Identification of male heterogametic sex-determining regions on the Atlantic herring *Clupea harengus* genome

Sunnvør í Kongsstovu1,2,3 | Hans Atli Dahl1 | Hannes Gislason2 | Eydna Homrum4 | Jan Arge Jacobsen4 | Paul Flicek3 | Svein-Ole Mikalsen2

1Amplexa Genetics A/S, Tórshavn, Faroe Islands
2Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
3European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
4Faroe Marine Research Institute, Tórshavn, Faroe Islands

Correspondence
Sunnvør í Kongsstovu, Hoyviksvegur 51, FO-100 Tórshavn, Faroe Islands.
Email: sunnvork@hotmail.com

Funding information
Faroese Pelagic Organisation; Fisheries Research Fund of the Faroe Islands, Grant/Award Number: 13/00893, Grønningarøðið, Grant/Award Number: 0442; Innovationsfonden, Grant/Award Number: 5016-00181A; Statoil Føroyar, Grant/Award Number: 1

Abstract
The sex determination system of Atlantic herring *Clupea harengus* L., a commercially important fish, was investigated. Low coverage whole-genome sequencing of 48 females and 55 males and a genome-wide association study revealed two regions on chromosomes 8 and 21 associated with sex. The genotyping data of the single nucleotide polymorphisms associated with sex showed that 99.4% of the available female genotypes were homozygous, whereas 68.6% of the available male genotypes were heterozygous. This is close to the theoretical expectation of homo/heterozygous distribution at low sequencing coverage when the males are factually heterozygous. This suggested a male heterogametic sex determination system in *C. harengus*, consistent with other species within the Clupeiformes group. There were 76 protein coding genes on the sex regions but none of these genes were previously reported master sex regulation genes, or obviously related to sex determination. However, many of these genes are expressed in testis or ovary in other species, but the exact genes controlling sex determination in *C. harengus* could not be identified.

KEYWORDS
Atlantic herring, *Clupea harengus*, genome-wide association study, sex determination

1 | INTRODUCTION

The evolution of sexual reproduction has resulted in several sex determination systems, with gonochorous organisms (the stable separation of sexes in different individuals), stable hermaphrodites and organisms that change sex dependent on age, environmental and/or social cues (Devlin & Nagahama, 2002; Shen & Wang, 2014). Each of the different systems has evolved independently several times through evolutionary history, and even within each system there might exist several mechanisms for determining the sex of an organism (Ashman et al., 2014). The best-known system is the XY sex chromosomes found in mammals, where the females have two X chromosomes and the males have an X and a Y chromosome. Thus, the XY system is a male heterogametic system. The sex-determining region Y (SRY) gene is located on the Y chromosome and signals to the body to develop into a male rather than a female, which is the default (Kashimada & Koopman, 2010). The ZW system is a similar system where the females are heterogametic. This system is found in birds and some amphibians (Bull, 1983; Yoshimoto & Ito, 2011). These two systems do not represent the complexity of sex determination systems in the animal kingdom. Systems with only one sex chromosome also exist, for example the XO system where males have only one sex chromosome and the ZO system where females have only one (Bachtrog et al., 2014; Clinton, 1998). Furthermore, sex determination systems can be more complex, with multiple chromosomes or genes affecting the sex (Bachtrog et al., 2014; Roberts et al., 2016). There are even systems where age and size (Allsop &
West, 2003), societal factors (Buston, 2003; Fricke, 1979) or environmental factors such as temperature (Pieau, 1996) play crucial roles in sex determination. In some organisms, both genetic and environmental factors are involved in determining the sex, for example in the Nile tilapia Oreochromis niloticus (Linnaeus 1758) (Baroller et al., 2009) and Atlantic silverside Menidia menidia (Linnaeus 1766) (Lagomarsino & Conover, 1993).

Teleost fish display a variety of sex determination systems (Brykov, 2014; Devlin & Nagahama, 2002) and the plasticity of teleost genomes makes it possible for new systems to evolve relatively quickly. This makes teleost fish good candidates for studying the evolution of sex determination. Although there are sex determination systems in fish that are influenced by non-genetic factors (see the references above), genetic sex determination seems to be more common. The male heterogametic system (hereinafter ‘the XY system’) has been established in some fish species, for example bighead carp Hypophthalmichthys nobilis (Richardson 1845) and silver carp Hypophthalmichthys molitrix (Valenciennes 1844) (Liu et al., 2018), as has the female heterogametic system (hereinafter ‘the ZW system’) in half-smooth tongue sole Cynoglossus semilaevis Günther 1873 (Chen et al., 2014). The cichlid fishes of Lake Malawi have families with the XY system and others with the ZW system, but notably the species Metriaclima pyrsonotus (Stauffer, Bowers, Kellogg & McKaye 1997) has both these systems, showing strong epistatic interactions between them (Ser et al., 2010). Several polygenic systems are also found in fish, such as the European sea bassDicentrarchus labrax (Linnaeus 1758) (Palaioiokostas et al., 2015) and the cichlid fish Astatotilapia burtoni (Günther 1894) (Roberts et al., 2016). There are even individuals from the same species that have different sex determination systems, for example some zebrafish Danio rerio (Hamilton 1822) laboratory strains have lost the sex-determining region that is present in wild-type D. rerio, and therefore have evolved a new polygenic system that is still not fully understood (Wilson et al., 2014).

In some organisms (e.g., mammals and birds), sex chromosomes have evolved that contain master sex regulation (MSR) genes that control the sex of the organism, as with the previously mentioned SRY. Most species of fish do not have specific heteromorphic chromosomes that control sex, but have regions on autosomes that are associated with sex determination. These sex regions sometimes contain MSR genes or candidate MSR genes, such as the Y chromosome-specific anti Müllerian hormone (amh) gene in Patagonian pejerrey Odontesthes hatcheri (Eigenmann 1909) (Hattori et al., 2012) or the sexually dimorphic gene on the Y chromosome (ady) in rainbow trout Oncorhynchus mykiss (Walbaum 1792) (Yano et al., 2012). However, sometimes no obvious causal genes are found on these regions that have been associated with sex, such as in the mandarin fish Siniperca chuatsi (Basilewsky 1855) (Sun et al., 2017).

In the Clupeidae family, few species have been studied regarding their sex determination systems. In the Tree of Sex Consortium database (Ashman et al., 2014), only six Clupeiformes species are mentioned; four of these are a part of the Clupeidae family. Two are hemaphrodites (the toli shad Temuolosa toli (Valenciennes 1847) and the longtail shad T. macrura (Bleeker 1852)), whereas the Argentine menhaden Brevoortia pectinata (Jenyns 1842) and Brazilian menhaden B. aurea (Spix & Agassiz 1829) are both gonochoristic. B. pectinata is homomorphic and B. aurea is male heterogametic with X₀Y sex chromosomes (Brum, 1992). In addition, the Gulf menhaden Brevoortia patronus Goode 1878, the yellowfin menhaden Brevoortia smithi Hildebrand 1941 and the Atlantic menhaden Brevoortia tyrannus (Latrobe 1802) are gonochoristic and homomorphic (Doucette Jr & Fitzsimons, 1988), but their sex determination systems are not known.

The sex determination system of the commercially important Atlantic herring Clupea harengus L. has not yet been described. Increasing the knowledge of sex determination at this branch of the tree of life would further elucidate the evolution of sex determination in teleost fish. We therefore undertook this study to find regions on the C. harengus genome that are associated with sex determination.

2 | MATERIALS AND METHODS

2.1 | Ethical statement

The C. harengus samples were received from stock assessment cruises and commercial catches in the north-east Atlantic. No fish were caught or handled while alive for the purpose of this project. All fish were dead when they were selected for the study. Thus, the research did not involve animal experimentation or harm, and required no ethical permits.

2.2 | Samples and DNA extraction

Kidney samples were taken from 103 adult Atlantic herring, originated from four stocks, with ages ranging from 3 to 12 years with an average of 6.1 years. The sex was determined by visual inspection of the gonads by experienced staff at the Faroe Marine Research Institute, revealing 48 females and 55 males. DNA was extracted from the kidney tissue of these fish using an AS1000 Maxwell 16 instrument (Promega, Madison, WI, U.S.A.) and the Maxwell 16 Tissue DNA Purification Kit (Promega). DNA concentrations were measured using a Qubit 3.0 fluorometer (ThermoFisher Scientific, Waltham, MA, U.S.A.).

2.3 | Sequencing

The isolated DNA from each individual was fragmented to roughly 300 bp using a Covaris M220 focused-ultrasonicator (Covaris, Chicago, IL, U.S.A.), and the libraries were prepared using the KAPA LTP Library Preparation Kit Illumina Platforms (KAPABiosystems, Wilmington, MA, U.S.A.). Approximately 1 μg of input DNA was used for each library and a final concentration of 1 μM of the 6 bp adapters (Pentabase, Odense, Denmark). After the ligation step, double-sided size selection for fragments between 250 and 450 bp was performed, following the manufacturer’s instructions. The libraries were amplified for two to four cycles, depending on post-ligation concentration, and no further size selection was performed.
The finished libraries were quantified using the KAPA Library Quantification Kit (KAPABiosystems), as per the manufacturer’s instructions. After quantification, the libraries were pooled to equal proportions and paired-end sequencing was carried out on a NextSeq500 benchtop sequencer (Illumina, San Diego, CA, U.S.A.) using the High Output v2 Kit (Illumina) for 151 cycles.

2.4 Data processing and variant calling

Trimmomatic v0.36 was used to remove adapter sequences and trim low-quality bases with an average quality score lower than 20 (sliding window of four bases) from the paired-end data (Bolger et al., 2014). AfterQC v0.4.0 was used to remove the polyG reads (Sun et al., 2017) and FastQC v0.11.5 was used to assess the quality of all the sequencing data before and after adapter removal and low-quality base trimming (Andrews, 2010). The sequencing reads are available in the European Nucleotide Archive repository, with accession numbers ERS4329014 to ERS4329116.

The sequencing reads from ERS4329014 to ERS4329116 were mapped to the chromosome-level genome assembly (GCA_900700415.1_Ch_v2.0.2) using BWA-MEM v0.7.15 with default parameters (Li, 2013), and SAMtools v1.3 was used for sorting, converting (between SAM and BAM file formats) and removing PCR duplicates from the alignment files (Li et al., 2009). Single nucleotide polymorphisms (SNPs) were called using FreeBayes v1.1.0 (Garrison & Marth, 2012), and SNPs not in the Hardy–Weinberg equilibrium, SNPs with a minor allele frequency lower than 0.01, SNPs with a quality score lower than 20 (QUAL <20) and SNPs with coverage lower than 2 (DP < 2) were filtered out. However, data with coverage 1 were used when comparing the experimental genotype data with a theoretical model of how to infer reliable diploid genotypes from sequence data (see below).

Sex-specific insertions and deletions (indels) on the regions associated with sex were also called using FreeBayes and the aligned sequencing data from males and females separately. Indels with more than 30% of the genotypes missing (due to low coverage) and indels where homozygous reference allele genotypes were present were filtered out.

2.5 Association analysis

A genome-wide association study (GWAS) was performed using Plink v1.07 (Purcell et al., 2007) to test whether any of the SNPs identified were associated with sex. For the GWAS, phenotypic sex was used as cases (females) and controls (males), and the Cochran–Mantel–Haenszel test was used to account for the population stratification (–mh option in Plink). The Bonferroni correction for multiple testing assumes that each test is independent. This assumption is not always true for a GWAS because of linked SNPs, thus the Bonferroni correction can be considered too conservative. In human genetics, the genome-wide significance P value threshold of \(P = 5 \times 10^{-8} \) is standard for common-variant GWAS (Fadista et al., 2016). In this case, the null hypothesis is rejected if \(P < 5 \times 10^{-8} \) or \(-\log_{10}(P) > 7.3 \). However, no studies have been published that show this value to be true for herring. Therefore, we chose to use the conservative Bonferroni correction \((0.05/\text{number of tests, which was } 7,614,270)\) \(P = 0.66 \times 10^{-8} \) and reject the null hypothesis of no association for \(-\log_{10}(P) > 8.2 \). The R packages qman (Turner, 2014) and ABHgenotypeR (Furuta et al., 2017) were used for visualization of the results.

2.6 Statistical analysis

We compared the experimental genotype data with a theoretical model of how to infer reliable diploid genotypes from the sequence data. In this model, the probability of having \(x \) identical reads given homozygous genotypes is \(P(x|\text{hom}) = 1 \), while the probability of having \(x \) identical reads given heterozygous genotypes is \(P(x|\text{het}) = 1/2 \) (Chenuil, 2012). For the number of identical reads \((x)\) ranging from 1 to 21, we plotted the predicted proportions of homozygous genotypes together with the experimental data. The error bars of the experimental data correspond to the 95% confidence interval of the exact binomial test in R. We made no comparison for the number of identical reads higher than 21 because of a low number of samples with such high read coverage.

2.7 Search for causal genes

Possible orthologs for the genes in the significant regions were found via OrthoDB (Kriventseva et al., 2019). If nothing was found, a blast search of the gene sequence was performed to identify potential orthologs. The functions of the orthologs were investigated in the literature as well as in the UniProt database. The R/Bioconductor package VariantAnnotation (Obenchain et al., 2014) was used together with the Ensembl annotation of the genome (C. harengus. Ch_v2.0.2.98) to investigate whether the SNPs identified in this study were located in intergenic regions, promoters, exons or introns.

Table 1

No. of reads	Coverage			
Pre QC	X	Post QC	X	
Total	2,094,755,946	19,577,158.4	1,549,740,080	14,483,552.2
Female	945,494,924	19,295,814.8	708,052,772	14,450,056.6
Male	1,149,261,022	20,162,474.1	841,687,308	14,766,444.0

\(X, \text{average per individual.} \)

Note: Quality control consisted of trimming of low-quality sequences and adapter sequences (see method). QC, quality control; X, average per individual.
Furthermore, the sequences of 17 known sex determination or differentiation genes in fish were blasted against the *C. harengus* genome to investigate if any of these genes were present but not predicted for the *C. harengus* genome. The FASTA sequences were obtained from public repositories and blasted against the *C. harengus* genome using BLAST+ (Camacho et al., 2009) with default parameters. These genes are listed in Supporting information Table S1.

3 | RESULTS

3.1 | Identification of sex regions on the *C. harengus* genome

SNPs were found via low-coverage whole-genome sequencing, and a GWAS was conducted to identify the regions on the genome associated with sex, similar to Purcell et al. (2018). Whole-genome sequencing of 103 *C. harengus* (48 females and 55 males) resulted in 267× coverage of the *C. harengus* genome (122× coverage of the female genome and 144× coverage of the male genome; Table 1). After SNP calling and filtering, 7,614,270 SNPs were identified. A GWAS was performed to find genomic regions associated with sex, resulting in 552 SNPs significantly associated with sex. Potentially spurious findings were filtered out based on their relatively poor *P* values and no other significant *P* values in close proximity (Reed et al., 2015). The remaining 529 SNPs associated with sex (hereinafter referred to as the sex SNPs) aggregated on chromosomes 8 and 21 (Table 2 and Figure 1) and are listed in Supporting Information Table S2.

Investigation of the sex SNPs showed that 17,161 out of the 17,267 available female genotypes were homozygous, whereas 14,639 out of the 21,333 available male genotypes were heterozygous (Figure 2 and Table 3). A closer look at the SNP with the lowest *P* value (Chr8:21,120,262, *P* = 8.058 × 10^{-16}) showed the general genotype pattern. Thirty-eight females had genotyping data for this SNP and all of them were homozygous for the reference allele. Forty-two males had genotyping data for this SNP, one was homozygous for the reference allele, nine were homozygous for the alternative allele and 32 were heterozygous. All the sex SNPs showed a similar pattern where the majority of females are homozygous and the majority of males are heterozygous (Table 3). This suggested a male heterogametic or XY sex determination system for *C. harengus*.

The erroneous call at low sequence coverage of homozygotes from factual heterozygotes is as expected, and was theoretically investigated in a previous study (Chenuil, 2012). Thus, the true rate of heterozygotes in our data was higher than our result of 68.6%, but this could not be detected due to low sequencing coverage, resulting in male genotypes possibly being wrongly called as homozygous. Table 4 shows the average coverage of homozygous and heterozygous genotypes, and the average coverage of the heterozygous male SNPs was higher than the average coverage for the homozygous male SNPs. This indicated that some of the homozygous genotypes could be wrongly called due to low coverage.

To investigate this further, the observed proportions of homozygous female and male genotypes versus coverage were compared with the corresponding theoretically expected probabilities *P*(x|hom) = 1 and *P*(x|het) = 1/2^{(1−1)} (Chenuil, 2012) (Figure 3). The female

Chromosome	Position	No. of SNPs
8	21,063,400–22,268,779	488
21	17,047,390–17,055,230	41
proportions of homozygotes are all larger than 0.939 and 16 of them are larger than 0.990. The median is 0.996 (interquartile range = 0.008). Nine are exactly equal to 1 as expected for the females, while the binomial test rejects the null hypothesis for females in the remaining 12 of the 21 coverages (Supporting Information Table S1 and Figure 3). For the eight highest coverages of 14–21 only one is rejected. For males, the numerical discrepancies from the theoretical model are much larger and the binomial test rejects the null hypothesis for males in 17 of the 21 coverages, while we find an exact agreement for four of the five highest coverages of 17–21 (Supporting Information Table S3 and Figure 3). However, the overall trend for males is very different from the females and much more similar to the theoretical model, since the male homozygous proportion decreases towards zero for increasing coverage.

The experimental results for males indicate that perhaps not all the sex SNPs, but the majority must be heterozygous for males to develop. Nevertheless, these results support the suggestion of an XY sex determination system for *C. harengus*.

We see four possible explanations for the deviations from the theoretical expected proportions in Figure 3:

a. The physiological sex has been wrongly registered. We think this explanation is unlikely because Figure 2 would then have indicated this with horizontal lines of the deviating zygosity.

b. Random variations caused by a limited number of individuals tested. We cannot fully exclude this possibility, although we investigated 55 males.

c. Some of the SNPs are not important for male sex determination and do not have to be present; they are mere passenger variations.

d. A small proportion of the males have an alternative sex determination mechanism.

3.2 Search for possible sex determination genes

Because two regions were associated with sex, more than one gene could be involved in *C. harengus* sex determination. The region on chromosome 8 (21,063,400–22,268,779) contained 74 protein-coding genes and the region on chromosome 21 (17,047,390–17,055,230) contained two protein-coding genes. We investigated these genes for possible involvement in sex determination. None of these genes have previously been shown to be MSR genes in other organisms. However, to investigate further, possible orthologs for these genes were found and their reported functions investigated. None of the 76 genes were obvious candidates for being MSR genes, but 11 showed some potential linkage with sex determination or sex-related functions. These are listed in Table 5, together with their possible link to sex determination. The orthologs of 8 of these 11 genes had noteworthy expression patterns or were X-linked (Table 5). Among the remaining orthologs, the progesterone receptor membrane component 1 (*pgrmc1*) gene could potentially have a more convincing role in sex determination.

TABLE 3 Genotype count for the 529 SNPs associated with sex in Atlantic herring *C. harengus*

Genotype	Females	Males	Total
Homozygous (reference + alternative)	17,161 (16,418 + 743)	6694 (3522 + 3172)	23,855
Heterozygous	106	14,639	14,745
Total	17,267	21,333	38,600

Genotype	Females Average	Females S.D.	Females n	Males Average	Males S.D.	Males n
Homozygous reference allele	4.40	2.91	16,418	3.36	1.28	3522
Homozygous alternative allele	4.06	0.80	743	2.94	1.02	3172
Heterozygous	5.17	0.39	106	5.25	3.26	14,639

Note: n, number of samples; S.D., standard deviation.
differentiation processes as it is involved in oocyte maturation in
D. rerio and plays a role in sexual maturation in male sea lamprey
(Petromyzon marinus). Additionally, the D. rerio ortholog of the
C. harengus trophoblast glycoprotein like (tpbgl) gene is wnt-
activated inhibitory factor 2 (waif2), which has been shown to be a
modifier of Wnt signalling pathways (Table 5). Canonical wnt

FIGURE 3 The experimentally observed proportions of homozygous
female and male genotypes of SNPs associated with sex in Atlantic herring
Clupea harengus versus read coverage (x) and the corresponding theoretically
expected probabilities P(x|hom) = 1 and P (x|het) = 1/2x−1. Error bars correspond to
95% confidence intervals from the binomial test. Observed: (○) female, (△)
male; Expected: (-----) female, (-------) male

TABLE 5 Atlantic herring C. harengus genes on the genomic regions associated with sex, together with their orthologs and possible link to
sex determination or sex-related functions

C. harengus gene	Orthologous gene	Orthologous species	Reason	Reference
Smyd4	Smyd4	D. rerio	Highest expression levels in testis	(Bastian et al., 2008)
Loc105890535	Macroh2a2	D. rerio	Highest expression levels in testis	(Bastian et al., 2008)
Tpcn1	Tpcn1	D. rerio	Highest expression levels in mature ovarian follicle	(Bastian et al., 2008)
Loc105890474	NIf2a	D. rerio	Highest expression levels in mature ovarian follicle	(Bastian et al., 2008)
Loc105890446	NEXMIF	H. sapiens	X-linked	(Cason et al., 2003)
Sms	SMS	H. sapiens	X-linked	(Cantagrel et al., 2004)
Loc105890483	PRPS1L1	H. sapiens	Specifically expressed in the testis	(Taira et al., 1990)
	PRPS1b	D. rerio	Expressed in 29 organs, with the highest expression level in mature ovarian follicles	(Bastian et al., 2008)
Iqcd	DRC1	H. sapiens	Expressed in the testis and plays a role in fertilization	(Zhang et al., 2019)
Pgrmc1	Pgrmc1	D. rerio	Plays a role in oocyte maturation	(Wu et al., 2018)
		Petromyzon marinus	Plays a role in sexual maturation in male sea lamprey	(Bryan et al., 2015)
Tpbgl	Waif2	D. rerio	Waif2 has been shown to inhibit Wnt/β-Catenin signalling and activate other wnt pathways	(Kagermeier-Schenk et al., 2011)
Loc105911882	Bmpr1bb	D. rerio	When mutated, fish have enlarged testes and accumulation of immature oocytes	(Neumann et al., 2011)
pathways are important for both mammalian and *D. rerio* sex determination (Harris et al., 2018; Jordan et al., 2001; Kossack et al., 2019; Sreenivasan et al., 2014).

To examine whether the sex SNPs could have functional consequences, their locations were investigated in more detail. Of these 529 SNPs, 151 were located in intergenic regions and 105 were located in promoter regions (Table 6). The SNPs in promoter regions could potentially affect the expression of genes. The remaining 273 SNPs were located in protein-coding genes; however, the majority (167) were located in introns (Table 6). Among the 57 SNPs located in coding regions, 30 caused amino acid substitutions (Table 6). Among the 76 genes in the sex regions, six had sex SNPs that caused nonconservative amino acid substitutions in exons. These substitutions were in *tpcn1*, *iqcd*, *loc105890446*, *claudin-4*-like (*loc105890498*), *mettl27* and *bmpr1bb*. Table 7 lists the nonsynonymous SNPs and their corresponding amino acid substitutions. It is possible that these SNPs could have an effect on these genes, but to answer this question functional analyses need to be carried out.

In addition, sex-specific insertions and deletions (indels) in the two regions associated with sex, were investigated. After filtering there were 12 unique male indels and six unique female indels, all on chromosome 8 (Table 8). Seven of these indels (indels 1, 2, 5 and 13–16) were located in intragenic regions. Ten indels were located in the introns of the following genes: MAP/microtubule affinity-regulating kinase 4 (*loc105890451*; indel 4), notchless protein homologue 1 (*nle1*; indels 6–10), uncharacterized LOC105890454 (*loc105890454*; indels 8–10; the *nle1* and *loc105890454* genes overlap but in opposite directions), melatonin receptor type 1B-B (*loc105890457*; indels 11 and 12), connector enhancer of kinase suppressor of ras 2-like (*loc105890461*; indel 17) and La ribonucleoprotein 1, translational regulator (*larp1*; indel 18) (Table 8). Furthermore, indel 3 was located in an exon of the gene protein NipSnap.

Table 6 Location of the SNPs associated with sex in Atlantic herring C. harengus

Location of SNPs associated with sex	Number of SNPs
Intergenic regions	151
Promoter regions*	105
5’ untranslated regions	10
3’ untranslated regions	39
Splice sites	0
Introns	167
Coding regions	57
Synonymous SNPs	27
Nonsynonymous SNPs	30
Conservative amino acid substitutions	12
Nonconservative amino acid substitutions\(^b\)	18

*2000 bp upstream and 200 bp downstream of genes.

\(^b\)Details of these nonconservative nonsynonymous substitutions are listed in Table 7.

Table 7 Nonconservative nonsynonymous substitutions in genes on the Atlantic herring C. harengus genome caused by SNPs significantly associated with sex

Gene	Chr	Pos	AA substitution	Changes to AA
tpcn1	8	21,072,591	Q- > H	Polar to positively charged
	8	21,077,772	S- > P	Polar to nonpolar
iqcd	8	21,086,634	Q- > K	Polar to positively charged
	8	21,088,137	S- > F	Polar to nonpolar
loc105890446 (nexmifa)	8	21,115,969	P- > S	Nonpolar to polar
	8	21,116,347	Q- > E	Nonpolar to negatively charged
	8	21,116,916	C- > Y	Nonpolar to polar
	8	21,117,352	N- > D	Polar to negatively charged
	8	21,117,963	S- > L	Nonpolar to polar
loc105890498 (CLDN4)	8	21,162,489	P- > T	Nonpolar to polar
mettl27	8	21,176,434	R- > S	Positively charged to polar
loc105911882 (bmpr1bb)	21	17,049,306	G- > S	Nonpolar to polar
	21	17,049,310	S- > L	Polar to nonpolar
	21	17,049,450	E- > K	Negatively charged to positively charged
	21	17,049,451	E- > A	Negatively charged to nonpolar
	21	17,049,466	Q- > L	Polar to nonpolar
	21	17,049,504	K- > E	Positively charged to negatively charged
	21	17,051,213	S- > A	polar to nonpolar

Note: Gene name abbreviations in parentheses are the Ensembl abbreviations and are only given if no abbreviations were available in GeneBank. AA, amino acid.
homologue 2-like (loc116221504) and indel 8 was located in an exon of loc105890454. All indels except indel 4 caused frameshifts and therefore would most likely have a strong effect on the subsequent protein function. These indels are present in either all-male or all-female individuals (with data), so could play a role in sex development, however the genotypes of the indels vary within the sexes (Table 8). Most of the genotypes are homozygous for the alternative allele, but this could also be affected by the low sequencing coverage, as mentioned before.

None of the known sex determination or differentiation genes in fish were found on or close to the sex regions identified in this study. This could suggest that C. harengus has an unknown sex determination mechanism.

4 | DISCUSSION

We identified two regions on two chromosomes on the C. harengus genome that were associated with sex. The data strongly indicated that females are homozygous, whereas the males are heterozygous for the SNPs in these sex-associated regions. This is consistent with an XY sex determination system. There are 76 protein-coding genes in these associated regions but no obvious MSR genes. However, some of these genes could potentially affect sex determination or development because they are associated with sex organs or sex functions in other species, as briefly referred to in the Results section (Table 5). Neither the investigation of the amino acid substitutions caused by SNPs nor that of indels pointed to a single sex determination gene in C. harengus.

4.1 | Low sequencing coverage

The SNPs were identified by low coverage whole-genome sequencing (on average 3 to 4× over the whole genome). This potentially resulted in some caveats regarding the genotypes. First, it is more likely to have missed genotypic data for some of the SNPs in some of the individuals, simply because the area has not been sequenced. Second, sequencing errors are more likely to be implemented as variations and could result in falsely called low-frequency alleles. This is not a problem in the present situation because we are dealing with high-frequency alleles. The third caveat is more serious: if, by chance, only one of the alleles from a heterozygous individual is sequenced, the genotype would always be called homozygous. With an average coverage of 3×, the probability of sequencing only one of the two alleles is on average 12.5% (and 12.5% for the other allele). Thus, statistically we would achieve a 75% detection rate in a group consisting of 100% heterozygotes (Chenuil, 2012). Our data were rather close to this theoretical expectation with 16.5% (3522/21,333) of male genotypes called homozygous reference alleles, another 14.9% (3172/21,333) homozygous alternative alleles and 68.6% (14,639/21,333) heterozygotes. Our results also showed that the male homozygous genotypes have on average lower coverage than the heterozygous genotypes, making it more probable that they are miscalled (Table 4).

Table 8

Indel no.	Position	Male (M) or female (F) specific	Type	Indel size	Genotype counts (A/H)
1	CHR8:21,128,155	M	Deletion	1	34/6
2	CHR8:21,128,178	M	Deletion	1	38/2
3	CHR8:21,131,541	F	Insertion	2	30/4
4	CHR8:21,265,567	M	Insertion	3	34/5
5	CHR8:21,408,287	F	Insertion	1	32/2
6	CHR8:21,545,424	M	Deletion	1	34/7
7	CHR8:21,545,788	M	Deletion	1	41/1
8	CHR8:21,548,262	M	Deletion	1	34/6
9	CHR8:21,549,148	M	Insertion	1	39/6
10	CHR8:21,549,352	F	Insertion	1	34/2
11	CHR8:21,603,143	F	Deletion	1	29/6
12	CHR8:21,603,205	M	Insertion	1	37/7
13	CHR8:21,638,324	M	Deletion	2	38/1
14	CHR8:21,677,099	F	Insertion	1	32/5
15	CHR8:21,682,470	M	Insertion	2	33/6
16	CHR8:21,721,091	M	Deletion	1	37/6
17	CHR8:21,878,176	M	Insertion	2	38/10
18	CHR8:22,011,043	F	Insertion	2	29/7

Note: There were 55 males and 48 females but not all individuals had data for all variations because of the low sequencing coverage. Only insertions and deletions present in all individuals (with data) of the same sex were included. A, homozygous alternative allele; H, heterozygous.
Furthermore, the observed male proportions of homozygotes versus coverage followed the same trend as the theoretically expected proportions if all genotypes were truly heterozygous (Figure 3). These results indicate that all the sex SNPs could potentially be heterozygotes in males.

One way to verify this would be to repeat the experiment with higher coverage. Meynert et al. (2014) demonstrated experimentally that 9–13x coverage was required to correctly call 95% of heterozygous genotypes. Chenuil (2012) showed that with a coverage of 5x (where all reads show the same allele) and a heterozygous rate of 0.5, the homozygous genotype would be correct 95% of the time. Therefore, a read depth of more than 5 would be appropriate to increase the sensitivity of correct genotypes to above 95% for both homo- and heterozygotes. The sex SNPs identified in this study could also be genotyped in genotyping experiments, rather than using sequencing.

In our study, the number of individuals sequenced partly makes up for the weakness caused by low coverage and shows that 99.4% of the female genotypes are homozygous, while at least 68.6% of the males are heterozygous. When genotyping an ideal male heterogametic sex-determining system with sex-linked SNP markers, we would expect females to be homozygous and males to be heterozygous at these markers. The very high proportion of homozygous females (99.4%) strongly supports this hypothesis, whereas the measured proportion of heterozygous males is limited by the much lower heterozygous sensitivity of the method at low coverage.

4.2 | Sex regions on the C. harengus genome

The association between sex and chromosome 8:21,063,400–22,268,779 was stronger (i.e., lower P values) than for the region on chromosome 21, and it is also larger and contains more SNPs associated with sex (Table 2). As sex chromosomes evolve, they tend to become less stable and accumulate genes that are sex-specific/beneficial, and eventually recombination between the homologous chromosomes stops and they become heteromorphic over time (Charlesworth et al., 2005). However, not all species develop heteromorphic sex chromosomes (Wright et al., 2016), for example the tiger pufferfish Takifugu rubripes (Temminck & Schlegel 1850) has only one SNP causing the phenotypic sex (Kamiya et al., 2012). Our results showed that larger regions are associated with sex in C. harengus, but we cannot tell if these are early heteromorphic sex chromosomes in development or not.

It is interesting that two regions on different chromosomes are associated with sex in C. harengus. The genotypes of the sex SNPs on both regions show the same pattern (Figure 2). None of the female individuals investigated here have heterozygous genotypes at either region (with the exception of a few single SNPs). We would expect that the random segregation of chromosomes during meiosis would ensure that the different sex regions would sometimes end up in different gametes, thereby distributing among males and females in the offspring (assuming only two sexes in herring). This suggests that sex determination in herring could be complex, maybe polygenic (Moore & Roberts, 2013). Further studies are needed to investigate this possibility.

There are several possible explanations for the observation of two sex-related regions located at different chromosomes:

a. It might simply be a statistical coincidence. If so, the shorter region on chromosome 21 is most likely the one that is erroneously pointed out. However, as a rather conservative statistical threshold has been used, we think this is not a likely option.

b. There might be an error in the chromosome assembly. A piece of chromosome 8 might have been assembled into chromosome 21, for example, because of similar repeated sequences at the two chromosomes. We have not been able to detect such repeated sequences. Still, assembly errors are rather common, even in high-quality assemblies, so we will not exclude this possibility.

c. If we assume that that it is biologically correct that there are two separate sex regions, and they segregate normally, we should have sometimes observed the heterozygous region of chromosome 8 and the homozygous region of chromosome 21 (and vice versa) in the same individual. This was never observed and would therefore only be explained by lethality of such mixes. This does not seem biologically plausible. Species with polygenic sex determination systems also tend to have a skewed sex ratio (Ser et al., 2010), which is not true for C. harengus.

d. It might be that chromosomes 8 and 21 are not segregating in the normal manner. There are a few examples of non-Mendelian segregation, for example in the duck-billed platypus (Ornithorhynchus anatinus) where five X chromosomes form a co-segregating complex, and similarly with five Y chromosomes, resulting in a 1:1 sex ratio and only two possible genotypes (Rens et al., 2004).

4.3 | Potential genes involved in sex determination

As mentioned in the Results section, the genes on the sex regions are not known MSR genes or known to be part of the sex determination pathway, so a specific gene could not be identified as the most probable MSR gene. Therefore, the potential effect of sex SNPs was investigated further.

First, 105 sex SNPs were present in promoter regions and could alter the expression of these genes, thereby affecting the sex determination. However, expression studies would be needed to investigate this further. Second, the sex SNPs causing the nucleotide substitutions in the mRNA molecules could potentially cause the mRNA molecules to fold in different ways, making them less accessible by the ribosome and affecting the transcription of these mRNAs. Computational modelling of the folding needs to be done to test this possibility.

Third, the sex SNPs causing nonconservative amino acid substitutions could have an effect on the folding and function of the protein. For example, the tpccn1 gene has two nonconservative amino acid substitutions caused by sex SNPs, at amino acid positions 245 and
537 (Table 7). No structural information is available for this gene/protein but aligning the *D. rerio* tpcn1 with the *C. harengus* tpcn1 shows extensive similarities. Amino acid positions 238 and 530 in the *D. rerio* protein correspond to positions 245 and 537 in the *C. harengus* protein and are within transmembrane domains. Nonconservative substitutions at these domains could disrupt the folding of the domains and affect the function of the protein. All the nonconservative amino acid substitutions caused by sex SNPs in the *C. harengus* gene/protein loc105911882 (Table 7) are located in the protein kinase domain of the *D. rerio* protein. The substitution in the *C. harengus* 1qcd, loc105890446, loc105890498 and mettl27 genes do not seem to be in any known domains of either the *C. harengus* or *D. rerio* proteins.

There could potentially still be protein coding genes that have not yet been predicted. This is partly because of potentially suboptimal prediction algorithms and partly because they could be within nonsequenced regions. Moreover, it is likely that many nonidentified noncoding genes exist, such as IncRNAs or miRNAs. In addition to genes, there are many regulatory elements that are not necessarily close to the genes they regulate. *C. harengus* is not a model organism, and thus there have been limited studies with this species, but the ENCODE project has inferred many functions for noncoding parts of the *H. sapiens* genome (ENCODE Project Consortium, 2012). It is highly likely that similar noncoding elements exist in the *C. harengus* genome, and some of the SNPs found in this study to be associated with sex could affect a noncoding element that has not been identified yet.

In addition, there might be sex-specific sequences present in *C. harengus*. For example, if the reference genome assembly was from a female individual and *C. harengus* has a male-specific sequence that controls sex determination, then this study would not be able to identify this. It is likely that this is the case, and that the sex-specific sequence is at or close to the sex regions identified here, and the heterozygous male sex SNPs are linked with this sex-specific sequence. Targeted sequencing of these regions could reveal if this is true.

4.4 Evolution of sex determination within the Clupeiformes order

Teleost fishes have highly diverse sex determination systems (Bachtrog *et al.*, 2014). The XY sex determination system for *C. harengus*, suggested in this study, fits well with the other Clupeiformes mentioned in the Introduction.

A study by Pennell *et al.* (2018) indicated that in fish, transitions from gonochorism to hermaphroditism occur at higher rates than the reverse, and transitions from female to male hermogamy occur at higher rates than the reverse. They also found similar transition rates between homomorphic and heteromorphic sex chromosomes in both fish and amphibians. This could suggest that the common ancestor for Clupeidae and Engraulidae had a ZO or ZW sex determination system, which is still present in *Colilia nasus* (Xu *et al.*, 2014). The common ancestor for Clupeidae then lost the Z chromosome and adapted to a XY system, which has been found in Brevoortia and now also in Clupea. These sex chromosomes are early in their evolution and still homomorphic, as seen in Brevoortia spp. and *C. harengus*. A single known exception is *B. aurea*, a species that has heteromorphic sex chromosomes with two X and one Y chromosome. As *Tenulosa* split from Brevoortia and Clupea, they evolved to be hermaphrodites. Of course, this series of events is a speculative hypothesis at present.

4.5 Conclusion and future work

We identified regions on the *C. harengus* genome that were associated with sex. The genotypes of the SNPs associated with sex indicated an XY sex determination system for *C. harengus*, which is consistent with other Clupeiformes species. Nonetheless, we could not identify the exact genes for sex determination. None of the known sex determination genes in fish were found on or close to the sex regions, indicating that *C. harengus* could have a previously unregistered, unknown sex determination mechanism. New experiments where these sex regions are sequenced at a higher coverage for both males and females should be conducted to reproduce and more effectively delineate the sex determination regions. This would also better characterize the potential existence of homozygous SNPs in a small proportion of the males in these regions and could identify possible sex-specific sequences.

ACKNOWLEDGEMENTS

We wish to thank the staff aboard the local fishing boats ‘Gunnvør’, ‘Slidin’ and ‘Grani’, G. J. Óskarsson from the Marine and Freshwater Research Institute Iceland, and P. Macdonald, L. Henderson and M. Hamilton from the NAFC Marine Centre Shetland for providing samples. In addition, we thank J.A. Thomassen and P. Vestergaard from the Faroe Marine Research Institute for helping collect fish data and tissues, and L.H.G. Larsen from Amplexa Genetics for the help regarding laboratory methods. We are also grateful to H. Joensen, D.H. Christiansen and J. Vang for their help during the acquisition of funding. Finally, special thanks go to the European Molecular Biology Laboratory for access to computer resources.

AUTHOR CONTRIBUTIONS

S.i.K. designed the study, conducted the laboratory work, analysed and interpreted the data, and wrote the manuscript. S.O.M. contributed to the design of the study and writing of the manuscript, and supervised the laboratory work and analysis and interpretation of data. E.i.H. and J.A.J. contributed to the acquisition and interpretation of the data. H.G. contributed to the statistical analysis and interpretation of the data, acquired funding, and contributed to the writing of the manuscript. P.F. contributed to the design of the study, writing of the manuscript and analysis and interpretation of the data, H.A.D. designed the study, acquired funding, contributed to the writing of the manuscript and supervised the laboratory work and analysis and interpretation of data. All authors contributed to revising the manuscript and approved the final version.
Meynert, A. M., Ansari, M., FitzPatrick, D. R., & Taylor, M. S. (2014). Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics, 15, 247.

Moore, E. C., & Roberts, R. B. (2013). Polygenic sex determination. Current Biology, 23, R510–R512.

Neumann, J. C., Chandler, G. L., Damoulis, V. A., Fustino, N. J., Lillard, K., Looijenga, L., ... Amatrudna, J. F. (2011). Mutation in the type IB morphogenetic protein receptor Alkβ impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 108, 13153–13158.

Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., & Morgan, M. (2014). VariantAnnotation: A Bioconductor package for exploration and annotation of genetic variants. Bioinformatics, 30, 2076–2078.

Paliokostas, C., Bekaret, M., Taggart, J. B., Gharbi, K., McAndrew, B. J., Chatain, B., ... Vandeputte, M. (2015). A new SNP-based vision of the genetics of sex determination in European sea bass (Dicentrarchus labrax). Genetics Selection Evolution, 47, 68.

Pennell, M. W., Mank, J. E., & Peichel, C. L. (2018). Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology, 27, 3950–3963.

Pieau, C. (1996). Temperature variation and sex determination in reptiles. BioEssays, 18, 19–26.

Purcell, C. M., Seetharam, A. S., Snodgrass, O., Ortega-Garcia, S., Hyde, J. R., & Severin, A. J. (2018). Insights into teleost sex determination from the Seriola dor salis genome assembly. BMC Genomics, 19, 31.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... Daly, M. J. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.

Reed, E., Nunez, S., Kulp, D., Qian, J., Reilly, M. P., & Foulkes, A. S. (2015). A guide to genome-wide association analysis and post-analytic interrogation. Statistics in Medicine, 34, 3769–3792.

Rens, W., Grützer, F., O’Brien, P. C., Fairclough, H., Graves, J. A., & Ferguson-Smith, M. A. (2004). Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proceedings of the National Academy of Sciences of the United States of America, 101, 16257–16261.

Roberts, N. B., Juntti, S. A., Coyle, K. P., Dumont, B. L., Stanley, M. K., Ryan, A. Q., ... Roberts, R. B. (2016). Polygenic sex determination in the cichlid fish Astotitilapia burtoni. BMC Genomics, 17, 835.

Ser, J. R., Roberts, R. B., & Kocher, T. D. (2010). Multiple interacting loci control sex determination in Lake Malawi cichlid fish. Evolution: International Journal of Organic Evolution, 64, 486–501.

Shen, Z.-G., & Wang, H.-P. (2014). Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genetics Selection Evolution, 46, 26.

Sreenivasan, R., Jiang, J., Wang, X., Bártfai, R., Kwan, H. Y., Christoffels, A., & Örtbä, L. (2014). Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biology of Reproduction, 90(4), 41–10.

Sun, C., Niu, Y., Ye, X., Dong, J., Hu, W., Zeng, Q., ... Lu, M. (2017). Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish Siniperca chuatsi). BMC Genomics, 18, 446.

Taira, M., Izasa, T., Shimada, H., Kudoh, J., Shimizu, N., & Tatiibana, M. (1990). A human testis-specific mRNA for phosphoribosylpyrophosphate synthetase that initiates from a non-AUG codon. Journal of Biological Chemistry, 265, 16491–16497.

Turner, (2018). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Journal of Open Source Software, 3(2), 731.

Wilson, C. A., High, S. K., McCluskey, B. M., Amores, A., Yan, Y. L., Titus, T. A., ... Schartl, M. (2014). Wild sex in zebrafish: Loss of the natural sex determinant in domesticated strains. Genetics, 198, 1291–1308.

Wright, A. E., Dean, R., Zimmer, F., & Mank, J. E. (2016). How to make a sex chromosome. Nature Communications, 7, 12087.

Wu, X.-J., Thomas, P., & Zhu, Y. (2018). Pgrmc1 knockout impacts oocytes maturation in zebrafish. Frontiers in Endocrinology, 9, 560.

Xu, S., Li, Y., Fu, G., Wu, H. W., Wang, Q., Liu, Q. G., & Qu, X. C. (2014). Chromosome karyotype analysis of Colliu nasus. Gaurdorg Agricultural Sciences, 7, 155–157.

Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., ... Guignen, Y. (2012). An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Current Biology, 22, 1423–1428.

Yoshimoto, S., & Ito, M. (2011). A ZZ/ZW-type sex determination in the cichlid fish, Channa striata. Nature Reviews Genetics, 12, 648–659.

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Kongststovu S, Dahl HA, Giislason H, et al. Identification of male heterogametic sex-determining regions on the Atlantic herring Clupea harengus genome. J Fish Biol. 2020;97:190–201. https://doi.org/10.1111/jfb.14349