Steering body-tire angle control strategy optimization of wide-body airplane ground turning

Jing Li¹, Yuanyuan Wu¹, Zhe Zhao² and Qing Lu²

¹School of mechanical engineering, Tongji University, Jiading District Shanghai, China
²Shanghai Aircraft Design & Research Institute, Pudong New District, Shanghai, China
cynthia_li@tongji.edu.cn

Abstract. The wide-body airplane's unsynchronous coordination of the inner and outer steering body-tires turning angle during the ground turning process will increase the lateral force of the tires and cause side slip accidents. This paper considers the dissymmetry of the inner and outer steering body-tire turning angles during the ground turning process, calculates the theoretical turning angle mathematical relationship between nose-tire and steering body-tire, optimizes the steering body-tire control strategy from "symmetric turning angle control strategy" to "dissymmetric turning angle control strategy". By comparison, the optimized "dissymmetric turning angle control strategy" can effectively reduce the lateral force of steering body-tires during the ground turning process, decrease the risk of side slip accidents and tire abrasion. Besides, the optimized "dissymmetric turning angle control strategy" can reduce the lateral force difference between the inner and outer steering body-tires during the ground turning process, making the lateral force distribution more balanced, reducing the damage to landing gear structure caused by unbalanced lateral force and extending the service life of body landing gear.

1. Introduction
The safety and performance of airplane are closely related to the ground turning control skill [1]. With the development of large airplane technology, foreign wide-body airplane such as A380 and B747 generally use nose-tire and steering body-tire cooperative turning control when turning on the ground. Since the turning radius of the body landing gear on both sides are different when turning, the inner steering body-tires needs larger turning angle, the outer steering body-tires needs smaller turning angle. If the inner and outer steering body-tires can’t keep synchronous coordination, steering body-tires’ lateral force will increase and cause side slip accidents when the airplane is turning at large angles or high velocity [2]. In this paper, the steering body-tire control strategy is optimized based on the lateral force of tires on body landing gears.

2. Steering body-tire control strategy
The landing gear layout of the certain type wide-body airplane is shown in figure 1. It includes a nose landing gear, two body landing gears, 14 tires in total [3].During the ground turning process, when the nose-tire turn through a certain angle, the steering body-tire will turn rotate a small angle in reverse direction to help nose-tire complete the airplane ground turning action.
2.1. Symmetric turning angle control strategy
At present, the airplane use "symmetric turning angle control strategy" during the ground turning process. When the nose-tire turns α, the inner and outer steering body-tire turning angle φ_1, φ_2 calculation method is shown in equation 1. The relationship between steering body-tire’s turning angle φ_1, φ_2 and the nose-tire turning angle α is shown in figure 2. Under this control strategy, the inner and outer steering body-tire angles are equal.

\[
\varphi_1 = \varphi_2 = \begin{cases}
-0.14 \times (\alpha - 13) & \quad 13 < \alpha < 70 \\
0 & \quad -13 \leq \alpha \leq 13 \\
-0.14 \times (\alpha + 13) & \quad -70 < \alpha < -13
\end{cases}
\]

(1)

$$\alpha$$ – tire1, tire2 turning angle ; φ_1 – tire13, tire14 turning angle ; φ_2 – tire7, tire8 turning angle.

2.2. Dissymmetric turning angle control strategy
According to the Ackermann principle [4], to ensure the smooth and controllable process of the airplane ground turning, there can only be one turning center point at any time, as shown in figure 3. Based on the airplane landing gear layout, the theoretical turning angle mathematical relationship between nose-tire and steering body-tire turning angle is calculated by equation 2, 3, the result is shown in figure 4.

\[
\varphi_1 = \arctan\left(\frac{L_3}{L_4}\right) = \arctan\left[\frac{L_3}{L_2 \cot \alpha - L_3 / 2}\right]
\]

(2)

\[
\varphi_2 = \arctan\left(\frac{L_3}{L_6}\right) = \arctan\left[\frac{L_3}{L_2 \cot \alpha + L_3 / 2}\right]
\]

(3)
It is calculated that when the nose-tire turning angle is less than 13°, the theoretical turning angles of the steering body-tire on both sides don’t exceed 1°. It can be approximated that the steering body-tires haven’t participated in the turning process at this stage. Besides, the wide-body airplane such as A380, B747 adopt linear steering body-tire control strategy currently. After comprehensive consideration, modifying the theoretical turning angle mathematical relationship between nose-tire and steering body-tire turning angle, obtaining the “dissymmetric turning angle control strategy”, as shown in figure 5. At this point, the angle of nose-tire and steering body-tire satisfies the equation 4, 5. Since the inner steering body-tire turning angle is always larger than the outer under this control strategy, it is called "dissymmetric turning angle control strategy".

\[
\varphi_1 = \begin{cases}
-0.72 \times (\alpha - 42) & 50 \leq \alpha \leq 70 \\
-0.16 \times (\alpha - 13) & 13 < \alpha < 50 \\
0 & -13 \leq \alpha \leq 13 \\
-0.16 \times (\alpha + 13) & -50 < \alpha < -13 \\
-0.72 \times (\alpha + 42) & -70 \leq \alpha \leq -50 \\
-0.126 \times (\alpha - 13) & 13 \leq \alpha \leq 70 \\
0 & -13 < \alpha < 13 \\
-0.126 \times (\alpha + 13) & 70 \leq \alpha \leq -13
\end{cases}
\]

\(\varphi_2 \) – tire1, tire2 turning angle; \(\varphi_1 \) – tire13, tire14 turning angle; \(\varphi_2 \) – tire7, tire8 turning angle.

Comparing figure 5 & figure 4, figure 3 & figure 4, the optimized "dissymmetric turning angle control strategy" is much closer to the \(\alpha & \varphi_1, \varphi_2 \) theoretical relationship than the "symmetric turning angle control strategy". So the optimized "dissymmetric turning angle control strategy" is more suitable for ground turning control of the airplane.

3. Ground turning motion model

Based on the ground turning motion of the airplane, the following assumptions are made for the kinetic model: the airplane keeps the height of the gravity center unchanged during the turning process; and the fuselage is parallel to the ground [5]; using the trajectory of the airplane’s gravity center to represent the airplane’s trajectory; airplane ground turning is usually low-speed movements, the aerodynamic forces influence can be ignored [6]; ignoring the instantaneous center's own acceleration influence [7]; the multi-tire landing gear is simplified as a single tire [8].

Taking any moment of the airplane's ground turning as analysis scene, the airplane’s force situation is shown in figure 6. Establish a fixed ground coordinate system \(xoy \) and a dynamic coordinate system \(x'o'y' \).
Figure 6. Ground turning force analysis diagram.

F_E – Engine thrust, F_G – Head resistance, N_N – Lateral force of nose landing gear;

N_M – Lateral force of body landing gear, T_N – Friction force of nose landing gear;

T_M – Friction force of body landing gear, α – nose tire turning angle, o'–Airplane gravity center,

V_C – Velocity of airplane, L_B – Distance between body landing gear.

3.1. Analysis of airplane ground motion

The airplane's velocity along the x, y direction and angular velocity around the z axis is:

$$a_x = dV_x / dt = d^2 x / d^2 t = dV_C / dt \cdot \cos(\beta + \sigma) - V_C \cdot \sin(\beta + \sigma) \cdot (d\beta / dt + d\sigma / dt)$$

$$a_y = dV_y / dt = d^2 y / d^2 t = dV_C / dt \cdot \sin(\beta + \sigma) + V_C \cdot \cos(\beta + \sigma) \cdot (d\beta / dt + d\sigma / dt)$$

$$a_z = dw / dt = dV_C / dt \cdot \sin \beta / b + V_C \cos \beta / b \cdot d\beta / dt$$

3.2. Analysis of airplane ground turning forces

The airplane's resultant force along the x, y direction and torque around the z axis is:

$$F_x = F_E - F_G - T_M - N_N \sin \alpha - T_N \cos \alpha$$

$$F_y = N_M + N_N \cos \alpha - T_N \sin \alpha$$

$$M_z = N_N \cdot (a \cos \alpha - e) - T_N a \sin \alpha = -N_M b$$

3.3. Airplane ground motion equation

The airplane's motion equation along the x, y direction and around the z axis is:

$$F_x = F_x' \cos \sigma - F_y' \sin \sigma = ma_x$$

$$F_y = F_x' \sin \sigma + F_y' \cos \sigma = ma_y$$

$$M_z = Ja_z$$

Establish force balance equation along the $o'n$ direction:

$$mV_C^2 / \rho = N_M \cos \beta + N_N \cos(\alpha - \beta) - T_N \sin(\alpha - \beta) - (F_E - F_G - T_M) \sin \beta$$

In combination with the above equations, the lateral force of the body landing gear is:

$$N_M = -\frac{d\alpha}{dt} \frac{V_C \cos^2 \beta}{L \cos^2 \theta} - T_N \frac{g_3(\alpha)}{g_1(\alpha)} + (F_E - T_M) \frac{g_3(\alpha)}{g_1(\alpha)} + \left(\frac{mV_C^2 \cos \beta}{r} \right) \frac{g_4(\alpha)}{g_1(\alpha)}$$
\[
g_1(\alpha) = \frac{1}{J \cos \beta} \left[b + \frac{\cos \beta (a \cos \alpha - e)}{\cos (\alpha - \beta)} \right] + \frac{\sin \beta \cos \beta \sin \alpha}{bm \cos (\alpha - \beta)} + \frac{\sin^2 \beta}{bm^2 \cos^2 \beta} \left[1 - \frac{\cos \beta \cos \alpha}{\cos (\alpha - \beta)} \right]
\]

\[
g_2(\alpha) = \frac{1}{J \cos \beta} \left[a \sin \alpha - \frac{\sin (\alpha - \beta) (a \cos \alpha - e)}{\cos (\alpha - \beta)} \right] - \frac{\sin \beta}{bm} \left[\cos \alpha \cos (\alpha - \beta) + \sin (\alpha - \beta) \sin \alpha \right]
\]

\[
- \frac{\sin^2 \beta}{bm \cos^2 \beta} \left[\sin \alpha - \frac{\sin (\alpha - \beta) \cos \alpha}{\cos (\alpha - \beta)} \right]
\]

\[
g_3(\alpha) = \frac{1}{J \cos \beta} \left[\frac{\sin (\alpha - \beta) (a \cos \alpha - e)}{\cos (\alpha - \beta)} \right] - \frac{\sin \beta}{bm} \left[1 - \frac{\sin \beta \sin \alpha}{\cos (\alpha - \beta)} \right] - \frac{\sin^2 \beta}{bm \cos^2 \beta} \left[\sin \beta \cos \alpha \right]
\]

\[
g_4(\alpha) = \frac{1}{J \cos \beta} \left[\frac{(a \cos \alpha - e)}{\cos (\alpha - \beta)} \right] + \frac{\sin \beta}{bm \cos (\alpha - \beta)} - \frac{\sin^2 \beta}{bm \cos^2 \beta} \cos \alpha
\]

\[N_{M1} : N_{M2} = (r + L_B / 2) : (r - L_B / 2)
\]

3.4. Lateral force calculation of steering body-tire

The calculation method of each tire’s lateral force of multi-tire landing gear can be found in the aircraft design manual. To calculate the actual lateral force of steering body-tire, the steering body-tire turning angle influence need to be taken into account [9], as shown in figure 7. The calculation formula of the actual lateral force and friction force of the steering body-tire satisfies the equation 22, 23.

![Figure 7. Steering body tire force analysis diagram.](image)

\[
N_{M1} = N_m \cos \varphi_i + T_m \sin \varphi_i
\]

\[
T_{M1} = T_m \cos \varphi_i - N_m \sin \varphi_i
\]

4. Setting of ground turning conditions

According to literature review, to ensure that there is no side slip during ground turning, the velocity of a foreign trunk airplane during ground turning is controlled below \(18km/h \) \((5m/s)\), and a regional airplane is controlled below \(24km/h \) \((6.67m/s)\) [10]. In conclusion, the ground turning velocity of the airplane selected in this paper is \(3m/s \), \(5m/s \) and \(7m/s \), and the nose-tire turning angle’s range is \(20^\circ \) - \(70^\circ \) [11].

5. Comparative analysis of body landing gear tire lateral force

5.1. Comparative analysis of steering body-tire’s lateral force

The body landing gears include four steering body-tires, tire 7, tire 8 on the outer body landing gear, tire 13, tire 14 on the inner body landing gear. The lateral force calculation results are shown in the table 1, table 2.

According to table 1, the optimized "dissymmetric turning angle control strategy" can reduce the lateral force of tire 7, tire 8, and the lateral force reduction effect is more obvious when the airplane is
turning at large angles or high velocity.

According to table 2, the optimized "dissymmetric turning angle control strategy" can reduce the lateral force of tire 13, tire 14, and the lateral force reduction effect is more obvious when the airplane is turning at large angles or high velocity. Besides, the lateral force falling range of tire 13, tire 14 is bigger than tire 7, tire 8.

Table 1. Lateral force of tire 7, tire8.

Nose tire turning angle (°)	Velocity (m/s)	Lateral force of tire7 (N)	Falling range	Lateral force of tire8 (N)	Falling range		
	Symmetric	Dissymmetric		Symmetric	Dissymmetric		
20	3	6249	6098	2.41%	9328	9107	2.38%
30	3	9597	9359	2.48%	14285	13940	2.42%
40	3	13278	12943	2.52%	19743	19258	2.46%
50	3	17501	17046	2.60%	26012	25354	2.53%
60	3	22335	21720	2.75%	33199	32307	2.69%
70	3	26017	25232	3.02%	38658	37518	2.95%
70	5	72016	69785	3.10%	107655	104347	3.07%
70	7	141013	136614	3.12%	211152	204591	3.11%

In conclusion, the optimized "dissymmetric turning angle control strategy" can effectively reduce the lateral force of steering body-tires, and the lateral force reduction effect is more obvious when the airplane is turning at large angles or high velocity. It's beneficial to decrease the risk of side slip accidents and tire abrasion.

5.2. Comparative analysis of two sides steering body-tire’s lateral force difference

The lateral force difference calculation results are shown in table 3.

Table 3. Lateral force difference between two sides steering body-tire.

Nose-tire turning angle (°)	Velocity (m/s)	Symmetric	Dissymmetric	Falling range
20	3	2142	2098	2.08%
30	3	5394	5266	2.39%
40	3	11405	11042	3.18%
50	3	23034	22104	4.04%
60	3	48707	45580	6.42%
70	3	121953	107481	11.87%
70	5	343845	298157	13.29%
70	7	676683	584172	13.67%
According to table 3, the optimized "dissymmetric turning angle control strategy" can decrease the lateral force difference between the inner and outer steering body-tires, making the lateral force distribution more balanced, reducing the damage to landing gear structure caused by unbalanced lateral force and extend the service life of body landing gear.

6. Conclusion
This paper considers the dissymmetry of the inner and outer steering body-tire turning angles during the ground turning process, optimizes the steering body-tire control strategy from "symmetric turning angle control strategy" to "dissymmetric turning angle control strategy". By comparison:

(1) The optimized "dissymmetric turning angle control strategy" can effectively reduce the lateral force of body landing gear’s steering body-tires, decrease the risk of side slip accidents and tire abrasion.

(2) The optimized "dissymmetric turning angle control strategy" can decrease the lateral force difference between the inner and outer steering body-tires, making the lateral force distribution more balanced, reducing the damage to landing gear structure caused by unbalanced lateral force and extend the service life of body landing gear.

In conclusion, the optimized "dissymmetric turning angle control strategy" can improve the safety of airplane ground turning and provide reference for the study of wide-body airplane ground control method.

References
[1] Zhenhan B and Feng X 2014 Analysis and research on turning performance of landing gear of civil aircraft Technology Innovation and Application vol 2 pp 22-23.
[2] Yingbai Z, Yongqiang S and Zhaodian G 2015 Research on ground turning control method of large aircraft Aeronautical Science & Technology vol 26 pp 62-65
[3] Xiaowei C and Qinglong Y 2017 Study on lateral loads on airport pavement during B777 aircraft steady taxiing turn Journal of Highway and Transportation Research and Development vol 34 pp 9-15
[4] Kerem B 2008 Steering strategies for multi-axle vehicles Heavy Vehicle Systems vol 15 pp 208-232
[5] Zhe Z and Jianbo C 2017 A study of ground maneuver stability of multiple-Bogie undercarriage Machinery Design & Manufacture vol 8 pp 79-82
[6] Jing C, Huan C and Yue L 2017 Mechanical behavior study of aircraft ground turning motion Journal of Civil Aviation University of China vol 35 pp 41-45
[7] Wujia X, Hong N and Ming Z 2018 Analysis on Limiting Performance of Aircraft Steering Turning Mechanical Engineer vol 9 pp 1-4
[8] Zejiong G 2002 Kinematics and stability analysis of aircraft ground control Airplane Design Manual Beijing Aviation Industry Press PP vol 14 45-49
[9] Qing L, Zhi Z and Jinglian M 2016 Study of lateral loads on pavement from landing gears during the steady taxiing turn of aircraft China Civil Engineering Journal vol 49 pp 89-96
[10] Xiufen J, Kai L and Xiwei Y 2012 Research of side load factor for civil aircraft ground turning Advances in Aeronautical Science and Engineering vol 3 pp 317-321
[11] Shen L, Xiaohong Z, Zhijun H and Huaping P 2019 Study on the aircraft taxiing control during ground operations based on the rate of nose wheel deflection Advances in Aeronautical Science and Engineering vol 10 pp 283-288