Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review

Thibault Fiolet1,*, Yousra Kherabi2,3, Conor-James MacDonald1, Jade Ghosn2,3, Nathan Peiffer-Smadja2,3,4

1) Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, ‘Exposome and Heredity’ team, CESP UMR1018, Villejuif, France
2) Université de Paris, IAME, INSERM, Paris, France
3) Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
4) National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College, London, UK

Background: Vaccines are critical cost-effective tools to control the coronavirus disease 2019 (COVID-19) pandemic. However, the emergence of variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may threaten the global impact of mass vaccination campaigns.

Aims: The objective of this study was to provide an up-to-date comparative analysis of the characteristics, adverse events, efficacy, effectiveness and impact of the variants of concern for 19 COVID-19 vaccines.

Sources: References for this review were identified through searches of PubMed, Google Scholar, BioRxiv, MedRxiv, regulatory drug agencies and pharmaceutical companies’ websites up to 22nd September 2021.

Content: Overall, all COVID-19 vaccines had a high efficacy against the original strain and the variants of concern, and were well tolerated. BNT162b2, mRNA-1273 and Sputnik V after two doses had the highest efficacy (>90%) in preventing symptomatic cases in phase III trials. mRNA vaccines, AZD1222, and CoronaVac were effective in preventing symptomatic COVID-19 and severe infections against Alpha, Beta, Gamma or Delta variants. Regarding observational real-life data, full immunization with mRNA vaccines and AZD1222 seems to effectively prevent SARS-CoV-2 infection against the original strain and Alpha and Beta variants but with reduced effectiveness against the Delta strain. A decline in infection protection was observed at 6 months for BNT162b2 and AZD1222. Serious adverse event rates were rare for mRNA vaccines—anaphylaxis 2.5–4.7 cases per million doses, myocarditis 3.5 cases per million doses—and were similarly rare for all other vaccines. Prices for the different vaccines varied from $2.15 to $29.75 per dose.

Implications: All vaccines appear to be safe and effective tools to prevent severe COVID-19, hospitalization, and death against all variants of concern, but the quality of evidence greatly varies depending on the vaccines considered. Questions remain regarding a booster dose and waning immunity, the duration of immunity, and heterologous vaccination. The benefits of COVID-19 vaccination outweigh the risks, despite rare serious adverse effects. Thibault Fiolet, Clin Microbiol Infect 2022;28:202

© 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Vaccine	Manufacturer	Type of vaccine	Dose	Injection dose interval in the phase III trial	Condition of use/storage	Composition	Cost for one dose
BNT16b2	Pfizer/BioNtech	RNA-based	30 µg	Intramuscularly 2 doses 21 days apart	Supplied as a frozen vial	A synthetic messenger ribonucleic acid (mRNA) encoding the spike protein of SARS-CoV-2, lipids (4-hydroxybutyl)azanediylobis(hexane-6,1-diyl)bis(2-hexyldecanoate), 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide, 1,2-distearoyl-sn-glycero-3-phosphocholine, and cholesterol), potassium chloride, monobasic potassium phosphate, sodium chloride, dibasic sodium phosphate dihydrate, and sucrose	EU and USA: $19.50
African Union: $6.75							
Brazil: $10							
Colombia: $12							
mRNA-1273	Moderna	RNA-based	100 µg	Intramuscularly 2 doses 28 days apart	Supplied as a frozen suspension stored between −50°C to −15°C		
11 or 15-dose vial							
0.5 mL per dose	A synthetic messenger ribonucleic acid (mRNA) encoding the spike protein of SARS-CoV-2. The vaccine also contains the following ingredients: lipids (SM-102, 1,2-dimyrityl-rac-glycero-3-methoxypolyethylene glycol-2000 (PEG2000-DMG), cholesterol, and 1,2-distearyloxy-glycero-3-phosphocholine (DSPC)), tromethamine, tromethamine hydrochloride, acetic acid, sodium acetate, and sucrose	EU: $25.5					
USA: $15							
Argentina: $21.5							
Botswana: $28.8							
CVnCoV	CureVac	RNA-based	12 µg	Intramuscularly 2 doses 28 days apart	Concentrated CVnCoV will be stored frozen at −60°C (in clinical trial)		
CVnCoV must be diluted
Unopened vial: 3 months at +2°C to +8°C
Room temperature for 24 hours | NA | NA |

(continued on next page)
Vaccine	Manufacturer	Type of vaccine	Dose	Injection dose interval in the phase III trial	Condition of use/storage	Composition	Cost for one dose
AZD1222	AstraZeneca/University of Oxford	Non-replicating viral vector	5×10^{10} viral particles (standard dose) 8 doses or 10 doses of 0.5 mL per vial	Intramuscularly 2 doses 4–12 weeks apart	Do not freeze Unopened vial: 6 months ($+2^\circ \text{C to } +8^\circ \text{C}$) After opening: no more than 48 hours in a refrigerator ($+2^\circ \text{C to } +8^\circ \text{C}$) Used at temperature up to $+30^\circ \text{C}$ for a single period of up to 6 hours	Chimpanzee Adenovirus encoding the SARS-CoV-2 spike glycoprotein (ChAdOx1-S), not less than 2.5 x 108 infectious units (InFU)* Produced in genetically modified human embryonic kidney (HEK) 293 cells and by recombinant DNA technology L-Histidine L-Histidine hydrochloride monohydrate Magnesium chloride hexahydrate Polyisorbate 80 (E 433) Ethanol Sucrose Sodium chloride Disodium edetate (dihydrate) Water for injection	$2.15 in the EU $4–6 elsewhere
ChAdOx1 nCoV-19	AstraZeneca/University of Oxford	Non-replicating viral vector	5 x 10^10 viral particles (standard dose) 8 doses or 10 doses of 0.5 mL per vial	Intramuscularly 2 doses 4–12 weeks apart	Do not freeze Unopened vial: 6 months ($+2^\circ \text{C to } +8^\circ \text{C}$) After opening: no more than 48 hours in a refrigerator ($+2^\circ \text{C to } +8^\circ \text{C}$) Used at temperature up to $+30^\circ \text{C}$ for a single period of up to 6 hours	Chimpanzee Adenovirus encoding the SARS-CoV-2 spike glycoprotein (ChAdOx1-S), not less than 2.5 x 108 infectious units (InFU)* Produced in genetically modified human embryonic kidney (HEK) 293 cells and by recombinant DNA technology L-Histidine L-Histidine hydrochloride monohydrate Magnesium chloride hexahydrate Polyisorbate 80 (E 433) Ethanol Sucrose Sodium chloride Disodium edetate (dihydrate) Water for injection	$2.15 in the EU $4–6 elsewhere
Ad26.COV2.S	Johnson & Johnson	Non-replicating viral vector	5×10^{10} viral particles 10 doses of 0.5 mL per vial	Intramuscularly A single dose	Should be protected from light Supplied as a liquid suspension Unopened vial can be stored at $+2^\circ \text{C to } +8^\circ \text{C}$ until the expiration date or at $+9^\circ \text{C to } +25^\circ \text{C}$ for up to 12 hours After the first dose has been withdrawn, the vial is held between $+2^\circ \text{C and } +8^\circ \text{C}$ for up to 6 hours or at room temperature for up to 2 hours	Replication-incompetent recombinant adenovirus type 26 vector expressing the SARS-CoV-2 spike protein in a stabilized conformation. (5×10^{10} vp) Citric acid monohydrate, trisodium citrate dihydrate, ethanol, 2-hydroxypropyl-β-cyclodextrin (HBCD), polyisorbate 80, sodium chloride, sodium hydroxide, and hydrochloric acid	EU: $8.5 USA: $10 African Union: $10
Gam-COVID-Vax	Gamaleya Research Institute	Non-replicating viral vector	10^{11} viral particles per dose for each recombinant adenovirus 0.5 mL/dose	Intramuscularly 2 doses 21 days apart	Transport: two forms: lyophilized or frozen Storage: $+2^\circ \text{C to } +8^\circ \text{C}$	Two vector components, rAd26-S and rAd5-S Tris (hydroxymethyl) aminomethane, sodium chloride, sucrose, magnesium chloride hexahydrate, ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, polyisorbate-80, ethanol 95%, and water for injection	<$10
Gam-COVID-Vax	Gamaleya Research Institute	Non-replicating viral vector	10^{11} viral particles per dose for each recombinant adenovirus 0.5 mL/dose	Intramuscularly 2 doses 21 days apart	Transport: two forms: lyophilized or frozen Storage: $+2^\circ \text{C to } +8^\circ \text{C}$	Two vector components, rAd26-S and rAd5-S Tris (hydroxymethyl) aminomethane, sodium chloride, sucrose, magnesium chloride hexahydrate, ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, polyisorbate-80, ethanol 95%, and water for injection	<$10
Gam-COVID-Vax	Gamaleya Research Institute	Non-replicating viral vector	10^{11} viral particles per dose for each recombinant adenovirus 0.5 mL/dose	Intramuscularly 2 doses 21 days apart	Transport: two forms: lyophilized or frozen Storage: $+2^\circ \text{C to } +8^\circ \text{C}$	Two vector components, rAd26-S and rAd5-S Tris (hydroxymethyl) aminomethane, sodium chloride, sucrose, magnesium chloride hexahydrate, ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, polyisorbate-80, ethanol 95%, and water for injection	<$10
NVX-CoV2373	Novavax	Protein-based	5 µg protein and 50 µg Matrix-M adjuvant	Intramuscularly 2 doses 21 days apart	Shipped in a ready-to-use liquid formulation Storage: $+2^\circ \text{C to } +8^\circ \text{C}$ Storage between $+2^\circ \text{C}$ and $+8^\circ \text{C}$	SARS-CoV-2 rS with matrix-M1 adjuvant (5 µg antigen and 50 µg adjuvant)	$20.9 for Denmark COVAX: $3
EpiVacCorona	VECTOR	Protein-based	225 µg protein 0.5 mL/dose	Intramuscularly 2 doses 21 days apart	Shipped in a ready-to-use liquid formulation Storage: $+2^\circ \text{C to } +8^\circ \text{C}$ Storage between $+2^\circ \text{C}$ and $+8^\circ \text{C}$	SARS-CoV-2 rS with matrix-M1 adjuvant (5 µg antigen and 50 µg adjuvant)	NA

*InFU = Infectious Units
Vaccine Name	Manufacturer/Institute	Type	Dose/Covaxin	Administration	Storage Conditions	Excipients/Ingredients	Price/Region
ZF2001	Institute of Microbiology, Chinese Academy of Sciences, and Anhui Zhifei Longcom Biopharmaceutical CanSino	Protein-based	25 μg protein 0.5 mL/dose	Intramuscular	Storage between +2°C and +8°C	NA	NA
Convidecia™ Ad5-nCoV	CanSino	Non-replicating	10^{10} viral particles per 0.5 mL in a vial	Intramuscularly	Single dose	Supplied as a vial of 0.5 mL. Storage between +2°C and +8°C. Do not freeze. The recombinant novel coronavirus vaccine (Adenovirus type 5 vector) Mannitol, sucrose, sodium chloride, magnesium chloride, polysorbate 80, glycerin, N-(2-hydroxyethyl), piperazine-N-(2-ethanesulfonic acid) (HEPES), sterile water for injection as solvent.	Pakistan private market: $27.2
CoronaVac	Sinovac Biotech	Inactivated virus	3 μg 0.5 mL per dose	Intramuscularly	2 doses 28 days apart	Supplied as a vial or syringe of 0.5 mL. Do not freeze. Protect from light. Storage and transport between +2°C and +8°C. Shake well before use. Shelf-life: 12 months.	Argentina: $15, Senegal: $18.6, China: $29.75, Ukraine: $18, Brazil: $10.3, Cambodia: $10, Hungary: $36
BBIBP-COrV	Sinopharm/Beijing Institute of Biological Products	Inactivated virus	4 μg 0.5 mL per dose	Intramuscularly	2 doses 21–28 days apart	Supplied as pre-filled syringe or vial. Cannot be frozen. Protect from light. Store and transport refrigerated (⁺2°C to ⁺8°C)	NA
Wuhan Covaxin	Sinopharm/Chinese Academy of Science Bharat Biotech	Inactivated virus	NA	NA	NA	NA	India: $3-5, Brazil: $15, Botswana: $16
CIGB-66 Abdala	Center for Genetic Engineering and Biotechnology (CIGB)	Protein-based	0.05 mg recombinant protein 0.5 mL per dose	Intramuscularly	3 doses at 0, 14, 28 days	Supplied as a multidose vial. Do not freeze. Stored at +2°C to +8°C. Recombinant protein of the SARS-CoV-2 virus receptor-binding domain (RBD) 0.05 mg. Thiomersal 0.025 mg. Aluminium hydroxide gel (Al^3+) Disodium hydrogen phosphate Sodium dihydrogen phosphate dihydrate Sodium chloride	NA
Table 1 (continued)

Vaccine	Manufacturer	Type of vaccine	Inactivated virus	Condition of use/storage	Inactivated viral particles	Composition and conditions of use/Composition	Cost for one dose	Injection dose interval in the phase III trial	Injection dose interval in the phase IV trial	Dose	Injection dose interval in the phase IV trial	Condition of use/storage	Injection dose interval in the phase IV trial	Injection dose interval in the phase IV trial
QazVac	Kazakh Research Institute for Biomedical Safety Problems	Inactivated virus	Intramuscularly	Stored at -2°C to -8°C	NA	NA	NA	2 doses 21 days apart	2 doses 28 days apart	0.5 mL per dose	2 doses 28 days apart	NA	NA	NA
Coviran Barkat	Shifa Pharmacological Industrial Group	Inactivated virus	Intramuscularly	Stored at -2°C to -8°C	NA	5 μg inactivated purified virus	NA	NA	NA	0.5 mL per dose	2 doses 28 days apart	NA	NA	NA
KoviVac	Chumakov Center	Inactivated virus	Intramuscularly	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Composition and conditions of use/Composition references are in the Supplementary Material Table S1.

NA, not available information; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; EU, European Union.

* Prices were retrieved from https://www.unicef.org/supply/covid-19-vaccine-market-dashboard and https://www.theguardian.com/world/2021/aug/11/covid-19-vaccines-the-contracts-prices-and-profits.

26 vaccines have been evaluated in phase III clinical trials, according to the World Health Organization (WHO) [1].

Recently, several variants of concern (VOCs) have emerged, including Alpha (known as 501Y.V1 with GISAID nomenclature or B.1.1.7 variant with PANGO nomenclature), Beta (501Y.V2 or B.1.351), Gamma (501Y.V3 or P1) and Delta (G/478K.V1 or B.1.617.2). These variants have been associated with an increase in the transmission or mortality of COVID-19 [2–6] or may escape immunity when compared to the original strain or D614G variant [7–11].

While phase III trials assess the efficacy under controlled conditions, phase IV studies evaluate the real-world effectiveness of the vaccines in an observational design among a larger general population. These studies bring crucial information about rare or long-term effects, the prevention of asymptomatic infection, and the severity of COVID-19.

The administration of COVID-19 vaccines is a major priority for many countries around the world. Due to the speed of production of scientific data in the context of this pandemic, it can be difficult for healthcare professionals to update themselves on the latest data concerning COVID-19 vaccines.

The objective of this review is to provide an up-to-date comparative analysis of the characteristics, adverse events, efficacy, effectiveness, and impact of the variants of concern on the following 19 COVID-19 vaccines: mRNA vaccines (BNT16b2, mRNA-1273, CVnCoV), viral vector vaccines (AZD1222, Sputnik V, Sputnik V Light, Ad5-nCoV (Convidecia), Ad26.COV2.S), inactivated vaccines (NVX-COV2373, CoronaVac, BBIBP-CorV, Wuhan Sinopharm inactivated vaccine, Covaxin, QazVac, KovIvac, COVIran Barekat), and protein-based vaccines (EpiVacCorona, ZF2001, Abdala).

Methods

Electronic searches for studies were conducted using Pubmed and Google scholar until 22nd September 2021 using the search terms “SARS-CoV-2”, “COVID-19”, “efficacy”, “effectiveness”, “neutralization assays”, and “neutralization antibodies” in addition to the scientific or commercial names of the vaccines reported by WHO in phase III/IV. The ClinicalTrials.gov database was consulted using the terms “COVID-19” and “vaccine”. BioRxiv and MedRxiv, regulatory drug agencies and pharmaceutical companies’ websites were also consulted for unpublished results and additional information. Vaccines included in this review were approved in at least one country. CVnCoV and NVX-COV2373 were in rolling review by the European Medicine Agency (EMA) and were included in this review.

Efficacy refers to the degree to which a vaccine prevents symptomatic or asymptomatic infection under controlled circumstances such as clinical trials. Effectiveness refers to how well the vaccine performs in the real world. In clinical trials, the main endpoint was the prevention of symptomatic COVID-19, whereas in observational studies endpoints were various and included asymptomatic SARS-CoV-2 infection, COVID-19, hospitalization or mortality.

Regarding seroneutralization assays, we extracted the age of the study population, dosage, and fold decrease in geometric mean titre for 50% neutralization compared to the SARS-CoV-2 reference strain for each vaccine and each SARS-CoV-2 variant when it was available.

Evidence on vaccine efficacy and effectiveness

At the time of this review, 17 vaccines have been authorized in at least one country (Supplementary Material Table S1) and two vaccines (CVnCoV and NVX-COV2373) are under evaluation.
Table 2
Phase III trials for coronavirus disease 2019 (COVID-19) vaccines

Vaccine	Author	Study population	Cut-off date	Main endpoint	Symptomatic COVID-19	Severe COVID-19	Hospitalization	Any unsolicited serious adverse event							
				Vaccine placebo	Efficacy (%)	Cases among	Cases among								
				case group	(%, 95% CI)	vaccine group	placebo group								
BNT162b2 (RNA-based)	Polack et al. [14]	USA, Argentina, Brazil, Germany, S. Africa, Turkey	27th July 2020 to 14th November 2020	After dose 1	50/21 314	275/21 258	82% (75.6 to 86.9)	0	4	88.9% (20.1 to 99.7)	NA	0.6%	0.5%		
				After dose 2 COVID-19 with onset at least 7 days after the second dose without prior infection	8/18 198	162/18 325	95% (90.3 to 97.6)	1	4	75% (~152.6% to 99.5%)	NA	0.6%	0.5%		
	Thomas et al. [15]	USA, Argentina, Brazil, Germany, S. Africa, Turkey	27th July 2020 to 13th March 2021	After dose 1	77/20 998	850/20 713	91.3% (89.0 to 93.2)	1	23	95.7% (73.9 to 99.9)	NA	1.2%	0.7%		
				After dose 2 COVID-19 with onset at least 7 days after the second dose without prior infection	0/1005	16/978	100% (75.3 to 100)	0	0	No cases of severe COVID-19 were observed	NA	0.4%	0.1%		
	Frenck et al. [16]	USA, 12–15 years	15th October 2020 to 12th January 2021	After dose 1	0/1005	16/978	100% (75.3 to 100)	0	0	No cases of severe COVID-19 were observed	NA	0.4%	0.1%		
mRNA-1273 (RNA-based)	Baden et al. [17]	USA, 18 years	27th July 2020 to 21st November 2020	Median follow-up of 64 days	7/996	39/1079	80.2% (55.2 to 92.5)	NA	NA	NA	100% (no CI estimated)	NA	0.6%	0.6%	
	El Sahly et al. [18]	US, 18 years	26th March 202	Median follow-up of 5.3 months post dose 2	55/14 287	744/14 164	93.2% (91 to 94.8)	2	106	98.2%	NA	0.7%	0.6%		
CVnCoV (RNA-based)	CureVac press communication	Argentina, Belgium, Dominican Republic, Germany, Mexico, Netherlands, Panama, Peru, Spain	Estimated completion date: 15th May 2022	After dose 1	40 000 adults 81 cases among the vaccine group 145 cases among the placebo group	48%	9	36	77% against moderate and severe disease	0 hospitalizations among the vaccine group 6 hospitalizations among the placebo group	3 in the placebo group and 1 in the vaccine group	NA	NA		
AZD1222 (Non-replicating viral vector ChAdOx1 nCoV-19 vaccine)	Emary et al. [20]	UK	1st October 2020 to 14th January 2022	Median follow-up: not provided	Symptomatic COVID-19 with onset at least 14 days after the second dose without prior infection	50/4244	210/4290	70.4% (43.6 to 84.5)	NA	NA	NA	There were no cases of hospitalization or death	NA	NA	
	Voysey et al. [21]	UK/Brazil/South Africa, 18 years	23rd April 2020 to 7th December 2020	Median follow-up post dose 2: 53–90 days according to the dose gap	Symptomatic COVID-19 with onset at least 14 days after the second dose without prior infection	84/8597	248/8581	66.7% (57.4% to 74%)	0	15	Efficacy against hospitalization from 22 days after vaccination: 100%	2 hospitalizations among the vaccine group 22 hospitalizations among the placebo group	NA	0.7%	0.8%
	Madhi et al. [22]	South Africa, 18 years	24th June 2020 to 9th November 2020	Median follow-up post dose 2: 156–121 days	Mild to moderate COVID-19 with onset at least 14 days after the second dose without prior infection	19/750	23/717	21.9 (~49.9 to 59.8)	0	0	No participant had severe COVID-19	Zero hospitalizations 14 events 13 events	NA	NA	

(continued on next page)
Vaccine	Author	Study population	Cut-off date	Main endpoint	Symptomatic COVID-19	Severe COVID-19	Hospitalization	Any unsolicited serious adverse event	
					Vaccine: 19/750	Placebo: 20/714	10.4% (76.4 to 54.8)		
					0	0	NA		
Press communication: [23]			25th March 2021	Preventing symptomatic COVID-19 at least 14 days after the second dose without prior infection	141	76% (68 to 82)			
Ad26.COV2.S (Non-replicating viral vector)	US FDA and EMA: [24,25]	Brazil, Chile, Argentina, Colombia, Peru, Mexico, US, South Africa ≥18 years	22nd January 2021 Median follow-up of 2 months	Prevent confirmed, moderate to severe/critical COVID-19 at least 14 days after vaccination without prior infection	116/19 514	448/19 544	All: 66.9% (59.1 to 73.4)	All: 74.4% (65 to 81.6)	
		1st D614G, 96.4% in the US, Beta (94.5% in South Africa), Variant P2 (69.4% in Brazil)					South Africa: 52% (30.3 to 67.4)	Latin America: 64.7% (54.1 to 73)	
							South Africa: 64% (41.2 to 78.7)	Latin America: 61% (46.9 to 71.8)	
							Latin America: 73.1% (63.7 to 80.1)	Latin America: 73.1% (63.7 to 80.1)	
	Logunov et al.: [26]	Russia ≥18 years	7th September 2020 to 24th November 2020	First confirmed COVID-19 after the first dose	79/16 427	96/5435	NA	0.3%	0.4%
							91.6% (85.6 to 95.2)	100% (94.4 to 100)	
							1 severe COVID-19 in placebo group	0.5%	0.5%
	Shinde et al.: [27]	South Africa ≥18 years: Beta: 90% of cases in South Africa	17th August 2020 to 25th November 2020	Preventing symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	44/1357	29/1327	NA	0.4%	0.2%
			1st dose: 2 dose: 45 days	Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection			NA	0.4%	0.2%
	Heath et al.: [28]	UK ≥18 years	Median follow-up post dose 2: 3 months	Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	10 cases	96 cases	NA	0.5%	0.5%
	Novavax press release: [29]	USA and Mexico: 2021/Alpha predominant Follow-up: not available	8th February 2021 Follow-up: not available	Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	14	63	NA	NA	NA
	CanSino Biologics Inc document: [30]	Pakistan, Mexico, Russia, Chile and Argentina ≥18 years	27th January 2021 to 30th April 2021	Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	NA	NA	90.07%	NA	NA
				Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	68.83%	95.47%	NA	NA	NA
				Symptomatic COVID-19 at least 7 days after the 2nd dose without prior infection	65.28%	90.07%	NA	NA	NA
We briefly compared the COVID-19 vaccines schedule, type of vaccine, manufacturer, dosage, conditions of use/storage/transport, composition and price (Table 1). The main results of phase III clinical trials for each vaccine are described in Table 2 and in Fig. 1. Characteristics of SARS-CoV-2 variants (Alpha, Beta, Gamma, Epsilon, Eta, Zeta, Iota, Kappa and Delta) are described in Table 3. The results of observational real-world studies are specified in Figs. 2–4 and in the Supplementary Material Table S2. Seroneutralization assay results are summarized in Fig. 5 using boxplots per vaccine and per variant, and Supplementary Material Table S3 describes the 54 studies in detail.

Randomized clinical trials on vaccine efficacy

In phase III trials (Table 2 and Fig. 1), all the main outcomes were efficacy against symptomatic infection after the second dose. In most trials, the strain was not sequenced.

Messenger RNA (mRNA) vaccines

mRNA-based drugs are new but not unknown. In 1990, the direct injection of mRNA in mouse muscle proved the feasibility of mRNA vaccines [12]. mRNA instability, high innate immunogenicity and delivery issues were the main obstacles. BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 were the first authorized mRNA-based vaccines. They contain the mRNA of the antigen of interest which enters cells and is translated into the spike protein to induce an immune response. Against the historical strain, BNT162b2 and mRNA-1273 vaccines had an efficacy of >90% at 5–6 months’ follow-up post second dose, whereas CVnCoV had a lower efficacy of 48%.

Viral vector vaccines

Viral vectors are delivery systems containing nucleic acid encoding an antigen. AZD1222, Ad5-nCoV and Sputnik V had an efficacy of 65–91.6% against the historical strain. AZD1222 had an efficacy of 70.4 against Alpha. Ad26.COV2.S had an efficacy of 69.4% in Brazil (mainly P2). AZD1222 and Ad26.COV2.S had efficiencies of 10.4% and 64.7%, respectively, against Beta in South Africa.

Inactivated and protein subunit vaccines

Inactivated vaccines are whole viruses that cannot infect cells and replicate [13]. Subunit vaccines are made of fragments of proteins or polysaccharides. NVX-COV2373 had an efficacy of 89–91.6% against the historical strain, 86.3–93.2% against Alpha and 60% against Beta. CoronaVac, BBIBP-CorV, Wuhan inactivated vaccine, Covaxin and Abdala had an efficacy of 50.6–92.3% but the SARS-CoV-2 strains were not specified. KoviVac, Barekatn QazVac, RBD-Dimer, EpiVacCorona had no phase III trial data published at the time of this review.Real world studies.

Post-marketing surveillance studies results are summarized in Table 3 and detailed in Supplementary Material Table S2. Most studies have a follow-up of 90 days post-vaccination.

Effectiveness against COVID-19 (symptomatic infection)

After full immunization, mRNA vaccine effectiveness against disease was 88–100% against Alpha [36–43], 76–100% against Beta/Gamma [37,38,40], 47.3–88% against Delta [38,44–47], and 89–100% when SRAS-CoV-2 strain was not sequenced [40,41,48–53] (Fig. 2). AZD1222 effectiveness against disease was 74.5% against Alpha [45] and 67% against Delta [44,54] in the UK. CoronaVac effectiveness was 36.8–73.8% against Alpha/
Table 3
Coronavirus disease 2019 (COVID-19) vaccines and variants

SARS-CoV-2 variants	WHO nomenclature	Key mutations	First detection	Transmission compared to non-VOC/VOI	Risk of mortality	Impact on post-vaccination sera (reduction in neutralization activity compared to the original SARS-CoV-2 or D614G)	Effectiveness against SARS-CoV-2 infection (fully vaccinated)	Effectiveness against COVID-19 hospitalization/death (fully vaccinated)
S.1.1.7	S01Y.V1	69/70del, 144del, N501Y, A570D, D614G, P681H, T716I, S962A, D1118H	September 2020	+50% in the UK [2]	43-100% higher reproductive number [104]	Minimal to substantial 1.3–2.7-fold reduction for BBIBP-CoV [124,129]	BNT162b2: 78% [37] mRNA-1273: 96% [49]	BNT162b2: 85% [38] mRNA-1273: >89% [36,38,39]
S.1.551	S01Y.V2	DB0A, D215G, 241/243del, K417N, E484K, N501Y, D614G, A701V	South Africa	September 2020	+50% in South Africa [108]	Minimal to moderate 1.3–2.7-fold reduction for BNT162b2	BNT162b2: 75% [37] mRNA-1273: 96% [49]	BNT162b2: 95% [38] mRNA-1273: >89% [36,38,39]
S.1.28.1.P1	S01Y.V3	L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G H655Y, T1027I, V1176F	Brazil and Japan	December 2020	+160% in Brazil [3,5]	No/minimal 0–3.3-fold reduction for mRNA-1273 [8,9,115,123]	BNT162b2: 42% [44,66] mRNA-1273: 76–84% [67,68]	mRNA-vaccines/Janssen: 47–79% [39,1] mRNA-1273: >60% [50] mRNA-1273: 79% [44,66]
S.1.617.2 (and AY sublineages)	Delta	T19R, T95I, G142D, E156V, F157I, R158G, L452R, T478K, D614G, P681R, D90N +V70F, A222V, W258L, K417N	India	December 2020	-40 to 60% in the UK (compared to Alpha)	2.5-fold reduction for CoronaVac [143]	4.6-fold reduction for Covaxin [145].	
S.1.617.1	Kappa	G412D, E154K, L452R, E484Q, D614G, P681R, Q107I + (T95I)	India	December 2020	NA	2.6–7.5-fold reduction for BNT162b2 [133,136,139,146]	mRNA-1273: 95% [60] mRNA-1273: 75% [60] mRNA-1273: >89% [36,38,39]	

SARS-CoV-2 variants:
- B.1.1.7
- B.1.551
- B.1.28.1.P1
- B.1.617.2 (and AY sublineages)
- B.1.617.1

WHO nomenclature:
- Alpha
- Beta
- Gamma
- Delta
- Kappa

Key mutations:
- B.1.1.7: 501Y.V1, 501Y.V3, 501Y.V2
- B.1.551: DB0A, D215G, 241/243del, K417N, E484K, N501Y, D614G, A701V
- B.1.28.1.P1: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G H655Y, T1027I, V1176F
- B.1.617.2 (and AY sublineages): T19R, T95I, G142D, E156V, F157I, R158G, L452R, T478K, D614G, P681R, D90N +V70F, A222V, W258L, K417N
- B.1.617.1: G412D, E154K, L452R, E484Q, D614G, P681R, Q107I + (T95I)

First detection:
- S.1.1.7: September 2020
- S.1.551: 2020
- S.1.28.1.P1: 2020
- S.1.617.2 (and AY sublineages): 2020
- S.1.617.1: 2020

Transmission compared to non-VOC/VOI:
- S.1.1.7: +50% in the UK [2]
- S.1.551: +50% in South Africa [108]
- S.1.28.1.P1: +160% in Brazil [3,5]
- S.1.617.2 (and AY sublineages): -40 to 60% in the UK (compared to Alpha)
- S.1.617.1: -40 to 60% in the UK (compared to Alpha)

Risk of mortality:
- S.1.1.7: Increased 61–64% mortality in the UK [4]
- S.1.551: NA
- S.1.28.1.P1: NA
- S.1.617.2 (and AY sublineages): May cause more severe cases than Alpha [109]
- S.1.617.1: NA

Impact on post-vaccination sera (reduction in neutralization activity compared to the original SARS-CoV-2 or D614G):
- S.1.1.7: No/minimal 0–3.3-fold reduction for BNT162b2 [9,110–122]
- S.1.551: No reduction for Sputnik V, Covaxin, BBIBP-CoV [118,124,125]
- S.1.28.1.P1: 1.5–4.1-fold reduction for CoronaVac [124,126,127]
- S.1.617.2 (and AY sublineages): 2.1-fold reduction for AZD1222 [117] and NVX-CoV2373 [128]
- S.1.617.1: 2.1-fold reduction for AZD1222 [117] and NVX-CoV2373 [128]

Effectiveness against SARS-CoV-2 infection (fully vaccinated):
- S.1.1.7: BNT162b2: 78% [37,48,58,66] mRNA-1273: 84–99% [49,147] AZD1222: 79% [66]
- S.1.551: BNT162b2: 75% [37] mRNA-1273: 96% [49] AZD1222: 85% [38]
- S.1.28.1.P1: BNT162b2: 95% [38] mRNA-1273: >89% [36,38,39]
- S.1.617.2 (and AY sublineages): BNT162b2: 85% [38] mRNA-1273: >89% [36,38,39]
- S.1.617.1: BNT162b2: 95% [38] mRNA-1273: >89% [36,38,39]

Effectiveness against COVID-19 hospitalization/death (fully vaccinated):
- S.1.1.7: BNT162b2: 42–79% [44,66] mRNA-1273: 76–84% [67,68] mRNA-vaccines: 64% [147] mRNA-vaccines/Janssen: 47–79% [39,1] AZD1222: 60–67% [44,66] mRNA/AZD1222: 49% [79] BNT162b2: 80% [60] mRNA-1273: 95% [60] mRNA-1273: 60–85% [60,61] mRNA-vaccines: 95% [39,59]
Gamma/Δ614G strain in Chile and Brazil [55, 56, 205]. CoronaVac or BBIBP-CoVr administration was associated with an effectiveness of 59% in China [57].

Effectiveness against COVID-19-related hospitalization and death

After full immunization (Fig. 3), mRNA vaccine or AZD1222 effectiveness against hospitalization or death was over 87–94% [48, 58] when the strain was not sequenced, 89–95% against Alpha [36, 38, 39], 95% against Beta/Gamma [38], 96% against Alpha/Delta [39], and 80–95% against Delta [59, 60]. CoronaVac was very effective against hospitalization (87.5%) and mortality (86.3%) after full immunization [56]. Ad26.COV1.S had an effectiveness of 60–85% against Delta [60, 61]. Overall, the effectiveness of mRNA-vaccine and CoronaVac was reduced for Delta infection, but they still offered a high level of protection against severe COVID-19 and hospitalization for all variants after full immunization [36, 38, 39, 43, 48, 56, 59, 62, 63].

Effectiveness against asymptomatic SARS-CoV-2 infection

After full immunization, effectiveness was 90–92% for AZD1222 and BNT162b2 against unspecified strains [64, 65] (Fig. 4). For mRNA vaccines, effectiveness against infection was 89.5–99.2% against Alpha [36, 37, 48, 49, 49, 66], 75–96.4% against Beta [37, 49], 42–84.4% against Delta [44, 66–69] and 80–98.2% against unspecified strains [48, 50, 51, 62, 70–78]. AZD1222 had an effectiveness of 49–67% in the UK [44, 66, 79]. mRNA vaccines and Ad26.COV2.S vaccines in the USA had an effectiveness of 47–80% against Delta [59, 80, 81]. Among pregnant women, a single dose or two doses led to an effectiveness of 78% against the original strain and 96% against Alpha, respectively. These previous studies focused on ≤6 years in people, but a retrospective cohort of teenagers aged 12–15 years in Israel also reported a high effectiveness of 91.5% against Delta infections [82].

Impact on viral load, infectivity, transmission and long COVID

Before Delta propagation, mRNA vaccines were associated with a lower viral load and a reduced duration of illness [83, 84]. Against Delta, surveillance studies in the US found both vaccinated and unvaccinated people had similarly low cycle threshold (Ct) values, indicating high viral load [85, 86]. However, the large UK REACT-1 study—using random sampling and including participants who tested positive without showing symptoms—showed that vaccinated people had a lower viral load on average [79]. A preprint in Singapore found that BNT162b2 vaccination was associated with a faster decline in viral loads among vaccinated people [87]. Ad26.COV2.S and BNT162b2 vaccines were associated with a lower probability of viral culture positivity, suggesting less shedding of infectious Delta virus in vaccinated people [88]. Before the spread of Delta, a study in England reported a reduced transmission associated with BNT162b2 or AZD1222 vaccines in a household setting [89], and two other preliminary analyses confirmed these results [90, 91]. A Chinese preprint analysed infections among 5153 participants with 73 close-contact COVID-19 cases and observed a higher infection risk among unvaccinated or partially vaccinated participants (versus two doses of inactivated vaccines) [92]. In a large nested case–control study from the UK, participants with one or two vaccine doses reported having fewer symptoms and lower odds of having long COVID (symptoms over 28 days, OR =0.51 (95% CI: 0.32 to 0.82, after two doses) [93].

Waning immunity

Several studies have suggested that the levels of antibodies after BNT162b2, mRNA-1273 and Ad26.COV2.S vaccines could last for at least 6 months but decrease over time thereafter [94–97]. For mRNA-1273, at 6 months neutralizing activity was maintained for at least 6 months but decrease over time thereafter [94, 98]. Ad26.COV2.S and BNT162b2 vaccines were associated with a lower probability of viral culture positivity, suggesting less shedding of infectious Delta virus in vaccinated people [88]. Before the spread of Delta, a study in England reported a reduced transmission associated with BNT162b2 or AZD1222 vaccines in a household setting [89], and two other preliminary analyses confirmed these results [90, 91]. A Chinese preprint analysed infections among 5153 participants with 73 close-contact COVID-19 cases and observed a higher infection risk among unvaccinated or partially vaccinated participants (versus two doses of inactivated vaccines) [92]. In a large nested case–control study from the UK, participants with one or two vaccine doses reported having fewer symptoms and lower odds of having long COVID (symptoms over 28 days, OR =0.51 (95% CI: 0.32 to 0.82, after two doses) [93].

Table 3 (continued)

SARS-CoV-2 variants	B.1.525	B.1.526	B.1.427	B.1.429 CAL.20C
Eta	NA	NA	NA	NA
Former Zeta	NA	NA	NA	NA
Former Theta	NA	NA	NA	NA
Iota	B.1.621	C37	Lambda	Lambda
Risk of mortality	NA	NA	NA	NA
Impact on post-vaccination sera (reduction in neutralization activity)	2–7.6-fold reduction for BNT162b2 [122, 153]	3.1-fold reduction for CoronaVac [127]	1.7–4.6-fold reduction for BNT162b2 [122, 150, 154]	3.3–4.6-fold reduction for mRNA-1273 [154]
Effectiveness against infection (full vaccinated)	NA	NA	NA	NA
Effectiveness against hospitalization/death (full vaccinated)	NA	NA	NA	NA
Fig. 1. Vaccine efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from clinical trials (in % and 95% CI) according to the number of doses. Confidence intervals are delimited by the grey rectangular area.

Number of doses	Variant	Vaccine	Country	Author
One dose	Beta	mRNA	Tunisia, Mexico, Russia, Chile and Argentina	Garden [49]
	Alpha	mRNA	Latvia, South Africa	Garden [26]
	South Africa	mRNA	Latvia, South Africa	Garden [26]
	A2Z10222	mRNA	UK	Garden [26]
	Beta	mRNA	South Africa	Garden [26]
	A2Z10222	mRNA	South Africa	Garden [26]
	A2Z10222	mRNA	South Africa	Garden [26]
	Beta	mRNA	South Africa	Garden [26]
	Alpha	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
Two doses	Not specified	mRNA	South Africa	Garden [26]
	Alpha	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]

Fig. 2. Vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) asymptomatic or symptomatic infection from real-world studies (in % and 95% CI) according to the number of doses. Confidence intervals are delimited by the grey rectangular area.

Number of doses	Variant	Vaccine	Country	Author
One dose	Alpha	mRNA	Tunisia, Mexico, Russia, Chile and Argentina	Garden [49]
	Beta	mRNA	Tunisia, Mexico, Russia, Chile and Argentina	Garden [49]
	Alpha	mRNA	Latvia, South Africa	Garden [26]
	South Africa	mRNA	Latvia, South Africa	Garden [26]
	A2Z10222	mRNA	UK	Garden [26]
	Beta	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	Beta	mRNA	South Africa	Garden [26]
	Alpha	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
Two doses	Not specified	mRNA	South Africa	Garden [26]
	Alpha	mRNA	Tunisia, Mexico, Russia, Chile and Argentina	Garden [49]
	Beta	mRNA	Tunisia, Mexico, Russia, Chile and Argentina	Garden [49]
	Alpha	mRNA	Latvia, South Africa	Garden [26]
	South Africa	mRNA	Latvia, South Africa	Garden [26]
	A2Z10222	mRNA	UK	Garden [26]
	Beta	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
	South Africa	mRNA	South Africa	Garden [26]
infection is due to waning immunity over time or/and variants escaping immunity and/or increasing in collective immunity.

Neutralization assays with variants of concern and variants of interest

Mutations and variations occur in the SARS-CoV-2 virus due to evolution and adaptation processes [99]. Some SARS-CoV-2 variants of concern with mutations in the spike protein have an increased transmissibility [100–105], which may be explained by an enhanced spike-protein-binding affinity for the ACE2 receptor. For example, Alpha and Beta have been shown to have a 1.98x and 4.62x greater binding affinity than original strain [106]. These variants may cause more severe disease [4] and/or have a potential ability to escape the host or vaccine-induced immune response [7,10]. Results from several seroneutralization assays assessing the neutralizing response of vaccine-induced antibodies are described in Fig. 5 and in Supplementary Material Table S3. In general, Alpha had a minimal impact on neutralization activity of antibodies by post-vaccination sera (Table 3). Neutralization was further reduced for variants with mutation E484K and Gamma. Beta had the highest reduction in neutralizing titres. Data were lacking for C.1.2 identified in South Africa in May 2021, but C.1.2 had a 1.7-fold higher substitution rate than the current global substitution rate [107].

Limitations of neutralizing assays

Limitations concerning neutralizing assays should be emphasised. First, most studies were preprints. Second, results are not necessarily linked to clinical consequences. However, one study based on seven vaccines reported a high correlation between neutralization titres and protection estimated in phase III trials [155]. A 50% protection against SARS-CoV-2 infection corresponded to a neutralization level of 20.2% of the mean convalescent level. Third, the methods of the studies varied (pseudovirus assay, plaque reduction neutralization testing, microneutralization assay, focus reduction neutralization test). We included 28 pseudovirus assays and 26 live virus assays. Pseudovirus assays approximate authentic SARS-CoV-2 neutralization and only evaluate neutralizing antibodies on pseudoviruses with mutations in the spike protein. Additionally, the choice of cell lines and virus models (vesicular stomatitis virus or human immunodeficiency virus-1 for example) can impact the neutralizing activity. Pseudoviruses are surrogates and cannot complete the same life cycle as the live virus, thus it is not possible to assess the inhibitory effect on viral replication, but they are used to study virus entry into cells. Live virus neutralization assay remains the reference standard, but it needs a higher safety level (a biosafety level 3 laboratory). Fourth, the time post-vaccination and study populations were not always comparable regarding age or COVID-19 history. Fifth, T-cell responses were not assessed. Most studies on in vitro vaccine efficacy focused on the ability of the vaccine antibodies to bind to the virus, which partially reflect vaccine effectiveness, but cell-mediated immunity should also be considered. Studies have shown that BNT162b2 and Ad26.COV2.S induce CD4+ and CD8+ T-cell responses [94,156]. Preliminary reports have identified vaccine-induced CD4+ T cells 6 months after the second dose of RNA-1273 [157] and memory B cells at 6 months after two doses of BNT162b2 [158]. SARS-CoV-2–specific memory T cells and B cells are important for long-term protection. A main limitation of these studies on cell-mediated immunity is small sample size.

Vaccine regimens

Heterologous prime-boost vaccination

Changing recommendations for young people regarding use of AZD1222 and the need to accelerate the vaccination campaign has led some countries to advise heterologous prime-boost vaccination with a second dose of mRNA vaccines. An RCT conducted in the UK indicated an increase in systemic reactogenicity in a heterologous vaccination context versus homologous vaccination [159], but efficacy data have not yet been published. A press communication from El Instituto de Salud Carlos III from a phase II trial in Spain showed that the combination of AZD1222 and BNT162b2 induced a

Outcome	Number of doses	Variant	Vaccine type	Vaccine	Country	Author
Hospitalization	One	Alpha	mRNA-based	mRNA-1273	Canada	Naoreen [38]
	Two	Alpha	Ad26.COV2.S	USA	Polinak [78]	
	One	Not specified	mRNA-based	BNT162b2	UK	Tsao [119]
	Two	Delta	mRNA-based	mRNA-1273	USA	Grannum [60]
Hospitalization or death	One	Alpha	mRNA-based	mRNA-1273	Canada	Naoreen [38]
	Two	Beta/Gamma	mRNA-based	BNT162b2	Canada	Naoreen [38]
	One	Not specified	mRNA-based	BNT162b2	Canada	Naoreen [38]
Mortality	Two	Alpha	mRNA-based	mRNA-1273	USA	Bruckert [79]
	One	Not specified	Inactivated virus	CoronaVac	China	Jia [96]
	Two	Delta	Inactivated virus	CoronaVac	China	Jia [96]
	Two	Alpha	mRNA-based	mRNA-1273	USA	Bruckert [79]

Fig. 3. Vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hospitalization or death from real-world studies (in % and 95%CI) according to the number of doses. Confidence intervals are delimited by the grey rectangular area.
strong humoral response when compared to no second dose [160]. The Com-Cov randomized trial also supported flexibility in the use of AZD1222 and BNT162b2 with a 28-day interval inducing similar levels of SARS-CoV-2 anti-spike IgG [161]. A preliminary study in Thailand observed an increase in neutralizing antibodies against Delta after a third dose of BNT162b2 or AZD1222 among participants who received two doses of CoronaVac [162].

Extension of the dose interval

More generally, evidence on the extension of the interval between doses is scarce. Trials for AZD1222 showed that a longer delay was better, but for mRNA and other vaccines trials did not test different dose gaps [163]. A preprint reported that extending the interval to 6 weeks for BNT162b2 vaccine led to higher titres in neutralizing antibodies and a sustained T-cell response against the variants of concern [164]. Another analysis found that a second dose at 12 weeks induced a stronger humoral response than at a 3-week interval among older people [165].

A booster dose for specific populations

Immunogenicity studies amongst transplant patients and patients with cancer showed a poor antibody response after a single dose or two doses of Pfizer vaccine [166–168]. Facing this issue, French, German, British and US health authorities have recommended a third dose for immunocompromised people and transplant recipients. A randomized trial in transplant recipients showed that the third dose of mRNA-1273 was safe, and 26 out of 59 participants who had negative antibody responses prior to the booster developed antibody responses after the third dose [169]. However, this study did not look at the cellular immune response. Another
study found that an additional dose of mRNA-1273 induced a serological response among 50% of kidney transplant recipients who hadn’t responded after two doses [170]. A case–control study in preprint found an effectiveness against SARS-CoV-2 infection 14–20 days after the third dose increased by 79% (versus the second dose) [171]. Another observational study in Israel found that a booster dose reduced the rate of confirmed infections and severe disease by a factor of 11.3 and 19.5, respectively, among elderly participants [172]. Two studies also showed that Moderna boosters (at least 6 months after the second dose) and Pfizer booster (8–11 months after the second dose) induced a strong humoral response against Beta [173] and other variants of concern [174]. The expected local and systemic adverse events were mild and moderate and similar to those after the second dose.

Vaccination of previously infected individuals

Several neutralization assays have suggested that a single dose of BNT16b or mRNA-1273 among previously infected subjects could boost the cross-neutralization response against emerging variants such as Alpha, Beta or Gamma [121,175]. These studies have demonstrated the potential benefits of vaccinating both non-infected and previously infected people. Finally, several studies have suggested that a single dose of mRNA vaccine may be sufficient to boost the antibody response in previously infected subjects and that the benefit of the second dose may be small [176–180].

Severe adverse events

The main severe adverse events reported in pharmacovigilance systems and post-authorization studies are summarized in Table 4. Among adults, the main severe adverse events reported were very rare: anaphylaxis (2.5–4.8 cases per million doses among adults) and myocarditis (6–27 cases per million) for mRNA vaccines; thrombosis with thrombocytopenia syndrome for the Janssen vaccine (three cases per million) and AstraZeneca vaccine (two cases per million), and Guillain–Barré syndrome (GBS) (7.8 cases per million) for the Janssen vaccine. For AZD1222, capillary leak syndrome was also identified as a possible adverse effect, and multisystem inflammatory syndrome is under investigation. The EMA excluded an association between AZD1222 and menstrual disorders [181].

Occurrence of adverse events changes with age. Myocarditis associated with mRNA vaccination was identified mainly among males aged <30 years with 39–47 cases per million vaccine doses in the USA (versus three to four myocarditis cases expected among male aged ≥30 years) [182]. On 23rd April, the EMA estimated two cases of thrombosis with thrombocytopenia (TTS) associated with AZD1222 per 100 000 doses for people aged 20–49 years, one case/100 000 doses for those aged 50–69 years, and even lower case rates (<1/100 000 doses) for older people. Similarly, the case rate of TTS was higher for the Janssen vaccine among young women. Surveillance studies found rare cases of Bell’s palsy (3.8 cases per 100 000), anaphylaxis (two cases per million), thromboembolic event (1.2 cases per million), GBS (0.29 cases per million) associated with CoronaVac. Several observational and survey studies with low sample sizes did not find specific severe adverse events for Sputnik V, BBIBP-CorV, or Covaxin. Studies on adverse events were lacking for CIGB–66, QazVac, COViran, Barkat, ZF2001, and EpiVacCorona. Pregnant women were excluded from clinical trials, but surveillance systems did not report an excess of adverse pregnancy and neonatal events after mRNA vaccination [183,184], while an increased risk of severe COVID-19 in pregnancy and babies’ admission in the neonatal unit was consistently observed [185].

Limitations of this review

This review has several limitations. Several analyses were not peer-reviewed, and only press communications or regulatory market authorization files were available for CoronaVac, BBIBP-CorV, Wuhan inactivated vaccine, Covaxin and NVX-CoV2373. Clinical trials used different definitions for COVID-19 and different primary endpoints, which make direct comparisons difficult. Janssen’s primary endpoint is moderate/severe/critical COVID-19 whereas Pfizer and Moderna included mild COVID-19. The endpoint time was also heterogeneous across trials, but most trials used 14 days after the full immunization.
Table 4
Main severe adverse events following coronavirus disease 2019 (COVID-19) vaccination in observational studies and pharmacovigilance systems

Vaccine	Serious adverse events	Cases per million doses administered	Country	Age	Follow-up	Number of participants or doses studied	References
BNT162b2	Anaphylaxis	4.8/million	USA	≥12 years	14th December 2020 to 26th June 2021	11.8 million doses administered (57% BNT162b2) to 6.2 million individuals	Klein et al. [186]
	Anaphylaxis + anaphylactoid reactions	476 cases among 40 million doses	UK	≥16 years	9th December 2020 to 1st September 2021	40 million doses (1 and 2)	MHLR (Yellow Card Scheme) [187]
	Myocarditis, Lymphadenopathy, Appendicitis, Herpes zoster infection	2.7/100 000	Israel	≥16 years	20th December 2020 to 24th May 2021	1 736 832 participants (884 828 vaccinated)	Barda et al. [186]
	Bell's palsy, Myocarditis/Pericarditis, Transverse myelitis	2.6/100 000	Hongkong	≥12 years	Up to 31st August	4 776 700 doses	Hongkong Drug Office [189]
mRNA-1273	Anaphylaxis	5.1/million	USA	≥12 years	14th December 2020, to 26th June 2021	11.8 million doses administered (43% mRNA-1273) to 6.2 million individuals	Klein et al. [186]
	Myocarditis, Pericarditis	2.5/million	USA	≥16 years	21st December 2020 to 10th January 2021	4 041 396 doses	US CDC [190]
Curevac A2Z1222	Not authorized	0.61/million	India	≥18 years	Date not specified	Retrospective survey of 75 random subjects	Rajpurohit et al. [191]
	Thromboembolic events	14.9/million	UK	≥18 years	9th December 2020 to 1st September 2021	48.9 million doses (1 and 2)	MHLR (Yellow Card Scheme) [187]
	Capillary Leak Syndrome, Myocarditis, Pericarditis, Anaphylaxis or anaphylactoid reactions	2.1/million	Worldwide	≥18 years	By 25th July 2021	592 million doses	EMA [181]
	Guillain–Barre syndrome	3.3/million	816 cases among 48.9 million doses	Worldwide	By 25th July 2021	592 million doses	EMA [181]
Janssen	Thrombosis with thrombocytopenia syndrome	12 cases among 48.9 million doses	833 cases among 48.9 million doses	Worldwide	By 25th July 2021	592 million doses	EMA [181]
	Thrombosis with thrombocytopenia syndrome	1503 cases among 592 million doses	1950 cases among 592 million doses	Worldwide	As of 1st September 2021	14.3 million doses	US CDC [192]
Sputnik V	Expected local and systemic reactions	2.1% participants suffered severe reactions in San Marino's population	Republic of San Marino	18–89 years	4th March to 8th April 202	Cohort of 2558 participants	Montalti et al. [193]
	The most frequent symptoms were local pain, asthenia, headache, and joint pain	5% of serious adverse events (n = 34)	Argentina	18–80 years	5th January to 20, 2021	707 participants	Pagotto et al. [194]
NVX-CoV2373	Not authorized						
EpiVacCorona	We did not find any comparative studies addressing post-authorization safety						
ZF2001	We did not find any comparative studies addressing post-authorization safety						
Convidecia	We did not find any comparative studies addressing post-authorization safety						
CoronaVac	We did not find any comparative studies addressing post-authorization safety						
BBIBP-CoVr	Bell's palsy, Eencephalopathy	3.8/100 000	Hong Kong	≥12 years	Up to 31st August	n = 2 811 500 doses	Hongkong Drug Office [189]
	Anaphylaxis	2/million	Chile	≥16 years	24th December 2020 to 14th May 2021	n = 13 862 155 doses	Instituto de Salud Pública de Chile (ISP) [195]
	Thromboembolic events	1.15/million	Chile	≥16 years	24th December 2020 to 14th May 2021	n = 13 862 155 doses	Instituto de Salud Pública de Chile (ISP) [195]
	Guillain–Barre syndrome, Bell's palsy	8.73/million	Jordan	Mean age: 35	No date specified	Retrospective survey of 409 participants	Abu-Hammad et al. [196]
	No serious side effects were reported	0.29/million	Iraq	≥18 years	April 2021	Retrospective cross-sectional study of 1012 participants	Almufay et al. [197]
Covaxin	Indian Ministry of Health and Family Welfare and a retrospective cohort reported	—	India	≥18 years	No date specified	Retrospective survey of 75 random subjects	Indian Ministry of Health and Family Welfare
Observational studies, unlike randomized studies, cannot guarantee comparability in the exposition of different populations to SARS-CoV-2 and to the variants of concern. Indeed, real-world studies present large variations in time post-vaccination, exposure to SARS-CoV-2 strain, susceptibility to infection (previously infected or not), study population (healthcare workers, older adults, immunocompromised patients, those with chronic medical conditions, etc.). Moreover, due to a lack of randomization, observational studies are subject to bias when assessing effectiveness, such as misclassification from diagnostic errors, imbalances in socioeconomic status, exposure risk, healthcare-seeking behaviours, or immunity status between vaccinated and unvaccinated groups. Not all the observational studies used adjustments to take into account confounding biases. For example, healthcare workers treating COVID-19 patients may be more frequently exposed to SARS-CoV-2, leading to decreased estimates of effectiveness. Various designs—cohort, case–control study, test-negative design (TND)—were used in observational studies, each of them having limitations. Cohorts require large sample sizes for uncommon outcomes (i.e. severe COVID-19), but vaccination status may be more difficult to determine in retrospective cohorts. In case–control studies, vaccinated people may be more likely to seek health care and SARS-CoV-2 testing, biasing toward a reduction in the estimation of effectiveness.

Conclusion

To date, the availability of data varies greatly depending on the vaccine considered. mRNA vaccines, AZD1222, Ad26.COV2.S, Sputnik V, NVX-CoV2373, Ad5-nCoV, BBIBP-COV, CoronaVac, COVAXIN and Wuhan inactivated vaccine showed an efficacy against COVID-19 in >50% in phase III studies. Most observational studies assessed the mRNA vaccines, CoronaVac and AZD1222 which appear to be safe and highly effective tools to prevent severe disease, hospitalization and death against all variants of concern (Alpha, Beta, Gamma and Delta). Large observational studies were lacking for several authorized vaccines: Sputnik V, Sputnik V Light, BBIBP-CorV, COVAXIN, EpiVacCorona, ZF2001, Abdala, QazCovid-In, Wuhan Sinopharm inactivated vaccine, KoviVac and COVIran Barekat. The protection against symptomatic and asymptomatic infection was high for Alpha, Beta and Gamma for mRNA vaccines and AZD1222. mRNA vaccines and Ad26.COV2.S were associated with a faster decline in viral load against several variants, including Delta, and a lower probability of viral culture positivity. Effectiveness against infection and COVID-19 declined following infection with the Delta variant and over time, possibly due to a waning of immunity. Heterologous prime-boost vaccination and a third dose of vaccine both induced a strong humoral response. Vaccinating previously infected people with a single dose provided an equivalent neutralizing response compared to people vaccinated with two doses against all the variants. According to safety monitoring, reported serious adverse events were very rare and the benefits of COVID-19 vaccination far outweighed the potential risks.

More research is needed to consider booster doses, heterologous vaccination, dosing intervals, vaccine breakthrough infections, and duration of vaccine immunity against variants of concern.

Author contributions

TF and NPS designed and conducted the research. TF wrote the first draft of the paper. All authors (TF, YK, CJM, JG, NPS) contributed to the data interpretation, revised each draft for important intellectual content, and read and approved the final manuscript.

Transparency declaration

All authors declare no support from any organization for the submitted work, no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years, and no other relationships or activities that could appear to have influenced the submitted work. Thibault Fiolet received a PhD grant from the Fondation Pour la Recherche Médicale (FRM) n°EC021906009060. This funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cmi.2021.10.005.

References

[1] World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines [Internet]. [cit 30 mai 2021]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

[2] Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geddesberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature 2021;1–17.

[3] Coutinho RM, Marquitti FMD, Ferreira LS, Borges ME, Silva RLP da, Canton O, et al. Model-based estimation of transmissibility and re-infection of SARS-CoV-2 F.1 variant. medRxiv: 2021. 23rd March. 2021.03.21252706.

[4] Davies NG, Jarvis CL, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021:1–5.

[5] Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ 2021;372:n579.

[6] Faria NR, Mellan TA, Wittacker C, Claro IM, Candido D da S, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021;372:815–21.

[7] Planas D, Bruel T, Grzelaik L, Guivel-Benhassine F, Staropoli I, Porrot F, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021;27:917–24.

[8] Edara VV, Husson WH, Xie X, Ahmed R, Suthar MS. Neutralizing antibodies against SARS-CoV-2 variants after infection and vaccination. JAMA 2021;325:1896–19.

[9] Wang F, Nair MS, Liu L, Bertani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130–5. https://doi.org/10.1038/s41586-021-03398-2.

[10] Cele S, Gazi I, Jackson L, Hwa S-H, Tegally H, Lustig G, et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 2021;593:142–6.

[11] Wibmer CK, Ayres F, Hermanns T, Madzivhandila M, Kigudii P, Oosthuysen B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 2021;27:622–5.
AstraZeneca. AZD1222 US Phase III trial met primary efficacy endpoint in age group of 18 to 60. [Internet]. 2021. https://www.astrazeneca.com/en/medicines/azd1222/azd1222-us-phase-iii-trial-in-us-meets-primary-90.3%-efficacy-endpoint-in-age-group-of-18-to-60/

El Sahly HM, Baden LR, Essink B, Kotloff K, Frey S, Novak R, et al. Effectiveness of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med 2021;384:2021–8.

Bennal JL, Andrews N, Gower C, Rockefeller S, Tessler E, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 2021;373:n1088.

Baden LR, Perrin S, Harmonic S, Bourger R, Roux C, Brassard O, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. Clin Microbiol Infect 2021;27:469–75.

Dagan N, Banda N, Biom-Shental T, Makov-Assif M, Key C, Kohane IS, et al. Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in pregnancy. Nat Med 2021;27:1693–5.

Sheikh A, McMenamin J, Taylor B, Robertson C, SARS-CoV-2 Delta VOC in the UK: effectiveness of the Pfizer-BioNTech COVID-19 vaccine among UK health and care workers (HCW) - preliminary report. medRxiv; 2021. 04.12.21255308.

Dagan N, Banda N, Kepton M, Oroni M, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a Nationwide mass vaccination setting. N Engl J Med 2021;384:1412–23.

Chemaitelly H, Vassileva HM, Benslimane FM, Allali HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 variant [Internet]. Epidemiology 2021. mai [cit 2021 mai] , https://medrxiv.org/lookup/doi/10.1101/2021.05.22.21275658.

Keehner J, Horton LE, Binkin NJ, Laurent LC, Senger C, et al. Resurgence of SARS-CoV-2 infection in a highly vaccinated healthcare system. N Engl J Med 2021;385:1330–2.

Andrews N, Tessor E, Gower C, Kirsebom L, Simmons R, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild, asymptomatic and severe COVID-19 in the UK: medRxiv, 2021.04.28.21259420.

Angelo V, Spiteri A, Henig O, Saig T, Sprecher E, Padova H, et al. Association between vaccination with BNT162b2 and incidence of symptomatic and asymptomatic SARS-CoV-2 infections among healthcare workers. JAMA 2021;325:2457–65.

Pilishvili T, Gireke R, Fleming-Dutra KE, Farrar JL, Mohr NM, Talan DA, et al. Effectiveness of mRNA Covid-19 vaccine among U.S. health care personnel. N Engl J Med 2021;385:12659599.

Andrews N, Tessor E, Gower C, Kirsebom L, Simmons R, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK: medRxiv, 2021.05.12.21263583.

Faria E de, Guedes AR, Oliveira MS, Moreira MV de G, Maia FL, Barboza A dos Santos, et al. Effectiveness of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med 2021. https://doi.org/10.1056/NEJMoa2110345.

Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med 2021;27:1483–9.

Chodick G, Tene L, Rotem RS, Patalon T, Gazit S, Ben-Tov A, et al. The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data. Clin Infect Dis 2021:1–9.

Falsini M, Ramangi M, Gurtetto V, Mateo-Urdiales A, Pezzotti P, Fioretti C, et al. Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021. Eurosurveillance 2021;26:2100420.

Angel Y, Spiteri A, Henig O, Saig T, Sprecher E, Padova H, et al. Association between vaccination with BNT162b2 and incidence of symptomatic and asymptomatic SARS-CoV-2 infections among healthcare workers. JAMA 2021;325:2457–65.
large integrated health system in the USA: a retrospective cohort study. Lancet 2021;398:1407–16.
[52] Glattman-Freedman A, Poznansky Z, Kaufman Z, Dichtiar R, Keinan-Boker L, Bromberg M. Early release—effectiveness of BNT162b2 vaccine in adolescents during outbreak of SARS-CoV-2 Delta variant infection, Israel. 2021. Emerg Infect Dis 2021;27:997–22.
[53] Thompson MC, Burger G, Hill MortWal Wkly Rep 2021;70:1709–62.
[54] Levine-Tienlenbrun M, Yelin I, Katz R, Herzlich E, Golzan Z, Schreiber L, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med 2021;7:2790–2.
[55] Griffin JB. SARS-CoV-2 infections and hospitalizations among persons aged ≥16 years, by vaccination status — Los Angeles County, California, May 1–June 25, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1170–6.
[56] Brown CM. Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings — Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1099–62.
[57] Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte J-M, Mak T-M, et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breaking infections: a multi-center cohort study. medRxiv 2021;7.28.2126195.
[58] Shameri MC, Testostan A, Rogers S, de Wilde J, Ipelaar J, van der Kleij WA, et al. Virological characteristics of SARS-CoV-2 vaccine breakthrough infections in healthcare workers in the Netherlands. medRxiv 2021;8.24.2126423.
[59] Polinski JM, Weckstein AR, Batech M, Kabelac C, Kamath T, Harvey R, et al. Effect of vaccination on transmission of SARS-CoV-2. N Engl J Med 2021;385:1718–20. NEJMc2106757.
[60] Lumley SF, Rodgers G, Constantinescu B, Sanderson N, Chau KK, Street TL, et al. An observational cohort study on the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. Clin Infect Dis 2021 https://doi.org/10.1093/cid/ciab608.
[61] Pouwels KB, Pritchard E, Matthews PC, Steevers N, Eyre DW, Vihta K-D, et al. Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. medRxiv 2021; 08.18.21226237.
[62] Teng P, Hanan MR, Chenamathely H, Vassie JH, Benslimane FM, Khathit HAA, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the Delta (B.1.617.2) variant in Qatar. medRxiv 2021; 08.11.21216885.
[63] Puranik A, Lenahan PJ, Silvert E, Niesen MJM, Corchado-Garcia J, O’Horo JC, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv 2021; 2021.08.06.212167027.
[64] Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EF, et al. Waning immunity of the BNT162b2 mRNA vaccine: a nationwide study from Israel. medRxiv 2021. 8.24.2126423.
[65] Thompson MG, Burgess JL, Naleway AL, Tyner H, Yoon SK, Meece J, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 in long-term care facility residents and healthcare workers in a Danish cohort study. medRxiv 2021; 03.08.21252200.
[66] Heymann AD, Zacay G, Shasha D, Bareket R, Kadim I, Sikron FH, et al. Effect of vaccination on transmission of SARS-CoV-2. N Engl J Med 2021;385:1718–20. NEJMc2106757.
[67] Self WH. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen COVID-19 vaccines in preventing COVID-19 infection among health care personnel, first responders, and other essential and frontline workers — eight U.S. Locations, December 2020–March 2021. MMWR Morb Mortal Wkly Rep 2021;70.
[68] Bianchi FP, Germinario CA, Migliore G, Vimercati L, Martinelli A, Lobifaro A, Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, et al. Waning immunity of the BNT162b2 vaccine: a nationwide study from Italy. medRxiv 2021.
[69] Kang M, Xin H, Yuan J, Ali ST, Liang Z, Zhang J, et al. Transmission dynamics and epidemiological characteristics of Delta variant infections in China. medRxiv 2021; 03.08.21252200.
[70] Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom app: a prospective, community-based, nested case-control study. Lancet Infect Dis 2021. https://doi.org/10.1016/j. lancid.2021.01.0060-6.
[71] Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabreca G. Effect of vaccination on household transmission of SARS-CoV-2 in England. N Engl J Med 2021;385:759–60.
[72] Plumas O, Warren A, Newbold FW, Gazit S, Patalon T, Weimerger DM, et al. Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. medRxiv 2021; 7.13.21260393.
[73] Salazar PMID, Link N, Lamara K, Santillana M. High coverage COVID-19 mRNA vaccination rapidly controls SARS-CoV-2 transmission in long-term care facilities. medRxiv 2021; 04.08.21255108.
[74] Kang M, Xin H, Yuan J, Ali ST, Liang Z, Zhang J, et al. Transmission dynamics and epidemiological characteristics of Delta variant infections in China. medRxiv 2021; 03.08.21252200.
[75] Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom app: a prospective, community-based, nested case-control study. Lancet Infect Dis 2021. https://doi.org/10.1016/j. lancid.2021.01.0060-6.
[76] Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gehrue M, et al. Durable humoral and cellular immune responses following Ad26.COV2.S vaccination for COVID-19. medRxiv 2021; 07.05.21259918.
[77] Doria-Rose N, Suthar MS, Makowski M, O’Connell S, McDermott AB, Flach B, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for COVID-19. N Engl J Med 2021;384:2259–61.
[78] van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Balloux F. No evidence of higher transmissibility of SARS-CoV-2 Lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv; 2020. 12.30.20249034.
[79] Neafie RC, Steinberg SM, Anderson DA, Ezzeddine ME, Gerba CP, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike variants in South Africa. medRxiv; 2021. 12.20.21248640.
[80] Davies NG, Abbott S, Barnard RC, Jarvis IC, Kucharski AJ, Munday JD, et al. Effectiveness and impact of SARS-CoV-2 vaccine Lineage B.1.1.7 in England. Science 2021;372.
[81] Public Health England. SARS-CoV-2 variants of concern and variants under investigation. 2021. p. 68.
[82] Van den Driessche T, Schulze J, De Bock R, Bueno L, et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun 2021;10:5986.
[83] Vite E, Mishra S, Chad M, Barrett JC, Johnson R, Greidelberg L, et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv; 2020. 12.30.2049034.
[84] Taggaly H, Wilkinson E, Giovanetti M, Izadzadeh A, Fonseca V, Giandhari J, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv; 2021. 12.20.21248640.
[85] Davies NG, Abbott S, Barnard RC, Jarvis IC, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372.
[86] Public Health England. SARS-CoV-2 variants of concern and variants under investigation. 2021. p. 68.
[87] Cameron NF, Arber A, Harrison-Schafer H, Jinna Y, Konings F, Batra N, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 2021;26:2100595.
[88] The scientific pandemic influenza group on modelling, operational subgroup (SPI-M-O): Scientific advisory group for emergencies (SAGE). SPI-M-O: Consensus statement on COVID-19, 30 June 2021 (Internet). GOV.UK; 2021. https://www.gov.uk/government/publications/spi-m-o-consensus-statement-on-covid-19-30-june-2021.

Ramanathan M, Ferguson ID, Miao W, Khavari PA. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis 2021;31:e404.https://doi.org/10.1016/S1473-3099(21)00262-0.

Scheepers C, Everard J, Amoako DG, Minagi A, Ismail A, Mahlangu B, et al. The continuous evolution of SARS-CoV-2 in South Africa: a new lineage with rapid accumulation of mutations of concern and global detection. medRxiv; 2021.22.02.21259327.

Pearson CAB, Russell TW, Davies N, Kucharski AJ, CMMID COVID-19 working group, Edmunds WJ, Ego MG. Estimates of severity and transmissibility of novel SARS-CoV-2 variant 501Y.V2 in South Africa [Internet]. CMMID Repository; 2021.https://cmmid.github.io/topics/covid19/501Y-variant.html.

Twohig KA, Nyberg T, Zaidi A, Thelwall S, Balabanov M, Jordanov LE, et al. Neutralizing activity of BNT162b2-elicited serum. N Eng J Med 2021;384:2352–4. doi:10.1056/NEJMoa2124668.

Liu Y, Liu J, Xia H, Zhang X, Fontes-Garate CR, Swanson KA, et al. Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 2021;384:2453–60.

Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Serum neutralising activity against Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv; 2021.6.23.21259327.

Jongeneelen M, Kasai K, Huygens J, Vlugt R van der, Schouten T, et al. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. bioRxiv; 2021.01.450707.

Lopez Ldesema MMC, Sanchez I, Ojeda DS, Rouco SO, Ross AH, Varese A, et al. Temporal increase in neutralization potency of BNT162b2 mRNA vaccine-elicited antibodies and reduced viral variant escape after Sputnik V vaccination. medRxiv; 2021.8.22.21262186.

Vu D-V, Pinska BA, Stryker MS, Lai I, Davis-Gardner ME, Floyd K, et al. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617.2 variants. N Engl J Med 2021;385:664–6.

Tada T, Zhou H, Samanovic M, Dcosta BM, Cornelius A, Mulligan MJ, et al. Comparison of neutralizing antibody titers elicited by mRNA and adenosine viral vector vaccine against SARS-CoV-2 variants. bioRxiv; 2021.7.19.452771.

Choi A, Koch M, Wu K, Dixon G, Oestreger J, Legault H, et al. Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. bioRxiv; 2021.6.28.449914.

Liu J, Liu Y, Xia H, Zou J, Weaver SC, Swanson KA, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 2021;596:273–5.

Liu J, Ginn HM, Dejiratsiratsi W, Supasa P, Wang B, Tueurkrakhon A, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021;184:4220–36.

Lustig Y, Zuckermand L, Nemet I, Aitazi N, Kliker L, Regev-Yochay G, et al. Neutralizing capacity of serum against B.1.617.2 and other variants following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers. Isr Eurosurveillance 2021;26:2100557.

Micochova P, Kemp S, Dhar MS, Papa G, Meng B, Ferreira IATM, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021.https://doi.org/10.1038/s41586-021-03944-y.

Hu J, Wei X, Xiang J, Peng P, Xu F, Wu K, et al. Reduced neutralization of SARS-CoV-2 B.1.617.2 by inactivated and RBD-subunit vaccine. bioRxiv; 2021.07.05.451575.

Gushchin VA, Dolzhikova IV, Shchetinin AM, Odintsova AS, Siniavin AE, Nikiforova MM, et al. Neutralizing activity of sera from Sputnik V-vaccinated people against variants of concern (VOC: B.1.1.7, B.1.1.529) and other variants. Vaccines 2021;9:1779.

Yadav PD, Sapkal GN, Abraham P, Dheppal G, Patil DY, et al. Neutralization of variant under investigation B.1.617.1 with sera of BBV152 vaccinees. Clin Infect Dis 2021.https://doi.org/10.1093/cid/ciaa11.

Hoffmann M, Hoffmann-Winkler H, Krüger N, Kempf A, Nehmeier I, Graichen I, et al. SARS-CoV-2 B.1.617.1 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. bioRxiv; 2021.12.04.646632.

Seppälä E, Veneti L, Starrfelt J, Danielens AS, Bragstad K, Hungenes O, et al. Vaccine effectiveness against infection with the delta (B.1.617.2) variant. Nature, April to August 2021. Eurosurveillance 2021;26:2100793.

Dean X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, immunity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv; 2021.03.07.21256473.

Annavajhala MK, Mohri H, Wang P, Zucker JE, Sheng Z, Gomez-Simmonds A, et al. A novel and expanding SARS-CoV-2 variant, B.1.526, identified in New York City. medRxiv; 2021.07.21.21260961.

Carrejo JM, Alshammary H, Singh G, Raskin A, Amannat F, Amoako A, et al. Reduced neutralizing activity of post-SARS-CoV-2 vaccination serum against SARS-CoV-2 B.1.617.2, B.1.351, B.1.1.7+484K and a sub-variant of SARS-CoV-2. medRxiv; 2021.07.21.21260961.

McCullum M, Basu J, Marco AD, Chen A, Walls AC, Iulio JD, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. Science 2021;373:648–54.

Liu Y, Liu J, Xia H, Zhang X, Zhou J, Fontes-Garate CR, et al. BNT162b2-elicited neutralization against SARS-CoV-2 spike variants. N Engl J Med 2021;385:472–4.

Messali S, Bertelli A, Campisi G, Zani A, Ciccozzi M, Caruso A, et al. A cluster of SARS-CoV-2 variants in California carrying a L452R spike protein mutation. medRxiv; 2021.03.07.21256473.

Eda VV, Norwood C, Floyd K, Lai I, Davis-Gardner ME, Hudson WH, et al. Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 Spike variant. Cell Host Microbe 2021;29:516–21.e3.
Stamatatos L, Czartoski J, Wan Y-H, Homad LJ, Rubin V, Glantz H, et al. Evidence of SARS-CoV-2-specific memory B cells six months after vaccination with BNT162b2 mRNA vaccine. medRxiv; 2021. 07.12.21259841v1.

Shaw RH, Stuart A, Greenland M, Liu X, Van-Tans JSN, Snape MD. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet 2021; 397:2043–6.

El Institutut de Salud Carlos III. Un ensayo clínico evaluará una segunda dosis de la vacuna de Pfizer en personas ya vacunadas con una dosis de AstraZeneca. 2021. https://www.isciii.es/Noticias/Noticias/Paginas/Notic平as/Notificaciones/EnsayoCombvac.aspx.

Liu X, Shaw RH, Stuart AV, Greenland M, Aley PK, Andrews NJ, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV); a single-blind, randomised, non-inferiority trial. Lancet 2021;398:856–69.

Fatoumatik S, Buranrat B, Thammasawat S. Induction of robust neutralizing antibodies against the COVID-19 Delta variant with ChAdOx1 nCoV-19 or BNT162b2 as a booster following a primary vaccination series with CoronaVac. medRxiv. 2021. 9.25.21266499v1.

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of SARS-CoV-2 antibody response in persons with past natural infection. N Engl J Med 2021;385:1393

Monin L, Laing AG, Muntion LA, Mwita W, et al. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;385:1393

Palich R, Veyri M, Vozy A, Marot S, Gligorov J, Benderra M-A, et al. High immunogenicity and antibodies enhanced by pre-existing crossreactive T cell memory. JAMA 2021;326:1063–4.

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of SARS-CoV-2 antibody response in persons with past natural infection. N Engl J Med 2021;385:1393

Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci Immunol 2021;6:eaav9550. https://doi.org/10.1126/sciimmunol.abv9550.