Present situation and future challenges of beef cattle production in Italy and the role of the research

Giulio Cozzi

Dipartimento di Medicina animale, Produzioni e Salute
Università degli Studi di Padova

giulio.cozzi@unipd.it
The Italian beef cattle production in the European scenario

- France 22.5%
- Germany 15.3%
- Italy 11.4%

(OFIVAL, 2007)
Main categories of cattle slaughtered for meat production in Italy in the year 2005

(Source: modified from ISTAT, 2007)

Category	Heads (000)	Average live weight (kg)	Dressing out (%)
Veal calves	988	243	59.2
Young bulls	1.949	583	58.2
Beef heifers	565	457	56.3
Culled cows	541	557	46.7
National self-supply for cattle meat: 63% (CRPA, 2006)

- young bulls and heifers: 14%
- veal calves: 13%
- culled cows: 73%

(ISMEA, 2006)
The production systems
Veal calves

Farm location	%
Veneto	40
Lombardy	40
Piedmont	10

Farm size: 500-600 calves ± 500. (From 100 to > 2000).

(Cozzi et al., 2003)

Stocking rate: ????
Veal calves

Animals

Breed	Source	%
Holstein & Brown ♂	National	77
Holstein & Simmental	Imported (PL, F, D)	23

Group housing in multiple pens (Dir 97/2/EC)

Feeding plan: milk replacer + small amount of roughage (Dir 97/2/EC)
Fattening young bulls

Farm type and location

Rearing system	Cattle population	Farm location
Intensive	70-75%	Po Valley
Extensive	25-30%	Piedmont & Central regions

XVII Congresso ASPA – Alghero (Sardegna, Italy), 29 maggio – 1 giugno 2007
Fattening cycle and stocking rate in a sample of different Italian beef cattle farms

(Source: ISMEA, 2006)

Type of farm	Intensive	Extensive		
Farm location	Veneto	Piedmont	Tuscany	
Cattle breed	Charolais & FC^x	Blonde d’Acquit.	Chianina	
Farm size	heads	1320	380	28
Cattle live weight:				
Initial	kg	368	237	257
Final	kg	641	597	722
Daily gain	kg/d	1.30	1.39	1.25
Cycle duration	d	210	260	372
Stocking rate	LU/ha^y	7.0	4.5	1.2

^xFC = French crosses; ^yLU/ha = Livestock Units/hectare.
Intensive farms

Animals

Strong dependence on imported cattle

- 1,000,000 heads imported in the year 2005
- 80% from France (Charolais, Limousin + Crossbreds)
- 20% from Eastern Europe (Polish Friesians and Simmental).

Housing systems

- Indoor loose housing in multiple pens on littered or slatted floor pens

Feeding plan

- High concentrate diets with small amounts of roughage fed as Total Mixed Ration. Maize as main feed crop and energy source
Extensive farms

Animals

• Young bulls of Italian beef breeds: Piemontese, Chianina, Marchigiana, Maremmana, Podolica, Romagnola

Housing systems

• Loose housing in small multiple pens or tied stalls on permanent bedding indoor

Feeding plan

• Concentrates top-dressed to the forage portion in which maize silage is replaced by luzerne and meadow hays. Energy from cereal grains and protein from luzerne hay, field beans and soybean
The future challenges and the role of the research
Main critical points of the Italian beef cattle production

- Environmental impact
- Dependence on imported cattle
- Need for new feeding strategies
- Animal welfare
The environmental impact of beef cattle farms

Problem:
• To comply with the Nitrate Directive 91/676/EC

Proposed solutions:
• downsize the farm stocking rate
• reduce dietary crude protein
Performance and nitrogen excretion of steers fed diets with different crude protein concentration during the finishing period

	Dietary crude protein	∆ 12/14	
	12% DM	14% DM	
Initial live weight (kg)	404	404	
Final (FLW) (kg)	496	517	- 4.1%*
Average daily gain (kg/d)	1.64	2.02	- 18.8%*
Days of trial (d)	56	56	
N intake (g/d)	198	240	- 17.6%**
Excreted N (% of N intake)	88.7	88.9	- 0.2%
Total N excreted (g)	9820	11938	- 17.7%**

*P < 0.10; **P < 0.05.

(Source: modified from Cole et al., 2003)
Performance and nitrogen excretion of steers fed diets with different crude protein concentration during the finishing period

	Dietary crude protein	\(\Delta 12/14 \)	
	12% DM	14% DM	
Initial live weight	kg 404	kg 404	
Final (FLW)	kg 496	kg 517	- 4.1%*
Average daily gain	kg/d 1.64	kg/d 2.02	- 18.8%*
Days of trial	d 56	d 56	
N intake	g/d 198	g/d 240	- 17.6%**
Excreted N	% of N intake 88.7	% of N intake 88.9	- 0.2%
Total N excreted	g 9820	g 11938	- 17.7%**
Additional days on feed\(^1\)	**d 13**	--	
Total N excreted to equalize FLW	**g 12004**	**g 11938**	**0.6%**

*P < 0.10; **P < 0.05.

\(^1\)Days required by the steers fed 12% CP to reach the same final live weight of 14% CP steers.

(Source: modified from Cole et al., 2003)
The scientific research

Mission

To identify strategies to increase the efficiency of N retention

Technical solutions:

Veal calves

Improve knowledge on true digestibility & efficiency of absorption of dietary essential aminoacids
Essential amino acid composition of tissue protein and ruminal bacteria

	Tissue protein	Ruminal Bacteria
Methionine	2.7	2.6
Lysine	7.6	7.9
Histidine	2.7	2.0
Phenylalanine	4.8	5.1
Threonine	3.7	5.8
Leucine	9.2	8.1
Isoleucine	5.8	5.7
Valine	5.9	6.2
Arginine	3.4	5.1

(Source: modified from O’Connor et al., 1993)
The scientific research

Mission:

To identify strategies to increase the efficiency of N retention

Technical solutions:

- **Veal calves**
 - Improve knowledge on true digestibility & efficiency of absorption of dietary essential aminoacids

- **Fattening young bulls**
 - Feeding solutions capable to maximize microbial growth in the rumen
The dependence on imported cattle

Problems:

- Increasing trend of costs of foreign cattle
- Additional costs and limitations for cattle transport due to new regulations on animal welfare
To improve the fleshiness traits of the young livestock

Mission:

Reproduction
Reduce the fertility problems in dairy cows to allow a wider use of the cross-breeding with beef bulls

Biotechnology
Production and use of male sexed semen of beef bulls in cross-breeding schemes
The need for new feeding strategies

Problem for veal calves:

- Sharp increase in the cost of main raw materials used for milk replacers formulation

![Graph showing the cost of whey powder and skimmed milk powder over time.](image)
The scientific research

Mission:
To reduce the amount of milk replacers by feeding large amounts of solids feeds

Ideal requirements of a solid feed for veal calves

Not impair the function of the esophageal groove

Low iron bioavailability Suitable meat colour
The need for new feeding strategies

Problem for young bulls and heifers:

- High risk of rumen acidosis due to the low forage : concentrate ratio of the diets

↓ Rumen pH
High starch & NFC

↑ Rumen pH
High NDF
To find alternative feeding solution capable to increase the effective fiber of the diet without lowering the starch content.

Mission:

Technical solution:

Inclusion of large amount of coarsely chopped maize silage as main roughage source of the TMR.
Use of coarse maize silage as sole roughage source for finishing bulls

(Source: Cozzi et al., 2005)

![Picture of cutting equipment](image)

Penn State FP separator

Maize silage	Short	Long	P	SEM
> 19 mm %	2.9	27.7	***	2.8
> 8 mm %	77.0	57.8	***	4.6
Bottom %	22.2	14.5	**	5.5

9 mm Chopping length 19 mm
Feed and chemical composition of the experimental diets

	MS-Short+Straw	MS-Long	P	SE
MS-short				
kg/d	5.0	--		
MS-long				
“	--	10.0		
Starch sources				
“	4.2	3.2		
Soybean meal				
“	1.2	1.1		
Sugar beet puls				
“	1.3	1.0		
Bran				
“	0.3	0.4		
Straw				
“	0.7	--		
Min-vit				
“	0.4	0.4		
Dry matter				
%	57.7	50.6	**	2.3
Crude protein				
%dm	13.2	13.3	NS	0.7
NDF				
%dm	32.2	31.7	NS	2.2
Starch				
%dm	33.0	33.0	NS	1.8
F : C ratio				
%dm	32: 68	45 : 55		

XVII Congresso ASPA – Alghero (Sardegna, Italy), 29 maggio – 1 giugno 2007
Growth performance, ruminating behaviour and dressing out of finishing Limousine bulls fed the two experimental diets

	MS-Short+Straw	MS-Long	P	SE
Live weight:				
- Initial	426	426	NS	7
- Final	622	613	NS	39
Average daily gain	1.43	1.35	NS	0.25
Ruminating time:				
- / kg DM	35	40	*	3.0
- / kg NDF	107	125	*	9.9
Dressing out	62.6	62.0	NS	16.3

*P < 0.05.
The animal welfare issue

EU Directives 91/629/CEE e 97/2/EC

No EU regulation in force

Main deficiencies of our rearing facilities

• Housing pens with **fully** slatted floor

• Total **lack** of dedicated alleys & ramps for moving and loading cattle before transport to the abattoir
Italy has still a prominent position in the European scenario of beef cattle production

Solutions are needed to solve impellent issues, first of all the environmental impact of the intensive farms

These solutions must be based on robust scientific knowledge to be accepted by stakeholders & official institutions

Veal and beef producers and the scientific community should work together in a common effort to defend and promote our rearing systems