Article

Forcing total outer connected monophonic number of a graph

K. Ganesamoorthy, S. Lakshmi Priya

Abstract. For a connected graph $G = (V, E)$ of order at least two, a subset T of a minimum total outer connected monophonic set S of G is a forcing total outer connected monophonic subset for S if S is the unique minimum total outer connected monophonic set containing T. A forcing total outer connected monophonic subset for S of minimum cardinality is a minimum forcing total outer connected monophonic subset of S. The forcing total outer connected monophonic number $f_{tom}(S)$ in G is the cardinality of a minimum forcing total outer connected monophonic subset of S. The forcing total outer connected monophonic number of G is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets S in G. We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair a, b of positive integers with $0 \leq a < b$ and $b \geq a + 4$, there exists a connected graph G such that $f_{tom}(G) = a$ and $cm_{to}(G) = b$, where $cm_{to}(G)$ is the total outer connected monophonic number of a graph.

Keywords: total outer connected monophonic set, total outer connected monophonic number, forcing total outer connected monophonic subset, forcing total outer connected monophonic number

© Ganesamoorthy K., Lakshmi Priya S., 2022
Acknowledgements: The first author’s research work was supported by National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India (project No. NBHM/R.P.29/2015/Fresh/157).

For citation: Ganesamoorthy K., Lakshmi Priya S. Forcing total outer connected monophonic number of a graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 278–286. https://doi.org/10.18500/1816-9791-2022-22-3-278-286, EDN: IMTPKR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Научная статья
УДК 519.17

Forcing total outer connected monophonic number of a graph

K. Ganesamoorthy1, S. Lakshmi Priya2

1Технологический институт Коимбатура, Индия, Коимбатур — 641 014
2Политехнический колледж Технологического института Коимбатура, Индия, Коимбатур — 641 014

Катиресан Ганесамурти, Dr., доцент математического факультета, kvgm_2005@yahoo.co.in, https://orcid.org/0000-0003-2769-1991

Шанмугам Лакшими Прия, студентка математического факультета, lakshmiuspriya@gmail.com, https://orcid.org/0000-0001-7367-1532

Аннотация. Для связного графа $G = (V, E)$ с числом вершин не менее 2 подмножество T минимального общего внешне связанного монофонического множества S графа G является сильным общим внешне связаным монофоническим подмножеством для S, если S есть единственное минимальное общее внешне связное монофоническое множество, содержащее T. Сильное общее внешне связанное монофоническое подмножество для S с минимальным числом элементов есть минимальное сильное общее внешне связанное монофоническое подмножество S. Сильное общее внешне связанное монофоническое число $f_{tom}(S)$ в G есть число элементов минимального сильного общего внешне связанного монофонического подмножества S. Сильное общее внешне связанное монофоническое число графа G есть $f_{tom}(G) = \min\{f_{tom}(S)\}$, где минимум принимается над всеми минимальными общими внешними связными монофоническими множествами S в G. Мы определяем его границы и находим сильное общее внешне связанное монофоническое число некоторых классов графов. Показывается, что для каждой пары a, b положительных целых с $0 \leq a < b$ и $b \geq a + 4$ существует связный график G такой, что $f_{tom}(G) = a$ и $cm_{to}(G) = b$, где $cm_{to}(G)$ является общим внешне связным монофоническим числом графа.

Ключевые слова: общее внешне связанное монофоническое множество, общее внешне связанное монофоническое число, сильное общее внешне связанное монофоническое множество, сильное общее внешне связанное монофоническое число

Благодарности: Исследовательская работа первого автора была поддержана Национальным советом по высшей математике (NBHM), Департаментом атомной энергии (DAE), Правительством Индии (проект № NBHM/R.P.29/2015/Fresh/157).

Для цитирования: Ganesamoorthy K., Lakshmi Priya S. Forcing total outer connected monophonic number of a graph [Ганесамурти К., Лакшими Прия Ш]. Форсирование общего внешне связанного монофонического числа графа // Известия Саратовского университета.
Introduction

By a graph $G = (V, E)$ we mean a finite simple undirected connected graph. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary [1, 2]. The distance $d(x, y)$ between two vertices x and y in a connected graph G is the length of a shortest $x - y$ path in G. An $x - y$ path of length $d(x, y)$ is called an $x - y$ geodesic. A vertex v of a connected graph G is called an endvertex of G if its degree is 1. A vertex v of a connected graph G is called a support vertex if it is adjacent to an endvertex of G. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete. A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies on a $x - y$ monophonic path for some x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G and is denoted by $m(G)$. The monophonic number of a graph, an algorithmic aspect of monophonic concepts was introduced and studied in [3–7]. A total monophonic set of a graph G is a monophonic set S such that the subgraph $G[S]$ induced by S has no isolated vertices. The minimum cardinality of a total monophonic set of G is the total monophonic number of G and is denoted by $m_t(G)$. The total monophonic number of a graph and its related concepts were studied in [8–10]. A set S of vertices in a graph G is said to be an outer connected monophonic set if S is a monophonic set of G and either $S = V$ or the subgraph induced by $V - S$ is connected. The minimum cardinality of an outer connected monophonic set of G is the outer connected monophonic number of G and is denoted by $m_{oc}(G)$. The outer connected monophonic number of a graph was introduced in [11]. Very recently, outer connected monophonic concepts have been widely investigated in graph theory, such as a connected outer connected monophonic number [12], extreme outer connected monophonic graphs [13], and so on. A total outer connected monophonic set S of G is an outer connected monophonic set such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total outer connected monophonic set of G is the total outer connected monophonic number of G and is denoted by $cm_{oc}(G)$.

The authors of this article introduced and studied the general externally total outer connected monophonic number of a graph and proved the following theorems\(^1\), which will be used further.

Theorem 1. Each extreme vertex and each support vertex of a connected graph G belong to every total outer connected monophonic set of G.

Theorem 2. For the complete graph $K_p (p \geq 2)$, $cm_{oc}(K_p) = p$.

Theorem 3. For any non-trivial tree T, the set of all endvertices and support vertices of T is the unique minimum total outer connected monophonic set of G.

\(^1\)Ganesamoorthy K., Lakshmi Priya S. The total outer connected monophonic number of a graph. Transactions of A. Razmadze Mathematical Institute, accepted.
Theorem 4. For any connected graph G, $cm_{to}(G) = 2$ if and only if $G = K_2$.

Throughout this paper, G denotes a connected graph with at least two vertices.

1. Main Results

Definition 1. Let S be a minimum total outer connected monophonic set of G. A subset T of S is a forcing total outer connected monophonic subset for S if S is the unique minimum total outer connected monophonic set containing T. A forcing total outer connected monophonic subset for S of minimum cardinality is a minimum forcing total outer connected monophonic subset of S. The forcing total outer connected monophonic number $f_{tom}(S)$ in G is the cardinality of a minimum forcing total outer connected monophonic subset of S. The forcing total outer connected monophonic number of G is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets S in G.

Example 1. For the graph G in Fig. 1, it is clear that $S_1 = \{v_1, v_2, v_4, v_5\}$, $S_2 = \{v_1, v_4, v_5, v_8\}$, $S_3 = \{v_1, v_2, v_5, v_6\}$ and $S_4 = \{v_1, v_5, v_6, v_8\}$ are the minimum total outer connected monophonic sets of G. It is clear that no minimum total outer connected monophonic set $S_i (i = 1, 2, 3, 4)$ is the unique minimum total outer connected monophonic set containing any of its 1-element subsets. It is easy to see that $\{v_2, v_4\}$ is a forcing total outer connected monophonic subset contained in S_1 and $f_{tom}(S_1) = 2$. Hence, we have $f_{tom}(G) = 2$. By Theorem 3, for any non-trivial tree T, the set of all endvertices and support vertices of T is the unique minimum total outer connected monophonic set of T and so $f_{tom}(T) = 0$.

Theorem 5. For any connected graph G of order p, $0 \leq f_{tom}(G) \leq cm_{to}(G) \leq p$.

Proof. By the definition of the forcing total outer connected monophonic number of a graph, it is clear that $f_{tom}(G) \geq 0$. Let S be a minimum total outer connected monophonic set of G. Clearly, $f_{tom}(S) \leq |S| = cm_{to}(G)$ and $f_{tom}(G) = \min \{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets S in G. Hence $0 \leq f_{tom}(G) \leq cm_{to}(G) \leq p$. \qed

Remark 1. The bounds in Theorem 5 are sharp. By Theorem 3, for any non-trivial tree T, the set of all endvertices and support vertices of T is the unique minimum total outer connected monophonic set of T and so $f_{tom}(T) = 0$. By Theorem 2, for the complete graph $K_p (p \geq 2)$, $cm_{to}(K_p) = p$. Also all the inequalities in Theorem 5 can be strict. For the graph G given in Fig. 1 of order 8, it is clear that no 2-element subset or 3-element subset of $V(G)$ is a total outer connected monophonic set of G. The minimum total outer connected monophonic sets of G are $S_1 = \{v_1, v_2, v_4, v_5\}$, $S_2 = \{v_1, v_4, v_5, v_8\}$, $S_3 = \{v_1, v_2, v_5, v_6\}$ and $S_4 = \{v_1, v_5, v_6, v_8\}$ so that $cm_{to}(G) = 4$. It is clear that $f_{tom}(S_i) = 2(i = 1, 2, 3, 4)$ and so $f_{tom}(G) = 2$. Thus $0 < f_{tom}(G) < cm_{to}(G) < p$.

The following theorem characterizes graphs G for which the lower bound in Theorem 5 is attained and also characterizes graphs G for which $f_{tom}(G) = 1$ and $f_{tom}(G) = cm_{to}(G)$.
Theorem 6. Let G be a connected graph. Then

(i) $f_{tom}(G) = 0$ if and only if G has the unique minimum total outer connected monophonic set;

(ii) $f_{tom}(G) = 1$ if and only if G has at least two minimum total outer connected monophonic sets, one of which is the unique minimum total outer connected monophonic set containing one of its elements;

(iii) $f_{tom}(G) = cm_{to}(G)$ if and only if no minimum total outer connected monophonic set of G is the unique minimum total outer connected monophonic set containing any of its proper subsets.

Proof. (i) Let $f_{tom}(G) = 0$. Then, by the definition, $f_{tom}(S) = 0$ for some minimum total outer connected monophonic set S of G so that the empty set \varnothing is the minimum forcing subset for S. Since the empty set \varnothing is a subset of every set, it follows that S is the unique minimum total outer connected monophonic set of G. The converse is clear.

(ii) Let $f_{tom}(G) = 1$. Then by (i), G has at least two minimum total outer connected monophonic sets. Since $f_{tom}(G) = 1$, there is a 1-element subset T of a minimum total outer connected monophonic set S of G such that T is not a subset of any other minimum total outer connected monophonic set of G. Thus S is the unique minimum total outer connected monophonic set containing one of its elements. The converse is clear.

(iii) Let $f_{tom}(G) = cm_{to}(G)$. Then $f_{tom}(S) = cm_{to}(G)$ for every minimum total outer connected monophonic set S in G. Since any total outer connected monophonic set of G needs at least two vertices, $cm_{to}(G) \geq 2$ and hence $f_{tom}(G) \geq 2$. Then by (i), G has at least two minimum total outer connected monophonic sets, and so the empty set \varnothing is not a forcing subset for any minimum total outer connected monophonic set of G. Since $f_{tom}(G) = cm_{to}(G)$, no proper subset of S is a forcing subset of S. Thus no minimum total outer connected monophonic set of G is the unique minimum total outer connected monophonic set containing any of its proper subsets.

Conversely, the data implies that G contains more than one minimum total outer connected monophonic set and no subset of any minimum total outer connected monophonic set S other than S, is a forcing subset for S. Hence it follows that $f_{tom}(G) = cm_{to}(G)$. \hfill \Box

Definition 2. A vertex v of G is said to be a total outer connected monophonic vertex if v belongs to every minimum total outer connected monophonic set of G.

Remark 2. If G has the unique minimum total outer connected monophonic set S, then every vertex in S is a total outer connected monophonic vertex of G. Also, if x is an extreme vertex or a support vertex of G, then x is a total outer connected monophonic vertex of G. For the graph G given in Fig. 1, v_1 and v_5 are the total outer connected monophonic vertices of G.

The next theorem and corollary are an immediate consequence of the definitions of total outer connected monophonic vertex and a forcing total outer connected monophonic subset of G.

Theorem 7. Let G be a connected graph and let Ψ_{tom} be the set of relative complements of the minimum forcing total outer connected monophonic subsets in their respective minimum total outer connected monophonic sets in G. Then $\bigcap_{F \in \Psi_{tom}} F$ is the set of all total outer connected monophonic vertices of G.

282 Научный отдел
Corollary 1. Let S be a minimum total outer connected monophonic set of G. Then no total outer connected monophonic vertex of G belongs to any minimum forcing total outer connected monophonic subset of S.

Theorem 8. Let M be the set of all total outer connected monophonic vertices of G. Then $f_{\text{tom}}(G) \leq cm_{\text{to}}(G) - |M|$.

Proof. Let S be any minimum total outer connected monophonic set of G. Then $cm_{\text{to}}(G) = |S|$, $M \subseteq S$, and S is the unique minimum total outer connected monophonic set containing $S - M$. Hence $f_{\text{tom}}(G) \leq |S - M| = |S| - |M| = cm_{\text{to}}(G) - |M|$.

Corollary 2. If G is a connected graph with l extreme vertices and k support vertices, then $f_{\text{tom}}(G) \leq cm_{\text{to}}(G) - (l + k)$.

Remark 3. The bound in Theorem 8 is sharp. For the graph G given in Fig. 1, the minimum total outer connected monophonic sets of G are $S_1 = \{v_1, v_2, v_4, v_5\}$, $S_2 = \{v_1, v_4, v_5, v_8\}$, $S_3 = \{v_1, v_2, v_5, v_6\}$ and $S_4 = \{v_1, v_5, v_6, v_8\}$ so that $cm_{\text{to}}(G) = 4$. It is clear that $f_{\text{tom}}(S_i) = 2(i = 1, 2, 3, 4)$ and so $f_{\text{tom}}(G) = 2$. Also, $M = \{v_1, v_3\}$ is the set of all total outer connected monophonic vertices of G and so $f_{\text{tom}}(G) = cm_{\text{to}}(G) - |M|$. The inequality in Theorem 8 can be strict. For the graph G given in Fig. 2, the minimum total outer connected monophonic sets of G are $M_1 = \{v_1, v_2, v_3, v_6\}$, $M_2 = \{v_3, v_4, v_5, v_6\}$, $M_3 = \{v_2, v_3, v_4, v_6\}$ and so $cm_{\text{to}}(G) = 4$. It is clear that $f_{\text{tom}}(M_i) = 1$ $(i = 1, 2)$, and so $f_{\text{tom}}(G) = 1$. Also, the vertices v_3 and v_6 are the total outer connected monophonic vertices of G, we have $f_{\text{tom}}(G) < cm_{\text{to}}(G) - |M|$.

Theorem 9. If G is a connected graph with $cm_{\text{to}}(G) = 2$, then $f_{\text{tom}}(G) = 0$.

Proof. If $cm_{\text{to}}(G) = 2$ then by Theorem 4, we have $G = K_2$. Hence $V(G)$ is the unique minimum total outer connected monophonic set of G. Also, by Theorem 6(i), $f_{\text{tom}}(G) = 0$.

Remark 4. The converse of Theorem 9 need not be true. For the path P_4 of order 4, the vertex set $V(P_4)$ is the unique minimum total outer connected monophonic set of G and so $cm_{\text{to}}(P_4) = 4$. By Theorem 6 (i), $f_{\text{tom}}(P_4) = 0$.

Theorem 10. For the complete bipartite graph $G = K_{m,n}(2 \leq m \leq n)$,

$$f_{\text{tom}}(G) = \begin{cases} m + n - 1 & \text{if } 2 = m \leq n, \\ 4 & \text{if } 3 \leq m \leq n. \end{cases}$$

Proof. Let $U = \{u_1, u_2, \ldots, u_m\}$ and $W = \{w_1, w_2, \ldots, w_n\}$ be the partite sets of G, where $m \leq n$. We prove this theorem by considering two cases.

Case 1. If $m = 2$, then it is clear that any minimum total outer connected monophonic sets of G is of the form $V(G) - \{w_i\}(1 \leq i \leq n)$ or $V(G) - \{u_j\}(1 \leq j \leq m)$. It is easy to verify that, no minimum total outer connected monophonic set of G is the unique
minimum total outer connected monophonic set containing any of its proper subsets. Then by Theorem 6 (iii), we have \(f_{tom}(G) = m + n - 1 \).

Case 2. If \(3 \leq m \leq n \), then any minimum total outer connected monophonic set of \(G \) is obtained by choosing any two elements from \(U \) as well as \(W \), and \(G \) has at least two minimum total outer connected monophonic sets. Hence \(cm_{to}(G) = 4 \). Clearly, no minimum total outer connected monophonic set of \(G \) is the unique minimum total outer connected monophonic set containing any of its proper subsets. Then by Theorem 6 (iii), we have \(f_{tom}(G) = cm_{to}(G) = 4 \). \(

Theorem 11. For any cycle \(C_n(n \geq 3) \), \(f_{tom}(C_n) = \begin{cases} 0 & \text{if } n = 3, \\ 3 & \text{if } n = 4, \\ 2 & \text{if } n \geq 5. \end{cases} \)

Proof. Let \(C_n : v_1, v_2, \ldots, v_n, v_1 \) be a cycle of order \(n \). We prove this theorem by considering two cases.

Case 1: \(n = 3 \). Since \(C_3 \) is the complete graph of order 3, \(V(C_3) \) is the unique minimum total outer connected monophonic set of \(C_3 \). By Theorem 6 (i), \(f_{tom}(C_3) = 0 \).

Case 2: \(n \geq 4 \). It is clear that no 2-element subset of \(V(C_n) \) is a total outer connected monophonic set of \(C_n \). It is easy to verify that any minimum total outer connected monophonic set of \(C_n \) consists of three consecutive vertices of \(C_n \) so that \(cm_{to}(C_n) = 3 \). For \(n = 4 \), it is clear that no minimum total outer connected monophonic set of \(C_4 \) is the unique minimum total outer connected monophonic set containing any of its proper subsets. Thus by Theorem 6 (iii), we have \(f_{tom}(C_4) = 3 \). For \(n \geq 5 \), it is clear that the set of two non-adjacent vertices of any minimum total outer connected monophonic set \(S \) of \(C_n \) is a minimum forcing total outer connected monophonic subset of \(S \) and so \(f_{tom}(S) = 2 \). Hence \(f_{tom}(C_n) = 2 \). \(

Theorem 12. For the wheel \(W_n = K_1 + C_{n-1}(n \geq 5) \), \(f_{tom}(W_n) = \begin{cases} 3 & \text{if } n = 5, \\ 2 & \text{if } n \geq 6. \end{cases} \)

Proof. It is clear that no 2-element subset of \(V(W_n) \) is a total outer connected monophonic set of \(W_n \). It is easy to observe that any minimum total outer connected monophonic set of \(W_n \) consists of three consecutive vertices of \(C_{n-1} \) so that \(cm_{to}(W_n) = 3 \). For \(n = 5 \), it is clear that no minimum total outer connected monophonic set of \(W_5 \) is the unique minimum total outer connected monophonic set containing any of its proper subsets. Thus by Theorem 6 (iii), we have \(f_{tom}(W_5) = 3 \). For \(n \geq 6 \), it is clear that the set of two non-adjacent vertices of any minimum total outer connected monophonic set \(S \) of \(W_n \) is a minimum forcing total outer connected monophonic subset of \(S \) and so \(f_{tom}(S) = 2 \). Hence \(f_{tom}(W_n) = 2 \). \(

Theorem 13. For any complete graph \(G = K_p(p \geq 2) \) or any non-trivial tree \(G = T \), \(f_{tom}(G) = 0 \).

Proof. Let \(G = K_p \). By Theorem 2, the set of all vertices of \(G \) is the unique minimum total outer connected monophonic set of \(G \) and so by Theorem 6 (i), \(f_{tom}(G) = 0 \). If \(G \) is a non-trivial tree, then by Theorem 3, the set of all endvertices and support vertices of \(G \) is the unique minimum total outer connected monophonic set of \(G \) and by Theorem 6 (i), \(f_{tom}(G) = 0 \). \(

Theorem 14. For every pair \(a, b \) of integers such that \(0 \leq a < b \) and \(b \geq a + 4 \), there is a connected graph \(G \) with \(f_{tom}(G) = a \) and \(cm_{to}(G) = b \).
Proof. If $a = 0$, let $G = K_a$. Then by Theorem 13, $f_{tom}(G) = 0$, and by Theorem 2, $cm_{to}(G) = b$. Now, assume that $0 < a < b$. The required graph G is obtained from the star $K_{1,4}$ having the vertex set $\{z_1, z_2, z_3, z_4, z_5\}$ with z_3 as the cut-vertex by adding $a + b - 2$ new vertices $w_1, w_2, \ldots, w_a, v_1, v_2, \ldots, v_a, u_1, u_2, \ldots, u_{b-a-3}, x$ and joining each $w_i (1 \leq i \leq a)$ to the vertices z_2, z_1 and z_4; and joining each $v_i (1 \leq i \leq a)$ to the vertices z_2, z_4 and z_5, and joining each $u_i (1 \leq i \leq b-a-3)$ to the vertex z_5; and also joining the vertex x to the vertex z_1, the vertex z_1 to the vertex z_5, and the vertex z_2 to the vertex z_4. The graph G is shown in Fig. 3. Let $S = \{u_1, u_2, \ldots, u_{b-a-3}, x, z_1, z_5\}$ be the set of all endvertices and support vertices of G. By Theorem 1, every total outer connected monophonic set of G contains S. It is clear that S is not a total outer connected monophonic set of G. We observe that every minimum total outer connected monophonic set of G contains exactly one vertex from the set $\{v_i, w_i\}$ for every $(1 \leq i \leq a)$. Thus $cm_{to}(G) \geq b$. Since $S_1 = S \cup \{w_1, w_2, \ldots, w_a\}$ is a total outer connected monophonic set of G, it follows that $cm_{to}(G) = b$.

Next, we show that $f_{tom}(G) = a$. Since every minimum total outer connected monophonic set of G contains S, it follows from Theorem 8 that $f_{tom}(G) \leq cm_{to}(G) - |S| = b - (b - a) = a$. It is clear that every minimum total outer connected monophonic set S' of G is of the form $S \cup \{x_1, x_2, \ldots, x_a\}$, where $x_i \in \{v_i, w_i\}$ for every $(1 \leq i \leq a)$. Let T be any proper subset of S' with $|T| < a$. Then there is a vertex $x \in S' - S$ such that $x \notin T$. If $x = v_i (1 \leq i \leq a)$, then $S'' = (S' - \{v_i\}) \cup \{w_i\}$ is a minimum total outer connected monophonic set of G containing T. Similarly, if $x = w_j (1 \leq j \leq a)$, then $S''' = (S' - \{w_j\}) \cup \{v_j\}$ is a minimum total outer connected monophonic set of G containing T. Thus S' is not the unique minimum total outer connected monophonic set containing T and so T is not a forcing total outer connected monophonic subset of S'. This is true for all minimum total outer connected monophonic sets of G and so $f_{tom}(G) = a$.

Fig. 3. A graph G with $f_{tom}(G) = a > 0$ and $cm_{to}(G) = b > a$

References

1. Buckley F., Harary F. Distance in Graphs. Redwood City, CA, Addison-Wesley, 1990. 335 p.
2. Harary F. Graph Theory. Addison-Wesley, 1969. 274 p.
3. Costa E. R., Dourado M. C., Sampaio R. M. Inapproximability results related to monophonic convexity. Discrete Applied Mathematics, 2015, vol. 197, pp. 70–74. https://doi.org/10.1016/j.dam.2014.09.012
4. Dourado M. C., Protti F., Szwarcfiter J. L. Algorithmic aspects of monophonic convexity. Electronic Notes in Discrete Mathematics, 2008, vol. 30, pp. 177–182. https://doi.org/10.1016/j.endm.2008.01.031
5. Dourado M. C., Protti F., Szwarcfiter J. L. Complexity results related to monophonic convexity. Discrete Applied Mathematics, 2010, vol. 158, pp. 1268–1274. https://doi.org/10.1016/j.dam.2009.11.016

Математика 285
6. Paluga E. M., Canoy S. R. Monophonic numbers of the join and composition of connected graphs. *Discrete Mathematics*, 2007, vol. 307, iss. 9–10, pp. 1146–1154. https://doi.org/10.1016/j.disc.2006.08.002

7. Santhakumaran A. P., Titus P., Ganesamoorthy K. On the monophonic number of a graph. *Journal of Applied Mathematics & Informatics*, 2014, vol. 32, iss. 1–2, pp. 255–266. https://doi.org/10.14317/JAMI.2014.255

8. Ganesamoorthy K., Murugan M., Santhakumaran A. P. Extreme-support total monophonic graphs. *Bulletin of the Iranian Mathematical Society*, 2021, vol. 47, pp. 159–170. https://doi.org/10.1007/s41980-020-00485-4

9. Ganesamoorthy K., Murugan M., Santhakumaran A. P. On the connected monophonic number of a graph. *International Journal of Computer Mathematics: Computer Systems Theory*, 2022, vol. 7, iss. 2, pp. 139–148. https://doi.org/10.1080/23799927.2022.2071765

10. Santhakumaran A. P., Titus P., Ganesamoorthy K., Murugan M. The forcing total monophonic number of a graph. *Proyecciones*, 2021, vol. 40, iss. 2, pp. 561–571. https://doi.org/10.22199/issn.0717-6279-2021-02-0031

11. Ganesamoorthy K., Lakshmi Priya S. The outer connected monophonic number of a graph. *Ars Combinatoria*, 2020, vol. 153, pp. 149–160.

12. Ganesamoorthy K., Lakshmi Priya S. Further results on the outer connected monophonic number of a graph. *Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, Issue Mathematics*, 2021, vol. 41, iss. 4, pp. 51–59.

13. Ganesamoorthy K., Lakshmi Priya S. Extreme outer connected monophonic graphs. *Communications in Combinatorics and Optimization*, 2022, vol. 7, iss. 2, pp. 211–226. https://dx.doi.org/10.22049/cc.o.2021.27042.1184