Determine kind and concentration of heliotropiumsuaveolens, Plantagomajorand Silybllummarianum plants ingredients and its effect on some plant pathogenic fungi

A J Abdrahmaan1, I A Abdul Raheem2, R H Latef 1

1Department of Biology, College of Women Education, University of Tikrit, Iraq.

2Department of Biology, College of Education, Tuzhurmate.

Abstract. A study was conducted on the biology laboratories-Tikrit University to determine the ingredients of three local plants Heliotropiumsuaveolens, Plantagomajor and Silybllummarianum and effect its extracts on the growth of fungus Fusariumsolani, Fusariumoxysporum and Alternariaalternate. Results analysis by High performance Liquid Chromatographyte (HPLC) technique showed H. suaveolensplant contain alkaioidic compounds indicine 9.52%, supinine 3.95%, indicine-N-oxide 14.66%, heliotine 33.0%. heliotrine 31.88% and lidelofidine 6.95% and plantago major plant contain salysilic acid34.93%, kampferol 4.55%,gentisic acid 2.72%,vanilic acid 1.67%,chlorogenetic acid 0.70%,ferulic acid 21.42% and aucubin 9.12% While S. marianum contain salichristinA 42.24%,salichristin B 14.89%, salidianin 30.23%, silybins A3.30%,silybins B 2.74%, isosilybins A 4.86% and isosilybins B 1.71% Extract 20 concentration of H.suavelones and P.major showed high inhibition reached100% While S. mariumshowed no effect on fungus growth.

Keywords. Medicinal Plants, Aqueous Extract, Fungi Inhibitory Effect.

1. Introduction
Medicinal plant has big important in agriculture production, it contain active natural ingredients \cite{1} this natural products has effect on other plants and on its environment beside its effect on organisms growth \cite{2} such as using extracts of medicinal and aromatic plants which has one or more materials in its chemical composition able to inhibition fungus and insects growth \cite{3, 4}, There is a wide variety of funga genera causing diseases for human, animals and plants \cite{5, 6, 7} The intensive and indiscriminate use of pesticide in agriculture has caused many problems to the environment such as water, soil, animal and food contamination, poisoning of farmers \cite{8} besides its harmful effect on human health \cite{9, 10} and appearance resistant strain from fungi \cite{11}. The genus Heliotropium is bigger genuses of Boraginaceae family include 220-300 species in Iraq specialize by scorpoid inflorescence shape \cite{12} andplantago majorbelong to the Plantaginaceae family its high reach about 0.5 m give many leaves over the earth directly had about 5-7 lines with small black or yellow or weight, flowers on the head of long stem distrib around roads and in the gardens \cite{13} ,while marianumis one of the important species belong to the silybum genuisits annual or biannualplantwith 1-2 m high and simple or branched cavey stem and leaves spiny on the borders has white veins, the flowers is violet or pinky or white \cite{14}, distribution in the south of Aljazeera and Sedimentary plain of Iraq and commonly find around the fields and roads \cite{15, 16}. In recent years, antimicrobial properties of plant extracts have been reported with increasing frequency from different parts of the world because plant provide compounds such as alkaloids saponins, volataloi, coumarins, saponins, flavonoids and glycosides \cite{17}, extracts of Zingiberofficinale and Xylopiaethiopiaciplants inhibited
growth of Fusarium oxysporum [18], a study by [19] find activity extracts of Cymbopogon martini on inhibition growth of Fusarium solani. P. pinellianum extract with 50 and 75% concentration lead to full growth inhibition of F. solani, R. solani and A. alternata fungus [20] and sort rot diseases on potato affected by garlic extract [21], extracts of Salvia officinalis, Rosmarinus officinalis and seed of Cynara scolymus were quite comparable to values obtained with the conventional fungicide captain [22], turmeric rhizomes inhibited the mycelia growth of A. solani by 38.2% [23] and aqueous extracts from Eucalyptus citriodora leaves in 20% concentration were efficient to inhibited in 100% the mycelia growth of Phytophthora capsici and Sclerotium rolfsii and 75% in R. solani and in 45% to A. alternata under in vitro assays [24], while aqueous extract of wild basil at 5% concentration was enough to provide inhibition at 100% mycelia growth of A. alternata [25]. Study by [26] appeared that crude extract of Lippia alba and R. officinalis has bigger inhibition for A. alternata mycelia growth and the two plants mixture extracts produced better values than isolated extracts with 60% of growth inhibition of A. alternata [27]. Active inhibition appeared by extract of Nerium oleander leaves against R. solani and F. solani [28].

2. Materials and Methods

2.1. Determining plants ingredients

The plants collected from fields and around of the roads (leaves and stems) of three plants were washed by water. The plant dried at the shade and milled then 10gm from the sample put in 50 ml boiled water (90-100°C) for 3 hours then extracted whatman papers no.1 the extraction collected and put in closed glass tube in order measuring the concentration of active ingredients by High Performance Liquid Chromatography (HPLC) apparatus which supplied by Shimadzu company (Japan) type, LC-10A 2000 supplied with spectrum scale (Spectrophoto meter – spd – 10A – UV). A sample size 20µl injected on Fast liquid chromatographic column (LC) with dimension (50×4.6mm I.D) by the injector type (Rheodyne-712) at condition show in (table 1) and the data recorded by calculator which drawed the pick area and retention time. A standard solution of Heliotropium lasiocarpium plant used and sperated py HPLC apparatus and identification the pick area and retention time of studied plant sample at the same condition. Concentration of compounds in the sample calculated by the aquation [36]:

\[
\text{Conc. Compound in the plant} = \frac{\text{Pick area of compound}}{\text{Pick area of standard pattern}} \times \text{standard pattern conc.} \times \text{delution factor}
\]

\[
\text{Pick area of standard pattern}
\]

Table 1. Chromatographics separate condition.

Column	Mobile Phase	Following rate	Type of detector	Temperature	Fast of recorder paper	Size of injected sample
Reverse Phase	Distill water	10 ml/min.	Ultra violate ray	30°C/10	mml/min	20mg/ml
Reverse Column	Ethanol 70%	2: 80v/v	254 nm			
(50×4.6 mm I.D)						

2.2. Preparing plants extracts

Leaves and stems of three plants were washed by water and soaked in 2% of sodium hypochloride solution for 15 minute and washed with sterilized water and air dried at room temperature, 100gm of each plant milled and used for extraction in 100ml of hot water and the extraction dried by using water path at 60°C in order obtain 8.2gm dried extraction then different concentration 5, 10, 15, 20% prepared from the dried extraction in addition to control 0% [20].

2.3. Isolation and identification of fungi.

Infected parts from potato and Solanum plants were collected, the pathogen was isolated on potato dextrose agar (PDA) medium. Infected piece of plant washed and sterilized by sodium hypochloride
2% then washed and transferred to (PDA) plate were incubated at 25 ± 2°C for 10 days. The fungus identification was done with using a key of [30].

2.4. interaction between fungi and plant extract

Three petridish (9 cm diameter) prepared for each fungi then disks with 0.5 cm transfer from each studied fungi taken from pure culture on age 7 days. Prepared different concentration plant extraction added in each treatment (three replication) without control treatment, the dishes incubated at 25 ± 2°C, then measured the growth of fungi in each treatment to edge of the dish then decided the percentage of inhibition by the equation:

\[\text{Inhibition (\%) = \left(\frac{C - T}{C}\right) \times 100} \]

(1)

Where, C and T represent the diameter of control and treated colony, respectively. Data on mycelial growth 9 days after incubation (DAI) when mycelial reach edge of petridish were recorded. Before addition the medium antibacterial Amoxicilin added to 1 L of PDA medium and mix well with the medium then added to the petridish.

3. Results and discussion

The analysis of three studied plants by HPLC apparatus appeared verily H. suaveolens plant contain several compounds Indicine, Supinine, Indicine-N-oxide, Heleurine, Heliotrine and Linelofidine Figure 1 and table 2, and P. major plant contain the compounds Salysilic acid, Kaempferol, Gentisic acid, Vanillic acid, Chlorogenic acid, Coumaric acid, Ferulic acid and Aucubin Figure 2 and table 3, while S. marinum plant contain, Silychristin A, Silychristin B, Silydianin, Silybins A, Silybins B, Isosilybin s A and Isosilybin A Figure 3 and table 4.

![Figure 1. Chromatogram HPLC analysis of studied H. suaveolens plant.](image)

Table 2. Compounds, Pick area and the concentration studied of H. suaveolens plant.

Compounds	Pick area of plant	Pick area of standard	standard Conc. mg/ml	Compound Conc.	Percentage (%)
Indicine	14222	39148	50	90.82	9.52
Supinine	49530	32824	50	37.72	3.95
Indicine-N-oxide	20682	36977	50	139.83	14.66
Heleurine	46263	36748	50	314.73	33.00
Heliotrine	33423	27478	50	304.08	31.88
Linelofidine	92870	34983	50	66.36	6.95
Figure 2. Chromatogram HPLC analysis of studied Plantago major plant.

Table 3. Compounds, Pick area and the concentration of studied P. major plant.

Compounds	Pick area of standard	Pick area mg/ml	standard Conc. mg/ml	Compound Conc. mg/ml	Percentage(%)
Salysilic acid	37357	3606	25	90.82	34.93
Kaempferol	133752	3732	25	37.72	4.55
Gentisic acid	13164	3864	25	139.83	2.72
Vanilic acid	3806	18348	25	314.73	1.67
Chlorogentic acid	3510	40005	25	304.08	0.70
Coumaric acid	31321	29463	25	66.36	8.59
Ferulic acid	6315	23819	25	29.13	21.42
Aucubin	31890	28229	25	64.22	9.12

Figure 3. Chromatogram HPLC analysis of Studied S. marainum plant.
Table 4. Compounds, Pick area and Concentration of studied S. marinum plant.

Compounds	Pick area of plant	Pick area of standard	standard Conc. mg/ml	Compound Conc. mg/ml	Percentage (%)
Silychristin A	416853	2583	25	31.98	42.24
Silychristin B	15645	34646	25	11.28	14.89
Silydianin	20637	22533	25	22.89	30.23
Silybins A	3425	34445	25	2.50	3.30
Silybins B	2831	433993	25	2.08	2.74
Isosilybins A	3091	20989	25	3.68	4.86
Isosilybin A	2000	38168	25	1.30	1.71

Plant extracts differ in its effect on fungi growth, the concentration by 15% and 20% of P. major plant completely inhibit fungi growth and H. suaveolens plant completely inhibit the fungi growth by 20% concentration, while S. marinum doesn’t show any effect on fungi growth Table 5 and 6.

Table 5. Effect of various concentration of plant extracts on the radial mycelia growth of Fusarium solani, Fusarium oxysporum and Alternaria alternate (average mm).

Concentration%

* The same letter in the line means no significant difference between the concentration.

Table 6. Inhibition concentration of Fusarium solani, Fusarium oxysporum and Alternaria alternate growth at various concentration of plant extracts.

Concentration%

Analysis by (HPLC) technique is characterized by in procedure quantitative and qualitative estimation of plant ingredients by its ability to calculate curves and its high and determine this ingredients on one operation [31], the author [32] and [33] said verily separation and diagnosis of ingredients extracted from plants by (HPLC) apparatus gave fast results and high accuracy in comparative with other chromatographic methods and using (HPLC) technique showed high speed and
accuracy on appreciation quantity and quality of volatil oil [34] and [35]. Using this technique appeared existence 15-20 compounds on the volatil oil of Cuminum cuminum[36] and discovery several glycosidic compounds on the Heliotropium sp plant such as Quercite, 4-isorahamanine, 4-Heliotrope, 4-isopyrolidine, Narengnine and Triterpene [37]. The inhibition on fungi growth due to the alkaloidal compounds in plant extract which prevent fungus growth on severl plant kinds [3], this compounds has high treatment efficiency and its toxic [21] exist in the plant and mature seeds contain it more than immature seeds[38] also alkaloidal compound N-oxide is toxic [39] and the inhibition ability of this species due to its high content from alkaloid reach (233.71)mg/ml in comparative with low content of another compounds[37], our study agree with [40] whom proved that aquoses and alcoholic extract of Heliotropium genus inhibit growth of types of bacteria and fungi and with [41] who showed difference on inhibition activity of Artemisia sp. Achillespand Saliva officinalis plant extracts against F. oxysporum fungi also agree with study appeared completely inhibition on F. solani and A. alternata growth when use Pimpinella anism seed extracts [42]. The analysis appeared several acidic compound in the content of S. marinus and this may lead to inhibition of fungi growth because acidic materials or acid medium affect on enzymes production [43] Organic acids have been used to prevent the growth reproduction of harmful fungi and secreting of aflatoxins. The effect of eight organic acids as antifungal agents on the growth of four fungi were studied. Acetic acid (10%) showed the highest inhibition effect on A. flavus growth being 45.21% while tartaric acid (5%) and citric acid (5%) gave the lowest inhibition effect of 0.42%. Formic, acetic and propionic acids had the highest inhibition effect on A. flavus growth [44].

References

[1] Al-Abed A, Study the activity of antibacterial and antioxidant for crud alkaloid extract of Tragonumnudatum L. plant. MSc. Thesis, Coll. of Sci. Univ. of Khasedy Merbah Warkhela, Algeria, 2009.
[2] Al-Eahia S A, Role of natural plant extracts in controlling fungi causing plant diseases. MSc. Thesis, Coll. of Sci. Univ. of the king Suod, Sudia Arabia, 2002.
[3] Afefy F A, Mahmood A A. The plant extracts and Biologicalactive. Al Thakhfaalionaliberary for publishing (Bor-Sa, ed: Egypt), 2002.
[4] Tadakashi R, Kubuko, Sakinom M. Antimicrobial activities of Eucalyptus maculate. Applied Microbiology, 2004, 39: 60-64.
[5] Agrios G N. Damaged caused by plant diseases, plant pathogen. [Elsevier: OxfordUK., 2004: 29-45.
[6] Harris C A, Rentfree M J, Woolridge. Assessing the risk of pesticide residues to consumer: Food Additive and Contamination, 2001, 18: 1124-1129.
[7] Kumardas P. Antibacterial activity of leaf extract of Heliotropiumindicum L. Dep. Bio. life. Sci., 2011, 20: 904-907.
[8] Stangarlin J R, Kuhn O J, assi L, Schwan-Estrada K R F. Control of plant diseases using extracts from medicinal plants and fungi Science against microbial pathogens: communicating current research and technological advances. A. Méndez-Vilas (Ed), 2011.
[9] Chean L H, Cox J K. Screening of plant extracts for control of powdery mildew in squash. Phytopathology, 1995, 88: 545-550.
[10] Minler R T. Prospects for biopesticide for aphid control. Entomophaga, 1997, 42(1-2): 277-24
[11] Hassan M S. Evaluation of some fungi and water extracts of some organic manure efficacy in controlling of Rhizoctonia solani on tomato Daily J. Agric. Sci, 2001, 3(1):61-67.
[12] Al-Musawi A H, Plant classification science, staddition, Dar Al-kutub for printing and distribution, Mosul, Iraq, 1987.
[13] Al-Malkhy Ibn-Al Baitar 1990 Explain Diaskhok Bde Book, Bet-Al-Hekma, Khertaj, Tunis.
[14] Rechinger, K. H. Flora of lowland Iraq, Velageven, Gover. Wein, 1964.
[15] Majeed S H. Mahmoud, M. J. Iraqi plantsad herbs between folkloric medicin and scientific research, scientific research council, Biology research center, Drugs toxic and Drugs evaluation, 1988.
[16] Tallas M. Medicinal and plant lexicon, Dar Tallas for distribution and translation studies, Syria, Damascus, 1989.
[17] Cowan M M. Plant products and antimicrobial agents Clinical microbiology, Rev., 1999, 10: 564 - 582.
[18] Okibo R N, Numeka I A. Control of Yam tuber rot with leaf extracts of Xylopiaaethapical and Zingiberofficinalis. Africa J. Biotech, 2005, 1(4).
[19] MaolanY S, Kamel A, Al-Husainy S. The natural chemical biological control for wet disease causes and seedling die some vegetable crops in protect house on Riad region King Abdul-Azez city for Application science, 2006.
[20] Al-Janabi H S, Al-Doghchee A H, Al-Jabery W M. Extracts effect of Pimpinellaanisumum L plant seeds on growth of Fusariumsolani and comparing its growth with growth of Rhizoctoniasolani and Alternaria alternate on extracts, Babilon J. Pure Application Sci., 2015, 1(23): 411-425.

[21] Salman A M, Alaa E H, Efficacy of some plant extracts Bacillus cereus and antibiotic on controlling soft rot diseases on potato caused by Erwiniaacerotorora Subsp. carotorora Kifa J. Agric. Sci., 2011, 3(2): 151-161.

[22] Paola D D, Andrea C, Diego A, Patricia L, Fernando F, Marco D R Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria ssp. Chilean J. Agric. Res., 2011, 71(2): 231-239.

[23] Balbi-Peña MIB, Becker A, Stangarlin JR, Franzener G, Lopes MC, Schwan-Estrada KRF Control of Alternariasonolani Control of Alternariasonolani tomato by Curcuma longa and curcumin - II. In vivo evaluation.FitopatologiaBrasileira, 2006, 31: 401-404.

[24] Bonaldo SM, Schwan-Estrada KRF, Stangarlin JR, Cruz MES, Fiori-Tutuda ACG Contribution for the study of antifungal and phytoalexins elicitors in sorghum and soybean activities by eucaalyptus (Eucalyptus citriodora). Summa Phytopathologica., 2007, 33:383-387.

[25] Benini PC, Schwan-Estrada KRF, Klais EC, Cruz MES, Itako AT, Mesquini RM, Stangarlin JR, TolentinoJúnior JB, In vitro effect on phytopathogens of essential oil and aqueous crude extract of Oeignumgratissium harvest in the four seasons. Arquivos do Institutobiológico, 2010, 77:677-683.

[26] Gasparin MDG, Moraes LM, Schwan-Estrada KRF, Stangarlin JR, Cruz MES. Effect of crude extract of Lippiaalbaand Rosmarinusofficinalis on phytopathogenic fungi. Anuário CCA/UEM. 2000.

[27] Tagami OK, Gasparin MDG, Schwan-Estrada KRF, Cruz MES, Itako AT, Tolentino Júnior JB, Moraes LM, Stangarlin JR Fungitoxicity of Bidenspi洛sa, Thymus vulgaris, Lippia alba and Rosmarinusofficinalisin the ivro development of phytopathogens fungi. Semina. Ciências Agrárias., 2009, 30:285-294.

[28] Hadizaadeh I, Pevastegae B, Kolahi M. Antifungal activity of Nettle (Urycadiocia L.) Colocynth (CitrullacolcynthL. Schrad) Oleander (Nerium oleander L.) Extracts of plants pathogenic fungi Pkistan J.Bio.Sci., 2009,12(1):58-63.

[29] Muhammad N. M. Effect of aqueous extracts of Nerium oleander leaves on the fungi causes Damping off of Cucumber seedling, Babelon J, Pure and applied Sci., 2011, 3(6): 520-542.

[30] Hoking A D, Pitt J I. Mycotixigenic fungi food borne microorganism of public health significance. Food Microbiology Group, 1997:35-55.

[31] Al-Hedwany A KH. Effect fertilization and foliar application on some nutrient elements on quantitative and qualitative of some active compounds in seed of two kind of (Trigonelafoenum L.), Ph.D. Theses Col. Agric.Unvi.Baghdad , Iraq, 2004.

[32] Man KP, HP. Sang, B.H. Young. Determine on of denseno side by high performance liquid chromatography-evaporative light scatting detector.Chin.J.Pharm. Anal., 1996, 16:412-414.

[33] Yang. S J, LUT. J, Hwang LS. Simultaneous Determination of Furostanol and Spirostanol Glycoside in Taiwanese Yam (Dioscoreaapp) cultivation by high performance liquid chromatographY, of food and Drug Analysis., 2003, 11(4):271-276.

[34] Baswnway R J. Determination and β-Carotene in Some Raw Fruits and Vegetables by high performance liuid chromatographY.Agric. Food, 1986:457.

[35] Chen BH, JR Vhuang JH Lin, Chiu C P. Quantification of provitamin compounds in Chinese vegetables Vegetables by high performance liquid chromatographY. of food protection, 1993, 56(1):51-54.

[36] Al-Bayaty A J A. Effect of humic acid and axins on growth of (Cimborogoncitratus L.) plant and its ingrediants. Ph. D Theses, Col. Edu. Univ. Tikrit, Iraq, 2012.

[37] Mohmmad A A. Taxonomic comparative study of species of genus inmedl and north of Iraq. Ph.D. Theses, Col. Edu. Univ. Tikrit, Iraq, 2012.

[38] Mahmoud M, Jalilpour H and Ssalehian P. Toxicity of (Peganum harmala). Review and a case report. Iranian J. of Pharmacology and therapeutic, 2002, 1:14.

[39] Lin, G, Cui, Y Y, Hawes, E M. Characterization of rat liver microsomal metabolites of chlorvone, a hepatotoxic otonecine-type pyrrilizidine alkaid. Drug MetabDispos, 2000, 28:1475–1483.

[40] Mahmoud M J, Redha, F M J, Al-Azawi, M J, Hussein, WA, and Beham, Y T. Alkaloids of Iraqi Heliotropiumramerossissum, Phyto-chemistry and some biochemical Aspects. JBRS. 1987, 18 (1): 127-135.

[41] EsmailF K H. Evaluation of inhibitory activity of some plant extracts on growth of Fusarium. Iraq J. Sci., 2010, 41(2):165-172.
[42] Al-Janabi H, Al-Doghi, E H, Al-Jabery, W M. Effect of Pimpinilaanisim L.seedextracts on Fusarium solani fungi and comparing its growth with growth of fungi Rhizoctonia solani and Alternaria alternate on oil extract. Babilon J. Pure Sci., 2015, 1(23): 441-425.

[43] Emran R, Al-Janabi J K, Al-Janabi H SH. Effect of some environmental condition on growth of Microsporum canis fungi isolated from Tihecorporis in human and its production from protease enzyme. J. Babilon, Pure and applied Sci., 2011, 2(19):1-20.

[44] Abdulnabi A M. Fungi resistance for sever environmental condition. Kenanonline.com/users/abdulnabi/post/472279 2012.