Prevalence of Hepatitis E Virus Infection among Pregnant Women Attending the Ante-Natal Clinic of a Tertiary Health Care Centre

Jude Oluwapelumi Alao a*, Ifeoluwa Opeyemi Bejide b, Omotosho Isaac Komolafe b, Oluwaseyi Joy Alao c, Oluwapelumi Breakthrough Oyetunde a, and Matthew Olujenyo Oni a

a Department of Microbiology, Adeleke University, Ede, Nigeria.
b Department of Biological Sciences, Redeemer’s University, Ede, Nigeria.
c Department of Otorhinolaryngology, Babcock University Teaching Hospital, Ilishan-Remo, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Hepatitis E virus (HEV) is the most common cause of viral hepatitis in developing countries. HEV is particularly problematic in pregnancy due to the vulnerability of pregnant women to infections and often causes spontaneous abortion, premature delivery, maternal (≤ 20%), and infant mortality. While pregnant women attending ante-natal clinics are mandatorily screened for some infections, Hepatitis E, except in endemic areas, is not included in the protocol, even though the prevalence of Hepatitis E globally is increasing. This study aimed to determine the presence and prevalence of Hepatitis E among ante-natal clinic attendees at the Ladoke Akintola Teaching Hospital, Osogbo, Osun State. A total of 100 consenting individuals were enrolled in the study between ages 20 and 45. Twenty-one percent of the participants enrolled were in the first trimester of their pregnancy, 33% in the second trimester, and 46% were in the third trimester of pregnancy. A structured questionnaire was administered to extract information on the participants’ demography and clinical history. A volume of 5ml of blood sample was collected from each consenting participant, and the obtained serum, stored at -20°C until ready for analysis. A double antibody sandwich HEV-ELISA technique was performed to analyze the sera for HEV antigen, using an ELISA Kit. Of the 100

*Corresponding author: E-mail: alaojude@adelekeuniversity.edu.ng, alaojude7@gmail.com;
samples analyzed, 8% ($\chi^2=12.164$, df=1, $P=0.019$) were positive for HEV Ag. The study only showed an association between the number of positive cases and a history of blood transfusion whereas, there was no such association with age, pregnancy stage, and educational status of the participants. Being an index study in Osun State, this study showed an 8% HEV prevalence rate, which is considered statistically significant.

Keywords: Pregnant women; hepatitis e screening; Elisa; Lautech.

1. INTRODUCTION

Hepatitis E virus (HEV) is one of the most common causes of viral hepatitis in the world [1] and the principal etiological agent of enterically transmitted, non-A, and non-C hepatitis. It is highly endemic in the tropical and subtropical countries of Asia, Africa, and South America [2]. The infection is mainly transmitted through contaminated water, but may also be transmitted via food or blood transfusion, or vertically from mother to fetus [3]. In most cases, the infection is asymptomatic as the virus is spontaneously cleared, and only a few cases develop jaundice [4,5]. However, such cases could be severe and accompanied by acute fulminant hepatitis [6].

While hepatitis E virus (HEV) is often considered an emerging infectious agent, it has been reported worldwide as a significant cause of acute viral hepatitis (AVH) [7]. Approximately one-third of the world’s population are HEV positive [8]. Of the more than 20 million cases annually, ~70,000 instances lead to death. The majority of these deaths occur in developing Asian, African, and Latin American countries. These estimates, however, may not give an accurate picture of the entire burden of disease, because many areas were either not comprehensively covered adequately in some regions; use of assays which are now known to have inferior sensitivity, or the reports themselves being outdated. The currently perceived global burden of the disease may be a massive underestimation [1].

The geographical distribution and severity of HEV genotypes (1-4) appear to show variations (Aggarwal, 2010; WHO, 2015), with genotypes 1 and 2 generally prevalent in developing countries, causing epidemic outbreaks [6]. Genotype 1 is associated with vertical transmission [12], while genotype 3 is usually seen in developed countries where it does not cause outbreaks, and the infection resolves without transmission to the infant [13]. Genotype 4 has been found to occur in sporadic cases of acute hepatitis E in China, Taiwan, Japan, and Vietnam [14].

The first serologically confirmed HEV epidemic occurred in New Delhi (India) in 1955-56 [15]. The first confirmed outbreak in Africa occurred in Côte d'Ivoire in 1986 [8]. The reported prevalence rates in Africa range from 0% to 94% [6]. Among pregnant women, HEV antibody prevalence is 11.6% in Burkina Faso and 84.3% in Egypt [15], [16]. Although there has never been any significant HEV outbreak in Nigeria, we cannot remain complacent, as there have been sporadic cases of HEV infection in the past. A report by Buisson (2000) showed that HEV infection was present in some middle-aged adults residing in Port-Harcourt (South-South Nigeria) [17]. A study carried out in Ekiti State reported the presence of HEV antibodies in 13.4% of participants [18]. A study carried out in two geographical locations of Nigeria (Oyo and Anambra States) reported a prevalence of HEV in 0.4% of the cohort [19]. Oladipo et al., 2017, who carried out a study at Ogbomosho, Oyo State, reported an HEV sera positivity in 2.7% among 186 participants [20]. Another research carried out in Ibadan, Oyo State in 2018, reported the presence of HEV IgM antibodies in 9.0% of the participants [21]. A review carried out in 2019 to determine the prevalence of HEV in 1178 Nigerian individuals reported a prevalence of 10.8% in the population sampled [22].
Hepatitis E (HEV) is a significant public health concern in developing countries because people with viral hepatitis infection are at risk of developing liver disease. For pregnant women, HEV infection is more frequent and most frequently lethal in the third trimester, with mortality rates around 15-20% of all cases [1]. HEV infection contributes to adverse maternal and fetal experiences during pregnancy [7], which may also induce premature births. Additionally, the death of infants shortly after birth is also common. Transplacental transmission of HEV in the third trimester of pregnancy has been established while acute hepatitis is reported to cause vertically transmitted HEV infection in neonates, which correlates with a high perinatal mortality of infected neonates [7]. A study carried in two geographical regions of Nigeria (Anambra and Oyo) on 272 pregnant women showed a prevalence of HEV in 0.4% of the study population [19].

Presently, the prevalence of hepatitis E among pregnant women at the target facility in this study is unknown. Sequel to this information gap, pregnant women attending ante-natal clinics at the LAUTECH Teaching Hospital, Osogbo, Osun State are not screened for hepatitis E, and because of the possible effects on the fetus and pregnancy, it is pertinent that the prevalence of this pathogen is determined. This will help to create more awareness of hepatitis E infection and to ultimately generate adequate prevention and control measures to manage the disease.

2. METHODOLOGY

2.1 Study Area

The study area for this research was the Osun State capital, Osogbo (7°46'45.9"N and 4°33'05.9"E). The state is located in the southwestern region of Nigeria. It is bounded to the north by Kwara State, to the east partly by the Ekiti State and Ondo State, to the south by Ogun State and to the west by Oyo State. Osun State has a population of 3,416,959, according to the Nigerian population census figures of 2006. The state, like most Nigerian states, experiences two types of seasons (dry and rainy seasons).

Osogbo shares borders with Ikirun, Ilesa, Ede, Egbedore, Ibokun, and Iragbiji and is conveniently accessible from every part of the state owing to its central location. Osogbo lies 319m above sea level. The climate is tropical, with the average annual temperature believed to be around 26.1°C. Increased levels of rainfall are experienced for up to 9 months annually (March to November), while during the dry season, little or no rain is experienced (December to February). According to the National Population Commission, the official population of Osogbo is 156,694 [23].

2.2 Study Site

The study site used was the antenatal clinic of Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Osogbo, Osun State.

Study Design: This is an institution based cross-sectional study at the antenatal clinic of Ladoke Akintola University of Technology Teaching Hospital (LAUTECH), Osogbo, Osun State, Nigeria.

The study was a case search to identify hepatitis E antigens (HEV Ag) in blood samples of pregnant women attending the antenatal clinic of Ladoke Akintola University of Technology Teaching Hospital (LAUTECH), Osogbo, Osun State, Nigeria between January 2020 and March 2020. Informed written consent was obtained from individuals enrolled in the study. Consenting individuals filled the administered questionnaire before sample collection. Pregnant women of all age groups attending the ante-natal clinic (ANC) of Ladoke Akintola University of Technology Teaching Hospital (LAUTECH), Osogbo, Osun State, Nigeria; who consented were enrolled into the study. The research procedure was in compliance with the amended Ethical Declaration of Helsinki. Individuals who declined to provide consent, as well as those who failed to include relevant details on the questionnaire, were excluded from the study. Pregnant women with a history of drug use, causing immunosuppressive therapy or critical illness were excluded from the study.

2.3 Sample Size

The minimum sample size was calculated from the general formula, as described by Kasiulevicius et al., [24]:

\[n = \frac{(Z_{\alpha/2})^2 PQ}{d^2} \]

where
- \(n \) is the minimum sample size
- \(Z_{\alpha/2} \) is the standard normal deviate
- \(PQ \) is the product of the prevalence and the proportion of the target population
- \(d \) is the width of the desired confidence interval

Accordingly:

\[n = \frac{(1.96)^2 \times 0.04 \times 0.96}{0.05^2} \]

\[n = \frac{3.8416 \times 0.0384}{0.0025} \]

\[n = \frac{0.1480304}{0.0025} \]

\[n = 59.21216 \]

Therefore, the minimum sample size was 60.
Where,

\[Z_{\frac{\alpha}{2}} \] is the standard normal value corresponding to the \((1-\alpha)\) confidence level.
P is the proportion of the factor or variable under study in the target population
Q is 1-P, d is the margin of error that the researcher is willing to tolerate.

At 95% confidence level, \[Z_{\frac{\alpha}{2}} = 1.96 \]. A 9.78% margin of error

Applying this formula, the calculated sample size is 100. A sample size greater than the value determined by the formula was used to improve precision estimates of the study.

The ethical approval to carry out this study was obtained from the Research Ethics Committee of Ladoke Akintola University of Technology Teaching Hospital (LAUTECH), Osogbo, Osun State, Nigeria. A total of 100 pregnant women attending the ante-natal clinic (ANC) at the Ladoke Akintola University of Technology Teaching Hospital (LAUTECH), Osogbo, Osun State, Nigeria, were enrolled in the study. Consenting pregnant women visiting the ante-natal clinic for their routine screening were enrolled in the study, taking into consideration some inclusion and exclusion criteria. Participants were subjected to a face-to-face interview with the data collector, whereby pretest counseling on hepatitis E was done before sample collection. Sample collection was done on-site, and the sterile plain bottles in which the blood was collected were duly labeled. Questionnaires were filled to obtain information on relevant medical, obstetrical, and socio-demographic characteristics of all participants enrolled in the study.

A volume of 5 ml of blood sample was collected in plain bottles with no anticoagulant. The blood samples were then separated by centrifugation at 3000 rpm for 10 minutes to obtain serum. Serum was obtained and stored at -20 °C until ready for analysis. HEV ELISA technique was performed at the Ladoke Akintola University of Technology Teaching Hospital’s blood bank laboratory. All of the sera were analyzed in duplicate for HEV antigen, using ELISA Kit [Melsin Medical Corporation, China - sensitivity (97%) and specificity (97%)]. The assay employs a double-antibody sandwich technique to analyze the presence of HEV Ag in human serum. The double antibody sandwich ELISA test was carried out following the instructions contained in the manufacturer’s manual.

Statistical analysis and interpretation: The prevalence of HEV Ag was determined from the proportion of the positive individuals in the overall population studied and expressed as percentages. Double-entry of data was done using Microsoft Excel 2016 (Microsoft office Inc. for Windows, USA). Data analysis was then carried out using SPSS version 25. The Chi-square (\(\chi^2\)) test was used to determine the relationship between socio-demographic variables and HEV status. Descriptive statistics significance was set at \(p \leq 0.05\). Regression analysis was performed to determine the association strength between potential risk factors and HEV status.

3. RESULTS

3.1 Association of Possible Risk Factors with HEV Seropositivity

The distribution of seropositive samples according to age, pregnancy stage, source of drinking water, contact with animals, occupation, and education status of the study participants are shown in Table 1. Statistical analysis showed that there was no significant correlation (\(P > 0.05\)) between the HEV and the possible risk factors evaluated. The study revealed that there was a seroprevalence of HEV Ag in 13.3% of the test participants with a prior history of blood transfusion relative to those with no previous history of blood transfusion. Blood transfusion history showed statistical significance (\(\chi^2=12.164, df=1, P=0.019\)). The source of drinking water, however, did not show statistical significance (\(\chi^2=11.817, df=6, P=0.058\)). There is a 2-fold risk of getting infected with HEV among those who had a previous history of blood transfusion (95% C.I. = 0.135-9.303, OR = 2.03). Likewise, there is a one-fold risk of getting infected with HEV among those whose source of water was bottled/sachet water (95% C.I. = 0.368-11.138, OR = 1.0), and those who picked other water sources than those listed (95% C.I. = 0.368-11.138, OR = 1.71). Multivariate logistic regression analysis showed no statistical correlation between the tested parameters and HEV seropositivity in the individuals enrolled into the study (\(P > 0.05\)). Linear regression analysis showed no correlation between the parameters tested and the presence of HEV Ag in the study population (\(P > 0.05\)).
Table 1. Socio-demographic factors of the study participants, including distribution of HEV samples

Parameter	Participants’ variables	Frequency (%)	Distribution (%) of positive participants n=8
Age			
20-25	9		
26-30	35	5 (62.5%)	
31-35	32	3 (37.5%)	
36-40	20		
41-45	4		
Pregnancy Stage			
First trimester	21	3 (37.5%)	
Second trimester	33	2 (25%)	
Third trimester	46	3 (25%)	
Source of drinking water			
Tap/well-water	66	4 (50%)	
Bottled/sachet water	17	2 (25%)	
Others	17	2 (25%)	
Contact with animals			
Yes	27	4 (50%)	
No	73	4 (50%)	
Occupation			
Trader	27		
Artisans	27	3 (37.5%)	
Civil servant	24	2 (25%)	
Healthcare worker	5	1 (12.5%)	
Unemployed	9	1 (12.5%)	
Others	8	1 (12.5%)	
Education status			
Graduate	71	4 (50%)	
Undergraduate	9		
Secondary education	17	3 (37.5%)	
Others	1		
No formal education	2	1 (12.5%)	

Table 2. HEV Seroprevalence infection in comparison to socio-demographic characteristics

Parameter	Participants’ variables	HEV Status	df	Chi-square	P-value
Age		Positive	Negative		
20-25	0(0.0%)	9(100%)	15	18.478	0.491
26-30	5(14.3%)	30(85.7%)	15	18.478	0.491
31-35	3(9.4%)	29(91%)	15	18.478	0.491
36-40	0(0.0%)	20(100%)	15	18.478	0.491
41-45	0(0.0%)	4(100%)	15	18.478	0.491
Pregnancy Stage					
First trimester	3(14.3%)	17(85.7%)	5	1.433	0.489
Second trimester	3(6.1%)	31(93.9%)	5	1.433	0.489
Third trimester	3(6.5%)	43(93.5%)	5	1.433	0.489
Source of drinking water					
Tap/well-water	4(6.1%)	62(93.9%)	5	0.990	0.609
Bottled/sachet water	2(11.8%)	15(88.2%)	5	0.990	0.609
Others	2(11.8%)	15(88.2%)	5	0.990	0.609
Contact with animals					
Yes	4(14.8%)	23(85.2%)	1	2.603	0.107
No	4(5.5%)	69(94.5%)	1	2.603	0.107
Occupation					
Trader	0(0.0%)	27(100%)	20	4.023	0.55
Artisans	3(11.1%)	24(88.9%)	20	4.023	0.55
Civil servant	2(8.3%)	22(91.7%)	20	4.023	0.55
Healthcare worker	1(20%)	4(80%)	20	4.023	0.55
Unemployed	1(11.1%)	8(88.9%)	20	4.023	0.55
Others	1(12.5%)	7(87.5%)	20	4.023	0.55
Education status					
Graduate	4(5.6%)	67(94.4%)	15	5.866	0.139
Undergraduate	0(0.0%)	9(100%)	15	5.866	0.139
Secondary education	3(17.6%)	14(82.4%)	15	5.866	0.139
Others	0(0.0%)	1(100%)	15	5.866	0.139
No formal education	1(50%)	1(50%)	15	5.866	0.139

Key: df: Degrees of freedom; P-value: Probability of obtaining results as extreme.
Table 3. Possible risk factors' correlation and HEV

Variable	Participants' variables	Positive	Negative	OR	95% C.I.	P-value
Source of drinking water	Tap/wellwater	4(6.1%)	62(93.9%)	0.48	0.368-11.138	0.58
	Bottled/sachet water	2(11.8%)	15(88.2%)	1.0	0.368-11.138	0.58
	Others	2(11.8%)	15(88.2%)	1.71		
History of blood	Yes	2(13.3%)	13(86.7%)	2.03	0.135-9.303	0.019
transfusion	No	6(40%)	79(0.0%)	2.03		

Key: OR: Odds ratio; C.I.: Confidence interval

4. DISCUSSION

Hepatitis E virus is a leading cause of liver disease globally, and while long-term complications are rare, it causes substantial mortality (≤ 20%) in infected pregnant women [7]. HEV is particularly problematic in pregnancy due to the vulnerability of pregnant women to infections, which often causes spontaneous abortion, premature delivery, including maternal and infant mortality. The symptoms of the disease are more commonly pronounced during the third trimester of pregnancy [6]. Although some research has been carried out in various locations in Nigeria, the burden of the infection among pregnant women is still largely unknown. While pregnant women attending ante-natal clinics are mandatorily screened for HIV, Hepatitis B and C, Hepatitis E, except in endemic areas, is not included in the protocol, even though the prevalence of Hepatitis E globally is on the increase.

This study was carried out to determine the prevalence of hepatitis E among pregnant women attending the ante-natal clinic at the LAUTECH Teaching Hospital, Osogbo. The results of this study showed a seroprevalence of 8% among the study population, a figure which is consistent with those reported in studies carried out to determine the seroprevalence of HEV among pregnant women in Sokoto (9.9%) [25] and Nasarrawa (12.1%) [26], and some African countries like Burkina Faso (11.6%) [16], and Gabon (14.1%) [27].

The result obtained in this study is, however, much lower than the results of related studies carried out among pregnant women in most developing countries. For example, a study carried out in Addis Ababa, Ethiopia, to determine HEV seroprevalence among pregnant women showed a seroprevalence of 31.6% [7], while similar research carried out in Darfur, Sudan reported a seroprevalence of hepatitis E virus among pregnant women in 31.1% of the study participants. Another study carried out among pregnant women in Benin Republic reported a seroprevalence of 17.63%, while studies carried out in other African countries also reported as follows: Ghana (28.6%), Sudan (41%), and Egypt (84.3%) [8]. The observed seroprevalence in this study is lower than that of other similar studies because of the small sample size, delayed sample analysis because of the lockdown of activities due to the Covid-19 pandemic, and also because hepatitis E might still be an emerging disease in Nigeria.

5. CONCLUSION

In this study, the HEV seroprevalence (8%) among pregnant women is significant (p<0.05), considering the small sample size. History of blood transfusion has a particularly significant association with HEV infection. At the same time, age may also be a risk factor of HEV infection, but it was not statistically supported in this study. There was no correlation between the HEV Ag prevalence rates among the study participants in terms of occupation, source of drinking water, contact with animals, and educational status.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

Informed written consent was obtained from individuals enrolled in the study. Consenting individuals filled the administered questionnaire before sample collection.

ETHICAL APPROVAL

The research procedure was in compliance with the amended Ethical Declaration of Helsinki.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Webb GW, Dalton HR. Hepatitis E: an underestimated emerging threat. Therapeutic Advances in Infectious Diseases. 2019;6:1–18.
2. Aggarwal R. Hepatitis E: historical, contemporary and future perspectives. Journal of Gastroenterology and Hepatology. 2011;26(Suppl 1):72–82.
3. Aggarwal R, Jameel S. Hepatitis E. Hepatology. 2011;54:2218–2226.
4. Zhu F, Zhang J, Zhang X, Zhou C, Wang Z, Huang S, Wang H, Yang C, et al., Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A largescale, randomised, double-blind placebo-controlled, phase 3 trial. The Lancet. 2010;376:895–902.
5. Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology. 2012;55 (4):988-97.
6. De Paschale M, Ceriani C, Romanò L, Cerulli T, Cagnin D, Cavallari S, Ndayake J, Zaongo, D., Diombo K, Priuli G, Viganò P, Clerici P. Epidemiology of hepatitis E virus infection during pregnancy in Benin. Tropical Medicine and International Health. 2016;21:108-113.
7. Abebe M, Ali I, Ayele S, Overbo J, Aseffa A, Mihret A. Seroprevalence and risk factors of Hepatitis E Virus infection among pregnant women in Addis Ababa, Ethiopia. PLoS One. 2017;12(6):e0180078.
8. Kim J, Nelson KE, Panzner U. A systematic review of the epidemiology of hepatitis E virus in Africa. BMC Infectious Diseases. 2014;14:308.
9. Bouwknecht M, Engel B, Herremans MM, Widdowson MA, Worm HC, Koopmans MP, Frankena K, De Roda Husman AM, De Jong MC, Van Der Poel WH. Bayesian estimation of hepatitis E virus seroprevalence for populations with different exposure levels to swine in The Netherlands. Epidemiology and Infection. 2008;136:567–576.
10. Echevarría JM, González JE, Lewis-Ximenez LL, Dos Santos DR, Munné MS, Pinto MA, Pujol FH, Rodríguez-Lay LA. Hepatitis E virus infection in Latin America: A review. Journal of Medical Virology. 2013;85(6):1037–1045.
11. Kmush B, Wierzbza T, Krain L, Nelson K, Labrique AB. Epidemiology of hepatitis E in low- and middle-income countries of Asia and Africa. Seminars in Liver Disease. 2013;33:15–29.
12. Kar P, Jilani N, Husain SA, Pasha ST, Anand R, Rai A, Das BC. Does hepatitis E viral load and genotypes influence the final outcome of acute liver failure during pregnancy? The American Journal of Gastroenterology. 2008;103: 2495–2501.
13. Tabatabai J, Wenzel JJ, Soboletzki M, Flux C, Naid MH, Schnitzler P. First case report of an acute hepatitis E Subgenotype 3c infection during pregnancy in Germany. Journal of Clinical Virology. 2014;61:170–172.
14. World Health Organization. Hepatitis E: Immunization, Vaccines and Biologicals; 2015. DOI:https://www.who.int/immunization/diseases/hepatitisE/en Accessed on 25 October 2019.
15. Balayan MS, Andjaparidze AG, Savinskaya SS, Ketiladze ES, Braginsky DM, Savinov AP, Poleschuk VF. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology. 1983;20(1):23-31.
16. Traoré KA, Rouamba H, Nébié Y, Sanou M, Traoré AS, Barro N, Roques P, Seroprevalence of Fecal-Oral Transmitted Hepatitis A and E Virus Antibodies in Burkina Faso. PLoS one. 2012;7(10):e48125.
17. Buisson Y, Grandadam M, Nicand E, Cheval P, Van Cuyck-Gandre H, Innis B, Rebel P, Coursaget P, Teysou R, Tsarev S. Identification of a novel hepatitis E virus in Nigeria. Journal of General Virology. 2000;81(Pt 4):903-9.
18. Adesina OA, Japhet MO, Donbraye E, Kumapayi TE, Kudoro A. Anti hepatitis E virus antibodies in sick and healthy Individuals in Ekiti State, Nigeria. African Journal of Microbiology Research. 2009; 3(9):533-536.
19. Ifeomah M, Faley TOC, Bakarey AS, Adewumi MO, Akere A, Omoruyi EC, Ogunwale AO, Adeniji JA. Acute Hepatitis E Virus Infection in Two Geographical Regions of Nigeria. Journal of Pathogens. 2017;Article ID 4087108:1-6.
20. Oladipo EK, Awoyelu EH, Oloke JK. Human Hepatitis E Virus among apparently healthy individuals in Ogbomosho, South-Western Nigeria. Journal of Human Virology & Retrovirology. 2017;5(1):00137.

21. Fowotade A, Oluseyi A, Gbaja AT, Ogunleye VO, Ajayi A, Kehinde AO. Seroprevalence of hepatitis E among restaurant food handlers in Ibadan, Nigeria. Tanzania Journal of Health Research. 20:3-6.

22. Okagbue HI, Adamu MO, Bishop SA, Oguntunde PE, Odetunmibi OA, Opanuga AA. Hepatitis E Infection in Nigeria: A Systematic Review. Open Access Macedonian Journal of Medical Sciences. 2019;7(10): 1719–1722.

23. National Population Commission (2020). Available:https://nationalpopulation.gov.ng.

24. Kasiulevicius V, Sapoka V, Filipaviciute R. Sample size calculation in epidemiological studies. Gerontology. 2006;7:225–31.

25. Bello A, Bello, Milicent Kabiru, M., Shu’aibu A, A’isha, B., Firdausi, A., Bunza M.N., & Olasumbo A. Seroprevalence of Hepatitis E Virus (HEV) Infection in Pregnant Women in Sokoto State, Nigeria. Journal of Advances in Microbiology. 2016;1:1-5.

26. Adamu I, Ishaleku D, Obande G. Hepatitis E virus: Evaluation of seroprevalence and risk factors among HIV-Positive pregnant women in Nasarawa State, North Central Nigeria. International Journal of Infectious Diseases. 2018;73S:3–398.

27. Caron M, Kazanji M. Hepatitis E virus is highly prevalent among pregnant women in Gabon, central Africa, with different patterns between rural and urban areas. Virology Journal. 2008; 5:158.

© 2022 Alao et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/83814