Dual MET and ERBB inhibition overcomes intratumor plasticity in osimertinib-resistant-advanced non-small-cell lung cancer (NSCLC)

A. Martinez-Marti1,2,3, E. Felip1,2,3*, J. Matito4, E. Mereu5,6, A. Navarro1,2, S. Cedrés1,2, N. Pardo1,2,3, A. Martinez de Castro1,2, J. Remon1,2, J. M. Miquel3, A. Guillaumet-Adkins5,6, E. Nadal7,8, G. Rodriguez-Esteban5,6, O. Arqués9, R. Fasani10, P. Nuciforo5,6, H. Heyn5,6, A. Villanueva7,11, H. G. Palmer9 & A. Vivancos4*

1Department of Medical Oncology, Vall d’Hebron University Hospital, Barcelona; 2Department of Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona; 3Autonomous University of Barcelona (UAB), Barcelona; 4Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona; 5Single Cell Genomics Group, Centro Nacional de Análisis Genómico (CNAG) – Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona; 6Pompeu Fabra University (UPF), Barcelona; 7Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO) Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet, Barcelona; 8Department of Medical Oncology, ICO, IDIBELL, L’Hospitalet, Barcelona; 9Stem Cells and Cancer Group; 10Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona; 11Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, Spain

*Correspondence to: Dr Enriqueta Felip, Department of Medical Oncology, Vall d’Hebron Institute of Oncology, P. Vall d’Hebron 119-129, 08035 Barcelona, Spain. Tel: +34 932746085; Fax: +34 932746059; E-mail: efelip@vhio.net

Dr Ana Vivancos, Cancer Genomics Group, Vall d’Hebron Institute of Oncology, P. Vall d’Hebron 119-129, 08035 Barcelona, Spain. Tel: +34 932543450; E-mail: avivancos@vhio.net

Background: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib are the last line of targeted treatment of metastatic non-small-cell lung cancer (NSCLC) EGFR-mutant harboring T790M. Different mechanisms of acquired resistance to third-generation EGFR-TKIs have been proposed. It is therefore crucial to identify new and effective strategies to overcome successive acquired mechanisms of resistance.

Methods: For Amplicon-seq analysis, samples from the index patient (primary and metastasis lesions at different timepoints) as well as the patient-derived orthotopic xenograft tumors corresponding to the different treatment arms were used. All samples were formalin-fixed paraffin-embedded, selected and evaluated by a pathologist. For droplet digital PCR, 20 patients diagnosed with NSCLC at baseline or progression to different lines of TKI therapies were selected. Formalin-fixed paraffin-embedded blocks corresponding to either primary tumor or metastasis specimens were used for analysis. For single-cell analysis, orthotopically grown metastases were dissected from the brain of an athymic nu/nu mouse and cryopreserved at −80°C.

Results: In a brain metastasis lesion from a NSCLC patient presenting an EGFR T790M mutation, we detected MET gene amplification after prolonged treatment with osimertinib. Importantly, the combination of capmatinib (c-MET inhibitor) and afatinib (ErbB-1/2/4 inhibitor) completely suppressed tumor growth in mice orthotopically injected with cells derived from this brain metastasis. In those mice treated with capmatinib or afatinib as monotherapy, we observed the emergence of KRAS G12C clones. Single-cell gene expression analyses also revealed intratumor heterogeneity, indicating the presence of a KRAS-driven subclone. We also detected low-frequent KRAS G12C alleles in patients treated with various EGFR-TKIs.

Conclusion: Acquired resistance to subsequent EGFR-TKI treatment lines in EGFR-mutant lung cancer patients may induce genetic plasticity. We assess the biological insights of tumor heterogeneity in an osimertinib-resistant tumor with acquired MET-amplification and propose new treatment strategies in this situation.

Key words: NSCLC, EGFR, T790M, MET, acquired resistance, intratumor plasticity

© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The analysis of cfDNA detected an additional EGFR T790M mutation (Figure 1C and D). Therapy initially reduced brain metastasis and treatment with osimertinib was sustained 21 months until the progressive metastatic brain lesion enlarged and required surgical resection (Figure 1C and E). Following brain surgery, osimertinib was continued for additional 3 months due to clinical benefit. NGS analyses on this surgical specimen once again showed the deletion of exon 19 in EGFR and the TP53 Q317fs mutation and loss of EGFR T790M mutation (Figure 1D). Additionally, we identified a high-level amplification of the MET oncogene that was confirmed by fluorescent in situ hybridization [17] (FISH) (copy number of >40; MET/CEN7 ratio of >5) (Figure 1D and F), and high levels of c-MET protein by immunohistochemistry (Figure 1G). HER2 amplification was excluded as a resistance mechanism since no amplification was detected by FISH (ERBB2 gene copy number of 6; ERBB2/CEN17 [18] ratio of 1.1), or by immunohistochemistry (Figure 1F and data not shown). The emergence of this MET amplification in the context of an exon 19 deletion of EGFR and a regression of EGFR T790M mutation led us to combine EGFR and c-MET inhibitors to block the growth of the progressive brain metastasis [19]. Unfortunately, the patient suffered a rapid relapse and died soon after brain surgery.

At the time of surgery of brain metastasis, we obtained surgical tumor tissue to implant orthotypically in immunodeficient nude mice, generating an orthoxenograft or PDOX model (Figure 2A) [20, 21]. PDOXs present high concordance with the original clinical tumors [22, 23]. In this particular case, PDOX not only faithfully recapitulated the patient’s histology but also preserved MET amplification (Figure 2B and C) and similar EGFR status (total proteins by IHC and CNV using FISH) (supplementary Figure S3 and Table S4, available at Annals of Oncology online). This model allowed us to explore the efficacy of an EGFR inhibitor and c-MET inhibitor combined.

Passable biopsies were orthotypically implanted into the brain of 35 nude mice that were randomized and treated with vehicle, cisplatin/pemetrexed (standard chemotherapy), osimertinib (EGFR sensitizing and T790M resistance mutation inhibitor), afatinib (ErB-1/2/4 inhibitor), capmatinib (c-MET inhibitor) and a combination of capmatinib and afatinib (Figure 2A). All treatments were administered during 21 days. Capmatinib alone or combined with afatinib showed superior efficacy, significantly increasing the overall survival of mice (Figure 2D). Strikingly, none of the capmatinib/afatinib treated mice displayed weight loss, increased intracranial pressure, presented any tumor evidence, or scaring in the brain or any other analyzed tissues after 30 days upon tumor implantation. These data demonstrate that capmatinib/afatinib treatment cured all mice. In the case of capmatinib monotherapy, two mice died 2 months after tumor implantation presenting brain tumors upon necropsy. Another two mice died after 9 months with no brain tumor, but one presented a lung metastasis and the other a mesenteric lesion. When treated with afatinib alone, all mice progressed with growing brain tumors and had to be killed earlier after treatment initiation. Similarly, PDOX treated with osimertinib did not show any benefit, confirming the resistance observed in the patient. In summary, c-MET, as opposed to EGFR blockade, was effective. The combination of the two, however, was the most potent therapy showing curative potential.

We then genotyped PDOX samples obtained from mice that progressed to the different treatments (Figure 2G). All xenograft
tissues showed the same exon 19 deletion in *EGFR*, *TP53* Q317fs mutation as well as *MET* amplification detected in the original patient’s brain metastasis (Figure 2C, E and F). In addition, we observed a subclonal *TP53* Q165K mutation in some xenografts. Interestingly, we detected the emergence of a subclonal *KRAS* G12C mutation exclusively in xenograft tumors from mice treated with afatinib or capmatinib as monotherapy. This data suggested the surfacing of minor preexisting *KRAS* G12C mutant clones as a mechanism of resistance to effective EGFR or c-MET signaling blockade. In the original patient’s metastatic brain tumor biopsy, we actually confirmed the existence of *EGFR* activating mutations. To test this hypothesis, we first defined EGFR and *KRAS* distinctive transcriptional signatures by comparing primary lung adenocarcinoma specimens’ mutant for *KRAS* or *EGFR* activating mutations. To study this phenomenon further, we evaluated clonal distribution within xenograft tumor samples by single-cell transcriptome analysis (massive parallel single-cell RNA-sequencing, MARS-Seq) [25, 26]. We sequenced 197 randomly selected cells from a tumor xenograft that grew in a brain of a capmatinib treated mouse and presented a *KRAS* G12C mutation and an exon 19 deletion in *EGFR* (Figure 2D and E). Using hierarchical clustering, or dimensional reduction representations (tSNE), we grouped single cells based on their differential transcriptional profiles and identified two main subpopulations (Figure 3A and B). We hypothesized that these two subpopulations may represent tumor subclones driven by either *KRAS* or *EGFR* activating mutations. To test this hypothesis, we first defined EGFR and *KRAS* distinctive transcriptional signatures by comparing primary lung adenocarcinoma specimens’ mutant for *EGFR* or *KRAS* [27] (supplementary Tables S2 and S3, available at Annals of Oncology online). Remarkably, *KRAS*-activated genes were upregulated in the less abundant subclone, while *EGFR*-related genes were activated in the remaining tumor cells (Figure 3C and D). Indeed, we observed a significantly increased expression of the *KRAS*- or *EGFR*-signature genes in the minor and major subpopulation, respectively, supporting their distinct activities in the putative tumor subclones (Student’s t-test, Figure 3E and F). The putative *EGFR*-driven subclone showed a significant association to genes whose expression was altered following targeted EGFR inhibition *in vitro* (supplementary Figure S1A–D, available...
at *Annals of Oncology* online), further supporting a clonal separation of the oncogenes. Collectively, these results support the existence of two distinct tumor subclones driven by either *KRAS* or *EGFR* activating mutations. Surprisingly, we further noticed the increased expression of immune system related genes in the *KRAS*-driven subclone (supplementary Figure S1E and F, available at *Annals of Oncology* online). We analyzed the PD-L1 expression by IHC in patient brain metastasis, PDOX *KRAS* WT and PDOX *KRAS* Mut (supplementary Figure S2, available at *Annals of Oncology* online).

The presence of minor *KRAS* mutant clones could be a clinically relevant mechanism of resistance to EGFR-TKIs and/or c-MET inhibitors and remain undetectable by standard techniques (NGS, qPCR, Sanger sequencing). Consequently, we used the most sensitive genetic assay, ddPCR [23] for a retrospectively genetic profiling of *EGFR*-mutated lung cancer patient samples (Table 1). In the biopsies at the time of progression to EGFR-TKIs from 13 *EGFR*-mutated patients, we detected five *EGFR T790M* and three *KRAS G12C* mutant tumors. These patients were originally considered wild type for these alterations when evaluated with NGS (Table 1). Furthermore, none of the seven tumor samples evaluated from surgical early-stage NSCLC patients with the presence of mutation in *EGFR* and naïve to EGFR-TKIs presented wild type for these alterations when evaluated with NGS and PDOX [24-26]. (A) Brain Orthotic Patient-derived Xenograft (PDOX) models using the same fresh metastatic brain biopsy of our patient at the time of progression to osimertinib. (A) Different PDOX cohorts that received treatment with vehicle, osimertinib, cisplatin/ pemetrexed, afatinib, capmatinib and a combination of capmatinib and afatinib (capmatinib/afatinib); (A, B and E) Cis, cisplatin; Pem, pemetrexed; Cap, capmatinib; Afa, afatinib. (B) Representative images showing high similarity between patient brain metastasis and its PDOX (20×). (C) *MET* gene amplification by FISH in the PDOX (MET gene, green signals; CEN7, red signals; 100×). (D) Kaplan–Meier survival analysis for the different PDOX treated cohorts. (E) Genotyping of PDOX samples obtained from mice that progressed to the different treatments. VAF, variant allele frequency. (F) Representation of clonal evolution of the acquired resistance. *KRAS G12C* and *EGFR T790M* mutations were only detected by ddPCR in patient lesions. n. d., non-determined; ADC, adenocarcinoma.

Discussion

In summary, we observed how a lung adenocarcinoma presenting an activating deletion of exon 19 in the *EGFR* gene acquired a second *T790M* mutation in the same gene upon treatment with erlotinib, while *MET* amplification was detected after subsequent osimertinib. In the same line, previous studies showed how MET copy number gain causes gefitinib resistance in CNS lesions utilizing mouse *in vivo* imaging models [28]. At this point, we also detected *KRAS G12C* and *EGFR T790M* by ddPCR. Importantly, in a PDOX model, we demonstrated that this *MET* amplification is essential for lung cancer cell survival since capmatinib therapy proved very effective. Intriguingly, for the very first time, we show c-MET signaling inhibition with capmatinib to be more potent when combined with afatinib than as a single agent in our mouse model. This afatinib effect contrasted with its complete lack of activity as monotherapy. This benefit of combining afatinib could have been mediated by its previously described capacity to block ERBB3 or ERBB4 activations by heregulin ligand in EGFR mutant lung tumors [29]. This inhibition of ERBB3/4 or the inhibition of *EGFR* itself, are both possible mechanism that require further investigation. Our data suggest that this oncogenic ERBB activation would only be relevant for the survival of cancer cells addicted to hyperactive c-MET signaling. In this sense, c-MET and EGFR (ERBB1) form membrane heterodimers in normal and cancer cells leading to their trans-phosphorylation and activation of downstream MAPK pathway. Additionally, c-MET/KRAS/ERK signaling induces the transcription of EGFR ligand and EGFR activation as a positive feedback loop. Further analyses will be required to confirm the relevance of such crosstalk between EGFR or ERBB3/4 with c-MET as a molecular determinant of response to combined c-MET and EGFR blockade in advanced lung cancer.

Our results also evidence the extreme plasticity of lung adenocarcinoma genomes that evolve to adapt to as well as survive the pharmacological pressure of third-generation EGFR-TKIs. Could
this be a consequence of selecting *de novo* mutations in lung cancer genomes or is it reflective of the early coexistence of multiple genetic clones with distinctive capacities to resist target-directed therapies? Our findings support the hypothesis of lung adenocarcinomas consisting of a complex map of genetic clones ready for selection under effective pharmacological pressure. We clearly observed the emergence of \(\text{KRAS} \ G12C \) mutant clones upon blocking two upstream activating components of the MAPK pathway such as \(\text{EGFR} \) or \(\text{c-MET} \). Similarly, oncogenic \(\text{KRAS} \) mutations were described as resistance mechanisms to anti-\(\text{EGFR} \) antibodies in colorectal cancer [30, 31], a phenomenon that can also involve clonal enrichment upon treatment.

Indeed, we observed that drugs blocking \(\text{EGFR} \) or \(\text{c-MET} \) signaling preferentially promoted the emergence of genetic alterations in \(\text{EGFR} \), \(\text{MET} \) and \(\text{KRAS} \) genes; all essential components of the oncogenic TKR/KRAS/MAPK pathway. This particular genetic evolution confirms the strict addiction of lung tumors to TKR/KRAS/MAPK pathway as a driving force of drug-resistance and disease progression. Consistent with our aforementioned observations, subsequent therapy should be assessed as a combination of the EGFR inhibitor with \(\text{c-MET} \) inhibitors.

In these highly heterogeneous lung tumor samples, we also noted a subpopulation of cells presenting a distinctive \(\text{KRAS} \) gene expression signature enriched in immune-related components. Indeed, initial clinical data indicate that \(\text{KRAS} \) mutant lung adenocarcinomas could be more sensitive to immune checkpoint inhibitors. Thus, we also suggest immunotherapy as a later line of treatment of those patients with \(\text{EGFR} \) mutant lung tumors that progress to consecutive lines of \(\text{EGFR-TKIs} \) and present emergence of \(\text{KRAS} \) mutant as well as potentially immunosensitive clones.

Figure 3. Single-cell transcriptome profiles point to the presence of a \(\text{KRAS} \)-driven subclone. (A) Hierarchical clustering of 197 single cells (columns) derived from a capmatinib-resistant PDOX using the most variable gene sets [32]. Cells are grouped into two putative subclones (column labels) and correlating gene sets are summarized in aspects. Displayed are the most variable aspects (rows) and their importance (row colors). (B) Gene expression variances between cells displayed as t-distributed stochastic neighbor embedding (t-SNE) representation using previous defined distances and cluster identities (as in A). (C) Gene expression signatures derived from \(\text{KRAS} \) (upper panel) or \(\text{EGFR} \) (lower panel) mutant primary lung adenocarcinomas [27]. Gene expression levels of single cells are displayed as relative intensities [22]. Displayed are the 25 most variant genes and signatures are summarized in the panel above (orange: overrepresented; green: underrepresented). (D) Mutational signature intensities of single cells. Cells are separated by their signature expression levels for \(\text{EGFR} \) and \(\text{KRAS} \) mutations. Cells were assigned to clusters as in (A). Direct comparison of \(\text{KRAS} \) (E) or \(\text{EGFR} \) (F) signature scores between the putative subclones (\(\text{KRAS} \): red; \(\text{EGFR} \): black). Significant differences between groups (Student’s t-test) are indicated.
Finally, our data indicated that lung adenocarcinomas might evolve rapidly due to the surfacing of minor pre-existing genetic clones resistant to specific targeted therapies. Therefore, more complex therapies combining EGFR-TKIs with MET inhibitors and/or immunotherapy could be considered for lung cancer patients at earlier stages. This novel approach could prevent drug resistance and disease progression later on. For this reason, the clinical implementation of genetic technologies with higher sensitivity will be crucial in defining the genetic landscape of polyclonal tumors in patients’ candidate to target-directed therapies.

Acknowledgements

We want to acknowledge the Cellex Foundation for providing facilities and equipment, and Ayudas Merck Serono de Investigación 2016 for its support. We would like to thank to Amanda Wren for excellent technical assistance in writing the manuscript. We thank to Jose Jimenez and Irene Sansano for technical assistance with FFPE and immunohistochemistry.

Funding

This work was supported by the Spanish Ministries of Health and Fondo de Investigación Sanitaria-Fondo Europeo de Desarrollo Regional (FEDER) (PI14/01248, PI13-01339, PIE13/00022, PI16/01898); AECC Scientific Foundation (GCB14-2170); and Fundación Mutua Madrileña (AP150932014). HGP and HH are Miguel Servet researchers funded by the Spanish Institute of Health Carlos III (CPII14/00037, CP14/00229). PN laboratory is funded by the Tumor Biomarker Research Program of the Banco Bilbao Vizcaya Argentaria Foundation (FBBVA) (no grant numbers apply).

Disclosure

All authors have declared no conflicts of interest.

References

1. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–2388.
2. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13: 239–246.
3. Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3327–3334.
4. Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3: 75ra26.

Table 1. Twenty EGFR-mutated lung cancer samples were assessed retrospectively by a ddPCR assay

Patient sample	Gender	Smoking habit	Previous lines of treatment	Previous lines of TKI	Activating EGFR mutation	Baseline EGFR T790M (ddPCR)	Baseline KRAS G12C (ddPCR)	Progression to TKI EGFR T790M (ddPCR)	Progression to TKI KRAS G12C (ddPCR)	
1	Female	Former	2	2	Gefitinib Nazartinib	ex19del	N/A	N/A	13.35%	0.0027%
2	Female	Former	2	1	Erlotinib	ex19del	N/A	N/A	1.60%	0.14%
3	Female	Never	3	2	Erlotinib Osimertinib	p.L858R	N/A	N/A	WT	WT
4	Male	Former	4	1	Erlotinib	ex19del	N/A	N/A	WT	WT
5	Female	Never	4	2	Erlotinib Nazartinib	ex19del	N/A	N/A	76.30%	WT
6	Male	Former	4	2	Erlotinib Nazartinib	ex19del	N/A	N/A	12.20%	WT
7	Female	Former	3	2	Erlotinib Gefitinib	ex19del	N/A	N/A	WT	WT
8	Female	Never	1	1	Erlotinib	ex19del	N/A	N/A	WT	WT
9	Female	Never	3	2	Erlotinib Gefitinib	p.L858R	N/A	N/A	WT	0.75%
10	Female	Never	7	2	Erlotinib Gefitinib	p.L858R	N/A	N/A	WT	WT
11	Female	Never	4	3	Dacomitinib Nazartinib Osimertinib	p.L858R	N/A	N/A	95.75%	WT
12	Female	Never	4	3	Erlotinib Rociletinib Osimertinib	ex19del	N/A	N/A	WT	WT
13	Female	Former	7	3	Gefitinib Erlotinib Osimertinib	ex19del	N/A	N/A	WT	WT
14	Female	Never	Naive	0	Naive	ex19del	WT	WT	N/A	N/A
15	Male	Never	Naive	0	Naive	ex19del	WT	WT	N/A	N/A
16	Female	Former	Naive	0	Naive	p.L858R	WT	WT	N/A	N/A
17	Female	Never	Naive	0	Naive	ex19del	WT	WT	N/A	N/A
18	Male	Former	Naive	0	Naive	p.L858R	WT	WT	N/A	N/A
19	Female	Never	Naive	0	Naive	p.L858R	WT	WT	N/A	N/A
20	Female	Never	Naive	0	Naive	ex19del	WT	WT	N/A	N/A

Thirteen tumor samples from EGFR-mutated patients at the time of progression to EGFR-TKIs were analyzed. Seven biopsies were evaluated from surgical early-stage NSCLC patients with the presence of EGFR mutation and naive for EGFR-TKI therapy.
5. Cross DA, Ashton SE, Ghiorgiu S et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4: 1046–1061.

6. Walter AO, Sjin RT, Haringina MJ et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M mediated resistance in NSCLC. Cancer Discov 2015; 5: 1404–1415.

7. Park K, Han JY, Kim DW et al. 190TiP: ELUXA 1: phase II study of BI 1482694 (HM61713) in patients (pts) with T790M-positive non-small cell lung cancer (NSCLC) after treatment with an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI). J Thorac Oncol 2016; 11(4 Suppl): S139.

8. Jia Y, Juarez J, Li J et al. EGFR186 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGFR receptor. Cancer Res 2016; 76(6): 1591–1602.

9. Jänne PA, Yang JC, Kim DW et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015; 372: 1689–1699.

10. Sequist LV, Soria JC, Camidge DR. Update to rociletinib data with the RECIST confirmed response rate. N Engl J Med 2016; 374: 2296–2297.

11. Thress K, Pawelczak CP, Febb E et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 2015; 21: 560–562.

12. Chabon JJ, Simmons AD, Lovejoy AF et al. Circulating tumor DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016; 7: 11815.

13. Bersanelli M, Minari R, Bordi P et al. L718Q mutation as new mechanism of acquired resistance to AZD9291 in EGFR-mutated NSCLC. J Thorac Oncol 2016; 11(10): e121–e123.

14. Planchard D, Loriot Y, Andre F et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol 2015; 26: 2073–2078.

15. Eberlein CA, Stetson D, Markovets AA et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res 2015; 75: 2489–2500.

16. Ortiz-Cuaron S, Scheffler M, Plenker D et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res 2016; 22(19): 4837–4847.

17. Schildhaus HU, Schultheis AM, Ruschoff J et al. MET amplification status in therapy-naive adenocarcinomas and squamous cell carcinomas of the lung. Clin Cancer Res 2015; 21(4): 907–915.

18. Ruschoff J, Hanna W, Bileus M et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol 2012; 25: 637–650.

19. Scheffler M, Merkelbach-Bruse S, Bos M et al. Spatial tumor heterogeneity in lung cancer with acquired epidermal growth factor receptor-tyrosine kinase inhibitor resistance: targeting high-level MET-amplification and EGFR T790M mutation occurring at different sites in the same patient. J Thorac Oncol 2015; 10(6): e40–e43.

20. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 2015; 15: 451–452.

21. Fichtner I, Rolff J, Soong R et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 2008; 14: 6456–6468.

22. Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011; 83: 8604–8610.

23. Fichtner I, Rolff J, Soong R et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 2008; 14: 6456–6468.

24. Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011; 83: 8604–8610.

25. Jaitin DA, Kenigsberg E, Keren-Shaul H et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014; 343: 776–779.

26. Paul F, Arkin Y, Giladi A et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015; 163: 1663–1677.

27. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.

28. Nano S, Arai S, Wang W et al. MET copy number gain is associated with gefitinib resistance in leptomeningeal carcinomatosis of EGFR-mutant non-small cell lung cancer. Mol Cancer Ther 2017; 16(3): 506–515.

29. Yonesaka K, Kudo K, Nishida S et al. The pan-HER family tyrosine kinase inhibitor alatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget 2015; 6; 33602–33611.

30. Misale S, Yaeger R, Hobar S et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486: 532–536.

31. Diaz LA, Jr, Williams RT, Kinde I et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486: 537–540.

32. Fan J, Salathia N, Liu B et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 2016; 13: 241–244.