Evaluación del efecto del polímero súper absorbente en la eficiencia del uso del agua de la planta en condiciones de déficit de agua

Assessment of superabsorbent polymer effect on water use efficiency of plant under water deficit conditions

Naser Zinivand¹
Davoud Khodadadi-Dehkordi²
Heidar Ali Kashkuli³
Ali Asareh⁴
Aslan Egdernezhad⁵

¹Department of Water Engineering and Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran, naser.z0270@gmail.com
²Department of Water Engineering and Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran, davood_kh70@yahoo.com, https://orcid.org/0000-0003-2431-7240

DOI: 10.24850/j-tyca-2020-01-08
Resumen

El riego deficitario es una técnica óptima para producir productos en condiciones de estrés por sequía. El hidrogel súper absorbente es un polímero hidrofílico con redes hidrófilas tridimensionales reticuladas que es capaz de absorber y retener cantidades efectivas de agua y líquidos acuáticos. El objetivo de este estudio fue evaluar el efecto del polímero súper absorbente sobre la eficiencia del uso del agua (WUE) y el rendimiento de grano de *Vigna unguiculata* L. en condiciones de estrés por sequía. Los tratamientos experimentales incluyeron: tratamiento I_1S_0, integrada la demanda de 100% de ETc como cantidad de riego y con 0.0 g de SAP (I_1: 100%; S_0: sin SAP); tratamiento I_2S_1, que contiene una demanda de 75% de ETc como cantidad de riego y con 7.0 g de polímero súper-AB-A300 para planta (I_2: 75%; S_1: 7 g SAP); el
tratamiento I_3S_2, que incluye una demanda de 55% de ETc como cantidad de riego y con 14.0 g de polímero súper-AB-A300 para planta (I_3: 55%; S_2: 14 g SAP). El riego se realizó mediante un sistema de riego por goteo. De acuerdo con los resultados, el suelo tratado con polímero súper absorbente —en tratamiento de riego con déficit leve (I_2S_1)— hizo posible obtener el mismo rendimiento de grano que el tratamiento de riego completo (I_1S_0) y no hubo diferencias significativas entre ellos. Además, a la inversa, IWUE dependía de todo el requerimiento de agua a lo largo del ciclo de crecimiento, y para un IWUE más alto, el agua se reduciría bajo la demanda de riego para el rendimiento máximo de grano. Por lo tanto, la combinación de riego con déficit moderado y polímero súper absorbente (I_2S_1), que lleva a aumentar la productividad del agua de la planta (AWP), fue una política acceptable para optimizar el rendimiento del grano de caupí y la utilización del agua.

Palabras clave: riego deficitario, rendimiento de grano, contenido de agua en el suelo.

Abstract

Deficit irrigation is an optimum technique for producing products under drought stress conditions. The superabsorbent hydrogel is a hydrophilic polymer with cross-linked 3-D hydrophilic nets that is able to absorb and retain effective amounts of water and aquatic liquids. The objective of
this study was to assess the superabsorbent polymer effect on water use efficiency (WUE) and grain yield of *Vigna unguiculata* L. under drought stress conditions. The experimental treatments included: treatment I_1S_0, including 100% ETc demand as irrigation amount and with 0.0 g SAP (I_1:100% - S_0: without SAP); Treatment I_2S_1, including 75% ETc demand as irrigation amount and with 7.0 g Super-AB-A300 polymer for plant (I_2:75% - S_1:7 g SAP); Treatment I_3S_2, including 55% ETc demand as irrigation amount and with 14.0 g Super-AB-A300 polymer for plant (I_3:55% - S_2:14 g SAP). Irrigation was performed by a drip irrigation system. According to the results, the soil treated with superabsorbent polymer, in mild deficit irrigation treatment (I_2S_1), made it possible to obtain the same grain yield as the complete irrigation treatment (I_1S_0) and there was no significant difference between them. Besides, IWUE was conversely depended on the entire water requirement all along the growing cycle, and for higher IWUE, the water would be decreased under the irrigation demand for the maximum grain yield. Thus, the mix of mild deficit irrigation and superabsorbent polymer (I_2S_1), that leads to increase the plant water productivity (AWP), was an acceptable policy to optimize cowpea grain yield and water utilization.

Keywords: Deficit irrigation, grain yield, soil water content.

Abreviaturas
Recibido: 06/03/2019
Aceptado: 11/04/2019

Introducción

El déficit hídrico se conoce como el factor limitante más importante en los productos agrícolas, en especial en las regiones áridas y semiáridas. La agricultura ha sido influenciada de forma negativa por el agua de
baja obtención debido al cambio climático, lo que ha generado condiciones de estrés hídrico para plantas cruciales, como las leguminosas (Khodadadi-Dehkordi, 2016). Como Irán es una región con áreas áridas y semiáridas con recursos hídricos limitados, en caso de que no se mantenga el uso mínimo de agua en la planta, ésta experimentará un estrés por sequía y los productos sufrirían pérdidas irreparables (Lafitte, 2002). Irán está extremadamente expuesto a las influencias negativas del cambio climático. Una forma de uso óptimo de los recursos hídricos y su conservación es el empleo de polímeros súper absorbentes (SAP) que no sólo proporcionan las condiciones para mejorar la calidad de los productos, sino que también aumentan la eficiencia del consumo de agua en las zonas áridas y semiáridas (Fazeli-Rostampour, Theghat-al-Islami, & Mousavi, 2011). Los SAP pueden absorber y almacenar agua hasta varias veces su propio peso. Debido al medio ambiente, el agua retenida en el súper absorbente se descarga de manera gradual y, por lo tanto, el suelo permanecerá húmedo durante mucho tiempo sin necesidad de irrigación adicional. Esta propiedad tiene gran importancia para enfrentar la escasez de agua y reducir los efectos dañinos del estrés por sequía en las plantaciones (Haghhighi, Mozafarian, & Afifi-Pour, 2014; Wu, Liu, & Liang, 2008). Los polímeros súper absorbentes retienen agua en el suelo y reducen el número de frecuencias de riego hasta un 50% (Nazarli, Zardashti, Darvishzadeh, & Najafi, 2010). El nombre científico de caupí es Vigna unguiculata L., que pertenece a la familia de plantas Fabaceae. Es una
planta de la familia de frijoles; además de su efecto sobre la fertilidad del suelo, sus restos podrían estar bien almacenados en silos. También es una buena fuente de proteínas. Caupí es una valiosa planta rica en proteínas, carbohidratos, grasas, minerales y vitaminas. Podría usarse tanto para consumo humano como para animales; también se emplea en la industria farmacéutica (Shukla & Dixit, 1996). Es una de las más cosechadas en la provincia de Khuzestan, Irán. Amiri-Deh-Ahmadi, Parsa, Nezami y Ganjeali (2010) concluyeron que el estrés hídrico en la etapa de floración de la planta del garbanzo redujo el rendimiento de grano, la tasa de crecimiento relativo, la tasa de crecimiento de la planta, la tasa de fotosíntesis pura y aumentó el área foliar. Allahyari, Golchin y Vaezi (2013) informaron que los polímeros súper absorbentes tuvieron un efecto significativo en el aumento del rendimiento biológico, el número de vainas en la planta de garbanzo y el peso de 100 granos con respecto al tratamiento de control. Rajabi, Sajedi y Roshandel (2012) informaron que los efectos del ácido salicílico y el súper absorbente y sus efectos recíprocos sobre el número de vainas en la planta, el peso de 1 000 granos, el rendimiento de grano y el rendimiento biológico de la planta de garbanzo son significativos. Abhari, Azizi y Hareth-Abadi (2017), a través de la investigación del efecto del súper absorbente sobre el rendimiento y los componentes del rendimiento de la planta de garbanzo en condiciones de estrés por sequía, informó que el uso de súper absorbente permite lograr un rendimiento económico deseable. Timouri, Shiroui y Mohamadi-
Babazeidi (2013), a través de la investigación de los efectos del estrés por sequía y el súper absorbente en las propiedades fisiológicas de la planta de frijol seco, informaron que el estrés por sequía y el súper absorbente influyeron en las propiedades fisiológicas del frijol. Informaron las tasas más altas de área foliar y los valores de contenido de agua relativos pertenecían a la aplicación de súper absorbente. Además, el uso de polímeros súper absorbentes causó un aumento del rendimiento biológico, el número de vainas en la planta y el peso de 100 granos con respecto al tratamiento de control. Abbaslou, Kazemeini, Edalat y Dadkhoda (2014) informaron que el estrés por sequía tuvo un efecto significativo en la reducción del índice de área foliar (IAF), la tasa de fotosíntesis, la conducción estomática y la clorofila total de una planta de garbanzo. En las regiones áridas y semiáridas, que generalmente se identifican por el aumento de la tasa de evapotranspiración, la extensa salinidad del suelo y el suministro restringido de agua, la eficiencia del uso del agua (WUE) debe aumentarse (Lo Bianco, Talluto, & Farina, 2012). Esta condición requiere que se examinen los niveles de control más precisos del agua de riego, que podrían almacenar más agua sin perder las producciones (Ro, 2001). Por lo tanto, es crucial aplicar el riego deficitario para lograr una mejor relación entre la cantidad de agua de riego y el rendimiento óptimo. En estudios anteriores, el método de riego se basaba en el riego de superficie; sin embargo, pocos han evaluado los efectos del polímero súper absorbente y el riego deficitario en el sistema de riego por goteo.
El objetivo de este estudio fue evaluar el efecto del polímero súper absorbente en WUE y el rendimiento de grano de *Vigna unguiculata* L. en condiciones de estrés por sequía.

Materiales y métodos

Detalles experimentales

La granja experimental se realizó (31° 48’ 30’’ N y 48° 46’ 15’’ E, y una elevación de 11 m) en Hamidiyeh, provincia de Khuzestan, Irán. Hamidiyeh tiene un clima cálido y relativamente árido, con un verano caluroso y un invierno mediterráneo. La precipitación promedio anual es de unos 210 ml y la temperatura promedio es de unos 5 °C en el invierno y más de 50 °C en verano. La Tabla 1 muestra las propiedades químicas del agua de riego y la Tabla 2 presenta las propiedades físicas y químicas del suelo analizado.
Tabla 1. Las propiedades químicas del agua de riego.

EC (dS.m⁻¹)	Na (meq.l⁻¹)	Ca (meq.l⁻¹)	Mg (meq.l⁻¹)	SAR
1.1	5.5	4.4	2.5	2.96

Tabla 2. Las propiedades físicas y químicas del suelo.

Potasio soluble (mg.kg⁻¹)	Fósforo soluble (mg.kg⁻¹)	Densidad aparente (g.cm⁻³)	EC (dS.m⁻¹)	Textura de la tierra	Tamaño de las partículas del suelo (%)
353	50.6	1.59	6.85	Loam	Arena 34 Limo 44 Arcilla 22

Además, para 0-60 cm de la capa del suelo, el pH, el nitrógeno total y la materia orgánica del suelo fueron 7.4, 3.3 g/kg y 45.7 g/kg, respectivamente. El cultivo caupí utilizado en este estudio fue nombrado kamran. Debido a que el valor de la precipitación no es suficiente para proporcionar la necesidad de suministro de agua para el riego, los granos se sembraron a mano en hileras de 3 m de largo y 2 m de separación el 22 de junio de 2017-2018 (dos estaciones de crecimiento). Antes de la siembra, se ubicó un sistema de riego por goteo en cada fila con goteros de 25 cm separados. El valor del agua utilizada en cada evento de riego fue registrado por un medidor de flujo. La cantidad de 30 mm para el agua de riego se dio después de la siembra, y después de la aparición de los cultivos se adelgazaron para estabilizar una planta cada 25 cm en las filas (12 cultivos por fila);
frente a cada gotero, se obtuvo un cultivo individual de caupí. Después de la aparición de las plantas, para optimizar el uso del agua de riego y disminuir el uso del agua, el polímero súper-AB-A-300 (Tabla 3) se combinó con el suelo a una profundidad de 20 cm cerca del cultivo. Este polímero es de tipo granular y es producido por Rahab Resin Co., con una licencia de producto del Instituto de Polímeros y Petroquímicos de Irán (Rahab Resin Co, 2016). Este polímero hidrófilo es un tripolímero de acrilamida, ácido acrílico y acrilato de potasio.

Tabla 3. Las propiedades del polímero súper-AB-A-300.

Propiedades	Polímero Super-AB-A-300
Forma	granular
Densidad	1.4-1.5 (g.cm\(^{-3}\))
Tamaño de partículas	30-100 (µm)
Máxima estabilidad en el suelo	5 (año)
Capacidad práctica de captación de agua	600 (g.g\(^{-1}\))

El plan experimental se realizó como un diseño de bloques completos al azar con cuatro repeticiones (Figura 1).
Figura 1. Diseño del plano (sin escala). \(I_1 S_0\), \(I_2 S_1\) e \(I_3 S_2\) presentan filas de caupí con 0.0, 7.0 y 14.0 gramos de polímero súper-AB-A-300 en el suelo y con tratamientos de agua de riego relacionados con la demanda de \(ETc\) de 100, 75 y 55%, respectivamente.

Para aprobar la eficacia del polímero súper absorbente, sólo se consideraron unos pocos tratamientos de riego con diferentes niveles de polímero súper-AB-A-300: tratamiento \(I_1 S_0\), incluida la demanda de \(ETc\) de 100% como cantidad de riego y con 0.0 g de SAP (\(I_1\): 100%; \(S_0\): sin SAP); tratamiento \(I_2 S_1\), que incluye una demanda de \(ETc\) de 75% como cantidad de riego y con 7.0 g de polímero súper-AB-A-300 para planta (\(I_2\): 75%; \(S_1\): 7 g SAP); tratamiento \(I_3 S_2\), que incluye una demanda de...
55% de ET_c como cantidad de riego y con 14.0 g de polímero súper-AB-A-300 para planta (I_3: 55%; S_2: 14 g SAP).

Valoraciones

La evapotranspiración media diaria del cultivo de referencia (ET_0) se estimó utilizando el método de Penman-Monteith (Allen, 1998) y los datos meteorológicos obtenidos por la estación meteorológica Ahvaz que estaba cerca de la granja. Para la determinación de la evapotranspiración del cultivo (ET_c) o el requerimiento de agua del cultivo, ET_0 multiplicó el coeficiente de cultivo (Kc) (Allen, 1998). El agua de riego aplicada (AIW) en cada riego durante la etapa vegetativa para proporcionar 100% de la demanda de ET_c se calculó mediante la siguiente ecuación (Satriani, Catalano, & Scalcione, 2018; Allen, 1998):

$$AIW = \left(\frac{SWD + ET_c}{Ea}\right) \quad (1)$$

donde:

AIW: agua de riego aplicada (mm).
Ea: eficiencia de la aplicación (%), considerado en un 90% para riego por goteo.

ETc: evapotranspiración de cultivos (mm day$^{-1}$).

SWD: deficiencia de agua del suelo en un día (mm day$^{-1}$).

El contenido de agua en el suelo se monitorizó utilizando el sistema de multiplexación TDR (HandiTrase Soilmoisture Meter w/FCT Probe, model 6085K3, EUA). El sistema TDR fue regulado remotamente por una computadora. En el centro de las filas de bloques, 12 guías de onda TDR de 40 cm de largo se fijaron verticalmente de 5 a 45 cm de profundidad. La capa superficial del suelo está abierta a las variaciones, por lo tanto, las guías de onda TDR se fijaron después de los primeros 5 cm de suelo, especialmente debido al perfecto aislamiento (Satriani et al., 2018). Para medir el rendimiento de grano de la planta de caupí, se retiraron las vainas de 12 cultivos de cada hilera durante la cosecha y después de abandonar las cosechas para secar en la granja que se produjo el 13 de octubre de 2017-2018. El riego WUE se determinó como el rendimiento del grano dividido por el agua de riego aplicada a lo largo de toda la temporada de crecimiento. Para determinar la productividad agrícola del agua (PTA), el rendimiento del grano se dividió por el consumo total de agua (agua de riego más precipitaciones) (Abhari et al., 2017; Molden et al., 2010). Los resultados presentados en
las figuras y tablas fueron los valores medios de las dos temporadas de crecimiento.

Análisis estadístico

El análisis de los datos se realizó utilizando el *software* SPSS 22.0. Se empleó el análisis de varianza (ANOVA) para verificar las variaciones entre los tratamientos utilizados. $P < 0.05$ fue considerado estadísticamente significativo.

Resultados y discusión

Variaciones de la humedad del suelo y la ET_0 bajo diversos tratamientos con agua y súper absorbentes
El agua fácilmente disponible (RAW) para la planta de caupí que se cultivó en suelo franco y con la mayor profundidad de la raíz de casi 80 cm fue de 51.48 mm antes del estrés por humedad (Allen, 1998). Por lo tanto, debido a esta cantidad, la planta de caupí se irrigó cuando el SWD se volvió más alto o igual al agua fácilmente disponible. Se suponía que el agua inicial del suelo estaba en la capacidad del campo (FC), porque se produjo un riego extenso directamente después de la siembra (la profundidad del agua de riego fue de 30 mm igual a 300 m³/ha). Esto indicó que la deficiencia de agua en el suelo era de 0.0 al comienzo del ciclo de crecimiento y esta presunción fue aprobada por la evaluación del agua del suelo. Según la Ecuación (1), el valor total de AIW fue de 1 015 mm (relacionado con la demanda de 100% ET_c); 761.25 mm (relacionado con la demanda de 75% ET_c); 558.25 mm (relacionado con la demanda de 55% ET_c), para los tratamientos I_1S_0, I_2S_1 e I_3S_2, respectivamente. La Tabla 4 muestra las series de tiempo mensuales de lluvia, temperaturas y cantidad de agua de riego para el cultivar kamran.

Tabla 4. Promedio diario estimado de ET_0, precipitación, temperatura media diaria y cantidad de agua de riego para la planta de caupí.
(mm)	temperatura diaria (°C)	diaria estimada (mm day\(^{-1}\))	de la demanda de \(ETc\) (mm)			
	Mín.	Máx.	Promedio			
Julio	0	27.9	50.9	40.3	11.0	273
Agosto	0	27.9	49.4	39.1	10.7	325
Septiembre	0	22.1	47.6	34.8	9.7	327
Octubre	0	14.4	42.9	28.2	7.1	90

La Figura 2 indica la \(ET_0\) acumulada y el agua de riego acumulada consumida para la planta de caupí en todos los tratamientos. A lo largo de la etapa vegetativa y particularmente después de la aparición, la \(ETc\) diaria aumentó de forma significativa hasta casi 80 días después de la siembra.
Figura 2. ET_0 acumulativa y agua de riego acumulada consumida para la planta de caupí en todos los tratamientos a lo largo de la etapa vegetativa.

El contenido de agua del suelo depende directamente del procedimiento de ET y las tendencias del contenido de agua del suelo relacionadas con los tratamientos completos se indican en la Figura 3. Allen (1998) mostró que las condiciones óptimas del agua del suelo son las situaciones reales de campo en campos bien administrados. En este experimento, a pesar de que el suministro de agua fue menor, el agua del suelo no disminuyó de modo significativo en los tratamientos con riego deficitario. En correspondencia con los informes de Abhari et al. (2017); Dabhi, Bhatt y Pandit (2013); Parvathy, Jyothi, John y Sreekumar (2014); Satriani et al. (2018), y Khodadadi-Dehkordi
(2016), la misma tendencia podría deberse al hecho de que los polímeros súper absorbentes se impregnan de agua y luego la liberan gradualmente al suelo para equilibrar el depósito de agua inferior. Otros estudios han verificado que la aplicación de polímeros súper absorbentes en situaciones de déficit hídrico ha reducido la influencia adversa del riego deficitario (Satriani et al., 2018; Islam et al., 2011; Khodadadi-Dehkordi, 2016; Sayyari & Ghanbari, 2012). Además, Khodadadi-Dehkordi (2016), y Fallahi, Taherpour-Kalantari, Aghhavani-Shajari y Soltanzadeh (2015) informaron que la aplicación de polímero súper absorbente podría aumentar los intervalos de riego de las plantas.

Figura 3. Contenido volumétrico de agua del suelo en hileras de caupí con variados polímeros súper absorbentes y valores de agua.
Además, Wang y Wang (2010), y Khodadadi-Dehkordi (2016) han demostrado que la velocidad de evaporación del agua disminuyó en el suelo arenoso al agregar polímero súper absorbente, en comparación con el suelo sin SAP. Khodadadi-Dehkordi (2016); Dorraj, Golchin y Ahmadi (2010), y Akhter et al. (2004) informaron los efectos similares del polímero súper absorbente en las propiedades de retención de agua de los suelos francos y arenosos.

Caupí, rendimiento de grano

Las plantas de caupí deben irrigarse durante toda la temporada de crecimiento y se consideraron razonables para investigar la influencia del polímero súper absorbente y el agua de riego en el rendimiento del grano. De acuerdo con los resultados, la mayor cantidad de rendimiento de grano se logró cuando la planta se irrigó con el valor del agua de riego en un 100 y 75% de la demanda de \(ETc \); mientras que se logró una menor cantidad cuando la planta se irrigó con el valor del agua de riego por 55% de la demanda de \(ETc \). Además, el suelo tratado con polímero súper absorbente, en un tratamiento de riego con déficit leve \((I_{2}S_{1}) \), permitió obtener el mismo rendimiento de grano que el
tratamiento de riego completo (I_1S_0) y no hubo diferencias significativas entre ellos. Esto podría estar relacionado con el hecho de que el polímero súper absorbente es capaz de retener agua y nutrientes, y liberarlos en situaciones de estrés hídrico, reconstruyendo las condiciones óptimas de agua del suelo apropiadas para el crecimiento de los cultivos. Este resultado es confirmado por Khodadadi-Dehkordi (2016); Abhari et al. (2017); y Satriani et al. (2018). La Figura 4 indica una relación polinómica significativa de segundo grado entre el rendimiento de grano de caupí y el agua de riego estacional aplicada.

![Figura 4. La relación entre el rendimiento de grano de caupí y el agua de riego estacional aplicada.](image-url)
Esta relación es curvilínea, e indica que el rendimiento del grano de caupí aumenta con la cantidad de agua de riego; cuando se alcanza un nivel particular, ya no sube. Una investigación realizada por Khodadadi-Dehkordi (2015, 2016) aprobó estas consecuencias. Investigó la aplicación de polímero súper absorbente en el rendimiento de maíz en condiciones de riego deficitarias e informó que al aumentar la intensidad del estrés por sequía, el rendimiento de grano de maíz disminuyó, sin embargo, no hubo una variación significativa entre 100 y 75% de los tratamientos de demanda de \(ETc \) para el cultivo de maíz, con 0.0 y 45.0 g.m\(^{-2}\) de polímero súper absorbente, respectivamente. Por el contrario, el rendimiento mínimo de grano se logró en los tratamientos con 50% de la demanda de \(ETc \) para los cultivos. Los resultados mostrados en la Tabla 5 indican que las cantidades máximas de IWUE y AWP con promedios variados significativos \((P < 0.05)\) se lograron en los tratamientos \(I_2S_1 \) e \(I_3S_2 \), en comparación con el control (tratamiento \(I_1S_0 \)).

Tabla 5. Rendimiento de grano de caupí, valores de riego y precipitación, datos WUE y AWP kg/ha mm.

Riego y tratamientos de polímeros súper absorbentes	Caupí, rendimiento de grano (kg. ha\(^{-1}\))	Riego + precipitaciones (mm)	WUE	AWP
\(I_1S_0 \)	3210a	1015+0	3.16c	3.16c
Las letras variadas dentro de cada columna muestran una variación significativa entre los tratamientos en $P < 0.05$.

Khodadadi-Dehkordi (2016), y Zhang, Chen, Sun, Pei y Wang (2008) informaron que IWUE se relacionó a la inversa con el requerimiento total de agua de riego a lo largo del ciclo de crecimiento; para IWUE mayor, el agua se reduciría bajo la demanda de agua de riego para el rendimiento máximo de grano. Por lo tanto, la combinación de riego con déficit moderado y polímero súper absorbente (I_2S_1), que lleva a aumentar el AWP, fue una política aceptable para optimizar el rendimiento de grano de caupí y la utilización del agua. Estas consecuencias logradas fueron aprobadas por las investigaciones sobre maíz, sorgo, algodón, maní, frijol y garbanzo (Khodadadi-Dehkordi, 2015; Khodadadi-Dehkordi, 2016; Abhari et al., 2017; Hazrati et al., 2017; Timouri et al., 2013; Mazen, Radwan, & Ahmed, 2015; Najafinezhad, Tahmasebi-Sarvestani, Modarres-Sanavy, & Naghavi, 2014; Satriani et al., 2018).

Conclusiones

Tecnología y ciencias del agua, ISSN 2007-2422, 11(1), 315-341. DOI: 10.24850/j-tyca-2020-01-08
Los hallazgos en este estudio indicaron que el uso de un polímero súper absorbente para retener el agua de riego conservó el rendimiento del grano y, al mismo tiempo, disminuyó el valor del agua de riego. La aplicación del polímero súper-AB-A300 para la planta de caupí en condiciones de estrés por sequía conservó una capacidad adecuada de agua del suelo. Las cantidades máximas de rendimiento de grano de caupí bajo niveles variados de polímero súper absorbente y valores de agua de riego se lograron cuando la planta de caupí se irrigó con el valor de agua de riego en un 100 y 75% de la demanda de ETc, pero la combinación de riego deficitario y polímero súper absorbente lleva a el mayor AWP. Por lo tanto, se debe promover el uso del polímero súper-AB-A300 en las plantas irrigadas, también en función de las consecuencias logradas y, como se muestra en el texto, aprobado por otras investigaciones en plantas variadas. Este estudio tiene gran interés por las regiones cálidas y secas, donde las situaciones de aridez en la temporada de verano permiten planificar la prueba para investigar el efecto del SAP en cultivos variados en las granjas experimentales. Se sugiere que los nuevos experimentos para evaluar el valor óptimo del polímero súper absorbente aplicado en el suelo, el tipo de SAP y sus niveles tomen en cuenta factores como la planta y el tipo de suelo que se necesitan.
Referencias

Amiri-Deh-Ahmadi, S. R., Parsa, M., Nezami, A., & Ganjeali, A. (2010). The effects of drought stress at different phenological stages on growth indices of chickpea (*Cicer arietinum* L.) in greenhouse conditions. *Iranian Journal of Pulses Research*, 1(2), 69-84 (in Persian).

Allahyari, S., Golchin, A., & Vaezi, A. R. (2013). Study on effect of superabsorbent polymer application on yield and yield components of two chickpea cultivars under rainfed conditions. *Journal of Plant Production*, 20(1), 125-140 (in Persian).

Abhari, A., Azizi, A., & Hareth-Abadi, B. (2017). The effect of superabsorbent on pea yield under drought stress of the season end. *Journal of Crop Production*, 10(1), 191-202 (in Persian).

Abbaslou, L., Kazemeini, S. A. R., Edalat, M., & Dadkhodai, A. (2014). Effect of drought stress and planting manner on the some physiologic and biologic characteristics of two *Cicer arietinum* L. cultivar. *Journal of Crop Improvement*, 16(4), 933-943 (in Persian).

Allen, R. G. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. In: *FAO Irrigation and Drainage* (paper 56). Rome, Italy: Food and Agriculture Organization.
Akhter, J., Mahmood, K., Malik, K. A., Mardan, M., Ahmad, M., & Iqbal, M. M. (2004). Effects of hydrogel amendment on water storage of Sandy loam and loam soils and seedling growth of barley wheat and chickpea. *Plant, Soil and Environment, 50*(10), 463-469.

Dorraji, S. S., Golchin, A., & Ahmadi, S. (2010). The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. *CLEAN-Soil, Air, Water, 38*, 584-591.

Dabhi, R., Bhatt, N. & Pandit, B. (2013). Superabsorbent polymers an innovative water-saving technique for optimizing crop yield. *International Journal of Innovative Research in Science, Engineering and Technology, 2*(10), 5333-5340.

Fazeli-Rostampour, M., Theghat-al-Islami, M. G., & Mousavi, S. Gh. R. (2011). Effect of water stress and polymer (Super AB A 200) on yield and water use efficiency of corn (*Zea mays L.*) in Birjand region. *Environmental Stresses in Crop Sciences, 4*(1), 11-19 (in Persian).

Fallahi, H. R., Taherpour-Kalantari, R., Aghhavani-Shajari, M., & Soltanzadeh, M. G. (2015). Effect of superabsorbent polymer and irrigation deficit on water use efficiency, growth and yield of cotton. *Notulae Scientia Biologicae, 7*(3), 338-344.

Haghighi, M., Mozafarian, M., & Afifi-Pour, Z. (2014). Impact evaluation of superabsorbent polymer and different levels of deficit irrigation on growth and some qualitative and quantitative properties of
Lycopersicum esculentum L. *Journal of Horticulture Science*, 28(1), 125-133 (in Persian).

Hazrati, S., Tahmasebi-Sarvestani, S., Mokhtassi-Bidgoli, A., Modarres-Sanavya, S. A. M., Mohammadi, H., & Nicola, S. (2017). Effects of zeolite and water stress on growth yield and chemical compositions of *Aloe vera* L. *Agricultural Water Management*, 181, 66-72.

Islam, M. R., Xue, X., Mao, S., Ren, C., Eneji, A. E., & Hu, Y. (2011). Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in oat (*Avena sativa* L.) under drought stress. *Journal of the Science of Food and Agriculture*, 91(4), 680-686, DOI: 10.1002/jsfa.4234

Khodadadi-Dehkordi, D. (2015). Evaluation of superabsorbent application on corn yield under deficit irrigation. *International Journal of Agricultural and Biosystems Engineering*, 9(7), 806-810.

Khodadadi-Dehkordi, D. (2016). The effects of superabsorbent polymers on soils and plants. *Pertanika Journal of Tropical Agricultural Science*, 39(3), 267-298.

Lafitte, R. (2002). Relationship between leaf relative water content during reproductive stage water deficit and grain formation in rice. *Field Crops Research*, 76(2-3), 165-174.
Lo Bianco, R., Talluto, G., & Farina, V. (2012). Effects of partial root-zone drying and rootstock vigor on dry matter partitioning of apple trees (Malus domestica cvar Pink Lady). The Journal of Agricultural Science, 150(1), 75-86, DOI: https://doi.org/10.1017/S0021859611000463

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management, 97(4), 528-535, DOI: 10.1016/j.agwat.2009.03.023

Mazen, A. M., Radwan, D. E. M., & Ahmed, A. F. (2015). Growth responses of maize plants cultivated in sandy soil amended by different superabsorbent hydrogels. Journal of Plant Nutrition, 38(3), 325-337, Recuperado de https://doi.org/10.1080/01904167.2014.957393

Najafinezhad, H., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S. A. M., & Naghavi, H. (2014). Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Archives of Agronomy and Soil Science, 61(7), 891-906. Recuperado de https://doi.org/10.1080/03650340.2014.959938

Nazarli, H., Zardashti, M. R., Darvishzadeh, R., & Najafi, S. (2010). The effect of water stress and polymer on water use efficiency, yield
and several morphological traits of sunflower under greenhouse conditions. *Notulae Scientia Biologicae*, 2(4), 53-58.

Parvathy, P. C., Jyothi, A. N., John, K. S., & Sreekumar, J. (2014). Cassava starch-based superabsorbent polymer as soil conditioner: impact on soil physico-chemical and biological properties and plant growth. *CLEAN- Soil, Air, Water*, 42(11), 1610-1617.

Rajabi, L., Sajedi, N. V., & Roshandel, M. (2012). Yield and yield components reaction of rainfed pea to salicylic acid and superabsorbent polymer. *Journal of Crop Production Research*, 4(4), 343-353 (in Persian).

Rahab Resin Co. (2016). *Rahab Resin Company*. Recuperado de http://www.bizsearch.com/company/Rahab_Resin_Co_280864.htm

Ro, H. M. (2001). Water use of young “Fuji” apple trees at three soil moisture regimes in drainage lysimeters. *Agricultural Water Management*, 50(3), 185-196. DOI: 10.1016/S0378-3774(01)00099-3

Shukla, S. K., & Dixit, R. S. (1996). Nutrient and plant population management in summer green gram (*Phaseolus radiates*). *Indian Journal of Agronomy*, 41(1), 78-83.

Satriani, A., Catalano, M., & Scalcione, E. (2018). The role of superabsorbent hydrogel in bean crop cultivation under deficit
irrigation conditions: A case study in Southern Italy. *Agricultural Water Management*, 195(C), 114-119, DOI: 10.1016/j.agwat.2017.10.008

Sayyari, M., & Ghanbari, F. (2012). Effects of super absorbent polymer A200 on the growth, yield and some physiological responses in sweet pepper (*Capsicum annuum* L.) under various irrigation regimes. *International Journal of Agricultural and Food Research*, 1(1), 1-11.

Timouri, A., Shirouei, H., & Mohamadi-Babazeidi, H. (2013). Evaluation of drought stress and superabsorbent effects on physiologic properties of fava bean varieties. *The First International Conference of Planning, Conservation, Environmental Protection and Sustainable Development*, Hamedan, Iran (in Persian).

Wang, W., & Wang, A. (2010). Preparation, swelling and water retention properties of crosslinked superabsorbent hydrogels based on guar gum. *Advanced Materials Research*, 96(2010), 117-182.

Wu, L., Liu, M., & Liang, R. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water retention. *Bioresource Technology*, 99(3), 547-554.

Zhang, X., Chen, S., Sun, H., Pei, D., & Wang, Y. (2008). Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. *Irrigation Science*, 27(1), 1-10.
