On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin
Hypergraph

- A **hypergraph** is a generalization of an ordinary graph
- A **hyperedge** joins an arbitrary number of nodes

- Sender and receivers of an email
- Co-authors of a publication
- Items co-purchased by a customer
Higher-Order Interaction (HOI)

- A higher-order interaction (HOI) is the co-appearance of a set of nodes in any hyperedge

 ➢ E.g.) If A, B, and C publish a paper together, any of \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\} becomes a HOI
Persistence of HOIs

- HOIs can appear **repeatedly** over time
- **Persistence** of repeated HOIs can be used to measure the strength or robustness of group relations
Applications

- Predicting the persistence of HOIs has many potential applications
 - Recommending groups (e.g., Facebook groups) in social networks
 - Recommending multiple items together
 - Predicting missing recipients of emails

Jan.	Feb.	Mar.	Apr.
Amy	Amy	Amy	Amy
Bob	Bob	Bob	Bob
Carl	Carl	Carl	Bob
Dan	Dan	Dan	Dan

Missing?
Our Questions

1. How do HOIs in real-world hypergraphs persist over time?
2. What are the key factors governing the persistence?
3. How accurately can we predict the persistence?
Roadmap

• Introduction

• **Observations <<
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions
Datasets

Coauthorship

Email

NDC 0777-3105-02

NDC

Tags

Datasets

Introduction

Predictions

Conclusions

Observations

Predictions

Conclusion

Datasets

Coauthorship

Email

NDC 0777-3105-02

NDC

Tags

#boot
#networking
#drivers
#server
#wireless
Datasets

Domain	Dataset	Node	Hyperedge	Time Unit
Coauthorship	DBLP	an author	authors	1 Year
	Geology			
	History			
Contact	High	a person	a group interaction	1 Day
	Primary			6 Hours
Email	Enron	an email address	sender and all receivers	1 Month
	Eu			2 Weeks
NDC	Classes	a class label	class labels applied to a drug	2 Years
	Substances	a substance	substances in a drug	
Tags	Math.sx	a tag	tags added to a question	1 Month
	Ubuntu			
Threads	Math.sx	a user	users who participate in a thread	1 Month
	Ubuntu			
Timestamped Hyperedges

- For each HOI S,
 - $E(S)$: Set of hyperedges containing S
 - $E(S, t)$: Set of hyperedges at time t containing S
 - Hyperedge e_i is associated with the timestamp t_i

Examples:

- $S = \{v_1, v_2, v_3\}$
- $E(S) = \{e_1, e_2, e_3\}$
- $E(S, 1) = \{e_1, e_2\}$
- $E(S, 2) = \emptyset$
- $E(S, 3) = \{e_3\}$

Timestamped Hyperedges:

- $e_1 = \{v_1, v_2, v_3, v_4\}$, $t_1 = 1$
- $e_2 = \{v_1, v_2, v_3, v_5, v_6\}$, $t_2 = 1$
- $e_3 = \{v_1, v_2, v_3, v_7\}$, $t_3 = 3$
Measure: Persistence of a HOI

- **Persistence** of a HOI S over a time range T is the number of time units in T when S co-appear in any hyperedge, i.e.,

$$P(S, T) := \sum_{t \in T} I(S, t)$$

where

$$I(S, t) = \begin{cases} 1, & \text{if } |E(S, t)| \geq 1 \\ 0, & \text{otherwise} \end{cases}$$

Example:

- $E(S, 1) = \{e_1, e_2\}$
- $E(S, 2) = \emptyset$
- $E(S, 3) = \{e_3\}$

$$P(S, [1, 3]) = \sum_{t=1}^{3} I(S, t) = 1 + 0 + 1 = 2$$
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis <<
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis
• Predictions
• Conclusions
Obs. 1: Persistence of HOIs tends to follow a power-law.

Size of HOIs	R^2 of Fitted Line		
Average over all 13 datasets	0.90 0.90 0.90		
DBLP ($	S	= 2$)	2
DBLP ($	S	= 3$)	3
DBLP ($	S	= 4$)	4
Persistence vs. Size of HOIs

Obs. 2: As HOIs grow in size, their average persistence and the power-law exponents of fitted power-law distributions tend to decrease.

Dataset	Average Persistence (Relative)	Power-Law Exponent (Relative)
Size of HOIs	2 3 4	2 3 4
Average over all 13 datasets	1.00 0.72 0.63	1.00 0.71 0.59
Roadmap

• Introduction

• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions
Group Features vs. Group Persistence

- We examined the relations between the structural group features and the persistence of HOIs (i.e., group persistence).
- We measured the **Pearson correlation coefficient (CC)** and **normalized mutual information (MI)** between the persistence and each structural feature to examine the relation between them.
 - Normalized mutual information scales from 0 (no mutual information) to 1 (perfect correlation).
Group Features: Definition

• Basic structural features of each HOI S:
 • $\#$: number of hyperedges including S
 • Σ: sum of sizes of hyperedges containing S
 • \cup: number of hyperedges overlapping S
 • $\Sigma \cup$: sum of sizes of hyperedges overlapping S
 • \cap: number of common neighbors of S
 • \mathcal{H}: entropy in sizes of hyperedges containing S

• Group structural features of each HOI S:
 ➢ (1) $\#$, (2) $\#/\cup$, (3) $\Sigma / (\Sigma \cup)$, (4) \cap, (5) $\#/\cap$, (6) Σ / \cap, (7) $\Sigma / \#$, (8) \mathcal{H}

 density of hyperedges containing S | avg. sizes of hyperedges containing S
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t

2) Compute its structural features using only the hyperedges appearing between time $t + 1$ and $t + T_s$
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t

2) Compute its structural features using only the hyperedges appearing between time $t + 1$ and $t + T_s$

3) Measure its persistence between time $t + T_s + 1$ and $t + T_s + T_p$

- We set $T_s = 5$ and $T_p = 10$
Group Features vs. Group Persistence

Obs. 3: Persistence of each HOI S is positively correlated with (a) the number of hyperedges containing S and (b) the entropy in the sizes of hyperedges containing S.

Size of HOIs	#	$\frac{\#}{U}$	$\frac{\Sigma}{\Sigma U}$	$\frac{\cap}{\cap}$	$\frac{\#}{\#}$	$\frac{\Sigma}{\Sigma}$	$\frac{\Sigma}{\#}$	\mathcal{H}	
MI	2	0.13	0.11	0.14	0.05	0.10	0.12	0.10	0.15
	3	0.11	0.06	0.08	0.05	0.08	0.09	0.08	0.12
	4	0.11	0.05	0.07	0.06	0.07	0.10	0.07	0.12
Avg.		0.12	0.08	0.10	0.05	0.08	0.11	0.08	0.13
CC	2	0.36	0.09	0.09	0.17	0.19	0.26	-0.08	0.32
	3	0.31	0.10	0.10	0.05	0.16	0.20	-0.09	0.25
	4	0.30	0.13	0.13	-0.01	0.17	0.20	-0.10	0.24
Avg.		0.32	0.10	0.11	0.07	0.17	0.22	-0.09	0.27
Obs. 3: Persistence of each HOI S is positively correlated with (a) the number of hyperedges containing S and (b) the entropy in the sizes of hyperedges containing S.

![Graphs showing the relationship between group persistence and features for DBLP and Eu databases.](#)

Introduction

Predictions

Conclusions

Group Features vs. Group Persistence

- **DBLP ($|S| = 2$)**
- **DBLP ($|S| = 3$)**
- **DBLP ($|S| = 4$)**
- **Eu ($|S| = 2$)**
- **Eu ($|S| = 3$)**
- **Eu ($|S| = 4$)**

- **Mean**
- **Median**
Node Features: Definition

- We examine the relations between the persistence of each HOI (i.e., group persistence) and the structural features of individual nodes involved in the HOI.

- Structural features of each node \(v \) in the clique expansion:
 a. degree \(d(v) \)
 b. weighted degree \(w(v) \)
 c. core number \(c(v) \)
 d. PageRank \(r(v) \)
 e. average degree of neighbors \(\bar{d}(v) \)
 f. average weighted degree of neighbors \(\bar{w}(v) \)
 g. local clustering coefficient \(l(v) \)
 h. number of occurrences of \(v \) \(o(v) \)
Clique Expansion: Definition

- The **clique expansion** of a hypergraph is a pairwise graph between nodes.
- It is obtained by replacing each hyperedge with the clique with the nodes in the hyperedge.
Node Features vs. Group Persistence

Obs. 4: Persistence of each HOI S is negatively correlated with the **average (weighted) degree of neighbors** of each node involved in the HOI.

Size of HOIs	d	w	c	r	\bar{d}	\bar{w}	l	o
MI 2	0.04	0.09	0.04	0.17	0.16	0.17	0.15	0.08
MI 3	0.03	0.06	0.04	0.09	0.09	0.10	0.09	0.05
MI 4	0.03	0.05	0.06	0.07	0.07	0.07	0.07	0.04
Avg.	0.04	0.07	0.05	0.11	0.11	0.11	0.10	0.05
CC 2	0.05	0.09	-0.01	0.07	-0.12	-0.14	-0.08	0.09
CC 3	-0.02	0.06	-0.05	0.03	-0.11	-0.12	-0.02	0.05
CC 4	-0.07	0.03	-0.09	0.03	-0.14	-0.14	0.03	0.00
Avg.	-0.01	0.06	-0.05	0.04	-0.12	-0.13	-0.02	0.05
Observations

Obs. 4: Persistence of each HOI S is negatively correlated with the average (weighted) degree of neighbors of each node involved in the HOI.

Node Features vs. Group Persistence

- **DBLP** ($|S| = 2$)
- **DBLP** ($|S| = 3$)
- **DBLP** ($|S| = 4$)

- **Eu** ($|S| = 2$)
- **Eu** ($|S| = 3$)
- **Eu** ($|S| = 4$)
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis <<
• Predictions
• Conclusions
Node Features vs. Node Persistence

- We explore the relations between the structural features of each node and its k-node persistence

- **k-node persistence** of a node v: average persistence of the HOIs of size $k \in \{2,3,4\}$ that the node v is involved in

- For each node v, let t_v be the time when v is involved in any HOI of size k for the first time
 - Measure the structural node features of v using only the hyperedges appearing between time $t_v + 1$ and $t_v + T_S$

- First appearance of a HOI of size k containing v
- Observe structural features $t_v + T_S$
- Measure k-node persistence $t_v + T_S + T_p$
Node Features vs. Node Persistence

Obs. 5: The **weighted degree** and **number of occurrences** of each node are positively correlated with the \(k \)-node persistence of HOIs that the node is involved in.

Size of HOIs	\(d \)	\(w \)	\(c \)	\(r \)	\(\bar{d} \)	\(\bar{w} \)	\(l \)	\(o \)
MI								
2	0.35	0.43	0.28	**0.53**	0.49	**0.51**	0.43	0.41
3	0.30	0.37	0.24	**0.44**	0.42	**0.44**	0.37	0.34
4	0.26	0.31	0.21	**0.36**	0.35	**0.36**	0.31	0.30
Avg.	0.30	0.37	0.24	**0.44**	0.42	**0.43**	0.37	0.35
CC								
2	0.15	0.22	0.14	0.08	0.00	-0.07	-0.02	**0.26**
3	0.04	0.16	0.04	0.03	-0.04	-0.08	-0.04	**0.17**
4	0.03	0.12	0.01	0.02	-0.05	-0.07	-0.04	**0.13**
Avg.	0.07	0.17	0.06	0.04	-0.03	-0.07	-0.03	**0.19**
Node Features vs. Node Persistence

Obs. 5: The weighted degree and number of occurrences of each node are positively correlated with the k-node persistence of HOIs that the node is involved in.

![Graphs showing the relationship between weighted degree and k-node persistence for different hypergraph datasets.](image)

- **DBLP ($|S| = 2$)**
- **DBLP ($|S| = 3$)**
- **DBLP ($|S| = 4$)**
- **Eu ($|S| = 2$)**
- **Eu ($|S| = 3$)**
- **Eu ($|S| = 4$)**

- **Mean**
- **Median**
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis
• Predictions <<
• Conclusions
Prediction Experiments

- **Exp. 1: Predictability.** How accurately can we predict the persistence of HOIs using the structural features?
- **Exp. 2: Feature Importance.** Which structural features are important in predicting the persistence?
- **Exp. 3: Effect of Observation Periods.** How does the period of observation for measuring the structural features affect the prediction accuracy?
Problem 1: Persistence Prediction

• Given:
 – a **HOI** S that appears for the first time at time t,
 – all **hyperedges appearing in the past**
 – between time $t + 1$ and $t + T_s$

• Predict:
 – **persistence of S in the near future**
 – between $t + T_s + 1$ and $t + T_s + T_p$
Problem 2: k-Node Persistence Prediction

• Given:
 – a node v involved in a HOI of size k for the first time at time t,
 – all hyperedges appearing in the past
 – between time $t + 1$ and $t + T_s$

• Predict:
 – k-node persistence of v in the near future
 – between $t + T_s + 1$ and $t + T_s + T_p$
Prediction Methods

• We use all 16 structural features (8 group and 8 node features) as input features into four regression models:
 1) multiple linear regression (LR)
 2) random forest regression (RF)
 3) linear support vector regression (SVR)
 4) multi-layer perceptron regressor (MLP)

✓ Baseline: mean \((k\)-node) persistence in the training set

• Training set: \(2/3\) of the HOIs and their persistence and \(4/5\) of the nodes and their \(k\)-node persistence

• Test set: the remaining ones
Evaluation Methods

• We evaluate the predictive performance of the models using two metrics:

 ➢ **Coefficients of determination** (R^2): measures how well the predictions approximate the real data
 ➢ **Root mean squared error** ($RMSE$): between predicted and real (k-node) persistence

• A higher R^2 and lower $RMSE$ indicate better performance
Exp. 1: Predictability

Obs. 6: The structural features are useful for predicting the persistence, especially when the size of the HOI is large.

Target	Prediction of Persistence of HOIs	Prediction of k-Node Persistence of Nodes										
Measure	R^2	RMSE	R^2	RMSE								
Size of HOIs												
Mean												
SVR	0.17	0.13	0.10	0.03	0.01	0.00	0.73	0.56	0.54			
LR	0.28	0.22	0.23	1.05	0.58	0.45	0.17	0.15	0.09	0.75	0.71	0.67
MLP	0.34	0.31	0.37	0.95	0.53	0.42	0.14	0.06	0.02	0.77	0.75	0.72
RF	**0.61**	**0.62**	**0.68**	**0.83**	**0.38**	**0.24**	**0.61**	**0.66**	**0.71**	**0.54**	**0.41**	**0.39**

*The higher, the better. **The lower, the better.
Measure: Feature Importance

- We use the **Gini importance** to measure the importance of each structural feature for random forest.
- We compute the **rankings** of the features based on the importance.
Exp. 2: Feature Importance

Obs. 7: In predicting the persistence, the number of hyperedges containing S (i.e., $\#$), and the average (weighted) degree of the neighbors of each node in S (i.e., \bar{w} and \bar{d}) are most useful.

Size of HOIs	$\#$	$\sum \frac{\#}{\cup}$	$\sum \frac{\#}{\sum \cup}$	$\cap \frac{\#}{\cap}$	$\cap \frac{\#}{\cap}$	$\cap \frac{\#}{\cap}$	H	d	w	c	r	\bar{d}	\bar{w}	l	o	
2	**2.8**	10.7	8.6	13.1	13.3	9.0	9.2	8.7	9.9	8.6	8.8	5.9	4.9	4.3	6.4	11.9
3	5.4	9.2	9.2	11.8	11.2	9.6	9.8	7.9	11.2	9.1	8.4	5.7	5.1	**4.3**	6.4	12.0
4	**5.3**	9.3	9.9	10.3	10.6	8.3	8.7	7.0	9.5	7.3	9.2	7.7	7.7	6.3	8.0	11.0
Avg.	**4.5**	9.7	9.2	11.7	11.7	9.0	9.2	7.9	10.2	8.3	8.8	6.4	5.9	**5.0**	6.9	11.6

Feature Importance Ranking
Exp. 2: Feature Importance

Obs. 8: In predicting the k-node persistence, its PageRank (i.e., r) and the average (weighted) degree of its neighbors (i.e., \bar{w} and \bar{d}) are most useful.

Size of HOIs	d	w	c	r	\bar{d}	\bar{w}	l	o
2	6.7	4.3	7.2	3.2	3.4	2.9	5.3	3.2
3	6.6	4.1	7.3	2.7	3.5	2.7	5.0	4.3
4	6.1	4.0	6.6	2.6	3.5	3.1	5.3	4.9
Avg.	6.4	4.1	7.0	2.8	3.5	2.9	5.2	4.1

Feature Importance Ranking
Exp. 2: Effect of Number of Features

Obs. 9: About a half of the considered structural features based on their importance yields similar performance.

(1) Persistence

(2) k-Node Persistence
Exp. 3: Effect of Observation Periods

Obs. 10: Observing HOIs for longer periods of time enables us to better predict their persistence.

Target	Persistence of HOIs	k-Node Persistence of Nodes		
Measure	RMSE* of RF	Improvement (in %)	RMSE* of RF	Improvement (in %)
T_s	2** 3 4	2 3 4	2 3 4	
1	0.96 0.48 0.32	31.6 42.3 50.7	0.62 0.46 0.43	18.5 25.5 31.8
3	0.88 0.42 0.28	34.1 45.4 55.0	0.55 **0.41** 0.38	24.8 **29.1** 34.4
5	**0.83** 0.38 0.24	**36.0** 47.7 59.4	**0.54** 0.41 0.39	**27.4** 26.4 27.5

*The lower, the better. **The size of HOIs (i.e., $|S|$).*
Roadmap

• Introduction

• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions <<
Conclusions

• We empirically examined the **persistence of HOIs** at hypergraph-, group-, and node- levels in 13 real-world hypergraphs to answer the following questions:

 ✓ How is the persistence of HOIs **distributed**?
 ✓ Which **structural features** govern the persistence of HOIs?
 ✓ How accurately can we **forecast the persistence of HOIs**?

• Github link: https://github.com/jin-choo/persistence
On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin