The Sufficient Conditions of The C^*-Module C^*m to become a C-Subcomodule

N P Puspi1,2, I E Wijayanti3 and B Surodjo4

1Doctoral Student Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
2Department of Mathematics, Universitas Diponegoro, Semarang, Indonesia
3Department of Mathematics, Universitas Gadjah Mada Yogyakarta, Indonesia

email: nikken.prima.p@mail.ugm.ac.id1, ind.wijayanti@ugm.ac.id3, surodjo_b@ugm.ac.id4

Abstract. Let R be a commutative ring with identity and M be a comodule over R-coalgebra C. It was already well-known that any C-comodule M is a module over dual algebra C^* where C^* is the set of all R-module homomorphisms from C to R. Furthermore, the category of comodule is a subcategory of the category of C^*-module. Hence, any C-subcomodule of M is a C^*-submodule of M, and the conversely is not true. For any non zero element m in M, C^*m is a C^*-submodule of M. In general, C^*m is not to become a C-subcomodule of M. By using the theory of exact sequences in modules and the theory of categories, we give a condition such that C^*m to be a C-subcomodule of M.

Keyword: submodule, subcomodule, dual algebra, coalgebra, comodule.

1. Introduction

Let R be a commutative ring with the multiplicative identity, (C, Δ, ϵ) be a coassociative and counital R-coalgebra. Coalgebras and Comodules over a commutative ring were introduced by [1]. An R-module M is called a (right) comodule over R-coalgebra C if there exists a (right) coaction $\rho^M: M \to M \otimes_R C$. Using the Sweedler notation [2], for any $m \in M$, we define $\rho^M(m)=\sum m_i \otimes m_i$. Moreover, an R-module homomorphism $f: M \to N$ is said to be a C-comodule morphism provided satisfies the condition that $\rho^N \circ f = (f \otimes 1_C) \circ \rho^M$ [1]. The all of right C-comodule morphism from M to N denoted by $Hom_C(M,N)$ and $Hom_R(M,N)$ is the notation of R-module homomorphism from M to N. The category of C-comodules denoted by M^C and the category of R-module is M_R. Throughout, in this paper $M \in M^C$.

For any R-coalgebra C, we can construct all of the R-module homomorphisms from M to R, i.e., $C^*=Hom_R(M,R)$. In [1], we can construct a ring from C^*. For any $f,g \in C^*$, define a convolution product between f and g, i.e., $f \ast g = (f \otimes g) o \Delta$. Therefore, $(C^*,+,o)$ is an R-algebra. In [1], there are many relations between C and C^* as an example $(C^*,+,o)$ is associative and with an identity element if and only if (C, Δ, ϵ) is coassociative and counital. We are called the R-algebra $(C^*,+,o)$ as an R-algebra dual of C.
In this paper, we will discuss some topics related to a comodule over \(C \) and module over dual \(R \)-algebra \(C^* \). It was interesting that any \(M \in \mathbf{M}^C \) can be considered as a module over \(C^* \) by a left action, i.e.,

\[
f \cdot m = (I_M \otimes f) \circ \rho^M(m) = \sum m_2 \otimes m_1 = \sum f(m_1) \in M \text{ (since } f \text{ in } C^* = \text{Hom}_R(C,R))
\]

Furthermore, any element of \(\text{Hom}^C(M,N) \) is a \(C^* \)-module homomorphism. It implies the category of \(\mathbf{M}^C \) is a subcategory of the category of left \(C^* \)-module \(\mathbf{C} \). One of the consequences of the relationship between category \(\mathbf{M}^C \) and \(\mathbf{C} \) i.e. any \(C \)-subcomodule of \(M \) is a submodule of \(M \) as a \(C^* \)-module.

In [1], the sufficient condition that will make the category \(\mathbf{M}^C \) become a full subcategory of \(\mathbf{C} \)-module \(\mathbf{M} \) is the \(\alpha \)-condition of coalgebra \(C \). The \(\alpha \)-condition arises based on a question, when is the \(\mathbf{M}^C \) be a full subcategory of \(\mathbf{C} \)-module or \(\text{Hom}^C(M,N) = \mathbf{C} \text{-Hom}(M,N) \). The definition of \(\alpha \)-condition give as below:

Definition 1.1 [1] An \(R \)-coalgebra \(C \) is said to satisfy the \(\alpha \)-condition if the map \(\alpha : N \otimes_R C \rightarrow \text{Hom}_C(C^*,N), \alpha_N(n \otimes c) = [f \mapsto f(c) n], \)

is injective, for any \(N \in \mathbf{M}_R \).

Moreover, in [1] we also see the properties related to the \(\alpha \)-condition as the following statements.

Theorem 1.2 [1] The following conditions are equivalent:
1. \(C \) satisfies the \(\alpha \)-condition;
2. for any \(N \in \mathbf{M}_R \) and \(u \in N \otimes_R C \) if \((I_N \otimes f)(u) = 0 \) for all \(f \in C^* \), implies \(u = 0 \);
3. \(C \) is locally projective as an \(R \)-module.

The implication of the \(\alpha \)-condition of \(C \) is not only making the category \(\mathbf{M}^C \) be a full subcategory of \(\mathbf{C} \)-module. The readers can find the important theorem related to the condition \(\alpha \) of coalgebra \(C \) as the following theorem.

Theorem 1.3 [1] The following are equivalent:
(a) \(\mathbf{M}^C = \sigma[C^*C] \);
(b) \(\mathbf{M}^C \) is a full subcategory of \(\mathbf{C} \)-module;
(c) for all \(M,N \in \mathbf{M}^C \), \(\text{Hom}^C(M,N) = \mathbf{C} \text{-Hom}(M,N) \);
(d) \(\sigma C \) is locally projective;
(e) every left \(C^* \)-submodule of \(C \), \(n \in N \), is a submodule of \(C^* \).

In general, any \(C^* \)-module \(M \) is not always to become a \(C \)-comodule. Let \(m \) be a non zero element of \(M \in \mathbf{M}^C \). Consider \(M \) as a \(C^* \)-module, the \(C^* \)-submodule generated by the element \(m \) denoted \(C^*m \). For example, suppose that \(R = \mathbb{Z} \) (the set of integer numbers) and \(M = \mathbb{R} \) (The set or real numbers). Let \(R \) be a \(\mathbb{Z} \)-comodule. If we put \(m = 1 \), we cannot guarantee that \(\rho^R(\mathbb{Z}^*) \) is well defined. Therefore, we need to find a \(C \)-coaction for \(\mathbb{Z}^* \).

In this paper, we want to show the sufficient condition that will make the \(C^* \)-submodule \(C^*m \) be a \(C \)-subcomodule of \(M \) for any non zero element \(m \in M \). On the proof of Theorem 1.4 [1], we have already seen that if \(C \) satisfies the \(\alpha \)-condition, then it implies that any \(C^* \)-submodule of \(M \) is also a \(C \)-subcomodule. As the fact, the \(R \)-coalgebra \(C \) satisfy \(\alpha \)-condition if and only if every \(C^* \)-module of \(M \) is a \(C \)-subcomodule of \(M \). In this paper, we going to find the condition which is smoother then the \(\alpha \)-condition to solve our problem.

Our goal is to find the \(C \)-coaction of \(C^*m \). However, we need to understand the kernel concept in categories theory and we refer to [3] and [4]. For exact sequences in module theory, we use some sources, i.e. [5], [6], and [7]. The result of this paper use to find the necessary and sufficient condition that will make \(C \)-comodule \(M \) be a clean comodule.
2. Main Results

Let \(M \in \mathbf{M} \) and \(m \) be a non zero element of \(M \). As the fact, \(M \in \mathbf{M} \) is a (left) \(C^* \)-module where \(C^* \) is an \(R \)-algebra. Given an \(R \)-module \(C^m = \{ f \mapsto m | f \in C^* \} \). For any \(r \in R \) and \(f \mapsto m \in C^* m \), \(rf \mapsto m \) such that \(C^* m \) is an \(R \)-module. In particular, it is an \(R \)-submodule of \(M \). In [1], an \(R \)-submodule \(K \) of \(M \) is said to be a \(C \)-submodule of \(M \) provided \(K \) has a (right) \(C \)-comodule structure such that the inclusion is a \(C \)-comodule morphism. In this section, we will observe the properties of \(C^* m \) as a submodule of \(M \). For starting our investigation we prove that \(C^* m \) is a submodule of \(M \), on the following lemma we are going to prove that \(C^* m \) is a submodule of \(M \) as a \(C^* \)-module.

Theorem 2.1 Let \((M, \rho^M)\) be a \(C \)-comodule and \(C^* \) be a dual \(R \)-algebra of \(C \). For any non zero element \(m \in M \), the \(R \)-module \(C^* m \) is a \(C^* \)-submodule of \(M \).

Proof.

Given a non zero element \(m \in M \) and \(C^* m = \{ f \mapsto m | f \in C^* \} \). We have some facts below:

1. By definition of scalar multiplication in \(C^* \)-module \(M \), it is obviously that \(C^* m \) is a subset of \(M \).
2. For any \(r \in \mathbb{R} \) and \(f \mapsto m \in C^* m \), \(rf \mapsto m \in M \). By using scalar operation in \(R \)-module \(M \), it is trivial that \(C^* m \) is a submodule of \(R \)-module \(M \).
3. We want to prove that \(C^* m \) is a \(C^* \)-module of \(M \). Given any \(f \mapsto m \), \(h \mapsto m \in C^* m \). We have,
\[
(f \mapsto m) - (h \mapsto m) = (f \circ h) o \rho^M (m) = \sum m_0 g (m_1) - \sum m_0 h (m_1) = (f - h) \mapsto m,
\]

Since \(f \circ h \in C^* \), \((f \mapsto m) - (h \mapsto m) = (f \circ h) \mapsto m \) in \(C^* m \).

Therefore, \(C^* m \) is a \(C^* \)-submodule of \(M \).

As a right \(C \)-comodule, \(M \) is a module over \(R \). Let \(C^* m \) be an \(R \)-submodule of \(M \). It is clear that any \(C \)-subcomodule of \(M \) is a \(C^* \)-submodule of \(M \). However, the conversely is not directly valid. We were already known that \(C^* m \) is a \(C^* \)-submodule of \(M \). In this paper, we give the condition that will be making \(C^* m \) is not only a \(C^* \)-submodule of \(M \) but also can be a \(C \)-subcomodule of \(M \).

Theorem 2.2 Let \((M, \rho^M)\) be a \(C \)-comodule and \(m \in M \) be a non zero element. If
\[
\alpha_{M/C^* m} : M/C^* m \otimes_R C \to \text{Hom}_R(C^*, M/C^* m), \alpha_{M/C^* m} (x \otimes c) = [f \mapsto f(c)x]
\]
is an injective \(R \)-module homomorphism and \(C \) is a flat \(R \)-module, then the set \(C^* m \) is a \(C \)-subcomodule of \(M \).

Proof.

Suppose that \(M \) is a (right) \(C \)-comodule, then \(M \) is a left \(C^* \)-module with scalar multiplication define as
\[
f \mapsto m = (I_M \otimes f) o \rho^M (m) \in M, \text{ for any } f \in C^* \text{ and } m \in M.
\]
Our goal is to prove that $C^*-\text{submodule } C^*m$ is a C-subcomodule of M as below:
Let $N=C^*m$. The inclusion map $i : N \to M$ yields the diagram with exact rows follows as below.

![Diagram](image)

Figure 1. Exact Rows and Commutative Diagram between M and C^*M

Hence, p is a natural morphism from M to the factor module M/N and I_C is an identity map of R-module C. In Figure 1 we have some information as below i.e., The first row in Figure 1 is exact [5] and the exactness of the first row implies that $p \otimes I_C$ is surjective, since p is a natural homomorphism and I_C is an identity map.

Define a map

$$\rho^{C^*m} : C^*m \to Hom_R(C^*, C^*m), f \mapsto [g \mapsto g \mapsto (f \mapsto m)],$$

then we have another diagram as follow

![Diagram](image)

Figure 2. Diagram ρ^{C^*m}

With with $\rho^N = \rho^{C^*m}$, $N=C^*m$ and

$$\alpha_M = M \otimes C \to Hom_R(C^*, M), m \otimes c \mapsto [f \mapsto mf(c)].$$

Therefore, we have some facts as below:

1. Figure 2 is a commutative diagram. For any $f \mapsto m$ in $N = C^*m$,

 $Hom_R(C^*, i) \circ \rho^{C^*m} (f \mapsto m) = Hom_R(C^*, i)(g), \text{ (where } g \mapsto g \mapsto (f \mapsto m))$

 $= i \circ g, \text{ (where } g \mapsto g \mapsto \sum m_2 f(m_1))$

 $= i \circ g \in Hom_R(C^*, M) \text{ (where } g \mapsto \sum \sum m_{00} g(m_{01}) f(m_1))$

 and

 $\alpha_M \circ \rho^{C^*m}(f \mapsto m) = \alpha_M \circ \rho^M(f \mapsto m)$

 $= \alpha_M (\sum \rho^M(m_1) f(m_1))$

 $= \alpha_M (\sum (\sum m_{00} \otimes m_{01}) f(m_1))$

 $= g \in Hom_R(C^*, M), \text{ (where } g \mapsto \sum (\sum m_{00} g(m_{01}) f(m_1))$.

Since i is an inclusion map, by considering the element C^*m as the element of M, then the image of g can be equal to the image of iog. Hence, we have that
\[\alpha_{M/C^m} = \text{Hom}(C^*, i) \circ \rho^C = \text{Hom}(C^*, i) \circ \rho_N. \]

In particularly, Figure 2 is a commutative diagram.

2. From Figure 1 and commutativity of Figure 2, we have
\[\alpha_{M/C^m} o (p \otimes I_c) o \rho^M = \text{Hom}_R(C^*, p) o \text{Hom}_R(C^*, i) o \rho^C. \]

For any \(f \rightarrow m \) in \(C^*m \),
\[\text{Hom}_R(C^*, p) o \text{Hom}_R(C^*, i) o \rho^C \]
\[(f \rightarrow m) = \text{Hom}_R(C^*, p) o \text{Hom}_R(C^*, i)(g) \]
\[= (g o i o p) \]
\[= go(i o p) \]
\[= 0. \]

Therefore, \(\alpha_{M/C^m} o (p \otimes I_c) o \rho^M = 0 \). Moreover, the injectivity of \(\alpha_{M/C^m} \) implies that
\((p \otimes I_c) o \rho^M = 0 \).

3. In Figure 1, since \(C \) is a flat \(R \)-module and the first row is exact, the second row is exact (by exactness of the first row) such that
\[\text{Ker}(p \otimes I_c) = \text{Im}(I \otimes I_c) = C^*m \otimes_R M \]
or
\[I \otimes I_c : N \otimes_R C \rightarrow M \otimes_R C \]
is kernel of
\[p \otimes I_c : M \otimes_R C \rightarrow M/N \otimes_R C. \]

It implies \((p \otimes I_c) o (I \otimes I_c) = 0 \). By using the definition of kernel on the category theory [4], for a morphism
\[\rho^M : C^*m \rightarrow M \rightarrow M \otimes_R C \]
with \((p \otimes I_c) o \rho^M = 0 \),

there exist a unique a map (as a \(C \)-comodule morphism), i.e.,
\[\rho^C : C^*m \rightarrow C^*m \otimes_R C. \]

The \(C \)-comodule morphism \(\rho^C \) will be the \(C \)-coaction of \(C^*m \). In particularly, \(C^*m \) is the right \(C \)-comodule of \(M \).

4. For the end, we need to prove that the inclusion map \(i \) is a \(C \)-comodule morphism from \(C^*m \) to \(M \), i.e., \(\rho^M o i = (f \otimes I_c) o \rho^C \). Let see figure 1. By using commutativity of Figure 1 (see the first and second rows), it is obviously that the inclusion map \(i \) is a comodule morphism. It means \(C^*m \) is a \(C \)-subcomodule of \(M \).

The Theorem 2.2 explained that by adding flatness property of \(C \) as an \(R \)-module, \(C^*m \) is going to be \(C \)-subcomodule of \(M \) provided \(\alpha_{M/C^m} \) is a monomorphism. Theorem 2.1 is really important for the research of clean comodules. We use this property for finding necessary and sufficient conditions of clean comodules.

3. Conclusions

Let \(M \) be a comodule over \(R \)-coalgebra \(C \). For any non zero element \(m \) in \(M \), based on the main result, we have the important conclusion to make the \(C^*m \)-submodule \(C^*m \) become a subcomodule of \(M \) over \(C \). The sufficient condition that will make \(C^*m \) be a subcomodule of the \(C \)-comodule \(M \) is \(C \) need to be a flat \(R \)-module and the map \(\alpha_{M/C^m} : M/C^*m \otimes_R C \rightarrow \text{Hom}_R(C^*, M/C^*m) \) is injective. On the next project, we will use the result on this paper for finding the necessary and sufficient conditions of clean comodules.

Acknowledgments

The authors are grateful to Professor Alexander Zimmermann for many valuable suggestions on this research, especially when the first author doing the visiting research in Amiens, France. This research
was supported by Doctoral Research Grant, Directory of Higher Education, Indonesian Government, 2019-2020.

4. References

[1] Tomasz Brzeziński and Robert Wisbauer 2003 *Corings and Comodules* (UK : Cambridge University Press)

[2] M. E. Sweedler 1969 *Hopf Algebra : Mathematics Lecture Note Series* (New York : W.A. Benjamins, Inc.)

[3] F.W Anderson K. Fuller (1992) *Ring and Categories of Modules* (New York : Springer-Verlag).

[4] Robert Wisbauer 1991 *Foundation of Module and Ring Theory*, Philadelphia, USA : Gordon and Breach

[5] W.A. Adkins and S.H.Weintraub 1992 *Algebra "An Approach via Module Theory Physics of Semiconductor Devices* (New York, USA: Springer-Verlag)

[6] T. Y. Lam 2003 Graduated Texts in Mathematics: Lectures on Modules and Rings (New York : Springer-Verlag)

[7] A. Tuganbayev 2002 *Ring Close to Regular* (Dordrecht, Boston, London : Kluwer Academic Publisher)