i..q^{i+1}] = (1, 2, \ldots, q-1, q, q+1, \ldots, q^2-1, q^2, q^2, q^2+1, \ldots).
\]
4 The second generalization

The classical q-ary numeration system represents every non-negative integer, in a unique way, as sums of the form $\sum_{i \geq 0} a_i q^i$, where $a_i \in \{0, 1, \ldots, q-1\}$ and only finitely many of the a_i are nonzero. In this section, we consider a variation of this numeration system, where q^i is replaced by $q^i - 1$ and the digit set is restricted to $\{0, 1\}$. Of course, in the resulting system, not every non-negative integer has a representation, so we can consider the characteristic word $x_q = x_q(0)x_q(1)x_q(2)\cdots$ where $x_q(i)$ is 1 if i has a representation and 0 otherwise.

Note that, if q is a prime power, the infinite word x_q is related to the Carlitz formal power series

$$\Pi := \prod_{j \geq 1} \left(1 - \frac{X^{q^j} - X}{X^{q^j+1} - X}\right) \in \mathbb{F}_q[[X^{-1}]].$$

(see [1] and the references therein).

First, we show how to represent the characteristic sequence x_q as the image of a fixed point of a morphism:

Theorem 20. Let $q \geq 2$, and let $x_q = x_q(0)x_q(1)x_q(2)\cdots$ be the characteristic word of those integers having a representation of the form $\sum_{i \geq 1} \epsilon_i (q^i - 1)$, where $\epsilon_i \in \{0, 1\}$. Then x_q is the coding, under the map $\tau(a) = 1$ and $\tau(b) = \tau(c) = 0$, of the fixed point of the morphism

$$a \to ab^{q-2}ac^{q(q-2)}b$$
$$b \to b$$
$$c \to c^q.$$

Remark 21. This theorem was obtained in an 1995 email discussion between the first author and G. Rote.

Remark 22. The expressions for $q > 3$ in the previous theorem correspond to a transition matrix with dominant eigenvalue q. The subword complexity of this sequence is not q-automatic, as proved in [1]. Hence it is not ultimately periodic. Using a theorem of F. Durand [4], this implies that the sequence cannot be k-automatic for any k that is multiplicatively independent of q. Hence this sequence cannot be k-automatic for any k.

Next, we compute the exact value of the first difference of the complexity function.

Theorem 23. Let $q \geq 3$, and let $d_q(n) = \rho_{x_q}(n+1) - \rho_{x_q}(n)$ for $n \geq 0$ be the first difference of the complexity function for x_q. Then $d_q(n) \in \{1, 2\}$, and

$$d_q(n)_{n \geq 0} = \prod_{i \geq 1} a_q(i)^2 b_q(i),$$

where $a_q(i) = (q-3)q^{i-1} + 2$ and $b_q(i) = q^i - 1$ for $i \geq 1$.

Previously, Firicel [5, 6] showed that the complexity function for $q \geq 3$ is $\Theta(n)$.

Proofs of these two theorems will appear in the final version of this paper.
5 The third generalization

We can also generalize our construction in a third way. Again, we use \(q^i - 1 \) as the basis for a numeration system, but now we allow the digit set to be \(\{0, 1, \ldots, q - 1\} \). For \(q \geq 2 \), let the infinite word \(y\) be the characteristic sequence of those integers representable in the form \(\sum_{i \geq 1} a_i(q^i - 1) \) with \(a_i \in \{0, 1, \ldots, q - 1\} \).

Theorem 24. The infinite word \(y \) is the fixed point of the morphism \(1 \rightarrow (10^{q^2-2})q, 0 \rightarrow 0 \).

Theorem 25. The first difference of the subword complexity of \(y \) is the sequence given by

\[
\prod_{i \geq 0} ([q^i \cdots q^{i+1}] \Pi (q - 1)),
\]

where by \(w \Pi n \) for \(w = a_1a_2 \cdots a_j \) we mean \(a_1^n a_2^n \cdots a_j^n \).

Proofs of these two theorems will appear in the final version of this paper.

References

[1] J.-P. Allouche. Sur la transcendance de la série formelle \(\Pi \). Séminaire de Théorie des Nombres de Bordeaux 2 (1990), 103–117.

[2] J.-P. Allouche, J. Betrema, and J. O. Shallit. Sur des points fixes de morphismes d’un monoïde libre. RAIRO Inform. Théor. App. 23 (1989), 235–249.

[3] H. A. Cameron and D. Wood. Pm numbers, ambiguity, and regularity. RAIRO Inform. Théor. App. 27 (1993), 261–275.

[4] F. Durand. Cobham’s theorem for substitutions. J. European Math. Soc. 13 (2011), 1799–1814.

[5] A. Firicel. Quelques contributions à l’étude des séries formelles à coefficients dans un corps fini. Thèse de Doctorat, Université Claude Bernard-Lyon 1. Available at https://tel.archives-ouvertes.fr/tel-00825191, 2010.

[6] A. Firicel. Subword complexity and Laurent series. INTEGERS: Elect. J. of Combin. Number Theory 11B (2011), #A7 (electronic).

[7] A. Flaxman, A. W. Harrow, and G. B. Sorkin. Strings with maximally many distinct subsequences and substrings. Electronic J. Combinatorics 11(1) (2004), #R8 (electronic).

[8] A. Iványi. On the d-complexity of words. Ann. Univ. Sci. Budapest. Sect. Comput. 8 (1987), 69–90.
[9] J. Shallit. On the maximum number of distinct factors of a binary string. *Graphs and Combinatorics* **9** (1993), 197–200.

[10] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org, 2016.