The coupling of the hydrated proton to its first solvation shell

Markus Schröder1*, Fabien Gatti2, David Lauvergnat3, Hans-Dieter Meyer1, Oriol Vendrell1*

April 11, 2022

1Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
2Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
3Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France

*Correspondence: markus.schroeder@pci.uni-heidelberg.de; oriol.vendrell@uni-heidelberg.de

Abstract

The transfer of a hydrated proton between water molecules in aqueous solution is accompanied by the large-scale structural reorganization of the environment as the proton relocates, giving rise to the Grotthus mechanism.[1] The Zundel ($H_5O_2^+$) and Eigen ($H_9O_4^+$)
cations are the main intermediate structures in this process. They exhibit radically different gas phase infrared (IR) spectra, indicating fundamentally different environments of the solvated proton in its first solvation shell. The question arises: is there a least common denominator structure that explains the IR spectra of the Zundel and Eigen cations, and hence of the solvated proton? Full dimensional quantum simulations of these protonated cations demonstrate that two dynamical water molecules embedded in the static environment of the parent Eigen cation constitute this fundamental subunit. It is sufficient to explain the spectral signatures and anharmonic couplings of the solvated proton in its first solvation shell. In particular, we identify the anharmonic vibrational modes that explain the large broadening of the proton transfer peak in the experimental IR spectrum of the Eigen cation, of which the origin remained so far unclear. Our findings about the quantum mechanical structure of the first solvation shell provide a starting point for further investigations of the larger protonated water clusters with a second and additional solvation shells.

Main

Due to the complexity of the liquid phase, the infrared (IR) spectroscopy of protonated water clusters in the gas phase opens a unique window to characterize and understand the elusive structural dynamics of this species. For example, the IR spectrum of the Zundel cation (\(H_5O^+\)) exhibits a prominent Fermi resonance in the \(\approx 1000 \text{ cm}^{-1}\) spectral region of the shared proton mode due to its strong anharmonic coupling with a combination of the wagging (water pyramidalization) and the oxygen-oxygen distance of the two flanking water molecules. This important feature, key to understanding the strong coupling of the shared proton to its environment, could only be unambiguously measured following the development of accurate messenger spec-
troscopy (based on Neon tagging) of the gas-phase cation. The theoretical assignment of this feature was a computational tour de force only possible due to the availability of a high-quality potential energy surface in combination with full-dimensional (15-dimensional) quantum dynamical calculations based on the multi-configuration time-dependent Hartree (MCTDH) approach.

Recent measurements of the IR spectrum of the Eigen cation \(\text{H}_9\text{O}^+\text{O}^+ \) reveal a strong coupling between the proton transfer modes of the central hydronium unit with the water molecules in its first solvation shell. More importantly, they reveal strong shifts of the spectral position of the proton transfer modes caused by the polarization through the tagging agent in the second solvation shell. The strong coupling with the first solvation shell leads to a large broadening of the proton transfer band, now spanning about 500 cm\(^{-1}\) and markedly blue-shifted towards 2600 cm\(^{-1}\) in comparison with the shared proton band of the Zundel cation. The unambiguous characterization of this very broad band has remained a long-standing challenge and open question.

In this paper, we simulate and assign the linear absorption spectrum of the Eigen cation in the spectral range 0-4000 cm\(^{-1}\) using full-dimensional (33D) quantum dynamical calculations. Our spectra are in excellent agreement with the available messenger-tagging spectra in the full spectral range. We compare the full spectrum of the Eigen cation with those calculated with frozen subsets of degrees of freedom all the way down to a dynamical Zundel subunit embedded in the static scaffold of the remaining Eigen cation. This analysis reveals that the underlying coupling mechanism of the solvated proton with its first solvation shell is strikingly similar in both the Zundel and Eigen forms: a dynamical subunit formed by two water molecules and a proton is the least common denominator structure that reproduces the spectrum and anharmonic mode couplings of the Zundel and Eigen forms depending on the conformation of its static environment. Along this analysis, we confirm existing assignments of various peaks in \(\text{H}_9\text{O}^+\text{O}^+ \).
Figure 1: Absorption spectrum of the Eigen Cation H_9O_4^+. a) Experimental spectrum from Ref. [13] b) Experimental spectrum from Ref. [3] c) Calculated spectrum (red-shifted 70 cm$^{-1}$ to match experimental line positions). The assignments of the peaks follow the nomenclature of Refs. [3][13] and are discussed in Table 1 of the supporting material.

and assign hitherto unknown features in the low frequency region, where no experimental data is currently available.

IR spectrum of the Eigen cation

Figure 1 shows the calculated absorption spectrum of the perprotio Eigen cation in comparison with the experimental spectra from Refs. [13] and [3]. The calculated IR spectra are based on a 33D quantum mechanical description of the Eigen cation. Such simulations could be achieved
only after the unique combination of recent developments in our groups; They constitute the largest quantum wavepacket simulations of a flexible molecular system using a general potential energy surface and curvilinear coordinates reported to date. Details of the 33-dimensional quantum-dynamical calculations including the construction of the kinetic and potential energy operators, and the wavefunction propagations with the multilayer MCTDH method, are provided as supporting information.

The calculated spectrum is red-shifted by 70 cm\(^{-1}\) to match the main features of the experimental spectrum. It is obtained as the average over the spectra corresponding to the three polarization directions of light with respect to the molecular frame, thus considering the random orientation of the molecules in the experiment (see Methods and extended data for details).

The overall agreement of calculated and experimental spectra is very good although the resolution of the calculated spectrum is approximately 30 cm\(^{-1}\) and limited by the 1 picosecond duration of the dipole-dipole correlation function. The calculated peak positions are listed in Table 1 of the supporting material alongside with experimental results and assignments. In particular, the substructure of the broad proton transfer band and practically all features of the spectrum are reproduced in comparison with the tagging-agent IR measurement. Our simulations thus further support the interpretation that (i) the spectra in Refs. 3 and 13 correspond to the triply-coordinated hydronium form of \(\text{H}_9\text{O}_4^+\) stoichiometry, and (ii) that the \(\text{D}_2\) tagging-agent negligibly alters the spectrum of \(\text{H}_9\text{O}_4^+\cdot\text{D}_2\text{[13]}\) compared to \(\text{H}_9\text{O}_4^+\).

Deconstructing the broad proton transfer band

The key to understanding the anharmonic couplings of the proton transfer modes to their first solvation shell lies in characterizing the broadening and composition of the main proton transfer band in pristine \(\text{H}_9\text{O}_4^+\): This feature carries most of the IR intensity related to the coupled motions of the central proton stretching modes. We deconstruct the formation of this band.
Figure 2: Spectra obtained with the z-component of the dipole moment surfaces for various reduced models by freezing modes to equilibrium positions for H$_9$O$_4^+$. Correlation time in panels a-e): 2000 fs, panel f): 1000 fs.
by first freezing all modes of the Eigen cation, except those of the hydronium core, to their equilibrium positions, and then by successively bringing back the environment. The spectra obtained in this way are shown in Fig. 2. They correspond to the z-component of the dipole moment (the polarization is aligned with one of the hydronium hydrogen bonds), since this is the component responsible for the largest response of the proton transfer modes. Freezing specific coordinates is achieved by removing all differential operators of a frozen coordinate from the Hamiltonian in a Hermitian way and by fixing their position to the corresponding expectation value in the ground vibrational state of the full-dimensional system.

The IR spectrum of the hydronium core embedded in the frozen environment (cf. Fig. 2 a)) has a very simple structure. The vibrational eigenstates corresponding to the two sharp peaks near 2700 cm$^{-1}$ were obtained by full diagonalization explicitly: The dominant peak corresponds to the proton transfer mode, whereas the smaller structure corresponds to an out-of-plane excitation of the central hydrogen atoms. The peaks near 1800 and 2300 cm$^{-1}$ correspond to other modes of the hydronium core also seen in the full spectrum and agree with the assignments in Refs. 3, 11–13.

Adding either wagging modes of the outer water molecules, Fig. 2 b), or O-O distances, Fig. 2 c), leads to the appearance of their fundamental modes in the spectrum (Illustrated in Fig. 3). In the latter case, some peaks on the low energy shoulder of the main proton transfer peak gain some intensity. Moreover, with the inclusion of the O-O stretching coordinates, two small peaks appear at 2300 cm$^{-1}$ correlating with a_8 and a_9 in the full dimensional spectrum. Apart from this, the overall structure of the spectrum changes only slightly. In particular, there is no significant broadening of the proton transfer peak.

More complex spectral features emerge when adding both solvation-shell water wagging modes and O-O distances together (Fig. 2 d). Now, the spectrum is not the simple sum of the previous two panels and cannot be explained by the fundamental modes of the involved
coordinates alone. The broad proton transfer band centered at 2700 cm\(^{-1}\) is now composed of at least four separate contributions with significant intensity. Two of those peaks, contributing to the low energy shoulder of the central peak at approximately 2600 cm\(^{-1}\), have gained significant intensity. Finally, a peak slightly above 2500 cm\(^{-1}\) gains significant intensity as well. This structure coincides with the spectral position of the low energy shoulder of the broad band in the full spectrum.

In the spectra in panels a) to d), the hydronium core retains its full mobility. The question arises, whether only proton displacements parallel to the hydrogen bonds are important, or whether displacements perpendicular to the hydrogen bonds also contribute to the main proton-transfer band. These perpendicular displacements span the hydronium bending, wagging, and pyramidalization modes. Freezing the perpendicular displacements of the hydronium protons (panel e)) has dramatic consequences. The spectrum is now dominated solely by the proton transfer peak. Peaks of the ligand wagging and O-O stretching fundamentals are again visible with low intensity at low energies, as well as peaks at approximately 3000 cm\(^{-1}\) that are
combinations of proton transfer, ligand wagging, and O-O stretch modes. However, the inability of the three central protons to move perpendicular to the proton transfer directions has largely suppressed their coupling with the first shell of ligand water molecules. Crucially, no broadening of the proton transfer peak is present, as opposed to the spectrum in panel d). This leads to the conclusion that the vibrational eigenstates spanning the broad proton transfer band correspond to combinations and overtones of the proton transfer modes with O-O stretch displacements, hydronium bending and hydronium wagging, and ligand waggings, whereby none of those coupled hydronium and environment modes can be removed. A full characterization of the vibrational eigenstates in terms of quantum numbers of some basis of uncoupled vibrational modes is currently out of reach due to the very high density of vibrational states in the spectral region of the band and the high dimensionality of the problem.

The dynamical Zundel subsystem

We have deconstructed the main proton transfer band. It originates from the anharmonic couplings of the proton transfer modes with perpendicular modes of the central hydronium and modes involving the O-O stretchings and waggings of the three surrounding water ligands. The question now arises: Are the three water molecules in the first solvation shell of the Eigen cation necessarily involved in explaining the coupling mechanism, spectral position, and width of the main proton-transfer band? Alternatively, can a smaller dynamical subunit completely account for the properties of the first solvation shell of the solvated proton? The hydronium cation (H$_3$O$^+$) can be discarded as the least common denominator subunit by comparing Figs. 2a) and f).

Instead, we consider one Zundel cation subunit dynamically (Zundel@Eigen, 14 coordinates) and freeze all internal, angular and relative coordinates of the two other water ligands to their equilibrium positions (cf. Fig. 4), as well as the two free-standing hydronium O-H
Figure 4: Spectra obtained with the z-component of the dipole moment surfaces for a reduced Zundel-like model obtained by freezing modes to equilibrium positions for H$_9$O$_4^+$ a) obtained with a dipole-dipole-correlation function of 2000 fs using a 14D model, b) obtained with a dipole-dipole-correlation function of 2000 fs using a 9D model, and obtained as a stick spectrum using eigenstates.

stretches, as those do not interact with their immediate environment dynamically any more. For comparison, we also consider a reduced version of the Zundel@Eigen cation where the rocking, relative water rotation and internal modes of the external water are also frozen, thus yielding a 9-dimensional system for which the lowest 250 eigenstates can be computed with the improved relaxation algorithm (ticks in Fig. 4b))\cite{19,20}.

The IR spectrum of the dynamical Zundel@Eigen cation is strikingly similar to the full
Eigen cation spectrum, as seen in Fig. 4. The main proton transfer band presents a comparable broadening and is centered at the same frequency. Other flanking peaks appear at the correct positions as well. The analysis of 1D and 2D probability densities of the calculated eigenstates of the 9-dimensional model reveal that the vibrational states that participate in this band are complex combinations and overtones of the same vibrational coordinates previously found to contribute to the broadening of the proton transfer band in the Eigen cation. Just pulling the external water molecules by about 0.5 Å away from the central hydronium, while leaving them frozen, results in a shift of the proton transfer band to the red by about 600 cm\(^{-1}\) (cf. supporting material), indicating the extreme sensitivity of the position of this band to the polarization by the first solvation shell of water molecules. Pulling them further to infinity leaves the bare Zundel cation with its proton transfer band red-shifted by about 1600 cm\(^{-1}\) compared to the Eigen cation.

Based on these observations, we argue that two protonated water molecules, nominally the Zundel subunit, constitute the dynamical least common denominator structure explaining the anharmonic couplings and spectral signatures of the solvated proton in its first solvation shell. This statement does not concern the relative population of the Zundel and Eigen structures in solution, which has been investigated separately by Marx and collaborators using path integral techniques, cf. Ref. 1.

In isolation, the main shared-proton peaks in the Zundel cation are strongly red-shifted compared to the Eigen cation. The shared-proton motion strongly couples to the wagging (pyramidalization) of the two water molecules and to the O-O stretching mode, and results in the well-characterized Fermi resonance doublet centered at about 1000 cm\(^{-1}\). Embedded in the potential of two flanking, frozen water molecules, the Zundel@Eigen subsystem features its proton transfer band at the same spectral position as the full-dimensional Eigen cation, i.e. blue-shifted to about 2600 cm\(^{-1}\) because the shared proton is now much closer to the central
water molecule. The broadening of the proton transfer band in the Zundel@Eigen and Eigen cations is strikingly similar. Our simulations demonstrate that the same set of vibrational coordinates and corresponding combined excitations are responsible for the strong coupling of the shared proton to the rest of the scaffold in the Zundel, Zundel@Eigen and Eigen cations. These effects are strongly cooperative as opposed to additive. These relevant coordinates are the hydronium O-H bending and wagging modes, the ligand water wagging modes, and the O-O hydrogen bond stretching mode.

Conclusions and outlook

This work has provided a first set of full-dimensional quantum simulations of the Eigen cation based on flexible, curvilinear coordinates and a very accurate potential energy representation. The simulated IR spectra cover the chemically relevant spectral range between 0 and 4000 cm$^{-1}$ with one single time-propagation of a highly correlated multiconfigurational wave function. The spectra extend below the smallest frequency accessible experimentally using ion tagging techniques, and reveal the signatures of very low frequency, global vibrational modes. Both the Zundel and Eigen cations feature very prominent spectral features related to the anharmonic couplings of the hydrated proton with its first solvation shell. In the Zundel cation, a strongly red-shifted double peak originates from the fundamental vibration of the equally shared proton at about 1000 cm$^{-1}$. This doublet is a Fermi resonance that involves the wagging modes of the flanking water molecules as well as the hydrogen-bond O-O stretching. The isolated Eigen cation, instead, features a very broad band at 2600 cm$^{-1}$ with little resemblance to the shape and position of the Zundel’s double peak. Nonetheless, a careful analysis reveals that similar anharmonic couplings compared to the Zundel form are involved in the broad Eigen cation band, namely the hydronium and ligand waggings to the largest extent, combined with hydrogen-bond stretchings. Indeed, the hydronium waggings are crucial to the coupling mec-
anism: freezing the central hydronium waggings in a flexible first solvation shell results in a simpler IR spectrum than when considering a fully flexible hydronium in a frozen environment (cf. Figs. 2a and e).

Based on these results and observations, we arrive at a key insight: two dynamical water molecules and a proton, i.e. a Zundel subunit embedded in the remaining frozen scaffold of the Eigen cation, presents all anharmonic couplings and spectral signatures of the fully flexible Eigen cation in the region of the main proton-transfer band. For this effect, it is sufficient that two frozen, hydrogen-bond acceptor water molecules polarize the dynamical Zundel subunit that constitutes the proton’s first solvation shell. This finding, backed by our full quantum-mechanical approach, is suggestive of picturing the Eigen cation as three overlapping and strongly polarized Zundel subunits in the spirit of the classical special pair models of the solvated proton.[23][24] In turn, one can similarly anticipate a similar relation in the second solvation shell, where the extended Zundel cation $H_{13}O_6^+$ can be pictured as two superimposed and dynamically overlapping Eigen cations. Establishing these nested structural and dynamical relations on the basis of full-dimensional quantum dynamics is an important direction for future work. This is now enabled by the unique computational and theoretical developments reported in this work, which will be decisive when approaching even larger and more complex systems.

References

[1] Marx, D., Tuckerman, M., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. *Nature* **397**, 601–604 (1999).

[2] Hammer, N. I. *et al.* The vibrational predissociation spectra of the $H_5O_2^+$· RG_n (RG=Ar,Ne) clusters: Correlation of solvent perturbations in the free OH and shared proton transitions of the Zundel ion. *J. Chem. Phys.* **122**, 244301 (2005).
[3] Wolke, C. T. et al. Spectroscopic snapshots of the proton-transfer mechanism in water.
Science **354**, 1131 (2016).

[4] Yu, Q. & Bowman, J. M. Classical, thermostated ring polymer, and quantum vscf/vci calculations of ir spectra of h7o3+ and h9o4+ (eigen) and comparison with experiment. *J. Phys. Chem. A* **123**, 1399 (2019).

[5] Vendrell, O., Gatti, F. & Meyer, H.-D. Dynamics and infrared spectroscopy of the protonated water dimer. *Angew. Chem. Int. Ed.* **46**, 6918–6921 (2007).

[6] Huang, X., Braams, B. J. & Bowman, J. M. *Ab initio* potential energy and dipole moment surfaces for H5O+2. *J. Chem. Phys.* **122**, 044308 (2005).

[7] Vendrell, O., Gatti, F., Lauvergnat, D. & Meyer, H.-D. Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer I: Hamiltonian setup and analysis of the ground vibrational state. *J. Chem. Phys.* **127**, 184302 (2007).

[8] Vendrell, O., Gatti, F. & Meyer, H.-D. Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer II: Infrared spectrum and vibrational dynamics. *J. Chem. Phys.* **127**, 184303 (2007).

[9] Vendrell, O. & Meyer, H.-D. A proton between two waters: insight from full-dimensional quantum-dynamics simulations of the [H2O-H-OH2]+ cluster. *Phys. Chem. Chem. Phys.* **10**, 4692–4703 (2008).

[10] Vendrell, O., Gatti, F. & Meyer, H.-D. Strong isotope effects in the infrared spectrum of the zundel cation. *Angew. Chem. Int. Ed.* **48**, 352 – 355 (2009).
[11] Yu, Q. & Bowman, J. M. Communication: Vscf/vci vibrational spectroscopy of H_7O_3^+ and H_9O_4^+ using high-level, many-body potential energy surface and dipole moment surfaces. *J. Chem. Phys.* **146**, 121102 (2017).

[12] Yu, Q. & Bowman, J. M. High-level quantum calculations of the ir spectra of the eigen, zundel and ring isomers of $\text{H}^+(\text{H}_2\text{O})_4$ find a single match to experiment. *J. Am. Chem. Soc.* **139**, 10984 (2017).

[13] Esser, T. K. *et al.* Deconstructing Prominent Bands in the Terahertz Spectra of H_7O_3^+ and H_9O_4^+: Intermolecular Modes in Eigen Clusters. *Phys. Chem. Lett.* **9**, 798 (2018).

[14] Ndong, M. *et al.* Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach: general formulation and removal of singularities. *J. Chem. Phys.* **139**, 204107 (2013).

[15] Schröder, M. Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. *J. Chem. Phys.* **152**, 024108 (2020).

[16] Wang, H. & Thoss, M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. *J. Chem. Phys.* **119**, 1289–1299 (2003).

[17] Manthe, U. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. *J. Chem. Phys.* **128**, 164116 (2008).

[18] Vendrell, O. & Meyer, H.-D. Multilayer multiconfiguration time-dependent Hartree method: Implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. *J. Chem. Phys.* **134**, 044135 (2011).
[19] Meyer, H.-D., Le Quéré, F., Léonard, C. & Gatti, F. Calculation and selective population of vibrational levels with the Multiconfiguration Time-Dependent Hartree (MCTDH) algorithm. *Chem. Phys.* **329**, 179–192 (2006).

[20] Doriol, L. J., Gatti, F., Iung, C. & Meyer, H.-D. Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method. *J. Chem. Phys.* **129**, 224109 (2008).

[21] Vendrell, O., Brill, M., Gatti, F., Lauvergnat, D. & Meyer, H.-D. Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer III: mixed Jacobi-valence parametrization and benchmark results for the zero-point energy, vibrationally excited states and infrared spectrum. *J. Chem. Phys.* **130**, 234305 (2009).

[22] Vendrell, O., Gatti, F. & Meyer, H.-D. Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer IV: Isotope effects in the infrared spectra of D(D_2O)_2^+, H(D_2O)_2^+ and D(H_2O)_2^+ isotopologues. *J. Chem. Phys.* **131**, 034308 (2009).

[23] Markovitch, O. *et al.* Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water. *J. Phys. Chem. B* **112**, 9456–9466 (2008). URL https://doi.org/10.1021/jp804018y

[24] Kulig, W. & Agmon, N. A ‘clusters-in-liquid’ method for calculating infrared spectra identifies the proton-transfer mode in acidic aqueous solutions. *Nat. Chem.* **5**, 29–35 (2013). URL http://www.nature.com/nchem/journal/v5/n1/full/nchem.1503.html
Methods

High-dimensional quantum dynamics

The full-dimensional (33 vibrational degrees of freedom) quantum dynamical description of the IR spectrum of the Eigen cation requires the combination of various technologies that have been developed and integrated into the software packages maintained in our research groups. These technologies relate to the three main obstacles that stand on the way towards a full quantum dynamical description of anharmonically coupled, flexible, and high-dimensional vibrational problems.

(i) Describing flexible and anharmonic systems, e.g. with several equivalent minima in their potential energy surface (PES), requires the use of chemically meaningful coordinates such as bond lengths, bond angles, and dihedral angles. The use of adequate coordinates enormously facilitates the numerical representation and convergence of the vibrational wavefunctions in high-dimensions. The price to pay, though, is the very lengthy and complicated expression for the corresponding kinetic energy operator (KEO). For the Eigen cation, the exact, analytic KEO has a total of 4370 terms and its manual derivation becomes de facto intractable. Some of us and others have therefore developed a completely systematic method to set up the KEO for a specific family of internal molecular coordinates: the polyspherical coordinates. This method is implemented in the TANA software, which provides analytic expressions of the kinetic energy operator in a machine readable format. Very importantly, TANA also provides numerical library routines to perform forward and backward transformations between the Cartesian coordinates of the atoms and the internal coordinates of the molecule, which are needed when setting up the potential energy operator in these internal coordinates.

(ii) The second obstacle is the so-called “curse of dimensionality” for representing and storing the wavefunction of the system: the number of possible quantum states of the system (e.g.
given as the amplitudes on quadrature points in coordinate representation) grows exponentially with the number of physical coordinates. Without an efficient data reduction scheme one would be limited to model up to about six internal degrees of freedom of a molecule, corresponding to about four atoms (neglecting rotations). To overcome the curse of dimensionality, the state vector needs to be stored and processed in a very compact form. To this end, we employ the multi-layer multi-configuration time-dependent Hartree algorithm16–18, 7 which represents the wavefunction as a hierarchical Tucker tensor-tree8–10.

(iii) The solution of the time-dependent Schrödinger equation within this tensor format requires that also the system Hamiltonian is expressed in a matching form. This can be, e.g., a sum of products of low-dimensional operators. The KEO in polyspherical coordinates always consists of sums of products of elementary functions and derivatives of single coordinates3 (this is one of the main advantages of the polyspherical coordinates) and needs not be discussed further here. A more challenging task is to express the PES and, if needed, other surface-like operators such as dipole moment surfaces (DMS), in a matching format. The PES and DMS are usually made available as separate software libraries, and are often defined in the Cartesian coordinates of the atoms11, 12. Most applications in our groups have relied until recently on the transformation of the PES into a Tucker format with the so-called Potfit algorithm12–14 and its hierarchical multi-layer variant15. This algorithm suffers from the curse of dimensionality because ultimately it requires a full representation of the primitive product grid in configuration space. Modifications of Potfit have been developed over the years to partially overcome this difficulty16–18, making it possible to work with about 9 to 15 coordinates. This is clearly insufficient to approach a system of the size of the Eigen cation. A more recent development in surface re-fitting uses the so-called canonical tensor decomposition19 (CP), also called PARAFAC or CANDECOMP in the literature20, 21. Within the canonical format, orthogonality restrictions on the basis functions are relaxed such that a much more compact tensor representation can be
achieved, at the cost however, that the fit is much harder to obtain. This is usually achieved using an alternating least squares (ALS) algorithm that iteratively improves an initial guess tensor. The ALS algorithm in the original form requires to perform high-dimensional integrals as well. In a recent publication15 Monte-Carlo integrations are used to perform the integrals. This not only mitigates the curse of dimensionality but also allows for importance sampling such that low energy regions of the potential (where the wavefunction resides) can be fitted with elevated accuracy. This development has opened the path to obtain global but compact surface fits in a tensor format of high-dimensional potentials.

In essence, we developed and combined three technologies for the first time to be able tackle such a high-dimensional problem as the 33-dimensional Eigen cation: 1) the TANA software to obtain the KEO and to provide the coordinate transformations for the PES fitting; 2) PES fitting into a canonical tensor format using a Monte-Carlo version of the ALS algorithm; and 3) the multi-layer MCTDH algorithm to solve the time-dependent Schrödinger equation. In the present contribution we have used the highly accurate, full-dimensional PES and DMS provided by Yu and Bowman11, 12. The surfaces were re-fitted into a canonical tensor format using 2048 terms for the PES and 1024 terms for each of the three components of the DMS, respectively.

Calculation of IR Spectra

The linear absorption spectra that are compared to the experimental spectra are computed as averages of the spectra resulting from the three dipole moment components for the x- y- and z-directions as

\[
I(\omega) = \frac{1}{3}(I_x(\omega) + I_y(\omega) + I_z(\omega)) .
\] (1)
The averaging mimics the random orientational distribution of the molecule in the experiment. The single components also shown in some figures below are calculated as

\[I_j(\omega) \propto \omega \text{Re} \int_0^\infty dt \langle \Psi_{\mu_j} | \Psi_{\mu_j}(t) \rangle \exp(i(\omega + E_0/\hbar)t), \quad j = x, y, z \] (2)

where \(E_0 \) is the ground state energy and

\[|\Psi_{\mu_j}\rangle = \mu_j |\Psi_0\rangle \quad j = x, y, z \] (3)

is the vibrational ground state \(|\Psi_0\rangle \) operated with \(\mu_j \), one component of the dipole operator. The time-dependent state \(|\Psi_{\mu_j}(t)\rangle \) is obtained by solving the time-dependent Schrödinger equation with initial value \(|\Psi_{\mu_j}\rangle \).

Assignments

To assign modes to the peaks a number of test states that contain zero order excitations in selected modes have been created and cross-correlated with the dipole operated and propagated ground state.

The Fourier transform of the resulting cross correlation shows peaks only at frequencies where both, the test states and dipole operated ground states populate the same eigenstate. The cross-correlation-functions are defined as

\[C_{i,X}(t) = \langle \Psi_X | \Psi_{\mu_i}(t) \rangle \quad i = x, y, z \] (4)

and \(|\Psi_X\rangle = X |\Psi_0\rangle \) being the \(X \)-operated ground state with an operator \(X \) as detailed below.
The Fourier transformed of the cross-correlation is given as

$$F_{i,X}(\omega) = \infty \operatorname{Re} \int_0^\infty dt \left\langle \Psi_X | \Psi_{\mu_i}(t) \right\rangle e^{i(\omega + E_0/\hbar)t} \quad i = x, y, z,$$

(5)

with E_0 being the ground state energy. Note that, other than for the absorption spectra, no frequency prefactor w is multiplied to the spectrum.

The test-states $|\Psi_X\rangle = X |\Psi_0\rangle$ have been created by constructing the operator X as linear combinations of position operators of specific coordinates. This creates a linear combination of wavefunctions, with nodes in the respective modes, hence resembling zero order excitations which mimic the action of the dipole moment surface but restrict the action only to the aforementioned modes. We use the notation $q(++)$, $q(--)$ and $q(0+-)$ for X in the test states. Here the q indicate physical coordinates and the string of signs in brackets identifies one of the three orthogonal linear combinations of the coordinates q in the three 'arms' A, B, and C of the Eigen cation (cf. Fig. S8, extended data), where specifically

$$q(++) := q_A + q_B + q_C$$
$$q(--):= -2q_A + q_B + q_C$$
$$q(0+-):= -q_B + q_C$$

(6)

(with the exception of label $q = \theta' = (q_A = \theta, q_B = \varphi_{AB}, q_C = \varphi_{BC})$, and $q = b'$ describing the ligand O-H bending as a linear combination of two Jacobi coordinates $b_{(A,B,C)} = -0.4 \ r_{1,(A,B,C)} + 0.3 \ r_{2,(A,B,C)}$. Similarly the symmetric O-H stretching of the ligands is described by $q = v^{(s)}$, with $v^{(s)}_{(A,B,C)} = 0.3 \ r_{1,(A,B,C)} + 0.4 \ r_{2,(A,B,C)}$, while the asymmetric O-H stretching $v^{(a)}_{(A,B,C)} = v_{(A,B,C)}$ is described by the Jacobi angle., cf. Table S1 of assignments and Table S2 and Fig. S9 of coordinate definitions in the extended data section).
Non-vanishing cross-correlations hence show the existence of non-vanishing overlap of the
dipole operated state Ψ_{μ_i} and the test state characterized by a linear combination of single mode
excitations of character Eq. (6).

Kinetic energy operator

As for the Zundel cation, we adopted a mixture of Jacobi, Cartesian, and valence vectors. For
each external molecule of water (in blue in Fig. S7, extended data), we use two Jacobi vectors:
one from one hydrogen atom to the other and one from the middle of H_2 to the oxygen atom.
The central oxygen atom is linked to the other oxygen atoms by three O-O valence vectors.
The global z Body-Fixed (BF) axis is parallel to R_{1BF}^1, one of the O-O vectors. The groups S_1
and S_2 are gathered into two subsystems so that they have their own BF frame with the z axis
parallel to R_{2BF}^2 or R_{3BF}^3. The molecule at the top of Fig. S7 (extended data) is also gathered
in one subsystem with the z axis parallel to the H-H vector. The same is true for the other two
molecules of water except that they define ”subsubsystems” in S_1 and S_2. The three OH valence
coordinates starting from the central oxygen atom are re-expressed in terms of Cartesian (and
not spherical) coordinates to avoid singularities in the kinetic energy operator (KEO).

All the other vectors are parametrized by spherical coordinates in their BF frame. The rotation
of each BF frame is parametrized by Euler angles. We follow the conventions of the general
formulation for polyspherical coordinates that is implemented in the TANA software. The
correctness of the implementation has been checked on many systems by comparing the KEOs
with those obtained numerically with the TNUM software. We thus obtain an exact operator. TANA provides the operator in an ascii file that can be directly read by MCTDH. One
advantage of the family of polyspherical coordinates is that it always leads to an operator in a
sum of products of one-dimensional operators. In the present case, with those coordinates and
their corresponding ranges, we avoid all the possible singularities in the KEO so that we do not
need to use 2D DVRs that are numerically less efficient than products of 1D DVRs.

Sum-of-products of potential and dipole moment surfaces

In the present case, the potential energy and dipole surfaces were made available to us in the form of a numerical library by Joel Bowman and coworkers. The potential and dipole routines take a single coordinate vector as input and return the respective energy value or 3-component dipole vector.

The Heidelberg MCTDH implementation relies on an explicit numerical representation of the potential in terms of a sum of products of one- or low-dimensional functions which are sampled on a primitive grid. Hence, given a numerical library routine for the potential (and dipoles), a preprocessing step is necessary that creates the required numerical representation of the potential from the output of the library routines.

In the present case the potential energy surface has been decomposed into a sum-of-products of 2048 low-dimensional terms, more precisely into a Canonical Polyadic Decomposition form. The low-dimensional basis functions are defined on the coordinates that correspond to those of the bottom layer of the wavefunction tree, (cf. Fig. S10, extended data). Such a decomposition can be used within the Heidelberg MCTDH package. The decomposition was created using a Monte-Carlo variant of the alternating least squares algorithm that is often employed to obtain canonical decompositions. In total eight symmetries have been incorporated into the PES fit, all of them with respect of rotations of the outer water ligands. Other symmetries could not be implemented due to mixing of coordinates. For details about the algorithm the reader is referred to Ref. [15].

The surface fit needs to be performed in the internal dynamical coordinates, the library routines usually require Cartesian coordinates to calculate the respective potential energy such that here we interlinked the TANA program with fitting program to be able to transform between
the two sets of coordinates.

References

[1] Gatti, F. et al. Vector parametrization of the n-atom problem in quantum mechanics. I. Jacobi vectors. *J. Chem. Phys.* **108**, 8804 (1998).

[2] Gatti, F. Vector parametrization of the n-atom problem in quantum mechanics. III. Separation into two sub-systems. *J. Chem. Phys.* **111**, 7225 (1999).

[3] Gatti, F. & Iung, C. Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach. *Phys. Rep.* **484**, 1–69 (2009).

[4] Ndong, M. et al. Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach. *J. Chem. Phys.* **136**, 034107 (2012).

[5] Lauvergnat, D. TNUM-TANA: A fortran code for coordinate transformations and kinetic energy operators. See https://github.com/lauvergn/ElVibRot-TnumTana.

[6] Meyer, H.-D. Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method. *WIREs: Comput. Mol. Sci.* **2**, 351–374 (2012). URL http://dx.doi.org/10.1002/wcms.87

[7] Wang, H. Multilayer Multiconfiguration Time-Dependent Hartree Theory. *J. Phys. Chem. A* **119**, 7951 (2015).

[8] Tucker, L. Some mathematical notes on three-mode factor-analysis. *Psychometrika* **31**, 279 (1966).
[9] Hackbusch, W. & Kühn, S. A new scheme for the tensor representation. *Journal of Fourier Analysis and Applications* **15**, 706–722 (2009).

[10] Grasedyck, L. & Hackbusch, W. An Introduction to Hierarchical (\(H\)-) Rank and TT-Rank of Tensors with Examples. *Comp.Meth.Appl.Math* **11**, 291–304 (2011).

[11] Duong, C. H. *et al.* Disentangling the complex vibrational spectrum of the protonated water trimer, \(H_7O^+\), with two-color IR-IR photodissociation of the bare ion and anharmonic VSCF/VCI theory. *J. Chem. Phys. Lett.* **8**, 3782 (2017).

[12] Beck, M. H., Jäckle, A., Worth, G. A. & Meyer, H.-D. The multi-configuration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wave packets. *Phys. Rep* **324**, 1–105 (2000).

[13] Jäckle, A. & Meyer, H.-D. Product representation of potential energy surfaces. *J. Chem. Phys.* **104**, 7974 (1996).

[14] Jäckle, A. & Meyer, H.-D. Product representation of potential energy surfaces II. *J. Chem. Phys.* **109**, 3772 (1998).

[15] Otto, F. Multi-Layer Potfit: An accurate potential representation for efficient high-dimensional quantum dynamics. *J. Chem. Phys.* **140**, 014106 (2014).

[16] Peláez, D. & Meyer, H.-D. The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems. *J. Chem. Phys.* **138**, 014108 (2013).

[17] Schröder, M. & Meyer, H.-D. Transforming high-dimensional potential energy surfaces into sum-of-products form using Monte Carlo methods. *J. Chem. Phys.* **147**, 064105 (2017).
[18] Otto, F., Chiang, Y.-C. & Peláez, D. Accuracy of Potfit-based potential representations and its impact on the performance of (ML-)MCTDH. Chem. Phys. 509, 116 (2018).

[19] Hitchcock, F. L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927).

[20] Harshman, R. A. Foundations of the PARAFAC procedure: Models and conditions for an ”explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16, 1 (1970).

[21] Carroll, J. D. & Chang, J.-J. Analysis of individual differences in multidimensional scaling via an n-way generalization of ”Eckart-Young” decomposition. Psychometrika 35, 283 (1970).

[22] Gatti, F. & Meyer, H.-D. Intramolecular vibrational energy redistribution in Toluene: A nine dimensional quantum mechanical study using the MCTDH algorithm. Chem. Phys. 304, 3–15 (2004).

[23] Lauvergnat, D. & Nauts, A. Exact numerical computation of a kinetic energy operator in curvilinear coordinates. J. Chem. Phys. 116, 8560 (2002).

[24] Qu, C., Yu, Q. & Bowman, J. Permutationally Invariant Potential Energy Surfaces. Annu. Rev. Phys. Chem. 69, 151 (2018).

[25] Heindel, J., Yu, Q., Bowman, J. & Xantheas, S. Benchmark Electronic Structure Calculations for H3O+(H2O)n, n = 0–5 Clusters and Tests of an Existing 1,2,3-body Potential Energy Surface with a New 4-body Correction. J. Chem. Theory Comput. 14, 4553 (2018).

[26] Meyer, H.-D., Manthe, U. & Cederbaum, L. S. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165, 73–78 (1990).
[27] Manthe, U., Meyer, H.-D. & Cederbaum, L. S. Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl. *J. Chem. Phys.* **97**, 3199–3213 (1992).

[28] Meyer, H.-D. & Worth, G. A. Quantum molecular dynamics: Propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method. *Theor. Chem. Acc.* **109**, 251–267 (2003).

[29] Meyer, H.-D., Gatti, F. & Worth, G. A. (eds.) *Multidimensional Quantum Dynamics: MCTDH Theory and Applications* (Wiley-VCH, Weinheim, 2009).

Code availability

The TANA and MCTDH codes including adaptions and input files for the current contribution is available upon request from the authors.

Data availability

Data used in this contribution is available upon request from the authors.

Acknowledgments

The authors thank Prof. Mark Johnson and Prof. Knut Asmis for sharing experimental data with us and Prof. Joel Bowman for the source code of the potential energy surface. We furthermore thank the High Performance Computing Center in Stuttgart (HLRS) under the grant number HDQM_MCT as well as the bwHPC project of the state of Baden-Württemberg under grant number bw18K011 for providing computational resources. The authors thank the CNRS International Research Network (IRN) ”MCTDH” for financial support.
Author contributions

M.S., H.-D.M. and O.V. conceived the idea and planned the calculations and the analysis methodology. M.S. contributed the SOP fitting of the PES and DMS and performed the dynamical calculations and analysis. F.G., D.L. and O.V. designed the coordinates system. F.G. and D.L. generated the corresponding analytical KEO. The text was initially composed by M.S. and O.V., and all authors contributed to the discussion and interpretation of the results and to the final version of the manuscript.

Competing interests

The authors have no competing interests.

Materials & Correspondence

Correspondence should be directed to M.S (markus.schroeder@pci.uni-heidelberg.de) or O.V. (oriol.vendrell@uni-heidelberg.de).

Supplementary material

Supplementary material is available for this paper.