Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in *Schistosoma japonicum*-infected mice via transforming growth factor-β/Smad signaling

Bo-Lin Chen, Jie Peng, Qing-Fu Li, Min Yang, Yuan Wang, Wei Chen

Bo-Lin Chen, Jie Peng, Qing-Fu Li, Yuan Wang, Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
Min Yang, Department of Respiratory, Hunan Children’s Hospital, Changsha 410011, Hunan Province, China
Wei Chen, Department of Gastroenterology, Changsha Central Hospital, Changsha 410004, Hunan Province, China

Author contributions: Chen BL designed the research, performed the majority of the experiments and wrote the manuscript; Peng J supervised the research; Yang M was involved in revising the manuscript; Li QF, Wang Y and Chen W helped perform the research and participated in data analysis.

Correspondence to: Dr. Jie Peng, Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China. pengjie2@medmail.com.cn

Online Submissions: http://www.wjgnet.com/esps/
doi:10.3748/wjg.v19.i9.1405

Abstract

AIM: To investigate the antifibrotic effects of bone morphogenetic protein-7 (BMP-7) on *Schistosoma japonicum* (*S. japonicum*)-induced hepatic fibrosis in BALB/C mice.

METHODS: Sixty BALB/C mice were randomly divided into three groups, including a control group (group A, n = 20), model group (group B, n = 20) and BMP-7 treated group (group C, n = 20). The mice in group B and group C were abdominally infected with *S. japonicum* cercariae to induce a schistosomal hepatic fibrosis model. The mice in group C were administered human recombinant BMP-7. Liver samples were extracted from mice sacrificed at 9 and 15 wk after modeling. Hepatic histopathological changes were assessed using Masson’s staining. Transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA), phosphorylated Smad2/3 (pSmad2/3) and Smad7 protein levels and localization were measured by Western blotting and immunohistochemistry, respectively, and their mRNA expressions were detected by reverse transcription-polymerase chain reaction (RT-PCR).

RESULTS: The schistosomal hepatic fibrosis mouse model was successfully established, as the livers of mice in group B and group C showed varying degrees of typical schistosomal hepatopathologic changes such as egg granuloma and collagen deposition. The degree of collagen deposition in group C was higher than that in group A (week 9: 22.95 ± 6.66 vs 2.02 ± 0.76; week 15: 12.84 ± 4.36 vs 1.74 ± 0.80; P < 0.05), but significantly lower than that in group B (week 9: 22.95 ± 6.66 vs 34.43 ± 6.96; week 15: 12.84 ± 4.36 vs 18.90 ± 5.07; P < 0.05) at both time points. According to immunohistochemistry data, the expressions of α-SMA, TGF-β1 and pSmad2/3 protein in group C were higher than those in group A (α-SMA: week 9: 21.24 ± 5.73 vs 0.33 ± 0.20; week 15: 12.42 ± 4.88 vs 0.34 ± 0.27; TGF-β1: week 9: 37.00 ± 13.74 vs 3.73 ± 2.14; week 15: 16.71 ± 9.80 vs 3.08 ± 2.35; pSmad2/3: week 9: 12.92 ± 4.81 vs 0.83 ± 0.48; week 15: 7.87 ± 4.09 vs 0.90 ± 0.45; P < 0.05), but significantly lower than those in group B (α-SMA: week 9: 21.24 ± 5.73 vs 34.39 ± 5.74; week 15: 12.42 ± 4.88 vs 25.90 ± 7.01; TGF-β1: week 9: 37.00 ± 13.74 vs 55.66 ± 14.88; week 15: 16.71 ± 9.80 vs 37.10 ± 12.51; pSmad2/3: week 9: 12.92 ± 4.81 vs 19.41 ± 6.87; week 15: 7.87 ± 4.09 vs 13.00 ± 4.98; P < 0.05) at both time points; the expression of Smad7 protein in group B was higher than that in group A and group C at week 9 (8.46 ± 3.95 vs 1.00 ± 0.40 and 8.46 ± 3.95 vs 0.77 ± 0.42; P > 0.05), while there were no differences in Smad7 expression between the three groups at week 15 (1.09 ± 0.38 vs 0.97 ± 0.42 vs 0.89 ± 0.39; P > 0.05). Although minor discrepancies were observed, the results of RT-PCR and Western blotting were mainly consistent...
with the immunohistochemical results.

CONCLUSION: Exogenous BMP-7 significantly decreased the degree of hepatic fibrosis in both the acute and chronic stages of hepato-schistosomiasis, and the regulatory mechanism may involve the TGF-β/Smad signaling pathway.

© 2013 Baishideng. All rights reserved.

Key words: Bone morphogenetic protein-7; Schistosoma japonicum; Hepatic fibrosis; Smad; BALB/C mice

Chen BL, Peng J, Li QF, Yang M, Wang Y, Chen W. Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in Schistosoma japonicum-infected mice via transforming growth factor-β/Smad signaling. World J Gastroenterol 2013; 19(9): 1405-1415 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i9/1405.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i9.1405

INTRODUCTION

Schistosomiasis japonica, a chronic and debilitating disease caused by the trematode Schistosoma japonicum (S. japonicum), is one of the major public health problems in China and other tropical countries such as the Philippines and Indonesia. It seriously impacts the health of residents within endemic areas as well as social and economic development[4-8]. Human immune response to schistosome eggs deposited in the liver and the granulomatous inflammation they evoke are the initial factors of hepato-schistosomiasis, while the subsequent hepatic fibrosis represents a wound-healing response to previous liver damage[9,10]. The primary cell type involved in schistosomal hepatic fibrosis is the hepatic stellate cell (HSC); HSCs are activated in response to inflammatory injury and converted from vitamin A-storing cells into myofibroblasts-like cells, characterized by the expression of alpha-smooth muscle actin (α-SMA), the secretion of excessive collagens and other extracellular matrix components, and the production of various pro-fibrosis cytokines such as transforming growth factor-beta (TGF-β)[11,12]. TGF-β not only maintains the progressive activation of myofibroblasts, but also activates other silent HSCs[13,14]. This positive feedback cascade reaction always causes continuous schistosomal hepatic fibrosis even when timely and effective anti-helminthic treatment has been given. In addition, praziquantel resistance has become common because of a long term dependence on this single anthelmintic[15,16]. As etiological therapy alone is not enough to treat hepatic fibrosis, finding other strategies that can block the activation of HSCs and suppress the progression of collagen deposition is important. Considering the dominant role of the cytokine system in hepatic fibrosis, research on cytokine regulators (antagonist or promoter) has become a new focus and has very promising value.

Among the numerous cytokines and growth factors that are involved in hepatic fibrosis, TGF-β, especially TGF-β1, is an acknowledged critical fibrogenic stimulus to HSCs[17]. TGF-β performs its functional role mostly via the TGF-β/Smad signaling pathway, which is implicated in a wide range of physiological and pathological events, including embryogenesis, inflammation and fibrosis. In this pathway, phosphorylated Smad2/3 (pSmad2/3) proteins act as pivotal downstream effectors of TGF-β which convey signals from TGF-β receptors to the nucleus, while Smad7 seems to be antagonistic to TGF-β as a negative feedback mediator[18,19]. Bone morphogenetic protein-7 (BMP-7), a member of the TGF-β superfamily, has been studied extensively due to its essential roles during morphogen formation and cell differentiation[20,21]. Recently, its therapeutic potential in the regulation of fibrosis was recognized based on the counteractive effect of BMP-7 against the TGF-β/Smad signaling pathways. For instance, Zeisberg et al.[22] demonstrated the Smad-dependent reversal of TGF-β1-induced epithelial-to-mesenchymal transition (EMT) by BMP-7 to renal tubular epithelial cells, while EMT is recognized as an important event in fibrogenesis. Moreover, varying degrees of inhibition of thioacetamide- and CCL2-induced liver fibrosis by BMP-7 has been respectively observed in recent research[23]. These limited findings led us to hypothesize that BMP-7 may have a similar effect on schistosomal hepatic fibrosis. Therefore, in the current study, we set TGF-β1 and Smads as our intervention targets to investigate the potential therapeutic effect of BMP-7 in a mouse model of schistosomal hepatic fibrosis.

MATERIALS AND METHODS

Animals and parasite

Six-week-old SPF BALB/C female mice, weighing 12-16 g, were obtained from the Experimental Animal Center, Central South University, Changsha, China. All animal experiments were performed under the control of the Animal Care Committee of Central South University in accordance with the Guidelines on Animal Experiments in Central South University. Oncomelania hupensis harboring S. japonicum cercariae were purchased from the Institute of Schistosomiasis Control Center (Yueyang, Hunan, China) and the vitality of cercariae was confirmed by microscopy.

Animal treatment

Sixty BALB/C mice were randomly divided into three groups, including a control group (group A), model group (group B) and BMP-7 treated group (group C) (n = 20 in each group). All animals were maintained under specific pathogen-free conditions, kept at 20 ± 2°C in a 12-h light/12-h dark cycle and had free access to standard laboratory water and chow. The mice in group B and group C were percutaneously infected with S. japonicum by placing a coverslip carrying 15 ± 1 cercariae in non-chlorine water on their abdomen for 30 min. The mice in group A were treated with non-chlorine water containing no cercariae. Six weeks after infection, the initial phase of hepatic schistosomiasis where, according to our previous
studies\cite{26}, schistosome eggs reached the liver, the mice in group C were administered recombinant human BMP-7 (Peprotech, United States, Catalog Number: 120-03), 300 pg/g intraperitoneally, every other day for a period of four weeks. At 9 wk and 15 wk after infection, which are the extreme and stationary phases of schistosomal hepatic fibrosis according to our previous studies\cite{26}, 10 mice from each group were randomly selected and sacrificed. Liver tissues were obtained and divided into two parts: the left lobes were fixed in a 4\% paraformaldehyde solution for 12 h and the remainder was preserved at -80 °C until use.

Histological examination

After a graded alcohol series, dehydration and xylene treatment, the liver specimens were embedded in paraffin blocks and cut into 5-μm thick sections. The degree of collagen deposition was assessed using Masson’s staining according to standard procedures. A pathologist who was blinded to the research design checked all the sections and described the pathological changes mainly concerning hepatic fibrosis. In addition, a medical color image analysis system (Image-Pro Plus 6.0) was used to scan and sum the collagen deposition areas then calculate the percentage of collagen, a relative objective index to assess the degree of hepatic fibrosis, expressed as the ratio of the fibrotic area to the whole area. The field examined at 100× magnification contained at least a granuloma, portal area, or a centrilobular vein, and the results are presented as the mean of ten different fields in each section.

Immunohistochemistry

Immunohistochemical staining was performed with an HRP-Polymer anti-Mouse/Rabbit IHC Kit (MAIXIN-BIO, China, Catalog Number: KIT-5020). The sections were dewaxed, dehydrated, washed in phosphate-buffered saline (PBS, 0.01 mol/L, pH 7.2) 3 × 5 min, heated at 100 °C in a microwave oven 6 × 2 min, incubated in 3% H2O2 in deionized water for 10 min to block endogenous peroxidase activity, and washed 3 × 5 min with PBS. The sections were then incubated overnight at 4 °C with primary antibodies (rabbit TGF-β1 antibody, sc-146, Santa Cruz Biotechnology, Inc., 1:500; goat p-Smad2/3 antibody, sc-11769, Santa Cruz Biotechnology, Inc., 1:300; mouse Smad7 antibody, sc-365846, Santa Cruz Biotechnology, Inc., 1:300; rabbit α-SMA antibody, ab5694, Abcam, Inc., 1:400). After washing 3 × 5 min with PBS, the appropriate HRP-polymer anti-mouse/rabbit immunoglobulin G (IgG) was added to the sections and incubated at 37 °C for 20 min. The sections were then washed 3 × 5 min with PBS, and the color was developed with DAB without the primary antibody. The integral optical density (IOD) of the target protein was measured with Image-Pro Plus 6.0, and the result was determined as the sum of five different fields (one in the center and four in the periphery) of each section. IOD was defined as the sum of the optical densities of all the positive pixels in the image, which represents the quantity of the targeted protein.

Reverse transcription-polymerase chain reaction

Total RNA was extracted from preserved liver tissue with TRIZOL Reagent (Invitrogen, United States) then reverse-transcribed into cDNA by polymerase chain reaction (PCR). Mix Reagent kits (Fermentas, Canada) were used according to the manufacturer's protocol. The housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was used as an internal control to calculate relative quantification of target gene expression. The primer sequences were as follows: TGF-β1 (168 bp) forward 5’-AGGGCTACCATGCAACTTC-3’ and reverse 5’-CCAGTGATGAGCATCAGGC-3’; Smad2 (148 bp) forward 5’-CTGTGACGCGATGGAAGTCT-3’ and reverse 5’-CCAGTGATGACGAGTGGC-3’; Smad3 (135 bp) forward 5’-CAGGAGATCGTCAAGAAC-3’ and reverse 5’-CTGAAATGTCGCGTACC-3’; Smad7 (230 bp) forward 5’-GCACGTGGTCGTCAAGAAC-3’ and reverse 5’-CCGAGATCGTCAAGAAC-3’; GAPDH (300 bp) forward 5’-AGAGACATCCGACCTGTGCGT-3’ and reverse 5’-AAATGGCCAGCTGTCAG-3’. In the RT step, a 20 μL reaction volume contained the following components: 1 μL RNA sample (1 μg/μL), 1 μL Oligo (dT) (10 pmol/μL), 10 μL DEPC-water, 4 μL 5 × buffer, 2 μL dNTP mixture (10 mmol/L), 1 μL RNase inhibitor (10 U/μL) and 1 μL ReverTra Ace. The reaction was performed at 25 °C for 5 min, followed by 42 °C for 60 min, 70 °C for 5 min, and 4 °C for 5 min. In the PCR step, a 25 μL reaction volume contained the following components: 12.5 μL 2 × Master Mix, 10.5 μL nuclease-free water, 1 μL primer, and 1 μL cDNA. The PCR protocol was as follows: denaturation at 94 °C for 3 min; 35 cycles of denaturation at 94 °C for 30 s, annealing at 59 °C (TGF-β1, Smad2, Smad3 and GAPDH) or 58 °C (Smad7 and α-SMA) for 30 s, and elongation at 72 °C for 45 s; and final elongation at 72 °C for 5 min. The amplified products were separated by electrophoresis on 1.5% agarose gels (volume: 8 μL samples plus 2 μL buffer; voltage: 100 V), visualized with ethidium bromide staining and photographed using an ultraviolet imaging system (Kodak, United States). We used gel analysis software (Gel-Pro 4.0) to scan and calculate the IOD of the bands. The relative mRNA expression of the target gene was represented as the ratio of target gene IOD and GAPDH IOD.

Western blotting

Liver tissues (0.5 g) were homogenized on ice in 1 mL lysis buffer prepared from a Total Protein Extraction kit (ProMab, United States) for about 20 min and then ultrasonicated for 3 × 3 s. The homogenates were centrifuged at 9000 × g for 10 min at 4 °C and the supernatants were then extracted to obtain the gel sample by mixing it with sampling buffer. Following heat denaturation at 100 °C for 3 min, the samples (20 μg protein each lane) were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis in running buffer and subsequently transferred to nitrocellulose membrane (Pierce, United States) in precooling transfer buffer at 300 mA constant current for 70 min. Non-specific binding site sealing was performed by incubating in PBS containing 5% non-fat milk for 2 h at room temperature. The primary antibodies (rabbit TGF-β1 antibody, sc-146, Santa Cruz Biotechnology, Inc., 1:400; goat p-Smad2/3 antibody, sc-11769, Santa Cruz Biotechnology, Inc., 1:500; mouse Smad7 antibody, sc-365846, Santa Cruz Biotechnology, Inc., 1:800; rabbit α-SMA antibody, ab5694, Abcam, Inc., 1:1500; mouse GAPDH antibody, SC-365062, Santa Cruz Biotechnology, Inc., 1:800) were incubated with the membrane overnight at 4°C. After being washed 5 × 4 min with PBS-Tween 20 (PBST), the secondary antibody (goat anti-rabbit IgG HRP for TGF-β1 and α-SMA, 1:40 000; rabbit anti-goat IgG HRP for p-Smad2/3, 1:40 000; goat anti-mouse IgG HRP for Smad7 and GAPDH 1:80 000) was incubated with these membranes for 1 h at room temperature. After being washed 5 × 4 min with PBST, enhanced chemiluminescence detection of the target protein was performed. The film was scanned and the image was analyzed with Gel-Pro 4.0. The relative expression of target protein was represented by the ratio of target protein IOD and GAPDH IOD.

Statistical analysis

Statistical analysis was performed using SPSS 13.0 software. Comparisons between groups were performed using one-way analysis of variance (homogeneity of variance: S-N-K; heterogeneity of variance: Dunnett’s T3). Comparisons between time points were performed using independent-samples t test. P values less than 0.05 were considered statistically significant.

RESULTS

Schistosomal hepatopathology

Typical schistosomal hepatopathological characteristics include mainly egg granuloma and collagen deposition and were observed using Masson’s staining in group B and group C at both time points (Figure 1C-F), while group A showed normal hepatocyte morphology (Figure 1A and B). At week 9, in group B, a dense mass of collagen fibers surrounded the egg granulomas, and spread to the space around them, or extended to neighboring lobules (Figure 1C); in group C, there were still numerous collagen fibers around the granulomas, but these were fewer (Figure 1E). At week 15, compared to week 9, a reduction in collagen deposition in group B was observed (Figure 1D), while there were only a few collagen fibers wrapped around disintegrated granulomas in group C (Figure 1F). Data of the percentage of collagen fibers in the different groups and at the two time points are expressed as the mean ± SD and are shown in Figure 1G.

Expression of TGF-β1, α-SMA, pSmad2/3 and Smad7 mRNA (RT-PCR) and protein (Western blotting)

The experimental data on target mRNAs (RT-PCR) and proteins (Western blotting) were all roughly consistent with the immunohistochemical results (Figures 4 and 5). In summary, the expressions of TGF-β1, pSmad2/3 and α-SMA mRNA and protein in group C were higher than or similar to those in group A, but significantly decreased compared to group B at both time points. With regard to the expressions of Smad7 mRNA and protein, there were no significant differences between group A and group C at both time points or group B at week 15, but they were all lower than those in group B at week 9. All data are shown in Figures 6 and 7.

DISCUSSION

The molecular components and regulatory mechanism of the TGF-β/Smad signaling pathway are more or less diverse under different pathologic processes and environmental conditions[27-30]. During acute liver injury, especially in toxipathic hepatitis, the principal components and the canonical progression of this signaling are as follows: catalytically active TGF-β type I receptor phosphorylates Smad2 and the highly similar protein Smad3 to create their phosphorylated (p) isoforms, then TGF-β promotes collagen synthesis in activated HSCs via pSmad2/3 pathways[31]. In the recovery stage of acute liver injury, to avoid excessive collagen deposition, TGF-β also initiates the expression of antagonistic Smad7 which functions in a negative-feedback loop to reduce the fibro-
The negative regulation of TGF-β/Smad signaling is insufficient and transitory; when liver injury and fibrosis enter the chronic phase, the induction of Smad7 gradually ceases, while
other promotive factors continue to work\(^{[34]}\). That is why an appropriate exogenous cytokine regulator is so attrac-
Chen BL et al. BMP-7 reduces schistosomal hepatic fibrosis
tive due to its potential therapeutic effect in blocking or reversing hepatic fibrosis. Although BMP-7 belongs to

Figure 3 Representative images of immunostaining for pSmad2/3 and Smad7 in the groups over time. Target protein positive staining is yellow or brownish-yellow. Original magnification 100×. Histogram shows integral optical densities of target proteins. $^bP < 0.01$ vs group A; $^dP < 0.01$ vs group B; $^fP < 0.01$ vs group C; $^hP < 0.01$ vs week 9. IOD: Integral optical density.
Chen BL et al. BMP-7 reduces schistosomal hepatic fibrosis

Figure 4 Representative electrophoretic bands of transforming growth factor-beta 1, alpha-smooth muscle actin, pSmad2, pSmad3 and Smad7 mRNA (reverse transcription-polymerase chain reaction). Numbers 1-3 represent group A, B and C, respectively, at 9 wk; Numbers 4-6 represent group A, B and C, respectively, at 15 wk. The 132 bp glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA fragment was used as an internal control. M: Marker; TGF-β1: Transforming growth factor-beta 1; α-SMA: Alpha-smooth muscle actin.

Figure 5 Representative electrophoretic bands of transforming growth factor-beta 1, alpha-smooth muscle actin, pSmad2/3 and Smad7 protein (Western blotting). Numbers 1-3 represent group A, B and C, respectively, at 9 wk. Numbers 4-6 represent group A, B and C, respectively, at 15 wk. The 37 kD glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. TGF-β1: Transforming growth factor-beta 1; α-SMA: Alpha-smooth muscle actin.

Figure 6 Relative mRNA expressions (target gene integral optical density/glyceraldehyde-3-phosphate dehydrogenase integral optical density, reverse transcription-polymerase chain reaction) of transforming growth factor-beta 1, alpha-smooth muscle actin, pSmad2, pSmad3 and Smad7. TGF-β1: Transforming growth factor-beta 1; α-SMA: Alpha-smooth muscle actin. *P<0.01 vs group A; †P<0.01 vs group B; ‡P<0.01 vs group C; ††P<0.01 vs week 9.
the TGF-β superfamily due to their shared morphologi-
cal characteristics, it has an almost contrary biological
function compared to TGF-β. An increasing number of
reports indicate that BMP-7 may be a new antagonist of
organ fibrosis because of its counteractive effect on the
TGF-β/Smad signaling pathway; however, the role of
BMP-7 in schistosomal hepatic fibrosis and the underly-
ing regulatory mechanism remains a mystery. The patho-
genic progression and prognosis of hepatic fibrosis
induced by S. japonicum infection are different to other types
of hepatic fibrosis, and correlative studies are necessary.

In the present study, we administered recombinant
human BMP-7 at the initiation of hepatic schistosomiasis
and extended the treatment period to 3 wk to ensure an
adequate biological effect. The data showed that both
the acute and chronic phases of liver injury and col-
gen deposition in the model group were accompanied
by high expressions of protein and mRNA of TGF-β1,
pSmad2/3 and α-SMA compared to the normal group,
indicating that the “TGF-β1 active HSCs via pSmad2/3”
classic pathway is still active in S. japonicum-induced hepatic
fibrosis. Following treatment with BMP-7, the degree
of collagen deposition significantly reduced at both time
points as well as the expressions of TGF-β1, pSmad2/3 and
α-SMA, indicating that BMP-7 had an inhibitory
effect on schistosomal hepatic fibrosis, at least partly
via down regulation of the expressions of TGF-β1 and
pSmad2/3 and then suppression of HSC activation. Al-
though Smad2 and Smad3 are activated only in response
to TGF-β, there are still other Smads through which
BMP-7 can promote fibrosis without TGF-β. For in-
stance, Kinoshita found that BMP-7 utilized Smad1/5/8
as signaling intermediates and decreased the expression
of type I collagen and α-SMA in primary cultured HSCs
independent of the presence of TGF-β[35]. Whether the
above cytokines act in schistosomal hepatic fibrosis re-
quires further research.

Smad7, known as a negative feedback regulator to
profibrotic TGF-β1, seems only to act in the acute phase
of schistosomal liver injury. In this stage, hepatic damage
caused by schistosome eggs induces severe inflammation;
to prevent further acute injury, reparative fibrosis starts
and numerous collagen fibers are secreted. We speculate
that the upregulation of Smad7 is decided by the inten-

Figure 7 Relative protein expressions (target protein integral optical density/glyceraldehyde-3-phosphate dehydrogenase integral optical density, Western
blotting) of transforming growth factor-beta 1, α-smooth muscle actin, pSmad2/3 and Smad7. TGF-β1: Transforming growth factor-beta 1; α-SMA: Alpha-
smooth muscle actin. "P < 0.01 vs group A; "P < 0.01 vs group B; "P < 0.01 vs group C; "P < 0.01 vs week 9.

Chen BL et al. BMP-7 reduces schistosomal hepatic fibrosis
Chen BL et al. BMP-7 reduces schistosomal hepatic fibrosis

sity of hepatic fibrosis, that is, only an extremely high degree of TGF-β1 activity and collagen secretion can initiate the negative feedback effect of Smad7. This assumption is based on the following two reasons: firstly, at 15 wk after infection in the model group, hepatic fibrosis was present, but at a lower degree than previously, however, the expression of Smad7 was almost down to normal levels; secondly, after the administration of BMP-7, the degree of hepatic fibrosis at 9 wk after infection was markedly alleviated, accompanied by a lack of Smad7 induction. Interestingly, a previous report on an animal model of CCl4-induced liver fibrosis showed that Smad7 levels (both mRNA and protein) were up-regulated in the model group in a time-dependent manner which lasted 12 wk after modeling compared to the control group, and at week 12 Smad7 was significantly lower in the BMP-7 treatment group than in the model group and control group. Thus, our speculation regarding the expression pattern of BMP-7 remains controversial and needs further verification.

In conclusion, the role of BMP-7 as an antagonist to the TGF-β1/Smad signaling pathway and its antifibrotic effect during both the extreme and stationary phases of schistosomal hepatic fibrosis were confirmed in this study. This provides a new research strategy and offers therapeutic potential in the treatment of hepatic schistosomiasis, although the detailed intervention mechanism still requires more research. In addition, the preparatory work for the clinical application of BMP-7 is a long, arduous task.

REFERENCES

1. Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, Chen XY, Zheng J, Utzinger J. The public health significance and control of schistosomiasis in China—then and now. Acta Trop 2010; 96: 97–105 [PMID: 16125655 DOI: 10.1016/j.actatropica.2005.07.005]

2. McManus DP, Li Y, Gray DJ, Ross AG. Conquering ‘snail fever’: schistosomiasis and its control in China. Expert Rev Anti Infect Ther 2009; 7: 473-485 [PMID: 19400766 DOI: 10.1586/eri.09.17]

3. Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, Sudomo M, Olveda R. Schistosomiasis japonica control and research needs. Adv Parasitol 2010; 72: 145-179 [PMID: 20624531 DOI: 10.1016/S0065-308X(10)72006-6]

4. Cheever AW, Byram JE, von Lichtenberg F. Immunopathology of Schistosoma japonicum infection in athymic mice. Parasite Immunol 1985; 7: 387-398 [PMID: 4034237 DOI: 10.1111/j.1365-3042.1985.tb00085.x]

5. Hsü SY, Hsü HF, Davis JR, Lust GL. Comparative studies on the lesions caused by eggs of Schistosoma japonicum and Schistosoma mansoni in livers of albino mice and rhesus monkeys. Ann Trop Med Parasitol 1972; 66: 89-97 [PMID: 4632474]

6. Hurst MH, Willingham AL, Lindberg R. Tissue responses in experimental schistosomiasis japonica in the pig: a histopathologic study of different stages of single low- or high-dose infections. Ann Trop Med Hyg 2000; 62: 45-56 [PMID: 10761723]

7. Hurst MH, Lola SG, Lindberg R. Immunomodulation of the hepatic egg granuloma in Schistosoma japonicum-infected pigs. Parasite Immunol 2006; 28: 681-686 [PMID: 17096648 DOI: 10.1111/j.1365-3024.2006.00921.x]

8. Andrade ZA. Schistosomiasis and liver fibrosis. Parasite Immunol 2009; 31: 656-663 [PMID: 19825105 DOI: 10.1111/j.1365-3024.2009.01157.x]

9. Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gastroenterology 2007; 56: 284-292 [PMID: 17303605 DOI: 10.1136/gut.2005.088690]

10. Brenner DA. Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 2009; 120: 361-368 [PMID: 19768189]

11. Senoo H, Yoshikawa K, Morii M, Miura M, Imai K, Mezaki Y. Hepatic stellate cell (vitamin A-storing cell) and its relative-regulatory role in hepatic fibrosis. Adv Parasitol 2010; 73: 1341-1348 [PMID: 20817008 DOI: 10.1016/j.bbalip.2010.08.014]

12. Anthony B, Allen JT, Li YS, McManus DP. Hepatic stellate cells and parasite-induced liver fibrosis. Parasit Vectors 2010; 3: 60 [PMID: 20663176 DOI: 10.1186/1756-3305-3-60]

13. Chapadeiro E, Pitanga LC. On the reversal of schistosomiasis hepatic fibrosis after specific therapy. Histopathologic study. Rev Soc Bras Med Trop 1996; 30: 53-56 [PMID: 9026832]

14. Kasisanth RS, Morgan WM, Greenberg RM. Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMrp1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 2010; 173: 25-31 [PMID: 20470831 DOI: 10.1016/j.molbiopara.2010.05.003]

15. Baghy K, Iozzo RV, Kovalszky I. Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J Histochim Cytochem 2012; 60: 262-268 [PMID: 22260996 DOI: 10.1369/00221551421438014]

16. Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347: 245-256 [PMID: 22006249 DOI: 10.1007/s00441-011-1246-y]
Chen BL et al. BMP-7 reduces schistosomal hepatic fibrosis

18 Wrana JL. Regulation of Smad activity. Cell 2000; 100: 189-192 [PMID: 10660041]
19 Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685-700 [PMID: 12809600 DOI: 10.1016/S0092-8674(03)00452-X]
20 Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997; 89: 1165-1173 [PMID: 9215638 DOI: 10.1016/S0092-8674(00)80303-7]
21 Nakao A, Afra Khite M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Holdin NE, Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997; 389: 631-635 [PMID: 9335507 DOI: 10.1038/39369]
22 Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA. The mouse short ear skeletal morphology locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 1992; 71: 399-410 [PMID: 1539316 DOI: 10.1016/0092-8674(92)90510-J]
23 Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med 1997; 8: 154-163 [PMID: 9167090 DOI: 10.1177/10454411970080020401]
24 Zeisberg M, Hanai J, Sugimoto H, Mamamoto T, Charytan D, Strutz F, Kalluri R. BMP-7 counteracts TGF-betalt-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9: 964-968 [PMID: 12808484 DOI: 10.1038/nm888]
25 Yang T, Chen SL, Lu XJ, Shen CY, Liu Y, Chen YP. Bone morphogenetic protein 7 suppresses the progression of hepatic fibrosis and regulates the expression of gremlin and transforming growth factor β1. Mol Med Report 2012; 6: 246-252 [PMID: 22552821 DOI: 10.3892/mmr.2012.892]
26 Chen BL, Zhang GY, Wang SP, Li Q, Xu MH, Shen YM, Yan L, Gu H, Li J, Huang YL, Mu YB. The combined treatment of praziquantel with osteopontin immunoneutralization reduces liver damage in Schistosoma japonicum-infected mice. Parasitology 2012; 139: 522-529 [PMID: 2230938 DOI: 10.1017/S0031182011002241]
27 Zi Z, Chapnick DA, Liu X. Dynamics of TGF-β1/Smad signaling. FEBS Lett 2012; 586: 1921-1928 [PMID: 22710166 DOI: 10.1016/j.febslet.2012.03.063]
28 Lan HY, Chung AC. Transforming growth factor-β and Smads. Contrib Nephrol 2011; 170: 75-82 [PMID: 21659760 DOI: 10.1159/000324949]
29 Cohen MM. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003; 116A: 1-10 [PMID: 12476444 DOI: 10.1002/ajmg.a.10750]
30 Lan HY, Chung AC. TGF-β signalling in kidney disease. Semin Nephrol 2012; 32: 236-243 [PMID: 22835454 DOI: 10.1016/j.su.2012.04.002]
31 Yoshida K, Matsuzaki K. Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries. Front Physiol 2012; 3: 53 [PMID: 22457652 DOI: 10.3389/fphys.2012.00053]
32 Nagarajan RP, Zhang J, Li W, Chen Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem 1999; 274: 33412-33418 [PMID: 10559222 DOI: 10.1074/jbc.274.47.33412]
33 von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttiger EP. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 2000; 275: 11320-11326 [PMID: 10753944 DOI: 10.1074/jbc.275.15.11320]
34 Stroschein SL, Wang W, Luo K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. J Biol Chem 1999; 274: 9431-9441 [PMID: 10092624 DOI: 10.1074/jbc.274.14.9431]
35 Kinoshita K, Iimuro Y, Otagawa K, Saika S, Inagaki Y, Nakajima Y, Kawada N, Fujimoto J, Friedman SL, Ikeda K. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut 2007; 56: 706-714 [PMID: 17127702 DOI: 10.1136/gut.2006.092460]
36 Chen CY, Chen YP, Yang T, Lu XJ, Li CY, Lin Z, Song M. Effects of bone morphogenetic protein-7 therapy on E3 ubiquitin ligase expression in mouse liver with experimentally induced fibrosis. Zhonghua Ganzangbing Zazhi 2012; 20: 671-676 [PMID: 23207231 DOI: 10.3760/cma.j.issn.1007-3418.2012.09.007]