Plasma-assisted adsorption of elemental mercury on CeO$_2$/TiO$_2$ at low temperatures

Lu Liu1, Chenghang Zheng2, Xiang Gao2,*

1 School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
2 State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China

E-mail: lliuenergy@ujs.edu.cn; xgao1@zju.edu.cn

Abstract. Mercury is a kind of pollutants contained in flue gas which is hazardous for human beings. In this work, CeO$_2$ was packed in the discharge zone of a plasma reactor to adsorb elemental mercury at low temperatures. Plasma-catalyst reactor can remove Hg0 efficiently with CeO$_2$/TiO$_2$ catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO$_2$/TiO$_2$ catalysts has a promotion effect on the adsorption of Hg0. Plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed. The long-running test demonstrated that this method is an effective way to remove Hg0. The removal efficiency remained at above 99% throughout 12 hours when plasma had been turned on (15kV, 0.5 g packed CeO$_2$/TiO$_2$).

1. Introduction
Mercury is a kind of pollutants contained in the flue gas [1]. It is hazardous for human beings and easy to accumulate in the organisms [2]. With decades of studies, a verity of technologies has been proposed to remove elemental mercury (Hg0) from flue gas [3-5]. Among these technologies, adsorption of mercury on adsorbent is the most efficient one.

Various manganese oxides and ceria were selected for Hg0 removal because of their high activity, low price and environmental friendliness, making them possible for the application [6-8]. Ma et al. [3] synthesized MnO$_2$/CeO$_2$-MnO$_2$ hierarchical binary oxides that exhibited excellent Hg0 removal performance, 89% at 150 °C under 4% O$_2$. MnO$_2$ was the primary active site for Hg0 catalytic oxidation. Fan et al. [8] reported that impregnation with CeO$_2$ significantly enhanced the Hg0 removal ability of activated carbon fibre, particularly with the loading value of 6%. Guo et al. [9] used MnOx as the main catalytic component, with Mo and/or Ru to improve the catalytic activity, to convert Hg0 to its oxidized form at low temperatures (around 150 °C) and the conversion efficiency of Hg0 reached 95% with Mo-Ru-Mn catalyst and 8 ppmv HCl.

Non-thermal plasma provided an innovative approach to the solution of air pollutants reduction [10, 11]. In our previous study, we found non-thermal plasma has promotion effect on mercury removal by catalysts. The plasma–catalyst system displays a much higher elemental mercury adsorption efficiency than a catalyst only or plasma only system at low temperatures. MnO$_2$, V$_2$O$_5$, Co$_3$O$_4$, Fe$_2$O$_3$, CuO, and NiO were supported on TiO$_2$ and used as the packed catalysts [12]. Recently, we found CeO$_2$/TiO$_2$ presents a different tendency from the above catalysts. In this work, CeO$_2$ was packed in the discharge
zone of a plasma reactor to adsorb elemental mercury at low temperatures. Compared with other kinds of catalysts, a different tendency was observed when CeO₂/TiO₂ packed in the discharge zone.

2. Experimental
The experimental setup for the mercury adsorption contains three parts: the gas generating system, the plasma-catalyst reactor and the detecting system, the same as in Ref. [12]. A mercury permeation device (VICI Metronics) was used to provide a constant feed of Hg⁰ concentration. The gas flow was 1.2 L min⁻¹. The gas mixtures for Hg⁰ adsorption contained 55–65 μg m⁻³ Hg⁰ and balance N₂. The non-thermal plasma was generated by dielectric barrier discharge (DBD). The power supply of the DBD reactor was an AC high voltage power with a frequency of 50 Hz. A MS-1A/DM-6B Hg analyzer (Nippon Inc.) was used to measure the Hg⁰ concentrations at both the inlet and outlet of the reactor. All the tests were performed at room temperature and atmospheric pressure. The CeO₂/TiO₂ catalysts were prepared by an impregnation method as stated in Ref. [12]. The loading amount is only 1% wt. The BET surface area of the CeO₂/TiO₂ is 77.0 m²/g, similar to TiO₂ (77.5 m²/g).

3. Results and discussion
Usually, after the gas flow passing through the plasma-catalyst reactor and the plasma being turned on, the outlet Hg⁰ concentration would stay at a certain value within 60 min, for example, Hg⁰ adsorption with TiO₂ catalysts packed in the discharge zone, as shown in Figure 1. However, when CeO₂/TiO₂ packed in the discharge zone, it presented a different tendency (Figure 1). The Hg⁰ concentration continued to decrease gradually even 120 min after the plasma being turned on, until the concentration was close to zero. Besides, when the discharge voltage increased, the concentration has no obvious decline, but still decrease gradually with a higher speed, as shown in Figure 2. Ceria has unique oxygen storage capacity. The results above indicate that the oxygen atoms in ceria take part in the reaction gradually, but not at once.

![Figure 1. Hg⁰ adsorption with TiO₂ and CeO₂/TiO₂ catalysts packed in the discharge zone (14 kV, 0.2 g packed catalyst).](image1)

![Figure 2. Effect of discharge voltage on Hg⁰ adsorption with CeO₂/TiO₂ catalysts packed in the discharge zone (0.05 g packed catalyst).](image2)

Figure 3 shows the Hg⁰ adsorption in the second period in a plasma-catalyst system. After the catalyst exposed in N₂, the adsorption curve did not decrease gradually anymore and the adsorption efficiency was higher than in the period. However, after the catalyst was exposed in air, the adsorption efficiency was much lower. Regarding the first period as a treatment of the plasma, this result indicate that plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed.
Figure 3. Hg\(^0\) adsorption of the second period in a plasma-catalyst system (14 kV, 0.2 g packed catalyst).

Figure 4. Repeated test of Hg\(^0\) adsorption with CeO\(_2\)/TiO\(_2\) catalysts packed in the discharge zone (14 kV, 0.2 g packed catalyst).

Figure 5. Long-running test of Hg\(^0\) adsorption with CeO\(_2\)/TiO\(_2\) catalysts packed in the discharge zone (15 kV, 0.5 g packed catalyst).

The treatment of plasma to CeO\(_2\)/TiO\(_2\) catalysts has a promotion effect on the adsorption of Hg\(^0\). As shown in Figure 4, the adsorption efficiency in the second period was higher than in the first period. After 6 hours' exposure in N\(_2\) atmosphere, the adsorption efficiency in the third period was still higher than in the second period. After 12 hours' exposure in N\(_2\) atmosphere, the adsorption efficiency in the fourth paired became a little lower.

The adsorption capacity of the plasma-catalyst system is particularly high, compared with the catalyst only system. Figure 5 shows the result of a 12-hour long-running test of Hg\(^0\) adsorption with
CeO$_2$/TiO$_2$ catalysts packed plasma-catalyst system. The removal efficiency remained at above 99% throughout the period when plasma had been turned on. When the plasma was turned off, the Hg0 concentration went up with a very slow speed, whereas it returned to its initial value rapidly after 1.5 hour's discharge (Figure 1, Figure 3 and Figure 4). This result demonstrated that with CeO$_2$/TiO$_2$ catalysts packed in the discharge zone, the method of plasma-assisted adsorption is an effective way to remove Hg0.

4. Conclusions
Plasma-catalyst reactor can remove Hg0 efficiently with CeO$_2$/TiO$_2$ catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO$_2$/TiO$_2$ catalysts has a promotion effect on the adsorption of Hg0. The long-running test demonstrated that this method is an effective way to remove Hg0.

Acknowledgments
The authors wish to express their sincere appreciation for the financial support from the National Key Research and Development Plan (2016YFC0203701) and the National Science and Technology Support Program (2015BAA05B02-1).

References
[1] Shah P, Strezov V and Nelson PF, Speciation of mercury in coal-fired power station flue gas, 2015 *Energ. Fuel.* 24 205-12.
[2] Mahbub K R, Kader M, Krishnan K, Labbate M, Naidu R and Megharaj M, Toxicity of inorganic mercury to native Australian grass grown in three different soils, 2017 *Bull. Environ. Contam. Toxicol.* 98 850-5.
[3] Ma Y, Mu B, Yuan D, Ma Y, Mu B, Yuan D, Zhang H and Xu H, Design of MnO$_2$/CeO$_2$-MnO$_2$ hierarchical binary oxides for elemental mercury removal from coal-fired flue gas, 2017 *J. Hazard. Mater.* 333 186–93.
[4] Li G, Shen B, Yi W, Yue S, Xi Y, An M and Ren K, Comparative study of element mercury removal by three bio-chars from various solid wastes, 2015 *Fuel* 145 189-95.
[5] Stanger R, Ting T, Spero C and Wall T, Oxyfuel derived CO$_2$, compression experiments with NOx, SOx, and mercury removal-Experiments involving compression of slip-streams from the Callide Oxyfuel Project (COP), 2015 *Int. J. Greenh. Gas Con.* 41 50-9.
[6] Li H, Wu C Y, Li Y, et al. Role of flue gas components in mercury oxidation over TiO$_2$ supported MnOx-CeO$_2$ mixed-oxide at low temperature, 2012 *J. Hazard. Mater.* 243 117-23.
[7] He C, Shen B and Chen J, Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs, 2014 *Environ. Sci. Technol.* 48 7891-8.
[8] Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W and Gao H, Removal of gas-phase element mercury by activated carbon fibre impregnated with CeO$_2$, 2010 *Energ. Fuel.* 24 4250-4.
[9] Guo Y, Yan N, Yang S, Liu P, Wang J, Qu Z and Jia J, Conversion of elemental mercury with a novel membrane catalytic system at low temperature, 2012 *J. Hazard. Mater.* 213-214 62-70.
[10] Delagrange S, Pinard L and Tatibouët J M, Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts, 2006 *Appl. Catal. B Environ.* 68 92-8.
[11] Kim H, Teramoto Y, Negishi N and Ogata A, A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review, 2015 *Cataly. Today* 256 13-22.
[12] Liu L, Zheng C, Chen J, Zhou J, Gao X, Ni M and Cen K, Plasma-induced adsorption of elemental mercury on TiO$_2$ supported metal oxide catalyst at low temperatures, 2015 *Fuel Process. Technol.* 138 14-20.