A 5291-ppi organic light-emitting diode display using field-effect transistors including a c-axis aligned crystalline oxide semiconductor

Shuichi Katsui SID Member | Hidetomo Kobayashi | Takashi Nakagawa |
Yuki Tamatsukuri | Hideaki Shishido SID Member | Shogo Uesaka | Ryohei Yamaoka |
Takaaki Nagata | Tomoya Aoyama | Kosei Nei | Yutaka Okazaki | Takayuki Ikeda |
Shunpei Yamazaki SID Member

Semiconductor Energy Laboratory Co, Ltd, Kanagawa, Japan

Correspondence
Shuichi Katsui, Semiconductor Energy Laboratory Co, Ltd, 398 Hase, Atsugi-shi, Kanagawa 243-0036, Japan.
Email: sk1267@sel.co.jp

Abstract
C-axis-aligned crystalline-oxide semiconductor field-effect transistor (CAAC-OS FET) can be scaled down to a width and a length of 60 nm. We fabricated an organic light-emitting diode (OLED) display with more than 5000 ppi, which is required in virtual reality (VR) display applications, using CAAC-OS FETs as the backplane.

KEYWORDS
high resolution, IGZO, micro display, OLED, VR

1 | INTRODUCTION

Virtual reality (VR) as a technology has recently become a popular topic of research, especially in the development of more realistic VR worlds requiring the fabrication of displays with higher resolutions. For example, head-mounted displays (HMD) necessitate the use of more than 5000 pixels per inch (ppi) to prevent users from noticing the pixels at short distances. Although recently developed small, medium, and large displays utilize field-effect transistors (FET) the size of a few micrometers, the fabrication of high-resolution displays (greater than 5000 ppi) would require the use of FETs smaller than a micrometer within the pixels. However, scaled-down FETs may negatively affect the display performance due to phenomena such as the existence of a short-channel effect.

Oxide semiconductors (OS) have recently been widely employed as an alternative to low-temperature polycrystalline silicon and hydrogenated amorphous silicon backplanes owing to their advantage of not requiring a laser crystallization process. In 1985, Kimizuka et al performed the first synthesis for a notable example of OS called indium gallium zinc oxide (IGZO), which paved the way for a wider field research. Table 1 illustrates the crystallinity classification of the IGZO material. Yamazaki et al proposed a crystalline oxide semiconductor named c-axis aligned crystalline IGZO (CAAC-IGZO), which Kimizuka described as neither crystal nor amorphous but “an intermediate state” between the two states. Here, crystallinity in the intermediate state is defined as crystalline where nanocrystal (nc) IGZO and others are also classified. Additionally, FETs that employ the crystalline IGZO in their active layer exhibit favorable characteristics. For example, in contrast to Si-FETs, FETs with a CAAC-IGZO active layer have an extremely low off-state current and a high on-off ratio and are less likely to suffer...
from the short-channel effect. Thus, CAAC-IGZO also exhibits an advantage in terms of scaling.22

In this paper, we propose a high-resolution organic light-emitting diode (OLED) display with more than 5000 ppi that utilizes a c-axis-aligned crystalline-oxide semiconductor field-effect transistor (CAAC-OS FET) backplane.

2 | MOTIVATION FOR DISPLAYS WITH 5000-PPPI PIXEL DENSITY

In one type of VR applications, users wear an HMD, and images are projected through a display mounted on the headset; hence, wearable displays in the form of goggles and glasses are being developed as HMDs. If lenses are not used, then the distance between the HMD display and the eyes of the person wearing the headset is between 12 and 40 mm. According to the calculation completed by Clark,23 the visual acuity of a human eye is 0.59 arcmin per line pair. Based on this visual acuity and the assumption of a 30-mm distance between the eyes and the display, headset wearers would not be able to notice each pixel in front of their eyes if the pixel pitch is approximately equal to 5.15 μm, corresponding to approximately 5000 ppi. Therefore, the projection of realistic VR images in an HMD would be enabled by the incorporation of a high-resolution display with more than 5000 ppi.

3 | PROPERTIES OF CAAC-OS FET

Smartphone displays use a resolution between 400 and 500 ppi, less than the VR display requirement of more than 5000 ppi. In other words, the size of each subpixel of a realistic VR display would be approximately 3 μm, where transistors used in devices similar to smartphones are too large and unsuitable for the purpose. Moreover, the amount of electric current that flows in each pixel of OLED displays is proportional to the pixel size, implying that the amount of electric current that flows through the device would be smaller. Consequently, backplanes for displays with more than 5000 ppi would require the following properties: (a) transistors with short length and (b) current capability suitable to control an OLED device.

We considered these factors in adopting CAAC-OS FETs for the backplane of our high-resolution display prototype.

Figure 1A shows a perspective view of the CAAC-OS FET. The CAAC-OS FET had a three-gate structure that improves electric-field control of the gate surrounding the channel. Figure 1B indicates that the CAAC-OS FET exhibited favorable I_d–V_g characteristics for width (W) and length (L) of 60 nm ($W/L = 60$ nm/60 nm). Figure 1C shows the FET’s gate breakdown voltage. Note that gate leakage was virtually negligible up to 10 V.

The current capabilities and current saturation of high-resolution OLED displays need to be considered when small driving FETs are utilized. Figure 2A,B shows the I_d–V_g and I_d–V_d characteristics, respectively, of a CAAC-OS FET with $W/L = 60$ nm/200 nm. The pixels of our high-resolution OLED display prototype employed driving FETs of $W/L = 60$ nm/200 nm with an operating range of V_g less than 1.0 V when displaying images. Specifically, in Figure 2B, CAAC-OS FETs exhibited favorable saturation characteristics even at short lengths and ample amount of current flow for control of the OLED devices. This confirms that CAAC-OS FETs are suitable for backplanes of high-resolution OLED displays.

Additionally, CAAC-OS FETs have the advantage of exhibiting an extremely low off-state current, making them suitable for display applications. Figure 2A indicates that even when the channel length of the

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
Amorphous [19, 20] & Crystalline & Crystal [5, 8, 18] \\
\hline
completely amorphous & \textbullet CAAC [14] & \textbullet single crystal \\
& \textbullet nc [15, 16] & \textbullet poly crystal \\
& \textbullet CAC [17] & excluding single crystal and poly crystal \\
\hline
\end{tabular}
\caption{Classification of crystallinity of IGZO11–20}
\end{table}
CAAC-OS FET employed as a driving FET is scaled-down to 200 nm, the off-state current remained lower than 1×10^{-12} A, which is below the measurement limit. Therefore, when the display shows black, the amount of electric current that flows would be extremely small, leading to a low-power consumption.

4 | PANEL STRUCTURE

Figure 3A shows the configuration of our display prototype, which has a resolution of 1280 \times 720 pixels. The scan drivers surrounding the pixels consist of n-type OS-FETs, formed in the same layer and the same process as the pixels’ selection and driving FETs. Thus, the formation of all these components does not result in an increased number of process steps. The scan drivers are positioned at both sides of the pixel array.
with the gate lines connected to the scan drivers on the left side and the right side alternately, as shown in Figure 3B.

5 | CIRCUIT CONFIGURATION AND OPERATION

Figure 4A,B displays a block diagram and a timing chart, respectively, of a scan driver, whereas Figure 5 shows one of the shift registers (SRs) composing our proposed scan driver. A gate start pulse (GSP) was input into the first-stage SR, which, with a four-layer GCLK and GPWC, generated a shift pulse at GSROUT and a gate signal at GOUT, for the next-stage SR. Accordingly, the scan driver in Figure 4A corresponded to the scan driver (L) in Figure 3B. The GOUT of each SR were gate signals to rows 0, 2, 4, 6, ..., and 2N-2.

The shift pulse and the gate signal were generated and output by GOUT and GSROUT (Figure 5), respectively, in the following manner.

First, a GRES signal initialized the voltage of node O1 to GVSS and that of node O2 to GVDD-Vth (Vth corresponds to the threshold voltage of the OS FET). At this point, GOUT and GSROUT were both fixed at GVSS.

Next, the shift pulse of GSROUT was input to LIN, changing the voltage of node O1 to GVDD-Vth and that of node O2 to GVSS. The voltage of node O1, GVDD-Vth, was input to node OA via M6 and to node OB via M9, thus allowing M7 and M10 to be turned on. Node O2 was connected to and subsequently shuts the gates of M8 and M11.

With M7 and M10 turned on, the voltages of GOUT and GSROUT increased when CLK1 and PWC1 were
changed from LOW to HIGH. With this, bootstrap capacitors C2 and C3 increased the gate voltages of M7 and M10 from GVDD-V_{th}. Thus, GOUT and GSROUT output the shift pulse and the gate signal, respectively, without a drop in the V_{th}. In this case, M6 and M9 contributed to the efficient increase of the gate voltages of M7 and M10.

FIGURE 4 (A) Block diagram and (B) timing chart of the scan driver

6 | PIXEL STRUCTURE

Figure 6A shows a subpixel circuit diagram of our display prototype using an OLED device. Each pixel was configured at 2Tr1C. In all the subpixels, the selection FET, M1, was an OS-FET with $W/L = 60\text{nm}/60\text{nm}$, whereas the
driving FET, M2, was an OS-FET with \(W/L = 200 \text{ nm}/60 \text{ nm} \). The symbol C1 represents a storage capacitor.

Figure 6B describes that at a display prototype of a high-pixel density, the pixels were arranged in a zigzag pattern similar to that in Shiokawa et al.24 The subpixel pitch was equal to 2.4 \(\mu \text{m} \) horizontally and 3.2 \(\mu \text{m} \) vertically, and all pixels that emit red, green, and blue (R, G, and B) light of the display prototype were configured for them to have the same pixel pitch.

Theoretically, human vision is limited to 60 cycles per degree. Thus, if more than 60 light-dark cycles occur at a viewing angle of 1°, humans would not distinguish light and dark but would instead perceive an intermediate color.

For best quality, smartphones should be viewed from a distance of approximately 30 cm. At this position, the estimated distinguishable resolution would then be approximately equal to 500 ppi, along with a visual acuity of 60 cycles per degree.

Moreover, a person would not be able to distinguish between zigzag and stripe arrangements in such a display resolution, as it is theoretically impossible for the human eye to distinguish each pixel at a pixel density surpassing 5000 ppi.

Moreover, a zigzag arrangement allows the pixels to form a square at 2 \(\times \) 2 pixels (approximately 2500 ppi) and would virtually bear no effect on visibility.

7 | OLED DEVICE

Figure 7 presents the structure of the OLED display prototype, which employed a white OLED as the light-emitting device. Here, the acronyms TFE, EIL, ETL, HIL, and HTL denote the thin film encapsulation layer, the electron injection layer, the electron transport layer, the hole injection layer, and the hole transport layer,
respectively. The OLED display prototype adopted a microcavity structure, had a narrow luminance spectrum, and was colored by a color filter (CF) formed over the white OLED device.

8 | SPECIFICATIONS AND DISPLAY IMAGE

Table 2 reveals the specifications of the display prototype, which achieved a pixel density of 5291 ppi by using CAAC-OS FETs within the size range 60 to 200 nm and through scaling down of the subpixel pitch to 2.4 μm × 3.2 μm. The display prototype was designed with a frame frequency of 120 Hz for VR use.

In Figure 8, the triangle with a white circle on each tip represents the color gamut of the display prototype, whose NTSC ratio was 74.4%. This ratio is expected to increase after future optimization of the fabrication conditions of the color filters.

Figure 9A shows an actual photograph of the display prototype, with the 6.14 × 3.16 mm display region at the center and the scan drivers on its left and right sides. Figure 9B shows the image displayed in this small display region and indicates that the 5291-ppi high-resolution display prototype with pixels and scan drivers that utilize CAAC-OS FETs with the sizes W/L = 60 nm/60 nm and W/L = 60 nm/200 nm has successfully displayed an image with good quality. The screen door effect could not be observed with the

![FIGURE 6](image6.png)
(A) Subpixel circuit diagram and (B) arrangement of pixels

![FIGURE 7](image7.png)
Structure of OLED device. OLED, organic light-emitting diode

![TABLE 2](image2.png)
Display specifications

Specifications	
Screen diagonal	0.28 in
Resolution	1280 × 720
Subpixel pitch	2.4 μm × 3.2 μm
Pixel density	5291 ppi
Frame frequency	120 Hz
Aperture ratio	31.3%
Coloring method	White OLED + color filter
Emission type	Top emission
Source driver	External
Scan driver	Integrated
naked eye or even after zooming in 10 times with a magnifying lens.

9 | CONCLUSION

We fabricated a high-resolution OLED display prototype with 5291 ppi using CAAC-OS FETs as the backplane. Results validated that CAAC-OS FETs can be scaled down and that they are capable of controlling the electric current necessary for the small pixels in a display with a pixel density of more than 5000 ppi. As the current demand entails the fabrication of 3-inch displays in VR applications, our next challenge is focused on the enlargement of the screen size.

FIGURE 9 (A) Photo of the display prototype and (B) image displayed on the display prototype

REFERENCES

1. Hua H, Gao C, Biocca F, Rolland JP. "An ultra-light and compact design and implementation of head-mounted projective displays", Proc IEEE Virtual Reality 2001, IEEE CS Press, 175 (2001).
2. Ghosh A, Donoghue EP, Khayrullin I, et al. Directly patterned 2645 PPI full color OLED microdisplay for head mounted wearables. SID Symp Dig. 2016;47:837–840.
3. Ueda N, Okada K, Uchida S, Yamamoto K, Yoshida H. “Liquid crystal display with ultra high resolution and super fast response giving super reality to VR application”, IDW/AD’16, 281 (2016).
4. Parikh K, Zhuang J, Pallister K, Jiang J, Smith M. Next generation virtual reality displays: Challenges and opportunities. SID Symp Dig. 2018;49:502–505.
5. Fujii T, Kon C, Motoyama Y, et al. 4032 ppi high-resolution OLED microdisplay. J SID. 2018;26:178.
6. Ou F, Chong WC, Xu Q, Chen Y, Li Q, Zhang L. Monochromatic active matrix micro-LED micro-displays with >5,000 dpi pixel density fabricated using monolithic hybrid integration process. SID Symp Dig. 2018;49:1677–1680.
7. Kimizuka N, Mohri T. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3 A2O3 B2O3 systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C. J Solid State Chem. 1985;60:382–384.
8. Nakamura M, Kimizuka N, Mohri T. The phase relation in the In2O3 Ga2ZnO4 ZnO system at 1350°C. J Solid State Chem. 1991;93:298–315.
9. Kimizuka N, Isobe M, Nakamura M. Syntheses and single-crystal data of homologous compounds, In3O5(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)m and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In3O5-ZnGa2O4-ZnO system. J Solid State Chem. 1995;116:170–178.
10. Li C, Bando Y, Nakamura M, Onoda M, Kimizuka N. Modulated structure of homologous compounds InMO3(ZnO)m (M = In, Ga; m = integer) described by four-dimensional superspace group. J Solid State Chem. 1998;139:347–355.
11. E-mail that N. Kimizuka sent to M. Takahashi et al, on Sep 8, 2012.
12. Okazaki K. submitted to *Jpn. J. Appl. Phys.* on April, 2019.
13. Waseda Y, Sugiyama K, Kawamata T. Nanometer-sized crystal-line clusters of IGZO films determined from the grazing incidence X-ray scattering and anomalous X-ray scattering data combined with reverse Monte Carlo simulations. Mater Trans. 2018;59:1691–1700.
14. Yamazaki S, Hirohashi T, Takahashi M, et al. Back-channel-etched thin-film transistor using c-axis-aligned crystal InGaZn oxide. J Soc Inf Display. 2014;22:55–67.
15. Ito S, Takahashi E, Dairiki K, et al. “Analysis of nanoscale crystal-line structure of InGaZnO thin film with nano beam electron diffraction”, Proc. AM-FPD’13 Tech. Dig. Pap., 151 (2013)
16. Obonai T. submitted to *Jpn. J. Appl. Phys.* on April, 2019.
17. Yamazaki S, Shima Y, Hosaka Y, Okazaki K, Koezuka J. Achievement of a high-mobility FET with a cloud-aligned composite oxide semiconductor. Jpn J Appl Phys. 2016;55:115504.
18. Yamada Y, Matsubayashi D, Matsuda S, et al. Single crystalline InGaZn oxide films grown from c-axis aligned crystalline materials and their transistor characteristics. Jpn J Appl Phys. 2014;53:091102.
19. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432:488–492.
20. Kamiya T, Kimoto K, Ohashi N, et al. “Electron-beam-induced crystallization of amorphous InGaZnO thin films fabricated by UHV sputtering” , Proc. IDW’13 Dig., 280 (2013).
21. Koezuka J, Okazaki K, Hirohashi T, et al. Development of back-channel-etched TFT using c-axis aligned crystalline InGaZn-oxide. SID Symp Dig. 2013;44:723–726.
22. Kobayashi Y, Matsuda S, Matsubayashi D, et al. Electrical characteristics and short-channel effect of c-axis aligned crystal indium gallium zinc oxide transistor with short channel length. Jpn J Appl Phys. 2014;53:04EF03.
23. http://www.clarkvision.com/imagedetail/eye-resolution. html.
24. Shiokawa M, Toyotaka K, Tsubuku M, et al. “A 1058 ppi 8K4K OLED display using a top-gate self-aligned CAAC oxide semiconductor FET”, *SID Symposium. Dig.*, 1209 (2016).

AUTHOR BIOGRAPHIES

Shuichi Katsui received his PhD and ME degrees from University of Tokyo, Japan, in 2011 and 2008, respectively, and his BE degree from Tohoku University, Japan, in 2006. He joined Semiconductor Energy Laboratory Co, Ltd, in 2012, and he has been engaged in circuit design of OLED displays.

Hidetomo Kobayashi received his BE and ME degrees in Tokyo University of Science, Japan, in 2002 and 2004, respectively. He joined Semiconductor Energy Laboratory Co, Ltd, in 2004, and he has been engaged in circuit design of OLED displays and LSIs.

Takashi Nakagawa received the Associate degree in Electrical Engineering from the Ariake National College of Technology, Fukuoka, Japan, in 2010. He joined Semiconductor Energy Laboratory Co, Ltd, Atsugi, Japan, in 2010, where he has been involved in the development of LSIs.

Yuki Tamatsukuri received his BE degrees in Tokyo University of Science, Japan, in 2010. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd and has been engaged in R&D of OLED displays.

Hideaki Shishido received his BE and ME degrees in Tohoku University, Japan, in 2002 and 2004, respectively. After graduation, he joined Semiconductor Energy Laboratory and has been engaged in developing LCDs and OLED displays.

Shogo Uesaka received his BE degree from University of Fukui, Japan, in 2008 and ME degree from Kanazawa University, Japan, in 2010. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd. Since then, he has been engaged in R&D of OLED.
Ryohei Yamaoka received his BE and ME degrees in Hokkaido University, Japan, in 2010 and 2012, respectively. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd and has been engaged in R&D of OLED devices.

Takaaki Nagata received his BE degree in Tokyo University of Science, Japan, in 2005. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd and has been engaged in R&D of OLED displays.

Tomoya Aoyama received his BE and ME degrees in Shinshu University, Japan, in 2002 and 2004, respectively. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd and has been engaged in R&D of OLED.

Kosei Nei received his Associate degree in National Institute of Technology, Miyakonojo College, Japan, in 2006. After graduation, he joined Semiconductor Energy Laboratory Co, Ltd and has been engaged in R&D of LSI processes.

Yutaka Okazaki received the BS degree in Science and the MS degree in Science and Engineering, from Nagoya Institute of Technology, Nagoya, Japan, in 2001 and 2003, respectively. He joined Semiconductor Energy Laboratory Co, Ltd, Atsugi, Japan, in 2003, where he has been engaged in the development of process technology of Si-based transistors and oxide-semiconductor–based TFTs.

Takayuki Ikeda received the BS and MS degrees in Physics from Osaka University, Osaka, Japan, in 1995 and 1997, respectively. He joined Semiconductor Energy Laboratory Co, Ltd, Atsugi, Japan, in 1997, where he has been working on the circuit design of displays, image sensors and LSIs.

Shunpei Yamazaki received the BE, ME, and PhD from Doshisha University, Japan, in 1965, 1967, and 1971, respectively. He was awarded honorary degrees and the title of “Friends of Doshisha” by Doshisha University in 2011 and 2015, respectively. He is the founder and president of Semiconductor Energy Laboratory Co, Ltd. He was awarded Medal with Purple Ribbon by the Japanese Prime Minister’s Office for the innovation of MOS LSI element technology in 1997 and was the winner of the Okochi Memorial Technology Prize in 2010. He is a holder of Guinness World Record under the category of “most patents credited as inventor,” for the total of 11 353 patents as of June 2016. He is a life fellow of the Institute of Electrical and Electronics Engineers, Inc, a member of the Japan Society of Applied Physics, and a foreign member of the Royal Swedish Academy of Engineering Sciences. He has published or copublished over 500 papers and conference presentations.

How to cite this article: Katsui S, Kobayashi H, Nakagawa T, et al. A 5291-ppi organic light-emitting diode display using field-effect transistors including a c-axis aligned crystalline oxide semiconductor. J Soc Inf Display. 2019;27:497–506. https://doi.org/10.1002/jsid.822