Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan: A systematic review and meta-analysis

Pedro Lopez1,2 | Dennis R. Taaffe1,2 | Daniel A. Galvão1,2 | Robert U. Newton1,2 | Elisa R. Nonemacher3 | Victória M. Wendt3 | Renata N. Bassanesi3 | Douglas J. P. Turella4,5 | Anderson Rech5

1Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Western Australia, Australia
2School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
3Curso de Medicina, Universidade de Caxias do Sul, Caxias do Sul, Brazil
4Centro Clínico UCS, Universidade de Caxias do Sul, Caxias do Sul, Brazil
5Curso de Educação Física, Universidade de Caxias do Sul, Caxias do Sul, Brazil

Correspondence
Pedro Lopez, Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia. Email: p.lopezdacruz@ecu.edu.au

Funding information
NHMRC CRE

Summary
To systematically review and analyze the effects of resistance-based exercise programs on body composition, regional adiposity, and body weight in individuals with overweight/obesity across the lifespan. Using PRISMA guidelines, randomized controlled trials were searched in nine electronic databases up to December 2020. Meta-analyses were performed using random-effects model. One hundred sixteen articles describing 114 trials (n = 4184 participants) were included. Interventions involving resistance training and caloric restriction were the most effective for reducing body fat percentage (ES = -3.8%, 95% CI: -4.7 to -2.9%, p < 0.001) and whole-body fat mass (ES = -5.3 kg, 95% CI: -7.2 to -3.5 kg, p < 0.001) compared with groups without intervention. Significant results were also observed following combined resistance and aerobic exercise (ES = -2.3% and -1.4 kg, p < 0.001) and resistance training alone (ES = -1.6% and -1.0 kg, p < 0.001) compared with no training controls. Resistance training alone was the most effective for increasing lean mass compared with no training controls (ES = 0.8 kg, 95% CI: 0.6 to 1.0 kg, p < 0.001), whereas lean mass was maintained following interventions involving resistance training and caloric restriction (ES = -0.3 kg, p = 0.550–0.727). Results were consistently observed across age and sex groups (p = 0.001–0.011). Reductions in regional adiposity and body weight measures were also observed following combined resistance and aerobic exercise and programs including caloric restriction (p < 0.001). In conclusion, this study provides evidence that resistance-based exercise programs are effective and should be considered within any multicomponent therapy program when caloric restriction is utilized in individuals with overweight or obesity.

KEYWORDS
body composition, obesity, resistance training

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Multicomponent lifestyle and therapy interventions are considered the cornerstone for the management of obesity.1,2 Several guidelines recommend exercise, dietary, and behavioural interventions to improve weight loss in this population.2–4 In regard to exercise interventions, aerobic exercise (i.e., activity involving large muscle groups and performed in a continuous or intermittent fashion over an extended period of time, such as cycling, swimming, jogging, or running) is recommended as the main exercise component for additional weight loss.2–5 Whereas resistance exercise (i.e., anabolic exercise: performing sets of repeated movements against a resistance) has been considered less critical due to insufficient evidence on the effects on reducing body weight or body mass index (BMI).2–5 However, determining the effectiveness of resistance exercise is challenging due to the reliance on body weight rather than overall body composition in individuals with overweight/obesity, as resistance exercise can result in body weight increases due to the accrual of lean mass, which is highly associated with metabolic health and physical function. Although body weight and BMI are important and extensively used in clinical practice, they do not differentiate lean from fat mass or depots of adiposity (i.e., visceral vs. subcutaneous adipose tissue), underestimating the importance of these tissues for overall health. Consequently, this precludes identifying the potential use of resistance training in individuals with overweight/obesity. Moreover, despite previous systematic reviews investigating exercise and dietary effects on body composition6–7 and visceral adipose tissue,8–12 the specific effects of resistance exercise on fat mass and lean mass have not been investigated in depth in those overweight/obese. For instance, it is not well understood if resistance exercise, alone or combined with other exercise components and dietary interventions, results in meaningful effects on fat mass while maintaining or increasing lean mass in this population. This information may improve exercise prescription for obese individuals, increasing potential treatment options for this population.

As a result, the present study aimed to systematically review and analyze the effects of resistance-based exercise programs (i.e., interventions including resistance exercise as one of the components) compared with no intervention control groups on body fat percentage, whole-body fat mass, trunk fat mass, visceral and subcutaneous adipose tissue and whole-body lean mass in participants with overweight/obesity (i.e., as defined in the studies included). Studies involving children and adolescents (<18 years), young adults (18 to 35 years), middle-aged adults (>35 to 59 years), and older adults (≥ 60 years) who are overweight or obese were included. The primary outcomes for this review were body fat, fat mass, trunk fat mass, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and lean mass. Secondary outcomes were body weight and BMI. The exclusion criteria were (1) studies involving individuals with other chronic conditions such as type II diabetes or cancer because of the interaction between treatments and outcomes; (2) studies involving participants with overweight/obesity enrolled in water-based resistance training as the only study intervention; (3) studies with interventions lasting less than 4 weeks; (4) studies comprising control groups receiving any active exercise or dietary interventions that constituted an intervention for body composition; and (5) studies written in a language other than English, Portuguese, or Spanish. This review included peer-review published and unpublished studies. The search was conducted in CINAHL, Cochrane Library, EMBASE, LILACS, PubMed, SciELO, SportDiscus, and Web of Science databases for peer-review published studies and MedNar, OpenGrey, and OpenThesis databases for unpublished studies. The date of the search was December 2020, with no limitation for publication date. A manual search was undertaken in the reference lists provided in all retrieved studies. Eligibility was assessed independently and evaluated in triplicate (P. L., E. R. N., and V. M. W. and P. L., R. N. B., and D. J. P. T.). The search strategy is presented in Data S1.

\subsection*{2.2 | Data extraction}

Data extraction was performed via a standardized form. For each study, details including sample size, sex, age, overweight/obesity criteria, baseline BMI, baseline body fat, experimental design (intervention groups and their respective sample sizes), resistance-based exercise program (i.e., intervention duration, volume, and intensity), and dietary program prescription were extracted along with the outcomes of interest. In addition, retention (i.e., number of participants that completed the study) and attendance (i.e., number of sessions attended) were assessed from the studies. For the outcomes assessed, baseline and post-intervention assessment and within- and between-group mean difference were extracted in their absolute units and for the longest period of the intervention. When studies did not provide dispersion values of change such as standard deviation (SD), standard errors or 95% confidence intervals (95% CI), the SD of the change
was calculated assuming a correlation of \(r = 0.5 \) between the baseline and post-intervention assessment measures by the square root of \(\left(\frac{SD_{Baseline}^2 + SD_{Post–intervention}^2}{2} - (2 \times r \times SD_{Baseline} \times SD_{Post–intervention}) \right) \).\(^{16}\) For studies containing multiple intervention arms versus control groups, only data from those comprising resistance exercise as part of the intervention were extracted. When graphs were used instead of numerical data, the graphs were measured through their plots using a specific tool for data extraction (WebPlotDigitizer, San Francisco, CA).\(^{17}\)

2.3 Risk of bias assessment

The risk of bias was evaluated according to the 2nd version of the Cochrane risk-of-bias tool for randomized trials (RoB 2), with each assessment focused on the outcome level.\(^{18}\) The six-domain instrument includes (1) randomization process, (2) deviation from intended interventions, (3) missing outcome data, (4) measurement of the outcome, (5) selection of the reported result, and (6) overall bias. The study quality assessment for all included studies was performed independently by two reviewers (E. R. N. and V. M. W. or R. N. B. and D. J. P. T.), with disagreements resolved by a third reviewer (P. L.).

2.4 Statistical analysis

For the meta-analysis, the pooled effect estimates from body fat percentage, fat mass, trunk fat mass, lean mass, body weight, and BMI were obtained and expressed as mean difference (MD) of baseline to the final assessment of the intervention versus control group. For VAT and SAT, results were expressed as standardized mean difference (SMD) due to the different units reported in the studies included. Meta-analyses were conducted independently by reviewers (E. R. N. and V. M. W. or R. N. B. and D. J. P. T.), with disagreements resolved by a third reviewer (P. L.).

Four-thousand seven-hundred and fifty-six studies were retrieved from our search, with 2737 potential records retained for screening after duplicate removals. After excluding 1080 records due to their irrelevance to the research question, 1657 were considered eligible for full-text assessment (Figure 1). A total of 116 articles describing 114 independent trials were included in this systematic review and meta-analysis with 23 articles examining children or adolescents,\(^{24–46}\) 30 articles examining young adults,\(^{47–76}\) 38 articles examining middle-aged adults,\(^{77–114}\) and 25 articles examining older adults who are overweight or obese.\(^{115–139}\)

A total of 4184 participants with overweight/obesity were included in this systematic review, involving 878 children/adolescents [median age = 14.8 years (interquartile range [IQR]: 11.8 to 15.4 years), median BMI = 30.1 kg m\(^{-2}\) (IQR: 26.4 to 33.4), and body fat percentage = 36.7% (IQR: 34.1 to 43.2%)], 658 young adults [median age = 23.6 years (IQR: 21.9 to 27.2), median BMI = 29.6 kg m\(^{-2}\) (IQR: 26.9 to 31.4), and body fat percentage = 31.7% (IQR: 28.1 to 37.4)], 1416 middle-aged adults [median age = 47.0 years (IQR: 39.9 to 52.4), median BMI = 30.4 kg m\(^{-2}\) (IQR: 28.7 to 32.7), and body fat percentage = 38.5% (IQR: 32.0 to 44.7)] and 1232 older adults [median age = 67.3 years (IQR: 64.1 to 68.9), median BMI = 29.6 kg m\(^{-2}\) (IQR: 28.1 to 31.7), and body fat percentage = 37.4% (IQR: 35.3 to 42.7)].

In summary, most studies included resistance training alone (56 out of 114 studies, 49.1%), followed by combined resistance and aerobic exercise (51 out of 114 studies, 44.7%), combined resistance and aerobic exercise + caloric restriction (8 out of 114 studies, 7.0%), and resistance training + caloric restriction (6 out of 114 studies, 5.3%). Regarding exercise prescription characteristics, the mean intervention duration was 14.6 ± 11.0 weeks (range: 4 to 96 weeks) with frequency ranging from 1 to 5 sessions per week. Information about resistance training volume was reported by 75 studies (65.8%) and ranged from 20 to 165 weekly resistance exercise sets, whereas resistance training peak intensity was reported by 64 studies (56.1%) and ranged from 20% to 97% of one-repetition maximum (1-RM). The characteristics of the individual studies are presented in Tables S1 to S4.
3.1 Risk of bias

High risk of bias was observed in 70 out of 98 studies (71.4%) examining body fat percentage, 37 out of 62 studies (59.7%) examining fat mass, 6 out of 15 studies (40.0%) examining VAT, 3 out of 8 studies (37.5%) examining SAT, and 43 out of 70 studies (61.4%) examining lean mass. For body weight and BMI, 23 out of 98 studies (23.5%) had a high risk of bias in the overall risk of bias assessment.

The individual risk of bias assessment for children/adolescents, young adults, middle-aged adults, and older adults are presented in Tables S5 to S8.

3.2 Body fat percentage and whole-body fat mass

Resistance-based exercise programs resulted in significant reductions in body fat percentage (number of studies $k = 89$, ES = -2.2%, 95% CI: -2.4 to -2.0%) and whole-body fat mass ($k = 52$, ES = -1.6 kg, 95% CI: -1.9 to -1.3 kg) (Table 1). These effects were consistent across children/adolescents (ES = -2.1%, 95% CI: -2.8 to -1.3% and ES = -1.9 kg, 95% CI: -2.9 to -0.8 kg), young adults (ES = -2.7%, 95% CI: -3.7 to -1.7% and ES = -1.0 kg, 95% CI: -1.4 to -0.5 kg), middle-aged adults (ES = -2.4%, 95% CI: -2.5 to -2.3% and ES = -1.2 kg, 95% CI: -2.1 to -0.4 kg), and older adults (ES = -1.9%, 95% CI: -2.4 to -1.4% and ES = -1.7 kg, 95% CI: -2.3 to -1.2 kg). Results are presented for body fat percentage and whole-body fat mass across the lifespan before sensitivity analysis procedure adjustments in Figure 2 and Figure 3, respectively. In addition, significant effects were observed in studies involving female (ES = -2.4%, 95% CI: -2.5 to -2.3% and ES = -1.0 kg, 95% CI: -1.3 to -0.7 kg), males (ES = -2.8%, 95% CI: -3.4 to -2.2% and ES = -2.6 kg, 95% CI: -3.8 to -1.4 kg), and mixed participants (ES = -1.7%, 95% CI: -2.1 to -1.2% and ES = -2.0 kg, 95% CI: -2.6 to -1.5 kg). The most effective exercise modality for reducing body fat percentage was resistance training + caloric restriction, with changes of -3.8% (95% CI: -4.7 to -2.9%). For reducing fat mass, both resistance training + caloric restriction and combined resistance

FIGURE 1 Flow chart of study selection process
Overall and subgroup analyses of resistance-based exercise effects on body fat percentage and whole-body fat mass in participants who are overweight or obese

Table 1	Random effect meta-analysis	Heterogeneity					
	k	ES	95% CI	p-value	Q	I²	p-value
Body fat percentage, %							
Overall effect	99	−2.3	−2.7 to −1.9	<0.001	651.2	85%	<0.001
Without outlier^a	89	−2.2	−2.4 to −2.0	<0.001	95.6	8%	0.273
Age							
Children/adolescent	19	−2.1	−2.8 to −1.3	<0.001	26.4	32%	0.090
Young adults⁴	26	−2.7	−3.7 to −1.7	<0.001	24.2	0%	0.507
Middle-aged adults⁴	27	−2.4	−2.5 to −2.3	<0.001	19.7	0%	0.805
Older adults	19	−1.9	−2.4 to −1.4	<0.001	36.3	51%	0.006
Sex							
Female^c	45	−2.4	−2.5 to −2.3	<0.001	41.1	0%	0.599
Male^c	25	−2.8	−3.4 to −2.2	<0.001	35.3	32%	0.064
Mixed^d	20	−1.7	−2.1 to −1.2	<0.001	17.0	0%	0.593
Exercise modality^b							
RET^c	45	−1.6	−1.9 to −1.2	<0.001	46.8	6%	0.360
RET + Caloric restriction	3	−3.8	−4.7 to −2.9	<0.001	0.4	0%	0.817
COMB^c	40	−2.3	−2.7 to −1.9	<0.001	45.2	14%	0.229
COMB + Caloric restriction	6	−3.0	−4.1 to −1.8	<0.001	4.8	0%	0.439
COMB + Healthy diet	2	−2.3	−2.8 to −1.8	<0.001	1.6	38%	0.203
Fat mass, kg							
Overall effect	63	−2.1	−2.7 to −1.6	<0.001	219.0	72%	<0.001
Without outlier^c	52	−1.6	−1.9 to −1.3	<0.001	39.5	0%	0.879
Age							
Children/adolescent	13	−1.9	−2.9 to −0.8	<0.001	20.8	42%	0.053
Young adults⁴	14	−1.0	−1.4 to −0.5	<0.001	11.9	0%	0.540
Middle-aged adults⁴	14	−1.2	−2.1 to −0.4	0.003	17.8	27%	0.166
Older adults⁴	17	−1.7	−2.3 to −1.2	<0.001	22.7	30%	0.121
Sex							
Female^c	26	−1.0	−1.3 to −0.7	<0.001	23.3	0%	0.558
Male^c	15	−2.6	−3.8 to −1.4	<0.001	22.1	37%	0.076
Mixed^d	17	−2.0	−2.6 to −1.5	<0.001	20.8	23%	0.186
Exercise modality^b							
RET^c	33	−1.0	−1.4 to −0.7	<0.001	22.0	0%	0.908
RET + Caloric restriction	5	−5.1	−6.3 to −3.8	<0.001	8.5	53%	0.074
RET + Low-sugar diet	2	0.2	−1.7 to 2.0	0.880	0.1	0%	0.782
RET + Protein supplementation	2	−0.7	−3.4 to 2.1	0.640	0.0	0%	0.889
COMB^c	22	−1.4	−2.0 to −0.8	<0.001	38.3	45%	0.012
COMB + Caloric restriction	7	−5.3	−7.2 to −3.5	<0.001	23.6	75%	<0.001

Abbreviations: COMB, combined resistance and aerobic exercise; ES, effect size; I², percentage of variation across studies that is due to heterogeneity; k, number of studies; Q, Cochran’s Q test of heterogeneity; RET, resistance training.

^aExercise modalities excluded due to insufficient evidence for body fat percentage: RET + Ginger supplementation, ES = −4.9% (95% CI: −13.4 to 3.6); RET + Green tea, ES = −12.4% (95% CI: −15.3 to 9.3); RET + Protein supplementation, ES = −0.8% (95% CI: −3.1 to −1.6); COMB + Amino acids, ES = −0.3% (95% CI: −2.5 to 1.9); COMB + Caffeine supplementation, ES = −0.6% (95% CI: −3.4 to 2.1); COMB + Caloric restriction + Protein supplementation, ES = −2.7% (95% CI: −5.5 to 0.1); COMB + Fatty acids, ES = −1.2% (95% CI: −5.9 to 3.5); COMB + Isoflavones supplementation, ES = −2.0% (95% CI: −4.9 to 0.9); COMB + Protein supplementation, ES = −2.1% (95% CI: −3.2 to −1.0).

^bExercise modalities excluded due to insufficient evidence for fat mass: RET + Ginger supplementation, ES = −3.1 kg (95% CI: −10.2 to 4.0); RET + Green tea, ES = −11.7 kg (95% CI: −15.3 to −8.1); COMB + Amino acids, ES = −0.2 kg (95% CI: −2.4 to 2.0); COMB + Caffeine supplementation, ES = 0.3 kg (95% CI: −4.9 to 5.5); COMB + Caloric restriction + Protein supplementation, ES = −3.8 kg (95% CI: −8.7 to 1.1); COMB + Fatty acids, ES = −1.8 kg (95% CI: −7.0 to 3.4); COMB + Healthy diet, ES = −2.0 kg (95% CI: −3.4 to −0.6); COMB + Isoflavones supplementation, ES = 1.1 kg (95% CI: −1.9 to 4.1); COMB + Low-sugar diet, ES = −1.8 kg (95% CI: −3.0 to −0.6); COMB + Protein supplementation, ES = −2.3 kg (95% CI: −3.4 to −1.2).

^cAdjustment after omitting studies in which the confidence intervals did not overlap the estimated pooled effect.
and aerobic exercise + caloric restriction were the most effective with changes of \(-5.1\) kg (95% CI: \(-6.3\) to \(-3.8\) kg) and \(-5.3\) kg (95% CI: \(-7.2\) to \(-3.5\) kg), respectively (Table 1). Results were also significant for studies prescribing combined resistance and aerobic exercise + metabolic syndrome (ES = \(-2.3\)%) and resistance training alone (ES = \(-1.6\)%) on body fat percentage (\(p < 0.001\)), and combined resistance and aerobic exercise + caloric restriction (ES = \(-3.0\)%) compared with control.

![FIGURE 2](image-url)

FIGURE 2 Mean difference effects of resistance-based exercise compared with control on body fat percentage in children/adolescents (A), young adults (B), middle-aged adults (C), and older adults with overweight/obesity (D). Overall subgroup analyses conducted with a random-effects model. \(I^2\) represents the heterogeneity test; diamonds represent pooled estimates of random-effect meta-analysis; studies deemed outliers are highlighted in gray.
aerobic exercise ($ES = -1.4$ kg) and resistance training alone ($ES = -1.0$ kg) on fat mass ($p < 0.001$) (Table 1). Forest plots for each exercise modality before sensitivity analysis procedure adjustments are presented in Figures S1 and S2.

Heterogeneity ranged from $I^2 = 0\%$ to 8% after removing outliers.33,54,66,73,77,84,85,95,98,102,105,109,115,121,122,131 No evidence of publication bias was identified in body fat percentage or whole-body fat mass ($\tau = 1.8$ to 0.4, $p = 0.069$ to 0.690).

3.3 | Trunk fat mass, visceral adipose tissue, and subcutaneous adipose tissue

Regarding the different depots of adiposity, VAT ($k = 13$, $ES = -0.4$ SMD, 95% CI: -0.5 to -0.2) and SAT ($k = 9$, $ES = -0.4$ SMD, 95% CI: -0.5 to -0.2) were significantly reduced following resistance-based exercise programs (Table 2). Studies assessed VAT by magnetic resonance imaging (MRI)32,74,83,101,118 and bioelectrical impedance...
While SAT was assessed by MRI, CT, and ultrasound, significant changes in trunk fat mass were not observed ($k = 7, ES = -0.4 kg, 95% CI: -1.1 to 0.2 kg, p < 0.219$). Results were maintained for studies examining VAT in middle-aged adults ($ES = -0.3 SMD, 95% CI: -0.6 to -0.1$) and older adults ($ES = -0.5 SMD, 95% CI: -0.9 to -0.1$), and studies examining SAT in older adults ($ES = -0.5 SMD, 95% CI: -0.9 to -0.1$). Results are presented before sensitivity analysis procedure adjustments in Figure 4.

3.4 Lean mass

Resistance-based exercise programs resulted in significant increases in lean mass ($k = 67, ES = 0.7 kg, 95% CI: 0.5 to 0.8 kg$) (Table 3). These effects were consistent across the lifespan with significant results observed in children/adolescents ($ES = 0.8 kg, 95% CI: 0.4 to 0.8$), young adults ($ES = 0.7 kg, 95% CI: 0.5 to 0.8$), middle-aged adults ($ES = 0.7 kg, 95% CI: 0.5 to 0.8$), and older adults with overweight/obesity ($ES = 0.7 kg, 95% CI: 0.5 to 0.8$).
1.1 kg), young adults (ES = 1.4 kg, 95% CI: 0.9 to 1.9 kg), middle-aged adults (ES = 0.3 kg, 95% CI: 0.1 to 0.6 kg), and older adults (ES = 0.8 kg, 95% CI: 0.6 to 1.1 kg). Results are presented across the lifespan before sensitivity analysis procedure adjustments in Figure 5. Significant and similar results were also observed for studies involving females and mixed participants (ES = 0.6–0.8 kg, p < 0.001). Resistance training alone and combined resistance and aerobic exercise were the most effective for increasing lean mass with changes of 0.8 kg (95% CI: 0.6 to 1.0 kg) and 0.6 kg (95% CI: 0.3 to 0.9 kg), respectively (Table 3). Changes in lean mass were not observed following resistance training + caloric restriction (ES = −0.2 kg, p = 0.727), resistance training + low-sugar diet (ES = 1.2 kg, p = 0.143), and combined resistance and aerobic exercise + caloric restriction (ES = −0.3 kg, p = 0.550) (Table 3). Heterogeneity was I² = 0% after removing four studies considered outliers in the analyses.54,59,73,131 Publication bias was not observed (t = 0.4, p = 0.687). Forest plots for each exercise modality before sensitivity analysis procedure adjustments are presented in Figure S4.

3.5 | Body weight and body mass index

Reductions in body weight (k = 93, ES = −1.6 kg, 95% CI: −1.9 to −1.3 kg) and BMI (k = 74, ES = −0.6 kg.m², 95% CI: −0.7 to −0.5 kg.m²) were observed following resistance-based exercise programs (Table 4). Resistance-based exercise programs resulted in significant reductions in children/adolescents (ES = −1.1, 95% CI: −2.2 to −0.0), young adults (ES = −1.3 kg, 95% CI: −2.0 to −0.6) and ES = −0.4 kg.m², 95% CI: −0.8 to −0.0 kg.m²), middle-aged adults (ES = −0.5 kg, 95% CI: −1.0 to −0.1 kg and ES = −0.5 kg.m², 95% CI: −0.8 to −0.2 kg.m²), and older adults (ES = −1.8 kg, 95% CI: −2.3 to −1.2 kg and ES = −0.6 kg.m², 95% CI: −0.9 to −0.4 kg.m²), whereas changes in BMI were not observed in children/adolescents (ES = 0.3 kg.m², p = 0.163). Results are presented for body weight and BMI across the lifespan before sensitivity analysis procedure adjustments in Figure 6 and Figure 7, respectively. Studies involving female, male, and mixed participants presented significant reductions in body weight and BMI.
TABLE 2	Overall and subgroup analyses of resistance-based exercise effects on trunk fat mass, visceral adipose tissue and subcutaneous adipose tissue in participants who are overweight or obese							
Random effect meta-analysis	Heterogeneity							
		k	ES	95% CI	p-value	Q	I²	p-value
Trunk fat mass, kg								
Overall effect		7	−0.4	−1.1 to 0.2	0.219	1.3	0%	0.970
Without outlier		-	-	-	-	-	-	-
Age								
Children/adolescent		-	-	-	-	-	-	-
Young adults		1	−0.3	−1.4 to 0.8	-	-	-	-
Middle-aged adults		2	−1.0	−2.8 to 0.9	0.308	0.1	0%	0.772
Older adults		4	−0.3	−1.2 to 0.5	0.431	0.8	0%	0.841
Sex								
Female		5	−0.4	−1.2 to 0.4	0.346	0.9	0%	0.919
Male		1	−0.3	−1.4 to 0.8	-	-	-	-
Mixed		1	−1.3	−4.2 to 1.6	-	-	-	-
Exercise modality								
RET		3	−0.5	−1.5 to 0.5	0.298	0.5	0%	0.776
COMB		3	−0.3	−1.3 to 0.7	0.577	0.1	0%	0.963
Visceral adipose tissue, SMD								
Overall effect		15	−0.7	−1.1 to −0.3	<0.001	88.5	84%	<0.001
Without outlier		13	−0.4	−0.5 to −0.2	<0.001	12.0	0%	0.446
Age								
Children/adolescent		1	−0.3	−1.0 to 0.4	-	-	-	-
Young adults		3	0.8	−2.1 to 0.5	0.221	23.0	91%	<0.001
Middle-aged adults		7	−0.3	−0.6 to −0.1	0.005	5.5	0%	0.485
Older adults		3	−0.3	−0.9 to −0.1	0.011	5.1	61%	0.080
Sex								
Female		7	−0.3	−0.5 to −0.1	<0.001	4.7	0%	0.582
Male		1	−0.3	−1.1 to 0.5	-	-	-	-
Mixed		5	−0.4	−0.8 to −0.0	0.032	6.3	36%	0.179
Exercise modality								
RET		6	−0.4	−0.6 to −0.1	0.002	2.5	0%	0.772
RET + Caloric restriction		2	−0.5	−1.2 to 0.2	0.142	0.0	0%	0.932
COMB		9	−0.7	−1.2 to −0.2	0.005	40.3	80%	<0.001
Subcutaneous adipose tissue, SMD								
Overall effect		9	−0.4	−0.5 to −0.2	<0.001	7.5	0%	0.485
Without outlier		-	-	-	-	-	-	-
Age								
Children/adolescent		1	−0.6	−1.3 to 0.1	-	-	-	-
Young adults		2	−0.2	−0.7 to 0.4	0.475	0.0	0%	0.936
Middle-aged adults		3	−0.3	−0.5 to 0.0	0.067	0.1	0%	0.965
Older adults		3	−0.5	−0.9 to −0.1	0.011	5.1	61%	0.080
Sex								
Female		4	−0.3	−0.5 to −0.1	0.003	1.0	0%	0.808
Male		1	−0.2	−1.0 to 0.6	-	-	-	-
Mixed		4	−0.6	−0.9 to −0.2	0.004	3.9	24%	0.269
Exercise modality								
RET		6	−0.3	−0.6 to −0.1	0.003	2.3	0%	0.813
COMB 6	ES	95% CI	p-value	Q	I²	p-value
	-0.5	-0.9 to -0.2	0.002	9.7	49%	0.084

Abbreviations: COMB, combined resistance and aerobic exercise; ES, effect size; I², percentage of variation across studies that is due to heterogeneity; k, number of studies; Q, Cochran’s Q test of heterogeneity; RET, resistance training; SMD, standardized mean difference.

*Exercise modalities excluded due to insufficient evidence for trunk fat mass: COMB + Amino acids, ES = 0.0 kg (95% CI: -1.2 to 1.2); COMB + Fatty acids, ES = -1.3 kg (95% CI: -4.2 to 1.6); COMB + Isoflavones, ES = -0.9 kg (95% CI: -4.0 to 2.2).

*Exercise modalities excluded due to insufficient evidence for visceral adipose tissue: COMB + Caloric restriction, ES = -0.2 SMD (95% CI: -1.3 to 0.9); COMB + Fatty acids, ES = -0.0 SMD (95% CI: -0.8 to 0.8).

*Adjustment after omitting studies in which the confidence intervals did not overlap the estimated pooled effect.

Regional adiposity

(A) Trunk fat mass

Study or Subgroup	Experimental	Control	Mean Difference
Meisinger et al., 2018	-1.5	0.6	2.6
Hargrove et al., 2020	-1.4	0.3	1.8
Shin et al., 2014	-1.4	0.3	1.5
Davidson et al., 2009	-1.4	0.3	1.7
Fernández-Real et al., 2009	-1.4	0.3	1.8
Chen et al., 2017	-1.4	0.3	1.8
Davies et al., 2011	-1.4	0.3	1.8
Donges et al., 2013	-1.4	0.3	1.8
Davis et al., 2011	-1.4	0.3	1.8
Schmidt et al., 2007	-1.4	0.3	1.8
Irwin et al., 2003	-1.4	0.3	1.8
Miller et al., 2018	-1.4	0.3	1.8
Mendham et al., 2020	-1.4	0.3	1.8
Kreating et al., 2017	-1.4	0.3	1.8
Komstorn et al., 2018	-1.4	0.3	1.8
Oh et al., 2018	0.3	0.3	0.6

Total (95% CI): 237 (130 to 360)

(B) Visceral adipose tissue

Study or Subgroup	Experimental	Control	Mean Difference
Hargrove et al., 2020	-1.4	0.3	1.8
Shin et al., 2014	-1.4	0.3	1.8
Davidson et al., 2009	-1.4	0.3	1.8
Fernández-Real et al., 2009	-1.4	0.3	1.8
Chen et al., 2017	-1.4	0.3	1.8
Davies et al., 2011	-1.4	0.3	1.8
Donges et al., 2013	-1.4	0.3	1.8
Davis et al., 2011	-1.4	0.3	1.8
Schmidt et al., 2007	-1.4	0.3	1.8
Irwin et al., 2003	-1.4	0.3	1.8
Miller et al., 2018	-1.4	0.3	1.8
Mendham et al., 2020	-1.4	0.3	1.8
Kreating et al., 2017	-1.4	0.3	1.8
Komstorn et al., 2018	-1.4	0.3	1.8
Oh et al., 2018	0.3	0.3	0.6

Total (95% CI): 569 (373 to 715)

(C) Subcutaneous adipose tissue

Study or Subgroup	Experimental	Control	Mean Difference
Hargrove et al., 2020	-1.4	0.3	1.8
Shin et al., 2014	-1.4	0.3	1.8
Davidson et al., 2009	-1.4	0.3	1.8
Fernández-Real et al., 2009	-1.4	0.3	1.8
Chen et al., 2017	-1.4	0.3	1.8
Davies et al., 2011	-1.4	0.3	1.8
Donges et al., 2013	-1.4	0.3	1.8
Davis et al., 2011	-1.4	0.3	1.8
Schmidt et al., 2007	-1.4	0.3	1.8
Irwin et al., 2003	-1.4	0.3	1.8
Miller et al., 2018	-1.4	0.3	1.8
Mendham et al., 2020	-1.4	0.3	1.8
Kreating et al., 2017	-1.4	0.3	1.8
Komstorn et al., 2018	-1.4	0.3	1.8
Oh et al., 2018	0.3	0.3	0.6

Total (95% CI): 367 (268 to 466)

FIGURE 4

Mean difference effects of resistance-based exercise compared with control on trunk fat mass (A), visceral adipose tissue (B), and subcutaneous adipose tissue (C) in participants who are overweight or obese participants. Overall subgroup analyses conducted with a random-effects model. I² represents the heterogeneity test; diamonds represent pooled estimates of random-effect meta-analysis; studies deemed outliers are highlighted in gray.
Resistance training + caloric restriction and combined resistance and aerobic exercise + caloric restriction were the most effective for reducing body weight with changes of −5.3 kg (95% CI: −7.6 to −3.0 kg) and −5.6 kg (95% CI: −7.8 to −3.4), respectively. Results were also significant for studies prescribing combined resistance and aerobic exercise (ES = −1.9 kg, p < 0.001). Combined resistance and aerobic exercise + caloric restriction was the most effective for reducing BMI (ES = −1.2 kg/m², 95% CI: −1.8 to −0.6 kg/m²), whereas results were also significant for studies prescribing combined resistance and aerobic exercise (ES = −0.7 kg/m², p < 0.001). Heterogeneity was I² = 0% after removing studies which were considered outliers in body weight and BMI analyses.27,33,38,59,73,77,84,95,101,102,105,131 No effect of publication bias was observed (t = −0.7 to −0.1, p = 0.161–0.472). Forest plots for each exercise modality before sensitivity analysis procedure adjustments are presented in Figures S5 and S6.

4 | DISCUSSION

In the present systematic review and meta-analysis, we examined the effects of resistance-based exercise programs compared with groups without intervention in individuals with overweight/obesity across the lifespan. The main findings of this study are (1) supervised resistance-based exercise programs significantly reduces body fat percentage and whole-body fat mass in participants with overweight and obesity regardless of age and sex, with supervised resistance-based exercise programs combined with a caloric restriction being the most effective intervention; (2) regional adiposity measures were significantly reduced following resistance-based exercise programs, with greater effects observed in middle-aged and older adults as well as following combined resistance and aerobic exercise; (3) supervised resistance training alone is the most effective intervention for increasing lean mass, whereas lean mass was preserved in interventions undertaking a caloric restriction component that included resistance exercise; and (4) body weight and

TABLE 3 Overall and subgroup analyses of resistance-based exercise effects on lean mass in participants who are overweight or obese

Exercise modalitya	Random effect meta-analysis	Heterogeneity					
	k	ES	95% CI	p-value	Q	I²	p-value
Lean mass, kg							
Overall effect	71	0.9	0.4 to 1.4	0.001	636.4	89%	<0.001
Without outlierb	67	0.7	0.5 to 0.8	<0.001	40.9	0%	0.994
Age							
Children/adolescent	15	0.8	0.4 to 1.1	<0.001	10.4	0%	0.731
Young adultsb	15	1.4	0.9 to 1.9	<0.001	10.1	0%	0.755
Middle-aged adults	18	0.3	0.1 to 0.6	0.009	6.9	0%	0.985
Older adultsb	20	0.8	0.6 to 1.1	<0.001	9.7	0%	0.960
Sex							
Femaleb	33	0.6	0.4 to 0.9	<0.001	6.7	0%	0.999
Male	17	0.5	−0.1 to 1.0	0.087	5.4	0%	0.994
Mixedb	17	0.8	0.4 to 1.2	<0.001	28.1	43%	0.031

Abbreviations: COMB, combined resistance and aerobic exercise; ES, effect size; I², percentage of variation across studies that is due to heterogeneity; k, number of studies; Q, Cochran’s Q test of heterogeneity; RET, resistance training.

aExercise modalities excluded due to insufficient evidence for lean mass: RET + Ginger supplementation, ES = 3.0 kg (95% CI: −22.0 to 28.0); RET + Green tea, ES = 8.9 kg (95% CI: 6.1 to 11.7); RET + Protein supplementation, ES = 0.8 kg (95% CI: −5.6 to 7.2); COMB + Caffeine supplementation, ES = 2.0 kg (95% CI: −6.8 to 10.7); COMB + Caloric restriction + Protein supplementation, ES = −0.3 kg (95% CI: −4.4 to 3.7); COMB + Fatty acids, ES = −0.6 kg (95% CI: −5.1 to 3.9); COMB + Healthy diet, ES = 0.6 kg (95% CI: −0.5 to 1.7); COMB + Isoflavones supplementation, ES = 1.1 kg (95% CI: −1.9 to 4.1); COMB + Low-sugar diet, ES = 0.6 kg (95% CI: −0.7 to 1.9); 95% CI, 95% confidence interval; COMB + Protein supplementation, ES = 0.8 kg (95% CI: −0.3 to 1.9).

bAdjustment after omitting studies in which the confidence intervals did not overlap the estimated pooled effect.
BMI were significantly reduced by supervised resistance-based exercise programs in all age categories except children/adolescents, with greater effects when undertaking resistance training + caloric restriction or combined resistance and aerobic exercise + caloric restriction. Therefore, resistance-based training is an effective option within multicomponent therapy programs for targeting fat and weight loss while maintaining lean mass in individuals with overweight/obesity. These results are clinically relevant and can be immediately used to improve current practice by expanding the exercise modalities within multicomponent therapy programs targeting obesity.

Our findings that resistance training alone and combined resistance and aerobic exercise can significantly reduce fat mass were in agreement with previous systematic reviews and meta-analyses. However, among the interventions investigated in this study, resistance-based exercise programs combined with caloric restriction were the most effective for reducing body fat percentage and whole-body fat mass in participants who are overweight or obese. Interestingly, the results achieved by either resistance training alone + caloric restriction or combined resistance and aerobic exercise + caloric restriction were similar and comparable to changes observed in adults with overweight/obesity undertaking aerobic exercise alone plus caloric restriction when compared with no intervention control groups. In the studies from Marks et al., Kraemer et al., Villareal et al., and Yoshimura et al., for example, the aerobic exercise program combined with caloric restriction resulted in an average fat mass reduction of ~5 kg following 12 to 26 weeks of intervention in adults with overweight/obesity. In addition, the effects derived from the resistance-based exercise programs combined with caloric restriction in our study were observed in 12 to 48 weeks, without an apparent effect for intervention duration. Apart from...
contributing to successful weight loss in individuals with obesity, the
\~5 kg reduction in fat mass observed following resistance-based
exercise programs combined with a caloric restriction compared
with groups without intervention is critical for cardiometabolic
health.142,143 As previously reported,142,143 both body fat
percentage and fat distribution are associated with an increased risk
for hypertension and cardiovascular disease. Therefore, our results
expand current recommendations for individuals with overweight/
obesity,2,3 indicating that resistance training could be used as a sole
exercise intervention within a multicomponent therapy program for
individuals undergoing caloric restriction interventions, potentially
reducing the risk for cardiovascular disease in this population.

Beyond the clinical relevance of whole-body fat mass, both vis-
ceral and subcutaneous fat mass depots are also associated with car-
diometabolic health and systemic inflammation in individuals with
obesity. Both VAT and SAT were significantly reduced following
resistance-based exercise programs in the present study, with some-
what greater effects observed when undertaking combined resistance
and aerobic exercise. The reduction of 0.7 SMD observed following
combined resistance and aerobic exercise in VAT is larger to those
reported in previous meta-analyses,8–12 although the effects are still
considered small-to-moderate. In the study of Maillard et al.,11 for
example, high-intensity interval training was associated with a reduc-
tion in VAT of \(~0.2\) SMD in adults with overweight/obesity. Likewise,
general aerobic exercise promoted a reduction in VAT of \(~0.3\) SMD,
as observed in the study of Ismail et al.8 A potential explanation for
the different findings reported previously,8–12 and this study could be
related to the additional effect derived from combined resistance
and aerobic exercise, resulting in a higher effect on VAT and SAT. There-
fore, even without a dietary intervention, combined resistance and
aerobic exercise can significantly reduce abdominal fat with greater
effects than interventions comprising only aerobic exercise

FIGURE 5 (Continued)
TABLE 4 Overall and subgroup analyses of resistance-based exercise effects on body weight and body mass index in participants who are overweight or obese

	Random effect meta-analysis	Heterogeneity					
	k	ES	95% CI	p-value	Q	\(i^2\)	p-value
Body weight, kg							
Overall effect	103	-1.8	-2.6 to -1.0	<0.001	815.8	88%	<0.001
Without outlier\(^c\)	93	-1.6	-1.9 to -1.3	<0.001	60.5	0%	0.996
Age							
Children/adolescent	21	-1.1	-2.2 to -0.0	0.043	33.4	40%	0.031
Young adults\(^d\)	23	-1.4	-2.1 to -0.8	<0.001	10.5	0%	0.981
Middle-aged adults\(^e\)	33	-0.6	-1.0 to -0.1	0.021	30.4	0%	0.549
Older adults\(^e\)	20	-1.7	-2.2 to -1.2	<0.001	14.6	0%	0.748
Sex							
Female\(^c\)	48	-1.4	-1.9 to -0.9	<0.001	31.7	0%	0.958
Male\(^c\)	26	-1.1	-2.1 to -0.1	0.032	32.9	24%	0.133
Mixed\(^c\)	23	-1.2	-1.8 to -0.6	<0.001	29.6	26%	0.128
Exercise modality							
RET\(^c\)	50	-0.1	-0.5 to 0.3	0.511	30.1	0%	0.985
RET + Caloric restriction	6	-5.3	-7.6 to -3.0	<0.001	17.0	71%	0.005
RET + Low-sugar diet	2	2.7	1.1 to 4.3	0.001	0.2	0%	0.676
COMB\(^e\)	44	-1.9	-2.5 to -1.3	<0.001	65.1	34%	0.017
COMB + Caloric restriction	8	-5.6	-7.8 to -3.4	<0.001	36.7	81%	<0.001
COMB + Healthy diet	2	-3.1	-7.1 to 0.9	0.127	3.1	68%	0.078
Body mass index, kg\(m^2\)							
Overall effect	83	-0.6	-0.9 to -0.3	<0.001	396.2	79%	<0.001
Without outlier\(^c\)	74	-0.6	-0.7 to -0.5	<0.001	33.7	0%	0.999
Age							
Children/adolescent	18	-0.3	-0.8 to 0.1	0.163	30.7	45%	0.022
Young adults\(^d\)	22	-0.5	-0.8 to -0.2	0.003	19.3	0%	0.563
Middle-aged adults\(^e\)	27	-0.5	-0.8 to -0.2	0.001	37.8	31%	0.064
Older adults\(^e\)	14	-0.6	-0.8 to -0.4	<0.001	3.2	0%	0.997
Sex							
Female\(^c\)	37	-0.4	-0.6 to -0.2	<0.001	24.5	0%	0.928
Male\(^c\)	19	-0.5	-0.8 to -0.2	<0.001	15.5	0%	0.630
Mixed\(^c\)	21	-0.5	-0.7 to -0.2	<0.001	21.8	8%	0.351
Exercise modality							
RET\(^c\)	43	-0.1	-0.3 to 0.1	0.209	25.6	0%	0.978
RET + Caloric restriction	2	-2.1	-3.8 to -0.4	0.017	0.2	0%	0.622
RET + Low-sugar diet	2	1.6	1.0 to 2.1	<0.001	0.5	0%	0.497
RET + Protein supplementation	2	-0.0	-1.3 to 1.3	0.980	0.0	0%	0.879
COMB\(^e\)	36	-0.7	-0.9 to -0.6	<0.001	31.6	0%	0.632
COMB + Caloric restriction	3	-1.2	-1.8 to -0.6	<0.001	1.1	0%	0.588

Abbreviations: COMB, combined resistance and aerobic exercise; ES, effect size; \(i^2\), percentage of variation across studies that is due to heterogeneity; k, number of studies; Q, Cochran's Q test of heterogeneity; RET, resistance training.

\(^a\)Exercise modalities excluded due to insufficient evidence for body weight: RET + Green tea, ES = 1.7 kg (95% CI: -3.0 to 6.4); RET + Protein supplementation, ES = 0.1 kg (95% CI: -0.8 to 8.5); COMB + Caloric restriction + Protein supplementation, ES = -4.1 kg (95% CI: -11.7 to 3.4); COMB + Fatty acids, ES = -1.5 kg (95% CI: -8.7 to 5.7); COMB + Isoflavones supplementation, ES = -0.2 kg (95% CI: -8.0 to 7.6); COMB + Low-sugar diet, ES = -0.5 kg (95% CI: -2.0 to 1.0); COMB + Protein supplementation, ES = -1.5 kg (95% CI: -3.7 to 0.7).

\(^b\)Exercise modalities excluded due to insufficient evidence for body mass index: RET + Ginger supplementation, ES = -0.4 kg m\(^2\) (95% CI: -7.3 to 6.5); RET + Green tea, ES = 1.6 kg m\(^2\) (95% CI: 0.2 to 3.3); COMB + Fatty acids, ES = -0.6 kg m\(^2\) (95% CI: -3.1 to 1.9); COMB + Isoflavones supplementation, ES = -0.1 kg m\(^2\) (95% CI: -2.2 to 2.0).

\(^c\)Adjustment after omitting studies in which the confidence intervals did not overlap the estimated pooled effect.
modalities previously deemed the most effective modality for reducing overall abdominal fat. Moreover, our findings are that middle-aged and older adults benefit the most from exercise on VAT and SAT outcomes. These age groups are the most affected by cardiovascular risk factors, and therefore, our findings are of particular interest. In previous studies, increased visceral and subcutaneous fat was associated with increased risk of incident hypertension, hypertriglyceridemia, and metabolic syndrome in middle-aged and older adults. Furthermore, the benefits observed in VAT and SAT could reduce the progression of metabolic syndrome, attenuating the chronic side effects from comorbidities in these age groups.

Although greater effects were observed when undertaking resistance training or combined resistance and aerobic exercise, as previously reported, the result that resistance training can at least help...
preserve lean mass while undergoing caloric restriction is meaningful for this population. In the systematic review of Weinheimer et al., the authors reported that 70% of studies only undertaking caloric restriction present reductions ≥1.5 kg of lean mass in middle-aged and older adults. Similarly, Garrow and Summerbell predicted that 20% to 30% of weight loss following caloric restriction could be unrelated to fat mass in adults. Substantial reductions of 2–3 kg are also observed in lean mass following aerobic exercise alone plus caloric restriction. Additionally, our results are in agreement with a previous meta-analysis, demonstrating that resistance training is associated with an increase of ~0.8 kg in lean mass compared with caloric restriction interventions in older adults with obesity, although
they were not compared with caloric restriction only programs in the present study. These results are of great importance as resistance training can reduce the risk of sarcopenia and frailty as well as improve physical function and quality of life in this population.152,153 Moreover, the clinical implications of lean mass have become clearer with advances in the investigation of myokines.154 Several myokines, including myostatin,155 interleukin 6 (IL-6),156 and brain-derived neurotrophic factor (BDNF),157 are produced, expressed, and released by muscle contraction and may account for protection against proinflammatory adipokines under conditions of obesity.154 Therefore, maintenance or accrual of lean mass, only achieved with resistance exercise in this population, is of clinical importance as it can potentially improve resting energy expenditure and accrue benefits for weight loss158 as well as promote reductions in chronic inflammation.154

A substantial reduction in body weight was observed following either resistance training or combined resistance and aerobic exercise with caloric restriction when compared with no intervention control groups. This result is of importance for clinical practice as resistance exercise can be used regardless of an aerobic exercise component when combined with caloric restriction and still lead to a reduction of

FIGURE 7 Mean difference effects of resistance-based exercise compared with control on body mass index in children/adolescents (A), young adults (B), middle-aged adults (C), and older adults with overweight/obesity (D). Overall subgroup analyses conducted with a random-effects model. I^2 represents the heterogeneity test; diamonds represent pooled estimates of random-effect meta-analysis; studies deemed outliers are highlighted in gray.
~5.5 kg in body weight compared with no intervention control groups. In addition, this substantial change may be explained by reductions in fat rather than lean mass given the anabolic effect from resistance training which attenuated a reduction in lean mass during weight loss. The magnitude of weight loss we observed with resistance-based programs + caloric restriction is similar to previous studies examining aerobic training only + caloric restriction. Therefore, our results support the utilization of resistance training + caloric restriction as part of multicomponent therapy programs for adults with overweight or obesity to reduce body weight and BMI.

The strength of the present review are as follows: (1) inclusion of 116 studies with ~4000 participants who are overweight or obese; (2) a broad eligibility criteria and control of different definitions and cut-off points for individuals with overweight or obesity; (3) inclusion of published and unpublished studies written in three different languages; (4) a conservative approach of assuming a correlation of 0.5 for studies not reporting sufficient data for meta-analysis; and (5) a range of subgroup analyses based on population characteristics and exercise modalities. However, the present study also has limitations. First, most studies included were of high risk of bias because of concerns regarding the randomization process, measurement of outcomes, and selection of reported results, and this may affect the precision and magnitude of effects of resistance-based exercise interventions. Second, most data were pooled from different methods of body composition assessment such as dual energy X-ray absorptiometry, bioelectrical impedance, and anthropometry (i.e., skinfolds), and this...
may increase the heterogeneity across studies. Third, age groups were categorized based on the average age, and this may not fully represent the sample of each study included. Fourth, we did not include comparisons between resistance-based exercise programs and dietary interventions only. This might be considered a limitation to estimate the direct contribution of resistance exercise or caloric restriction to weight loss and lean mass accruing. Additional research is required to evaluate the individual impact of exercise or caloric restriction on body composition in individuals with overweight/obesity.

In conclusion, this study provides evidence that resistance-based exercise programs are effective and should be considered as part of a multicomponent therapy program when caloric restriction is utilized in adults with overweight or obesity. Considering the similar effect on fat and weight loss and unique effect on lean mass, resistance training rather than aerobic exercise alone should be considered within any multicomponent fat loss prescription for individuals with overweight/obesity. These results expand current guidelines to improve existing exercise clinical practice with the potential to counteract cardiometabolic complications associated with increased fat mass and body weight while avoiding loss of muscle mass.

ACKNOWLEDGMENTS
Pedro Lopez is supported by the National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Prostate Cancer Survivorship Scholarship. Daniel A. Galvão and Robert U. Newton are funded by a NHMRC CRE in Prostate Cancer Survivorship. The results of the study are presented clearly, honestly, without fabrication, falsification, or inappropriate data manipulation. No financial support was received to conduct the present study or for the preparation or publication of this manuscript. Sponsors were not involved in the study design, analysis or interpretation of data, manuscript writing, and decision to submit the manuscript for publication. Open access publishing facilitated by Edith Cowan University, as part of the Wiley - Edith Cowan University agreement via the Council of Australian University Librarians.

CONFLICT OF INTERESTS
No conflict of interest statement in the first proofs.

AUTHOR CONTRIBUTIONS
Pedro Lopez had full access to all of the data in the study and takes responsibility for the for the integrity of the data and the accuracy of the data analysis. Concept and design: Pedro Lopez and Anderson Rech. Acquisition, analysis, or interpretation of data: Pedro Lopez, Elisa R. Nonemacher, Victória M. Wendt, Renata N. Bassanesi, Douglas J. P. Turella, and Anderson Rech. Drafting of the manuscript: Pedro Lopez, Dennis R. Taaffe, Daniel. A. Galvão, Robert U. Newton, Elisa R. Nonemacher, Victória M. Wendt, Renata N. Bassanesi, Douglas J. P. Turella, Anderson Rech. Critical revision of the manuscript for important intellectual content: Pedro Lopez, Dennis R. Taaffe, Daniel. A. Galvão, Robert U. Newton, Elisa R. Nonemacher, Victória M. Wendt, Renata N. Bassanesi, Douglas J. P. Turella, Anderson Rech. Statistical analysis: Pedro Lopez.

REFERENCES
1. Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387(10031):1947-1956. doi:10.1016/s0140-6736(16)00271-3
2. Semlitsch T, Stigler FL, Jeitler K, Horvath K, Siebenhofer A. Management of overweight and obesity in primary care—a systematic overview of international evidence-based guidelines. Obes Rev. 2019;20(9):1218-1230. doi:10.1111/obr.12889
3. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459-471. doi:10.1249/MSS.0b013e3181949333
4. Oppert JM, Bellicha A, van Baak MA, et al. Exercise training in the management of overweight and obesity in adults: synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obes Rev. 2021;22(Suppl 4):e13273. doi:10.1111/obr.13273
5. Morze J, Rücker G, Danielewicz A, et al. Impact of different training modalities on anthropometric outcomes in patients with obesity: a systematic review and network meta-analysis. Obes Rev. 2021;22(7):e13218. doi:10.1111/obr.13218
6. O’Donoghue G, Blake C, Cunningham C, Lennon O, Perrotta C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes Rev. 2021;22(2):e13137. doi:10.1111/obr.13137
7. Bellicha A, van Baak MA, Battista F, et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: an overview of 12 systematic reviews and 149 studies. Obes Rev. 2021;22(Suppl 4):e13256. doi:10.1111/obr.13256
8. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68-91. doi:10.1111/j.1467-789X.2011.00931.x
9. Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS ONE. 2013;8(2):e56415. doi:10.1371/journal.pone.0056415
10. González-Ruiz K, Ramírez-Vélez R, Correa-Bautista JE, Peterson MD, García-Hermoso A. The effects of exercise on abdominal fat and liver enzymes in pediatric obesity: a systematic review and meta-analysis. Child Obes. 2017;13(4):272-282. doi:10.1089/chi.2017.0027
11. Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Med. 2018;48(2):269-288. doi:10.1007/s40279-017-0807-y
12. Khatami M, Malandish A, Rosenkrantz SK, Ravasi AA. Effect of resistance training with and without caloric restriction on visceral fat: a systemic review and meta-analysis. Obes Rev. 2021;22(9):e13275. doi:10.1111/obr.13275
13. Furlan AD, Pennick V, Bombardier C, van Tulder M, Editorial Board CBMRG. Updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976). 2009;34(18):1929-1941. doi:10.1097/BRS.0b013e3181b1c99f
47. Ballor DL, Katch VL, Becque MD, Marks CR. Resistance weight training during caloric restriction enhances lean body weight maintenance. Am J Clin Nutr. 1988;47(1):19-25. doi:10.1093/ajcn/47.1.19
48. Hara T, Fujiwara H, Nakao H, Mimura T, Yoshikawa T, Fujimoto M. Body composition is related to increase in plasma adiponectin levels rather than training in young obese men. Eur J Appl Physiol. 2005;94(5-6):520-526. doi:10.1007/s00421-005-1374-8
49. Kirk EP, Washburn RA, Bailey BW, LeCheminant JD, Donnelly JE. Six months of supervised high-intensity low-volume resistance training improves strength independent of changes in muscle mass in young overweight men. J Strength Cond Res. 2007;21(1):151-156. doi:10.1519/JSC.0b013e318193c4e4
50. Lockwood CM, Moon JR, Tobkin SE, et al. Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: a randomized controlled trial. Nutr Metab (Lond). 2008;5:11. doi:10.1186/1743-7075-5-11
51. Kirk EP, Donnelly JE, Smith BK, et al. Minimal resistance training improves daily energy expenditure and fat oxidation. Med Sci Sports Exerc. 2009;41(9):1122-1129. doi:10.1249/MSS.0b013e318193c4e4
52. Smith AE, Lockwood CM, Moon JR, et al. Physiological effects of caffeine, epigallocatechin-3-gallate, and exercise in overweight and obese women. Appl Physiol Nutr Metab. 2010;35(5):607-616. doi:10.1139/h10-056
53. Atashak S, Peer M, Jafari A, Azarbajayani MA. Effects of ginger supplementation and resistance training on lipid profiles and body composition in obese men. J Med Plant Res. 2011;5(16):3827-3832.
54. Cardoso GA. Efeito do consumo de chá verde aliado ou não ao treinamento de força sobre a composição corporal e taxa metabólica de repouso em mulheres com sobrepeso ou obesas. Universidade de São Paulo; 2011.
55. Jiménez OH, Ramírez-Vélez R. El entrenamiento con pesas mejora la alterar la composición corporal y la función arterial en mujeres con sobrepeso y obesidad. Endocrinol Nutr. 2011;58(4):169-174.
56. Ha CH, So WY. Effects of combined exercise training on body composition and metabolic syndrome factors. Iran J Public Health. 2012;41(8):20-26.
57. Kang HJ, Lee YS, Park D-S, Kang D-H. Effects of 12-week circuit weight training and aerobic exercise on body composition, physical fitness, and pulse wave velocity in obese collegiate women. Soft Computing. 2012;14(3):403-410.
58. Sheikholeslami Vatani D, Ahmadi Kani Golzar F. Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training. Appetite. 2012;59(3):673-678. doi:10.1016/j.appet.2012.08.005
59. Roberts CK, Croymans DM, Aziz N, Butch AW, Lee CC. Resistance training increases SHBG in obese/obese, young men. Metabolism. 2013;62(5):725-733. doi:10.1016/j.metabol.2012.12.004
60. Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem. 2014;47(6):417-422. doi:10.1016/j.clinbiochem.2013.12.019
61. Croymans DM, Krell SL, Oh CS, et al. Effects of resistance training on central blood pressure in obese young men. J Hum Hypertens. 2014;28(3):157-164. doi:10.1038/jhh.2013.81
62. Ha CH, Swearingin B, Jeon YK, Lee M. Effects of combined exercise on HOMA-IR, HOMA β-cell and atherogenic index in Korean obese female. Sport Sci Health. 2015;11(1):49-55.
63. Franklin NC, Robinson AT, Bian JT, et al. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women. Metab Syndr Relat Disord. 2015;13(5):227-234. doi:10.1089/met.2014.0135
64. Madhirejai TA, Razi M, Barari A, et al. A comparative study of the effects of endurance and resistance exercise training on PON1 and lipid profile levels in obese men. Sport Sci Health. 2015;11(3):263-270.
65. Moradi F. Changes of serum adiponectin and testosterone concentrations following twelve weeks resistance training in obese young men. Asian J Sports Med. 2015;6(4):e23808. doi:10.5812/asjsm.23808
66. Sheikholeslami-Vatani D, Siahkouhian M, Hakimi M, Ali-Mohammadi M. The effect of concurrent training order on hormonal responses and body composition in obese men. Sci Sport. 2015;30(6):335-341.
67. Chen CK, Ismail NS, Al-Safi AA. Effects of brisk walking and resistance training on cardiorespiratory fitness, body composition, and lipid profiles in overweight and obese individuals. J Phys Edu Sport. 2016;16(3):957-963.
68. Kim HJ, Lee HJ, So B, Son JS, Yoon D, Song W. Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiol Res. 2016;65(2):271-279. doi:10.3349/physiolres.932997
69. Shahram S, Elham Y, Abdolali B. The effect of endurance and resistance training on inflammatory cytokines in sedentary young women. Acta Med Mediter. 2016;32:999-1002.
70. Kim JW, Ko YC, Seo TB, Kim YP. Effect of circuit training on body composition, physical fitness, and metabolic syndrome risk factors in obese female college students. J Exerc Rehabil. 2018;14(3):460-465. doi:10.12965/jer.1836194.097
71. Miller T, Mull S, Aragon AA, Krieger J, Schoenfeld BJ. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: a randomized trial. Int J Sport Nutr Exerc Metab. 2018;28(1):46-54. doi:10.1123/ijsnem.2017-0221
72. Mogharnasi M, TaheriChadomeshin H, Abbasi-Deloei N. Effect of resistance training type on plasma levels of vaspentin-1, and high-sensitivity C-reactive protein in overweight and obese women. Obes Med. 2019;13:34-38.
73. Hagevovska M, Švitra J, Bučková A, Dračková D, Horbacz A, Nagyová I. Effect of an exercise programme for reducing abdominal fat on overactive bladder symptoms in young overweight women. Int Urogynecol J. 2020;31(5):895-902. doi:10.1007/s00192-019-0157-8
74. Mendham AE, Larsen S, George C, et al. Exercise training results in depot-specific adaptations to adipose tissue mitochondrial function. Sci Rep. 2020;10(1):3785. doi:10.1038/s41598-020-60286-x
75. Soltani N, Marandi SM, Kazemi M, Esmaeil N. Combined all-extremity high-intensity interval training regulates immunometabolic responses through toll-like receptor 4 adaptors and A20 down-regulation in obese young females. Obes Facts. 2020;13(3):415-431. doi:10.1159/000509132
76. Tavvafian N, Darabi H, Abari A, et al. Effects of glycyrrhizin acid supplementation during nonlinear resistance training on inflammatory markers and muscular damage indices in overweight young men. Obes Med. 2020;17:100178.
77. Marks BL, Ward A, Morris DH, Castellani J, Rippe JM. Fat-free mass is maintained in women following a moderate diet and exercise program. Med Sci Sports Exerc. 1995;27(9):1243-1251.
78. Kraemer WJ, Volek JS, Clark KL, et al. Influence of exercise training on physiological and performance changes with weight loss in men. Med Sci Sports Exerc. 1999;31(9):1320-1329. doi:10.1097/00005768-199909000-00014
79. Fencl S, Sarsan A, Rota S, Artic F. Effects of resistance or aerobic exercises on metabolic parameters in obese women who are not on a diet. Adv Ther. 2006;23(3):404-413. doi:10.1007/bf02850161

80. Olson TP, Dangel DR, Leon AS, Schmitz KH. Moderate resistance training and vascular health in overweight women. Med Sci Sports Exerc. 2006;38(9):1558-1564. doi:10.1249/01.mss.0000227540.58916.0e

81. Ahmadzad S, Haghighi AH, Hamedinia MR. Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. Eur J Endocrinol. 2007;157(5):625-631. doi:10.1530/eje-07-0223

82. Schmitz KH, Hannan PJ, Stovitz SD, Bryan CJ, Warren M, Jensen MD. Strength training and adiposity in premenopausal women: strong, healthy, and empowered study. Am J Clin Nutr. 2007;86(3):566-572. doi:10.1093/ajcn/86.3.566

83. Fernández-Real JM, Izquierdo M, Moreno-Navarrete JM, et al. Circulating soluble transferrin receptor concentration decreases after exercise-induced improvement of insulin sensitivity in obese individuals. Int J Obes (Lond). 2009;33(7):768-774. doi:10.1038/ijo.2009.99

84. González FG, García JCF, Rubio AB, et al. Mejora a corto plazo del tiempo de ejecución de pruebas de resistencia y fuerza en hombres mayores de edad. Acta Kinesiologiae Universitatis Tartuensis. 2011;17:162-169. doi:10.1186/1471-2458-12-704

85. Kline CE, Crowley EP, Ewing GB, et al. The effect of exercise training on obstructive sleep apnea and sleep quality: a randomized controlled trial. Sleep. 2011;34(12):1631-1640. doi:10.5665/sleep.1422

86. Stensvold TD, Tjonna AE, Skaug EA, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985). 2010;108(4):804-810. doi:10.1152/japplphysiol.00996.2009

87. Deibert P, Solleder F, König D, et al. Soy protein based supplementa-
111. Jang SH, Palk FJ, Ryu JH, Lee TH, Kim DE. Effects of aerobic and resistance exercises on circulating apelin-12 and apelin-36 concentrations in obese middle-aged women: a randomized controlled trial. *BMC Womens Health*. 2019;19(1):23. doi:10.1186/s12905-019-0722-5

112. Wong A, Figueroa A. The effects of low intensity resistance exercise on cardiac autonomic function and muscle strength in obese postmenopausal women. *J Aging Phys Act*. 2019;27(4):855-860. doi:10.1123/japa.2018-0418

113. Klomklorm A, Ruangthai R, Vaithanomsat P, Sukatta U. Phoemsapthawee J. Concurrent training and Eril silkworm pupae ingestion improve resting and exercise fat oxidation and energy expenditure in obese adults. *J Exerc Rehabil*. 2020;16(5):467-479. doi:10.12965/jer.2040682341

114. Safarzade A, Alizadeh H, Bastani Z. The effects of circuit resistance training on plasma progesterone level, insulin resistance and body composition in obese men. *Horm Mol Biol Clin Invest*. 2020;41(2):20190050. doi:10.1515/hmbci-2019-0050

115. Irwin ML, Yasui Y, Ulrich CM, et al. Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. *JAMA*. 2003;289(3):323-330. doi:10.1001/jama.289.3.323

116. Vincent HK, Bourguignon C, Vincent KR. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. *Obesity (Silver Spring)*. 2006;14(11):1921-1930. doi:10.1038/ooby.2006.224

117. Bouchard DR, Soucy L, Sénéchal M, Dionne U, Brochu M. Impact of resistance training with or without caloric restriction on physical capacity in obese older women. *Menopause*. 2009;16(1):66-72. doi:10.1097/gme.0b013e31817cacf7

118. Davidson LE, Hudson R, Kilpatrick K, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. *Arch Intern Med*. 2009;169(2):122-131. doi:10.1001/archinternmed.2008.558

119. Avila JJ, Gutierrez JA, Sheehy ME, Lofgren IE, Delmonico MJ. Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults. *Eur J Appl Physiol*. 2010;109(3):517-525. doi:10.1007/s00421-010-1387-9

120. Henagan TM, Phillips MD, Creek DJ, Kirk KM, Barbee JJ, Stewart LB. The melanocortin 3 receptor: a novel mediator of exercise-induced inflammation reduction in postmenopausal women? *J Aging Res*. 2011;2011:512593. doi:10.4061/2011/512593

121. Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. *N Engl J Med*. 2011;364(13):1218-1229. doi:10.1056/NEJMoa1008234

122. Bocalini DS, Lima LS, de Andrade S, et al. Effects of circuit-based exercise programs on the body composition of elderly obese women. *Clin Interv Aging*. 2012;7:551-556. doi:10.2147/cia.s33893

123. Phillips MD, Patrizi RM, Creek DJ, Wooten JS, Barbee JJ, Mitchell JB. Resistance training reduces subclinical inflammation in obese, postmenopausal women. *Med Sci Sports Exerc*. 2012;44(11):2099-2110. doi:10.1249/MSS.0b013e3182644984

124. Kim H, Kim M, Kojima N, et al. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenia obesity: a randomized controlled trial. *J Am Med Dir Assoc*. 2016;17(11):1011-1019. doi:10.1016/j.jame.2016.06.016

125. Rossi FE, Fortaleza AC, Neves LM, et al. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. *J Strength Cond Res*. 2016;30(1):226-234. doi:10.1519/jsc.0000000000001020

126. Chagas EFB, Bonfim MR, Turi BC, Brondino NCM, Monteiro HL. Effect of moderate-intensity exercise on inflammatory markers among postmenopausal women. *J Phys Act Health*. 2017;14(6):479-485. doi:10.1123/japh.2016-0319

127. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. *J Am Geriatr Soc*. 2017;65(4):827-832. doi:10.1111/jgs.14722

128. Huang SW, Ku JW, Lin LF, Liao CD, Chou LC, Liou TH. Body composition influence by progressive elastic band resistance exercise of sarcopenic obesity elderly women: a pilot randomized controlled trial. *Eur J Phys Rehabil Med*. 2017;53(4):556-563. doi:10.23736/s1973-9087.17.04443-4

129. Liao CD, Tsaou JY, Lin LF, et al. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: a CONSORT-compliant prospective randomized controlled trial. *Medicine (Baltimore)*. 2017;96(23):e7115. doi:10.1097/md.0000000000007115

130. Park J, Park H. Effects of 6 months of aerobic and resistance exercise training on carotid artery intima media thickness in overweight and obese older women. *Geriatr Gerontol Int*. 2017;12(2):2304-2310. doi:10.1111/ggi.12972

131. Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. *N Engl J Med*. 2017;376(20):1943-1955. doi:10.1056/NEJMoa1616338

132. Cavalcante EF, Ribeiro AS, Nascimento MA, et al. Effects of different resistance training frequencies on fat in overweight/obese older women. *Int J Sports Med*. 2018;39(7):527-534. doi:10.1055/a-0599-6555

133. Faramarzi M, Bagheri L, Banitalebi E. Effect of sequence order of combined strength and endurance training on new adiposity indices in overweight elderly women. *Isokinet Exer Sci*. 2018;26(2):105-113.

134. Fritz NB, Juesas A, Gargallo P, et al. Positive effects of a short-term intense elastic resistance training program on body composition and physical functioning in overweight older women. *Biol Res Nurs*. 2018;20(3):321-334. doi:10.1177/1099800417757676

135. Kim SW, Jung WS, Park W, Park HY. Twelve weeks of combined resistance and aerobic exercise improves cardiometabolic biomarkers and enhances red blood cell hemorheological function in obese older men: a randomized controlled trial. *Int J Environ Res Public Health*. 2019;16(24):5020. doi:10.3390/ijerph16245020

136. Banitalebi E, Faramarzi M, Ghahtfaroki MM, SavaniNikoo F, Soltani N, Bahramzadeh A. Osteosarcopenic obesity markers following elastic band resistance training: a randomized controlled trial. *Exp Gerontol*. 2020;135:110884. doi:10.1016/j.exger.2020.11.0884

137. Park W, Jung WS, Hong K, Kim YW, Kim SW, Park HY. Effects of moderate combined resistance- and aerobic-exercise for 12 weeks on body composition, cardiometabolic risk factors, blood pressure, arterial stiffness, and physical functions, among obese older men: a pilot study. *Int J Environ Res Public Health*. 2020;17(19):7233. doi:10.3390/ijerph17197233

138. Ribeiro AS, Schoenfeld BJ, Dos Santos L, et al. Resistance training improves a cellular health parameter in obese older women: a randomized controlled trial. *Exp Gerontol*. 2020;34(10):2996-3002. doi:10.1016/j.exger.2020.03.002

139. Roh HT, Cho SY, So WY. A cross-sectional study evaluating the effects of resistance exercise on inflammation and neurotrophic factors in elderly women with obesity. *J Clin Med*. 2020;9(3):842-852. doi:10.3390/jcm9030842

140. Weewege MA, Desai I, Honey C, et al. The effect of resistance training in healthy adults on body fat percentage, fat mass and visceral fat: a systematic review and meta-analysis. *Sports Med*. 2021;1-14. doi:10.1007/s40279-021-01562-2
141. Yoshimura E, Kumahara H, Tobina T, et al. Lifestyle intervention involving calorie restriction with or without aerobic exercise training improves liver fat in adults with visceral adiposity. J Obes. 2014;2014:197216. doi:10.1155/2014/197216

142. Ye S, Zhu C, Wei C, et al. Associations of body composition with blood pressure and hypertension. Obesity (Silver Spring). 2018;26(10):1644-1650. doi:10.1002/oby.22291

143. Chen GC, Arthur R, Iyengar NM, et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur Heart J. 2019;40(34):2849-2855. doi:10.1093/eurheartj/ehz391

144. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14,786 middle-aged men and women in Finland. Circulation. 1999;99(9):1165-1172. doi:10.1161/01.cir.99.9.1165

145. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39-48. doi:10.1161/circulationaha.106.675355

146. Neeland IJ, Ayers CR, Rohatgi AK, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring). 2013;21(9):E439-E447. doi:10.1002/oby.20135

147. Lee JJ, Pedley A, Hoffmann U, Massaro JM, Fox CS. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J Am Coll Cardiol. 2016;68(14):1509-1521. doi:10.1016/j.jacc.2016.06.067

148. Morales-Palomo F, Moreno-Cabañas A, Ramirez-Jimenez M, et al. Exercise reduces medication for metabolic syndrome management: a 5-year follow-up study. Med Sci Sports Exerc. 2021;53(7):1319-1325. doi:10.1249/mss.0000000000002591

149. Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev. 2010;68(7):375-388. doi:10.1111/j.1753-4887.2010.00298.x

150. Garrow JS, Summerbell CD. Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur J Clin Nutr. 1995;49(1):1-10.

151. Sardeli AV, Komatsu TR, Mori MA, Gáspari AF, Chacon-Mikahil MPT. Resistance training prevents muscle loss induced by caloric restriction in obese elderly individuals: a systematic review and meta-analysis. Nutrients. 2018;10(4):423-432. doi:10.3390/nu10040423

152. Talar K, Hernández-Belmonte A, Vetrovsky T, Steffl M, Kalamacka E, Courel-Ibáñez J. Benefits of resistance training in early and late stages of frailty and sarcopenia: a systematic review and meta-analysis of randomized controlled studies. J Clin Med. 2021;10(8):1630-1663. doi:10.3390/jcm10081630

153. Lopez P, Pinto RS, Radaelli R, et al. Benefits of resistance training in physically frail elderly: a systematic review. Aging Clin Exp Res. 2018;30(8):889-899. doi:10.1007/s40520-017-0863-z

154. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457-465. doi:10.1038/nrendo.2012.49

155. Feldman BJ, Streper RS, Farese RV Jr, Yamamoto KR. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci USA. 2006;103(42):15675-15680. doi:10.1073/pnas.0607501103

156. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379-1406. doi:10.1152/physrev.90100.2007

157. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol. 2009;94(12):1153-1160. doi:10.1113/expphysiol.2009.048561

158. Hunter GR, Fischer G, Neuemeyer WH, Carter SJ, Piasance EP. Exercise training and energy expenditure following weight loss. Med Sci Sports Exerc. 2015;47(9):1950-1957. doi:10.1249/mss.0000000000006622

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Lopez P, Taaffe DR, Galvão DA, et al. Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan: A systematic review and meta-analysis. Obesity Reviews. 2022;23(5):e13428. doi:10.1111/obr.13428