An SO(10) × SO(10)′ model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

Pei-Hong Gu

Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

E-mail: peihong.gu@sjtu.edu.cn

Received October 27, 2014
Revised November 24, 2014
Accepted November 27, 2014
Published December 22, 2014

Abstract. We propose an SO(10) × SO(10)′ model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 16′)H scalar crossing the SO(10) and SO(10)′ sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 16′)H scalar also mediates a U(1)em × U(1)′em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.

Keywords: dark matter theory, baryon asymmetry, neutrino theory

ArXiv ePrint: 1410.5759
Contents

1 Introduction 1
2 Fields and symmetry breaking 2
3 Dirac neutrinos and lepton asymmetries 3
4 Dark matter mass 5
5 Dark matter detection 6
6 Discrete mirror symmetry 8
7 Summary 9

1 Introduction

In the most popular grand unified theories, we can naturally obtain the extremely light Majorana neutrinos through the famous seesaw mechanism [1–11]. The lepton-number-violating interactions for the Majorana neutrinos can also accommodate a leptogenesis [12–28] mechanism to explain the cosmic matter-antimatter asymmetry. However, the Majorana nature of the neutrinos is just a theoretical assumption and has not been confirmed experimentally. Meanwhile, all of the other observed fermions are the Dirac particles rather than the Majorana particles. Therefore, it is worth exploring the possibility of the Dirac neutrinos [29–46] in the grand unification framework.

On the other hand, the dark and ordinary matter contribute comparable energy densities in the present universe [47]. This coincidence can be understood in a nature way if the dark matter relic density is a dark matter-antimatter asymmetry [48–93] and has a common origin with the ordinary matter-antimatter asymmetry. The mirror world based on the gauge groups $[\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_Y] \times [\text{SU}(3)'_c \times \text{SU}(2)'_L \times \text{U}(1)'_Y]$ is a very attractive asymmetric dark matter scenario [33, 94–143]. The mirror models can contain a tiny $\text{U}(1)_Y \times \text{U}(1)'_Y$ kinetic mixing input by hand to open a window for dark matter direct detections.

In this paper we shall propose an $\text{SO}(10) \times \text{SO}(10)'$ model with a $(16 \times 10')^H$ scalar to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. After the ordinary and dark left-right symmetry breaking, the $(16 \times 10'^I)^H$ scalar can acquire an induced vacuum expectation value. The ordinary right-handed neutrinos and the dark left-handed neutrinos then can form three heavy Dirac fermions to highly suppress the masses between the ordinary left-handed neutrinos and the dark right-handed neutrinos. Meanwhile, these heavy Dirac fermions can decay to generate a lepton asymmetry in the ordinary leptons and an opposite lepton asymmetry in the dark leptons. The $\text{SU}(2)_L$ and $\text{SU}(2)'_R$ sphaleron processes respectively can transfer such lepton asymmetries to an ordinary baryon asymmetry and a dark baryon asymmetry. With calculable lepton-to-baryon conversations in the ordinary and dark sectors, the lightest dark nucleon as the dark matter particle should have a predictive mass about 15 GeV to explain the ordinary and dark matter in the present universe as the ordinary proton has a known
mass about 1 GeV. Benefited from the $U(1)_{\text{em}} \times U(1)'_{\text{em}}$ kinetic mixing mediated by the $(16 \times \overline{16}')_H$ scalar, the dark proton as the dark matter particle can scatter off the ordinary nucleons at a testable level while the dark proton/neutron as the dark matter particle can decay to produce the ordinary fermion pairs. Furthermore, a softly broken mirror symmetry can be imposed to simplify the parameter choice.

2 Fields and symmetry breaking

In the ordinary SO(10) sector, we have the fermions and scalars including

$$q_L^c(3, 2, 1, -1/3) \oplus q_R^c(3, 1, 2, +1/3) \oplus l_L^c(1, 2, 1, +1) \oplus l_R^c(1, 1, 2, -1) = 16_F,$$

$$\chi_L^{\ast}(1, 2, 1, +1) \oplus \chi_R(1, 1, 2, -1) \in 16_H,$$

$$\Delta_L^\ast(1, 3, 1, -2) \oplus \Delta_R(1, 1, 3, +2) \oplus \Omega_L^0(3, 3, 1, -2/3) \oplus \Omega_R^0(3, 1, 3, +2/3) \in 126_H,$$

$$\Phi(1, 2, 0) \in 10_H \text{ and/or others}, \tag{2.1}$$

where the brackets following the fields describe the transformations under the SU(3)$_c$ × SU(2)$_L$ × SU(2)$_R$ × U(1)$_{B-L}$ gauge groups. Accordingly, the fermions and scalars in the dark SO(10)' sector contain

$$q_R^c(3, 2, 1, -1/3) \oplus q_L^c(3, 1, 2, +1/3) \oplus l_R^c(1, 2, 1, +1) \oplus l_L^c(1, 1, 2, -1) = 16_F,$$

$$\chi_R^{\ast}(1, 2, 1, +1) \oplus \chi_L(1, 1, 2, -1) \in 16_H',$$

$$\Delta_R^\ast(1, 3, 1, -2) \oplus \Delta_L^\ast(1, 1, 3, +2) \oplus \Omega_L^0(3, 3, 1, -2/3) \oplus \Omega_R^0(3, 1, 3, +2/3) \in 126_H',$$

$$\Phi^\prime(1, 2, 0) \in 10_H' \text{ and/or others}, \tag{2.2}$$

where the brackets give the SU(3)$_c$' × SU(2)$_R'$ × SU(2)$_L'$ × U(1)$_{B-L}'$ quantum numbers. There is also a $(16 \times \overline{16}')_H$ scalar crossing the SO(10) and SO(10)' sectors,

$$(16 \times \overline{16}')_H = \Sigma_{L^{L\prime}_R}(1, 2, 1, -1)(1, 1, 2, +1)\Sigma_{L^{R\prime}_{L\prime}}(1, 1, 2, +1)(1, 1, 2, -1) + \ldots. \tag{2.3}$$

For simplicity, we shall not consider the details of the SO(10) and SO(10)' symmetry breaking. Instead, we shall demonstrate at the left-right level. The ordinary and dark left-right symmetries are expected to have the breaking patterns as below,

$$\begin{align*}
\text{SU}(3)_c \times \text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_{B-L} \\
^{(x_R)} = \frac{1}{\sqrt{2}}(v_R, 0)^T \\
\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_{\text{em}}, \tag{2.4a}
\end{align*}$$

$$\begin{align*}
\text{SU}(3)'_c \times \text{SU}(2)'_R \times \text{SU}(2)'_L \times \text{U}(1)'_{B-L} \\
^{(x_L')} = \frac{1}{\sqrt{2}}(v_L', 0)^T \\
\text{SU}(3)'_c \times \text{SU}(2)'_R \times \text{U}(1)'_{\text{em}},
\end{align*}$$

$$(2.4b)$$
We further impose a $U(1)_L$ global symmetry under which (χ_L^*, χ_R) and (χ_R^*, χ_L) carry a same charge. This means the following cubic terms

\[V \supset \rho_\Phi \chi_L^\dagger \Phi \chi_R + \tilde{\rho}_\Phi \chi_L^\dagger \tilde{\Phi} \chi_R + \rho_\Phi \chi_R^\dagger \Phi \chi_L + \tilde{\rho}_\Phi \chi_R^\dagger \tilde{\Phi} \chi_L \]

\[+ \rho_\Delta (\chi_L^\dagger i\tau_2 \Delta_L \chi_L + \chi_R^\dagger i\tau_2 \Delta_R \chi_R^*) + \rho_\Delta (\chi_R^\dagger i\tau_2 \Delta_R \chi_R + \chi_L^\dagger i\tau_2 \Delta_L \chi_L^*) + \text{H.c.}, \]

should be absent from the scalar potential. Therefore the neutral components of the scalars $\chi_L, \Delta_L, \chi_R, \Delta_R$ will not acquire any induced vacuum expectation values. Accordingly, we can give a nonzero $\langle \Sigma_{LR} \rangle$ and a zero $\langle \Sigma_{LR'} \rangle$ from the scalar interactions as follows,

\[V \supset \rho_\Sigma (\chi_L^\dagger \Sigma_{LR} \chi_R^* + \chi_R^\dagger \Sigma_{RL} \chi_L^*) + \text{H.c.}. \]

3 Dirac neutrinos and lepton asymmetries

We write down the Yukawa couplings relevant for the fermion mass generation,

\[
\mathcal{L} \supset -y_{qL} q_L \Phi q_R - \tilde{y}_{qL} \tilde{q}_L \tilde{\Phi} q_R - y_{tL} t_L \Phi t_R - \tilde{y}_{tL} \tilde{t}_L \tilde{\Phi} t_R \\
- y_{qR} q_R^\dagger \Phi^\dagger q_L - \tilde{y}_{qR} \tilde{q}_R^\dagger \tilde{\Phi}^\dagger q_L - y_{tR} t_R^\dagger \Phi^\dagger t_L - \tilde{y}_{tR} \tilde{t}_R^\dagger \tilde{\Phi}^\dagger t_L \\
- \frac{1}{2} f_\Delta (\tilde{t}_L^\dagger i\tau_2 \Delta_L \tilde{t}_L^* + \tilde{t}_R^\dagger i\tau_2 \Delta_R \tilde{t}_R^* - f_\Delta (\tilde{t}_R^\dagger i\tau_2 \Delta_R \tilde{t}_R^* + \tilde{t}_L^\dagger i\tau_2 \Delta_L \tilde{t}_L^*) \\
- f_\Sigma (\tilde{t}_L^\dagger \Sigma_{LR} \tilde{t}_L^* + \tilde{t}_R^\dagger \Sigma_{RL} \tilde{t}_R^* + \text{H.c.}).
\]

When the left-right symmetries are broken down to the electroweak symmetries, we can derive

\[
\mathcal{L} \supset -y_{uL} u_L \phi u_R - y_{dL} d_L \phi d_R - y_{eL} e_L \phi e_R \\
- y_{uR} u_R^\dagger \phi^\dagger u_L - y_{dR} d_R^\dagger \phi^\dagger d_L - y_{eR} e_R^\dagger \phi^\dagger e_L - y_{eL} e_L^\dagger \phi^\dagger e_R \\
- \frac{1}{2} f_\Delta (\tilde{t}_L^\dagger i\tau_2 \Delta_L \tilde{t}_L^* - f_\Delta (\tilde{t}_R^\dagger i\tau_2 \Delta_R \tilde{t}_R^* - M_N \tilde{u}_R \tilde{v}_L^* + \text{H.c.})
\]

With

\[
\begin{align*}
y_u &= \frac{v_1 y_u + v_2 \tilde{y}_u}{\sqrt{v_1^2 + v_2^2}}, & y_{u'} &= \frac{v_1' y_u + v_2' \tilde{y}_u}{\sqrt{v_1'^2 + v_2'^2}}, \\
y_d &= \frac{v_2 y_d + v_1 \tilde{y}_d}{\sqrt{v_1^2 + v_2^2}}, & y_{d'} &= \frac{v_2 y_d + v_1' \tilde{y}_d}{\sqrt{v_1'^2 + v_2'^2}}, \\
y_e &= \frac{v_1 y_e + v_2 \tilde{y}_e}{\sqrt{v_1^2 + v_2^2}}, & y_{e'} &= \frac{v_1' y_e + v_2' \tilde{y}_e}{\sqrt{v_1'^2 + v_2'^2}}, \\
M_N &= \frac{1}{\sqrt{2}} f_\Sigma v_L.
\end{align*}
\]
Figure 1. The heavy masses between the ordinary right-handed neutrinos ν_R and the dark left-handed neutrinos ν'_L are responsible for suppressing the masses between the ordinary left-handed neutrinos ν_L and the dark right-handed neutrinos ν'_R.

Here the Higgs scalars ϕ and ϕ' with the vacuum expectation values,

$$
\langle \phi \rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} v \\ 0 \end{bmatrix} \quad \left(v = \sqrt{v_1^2 + v_2^2} \approx 246 \text{ GeV} \right),
$$

$$
\langle \phi' \rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} v' \\ 0 \end{bmatrix} \quad \left(v' = \sqrt{v_1'^2 + v_2'^2} \right),
$$

are responsible for spontaneously breaking the ordinary and dark electroweak symmetries.

According to the symmetry breaking pattern (2.4), the fermion masses thus should be

$$
\mathcal{L} \supset -m_u \bar{u}_L u_R - m_d \bar{d}_L d_R - m_e \bar{e}_L e_R - m'_u \bar{u}'_R u'_L - m'_d \bar{d}'_R d'_L - m'_e \bar{e}'_R e'_L - \frac{1}{2} \bar{\nu} e'_R e'_L + \text{H.c. (3.4)}
$$

with

$$
m_f = \frac{1}{\sqrt{2}} y_f v, \quad m'_f = \frac{1}{\sqrt{2}} y'_f v', \quad \bar{m}_{e'} = \frac{1}{\sqrt{2}} \Delta v'_{em},
$$

$$
m_{LR} = \frac{1}{\sqrt{2}} y_{\nu} v, \quad m_{R'L'} = \frac{1}{\sqrt{2}} y_{\nu'} v'.
$$

Note the dark charged leptons should be the so-called pseudo-Dirac particles for $v'_{em} \ll v'$.

As for the ordinary and dark neutrinos, their mass matrix can be block-diagonalized if the off-diagonal blocks are much lighter than the diagonal block,

$$
\mathcal{L} \supset -m_\nu \bar{\nu}_L \nu'_R - M_N \bar{\nu}_R \nu'_L + \text{H.c. (3.5)}
$$

with

$$
m_\nu = -m_{LR} \frac{1}{M_N} m_{R'L'}.
$$

Clearly, the ordinary left-handed neutrinos and the dark right-handed neutrinos can form the extremely light Dirac neutrinos as their masses are highly suppressed by the masses between the ordinary right-handed neutrinos and the dark left-handed neutrinos. This Dirac seesaw is definitely a variation of the canonical Majorana seesaw, see figure 1. For the following discussions we can conveniently define the mass eigenstates by a proper phase rotation,

$$
N_i = \nu_{Ri} + \nu'_{Li} \quad \text{with} \quad M_N = \text{diag}\{M_{N_1}, M_{N_2}, M_{N_3}\}. \quad (3.7)
$$
As long as the CP is not conserved, the heavy Dirac fermions composed of the ordinary right-handed neutrinos and the dark left-handed neutrinos can have the lepton-number-conserving decays to generate a lepton asymmetry $\bar{\eta}_L$ stored in the ordinary leptons and an opposite lepton asymmetry $\bar{\eta}'_L$ stored in the dark leptons,

$$\bar{\eta}_L = -\bar{\eta}'_L \propto \varepsilon_{N_i}. \quad (3.8)$$

Here ε_{N_i} is the CP asymmetry defined as below,

$$\varepsilon_{N_i} = \frac{\Gamma(N_i \to l_L \phi^*) - \Gamma(N_i \to l'_L \phi)}{\Gamma_{N_i}} = \frac{\Gamma(N_i \to l'_R \phi') - \Gamma(N_i \to l'_R \phi'^*)}{\Gamma_{N_i}} \quad (3.9)$$

with $\Gamma_{N_i} = \Gamma(N_i \to l_L \phi^*) + \Gamma(N_i \to l'_L \phi') = \Gamma(N_i \to l'_R \phi^*) + \Gamma(N_i \to l'_R \phi')$.

We can calculate the decay width at tree level,

$$\Gamma_{N_i} = \frac{1}{16\pi} [(y^L_i y^\nu_{ij})_{ii} + (y^L_{i'} y^\nu_{ij})_{ij}] M_{N_i}, \quad (3.10)$$

and the CP asymmetry at one-loop level,

$$\varepsilon_{N_i} = \frac{1}{4\pi} \sum_{j \neq i} \frac{\text{Im}[(y^L_{i} y^\nu_{ij})(y^L_{i'} y^\nu_{ij})_{ij}]}{(y^L_{i} y^\nu_{ij})_{ii} + (y^L_{i'} y^\nu_{ij})_{ij}} \frac{M_{N_i} M_{N_j}}{M_{N_i}^2 - M_{N_j}^2}. \quad (3.11)$$

The relevant diagrams are shown in figure 2.

4 Dark matter mass

In the absence of other baryon asymmetries, the produced ordinary lepton asymmetry $\bar{\eta}_L$ is equivalent to an ordinary $B - L$ asymmetry $\eta_{B-L} = -\bar{\eta}_L$ while the dark lepton asymmetry $\bar{\eta}'_L$ is equivalent to a dark $B - L$ asymmetry $\eta'_{B-L} = -\bar{\eta}'_L$. The ordinary SU(2)$_L$ sphaleron processes and the dark SU(2)$_R$ sphaleron processes then will partially transfer the ordinary and dark $B - L$ asymmetries to an ordinary baryon asymmetry η_B and a dark baryon asymmetry η'_B, respectively,

$$\eta_B = C \eta_{B-L} = -C \bar{\eta}_L \quad \text{with} \quad C = \frac{28}{79} \quad (4.1a)$$
Note when computing the dark lepton-to-baryon conversation factor C' we should take the $[\text{SU}(2)']^c_R$-triplet scalar Δ'_R into account since this scalar drives the dark electromagnetic symmetry breaking much below the dark electroweak scale.

After the dark electromagnetic symmetry breaking, the dark charged leptons acquire a lepton-number-violating Majorana mass term so that the final dark charged lepton asymmetry cannot survive at all [144]. The lightest dark charged lepton denoted as the dark electron will only give a negligible relic density if its mass is at the GeV scale. Furthermore, we will show later the dark electron will only leave a thermally produced relic density.

Note when computing the dark lepton-to-baryon conversation factor C' we should take the $[\text{SU}(2)']^c_R$-triplet scalar Δ'_R into account since this scalar drives the dark electromagnetic symmetry breaking much below the dark electroweak scale.

After the dark electromagnetic symmetry breaking, the dark charged leptons acquire a lepton-number-violating Majorana mass term so that the final dark charged lepton asymmetry cannot survive at all [144]. The lightest dark charged lepton denoted as the dark electron will only give a negligible relic density if its mass is at the GeV scale. Furthermore, we will show later the dark electron will only leave a thermally produced relic density.

Here α' is the dark fine-structure constant. It is easy to check the dark electron will only give a negligible relic density if its mass is at the GeV scale. Furthermore, we will show later the dark electron will only leave a thermally produced relic density. Therefore, if the lightest dark nucleon N' is expected to serve as the dark matter particle, its mass should be determined by

$$m_{N'} = C' \frac{\Omega_{\text{DM}} h^2}{\langle \sigma_{\nu e}^- \rangle v_{\text{vel}}} \approx 14.79 \text{GeV} \left(\frac{\Omega_{\text{DM}} h^2/0.1199}{\Omega_B h^2/0.2205} \right) .$$

5 Dark matter detection

We can calculate the $U(1)_{\text{em}} \times U(1)_{\text{em}}'$ kinetic mixing at one-loop level,

$$\mathcal{L} \supset -\frac{\epsilon}{2} A_{\mu} A^{\mu} \quad \text{with} \quad \epsilon = \frac{\sqrt{\alpha \alpha'}}{12 \pi} \sum_{QQ'} \sum_{QQ'} \sigma_{QQ'} C_{QQ'} C_{QQ'} \ln \left[\frac{M_{QQ'}^2}{\mu^2} \right] .$$

Here $Q, Q' = \pm 1, \pm \frac{1}{2}, \pm \frac{3}{2}$ are the ordinary and dark electric charges of the scalars $\sigma(Q, Q') \in (16 \times \overline{16})_R$, $M_{QQ'}$ denotes the $\sigma(Q, Q')$'s mass, μ is a renormalizable scale, while $C_{QQ'} = 1$ for $Q, Q' = \pm 1$ and $C_{QQ'} = 3$ for $Q, Q' = \pm \frac{1}{2}, \pm \frac{3}{2}$ are the color factors. Clearly, we have $\epsilon = 0$ at the GUT scale. However, such kinetic mixing can appear after the left-right symmetry breaking,

$$\epsilon = \frac{\sqrt{\alpha \alpha'}}{12 \pi} \left[\ln \left(\frac{1 + \frac{1}{2} \lambda v^2_L / M_1^2}{1 + \frac{1}{2} \lambda (v^2_L + v^2_R) / M_1^2} \right) \ln \left(\frac{1 + \frac{1}{2} \lambda v^2_L / M_1^2}{1 + \frac{1}{2} \lambda (v^2_L + v^2_R) / M_1^2} \right) \right]$$

$$\approx \frac{\sqrt{\alpha \alpha'}}{48 \pi} \frac{\lambda^2 v^2_L v^2_R}{M_1^4} \quad \text{for} \quad M_3^2 \gg M_1^2 \gg \lambda v^2_L , \lambda v^2_R$$

$$\approx \frac{\sqrt{\alpha \alpha'}}{48 \pi} \lambda^2 = 10^{-9} \left(\frac{\lambda}{0.0046} \right)^2 \sqrt{\frac{\alpha'}{\alpha}} \quad \text{for} \quad M_1^2 \sim v^2_L \sim v^2_R .$$

(5.2)
In the above calculation we have simplified the left-right level interactions as
\[
V \supset \lambda \left(\chi_R \tilde{\Sigma}_{f_R f_L} \Sigma_{f_R f_L} \chi_R + \chi_L \tilde{\Sigma}_{f_R f_L} \Sigma_{f_R f_L} \chi_L + \chi_R \Sigma_{f_R f_L} \Sigma_{f_R f_L} \chi_R + \chi_L \Sigma_{f_R f_L} \Sigma_{f_R f_L} \chi_L \right) + M^2 f_{f_R \neq f_L} \left(\Sigma_{f_{R,L} f_{R,L}} \right) + M^2 \sum_{f_{R,L} \neq f_{R,L}} \text{Tr} \left(\Sigma_{f_{R,L} f_{R,L}} \right) .
\]

(5.3)

Due to the U(1)$_{em}$ × U(1)′$_{em}$ kinetic mixing, the physically dark photon will couple to not only the dark charged fermions but also the ordinary charged fermions although the physically ordinary photon doesn’t couple to the dark charged fermions,
\[
\mathcal{L} \supset e \left(\hat{A}_\mu - \frac{e}{\sqrt{1-\epsilon^2}} \hat{A}'_\mu \right) \left(- \bar{e} \gamma^\mu e - \frac{1}{3} \bar{d} \gamma^\mu d + \frac{2}{3} \bar{u} \gamma^\mu u \right)
\]
\[+ e \hat{A}'_\mu \left(- \bar{e}' \gamma^\mu e' - \frac{1}{3} \bar{d}' \gamma^\mu d' + \frac{2}{3} \bar{u}' \gamma^\mu u' \right) ,
\]

(5.4)

where the physical photons have been defined by [145]
\[
\hat{A}_\mu = A_\mu + \epsilon A'_\mu , \quad \hat{A}'_\mu = \sqrt{1-\epsilon^2} A'_\mu .
\]

(5.5)

Once the kinematics is allowed, the dark photon can efficiently decay into the ordinary charged fermion pairs,
\[
\Gamma_{A' \rightarrow ff} = \frac{\epsilon^2 e^2 Q_f^2 C_f m_{A'}}{12\pi} \left(1 - \frac{m_f^2}{m_{A'}^2} \right) \sqrt{1 - 4 \frac{m_f^2}{m_{A'}^2}} ,
\]

(5.6)

with the dark photon mass $m_{A'}^2 = 16\pi \alpha' \nu_{em}^2$ and the ordinary electric charges $Q_{e,\mu,\tau} = -1$, $Q_{d,s,b} = -\frac{1}{3}$ and $Q_{u,c,t} = +\frac{2}{3}$.

The dark photon can mediate an elastic scattering of the dark nucleons off the ordinary nucleons. If the dark proton is the dark matter particle, its scattering will have a spin-independent cross section,
\[
\sigma_{p'N \rightarrow p'N}(Z, A) \simeq \frac{\epsilon^2 \alpha_\alpha}{2} \frac{[m_{p'} m_p/(m_{p'} + m_p)]^2}{m_{A'}^2} \left(\frac{Z}{A} \right)^2 \simeq 5.1 \times 10^{-46} \text{cm}^2 \left(\frac{Z}{A} \right)^2 \left(\frac{\epsilon}{10^{-9}} \right)^2 \left(\frac{100 \text{ MeV}}{m_{A'}} \right)^4 .
\]

(5.7)

Such dark matter scattering can be verified in the direct detection experiments [146]. If the dark neutron is the dark matter particle, its scattering off the ordinary nucleons will be further suppressed by its dark magnetic moment [136]. In the present SO(10) × SO(10)' framework, we can expect a dark nucleon decay according to the ordinary proton decay. It should be noted the dark leptoquark scalars $\Omega_{R,L}$ can be allowed much lighter than the ordinary ones $\Omega_{L,R}$. This means the dark nucleon decay can be fast enough to open a window for the indirect detection experiments although the ordinary proton decay is extremely slow. For example, we can have the dark matter decay chains $p' \rightarrow \pi^0 e^+$ (or $n' \rightarrow \pi^0 \nu'_p$), $\pi^0 \rightarrow \gamma \gamma'$, $\gamma' \rightarrow e^+ e^-$, $u\bar{u}, d\bar{d}, \mu^+ \mu^-$, Clearly, if the dark photon mass is about 1–2 MeV, the dark matter should mostly decay into the positron/electron pairs.
The dark electromagnetic interactions will lead to a dark matter self-interaction. For example, if the dark proton is the dark matter particle, we can have the self-interacting cross section as below,

\[
\sigma_{p'p'\rightarrow p'p'} = \frac{\pi\alpha'^2 m_{p'}^2}{2m_{A'}^4}
\]

\[
= \left(\frac{\alpha'}{\alpha}\right)^2 \left(\frac{m_{p'}}{15 \text{ GeV}}\right)^2 \left(\frac{100 \text{ MeV}}{m_{A'}}\right)^4 \times 7.4 \times 10^{-26} \text{ cm}^2. \tag{5.8}
\]

In the case the dark neutron is the dark matter particle, its self-interaction should be determined by a dark magnetic moment and hence should be further suppressed. The dark strong interactions will also result in the dark matter self-interaction. We have known the scattering of the ordinary neutrons off the ordinary protons should have a cross section \(\sigma_{np} \sim 10^{-24} \text{ cm}^2\). The isospin symmetry then can give \(\sigma_{pp} \simeq \sigma_{nn} \simeq \sigma_{np}\). We hence can estimate the cross sections of the dark nucleons’ self-interactions to be

\[
\sigma_{N'N'} \sim \left(\frac{\Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}'}}\right)^2 \sigma_{np} \sim 10^{-26} \text{ cm}^2 \text{ for } \Lambda_{\text{QCD}'} \sim 10 \Lambda_{\text{QCD}}, \tag{5.9}
\]

with \(\Lambda_{\text{QCD}}\) and \(\Lambda_{\text{QCD}'}\) being the ordinary and dark hadronic scales. It is easy to see that the self-interactions (5.8) and (5.9) can be consistent with the constraints from simulations and observations [147–150],

\[
\sigma_{\text{self}} \lesssim 1 \text{ cm}^2 \text{ gram}^{-1} m_{N'}
\]

\[= 2.6 \times 10^{-23} \text{ cm}^2 \text{ for } m_{N'} \simeq 15 \text{ GeV}. \tag{5.10}
\]

6 Discrete mirror symmetry

We can impose a softly or spontaneously broken mirror symmetry under which the ordinary and dark fields transform as

\[
16_F \leftrightarrow 16_F', \quad 16_H \leftrightarrow 16_H', \quad \ldots \tag{6.1}
\]

to simplify the parameter choice,

\[
y_f = y_{f'}', \quad \tilde{y}_f = \tilde{y}_{f'}', \quad f_\Sigma = f_\Sigma', \quad \ldots \tag{6.2}
\]

By further assuming

\[
\frac{v_1'}{v_2'} = \frac{v_1}{v_2}, \tag{6.3}
\]

we can read

\[
\frac{\langle v' \rangle}{\langle v \rangle} = \frac{m_{u'}}{m_u} = \frac{m_{d'}}{m_d} = \frac{m_{s'}}{m_s} = \frac{m_{c'}}{m_c} = \frac{m_{b'}}{m_b} = \frac{m_t'}{m_t}
\]

\[= \frac{m_{e'}}{m_e} = \frac{m_{\mu'}}{m_{\mu}} = \frac{m_{\tau'}}{m_{\tau}}. \tag{6.4}
\]
We then can make use of the beta functions of the ordinary and dark QCDs to determine
\[
\Lambda_{\text{QCD}'} = \left(\frac{v'}{v} \right)^{-\frac{11}{3}} (m_u m_d m_s \Lambda_{\text{QCD}})^{\frac{2}{3}} \Lambda_{\text{QCD}}^{\frac{2}{3}} \quad \text{for} \quad \Lambda_{\text{QCD}'} < m_{u'}.
\] (6.5)

Since the dark hadronic scale is lighter than the dark quark masses, we can simply ignore the dark QCD contributions to the masses of the dark baryons and mesons such as
\[
m_{p'} \simeq 2m_{u'} + m_{d'}, \quad m_{n'} \simeq m_{u'} + 2m_{d'}, \quad m_{e'} \simeq m_{e^0} \simeq m_{e^\pm} \simeq m_{u'} + m_{d'}.
\] (6.6)

From eqs. (6.4)–(6.6), we can obtain
\[
m_{e'} = 1.5 \text{ GeV}, \quad m_{u'} = 3.75 \text{ GeV}, \quad m_{d'} = 7.5 \text{ GeV}, \\
\Lambda_{\text{QCD}'} = 2 \text{ GeV}, \quad m_{p'} = 15 \text{ GeV}, \quad m_{n'} = 18.75 \text{ GeV}, \\
m_{e'} = 11.25 \text{ GeV},
\] (6.7)
by inputting
\[
v' = 3000 v, \quad m_e = 0.511 \text{ MeV}, \quad m_{u} = 1.25 \text{ MeV}, \\
m_{d} = 2.5 \text{ MeV}, \quad m_s = 100 \text{ MeV}, \quad \Lambda_{\text{QCD}} = 200 \text{ MeV}.
\] (6.8)

In this case, the dark proton is the lightest dark nucleon and hence is the dark matter particle.

Another interesting consequence of the above parameter choice is that the Dirac seesaw (3.5) now can be given by
\[
m_{\nu} = -\frac{v'}{v} m_{LR}^T T_{LR} = -3000 m_{LR}^T M_{N}^T T_{LR},
\] (6.9)
which doesn’t contain unknown parameters compared with the canonical Majorana seesaw.

7 Summary

In this paper we have proposed an SO(10) × SO(10)′ model to simultaneously explain the smallness of the Dirac neutrino masses and the coincidence between the ordinary and dark matter. Specifically we introduced a (16 × 16′) \(\tilde{H} \) scalar crossing the ordinary SO(10) sector and the dark SO(10)′ sector. This (16 × 16′) \(\tilde{H} \) scalar can acquire an induced vacuum expectation value after the 16 \(\tilde{H} \) and 16′ \(\tilde{H} \) scalars drive the spontaneous breaking of the ordinary and dark left-right symmetries. Consequently the ordinary right-handed neutrinos and the dark left-handed neutrinos can form the heavy Dirac fermions to highly suppress the masses between the ordinary left-handed neutrinos and the dark right-handed neutrinos. The decays of such heavy Dirac fermions can generate an ordinary lepton asymmetry and an opposite dark lepton asymmetry. We hence can obtain an ordinary baryon asymmetry and a dark baryon asymmetry due to the SU(2)\(_L\) and SU(2)\(_R\) sphaleron processes. By taking into account the difference between the ordinary and dark lepton-to-baryon conversations, we can expect the lightest dark nucleon as the dark matter particle to have a determined mass around 15 GeV. Furthermore, the (16 × 16′) \(\tilde{H} \) scalar can mediate a small U(1)\(_{\text{em}}\) × U(1)′\(_{\text{em}}\) kinetic mixing after the ordinary and dark left-right symmetry breaking. Therefore, the dark proton as the dark matter particle can be verified by the direct and indirect detection experiments. Alternatively, if the dark neutron is the dark matter particle, it can be only found by the indirect detection experiments. Our model can accommodate a softly broken mirror symmetry to simplify the parameters.
Acknowledgments

This work was supported by the Shanghai Jiao Tong University under Grant No. WF220407201 and the Shanghai Laboratory for Particle Physics and Cosmology under Grant No. 11DZ2260700.

References

[1] P. Minkowski, $\mu \rightarrow e\gamma$ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [hep-ph/SPIRE].

[2] T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).

[3] M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).

[4] S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargèse lectures, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980).

[5] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [hep-ph/SPIRE].

[6] M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [hep-ph/SPIRE].

[7] J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [hep-ph/SPIRE].

[8] T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [hep-ph/SPIRE].

[9] G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [hep-ph/SPIRE].

[10] R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [hep-ph/SPIRE].

[11] R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [hep-ph/SPIRE].

[12] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [hep-ph/SPIRE].

[13] M.A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [hep-ph/SPIRE].

[14] R.N. Mohapatra and X. Zhang, Electroweak baryogenesis in left-right symmetric models, Phys. Rev. D 46 (1992) 5331 [hep-ph/SPIRE].

[15] E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [hep-ph/SPIRE].

[16] M. Flanz, E.A. Paschos and U. Sarkar, Baryogenesis from a lepton asymmetric universe, Phys. Lett. B 345 (1995) 248 [Erratum ibid. B 382 (1996) 447] [hep-ph/9411366] [hep-ph/SPIRE].

[17] M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B 389 (1996) 693 [hep-ph/9607310] [hep-ph/SPIRE].

[18] L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [hep-ph/SPIRE].
A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 543 \texttt{[hep-ph/9707235]} [INSPIRE].

T. Hambye, E. Ma and U. Sarkar, Supersymmetric triplet Higgs model of neutrino masses and leptogenesis, Nucl. Phys. B 602 (2001) 23 \texttt{[hep-ph/0011192]} [INSPIRE].

S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 \texttt{[hep-ph/0202239]} [INSPIRE].

W. Buchmüller, P. Di Bari and M. Plümacher, The neutrino mass window for baryogenesis, Nucl. Phys. B 665 (2003) 445 \texttt{[hep-ph/0302092]} [INSPIRE].

T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 \texttt{[hep-ph/0307237]} [INSPIRE].

S. Antusch and S.F. King, Type II leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199 \texttt{[hep-ph/0405093]} [INSPIRE].

T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 \texttt{[hep-ph/0312203]} [INSPIRE].

T. Hambye, M. Raidal and A. Strumia, Efficiency and maximal CP-asymmetry of scalar triplet leptogenesis, Phys. Lett. B 632 (2006) 667 \texttt{[hep-ph/0510008]} [INSPIRE].

S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 \texttt{[arXiv:0802.2962]} [INSPIRE].

S. Blanchet and P. Di Bari, New aspects of leptogenesis bounds, Nucl. Phys. B 807 (2009) 155 \texttt{[arXiv:0807.0743]} [INSPIRE].

M. Roncadelli and D. Wyler, Naturally light Dirac neutrinos in gauge theories, Phys. Lett. B 133 (1983) 325 [INSPIRE].

P. Roy and O.U. Shanker, Observable neutrino Dirac mass and supergrand unification, Phys. Rev. Lett. 52 (1984) 713 [Erratum ibid. 52 (1984) 2190] [INSPIRE].

A.S. Joshipura, A. Mukherjee and U. Sarkar, Light Dirac neutrinos in $N = 1$ locally supersymmetric SU(5) GUT, Phys. Lett. B 156 (1985) 353 [INSPIRE].

S. Mishra, S.P. Misra, S. Panda and U. Sarkar, Light Dirac neutrino in left-right symmetric models, Phys. Rev. D 35 (1987) 975 [INSPIRE].

P.-H. Gu, From Dirac neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 872 (2013) 38 \texttt{[arXiv:1209.4679]} [INSPIRE].

C.-S. Chen and L.-H. Tsai, Peccei-Quinn symmetry as the origin of Dirac neutrino masses, Phys. Rev. D 88 (2013) 055015 \texttt{[arXiv:1210.6264]} [INSPIRE].

X. Liu and S. Zhou, Texture zeros for Dirac neutrinos and current experimental tests, Int. J. Mod. Phys. A 28 (2013) 1350040 \texttt{[arXiv:1211.0472]} [INSPIRE].

S. Chakdar, K. Ghosh and S. Nandi, A predictive model of Dirac neutrinos, Phys. Lett. B 734 (2014) 64 \texttt{[arXiv:1403.1544]} [INSPIRE].

S. Chakdar, K. Ghosh and S. Nandi, A model for Dirac neutrino mass matrix with only four parameters, \texttt{arXiv:1405.2328} [INSPIRE].

K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett. 84 (2000) 4039 \texttt{[hep-ph/9907562]} [INSPIRE].

B. Thomas and M. Toharia, Phenomenology of Dirac neutrinoogenesis in split supersymmetry, Phys. Rev. D 73 (2006) 063512 \texttt{[hep-ph/0511206]} [INSPIRE].

S. Abel and V. Page, Affleck-Dine (pseudo)-Dirac neutrinogenesis, JHEP 05 (2006) 024 \texttt{[hep-ph/0601149]} [INSPIRE].
41] D.G. Cerdeno, A. Dedes and T.E.J. Underwood, *The minimal phantom sector of the standard model: Higgs phenomenology and Dirac leptogenesis*, JHEP 09 (2006) 067 [hep-ph/0607157] [inSPIRE].

42] E.J. Chun and P. Roy, *Dirac Leptogenesis in extended NMSSM*, JHEP 06 (2008) 089 [arXiv:0803.1720] [inSPIRE].

43] P.-H. Gu and H.-J. He, *Neutrino mass and baryon asymmetry from Dirac seesaw*, JCAP 12 (2006) 010 [hep-ph/0610275] [inSPIRE].

44] P.-H. Gu, H.-J. He and U. Sarkar, *Realistic neutrino genesis with radiative vertex correction*, Phys. Lett. B 659 (2008) 634 [arXiv:0709.1019] [inSPIRE].

45] A. Bechinger and G. Seidl, *Resonant Dirac leptogenesis on throats*, Phys. Rev. D 81 (2010) 065015 [arXiv:0907.4341] [inSPIRE].

46] H. Davoudiasl and I. Lewis, *Technicolor assisted leptogenesis with an ultra-heavy Higgs doublet*, Phys. Rev. D 86 (2012) 015024 [arXiv:1112.1939] [inSPIRE].

47] Planck collaboration, P.A.R. Ade et al., *Planck 2013 results. XVI. Cosmological parameters*, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [inSPIRE].

48] S. Nussinov, *Technicosmology: could a technibaryon excess provide a `natural’ missing mass candidate?*, Phys. Lett. B 165 (1985) 55 [inSPIRE].

49] S.M. Barr, R.S. Chivukula and E. Farhi, *Electroweak fermion number violation and the production of stable particles in the early universe*, Phys. Lett. B 241 (1990) 387 [inSPIRE].

50] S.M. Barr, *Baryogenesis, sphalerons and the cogeneration of dark matter*, Phys. Rev. D 44 (1991) 3062 [inSPIRE].

51] D.B. Kaplan, *A single explanation for both the baryon and dark matter densities*, Phys. Rev. Lett. 68 (1992) 741 [inSPIRE].

52] S. Dodelson, B.R. Greene and L.M. Widrow, *Baryogenesis, dark matter and the width of the Z*, Nucl. Phys. B 372 (1992) 467 [inSPIRE].

53] V.A. Kuzmin, *A simultaneous solution to baryogenesis and dark matter problems*, Phys. Part. Nucl. 29 (1998) 257 [Fiz. Elem. Chast. Atom. Yadra 29 (1998) 637] [hep-ph/9701269] [inSPIRE].

54] R. Kitano and I. Low, *Dark matter from baryon asymmetry*, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [inSPIRE].

55] K. Agashe and G. Servant, *Baryon number in warped GUTs: model building and (dark matter related) phenomenology*, JCAP 02 (2005) 002 [hep-ph/0411254] [inSPIRE].

56] M. Cirelli, P. Panci, G. Servant and G. Zaharijas, *Consequences of DM/antiDM oscillations for asymmetric WIMP dark matter*, JCAP 03 (2012) 015 [arXiv:1110.3809] [inSPIRE].

57] N. Cosme, L. Lopez Honorez and M.H.G. Tytgat, *Leptogenesis and dark matter related?*, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [inSPIRE].

58] P.-H. Gu, U. Sarkar and X. Zhang, *Visible and dark matter genesis and cosmic positron/electron excesses*, Phys. Rev. D 80 (2009) 076003 [arXiv:0906.3103] [inSPIRE].

59] P.-H. Gu and U. Sarkar, *Common origin of visible and dark universe*, Phys. Rev. D 81 (2010) 033001 [arXiv:0909.5463] [inSPIRE].

60] P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, *WIMP dark matter and baryogenesis*, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [inSPIRE].

61] H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, *Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter*, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [inSPIRE].
[62] H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Baryon destruction by asymmetric dark matter, Phys. Rev. D 84 (2011) 096008 [arXiv:1106.4320] [inSPIRE].

[63] N. Blinov, D.E. Morrissey, K. Sigurdson and S. Tulin, Dark matter antibaryons from a supersymmetric hidden sector, Phys. Rev. D 86 (2012) 095021 [arXiv:1206.3304] [inSPIRE].

[64] M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [inSPIRE].

[65] M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [inSPIRE].

[66] J. McDonald, Baryomorphosis: relating the baryon asymmetry to the ‘WIMP miracle’, Phys. Rev. D 83 (2011) 083509 [arXiv:1009.3227] [inSPIRE].

[67] J. McDonald, Simultaneous generation of WIMP miracle-like densities of baryons and dark matter, Phys. Rev. D 84 (2011) 103514 [arXiv:1108.4653] [inSPIRE].

[68] L.J. Hall, J. March-Russell and S.M. West, A unified theory of matter genesis: asymmetric freeze-in, arXiv:1010.0245 [inSPIRE].

[69] J. March-Russell and M. McCullough, Asymmetric dark matter via spontaneous co-genesis, JCAP 03 (2012) 019 [arXiv:1106.4319] [inSPIRE].

[70] J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [inSPIRE].

[71] B. Dutta and J. Kumar, Asymmetric dark matter from hidden sector baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [inSPIRE].

[72] A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [inSPIRE].

[73] N. Haba, S. Matsumoto and R. Sato, Sneutrino inflation with asymmetric dark matter, Phys. Rev. D 84 (2011) 055016 [arXiv:1101.5679] [inSPIRE].

[74] Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [inSPIRE].

[75] Z. Kang and T. Li, Asymmetric origin for gravitino relic density in the hybrid gravity-gauge mediated supersymmetry breaking, JHEP 10 (2012) 150 [arXiv:1111.7313] [inSPIRE].

[76] M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [inSPIRE].

[77] M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [inSPIRE].

[78] S.D. McDermott, H.-B. Yu and K.M. Zurek, Constraints on scalar asymmetric dark matter from black hole formation in neutron stars, Phys. Rev. D 85 (2012) 023519 [arXiv:1103.5472] [inSPIRE].

[79] S. Tulin, H.-B. Yu and K.M. Zurek, Oscillating asymmetric dark matter, JCAP 05 (2012) 013 [arXiv:1202.0283] [inSPIRE].

[80] H. Imniniyaz, M. Dreese and X. Chen, Relic abundance of asymmetric dark matter, JCAP 07 (2011) 003 [arXiv:1104.5548] [inSPIRE].

[81] N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Panogenesis in a baryon-symmetric universe: dark and visible matter via the Affleck-Dine mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [inSPIRE].
[82] K. Petraki, M. Trodden and R.R. Volkas, Visible and dark matter from a first-order phase transition in a baryon-symmetric universe, *JCAP* **02** (2012) 044 [arXiv:1111.4786] [inSPIRE].

[83] B. von Harling, K. Petraki and R.R. Volkas, Affleck-Dine dynamics and the dark sector of pangenesis, *JCAP* **05** (2012) 021 [arXiv:1201.2200] [inSPIRE].

[84] Y. Cui, L. Randall and B. Shuve, Emergent dark matter, baryon and lepton numbers, *JHEP* **08** (2011) 073 [arXiv:1106.4834] [inSPIRE].

[85] Y. Cui, L. Randall and B. Shuve, A WIMPy baryogenesis miracle, *JHEP* **04** (2012) 075 [arXiv:1112.2704] [inSPIRE].

[86] C. Arina and N. Sahu, Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis, *Nucl. Phys.* **B 854** (2012) 666 [arXiv:1108.3967] [inSPIRE].

[87] C. Arina, J.-O. Gong and N. Sahu, Unifying darko-lepto-genesis with scalar triplet inflation, *Nucl. Phys.* **B 865** (2012) 430 [arXiv:1206.0009] [inSPIRE].

[88] E. Ma and U. Sarkar, Scalar neutrino as asymmetric dark matter: radiative neutrino mass and leptogenesis, *Phys. Rev.* **D 85** (2012) 075015 [arXiv:1111.5350] [inSPIRE].

[89] H. Davoudiasl and R.N. Mohapatra, On relating the genesis of cosmic baryons and dark matter, *New J. Phys.* **14** (2012) 095011 [arXiv:1203.1247] [inSPIRE].

[90] W.-Z. Feng, P. Nath and G. Peim, Cosmic coincidence and asymmetric dark matter in a Stueckelberg extension, *Phys. Rev.* **D 85** (2012) 115016 [arXiv:1204.5752] [inSPIRE].

[91] N. Bernal, F.-X. Josse-Michaux and L. Ubaldi, Phenomenology of WIMPy baryogenesis models, *JCAP* **01** (2013) 034 [arXiv:1210.0094] [inSPIRE].

[92] C. Arina, R.N. Mohapatra and N. Sahu, Co-genesis of matter and dark matter with vector-like fourth generation leptons, *Phys. Lett.* **B 720** (2013) 130 [arXiv:1211.0435] [inSPIRE].

[93] J. Casanellas and I. Lopes, Constraints on asymmetric dark matter from asteroseismology, *arXiv:1307.6519* [inSPIRE].

[94] T.D. Lee and C.-N. Yang, Question of parity conservation in weak interactions, *Phys. Rev.* **104** (1956) 254 [inSPIRE].

[95] I.Yu. Kobzarev, L.B. Okun and I.Ya. Pomeranchuk, On the possibility of observing mirror particles, *Sov. J. Nucl. Phys.* **3** (1966) 837 [Yad. Fiz. **3** (1966) 1154].

[96] M. Pavsic, External inversion, internal inversion and reflection invariance, *Int. J. Theor. Phys.* **9** (1974) 229 [hep-ph/0105344] [inSPIRE].

[97] S.I. Blinnikov and M.Y. Khlopov, On possible effects of ‘mirror’ particles, *Sov. J. Nucl. Phys.* **36** (1982) 472 [inSPIRE].

[98] S.I. Blinnikov and M. Khlopov, Possible astronomical effects of mirror particles, *Sov. Astron.* **27** (1983) 371 [Astro. Zh. **60** (1983) 632] [inSPIRE].

[99] S.L. Glashow, Positronium versus the mirror universe, *Phys. Lett. B* **167** (1986) 35 [inSPIRE].

[100] R. Foot, H. Lew and R.R. Volkas, A model with fundamental improper space-time symmetries, *Phys. Lett. B* **272** (1991) 67 [inSPIRE].

[101] R. Foot, H. Lew and R.R. Volkas, Possible consequences of parity conservation, *Mod. Phys. Lett. A* **7** (1992) 2567 [inSPIRE].

[102] R. Foot and R.R. Volkas, Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, *Phys. Rev. D* **52** (1995) 6595 [hep-ph/9505359] [inSPIRE].

[103] E.K. Akhmedov, Z.G. Berezhiani and G. Senjanović, Planck scale physics and neutrino masses, *Phys. Rev. Lett.* **69** (1992) 3013 [hep-ph/9205230] [inSPIRE].
[104] Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6007 [hep-ph/9505385] [inSPIRE].

[105] Z.K. Silagadze, Neutrino mass and the mirror universe, Phys. Atom. Nucl. 60 (1997) 272 [Yad. Fiz. 60N2 (1997) 336] [hep-ph/9503481] [inSPIRE].

[106] H.M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47 (1993) 456 [inSPIRE].

[107] Z.G. Berezhiani, Astrophysical implications of the mirror world with broken mirror parity, Acta Phys. Polon. B 27 (1996) 1503 [hep-ph/9602326] [inSPIRE].

[108] Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [inSPIRE].

[109] M. Collie and R. Foot, Neutrino masses in the SU(5) × SU(5)-prime mirror symmetric model, Phys. Lett. B 432 (1998) 134 [hep-ph/9803261] [inSPIRE].

[110] R. Foot and R.R. Volkas, Implications of mirror neutrinos for early universe cosmology, Phys. Rev. D 61 (2000) 043507 [hep-ph/9904336] [inSPIRE].

[111] R.N. Mohapatra and V.L. Teplitz, Mirror matter MACHOs, Phys. Lett. B 462 (1999) 302 [astro-ph/9902085] [inSPIRE].

[112] R.N. Mohapatra and V.L. Teplitz, Mirror dark matter and galaxy core densities of galaxies, Phys. Rev. D 62 (2000) 063506 [astro-ph/0001362] [inSPIRE].

[113] R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as selfinteracting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [inSPIRE].

[114] Z. Berezhiani, D. Comelli and F.L. Villante, The early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter, Phys. Lett. B 503 (2001) 362 [hep-ph/0008105] [inSPIRE].

[115] Z. Berezhiani, P. Ciarcelluti, D. Comelli and F.L. Villante, Structure formation with mirror dark matter: CMB and LSS, Int. J. Mod. Phys. D 14 (2005) 107 [astro-ph/0312605] [inSPIRE].

[116] P. Ciarcelluti, Cosmology with mirror dark matter. 1. Linear evolution of perturbations, Int. J. Mod. Phys. D 14 (2005) 187 [astro-ph/0409630] [inSPIRE].

[117] L. Bento and Z. Berezhiani, Leptogenesis via collisions: leaking lepton number to the hidden sector, Phys. Rev. Lett. 87 (2001) 231404 [hep-ph/0107281] [inSPIRE].

[118] Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [inSPIRE].

[119] Z. Berezhiani and A. Lepidi, Cosmological bounds on the ‘millicharges’ of mirror particles, Phys. Lett. B 681 (2009) 276 [arXiv:0810.1317] [inSPIRE].

[120] A.Y. Ignatiev and R.R. Volkas, Mirror dark matter and large scale structure, Phys. Rev. D 68 (2003) 023518 [hep-ph/0304260] [inSPIRE].

[121] R. Foot and R.R. Volkas, Was ordinary matter synthesized from mirror matter? An attempt to explain why Ω(baryon) approximately equal to 0.2Ω(dark), Phys. Rev. D 68 (2003) 021304 [hep-ph/0304261] [inSPIRE].

[122] R. Foot and R.R. Volkas, Explaining Ω(baryon) approximately 0.2Ω(dark) through the synthesis of ordinary matter from mirror matter: a more general analysis, Phys. Rev. D 69 (2004) 123510 [hep-ph/0402267] [inSPIRE].

[123] Z. Berezhiani, Mirror world and its cosmological consequences, Int. J. Mod. Phys. A 19 (2004) 3775 [hep-ph/0312335] [inSPIRE].

[124] R. Foot, Implications of the DAMA and CRESST experiments for mirror matter dark matter, Phys. Rev. D 69 (2004) 036001 [hep-ph/0308254] [inSPIRE].
[125] R. Foot, Implications of the DAMA/NAI and CDMS experiments for mirror matter-type dark matter, *Phys. Rev. D* 74 (2006) 023514 [arXiv:0510705] [inSPIRE].

[126] R. Foot, Mirror dark matter and the new DAMA/LIBRA results: a simple explanation for a beautiful experiment, *Phys. Rev. D* 78 (2008) 043529 [arXiv:0804.4518] [inSPIRE].

[127] P. Ciarcia and R. Foot, Early universe cosmology in the light of the mirror dark matter interpretation of the DAMA/Libra signal, *Phys. Lett. B* 679 (2009) 278 [arXiv:0809.4438] [inSPIRE].

[128] R. Foot, Relevance of the CDMSII events for mirror dark matter, *Phys. Rev. D* 81 (2010) 087302 [arXiv:1001.0096] [inSPIRE].

[129] R. Foot, Mirror dark matter interpretations of the DAMA, CoGeNT and CRESST-II data, *Phys. Rev. D* 86 (2012) 023524 [arXiv:1203.2387] [inSPIRE].

[130] R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, *Int. J. Mod. Phys. A* 29 (2014) 1430013 [arXiv:1401.3965] [inSPIRE].

[131] Z. Berezhiani, Married to the baryonic and dark matters, *AIP Conf. Proc.* 878 (2006) 195 [hep-ph/0612371] [inSPIRE].

[132] Z. Berezhiani, Unified picture of ordinary and dark matter genesis, *Eur. Phys. J. ST* 163 (2008) 271 [inSPIRE].

[133] Z. Berezhiani and L. Bento, Neutron-mirror neutron oscillations: How fast might they be?, *Phys. Rev. Lett.* 96 (2006) 081801 [hep-ph/0507031] [inSPIRE].

[134] Z. Berezhiani and L. Bento, Fast neutron: mirror neutron oscillation and ultra high energy cosmic rays, *Phys. Lett. B* 635 (2006) 253 [hep-ph/0602227] [inSPIRE].

[135] H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, *JHEP* 03 (2010) 124 [arXiv:0911.4463] [inSPIRE].

[136] H. An, S.-L. Chen, R.N. Mohapatra, S. Nussinov and Y. Zhang, Energy dependence of direct detection cross section for asymmetric mirror dark matter, *Phys. Rev. D* 82 (2010) 023533 [arXiv:1004.3296] [inSPIRE].

[137] C.R. Das, L.V. Laperashvili, H.B. Nielsen and A. Turenne, Mirror world and superstring-inspired hidden sector of the universe, dark matter and dark energy, *Phys. Rev. D* 84 (2011) 063510 [arXiv:1101.4558] [inSPIRE].

[138] J.-W. Cui, H.-J. He, L.-C. Lu and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter and the LHC signatures, *Phys. Rev. D* 85 (2012) 096003 [arXiv:1110.6893] [inSPIRE].

[139] P.-H. Gu, Mirror symmetry: from active and sterile neutrino masses to baryonic and dark matter asymmetries, *Nucl. Phys. B* 874 (2013) 158 [arXiv:1303.6545] [inSPIRE].

[140] K. Petraki and R.R. Volkas, Review of asymmetric dark matter, *Int. J. Mod. Phys. A* 28 (2013) 1330028 [arXiv:1305.4939] [inSPIRE].

[141] R. Foot, Galactic structure explained with dissipative mirror dark matter, *Phys. Rev. D* 88 (2013) 023520 [arXiv:1304.4717] [inSPIRE].

[142] Y. Zhang, X. Ji and R.N. Mohapatra, A naturally light sterile neutrino in an asymmetric dark matter model, *JHEP* 10 (2013) 104 [arXiv:1307.6178] [inSPIRE].

[143] R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, *Int. J. Mod. Phys. A* 29 (2014) 1430013 [arXiv:1401.3965] [inSPIRE].

[144] M.R. Buckley and S. Profumo, Regenerating a symmetry in asymmetric dark matter, *Phys. Rev. Lett.* 108 (2012) 011301 [arXiv:1109.2164] [inSPIRE].
[145] R. Foot and X.-G. He, Comment on Z Z-prime mixing in extended gauge theories, \textit{Phys. Lett. B} \textbf{267} (1991) 509 [inspire].

[146] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, \textit{Phys. Rev. Lett.} \textbf{112} (2014) 091303 [arXiv:1310.8214] [inspire].

[147] M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{430} (2013) 81 [arXiv:1208.3025] [inspire].

[148] A.H. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{430} (2013) 105 [arXiv:1208.3026] [inspire].

[149] M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in Self-Interacting Galactic Dark Matter Haloes, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{423} (2012) 3740 [arXiv:1201.5892] [inspire].

[150] J. Zavala, M. Vogelsberger and M.G. Walker, Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{431} (2013) L20 [arXiv:1211.6426] [inspire].