ORIGINAL ARTICLE

Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus

Xuewei Huang1,2 · Yue Li1 · Xiaona Wang1,3 · Junyan Zhang1 · Li Wang1,3 · Han Zhou1,3 · Yanping Jiang1,3 · Wen Cui1,3 · Xinyuan Qiao1,3 · Yijing Li1,3 · Lijie Tang1,3

Received: 4 November 2021 / Accepted: 19 April 2022 / Published online: 25 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Infectious bursal disease virus (IBDV) can cause a highly contagious immunosuppressive disease in young chickens. Micro-RNAs (miRNAs) are crucial regulators of gene expression and are involved in the pathogenesis of IBDV infection. To investigate the roles of miRNA in chicken bursae of Fabricius in response to very virulent IBDV (vvIBDV) infection, RNA sequencing was performed to compare the small RNA libraries from uninfected and vvIBDV-infected group which was infected for 3 days. A total of 77 differentially expressed (DE) miRNAs were identified in BF, of which 42 DE miRNAs were upregulated and 35 DE miRNAs were downregulated. A gene ontology analysis showed that genes associated with cellular processes, cells, and binding were enriched. Moreover, pathway analyses suggested that apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways may be activated following vvIBDV infection. In addition, we predicted the target genes of DE miRNAs and constructed an miRNA-mRNA regulatory network. In total, 189 pairs of miRNA-target genes were identified, comprising 67 DE miRNAs and 73 mRNAs. In this network, gga-miR-1684b-3p was identified with the highest fold change, as well as gga-miR-1788-3p and gga-miR-3530-5p showed a high degree of change. The above three miRNAs were considered to play vital roles in vvIBDV-host interactions. This study was the first to perform a comprehensive analysis of DE miRNAs in the bursa of Fabricius in response to vvIBDV infection, and it provided new insights into molecular mechanisms underlying vvIBDV infection and pathogenesis.

Abbreviations
vvIBDV Very virulent infectious bursal disease virus
BF Bursa of Fabricius
miRNA MicroRNA
TEM Transmission electron microscopy
DE Differentially expressed
PBS Phosphate-buffered saline
GO Gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes

Introduction
Infectious bursal disease virus (IBDV), an important member of the family Birnaviridae, can cause infectious bursal disease which is highly contagious and immunosuppressive disease in chickens. There were two known IBDV serotypes, of which serotype-I strains include very virulent, classically virulent, and attenuated IBDV variants which show varying degrees of pathogenicity in chickens [1, 2]. Very virulent IBDV (vvIBDV) can attack early B cells in the bursa of Fabricius (BF) [3, 4], and cause depletion in the number of B lymphocytes and serious disruption or even necrosis of bursal tissue [5], and the release of various cytokines also caused severe damage to the BF [6]. Severe immunosuppression caused by vvIBDV increases the susceptibility of chickens to other pathogens such as those causing Marek’s disease and Newcastle disease, which were responsible for serious economic losses to the global poultry industry. Therefore, exploring the underlying regulatory mechanisms is essential to prevent and control vvIBDV infections.

With the development of transcriptome analysis and high-throughput sequencing, the molecular mechanisms
underlying host responses to virus infection regarding microRNAs (miRNAs) have been studied extensively [7–10]. miRNAs were endogenous small non-coding RNAs of approximately 20–25 nt that mainly regulate degradation or translation inhibition of mRNAs by binding to the 3′-untranslated regions [11, 12]; moreover, they exert various functions associated with inflammation [13], cancer [14], and immune responses [15–18]. Accumulating evidence suggested that miRNAs were universal regulators of gene expression in animals, and plants and play a key role in the pathogenesis of virus infections. miRNAs of several avian viruses including avian leucosis virus subgroup J [19], Newcastle disease virus [20], infectious bronchitis virus [21], and duck enteritis virus [22] have been identified and examined by RNA sequencing on a genomic scale. Moreover, aberrantly expressed miRNAs in cells and tissues play a crucial role in virus-host interactions [23]. It has been reported that classical IBDV infection affected miRNA expression in DF-1 cells [24]. The discovery of miRNAs provides new insights into the mechanisms of gene regulation [25–27].

However, few reports were available regarding the effect of IBDV infection on chicken BF miRNAs, particularly with respect to vvIBDV infection. The objectives of this study were to assess genome-wide expression profiles of BF miRNA in response to vvIBDV strain LJ-5 infection using RNA sequencing; to screen and analyze differentially expressed (DE) miRNAs; and to reproduce a miRNA-mRNA regulatory network. In this study, to identify key miRNAs associated with IBDV infection, which would provide clues for better understanding the pathogenesis and immune mechanisms of how vvIBDV effects BF functions at an miRNA regulation level.

Materials and methods

Experimental animals and sample collection

Three-week-old SPF chickens provided by the Harbin Institute of Veterinary Medicine (Harbin, China) were randomly assigned to a vvIBDV infection group (n = 30) and a control group (n = 30). The chickens in the IBDV infection group were inoculated with vvIBDV strain LJ-5 through eye-nose drops at a dosage of 10^3 ELD_{50}/0.2 mL [28], and the chickens in the control group were treated with an equal volume of sterile phosphate-buffered saline (PBS). All chickens were housed in an animal facility under negative-pressure pathogen-free conditions and were provided with a standard diet and water. After a three-day period of infection, the chickens were euthanized under anesthesia as previously described [28]. BF tissues of each chicken were collected immediately following dissection and were separated into two subsamples, one of which was fixed in 4% paraformaldehyde and 2.5% glutaraldehyde solution, and the other was immediately frozen in liquid nitrogen and was stored at -80 °C. All instruments were treated with DEPC prior to use so as to inactivate RNases.

Histopathology and transmission electron microscopy (TEM)

Histopathology and TEM observation were performed as previously described [6, 29]. Briefly, for histopathology observation, bursa tissues fixed in 4% paraformaldehyde over 24 h were processed by paraffin-wax cutting into 5-μm thick slices which were stained using hematoxylin and eosin (Beyotime Biotechnology, Shanghai, China) and were observed using a light microscope (Nikon E100; Nikon, Tokyo, Japan). For TEM observation, bursa tissues fixed with 2.5% glutaraldehyde were rinsed twice with PBS and were then fixed with 1% buffered osmium tetroxide. After this, the tissues were dehydrated with a graded alcohol series and were embedded in epoxy resin. Ultrathin sections were then stained with uranyl acetate and lead citrate for transmission electron microscope observation (H-7650; Hitachi, Tokyo, Japan).

miRNA sequencing

Three samples of each group were randomly selected for RNA sequencing. Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. RNA purity and integrity were examined using a NanoDrop 2000 device (Thermo Fisher Scientific, USA) and an Agilent 2100 device (Agilent, Santa Clara, CA, USA), respectively. Obtained total RNA was used to determine miRNA sequencing using Illumina HiSeq 2500 platform (Illumina, San Diego, USA). Raw sequencing reads were filtered to obtain clean sRNA sequences by removing (1) low quality reads, (2) reads lacking 3′ adapters but containing 5′ adapters, (3) reads without an insertion fragment, (4) reads containing poly-As, and (5) reads shorter than 18 nt. The remaining clean reads were aligned with sRNAs in the GenBank database (Release 209.0) and Rfam database (11.0) to identify and remove small nucleolar RNAs (snoRNAs), small nuclear RNA (snRNA), small cytosol RNA (scRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA) reads. The remaining reads were then mapped to the reference genome Gallus gallus GRCg6a using TopHat2 (v2.1.1), and genes mapped to exons, introns, and repeat sequences were removed. The remaining clean reads were used for analysis.

The clean reads were subjected to a search using the chicken miRBase database (Release 21), were identified as existing miRNAs using Bowtie (v1.1.2), and were matched
to the miRBase database of other animal species which were thought to be known miRNAs in chicken BF. Unannotated reads were mapped to the reference genome, and novel candidate miRNAs were identified based on their genome location and on hairpin structures as predicted using Mireap_v0.2 software. Only perfect alignments were considered novel miRNAs. miRNAs with a fold change >2 and a P-value <0.05 in a comparison were considered significant DE miRNAs between the vvIBDV infection group and the control group.

KEGG and GO enrichment analysis of target genes

Bioinformatic analyses were used to predict DE miRNA targets as described previously [30]. Three software packages, including RNAhybrid (v2.1.2) [31], Miranda (v3.3a) [32], and TargetScan (v7.0) [33], were used to predict potential target genes of DE miRNAs. Results which were consistently identified were considered putative target genes of miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to analyze the biological functions of miRNA target genes [34]. Enrichment values of GO terms and KEGG pathways were produced using a P hypergeometric test, and P-values <0.05 was considered to indicate significant enrichment.

qRT-PCR validation

To assess accuracy and reliability of DE miRNAs based on sequencing results, nine upregulated and nine downregulated miRNAs were selected for qRT-PCR confirmation. Primers were designed using Oligo 6 software (Table 1). Total RNA was extracted from IBDV-infected and uninfected BF tissues, and qRT-PCR was performed using a miRcute Enhanced miRNA Fluorescence Quantitative Kit (Tiangen, Beijing, China) and an ABI 7500 Real-Time PCR system (Applied Biosystems). U6 was used as an internal control for miRNA detection. The $2^{-\Delta\DeltaCT}$ method was used to calculate relative expression levels of target genes [35–37]. Three technical replicates were performed.

Statistical analyses

GraphPad Prism8 software was used to process qRT-PCR results, and data were statistically analyzed using a one-way ANOVA. All data were expressed as means ± standard error of the mean. Statistical significance was reported at $P < 0.05$.

Gene	Primer sequence (5’-3’)	Control
gga-miR-6604-5p	Forward: TGGCACGGTGCTAGGGATTTCTG	Reverse: Provided by Tiangen Biotech Co. Ltd.
gga-miR-3536	Forward: CGGCTCATACGGTAGACCTTTTC	
gga-miR-122-3p	Forward: GGCACAGCATTATCACAATTTAATAT	
gga-miR-1683	Forward: GGCTCTGGGACAGTGCACTCCTTTT	
gga-miR-3530-5p	Forward: CAGCTCTGTGCTGACATTTGG	
gga-miR-7465-3p	Forward: GACAGAGGTCTGTCCTACTGAC	
miR-1684-y	Forward: CGGTGTTGAGAAATGGAGACTCT	Reverse: Provided by Tiangen Biotech Co. Ltd.
miR-191-x	Forward: GGCACGAATCCCAAATGGAGCTT	
miR-222-y	Forward: CACACATCTTGCTGACTTGGTCCTT	
miR-1895-y	Forward: ACCTGACGGAGAGGAGGAGG	
miR-1587-x	Forward: CACAGGCTGGCTGGCTGGGGA	
miR-28-y	Forward: GTCACTAGTGAGCTTGCTTGGGA	Reverse: Provided by Tiangen Biotech Co. Ltd.
novel-m0087-5p	Forward: GCTACTGAGAATAGAGACCATCT	
novel-m0176-3p	Forward: CATCTGATCTGGGATGCTCTGG	
novel-m0094-5p	Forward: GCAATGGCTGACGTTGCTGTGCA	
novel-m0164-5p	Forward: ATCGAGCTGCCCGCTCCGTCG	
novel-m0165-3p	Forward: GATCCCATAGGATCTATGCGGG	
novel-m0210-3p	Forward: ATGCGCTGGAGCTGTCTGTGGC	
U6	Forward: GCCACGCAAATTCTGAGCGGTCCCA	Reverse: Provided by Tiangen Biotech Co. Ltd.
Results

Histopathology and TEM

Histopathological changes in the BF were shown in Fig. 1. The control group showed intact tissue structures, a clear boundary between the BF cortex and medulla, and no pathological changes (Fig. 1A), whereas vvIBDV-infected BF tissues exhibited severe structural alterations. Massive infiltration of inflammatory cells, nuclear debris, necrosis, and exudation occurred in the follicles, in addition to widening of the interfollicular space (Fig. 1B). TEM results were shown in Fig. 1C and D. The ultrastructure of BF tissues of the control group was normal (Fig. 1C), whereas in vvIBDV-infected BF tissues, the number of lymphocytes was decreased, mitochondria were swollen, cristae were broken, and many vacuoles and damaged organelles occurred in the cytoplasm (Fig. 1D).

Deep sequencing analysis of small RNAs

To identify miRNAs involved in vvIBDV infection in chickens, six small RNA (sRNA) libraries were constructed. After sequencing and assembling, 48,284,949 and 42,663,699 raw reads were obtained from control and IBDV-infected BF tissues, respectively, (Fig. S1; Table S1). Low-quality reads and adapter sequences were filtered, and 42,354,180 and 36,118,954 (83.67%–89.04%) clean reads were remained, respectively (Fig. S1, Table S1). A similar length distribution of sRNA sequences was observed in the six libraries (Fig. S2). sRNA sequences were mainly in the range of 18–25 nt (> 90%), of which 22 nt miRNAs had the highest compared with other miRNA lengths [38]. Clean reads of each library (including CK-1, CK-2, CK-3, LJ-1, LJ-2, and LJ-3) were aligned using the GenBank database, the Rfam database, and reference genome exons, introns, and repeat sequences, after which rRNA, scRNA, snoRNA, snRNA, tRNA, exons, introns, and repeat sequences were removed (Fig. S3; Table S2). The remaining clean reads were used for further miRNA analysis.

Identification of existing, known, and novel miRNAs in BF tissues

In total, 1717 miRNAs were identified in the control and vvIBDV-infected groups; the numbers of miRNAs overlapping between the infection treatment and the controls were visualized in a Venn diagram, with 411 miRNAs belonging to the control group and 180 to the vvIBDV-infected group (Fig. 2). Among these, 1126 were expressed in both groups, and 571 existing miRNAs matched chicken miRNAs (Supporting information file 1), and 870 known miRNAs matched miRNAs from other animal species (Supporting information file 2).

Fig. 1 Histopathological and ultrastructural changes in chicken bursa of Fabricius (BF) following vvIBDV infection. Histopathological examination of BF of the control (A) and vvIBDV group (B) (200- and 400-fold magnification; hematoxylin and eosin staining; n = 3). Histopathology showed massive nuclear debris (ND, blue arrow), bleeding points (BP, black arrow), inflammatory cells infiltration (ICI, yellow arrow) and widening of interfollicular space (WIS, red arrow) in the cortex and medulla of bursal follicles in vvIBDV-infected BF tissues. No obvious histopathological changes were observed in the controls. Ultrastructural examination of BF comparing the control (C) and vvIBDV-infected group (D) (10,000-fold magnification; n = 3) showed swollen mitochondria and broken cristae (SM&BC, red arrow), and broken organelles (BO, black arrow) in vvIBDV-infected BF.
Differentially expressed miRNAs in IBDV infection

miRNAs were key factors regulating antiviral responses; therefore, genome-wide expression changes of BF miRNAs in response to vvIBDV infection were studied. DE miRNAs associated with vvIBDV infection were screened between the control group and the vvIBDV infection group. We identified 77 DE miRNAs between the two groups, including 20 existing miRNAs, 36 known miRNAs, and 21 novel miRNAs, according to the criteria of fold change > 2 and a P-value < 0.05 (Supporting information file 4); 42 DE miRNAs were upregulated and 35 DE miRNAs were downregulated (Fig. 3). The top 20 miRNAs with the most significant differential expression were listed in Table 2. The identified novel miRNA sequences were listed in Table S3. These results confirmed that vvIBDV can significantly affect expression patterns of miRNAs in chicken BF tissues.

Functional annotation of DE genes

To assess the functions of DE miRNAs involved in vvIBDV infection, the target genes were annotated using GO and KEGG analyses. GO includes three ontologies: molecular functions, cellular components, and biological processes, and Fig. 4A showed that cellular processes, single-organism processes, and metabolic processes were significantly enriched in the molecular function category. Additionally, the terms cell, cell part and organelle, and binding and catalytic activity were significantly enriched in the cellular components and molecular functions ontologies, respectively. Pathway-based analysis helps elucidate biological functions of genes. KEGG was used to identify significantly enriched pathways of target genes. Fig. 4B showed that 20 pathways were significantly enriched, including apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways.

Fig. 2 Venn diagram showing the numbers of miRNAs overlapping between the IBDV-infected and the control group.

Fig. 3 Histogram (A) and volcano plots (B) of differentially expressed (DE) miRNAs. Red and blue columns indicate significantly up- and downregulated genes, respectively. Red and green dots indicate significantly up- and downregulated genes, respectively. Black dots indicate genes that were not significantly differentially expressed (P > 0.05).
miRNAs play a role in gene regulation by directly silencing or indirectly reducing the expression of their target genes. To further investigate functions and potential regulatory roles of DE miRNAs, we constructed miRNA-mRNA co-expression networks (Fig. 5), and 189 pairs of miRNA-target genes were identified including 67 DE miRNAs and 73 DE mRNAs. In the miRNA-mRNA network, gga-miR-1684b-3p, with the most significant difference (fold change = -36.1), was predicted to regulate five target genes, containing MYD88, THBS1, IRF1, P2RX7, IL6ST; gga-miR-1788-3p and gga-miR-3530-5p targeted six genes (BIRC2, STAT3, PTPN13, STAT4, IL18, CSNK2A1, IL18, IL6ST) and four (STAT1, STAT3, THBS1, CD86) genes, respectively, and both regulated STAT3 expression (Table 3). The target prediction indicated that each miRNA had multiple target genes, and each target gene was targeted by multiple miRNAs.

Table 2 Top 20 differentially expressed miRNAs

miRNA name	Sequence	log2(fc)	p value
gga-miR-1684b-3p	AAGTATGAGAAATGGGAGATCT	-6.01	0.007933
gga-miR-1763b-3p	AAGGGCCGGAAAAGGAAAGGCGA	-4.36	0.006784
gga-miR-1808	TTTTGGGAAATGACATTATT	-5.41	0.001606
miR-1261-x	ATGATAAGGACCTGGCT	4.63	0.035012
miR-2991-y	ATGTATAAGTCTGTGTCG	-5.14	0.000449
miR-2995-x	ATGCACTGTTGTAACCTGT	4.36	0.001518
miR-378-x	ACTGGACCTGGACTGAGAAGGGCT	-4.58	0.046755
miR-4507-y	CTGGGCTGGGCTGGCTGGG	-4.76	0.03317
miR-451-y	TTTAGTAAGTGAACGTGTTCT	5.49	0.00158
miR-737-x	GTTTTTTAAGTTTTTGATT	4.95	0.015163
novel-m0070-5p	CGCGCGCTGCGACACGCGCT	5.48	0.014495
novel-m0088-5p	ATGCACGTGTTGTAACCTGTGTC	5.24	0.028112
novel-m0112-5p	GGCAGGGCTGTGCGCGTCAGC	-4.98	0.00381
novel-m0167-5p	TCAGGGGAGCTTCGTAGGGACT	-4.94	0.01401
novel-m0132-3p	CTGGCCTGAGTTTCGTGATCCC	-4.92	0.043253
novel-m0219-5p	CCCCCACCCGGGGATGCGGGCTG	4.79	0.021687
novel-m0177-5p	TGGGACTTTTGATGCCAGTTGGA	4.63	0.034614
novel-m0054-3p	TCACATTTCGCTGCAGAGATT	-4.45	0.029951
novel-m0164-5p	CGAAGGCTGCGGCGCCTCGGTGTC	-4.41	0.030001
novel-m0065-3p	TCTGACAGCAGTGAGAACAG	-4.17	0.02267
novel-m0087-5p	TACGAGAATAGATGTCATC	4.17	0.000991

Fig. 4 GO (A) and KEGG (B) pathway analyses based on target genes of DE miRNAs in vvIBDV-infected chicken BF.

Target prediction and analysis of the miRNA–mRNA regulatory network

miRNAs play a role in gene regulation by directly silencing or indirectly reducing the expression of their target genes. To further investigate functions and potential regulatory roles of DE miRNAs, we constructed miRNA-mRNA co-expression networks (Fig. 5), and 189 pairs of miRNA-target genes were identified including 67 DE miRNAs and 73 DE mRNAs. In the miRNA-mRNA network, gga-miR-1684b-3p, with the most significant difference (fold change = -36.1), was predicted to regulate five target genes, containing MYD88, THBS1, IRF1, P2RX7, IL6ST; gga-miR-1788-3p and gga-miR-3530-5p targeted six (BIRC2, STAT3, PTPN13, STAT4, IL18, CSNK2A1, IL18, IL6ST) and four (STAT1, STAT3, THBS1, CD86) genes, respectively, and both regulated STAT3 expression (Table 3). The target prediction indicated that each miRNA had multiple target genes, and each target gene was targeted by multiple miRNAs.

© Springer
Confirmation of DE genes by quantitative reverse-transcription PCR (qRT-PCR)

To verify the reliability and accuracy of the sequencing results, 18 DE miRNAs (nine upregulated and nine downregulated genes) were selected and subjected to qRT-PCR. Fig. 6 showed that qRT-PCR results displayed similar trends as RNA sequencing results, suggesting validity of the sequencing data.

Discussion

IBDV is a pathogen which causes highly contagious and immunosuppressive disease, primarily in chicken BF tissues [39, 40]. Transcriptional analysis regulation in BF tissues after IBDV infection can be used as a tool to obtain valuable insights into virus-host interactions and to elucidate the role of miRNAs in IBDV responses. Here, we reported for the first time miRNA alterations of vvIBDV-infected chicken BF tissues using RNA sequencing, showing that vvIBDV can affect miRNA expression profiles.

In the present study, vvIBDV-infected BF tissues were used for RNA sequencing, showing 1,710 miRNAs in the control and vvIBDV infection groups. Among them, 77 miRNAs, including 20 existing miRNAs, 36 known miRNAs, and 21 novel miRNAs, were identified as DE miRNAs. These DE miRNAs were considered to play regulatory role during IBDV infection. Additionally, KEGG analysis predicted that the target genes of DE miRNAs were enriched regarding including apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways, and miRNAs may be involved in regulating the expression of target genes associated with vvIBDV infection through these pathways.

Based on sequencing results, many miRNAs reported in previous studies were also found in the current study. For instance, gga-miR-1723, gga-miR-222b-3p, gga-miR-1782, gga-miR-449a, and gga-miR-1563 exhibited...
significantly varied expression levels following IBV infection in chicken kidneys [41]. Interestingly, we also found that gga-miR-130b-3p, gga-miR-142-5p, gga-miR-454-3p, gga-miR-27b-3p, gga-miR-1635, and gga-miR-155 were DE in vvIBDV-infected cells, however, previously reported highly expressed miRNAs were not significantly DE in vvIBDV-infected BF [24, 27]. The reason for this discrepancy may be that we used strict screening criteria such as a fold change >2 and a P-value <0.05 resulting in many miRNAs (fold changes < 2) not being considered as DE in our study. Additionally, a recent study reported that gga-miR-215-5p was DE in IBV-infected chicken kidneys [41], which was consistent with our findings.

It is worth noting that miR-1684b-3p, gga-miR-1788-3p, and gga-miR-3530-5p were identified as strongly DE and regulated key target genes. This suggested that these miRNAs might play a vital role in the vvIBDV-host interactions. In the current study, differentially expressed down-regulated gga-miR-1684b-3p and gga-miR-3530-5p were shown to directly target THBS1 (fold change = 1.96). THBS1 is associated with ECM receptor interaction and with the TGF-β signaling pathway, and plays a key role in apoptosis by regulating the expression of various apoptotic factors [42]. Moreover, gga-miR-3530-5p was also predicted to target STAT family genes, including STAT1 and STAT3, which were largely associated with apoptosis [43]. Intriguingly, gene targeting studies showed that STAT1 (fold change = 9.34) can promote antagonizing proliferation and inflammation; however, STAT3 (fold change = 2.89) produced the opposite pattern [44, 45]. The varying degrees of expression of STAT1 and STAT3 may reflect a disruption of the balanced response of the organism. Therefore, gga-miR-1684b-3p and gga-miR-3530-5p may play an important role in apoptosis by directly targeting THBS1, STAT1 or STAT3 in vvIBDV-infected BF tissues. More importantly, the bursal tissue displayed typical apoptotic features, such as mitochondrial vacuoles and cristae breaks, which may be related to above miRNAs. Notably, STAT1 can also play a key role in the antiviral response by inducing the transcription of IFN-stimulated genes via a series of signal transduction steps [46]. Therefore, we believed that further elucidation of the roles of gga-miR-3530-5p is crucial for understanding the complex regulatory mechanisms of gene expression in response to vvIBDV infection in chicken BF. Additionally, gga-miR-1684b-3p can also target MYD88 in the toll-like receptor and NF-kB signaling pathways and were thus also involved in inflammation. Importantly, massive infiltration of inflammatory cells was found in vvIBDV infected bursal

Table 3 The target genes of exist miRNAs

miRNA name	mRNA name
gga-miR-1788-3p	BIRC2, STAT3, PTPN13, STAT4,
	IL18, CSNK2A1, IL6ST
gga-miR-1684b-3p	MYD88, THBS1, IRF1, P2RX7, IL6ST
gga-miR-3530-5p	STAT1, STAT3, THBS1, CDS6
gga-miR-2130	RPS6KB1, CCL19, IRF7
gga-miR-194	STMN1, LTBP1, CD86
gga-miR-6549-3p	PTPN13, CXCL12, IL18
gga-miR-215-5p	STAT1, IL18
gga-miR-1683	STAT3, CTSS
gga-miR-1684a-3p	THBS1, IRF1
gga-miR-1683	STAT3, CTSS
gga-miR-122-3p	IL6ST
gga-miR-122-5p	LY96
gga-miR-1666	GNB4
gga-miR-1763b-3p	IL6ST
gga-miR-1808	MAP3K8
gga-miR-3536	IL6ST
gga-miR-425-5p	GBP1
gga-miR-6604-5p	DHX58
gga-miR-7465-3p	TRIM25

(A) Existing miRNAs; **(B)** known miRNAs; **(C)** novel miRNAs; qRT-PCR experiments were performed in triplicates.
Differentially expressed miRNAs in IBDV infection

1. McFerran JB, McNulty MS, McKillop ER, Connor TJ, McCracken RM, Collins DS, Allan GM (1980) Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathol 9(3):395–404

2. Ismail NM, Saif YM, Moorhead PD (1988) Lack of pathogenicity of five serotype 2 infectious bursal disease viruses in chickens. Avian Dis 32(4):757–759

3. Brandt M, Yao K, Liu M, Heckert RA, Vakharia VN (2001) Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 75(4):11974–11982

4. Ruby T, Whittaker C, Withers DR, Chelbi-Alix MK, Morin V, Oudin A, Young JR, Zoorob R (2006) Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J Virol 80(18):9207–9216

5. Becht H, Müller H (1991) Infectious bursal disease-B cell dependent immunodeficiency syndrome in chickens. Behring Inst Mitt 89:217–225

6. Huang X, Liu W, Zhang J, Liu Z, Wang M, Wang L, Zhou H, Jiang Y, Cui W, Qiao X et al (2021) Very virulent infectious bursal disease virus-induced immune injury is involved in inflammation, apoptosis, and inflammatory cytokines imbalance in the bursa of fabricius. Dev Comp Immunol 114:103839

7. Cardin SE, Borchert GM (2017) Viral MicroRNAs, host MicroRNAs regulating viruses, and bacterial MicroRNA-like RNAs. Methods Mol Biol (Clifton, NJ) 1617:39–56

8. Gao L, Gao J, Liang Y, Li R, Xiao Q, Zhang Z, Fan X (2019) Integration analysis of a microRNA-mRNA expression in A549 cells infected with a novel H3N2 swine influenza virus and the 2009 H1N1 pandemic influenza virus. Infect Genet Evol 74:103922

9. Monsanto-Hearne V, Johnson KN (2018) miRNAs in Insects Infected by Animal and Plant Viruses. Viruses 10(7):354

10. Dong BS, Shi MJ, Su SB, Zhang H (2019) Insight into long non-coding RNA and its role in viral infection. J Virol 89:217–225

11. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNAse III Drosha initiates microRNA processing. Nature 425(6956):415–419

12. Ohtani K, Dimmeler S (2010) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106(1):5–11

13. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104(5):1604–1609

14. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA. Targets 120(1):1–15

15. Dong BS, Shi MJ, Su SB, Zhang H (2019) Insight into long non-coding RNA networks in hepatic fibrosis: the potential implications for mechanism and therapy. Gene 687:255–260

16. Zhang J, Cui J, Wang Y, Lin X, Teng X, Tang Y (2022) Complex molecular mechanism of ammonia-induced apoptosis in chicken peripheral blood lymphocytes: miR-27b-3p, heat shock proteins, immunosuppression, death receptor pathway, and mitochondrial pathway. Ecotoxicol Environ Saf 236:113471

17. Han Q, Tong J, Sun Q, Teng X, Zhang H, Teng X (2020) The involvement of miR-6615-5p/Smad7 axis and immune imbalance in ammonia-caused inflammatory injury via NF-κb pathway in broiler kidneys. Poult Sci 99(11):5378–5388

18. Chen J, Zhang S, Tong J, Teng X, Zhang Z, Li S, Teng X (2020) Whole transcriptome-based miRNA-mRNA network analysis revealed the mechanism of inflammation-immunosuppressive damage caused by cadmium in common carp spleens. Sci Total Environ 717:137081

19. Ji J, Xu X, Wang X, Yao L, Shang H, Li H, Ma J, Bi Y, Xie Q (2019) Expression of dysregulated miRNA in vivo in DF-1 cells during the course of subgroup J avian leukosis virus infection. Microb Pathog 126:40–44

tissue. Furthermore, gga-miR-1788-3p was most strongly predicted to be involved in regulating target genes, which can also be predicted to bind to STAT3 and thus was associated with apoptosis and inflammation in chicken BF. Other target genes we predicted regarding DE miRNAs, including gga-miR-7465-3p, gga-miR-1683, gga-miR-1808, gga-miR-215-5p, gga-miR-3536, and gga-miR-6549-3p, were associated with immune-related genes, suggesting that these miRNAs also play an important role in IBDV infection.

In summary, there were 77 DE miRNAs were identified in the vvIBDV-infected chicken BF. miRNAs likely play a role in the vvIBDV infection by targeting genes involved in regulating inflammation, apoptosis, and antiviral action, such as gga-miR-1684b-3p, gga-miR-1788-3p, and gga-miR-3530-5p. This study provided a comprehensive analysis of DE miRNAs in vvIBDV-infected chicken BF, and the results lay a foundation for further elucidating the complex regulatory mechanisms of host viral infection regarding miRNA regulation. However, further research is needed to explore the role of key miRNAs in vvIBDV infection.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00705-022-05496-6.

Acknowledgements We would like to thank the Harbin Institute of Veterinary Medicine for supplying us the specific pathogen-free chick and ducks: demonstration of a second serotype. Avian Pathol 9(3):395–404

Funding This work is supported by the National Science and Technology Support Program in Rural Areas of the12th Five-Year Plan [Grant 2015BAD12B01].

Data availability The raw data sets supporting the results of this article were available in the NCBI short reads archive and accession number is PRJNA635782. For information linking and citing, please refer to: https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA635782.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval Animal experiments were carried out in accordance with the recommendations in the institutional and national guidelines for animal use and the. The protocol was approved by the Committee on the Ethics of Animal Experiments of Northeast Agricultural University, Harbin, China (2016NEFU-315, 13 April 2017).

References

1. McFerran JB, McNulty MS, McKillop ER, Connor TJ, McCracken RM, Collins DS, Allan GM (1980) Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathol 9(3):395–404
