Moving ahead from hydrogen to methanol economy: scope and challenges

Ankit Sonthalia¹,² · Naveen Kumar² · Mukul Tomar² · Varuvel Edwin Geo⁵ · Subramanian Thiyagarajan³ · Arivalagan Pugazhendhi⁴

Received: 23 October 2020 / Accepted: 11 August 2021 / Published online: 3 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Energy is the driver in the economic development of any country. However, most of the developing countries do not have sufficient oil reserves to cater to their energy requirement and depend upon oil producing countries. The perturbations in the crude oil price and adverse environmental impacts from fossil fuel usage are the biggest concern. Therefore, developing countries have started investing heavily in solar and wind power and are considering hydrogen as a future energy resource. However, to tap the potential of hydrogen as a fuel, an entirely new infrastructure will be needed for transporting, storing and dispensing it safely, which would be expensive. In the transportation sector, a liquid alternate to fossil fuels will be highly desirable as the existing infrastructure can be used with minor modifications. Among the possible liquid fuels, methanol is very promising. Methanol is a single carbon atom compound and can be produced from wide variety of sources such as natural gas, coal and biomass. The properties of methanol are conducive for use in gasoline engines since it has high octane number and flame speed. Other possible uses of methanol are: as a cooking fuel in rural areas and as a fuel for running the fuel cells. The present study reviews the limitations in the hydrogen economy and why moving toward methanol economy is more beneficial.

Extended author information available on the last page of the article
Introduction

The ever increasing population of the world will require more calorie intake, hence pushing the production of food on arable land to its limit. The energy demands of the increasing population will also increase. International Energy Agency (2018) predicts that the energy demand of the world will increase by 25% by the year 2040. For the year 2019, the total primary energy consumption of the world was 583.9 ExaJoules, an increase of 20.9% in the last one decade. A major chunk of the energy consumption (84.27%) comprises of non renewable sources such as oil, natural gas and coal (British Petroleum 2020). The annual release of the carbon dioxide by burning the fossil fuels into the atmosphere is nearly 35 billion metric tons. This has resulted in the rise of carbon dioxide concentration from 270 ppm (preindustrial level) to more than 440 ppm at present. The excessive release of CO\textsubscript{2} due to human activity is a major contributor to global warming (Intergovernment Panel on Climate Change 2007). The effects of global warming are: melting of ice caps, acidification of the ocean, rise in sea levels, more frequent changes in climatic conditions and change is biodiversity that are unpredictable (Demirbas 2003).

To counter the problem of fossil fuels, renewable resources are playing an important role. For the year 2019, wind, solar, geothermal, biomass and waste resources comprises of 4.96% of the total energy consumption. In comparison with 2009, the renewable energy consumption of the world increased by 251.7% by the year 2019 (British Petroleum 2020). This shows that the world is warming up to the fact that the renewable energy resources are important for the earth’s future. These resources provide energy in the form of electrical energy and are produced far away from the places of consumption. Therefore, transmitting electrical energy over long distances and large-scale storing of electricity for long duration is still a challenge. Another challenge is the intermittent supply of energy from the sun and wind. For example, the power produced from solar energy is less during cloudy conditions and no power is produced in the night time. Similarly, the wind does not blow consistently all the time. Also the power produced from these sources vary season to season. Today the power is produced in the power plants according to the energy demands. The fluctuations in the energy produced from the renewable sources needs to be leveled out for integrating them in to the main electrical grid. The use of smart grids can help resolve the problem along with the need of storing the excess energy which can be used when required (Goeppert et al. 2017). Compounds such as hydrogen, methanol, methane and other higher hydrocarbons have the potential to store surplus energy in the form of chemical bonds. These compounds can be easily stored and transported over any distance and used whenever there is requirement of energy. There are other applications of these compounds such as the transportation sector, cooking and heating. Hydrogen is an excellent energy storage media. It is a clean burning fuel. Besides energy, only water is produced on its combustion. An economy based on hydrogen will be very attractive in theory since only recycling of water takes place. However, in practical sense it is not possible due to physico-chemical properties of hydrogen. Hydrogen has a low volumetric density; therefore, it has to be compressed to high pressures or liquefied to very low temperatures which makes its storage difficult and high energy is required for either compression or liquefaction (Bossel et al. 2003). Its flammability is also high and it can diffuse through most of the metals and materials (Qin et al. 2020). Therefore, to use hydrogen an entirely new infrastructure is required for storing, transporting and dispensing it safely, which would make its use very expensive.

For storing energy in chemical bonds other less energy intensive ways are required. Over gaseous medium, a liquid medium is more preferable. Keeping the transportation sector in mind, it is very easy to switch from fossil-based liquid fuels to renewable liquid fuel, since the construction of a new storage/transportation/dispensing infrastructure is avoided. With minor modifications, the existing infrastructure can be used for the liquid fuels. Methanol stands out among the possible liquid fuels, since it contains only one carbon and is a liquid at room temperature. It is a volatile, colorless liquid, with a unique smell. Methanol as an energy carrier has many advantages. Its octane number is high; therefore, it can be used as a substitute or as an additive to gasoline. The oxides of nitrogen emission and oxides of sulfur emission are very low and the soot formation is minimal with methanol combustion (Bromberg and Cheng 2010). With slight modifications, they can also be used in diesel engines (Bromberg and Cohn 2010) and in direct methanol fuel cells (DMFC) which produce electricity at atmospheric conditions by utilizing the methanol’s chemical energy (Hsueh et al. 2012). Methanol can also be dehydrated to dimethyl ether (DME) using a one-step biomolecular dehydration process. DME is a gas at room temperature which much like liquefied petroleum gas (LPG) can be liquefied at moderate pressures. DME can replace LPG for heating and cooking applications. Both DME and methanol can be used in generation of electricity using gas turbines. Methanol is also used for producing solvents and antifreeze agents. Formalin, formaldehyde, methyl formate, acetic acid and methyl-tert-butyl ether are some of the chemicals which can be synthesized from methanol using direct or indirect routes.
Light olefins such as propylene and ethylene can also be produced from methanol, these olefins are the building blocks for polymers such as polyethylene and polypropylene as well as other hydrocarbons which are currently produced using crude oil (Bakhtyari et al. 2016).

The objectives of the study are (1) understanding the reasons why hydrogen has not become a fuel of choice in terms of its production, storage and usage (2) understand the processes used for methanol production so that CO₂ emission is reduced (3) use of methanol for producing various specialty chemicals (4) use of methanol as a fuel for spark ignition engines, compression ignition engines, fuel cells and as a cooking fuel by converting it into DME (5) importance of methanol economy for India and (6) cost comparison of the infrastructure required for producing, storing, transporting and dispensing hydrogen and methanol.

Limitations of hydrogen economy

In a hydrogen-based economy the non-polluting and inexhaustible hydrogen will be produced and used as a fuel for all the needs. Hydrogen is the most plentiful element present on Earth in combined form. It can be used as a fuel to heat the buildings, power the cars or generate electricity. Its combustion only produces water and no other emissions that are currently harming the environment from the use of carbon-based fossil fuels. The transportation sector in particular relies heavily on fossil fuels. Therefore, the automobile manufacturers are working extensively in the development of fuel cell powered vehicles or hydrogen-based internal combustion engines. The major energy companies are also working on ways for providing and refueling the vehicles based on hydrogen. Although efforts have been made, the road ahead for hydrogen economy is bumpy. For becoming an everyday fuel like gasoline, diesel or natural gas, the basic problems with hydrogen needs to be resolved.

Production of hydrogen

Hydrogen is used for the production of a variety of chemicals and refined petroleum products. Electronic, metallurgical and pharmaceutical industries also use hydrogen. As a fuel, hydrogen is only used in rockets and space shuttles. To cater to these needs, around 120 million tons of hydrogen is produced annually of which two-thirds is pure hydrogen and one-third in mixture with other gases. This equals 14.4 exajoules or about 4% of total energy consumption. Hydrogen is produced by reforming fossil resources such as natural gas, coal and oil which represents nearly 96% of the total world production. Almost half of this production is from reforming of methane which is an inexpensive method, but the carbon footprint of the method is high and it relies on exhaustible natural gas (Olah et al. 2009). It is also possible to produce hydrogen from renewable sources such as reforming of biomass or splitting of water by electrolysis. The energy for electrolysis can be obtained from fossil fuels or from renewable sources of energy. Different routes through which hydrogen can be produced is shown in Fig. 1. Common methods for hydrogen production are discussed in the following section.

Fossil resource reforming

Natural gas is widely available, easy to handle and the hydrogen-to-carbon ratio is highest. Hydrogen can be produced from natural gas by using steam reforming process or by partially oxidizing it with oxygen or combination of both the processes called as autothermal reforming (Holladay et al. 2009). The reforming can also be carried out from other streams containing methane such as land fill gas or biogas (Alves et al. 2013). Since methane contains less carbon, the CO₂ emissions from the reforming process is less. In the steam reforming process, methane and steam are passed over a catalyst in a reactor at high pressure and temperature resulting in the formation of carbon monoxide (CO) and hydrogen. The CO again reacts with steam through water gas shift reaction and more hydrogen and carbon dioxide is formed. Hydrogen is then purified and retrieved, whereas CO₂ is presently released in to the atmosphere. In the USA nearly 90% hydrogen in produced using this method. However, the method is approximately 72% efficient on volumetric heating basis (Lipman 2011). Coal can also be used to supply hydrogen, since it is widely available in all parts of the world and it will be the only available fossil fuel long after other fossil fuels are exhausted. By the end of 2019, the proven coal reserves for North America, Europe and Asia Pacific region was 257,330, 135,109 and 456,813 million tons, respectively (British Petroleum 2020).

For the reforming process nickel is the most widely used catalyst as it is cheap and highly active. Nieva et al. (2014) used Ni/Zn/Al catalyst for steam reforming and found that at temperatures of 500 and 600 °C, the conversion efficiency of the catalyst was higher than conventional catalysts. The authors also found that there were lower carbon deposits and sintering of the catalyst due to metal support. Activated carbon has also been used as catalyst for reforming process because of its porosity, low cost and tunable surface chemistry (Liu et al. 2021). However, it cannot be used in hydrogenation reactions above 427 °C or with oxygen above 227 °C, since it can be easily gasified thereby producing methane or carbon dioxide. Hence, it is more suited as a support due to its higher surface area and porous nature (Levalley et al. 2014). Catalysts must be selected expeditiously, since by-products such as methyl formate, methane and dimethyl ether can form thereby reducing hydrogen...
selectivity (Choi and Stenger 2002). Setthapun et al. (2008) examined many metals supported on Mo/C and found that palladium had the highest activity and 99% conversion of methanol could be achieved and the CO₂ selectivity was never higher than 70%. However, doping of the support with base metals showed higher CO₂ selectivity as compared to noble metals since the noble metals catalyze the methanation reaction. With the help of converters, small-scale steam reforming of methane can also be performed, which is useful for producing hydrogen at filling stations. This would avoid the dangerous and cumbersome transportation from centralized centers of production. However, the costs of production will be high and the conversion efficiency will be less. Moreover, the capture of emitted CO₂ will be costly. For a sustainable and matured economy steam reforming is not an attractive route for the hydrogen-based economy because with the increase in demand of hydrogen the natural gas reserves will be depleted and since the reserves are concentrated in some parts of the world it would again lead to geopolitical tension and instability in supplies (Olah et al. 2009). The problem with the use of fossil fuels in hydrogen production is the emission of CO₂, which needs to be captured and sequestered so that global warming can be reduced. Although the technologies exist for capturing and sequestering CO₂, they are still immature. Even if they mature in the future, they still possess danger, since the stored carbon dioxide can be released into the atmosphere due to the movements of earth, such as earthquakes or volcanic eruption which will lead to a catastrophe. Therefore, other sustainable methods such as reforming of biomass or electrolysis of water as well as other renewable resources such as atomic energy can be used for hydrogen production.

Hydrogen from biomass

Biomass has the potential to become a source of hydrogen. Wastes from crop residues, wood processing, short rotation woody crops, municipal solid wastes, animal wastes aquatic plants, waste paper, short rotation herbaceous species (switch grass) and many more can be used for the production of hydrogen (Demirbas 2003). The current technologies that are used for hydrogen production from biomass include
gasification and pyrolysis along with the reforming with steam (Demirbas 2004). The gasification technology used for coal is also applicable for biomass, wherein their partial oxidation results in the formation of a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and nitrogen which is also known as producer gas. The process has low thermal efficiency, since the moisture present in the biomass needs to be vaporized. The process can be performed without or with a catalyst and in a fluidized bed or fixed bed reactor with fluidized bed reactor having higher conversion efficiency (Asadullah et al. 2002). If steam or oxygen is added in the gasification process, then syngas is produced which either through water gas shift reaction can be converted into hydrogen or it can be fed to a Fischer–Tropsch reactor for producing higher hydrocarbons (Demirbas 2004). The gasification units are mostly small or mid-sized for biomass since the cost of gathering and transporting the biomass is high. Also, the quantity of available biomass is less and dispersed over a large area. Currently, the plants are operating nearly at 26% efficiency and the cost of hydrogen production is very high. Another alternative method is to gasify coal and biomass simultaneously which has been commercially demonstrated with mixture containing nearly 25% biomass (Romm 2004). With this type of gasifier, there will not be any need to design a biomass specific gasifier, since if biomass is unavailable the unit can work with only coal. The net CO2 emissions from biomass use is nearly zero, since the biomass absorbs the CO2 from the atmosphere for its growth and releases it back when it is burnt. However, if the crops are cultivated for only energy related use then the debate arises for the use of arable land for food crops or for energy crops. Also the crops require water, fertilizer and energy for cultivating, harvesting and transporting. One should also think of the impacts that will appear on the soil and biodiversity. Switch grass can be used as a suitable biomass because of its high yield and it can be grown on non-arable lands with minimum energy input. Also, algae is a suitable biomass that can be grown on marshy lands and in the vast expanses of sea. In any case, all the biomass available can supply only a part of the total hydrogen required.

Hydrogen from photobiological cleavage of water

In this method, hydrogen is generated by direct cleavage of water by microorganisms without producing biomass first. The main technologies for biohydrogen production are: use of green algae or cyanobacteria for cleavage of water in the presence of sunlight, photo-fermentative processes, and dark fermentative process during the acidogenic phase of anaerobic digestion (Poudyal et al. 2015). Manish and Banerjee (2008) conducted a life cycle assessment of biohydrogen production from sugarcane juice using dark fermentation, photo-fermentation, two-stage process and bio-catalyzed electrolysis. The authors compared these processes with steam methane reforming process for hydrogen production on the basis of energy efficiency, net energy ratio and greenhouse gas emission. The authors found lower energy efficiency when the by-products formed from the biological process were not considered, whereas the efficiency of the biohydrogen production process increases when by-products were considered. The highest increase in efficiency was observed with dark fermentation process. Also, all the biological processes reduced the net greenhouse gas emission and saved the use of non renewable energy in the form of electricity. Melis (2002) produced hydrogen from green algae by using the direct photolysis method. The author concluded that the hydrogen production is limited by (i) the bioreactor’s solar conversion efficiency, (ii) the hydrogen production process as the gas may be converted to water and (iii) the design and cost of the bioreactor. These production processes offer advantage over other processes since the energy requirement is low. However, the rate of hydrogen production by these processes is too low for it to be efficient. These technologies are still in nascent stage and significant breakthroughs are required if they have to become a potential source of hydrogen.

Electrolysis of water

Cleavage of water into hydrogen and oxygen using electricity is called as water electrolysis. This process requires lot of energy but it is a well proven method. As compared to natural gas reforming, the cost of this method is nearly three to four times, which is why, the share of this method in production of hydrogen on global scale is very low. It is reported that natural gas reforming accounts for 48% of the world hydrogen production, followed by oil with 30%, then coal with 18% and electrolysis contributing only 4% of the total share (Olah et al. 2009). However, in terms of greenhouse gas emissions, this method is the cleanest one, only if the electricity required for electrolysis comes from renewable energy sources such as solar power, hydro power, wind power or nuclear power. The commercial production of hydrogen is a mature technology which has been known for over 200 years. The advantage of using this technology is that hydrogen with high purity can be produced. Oxygen produced as a by-product has many industrial applications such as iron ore smelting, cutting and welding of metals, medical applications and in syngas production. Theoretically, 39.4 kWh energy is required for 1 kg production of hydrogen, but practically the energy required is nearly 50–65kWh per kg of hydrogen produced (Simbeck and Chang 2002). Nabil (2019) analyzed multiple combinations of stack arrangement using SS316L electrodes to determine an efficient and robust generator design. Electrodes were separated with rubber gaskets (4 mm thick) and operated
with NaOH electrolyte of 0.125 M concentration. Among 5, 7, 9, 13 and 19 plate combinations, with single and multiple stacks, 13 plate-two stack arrangement was most superior in terms of gas produced to power input ratio (0.513 LPM at 61.2 W). Higher current input caused cell temperature to rise, leading to increased electrolyte concentration due to evaporation of water, thereby lowering the generator efficiency. Limiting the current input can prevent the heating. Also, corrosion of electrodes was observed with the use of tap water instead of distilled water. The electrolyzer’s efficiency is independent of the cell size; therefore, hydrogen can be produced in both decentralized and centralized manners. It has applications in service stations, rockets, space crafts, marine, medical industry, electronic industry and food industry. Since there are no moving parts, their maintenance is low and they are best suited for use with intermittent energy supply sources, such as solar or wind power. Also, the excess electricity produced from these sources during off-peak time can be used for hydrogen production, which can be stored and later used to produce additional energy when the power requirement is high.

Hydrogen storage

One of the major challenges with hydrogen is its storage which should be economical, safe and user-friendly. The problem of storage arises as the energy density per unit volume of hydrogen is less than the liquid fuels at the same pressure, since the hydrogen is light in weight. Depending upon the application of hydrogen, such as stationary or mobile, the space requirement for storage will be different. For example, in air-conditioning of offices and homes, in power generation and other industrial uses, hydrogen can be stored in large spaces. On the other hand, in transportation sector, the storage of hydrogen is limited by volume and weight. Therefore, the key factor in the hydrogen economy is its storage. Table 1 shows the strength and weakness of various hydrogen storing techniques. Some of the storage methods are: storing in an insulated high pressure container in liquefied form or compressed form, chemically storing the hydrogen in materials that absorb and readily release it when required.

On weight basis, the energy content of hydrogen is highest among the known fuels. However, on volume basis, the energy content is nearly three times less than gasoline (Geo et al. 2008). So hydrogen in liquid form is a strong contender to gasoline in the transportation sector. In fact, liquid hydrogen is used in space vehicles as a propellant. However, the problem with liquid hydrogen is the energy required in converting hydrogen gas to liquid hydrogen since its boiling point is −253 °C. So a complex multi-stage cooling system is required for obtaining liquid hydrogen. Nearly 30–40% of hydrogen energy content is required by the system for liquefaction (Bossel et al. 2003). Moreover, liquid hydrogen is evaporated from the storage system over time. The loss rate is dependent upon the insulation of the tank and the amount of hydrogen stored, which is generally lower for large amount of stored hydrogen. Xu et al. (2020) used the leaked hydrogen to operate a fuel cell which in turn operated a refrigerator for cooling the liquid hydrogen tank. In this study the authors did not use any external energy source for driving the refrigerator. Moreover, such systems can be used for larger applications and are not suitable for mobile applications because of space constraints. Furthermore, automobile tanks contain low amount of hydrogen, therefore nearly 1–5% of hydrogen may be released everyday which may result in low pressure build-up and possible explosion. Since, large amount of energy and cost is invested in producing hydrogen, the loss of hydrogen is unacceptable from both environmental and economic viewpoint. Also, the liquid hydrogen has to be handled with utmost care.

Table 1 Strength and weakness of various hydrogen storage techniques (Jiang et al. 2014)

Hydrogen storage method	Strength	Weakness
Pressurized hydrogen	High speed of filling and low cost	Need high pressure vessel, low storage capacity, high energy consumption, poor safety and high cost of transportation
Cryogenic and liquid hydrogen	Small volume of storage container, high volumetric energy density	Strict requirement of storage and maintenance, high consumption of energy
Carbonaceous Materials	Convenient transportation, high capacity of storage, high specific surface area	High cost
Metal hydrides	High safety, stability and operability	Pulverizes easily, poor performance of hydrogen storage
Glass microspheres	High capacity of hydrogen storage	High cost, immature technology of hollow microsphere with high strength
Organic liquid	Reversible, safe transportation, high capacity of hydrogen storage	Catalysts are required for hydrogenation/dehydrogenation
Currently, the most preferred solution for both internal combustion engine and fuel cell powered cars is storing hydrogen as a compressed gas. Research was done over the years on cylinders that can withstand pressure up to 700 bar, which are made from carbon fiber-reinforced composites and are light in weight. Even then, the energy density of hydrogen on volume basis, at 700 bar, is nearly 4.6 times less than gasoline (Olah et al. 2009). Therefore for the same driving range, a cylinder that can carry more volume of hydrogen is required. Also the liquid fuel tanks can be made in any shape according to the space available in the vehicle. Whereas, the compressed hydrogen cylinder shape is fixed as a cylinder. So more attention needs to be paid for integrating the hydrogen cylinder in a vehicle. The energy requirement for compressing hydrogen is equivalent to 10–15% of the energy that the hydrogen contains, although this energy is less than that required for liquefaction, it is still high (Bossel et al. 2003). The diffusivity of hydrogen through many materials including metals is high. Also some metals become brittle after prolonged exposure to hydrogen. Since the fuel system parts of a vehicle are made of metal, prolonged exposure to hydrogen can cause material failure resulting in leaks and fire hazard as hydrogen is highly flammable when it comes in contact with air (Qin et al. 2020). During accidents, if collision occurs, then the on-board hydrogen is a grave concern which may result in instant explosion of the cylinder.

Hydrogen can also be stored in liquid and solid compounds such as carbon nanostructures, metal hydrides, borohydrides, alanates, methanol, methane, ammonia and light hydrocarbons (Dalai et al. 2014). A modern car which is optimized for fuel efficiency requires 24 kg of gasoline to run 400 km, whereas 8 kg of hydrogen is required for the same range and a fuel cell electric car requires only 4 kg of hydrogen (Singh et al. 2015). Several studies have reported the development of materials that can store hydrogen like Mg-based alloys, metal hydrides, carbon-based materials, boron compounds and chemical hydrides (Tarhan and Cil 2021). These materials absorb hydrogen like a sponge, store it and release it when required. The most important challenge for a storage material is that it can satisfy three requirements that compete with each other: higher storage capacity of hydrogen, high reversibility of the charging/discharging cycle at moderate temperatures and high rate of charging/discharging kinetics with minimum energy requirement for storing and releasing hydrogen. The first requirement needs the chemical bonds to be strong and close packing of the atoms, second requires that bonds are easily breakable at moderate temperatures so they should be weak, and the third requirement is the loose packing of atoms so that the hydrogen can diffuse at a fast rate between the surface and the bulk. Also the thermal conductivity should be adequate so that the material does not decompose by the heat released during hydriding (Satyapal et al. 2007). Several materials have satisfied one or more requirements but no material has satisfied all the three requirements. Apart from these requirements, the materials has to satisfy weight, lifetime, cost and safety requirement. For automobile applications, it is crucial that hydrogen is charged at a fast rate so that the waiting time at the dispensing station is low.

Safety with hydrogen

Hydrogen being small and lighter is most prone gas to leaks. Although it is non-toxic, it is highly flammable and explosive. Moreover, it is tasteless, odorless and colorless which makes it difficult to detect (Veziroglu and Sahin, 2008). Natural gas also has similar properties so to detect the leaks, volatile sulfur compounds are added. However, in case of hydrogen these compounds are of no use because these compounds may not leak through materials, through which hydrogen can easily leak. Even hydrogen detecting sensors are also found to be relatively ineffective in detecting leaks. Also, the additives can easily poison and contaminate the fuel cells. The flammability limit of hydrogen is very high in air and the energy required for ignition is low. If the right amount of hydrogen is present in air, then the heat produced by friction while sliding on a car seat or mobile phones can cause ignition (Romm 2004). The flame produced during burning of hydrogen may be almost invisible or slightly bluish, and hence, one may step on the flames of burning hydrogen and may not know. Since the metals become brittle after being in prolonged contact with hydrogen, it may result in cracks and fractures resulting in catastrophic failure, especially when high pressure systems are used. Therefore, materials and liners are necessary for storage of hydrogen (Olah et al. 2009). In industry, very few incidents have happened related to hydrogen because hydrogen is handled by trained professionals who follow numerous codes and standards. Also long distance travel of large quantities of hydrogen is not possible therefore, most of the industries requiring hydrogen produce it onsite. If the general public has to use hydrogen for transportation, then they need to be made aware of the dangers of hydrogen and they should be given proper training along with strict safeguards. These measures will be very expensive and ensuring adherence will be difficult.

Use of hydrogen as a fuel

Hydrogen has drawn lot of attention in the recent years for transportation applications. Many researchers have used hydrogen for operating both the spark ignition engines and compression ignition engines. Since hydrogen does not contain any carbon, its combustion is virtually free of greenhouse gases. As discussed in the previous sections, the volumetric energy density of hydrogen is very low; therefore,
condition, Ji and Wang (2011) investigated the use of H2 as a lean burn SI engine operating at low speed and low load. NOx emissions increased with increase in hydrogen fraction with increasing throttle for a particular hydrogen fraction. Brake thermal efficiency (BTE) increased with hydrogen after two steps of pressure reduction. The results show that pressure of 160 bar is injected into the intake ports at 30 bar ratio with varied throttle positions. Hydrogen at cylinder hydrogen fractions were used at stoichiometric equivalence in air. Its octane number and flame on very lean mixtures. Its ignition energy is low; however, the ignition temperature is high. Its octane number and flame speed is very high (Geo et al. 2008).

An SI engine was operated on hydrogen, wherein it was injected close to the intake port to avoid backfire. Different hydrogen fractions were used at stoichiometric equivalence ratio with varied throttle positions. Hydrogen at cylinder pressure of 160 bar is injected into the intake ports at 30 bar after two steps of pressure reduction. The results show that brake thermal efficiency (BTE) increased with hydrogen addition at the same throttle position and it also increased, with increasing throttle for a particular hydrogen fraction. NOx emissions increased with increase in hydrogen fraction (Ji and Wang 2009). To improve the performance of a lean burn SI engine operating at low speed and low load condition, Ji and Wang (2011) investigated the use of H2 enrichment. The authors kept the original gasoline injection system configuration and mounted a hydrogen port injection system on the intake manifold. The fuel was tested for different excess air ratios and hydrogen fractions with the main throttle closed. Original injection timings were used and both the fuels were injected simultaneously. For a specified excess air ratio, thermal efficiency and torque were found to increase with the increase in hydrogen addition. The flame propagation and development periods were effectively shortened, especially at lean conditions.

In a diesel engine, the direct use of hydrogen is limited due to low operating range, which could be improved by using a low ignition temperature fuel such as diesel, straight vegetable oil or biodiesel. These fuels are directly injected into the combustion chamber which acts as a source of ignition for the hydrogen which is mixed with the incoming air by the aid of either a carburetor or an injector. The engine is known as dual fuel engine, since two fuels are simultaneously injected into the engine (Boopathi et al. 2017). The induction of hydrogen improves the engine thermal efficiency, and reduction in unburned hydrocarbons, carbon monoxide emission and smoke emission is observed. However, oxides of nitrogen emission increases. The problem with dual fuel engine is that they have low efficiency and higher emissions at low loads and at high loads their operation is limited by knocking (Geo et al. 2008).

Some prototype cars with internal combustion engines were built by automobile manufacturers which can operate on hydrogen. BMW has been researching on hydrogen powered vehicles since 1978. Hydrogen7 their sixth-generation car was produced in limited numbers which was leased to some influential people around the world. The car could operate on both hydrogen and gasoline. 8 kg of hydrogen could be stored in the 170-L tank which allowed the car to travel 200 km. With a 60-L gasoline tank, the range was extended to 680 km. Mazda and Ford are also researching on hydrogen powered vehicles. Ford built shuttle buses powered by IC engines operating on hydrogen for the USA and Canada. Mazda has built its RX-8 model powered by hydrogen-gasoline operated rotary engine, wherein the hydrogen is stored under pressure. The hydrogen road of Norway (HyNor) is using these cars for operating between Oslo and Stavanger, a distance of 580 km. Later HyNor bought Toyota Prius hybrid which was modified to run on hydrogen. The coupling of hydrogen power IC engine with an electric hybrid system increases the efficiency of the system, but it is lower than cars running with fuel cells (Olah et al. 2009). Fuel cell vehicles operating on compressed hydrogen are being produced commercially. Toyota Mirai, Honda Clarity, Hyundai Tucson FCEV and Nexo are available on lease and sale in the USA, Japan and South Korea. The estimated annual fuel cost for these vehicles are in the range of US$1250–1500. The fuel economy in terms of miles/kg for these vehicles is in the range of 57–68 combining both city and highway driving (DOE, 2018). The demand of hydrogen for vehicles running on either hydrogen powered IC engines or fuel cell and other applications will be limited until an adequate infrastructure for hydrogen distribution is not developed. Even if the infrastructure is developed by investing huge money, there is no incentive if there is no solid demand for hydrogen. One may ask, that if hydrogen is considered as a fuel for the future then how will the production, storage and transportation of huge quantities of hydrogen be stimulated? Due to strong economic and technical challenges, the commercialization of hydrogen as a fuel is far away in the future.

Property	LPG	CNG	Hydrogen	Biogas
Density at 1 atm. and 15 °C (kg/m³)	2.24	0.79	0.09	1.1
Flame speed (cm/s)	38.25	34	265–325	25
Stoichiometric A/F	15.5	17.3	34.3	6
Flammability limits (vol. % in air)	2.15–9.6	5.3–15	4–75	7.5–14
Octane number	103–105	130	130	120
Auto ignition temperature (°C)	493–549	730	585	700
LCV at 1 atm. and 15 °C (kJ/kg)	46,000	50,000	120,000	5,000
Methanol economy

Methanol (CH3OH) also known as wood alcohol, methyl alcohol or carbinol is the first compound in the alcohol series which are named by adding the syllable –ol to the corresponding paraffin. The methanol economy is a relatively new approach using which we can slowly decrease our dependence on oil and coal which is the main reason of global warming caused by their excessive use. Methanol can be used not only for IC engines or as a household fuel, but it is also used as a chemical in many industries. It is used to produce dimethyl ether (DME), formaldehyde, methyl tertiary butyl ether (MTBE), acetic acid, formalin and methyl formate. It is also used to produce chemical intermediates such as methylamine, chloromethane, methyl mercaptane and methyl methacrylate. It is increasingly used in the production of plastics such as polypropylene and polyethylene (Bakhtyari et al. 2016). Methanol currently is produced by an efficient natural gas reforming process, it can also be produced from chemical recycling of CO2 which is available from many sources such as exhaust from power plants, industries or from capturing CO2 from the atmosphere. Biomass can also be converted into methanol (Bertau et al. 2014). Figure 2 summarizes the essential elements used for methanol production and the use of methanol for producing chemicals and as an energy feedstock.

Methanol production

Almost any hydrocarbon can be converted to methanol, but mainly natural gas is converted to syngas (CO and H2) which can then be reformed using catalytic synthesis process into methanol. Natural gas resource is limited; therefore, other gas resources namely coal bed methane, tight sand gas, methane hydrate resources and any other fossil resource can be used for methanol production. Coal due its widespread availability and vast reserves is used for methanol production, especially in China. The worldwide demand of methanol was nearly 49 million tons in 2010 which is forecasted to surpass 95 million tons by 2021. China will have 54% of the world capacity and 46% of global production, all dependent upon coal (Protti-Alvarez 2017). However, using coal has drawbacks like releasing large amount of pollutants apart from carbon dioxide. Also the carbon dioxide produced per unit of energy through coal is higher than petroleum oil and natural gas. Biomass is a better alternative to coal, but the demand for methanol will be huge if all the gasoline cars of the world were to use even 10% blending of methanol, which the biomass will not be able to address. Therefore, improved and new methods are required for methanol production.

Syngas production from fossil fuels

Syngas is exclusively used for the production of methanol using a heterogeneous catalyst according to Eqs. (1), (2) and (3).

\[
\text{CO} + 2\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} \quad \Delta H_{298K} = -21.7\text{kJ} \text{mol}^{-1} \tag{1}
\]

\[
\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \Delta H_{298K} = -11.9\text{kJ} \text{mol}^{-1} \tag{2}
\]

\[
\text{CO}_2 + \text{H}_2 \rightleftharpoons \text{CO} + \text{H}_2\text{O} \quad \Delta H_{298K} = 9.8\text{kJ} \text{mol}^{-1} \tag{3}
\]

Equations (1) and (2) are exothermic reactions, resulting in decrease in volume as the reaction moves. Equation (3) is reverse water gas shift reaction which is endothermic in nature, since this reaction also takes place during methanol synthesis, more amount of methanol is produced as carbon monoxide formed can react with hydrogen to produce methanol (Eq. 1). Therefore, according to Le Chatelier’s principle, increase in pressure and decrease in temperature favor the formation of methanol. The technology developed by BASF in 1920s used high pressure and temperature over zinc oxide/chromium oxide catalysts to convert syngas to methanol. However, present technologies use pressure in the range of 50–100 bar and temperature in the range of 200–300 °C, over a copper-based catalyst (Goeppert et al. 2014). Syngas can be obtained from any carbonaceous source, however, methane and shale gas are preferred due to less impurities and relative ease of handling as compared to coal. Since cleaning the syngas produced from coal gasification will increase the cost and more CO2 will be produced per unit of methanol (Goeppert et al. 2017). The production process of methanol is highly mature but methane and coal are used for their production which are unsustainable and a liability to the environment. To continue using these fuels, one has to reduce their carbon footprint by adopting technologies that are either partially or completely carbon neutral.

Methane reformed by steam

As discussed previously, syngas is currently produced by reforming methane with steam in a highly endothermic reaction with nickel-based catalyst. The reaction temperature and pressure for the process is typically high (800–1000 °C, 20–30bar) (Nieva et al. 2014). Equation (4) shows the reaction:

\[
\text{CH}_4 + \text{H}_2\text{O} \rightleftharpoons \text{CO} + 3\text{H}_2 \quad \Delta H_{298K} = 49.1 \text{kJ} \text{mol}^{-1} \tag{4}
\]

The carbon monoxide formed can also react with steam in water gas shift reaction (Eq. 3) to yield carbon dioxide and more hydrogen. Therefore, the components produced are highly dependent upon reaction conditions such as pressure, temperature and steam-to-methane ratio. Production of
Syngas increases with increase in temperature and decrease in pressure. Also the water gas shift reaction becomes less dominant with increase in temperature (Rostrup-Nielsen and Christiansen 2011). Since this process requires large amount of heat, most of the heat can be supplied by burning methane itself. The hydrogen-to-carbon monoxide ratio of this process is nearly 3 which is higher than required ratio of 2. Therefore, corrections are made to the steam reformers exit gas such as CO₂ addition (Subramani et al. 2009).

Methane partial oxidation Methane can be reacted with insufficient oxygen with or without a catalyst producing a mixture of H₂ and CO whose ratio ideally will be 2 (Eq. 5), which is required for methanol synthesis. However, due to side reactions, the carbon monoxide and hydrogen may oxidize to carbon dioxide and water, resulting in loss of product gases required for methanol synthesis (Choudhary and Choudhary 2008). As shown in Eqs. (6) and (7), these oxidation processes are highly exothermic in nature as the heat produced is wasted if there is no immediate requirement of the heat and it is also a safety concern.
CH\(_4 + \frac{1}{2}O_2 \rightleftharpoons CO + 2H_2 \quad \Delta H_{298K} = -8.6\text{kJ mol}^{-1} \quad (5)

CO + \frac{1}{2}O_2 \rightleftharpoons CO_2 \quad \Delta H_{298K} = -67.6\text{kJ mol}^{-1} \quad (6)

H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O \quad \Delta H_{298K} = -57.7\text{kJ mol}^{-1} \quad (7)

Autothermal reforming It is seen that partial oxidation of methane tends to release a lot amount of heat, whereas steam reforming of methane requires heat. Many modern plants combine both the processes so that an overall neutral thermodynamic reaction is obtained. This process of combining the cycle is called as autothermal reforming of steam. In the same reactor, both the processes can be conducted by reacting a mixture of oxygen and steam with methane, which reduces the complexity and cost of manufacturing (Lu et al. 2018). However, the optimized conditions for both the reactions are different; therefore, it is suitable to conduct the processes in two steps. After the methane is reformed with steam in the first reactor, the product is fed to the second reactor where partial oxidation is carried out. Since oxygen is required for this step, an oxygen producing plant is required which can be avoided if only air is used. However, the produced syngas will also contain nitrogen which needs to be removed before methanol synthesis. Therefore, modern plants producing methanol prefer pure oxygen instead of air (Blumberg et al. 2019).

Methane dry reforming Equimolar amount of carbon dioxide can be reacted with methane to give an equal ratio of H\(_2\) and CO (Eq. 8). The process is called as dry reforming since steam is not required for the process. However, the process is endothermic in nature and temperatures in the range of 800–1000 °C is required. Ni/MgO or Ni/MgAl\(_2\)O\(_4\) are used as catalyst for carrying out the reaction (Jalali et al. 2020). Since one mole of methane requires equal amount of CO\(_2\), the method is an attractive way to reduce global warming, as the heat required for the reaction can come from renewable energy source and CO\(_2\) can be recycled from a steam rich in CO\(_2\).

\[\text{CH}_4 + \text{CO}_2 \rightleftharpoons 2\text{CO} + 2\text{H}_2 \Delta H_{298K} = 59.1\text{kJ mol}^{-1} \quad (8) \]

Due to low H\(_2\)/CO ratio this product gas is an advantageous feed for processes such as Fischer–Tropsch process and iron ore reduction. However, for methanol production from this process, hydrogen needs to be added to the produced gas so that the ratio of H\(_2\)/CO reaches the required level. Renewable sources can be used to produce hydrogen. Another method is combining the carbon dioxide and steam reforming process which can provide the required syngas composition (Olah et al. 2009).

\[3\text{CH}_4 + 2\text{H}_2\text{O} + \text{CO}_2 \rightleftharpoons 4\text{CO} + 8\text{H}_2 \quad (9) \]

Bi-reforming of methane Steam reforming and dry reforming of methane can be combined to form a bi-reforming process (Eq. 9) resulting in the formation of metgas, having hydrogen-to-carbon monoxide ratio of 2, which is required for methanol synthesis (Olah and Prakash 2011). Shale gas (natural gas) is best suited for this process, as it contains high amount of carbon dioxide which needs to be removed and released into the atmosphere if natural gas is to be used for any other purpose. Different regions will have different amount of carbon dioxide which can then be adjusted for producing metgas.

\[C + \frac{1}{2}O_2 \rightleftharpoons CO \quad (10) \]

\[C + \text{H}_2\text{O} \rightleftharpoons \text{CO} + \text{H}_2 \quad (11) \]

\[\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{CO}_2 + \text{H}_2 \quad (12) \]

\[\text{CO}_2 + \text{C} \rightleftharpoons 2\text{CO} \quad (13) \]

Over the years, different types of coal gasification processes have been developed, depending upon the characteristics of coal available. The syngas produced from coal has less amount of hydrogen and more CO and CO\(_2\); therefore, water gas shift reaction is performed to improve the hydrogen content. Also hydrogen sulfide needs to removed, as it acts as a poison for the catalyst used in the synthesis of methanol (Olah et al. 2009).

All the processes previously discussed require fossil fuels, which are limited and unsustainable in the long run. Utilization of methane, which is considered cleanest of all fossil fuels, will result in significant CO\(_2\) emissions. If the cost of capturing CO\(_2\) emission is also factored in the production of methanol synthesis from fossil fuels, then its production cost will be significantly higher than using non-fossil sources. Therefore, for sustainable development, we need to move away from fossil fuels and increase our use of renewable sources along with carbon dioxide recycling.

Methanol from biomass

Biomass is a carbonaceous substance (plant or animal material) that uses the sun’s energy to recycle water and carbon dioxide into new plant life. Production of methanol from
biomass, therefore, is a way of recycling carbon dioxide. As previously discussed, biomass includes, waste of wood and agricultural crops, animal wastes, algae, aquatic plants and municipal solid wastes. Originally, thermal destructive distillation of wood was used for methanol production which gave methanol the name “wood alcohol.” However, this method is not used anymore. Today technologies such as liquefaction, gasification, pyrolysis and combination of these are used for methanol production based upon the feedstock (Williams et al. 2011). Figure 3 shows some of the thermochemical conversion technologies. For solids such as wood and other cellulosic materials, gasification is employed for conversion to syngas followed by synthesis of methanol. Same technology is used for converting coal to methanol. For conversion of feedstock such as animal manure to methanol, first the feedstock is converted into biogas, then it is reformed to syngas and finally syngas is reformed to methanol (Chmielniak and Sciazko 2003). An overview of the conversion method of biomass into methanol is shown in Fig. 4. Another attractive method is biomass direct conversion into methanol using enzymatic routes, but it is in early phase of research.

In the gasification process, the biomass feedstock is first dried and then pulverized so that the moisture content is less than 15–20%. The biomass is then sent to a gasifier, wherein it mixes with oxygen and water at high pressures (Rowlands et al. 2008). The heat required for the gasification process is produced by burning some part of the biomass in oxygen. CO₂ and water then reacts with the rest of the biomass in the absence of oxygen resulting in the formation of hydrogen and carbon monoxide. Since biomass acts as a heating fuel, no separate external source of heat is required. The syngas produced by the single-step partial oxidation of biomass is an attractive proposition, but it has its own share of technical problems. Therefore, a two-step process is used for the gasification of biomass. In the first step, the dried biomass is pyrolyzed in the temperature range of 400–600 °C in an oxygen deficient atmosphere resulting in incomplete combustion. The gas obtained called as pyrolysis gas is a mixture of hydrogen, methane, carbon monoxide, carbon dioxide, volatile tars and water. The residue, charcoal, is about 10–15% of the initial biomass. In the second stage, charcoal reacts with oxygen at 1300–1500 °C to form carbon monoxide. The obtained syngas is then purified and sent for methanol production (Demirbas 2004).

It is seen that some part of the biomass has to be burnt for providing the heat required for gasification resulting in underutilization of biomass for methanol conversion and carbon dioxide is also generated. Renewable sources of heat such as solar and nuclear can be used. In one study, (Adinberg et al. 2004) in a molten salt medium the biomass is dispersed and concentrated solar energy is used to heat the mix. The syngas is produced from the biomass without interruption by the energy stored in the molten salt. The biomass can also be dried before gasification using solar energy thus reducing the energy requirement. Biomass conversion also faces problems similar to that experienced in converting coal to methanol, i.e., the low hydrogen-to-carbon ratio in syngas and high CO₂/CO ratio. The optimal ratio for methanol synthesis is close to 2; therefore, after gasification some of the CO₂ is removed (Ribeiro et al. 2010). The CO₂ can be sequestered, vented directly or used in some other processes. One method is to react hydrogen (produced from renewable source) with CO₂ (Kauw et al. 2015). Another method is to mix syngas produced from natural gas and biogas. The syngas produced from natural gas steam reforming has a H₂/CO ratio close to 3, whereas the syngas produced from biogas has low hydrogen-to-carbon ratio (Li et al. 2010).
Hybrid plants using both biomass and natural gas can solve the above problems as the hydrogen-to-carbon monoxide ratio can be easily adjusted. Also the CO₂ required for the natural gas reforming can be obtained by biomass reforming; hence, there is no net output of CO₂. The process is known as Hynol process, it was first used on a pilot scale for converting woodchips into methanol (Dong and Borgwardt 1998). Coke oven gas containing 66% hydrogen was also used with biomass for methanol formation (Lundgren et al. 2013). Although these gases can be used but utilizing renewable sources for hydrogen production is a better alternative, it would decrease the carbon footprint of the methanol production process. Various studies have proposed systems combining both biomass and alternative sources of energy for production of methanol and other hydrocarbons through Fischer–Tropsch process (Agrawal et al. 2007). For example, bio-methanol can be produced from biomass and hydrogen, obtained by water electrolysis. The electricity required for the process was obtained from hydroelectric power plant (Galindo and Badr 2007). In Denmark, hydrogen and biomass were converted into methanol and DME. The hydrogen used in the process was obtained using a solid oxide electrolyzer cell (SOEC) which converted water into hydrogen (Fig. 5). In comparison with a plant undergoing biomass gasification without electrolysis, the study found that the plant using a combination of hydrogen and biomass produced double amount of methanol and the methanol conversion efficiency increased to 71% from 59%. The total efficiency of the plant was 81.6%. The study also found that oxygen produced from the SOEC can be used for gasifying the biomass, thus eliminating the requirement of an air separation unit (Lebaek et al. 2011). Other potential industries which can produce methanol from the biomass are paper mills and sugar refinery. The biomass used for producing pulp is digested in a highly alkaline solution at a temperature of 150–170 °C in the presence of a sulfide (Joelsson and Gustavsson 2008). The produced pulp is washed and a black liquor is recovered. Other chemical processes are carried out on the pulp before it is converted to paper. Whereas, the black liquor is used for producing steam and meeting the energy demand of the mill. However, this black liquor can be gasified and converted into more valuable energy products such as methanol. The sugar bagasse in a sugar cane industry is used either as a fuel for generating heat and power or it can be used for producing ethanol through enzymatic hydrolysis. Another route is the thermochemical conversion of the bagasse into synthetic fuels, ethanol, methanol or synthetic natural gas. Albarelli et al. (2017) studied the potential of converting the sugarcane bagasse into methanol through modeling. The study reveals that the overall energy efficiency of the refinery increases with methanol production in comparison with the use of bagasse for electricity generation. However, the investment needed for setting up a methanol production plant is higher and the system is more complicated as compared to simple burning of bagasse for electricity production. It was also seen that the cost of methanol produced would be higher than the current methanol market price. Moreover, the authors did not carry out any study on the benefits of CO₂ reduction by not burning bagasse. It can be easily seen that the sugarcane unit will earn carbon credits.

Biogas is commercially produced by anaerobic digestion of feedstock such as animal dung, sewage sludge, municipal organic waste and wastewater from paper and pulp, food, fiber, milk, meat, pharmaceutical plants and brewing industry (Weiland 2010). Biogas can be produced from any biomass as long as they have hemicellulose, cellulose, proteins, carbohydrates and fat as their main component. However, anaerobic digestion is not suitable for wood which is a strong lignified organic substrate as the process will be slow. Depending upon process effectiveness and feedstock, the gas produced in the digester is 50–70% methane and the rest contains large amount of CO₂. The gas is mostly used for electricity generation or as a heat source. After the removal

![Fig. 5](image-url)
of impurities such as hydrogen sulfide, the gas can be used for methanol production using processes used for natural gas reforming (Baena-Moreno et al. 2021). Oberon Fuel in California, USA, uses biogas for the commercial production of methanol and DME on a small scale. The syngas produced from biogas, similar to the syngas produced from biomass gasification, has excess CO$_2$ which needs to be removed. The carbon dioxide can be either stored, released in to the atmosphere, or reacted with hydrogen produced from renewable source (Clausen et al. 2010). Therefore, in Denmark, electricity produced from wind energy is utilized in an SOEC for electrolysis of water into hydrogen, which combined with biogas is used for methanol and DME production (Lebaek et al. 2011). It is clear that different types of biomass can be used for methanol production. However, the quantity of methanol generated is limited and as the demand for methanol would increase, reliable and large sources of biomass will be required. There is also a concern of using food crops for fuel production as is the case of ethanol produced from corn which has resulted in the increase of food prices. For significant quantities of methanol production non-food crops have to be cultivated on a very large scale. Tests are carried out for producing methanol from trees and grasses (fast growing ones). However, these crops has to be grown on the same land which is used for food production, thereby limiting their use. Moreover, sufficient amount of water, fertilizers, suitable temperature, agricultural land and time are required for crop production. Therefore, it is necessary that there should not be any competition between energy crops and crops used as food for these resources. Further, incessant use of fertilizer leads to pollution of ground water, or their runoff resulting in “dead zones” in the ocean. Another problem that biomass production has is its high carbon footprint. Taking the above-mentioned and other factors into account, it is estimated that use of biomass for sustainable production of methanol can cover only about 20% of our future energy requirements (Hedegaard et al. 2008).

Methanol from recycling of CO$_2$

When any carbon containing compound is burned, water and carbon dioxide is formed. The biggest challenge today is the reversal of this process, i.e., producing chemicals, fuels and different materials using water and CO$_2$. Trees, plants and crops capture CO$_2$ from air and use water, sun’s energy and a catalyst (chlorophyll) to produce new plant life. After the plant dies, it takes millions of years for it to be converted into fossil fuel. In short cycles, the biomass collected from the plant can also be converted to fuel and other products (Olah et al. 2009). However, this resource is not enough to satisfy human needs. Therefore, a technology has to be developed that can recycle carbon dioxide efficiently within a short duration of time. One such approach is the electrochemical or catalytic hydrogenation of CO$_2$ into DME or methanol and their subsequent conversion to other products using hydrogen. Converting hydrogen and carbon monoxide to methanol is known since early twentieth century. In 1920 and 1930s some methanol producing plants in the USA used CO$_2$ obtained as a by-product of the fermentation process. Copper and zinc metals and their oxides were used for the conversion process (Rozovskii and Lin 2003). These catalysts are similar to the ones used today for converting fossil-based syngas into methanol. The mechanism of methanol formation from syngas shows that it is expected that similar catalyst will work. The CO in syngas is first converted into CO$_2$ and H$_2$ by undergoing water gas shift reaction. The CO$_2$ is then hydrogenated into methanol on the catalyst’s surface.

Table 3 Summary of plants on industrial scale or demonstration scale for producing methanol from CO$_2$ (Sarp et al. 2021)

Organization	Location	Capacity (tpa)	Temperature (°C)	Pressure (Psi)
NIRE and RITE	Kyoto, Japan	18	250	725
Lurgi AG	Frankfurt, Germany	–	260	870
CAMERER process	Seoul, South Korea	73	250	400
Carbon recycling international	Grindavik, Ireland	4000	225	725
Mitsui chemicals	Osaka, Japan	100	250	725
Air company	Brooklyn, USA	32	250	750
Hydrogenation of CO₂ to methanol on the industrial level has a history spanning 26 years, summarized in Table 3. Lurgi AG developed a catalyst having high activity for the conversion of carbon dioxide and hydrogen into methanol (Goeppert et al. 1994). It operates at around 260 °C which is a notch higher than conventional catalyst and gives excellent methanol formation efficiency. The catalyst activity decreased at a similar rate as for conventional catalyst used in synthesis of methanol. The Carbon Recycling International (CRI) company successfully synthesized methanol in a pilot plant in Iceland using CO₂ (Shulenberg et al. 2007). The plant has a capacity of producing 3500 tons of methanol annually using CO₂, which is readily available with cheap geothermal energy source. The hydrogen required for the process can be produced by electrolysis of water using electricity generated from hydroelectric plant or geothermal energy. Mitsui chemicals has also constructed a demonstration plant having 100 ton per day capacity of methanol production (Tremblay 2008). The plant gets CO₂ from industries that produce it as a by-product. Hydrogen was generated using solar energy by photochemical splitting of water. More recent plants include MetCO₂ plant in Niederaussem, Germany, and PetroChina pilot plant in cooperation with the Dalian Institute of Chemical Physics (Zhong et al. 2020). Several new plants for methanol synthesis are upcoming as well. These include Mitsubishi Gas Chemical Company in collaboration with Mitsubishi Hitachi Power Systems (MHPS) and Mitsubishi Heavy Industries Engineering (MHIENG). The plant will utilize the CO₂ emitted from the refinery Tomakomai City, Hokkaido, Japan, with a 20 ton per day capacity and will start operation in 2021. Sunfire Germany and Total Oil are constructing a green methanol plant with 160tpa capacity that will utilize a 1-MW electrolyzer powered by wind turbine for hydrogen production (Zhong et al. 2020). It is also found that the investment in methanol synthesis plant from carbon dioxide and hydrogen is similar to the one based on syngas. However, the only problem is the scaling of the plant due to limited availability and price of CO₂ and H₂ and also the source of energy. Various sources such as power plants burning fossil fuels and various industries such as aluminum smelters, cement factories, and fermentation plants produce CO₂ that can be captured and purified. There are natural resources such as geothermal energy and natural gas, wherein CO₂ is also found in abundance. Lastly, CO₂ can be separated from air and recycled into methanol and other products (Sarp et al. 2021). Today fossil fuel-based syngas is used for hydrogen production which releases lot of CO₂ into the atmosphere resulting in further increase in global warming. Also, due to diminishing fossil fuels, different sources have to be utilized for hydrogen production.

Storage and distribution of methanol

Similar to the petroleum-based fuels, a wide spread distribution network is required for methanol to easily available to the consumers. Dispensing methanol from the refueling stations will be similar to the refueling station dispensing petroleum fuels. The consumers will not feel any change, except that instead of a petroleum fuel they are filling their tanks with a different liquid. In the existing refueling stations or newly designed stations, installing methanol storage tanks and distribution pumps is similar to the installation of gasoline (Ogden et al. 1999). In California, for fueling methanol powered vehicles refueling stations are being built since 1980s. Most of the vehicles are flexible fuel vehicles (FFV), i.e., any mixture of methanol and gasoline can be used to run them, whereas some can run only on neat methanol. In parts of the USA and Canada, methanol fuel pumps were also installed. Today, methanol storage and distribution systems are already in place as it is an essential commodity. Nearly 500,000 ton of methanol in the USA alone is transported every month by truck, rail and boat (Methanol Institute 2004). Rail cars that can hold 100 tons each of methanol will be preferred for long distance transportation. Countries having extensive railway networks, such as the USA, Europe, India and other countries can transport methanol to all the major places. For transporting in small volumes to local centers tanker trucks that can hold nearly 30 ton of methanol can be used. Countries with inland waterways can ship methanol through barges that can carry nearly 1250 ton. Another method of transporting methanol is through pipelines which is extensively used for transporting oils and natural gas (Olah et al. 2009). For small quantities building a pipeline is not justified given the huge investment in building a pipeline. However, if methanol becomes the prime fuel in the future then transporting methanol through pipelines will be best viable option as it will improve the economics. Also, methanol transportation through pipelines does not poses any problems. Methanol can also be transported from remote locations where it is produced through ocean tankers. By transporting methanol is such big tankers, the cost of methanol shipping will be similar to that of crude oil. It can then be stored in tanks made from stainless steel and carbon steel similar to the way petroleum products are stored (Methanol Institute 2004).

Safety with methanol

Methanol is widely used for the synthesis of various chemicals, as an industrial solvent and it is also present in many consumer products. windshield washer fluid contains large amount of methanol. The public has not faced any significant...
problems with its use. However, its exposure will increase as its use as an automotive fuel increases. Moreover, the risk for the consumers is similar to that of gasoline or diesel use (Olah et al. 2009). Methanol is toxic to humans and while handling same care should be taken as other fuels require. It can be absorbed by inhalation, ingestion and slowly through exposure of skin. If not timely treated, 25–90 ml ingestion of methanol may be fatal (Bromberg and Cheng 2010). In the human body, liver metabolizes methanol first into formaldehyde and then into formic acid which is either excreted in the urine or metabolized into carbon dioxide (Fig. 7). The severe effects of methanol ingestion take 12–18 h to show because the formic acid produced is metabolized slowly. Increase in blood acidity can be caused by high concentration of formic acid, resulting in dizziness, weakness, headache and nausea. A person may also find it difficult to breath along with abdominal pain. Its poisoning may lead to coma and death, in severe cases. The formic acid may also affect the optical nerve resulting in blurring of vision to total vision loss (Methanol Institute 2013). Timely treatment can combat methanol poisoning resulting in complete recovery. Early use of sodium carbonate can reduce the blood acidity and vision impairment can be repaired or reversed. Methanol and formate can also be removed from blood stream by dialysis, 4-methylpyrazole administered orally or intravenously can reduce methanol poisoning along with ethanol and ethylene glycol poisoning (Bromberg and Cheng, 2010; Methanol Institute 2013). It is seen that methanol over-exposure is dangerous for humans but it is essential to know that both methanol and formate are present in our body from the food we eat and it is also produced during metabolism. It is present in vegetables, beverages, fresh foods and fermented foods. Aspartame present in soft drinks and diet foods during digestion is partially converted into methanol. The Food and Drug Administration (FDA) of the USA says that 500 mg daily intake of methanol is safe for an adult (Methanol Institute 2013). Moreover, formate is considered as a building block of many biomolecules and is a component of our DNA (Bromberg and Cheng 2010). Studies show that methanol itself is neither carcinogenic nor mutagenic hazard whereas gasoline contains several compounds such as benzene, xylene, toluene, n-hexane and ethyl benzene some of which are known mutagens and carcinogens (Cruzan 2009). It is expected that during refueling of a car with methanol will result in low dose exposure of the public. By inhaling, nearly 2–3 mg of methanol will be ingested orally during a refueling (Bromberg and Cheng 2010). Consider drinking 0.35L diet soda which contains nearly 200 mg of aspartame, this will result in 20 mg production of methanol by the body. With vapor recovery systems installed, the methanol exposure during refueling will reduce to 3–4 ppm. Spill-free nozzles are designed to avoid spill during refueling so that the consumer does not comes in contact with methanol. Even if the human skin comes in contact with methanol, water and soap can be used to wash the affected area (Olah et al. 2009).

The major hazard with the transportation fuel is fire and explosion which is also a concern with methanol. However, the physical and chemical properties of methanol as compared to gasoline reduce the fire risk significantly. In combination with lower volatility and heating value, as compared to gasoline, four times more methanol vapor is required for its ignition. Even if it ignites, its flame speed is four times slower and it releases heat at one-eighth the rate of gasoline fire. Also due to its low radiant heat output, the surrounding ignitable materials are less likely to catch fire (Olah et al. 2009). Southwest Research Institute (SWRI) and Environmental Protection Agency (EPA) (Cheng and Kung 1994) fueled one car with gasoline and the other with methanol. The cars were placed near an open flame and the fuel was allowed to leak on the ground. They found rapid ignition of gasoline and within minutes the entire vehicle was burnt, whereas time taken for methanol to catch fire was three times that of gasoline and only the rear end of the vehicle was burnt. By pouring water, methanol fire can be easily extinguished. There is almost negligible smoke when methanol burns resulting in less injuries caused by smoke inhalation and fire-fighting can be easily carried out as less of visibility is less. It is possible that in fuel tank or reservoir, ignitable air–fuel mixture may be present at ambient conditions. If fire or explosion occurs due to collision, the mixture may not ignite due to property of methanol and modifications in fuel tank or use of a volatile compound which itself vaporizes making the mixture too rich to ignite (Bawase et al. 2021). Therefore, it can be said that methanol fire is less likely to occur, even it does it is less damaging as compared to gasoline.

Methanol use in chemical industry

The chemical industry holds great interest in methanol since it can be easily interconverted as an energy or a chemical raw material. Most of the methanol produced worldwide is converted into a diverse variety of chemicals and materials such as acetic acid, formaldehyde, methyl-tert-butyl ether (MTBE), construction materials, paints, adhesives and polymers among others. MTBE is formed by reacting methanol and iso-butylene over an acidic catalyst at nearly 100 °C. MTBE gained attention when it was known that it can act as an octane booster (octane number 116) and replace the harmful and toxic tetra-ethyl lead (Hamid and Aliin 2004).
Its use in gasoline also reduced the need of benzene and toluene which are also high octane components but are known carcinogens. Therefore, MTBE use in reformulated gasoline helped in the clean burning of fuel which reduced unburnt hydrocarbons, carbon monoxide and ozone emissions. However, in the later years it was found that MTBE had high solubility in water and did not degrade naturally. Therefore, the groundwater was contaminated in those areas where the underground gasoline tanks in the filling station were leaking (Donahue et al. 2002). Even in low concentrations, humans detected the foul odor and taste of MTBE in water. However, its toxicity is much less than other compounds present in gasoline. Nevertheless, it was banned in the USA. In Europe, it was not phased out but with the directives of using biofuels for transportation, the European countries moved toward bio-ethanol and ethyl tert-butyl ether (ETBE).

Dimethyl ether is the simplest of all ethers. It is an environment friendly colorless chemical which is neither corrosive, nor toxic and not even carcinogenic. It is used in spray cans as an aerosol propellant instead of the banned chlorofluorocarbon gases. Since the flame of DME is soot-less, it is also used for blowing glass. It is a gas under ambient conditions and its boiling point is ~25 °C (Bakhityari et al. 2016). Therefore, like LPG, DME is also stored in pressurized tanks in liquid form. Its use as a compression ignition engine fuel lies in the fact that its cetane number is very high. It is a clean burning fuel producing low quantities of NOx, and no SOx and soot emission (Thomas et al. 2014). Methanol is dehydrated to produce DME. Since methanol is produced from various feedstock such as biomass, coal and natural gas, it can be said that DME is directly produced from these feedstock. In one study, a method was developed for producing DME from syngas in a single step by combining synthesis of methanol and its dehydration (Ogawa et al. 2003).

The methanol to olefins process is a two-stage process, wherein the coal or natural gas is converted to methanol via syngas production, then the methanol is transformed into light olefins. The process was so developed such that natural gas can be used for sources which are far away from major consumer centers. In this process, DME is first produced by dehydration of methanol which is further reacted to form propylene and ethylene. The catalyst used in the process is the zeolite H-ZSM-5 (Kvisle et al. 2008). Also small amount of other hydrocarbons such as butene, alkanes, some aromatics and higher olefins are also produced. This process was first pioneered by Mobil who could produce 100 barrels per day through a demonstration plant in Wesseling, Germany. An olefins to gasoline and distillate process was also developed by Mobil. They oligomerized the olefins over a ZSM-5 catalyst to form gasoline and distillate having selectivity greater than 95%. By changing the reaction conditions, the gasoline and distillate ratio can be varied considerably. When operated at high pressures and low temperatures, olefins having high molecular weight are formed, which upon hydrogenation can produce diesel and jet fuels, whereas, at high temperatures and low pressure, low molecular weight olefins with high aromatic content can be produced (Olah et al. 2009).

Acetic acid is one of the most important aliphatic intermediates. It can be generated through oxidative fermentation of ethanol. Also, it can be produced from wood cooking or from molasses of sugar cane. Since the beginning of the twentieth century, acetic acid is being commercially produced from acetaldehyde. Later on, instead of acetylene, ethylene was used for acetic acid production. In the 1920s, BASF developed the methanol carbonylation process for acetic acid synthesis. This process was replaced by the Monsanto process which utilized rhodium-based catalyst. Later on Cativa process, which uses iridium-based catalyst for the reaction, replaced the Monsanto process. Since the methanol carbonylation process was more economical, the acetaldehyde oxidation was eventually phased out (Bertau et al. 2014). Acetic acid is used throughout the world for the production of acetic anhydride and vinyl acetate monomer (VAM). The use of acetic acid as a solvent for purified terephthalic acid (PTA) production is also growing worldwide.

Formaldehyde, due to its high reactivity is an important chemical which is used in textiles, construction, wood processing and carpeting industry. At ambient conditions, it is a colorless gas that rapidly polymerizes in the presence of small impurities. Therefore, it is commercially used in three forms namely as an aqueous solution containing 35–55% formaldehyde rest is methanol and a polymerization inhibitor, cyclic trioxane, and paraformaldehyde (Bertau et al. 2014). Today formaldehyde is produced by using two methods: (1) oxidation-dehydrogenation of methanol using a silver catalyst and (2) using metal oxide catalyst, direct oxidation of methanol to formaldehyde (Formox process). Formaldehyde is produced close to the consumption centers since it is fairly easy to make but shipping over long distance is problematic due to stability issues. Therefore, there is virtually no world trade of formaldehyde. Formaldehyde around the world is mainly used for the production of thermosetting resins. Among them amino resins produced by condensing either melamine or urea with formaldehyde is the largest user.

Methanol as a fuel

Methanol falls in the category of light alcohol and is considered as one of the cleanest alternative fuel for running the I.C engine. It is a clear and colorless liquid, obtained from a wide variety of sources, discussed earlier. The initiative of using methanol as an alternative fuel came into existence in the early 1970s due to higher perturbation in the price
of conventional fuels in the world market. Table 4 shows the comparison of different fuel properties of methanol with diesel, gasoline and ethanol. In comparison with hydrogen (Table 2), methanol has a lower heating value. However, the volumetric energy content of hydrogen gas is several times lower than methanol. Even liquid hydrogen has nearly two times lower volumetric content than methanol. Methanol has a lower flammability limit than hydrogen. Its flame speed is higher than gasoline but lower than hydrogen. Although the octane number of both methanol and hydrogen is more than 100, methanol still has slightly lower octane number than hydrogen. Theoretically, on burning hydrogen produces only water vapor whereas on burning of methanol a mixture of carbon dioxide, carbon monoxide and water vapor may be produced (Yao et al. 2017).

Methanol has already attracted the attention in the past due to its large-scale usage in high-speed racing cars. The abundant availability options, lower energy density and higher octane rating and flame speed compared to gasoline make it competent for operating SI engine with minor modifications (Verhelst et al. 2019). Wang et al. (2019) studied the chemical, cooling and octane sensitive effects of methanol on the operating characteristics of an SI engine. The experimental results showed that the engine running on pure methanol could operate at a higher compression ratio as compared to gasoline. The higher octane number facilitates the fuel–air mixture entering into the cylinder to compress at a much smaller range of volume. Thus, improving the atomization and combustion characteristics. The previously published literature reveals that ability to operate with leaner mixtures, higher compression ratio (CR) and latent heat of evaporation attached with methanol-fueled engine can provide up to 10–20% increase in thermal efficiency for the same engine running on gasoline fuel. However, high NOx emissions, formation of formaldehyde, lower calorific value, etc. associated with the usage of 100% methanol in spark ignition engine precludes its usage as a complete replacement fuel in SI engine and most of the times methanol is used as an extender in gasoline engines (Awad et al. 2018).

Table 4 Comparison of fuel properties diesel, gasoline, biodiesel, ethanol and methanol (Verhelst et al. 2019)

Fuel property	Diesel	Gasoline	Ethanol	Methanol
Formula	C10−26	C8−12	C2H5OH	CH3OH
Oxygen content [mass %]	0	0	34.8	50
Density [kg/m3 at 20 °C]	834	740	790	790
Viscosity at 40 °C [mPa s]	2.9	0.29	1.1	0.59
Stoichiometric air/fuel ratio	14.5	14.6	9	6.45
Lower calorific value (MJ/kg)	43	44	26	19
Higher calorific value (MJ/kg)	45.8	46.6	28.5	22.5
Freezing point at 1 bar [°C]	−40	−57	−80	−97.7
Boiling point at 1 bar [°C]	175–360	30–220	78.4	64.5
Flash point (°C)	55	−45	13	11
Auto-ignition temperature (°C)	220–260	228–470	422	463.8
Research octane number (RON)	<0	80–98	108	107
Motor octane number (MON)	<0	81–84	92	92
Cetane number	40–55	0–10	6	<5
Specific heat (20 °C) (kJ/kg)	1.9	2.3	–	2.55
Heat of vaporization [MJ/kg]	270	310	910	1109

Table 5 Merits and demerits of using neat methanol in an SI engine

Merits	Demerits
Minimizing the unwanted issues of knocking phenomenon. Methanol also provides flexibility to work at higher compression ratio, resulting in improved efficiency in SI engines	Indigent self-ignition properties resulting in long ignition delay
Exhaust emissions are soot free, therefore providing cleaner (soot-free) combustion	Mixing quality with conventional fuel is poor, resulting in difficulties of cold starting of engine
Improved fuel economy, flexibility of operating at lean mixtures and reduced harmful emissions of NO, HC and CO	Corrosion of engine parts on longer-term usage
Higher latent heat of vaporization, imparts lower combustion temperature and results in lower NO emissions	Evaporation in fuel lines (vapor locks)
Higher volatility providing better fuel distribution of air–fuel mixtures among the cylinders	Poor oxidation stability and degradation of oil lubrication properties resulting from low viscosity
Moving ahead from hydrogen to methanol economy: scope and challenges

(2019), in their experimental research, investigated the noise and vibration characteristics of Gasoline Direct Injection Engine using the blends of gasoline and methanol. 10 and 20% (v/v) of methanol were used for blending with gasoline during the analysis. The study showed that the binary blends of gasoline and methanol significantly improved the in-cylinder pressure, heat release rate (HRR), rate of pressure rise and CHR as compared to neat gasoline. Hence, the outcomes above showed that the utilization of methanol in the form of blends with gasoline and alcohols has proven to be a more viable solution in comparison with pure methanol. The British automotive company “Lotus” known for its light weight architectures, efficient designs have already started promoting the blends (methanol-ethanol-gasoline) in their high speed and luxury cars named as “tri-flex-fuel” car, the Exige 270E (Turner and Pearson 2012). Lotus is focusing on the utilization of methanol fuel obtained by hydrogenation of carbon dioxide. However, problems such as corrosion of engine parts, the stability of blends and higher fuel mass flow intensity are associated with long-term usage of methanol blends. These issues can be adequately resolved by using different additives, surfactants and with minor engine modifications.

Diesel engines are known for their heavy-duty applications, commonly used for running industrial/transportation engines and power generators. Unfortunately, diesel fuel is the largest emitter of harmful pollutants such as smoke, soot and NOx into the atmosphere. The distinctive physical and chemical properties of methanol have attracted the attention of the entire research fraternity. Methanol on its combustion does not emit toxic smoke or soot particles, even the amount of NOx reduces drastically in comparison with diesel (Yao et al. 2017). Also, the higher volatility and vapor pressure of methanol promotes its usage as CI engine fuel. Methanol-fueled heavy-duty engines have the leverage to run efficiently in cold weather condition, thereby providing an appropriate solution to the difficulties of cold starting and white smoke attached with neat diesel. The methanol powered C.I. engines are already in practice in different parts of the world especially in the USA. Detroit, also known as “motor city,” stepped on methanol fuel to run its public transportation system. DDC (Detroit Diesel Corporation) in the early 1990s retrofitted “6 V-92TA” a heavy-duty diesel engine to run on neat alcohol, methanol. It was also certified as the low emission heavy-duty diesel engine by the Environmental Protection Agency (EPA) and the California Air Resource Board (CARB) in the year 1992 (Olah et al. 2009). The methanol-fueled engine can provide a quantum leap in minimizing the perilous issues of unwanted climate changes and acid rain occurring due to excessive utilization of diesel fuel. However, there are certain barriers in using neat methanol in diesel equipped engines due to which the vehicles running on 100% methanol are now obsolete. The lower cetane number of methanol resulting in longer ignition delay and other abiding issues such as higher maintenance cost due to corrosion of engine parts and issues with fuel system, etc., are some of the shortcomings which restricts its usage as neat fuel.

Nevertheless, there are various fuel reformulation techniques which can surmount the above-discussed difficulties. Methanol in the form of blends (binary/ternary), fumigation and its derivative DME are some of the approaches which can widespread the use of methanol in CI engines (Verhelst et al. 2019). Methanol containing immense quantity of oxygen content and high enthalpy of vaporization can be used as a blend with diesel, i.e., 85% methanol and 15% diesel) or other proportions. Canakci et al. (2009) conducted the experimental study to investigate the performance, combustion and emission characteristic of CI engine fueled with methanol-diesel blends. The results showed improvement in peak cylinder pressure, HRR, combustion efficiency as the injection pressure increases. Also, the emissions such as UBHC, and CO were also reduced considerably. However, the BSFC, BTE, NOx and CO2 showed negative trend as the value of injection pressure changes, for all fuel blends. As discussed earlier there are lot of startling issues in using pure methanol in CI engine. The unmatched physiochemical properties of methanol and diesel makes them difficult to mix with each other. Hence, formation of stable blend with diesel is always an objection. To overcome these stability challenges the mixture is usually blended with an appropriate surfactants or additives. Surfactants are the compounds which helps in reducing the surface tension between methanol and diesel. Methanol and biodiesel in the presence of some cetane number improver can improve the CI engine characteristics (Li et al. 2014). The study showed improvement in the ignition delay period and combustion duration on addition of cetane improve “cyclohexyl nitrate.” Also, NOx and smoke were also reduced to a greater extent. Some previous published research showed that methanol in the form of ternary blend with diesel and oxygen-rich compound has the potential to run over the gaps associated with binary blends.

Dimethyl ether (DME), derivate of methanol, is the best suited replacement of diesel fuel. It can be obtained from the dehydrogenation of methanol in the presence of some suitable catalyst. The distinctive nontoxic, non-corrosive, nonexplosive and noncarcinogenic nature of DME makes it the most favorable choice to be used as CI engine fuel (Bakhtyari et al. 2016). Interestingly the properties of DME such as cetane index, low boiling point motivates the economy to utilize it as neat fuel in diesel engine. Compared to other alternative fuels especially methanol, it burns clean, emissions are free from soot and smoke and also produces very little NOx, a major concern in diesel engine. DME fueled engines are very popular in many parts of the world.
especially Europe. The DME powered CI engines not only provide improved performance and emissions but also produces less noise as compared to diesel. The noise of the DME fueled engines are somehow comparable with the noise produced by gasoline engine. Besides many advantages of DME as an environmentally friendly fuel, there are certain issues such as low density, viscosity and poor lubricity which negates it usage as neat fuel.

Methanol can also be used to power the fuel cells. It is a device based on an electrochemical process which converts the chemical energy of the fuel/hydrogen into electricity in the presence of some suitable oxidant. As already discussed, hydrogen is the cleaner and eco-friendly fuel; however, the stability, higher maintenance, and other undesirable handling issues makes it difficult to be used for fuel applications. Almost all the fuel cells currently being manufactured for electric vehicles operate primarily on the hydrogen fuel. The most popular and economical fuel cell functioning on hydrogen is PEMFC (Proton Exchange Membrane Fuel cell). Methanol also has the flexibility to be fed directly for operating the fuel cell systems known as DMFC (Direct Methanol Fuel Cell). In DMFC, methanol is internally reformed to generate hydrogen. It is a continuous generation process which uses appropriate catalyst for converting methanol to hydrogen. The temperature range in which the fuel operate is 60–130 °C (Hsueh et al. 2012). Therefore, the DMFC fuel cells are restricted to light duty systems and can be potentially used for battery charging applications such as electric cars and folk lift trucks. The commonly used catalyst in DMFC fuel cell is ruthenium-platinum. It converts liquid methanol into hydrogen; therefore, pure methanol can be used as fuel. Zhang et al. (2017) investigated the performance of DMFC by incorporating a methanol barrier known as methanol-resisting pervaporation film (PVF), a buffer cavity and a water-resisting PVF. The anode controls the flow of methanol coming from the tank. The results showed a significant increase in the efficiency of the fuel cell. Also, the performance of the fuel cell showed no change over 400 h of continuous working. There is lot of research undergoing on the development of Fuel Cell Vehicles (FCVs) especially in the USA and the European countries. German automotive company “Daimler” is one of the leading organizations working on DMFC FCV’s. In the year 1997 and 2000, Daimler demonstrated and tested its first FCVs, the Necar 3 and Necar 5 (updated version). Both the fuel cell and the reforming system were placed in the car, which can run at maximum speed of 150 km/h. The Necar 5 consisted of 85 kW fuel cell and had a driving range of 500 km in single run (Olah et al. 2009). Later, other automotive companies such as Ford, Nissan, Volvo, General Motors and Honda also started researching FCVs running on hydrogen fuel. The research is in developing stages to improve the performance of the fuel cells in terms of complexities in design, high investment cost, durability, storage and handling.

Liquefied petroleum gas (LPG) is used for household cooking application by most of the developing countries. Increase in the population of the developing nations has led to a sporadic rise in LPG consumption. Since LPG is the by-product of oil and gas industries. Therefore, the excessive increase in the demand of LPG in the domestic sectors is causing direct threat to fossil fuels. Dimethyl ether has the potential to replace LPG from the household sector. DME with a molecular weight of 46.07 g/mol is the only ether which has lowest carbon to hydrogen ratio. The non toxic and sustainable nature makes it specifically different from other gases. DME is easily soluble in water and has density 2/3 of water (Bakhtyari et al. 2016). Its properties similar to that of LPG makes it widely acceptable to be used in household applications as it can be easily stored and handled in LPG vessels. The literature reveals that mixtures of DME and LPG has proven to be an excellent choice as new alternative fuel for domestic/cooking applications. Anggarani et al. (2014) studied the performance of LPG-DME blends in modern household stove. Different concentration ranges of DME, i.e., 5, 10, 15, 20, 25, 30 and 50%, were considered for the investigation. The heat input, efficiency of the blends and flame stability were determined. The analysis reveals that increasing the concentration of DME above 50% results in decrease in thermal efficiency. Moreover, issues such as corrosive action on rubber material, low boiling point, critical flammability limits, lower combustion enthalpy and modulus of elasticity causing its usage hazardous for the household purposes (Olah et al. 2009). Therefore, to commercialize its large-scale use among the household communities it is necessary to taken into account the different flames behavior of DME-LPG blends, design and development of efficient burners and materials which can withstand for both DME and DME-LPG blends applications.

Cost comparison of hydrogen and methanol

The capital required for building a hydrogen infrastructure is the biggest impediment in its use in vehicles. Table 6 shows the capital cost in building a refueling infrastructure for hydrogen. The options considered are (1) from a centralized steam reformer liquid hydrogen is delivered, (2) from a centralized plant hydrogen is delivered through pipeline, (3) onsite production through steam reforming of methane and (4) use of electrolysis for onsite production. For serving 1.41 million fuel cell cars the infrastructure costs varies from US$440–870 million which comes out to be US$310–620 per car. For onsite generation the capital cost is US$516 million or US$370 per car (Ogden et al. 1999). In comparison with hydrogen infrastructure which
Moving ahead from hydrogen to methanol economy: scope and challenges

requires special equipment for handling low temperatures and high pressure, methanol fuel stations require less capital. Another problem is the regulation formed by National Fire Protection Association (NFPA) that does not allow any hydrogen fueling station to be 25 m near to the gasoline pump (Dolan 2002), thus making it difficult for hydrogen dispensing fuel station to be installed in the existing stations. In cities space is already a constraint; therefore, it is very difficult to install new hydrogen-only fuel stations. Whereas, methanol can be dispensed by converting existing gasoline fueling stations. The conversion cost of existing retail outlets for methanol dispensing is quite low. The double-walled underground tank used for diesel or gasoline can be easily cleaned and used for methanol storage. Only new pipes and dispenser pumps that are compatible with methanol will be required. The cost of conversion is nearly US$20,000 and takes nearly a week. By spending nearly US$60,000 to 65,000 a new underground methanol storage tank of 40,000L capacity and pipes, pumps, dispensers and valves compatible with methanol can be added to an existing fuel station. In areas where space is available, the storage tank can be placed above the ground thus reducing the overall cost by about US$10,000 (Basu and Wainwright 2001). That means, by investing US$ 1 billion 10% of the existing service stations can be converted to dispense methanol and for less than US$3 billion one-fourth of the existing fuels can additionally supply methanol (Dolan 2002). Methanol, being an essential commodity, its storage and distribution systems is already in place. However its current production capacity is limited and if a million fuel cell vehicles operate on methanol then the production capacity needs to be increased and as shown in Table 7 its costs considering the terminal conversion, tanker shipping capacity and new production capacity would be around US$330–570 per car (Ogden et al. 1999). Therefore, the costs per car would be slightly lower for methanol infrastructure as compared to hydrogen infrastructure. In India, it is estimated that the cost of methanol produced from coal will be around INR 16–17 per liter whereas by using natural gas methanol costs around INR 25–27 which may vary depending upon the cost of natural gas. By steam methane reforming of natural gas the cost of hydrogen production is INR 25.67 per kg whereas from coal gasification hydrogen costs INR 57.5 per kg. The cost of hydrogen at a fueling station would be INR 85.54, when the cost of transportation through pipeline without storage and steam reforming method is considered (Balachandra and Reddy 2007). In both the processes carbon dioxide is released in hydrogen production which may be used for other purposes. Whereas methanol itself contains carbon, hence, the carbon dioxide release is very less as compared to hydrogen production.
Future research

On the production front, research can be carried out on the methods of reducing the cost of methanol production using renewable feedstock or wastes. The catalyst plays a major role in the syngas production, a lot of research has already been done but new materials such as graphene has not been explored much. Research can also be carried out on efficient ways of capturing CO₂ from the atmosphere and converting it into methanol rather than storing which may leak in the future and create major problems. Methanol powered fuel cells can replace the internal combustion engine which may become obsolete in the future. However, the current technologies for on-board conversion of methanol to hydrogen is still in nascent stage and a lot of scope is available for improvement.

Conclusions

Hydrogen is considered to be the best alternative to fossil fuels as it is completely free of carbon. However, there are issues with hydrogen use namely storage, safety and development of new infrastructure for storing and dispensing hydrogen through fuel stations. Methanol is a simple oxygenated liquid hydrocarbon and it is a better energy carrier than hydrogen. It can be produced by biomass and from sources rich in CO₂. The hydrogen required for the process can be derived from water using a renewable energy source. In this way, both hydrogen and CO₂ can be safely stored in the form of methanol. It is not only a safe means of storing energy but it is also an excellent fuel and a building block for many chemicals. Therefore, moving toward “Methanol Economy” may be the solution to our present problems, viz., an alternative to fossil fuels and reduction of global warming by capturing CO₂.

Acknowledgements

The authors are thankful to the researchers cited in this study.

References

Adinberg R, Epstein M, Karni J (2004) Solar gasification of biomass: a molten salt pyrolysis study. J Solar Energy Eng 126(3):850–857. https://doi.org/10.1115/1.1753577

Agrawal R, Singh NR, Ribeiro FH, Delgass WN (2007) Sustainable fuel for the transportation sector. Proc Natl Acad Sci USA 104(12):4828–4833. https://doi.org/10.1073/pnas.0609921104

Albarelli JQ, Onorati S, Caliandro P, Peduzzi E, Meireles MAA, Marechal F, Ensinas AV (2017) Multi-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production. Energy 138:1281–1290. https://doi.org/10.1016/j.energy.2015.06.104

Alves HJ, Bley Junior C, Nikleivcz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225. https://doi.org/10.1016/j.ijhydene.2013.02.057

Anggarani R, Wibowo CS, Rulianto D (2014) Application of dimethyl ether as LPG substitution for household stove. Energy Proc 47:227–234. https://doi.org/10.1016/J.EGYPRO.2014.01.218

Asadullah M, Ito S, Kunimori K, Yamada M, Tomishige K (2002) Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification. Environ Sci Technol 36(20):4476–4481. https://doi.org/10.1021/es020575r

Awad OI, Mamat R, Ibrahim TK, Hammid AT, Yusri IM, Hamidi MA, Humada AM, Yusop AF (2018) Overview of the oxygenated fuels in spark ignition engine: environmental and performance. Renew Sustain Energy Rev 91:394–408. https://doi.org/10.1016/J.RSER.2018.03.107

Baena-Moreno FM, Sebastia-Saez D, Pastor-Pérez L, Reina TR (2021) Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom. Renew Sustain Energy Rev 144:110939. https://doi.org/10.1016/J.RSER.2021.110939

Bakhtyar A, Haghbaksh R, Rahimpour MR (2016) Investigation of thermally double coupled double membrane heat exchanger reactor to produce dimethyl ether and methyl formate. J Nat Gas Sci Eng 32:185–197. https://doi.org/10.1016/J.JNGSE.2016.04.002

Balachandra P, Reddy BS (2007) Hydrogen energy for Indian transport sector: a well-to-wheel techno-economic and environmental
Moving ahead from hydrogen to methanol economy: scope and challenges

feasibility analysis, Indira Gandhi Institute of Development Research, Mumbai (Vol. WP-2007-04)

Basu A, Wainwright J (2001) DME as a power generation fuel: performance in gas turbines. In: 4th international petroleum conference and exhibition, New Delhi, pp 9–12

Bawase M, Chaudhari S, Thipse SS (2021) Polymer/fuel interaction and properties of typical automotive fuel-system polymers exposed to methanol blended (M15) gasoline. Polym Test 97:107141. https://doi.org/10.1016/j.polymertesting.2021.107141

Bertau M, Wernicke HJ, Schmidt F (2014) Methanol utilisation technologies. In: Bertau M, Schmidt F, Offermanns H, Wernicke HJ, Plass L (eds) Methanol: the basic chemical and energy feedstock of the future. Springer, Berlin Heidelberg, pp 327–602

Blumberg T, Lee YD, Morosuk T, Tsatsaronis G (2019) Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas. Energy 181:1273–1284.
https://doi.org/10.1016/j.energy.2019.05.171

Boopathi D, Sonthalia A, Devanand S (2017) Experimental investigations on the effect of hydrogen induction on performance and emission behaviour of a single cylinder diesel engine fuelled with palm oil methyl ester and its blend with diesel. J Eng Sci Technol 12(7):1972–1987

Bosel U, Eliasson B, Taylor G (2003) The future of the hydrogen economy: bright or bleak? Retrieved from http://www.eefc.com/reports/. Accessed 28 Aug 2019

British Petroleum (2020) Statistical review of world energy. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf. Accessed 24 Jan 2021

Bromberg L, Cheng W (2010) Methanol as an alternative transportation fuel in the US: options for sustainable and/or energy-secure global碳 cycle: the methanol economy. In: Torok B, Dransfield Dekker, New York

Cruzan G (2009) Assessment of the cancer potential of methanol. Crit Rev Toxicol 39(4):347–363. https://doi.org/10.1080/10408440802475199

Dalai S, Vijayalakshmi S, Sharma P, Choo KY (2014) Magnesium and iron loaded hollow glass microspheres (HGMs) for hydrogen storage. Int J Hydrog Energy 39(29):16451–16458. https://doi.org/10.1016/J.IJHYDENE.2014.03.062

Demirbas A (2003) Biomass and wastes: upgrading alternative fuels. Energy Sources 25(4):317–329. https://doi.org/10.1080/0090310390142352

Demirbas A (2004) Current technologies for thermo-convension of biomass into fuels and chemicals. Energy Sources 26(8):715–730. https://doi.org/10.1080/00908310490445562

DOE US (2018) Compare fuel cell vehicles. Retrieved from https://www.fueleconomy.gov/feg/fcv_sbs.shtml. Accessed 30 Nov 2019

Dolan GA (2002) In search of the perfect clean-fuel options. Hydrocarb Process 81(3):13–15

Donahue CJ, D’Amico T, Exline JA (2002) Synthesis and characterization of a gasoline oxygenate, ethyl tert-buty ether. J Chem Educ 79(6):724. https://doi.org/10.1021/ed079p724

Dong Y, Borgwardt RH (1998) Biomass reactivity in gasification by the hynol process. Energy Fuels 12(3):479–484. https://doi.org/10.1021/ef970127i

Galindo CP, Bader O (2007) Renewable hydrogen utilisation for the production of methanol. Energy Convers Manag 48(2):519–527. https://doi.org/10.1016/j.enconman.2006.06.011

Geo VE, Nagarahman G, Nagalingam B (2008) Studies on dual fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel. Int J Hydrog Energy 33(21):6357–6367. https://doi.org/10.1016/j.ijhydene.2008.06.021

Goehna H, Koenig P (1994) Producing methanol from CO2. ChemTech 24(6):36

Goeppeert A, Czaun M, Jones J-P, Surya Prakash GK, Ohla GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43(23):7995–8048. https://doi.org/10.1039/C4CS00122B

Goeppeert A, Ohla GA, Surya Prakash GK (2017) Toward a sustainable carbon cycle: the methanol economy. In: Torok B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier Inc., Amsterdam, pp 919–962 https://doi.org/10.1016/B978-0-12-809270-5.00031-5

Hamid H, Alii MA (2004) Handbook of MTBE and other gasoline oxygenates. Marcel Dekker, New York

Hedegaard K, Thyo KA, Wenzel H (2008) Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability. Environ Sci Technol 42(21):7992–7999. https://doi.org/10.1021/es80358d

Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260. https://doi.org/10.1016/j.cattod.2008.08.039

Hsueh KL, Tsai LD, Lai CC, Peng YM (2012) Direct methanol fuel cells. In: Lui RS, Zhang L, Sun X, Liu H, Zhang J (eds), Electrochemical technologies for energy storage and conversion 1&2, Wiley-VCH GmbH, Weinheim, Germany

Intergovernmental Panel on Climate Change (2007). AR4 Climate change 2007: Synthesis Report. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf. Accessed 28 Nov 2019

International Energy Agency (2018) World Energy Outlook. Retrieved from https://www.iea.org/reports/world-energy-outlook-2018. Accessed 28 Nov 2019

Jalali R, Rezaei M, Nematollahi B, Baghalha M (2020) Preparation of Ni/MeAl2O3-MgAl2O4 (Me=Fe Co, Ni, Cu, Zn, Mg) nano-catalysts for the syngas production via combined dry reforming and partial oxidation of methane. Renew Energy 149:1053–1067. https://doi.org/10.1016/j.renene.2019.10.111

Ji C, Wang S (2009) Experimental study on combustion and emissions characteristics of a spark ignition engine fueled with gasoline—hydrogen blends. Energy Fuels 23(6):2930–2936. https://doi.org/10.1021/ef090209m

Ji C, Wang S (2011) Effect of hydrogen addition on lean burn performance of a spark-ignited gasoline engine at 800 rpm and
low loads. Fuel 90(3):1301–1304. https://doi.org/10.1016/j.fuel.2010.11.014
Jiang Z, Pan Q, Xu J, Fang T (2014) Current situation and prospect of hydrogen storage technology with new organic liquid. Int J Hydrogen Energy 39(30):17442–17451. https://doi.org/10.1016/j.ijhydene.2014.01.199
Joelsson JM, Gustavsson L (2008) CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry. Resour Conserv Recycl 52(5):747–763. https://doi.org/10.1016/j.resconrec.2007.11.002
Kauw M, Benders RMR, Visser C (2015) Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany. Energy. 90:208–217. https://doi.org/10.1016/j.energy.2015.06.002
Kvisle J, Bogild Hansen J, Mogensen M (2011) GreenSynFuels. Economic and technological statement regarding integration and storage of renewable energy in the energy sector by production of green synthetic fuels for utilization in fuel cells. Retrieved from http://serenergy.com/wp-content/uploads/2015/11/GreenSynFuels_report_final.pdf. Accessed 21 Feb 2020
Levalley TL, Richard AR, Fan M (2014) The progress in water gas shift reaction for the hydrogen production. Int J Hydrogen Energy 39(30):16983–17000. https://doi.org/10.1016/j.ijhydene.2014.08.041
Li H, Hong H, Jin H, Cai R (2010) Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials. Appl Energy 87(9):2846–2853. https://doi.org/10.1016/j.apenergy.2009.07.001
Li R, Wang Z, Ni P, Zhao Y, Li M, Li L (2014) Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel 128:180–187. https://doi.org/10.1016/j.fuel.2014.03.011
Lipman T (2011) An overview of hydrogen production and storage systems with renewable hydrogen case studies. Montpelier, Vermont. Retrieved from https://cdn.cesa.org/wp-content/uploads/CESA-On-Board-Fuel-Processing-Review-Panel. pdf. Accessed 16 May 2019
Methanol Institute (2013) Methanol safe handling manual. Retrieved from http://www.methanol.org/wp-content/uploads/2017/03/Safe-Handling-Manual.pdf. Accessed 16 May 2019
Nabil T (2019) Efficient use of oxy-hydrogen gas (HHO) in vehicle engines. J Eur Syst Autom 52(1):87–96. https://doi.org/10.18280/jesa.520112
Nieva MA, Villaverde MM, Monzón A, Garetto TF, Marchi AJ (2014) Steam-methane reforming at low temperature on nickel-based catalysts. Chem Eng J 235:158–166. https://doi.org/10.1016/j.cej.2013.09.030
Ogawa T, Inoue N, Shikada T, Ohno Y (2003) Direct dimethyl ether synthesis. J Nat Gas Chem 12:219–227
Ogden JM, Steinbugler MM, Kretz TG (1999) A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. J Power Sources 79(2):143–168. https://doi.org/10.1016/S0378-7753(99)00057-9
Olah G, Goeppert A, Surya Prakash G (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim
Olah GA, Surya Prakash GK (2011) Conversion of carbon dioxide to methanol and/or dimethyl ether using bi-refoming of methane or natural gas, US Patent 7,906,559 B2. United States https://doi.org/10.1038/incommss1464
Poudyal RS, Tiwari I, Koirala AR et al (2015) Hydrogen production using photocatalytic methods. In: Subramani V, Basile A, & Vezirgolu TN (eds), Compendium of hydrogen energy: hydrogen production and purification, Woodhead Publishing, Oxford, pp 289–317 https://doi.org/10.1016/B978-1-78242-361-4.00010-8
Protti-Alvarez F (2017) Methanol-to-olefins drives methanol demand worldwide. Retrieved from https://chemweek.com/CW/Document/87374/IHS-Chemical-Methanol-to-olefins-drives-methanol-demand-worldwide. Accessed 9 Apr 2019
Qin YQ, Gong Y, Yuan YW, Yang ZG (2020) Failure analysis on leakage of hydrogen storage tank for vehicles occurring in oil circulation fatigue test. Eng Fail Anal 117:104830. https://doi.org/10.1016/j.engfailanal.2020.104830
Ribeiro AM, Santos JC, Rodrigues AE (2010) PSA design for stoichiometric mixing of syngas for methanol production and co-capture of carbon dioxide. Chem Eng J 163(3):559–363. https://doi.org/10.1016/J.CEJ.2010.08.015
Romm JJ (2004) The hype about hydrogen: fact and fiction in the race to save the climate. Island Press, Washington, DC
Rozovskii AY, Lin GI (2003) Fundamentals of methanol synthesis and purification, Woodhead Publishing, Oxford, pp 289–317. https://doi.org/10.1016/B978-1-78242-361-4.00010-8
Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. department of energy’s national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256. https://doi.org/10.1016/j.cattod.2006.09.022
Setthapun W, Bej SK, Thompson LT (2008) Carbine and nitride supported metal hydrogen steaming catalysats: parallel synthesis and high throughput screening. Top Catal 49(1):73. https://doi.org/10.1007/s11244-008-9070-7
Sharma N, Patel C, Tiwari N, Agarwal AK (2019) Experimental investigations of noise and vibration characteristics of gasoline-methanol blend fuelled gasoline direct injection engine and their...
relationship with combustion characteristics. Appl Therm Eng 158:113754. https://doi.org/10.1016/J.APPLTHERMALENGL.2019.113754

Shulenberger AM, Jonsson FR, Ingolfsson O, Tran K-C (2007) Process for producing liquid fuel from carbon dioxide and water, US8198338B2. US Patent. Retrieved from https://patents.google.com/patent/US8198338B2/en

Simbeck DR, Chang E (2002) Hydrogen supply: cost estimate for hydrogen pathways—scoping analysis: NREL. Technical Report (Vol. NREL/SR-54) NREL/SR-540-32525

Singh S, Jain S, Venkateswaran PS, Tiwari AK, Nouni MR, Pandey JK, Goel S (2015) Hydrogen: a sustainable fuel for future of the transport sector. Renew Sustain Energy Rev 51:623–633

Subramani V, Sharma P, Zhang L, Liu K (2009) Catalytic steam reforming technology for the production of hydrogen and syngas. In: Liu K, Song C, Subramani V (eds) Hydrogen and syngas production and purification technologies, John Wiley & Sons, Inc. New Jersey

Tarhan C, Cil MA (2021) A study on hydrogen, the clean energy of the future: hydrogen storage methods. J Energy Storage 40:1026776. https://doi.org/10.1016/j.est.2021.102676

Thomas G, Feng B, Veeraragavan A, Cleary MJ, Drinnan N (2014) Emissions from DME combustion in diesel engines and their implications on meeting future emission norms: a review. Fuel Process Technol 119:286–304. https://doi.org/10.1016/j.fuproc.2013.10.018

Tremblay JF (2008) CO2 AS FEEDSTOCK Mitsui will make methanol from the greenhouse gas. Chem Eng News Arch 86(35):13. https://doi.org/10.1021/cen-v086n035.p013a

Turner J, Pearson RJ (2012) Renewable fuels—An automotive perspective. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Amsterdam, pp 305–342

Verheul S, Turner JW, Sileghem L, Vancoillie J (2019) Methanol as a fuel for internal combustion engines. Prog Energy Combust Sci 70:43–88. https://doi.org/10.1016/J.PECS.2018.10.001

Veziroglu TN, Sahin S (2008) 21st Century’s energy: hydrogen energy system. Energy Convers Manag 49(7):1820–1831. https://doi.org/10.1016/J.enconman.2007.08.013

Wang C, Li Y, Xu C, Badawy T, Sahu A, Jiang C (2019) Methanol as an octane booster for gasoline fuels. Fuel 248:76–84. https://doi.org/10.1016/J.FUEL.2019.02.128

Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. https://doi.org/10.1007/s00253-009-2246-7

Williams RH, Liu G, Kreutz TG, Larson ED (2011) Coal and biomass to fuels and power. Annu Rev Chem Biomol Eng 2(1):529–553. https://doi.org/10.1146/annurev-chembioeng-061010-114126

Xu X, Xu H, Zheng J, Chen L, Wang J (2020) A high-efficiency liquid hydrogen storage system cooled by a fuel-cell-driven refrigerator for hydrogen combustion heat recovery. Energy Convers Manag 226:113496. https://doi.org/10.1016/j.enconman.2020.113496

Yao C, Pan W, Yao A (2017) Methanol fumigation in compression-ignition engines: a critical review of recent academic and technological developments. Fuel 209:713–732. https://doi.org/10.1016/J.FUEL.2017.08.038

Zhang F, Jiang J, Zhou Y et al (2017) A neat methanol fed passive DMFC with a new anode structure. Fuel Cells 17(3):315–320. https://doi.org/10.1002/fuce.201600221

Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49(5):1385–1413. https://doi.org/10.1039/C9CS00614A

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Ankit Sonthalia1,2 · Naveen Kumar2 · Mukul Tomar2 · Varuvel Edwin Geo5 © · Subramanian Thiyagarajan3 · Arivalagan Pugazhendhi4

© Varuvel Edwin Geo
vedwingeo@gmail.com

1 Department of Automobile Engineering, SRM Institute of Science and Technology, NCR Campus, Ghaziabad 201204, India

2 Center for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Bawana Road, Delhi 110042, India

3 Department of Automobile Engineering, Green Vehicle Technology Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India

4 Faculty of Environment and Labour Safety, Innovative Green Product Synthesis and Renewable Environment Development Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5 Department of Mechanical Engineering, Istinye University, Istanbul, Turkey