AN ALGORITHM FOR COMPUTING
THE INTEGRAL CLOSURE

ANURAG K. SINGH AND IRENA SWANSON

Abstract. We present an algorithm for computing the integral closure
of a reduced ring that is finitely generated over a finite field.

Leonard and Pellikaan [4] devised an algorithm for computing the integral
closure of weighted rings that are finitely generated over finite fields. Pre-
vious algorithms proceed by building successively larger rings between
the original ring and its integral closure. [2, 6, 7, 9, 11, 12]. The Leonard-
Pellikaan algorithm instead starts with the first approximation being a
finitely generated module that contains the integral closure, and succes-
sive steps produce submodules containing the integral closure. The weights
in [4] impose strong restrictions; these weights play a crucial role in all steps
of their algorithm. We present a modification of the Leonard-Pellikaan al-
gorithm which works in much greater generality: it computes the integral
closure of a reduced ring that is finitely generated over a finite field.

We discuss an implementation of the algorithm in Macaulay 2, and pro-
vide comparisons with de Jong’s algorithm [2].

1. The algorithm

Our main result is the following theorem; see Remark 1.5 for an algo-
rithmic construction of an element D as below when R is a domain, and for
techniques for dealing with the more general case of reduced rings.

Theorem 1.1. Let R be a reduced ring that is finitely generated over a
computable field of characteristic $p > 0$. Set \overline{R} to be the integral
closure of R in its total ring of fractions. Suppose D is a nonzerodivisor in
the conductor ideal of R, i.e., D is a nonzerodivisor with $D\overline{R} \subseteq R$.

1. Set $V_0 = \frac{1}{D}R$, and inductively define
 \[V_{e+1} = \{ f \in V_e \mid f^p \in V_e \} \text{ for } e \geq 0. \]
 Then the modules V_e are algorithmically constructible.

2. The descending chain
 \[V_0 \supseteq V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots \]
 stabilizes. If $V_e = V_{e+1}$, then V_e equals \overline{R}.

2000 Mathematics Subject Classification. Primary 13B22; Secondary 13A35, 13P99.
A.K.S. was supported by NSF grant DMS 0600819.
Remark 1.2. For each integer \(e \geq 0 \), the module \(DV_e \) is an ideal of \(R \); we set \(U_e = DV_e \) and use this notation in the proof of Theorem 1.1 as well as in the Macaulay 2 code in the following section. The inductive definition of \(U_e = R \) and

\[
U_{e+1} = \{ r \in U_e \mid r^p \in D^{p-1}U_e \} \quad \text{for } e \geq 0.
\]

Proof of Theorem 1.1. (1) By Remark 1.2, it suffices to establish that the ideals \(U_e \) are algorithmically constructible. This follows inductively since

\[
U_{e+1} = U_e \cap \ker (R \xrightarrow{F} R \xrightarrow{\pi} R/D^{p-1}U_e) \quad \text{for } e \geq 0,
\]

where \(F \) is the Frobenius endomorphism of \(R \), and \(\pi \) the canonical surjection.

(2) By construction, one has \(V_{e+1} \subseteq V_e \) for each \(e \). Moreover, it is a straightforward verification that

\[
V_e = \{ f \in V_0 \mid f^p \in V_0 \text{ for each } i \leq e \}.
\]

Suppose \(f \in \overline{R} \). Then \(f^p \in \overline{R} \) for each \(i \geq 0 \), so \(Df^p \in R \). It follows that \(f \in V_e \) for each \(e \).

If \(V_{e+1} = V_e \) for some positive integer \(e \), then it follows from the inductive definition that \(V_{e+i} = V_e \) for each \(i \geq 1 \).

Let \(v_1, \ldots, v_s : R \rightarrow \mathbb{Z} \cup \{ \infty \} \) be the Rees valuations of the ideal \(DR \), i.e., \(v_i \) are valuations such that for each \(n \in \mathbb{N} \), the integral closure of the ideal \(D^nR \) equals

\[
\{ r \in R \mid v_i(r) \geq nv_i(D) \text{ for each } i \}.
\]

Let \(e \) be an integer such that \(p^e > v_i(D) \) for each \(i \). Suppose \(r/D \in V_e \). Then \((r/D)^{p^e} \in V_0 \), so \(r^{p^e} \in D^{p^e-1}R \). It follows that

\[
p^e v_i(r) \geq (p^e - 1)v_i(D)
\]

for each \(i \), and hence that

\[
v_i(r) \geq v_i(D) - v_i(D)/p^e > v_i(D) - 1
\]

for each \(i \). Since \(v_i(r) \) is an integer, it follows that \(v_i(r) \geq v_i(D) \) for each \(i \), and therefore \(r \in D\overline{R} \). But then \(r \) belongs to the integral closure of the ideal \(D\overline{R} \) in \(\overline{R} \). Since principal ideals are integrally closed in \(\overline{R} \), it follows that \(r \in D\overline{R} \), whence \(r/D \in \overline{R} \).

□

Remark 1.3. We claim that if \(R \) is an integral domain satisfying the Serre condition \(S_2 \), then each module \(V_e \) is \(S_2 \) as well.

Proceed by induction on \(e \). Without loss of generality, assume \(R \) is local. Let \(x, y \) be part of a system of parameters for \(R \). Suppose \(yv \in xV_{e+1} \) for an element \(v \in V_{e+1} \). Then \(yv/x \in V_{e+1} \), i.e., \(yv/x \in V_e \) and \(y^pv^p/x^p \in V_e \), or equivalently, \(yv \in xV_e \) and \(y^pv^p \in x^pV_e \). Since \(V_e \) is \(S_2 \) by the inductive hypothesis, it follows that \(v \in xV_e \) and \(v^p \in x^pV_e \), hence \(v \in xV_{e+1} \).
Remark 1.4. In the notation of Theorem 1.1 suppose e is an integer such that $V_e = V_{e+1}$. We claim that the integral closure of a principal ideal aR is

$$\{ r \in R \mid Dr^p \subseteq a^p R \text{ for each } i \leq e+1 \}.$$

To see this, suppose r is an element of the ideal displayed above. Then $Dr^p = ga^p$ for some $g \in R$. Since $D(r/a)^p \subseteq R$ for each $i \leq e$, it follows that $D(g/D)^p \subseteq R$ for each $i \leq e$. Hence $g/D \in V_e$, which implies that $g/D \in V_i$ for each i. Hence $D(r/a)^p \subseteq R$ for each i, equivalently $r \in aR$.

Remark 1.5. Let R be a reduced ring that is finitely generated over a perfect field K of prime characteristic p. We describe how to algorithmically obtain a nonzerodivisor D in the conductor ideal of R.

Case 1. Suppose R is an integral domain. Consider a presentation of R over K, say $R = K[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$. Set $h = \text{height}(f_1, \ldots, f_m)$. Then the determinant of each $h \times h$ submatrix of the Jacobian matrix $(\partial f_i/\partial x_j)$ multiplies R into R; this may be concluded from the Lipman-Sathaye Theorem ([5] or [10, Theorem 12.3.10]) as discussed in the following paragraph. At least one such determinant has nonzero image in R, and can be chosen as the element D in Theorem 1.1. Other approaches to obtaining an element D are via the proof of [10, Theorem 3.1.3], or equivalently, via the results from Stichtenoth’s book [8].

Let J be the ideal of R generated by the images of the $h \times h$ submatrices of $(\partial f_i/\partial x_j)$. We claim that J is contained in the conductor of R. By passing to the algebraic closure, assume K is algebraically closed. After a linear change of coordinates, assume that the x_i are in general position, specifically, that for any $n-h$ element subset Λ of $\{x_1, \ldots, x_n\}$, the extension $K[\Lambda] \subseteq R$ is a finite integral extension, equivalently that $K[\Lambda]$ is a Noether normalization of R. By the Lipman-Sathaye Theorem, the relative Jacobian $J_{R/K[\Lambda]}$ is contained in the conductor ideal. The claim now follows since, as Λ varies, the relative Jacobian ideals $J_{R/K[\Lambda]}$ generate the ideal J.

Case 2. In the case where R is a reduced equidimensional ring, one may proceed as above and choose D to be the determinant of an $h \times h$ submatrix of $(\partial f_i/\partial x_j)$, and then test to see whether D is a nonzerodivisor. If it turns out that D is a zerodivisor, set

$$I_1 = (0 :_R D) \quad \text{and} \quad I_2 = (0 :_R I_1).$$

Then each of R/I_1 and R/I_2 is a reduced equidimensional ring, with fewer minimal primes than R, and

$$\overline{R} = \overline{R/I_1} \times \overline{R/I_2}.$$

Hence \overline{R} may be computed by computing the integral closure of each R/I_i.

Case 3. If R is a reduced ring that is not necessarily equidimensional, one may compute the minimal primes P_1, \ldots, P_n of R using an algorithm for primary decomposition—admittedly an expensive step—and then compute \overline{R} using Case 1 and the fact that

$$\overline{R} = \frac{R}{P_1} \times \cdots \times \frac{R}{P_n}.$$

2. Implementation and examples

Here is our code in Macaulay 2 [3], which uses this algorithm to compute the integral closure.

Input: An integral domain R that is finitely generated over a finite field, and, optionally, a nonzero element D of the conductor ideal of R.

Output: A set of generators for \overline{R} as a module over R.

Macaulay 2 function:

```plaintext
icFracP = method(Options=>{conductorElement => null})
icFracP Ring := List => o -> (R) -> (
P := ideal presentation R;
c := codim P;
S := ring P;
if o.conductorElement === null then (
  J := promote(jacobian P,R);
n := 1;
det1 := ideal(0_R);
  while det1 == ideal(0_R) do (n = n+1);  
  D := det1_0;
) else D = o.conductorElement;
p := char(R);
K := ideal(1_R);
U := ideal(0_R);
F := apply(generators R, i-> i^p);
while (U != K) do (U = K;
  L := U*ideal(D^(p-1));
  f := map(R/L,R,F);
  K = intersect(kernel f, U);
);  
U = mingens U;
if numColumns U == 0 then {1_R}
else apply(numColumns U, i-> U_(0,i)/D)
)
```

Since the Leonard-Pellikaan algorithm uses the Frobenius endomorphism, it is less efficient when the characteristic of the ring is a large prime. In the examples that follow, the computations are performed on a MacBook Pro computer with a 2 GHz Intel Core Duo processor; the time units are seconds. The comparisons are with de Jong’s algorithm [2] as implemented in the program ICfractions in Macaulay 2, version 1.1.
Example 2.1. Let \(\mathbb{F}_2[x, y, t] \) be a polynomial ring over the field \(\mathbb{F}_2 \), and set \(R = \mathbb{F}_2[x, y, x^2t, y^2t] \). Then \(R \) has a presentation
\[
\mathbb{F}_2[x, y, u, v]/(x^2v - y^2u),
\]
which shows, in particular, that \(x^2 \) is an element of the conductor ideal. Setting \(D = x^2 \), the algorithm above computes that the integral closure of \(R \) is generated, as an \(R \)-module, by the elements 1 and \(xyt \). Tracing the algorithm, one sees that \(V_0 \) is not equal to \(V_1 \), that \(V_1 \) is not equal to \(V_2 \), and that \(V_2 = V_3 \). Indeed, these \(R \)-modules are
\[
V_0 = \frac{1}{x^2}R, \quad V_1 = \frac{1}{x}R + ytR, \quad V_e = R + ytR \quad \text{for } e \geq 2.
\]

As is to be expected, the algorithm is less efficient as the characteristic of the ground field increases:

characteristic \(p \)	2	3	5	7	11	13	17	37	97
icFracP	0.04	0.03	0.04	0.04	0.04	0.05	0.05	0.13	0.59
icFractions	0.08	0.09	0.09	0.09	0.14	0.15	0.15	0.15	0.15

We remark that \(R \) is an affine semigroup ring, so its integral closure may also be computed using the program \texttt{normaliz} of Bruns and Koch [1].

Example 2.2. Consider the hypersurface
\[
R = \mathbb{F}_p[u, v, x, y, z]/(u^2x^4 + uvy^4 + v^2z^4).
\]
It is readily verified that \(R \) is a domain, and that \(t = ux^4/v \) is integral over \(R \). The ring \(R[t] \) has a presentation
\[
\mathbb{F}_p[u, v, x, y, z, t]/I,
\]
where \(I \) is the ideal generated by the \(2 \times 2 \) minors of the matrix
\[
\begin{pmatrix}
u & t & -z^4 \\
v & x^4 & t + y^4
\end{pmatrix}.
\]
Since the entries of the matrix form a regular sequence in \(\mathbb{F}_p[u, v, x, y, z, t] \), the ring \(R[t] \) is Cohen-Macaulay. Moreover, if \(p \neq 2 \), then the singular locus of \(R[t] \) is \(V(t, y, xz, vz, ux) \) which has codimension 2, so \(R[t] \) is normal.

If \(p = 2 \) then the ring \(R[t] \) is not normal; indeed, in this case, the integral closure of \(R \) is generated, as an \(R \)-module, by the elements
\[
1, \quad \sqrt{uv}, \quad \frac{ux + z\sqrt{uv}}{y}, \quad \frac{vz + x\sqrt{uv}}{y}, \quad \frac{uxz + z^2\sqrt{uv}}{uy}.
\]
For small values of \(p \), these computations may be verified on Macaulay 2 using either algorithm; some computations times are recorded next. Here, and in the next example, * denotes that the computation did not terminate within six hours.
Table 2. Integral closure of $\mathbb{F}_p[u, v, x, y, z]/(u^2x^4 + uvy^4 + v^2z^4)$

characteristic p	2	3	5	7	11
icFracP	0.07	0.22	9.67	143	12543
icFractions	1.16	*	*	*	*

Example 2.3. Consider the hypersurface

$$R = \mathbb{F}_p[u, v, x, y, z]/(u^2x^p + 2uvy^p + v^2z^p),$$

where p is an odd prime. We shall see that R has $p + 1$ generators as an R-module, but first some comparisons:

Table 3. Integral closure of $\mathbb{F}_p[u, v, x, y, z]/(u^2x^p + 2uvy^p + v^2z^p)$

characteristic p	3	5	7	11	13	17	19	23
icFracP	0.07	0.09	0.27	1.81	4.89	26	56	225
icFractions	1.49	75.00	4009	*	*	*	*	*

We claim that R is generated, as an R-module, by the elements

$$1, \sqrt[1/p]{y^2 - xz}, \text{ and } u^{i/p}v^{(p-i)/p} \text{ for } 1 \leq i \leq p - 1.$$

It is immediate that these elements are integral over R; to see that they belong to the fraction field of R, note that

$$\sqrt[1/p]{y^2 - xz} = \pm \frac{uy^p + vz^p}{u(y^2 - xz)^{(p-1)/2}}$$

and that, by the quadratic formula, one also has

$$(\frac{u}{v})^{1/p} = -\frac{y \pm \sqrt{y^2 - xz}}{x}.$$

Moreover, using (2.3.2), it follows that

$$v^{1/p}\sqrt[1/p]{y^2 - xz} = \pm(xu^{1/p} + yv^{1/p}),$$

and hence the R-module generated by the elements (2.3.1) is indeed an R-algebra. It remains to verify that the ring

$$A = R[\sqrt[1/p]{y^2 - xz}, u^{i/p}v^{(p-i)/p} | 1 \leq i \leq p - 1]$$

is normal. For this, it suffices to verify that

$$B = R[\sqrt[1/p]{y^2 - xz}, u^{1/p}, v^{1/p}]$$

is normal, since A is a direct summand of B as an A-module: use the grading on B where deg $x = \text{deg } y = \text{deg } z = 0$ and deg $u^{1/p} = 1 = \text{deg } v^{1/p}$, in which case A is the pth Veronese subring $\bigoplus_{i \in \mathbb{N}} B_{ip}$. The ring B has a presentation $\mathbb{F}_p[x, y, z, d, s, t]/I$, where I is generated by the 2×2 minors of the matrix

$$\begin{pmatrix} y + d & z & s \\ x & y - d & -t \end{pmatrix},$$
and $s \mapsto u^{1/p}$, $t \mapsto v^{1/p}$, $d \mapsto \sqrt{y^2 - xz}$. But then—after a change of variables—B is a determinantal ring, and hence normal.

Acknowledgment. We are very grateful to Douglas Leonard for drawing our attention to [1] and answering several questions, to Wolmer Vasconcelos for his feedback, and to Amelia Taylor for valuable discussions and help with Macaulay 2.

REFERENCES

[1] W. Bruns and R. Koch, Computing the integral closure of an affine semigroup, Univ. Iagel. Acta Math. 39 (2001), 59–70.
[2] T. de Jong, An algorithm for computing the integral closure, J. Symbolic Comput. 26 (1998), 273–277.
[3] D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/
[4] D. A. Leonard and R. Pellikaan, Integral closures and weight functions over finite fields, Finite Fields Appl. 9 (2003), 479–504.
[5] J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199–222.
[6] A. Seidenberg, Construction of the integral closure of a finite integral domain, Rend. Sem. Mat. Fis. Milano 40 (1970), 100–120.
[7] A. Seidenberg, Construction of the integral closure of a finite integral domain. II, Proc. Amer. Math. Soc. 52 (1975), 368–372.
[8] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993.
[9] G. Stolzenberg, Constructive normalization of an algebraic variety, Bull. Amer. Math. Soc. 74 (1968), 595–599.
[10] I. Swanson and C. Huneke, Integral closure of ideals, rings, and modules, London Math. Soc. Lecture Note Ser. 336, Cambridge Univ. Press, Cambridge, 2006.
[11] W. Vasconcelos, Computing the integral closure of an affine domain, Proc. Amer. Math. Soc. 113 (1991), 633–638.
[12] W. Vasconcelos, Divisorial extensions and the computation of integral closures, J. Symbolic Comput. 30 (2000), 595–604.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 SOUTH 1400 EAST, SALT LAKE CITY, UT 84112, USA
E-mail address: singh@math.utah.edu

DEPARTMENT OF MATHEMATICS, REED COLLEGE, 3203 SE WOODSTOCK BLVD, PORTLAND, OR 97202
E-mail address: iswanson@reed.edu