Automatic Document Selection for Efficient Encoder Pretraining

Yukun Feng1 Patrick Xia1 Benjamin Van Durme1 João Sedoc2
1Johns Hopkins University
2New York University
{yfeng55, paxia, vandurme}@jhu.edu, jsedoc@stern.nyu.edu

Abstract
Building pretrained language models is considered expensive and data-intensive, but must we increase dataset size to achieve better performance? We propose an alternative to larger training sets by automatically identifying smaller yet domain-representative subsets. We extend Cynical Data Selection, a statistical sentence scoring method that conditions on a representative target domain corpus. As an example, we treat the OntoNotes corpus as a target domain and pretrain a RoBERTa-like encoder from a cynically selected subset of the Pile. On both perplexity and across several downstream tasks in the target domain, it consistently outperforms random selection with 20x less data, 3x fewer training iterations, and 2x less estimated cloud compute cost, validating the recipe of automatic document selection for LM pretraining.

1 Introduction
Large pretrained language models have achieved state-of-the-art performance in NLP tasks (Devlin et al., 2019; Liu et al., 2019, i.a.). These studies find that increasing pretraining data size usually leads to better task performance. For many tasks, additional task (in-domain) data helps improve the performance further (Gururangan et al., 2020; Dery et al., 2021; Li et al., 2022). Several studies have found that directly pretraining on task data is more effective: science texts (Beltagy et al., 2019), tweets (Nguyen et al., 2020), legal texts (Chalkidis et al., 2020) or code (Tabassum et al., 2020; Chen et al., 2021). Notably, these domains are known a priori, and identifying data sources for curation is straightforward. In other instances where the domain is less clear, like “offensive online content” (Bai et al., 2021), more complicated data sampling is employed to guess at the desired data distribution suitable for training a downstream classifier.

To address such scenarios, we propose automatically identifying relevant domain-specific training data for a large corpus and subsequently pretraining a model on the selected data. Specifically, we use Cynical Data Selection (Axelrod, 2017), an approach that advanced Moore-Lewis sampling (Moore and Lewis, 2010), to select data from the Pile dataset (Gao et al., 2021). This automatic selection method can include possibly overlooked yet relevant documents from domains that may not be too close to the target domain. Figure 1 illustrates this method which achieves higher performance on tasks in the target domain by using only 2.5GB (0.5%) of cynically selected data.

Specifically, we experiment with pretraining encoders with varying amounts of data sampled from the Pile.1 With our “target corpus” of OntoNotes (Weischedel et al., 2013), we compare language models trained with cynical and random selection at various data levels. We find that the cynically selected encoder achieves consistently lower target corpus perplexity than one trained with random selection. We further finetune the encoders on a suite of tasks, some of which are derived from OntoNotes. Again, we find that models pretrained with cynical selection perform best. We suggest this as a viable method for inexpensively pretraining effective domain-specific encoders.

1The Pile consists of 800GB raw text but for this paper, we refer to its “effective” size, which is 1250GB.
2 Cynical Data Selection

Methods for data selection for language-related tasks have been widely studied, usually to select in-domain data (Axelrod et al., 2011; van der Wees et al., 2017; Dai et al., 2020; Killamsetty et al., 2020). One such method is Cynical Data Selection (Axelrod, 2017). The intuition behind cynical selection is in Appendix B.

Concretely, given representative text from the target domain, cynical selection uses the cross-entropy of the selected text against the representative text and calculates the information gain of each sentence in the general corpus. It then picks the most useful sentence relative to what has already been selected and its similarity to the representative text. This also leads to a bias towards shorter sentences and preferring sentences that contain words with high probability in the representative text.

Our work extends the cynical selection to the document level selection. Sentences are still scored at the sentence level, but the average sentence-level gain determines the information gain of a document. We demonstrate its advantages in efficiently selecting related documents to the target domain.

3 Experiments and Results

In this work, we set OntoNotes 5.0 (Weischedel et al., 2013) as our target corpus, and we use a smaller sample from the training corpus of the CoNLL 2012 Shared Task (Pradhan et al., 2012) as the representative corpus for data selection. We first train an encoder based on the selected data and use the Edge Probing suite (Tenney et al., 2019b) for the downstream task evaluation, which has previously been used to probe and evaluate language models (Clark et al., 2019; Tenney et al., 2019a; Jiang et al., 2020; Zhang et al., 2021).

3.1 Data Selection

Dataset We adopt the Pile (Gao et al., 2021) for data selection, which consists of 1250GB text from 22 domains. Cynical selection naturally prefers text data based on the target corpus. To make a more fair comparison, we exclude 100GB data from “DM Mathematics” and “Github” to eliminate the noise of non-text data in random selection.

Selection Strategy Encoder pretraining is naturally a document-level task, as context contributes critically to improved representations. Thus, we need to extend the sentence selection into the document selection to achieve a better-contextualized representation at the pretraining stage. We apply our extended document-level cynical selection to the Pile and extract the top \{0.5\%, 1\%, 2\%, 5\%\} scored documents. We also randomly sample the same percentage of documents from Pile to use as a corresponding baseline. As a baseline for manual selection, we use 30GB text from "Wikipedia" and "BookCorpus" subsets, following Liu et al. (2019).

3.2 Encoder Pretraining

We set up a BERT-base model and follow the pretraining objective and settings described in RoBERTa(Liu et al., 2019). In Figure 2, we plot the validation perplexity on both the representative corpus (CoNLL 2012 Shared Task) and a held-out set of the Pile. The perplexity on the held-out set decreases when there is more training data for both the cynical and random selection. Cynical selection attains a higher perplexity, which shows that while the selected documents are more adapted to the target domain, it is not better adapted to the general corpus. As each encoder needs different training steps for different corpus sizes, we try to make a fair comparison by assuming a fixed training budget of 100k update steps. In Figure 2, we find that at 100k steps, 2% of the cynically selected data achieves the lowest perplexity, and more training data does not help the adaptation to the target corpus. Also, cynical selected documents consistently outperforms the random selection, demonstrating the effectiveness of adapting to the target domain.

2A formal explanation of Cynical selection and its extension is in Appendix B.

3We unsurprisingly find that selection at the document-level works better than at the sentence-level (Appendix A).

4Our code repository is publicly available at https://github.com/jsedoc/DL-CynDS.

5We adopt the training scripts from FairSeq for encoder pretraining, https://github.com/facebookresearch/fairseq.
3.3 Edge Probing Evaluation

We evaluate the effectiveness of the pretrained encoders on 8 Edge Probing tasks (Tenney et al., 2019b),\(^6\) for which the metric and architecture are uniformed to evaluate the span-level contextual representation of the language model, and it has been widely studied in the past few years. Results are plotted in Figure 3. We find:

Observation 1: Models trained on cynically selected documents show consistent performance gain on all tasks compared to the random selection.

Observation 2: In most tasks, even using only 0.5% (2.5GB) of cynically selected documents outperforms the manually selected baseline (30GB).

Observation 3: Compared to random sampling, the performance gain of the cynical selected documents is larger with only 0.5% to 1% of training data, and decreases for larger training sets as random selection catches up.

Observation 4: For some tasks, especially "const" and "pos," which are two tasks exactly based on the OntoNotes dataset, cynical selected documents yield good task performance with only 0.5% data, and the scores decrease when increasing the selection size to 2%, but increase again with 5%. This could suggest that in cynical selection, the top-scored documents are strongly related and helpful to the target task domain, while the others may not contribute as much or even hurt. However, more data ultimately does improve performance.

Overall, we could achieve promising results with only 0.5% documents of the entire corpus, demonstrating the effectiveness and efficiency of cynical selection in the adaptation to downstream tasks in the target domain. We also notice the standard deviation of the runs for random selection is much larger than cynical selection, indicating more stable encoder results from cynically selected documents.

3.4 Discussion

Data Distribution

We plot the domain distribution of the selected documents in Figure 4. While random selection follows the distribution of the original Pile dataset, cynical selection prefers news-like articles such as the "Pile CC" and "OpenWebText2," rather than technical ones, like StackExchange. Also, since we consider the same number of selected documents for each split, the actual selected data size is not the same (Figure 5). We notice that cynical selection prefers shorter documents, especially in the top-ranked samples. This should be related to our scoring strategy since we average the sentence scores as the final document score. In the case for long documents, even though there are sentences with higher scores, it is not very likely to be selected since the final scores are averaged by the total number of sentences. This

\(^6\)We adopt the jiant for edge probing data processing and finetuning, https://github.com/nyu-mll/jiant.
explains why the cynical selection prefers shorter documents in the 0.5% and 1% selection but not in the 5% selection. Therefore, when we bring the actual selected data sizes into the comparison, the cynical selection is much more efficient than the random sampling. Future work can investigate other methods of aggregating sentence-level scores.

Computational Trade-off Cynical selection enables the language models to use less training data and GPU time while achieving competitive results. However, the data selection needs to be done before the training and pre-processing could be costly. Cynical selection on the Pile can be parallelized via sharding, because the specific order/ranking of a document in the final selected subset is not important. The intuition is that any good document will be chosen early, regardless of which shard it is in. So, we split the automatic document selection of the Pile into 10,000 smaller jobs, each requiring a single core CPU and 10GB of RAM and taking 2 hours to finish. In general, the cost of the selection depends on the size of the general corpus that is being selected from. In our training environment with 8 RTX6000 GPUs, it takes 800+ GPU hours in total to train an encoder with 60GB randomly selected documents. To achieve comparable or even better performance with cynical selected documents, we only need 200 GPU hours for the 2.5GB of cynically selected data to converge. The market price for a single RTX6000 is $1.50/hour, so we need $1200+ to train with random selection but less than $300 for cynical selection. On the Google Cloud Platform, 20,000 hours on comparable or faster CPUs can be obtained with $200. Overall, cynical selected documents saves more than 50% of the computational cost and achieves better task scores.

4 Related Work

Due to the huge computational cost of training large models, both researchers and engineers have sought alternatives to using data more efficiently. Some prior works use statistical methods to select relevant data from a large corpus (Rousseau, 2013; Kirchhoff and Bilmes, 2014; Eetemadi et al., 2015; Xu and Koehn, 2017). Some other studies introduce additional classifiers or language models to help the data selection (Ruder and Plank, 2017; Qu et al., 2019; Sun et al., 2021). Also, data selection could be more efficiently involved in the active learning approaches (Shen et al., 2004; Lowell et al., 2018; Erdmann et al., 2019; Shelmanov et al., 2019; Margatina et al., 2022; Tsvigun et al., 2022). This work applies a simple statistical method to find the most related text to a target domain. It incrementally constructs a dataset out of a large corpus for the goal of training language models.

5 Conclusion

This work builds the connection from corpus subs-selection in statistical LM construction to neural
LMs. We extend cynical data selection to efficiently select task-related documents for encoder pretraining and achieve lower perplexity in the target domain. We also demonstrate its effectiveness on downstream tasks by achieving comparable or even better results with 20x less data, 3x fewer training iterations, and 2x less computational cost on 8 Edge Probing tasks. We believe this fills the gap in the literature on an important topic in training powerful LMs. We purposefully keep this work in the space of methods used in the days of Stat NLP to highlight their out-of-the-box applicability, for which that line of research is still salient. Based on our findings, this line is resurrected, suggesting new novel approaches should be studied. We anticipate that with this connection, researchers could explore this topic, investigate various subselection methods, and extend it to other domains.

Acknowledgements

We thank all reviewers for their valuable feedback. We also appreciate the helpful suggestions from Marc Marone, Amittai Axelrod, and Alex Warstadt. This work is supported by IARPA BETTER (#2019-19051600005). The findings contained in this work are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, or endorsements of IARPA or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Limitations

Since pretraining encoders is expensive, our study only experiments on one source corpus (Pile) and one target task domain (OntoNotes). However, this method could be demonstrated more effectively on other datasets that are more domain-specific. We do not run multiple random selections with different seeds due to the time and cost of training large models. We think the standard error for the randomly selected data would be significant, especially for the subset of only 0.5% or 1% documents. Also, we recognize that training our models longer or scaling up the model size is an “easy” method of improving performance (Liu et al., 2019; Kaplan et al., 2020). Our results assume a fixed training budget (max 100k steps). Thus with a larger budget, the trade-offs will vary. Another concern is that we do not experiment with other subselection methods (Gururangan et al., 2019) or other languages, but we believe they should have similar trends.

References

Amittai Axelrod. 2017. Cynical selection of language model training data. arXiv.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 355–362, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Fan Bai, Alan Ritter, and Wei Xu. 2021. Pre-train or annotate? domain adaptation with a constrained budget. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5002–5015, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3615–3620, Hong Kong, China. Association for Computational Linguistics.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan Zhang. 2022. Quantifying memorization across neural language models. ArXiv, abs/2202.07646.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos. 2020. LEGAL-BERT: The muppets straight out of law school. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2898–2904, Online. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Rayal Pur, Gretchen Krueger, Michael Petrov, Heidy Khalaf, Girish Satsry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebig Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large language models trained on code.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does bert look at? an analysis of bert’s attention.

Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Cecile Paris. 2020. Cost-effective selection of pretraining data: A case study of pretraining bert on social media.

Lucio M. Dery, Paul Michel, Ameet Talwalkar, and Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Cecile Paris. 2020. Cost-effective selection of pretraining data: A case study of pretraining bert on social media.

Graham Neubig. 2021. Should we be pre-training? an argument for end-task aware training as an alternative. CoRR, abs/2109.07437.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Sauleh Etemadi, William Lewis, Kristina Toutanova, and Hayder Radha. 2015. Survey of data-selection methods in statistical machine translation. Machine Translation, 29.

Alexander Erdmann, David Joseph Wrisley, Benjamin Allen, Christopher Brown, Sophie Cohen-Bodênes, Micha Elsner, Yukun Feng, Brian Joseph, Béatrice Joyeux-Prunel, and Marie-Catherine de Marneffe. 2019. Practical, efficient, and customizable active learning for named entity recognition in the digital humanities. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2223–2234, Minneapolis, Minnesota. Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Goldberg, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2021. The pile: An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027.

Suchin Gururangan, Tam Dang, Dallas Card, and Noah A. Smith. 2019. Variational pretraining for semi-supervised text classification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5880–5894, Florence, Italy. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagyi, Doug Downey, and Noah A. Smith. 2020. Don’t stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8342–8360, Online. Association for Computational Linguistics.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Prelsav Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 33–38, Uppsala, Sweden. Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can We Know What Language Models Know? Transactions of the Association for Computational Linguistics, 8:423–438.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models.

KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer. 2020. GLISTER: generalization based data subset selection for efficient and robust learning. CoRR, abs/2012.10630.

Katrin Kirchhoff and Jeff Bilmes. 2014. Submodularity for data selection in machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 131–141, Doha, Qatar. Association for Computational Linguistics.

Belinda Li, Jane Yu, Madian Khabsa, Luke Zettlemoyer, Alon Halevy, and Jacob Andreas. 2022. Quantifying adaptability in pre-trained language models with 500 tasks. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4696–4715, Seattle, United States. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.

David Lowell, Zachary Chase Lipton, and Byron C. Wallace. 2018. How transferable are the datasets collected by active learners? ArXiv, abs/1807.04801.

Katerina Margaritina, Loic Barrault, and Nikolaos Aletras. 2022. On the importance of effectively adapting pretrained language models for active learning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 825–836, Dublin, Ireland. Association for Computational Linguistics.
A Appendix

A.1 Detailed Distribution

A detailed data distribution is shown in Table 2.

B Formalization of Cynical Data Selection

The aim of CynDS is to incrementally construct W through scoring each sentence by information gained relative to the already selected data (Equation 1).

Given a REPresentative corpus from the target domain, CynDS is an effective and efficient method to identify the most relevant subset of sentences from a large corpus. Formally, we can define a cross-entropy between REP and some set of tokens as,

$$H(\text{REP}) = -\sum_{v \in V_{\text{REP}}} \frac{C_{\text{REP}}(v)}{W_{\text{REP}}} \log \frac{C(v)}{|W|},$$

where W is the set of tokens, V is the vocabulary, and C indicates the count of word type, v. $C_{\text{REP}}(v)$ is the count within REP and $C(v)$ is the count within W.

Let W_1, \ldots, W_n be the incrementally selected corpus. We can define the cross-entropy after selecting n sentences as

$$H(n) = -\sum_{v \in V_{\text{REP}}} \frac{C_{\text{REP}}(v)}{W_{\text{REP}}} \log \frac{C_n(v)}{W_n},$$

and minimize H_n. This can be rewritten recursively as

$$H_{n+1} = H_n + \max_s \Delta H_{n+1}(s)$$

where $\Delta H_{n+1}(s)$ is the delta (effect) of a given sentence s. To find the $n+1$th sentence that minimizes ΔH_{n+1}, we can rewrite it as

$$\Delta H_{n+1} = \text{Penalty}_{n+1} + \text{Gain}_{n+1}$$

Here, penalty refers to how similar the sentence is to already selected texts and gain refers to how similar the sentence is to the representative corpus. Axelrod (2017) derives the Penalty and Gain as

$$\text{Penalty}_{n+1} = \log \frac{|W_n + w_{n+1}|}{|W_n|}$$

$$\text{Gain}_{n+1} = \sum_{v \in V_{\text{REP}}} \frac{C_{\text{REP}}(v)}{W_{\text{REP}}} \log \frac{C_n(v)}{C_n(v) + c_{n+1}(v)}$$

A proof of this derivation is given in Axelrod (2017).

In our work, we still let W_1, \ldots, W_n represent the first n sentences, and $H(\text{REP})$ is unchanged. However, we use the scores, $\Delta H_{n+1}(s)$, of each sentence and compute document-level scores for each document,

$$Score(D) = \frac{1}{|D|} \sum_{s \in D} \Delta H_{n+1}(s)$$

These document-level scores can then be ranked, and we select the top $k\%$ of the documents. Note that while there are many alternatives to selecting documents, our goal is to select a method and evaluate whether automatic data selection is effective for LM pretraining rather than comparing different methods, which can be future work.

B.1 Sentence vs Document Selection

Results are shown below in Table 1.

Data	ppl on OntoNotes
Cynical Sent	102.21
Cynical Doc	4.98
Random Doc	8.77

Table 1: Each subset consists of 15GB text.

B.2 Edge Probing tasks

The tasks are constituent labeling, part-of-speech tagging (POS), named entity labeling (NER), coreference labeling (coref), semantic role labeling (SRL), dependency labeling (Silveira et al., 2014), semantic protorole labeling (SPR2) (Rudinger et al., 2018), and relation classification (Hendrickx et al., 2010). The first 5 tasks listed are derived from OntoNotes (Weischedel et al., 2013).
Domain	Random	Cynical-0.5%	Cynical-1%	Cynical-2%	Cynical-5%
Pile-CC	27.44%	42.06%	42.35%	43.03%	43.30%
OpenWebText2	16.95%	32.53%	32.20%	31.79%	31.35%
StackExchange	15.51%	3.65%	3.56%	3.36%	3.39%
PubMed Abstracts	15.40%	5.51%	5.58%	5.17%	4.79%
Wikipedia (en)	8.90%	12.03%	11.65%	11.24%	11.09%
USPTO Backgrounds	5.84%	2.00%	2.26%	2.47%	2.55%
PubMed Central	2.98%	0.19%	0.24%	0.38%	0.53%
FreeLaw	2.66%	0.38%	0.51%	0.81%	1.12%
ArXiv	1.25%	0.05%	0.06%	0.08%	0.12%
NIH ExPorter	0.94%	0.39%	0.39%	0.37%	0.36%
HackerNews	0.82%	0.54%	0.55%	0.60%	0.68%
Enron Emails	0.49%	0.51%	0.48%	0.46%	0.43%
OpenSubtitles	0.33%	0.009%	0.02%	0.03%	0.05%
YoutubeSubtitles	0.17%	0.13%	0.13%	0.14%	0.15%
Books3	0.15%	0.002%	0.004%	0.009%	0.015%
EuroParl	0.07%	0.01%	0.01%	0.02%	0.024%
Gutenberg (PG-19)	0.04%	0.001%	0.002%	0.005%	0.008%
PhilPapers	0.03%	0.002%	0.003%	0.008%	0.013%
BookCorpus2	0.01%	0.0005%	0.001%	0.003%	0.005%
Ubuntu IRC	0.01%	0.006%	0.004%	0.004%	0.003%

Table 2: Detailed Domain Distribution for the selection under different sizes.