Research Article

Urban Fruit Quality Traceability Model Based on Smart Contract for Internet of Things

Cheng Xu1,2, Kai Chen1, Min Zuo2, Hongze Liu1,3, and Yanan Wu1,3

1Beijing Key Laboratory of Information Service Engineering, College of Robotics, Beijing Union University, China
2National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, China
3Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, China

Correspondence should be addressed to Hongze Liu; liuhongzhe@buu.edu.cn

Received 16 June 2021; Revised 9 July 2021; Accepted 22 July 2021; Published 15 August 2021

Academic Editor: Balakrishnan Nagaraj

Copyright © 2021 Cheng Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Internet of things, compared with the traditional traceability system, the existing system has difficulties in operation, data are easily lost, data are uncoordinated, standards are not unified, and so on. In this paper, based on the characteristics of blockchain, the traceability model of urban fruits is established to reduce the risk of counterfeit and shoddy urban fruits. The collected data is integrated into the chain for diversified display, providing different permissions and platforms for multiple roles. Blockchain and supporting intelligent hardware are used to realize the real record and tracking of the whole process of fruit. Improve the transparency and efficiency of supply chain, and reduce the supply chain cost. The experimental results show that the proposed algorithm model can be applied to the fruit service field and effectively improve the service level of smart city.

1. Introduction

The quality and safety of urban fruit in the Internet of things (IoT) have always been a hot topic of research. Agricultural product quality and safety traceability construction are an important trend and direction of agricultural product quality and safety supervision, as well as an important measure to promote agricultural quality in China [1]. The application of traceability in food has established and improved a set of food safety traceability system, from the production, processing, and sales to the consumer terminal, through the sharing of information through dedicated hardware equipment, to serve the final consumers [2]. Under the coverage of the whole process of the traceability system, once a problem occurs, the traceability system can quickly respond, obtain the information of the whole process of the production and circulation of the problem product, conduct troubleshooting and positioning [3], determine the root cause of the problem, and then solve the problem accordingly.

Previous incidents such as “tainted milk powder” and “gutter oil” have generally raised people’s awareness of quality and safety. “Seeing is believing” and “seeing is seeing” are the most assured [4]. Technological advances have made it possible to “see” food from where it is grown to where it is sold. Traceability is a production control system that can track products in a positive, reverse, and nondirectional manner. It is applicable to any product. At present, traceability technology can be divided into RFID traceability technology [5], two-dimensional code traceability technology [6], barcode traceability technology [7], and blockchain traceability technology [8]. Figure 1 shows the flowchart of the basic pattern of blockchain traceability.

Based on the traceability of blockchain and combined with big data [9], the traceability and security of commodities are greatly improved through in-depth combination of logistics management, production and manufacturing, anticounterfeiting of commodity traceability, and other fields. It provides solutions to problems such as data fraud tracing, “island of
This paper makes three main contributions. (1) Propose the traceability model architecture research and design based on blockchain for IoT. (2) Use a distributed ledger and blockchain to design an asymmetric encryption authorization model. (3) Design the consensus mechanism and intelligent contract model of blockchain.

The rest of the paper is organized as follows. In Section 2, it briefly introduces the research key and design framework. In Section 3, it describes in detail the proposed model design route, decentralized technology route, and consensus mechanism technology route based on blockchain. In Section 4, the traditional traceability model and the blockchain-based traceability model are compared in terms of architecture and performance. Finally, it has the conclusion of the paper in Section 6.

2. Related Works

2.1. The Traceability Model Architecture Based on Blockchain for IoT. The data layer of the urban fruit quality traceability model based on blockchain contains the underlying data block, which is derived from the planting of urban fruit producers, the transportation of urban fruit transport enterprises, the distribution of urban fruit by distribution enterprises, and the sales of urban fruit by retail enterprises. In addition, it also includes the encryption of these data, timestamp, and other basic data and basic algorithms. This ensures that every complete transaction record of the city fruit can be verified and audited [11].

The data verification mechanism of the network layer is to verify the identities of government departments, enterprises, and urban fruit chain organizations; distributed networking makes data distributed in different node databases. The data transmission mechanism makes the data transparent and public.

The consensus layer contains the various consensus algorithms of the network nodes such as the POS algorithm—the government’s commerce and finance departments form an alliance [12]. Relevant government agencies and urban fruit enterprises need to pass the review and verification of the alliance before they can enter the blockchain, thus ensuring the legitimacy and standardization of blockchain members.

At the contract level, national policies, legal provisions, and industry standards, such as the Agricultural Product Safety Law, the Quarantine Management Method of Entry Fruits, and the Provisional Methods for the Safety Supervision of Local Agricultural Products, are embedded into the blockchain in the form of smart contracts [13], which makes part of the supervision realize automation and greatly improves the supervision efficiency of government departments.

The application layer provides urban fruit information inquiry, quality tracking, and other services to consumers, urban fruit producers, transporters, distributors, retailers, and government departments who purchase urban fruits.

2.2. Distributed Ledger Based on Blockchain and Asymmetric Encryption Authorization in IoT. A distributed ledger means that transaction accounting is done by urban fruit suppliers, urban fruit transporters, urban fruit distributors, urban fruit retailers, and other local nodes [14]. And each node is a complete account. Different from the traditional distributed storage, each node of the blockchain stores the complete account data of urban fruits according to the blockchain structure, while the traditional distributed storage is to divide the relevant data of these urban fruits into several parts for storage according to certain rules. The security traceability system of urban fruits based on blockchain can ensure that no local node can record the ledger data of traded urban fruits separately, so as to avoid the centralization of the system and the control and tampering of system data by a single bookkeeper. In addition, a transaction chain is long and there are many accounting nodes [15]. Theoretically, unless all nodes are destroyed, the data of urban fruits will not be lost. The safety and reliability of urban fruit data can be guaranteed.

The city fruit quality traceability system based on blockchain highly encrypted the account identity information, and relevant information can only be accessed if the data owner of the city fruit is authorized, which ensures data security and personal privacy [16].
2.3. The Consensus Mechanism and Smart Contract. The consensus mechanism is an important component of blockchain technology. It completes the verification and confirmation of the transaction in a very short time through the voting of special nodes; for a transaction, if several nodes with unrelated interests can reach a consensus, we can think that the whole network can also reach a consensus. The purpose of the consensus mechanism in this paper is to reach a consensus among all the accounting nodes of urban fruits to determine the validity of records, to play the role of identification and tamperproofing [17]. There are two consensus mechanisms of urban fruit quality traceability systems based on blockchain. One is to compare the number of nodes of urban fruit, and the result agreed by more nodes is the final consensus result. It can also compare the computing power of urban fruit nodes or other characteristic quantities that can be compared by computers. The other is that all urban fruit nodes have the right to give priority to the consensus result. Only when the consensus result is agreed by other nodes can it become the final consensus result, thus avoiding the circulation of fake and inferior urban fruit in the market [18].

Smart contract is like the traditional paper contract. It is described by computer language and executed by computer. It is a computer protocol designed to spread, verify, or execute the contract in an informative way. It can trigger and execute the contract without the trust of a third party. Some legal provisions and government rules and regulations are set in advance in the system, such as the Agricultural Product Safety Law, the Quarantine Management Method of Entry Fruits, and the Interim Method of the Safety Supervision of Local Agricultural Products [19]. In case of any illegal event, the system can automatically identify and execute the relevant handling work, to improve the handling efficiency.

3. Urban Fruit Product Traceability System Design

The key problems of urban fruit quality traceability model based on blockchain mainly include the design of fruit traceability system architecture, the storage design of the urban fruit product traceability system, and the contract design of the urban fruit product traceability system.

3.1. Design of Fruit Traceability Architecture. Based on the blockchain system hierarchy, the operation rules of the fruit product quality and safety traceability system are superimposed. The system adopts service-oriented architecture (SOA) design and divides the system into an application layer, contract layer, consensus layer, network layer, and data layer. SOA is a method to design, develop, deploy, and manage discrete logical unit (service) models in the computing environment. It connects the different functional units of an application program through well-defined interfaces and contracts between these services. Interfaces are defined in a neutral way, and it is independent of the hardware platform, operating system, and programming language to realize the services and can interact in a unified and common way. Therefore, it is easier to maintain and has higher availability and better scalability. How to divide the urban fruit traceability system according to different functions should be based on the production database, logistics database, storage database, sales database, and after-sales service database data layer service support, which is the key problem to be solved. Tracing to the source of production, logistics, storage, sales, and consumption can be realized. The traceability system platform for urban fruits can meet the traceability needs of regulatory authorities, platform managers, affiliated enterprises, and consumers.

3.2. Storage Design of the Urban Fruit Product Traceability System. Since the current chain structure of blockchain only supports query through trading address or block address and the traceability data needs to interact with multiple sub-systems, how to design the way of combining blockchain with the database according to the data storage scheme is the key problem to be solved. Through blockchain transactions, the address is transferred to the database and the product ID is mapped to realize the backstage logical storage operation.

3.3. Contract Design of the Urban Fruit Product Traceability System. The smart contract mechanism of blockchain can convert textual contracts into computer transaction protocol codes and entrusts them with self-executing properties, thus minimizing the need for trusted intermediaries between trading parties and reducing the occurrence of malice and exceptions. How to design the protocol text such as urban fruit control and transaction payment embedded in the traceability system and how to automatically trigger the specified terms under the consensus and carry out rewards and punishments once the quality and transaction risks occur are the key problems to be solved. To achieve the purpose of saving the coordination cost and the unbalance of interests, it should distribute and punish the participants.

4. Fruit Quality Traceability Model Based on Blockchain

Through the design of the architecture, database storage, and intelligent contract of the city fruit product traceability system, we completed the framework construction of the model system and then introduced the specific implementation of the technical route.

4.1. Technical Route of Tracking Model Architecture Design. The system architecture of the food traceability system is divided into the front end and the back end. The design of the traceability model architecture is shown in Figure 2. The front end is a user interface. All participants in the supply chain, such as farms or farmers, consumers, food enterprises, supermarkets, and regulatory departments, can log in and access the food traceability system by scanning bar codes, QR codes, or RFID. The front end is based on Oracle’s open-source framework JET. JET uses REST to invoke a smart contract deployed in the back end on a blockchain cloud service (BCS).

The back end consists of smart contracts and blockchain infrastructure services. The back end uses Oracle’s BCS, a
comprehensive distributed ledger cloud platform that can be used to preconfigure a blockchain network, join other organizations, and deploy and run smart contracts to update and query the ledger.

Blockchain basic services mainly include node management, member services, sorting services, and ledger maintenance functions.

Node management: it maintains account status and manages chain code. In a Hyperledger Fabric network, peer means that each fabric peer instance in the network is responsible for receiving transaction requests and maintaining a consistent ledger. These instances may run in bare-metal machines, virtual machines, or even containers. The nodes communicate with each other through gRPC messages. Functional peers are divided into endorser, committer, ledger, chain code, and event, and several nodes form a P2P gossip network.

Member service: the member service is the member management service, which provides identity management, privacy, confidentiality, and auditability services for the entire blockchain network. Member management services through Public Key Infrastructure (PKI) or ZKP (Zero-knowledge Proof) and a decentralized consensus mechanism platform can restrict the ability of access nodes and clients, making nonlicensed blockchain become licensed blockchain.

Sort service: it is a communication service run by a set of sort nodes that provides atomic broadcast services that use pluggable trust engines (CFT or BFT) to sort transactions. The sort service collects a set of transactions into a preblock and distributes them to the commit node. The GOSSIP synchronization block is used between nodes. Common sorting algorithms include SOLO, Kafka, and SBFT.

Ledger maintenance: it continuously forms blocks of newly linked data into the ledger in chronological order and updates other copies of the ledger in the blockchain network.

4.2. Decentralization Technology Route. The main characteristics of using blockchain to achieve traceability are as follows: the essence of the business level is decentralization, while the essence of the technical level is dedatabase. To better understand this core feature, a comparison is made between the traditional traceability [20] approach using database technology and the blockchain-based traceability approach.

The database traceability scheme generally adopts a three-tier architecture, which is the database, the business logic layer, and the client. The application technology of the client and business logic layer is constantly evolving, but the underlying database has not changed much. With the increase in concurrent access and the need to improve the user experience, the response time is more and more demanding, and the caching layer is added, as shown in Figure 3. In the traditional database-based traceability scheme, the business logic layer and various applications on the client side all rely heavily on the underlying database. The database becomes the central and constraint bottleneck of this type of solution, and once it is tampered with or destroyed, the impact is global and catastrophic.

The difference between blockchain traceability and traditional database technology traceability is that the data is stored in a distributed ledger and read and write operation of the ledger is carried out through smart contract. The distributed ledger is a key value blockchain plus state library. A blockchain is a series of connected blocks, corresponding to files, written in an appended, immutable way, to record historical transactions that can take place at any node in the world’s network; the status library can be constantly updated, corresponding to the current state of the books. The fabric of Oracle and IBM blockchain cloud services default to level DB, which can be replaced with other key value databases such as CouchDB. Blocks and transactions can be generated at any network node in the world, and cryptography methods such as PKI, asymmetric key encryption algorithm, and digital certificate can be used to guarantee the nonrepudiation and privacy protection of transactions. This new traceability scheme is a decentralized distributed network platform. The blockchain-based technology traceability scheme is shown in Figure 3(b).
Participants in the food supply chain such as farms, ranches, farmers, food enterprises, inspection and supervision departments, and supermarkets input their responsible information into the blockchain with their private keys to generate account books. The blockchain network uses the consensus mechanism to ensure the consistency of distributed account books. With distributed ledgers, if a participant in the food supply chain is tampered with or has falsified information (transactions), it is easy to identify who tampered with or falsified the information (transactions) because copies of the ledger are not changed at other nodes scattered across the network.

4.3. The Technical Route of the Consensus Mechanism. In blockchain, the consensus algorithm is adopted to ensure the consistency of the ledger. From bitcoin in 2009 to Ethereum in 2014, the POW (Proof-Of-Work) consensus algorithm is adopted in the public chain, while the modular/pluggable consensus algorithm is adopted in the alliance chain such as the Super Ledger Fabric from 2017. Therefore, a clearly defined and implemented consensus algorithm is probably the most important feature for the security, extensibility, and maturity of each blockchain protocol. Choosing the right consensus algorithm is crucial to support mutual trust in a distributed business network.

The Byzantine fault tolerance (BFT) algorithm is a general term for solving the Byzantine general problem. Its characteristic is that even if some nodes have shortcomings or malicious behavior, the Byzantine fault tolerance system can continue to operate. In essence, Byzantine fault tolerance is that the minority is subordinate to the majority. The practical Byzantine fault tolerance mechanism will specify that one node in the system is the primary node (leading node) and the other nodes are the secondary node (alternate node). When the primary node fails, all the legitimate nodes in the system are qualified to upgrade from the secondary node to the primary node and follow the principle of minority subordinate to majority to ensure that the honest nodes can reach a consensus. To produce agricultural and sideline products from farms to pastures to dinner tables, the collapse of fault-tolerant and Byzantine fault-tolerant consensus algorithms may be even more necessary. Since the SOLO consensus model uses one node to verify all transactions, it is more suitable for the development network with relatively limited security requirements.

Currently, Hyperledger Fabric supports consensus-based voting in licensed networks. The combination of voting and licensing makes the network runtime far more efficient than many publicly owned Byzantine fault-tolerant networks. In our design of the food safety traceability system, because the cattle ranches in the food supply chain, farmers, food processing enterprises, inspection supervision department, distributors, and retailers are based on the identity of the participants, there is no unknown role throughout the supply chain, meaning that our food safety traceability system does not need to trouble the consensus algorithm, using super book Fabric providing out-of-the-box Apache Kafka and fault tolerance; it also supports collapse, namely, when there is a part of the network that is still functioning. Other consensus algorithms such as BFT-Smart and SBFT (simplified Byzantine fault tolerance) can also be considered to tolerate malicious actions in the consensus.

What is the operating mechanism of the traceability application designed and developed according to the system architecture in Figure 2? The following is a step-by-step description of the transaction flow diagram in Figure 4.

Here, E0, E1, and E2 are endorsement nodes; P3 and P4 are submission nodes; O is the sort node, and some sort nodes act as sort service; A, B, C, and D are smart contracts (chain codes in the Super Ledger Fabric). The transaction process is as follows:

1. The application initiates the transaction request

The client program submits a transaction request to smart contract (chain code) A. The smart contract must be endorsed by nodes {E0, E1, E2}.

The endorsement strategy is that E0, E1, and E2 must be signed; P3 and P4 do not need signature.

2. Endorsement node to execute the transaction proposal
E0, E1, and E2 execute transaction proposals separately, and these executions do not update the books. Each execution produces a set of data, called RW sets, which are read and written.

(3) The application receives the response

The RW sets are signed by each endorsement node \{E0, E1, E2\} and returned to the application.

(4) Sort transactions

The application submits the response data to the sort node as a transaction that needs to be sorted. Sorting is done concurrently, and the execution of other applications can be processed simultaneously.

(5) Distribute transactions

Sort nodes distribute transactions to all commit nodes \{E0, E1, E2, P3, P4\}. The sort service collects a set of transactions into a preblock and distributes them to the commit nodes \{E0, E1, E2, P3, P4\}. Gossip is used between nodes to synchronize each commit node in the block.

(6) Verify the transaction

Each commit node \{E0, E1, E2, P3, P4\} verifies the endorsement policy to check that the RW sets are still valid against the current state to prevent double flowers. The transaction is written into the ledger, and the status information of the valid transaction is updated in the status DB.

(7) Notify the transaction result

The submission nodes \{E0, E1, E2, P3, P4\} notify the transaction results to the application. The application can register messages that need to be notified of the success of the transaction and the addition of a block, and then, the peer to which the application is connected notifies other events accordingly.

5. Experimental Results and Analysis

The traditional urban fruit traceability system has a central database, which can manage the data centrally. In the process of each producer’s participation, the data is likely to be tampered and destroyed. After users submit access to the system platform, they request central database access. In the process of access, there is the risk of human operation modification, and the traceability data may be inaccurate. Manufacturers, processors, and sellers of urban fruit quality traceability models based on blockchain need to enter and query data, and the government or organization can view the data entry. Users access the blockchain through the private key, obtain the transaction copy of the account, and then trade with other participants. The transaction records are encrypted and stored in the account book copy together with the timestamp. Then, the transaction records are propagated to the surrounding nodes through a consensus algorithm to complete data synchronization. Distributed data storage reduces the possibility of network attacks and human tampering. A comparison of the two architectures is shown in Figure 5.

The traditional urban fruit traceability system is to establish a centralized database, while the urban fruit quality traceability model based on blockchain is to establish a node database account and establish a copy to distribute to each participant. Through the analysis of Table 1, compared with the urban fruit quality traceability model based on blockchain, the traditional urban fruit traceability system requires higher costs and longer initial certification time. It is difficult for the government to supervise the internal system data of the enterprise, and the data interaction process may lead to inaccurate data due to human participation.

Table 2 and Figure 6, respectively, compare the traceability efficiency and system performance of RFID traceability technology, two-dimensional code traceability, commodity bar traceability, and blockchain traceability.

RFID has been piloted in several industries, but there is no unified standard. The cost of a complete SET of RFID equipment is relatively high, and different traceability systems are not compatible, so only the electronic tags of this system can be identified. Overall, the Xinjiang agricultural product quality traceability system is still in the state of “fragmentation,” the traceability system incompatible problem is very serious, this is not only convenient for consumers to query trace information, and data security is low and is not conducive to government departments to use a real-time tracing system for food safety regulation, causing a serious waste of resources.
Because the cost of two-dimensional code is much cheaper than that of RFID, it is widely used in life. With high information density and large information capacity, two-dimensional code can be independently applied without relying on a database and communication network. Moreover, it can encode digital information such as picture, voice, signature, and fingerprint to complete the description of items, thus providing consumers with more comprehensive food traceability information. However, two-dimensional code recognition technology has disadvantages such as reproducible, easy to stain, and low data integrity and security. Barcodes are now the main source of traceability used in shopping malls. Since barcode is unique, it is easy to trace and manage each workshop, different production lines, and each production process in the whole production process. At the same time, managers can carry out statistics, analysis, and feedback on all the information, to realize the traceability management of the whole production process. The bar code error proofing system collects raw data, which ensures the timeliness and accuracy of production information and makes the production process knowable and controllable. By mastering all information of the production process, the
production technology can be adjusted in a planned way without worrying about the authenticity of the information. However, in the process of production and sales, there are still instances of obtaining improper benefits by forging bar codes, and the data security is low.

These technologies mitigate the harm caused by fake and inferior products to some extent, but in fact, they cannot fundamentally solve the problem of counterfeiting by copying and transferring anticounterfeit labels and cannot avoid centralized human operation. Recent scandals have further undermined its credibility. Compared with the traditional technology, the blockchain with the characteristics of decentralization and nontampering can fundamentally trace the anticounterfeiting source of commodities and effectively strengthen people’s trust in the market.

Figure 7 compares the traceability degree of the traditional fruit traceability system and the traceability model based on blockchain. A batch of fruit is marked and put on the market to ensure randomness of fruit circulation and eliminate human intervention as much as possible. Subsequently, the
two models were used to track the whole region. Due to the short time and low fruit fluidity at the beginning, the loss degree of both models remained high. As time goes by, the loss rate of the traditional traceability model containing natural losses will eventually stabilize at about 40%, while the loss rate of the traceability model based on the blockchain will eventually stabilize at about 13%. The loss rate of the traceability model based on the blockchain will be lower, and the traceability performance will be better.

6. Conclusion

In the Internet of things, according to the characteristics of the blockchain, the traceability model of urban fruits is created, and the architecture design based on the traceability model of blockchain is proposed. Based on studying the architecture design of the traceability model of blockchain, the traceability model of urban fruit quality based on blockchain was established. The traceability model is connected to each participant through the blockchain network. Each participant will establish a node, and each node will be a peer. At the same time, each participant will be displayed as the client and server and has the right to view and modify the node data. The asymmetric encryption algorithm adopted by blockchain ensures the security of users’ personal information. Farmers, farms and pastures, food enterprises, and regulatory agencies access the node through the decoding of the private key of the blockchain. The decentralized point-to-point network of blockchain solves the trust problem in the transaction process through distributed node management and automatic management of nodes by using a super ledger structure network. A blockchain network provides Internet of things account services. Each node has a copy of the ledger that is exactly consistent with the ledger data. The data information of participants’ transactions is encrypted by an encryption algorithm, and the corresponding timestamp is generated for each transaction to ensure that the changed data can be tracked and prevent forgery. The data information of each node is owned, managed, and supervised by all participants. Each transaction is a transaction, and the transaction is automatically executed by the smart contract code without the intervention of a legal person. The blockchain network also keeps the identity privacy of its members’ secret to ensure the information security of its participants. Different from the traditional clustering method, the distributed technology of blockchain is used to reconstruct, and the point-to-point dispersion of blockchain is used to make the transaction of participants more fair, just, and open and reduce the risk of urban fruit counterfeiting or low quality.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Engineering Laboratory for Agri-product Quality Traceability Project (No. AQT-2020-YB2), the Beijing Municipal Commission of Education Project (Nos. KM202111417001 and KM201911417001), the National Natural Science Foundation of China (Grant Nos. 61871039, 61906017, and 61802019), the Collaborative Innovation Center for Visual Intelligence (Grant No. CYXC2011), and the Academic Research Projects of Beijing Union University (Nos. ZK40202101, ZK120202104, ZB10202003, ZK80202001, and XP202015).

References

[1] Y. Yong and F. Wang, “Current status and prospects of blockchain technology development,” Acta Automatica Sinica, vol. 42, no. 4, pp. 481–494, 2016.
[2] N. Zhang, Y. Wang, C. Kang, J. Cheng, and D. He, “Research framework and typical applications blockchain technology in the energy Internet: a preliminary study of research framework and typical applications,” Proceedings of the Chinese Society of Electrical Engineering, vol. 36, no. 15, pp. 4011–4022, 2016.
[3] W. Hongwei, W. Hua, and Q. Zhiwei, “A method of agricultural product traceability combining qualitative analysis and online identification,” Modern Agricultural Science and Technology, vol. 19, pp. 223–227+231, 2020.
[4] C. Yuejing, Z. Ailian, N. Xie et al., “Agricultural product quality and safety traceability system based on blockchain and Internet of things,” Journal of Agricultural Big Data, vol. 2, no. 3, pp. 61–67, 2020.
[5] L. Zongmei, "Research on "blockchain + radio frequency identification technology" empowering food traceability platform," Food and Machinery, vol. 36, no. 9, pp. 102–107, 2020.
[6] H. Wang, L. Weiwei, H. Wu, B. Yanhong, and L. Junguang, "Design and implementation of a safety traceability system.
for poultry meat products based on two-dimensional codes,” *Computer Applications and Software*, vol. 37, no. 10, pp. 1–5, 2020.

[7] X. Luo, L. Qing, and Z. Xuefeng, “Application of solar cell barcode traceability system,” *Information System Engineering*, vol. 6, pp. 28-29, 2020.

[8] Z. Jing, “Research on the design and application scenario of a personal credit information sharing platform based on blockchain,” *Credit*, vol. 38, no. 10, pp. 49–55, 2020.

[9] Z. Nan, “Distributed ledger database and its impact under blockchain technology,” *Cooperative Economy and Technology*, vol. 20, pp. 151–154, 2020.

[10] X. Shen, P. Qingqi, and L. Xuefeng, “Overview of blockchain technology,” *Journal of Network and Information Security*, vol. 2, no. 11, pp. 11–20, 2016.

[11] E. Golden Julie, J. J. V. Nayahi, and N. Z. Jhanji, *Blockchain Technology: Fundamentals, Applications, and Case Studies*, CRC Press, 2020.

[12] X. Wang and K. Wang, “The application of blockchain technology in the field of financial management of e-commerce enterprises,” *China Business Forum*, vol. 20, pp. 30-31, 2020.

[13] L. Jie, J. Xiaohua, and P. Qingqi, “Preface to the topic of blockchain technology and progress,” *Journal of Xi’dian University*, vol. 47, no. 5, pp. 1-2, 2020.

[14] Y. Alabbasi, "Governance and legal framework of blockchain technology as a digital economic finance," *International Journal of Innovation in the Digital Economy (IJIDE)*, vol. 11, no. 4, 2020.

[15] D. Ping, "Design of data transmission control system based on blockchain and layered encryption technology," *Computer Measurement and Control*, vol. 28, no. 10, pp. 76–80, 2020.

[16] Y. Dong, D. Baoyong, Z. Guowei, J. Guoliang, and Z. Xicheng, "Quality and safety traceability system based on agricultural product supply chain," *Transactions of the Chinese Society of Agricultural Engineering*, vol. 32, no. 1, pp. 280–285, 2016.

[17] Y. Zhu, Z. Yi, D. Wang et al., "Blockchain evaluation method under network security level protection," *Journal of Engineering Science*, vol. 42, no. 10, pp. 1267–1285, 2020.

[18] C. Tingting, D. Yi, Z. Jinglun, L. Jie, and C. Wang, "Trusted data collection mechanism for blockchain traceability applications," *Cyberspace Security*, vol. 11, no. 9, pp. 1–8, 2020.

[19] Z. Zhiwei, G. Wang, J. Xu, and D. Xiaoyong, “Overview of blockchain data management technology,” *Journal of Software*, vol. 31, no. 9, pp. 2903–2925, 2020.

[20] X. Yang, Q. Jianping, S. Chuanheng, and J. Zengtao, "Research progress on key technologies of agricultural products and food quality and safety traceability systems," *Transactions of the Chinese Society of Agricultural Machinery*, vol. 45, no. 11, pp. 212–222, 2014.