ABSTRACT Developing trustworthy rainfall-runoff (R-R) models can offer serviceable information for planning and managing water resources. Use of artificial neural network (ANN) in adopting such models and predicting changes in runoff has become popular among many hydrologists from a long time. However, since the optimization is the most significant phase in ANN training, researchers’ attentiveness has been attracted to the ANN’s biggest problem, i.e. its susceptibility of being blocked in local minima. Consequently, use of genetic algorithms (GA), particle swarm optimization (PSO), firefly algorithm (FFA) and improved particle swarm optimization (IPSO) approaches to increase the performance of ANN, have gained remarkable interest among distinct modern heuristic optimization approaches. In this paper, the capability of four improved ANN methods, hybrid GA-based ANN, PSO-based ANN, FFA-based ANN and IPSO-based ANN in modeling rainfall-runoff (R-R) is investigated. IPSO has been used in order to increase the ability of PSO, where the new positions of particles are dynamically adjusted using two procedures which is given form the velocity obtained by PSO and proposed velocity in IPSO. The random normal grated number with a dynamical scale factor is used to compute the new position of the best particles in proposed velocity. Daily R-R data from six stations distributed in the Seybouse watershed located in semi-arid region in Algeria were used in models’ development. The selection of the input data sets was carried out using the autocorrelation, partial autocorrelation and cross correlation functions. The results of the four hybrid models were compared via performance metrics, viz., Root Mean Square Error (RMSE), Pearson’s correlation coefficient (R), Nash Sutcliffe Efficiency coefficient (NSE), and via graphical analysis (scatter plots, time series and Taylor diagram). Outcomes of the analysis at all study stations disclosed that all the ANN models enhanced with IPSO overachieved the GA-based ANN, PSO-based ANN, FFA-based ANN and IPSO-based ANN in estimating runoff for both training and testing periods. The outcomes of the study indicate that the IPSO hybrid metaheuristic algorithm is the best technique in improving ANN capability in modeling daily R-R.

INDEX TERMS Rainfall-runoff models, Artificial neural network (ANN), Genetic algorithms (GA), Particle swarm optimization (PSO), Firefly algorithm (FFA), Improved particle swarm optimization (IPSO), Seybouse watershed, Semi-arid region.

I. INTRODUCTION
Since the dawn of time, water has been a predominant factor in the socio-economic development of human beings. It intervenes in the whole functioning of the natural environment and represents a main life resource for many plants and animals. However, with the demographic explosion, the industrial growth and the various forms of life in several areas worldwide, water requirements have considerably increased; this has caused a mismatch between water demand and water supply; therefore, the problems of
water availability became amplified and water resources become under high pressure. As a result, appropriate management of these resources becomes a major concern in order to minimize this pressure or to bridge the hiatus between water availability and demand [1]–[3]. In order to be eligible to arrange some water management tactics to make it obtainable anytime, a prediction of the interrelationship between the two main components of the hydrological cycle rainfall and runoff is necessary [4], [5]. Also, developing accurate models to simulate rainfall-runoff process can help to manage water scarcity problems. However, the rainfall to runoff conversion is mightily nonlinear, stochastic and strongly complex process as there are several meteorological parameters and other various subprocesses influence this complicated system [6], [7]. Therefore, hydrologists and researchers have developed various rainfall-runoff (R-R) models in order to capture and represent this intricate phenomenon, where the model selection has to be made according to its ability and levels of complexity [8]. Generally, these models are categorized into (i) the physics-based technique that offers better understandability, but their accuracy is poor, and (ii) the empirical or data driven technique based on measured data that provides highly accurate results [9].

The artificial neural network (ANN) is one of these data-driven approaches which was utilized in diverse fields such as hydrology and water resources, it’s become advocated due to its capability of tackling, modeling and forecasting the problems that are nonlinear or stochastic within the R-R system [10]–[16]. Since ANNs cannot represent the internal structure of the catchment or even manage the environmental data distributed related to the physical characteristics of the basin, they do not replace conceptual watershed modeling. However, they have been recognized as a applicable alternative to conceptual models for input-output forecasting, due to several advantages among which their computational speed in simulation and forecasting [17] and their capacity of making models easy to use and more accurate from complex natural systems with large inputs [18]. The ANN is found to be a very novel and useful model applied to problem-solving and machine learning. As well as it has shown its power and capacity to simulate the hydrological phenomena. Therefore, ANN models are recommended for R-R modeling; due to their simple structures and precision which help us to solve problems related to water resources management.

As there are many apprenticeship algorithms that can be applied to enhance ANN, it still leaves a large scope of probabilities. Although extremely renowned in flood prediction, there is no obvious conclusions declared regarding to which model perform better in a given application [12]. Most of the researches have applied feed-forward and backpropagation (FFBP) network in ANN model development. In the last few years, several optimization tools have been used to enhance the potential of the backpropagation algorithm including the gradient descent (GD) which is commonly applied in backpropagation stage of the neural network training process [19] and it’s formulated as reducing the error between measured and predicted output at every iteration. Nevertheless, the GD may suffer from convergence issues, training method deceleration, stocking within local minima and overfitting; if the model structure is intricate and the parameter set is large, this results in poor performance of ANN models [6], [9], [20]. Recently, several conventional heuristic tools have been created to beat the deficiency of gradient-based techniques and to facilitate the solution of difficult optimization problems and obtain the optimal ANN parameters in training; in order to enhancing its efficiency. Among these tools: artificial bee colony algorithm (ABC), biogeography-based optimization (BBO), differential evolution (DE), grey wolf optimizer (GWO), genetic algorithm (GA), particle swarm optimization (PSO) and firefly algorithm (FFA) etc. [21]. Even though the standard ANN method is old, its hybrid versions with these metaheuristic algorithms have been commonly used these days to solve complex problems in various fields such as: modelling solar energy system, injection molding process, rock engineering field, rock fragmentation ... [22]–[25].

Genetic algorithms are among the most popular evolutionary algorithms that are suitable for research, adaptability and learning in a miscellaneous of application areas, particularly for problems where nonlinear data and model intricacy conduct to unworthy results. This algorithm has been widely revealed to offer precise optimization solutions for research difficulties through simulation development. Conjointly with intelligence techniques, the GA has become a powerful method of modeling and optimizing complex processes [26]–[28], it is used as an enhancer of ANN parameters to ameliorate the model’s efficiency [29], [30]. In addition, GAs are population-based, and many modern evolutionary algorithms are directly based on genetic algorithms or have strong similarities. There are several studies on the applicability of GA in the hydrological sciences. [31] utilized real code GAs for training (ANN) R-R models, in order to anticipate the quotidian flow which is more precise than the backpropagation technique-based ANN models. [32] suggested an intelligent hybrid model that is a combination of methods of data preprocessing, genetic algorithms and Levenberg–Marquardt (LM) algorithm to train feed-forward NN for runoff prediction.

In the other hand, PSO has become one of the most widely used swarm intelligence-based algorithms due to its simplicity and flexibility. Rather than using mutation / crossover, it uses real number chance and global communication between particles in the swarm. Therefore, it is easier to implement than GAs. It could also be used to optimize irregular, non-linear systems and solve complex problems and it has a high speed of convergence towards the ideal solution on a certain iterations number. Moreover, PSO could be involved as a training algorithm for ANN model.
[20], [33]. At this stage, satisfactory results in various studies have also been obtained in the problems linked to hydrology. [34] suggested a PSO-based perception approach to forecast water stage in the Shing Mun River in Hong Kong. [6] proposed a new hybrid metaheuristic algorithm combining BBO, PSO and GWO integrated with ANN and ANFIS for modeling R-R process in the watershed Fal at Tregony. [35], proposed three optimization algorithms integrated with ANFIS, i.e. particle swarm optimization (ANFIS-PSO), genetic algorithm (ANFIS-GA) and differential evolution algorithm (ANFIS-DE) for forecasting monthly streamflow of Pahang River, located in a tropical climatic region of Peninsular Malaysia. [9] applied PSO for training ANN R-R model in Jardin river basin etc.

The swarm-based firefly algorithm (FFA) is receiving considerable research attention, with a number of studies reporting favorable improvement in their modeling accuracy [36], [37]. It is indeed a relatively newer optimization approach that is straightforward with a strong potential to converge quicker to optimum solutions than other intelligent techniques [38]; because the global and local optima of the predictor data can be solved simultaneously and efficiently [39]–[42]. In such optimization problems, it was experimentally seen to surpass PSO. Lately [43] examined its validity to ANN training in classification issues and compared its reliability with GA and ABC. [44] developed an integrated adaptive neuro fuzzy inference system with firefly algorithm (ANFIS-FFA) to forecast monthly rainfall in Pahang River catchment, Malaysia. [45] adopted a novel simulation approach called MLP–FFA for monthly streamflow forecasting at Ajchay watershed, East Azerbaijan. [46] adopted a novel approach based on the integration of support vector regression (SVR) and FFA for rainfall predicting at two stations situated in a semi-arid area, Iran.

Finally, a new version of the PSO algorithm which is Improved PSO (IPSO) could solve multi-objective combination optimization problems in many researches, where it can restrict the position change of original and new particles in the iteration process and accelerate the convergence speed of the algorithm [47]. [48] applied an improved PSO to train artificial neural network (ANN) for water level prediction in the Heshui Watershed in China. [49] introduced a new prediction model for solar radiation, the model was essentially based on an improved SVR integrated with IPSO, its application showed its superiority over the other models (multivariate adaptive regression ‘MARS’, genetic programming ‘GP’, SVR-PSO, SVR-GA, SVR-FFA and M5 tree model).

As these algorithms have different advantages and specific processes in the modeling of complex phenomena and, as their studies in hydrology, in particular R-R modeling, are still at an early stage, and little research has been done on these models to solve hydrological problems and real-time flow forecasting, investigating these models in hydrology and comparing them are highly recommended. On the other hand, the capacity of evolutionary IPSO and FFA in improving ANN efficiency in modeling R-R as well a study that groups together all the algorithms mentioned above to model this phenomenon has not been previously investigated. This gave us impetus to prepare this research.

The principle aim of the present article is to investigate the capability of ANN-IPSO in modeling R-R so as to provide an efficient method for solving such a complex hydrological problem. In order to assess the viability of the IPSO in improving ANN efficiency, this method was compared with the other three commonly used evolutionary metaheuristic optimizers, GA, PSO and FFA inspired by nature by integrating into ANN as a training algorithm for R-R modeling in the Seybouse Basin situated in a semi-arid region. Autocorrelation and cross-correlation functions were applied to define the optimal model input scenario. Daily actual R-R datasets have been utilized to train and test the hybrid models (ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO). For the purpose of identifying the most powerful ANN training algorithm, the accuracy of the hybrid models was evaluated and compared using performance metrics: Root Mean Square Error (RMSE), Pearson’s correlation coefficient (R), Nash Sutcliffe Efficiency (NSE) and graphical analysis: scatter plots, time series and Taylor diagram. The recent advancement of this research is to investigate the feasibility of a new structure for an ANN model that is integrated with Improved PSO and FFA as optimizers for R-R modeling.

The computer codes for all models’ combinations as well the selection process of their architectures, were programmed in MATLAB language (‘MATLAB R2018b’ purchased with its complete platform and its licenses).

II. STUDY BASIN AND DATA ACQUISITION

A. STUDY ZONE

The Seybouse watershed is situated in Algeria’s North - East, one of the constituents of the large hydrographic basin named CONSTANTINOIS-SEYBOUSE-MELLEGUE [46]; it presents a significant latitudinal extension, where it occupies an area of 6,471 km². The main river, Oued Seybouse, that drains this watershed, has a total length of 240 km, it originates in the high plains of Heractas and Sellaoua and ends in the coastal plain of Annaba to flow into the Mediterranean. It is formed by the confluence of the wadis Cherf and Bouhamdane at the level of Madjez Amar and receives two other tributaries of unequal importance: the Oued Mellah and the Oued Ressoul. A set of dams were erected on all the wadis of Seybouse Watershed, intended mainly for irrigation and water supply. These dams include Hammam-Debagh on Wadi Bouhamdane, Foum El Khanga on Wadi Cherf upstream, Koudiat Harricha in Cherf downstream, Koudiat Mahcha in basse Seybouse part and other small dams built on Wadi Cherf upstream (Tiffech,
and accuracy (i.e., do not underestimate the approximation error),

- division, we get accuracy estimates which are:

 - are the more accurate among the valid estimates – i.e., their overestimation of the approximation error is the smallest possible.

 In this context, the data used in this research was categorized into two main parts; the first to train the models with 80% of the data collected and the second to test the calibrated models with 20% of the data to examine the model performance. The entry dataset \(x^* \) was normalized in the scope \([0.1, 0.9]\), Eq. (1):

\[
0.1 + \frac{0.8(x - x_{\min})}{(x_{\max} - x_{\min})}
\]

Where: \(x \) is the historical data, \(x_{\min} \) and \(x_{\max} \) are the minimum and maximum values, respectively. All these data were acquired from the National Water Resources Agency (ANRH) of Algiers.

TABLE 1. Rainfall / runoff stations’ details for Seybouse Catchment.

Station name	River	Area (km2)	Available data period
Ain-Makhlof/Moulin	Cherr	1710	From 1994 to 2007
Rochefort			
Medjez-AmarII/Medjez-AmarII	Moyenne Seysbouse	1105	From 2002 to 2015
Bordj-Sabath/Bordj-Sabah	Bouhamdane	304	From 1981 to 2015
Oued-Chiham/Bouchegouf	Melah	550	From 1981 to 1995
Boukhamouza/Mirebek	Seybouse	5950	From 1995 to 2010
Ain Berda/Ain Berda	Ressoul	102	From 1997 to 2002

TABLE 2. Statistics of training and testing datasets for the six study stations.

Station	Data set	data points	Min	Max	Mean
Moulin	Training (80%)	5210	0	3.062	0.024
Rochefort	Testing (20%)	1303	0	1.103	0.020
Medjez-AmarII	Training (80%)	5601	0	60.821	0.182
	Testing (20%)	1401	0	0.719	0.006
	Total (100%)	6513	0	3.062	0.023
Bordj-Sabath	Training (80%)	9512	0	100.03	0.169
	Testing (20%)	2379	0	54.589	0.149
	Total (100%)	11891	0	100.03	0.165
Bouchegouf	Training (80%)	3784	0	30.223	0.225
	Testing (20%)	947	0	10.267	0.002
	Total (100%)	4731	0	30.223	0.225
Mirebek	Training (80%)	3703	0	14.608	0.106
	Testing (20%)	926	0	4.156	0.123
	Total (100%)	4629	0	14.608	0.110
Ain Berda	Training (80%)	5328	0	42.582	0.301
	Testing (20%)	1333	0	37.238	0.262
	Total (100%)	6661	0	42.582	0.294

As shown in table 2, we have enough data points for the 6 study stations, because more data points we use for the models, the more precise the model estimates.

In fact, the accuracy also depends upon the model data requirement, the quality of this data (which must be good) and model setup equation that which type of is that either

FIGURE 1. The case study site location, Seybouse Catchment located in Algeria.

B. DATA ACQUISITION

The most measured components of the hydrological cycle are precipitation and river flow, they are crucial for any hydrological modeling [51], [52]. Thus, the database compiled of these two parameters in the six stations spread throughout the catchment area of Seybouse at different periods for each one (due to the unavailability of data at these stations for the same duration), were applied to simulate the R-R relationship. Further information about these stations is given in Table 1 and 2, while their locations are represented in Figure 1.

In the aim of evolving the model, the primary stage is to divide data into various categories for the model effectiveness training and testing. The principal goal of such a stage is for assuring that the model is functioning with a constant degree of accuracy; in case it knows invisible data instead of training. According to [53], the best results are attained if we allocate 20-30% of the original data points for testing, and use the remaining 80-70% for training. For this division, we get accuracy estimates which are:

- valid – in the sense that they do not overestimate the accuracy (i.e., do not underestimate the approximation error), and
- are the more accurate among the valid estimates – i.e., their overestimation of the approximation error is the smallest possible.

Sedrata), Ben Badis on the El Heria wadi which is a small tributary of the Bouhamdane wadi, and M’djez El Bgar in the downstream Cherf. Overall, the water resources of this basin are vital to support most economic activities in the region. Figure 1 displays the location map of Seybouse Watershed as well as the distribution of the various hydrometric and rainfall stations in the six-sub basin used in this study.
lump or distributed all model have their own set of
equations and input requirements to run up that model. The
best way is that do adjust the model parameters until
calibration and validation results come better.

III. METHODOLOGY

A. ANN, GA, PSO, FFA and IPSO

1) ARTIFICIAL NEURAL NETWORK (ANN)

In recent years, the ANN-method has drawn considerable
interest from scientists for prediction of the systems that are
nonlinear; due to its highly learning potential without any
physical acquaintance of the process to be modeled [54]. The
primary principle of data handling ANNs is inspired by the
nervous biological system [55]. ANNs comprise of a
countless number of nodes that are linked together to address
multiple issues.

In the present study, the ANN is based on the multilayer
perception’ structure (MLP). MLP typically composes of 3
layers (input layer, hidden or intermediate layer, and output
layer) Figure 2 [56]. Every layer may contain different
neurons’ numbers that bind to each other with the links
named weights (w), the input layer nodes transmit the input
signal values to the intermediate layer nodes. Similarly, the
intermediate layer nodes transmit the signal values to the
output layer nodes. Eventually, the output layer displays
the results that have been simulated. Eq. (2) determines the
output of each layer:

\[y = \sum_{i=1}^{n} y_i w_i + b \]

(2)

Where y: the layer’s output, yi: the input of a layer; w:
weights; and b: bias.

The logistic sigmoid and tangent functions are the more
ordinarily transfer functions used. [57] pointed that the
training with tangent function is not only quicker than the
training with logistic sigmoid transfer function, but also the
forecasts found through tangent networks are marginally
better than those with logistic sigmoid transfer functions.
[58] indicated that it is more difficult to train ANNs with
the sigmoid logistic function than ANNs with the tangent
function. [59] found that in outflow estimation, the tangent
sigmoid function worked much better than the logistic
sigmoid function.

As a result, the adopted activation function employed in
this study was the hyperbolic tangent sigmoid function, Eq.
(3)

\[f(S) = \frac{2}{1 + e^{-2S}} - 1 \]

(3)

In this paper, the ANN was adopted to predict the
rainfall-runoff process over several time horizons. Three
algorithms, termed genetic algorithm, particle swarm
optimization and firefly algorithm were applied to
determine the improved set of ANN variables. Further
explanation of these techniques is given in the following
sections.

FIGURE 2. ANN architecture

2) GENETIC ALGORITHM (GA)

The Genetic Algorithm (GA), was first created by John
Henry Holland. This metaheuristic algorithm is a machine
learning model, that originates its behavior and habits from a
description of evolutionary systems in nature, it has been
utilized to enhance the parameters of the control process that
are complicated and hard to fix by traditional optimization
techniques. This act is achieved by introducing by a
computer, a sample of individuals demonstrated by
chromosomes (similar to the chromosomes contained in
human DNA) [60]. In nature, the genetic information coding
generally outcomes in offspring genetically similar to the
parent. Sexual proliferation makes it possible to create
generically radically dissimilar offspring of the same general
organisms. Straigntforwardly, a couple of chromosomes
conflict at the molecular scale, exchange set of genetic
knowledge and separate each other. This is named the
recombination operation, that is called in GA crossover
dueto the manner in which the genetic information goes from
one chromosome to the other. Other operators with bio-
inspiration including mutation and regeneration. In the
regeneration operator, two arbitrary nominees are chosen and
when the weak one is removed, the other is doubled. In the
mutation, a nominee will be silenced and therefore an
extremely low mutation rate can lead to genetic deviation
[61].

Because ANNs and GAs are popular methods that have
been used by various researchers to optimize nonlinear
problems such as modeling and forecasting the rainfall-
runoff systems, a conjunction model between these two
methods is introduced (ANN-GA). This procedure adjusts
artificial neural network variables like momentum term and
number of intermediate layers’ neurons. However, this
method may take time in the training procedure, but the use
of the genetic algorithm tries to reduce error and inaccuracy
considerably. Consequently, this technique appears
meaningful. In various ANN structures, the GA technique
improves the various components of ANN such as neurons
number in the hidden layers; which is formed by the
Levenberg-Marquardt training method.

3) PARTICLE SWARM OPTIMIZATION (PSO)
PSO was first defined by Eberhart and Kennedy (1995). Its idea stemmed from the social behavior of creatures in a horde or swarm. Though it is originally created as a mechanism for simulating social behavior, the PSO technique has been identified as a computational intelligence algorithm closely linked to meta-heuristic evolutionary search optimization algorithm [62]. The evolutionary methodology acquired using Eq. (4) and (5) is the main feature of PSO which differentiates it from other improvement algorithms.

\[
\begin{align*}
 v_{\text{new}} &= v + r_1 c_1 \ast (p_{\text{best}} - p) + r_2 c_2 \ast (g_{\text{best}} - p) \\
p_{\text{new}} &= p + v_{\text{new}}
\end{align*}
\]

where \(v_{\text{new}}, v, p_{\text{new}}, \) and \(p \) signify the new velocity, current velocity, new position, and current position, respectively, of a specific particle; \(c_1 \) and \(c_2 \) denote cognition and social coefficient respectively; \(p_{\text{best}} \) symbolizes the ideal or best position of this particle, \(g_{\text{best}} \) is the best position that the swarm knows; \(r_1 \) and \(r_2 \) are random numbers between 0 and 1 [63].

The introduction of certain arbitrary chosen particles is the initial phase to solve optimization issues utilizing PSO (initialize the ANN weights). Every particle (i.e. weight ANN) is designated an arbitrary position and velocity. A repeated process is applied over the next phase to figure out the best possible solution; the \(p_{\text{best}} \) and \(g_{\text{best}} \) values of each particle were registered in other verses throughout each interaction. Therefore, utilizing equations 3 and 4, the positions of the particles vary based on their expertise and that of other particles. Particle positions are updated until the best solution is obtained [63].

As ANNs can be stocked in local minima, the integration of hybrid methods like ANNs based on PSOs becomes encouraging. The PSO constituent of this kind of hybrid model is capable of finding an overall minimum and further research. Therefore, a hybrid ANN model based on PSO has the benefits of these two techniques: in the quest field, PSO will look for all the minimums and ANN will need them to come up with the optimal solution. In ANN-PSO, every particle (the ANN weight) is a frontrunner solution to reduce the error. The enhanced weights are utilized for the network training after improving the problem. In fact, the aim of introducing the PSO to the ANN is to strengthen the training process of the ANN.

4) FIREFLY ALGORITHM (FFA)

The firefly algorithm (FFA) is a new nature inspired metaheuristic process, established by Xin-She Yang in 2008 for solving various optimization problems. The concept behind FFA is that fireflies emit or produce light generated by chemical processes, for mating purposes, the light-flashing activity draws fireflies to each other [64]. It is important to note that, the bright fireflies attract readily the less bright fireflies. This mechanism could be generated as an enhancement algorithm as the flashing-light can be programmed to be synchronized with the optimized fitness function. Three rules are followed by the firefly algorithm:

- All the fireflies are unisex.
- The less bright ones will move towards the brighter ones. But, when a brighter one is no visible, fireflies will move arbitrarily.
- A firefly’s brightness or light intensity is defined by the landscape of the optimized objective function.

By knowing these rules, the firefly’s brightness and light intensity form the fundamental basis of the FFA model’s function. Eq. (6) and (7) signify the firefly’s intensity and attractiveness, since each firefly demonstrates its particular attractiveness, reflecting its attractive prowess in the swarm [65].

\[
\begin{align*}
 I &= I_0 e^{-\gamma r^2} \\
 \beta(r) &= \beta_0 e^{-\gamma r^2}
\end{align*}
\]

At distance \(r \), \(I \) denote the light intensity and \(\beta(r) \) the attractiveness. At distance \(r=0 \), the light intensity becomes \(I_0 \) and the attractiveness \(\beta_0 \). \(\gamma \) is the light absorption coefficient 0.1<\(\gamma <10 \). The Cartesian distance between any two fireflies is defined as:

\[
r_{ij} = \left\| x_i - x_j \right\| = \sqrt{\sum_{k=1}^{d} (x_{i,k} - x_{j,k})^2}
\]

Where \(d \) denotes problem dimensionality, \(x_i \) and \(x_j \) are the fireflies’ positions, and \(x_{i,k} \) and \(x_{j,k} \) are the kth component of spatial coordinate. As already noted, fireflies are enticed to each other, therefore, the next movement of firefly i can be expressed in formula (9).

\[
x_{i,j+1} = x_i + \beta_0 e^{-\gamma r_{ij}^2} (x_j - x_i) + \alpha \cdot \text{rand} \cdot \left(\frac{1}{2} \right)
\]

Where \(x_{i,j} \) is the solution vector or actual position of the firefly i, the second term is due to attraction to a brighter firefly j, and \(\alpha \cdot \text{rand} \cdot \left(\frac{1}{2} \right) \) represents the firefly’s arbitrary walk with the randomization parameter \(\alpha \in [0,1] \) [66].

As with PSO, firefly can readily be used to train ANN. To optimize the ANN model weights, to achieve the optimum parameter settings for ANN training and to reduce the error ratio. Each firefly is employed to represent a candidate solution to the ANN training problem (i.e. a vector of all the weights and biases of an ANN). First, the population size of candidate solutions is created for the problem in question (the ANN’s weights). After this, the fireflies’ light intensity is calculated and the attractive firefly (best candidate) is found within the population. Afterwards, to move all fireflies towards the attractive one in the search area, calculate for each firefly the attractiveness and distance. Eventually, in the search area, the attractive firefly moves arbitrarily. This
procedure is replicated until a termination criterion is reached (the maximum number of generations is achieved) [67].

5) IMPROVED PSO

In improved PSO, the particles are randomly adjusted using a generated number by normal standard distribution (Normrand) as follows:

\[
p_{\text{new}} = p + v_{\text{new}}^r \]

\[
v_{\text{new}}^r = r_3[g_{\text{best}} - p] + \text{Normrand}(0,1) \times \gamma_k
\]

(10)

where, \(v_{\text{new}}^r \) is the improved velocity which are adjusted for new positions. \(v_{\text{new}}^r \) is determined based on best position of particle (\(g_{\text{best}} \)) and a random number generated by a normal distribution with mean of 1 and STD of 0 (\(\text{Normrand}(0,1) \)). The normal random part is scaled using factor \(\gamma_k \) which is determined by the following relation [68], [69] :

\[
\gamma_k = \sqrt{1 - \frac{k}{NI}}
\]

(11)

Factor \(\gamma_k \) is tended to 1 at first iterations and 0 at all iterations \(\gamma_k \in [0,1] \). As seen from the improved velocity, the new positions of particles are adjusted using random normal process. Thus, the new and the best particles have not the same positions. Consequently, it is reduced the chance to the local optimum by compared to original PSO by this presented optimization approach. The formulation of IPSO is presented in Eq. (12) by using two random adjusting procedures given by improved velocity presented in Eq. (10).

\[
p_{\text{new}}^r = \begin{cases}
 p + v_{\text{new}}^r & r \leq P_k \\
 p + v_{\text{new}}^r & r > P_k
\end{cases}
\]

(1)

where, \(r \in [0,1] \) is a random number gendered by uniform distribution between 0 and 1. In IPSO, the initial velocity and its parameters are randomly determined as well as PSO.

\(P_k \) is named as adjusting particle rate, which is computed as follows:

\[
P_k = 0.2 + 0.8 \sqrt{\frac{k}{NI}}
\]

(13)

\(P_k \) is randomly provided a pattern for adjusting the new particle using two formulations of PSO and IPSO. By increasing \(P_k \), the chance of applying improved velocity for determining the new positions for particles is increased. We commonly used this formula presented in Eq. (10) at final iterations. Thus, it is a local search on the best position for computing the global optimum results at final iterations.

A. INPUT COMBINATION AND MODEL DEVELOPMENT

1) INPUT COMBINATION

The input combination selection is considered as one of the major factors effecting the model’s effectiveness. Therefore, a proper input selection is essential before applying the ANN models. For this study, an input scenario was created and studied for the four hybrid ANN models based on the autocorrelation function (ACF), the partial autocorrelation function (PACF) and simple cross-correlation function (CCF) which have been used to identify the number of effective lags of antecedent rainfall and runoff. This method was proposed by the several researches [35], [70]–[73] to determining the optimal inputs for data driven methods.

The Table 3 is listing the CCF and PACF values of the six stations studied, a representation example of these functions (ACF, PACF and CCF) for one of the stations (station ‘Medjez-Amjar II’ of the sub basin 3) is shown in Figure 3.

The CCF indicates that the precipitation at time t and one lag are considerably effective on runoff compared to the precipitation for two and three lags, while the other lags have fallen within the confidence limit. Therefore, \(R_{-1} \) was considered as one of the parameters included in the input scenario used in the developed models. In addition, the PACF in all the stations indicates that the first lag of runoff has considerable effect, and that the second and third lags are very near to the confidence limit (but in ‘Bordj-Sabath’ and ‘Ain Berda’ stations, the lags \(Q_{t-2}, Q_{t-3} \) and \(Q_{t-3} \) respectively are within the confidence limit *). Therefore, these two entries were ignored.

As the precipitation beyond the 2nd lag doesn’t really affect the runoff at time t, as well as the runoff is not effective beyond the same lag. Therefore, the input combination considered for the scenario used in this research to model the rainfall-runoff process is made up of \(R_t \), \(R_{-1} \) and \(Q_{t-1} \) to simulate the output \(Q_t \).

CF	Time series	Whole data set for the different stations					
PCA	Moulin Rechefert	Medjez-Amar II	Bordj-Sabath	Bouche gouf	Mirebeck	Ain Berda	
Q_t-Q_{t-1}	0.38	0.58	0.46	0.57	0.52	0.48	
Q_t-Q_{t-2}	0.09	-0.07	*	-0.01	0.20	0.17	
Q_t-Q_{t-3}	0.08	-0.05	*	0.17	0.14	*	
CCF	Q_t-R_{t-1}	0.22	0.42	0.28	0.36	0.25	0.31
Q_t-R_{t-2}	0.1	0.21	0.13	0.19	0.14	0.19	
Q_t-R_{t-3}	0.08	0.07	0.05	0.13	0.13	0.1	

CF = Correlation functions, PCA = Partial autocorrelation, CCF = Cross-correlation.
FIGURE 3. The autocorrelation (ACF), the partial autocorrelation (PACF) functions of the runoff time series and cross-correlation function (CCF) between runoff (Q_t) and rainfall at various lags with the 95% confidence limit for ‘Medjez-Amar II’ Station.

2) MODEL DEVELOPMENT

In the present article, four ANN models have been created and compared with each other for modeling rainfall/runoff task. The first model utilizing the (GA) for its training was termed as ANN-GA, the second utilizing the PSO algorithm was named ANN-PSO, the third using the (FFA), was called ANN-FFA and the last using (IPSO) referred to ANN-IPSO. In fact, since the efficiency of every model generally depends on the appropriate variable’s determination, these three optimization techniques have been combined with ANN model to improve the calibration of its variables (optimize its weights and biases).

The choice of the hidden layers’ numbers as well as the neurons number was decided after performing different combinations. Indeed, we have been able to observe, through several tests, that the rise in the number of intermediate layers or that of neurons did not lead to an improvement in the results, on the contrary it made the network more difficult to stall and its training time longer. As well, a higher probability of converging to a local minima can be introduced, so there is no notional justification for using more than two intermediate layers [74], [75]. On the other side, the use of too few nodes in the intermediate layers compared to the intricacy of the problem data, will leads to the underfitting and using too many neurons might result overfitting which occurs when unnecessarily more neurons are presented into the network [76], [77]. In this work, the use of a single hidden layer was found to be enough to have simulation results of the model with good convergence and performance [78], [79]. The ideal number of nodes in the intermediate layer has been defined following a trial and error method (forward approach) by changing the intermediate-layer neurons number [45], [80]–[83], in this case, we start from an architecture with 2 nodes in the intermediate layer, after that, train and test the ANN, then constantly increase the hidden neurons number. We repeated the above procedure until training and testing improved, then we retain the architecture which gives the minimum of the error on the test base [75]. As a result, the best ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO architectures obtained were with one hidden layer and 10 neurons.

The four computer programs that show the development process of the hybrid models were developed in MATLAB. The Figure 4 depicts the procedure of how the GA, PSO, FFA and IPSO algorithms optimize the ANN parameters.

During the application of GA, PSO, FFA and IPSO, several parameters must be specified. A suitable selection of parameters influences the algorithm convergence rate. Table 4 displays the parameters values utilized for the four optimization algorithms.

TABLE 4. Parameters utilized for the four evolutionary algorithms
GA parameters
Population size: 160
MaxIt: 50
Crossover type: arithmetic (50%)
Mutation: 35%
Recombination: 15%
FIGURE 4. Flowchart of the suggested hybrid algorithms (a) ANN-GA, (b) ANN-PSO, (c) ANN-FFA and (d) ANN-IPSO.

3) STATISTICAL PERFORMANCE INDICATORS
The effectiveness of different predictive models is evaluated through graphical interpretation (line, scatter and Taylor diagram) and through performance indicators: Pearson’s correlation coefficient (R), Nash Sutcliffe Efficiency coefficient (NSE) and Root Mean Square Error (RMSE). R varying from -1 to 1, evaluates the linear correlation between predicted and observed values, its values of 1 and 0 signify an ideal fit and no statistical correlation between the data and the line drawn across them, respectively. The NSE is utilized to analyze the predictive accuracy of the hydrological models (varies from -∞ to 1). The RMSE is used to estimate predicting precision, which produces a positive value by squaring the errors. The RMSE rises from zero for perfect predictions to large positive values as the discrepancies between predictions and observations become significantly large. Usually, the best model forecasts are obtained when R, NSE, and RMSE are close to 1, 1, and 0, respectively. The formulation of these three-performance metrics could be defined as:

\[
R = \frac{\sum_{i=1}^{n} (Q_{o,i} - \bar{Q}_o)(Q_{p,i} - \bar{Q}_p)}{\sqrt{\sum_{i=1}^{n} (Q_{o,i} - \bar{Q}_o)^2 \sum_{i=1}^{n} (Q_{p,i} - \bar{Q}_p)^2}}
\]

\[
NSE = 1 - \frac{\sum_{i=1}^{n} (Q_{o,i} - Q_{p,i})^2}{\sum_{i=1}^{n} (Q_{o,i} - \bar{Q}_o)^2}
\]

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{n} (Q_{p,i} - Q_{o,i})^2}{n}}
\]

Where \(n \) is the data number, \(Q_{o,i} \) is the observed runoff, \(Q_{p,i} \) is predicted runoff, \(\bar{Q}_o \) is the average value of the observed runoff and \(\bar{Q}_p \) is the average value of the predicted runoff [6].

IV. RESULTS, ANALYSIS AND DISCUSSION
In this chapter, a thorough assessment of ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO hybrid models in simulating the output \(Q_t \) using defined scenario (\(R_t \), \(R_{t-1} \) and \(Q_{t-1} \)) is presented and their efficiency in terms of numerous statistical indicators during training and testing for the various study stations is demonstrated in Table 5.

In the training stage (Table 5), it can be observed that for all the hydrometric stations that are distributed in the study basin, the ANN-IPSO model offers greater approximations or simulated runoff values than the ANN-GA, ANN-PSO and ANN-FFA models; by way of illustration, for ‘Medjez-Amar II’ Station in the sub-basin B3, the ANN model trained by the genetic algorithm (GA) gave a strong correlation coefficient R (0.823), a good efficiency coefficient NSE (0.666) and a low root mean squared error RMSE (0.744). Whereas, the ANN which used particle swarm optimization as training algorithm (PSO) has further improved these performance statistics, where R became very strong (0.941), NSE very good (0.868) and RMSE low (0.466). And for the hybrid model ANN-FFA, the performance indicators became more important (R = 0.961, NSE = 0.916 and RMSE = 0.425). However, the ANN trained by Improved PSO performed as the best model for R-R modeling, where R = 0.993, NSE = 0.985 and RMSE = 0.177. Also, the application of ANN-GA model in the 2nd station ‘Bordj Sabath’, provided values of R (0.798), NSE (0.622) and RMSE (0.948) which are worse compared to those provided by ANN-PSO where R, NSE and RMSE are 0.918, 0.818 and 0.554, respectively. The ANN model trained by the firefly algorithm (FFA) gave as well good results compared to president models (R = 0.927, NSE = 0.85 and RMSE = 0.64). Whereas, the ANN-IPSO offered better performance values (R = 0.961, NSE = 0.923 and RMSE = 0.459).

The same remarks for exceeding the excellence of the ANN model that utilizes IPSO as a training algorithm on the ANN model that employs GA, PSO and FFA for the training, are valid for the remaining stations (sub-basin B2 ‘Moulin Rochefort’ Station, sub-basin B5 ‘Boucheougouf’ Station, sub-basin B6 ‘Mirebek and Ain Berda’ stations).

On the one hand, the disproportion of performance between the two models of neural networks trained by GA and PSO separately can be due to several reasons: The
implementation of GA is usually an intricate process that involves evolutionary operations such as selection, crossover and mutation. Also, the convergence velocity could be considerably decreased if the size of the sample is big. However, the PSO algorithm is easier to implement, and unlike GA, it achieves its final variables values in lesser generations (see Table 5), it converges faster, it has fewer parameters, and it doesn’t have complex evolutionary operators like crossover and mutation. Another important point was noted during the simulation, which is the calculation time for GA is relatively small contrasted to the PSO enhancer tool, even though it rises proportionally to the number of PSO and GA generations. Therefore, the bigger calculation time for PSO is resulting to the interaction among the particles. On the other hand, the FFA has shown a more interesting ability than PSO and GA to model this intricate phenomenon, so it has proven to be an encouraging optimization algorithm; due to the influence of the attractiveness function that is specific to the firefly behavior. However, PSO is preferable than firefly with regards to the time needed for the optimum value to be produced.

Same results obtained by [64], where he found that particle swarm frequently exceeds conventional algorithms like genetic algorithms, whereas in terms of effectiveness and success ratio, the modern firefly algorithm is superior to both PSO and GA.

While, the IPSO has potentially demonstrated that it is a more powerful favorable optimization tool than FFA in solving optimization problems which are complex and nonlinear.

An identical tendency is also noticed for the testing phase, where the ANN-IPSO performed much better than the ANN-GA, ANN-PSO and ANN-FFA models in terms of all effectiveness indicators. Keeping the same example of the stations as in the training stage, applying the ANN-GA model in the ‘Medjez-Amar II’ Station of the sub-basin B3 gave a very strong correlation coefficient R (0.916), an NSE (0.814) and an RMSE of 0.621, whereas the use of the ANN-IPSO model improved these indices better where the value of R increased further to 0.975, NSE to 0.926 and RMSE became lower (0.394). Also, the ANN-FFA enhanced more the performances indices to (R=0.986, NSE=0.942 and RMSE=0.341). However, the ANN-IPSO provided the highest performance value (R= 0.987, NSE= 0.943 and RMSE=0.052); these values confirm the excellence of this model. For the ‘Bordj-Sabath’ Station of the same sub-basin B3, the ANN-IPSO provided a correlation coefficient of 0.98 and an NSE of 0.96 and an RMSE of 0.245 which are much better than the R (0.978), NSE (0.896) and RMSE (0.395) obtained by the ANN-FFA and largely higher than those provided by the ANN-PSO (R=0.971, NSE=0.842 and RMSE=0.947) and ANN-GA (R=0.831, NSE= 0.675 and RMSE=0.971). All the observations discussed above about the efficiency of ANN-IPSO model compared to ANN-GA, ANN-PSO and ANN-FFA in testing period for the sub-basin B3, remain virtuous for the remaining sub-basin stations. Compared to ANN-GA, the ANN-IPSO improved the RR modeling accuracy by 51%, 92%, 75%, 56%, 57% and 48% with respect to RMSE for the Moulin Rochefort, Medjez-Amar II, Bordj-Sabath, Boucheugouf, Mirebek and Ain Berda stations, respectively. The corresponding percentages compared to ANN-FFA are 18%, 85%, 38%, 32% and 24% for the Moulin Rochefort, Medjez-Amar II, Bordj-Sabath, Boucheugouf and Mirebek stations, respectively. All these clearly prove the superiority of the ANN-IPSO to the other alternatives in modeling R-R.

After analyzing and discussing the results obtained from the two phases of the applied models, an important remark can be deduced is that, the reliabilities of the models in the training phase are significantly lower than that during the testing phase (look at the R and NSE values in Table 5). Perhaps the principal cause is that the more complicated training data structure; that has a more distribution curve, which include peaks of runoff and precipitation much higher than the testing dataset.

The scatter plots for predicted and observed daily flow values for the six study stations during testing period provided by the four hybrid models, are indicated in Figure 5. As clearly observed, the linear trend of the ANN-IPSO is the

TABLE 5. Performance indicators of optimal ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO over training and testing periods.

Station	Model	Training (80%)	Testing (20%)				
	R	NSE	RMSE	R	NSE	RMSE	
Moulin Rochefort	ANN-GA	0.782	0.590	0.046	0.805	0.643	0.047
	ANN-PSO	0.850	0.715	0.039	0.878	0.764	0.039
	ANN-FFA	0.809	0.743	0.039	0.908	0.765	0.028
	ANN-IPSO	0.904	0.813	0.034	0.919	0.839	0.023
Medjez-Amar II	ANN-GA	0.823	0.666	0.744	0.916	0.814	0.621
	ANN-PSO	0.941	0.868	0.466	0.975	0.926	0.394
	ANN-FFA	0.961	0.916	0.425	0.986	0.942	0.341
	ANN-IPSO	0.993	0.985	0.177	0.987	0.943	0.052
Bordj-Sabath	ANN-GA	0.798	0.622	0.948	0.831	0.675	0.971
	ANN-PSO	0.918	0.818	0.554	0.971	0.842	0.947
	ANN-FFA	0.927	0.850	0.640	0.978	0.896	0.395
	ANN-IPSO	0.961	0.923	0.459	0.980	0.960	0.245
Boucheugouf	ANN-GA	0.808	0.627	0.615	0.837	0.697	0.389
	ANN-PSO	0.875	0.743	0.513	0.926	0.857	0.253
	ANN-FFA	0.920	0.842	0.405	0.962	0.847	0.249
	ANN-IPSO	0.970	0.939	0.252	0.965	0.929	0.170
Mirebek	ANN-GA	0.810	0.656	0.207	0.821	0.65	0.176
	ANN-PSO	0.821	0.670	0.156	0.965	0.859	0.203
	ANN-FFA	0.863	0.720	0.183	0.972	0.895	0.108
	ANN-IPSO	0.940	0.882	0.119	0.975	0.950	0.075
Ain Berda	ANN-GA	0.807	0.638	0.862	0.831	0.666	0.905
	ANN-PSO	0.843	0.707	0.811	0.902	0.806	0.572
	ANN-FFA	0.870	0.745	0.743	0.912	0.812	0.614
	ANN-IPSO	0.957	0.915	0.428	0.944	0.891	0.467
nearest to the line \(y = x \) compared to those of ANN-GA, ANN-PSO and ANN-FFA. Similarly, the predicted flow’s time series utilizing ANN-IPSO are compared with the observed ones through the testing period (see Figure 6). A good fit and a decent agreement are noticed between the observed and predicted flow by the ANN-IPSO model.

The Taylor diagrams

The Taylor diagrams [84] were used to provide a visual understanding of effectiveness measurements that plots for the modeling results a set of points on a polar plot, the diagram was used for demonstrating the spatial variation of the expected flow by the ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO over the observed value during testing period for the six study stations. The standard deviation (SD) between expected and observed values is defined by Taylor diagram along the radial intervals with roots, and R values are defined as angles of direction. The assumption is that on the Taylor diagram, the observed values have an independent display and the nearer the performance indicators of predictions to the observed values, the stronger the model performance. As illustrated in Figure 7, the results found by ANN-IPSO are nearer to the observed one in comparison with ANN-GA, ANN-PSO and ANN-FFA, which indicates higher accuracy of this model as mentioned previously considering Table 5, Figures 5-6.

The standard ANN method is successfully used in water resources management issues. For example, estimation and/or forecasting runoff and provide data for early warning systems against the possible floods. As also mentioned in the introduction section, standard ANN however has some drawbacks such as training method deceleration, stocking within local minima and overfitting. So, new metaheuristics algorithms are needed to solve this issue and improve standard ANN efficiency. This has been confirmed by the results found in this study after applying the hybrid models of ANN trained separately by GA, PSO, FFA and IPSO, where they revealed the superiority of the ANN-IPSO over the ANN-FFA, ANN-PSO and ANN-GA in both training and testing phases for the six stations distributed in the study basin. As a result, the IPSO algorithm was able to improve the resolution capabilities of this complex problem with a high convergence speed compared to FFA, PSO and GA. Also, it could be used to improve other abnormal troubles that change over time. Such models can be used as a module in general hydrological analysis models [9], [85], [86], [87] used MLP-ANN and hybrid multilayer perceptron (MLP-FFA) to forecast monthly river flow for a set of time intervals using observed data. Their results show that MLP-FFA model is satisfactory for monthly river flow simulation in Ajichay watershed. Ajichay (East Azerbaijani).

[85] compared particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling in Southeast Queensland, Australia. The results indicated that the ANN-PSO model significantly outperformed the ANN-GA model in terms of convergence speed, accuracy, and fitness function evaluation.
FIGURE 5: Scatter plots of the observed and predicted daily runoff values during testing phase, produced by ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO for the six stations.
V. CONCLUSION

This paper developed a highly accurate prediction model based on a combined artificial neural network-improved particle swarm optimization algorithm (ANN-IPSO) approach for a common problem in the field of hydrology involving rainfall-runoff in semiarid basin. The developed approach outperforms other existing techniques in the literature, including genetic algorithm (GA), particle swarm optimization (PSO) and firefly algorithm (FFA).

The daily rainfall and runoff data collected from Seybouse watershed, Algeria, were used to establish all the developed models. The model's effectiveness was assessed based on different statistical measures.

Overall, the study indicated that the GA, PSO, FFA and IPSO algorithms can be employed in modeling the rainfall-runoff process.
runoff process. However, the optimal results from an evolutionary standpoint, significantly proved the superiority and the capacity of ANN-IPSO over ANN-GA, ANN-PSO and ANN-FFA in terms of all statistical criteria and graphical interpretation, where the input predictors are R_r, R_{r-1} and Q_{r-1}.

These findings unquestionably confirm the effectiveness of the IPSO algorithm in tuning the parameters of ANN model and appreciably strengthen its forecasting performance. The IPSO-based hybrid ANN model can thus be employed in different functionalities and, more especially in hydrology and its related disciplines. As a result, this study finding indicates that the ANN model optimized by IPSO is more powerful for R-R modeling and a better alternative to other three metaheuristic-based models (GA-ANN, PSO-ANN and ANN-FFA). It’s hoped that future research attempts R-R modeling by testing the general potential of ANN-IPSO method using datasets from different catchments.

ACKNOWLEDGMENT
The authors thank the staff of the National Water Resources Agency (ANRH) of Algiers for providing all the data.

REFERENCES

[1] A. T. Benkaci et N. Dechemi, « modélisation pluie-debit mensuelle et journaïlière par les modèles conceptuels et les systèmes neuro flous (applications aux bassins algériens) », 2006.

[2] Y. Tikhhamare et al., « Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization », Journal of Hydrology, vol. 589, p. 125133, oct. 2020, doi: 10.1016/j.jhydrol.2020.125133.

[3] M. S. Turgut, O. E. Turgut, H. A. Afan, et A. El-Shafie, « A novel Master-Slave optimization algorithm for generating an optimal release policy in case of reservoir operation », Journal of Hydrology, vol. 577, p. 123959, oct. 2019, doi: 10.1016/j.jhydrol.2019.123959.

[4] V. Andréassian, C. Perrin, C. Michel, I. Usart-Sanchez, et J. Lavabre, « Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models », Journal of Hydrology, vol. 250, n° 1, p. 206-223, sept. 2001, doi: 10.1016/S0022-1694(01)00437-1.

[5] S. M. Asokan et D. Dutta, « Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions », Hydrological Processes, vol. 22, n° 18, p. 3589-3603, 2008, doi: 10.1002/hyp.6412.

[6] B. Roy et M. P. Singh, « An empirical-based rainfall-runoff modelling using optimization technique », International Journal of River Basin Management, vol. 18, n° 1, p. 49-67, 2019, doi: 10.1080/15715124.2019.1680557.

[7] V. K. Vidyarthi, A. Jain, et S. Chourasiya, « Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity », Model. Earth Syst. Environ., juin 2020, doi: 10.1007/s40808-020-0138-3.

[8] J. Boisvert, N. El-Jabi, A. St-Hilaire, et S.-E. E. Adlouni, « Parameter Estimation of a Distributed Hydrological Model Using a Genetic Algorithm », Open Journal of Modern Hydrology, vol. 6, n° 3, Art. n° 3, juin 2016, doi: 10.4236/ojhm.2016.63013.

[9] V. K. Vidyarthi et S. Chourasiya, « Particle Swarm Optimization for Training Artificial Neural Network-Based Rainfall-Runoff Model, Case Study: Jardine River Basin », in Micro-Electronics and Telecommunication Engineering, Singapore, 2020, p. 641-647, doi: 10.1007/978-981-15-2329-8_65.

[10] F.-J. Chang, Jin-Ming Liang, et Yen-Chang Chen, « Flood forecasting using radial basis function neural networks », IEEE Trans. Syst., Man, Cybern. C, vol. 31, n° 4, p. 530-535, nov. 2001, doi: 10.1109/5326.983936.

[11] D. B. De Lima, M. D. C. E. Lima, et R. M. Saigado, « An Empirical Analysis of MLP Neural Networks Applied to Streamflow Forecasting », IEEE Latin Am. Trans., vol. 9, n° 3, p. 295-301, juin 2011, doi: 10.1109/TLA.2011.5939775.

[12] M. R. Mohd Romali, M. M. Rashid, S. F. Toha, et A. Mohd Ibrahim, « Rainfall-runoff model based on ANN with LM, BR and PSO as learning algorithms », International Journal of Recent Technology and Engineering (IJRTE), vol. 8, n° 3, sept. 2019.

[13] M. P. RAURKUR, U. C. KOTHYARI, et U. C. CHAUBE, « Artificial neural networks for daily rainfall—runoff modelling » , Hydrological Sciences Journal, vol. 47, n° 6, p. 865-877, déc. 2002, doi: 10.1080/0262666029492996.

[14] R. S. Vilanova, S. S. Zanetti, et R. A. Cecilio, « Assessing combinations of artificial neural networks input/output parameters to better simulate daily streamflow: Case of Brazilian Atlantic Rainforest watersheds , Computers and Electronics in Agriculture, vol. 167, p. 105080, déc. 2019, doi: 10.1016/j.compag.2019.105080.

[15] W. Wang, D. Xu, K. Chau, et S. Chen, « Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD », Journal of Hydroinformatics, vol. 15, n° 4, p. 1377-1390, oct. 2013, doi: 10.2166/hydro.2013.134.

[16] Z. M. Yaseen, M. Fu, C. Wang, W. H. M. Mohtar, R. C. Dee, et A. El-shafie, « Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons », Water Resour Manage, vol. 32, n° 5, p. 1883-1899, mars 2018, doi: 10.1007/s11269-018-1909-5.

[17] G. Corani et G. Guarnio, « Coupling Fuzzy Modeling and Neural Networks for River Flood Prediction », IEEE Trans. Syst., Man, Cybern. C, vol. 35, n° 3, p. 382-390, août 2005, doi: 10.1109/TSMCC.2004.843229.

[18] O. I. Abiodun, A. Jantau, A. E. Omolara, K. V. Dada, N. A. Mohamed, et H. Arshad, « State-of-the-art in artificial neural network applications: A survey », Heliyon, vol. 4, n° 11, p. e00938, nov. 2018, doi: 10.1016/j.heliyon.2018.e00938.

[19] D. Rumelhart, G. E. Hinton, et R. J. Williams, « Learning representations by back-propagating errors », undefined, 1986, /paper/Learning-representations-by-back-propagating-errors-Rumelhart-Hinton-052b1d8ce63b07fec3de9dbb583772d860b7c769 (consulté le 18 août 2020).

[20] M. Asadnia, L. H. C. Chua, X. S. Qin, A. M. Asce, et A. Talei, « Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling », p. 10, 2014.

[21] D. Devikanniga, K. Vetrivel, et N. Badrinath, « Review of Meta-Heuristic Optimization based Artificial Neural Networks and its Applications », Journal of Physics, p. 20, 2019.

[22] R. J. Bensinger, R. Machavaram, S. R. Boopathy, et C. Jeharaj, « Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO) », Measurement, vol. 134, p. 359-374, févr. 2019, doi: 10.1016/j.measurement.2018.10.066.

[23] Q. Fang, H. Nguyen, X.-N. Bui, T. Nguyen-Thoi, et J. Zhou, « Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model », Neural Comput & Applic, vol. 33, n° 8, p. 3503-3519, avr. 2021, doi: 10.1007/s00521-020-05197-8.

[24] H. Tian, J. Shu, et L. Han, « The effect of ICA and PSO on ANN results in approximating elasticity modulus of rock material », Engineering with Computers, vol. 35, n° 1, p. 305-314, janv. 2019, doi: 10.1007/s00366-018-0600-z.

[25] B. Jamali, M. Rastekh, F. Jamadi, R. Gandomkar, et F. Makiabadi, « Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters », Applied Thermal Engineering, vol. 147, p. 647-660, janv. 2019, doi: 10.1016/j.applthermaleng.2018.10.070.

[26] I. Istadi et N. A. S. Amin, « Modelling and optimization of catalytic–di-electric barrier discharge plasma reactor for methane
and carbon dioxide conversion using hybrid artificial neural network—genetic algorithm technique », Chemical Engineering Science, vol. 62, no 23, p. 6568-6581, déc. 2007, doi: 10.1016/j.ces.2007.07.066.

[27] S. Nandi et al., « Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Ibeta catalyst », Chemical Engineering Journal, vol. 97, n° 2-3, p. 115-129, févr. 2004, doi: 10.1016/S1355-9847(03)00150-5.

[28] A. L. Ahmad, I. A. Azid, A. R. Yusof, et K. N. Seetharamu, « A hybrid support vector regression–firefly model for monthly rainfall forecasting », International Journal of Environmental Science and Technology, p. 12, 2019.

[29] M. Li, S. Huang, Y. A. F. M. Yan, et Y. Zhou, « SA-PBPO based optimizing reader deployment in large-scale RFID Systems », Journal of Network and Computer Applications, vol. 52, p. 90-100, juin 2015, doi: 10.1016/j.jnca.2015.02.011.

[30] A. L. Ahmad, I. A. Azid, A. R. Yusof, et K. N. Seetharamu, « Enhanced Artificial Neural Network with Hybrid Genetic Algorithm for Limiting Velocity Prediction in Sewer Pipes », vol. 73, n° 9, p. 329-341, janv. 2019, doi: 10.1109/TGRS.2018.2854625.

[31] S. S. Sammen et al., « Enhanced Artificial Neural Network with Hybrid Firefly Algorithm for Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River », Environ Earth Sci, p. 17, 2017.

[32] H. R. Maier et G. C. Dandy, « The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study », Environmental Modelling, p. 17, 1998.

[33] A. Kavousi-Fard, H. Samet, et F. Marzban, « A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short-Term Load Forecasting », Expert Systems with Applications, vol. 41, no 13, p. 6047-6056, oct. 2014, doi: 10.1016/j.eswa.2014.03.053.

[34] S. Lukasik et S. Zak, « Firefly Algorithm for Continuous Constrained Optimization Tasks », in Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, vol. 5796. N. T. Nguyen, R. Kowalczyk, et S.-M. Chen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, p. 97-106. doi: 10.1007/978-3-642-04444-0_8.

[35] T. Xiong, Y. Bao, et Z. Hu, « Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting », Knowledge-Based Systems, vol. 55, p. 87-100, janv. 2014, doi: 10.1016/j.knosys.2013.10.012.

[36] X.-S. Yang, « Firefly Algorithm, Stochastic Test Functions and Design Optimisation », arXiv:1003.1409 [math], mars 2010, Consulté le: avr. 04, 2011. [En ligne]. Disponible sur: http://arxiv.org/abs/1003.1409

[37] I. Brajevic et M. Tuba, « Training Feed-Forward Neural Networks Using Firefly Algorithm », p. 6, 2013.

[38] Z. M. Yaseen et al., « Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA », p. 18, 2017.

[39] S. Darbani et F. A. Pourhosseini, « River flow simulation using a multi layer perceptron-firefly algorithm model », Applied Water Science, p. 9, 2018.

[40] A. D. Mehr, V. Nourani, V. K. Khosrowshahi, et M. A. Ghorbani, « A hybrid support vector regression–firefly model for monthly rainfall forecasting », International Journal of Environmental Science and Technology, p. 12, 2019.

[41] M. Asadnia, L. H. C. Chua, X. S. Qin, et A. Talei, « Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling », J. Hydrol. Eng., vol. 19, n° 7, p. 1320-1329, juil. 2014, doi: 10.1061/(ASCE)HE.1943-5584.0000277.

[42] H. Ghazvinian et al., « Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction », PLoS ONE, vol. 14, n° 5, p. e0217634, mai 2019, doi: 10.1371/journal.pone.0217634.

[43] A. S. Gebregiorgis et F. Hossain, « Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation », IEEE Trans. Geosci. Remote Sensing, vol. 51, n° 1, p. 704-718, janv. 2013, doi: 10.1109/TGRS.2012.2196282.

[44] A. Tarpanelli, E. Santi, M. J. Tourian, P. Filippucci, G. Amarnath, et L. Brocca, « Daily River Discharge Estimates by Merging Satellite Optical Sensors and Radar Altimetry Through Artificial Neural Network », IEEE Trans. Geosci. Remote Sensing, vol. 57, n° 1, p. 339-416, janv. 2019, doi: 10.1109/TGRS.2018.2854625.

[45] A. Gholamy, V. Kreinovich, et O. Kosheleva, « Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation », p. 7.

[46] M. Jalal, Z. Grasley, C. Gurganus, et J. W. Bullard, « A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite », Engineering with Computers, mai 2020, doi: 10.1007/s00366-020-01054-3.

[47] M. R. Zadeh, S. Amin, D. Khalili, et V. P. Singh, « Emission control in palm oil mills using artificial neural network (ANN) model for rubberized cement composite », Computers & Chemical Engineering, vol. 97, n° 2-3, p. 2709-2715, nov. 2004, doi: 10.1016/j.compchemeng.2004.07.034.

[48] A. Gholamy, V. Kreinovich, et O. Kosheleva, « Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation », p. 7.

[49] M. Rajabi, Z. Grasley, C. Gurganus, et J. W. Bullard, « A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite », Engineering with Computers, mai 2020, doi: 10.1007/s00366-020-01054-3.
[61] B. Jamali, M. Rasheki, F. Jamadi, R. Gandomkar, et F. Makiabadi, « Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters », Applied Thermal Engineering, vol. 147, p. 647-660, janv. 2019, doi: 10.1016/j.applthermaleng.2018.10.070.

[62] K. W. Chau, « A split-step particle swarm optimization algorithm in river stage forecasting », Journal of Hydrology, vol. 346, n° 3-4, p. 131-135, nov. 2007, doi: 10.1016/j.jhydrol.2007.09.004.

[63] E. T. Mohamad, D. Jahed Armaghani, E. Momeni, et S. V. Alavi Nezhad Khalil Abad, « Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach », Bull Eng Geol Environ, vol. 74, n° 3, p. 745-757, août 2015, doi: 10.1007/s10064-014-0638-0.

[64] X.-S. Yang, « Firefly Algorithms for Multimodal Optimization », 2010, https://link.springer.com/chapter/10.1007/978-3-642-04944-6_14 (consulté le déc. 04, 2020).

[65] X.-S. Yang, « Firefly Algorithm, Stochastic Test Functions and Design Optimisation », International Journal of Bio-inspired Computation, vol. 2, mars 2010, doi: 10.1504/IJIBC.2010.032124.

[66] X.-S. Yang, S. S. Sadat Hosseini, et A. H. Gandomi, « Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect », Applied Soft Computing, vol. 12, n° 3, p. 1180-1186, mars 2012, doi: 10.1016/j.asoc.2011.09.017.

[67] M. Alweshah, « Firefly Algorithm with Artificial Neural Network for Time Series Problems », RIASET, vol. 7, n° 19, p. 3978-3982, mai 2014, doi: 10.19026/riaset.7.757.

[68] B. Keshtegar, P. Hao, Y. Wang, et Y. Li, « Optimum design of aircraft panels based on adaptive dynamic harmony search », Thin-Walled Structures, vol. 118, p. 37-45, sept. 2017, doi: 10.1016/j.tws.2017.05.004.

[69] B. Keshtegar, T. Ozbakkaloglu, et A. Gholampour, « Modeling the rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity », Model. Earth Syst. Environ., vol. 6, n° 4, p. 2177-2188, déc. 2020, doi: 10.1002/2019MS001680.

[70] K. Benzineb, « MODELISATION DES DEBITS DE CRUES DU BASSIN DE OUED OUARHANE PAR LES RESEAUX DE NEURONES ARTIFICIELS », 2017.

[71] S. J. Hadi, S. I. Abba, S. Sh. Sammen, S. Q. Salih, N. Al-Ansari, et Z. M. Yaseen, « Non-Linear Input Variable Selection Approach Integrated With Non-Tuned Data Intelligence Model for Streamflow Pattern Simulation », IEEE Access, vol. 7, p. 141533-141548, 2019, doi: 10.1109/ACCESS.2019.2943515.

[72] O. Kisi, « Constructing neural network sediment estimation models using a data-driven algorithm », Mathematics and Computers in Simulation, vol. 79, n° 1, p. 94-103, oct. 2008, doi: 10.1016/j.matcom.2007.10.005.

[73] K. P. Sudheer, A. K. Gossain, et K. S. Ramaasatri, « A data-driven algorithm for constructing artificial neural network rainfall-runoff models », HydroL. Process., vol. 16, n° 6, p. 1325-1330, avr. 2002, doi: 10.1002/hyp.554.

[74] K. Benzineb, « MODELISATION DES DEBITS DE CRUES DU BASSIN DE OUED OUARHANE PAR LES RESEAUX DE NEURONES ARTIFICIELS », 2017.

[75] F. S. Panchal et M. Panchal, « Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network », p. 10, 2014.

[76] D. C. Lo, C.-C. Wei, et E.-P. Tsai, « Parameter Automatic Calibration Approach for Neural-Network-Based Cyclonic Precipitation Forecast Models », Water, vol. 7, n° 12, p. 3963-3977, juill. 2015, doi: 10.3390/w7073963.

[77] G. Panchal, A. Ganatra, Y. P. Kosta, et D. Panchal, « Behaviour Analysis of Multilayer Perception with Multiple Hidden Neurons and Hidden Layers », IJCTE, p. 35-37, 2011, doi: 10.7763/IJCTE.2011.V3.328.

[78] S. Lallahem et J. Mancia, « Evaluation and forecasting of daily groundwater outflow in a small chalky watershed », HydroL. Process., vol. 17, n° 8, p. 1561-1577, juin 2003, doi: 10.1002/hyp.1199.

[79] S. Riad, J. Mania, L. Bouchaou, et Y. Najjar, « Predicting catchment flow in a semi-arid region via an artificial neural network technique », Hydrol. Process., vol. 18, n° 13, p. 2387-2393, sept. 2004, doi: 10.1002/hyp.1469.

[80] M. Agil, I. Kita, A. Yano, et S. Nishiyama, « A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff », Journal of Hydrology, vol. 337, n° 1-2, p. 22-34, avr. 2007, doi: 10.1016/j.jhydrol.2007.01.013.

[81] M. Jahandideh-Tehrani, G. Jenkins, et F. Helfer, « A comparison of particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling: a case study for Southeast Queensland, Australia », Optim Eng, juill. 2020, doi: 10.1007/s11081-020-09538-3.

[82] A. K. Lohani, N. K. Goel, et K. K. S. Bhatia, « Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains », Hydrol. Process., vol. 25, n° 2, p. 175-193, janv. 2011, doi: 10.1002/hyp.7831.

[83] V. K. Vidyarthi, A. Jain, et S. Chourasiya, « Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity », Model. Earth Syst. Environ., vol. 6, n° 4, p. 2177-2188, déc. 2020, doi: 10.1002/2019MS001680.

[84] K. E. Taylor, « Summarizing multiple aspects of model performance in a single diagram », Journal of Geophysical Research: Atmospheres, vol. 106, n° D7, p. 7183-7192, 2001, doi: https://doi.org/10.1029/2000JD900719.

[85] M. Jahandideh-Tehrani, G. Jenkins, et F. Helfer, « A comparison of artificial neural network and particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling: a case study for Southeast Queensland, Australia », Optim Eng, vol. 22, n° 1, p. 29-50, mars 2021, doi: 10.1007/s11081-020-09538-3.

[86] A. Danandeh Mehr, V. Nourani, V. Karimi Khosrowshahi, et M. A. Ghorbani, « A hybrid support vector regression–firefly model for monthly rainfall forecasting », Int. J. Environ. Sci. Technol., vol. 16, n° 1, p. 335-346, janv. 2019, doi: 10.1007/s13762-018-1674-2.

[87] S. Darbandi et F. A. Pourhosseini, « River flow simulation using a multilayer perceptron–firefly algorithm model », Appl Water Sci, vol. 8, n° 3, p. 85, juin 2018, doi: 10.1007/s13201-018-0713-y.