Growth and survival of *Bifidobacterium breve* and *Bifidobacterium longum* in various sugar systems with fructooligosaccharide supplementation

Priyanka Parhi · Keang Peng Song · Wee Sim Choo

Revised: 16 December 2021 / Accepted: 25 December 2021 / Published online: 20 January 2022

© The Author(s) 2022

Abstract This study aims to investigate the effect of fructooligosaccharide (FOS) (0.5, 1, 2, 3, and 4%) supplementation on the growth and survival of *Bifidobacterium breve* and *Bifidobacterium longum* in glucose, fructose, lactose, and sucrose (2, 3, and 4%) systems with 24-h growth and 10-day survival assays at 37 °C. FOS supplementation showed a higher growth-promoting effect on *B. longum* than *B. breve* in various sugar systems. The highest percentage of increase in growth index, 78.5%, was observed with 4% sucrose supplemented with 0.5% FOS in *B. longum*. In comparison, the highest percentage increase in growth index, 5.6 and 6.6%, was observed in the presence of 2% glucose and 4% lactose supplemented with 0.5% FOS in *B. breve*. In survival assay, FOS supplementation (0.5–4%) in a 2% lactose system showed the highest positive effect on the cell viability of *B. longum* on day-10. As for *B. breve*, FOS supplementation (1 and 2%) in the 2% sucrose system showed the highest positive effect on the cell viability, followed by FOS supplementation (0.5, 3, and 4%) in 2% sucrose and FOS supplementation (3 and 4%) in 2% lactose on day-10. This study demonstrated that the efficacy of FOS supplementation was dependent on its concentration, sugar system and its concentration, and *Bifidobacterium* strain.

Keywords Glucose · Fructose · Lactose · Sucrose · Prebiotic · Probiotic

Introduction

Probiotics help normalize perturbed microbiota, organic acid, specially lactis acid and short-chain fatty acids production, regulation of intestinal transit, and competitive exclusion of pathogens. The current definition of probiotics, “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host,” was provided by International Scientific Association for Probiotics and Prebiotics (ISAPP) in 2014 (Hill et al. 2014). The natural ability of bifidobacteria to survive in the gastrointestinal tract, resistance mechanisms to bile’s salts, and unique fructose-6-phosphate pathway to ferment hexoses make them one of the widely used probiotic bacteria (Shah 2011). *Bifidobacterium*, a major bacterial group, are classified as gram-positive, non-spore-forming, non-motile, and catalase-negative anaerobes (Shah 2011). They are common inhabitants of the gastrointestinal tract of humans, and vaginal walls account for up to 25% of the total cultivable gut microorganisms in adults. *Bifidobacterium* helps in plant polysaccharide digestion, human pathogen growth inhibition, resists bile salts, influences hosts’ fatty acid metabolism, and shows antipathogenic, anti-inflammatory, and immunomodulation activities (Fanning et al. 2012).

Fructooligosaccharides (FOS) are non-digestible carbohydrates that represent one of the significant classes of bifidogenic oligosaccharides, which are extracted from plants such as yacon root, asparagus, sugar beet, garlic, chicory roots, leeks, onion, Jerusalem artichoke, tomato, and wheat, rye, or barley (Flamm et al. 2001). The fructose units in this mixture of linear fructose polymers and oligomers are linked by β (2–1) bonds with terminal glucose (Flamm et al. 2001). Therefore, they are not hydrolyzed by human digestive enzymes and are not absorbed into the
digestive enzymes (Roberfroid 2002). FOS is one of the
and should resist acid hydrolysis or any modifications by
digestive enzymes (Roberfroid 2002). FOS is one of the
established prebiotics, defined as “a substrate that is
selectively utilized by host microorganisms conferring a
health benefit” by the ISAPP (Gibson et al. 2017).

Recently ISAPP redefined symbiotic as “a mixture
comprising live microorganisms and substrate(s) selec-
tively utilized by host microorganisms that confers a health
benefit on the host” (Swanson et al. 2020). Synbiotics were
developed and researched to overcome possible survival
difficulties for probiotics during production, storage, and
passage through the gastrointestinal tract, significantly
improving the probiotic effect (Swanson et al. 2020).

However, the supplementation of FOS showed inconsistent
effects in various food systems. For examples, FOS supple-
mentation in skim milk improved the viability of B.
bifidum (Shin et al. 2000) and B. longum (Choi and Shin
2006). Similar positive effect of FOS supplementation was
observed on the growth of B. lactis in fermented milk
(Oliveira et al. 2009), B. longum FTDC 8643 in soymilk
(Yeo and Liong 2010), and B. adolescentis and B. catenulatum
in milk (Padalino et al. 2012). In addition, Akaln et al. (2004)
reported that FOS supplementation in yogurt resulted in better stability of B. ani-
malis than B. longum during 21-day storage at 4 °C. Similarly, Celestin et al (2015)
reported that FOS supplementation in goat milk yogurts resulted in a higher cell
count of L. acidophilus than B. bifidum. On the other hand, no effect of FOS supplementation was reported on the
growth of B. infantis in fermented milk (Basholli-Salihu et al. 2013), B. animalis subsp. lactis in fermented cream
cheese (Speranza et al. 2018) and B. animalis Bb-12 in soymilk (Battistini et al. 2018).
Although there were studies that showed no positive effect of prebiotic supple-
mentation on the viability of probiotics during food fer-
mentation, the use of prebiotics should not be deterred as the
positive effect might be exerted in the human large
testine (Amanda and Choo 2018). Since the beneficial
effects of prebiotic supplementation on the growth and
viability of probiotics in complex food matrices are
inconclusive, this study proposed that the effect of prebi-
otic like FOS on probiotics varies depending on its con-
centration and the type and concentration of sugar.

Glucose and fructose are monosaccharides that are
predominant sugars found in vegetables, fruits, and grains
such as rice grain, barley, corn, honey, red grapes, apples,
and pomegranates (Liu et al. 2006; White 2014). Lactose, a
disaccharide of galactose and glucose with β-1,4-glyco-
sidic bond, is the predominant sugar in animal milk and
animal milk products (Fox 2011; Turroni et al. 2011).
Similarly, sucrose, a disaccharide of glucose and fructose
with α-1, β-2-glycosidic bond, is the table sugar derived
from sugar beet or sugar cane (Liu et al. 2006; White
2014). Bifidobacterial genomes encode several carbohy-
drate kinds of transport and modifying enzymes that allow
bifidobacteria to utilize and grow on different carbohy-
drates (Mazé et al. 2007; Parche et al. 2007). B. breve and
B. longum are clinically well studied for their probiotical
effects on human and animal health and are included in
multi-organism probiotics. The potential of B. breve and B.
longum to efficiently digest plant polysaccharides, resis-
tance to low pH and bile salts, influence host fatty acid
metabolism, and show antipathogenic, anti-inflammatory,
and immunomodulation activities made them widespread
probiotics (Sgorbati et al. 1995; Fanning et al. 2012). To
provide insight on food formulations containing stable counts of bifidobacteria, the present study aimed to
investigate the effects of FOS supplementation at various
concentrations on the growth and survival of Bifidobac-
terium breve and Bifidobacterium longum in different
concentrations of four sugar systems, namely glucose,
fructose, sucrose, and lactose.

Materials and methods

Microbial culture and reactivation of probiotic
culture

Bifidobacterium longum (ATCC BAA-999), and Bifi-
dobacterium breve (ATCC 15700) were purchased directly
from American Type Culture Collection (ATCC) Manassas
VA, U.S.A. B. longum and B. breve was activated from a
glycerol stock. Bifidobacterium agar media was purchased
from HiMedia, India. B. breve and B. longum were main-
tained in standard Bifidobacterium agar medium at pH
5.5 ± 0.2.

During inoculum preparation, B. breve and B. longum
were grown in Bifidobacterium broth for 18 h at 37 °C,
120 rpm incubator shaker under anaerobic condition fol-
lowed by centrifugation at 10,000 × g for 10 min at 4°C.

Preparation of modified Bifidobacterium broth for B.
longum and B. breve

Modified Bifidobacterium broth (1000 mL) with pH
6.5 ± 0.2 was prepared using peptone special (22.2 g),
NaCl (4.8 g), and L-cysteine hydrochloride monohydrate
(0.5 g) with prebiotics and sugars. Four different sugars
(fructose, sucrose, glucose, and lactose) at different con-
centrations (1, 2, 3, and 4%) with FOS supplementation at
different concentrations (0.5, 1, 2, 3, and 4%) were used for
growth and survival assays. Agar powder, phosphate-buf-
fered saline (PBS) tablets, anaerogens, peptone special,
sodium chloride (NaCl), and L-cysteine hydrochloride monohydrate were purchased from Oxoid, UK. Glucose, fructose, sucrose, lactose, and gram staining kit were purchased from Sigma-Aldrich, USA. Fructooligosaccharide (FOS) was obtained from Fiatec Biosystems Sdn. Bhd, Malaysia, with a degree of polymerization between 3 and 8.

Growth curve assay

Modified *Bifidobacterium* broth (250 µL) was dispensed in a 96-well plate in an anaerobic chamber, and the plate was then incubated and measured simultaneously inside a TECAN Spark®10 M microplate reader (TECAN, Grödig, Austria) at 37 °C for 24 h. Microbial growth was monitored by measuring the absorbance at OD 600 every 60 min intervals, with 15 s auto-shaking at 1440 rpm before each measurement. Growth Index (%) was calculated by measuring the absorbance at OD 600 every 60 min intervals, with 15 s auto-shaking at 1440 rpm before each measurement. Growth Index (%) was calculated using the equation according to Bevilacqua et al. (2016), modified by Parhi et al. (2021a):

\[
\text{Growth Index} \, (\%) = \left(\frac{\text{OD}_{\text{MAX}} - \text{OD}_{\text{NC}}}{\text{OD}_{\text{PC}}} \right) \times 100
\]

where \(\text{OD}_{\text{MAX}} \) was the maximum absorbance attained, \(\text{OD}_{\text{NC}} \) was the absorbance of negative control (Modified *Bifidobacterium* broth without any sugar and FOS), and \(\text{OD}_{\text{PC}} \) was the absorbance of positive control (Modified *Bifidobacterium* broth with 4% glucose).

Enumeration of bacteria and pH measurement

The number of viable cells in culture per mL was determined by spread plating 0.1 mL of serially diluted cultures on *Bifidobacterium* agar media and incubated at 37 °C for 48 h under anaerobic conditions. Enumeration was expressed as log CFU/mL. In addition, the pH of the samples was measured by pH-meter F-71 (LAQUA, U.S.A) after 24 h.

Survival assay

Modified *Bifidobacterium* broth (20 mL) was dispensed in Schott bottles and inoculated at 5% w/v with *B. longum* and *B. breve*. The cultures were incubated at 37 °C under anaerobic conditions for 10 days. The cell viability (%) and pH (pH-meter F-71 (LAQUA, USA) were measured at 2-days intervals. The percentage cell viability of probiotics is calculated using the equation below (Parhi et al. 2021b):

\[
\text{Cell Viability} \, (\%) = \frac{\text{CFU}_{\text{L}}^{\text{Day}-T}}{\text{CFU}_{\text{L}}^{\text{Day}-0}} \times 100\%
\]

where \(\text{CFU}_{\text{L}}^{\text{Day}-T} \) was the viable cell count at the day of analysis and \(\text{CFU}_{\text{L}}^{\text{Day}-0} \) was the initial viable cell count.

Statistical analysis

All the assays were conducted in independent triplicates. The results were statically analyzed using one-way analysis of variance (ANOVA) and Tukey’s test for post-hoc analysis. Statistical significance was determined at \(p < 0.05 \) using Statistical Package for the Social Sciences (SPSS) Version 23 from IBM Corporation (New York, U.S.A.).

Results and discussion

Growth index of *B. breve* and *B. longum* in different sugar systems with FOS supplementation

Tables 1 and 2 show the growth index (%) of *B. breve* and *B. longum* grown in modified *Bifidobacterium* medium with 2, 3, 4% glucose, fructose, sucrose, and lactose supplemented with 0.5, 1, 2, 3, 4% FOS. The growth index of *B. longum* significantly increased when the concentration of FOS, as the sole carbohydrate source, was increased from 0.5 to 4%, suggesting a dose-dependent effect of FOS on the growth (Table 1). Although a similar dose-dependent effect was observed with 0.5 and 1% FOS supplementation as a sole carbohydrate source of *B. breve*, further increase (2, 3, 4%) showed a significant decrease in growth index, which indicates partial inhibition (Table 2). The growth index of *B. longum* was 76.7% with 3% FOS while *B. breve* grew well with a growth index of 85% on 1% FOS as the sole carbohydrate source (Tables 1 and 2). The growth index > 75% stands for growth kinetics similar to that reported for the optimal conditions; growth index in the range of 25–75% underlines a partial inhibition; growth index < 25% stands for potent inhibition of the microorganism (Bevilacqua et al. 2016). These results suggest that FOS as the sole carbohydrate source supported the growth of *Bifidobacterium*. But the required concentration of FOS was different, and the growth kinetics varied according to the strain. *B. breve* ATCC 15698, 15700, and *B. longum* ATCC 15708 were reported to grow in 2% FOS as a sole carbohydrate source in de Man Rogosa Sharpe (MRS) agar (Kaplan and Hutkins 2000). *B. longum* ATCC 15707 and *B. breve* 15700 were reported to grow in 5% FOS as sole carbohydrate source (Kajiwara et al. 2002), where else *B. breve* MB 252 and *B. longum* PRO 2 were able to grow in 1% FOS as sole carbohydrate source (Rossi et al. 2005). The ability of bifidobacterial to grow on FOS might be
chain FOS on the growth of bifidobacteria were reported previously. The degree of polymerization varies from 3 to 4 (Kaplan and Hutkins 2000), 3 to 8 (Perrin et al. 2001), 3–10 (Rossi et al. 2005), and 3–7 (Padalino et al. 2012). Bifidobacterial β-fructofuranosidase specifically cleaves β-(2→1) bonds releasing fructose moieties in the growth

Fructooligosaccharide	0%	5%	10%	15%	20%	25%	30%	35%	40%
Sugar 0%	40.06 ± 0.82	58.16 ± 0.58	67.45 ± 0.45	74.86 ± 0.79	76.72 ± 0.29	73.01 ± 0.57			
Glucose 2%	90.93 ± 0.36	96.60 ± 0.19	95.92 ± 0.40	92.51 ± 0.66	89.45 ± 0.59	80.12 ± 1.04			
3%	92.41 ± 0.69	94.56 ± 0.10	94.87 ± 0.43	92.97 ± 0.61	90.11 ± 0.47	89.87 ± 0.54			
4%	100.00 ± 0.43	98.85 ± 0.51	96.51 ± 0.29	98.27 ± 0.49	98.67 ± 0.71	97.03 ± 0.40			
Fructose 2%	80.54 ± 0.53	98.31 ± 0.63	98.08 ± 0.49	95.53 ± 0.55	81.74 ± 0.56	77.82 ± 1.01			
3%	84.51 ± 0.58	96.85 ± 0.40	97.67 ± 0.85	94.93 ± 0.39	90.81 ± 0.65	88.60 ± 0.08			
4%	94.11 ± 0.38	90.30 ± 0.67	86.92 ± 0.57	84.63 ± 0.69	81.85 ± 0.67	84.71 ± 0.66			
Sucrose 2%	74.19 ± 0.77	90.06 ± 0.64	98.44 ± 1.23	98.22 ± 0.25	94.85 ± 0.61	92.71 ± 0.51			
3%	63.76 ± 0.76	87.08 ± 0.52	87.71 ± 0.66	96.74 ± 0.56	95.17 ± 0.28	91.37 ± 0.33			
4%	54.96 ± 0.50	98.09 ± 0.91	96.77 ± 0.35	96.01 ± 0.61	94.56 ± 0.56	94.99 ± 0.84			
Lactose 2%	84.12 ± 0.82	95.93 ± 0.38	97.61 ± 0.72	91.86 ± 1.04	99.60 ± 0.64	96.77 ± 0.64			
3%	87.09 ± 0.79	99.14 ± 0.62	97.41 ± 0.42	92.57 ± 0.11	98.04 ± 0.90	91.81 ± 0.36			
4%	92.82 ± 0.77	108.02 ± 0.74	109.51 ± 0.75	109.87 ± 0.32	109.13 ± 0.22	106.72 ± 0.33			

Values are presented as means ± standard deviations (n = 3). a,b,c Difference in lower case letters within a row indicates significant difference at p < 0.05. A,B,C Difference in upper case letters within a column indicates significant difference at p < 0.05. NC: Negative control (no sugar and FOS)
medium and providing an additional carbon source for the microorganism (Ryan et al. 2005). However, the \(\beta \)-fructofuranosidase activity depends on the degree of polymerization and strain of bifidobacteria (Hopkins et al. 1998; Ryan et al. 2005).

The percentage increase was determined by comparing the growth index of the FOS supplemented sugar system with the growth index of the non-supplemented respective sugar system. The highest percentage of increase in growth index, 78.5% of \(B. \ longum \), was observed with 4% sucrose supplemented with 0.5% FOS (Table 1). The supplementation of 0.5–4% FOS resulted in the percentage increase in growth index of 21.5–78.3% (Table 3) correlating with a significant decrease in pH along 'bifid' shunt (De Vries and Stouthamer 1967), and the ability to produce carbohydrate modifying enzymes. According to Kullin et al. (2006), the \(cscA \) (\(\beta \)-fructofuranosidase) and \(scrP \) (sucrose phosphorylase) gene clusters of \(B. \ longum \) NCIMB 702259 function mainly in the metabolism of intracellular sucrose generated from the breakdown of more complex carbohydrates. The \(scrP \) gene was up-regulated in the presence of sucrose relative to glucose (Kullin et al. 2006). Henceforth, the growth-promoting effect of FOS in the presence of sucrose may be due to \(B. \ longum \) utilizing sucrose and FOS simultaneously.

In the lactose system, \(B. \ longum \) showed the highest percentage of increase in growth index of 18.4% in 4% lactose with 2% FOS supplementation (Table 1). A significant increase in the cell density to approximately 8.29–10.46 log CFU/mL (Table 3) was observed in a medium containing lactose with FOS supplementation compared to the non-supplemented lactose system. \(B. \ breve \) showed the significant highest increase of 6.6% in pH in the growth index in 4% lactose supplemented with 0.5% FOS, suggesting a growth-promoting effect at a low concentration of FOS in the lactose system (Table 2). Similarly, the supplementation of FOS was the most effective in enhancing the growth rate of both \(B. \ bifidum \) Bf-1 and Bf-6 in skim milk (Shin et al. 2000) and induced a higher growth rate in \(B. \ adolescentis \) and \(B. \ catenulatum \) in milk (Padalino et al. 2012). FOS supplementation also showed the most increase in the growth-promoting activity for \(B. \ breve \) 3022 and \(B. \ longum \) 3128 in skim milk (Choi and Shin

Table 3 Viable count (log CFU/mL) of \(B. \ longum \) grown in modified Bifidobacterium broth containing 2, 3, and 4% of glucose, fructose, sucrose, and lactose supplemented with 0.5, 1, 2, 3 and 4% of fructooligosaccharide during 24-h growth at 37 °C

Fructooligosaccharide	0%	0.5%	1%	2%	3%	4%
Sugar						
0%	6.03 ± 0.51Aa	7.97 ± 0.01Ah	8.20 ± 0.01Ah	8.21 ± 0.01Ah	8.28 ± 0.00Bb	8.21 ± 0.01Bb
Glucose						
2%	8.20 ± 0.03Ca	9.19 ± 0.04Bc	10.13 ± 0.04De	10.32 ± 0.02Ed	9.15 ± 0.02Db	8.20 ± 0.05Ba
3%	8.24 ± 0.04Ca	9.27 ± 0.02Cd	9.09 ± 0.04Db	9.28 ± 0.03Cc	9.16 ± 0.01Dc	8.22 ± 0.03Ba
4%	8.26 ± 0.08Ca	10.31 ± 0.04Cd	10.12 ± 0.03Dc	9.27 ± 0.08Cf	8.20 ± 0.06Ba	8.18 ± 0.01Ba
Fructose						
2%	8.15 ± 0.03Ca	9.09 ± 0.11Bb	10.12 ± 0.06Dc	10.18 ± 0.03Dc	8.01 ± 0.04Aa	8.00 ± 0.02Aa
3%	8.13 ± 0.04Ca	9.12 ± 0.02Bc	9.04 ± 0.09Bh	9.15 ± 0.06Bc	8.95 ± 0.06Ch	8.90 ± 0.08Ch
4%	8.14 ± 0.02Ch	10.05 ± 0.01Af	9.02 ± 0.09Bh	8.30 ± 0.01Ac	7.97 ± 0.03Ac	8.00 ± 0.02Aa
Sucrose						
2%	7.05 ± 0.02Ba	9.34 ± 0.03Bd	10.47 ± 0.02Ec	10.33 ± 0.00Ed	9.34 ± 0.02Ee	8.30 ± 0.03Bb
3%	7.00 ± 0.02Ba	9.47 ± 0.03Ec	9.36 ± 0.01Ch	10.33 ± 0.02Ed	10.43 ± 0.01Ce	9.41 ± 0.01Dc
4%	7.62 ± 0.03Ba	10.36 ± 0.04Cg	10.39 ± 0.01Ee	10.36 ± 0.01Ed	10.26 ± 0.01Fb	10.30 ± 0.02Ec
Lactose						
2%	8.31 ± 0.03Ca	9.33 ± 0.02Dh	10.35 ± 0.00Ff	10.37 ± 0.03Ff	9.33 ± 0.03Dh	8.29 ± 0.02Ba
3%	8.28 ± 0.03Ca	9.31 ± 0.01Dh	9.33 ± 0.02Df	10.35 ± 0.01Ee	10.31 ± 0.01Ff	9.27 ± 0.03Db
4%	8.34 ± 0.04Ca	10.36 ± 0.01Gd	10.38 ± 0.01Ff	10.36 ± 0.01Ef	10.32 ± 0.02Fb	10.46 ± 0.00Fc

Values are presented as means ± standard deviations (\(n = 3 \)). abc Difference in lower case letters within a row indicates significant difference at \(p < 0.05 \). ABC Difference in upper case letters within a column indicates significant difference at \(p < 0.05 \). NC: Negative control (no sugar and FOS)
Lactose is the predominant sugar in milk-based products. Most of the predominant bifidobacterial species in infants’ intestines, *B. longum*, *B. breve*, and *B. bifidum*, produce galacto-N-biose/lacto-N-biose I phosphorylase responsible for lacto-N-biose degradation (Turrioni et al. 2011; Xiao et al. 2010). In addition, Parche et al (2006) reported that putative glucose transporter gene *glcP* in *B. longum* NCC2705 is repressed by lactose when grown in a medium containing both lactose and glucose. Therefore, *B. longum* and *B. breve* might be using both lactose and FOS simultaneously, resulting in a positive effect of FOS in the lactose system.

In glucose and fructose systems, 1.7–6.2% and 4.8–22.1% increase in growth index was observed in 2 and 3% glucose and fructose with 0.5–2% and 0.5–4% FOS supplementation, respectively, suggesting a positive effect of FOS supplementation on the growth of *B. longum* in lower concentrations of glucose and fructose (Table 1). Interestingly, *B. breve* showed a 5.6% increase in growth index in the presence of 2% glucose supplemented with 0.5% FOS (Table 2). At the same time, other combinations showed partial inhibition of *B. longum* and *B. breve* (Tables 1 and 2). For example, Parche et al. (2007) reported the sugar transport system of *B. longum* NCC 2705, which included ABC, PEP–PTS, major intrinsic protein family (MIP), Major facilitator superfamily (MFS), and glycoside-pentoside-hexuronide cation symporter family (GPH). These multiple sugar transport systems in *B. longum* give it the ability to uptake a wide range of carbohydrates, including polymers such as FOS, which can be the reason behind the positive effect of FOS supplementation on the growth index of *B. longum* in all four sugars (Table 1). However, the operon in *B. breve* UCC2003, which can break down FOS, was activated when grown in sucrose but repressed when grown in glucose, fructose, or combinations of glucose-sucrose, fructose-sucrose (Ryan et al. 2005). This might be occurring here, resulting in significantly lower growth index values (*p* < 0.05) of *B. breve* grown in several media containing glucose, fructose, and lactose with FOS supplementation as compared to the positive control of glucose without supplementation (Table 2).

B. longum comprises multiple sugar transport systems (De Vries and Stouthamer 1967) and can produce carbohydrate-modifying enzymes. According to Pokusaeva et al (2011), the *Bifidobacterium* genome reflects the metabolic adaptation to a complex carbohydrate-rich gastrointestinal tract environment as it encodes a large number of predicted carbohydrate-modifying enzymes. Therefore, *B. longum* can utilize different carbohydrates resulting in a positive effect on the growth index with FOS supplementation. Similarly, a positive effect on the log CFU/mL of *B. longum* was observed, resulting in a 2–3 log increase in log CFU/mL in the sucrose system and 1–2 log increase in log CFU/mL in glucose, fructose, lactose systems with FOS supplementation compared to respective sugar systems without FOS supplementation (Table 3). Nevertheless, *B. breve* showed no log CFU/mL increase with FOS supplementation in sugar systems (Table 4). The sharp decrease in pH in media might explain the difference in log CFU/mL of *B. breve* except for the lactose system (Table S2, supplementary data). This is most likely due to the growth index being calculated as the total sum of all the OD taken every hour, while log CFU/mL was calculated by taking CFU initially and at the end of 24 h. However, *B. breve* and *B. longum* entered the initial death phase due to depletion of carbon source, media acidification, and accumulation of organic acids, resulting in a decrease in CFU at the end. Nevertheless, microbial growth and survival during the production and storage of fermented foods are subjected to several abiotic stresses such as acidification of media, nutritional availability, and accumulation of byproducts and dead cells in ferment media strongly depend on the cells to adapt.

Survival of *B. longum* and *B. breve* in different sugar systems with FOS supplementation

The survival assay focused on the effects of FOS on the death kinetics of *B. breve* and *B. longum* at 37°C. As expected, the cell viability of *B. longum* and *B. breve* increased until day-2 of the assay. However, a decrease in cell viability of *B. longum* and *B. breve* was observed with cell viability of 68.6–73.4% and 64.7–72.8% on day-6, suggesting both the microorganism showed prolonged viability in sugar systems with and without FOS supplementation, respectively (data not shown). The changes in survival and pH of *B. longum* and *B. breve* in various sugar systems with FOS supplementation on day-8 and day-10 are presented in Figs. 1, 2, and Figs. S1, S2 (supplementary data). These 2 days were selected to evaluate the difference between the survival of *B. breve* and *B. longum* in sugar systems with and without FOS supplementation at the death phase. The decline in cell viability after day-2 and no change in pH after day-6 suggested media saturation and acidification (data not shown). In the presence of 2% sugar systems without FOS supplementation, the cell viability of *B. longum* and *B. breve* was between 39–46% and 0% on day-8, respectively. However, 0% cell viability was observed for both *B. longum* and *B. breve* in 2% sugar systems without FOS supplementation (Figs. 1a and 2a). Similarly, Akalin et al. (2004) reported a decrease in the cell viability and pH of *B. longum* after seven days of refrigerated storage, concluding that the low pH was the critical factor in the viability of bifidobacterial cells. Acetic acid and lactic acid, byproducts of bifidobacteria, are
known as environmental stress that may inhibit the growth of microorganisms by entering the cell in its non-dissociated form and then dissociating within the cell, which causes acidification of the cytoplasm, collapsing of the proton motive force, and inhibition of the enzyme reactions, resulting in the inhibition of nutrient transport (Guan and Liu 2020). Although pH was below 4.0 (Figs. S1 and S2, supplementary data), both B. longum and B. breve showed 39–44% cell viability in 3 and 4% sugar systems without FOS supplementation. This could be due to the ability of bifidobacteria to produce exopolysaccharides (EPS) under stressful conditions, thereby providing tolerance against acidic pH, contributing to cell protection and survival (Alp and Aslim 2010; Fanning et al. 2012). Audy et al. (2010) suggested that EPS production by B. longum BB79 and B. longum CRC002 were induced by lactose, fructose, and glucose. B. breve UCC2003 and B. breve DSM20213 were reported to produce exopolysaccharides, thus increasing stress tolerance against low pH (Alp and Aslim 2010; Fanning et al. 2012).

The 50% cell viability of B. longum and B. breve in 2% sugar systems with FOS supplementation on day-8 suggests FOS supplementation resulted in slower death kinetic (Fig. 1a and 2a). B. longum showed the highest cell viability of 43–44% in 2% lactose with FOS supplementation on day-10. However, B. breve showed the highest cell viability of 42% in the 2% sucrose system with 1 and 2% FOS supplementation followed by 2% sucrose system with 0.5, 3, 4% FOS supplementation, and 2% lactose with 3 and 4% FOS supplementation on day-10 (Fig. 2a). These results suggest the positive effect of FOS supplementation on the cell viability of B. longum in all sugar systems till day-10. However, the cell viability of B. breve was only observed in 2% sucrose with 0.5-4% FOS supplementation, and 2% lactose with 3 and 4% FOS supplementation on day-10 (Fig. 2a). Nevertheless, the difference in survival of B. longum and B. breve suggests the diverse nature of Bifidobacterium to utilize simple and complex carbohydrates, which also can vary between strains and species (Parche et al. 2007).

In higher concentrations, 3 and 4% sugar systems, the FOS supplementation positively influenced cell viability of B. longum, resulting in 39–44% cell viability on day-10 (Fig. 1b and c). Similarly, B. breve showed 39–42% cell viability in 3 and 4% sugar systems with FOS supplementation on day-10 (Fig. 2b and 2c). These results are consistent with previous reports on the ability of FOS to stimulate the viability of Bifidobacterium in different mediums. For example, FOS supplementation in skim milk was effective in increasing the viability of B. bifidum BF-1 and BF-6 after four weeks at 4 °C (Shin et al. 2000), and viability of B. longum was significantly higher with FOS supplementation in skim milk at 4 °C for four weeks storage (Choi and Shin 2006). In addition, Akalin et al. (2004) reported that B. longum maintained viability above 10^6 CFU/g in yoghurt containing FOS for up to 21 days at 4 °C.

Table 4

Sugar	0%	0.5%	1%	3%	4%	
Glucose 2%	8.12 ± 0.04BCa	8.13 ± 0.04Ba	8.32 ± 0.00Rbc	8.29 ± 0.02EFb	8.32 ± 0.00CDh	8.29 ± 0.01Ch
Fructose 2%	7.99 ± 0.01Bab	7.97 ± 0.04Ba	8.05 ± 0.02Bcab	8.01 ± 0.07Babc	8.08 ± 0.01Bbc	8.11 ± 0.01Bc
Sugar 0%	6.19 ± 0.00Aa	7.21 ± 0.03Ab	7.46 ± 0.45Ab	7.08 ± 0.01Ab	7.07 ± 0.00Ab	7.11 ± 0.12Ab

Values are presented as means ± standard deviations (n = 3). ab Difference in lower case letters within a row indicates significant difference at p < 0.05. ABC Difference in upper case letters within column indicates a significant difference at p < 0.05. NC: Negative control (no sugar and FOS).
Fig. 1 Cell viability (%) of *B. longum* grown in modified *Bifidobacterium* broth containing (a) 2% glucose (G2), fructose (F2), sucrose (S2), lactose (L2), (b) 3% glucose (G3), fructose (F3), sucrose (S3), lactose (L3), and (c) 4% glucose (G4), fructose (F4), sucrose (S4), lactose (L4) with 0.5% (FOS05), 1% (FOS1), 2% (FOS2), 3% (FOS3) and 4% (FOS4) fructooligosaccharide on 8th and 10th day. abc Difference in lower case letters indicates significant differences between different treatments within a same day at *p* < 0.05. NC = negative control (no sugar and FOS)
Fig. 2 Cell viability (%) of *B. breve* grown in modified *Bifidobacterium* broth containing a) 2% glucose (G2), fructose (F2), sucrose (S2), lactose (L2), b) 3% glucose (G3), fructose (F3), sucrose (S3), lactose (L3), and c) 4% glucose (G4), fructose (F4), sucrose (S4), lactose (L4) with 0.5% (FOS05), 1% (FOS1), 2% (FOS2), 3% (FOS3) and 4% (FOS4) fructooligosaccharide on 8th and 10th day. abc Difference in lower case letters indicates significant differences between different treatments within a same day at $p < 0.05$. NC = negative control (no sugar and FOS)
Conclusion

The present study shows that FOS supplementation significantly increased the growth index of \textit{B. longum} in most sugar systems, with few exceptions. However, only 2% glucose and 4% lactose supplemented with 0.5% FOS supplementation showed a significant increase in the growth index of \textit{B. breve}. Based on the highest percentage increase in growth index, sucrose was the most suitable sugar for FOS supplementation for \textit{B. longum}, whereas lactose was the most suitable sugar for FOS supplementation for \textit{B. breve}. Furthermore, in the survival assay, FOS supplementation in 2% sugar systems effectively influenced the cell viability and slowed the death phase of \textit{B. longum} and \textit{B. breve}. The highest cell viability of \textit{B. longum} was observed in 2% lactose with FOS supplementation. On the other hand, the highest cell viability of \textit{B. breve} was observed in 2% sucrose with FOS supplementation. Thus, the growth and survival of \textit{B. longum} and \textit{B. breve} were improved and prolonged with FOS supplementation, but the effect was depended on the concentration and type of sugar system and FOS concentration. This study demonstrated that the use of sugar systems without the complexity of a food matrix provided valuable information to understand the effect of FOS supplementation on the growth and survival of \textit{B. longum} and \textit{B. breve}. However, as there are other components in a food matrix that may influence the growth and survival of \textit{B. longum} and \textit{B. breve}, the results in this study cannot be directly applied to a food matrix. Nevertheless, these results provide insights into developing efficient and improved symbiotic products containing bifidobacteria with FOS supplementation.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13197-022-05361-z.

Acknowledgements The authors acknowledge School of Science, Monash University Malaysia for the support in this work.

Authors’ contributions PP—original draft, writing, performed the analysis and data collection. KPS—supervision, editing and writing. WSC—conceptualization, project management, supervision, editing and writing.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. School of Science, Monash University Malaysia.

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akalm AS, Fenderya S, Akbulut N (2004) Viability and activity of \textit{Bifidobacteria} in yoghurt containing fructooligosaccharide during refrigerated storage. Int J Food Sci Technol 39(6):613–621. https://doi.org/10.1111/j.1365-2621.2004.00829.x

Alp G, Aslın B (2010) Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of \textit{Bifidobacterium} spp. isolated from infants’ feces and breast milk. Anaerobe 16(2):101–105. https://doi.org/10.1016/j.anae robe.2009.06.006

Amanda E, Choo WS (2018) Effect of refrigerated storage on the physicochemical characteristics and viability of \textit{Lactobacillus plantarum} in fermented watermelon juice with or without supplementation with inulin or fructooligosaccharide. J Food Process Preserv 42(12):13831. https://doi.org/10.1111/jfpp.13831

Audy J, Labrie S, Roy D, LaPointe G (2010) Sugar source modulates exopolysaccharide biosynthesis in \textit{Bifidobacterium longum} subsp. \textit{longum} CRC 002. Microbiology 156(3):653–664. https://doi.org/10.1099/mic.0.033720-0

Bashollo-Salihu M, Mueller M, Unger FM, Viernstein H (2013) The use of cellobiose and fructooligosaccharide on growth and stability of \textit{Bifidobacterium infantis} in fermented milk. Food Sci Nutr 4(12):1301. https://doi.org/10.4236/fsn.2013.412167

Battistini C, Gullón B, Ichimura ES, Gomes AMP, Ribeiro EP, Kunigk L, Moreira JUV, Jurkiewicz C (2018) Development and characterization of an innovative symbiotic fermented beverage based on vegetable soybean. Braz J Microbiol 49(2):303–309. https://doi.org/10.1016/j.bjm.2017.08(00),pp.6

Bevilacqua A, Simagnlia M, Speranza B, Altieri C (2016) Effect of prebiotic compounds on the growth and survival of bifidobacteria in a laboratory medium. Adv J Food Sci Technol 11(12):770–774. https://doi.org/10.19026/ajfst.11.2790

Celestin S, Thorat SS, Desale RJ, Chavan UD (2015) Effect of milk supplementation with fructooligosaccharides and inulin on viable counts of probiotic bacteria in goat and cow milk yoghurts. IOSR J Environ Sci Toxicol Food Technol 9(7):6–12. https://doi.org/10.9790/2402-09710612
Choi NY, Shin HS (2006) Effect of oligosaccharides and inulin on the growth and viability of bifidobacteria in skim milk. Food Sci Biotechnol 15(4):543–548

De Vries W, Stouthamer AH (1967) Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J Bacteriol 93(2):574–576. https://doi.org/10.1128/jb.93.2.574-576,1967

Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MOC, Shanahan F, Nally K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci 109(6):2108–2113. https://doi.org/10.1073/pnas.1115621109

Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2002) Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int Dairy J 27(1–2):27–33. https://doi.org/10.1016/j.idairyj.2012.06.006

Parce S, Bellet M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I (2006) Lactose-over-glucose preference in Bifidobacterium longum NCC2705:glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol 188(4):1260–1265. https://doi.org/10.1128/JB.188.4.1260-1265.2006

Parce S, Amon J, Jankovic I, Rezzonico E, Bellet M, Baruça H, Schendel I, Eddy MP, Burkovski A, Arigoni F, Titgemeyer F (2007) Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12(1–2):9–19. https://doi.org/10.1159/000096455

Parhi P, Song KP, Choo WS (2021b) Viability, storage stability and in vitro gastrointestinal tolerance of Lactiplantibacillus plantarum Grown in model sugar systems with inulin and fructooligosaccharide supplementation. Fermentation 7(4):259. https://doi.org/10.3390/fermentation7040259

Parhi P, Song KP, Choo WS (2021a) Effect of inulin and fructooligosaccharide supplementation on the growth and survival of Lactobacillus casei in model sugar systems. J Food Process Preserv 45(5):15228. https://doi.org/10.1111/jfpp.15228

Perrin S, Warchol M, Grill JP, Schneider F (2001) Fermentations of fructooligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J Appl Microbiol 90:859–865. https://doi.org/10.1046/j.1365-2672.2001.01317.x

Pokusaeva K, Fitzgerald GF, Van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6(3):285. https://doi.org/10.1007/s12263-010-0206-6

Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liver Dis 34:S105–S110. https://doi.org/10.1016/s1590-8658(02)80176-1

Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158. https://doi.org/10.1128/aejm.71.6.6150-6158,2005

Ryan SM, Fitzgerald G, van Sinderen D (2005) Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 71(7):3475–3482. https://doi.org/10.1128/aem.71.7.3475-3482,2005

Sgorbati B, Biavati B, Palenzona D (1997) The genus Bifidobacterium. In: Widdowson EM, Brenner DJ (eds) Encyclopaedia of dairy sciences, 2nd edn. Academic Press, Orlando, pp 1159–1165

Oliveira RP, Florence AC, Silva RC, Perego P, Converti A, Gioielli LA, Oliveira MN (2009) Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int J Food Microbiol 128:467–472. https://doi.org/10.1016/j.ifoodmicro.2008.10.012

Parisi P, Song KP, Choo WS (2021) In vitro gastrointestinal tolerance of Lactiplantibacillus plantarum Grown in model sugar systems with inulin and fructooligosaccharide supplementation. Fermentation 7(4):259. https://doi.org/10.3390/fermentation7040259

Perrin S, Warchol M, Grill JP, Schneider F (2001) Fermentations of fructooligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J Appl Microbiol 90:859–865. https://doi.org/10.1046/j.1365-2672.2001.01317.x

Pokusaeva K, Fitzgerald GF, Van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6(3):285. https://doi.org/10.1007/s12263-010-0206-6

Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liver Dis 34:S105–S110. https://doi.org/10.1016/s1590-8658(02)80176-1

Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158. https://doi.org/10.1128/aejm.71.6.6150-6158,2005

Ryan SM, Fitzgerald G, van Sinderen D (2005) Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 71(7):3475–3482. https://doi.org/10.1128/aem.71.7.3475-3482,2005

Sgorbati B, Biavati B, Palenzona D (1997) The genus Bifidobacterium. In: Widdowson EM, Brenner DJ (eds) Encyclopaedia of dairy sciences, 2nd edn. Academic Press, Orlando, pp 1159–1165

Shah NP (2011) Bacteria, beneficial Bifidobacterium spp.: morphology and physiology. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic Press, San Diego, pp 381–387

Shin HS, Lee JH, Ustunol PJZ, Z (2000) Growth and viability of commercial Bifidobacterium spp in skim milk containing oligosaccharides and inulin. J Food Sci 65(5):884–887. https://doi.org/10.1111/j.1365-2621.2000.tb13065.x

Speranza B, Campanello D, Monacis N, Bevilacqua A, Sinigaglia M, Corbo MR (2018) Functional cream cheese supplemented with bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 2006 and prebiotics. Food Microbiol 72:16–22. https://doi.org/10.1016/j.fm.2017.11.001
Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17:687–701. https://doi.org/10.1038/s41575-020-0344-2
Turroni F, Foroni E, Serafini F, Viappiani A, Montanini B, Bottacini F, Ferrarini A, Bacchini PL, Rota C, Delledonne M, Ottonello S (2011) Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis. Appl Environ Microbiol 77(20):7408–7417. https://doi.org/10.1128/AEM.05336-11
White JS (2014) Sucrose, HFCS, and fructose: history, manufacture, composition, applications, and production. In: James MR (ed) Fructose, high fructose corn syrup, sucrose and health. Humana Press, New York, NY, pp 13–33
Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K, Kitaoka M (2010) Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76(1):54–59. https://doi.org/10.1128/aem.01683-09
Yeo SK, Liong MT (2010) Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J Sci Food Agric 90(2):267–275. https://doi.org/10.1002/jsfa.3808

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.