Nervous system diseases are associated with the severity and mortality of patients with COVID-19: a systematic review and meta-analysis

Ya Gao¹²†, Yamin Chen¹†, Ming Liu¹², Mingming Niu¹, Ziwei Song¹, Meili Yan¹, Jinhui Tian¹²,¹³*

1. Evidence-Based Medicine Centre, Lanzhou University, Lanzhou 730000, China
2. School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
3. Key Laboratory of Evidence-based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou 730000, China

†These authors contributed equally to this work.

* Correspondence to: Jinhui Tian. Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City, 730000, Gansu Province, China. (Email: tianjh@lzu.edu.cn).

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Abstract

Coronavirus Disease 2019 (COVID-19) has become a global pandemic. Previous studies showed that comorbidities in patients with COVID-19 are risk factors for adverse outcomes. This study aimed to clarify the association between nervous system diseases and severity or mortality in patients with COVID-19. We performed a systematic literature search of four electronic databases and included studies reporting the prevalence of nervous system diseases in COVID-19 patients with severe and non-severe disease or among survivors and non-survivors. The included studies were pooled into a meta-analysis to calculate the odds ratio (OR) with 95% confidence intervals (95%CI). We included 69 studies involving 17879 patients. Nervous system diseases were associated with COVID-19 severity (OR = 3.19, 95%CI: 2.37 to 4.30, $P < 0.001$) and mortality (OR = 3.75, 95%CI: 2.68 to 5.25, $P < 0.001$). Specifically, compared with the patients without cerebrovascular disease, patients with cerebrovascular disease infected with COVID-19 had a higher risk of severity (OR = 3.10, 95%CI: 2.21 to 4.36, $P < 0.001$) and mortality (OR = 3.45, 95% CI: 2.46 to 4.84, $P < 0.001$). Stroke was associated with severe COVID-19 disease (OR = 1.95, 95%CI: 1.11 to 3.42, $P = 0.020$). No significant differences were found for the prevalence of epilepsy (OR = 1.00, 95%CI: 0.42 to 2.35, $P = 0.994$) and dementia (OR = 2.39, 95%CI: 0.55 to 10.48, $P = 0.247$) between non-severe and severe COVID-19 patients.
There was no significant association between stroke (OR = 1.79, 95%CI: 0.76 to 4.23, P = 0.185) and epilepsy (OR = 2.08, 95%CI: 0.08 to 50.91, P = 0.654) and COVID-19 mortality. In conclusion, nervous system diseases and cerebrovascular disease were associated with severity and mortality of patients with COVID-19. Also, there might be confounding factors that influence the relationship between nervous system diseases and COVID-19 severity as well as mortality.

Keywords: COVID-19; Nervous system disease; Cerebrovascular disease; Severe illness; Mortality; Meta-analysis

1. **Introduction**

Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. The World Health Organization (WHO) claims that COVID-19 has become a global pandemic on March 11, 2020 [2]. As of October 30, 2020, a total of 44,888,869 confirmed cases were reported globally, of which 1,178,475 cases had resulted in mortality [3].

The previous study showed that comorbidities in patients with COVID-19 are risk factors for adverse outcomes and cerebrovascular disease was associated with severe COVID-19 disease, which needs to be monitored in the intensive care unit (ICU) care [4]. A meta-analysis [5] suggested that cerebrovascular disease was associated with the increased poor composite outcome (RR = 2.04, 95%CI: 1.43 to 2.91, P < 0.001) and another meta-analysis [6] showed similar results. However, the
existing meta-analyses only incorporated a small number of samples and most of the studies synthesised came from China. To date, there is still limited research regarding the concomitant association between nervous system diseases and COVID-19. Therefore, to address this gap in the literature, it is necessary to conduct a comprehensive meta-analysis. The purpose of this study was to clarify the association between nervous system diseases and severity or mortality in patients with COVID-19.

2. Methods

To ensure the high quality of our work, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to conduct our study [7]. We registered this review protocol in the International Prospective Register of Systematic Reviews (PROSPERO, CRD42020180567).

2.1. Eligibility criteria

We included case-control studies and cohort studies that met the following criteria: (1) patients have a laboratory-confirmed diagnosis of COVID-19 patients were diagnosed with COVID-19 by a laboratory test or according to the World Health Organization interim guidance [8]; (2) reported data of pre-existing nervous system diseases, such as cerebrovascular disease, stroke, and epilepsy between patients with severe and non-severe illness or between non-survivors and survivors; (3) published in English and Chinese.

We excluded studies with following characteristics: (1) studies with a sample size of fewer than 20 patients; (2) studies did not report data related to nervous system
diseases (e.g. cerebrovascular disease, stroke); (3) studies focused on only suspected cases or confirmed cases and suspected cases; (4) without comparisons (e.g. non-survivors versus survivors); (5) review articles, protocols, guidelines, consensus, comments, abstracts, letters, and editorials.

2.2. Literature search

We comprehensively identified all potentially relevant articles through a systematic literature search of the electronic databases: PubMed, EMBASE.com, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL). The searches were first performed on May 8, 2020 and updated on October 10, 2020. According to the indices of various databases, we used search terms as follows: “COVID-19”, “coronavirus disease-19”, “new coronavirus”, “2019-nCoV”, “novel corona virus”, “novel coronavirus”, “nCoV-2019”, “novel coronavirus pneumonia”, “2019 novel coronavirus”, “coronavirus disease 2019”, “SARS-CoV-2”, “severe acute respiratory syndrome coronavirus 2”, “clinical characteristic”, “clinical feature”, “risk factor”, “prognosis”, “comorbidity*”, “cerebrovascular disease*”, “nervous system disease*”, “brain”, “neurologic*”, “stroke”, “cerebral infarction”, “dementia”, and “epilepsy”. The search strategy of PubMed is shown in Appendix Word 1. We manually searched the reference lists of each included paper to identify potentially eligible studies.

2.3. Study selection process

Records were managed by EndNote X8 (Thomson Reuters (Scientific) LLC
Philadelphia, PA, US) software to exclude duplicates. At first, two authors independently (YG and YMC) screened the titles and abstracts of the records to determine if they met the inclusion criteria. Then, the same two authors found the full text of all potentially eligible studies and assessed the eligibility of each study according to the inclusion criteria. Disagreements were resolved by discussion or by a third reviewer (JHT). When identified multiple studies from the same team or studies with samples from the same settings, we decided which study to include based on the study time frame and detailed data. For studies with overlapping data, we included studies with larger sample sizes.

2.4. Data extraction and quality assessment

We used Microsoft Excel 2019 to construct a standard form to extract research data. The data abstracted included: (1) study characteristics (first author, year of publication, journal name, publication language, country of the first author, recruitment time frame, study design, study setting); (2) population characteristics (sex, age, sample size); (3) outcomes of interest (number of nervous system diseases patients, severe cases, non-severe cases, non-survivors, and survivors). The severe disease was defined as patients with acute respiratory distress syndrome (ARDS), needing mechanical ventilation, vital life support, or intensive care unit admission [9-12]. We defined nervous system diseases according to international classification of diseases -11 (ICD-11) [13, 14].

We used the Newcastle-Ottawa quality assessment scale (NOS) to assess the quality of the included studies [15]. Studies with more than 7 stars were regarded as
high quality, 5-7 stars were regarded as moderate quality, and lower than 5 stars were regarded as low quality. In our study, one reviewer (YG, YMC, ML, or ZWS,) evaluated the quality of each study according to the scale and another (MLY and MMN) reviewed it. In the case of incongruity, the third researcher (JHT) was invited to discuss.

2.5. Statistical analysis

We used Stata (13.0; Stata Corporation, College Station, Texas, USA Stata) to perform all meta-analyses. We conducted pairwise meta-analyses to compute the odds ratio (OR) and 95% confidence interval (CI) to estimate the association between nervous system diseases and COVID-19 severity and mortality. The meta-analyses used the inverse variance method with the random-effects model to estimate the average effect and its precision. We used the I^2 statistic and Cochran's Q test to assess statistical heterogeneity. The I^2 statistic results were interpreted as < 25%, 26-50%, and > 50%, representing low, moderate, and high heterogeneity, respectively [16].

Sensitivity analyses were applied by excluding studies published in Chinese to assess the stability of results. We further performed univariate meta-regression analyses to assess if the OR varied with study sample size. The funnel plot and Egger's test were used to detect publication bias for outcomes with studies no fewer than ten. The statistical level of significance was set at $P < 0.05$.

3. Results

3.1. Screening results

16286 records were identified through the literature search. After removing duplicates, 7360 records were excluded, and after reviewing the titles and abstracts, 8474 records were excluded. Through full-text evaluation of the remaining 452 records, 383 studies were further excluded, we finally included 69 studies [17-85] in our meta-analyses. The flowchart of the screening process is presented in Figure 1.

3.2. General characteristics and quality of studies

All included studies were published in 2020, incorporated patients between December 11, 2019 and June 27, 2020. 68 studies [17-84] published in English and 1 study [85] published in Chinese. 54 studies [18-24, 29-31, 34-39, 45-52, 55, 56, 59-85] were from China, 3 studies [17, 32, 54] were from the USA, 3 studies [25, 40, 44] were from Korea, 2 studies [26, 27] were from Italy, and the remaining 7 studies [28, 33, 41-43, 57, 58] were from Austria, Iran, Israel, Saudi Arabia, Spain, Turkey, and UK. The sample size per study ranged from 27 to 1,590 (total 17,879; 9,686 males). Considering methodological quality in items of NOS scale, 23 studies [17, 19, 21, 24, 27-29, 33, 34, 37, 46, 49, 55, 58, 61, 62, 66, 68-70, 74, 76, 77] were rated as high quality (>7 stars) and 46 studies [18, 20, 22, 23, 25, 26, 30-32, 35, 36, 38-45, 47, 48, 50-54, 56, 57, 59, 60, 63-65, 67, 71-73, 75, 78-84] were rated as moderate quality (5 to 7 stars). The detailed characteristics and quality of the included studies are summarized in Table 1.
3.3. Association between nervous system diseases and the severity and mortality of COVID-19

42 studies [17, 22, 25, 26, 29, 30, 33-35, 37-39, 41, 43-45, 47-51, 53, 55, 56, 58-61, 65, 67-72, 74, 76, 79-81, 84, 85] totaling 11,213 patients reported prevalence of nervous system diseases among COVID-19 patients with the severe and non-severe disease. The meta-analysis demonstrated that nervous system diseases were associated with COVID-19 severity (OR = 3.19, 95%CI: 2.37 to 4.30, $P < 0.001$; $I^2 = 31.0\%$) (Figure 2). We observed a significant association (OR = 3.19, 95%CI: 2.36 to 4.32, $P < 0.001$) between nervous system diseases and COVID-19 severity after excluding a Chinese study [85] (Appendix Figure 1).

23 studies [18-21, 23, 24, 27, 31, 32, 34, 36, 42, 46, 52, 62-64, 73, 75, 77, 78, 82, 83], involving 6,900 patients provided nervous system diseases data between non-survivors and survivors. The result revealed that nervous system diseases were associated with a significantly enhanced risk of death (OR = 3.75, 95%CI: 2.68 to 5.25, $P < 0.001$; $I^2 = 35.6\%$) (Figure 3).

3.4. Association between cerebrovascular disease and the severity and mortality of COVID-19

Thirty-seven studies [17, 29, 30, 34, 35, 37-39, 43, 45, 47-51, 53, 54, 56-61, 65-70, 72, 74, 76, 79-81, 84, 85], totaling 10,015 samples, reported the prevalence of cerebrovascular disease between severe and non-severe COVID-19 patients. Cerebrovascular disease was observed to be associated with a significantly enhanced
risk of severe COVID-19 disease (OR = 3.10, 95%CI: 2.21 to 4.36, \(P < 0.001; \ I^2 = 38.6\% \)), Figure 4. Sensitivity analysis by excluding a Chinese study [85] showed similar results (OR = 3.10, 95%CI: 2.19 to 4.30), Appendix Figure 2.

24 studies [18-21, 23, 24, 27, 28, 31, 32, 34, 36, 40, 42, 52, 62-64, 73, 75, 77, 78, 82, 83], including 6,822 patients, reported cerebrovascular disease data between non-survivors and survivors. The meta-analysis demonstrated that cerebrovascular disease was associated with death in COVID-19 patients (OR = 3.45, 95% CI: 2.46 to 4.84, \(P < 0.001; \ I^2 = 35.2\% \)) (Figure 5).

3.5. Association between stroke, epilepsy, dementia and the severity and mortality of COVID-19

As for specific nervous system diseases, our meta-analysis showed that stroke was associated with severe COVID-19 disease (8 studies [17, 38, 50, 57, 65, 66, 72, 81], 3,178 patients; OR = 1.95, 95%CI: 1.11 to 3.42, \(P = 0.020; \ I^2 = 30.2\% \)) (Figure 6A). There were no significant differences in the prevalence of epilepsy (2 studies [41, 57], 1,003 patients; OR = 1.00, 95%CI: 0.42 to 2.35, \(P = 0.994; \ I^2 = 0.0\% \)) and dementia (3 studies [44, 54, 66], 1,041 patients; OR = 2.39, 95%CI: 0.55 to 10.48, \(P = 0.247; \ I^2 = 61.9\% \)) between severe and non-severe patients (Figure 6B and 6C).

No significant differences were found in the prevalence of stroke (4 studies [21, 40, 73, 78], 936 patients; OR = 1.79, 95%CI: 0.76 to 4.23, \(P = 0.185; \ I^2 = 13.0\% \)) and epilepsy (2 studies [28, 40], 167 patients; OR = 2.08, 95%CI: 0.08 to 50.91, \(P = 0.654; \ I^2 = 92.0\% \)) between non-survival and survival patients (Figure 7).
3.6. Meta-regression analyses

Univariate meta-regression analyses revealed that the sample size of each study was not the source of heterogeneity or the factor affecting the association between nervous system diseases and COVID-19 severity or mortality (Appendix Figures 3 and 4) and the association between cerebrovascular disease and COVID-19 severity or mortality (Appendix Figures 5 and 6).

3.7. Publication bias

The funnel plot and Egger’s test revealed that no statistically significant publication bias of nervous system diseases associated with severity ($P = 0.090$) (Appendix Figure 7) and mortality of COVID-19 ($P = 0.061$) (Appendix Figure 8). We found that there was a possibility of publication bias for the association between cerebrovascular disease and COVID-19 severity ($P = 0.011$) (Appendix Figure 9). There was no statistically significant publication bias for the association between cerebrovascular disease and COVID-19 mortality ($P = 0.100$) (Appendix Figure 10).

4. Discussion

4.1. Principal findings

This study included 69 studies and systematically assessed the association between nervous system diseases and the severity and mortality of patients with COVID-19. Specifically, we also conducted meta-analyses to explore the association between cerebrovascular disease and severity and mortality of patients with COVID-19, as well as the association between stroke, epilepsy, dementia and
COVID-19 severity and mortality. Our meta-analyses revealed that nervous system diseases were associated with severity and mortality of patients with COVID-19. Cerebrovascular disease was associated with severity and mortality of patients with COVID-19. Severe COVID-19 patients were more likely to have a stroke compared with non-severe patients. There were no significant associations between epilepsy and dementia and COVID-19 severity or mortality. Sensitivity analyses suggested that the results did not change substantially after excluding studies published in Chinese.

4.2. Comparison with other studies

A previous meta-analysis, including 3 studies with a total sample size of 1,299, demonstrated that a significant relationship between patients with severe COVID-19 and cerebrovascular disease (OR = 3.89, 95% CI: 1.64 to 9.22, \(P = 0.002 \)) [86]. Another meta-analysis, including 7 studies involving 2,585 patients, showed that cerebrovascular disease was significantly associated with severe COVID-19 disease (RR = 1.88, 95% CI: 1.00 to 3.51, \(P = 0.05 \)) and 5 studies involving 936 patients revealed that cerebrovascular disease was associated with COVID-19 mortality (RR = 2.38, 95%CI: 1.92 to 2.96, \(P < 0.001 \)) [5]. Compared with these two studies, our study reached similar conclusions. However, it has distinct advantages and our results are more comprehensive. Our study meta-analyzed 37 studies involving a total of 10,015 COVID-19 patients between cerebrovascular disease and COVID-19 severity, at the same time, 24 studies with a total sample size of 6,822 between cerebrovascular disease and COVID-19 mortality. Therefore, our meta-analysis has the advantage of expanding the sample size and including more research. To the best of our knowledge,
the two previous meta-analyses included studies that completely came from China. In our study, we included 15 studies from the USA, Korea, Italy, UK, Austria, Iran, Israel, Saudi Arabia, Spain, and Turkey, which expanded our research scope. Nevertheless, we cannot deny that most of the studies we included were also from China. Another difference between our study and previous meta-analyses is that we also analyzed the relationship between detailed nervous system diseases including stroke, epilepsy, dementia and the severity and mortality of patients with COVID-19. Furthermore, we also performed sensitivity analyses and meta-regression analyses and investigated the publication bias, and these analyses indicated that the results of our study were stable. Therefore, the results of our study are more systematic and comprehensive.

4.3. Implications for research and practice

Previous studies have reported that SARS and MERS patients with nervous system diseases are at a higher risk of poor outcomes [87, 88]. Our study revealed that nervous system diseases were associated with severity and mortality of patients with COVID-19. Previous studies have shown that SARS-CoV-1 can invade the nerves and cause direct central nervous system infection [89, 90], which may also be one of the pathogenic pathways of SARS-CoV-2. Furthermore, the SARS-CoV-2 virus may enter the cerebral circulation, and the interaction between the viral spike proteins and the ACE2 receptors expressed in the brain capillary endothelium may destroy the blood-brain barrier [91, 92]. SARS-CoV-2 can infect cardiomyocytes through ACE2 receptors and cause vascular damage and inflammation, making thrombus easy to
form and increasing the risk of stroke [93, 94]. COVID-19 could also cause viral encephalitis and hemorrhagic necrosis in the mesial temporal lobes and thalamus [94]. These may be the potential mechanisms for the poor prognosis of COVID-19 patients with nervous system diseases. However, the exact mechanism of increased severity of COVID-19 in patients with nervous system diseases remains unclear, which requires further research to clarify.

Our meta-analyses found that cerebrovascular disease was associated with severity and mortality of patients with COVID-19. These findings highlight the need for neurologists to be vigilant to the high risk of serious illness and death associated with COVID-19 infection in patients with nervous system diseases. A systematic review showed that an increasing number of reports of COVID-19 patients with neurological disorders have added emergent experimental models with neuro-invasion, which is a reasonable concern because SARS-CoV-2 is a new neuropathogen [95]. However, at present, there is a lack of treatment strategies for COVID-19 patients with nervous system diseases. Therefore, protecting patients with nervous system diseases from COVID-19 is a problem worthy of our attention. To the best of our knowledge, there is currently no recommendation regarding the treatment strategies for nervous system diseases patients with COVID-19. The results of our meta-analysis also provide the latest references for the development of new guidelines. There is an urgent need for high-quality evidence-based guidelines to clarify the protective measures for patients with nervous system diseases, as well as care and treatment strategies for nervous system diseases patients with COVID-19.
4.4. Strengths and limitations

Despite comprehensive analyses, our meta-analyses have many limitations. First, we found that some patients of included studies were still hospitalized at the end of the study and no studies reported the specific time period of nervous system diseases. Second, since we included cohort studies and case-control studies, there might be confounding factors that influence the relationship between nervous system diseases and COVID-19 severity as well as mortality. Third, there was much variation in eligibility for SARS-CoV-2 testing between studies or over time within studies. Fourth, we conducted meta-regression analysis and sensitivity analysis to explore the sources of heterogeneity, but the selected factors were not the sources of heterogeneity and the results of some meta-analyses may be affected by the high heterogeneity. Finally, the total number of patients with nervous system diseases included in the analyses is relatively small even in this comprehensive literature review, resulting in some wide confidence intervals. As described above, these limitations showed that caution is required before drawing any firm conclusions in the absence of randomized controlled trials.

5. Conclusions

Nervous system diseases were associated with severity and mortality of patients with COVID-19. Among them, cerebrovascular disease was associated with a high risk of severity and mortality of patients with COVID-19. However, due to the limitations of this study, more high-quality, large sample, multicenter randomized controlled trials are needed to provide robust evidence to support clinical practice.
Abbreviations

COVID-19: Corona Virus Disease 2019; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; NOS: Newcastle-Ottawa quality assessment scale; OR: odds ratio; CI: confidence interval.

Acknowledgments

The authors thank all investigators and supporters involved in this study.

Authors’ contributions

YG, YMC, and JHT planned and designed the study. YG, YMC, ML, MMN, MLY, and ZWS participated in the literature search and data collection. YG, YMC, and ML analyzed the data. YG and YMC drafted the manuscript. YG, YMC, and JHT revised the manuscript. All authors read and approved the final manuscript.

Funding

This study was funded by the Emergency Research Project of Key Laboratory of Evidence-based Medicine and Knowledge Translation of Gansu Province (Grant No. GSEBMKT-2020YJ01).
Role of the Funding Source

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Data Availability Statement

All datasets generated for this study are included in the manuscript.

References

(1) Xu XW, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ (Clinical research ed) 2020; 368: m606.
(2) WHO Director-General's opening remarks at the media briefing on COVID-19: 11 March 2020. Published March 11, 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

(3) World Health Organization. Coronavirus disease (COVID-2019) situation reports. https://www.who.int/publications/m/item/weekly-operational-update---30-october-2020.

(4) Wang D, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-1069.

(5) Pranata R, et al. Impact of Cerebrovascular and Cardiovascular Diseases on Mortality and Severity of COVID-19 - Systematic Review, Meta-analysis, and Meta-regression. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 2020; 29(8): 104949.

(6) Xu J, et al. The Association of Cerebrovascular Disease with Adverse Outcomes in COVID-19 Patients: A Meta-Analysis Based on Adjusted Effect Estimates. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 2020; 29(11): 105283.

(7) Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 2009; 339: b2700.

(8) World Health Organization. Clinical management of severe acute respiratory
infection (SARI) when COVID-19 disease is suspected: Interim guidance V 1.2. March 13, 2020.
https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. Accessed October 20, 2020.

(9) Liu M, et al. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. *The Journal of Infection* 2020; 81(3): e93-e95.

(10) Gao Y, et al. Association between tuberculosis and COVID-19 severity and mortality: A rapid systematic review and meta-analysis. *Journal of medical virology* 2020. doi: 10.1002/jmv.26311.

(11) Henry BM, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. *Clinical chemistry and laboratory medicine* 2020; 58(7): 1021-1028.

(12) Gao Y, et al. Impacts of immunosuppression and immunodeficiency on COVID-19: A systematic review and meta-analysis. *The Journal of Infection* 2020; 81(2): e93-e95.

(13) Shakir R, et al. Revising the ICD: stroke is a brain disease. *Lancet (London, England)* 2016; 388(10059): 2475-2476.

(14) The Lancet. ICD-11. *Lancet (London, England)* 2019; 393(10188): 2275.

(15) Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of
the quality of nonrandomized studies in meta-analyses. *European journal of epidemiology* 2010; **25**: 603–605.

(16)**Higgins JP, et al.** Measuring inconsistency in meta-analyses. *BMJ (Clinical research ed)* 2003; **327**(7414): 557-560.

(17)**Argenziano MG, et al.** Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. *BMJ (Clinical research ed)* 2020; **369**: m1996.

(18)**Cao J, et al.** Clinical Features and Short-term Outcomes of 102 Patients with Corona Virus Disease 2019 in Wuhan, China. *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America* 2020;71(15):748-755.

(19)**Chen T, et al.** Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. *BMJ (Clinical research ed)* 2020; **368**: m1091.

(20)**Chen T, et al.** Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. *The journals of gerontology Series A, Biological sciences and medical sciences* 2020;75(9):1788-1795.

(21)**Chen X, et al.** Laboratory abnormalities and risk factors associated with in-hospital death in patients with severe COVID-19. *Journal of clinical laboratory analysis* 2020: e23467.

(22)**Chen X, et al.** Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. *Clinical infectious diseases: an official publication of the*
Infectious Diseases Society of America 2020;71(8):1937-1942.

(23)**Cheng A, et al.** Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients. *International journal of antimicrobial agents* 2020; 56(3): 106110.

(24)**Cheng L, et al.** Prognostic value of serum amyloid A in patients with COVID-19. *Infection* 2020; 48(5): 715-722.

(25)**Chon Y, et al.** Adverse Initial CT Findings Associated with Poor Prognosis of Coronavirus Disease. *Journal of Korean medical science* 2020; 35(34): e316.

(26)**Colombi D, et al.** Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia. *Radiology* 2020; 296(2): E86-e96.

(27)**d'Arminio Monforte A, et al.** The importance of patients' case-mix for the correct interpretation of the hospital fatality rate in COVID-19 disease. *International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases* 2020; 100: 67-74.

(28)**Dupley L, Oputa TJ, Bourne JT.** 30-day mortality for fractured neck of femur patients with concurrent COVID-19 infection. *European journal of orthopaedic surgery & traumatology: orthopedie traumatologie* 2020: 1-7.

(29)**Feng Y, et al.** COVID-19 with Different Severity: A Multicenter Study of Clinical Features. *American journal of respiratory and critical care medicine* 2020;201(11):1380-1388.

(30)**Fu J, et al.** The value of serum amyloid A for predicting the severity and recovery of COVID-19. *Experimental and therapeutic medicine* 2020; 20(4):
3571-3577.

(31) Gao S, et al. Risk factors influencing the prognosis of elderly patients infected with COVID-19: a clinical retrospective study in Wuhan, China. Aging (Albany NY) 2020; 12(13): 12504-12516.

(32) Gayam V, et al. Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York. Journal of medical virology 2020;93(2):812-819.

(33) Götzinger F, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. The Lancet Child & adolescent health 2020; 4(9): 653-661.

(34) Guan WJ, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. The European respiratory journal 2020;55(5):2000547.

(35) Han MF, et al. Assessing SARS-CoV-2 RNA levels and lymphocyte/T cell counts in COVID-19 patients revealed initial immune status as a major determinant of disease severity. Medical Microbiology and Immunology 2020;209(6):657-668.

(36) Hu H, Yao N, Qiu Y. Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients With Novel Coronavirus Disease. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine 2020; 27(6): 461-468.

(37) Hu L, et al. Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Hospitalized Patients in Wuhan, China. Clinical infectious diseases : an official
publication of the Infectious Diseases Society of America 2020;71(16):2089-2098.

(38) Huang H, et al. Predictors of coronavirus disease 2019 severity: A retrospective study of 64 cases. *Japanese journal of infectious diseases* 2020;74(1):54-60.

(39) Huang Q, et al. Clinical characteristics and drug therapies in patients with the common-type coronavirus disease 2019 in Hunan, China. *International journal of clinical pharmacy* 2020; 42(3): 837-845.

(40) Hwang JM, et al. Neurological diseases as mortality predictive factors for patients with COVID-19: a retrospective cohort study. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology* 2020; 41(9): 2317-2324.

(41) Itelman E, et al. Clinical Characterization of 162 COVID-19 patients in Israel: Preliminary Report from a Large Tertiary Center. *The Israel Medical Association journal: IMAJ* 2020; 22(5): 271-274.

(42) Javanian M, et al. Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: a retrospective cohort study. *Romanian journal of internal medicine = Revue roumaine de medecine interne* 2020; 58(3): 161-167.

(43) Kutluhan MA, et al. Assessment of clinical features and renal functions in Coronavirus disease-19: A retrospective analysis of 96 patients. *International Journal of Clinical Practice* 2020;74(12):e13636.

(44) Lee JY, et al. Epidemiological and clinical characteristics of coronavirus disease 2019 in Daegu, South Korea. *International journal of infectious diseases : IJJID :*
official publication of the International Society for Infectious Diseases 2020; 98: 462-466.

(45) Lei S, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. *EClinicalMedicine* 2020: 100331.

(46) Li M, et al. Analysis of the Risk Factors for Mortality in Adult COVID-19 Patients in Wuhan: A Multicenter Study. *Frontiers in medicine* 2020; 7: 545.

(47) Li Q, et al. Clinical Characteristics of SARS-CoV-2 Infections Involving 325 Hospitalized Patients outside Wuhan. *Research Square* 2020: 1-15.

(48) Li T, et al. Clinical characteristics of 312 hospitalized older patients with COVID-19 in Wuhan, China. *Archives of gerontology and geriatrics* 2020; 91: 104185.

(49) Liu Q, et al. Associations between serum amyloid A, interleukin-6, and COVID-19: A cross-sectional study. *Journal of clinical laboratory analysis* 2020: e23527.

(50) Liu S, et al. Clinical characteristics and risk factors of patients with severe COVID-19 in Jiangsu province, China: a retrospective multicentre cohort study. *BMC infectious diseases* 2020; 20(1): 584.

(51) Lu L, et al. New-onset acute symptomatic seizure and risk factors in Corona Virus Disease 2019: A Retrospective Multicenter Study. *Epilepsia* 2020; 61(6):e49-e53.

(52) Luo X, et al. Prognostic value of C-reactive protein in patients with COVID-19.
Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2020;71(16):2174-2179.

(53)Lyu PJ, et al. The Performance of Chest CT in Evaluating the Clinical Severity of COVID-19 Pneumonia: Identifying Critical Cases Based on CT Characteristics. Investigative Radiology 2020; 55(7): 412-421.

(54)Maeda T, et al. The association of interleukin-6 value, interleukin inhibitors, and outcomes of patients with COVID-19 in New York City. Journal of Medical Virology 2020. doi: 10.1002/jmv.26365.

(55)Pan L, et al. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. The American journal of gastroenterology 2020;115(5):766-773.

(56)Qin C, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2020;71(15):762-768.

(57)Romero-Sánchez CM, et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020; 95(8): e1060-e1070.

(58)Shabrawishi M, et al. Clinical, radiological and therapeutic characteristics of patients with COVID-19 in Saudi Arabia. PloS one 2020; 15(8): e0237130.

(59)Wang CZ, et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Annals of Translational Medicine 2020; 8(9):593.

(60)Wang D, et al. Correlation analysis between disease severity and clinical and
biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive study. BMC infectious diseases 2020;20(1):519.

(61) **Wang D, et al.** Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *Jama* 2020;323(11):1061-1069.

(62) **Wang D, et al.** Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. *Critical care (London, England)* 2020; 24(1):188.

(63) **Wang F, et al.** Establishing a model for predicting the outcome of COVID-19 based on combination of laboratory tests. *Travel medicine and infectious disease* 2020; 36: 101782.

(64) **Wang L, et al.** Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. *The Journal of infection* 2020;80(6):639-645.

(65) **Wang L, et al.** Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. *American journal of nephrology* 2020: 1-6.

(66) **Wang W, et al.** Clinical features and potential risk factors for discerning the critical cases and predicting the outcome of patients with COVID-19. *Journal of clinical laboratory analysis* 2020: e23547.

(67) **Wang Y, et al.** Clinical Characteristics of Patients with Severe Pneumonia Caused by the SARS-CoV-2 in Wuhan, China. *Respiration; international review of*
thoracic diseases 2020; 99(8): 649-657.

(68) Wang Y, et al. Clinical Characteristics of Patients Infected With the Novel 2019 Coronavirus (SARS-Cov-2) in Guangzhou, China. Open forum infectious diseases 2020; 7(6): ofaa187.

(69) Wei Y, et al. Clinical characteristics of 276 hospitalized patients with coronavirus disease 2019 in Zengdu District, Hubei Province: a single-center descriptive study. BMC infectious diseases 2020; 20(1): 549.

(70) Wu G, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. The European respiratory journal 2020; 56(2):2001104.

(71) Wu J, et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). Journal of internal medicine 2020;288(1):128-138.

(72) Wu S, et al. Identification and validation of a novel clinical signature to predict the prognosis in confirmed COVID-19 patients. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2020;71(12):3154-3162.

(73) Xie JF, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Medicine 2020;46(10):1863-1872.

(74) Yan X, et al. Clinical Characteristics and Prognosis of 218 Patients With COVID-19: A Retrospective Study Based on Clinical Classification. Frontiers in
(75) Yan Y, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. *BMJ open diabetes research & care* 2020; 8(1):e001343.

(76) Yang Q, et al. Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. *Journal of clinical pharmacy and therapeutics* 2020; 45(4): 609-616.

(77) Yang X, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *The Lancet Respiratory medicine* 2020; 8(5):475-481.

(78) Yuan M, et al. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. *PloS one* 2020; 15(3): e0230548.

(79) Zhang G, et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. *Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology* 2020; 127: 104364.

(80) Zhang H, et al. Clinical and hematological characteristics of 88 patients with COVID-19. *International journal of laboratory hematology* 2020; 42(6):780-787.

(81) Zhang JJ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Allergy* 2020; 75(7):1730-1741.

(82) Zhang L, et al. Diarrhea and altered inflammatory cytokine pattern in severe coronavirus disease 2019: Impact on disease course and in-hospital mortality. *Journal of gastroenterology and hepatology* 2020. doi: 10.1111/jgh.15166.
(83) Zhao Y, et al. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. *Infectious diseases of poverty* 2020; 9(1): 108.

(84) Zheng F, et al. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. *European review for medical and pharmacological sciences* 2020; 24(6): 3404-3410.

(85) Zou W, et al. [Comparison of Recovery Phase CT Features between Mild/moderate and Severe/critical Coronavirus Disease 2019 Patients]. *Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sinicae* 2020; 42(3): 370-375.

(86) Wang B, et al. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. *Aging* 2020; 12(7): 6049-6057.

(87) Chen CY, et al. Clinical features and outcomes of severe acute respiratory syndrome and predictive factors for acute respiratory distress syndrome. *Journal of the Chinese Medical Association : JCMA* 2005; 68(1): 4-10.

(88) Lee SY, Khang YH, Lim HK. Impact of the 2015 Middle East Respiratory Syndrome Outbreak on Emergency Care Utilization and Mortality in South Korea. *Yonsei medical journal* 2019; 60(8): 796-803.

(89) Gu J, et al. Multiple organ infection and the pathogenesis of SARS. *The Journal of experimental medicine* 2005; 202(3): 415-424.

(90) Xu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2005; 41(8): 1089-1096.
(91) Patel U, et al. Pre-existing cerebrovascular disease and poor outcomes of COVID-19 hospitalized patients: a meta-analysis. *Journal of neurology* 2020: 1-8.

(92) Baig AM, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. *ACS chemical neuroscience* 2020; 11(7): 995-998.

(93) Hamming I, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. *The Journal of pathology* 2004; 203(2): 631-637.

(94) Lee KW, et al. Stroke and Novel Coronavirus Infection in Humans: A Systematic Review and Meta-Analysis. *Frontiers in neurology* 2020; 11: 579070.

(95) Montalvan V, et al. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. *Clinical neurology and neurosurgery* 2020; 194: 105921.

Figure legends
Figure 1. The flowchart of the screening process

Figure 2. Association between nervous system diseases and the severity of
COVID-19

Figure 3. Association between nervous system diseases and the mortality of COVID-19

Figure 4. Association between cerebrovascular disease and the severity of COVID-19
Figure 5. Association between cerebrovascular disease and the mortality of COVID-19
Figure 6. Association between (6A) stroke, (6B) epilepsy, (6C) dementia and the severity of COVID-19
Figure 7. Association between (7A) stroke and (7B) epilepsy and the mortality of COVID-19.
Table 1. Characteristics of included studies.

Study	Year	Country	Publication Language	Recruitment time frame	Sample	Age, years	Sex	NOS	
Argenziano MG [17]	2020	USA	English	2020.3.1-2020.4.15	1000	61.7±17.5	Male 596	404	8
Cao JL [18]	2020	China	English	2020.1.3-2020.2.1	102	54(37-67)	Female 53	49	6
Chen T [19]	2020	China	English	2020.1.13-2020.2.12	274	62(44-70)	Male 171	103	8
Chen TL [20]	2020	China	English	2020.1.1-2020.2.10	55	74(65-91)	Female 34	21	6
Chen X [21]	2020	China	English	2020.2.3-2020.2.20	73	66(59-72.3)	Male 42	31	8
Chen XH [22]	2020	China	English	2020.2.1-2020.2.19	48	64.6±18.1	Male 37	11	7
Cheng AY [23]	2020	China	English	2020.2.8-2020.3.11	305	65(52-71)	Male 184	121	7
Cheng L [24]	2020	China	English	2020.1.3-2020.2.26	89	59.7±14.2	Male 49	40	8
Chon Y [25]	2020	Korea	English	2020.2.22-2020.4.3	281	61.5±5.5	Male 75	206	5
Colombi D [26]	2020	Italy	English	2020.2.17-2020.3.10	236	68(95%CI:66-70)	Male 177	59	6
d’Arminio Monforte A [27]	2020	Italy	English	2020.2.24-2020.5.17	539	66(54-78)	Male 347	192	9
Dupley L [28]	2020	UK	English	2020.3.1-2020.4.26	64	83±9	Female 29	35	8
Feng Y [29]	2020	China	English	2020.1.1-2020.2.15	476	53(40-64)	Male 271	205	8
Fu J [30]	2020	China	English	2020.1.21-2020.3.4	35	47.94±15	Male 13	22	6
Gao S [31]	2020	China	English	2020.1.23-2020.2.29	210	71(67-77)	Female 101	109	7
Gayam V [32]	2020	USA	English	2020.3.1-2020.4.9	408	67(56-76)	Female 231	177	6
Götzinger F [33]	2020	Austria	English	2020.4.1-2020.4.24	582	5(0.5-12.0)	Male 311	271	9
Guan WJ [34]	2020	China	English	2019.12.11-2020.1.31	1590	48.9±16.3	Female 904	686	8
Han MF [35]	2020	China	English	NR	154	42.4	Male 86	68	7
Hu H [36]	2020	China	English	2020.2.7-2020.3.7	105	60.82±16.32	Male 62	43	7
Hu L [37]	2020	China	English	2020.1.8-2020.2.20	323	61(23-91)	Female 166	157	8
Huang HF [38]	2020	China	English	2020.1.13-2020.3.10	64	47.8±18.5	Male 37	27	6

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Name	Country	Language	Start Date	End Date	Duration	Survivors	Non-Survivors	Code
Huang Q [39]	China	English	2020.1.17	2020.2.10	54	41(31-51)	28	7
Hwang JM [40]	Korea	English	2020.2.1-2020.3.25		103	67.62±15.32	52	6
Itelman E [41]	Israel	English	2020.2-2020.4.10		162	52±20	105	6
Javanian M [42]	Iran	English	2020.2.25-2020.3.12		100	60.12±13.87	51	9
Kutluhan MA [43]	Turkey	English	2020.3.11-2020.5.10		96	58±18.5	57	7
Lee JY [44]	Korea	English	2020.2.21-2020.4.2		694	52.1±18.29	212	7
Lei SQ [45]	China	English	2020.1.2-2020.2.5		34	55(43-63)	14	20
Li M [46]	China	English	2019.12.26-2020.2.25		245	54(37-64)	118	8
Li Q [47]	China	English	2020.1.20-2020.2.29		325	51(36-64)	167	7
Li T [48]	China	English	2020.2.1-2020.3.31		312	69.2±7.3	187	6
Liu Q [49]	China	English	2020.1.23-2020.2.29		84	51(37-59)	45	8
Liu SQ [50]	China	English	2020.1.10-2020.3.15		625	44.44±17.19	329	9
Lu L [51]	China	English	2020.1.18-2020.2.18		304	44(33-59.25)	182	7
Luo XM [52]	China	English	2020.1.30-2020.2.20		298	57(40-69)	150	7
Lyu PJ [53]	China	English	2020.1.15-2020.2.14		51	54±17	29	7
Maeda T [54]	USA	English	2020.3.13-2020.3.31		224	63±17	127	7
Pan L [55]	China	English	2020.1.18-2020.2.28		103	52.91±15.98	55	9
Qin C [56]	China	English	2020.1.10-2020.2.12		452	58(47-67)	235	7
Romero-Sánchez CM [57]	Spain	English	2002.3.1-2020.4.1		841	66.42±14.96	473	6
Shabrawishi M [58]	Saudi Arabia	English	2020.3.12-2020.3.31		150	46.1±15.3	90	8
Wang CZ [59]	China	English	2020.1.23-2020.2.13		45	39(16-62)	23	22
Wang D [60]	China	English	2020.1.15-2020.2.28		143	58(39-67)	73	7
Wang DW(a) [61]	China	English	2020.1.1-2020.1.28		138	56(42-68)	75	8
Wang DW(b) [62]	China	English	-2020.2.10		107	51(36-65)	57	8
Wang F [63]	China	English	2020.1-2020.3		108	survivors	72	7

70.9±10.6/non-survivors
Name	Year	Country	Language	Dates	Age Median (IQR) or Mean ± SD	Severe Cases	Non-severe Cases	Severity
Wang L [64]	2020	China	English	2020.1.1-2020.2.6	71.1±10.1	168	171	5
Wang LW [65]	2020	China	English	2020.1.14-2020.2.13	69(65-76)	67	49	6
Wang WL [66]	2020	China	English	2020.2.10-2020.3.27	68(56.5-78)	60	63	8
Wang YF [67]	2020	China	English	2020.1-2020.2.10	NR	48	62	7
Wang YP [68]	2020	China	English	2020.1.20-2020.2.10	49(34-62)	128	147	8
Wei YP [69]	2020	China	English	2020.1.27-2020.3.11	51(41-58)	155	121	9
Wu GY [70]	2020	China	English	2019.12.23-2020.2.13	50(35.5-63)	137	162	8
Wu J [71]	2020	China	English	2020.1.20-2020.2.20	43.12±19	151	129	7
Wu SR [72]	2020	China	English	2020.1.27-2020.2.26	62(50-69)	139	131	6
Xie JF [73]	2020	China	English	2020.1.1-2020.2.29	65(56-73)	477	256	7
Yan XQ [74]	2020	China	English	2020.1.21-2020.6.27	42.9(32-52.3)	122	96	9
Yan YL [75]	2020	China	English	2020.1.10-2020.2.24	64(49-73)	114	79	7
Yang QX [76]	2020	China	English	2020.1.28-2020.2.12	56(44-64)	66	70	8
Yang XB [77]	2020	China	English	2019.12.24-2020.1.26	59.7±13.3	35	17	8
Yuan ML [78]	2020	China	English	2020.1.1-2020.1.25	60(47-69)	12	15	6
Zhang GQ [79]	2020	China	English	2020.1.2-2020.2.10	55(39-66.5)	108	113	7
Zhang HM [80]	2020	China	English	2020.1.28-2020.2.24	55(22-89)	45	43	7
Zhang JJ [81]	2020	China	English	2020.1.16-2020.2.3	57(25-87)	71	69	7
Zhang L [82]	2020	China	English	2020.1.20-2020.2.29	65(56-71)	234	175	6
Zhao Y [83]	2020	China	English	2020.1.13-2020.3.4	58(43-69)	255	284	6
Zheng F [84]	2020	China	English	2020.1.17-2020.2.7	45(33.5-57)	80	81	6
Zou WB [85]	2020	China	Chinese	2002.2.1-2020.2.29	severe 52±16/non-severe 43±16	32	31	6

* Age data presented as median (IQR) or mean ± SD. NR, not reported.