Genome sequencing and analysis of two early-flowering cherry \((Cerasus \times kanzakura)\) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’

Kenta Shirasawa\(^1 \)*, Akihiro Itai\(^2\), and Sachiko Isobe\(^1 \)

\(^1\)Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba 292-0818, Japan, and \(^2\)Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan

*To whom correspondence should be addressed. Tel. +81 438 52 3935. Fax. +81 438 52 3934. Email: shirasaw@kazusa.or.jp

Received 8 September 2021; Editorial decision 12 November 2021; Accepted 15 November 2021

Abstract

To gain genetic insights into the early-flowering phenotype of ornamental cherry, also known as sakura, we determined the genome sequences of two early-flowering cherry \((Cerasus \times kanzakura)\) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’. Because the two varieties are interspecific hybrids, likely derived from crosses between \(Cerasus\) campanulata (early-flowering species) and \(Cerasus\) speciosa, we employed the haplotype-resolved sequence assembly strategy. Genome sequence reads obtained from each variety by single-molecule real-time sequencing (SMRT) were split into two subsets, based on the genome sequence information of the two probable ancestors, and assembled to obtain haplotype-phased genome sequences. The resultant genome assembly of ‘Kawazu-zakura’ spanned 519.8 Mb with 1,544 contigs and an N50 value of 1,220.5 kb, while that of ‘Atami-zakura’ totalled 509.6 Mb with 2,180 contigs and an N50 value of 709.1 kb. A total of 72,702 and 69,528 potential protein-coding genes were predicted in the genome assemblies of ‘Kawazu-zakura’ and ‘Atami-zakura’, respectively. Gene clustering analysis identified 2,634 clusters uniquely presented in the \(C.\ campanulata\) haplotype sequences, which might contribute to its early-flowering phenotype. Genome sequences determined in this study provide fundamental information for elucidating the molecular and genetic mechanisms underlying the early-flowering phenotype of ornamental cherry tree varieties and their relatives.

Key words: early-flowering, genome assembly, haplotype-phased genome sequence, long-read sequencing, sakura

1. Introduction

Flowering cherry, called sakura in Japanese, is an ornamental plant popular worldwide. A major \(Cerasus \times yedoensis\) cultivar ‘Somei-Yoshino’, which is an interspecific hybrid of \(Cerasus\) spachiana and \(Cerasus\) speciosa,\(^1\) usually blooms from March to April in Japan. In addition, early-flowering sakura species, such as \(Cerasus\) campanulata, usually bloom 1–2 months earlier than ‘Somei-Yoshino’, and its interspecific hybrids such as \(Cerasus \times kanzakura\) also exhibit early flowering. \(C. \times kanzakura\) is considered a hybrid between \(C.\ campanulata\) and \(Cerasus\) speciosa and/or \(Cerasus\) jamasakura,\(^2\) but its origin is still debated. Two \(C. \times kanzakura\) cultivars, ‘Kawazu-zakura’ and ‘Atami-zakura’, also bloom early (January and February, respectively); however, the molecular mechanisms underlying their early-flowering phenotype remain unknown. Although the mechanisms of early flowering in Rosaceae family members, Japanese plum (\(Prunus\) mume) and peach (\(Prunus\) persica), which flower in February and March, respectively, are well known,\(^3\) it remains unclear whether these mechanisms are common between \(Cerasus\) and \(Prunus\).
2. Materials and methods

2.1 Plant materials and DNA extraction

Two early-flowering cherry (Cerasus × kanzakura) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’, were used in this study. Both varieties were planted at the orchard of Kyoto Prefectural University (Kyoto, Japan). Genome DNA was extracted from young leaves by a modified sodium dodecyl sulphate (SDS) method.9

2.2 Genome size estimation

Software tools used for data analyses are listed in Supplementary Table S1. Genome libraries for short-read sequencing were prepared with the TruSeq DNA PCR-Free Sample Prep Kit (Illumina, San Diego, CA, USA) and sequenced on the NextSeq 500 platform (Illumina, San Diego, CA, USA) in paired-end, 150 bp mode. The genome size was estimated with Jellyfish.

2.3 De novo genome sequence assembly and reference-guided contig ordering and orientation

Genomes of the two cherry varieties were sequenced using the single-molecule real-time (SMRT) sequencing technology. Long-read DNA libraries were constructed using the SMRTbell Express Template Prep Kit 2.0 (PacBio, Menlo Park, CA, USA) and sequenced on SMRT cells (1M v3 LR) in a PacBio Sequel system (PacBio). Raw sequence reads of each variety were divided into two subsets with the trio-binning strategy7 using the short-read data of C. campanulata (‘Kanhi-zakura’) and C. speciosa (‘Ohshima-zakura’) together with six lines (Supplementary Table S2), which are representatives of 139 flowering cherries (DDBJ sequence archive accession no.: DRA008096).7 The sequence read subsets were assembled separately with Falcon or Canu to build haplotype-phased diploid genome sequences. Sequence errors in the contigs were corrected twice using long reads with ARROW. Potential contaminating sequence reads from organelle genomes were identified by alignments with the chloroplast and mitochondrial genome sequences of Prunus avium (GenBank accession nos: MK622380 and MK816392) with Minimap2 and then removed from the final assemblies. Haplotype-phased sequences, based on binning with C. campanulata and C. speciosa, were aligned against the C. spachiana and C. speciosa haplotype sequences, respectively, of the ‘Somei-Yoshino’ genome using Ragoo to build pseudomolecule sequences. Genome sequences were compared with D-Genies, and coverage was calculated with BEDTools. Two haplotype sequences were aligned with Minimap2 to identify sequence variants by paf-tools implemented in Minimap2.

2.4 Gene prediction and repetitive sequence analysis

Potential protein-coding genes were predicted with the MAKER pipeline, which was based on peptide sequences predicted from the genome sequences of sweet cherry (P. avium),10 peach (v2.0a1)11 and Japanese plum.12 Short genes (<300 bp) as well as genes predicted with an annotation edit distance >0.5, which is proposed as a threshold for good annotations in the MAKER protocol, were removed to facilitate the selection of high-confidence (HC) genes. Functional annotation of the predicted genes was performed with Hayai-Annotation Plants. Gene clustering was performed with OrthoFinder and visualized with UpSetR.

Repetitive sequences in the pseudomolecules were identified with RepeatMasker using repeat sequences registered in Repbase and a de novo repeat library built with RepeatModeler. The identified repetitive sequences were classified into nine types, in accordance with RepeatMasker: short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), long terminal repeat (LTR) elements, DNA elements, small RNAs, satellites, simple repeats, low-complexity repeats and unclassified.

3. Results and data description

3.1 De novo assembly of ‘Kawazu-zakura’ and ‘Atami-zakura’ genomes

Short reads amounting to 64.0 and 127.7 Gb were obtained for ‘Kawazu-zakura’ and ‘Atami-zakura’, respectively. The genome sizes of ‘Kawazu-zakura’ and ‘Atami-zakura’ were estimated at 672.7 and 675.2 Mb, respectively (Fig. 1). Because ‘Kawazu-zakura’ and ‘Atami-zakura’ are interspecific hybrids, we used a trio-binning strategy to establish haplotype-resolved genome assemblies representing each parental genome sequence.

Long-read data (34.9 Gb) of ‘Kawazu-zakura’ obtained from two SMRT cells were evenly divided into two subsets (17.2 and 17.6 Gb), in accordance with the short-read data of potential parental species, C. campanulata and C. speciosa, respectively (Supplementary Table S2). Reads in each subset were independently assembled with Falcon or Canu to construct contigs representing the two haplotype sequences (Supplementary Table S3). We employed the Falcon assembly for further analysis, because the contig number was less than that in Canu assembly. Potential errors in the haplotype sequences were corrected with long reads, and sequences of organelle genomes were removed to obtain the final assembly of the diploid genome of ‘Kawazu-zakura’. The resulting assemblies consisted of C. campanulata (262.2 Mb, N50 = 1.4 Mb) and
C. speciosa (257.6 Mb, N50 = 1.1 Mb) haplotypes (Table 1) and were designated as KWZcam_r1.0 and KWZspe_r1.0, respectively. Although the total assembly size was shorter than the estimated size, the complete BUSCO scores of KWZcam_r1.0 and KWZspe_r1.0 were 93.1% and 96.7%, respectively, indicating that the assemblies were complete (Table 1). The two assemblies were merged to generate KWZ_r1.0, with a complete BUSCO score of 98.0%.

The ‘Atami-zakura’ genome was sequenced in parallel with the ‘Kawazu-zakura’ genome. Long-read data of ‘Atami-zakura’ (14.3 Gb) were obtained from two SMRT cells and divided into two subsets (7.4 and 6.8 Gb) using the short-read data of C. campanulata and C. speciosa,7 respectively (Supplementary Table S2). The reads were assembled with Falcon or Canu to generate two haplotype contig sequences (Supplementary Table S3). The size of the Falcon assembly was much smaller than the Canu assembly. Therefore, we used the Canu for further assembly. This was followed by potential sequence error correction and organelle genome sequence removal. The sizes of the resultant assemblies were improved to 267.4 Mb (N50 = 853.5 kb) and 242.2 Mb (N50 = 569.4 Mb) for the C. campanulata and C. speciosa haplotypes, respectively (Table 1), and the assemblies were designated as ATMcam_r1.0 and ATM spe_r1.0, respectively. The complete BUSCO scores were 93.4% and 93.5% for ATMcam_r1.0 and ATMspe_r1.0, respectively (Table 1), and 98.2% for the merged assembly (ATM_r1.0).

3.2 Reference-guided pseudomolecule sequence construction

Because the genome structures are well conserved across the Cerasus and Prunus species,7 we used the two haplotype pseudomolecule sequences of the ‘Somei-Yoshino’ genome, CYEspachiana_r3.1 and CYEspeciosa_r3.1, as references to establish the pseudomolecule sequences of ‘Kawazu-zakura’ and ‘Atami-zakura’. A total of 777 and 746 contigs of KWZcam_r1.0 and KWZspe_r1.0, respectively, were aligned against CYEspachiana_r3.1 and CYEspeciosa_r3.1 sequences, respectively, and the lengths of the resultant ‘Kawazu-zakura’ pseudomolecule sequences obtained were 256.7 Mb (KWZcam_r1.0) and 246.5 Mb (KWZspe_r1.0) (Table 2). On the other hand, 1,110 ATMcam_r1.0 and 1,041 ATMspe_r1.0 contigs were aligned with the CYEspachiana_r3.1 and CYEspeciosa_r3.1 sequences, respectively, and the lengths of the ‘Atami-zakura’ pseudomolecule sequences were 261.5 Mb (ATMcam_r1.0) and 238.9 Mb (ATMspe_r1.0) (Table 2). The pseudomolecule sequences of ‘Kawazu-zakura’ and ‘Atami-zakura’ genomes covered 92.5% and 92.1% of genome sequence of ‘Somei-Yoshino’, respectively (Fig. 2).

Table 1. Statistics of the contig sequences of two flowering cherry (Cerasus × kanzakura) cultivars, Kawazu-zakura’ and ‘Atami-zakura’

	KWZ_r1.0	KWZcam_r1.0	KWZspe_r1.0	ATM_r1.0	ATMcam_r1.0	ATMspe_r1.0
Total contig size (bases)	519,843,677	262,196,010	257,647,667	509,633,549	267,393,285	242,240,264
Number of contigs	1,544	783	761	2,180	1,124	1,056
Contig N50 length (bases)	1,220,495	1,445,144	1,108,133	709,113	853,547	569,444
Longest contig size (bases)	8,019,066	5,955,677	8,019,066	5,799,312	5,799,312	3,381,444
Gap (bases)	0	0	0	0	0	0
Complete BUSCOs	98.2%	93.1%	96.7%	98.0%	93.4%	93.5%
Single-copy BUSCOs	7.5%	86.7%	89.0%	16.0%	86.5%	87.8%
Duplicated BUSCOs	90.7%	6.4%	7.7%	82.0%	6.9%	5.7%
Fragmented BUSCOs	0.3%	0.7%	0.4%	0.4%	0.7%	1.6%
Missing BUSCOs	1.5%	6.2%	2.9%	1.6%	5.9%	4.9%
#Genes	72,702	36,281	36,421	72,528	36,264	36,264

Figure 1. Estimation of the genome size of two flowering cherry (Cerasus × kanzakura) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’, based on k-mer analysis (k = 17), with the given multiplicity values.

Genomes of early-flowering cherry varieties
3.3 Gene and repetitive sequence predictions

A total of 36,281 and 36,421 HC protein-coding genes were predicted in KWZcam_r1.0 and KWZspe_r1.0 assemblies, respectively (Table 2). The complete BUSCO scores of genes in the KWZcam_r1.0 and KWZspe_r1.0 were 88.3% and 86.6%, respectively, while the BUSCO score of all 72,702 genes was 97.0%. Functional gene annotation revealed that 9,430, 17,907 and 12,603 sequences were assigned to Gene Ontology (GO) slim terms in the biological process, cellular component and molecular function categories, respectively, and 2,264 genes had enzyme commission numbers.

On the other hand, 36,264 and 33,264 HC genes were predicted in ATMcam_r1.0 and ATMspe_r1.0 assemblies, respectively (Table 2). Complete BUSCOs of genes in ATMcam_r1.0 and ATMspe_r1.0 were 88.3% and 86.6%, respectively, while that of all 69,528 genes was 96.8%. According to the functional gene annotation, 9,836, 18,586 and 13,020 sequences were assigned to GO slim terms in the biological process, cellular component and molecular function categories, respectively, and 2,301 genes had enzyme commission numbers.

Repeat sequences occupied varying proportions of the different genome assemblies: 48.0% (KWZcam_r1.0), 45.7% (KWZspe_r1.0), 47.7% (ATMcam_r1.0) and 43.2% (ATMspe_r1.0). LTR elements were the most abundant repetitive sequences (15.1–17.7%), followed by unclassified repeats (12.7–13.7%) and DNA transposons (11.1–13.2%) (Table 3).

3.4 Gene clustering and sequence variant analyses in early-flowering cherry varieties

Four sets of genes predicted in the haplotype-phased genomes of 'Kawazu-zakura' and 'Atami-zakura' clustered with two sets of genes in the two haploid sequences of 'Somei-Yoshino'. A total of 35,226 clusters were obtained, of which 10,702 were common across all six haplotype sequences. In the C. campanulata haplotype sequences, a total of 2,634 clusters were found to include 3,123 and 3,113 genes, respectively, and 2,301 genes had enzyme commission numbers.

Repeat sequences occupied varying proportions of the different genome assemblies: 48.0% (KWZcam_r1.0), 45.7% (KWZspe_r1.0), 47.7% (ATMcam_r1.0) and 43.2% (ATMspe_r1.0). LTR elements were the most abundant repetitive sequences (15.1–17.7%), followed by unclassified repeats (12.7–13.7%) and DNA transposons (11.1–13.2%) (Table 3).

4. Conclusion and future perspectives

Here, we report haplotype-phased genome assemblies of two early-flowering cherry (C. × kansakura) cultivars, 'Kawazu-zakura' and 'Atami-zakura', both of which are interspecific hybrids derived from C. campanulata and C. speciosa. Although the origin of C. × kansakura remains unclear, C. campanulata and C. speciosa and/or C. jamasakura are considered as its potential parents. Another possibility is that 'Atami-zakura' originated from C. jamasakura and C. campanulata. This is supported by the fact that our attempt to divide the long reads of 'Atami-zakura' into two subsets using short-read data of C. serrulata (closely related to C. jamasakura) and C. campanulata failed (Supplementary Table S2). Therefore, we used short reads of C. campanulata and C. speciosa for both 'Kawazu-zakura' and 'Atami-zakura'. This result suggests that both 'Kawazu-zakura' and 'Atami-zakura' are closely related to C. campanulata and C. speciosa.
Clustering analysis of genes predicted in the genomes of ‘Kawazu-zakura’ and ‘Atami-zakura’ together with those of ‘Somei-Yoshino’ revealed that 2,634 gene clusters were uniquely present in the genome of *C. campanulata* but absent from the genomes of *C. spachiana* and *C. speciosa* (Fig. 3, Supplementary Table S4). Such copy number variation (or presence/absence variation) of genes could explain the early-flowering phenotype of ‘Kawazu-zakura’ and ‘Atami-zakura’. In addition, approximately 1 million sequence variants were found between the two haplotype sequences in both ‘Kawazu-zakura’ and ‘Atami-zakura’ (Supplementary Table S3). Previously, we performed a time-course transcriptome analysis of the floral buds and flowers of ‘Somei-Yoshino’ to clarify gene expression patterns during flowering.7,14 A similar time-course transcriptome analysis could be applied to ‘Kawazu-zakura’ and ‘Atami-zakura’. Comparative transcriptome analysis of three cultivars could identify the genes responsible for the early-flowering phenotype of sakura. Furthermore, comparative transcriptome analysis of Japanese apricot and peach3 could reveal the genetic mechanisms controlling flowering time across all *Prunus* and *Cerasus* species.

Although several flowering cherry cultivars are known to bloom in late-spring, fall and winter seasons, genome sequences of only a few of these cultivars are publicly available.7,15,16 Comparative genomics and transcriptomics, also known as pan-genomics,4–6 of sakura...
would provide insights into the origins of these cultivars and their flowering mechanisms, which could facilitate the development of new cultivars with attractive flower characteristics and provide us with the ability to forecast the date of sakura blooming.

Acknowledgements

We thank Y. Kishida, C. Minami, H. Tsuruoka and A. Watanabe (Kazusa DNA Research Institute) for technical assistance.

Accession numbers

Sequence reads are available from the DNA Data Bank of Japan (DDBJ) Sequence Read Archive (DRA) database (accession no.: DRA012553). The DDBJ accession numbers of assembled sequences are BPUM01000001–BPUM01000783 (KWZcam_r1.0), BPUM01000784–BPUM01001544 (KWZspe_r1.0), BPUL01000001–BPUL01001124 (ATMcam_r1.0), and BPUL01001125–BPUL01002180 (ATMspe_r1.0). The genome sequence information generated in this study is available at Genome Database for Rosaceae (GDR, https://www.rosaceae.org)17 and Plant GARDEN (https://plantgarden.jp 25 November 2021, date last accessed).

Funding

This work was supported by the Kazusa DNA Research Institute Foundation.

Supplementary data

Supplementary data are available at DNARES online.

Conflict of interest

None declared.

References

1. Takenaka, Y. 1963, The origin of the Yoshino cherry tree, J. Heredity, 54, 207–11.
2. Kato, S., Matsumoto, A., Yoshimura, K., et al. 2014, Origins of Japanese flowering cherry (Prunus subgenus Cerasus) cultivars revealed using nuclear SSR markers, Tree Genet. Genomes, 10, 477–87.
3. Yamane, H. 2014, Regulation of bud dormancy and bud break in Japanese apricot (Prunus mume Siebold & Zucc.) and peach (Prunus persica (L.) Batsch): a summary of recent studies, J. Jpn. Soc. Hortic. Sci., 83, 187–202.
4. Chen, F., Song, Y., Li, X., et al. 2019, Genome sequences of horticultural plants: past, present, and future, Hortic. Res., 6, 112.
5. Della Coletta, R., Qiu, Y., Ou, S., Hufford, M.B. and Hirsch, C.N. 2021, How the pan-genome is changing crop genomics and improvement, Genome Biol., 22, 3.
6. Shirasawa, K., Esumi, T., Hirakawa, H., et al. 2019, Phased genome sequence of an interspecific hybrid flowering cherry, ‘Somei-Yoshino’ (Cerasus × yedoensis), DNA Res., 26, 379–89.
7. Koren, S., Rhie, A., Walenz, B.P., et al. 2018, De novo assembly of haplotype-resolved genomes with trio binning, Nat. Biotechnol., 36, 1174–82.
8. Jung, S., Lee, T., Cheng, C.H., et al. 2019, 15 years of GDR: new data and functionality in the genome database for Rosaceae, Nucleic Acids Res., 47, D1137–45.