Review of isolation enhancement with the help of Theory of characteristic modes

Farhan Ammar Ahmad
Department of Electrical Engineering
University of Management and Technology Lahore,
Sialkot Campus, Pakistan
farhan.sayal@post.umt.edu.pk

Abstract—Multiple-input-multiple-output (MIMO) antennas performance can be degraded due to the poor isolation between the MIMO antenna elements. In this paper a review of the different isolation enhancement schemes available in the literature is presented. Empirically the isolation between the antennas can be improved by placing the antenna as far as possible and it can be enhanced further by introducing different isolation enhancement schemes. Theory of characteristic modes (TCM) was recently proposed that had useful benefits. TCM was also used to enhance the isolation. This papers will also focus on the different approaches of TCM, to enhance the isolation.

Index Terms—MIMO antennas, DGS, TCM, isolation enhancement, Antennas

I. INTRODUCTION

Theory of characteristic modes (TCM) was developed by Garbacez [1] but it gained importance after it was revisited in [2] by diagonalizing the impedance matrix of the body. Mathematically [3]–[6]

\[[Z]I_n = (1 + j\lambda_n)[R]I_n \]

(1)

Where \(Z \) represents the impedance and \(Z = R + jX \), \(I_n \) represents the current eigen vector and \(1 + j\lambda_n \) represents the eigen value. Further simplification of the (1) gives

\[[X]I_n = \lambda_n[R]I_n \]

(2)

It can also be represented as

\[[X]J_n = \lambda_n[R]J_n \]

(3)

Here \(J_n \) represents the current density eigen vector. From Theorem of Reciprocity we know that, If \(Z \) is a linear symmetric operator then the Hermitian parts of of \(Z \) (\(R \) and \(X \)) will be also linear symmetric operator [3]. Thus we can conclude that the eigen values will be always real and we can assume that the eigen vectors will always be real and equiphasal. Eigen value gives us an information about the behavior of a modes at a particular frequency whether it will resonate or store electrical energy or store mechanical energy. Modal Significance (MS) is a parameter depending on the eigen value and gives us an information about the contribution of a particular mode at a particular frequency. Mathematically it is given by

\[MS_n = \left| \frac{1}{1 + j\lambda_n} \right| \]

(4)

At resonance the value of MS is equal to 1 and the 3 dB BW corresponds to 0.707 value. The radiation pattern associated with these real eigen modes are orthogonal to one another.

TCM is widely used for the analysis of various different types of antennas such as wire antennas [7], handset antennas [8], small antennas [9], dielectric antennas [10], printed MIMO antennas [11]–[15] and slot antennas [16]–[18].

Multiple-input-multiple-output (MIMO) antennas are widely used for the enhancement of antenna capacity and this technology will be used for 4G as well as 5G communications [19], [20]. The performance of such antennas can be degraded by if the antennas are not properly isolated [20], [21]. Recently TCM was used to enhance the isolation between the MIMO antenna elements.

The main contribution of this paper will be to review the empirical method procedure (EMP) used for the isolation enhancement as well as we will review the isolation enhancement from the perspective of TCM. The short comings as well as the significance of the methods proposed in the literature w.r.t TCM will be highlighted. Section II will briefly discuss the different methods present in the literature from EMP method while section III will discuss isolation enhancement from the perspective of TCM. The conclusion is provided in section IV.

II. ISOLATION ENHANCEMENT USING EMP

From EMP perspective the isolation between MIMO antennas can be enhanced by the use of meta surfaces or electromagnetic bandgap structures [22]–[24], parasitic elements [25], [26], neutralization line technique [27], [28], optimization of the antenna system configuration [29], [30], decoupling networks [31], and the use of Defected ground structures (DGS) [31], [34]–[43]. Among all the aforementioned port isolation enhancement methods, DGS is the least complex and expensive.

Meta-material (Single layer or Double layer) are used for the miniaturization as well as for isolation. They suppress the surface waves between the antennas resulting in an enhanced isolation [22]–[24]. Meta-materials normally involve larger and bulky formations that needs to be properly optimized. The isolation enhancement cant be obtained easily, if miniaturization is the major objective. Isolation improvement in [31] by the use of decoupling methods normally compromises of two
stages; matching network and then a decoupling network. In decoupling network reactive elements are designed between the antenna feeding ports to improve the isolation, such networks require more space and generates additional cost. In addition neutralization line technique was proposed in [27], [28]. These lines deliver certain amount of signal to the neighboring antenna that counteracts for the coupling between them. The major drawback is huge amount of optimization involved in the adjustment of the width, length and the location of connection point of these lines. More than one neutralization line is needed to improve the isolation over wide frequency bandwidth and this complicates the process further. Parasitic elements also uses the idea of field cancellation to enhance the isolation between the antennas [25], [26]. The major drawback is the optimization of the shape and the dimensions of parasitic element that play significant role in isolation enhancement. In [34] a periodic S shaped DGS was used to improve the isolation between two patch antennas to 23 dB. Two DGS (T-shaped and Line slot) were used to improve the isolation to 18 dB over a wide frequency range of 3.1-10.6 GHz in [35]. Two DGS were used to address two different frequency bands. A DGS etched in a square ring fashion was used to improve isolation by 7 dB, for a square patch surrounded by a square ring patch design in [36]. An isolation was improved to 17 dB for a 2 element, 4 shaped dual band design, where the length of the rectangular slot and spirals in the DGS were used to tune the frequency band in [37]. In [38] an isolation of 15 dB was achieved for a 2 element MIMO antenna by combining two isolation enhancement mechanisms that are orthogonal placement of antennas and introducing a slit in the ground. Isolation enhancement for a MIMO antenna system for more than 2 elements is difficult. Isolation was enhanced to 12 dB for a very closely packed 4-element MIMO design, where they used four wideband DGS with multi objective fractional factorial design [39]. A slitted pattern was etched between 2-element PIFA and wire monopole design that enhanced the isolation to reach 20 dB [40]. Moreover the study was extended to 4-element PIFA (aligned along a line) to get an isolation of 12 dB. Two DGS were used in [41] to improve isolation of a 4-element MIMO design. A rectangular slot and a stair case slot were used to enhance the isolation to 12 dB between the horizontal and verticals antennas respectively. For an 8-element MIMO design a very complicated DGS that consist of closed loop frequency selective surfaces and quad strips connected with a circular arc were used to improve isolation to 15 dB respectively [43].

The main problem in the DGS method to enhance isolation is the shape, size, number of DGS, position and the huge amount of optimization involved in the placement of DGS. We observed that from the perspective of EMP there is no systematic method to enhance the isolation, all of the available literature rely on the past experience and different parametric studies to obtain the enhanced isolation. This was the reason that the TCM was used for the isolation enhancement to develop a proper methodology for isolation enhancement.

III. ISOLATION ENHANCEMENT USING TCM

The presence of the any antenna or deformation in the chassis greatly affect the chassis modes [44]–[48]. TCM was used in [49]–[53] to enhance the isolation between the MIMO antenna designs. It was demonstrated in [49] that the current in PIFA is more localized as compared Monopole and this is the reason that PIFA antennas are narrow band as compared to Monopole antennas. At the same time MIMO PIFA antenna design has better isolation because of its localized current nature. For frequencies less than 1 GHz, the chassis starts contributing to the antenna performance because now the electrical length of the antenna is huge. So for a MIMO antennas the situation will worsen because now all the antenna will excite the chassis modes. For frequency of 1 GHz, the antenna is having only one chassis mode having electric field maxima at the edge and electric field minima at the center. An electrical antenna placed at the edge will effectively excite the chassis modes while antenna placed at the center will not. Antennas placed at the mentioned position achieved a 5 dB more isolation as compared to the antennas placed at the edges of the chassis [49]. A magnetic and electrical antenna placed at the edges will have improved isolation because the electrical antenna will excite chassis currents while the magnetic antenna will not [50]. Co-located antennas were introduced in [50], to have very compact MIMO antenna design. To have better isolation, the co-located Magnetic and electric antenna excite the chassis currents in opposite direction. In [49], [50], only the behavior of the first mode using TCM was observed and analysis were based on it.

The selective excitation of characteristic modes that have orthogonal behavior can enhance the isolation. In [54], a feed network (consisting of 4 hybrid 180 couplers) and 4 capacitive coupler were designed to excite the four different modes of the antenna. The modes excited due to its orthogonal nature results in an enhanced isolation. The asymmetry in the ground plane produces a natural tilt and increase in directivity [55]. Two antennas were placed at asymmetrical ground plane such that both of them excite different characteristic modes, it will help in getting highly isolated and highly uncorrelated beams.

In [56], the lower order modes were separated by the use of decoupling network and GA was used to synthesize low Quality factor MIMO antenna. Quality factor is inversely proportional to the antenna bandwidth. A monopole (excited via CCE) and chassis (excited via ICE) combination was used to implement highly isolated MIMO design [57]. From the combination of CM, a new set of Radiation modes can be formed. The radiation modes formed are highly orthogonal to one another thus resulting in highly uncorrelated beams [58].

In [59], out-of-band interference was improved by the use of TCM. In Aeroplane for communication they use antenna at 2.8 to 24 MHz with very strong power, the harmonics of this antenna are also high power and thus affects the communication of other antennas. Such type of interference is called out-of-band interference. The Methodology adopted was to calculate the Modal mutual admittance (MMA) and Modal
Self admittance of the antenna. CMA analysis of the higher frequency antenna (with low power) is calculated. Functional and non-functional modes of the first antenna is calculated. Modes contributing to real communication are known as functional while the modes contributing to interference are known as non-functional. Non-functional modes are blocked by inductor loading with the help of TCM. The value of the inductor shall be properly optimized to block the non-functional mode.

In [60], designs made with the application of TCM were compared with the empirically made designs. 5 designs were opted from different papers with 2 designs opted from TCM and 3 opted by empirical method. All of the selected designs were MIMO design and they were compared in 7 different real time scenarios. The scenarios were that first all the designs performance was observed in the presence of a box then 3 scenarios in which the antenna was hold by one hand and then 3 scenarios in which the antenna was hold by two hands. TCM design recorded 3 times high multiplexing efficiency as compared to conventional design and for all the 7 scenarios, TCM designs performed with ME of 1.6 dB better.

Now all these methods focus on the isolation enhancement for frequentness around 1 GHz [49], [50]. At 1 GHz, for a normal chassis only one chassis mode is present. The problem will escalate, if we consider frequency greater than 1.5 GHz as now more than one mode will be present. As the point where one mode was having current minima (a possible location for the placement of the second antenna), another mode current maxima lies over there. Thus we are left with no possible location.

In [12], a possible solution to this problem was proposed, where the DGS was used to enhance the isolation between two MIMO antennas. A methodology was also proposed to predict whether the isolation can be enhanced or not. The block diagram of the methodology is shown in the Figure 1. After the designing of MIMO antennas the characteristic modes were identified. The modes were classified as coupling and non-coupling modes based on the current distribution and its resemblance with the chassis current distribution in the presence of the excitation sources. Non-coupling modes are the one contributing to the radiation while the coupling modes are contributing to the port coupling thus degrading the isolation performance. If there exists a certain location on the chassis, where the DGS placed can block the coupling mode but at the same time does not effect the non-coupling mode the isolation between the antenna elements can be enhanced but if there does not exist any such location, the isolation between the antenna elements cannot be enhanced. The method was applied to different antenna designs and it achieved the most significant enhancement in the isolation as compared to other designs in the literature.

IV. CONCLUSION

In this paper, a summary of different available techniques to enhance the isolation between MIMO antenna elements is proposed. The shortcomings of the different EMP based approaches is discussed. The TCM based approaches to enhance the port isolation between the MIMO antenna elements are also discussed. It was lastly shown that a new method to enhance the isolation between the MIMO antennas with the help of TCM was proposed. The method is able to predict whether the isolation can be enhanced or not.

REFERENCES

[1] Garbacz, R.J., A generalized expansion for radiated and scattered fields, Ohio State University, Columbus, 1968.
[2] Harrington, R. F., and J. R. Mautz, “Theory of Characteristic Modes for Conducting Bodies”, IEEE Trans. Antennas Propag., 19, 622–628, 1971.
[3] Fabres, M. C. Systematic Design of Antennas Using the Theory, Universidad Politecnia de Valencia, 2007
[4] Antonino Daviu, E., Analysis and design of antennas for wireless communications using modal methods, Universidad Politecnia de Valencia, 2008
[5] A. Ghalib, Current Engineering methods applied to the design of MIMO Antennas, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia, 2018.
[6] A. Ghalib and MS. Sharawi, “A comparison between the antenna current green function and theory of characteristic modes, 2016 IEEE Middle
A. C. K. Mak, C. R. Rowell, and R. D. Murch, “Isolation enhancement using small aperture illumination on printed antennas,” IEEE Antennas and Propagation Symposium International Symposium (AP-SURSI), Vol. 1, 2002.

8. Ethier, J., E. Lanoue, and D. McNamara, “MIMO handheld antenna design approach using characteristic mode concepts,” Microw. Opt. Technol. Lett., 50, 1724–1727, 2008.

9. Newman, E., “Small antenna location synthesis using characteristic modes,” IEEE Trans. Antennas Propag., 27, 530–531, 1979.

10. Harrington, R. F., J. R. Mautz, and Y. Chang, “Characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antennas Propag., 20, 194–198, 1972.

11. M. Ikram, R. Hussain, A. Ghalib, and M. S. Sharawi, “Compact 4-element mimo antenna with isolation enhancement for 4G LTE terminals,” in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 535–536, June 2016.

12. A. Ghalib and M. S. Sharawi, “TCM Analysis of Defected Ground Structures for MIMO Antenna Designs in Mobile Terminals,” IEEE Access, vol. 5, pp. 19680-19692, 2017.

13. A. Ghalib, “Theory of Characteristic modes application to MIMO Antennas,” Forum for Electromagnetic research methods and application Technologies, vol. 29, Communication 1, 2018.

14. A. Ghalib and M. S. Sharawi, “Analyzing DGS behavior for a MIMO antenna system using theory of characteristic modes,” 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), Beirut, 2016, pp. 1-4.

15. R. Hussain, A. Ghalib and M. S. Sharawi, “Annular Slot-Based Miniaturized Frequency-Agile MIMO Antenna System,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2498-2492, 2017.

16. A. Ghalib, R. Hussain and MS. Sharawi, “Analysis of slot-based radiators using TCM and its application in MIMO antennas,” International Journal of RF and Microwave Computer-Aided Engineering, 2018, 282154.

17. A. Ghalib, R. Hussain, and M. S. Sharawi, “Characteristic modes of circular slot antennas etched on a finite ground plane,” 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, 167-168, 2017.

18. A. Ghalib, R. Hussain, MS. Sharawi, “Low profile frequency agile MIMO slot antenna with TCM characterization,” 2017 11th European Conference on Antennas and Propagation (EUCAP), IEEE, 2017, 2652-2655.

19. A. Ghalib, M. S. Sharawi, H. Attia and R. Mittra, “Broadband Substrate Integrated Waveguide Slotted Array Antenna at mm-Wave Bands,” 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, 2018, pp. 1-5.

20. Mohammad S. Sharawi, Printed MIMO Antenna Engineering Norwood, MA, USA: Artech House, 2014.

21. A. Ghalib, S. Clauzier, M. S. Sharawi and Y. M. M. Antar, “A slotted waveguide based MIMO antenna system for wireless access points,” 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 1459-1460.

22. G. Zhai, Z. N. Chen, and X. Qing, “Enhanced isolation of a closely spaced four-element mimo antenna system using metamaterial mushroom,” IEEE Transactions on Antennas and Propagation, vol. 63, pp. 3362-3370, Aug 2015.

23. D. K. Ntaikos and T. V. Youtisits, “Compact split-ring resonator-loaded multiple-input-multiple-output antenna with electrically small elements and reduced mutual coupling,” IET Microwaves, Antennas Propagation, vol. 7, pp. 421–429, April 2013.

24. C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a t-shaped branch for mimo antennas,” IEEE Transactions on Antennas and Propagation, vol. 59, pp. 3936–3939, Oct 2011.

25. S. Soldan and R. D. Murch, “A compact planar printed mimo antenna design,” IEEE Transactions on Antennas and Propagation, vol. 63, pp. 1140–1149, March 2015.

26. A. K. Mak, C. R. Rowell, and R. D. Murch, “Isolation enhancement between two closely packed antennas,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 3411–3419, Nov 2008.

27. Y. Wang and Z. Du, “A wideband printed dual-antenna with three neutralization lines for mobile terminals,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 1495–1500, March 2014.
[49] H. Li, Y. Tan, B. K. Lau, Z. Ying and S. He, “Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 490-502, Feb. 2012.

[50] H. Li, B. K. Lau, Z. Ying and S. He, “Decoupling of Multiple Antennas in Terminals With Chassis Excitation Using Polarization Diversity, Angle Diversity and Current Control,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5947-5957, Dec. 2012.

[51] H. Li, J. Xiong, Z. Ying and S. L. He, “Compact and low profile co-located MIMO antenna structure with polarization diversity and high port isolation,” IEEE Electronics Letters, vol. 46, no. 2, pp. 108-110, January 2010.

[52] H. Li, B. K. Lau, Y. Tan, S. He and Z. Ying, “Impact of current localization on the performance of compact MIMO antennas,” IEEE 5th European Conference on Antennas and Propagation (EUCAP), Rome, pp. 2423-2426, 2011.

[53] H. Li, B. K. Lau and Z. Ying, “Optimal multiple antenna design for compact MIMO terminals with ground plane excitation,” IEEE International Workshop on Antenna Technology (iWAT), Hong Kong, pp. 218-221, 2011.

[54] S. K. Chaudhury, W. L. Schroeder and H. J. Chaloupka, “MIMO antenna system based on orthogonality of the characteristic modes of a mobile device,” 2nd International ITG Conference on Antennas, Munich, pp. 58-62 2007.

[55] I. Szini, A. Tatomirescu and G. F. Pedersen, “On Small Terminal MIMO Antennas, Harmonizing Characteristic Modes With Ground Plane Geometry,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1487-1497, April 2015.

[56] B. Yang and J. J. Adams, “Systematic Shape Optimization of Symmetric MIMO Antennas Using Characteristic Modes,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2668-2678, July 2016.

[57] R. Martens, J. Holopainen, E. Safin, J. Ilvonen and D. Manteuffel, “Optimal Dual-Antenna Design in a Small Terminal Multiantenna System,” IEEE Antennas and Wireless Propagation Letters, vol. 12, no. , pp. 1700-1703, 2013.

[58] M. Bouezzedine and W. L. Schroeder, “Design of a Wideband, Tunable Four-Port MIMO Antenna System With High Isolation Based on the Theory of Characteristic Modes,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2679-2688, July 2016.

[59] Q. Wu, W. Su, Z. Li and D. Su, “Reduction in Out-of-Band Antenna Coupling Using Characteristic Mode Analysis,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2732-2742, July 2016.

[60] I. Vasilev and B. K. Lau, “On User Effects in MIMO Handset Antennas Designed Using Characteristic Modes,” IEEE Antennas and Wireless Propagation Letters, vol. 15, no. , pp. 758-761, 2016.