Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the editor. Concerning the Article Entitled ‘Guillain Barre syndrome associated with COVID-19 infection: A case report’

Narges Karimi, Zahra Sedaghat

PII: S0967-5868(20)31336-9
DOI: https://doi.org/10.1016/j.jocn.2020.06.025
Reference: YJOCN 9029

To appear in: Journal of Clinical Neuroscience

Received Date: 13 May 2020
Accepted Date: 30 June 2020

Please cite this article as: N. Karimi, Z. Sedaghat, Letter to the editor. Concerning the Article Entitled ‘Guillain Barre syndrome associated with COVID-19 infection: A case report’, Journal of Clinical Neuroscience (2020), doi: https://doi.org/10.1016/j.jocn.2020.06.025

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.
Letter to the editor. Concerning the Article Entitled “Guillain Barre syndrome associated with COVID-19 infection: A case report”

Narges Karimi1*, Zahra Sedaghat2

Immunogenetics Research Center, Clinical Research Development Unit of Bou Ali Sina Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

2Department of Neurology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

* Correspondence: Narges, Karimi (MD), Associate Professor of Neurology, School of Medicine, Immunogenetics Research Center, Pasdaran Boulevard, Bou Ali Sina Hospital, Sari city, Mazandaran province, Iran
Postal code: 4815838477
Tel: +981133343018;
Fax: +981133344506
Mobile: +989122029074;
Email: Drkarimi_236@yahoo.com

Key words: Novel coronavirus; COVID-19; Neuropathy; Guillain Barre syndrome

Dear Editor,

A paper was published recently by Zahra Sedaghat and Narges Karimi entitled “Guillain Barre syndrome associated with COVID-19 infection: A case report” [1]. The authors would like to describe the patient's condition after six-week follow up. As described in the previous article, the patient was a 65-year-old man who had been admitted to the university hospital, with the symptoms of acute progressive symmetrical ascending quadriparesis and bilateral facial paresis. His symptoms had been started two weeks after diagnosed COVID-19 infection [1]. At the time of hospitalization, the patient had the muscle weakness in four limbs with a Medical Research Council (MRC) scale of 2/5 in proximal, 3/5 in distal of the upper extremities and 1/5 in proximal, 2/5 in distal of the lower extremities. The electromyography and nerve conduction velocity findings were in favor of acute motor sensory mixed polyneuropathy (1). This patient had been treated with intravenous Immunoglobulin (IVIG) 30 g/day for 5 days.
After four weeks of treatment the patients improved and walked without assistance. He was able to drive and returned to his work. The muscle stretch examination showed MRC scale of 5/5 in the upper and lower extremities bilaterally. Table 1 showed electro diagnostic findings after 6-week of treatment. Sural sensory nerve action potential (SNAP) was normal bilaterally with decreased amplitudes and slowing of conduction velocities at other SNAPs. There was conduction block in median and ulnar motor nerves (table 1). There was a partial improvement in comparison with the previous electrodiagnostic test [1]. The outbreak of coronavirus disease 2019 (COVID-19) has been started in Wuhan, China, and then expanded to other countries. The Patients with COVID-19 characteristically demonstrate fever and respiratory complaint [2]. limited studies reported neurological manifestations of COVID-19 [3-5]. Also, a little information is available on the association of GBS and COVID-19. Zhao et al. reported concurrence Guillian Barre syndrome (GBS) and COVID-19 in a 61-year-old-woman [6]. They described that the limb weakness of patient improved approximately one month after admission, similar to our study [6]. Padroni et al. reported a 70-year-old-woman with GBS symptoms, 3-week after diagnosed COVID-19 infection [7]. In our patient, the neurological symptoms of GBS revealed 2-week after detection COVID-19 infection. According to reports, COVID-19 can be considered a possible cause of GBS, and IVIG can be as a therapeutic option in association GBS and COVID-19 [8].

Conflict of interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Acknowledgement: We thank the patient for his consent to publish the case report.
References

[1] Sedagha Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: A case report. Journal of Clinical Neuroscience 2020, https://doi.org/10.1016/j.jocn.2020.04.062

[2] Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol;2020 Jan 16: 10.1002/jmv.25678 [Epub ahead of print].

[3] Sharifi-Razavi A, Karimi N, Rouhani N, COVID 19 and Intra cerebral hemorrhage: Causative or Coincidental. New Microbe and New Infect 2020; 35: https://doi.org/10.1016/j.nmni.2020.100669.

[4] Karimi N, Sharifi Razavi A, Rouhani Nima. Frequent Convulsive Seizures in an Adult Patient with COVID-19: A Case Report. Iran Red Crescent Med J. 2020 March; 22(3):102828. doi: 10.5812/ircmj.102828.

[5] Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. SSRN Electron J. 2020. doi:10.2139/ssrn.3544840.

[6] Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 2020, 10.1016/S1474-4422(20)30109-5

[7] Padroni M, Mastrangelo V, Asioli GM et al. Guillain-Barré syndrome following COVID-19: new infection, old complication?. J Neurol 2020, https://doi.org/10.1007/s00415-020-09849-6

[8] Cao W , Liu X , Bai T , et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. Published online March 21, 2020. doi:10.1093/ofid/ofaa102

Conflict of interest
The authors have no conflict of interest relevant to this article to disclose

Highlight
A novel coronavirus (COVID-19) was detected in Wuhan City, Hubei Province of China. The most symptoms of disease have reported fever, cough, dyspnea, myalgia, headache, and diarrhea.

We followed up GBS symptoms in one infected patient with COVID-19. The limbs weakness of patient completely improved after treatment with IVIG.
Table 1. Nerve conduction studies in the patient with GBS and COVID-19 infection, 6-week after treatment.

Nerve Stimulated	Site	*Amplitude (RT, LT)	Latency (ms) (RT, LT)	Conduction velocity (m/s) (RT, LT)	F wave (RT, LT)
Median (s)	Wrist	8.0 & 4.2	4.69 & 4.84	34.0 & 31.0	
Ulnar (s)	Wrist	12.4 & 6.6	3.75 & 3.91	39.0 & 36.0	
Sural (s)	Calf	6.6 & 8.5	3.59 & 3.65	48.0 & 51.0	
Median (m)	Wrist	6.7 & 7.0	5.21 & 5.89	46.0 & 40.0	34.3 & 36.4
	AF	5.3 & 5.8	10.0 & 11.35	31.0 & 41.0	
Ulnar (m)	Wrist	7.0 & 5.0	3.59 & 4.06		32.6 & 36.8
	BE	6.1 & 4.6	8.13 & 9.9	49.0 & 39.0	
Tibial (m)	Ankle	2.7 & 2.9	4.27 & 4.48	75.0 & 65.0	
	Popliteal F.	0.4 & 0.3	20.16 & 17.81	22.0 & 27.0	
Peroneal (m)	Ankle	1.1 & 1.0	6.67 & 7.76		
	Fib head	0.2 & 0.9	20.0 & 16.56	25.0 & 22.0	

*Amplitude motor=mV, Sensory=µV; m=motor study; s=sensory study; RT=right; LT=left; AF=antecubital fossa; BE=below elbow; BF=below fibula; GBS=Guillain Barre syndrome