The Orchard relation of a generic symmetric or antisymmetric function

Roland Bacher

March 29, 2022

Abstract: We associate to certain symmetric or antisymmetric functions on the set \((E_{d+1}) \) of \((d+1)\)-subsets in a finite set \(E \) an equivalence relation on \(E \) and study some of its properties.

1 Definitions and main results

We consider a finite set \(E \) and denote by \((E_d) \) the set of subsets containing exactly \(d \) elements of \(E \). In the sequel we move often freely from sets to sequences: we identify a subset \(\{x_1, \ldots, x_d\} \in (E_d) \) with the finite sequence \((x_1, \ldots, x_d)\) where the order of the elements is for instance always increasing with respect to a fixed total order on \(E \).

A function \(\varphi : (E_d) \to \mathbb{R} \) is symmetric if

\[
\varphi(x_1, \ldots, x_i, x_{i+1}, \ldots, x_d) = \varphi(x_1, \ldots, x_{i-1}, x_i, x_i+1, \ldots, x_d)
\]

for \(1 \leq i < d \) and all \(\{x_1, \ldots, x_d\} \in (E_d) \).

Similarly, such a function \(\varphi : (E_d) \to \mathbb{R} \) is antisymmetric if

\[
\varphi(x_1, \ldots, x_i, x_{i+1}, \ldots, x_d) = -\varphi(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, x_i+2, \ldots, x_d)
\]

for \(1 \leq i < d \) and all \(x_1, \ldots, x_d \in E \).

\(\varphi \) is generic if \(\varphi(x_1, \ldots, x_d) \neq 0 \) for all subsets \(\{x_1, \ldots, x_d\} \in (E_d) \) of \(d \) distinct elements in \(E \).

In the sequel of this paper all functions will be generic. We will mainly be concerned with sign properties of generic symmetric or antisymmetric functions: Given any symmetric generic function \(\sigma : (E_d) \to \mathbb{R}_{>0} \) and a symmetric or antisymmetric generic function \(\varphi : (E_d) \to \mathbb{R}^d \), the two functions

\[
(x_1, \ldots, x_d) \mapsto \varphi(x_1, \ldots, x_d)
\]

and

\[
(x_1, \ldots, x_d) \mapsto \sigma(x_1, \ldots, x_d)\varphi(x_1, \ldots, x_d)
\]
behave similarly with respect to all properties adressed in this paper.

We have also an obvious sign rule: symmetric or antisymmetric functions on E_d behave with respect to multiplication like the elements of the multiplicative group $\{\pm 1\}$ with symmetric functions corresponding to 1 and antisymmetric functions corresponding to -1.

We fix now a generic symmetric or antisymmetric function $\phi : (E^d) \rightarrow \mathbb{R}$. Consider two elements $a, b \in E$. A subset $\{x_1, \ldots, x_d\} \in (E\{a,b\})$ not containing a and b separates a from b with respect to ϕ if

$$\phi(x_1, \ldots, x_d, a) \phi(x_1, \ldots, x_d, b) < 0$$

(this definition is of course independent of the particular linear order (x_1, \ldots, x_d) on the set $\{x_1, \ldots, x_d\}$).

We denote by $n(a,b) = n_\phi(a,b)$ the number of subsets in $(E\{a,b\})$ separating a from b (with respect to the function ϕ).

Proposition 1.1

(i) If $\phi : (E^d_{d+1}) \rightarrow \mathbb{R}$ is symmetric and generic then

$$n(a,b) + n(b,c) + n(a,c) \equiv 0 \pmod{2}$$

for any subset $\{a,b,c\}$ of 3 distinct elements in E.

(ii) If $\phi : (E^d_{d+1}) \rightarrow \mathbb{R}$ is antisymmetric and generic then

$$n(a,b) + n(b,c) + n(a,c) \equiv \left(\frac{\#(E) - 3}{d - 1}\right) \pmod{2}$$

for any subset $\{a,b,c\}$ of 3 distinct elements in E.

Proof. Consider first a subset $\{x_1, \ldots, x_d\}$ not intersecting $\{a,b,c\}$. Such a subset separates no pair of elements in $\{a,b,c\}$ if

$$\phi(x_1, \ldots, x_d, a), \phi(x_1, \ldots, x_d, b) \text{ and } \phi(x_1, \ldots, x_d, c)$$

all have the same sign. Otherwise, consider a reordering $\{a', b', c'\} = \{a, b, c\}$ such that $\phi(x_1, \ldots, x_d, a') \phi(x_1, \ldots, x_d, b') < 0$ and $\phi(x_1, \ldots, x_d, a') \phi(x_1, \ldots, x_d, c') < 0$. The subset $\{x_1, \ldots, x_d\}$ contributes in this case 1 to $n(a', b')$, $n(a', c')$ and 0 to $n(b', c')$. Such a subset $\{x_1, \ldots, x_d\} \in (E\{a,b,c\})$ yields hence always an even contribution (0 or 2) to the sum $n(a,b) + n(a,c) + n(b,c)$.

Consider now a subset $\{x_1, \ldots, x_d-1\} \in (E\{a,b,c\})$. We have to understand the contributions of the sets

- $\{x_1, \ldots, x_{d-1}, c\}$ to $n(a,b)$
- $\{x_1, \ldots, x_{d-1}, b\}$ to $n(a,c)$
- $\{x_1, \ldots, x_{d-1}, a\}$ to $n(b,c)$.
Since the product of the six factors
\[\varphi(x_1, \ldots, x_{d-1}, c, a) \varphi(x_1, \ldots, x_{d-1}, c, b) \]
\[\varphi(x_1, \ldots, x_{d-1}, b, a) \varphi(x_1, \ldots, x_{d-1}, b, c) \]
\[\varphi(x_1, \ldots, x_{d-1}, a, b) \varphi(x_1, \ldots, x_{d-1}, a, c) \]
is always positive (respectively negative) for a generic symmetric (respectively antisymmetric) function, such a subset \(\{x_1, \ldots, x_{d-1}\} \) yields an even contribution to \(n(a, b) + n(a, c) + n(b, c) \) in the symmetric case and an odd contribution in the antisymmetric case.

Proposition 1.1 follows now from the fact that \(\binom{E \setminus \{a,b,c\}}{d-1} \) has \(\binom{2(E)-3}{d-1} \) elements.

Given a generic symmetric or antisymmetric function \(\varphi: \binom{E}{d+1} \to \mathbb{R} \) on some finite set \(E \) we set \(x \sim y \) if either \(x = y \in E \) or if
\[n(x, y) \equiv 0 \pmod{2} \quad \text{for symmetric } \varphi \]
respectively
\[n(x, y) \equiv \binom{2(E)-3}{d-1} \pmod{2} \quad \text{for antisymmetric } \varphi . \]

We call the relation \(\sim \) defined in this way on the set \(E \) the Orchard relation.

Theorem 1.2 The Orchard relation is an equivalence relation having at most two classes.

Proof. Reflexivity and symmetry are obvious. Transitivity follows easily from Proposition 1.1.

If \(a \not\sim b \) and \(b \not\sim c \) then \(n(a, b) + n(b, c) \) is even. It follows then from Proposition 1.1 that \(a \sim c \). □

Example. A tournament is a generic antisymmetric function \(\binom{E}{1+1} \to \{\pm 1\} \). It encodes for instance orientations of all edges in the complete graph with vertices \(E \) and can be summarized by an antisymmetric matrix \(A \) with coefficients in \(\{\pm 1\} \).

Given such a matrix \(A \) with coefficients \(a_{i,j} \), \(1 \leq i, j \leq n \), we have
\[n_A(i, j) = \frac{n - 2 - \sum_k a_{i,k}a_{j,k}}{2} . \]

This implies \(i \sim_A j \) if and only if
\[\sum_k a_{i,k}a_{j,k} \equiv n \pmod{4} \]
for \(i \neq j \). In the language of tournaments (cf. for instance [4]), this result can be restated in terms of score vectors: Two elements \(i \) and \(j \) are Orchard
equivalent if and only if the corresponding coefficients of the score vector (counting the number of 1’s in line i respectively j) have the same parities.

Main Example. A finite set $\mathcal{P} = \{P_1, \ldots, P_n\} \subset \mathbb{R}^d$ of $n > d$ points in real affine space \mathbb{R}^d is *generic* if the affine span of any subset containing $(d + 1)$ points in \mathcal{P} is all of \mathbb{R}^d. Such a generic set \mathcal{P} is endowed with a generic antisymmetric function by restricting

$$\varphi(x_0, \ldots, x_d) = \det(x_1 - x_0, x_2 - x_0, \ldots, x_d - x_0)$$

to $\binom{n}{d+1}$. The Orchard relation partitions hence a generic subset $\mathcal{P} \subset \mathbb{R}^d$ into two (generally non-empty) subsets. Its name originates from the fact that the planar case ($d = 2$) yields a natural rule to plant trees of two different species at specified generic locations in an orchard, see [1] and [2].

Proposition 1.3 Given a finite set E let φ and ψ be two generic symmetric or antisymmetric functions on $\binom{E}{d+1}$.

(i) If the numbers

$$\varphi(x_0, \ldots, x_d) \psi(x_0, \ldots, x_d)$$

have the same sign for all $\{x_0, \ldots, x_d\} \in \binom{E}{d+1}$ then the two Orchard relations \sim_φ and \sim_ψ induced by φ and ψ coincide.

(ii) If there exists exactly one subset $\mathcal{F} = \{x_0, \ldots, x_d\} \in \binom{E}{d+1}$ such that

$$\varphi(x_0, \ldots, x_d) \psi(x_0, \ldots, x_d) < 0$$

then the restrictions of \sim_φ and \sim_ψ to the two subsets \mathcal{F} and $E \setminus \mathcal{F}$ coincide but $a \sim_\varphi b \iff a \not\sim_\psi b$ for $a \in \mathcal{F}$ and $b \in E \setminus \mathcal{F}$.

We call two symmetric or antisymmetric functions φ and ψ satisfying the condition of assertion (ii) above *flip-related*. Colouring the equivalence classes of an Orchard relation with two distinct colours, one can express assertion (ii) by the statement that changing a generic (symmetric or antisymmetric) function by a flip switches the colours in the flip-set $\mathcal{F} = \{x_0, \ldots, x_d\}$ and leaves the colours of the remaining elements unchanged.

Assertion (i) shows that we can restrict our attention to symmetric or antisymmetric functions from $\binom{E}{d+1}$ into $\{\pm 1\}$ when studying properties of the Orchard relation.

Proof of Proposition 1.3. Assertion (i) is obvious.

For proving assertion (ii) it is enough to remark that the numbers $n_\varphi(a, b)$ and $n_\psi(a, b)$ of separating sets (with respect to φ and ψ) are identical if either $\{a, b\} \subset \mathcal{F}$ or $\{a, b\} \subset E \setminus \mathcal{F}$ and they differ by exactly one in the remaining cases. □
2 An easy characterisation in the symmetric case

In this section we give a different and rather trivial description of the Orchard relation in the symmetric case.

Given a generic symmetric function $\varphi : \binom{E}{d+1} \rightarrow \mathbb{R}$ on some finite set E we consider the function

$$
\mu(x) = \sharp(\{\{x_1, \ldots, x_d\} \in \binom{E \setminus \{x\}}{d} \mid \varphi(x, x_1, \ldots, x_d) > 0\})
$$

from E to \mathbb{N}.

Theorem 2.1 Two elements $x, y \in E$ are Orchard equivalent with respect to φ if and only if $\mu(x) \equiv \mu(y) \pmod{2}$.

Proof. The result holds if φ is the constant function

$$
\varphi(x_0, \ldots, x_d) = 1
$$

for all $\{x_0, \ldots, x_d\} \in \binom{E}{d+1}$.

Given two generic symmetric functions φ, ψ related by a flip with respect to the set $F = \{x_0, \ldots, x_d\} \in \binom{E}{d+1}$ we have

$$
\mu_{\varphi}(x) = \mu_{\psi}(x)
$$

if $x \not\in F$ and

$$
\mu_{\varphi}(x) = \mu_{\psi}(x) \pm 1
$$

otherwise. Proposition 1.3 implies hence the result since any generic symmetric function can be related by a finite number of flips to the constant function. \(\square\)

3 Reducing d

Let $\varphi : \binom{E}{d+1} \rightarrow \mathbb{R}$ be a generic symmetric or antisymmetric function. Consider the function

$$
R\varphi : \binom{E}{d} \rightarrow \mathbb{R}
$$

defined by

$$
R\varphi(x_1, \ldots, x_d) = \prod_{x \in E \setminus \{x_1, \ldots, x_d\}} \varphi(x, x_1, \ldots, x_d).
$$

$R\varphi$ is generic symmetric if φ is generic symmetric.

For φ generic antisymmetric, the function $R\varphi$ is generic symmetric if $\sharp(E) \equiv d \pmod{2}$ and $R\varphi$ is generic antisymmetric otherwise.

Dependencies of the Orchard relations associated to φ and $R\varphi$ are described by the following result.
Proposition 3.1 Let \(\varphi : \binom{E}{d+1} \rightarrow \mathbb{R} \) be a generic symmetric or antisymmetric function.

(i) If \(d \equiv 0 \pmod{2} \) then the Orchard relation of \(R\varphi \) is trivial (i.e. \(x \sim_{R\varphi} y \) for all \(x, y \in E \)).

(ii) If \(d \equiv 1 \pmod{2} \) then the Orchard relations \(\sim_\varphi \) and \(\sim_{R\varphi} \) coincide on \(E \).

The main ingredient of the proof is the following lemma.

Lemma 3.2 Let \(\varphi, \psi : \binom{E}{d+1} \rightarrow \mathbb{R} \) be two generic symmetric or antisymmetric functions which are flip-related with respect to the set \(F = \{x_0, \ldots, x_d\} \in \binom{E}{d+1} \). Then

\[
R\varphi(y_1, \ldots, y_d) \ R\psi(y_1, \ldots, y_d) < 0
\]

if \(\{y_1, \ldots, y_d\} \subset F \) and

\[
R\varphi(y_1, \ldots, y_d) \ R\psi(y_1, \ldots, y_d) > 0
\]

otherwise.

Proof of Lemma 3.2 If \(\{y_1, \ldots, y_d\} \not\subset F \) then \(\varphi(x, y_1, \ldots, y_d) = \psi(x, y_1, \ldots, y_d) \) for all \(x \in E \setminus \{y_1, \ldots, y_d\} \) and hence \(R\varphi(y_1, \ldots, y_d) = R\psi(y_1, \ldots, y_d) \). Otherwise, exactly one factor of the product yielding \(R\varphi(y_1, \ldots, y_d) \) changes sign with respect to the factors yielding \(R\psi(y_1, \ldots, y_d) \).

Proof of Proposition 3.1 We consider first the case where \(\varphi : \binom{E}{d+1} \rightarrow \mathbb{R} \) is generic and symmetric.

Proposition 3.1 holds then for the constant symmetric application \(\varphi : \binom{E}{d+1} \rightarrow \{\pm 1\} \).

Two generic symmetric functions \(\varphi, \psi \) on \(\binom{E}{d+1} \) which are flip-related with respect to \(F = \{x_0, \ldots, x_d\} \) give rise to \(R\varphi \) and \(R\psi \) which are related through \(d + 1 \) flips with respect to all \(d + 1 \) elements in \(\binom{F}{d} \) by Lemma 3.2. Proposition 1.3 implies hence the result since an element of \(E \setminus F \) is contained in no element of \(\binom{F}{d} \) and since all elements of \(F \) are contained in exactly \(d \) such sets.

Second case: \(\varphi : \binom{E}{d+1} \rightarrow \mathbb{R} \) generic and antisymmetric. This case is slightly more involved. As in the symmetric case, we prove the result for a particular function \(\varphi \) and use the fact that flips of \(\varphi \) affect the Orchard relation \(\sim_{R\varphi} \) only for odd \(d \). This shows that it is enough to prove that \(\sim_{R\varphi} \) is trivial for a particular function \(\varphi \) in the case of even \(d \) and that \(\sim_{R\varphi} \) and \(\sim_\varphi \) coincide (for a particular generic antisymmetric function \(\varphi \)) in the case of odd \(d \).

We consider now the set \(E = \{1, \ldots, n\} \) endowed with the generic antisymmetric function \(\varphi : \binom{E}{d+1} \rightarrow \{\pm 1\} \) defined by

\[
\varphi(i_0, \ldots, i_d) = 1
\]
for all $1 \leq i_0 < i_1 < \ldots < i_d \leq n$.

Each element of $({}^E\setminus_{d-1}^{i+1})$ separates then i from $i+1$ with respect to the generic function $R\varphi$. We have indeed

$$R\varphi(j_1, \ldots, j_{d-1}, i) = \varphi(i+1, j_1, \ldots, j_{d-1}, i) \prod_{j \in E\setminus\{j_1, \ldots, j_{d-1}, i, i+1\}} \varphi(j, j_1, \ldots, j_{d-1}, i)$$

$$= -\varphi(i, j_1, \ldots, j_{d-1}, i+1) \prod_{j \in E\setminus\{j_1, \ldots, j_{d-1}, i, i+1\}} \varphi(j, j_1, \ldots, j_{d-1}, i+1)$$

$$= -R\varphi(j_1, \ldots, j_{d-1}, i+1)$$

showing that the number $n_{R\varphi}(i, i+1)$ of sets separating i from $i+1$ equals $\binom{n-2}{d-1}$.

The proof splits now into four cases according to the parities of n and d.

If $n \equiv d \equiv 0 \pmod{2}$, then $R\varphi$ is symmetric and $\binom{n-2}{d-1}$ is even (recall that

$$\left(\sum_{i=0}^{d-1} \nu_i 2^i \right) \equiv \prod_{i=0}^{d-1} \left(\nu_i \kappa_i \right) \pmod{2}$$

for $\nu_i, \kappa_i \in \{0, 1\}$, cf. for instance Exercise 5.36 in Chapter 5 of [3]). Since $n_{R\varphi}(i, i+1) = \binom{n-2}{d-1}$ is even for all $i < n$, the Orchard relation $\sim_{R\varphi}$ associated to the symmetric function $R\varphi$ is trivial.

If $n \equiv 1 \pmod{2}$, $d \equiv 0 \pmod{2}$, then $R\varphi$ is antisymmetric. We have then $\binom{n-3}{d-1} \equiv 0 \pmod{2}$ and thus $\binom{n-3}{d-2} \equiv \binom{n-3}{d-2} + \binom{n-3}{d-1} \equiv \binom{n-2}{d-1} \pmod{2}$ which implies again the triviality of the Orchard relation $\sim_{R\varphi}$ since we have $n_{R\varphi}(i, i+1) = \binom{n-2}{d-1} \equiv \binom{n-3}{d-2} \pmod{2}$ which shows $i \sim_{R\varphi} (i+1)$ for all i.

If $n \equiv d \equiv 1 \pmod{2}$ then $R\varphi$ is symmetric. Since $\binom{n-3}{d-2} \equiv 0 \pmod{2}$ we have $\binom{n-2}{d-1} = \binom{n-3}{d-2} + \binom{n-3}{d-1} \equiv \binom{n-3}{d-1} \equiv \binom{n-3}{d-2} + \binom{n-2}{d-1} \pmod{2}$ proving that the Orchard relations \sim_{φ} and $\sim_{R\varphi}$ coincide.

If $n \equiv 0 \pmod{2}$, $d \equiv 1 \pmod{2}$, then $R\varphi$ is antisymmetric. The equality $\binom{n-2}{d-1} = \binom{n-3}{d-2} + \binom{n-3}{d-1}$ implies $\binom{n-3}{d-1} \equiv \binom{n-3}{d-2} + \binom{n-2}{d-1} \pmod{2}$. This shows hat the Orchard relations \sim_{φ} and $\sim_{R\varphi}$ coincide. \qed

4 Homology

We recall that $R\varphi : \binom{E}{d} \to \mathbb{R}$ is defined by

$$R\varphi(x_1, \ldots, x_d) = \prod_{x \in E\setminus\{x_1, \ldots, x_d\}} \varphi(x, x_1, \ldots, x_d)$$

for a given generic symmetric or antisymmetric function $\varphi : \binom{E}{d+1} \to \mathbb{R}$.

Lemma 4.1 We have

$$R(R\varphi)(x_1, \ldots, x_{d-1}) \in e^{\binom{n}{2}}_{\mathbb{R}^+}$$
where $\epsilon = 1$ if φ is generic and symmetric and $\epsilon = -1$ if φ is generic and antisymmetric.

Proof. Setting $S = \{x_1, \ldots, x_{d-1}\}$ we have

\[
R(R\varphi)(x_1, \ldots, x_{d-1}) = \prod_{y \in E \setminus S} R\varphi(y, x_1, \ldots, x_{d-1}) = \prod_{x \neq y \in E \setminus S} \varphi(x, y, x_1, \ldots, x_{d-1}) \varphi(y, x, x_1, \ldots, x_{d-1})
\]

which is positive if φ is symmetric or if $(\#(E) - d + 1) / 2$ is even and negative otherwise.

Writing as in the beginning $[n] = \{1, \ldots, n\}$, the set $\{\pm 1\}^{[n]}$ (endowed with the usual product of functions) of all symmetric generic functions $(E^{d+1}) \to \{\pm 1\}$ is a vector space of dimension $\binom{n}{d+1}$ over the field \mathbb{F}_2 of 2 elements. The map R considered above defines group homomorphisms between these vector spaces and the above Lemma allows to define homology groups. These groups are however all trivial except for $d = 0$ since one obtains the ordinary (simplicial) homology with coefficients in \mathbb{F}_2 of an $(n - 1)$ dimensional simplex.

5 Increasing d

This section is a close analogue of section 3.

Given a generic symmetric or antisymmetric function $(E^{d+1}) \to \mathbb{R}$ we define a function $A\varphi : (E^{d+2}) \to \mathbb{R}$ by setting

\[
A\varphi(x_0, \ldots, x_{d+1}) = \prod_{i=0}^{d+1} \varphi(x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d+1})
\]

The function $A\varphi$ is generic symmetric if φ is symmetric. For φ antisymmetric it is generic symmetric if $d \equiv 0 \pmod{2}$ and generic antisymmetric otherwise.

The dependency between the Orchard relations \sim_φ and $\sim_{A\varphi}$ for a generic symmetric or antisymmetric function $\varphi : (E^{d+1}) \to \mathbb{R}$ is described by the following result.

Proposition 5.1 Let $\varphi : (E^{d+1}) \to \mathbb{R}$ be a generic symmetric or antisymmetric function.

The Orchard relation $\sim_{A\varphi}$ of $A\varphi$ is trivial if $\#(E) \equiv d \pmod{2}$. Otherwise, the Orchard relations \sim_φ and $\sim_{A\varphi}$ of φ and $A\varphi$ coincide.

The main ingredient of the proof is the following lemma whose easy proof is left to the reader.
Lemma 5.2 Let \(\varphi, \psi : \binom{E}{d+1} \rightarrow \mathbb{R} \) be two generic symmetric or antisymmetric functions which are flip-related with respect to the set \(\mathcal{F} = \{x_0, \ldots, x_d\} \). Then

\[
A\varphi(y_0, \ldots, y_{d+1}) A\psi(y_0, \ldots, y_{d+1}) > 0
\]

if \(\mathcal{F} \not\subset \{y_0, \ldots, y_{d+1}\} \) and

\[
A\varphi(y_0, \ldots, y_{d+1}) A\psi(y_0, \ldots, y_{d+1}) < 0
\]

otherwise.

Proof of Proposition 5.1. Lemma 5.2 shows that \(\sim_{A\varphi} \) is independent of \(\varphi \) if \(\#(E) \equiv d \pmod{2} \). Otherwise, the Orchard relations of \(\varphi \) and \(A\varphi \) behave in a similar way under flips. Indeed, given \(\psi \) which is flip-related with flipset \(\mathcal{F} = \{x_0, \ldots, x_d\} \) to \(\varphi \) the functions \(A\psi \) and \(A\varphi \) are related through \((\#(E) - (d+1)) \) flips with flipsets \(\mathcal{F} \cup \{x\}, x \in E \setminus \mathcal{F} \). Each element of \(E \setminus \mathcal{F} \) is hence flipped once and each element of \(\mathcal{F} \) is flipped \(\#(E) - (d+1) \) times.

Proposition 1.3 implies hence that \(\sim_{A\varphi} \) is independent of \(\varphi \) if \(1 \equiv \#(E) - (d+1) \) and that \(\sim_{\varphi} \) and \(\sim_{A\varphi} \) behave similarly under flips otherwise. It is hence enough to proof Proposition 5.1 in a particular case.

If \(\varphi \) is symmetric, then Proposition 5.1 clearly holds for the constant application \(\varphi : \binom{E}{d+1} \rightarrow \{1\} \).

In the antisymmetric case we set \(E = \{1, \ldots, n\} \) and we consider the generic antisymmetric function \(\varphi : \binom{E}{d+1} \rightarrow \{-1, 1\} \) defined by

\[
\varphi(i_0, \ldots, i_d) = 1
\]

for all \(1 \leq i_0 < i_1 < \ldots < i_d \leq n \). The function \(A\varphi : \binom{E}{d+2} \rightarrow \{-1, 1\} \) is now given by

\[
A\varphi(i_0, \ldots, i_d, i_{d+1}) = 1
\]

for all \(1 \leq i_0 < i_1 < \ldots < i_d < i_{d+1} \leq n \). The numbers \(n_{A\varphi}(i, i+1) \) of subsets in \(\binom{E \setminus \{i, i+1\}}{d+1} \) separating \(i \) from \(i+1 \) are hence all 0 and we split the discussion into several cases according to the parities of \(n = \#(E) \) and \(d \).

- \(n \equiv d \equiv 0 \pmod{2} \) implies \(A\varphi \) symmetric and hence \(\sim_{A\varphi} \) trivial. Since then \(\binom{n-2}{d-1} \equiv 0 \pmod{2} \) we have also \(\sim_{\varphi} \) trivial.
- \(n \equiv 1 \pmod{2} \), \(d \equiv 0 \pmod{2} \) implies \(A\varphi \) symmetric and hence \(\sim_{A\varphi} \) trivial. We have then \(\binom{n-2}{d-1} \) proving equality of the two Orchard relations \(\sim_{\varphi} \) and \(\sim_{A\varphi} \).
- \(n \equiv d \equiv 1 \pmod{2} \) implies \(A\varphi \) antisymmetric and \(\binom{n-3}{d-3} \equiv 0 \pmod{2} \) thus proving triviality of the Orchard relation \(\sim_{A\varphi} \). \(\square \)
Remark 5.3 One sees easily that the function $A(A\varphi)$ is strictly positive for a generic symmetric or antisymmetric function $\varphi : (e_{d+1}) \to \mathbb{R}$.

This allows the definition of cohomology groups on the set of generic symmetric functions $(e_{d+1}) \to \{\pm 1\}$. The resulting groups are of course not interesting since this boils down once more to the cohomology groups of the $(\sharp(E) - 1)-$dimensional simplex with coefficients in the field \mathbb{F}_2 of 2 elements.

References

[1] R. Bacher, An Orchard Theorem, preprint CO/0206266, 14 pages.

[2] R. Bacher, D. Garber, Chromatic Properties of generic planar Configurations of Points, preprint GT/0210051, 19 pages.

[3] Graham, Knuth, O. Patashnik, Concrete Mathematics: A foundation for Computer Science, 2nd ed, Addison-Wesley (1994).

[4] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston (1968).