Blowing up generalized Kähler 4-manifolds

Gil R. Cavalcanti∗ Marco Gualtieri†

Abstract

We show that the blow-up of a generalized Kähler 4-manifold in a non-degenerate complex point admits a generalized Kähler metric. As with the blow-up of complex surfaces, this metric may be chosen to coincide with the original outside a tubular neighbourhood of the exceptional divisor. To accomplish this, we develop a blow-up operation for bi-Hermitian manifolds.

Contents

1 Introduction 2
2 Generalized complex blow-up 3
3 Bi-Hermitian approach 5
4 Flow construction 7
5 Generalized Kähler blow-up 8
 5.1 Simultaneous blow-up ... 8
 5.2 Deformation of degenerate bi-Hermitian structure 10
 5.3 Positivity .. 13
6 Examples 14

∗Utrecht University; g.r.cavalcanti@uu.nl
Supported by a Marie Curie grant from the European Research Council.
†University of Toronto; mgualt@math.toronto.edu
Supported by a NSERC Discovery grant and an Ontario ERA.
1 Introduction

Let \((M, \mathbb{J}_+, \mathbb{J}_-, \mathbb{J}_+^+, \mathbb{J}_-^-)\) be a generalized Kähler 4-manifold such that both generalized complex structures \(\mathbb{J}_+, \mathbb{J}_-\) have even type, meaning that they are equivalent to either a complex or symplectic structure at every point. In other words, their underlying real Poisson structures \(P_+, P_-\) have either rank 0 (at complex points) or 4 (at symplectic points). The structure \(\mathbb{J}_\pm\) is equipped with a canonical section \(s_\pm\) of its anticanonical line bundle, vanishing on the locus \(D_\pm\) of complex points, where \(P_\pm\) has rank zero. From [6], it follows that the symplectic leaves of \(P_+\) and \(P_-\) must be everywhere transverse, so that \(D_+, D_-\) are disjoint.

It was shown in [2] that in a neighbourhood of a complex point \(p \in D_+\) which is nondegenerate, in the sense of being a nondegenerate zero of \(s_+\), there are complex coordinates \((w, z)\) such that the generalized complex structure \(\mathbb{J}_+\) is equivalent to that defined by the differential form

\[
\rho_+ = w + dw \wedge dz.
\] (1.1)

Note that \(D_+ = w^{-1}(0)\), along which \(\rho_+|_{D_+} = dw \wedge dz\) defines a complex structure, whereas for \(w \neq 0\), we have \(\rho_+ = w \exp(B + i\omega)\), for \(B + i\omega = d \log w \wedge dz\), defining a symplectic form \(\omega\) away from \(D_+\), as required.

It was then shown [2, Theorem 3.3] that the complex blow-up at \(p\) using the coordinates \((z, w)\) inherits a generalized complex structure. We detail in Section 2 why this structure is independent of the chosen coordinates. Thus we obtain a canonical blow-up \((\tilde{M}, \tilde{\mathbb{J}}_+)\) of \((M, \mathbb{J}_+)\) at \(p\), equipped with a generalized holomorphic map \(\pi : \tilde{M} \rightarrow M\) which is an isomorphism outside the exceptional divisor \(E = \pi^{-1}(p)\). The complex locus \(\tilde{D}_+\) of the blow-up is the proper transform of \(D_+\), and the exceptional divisor \(E\) is a 2-sphere which intersects \(\tilde{D}_+\) transversely at one point and is Lagrangian with respect to \(\omega\) elsewhere; this makes \(E\) a generalized complex brane [2].
In Section 5.1, we use the bi-Hermitian tools developed in Section 3 to construct a degenerate generalized Kähler structure on the blow-up, in the sense that the metric degenerates along the exceptional divisor E. Finally, in Section 5.2, we use a deformation procedure detailed in Section 4 to obtain a positive-definite metric, defining a generalized Kähler structure such that π is an isomorphism away from a tubular neighbourhood of the exceptional divisor E. The generalized complex structure J does not lift uniquely to the blow-up, as there is no preferred choice of symplectic area for E; this degree of freedom inherent in the generalized Kähler blow-up is familiar from the usual Kähler blow-up operation.

2 Generalized complex blow-up

Let (w, z) be standard coordinates for $M = \mathbb{C}^2$, and consider the generalized complex structure \mathcal{J} defined by the form ρ_+ given in (1.1). This structure extends uniquely to a generalized complex structure $\tilde{\mathcal{J}}$ the blow-up $\tilde{M} = [\mathbb{C}^2 : 0]$ of the plane in the origin, simply because the anticanonical section $\sigma = w\partial_w \wedge \partial_z$ does. That is, the line generated by ρ_+ may be written

$$\langle \rho_+ \rangle = e^\sigma \Omega^{2,0}(M),$$

and in the two blow-up charts $(w_0, z_0) = (w/z, z)$ and $(w_1, z_1) = (w, z/w)$, this pulls back to the line $e^\tilde{\sigma} \Omega^{2,0}(\tilde{M})$, where

$$\tilde{\sigma} = w_0 \partial_{w_0} \wedge \partial_{z_0} = \partial_{w_1} \wedge \partial_{z_1}.$$

Clearly, $\tilde{\sigma}$ drops rank along the proper transform of $w^{-1}(0)$, namely $w_0^{-1}(0)$.

The above construction of $\tilde{\mathcal{J}}$ uses the complex structure defined by (w, z), but this complex structure is not determined canonically by \mathcal{J}. That is, there are automorphisms $\Phi = (\varphi, B) \in \text{Diff}(M) \ltimes \Omega^{2,\text{cl}}(M, \mathbb{R})$ of \mathcal{J} for which φ is not a holomorphic automorphism of \mathbb{C}^2. To show that $\tilde{\mathcal{J}}$ is independent of the particular complex structure used to perform the blow-up, we must show that any such automorphism $\Phi \in \text{Aut}(\mathcal{J})$ with $\varphi(0) = 0$ lifts to the blow-up $[\mathbb{C}^2 : 0]$.

Theorem 2.1. Any automorphism of \mathcal{J} on $M = \mathbb{C}^2$ fixing the origin lifts to the blow-up \tilde{M} of M in the origin.
Proof. Let \(\Phi = (\varphi, B) \in \text{Aut}(\mathcal{J}) \), meaning that

\[
e^B \varphi^* (w + dw \wedge dz) = e^\lambda (w + dw \wedge dz),
\]

(2.1)

for some \(\lambda \in C^\infty(M, \mathbb{C}) \). Also, assume \(\varphi(0) = 0 \). Let \(p : \tilde{M} \to M \) be the blow-down map. We will show that \(\varphi \) lifts to \(\tilde{\varphi} \in \text{Diff}(\tilde{M}) \) such that \(p \circ \tilde{\varphi} = \varphi \circ p \), and then \((\tilde{\varphi}, p^* B) \in \text{Aut}(\tilde{\mathcal{J}}) \) is the required lift of the automorphism. The lift \(\tilde{\varphi} \) exists if and only if the functions \(\tilde{w} = \varphi^* w, \tilde{z} = \varphi^* z \) are in the ideal generated by \(w \) and \(z \) in \(C^\infty(M, \mathbb{C}) \). By a theorem of Malgrange [10], this is equivalent to the following constraints:

\[
\frac{\partial^{p+q} \tilde{w}}{\partial^p w \partial^q \tilde{z}} \bigg|_{(0,0)} = 0 \quad \text{and} \quad \frac{\partial^{p+q} \tilde{z}}{\partial^p \tilde{w} \partial^q \tilde{z}} \bigg|_{(0,0)} = 0, \quad \text{for all } p, q \in \mathbb{N}. \tag{2.2}
\]

To verify (2.2), we rewrite (2.1) as follows:

\[
\tilde{w} + d\tilde{w} \wedge d\tilde{z} = e^\lambda e^{-B} (w + dw \wedge dz) = e^\lambda (w + dw \wedge dz - wB), \tag{2.3}
\]

where the summand of degree four is omitted from the last term since it vanishes. From this we immediately conclude that \(\tilde{w} = e^\lambda w \), so that \(\tilde{w} \) satisfies (2.2). But then

\[
d\tilde{w} \wedge d\tilde{z} = d(e^\lambda w) \wedge d\tilde{z} = e^\lambda (dw + wd\lambda) \wedge (\frac{\partial \tilde{z}}{\partial w} dw + \frac{\partial \tilde{z}}{\partial w} dw + \frac{\partial \tilde{z}}{\partial z} dz + \frac{\partial \tilde{z}}{\partial z} dz).
\]

By (2.3), this coincides with \(e^\lambda (dw \wedge dz - wB) \), and equating \(dw \wedge dz \) components we obtain

\[
(1 + w \frac{\partial \lambda}{\partial w}) \frac{\partial \tilde{z}}{\partial w} - w \frac{\partial \lambda}{\partial w} \frac{\partial \tilde{z}}{\partial w} = -wB_{w\tilde{z}}.
\]

Solving for \(\frac{\partial \tilde{z}}{\partial w} \) we obtain, near \((0,0)\),

\[
\frac{\partial \tilde{z}}{\partial w} = \frac{w(\frac{\partial \lambda}{\partial w} \frac{\partial \tilde{z}}{\partial w} - B_{w\tilde{z}})}{1 + w \frac{\partial \lambda}{\partial w}}. \tag{2.4}
\]

Similarly, equating \(dw \wedge d\tilde{w} \) components yields, near \((0,0)\),

\[
\frac{\partial \tilde{z}}{\partial \tilde{w}} = \frac{w(\frac{\partial \lambda}{\partial \tilde{w}} \frac{\partial \tilde{z}}{\partial \tilde{w}} - B_{w\tilde{w}})}{1 + w \frac{\partial \lambda}{\partial \tilde{w}}}. \tag{2.5}
\]

Finally, (2.4), (2.5) imply that (2.2) holds for \(\tilde{z} \), as required. \(\square \)
3 Bi-Hermitian approach

Our main tool for describing the geometry of the blow-up will be the bi-Hermitian approach to generalized Kähler geometry [6], which we describe briefly here. Since we are interested in a neighbourhood of a point, we may assume that the torsion 3-form H of our generalized Kähler structure is cohomologically trivial. Such a generalized Kähler structure determines and is determined by a Riemannian metric g, a 2-form b, and a pair of complex structures I_+, I_- which are compatible with g and satisfy the condition

$$\pm d_c^\pm \omega_\pm = db,$$

(3.1)

where $\omega_\pm = gI_\pm$ are the usual Hermitian 2-forms and $d_c^\pm = [d, I_\pm^*]$ are the real Dolbeault operators associated to I_\pm. The correspondence between the generalized Kähler pair \mathcal{J}_+, J_- and the above bi-Hermitian data is as follows:

$$J_\pm = \frac{1}{2} \begin{pmatrix} 1 & -b & 1 \end{pmatrix} \begin{pmatrix} I_+ \pm I_- & -\omega^1_\pm \mp \omega^{-1}_\pm \omega_+ & \omega_+ \mp \omega_- \mp \omega_+ \pm I_+^* \pm I_-^* \end{pmatrix} \begin{pmatrix} 1 \\ b \\ 1 \end{pmatrix}.$$

(3.2)

It was observed in [7] that the bi-Hermitian condition endows the complex structure I_\pm with a holomorphic Poisson structure σ_\pm with real part

$$Q = \text{Re}(\sigma_+) = \text{Re}(\sigma_-) = \frac{1}{8}[I_+, I_-]g^{-1}.$$

(3.3)

Indeed, σ_\pm derives from a pair of transverse holomorphic Dirac structures as described in [6], though we shall not make use of this here.

Any pair of complex structures satisfies the following identity for the commutator:

$$[I_+, I_-] = (I_+ - I_-)(I_+ - I_-).$$

(3.4)

Therefore, the zeros of Q coincide with the loci where $I_+ = I_-$ or $I_+ = -I_-$. From (3.2), we see that the real Poisson structures P_\pm underlying \mathcal{J}_\pm are given by

$$P_\pm = -\frac{1}{2}(\omega^1_\pm \mp \omega^{-1}_\pm) = \frac{1}{8}(I_+ \mp I_-)g^{-1}.$$

(3.5)

Therefore, we conclude that the zero locus of Q, and hence σ_\pm, is the union of the zero loci for P_+, P_-, namely the subsets D_+, D_- discussed in section 1.

The holomorphic Poisson structure (I_\pm, σ_\pm) provides an economical means to describe the full generalized Kähler structure, as observed in [5].

Theorem 3.1 ([5], Theorem 6.2). Let (I_0, σ_0) be a holomorphic Poisson structure with $\text{Re}(\sigma_0) = Q$. Any closed 2-form F satisfying the equation

$$FI_0 + I_0^* F + F Q F = 0$$

(3.6)

5
defines an integrable complex structure \(I_1 = I_0 + QF \), a symmetric tensor \(g = -\frac{1}{2}F(I_0 + I_1) \), and a 2-form \(b = -\frac{1}{2}F(-I_0 + I_1) \) such that

\[
dc^c_0 \omega_0 = -dc^c_1 \omega_1 = db.
\]

If \(g \) is positive-definite, then \((g, I_0, I_1)\) defines a bi-Hermitian structure satisfying (3.1), and hence a generalized Kähler structure, where \(J_- \) is the symplectic structure \(F \).

As is hinted at in Theorem 3.1, in which \(g \) need not be positive-definite, it will be useful in studying the blowup for us to relax the generalized Kähler condition, allowing degenerations of the Riemannian metric while maintaining the remaining constraints.

Definition 3.2. A degenerate bi-Hermitian structure \((g, b, I_+, I_-)\) consists of a possibly degenerate tensor \(g \in \Gamma^\infty(\text{Sym}^2 T^*) \), a 2-form \(b \in \Omega^2 \), and two integrable complex structures \(I_+, I_- \), such that \(gI^\pm + I^\pm g = 0 \) and

\[
dc^c_+ \omega_+ = -dc^c_- \omega_- = db,
\]

where \(\omega_\pm = gI_\pm \). Informally, it is a generalized Kähler structure where \(g \) may be degenerate.

Degenerate bi-Hermitian structures arising from the construction in Theorem 3.1 as solutions to (3.6) enjoy a composition operation which we now review (see [5] for details).

If \(F_{01} \) is a closed 2-form solving

\[
F_{01}I_0 + I_0^*F_{01} + F_{01}QF_{01} = 0,
\]

for a holomorphic Poisson structure \((I_0, \sigma_0)\) with \(\text{Re}(\sigma_0) = Q \), then it determines a second holomorphic Poisson structure \((I_1, \sigma_1)\) with \(\text{Re}(\sigma_1) = Q \), via \(I_1 = I_0 + QF_{01} \). If we then have another closed 2-form \(F_{12} \), such that

\[
F_{12}I_1 + I_1^*F_{12} + F_{12}QF_{12} = 0,
\]

then it determines a third holomorphic Poisson structure \((I_2, \sigma_2)\) with \(\text{Re}(\sigma_2) = Q \), via \(I_2 = I_1 + QF_{12} \). Rewriting (3.7) and (3.8) as the pair

\[
F_{01}I_0 + I_0^*F_{01} = 0, \quad F_{12}I_1 + I_1^*F_{12} = 0,
\]

we see that the closed 2-form \(F_{02} = F_{01} + F_{12} \) satisfies

\[
F_{02}I_0 + I_0^*F_{02} + F_{02}QF_{02} = F_{02}I_0 + I_0^*F_{02} = F_{01}(I_2 - I_1) - (I_1^* - I_0^*)F_{12} = F_{01}QF_{12} - F_{01}QF_{12} = 0.
\]
We may interpret this in the following way: a solution to (3.7) defines a degenerate bi-Hermitian structure with constituent complex structures \((I_0, I_1)\), and a solution to (3.8) does the same, but with complex structures \((I_1, I_2)\). These two degenerate bi-Hermitian structures may be composed in the sense that the sum \(F_{02} = F_{01} + F_{12}\) defines a new degenerate bi-Hermitian structure with constituent complex structures \((I_0, I_2)\). This composition may be viewed as a groupoid (see Figure 1).

Definition 3.3 ([5]). Fix a real manifold \(M\) with real Poisson structure \(Q\). Then we may define a groupoid whose objects are holomorphic Poisson structures \((I_i, \sigma_i)\) on \(M\) with \(\text{Re}(\sigma_i) = Q\) and whose morphisms \(\text{Hom}(i, j)\) are real closed 2-forms \(F_{ij}\) such that the following two equations hold.

\[
I_j - I_i = QF_{ij} \\
F_{ij}I_j + I_j^*F_{ij} = 0.
\]

The composition of morphisms is then simply addition of 2-forms \(F_{ij} + F_{jk}\).

Remark 3.4. Combined with Theorem 3.1, this definition provides a composition operation for the degenerate bi-Hermitian structures determined by the 2-forms \(F_{ij}\).

4 Flow construction

We now review a method, introduced in [8] and developed in [5], for modifying a bi-Hermitian structure of the kind studied in the previous section using a smooth real-valued function. The method proceeds essentially by solving (3.8) using the flow of a suitably-chosen vector field, and then composing this solution with the given bi-Hermitian structure viewed as a solution to (3.7). This is a direct analog of the well-known modification of a Kähler form by adding \(f\) to the Kähler potential.

Theorem 4.1 ([8, 5]). Let \((I_0, \sigma_0)\) be a holomorphic Poisson structure with \(Q = \text{Re}(\sigma_0)\), and let \(f\) be a smooth real-valued function. Let \(\phi_t\) be the time-\(t\) flow of the
Hamiltonian vector field $X = Q(df)$. Then, so far as the flow is well-defined, the closed 2-form

$$F_t = \int_0^t \varphi_s^*(dd^c_{I_0} f) ds \quad (4.1)$$

satisfies Equation 3.6, i.e.

$$F_t I_0 + I_0^* F_t + F_t QF_t = 0.$$

Remark 4.2. The above flow generates a family of integrable complex structures $I_t = I_0 + QF_t$, which are all equivalent, since $I_t = \varphi_t(I_0)$. If f is strictly plurisubharmonic for I_0, i.e. defines a Riemannian metric $h = -(dd^c_{I_0} f)$, then from (4.1) we have

$$\lim_{t \to 0} t^{-1} F_t = dd^c_{I_0} f,$$

implying that the symmetric tensor

$$g_t = -\frac{1}{2} F_t (I_0 + I_t)$$

satisfies $\lim_{t \to 0} t^{-1} g_t = h$, so that g_t defines a Riemannian metric for sufficiently small $t \neq 0$, and so by Theorem 4.1, we obtain a generalized Kähler structure (g_t, I_0, I_t, b_t).

5 Generalized Kähler blow-up

We now apply the machinery of the preceding sections to the problem of blowing up the generalized Kähler 4-manifold (M, J_+, J_-) introduced in Section 1 at a nondegenerate point $p \in D_+$ in the complex locus of J_+. The first step (§ 5.1) is to blow up the generalized complex structure J_+ and obtain a degenerate bi-Hermitian structure. In the second step (§ 5.2) we deform the degenerate bi-Hermitian structure by composing it with another degenerate bi-Hermitian structure obtained from the flow construction (§ 4). Finally (§ 5.3), we prove that the resulting deformation is positive-definite, defining a generalized Kähler structure on the blow-up.

5.1 Simultaneous blow-up

Lemma 5.1. In a neighbourhood of the nondegenerate point $p \in D_+$, there exist complex coordinates (u_\pm, v_\pm) such that the holomorphic Poisson structure (I_\pm, σ_\pm) is given by $u_\pm \partial_{u_\pm} \wedge \partial_{v_\pm}$.

Proof. From the normal form for J_+ near p given by Equation 1.1, it follows that P_+ is isomorphic to $\text{Im}(w \partial_w \wedge \partial_z)$. In particular, P_+ vanishes linearly.
along D_+. By Equations 3.3, 3.4, and 3.5, and since D_- is disjoint from D_+, it follows that $Q = -\frac{1}{2}[I_+, I_-]g^{-1}$ has linear vanishing along D_- as well. This means that the holomorphic Poisson structure σ_{\pm} is a section of a holomorphic line bundle $\Lambda^2 T_{1,0}$ with a nondegenerate zero at p. Hence we may choose I_\pm-complex coordinates (u_\pm, v_\pm) near p such that $\sigma_{\pm} = u_\pm \partial_{u_\pm} \wedge \partial_{v_\pm}$, as required.

We now demonstrate that the coordinates (u_\pm, v_\pm) placing σ_{\pm} into standard form are closely related to the coordinates (w, z) placing \mathbb{J}_+ into the standard form 1.1.

Lemma 5.2. In a sufficiently small neighbourhood U of p where the following coordinates are defined, the functions u_\pm, v_\pm lie in the ideal of $C^\infty(U, \mathbb{C})$ generated by w, z.

Proof. Let ρ_+ be the generator (1.1) defined by \mathbb{J}_+ in U, and let $\rho_- = e^\beta$ be the generator defined by \mathbb{J}_-, which has symplectic type in U, so that $\beta = B + i\omega$ is a complex 2-form such that ω is symplectic.

The holomorphic Poisson structures $\sigma_{\pm} = u_\pm \partial_{u_\pm} \wedge \partial_{v_\pm}$ define generalized complex structures in U via the differential forms

$$u_\pm + du_\pm \wedge dv_\pm \in e^{\sigma_{\pm}} \Omega^{2,0}_\pm.$$

In [6], it is shown that these holomorphic Poisson structures may be expressed as a certain “wedge product” of the underlying generalized complex structures $(\mathbb{J}_+, \mathbb{J}_-)$. Explicitly, this provides the following identities1:

$$e^{\bar{\beta}}(w - dw \wedge dz) = e^{\lambda_-}(u_- + du_- \wedge dv_-)$$

$$e^\beta(w - dw \wedge dz) = e^{\lambda_+}(u_+ + du_+ \wedge dv_+),$$

for smooth functions $\lambda_+, \lambda_- \in C^\infty(U, \mathbb{C})$. Comparing these equations to (2.3), we see that the argument in the proof of Theorem 2.1 implies the required constraint on u_\pm, v_\pm. \hfill \square

Theorem 5.3. The complex structures I_-, I_+ underlying a generalized Kähler 4-manifold $(M, \mathbb{J}_+, \mathbb{J}_-)$ both lift to the blow-up of (M, \mathbb{J}_+) at a nondegenerate complex point $p \in D_+$.

Proof. Let $\psi : U \to \mathbb{C}^2$ be the chart defined by (w, z) in the normal form (1.1) and let $\varphi_\pm : U \to \mathbb{C}^2$ be the chart defined by (u_\pm, v_\pm) in the normal form given by Lemma 5.1. Then $\chi_\pm = \psi \circ \varphi_\pm^{-1}$ is a diffeomorphism and $\chi_\pm(0) = 0$.

1In general, if ρ_{\pm} generate the canonical line bundles of \mathbb{J}_{\pm}, then $\rho_+^T \wedge \rho_-^T$ generates $e^{\sigma_{\pm}} \Omega^{n,0}(M, I_+)$ and $\rho_+^T \wedge \varphi_-^T$ generates $e^{\sigma_-} \Omega^{n,0}(M, I_-)$. Here ρ^T is the reversal anti-automorphism of forms.
The complex structure I_\pm lifts to the blow-up \tilde{M} precisely when the diffeomorphism χ_\pm lifts to a diffeomorphism of blow-ups $\tilde{\chi}_\pm : [\varphi_\pm(U) : 0] \to [\psi(U) : 0]$. This occurs if and only if u_\pm and v_\pm are contained in the ideal generated by w, z, which is itself guaranteed by Lemma 5.2.

Remark 5.4. It follows from the theorem that the complex structure \tilde{I}_\pm we obtain on the blow-up of (M, J_\pm) may be identified with the usual complex blow-up of (M, I_\pm) at p. Furthermore, since the holomorphic Poisson structure σ_\pm vanishes at p, it follows that σ_\pm lifts to a holomorphic Poisson structure on the blow-up.

We now apply Theorem 5.3 to obtain a degenerate bi-Hermitian structure on the blow-up of (M, J_\pm, J_-) at $p \in D_\pm$. Let (g, I_+, I_-, b) be the bi-Hermitian structure on M defined by the generalized Kähler structure.

Corollary 5.5. Let $(\tilde{M}, \tilde{J}_\pm)$ be the blow-up of the generalized complex 4-manifold (M, J_\pm) at the nondegenerate point $p \in D_\pm$, with blow-down map π. Then \tilde{M} inherits a degenerate bi-Hermitian structure $(\tilde{g}, \tilde{b}, \tilde{I}_+, \tilde{I}_-)$ such that $\pi : (\tilde{M}, \tilde{I}_\pm) \to (M, I_\pm)$ is a usual holomorphic blow-down and $\tilde{g} + \tilde{b} = \pi^* (g + b)$.

5.2 Deformation of degenerate bi-Hermitian structure

The degenerate bi-Hermitian structure on \tilde{M} obtained in Corollary 5.5 fails to define a generalized Kähler structure because \tilde{g} is not positive-definite along the exceptional divisor E. We now apply Theorem 4.1 to obtain a second degenerate bi-Hermitian structure, which we use to modify $(\tilde{g}, \tilde{b}, \tilde{I}_+, \tilde{I}_-)$. The modification will leave the structures on \tilde{M} unchanged outside a tubular neighbourhood V_E of E which blows down to a neighbourhood of p in which J_- has symplectic type and is given by a complex 2-form with imaginary part ω. Let $\pi : \tilde{M} \to M$ denote the blow-down map, and write $\tilde{\omega} = \pi^* \omega$ for the pull-back of the symplectic form to V_E.

First we describe the degenerate bi-Hermitian structure using the formalism of Theorem 3.1. The complex structure \tilde{I}_- and the 2-form $\tilde{\omega}$ satisfy (3.6), and so in V_E we have

$$\tilde{I}_+ = \tilde{I}_- + \tilde{Q}\tilde{\omega},$$

where $\tilde{Q} = \text{Re}(\tilde{\sigma}_-) = \text{Re}(\tilde{\sigma}_+)$, as in (3.3), and $\tilde{\sigma}_\pm$ is the blown up holomorphic Poisson structure. In the following, we construct a closed 2-form F_t in a possibly smaller tubular neighbourhood such that

$$\tilde{I}_+^t = \tilde{I}_+ + \tilde{Q}F_t$$

2 The flow construction may be applied equally well to degenerate bi-Hermitian structures.

10
defines a new complex structure \overline{I}_+. The final task, completed in Section 5.3, will be to show that the composition (5.1), in the sense of Definition 3.3, defines a generalized Kähler structure.

\[
\overline{I}_- \overline{\omega} \overline{I}_+ \xrightarrow{f_t} \overline{I}_+^t
\]

(5.1)

We now construct f_t. Let (u, v) be I_+-holomorphic coordinates near p such that $\sigma_+ = u \partial_u \wedge \partial_v$, and let $(u_0, v_0) = (u/v, v)$ and $(u_1, v_1) = (u, v/u)$ be the two affine charts covering a tubular neighbourhood V_E of the exceptional divisor $E = u_0^{-1}(0) \cup v_0^{-1}(0)$. Using u_0, v_1 as affine coordinates on $E \cong \mathbb{CP}^1$, we may describe the Fubini-Study metric ω_E in terms of the Kähler potential

\[
f_0 = \log \left(\frac{u_0 \overline{u}_0}{1 + u_0 \overline{u}_0} \right) = \log \left(\frac{1}{1 + v_0 \overline{v}_0} \right),
\]

which is smooth away from $u_0 = 0$ and satisfies $i \partial \overline{\partial} f_0 = \omega_E$. Although f_0 is singular, we observe that its Hamiltonian vector field is smooth:

\[
Q(df_0) = \text{Re}(u_0 \partial_u \wedge \partial v_0) d \log \left(\frac{u_0 \overline{u}_0}{1 + u_0 \overline{u}_0} \right) = \frac{1}{1 + u_0 \overline{u}_0} \text{Re}(\partial v_0).
\]

Hence $Q(df_0)$ defines a smooth Poisson vector field on V_E.

Now choose a bump function $\epsilon \in C^\infty(V_E, [0, 1])$ which vanishes on a smaller tubular neighbourhood $U_E \subset V_E$ and is such that $1 - \epsilon$ has compact support in a closed disc bundle K over E, with $U_E \subset K \subset V_E$. Consider the smooth function $f_\epsilon \in C^\infty(V_E, \mathbb{R})$ given by

\[
f_\epsilon = \epsilon \log(u \overline{u} + v \overline{v}) = \epsilon \log(v_0 \overline{v}_0(1 + u_0 \overline{u}_0)).
\]

Since $i \partial \overline{\partial} \log(v_0 \overline{v}_0(1 + u_0 \overline{u}_0)) = i \partial \overline{\partial} \log(1 + u_0 \overline{u}_0) = -i \partial \overline{\partial} f_0$, it follows that

\[
f = c(f_0 + f_\epsilon), \quad c \in \mathbb{R}_{>0}
\]

(5.2)

has the property that $X = Q(df)$ is a smooth Poisson vector field in V_E and

\[
i \partial \overline{\partial} f = \begin{cases} c \omega_E & \text{in } U_E \\ 0 & \text{outside } K \end{cases}
\]

(5.3)

For sufficiently small $\delta > 0$, there exists an open neighbourhood V_E', with $K \subset V_E' \subset V_E$, on which the flow φ_t of X is well-defined for all $t \in (-\delta, \delta)$. Also, choose δ small enough so that there is a neighbourhood V_E'' with $\overline{V}_E'' \subset V_E'$, with $\varphi_1(K) \subset V_E''$ for $t \in (-\delta, \delta)$. Using (5.3), we see that $\varphi_t^* (i \partial \overline{\partial} f)$ is smooth on V_E'', with compact support contained in V_E'', for all $t \in (-\delta, \delta)$.
We now apply Theorem 4.1 to the flow φ_t on V'_E. This provides a solution

$$F_t = \int_0^t \varphi_s^* (dd^c_{I^+_1} f) ds$$

to Equation 3.6 for all $t \in (-\delta, \delta)$, with compact support in V'_E. Therefore, we obtain a family of complex structures on V'_E given by

$$I^+_1 = I_+ + QF_t.$$ (5.4)

Since F_t has compact support contained in V'_E, the complex structure I^+_1 may be extended to all of \tilde{M} by setting it equal to I_+ outside V'_E. We summarize the above procedure in the following result.

Proposition 5.6. The flow construction of Theorem 4.1, applied to the singular function f given in (5.2), produces a smooth family of solutions $(F_t)_{t \in (-\delta, \delta)}$ to (3.6) with compact support in a tubular neighbourhood of the exceptional divisor, and hence we obtain a degenerate bi-Hermitian structure

$$(\tilde{g}'_t, \tilde{b}'_t, \tilde{I}^+_t, I_+)$$

on \tilde{M}, where \tilde{I}^+_t is given by (5.4) and $\tilde{g}'_t, \tilde{b}'_t$ are as in Theorem 3.1, yielding

$$\tilde{g}'_t = -\frac{1}{2} F_t (I_+ + \tilde{I}^+_t).$$ (5.5)

In Section 5.3, we compose the above degenerate bi-Hermitian structure with that from Corollary 5.5 and show the resulting structure is positive-definite.

3The fact that f is not smooth does not affect the validity of Theorem 4.1 in this case, as the vector field $X = Q(df)$ is a smooth Poisson vector field, and hence locally Hamiltonian.
Remark 5.7. The family of complex structures \bar{I}_+ on \bar{M} constructed above defines a deformation of the blow-up complex structure \bar{I}_+ in the direction given by the class in $H^1(\mathcal{J})$ defined by the vector field $Z = Q(df)$, which is a holomorphic vector field on the annular neighbourhood of E defined by $V_E \setminus K$. The $(1,0)$ part of Z in this annular neighbourhood is (in the (u_0,v_0) chart)

$$Z^{1,0} = c\sigma_*(\frac{\omega}{1+u_0\bar{u}_0} + \log(v_0\bar{v}_0(1 + u_0\bar{u}_0)))$$

$$= c(u_0\delta u_0 \wedge \delta v_0)(u_0^{-1} du_0 + v_0^{-1} dv_0)$$

$$= c(\delta v_0 - \frac{u_0}{v_0}\delta u_0).$$

This deformation class has a geometric interpretation: since $p \in D_+$ and $\sigma_+|_{D_+} = 0$, the contraction

$$\text{Tr}(d\sigma_+|_{D_+})$$

defines a holomorphic vector field χ on D_+. The flow of $c\chi$ then provides a path $p(t)$ of points on D_+. The family of blow-ups of (M, I_+) at $p(t)$ provides a deformation of complex structure with derivative $[Z^{(1,0)}]$ at $t = 0$.

5.3 Positivity

Now that we have constructed the two degenerate bi-Hermitian structures on \bar{M} occurring in (5.1), we must argue that their composition in the sense of Definition 3.3 is positive-definite. The composition is the (a priori degenerate) bi-Hermitian structure $(\bar{g}_t, \bar{b}_t, \bar{I}_-, \bar{I}_+)$, where

$$\bar{g}_t = -\frac{t}{2}((\bar{\omega} + F_t)(\bar{I}_- + \bar{I}_+))$$

$$\bar{b}_t = -\frac{t}{2}((\bar{\omega} + F_t)(-\bar{I}_- + \bar{I}_+)).$$

Rewriting this, we obtain

$$\bar{g}_t = -\frac{t}{2}\left((\bar{\omega}(\bar{I}_- + \bar{I}_+) + \bar{\omega}(\bar{I}_- + \bar{I}_+) + F_t(\bar{I}_- + \bar{I}_+) + F_t(\bar{I}_+ + \bar{I}_+)\right)$$

$$= \bar{g} + \bar{g}' - \frac{t}{2}(\bar{Q}QF_t - F_t\bar{Q}\bar{\omega}),$$

where we use the fact that $\bar{I}_- - \bar{I}_+ = \bar{Q}\bar{\omega}$ and $\bar{I}_+ - \bar{I}_- = \bar{Q}F_t$.

Theorem 5.8. Provided that c in (5.2) is chosen small enough, the symmetric tensor \bar{g}_t defined by (5.6) is positive-definite on \bar{M} for sufficiently small $t \neq 0$, defining a generalized Kähler structure on the blow-up.

Proof. Since $F_t \to 0$ as $t \to 0$, it follows that $\bar{I}^t_+ \to \bar{I}_+$ as $t \to 0$. By Equation 5.5, therefore, we see that

$$\lim_{t \to 0} \frac{t}{2} \bar{g}'_t = -(dd^c f)(\bar{I}_+) = \begin{cases} c\omega_E & \text{in } U_E \\ 0 & \text{outside } K \end{cases}$$
where \(\omega_E \) is the Fubini-Study metric. This implies that \(\tilde{g}_t' \) is positive-definite when restricted to \(TE \) for sufficiently small nonzero \(t \), and hence \(\tilde{g} + \tilde{g}_t' \) is positive-definite in a neighbourhood of \(E \) for sufficiently small nonzero \(t \). Also, the third summand in (5.6) is proportional to \(\bar{\omega} \), which vanishes along \(E \).

Fix \(c = c_0 \in \mathbb{R}_{>0} \) in the definition (5.2) of \(f \), and let \(U \subset U_E \) be a tubular neighbourhood of \(E \) where the third summand in (5.6) is so small that \(\tilde{g}_t \) is positive-definite in \(U \) for sufficiently small nonzero \(t \). Note that \(\tilde{g}_t \) is certainly positive-definite outside \(K \) (where it coincides with \(\tilde{g} \)), hence it remains to show that \(\tilde{g}_t \) is positive in the intermediate region \(K \setminus U \).

We have chosen \(U \) so that the third term in (5.6) is dominated there by the first two terms. This means that at each point in \(U \) and for each vector \(v \neq 0 \) (and for sufficiently small nonzero \(t \)), we have

\[
|\tilde{Q}(F_t v, \bar{\omega} v)| < \tilde{g}(v,v) + \tilde{g}_t'(v,v)
= \tilde{g}(v,v) - \frac{1}{2} F_t (\tilde{I}_+ + \tilde{I}_v) v, v
= \tilde{g}(v,v) - F_t (\tilde{I}_+ v, v) - \frac{1}{2} \tilde{Q}(F_t v, F_t v)
= \tilde{g}(v,v) - F_t (\tilde{I}_+ v, v) - \frac{1}{2} \tilde{Q}(F_t v, F_t v).
\]

Since (5.7) holds for \(c = c_0 \), it will also hold in \(U \) for \(c = \lambda c_0 \), for any \(\lambda \in (0,1) \), since for \(x, y \in \mathbb{R}_{\geq 0} \) and \(z \in \mathbb{R} \), we have the implication

\[
(x < y + z) \Rightarrow (\lambda x < \lambda(y + z) \leq y + \lambda z).
\]

Therefore we have shown positivity of \(\tilde{g}_t \) in \(U \) for any \(0 < c \leq c_0 \), for sufficiently small nonzero \(t \).

Now observe that the first term of (5.6), i.e. \(\tilde{g} \), is positive-definite on \(K \setminus U \) and independent of \(c \), whereas the second and third terms are each proportional to \(c \). Hence by choosing \(c \neq 0 \) sufficiently small, we ensure that \(\tilde{g}_t \) is positive-definite on \(K \setminus U \), in addition to \(U \) and outside \(K \), for sufficiently small \(t \neq 0 \). This completes the proof.

\[\Box\]

6 Examples

By the work of Goto [4], we know that the choice of a holomorphic Poisson structure on a compact Kähler manifold gives rise to a family of generalized Kähler structures deforming the initial Kähler structure. In this way, one obtains nontrivial generalized Kähler structures on any compact Kähler surface with effective anti-canonical divisor \(D \). Performing a Kähler blow-up of such a surface at a point lying on \(D \), we obtain a new Kähler surface with effective anti-canonical divisor given by the proper transform of \(D \). Hence we
may apply the Goto deformation and obtain a generalized Kähler structure on the blow-up. We believe that our construction gives an explicit realization of Goto’s existence result in this case, as evidenced by Remark 5.7.

In the non-algebraic case, or for noncompact surfaces, our construction provides new generalized Kähler structures. For example, a result of Apostolov [1] states that for surfaces with odd first Betti number, a bi-Hermitian structure which is not strongly bi-Hermitian may only exist on blow-ups of minimal class VII surfaces with curves. If the minimal surface has a generalized Kähler structure, therefore, we may employ our result to obtain structures on the appropriate blow-ups.

Example 6.1 (Diagonal Hopf surfaces). $X = S^3 \times S^1$ admits a family of generalized Kähler structures with bi-Hermitian structure (g, I_+, I_-) given by viewing X as a Lie group, taking g to be a bi-invariant metric, and (I_+, I_-) to be left and right-invariant complex structures compatible with g (see [6] for details). In these examples, D_+ and D_- are nonempty disjoint curves which sum to the anti-canonical divisor. We may therefore blow up any number of points lying on $D_+ \cup D_-$ and obtain generalized Kähler structures on these manifolds, which are diffeomorphic to $(S^3 \times S^1)\# k \mathbb{C}P^2$. This provides another construction of bi-Hermitian structures on non-minimal Hopf surfaces, besides those discovered in [11, 9].

In a remarkable recent work [3], Fujiki and Pontecorvo obtained bi-Hermitian structures on hyperbolic and parabolic Inoue surfaces as well as Hopf surfaces, by carefully studying the twistor space of the underlying conformal 4-manifold. They then obtained bi-Hermitian structures when these surfaces are properly blown up, meaning that the surface is blown up at nodal singularities of the anti-canonical divisor. Finally, they obtained bi-Hermitian structures on a family of deformations of such blowups. We may of course blow up their minimal examples at smooth points of the anti-canonical divisor, using our procedure. It remains to determine how the various bi-Hermitian structures now known on $(S^3 \times S^1)\# k \mathbb{C}P^2$ are related.

References

[1] V. Apostolov, Bihermitian surfaces with odd first Betti number, Math. Z. 238 (2001), no. 3, 555–568.

[2] G. R. Cavalcanti and M. Gualtieri, Blow-up of generalized complex 4-manifolds, Journal of Topology 2 (2009), 840–864, arXiv:0806.0872v1.

[3] A. Fujiki and M. Pontecorvo, Anti-self-dual bihermitian structures on Inoue surfaces, J. Differential Geom. 85 (2010), no. 1, 15–71.
[4] R. Goto, *Deformations of Generalized Kähler Structures and Bihermitian Structures*, arXiv:0910.1651v1.

[5] M. Gualtieri, *Branes on Poisson varieties*, The Many Facets of Geometry: A Tribute to Nigel Hitchin (J.-P. Bourguignon, O. Garcia-Prada, and S. Salamon, eds.), Oxford University Press, July 2010. arXiv:0710.2719v2.

[6] ———, *Generalized Kähler geometry*, arXiv:1007.3485v1.

[7] N. Hitchin, *Instantons, Poisson structures and generalized Kähler geometry*, Comm. Math. Phys. 265 (2006), no. 1, 131–164, arXiv:math/0503432v1.

[8] ———, *Bihermitian metrics on del Pezzo surfaces*, J. Symplectic Geom. 5 (2007), no. 1, 1–8, arXiv:math/0608213v1.

[9] C. LeBrun, *Anti-self-dual Hermitian metrics on blown-up Hopf surfaces*, Math. Ann. 289 (1991), no. 3, 383–392.

[10] B. Malgrange, *Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967.

[11] M. Pontecorvo, *Complex structures on Riemannian four-manifolds*, Math. Ann. 309 (1997), 159–177.