ANALYSIS OF TRI-CUM BISERIAL BULK QUEUE MODEL CONNECTED WITH A COMMON SERVER

SACHIN KUMAR AGRAWAL¹*, VIPIN KUMAR², BRAHMA NAND AGRAWAL³

¹Department of Applied Sciences & Humanities, Moradabad Institute of Technology, Moradabad, U.P., INDIA
²Department of Mathematics, Teerthankar Mahaveer University, Moradabad, U.P., INDIA
³Department of Mechanical Engineering, Galgotias University, Greater Noida, U.P., INDIA

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The present paper demonstrates the tri-cum biserial bulk queue model linked with a common server with fixed batch size. The development of the model has been done in the steady-state condition. The arrival and servicing patterns of the customers are postulated to follow the Poisson law. Various queuing model performances have been assessed by using the probability generating function technique and other statistical tools. The broad parametric examination has been documented to show the adequacy of the current arrangement procedure.

Keywords: batch size; bulk arrival; mean queue length; moment generating function; Poisson law.

2010 AMS Subject Classification: 93A30, 05A15.

1. INTRODUCTION

Queuing theory is an assortment of mathematical models of several queuing systems. The formation of a queue is a natural phenomenon. We face this problem in our daily routine life.

*Corresponding author
E-mail address: sachin269mit@gmail.com
Received August 24, 2020
everywhere. Several queuing models have been established so far, which enable the individual to take the precise choice in actual time circumstances. These models are viable while managing the practical issues underway businesses, banking parts, and business shopping centers, etc. Many investigations have been accomplished in the past, which dealt with the characteristics of queuing models.

A.K. Erlang developed the concept of queuing theory. Erlang [1] executed this hypothesis to analyze the impact of the fluctuating help request on the use of phones during the discussion. Suzuki [2] explored the queuing framework comprise of two queues in the arrangement. In the investigation, commonly autonomous irregular factors with the particular circulation work have been utilized to exhibit the administration time at all the administration counters. Maggu [3] explored the numerous waiting line parameters of the waiting line model with phase-type service. Sharma and Sharma [4] accomplished a specific capacity queuing model with a time-dependent analysis. They have expected that the bulk appearance rate relies upon the kind of administration accessible in the framework. Krishnamoorthy and Ushakumari [5] calculated several queue characteristics of the Markovian queuing model using Little’s method in the formation of various governing equations.

Singh et al. [6] studied the transient behavior of a queuing model in which servers were arranged in parallel in a bi-series way. Kumar et al. [7] investigated various queuing parameters of a complex queue network in which two subsystems connected in a biserial way further linked with a common server. Chen [8] built up the participation capacities to examine the consistent state conduct of lining frameworks having differing bunch sizes. Creator utilized a nonlinear programming system with the combination of Zadeh's augmentation rule to grow such capacity. Gupta et al. [9] explored a broad examination of a queuing model comprising of multi-server associated in a biserial way. Suhasini et al. [10] created a two-terminal couple queuing model to examine the queuing parameters. Uma and Manoj [11] played out an exhaustive investigation of single server bulk queuing model including three phases of heterogeneous assistance. A bulk waiting line framework with single help has been examined by Thangaraj and Rajendran [12]. Mittal and Gupta [13]
ANALYSIS OF TRI-CUM BISERIAL BULK QUEUE MODEL

developed a biseries bulk queuing model connected with a common server in a steady-state condition. Agrawal and Singh [14-17] performed detailed exploration to calculate the various queuing performance measures of some recently established tri-cum biserial based queuing models. Numerous applications can be observed in which the developed model can be efficiently implemented. For instance, in the gaming-club, three sections Sr_a, Sr_b, and Sr_c exist. These sections comprise various games activities that can be played in a team only. The minimum players in a team are two and can go up to any higher number. The team enters in any of the sections and can randomly move from one section to another. It is also possible that after entering in only one section, they exit from the section Sr_d. Various combinations of the team’s movements are possible. These types of gaming-clubs are widespread in metropolitan cities and malls. Therefore, such situations may arise when teams /Customers have to wait for a long time to get availed of the facility. This is really a very complex problem that can be effortlessly managed by the developed model.

2. MATHEMATICAL DESCRIPTION OF THE MODEL

In this queuing model, three servers are connected in parallel in tri-cum biseries way, which are further linked with a common server in series. The queues associated with the servers Sr_a, Sr_b, Sr_c, and Sr_d are Q_a, Q_b, Q_c, and Q_d, respectively. The customers entered the system with mean arrival rates \(\lambda_a, \lambda_b, \) and \(\lambda_c \) arrive in batches of fixed sizes \(B_a, B_b, \) and \(B_c \) follow the Poisson process and join the queues \(Q_a, Q_b, \) and \(Q_c, \) respectively. The customers \(n_a \) coming at mean arrival rate \(\lambda_a \) after completion of service at server Sr_a can use the facility available at server Sr_b or Sr_c (both or either of two) with the probabilities \(p_{ab} \ and \ p_{ac} \) or directly can use the facility available at server Sr_d with the probability \(p_{ad} \) to such an extent that \(p_{ab} + p_{ac} + p_{ad} = 1. \) A similar criterion will apply to those customers who entered in servers Sr_b and Sr_c. After availing the service at server Sr_d the customer is permitted to exit the system. The pictorial representation of the considered problem is demonstrated in Figure 1.
The following nomenclature has been used in the formulation and analysis of the model.

Probabilities: \(p_{ab}, p_{ac}, p_{ad}, p_{ba}, p_{bc}, p_{bd}, p_{ca}, p_{cb}, p_{cd} \)

Mean arrival rate: \(\lambda_a, \lambda_b, \lambda_c \)

Mean Servicing rates: \(\mu_a, \mu_b, \mu_c, \mu_d \)

Batch sizes: \(B_a, B_b, B_c \)

Number of Customers: \(n_a, n_b, n_c, n_d \)

Traffic intensities or utilization of server: \(\rho_a, \rho_b, \rho_c, \rho_d \)

Mean Queue length (average number of customers): \(L \)

Variance (Fluctuations in the queue): \(V_{ar} \)

Average waiting time for the customer: \(E_{wt} \)

3. **Solution Methodology**

The steady-state governing differential-difference equation of the model can be written as
ANALYSIS OF TRI-CUM BISERIAL BULK QUEUE MODEL

\[
(\lambda_a + \lambda_b + \lambda_c + \mu_a + \mu_b + \mu_c + \mu_d) P_{n_a,n_b,n_c,n_d} = \lambda_a P_{n_a-1,n_b,n_c,n_d} + \lambda_b P_{n_a,n_b-1,n_c,n_d} + \lambda_c P_{n_a,n_b,n_c-1,n_d} + \\
\mu_a p_{ab} P_{n_a,n_b,n_c,n_d} + \mu_a p_{ac} P_{n_a,n_b,n_c,n_d-1} + \mu_b p_{ba} P_{n_a,n_b,n_c,n_d-1} + \\
\mu_b p_{bc} P_{n_a,n_b,n_c-1,n_d} + \mu_b p_{bd} P_{n_a,n_b,n_c,n_d-1} + \mu_c p_{cb} P_{n_a,n_b-1,n_c,n_d} + \mu_c p_{cd} P_{n_a,n_b,n_c,n_d-1} + \\
\mu_d p_{ad} P_{n_a,n_b,n_c,n_d-1} + \mu_d P_{n_a,n_b,n_c,n_d+1}
\]

(1)

To solve the governing equation, Generating function and partial generating functions are assumed as

\[
f(z_1, z_2, z_3, z_4) = \sum_{n_a=0}^{\infty} \sum_{n_b=0}^{\infty} \sum_{n_c=0}^{\infty} \sum_{n_d=0}^{\infty} P_{n_a,n_b,n_c,n_d} z_1^{n_a} z_2^{n_b} z_3^{n_c} z_4^{n_d}
\]

(2)

such that \(|z_1| \leq 1, |z_2| \leq 1, |z_3| \leq 1, |z_4| \leq 1

\[
f_{n_a,n_b,n_c,n_d}(z_1) = \sum_{n_a=0}^{\infty} P_{n_a,n_b,n_c,n_d} z_1^{n_a}
\]

\[
f_{n_a,n_b}(z_1, z_2) = \sum_{n_a=0}^{\infty} f_{n_a,n_b}(z_1) z_2^{n_b}
\]

\[
f_{n_a,n_b,n_c}(z_1, z_2, z_3) = \sum_{n_a=0}^{\infty} f_{n_a,n_b}(z_1, z_2) z_3^{n_c}
\]

\[
f(z_1, z_2, z_3, z_4) = \sum_{n_a=0}^{\infty} f_{n_a}(z_1, z_2, z_3, z_4) z_4^{n_a}
\]

On solving the governing equation with the help of the P.G.F. (probability generating function) technique, we can find the value of probability distribution function in a steady state.

\[
f(z_1, z_2, z_3, z_4) = \frac{\psi}{\xi}
\]

(3)

where

\[
\psi = \mu_a \left(1 - \frac{p_{ab} z_2}{z_1} - \frac{p_{ac} z_3}{z_1} - \frac{p_{ad} z_4}{z_1}\right) f_a + \mu_b \left(1 - \frac{p_{ba} z_1}{z_2} - \frac{p_{bc} z_3}{z_2} - \frac{p_{bd} z_4}{z_2}\right) f_b + \\
+ \mu_c \left(1 - \frac{p_{ca} z_1}{z_3} - \frac{p_{cb} z_2}{z_3} - \frac{p_{cd} z_4}{z_3}\right) f_c + \mu_d \left(1 - \frac{1}{z_4}\right) f_d
\]

and
\[\xi = \lambda_a \left(1 - z_1^\beta_a \right) + \lambda_b \left(1 - z_2^\beta_b \right) + \lambda_c \left(1 - z_3^\beta_c \right) + \mu_a \left\{ 1 - \frac{P_{ab}z_2}{z_1} - \frac{P_{ac}z_3}{z_1} - \frac{P_{ad}z_4}{z_1} \right\} + \mu_b \left\{ 1 - \frac{P_{ba}z_1}{z_2} - \frac{P_{bc}z_3}{z_2} - \frac{P_{bd}z_4}{z_2} \right\} + \mu_c \left\{ 1 - \frac{P_{ca}z_1}{z_3} - \frac{P_{cb}z_2}{z_3} - \frac{P_{cd}z_4}{z_3} \right\} + \mu_d \left\{ 1 - \frac{1}{z_4} \right\} \]

Assuming \(f(z_2, z_3, z_4) = f_a \), \(f(z_1, z_3, z_4) = f_b \), \(f(z_1, z_2, z_4) = f_c \), \(f(z_1, z_2, z_3) = f_d \)

Since \(f(1,1,1,1) = 1 \), the total probability. Considering \(z_1 = 1 \) as \(z_2 \to 1, z_3 \to 1, z_4 \to 1 \)

\(f(z_1, z_2, z_3, z_4) \) is of \((0/0)\) indeterminate form. Therefore, using L-Hospital rule, we get

\[\mu_a f_a - \mu_b p_{ba} f_a - \mu_c p_{ca} f_c = -\lambda_a B_a + \mu_a - \mu_b p_{ba} - \mu_c p_{ca} \] (4)

Again differentiating numerator and denominator of Eq. (3) separately w.r.t. \(z_2 \) by taking \(z_2 = 1 \) as \(z_1 \to 1, z_3 \to 1, z_4 \to 1 \) we get

\[-\mu_a p_{ab} f_a + \mu_b f_b - \mu_c p_{cb} f_c = -\lambda_b B_b - \mu_a p_{ab} + \mu_b - \mu_c p_{cb} \] (5)

Again differentiating numerator and denominator of Eq. (3) separately w.r.t. \(z_3 \) by taking \(z_3 = 1 \) as \(z_1 \to 1, z_2 \to 1, z_4 \to 1 \) we get

\[-\mu_a p_{ac} f_a - \mu_b p_{bc} f_b + \mu_c f_c = -\lambda_c B_c - \mu_a p_{ac} - \mu_b p_{bc} + \mu_c \] (6)

Again differentiating numerator and denominator of Eq. (3) separately w.r.t. \(z_4 \) by taking \(z_4 = 1 \) as \(z_1 \to 1, z_2 \to 1, z_3 \to 1 \) we get

\[-\mu_a p_{ad} f_a - \mu_b p_{bd} f_b - \mu_c p_{cd} f_c + \mu_d f_d = -\mu_a p_{ad} - \mu_b p_{bd} - \mu_c p_{cd} + \mu_d \] (7)

On solving equations (4)-(7), we get the following values of traffic intensities of servers

\[\rho_a = \left[\frac{\lambda_a B_a \left(1 - p_{bc} p_{cb} \right) + \lambda_b B_b \left(p_{ba} + p_{bc} p_{ca} \right) + \lambda_c B_c \left(p_{ca} \left(1 - p_{bc} p_{cb} \right) + p_{cb} \left(p_{ba} + p_{bc} p_{ca} \right) \right)}{\mu_a \left\{ 1 - p_{ac} p_{ca} \right\} \left(1 - p_{bc} p_{cb} \right) - \left(p_{ab} + p_{ac} p_{cb} \right) \left(p_{ba} + p_{bc} p_{ca} \right) \right] \] \]

\[\rho_b = \left[\frac{\lambda_a B_a \left\{ p_{ab} \left(1 - p_{ca} p_{ac} \right) + p_{ac} \left(p_{cb} + p_{ca} p_{ab} \right) \right\} + \lambda_b B_b \left(1 - p_{ca} p_{ac} \right) + \lambda_c B_c \left(p_{cb} + p_{ca} p_{ab} \right)}{\mu_b \left\{ 1 - p_{ba} p_{ab} \right\} \left(1 - p_{ca} p_{ac} \right) - \left(p_{bc} + p_{ba} p_{ac} \right) \left(p_{cb} + p_{ca} p_{ab} \right) \right] \] \]

\[\rho_c = \left[\frac{\lambda_a B_a \left(p_{ac} + p_{ab} p_{bc} \right) + \lambda_b B_b \left(1 - p_{ab} p_{ba} \right) + \lambda_c B_c \left(1 - p_{ab} p_{ba} \right) + p_{ba} \left(p_{ac} + p_{ab} p_{bc} \right)}{\mu_c \left\{ 1 - p_{cb} p_{bc} \right\} \left(1 - p_{ab} p_{ba} \right) - \left(p_{ca} + p_{cb} p_{bc} \right) \left(p_{ac} + p_{ab} p_{bc} \right) \right] \] \]
ANALYSIS OF TRI-CUM BISERIAL BULK QUEUE MODEL

\[\rho_d = \frac{p_{ad}}{\mu_d} \rho_a + \frac{p_{bd}}{\mu_d} \rho_b \mu_b + \frac{p_{cd}}{\mu_d} \rho_c \mu_c \]

where \(\rho_a = 1 - f_a, \rho_b = 1 - f_b, \rho_c = 1 - f_c, \rho_d = 1 - f_d \)

The solution (Joint Probability) of the model in steady-state is written as

\[P_{n_a,n_b,n_c,n_d} = \rho_a^{n_a} \rho_b^{n_b} \rho_c^{n_c} \rho_d^{n_d} (1-\rho_a)(1-\rho_b)(1-\rho_c)(1-\rho_d) \]

The solution of this model exists if \(\rho_a, \rho_b, \rho_c, \rho_d < 1 \)

4. PERFORMANCE MEASURES

Mean queue length (average number of customers)

\[L = \frac{\rho_a}{1-\rho_a} + \frac{\rho_b}{1-\rho_b} + \frac{\rho_c}{1-\rho_c} + \frac{\rho_d}{1-\rho_d} \]

Fluctuation (Variance) in queue length

\[V_{ar} = \frac{\rho_a^2}{(1-\rho_a)^2} + \frac{\rho_b^2}{(1-\rho_b)^2} + \frac{\rho_c^2}{(1-\rho_c)^2} + \frac{\rho_d^2}{(1-\rho_d)^2} \]

Average waiting time for customer

\[E_{wtr} = \frac{L}{\lambda_{sum}} \text{, where } \lambda_{sum} = \lambda_a + \lambda_b + \lambda_c \]

5. VALIDATION STUDY

In this section, we consider some special cases by setting the value of an appropriate parameter to validate our result with existing models.

Case I:
If we assume \(\lambda_c = 0 \) and \(p_{ac} = p_{ad} = p_{bc} = p_{bd} = p_{ca} = p_{cb} = p_{cd} = 0 \) then presently developed model reduced to the model studied by Mohammad et al. [18].

Case II:
By setting the values \(\lambda_b = \lambda_c = 0, \ p_{ac} = p_{ad} = p_{bc} = p_{bd} = p_{ca} = p_{cb} = p_{cd} = 0, \ B_a = B_b = B_c = 1 \) and \(p_{ab} = 1 \) then this model reduces to the model obtained by Jackson [19].

Case III:
If we take $B_a = B_b = B_c = 1$ then the present model gives the same results as provided by Agrawal & Singh [14].

Case IV:

By considering $\lambda_c = 0$, $B_a = B_b = 1$ and $p_{ac} = p_{ad} = p_{bc} = p_{bd} = p_{ca} = p_{cb} = p_{cd} = 0$, In this case, the outcome of the model resembles with the model given by Maggu [20].

6. **Parametric Study**

The detailed description of the governing equation and solution methodology of the present model has been given in sections II and III. In section IV, various queuing performance measures have been given. In section V, some particular cases have been discussed by setting the value of an appropriate parameter to validate our result with existing models.

The details of various input parameters used to calculate the various queuing performance measures have been presented in Table 1.

Table 1: Details of various input parameters

P_{ab}	P_{ac}	P_{ad}	P_{ba}	P_{bc}	P_{bd}	P_{ca}	P_{cb}	P_{cd}
0.3	0.3	0.4	0.3	0.3	0.4	0.3	0.3	0.4

Table 2 displays the effect of mean arrival rate λ_a and three different combinations of batch sizes of B_a, B_b and B_c on mean queue length, variance, and the average waiting time. It is clear from the results that as the mean arrival rate λ_a increases from 2 to 4, the mean queue length, variance, and average waiting time also increases. This is on the expected line for the reason that as the number of clients at a specific server increases, the mean queue length, variance, and average waiting time also increase. It has been seen while computing the results that the traffic utilization of the servers are less than 1, which also fulfills the steady-state condition of the model. The same conclusion can be drawn from Tables 3 and 4, which display the effect of mean arrival rates (λ_b and λ_c) and different batch size combinations of B_a, B_b and B_c on various queuing
ANALYSIS OF TRI-CUM BISERIAL BULK QUEUE MODEL

performance measures.

Table 5 exhibits the variation of mean queue length, variance, and the average waiting time with mean servicing rate (μ_a) from 26 to 28 and three different combinations of batch sizes of B_a, B_b and B_c. It is clear from the results that queue length, variance, and average waiting time decrease as the mean servicing rate (μ_a) increases. It is valid for all intents and purposes and numerically likewise because when the servicing rate expands, the clients at different servers will be served quickly as the outcomes the queue length, variances, and waiting time diminishes. The same type of outcome can be seen in Tables 6-8.

TABLE 2: Queue lengths, Variances and Average waiting time for various mean arrival rates of λ_a (taking $\lambda_b = 3$, $\lambda_c = 4$, $\mu_a = 26$, $\mu_b = 27$, $\mu_c = 28$, $\mu_d = 30$)

λ_a	$B_a = 3, B_b = 2, B_c = 2$	$B_a = 2, B_b = 3, B_c = 2$	$B_a = 2, B_b = 2, B_c = 3$						
	L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}
2	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076
2.2	7.450	21.523	0.810	8.460	27.004	0.920	10.273	39.587	1.117
2.4	8.139	25.012	0.866	8.951	29.658	0.952	10.918	43.929	1.162
2.6	8.935	29.422	0.931	9.487	32.699	0.988	11.630	48.982	1.211
2.8	9.869	35.149	1.007	10.074	36.210	1.028	12.418	54.912	1.267
3	10.989	42.851	1.099	10.720	40.299	1.072	13.299	61.944	1.330
3.2	12.368	53.697	1.213	11.437	45.107	1.121	14.289	70.376	1.401
3.4	14.131	69.972	1.359	12.237	50.826	1.177	15.412	80.624	1.482
3.6	16.508	96.757	1.557	13.139	57.719	1.240	16.699	93.274	1.575
3.8	19.997	147.689	1.852	14.163	66.157	1.311	18.192	109.181	1.684
4	25.942	272.366	2.358	15.342	76.677	1.395	19.950	129.636	1.814
Table 3: Queue lengths, Variances and Average waiting time for various mean arrival rates
of \(\lambda_b \) (taking \(\lambda_a = 2, \lambda_c = 4, \mu_a = 26, \mu_b = 27, \mu_c = 28, \mu_d = 30 \))

\(\lambda_b \)	\(B_a = 3, B_b = 2, B_c = 2 \)	\(B_a = 2, B_b = 3, B_c = 2 \)	\(B_a = 2, B_b = 2, B_c = 3 \)						
	\(L \)	\(V_{ar} \)	\(E_{wt} \)	\(L \)	\(V_{ar} \)	\(E_{wt} \)	\(L \)	\(V_{ar} \)	\(E_{wt} \)
2	5.301	12.481	0.663	5.267	12.314	0.658	7.336	22.627	0.917
2.2	5.571	13.476	0.679	5.695	13.942	0.695	7.735	24.659	0.943
2.4	5.858	14.578	0.697	6.173	15.881	0.735	8.165	26.945	0.972
2.6	6.165	15.802	0.717	6.708	18.219	0.780	8.630	29.529	1.004
2.8	6.493	17.169	0.738	7.314	21.086	0.831	9.135	32.467	1.038
3	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076
3.2	7.227	20.432	0.786	8.815	29.264	0.958	10.286	39.694	1.118
3.4	7.639	22.395	0.813	9.769	35.329	1.039	10.948	44.181	1.165
3.6	8.086	24.638	0.842	10.924	43.662	1.138	11.680	49.428	1.217
3.8	8.575	27.221	0.875	12.367	55.736	1.262	12.495	55.624	1.275
4	9.111	30.219	0.911	14.247	74.575	1.425	13.409	63.021	1.341

Table 4: Queue lengths, Variances and Average waiting time for various mean arrival rates
of \(\lambda_c \) (taking \(\lambda_a = 2, \lambda_b = 3, \mu_a = 26, \mu_b = 27, \mu_c = 28, \mu_d = 30 \))

\(\lambda_c \)	\(B_a = 3, B_b = 2, B_c = 2 \)	\(B_a = 2, B_b = 3, B_c = 2 \)	\(B_a = 2, B_b = 2, B_c = 3 \)						
	\(L \)	\(V_{ar} \)	\(E_{wt} \)	\(L \)	\(V_{ar} \)	\(E_{wt} \)	\(L \)	\(V_{ar} \)	\(E_{wt} \)
2	4.119	8.446	0.588	4.772	10.828	0.682	4.073	8.252	0.582
2.2	4.324	9.077	0.600	5.009	11.655	0.696	4.393	9.260	0.610
2.4	4.539	9.766	0.613	5.261	12.564	0.711	4.744	10.431	0.641
2.6	4.768	10.522	0.627	5.529	13.565	0.727	5.129	11.803	0.675
2.8	5.010	11.353	0.642	5.813	14.672	0.745	5.556	13.429	0.712
3	5.267	12.271	0.658	6.117	15.899	0.765	6.033	15.379	0.754
3.2	5.542	13.287	0.676	6.442	17.267	0.786	6.569	17.754	0.801
3.4	5.834	14.418	0.695	6.790	18.797	0.808	7.179	20.698	0.855
3.6	6.147	15.681	0.715	7.165	20.517	0.833	7.881	24.427	0.916
3.8	6.484	17.100	0.737	7.569	22.461	0.860	8.703	29.283	0.989
4	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076
Table 5: Queue lengths, Variances and Average waiting time for various mean service rates of μ_a (taking $\lambda_a = 2$, $\lambda_b = 3$, $\lambda_c = 4$, $\mu_b = 27$, $\mu_c = 28$, $\mu_d = 30$)

μ_a	$B_a = 3, B_b = 2, B_c = 2$	$B_a = 2, B_b = 3, B_c = 2$	$B_a = 2, B_b = 2, B_c = 3$						
L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}	
26	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076
26.2	6.814	18.564	0.757	7.982	24.575	0.887	9.655	35.707	1.073
26.4	6.782	18.432	0.754	7.958	24.483	0.884	9.627	35.593	1.070
26.6	6.752	18.308	0.750	7.934	24.395	0.882	9.599	35.485	1.067
26.8	6.723	18.190	0.747	7.911	24.312	0.879	9.573	35.383	1.064
27	6.695	18.078	0.744	7.889	24.232	0.877	9.547	35.285	1.061
27.2	6.668	17.971	0.741	7.867	24.156	0.874	9.523	35.192	1.058
27.4	6.642	17.870	0.738	7.847	24.083	0.872	9.499	35.103	1.055
27.6	6.617	17.773	0.735	7.827	24.013	0.870	9.476	35.019	1.053
27.8	6.593	17.681	0.733	7.807	23.947	0.867	9.454	34.938	1.050
28	6.569	17.593	0.730	7.788	23.883	0.865	9.433	34.861	1.048

Table 6: Queue lengths, Variances and Average waiting time for various mean service rates of μ_b (taking $\lambda_a = 2$, $\lambda_b = 3$, $\lambda_c = 4$, $\mu_a = 26$, $\mu_c = 28$, $\mu_d = 30$)

μ_b	$B_a = 3, B_b = 2, B_c = 2$	$B_a = 2, B_b = 3, B_c = 2$	$B_a = 2, B_b = 2, B_c = 3$						
L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}	L	V_{ar}	E_{wt}	
26	6.998	19.327	0.778	8.351	26.776	0.928	9.890	36.808	1.099
26.2	6.965	19.188	0.774	8.275	26.288	0.919	9.845	36.587	1.094
26.4	6.934	19.057	0.770	8.203	25.836	0.911	9.803	36.379	1.089
26.6	6.903	18.933	0.767	8.134	25.419	0.904	9.762	36.184	1.085
26.8	6.874	18.814	0.764	8.069	25.032	0.897	9.722	36.000	1.080
27	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076
27.2	6.819	18.596	0.758	7.949	24.336	0.883	9.649	35.663	1.072
27.4	6.793	18.494	0.755	7.893	24.023	0.877	9.614	35.508	1.068
27.6	6.768	18.398	0.752	7.840	23.730	0.871	9.581	35.361	1.065
27.8	6.744	18.306	0.749	7.789	23.457	0.865	9.549	35.223	1.061
28	6.721	18.218	0.747	7.741	23.200	0.860	9.518	35.091	1.058
Table 7: Queue lengths, Variances and Average waiting time for various mean service rates

μ_c ↓	B_a = 3, B_b = 2, B_c = 2	B_a = 2, B_b = 3, B_c = 2	B_a = 2, B_b = 2, B_c = 3						
	L	V_ar	E_wt	L	V_ar	E_wt	L	V_ar	E_wt
26	7.260	20.705	0.807	8.494	27.217	0.944	11.454	53.497	1.273
26.2	7.210	20.444	0.801	8.434	26.879	0.937	11.203	50.605	1.245
26.4	7.162	20.200	0.796	8.377	26.565	0.931	10.974	48.081	1.219
26.6	7.116	19.971	0.791	8.323	26.271	0.925	10.765	45.864	1.196
26.8	7.073	19.756	0.786	8.272	25.997	0.919	10.572	43.907	1.175
27	7.031	19.554	0.781	8.223	25.740	0.914	10.395	42.169	1.155
27.2	6.991	19.363	0.777	8.176	25.499	0.908	10.232	40.619	1.137
27.4	6.952	19.184	0.772	8.131	25.273	0.903	10.080	39.229	1.120
27.6	6.916	19.014	0.768	8.088	25.061	0.899	9.939	37.979	1.104
27.8	6.880	18.854	0.764	8.047	24.860	0.894	9.807	36.850	1.090
28	6.846	18.702	0.761	8.008	24.671	0.890	9.685	35.826	1.076

Table 8: Queue lengths, Variances and Average waiting time for various mean service rates

μ_d ↓	B_a = 3, B_b = 2, B_c = 2	B_a = 2, B_b = 3, B_c = 2	B_a = 2, B_b = 2, B_c = 3						
	L	V_ar	E_wt	L	V_ar	E_wt	L	V_ar	E_wt
26	8.180	27.147	0.909	9.874	38.734	1.097	12.435	61.264	1.382
26.2	8.072	26.334	0.897	9.713	37.241	1.079	12.173	58.190	1.353
26.4	7.971	25.593	0.886	9.563	35.906	1.063	11.935	55.514	1.326
26.6	7.877	24.915	0.875	9.424	34.706	1.047	11.717	53.170	1.302
26.8	7.788	24.294	0.865	9.295	33.624	1.033	11.518	51.104	1.280
27	7.704	23.723	0.856	9.174	32.644	1.019	11.335	49.274	1.259
27.2	7.624	23.196	0.847	9.062	31.753	1.007	11.165	47.644	1.241
27.4	7.549	22.710	0.839	8.956	30.942	0.995	11.009	46.186	1.223
27.6	7.478	22.259	0.831	8.856	30.199	0.984	10.863	44.876	1.207
27.8	7.411	21.841	0.823	8.763	29.519	0.974	10.728	43.695	1.192
28	7.346	21.452	0.816	8.674	28.894	0.964	10.601	42.625	1.178
7. Conclusions

In the present study, a complex queuing model has been established with the help of moment generating function and other statistical tools to find the various queuing performance measures such as length of queues, fluctuation in queues, and average waiting time for customers. The legitimacy of the present queuing model is checked by thinking about particular cases. A broad parametric examination has been acquainted with show the suitability of the current solution methodology. This parametric examination can be helpful in different viable applications, for example, shopping complexes, sports centers, businesses, and so forth.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[1] A.K. Erlang, Probability and telephone calls, Nyt. Tidsskr. Mat., Ser. B. 20 (1909), 33-39.

[2] T. Suzuki, Two queues in series, J. Opers. Res. Soc. Japan, 5 (1963), 149-155.

[3] P.L. Maggu, On certain channels in series with phase type service, Mathematische Operationsforschung and Statistik, 3 (5) (1972), 355-361.

[4] R. Sharma, G.C. Sharma, A queuing model with the bulk arrival rate depending upon the nature of service, Appl. Math. Model. 20 (1996), 470-475.

[5] A. Krishnamoorthy, P.V. Ushakumari, A queuing system with single arrival bulk service and single departure, Math. Comput. Model. 31 (2000), 99-108.

[6] T.P. Singh, V. Kumar, R. Kumar, On transient behavior of queuing network with parallel biserial queues, Joint Model. Simul. Syst. 1 (2) (2005), 68-75.

[7] V. Kumar, T.P. Singh, K. Rajinder, Steady state behavior of a queue model comprised of two subsystems with biserial channels linked with common channel, Reflect. ERA. 1 (2) (2006), 135-152.

[8] S.P. Chen, A bulk arrival queuing model with fuzzy parameters and varying batch sizes, Appl. Math. Model. 30 (2006), 920–929.
[9] D. Gupta, T.P. Singh, R. Kumar, Analysis of a network queue model comprised of biserial and parallel channel linked with a common server, Ultra Sci. 19 (2M) (2007), 407-418.

[10] A.V.S. Suhasini, K.S. Rao, P.R.S. Reddy, Transient analysis of tandem queueing model with nonhomogeneous Poisson bulk arrivals having state dependent service rates, Int. J. Adv. Comput. Math. Sci. 3 (3) (2012), 272-289.

[11] S. Uma, A.B. Manoj, An analysis of single server bulk queue with three stage heterogeneous service and compulsory vacation, Int. J. Innov. Res. Sci. Eng. Technol. 6 (4) (2017), 6570-6576.

[12] M. Thangaraj, P. Rajendran, Analysis of bulk queueing system with single service and single vacation, IOP Conf. Ser., Mater. Sci. Eng. 263 (4) (2017), 042106.

[13] M. Mittal, R. Gupta, Modelling of biserial bulk queue network linked with common server, Int. J. Math. Trends Technol. 56 (6) (2018), 430-436.

[14] S.K. Agrawal, B.K. Singh, Computation of various queue characteristics using tri-cum biserial queuing model connected with a common server, Int. J. Math. Trends Technol. 56 (1) (2018), 81-90.

[15] S.K. Agrawal, B.K. Singh, A Comprehensive study of Various Queue Characteristics using Tri-Cum Biserial Queuing Model, Int. J. Sci. Res. Math. Stat. Sci. 5 (2) (2018), 46-56.

[16] S.K. Agrawal, B.K. Singh, Influence of Reneging and Jockeying on Various Queuing Characteristics of Tri-Cum Biserial Based Queue Model, Int. J. Mech. Eng. Technol. 9 (10) (2018), 1062-1073.

[17] S.K. Agrawal, B.K. Singh, Development and Analysis of Generalized Queuing Model, Int. J. Comput. Sci. Eng. 6 (11) (2018), 15-32.

[18] H.N. Mohammad, T. Hussain, M. Ikram, Two Biseries Queues with Batch Arrival at Each Stage, Pure Appl. Math. Sci. 17 (1983), 1-2.

[19] R.R.P. Jackson, Queueing system with phase type service, Oper. Res. Quart. 5 (1954), 109-120.

[20] P.L. Maggu, On certain type of queues, Stat. Neerl. 24 (1970), 89-97.