Plasmodium vivax Adherence to Placental Glycosaminoglycans

Kesinee Chotivanich1, Rachanee Udomsangpetch2, Rossarin Suwanarusk3, Sasithon Pukrittayakamee1, Polrat Wilairatana1, James G. Beeson4, Nicholas P. J. Day1,5, Nicholas J. White1,5

1Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 2Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand, 3Laboratory of Malaria Immunology, Agency for Science, Technology and Research, Singapore, Singapore, 4Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia, 5Centre for Tropical Medicine, Churchill Hospital, Oxford, United Kingdom

Abstract

Background: Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarials is less clear.

Methodology: The adherence properties of *P. vivax* infected red blood cells (PVIRBC) were evaluated under static and flow conditions.

Principal Findings: *P. vivax* isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for *P. falciparum* vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of *P. falciparum* in the placenta. PVIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PVIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PVIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PVIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PVIRBC could then resist detachment by stresses up to 5 Pa. At 37°C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39°C adherence began earlier and peaked at 24 hours.

Significance: Adherence of *P. vivax*-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation.

Citation: Chotivanich K, Udomsangpetch R, Suwanarusk R, Pukrittayakamee S, Wilairatana P, et al. (2012) Plasmodium vivax Adherence to Placental Glycosaminoglycans. PLoS ONE 7(4): e34509. doi:10.1371/journal.pone.0034509

Copyright: © 2012 Chotivanich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Chotivanich K, Udomsangpetch R, Suwanarusk R, Pukrittayakamee S, Wilairatana P, et al. (2012) Plasmodium vivax Adherence to Placental Glycosaminoglycans. PLoS ONE 7(4): e34509. doi:10.1371/journal.pone.0034509

Editor: Lars Hviid, University of Copenhagen, Denmark

Received February 27, 2012; Accepted March 6, 2012; Published April 17, 2012

Introduction

Vital organ dysfunction and death from *P. falciparum* malaria results from microvascular obstruction caused by the sequestration of red cells containing mature forms of the parasite. *P. falciparum* infections in pregnancy are associated with a consistent reduction in birth weight, particularly in primigravidae. This is a major risk factor for neonatal death. Intrauterine growth retardation is associated with the accumulation of *P. falciparum* infected red cells in the placenta. This accumulation results from the adherence of a specific and relatively conserved red cell surface expressed domain of the antigenically variant membrane protein (PfEMP1) to the placental glycosaminoglycan chondroitin sulphate A, and to secondary receptors such as hyaluronic acid and immunoglobulins [1–5]. Plasmodium vivax is generally regarded as a more benign parasite than *P. falciparum*, and is associated with a lower mortality, although severe forms may occur occasionally [6]. *P. vivax* accounts for approximately half of all malaria outside Africa [7]. Like *P. falciparum*, *P. vivax* has also exerted a considerable selective pressure on human evolution although pathological processes are less well understood. *Plasmodium vivax* causes rosetting (adherence to uninfected erythrocytes) [8] but until recently it has not been considered to cytoadhere [9]. *P. vivax* infections in pregnancy also cause abortions [10] and reduce birthweight which increases the risk of neonatal death, although the mechanism underlying early fetal loss or the intrauterine growth retardation is unclear [11]. We have investigated the adherence of *P. vivax* (N = 33) to the placental glycosaminoglycans chondroitin sulphate A (CSA) and hyaluronic acid (HA), the putative receptors for *P. falciparum* placental adherence [10,11].
Materials and Methods

Ethics statement
This study was a part of clinical studies which have been approved by the Ethics Committee, Faculty of Tropical Medicine, Mahidol University. All participants gave fully informed consent to providing a 5 mL blood sample. Written informed consent was provided by study participants.

Parasites
Synchronous fresh isolates (>90% ring stage) of Plasmodium vivax were obtained from non-pregnant adult patients with acute vivax malaria admitted to the Hospital for Tropical diseases, Bangkok and entered into clinical studies. Malaria parasite species were confirmed by PCR [12]. All blood samples were recorded using a code identifier, and the subsequent experiments were conducted and the results were interpreted blinded to the patient data. Blood samples were taken into heparinized tubes and cultured as described previously [13]. Briefly, blood samples were centrifuged at 500 g at 4°C then plasma was discarded. White blood cells were removed by a CF-11 column or Plasmodipur® filter. After 24 hours of cultivation, trophozoite-infected red cells were used for further experiments. The parasite density of clinical isolates with less than 0.5% parasitaemia was augmented by concentration using a 66% Percoll® gradient [14] or a magnetic separation column [15]. The synchronous trophozoite-IRBCs were enriched to 80–90% parasitaemia and the concentrate then adjusted to 1% parasitaemia at 1% haemocrit in PV-MCM media for the static adherence assay [16,17], and to 2% Haematocrit in 1% albumax for the laminar shear flow adherence assay. Highly synchronized ring stage parasites (>0.5% parasitaemia) were used for assessing the relationship between adherence and stage of parasite development. The P. falciparum A4 clone, selected for adhesion to CSA (kindly provided by Dr David Roberts) was used as the control. Rosette formation (the adherence of two or more uninfected red cells to the infected cells) was counted for 100 IRBCs as described previously [18].

Static adherence assay
Adherence of parasitized erythrocytes to umbilical vein endothelial cells was assessed as described previously [19]. The reagents evaluated as potential receptors in the adherence assay were: purified GD36 and ICAM-1 (kindly provided by Arnab Pain), Thrombospontin (TSP; provided by Rachance Udomsang-patch), CSA (from bovine trachea Sigma® cat no C8529, or CSA covalently linked to phosphatidylethanolamine, kindly provided by Stephen Rogerson), CSC (chondroitin sulphate C), de-6-O-sulphated CSA [20], dextran sulphate with molecular weight of 500 kD (Sigma), and HA (from bovine vitreous humor, Sigma® cat no H7630). Assessment of adherence to these receptors was performed as described previously [20]. Briefly, receptors (at 100 ug/mL) were coated on plastic Petri dishes for 24 hours at 4°C, and then blocked by 1% bovine serum albumin in phosphate buffer saline (PBS) before being used. The IRBC suspension was incubated with the immobilized receptor spots for 30 minutes, at 37°C. After that, unbound red cells were removed by gently washing with RPMI-HEPES. The adherent cells were fixed with glutaraldehyde, and stained with Giemsa. The number of IRBCs bound was counted per 100 high power fields or 1 mm².

Factors reducing P. vivax-infected red cell adherence
Soluble CSA (50 ug/mL) and HA (50 ug/mL) were incubated with the IRBC suspensions for 15 minutes at 37°C and the red cells then resuspended before testing adherence. In order to characterize further the adherence properties of P.vIRBC, the effects of heparin (Leo 1–1000 units/mL) and EGTA (0.01–1 mM) on adherence were assessed by coincubation for 2 hours at 37°C before the adherence assays were performed. In separate experiments, parasite cultures were coincubated with trypsin (1 to 1000 ug/mL; Sigma) for 15 minutes at 37°C, then washed and resuspended in PV-MCM culture medium containing 10% human serum and tested in the adherence assay as described above. P.vivax adherence to HA and CSA was evaluated further by incubating the Petri dishes with chondroitin ABC (3 units/mL) and testicular hyaluronidase (10 unit/mL) or without enzyme (control) at 37°C for 45 minutes. The number of bound IRBCs was counted per 100 high power fields or 1 mm². The median and ranges of adherence cell numbers were calculated.

Stage of P. vivax development and adherence to CSA and HA

The relationship between P. vivax IRBC adherence and stage of parasite development was investigated in ten isolates during the 48 hour asexual blood stage cycle in vitro. Parasite ring stages (6 hour old) were cultured as described previously [13], in 5% CO2 at 37°C and 39°C in parallel. Thin blood films were prepared every 6 hours up to 42 hours of parasite development and stained with Field’s stain. In the static adherence assay the number of CSA and HA adherent IRBCs per 1000 red cells was counted every six hours and parasite developmental stage evaluated in 100 infected cells using staging criteria described previously [13].

P. vivax IRBC adherence to fresh placental sections

The Stamper-Woodruff adherence assay [21] was performed with some modification for the assessment of placental adhesion. Freshly frozen normal placenta sections (10 μm thick) were placed on glass slides and fixed with 3% glutaraldehyde in PBS for 30 minutes, then washed with RPMI-1640, kept wet and then placed on a tray. The concentrated P.v vivax infected red cell (P.v IRBC) suspension at 80% parasitaemia and 1% haematocrit was overlaid on the slides and incubated for 30 minutes at 37°C in 5%CO2. After incubation, non-adherent cells were removed by rinsing with RPMI-1640. The remaining adherent cells were fixed with 3% glutaraldehyde in PBS and stained with Giemsa. Placenta-adherent P.v IRBCs binding in the intervillous space and along the syncytiotrophoblast layer were counted under light microscopy from 50 high power fields. Uninfected red cell suspensions (1% haematocrit) overlaid on the placenta sections served as controls in each assay. The specific adhesion of the infected red cells on placenta was further investigated by coincubating IRBC suspensions with soluble CSA (50 ug/mL) and HA (50 ug/mL) for 15 minutes at 37°C before testing adherence.

P.v IRBC adherence under laminar flow conditions

The strength of P.vivax infected red cell adhesion was assessed under laminar flow conditions. An infusion/withdrawal pump (Harvard II apparatus®) infused the cell suspension through microslides (placed on the stage of the inverted microscope) at defined flow rates and hence, defined wall shear stresses (calculated from the dimensions of the microslides and the flow rate, the temperature and the viscosity of the suspension) as described previously [22]. The microslides were coated with 5 mg/mL poly-L-lysine for 30 minutes, then coated overnight with CSA [22,23]. The coated slides were blocked with 1% bovine serum albumin in PBS before performing the adherence assays. PBS was used as the control. Red cell suspensions (1% albumax® in RPMI-1640) containing 2×10⁶ red cells/mL and P.vivax trophozoites...
the cells were detached. Stresses (0.01 to 8 Pa.). The already adherent cells (10 infected cells per mm²) were used as positive controls. P. vivax parasitised infected erythrocytes bound to immobilized CSA and HA were pretreated with chondroitinase ABC (0.5 and 1 unit/mL) or hyaluronidase (5 and 10 units/mL) (n = 21). Chondroitinase ABC at 0.5 unit/mL almost abolished P. vivax IRBC adherence to CSA (median 98%; range 91–100%; p < 0.01) and reduced binding to HA (median 50%; range 15–77%; p < 0.01). Hyaluronidase completely inhibited P. vivax IRBC binding to HA, not to CSA (p < 0.01; Fig. 3A, B). Adherence to CSA (n = 7) was also inhibited by pre-incubation with soluble CSA (50 ug/mL); median 75% (range 52–95%); p < 0.01, and adherence to HA (n = 7) was inhibited by soluble HA (10 ug/mL); median 71% (range 61–90%) (p < 0.01; Fig. 3C, D).

Specificity of P. vivax IRBC adherence

In order to determine the specificity of adherence both CSA and HA were pretreated with chondroitinase ABC (0.5 and 1 unit/mL) or hyaluronidase (5 and 10 units/mL) (n = 21). Chondroitinase ABC at 0.5 unit/mL almost abolished P. vivax IRBC adherence to CSA (median 98%; range 91–100%; p < 0.01) and reduced binding to HA (median 50%; range 15–77%; p < 0.01). Hyaluronidase completely inhibited P. vivax IRBC binding to HA, not to CSA (p < 0.01; Fig. 3A, B). Adherence to CSA (n = 7) was also inhibited by pre-incubation with soluble CSA (50 ug/mL); median 75% (range 52–95%); p < 0.01, and adherence to HA (n = 7) was inhibited by soluble HA (10 ug/mL); median 71% (range 61–90%) (p < 0.01; Fig. 3C, D).

Effects of trypsin, heparin and EGTA

Proteolysis of P. vivax IRBC surface proteins by high concentrations of trypsin (>10 ug/mL) completely inhibited adherence. Lower concentrations (1–10 ug/mL) decreased P. vivax IRBC binding to CSA (n = 32) and HA (n = 20) by more than 50% (ranges 30–99% and 38–90%, respectively) (p < 0.01; Fig. 4A, B). Heparin inhibited P. vivax IRBC adherence to CSA and HA; 50% inhibition of adherence to CSA and HA was obtained with 1 unit/mL of heparin (n = 32); range of inhibition 41 to 65%) and >10 unit/mL completely inhibited adherence (p < 0.01; Fig. 4C). P. vivax isolates did not bind to heparin coated plates. High concentrations (1 mM) of the calcium chelator EGTA inhibited P. vivax IRBC adherence to CSA; median 60% range 57–63% (n = 32), and to HA; median 70% range 65–75% (n = 20) (p < 0.01; Fig. 4D), but lower concentrations (0.01–0.1 mM) had no significant effects.

Effects of parasite incubation temperature on adhesion properties

At an incubation temperature of 37°C adherence to CSA and HA began when the P. vivax parasites reached the large ring stage of development (approximately 12–16 hours after invasion). Adherence reached mean (SD) maximum values at 30 hours (n = 10); CSA 36 (10) and HA 41 (8) P. vivax IRBCs bound per mm² respectively. At 39°C adherence began earlier and reached peak values at 24 hours; CSA 45 (2) and HA 46 (3) per mm² respectively (Fig. 5A, B).

P. vivax IRBC adherence under laminar flow conditions

In the in vitro laminar flow assay P. vivax IRBC adherence to CSA occurred only at low shear stresses (6 parasite isolates; 40 P. vivax IRBC each assessed). Maximum values were obtained at 0.01 Pa (Fig. 6). There was less adherence at 0.1 Pa and none when shear stresses increased to 0.2 Pa. The mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa. However once they had adhered the P. vivax IRBCs were more resistant to mechanical detachment; most (34 out of 40) were detached after exposure to 1 Pa shear stresses (for 5 minutes), but 6 out of 40 P. vivax IRBCs resisted detachment by shear stresses of up to 5 Pa, for 5 minutes. Pre-incubation of P. vivax IRBCs with soluble CSA before perfusion (n = 3) totally inhibited parasite binding (p < 0.01).

Figure 1. Numbers of P. vivax infected erythrocytes bound to immobilised potential cytoadherence receptors. HA; hyaluronic acid, CSA: chondroitin sulphate A, TSP: thrombospondin. Numbers are mean values and error bars are standard deviations.
doi:10.1371/journal.pone.0034509.g001
Discussion

Plasmodium vivax is generally considered to produce debilitating but non-fatal relapsing infections. Recent case series suggest this relatively benign reputation may need some revision [6]. Low birth weight, malnutrition, developmental retardation, severe anaemia, acute pulmonary oedema and encephalopathy are all well documented with vivax malaria [6,24–26]. *P. vivax* has not previously been considered to sequester in the microcirculation through cytoadherence of infected erythrocytes, although recent physiological studies of pulmonary gas transfer in vivax malaria might be explained by pulmonary sequestration [27]. Consequently severe manifestations have been generally ascribed to other pathological processes, such as high systemic concentrations of pro-inflammatory cytokines. This study conducted in Thailand confirms that *Plasmodium vivax* infected erythrocytes do not cytoadhere to the principal vascular endothelial ligands responsible for *P. falciparum* sequestration in the microvasculature, or to

![Figure 2. *P. vivax* infected red blood cells (arrows) adherent to the surface of fresh placenta.](https://doi.org/10.1371/journal.pone.0034509.g002)

![Figure 3. Specific adhesion of *P. vivax* infected red blood cells (*P. v* IRBC) to immobilised potential receptors and the effects of enzyme pretreatment and preincubation with soluble receptors. (A) Chondroitin sulphate A (CSA) was pretreated with chondroitinase ABC (0.5, 1 unit/mL). (B) Hyaluronic acid (HA) was pretreated with hyaluronidase (5, 10 units/mL). (C) *P. v* IRBCs were pre-incubated with soluble CSA (50 ug/mL). (D) *P. v* IRBCs were pre-incubated with soluble HA (50 ug/mL). Data are presented as medians with 95% confidence intervals.](https://doi.org/10.1371/journal.pone.0034509.g003)
umbilical vein endothelial cells, but they do cytoadhere to both CSA and HA, the placental syncytiotrophoblast glycosaminoglycans responsible for \textit{P. falciparum} sequestration in the placenta [1–5, 28–30]. Similar findings have recently been reported from South America [9]. \textit{P. vivax} IRBC also adhered to fresh placental cells, although binding was not intense. Malaria reduces birthweight and this reduces infant survival [11, 31]. In \textit{P. falciparum} infections this is associated with placental sequestration [1, 2]. The data presented here suggest that the adverse effects of vivax malaria on intrauterine development may have a similar pathogenesis, and raise the possibility that pathology in other organs (such as lung capillaries and venules in patients who develop pulmonary

Figure 4. Effects of trypsin pre-incubation, heparin and EGTA on the adhesion of \textit{P. vivax} infected red blood cells to immobilised CSA and HA. (A) Effects of pre-incubation with trypsin on adhesion to CSA. (B) Effects of pre-incubation with trypsin on adhesion to HA. (C) Effects of heparin on binding to immobilized CSA and HA. Black bars: CSA, Grey bars: HA. (D) Effects of EGTA on binding to immobilized CSA and HA. Black bars: CSA, Grey bars: HA. Data are presented as medians with 95% confidence intervals.

doi:10.1371/journal.pone.0034509.g004

Figure 5. The effects of temperature on the development of \textit{Plasmodium vivax} adherence properties. (A) Asexual development in synchronous \textit{in-vitro} culture at 37°C, the peak of adhesion appears at approximately 30 hours of intraerythrocytic development. (B) At 39°C, peak adhesion appears at approximately 24 hours of intraerythrocytic development.

doi:10.1371/journal.pone.0034509.g005
of the first third of the asexual cycle, at the large ring to trophozoite stage, and this was accelerated by incubation at a “febrile” temperature (39°C) [33]. Cytoadherence did not occur at high shear stresses, but once the IRBCs had adhered to CSA or HA they were relatively resistant to increases in shear stresses up to 5 Pa.

Plasmodium vivax reduces birthweight but the causative mechanisms have been unclear. P. vivax forms rosettes more than P. falciparum, and this might also contribute to pathological processes in the placenta. There is very limited information on placental pathology in acute vivax malaria so the extent of sequestration in-vivo is not known [34,35]. Adhesion of Plasmodium vivax infected red cells occurred at the low shear stresses (0.01–0.06 Pa) similar to those encountered in the intervillous spaces of the placenta. Higher stresses prevail in the systemic circulation. Given the physical characteristics of the placental circulation with its large vascular spaces, mechanical obstruction seems unlikely to account for placental dysfunction. Inflammatory processes with secondary interference with nutrient transfer may be more likely. Whichever the mechanism the evidence from P. falciparum infections that glycosaminoglycans are an important contributor to placental cytoadherence, and that antibodies which block this adherence are associated with protection against the adverse effect of birth weight, strongly suggests a pathological role [36]. The Duffy binding ligand of P. falciparum PIEMPI mediates cytoadherence to CSA is being developed as a possible vaccine against pregnancy malaria. A similar strategy might prevent the adverse effects of vivax malaria in pregnancy.

Acknowledgments

CD36 was kindly given by Dr. A. Pain and ICAM-1 and A4 clone were provided by Prof. D.J. Roberts. CSA-PE was provided by S. Rogerson. We thank Dr Arjen Dondorp for his valuable suggestion and the nurses and staff of the Hospital for Tropical Diseases.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.

Author Contributions

Parasite culture: KC. Adhesion assessments: KC. Placenta section collection: RU. Laminar flow assay: RS. Parasite collection: SP PW. Technical support: JGB. Project design: NJW. Conceived and designed the experiments: KC RU JGB NJW. Performed the experiments: KC RS. Collected data: RU. Parasite culture: KC. Adhesion assessment: KC. Placenta section collection: RS. Laminar flow assay: PJW.
17. Beeson JG, Rogerson SJ, Brown GV (2002) Evaluating specific adhesion of Plasmodium falciparum-infected erythrocytes to immobilised hyaluronic acid with comparison to binding of mammalian cells. Int J Parasitol 32: 1245–1252.

18. Chotivanich KT, Pakrittayakamee S, Simpson JA, White NJ, Udonsangetch R (1998) Characteristics of Plasmodium vivax-infected erythrocyte rosettes. Am J Trop Med Hyg 59: 73–76.

19. Udonsangetch R, Webster HK, Pattanapanyasat K, Pitchayangkul S, Thaithong S (1992) Cytoadherence characteristics of rosette-forming Plasmodium falciparum. Infect Immun 60: 4483–90.

20. Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, et al. (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6: 86–90.

21. Stamper HB Jr., Woodruff JJ (1977) An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high-endothelial venules of lymph nodes. J Immunol 119: 772–780.

22. Udonsangetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, et al. (1997) Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. J Immunol 158: 4358–4364.

23. Suwanaruk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, et al. (2004) The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis 189: 169–179.

24. Williams TN, Maitland K, Phelps L, Bennett S, Peto TE, et al. (1997) Plasmodium vivax: a cause of malnutrition in young children. QJM. 90: 751–757.

25. Fernando SD, Gunawardena DM, Bandara MR, De Silva D, Carter R, et al. (2003) The impact of repeated malaria attacks on the school performance of children. Am J Trop Med Hyg 69: 582–588.

26. Tjitra E, Anstey NM, Sugianto P, Waritar N, Kernangalem E, et al. (2008) Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.

27. Anstey NM, Handjojo T, Pain MC, Kernangalem E, Tjitra E, et al. (2007) Lung injury in vivax malaria: pathophysiological evidence for pulmonary vascular sequestration and posttreatment alveolar-capillary inflammation. J Infect Dis 195: 589–596.

28. Fried M, Domingo GJ, Gowda CD, Mutabingwa TK, Duffy PE (2006) Plasmodium falciparum: chondroitin sulphate A is the major receptor for adhesion of parasitized erythrocytes in the placenta. Exp Parasitol 113: 36–42.

29. Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, et al. (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6: 86–90.

30. Beeson JG, Brown GV (2004) Plasmodium falciparum-infected erythrocytes demonstrate dual specificity for adhesion to hyaluronic acid and chondroitin sulphate A and have distinct adhesive properties. J Infect Dis 189: 169–179.

31. Luxemburger C, McGready R, Kham A, Morison L, Cho T, et al. (2001) Effects of malaria during pregnancy on infant mortality in an area of low malaria transmission. Am J Epidemiol 154: 459–465.

32. Gardner JP, Pinches RA, Roberts DJ, Newbold CI (1996) Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc Natl Acad Sci USA 93: 3503–3508.

33. Udonsangetch R, Pipitaporn B, Silamut K, Pinches R, Kyes S, et al. (2002) Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 99: 11825–11829.

34. McGready R, Davison BB, Stephanswa K, Cho T, Shoe H, et al. (2004) The effects of Plasmodium falciparum and P. vivax infections on placental histopathology in an area of low malaria transmission. Am J Trop Med Hyg 70: 398–407.

35. Poespoprodjo JR, Fobia W, Kernangalem E, Lampah DA, Warikar N, et al. (2008) Adverse pregnancy outcomes in an area where multidrug-resistant plasmodium vivax and Plasmodium falciparum infections are endemic. Clin Infect Dis 46: 1374–1381.

36. Fried M, Nosten F, Broekman A, Brabin BJ, Duffy PE (1998) Maternal antibodies block malaria. Nature 395: 851–852.
Author/s:
Chotivanich, K; Udomsangpetch, R; Suwanarusk, R; Pukrittayakamee, S; Wilairatana, P; Beeson, JG; Day, NPJ; White, NJ

Title:
Plasmodium vivax Adherence to Placental Glycosaminoglycans

Date:
2012-04-17

Citation:
Chotivanich, K., Udomsangpetch, R., Suwanarusk, R., Pukrittayakamee, S., Wilairatana, P., Beeson, J. G., Day, N. P. J. & White, N. J. (2012). Plasmodium vivax Adherence to Placental Glycosaminoglycans. PLOS ONE, 7 (4), https://doi.org/10.1371/journal.pone.0034509.

Persistent Link:
http://hdl.handle.net/11343/263003

File Description:
Published version

License:
CC BY