The Multi-Class Classification for the First Six Surats of the Holy Quran

Nouh Sabri Elmitwally¹, Ahmed Alsayat²
Department of Computer Science, College of Computer and Information Sciences, Jouf University, Aljouf, Saudi Arabia¹,²
Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt¹

Abstract—The Holy Quran is one of the holy books revealed to the prophet Muhammad in the form of separate verses. These verses were written on tree leaves, stones, and bones during his life; as such, they were not arranged or grouped into one book until later. There is no intelligent system that is able to distinguish the verses of Quran chapters automatically. Accordingly, in this study we propose a model that can recognize and categorize Quran verses automatically and conclusion the essential features through Quran chapters classification for the first six Surat of the Holy Quran chapters, based on machine learning techniques. The classification of the Quran verses into chapters using machine learning classifiers is considered an intelligent task. Classification algorithms like Naïve Bayes, SVM, KNN, and decision tree J48 help to classify texts into categories or classes. The target of this research is using machine learning algorithms for the text classification of the Holy Quran verses. As the Quran texts consists of 114 chapters, we are only working with the first six chapters. In this paper, we build a multi-class classification model for the chapter names of the Quranic verses using Support Vector Classifier (SVC) and GaussianNB. The results show the best overall accuracy is 80% for the SVC and 60% for the Gaussian Naïve Bayes.

Keywords—Text classification; machine learning; natural language processing; text pre-processing; feature selection; data mining; Holy Quran

I. INTRODUCTION

Text classification of the Holy Quran is a research topic researchers should pay attention to in the context of machine learning algorithms.

The Holy Quran is a book that was sent down from the heavens into the heart of the prophet Muhammad to be delivered to all human beings, not only Muslims. The sacred words were revealed by Allah and written into a meaningful textual format that could be analysed and classified using machine learning classification algorithms.

It is considered a comprehensive book covering every component of life and accessible to all people. It addresses the heart and mind as one.

The texts of the Holy Quran are fertile ground for natural-language processing and text classification. Their uniqueness and meanings distinguish the features. The Holy Quran is the first source of legislation in Islam. It is necessary to apply data-mining techniques to classify the verses into chapters (surats) intelligently based on machine learning techniques.

Furthermore, annotation of the verses of the Holy Quran’s surats depends not only on the text itself but also on the ordering of the surats. Therefore, this study builds a model to classify and differentiate Quranic verses, according to their surats.

We have previously studied the architecture of the Arabic Language Sentiment Analysis (ALSA) [1]. We extended the concept of text classification to apply it to the Holy Quran’s verses. The total number of verses in the Holy Quran is about 6000. Multi-class classification means that we need an automating model that enables classification of the texts accordingly. For this reason, this paper looks at the first six chapters from the Holy Quran; its approximately 1000 verses contain a total 8000 features for the training and testing data.

This paper is constructed as follows: the next section presents related work on multi-class text classification of the Holy Quran. Experimental method and analysis are covered in Section 3. Finally, the fourth section includes the results followed by the conclusions and anticipations of future work.

II. RELATED WORK

The study detailed in [2] proposed an automation model that could classify Al-hadeeth features into Sahih, Hasan, Da’if, and Maudu, using machine learning techniques (LinearSVC, SGDClassifier, and LogisticRegression).

The author of [3] built a machine-learning model using an algorithm (KNN, SVM, and Naïve Bayes) classification model to annotate labels for the Quranic verses. The accuracy of the text-classification algorithms reached over 70% for the multi-labels of the Quranic verses.

The authors of [4] proposed a multi-label classification approach to the topics of Quranic verses using a k-Nearest Neighbor (KNN) algorithm with a weighted TF-IDF and TF-IDF.

Another research paper looked at the impact evaluation for four classification algorithms (SVM, KNN, Naïve Bayes and Decision Tree) to classify the topic of the Quranic Ayāts/verses [5]. The same concept as studied in [6] used the MultinomialNB classifier.

The authors of [7] used the Propbank Corpus to improve the performance of semantic argument classification on Quran data using the SVM Linear.

The authors of [8] applied the GBFS approach to label Quranic verses based on two major references, the
commentary on the verses and the English translation. In addition, they proposed the IG-CFS technique to label Quranic verses of surats al-Baqara and al-Anaam [9].

III. EXPERIMENT AND ANALYSIS

The proposed model consists of four important phases as shown in the following framework architecture: 1) data collection, 2) text feature engineering, 3) The Term Frequency – Inverse Document Frequency (TF-IDF) feature representation, and 4) The GaussianNB and SVC classifiers. The framework architecture of the multi-class Quran framework classification is shown in Fig. 1.

A. Data Pre-processing and Cleaning

Before machine-learning modelling, we applied text pre-processing and cleaning techniques to extract features according to the following steps: remove the Arabic Tashkeel symbols (e.g., ًَ ًْ ًَََََ) and remove consecutive Tatweel (‘—’) within Arabic characters.

B. Corpus

The corpus size was 954 verses collected from the first six surats of the Holy Quran. Table I shows generated descriptive statistics summarizing the central tendency, dispersion and the shape of the corpus’ distribution.

Table II outlines the extracted sample from the Holy Quran corpus for the six classified categories [“Fatiha”, “Albaqrah”, “AlEimran”, “Anisaa”, “Almaimida”, “Alaneam”] in the first column. The number of verses is shown in the second column. The selected verse and its translation appear in columns three and four.

C. Exploratory Data Analysis

The goal of the Exploratory Data Analysis (EDA) is to extrapolate on the breadth of information reflected by the corpus data. Fig. 2 shows the number of verses per corpus class.

![Fig. 1. The Quran Framework Classification.](image-url)
D. Feature Engineering and Selection

Feature-text selection and engineering are considered the process of choosing the essential features required to represent the model for machine-learning classifiers. The following figures (Fig. 3-8) show word clouds for each Surat in the Holy Quran corpus.

IV. RESULTS

We calculated Accuracy, Recall and F1-value according to the following mathematical equations:

\[F - value = \frac{2 \times Accuracy \times Recall}{Accuracy + Recall} \times 100\% \]
\[Recall = \frac{\text{The number of corrected texts of a specific class}}{\text{The number of texts of this class in testing data}} \times 100\% \]
\[Accuracy = \frac{\text{The number of corrected texts in a specific class}}{\text{The number of texts in the class}} \times 100\% \]

A. Machine-Learning Classifiers

The Support Vector Classifier (SVC) is considered the implementation of the Support Vector Machine (SVM) [5] for solving multi-class classification problems. The GaussianNB performs accurate feature-vector classification for the multi-class text problems [10]. We tested the proposed model against the performance metrics. The results are shown in Table III.

The sample texts of misclassified instance-classes are listed in Table IV. The table shows the missed classified text according to the expected and predicted output for the six
classes ("Fatiha"–1; “Albaqrah”–2; “AlEimran”–3; “Alnisaa”– 4; “Almayida”–5; “Alaneam”–6).

B. Evaluation Metrics

The classification algorithms need the performance metrics to measure the model accuracy and losses. Fig. 9 shows that most of the performance metrics we used to evaluate the proposed multi-class Quranic model. The performance metrics are: 1) cohen_kappa; 2) log_loss; 3) zero_one_loss; 4) hamming_loss; and 5) Mathews_corrcoef.

The proposed model is evaluated according to two classifiers, SVC [7] and GaussianNB, as shown in Table V and Table VI and the Fig. 10 and Fig. 11. The performance of the proposed model is measured in terms of accuracy, precision, recall, f-measure, AUC, and ROC curves. The SVC classifier had the highest AUC value of 0.97 while the GaussianNB had the AUC value of 0.82 (see Fig. 12 and Fig. 13).

TABLE III. THE PERFORMANCE METRICS

Metric	SVC	GaussianNB
cohen_kappa_score	0.408	0.395
log_loss	0.000	16.456
zero_one_loss	0.450	0.476
hamming_loss	0.450	0.476
matthews_corrcoef	0.420	0.396

TABLE IV. THE MISCLASSIFIED INSTANCE-CLASSES

Text	Expected Output	Predicted Output
وقالوا هم حتى لا تكون فئة ويكون الدين لله فإن انتهوا فلا دعاوى إلا على الظالمين	2	6
يا أيها الذين آمنوا لا تأكلوا الربا أضعافا مضاعفة واتقوا الضرار	3	5
واتع بالله إنه يحب أن يعفو إذا قرأا فريقا فقبل من هددته ولم يقبل من الأشر قال لا تكتموه قال إنه يحب أن يعفو إذا قرأا فريقا فقبل من هددته ولم يقبل من الأشر قال لا تكتموه قال إن أول بيت وضع للناس للذي ببكة مباركا هدى للعالمين	5	2
إن أول بيت وضع للناس للذي ببكة مباركا هدى للعالمين	3	2

TABLE V. RESULTS FOR SVM CLASSIFIER

Class	Precision	Recall	F1-score	Area Under Curve (AUC)
Fatiha	0.000	0.000	0.000	0.80
Albaqrah	0.487	0.475	0.481	0.68
AlEimran	0.545	0.364	0.436	0.85
Alnisaa	0.478	0.754	0.585	0.77
Almayida	0.871	0.771	0.818	0.97
Alaneam	0.444	0.167	0.242	0.76

TABLE VI. RESULTS FOR GAUSSIANNB CLASSIFIER

Class	Precision	Recall	F1-score	Area Under Curve (AUC)
Fatiha	1.000	0.500	0.667	0.75
Albaqrah	0.424	0.350	0.384	0.61
AlEimran	0.548	0.515	0.531	0.71
Alnisaa	0.550	0.579	0.564	0.69
Almayida	0.686	0.686	0.686	0.82
Alaneam	0.355	0.458	0.400	0.67

Fig. 9. The Agreement and Performance Metrics.

Fig. 10. SVM Classifier for Multi-Class Quranic Chapters.

Fig. 11. GaussianNB Classifier for Multi-Class Quranic Chapters.
Finally, SVC [3] and GaussianNB classifiers were implemented for each verse of each Surat and measured the results in terms of the area under the curve (AUC) (see Fig. 14 and Fig. 15) [8]. The experimental results have shown that the proposed model had significant impacts on the multi-class Holy-Quran verse classification (see Fig. 16-19).
by building a larger corpus for the verses of the Holy Quran chapters.

ACKNOWLEDGMENT
This research was fully funded by the Deanship of Scientific Research at Jouf University, AlJouf, Saudi Arabia on 2019/2020 using grant number (40/175); the APC was funded by Jouf University (JU).

REFERENCES
[1] A. Alsayat and N. Elmitwally, “A comprehensive study for Arabic Sentiment Analysis (Challenges and Applications),” Egypt. Inform. J., p. S1110866519300945, Jun. 2019, doi: 10.1016/j.eij.2019.06.001.
[2] H. M. Abdelal, A. M. Ahmed, W. Ghribi, and H. A. Youness Alansary, “Knowledge Discovery in the Hadith According to the Reliability and Memory of the Reporters Using Machine Learning Techniques,” IEEE Access, vol. 7, pp. 157741–157755, 2019, doi: 10.1109/ACCESS.2019.2944118.
[3] A. O. Adeleke, N. A. Samsudin, A. Mustapha, and N. Nawi, “Comparative Analysis of Text Classification Algorithms for Automated Labelling of Quranic Verses,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4, p. 1419, Aug. 2017, doi: 10.18517/ijaseit.7.4.2198.
[4] G. I. Uhumudin, A. Adiwijaya, and M. S. Mubarok, “A multilabel classification on topics of qur’anic verses in English translation using K-Nearest Neighbor method with Weighted TF-IDF,” J. Phys. Conf. Ser., vol. 1192, p. 012026, Mar. 2019, doi: 10.1088/1742-6596/1192/1/012026.
[5] M. N. Al-Kabi, B. M. A. Ata, H. A. Wahsheh, and I. M. Alsmadi, “A Topical Classification of Quranic Arabic Text,” Taibah Univ. Int. Conf. Adv. Inf. Technol. Holy Quran Its Sci., p. 7, 2013.
[6] R. A. Pane, M. S. Mubarok, N. S. Huda, and Adiwijaya, “A Multi Label Classification on Topics of Quranic Verses in English Translation Using Multinomial Naive Bayes,” in 2018 6th International Conference on Information and Communication Technology (ICoICT), Bandung, 2018, pp. 481–484, doi: 10.1109/ICoICT.2018.8528777.
[7] D. K. Batubara, M. A. Bijaksana, and Adiwijaya, “On feature augmentation for semantic argument classification of the Quran English translation using support vector machine,” J. Phys. Conf. Ser., vol. 971, p. 012043, Mar. 2018, doi: 10.1088/1742-6596/971/1/012043.
[8] A. O. Adeleke, N. A. Samsudin, A. Mustapha, and N. M. Nawi, “A Group-Based Feature Selection Approach to Improve Classification of Holy Quran Verses,” in Recent Advances on Soft Computing and Data Mining, vol. 700, R. Ghazali, M. M. Deris, N. M. Nawi, and J. H. Abawajy, Eds. Cham: Springer International Publishing, 2018, pp. 282–297.
[9] A. Adeleke and N. Samsudin, “A Hybrid Feature Selection Technique for Classification of Group-based Holy Quran Verses,” Int. J. Eng., p. 7.
[10] M. Karan, J. Šnajder, D. Sirinic, and G. Glavas, “Analysis of Policy Agendas: Lessons Learned from Automatic Topic Classification of Croatian Political Texts,” in Proceedings of the 10th SIGUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Berlin, Germany, 2016, pp. 12–21, doi: 10.18653/v1/W16-2102.