Data Article

Molecular and morphological data supporting phylogenetic reconstruction of the genus *Goniothalamus* (Annonaceae), including a reassessment of previous infragenic classifications

Chin Cheung Tanga, Daniel C. Thomasa,b, Richard M.K. Saundersa,*

a School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
b Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569, Singapore

\section*{A R T I C L E I N F O}

\textbf{Article history:}

Received 29 June 2015
Accepted 30 June 2015
Available online 9 July 2015

\section*{A B S T R A C T}

Data is presented in support of a phylogenetic reconstruction of the species-rich early-divergent angiosperm genus *Goniothalamus* (Annonaceae) (Tang et al., Mol. Phylogenetic Evol., 2015) \cite{1}, inferred using chloroplast DNA (cpDNA) sequences. The data includes a list of primers for amplification and sequencing for nine cpDNA regions: \textit{atpB-rbcL}, \textit{matK}, \textit{ndhF}, \textit{psbA-trnH}, \textit{psbM-trnD}, \textit{rbcL}, \textit{trnL-F}, \textit{trnS-G}, and \textit{ycf1}, the voucher information and molecular data (GenBank accession numbers) of 67 ingroup *Goniothalamus* accessions and 14 outgroup accessions selected from across the tribe Annonaeae, and aligned data matrices for each gene region. We also present our Bayesian phylogenetic reconstructions for *Goniothalamus*, with information on previous infragenic classifications superimposed to enable an evaluation of monophyly, together with a taxon-character data matrix (with 15 morphological characters scored for 66 *Goniothalamus* species and seven other species from the tribe Annonaeae that are shown to be phylogenetically correlated).

\copyright 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- Data provides a summary of taxa and chloroplast DNA (cpDNA) regions and aligned data matrices that can be used for the phylogenetic reconstruction of *Goniothalamus* (Annonaceae tribe Annoneae) [1].
- Data provides a summary of morphological characters relevant to species in the tribe Annoneae that are important for broader morphological evolutionary studies.
- Comparisons between the resultant phylogeny for *Goniothalamus* species with previous infrageneric classifications [2,3] enable an assessment of congruence between the phylogeny and the infrageneric classifications.

1. Data, experimental design, materials and methods

1.1. Primer design and summary

Available sequences of nine chloroplast DNA (cpDNA) regions: *atpB-rbcL*, *matK*, *ndhF*, *psbA-trnH*, *psbM-trnD*, *rbcL*, *trnL-F*, *trnS-G*, and *ycf1* were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) for species of *Goniothalamus* and related species from Annonaceae tribe Annoneae. Alignment of each region was performed using MAFFT v.7.029b [4] with default settings and the automatic algorithm option. Each alignment was opened in Geneious v.5.4.3 [5] and “Design New Primer” analysis performed with the “Target Region” set as 300–400 bp and other settings kept as default using Primer3 [6,7]. The summary of primer sequences obtained from the analysis and from previous studies [8–18] are listed in Table 1.

1.2. DNA sequencing and upload to GenBank

A modified cetyl trimethyl ammonium bromide (CTAB) method [17,20,21] was used for whole genomic DNA. The extracted DNA was amplified using polymerase chain reaction (PCR). 6.4 μl ddH2O, 1.5 μl MgCl2 (25 mM), 0.25 μl dNTPs (10 mM), 0.375 μl of each forward and reverse primer (10 μM each, listed in Table 1), 0.5 μl bovine serum albumin (BSA, 10 mg/ml), 0.1 μl Flexi-taq DNA polymerase (Promega, Madison, Wisconsin, U.S.A.), and 0.5 μl DNA template were added for each reaction. The following PCR protocol was adopted: 5 min template denaturation at 95 °C followed by 38 cycles of denaturation at 95 °C for 1 min; primer annealing at 50 °C for 1 min; primer extension at 65 °C for 4 min; with the final extension set to 65 °C for 5 min. PCR products were purified, amplified and
Table 1
List of primers used for amplification and sequencing of nine DNA regions.

Region	Primer	Sequence (5′–3′)	Source
atpB-rbcL	atpB-rbcL-2	CCAACACTTGCTTTAGTCTCTTG	[14]
	atpB-rbcL-c1b	TGGGTAGATTTMTGGCCATTTTCACA	[1]; this study
	atpB-rbcL-c2a	TTGGCGCAACCACCATCTTGT	[1]; this study
	atpB-rbcL-c2b	AGTGGCAAGAGGTTGTTCCAC	[1]; this study
	atpB-rbcL-c3a	GGAATTCGCAATTTAACGAGCTCA	[1]; this study
	atpB-rbcL-c3b	AGCTCAATACGATGATTACCTCGG	[1]; this study
	atpB-rbcL-c4a	TGCGGCCAGAAGCTCAACGCC	[1]; this study
	atpB-rbcL-3	AGTGTTGACCCAGATCGAAGG	[10]
matK	matK-1a	TAATACCTCACCCCTCCATCTTCG	Designed by Y.C.F. Su
	matK-c1b	TGGTTGCGCCTGAACGAGATTTCCA	[1]; this study
	matK-c2a	CGGTGGATTAAATCGAGATTTCCA	[1]; this study
	matK-11b	RATCCTCCGTTCCGAGACCCACCAA	Designed by Y.C.F. Su
	matK-449F	AGAATGGAGAATCTTACCTTGC	[17]
	matK-824R	ATCCGCCCCAAATGTTGATTGATA	[17]
ndhF	ndhF-1F	ATGGAGAAGAATCTTACCTTGC	[9]
	ndhF-c1bR	CCTAAGATTCATTAATAAATACAA	[1]; this study
	ndhF-c2aF	TTGGGAACAGTGAAGGCTGCTGT	[1]; this study
	ndhF-689R	GGCATCRRGGAACATATATGAA	[16]
	ndhF-c1bF	TGGTTTATTGAAAGATCTTAGG	[1]; this study
	ndhF-c3bR	GCAGCCGAATGATCATATCCTCRG	[1]; this study
	ndhF-972F	GCTCAATTTGAAATTTGAGG	[9]
	ndhF-c4bR	AYCCCTGCCGAAATACCTTTGC	[1]; this study
	ndhF-c5bR	TGGTGGACTGCCGAGGATCGYRG	[1]; this study
	ndhF-LBCF	TCAATATCATGATGGGGGAAAG	[16]
	ndhF-c6bR	ATGCGGGTTGATAATTTTGYG	[1]; this study
	ndhF-c5bF	CYRCATAYCCCCATATGATCTGCA	[1]; this study
	ndhF-2210R	CCCCTATATGGATATACTCTTCC	[9]
psbA-trnH	psbA	GTTATGCTGATAGAACTTATATATGCTC	[19]
	psbAtmH-c1b	TGCCATCGTAAAGAGCAGYATGCA	[1]; this study
	psbAtmH-c2a	GGGTATGAAAGATCGATCTATGCA	[1]; this study
	trnH(ami-GUG)	CGGCCATGCTGATCCACATACC	[13]
psbM-trnD	psbM-F	AGCAATTTGACGAGATATTTTACTTCAT	[15]
	psbM-c1a	TTCCGAGATCTTAATCCCAATATGAAAWACT	[1]; this study
	psbM-c2a	TYSRATACGGAATTCYGCTGG	[1]; this study
	psbM-c1b	TGGAGCTGTGACGAGATCGYRG	[1]; this study
	psbM-c3a	CCTCCGAAAGARRRGGGCG	[1]; this study
	psbM-c2b	TCCAGGAAGAGGAGACTGACCA	[1]; this study
	psbM-c4a	ACTTGTTGCGCGCCGAGAATAC	[1]; this study
	psbM-c5a	AGGAGATCCAGATGCTATGCC	[1]; this study
	psbM-c4b1	AGAGAGAGAGAGAGAGAGGAAGG	[1]; this study
	psbM-c4b2	TGCAGCCCGGCTGATATGCGCG	[1]; this study
	trnD(GUC)-R	GCACATGATGATGATGATGATG	[15]
rbcL	rbcL-7F	GATTCAAAAGCTGATGTTAAGAAGT	[17]
	rbcL-c1b	GGAATGGAGAATCTTACCTGGG	[1]; this study
	rbcL-c2a	TCGAGGATCTTGTTCTGAGAGGA	[1]; this study
	rbcL-724R	TCGCAGATCTGATGCAGTACG	[11]
	rbcL-c3a	CGCCAAAGAATTTAGGCTAAGCG	[1]; this study
	rbcL-c3b	TGGCGTTCCGTTCTGTCCCGTT	[1]; this study
	rbcL-4a	AGACACGCCGCCAGAGCCTCCAA	[1]; this study
	rbcL-5a	ATCCCAGATGACTCGTACCAGAT	Designed by Y.C.F. Su
	rbcL-5b	ACGTCTCCGATCCGAGCTTGA	Designed by Y.C.F. Su
	rbcL-c7a	TGCAGGAGAGAGGACTGAGAAGG	[1]; this study
	rbcL-1381R	TCGAATCTGATGATGATGATG	[17]
trnS-G	trnS(GCU)	GCACATGATGATGATGATGATG	[12]
	trnS(GCU)	GCACATGATGATGATGATGATG	[12]
	trnS-G-c1b	ASYGTTCAAAACAGATTGTTTATCACA	[1]; this study
	trnS-G-c2a	TCAATCCCTGAGCTCACCCTCTGT	[1]; this study
	trnS-G-c2b	TGCTTACTGAGGTTCCGCTCC	[1]; this study
	trnS-G-c3a	CGGATCCTTCAGAATACCTTCTCTTG	[1]; this study
sequenced by BGI (Hong Kong, PR China) using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, California, U.S.A.), with sequencing run on an AB 3730 DNA Analyzer (Applied Biosystems). The sequences were uploaded to GenBank (https://www.ncbi.nlm.nih.gov/genbank/).

The summary of the taxon-sequence matrix showing the voucher information and molecular data (GenBank accession numbers) of 67 Goniothalamus accessions and 14 accessions in the tribe Annoneae of the family Annonaceae for the nine cpDNA regions is presented in Table 2.

1.3. Bayesian phylogenetic reconstructions for Goniothalamus

The sequences of the taxa listed in Table 2 were downloaded and aligned using MAFFT v.7.029b [4] with default settings and the automatic algorithm option. For manual editing and optimizing, an 11-bp inversion in psbA-trnH and a 16-bp region in ycf1 were excluded from the matrix in Geneious. The aligned and edited matrices of each region are presented as Supplementary material (Alignments 1–9, representing atpB-rbcL, matK, ndhF, psbA-trnH, psbM-trnD, rbcL, trnL-F, trnS-G, and ycf1).

For Bayesian phylogenetic reconstructions, MrBayes v.3.1.2 [22,23] was performed using the online portal in the CIPRES Science Gateway [24]. Data was partitioned according to DNA region identity. The best-fitting evolutionary models were selected using MrModeltest v.2.3 [25] under the Akaike Information Criterion (AIC [26]): GTR+Γ+I was selected for the psbA-trnH, psbM-F, rbcL, and ycf1 partitions; GTR+Γ was selected for the matK, ndhF, trnL-F, and trnS-G partitions; and the Hasegawa–Kishino–Yano Model with among-site rate variation modeled with a gamma distribution (HKY+Γ) for the atpB-rbcL partition. Four independent MCMCMC analyses were run in the Bayesian phylogenetic reconstructions, each with 5,000,000 generations, sampled every 1000th generation. Each run involved three incrementally heated and one cold Markov chain with a temperature parameter of 0.16. The parameters for substitution rates of nucleotide substitution models, character state frequencies and rate variation among sites were unlinked. In order to reduce the likelihood of stochastic entrapment in local tree length optima [27,28], the mean branch length prior was adjusted to 0.01 (brlenspr=unconstrained:exponential (100.0)); all other priors were kept as default. Convergence was assessed by checking that the standard deviation of split frequencies was < 0.005. Adequate effective sample sizes (ESS > 200) were checked in Tracer v.1.5 [29], which also showed whether the parameter samples were drawn from a unimodal and stationary distribution. The “Cumulative” and “Compare” functions of AWTY [30] were used to evaluate stationarity of posterior probabilities of splits within runs and convergence between different runs. 25% burn-in of initial samples of each run was excluded and a 50% majority-rule consensus tree (see Interactive Phylogenetic Tree 1) was calculated from the post-burn-in trees. A phylogeny with 66 Goniothalamus species was extracted from the resultant 50% majority-rule consensus tree. Previous infrageneric classifications [2,3] are superimposed onto the phylogeny to show congruence (Fig. 1).
Table 2
Summary of voucher information and GenBank accession numbers of the 81 accessions.

Taxon name	Origin	Voucher Information	GenBank accession numbers
Annona dumetorum	Dominican Republic	Abbott, J.R. 20966 (FLAS) 6 June 2006	GQ139704 – EU420856 – EU420838 – GU937352 – EU420856 –
Annona glabra L.	USA	Chatrou, L.W. 467 (U) 468 (U)	EF179246 – GQ139717 – EF179281 – AY841596 – AY841673 – EF179323 – GU937365 – AY841656 –
Annona herzogii	R. E. Fr.	Chatrou, L.W. et al. 347 (U) 512 (U)	EF179273 – DQ125062 – EF179308 – AY841656 – AY841734 – EF179350 – AY841656 –
Annona mucosa Jacq.		Abbott, J.R. 21032 (FLAS)	– GQ139705 – EU420870 – EU420852 – GU937353 – EU420870 –
Annona reticulata		Chatrou, L.W. et al. 290 (U) 509 (U)	– JQ586491 – EU420863 – EU420845 – EU420863 –
Annona squamosa L.		Nakkuntod, M. 45 (BCU)	– EU715064 – EU420865 – EU420847 – EU420865 –
Asimina longifolia Kral	USA	Weerasooriya, A.D. s.n. (MISS) 18201 (U)	EF179247 – AF543722 – EF179282 – AY743440 – AY743459 – EF179324 – AY743440 –
Asimina rugelii B.L.Rob.		Abbott, J.R. 22361 (FLAS)	– GQ139706 – JQ513887 – GQ139881 – GU937354 – JQ513887 –
Asimina reticulata		Chatrou, L.W. et al. 276 (U)	EF179252 – GQ139711 – AY218171 – AY743441 – AY743460 – EF179324 – AY743441 –
Disepalum platypetalum	Merr.	Takeuchi, W. & Sambas 18201	EF179257 – DQ125057 – EF179292 – – – – –
Disepalum pulchrum		Chan, R. 192 (FLAS)	– GQ139736 – JQ513888 – GQ139909 – GU937383 – JQ513888 –
Goniothalamus tapis Miq.	Thailand	Keßler, P.J.A. 3193 (L)	EF179262 – DQ125058 – EF179297 – AY841622 – AY841700 – EF179339 – AY841622 –
Goniothalamus amuyon	Philippines	Tung, C.C. 20100907 (HKU)	– – – – KMB18318 – KMB18567 – KMB18648 – KMB18728 – KMB18898 – KMB18916 – KMB18979 – KMB18839 – KMB18755 –
Goniothalamus andersonii		Anderson, J.R. 512956 (L)	KM818519 – KM818568 – KM818711 – KM818867 – KM818949 – KM818789 –
Goniothalamus angustifolius		Gillespie, J.W. 2198 (A)	– KM818569 – KM818632 – KM818732 – KM818878 – KM818937 – KM818983 – KM818797 –
Goniothalamus arvensis		Regalado, J. & Takeuchi, W. 1409 (L)	KM818520 – KM818570 – KM818640 – KM818706 – KM818868 – KM818918 – KM818791 –
Goniothalamus australis	Australia	Unknown collector 3178 (HKU)	KM818521 – KM818571 – KM818638 – KM818709 – KM818887 – KM818910 – KM818973 – KM818836 – KM818769 –
Goniothalamus borneensis	Borneo	Arbainsyah et al. AA1011 (L)	KM818522 – KM818572 – KM818673 – KM818893 – KM818952 – KM818826 – KM818747 –
Goniothalamus bracteosis		Clemens, J. & Clemens, M.S. 27619 (L)	– KM818573 – KM818730 – KM818906 – KM818967 – KM818796 –
Goniothalamus tapis		– – – – KM818717 – KM818927 – KM818994 – KM818810 –	

Note: Collection date for Annona glabra L. is 6 June 2006.
Species	Collectors	Collection Details	Country	Location	Date	Genbank Accessions
Goniothalamus calcaris	Mat-Salleh	Cultivated	India	Raghavan, R.S.	16 Feb 1963	KM818524 KM818575 KM818654 KM818692 KM818879 KM818912 – KM818799 KM818752
Goniothalamus calvicarpus	Craib	Cultivated	Papua New Guinea	Hartley, T.G.	15 Feb 1962	KM818525 KM818576 KM818663 KM818696 KM818869 KM818919 – KM818807 KM818757
Goniothalamus cardiopetalus	Hook. & Thomson	Cultivated	India	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/22 (HKU)	25 Jul 2004	KM818526 KM818577 KM818661 KM818678 KM818901 KM818926 KM818892 KM818831 KM818758
Goniothalamus cauliensis	Bân	Borneo	Java	Martati, T.	3 Jan 1984 – KM818578 – KM818736 KM818844 KM818915 – KM818780 –	
Goniothalamus costulatus	Miq.	Java	New Caledonia	Dumontet, V. & Poullain, C. 716 (HKU)	15 Jun 2006	– KM818580 – KM818729 KM818861 KM818954 – KM818840 –
Goniothalamus dumontetii	R.M.K. Saunders & Munzinger	Cultivated	Papua New Guinea	Beamann, J.H. 8184 (L)	3 Jan 1984 – KM818578 – KM818736 KM818844 KM818915 – KM818780 –	
Goniothalamus elegans	Ast	Thailand	Thailand	Nakkunthod, M. 40 (BCU)	28 Oct 2005	– KM818582 KM818639 KM818677 KM818882 KM818924 KM819003 KM818811 –
Goniothalamus elmeri	Merr.	Philippines	Philippines	Rosario et al. 11-014 (University of Santo Tomas Herbarium)	s.a.	– KM818582 KM818639 KM818677 KM818882 KM818924 KM819003 KM818811 –
Goniothalamus expansus	Craib	Thailand	Thailand	Kitamura, S. MN22 (BCU)	9 Jun 2004 – KM818583 KM818634 KM818714 KM818853 KM818931 KM818987 KM818829 –	
Goniothalamus fasciculatus	Boerl.	Borneo	Sri Lanka	Kefßler, P.J.A. et al. 2846 (HKU)	10 Apr 2000	KM818528 KM818584 KM818636 – KM818890 KM818950 – KM818805 –
Goniothalamus gardneri	Hook. & Thomson	Sri Lanka	Sri Lanka	Tillekaratne, H.I. G29 (HKU)	s.a.	KM818529 KM818585 KM818656 KM818704 KM818871 KM818923 KM819001 KM818784 KM818773
Goniothalamus giganteus	Hook. & Thomson	Cultivated	Indonesia	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/22 (HKU)	25 Jul 2004	KM818530 KM818586 KM818655 KM818698 KM818892 KM818963 KM818996 KM818837 KM818754
Goniothalamus grandiflorus	Boerl.	Papua New Guinea	Papua New Guinea	Takeuchi, W.N. 8771 (L)	11 Feb 1993	KM818531 KM818587 KM818637 KM818691 KM818851 KM818930 – KM818802 KM818770
Goniothalamus griffithii	Hook. & Thomson	Thailand	Thailand	Saunders, R.M.K. & Chalermglin, P. 04/30 (HKU)	28 Jul 2004	KM818532 KM818588 KM818651 KM818701 KM818894 KM818939 KM819000 KM818798 KM818748
Goniothalamus hookeri	Tiwhaites	Sri Lanka	Sri Lanka	Rattanayake, R.M.C.S. 100 (HKU)	10 Feb 2003	KM818533 KM818589 KM818657 KM818734 KM818872 KM818956 – KM818814 KM818774
Goniothalamus howii	Merr.	China	China	Wang, X.B. W2011003 (HUTB)	3 Aug 2011	KM818534 KM818590 – KM818689 KM818886 KM818938 KM818986 KM818833 KM818767
Goniothalamus imbricatus	Schef.	Papua New Guinea	Papua New Guinea	Bau, B. LAE89112 (LAE)	s.a.	KM818535 KM818591 – KM818722 KM818847 KM81946 KM818998 KM818806 KM818753
Goniothalamus kinabaluensis	81 ex Mat-Salleh	Borneo	Borneo	Vogel, E.F. de 8387 (L)	18 Oct 1986	KM818536 KM818592 KM818672 KM818684 KM818876 KM818935 – KM818787 KM818745
Taxon name	Origin	Voucher	Collection date	GenBank accession numbers	vouchr info	GenBank accession numbers
----------------------------	---------------------	--------------------------	-----------------	--------------------------	-------------	--------------------------
Goniothalamus laoticus	Cultivated	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/9 (HKU)	25 Jul 2004	KM818537 KM818593 KM818666 KM818699 KM818881 KM818959 KM818993 KM818808 KM818760	(Finet & Gagnep.) Bân	– KM818594 – KM818724 KM818902 KM818947 – KM818782 –
Goniothalamus loerzingii	Sumatra	Kostermans, A.J.G.H. 22015 (L)	13 Dec 1965	KM818538 KM818595 KM818643 KM818695 KM818873 KM818928 KM818995 KM818792 KM818776	R. M.K. Saunders	
Goniothalamus macranthus	Andamans	King’s collector 347 (L)	1884	– KM818594 – KM818601 – KM818735 – KM818969 – KM818790 –	Boerl.	
Goniothalamus macrophyllum	Cultivated	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/16 (HKU)	25 Jul 2004	KM818539 KM818596 KM818665 KM818688 KM818897 KM818940 KM819002 KM818843 KM818766	(Blume) Hook.f. & Thoms.	
Goniothalamus maevongensis	Thailand	Saunders, R.M.K., Nakkuntod, M. & Chalermglin, P. 04/35 (HKU)	29 Jul 2004	KM818540 KM818597 KM818659 KM818725 KM818888 KM818962 KM818977 KM818838 KM818746	R.M.K. Saunders & Chalermglin	
Goniothalamus majestatis	Sulawesi	McDonald, J.A. 3896 (L)	26 July 1993	KM818541 KM818598 – KM818713 KM818903 KM818958 – KM818788 KM818756	Kessler	
Goniothalamus malayanus	Cultivated	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/24 (HKU)	25 Jul 2004	KM818542 KM818599 KM818650 KM818718 KM818891 KM818914 KM819006 KM818835 KM818743	Hoek.f. & Thom.	
Goniothalamus megalocalyx	Borneo	Tang, C.C. et al. TCC117 (HKU)	11 Nov 2011	KM818543 KM818600 KM818645 KM818726 KM818885 KM818960 KM819007 KM818822 KM818763	I.M. Turner & R.M.K. Saunders	
Goniothalamus monospermus	Fiji	Smith, A.C. 5111 (L)	7 Jul-18 Sep 1947	– KM818601 – KM818735 – KM818969 – KM818790 –	(A.Gray) R. M.K. Saunders	
Goniothalamus montanus	Peninsular Malaysia	Soepadmo, E. & Suhaimi, M. 43 (L)	11 Nov 1989	KM818544 KM818602 KM818674 KM818710 KM818856 KM818932 – KM818813 –	J. Sinclair	
Goniothalamus obtusatus	New Caledonia	Veillon, J.M. 7591 (NOU)	25 Nov 1992	KM818545 KM818603 KM818660 KM818687 KM818883 KM818911 KM818981 KM818815 –	(Baill.) R.M.K. Saunders	
Goniothalamus palawanensis	Philippines	Tang, C.C. TCC12 (HKU)	31 May 2012	– KM818604 – KM818716 KM818855 KM818925 KM818976 KM818793 –	C.C. Tang & R.M.K. Saunders	
Goniothalamus parallelivenius	Borneo	Tang, C.C. et al. TCC50 (HKU)	16 May 2011	KM818546 KM818605 KM818635 KM818683 KM818880 KM818941 – KM818801 KM818765	Ridl.	
	Cultivated	Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/8 (HKU)	25 Jul 2004	KM818547 KM818606 KM818664 KM818723 KM818877 KM818936 – KM818795 KM818749	Cultivated Saunders, R.M.K., Su, Y.C.F. & Chalermglin, P. 04/8 (HKU)	
Species	Location	Authors & Collections	Date	Accession Numbers		
--	-------------------	-----------------------	------------	-------------------		
Goniothalamus repevensis	Sri Lanka	Pierre ex Finet & Gagnep.	16 Jul 2000	KM818548 KM818607 – KM818913 – KM818786 KM818742		
Goniothalamus reticulatus	Peninsular Malaysia	Thwaites	16 Feb 1991	KM818549 KM818608 – KM818739 KM818860 KM818951 KM818985 KM818830 –		
Goniothalamus rotundisepalus	Thailand	M.R. Hend.	2 Mar 1974	KM818550 KM818609 KM818649 KM818693 KM818857 KM818908 – KM818794 KM818759		
Goniothalamus rufus	Borneo	Keßler, P.J.A. et al. 2482 (L)	10 Mar 1999	KM818551 KM818610 – KM818727 KM818848 KM818943 – KM818819 –		
Goniothalamus sawtehii	Cultivated	E.C. Fisch.	21 Sep 1993 s.a.	KM818553 KM818612 KM818670 KM818712 KM818845 KM818929 KM818988 KM818781 KM818744		
Goniothalamus sesquipedalis	Peninsular Malaysia	India	19 Jul 2005 s.a.	KM818554 KM818613 KM818667 KM818719 KM818904 KM818907 KM818984 KM818825 KM818740		
Goniothalamus sp. nov. tcc10	Philippines	Tang, C.C. TCC10 (HKU)	31 May 2012	– KM818614 KM818675 KM818715 KM818864 KM818944 KM818980 KM818821 –		
Goniothalamus suaveolens 1 Becc.	Borneo	Atkins, S. 466 (L)	14 Jul 1993	– KM818615 – KM818681 KM818884 KM818968 KM818999 KM818818 –		
Goniothalamus suaveolens 2 Becc.				KM818556 KM818617 KM818662 KM818700 KM818866 KM818917 KM818990 KM818832 KM818761		
Goniothalamus tamirensis	Cultivated	Saunders, R.M.K., Su, Y.C.F. & 25 Jul Chalerrmin, P. 04/23 (HKU) 2004	31 May 2012	KM818557 KM818618 KM818641 KM818686 KM818899 KM818920 – KM818823 KM818771		
Goniothalamus tapioides	Borneo	Tang, C.C. et al. TCC51 (HKU)	16 May 2011	KM818558 KM818619 KM818633 KM818690 KM818854 KM818961 – KM818841 KM818750		
Goniothalamus tavoyensis	Cultivated	Saunders, R.M.K., Su, Y.C.F. & 25 Jul Chalerrmin, P. 04/11 (HKU) 2004	16 Aug 1974 s.a.	KM818559 KM818620 KM818669 KM818694 KM818889 KM818909 KM818974 KM818842 KM818741		
Goniothalamus thomsoni	Sri Lanka	Kostermans, A.J.G.H. 25485 (L)	31 Aug 1974	– KM818621 – KM818733 KM818875 KM818971 – KM818834 –		
Goniothalamus thwaitesii	India	Beddome, R.H. 299 (PDA)		KM818560 KM818622 KM818653 KM818703 KM818849 KM818922 – – KM818772		
Goniothalamus tomentosus	Peninsular Malaysia	T.C. FRI 3851 (L)	21 May 1967	KM818561 KM818623 – KM818738 KM818846 KM818964 – KM818783 –		
Goniothalamus tortilipetalus	Thailand	Nakkundot, S. 58 (HKU)	25 Nov 2005	– KM818624 KM818642 KM818708 KM818905 KM818948 – KM818828 –		
Taxon name	Origin	Voucher	Collection date	GenBank accession numbers		
---------------------------	-----------------	----------------------------------	-----------------	---		
Goniothalamus touranensis	Indochina	Clemens, J. & Clemens, M.S. 4187 (NY)	May-Jul 1927	KM818625 – KM818731 KM818870 KM818965 – KM818804 –		
Goniothalamus undulatus	Cultivated	Saunders, R.M.K., Su, Y.C.F. & Chalermgilg, P. 04/25 (HKU)	25 Jul 2004 – 24 May 1967	KM818562 KM818626 KM818652 KM818679 KM818896 KM818921 KM818978 KM818820 KM818777		
Goniothalamus uvaroides	Peninsular Malaysia	Kochummen, K.M. FR 2344 (L)	24 May 1967	– KM818627 KM818658 KM818685 KM818852 KM818966 KM818975 KM818827 –		
Goniothalamus velutinus	Borneo	Tang, C.C. TCC 46 (HKU)	16 May 2011	KM818563 KM818628 KM818644 KM818705 KM818900 KM818953 KM818989 KM818812 KM818764		
Goniothalamus woodii	Borneo	Shea, G. SAN 75202 (L)	18 Mar 1972	KM818564 KM818629 KM818668 KM818720 KM818862 KM818972 – KM818824 KM818778		
Goniothalamus wrayi	Peninsular Malaysia	Suppiah, T. FRI 28345 (L)	18 Jan 1979	KM818565 KM818630 KM818671 KM818721 KM818859 KM818957 – KM818803 KM818779		
Goniothalamus wynaadensis	India	Kramer, K.U. 6248 (L)	17 Dec 1977	KM818566 KM818631 – KM818697 KM818863 KM818970 KM818991 KM818816 KM818768		
Neostenanthera myristicifolia (Oliv.) Exell	Gabon	Wieringa, J. et al. 3566 (WAG)	–	EF179271 AC743860 EF179306 AC743448 AC743467 EF179348 – AC743448 –		
Boerlage (1899) Sections
- sect. Eu-Goniothalamus
- sect. Beccariodendron

Bân (1974)
- subgen. Truncatella
 - sect. Infundibilistigma
 - subsect. Polyspermi
 - sect. Infundibiliformes
 - sect. Truncatella
 - subsect. Multiseminales
 - subsect. Pauciseminales
- subgen. Goniothalamus
- sect. Goniothalamus
 - subsect. Goniothalamomyctus
 - subsect. Pleiospermi
 - sect. Longistigma
 - subsect. Longistigma

Fig. 1. Bayesian 50% majority-rule consensus tree of Goniothalamus species, generated from 9-partitioned dataset with all outgroups removed. Previous infrageneric classifications [2,3], published prior to the availability of molecular phylogenetic methods, are superimposed. Boerlage [2] recognized two sections, Eu-Goniothalamus (equivalent to the autonymic sect. Goniothalamus) and Beccariodendron, based on differences in ovule number per carpel. Bân [3] subsequently recognized two subgenera, Goniothalamus and Truncatella, based on differences in staminal connective shape; each of these subgenera were further divided into sections based on stigma and pseudostyle shape, and subsections based on the number of ovules per carpel. Branch length is proportional to the substitutions rate. Scale bar: 0.1 substitutions per site.
1.4. Taxon-character data matrix

Morphological characters including vegetative, floral, fruit and seed characters were assessed from living and herbarium material (BRUN, HKU, K, L, NY and US herbaria). A total of 14 vegetative, floral, fruit and seed characters were assessed from living and herbarium material, supplemented by species descriptions [31–53]. A summary of 14 characters of 66 *Goniothalamus* species and seven species in the tribe Annoneae are shown in Supplementary Table 1.

Acknowledgments

This research was supported by a grant from the Hong Kong Research Grants Council (HKU776713), awarded to RMKS and DCT. We are grateful to the curators of the following herbaria: E, BRUN, L, LAE, and SING for providing leaf materials. Additional leaf material and/or field collections were gratefully received from Grecebio Jonathan Alejandro, Joffre Haji Ali Ahmad, Billy Bau, David Burslem, Piya Chalermglin, Rosario Rubite, Leonardo Co, Vivian Fu, Maan Guzman, Hsieh Chang-Fu, Hou Sue Liang, Mark Hughes, Daniel Lagunzad, Thomas Magun, Joan Pereira, Sena Ratnayake, Haji Saidin Salleh, John Sugau, Danilo N. Tamdang, Erin Treiber, Wang Xuebing, George Weiblen, Tim Whitfeld, and Mahmud Yussof.

Appendix A. Supplementary Information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.06.021.

References

[1] C.C. Tang, D.C. Thomas, R.M.K. Saunders, Molecular phylogenetics of the species-rich angiosperm genus *Goniothalamus* (Annonaceae) inferred from nine chloroplast DNA regions: Synapomorphies and putative correlated evolutionary changes in fruit and seed morphology, Mol. Phylogenetics Evol. 92 (2015) 124–139.

[2] J.G. Boerlage, Notes sur les Annonaecées du Jardin Botanique de Buitenzorg, Icones Bogoriensis 1, 1899, 79–156+ pl. 26–50.

[3] N.T. Bân, On the taxonomy of the genus *Goniothalamus* (Blume) J.D. Hook. & Thomson (Annonaceae), 2, Bot. Žurn 59 (1974) 660–672.

[4] K. Katoh, K. Misawa, K. Muma, T. Miyata., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res. 30 (2002) 3059–3066.

[5] A.J. Drummond et al., Geneious, version 5.1, 2010. Available from: (http://www.geneious.com/).

[6] T. Koressaar, M. Remm, Enhancements and modifications of primer design program Primer3, Bioinformatics 23 (2007) 1289–1291.

[7] A.Untergrasser, I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, S.G. Rozen., Primer3—new capabilities and interfaces, Nucleic Acids Res. 40 (2012) e115.

[8] P. Taberlet, L. Gielly, G. Pautou, J. Bouvet, Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Mol. Biol. 17 (1991) 1105–1109.

[9] R.G. Olmstead, J.A. Sweere, Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae, Syst. Biol. 43 (1994) 467–481.

[10] S.B. Hoot, P.R. Crane, Inter-familial relationships in the Ranunculidae based on molecular systematics, in: U. Jensen, J.W. Kadereit (Eds.), Systematics and Evolution of the Ranunculiflorae, Springer, New York 1995, pp. 119–131.

[11] M.F. Fay, S.M. Swensen, M.W. Chase., Taxonomic affinities of *Medusagyne oppositifolia* (Medusagynaceae), Kew Bull. 52 (1997) 111–120.

[12] M. Hamilton, Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation, Mol. Ecol. 8 (1999) 521–523.

[13] I.A. Tate, B.B. Simpson, Paraphyly of *Tarasa* (Malvaceae) and diverse origins of the polyploid species, Syst. Bot. 28 (2003) 723–737.

[14] T. Scharshchkin, J.A. Doyle, Phylogeny and historical biogeography of *Anaxagorea* (Annonaceae) using morphology and non-coding chloroplast sequence data, Syst. Bot. 30 (2005) 712–735.

[15] J. Shaw, E.B. Lickey, J.T. Beck, S.B. Farmer, W. Liu, J. Miller, K.C. Siripun, C.T. Winder, E.E. Schilling, R.L. Small, The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot. 92 (2005) 142–166.

[16] R.H.J. Erkens, L.W. Chatrou, J.W. Maas, T. van der Niet, V. Savolainen., A rapid diversification of rainforest trees (*Guatteria; Annonaceae*) following dispersal from Central into South America, Mol. Phylogenetics Evol. 44 (2007) 399–411.
[17] Y.C.F. Su, G.J.D. Smith, R.M.K. Saunders, Phylogeny of the basal angiosperm genus *Pseuduvaria* (Annonaceae) inferred from five chloroplast DNA regions, with interpretation of morphological character evolution, Mol. Phylogenetics Evol. 48 (2008) 188–206.

[18] D.C. Thomas, S. Surveswaran, B. Xue, G. Sankowsky, J.B. Mols, P.J.A. Keßler, R.M.K. Saunders, Molecular phylogenetics and historical biogeography of the *Meiozyne-Fitzalaninia* clade (Annonaceae): generic paraply and late Miocene-Pliocene diversification in Australasia and the Pacific, Taxon 61 (2012) 559–575.

[19] F. Ronquist, J.P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics 19 (2003) 1572–1574.

[20] J.J. Doyle, J.L. Doyle., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19 (1987) 11–15.

[21] R.H.J. Erkens, H. Cross, J.W. Maas, K. Hoenselaar, L.W. Chatrou, Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA, Blumea 53 (2008) 407–428.

[22] J.P. Hueslenbeck, R. Ronquist, MrBAYES: Bayesian inference of phylogenetic trees, Bioinformatics 17 (2001) 754–755.

[23] J.A.A. Nylander, MrModeltest, version 2.3, 2004. Available from: [http://www.abc.se/~nylander].

[24] J.A. Nylander, J.C. Wilgenbusch, D.L. Warren, D.L. Swofford., AWTY (are we there yet?): a system for graphical exploration

[25] D.C. Marshall, Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees, Syst. Biol. 59 (2010) 145–161.

[26] H. Akaike, Likelihood of a model and information criteria, J. Econom. 16 (1981) 3–25.

[27] J.M. Brown, S.M. Hedtke, A.R. Lemmon, E.M. Lemmon, When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates, Syst. Biol. 59 (2010) 145–161.

[28] H. Akaike, Likelihood of a model and information criteria, J. Econom. 16 (1981) 3–25.

[29] J.A. Nylander, J.C. Wilgenbusch, D.L. Warren, D.L. Swofford, AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics, Bioinformatics 24 (2008) 581–583.

[30] J.D. Hooker, T. Thomson, Annonaceae, in: J.D. Hooker (Ed.), The Flora of British India, Vol. 1, L. Reeve, Ashford, Kent 1872, pp. 44–94.

[31] W.S. Kurz, Forest Flora of British Burma, Vol. 1, Superintendent of Government Printing, Calcutta, 1877.

[32] G. King, Materials for a flora of the Malay Peninsula. No. 4, J. Asiat. Soc. Bengal 2 Nat. Hist. 61 (1892) 1–130.

[33] G. King, The Annonaceae of British India, Ann. Roy. Bot. Gard. 4 (1893) 1–169. + pl. 1–220.

[34] A. Finet, F. Gagnepain, Contributions à l’étude de la flore de l’Asie orientale, Bull. Soc. Bot. France, Mém. IV 53 (1906) 55–170. + pl. 9–20.

[35] A. Finet, F. Gagnepain, Annonacées, in: H. Lecomte (Ed.), Flore Générale de l’Indo-Chine, Vol. 1, Masson, Paris 1907, pp. 42–123. + pl. 4–14.

[36] H.N. Ridley, The Flora of the Malay Peninsula, L. Reeve, London, 1922.

[37] H.N. Ridley, The Flora of the Malay Peninsula, L. Reeve, London, 1925.

[38] S. Ast., Anonacées, in: H. Humbert (Ed.), Flore Générale de l’Indo-Chine (Suppl. 1), Muséum National d’Histoire Naturelle, Paris 1938, pp. S59–S123.

[39] J. Sinclair., A revision of the Malayan Annonaceae, Gard. Bull. Singap. 14 (1955) 149–516.

[40] Y. Tsiang, P.-T. Li., Annonaceae, in: Y. Tsiang, P.-T. Li (Eds.), Flora Reipublicae Popularis Sinicae, Vol. 30, Science Press, Beijing 1979, pp. 10–175.

[41] P.-H. Hô, Cayco Vietnam: An Illustrated Flora of Vietnam, Published by the author, Montreal, 1991.

[42] G. King, The Annonaceae of British India, Ann. Roy. Bot. Gard. 4 (1893) 1–169. + pl. 1–220.

[43] P.H. Hô, Cayco Vietnam: An Illustrated Flora of Vietnam, Published by the author, Montreal, 1991.

[44] S.H. Yuan., Annonaceae, in: Z.W.J. Chen (Ed.), Flora Yunnanica, Vol. 5, Science Press, Beijing 1991, pp. 5–64.

[45] S. Ast., Anonacées, in: H. Humbert (Ed.), Flore Générale de l’Indo-Chine (Suppl. 1), Muséum National d’Histoire Naturelle, Paris 1938, pp. S59–S123.

[46] J. Sinclair., A revision of the Malayan Annonaceae, Gard. Bull. Singap. 14 (1955) 149–516.

[47] Y. Tsiang, P.-T. Li., Annonaceae, in: Y. Tsiang, P.-T. Li (Eds.), Flora Reipublicae Popularis Sinicae, Vol. 30, Science Press, Beijing 1979, pp. 10–175.

[48] P.H. Hô, Cayco Vietnam: An Illustrated Flora of Vietnam, Published by the author, Montreal, 1991.

[49] S.H. Yuan., Annonaceae, in: Z.W.J. Chen (Ed.), Flora Yunnanica, Vol. 5, Science Press, Beijing 1991, pp. 5–64.

[50] S. Ast., Anonacées, in: H. Humbert (Ed.), Flore Générale de l’Indo-Chine (Suppl. 1), Muséum National d’Histoire Naturelle, Paris 1938, pp. S59–S123.

[51] J. Sinclair., A revision of the Malayan Annonaceae, Gard. Bull. Singap. 14 (1955) 149–516.

[52] Y. Tsiang, P.-T. Li., Annonaceae, in: Y. Tsiang, P.-T. Li (Eds.), Flora Reipublicae Popularis Sinicae, Vol. 30, Science Press, Beijing 1979, pp. 10–175.