Abstract. This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; nevertheless, their computation may be very expensive for large-scale problems, and resorting to approximations of them may be convenient. Here we propose a procedure for building inexact constraint preconditioners by updating a seed constraint preconditioner computed for a KKT matrix at a previous interior point iteration. These updates are obtained through low-rank corrections of the Schur complement of the (1,1) block of the seed preconditioner. The updated preconditioners are analyzed both theoretically and computationally. The results obtained show that our updating procedure, coupled with an adaptive strategy for determining whether to reinitialize or update the preconditioner, can enhance the performance of interior point methods on large problems.

Key words. convex quadratic programming, interior point methods, KKT systems, constraint preconditioners, matrix updates.

AMS subject classifications. 65F08, 65F10, 90C20, 90C51.

1. Introduction. Second-order methods for constrained and unconstrained optimization require, at each iteration, the solution of a system of linear equations. For large-scale problems it is common to solve each system by an iterative method coupled with a suitable preconditioner. Since the computation of a preconditioner for each linear system can be very expensive, in recent years there has been a growing interest in reducing the cost for preconditioning by sharing some computational effort through subsequent linear systems.

Updating preconditioner frameworks for sequences of linear systems have a common feature: based on information generated during the solution of a linear system in the sequence, a preconditioner for a subsequent system is generated. An efficient updating procedure is expected to build a preconditioner which is less effective in terms of linear iterations than the one computed from scratch, but more convenient in terms of cost for the overall linear algebra phase. The approaches existing in literature can be broadly classified as: limited-memory quasi-Newton preconditioners for symmetric positive definite and nonsymmetric matrices (see, e.g., [10, [34, [39]), recycled Krylov information preconditioners for symmetric and nonsymmetric matrices (see, e.g., [19, [28, [30, [36]), updates of factorized preconditioners for symmetric positive definite and nonsymmetric matrices (see, e.g., [23, [24, [38, [38]).
In this paper we study the problem of preconditioning sequences of KKT systems arising in the solution of the convex quadratic programing (QP) problem

\[
\text{minimize } \frac{1}{2} x^T Q x + c^T x, \\
\text{subject to } A_1 x - s = b_1, \quad A_2 x = b_2, \quad x + v = u, \quad (x, s, v) \geq 0
\]

by Interior Point (IP) methods \([32, 43]\). Here \(Q \in \mathbb{R}^{n \times n}\) is symmetric positive semidefinite, and \(A_1 \in \mathbb{R}^{m_1 \times n}, A_2 \in \mathbb{R}^{m_2 \times n}\), with \(m = m_1 + m_2 \leq n\). Note that \(s\) and \(v\) are slack variables, used to transform the inequality constraints \(A_1 x \geq b_1\) and \(x \leq u\) into equality constraints.

The updating strategy proposed here concerns constraint preconditioners (CPs) \([11, 14, 20, 22, 29, 35, 40]\). Using the factorization of a seed CP computed for some KKT matrix of the sequence, the factorization of an approximate CP is built for subsequent systems. The resulting preconditioner is a special case of inexact CP \([12, 25, 37, 40, 41]\) and is intended to reduce the computational cost while preserving effectiveness. To the best of our knowledge, this is the first attempt to study, both theoretically and numerically, a preconditioner updating technique for sequences of KKT systems arising from \((1.1)\). A computational analysis of the reuse of CPs in consecutive IP steps, which can be regarded as a limit case of preconditioner updating, has been presented in \([16]\).

Concerning preconditioner updates for sequences of systems arising from IP methods, we are aware of the work in \([1, 42]\), where linear programming problems are considered. In this case, the KKT linear systems are reduced to the so-called normal equation form; some systems of the sequence are solved by the Cholesky factorization, while the remaining ones are solved by the Conjugate Gradient method preconditioned with a low-rank correction of the last computed Cholesky factor.

Motivated by \([1, 42]\), in this work we adapt the low-rank corrections given therein to our problem. In our approach the updated preconditioner is an inexact CP where the Schur complement of the (1,1) block is replaced by a low-rank modification of the corresponding Schur complement in the seed preconditioner. The validity of the proposed procedure is supported by a spectral analysis of the preconditioned matrix and by numerical results illustrating its performance.

The paper is organized as follows. In section 2 we provide preliminaries on CPs and new spectral analysis results for general inexact CPs. In section 3 we present our updating procedure and specialize the spectral analysis conducted in the previous section to the updated preconditioners. In section 4 we discuss implementation issues of the updating procedure and present numerical results obtained by solving sequences of linear systems arising in the solution of convex QP problems. These results show that our updating technique is able to reduce the computational cost for solving the overall sequence whenever the updating strategy is performed in conjunction with adaptive strategies for determining whether to recompute the seed preconditioner or update the current one.

In the following, \(\| \cdot \|\) denotes the vector or matrix 2-norm and, for any symmetric matrix \(A\), \(\lambda_{\text{min}}(A)\) and \(\lambda_{\text{max}}(A)\) denote its minimum and maximum eigenvalues.

2. Inexact Constraints Preconditioners. In this section we discuss the features of the KKT matrices arising in the solution of problem \((1.1)\) by IP methods and present spectral properties of both CPs and inexact CPs. This analysis will be used to develop our updating strategy. Throughout the paper we assume that the matrix
\[A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \in \mathbb{R}^{m \times n} \] is full rank.

The application of an IP method to problem (1.1) gives rise to a sequence of symmetric indefinite matrices differing by a diagonal, possibly indefinite, matrix. In fact, at the \(k \)th IP iteration, the KKT matrix takes the form

\[
A_k = \begin{bmatrix} Q + \Theta_k^{(1)} & A^T \\ A & -\Theta_k^{(2)} \end{bmatrix},
\]

where \(\Theta_k^{(1)} \in \mathbb{R}^{n \times n} \) is diagonal positive definite and \(\Theta_k^{(2)} \in \mathbb{R}^{m \times m} \) is diagonal positive semidefinite. In particular,

\[
\Theta_k^{(1)} = X_k^{-1} W_k + V_k^{-1} T_k,
\]

\[
\Theta_k^{(2)} = \begin{bmatrix} Y_k^{-1} S_k & 0 \\ 0 & 0 \end{bmatrix},
\]

where \((x_k, w_k)\), \((s_k, y_k)\), and \((v_k, t_k)\) are the pairs of complementary variables of problem (1.1) evaluated at the current iteration, and \(X_k, W_k, S_k, Y_k, V_k \) and \(T_k \) are the corresponding diagonal matrices according to the standard IP notation. If the QP problem has no linear inequality constraints then \(\Theta_k^{(2)} \) is the zero matrix; otherwise \(\Theta_k^{(2)} \) admits positive diagonal entries corresponding to slack variables for linear inequality constraints.

To simplify the notation, in the rest of the paper we drop the iteration index \(k \) from \(A_k, \Theta_k^{(1)} \) and \(\Theta_k^{(2)} \). Hence,

\[(2.1) \quad A = A_k,\]

and the CP for \(A \) is given by

\[(2.2) \quad \mathcal{P}_{ex} = \begin{bmatrix} G & A^T \\ A & -\Theta^{(2)} \end{bmatrix},\]

where \(G \) is an approximation to \(Q + \Theta^{(1)} \). We use the common choice where \(G \) is the diagonal matrix with the same diagonal entries as \(Q + \Theta^{(1)} \), i.e.,

\[G = \text{diag}(Q + \Theta^{(1)}). \]

The matrix \(\mathcal{P}_{ex}^{-1} A \) has an eigenvalue at 1 with multiplicity \(2m - p \), with \(p = \text{rank}(\Theta^{(2)}) \), and \(n - m + p \) real positive eigenvalues such that the better \(G \) approximates \(Q + \Theta^{(1)} \) the more clustered around 1 they are \([22, 35]\).

The application of \(\mathcal{P}_{ex} \) requires its factorization, which can be computed either by using any \(LDL^T \) algorithm with a suitable pivoting strategy, e.g., the Bunch-Parlett one \([13]\), or by exploiting the block factorization

\[(2.3) \quad \mathcal{P}_{ex} = \begin{bmatrix} I_n \\ AG^{-1} \end{bmatrix} \begin{bmatrix} G & 0 \\ 0 & -S \end{bmatrix} \begin{bmatrix} I_n & G^{-1} A^T \\ 0 & I_m \end{bmatrix},\]

where \(I_r \) is the identity matrix of dimension \(r \) and \(S \) is the negative Schur complement of \(G \) in \(A \),

\[(2.4) \quad S = AG^{-1} A^T + \Theta^{(2)},\]
and forming a Cholesky-like factorization of S. In this work we consider the latter factorization.

In problems where a large part of the computational cost for solving the linear system depends on the computation of a Cholesky-like factorization of S, this matrix may be replaced by a computationally cheaper approximation of it \[25, 37, 40\]. Letting S_{inex} be such approximation, the inexact CP takes the form

\[
P_{\text{inex}} = \begin{bmatrix} I_n & 0 \\ AG^{-1} & I_m \end{bmatrix} \begin{bmatrix} G & 0 \\ 0 & -S_{\text{inex}} \end{bmatrix} \begin{bmatrix} I_n & G^{-1}A^T \\ 0 & I_m \end{bmatrix}.
\]

(2.5)

Approximations of CPs may be also obtained by replacing the constraint matrix A in (2.2) with a sparse approximations of it \[12\].

2.1. Spectral analysis. The spectral analysis of $P_{\text{inex}}^{-1}A$ has been addressed in the general context of saddle point problems \[8, 9, 41\]. Starting from these results, we provide further bounds which will be exploited to design preconditioner updates.

We are aware that the behaviour of many Krylov solvers, such as the SQMR one used in our numerical experiments, is not characterized by the distribution of the eigenvalues of the system matrix; however, in many practical cases the convergence of these solvers is determined by the spectrum of the coefficient matrix and therefore our updating procedure will be guided by the spectral analysis presented next.

Let us consider the eigenvalue problem

\[
\begin{bmatrix} Q + \Theta^{(1)} & A^T \\ A & -\Theta^{(2)} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} P_{\text{inex}} x \\ y \end{bmatrix},
\]

and the Cholesky factorization

\[
S_{\text{inex}} = RR^T,
\]

with R lower triangular. By using (2.5), the eigenvalue problem can be written as

\[
\begin{bmatrix} I_n & 0 \\ -AG^{-1} & I_m \end{bmatrix} \begin{bmatrix} Q + \Theta^{(1)} & A^T \\ A & -\Theta^{(2)} \end{bmatrix} \begin{bmatrix} I_n & -G^{-1}A^T \\ 0 & I_m \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \lambda \begin{bmatrix} G & 0 \\ 0 & -S_{\text{inex}} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix},
\]

where

\[
\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} I_n & G^{-1}A^T \\ 0 & I_m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.
\]

The matrix at the left-hand side is equal to

\[
\begin{bmatrix} Q + \Theta^{(1)} & A(I_n - G^{-1}(Q + \Theta^{(1)})) \\ A(I_n - G^{-1}(Q + \Theta^{(1)})) & -A(2G^{-1} - G^{-1}(Q + \Theta^{(1)}G^{-1})A^T - \Theta^{(2)} \end{bmatrix},
\]

while, by (2.6), the matrix at the right-hand side can be written as

\[
\begin{bmatrix} G & 0 \\ 0 & -S_{\text{inex}} \end{bmatrix} = \begin{bmatrix} G^2 & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} I_n & 0 \\ 0 & -I_m \end{bmatrix} \begin{bmatrix} G^2 & 0 \\ 0 & R^T \end{bmatrix}.
\]

Therefore, the eigenvalue problem becomes

\[
\begin{bmatrix} X & Y^T \\ Y & -Z \end{bmatrix} \begin{bmatrix} \tilde{u} \\ \tilde{v} \end{bmatrix} = \lambda \begin{bmatrix} I_n & 0 \\ 0 & -I_m \end{bmatrix} \begin{bmatrix} \tilde{u} \\ \tilde{v} \end{bmatrix},
\]

(2.7)
where

\begin{align}
 (2.8) & \quad X = G^{-\frac{1}{2}}(Q + \Theta^{(1)})G^{-\frac{1}{2}}, \\
 (2.9) & \quad Y = R^{-1}AG^{-\frac{1}{2}}(I_n - X), \\
 (2.10) & \quad Z = R^{-1}AG^{-\frac{1}{2}}(2I_n - X)G^{-\frac{1}{2}}A^TR^{-T} + R^{-1}\Theta^{(2)}R^{-T},
\end{align}

and

\[
\begin{bmatrix}
 \tilde{u} \\
 \tilde{v}
\end{bmatrix} = \begin{bmatrix}
 G_\frac{1}{2} & 0 \\
 0 & R^T
\end{bmatrix} \begin{bmatrix}
 u \\
 v
\end{bmatrix}.
\]

The eigenvalues of $P_{\text{inex}}^{-1}A$ can be characterized and bounded using Propositions 2.2, 2.3 and 2.12. Some of these results are summarized in the next theorem, where $\Re(\lambda)$ and $\Im(\lambda)$ denote the real and imaginary parts of λ, respectively. We note that the assumption of positive definiteness or semidefiniteness on Z can be fulfilled by a proper scaling of X enforcing its eigenvalues to be smaller than 2.

Theorem 2.1. Let A and P_{inex} be the matrices in (2.1) and (2.5), and let X, Y, Z be the matrices in (2.8)–(2.10). Let λ and $[\tilde{u}^T, \tilde{v}^T]^T$ be an eigenpair of the generalized eigenvalue problem (2.7). Then, $P_{\text{inex}}^{-1}A$ has at most $2m$ eigenvalues with non-zero imaginary part, counting conjugates. Furthermore, if Y has full rank and Z is positive semidefinite, it holds that

- if $\Im(\lambda) \neq 0$, then

 \[|\Im(\lambda)| \leq \|Y\|,\]
 \[\frac{1}{2}(\lambda_{\min}(X) + \lambda_{\min}(Z)) \leq \Re(\lambda) \leq \frac{1}{2}(\lambda_{\max}(X) + \lambda_{\max}(Z)),\]

- if $\Im(\lambda) = 0$, then either
 \[2\min\{\lambda_{\min}(X), \lambda_{\min}(Z)\} \leq \lambda \leq \max\{\lambda_{\max}(X), \lambda_{\max}(Z)\},\]
 for $\tilde{v} \neq 0$, or
 \[\lambda_{\min}(X) \leq \lambda \leq \lambda_{\max}(X),\]
 for $\tilde{v} = 0$.

The same result holds if Y is rank deficient with Z positive definite on $\ker(Y^T)$.

The forms (2.8)–(2.10) of X, Y and Z show that X depends only on the approximation G of $Q + \Theta^{(1)}$ while Y and Z depend on S_{inex}. In the next theorem we derive results which highlight the dependence of $\|Y\|$ and $\|Z\|$, and consequently of the spectrum of $P_{\text{inex}}^{-1}A_k$, on the quality of S_{inex} as an approximation to S.

Theorem 2.2. Let A and P_{inex} be the matrices in (2.1) and (2.5), and let λ be an eigenvalue of $P_{\text{inex}}^{-1}A_k$. Let X, Y, and Z be the matrices in (2.8)–(2.10) and suppose that Z is positive definite. Then

\[\|Y\| \leq \sqrt{\lambda_{\max}(S_{\text{inex}}^{-1}AG^{-1}A^T)}\|I_n - X\|,\]

Furthermore, if $\Theta^{(2)} \neq 0$, then

\begin{align}
 (2.12) & \quad \lambda_{\max}(Z) \leq \lambda_{\max}(S_{\text{inex}}^{-1}S) \max\{2 - \lambda_{\min}(X), 1\}, \\
 (2.13) & \quad \lambda_{\min}(Z) \geq \lambda_{\min}(S_{\text{inex}}^{-1}S) \min\{2 - \lambda_{\max}(X), 1\},
\end{align}
\[
\text{otherwise}
\]
\[
\lambda_{\text{max}}(Z) \leq \lambda_{\text{max}}(S_{\text{inex}}^{-1}S)(2 - \lambda_{\text{min}}(X)),
\]
\[
\lambda_{\text{min}}(Z) \geq \lambda_{\text{min}}(S_{\text{inex}}^{-1}S)(2 - \lambda_{\text{max}}(X)).
\]

\textbf{Proof.} From (2.9) it follows that
\[
\|Y\| \leq \|R^{-1}AG^{-\frac{1}{2}}\| I_n - X\| = \sqrt{\lambda_{\text{max}}(R^{-1}AG^{-1}ATR^{-T})\|I_n - X\|}.
\]
The bound (2.11) follows noting that \(R^{-1}AG^{-1}ATR^{-T}\) and \(S_{\text{inex}}^{-1}AG^{-1}AT\) are similar.

To prove the bounds on the eigenvalues of \(Z\) when \(\Theta^{(2)} \neq 0\), we note that \(Z = R^{-1}AG^{-\frac{1}{2}}(\Theta^{(2)})^{\frac{1}{2}}\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]\left[\begin{array}{c} G^{-\frac{1}{2}}A^T(\Theta^{(2)})^{\frac{1}{2}} \\ \Theta^{(2)} \end{array}\right]R^{-T}.
\]
Let \(VU\) be the rank-retaining factorization of \(G^{-\frac{1}{2}}A^T(\Theta^{(2)})^{\frac{1}{2}}\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]\), where \(V \in \mathbb{R}^{(n+m)\times m}\) has orthogonal columns and \(U \in \mathbb{R}^{m\times m}\) is upper triangular and nonsingular. Then \(S = U^T U\) and
\[
Z = R^{-1}U^TV^T\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]VUR^{-T};
\]
letting \(N = R^{-1}U^T\), we have
\[
\lambda_{\text{max}}(Z) = \|Z\| \leq \|N\|^2 \left\|\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]\right\|.
\]
Inequality (2.12) follows observing that \(N^TN\) is similar to \(S_{\text{inex}}^{-1}S\) and that
\[
\left\|\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]\right\| = \max\{\lambda_{\text{max}}(2I_n - X), 1\} = \max\{2 - \lambda_{\text{min}}(X), 1\}.
\]
In order to bound \(\lambda_{\text{min}}(Z)\), we observe that
\[
\frac{1}{\lambda_{\text{min}}(Z)} = \|Z^{-1}\| \leq \|N^{-1}\|^2 \left\|\left(V^T\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]V\right)^{-1}\right\|.
\]
Since \(N^{-T}N^{-1}\) is similar to \(S^{-1}S_{\text{inex}}^{-1}\), we have
\[
\|N^{-1}\|^2 = \frac{1}{\lambda_{\text{min}}(S_{\text{inex}}^{-1}S)}.
\]
Furthermore, using the Courant-Fischer minimax characterization (see, e.g., [31, Theorem 8.1-2]), we get
\[
\left\|\left(V^T\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]V\right)^{-1}\right\| = \frac{1}{\lambda_{\text{min}}\left(V^T\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]V\right)}
\]
\[
\leq \frac{1}{\lambda_{\text{min}}\left[\begin{array}{cc} 2I_n - X & 0 \\ 0 & I_m \end{array}\right]}
\]
\[
= \min\{2 - \lambda_{\text{max}}(X), 1\}.
\]
which yields (2.13).

When \(\Theta^{(2)} = 0 \), inequalities (2.14) and (2.15) can be derived by assuming that
\(VU \) is the rank-retaining factorization of \(G^{-\frac{1}{2}}A^T \), with \(V \in \mathbb{R}^{n \times m} \) having orthogonal columns and \(U \in \mathbb{R}^{m \times m} \) upper triangular and nonsingular. In this case equation (2.16) becomes
\[
Z = R^{-1}U^TV^T(2I_n - X)VUR^{-T}.
\]
and the thesis follows by reasoning as above.

Remark 2.1. If \(Q \) is diagonal then in Theorems 2.1 and 2.2 we have \(X = I_n, Y = 0 \) and \(Z \) positive definite. Hence, all the eigenvalues of \(P_{\text{inex}}^{-1}A \) are real. Furthermore, it results that \(P_{\text{inex}}^{-1}A \) has at least \(n \) unit eigenvalues with \(n \) associated independent eigenvectors of the form \([x^T, 0^T]^T \) (corresponding to the case \(\bar{v} = 0 \) in Theorem 2.1), and that the remaining eigenvalues lie in the interval \([\lambda_{\min}(S_{\text{inex}}^{-1}S), \lambda_{\max}(S_{\text{inex}}^{-1}S)] \) (see [25]).

3. Building an inexact constraint preconditioner by updates. In this section we design a strategy for updating the CP built for some seed matrix of the KKT sequence. The update is based on low-rank corrections and generates inexact constraint preconditioners for subsequent systems.

Let us consider a KKT matrix \(A_{\text{seed}} \) generated at some iteration \(r \) of the IP procedure,
\[
A_{\text{seed}} = \begin{bmatrix} Q + \Theta^{(1)}_{\text{seed}} & A^T \\ A & -\Theta^{(2)}_{\text{seed}} \end{bmatrix},
\]
where \(\Theta^{(1)}_{\text{seed}} \in \mathbb{R}^{n \times n} \) is diagonal positive definite and \(\Theta^{(2)}_{\text{seed}} \in \mathbb{R}^{m \times m} \) is diagonal positive semidefinite. The corresponding seed CP has the form
\[
P_{\text{seed}} = \begin{bmatrix} H & A^T \\ A & -\Theta^{(2)}_{\text{seed}} \end{bmatrix},
\]
where \(H = \text{diag}(Q + \Theta^{(1)}_{\text{seed}}) \). Assume that a block factorization of \(P_{\text{seed}} \) has been obtained by computing the Cholesky-like factorization of the negative Schur complement \(S_{\text{seed}} \) of \(H \) in \(P_{\text{seed}} \):
\[
S_{\text{seed}} = AH^{-1}A^T + \Theta^{(2)}_{\text{seed}} = LDL^T,
\]
where \(L \) is unit lower triangular and \(D \) is diagonal positive definite.

Let \(A \) be a subsequent matrix of the KKT sequence. We approximate the CP (2.3) corresponding to \(A \) by replacing \(S \) with a suitable update of \(S_{\text{seed}}, \) named \(S_{\text{upd}} \). Thus, we obtain the inexact preconditioner
\[
P_{\text{upd}} = \begin{bmatrix} I_n & 0 \\ AG^{-1} & I_m \end{bmatrix} \begin{bmatrix} G & 0 \\ 0 & -S_{\text{upd}} \end{bmatrix} \begin{bmatrix} I_n & G^{-1}A^T \\ 0 & I_m \end{bmatrix}.
\]
A guideline for building \(S_{\text{upd}} \) is provided by Theorem 2.2 and by the following result (see [1, Lemma 3.1]).

Lemma 3.1. Let \(B \in \mathbb{R}^{m \times n} \) be full rank and let \(E, F \in \mathbb{R}^{n \times n} \) be symmetric and positive definite. Then, any eigenvalue \(\lambda \) of \((BEB^T)^{-1}BFB^T\) satisfies
\[
\lambda_{\min}(E^{-1}F) \leq \lambda((BEB^T)^{-1}BFB^T) \leq \lambda_{\max}(E^{-1}F).
\]
In the remaining of this section we show that specific choices of S_{upd} provide easily computable bounds on the eigenvalues of $S_{\text{upd}}^{-1}S$ and make the spectral analysis in section 2 useful for constructing practical inexact preconditioners by updating techniques. For ease of presentation, we consider the cases $\Theta^{(2)} = 0$ and $\Theta^{(2)} \neq 0$ separately.

3.1. Updated preconditioners for $\Theta^{(2)} = 0$. We consider a low-rank update/downdate of $S_{\text{seed}} = AH^{-1}A^T$ that generates a matrix S_{upd} of the form

$$S_{\text{upd}} = AJ^{-1}A^T,$$

(3.6)

for some given diagonal positive definite matrix $J \in \mathbb{R}^{n \times n}$.

Since the matrix G in (2.4) and the matrix J in (3.6) are diagonal, by Lemma 3.1 the eigenvalues of $S_{\text{upd}}^{-1}S$ can be bounded by easily computable scalars, as shown next. Let G_{ii} and J_{ii} be the diagonal entries of G and J, and $\gamma(J) = (\gamma_1(J), \ldots, \gamma_n(J))$ the vector with entries given by the diagonal entries of JG^{-1} sorted in nondecreasing order, i.e.,

$$\min_{1 \leq i \leq n} \frac{J_{ii}}{G_{ii}} = \gamma_1(J) \leq \gamma_2(J) \leq \cdots \leq \gamma_n(J) = \max_{1 \leq i \leq n} \frac{J_{ii}}{G_{ii}}.$$

The eigenvalues of $S_{\text{upd}}^{-1}S$ satisfy

$$\gamma_1(J) \leq \lambda(S_{\text{upd}}^{-1}S) \leq \gamma_n(J).$$

(3.7)

These bounds can be combined with the results of Theorem 2.2 as follows.

Corollary 3.2. Let A, P_{upd} and S_{upd} be the matrices in (2.1), (3.4), (3.6), and RR^T be the Cholesky factorization of S_{upd}, with R lower triangular. Let (2.7) be the generalized eigenvalue problem equivalent to the eigenvalue problem for $P_{\text{upd}}^{-1}A$, where X, Y and Z are the matrices in (2.8)–(2.10). Let $\gamma_1(J)$ and $\gamma_n(J)$ be the first and last component of $\gamma(H)$. Then, if Z is positive definite, we have

$$\|Y\| \leq \sqrt{\gamma_n(J)} \|I_n - X\|,$$

(3.8)

and

$$\lambda_{\max}(Z) \leq \gamma_n(J) (2 - \lambda_{\min}(X)),$$

$$\lambda_{\min}(Z) \geq \gamma_1(J) (2 - \lambda_{\max}(X)).$$

(3.9) \quad (3.10)

Proof. The proof follows straightforwardly from (2.11), (2.14), (2.15), with S_{upd} replacing S_{inex}, and from (3.7). \qed

Motivated by the previous results, we build S_{upd} as a low-rank correction of S_{seed}, based on the vector $\gamma(H)$ whose entries are the diagonal entries of HG^{-1} sorted in nondecreasing order, i.e.,

$$\min_{1 \leq i \leq n} \frac{H_{ii}}{G_{ii}} = \gamma_1(H) \leq \gamma_2(H) \leq \cdots \leq \gamma_n(H) = \max_{1 \leq i \leq n} \frac{H_{ii}}{G_{ii}}.$$

(3.11)

Following the procedure proposed by Baryamureeba et al. in [1], the matrix J is chosen as a diagonal matrix which accounts for changes from H to G. More precisely,
let \(l = (l_1, \ldots, l_n) \) be the vector of indices obtained by a permutation of the vector \((1, 2, \ldots, n)\) so that \(l_i \) is the position of the scalar \(H_{ii}/G_{ii} \) in the vector \(\gamma(H) \) according to (3.11), i.e.,

\[
\gamma_{l_i}(H) = \frac{H_{ii}}{G_{ii}}.
\]

Let \(q_1 \) and \(q_2 \) be nonnegative integers, with \(q = q_1 + q_2 \leq n \), and let \(\Gamma \) be the set of the indices of the diagonal entries of \(HG^{-1} \) corresponding to the \(q_1 \) largest entries of \(\gamma(H) \) that are greater than one and the \(q_2 \) smallest entries of \(\gamma(H) \) that are smaller than one, i.e.,

\[
\Gamma = \{ i : 1 \leq l_i \leq q_2 \text{ and } \gamma_{l_i}(H) < 1 \} \cup \{ i : n - q_1 + 1 \leq l_i \leq n \text{ and } \gamma_{l_i}(H) > 1 \}.
\]

Then, \(J \) is set as

\[
(3.12) \quad J_{ii} = \begin{cases}
G_{ii}, & \text{if } i \in \Gamma, \\
H_{ii}, & \text{otherwise.}
\end{cases}
\]

By the previous definition of \(J \), \(S_{\text{upd}} \) is positive definite and \(S_{\text{upd}} - S_{\text{seed}} \) is a low-rank matrix if the cardinality of \(\Gamma \) is small. Moreover,

\[
(3.13) \quad \gamma_1(J) = \min\{1, \min_{i \notin \Gamma} \gamma_{l_i}(H)\} = \min\{1, \gamma_{q_2+1}(H)\},
\]

\[
(3.14) \quad \gamma_{n}(J) = \max\{1, \max_{i \notin \Gamma} \gamma_{l_i}(H)\} = \max\{1, \gamma_{n-q_1}(H)\},
\]

and an improvement on the bounds (3.8)–(3.10) may be expected as long as \(\gamma_{q_1}(H) \) and \(\gamma_{n-q_1+1}(H) \) are well separated from \(\gamma_{q_2+1}(H) \) and \(\gamma_{n-q_1}(H) \), respectively. Another consequence of this low-rank correction is that \(S - S_{\text{upd}} \) has \(q \) zero eigenvalues; thus \(P_{\text{inex}}^{-1} A_k \) has \(2q \) unit eigenvalues with geometric multiplicity \(q \) [41, Theorem 3.3].

By (3.12) and (3.14),

\[
(3.15) \quad AJ^{-1}A^T = AH^{-1}A^T + AKAT = LDL^T + \bar{A}K\bar{A}^T,
\]

where \(K \) is the diagonal matrix

\[
(3.16) \quad K_{ii} = \begin{cases}
G_{ii}^{-1} - H_{ii}^{-1}, & \text{if } i \in \Gamma, \\
0, & \text{otherwise,}
\end{cases}
\]

\(\bar{A} \in \mathbb{R}^{m \times q} \) consists of the columns of \(A \) with indices in \(\Gamma \), and \(\bar{K} \in \mathbb{R}^{q \times q} \) is the diagonal matrix having on the diagonal the nonzero entries of \(K \) corresponding to those indices. Thus, the Cholesky-like factorization of \(S_{\text{upd}} \) can be computed by updating or downdating the factorization \(LDL^T \) of \(S_{\text{seed}} \). Specifically, an update is performed if \(H_{ii} > G_{ii} \), while a downdate is performed if \(H_{ii} < G_{ii} \). This task can be accomplished by either using efficient procedures for updating and downdating the (sparse) Cholesky factorization [23], or by the Sherman-Morrison-Woodbury formula (see, e.g., [31, section 2.1.3]). Clearly, once \(S_{\text{upd}} \) has been factorized, the factorization of \(P_{\text{upd}} \) is readily available.

In order to limit the computational cost for building the updated factorization of \(S_{\text{upd}} \), \(q \) must be kept fairly small. We note that in the limit case \(q = 0 \) the set \(\Gamma \) is empty; hence \(S_{\text{upd}} = S_{\text{seed}} \) and

\[
\gamma_{l_i}(H) = \frac{Q_{ii} + (\Theta_{\text{seed}}^{(1)})_{ii}}{Q_{ii} + \Theta_{ii}^{(1)}}.
\]
The element $\gamma_i(H)$ is expected to be close to 1 if $(\Theta^{(1)})_{ii} - (\Theta^{(1)}_{\text{seed}})_{ii}$ is small. More generally, if $\Theta^{(1)}_{ii}$ tends to zero or infinity, as it happens when the IP iterate approaches an optimal solution where strict complementarity holds, the quality of the preconditioner may significantly deteriorate.

We conclude this section showing the spectrum of A, $P^{-1}_{ex}A$, and $P^{-1}_{\text{upd}} A$ arising in the solution of problem CVXQP1 in the CUTEst collection [33], with dimensions $n = 1000$ and $m = 500$ (see Figure 3.1). The matrix A has been obtained at the 10th iteration of the IP method used for the numerical experiments (see section 4), whereas A_{seed} has been obtained at the 6th iteration. The preconditioner P_{upd} has been built for $q_1 = q_2 = 25$; in this case $\gamma_{q_2+1} = 1.85e-3$, while $\gamma_{n-q_1} = 2.73e+0$. We see that, unlike P_{ex}, P_{upd} moves some eigenvalues from the real to the complex field. Nevertheless, P_{upd} tends to cluster the eigenvalues of A around 1, and γ_{q_2+1} and γ_{n-q_1} provide approximate bounds on the real and imaginary parts of the eigenvalues of the preconditioned matrix, according to Theorem 2.1, Corollary 3.2, and equalities (3.13)-(3.14). Of course, this clustering is less effective than the one performed by P_{ex}, but it is useful in several cases, as shown in section 4.

3.2. Updated preconditioners for $\Theta^{(2)} \neq 0$. The updating strategy described in the previous section can be generalized to the case $\Theta^{(2)} \neq 0$. To this end, we note that the sparsity pattern of $\Theta^{(2)}$ does not change throughout the IP iterations.
and the set $\mathcal{L} = \{ i : \Theta^{(2)}_{ii} \neq 0 \}$ has cardinality equal to the number m_1 of linear inequality constraints in the QP problem. Let $\tilde{\Theta}^{(2)}_{seed}$ and $\tilde{\Theta}^{(2)}$ be the $m_1 \times m_1$ diagonal submatrices containing the nonzero diagonal entries of $\Theta^{(2)}_{seed}$ and $\Theta^{(2)}$, respectively, and let I_m be the rectangular matrix consisting of the columns of I_m with indices in \mathcal{L}. Then, we have

$$S_{seed} = A H^{-1} A^T + \Theta^{(2)}_{seed} = \tilde{A} H^{-1} \tilde{A}^T,$$
$$S = AG^{-1} A^T + \Theta^{(2)} = \tilde{A} G^{-1} \tilde{A}^T,$$

where

$$\tilde{A} = \begin{bmatrix} A & I_m \end{bmatrix}, \quad \tilde{H}^{-1} = \begin{bmatrix} H^{-1} & 0 \\ 0 & \tilde{\Theta}^{(2)}_{seed} \end{bmatrix}, \quad \tilde{G}^{-1} = \begin{bmatrix} G^{-1} & 0 \\ 0 & \tilde{\Theta}^{(2)} \end{bmatrix}. $$

Analogously, letting

$$S_{upd} = AJ^{-1} A^T + \Theta^{(2)}_{upd},$$

we have

$$S_{upd} = \tilde{A} J \tilde{A}^T,$$

where

$$\tilde{J} = \begin{bmatrix} J^{-1} & 0 \\ 0 & \tilde{\Theta}^{(2)}_{upd} \end{bmatrix},$$

and $\tilde{\Theta}^{(2)}_{upd}$ is the $m_1 \times m_1$ diagonal submatrix of $\Theta^{(2)}_{upd}$ containing its nonzero diagonal entries. Thus, we can choose \tilde{J} using the same arguments as in the previous section. In particular, if $\tilde{\gamma}(\tilde{J}) = (\tilde{\gamma}_1(\tilde{J}), \ldots, \tilde{\gamma}_{n+m_1}(\tilde{J}))$ is the vector with elements given by the diagonal entries of $\tilde{J} \tilde{G}^{-1}$ sorted in nondecreasing order, then, by Lemma 3.1, the eigenvalues of $S_{upd}^{-1} S$ satisfy

$$\tilde{\gamma}_1(\tilde{J}) \leq \lambda(S_{upd}^{-1} S) \leq \tilde{\gamma}_{n+m_1}(\tilde{J}),$$

and the following result holds.

Corollary 3.3. Let A, P_{upd} and S_{upd} be the matrices in (2.1), (3.4), (3.17), and RR^T be the Cholesky factorization of S_{upd}, with R lower triangular. Let (2.7) be the generalized eigenvalue problem equivalent to the eigenvalue problem for $P_{upd}^{-1} A$, where X, Y and Z are the matrices in (2.8)–(2.10). Let $\tilde{\gamma}_1(\tilde{J})$ and $\tilde{\gamma}_{n+m_1}(\tilde{J})$ be the first and the last component of $\tilde{\gamma}(\tilde{J})$. Then, if Z is positive definite, we have

$$\|Y\| \leq \sqrt{\tilde{\gamma}_{n+m_1}(\tilde{J})} \|I_n - X\|,$$

and

$$\lambda_{max}(Z) \leq \tilde{\gamma}_{n+m_1}(\tilde{J}) \max\{2 - \lambda_{min}(X), 1\},$$
$$\lambda_{min}(Z) \geq \tilde{\gamma}_1(\tilde{J}) \min\{2 - \lambda_{max}(X), 1\}.$$
Proof. Since $\Theta^{(2)}$ is positive semidefinite, for any vector $w \in \mathbb{R}^n$ we have
\[
w^T S_{\text{upd}}^{-\frac{1}{2}} A G^{-1} A^T S_{\text{upd}}^{-\frac{1}{2}} w \leq w^T S_{\text{upd}}^{-\frac{1}{2}} (A G^{-1} A^T + \Theta^{(2)}) S_{\text{upd}}^{-\frac{1}{2}} w,
\]

Then, by matrix similarity,
\[
\lambda_{\max}(S_{\text{upd}}^{-\frac{1}{2}} A G^{-1} A^T) \leq \lambda_{\max}(S_{\text{upd}}^{-\frac{1}{2}} S^{\frac{1}{2}}).
\]

(3.22)

Therefore, by using Theorem 2.2 and (3.18), we obtain (3.19). The bounds (3.20) and (3.21) directly follow from Theorem 2.2 and (3.18).

On the base of the previous results the generalization of the updating procedure to the case $\Theta^{(2)} \neq 0$ is straightforward. Let l be the vector of indices such that $\tilde{\gamma}_l(\tilde{H}) = \tilde{H}_{ii}/\tilde{G}_{ii}$, q_1 and q_2 be nonnegative integers, with $q = q_1 + q_2 \leq n + m_1$, and $\tilde{\Gamma}$ be the set of the indices of the diagonal entries of $\tilde{H} \tilde{G}^{-1}$ corresponding to the q_1 largest entries of $\tilde{\gamma}(\tilde{H})$ that are greater than one and the q_2 smallest entries of $\tilde{\gamma}(\tilde{H})$ that are smaller than one, i.e.,
\[
\tilde{\Gamma} = \{i : 1 \leq i \leq q_2 \text{ and } \tilde{\gamma}_l(\tilde{H}) < 1\} \cup \{i : n + m_1 - q_1 + 1 \leq i \leq n + m_1 \text{ and } \tilde{\gamma}_l(\tilde{H}) > 1\}.
\]

We set \tilde{J} as
\[
\tilde{J}_{ii} = \begin{cases}
\tilde{G}_{ii}, & \text{if } i \in \tilde{\Gamma}, \\
\tilde{H}_{ii}, & \text{otherwise},
\end{cases}
\]

(3.23)

thus, \tilde{J} accounts for changes from H to G and from $\Theta_{\text{seed}}^{(2)}$ to $\Theta^{(2)}$. For q small enough, S_{upd} is a low-rank correction of S_{seed}.

4. Numerical results. We tested the effectiveness of our updating procedure by solving sequences of KKT systems arising in the solution of convex QP problems with $m \leq n$ and A with full rank. These problems were either taken from the CUTEst collection [33] or obtained by modifying CUTEst problems as explained next, and were chosen to have Schur complements with different factorization costs. Since most of the available large convex QP problems with $\Theta^{(2)} \neq 0$ have Schur complements with band structure and their factorization is low cost, we modified some CUTEst QP problems with non-band Schur complement and linear constraint $Ax = b$, by changing this constraint into $Ax \geq b$. The selected problems, along with their dimensions and the number of nonzero entries of the Schur complement, are listed in Table 4.1; the modified problems are identified by appending -M to their name in the problem collection. In the first five problems $\Theta^{(2)} = 0$, while in the remaining ones $\Theta^{(2)} \neq 0$. The Hessian matrices of UBH1 and LISWET5 are diagonal and consequently \mathcal{P}_{ex} is equal to the KKT matrix A. For all the problems the Schur complements are very sparse; they are non-banded for the CVXQP and UBH1 problems only. CVXQP1, CVXQP2 and CVXQP3 differ by the number of linear constraints, thus having Schur complements of different dimensions; clearly the same holds for the corresponding modified problems.

The sequences of linear systems were obtained by applying the PRQP solver to the selected problems and extracting the KKT matrices arising at each IP iteration, along with the corresponding right-hand sides. PRQP is a Fortran 90 code based on an Inexact Potential Reduction IP method [14] [17] [20] (see also http://www.dimat.unina2.it/diserafino/prqp.htm). The starting point for this code was chosen as explained in [21] and the tolerances on the relative duality gap and infeasibilities were set to 10^{-7}.
and 10^{-8}, respectively. Within PRQP the KKT systems were solved by the Conjugate (CG) method coupled with the exact CP, using an adaptive tolerance in the stopping criterion, which relates the accuracy in the solution of the KKT system to the quality of the current IP iterate, in the spirit of inexact IP methods [2, 15]. The tolerance associated with each system was extracted too, to be used in our experiments.

We implemented our updated preconditioners, as well as the exact CP, in Matlab, using the CHOLMOD library [23] to compute the sparse LDL^T factorization of the negative Schur complement S_{seed} and the low-rank updating and downdating required to build S_{upd}. This library was called through its MEX interface. The systems were solved using a Matlab implementation of the SQMR method without look-ahead [26], since the CG method cannot generally be applied to KKT systems coupled with inexact CPs. For each system, the SQMR iterations were stopped when the residual was lower than the associated tolerance, as in the solution of the KKT system within the IP code. A maximum number of 500 iterations was considered too. We note that only one matrix-vector product per iteration is performed in our SQMR implementation, except in the last few iterations, where an additional matrix-vector product per iteration is computed, to use the residual instead of the so-called BCG-residual in the stopping criterion, as in the QMRPACK code [27].

In our updating strategy, we set $q_1 = q_2 = q/2$ and $q = 50, 100$, in order to keep low the overhead of the updating/downdating phase (the dimension of the Schur complement in our experiments is significantly larger than q). We also considered “the limit case” $q = 0$, corresponding to $S_{upd} = S_{seed}$ in the updated preconditioner P_{upd}. In the case $\Theta^{(2)} = 0$, we observed that including in Γ the indices corresponding to values of $\gamma_i(H)$ that are too close to 1 does not lead to significant benefits. Therefore, we put in Γ the indices corresponding to the q_1 largest $\gamma_i(H)$’s such that $\gamma_i(H) \geq 10$ and the q_2 smallest $\gamma_i(H)$’s such that $\gamma_i(H) \leq 0.1$. When the number of such $\gamma_i(H)$’s was lower than $q/2$, we chose q_1 and q_2 so that $q_1 + q_2$ was as large as possible. The previous observation also holds for $\tilde{\Gamma}$ and the ratios $\tilde{\gamma}_i(\tilde{H})$ in the case where $\Theta^{(2)} \neq 0$.

On the base of preliminary numerical experiments, we decided to refresh the preconditioner, i.e., to build P_{ex} instead of P_{upd}, when the time for computing P_{upd} and solving the linear system exceeded 90% of the time for building the last exact preconditioner and solving the corresponding system. When for a specific system of the sequence this situation occurred, the next system of the sequence was solved using the preconditioner P_{ex}. We also set a maximum number, k_{max}, of consecutive preconditioner updates, after which the refresh was performed anyway. This strategy aims at avoiding possible situations in which the time saved by updating the Schur complement instead of re-factorizing it, is offset by an excessive increase in the number of SQMR iterations, due to deterioration of the quality of the preconditioner. In the experiments discussed here $k_{max} = 4$ was used for all the test problems but the ones with diagonal Hessian matrix Q, where k_{max} was set to 3. The latter choice is motivated by the fact that $A = P_{ex}$ if Q is diagonal, and hence only one iteration of SQMR has to be performed, which generally has a lower cost than the setup of P_{ex}. Actually, in this case, we computed the solutions of the KKT systems by solving the block-triangular systems resulting from the block factorization of P_{ex}. Finally, if SQMR with P_{upd} achieved the maximum number of iterations without satisfying the required accuracy, the preconditioner P_{ex} corresponding to the current KKT system was computed and used to solve that system again. In our experiments, this only happened to the KKT system associated with the second-to-last PRQP iteration applied to CVXQP3-M, for all the values of q.

13
We performed our experiments using Matlab R2011b (v. 7.13) on an Intel Core i7 processor, with clock frequency of 2.67 GHz, 12 GB of RAM and 8 MB of cache memory. Matlab was installed under the Linux Ubuntu operating system (Linux version 3.2.0-35-generic) and CHOLMOD was compiled using gcc 4.3.4. The tic and toc Matlab commands were used to measure elapsed times.

A comparison among the exact and the updated preconditioners is presented in Table 4.1. For each preconditioner we show the total number of SQMR iterations and the overall computation time, in seconds, needed to solve the whole sequence. The number of iterations is not reported for the problems with diagonal Hessian, because in this case the systems are solved by a direct method, as previously explained. For most of the problems the number of iterations obtained with P_{upd} decreases as q increases; thus, updating the Schur complement by low-rank information appears to be beneficial in terms of iterations. In the cases where the number of SQMR iterations is practically constant when going from $q = 0$ to $q = 100$, we verified that either the number of ratios $\gamma_l(H)$ (or $\tilde{\gamma}_l(\tilde{H})$) that do not belong to $(0, 10)$ is very small, or all the ratios are very close each other, so that increasing q does not lead to any improvement. For similar reasons the reduction of the number of iterations from $q = 50$ to $q = 100$ is less significant than from $q = 0$ to $q = 50$. We note that the increase of iterations observed in CVXQP2-M when passing from $q = 0$ to $q = 50$ depends on the refresh strategy; when $q = 0$ more refreshes are required because of the lower quality of the preconditioner, i.e., more exact preconditioners are computed, thus yielding a lower number of iterations.

As expected, the exact preconditioner requires less iterations than the updated ones, but this does not imply smaller execution times. Actually, the updating tech-

Problem	n, m	nnz(S)	P_{ex}	P_{upd} ($q = 0$)	P_{upd} ($q = 50$)	P_{upd} ($q = 100$)
CVXQP1	20000	10000	67976	232 5.76e+1	740 3.79e+1	530 3.72e+1
CVXQP2	20000	5000	15994	273 1.29e+0	352 1.65e+0	330 1.57e+0
CVXQP3	20000	15000	155942	497 8.32e+2	2006 4.82e+2	1166 3.67e+2
STCQP2	16385	8190	114660	259 1.44e+0	267 1.47e+0	267 1.49e+0
UBH1	17997	12000	59988	— 8.68e+2	834 3.59e+2	831 3.93e+2
CVXQP1-M	20000	10000	67976	962 1.29e+2	2960 1.03e+2	2474 1.02e+2
CVXQP2-M	20000	5000	15994	1042 5.28e+0	1531 7.01e+0	1653 7.64e+0
CVXQP3-M	15000	11250	116910	970 1.28e+3	3054 4.14e+2	2563 3.88e+2
LISWET5	20001	20000	59998	— 7.31e−1	226 1.77e+0	226 1.84e+0
MOSARQP1	22500	20000	257166	74 7.67e+0	202 8.87e+0	184 9.36e+0

Table 4.1
Comparison between P_{ex} and P_{upd}.
unique yields a significant reduction of the overall time for CVXQP1, CVXQP3, UBH1, CVXQP1-M, and CVXQP3-M. In these cases, the factorization of the Schur complement is more expensive than the solution via SQMR; thus, the increase in the number of SQMR iterations, due to the use of updated preconditioners instead of exact ones, is largely offset by the time saving obtained by performing low-rank corrections of an available factorization. In the solution of these problems the best tradeoff between the effectiveness of the updated preconditioner and the overall computational cost is obtained with $q = 50$. The results with UBH1 also show that for problems with diagonal Hessian, if the cost of the factorization of the Schur complement is high, the iterative solution of the KKT systems with the use of updated preconditioners may be a convenient alternative to a direct approach. For STCQP2 all the preconditioners are practically equivalent in terms of iterations and execution times. For the remaining problems the updating strategy is not beneficial; the reason is that the factorization of the Schur complement is not expensive, and hence the computation of P_{ex} does not significantly affect the execution time.

To provide more insight into the behaviour of the updated preconditioners, in Tables 4.2-4.5 we show some details concerning the solution of the sequences of KKT systems arising from four problems, i.e., CVXQP1, STCQP2, UBH1, and MOSARQP2. For each IP iteration we report the number nit of iterations of SQMR, as well as the time T_{prec} for building the preconditioner, the time T_{solve} for solving the linear system, and the sum T_{sum} of these times. The last row contains the total iterations and times over all IP iterations, while the rows in bold correspond to the IP iterations at which the preconditioner is refreshed. These tables clearly support the previous observation that the updating strategy is efficient when the computation of P_{ex} is expensive, as it is for CVXQP3 and UBH1. Conversely, when the time for building P_{ex} is modest, recomputing P_{ex} is a natural choice. It also appears that the refresh strategy plays a significant role in achieving efficiency, since it prevents the preconditioner from excessive deterioration. In particular, the refresh is crucial for UBH1, because the number of SQMR iterations obtained with P_{upd} tends to rapidly increase from an IP iteration to the next one. It is also worth noting that when the time for computing P_{ex} is not dominant, the refresh tends to occur more frequently, since a small increase in the number of iterations obtained with P_{upd} may easily raise the execution time over the 90% of the time corresponding to the last application of the exact preconditioner.

5. Conclusion. We proposed a preconditioner updating procedure for the solution of sequences of KKT systems arising in IP methods for convex QP problems. The preconditioners built by this procedure belong to the class of inexact constraint preconditioners and are obtained by updating a given seed constraint preconditioner. The updating is performed by using low-rank corrections of the Schur complement of the $(1,1)$ block in the seed preconditioner and yields to a factorized updated preconditioner. Starting from the spectral analysis given in [8, 41] and exploiting results presented in [4], we provide bounds on the eigenvalues of the preconditioned matrix in terms of the “quality” of the approximation of the Schur complement. These results drive the design of effective low-rank correction strategies. The numerical experiments show that our updated preconditioners, combined with a suitable preconditioner refreshing, can be rather successful. In practice, it is shown that the higher the cost of the Schur complement factorization, the more advantageous the updating procedure becomes. Finally, we believe that the updating strategy proposed here paves the way to the definition of preconditioner updating procedures for sequences of KKT systems.
where the Hessian and constraint matrices change from one iteration to the next.

REFERENCES

[1] V. Baryamureeba, T. Steihaug, Y. Zhang, Properties of a Class of Preconditioners for Weighted Least Squares Problems, Technical Report No. 170, Department of Informatics, University of Bergen, and Technical Report No. TR99-16, Department of Computational and Applied Mathematics, Rice University, Houston, 1999.

[2] S. Bellavia, Inexact Interior-Point Method, Journal of Optimization Theory and Applications, 96 (1998), pp. 109-121.

[3] S. Bellavia, D. Bertaccini, B. Morini, Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems, SIAM J. Sci. Comput., 33 (2011), pp. 2595-2619.

[4] S. Bellavia, V. De Simone, D. di Serafino, B. Morini, Efficient preconditioner updates for shifted linear systems, SIAM Journal on Scientific Computing, 33 (2011), pp. 1785–1809.

[5] S. Bellavia, V. De Simone, D. di Serafino, B. Morini, A preconditioning framework for sequences of diagonally modified linear systems arising in optimization, SIAM Journal on Numerical Analysis, 50 (2012), pp. 3280–3302.

[6] S. Bellavia, B. Morini, M. Porcelli, New updates of incomplete LU factorizations and applications to large nonlinear systems, Optimization Methods and Software, 29 (2014), pp. 321-340.

[7] M. Benzi, D. Bertaccini, Approximate inverse preconditioning for shifted linear systems, BIT, 43 (2003), pp. 231–244.

[8] M. Benzi, V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numerische Mathematik, 103 (2006), pp. 173–196.

[9] L. Bergamaschi, Eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices, Numerical Linear Algebra with Applications, 19 (2012), pp. 754–772.

[10] L. Bergamaschi, R. Bru, A. Martinez, M. Putti, Quasi-Newton preconditioners for the inexact Newton method, Electronic Transactions on Numerical Analysis, 23 (2006) pp. 76–87.

[11] L. Bergamaschi, J. Gondzio, G. Zilli, Preconditioning Indefinite Systems in Interior Point Methods for Optimization, Computational Optimization and Applications, 28 (2004), pp.
Inexact Constraint Preconditioners for

S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino,

On the iterative solution of KKT

S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino,

systems in potential reduction software for large-scale quadratic problems

IP it P_{ex} P_{upd} ($q=50$)
\begin{tabular}{cccc|cccc}
IP it	T_{it}	T_{solve}	T_{sum}	nit	T_{prec}	T_{solve}	T_{sum}
1	5.11e+1	2.60e-1	5.14e+1	1	5.11e+1	2.60e-1	5.14e+1
2	5.11e+1	2.60e-1	5.14e+1	42	5.31e+0	5.31e+0	1.06e+1
3	5.10e+1	2.32e-1	5.12e+1	128	4.70e+0	1.57e+1	2.04e+1
4	5.11e+1	2.34e-1	5.13e+1	365	4.21e+0	4.61e+1	5.03e+1
5	5.10e+1	2.35e-1	5.12e+1	2	5.10e+1	2.35e-1	5.12e+1
6	5.08e+1	2.39e-1	5.10e+1	40	3.64e-1	5.11e+0	5.47e+0
7	5.10e+1	2.38e-1	5.12e+1	82	5.03e+0	9.97e+0	1.50e+1
8	5.08e+1	2.34e-1	5.10e+1	118	4.92e+0	1.41e+1	1.90e+1
9	5.08e+1	2.40e-1	5.10e+1	2	5.08e+1	2.40e-1	5.10e+1
10	5.06e+1	2.38e-1	5.08e+1	18	1.25e-3	2.32e+0	2.32e+0
11	5.07e+1	2.41e-1	5.09e+1	14	5.06e+0	1.81e+0	6.87e+0
12	5.06e+1	2.39e-1	5.08e+1	13	5.05e+0	1.72e+0	6.77e+0
13	5.06e+1	2.34e-1	5.08e+1	2	5.06e+1	2.34e-1	5.08e+1
14	5.06e+1	2.39e-1	5.08e+1	1	1.27e-3	2.35e-1	2.36e-1
15	5.06e+1	2.34e-1	5.08e+1	1	1.26e-3	2.33e-1	2.34e-1
16	5.06e+1	2.47e-1	5.08e+1	1	1.26e-3	2.34e-1	2.35e-1
17	5.06e+1	2.50e-1	5.09e+1	1	5.06e+1	2.50e-1	5.09e+1
\end{tabular}

8.68e+2 5.39e+0 8.68e+2 831 2.89e+2 1.04e+2 3.93e+2

Table 4.3

UBH1: details for P_{ex} and P_{upd} with $q = 50$.

IP it P_{ex} P_{upd} ($q=50$)
\begin{tabular}{cccc|cccc}
IP it	nit	T_{it}	T_{solve}	T_{sum}	nit	T_{prec}	T_{solve}	T_{sum}
1	13	1.08e-2	8.78e-2	9.86e-2	13	1.08e-2	8.78e-2	9.86e-2
2	11	1.01e-2	5.88e-2	6.89e-2	13	3.83e-3	7.05e-2	7.43e-2
3	11	1.01e-2	5.89e-2	6.90e-2	12	3.78e-3	6.44e-2	6.82e-2
4	11	1.02e-2	6.00e-2	7.02e-2	10	3.86e-3	5.40e-2	5.79e-2
5	11	1.01e-2	6.00e-2	7.01e-1	13	3.84e-3	6.76e-2	7.14e-2
6	15	1.00e-2	7.68e-2	8.68e-2	15	1.00e-2	7.68e-2	8.68e-2
7	19	1.01e-2	9.73e-2	1.07e-1	22	4.07e-3	1.20e-1	1.24e-1
8	22	1.01e-2	9.48e-2	1.05e-1	22	1.01e-2	9.48e-2	1.05e-1
9	24	1.01e-2	1.19e-1	1.29e-1	24	4.14e-3	1.33e-1	1.37e-1
10	24	1.00e-2	1.17e-1	1.27e-1	24	1.00e-2	1.17e-1	1.27e-1
11	29	1.00e-2	1.42e-1	1.52e-1	29	4.35e-3	1.63e-1	1.67e-1
12	33	1.00e-2	1.58e-1	1.68e-1	33	1.00e-2	1.58e-1	1.68e-1
13	36	1.75e-1	1.85e-1	3.60e-1	37	4.39e-3	1.97e-1	2.01e-1
\end{tabular}

259 1.32e-1 1.31e+0 1.61e+0 267 8.33e-2 1.42e+0 1.49e+0

Table 4.4

STCQP2: details for P_{ex} and P_{upd} with $q = 50$.

[12] L. Bergamaschi, J. Gondzio, M. Venturin, G. Zilli, Inexact Constraint Preconditioners for Linear Systems Arising in Interior Point Methods, Computational Optimization and Applications, 36 (2007), pp. 137–147.
[13] J.R. Bunch, B.N. Parlett, Direct methods for solving symmetric indefinite systems of linear equation, SIAM Journal on Numerical Analysis, 8 (1971), pp. 639–655.
[14] S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino, On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems, Computational Optimization and Applications, 38 (2007), pp. 27–45.
[15] S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino, Stopping criteria for inner it-
Table 4.5

MOSARQPI: details for P_{ex} and P_{upd} with $q = 50$.

IP it	P_{ex}	P_{upd} (q=50)						
	nit	T_{prec}	T_{solve}	T_{sum}	nit	T_{prec}	T_{solve}	T_{sum}
1	2	2.79e−1	1.05e−1	3.84e−1	2	2.79e−1	1.05e−1	3.84e−1
2	2	2.78e−1	1.11e−1	3.89e−1	5	8.49e−2	1.76e−1	2.61e−1
3	3	2.78e−1	1.37e−1	4.15e−1	9	1.17e−1	2.94e−1	4.11e−1
4	3	2.75e−1	1.32e−1	4.07e−1	3	2.75e−1	1.32e−1	4.07e−1
5	3	2.78e−1	1.34e−1	4.12e−1	15	4.96e−1	4.77e−1	4.96e−1
6	4	2.76e−1	1.63e−1	4.39e−1	4	2.76e−1	1.63e−1	4.39e−1
7	4	2.81e−1	1.64e−1	4.45e−1	15	1.75e−1	4.67e−1	6.42e−1
8	4	2.79e−1	1.62e−1	4.41e−1	4	2.79e−1	1.62e−1	4.41e−1
9	4	2.79e−1	1.61e−1	4.40e−1	19	4.90e−1	5.82e−1	1.07e+0
10	5	2.81e−1	1.92e−1	4.73e−1	5	2.81e−1	1.92e−1	4.73e−1
11	5	2.80e−1	1.90e−1	4.70e−1	15	8.42e−2	4.69e−1	5.53e−1
12	6	2.80e−1	2.24e−1	5.04e−1	6	2.80e−1	2.24e−1	5.04e−1
13	5	2.77e−1	1.88e−1	4.65e−1	30	3.58e−1	8.97e−1	1.26e+0
14	6	2.79e−1	2.26e−1	5.05e−1	6	2.79e−1	2.26e−1	5.05e−1
15	6	2.76e−1	2.17e−1	4.93e−1	10	8.48e−2	3.25e−1	4.10e−1
16	6	2.79e−1	2.21e−1	5.00e−1	30	2.88e−1	3.25e−1	6.13e−1
17	6	2.74e−1	2.18e−1	4.92e−1	6	2.74e−1	2.18e−1	4.92e−1
74	4.73e+0	2.93e+0	7.67e+0	184	4.40e+0	4.96e+0	9.36e+0	

ebrations in inexact potential reduction methods: a computational study, Computational Optimization and Applications, 36 (2007), pp. 165–193.

[16] S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino, On the Use of an Approximate Constraint Preconditioner in a Potential Reduction Algorithm for Quadratic Programming, in “Applied and Industrial Mathematics in Italy II”, V. Cutello, G. Fontana and L. Puccio, eds., Series on Advances in Mathematics for Applied Sciences, 75, World Scientific, 2007, pp. 202–230.

[17] S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino, G. Toraldo, Convergence analysis of an inexact potential reduction method for convex quadratic programming, Journal of Optimization Theory and Applications, 135 (2007), pp. 355–366.

[18] C. Calgaro, J.P. Chehab, Y. Saad, Incremental incomplete ILU factorizations with applications, Numerical Linear Algebra with Applications, 17 (2010), pp. 811-837.

[19] B. Carpentieri, I.S. Duff, L Giraud, A class of spectral two-level preconditioners SIAM Journal on Scientific Computing, 25 (2003), pp. 749-765.

[20] M. D’Apuzzo, V. De Simone, D. di Serafino, On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods, Computational Optimization and Applications, 45 (2010), pp. 283–310.

[21] M. D’Apuzzo, V. De Simone, D. di Serafino, Starting-Point Strategies for an Infeasible Potential Reduction Method, Optimization Letters, 4 (2010), pp. 131–146.

[22] H.S. Dollar, Constraint-style preconditioners for regularized saddle-point problems, SIAM Journal on Matrix Analysis and Applications, 29 (2007), pp. 672–684.

[23] T. A. Davis, W.W. Hager, Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM Transactions on Mathematical Software, 35 (2009), article 27.

[24] J. Duintjer Tebbens, M. Tůma, Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, 29 (2007), pp. 1918–1941.

[25] C. Durazzi, V. Ruggiero, Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems, Numerical Linear Algebra with Applications, 10 (2003), pp. 673-688.

[26] R. Freund, N. Nachtigal, Software for simplified Lanczos and QMR algorithms, Applied Numerical Mathematics, 19 (1995), pp. 319–341.

[27] R. Freund, N. Nachtigal, QMRPACK: a package of QMR algorithms, ACM Transactions on Mathematical Software, 22 (1996), pp. 46–77.

[28] G. Fasano, M. Roma, Preconditioning Newton–Krylov Methods in Non-Convex Large Scale
[29] A. Forsgren, P.E. Gill, J.D. Griffin, *Iterative solution of augmented systems arising in interior methods*, SIAM Journal on Optimization, 18 (2007), pp. 666-690.

[30] L. Giraud, S. Gratton, E. Martin, *Incremental spectral preconditioners for sequences of linear systems*, Applied Numerical Mathematics, 57 (2007), pp. 1164-1180.

[31] G.H. Golub, C.F. van Loan, *Matrix Computations*, The John Hopkins University Press, 1983.

[32] J. Gondzio, *Interior point methods 25 years later*, European Journal of Operational Research, 218 (2012), pp. 587601.

[33] N.I.M. Gould, D. Orban, Ph. L. Toint, *CUTEst: a Constrained and Unconstrained Testing Environment with safe threads*, Technical Report RAL-TR-2013-005, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK, 2013.

[34] S. Gratton, A. Sartenaer, J. Tshimanga, *On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides*, SIAM Journal on Optimization, 21 (2011), pp. 912-935.

[35] C. Keller, C., N.I.M. Gould, A.J. Wathen, *Constraint preconditioning for indefinite linear systems*, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1300-1317.

[36] D. Loghin, D. Ruiz, A. Touhami, *Adaptive preconditioners for nonlinear systems of equations*, Journal of Computational and Applied Mathematics, 189 (2006), pp. 362-374.

[37] L. Luksan, J. Vlcek, *Indefinitely Preconditioned Inexact Newton Method for Large Sparse Equality Constrained Non-linear Programming Problems*, Numerical Linear Algebra with Applications, 5 (1998), pp. 219–247.

[38] G. Meurant, *On the incomplete Cholesky decomposition of a class of perturbed matrices*, SIAM J. Sci. Comput., 23 (2001), pp. 419–429.

[39] J.L. Morales, J. Nocedal, *Automatic preconditioning by limited memory quasi-Newton updating*, SIAM Journal on Optimization, 10 (2000), pp. 1079–1096.

[40] I. Perugia, V. Simoncini, *Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations*, Numerical Linear Algebra with Applications, 7 (2000), pp. 585–616.

[41] D. Sesana, V. Simoncini, *Spectral analysis of inexact constraint preconditioning for symmetric saddle point matrices*, Linear Algebra and its Applications, 438 (2013), pp. 2683–2700.

[42] W. Wang, D.P. O’Leary, *Adaptive use of iterative methods in predictor-corrector interior point methods for linear programming*, Numerical Algorithms, 25 (2000), pp. 387–406.

[43] S.J. Wright, *Primal-Dual Interior-Point Methods*, SIAM, Philadelphia, 1997.