NOON States via Quantum Walk of Bound Particles

Enrico Compagno,1 Leonardo Banchi,1 Christian Gross,2 and Sougato Bose1

1Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
2Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

(Dated: January 17, 2017)

Tight-binding lattice models allow the creation of bound composite objects which, in the strong-interacting regime, are protected against dissociation. We show that a local impurity in the lattice potential can generate a coherent split of an incoming bound particle wave-packet which consequently produces a NOON state between the endpoints. This is non trivial because when finite lattices are involved, edge-localization effects make their use for non-classical state generation and information transfer challenging. We derive an effective model to describe the propagation of bound particles in a Bose-Hubbard chain. We introduce local impurities in the lattice potential to inhibit localization effects and to split the propagating bound particle, thus enabling the generation of distant NOON states. We analyze how minimal engineering transfer schemes improve the transfer fidelity and quantify the robustness to typical decoherence effects in optical lattice implementations. Our scheme potentially has an impact on quantum-enhanced atomic interferometry in a lattice.

PACS numbers: 03.75.Be,03.67.Hk,72.20.Ee

I. INTRODUCTION

The unprecedented ability to control and observe multi-particle states in optical lattice systems with single-site resolution [1–15] make possible the investigation of new quantum interference effects. Indeed, the dynamics of quantum interacting systems display many interesting features that go beyond the regime traditionally studied in linear optics. From the fundamental perspective it is then important to understand how to exploit the natural interactions to “engineer” the many-particle dynamics in a lattice for creating non-classical states, such as multi-particle NOON states. Compared to classical setups, and also to other schemes for atom interferometry [15, 16], the advantage of this approach is that non-classical states (e.g. NOON and dual Fock states [17]) enhance the estimation precision of the phase difference between the output arms of an interferometer [18–21], making them highly attractive for technological applications. Super-resolution for NOON states with \(N = 2, 3 \) has been recently shown experimentally for microscopy purposes [22]. However, the generation of non-classical states with high-fidelity is still a hard task. For instance, in existing photonic realizations, NOON states with \(N = 5 \) have been demonstrated, but with a limited 42% fringe visibility [23, 25]. Moreover, with those schemes, there is a theoretical upper threshold for the state preparation fidelity of 94.3% [23]. It is therefore important to develop alternative schemes for high-fidelity NOON states generation.

To sense spatial inhomogeneities and to probe external fields localized over few sites, it is convenient for the components of the NOON state to be spatially well separated. In other words, it is still an open problem how to tune the lattice potential to realize transformations between far sites when strongly interacting particles are involved. Recently, in
not been proposed yet. Here we show that the edge locking effect can be eliminated by introducing static impurities in the chemical potential localized at the endpoints. These impurities, which can be generated using external local fields, compensates the energy gap between edge and bulk sites and enable the dynamics. After “unlocking” the dynamics, we study the state transfer efficiency for a uniform chain and the robustness from typical environmental effects, specifically decoherence effects due to spontaneous emission in an optical lattice setup. Moreover we show how a minimal engineering of the hopping rates can enhance the transfer efficiency, specifically tuning the first and the last tunneling couplings of the chain. We show then how to add an extra impurity in the middle of the chain to generate a NOON state between the edges of the lattice. We derive analytical expressions for the optimal parameters to generate \(N = 2 \) and \(N = 3 \) NOON states, and we show how our approach can be straightforwardly generalized for producing larger “cat” states. Finally, we show how to experimentally detect the generated NOON state using the technology available nowadays.

II. MAIN IDEA

We consider a one-dimensional chain of length \(L \), described by a Bose-Hubbard model with site dependent parameters according to the following Hamiltonian [47]:

\[
H = - \sum_{j=1}^{L-1} J_j \left(a_j^\dagger a_{j+1}^\dagger a_{j+1} a_j + H.c. \right) + \sum_{j=1}^{L} \frac{U_j}{2} n_j (n_j + 1) - \sum_{j=1}^{L} \mu_j n_j .
\]

Here \(a_j (a_j^\dagger) \) are the boson annihilation (creation) operators, \(n_j = a_j^\dagger a_j \), the number operator and \(J_j, U_j \) and \(\mu_j \) are respectively the hopping rate, the onsite interaction and the chemical potential. Because the Hamiltonian, Eq. (1), preserves the total number of excitations of the system, the dynamics can be evaluated in a Hilbert subspace with a fixed number of particles.

One characteristic feature of the Bose-Hubbard model is that the onsite interaction enables the creation of “bound” states when several particles are in the same site [2, 32, 36]. Here we are interested in a non-equilibrium configuration, in the low filling regime, where \(M \) particles are initially located on a single site. In optical lattices the initialization of the system in one of these states is obtained starting from the Mott-Insulator regime and using single-atom addressing techniques [1–4, 6, 11]. The key point here is that, provided that the onsite interaction strength \(U \) is large enough, the resulting state composed of \(M > 1 \) bounded particles on the same site is stable against dissociation during the time evolution [32, 34–36, 48, 49], and behaves like an effective single particle. Indeed, as explicitly discussed in [35, 36] for a few values of \(M \), the bounded-particle states lie in an energy band which is well-separated (by an energy separation \(\propto U \)) from other states, provided that \(U \) is suitably large. In the following we introduce a general theory to model the effective interactions between stable bounded particles.
In general when \(U_j \gg J_j, \mu_j \) the different Hilbert subspaces \(\mathcal{H}_M \) spanned by the states with \(M \) bounded particles, namely \(\mathcal{H}_M = \{ |M, j\rangle = (a_j^\dagger)^M |0\rangle / \sqrt{M!} : j=1, \ldots, L \} \), are energetically well separated. Because of this energy separation between subspaces, if the initial state is composed of a bound \(M \)-particle states, then with a good approximation the dynamics remains confined inside \(\mathcal{H}_M \). The resulting effective dynamics can be described with a Hamiltonian \(H_M^{\text{eff}} \) which describes the effective interactions inside \(\mathcal{H}_M \). By exploiting the theory presented in [45], which assumes that the dynamical effective subspace is energetically separated by rest of the Hilbert space, we find that [1] generates in \(\mathcal{H}_M \) the following effective interaction

\[
H_M^{\text{eff}} = \begin{pmatrix}
B_1^{\text{eff}} & J_1^{\text{eff}} & B_2^{\text{eff}} & J_2^{\text{eff}} & \cdots & J_L^{\text{eff}} & B_L^{\text{eff}} \\
J_1^{\text{eff}} & B_1^{\text{eff}} & J_2^{\text{eff}} & B_2^{\text{eff}} & \cdots & J_L^{\text{eff}} & B_L^{\text{eff}} \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & J_L^{\text{eff}} & B_L^{\text{eff}} & J_1^{\text{eff}} & B_1^{\text{eff}} & J_2^{\text{eff}} \\
& & & & \ddots & \ddots & \ddots \\
& & & & & J_L^{\text{eff}} & B_L^{\text{eff}} \\
& & & & & & J_1^{\text{eff}} \\
& & & & & & J_2^{\text{eff}} \\
& & & & & & J_L^{\text{eff}} \\
\end{pmatrix}
\]

in the basis \(|M, j\rangle, j=1, \ldots, L \). The above Hamiltonian describes a quantum walk of a one-dimensional bounded particle. We mention that, recently, using a different approach, an effective spin-chain model has been obtained to control and manipulate a 1D strongly interacting two species Bose-Hubbard for quantum communication and computation purposes [50]. Quantum walks have been subject to intensive investigations over the past years, both with single particles and multi-particles [2, 48, 49, 51–54]. In particular, different schemes have been found to engineer the couplings \(J_j^{\text{eff}} \) and the effective potential \(B_j^{\text{eff}} \) such that the dynamics either produces a perfect state transfer [55, 57] or a perfect splitting and reconstruction of the initial wave-packet, namely a fractional revival [58, 59, 60]. From our perspective, a perfect state transfer in the effective subspace would give rise to a perfect transmission of a bounded particle: namely the state \(|M, 1\rangle \propto (a_1^\dagger)^M |0\rangle \) is dynamically transferred to the opposite end of the chain \(|L, 1\rangle \propto (a_L^\dagger)^M |0\rangle \). Another important application is the perfect fractional revival, which effectively generates a beam splitting transformation between the ends of the chain. The main reason for its importance is that when bound states are involved in the perfect splitting transformation, \(|M, 1\rangle \rightarrow |M, 1\rangle + e^{i\theta} |M, L\rangle \), then a \(M \)-particle NOON state \((|a_j^\dagger|^M + e^{i\theta} |a_j^\dagger|^M)|0\rangle \) is produced.

The main idea of our scheme is then to engineer the couplings \(J_j \) and the chemical potentials \(\mu_j \) in the Bose-Hubbard, Eq. (4), such that the effective couplings in Eq. (2) have the suitable pattern for either state transfer or state splitting (fractional revival). The time scale the resulting effective dynamical transformation is approximately given by \(1/J_{\text{eff}} \). However, since the effective hopping in \(\mathcal{H}_M \) involves \(M-1 \) “virtual” transitions through states which are outside \(\mathcal{H}_M \), then it is simple to realize that \(J_{\text{eff}} \propto J_j \sqrt{M^{-1}} \), so \(J_{\text{eff}} \) exponentially decreases with \(M \) for large \(U \). For larger \(M \)-particle bound states the effective evolution thus become slow and the efficiency of the scheme may be severely affected by environmental effects.

Because of this, in the next sections we thoroughly analyze the \(M = 2 \) and \(M = 3 \) cases which are more feasible, given the current experimental capabilities. The overall theoretical scheme is however fully general and can be readily extended for larger values of \(M \).

III. APPLICATIONS

A. Edge unlocking

Before focusing on the specific \(M = 2 \) and \(M = 3 \) cases, we start by discussing some general properties of the quantum walk of bounded particles, to clarify the differences with the single particle counterpart. We consider the uniform coupling regime, namely \(J_j = J, U_j = U, \mu_j = \mu \), in the initial state \(|M, 1\rangle \propto (a_j^\dagger)^M |0\rangle \). The resulting effective interaction is

\[
H_M^{\text{eff}} = \frac{J}{U} \begin{pmatrix}
B_1^{\text{eff}} & J_1^{\text{eff}} & B_2^{\text{eff}} & J_2^{\text{eff}} & \cdots & J_L^{\text{eff}} & B_L^{\text{eff}} \\
J_1^{\text{eff}} & B_1^{\text{eff}} & J_2^{\text{eff}} & B_2^{\text{eff}} & \cdots & J_L^{\text{eff}} & B_L^{\text{eff}} \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & J_L^{\text{eff}} & B_L^{\text{eff}} & J_1^{\text{eff}} & B_1^{\text{eff}} & J_2^{\text{eff}} \\
& & & \ddots & \ddots & \ddots & \ddots \\
& & & & J_L^{\text{eff}} & B_L^{\text{eff}} & J_1^{\text{eff}} \\
& & & & & J_2^{\text{eff}} & B_1^{\text{eff}} \\
& & & & & & J_L^{\text{eff}} \\
\end{pmatrix}
\]

where \(J_{\text{eff}} = O(J), B_{L, 1}^{\text{eff}} = B_{L, L}^{\text{eff}} = O(J(U/J)^{M-2}) \) while \(B_{j, j}^{\text{eff}} \) for \(j \neq 1, L \) is much smaller than \(B_{1, 1}^{\text{eff}} \) (boundary elements may be of order \(O(J) \) or less while in the bulk they are even smaller).

The appearance of a larger effective field in the boundaries gives rise to a phenomenon which is called edge-locking. Edge-locked states, which have been already described in [39, 40] for \(M \geq 3 \), can be understood using the theory of quasi-uniform tridiagonal matrices [60]. To describe this phenomenon we consider an initial wave-packet localized in site 1 which evolves through the Hamiltonian, Eq. (4), to the wave-packet \(|\psi(t)\rangle = \sum_j (e^{-i\epsilon_{j, j} t})_j |j, M, j\rangle \) where \(\epsilon_j = \sum_k V_{jk} e^{i\pi j/k} \). Because of the mirror symmetry and for the properties of quasi-uniform matrices [60], one finds that \(V_{jk} = V_{k(j-1)^*} e^{i\pi j/k} \) and \(E_{k} \propto \cos(k) \) where \(k \) is the quasi-momentum, \(k = k_{j} + O(L^{-1}) \) where \(k_{j} = \pi j/(L+1) \) and \(j = 1, \ldots, L \). Therefore the quantum walk of the bounded particle displays the standard expression of a wave-packet evolution [61], as \(|\langle M, L|\psi(t)\rangle| = \sum_k e^{-(i\epsilon_{k} - Lk)} |V_{1k}^2| \) where \(|V_{1k}^2| \) is the probability to excite the quasi-momentum state \(k \) by initializing the system in the first site.

To simplify the theoretical analysis we assume that \(B_{L, L}^{\text{eff}} \) is constant for \(j \neq 1, L \) so, without loss of generality, we can set \(B_{L, 1}^{\text{eff}} = 0 \). Indeed, the Hamiltonian (3) and \(H_M^{\text{eff}} - B_{L, 1}^{\text{eff}} \) give rise to the same evolution aside from an irrelevant global phase. Within this description it is now clear that edge-locking appears when \(B_{L, 1}^{\text{eff}} \gg E_{k} \), since no quasi-momentum state can be excited by initializing the system in a state where the bounded particle is in the first site (namely \(|V_{1k}|^2 \approx 0 \) for all the quasi-momentum states). Indeed, in this regime this initialization excites out-of-band modes which are localized near the edges and do not propagate. As it is clear from Eq. (3), since \(B_{L, 1}^{\text{eff}} = B_{L, L}^{\text{eff}} = O(J(U/J)^{M-2}) \), the edge-locking condition \(B_{L, 1}^{\text{eff}} \gg E_{k} \) happens when \(M \geq 3 \), as obtained also in
However, there is another form of quasi-locking for $M = 2$ which is not described in [39]. Indeed, for $M = 2$ we find that B_{eff}^j is of the same order of the energy band E_k of the quasi-momentum states and, as a consequence, the quasi-momentum states with energy $B_{\text{eff}}^j \approx E_k$ are the ones involved by the dynamics. Since $E_k \propto \cos(k)$ when $B_{\text{eff}}^j \approx 0$ the relevant excitations consist mostly of quasi-momentum states with almost-linear dispersion relation ($E_k \approx k$ around $k = \pi/2$ where $E_{k/2} \approx 0$). These states propagate without dispersion in the chain and therefore give rise to a high transmission quality. On the other hand, if $B_{\text{eff}}^j \neq 0$ other states with non-linear dispersion relation are involved, which drastically lower the transmission quality. Because of this, we find that the state $|\psi\rangle\approx (a_j^\dagger)^2|0\rangle$ has a long delocalization time from the initial site during the relevant time $t^* \sim LU/J^2$.

Because edge localization is detrimental in quantum transfer applications, we analyze the possibility to “unlock” the states by compensating the energy gap between edge and bulk sites introducing a local static potential both in the first and the last states by compensating the energy gap between edge and bulk applications, we analyze the possibility to “unlock” theials constant over the di

during the relevant time
transmission quality. Because of this, we find that the state $|\psi\rangle\approx (a_j^\dagger)^2|0\rangle$ has a long delocalization time from the initial site during the relevant time $t^* \sim LU/J^2$.

Because edge localization is detrimental in quantum transfer applications, we analyze the possibility to “unlock” the states by compensating the energy gap between edge and bulk sites introducing a local static potential both in the first and the last site of the chain. Edge unlocking can be always obtained for any value of M by adding suitable local chemical potentials μ_j around the edges such that the effective fields B_{eff}^j are constant over the different sites n.

B. Two Particles

In this section we analyze the dynamical behavior of a two particle bound state. We first start from the uniform case, describe the edge unlocking and then we consider how to engineer the couplings to maximize the transfer of a bound state and the generation of a NOON state.

1. Edge Unlocking

For a uniform chain $J_j = J$, $U_j = U$, $\mu_j = \mu$ we find that the effective Hamiltonian H_{eff} is the tridiagonal matrix in Eq. (2) where

$$J_{\text{eff}}^j = \frac{J^2}{2U},$$

$$B_{\text{eff}}^j = \begin{cases} \frac{\mu^2}{U} + U, & \text{for } j = 1, L, \\ \frac{\mu^2}{U} + U, & \text{for } j \neq 1, L. \end{cases}$$

The effect of the inhomogeneities in B_{eff}^j is shown in Fig. 2 (top), where we analyze the dynamics of a bound particle initially in $|\psi(0)\rangle \approx (a_j^\dagger)^2|0\rangle$ in a uniform chain with $L = 5$ and $U/J = 5$. We study the probability $P_{11}(t)$ that after the time t one particle is in the site j and the other is in the site j, namely $P_{11}(t) = \frac{1}{\pi J_{\text{eff}}^j}|\langle 0|a_j a_j |\psi(t)\rangle|^2$, where $|\psi(t)\rangle$ is the state evolved for a time t. In particular we plot, as a function of the time t, the probability to have the bound particle in the first site $P_{11}(t)$ and in the last site of the chain $P_{L1}(t)$. We observe that despite the bound particle reaches the last site of the chain at the transfer time $t^* \sim L/J_{\text{eff}}$, the probability to be in the first site $P_{11}(t^*)$ is still not zero, namely the delocalization time from the first site is slow compared to the transfer time t^*. As described in the previous section, this is due to the difference in effective energies B_{eff}^j between the bulk and the edges which favors non-linear excitations which, in turn, leads to a dispersive dynamics. This difference between the bulk and the edges can be made zero by adding two local chemical potentials at the endpoints, $\mu_j = -\beta \left(\delta_{j,1} + \delta_{j,L} \right)$, where $\beta = J^2/4U$. As it can be seen in Fig. 2 (bottom), when the β field is added, the delocalization time from the first time $P_{11}(t^*)$ (and consequently the transfer fidelity $P_{L1}(t^*)$) is strongly increased. We compare the results obtained for the transfer of a bound state with the propagation of a single particle in the lattice, initially in $a_j^\dagger|0\rangle$, by plotting in Fig. 2 (bottom) the probability $P_{LL}(t) = |\langle 0|a_L a_L |\psi(t)\rangle|^2$ (single particle data are scaled for their transfer time $t^* \sim L/J$). The difference between the single particle and the bound particle results depends on the finite value of the interaction chosen ($U/J = 5$ in Fig. 2). Indeed the agreements with a single particle behavior is very high as long as U/J is large enough.

Because the effective model in Eq. (2) is valid in the regime $U/J \gg 1$, we analyze deviations from the theoretical value of β, by evaluating the dynamics with exact diagonalization techniques as in [37, 38]. Once initialized the system in $|\psi(0)\rangle \approx (a_j^\dagger)^2|0\rangle$ we numerically find the value of β^* that maximize the probability to find, at the transfer time $t^* \sim L/J_{\text{eff}}$, the bound particle in the last site of the chain $P_{L1}(t^*)$. We numerically find that, for a two particle bound state, the optimal values of β^* completely agree with the theoretical model $\beta^* = J^2/4U$ independently from the length of the chain, as long as $U/J \gtrsim 5$.

When the hopping term J and the onsite interaction U have comparable amplitude, both the bound states and the single particle states contribute to the dynamics [2]. We expect that by increasing the onsite interaction the effects of the free particle states are reduced while the state transfer fidelity of a bound particle should converge to a constant value.

By analyzing $P_{LL}(t^*)$ we find that, when the optimal value for the localized field $\beta^* = J^2/4U$ is added in a uniform chain, values of the onsite interaction above $U/J \gtrsim 4$ guarantee an almost constant value of transfer fidelity for a two particle bound state.

2. Optimal State Transfer of a Two Particle Bound State

The state transfer efficiency of a two particle bound state in a uniform chain can be improved by suitably tuning the tunneling couplings in the model in Eq. (1). Because a full engineering could be too demanding, here we consider the effect of a minimal engineering scheme [61, 62], which consists of tuning the first and the last tunneling terms to $J_1 = J_{L-1} = J_0$ while the rest of the chain has uniform couplings $J_j = J$. In this case the effective Hamiltonian (2) has effective interactions

$$J_{\text{eff}}^j = \begin{cases} \frac{J^2}{2U}, & \text{for } j = 1, L-1, \\ \frac{\mu^2}{U} + U, & \text{for } j \neq 1, L-1. \end{cases}$$
FIG. 2. Edge delocalization for a two particle bound state: plot of the probability to have a bound particle in the first $P_{11}(t)$ and in the last $P_{LL}(t)$ site as a function of the time t, scaled for the transfer time $t^* \sim L/J_{\text{eff}}$ for a uniform chain with $L = 5$ and $U/J = 5$ in the initial state $|\psi(0)\rangle = (a^\dagger_0)^2 |0\rangle$. We add a local field $\mu_j = -\beta_j (\delta_{i1} + \delta_{iL})$ with strength $\beta^* = 0$ (top), and $\beta^* = \beta^*_\text{opt} = J^2/4U$ (bottom). To compare the results with the single particle case we plot, with a dashed black line, the probability $P_{L}(t) = \langle |\langle 0|a_0|\psi(t)\rangle|^2 \rangle$ for a single particle initially in $a_0^\dagger |0\rangle$ (here $t^* \sim L/J$).

$$B_j^{\text{eff}} = \begin{cases} \frac{J_j}{2} + U & \text{for } j = 1, L, \\ \frac{J_j}{2} + \frac{J_j}{2} + U & \text{for } j = 2, L-1, \\ \frac{J_j}{2} + U & \text{for } j = 3, \ldots, L-2. \end{cases}$$

To maximize the transfer fidelity one has then to remove the difference between the effective energies B_j^{eff}, and to optimize the values of J_j^{eff} to achieve an optimal ballistic dynamics. Since the dynamics occurs in the effective subspace one can use the analytical theory presented in [43] to find the optimal value of $J_0^{\text{eff}} = \frac{J_0}{2U}$, given that the rest of the sites are coupled with a hopping strength $J^{\text{eff}} = \frac{\beta^*}{2U}$. Given the simple relationship between J_0^{eff} and the strength J_0 of the Bose-Hubbard tunneling between the edges and the bulk, it is then straightforward to obtain J_0. Once J_0 is found, one needs to add local chemical potentials in both the first and the last two sites to move the local energy difference in B_j^{eff}. By using our effective Hamiltonian expansion, we find that the state transfer is maximized by introducing two pairs of local fields, respectively $\mu_j = -\beta_1 (\delta_{i1} + \delta_{iL})$ and $\mu_j = -\beta_2 (\delta_{i2} + \delta_{iL-1})$, with strengths $\beta_1 = (J_0^2 - 2J^2)/2U$ and $\beta_2 = (J_0^2 - J^2)/2U$. In Fig. 3 (top) we show the results obtained for the transfer fidelity $P_{LL}(t^*)$ as a function of U/J when we use minimal engineering and the compensating fields β_1 and β_2. We observe a significant improvement of transfer fidelity compared to the results for a uniform chain. In Fig. 3 (bottom) we also highlight the difference between the single-particle dynamics and the bound-particle case for finite interaction U. As expected, for strong inter-particle interaction U, a bound state behaves as a single particle state. To highlight that minimal engineered schemes already have a significant impact in reducing the dispersion in the system, in Fig. 3 (bottom) we show the dynamics of a bound state in a lattice. Specifically, we plot the probability $P_{LL}(t) = \langle \langle 0|a_0^\dagger \psi(t)\rangle \rangle^2 / 2$ to have a two particle bound state in site j as a function of the time t/t^*, for a minimal engineered chain with $L = 21$ and $U/J = 8$.

In analog fashion the Bose-Hubbard Hamiltonian couplings can be tuned so that the effective Hamiltonian coincides with the one allowing perfect state transfer [55], though this is much more demanding because it requires the engineering of all tunneling rates J_j and all the chemical potentials μ_j.

3. Environmental effects

State transfer schemes are generally robust against static imperfections in the couplings [63, 64]. On the other hand, we explicitly test the robustness of our scheme against dynamical environmental effect, specifically dephasing due to spontaneous emission, which represents the main source of decoherence in optical lattices. The dynamics of the system in the lowest band is typically modeled as a Master equation in Lindblad form [65, 66]:

$$\dot{\rho} = -i [H_{\text{BH}}, \rho] + \Gamma \sum_j \left(n_j \rho n_j \frac{1}{2} - n_j \rho n_j \frac{1}{2} - \rho n_j n_j \right).$$

Here Γ is the effective scattering rate, and H_{BS} is the Bose-Hubbard Hamiltonian [1]. We numerically solve Eq. (8) as shown in detail in [67].

No relevant edge field optimal strength β^* deviations are found when decoherence effects are introduced, for $\Gamma/J_{\text{eff}} < 0.1$, where $J_{\text{eff}} = J^2/2U$. In Fig. 4 (top) we show how the transfer fidelity $P_{LL}(t^*)$ is affected as a function of the damping rate Γ/J_{eff} in Eq. (8) for $U/J = 3$. To better evaluate the difference with the zero decoherence case, we show in Fig. 4 (bottom) the relative variation $|\Delta P_{LL}(t^*)|/P_{LL}(0) = |P_{LL}(\Gamma) - P_{LL}(\Gamma = 0)|/P_{LL}(\Gamma = 0)$ with respect to the no decoherence case, as a function of the damping parameter Γ/J_{eff}. We observe deviations of less than the 5% for $\Gamma/J_{\text{eff}} \approx 10^{-2} - 10^{-3}$ for chain lengths between $L \in \{5, \ldots, 21\}$ which are typical values for blue detuned optical lattices [64, 67]. In Fig. 4 (bottom) we show the effects of the decoherence in the state transfer fidelity for a single particle state, initially in $a_0^\dagger |0\rangle$.

\[\]
We set the value $\beta' = J^2/4U$ for the edge fields $\mu_j = -\beta'(\delta_{j,1} + \delta_{j,L})$ to remove edge locking. Then we add a local field in the middle of the chain $\mu_j = -\beta\delta_{j,L/2+1}$ to trigger a wave-packet splitting. Indeed, the extra barrier favors the splitting of the propagating bound particle wave-packet into a transmitted and reflected component. It has been shown in [37] that for single particle quantum walk, the optimal 50/50 splitting is obtained when the strength β of this extra barrier is equal to the hopping rate. We expect that when the bound particle impinges on the effective single particle manifold [61]. To compare the difference between a single particle and a bound state, we plot (with a dashed line) also the single-particle transfer fidelity $P_{t}(t^*) = |\langle 0|a_0^\dagger|\psi(t^*)\rangle|^2$ obtained for a system initially in $a_1^\dagger|0\rangle$. (bottom) Probability $P_{t}(t)$ to have a two particle bound state in site j at time t/t^* for a minimal engineered chain with $L = 21$ and $U/J = 8$.

4. NOON State Generation with a Two Particle bound state

In this section we consider an imperfect fractional revival by considering a uniform evolution, though the present results can be extended with a further engineering to achieve perfect fractional revivals.

We consider the simplest scheme where the wave-packet splitting is achieved by using a local barrier in the middle of the chain, as shown in Fig. 1 and discussed in [37]. We set the value $\beta' = J^2/4U$ for the edge fields $\mu_j = -\beta'(\delta_{j,1} + \delta_{j,L})$ to remove edge locking. Then we add a local field in the middle of the chain $\mu_j = -\beta\delta_{j,L/2+1}$ to trigger a wave-packet splitting.
a balanced splitting in the effective space, the strength of the splitting field in the real chain must be \(\beta = \beta^{50} / 50 = J^2 / 2U \), in the limit \(L \gg 1 \).

Finite length corrections are found numerically by finding the \(\beta \) value for which the difference \(P_{11}(t') - P_{LL}(t') \) is zero. As shown in the inset in Fig. 6 for a \(L = 5 \) uniform chain, \(\beta^{50} / 50 \) scales as \(1/U \). The finite length factors, found from a fit over the data for several chain lengths, are shown in Fig. 6. By increasing the chain length \(L \) the \(\beta^{50} / 50 \) values are closer to \(0.5J^2 / U \) in agreement with the effective Hamiltonian analysis. We underline that the NOON state creation efficiency can be made arbitrarily close to 100% by tuning the couplings in the effective bound particle subspace using the techniques for perfect splitting developed in [38, 58] which require a complete engineering of the couplings in the Hamiltonian [1]. In Section [4] we propose two methods for detecting the NOON state generated by measuring interference fringes.

5. Even Chains

Here we clarify that our scheme is not limited to odd length chains but also can be applied to even chains by tuning both the middle tunneling coupling strength \(J_{L/2} \), and adding two pairs of local fields, respectively \(\mu_j = -\beta_1(\delta_{j,1} + \delta_{j,L}) \) and \(\mu_j = -\beta_2(\delta_{j,2} + \delta_{j,L-1}) \) in the Hamiltonian [1]. Using the results in [37] for the splitting of a single particle we find, from the effective Hamiltonian model, that the optimal coupling strengths to generate a two particle NOON state between the endpoints of a uniform chain are respectively \(J_{L/2} = J(\sqrt{2} - 1)^{1/2} \), \(\beta_1 = J^{2} / 4U \) and \(\beta_2 = J(2 - \sqrt{2}) / 4U \).

C. Three Particles

The extension of the previous scheme to more than two particle bound states enhances its non-classical state generation capabilities, namely towards realizing small cat states between remote sites. As before the onsite interaction generates bound states with three particles when initially located in the same site. Similarly to the two particle case, one would expect that the results of the splitting process, when the onsite interaction is strong enough, is to produce a NOON state with \(N = 3 \).

As for the two-particle case, for large onsite interactions the effective evolution in the bound particle subspace is described by Eq. (3). We consider a uniform chain, while a minimally engineered model is discussed in [3]. For a uniform chain the effective hopping is \(J_{eff} = 3J/16U \). Moreover, to remove edge locking and compensate the energy gap between the endpoint sites and the bulk of the chain we have to introduce two local fields \(\mu_j = -\beta(\delta_{j,1} + \delta_{j,L}) \). From our expansion we find for a uniform chain that \(\beta' = J^2 / 8U \). To check for finite-size correction to the above analytical prediction we numerically analyze the value of \(\beta' \) for several chain length \(L \) for the initial state \(|\psi(0)\rangle \propto (a^\dagger)^3 |0\rangle \) as a function of the onsite interaction \(U \). We find that with high accuracy the estimated field \(\beta' = J^2 / 8U \) is independent on \(L \). We analyze the probability \(P_{LLL}(t') \) to have three particles in the site \(L \) after time \(t' \) for a uniform chain as a function of the onsite interaction. We find that values of the onsite interaction above \(U/J \geq 4 \) guarantee an almost constant value of transfer fidelity for chain lengths \(L \geq 3 \).

In Fig. 7 we show the effect of decoherence due to spontaneous emission, Eq. (3) for several chain lengths \(L \) as a function of the decoherence rate \(\Gamma / J_{eff} \) where \(J_{eff} = 3J/16U^2 \).
We observe relative variation of less than the 5% with respect to the decoherence free case, for $\Gamma/J_{\text{eff}} \lesssim 1.3 \times 10^{-4}$ up to $L = 7$ sites. The state transmission fidelity of a three bound particle state can be optimized by engineering the end tunneling couplings of the chain, as shown in [8]. In this case to bypass the edge-localization effects we also need to add a local chemical potential tuning in the first two and last two sites of the chain.

1. NOON State generation for a three particle bound state

In the non-interacting case $U/J = 0$ when three particles are initially located in the first site $|\psi(0)\rangle \sim (a_1^\dagger)^3|0\rangle$ an ideal beam splitter transformation generates as output a state with probabilities [68]: $P_{111} = P_{LLLL} = 1/8$, $P_{LLL} = P_{11L} = 3/8$ where we define $P_{ijk}(t) = \langle \psi(0) | \prod_{i,j,k} 1_{a_i^\dagger a_j^\dagger a_k^\dagger} | \psi(0) \rangle^2$. The probability to have the three particles in the sites i, j, k. We expect that when the onsite interaction is strong enough, the bound particle behaves as an effective single bound particle, thus the terms P_{LLL}, P_{11L} are suppressed and the output state at the end points effectively results in the NOON state $|\psi(t')\rangle_{1L} = \frac{1}{\sqrt{2}} (|3, 0\rangle + i|0, 3\rangle)$, where $|3\rangle = (a_1^\dagger)^3|0\rangle/\sqrt{6}$. In Fig. 8 we plot, as a function of time (in $t' \approx L/J_{\text{eff}}$ units) the probability to have a three particle bound state respectively, in the first site $P_{111}(t)$, in the last $P_{LLL}(t)$ and one particle in the first site and two in the last $P_{11L}(t)$ in a uniform chain with $U/J = 5$ and $L = 5$. Here we set the edge fields strength to $\beta' = J^3/8U$ and we find numerically that the splitting field to have a balanced splitting is $\beta = \beta_{50} = 0.099 J^3/U^2$. The absence of the term $P_{11L}(t') = P_{11L}(t')$ is an evidence that a NOON state with three particle is generated between the edges of the chain. From the effective Hamiltonian description we find that to generate a balanced splitting of a bound three particle wave-packet, we need to add a local field $\mu_j = -\beta_{50} \delta_{jLL+2L+1}$ whose strength, when $L \gg 1$, is $\beta_{50} = J^3/8U^2$ (as explained in appendix B). However, finite size corrections change the value of β_{50}, and by performing a numerical fit over the data for a uniform chain with $L = 5$ (whose results are shown in the inset of Fig. 9), we find that β_{50} scales with the onsite interaction as $\beta_{50} = \alpha J^3/U^2$ where $\alpha \approx 0.099$. Deviations from the theoretical value of $\beta_{50} = J^3/8U^2$, which are shown in Fig. 9, have been found by analyzing the results obtained for several chain length L. Here the dashed grey line represents the theoretical value of the coefficient α of the splitting field for $L \gg 1$.

IV. NOON STATE VERIFICATION

The creation and the detection of a NOON state can be revealed by measuring the interference fringes in a Mach-Zehnder setup. After initializing the bound particles in the initial state $|\psi(0)\rangle \sim (a_1^\dagger)^N|0\rangle$, the NOON state is generated by the splitting field in the middle of the chain, as previously discussed. By freezing the dynamics of the system at the transfer time t', a controllable phase factor can be added using a local field in the last site of the chain. Finally, once lowered the lattice potential, a second beam splitter operation is performed by the splitting field which produces interference fringes at the endpoints of the chain at $2t'$.

For an ideal lossless transformation the state at the two boundary sites of the chain at the transfer time t' would be

$$|\psi(t')\rangle_{1L} = \frac{1}{\sqrt{2}} ((N0) + i|0N\rangle).$$

Once we apply the phase transformation $\Phi = \text{diag}(1, e^{i\phi})$
we show the results for
we show the system evolve and we evaluate the probability bound particle in the first site at the transfer time. An alternative approach, discussed in [37] for the single particle case, is to add a further step-like potential on the right-half of the effective chain, which corresponds to a piecewise constant potential in the Bose-Hubbard model.

\[\beta^{(0,50)} = \alpha J^4 / U^2 \]

The dashed grey line represents the theoretical value from the effective Hamiltonian description. (Inset) Analysis of the optimal value of \(\beta \) to produce the NOON state with three particles as a function of \(U/J \), where \(N = 5 \). The red line is the fit \(\beta^{(0,50)} = \alpha J^4 / U^2 \) where \(\alpha = 0.099 \).

\[\left| \psi(2t') \right|_{1L} = \frac{1}{2} \left[\left(1 - e^{-i N \phi} \right) |0\rangle + i \left(1 + e^{-i N \phi} \right) |N\rangle \right] \]

where the phase accumulated is \(N \phi \) with \(N \) being the number of particle in the NOON state. Therefore, the presence of a NOON state is revealed by measuring the interference fringes (i.e. the probability to have \(N \) particle in the first site as a function of \(\phi \)). Although previous experimental results measured just the parity of single sites (which would exclude a direct observation of the \(N = 2 \) case discussed so far), this detection issue in optical lattice has been recently circumvented up to four particles in the same site [12].

We evaluate numerically the interference fringes for a two particle bound state in a uniform chain with length \(L = 5 \) and \(U/J = 5 \). To introduce a controllable phase factor between the endpoints of the chain we freeze the dynamics at time \(t' = LU/J^2 \), by increasing the lattice potential depth, then we apply a local field in the last site. The Hamiltonian is then quenched at \(t' \) to

\[H' = \sum_{j=1}^{L} U n_j (n_j - 1) - \beta L n_L. \]

We let the system evolve for a time \(t' \) and the phase difference generated between site \(L \) and 1 is \(\phi = \beta L t' \). Then for \(t > t' \) the lattice potential is lowered again and the dynamics is described again by the Hamiltonian. Finally we let the system evolve and we evaluate the probability \(P_{11} \) to have the bound particle in the first site at the transfer time. An alternative approach, discussed in [37] for the single particle case, is to add a further step-like potential on the right-half of the effective chain, which corresponds to a piecewise constant potential in the Bose-Hubbard model.

In Fig. 10 we show the results for \(P_{11} \) as a function of the phase factor \(\phi \). By comparing our data with the results of an ideal lossless transformation (line in Fig. 10) we observe the interference fringes are in the same positions as in the ideal transformation. The influence of the chain dispersion reduces the height of the peaks compared to the ideal case. However the efficiency of this scheme can be pushed up to 100% by engineering the chain couplings [37, 38] in the effective subspace of bound particles. This method can be easily extended to bound states with a higher number of particles.

An alternative approach to detect the NOON state for \(N = 2 \) is to quench the inter-particle interaction \((U/J = 0, \text{ i.e. via Feshbach resonances}) \) just after the phase factor is added in the system. In the lossless case the final state of the two boundary sites is

\[\left| \psi(t'') \right|_{1L} = \left(1 - i e^{i N \phi} \right) |20\rangle + i \left(1 + e^{i N \phi} \right) |02\rangle + 2i (1 + e^{i N \phi}) |11\rangle. \]

Here \(t'' \) is the transfer time of free particles in the lattice \(t'' \approx L/J \). The probability to find one particle in each end at \(t'' \) is

\[P_{11}(t'') = \frac{2 \sin N \phi - 1}{\sin N \phi - 3}. \]

From the latter we see with a choice of \(\phi = -5 \pi / 4 \) the output state results in \(\left| \psi(t'') \right|_{1L} = |11\rangle \), which can be measured using single particle fluorescence techniques. The latter scheme has two main advantages: first of all it circumvents the parity projection measurement issue, because the fringes measurement require only single atom detection. In second place the decoherence influence is reduced, because after the phase factor is added it exploits free particle propagation, which is faster compared to the bound state case. In Fig. 11 we show the results obtained for the probability to observe one particle in each end, in a chain with \(L = 5 \) and \(U/J = 5 \), at time \(t'' \), compared to the lossless case in Eq. (12).
the endpoints is then added, as described in the previous section. After these steps we get then the state \(|\psi(t')\rangle \) which, in the ideal case, would be a \(\phi \)-dependent NOON state \(|\langle M01L + i e^{-i\phi} |0M\rangle_{1L}\rangle/\sqrt{2} \) on sites 1, L. Therefore, in general from Eq. (13) we get

\[
F_Q = 4 \Delta n_L^2 \equiv 4 \left(\langle n_L^2 \rangle - \langle n_L \rangle^2 \right),
\]

which in the ideal case results in \(F_Q = M^2 \). In our scheme, the ideal quantum limit can be achieved by using a fully engineered chain [38] which enables the creation of the ideal NOON state. This demonstrates the quantum enhanced sensitivity provided by ideal NOON states.

We now show that even the imperfect NOON states obtained with uniform chains are sufficient to achieve a quantum enhanced sensitivity. We consider a uniform chain with length \(L = 5 \) and a bound state with \(M = 2, 3 \). In Fig. 12 we plot the best achievable phase uncertainty \(\Delta \phi = 1/\sqrt{F_Q} \), in a single measurement \(\nu = 1 \), as a function of the onsite interaction \(U/J \). The grey and the red lines represent respectively the “classical” limit \(\Delta \phi_{\text{cl}} = 1/\sqrt{M} \) (obtained e.g., using coherent states where \(M \) is the average number of particles) and the ideal quantum limit \(\Delta \phi_{\text{quant}} = 1/M \). The black line on the other hand represents Eq. (14). Both for two and three particle bound states we observe an improvement in the phase estimation precision compared to the classical case, which is quite close to the ideal limit for an ideal NOON state and increases with the onsite interaction \(U/J \).

VI. CONCLUSION

In this paper we analyze the possibility to transfer states of bound particles between the endpoints of finite lattice and their use for small cat state (NOON state) generation, using a minimal control setup.

We derive an effective single particle theory for the dynamics of a bound particle state in a Bose-Hubbard model with tunable couplings, using an accurate effective Hamiltonian technique. By introducing suitable static local impurities in the edges of the lattice potential we show how to inhibit edge-localization effects and enable the bound state dynamics. This
allows us to realize transformations between far sites, even when strongly interacting particles are involved. Specifically we show how state transfer coupling schemes (in particular minimal engineering schemes), developed for single particle states, can be introduced in our model to improve the efficiency. We then show how to split the propagating bound state wave-function to generate cat states (NOON states) between the endpoints of finite lattices with high fidelity, in a minimal control setup, by tuning a single local field in the middle of the chain. We analyze also how environmental effects affect our scheme, namely taking into account decoherence due spontaneous emission in an optical lattice setup, finding the parameters’ regime in which our scheme is robust.

Our model is of interest for state transfer application with \(N \geq 2 \) strongly interacting particles and for metrology application. In particular, compared to other systems, it can provide some advantages for sensing external local fields in a Mach-Zehnder configuration. Indeed we specifically show that, even in a uniform chain, the obtained NOON states give an improvement for the phase estimation between the output arms of an interferometer. Moreover, our method can be straightforwardly extended to fully engineered chains to realize 100% fidelity operations between distant sites, such as the perfect state transfer of bound particle states or the perfect NOON state generation in an arbitrary long chain. As a future perspective, it will be interesting to adapt pumping techniques [73] or tunneling modulation techniques [74] to speed up the transfer time, and thus enable the creation of higher NOON states compatible with the coherence time of the system.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement No. 308253. The authors thank Marco Genoni, Gerald Milburn, Hendrik Weimer and Luca Marmugi for interesting discussions and suggestions.

Appendix A: Effective Hamiltonian

For the sake of clarity and self-consistency, here we describe the effective Hamiltonian theory which has been derived and successfully applied in [43].

We assume that the Hilbert space is divided into a two subspace, the effective subspace and the irrelevant one, which are well separated in energy when the interaction strength \(U \) is much greater than the chemical potential and the tunneling rates. We define a projection operator \(\mathbb{P} \) which projects the states to the relevant subspace and the complementary operator \(\mathbb{Q} = \mathbb{1} - \mathbb{P} \). Because \(\mathbb{P} \) and \(\mathbb{Q} \) operate onto disconnected subspaces we have

\[
\begin{align*}
\mathbb{P} + \mathbb{Q} &= \mathbb{1}, \\
\mathbb{P}\mathbb{Q} &= \mathbb{Q}\mathbb{P} = 0, \\
\mathbb{P}^2 &= \mathbb{P}, \\
\mathbb{Q}^2 &= \mathbb{Q}.
\end{align*}
\]

Once Eq. (A1) are applied on the Schrödinger equation, one obtains a system of two coupled equations for the dynamics in the relevant/irrelevant subspace:

\[
\begin{align*}
&i\partial_t \mathbb{P} |\psi_p\rangle = (\mathbb{P}H\mathbb{P} + \mathbb{P}H\mathbb{Q}) |\psi_p\rangle, \\
&i\partial_t \mathbb{Q} |\psi_q\rangle = (\mathbb{Q}H\mathbb{P} + \mathbb{Q}H\mathbb{Q}) |\psi_q\rangle.
\end{align*}
\]

Finally, using \(\mathbb{P}^2 = \mathbb{P} \) and \(\mathbb{Q}^2 = \mathbb{Q} \) one obtains the system

\[
\begin{align*}
i\partial_t \left(|\psi_p\rangle \mathbb{P} \mathbb{Q} |\psi_q\rangle \mathbb{Q} \right) &= \left(H_p + V \right) |\psi_p\rangle, \\
&= \begin{pmatrix} H_p & V \\ V^\dagger & H_q \end{pmatrix} |\psi_p\rangle |\psi_q\rangle,
\end{align*}
\]

whence

\[
\begin{align*}
H_p &= \mathbb{P}H\mathbb{P}, \\
H_q &= \mathbb{Q}H\mathbb{Q}, \\
V &= \mathbb{P}H\mathbb{Q}, \\
|\psi_p\rangle &= \mathbb{P} |\psi\rangle, \\
|\psi_q\rangle &= \mathbb{Q} |\psi\rangle.
\end{align*}
\]

Here \(|\psi_p\rangle \) and \(|\psi_q\rangle \) are respectively the projection of the state \(|\psi\rangle \) in the relevant/irrelevant subspaces. In the interaction picture

\[
\begin{align*}
|\psi_p\rangle &= e^{-iH_p t} |\tilde{\psi}_p\rangle, \\
|\psi_q\rangle &= e^{-iH_q t} |\tilde{\psi}_q\rangle,
\end{align*}
\]

the free evolution is eliminated:

\[
\begin{align*}
&i\partial_t |\tilde{\psi}_p\rangle = e^{iH_p t} V e^{-iH_q t} |\tilde{\psi}_q\rangle \equiv \tilde{V}(t) |\tilde{\psi}_q\rangle, \\
&i\partial_t |\tilde{\psi}_q\rangle = e^{iH_q t} V^\dagger e^{-iH_p t} |\tilde{\psi}_p\rangle \equiv V^\dagger(t) |\tilde{\psi}_p\rangle,
\end{align*}
\]

We introduce \(U_p \) and \(U_q \) the operators that diagonalize \(H_p \) and \(H_q \):

\[
\begin{align*}
H_p &= U_p \lambda_p U_p^\dagger, \\
H_q &= U_q \lambda_q U_q^\dagger,
\end{align*}
\]

where \(\lambda_p = \text{diag} \{ \lambda_p \} \) and \(\lambda_q = \text{diag} \{ \lambda_q \} \), and defining

\[
\begin{align*}
|\tilde{\phi}_p\rangle &= U_p^\dagger |\tilde{\psi}_p\rangle, \\
|\tilde{\phi}_q\rangle &= U_q^\dagger |\tilde{\psi}_q\rangle,
\end{align*}
\]

we have

\[
\begin{align*}
&i\partial_t |\tilde{\phi}_p\rangle = \tilde{V}(t) |\tilde{\phi}_q\rangle, \\
&i\partial_t |\tilde{\phi}_q\rangle = V^\dagger(t) |\tilde{\phi}_p\rangle,
\end{align*}
\]

and

\[
\begin{align*}
\tilde{V}(t) &= U_p^\dagger \tilde{V}(t) U_q = e^{i\lambda_p t} \tilde{V}(t) e^{-i\lambda_q t},
\end{align*}
\]
Assuming that the population of the irrelevant space is initially zero \(|\bar{\phi}_p(0) = 0\), the formal solution of system \((A24)\) is, in components

\[
\tilde{\phi}_{q,k}(t) = -i \sum_j \int_0^t dt' \, V_{jk} e^{i(\lambda_k - \lambda_p) t'} \tilde{\phi}_{p,j}(t').
\] (A22)

After partial integration one finds

\[
\tilde{\phi}_{q,k}(t) = -i \sum_j \left\{ e^{i(\lambda_k - \lambda_p) t' \over i(\lambda_k - \lambda_p) j} V_{jk} \tilde{\phi}_{p,j}(t') \right\} \bigg|_0^t - \int_0^t dt' e^{i(\lambda_k - \lambda_p) t'} \left(d \over i(\lambda_k - \lambda_p) j \right) \tilde{\phi}_{p,j}(t').
\] (A23)

The second integral can be neglected because carrying on the partial integration procedure the next term is of the order of \((\lambda_k - \lambda_p j)^{-2}\). Indeed for a large spectral separation between the relevant and the irrelevant subspaces, \(|\lambda_k - \lambda_p| > 1\), and when the edge term is zero one has

\[
\tilde{\phi}_{q,k}(t) = - \sum_j \tilde{W}_{kj}(t) \tilde{\phi}_{p,j}(t),
\] (A24)

where

\[
\tilde{W}_{kj}(t) = V_{jk} \frac{\exp \left[i \left(\lambda_k - \lambda_p \right) t \right]}{\lambda_k - \lambda_p}.
\] (A25)

Finally one finds that the effective Schrödinger equation for the relevant space dynamics is:

\[
\tilde{H} \tilde{\phi}_p \equiv \tilde{H}_p \tilde{\phi}_p = \tilde{H}_e \tilde{\phi}_p = H_{e\Pi} \tilde{\phi}_p,
\] (A26)

where

\[
H_{e\Pi} = H_p - V W,
\] (A27)

and \(W\) satisfies

\[
H_p W - WH_p = V^\dagger.
\] (A28)

When \(H_p\) consists of a degenerate levels with energy \(E_0\) the above effective theory corresponds to the usual degenerate perturbation theory \(1\):

\[
\langle \phi | H_{e\Pi} | \phi' \rangle = \langle \phi | H | \phi' \rangle + \sum_m \frac{\langle \phi | V \langle m | \rangle V \langle \phi' | \rangle \rangle}{E_0 - E_m} + \cdots.
\] (A29)

where \(H_p\) and \(H_q\) are the relevant/irrelevant Hilbert subspaces and \(|\phi\rangle, |\phi'\rangle \in H_p\).

We derive explicitly the effective Hamiltonian for a Bose-Hubbard model, Eq. \(1\). The Hilbert space \(H\) with fixed number of particle \(M\) in a chain with length \(L\) has size

\[
\dim H = \frac{(M + L - 1)!}{M!(L - 1)!}.
\] (A30)

The relevant space \(H_p \equiv H_M\) is defined as

\[
H_p = \{|\phi^b_m\rangle \in H : |\phi^b_m\rangle = |0, \ldots, 0, M, 0, \ldots, 0\rangle\},
\] (A31)

where \(M = M\). Clearly \(\dim H_p = L\). The irrelevant space \(H_q = H \setminus H_p\) is

\[
H_q = \{|\phi^b_m\rangle \in H : |\phi^b_m\rangle = |n_1, \ldots, n_L\rangle, \quad \sum_j n_j = M, \quad n_j \not\equiv 0\}.
\] (A32)

Given the above definitions we rename the basis of the Hilbert space as \(|m\rangle, \quad m = 1, \ldots, \dim H\) such that \(|m\rangle = |\phi^b_m\rangle\) for \(m = 1, \ldots, L\). The Hamiltonian then takes the following block form

\[
H = \begin{pmatrix} H_p & V \\ V^\dagger & H_q \end{pmatrix},
\] (A33)

where each block can be evaluated explicitly with the following projection operators

\[
P = \sum_{m=1}^L |m\rangle \langle m|,
\] (A34)

\[
Q = \sum_{m=1}^{\dim H_q} |L + m\rangle \langle m|.
\] (A35)

Clearly \(\dim H_p = (L, L)\), \(\dim H_q = (\dim H - L, \dim H - L)\) and \(\dim V = (L, L, \dim H - L)\).

The effective Hamiltonian \(A27\) can be computed explicitly using a series expansion for large \(U_j = U\). The relevant Hamiltonian for the Bose-Hubbard model \(1\) takes the simple form

\[
H_p = \sum_{m=1}^L \frac{U}{2} M(M - 1) |m\rangle \langle m| - \sum_{m=1}^L \mu_m M|m\rangle \langle m|.
\] (A36)

Similarly \(H_p\) and \(V\) can be computed explicitly. The effective model can be obtained by solving Eq. \(A27\) and \(A28\). In order to find the \(W\) matrix we vectorize (see Appendix \(C\)) the Eq. \(A28\) as

\[
G \vec{W} = \vec{V}^\dagger,
\] (A37)

where

\[
G = \left(1_{\dim H_p} \otimes H_q \right) - \left(H_p \otimes 1_{\dim H_q} \right).
\] (A38)

It is convenient to write \(G = G_{\text{large}} + G_{\text{small}}\) where

\[
G_{\text{large}} = 1_{\dim H_p} \otimes H_q \otimes \left(H_p \right)^\dagger \otimes 1_{\dim H_q},
\] (A39)

\[
G_{\text{small}} = 1_{\dim H_p} \otimes H_q \otimes \left(H_p \right)^\dagger \otimes 1_{\dim H_q},
\] (A40)

and \(H_{\text{large}}\) is the part of the Hamiltonian \(1\) that contains the terms in \(U\): \(H_{\text{large}} = \sum_{j=1}^L \frac{U_j}{2} n_j(n_j - 1)\) and \(H_{\text{small}} = H - H_{\text{large}}\). The system \(A37\) can be formally solved by taking the inverse of the \(G\) matrix as

\[
\vec{V} = \frac{1}{G_{\text{large}} + G_{\text{small}}} \vec{W}.
\] (A41)
and using the following identity, valid for two operators A and B:

$$\frac{1}{A + B} = \frac{1}{A} \left(1 - B \frac{1}{A + B} \right).$$ \hspace{1cm} (A42)

Indeed one can easily find that

$$\frac{1}{A} \left(1 - B \frac{1}{A + B} \right) = A^{-1} (1 - B(A + B)^{-1}) =$$

$$= A^{-1} \left[(A + B)(A + B)^{-1} - B(A + B)^{-1} \right],$$

$$\therefore A^{-1} \left[A(A + B)^{-1} \right] = \frac{1}{A + B}.$$

Using recursively the Eq. (A42) one finds the Dyson expansion

$$\frac{1}{G^{\text{large}} + G^{\text{small}}} = (G^{\text{large}})^{-1} \sum_{n=0}^{+\infty} (-1)^n (G^{\text{small}} (G^{\text{large}})^{-1})^n,$$

that corresponds to a series expansion in the onsite interaction parameter U (which is contained in G^{large}). Moreover,

$$G^{\text{large}} = \frac{L}{2} \sum_{m=1}^{\dim \mathcal{H}_U} g(n, m) \langle L + n, m | L + n, m \rangle,$$

where $g(n, m) = \sum_j M(M-1) \delta_{j,m} - n_j(n_j-1) > 0,$ since in \mathcal{H}_U it is $n_j < M$ and $\sum_j n_j = M$. Therefore, G^{large} is diagonal and non-singular for each value of M. By truncating the expansion (A44) at the relevant order n in U one obtains the matrix W from Eq. (A41) and then the effective Hamiltonian from Eq. (A27), valid to the n-th order.

As an example of the general procedure outlined above we consider explicitly the first order solution where $M = 2$ and (A44) reduces to

$$(G^{\text{large}} + G^{\text{small}})^{-1} \approx (G^{\text{large}})^{-1} \hspace{1cm} (A46)$$

$$= -U^{-1} \sum_{m=1}^{\dim \mathcal{H}_U} \sum_{n=1}^{L} |L + n, m \rangle \langle L + n, m | \hspace{1cm} (A47)$$

$$= - \frac{1}{U} \otimes \mathbb{I}_p.$$

Therefore, according to (A47), $W = -V/\mu,$ so

$$H^{\text{eff}} \simeq - \sum_{m=1}^{L} \mu_m |m \rangle \langle m | + \sum_{m,m'=1}^{L} \frac{\langle \psi_m^0 | V \psi_m^0 \rangle}{U} |m \rangle \langle m' |.$$

where we have explicitly omitted the terms proportional to the identity. For the interaction term V between \mathcal{H}_p and \mathcal{H}_q we observe that the only non-zero matrix elements are $\langle \psi_m^0 | d_{j+} | \psi_{m'}^0 \rangle$ (as well as their Hermitian conjugate) when

$$|\psi_m^0\rangle = |0, \ldots, M_j, \ldots, 0\rangle$$

$$|\psi_{m'}^0\rangle = |0, \ldots, l_j, (M-1)_{j+1}, \ldots, 0\rangle.$$

These can give rise to a hopping from $|m\rangle$ to $|m+1\rangle$ only for $M = 2.$ Indeed, this is done with the following steps. Starting from $|m\rangle = |0, \ldots, 2_m, 0\ldots\rangle$ the operator $d_{m}d_{m+1}$ in V maps this state to $|0, \ldots, 1_m, 1_{m+1}, 0\ldots\rangle$ which is in $\mathcal{H}_q.$ Then the operator $d_{m}d_{m+1}$ in V maps this state to $|m+1\rangle = |0, \ldots, 2_{m+1}, 0\ldots\rangle.$ By generalizing the above argument, with simple calculations one finds then

$$H^{\text{eff}} = - \sum_{m=1}^{L} \mu_m |m \rangle \langle m | + \sum_{m=1}^{L-1} \frac{\langle m | J | m+1 \rangle + h.c. \rangle}{2}.$$

The generalization to higher values of M proceeds along the same lines. For instance for $M = 3$ one has to consider the second order expansion in G^{small}. Indeed, an effective hopping can happen only via a three step procedure

$$|m\rangle = |0, \ldots, 3_m, 0\ldots\rangle \rightarrow |0, \ldots, 2_m, 1_{m+1} 0\ldots\rangle \hspace{1cm} (A53)$$

$$\rightarrow |0, \ldots, 1_m, 2_{m+1} 0\ldots\rangle \hspace{1cm} (A54)$$

$$\rightarrow |0, \ldots, 3_m 1_{m+1} 0\ldots\rangle \equiv |m+1\rangle.$$ \hspace{1cm} (A55)

By doing explicit calculations we find the effective Hamiltonians mentioned in the main text.

Appendix B: Minimal engineering of the Three Particle Bound state propagation

The state transfer fidelity of the three particle bound state can be improved by introducing an optimal coupling scheme, namely tuning the first and the last tunneling coupling to $J_1 = J_{L-1} = J_0$ and the rest of the chain to $J_j = J$. We find that, in order to delocalize the bound state, two pairs of localized fields in the endpoints are necessary, respectively $\mu_j = -\beta (\delta_{j,1} + \delta_{j,L-1})$ and $\mu_j = -\beta (\delta_{j,1} + \delta_{j,L-1})$ where $\beta_1 = (2J^2 - J_0^2)/8U$ and $\beta_2 = (J^2 - J_0^2)/8U.$ In this case the beam splitting condition for $L \gg 1$ is realized when a local field $\mu_j = -\beta \delta_{j,1,2} + \delta_{j,L-1}$ with strength $\beta = \beta J^2/8U^2$ is added in the middle of the chain. The effective Hamiltonian is it in this case

$$H^{\text{eff}} \simeq \begin{pmatrix} J^{III}_{\text{opt}} & \frac{\beta}{2U} & \cdots & \frac{1}{2} \\ \frac{\beta}{2U} & \ddots & \ddots & \ddots \\ \vdots & \ddots & U^{III}_{\text{opt}} & \ddots \\ \frac{1}{2} & \cdots & \frac{\beta}{2U} & U^{III}_{\text{opt}} \end{pmatrix} \simeq \begin{pmatrix} \frac{J^{III}_{\text{opt}}}{2} & \frac{\beta}{2U} & \cdots & \frac{1}{2} \\ \frac{\beta}{2U} & \ddots & \ddots & \ddots \\ \vdots & \ddots & U^{III}_{\text{opt}} & \ddots \\ \frac{1}{2} & \cdots & \frac{\beta}{2U} & U^{III}_{\text{opt}} \end{pmatrix}$$

where $J^{III}_{\text{opt}} = 3J^2/U^2, U^{III}_{\text{opt}} = 8U(J)^3 + 2U/J + 16(J^3/U)^2.$ In order to have a perfectly balanced beam splitter in this single-particle Hamiltonian, as shown in (37), one needs $\tilde{\beta} = 1$. Therefore, $\beta^{SO} = J^2/8U^2.$ Our method is straightforwardly generalizable to bound states with a higher number of particles.
Appendix C: Numerical solution of the master equation

In order to solve the Master equation (8) we exploit a vectorization procedure [22] which consists of representing a matrix as a vector, by using its representation in the canonical basis with a column ordering. For instance for a generic 2×2 matrix A, its vectorization vec(A) is

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = A_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + A_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \ldots \quad (C1)
\]

vec(A) = \left(A_{11}, A_{21}, A_{12}, A_{22} \right)'. \quad (C2)

For a general size matrix ρ the latter procedure corresponds to the mapping V_{k-1}L_{k+1} = ρ_{k} where v = vec(ρ). Once chosen this base the action of an operator H on the left or the right of the density matrix ρ can be written as

\[
H ρ = (1_L ⊗ H) vec(ρ), \quad (C3)
\]

\[
ρ H = (H' ⊗ 1_L) vec(ρ), \quad (C4)
\]

and for the dissipative part, by using the identities

\[
vec(ABC) = (C' ⊗ A) vec(B) = (1_L ⊗ AB) vec(C) = (C' B' ⊗ 1_L) vec(A), \quad (C5)
\]

\[
vec(AB) = (1_L ⊗ A) vec(B) = (B' ⊗ 1_L) vec(A), \quad (C6)
\]

we find that

\[
n_n n_ρ = (1_L ⊗ n_n) vec(ρ), \quad (C7)
\]

\[
ρ n_n = (n_l ⊗ 1_L) vec(ρ), \quad (C8)
\]

\[
n_n ρ n_l = (n_l ⊗ n_l) vec(ρ), \quad (C9)
\]

hence if H and ρ describe a fixed particle number subspace one obtains the vectorised version of the master equation [8] namely

\[
vec(\dot{ρ}) = ℒ_ρ vec(ρ), \quad (C10)
\]

where the operator ℒ_ρ is defined as

\[
ℒ_ρ = -i[(1_L ⊗ H) - (H' ⊗ 1_L)] - γ \sum_j (n_j' ⊗ n_j) + (C11)
\]

\[
- \frac{1}{2} (1_L ⊗ n_j^2) - \frac{1}{2} (n_j^2' ⊗ 1_L) \bigg].
\]

REFERENCES

[1] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch and S. Kuhr, Nature 471, 319 (2011).
[2] P. M. Preiss, R. Ma, E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam and M. Greiner, Science 347, 1229 (2015).
[3] T. Fukuhara, P. Shauß, M. Endres, S. Hild, M. Cheneau, I. Bloch and C. Gross, Nature 502, 76 (2013).
[4] T. Fukuhara, et al, Nat. Phys. 9, 235 (2013).
[5] S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn, T. Lompe and S. Jochim, Phys. Rev. Lett. 114, 080402 (2015).
[6] P. M. Preiss, R. Ma, M. E. Tai, J. Simon and M. Greiner, Phys. Rev. A 91, 041602 (2015).
[7] C. Robens, S. Brakhane, D. Meschede and A. Alberti, arXiv:1511.03569
[8] A. Celi, M. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas and M. Lewenstein, Phys. Rev. Lett. 112, 043001 (2014).
[9] M. Mancini, et al, Science 349, 1510 (2015).
[10] G. De Chiara and A. Sanpera, J. Low Temp. Phys. 165, 292 (2011).
[11] R. Islam, R. Ma, P. M. Preiss, T. E. Tai, A. Lukin, M. Rispoli and M. Greiner, Nature 528, 77 (2015).
[12] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam and M. Greiner, Opt. Expr. 24, 13881 (2016).
[13] H. Ott, Rep. Prog. Phys. 79, 054401 (2016).
[14] D. K. Hoffmann, B. Deissler, W. Limmer and J. H. Denschlag, Appl. Phys. B 122, 227 (2016).
[15] T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan and M. A. Kasevich, Nature 528, 530 (2015).
[16] E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise and K. Bongs, New. J. Phys. 16, 093046 (2014).
[17] H. Lee, P. Kok and J. P. Dowling, J. Mod. Opt. 49, 2325 (2002).
[18] C. Gross, T. Zibold, E. Nicklas, J. Estève and M. K. Oberthaler, Nature 464, 1165 (2010).
[19] C. Gross, J. Phys. B: At. Mol. Opt. Phys. 45, 103001 (2012).
[20] J. P. Dowling, Contemp. Phys. 49, 125 (2008).
[21] R. Demkowicz-Dobrzański, M. Jarzyna and J. Kolodyński, in Progress in Optics, Vol. 60, edited by E. Wolf (Elsevier, 2015).
[22] Y. Israel, S. Rosen and Y. Silberberg, Phys. Rev. Lett. 112, 103604 (2014).
[23] H. F. Hofmann and T. Ono, Phys. Rev. A 76, 031806 (2007).
[24] I. Afek, O. Ambar and Y. Silberberg, Science 328, 879 (2010).
[25] Y. Israel, I. Afek, S. Rosen, O. Ambar and Y. Silberberg, Phys. Rev. A 85, 022115 (2012).
[26] P. Kok, H. Lee and J. P. Dowling, Phys. Rev. A 65, 052104 (2002).
[27] W. J. Mullin and F. Laloe, J. Low Temp. Phys. 162, 250 (2010).
[28] K. Stiebler, B. Gertjerenken, N. Teichmann and C. Weiss, J. Phys. B: At. Mol. Opt. Phys. 44, 055310 (2011).
[29] G. Kordas, S. Wimberger and D. Withnall, EPL 100, 30007 (2012).
[30] A. M. Leung, K. W. Mahmud and W. P. Reinhardt, Mol. Phys. 110, 801 (2012).
