Molecular and Morphological Evidence Reveals a New Species in the Phyllomedusa hypochondrialis Group (Hylidae, Phyllomedusinae) from the Atlantic Forest of the Highlands of Southern Brazil

Daniel P. Bruschi1*, Elaine M. Lucas2, Paulo C. A. Garcia3, Shirlei M. Recco-Pimentel1

1 Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil, 2 Área de Ciências Exatas e Ambientais/Mestrado em Ciências Ambientais, Universidade Comunitária da Região de Chapecó - UNOCHAPECÓ, Chapecó, Santa Catarina, Brazil, 3 Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil

Abstract

The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.

Introduction

The genus Phyllomedusa Wagler, 1930 (Anura, Hylidae, Phyllomedusinae) is endemic to the Neotropical region and is currently composed of 30 recognized species [1]. Panama represents the northernmost extreme of the geographic range of this genus, while Argentina and Uruguay constitute its southern limit; species is also being found throughout Colombia, east of the Andes, and in Trinidad [1].

The most recent hypothesis on the phylogenetic relationships of the Phyllomedusinae was presented by Faivovich et al. [2], who recognized the four phenetic groups assigned in the genus as monophyletic groups: the P. hypochondrialis group [3], P. tarsius group [4], P. burnesi teri group [3] and P. permessos group [6]. Nevertheless, some members of this genus have yet to be assigned to a species group [1,2].

A complex taxonomic scenario has been noted in most species of the P. hypochondrialis group [2,7,8]. Molecular inferences have revealed two well-supported clades within this group. One subclade includes P. palliata, P. azurea, P. hypochondrialis and P. nordestina, while the second comprise P. rhodei, P. ayyoey, P. centralis, P. megacephala and P. oreades [2].

The use of both morphological and molecular methods is an established and effective approach for the identification of cryptic biodiversity and the clarification of taxonomic uncertainties (e.g. see references [9–10]). Speciation may not always be accompanied by morphological changes [11–12], in which case the recognition of species might be hampered by the absence of discrete phenotypic traits. The recognition of hidden biodiversity is fundamental for conservation efforts [13], especially the identification of new taxonomic units with small geographic ranges that potentially represent evolutionarily vulnerable lineages [13].

Lucas et al. [14] recorded the presence of a population of Phyllomedusa morphologically similar to P. azurea in natural grassland formations on a plateau in the highlands of southern Brazil (municipality of Água Doce in Santa Catarina state), but its taxonomic status was unclear. Despite the similar morphology, the authors detected some differences in coloration in comparison with the formal diagnosis of P. azurea [3]. Furthermore, this population was found in an unusual location distinct from the savanna formations in which P. azurea is known to occur. Bruschi et al. [8] evaluated the taxonomic status of the populations assigned to P. hypochondrialis and P. azurea from a number of Brazilian regions and included tissue of two specimens from Água Doce. Interestingly, these authors found that the Água Doce population was paraphyletic in relation to the other haplotypes of the P. azurea clade, indicating that a more robust analysis, based on a larger number of characters (morphological and genetic)
would be needed to identify the true taxonomic status of this population.

In this study, we used morphological, chromosomal and molecular phylogenetic approaches to investigate the taxonomic status of a distinct population of *Phyllomedusa* from southern Brazil. We describe a new species of the genus and infer its phylogenetic relationship as well as present chromosomal data.

Materials and Methods

Population sampling

The individuals examined were collected under authorization number 14469-1/14468-4 issued by SISBIO/Instituto Chico Mendes de Conservação da Biodiversidade. All tissue samples were extracted from euthanized specimens using anaesthetic application to the skin (5% Lidocaine) to minimize animal suffering, according to recommendations of the Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists (available at: http://www.asih.org/publications), and approved by SISBIO/Instituto Chico Mendes de Conservação da Biodiversidade as a condition for the concession license. Specimens were collected in the municipality of Agua Doce, Santa Catarina state, southern Brazil (26°35′59.9′′S; 51°34′39.4′′W; 1330 m above sea level) (Figure 1). Three adult males were collected on 8 January 2009 and 10 adult males on 5 January 2012. These frogs were found in two ponds subjected to anthropogenic impacts; these were separated by an unpaved road (the SC-452 highway). The area is within the Atlantic Forest biome and contains a mosaic of *Araucaria* forests and patches of natural grassland, with distinct swampy areas and patches of mixed rainforest [15]. The natural grassland formations of the highland plateau of southern Brazil plateau are relicts of the drier and colder climates of the Pleistocene [15–17], which were mostly replaced by the subsequent expansion of *Araucaria* forest in the Holocene [18]. Agua Doce municipality is located in the transitional zone of the high elevation grasslands known as the Campos de Palmas.

The regional climate is classified as Cfb (temperate) according to the Köppen-Geiger system. Mean annual temperature in this region is 10°C, with mean annual precipitation of 1500–200 mm [19]. The vegetation is predominantly herbaceous at the ponds where the specimens were collected, and composed primarily of plants of the Asteraceae, Cyperaceae and Poaceae families.

Isolation, amplification, and sequencing of DNA

Genomic DNA was extracted from liver or muscle tissue and stored at −70°C in the tissue bank of the Departamento de Biologia Estrutural e Funcional of the Universidade Estadual de Campinas (UNICAMP), in São Paulo state, Brazil, using the TNEs method, as applied by Bruschi et al. (2012). The mitochondrial 12S rDNA, tRNA-Val, and 16S ribosomal genes were amplified using the primers MVZ 59(L), MVZ 50(H), 12L13, Titus I (H), Hedges16L2a, Hedges16H10, 16Sar-L, and 16Sbr-H (for primer sequences, see reference [20]). The amplified PCR products were purified using Exonuclease I (10 units) and SAP (1 unit), with a 45-min incubation at 37°C and a 10-min denaturation at 83°C, then used directly as templates for sequencing in an automatic ABI/Prism DNA sequencer (Applied Biosystems, Foster City, CA, USA) with the BigDye Terminator kit (Applied Biosystems, Foster City, CA, USA), as recommended by the manufacturer. The DNA samples were sequenced bidirectionally and edited in Bioedit version 7.0.1 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) [21].

Analysis of the molecular data

The initial sequence alignment was conducted for each gene separately, using CLUSTALW [22] in Bioedit, version 7.0.1 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). For each gene, the initial alignment was evaluated using four different gap penalties (5, 10, 15 and 20), and gap length was maintained constant (0.60) to identify regions of ambiguous homology [23]. The regions presenting ambiguous homologies were excluded for our phylogenetic inferences.

The phylogenetic relationships among the species were inferred from the concatenated matrix of the mitochondrial DNA 12S, tRNAval, and 16S rDNA sequences. We selected *Phyllomedusa* sequences available in the GenBank database, encompassing 90% of the species currently recognized for this genus [1]. The outgroup was *Agalychnis granulosa*, which was chosen based on the topology reported by Faivovich et al. [2]. A complete description of the species, sequences and GenBank accession numbers is provided in the Supporting Information (Table S1). Phylogenetic trees were constructed using Bayesian inference and the Maximum Parsimony method. Bayesian inference was based on a Markov chain Monte Carlo (MCMC) analysis conducted in MrBayes 3.1.2 [24] with two independent runs, each with four chains and sampling every 1000 generations for 6 million generations. An adequate burn-in (the first 25% trees were excluded) was determined by examining a plot of the likelihood scores of the heated chain for convergence and stationarity. The evolutionary model most appropriate for each gene was selected by MrMODELTEST [25] using the Akaike Information Criterion (AIC). The trees were sampled every 100 generations, excluding the first 25% of the trees as burn-in, determined by examining a plot of the likelihood scores the heated chain for convergence and stationarity. Tracer software version 1.5 [26] was used to confirm the quality of the parameters of the Bayesian inferences.

The Maximum Parsimony criterion was implemented in TNT v1.1 software [27] using a heuristic search method with tree bisection-reconnection (TBR) swapping and 100 random additional replicates. The bootstrap values of the branches inferred in this analysis were calculated with 1000 non-parametric pseudoreplicates.

Finally, the number of base substitutions per site among the sequences of the species of the *P. hypochondrialis* group was calculated using the maximum composite likelihood model [28] implemented in MEGA5 [29]. Gaps and missing data were eliminated in this analysis, and all parameters were at the default settings.

Cytogenetic analysis

Ten male individuals were studied by cytogenetic methods (UFMG 13353–13362). Metaphase cells were obtained from the intestines and testes of animals that were previously treated with 2% colchicine, following procedures modified from King and Rofe [30] and Schmid [31]. Prior to the removal of the intestine and testes, the animals were deeply anesthetized following the recommendations of the Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists.

Cell suspensions were dripped onto clean slides and stored at −20°C. The chromosomes were stained with 10% Giemsa and silver stained using the Ag–NOR method according to Howell and Black [32], in addition to being C-banded as in Sumner [33], with some modifications. To better visualize the heterochromatin, the chromosomes were stained with the fluorochromes AT-specific DAPI (4′, 6-diamidino-2-phenylindole) and GC-specific Mithramycin (MM) sequentially C-banding. To confirm their number...
and positions, the rDNA sites was detected using fluorescence in situ hybridization (FISH) as in Viegas-Pequignot [34] using the HM123 probe [35]. The metaphases were photographed under an Olympus microscope and analyzed using Image Pro-Plus software, version 4 (Media Cybernetics, Bethesda, MD, USA). The chromosomes were measured, and the centromere index (CI), relative length (RL), and centromere ratio (CR) were estimated. The chromosomes were ranked and classified according to the scheme of Green and Sessions [36].

Morphological Analyses

The specimens examined for the description of the new species, including those of other taxa used for comparison are deposited in the following Brazilian institutions: CFBH (Célio F. B. Haddad amphibian collection, Universidade Estadual Paulista, Rio Claro, São Paulo state); CAUC (Coleção de Anfíbios da Universidade Comunitária da Região de Chapecó, Chapecó, Santa Catarina state); UFMG (Coleção Herpetológica da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais state), and MNRJ (Museu Nacional, Rio de Janeiro, Rio de Janeiro state) (see list of examined specimens in Appendix S1). The webbing formula notation followed Savage and Heyer [37], as modified by Myers and Duellman [38].

Measurements of the adult specimens were conducted using a Mytutoyo digital caliper to the nearest 0.01 mm: snout-vent length (SVL), head length (HL), head width (HW), eye diameter (ED), tympanum diameter (TD), eye-to-nostril distance (END), nostril-to-tip of snout distance (NSD), interorbital distance (IOD), upper eyelid width (UEW), interorbital distance (IOD), tibia length (TL) and foot length (FL) [39]; the distance between the anterior margins of the eyes (AMD) [40]; forearm length (FAL) [41]; hand length (HAL), thigh length (THL) and tarsal length (TAL), following Heyer et al [42]; as well as the disk diameter of the third finger (3FD) and the fourth toe (4TD) [43].

Nomenclatural Acts

The electronic edition of this article adheres to the requirements of the amended International Code of Zoological Nomenclature, and the new names contained herein are therefore available under that Code in the electronic edition of this article. The published work and the nomenclatural descriptions it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be
obtained and the associated information viewed through any standard web browser by appending the LSID to the prefix “http://zoobank.org/”. The LSID for this publication is urn:l-sid:zoobank.org:pub:9A74B7B3-32C8-4BAA-86BC-9247128B782E. The electronic edition of this study was published in a journal with an ISSN, has been archived, and is available from the following digital repositories: PubMed Central, LOCKSS.

Results

Phylogenetic Inferences

The combined matrix consisted of 2141 bps. In the Bayesian inference, the GTR+G+I model was identified as being the most appropriate evolutionary model for the data set. The topology indicated similar relationships among the species of the genus to those described by Faivovich et al [2] and Bruschi et al [8]. Two clades were observed within the current arrangement of the P. hypochondrialis group: the first clade included the species P. palliata, P. hypochondrialis, P. nordestina and P. azurea, while P. megacephala, P. rohdei, “P. rhodei”, P. centralis, P. oreades and haplotypes of Phyllomedusa sp. n. from Água Doce, Santa Catarina State, constituted the second clade. Similar relationships were observed in the MP analyses, though different support values were obtained.

The parsimony and Bayesian trees detected a minor conflict in the internal relationships among the species within the second subclade (Figure 2A–B). In the Parsimony topology, Phyllomedusa sp. n. is monophyletic and is a sister group to all of the species of the second clade, with strong bootstrap support (Figure 2A), whereas in the Bayesian inference (Figure 2B), Phyllomedusa sp. n. is grouped with P. ayeaye, P. centralis and P. oreades and this clade is the sister group of remaining species. However, this arrangement is weakly supported by the posterior probability values.

Considering the genetic divergence in the 1335 positions that make up the final dataset of 12S, t-RNA-val and 16S mitochondrial fragments, the level of sequence divergence between Phyllomedusa sp. n. and other species of the P. hypochondrialis group ranged from 6% to 12% (Table 1). Within the second clade of the P. hypochondrialis group, divergence levels varied from 6% to 11%. The reduced divergence between the sequences of P. centralis, P. oreades, and P. ayeaye (1–2%) has been observed previously in cytochrome b sequences [2].

Cytogenetic Analysis

The analyzed specimens all presented a diploid number of 2n = 26 chromosomes. The karyotype consisted of four metacentric (1, 4, 8, 11), six submetacentric (2, 3, 5, 6, 12, and 13) and three subtelocentric pairs (7, 9 and 10) (Figure 3). Secondary constrictions were observed in the short arms of pair 9 and in one of the homologs in pairs 3 and 4, both in the subterminal short arms (Figure 3A). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B). In some metaphases, secondary constrictions were observed through conventional Giemsa staining of the long arms of pair 7, in the pericentromeric region. The heterochromatin pattern revealed a C-positive block at the centromeric position in all pairs (Figure 3B).
presenting a similar pattern to that found by C-banding. MM staining revealed brilliant fluorescence in the same regions as the secondary constrictions that were detected by conventional staining (Figure 3D).

The Ag-NOR and FISH techniques conducted using an rDNA probe revealed that the new species has a single NOR pair located in the subterminal region on chromosome pair 9 (Figure 3E and F). In this chromosome pair, the NOR was detected in the secondary constriction observed through Giemsa and MM-positive banding. The NOR sites presented size heteromorphism in the three specimens analyzed.

Phyllomedusa rustica sp. n. urn:lsid:zoobank.org:act:DD2C2754-AD90-4E63-96E4-C6D61972A4B1.

Phyllomedusa azurea – Lucas, Fortes and Garcia 2010.

Holotype (Figure 4 and 5). UFMG 13360, an adult male from Água Doce municipality (26°35′59.9″ S, 51°34′39.4″ W; 1330 m above sea level), Santa Catarina state, Brazil, collected by Elaine M. Lucas, Daniel Bruschi, and Veluma Debastiani, on 5 January 2012.

Paratopotypes. Nine adult males, UFMG 13353–13359 and 13361–13362, collected together with the holotype; three adult males, UFMG 1585 (Ex UFMG 3222) and CAUC 0864–0865, collected by Elaine M. Lucas, on 8 January 2009, at the type locality.

Type-locality. Água Doce municipality, Santa Catarina state, southern Brazil.

Diagnosis. A small species of Phyllomedusa belonging to the P. hypochondrialis species group, diagnosed based on the following combination of characters: (1) small to medium size (SVL 33.9–37.1 mm in males); (2) body moderately slender; (3) snout nearly round to truncate in dorsal view, vertical to obtuse in profile; (4) flanks and hidden areas of the arms and legs cream to reddish orange with black reticulations; (5) distinct pattern of reddish orange cells encircled by black or dark blue coloring on the concealed surfaces of the limbs; (6) upper lip lacking a reticulate pattern; (7) discreet reticulated pattern on the edge of the lower eyelids; (8) throat and belly whitish to creamy orange, slightly reticulated; (9) dorsal surfaces uniformly green, without spots; (10) dorsal surfaces smooth without granules; (11) translucent palpebral membrane slightly reticulated.

Phyllomedusa rustica sp. n. differs from P. azurea, P. centralis, P. hypochondrialis and P. nordestina by the distinct pattern of reddish orange small blotches encircled by black or dark blue coloring on the concealed surfaces of the limbs and by the slightly reticulated pattern on the border of the eyelids, and the ventral surfaces of the body (P. centralis, P. hypochondrialis and P. nordestina are characterized by a pattern of black bars or stripes on the red-orange bottom and an absence of reticulation on the ventral surfaces of the body); from P. oreades and P. ayeaye based on the absence of a reticulated pattern on the margins of the upper lip (present in these species) and less conspicuous reticulation on the ventral regions of the limbs, jaw, and body (conspicuous in these species); from P. megacephala by the presence of a discreet reticulate pattern on the border of the eyelids and the ventral surfaces of the body (absent in this species); from P. rohdei and P. palliata based on the absence of a whitish stripe along the lateral part of head (present in these species; see [41] regarding P. palliata).

Description of the holotype. General aspect slender; head slightly wider than long, SVL approximately three times the head width; snout nearly round to truncate in dorsal view (Figure 4) and vertical-to-slightly oblique in lateral view (Figure 4 and 5); loreal region concave; nostrils small, circular and anterolaterally

Species	1	2	3	4	5	6	7	8	9	10	11
P. palliata	0.11	-	-	-	-	-	-	-	-	-	-
P. hypochondrialis	0.11	0.10	-	-	-	-	-	-	-	-	-
P. avara	0.12	0.11	0.12	-	-	-	-	-	-	-	-
P. megacephala	0.11	0.11	0.12	-	-	-	-	-	-	-	-
P. rohdei CHB-93	0.11	0.11	0.12	-	-	-	-	-	-	-	-
P. rohdei CRR-18	0.13	0.11	0.12	-	-	-	-	-	-	-	-
P. oreades	0.12	0.11	0.10	-	-	-	-	-	-	-	-
P. ayeaye	0.12	0.11	0.11	-	-	-	-	-	-	-	-
Phyllomedusa rustica sp. n.	0.11	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11

Uncorrected pairwise distances between the 12S, tRNA-val and 16S mitochondrial sequences of the species of the Phyllomedusa hypochondrialis group.

Table 1. Uncorrected pairwise distances between the 12S, tRNA-val and 16S mitochondrial sequences of the species of the Phyllomedusa hypochondrialis group.

doi:10.1371/journal.pone.0105608.t001
Phyllomedusa hypochondrialis. Variation was found among individuals in body size (Table 2) and proportions (Table 3). In the paratypes UF MG 13358, 13360 and 13362, most of the ventral region is reticulated.

Natural history. Male Phyllomedusa rustica sp. n. were observed perched near the ground during calling activity, frequently in association with herbaceous vegetation at the margins of ponds (Figure 6). When we handled the specimens, the animals contracted their bodies [44], with the belly, arms, and legs uptured, remaining motionless (Figure 5). We observed the eight other anuran species in the same pond: Dendropsophus minutus, Hypsiboas lepisosteus, Hypsiboas pulchellus, Sphaeroderhyynchus surdus, Leptodactylus latrans, Leptodactylus pleumanni, Physalaemus cuvieri and Physalaemus aff. gracilis.

Discussion

Specimens of a disjunct population of Phyllomedusa from southern Brazil were analyzed through phylogenetic inference, as well as morphological and comparative chromosomal analyses, which allowed us to recognize a new species of the P. hypochondrials group, which we have described here and named Phyllomedusa rustica sp. n. This population was first reported by Lucas et al. [14], who concluded that this was the first population of P. azurea to be found outside the savanna biome of South America. Despite this identification, the authors observed the variable morphological characteristics in this population and suggested the existence of a P. azurea species complex [14]. Coloration patterns have been used universally for the delimitation of amphibian species, including those of the Phyllomedusa hypochondrials group [45–46]. However, these characteristics do not appear to be consistently useful for the diagnosis of the taxa of this group, and are unable to discriminate reliably groups of species such as P. hypochondrials, P. azurea, and P. nordestina [2], despite the fact that coloration patterns are the main diagnostic criteria used to differentiate these species [3]. The discrimination of P. araguarai and P. oreades [47], for example, and P. itacolomi and P. aenye [48], has proven similarly problematic. In amphibians, DNA markers have been helpful for the recognition of cryptic lineages [9,49–50] and are especially important in groups which lack clear morphological differences [49,51]. In the present study, the topology obtained from the molecular analyses was fundamental for the recognition of the new species. A similar topology was reported previously [8], based on the comparison of populations from Brazil assigned to P. hypochondrials and P. azurea, highlighting the paraphyletic position of the Água Doce population in relation to P. azurea from the Pantanal and Chaco formations. The topology obtained in the present study provides strong evidence to justify our taxonomical decision to recognize Phyllomedusa rustica sp. n.

The karyotype of Phyllomedusa rustica sp. n. had the same diploid number (2n = 26) and conserved chromosome morphology as all other representatives of the genus [8,52–57]. The NOR-bearing chromosomes in Phyllomedusa rustica sp. n. are the small submetacentric chromosomes of pair 9 (subtelomeric region), as observed in P. nordestina [55], P. rhodei [55] and P. aenye.
In the karyotype of the new species, a bright MM fluorescence pattern was observed in the region of the secondary constrictions using conventional staining. Despite this characteristic being consistently associated with NOR sites, with the exception of the NOR on pair 9, no hybridization signals were detected with the 28S rDNA probe in any of the other secondary constrictions (chromosomes 3, 4, 7 and 8). In these chromosomes, the MM-positive marks may be associated with the composition of this class of chromatin, with repetitive sequences rich in GC bases occurring in the chromosomal constrictions. The observed C-patterns were mainly centromeric, which is a common characteristic of the karyotypes of the *P. hypochondrialis* group [8,55].

Phyllomedusa rustica sp. n. was collected at altitude of 1330 m above sea level, within the Atlantic Forest formation of southern Brazil. *Phyllomedusa rohdei* is another species of the same subclade that is also found in the Atlantic Forest. All other species of this clade inhabit plateaus and mountainous regions in the Cerrado savannas of central Brazil [2]. In southern Brazil, the Atlantic Forest biome includes grasslands on the high plateaus that form a forest mosaic in the northern half of Rio Grande do Sul and in the states of Santa Catarina and Paraná. The Agua Doce region is included in the Atlantic Forest *sensu lato* [30], which is characterized by seasonal deciduous forest, forming a natural mosaic with grasslands and *Araucaria* forests in western Santa Catarina and Paraná states, along the upper Uruguay River, extending to the Ibiúna and Jaciúbas basins in the center of the state of Rio Grande do Sul.

Special efforts are needed to define the taxonomic arrangement of the second subclade of *P. hypochondrialis* group, to which *Phyllomedusa rustica* sp. n. belongs, due primarily to difficulties in taxonomic delimitation based only in morphological traits. One example of a taxonomic problem is provided by the different populations of *P. rhodei*, in which strong evidence of mitochondrial sequence divergence was detected [2], indicating the existence of cryptic diversity – at least two distinct species – among the frogs currently assigned to *P. rhodei*. Faivovich et al. [59] corroborated this suggestion based on anatomical differences between populations from the type locality (Rio de Janeiro, Brazil) and Espírito Santo, Brazil. However, this specific question was not addressed within the scope of this work, and we can only note that the resolution of taxonomic questions in this subclade is important and that the identification of new lineages will contribute to a better understanding of their evolutionary history.
Underestimation of species diversity and conservation of Atlantic Forest frogs

The recognition of the new species has important implications for the development of conservation strategies in southern Brazil, as well as for the understanding of ecological and evolutionary patterns, in particular the biological diversification of the Atlantic Forest. The description of this new species further reinforces the conclusion that the true diversity of the amphibian fauna of the Atlantic Forest biome has been underestimated substantially [60–61]. In recent years, the application of molecular approaches has contributed to the fine-scale taxonomic re-evaluation of many amphibian groups, revealing many new cryptic lineages in the

Table 2. Mean \pm standard-deviation (SD), and range of the measurements (in mm) of the males of type series of Phyllomedusa rustica sp. n. and the holotype (see Material and methods for abbreviations).

Characters	Type series of Phyllomedusa rustica sp. n. ($n = 11$)	Holotype UFMG 13360
SVL	35.46 \pm 1.16 (33.93–37.09)	35.53
HL	10.66 \pm 0.47 (9.86–11.4)	11.4
HW	11.85 \pm 0.41 (11.17–12.61)	12.16
ED	3.75 \pm 0.36 (3.17–4.21)	3.54
TD	2.17 \pm 0.18 (1.86–2.36)	2.32
END	2.71 \pm 0.22 (2.40–3.10)	2.4
NSD	1.84 \pm 0.29 (1.32–2.19)	1.85
IND	3.62 \pm 0.34 (2.96–4.14)	3.38
UEW	3.23 \pm 0.27 (2.80–3.66)	3.18
AMD	6.96 \pm 0.35 (6.44–7.82)	6.94
IOD	4.58 \pm 0.38 (4.16–5.45)	4.31
FAL	8.61 \pm 0.91 (6.54–9.52)	6.54
HAL	9.88 \pm 0.52 (8.93–10.59)	9.9
3FD	0.98 \pm 0.12 (0.81–1.25)	0.83
THL	15.33 \pm 0.78 (14.21–16.54)	15.31
TL	14.10 \pm 0.60 (13.02–14.94)	13.64
TAL	12.73 \pm 0.59 (11.96–13.61)	12.29
FL	22.44 \pm 1.08 (20.72–23.75)	22.14
4TD	1.07 \pm 0.17 (0.81–1.27)	1.07

doi:10.1371/journal.pone.0105608.t002
Atlantic Forest (e.g. see references [9,62–65]). Indeed, this biome has proven to be a biodiversity hotspot with a high level of species endemism in many vertebrate groups [66–68], and the understanding of the mechanisms underlying the biological diversification of this biome is of enormous interest to herpetologists [68–70].

Despite its accentuated species richness and endemism, the Atlantic Forest has suffered high rates of habitat loss throughout its recent history [71]. This biome originally covered an area of over 1,300,000 km2 of eastern and southern Brazil, extending as far west as Paraguay and Argentina. This area has now been reduced to less than 12% of its original extent, most of which is distributed in small and isolated fragments [71]. Protected areas account for only 1.6% of this domain and do not cover the different vegetation types adequately [71–72].

The type locality of *Phyllomedusa rustica* sp. n., is located within a region classified as “extremely high priority” for conservation actions in the National Plan for the Conservation of the Herpetofauna of Southern Brazil - PAN Herpetofauna do Sul [73]. In spite of this, the natural local grasslands are still being converted into *Pinus* plantations or farmland [74], leading to profound modifications of the structure and composition of local ecological communities, and impacts on the biodiversity of the region. The description of a new Atlantic Forest species contributes to the understanding of the evolutionary history of the biota of this formation [75] and the phylogenetic diversity of its different ecosystems [76–77]. A better understanding of a region’s biodiversity [78], the life-history traits of its species [79–81] and their evolutionary history [76–77,79,82–83] may be especially important for the identification of priority areas in conservation planning.

Supporting Information

Table S1 (DOC)

Appendix S1 (DOCX)

Acknowledgments

We are also grateful to Veluma Debastiane for helping to collect the specimens and Jaime Somera for drawing the holotype. We also thank Luciana Bolsoni Lourenc¸o and Ana Cristina Prado Veiga-Menoncello for discussions and/or information provided. PCAG thanks CNPq for a research productivity fellowship. We are indebted to Matthias Stöck and two anonymous reviewers for their valuable contributions to the improvement of this manuscript. We thank the Willi Hennig Society for subsidizing the TNT program and making it freely available.

Author Contributions

Conceived and designed the experiments: DPB EML PCAG SMRP. Performed the experiments: DPB EML PCAG SMRP. Analyzed the data: DPB EML PCAG SMRP. Contributed reagents/materials/analysis tools: SMRP. Wrote the paper: DPB EML PCAG SMRP.

References

1. Frost DR (2014) Amphibian Species of the World: an online reference. Version 5.6. Am Museum Nat Hist. Available: http://research.amnh.org/vz/herpetology/amphibia/. Accessed 2014 January 26.

2. Faivovich J, Haddad CFB, Baêta D, Jungfer KH, Álvares GFRA, et al. (2010) The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics 25: 1–35.

3. Caramaschi U (2006) Redefinic¸a˜o do grupo de *Phyllomedusa hypochondrialis*, com reclassificaca˜o de *P. megacephala* (Miranda-Ribeiro, 1926), revalidac¸a˜o de *P.*

A New *Phyllomedusa* Species from Atlantic Forest of Southern Brazil

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105608
30. King M, Rofe R (1976) Karyotypic variation in the Australian gecko Phyllomedusa hypochondrials. Chromosoma 66: 361–368.

31. Schmid M (1978) Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66: 361–368.

32. Howell WM, Black DA (1980) Controlled silver staining of nucleolar organizer regions with a protective colloidal developer: a 1-step method. Experience 36: 1014–1015.

33. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 72: 348–349.

34. Viegas-Peiguiot E (1992) In situ hybridization to chromosomes with bioninylated probes. In: In situ hybridization: a practical approach. Edited by Wiillerson D. Oxford: Oxford University Press 157–156.

35. Meunier-Rottol M, Cortizas J, Macaya G, Bernardi G (1979) Isolation and organization of calf ribosomal DNA. Nucleic Acids Res 6: 2109–2123.

36. Green DM, Sessions SK (1991) Nomenclature for chromosomes. In: Amphibian cytogenetics and evolution. San Diego: Academic Press 431–432.

37. Savage JM, Heyer WK (1994) Variation and distribution in the tree-frog genus Phyllomedusa in Costa Rica, Central America. Beitrage zur Neotropischen Fauna 5: 111–131.

38. Myers CW, Duellman WE (1982) A new species of Hyla from Cerro Colorado, and other tree frog records and geographical notes from western Panama. Am. Mus. Novitates 2725: 1–32.

39. Duellman WE (1970) The hybrid frogs of Middle America. Monographs of the Museum of Natural History University of Kansas 1: 1–733.

40. Garcia PCA, Vinciprova G, Haddad CFB (2003) The taxonomic status of Hyla pulchella sajanus B. Lutz, 1966 (Anura: Hylidae), with description of tadpole, vocalization, and comments on its relationships. Herpetologica 59: 350–363.

41. Duellman WE (2005) Cosmo Amazones. The lives of amphibians and reptiles in an Amazonian Rainforest. Cornell University Press.

42. Heyer WK, Rand AS, Cruz CAG, Peixoto OL, Nelson CE (1990) Frogs of Borac吗. Arq Zool 31: 231–410.

43. Napoli MF (2005) A new species allied to Hyla circumdata (Anura: Hylidae) from Serra da Maniquiara in Southeastern Brazil. Revista Brasileira de Zoologia 22: 107–108.

44. Toledo LF, Sazima I, Haddad CFB (2010) Is it all death feigning? Case in Caramaschi U, Cruz CAG, Feio KN (2007) A new species of Phyllomedusa Wiegler, 1830 from the state of Minas Gerais, Brazil (Amphibia: Hylidae). Bol Mus Natuc 52: 1–8.

45. Giaretta AA, Filho JCO, Kobukun MN (2007) A new Phylomedusa Wagler (Anura, Hylidae) with reticulated pattern on flanks from Southeastern Brazil. Check List 6: 164–166.

46. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, et al. (2007) Evaluation of the taxonomic status of populations assigned to Phyllomedusa hypochondrials (Anura, Hylidae, Phylomedusinae) based on molecular, chromosomal, and morphological approach. BMC Gen 14: 70.

47. Maack V (1981) Geografia fısica do estado do Parana. Livraria Jose Olympio, Sao Paulo.

48. Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at 2.5 million years ago in southern Brazil. Revista Brasileira de Paleontologia 9: 231–240.
graphic pattern emphasizing conservation challenges. Mol Phylogenet Evol 65: 547–561.

63. Fusinatto LA, Alexandrino J, Haddad CFB, Brunes TO, Rocha CFD, et al. (2013) Cryptic genetic diversity is paramount in small-bodied Amphibians of the genus *Euparkerella* (Anura: Craugastoridae) endemic to the Brazilian Atlantic Forest. PloS ONE 8(11): e79508.

64. Gehara M, Canedo C, Haddad CFB, Vences M (2013) From widespread to microendemic: molecular and acoustic analyses show that *Ischnocnema guentheri* (Amphibia: Brachycephalidae) is endemic to Rio de Janeiro, Brazil. Conserv Genet 14: 973–982.

65. Teixeira M, Recoder RS, Amaro RG, Damasceno RP, Cassimiro J, et al. (2013) A new *Crossodactylodes* Cochran, 1938 (Amura: Leptodactylidae: Paratelmato- biinae) from the highlands of the Atlantic Forests of southern Bahia, Brazil. Zootaxa 3702: 459–472.

66. Costa LP, Leite YLR (2000) Biogeography of South American Forest mammals: endemism and diversity in the Atlantic Forest. Biotropica 32: 872–881.

67. Silva JMC, Sousa MC, Castelletti CHM (2004) Areas of endemism for passerine birds in the Atlantic forest, South America. Global Ecol Biogeogr 13: 85–92.

68. Carvalho AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323: 785–789.

69. Thorne MTC, Zamudio KR, Giovaneli JGR, Haddad CFB, Baldisserra FA Jr, et al. (2010) Phylogography of endemic toads and post-Pleistocene persistence of the Brazilian Atlantic Forest. Mol Phylogenet Evol 55: 1018–1031.

70. Tonini JFR, Costa LP, Carvalho AC (2013) Phylogeographic structure is strong in the Atlantic Forest; predictive power of correlative paleodistribution models, not always. J Zool Syst Evol Res 51: 114–121.

71. Ribiero MG, Metzger JP, Martensen AC, Ponzoni FJ, Hiota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142: 1141–1153.

72. MMA (2007) Áreas prioritárias para conservação, uso sustentável e reparição de benefícios da biodiversidade Brasileira: Anualização - Portaria MMA n.9, de 23 de janeiro de 2007. Ministério do Meio Ambiente, Secretaria de Biodiversidade e Florestas, Brasília.

73. MMA (2012) Plano de ação nacional para conservação de Répteis e Anfíbios ameaçados da região Sul do Brasil - PAN Herpetofauna do Sul – Portaria ICMBIO N° 25, DE 17 DE FEVEREIRO DE 2012. Instituto Chico Mendes da Conservação da Biodiversidade, Brasília.

74. Behling H, Pillar VP (2007) Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos T Roy Soc B 362: 243–251.

75. Fouquet A, Biotto BL, Marques MM, Verdel NE, Juncá FA, et al. (2013) Unexpected phylogenetic positions of the genera *Rupirana* and *Crossodactylodes* reveal insights into the biogeography and reproductive evolution of leptodactylid frogs. Mol Phylogenet Evol 67: 445–457.

76. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, et al. (2007) Preserving the evolutionary potential of flora in biodiversity hotspots. Nature 445: 757–760.

77. Loyola R, Oliveira G, Diniz-Filho JAF, Lewinsohn TM (2008) Conservation of Neotropical carnivores under different prioritization scenarios: mapping species traits to minimize conservation conflicts. Diversity Distrib 14: 949–960.

78. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61: 1–10.

79. Loyola RD, Becker CG, Kubota U, Haddad CFB, Fonseca CR, et al. (2008) Hang out to dry: choice of priority ecoregions for conserving threatened neotropical anurans depends on life-history traits. PloS ONE 5: e2120.

80. Becker CG, Loyola RD, Haddad CFB, Zamudio KR (2010) Integrating species life-history traits and patterns of deforestation in amphibian conservation planning. Divers Distrib 16: 10–19.

81. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of Amphibians. Science 318: 1775–1777.

82. Sechrest W, Brooks TM, da Fonseca GAB, Konstant WR, Mittermeier RA, et al. (2002) Hotspots and the conservation of evolutionary history. PNAS 99: 2067–2071.

83. Rolland J, Cadotte MW, Davies J, Devictor V, Lavergeies S, et al. (2011) Using phylogenies in conservation: new perspectives. Biol Lett 8: 692–694.