Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: Our case series and literature review

Yoshitaka Takuma, Kazuhiro Nouso

Abstract

Recently, nonalcoholic steatohepatitis (NASH) has been considered to be another cause of liver cirrhosis and hepatocellular carcinoma (HCC). The natural history and prognosis of NASH are controversial. Accordingly, we assessed the clinicopathological features of NASH-associated HCC in our experience and reviewed the literature of NASH-associated HCC. We experienced 11 patients with NASH-associated HCC (6 male, 5 female; mean age 73.8 ± 4.9 years) who received curative treatments. Most (91%) patients had been diagnosed with obesity, diabetes, hypertension, or dyslipidemia. Seven patients (64%) also had a non-cirrhotic liver. The recurrence-free survival rates at 1, 3, and 5 years were 72%, 60%, and 60%. We also summarized and reviewed 94 cases of NASH-associated HCC which were reported in the literature (64 male; mean age 66 years). The majority of patients (68%) were obese, 66% of patients had diabetes, and 24% had dyslipidemia. Furthermore, 26% of the HCCs arose from the non-cirrhotic liver. In conclusion, patients with non-cirrhotic NASH may be a high-risk group for HCC, and regular surveillance for HCC is necessary in non-cirrhotic NASH patients as well as cirrhotic patients.

Key words: Nonalcoholic steatohepatitis; Hepatocellular carcinoma; Nonalcoholic fatty liver disease; Cryptogenic cirrhosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is a common malignancy in Asia and South Africa. HCC usually develops in patients with hepatitis B, hepatitis C, and alcoholic liver disease. Recently, nonalcoholic steatohepatitis (NASH) has been considered to be another cause of liver cirrhosis and HCC. Powell et al. reported the first case of NASH-associated HCC. Since then, several case series of NASH-associated HCC have been reported. The prevalence of nonalcoholic fatty liver disease (NAFLD) is 10%-30% in adults and its prevalence is increasing in Japan as well as Western countries because of the epidemic rise in obesity and diabetes mellitus (DM). NASH is part of the spectrum of NAFLD, and 20% of NASH cases are thought to slowly progress to cirrhosis. According to a previous study, NASH can progress to cirrhosis and result in complications including HCC.
Almost all patients with cryptogenic cirrhosis (CC) had clinical features consistent with NASH, but a diagnosis of NASH could not be confirmed by histology (likely “burnt out NASH”).[8] The natural history and prognosis of NASH is controversial, because there are few reports on prospective cohort studies of NASH. Accordingly, it is necessary to clarify an etiology and a prognosis of NASH-associated HCC. Thus, we retrospectively assessed the clinicopathological features of NASH-associated HCC in our experience and reviewed the literature on NASH-associated HCC.

NASH-ASSOCIATED HCC IN OUR EXPERIENCE

We reviewed 797 consecutive patients treated for primary HCC at National Hospital Organization Iwakuni Clinical Center from January 1996 and September 2008. Of these, 445 with HCC initially underwent curative treatment. Curative treatment was defined as complete tumor eradication, with no residual tumor visible by computed tomography (CT), or resection of all evident tumor tissue, and no tumors detected in the remnant liver on CT scan performed 3 to 4 wk after curative treatment. Curative treatment included surgery, percutaneous radiofrequency ablation (RFA), microwave coagulation therapy (MCT), and percutaneous ethanol injection (PEI). Within this group, 11 patients were considered to have NASH based on the histology of the non-cancerous parts of the surgical specimens or biopsy specimens.

NASH was diagnosed using the following criteria[3]: (1) histological features of steatohepatitis; (2) intake of less than 20 g ethanol per day; (3) absence of other liver diseases such as autoimmune hepatitis, drug-induced liver disease, primary biliary cirrhosis, primary sclerosing cholangitis, and metabolic liver disease such as Wilson’s disease and hemochromatosis; and (4) negative for hepatitis B surface antigen and antibody to hepatitis C virus (HCV) and/or negative for HCV RNA on polymerase chain reaction analysis.

The body mass index (BMI) was calculated as body weight in kilograms divided by the square of the height in meters (kg/m²). The definition of DM was fasting plasma glucose level ≥ 126 mg/dL on at least two occasions, plasma glucose level of ≥ 200 mg/dL at 2 h in a 75 g oral glucose tolerance test, or the need for insulin or an oral antihyperglycemic drug to control glucose levels. The oral glucose tolerance test was undertaken by patients who had no medical history of DM.

Dyslipidemia was defined as blood total cholesterol concentration > 220 mg/dL or triglyceride > 150 mg/dL, or a history of taking oral drugs for dyslipidemia.

The histological status of underlying liver disease was based upon microscopic examination of the non-cancerous part of the surgical specimen or biopsy specimen with hematoxylin-eosin and Azan staining. All liver tissue specimens were evaluated by two senior pathologists who were unaware of the laboratory data and the clinical course. Steatohepatitis was pathologically graded on quantified steatosis, ballooning degeneration, and lobular inflammation to produce an NAFLD activity score (NAS). When this score is ≥ 5 it is diagnostic for NASH. The extent of fibrosis, established by Desmet et al, is as follows: F0 (no fibrosis), F1 (mild fibrosis), F2 (moderate fibrosis), and F3 (severe fibrosis) were all categorized non-cirrhosis. F4 was categorized as cirrhosis.

A summary of our 11 cases with NASH-associated HCC is shown in Table 1. The mean age of patients with HCC was 73.8 ± 4.9 years. Of the 11 patients, 6 patients (55%) were male, and 5 (45%) were female. The mean BMI was 24.8 kg/m². Six patients (55%) were obese (BMI ≥ 25 kg/m²), 6 (55%) had DM, 3 (27%) had dyslipidemia, and 6 (55%) had hypertension. Ten patients (91%) had obesity or at least 1 comorbid illness. The prevalence of positivity of HBV core (HBc) antibodies in our cases was 27% (3 of 11 patients). Ten patients (91%) had Child-Pugh classification A and 1 (9%) was Child-Pugh classification B, and all patients received curative treatments as outlined below. Seven patients (64%) received surgery, 3 patients (27%) received RFA, and 1 patient (9%) received MCT. Four patients (36%) had concomitant liver cirrhosis (F4), and 7 patients (64%) had a non-cirrhotic liver (F1-3). Concerning the characteristics of HCC, 8 patients (73%) had a single nodule, 3 patients (27%) had multinodular lesions, and the mean size of the largest lesion was 3.3 ± 1.3 cm (range 1.7-5.0 cm).

Patients were followed for 41.3 ± 40.0 mo (range, 9.4-151.7 mo), and no patients dropped out. Local tumor progression was not found. The recurrence-free survival rates at 1, 3, and 5 years calculated by Kaplan-Meier method were 72%, 60%, and 60% (Figure 1). All of tumor recurrences were observed within the first 2 years, and no recurrence was observed after 2 years. During the follow-up, 3 patients (27%) died as a result of HCC (2 patients) and hepatic failure (1 patient).

EPIDEMIOLOGIC TRENDS OF NASH AND NASH-ASSOCIATED HCC

HCC is the third leading cause of cancer death in world-
size ranged from 1.4-13 cm (mean, 3.5 cm). Furthermore, 69% of HCCs were multinodular, maximum tumor size ranged from 35 to 89 years (mean, 66 years). The majority of four patients were male (64%), and the age at diagnosis was CC (29%)

In the majority of CC cases it is thought to be end-stage NASH because some clinical features such as obesity and diabetes in CC patients are linked to NASH. However, histology often is no longer informative when cirrhosis is advanced fibrosis were independent predictors of developing HCC in NASH.

NATURAL HISTORY AND prognostic factors

The natural history and prognostics of NASH is controversial because there are few reports on prospective cohort studies of NASH. Yatsuji et al reported that the 5-year HCC rate was 11.3% for NASH-cirrhosis and 30.5% for HCV-cirrhosis in Japanese patients. On the other hand, Hui et al reported that HCC occurred in 8 (17%) of 46 patients with HCV-cirrhosis compared with none of 23 patients with NASH-cirrhosis after 5 years follow-up in Australia.

A prospective cohort study of NASH patients in Japan showed that the 5-year cumulative incidence of HCC was 7.6%, and the 5-year survival rate was 82.8%. Concerning outcome, 26% of cases arose from a non-cirrhotic liver. In a case-controlled study of 34 Japanese NASH-associated HCC patients, those patients were predominantly male, had a median age of 70 years and 88% had advanced fibrosis. Older age, low level of AST, low grade of activity, and advanced fibrosis were independent predictors of developing HCC in NASH.

CLINICOPATHOLOGICAL FEATURES

Articles were searched in Medline and Pubmed. The search terms used were NASH, nonalcoholic steatohepatitis, fatty liver, HCC, hepatocellular carcinoma, hepatoma, and liver neoplasms. We summarized and reviewed several studies and numerous case reports which explored NASH-associated HCC. At least 94 cases of NASH-associated HCC were reported (Table 2). Sixty-four patients were male (64%), and the age at diagnosis ranged from 35 to 89 years (mean, 66 years). The majority of patients (68%) were obese, 66% of patients had DM, and 24% had dyslipidemia. Concerning tumor characteristics, 69% of HCCs were multinodular, maximum tumor size ranged from 1.4-13 cm (mean, 3.5 cm). Furthermore, 26% of cases arose from a non-cirrhotic liver. In a case-controlled study of 34 Japanese NASH-associated HCC patients, those patients were predominantly male, had a median age of 70 years and 88% had advanced fibrosis. Older age, low level of AST, low grade of activity, and advanced fibrosis were independent predictors of developing HCC in NASH.

Table 1 Characteristics of 11 NASH patients with HCC undergoing curative treatment

Case	1	2	3	4	5	6	7	8	9	10	11
Sex (M/F)	M	F	F	M	M	M	F	F	F	F	M
Age (yr)	73	73	83	75	67	68	77	79	73	76	68
BMI	25.0	23.6	21.0	22.3	25.3	24.2	28.1	25.3	23.4	28.8	26.2
Diabetes mellitus (yes/no)	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No	Yes
Dyslipidemia (yes/no)	No	Yes	No	Yes	No	No	No	No	No	No	Yes
Hypertension (yes/no)	No	Yes	No	Yes	Yes	No	Yes	Yes	No	No	Yes
Total bilirubin (mg/dL)	1.6	0.6	0.6	0.7	1.4	0.8	0.8	1.2	0.6	1.3	0.9
Albumin (g/dL)	3.9	4.4	3.2	3.8	4.4	4.3	3.5	4.1	4.4	3.8	4.9
ALT (IU/L)	73	41	22	24	73	18	19	29	41	40	57
γ-GTP (IU/L)	110	45	36	22	57	33	26	111	124	41	177
Prothrombin time (%)	78.1	95.8	96.3	106.6	90.9	113.4	75.4	77.2	94.0	68.4	86.0
Platelets (× 10^9/L)	10.1	15.0	15.1	27.8	14.3	27.2	9.3	13.9	13.0	5.5	13.4
Child-Pugh classification (A/B)	A	A	A	A	A	B	A	A	A	A	A
AFP (ng/mL)	8.7	4.6	40.6	918.1	1.7	1.8	1957.0	7.9	13.0	8.8	16.2
DCP (mAU/mL)	31	10	2066	1765	64	10	718	19	571	106	2930
Anti-HBc (+/-)	+	-	-	-	-	-	-	-	-	-	-
Treatment (RFA/MCT/Ope)	RFA	RFA	Ope	Ope	Ope	Ope	Ope	Ope	RFA	MCT	Ope
No. of nodules (1/2/3)	3	1	1	1	1	1	1	1	3	2	1
Size of largest tumor (cm)	1.8	1.7	5.0	5.0	3.6	4.5	3.2	2.0	2.5	3.0	4.4
Stage of fibrosis (F1/F2/F3/F4)	F4	F1	F4	F4	F1	F4	F1	F4	F4	F1	F3

NASH: Nonalcoholic steatohepatitis; HCC: Hepatocellular carcinoma; M: Male; F: Female; BMI: Body mass index; ALT: Alanine aminotransferase; γ-GTP: γ-glutamyltransferase; AFP: α-fetoprotein; DCP: Des-γ-carboxy prothrombin; Anti-HBc: HBc antibody; RFA: Radio-frequency ablation; MCT: Microwave coagulation therapy; Ope: Operation.
HCC patients with NASH-cirrhosis and without NASH-cirrhosis (HCV, HBV, alcoholic, CC, and otherwise). They concluded that patients with NASH and HCC have a good outcome after liver transplantation.

Giannini et al. reported that patients with CC had a significantly greater prevalence of advanced HCC stage, lower amenability to any treatment, and shorter survival times compared with HCV patients, because HCC in CC patients is often diagnosed at an advanced stage owing to lack of surveillance.

MECHANISMS OF NASH-INDUCED HEPATOCARCINOCENESIS

Although the mechanism of carcinogenesis in patients with NASH remains uncertain, insulin resistance and oxidative stress may be involved in carcinogenesis of NASH.

NASH is characterized by insulin resistance with hyperinsulinaemia, and the resistance is thought to be involved in hepatocarcinogenesis. Insulin-like growth factor 1 (IGF-1) significantly activated mitogen-activated protein kinase (MAPK), and increased overexpression of the c-fos and c-jun proto-oncogenes in cultured hepatoma cells.

Adiponectin and leptin are associated with insulin resistance. Severe liver steatosis and fibrosis were observed in adiponectin knockout (KO) mice as compared with wild type (WT) mice. Furthermore, liver adenoma and hyperplastic nodules developed in an adiponectin KO mouse, whereas no tumor was detected in WT mice. In animal models, leptin-mediated neovascularization, which coordinated with VEGF, produced liver fibrosis and hepatocarcinogenesis in NASH.

NASH-associated insulin resistance causes inhibition of hepatic mitochondrial fatty acid oxidation and increased intracellular fatty acids may lead to oxidative DNA damage by stimulating microsomal peroxidases.

Oxidative stress may also promote carcinogenesis. Trans-4-hydroxy-2-nonenal, a major electrophilic by-product of lipid peroxidation caused by oxidative stress may be an important etiological agent for HCC. The mutation at codon 249 of the p53 gene.

Reactive oxygen species (ROS) can activate fibrosis. Furthermore, the major products of lipid peroxidation, malondialdehyde, stimulates DNA mutations. There, inflammation is a risk factor for various carcinomas. Oxidative stress has inactivated the expression of Nrf1 gene that regulates gene transcription encoding enzymatic antioxidants. Recently, in an animal model, oxidative stress inactivation of the Nrf1 gene in the liver has been reported to spontaneously produce HCC when oxidative injury was present before tumor formation.

Ishii et al. reported that in animal models, eicosapentaenoic acid (EPA) ameliorated steatohepatitis with decreasing serum ROS, which consequently inhibited development of HCC. Medical treatment with EPA may minimize the risk of HCC development in patients with NASH.

CONCLUSION

Most (91%) patients with NASH-associated HCC in our experience had been diagnosed with obesity, diabetes,
hypothesis, or dyslipidemia. CC patients had these co-

Occult HBV infection might be a possible etiologic agent of HCC, and the prevalence of past/occult HBV infection via positivity of Hbc antibody in our cases was 27%. Negativity of Hbc antibody is not necessarily a required item of diagnosis for NASH, and liver specimens of these Hbc antibody positive patients had no histological features of chronic hepatitis B.

Although almost NASH-associated HCC was accompanied by liver cirrhosis according to previous reports, the majority of our case series were accompanied by non-cirrhotic liver.

Furthermore, recent case reports about HCC arising from non-cirrhotic NASH have been accumulating. One possible explanation for this difference between our cases and other previous reports is that almost all patients with CC had clinical features consistent with NASH, but a diagnosis of NASH could not be confirmed by histology (likely “burnt out NASH”).

All cases of tumor recurrence in our series were observed within the first 2 years, no recurrence was observed after 2 years. These recurrence patterns of HCC suggested that the recurrence of HCC might be based on intrahepatic metastasis rather than multicentric carcinogenesis. NASH-associated HCC patients with non-curate treatments were not observed in our cases, because these patients did not receive liver biopsy or surgery. The existence of selection bias is unavoidable.

In conclusion, patients with non-cirrhotic NASH may be a high-risk group for HCC, and regular surveillance for HCC is necessary for non-cirrhotic NASH patients as well as cirrhotic patients.

REFERENCES

1 Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990; 11: 74-80

2 Hashizume H, Sato K, Takagi H, Hirokawa T, Kojima A, Sohara N, Kakizaki S, Mochida Y, Shimura T, Sunose Y, Ohwada S, Mori M. Primary liver cancers with nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 2007; 19: 827-834

3 Hashimoto E, Yatsui S, Tobari M, Tanai M, Torii N, Tokushige K, Shiratori K. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol 2009; 44 Suppl 19: 89-95

4 Malik SM, Gupie PA, de Vara ME, Ahmad J. Liver transplant-

5 Kojima S, Watanabe N, Numata M, Ogawa T, Matsuok S. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol 2003; 38: 954-961

6 Harrison SA, Torgerson S, Hayashi PH. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol 2003; 98: 2042-2047

7 Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, Musso A, De Paolis P, Capussotti L, Salizzoni M, Rizzetto M. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 2002; 123: 134-140

8 Yoshioha Y, Hashimoto E, Yatsui S, Kaneda H, Tanai M, Tokushige K, Shiratori K. Nonalcoholic steatohepatitis: cirrhosis, hepatocellular carcinoma, and burn-out NASH. J Gastroenterol 2004; 39: 1215-1218

9 Hui JM, Kench JG, Chitturi S, Sud A, Farrell GC, Byth K, Hall P, Khan M, George J. Long-term outcomes of cirrhosis in nonalcoholic steatohepatitis compared with hepatitis C. Hepatology 2003; 38: 420-427

10 Yatsui S, Hashimoto E, Tobari M, Tanai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol 2009; 24: 248-254

11 Nonalcoholic steatohepatitis clinical research network. Hepatology 2003; 37: 244

12 Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 1994; 19: 1513-1520

13 Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008; 14: 4300-4308

14 Marrero JA, Fontana R, Su GL, Conjeevaram HS, Emick DM, Lok AS. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 2002; 36: 1349-1354

15 Ayata G, Gordon FD, Lewis WD, Pomfret E, Pomposelli JJ, Jenkins RL, Khettry U. Cryptogenic cirrhosis: clinico-pathologic findings at and after liver transplantation. Hum Pathol 2002; 33: 1098-1104

16 Marrero JA, Fontana R, Su GL, Conjeevaram HS, Emick DM, Lok AS. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 2002; 36: 1349-1354

17 Zen Y, Katayanagi K, Tsuenyama K, Harada K, Araki I, Nakanuma Y. Hepatocellular carcinoma arising in non-

18 Orikasa H, Ohyama R, Tsuka N, Enden BP, Yamazaki K. Lipid-rich clear-cell hepatocellular carcinoma arising in non-

19 Cotrim HP, Panara R, Braga E, Lyra L. Nonalcoholic steatohepatitis and hepatocellular carcinoma: natural history? Am J Gastroenterol 2000; 95: 3018-3019

20 Bencheqroun R, Duvoix C, Luciani A, Zafra ES, Dheumears D. [Hepatocellular carcinoma without cirrhosis in a patient with nonalcoholic steatohepatitis] Gastroenterol Clin Biol 2004; 28: 497-499

21 Mori S, Yamasaki T, Sakaidai I, Takami T, Sakaguchi E, Kimura T, Kurokawa F, Maeyama S, Okita K. Hepatocellular carcinoma with nonalcoholic steatohepatitis. Pathol Int 2001; 51: 127-131

22 Bullock RE, Zaitoun AM, Aithal GP, Ryder SD, Beckingham JJ, Lobo DN. Association of non-alcoholic steatohepatitis without significant fibrosis with hepatocellular carcinoma. J Hepatol 2004; 40: 391-396

23 Cuadrado A, Orive A, Garcia-Suarez C, Dominguez A, Fernandez-Escalante JC, Crespo J, Pons-Romerio F. Non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. Obes Surg 2005; 15: 442-446

24 Sato K, Ueda Y, Ueno K, Okamoto K, Izuka H, Katsuda S. Hepatocellular carcinoma and nonalcoholic steatohepatitis developing during long-term administration of valproic acid. Virchows Arch 2005; 447: 996-999

25 Ichikawa T, Yanagi K, Motoyoshi Y, Hamasaki K, Nakao K, Torigaya K, Eguchi K. Two cases of non-alcoholic steatohepatitis with development of hepatocellular carcinoma without cirrhosis. J Gastroenterol Hepatol 2006; 21: 1865-1866

26 Ikeda H, Suzuki M, Takahashi H, Kobayashi M, Okuse
Hepatocellular carcinoma with silent and cirrhotic non-alcoholic steatohepatitis, accompanying ectopic liver tissue attached to gallbladder. Pathol Int 2006; 56: 40-45

Tsutsumi K, Nakayama H, Sakai Y, Kojima Y, Dairaku N, Ojima T, Kusano M, Ikeya S, Sugai Y, Hiwatashi N. [Two cases of patients with hepatocellular carcinoma (HCC) that developed in cryptogenic cirrhosis suggestive of nonalcoholic steatohepatitis (NASH) as background liver disease after clinical courses of 26 years] Nippon Shokakibyo Gakkai Zasshi 2007; 104: 690-697

Hai S, Kubo S, Shuto T, Tanaka H, Takemura S, Yamamoto T, Kanazawa A, Ogawa M, Hirohashi K, Wakasa K. Hepatocellular carcinoma arising from nonalcoholic steatohepatitis: report of two cases. Surg Today 2006; 36: 390-394

Maeda T, Hashimoto K, Kihara Y, Ikegami T, Ishida T, Aimitsu S, Fujiwara M. Surgically resected hepatocellular carcinomas in patients with non-alcoholic steatohepatitis. Hepatogastroenterology 2008; 55: 1404-1406

Kawada N, Imanaka K, K Kawaguchi T, Tamai C, Ishihara R, Matsunaga T, Gotoh K, Yamada T, Tomita Y. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J Gastroenterol 2009; 44: 1190-1194

Chagas AL, Kikuchi LO, Oliveira CP, Vezzozo DC, Mello ES, Oliveira AC, Cella LC, Herman P, Bachella T, Caldwell SH, Alves VA, Carrilho FJ. Does hepatocellular carcinoma in non-alcoholic steatohepatitis exist in cirrhotic and non-cirrhotic patients? Braz J Med Biol Res 2009; 42: 958-962

Giannini EG, Marabotto E, Savarino V, Trevisani F, di Nolfo MA, Del Poggio P, Bampi G, Farinati F, Zoli M, Borzio F, Caturelli E, Chiaramonte M. Hepatocellular carcinoma in patients with cryptogenic cirrhosis. Clin Gastroenterol Hepatol 2009; 7: 580-585

Buzzelli G, Dattolo P, Pinzani M, Brocchi A, Romano S, Gentilini P. Circulating growth hormone and insulin-like growth factor-I in nonalcoholic liver cirrhosis with or without superimposed hepatocarcinoma: evidence of an altered circadian rhythm. Ann J Gastroenterol 1993; 88: 1744-1748

Price JA, Kovach SJ, Johnson T, Koniaris LG, Cahill PA, Sitzmann JV, McKillop IH. Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellular carcinoma. Hepatology 2002; 36: 1089-1097

Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S. Adiponectin knockdown mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol 2009; 24: 1669-1676

Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K, Yoshii J, Yanase K, Namisaki T, Asada K, Yamazaki M, Tsujimoto T, Akahane T, Uemura M, Fukui H. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006; 44: 983-991

Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, Diehl AM. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 2000; 378: 259-268

Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung FL, Tang MS. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 2002; 23: 1781-1789

Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231

Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000; 21: 361-370

Cousens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867

Xu Z, Chen L, Leung L, Yen TS, Lee C, Chan JY. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci USA 2005; 102: 4120-4125

Ishii H, Horie Y, Ohshima S, Anezaki Y, Kinoshita N, Dohmen T, Kataoka E, Sato W, Goto T, Sasaki J, Sasaki T, Watanabe S, Suzuki A, Ohnishi H. Eicosapentaenoic acid ameliorates steatohepatitis and hepatocellular carcinoma in hepatocyte-specific Pten-deficient mice. J Hepatol 2009; 50: 562-571