Figure S1. Expression patterns of rice OsCCRs in response to drought stress. (a) A simplified schematic representation of lignin biosynthesis through the phenylpropanoid pathway. (b) Phylogenetic tree created using the neighbor-joining method in CLC sequence viewer using full-length amino acid sequences of the rice OsCCR proteins. Bootstrap support (100 repetitions) is shown for each node. (c) OsCCRs expression patterns in the rice roots of two-week-old seedlings. OsUbi1 expression was used as an internal control. Relative expression level was calculated by OsCCR1 expression level. (d) OsCCRs expression patterns of rice roots in response to drought stress. Two-week-old seedlings were exposed to air-drying (drought) for the indicated time points. OsUbi1 expression was used as an internal control. Relative expression level was calculated by OsCCR1 expression level at 0h.
Figure S2. Protein levels in PGD1::OsNAC4-MYC transgenic plants. (a) Protein and transcript levels in OsNAC5 transgenic plants. Levels of MYC-OsNAC5 (nMYC) and OsNAC5-MYC (cMYC) fusion protein in PGD1::MYC-OsNAC5 plants and PGD1::OsNAC5-MYC as determined by immunoblot analysis using α-MYC antibody. Fifteen µg of total soluble protein was separated by SDS-PAGE in duplicates. The protein loading is shown by CBB (Coomassie Brilliant Blue) staining in the lower panel. The NT (non-transgenic plants. (b) Fragmented chromatin of NT and PGD1::OsNAC5-MYC #3 plants for chromatin immunoprecipitation analysis.
Figure S3. Vectors used in this study. (a) Vector list used in the experiments including chromatin immunoprecipitation, subcellular localization, enzyme activity analysis, and binary vectors for generating the transgenic plants. (b) Guide RNA and PAM sequence location in OsCCR10 coding sequence.
Figure S4. Lignin contents of NT plants (Dongjin) under drought conditions. Lignin contents in 2-month-old NT plants. Data bars represent the mean ±SD of three biological replicates (n = 3), each with two technical replicates. Asterisks indicate significant differences compared with plants before drought treatment (0 day) (*P < 0.05, one-way ANOVA).
Table S1 List of primers used in this study.

Oligo name	5’ to 3’ sequence	Purpose
OwCCR10_F	ATGCATGTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR10_R	AGCGTCATGGATGATGTTTAAGAAGACG	qRT-PCR
OwCCR2_F	GTGCACCAACATGACAGAAGACG	qRT-PCR
OwCCR2_R	ACCCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR3_F	GAATTCTGCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR3_R	ACCCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR4_F	ACCCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR4_R	ACCCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR5_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR5_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR6_F	AGCGTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR6_R	AGCGTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR7_F	GCGTTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR7_R	GCGTTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR8_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR8_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR9_F	ACGCGTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR9_R	ACGCGTCATGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR10_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR10_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR11_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR11_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR12_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR12_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR13_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR13_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR14_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR14_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR15_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR15_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR16_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR16_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR17_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR17_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR18_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR18_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR19_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR19_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR20_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR20_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR21_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR21_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR22_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR22_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR23_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR23_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR24_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR24_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR25_F	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
OwCCR25_R	TACCGGCTGGGAGACATTGAGATGTTTA	qRT-PCR
Table S2. *GOS2::OsCCR10* and *RCc3::OsCCR10* agronomic traits transgenic rice plants under normal and drought conditions. (Asterisks indicate significant differences compared with NT (*P < 0.05, **P < 0.01; Student’s t-test))

Normal condition	Culm length (cm)	Panicle length (cm)	No.of panicles (/hill)	No.of total spikelets (/hill)	No.of spikelets (/panicle)	Filling rate (%)	Total grain weight (g)	1000 GW (g)
NT (Dongjin)	78.71	20.14	12.57	1093.21	89.25	88.80	22.35	23.06
GOS2::OsCCR10-8	76.29	19.00*	11.71	864.14	71.93*	79.04*	15.66*	22.87
P val	0.314	0.044	0.547	0.137	0.026	0.037	0.045	0.744
GOS2::OsCCR10-9	79.00	20.29	12.14	988.14	84.03	75.69**	15.98	21.22
P val	0.782	0.826	0.815	0.516	0.646	0.005	0.063	0.070
GOS2::OsCCR10-13	79.00	19.43	11.14	1205.43	106.04*	81.45	22.62	22.82
P val	0.751	0.185	0.313	0.528	0.030	0.059	0.943	0.691
RCc3::OsCCR10-2	78.00	20.00	11.00	1049.00	99.55	88.43	22.38	23.78
P val	0.579	0.829	0.418	0.773	0.295	0.891	0.995	0.348
RCc3::OsCCR10-16	77.71	19.00	12.57	1280.71	102.06	73.46*	20.11	23.89
P val	0.608	0.063	1.000	0.115	0.090	0.048	0.390	0.306
RCc3::OsCCR10-27	78.17	20.50	10.83	1280.67	118.09*	87.32	27.90	24.81*
P val	0.769	0.631	0.173	0.247	0.021	0.449	0.162	0.021
Drought condition	Culm length (cm)	Panicle length (cm)	No. of panicles (hill)	No. of total spikelets (hill)	No. of spikelets (panicle)	Filling rate (%)	Total grain weight (g)	1000 GW (g)
-------------------	------------------	---------------------	------------------------	-------------------------------	----------------------------	------------------	------------------------	-------------
NT (Dongjin)	69.74	16.76	19.00	1335.53	72.26	40.44	11.14	21.08
GOS2::OsCCR10-8	64.33	17.03	14.50*	827.50**	57.39	43.19*	8.71	27.37
P val	0.061	0.815	0.036	0.007	0.059	0.023	0.276	0.392
GOS2::OsCCR10-9	67.33	18.75*	15.43	987.57	62.50	47.93*	9.91	21.69
P val	0.370	0.025	0.126	0.098	0.187	0.045	0.553	0.394
GOS2::OsCCR10-13	67.10	18.40*	16.40	1232.60	82.94	39.94	10.41	19.89
P val	0.573	0.031	0.485	0.589	0.392	0.930	0.799	0.357
RCc3::OsCCR10-2	71.67	16.25	20.17	1379.17	70.21	46.40*	13.75*	21.88
P val	0.549	0.731	0.514	0.760	0.808	0.027	0.037	0.257
RCc3::OsCCR10-16	65.90	17.30	17.80	1435.60*	81.82**	50.23**	15.39*	21.95
P val	0.231	0.444	0.460	0.018	0.009	0.034	0.023	0.159
RCc3::OsCCR10-27	70.08	19.17**	17.67	1340.67	74.67*	67.64**	19.89**	22.08
P val	0.873	0.009	0.448	0.982	0.048	0.000	0.010	0.140