1-7-2009

Alterations in gene expression and sensitivity to genotoxic stress following HdmX or Hdm2 knockdown in human tumor cells harboring wild-type p53

Katherine Heminger
Michael Markey
Meldrick Mpagi
Steven J. Berberich

University of Missouri-St. Louis, sjberberich@umsl.edu

Follow this and additional works at: https://irl.umsl.edu/epir

Part of the Medicine and Health Sciences Commons

Recommended Citation
Heminger, Katherine; Markey, Michael; Mpagi, Meldrick; and Berberich, Steven J., "Alterations in gene expression and sensitivity to genotoxic stress following HdmX or Hdm2 knockdown in human tumor cells harboring wild-type p53" (2009). Educator Preparation & Leadership Faculty Works. 88.
DOI: https://doi.org/10.18632/aging.100008
Available at: https://irl.umsl.edu/epir/88

This Article is brought to you for free and open access by the College of Education at IRL @ UMSL. It has been accepted for inclusion in Educator Preparation & Leadership Faculty Works by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
Alterations in gene expression and sensitivity to genotoxic stress following HdmX or Hdm2 knockdown in human tumor cells harboring wild-type p53

Katherine Heminger, Michael Markey, Meldrick Mpagi, and Steven J. Berberich

Wright State University Boonshoft School of Medicine Biochemistry & Molecular Biology Department, Dayton, OH 45435, USA
1 current address: Procter and Gamble Co., Cincinnati OH 45241, USA

Running title: HdmX/2 loss inhibits tumor cell proliferation
Key words: p53, HdmX, Hdm2, RNAi, gene expression profiling
Correspondence: Steven J. Berberich, PhD, Wright State University Boonshoft School of Medicine Biochemistry & Molecular Biology Department, 3640 Colonel Glenn Hwy., Dayton, OH 45435
Received: 11/18/08; accepted: 01/03/09; published on line: 01/07/09
E-mail: steven.berberich@wright.edu

Abstract: While half of all human tumors possess p53 mutations, inactivation of wild-type p53 can also occur through a variety of mechanisms that do not involve p53 gene mutation or deletion. Our laboratory has been interested in tumor cells possessing wild-type p53 protein and elevated levels of HdmX and/or Hdm2, two critical negative regulators of p53 function. In this study we utilized RNAi to knockdown HdmX or Hdm2 in MCF7 human breast cancer cells, which harbor wild-type p53 and elevated levels of HdmX and Hdm2 then examined gene expression changes and effects on cell growth. Cell cycle and growth assays confirmed that the loss of either HdmX or Hdm2 led to a significant growth inhibition and G1 cell cycle arrest. Although the removal of overexpressed HdmX/2 appears limited to an anti-proliferative effect in MCF7 cells, the loss of HdmX and/or Hdm2 enhanced cytotoxicity in these same cells exposed to DNA damage. Through the use of Affymetrix GeneChips and subsequent RT-qPCR validations, we uncovered a subset of anti-proliferative p53 target genes activated upon HdmX/2 knockdown. Interestingly, a second set of genes, normally transactivated by E2F1 as cells transverse the G1-S phase boundary, were found repressed in a p21-dependent manner following HdmX/2 knockdown. Taken together, these results provide novel insights into the reactivation of p53 in cells overexpressing HdmX and Hdm2.

INTRODUCTION

Only half of all human tumors contain mutations in the p53 tumor suppressor gene [1], with the other half retaining wild-type p53 but possessing defects in the expression of p53 regulatory proteins and pathways. Under non-stress conditions, p53 protein is maintained at a low basal level by constant ubiquitination and proteasomal degradation [2]. Upon DNA damage or various types of cellular stress, p53 is stabilized and functions as a transcription factor to induce genes involved in cell cycle arrest, apoptosis, and DNA repair [3]. The stringent regulation of p53 involves a complex network of proteins, and is critical for maintaining genomic stability and suppressing tumor formation.

Hdm2 and its structural homologue HdmX represent two essential negative regulators of p53 as demonstrated by their embryonic lethality in knockout mice and subsequent rescue by concurrent elimination of p53 [4]. Hdm2 inactivates p53 function through direct association resulting in an inhibition of transactivation [5] and, through its E3 ligase activity targeting p53, by ubiquitin-mediated proteasome degradation [6, 7]. While HdmX shows conservation in the Hdm2 E3 ligase ring finger domain through which it
can heterodimerize with Hdm2 [8, 9]. HdmX lacks the ability to ubiquitinate p53 in vivo [10, 11] and thus can only antagonize p53 transactivation [12]. The heterodimerization of Hdm2 and HdmX also plays a critical role in the response to DNA damage enabling Hdm2 to promote the ubiquitination and rapid proteasomal degradation of HdmX, thereby facilitating the tumor suppressor activity of p53 [13-15]. Thus, the interactions between p53, Hdm2 and HdmX are critical for complete regulation of p53 [4].

The overexpression of either Hdm2 or HdmX can inhibit the activity of p53 and directly contribute to tumor formation. It is not surprising that either one or both proteins are found overexpressed in many human tumors and tumor cell lines which harbor wild-type p53 [16]. Diverse approaches to activate the wild-type p53 in these tumors include the use of small molecule antagonists like Nutlin to inhibit the Hdm2-p53 interaction [17-19], and the use of antisense oligonucleotides, antibodies, and small interfering RNAs directed at Hdm2 or HdmX [20-23]. Recent findings suggest that Hdm2 and HdmX are specific independent therapeutic targets for activating wild-type p53 and that anti-cancer approaches that target both Hdm2 and HdmX should be considered as a means of treatment for tumors [16, 18, 24].

This study undertook an examination of gene expression alterations and the biological effects resulting from RNAi silencing of HdmX and Hdm2 in a breast cancer cell line overexpressing both proteins. Unlike previous studies examining only the biological effect of either HdmX or Hdm2 loss, this study focuses on a cell line where both proteins are overexpressed and further compliments those previous studies with a systematic examination of gene expression changes following loss of HdmX or Hdm2. Interestingly, only p53 target genes primarily associated with cell cycle arrest were induced. More striking was the repression of a large group of E2F-regulated genes upon HdmX/2 knockdown. Using siRNA approaches targeting p21, we were able to show that these E2F2-regulated genes were repressed through p53 activation of p21. Furthermore, cell proliferation and colony formation assays confirmed that loss of HdmX or Hdm2 inhibited tumor cell growth and could sensitize these cells to treatment with doxorubicin. Taken together, these results suggest that in cells where both Hdm2 and HdmX are overexpressed, removal of one leads to an anti-proliferative effect in tumor cells harboring wild-type p53 and induction of p53 cell cycle arrest genes that negatively feedback onto the E2F pathway.

RESULTS

RNAi knockdown of Hdm2 and HdmX in MCF7 cells

Given that HdmX and Hdm2 are overexpressed in approximately 17% of human tumors [16] the majority of which possess wild-type p53, this study set out to examine how loss of Hdm2/X affected gene expression and tumor cell growth. MCF7, which possess wild-type p53 [25] and elevated levels of both HdmX and Hdm2 (Figure 1A) was the tumor cell line used in these studies. To inactivate HdmX and Hdm2 we employed siRNA targeting each gene as described in the materials and methods.

Before performing the Affymetrix GeneChip experiments we developed a triple transfection protocol that led to over 90% of the MCF7 cells taking up the siRNA (data not shown). Next, the effectiveness of the knockdown was assessed using RT-qPCR (data not shown) and Western blotting. Following the triple transfection protocol HdmX and p53 protein levels were undetectable with Hdm2 showing a greater than 80% reduction in protein expression (Figure 1B). As expected, the loss of either HdmX or Hdm2 led to an increase in the levels of p21. This p21 increase is p53-dependent since no increase in p21 protein levels was detected upon concurrent knockdown of HdmX and p53. While it has been suggested that Hdm2 controls the levels of p53 in non-stressed cells [26, 27], in our hands MCF7 cells showed only a slight increase in p53 protein levels following the combined loss of HdmX and Hdm2. The inability of Hdm2 knockdown to result in an increase in p53 protein could be the result of MCF7 cells harboring an elevated level of HdmX. Consistent with this suggestion, the treatment of MCF7 cells with Nutlin leads to increased p53 protein levels through loss of Hdm2 binding to p53 and concurrent Hdm2 mediated degradation of HdmX [28].

Loss of Hdm2 and HdmX triggers inhibition of cell growth

Other groups have reported that in cells where wild-type p53 is kept in check by overexpression of HdmX or Hdm2, their inhibition can trigger alterations in cell growth [29] and in some conditions apoptosis [30]. To assess the growth properties of RNAi knockdown of p53 regulators Hdm2 and HdmX, siRNA-transfected MCF7 cells were plated at low density in 6 well plates and allowed to grow for an additional 10 days. While transfection of siCon or sip53 resulted in only minimal changes in cell growth (Figure 2B), knockdown of either
HdmX or Hdm2, alone or in combination led to significantly fewer colonies (Figure 2A) and suppressed cell growth when compared to siCon (Figure 2B). This decrease in colony formation correlated with an increase in G1 arrest and not apoptosis (i.e. sub-G1) as determined by flow cytometry (data not shown).

Figure 1. (A) RT-PCR analysis of hdmX and hdm2 gene expression in various human cell lines. The endogenous levels of hdmX and hdm2 were determined relative to H1299 cells. All samples were normalized to GAPDH. (B) RNAi knockdown of HdmX or Hdm2 triggers p53-dependent p21 induction. Western blot analysis of indicated proteins from the various siRNA or doxorubicin (Dox) treated MCF7 cells. Knockdowns of the indicated proteins were greater than 80%. Protein extracts were made 24 hours after the last siRNA transfection or treatment with 5 μg/ml doxorubicin.
Loss of HdmX or Hdm2 sensitizes MCF7 cells to DNA damage

Several recent studies using Nutlin and various DNA damaging agents reported that blocking Mdm2:p53 association led to increased chemosensitivity to DNA damaging agents [31, 32]. To examine whether knockdown of HdmX and Hdm2 can also elicit increased cytotoxicity to DNA damage, MCF7 cells were transfected with the indicated siRNA leading to alterations of gene expression (Figure 3B). Cells were then treated with varying doses of doxorubicin and cell viability assessed. siRNAs targeting HdmX or Hdm2 increased doxorubicin cytotoxicity, while removing both HdmX and Hdm2 led to the greatest level of chemosensitivity (Figure 3A). Enhanced chemosensitivity was also observed in cisplatin treatment of siHdmX or siHdm2 MCF7 cells (data not shown).

Gene expression profiles of MCF7 cells lacking HdmX or Hdm2

Having established an effective knockdown approach with effects on cell growth and increased sensitivity to DNA damage, we performed an Affymetrix GeneChip experiment to assess how loss of HdmX or Hdm2 affected global gene expression in MCF7 cells. Each RNAi transfection was performed in three separate biological replicates. The data analysis was carried out using GeneSpring GX software. Given the similarity of biological function uncovered in the previous experiments we focused our informatics on genes commonly altered following RNAi treatment with siHdmX or siHdm2. In summary, .cel files were normalized using GCRMA, genes filtered by ANOVA and fold change, and genes significantly altered by both siHdmX and siHdm2 but not siHdmX + sip53 identified (see materials and methods for detailed approach). From this approach we uncovered 394 gene alterations common to knockdown of both siHdmX and siHdm2 (Table 1).

p53 activation following loss of HdmX or Hdm2

The initial examination of the 394 genes focused on those genes (n=222) that were increased following siHdmX or siHdm2 treatment relative to siCon. Thirteen genes were identified that were known p53-regulated genes (Figure 4). As expected these genes increased with siHdmX or siHdm2 treatment but had expression levels comparable or lower than siCon when treated with siHdmX + sip53 or sip53. Interestingly, with the exception of Fas, this list of p53 target genes consisted predominately of genes encoding proteins involved in cell cycle arrest or DNA repair. Consistent with a model whereby p53 proapoptotic target genes require p53 that is phosphorylated at serine 46 by HIPK2 [33-35], we observed no detectable phosphorylation at serines 6, 15, 20, 46, or 392 following the RNAi transfection protocol employed in these studies (data not shown).

To confirm these results, we performed RT-qPCR using TaqMan primers targeting five known p53 target genes, three of which were identified in our analysis. p21, BTG2 and ACTA2 are p53 target genes that are associated with cell cycle arrest or growth inhibition [36-38], while Hdm2 is a negative regulator of p53 and Noxa a pro-apoptotic factor not observed in our list of.
altered genes [39]. MCF7 cells were either mock transfected (Mock), transfected with siRNA that does not target any human gene (siCon) or transfected with siRNA to HdmX or Hdm2 either alone or in combination. The results in Figure 5 demonstrate that relative to siCon, knockdown of HdmX led to significant increases in hdm2, p21, BTG2 and ACTA2 gene expression. No significant change in gene expression was observed with Noxa, which is consistent with our GeneChip results. With the obvious exception of hdm2, siRNA-targeting Hdm2 led to similar alterations in gene expression (Figure 5). Finally, when both HdmX and Hdm2 were eliminated, the levels of the cell cycle arrest genes p21, BTG2 and ACTA2 increased either synergistically or additively while levels of Noxa remained unchanged. These results validate our GeneChip data that p53-target genes were induced upon HdmX or Hdm2 knockdown and that several of these genes encode proteins involved in the cell cycle arrest.

p53 upregulation of p21 leads to global repression of E2F regulated genes

After searching for genes that were directly upregulated by p53 we next evaluated those genes that were repressed (N=172) following HdmX and Hdm2 knockdown (Figure 7). Within the list of downregulated genes were a set of genes that encode proteins involved in G1-S phase transition, the majority of which were known E2F1 regulated genes. It is concomitant decrease in both CCNA2 and E2F1 (Figure 7). In contrast, loss of Hdm2/X and p21 completely abrogated CCNA2 and E2F1 repression consistent with p53 activation inactivating E2F1 transactivation via p21 induction.

Figure 4. GeneChip expression of 13 known p53-regulated genes that were induced by knockdown of either siHdmX or siHdm2. Y-axis represents the average fold change (log2) for each of the genes in the indicated siRNA transfections relative to siCon (X-axis, conditions labeled at the top of the chart).
DISCUSSION

As an essential tumor suppressor it is no surprise that human tumors demonstrate a diverse array of genetic mechanisms to inactivate p53 function. Central to this present study are tumors where one or both of the negative regulators of p53, Hdm2 and HdmX, are overexpressed leading to loss of p53 activity. Previous studies have focused on Hdm2 overexpression, where a small molecule inhibitor Nutlin 3 has proven to activate wild-type p53 in cell lines with elevated Hdm2, triggering apoptosis when combined with genotoxic agents that do not function as anti-mitotics [44]. Unfortunately, Nutlins have not proven as effective in tumors where HdmX is overexpressed [18, 45-47], suggesting the need for additional approaches aimed at blocking the HdmX:p53 association particularly given the recent observation of HdmX overexpression in retinoblastoma [48].

Here we have employed RNAi approaches and DNA microarrays to better understand the activation of p53 in cells overexpressing Hdm2 and HdmX. In MCF7 cells a growth arrest with no detectable apoptosis was observed following knockdown of either Hdm2 or HdmX (Figure 2 and data not shown). While loss of either HdmX or Hdm2 was sufficient to trigger an anti-proliferative effect, the combined loss of both HdmX and Hdm2 resulted in a more significant growth inhibition.

Even though this RNAi approach appears to activate p53 without triggering its phosphorylation (data not shown), the loss of either HdmX or Hdm2 did effectively sensitize the cells to doxorubicin with the loss of both Hdm2 and HdmX being most sensitive to DNA damage (Figure 3). Surprisingly our results showed only a modest elevation of endogenous p53 levels following loss of HdmX and Hdm2 (Figure 1). This result maybe unique to MCF7 cells which harbor elevated Hdm2 and HdmX, in contrast to most tumor cell lines with wild-type p53 that possessed only elevated Hdm2 (Figure 1A). Consistent with the need for only one negative regulator to be elevated 65% of retinoblastoma tumors overexpress HdmX and possess wild-type p53 [48]. Based on our previous HdmX overexpression studies [10] we would predict that the overexpression of HdmX might inhibit Hdm2 degradation of p53 in MCF7 cells and thus could explain why modulating Hdm2 levels in MCF7 cells has no dramatic effect on p53 levels.

The DNA microarray experiment directly tested whether HdmX or Hdm2 knockdown triggered an increase in p53-regulated genes. While 394 genes were...
significantly altered by either HdmX or Hdm2 knockdown (Table 1), only a small group was previously identified p53 targets (Figure 4). A few of the remaining genes induced by HdmX or Hdm2 loss are likely novel p53 regulated genes (S. Berberich, personal communication) but most probably represent downstream effects of the cell cycle arrest induced by p53. Within the 13 identified p53 target genes it is noteworthy that only one apoptotic gene (Fas) was found activated by loss of either HdmX or Hdm2. Upon careful examination of 16 known p53 pro-apoptotic genes we found that several of them were repressed following p53 knockdown, suggesting that their failure to be induced by loss of HdmX or Hdm2 was not a cell-type specific phenotype. Rather, we propose that the non-genotoxic release of p53 from Hdm2 of HdmX results in a preferential activation of growth arrest target genes, like p21 (Figure 5). This model is consistent with recent work suggesting that p53 promoter selection is dependent on its phosphorylation [49].

While this report focused on genes commonly regulated by HdmX and Hdm2, it is worth mentioning that within genes uniquely regulated by either HdmX or Hdm2 we did not observe any additional p53 regulated genes (M. Markey, personal communication). The common biological effects of HdmX or Hdm2-loss and significant overlap of gene expression patterns are in contrast to recent in vivo studies where the knockout of Mdm2 or MdmX in adult mouse tissues lead to non-overlapping roles in regards to regulating p53 activity [51]. We believe these findings point to either differences in cell culture verses tissue studies or more likely represent a significant departure in the roles that Hdm2 and HdmX play when expressed at physiological levels compared to the elevated levels in tumor cells.

Finally these studies demonstrate that non-genotoxic activation of p53 by knockdown of its inhibitors Hdm2 and HdmX leads to the induction of genes involved in cell-cycle arrest, as well as repression of genes along the E2F/Rb pathway that promote cell cycle entry. These alterations in gene expression resulted in a decreased population of proliferative cells without necessarily increasing apoptosis. A non-genotoxic activation of p53 is one possible mechanism for the reduction in cellular proliferation observed during aging. This further underscores the critical importance of tumor suppressor activation in senescence and organismal aging.

MATERIALS AND METHODS

Cell lines, antibodies, siRNA and chemotherapeutic agents. The human breast tumor cell line MCF7 was grown in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% bovine growth serum (BGS), and 10 µg/ml gentamicin unless otherwise indicated. HdmX polyclonal antibody (Bethyl Laboratories, Inc.), p21 polyclonal antibody C-19 (Santa Cruz Biotechnology, Inc.), p53 monoclonal antibody Ab-6 (Oncogene), Hdm2 monoclonal antibody SMP-14 (Santa Cruz Biotechnology, Inc.) and beta-actin monoclonal antibody (Sigma, Inc.) were used as indicated. A phosphorylation-specific p53 polyclonal antibody kit (Cell Signaling Technology, Inc.) was utilized per manufacturer’s protocol. Horseradish peroxidase (HRP)-conjugated anti-mouse or anti-rabbit secondary antibodies (Promega) were used with Super Signal substrate (Pierce) for chemiluminescence detection of proteins. siGENOME duplex RNA targeting mRNA from hdmX, hdm2, or p53 was purchased from Dharmacon Research, Inc. and siRNA transfection was performed using Oligofectamine or Lipofectamine 2000 (Invitrogen) as described below. Doxorubicin hydro-

Figure 7. Repression of E2F1-regulated genes by Hdm2 or HdmX knockdown is blocked by concurrent knockdown of p21. MCF7 cells were transfected with the indicated siRNA combinations. Twenty-four hours later, RNA was isolated and subjected to RT-qPCR to quantify expression of CCNA2, p21 and E2F1 after normalization to GAPDH. Expression levels (Y-axis) were relative to siCon and reported as RQ values. Error bars represent the 95% confidence interval of the relative expression.

Another interesting finding within the microarray data was a subgroup of genes that were repressed upon HdmX and Hdm2 knockdown and could be classified as known E2F-regulated genes. Other groups have noted that p53 activation of p21 could lead to the repression of TERT [42] or Chk2 [41], known E2F-target genes, and another group recently reported similar findings using microarray assays [50].
chloride (Tocris Bioscience) was prepared as a 5 mg/ml stock solution in water.

siRNA transfection. Cells were seeded at 200,000 cells per well in 6-well plates (for RNA isolation), or at 700,000 cells per 6-cm dish (for protein extraction) in antibiotic free DMEM containing 1% BGS in a small volume. Cells were reverse transfected with 100 nM siRNA (Dharmacon Research, Inc.) at time of seeding using Lipofectamine 2000 (Invitrogen). After a five hour incubation, the media was removed and cells were refed with DMEM containing 10% BGS. Twenty hours later, the cells were transfected again with 100 nM siRNA in a small volume of serum free media using Oligofectamine (Invitrogen). After a four-hour incubation, an equal volume of DMEM containing 20% BGS was added to each well or dish without removing the transfection mixture. Total RNA was isolated 24 hours post siRNA transfection and protein was extracted at 48 hours post siRNA unless otherwise indicated.

Analysis of Affymetrix GeneChips. The Affymetrix HG-U133 plus 2.0 GeneChips containing probe sets detecting over 54,000 transcripts were used in this study and each transfection condition was performed in triplicate. GeneChip cel files were imported into GeneSpring GX and preprocessed by GCRMA. Measurements less than 0.01 were then set to 0.01, and a p-value < 0.05 were then made for siHdm2 versus siCon treatments by 1.5 fold with a p-value < 0.05. Initially all genes were filtered in GeneSpring GX first by Welch ANOVA to find expression changes based on siRNA treatment, using a p-value cut off of 0.05 and the Benjamini and Hochberg False Discovery Rate as a multiple testing correction. The cross-gene error model was active and based on replicates. From this list, genes were removed which varied between the mock and siCon treatments by 1.5 fold with a p-value < 0.05. Next, lists of genes with expression changes of 1.5 fold and a p-value < 0.05 were then made for siHdm2 versus siCon and siHdmX versus siCon. We then eliminated all but the union between these two lists. One gene that was repressed in the siHdm2 condition but upregulated in the siHdmX condition (encoding hypothetical protein MGC5370) was manually removed. Finally, genes that were not changed 1.5 fold with a p-value of <0.05 between the siHdmX and siHdmX + sip53 conditions were removed leaving a total of 394 selected genes.

Quantitative RT-pPCR. Cells were lysed directly in the culture dish and total RNA was isolated using the RNeasy kit (Qiagen) according to manufacturer’s protocol. The RNA was quantified by spectrophotometer reading at 260 nm, and 1 µg RNA was reverse transcribed with random hexamers to create cDNA using the TaqMan Reverse transcription kit (Applied Biosystems). Quantitative PCR was performed in a 96-well micro titer plate format on an ABI Prism 7900HT sequence detection system using 1 µl cDNA, TaqMan Universal PCR master mix and Assay-on-Demand Gene Expression products (Applied Biosystems) specific for genes of interest. Each cDNA sample was analyzed in triplicate and fold change relative to control was calculated based on a PCR efficiency of two and normalized to GAPDH (endogenous control) RNA levels. Average fold change and standard deviation were obtained from 2-3 biological replicate samples per treatment assayed in triplicate.

Western blot analysis. Frozen cells were lysed in an aqueous extraction buffer composed of 120 mM NaCl, 50 mM Tris-HCl (pH 8.0), 5 mM EGTA, 1 mM EDTA, 5 mM NaP pi, 10 mM NaF, 30 mM para-nitrophenylphosphate, 1 mM Benznidamide, 0.1% NP-40 (Ipegal Ca-630), 0.2 mM PMSF, and 1% protease inhibitor cocktail (Sigma), and soluble protein was recovered by centrifugation. Protein concentration was determined using Bradford reagent (Bio-Rad), and proteins were resolved on a sodium dodecyl sulfate-10% polyacrylamide gel followed by transfer of proteins to a polyvinylidene difluoride membrane (Millipore) using a Transblot system (Bio-Rad). Immunoblotting was performed as previously described [52] using appropriate primary antibodies at 1:1000-1:10,000 dilution and secondary antibodies (goat anti-mouse or goat anti-rabbit HRP-conjugated, Promega) at 1:5000-1:10,000 dilution. Blots were exposed to chemiluminescent reagent (Pierce) and protein was visualized on a FUJIFILM LAS-3000 image reader.

Colony formation and cell viability assays. Twenty-four hours after the second siRNA transfection, the cells were trypsinized, counted and seeded at 500 cells per well in 6-well plates for the colony formation assay. The cells were allowed to grow for ten days, and then the colonies were fixed and stained in 1% crystal violet in 70% methanol. The cell viability assays were performed in 96-well plates using either CellQuanti-Blue™ Reagent (BioAssay Systems) according to manufacturer’s protocol or by staining the cells with crystal violet, extracting the stain in 10% acetic acid, and then reading absorbance at 590 nm. Again, cells were trypsinized after the second siRNA transfection, counted and seeded at 20,000 cells per well. Cell
viability was determined at various time points post-seeding or following treatment with chemotherapeutic agents for the times indicated.

ACKNOWLEDGEMENTS

This work was funded by the National Cancer Institute (CA66430 to SJB). The Biomedical Sciences Ph.D. program and NIH supported KAH. MM was supported by NIH and the Center for Genomics Research. DNA microarray facilities and bioinformatic programs were provided by the Center for Genomics Research.

CONFLICT OF INTERESTS STATEMENT

The authors of this manuscript have no conflict of interests to declare.

REFERENCES

1. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, and Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994; 22:3551-3555.

2. Kubbhat M and Vousden KH. Keeping an old friend under control: regulation of p53 stability. Mol Med Today. 1998; 4:250-256.

3. Vousden KH and Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002; 2:594-604.

4. Marine JC and Joehanssen AG. Mdmx and Mdm2: brothers in arms? Cell Cycle. 2004; 3:900-904.

5. Oliner JD, Peitelon JA, Thiagalingam S, Gyuris J, Kinzler KW, and Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993; 362:857-860.

6. Haupt Y, Maya R, and Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997; 387:296.

7. Kubbhat MHG, Jones SN, and Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997; 387:299-303.

8. Sharp DA, Kratovice SA, Sank MJ, and George DL. Stabilization of the MDM2 Oncoprotein by Interaction with the Structurally Related MDMX Protein. J Biol Chem. 1999; 274:38189-38196.

9. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, and Ohtsubo M. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 1999; 447:5-9.

10. Jackson MW and Berberich SJ. MdmX protects p53 from Mdm2-mediated degradation. Mol. Cell. Biol. 2000; 20:1001-1007.

11. Rad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, Saville MK, and Joehanssen AG. MDM2 stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2001; 2:1029-1034.

12. Shvarts A, Steegenga W, van Laar RNT, Dekker P, Bazuine M, van Ham R, van der Houwen van Oordt W, Hateboer G, van der Eb A, and Joehanssen A. MDM2: a novel p53-binding protein with some functional properties of MDM2. The EMBO Journal. 1996; 15:5349-5357.

13. de Graaf P, Little NA, Ramos YF, Meulmeester E, Letteboer SJ, and Joehanssen AG. Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem. 2003; 278:38315-38324.

14. Kawai H, Wiederschain D, kitao H, Stuart J, Tsai KK, and Yuan ZM. DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem. 2003; 278:45946-45953.

15. Pan Y and J. Chen J. MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol. 2003; 23:5113-5121.

16. Toledo F and Wahl GM Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006; 6:909-923.

17. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvoio V, Tsaot Z, Zeng Z, Vassilev LT, Andreeff M. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005; 106:3150-3159.

18. Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, and Jackson MW, Levels of Hdmx expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 2006; 66:3169-3176.

19. Vassilev, LT. Small-Molecule Antagonists of p53-MDM2 Binding: Research Tools and Potential Therapeutics. Cell Cycle. 2004; 3:419-421.

20. Chene P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003; 3:102-109.

21. Linares K and Scheffner M. The ubiquitin-protein ligase activity of Hdm2 is inhibited by nucleic acids. FEBS Lett. 2003; 554:73-76.

22. Yu Y, Sun P, Sun LC, Liu GY, Chen GH, Shang LH, Hu HB, Hu J, Li Y, Mao YL, Sui GJ, and Sun XW. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with m23siRNA3 enhances the sensitivity to cisplatin. Biochem Biophys Res Commun. 2006; 339:71-78.

23. Zhang R, Wang H, and Agrawal S. Novel antisense anti-MDM2 mixed-backbone oligonucleotides: proof of principle, in vitro and in vivo activities, and mechanisms. Curr Cancer Drug Targets. 2005; 5:43-49.

24. Hu B, Gilkes DM, and Chen J. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res. 2007; 67:8810-8817.

25. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, and Joehanssen AG. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001; 61:1839-1842.

26. Fuchs SY, Adler V, Buschmann T, Wu X, and Ronai Z. Mdm2 association with p53 targets its ubiquitination. Oncogene. 1998; 17:2543-2547.

27. Little NA and Joehanssen AG. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene. 2001; 20:4576-4580.

28. Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, and Vassilev LT. Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation. Cell Cycle. 2008; 7:1604-1612.

29. Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, and serrano M. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res. 2007; 67:7350-7357.

30. Vassilev LT, Yu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammollt U, Lukacs C, Klein C, Fotouhi N, and Liu EA.
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004; 303:844-848.

31. Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S, and Shohet JM. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther. 2006; 5:2358-2365.

32. Coll-Mulet L, Iglesias-Serret D, Santidrián AF, Cosiálls AM, de Frias M, Castano E, Campas C, Barragan M, de Sevilla AF, Domingo A, Vassilev LT, Pons G, and Gil J. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood. 2006; 107:4109-4114.

33. D’Orazio G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, and Soddu S. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 2002; 4:11-19.

34. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, and Schmitz ML. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 2002; 4:1-10.

35. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, and Taya Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000; 102:849-862.

36. el-Deiry, WS. Regulation of p53 downstream genes [In Process Citation]. Semin Cancer Biol. 1998; 8:345-357.

37. Cui XS and Donehower LA. Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogene. 2000; 19:5988-5996.

38. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, and Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of B7T2 in suppression of Ras-induced transformation. Genes Dev. 2006; 20:236-252.

39. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, and Tanaka N. Noxa, a BH3-only member of the bcl-2 family and candidate mediator of p53-induced apoptosis [In Process Citation]. Science. 2000; 288:1053-1058.

40. Boulaja I, Fotedar A, and Fotedar R. The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris). 2000; 48:190-202.

41. Gottifredi V, Karni-Schmidt O, Shieh SS, and Prives C. p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol. 2001; 21:1066-1076.

42. Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R, Kogan I, Braunstein I, Tzukerman M, Ginsberg D, and Rotter V. p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem. 2004; 279:50976-50985.

43. Chen KY. Transcription factors and the down-regulation of G1/S boundary genes in human diploid fibroblasts during senescence. Front Biosci. 1997; 2:d417-426.

44. Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, and Vassilev LT. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res. 2005; 65:1918-1924.

45. Hu B, Gilkes DM, Farooqi B, Sebti SM, and Chen J. MDMX overexpression prevents P53 activation by the MDM2 inhibitor nutlin. J Biol Chem. 2006.

46. Kranz D and Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res. 2006; 66:10274-10280.

47. Wade M, Wong ET, Tang M, Vassilev LT and Wahl GM. Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem. 2006.

48. Laurie NA, SDonovan SL, Shi CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006; 444:61-66.

49. Mayo LD, Seo YR, Jackson MW, Smith ML, Rivera Guzman J, Korgaonkar CK, and Donner DB. Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem. 2005; 280:25953-25959.

50. Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, and Deb S. Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene. 2008; 27:2583-2593.

51. Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E, and Marine JC. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A. 2006; 103:3232-3237.

52. Berberich SJ, Litteral V, Mayo LD, Tabesh D, and Morris D. mdm-2 gene amplification in 3T3-L1 preadipocytes. Differentiation. 1999; 64:205-212.
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siCon	Gene Symbol	Description
212354_s_at	5.873	SULF1	sulfatase 1
205916_s_at	5.6	S100A7	S100 calcium binding protein A7 (psoriasin 1)
211893_s_at	5.167	TNFRSF10C	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain
206222_s_at	4.986	TNFRSF10C	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain
208180_s_at	4.603	HIST1H4H	histone 1, H4h
206488_s_at	4.424	CD36	CD36 antigen (collagen type 1 receptor, thrombospondin receptor)
237737_at	4.4	LOC375010	hypothetical LOC375010; hypothetical LOC40131
232035_s_at	4.209	HIST1H4H	histone 1, H4h
218252_s_at	3.97	FAS	Fas (TNF receptor superfamily, member 6)
213110_s_at	3.929	COL4A5	collagen, type IV, alpha 5 (Alport syndrome)
209566_s_at	3.927	CD36	CD36 antigen (collagen type 1 receptor, thrombospondin receptor)
228331_at	3.756	SPATA18	spermatogenesis associated 18 homolog (rat)
228786_at	3.703	CD36	CD36 antigen (collagen type 1 receptor, thrombospondin receptor)
208083_s_at	3.691	ITGB6	integrin, beta 6
212097_s_at	3.831	CAV1	caveolin 1, caveolae protein, 22kDa
204781_s_at	3.627	FAS	Fas (TNF receptor superfamily, member 6)
202917_s_at	3.61	S100A8	S100 calcium binding protein A8 (calgranulin A)
225912_at	3.59	TP53INP1	tumor protein p53 inducible nuclear protein 1
215856_at	3.493	CD3D	CD3D antigen-like 3
215719_s_at	3.479	FAS	Fas (TNF receptor superfamily, member 6)
226535_at	3.47	ITGB6	integrin, beta 6
212344_at	3.331	SULF1	sulfatase 1
202939_s_at	3.198	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antitrypsin, anti-trypsin), member 1
209504_s_at	3.136	PLEKHB1	pleckstrin homology domain containing, family B (eukaryote) member 1
218985_at	3.104	FLJ20366	hypothetical protein FLJ20366
200996_s_at	3.103	COL2A1	collagen, type XXI, alpha 1; collagen, type XXI, alpha 1
204780_s_at	3.049	FAS	Fas (TNF receptor superfamily, member 6)
209503_s_at	3.027	CAPN2	calpain 2, (mfo) large subunit
219628_at	2.982	WIG1	p53 target zinc finger protein
211423_s_at	2.976	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antitrypsin, anti-trypsin), member 1
1554062_at	2.871	XG	XG blood group (pseudoautosomal boundary-divided on the X chromosome)
207899_s_at	2.847	IGSF1	immunoglobulin superfamily, member 1
212288_at	2.819	NRP1	neurophin 1
201236_s_at	2.8	BTG2	BTG family, member 2
207392_x_at	2.795	UGT2B15	UDP glucuronosyltransferase 2 family, polypeptide B15
215125_s_at	2.784	UGT1A10	UDP glucuronosyltransferase 1 family, polypeptide A10
210387_at	2.776	HIST1H2BG	histone 1, H2bg
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siCon	Gene Symbol	Description
209596	2.739	UDP glucuronosyltransferase 1 family, polypeptide A10	C1q and tumor necrosis factor related protein 6
208984	2.587	ITG96	major histocompatibility complex, class II, DQ beta 1; major histocompatibility complex, class II, DQ beta 1
242444	2.685	C1QTNF6	phosphoinositol-3-kinase, regulatory subunit 3 (p55, gamma)
212998	2.650	HLA-DQB1	tumor necrosis factor (ligand) superfamily, member 10
202743	2.468	PIK3R3	tumor necrosis factor (ligand) superfamily, member 10
202688	2.635	TNFSP10	kynurenine 3-monoxygenase (kynurenine 3-hydroxylase)
205306	2.633	KMO	MAX dimerization protein 4
212347	2.622	COL3A1	collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
227853	2.577	CTSD	cytoplasmic FMR1 interacting protein 2; cytoplasmic FMR1 interacting protein 2
220959	2.573	CYFIP2	cathepsin D (lysosomal aspartyl peptidase)
155997	2.559	AD-020	Chromosome 1 open reading frame 119
221150	2.555	LOC64103	hypothetical protein LOC64103
206260	2.533	CDH18	cathepin 18, type 2
223316	2.526	CDNA FLJ31683 fis, clone NT2R1/2005353	Homo sapiens, clone IMAGE:4400004, mRNA
1557779	2.523	ACTA2	actin, alpha 2, smooth muscle, aorta
200974	2.521	MGC17330	HGF; gene; HGF, gene
202180	2.503	MVP	major vault protein
221218	2.484	TPK1	thiamin pyrophosphokinase 1
219049	2.479	ChGn	chondroitin beta1,4-N-acetylgalactosaminytransferase
227020	2.448	YPEL2	pyrophosphate- and aspartic acid 2 (Drosophila)
225207	2.441	PKC4	pyruvate dehydrogenase kinase, isoenzyme 4
215779	2.439	HIST1H2B2G	histone 1, H2b
210778	2.432	MBD4	MAX dimerization protein 4
202284	2.428	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)
211598	2.405	PIK3R3	phosphoinositol-3-kinase, regulatory subunit 3 (p55, gamma)
213216	2.388	LBA1	lupus brain antigen 1
215785	2.388	CYFIP2	cytoplasmic FMR1 interacting protein 2
210218	2.381	SP100	nuclear antigen Sp100
215465	2.375	ABCA12	ATP-binding cassette, sub-family A (ABC1), member 12
203055	2.368	PAPS2	3'-phosphoadenosine 5'-phosphosulfate synthase 2
200984	2.356	CD59	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3A5, E J16, EJ30, EL32 and G344)
225613	2.346	MAST4	microtubule associated serine/threonine kinase family member 4
AffyID	Fold Change vs. siCon	Gene Symbol	Description
--------	----------------------	-------------	-------------
212463 at	2.34	CD59	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16,3A6, E16, EJ30, EL32 and G344)
204648 at	2.338	GIP	erythroblastin (ferrooxidase)
236835 at	2.336	FUT8	fucosyltransferase 8 (alpha (1,6) fucosyltransferase)
236278 at	2.333	H2b	histone 1, H2b
214616 at	2.322	HIST1H3E	histone 1, H3e
202737 at	2.31	MAGI2	membrane associated guanylate kinase, WW and PDZ domain containing 2
203060 s at	2.304	PAPSS2	3-phosphoadenosine 5'-phosphosulfate synthase 2
1552632 a at	2.303	KIAA1001	Arylsulfatase G
205480 at	2.302	ABAT	4-amino butyrate amino transferase
207664 at	2.264	ADAM2	ADAM metalloprotease domain 2 (fertilin beta)
200696 s	2.249	GSN	gelsolin (amyloidosis, Finnish type)
238439 at	2.24	ANKRD22	ankyrin repeat domain 22
223385 at	2.237	NTN4	netrin 4
224847 at	2.237	CDK6	cyclin-dependent kinase 6
242039 s at	2.234	THAP1	thiamin pyrophosphokinase 1
223686 at	2.208	TPK1	thiamin pyrophosphokinase 1
201484 s at	2.204	TNFRSF11C	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain; hypothetical protein MGC31957
201652 x at	2.203	COL3A1	collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
1564573 at	2.193	LOC402778	similar to RIKEN cDNA 6330512M04 gene (mouse)
213744 at	2.192	ATRNL1	attractin-like 1
226553 at	2.192	PGAM2L1	phosphoglucomutase 2-like 1
233600 e at	2.191	KIAA1683	KIAA1683
209160 at	2.185	AKR1C3	aldo-keto reductase family 1, member C3 (3-alpha hydroxy steroid dehydrogenase, type II)
211138 s at	2.18	KMO	kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)
225890 at	2.18	CENDR	CONA clone IMAGE:5259272
206483 s at	2.172	OHR2	4-amino butyrate amino transferase (SDF1 family) member 2
223346 s at	2.169	MDX4	MAX dimerization protein 4
1555756 a at	2.164	CLEC7A	C-type lectin domain family 7, member A
214455 at	2.15	HIST1H2B8C	histone 1, H2b
228151 at	2.148	H2b	histone 1, H2b
1559322 at	2.145	PTP4A1	protein tyrosine phosphatase type IVA, member 1
203543 s at	2.146	KLF9	Kruppel-like factor 9
2061776 at	2.124	FMID	flavin containing monooxygenase 5
206110 at	2.122	HIST1H3	histone 1, H3h
40016 g at	2.119	MAST4	microtubule associated serine/threonine kinase family member 4
205053 s at	2.114	IGA	iduronidase, alpha-L-
205983 at	2.113	RXF5	regulatory factor X, 5 (influences HLA class II expression)
213664 at	2.105	SLC1A1	solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1
218280 x at	2.101	HIST2H2AA	histone 2, H2aa
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siCon	Gene Symbol	Description
214686	5.24	MGC14376	hypothetical protein MGC14376
225725	5.09	CDNA FLJ31689 fis, clone NT2R12053535	cyclin-dependent kinase 6
224848	5.25	CDK6	regulatory factor X, 5 (influences HLA class II expression)
202364	5.24	RFX5	Ribosomal protein S27-like
236395	5.24	PK2R2	phosphoinositide-3-kinase, regulatory subunit 2 (p65 beta)
223201	5.09	PTIP3-88	hypothetical protein FLJ22679
218346	5.09	SEsN1	septin 1
202329	5.09	MGP	matrix Gla protein
223087	5.25	TB6D	thrombomodulin
235903	5.25	TSGA2	tests specific A2 homolog (mouse)
219399	5.09	C12orf5	chromosome 12 open reading frame 5
223441	5.25	PRS23	Protease, serine, 23
203076	5.09	COL3A1	collagen, type III, alpha 1 (Ohiens-Danlos syndrome type IV, autosomal dominant)
202073	5.09	OPTN	optineurin
223057	5.09	BF	B-factor, properdin
227221	5.09	CDNA FLJ31689 fis, clone NT2R12053535	fibroblast growth factor 13
205110	5.09	FGF-13	fibroblast growth factor 13
203988	5.09	THBD	thrombomodulin
235911	5.09	C12orf116	chromosome 12 open reading frame 116
223888	5.09	INPP4B	inositol polyphosphate-4-phosphatase, type II, 105kDa
223179	5.09	YPEL3	yippee-like 3 (Drosophila)
220574	5.09	OPCT	glutamimy-peptide cyclotransferase (glutamimyl cyclase)
221513	5.09	TMEM2	transmembrane protein 2
235934	5.09	Homo sapiens, clone IMAGE 5723825	mRNA
200963	5.09	CD59	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16, 3AS, EJ16, EL30, EL32 and G344)
211884	5.09	FER1L3	fer-1-like 3, myoferlin (C. elegans)
206482	5.09	PTK6	PTK6 protein tyrosine kinase 6
223434	5.09	GBP3	guanylate binding protein 3
221316	5.09	SEsN2	septin 2
155303	5.09	SYT5L	synaptotagmin-like 5
225771	5.09	ATP8B2	ATPase, Class I, type 8B, member 2
201798	5.09	FER1L3	fer-1-like 3, myoferlin (C. elegans)
227134	5.09	SYT1L	synaptotagmin-like 1
202708	5.09	HIST2H2BE	histone 2, H2be
225666	5.09	LOC440444	hypothetical gene supported by AF086204
225326	5.09	RAMP3	receptor (calmodulin) activity modifying protein 3
235673	5.09	TMEM7	Transcribed locus
222450	5.09	SMP3A1	transmembrane, prostate androgen induced RNA
225927	5.09	MAP2K1	mitogen-activated protein kinase kinase kinase 1
213142	5.09	LOC54103	hypothetical protein LOC54103
155630	5.09	FLJ33674	hypothetical protein FLJ33674
225922	5.09	MGC17299	hypothetical protein MGC17299
208796	5.09	CCNG1	cyclin G1
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siHdmX	Gene Symbol	Description
226403_at	1.735	TMC4	transmembrane channel-like 4
209333_at	1.794	ULK1	unc-51-like kinase 1 (C. elegans)
228664_at	1.794	PKA	Protein kinase (AMP-dependent, catalytic) inhibitor alpha
203059_s_at	1.787	PAPSS2	3-phosphoadenosine 5'-phosphosulfate synthase 2
214290_s_at	1.773	HIST2H2AA	Histone H2aa
205726_at	1.766	DiAPH2	diaphansus homolog 2 (Drosophila)
219410_at	1.753	TMEM45A	transmembrane protein 45A
37996_s_at	1.752	DMPK	dystrophia myotonica-protein kinase
200766_at	1.744	CTSD	cathepsin D (lysosomal aspartic peptidase)
202306_at	1.742	CDH26	cadherin-like 26
217419_x_at	1.732	AGRN	agrin
219561_at	1.723	COPZ2	coatomer protein complex, subunit zeta 2
216264_s_at	1.718	LAMB2	laminin, beta 2 (laminin S)
212120_at	1.712	RHOQ	Rho homolog gene family, member Q
212285_s_at	1.711	AGRN	agrin
218007_s_at	1.707	RPS27L	ribosomal protein S27-like
230750_at	1.707	CDNA FLJ31839 fis, clone NT2RP7000060	
207855_s_at	1.7	BLNK	B-cell linker
231406_at	1.7	LOC401394	hypothetical LOC401394, hypothetrical LOC402578
204462_s_at	1.699	SLC16A2	solute carrier family 16 (monocarboxylic acid transporters), member 2
214481_at	1.699	HIST1H2AM	Histone H2am
231766_s_at	1.693	COL12A1	collagen, type XII, alpha 1
219687_at	1.692	H-HAT	hedgehog acetyltransferase
202376_at	1.69	SERPINA3	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3
204954_s_at	1.689	Dyrk1B	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B
208792_s_at	1.677	CLU	clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)
217529_at	1.676	LOC401394	hypothetical LOC401394, hypothetical LOC402578
218471_s_at	1.673	BBS1	Bardet-Biedl syndrome 1
203767_s_at	1.664	STS	steroid sulfatase (microsomal), arylsulfatase C, isozyme S
208919_at	1.663	CLU	clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)
201646_at	1.654	JAK1	Janus kinase 1 (a protein tyrosine kinase)
202917_s_at	1.546	TP53AP1	TP53 activated protein 1
212456_at	1.546	KIAA0256	KIAA0256 gene product
222243_at	1.536	CLU	clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)
204546_at	1.523	KIAA0513	KIAA0513
236068_at	1.521	CDNA clone IMAGE 5312086	
209523_at	1.518	MCCC2	methylcrotonoyl-Coenzyme A carboxylase 2 (beta)
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siCon	Gene Symbol	Description	
209380	s_at	1.616	RUNX1	runt-related transcription factor 1 (acute myeloid leukemia 1, amy1 oncogene)
220513	s_at	1.614	SYTL2	synaptotagmin-like 2
217767	s_at	1.613	C3	complement component 3
209166	s_at	1.611	MAN2B1	mannosidase, alpha, class 2B, member 1
207913	s_at	1.611	FDXR	ferredoxin reductase
217783	s_at	1.609	YPEL5	yipee-like 5 (Drosophila)
201118	s_at	1.608	CPE	carboxypeptidase E
209379	s_at	1.607	PNPLA4	patatin-like phospholipase domain containing 4
219529	s_at	1.602	CLIC3	chloride intracellular channel 3
233195	s_at	1.597	SESN2	sestrin 2
203725	s_at	1.589	GADD45A	growth arrest and DNA-damage-inducible, alpha
209216	s_at	1.583	WDR45	WD repeat domain 45
234644	x_at	1.570	CDNA: FLJ22426 fis, clone HRC08780	
214524	x_at	1.571	HIST1H2Ai	histone 1, H2ai
210886	x_at	1.571	TP53AP1	TP53 activated protein 1
201939	x_at	1.571	PLK2	polo-like kinase 2 (Drosophila)
208950	x_at	1.563	PLXNB2	plexin B2
211979	x_at	1.559	GPR107	G protein-coupled receptor 107
210241	x_at	1.558	TP53AP1	TP53 activated protein 1
210930	s_at	1.557	ERBB2	v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuroglioblastoma derived oncogene homolog (avian)
218706	s_at	1.557	NSSTP2	HCV NS3-transactivated protein 2
202387	s_at	1.545	BAG1	BCL2-associated athanogene ; BCL2-associated athanogene
225968	s_at	1.545	PRICKLE2	pricklike-2 (Drosophila)
209920	s_at	1.544	BTG1	B-cell translocation gene 1, anti-proliferative
218080	s_at	1.539	FADS3	fatty acid desaturase 3
32428	s_at	1.537	AQP3	aquaporin 3
217270	s_at	1.535	DYRK1B	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B
214433	s_at	1.534	SELENBP1	selenium binding protein 1 ; selenium binding protein 1
210224	at	1.524	MR1	major histocompatibility complex, class i-related
224836	at	1.512	TP53IP2	tumor protein p53 inducible nuclear protein 2
212890	at	1.511	MGC15523	hypothetical protein MGC15523
214066	s_at	0.666	PARP2	poly (ADP-ribose) polymerase family member 2
213346	s_at	0.663	LCC903811	hypothetical protein LCC903811
228559	at	0.663	CDNA clone IMAGE043059	
227337	at	0.663	ANKR37	ankyrin repeat domain 3
230425	at	0.662	SGOL2	shugoshin-like 2 (S. pombe)
204435	at	0.661	NPL1	nucleoporin like 1
201860	at	0.658	RRM2	ribonucleotide reductase M2 polypeptide
222840	s_at	0.658	C1orf112	chromosome 1 open reading frame 112
222834	at	0.658	FIGNL1	fidgetin-like 1
204240	s_at	0.657	SMC2L1	SMC2 structural maintenance of chromosomes 2-like 1 (yeast)
228273	at	0.657	FLJ11029	Hypothetical protein FLJ11029
203625	s_at	0.656	SKP2	S-phase kinase-associated protein 2 (p45)
218350	s_at	0.656	GMNN	geminin, DNA replication inhibitor
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siHdmX	Gene Symbol	Gene Description
219502	0.856	NEIL3	Nucleotide excision repair endonuclease VIII-like 3 (E. coli)
209906	0.655	ACAT2	Acetyl-Coenzyme A acetyltransferase 2 (Acetoacetyl Coenzyme A thiolaase)
203213	0.543	CDC2	Cell division cycle 2, G1 to S and G2 to M
227787	0.639	THRAP6	Thyroid hormone receptor associated protein 6
219555	0.65	BM039	Uncharacterized bone marrow protein BM039
203302	0.569	DCK	Deoxycofactor kinase
222508	0.54	ANLN	Anillin, actin binding protein (scraps homolog, Drosophila)
222249	0.473	ATAD2	ATPase family, AAA domain containing 2
219522	0.541	WDHD1	WD repeat and HMG-box DNA binding protein 1
222466	0.464	PKSG14	Leucine zipper protein PKSG14
220896	0.541	TPRT	Trans-prenyltransferase
203334	0.541	CHEK1	CHK1 checkpoint homolog (S. pombe)
232556	0.568	KIAA1333	KIAA1333
229442	0.618	C18orf54	Chromosome 18 open reading frame 54
204531	0.61	BRCA1	Breast cancer 1, early onset
209754	0.59	TMPO	Thymopoietin
211767	0.613	SL5	SL5 homolog, SL5 homolog
223265	0.564	KIAA1333	KIAA1333
225300	0.539	C15orf23	Chromosome 15 open reading frame 23
228865	0.627	FLJ32363	FLJ32363 protein
209709	0.639	HMR	Hyaluronan-mediated motility receptor (RHAMM)
218750	0.568	KIF20A2	Kinesin family member 20A
156850	0.657	TRAP	Trophin associated protein (fastin)
129531	0.653	Cep72	Centrosomal protein 72 kDa
227545	0.626	BARD1	BRCA1 associated RING domain 1
234944	0.597	FAM54A	Family with sequence similarity 54, member A
230705	0.601	CHEK1	CHK1 checkpoint homolog (S. pombe)
204962	0.666	CENPA	Centromere protein A, 17kDa
222339	0.582	LOCI46909	Hypothetical protein LOCI46909
207030	0.651	CCNB2	Cyclin B2
223610	0.613	FLJ40629	Hypothetical protein FLJ40629
218550	0.605	FLJ20105	FLJ20105 protein
201663	0.618	SMC4L1	SMC4 structural maintenance of chromosomes 4-like 1 (yeast)
218883	0.641	MFL1IP	MFL1 interacting protein
209715	0.621	CBX5	Chromobox homolog 5 (HP1 alpha homolog, Drosophila)
220239	0.626	KLHL7	Kelch-like 7 (Drosophila)
203690	0.531	KIFC1	Kinesin family member C1
218768	0.61	NUP107	Nucleoporin 107 kDa
38158	0.661	EPS1L	Extra spindle poles like 1 (S. cerevisiae)
204127	0.626	RFC3	Replication factor C (activator 1) 3, 34kDa
209714	0.629	CDKN3	Cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)
235545	0.558	DEPDC1	DEP domain containing 1
209856	0.604	DUT	DUTP pyrophosphatase
212211	0.629	PSRC1	Proline/serine-rich coiled-coil 1
213647	0.465	DNA2L	DNA2 DNA replication helicase 2-like (yeast)
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyId	Fold Change vs. siCon	Gene Symbol	Description
204822	0.62	TTK	TTK protein kinase
204825	0.62	MELK	maternal embryonic leucine zipper kinase
215773	0.62	PARP2	poly (ADP-ribose) polymerase family, member 2
204162	0.619	KNTC2	kinetochore associated 2
205363	0.619	CHEK1	CHK1 checkpoint homolog (S. pombe)
221665	0.619	PLJ20364	hypothetical protein FLJ20364
227298	0.619	PLJ20641	hypothetical protein FLJ20641
226069	0.619	FAM54A	family with sequence similarity 54, member A
230165	0.619	SGOL2	shugoshin-like 2 (S. pombe)
218169	0.618	DTL	dentateless homolog (Drosophila)
218365	0.616	KIF4A	kinesin family member 4A
223307	0.616	CDC3A	cell division cycle associated 3
218039	0.615	NUSAP1	nucleolar and spindle associated protein 1
204033	0.614	TRIP13	thyroid hormone receptor interactor 13
225867	0.613	C20orf129	chromosome 20 open reading frame 129
226308	0.613	NY-SAR-48	sarcoma antigen NY-SAR-48
204752	0.608	PARP2	poly (ADP-ribose) polymerase family, member 2
205853	0.608	POLR3G	POLR3G (RNA III (DNA directed) polypeptide G (32kD))
210931	0.608	MCM7	MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)
218727	0.608	ATAD2	ATPase family, AAA domain containing 2
219258	0.608	PLJ20461	timeless-interacting protein
208795	0.607	MCM7	MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)
220060	0.607	PLJ20641	hypothetical protein FLJ20641
221436	0.607	CDC3A	cell division cycle associated 3 ; cell division cycle associated 3
223542	0.607	AKR3D2	ankyrin repeat domain 32
155544	0.604	FANCA	Fanconi anemia, complementation group B
219041	0.604	C20orf45	chromosome 20 open reading frame 45
221591	0.603	FAM54A	family with sequence similarity 54, member A
203836	0.602	FANCA	Fanconi anemia, complementation group A ; Fanconi anemia, complementation group A
219978	0.601	NUSAP1	nucleolar and spindle associated protein 1
221879	0.601	CALML4	calmodulin-like 4
203755	0.601	BUB1B	BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)
203764	0.601	DGK7	discs, large homolog 7 (Drosophila)
204888	0.596	FLK4	polo-like kinase 4 (Drosophila)
206659	0.596	NUP185	nucleoporin 156kDa
227211	0.597	PPH19	PHD finger protein 19
205363	0.598	PRIM1	primase, polypeptide 1, 48kDa
64108	0.598	CALML4	calmodulin-like 4
221521	0.597	Pfs2	DNA replication complex GINS protein PSF2
222962	0.595	MCM10	MCM10 minichromosome maintenance deficient 10 (S. cerevisiae)
205159	0.594	WDR76	WD repeat domain 76
219990	0.594	E2F8	E2F transcription factor 8
213226	0.592	CCNA2	Cyclin A2
219703	0.592	MNS1	meiosis-specific nuclear structural 1
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siCon	Gene Symbol	Description
242564_at	0.589	FLJ13305	hypothetical protein FLJ13305
1552619_at	0.587	ANLN	alpha II actin binding protein (scraps homolog, Drosophila)
204603_at	0.583	EXO1	exonuclease 1
223570_at	0.583	MCM10	MCM10 minichromosome maintenance deficient 10 (S. cerevisiae)
204492_at	0.582	ARHGAP11A	Rho GTPase activating protein 11A
214240_at	0.582	GAL	galactin
219305_at	0.582	KIF15	kinesin family member 15
203145_at	0.581	SPAG5	sperm associated antigen 5
203969_at	0.581	CDC5	CDC5 cell division cycle 6 homolog (S. cerevisiae)
230847_at	0.58	WRNIP1	Werner hereditary interstitial protein 1
215210_at	0.57	CDC8	cell division cycle associated 8
215294_at	0.57	C6orf139	chromosome 6 open reading frame 139
1552927_at	0.57	FIGN1	fidgetin-like 1
224428_at	0.57	CDC9A	cell division cycle associated 7; cell division cycle associated 7
218563_at	0.56	HCAP-G	chromosome condensation protein G
1553684_at	0.56	DTYMK	deoxythymidylate kinase (thymidylate kinase)
220851_at	0.57	MCM10	MCM10 minichromosome maintenance deficient 10 (S. cerevisiae)
236641_at	0.57	KIF14	kinesin family member 14
204023_at	0.57	RFC4	replication factor C (activator) 1, 4, 37kDa
205024_at	0.56	RAD51	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)
218562_at	0.56	HCAP-G	chromosome condensation protein G
220858_at	0.56	DEPDC1	DEP domain containing 1
224787_at	0.56		
1554708_at	0.56	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast) 2
204541_at	0.56	NEK2	NIMA (never in mitosis gene a)-related kinase 2
209773_at	0.56	RRM2	ribonucleotide reductase M2 polypeptide
223229_at	0.56	UB22T	ubiquitin-conjugating enzyme E2T (putative)
201067_at	0.56	CKS1B	CDC28 protein kinase regulatory subunit 1B
214804_at	0.56	FSHPR1	FSH primary response (LRP1 homolog, rat 1)
225834_at	0.56	FANCM	family with sequence similarity 72, member A
209594_at	0.56	UBE2C	ubiquitin-conjugating enzyme E2C
205909_at	0.56	POLE2	polymerase (DNA directed), epsilon 2 (p59 subunit)
205906_at	0.55	HIST1H4C	histone 1, H4c
212938_at	0.55	BRRN1	barre homolog (Drosophila)
1553528_at	0.54	TAF5	TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa
207891_at	0.54	TREX2, UTP5	three prime repair exonuclease 2, 28S proteasome-associated UCH interacting protein 1
218484_at	0.54	RAD54B	RAD54 homolog B (S. cerevisiae)
209891_at	0.54	SPBC25	spindle pole body component 25 homolog (S. cerevisiae)
205733_at	0.54	BLM	Bloom syndrome
227165_at	0.54	C13orf3	chromosome 13 open reading frame 3
210416_at	0.54	CHK2	CHK2 checkpoint homolog (S. pombe)
215509_at	0.54	BUB1	BUB1 budding inhibited by benzimidazoles 1 homolog (yeast)
Table 1: Genes deregulated by HdmX and Hdm2 in MCF7 cells.

AffyID	Fold Change vs. siHdmX	Genes	Symbol	Description
37577	0.544	ARHGAP19	KIAA0286	Rho GTPase activating protein 19
212619	0.542	KIAA0286	KIAA0286	Rho GTPase activating protein 19
211090	0.614	NEK2	KIAA0286	NIMA (never in mitosis gene a)-related kinase 2
204128	0.539	CDC45L	CDC45L	CDC45 cell division cycle 45-like (S. cerevisiae)
223381	0.538	CDC6	CDC6	CDC6 cell division cycle 6 homolog (S. cerevisiae)
203967	0.536	DEPDC1	DEPDC1	DEP domain containing 1
220295	0.535	TFDP1	TFDP1	transcription factor Dp-1
222680	0.533	OTL	OTL	doteless homolog (Drosophila)
232278	0.533	WDHD1	WDHD1	WD repeat and HMG-box DNA binding protein 1
210053	0.529	TAF5	TAF5	TAF5 RNA polymerase II, TATA box binding protein (TBX)-associated factor, 100kDa
206632	0.522	APOBEC3B	APOBEC3B	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B
202779	0.517	UBE2S	UBE2S	ubiquitin-conjugating enzyme E2S
209464	0.517	AURKB	AURKB	aurora kinase B
203418	0.514	CCNA2	CCNA2	cyclin A2
223709	0.514	GADD46	GADD46	GADD46
203214	0.507	CDC2	CDC2	cell division cycle 2, G1 to S and G2 to M
218726	0.507	DOK5	DOK5	hypothetical protein DOK5
230022	0.507	DOK5	DOK5	hypothetical protein DOK5
209408	0.506	KIF2C	KIF2C	kinesin family member 2C
211613	0.506	KIF2C	KIF2C	kinesin family member 2C
205558	0.497	CDC2	CDC2	cell division cycle 2, G1 to S and G2 to M
219000	0.497	DCC1	DCC1	defective in sister chromatid cohesion homolog 1 (S. cerevisiae)
239002	0.488	ASPM	ASPM	asp (abnormal spindle)-like, microcephaly associated (Drosophila)
210334	0.483	BIRC5	BIRC5	baculoviral IAP repeat-containing 5 (survivin)
