Palladium-catalyzed hydrogenations in dichloromethane

David J. Mason, Yegor G. Timofeyenko, Bhumasamudram Jagadish, and Eugene A. Mash

Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA

ABSTRACT
Dichloromethane is shown to be a useful solvent in catalytic hydrogenation reactions of easily reduced functional groups (alkenes, alkynes, imines, and nitroarenes) using palladium on carbon as the catalyst under mild conditions (ambient pressure and temperature).

GRAPHICAL ABSTRACT

ARTICLE HISTORY
Received 7 June 2022

KEYWORDS
Catalytic hydrogenation; dichloromethane; ease of removal; lack of flammability; palladium on carbon

Introduction
The most commonly used solvents for reductions of alkenes via catalytic hydrogenation using palladium on carbon as the catalyst include ethanol, methanol, isopropyl alcohol, and ethyl acetate.[1,2] Less commonly employed solvents include tetrahydrofuran, 2-methyltetrahydrofuran, isopropyl acetate, toluene, N,N-dimethylformamide, N,N-dimethylacetamide, and acetone. All the above-mentioned solvents are flammable. A recent publication compared the pyrophoricity of palladium on carbon catalysts filtered from these 11 solvents.[3] Self-ignition was observed with methanol, ethanol, and isopropyl alcohol.

Compounds being used in conjunction with another of our research projects had limited solubility in the above-mentioned hydrogenation solvents but were readily soluble in dichloromethane (DCM). DCM has previously been used in hydrogenation reactions with palladium on carbon catalysts, most often in mixed solvent systems and at high temperatures. However, the use of DCM as a sole solvent has not been widely reported. This study explores the suitability of DCM as a solvent for palladium-catalyzed hydrogenations.

CONTACT Eugene A. Mash emash@arizona.edu Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University, P. O. Box 210041, Tucson, AZ 85721-0041, USA.

Supplemental data for this article is available online at https://doi.org/10.1080/00397911.2022.2115928

© 2022 Taylor & Francis Group, LLC
pressures and/or temperatures.[4–13] It has been reported that DCM is dehydrohalogenated at sufficiently high pressures and temperatures (6 bar, 80 °C), liberating hydrogen chloride.[14] The possibility of this decomposition may be one reason DCM has been infrequently used as a single solvent for hydrogenation reactions at low pressures and ambient temperatures.[15–19] Other factors, including the toxicity of DCM and restrictions on its commercial use, may also play a part. Nevertheless, DCM seemed to us underutilized as a hydrogenation solvent given the factors in its favor: high solvent ability, ease of removal, and lack of flammability.[20] We carried out a survey of hydrogenation reactions in DCM with commercial palladium on carbon catalysts at ambient pressure and temperature and present the results in Table 1.

\section*{Results and discussion}

All but one of the substrates tested were soluble in DCM at the concentrations and under the conditions employed (see Table 1). Mono-, di-, tri-, and tetrasubstituted alkenes were all rapidly reduced to the corresponding saturated compounds in high yields. Both electron-rich and electron-poor alkenes were easily reduced. Remote ketonic carbonyls (entries 3, 4, and 21), as well as conjugated ketonic carbonyls (entries 5–9 and 21), remained intact. Reduction of trans-cinnamaldehyde (entry 10) produced, in 95% yield, a 3:1:1 mixture of 3-phenylpropanol, 3-phenylpropanal, and propylbenzene. Attempted reduction of 3-phenylpropanal under the same reaction conditions (entry 11) returned 86% of the starting aldehyde and produced small amounts of 3-phenylpropanol (8%) and propylbenzene (2%). Conjugated and isolated carboxylic acid and ester functionalities (entries 12–17) were unaffected. 1-Cyclopentene carboxylic acid (entry 12) was not completely soluble in DCM, but the product 1-cyclopentanecarboxylic acid was soluble. Nitroarenes were efficiently reduced to the corresponding anilines, while ester, nitrile, and primary alkyl bromide functionalities also present in the molecules remained largely intact under the conditions employed (entries 16–19). Hydrogenation of cholesterol produced a 99:1 mixture of 5α- and 5β-cholestanols as determined by 1H NMR analysis (entry 20). Hydrogenation of 4-androstene-3,17-dione produced a 24:76 mixture of 5α- and 5β-androstane-3,17-diones as determined by 1H NMR analysis (entry 21). N-Methylbenzylidimine was reduced to N-methylbenzylamine in high yield (entry 22).

Many of the substrates examined in this study have previously been reduced via catalytic hydrogenation using palladium on carbon catalysts in one or more of the traditionally employed solvents listed in the introduction. We observed comparable or higher isolated yields employing DCM as solvent vs. published methods that used flammable solvents (e.g., see the literature references cited in Table 1). We observed no loss of solvent volume over the course of our experiments. We assume the product mixtures that arose from attempted reductions of trans-cinnamaldehyde and 3-phenylpropanal were due to the intermediacy of tautomeric intermediates. In molecules with two or more reducible functional groups, easily reduced functional groups (carbon-carbon double and triple bonds, carbon-nitrogen double bonds, nitroarenes) were rapidly reduced, while functional groups that are more resistant to reduction (carbon-oxygen double bonds, carbon-nitrogen triple bonds, carbon-halogen bonds) were either not reduced or
Table 1. Hydrogenations in dichloromethane using 10% palladium on carbon catalysts.\(^a\)

Entry	Substrate	Product(s)	Reaction time (h)	Yield (%)	Solvent, hydrogen pressure	Yield (%)	References
1	Ph\(\equiv\)Ph	Ph\(\equiv\)Ph	4	96	Methanol, 1 atm	98	\([21]\)
2	\(\equiv\)C\(_{18}\)H\(_{38}\)	C\(_{18}\)H\(_{38}\)	12	96	Methanol + THF, 1 atm	100	\([22]\)
3	![Cyclic compound](image)	![Cyclic compound](image)	1	99	Acetone, 30 psi	100	\([23]\)
4	\(\text{CH}_3\text{CH}==\text{CH}==\text{CH}==\text{CH}==\text{CH}==\text{CH}\text{CH}_3\)	\(\text{CH}_3\text{CH}==\text{CH}==\text{CH}==\text{CH}==\text{CH}\text{CH}_3\)	3	90	Methanol, 1 atm	81	\([24]\)
5	\(\text{H}_3\text{C}==\text{CH}==\text{CH}==\text{CH}==\text{CH}==\text{CH}_3\)	\(\text{H}_3\text{C}==\text{CH}==\text{CH}==\text{CH}==\text{CH}_3\)	1.5	99	Methanol, 1 atm	68	\([25]\)
6	![Cyclic compound](image)	![Cyclic compound](image)	1.5	85	Ethanol, 1 atm	85	\([26]\)
7	![Cyclic compound](image)	![Cyclic compound](image)	1	99	THF, 2 MPa	98	\([27]\)
8	![Cyclic compound](image)	![Cyclic compound](image)	2	99\(^b\)	Ethanol, 1 atm	96	\([28]\)

\(^a\) All reactions conducted in dichloromethane using 10% palladium on carbon catalysts. \(^b\) Reaction conducted with hydrogen pressure of 2 MPa.
Entry	Substrate	Product(s)	Reaction time (h)	Yield (%)	Literature reactions
9	H3C (CH2)4CH3	H3C (CH2)4CH3	1	98\(^e\)	Methanol, 2 MPa
10	Mixture\(^e\)	Mixture\(^e\)	3.5	95	Ethanol, 1 atm
11	Mixture\(^f\)	Mixture\(^f\)	3.5	10	NR\(^d\)
12	(CH2)4CO2H	(CH2)4CO2H	1.5	91	NR\(^d\)
13	(CH2)4CO2H	(CH2)4CO2H	4	96	THF, 1 atm
14	(CH2)4CO2CH3	(CH2)4CO2CH3	3.5	96	Methanol, 1 atm
15	(CH2)3CO2CH3	CH3(CH2)3CO2CH3	2	94	CH2Cl2, 1 atm
16	O2N \[CO2CH3	O2N \[CO2CH3	1	97	Methanol, 1 atm
17	O2N \[CO2CH3	O2N \[CO2CH3	3.5	88	Ethanol, 1 atm
aReaction conditions: Per mmol of substrate: 50 mg of 10\% palladium on carbon, 10 mL of dichloromethane, hydrogen at ambient (~1 atmosphere) pressure, vigorous magnetic stirring, ambient temperature. Reaction times are given in the Table. Workup: Filtration of the reaction mixture through Celite, washing of the catalyst and Celite with dichloromethane, and removal of volatiles \textit{in vacuo}. Products so obtained were weighed and characterized by 1H and 13C NMR spectroscopy. Yields were corrected for residual solvent present in the product.
bA 1:1 ratio of cis to trans isomers as determined by 1H NMR analysis.
cAn 87:13 ratio of cis to trans isomers as determined by 1H NMR analysis.
dNot reported.
eYield of all products 95\%; ratio of 3-phenylpropanol:3-phenylpropanal:propylbenzene 3:1:1.
fYield of all products 10\%; ratio of 3-phenylpropanol:3-phenylpropanal:propylbenzene 4:4:3:1.
gLess than 5\% reduction of nitrile observed. Yield of product after purification by column chromatography.
hYield of all products 99\%; ~7\% dehydrobromination as determined by 1H NMR analysis.
iRatio of 5\textsubscript{\textalpha} to 5\textsubscript{\textbeta} products >99:1 as determined by 1H NMR analysis.
jRatio of 5\textsubscript{\textalpha} to 5\textsubscript{\textbeta} products 24:76 as determined by 1H NMR analysis.
minimally affected under the mild reaction conditions (~1 atmosphere, ambient temperature) employed here.

Conclusion

The results reported herein, together with its high solvent ability, ease of removal, and lack of flammability, suggest that DCM should be considered when planning catalytic hydrogenation reactions to reduce alkenes, alkynes, imines, nitroarenes, and other easily reduced functional groups using palladium on carbon as the catalyst, especially when considering large scale reactions.\[38\]

Experimental

General experimental

Dichloromethane was used as supplied by the commercial source (Fisher, assay 99.5% min, water 0.02% max). 10% Palladium on carbon was used as supplied by the commercial sources (Sigma-Aldrich, Lot MKCQ402; Acros Organics, Lot B0144254). Substrates were commercially obtained and were purified before use as necessary or were prepared by the literature methods indicated. Reactions were carried out at an ambient temperature in flasks equipped with magnetic stir bars under hydrogen gas at ambient atmospheric pressure using doubled balloons. Workup consisted of filtration of reaction mixtures with the aid of Celite, washing of the Celite/catalyst with DCM, and removal of volatiles by rotary evaporation. Analytical thin-layer chromatography (TLC) was carried out on pre-coated silica gel 60 F-254 plates, and plates visualized with UV light, anisaldehyde stain, or 10% phosphomolybdic acid solution in 95% EtOH. In some cases, column chromatography was performed using silica gel 60 (flash 32–63 μm, gravity 70–230 μm). Melting points (uncorrected) were measured on an Electrothermal melting point apparatus. \(^1\)H NMR and \(^{13}\)C NMR spectra were recorded on an Automated NEO-500 NMR spectrometer (500 MHz for \(^1\)H NMR and 126 MHz for \(^{13}\)C NMR). Chemical shifts (δ) are expressed in ppm, and are internally referenced (0.00 ppm for tetramethylsilane for \(^1\)H NMR and 77.16 ppm for CDCl₃ for \(^{13}\)C NMR). NMR spectra of products were consistent with published data (references appear in the Supplementary Information).

Table entry 3

Reduction of 8-cyclohexadecen-1-one to cyclohexadecanone

A mixture of 8-cyclohexadecen-1-one (709 mg, 3.00 mmol) and 10% palladium on carbon (160 mg) in DCM (30 mL) was vigorously stirred under hydrogen for 1 h. To remove residual DCM from the product, the residue was taken up in Et₂O (25 mL) and the volatiles removed in vacuo three times, giving the product as a white foam, R_f 0.45 (20% EtOAc/heptane), mp 63–64 °C (lit\[^{[39]}\] mp 62.5–63.5 °C); yield 712 mg, 2.98 mmol, 99%; \(^1\)H NMR (500 MHz, CDCl₃) \(\delta\) 1.20–1.39 (m, 22H), 1.64 (apparent p, \(J = 7\) Hz, 4H), 2.41 (t, \(J = 7\) Hz, 4H) ppm; \(^{13}\)C NMR (126 MHz, CDCl₃) \(\delta\) 23.6, 26.6, 26.6, 26.6, 27.1, 27.3, 27.8, 42.2, 212.7 ppm.
Table entry 16

Reduction of methyl 5-nitrosalicylate to methyl 5-aminosalicylate

A mixture of methyl 5-nitrosalicylate (591 mg, 3.0 mmol) and 10% palladium on carbon (160 mg) in DCM (30 mL) was vigorously stirred under hydrogen for 1 h. Product was obtained as a cream-colored solid, Rf 0.26 (40% EtOAc/heptane), mp 94–96°C (lit\[^{[40]}\] mp 96–97°C); yield 490 mg, 2.9 mmol, 97%; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 3.45 (br s, 2H), 3.92 (s, 3H), 6.82 (d, \(J = 8.9\) Hz, 1H), 6.87 (dd, \(J = 8.9, 2.8\) Hz, 1H), 7.15 (d, \(J = 2.9\) Hz, 1H), 10.20 (s, 1H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 52.3, 112.3, 114.8, 118.3, 124.4, 138.5, 154.9, 170.5 ppm.

Supplementary Information

Full experimental detail, \(^1\)H and \(^{13}\)C NMR spectra of products, and literature references for characterization data of known compounds can be found via the “Supplementary Information” section of this article’s webpage.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported in part by award 55503-ND7 from the Petroleum Research Fund, administered by the American Chemical Society.

References

[1] Rylander, P. N. In Catalysis in Organic Synthesis; Jones, W. H., Ed.; Academic Press, Inc.: New York, 1980, pp 155–171.
[2] Rajadhyaksha, R. A.; Karwa, S. L. Solvent Effects in Catalytic Hydrogenation. Chem. Eng. Sci. 1986, 41, 1765–1770. DOI: 10.1016/0009-2509(86)87055-5.
[3] Fannes, C.; Verbruggen, S.; Janssen, B.; Egle, B. Influence of Solvents and Additives on the Pyrophoricity of Palladium on Carbon Catalyst after Hydrogenation. Org. Process Res. Dev. 2021, 25, 2438–2441. DOI: 10.1021/acs.oprd.1c00190.
[4] Hedeđus, L.; Máthé, T.; Tungler, A. Hydrogenation of Pyrrole Derivatives. Part IV. Hydrogenation of 1-Methylpyrrole. Appl. Catal. A Gen. 1997, 152, 143–151. DOI: 10.1016/S0926-860X(96)00359-6.
[5] Hedeđus, L.; Máthé, T. Selective Heterogeneous Catalytic Hydrogenation of Nitriles to Primary Amines in Liquid Phase. Part I. Hydrogenation of Benzonitrile over Palladium. Appl. Catal. A Gen. 2005, 296, 209–215. DOI: 10.1016/j.apcata.2005.08.024.
[6] Hedeđus, L.; Máthé, T.; Kárpati, T. Selective Heterogeneous Catalytic Hydrogenation of Nitriles to Primary Amines in Liquid Phase. Part II. Hydrogenation of Benzyl Cyanide over Palladium. Appl. Catal. A Gen. 2008, 349, 40–45. DOI: 10.1016/j.apcata.2008.07.012.
[7] Farkas, F.; Thurner, A.; Kovács, E.; Faigl, F.; Hedeđus, L. Hydrogenolysis of O-Protected Hydroxyoxetanes over Palladium: An Efficient Method for a One-Step Ring Opening and Detritylation Reaction. Catal. Commun. 2009, 10, 635–639. DOI: 10.1016/j.catcom.2008.11.007.
[8] Kovács, E.; Thurner, A.; Farkas, F.; Faigl, F.; Hedeđus, L. Hydrogenolysis of N-Protected Aminooxetanes over Palladium: An Efficient Method for a One-Step Ring Opening and
Debenzylation Reaction. *J. Mol. Catal. A Chem.* **2011**, *339*, 32–36. DOI: [10.1016/j.molcata.2011.02.008](https://doi.org/10.1016/j.molcata.2011.02.008).

[9] Kovács, E.; Faigl, F.; Mucsi, Z.; Nyerges, M.; Hegedüs, L. Hydrogenolysis of N- and O-Protected Hydroxyazetidines over Palladium: Efficient and Selective Methods for Ring Opening and Deprotecting Reactions. *J. Mol. Catal. A Chem.* **2014**, *395*, 217–224. DOI: [10.1016/j.molcatal.2014.08.027](https://doi.org/10.1016/j.molcatal.2014.08.027).

[10] Tungler, A.; Szabados, E. Overcoming Problems at Elaboration and Scale-up of Liquid-Phase Pd/C Mediated Catalytic Hydrogenations in Pharmaceutical Production. *Org. Process Res. Dev.* **2016**, *20*, 1246–1251. DOI: [10.1021/acs.oprd.6b00073](https://doi.org/10.1021/acs.oprd.6b00073).

[11] Lévy, K.; Tóth, K. D.; Kárpáti, T.; Hegedüs, L. Heterogeneous Catalytic Hydrogenation of 3-Phenylpropionitrile over Palladium on Carbon. *ACS Omega* **2020**, *5*, 5487–5497. DOI: [10.1021/acsomega.0c00125](https://doi.org/10.1021/acsomega.0c00125).

[12] Lévy, K.; Kárpáti, T.; Hegedüs, L. Selective Hydrogenation of Benzonitrile and Its Homologues to Primary Amines over Platinum. *J. Ind. Eng. Chem.* **2021**, *101*, 279–292. DOI: [10.1016/j.jiec.2021.06.002](https://doi.org/10.1016/j.jiec.2021.06.002).

[13] Lévy, K.; Madarász, J.; Hegedüs, L. Tuning the Chemoselectivity of the Pd-Catalyzed Hydrogenation of Pyridinecarbonitriles: An Efficient and Simple Method for Preparing Pyridyl- or Piperidylmethylamines. *Catal. Sci. Technol.* **2022**, *12*, 2634–2648. DOI: [10.1039/D1CY02295D](https://doi.org/10.1039/D1CY02295D).

[14] Villemin, D.; Letulle, M. Hydrogenation Catalysed by Palladium or Rhodium Chlorides in Acetonitrile. *J. Mol. Catal. A Chem.* **2014**, *395*, 133–139. DOI: [10.1016/S0926-860X(96)00332-8](https://doi.org/10.1016/S0926-860X(96)00332-8).

[15] Vanier, G. S. Simple and Efficient Microwave-Assisted Hydrogenation Reactions at Moderate Temperature and Pressure. *Synlett* **2007**, *131*–135. DOI: [10.1055/s-2006-958428](https://doi.org/10.1055/s-2006-958428).

[16] Hugelshofer, C. L.; Panali, V.; Sarpong, R. Calyciphylline B-Type Alkaloids: Total Syntheses of (-)-Daphlongamine H and (-)-Isodaphlongamine H. *J. Am. Chem. Soc.* **2019**, *141*, 8431–8435. DOI: [10.1021/jacs.9b03576](https://doi.org/10.1021/jacs.9b03576).

[17] Hugelshofer, C. L.; Panali, V.; Sarpong, R. Calyciphylline B-Type Alkaloids: Total Syntheses of (-)-Daphlongamine H and (-)-Isodaphlongamine H. *J. Am. Chem. Soc.* **2019**, *141*, 8431–8435. DOI: [10.1021/jacs.9b03576](https://doi.org/10.1021/jacs.9b03576).

[18] Vanier, G. S. Simple and Efficient Microwave-Assisted Hydrogenation Reactions at Moderate Temperature and Pressure. *Synlett* **2007**, *131*–135. DOI: [10.1055/s-2006-958428](https://doi.org/10.1055/s-2006-958428).

[19] Hugelshofer, C. L.; Panali, V.; Sarpong, R. Calyciphylline B-Type Alkaloids: Total Syntheses of (-)-Daphlongamine H and (-)-Isodaphlongamine H. *J. Am. Chem. Soc.* **2019**, *141*, 8431–8435. DOI: [10.1021/jacs.9b03576](https://doi.org/10.1021/jacs.9b03576).

[20] Gordón, A. J.; Ford, R. A. *The Chemist’s Companion*; J. Wiley & Sons: New York, 1972, pp 442–443.
Diphenylsulfide as a Reasonable Catalyst Poison. *Tetrahedron* **2006**, 62, 11925–11932. DOI: 10.1016/j.tet.2006.09.094.

[26] Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F. Continuous-Flow High Pressure Hydrogenation Reactor for Optimization and High-Throughput Synthesis. *J. Comb. Chem.* **2006**, 8, 110–116. DOI: 10.1021/cc0501076.

[27] Xu, L.; Sun, S.; Zhang, X.; Gao, H.; Wang, W. Study on the Selective Hydrogenation of Isophorone. *RSC Adv.* **2021**, 11, 4465–4471. DOI: 10.1039/D0RA08107H.

[28] Lakshmi Kantam, M.; Parsharamulu, T.; Manorama, S. V. Layered Double Hydroxides Supported Nano Palladium: An Efficient Catalyst for the Chemoselective Hydrogenation of Olefinic Bonds. *J. Mol. Catal. A Chem.* **2012**, 365, 115–119.

[29] Su, X.; Sun, Y.; Yao, J.; Chen, H.; Chen, C. Acid-Promoted Bicyclization of Arylacetylenes to Benzobicyclo[3.2.1]Octanes through Cationic Rearrangements. *Chem. Commun.* **2016**, 52, 4537–4540. DOI: 10.1039/C6CC00452K.

[30] Giancotti, G.; Cancellieri, M.; Balboni, A.; Giustiniano, M.; Novellino, E.; Delang, L.; Neyts, J.; Leyssen, P.; Brancale, A.; Bassetto, M. Rational Modifications on a Benzylidene-Acrylohydrazide Antiviral Scaffold, Synthesis and Evaluation of Bioactivity against Chikungunya Virus. *Eur. J. Med. Chem.* **2018**, 149, 56–68. DOI: 10.1016/j.ejmech.2018.02.054.

[31] Toneto Novaes, L. F.; Martins Avila, C.; Pelizzaro-Rocha, K. J.; Vendramini-Costa, D. B.; Pereira Dias, M.; Barbosa Trivella, D. B.; Ernesto de Carvalho, J.; Ferreira-Halder, C. V.; Pilli, R. A. (-)-Tarchonanthuslactone: Design of New Analouges, Evaluation of Their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. *ChemMedChem* **2015**, 10, 1687–1699. DOI: 10.1002/cmdc.201500246.

[32] Giblin, G. Pyrrole Compounds for the Treatment of Prostaglandin Mediated Diseases. *PCT Int. Appl.* **2003**, 2003101959.

[33] Klövekorn, P.; Pfaffenrot, B.; Juchum, M.; Albrecht, W.; Zender, L.; Laufer, S. A. From off-to on-Target: New BRAF-Inhibitor-Template-Derived Compounds Selectively Targeting Mitogen Activated Protein Kinase 4 (MKK4). *Eur. J. Med. Chem.* **2021**, 210, 112963. DOI: 10.1016/j.ejmech.2020.112963.

[34] Navath, S.; Rao, V.; Woodford, R. T.; Midura-Kiela, M. T.; Ahad, A. M.; Alleti, R.; Kiela, P. R.; Mash, E. A. Design, Synthesis, and Testing of a Molecular Truck for Colonic Delivery of 5-Aminosalicylic Acid. *ACS Med. Chem. Lett.* **2012**, 3, 710–714. DOI: 10.1021/ml300086c.

[35] Kollár, L.; Törös, S.; Heil, B.; Tuba, Z. Stereoselective Reduction of Steroids with *in Situ* Prepared Phosphine Rhodium Catalysts. *J. Mol. Catal.* **1988**, 47, 33–39. DOI: 10.1016/0304-5102(88)85070-3.

[36] Kutney, J. P.; Piotrowska, K.; Somerville, J.; Huang, S.-P.; Rettig, S. J. The Chemistry of Thujone. XIII. Synthetic Studies in the Digitoxigenin Series. *Can. J. Chem.* **1989**, 67, 580–589. DOI: 10.1139/v89-088.

[37] Beck, W.; Kaye, I. A.; Kogon, I. C.; Klein, H. C.; Burlant, W. J. 1-Phenyl-2-((N-methyl-N-benzylamino)Ethanol and Related Compounds. *J. Org. Chem.* **1951**, 16, 1434–1441. DOI: 10.1021/jo05003a015.

[38] The use of water as a single solvent in catalytic hydrogenations has been reported; see Takale, B. S.; Thakore, R. R.; Gao, E. S.; Gallou, F.; Lipshutz, B. H. Environmentally Responsible, Safe, and Chemoselective Catalytic Hydrogenation of Olefins: ppm Level Pd Catalysis in Recyclable Water at Room Temperature. *Green Chem.* **2020**, 22, 6055–6061. DOI: 10.1039/D0GC02087G.

[39] Bruhn, J.; Heimgartner, H.; Schmid, H. The Cope Rearrangement, A Reaction for Repeatable Ring Expansions. *Helv. Chim. Acta* **1979**, 62, 2630–2654. DOI: 10.1002/hlca.19790620814.

[40] Schmidt, B.; Höltter, F.; Berger, R.; Jessel, S. Mizoroki-Heck Reactions with 4-Phenoldiazonium Salts. *Adv. Synth. Catal.* **2010**, 352, 2463–2473. DOI: 10.1002/adsc.201000493.