Measuring and Comparing the Productivity of Mandarin Chinese Suffixes

Eiji Nishimoto*

Abstract

The present study attempts to measure and compare the morphological productivity of five Mandarin Chinese suffixes: the verbal suffix -hua, the plural suffix -men, and the nominal suffixes -r, -zi, and -tou. These suffixes are predicted to differ in their degree of productivity: -hua and -men appear to be productive, being able to systematically form a word with a variety of base words, whereas -zi and -tou (and perhaps also -r) may be limited in productivity. Baayen [1989, 1992] proposes the use of corpus data in measuring productivity in word formation. Based on word-token frequencies in a large corpus of texts, his token-based measure of productivity expresses productivity as the probability that a new word form of an affix will be encountered in a corpus. We first use the token-based measure to examine the productivity of the Mandarin suffixes. The present study, then, proposes a type-based measure of productivity that employs the deleted estimation method [Jelinek & Mercer, 1985] in defining unseen words of a corpus and expresses productivity by the ratio of unseen word types to all word types. The proposed type-based measure yields the productivity ranking “-men, -hua, -r, -zi, -tou,” where -men is the most productive and -tou is the least productive. The effects of corpus-data variability on a productivity measure are also examined. The proposed measure is found to obtain a consistent productivity ranking despite variability in corpus data.

Keywords: Mandarin Chinese word formation, Mandarin Chinese suffixes, morphological productivity, corpus-based productivity measure.

1. Introduction

1.1 Morphological Productivity

The focus of a study of morphological productivity is on derivational affixation that involves a base word and an affix [Aronoff, 1976], as seen in sharp + -ness → sharpness, electric + -ity

* Ph.D. Program in Linguistics, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, U.S.A.
e-mail: enishimoto@gc.cuny.edu
Native speakers of a language have intuitions about what are and are not acceptable words of their language, and if presented with non-existent, potential words [Aronoff, 1983], they accept certain word formations more readily than others [Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980]. Most intriguing in the issue of productivity is that the degree of productivity varies among affixes, and many studies in the literature have been devoted to accounting for this particular aspect of productivity [see Bauer, 2001, and Plag, 1999, for an overview].

How the degree of productivity varies among affixes is best illustrated by the English nominal suffixes -ness and -ity, which are often considered “rivals” as they sometimes share a base word (e.g., clear → clearness or clarity). In general, -ness is felt to be more productive than -ity. The word formation of -ity is limited, for example, by the Latinate Restriction [Aronoff, 1976: 51] that requires the base word to be of Latinate origin; hence, purity is acceptable but *cleanity is not. In contrast, -ness freely attaches to a variety of base words of both Latinate and Germanic (native) origin; thus, both pureness and cleanliness are acceptable. There are also some affixes that could be regarded as unproductive; for example, Aronoff and Anshen [1998: 243] note that the English nominal suffix -th (as in long → length) has long been unsuccessful in forming a new word that survives, despite attempts at terms like coolth.

Varying degrees of productivity are also observed in Mandarin Chinese word formation. As will be discussed shortly, some Mandarin suffixes appear to be more productive than others.

1.2 Measuring the Degree of Productivity

Early studies on productivity mainly focused on restrictions on word formation and viewed the degree of productivity to be determined by such restrictions [Booij, 1977; Schultink, 1961; van Marle, 1985]. Booij [1977: 120], for example, considers the degree of productivity of a word formation rule to be inversely proportional to the amount of restrictions that the word formation rule is subject to. Although the view that productivity is affected by restrictions on word formation is certainly to the point, from a quantitative point of view, measuring productivity by the amount of restrictions on word formation is limited in that the restrictive weight of such restrictions is unknown [Baayen & Renouf, 1996: 87].

Baayen [1989, 1992] proposes a corpus-based approach to the quantitative study of productivity. His productivity measure uses word frequencies in a large corpus of texts to

1 Excluded from the study of productivity are seemingly irregular word formations, or “oddities” [Aronoff, 1976: 20], such as blendings (e.g., smoke + fog → smog) and acronyms (e.g., NATO).
2 -ity can be more productive than -ness depending on the type of base word; for instance, -ity is more productive than -ness when the base word ends with -ile as in servile [Aronoff, 1976: 36] or with -ible as in reversible [Anshen & Aronoff, 1981]. Still, overall, -ness is intuitively felt to be more productive than -ity.
express productivity as the probability that a new word form of an affix will be encountered in a corpus (see Section 3). Although Bauer [2001: 204] observes that a generally agreed measure of productivity is yet to be achieved in the literature, Baayen’s corpus-based approach seems to be appealing and promising. Most importantly, since corpus data include productively formed words that are typically not found in a dictionary [Baayen & Renouf, 1996], corpus-based descriptions of productivity reflect how words are actually used. The corpus-based approach is also timely, as linguists have growing interests in corpus data. The present study pursues the corpus-based approach to measuring productivity using a corpus of Chinese texts.

The outline of this paper is as follows. In Section 2, five Mandarin suffixes are introduced and are analyzed qualitatively based on observations in the literature. In Section 3, Baayen’s token-based productivity measure is discussed, and the measure is applied to a corpus of Chinese texts to quantitatively analyze the productivity of the Mandarin suffixes. In Section 4, a type-based productivity measure is proposed, and its performance is evaluated. Also, some experiments are conducted to examine the effects of corpus-data variability on a productivity measure. Section 5 summarizes the findings.

2. Mandarin Chinese Suffixes

2.1 A Qualitative Analysis of Five Mandarin Suffixes

The present study examines the productivity of five Mandarin suffixes: the verbal suffix -hua, the plural suffix -men, and the nominal suffixes -r, -zi, and -tou.

The verbal suffix -hua 化 functions similarly to English -ize (and -ify):

(1) xiàndài 现代 ‘modern’ → xiàndàihuà 现代化 ‘modernize’

Verbs formed with -hua can be used as nouns [Baxter & Sagart, 1998: 40], so xiàndàihuà 现代化 in (1) can also be interpreted as ‘modernization’. Analogous to English -ize (and -ify), -hua systematically attaches to a variety of base words to form verbs, such as gōngyèhuà 工业化 ‘industrialize’, guójiāhuà 国际化 ‘internationalize’, and jìsuànjiāhuà 计算机化 ‘computerize’.

The suffix -men 们 pluralizes a noun, as in the following example:

(2) xuēshèng 学生 ‘student’ → xuēshèngmen 学生们 ‘students’

According to Packard’s [2000] classification, -men is a grammatical affix, whereas the other four suffixes that we examine are word-forming affixes. If we use the standard terminology of

3 But see also Plag [1999] for a discussion of how dictionary data can be useful in a study of productivity.
the field, -men could be viewed as an inflectional affix, and the other four suffixes could be considered derivational affixes. There are three major characteristics of -men that differentiate -men from the English plural suffix -s [Lin, 2001: 59; Norman, 1988: 159; Ramsey, 1987: 64]. First, -men attaches only to human nouns; hence, *zhuōzimen 桌子们 ‘desks’ and *diànnàomen 电脑们 ‘computers’ are not acceptable, unless they are considered animate as in a cartoon. Second, -men is obligatory with pronouns (e.g., wǒ 我 ‘I’ → wǒmen 我们 ‘we’) but not with nouns; for example, hàizi 孩子 without -men can be interpreted as ‘child’ or ‘children’ depending on the context. Third, -men is not compatible with numeral classifiers; hence, *sāngè xuèshèngmen 三个学生们 ‘three students’ is ungrammatical. Due to these characteristics, -men may not be as frequently used or “productive” [Lin, 2001: 58] as the English plural suffix -s. However, -men has many base words to which it can attach, for there are a variety of nouns in Mandarin (as in any language) designating human beings (e.g., jìzhènmén 记者们 ‘reporters’, kèrènmén 客人们 ‘guests’, shìzhǎngmen 市长们 ‘mayors’).

The suffix -r 儿 forms a noun from a verb or an adjective, or -r can create a diminutive form [Ramsey, 1987: 63; Lin, 2001: 57–58]:

(3) huà 画 ‘to paint’ → huàr 画儿 ‘painting’

(4) niǎo 鸟 ‘bird’ → niàor 鸟儿 ‘small bird’

The use of -r is abundant in the colloquial speech of local Beijing residents, and three distinct usages of -r by local Beijing residents are identified [Chen, 1999: 39]. First, -r can create a semantic difference:

(5) xìn 信 ‘letter’ → xìnér 信儿 ‘message’

Second, a form with -r may be habitually preferred to a form without it:

(6) huā 花 ‘flower’ → huār 花儿 ‘flower’

Third, -r may be attached to a word solely for a stylistic reason. The use of -r in the last category is the most frequent among local Beijing residents [Chen, 1999: 39]. In both Mainland China and Taiwan, the use of -r is not favored especially in broadcasting, and -r words are rarely incorporated into the standard [Chen, 1999: 39; Ramsey, 1987: 64].

The suffixes -zi 子 and -tou 头 typically appear in the following constructions:

(7) *mào 帽 → màozi 帽子 ‘hat’

(8) *mù 木 → mùtou 木头 ‘wood’

In these examples, -zi and -tou combine with a bound morpheme that does not constitute a

4 In colloquial speech, -men can occasionally attach to some animal nouns (e.g., gōumen 狗儿们 ‘doggies’).
Historically, the word formation of -zi and -tou appeared in the course of two changes in Chinese: a shift from monosyllabic to disyllabic words and a simplification of the phonological system [Packard, 2000: 265–266]. According to Packard [2000: 265], the shift toward disyllabic words occurred as early as in the Zhou dynasty (1000–700 BC) and underwent a large scale development during and after the Han dynasty (206 BC–AD 220). The phonological simplification, which occurred around the same time [Packard, 2000: 266], caused syllable-final consonants to be lost, and many single-syllable words that were once distinct became homophones [Li & Thompson, 1981: 44]. One possible account of how the two changes occurred is that the phonological simplification preceded as a natural linguistic process of phonetic attrition, and the shift toward disyllabic words occurred as a solution to the increase of homophonous syllables [Li & Thompson, 1981: 44; Packard, 2000: 266]. The increase of homophonous syllables was particularly significant in Mandarin [Li & Thompson, 1981: 44], and -zi and -tou played a role in the disyllabification of Mandarin words.

The word formation of -zi and -tou is not limited to bound morphemes [Lin, 2001: 58–59; Packard, 2000: 84]:

(9) shū 梳 ‘to comb’ → shūzi 梳子 ‘comb’

(10) xiǎng 想 ‘to think’ → xiāngtou 想头 ‘thought’

In these examples, -zi and -tou form a noun by attaching to a free morpheme (i.e., both shū 梳 and xiāng 想 are independent words).

The term “productive” is sometimes used in the literature to describe the above-discussed suffixes. Ramsey [1987: 63] describes -tou to be much less productive than -zi, while Li and Thompson [1981: 42–43] observe that -zi and -tou are both no longer productive. Lin [2001: 57] views -r to be the most productive Mandarin suffix. Unfortunately, the basis for these observations is left unclear. Some observations may be based on the number of word forms of a suffix found in a dictionary; for example, present-day Mandarin has by far more -zi word forms than -tou word forms, and this may lead to the view that -zi is more productive than -tou. However, as Aronoff [1980] argues, of interest to linguists is the *synchronic* aspect of productivity (i.e., how words of an affix can be formed at a given point in time), rather than the *diachronic* aspect of productivity (i.e., how many words of an affix have been formed between two points in time). Concentrating on the synchronic aspect, if we associate productivity with regularity in word formation [Spencer, 1991: 49] or availability of base words with which a new word can be readily formed, we may predict -hua and -men to be productive, and -zi and -tou to be limited in productivity. The productivity of -r would likely depend on the context—if we focus on broadcasting, the productivity of -r may also be limited. Admittedly, these predictions are speculative, and the difficulty in describing the productivity
of an affix is where a quantitative productivity measure becomes important. In the following sections, the productivity of the Mandarin suffixes will be examined quantitatively.

3. Quantitative Productivity Measurement

3.1 Baayen’s Corpus-Based Approach

Baayen [1989, 1992] proposes a corpus-based measure of productivity, formulated as:

\[p = \frac{n_1}{N} \]

where given all word forms of an affix found in a large corpus of texts, \(n_1 \) is the number of word types of the affix that occur only once in the corpus, the so-called hapax legomena (henceforth, hapaxes), \(N \) is the sum of word tokens of the affix, and \(p \) is the productivity index of the affix in question.\(^5\) The measure (11) employs Good’s [1953] probability estimation method (commonly known as the Good-Turing estimation method) that provides a mathematically proven estimate [Church & Gale, 1991] of the probability of seeing a new word in a corpus, based on the probability of seeing hapaxes in that corpus. The productivity index \(p \) expresses the probability that a new word type of an affix will appear in a corpus after \(N \) tokens of the affix have been sampled. One important characteristic of the measure (11) is that it is token-based; that is, the measure relies on word-token frequencies in a corpus. The sum of word types of an affix in a corpus, represented by \(V \), is not directly tied to the degree of productivity (see Section 4.1). In the remaining sections, the measure (11) will be referred to as the hapax-based productivity measure.\(^6\)

While the hapax-based measure has been primarily used in the studies of Western languages, such as Dutch [e.g., Baayen, 1989, 1992] and English [e.g., Baayen & Lieber, 1991;...

\(^5\) A clear distinction has to be made between word tokens and word types in the context of a corpus study. To give the simplest example, if we have three occurrences of the in a small corpus, the token frequency of the is three, and the type frequency of the is one. In the case of affixation, we ignore the differences between singular and plural forms; for example, if we have a corpus that has \{activity, activity, activities, possibility, possibilities\}, the token frequency of -ity is five (the sum of all these occurrences of -ity) while the type frequency of -ity is two (after normalizing the plural forms, we have two distinct -ity words, activity and possibility). An exception to ignoring the plural suffix is when we are interested in the productivity of the plural suffix itself. In that case, if we have a corpus consisting of \{book, books, books, student, students\}, the token frequency of -s is three (i.e., books, books, and students), and the type frequency of -s is two (we have two distinct -s forms, books and students).

\(^6\) For the purposes of this paper, the term hapax-based measure is used to express, in a shorthand manner, the fact that the measure defines new words based on hapaxes and that the measure is token-frequency-based. It should not be confused with the hapax-conditioned measure, \(p^* \), discussed in Baayen [1993].
Measuring and Comparing the Productivity of Mandarin Chinese Suffixes

Baayen & Renouf, 1996], the measure was also used by Sproat and Shih [1996] in a study of Mandarin word formation. The focus of Sproat and Shih’s study was on productivity in Mandarin root compounding, as seen in the nominal root yǐ 蚂蚁 ‘ant’ that forms many words of ‘ant-kind’, such as yìwàng 蚂蚁王 ‘queen ant’ and gōngyǐ 工蚁 ‘worker ant’. By analyzing the degree of productivity of a number of Mandarin nominal roots, Sproat and Shih showed that, contrary to a claim in the literature, root compounding is a productive word-formation process in Mandarin. For example, while shí 石 ‘rock-kind’ and yǐ 蚂蚁 ‘ant-kind’ had the productivity indices of 0.129 and 0.065, respectively, apparently unproductive bīn 槟 and lǎng 槟榔 of bīnláng 槟榔 ‘betel nut’ were found to have zero productivity. Sproat and Shih’s study shows that a corpus-based study of productivity in Chinese is fruitful.

3.2 A Corpus of Segmented Chinese Texts

A major difficulty in conducting a corpus-based study of productivity in Chinese is that Chinese texts lack word delimiters. Segmentation of Chinese text is, by itself, a contested subject [see Sproat, Shih, Gale, & Chang, 1996], and consequently, a large-size corpus of segmented Chinese texts is not as readily available as a large-size corpus of English texts. Sproat and Shih [1996] used a large-size Chinese corpus (40-million Chinese characters) in their study by running an automatic segmenter to segment strings that contained the Chinese characters of interest and manually processing some problematic cases where the segmentation was not complete.

The corpus of choice in the present study is a “cleaned-up” version of the Mandarin Chinese PH Corpus [Guo, 1993; hereafter, the PH Corpus] of segmented Chinese texts, made available in a study by Hockenmaier and Brew [1998]. The corpus contains about 2.4-million (2,447,719) words—or 3.7-million (3,753,291) Chinese characters—from XinHua newspaper articles between January 1990 and March 1991. The texts of the PH Corpus are originally encoded in GB (simplified Chinese characters), and to facilitate the processing of the texts in computer programs, we convert the texts into UTF8 (Unicode) using an encoding conversion program developed by Basis Technology [Uniconv, 1999]. The size of the PH Corpus is relatively small by today’s standards (cf. a corpus of 80-million English words used in Baayen & Renouf, 1996), but the PH Corpus is one of few widely available corpora of segmented Chinese texts. Another widely available corpus of segmented Chinese texts is the Academia Sinica Balanced Corpus [1998; hereafter, the Sinica Corpus] that contains 5-million words from a variety of text sources. The sentences of the Sinica Corpus are syntactically parsed, so the part-of-speech of each segmented word is identified. Although the Sinica Corpus is not

7 The PH Corpus can be downloaded from the ftp server of the Centre for Cognitive Science at University of Edinburgh.
used in the present study, the use of the Sinica Corpus is certainly of interest.

Certain words were filtered out as potentially relevant words of the Mandarin suffixes in question were collected from the PH Corpus. With -r and -zi, a criterion for distinguishing a suffix from a non-suffix is that -r and -zi as a suffix lose their tone [Liu, 2001, 57–58; Norman, 1988, 113–114]. This criterion helps identify and block many non-suffixal cases where -r and -zi denote ‘son’ or ‘child’, such as yīng’ér 婴儿 ‘baby’, fùzi 父子 ‘father and son’, and xiàozǐ 孝子 ‘filial son’.

We exclude wèn huà 文化 ‘culture’ because it is never a verb, and according to Norman [1988: 21], the specific use of wèn huà 文化 to mean ‘culture’ was adopted from Japanese. Also excluded are some -tou words, such as máotou 矛头 ‘spearhead’, in which -tou is a bound morpheme denoting ‘head’. In addition, all pronouns in -men are excluded, as suggested in Sproat [2002]. As discussed earlier, -men behaves differently between pronouns and nouns (i.e., it is obligatory only with pronouns), and it is -men attaching to open-class nouns, rather than closed-class pronouns, that we are currently interested in.

3.3 A Quantitative Analysis of the Mandarin Suffixes

The result of the hapax-based measure applied to the PH Corpus is shown in Table 1. Figure 1 presents a bar graph illustrating the productivity ranking of the suffixes based on the p values.

Table 1. The result of the hapax-based productivity measure applied to the PH Corpus

suffix	V	N	n_1	p
-r	35	184	14	0.076
-men	219	2324	101	0.043
-zi	177	2130	62	0.029
-hua	209	3366	93	0.028
-tou	36	600	6	0.010

Note. With all the occurrences of a suffix found in the corpus, V is the sum of types, N is the sum of tokens, n_1 is the number of hapaxes, and p is the productivity index of the suffix. The suffixes are sorted in descending order by p.

8 The use of the PH Corpus in the present study is solely due to the fact that the computer programs currently used were written for the PH Corpus. It must be noted, however, that findings from a larger, more balanced corpus do not necessarily minimize findings from a smaller, less balanced corpus. Findings from both the PH Corpus (a small corpus of newspaper texts) and the Sinica Corpus (a large corpus of a variety of texts) are of interest because corpora of different types enable a comparison of findings by the corpus type.

9 Note in these examples that the tone of -r and -zi is retained (i.e., -ér and -zǐ, respectively). -r is originally -ér, and it becomes -r as a suffix, as a result of losing its syllabicity [Norman, 1988: 114].
Among the five suffixes, -r is found to be the most productive. The high productivity of -r is somewhat unexpected given the fact that the PH Corpus consists of newspaper texts. If the use of -r is not favored in broadcasting, we may also expect a limited use of -r in a newspaper context. In addition, the use of -r is often a mere phonological phenomenon as seen in the speech of local Beijing residents, and it is unlikely for such a phonological phenomenon to be represented in newspaper texts. In Table 1, the number of types (V) of -r does not reach the number of types of the least productive suffix -tou. However, the token frequency (N) of -r is lower than that of -tou, and -r has a larger number of hapaxes than -tou. Under the hapax-based measure, a high token frequency is associated with a high degree of lexicalization of words (i.e., the extent to which words are stored in the lexicon in their full form), and a high degree of lexicalization of words, in turn, is associated with a low degree of productivity [Baayen, 1989, 1992]. The rationale behind this mechanism is that if many words of an affix are lexicalized, the word formation rule of the affix needs to be invoked less often to form a word. What the present data of -r indicate, then, is that -r words are characterized by a low degree of lexicalization. The low degree of lexicalization of -r words and the relatively large number of hapaxes (as compared with -tou) suggest that the word formation rule of -r is active.

Figure 1 The productivity ranking of the Mandarin suffixes by the p values (the vertical axis lists the suffixes, and the horizontal axis shows the p values of the suffixes).
The productivity of -hua seems somewhat lower than what we may expect from the regularity in -hua word formation. Comparing -men and -hua in Table 1, we see that -men and -hua are similar with respect to both V and n1, but the p value of -hua is lowered by the high token frequency (N) of -hua. The high token frequency of -hua could be attributed to the fact that the present analysis includes -hua words used as nouns. According to Baxter and Sagart [1998: 40], -hua words are formed as verbs first, and these verbs can be used as nouns. If this is the case, the word formation of -hua is also relevant in -hua nouns. However, the uniform treatment of -hua verbs and -hua nouns may not be appropriate for the hapax-based measure. It could be the case, for example, that some -hua words are typically used as nouns with high token frequencies while other -hua words are typically used as verbs with low token frequencies. It is, therefore, necessary to make a more detailed analysis of the word frequency distribution of -hua by separating -hua nouns from -hua verbs. Distinguishing nouns from verbs is unfortunately not available in the PH Corpus due to lack of syntactic information. A clearer description of the productivity of -hua could be achieved with a syntactically parsed corpus such as the Sinica Corpus.

4. Type-Based Deleted Estimation

4.1 Type-Based Measures

The present study explores a type-based measure of productivity. It has been argued that the sum of types of an affix in a corpus, V, alone often leads to some unintuitive results in measuring productivity [Baayen, 1989, 1992; Baayen & Lieber, 1991]. For example, Baayen and Lieber [1991: 804] point out that the type frequencies of -ness and -ity in their corpus (497 and 405, respectively) do not adequately represent the fact that -ness is intuitively felt to be much more productive than -ity. If the number of types in a corpus can be misleading with respect the degree of productivity, how can we make use of type frequencies in a productivity measure?

An early attempt at a type-based measure of productivity was made by Aronoff [1976: 36], in which he proposed that the degree of productivity of an affix could be measured by the ratio of the number of actual words of the affix to the number of possible words of the affix. The measure is described by Baayen [1989: 28] as:

\[I = \frac{V}{S} \]

where \(V \) is the number of actual words with the relevant affix, \(S \) is the number of possible words with the affix, and \(I \) is the productivity index of the affix. Baayen [1989: 28] argues that
the measure lacks specification on how to obtain \(V \) and \(S \). Moreover, he argues that the measure can be interpreted to express, ironically, the degree of “unproductivity” of an affix because the number of possible words \((S)\) would be, in theory, increasingly large (hence, the productivity index \(I \) would be increasingly small) for a very productive affix [Baayen, 1989: 30].

Baayen [1989, 1992] defines \(V \) and \(S \) based on corpus data. \(V \) is (as before) the sum of types of the relevant affix found in a corpus, and \(S \) (expressed as \(\hat{S} \)) is statistically estimated for an infinitely large corpus; that is, \(\hat{S} \) is the number of possible word types of the relevant affix to be expected when the corpus size is increased infinitely.\(^{11}\) The measure that Baayen [1989: 60] proposes:

\[
I = \frac{\hat{S}}{V}
\]

is the inverse of (12) and expresses the potentiality of word formation rules, the extent to which the number of actual word types of an affix exhaust the number of possible word types of the affix [Baayen, 1992: 122]. The measure (13), however, is not considered an alternative measure of the degree of productivity [Baayen, 1992: 122].

What does not appear to have been explored so far is the question of what new words would mean under a type-based measure. One major appeal of the hapax-based measure is that it centers on the formation of new words, and we may wish to try focusing on the formation of new words under a type-based measure. However, a problem with taking a type-based approach is that we can no longer rely on the Good-Turing estimation method. In the next section, we will discuss another method of defining new words of a corpus.

4.2 The Deleted Estimation Method

To define new words of a corpus in a type-based manner, we can employ the deleted estimation method [Jelinek & Mercer, 1985] used in language engineering. In a probabilistic language model, given a training corpus and a test corpus, we process words in the test corpus based on the probabilities of word occurrence in the training corpus. Since not all words of the test corpus appear in the training corpus, we need a method of assigning an appropriate probability mass to the unseen words in the test corpus. The main task involved here is to adjust the probabilities of word occurrence in the training corpus so that non-zero probability can be assigned to unseen words of the test corpus. A method used in this probability adjustment, if incorporated into a productivity measure, can tell us the probability of encountering unseen words in a corpus. The Good-Turing estimation method underlying the

\(^{11}\) The statistical techniques for obtaining \(\hat{S} \), which involve an extended version of Zipf’s law, are beyond the scope of this paper. For more details, the reader is referred to Baayen [1989, 1992].
hapax-based measure is widely used in probabilistic language modeling, and its successful performances are reported in the literature [Chen & Goodman, 1998; Church & Gale, 1991]. While the Good-Turing estimation method is a mathematical solution to the task of probability adjustment, where the needed probability adjustment is mathematically determined, the deleted estimation method is an empirical solution, where the needed adjustment is determined by comparing discrepancies in word frequency between corpora [Church & Gale, 1991; Manning & Schütze, 1999].

The deleted estimation method, when incorporated into a type-based productivity measure, proceeds as follows. We begin by preparing two corpora of the same size and text type. The easiest way to have two such corpora is to split a large corpus in the middle into two sub-corpora, which we will call Corpus A and Corpus B. Comparing word types that appear in Corpus A against word types in Corpus B, unseen word types (or unseen types) in Corpus A are defined as those word types that do not appear in Corpus B. Likewise, unseen types in Corpus B are those that are absent in Corpus A. We obtain the average number of unseen types between Corpus A and Corpus B. Defining all word types (or all types) in a corpus as all the word types found in that corpus, we also obtain the average number of all types between the two sub-corpora. The ratio of the average number of unseen types to the average number of all types expresses the extent to which word types of an affix are of an unseen type. With an assumption that unseen types are good candidates for new word types, the degree of productivity expressed in this manner comes close to Anshen and Aronoff’s [1988: 643] definition of productivity as “the likelihood that new forms will enter the language.”

The type-based deleted estimation productivity measure is formulated as follows:

Given Corpus A and Corpus B of the same size and text type, and all word types of an affix found in these corpora,

\[
P_{\text{tde}}(A, B) = \frac{\text{"unseen types in } A \text{ given } B" + \text{"unseen types in } B \text{ given } A"}{\text{"all types in } A" + \text{"all types in } B"}
\]

where all types of a corpus are all the word types found in that corpus, unseen types in one corpus are those that are absent in the other corpus, and \(P_{\text{tde}}\) is the degree of productivity of the affix in question (\(tde = \text{type-based deleted estimation}\)). In calculating \(P_{\text{tde}}\) by the measure (14), we can first average the unseen types in the nominator and the all types in the denominator. This will conveniently give us the average number of unseen types and the average number of all types, which are both of interest by themselves, before examining the ratio of the two (as

12 These sub-corpora would be labeled retained and deleted (hence the term deleted estimation) under the original deleted estimation method. However, in the present context, we can simplify the argument by using the labels Corpus A and Corpus B.

13 The number of all types is essentially the same as \(V\).
will be seen later in Table 2). In the remaining sections, the measure (14) will be referred to as the P_{ide} measure. Using a Venn Diagram, Figure 2 illustrates elements involved in the P_{ide} measure.

Given $A = \{a_1, ..., a_m\}$ from Corpus A, and $B = \{b_1, ..., b_n\}$ from Corpus B, where a_i and b_i are word types of an affix found in the two corpora,

![Venn Diagram](image)

Figure 2 An illustration of elements involved in the P_{ide} measure (all types in a corpus are all the word types found in that corpus, unseen types in one corpus are those that are absent in the other corpus, and common types are the word types shared by the two corpora).

As a byproduct, the P_{ide} measure also identifies common types, word types that are shared by two sub-corpora, as shown in Figure 2. One possible interpretation of these common types is that they represent attested words, where attested words are defined as those words that are familiar to the majority of speakers. Although an approximation, common types may be good candidates for attested words because unseen types, which are less likely to be familiar to the majority of speakers, are maximally excluded. As the corpus size increases, the number of common types may begin to provide a good estimate of the range of word types that are

14 Strictly speaking, any word type with the token frequency of two or more in the original whole corpus has a chance to be shared by the two sub-corpora after the corpus is split. Thus, a word that appears only twice in a large corpus could be identified as a common type.
shared by the majority of speakers. Such a range of word types differs from the range of word types in a dictionary. Common types will not be pursued in the present study, but they may be worth further investigation in future research.

4.3 Performance of the P_{dle} Measure

The result of the P_{dle} measure applied to the PH Corpus is shown in Table 2. Figure 3 presents a bar graph that illustrates the productivity ranking of the suffixes based on the P_{dle} values.

suffix	(average)	(average)	P_{dle}
-men	149	70	0.470
-hua	144	65	0.451
-r	24.5	10.5	0.429
-zi	130.5	46.5	0.356
-tou	29.5	6.5	0.220

Note. The PH Corpus is split in the middle into two sub-corpora. All types in a sub-corpus are all the word types that appear in that sub-corpus. The second column shows the average number of all types between the two sub-corpora. Unseen types are those that appear in one sub-corpus but are absent in the other sub-corpus. The third column shows the average number of unseen types between the two sub-corpora. The tenths place in the second and third columns is due to the averaging. P_{dle} is the ratio of (average) unseen types to (average) all types. The suffixes are sorted in descending order by P_{dle}.

In Table 2, we find that -r is not as highly productive as under the hapax-based measure, though it still appears to be grouped with the more productive suffixes. Here, we may wonder why we examine the ratio of unseen types to all types, instead of examining the number of unseen types only. If productivity is determined by the number of unseen types only, -r would be among the less productive suffixes. However, comparing the number of unseen types alone is not satisfactory because an affix with a low frequency of use would generally be found to be less productive. The P_{dle} measure must be able to capture the possibility that an affix with a low frequency of use can nevertheless be productive when it is used to form a word. With respect to the present data, the ratio of unseen types to all types is relatively high for -r, indicating that a large proportion of -r word types are of an unseen type, or a potentially new type.
As was the case under the hapax-based measure, -men is found to be highly productive and -tou is found to be the least productive. The uniform treatment of -hua verbs and -hua nouns does not seem to pose a problem, though it is also of interest to investigate the effect of separating -hua nouns from -hua verbs under the P_{tdc} measure.

The P_{tdc} measure defines unseen types irrespective of word-token frequencies; that is, an unseen type in a corpus is “unseen” as long as it is absent in the other corpus, regardless of how many times the word is repeated in the same corpus. Figure 4 shows the word-token frequency distribution of unseen types in Corpus A and Corpus B. The labels used for the word-token frequency categories are: $n_1 = $ words occurring once, $n_2 = $ words occurring twice, ..., $n_{5+} = $ words occurring five times or more.
Figure 4 The word-token frequency distribution of unseen types in the two sub-corpora of the PH Corpus, Corpus A and Corpus B (the horizontal axis shows the word-token frequency category, and the vertical axis shows the number of word types in each frequency category; the letter following each suffix in the legend indicates from which sub-corpus the data are drawn; the order of the suffixes in the legend (from top down) corresponds to the order of bars in each frequency category (from left to right)).

We find in Figure 4 that the majority of unseen types are hapaxes. There are, nonetheless, unseen types that appear more than once in a corpus—some unseen types appear even five times or more (n_{5+}). We also notice gaps between the two sub-corpora in the word frequency of the unseen types (e.g., compare the number of -men hapaxes). Variability between two corpora will be the topic of discussion in the next section.

4.4 Variability in Corpus Data

Under the P_{dc} measure, a corpus is split in the middle to create two sub-corpora. So far, we have made the assumption that splitting a corpus in the middle would create two sub-corpora that are similar with respect to the text type. However, we must be cautious about this assumption. Baayen [2001] discusses how the texts and word frequency distribution of a
corpus can be non-uniform. One way to reduce variability between split halves of a corpus is to randomize words of the corpus before splitting the corpus into two. Randomization of words can be accomplished by shuffling words; that is, given a corpus of \(n \) words, we exchange each \(i \)-th word \((i = 1, 2, \ldots, n)\) with a randomly chosen \(j \)-th word \((1 \leq j \leq n)\). If we repeat the “random split” of a corpus (i.e., randomizing words of a corpus and splitting the corpus in the middle) for a large number of times, say 1,000 times, and compute the mean of the relevant data, we should be able to obtain a stable, representative result of a productivity measure. Table 3 shows the result of the hapax-based measure applied to the two sub-corpora of the PH Corpus, with and without randomization of words.

Table 3. The result of the hapax-based productivity measure applied to the two sub-corpora of the PH Corpus, Corpus A and Corpus B, with and without randomization of words

(a) Without randomization, a single split

Suffix	\(V \)	\(N \)	\(n_1 \)	\(p \)	Suffix	\(V \)	\(N \)	\(n_1 \)	\(p \)
-r	29	113	13	0.115	-r	20	71	6	0.085
-men	165	1183	84	0.071	-zi	119	841	53	0.063
-hua	148	1599	72	0.045	-men	133	1141	60	0.053
-zi	142	1289	57	0.044	-tou	29	256	8	0.031
-tou	30	344	5	0.015	-hua	140	1767	55	0.031

(b) With randomization, the mean of 1000 splits

Suffix	\(V \)	\(N \)	\(n_1 \)	\(p \)	Suffix	\(V \)	\(N \)	\(n_1 \)	\(p \)
-r	26	93	12	0.133	-r	26	91	12	0.130
-men	158	1164	77	0.067	-men	157	1160	77	0.066
-zi	138	1075	54	0.050	-zi	137	1055	54	0.051
-hua	154	1680	71	0.042	-hua	152	1686	69	0.041
-tou	31	303	8	0.025	-tou	31	297	8	0.027

Note. Each value in Part (b) is the mean of 1,000 random splits. The suffixes in each section are sorted in descending order by \(p \). In Corpus B of Part (a), the \(p \) values of -tou and -hua expressed to the fourth decimal place are 0.0313 and 0.0311, respectively.

15 See Baayen [2001] for an in-depth discussion of techniques for measuring variances among segments of a corpus.

16 The procedure described here is thanks to suggestions by Baayen [personal communication].
In Part (a) of Table 3, the difference in \(V \) between Corpus A and Corpus B is almost significant,\(^{17}\) which suggests variability in texts between the two sub-corpora, and a different productivity ranking is obtained in each sub-corpus. However, if we turn to Part (b) of Table 3, the productivity ranking becomes consistent between the two sub-corpora.\(^{18}\) Interestingly, the productivity ranking in Part (b) of Table 3 is the same as one obtained earlier in Table 1 in Section 3.3. The \(p \) values in Part (b) of Table 3 are overall higher than those in Table 1, but this is an expected outcome, for \(p \) is dependent on the size of a corpus [Baayen, 1989, 1992; Baayen & Lieber, 1991]. We find that the hapax-based measure can achieve stability by means of a large number of random splits of a corpus.

What will be the effects of corpus-data variability on the \(P_{tde} \) measure? To examine this, we need to temporarily simplify the \(P_{tde} \) measure so that the value of \(P_{tde} \) will be obtained for each individual sub-corpus (without averaging unseen types and all types between two sub-corpora). That is, under the simplified measure, \(P_{tde} \) for Corpus A, \(P_{tde}(A) \), will be the ratio of “unseen types in A given B” to “all types in A”; and similarly, \(P_{tde}(B) \) will be the ratio of “unseen types in B given A” to “all types in B.” Table 4 shows the result of the simplified \(P_{tde} \) measure applied to the two sub-corpora of the PH Corpus, with and without randomization of words.

The simplified \(P_{tde} \) measure is found to be quite vulnerable to corpus-data variability. In Part (a) of Table 4, the difference between Corpus A and Corpus B is almost significant in all types and unseen types, and the \(P_{tde} \) values differ significantly between the two sub-corpora.\(^{19}\) However, if we turn to Part (b) of Table 4, the productivity ranking becomes consistent between the two sub-corpora.\(^{20}\) Similarly to the hapax-based measure, the \(P_{tde} \) measure can achieve stability through a large number of random splits of a corpus.

\(^{17}\) A paired \(t \)-test reveals that the difference in \(V \) approaches significance \([t(4) = 2.595, p = .06]\), though the difference is not significant in other elements: \(N[t(4) = .905, p > .10]\), \(n_1[t(4) = 2.046, p > .10]\), and \(p \ [t(4) = .555, p > .10]\).

\(^{18}\) The correlation coefficient between Corpus A and Corpus B improves in \(p \) after the random splits: \(p \ [r(5) = (.850 \rightarrow 1.0, p < .01]\).

\(^{19}\) A paired \(t \)-test shows that the difference approaches significance in all types \([t(4) = 2.595, p = .06]\) and in unseen types \([t(4) = 2.595, p = .06]\) and the difference is significant in \(P_{tde} \) \([t(4) = 2.869, p < .05]\).

\(^{20}\) The correlation coefficient between Corpus A and Corpus B improves in \(P_{tde} \) after the random splits: \(P_{tde} \ [r(5) = (.753 \rightarrow 9.99, p < .01]\).
Table 4. The result of the simplified P_{sde} measure applied to the two sub-corpora of the PH Corpus, Corpus A and Corpus B, with and without randomization of words

(a) Without randomization, a single split

Corpus A	suffix	all	unseen	P_{sde}	Corpus B	suffix	all	unseen	P_{sde}
-men	165	86	0.521	-hua	140	61	0.436		
-r	29	15	0.517	-men	133	54	0.406		
-hua	148	69	0.466	-r	20	6	0.300		
-zi	142	58	0.408	-zi	119	35	0.294		
-tou	30	7	0.233	-tou	29	6	0.207		

(b) With randomization, the mean of 1000 splits

Corpus A	suffix	all	unseen	P_{sde}	Corpus B	suffix	all	unseen	P_{sde}
-men	158	62	0.394	-men	157	61	0.389		
-hua	154	57	0.372	-hua	152	55	0.364		
-r	26	9	0.356	-r	26	9	0.342		
-zi	138	40	0.291	-zi	137	39	0.287		
-tou	31	5	0.160	-tou	31	5	0.163		

Note. Each value in Part (b) is the mean of 1,000 random splits. The suffixes in each section are sorted in descending order by P_{sde}.

Figure 5 shows the word-token frequency distribution of unseen types averaged over the 1,000 random splits. We see in Figure 5 that unseen types with higher token frequencies (e.g., n_4 and n_5+) are almost absent. What this indicates is that as a result of randomizing words of a corpus, it became unlikely for unseen types to include word types that are repeated many times in a corpus. As compared with what we saw earlier in Figure 4, the greater majority of unseen types are now hapaxes, and variances between Corpus A and Corpus B are also reduced.

We now consider the P_{sde} measure in its original state (as in Section 4.2, with the averaging of unseen types and all types between two sub-corpora). Comparing Table 2 and Part (b) of Table 4, we find that the original P_{sde} measure achieves a result that is highly correlated with the result obtained with the 1,000 random splits.\(^\text{21}\) Note in particular that the

\(^{21}\) Comparing the elements of Table 2 and the elements of Corpus A in Part (b) of Table 4, the correlation coefficient is significant in all elements: all types \([r(5) = 1.0, p < .01]\), unseen types \([r(5) = 1.0, p < .01]\), and P_{sde} \([r(5) = 1.0, p < .01]\). Likewise, the correlation coefficient is significant in all elements when we compare the elements of Table 2 and the elements of Corpus B in Part (b) of Table 4: all types \([r(5) = 1.0, p < .01]\), unseen types \([r(5) = 1.0, p < .01]\), and P_{sde} \([r(5) = .999, p < .01]\).
productivity ranking is consistent between Table 2 and Part (b) of Table 4. The P_{de} measure seems to reduce the effects of corpus-data variability by averaging unseen types and all types between two sub-corpora. This is an advantage and makes the P_{de} measure handy, for a large number of random splits of a corpus can be computationally expensive, especially when the corpus size is large.

![Figure 5](image-url)

Figure 5. The word-token frequency distribution of unseen types in the two sub-corpora of the PH Corpus, Corpus A and Corpus B, averaged over 1000 random splits (the horizontal axis shows the word-token frequency category, and the vertical axis shows the number of word types in each frequency category; the letter following each suffix in the legend indicates from which sub-corpus the data are drawn; the order of the suffixes in the legend (from top down) corresponds to the order of bars in each frequency category (from left to right)).

5. Conclusion

The present study has proposed a type-based measure of productivity, the P_{de} measure, that uses the deleted estimation method [Jelinek & Mercer, 1985] in defining unseen word types of a corpus. The measure expresses the degree of productivity of an affix by the ratio of unseen word types of the affix to all word types of the affix. If the ratio is high for an affix, a large proportion of the word types of the affix are of an unseen type, indicating that the affix has a great potential to form a new word.
We have tested the performance of the P_{tde} measure as well as the hapax-based measure of Baayen [1989, 1992] in a quantitative analysis of the productivity of five Mandarin suffixes: -hua, -men, -r, -zi, and -tou. The P_{tde} measure describes -hua, -men, and -r to be highly productive, -zi to be less productive than these three suffixes, and -tou to be the least productive, yielding the productivity ranking “-men, -hua, -r, -zi, -tou.” The P_{tde} measure and the hapax-based measure rank the suffixes differently with respect to -hua and -r. The relatively low productivity of -hua under the hapax-based measure could be attributed to the inclusion of -hua nouns in the present analysis. -r is assigned a larger productivity score under the hapax-based measure. The two measures agree on the high productivity of -men and the low productivity of -tou. The different results of the two measures are likely due to the type-based/token-based difference of the measures. The result of each measure requires an individual evaluation, for the knowledge that we can obtain from the result of each measure is different; for example, while the hapax-based measure takes into consideration the degree of lexicalization of words of an affix, the P_{tde} measure does not consider such an issue.

We have also examined how corpus-data variability affects the results of a productivity measure. It was found that a large number of random splits of a corpus adds stability to both the P_{tde} measure and the hapax-based measure. Moreover, it was found that even without randomization of words, the averaging of unseen types and all types under the P_{tde} measure reduces the effects of corpus-data variability. This is an advantage of the P_{tde} measure, considering the computational cost involved in randomizing words repeatedly, especially when the corpus is large.

With an assumption that unseen words of a corpus are good candidates for new words, a corpus-based productivity measurement can be regarded as a search for unseen words in a corpus. The apparent paradox is that the words that we seek are “unseen.” Baayen’s hapax-based measure achieves a mathematical estimate of the probability of seeing unseen words in a corpus by the Good-Turing estimation method. The deleted estimation method provides another way of defining unseen words of a corpus by comparing discrepancies in word frequency between two corpora, and the method also enables defining unseen words in a type-based context. It is hoped that words identified as unseen by the P_{tde} measure are also good candidates for new words, and this requires further investigation in future research. The implication of the successful result of the P_{tde} measure presented in this paper is that, in addition to what has been proposed by Baayen [1989, 1992, and subsequent works], there appear to be possibilities for capturing and exploiting elements in corpus data that are relevant to the quantitative description of productivity. The study of morphological productivity will be enriched by exploring such possibilities in the corpus-based approach to measuring productivity.
Acknowledgments
The author wishes to thank Harald Baayen, Richard Sproat, Martin Chodorow, and the anonymous reviewers for their insightful comments on the first draft of this paper. Any errors are the responsibility of the author.

References
Academia Sinica Balanced Corpus (Version 3.0) [CD-ROM]. Taipei, Taiwan: Academia Sinica, 1998.
Anshen, F., & Aronoff, M. “Morphological Productivity and Phonological Transparency.” Canadian Journal of Linguistics, 26, 1981, 63–72.
Anshen, F., & Aronoff, M. “Producing Morphonologically Complex Words.” Linguistics, 26, 1988, 641–655.
Aronoff, M. Word Formation in Generative Grammar. Cambridge, MA: MIT Press, 1976.
Aronoff, M. “The Relevance of Productivity in a Synchronic Description of Word Formation.” In J. Fisiak (Ed.), Historical Morphology. The Hague: Mouton, 1980, 71–82.
Aronoff, M. “Potential Words, Actual Words, Productivity and Frequency.” Proceedings of the International Congress of Linguists, 13, 1983, 163–171.
Aronoff, M., & Anshen, F. “Morphology and the Lexicon: Lexicalization and Productivity.” In A. Spencer & A. M. Zwicky (Eds.), The Handbook of Morphology. Oxford, UK: Blackwell Publishers, 1998, 237–247.
Aronoff, M., & Schvaneveldt, R. “Testing Morphological Productivity.” Annals of the New York Academy of Sciences, 318, 1978, 106–114.
Baayen, R. H. A Corpus-Based Study of Morphological Productivity: Statistical Analysis and Psychological Interpretation. Doctoral dissertation, Free University, Amsterdam, 1989.
Baayen, R. H. “Quantitative Aspects of Morphological Productivity.” In G. Booij & J. van Marle (Eds.), Yearbook of Morphology 1991. Dordrecht: Kluwer, 1992, 109–149.
Baayen, R. H. “On Frequency, Transparency and Productivity.” In G. Booij & J. van Marle (Eds.), Yearbook of Morphology 1992. Dordrecht: Kluwer, 1993, 181–208.
Baayen, R. H. Word Frequency Distributions. Dordrecht: Kluwer, 2001.
Baayen, R. H., & Lieber, R. “Productivity and English Word-Formation: A Corpus-Based Study.” Linguistics, 29, 1991, 801–843.
Baayen, R. H., & Renouf, A. “Chronicling the Times: Productive Lexical Innovations in an English Newspaper.” Language, 72, 1996, 69–96.
Bauer, L. Morphological Productivity. Cambridge, UK: Cambridge University Press, 2001.
Baxter, W. H., & Sagart, L. “Word Formation in Old Chinese.” In J. L. Packard (Ed.), New Approaches to Chinese Word Formation: Morphology, Phonology and Lexicon in Modern and Ancient Chinese. Berlin: Mouton de Gruyter, 1998, 35–76.
Booij, G. E. Dutch Morphology: A Study of Word Formation in Generative Grammar. Dordrecht: Foris, 1977.
Chen, P. *Modern Chinese: History and Sociolinguistics*. Cambridge University Press, 1999.

Chen, S. F., & Goodman, J. *An Empirical Study of Smoothing Techniques for Language Modeling* (Tech. Rep. No. 10-98). Cambridge, MA: Harvard University, Center for Research in Computing Technology, 1998.

Church, K. W., & Gale, W. A. “A Comparison of the Enhanced Good-Turing and Deleted Estimation Methods for Estimating Probabilities of English Bigrams.” *Computer Speech and Language*, 5, 1991, 19–54.

Cutler, A. “Productivity in Word Formation.” *Papers from the Sixteenth Regional Meeting of the Chicago Linguistic Society*. Chicago, IL: Chicago Linguistic Society, 1980, 45–51.

Good, I. J. “The Population Frequencies of Species and the Estimation of Population Parameters.” *Biometrika*, 40, 1953, 237–264.

Guo, J. “PH: A Chinese Corpus.” *Communications of COLIPS*, 3 (1), 1993, 45–48.

Hockenmaier, J., & Brew, C. “Error-Driven Learning of Chinese Word Segmentation.” In J. Guo, K. T. Lua, & J. Xu (Eds.), *12th Pacific Conference on Language and Information*. Singapore: Chinese and Oriental Languages Processing Society, 1998, 218–229.

Jelinek, F., & Mercer, R. “Probability Distribution Estimation for Sparse Data.” *IBM Technical Disclosure Bulletin*, 28, 1985, 2591–2594.

Li, C., & Thompson, S. A. *Mandarin Chinese: A Functional Reference Grammar*. Berkeley, CA: University of California Press, 1981.

Lin, H. *A Grammar of Modern Chinese*. LINCOM EUROPA, 2001.

Manning, C. D., & Schütze, H. *Foundations of Statistical Natural Language Processing*. Cambridge, MA: MIT Press, 1999.

Norman, J. *Chinese*. Cambridge University Press, 1988.

Packard, J. L. *The Morphology of Chinese: A Linguistic and Cognitive Approach*. Cambridge, UK: Cambridge University Press, 2000.

Plag, I. *Morphological Productivity: Structural Constraints in English Derivation*. Berlin: Mouton de Gruyter, 1999.

Ramsey, R. S. *The Languages of China*. Princeton, NJ: Princeton University Press, 1987.

Schultink, H. “Produktiviteit als Morfologisch Fenomeen.” *Forum der Letteren*, 2, 1961, 110–125.

Spencer, A. *Morphological Theory: An Introduction to Word Structure in Generative Grammar*. Cambridge, UK: Cambridge University Press, 1991.

Sproat, R. “Corpus-Based Methods in Chinese Morphology.” Tutorial given at COLING, Taipei, Taiwan, 2002.

Sproat, R., & Shih, C. “A Corpus-Based Analysis of Mandarin Nominal Root Compound.” *Journal of East Asian Linguistics*, 5, 1996, 49–71.

Sproat, R., Shih, C., Gale, W., & Chang, N. “A Stochastic Finite-State Word-Segmentation Algorithm for Chinese.” *Computational Linguistics*, 22 (3), 1996, 66–73.

Uniconv [Computer Software]. Cambridge, MA: Basis Technology, 1999.
Appendix: Words of the Mandarin Suffixes in the PH Corpus

Below are the words of the Mandarin suffixes and their token frequencies in the PH Corpus.

-hua

变化 biànhuà 495 – 现代化 xiàndàihuà 473 – 工业化 gōngyèhuà 167 – 一体化 yīdàihuà 138 – 强化 qiánghuà 131 – 恶化 èhuà 122 – 优化 yóuhuà 99 – 消化 xiāohuà 71 – 变化 biànhuà 68 – 国产化 guóchǎnghuà 59 – 转化 zhuànhuà 54 – 社会化 shèhuìhuà 53 – 正常化 zhèngchánghuà 52 – 美化 měihuà 51 – 净化 jìnhuà 50 – 自动化 zìdònghuà 50 – 电气化 dìqìhuà 45 – 机械化 jīxièhuà 42 – 制度化 zhìdùhuà 41 – 标准化 biāozhùhuà 33 – 工业化 gōngyèhuà 29 – 氧化 yánghuà 25 – 电化 diànhuà 25 – 系列化 xìlièhuà 22 – 民主化 mínzhǔhuà 22 – 科学化 kēxuéhuà 21 – 液化 yèhuà 21 – 简化 jiánhuà 19 – 火化 huóhuà 18 – 演化 yánhuà 18 – 革命化 gémínhuà 17 – 生化 shēnghuà 15 – 简化 jiánhuà 14 – 老化 lǎohuà 13 – 农机化 nóngjīhuà 13 – 激化 jījíhuà 13 – 专业化 zhènghuà 12 – 产业升级 jíshàngjíhuà 11 – 沙漠化 shāmòhuà 11 – 多元化 duōyuánhuà 10 – 凝固化 lǐnguìhuà 10 – 军事化 jūnshìhuà 10 – 煤气化 měiqìhuà 9 – 合并化 hébīnhuà 8 – 生化 shēnghuà 8 – 减少化 jiǎncháohuà 8 – 分化 fēnhuà 8 – 勤政化 qínzhènghuà 7 – 工厂化 gōngchǎnghuà 7 – 系统化 xìtǒnghuà 6 – 模式化 móshìhuà 6 – 集团化 jítuánhuà 6 – 大众化 dàzhònghuà 6 – 资本化 zīběnhuà 6 – 企业化 qǐyèhuà 6 – 混合化 hùnhéhuà 5 – 规范化 guīfáhuà 5 – 全球化 quángjīhuà 5 – 活血化 huóxuèhuà 5 – 硫化 lúhuà 4 – 立体化 lìtǐhuà 4 – 家庭化 jiātínghuà 4 – 塑造化 sùzàohuà 4 – 中华化 zhōnghuáhuà 4 – 智能化 zhìnínghuà 4 – 软化 ruǎnhuà 4 – 表面化 biǎomínhuà 4 – 物化 wùhuà 4 – 自然化 zìránhuà 4 – 序列化 xùlièhuà 4 – 固化 gùhuà 4 – 数字化 shùzhìhuà 4 – 优选化 yuǎnxiānghuà 2 – 集约化 jíyuēhuà 2 – 集中化 zhěnhuà 2 – 制度化 zhìdùhuà 2 – 国有化 guóyǒuhuà 2 – 集成化 jíchénghuà 2 – 计算机化 jìsuànjīhuà 2 – 自动化 zìdònghuà 2 – 机械自动化 jījièhuà 2 – 密集化 mìjìhuà 2 – 简单化 jiǎndànhuà 2 – 转换化 huàhuà 2 – 成本化 chéngběnhuà 2 – 改变化 gǎibiànhuà 2 – 改革化 gǎigéhuà 2 – 反自由化 fǎnzuìyóuhuà 2 – 变化 zhuànhuà 2 – 转换化 zhuànhuà 2 – 变化 zhuànhu…
人们 rènmén 734 代表们 dàibiǎomén 175 专家们 zhǔjiàomén 117 委员们 wěiyuánmén 109 工人们 gōngrénmén 75 同志们 tóngzhìmén 72 孩子们 háizi 64 战士们 zhànshìmén 59 职工们 zhígòngmén 39 同学们 téngxuémén 32 队员们 duìyuánmén 31 官员们 guānyuánmén 26 客人们 kèmén 24 记者们 jìzhèrmén 23 科学家们 kēxuéjiàomén 23 老人们 lǎorénmén 23 农民们 nóngmínmén 22 学生们 xuéshèngmén 21 分析家们 fēnxījiāmén 21 姐妹们 jiěmèimén 19 朋友们 péngyǒumén 18 艺术家们 yìshūjiàomén 16 干部们 gānbùmén 16 市民们 shìmínmén 15 市长们 shìzhǎngmén 14 居民们 jūmínmén 14 首脑们 shǒumlǎomén 14 村民们 cūnmínmén 13 演员们 yǎnyuánmén 13 旅客们 lǚkuò 12 同事们 tóngshìmén 12 小伙子们 xiǎohùozhènmén 11 医生们 yīshēngmén 10 行家们 xíngjiāmén 10 议员们 yìyuánmén 10 大学生们 dàyuǎnzhěngmén 10 官员们 guānyuánmén 9 运动员们 yùndòngyuánmén 9 观察家们 guānchájiāmén 9 同行们 tóngxíngmén 8 经理们 jīnglǐmén 8 师生们 shīshēnmén 7 官委们 guānwěimén 7 企业家们 jīngjiàomén 7 外长们 wàizhǎngmén 7 指战员们 zhīzhànyuánmén 7 船员们 chuányuánmén 6 列车员们 lièchuèyuánmén 6 部长们 bùzhǎngmén 6 作家们 zuòjiāmén 6 建设者们 jiànshèzhěmén 6 工友们都 gōngyǒumén 6 青年们 qīngniánmén 6 党员们 dǎngyuánmén 5 顾客们 gùkèmén 5 干警们 gānjǐngmén 5 学者们 xuézhěmén 5 娘们 niángmén 5 劳模们 láomómén 5 教师们 jiàoshīmén 5 营业员们 yíngyèyuánmén
这呀 32 会呀 huír 30 哪呀 nàr 18 劲呀 jìn 13 事呀 shìr 12 点呀 diǎnr 9 那呀 nàr 8 伙呀 huór 7 个呀 gèr 7 活呀 huór 5 鸟呀 niǎo 5 块呀 kuàir 4 花呀 huār 3 法呀 fá 3 风呀 fēngr 2 宇呀 zìr 2 杀呀 shāl 2 味呀 wèir 2 片呀 piànr 2 玩呀 wánr 2 弯呀 wānr 2 样呀 yàngr 1 乳呀 lǔr 1 脸呀 liǎnr 1 干呀 gànjìnr 1 头呀 tóur 1 万呀 wàn 1 话呀 huór 1 拟呀 nǐr 1 恼呀 niǎnr 1 借呀 jué 1 小呀 xiǎor 1 老呀 lǎor 1 当呀 dāngr 1

-tou

势头 shìtōu 133 - 码头 mǎtōu 99 - 街头 jiētōu 96 - 石头 shítōu 33 - 镰头 guántōu 30 - 镜头 jìngtōu 26 - 年头 niàntōu 20 - 牵头 qiāntōu 18 - 钱头 qiántōu 16 - 烧头 kàngtōu 14 - 老头 láotōu 12 - 心头 xīntōu 11 - 木头 mùtōu 9 - 骨头 gùtóu 9 - 脸头 yàntōu 8 - 围头 kòntrōu 8 - 茉头 miàotōu 7 - 地头 dìtōu 7 - 停头 zhítōu 7 - 镜头 jìngtōu 5 - 脚头 jiǎozhītōu 2 - 骑头 qítōu 2 - 风头 fēntōu 2 - 手指头 shǒuzhītōu 2 - 脚头 jiǎozhītōu 2 - 两头 liǎngtōu 1

-zì

孩子 háizi 457 - 种子 zhǒngzǐ 146 - 儿子 érzì 131 - 日子 rìzǐ 129 - 妻子 qīzhī 112 - 班子 bānzǐ 105 - 路子 lùzì 63 - 蓝子 lánzǐ 58 - 伙子 huǒzǐ 53 - 房子 fángzǐ 50 - 帽子 màozi 37 - 一下子 yīxiàzì 29 - 样子 yàngzǐ 27 - 样子 yàngzǐ 27 - 相子 xiāngzǐ 25 - 财子 cáizǐ 23 - 账子 zhàngzǐ 22 - 人子 rénzǐ 21 - 孙子 sūnzǐ 20 - 疾子 jīzhī 20 - 疾子 jīzhī 20 - 病子 bìzhī 19 - 步子 bùzǐ 18 - 村子 cūnzǐ 18 - 一揽子 yīlǎnzǐ 16 - 榜子 bǎnzǐ 16 - 脸子 tiǎnzǐ 15 - 身子 shēnzǐ 14 - 竹子 zhúzǐ 12 - 汉子 hànzǐ 11 - 侄子 zhízì 10 - 农子 nóngzǐ 10 - 郑子 zhèngzǐ 10 - 两子 liǎngzǐ 8 - 坛子 tánzǐ 8 - 橘子 júzǐ 8 - 橘子 júzǐ 8 - 财子 fángzǐ 8 - 房子 fángzǐ 8 - 魏子 wéizǐ 8 - 袖子 xiùzǐ 7 - 砂子 shāzǐ 7 - 西门子 xīménzǐ 7 - 粽子 zuǒzǐ 7 - 粽子 huángzǐ
6 - 绳子 shèngzi 6 - 袋子 dài zi 6 - 金子 jīnzi 6 - 影子 yǐngzi 6 - 例子 lìzi 6 - 枪杆子 qiānggānzi 6 - 斧子 fúzi 6 - 口子 kǒuzi 6 - 梳子 bāngzi 5 - 底子 dǐzi 5 - 袜子 wàzi 5 - 胸子 bāngzi 5 - 嘴子 sāngzi 5 - 桌子 zhuōzi 5 - 箱子 piāoxiāozi 5 - 胡子 húzi 5 - 话筒子 huàxiāozi 5 - 纸子 guānzì 4 - 榔子 tánzi 4 - 梳子 gānzi 4 - 杆子 gānzi 4 - 圆子 yuánzi 4 - 子 yuánzi 4 - 杯子 lǐzi 4 - 果子 guǒzi 4 - 筒子 kuízi 4 - 狮子 shīzi 4 - 门子 ménzi 3 - 小子 xiǎozì 3 - 老头子 lǎotóuzi 3 - 桌子 táizi 3 - 叶子 yèzi 3 - 杯子 bēizi 3 - 帽子 liànzi 2 - 梳子 tīzi 2 - 烂摊子 làntánzi 2 - 辊子 tānzi 2 - 脚子 xiǎozi 2 - 梳子 jiānzì 2 - 箱子 yǎnzì 2 - 小子 tīzi 2 - 袖子 xiūzi 2 - 梳子 xǐzi 2 - 箱子 liúzi 2 - 辫子 hōuzi 2 - 盒子 hézi 2 - 虫子 chóngzi 2 - 缨子 xiēzi 2 - 拳子 qúanzi 2 - 句子 jūzi 2 - 梳子 mòzi 2 - 空子 kōngzi 2 - 袋子 biānzi 2 - 命根子 mìnggēnzi 2 - 曲子 qūzi 2 - 法子 fǎzi 1 - 高子 chuāngzi 1 - 谷子 gǔzi 1 - 排子 sháozi 1 - 袋子 bāizi 1 - 袋子 jīzi 1 - 兜子 dōuzi 1 - 尖子 jiānzì 1 - 盆子 chūzi 1 - 游子 yóuzi 1 - 老样子 lǎoyuánzi 1 - 梳子 guāizi 1 - 胖子 wèngzi 1 - 巴子 bāzi 1 - 空架子 kōngjiázi 1 - 铁子 yǐnzi 1 - 阅子 fāizi 1 - 丸子 wánzi 1 - 册子 dìzi 1 - 袋子 pénghāizi 1 - 辫子 biānzi 1 - 簋子 lǐzi 1 - 袖子 shǐzi 1 - 梳子 liànzi 1 - 头子 tóuzi 1 - 胯子 tízi 1 - 帽子 suōzi 1 - 梳子 luōzi 1 - 骑子 piānzì 1 - 梳子 yòuzi 1 - 锤子 chuāizi 1 - 石破子 shípòzi 1 - 帽子 jīzi 1 - 惶子 cáozi 1 - 梳子 dīngzi 1 - 腹口子 liāngkōuzi 1 - 梳子 chuānzi 1 - 单子 dānzi 1 - 梳子 jiānzì 1 - 梳子 dāngzi 1 - 梳子 shāyúnanzi 1 - 面子 miánzì 1 - 绦子 yǐngzi 1 - 号子 háozì 1 - 皮夹子 píjiázi 1 - 锥子 zhòuzi 1 - 帽子 zúzi 1 - 案子 chéngzi 1 - 梳子 jīzi 1 - 睡子 gūzi 1 - 伞子 shǎnzì 1 - 梳子 tóngzi 1 - 桃子 táozi 1 - 脚脖子 jiāobózi 1 - 钱子 shāizi 1 - 住子 zhùanzi 1 - 胖子 pàngzi 1 - 花子 xiāngzi 1 - 子 yuánzi 1 - 台子 táizì 1 - 髋子 fènzì 1