Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau

Pengyu Zhao¹, Jiabing Bao¹, Xue Wang¹, Yi Liu², Cui Li², Baofeng Chai Corresp.¹

¹ Shanxi University, Institute of Loess Plateau, Taiyuan, China
² Shanxi University of Finance and Economics, Faculty of Environment Economics, Taiyuan, China

Corresponding Author: Baofeng Chai
Email address: bfchai@sxu.edu.cn

Microbial community assembly is influenced by a continuum (actually the trade-off) between deterministic and stochastic processes. An understanding of this ecological continuum is of great significance for drawing inferences about the effects of community assembly processes on microbial community structure and function. Here, we investigated the driving forces of soil microbial community assembly in three different environmental contexts located on subalpine coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a continuum existed between deterministic and stochastic processes in shaping the microbial community structure, but deterministic processes prevailed. By integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) was the main driver of the community structure and diversity patterns. In addition, we also found that SOC had a great influence on the community assembly processes. In conclusion, our results show that deterministic processes always dominated assembly processes in shaping bacterial community structure along the three habitat contexts.
Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau

Pengyu Zhao¹, Jiabing Bao¹, Xue Wang¹, Yi Liu², Cui Li², Baofeng Chai¹

¹Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
²Faculty of Environment Economics, Shanxi University of Finance and Economics, Taiyuan

*Corresponding author:

Name: Baofeng Chai
E-mail: bfchæi@sxu.edu.cn
Address: Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, China
TEL: 13603583312
Abstract Microbial community assembly is influenced by a continuum (actually the trade-off) between deterministic and stochastic processes. An understanding of this ecological continuum is of great significance for drawing inferences about the effects of community assembly processes on microbial community structure and function. Here, we investigated the driving forces of soil microbial community assembly in three different environmental contexts located on subalpine coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a continuum existed between deterministic and stochastic processes in shaping the microbial community structure, but deterministic processes prevailed. By integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) was the main driver of the community structure and diversity patterns. In addition, we also found that SOC had a great influence on the community assembly processes. In conclusion, our results show that deterministic processes always dominated assembly processes in shaping bacterial community structure in the three habitat contexts.

Introduction

Understanding the fundamental ecological mechanisms that drive the assembly processes of microbial communities is a major challenge in community ecology (Shen et al. 2013), particularly microbial ecology. The assembly processes of the microbial community in a local community are generally influenced by two types of ecological processes, including deterministic and stochastic processes. First, deterministic factors, such as organism traits, interspecies relationships (e.g., competition, predation, mutualisms, and trade-offs), and environmental factors (e.g., pH, temperature, salt, and moisture) govern the community structure (Chase & Myers 2011; Dumbrell et al. 2010; Ofiţeru et al. 2010). Ecologists have traditionally appreciated that the environmental context determines the assembly processes of microbial communities: “Everything is everywhere,
but the environment selects” (Baas-Becking 1934). For example, environmental factors such as pH (Tripathi et al. 2018), temperature (Anderson & Laurel 2013), or nitrogen levels (Xiong et al. 2016) may be major determinants of microbial community structure.

For the other type of community assembly processes (i.e., stochastic processes), it is assumed that community structures are independent of organism traits and are governed by birth, death, colonization, extinction, drift, and speciation (Hubbell & Borda de Agua 2004). And it is hypothesized that species are all ecologically equivalent (Woodcock et al. 2007). Previous studies have confirmed that both deterministic and stochastic processes act concurrently to regulate the assembly of ecological communities (Diniandreote et al. 2016; Diniandreote et al. 2015; Zhou & Ning 2017), but the relative importance may vary in different environmental contexts (Tian et al. 2017). This may be because the variation in ecological selection strength and the rates of dispersal on different habitat contexts can influence the relative importance of deterministic and stochastic processes across temporal and spatial scales, in addition to within entire ecosystems (Chisholm & Pacala 2011, Jurburg et al. 2017). Therefore, investigation into community driving forces in different habitats can enrich the understanding on the community assembly process.

In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located on the Loess Plateau in Shanxi province, China. The 16S ribosomal RNA genes of bacteria were analyzed using high-throughput sequencing. To investigate the driving forces of soil microbial community assembly, we sampled three sites having different environmental characteristics. Sampling was performed along three different altitudinal gradients. This study can largely enrich the understanding on microbiology of subalpine mountains.

Our aims were as follows: (i) to quantify the relative roles of deterministic and stochastic processes in bacterial community dynamics for three different habitat contexts; and more precisely (ii) to evaluate the effects of
environmental factors on microbial community assembly.

Materials and methods

2.1 Site and sampling

A total of 23 soil plots were sampled (Table S1, Figure S1) in August 2016 and August 2017. The sites were selected because their vegetation was subalpine mountain coniferous forests and they were located between 1900 m and 3055 m above mean sea level (amsl). The study area has a warm temperate continental monsoon climate, and mostly cinnamon soil.

This study focused on response patterns along environmental gradients rather than exploring differences among treatment groups. Thus, we sampled along three altitudinal gradients without replicates. Previous studies have shown that for continuous environmental drivers, gradient designs further allow for better extrapolation, characterization of (nonlinear) response functions, and, consequently, quantitative outputs better suited for ecological models than replicated designs (Cottingham et al. 2005).

To avoid the interference of vegetation factors, we sampled plots in the single vegetation type (i.e., *Larix principis-rupprechtii* forests). These sites located on subalpine ecological environments possess pronounced climatic gradients and climosequences within short distances, with a high level of environmental heterogeneity (Siles & Margesin 2017). Therefore, the sites with different altitudinal gradients corresponded to different environmental contexts and different environment characteristics.

Eight plots were sampled from the Wutai Mountain site (WT), which ranges between 1,900 m and 3,055 m amsl. Ten plots were sampled from the Pangquangou Natural Reserve site (PQG), ranging from 1,950 m and 2,650 m amsl. The last, five plots were sampled from the Luya Mountain site (LY), which ranges between 2,000 m and 2,400 m amsl. The details of each sample plots were added in the supplemental files (Table S1). At each
A sampling site, a 1 m × 1 m sampling plot was established *in situ* along the elevation gradient. Five soil cores at a depth of 15 cm were taken at each sampling plot, and then combined to form a single independent soil sample. Then, the soil samples were sealed in plastic bags and refrigerated, immediately transported to the laboratory and sieved using a 2 mm mesh. The soil samples were then stored at -80 °C until further analysis.

The soil samples were subsampled for molecular analysis and the DNA from of 1 g of soil was extracted using an E.Z.N.A.@ Soil DNA Kit (OMEGA, USA). The quality and quantity of the DNA extracts were measured using an Infinite 200 PRO plate reader (TECAN, Switzerland). The DNA purity was assessed based on the A260/A280 absorbance ratios, and only DNA extracts with absorbance ratios of 1.8~2.0 were used for further analyses. Three DNA samples were extracted, from each soil sample, which were then combined and sequenced at Shanghai Personal Biotechnology Co., Ltd. on an Illumina MiSeq sequencing platform based on the bacterial v3–v4 hypervariable region using bacterial 16S universal primers (341F 5′-ACTCCTACGAGGAGCA-3′ and 805R 5′-TTACCGCGGCTGCTGGCAC -3′) (Tripathi et al. 2018).

2.2 Bioinformatics analysis

The sequencing data were analyzed using QIIME pipeline (v1.8.0, http://qiime.org/) (Caporaso JG 2010). The filtered sequence alignments were denoised by DeNoiser (Reeder et al. 2010) and then screened for chimeras using UCHIME (Edgar et al. 2011). The Archaea and unknown sequences were removed. The sequences were clustered into operational taxonomic units (OTUs) at a 97% similarity level using the average neighbor method and taxonomy was blast to SILVA database by k-mer searching using MOTHUR (Pruesse et al. 2007). The OTU table was rarefied to 4020 sequences per sample. Ten independent maximum-likelihood phylogenetic trees based on Jukes–Cantor distance were then constructed using FastTree2 (Price et al. 2009) after the removal of gaps and hypervariable regions using a Lane mask supplied by QIIME to support
phylogenetic diversity calculations.

2.3 Environmental variables

In the laboratory, soil total carbon (TC), total nitrogen (TN), and total sulfur (TS) were measured using an elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany); nitrate nitrogen (NO$_3^-$,N), ammonium nitrogen (NH$_4^+$,N), and nitrite nitrogen (NO$_2^-$,N) were measured by an Automated Discrete Analysis Instrument (CleverChem 380, Germany). After shaking the soil: water suspension (1:2.5 mass/volume) for 30 mins, the soil pH was measured using a pH meter (HI 3221, Italy). The soil organic carbon in each soil sample was measured using the potassium dichromate volumetric method (Nelson et al. 1982).

2.4 Null model analysis

A null model was constructed to account for changes in β-diversity while controlling for stochastic variation and associated changes in α-diversity (i.e., local species richness; 999 iterations) (Chase et al. 2011). We considered the null deviation as the relative difference between the observed β-diversity and the null-model β-diversity (Tucker et al. 2016). As such, null deviation values may represent communities that are more similar than expected by chance (a negative null deviation value), less similar than expected by chance (a positive null deviation value), or close to the chance expectation (values near zero) (Tucker et al. 2016).

2.5 Phylogenetic analysis

Our study used phylogenetic turnover between communities to infer ecological processes (Stegen et al. 2015). To quantify phylogenetic turnover between communities, we used the between community mean-nearest-taxon-distance (βMNTD) metric. βMNTD was calculated using the R function ‘comdistnt’ (abundance.weighted = TRUE; package “picante”). Then, we evaluated β-Nearest Taxon Index (βNTI), which expresses the difference between observed βMNTD and the mean of the null distribution in units of
127 standard deviations (Stegen et al. 2013).

128 In addition, to distinguish more details in the assembly processes, we used the Raup–Crick metric
129 (Chase et al. 2011), extended to incorporate species’ relative abundances; referred to as RC$_{bray}$. The R script
130 of RC$_{bray}$ can be found at https://github.com/stegen/Stegen_etal_ISME_2013.

131 In a given community, we estimated the relative influence of variable selection or homogeneous selection
132 as the fraction of their comparisons with βNTI > $+2$ or βNTI < -2, respectively. We regard the fraction of the
133 between community comparisons with $|\beta$NTI| < 2 and RC$_{bray}$ > $+0.95$ as dispersal limitation, while $|\beta$NTI| < 2
134 and RC$_{bray}$ < -0.95 is considered homogenizing dispersal (Diniandreote et al. 2015; Stegen et al. 2013; Stegen et
135 al. 2015).

136 2.6 Network analysis

137 The co-occurrence network was constructed based on the Spearman correlation matrix offered in the
138 ‘psych’ package in R. In this network, the nodes represent OTUs and the edges that connect these nodes
139 represent correlations between OTUs. Only those connections with correlation coefficients > 0.6 and $P <$
140 0.05 were used in the network. Thus, positive correlations indicate co-occurring OTUs based on
141 abundances, whereas negative correlations indicate that the OTUs are mutually exclusive (Barberán et al.
142 2012). P-values were false discovery rate (FDR) adjusted to control for the analysis (FDR < 0.05). The
143 network analysis was completed using the ‘igraph’ package in R.

144 2.7 Statistical analysis

145 All statistical analyses were performed in the R environment using the ‘vegan’, ‘ggplot2’, ‘ggpubr’, and
146 ‘corrplot’ packages. A Venn diagram was used to visualize the shared OTUs among the sites. A correlation
147 matrix graph was used to demonstrate the correlation between soil physicochemical factors and was
constructed using the `corrplot` packages in R. Multivariate regression tree analysis (MRT) was used to explain the relationship between bacterial α-diversity estimates and environmental variables in a visualized tree, and diversity indices were normalized to the same mean before performing MRT analysis (Ge et al. 2008). Based on the longest gradient lengths from the results of detrended correspondence analysis (DCA), we selected redundancy analysis (RDA) to quantify the effects of environmental variables on microbial community composition (Mo et al. 2018). Forward selection of PCNM variables based on permutation tests was chosen to identify 2 of the 23 extracted PCNM variables that significantly ($P < 0.05$) explained the spatial structure. The PCNM eigenfunctions, which represent the ‘spectral decomposition of the spatial relationship across sampling locations’, can be considered as the spatial variables in the ordination-based analysis. The contributions of environmental filtering and the space variable (PCNM) to the variation in bacterial community composition were calculated by using variance partitioning analysis (VPA) (CANOCO for Windows Version 5.0). The mantel test was performed in the R environment using the ‘vegan’ packages.

Results

Physicochemical properties of the soils from the different sites

The soil physicochemical properties varied across the different sampling sites (Figure 1). Briefly, the contents of ammonium nitrogen and nitrite nitrogen were the highest at LY sites (36.91 and 0.16 mg·kg$^{-1}$, respectively), and were lowest at WT sites (17.41 and 0.04 mg·kg$^{-1}$, respectively). The contents of nitrate nitrogen (6.45 mg·kg$^{-1}$), SOC (70.29 mg·g$^{-1}$), TC (6.4%), and TN (0.51%) were the highest at WT sites, and were the lowest at LY sites.

TN was significantly positively correlated with TC and SOC ($P < 0.05$) and significantly negatively
correlated with pH value ($P < 0.05$; Figure 2). TC and pH showed a significant negative correlation ($P < 0.05$).

SOC was significantly positively correlated with nitrate nitrogen ($P < 0.05$) and significantly negatively correlated with nitrite nitrogen ($P < 0.05$). This indicated that the sites sampled had different environment characteristics.

Dynamics of bacterial community composition and diversity

A total of 4258 OTUs were identified from 1,062,241 high-quality sequences recovered from 23 soil samples. Good’s coverage ranged from 95.19% to 99.75%, indicating that the identified sequences were representative of most of the bacterial sequences in the collected soil samples. Rarefaction curve analyses, which generally yielded asymptotic curves, indicated that the numbers of sampling plots were enough.

Detailed information of the sequencing results is provided in Table S2.

The soil microbial community composition varied across the different sampling sites (Figure 3). There were 15 bacterial phyla with relative abundances of more than 0.01% (Figure 3a). As shown in the Venn diagram, 869 bacterial shared OTUs were observed in all sampling sites. There were 46 bacterial phyla identified (Figure 3b). The abundance of *Proteobacteria* at all sites was the highest (mean relative abundance = 30.59%), and followed by *Acidobacteria* (19.63%), *Actinobacteria* (16.51%) and *Chloroflexi* (13.22%). Briefly, the mean relative abundance of *Proteobacteria* was the most at PQG (34.39%), and that of *Actinobacteria* was the highest at LY (26.29%). The mean relative abundances of *Acidobacteria* (28.68%) and *Chloroflexi* (16.09%) were the highest at WT. There were 31 bacterial families with relative abundances of more than 0.01% (Figure 3c). Based on the clustering graph, the sampling plots of each of the sites roughly clustered together (Figure 3d). The community α-diversity indices varied at the different sites (Figure 4). Briefly, the phylogenetic diversity (pd) and the number of observed species (sobs) were the highest at WT sites ($P < 0.05$). There was no significant
difference in the ACE index, Chao index, Shannon index and Simpson index at the different sites (P > 0.05).

This indicated that the sites sampled had different soil microbial community structure.

Effects of environmental factors on microbiome dynamics

Based on the results of the DCA (axis length =1.02), we used RDA to identify the abiotic environmental drivers that influenced bacterial community composition (Figure 5; permutation test, P < 0.01). The results demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were mainly driven by pH, while SOC, TC, and TN were the main abiotic drivers of Parcubacteria and Planctomycetes.

In the MRT analysis (Figure 6), we observed that the diversity indices (normalized) were mainly split by SOC, explaining 36.75% in the first split. The correlation analysis showed similar results: SOC was significantly correlated with bacterial communities at the phylum level (e.g., Proteobacteria, Bacteroidetes, and Chloroflexi).

Given its contribution to explaining community distribution patterns, SOC was further used as a descriptor for the environmental gradients.

The variation partitioning analysis showed that environmental variables (20.3%) explained more variation of microbial community structure than spatial variables (1.9%). This suggested that both deterministic and stochastic processes were involved in the assembly of microbial communities, and that deterministic processes were dominant. The unexplained variable was 78.6% (Figure 7).

Nonrandom co-occurrence patterns of the microbial community

Network analysis was applied to explore the interspecific relationship patterns in the microbial communities (Figure 8). Compared with the LY- and WT- network, the PQG-network exhibited more edges (87), more vertices (40), more modularity (0.691), higher average degree (4.35) and average clustering coefficients (0.858), but less the numbers of modules (6) (Table S3). Strong positive correlations were observed at all sites, while
negative correlations were rare. The size of the nodes corresponds to betweenness centralization values.

The bacterial community assembly processes

According to the null model analysis, our results demonstrated that the null deviation values varied at different sites (ranging from 0.29 to 0.57; Figure 9a). The bacterial communities at WT deviated significantly from the null expected value (relative null deviation = 0.45) and were greater than that at LY site and PQG site (relative null deviation = 0.32 and 0.34, respectively) ($P<0.05$).

Most importantly, we observed that the microbial community was more greatly shaped by variable selection (βNTI $> +2$) (Figure 9b). From LY to WT, we observed a gradual increase in the relative role of deterministic processes compared to stochastic processes (Figure 9c). Based on the regression analysis of the environmental variables with assembly process parameters, we found that SOC had a great influence on community assembly processes (Figure 9d). The mantel test between βNTI and SOC matrices indicated the similar conclusion ($P < 0.05$, $R = 0.509$).

Discussion

Compared to LY, the microbial community at WT was more greatly driven by deterministic processes. The driving effects of the deterministic processes gradually increased from LY to WT. Given this, we inferred that a continuum existed between deterministic and stochastic processes in the assembly of microbial communities in the study area. This is consistent with previous studies (Chase et al. 2011; Tucker et al. 2016; Jurburg et al. 2017; Tian et al. 2017), which pointed out the relative importance of the two processes varied in the different environmental contexts. For example, in terms of plants, aggregation in temperate forests reflect stronger environmental correlations, suggesting a key role for species-sorting processes (deterministic processes) (Myers et al. 2013). In terms of microorganisms, previous studies have noted that bacterial community assembly is
largely governed by stochastic processes in early successional soils, with the relative roles of deterministic
processes increasing progressively in later successional soils (Diniandreote et al. 2015; Ferrenberg et al. 2013;
Hanson et al. 2012).

Previous research has confirmed this continuum could be dependent on varying environmental
conditions and the characteristics of organisms (Zhou et al. 2013). Environmental factors, such as salinity
(Lozupone & Knight 2007), pH (Fierer & Jackson 2006; Griffiths et al. 2011), C/N ratio (Bates et al. 2011), soil
C (Drenovsky et al. 2004), nitrogen levels (Xiong et al. 2014), and the structure of the plant community
(Lundberg et al. 2012) may be major determinants of microbial community structure. Our results demonstrated
that pH, SOC, TC, and TN were the main abiotic drivers of microbial community compositions. More
importantly, based on the integrated results of the MRT analysis, RDA, and correlation analysis, we identified
SOC as a general descriptor that encompassed the environmental gradients by which the communities responded
to.

Our results demonstrated that SOC differed significantly at different sites, and was significantly correlated
with nitrate nitrogen, nitrite nitrogen and TN \((P < 0.05) \). This indicated that SOC was closely related to soil
fertility and possessed the highest weighting. Litters from the trees will impact SOC, which in turn will impact
the community assembly structure, and this is perhaps the reason explaining why variable selection increases
from LY to WT sites. The relationships between SOC and bacterial community assembly have also been reported
across a broad range of microbial ecosystems (Bastida et al. 2013). Most importantly, we also observed that SOC
was closely associated with the community assembly process. Similar results reported that the relative roles of
stochastic and deterministic processes can vary with the successional age of soils and can primarily be attributed
to the covariance of soil pH with age (Tripathi et al. 2018). The unexplained variation in VPA (78.6%) could be
due to stochastic influences [e.g. drift or speciation (Caruso et al. 2011)], unmeasured soil physicochemical properties [e.g. metal ion concentration (Gombeer et al. 2015)] or interactions between species [e.g. competition (Caruso et al. 2011)]. In fact, in other studies of microbial communities using VPA, the unexplained portions may also account for more than 50% (Liao et al. 2016; Mo et al. 2018).

In deterministic processes, not only environmental filtering, but also interspecies interactions have a great influence on community assembly. Ecologists recently accepted that competition and environmental processes act simultaneously (Zhang et al. 2018). In the network analysis, the higher modularity indicates that the network became denser, suggesting that the microbial communities are highly complex (Olesen et al. 2007). Interestingly, the modularity was the highest at PQG (0.691). This may be related to the greater sampling scales and elevation gradients, and thus greater environmental heterogeneity at PQG. The average path distance represents the shortest path between two nodes (Wang et al. 2016), which demonstrated irregular variation at WT (Zheng et al. 2017). Strong positive correlations were observed among sites, while negative correlations were rare (Figure 8a–c). This implied that microbes might cooperate in order to adapt to similar niches. In the network, positive links could be attributed to niche overlap and cross-feeding, while negative relationships could be attributed to competition and amensalism (Faust & Raes 2012). From an ecological perspective, the peripherals may represent specialists, whereas module hubs and connectors may be more generalists and network hubs may be super-generalists (Figure 8d–f) (Deng et al. 2012). It is interesting to observe that the module hubs and connectors differed at the different sites.

Conclusion

We quantified the importance of the deterministic and stochastic processes driving the bacterial community assembly on different sites in subalpine coniferous forests, and showed that deterministic processes...
prevailed. Moreover, SOC was closely related to microbial community structure and greatly influenced the processes of community assembly.

ACKNOWLEDGMENTS

We are grateful to all the scientists who contribute to the collection of data used in this study.

Reference

Anderson, and Laurel J. 2013. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Eos Transactions American Geophysical Union 92:222-222.

Barberán, Bates, Casamayor, and N F. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. Isme Journal 6:343-351.

Baas-Becking L. Geobiologie of inleiding tot de milieukunde. WP Van Stockkum and Zoon, 1934

Bastida F, Torres IF, Hernández T, Bombach P, Richnow HH, and García C. 2013. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biology & Biochemistry 57:892-902.

Bates ST, Berglyons D, Caporaso JG, Walters WA, Knight R, and Fierer N. 2011. Examining the global distribution of dominant archaeal populations in soil. Isme Journal 5:908-917.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods:335-336.

Caruso T, Chan Y, Lacap DC, Lau MC, Mekay CP, and Pointing SB. 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. Isme Journal 5:1406.

Chase JM, Kraft NJB, Smith KG, Vellend M, and Inouye BD. 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:article 24.

Chase JM, and Myers JA. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London 366:2351-2363.

Chisholm RA, and Pacala SW. 2011. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theoretical Ecology 4:195-200.

Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145–152.

Deng, Jiang YH, Yang Y, He Z, Feng L, and Zhou J. 2012. Molecular ecological network analyses. Bmc Bioinformatics 13:113.

Diniandreote F, Pylro VS, Baldrian P, Elsas JDV, and Salles JF. 2016. Ecological succession reveals potential signatures of marine[ndash]terrestrial transition in salt marsh fungal communities. Isme Journal 10:1984-1997.

Diniandreote F, Stegen JC, van Elsas JD, and Salles JF. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America 112:1326-1332.
Drenovsky RE, Vo D, Graham KJ, and Scow KM. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. *Microbial Ecology* 48:424-430.

Dumbrell AJ, Nelson M, Helgason T, Dytham C, and Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. *Isme Journal* 4:337-345.

Edgar RC, Haas BJ, Clemente JC, Quince C, and Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27:2194.

Faust K, and Raes J. 2012. Microbial interactions: from networks to models. *Nature Reviews Microbiology* 10:538.

Ferrenberg S, O'Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, and Williams MW. 2013. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. *Isme Journal* 7:1102-1111.

Fierer N, and Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. *Proceedings of the National Academy of Sciences of the United States of America* 103:626-631.

Ge Y, He JZ, Zhu YG, Zhang JB, Xu Z, Zhang LM, and Zheng YM. 2008. Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? *Isme Journal* 2:254-264.

Gombeer S, Ramond JB, Eckardt FD, Seely M, and Cowan DA. 2015. The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert. *Geobiology* 13:494-505.

Griffiths RI, Thomson BC, James P, Bell T, Bailey M, and Whiteley AS. 2011. The bacterial biogeography of British soils. *Environmental Microbiology* 13:1642.

Hanson CA, Fuhrman JA, Hornerdevine MC, and Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. *Nature Reviews Microbiology* 10:497-506.

Hubbell SP, and BordadeAgua L. 2004. *Unified Neutral Theory of Biodiversity and Biography: reply*: Princeton University Press.

Isabwe A, Yang J R, Wang Y, Liu L M, Chen H H, Yang J. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river[J]. Science of the Total Environment, 2018, 630:658-667.

Jurburg S D, Nunes I, Stegen J C, Roux X L, Priemé A, Salles J F. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. *Scientific Reports*, 2017, 7:45691.

Reeder J, and Knight R. 2010. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. *Nature Methods* 7:668-669.

Liao J, Cao X, Zhao L, Wang J, Gao Z, Caiwang M, and YiHuang. 2016. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. *FEMS Microbiology Ecology* 92:fiw174.

Lozupone CA, and Knight R. 2007. Global patterns in bacterial diversity. *Proceedings of the National Academy of Sciences of the United States of America* 104:11436.

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, and Rio TGD. 2012. Defining the core Arabidopsis thaliana root microbiome. *Nature* 488:86.

Mo Y, Zhang W, Yang J, Lin Y, Yu Z, and Lin S. 2018. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. *Isme Journal* 12:2198-2210.

Myers JA, Chase JM, Jiménez J, Jørgensen PM, Araujomurakami A, Paniaguazambrana N, and Seidel R. 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. *Ecology*
Letters 16:151-157.

Nelson, D.W., Sommers, L.E., Dry combustion method using medium temperature resistance furnace. In: Page, A.L. (Ed.), Methods of Soil Analysis. Part 2: Chemical and Microbial Properties, 2nd edn. American Society of Agronomy, Soil Science Society of America Madison, WI, USA, pp. 1982.539–579.

Ofițeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, and Sloan WT. 2010. Combined niche and neutral effects in a microbial wastewater treatment community. Proceedings of the National Academy of Sciences of the United States of America 107:15345-15350.

Olesen JM, Bascompte J, Dupont YL, and Jordano P. 2007. The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891-19896.

Price MN, Dehal PS, and Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology & Evolution 26:1641-1650.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, and Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35:7188-7196.

Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, and Chu H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry 57:204-211.

Siles JA, and Margesin R. 2017. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Scientific Reports 7:2204.

Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, and Konopka A. 2013. Quantifying community assembly processes and identifying features that impose them. Isme Journal 7:2069-2079.

Stegen JC, Lin X, Fredrickson JK, and Konopka AE. 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology 6:370.

Tian J, Qiao Y, Wu B, Chen H, Li W, Jiang N, Zhang X, and Liu X. 2017. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier. Frontiers in Microbiology 8:1028.

Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, and Lee YK. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. Isme Journal 12.

Tucker CM, Shoemaker LG, Davies KF, Nemergut DR, and Melbourne BA. 2016. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125:778-789.

Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou J, and Jiao N. 2016. Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. Ices Journal of Marine Science 73:865-875.

Woodcock S, Van DG, Christopher J, Bell T, Lunn M, Curtis TP, Head IM, and Sloan WT. 2007. Neutral assembly of bacterial communities. FEMS Microbiology Ecology 62:171-180.

Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM, Gilbert JA, and Chu H. 2014. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiology Ecology 89:281.

Xiong Q, Pan K, Zhang L, Wang Y, Li W, He X, and Luo H. 2016. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern QinghaiïTibet Plateau, southwestern China. Applied Soil Ecology 101:72-83.
Zheng W, Xue D, Li X, Deng Y, Rui J, Feng K, and Wang ZL. 2017. The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis. *Applied Soil Ecology* 120:239-246.

Zhou J, Liu W, Deng Y, Jiang YH, Xue K, He Z, Van Nostrand JD, Wu L, Yang Y, and Wang A. 2013. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. *Mbio* 4:49-52.

Zhou J, and Ning D. 2017. Stochastic Community Assembly: Does It Matter in Microbial Ecology? *Microbiology & Molecular Biology Reviews Mmbr* 81:e00002-00017.
Figure 1 (on next page)

Bar plots indicating the soil physicochemical factors at different sites.
Figure 2

Correlation matrix graph indicating the correlation between soil physicochemical factors. Only the environmental factors with significantly difference represented in the figure.
Figure 3

Microbial community composition and structure.

Relative abundance of the dominant bacterial phyla (a) and family levels (c) across the sites. Venn diagram (b) showing the shared OTUs in all plots. In the heat map (d), the horizontal coordinate represents the sample name, and the vertical coordinate represents the species name. A color gradient is used to represent the proportion of species. The value on each site represent average values of sampling plots.
Figure 4 (on next page)

Bacterial community diversity at the different sites.
Figure 5 (on next page)

RDA of the bacterial communities and the response of these communities to significant soil physicochemical properties.
MRT of bacterial α-diversity data associated with key environmental factors (a). Correlation analysis (b) based on spearman correlation of microbial community composition and soil physicochemical factors.
Figure 7 (on next page)

Variation partitioning analysis showing the percentages of variance in bacterial communities explained by environment factors and spatial variable (PCNM).
Environmental factors

Spatial variable

0.203

0.019

Residuals = 0.786

Values <0 not shown
Figure 8

Network of co-occurring OTUs.

The letters a and d represent the network of the microbial community for LY; b and e for PQG; c and f for WT. Furthermore, a, b and c represent the network analysis colored by phylum, where d, e and f represent the network analysis colored by modular class. A red line indicates a positive interaction between two individual nodes, while a blue line indicates a negative interaction. The size of the nodes corresponds to betweenness centralization values.
Figure 9. Microbial community assembly processes

The β-diversity null model analysis showing the null deviation of the bacterial communities at different sites (a). A null deviation close to zero suggests that stochastic processes are more important in structuring the community, whereas larger positive or negative null deviations suggest that deterministic processes play more important roles. Bar plot indicates that βNTI values varied among sites, but were all greater than +2 (b). Regression analysis of the environmental variables based on the results of the assembly processes parameters (c, d). We used the analysis of variance (ANOVA) to evaluate differences in the different indices. ns: not significantly; * 0.01 < P ≤ 0.05; ** 0.001 < P ≤ 0.01; *** P ≤ 0.001.
R^2 = 0.67, p = 0.00045

R^2 = 0.25, p = 0.025