In this paper, we investigate the existence and uniqueness of a coupled system of nonlinear fractional Langevin equations with nonseparated type integral boundary conditions. We use Banach’s and Krasnoselskii’s fixed point theorems to obtain the results. Lastly, we give two examples to show the effectiveness of the main results.

1. Introduction

In the recent few decades, fractional differential equations have been studied by many researchers, and this is due to the importance of this field and its applications in many problems of physics, chemistry, biology, and economy (for more details, we refer the readers to [1–6] and many other references therein).

In particular, fractional Langevin differential equations have been one of the important subjects in the field of fractional differential equations for their rich history (for more information, see [7–9]). Fractional Langevin equations are applied widely in many domains like engineering, physics, and biology (for more details, we give the following references [10–13]).

On the other hand, coupled systems of fractional differential equations are very important to study because they appear naturally in many problems (see [14–18]).

Recently, in [19], the existence and uniqueness of solutions for a coupled system of Riemann–Liouville and Hadamard fractional derivatives of Langevin equation with fractional integral conditions were proved. The existence and uniqueness of the coupled system of nonlinear fractional Langevin equations with multipoint and nonlocal integral boundary conditions have been studied in [20].

So, in this current article, we study the existence and uniqueness of solutions for a coupled system of fractional Langevin equation as follows:

\[
\begin{cases}
\frac{cD^\beta}{\alpha} \left(\frac{cD^\alpha}{\beta} + \lambda_1 \right) x_1 (t) = f_1 \left(t, x_1 (t), x_2 (t), I^\beta x_2 (t) \right), & t \in [0, 1], \\
\frac{cD^\beta}{\alpha} \left(\frac{cD^\alpha}{\beta} + \lambda_2 \right) x_2 (t) = f_2 \left(t, x_1 (t), x_2 (t), I^\beta x_1 (t) \right), & t \in [0, 1],
\end{cases}
\]
subject to the fractional nonseparated integral boundary conditions:

\[
\begin{align*}
x_1 (0) + \mu_1 x_1 (1) &= \sigma_{11} \int_0^1 g_1 (s, x_1 (s))ds, \\
c^D^\alpha x_1 (0) + \mu_1 c^D^\alpha x_1 (1) &= \sigma_{21} \int_0^1 h_1 (s, x_1 (s))ds, \\
c D^{2\alpha} x_1 (0) + \mu_1 c D^{2\alpha} x_1 (1) &= \sigma_{31} \int_0^1 k_1 (s, x_1 (s))ds, \\
x_2 (0) + \mu_2 x_2 (1) &= \sigma_{12} \int_0^1 g_2 (s, x_2 (s))ds, \\
c^D^\alpha x_2 (0) + \mu_2 c^D^\alpha x_2 (1) &= \sigma_{22} \int_0^1 h_2 (s, x_2 (s))ds, \\
c D^{2\alpha} x_2 (0) + \mu_2 c D^{2\alpha} x_2 (1) &= \sigma_{32} \int_0^1 k_2 (s, x_2 (s))ds,
\end{align*}
\]

where \(0 < \alpha_i < 1, 1 < \beta_i \leq 2, \beta_i > 0, \lambda_i, \mu_i, \sigma_{ij}, \sigma_{ij} \in \mathbb{R}^+ \) with \(\mu_i \neq -1 \) for \(i = 1, 2, \) \(c^D^\alpha \), \(D^{2\alpha} \) are Caputo’s fractional derivatives, and \(f_1, f_2: [0, 1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \) \(g_1, h_1, k_1, g_2, h_2, k_2: [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \) are given continuous functions.

To our knowledge, coupled fractional Langevin equations involving nonseparated type integral boundary conditions have not been extensively investigated yet. The main results shown in this paper can be viewed as the extension of the results in [21].

This paper is organized as follows. In Section 2, we recall some notations and several known results. In Section 3, we show the existence and uniqueness of solutions to problems (1) and (2). In Section 4, we give two examples to demonstrate the application of our main results.

2. Preliminaries and Notations

In this section, we introduce some notations, definitions, and lemmas that we need in our proofs later.

Definition 1 (see [3]). The fractional integral of order \(\alpha > 0\) with the lower limit zero for a function \(f\) can be defined as

\[
I^\alpha f (t) = \frac{1}{\Gamma (\alpha)} \int_0^t (t-s)^{\alpha-1} f (s)ds.
\]

Definition 2 (see [3]). The Caputo derivative of order \(\alpha > 0\) with the lower limit zero for a function \(f\) can be defined as

\[
c^D^\alpha f (t) = \frac{1}{\Gamma (n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} f^{(n)} (s)ds,
\]

where \(n \in \mathbb{N}, 0 \leq n - 1 < \alpha < n, t > 0\).

Theorem 1 (see [22]). Let \(M\) be a bounded, closed, convex, and nonempty subset of a Banach space \(X\). Let \(A\) and \(B\) be operators such that

(i) \(Ax + By \in M\) whenever \(x, y \in M\).
(ii) \(A\) is compact and continuous.
(iii) \(B\) is a contraction mapping.

Then, there exists \(z \in M\) such that \(z = Az + Bz\).

Lemma 1 (see [3]). Let \(\alpha, \beta \geq 0\); then, the following relations hold:

(1) \(I^\alpha p^\beta = (\Gamma (\beta + 1) / \Gamma (\alpha + \beta + 1)) t^{\alpha \beta} \)
(2) \(c^D^\beta p^\alpha = (\Gamma (\beta + 1) / \Gamma (\beta - \alpha + 1)) t^{\beta - \alpha} \)

Lemma 2 (see [3]). Let \(n \in \mathbb{N}\) and \(n - 1 < \alpha < n\). If \(f\) is a continuous function, then we have

\[I^\alpha c^\alpha f (t) = f (t) + a_0 + a_1 t + a_2 t^2 + \cdots + a_{n-1} t^{n-1}.\]

Lemma 3. Let \(y_1, y_2 \in C ([0, 1], \mathbb{R})\); the coupled system

\[
\begin{align*}
c^D^\alpha (c^D^\alpha + \lambda_1) x_1 (t) &= y_1 (t), \quad t \in [0, 1], \\
 c^D^\alpha (c^D^\alpha + \lambda_2) x_2 (t) &= y_2 (t), \quad t \in [0, 1],
\end{align*}
\]

subject to the boundary conditions (2) has a solution given by
\[x_1(t) = \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (t-s)^{a_1-1} y_1(s) ds - \frac{\lambda_1}{\Gamma(a_1)} \int_0^t (t-s)^{a_1-1} x_1(s) ds + A_{11}(t) \int_0^t h_1(s, x_1(s)) ds \\
+ A_{21}(t) \int_0^1 g_1(s, x_1(s)) ds + A_{31}(t) \int_0^1 k_1(s, x_1(s)) ds + \frac{\lambda_1}{\Gamma(\beta_1 - a_1)} \int_0^1 (1-s)^{\beta_1-1} y_1(s) ds \\
+ \frac{A_{41}(t)}{\Gamma(\beta_1)} \int_0^1 (1-s)^{\beta_1-1} y_1(s) ds + \frac{\mu_1 \lambda_1}{(1 + \mu_1) \Gamma(\alpha_1)} \int_0^1 (1-s)^{a_1-1} x_1(s) ds \\
- \frac{H_1}{(1 + \mu_1) \Gamma(\alpha_1 + \beta_1)} \int_0^1 (1-s)^{a_1+\beta_1-1} y_1(s) ds, \tag{7} \]

where

\[A_{11}(t) = \frac{t^\alpha \sigma_2(1 - \lambda_1(2 - a_1))}{\Gamma(\alpha_1 + 1)(1 + \mu_1)} + \frac{t^\alpha \lambda_1 \sigma_2(2 - a_1)}{\Gamma(2 + a_1) \mu_1} + \frac{\mu_1}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} \Gamma(2 - a_1) \lambda_1 \sigma_2 - \frac{\mu_1 \sigma_2}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} \]

\[A_{21}(t) = \frac{t^\alpha \lambda_1 \sigma_2}{\Gamma(\alpha_1 + 1)(1 + \mu_1)} - \frac{\sigma_2}{1 + \mu_1} + \frac{\mu_1 \lambda_1 \sigma_2}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} \]

\[A_{31}(t) = -\frac{t^\alpha \Gamma(2 - a_1) \sigma_2}{\Gamma(\alpha_1 + 1)(1 + \mu_1)} + \frac{t^\alpha \Gamma(2 - a_1) \sigma_2}{\Gamma(\alpha_1 + 2) \mu_1} + \frac{\mu_1 \Gamma(2 - a_1) \sigma_2}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} - \frac{\Gamma(2 - a_1) \sigma_2}{(1 + \mu_1) \Gamma(\alpha_1 + 2)} \]

\[A_{41}(t) = \frac{t^\alpha \Gamma(2 - a_1) \mu_1}{\Gamma(\alpha_1 + 1)(1 + \mu_1)} - \frac{t^\alpha \Gamma(2 - a_1)}{(1 + \mu_1) \Gamma(\alpha_1 + 2)} + \frac{\mu_1 \Gamma(2 - a_1) \mu_1}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} - \frac{\mu_1^2}{(1 + \mu_1)^2 \Gamma(\alpha_1 + 1)} \]

\[A_{51}(t) = -\frac{t^\alpha \mu_1}{\Gamma(\alpha_1 + 1)(1 + \mu_1)} - \frac{\mu_1^2}{(1 + \mu_1)^2 \Gamma(\alpha_1 + 1)}, \text{ for } i = 1, 2. \tag{8} \]

Proof. Using Lemma 2, we obtain

\[cD^{\alpha_1} x_1(t) = I^{\alpha(t)} y_1(t) + a_{01} + a_{11} t, \]

\[cD^{\alpha} x_1(t) = I^{\alpha} y_1(t) + a_{01} + a_{11} t - \lambda_1 x_1(t), \]

\[x_1(t) = I^{a_1 + \beta_1} y_1(t) + t^{a_1} a_{01} + t^{a_1} a_{11} t - I^{\alpha_1} \lambda_1 x_1(t) + a_{21}, \tag{9} \]

where \(a_{01}, a_{11}, a_{21} \in \mathbb{R} \).

According to the condition \(cD^{\alpha_1} x_1(0) + \mu_1 cD^{\alpha_1} x_1(1) = \sigma_{31} \int_0^1 k_1(s, x_1(s)) ds \), we find that

\[a_{11} = \Gamma(2 - a_1) \left(\frac{\sigma_{31}}{\mu_1} \int_0^1 k_1(s, x_1(s)) ds + \frac{\lambda_1 \sigma_{21}}{\mu_1} \right) \left(1 - s \right)^{\beta_1-a_1-1} y_1(s) ds \].

\[h_1(s, x_1(s)) ds - \frac{1}{\Gamma(\beta_1 - a_1)} \int_0^1 (1-s)^{\beta_1-a_1-1} y_1(s) ds \].

\[0 \leq t \leq 1, \quad x_1(0) = x_1(1) = 0, \quad x_1(t) \geq 0. \]
Using the facts that
\[D^\alpha x_1(0) + \mu_1 D^\alpha x_1(1) = \sigma_{21} \int_0^1 h_i(s, x_1(s))ds \]
and
\[x_1(0) + \mu_1 x_1(1) = \sigma_{11} \int_0^1 g_i(s, x_1(s))ds, \]
we have

\[a_{01} = \frac{-\Gamma(2 - \alpha_1)s_{31}}{1 + \mu_1} \int_0^1 k_1(s, x_1(s))ds + \left(\frac{1 - \lambda_1 \Gamma(2 - \alpha_1)}{1 + \mu_1}\right) \int_0^1 h_1(s, x_1(s))ds + \frac{\lambda_1 \sigma_{11}}{1 + \mu_1} \int_0^1 g_1(s, x_1(s))ds \]

\[+ \frac{\Gamma(2 - \alpha_1)\mu_1}{(1 + \mu_1)\Gamma(\beta_1 - \alpha_1)} \int_0^1 (1 - s)^{\beta_1 - \alpha_1 - 1} y_1(s)ds - \frac{\mu_1}{(1 + \mu_1)\Gamma(\beta_1)} \int_0^1 (1 - s)^{\beta_1 - 1} y_1(s)ds, \]

\[a_{21} = \frac{\mu_1\lambda_1}{(1 + \mu_1)\Gamma(\alpha_1)} \int_0^1 (1 - s)^{\alpha_1 - 1} x_1(s)ds + \left(\frac{\sigma_{11}}{1 + \mu_1} - \frac{\mu_1\lambda_1\sigma_{11}}{\Gamma(\alpha_1 + 1)(1 + \mu_1)^2}\right) \int_0^1 g_1(s, x_1(s))ds \]

\[- \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1)} \int_0^1 (1 - s)^{\alpha_1 + \beta_1 - 1} y_1(s)ds + \frac{\mu_1^2}{(1 + \mu_1)^2\Gamma(\alpha_1 + 1)} \int_0^1 (1 - s)^{\beta_1 - 1} y_1(s)ds \]

\[+ \Gamma(2 - \alpha_1) \left(\frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + 2)} - \frac{\mu_1^2}{(1 + \mu_1)^2\Gamma(\alpha_1 + 1)}\right) \int_0^1 (1 - s)^{\beta_1 - \alpha_1 - 1} y_1(s)ds \]

\[+ \left[\left(\frac{\mu_1^2}{(1 + \mu_1)^2\Gamma(\alpha_1 + 1)} - \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + 2)}\right) \Gamma(2 - \alpha_1)\lambda_1 \sigma_{21} - \frac{\mu_1 \sigma_{21}}{\Gamma(\alpha_1 + 1)}\right] \int_0^1 h_1(s, x_1(s))ds. \]

Substituting the value of \(a_{01}, a_{11}, \) and \(a_{21}, \) we obtain

\[x_1(t) = \frac{1}{\Gamma(\alpha_1 + \beta_1)} \int_0^t (t - s)^{\alpha_1 + \beta_1 - 1} y_1(s)ds - \frac{\lambda_1}{\Gamma(\alpha_1)} \int_0^t (t - s)^{\alpha_1 - 1} x_1(s)ds + A_{31}(t) \int_0^1 h_1(s, x_1(s))ds \]

\[+ A_{21}(t) \int_0^1 g_1(s, x_1(s))ds + A_{31}(t) \int_0^1 k_1(s, x_1(s))ds + \frac{A_{41}(t)}{\Gamma(\beta_1 - \alpha_1)} \int_0^1 (1 - s)^{\beta_1 - \alpha_1 - 1} y_1(s)ds \]

\[+ \frac{A_{31}(t)}{\Gamma(\beta_1)} \int_0^1 (1 - s)^{\beta_1 - 1} y_1(s)ds + \frac{\mu_1 \lambda_1}{(1 + \mu_1)\Gamma(\alpha_1)} \int_0^1 (1 - s)^{\beta_1 - 1} x_1(s)ds \]

\[+ \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1)} \int_0^1 (1 - s)^{\alpha_1 + \beta_1 - 1} y_1(s)ds. \]

Analogously, we can deduce that
\[x_2(t) = \frac{1}{\Gamma(\alpha_2 + \beta_2)} \int_0^t (t-s)^{\alpha_2+\beta_2-1} f_2(s, x_2(s)) ds - \frac{\lambda_2}{\Gamma(\alpha_2)} \int_0^t (t-s)^{\alpha_2-1} x_2(s) ds + A_{12}(t) \int_0^t h_2(s, x_2(s)) ds \\
+ A_{22}(t) \int_0^t g_2(s, x_2(s)) ds + A_{32}(t) \int_0^t k_2(s, x_2(s)) ds + \frac{A_{42}(t)}{\Gamma(\beta_2 - \alpha_2)} \int_0^t (1-s)^{\beta_2-1} x_2(s) ds \\
+ \frac{\mu_2 \lambda_2}{(1 + \mu_2) \Gamma(\alpha_2)} \int_0^t (1-s)^{\alpha_2-1} x_2(s) ds \\
- \frac{\mu_2}{(1 + \mu_2) \Gamma(\alpha_2 + \beta_2)} \int_0^t (1-s)^{\alpha_2+\beta_2-1} y_2(s) ds. \]
\[r_{11} = \max \left\{ \left[q_{11} \left(\frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{A_{41}}{\Gamma(\beta_1 - \alpha_1 + 1)} + \frac{A_{51}}{\Gamma(\beta_1 + 1)} + \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)} \right) \right] \right\} \\
+ \frac{\lambda_1}{\Gamma(\alpha_1 + 1)} + \frac{\mu_1\lambda_1}{(1 + \mu_1)\Gamma(\alpha_1 + 1)} + A_{11}q_{51} + A_{21}q_{41} + A_{31}q_{61} \right) \right]\)

\[r_{12} = \max \left\{ \left[q_{12} \left(\frac{1}{\Gamma(\alpha_2 + \beta_2 + 1)} + \frac{A_{42}}{\Gamma(\beta_2 - \alpha_2 + 1)} + \frac{A_{52}}{\Gamma(\beta_2 + 1)} + \frac{\mu_2}{(1 + \mu_2)\Gamma(\alpha_2 + \beta_2 + 1)} \right) \right] \right\} \\
+ \frac{\lambda_2}{\Gamma(\alpha_2 + 1)} + \frac{\mu_2\lambda_2}{(1 + \mu_2)\Gamma(\alpha_2 + \beta_2 + 1)} + A_{12}q_{52} + A_{22}q_{42} + A_{32}q_{62} \right) \right]\)

\[A_{ij} = \max_{t \in [0, 1]} \left| A_{ij}(t) \right|, \text{ for } i = 1, 2, \ldots, 5 \text{ and } j = 1, 2. \]

Before introducing the main results, we impose some assumptions:

(H1) \(f_1, f_2: [0, 1] \times \mathbb{R}^3 \rightarrow \mathbb{R} \) and \(h_1, q_1, k_1, h_2, m_1, \kappa_1, k_2, \kappa_2, m_2, \kappa_2 \) are continuous functions.

(H2) There exist positive constants \(q_{11}, q_{21}, q_{31}, q_{22}, q_{32} \) such that for all \(t \in [0, 1] \) and \(x_1, y_1, z_1, y_2, z_2 \in \mathbb{R} \), we have \(|f_1(t, x_1, y_1, z_1) - f_1(t, x_2, y_2, z_2)| \leq q_{11}|x_1 - x_2| + q_{21}|y_1 - y_2| + q_{31}|z_1 - z_2| \).

(H3) There exist positive constants \(q_{41}, q_{51}, q_{61}, q_{42}, q_{52}, q_{62} \) such that \(|g_1(t, x_1) - g_1(t, x_2)| \leq q_{41}|x_1 - x_2|, |g_2(t, x_1) - g_2(t, x_2)| \leq q_{42}|x_1 - x_2|, |h_1(t, x_1) - h_1(t, x_2)| \leq q_{51}|x_1 - x_2|, |h_2(t, x_1) - h_2(t, x_2)| \leq q_{52}|x_1 - x_2|, |k_1(t, x_1) - k_1(t, x_2)| \leq q_{61}|x_1 - x_2|, |k_2(t, x_1) - k_2(t, x_2)| \leq q_{62}|x_1 - x_2|, \forall x_1, x_2 \in \mathbb{R}. \)

Theorem 2. Suppose that (H1) – (H3) are satisfied.

Then, there exists a unique solution for systems (1) and (2) provided that \(r_{11} + r_{12} < 1. \)

Proof. Define \(\sup_{[0,1]} |f_i(t, 0, 0)| = M_{0i}, \sup_{[0,1]} |g_i(t, 0)| = M_{1i}, \sup_{[0,1]} |h_i(t, 0)| = M_{2i}, \sup_{[0,1]} |k_i(t, 0)| = M_{3i}, \) for \(i = 1, 2. \)

Let \(B_r = \{(x_1, x_2) \in \mathbb{X} \times \mathbb{X} : \|\xi(x_1, x_2)\| \leq r\} \) with

\[r \geq \frac{r_{21} + r_{22}}{1 - (r_{11} + r_{12})}. \]

where

\[r_{21} = \frac{M_{01}}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{M_{01}A_{41}}{\Gamma(\beta_1 - \alpha_1 + 1)} + A_{11}M_{21} + A_{21}M_{11} + A_{31}M_{31} + \frac{A_{51}M_{61}}{\Gamma(\beta_1 + 1)} + \frac{\mu_1M_{01}}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)}, \]

\[r_{22} = \frac{M_{02}}{\Gamma(\alpha_2 + \beta_2 + 1)} + \frac{M_{02}A_{42}}{\Gamma(\beta_2 - \alpha_2 + 1)} + A_{12}M_{22} + A_{22}M_{12} + A_{32}M_{32} + \frac{A_{52}M_{62}}{\Gamma(\beta_2 + 1)} + \frac{\mu_2M_{02}}{(1 + \mu_2)\Gamma(\alpha_2 + \beta_2 + 1)}. \]

We prove that \(TB_r \subseteq B_r \).

For \((x_1, x_2) \in B_r, t \in [0, 1], \) we have
\[
\|U_1(x_1, x_2)\| \leq \frac{1}{\Gamma(\alpha_1 + \beta_1)} \int_0^t (t - s)^{\alpha_1 + \beta_1 - 1} \left[|f_1(s, x_1(s), x_2(s), I^{p_2}x_2(s)) - f_1(s, 0, 0, 0)| + |f_1(s, 0, 0, 0)| \right] ds
\]
\[
+ \frac{|\lambda_1|}{\Gamma(\alpha_1)} \int_0^t (t - s)^{\alpha_1 - 1} |x_1(s)| ds + |A_{11}(t)| \int_0^1 |h_1(s; x_1(s)) - h_1(s; 0)| + |h_1(s; 0)| ds
\]
\[
+ |A_{21}(t)| \int_0^1 |g_1(s; x_1(s)) - g_1(s; 0)| + |g_1(s; 0)| ds
\]
\[
+ |A_{31}(t)| \int_0^1 |k_1(s; x_1(s)) - k_1(s; 0)| + |k_1(s; 0)| ds + \frac{|A_{41}(t)|}{\Gamma(\beta_1 - \alpha_1)}
\]
\[
\times \int_0^1 (1 - s)^{\beta_1 - \alpha_1 - 1} \left[|f_1(s, x_1(s), x_2(s), I^{p_2}x_2(s)) - f_1(s, 0, 0, 0)| + |f_1(s, 0, 0, 0)| \right] ds
\]
\[
+ \frac{|\lambda_1|}{\Gamma(\alpha_1)} \int_0^1 (1 - s)^{\alpha_1 - 1} |x_1(s)| ds + \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)} |x_1|
\]
\[
\leq q_{11}(\|x_1\| + q_{21}\|x_2\| + q_{31}\|x_2\| + M_{01}) + \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)} \|x_1\|
\]
\[
+ A_{11}[q_{31}\|x_1\| + M_{21}] + A_{21}[q_{41}\|x_1\| + M_{11}] + A_{31}[q_{61}\|x_1\| + M_{31}]
\]
\[
+ \frac{A_{41}}{\Gamma(\beta_1 - \alpha_1 + 1)} \left(q_{11}\|x_1\| + q_{21}\|x_2\| + q_{31}\|x_2\| + M_{01} \right)
\]
\[
+ \frac{A_{51}}{\Gamma(\beta_1 + 1)} \left(q_{11}\|x_1\| + q_{21}\|x_2\| + q_{31}\|x_2\| + M_{01} \right) + \frac{\mu_1\lambda_1}{(1 + \mu_1)\Gamma(\alpha_1 + 1)} \|x_1\|
\]
\[
\leq q_{11}\left(\frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{A_{41}}{\Gamma(\beta_1 + 1)} + \frac{A_{51}}{\Gamma(\beta_1 - \alpha_1 + 1)} + \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)} \right)
\]
\[
+ \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)} + \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)}
\]
\[
+ A_{11}q_{31} + A_{21}q_{41} + A_{31}q_{61}
\]
\[
\|x_1\| \left(\frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{A_{41}}{\Gamma(\beta_1 + 1)} + \frac{A_{51}}{\Gamma(\beta_1 - \alpha_1 + 1)} \right) + \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)}
\]
\[
\|x_2\| + \frac{M_{01}}{\Gamma(\alpha_1 + \beta_1 + 1)} \leq r_{11}r + r_{21}.
\]

Consequently,

\[
\|U_1(x_1, x_2)\| \leq \frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} \left(q_{11}\|x_1\| + q_{21}\|x_2\| + q_{31}\|x_2\| + M_{01} \right) + \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)} \|x_1\|
\]
\[
+ A_{11}[q_{31}\|x_1\| + M_{21}] + A_{21}[q_{41}\|x_1\| + M_{11}] + A_{31}[q_{61}\|x_1\| + M_{31}]
\]
\[
+ \frac{A_{41}}{\Gamma(\beta_1 - \alpha_1 + 1)} \left(q_{11}\|x_1\| + q_{21}\|x_2\| + q_{31}\|x_2\| + M_{01} \right) + \frac{\mu_1\lambda_1}{(1 + \mu_1)\Gamma(\alpha_1 + 1)} \|x_1\|
\]
\[
\leq q_{11}\left(\frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{A_{41}}{\Gamma(\beta_1 + 1)} + \frac{A_{51}}{\Gamma(\beta_1 - \alpha_1 + 1)} + \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)} \right)
\]
\[
+ \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)} + \frac{|\lambda_1|}{\Gamma(\alpha_1 + 1)}
\]
\[
+ A_{11}q_{31} + A_{21}q_{41} + A_{31}q_{61}
\]
\[
\|x_1\| \left(\frac{1}{\Gamma(\alpha_1 + \beta_1 + 1)} + \frac{A_{41}}{\Gamma(\beta_1 + 1)} + \frac{A_{51}}{\Gamma(\beta_1 - \alpha_1 + 1)} \right) + \frac{\mu_1}{(1 + \mu_1)\Gamma(\alpha_1 + \beta_1 + 1)}
\]
\[
\|x_2\| + \frac{M_{01}}{\Gamma(\alpha_1 + \beta_1 + 1)} \leq r_{11}r + r_{21}.
\]
\[\|U_1(x_1, x_2)\| \leq r_{12} + r_{22}. \]

Therefore, we have
\[\|U(x_1, x_2)\| = \|U_1(x_1, x_2)\| + \|U_2(x_1, x_2)\| \leq (r_{11} + r_{12}) + r_{21} + r_{22} = r. \]

Now, for \((x_1, x_2), (x_1', x_2') \in X \times X\) and for \(t \in [0, 1]\), we get
\[|U_1(x_1, x_2)(t) - U_1(x_1', x_2')| \leq \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (t - s)^{\alpha - 1} |f_1(s, x_1(s), x_2(s), I^{\beta_2}x_2(s)) - f_1(s, x_1'(s), x_2'(s), I^{\beta_2}x_2'(s))| ds \]
\[+ |A_{11}(t)| \int_0^t |g_1(s, x_1(s)) - g_1(s, x_1'(s))| ds + |A_{31}(t)| \times \int_0^t |k_1(s, x_1(s)) - k_1(s, x_1'(s))| ds \]
\[+ \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (1 - s)^{\alpha - 1 - 1} |f_1(s, x_1(s), x_2(s), I^{\beta_2}x_2(s)) - f_1(s, x_1'(s), x_2'(s), I^{\beta_2}x_2'(s))| ds \]
\[+ \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (1 - s)^{\alpha - 1 - 1} |g_1(s, x_1(s)) - g_1(s, x_1'(s))| ds + \frac{1}{\Gamma(a_1 + \beta_1)} \times \int_0^t (1 - s)^{\alpha - 1} |k_1(s, x_1(s)) - k_1(s, x_1'(s))| ds \]
\[\leq \frac{1}{\Gamma(a_1 + \beta_1)} \left(q_{11} \|x_1 - x_1'\| + \left(q_{21} + \frac{q_{31}}{\Gamma(P_2 + 1)} \right) \|x_2 - x_2'\| \right) + \frac{1}{\Gamma(a_1 + \beta_1)} \left(q_{11} \|x_1 - x_1'\| + \left(q_{21} + \frac{q_{31}}{\Gamma(P_2 + 1)} \right) \|x_2 - x_2'\| \right) \]
\[+ \frac{A_{41}}{\Gamma(\beta_1 - a_1 + 1)} \left(q_{11} \|x_1 - x_1'\| + \left(q_{21} + \frac{q_{31}}{\Gamma(P_2 + 1)} \right) \|x_2 - x_2'\| \right) \]
\[+ \frac{A_{51}}{\Gamma(\beta_1 + 1)} \left(q_{11} \|x_1 - x_1'\| + \left(q_{21} + \frac{q_{31}}{\Gamma(P_2 + 1)} \right) \|x_2 - x_2'\| \right) + \frac{1}{\Gamma(a_1 + \beta_1)} \left(q_{11} \|x_1 - x_1'\| + \left(q_{21} + \frac{q_{31}}{\Gamma(P_2 + 1)} \right) \|x_2 - x_2'\| \right) \]
\[\leq \frac{1}{\Gamma(a_1 + \beta_1 + 1)} \left(q_{11} \|x_1 - x_1'\| + \frac{A_{41}}{\Gamma(\beta_1 + 1)} \left(\frac{1}{\Gamma(a_1 + \beta_1 + 1)} \right) \|x_1 - x_1'\| \right) \]
\[+ \frac{A_{51}}{\Gamma(\beta_1 + 1)} \left(\frac{1}{\Gamma(a_1 + \beta_1 + 1)} \right) \left(\frac{1}{\Gamma(\beta_1 + 1)} \right) \|x_2 - x_2'\| \]
\[\leq r_{11} \left(\|x_1 - x_1'\| + \|x_2 - x_2'\| \right). \]
Analogously, we can also have
\[|U_2(x_1, x_2)(t) - U_2(x'_1, x'_2)(t)| \leq r_{12}(\|x_1 - x'_1\| + \|x_2 - x'_2\|), \]
which leads to
\[\|U(x_1, x_2) - U(x'_1, x'_2)\| \leq (r_{11} + r_{12})(\|x_1 - x'_1\| + \|x_2 - x'_2\|). \]

As \(r_{11} + r_{12} < 1 \), the operator \(U \) is a contraction mapping. Then, we deduce that systems (1) and (2) have a unique solution.

\[\square \]

Theorem 3. Assume that \((H_1), (H_4)\) hold. Then, systems (1) and (2) have at least one solution on \([0, 1]\) if \(R < 1 \), where
\[R = \max \left\{ \frac{\|\lambda_1\|}{\Gamma(a_1 + 1)} + \frac{\|\mu_1\lambda_1\|}{(1 + \mu_1)^2 \Gamma(a_1 + 1)} \right\}. \]

Proof. We define a bounded closed and convex ball \(B_r = \{(x_1, x_2) \in X \times X : \|(x_1, x_2)\| \leq r\} \) with \(r \geq (r_1/1 - R) \), where

\[r_1 = \frac{\|m_1\|}{\Gamma(a_1 + \beta_1 + 1)} + \frac{A_{11}\|\beta_1\| + A_{21}\|\phi_1\| + A_{31}\|\psi_1\|}{\Gamma(a_1 + \beta_1 + 1)} \]
\[+ \frac{A_{41}\|m_2\|}{\Gamma(\beta_1 - a_1 + 1)} \frac{A_{51}\|m_2\|}{\Gamma(\beta_1 + 1)} \]
\[+ \frac{\|\mu_1\| m_1\|}{(1 + \mu_1)^2 \Gamma(a_1 + \beta_1 + 1)} \frac{\|\mu_2\| m_2\|}{(1 + \mu_2)^2 \Gamma(a_2 + \beta_2 + 1)} \]
\[+ A_{12}\|\beta_2\| + A_{22}\|\phi_2\| + A_{32}\|\psi_2\| \]
\[+ \frac{A_{42}\|m_2\|}{\Gamma(\beta_2 - a_1 + 1)} \frac{A_{52}\|m_2\|}{\Gamma(\beta_2 + 1)} \frac{\|\mu_2\| m_2\|}{(1 + \mu_2)^2 \Gamma(a_2 + \beta_2 + 1)} \].

Let us introduce the decomposition
\[U(x_1, x_2)(t) = W_1(x_1, x_2)(t) + W_2(x_1, x_2)(t), \]
where
\[W_1(x_1, x_2)(t) = (T_1(x_1, x_2), R_1(x_1, x_2))(t), \]
\[W_2(x_1, x_2)(t) = (T_2(x_1, x_2), R_2(x_1, x_2))(t), \]
with

\[T_1(x_1, x_2)(t) = \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (t - s)^{a_1 \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s)) + A_{11}(t) \int_0^t h_1(s; x_1(s))ds \]
\[+ A_{21}(t) \int_0^t g_t(s; x_1(s))ds + A_{31}(t) \int_0^t k_t(s; x_1(s))ds \]
\[+ \frac{A_{41}(t)}{\Gamma(\beta_1 - a_1)} \int_0^t (1 - s)^{\beta_1 - a_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds \]
\[+ \frac{A_{51}(t)}{\Gamma(\beta_1)} \int_0^t (1 - s)^{\beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds \]
\[- \frac{\mu_1\lambda_1}{(1 + \mu_1)^2 \Gamma(a_1 + \beta_1)} \int_0^t (1 - s)^{\alpha_1 \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds, \]
\[T_2(x_1, x_2)(t) = \frac{1}{\Gamma(a_2 + \beta_2)} \int_0^t (t - s)^{a_2 \beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s)) + A_{12}(t) \int_0^t h_2(s; x_2(s))ds \]
\[+ A_{22}(t) \int_0^t g_t(s; x_2(s))ds + A_{32}(t) \int_0^t k_t(s; x_2(s))ds \]
\[+ \frac{A_{42}(t)}{\Gamma(\beta_2 - a_2)} \int_0^t (1 - s)^{\beta_2 - a_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds \]
\[+ \frac{A_{52}(t)}{\Gamma(\beta_2)} \int_0^t (1 - s)^{\beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds \]
\[- \frac{\mu_2\lambda_2}{(1 + \mu_2)^2 \Gamma(a_2 + \beta_2)} \int_0^t (1 - s)^{\alpha_2 \beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds. \]

\[R_1(x_1, x_2)(t) = \frac{1}{\Gamma(a_1 + \beta_1)} \int_0^t (t - s)^{a_1 \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s)) + A_{11}(t) \int_0^t h_1(s; x_1(s))ds \]
\[+ A_{21}(t) \int_0^t g_t(s; x_1(s))ds + A_{31}(t) \int_0^t k_t(s; x_1(s))ds \]
\[+ \frac{A_{41}(t)}{\Gamma(\beta_1 - a_1)} \int_0^t (1 - s)^{\beta_1 - a_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds \]
\[+ \frac{A_{51}(t)}{\Gamma(\beta_1)} \int_0^t (1 - s)^{\beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds \]
\[- \frac{\mu_1\lambda_1}{(1 + \mu_1)^2 \Gamma(a_1 + \beta_1)} \int_0^t (1 - s)^{\alpha_1 \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s))ds, \]
\[R_2(x_1, x_2)(t) = \frac{1}{\Gamma(a_2 + \beta_2)} \int_0^t (t - s)^{a_2 \beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s)) + A_{12}(t) \int_0^t h_2(s; x_2(s))ds \]
\[+ A_{22}(t) \int_0^t g_t(s; x_2(s))ds + A_{32}(t) \int_0^t k_t(s; x_2(s))ds \]
\[+ \frac{A_{42}(t)}{\Gamma(\beta_2 - a_2)} \int_0^t (1 - s)^{\beta_2 - a_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds \]
\[+ \frac{A_{52}(t)}{\Gamma(\beta_2)} \int_0^t (1 - s)^{\beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds \]
\[- \frac{\mu_2\lambda_2}{(1 + \mu_2)^2 \Gamma(a_2 + \beta_2)} \int_0^t (1 - s)^{\alpha_2 \beta_2 - 1} f_2(s, x_1(s), x_2(s), I^{\beta_2} x_1(s))ds. \]
For \((x_1, x_2) \in B_r\), we have

\[
|T_1(x_1, x_2)(t) + T_2(x_1)(t)| \leq \frac{1}{\Gamma(\alpha + \beta_1)} \int_0^t (t-s)^{\alpha + \beta_1 - 1} |f_1(s, x_1(s), x_2(s), I^\beta x_2(s))| ds + |A_{11}(t)| \tag{29}
\]

\[
\times \int_0^1 |h_1(s; x_1(s))| ds + |A_{21}(t)| \int_0^1 |\phi_1(s; x_1(s))| ds + |A_{31}(t)| \int_0^1 |k_1(s; x_1(s))| ds
\]

\[
+ \left| \frac{A_{41}(t)}{\Gamma(\beta_1 - \alpha_1)} \right| \int_0^1 (1-s)^{\alpha + \beta_1 - 1} |f_1(s, x_1(s), x_2(s), I^\beta x_2(s))| ds
\]

\[
+ \left| \frac{A_{51}(t)}{\Gamma(\beta_1)} \right| \int_0^1 (1-s)^{\beta_1 - 1} |f_1(s, x_1(s), x_2(s), I^\beta x_2(s))| ds
\]

\[
+ \left| \frac{1}{1 + \mu_1} \right| \int_0^1 (1-s)^{\alpha + \beta_1 - 1} |x_1(s)| ds + \left| \frac{\mu_1}{1 + \mu_1} \right| \int_0^1 (1-s)^{\alpha + \beta_1 - 1} |x_1(s)| ds
\]

\[
\leq \frac{1}{\Gamma(\alpha + \beta_1 + 1)} \int_0^t (t-s)^{\alpha + \beta_1 - 1} m_1(s) ds
\]

\[
+ A_{11} \int_0^1 \rho_1(s) ds + A_{21} \int_0^1 \phi_1(s) ds + A_{31} \int_0^1 \psi_1(s) ds
\]

\[
+ \frac{A_{41}}{\Gamma(\beta_1 - \alpha_1)} \int_0^1 (1-s)^{\beta_1 - \alpha_1 - 1} m_1(s) ds + \frac{A_{51}}{\Gamma(\beta_1)} \int_0^1 (1-s)^{\beta_1 - 1} m_1(s) ds
\]

\[
+ \left| \frac{\mu_1}{1 + \mu_1} \right| \int_0^1 (1-s)^{\alpha + \beta_1 - 1} m_1(s) ds
\]

\[
+ \left| \frac{\lambda_1}{\Gamma(\alpha_1)} \right| \int_0^1 (t-s)^{\alpha - 1} |x_1(s)| ds + \left| \frac{\mu_1 \lambda_1}{1 + \mu_1} \right| \int_0^1 (1-s)^{\alpha - 1} |x_1(s)| ds
\]

\[
\leq \left| \frac{m_2}{\Gamma(\alpha_1 + \beta_1 + 1)} \right| + A_{11} \| \rho_1 \| + A_{21} \| \phi_1 \| + A_{31} \| \psi_1 \| + \frac{A_{41} \| m_1 \|}{\Gamma(\beta_1 - \alpha_1 + 1)} + \frac{A_{51} \| m_1 \|}{\Gamma(\beta_1 + 1)}
\]

\[
+ \left| \frac{\mu_1 \lambda_1}{1 + \mu_1} \right| \| m_1 \| + \left| \frac{\lambda_1}{\Gamma(\alpha_1 + \beta_1 + 1)} \right| \| x_1 \| + \| \frac{\lambda_1}{\Gamma(\alpha_1 + 1)} \| \| x_1 \|.
\]

In a similar manner, we have

\[
|R_1(x_1, x_2)(t) + R_2(x_1)(t)| \leq \frac{m_2}{\Gamma(\alpha_2 + \beta_2 + 1)} + A_{12} \| \rho_2 \| + A_{22} \| \phi_2 \| + A_{32} \| \psi_2 \| + \frac{A_{42} \| m_2 \|}{\Gamma(\beta_2 - \alpha_2 + 1)} + \frac{A_{52} \| m_2 \|}{\Gamma(\beta_2 + 1)}
\]

\[
+ \left| \frac{\mu_2 \lambda_2}{1 + \mu_2} \right| \| m_2 \| + \left| \frac{\lambda_2}{\Gamma(\alpha_2 + \beta_2 + 1)} \right| \| x_2 \| + \left| \frac{\lambda_2}{\Gamma(\alpha_2 + 1)} \right| \| x_2 \|.
\]

Further, we obtain

\[
\| W_1(x_1, x_2)(t) + W_2(x_1, x_2) \| \leq R' + r_2 \leq r'. \tag{31}
\]
Hence, \(W_1(x_1, x_2)(t) + W_2(x_1, x_2)(t) \in B_r \).

For \((x_1, x_2), (x'_1, x'_2) \in B_r \) and \(t \in [0, 1] \), we have

\[
|T_2(x_1) - T_2(x'_1)| \leq \left(\frac{\lambda_1}{\Gamma(\alpha_1 + 1)} + \frac{\mu_1 \lambda_1}{(1 + \mu_1) \Gamma(\alpha_1 + 1)} \right) \|x_1 - x'_1\|, \tag{32}
\]

\[
|R_2(x_2) - R_2(x'_2)| \leq \left(\frac{\lambda_2}{\Gamma(\alpha_2 + 1)} + \frac{\mu_2 \lambda_2}{(1 + \mu_2) \Gamma(\alpha_2 + 1)} \right) \|x_2 - x'_2\|.
\]

Therefore,

\[
\|W_2(x_1, x_2) - W_2(x'_1, x'_2)\| \leq R\|x_1 - x'_1\| + R\|x_2 - x'_2\|
\leq R\|\langle x_1 - x'_1, x_2 - x'_2 \rangle\|, \tag{33}
\]

As \(R < 1 \), then \(W_2 \) is a contraction.

Next, we prove that \(W_1 \) is compact and continuous. The continuity of \(f_1, f_2, h_1, h_2, g_1, g_2, k_1, k_2 \) implies that the operator \(W_1 \) is continuous. Moreover, \(W_1 \) is uniformly bounded on \(B_r \).

Suppose that \(0 \leq t_1 < t_2 \leq 1 \). We have

\[
|T_1(x_1, x_2)(t_2) - T_1(x_1, x_2)(t_1)| \leq \frac{1}{\Gamma(\alpha_1 + \beta_1)} \left(\int_0^{t_2} (t_2 - s)^{\alpha_1 + \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\alpha_1} x_2(s)) ds - \int_0^{t_1} (t_1 - s)^{\alpha_1 + \beta_1 - 1} f_1(s, x_1(s), x_2(s), I^{\alpha_1} x_2(s)) ds \right) + |A_{11}(t_2) - A_{11}(t_1)|
\]

\[
\times \left(\int_0^1 h_1(s; x_1(s)) ds + |A_{21}(t_2) - A_{21}(t_1)| \right) \int_0^1 g_1(s; x_1(s)) ds + A_{31}(t_2) - A_{31}(t_1) \right) \right) \left(\int_0^1 k_1(s; x_1(s)) ds \right)
\]

\[
+ \frac{|A_{41}(t_2) - A_{41}(t_1)|}{\Gamma(\beta_1 - \alpha_1 + 1)} \left(\int_0^1 (1 - s)^{\beta_1 - \alpha_1 - 1} f_1(s, x_1(s), x_2(s), I^{\beta_1} x_2(s)) ds \right)
\]

\[
+ \frac{\|m_1\|}{\Gamma(\beta_1 - \alpha_1 + 1)} \left(\|A_{41}(t_2) - A_{41}(t_1)\| + \|A_{51}(t_2) - A_{51}(t_1)\| \right).
\tag{34}
\]

Similarly, we obtain that

\[
|R_1(x_1, x_2)(t_2) - R_1(x_1, x_2)(t_1)| \leq \frac{\|m_2\|}{\Gamma(\alpha_2 + \beta_2 + 1)} \left(t_2^{\alpha_2 + \beta_2} - t_1^{\alpha_2 + \beta_2} \right) + \|\psi_2\| \|A_{12}(t_2) - A_{12}(t_1)\|
+ \|\phi_2\| \|A_{22}(t_2) - A_{22}(t_1)\| + \|\psi_2\| \|A_{32}(t_2) - A_{32}(t_1)\|
+ \frac{\|m_2\|}{\Gamma(\beta_2 - \alpha_2 + 1)} \left(|A_{42}(t_2) - A_{42}(t_1)| \right) \|A_{52}(t_2) - A_{52}(t_1)\| + \frac{\|m_2\|}{\Gamma(\beta_2 + 1)} \left(|A_{52}(t_2) - A_{52}(t_1)| \right).
\tag{35}
\]
Therefore, the operator \(W_1 \) is equicontinuous. Thus, \(W_1 \) is relatively compact on \(B_r \). Then by Arzela–Ascoli theorem, the operator \(W_1 \) is compact on \(B_r \). In conclusion, all terms of Krasnoselskii’s theorem have been applied perfectly. Hence, (1) and (2) have at least one solution on \(B_r \).

4. Examples

Example 1. Consider the following system of fractional Langevin:

\[
\begin{aligned}
&cD^{4/3}(cD^{1/3} + \frac{1}{300})x_1(t) = \frac{1}{500 + t^2} \left(\sin(x_1(t)) + \frac{|x_2(t)|}{1 + |x_2(t)|} + \frac{1}{\Gamma(15/2)} \int_0^t (t-s)^{13/2} x_2(s)ds \right), \quad t \in [0, 1], \\
&cD^{8/7}(cD^{1/7} + \frac{1}{400})x_2(t) = \frac{1}{250 + t^2} \left(\frac{1}{2}\sin(x_1(t)) + \frac{|x_2(t)|}{2 + 2|x_2(t)|} + \frac{1}{\Gamma(15/2)} \int_0^t (t-s)^{13/2} x_2(s)ds \right), \quad t \in [0, 1], \\
x_1(0) + x_1(1) = \frac{1}{200} \int_0^1 \frac{|x_1(s)|}{300 + |x_1(s)|} ds, \\
cD^{1/3}x_1(0) + cD^{1/3}x_1(1) = \frac{1}{200} \int_0^1 \left(\frac{1}{s+2} \right)^3 \frac{|x_1(s)|}{300 + |x_1(s)|} ds, \\
cD^{2/3}x_1(0) + cD^{2/3}x_1(1) = \frac{1}{200} \int_0^1 \left(\frac{1}{s+4} \right)^2 \frac{|x_1(s)|}{300 + |x_1(s)|} ds, \\
x_2(0) + x_2(1) = \frac{1}{200} \int_0^1 \frac{|x_2(s)|}{300 + |x_2(s)|} ds, \\
cD^{1/7}x_2(0) + cD^{1/7}x_2(1) = \frac{1}{200} \int_0^1 \left(\frac{1}{s+8} \right) \frac{|x_2(s)|}{300 + |x_2(s)|} ds, \\
cD^{2/7}x_2(0) + cD^{2/7}x_2(1) = \frac{1}{200} \int_0^1 \left(\frac{1}{s+16} \right) \frac{|x_2(s)|}{300 + |x_2(s)|} ds,
\end{aligned}
\]
where

\[\begin{align*}
\beta_1 &= \frac{4}{3}, \\
\alpha_1 &= \frac{1}{3}, \\
\beta_2 &= \frac{8}{7}, \\
\alpha_2 &= \frac{1}{7}, \\
P_1 &= P_2 = \frac{15}{2}, \\
\lambda_1 &= \frac{1}{300}, \\
\lambda_2 &= \frac{1}{400}, \\
\mu_1 &= 1, \\
\mu_2 &= 1, \\
\sigma_{11} &= \sigma_{21} = \sigma_{12} = \sigma_{22} = \sigma_{32} = \frac{1}{200}
\end{align*} \]

\[\begin{align*}
f_1(t, x, y, z) &= \frac{1}{500 + t^2} \left(\sin(x(t)) + \frac{|y(t)|}{1 + |y(t)|} + z(t) \right), \\
f_2(t, x, y, z) &= \frac{1}{250 + t^2} \left(\frac{1}{2} \sin(x(t)) + \frac{|y(t)|}{2 + 2|y(t)|} + \frac{z(t)}{2} \right), \\
g_1(t, x) &= \frac{|x(t)|}{300 + |x(t)|}, \\
g_2(t, x) &= \frac{|x(t)|}{300 + |x(t)|}, \\
h_1(t, x) &= \left(\frac{1}{t + 2} \right)^3 \frac{|x(t)|}{30 + |x(t)|}, \\
h_2(t, x) &= \left(\frac{1}{t + 8} \right)^3 \frac{|x(t)|}{30 + |x(t)|}, \\
k_1(t, x) &= \left(\frac{1}{t + 4} \right)^2 \frac{|x(t)|}{30 + |x(t)|}, \\
k_2(t, x) &= \left(\frac{1}{t + 16} \right) \frac{|x(t)|}{30 + |x(t)|}
\end{align*} \]
Clearly, \(q_{11} = q_{21} = q_{12} = q_{22} = q_{31} = q_{32} = (1/500), \)
\(q_{41} = q_{42} = (1/300), \quad q_{51} = q_{52} = (1/240), \)
and \(q_{61} = q_{62} = (1/480); \) furthermore, we have
\[
r_{11} + r_{12} = \max(0.007421, 0.0128) + \max(0.012255, 0.007583) = 0.026 < 1.
\] (38)

Thus, by Theorem 2, system (36) has a unique solution.

Example 2. Consider the following problem:

\[
\begin{aligned}
\mathcal{D}^{3/2}\left(\mathcal{D}^{1/2} + \frac{1}{600}\right)x_1(t) &= \frac{1}{t^2 + 4} \left(\frac{t^2|x_1(t)|}{3|x_1(t)|} + \frac{|x_2(t)|}{6|x_2(t)| + 10} \right) + \frac{1}{\Gamma(4/3)} \int_0^t (t-s)^{1/3} \frac{ds}{1 + x_2^2(s)}, \quad t \in [0, 1], \\
\mathcal{D}^{4/3}\left(\mathcal{D}^{1/3} + \frac{1}{700}\right)x_2(t) &= \frac{1}{1 + t^4} \left(\frac{t^4|x_1(t)|}{4|x_1(t)| + 10} + \frac{|x_2(t)|}{4|x_2(t)| + 6} \right) + \frac{1}{\Gamma(4/3)} \int_0^t (t-s)^{1/3} \frac{ds}{1 + x_1^2(s)}, \quad t \in [0, 1], \\
x_1(0) + x_1(1) &= \frac{1}{300} \int_0^1 \frac{1}{1 + 1000} \frac{|x_1(s)|}{100 + |x_1(s)|} ds, \\
\mathcal{D}^{1/2}x_1(0) + \mathcal{D}^{1/2}x_1(1) &= \frac{1}{300} \int_0^1 \frac{1}{1 + 1000} \frac{|x_1(s)|}{100 + |x_1(s)|} ds, \\
x_2(0) + x_2(1) &= \frac{1}{300} \int_0^1 \frac{1}{1 + 2000} \frac{|x_2(s)|}{200 + |x_2(s)|} ds, \\
\mathcal{D}^{1/3}x_2(0) + \mathcal{D}^{1/3}x_2(1) &= \frac{1}{300} \int_0^1 \frac{1}{1 + 8000} \frac{|x_2(s)|}{8000 + |x_2(s)|} ds,
\end{aligned}
\] (39)

where
\[
\beta_1 = \frac{3}{2}, \\
\alpha_1 = \frac{1}{2}, \\
\beta_2 = \frac{4}{3}, \\
\alpha_2 = \frac{1}{3}, \\
p_1 = p_2 = \frac{4}{3}, \\
\lambda_1 = \frac{1}{600}, \\
\lambda_2 = \frac{1}{700}, \\
\mu_1 = 1, \\
\mu_2 = 1, \\
\sigma_{11} = \sigma_{21} = \sigma_{12} = \sigma_{22} = \frac{1}{300}, \text{ and } (40)
\]

\[
f_1(t, x, y, z) = \frac{1}{t^2 + 4} \left(\frac{t^2|x(t)|}{(3|x(t)| + 1)} + \frac{|y(t)|}{(6|y(t)| + 10)} + \frac{1}{1 + z^2(t)} \right),
\]

\[
f_2(t, x, y, z) = \frac{1}{1 + t^4} \left(\frac{t^4|x(t)|}{(4|x(t)| + 10)} + \frac{|y(t)|}{(4|y(t)| + 10)} + \frac{1}{1 + z^2(t)} \right),
\]

\[
g_1(t, x) = \frac{1}{t + 100} \frac{|x(t)|}{300 + |x(t)|},
\]

\[
g_2(t, x) = \frac{1}{t + 200} \frac{|x(t)|}{300 + |x(t)|},
\]

\[
h_1(t, x) = \left(\frac{1}{t + 20} \right)^3 \frac{|x(t)|}{30 + |x(t)|},
\]

\[
h_2(t, x) = \left(\frac{1}{t + 8000} \right) \frac{|x(t)|}{30 + |x(t)|},
\]

\[
k_1(t, x) = \left(\frac{1}{t + 40} \right)^2 \frac{x(t)}{30 + |x(t)|},
\]

\[
k_2(t, x) = \left(\frac{1}{t + 1600} \right) \frac{|x(t)|}{30 + |x(t)|}.
\]
After calculating, we obtain $R \approx 0.0029 < 1$.
So, by Theorem 3, problem (39) has at least one solution.

5. Conclusion

In this paper, we have investigated the existence and uniqueness results for a coupled system of nonlinear fractional Langevin equations supplemented with nonseparated integral boundary conditions by using the Banach contraction principle and Krasnosel’skii’s fixed point theorem. Finally, we gave two examples to prove the validity of our results.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

References

[1] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.
[3] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1993.
[4] Y. Zhou, Basic Theory of Fractional Differential Equations, Xiangtan University, Xiangtan, China, 2014.
[5] K. Hilal, L. Ibnelazyz, K. Guida, and M. Said, Existence of Mild Solutions for an Impulsive Fractional Integro-Differential Equations with Non-local Condition, pp. 251–271, Springer Nature Switzerland AG, Geneva, Switzerland, 2019.
[6] K. Hilal, K. Guida, L. Ibnelazyz, and M. Oukessou, Existence Results for an Impulsive Fractional Integro-Differential Equations with Non-compact Semigroup, pp. 191–211, Springer Nature Switzerland AG, Geneva, Switzerland, 2019.
[7] B. Ahmad, A. Ahmed, and S. Salem, “On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders,” Advances in Difference Equations, vol. 2019, Article ID 57, 2019.
[8] S. Ahmed, F. Alzahrani, and L. Almghamsi, “Fractional Langevin equations with nonlocal integral boundary conditions,” Mathematics, vol. 7, p. 402, 2019.
[9] S. Ahmed and M. Alnega, “Fractional Langevin equations with multi-point and nonlocal integral boundary conditions,”Cogent Mathematics and Statistics, vol. 7, Article ID 1758361, 2020.
[10] C. H. Eab and S. C. Lim, “Fractional langevin equation of distributed order,” 2010, http://arxiv.org/abs/1010.3327.
[11] T. Sandev and Z. Tomovski, Fractional Equations and Models: Theory and Applications, Springer Nature, Geneva, Switzerland, 2019.
[12] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003.
[13] V. Kobelev and E. Romanov, “Fractional Langevin equation to describe anomalous diffusion,” Progress of Theoretical Physics Supplement, vol. 139, pp. 470–476, 2000.
[14] S. K. Ntouyas and M. Obaid, “A coupled system of fractional differential equations with non-local integral boundary conditions,” Advances in Difference Equations, vol. 130, 2012.
[15] K. Shah and R. A. Khan, “Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions,” Differential Equations & Applications, vol. 7, no. 2, pp. 245–262, 2015.
[16] K. Shah, A. Ali, and R. A. Khan, “Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems,” Boundary Value Problems, vol. 2016, no. 1, p. 43, 2016.
[17] J.R. Wang and Y. Zhang, “Analysis of fractional order differential coupled systems,” Mathematical Methods in the Applied Sciences, vol. 38, 2014.
[18] H. Mohamed, “Existence results for a coupled system of fractional differential equations with multi-point boundary value problems,” Mediterranean Journal of Modeling and Simulation, vol. 10, pp. 045–059, 2018.
[19] W. Sudsutad1, S. K Ntouyas, and J. Tariboon, “Systems of fractional Langevin equations of Riemann-Liouville and Hadamard types,” Advances in Difference Equations, vol. 2015, p. 235, 2015.
[20] A. Salem, F. Alzahrani, and M. Alnega, “Coupled system of nonlinear fractional Langevin equations with multipoint and nonlocal integral boundary conditions,” Mathematical Problems in Engineering, vol. 2020, Article ID 7345658, 15 pages, 2020.
[21] H. Baghani, J. Alzabut, and J. Nieto, A Coupled System of Langevin Differential Equations of Fractional Order and Associated to Antiperiodic Boundary Conditions, Wiley, New York, NY, USA, 2020.
[22] A. Krasnosel’skii, “Two remarks on the method of successive approximations,” Uspekhi Matematicheskikh Nauk, vol. 10, pp. 123–127, 1955.