SUPPLEMENTARY MATERIAL

Xanthones from the green branch of *Garcinia dulcis*

Wilawan Mahabusarakama,c*, Pattama Mecawuna and Souwalak Phongpaichitb,c

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; bDepartment of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; cNatural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Abstract

Two new prenylated xanthones named dulcisxanthone H and dulcisxanthone I, along with garciniaxanthone C were isolated from the dichloromethane extract of the green branch of *Garcinia dulcis*. Their structures were elucidated by analysis of 1D and 2D NMR spectral data. Their antibacterial activities were also examined.

Keywords: Clusiaceae; *Garcinia dulcis*; prenylated xanthones, antibacterial

Table S1. The \ce{^{13}C}, \ce{^{1}H} NMR and HMBC spectral data (CDCl\ce{\textsubscript{3}}) of dulcisxanthone H (1).

Positions	\(\delta_C \)	\(\delta_H \) (mult., \(J_{HZ} \))	HMBC
1	155.2	-	-
2	107.0	6.49 (s)	C-1, C-4, C-9a, C-4'
3	128.7	-	-
4	131.8	-	-
4a	142.5	-	-
5	142.5	-	-
6	135.3	-	-
7	125.1	7.15 \((d, J = 8.4) \)	C-5, C-8a, C-1''
8	115.8	7.68 \((d, J = 8.4) \)	C-6, C-9, C-10a
8a	119.1	-	-
9	181.8	-	-
Table S1. The 13C, 1H NMR and HMBC spectral data (CDCl$_3$) of dulcisxanthone H (1) (continued).

Positions	δ_C	δ_H (mult., J_{HZ})	HMBC
9a	108.5	-	-
10a	144.4	-	-
2'	77.1	-	-
3'	135.9	5.91 (d, $J = 9.9$)	C-3, C-2', CH$_3$-2'
4'	122.2	6.37 (d, $J = 9.9$)	C-2, C-3, C-4, C-2'
1"	28.8	3.50 (d, $J = 7.5$)	C-5, C-6, C-7, C-2", C-3"
2"	120.9	5.35 (br t, $J = 7.5$)	-
3"	133.9	-	-
4"	25.8	1.76 (s)	C-2", C-3", C-5"
5"	17.9	1.76 (s)	C-2", C-3", C-4"
1-OH	-	12.34 (s)	C-1, C-2, C-9a
2'-CH$_3$	27.4	1.53 (s)	C-2', C-3', CH$_3$-2'
Table S2. The 13C, 1H NMR and HMBC spectral data (acetone-d_6) of dulcissxanthone I (2).

Positions	δ_C	δ_H (mult., J_{HZ})	HMBC
1	150.2	-	
2	122.5	-	
3	124.3	7.21 (s)	C-1, C-4, C-4a, C-1’
4	136.6	-	
4a	141.8	-	
5	92.7	6.55 (d, $J = 2.4$)	C-6, C-7, C-8a, C-10a
6	167.6	-	
7	97.2	6.36 (d, $J = 2.4$)	C-5, C-6, C-8, C-8a
8	163.0	-	
8a	103.5	-	
9	185.1	-	
9a	107.1	-	
10a	157.9	-	
1’	26.5	3.33 (d, $J = 7.5$)	C-1, C-2’, C-3’
2’	121.9	5.33 (br t, $J = 7.5$)	
3’	132.6	-	
4’	24.9	1.74 (s)	C-2’, C-3’, C-5’
5’	16.9	1.74 (s)	C-2’, C-3’, C-4’
1-OH	-	11.46 (s)	C-1, C-2, C-9a
4-OH	-	8.65 (s)	
8-OH	-	12.02 (s)	
6-OCH$_3$	55.7	3.97 (s)	C-6
Table S3. The 13C, 1H NMR and HMBC spectral data (acetone-d_6) of garciniaxanthone C (3).

Positions	δ_C	δ_H (mult., J_{HZ})	HMBC
1	153.5	-	-
2	110.0	6.59 (s)	C-1, C-3, C-9a, C-1'
3	134.8	-	-
4	138.1	-	-
4a	142.7	-	-
5	143.2	-	-
6	135.2	-	-
7	125.1	7.24 (d, $J = 8.4$)	C-5, C-8a, C-1''
8	115.2	7.64 (d, $J = 8.4$)	C-6, C-9, C-10a
8a	119.2	-	-
9	182.0	-	-
9a	106.7	-	-
10a	144.6	-	-
1'	28.7	3.47 (d, $J = 7.5$)	C-2, C-4, C-2', C-3'
2'	121.3	5.36 ($br t$, $J = 7.5$)	C-4', C-5'
3'	133.2	-	-
4'	25.1	1.75 (s)	C-2', C-3', C-5'
5'	17.1	1.75 (s)	C-2', C-3', C-4'
1''	28.5	3.52 (d, $J = 7.5$)	C-5, C-7, C-2'', C-3''
2''	121.4	5.36 ($br t$, $J = 7.5$)	C-4'', C-5''
3''	133.1	-	-
4''	25.1	1.74 (s)	C-2'', C-3'', C-5''
5''	17.1	1.76 (s)	C-2'', C-3'', C-4''
1-OH	-	11.96 (s)	C-1, C-2, C-9a
Figure S1. 1H NMR (CDCl$_3$, 300 MHz) spectrum of dulcisxanthone H (1).

Figure S2. 13C NMR (CDCl$_3$, 75 MHz) spectrum of dulcisxanthone H (1).
Figure S3. DEPT 90° (CDCl$_3$) spectrum of dulcisxanthone H (1).

Figure S4. DEPT 135° (CDCl$_3$) spectrum of dulcisxanthone H (1).
Figure S5. 2D HMQC (CDCl₃) spectrum of dulcisxanthone H (1).

Figure S6. 2D HMBC (CDCl₃) spectrum of dulcisxanthone H (1).
Figure S7. 1H NMR (acetone-d_6, 300 MHz) spectrum of dulcisxanthone I (2).

Figure S8. 13C NMR (acetone-d_6, 75 MHz) spectrum of dulcisxanthone I (2).
Figure S9. 2D HMQC (acetone-\(d_6\)) spectrum of dulcisxanthone I (2).

Figure S10. 2D HMBC (acetone-\(d_6\)) spectrum of dulcisxanthone I (2).
Figure S11. NOE (acetone-d_6) spectrum of dulcisxanthone I (2).

Figure S12. 1H NMR (acetone-d_6, 300 MHz) spectrum of garciniaxanthone C (3).
Figure S13. 13C NMR (acetone-d_6, 75 MHz) spectrum of garciniaxanthone C (3).

Figure S14. 2D HMBC (acetone-d_6) spectrum of garciniaxanthone C (3).