Inhibition of COX-2 ameliorates murine liver schistosomiasis japonica through splenic cellular immunoregulation

Zhang Qi1,2†, Chen Lan1†, Ji Xiaofang1, Tang Juanjuan1, Fu Cheng1,2, Huang Ting1,2, Shen Erxia1,2,3* and Li Zi1,3*

Abstract
Background: We have reported the positive association of the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) axis with liver fibrosis induced by Schistosoma japonicum (Sj) infection, and TLR4 signaling controlled this axis. However, how COX-2 regulates immune response during Sj infection is still unclear.

Methods: Hematoxylin and eosin staining was used to evaluate the effect of the COX-2-specific inhibitor NS398 on liver granulomatous inflammation and fibrosis. Flow cytometry was used to explore the frequency and amount of different immune cell infiltration in the spleen during Sj infection.

Results: NS398 significantly reduced the size of liver granuloma, spleen, and mesenteric lymph node (MLN) and alleviated chronic granulomatous inflammation. Mechanically, this might be by decreasing the number of Sj-induced macrophages and T helper type 1 (Th1), Th2, T follicular helper (Tfh), T follicular regulatory (Tfr), and germinal center B (GC B) cells. There were no differences in the number of neutrophils, myeloid-derived suppressor cells, Th17 cells, regulatory T cells (Treg), or total B cells in the spleen of the mice with or without NS398 treatment.

Conclusions: COX-2/PGE2 inhibition may represent a potential therapeutic approach for schistosomiasis japonica through splenic cellular immunoregulation.

Keywords: COX-2, NS398, Granulomatous inflammation, Cellular immunoregulation, Schistosoma japonicum

Background
Schistosomiasis is a chronic helminthic disease affecting over 250 million people in over 78 countries [(WHO 2018), https://www.who.int/news-room/fact-sheets/detail/schistosomiasis]. The three major schistosomes infesting humans are Schistosoma mansoni (Sm), Schistosoma haematobium (Sh), and Schistosoma japonicum (Sj). Sj causes a hepato-intestinal form of the disease and is endemic in China, the Philippines, Indonesia, and the Mekong Delta. Sj reside in the mesenteric veins and hepatic portal vein, where they release eggs that induce a dramatic immune response in the intestines and liver, followed by granuloma formation, which is characterized by egg encapsulation within layers of immune cells embedded in extracellular matrix (ECM). Schistosomiasis japonica is divided into acute and chronic phases. The acute phase in murine animals occurs within the first 6 weeks after exposure, and is manifested mainly as the early liver granuloma stage [1]. In the chronic phase, hepato-intestinal or hepatosplenic disease may occur [2]. Splenomegaly is a consequence and an important clinical indicator of portal hypertension [3]. The spleen is composed of three areas—white pulp, red pulp, and a transitional zone—and serves as a filter of the blood.
and as one of the major peripheral immune organs. In its red pulp area, reticuloendothelial cells such as macrophages will clear away abnormal red blood cells or pathogens. Many innate and adaptive immune cells can exert specific effects on hepatic pathology through immunoregulation. Macrophages are the most abundant in the liver granulomas of mice with S.m infection. Myeloid-derived suppressor cells (MDSCs), as potent suppressors of immune responses, emerge in the blood, bone marrow, or spleen during cancer, infections, or inflammation. Yang et al. found that the soluble egg Ag (SEA) and soluble worm Ag (SWA) of Sj enhanced the accumulation of MDSCs in the bone marrow, spleen, and mesenteric lymph nodes (MSN) [4]. The recruitment of neutrophils to the liver by IL-17A has been associated with the development of fibrosis in many chronic liver diseases including schistosomiasis japonica [5]. T lymphocytes are classified into CD4+ T helper (Th) cells and CD8+ cytotoxic T lymphocytes (CTLs). The roles of Th cells in the immune-pathogenesis of schistosomiasis have been intensely reviewed [6]. Moderate Th1 responses are included in acute schistosomiasis and early granuloma formation, while excessive Th1 response will easily lead to severe cachexia followed by death and is detrimental to the host. Th2 immunity acts as a double-edged sword: on the one side, it exerts anti-inflammatory effects and suppresses Th1-mediated immunopathology, but on the other side, it drives liver immunopathological damage, especially liver fibrosis. Therefore, maintaining Th1/Th2 balance is important to control the excessive pathology of schistosomiasis. Th17/IL-17 exacerbate egg-induced liver immunopathology in schistosomiasis.

T follicular helper cells (Tfh) are mainly located in the periphery of B cell follicles in secondary lymphoid organs, which regulate antigen-specific B cells to become specialized antibody producers, and aid in the formation of germinal centers (GC), affinity maturation of antibodies, somatic hypermutation and the production of memory B cells. T follicular regulatory cells (Tfr) also exist in GCs, where they play an inhibitory role in GC reactions [7, 8]. Tfh promoted liver granulomas and fibrogenesis in Sj-infected mice [9–11]. B cell lymphoma 6 (Bcl6)- and programmed death-1 (PD-1)-positive Tfh in the GC of murine spleen correlate with progression of liver fibrosis [10]. Tfh and Tfr increased in patients with schistosomiasis japonica [12]. Humoral immunity requires cross-talk between Tfh, Tfr, and B cells. Several studies have demonstrated that the number of B cells in the lymph nodes and spleen increases significantly during Schistosoma infection [13]. Sj recombinant fusion protein Sj GST-32 combined with tacrolimus (FK506) immunization augmented the induction of Tfh cells, and the expression of IL-21R on GC B cells and memory B cells increased in these immunized mice [14].

Cyclooxygenase (COX)-1 and COX-2 catalyze the first step in prostaglandin biosynthesis. COX-1 is constitutively expressed whereas COX-2 is induced by certain stimuli. High COX-2 expression has been detected in several liver pathologies, while the effect of COX-2 in many liver diseases is a matter of controversy [15]. Soluble egg antigen (SEA) from Sm drove potent Th2 responses by triggering dendritic cells to produce COX-1, COX-2, and then prostaglandin E2 (PGE2) [16]. We have reported that COX-2 inhibitor-NS398 protected mice from hepatic fibrosis induced by Sj infection [17]. However, there is a lack of studies on the effects of hepatic COX-2 on immune cells during Sj-induced liver fibrosis.

Herein, we demonstrate the effect of NS398, a selective inhibitor of the enzymatic activity of COX-2 in PGE2 synthesis, on macrophages, neutrophils, MDSCs and Th cell subsets, B cells, and in the spleen during Sj infection.

Methods
Reagents
NS398, the inhibitor of COX-2 activity, was purchased from MedChemExpress (HY-13913, NJ, USA). Fluorescein-conjugated anti-mouse antibodies (F4/80-FITC, CD11b-PE, Gr-1-APC, Dead-APC-A750, CD45-PB450, CD45-KO525; CD4-FITC, CD3-PC5.5, IL-17A-PC7, IFN-γ-APC, IL-4-PB450; CD3-FITC, Foxp3-PC5.5, PD-1-PC7, CXCR5-APC, FVD-PB450, CD4-KO525; FAS-PE, CD19-PC5.5, B220-PC7, GL7-APC, CD138-APC-A750, FVD-PB450) and their corresponding isotype controls were obtained from eBioscience (San Diego, CA, USA). Anti-mouse antibodies (CD3-FITC, CD4-PC5.5, IL-17A-PC7, CD11b-PE, Gr-1-APC, Dead-APC-A750, CD45-PB450, CD45-KO525; CD4-FITC, CD3-PC5.5, IL-17A-PC7, IFN-γ-APC, IL-4-PB450; CD3-FITC, Foxp3-PC5.5, PD-1-PC7, CXCR5-APC, FVD-PB450, CD4-KO525; FAS-PE, CD19-PC5.5, B220-PC7, GL7-APC, CD138-APC-A750, FVD-PB450) and their corresponding isotype controls were obtained from eBioscience (San Diego, CA, USA).

Mice, parasite infection, and NS398 treatment
Six- to 8-week-old female C57BL/6 mice were obtained from SPF Biotechnology Co., Ltd (Beijing) and were maintained according to institutional guidelines. All mice experiments were approved as humane by the Institutional Animal Care and Use Committee at South China Agricultural University (2019-1013). Mice were infected by 20±3 Sj cercariae of the Chinese mainland strain through abdominal skin penetration. NS398 (3 mg/kg body weight) was injected intraperitoneally three times a week from week 5 to week 7 with Sj infection (n = 8), while the infection control group only received 2% DMSO (n = 7). Two non-infected control mice groups were treated with NS398 (n = 5) and 2% DMSO (n = 9), respectively. Mice were sacrificed at week 8 after Sj infection. Spleens, MSN, and liver tissues were collected for further analysis.
H&E staining
Fresh hepatic tissues were fixed in 4% paraformaldehyde for 24 h and then were embedded with paraffin. Four-micrometer liver sections were prepared and stained with hematoxylin and eosin (H&E) to assess granuloma size and the extent of liver granulomatous inflammation. The severity of liver granulomatous inflammation was evaluated according to calibrated criteria (Table 1, Fig. 1b) [1].

Preparation of single-cell suspensions of mice spleen
Mice were anesthetized, and sterile normal saline was injected into the left ventricle to remove blood from organs. Then, the spleens were used to harvest cell suspensions by pressing these tissue pieces through a 100-mm cell strainer (BD Falcon) and then suspending in Hanks’ balanced salt solution (HBSS). Red blood cells were lysed with ammonium chloride (NH₄Cl) for 10 min. Cell suspensions were incubated with LIVE/DEAD Zombie NIR™ Fixable Viability Kit (Biolegend) for 20 min, and then resuspended at 2–3 × 10⁶ cells/ml in complete RPMI 1640 medium with 10% fetal bovine serum (FBS).

Cell surface staining and then flow cytometry analysis
Cell suspensions were preblocked with mouse Fc block antibody (BD, clone 2.4G2). The following antibodies were used for cell surface marker staining: anti-CD45-BV510 (clone 30-F11), anti-CD11b-PE (clone M1/70), anti-Ly6G-PE-cy7 (clone 1A8), anti-F4/80-FITC (clone BM8), anti-B220-PE-cy7 (clone RA3-6B2), anti-CD19-PerCP-Cy5.5 (clone eBio1D3), anti-PD-1-APC (clone 29F.1A12), anti-CD3e-PerCP-Cy5.5 (clone 145-2C11), anti-CD4-FITC (clone RM4-5), anti-CXCR5-Biotin (clone 2G8), anti-CD95-PE (clone 15A7) and anti-GL7-Alexa Fluor® 647 (clone GL7). Flow cytometry (FACS) analysis was conducted in CytoFLEX (Beckman Coulter) and analyzed with FlowJo software (FlowJo LLC, Ashland, OR, USA).

Intracellular cytokine staining and then flow cytometry analysis
Foxp3 intracellular staining was conducted using eBioscience™ Foxp3/transcription factor fixation/permeabilization concentrate and diluent. Cells were washed using permeabilization buffer (10×) followed by intracellular staining with anti-Foxp3-PerCP-Cy5.5 (clone FJK-1bs) for 40 min. For intracellular staining of cytokines, cell suspensions were stimulated with phorbol 12-myristate 13-acetate (20 ng/ml; Sigma-Aldrich), ionomycin (1 μg/ml; Sigma-Aldrich), and BFA (10 μg/ml; Sigma-Aldrich) for 4 h at 37 °C. Then, cells were fixed, permeabilized, and stained for anti-IL4-BV421 (clone 11B11), anti-interferon gamma (IFN-γ)-APC (clone XMG1.2), and anti-IL-17A-PE-cy7 (clone EBI017B7). FACS was conducted and analyzed.

Statistical analysis
The results are presented as the standard deviation (±SD) of the indicated number of replicates/experiments. Data from each group were analyzed using SPSS software (v11.0). Statistical evaluation of the difference between means was performed by one- or two-tailed, paired or unpaired Student’s t-test. A P-value of ≤0.05 was considered statistically significant.

Results
COX-2 inhibition by NS398 treatment reduced Sj infection-derived hepatomegaly, the size of granuloma, and the infiltration of immune cells around granuloma in the liver of mice
We have reported that the COX-2/PGE2 axis was involved in the formation of liver fibrosis induced by Sj infection under the control of the TLR4 pathway [17]. Chronic liver inflammation was supposed to develop into fibrosis. The size of granuloma induced by Sj egg deposition, especially at the mature and late stage, indicated the extent of fibrosis, and the amount of early-stage granuloma indicated the extent of inflammation. Herein, we found that COX-2 inhibition by NS398 treatment significantly attenuated hepatomegaly (Fig. 1a) (t-test: Sj/DMSO vs. Sj/NS398: t(5) = 78.17, P = 0.046) and the average granuloma size in the liver, including the size of mature and late-stage granulomas induced by single egg deposition (Fig. 1c, e) (t-test: Sj/DMSO vs. Sj/NS398: t(39) = 24.703.35, P = 0.0486). According to H&E staining of the liver sections, Sj infection-induced liver granulomas were classified into different stages (Table 1, Fig. 1b) [1]. COX-2 inhibition significantly decreased the percentage of early-stage granuloma (Fig. 1d, e) (t-test: Sj/DMSO vs. Sj/NS398: t(5) = 25.74, P = 0.047). This suggests that NS398 alleviated the extent of both inflammation and fibrosis in the Sj-infected mice liver.

NS398 decreased Sj infection-induced enlargement of mesenteric lymph nodes and splenomegaly of mice
Immune cells in the MLN and spleen tended to migrate or recycle into the liver and promoted hepatic inflammation and fibrosis induced by Sj infection [2]. The diameter of spleen thickness represents the severity of fibrosis. Herein, we showed that the size of the MLN and spleen was significantly reduced (Fig. 2) (t-test: Sj(−)/DMSO vs. Sj(+)/DMSO: MSN size: t(5) = 11.18, P = 0.0001; spleen size: t(5) = 18.77, P < 0.0001. Sj(+)/DMSO vs.
Table 1 *Schistosoma japonicum*-induced liver granuloma stages and inflammation

I. The pre-granulomatous stage—mini size, early inflammation (stage a)
a. Minimal disorganized aggregation of immune cells
b. No fibroblasts or extracellular matrix, no collagen fibers
c. Few eggs deposited
II. The granulomatous stages
(1) Early stage—small size, acute inflammation (stage b)
a. Infiltration of organized immune cells including monocytes, eosinophils, etc., around eggs
b. No fibroblasts or collagen fibers, with few or without extracellular matrix
c. Many eggs deposited
(2) Mature stage—big size, chronic and fibrotic inflammation (stage c)
a. Clear outer granuloma rim which is composed of a dense population of immune cells
b. Many recruited fibroblasts and their products including apparent extracellular matrix and collagen fibers inside the granuloma
c. Live or dead miracidia within the deposited eggs
(3) Late stage—small size, recovery (stage d)
Some pigmented macrophage infiltration
Disintegrated granuloma structure
Dead and calcified eggs

Sj(+)/NS398: MSN size: t(5) = 7.13, P = 0.0025; spleen size: t(5) = 13.23, P = 0.0008, which suggests that NS398 decreased their contribution to liver pathogenesis during *Sj* infection.

NS398 decreased the percentage of macrophages and did not affect the number of neutrophils or MDSCs in the spleen of *Sj*-infected mice

Mice with 8 weeks of *Sj* infection will develop advanced liver fibrosis [18]. To explore the existence of macrophages, neutrophils, and MDSCs in *Sj*-infected mice spleen at week 8 of *Sj* infection with or without NS398 treatment, mononuclear cells were isolated from mouse spleen, and the percentage of CD45, CD11b, and F4/80 co-expressed macrophages (Mφ) [19], CD11b and Gr-1 co-expressed MDSCs, and CD11b and Ly6G co-expressed neutrophils were detected by FACS (Fig. 3a). Dalton et al. reported that both F4/80high CD11bhigh and F4/80intermediate (int) CD11bint belonged to macrophages according to their morphology during *Leishmania donovani* infection [20]. Herein, our analysis also included these macrophage subpopulations. *Sj* infection significantly increased the percentage of macrophages (*t*-test: *Sj(−)/DMSO* vs. *Sj(+)*/DMSO: *t(5) = 24.82, P = 0.0010), neutrophils (*t*-test: *Sj(−)/DMSO* vs. *Sj(+)*/DMSO: *t(5) = 11.80, P = 0.0063), and MDSCs (*t*-test: *Sj(−)/DMSO* vs. *Sj(+)*/DMSO: *t(5) = 40.74, P = 0.0083), especially polymorphonuclear leucocyte (PMN)-MDSCs (*t*-test: *Sj(−)/DMSO* vs. *Sj(+)*/DMSO: *t(5) = 8.86, P = 0.018) (Fig. 2b–e). NS398 treatment significantly lowered the percentage of macrophages (*t*-test: *Sj*/DMSO vs. *Sj*/NS398: *t(5) = 18.12, *P* = 0.0012), but it did not significantly change the percentage of neutrophils and MDSCs distributed in the murine spleen (Fig. 3b–e). Among the macrophage subpopulations, the number of macrophages with CD11bintF4/80int was apparently increased with *Sj* infection, and decreased strikingly with NS398 treatment.

COX-2 inhibition reduced *Sj* infection-derived Th1 and Th2 but not Th17 cells in the spleen

To investigate whether T helper cell subsets in the spleen were involved in the alleviation of mice liver pathogenesis induced by *Sj* infection during NS398 treatment, mononuclear cells from infected mouse spleen with or without NS398 treatment were stained by fluorescence-labeled anti-CD3, CD4, IFN-γ, IL-4, and IL-17A, and then were detected by FACS (Fig. 4a). *Sj* infection significantly increased the percentage of Th1, Th2, and Th17 cells (*t*-test: *Sj(−)/DMSO* vs. *Sj(+)*/DMSO: Th1: *t(5) = 13.0, *P* = 0.035; Th2: *t(5) = 8.87, *P* = 0.0058; Th17: *t(5) = 0.91, *P* = 0.029) in the spleen, and the increase in Th1 and Th2 was significantly attenuated by NS398 treatment (*t*-test: *Sj*/DMSO vs. *Sj*/NS398: Th1: *t(5) = 7.29, *P* = 0.028; Th2: *t(5) = 3.27, *P* = 0.0036) (Fig. 4b, c). However, NS398 did not affect this Th17 subpopulation in the mice spleen (*t*-test: *Sj*/DMSO vs. *Sj*/NS398: *t(5) = 0.070, *P* = 0.555) (Fig. 4d). The effect of NS398 in decreasing Th1 and Th2...
differentiation explained its ability to alleviate the extent of liver granulomatus inflammation and fibrosis. In the non-infected mice with NS398 treatment, the percentage of Th1 and Th2 but not Th17 cells in the spleen was significantly increased (t-test: $Sj(-)/$DMSO vs. $Sj(-)/$NS398: Th1: $t_{(4)} = 9.06$, $P = 0.017$; Th2: $t_{(4)} = 2.99$, $P = 0.00064$; Th17: $t_{(4)} = 0.83$, $P = 0.096$). However, the ratio of Th1/Th2 in non-infected mice spleen was not affected by NS398 treatment (data not shown).

NS398 decreased Sj infection-triggered Tfh and Tfr cell generation

Profoundly impaired CD4$^+$ T cell responses are associated with Sj infection. Tfh and Tfr have been found to be increased in patients with Sj infection [12]. However, the function of Tfr-mediated immune responses to Sj infection and the effects of NS398 on this cell subset is unclear. Flow cytometry was performed to analyze Tfh and Tfr populations within spleen mononuclear cell...
preparations, as shown in Fig. 5a. Significantly increasing of PD-1^+^CXCR5^+^ Tfh cells (t-test: Sj(−)/DMSO vs. Sj(+)}/DMSO: t(5) = 13.99, P = 0.0059) and Tfr cells (t-test: Sj(−)/DMSO vs. Sj(+)}/DMSO: t(5) = 15.84, P = 0.0027) were shown in the Sj-infected murine spleen (Fig. 5c, d). Although NS398 treatment did not change the number of Foxp3^- and Foxp3^+^CD4^+^ T cells (Fig. 5b), it significantly decreased Tfh cells (Fig. 5c) (t-test: Sj/DMSO vs. Sj/NS398: t(5) = 5.36, P = 0.0050) and Tfr populations (Fig. 5d) (t-test: Sj/DMSO vs. Sj/NS398: t(5) = 6.05, P < 0.0001). Therefore, PD-1^-CXCR5^+^ Tfh cells and Tfr cells in the spleen might play an important role in schistosomiasis japonica, and NS398 will mitigate their effects.

NS398 treatment reduced Sj infection-induced GC B cell maturation in the spleen

As reported, during Sj infection, the number of splenic B cells was significantly increased [13, 21]. Here, we found that at week 8 of Sj infection, the number and percentage of B cells in the mice spleen showed no change, and GC B cells were significantly increased (t-test: Sj(−)/DMSO vs. Sj(+)}/DMSO: percentage of GC B: t(5) = 4.28, P = 0.0083; number of GC B: t(5) = 693, P = 0.024) (Fig. 6).

NS398 treatment showed no change in B cells, but significantly decreased the number and percentage of GC B cells (t-test: Sj(−)/DMSO vs. Sj(+)}/DMSO: percentage: t(5) = 1.85, P = 0.013; number: t(5) = 318.8, P = 0.040) (Fig. 6b and c). The effect of NS398 on GC B cells was consistent with Tfh and Tfr.

Discussion

In this study, we investigated the infiltration of multiple immune cells into the spleen of mice during 8 weeks of Sj infection, and the relationship between NS398 (COX-2-specific inhibitor) treatment and the number of these infiltrating immune cells and the extent of schistosomiasis japonica. We found that NS398 decreased Sj infection-derived hepatomegaly, the size of granuloma, and the extent of liver fibrosis and granulomatous inflammation, which was consistent with our last study [17]. The mechanisms involved might include the effect of NS398 in significantly decreasing Sj infection-induced enlargement of mesenteric lymph nodes and splenomegaly, and the number and percentage of macrophages, Th1, Th2, Tfh, Tfr, and GC B cells in the mice spleen. We firstly identified that 8 weeks of Sj infection significantly increased the number of MDSCs, Tfr, and GC B cells in
the spleen. This suggested that liver pathogenesis induced by Sj infection might occur through the activation of the COX-2/PGE2 axis in the liver and then the induction of Th1, Th2, Tfh, Tfr differentiation, and GC B maturation in the spleen.

In terms of the effect of Sj infection on cellular immune regulation, Zheng et al. [22] showed that neutrophils in the spleen of C57BL/6 mice increased gradually from 6, 8, and 12 weeks of 20 cercariae infection. The relationship between neutrophils and Th17 cells was consistent in mice with schistosomiasis [22, 23], which was supported by this study. Both our results and the reported study showed that Sj infection significantly increased the number of macrophages in the mice spleen (CD11b^{high} or CD11b^{int} and F4/80^{high}) [24]. The CD11b^{low} F4/80^{int} subpopulation was also included in macrophages in this study according to the morphological identification from the study by Dalton et al. [20]. NS398 suppressed Trypanosoma cruzi growth by inhibiting TGF-β production by macrophages [25]. Either recruited or resident macrophages in different tissues showed different morphological and functional phenotypes. Macrophages in the liver around or inside Sj egg granuloma lesions are a major cell population and an important contributor to liver fibrosis [26]. Our next study will explore the effect and mechanisms of NS398 on macrophage number, subpopulations, and activity in the liver. Yang et al. demonstrated that MDSCs in the spleen of C57BL/6 mice at 5–6 weeks of 40±5 Sj cercariae infection were strikingly increased [4], and we showed that MDSCs in the spleen

![Image](71x377 to 525x696)

Fig. 3. NS398 affected the number of macrophages, but not neutrophils and MDSC in the spleen of Sj-infected mice. Spleens from non-infected and infected mice with or without NS398 treatment were harvested and cells were isolated. a Spleen cells were stained with dead-APC-A750, CD45-PB450 or KO525, CD11b-PE, F4/80-FITC, Ly6G-PC7, and Gr-1-APC antibodies. F4/80⁺ CD11b⁺ cells (macrophage), Ly6G[−]CD11b⁺ cells (neutrophils or PMN) or Gr-1⁺ CD11b⁺ cells (MDSCs) were analyzed, and data shown are gated on CD45⁺ live cells. Ly6G⁺ cells in MDSCs (PMN-MDSC) were also analyzed. The expression of macrophages (b) and neutrophils (c) in CD45⁺ cells in the spleen was evaluated. MDSCs in CD45⁺ cells (d) and PMN-MDSCs in MDSCs or in CD45⁺ cells (e) in the spleen were evaluated. Data are expressed as the mean ± SD of indicated numbers of mice from different groups (Student’s t-test, statistic P-value is marked in the figures).
Fig. 4 COX-2 inhibition decreased Sj infection-derived Th1, Th2 but not Th17 cells in the spleen. a Isolated spleen cells were stained with dead-APC-A750, CD3-PC5.5, CD4-FITC, IFN-γ-APC, IL-4-PE540, and IL-17-PC7 antibodies. IFN-γ+CD4+ cells (Th1), IL-4+CD4+ cells (Th2), or IL-17+CD4+ cells (Th17) were analyzed and data shown are gated on CD3+CD4+ T cells. Numbers represent the percentage of the boxed population. b The expression of Th1 cells in CD3+CD4+ T cells in the spleen was evaluated. c Th2 or d Th17 cells in CD3+CD4+ T cells in spleen were evaluated. Data are expressed as the mean ± SD (Student’s t-test, statistic P-value is marked in the figures).

Fig. 5 NS398 decreased Sj infection-triggered Tfh and Tfr. a Isolated spleen cells were stained with CD3-FITC, CD4-KO525, Foxp3-PC5.5, CXCR5-APC, PD-1-PC7. Foxp3+ or Foxp3− cells were analyzed and data shown are gated on CD3+CD4+ T cells. CXCR5+PD-1+ cells (Tfh) were analyzed, and data shown are gated on Foxp3+ or Foxp3−CD4+ T cells, respectively. Numbers represent the percentage of the boxed population. b The expression of Foxp3+ or Foxp3− cells in CD3+CD4+ T cells in the spleen was evaluated. c CXCR5+PD-1+ cells or d CXCR5+PD-1− cells (Tfr) in spleen were evaluated. Data are expressed as the mean ± SD (Student’s t-test, statistic P-value is marked in the figures).
of C57BL/6 mice at 8 weeks of 20 ± 3 Sj cercariae infection were also significantly induced. The role and mechanisms of local and systemic MDSCs in schistosomiasis japonica need further exploration.

Huang et al. [27] showed that Th2, Th17, and CD25+Foxp3+ CD4+ T cells (Treg) but not Th1 were significantly increased in BALB/c mice spleen at 7 weeks of 30 ± 2 Sj cercariae infection. Tebeje et al. [28] found that 5 weeks of 34 Sj cercariae-infected splenic Th1 cells responded more strongly to Sj adult worm antigen preparation (SWAP) compared to SEA. Th2 immune response to SEA was dominant at week 6, and Treg response was high in the CBA mice spleen at week 5 followed by a decline at week 6. Su’s group [29] identified the dynamics of Th1, Th2, Th17, and Treg cells and their role in 12 Sj cercariae infection in C57BL/6 mice and showed that all of these T cell subsets increased gradually in the infected mice spleen at weeks 5, 8 and 13. Elevated frequencies of Th17 cells have been shown in the Sm-infected C57BL/6 mice spleen at week 6, but not at week 4 or 8 [30]. In contrast to C57BL/c, CBA mice developed more severe lesions driven by Th17 cells [31]. We showed that Th1, Th2, and Th17 cells in C57BL/6 mice spleen were significantly induced by 20 ± 3 Sj cercariae infection for 8 weeks (Fig. 4), which is consistent with the study reported by Su’s group [29]. However, the percentage of Th17 in Sj-infected mice spleen was still less than 1% and was not significantly decreased by NS398 in this study. This might be explained by the relatively high dose of Sj cercariae infection inducing a more severe extent of liver fibrosis, and the major production of IL-17A from γδT cells in Sj-infected mice spleen [32]. Meanwhile, our results showed that NS398 increased the number of Th1 and Th2 cells in non-infected mice spleen (Fig. 4), but the Th1/Th2 ratio showed no change compared with no NS398 treatment (data not shown). Since the homeostasis of the Th1/Th2 ratio was not affected, NS398 still possessed therapeutic potential in Sj-induced liver schistosomiasis. In fact, as reported, PGE2 increased Th1 differentiation in BALB/c mice and COX2 genetic deletion in C57BL/c increased Th2 differentiation [33, 34].

Tfh cells in the spleen of C57BL/6 mice at both 5 and 6 weeks of 40 ± 5 Sj cercariae infection were significantly
increased to about 20% of Treg cells, especially at week 5 [11]. The high frequency of Tfh and Tfr cells was significantly increased in the peripheral blood mononuclear cells (PBMCs) of patients with schistosomiasis japonica [35]. Infection with Sj induced TGF-β- and IL-10-producing B cells while decreasing CR5+ B1a cells [13, 21, 36]. B cell-mediated antibody production requires cross-talk between Tfh, Tfr, and B cells [7, 8]. In our study, Tfh, Tfr, and GC B cells significantly increased to 13.99 ± 5.22% of Foxp3+CD4+ T cells, 15.84 ± 2.84% of Treg cells, and 4.28 ± 1.95% of B cells, respectively, at week 8 of Sj infection.

COX-2 plays an important role in the progression of liver fibrosis [17, 37]. We found that the COX-2/PGE2 axis was positively associated with the extent of liver fibrosis [17, 37]. We found that the COX-2/PGE2 axis was positively associated with the extent of liver fibrosis [17, 37]. We found that the COX-2/PGE2 axis was positively associated with the extent of liver fibrosis [17, 37].

Conclusions
Our study firstly outlined the reciprocal relationships between the COX-2/PGE2 axis and the size of the liver, spleen, MSN and liver granuloma, and multiple immune cell infiltration in the spleen. We provided evidence that COX-2 inhibition ameliorated liver inflammation and fibrosis induced by Sj infection through suppression of macrophage and Th1, Th2, Tfh, Tfr and GC B cell accumulation in the spleen. COX-2/PGE2 inhibition may represent a potential therapeutic approach for schistosomiasis japonica. The detailed mechanisms of NS398 regulating these cells including through co-stimulatory molecules and their spatiotemporal regulation need further study.

Abbreviations
COX-2: Cyclooxygenase 2; PGE2: Prostaglandin E2; Sj: Schistosoma japonicum; MDCs: Myeloid-derived suppressor cells; MLN: Mesenteric lymph nodes; Th1: T helper type 1; Tfh: T follicular helper; Tfr: T follicular regulatory cells; GCB: Germinal center B; Sm: Schistosoma mansoni; Sh: Schistosoma haematobium; ECM: Extracellular matrix; SEA: Soluble egg Ag; SWA: Soluble worm Ag; CTLs: CD8+ cytotoxic T lymphocytes; Bcl6: B cell lymphoma 6; PD-1: Programmed death-1; H&E: Hematoxylin and eosin; NH4Cl: Ammonium chloride; FACS: Flow cytometry; IFN-γ: Interferon gamma; SD: Standard deviation; Mφ: Macrophage; PMN: Polymorphonuclear leucocyte; Treg: Regulatory T cells; SWAP: Sj adult worm antigen preparation; PBMCs: Peripheral blood mononuclear cells; TNF-α: Tumor necrosis factor alpha.

Acknowledgements
We acknowledge the expert technical help of Guiying Lin, Xiaomin Chang and Yaotang Wu.

Authors’ contributions
ZQ, CL, JXF, FC and HT performed the research. SEX, TJJ and LZ designed the experiment. L Z, SEX, ZQ and CL analyzed the data. LZ and CL wrote the paper. ZQ, CL, JXF, FC and HT performed the research. SEX, TJJ and LZ designed the experiment.

Funding
This work was funded by the Provincial Natural Science Foundation of Guangdong (no. 2019A1515012171), the General Project Program of the State Key Laboratory of Respiratory Disease (no. SKLRI-M5-201904) and the 111 Project (No. D18010).

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article.

Declarations
Ethics approval and consent to participate
Six- to 8-week-old female C57BL/6 wild-type mice were obtained from the specific-pathogen-free (SPF) Biotechnology Co. Ltd (Beijing). All mice experiments were approved as appropriate and humane by the Institutional Animal Care and Use Committee at South China Agricultural University (Authorization No: 2019c013).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
Author details
1 Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China. 2 Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China. The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Received: 19 November 2021 Accepted: 12 February 2022
Published online: 23 April 2022

References
1. Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN. Cellular and chemokine-mediated regulation in schistosomiasis-induced hepatic pathology. Trends Parasitol. 2014;30:141–50.
2. Masi B, Perles-Barbacarau TA, Bernard M, Viola A. Clinical and pre-clinical imaging of hepatosplenic schistosomiasis. Trends Parasit. 2020;36:206–24.
3. Kharina R, Sarin SK. Noncirrhotic portal hypertension: current and emerging perspectives. Clin Liver Dis. 2019;23:781–807.
4. Yang Q, Qiu H, Xie H, Q G, Y, Cha H, Q J, et al. Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. J Immunol. 2017;198:4716–27.
5. Zheng L, Hu Y, Wang Y, Huang X, Xu Y, Shen Y, et al. Recruitment of neutrophils mediated by VγVδ T cells deteriorates liver fibrosis induced by Schistosoma japonicum infection in C57BL/6 mice. Infect Immun. 2017;85:8.
6. Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, et al. Lymphocyte-mediated liver immunopathology of schistosomiasis. Front Immunol. 2020;11:61.
7. Schreier P, Willmann K, Lang AB, Lipp M, Loetscher P, Moser B. COX-2 mediated liver immunopathology of schistosomiasis. Front Immunol. 2020:296:36–47.
8. Chen X, Yang X, Li Y, Zhou J, Zhou Z, Xu Z, et al. Feliculatory helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 2014;10:e1004097.
9. Bira M, Shulman Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol Rev. 2020;296:36–47.
10. Chen X, Yang X, Li Y, Zhou J, Zhou Z, Xu Z, et al. Feliculatory helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 2014;10:e1004097.
11. Yang Q, Li Q, Cao Y, Duan Z, Guan Z, Xu J, et al. Up-regulation of interleukin-21 contributes to liver pathology of schistosomiasis by driving GC immune responses and activating HSCs in mice. Sci Rep. 2017;7:16682.
12. Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, et al. Lymphocyte-mediated liver immunopathology of schistosomiasis. Front Immunol. 2020;11:61.
13. Schreier P, Willmann K, Lang AB, Lipp M, Loetscher P, Moser B. COX-2 mediated liver immunopathology of schistosomiasis. Front Immunol. 2020:296:36–47.
14. Chen X, Yang X, Li Y, Zhou J, Zhou Z, Xu Z, et al. Feliculatory helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 2014;10:e1004097.
15. Mottlet O, Francés DE, Casanova N, Fuertes-Agudo M, Cucarella C, Flores JM, et al. Protective role of hepatitis C virus infection in the liver: a report from the hepatitis A and C vaccine consortium in patients with chronic hepatitis C. J Hepatol. 2016;65:550–5.
16. Kaisar MFM, Ritter M, Del Fresno C, Jónassdotir HS, van der Ham AJ, Pelgrom LR, et al. Dectin-1: a 1-cell-2-2-glucans signaling ligand of dendritic cells to prime Th2 responses. PLoS Biol. 2018;16:e2005504.
17. Chen L, X J, Wang M, Liao X, Liang C, Tang J, et al. Involvement of TLR2 regulation-coax2/2/22 axis in liver fibrosis induced by Schistosoma japonicum infection. Parasit Vectors. 2021;14:279.
and restores T cell response after traumatic stress. J Huazhong Univ Sci Technol Med Sci. 2014;34:234–40.
40. Harizi H, Limem I, Gualde N. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPks. Immunol Cell Biol. 2011;89:275–82.
41. Li B, Li YM, Li X, Shi B, He MY, Zhu XL, et al. COX-2 inhibition improves immune system homeostasis and decreases liver damage in septic rats. J Surg Res. 2009;157:43–7.
42. Yoon JM, Lee KH, Lee SM, Lim JJ, Yang SC, Yoo CG, et al. The immune modulation of Clara cell-10 in human peripheral monocytes and dendritic cells. Int J Mol Med. 2010;26:415–23.
43. Kuroda E, Sugiura T, Zeki K, Yoshida Y, Yamashita U. Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: a possible mechanism to polarize Th2 type response in BALB/c mice. J Immunol. 2000;164:2386–95.
44. Bernard MP, Phipps RP. Inhibition of cyclooxygenase-2 impairs the expression of essential plasma cell transcription factors and human B-lymphocyte differentiation. Immunology. 2010;129:87–96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.