Analysis of meteorological water availability and water demand in Cemoro River section area

A P Kusuma Aji¹, A D Purnomo¹, A Setyawan¹, B A Delweis¹, D R Fauzi¹, E S Astuti¹, F R Darmawan¹, M I Ahyar¹, N F Wijayanti¹, M Widyastuti¹.

¹Environmental Geography, Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Special Region of Yogyakarta, Indonesia.

*Corresponding email: nurisa.fajri.w@mail.ugm.ac.id

Abstract. About 69% of Cemoro River Section Area is dryland agricultures. Rain is the main source of irrigation for the dryland agricultures, but during dry season farmers use Cemoro River water for irrigation which is directly flowed using a water pump. The potential of water resources in Cemoro River Section Area is very important and determines agricultural products. The aim of this study is to analyze meteorological water availability and water demand in Cemoro River Section Area. Thornthwaite Mather method is used to calculate meteorological water, while the total water demand are calculated based on the domestic water demand, livestock water demand, and agricultural water demand. The result shows that discharge from 60% rain probability could meet total water demand stated as a surplus, but discharge from 80% rain probability could not meet total water demand and classified as deficit.

Keywords: meteorological water availability, water demand, Thornthwaite Mather

1. Introduction

Water resources is an important needs for all living things. Water is a daily need in human life for domestic, industrial, and agricultural. Water consumption in an area is not the same between one and another, it depends on water availability in each region. This condition affects humans in fulfilling water demand. One of strategic issue about water resources is the water balance between supply and demand, which the common problem is amount of water availability is not sufficient for water demand. Therefore, calculation and planning of water resources utilization is important to do as a mitigation effort to overcome its problem.

Amount of water availability depends on the hydrological process [1]. Meteorological aspects can be used to determine water availability. The availability of meteorological water is the availability of water from rain. Rainfall is the main determining factor, while other hydrological factors are topography, geology, soil, land cover and land use [2]. Changes in hydrological process and inappropriate use of water can affect water availability in an area.

Meteorological water availability can be presented as water balance graph. Water balance is a quantitative assessment of the components in hydrological process. Factors that affect water balance of a watershed are precipitation, inflow and outflow, groundwater inflow and outflow, evaporation, evapotranspiration, and changes in volume of water deposits [3]. Water balance is arranged based on climatological concepts and useful to know the occurrence of wet and dry periods in a region [4].
Based on the purpose of its use, water demand can be divided into domestic water demand, agricultural water demand, and livestock water demand [5]. Domestic water demand in an area is influenced by population, population activities, climate, and socio-economic conditions of the community. Agricultural water demand is calculated based on irrigation needs according to crop type and land use. Calculation of water demand for livestock is distinguished according to the types of livestock, specifically large ruminants (cattle/buffalo/horse), small ruminants (goat/sheep), and poultries.

Cemoro River Section Area is part of the Sangiran Ancient Site Area, which is a rural area and most of the population works in the agricultural sector. Potential of water resources are important because it determines agricultural product quantities. Dryland agriculture in Cemoro River Section Area has the main source of irrigation obtained from rain, but during the dry season farmers distribute water from Cemoro River for irrigating fields. In addition, there are many large chicken coops which need a lot of water every day. These conditions affect the consumption of daily water demand in accordance with the community’s lifestyle.

The importance of water supply for domestic, agricultural, and livestock water demand in Cemoro River Section is the main focus of this research. Inequality of water availability throughout the year can be compared with its water demand, so that it can be known the condition of water demand fulfilling in one year. Based on this background, the purpose of this study is to analyze meteorological water availability and water demand in Cemoro River Section Area.

2. Methods

2.1. Location and Time of Research

The Sangiran Site area is in Central Java Province with an area of 56 km². One of rivers flowing through this area is Cemoro River with upstream in Boyolali Regency. This study was conducted at Cemoro River Section Area which is limited by Sangiran Site Area in April 2019. This study site has an area of 19.81 km². The physiography of Cemoro River Section Area in the Sangiran Site Area included in the Solo Sub Zone [6]. Geological formations in the Cemoro River Section Area consist of Kabuh Formation, Kalibeng Formation, Notopuro Formation, Pucangan Formation, Alluvial Deposits and Mud Mountain Deposits. Study area is presented in figure 1.

Landuse in the Cemoro River Section is dominated by rice fields with a percentage of 68.89% of total area. Another landuse include pasture, plantations, settlements, rice fields, shrubs, and arable land. Agriculture that develops in the study area is dryland agriculture, which is irrigated by rain. The percentage of landuse in Cemoro River Section Area presented in Table 1.

2.2. Water Availability

Water availability was calculated with Thornthwaite Mather method. Calculation using this method can determine the quantity of water each month by considering the temperature, monthly heat index, and Water Holding Capacity (WHC) [7]. Required data include rainfall data, temperature data, median elevation data, surface material, and landuse. The data obtained from a relevant institution such as Badan Informasi Geospasial (BIG), Badan Pelestarian Manusia Purba Sangiran (BPSMPS), Balai Pengelolaan Sumber Daya Air (PSDA) Bengawan Solo, and Santa Barbara Climate Hazard Group, University of California.

2.2.1. Rainfall Data

The rainfall data used are from CHIRPS (Climate Hazards Group Infrared Precipitation with Station). The CHIRPS dataset is a climate database in the form of station rainfall and satellites covering the land of the earth. The advantage of this CHIRPS data is that high resolution reaches 0.05° while other global datasets generally have a resolution of 0.5° or lower [8]. CHIRPS rain data can be obtained through the web Climate Hazard Group (chg.geog.ucsb.edu/data/chrips). Rainfall data from CHIRPS was used in the form of monthly data from 2001 – 2016.
Sixteen-year data of rainfall was processed into rainfall pattern with isohyet method and two probability scenarios, 60% and 80%. Calculation of rainfall data begin with collecting monthly rainfall data for sixteen years. The data was processed using statistical analysis for probability of 80% and 60%. Result from statistical analysis then tested using chi square formula to determine the best rainfall data distribution. The process was repeated for all monthly rainfall data.

Table 1. Landuse of Cemoro River Section Area.

Landuse	Area (Ha)	Percentage (%)
Pasture	16.98	0.86
Plantation	263.13	13.26
Settlement	296.37	14.93
Rice Field	1367.05	68.89
Shrubs	9.58	0.48
Arable land	31.32	1.58
Total	**1984.43**	**100.00**

Rainfall data from statistical analysis was processed using isohyet to calculate average rainfall in study area. According to Triatmodjo [3] the isohyet method is used for mountainous regions with a large variety of elevations. This condition is suitable with the location of the study, which has various elevations. The equation of this method written in Equation 1.
\[CH = \frac{CH_1 + CH_2}{2 \times A_1} + \frac{CH_2 + CH_3}{2 \times A_2} + \ldots + \frac{CH_n + CH_{n+1}}{2 \times A_n} \]

where in:
- \(CH \) = Rainfall pattern
- \(CH_1 \) = First rainfall contour line
- \(A_1 \) = Area in first rainfall contour line

2.2.2. Monthly Average Temperature Data
Temperature data was calculated by converting temperature data from Waduk Cengklik Climatology Station. Equation 2 is used to converting temperature data. Data used include contour data, as input for calculating the median elevation of Cemoro River Section Area.

\[\Delta T = 0.006(z_1 - z_2) \]

where in:
- \(\Delta T \) = Temperature difference between the measurement station and location (°C)
- \(z_1 \) = Elevation of measuring station
- \(z_2 \) = Elevation of study area

2.2.3. Water Holding Capacity (WHC)
The WHC value was obtained by overlapping land use with soil material. Each type of soil texture has the value of the ability to store each water based on the Thornthwaite Mather classification in Darmanto [9]. Each texture and land use are multiplied broadly and averaged to get the WHC of Cemoro River Section Area.

2.2.4. Water Balance
Water balance is a quantitative assessment of the components in the hydrological cycle. Factors that affect the water balance of a region are precipitation, inflow and outflow, groundwater flow in and out, evaporation, evapotranspiration, and changes in the volume of water simulations [3]. Water balance is arranged based on climatological concepts and is useful to know the occurrence of wet periods (surplus water) and dry periods (lack of water) in a region in general [4]. The surplus condition is illustrated if the amount of rainfall exceeds the potential evapotranspiration value and changes in soil moisture, whereas if the rainfall value is smaller, then a deficit will occur. Systematically calculations are carried out according to Equation 3.

\[\Delta s = P - PE \]

where in:
- \(\Delta s \) = Surlus and Deficit Value
- \(P \) = Rainfall
- \(PE \) = Evapotranspiration
- \(\Delta s < 0, P < PE \), the value is deficit
- \(\Delta s < 0, P > PE \), the value is surplus

2.3. Water Demand
Calculation of water demand was divided into domestic, agricultural, and livestock needs. Domestic water demand was obtained from interviews with the community about water needs per day, then multiplied by total population in study area. Based on interviews, domestic water demand in study area is 106 liters/capita/day. Water demand for livestock and agriculture were determined by the type of animal livestock and the existing agricultural land, then calculated based on the standard value of SNI 19-6728.1-2002 regarding to water resources balance [10]. The amount of animal livestock in study area was obtained based on BPS (Badan Pusat Statistik) annual data in Gondangrejo, Kalijambé and Plupuh Districts. Water demand standards for each use can be seen in Table 2.
Table 2. Water Demand Standards for Each Utilization.

Utilization	Water Demand Standard	Unit
Domestic	106	liters/capita/day
Livestock		
- Cow/ Buffalo	40	liters/cow/day
- Sheep/ Goat	5	liters/sheep/day
- Poultry	0.6	liters/poultry/day
Agriculture (rice field)	1	liters/sec/Ha

3. Results and Discussions

3.1. Rainfall Pattern

Rainfall pattern in Cemoro River Section Area was calculated using sixteen years of rainfall data (2001 - 2016) obtained from CHIRPS with two probabilities scenarios, 60% and 80%. The probability of 60% has a rainfall value that is greater than the probability of 80%, but the rainfall event with a probability of 60% has less frequent than the probability of rain events 80%. The annual rainfall potential at the Cemoro River Section Area with a probability of 60% is 2162.34 mm/year, while the probability of 80% is 1726.98 mm/year. Table 3 shows the results of rainfall pattern calculations using Isohyet method.

Table 3. Rainfall in Cemoro River Section Area

Month	P60 (mm/month)	P80 (mm/month)
Jan	297.72	256.17
Feb	328.61	288.82
Mar	308.21	268.14
Apr	206.04	161.57
May	133.83	95.94
Jun	93.02	34.65
Jul	36.91	21.83
Agt	15.88	11.25
Sep	35.55	24.89
Oct	110.41	59.13
Nov	279.1	235.43
Dec	317.05	269.17

3.2. Evapotranspiration

Monthly evapotranspiration was calculated using the Thornthwaite Mather method. The input of this method is temperature data from Waduk Cengklik Climatology Station. The average monthly temperature at Waduk Cengklik Climatology Station was converted into temperature data of Cemoro River Section Area using Mock formulation. Temperature data and evapotranspiration values of Cemoro River Section are shown in Table 3.

Evapotranspiration in Cemoro River Section Area varies every month. Based on Table 3, it shows that evapotranspiration value is directly proportional to the temperature value. The highest evapotranspiration rate occurred in October, where the temperature of the month was also the highest among other months. The evapotranspiration value in the two scenarios used has the same amount because the data used in the calculation is temperature data.

3.3. Water Holding Capacity
The WHC value was calculated by overlaying texture and landuse data. The value of WHC in Cemoro River Section is 184. It means that the ability of the Cemoro River Section Area to store water is 184 mm. Landuse in parts of the Cemoro River area affects the value of the WHC. The landuse percentage in Cemoro River Section Area shows in Table 1.

The landuse in Cemoro River Section which is dominated by rice fields influences the value of WHC. The rice field landuse covers 68% of the total landuse in Cemoro River Section. Settlements that cover 14% of landuse also affect the value of the WHC, considering the value of WHC in the study area, it can be concluded that the study area has good ability in holding water.

WHC in settlements area is 0 because the land is unable to infiltrate water. The plantation landuse covers 13% of the total landuse in the Cemoro River Section Area. Plantations are generally able to infiltrate water so WHC values are higher. However, there are also plantation with a loam soil texture that has a lower ability to infiltrate water.

3.4. Water Balance
The results of data on rainfall, evapotranspiration, and WHC processed into water balance data with the final result are surplus and deficit period. As known in Figure 2 and 2, the water balance at 60% probability and 80% probability have a surplus and deficit period in the same months. The surplus period occurs in January, February, March, April, November and December, while the deficit period is from May to October. The surplus value at a probability of 60% is higher than the probability of 80% because it influenced by a higher probability of 60% rainfall.

Month	Average Temperature of Waduk Cengklik Clymatology Station	Average Temperature of Cemoro River Section	Evapotranspiration
Jan	25.9	25.9	137.1
Feb	26.2	26.2	127.4
Mar	26.2	26.2	137.8
Apr	26.7	26.7	135.4
May	27.4	27.4	150.7
Jun	26.6	26.6	133.1
Jul	26.2	26.3	134.1
Agt	25.9	25.9	130.6
Sep	27.3	27.4	147.2
Oct	27.5	27.5	157.3
Nov	27.1	27.1	152.0
Dec	26.8	26.8	145.5

3.5. Direct Runoff (DRO)
Direct runoff for every month was calculated with a principal that 50% of the surplus in each month would be stored and issued in the following month. DRO from 2 probabilities produces different values. DRO from 80% rain probability produces smaller amount than DRO from 60% rain probability. Annual DRO from 80% rain probability is 800.26 mm, while 60% rain probability is 1116.38 mm. Values of DRO for each probability shown in Table 4 and Table 5.
Value of DRO in each month for two probabilities is different. The month with higher precipitation doesn’t always have a higher DRO; it influenced by the storage of 50% water from the previous month that issued together with the surplus from the following month. Scenario with 60% probability produces DRO for more than 100 mm in February, March, April, May, and December. While the probability of 80% presents high DRO in February, March, April, and December, values of DRO will be used to calculate discharge.

Table 5. Direct Runoff of 60% Rain Probability in Cemoro River Section Area

	Jan	Feb	Mar	Apr	May	Jun	Jul	Agt	Sept	Oct	Nov	Dec
S	160.66	201.21	170.37	70.67	0.00	0.00	0.00	0.00	0.00	0.00	127.12	171.57
0.5	80.33	100.61	85.18	35.34	0.00	0.00	0.00	0.00	0.00	0.00	63.56	85.78
0.5	80.33	100.61	85.18	35.34	0.00	0.00	0.00	0.00	0.00	0.00	63.56	85.78
0.5	40.16	50.30	42.59	17.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	20.08	25.15	21.30	8.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.6. Discharge

Discharge calculated from the value of annual DRO multiplied by total area from the Cemoro River Section Area. It assumed that precipitation for each month would flow 50% and the rest 50% is infiltrated and will flow in the following month. Discharge of 60% rain probability is 22.125.353 m³/year and 15.860.125 m³/year for 80% rain probability. Table 6 shows monthly discharge for each probability. The probability of 60% produces higher discharge as precipitation in this probability is higher.

Precipitation is the main input of the discharge

Table 6. Direct Runoff of 80% Rain Probability in Cemoro River Section Area

Jan	Feb	Mar	Apr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dec
S	119.11	161.43	130.29	26.20	0.00	0.00	0.00	0.00	0.00	83.45	123.68
0.5	59.55	80.71	65.15	13.10	0.00	0.00	0.00	0.00	0.00	41.73	61.84
59.55	80.71	65.15	13.10	0.00	0.00	0.00	0.00	0.00	0.00	41.73	61.84
29.78	40.36	32.57	6.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14.89	20.18	16.29	3.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.44	10.09	8.14	1.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.72	5.04	4.07	0.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.86	2.52	2.04	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.93	1.26	1.02	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.47	0.63	0.51	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.32	0.25	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.12	0.16	0.06	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ro	59.55	140.27	175.64	133.49	73.30	36.65	18.32	9.16	4.58	2.29	42.87
Total	800.26										

3.7. Water Demand

Domestic water demand was calculated from the total population in Cemoro River Section Area. There are nine villages in this area; Jatikuwung, Rejosari, Wonoasari, Dayu, Krendawahanohono, Krikilan, Bukuran, Ngebung, and Jembangan. Water needs for domestic use were calculated through an interview with 196 respondents from all villages, without considering the population who use PAM (Perusahaan Air Minum) services. Total domestic water demand in a year is 458.631 m³. The difference in water needs for domestic use is caused by water supply, consumption, and economic condition. People in villages...
use various water source to fulfil their needs. Available water sources in communities are well, spring, and PAM (Perusahaan Air Minum)

Table 7. Monthly Discharge in Cemoro River Section Area

Month	Discharge (m³/month)	P60	P80
Jan	1.592.020	1.180.280	
Feb	3.585.906	2.779.904	
Mar	4.478.118	3.480.876	
Apr	3.783.487	2.645.636	
May	2.241.902	1.452.640	
Jun	1.120.951	726.320	
Jul	560.475	363.160	
Agt	280.237	181.580	
Sep	140.118	90.790	
Oct	70.059	45.395	
Nov	1.294.732	849.654	
Dec	2.977.342	2.063.887	
Total (m³/year)	22.125.353	15.860.125	

Agricultural land covers 69% of total landuse in Cemoro River Section Area. Water demand for agriculture was calculated for rice field irrigation. Rice field covers 1.369,19 Ha of the total area. The result shows that water needs for agricultural use are 21.233.127 m³/year (Table 9). Meanwhile, water demand for livestock are 37.936 m³/year (Table 10). Based on the calculation of water demand for domestic, agriculture, and livestock, the total water demand in Cemoro River Section Area is 21.729.694 m³/year.

Table 8. Agriculture Water Demand in Cemoro River Section Area

Village	Area (Ha)	Water Use Period in a Year (day)	Water Demand (lt/sec/Ha)	Total (liter/year)
Jatikuwung	7.75	180	1	120.600.189
Rejosari	244.21			3.798.000.988
Wonosari	186.01			2.892.785.078
Dayu	442.48			6.881.447.947
Krendowahono	53.70	180	1	835.118.441
Krikilan	186.08			2.893.921.091
Bukuran	120.74			1.877.788.708
Ngebung	14.44			224.513.914
Jembangan	109.89			1.708.950.752
Total				21.233.127.113
Total (m³/year)				21.233.127

Table 9. Livestock Water Demand in Cemoro River Section Area

Village	Number of livestock	Water Demand (lt/year)	Total (liter/year)				
	Cow	Goat	Poultry	Cow	Goat	Poultry	
Jatikuwung	16	14	1.948	232.940	25.309	426.685	684.934
Rejosari 151 178 11.028 2.197.349 324.029 2.415.078 4.936.456
Wonosari 162 213 8.368 2.367.988 388.400 1.832.654 4.589.042
Dayu 19 18 5.617 281.550 32.261 1.230.068 1.543.879
Krendowahono 140 111 7.552 2.044.288 202.989 1.653.973 3.901.250
Krikilan 193 489 22.638 2.811.083 893.186 4.957.713 8.661.982
Bukuran 272 273 3.323 3.971.695 498.860 727.760 5.198.315
Ngebung 51 100 508 748.974 181.661 111.159 1.041.795
Jembangan 192 233 18.966 2.800.417 424.473 4.153.547 7.378.436
Total
Total (m³/year) 37.936.089

Rain Probability	Runoff Volume (m³/year)	Total Water Demand (m³/year)
60%	25,000,000	20,000,000
80%	15,000,000	10,000,000

Figure 4. Comparison between Water Supply and Water Demand in Cemoro River Section Area

4. Conclusion
Water demand consists of domestic, agricultural and livestock needs. Calculation results show that total water demand in Cemoro River Section Area is 21.729.694 m³/year. Water supply from discharge with 60% rain probability can meet water demand in Cemoro River Section Area, while the discharge from 80% rain probability cannot meet the water demand there. Discharge from 60% rain probability is 22.125.353 m³/year. Agriculture is sector that needs the most water every year for irrigating rice fields.

Acknowledgement
We would like to thank Badan Pelestarian Situs Manusia Purba Sangiran (BPSMPS) for supporting our research and providing data also a place to stay when conducting the research.

References
[1] Sharda V N, Ojasvi P, Pradeep D and Shiv O P 2009 Scenario-based Assessment and Management of Water Resource in Mid Himalayan Micro-watersheds with Limited Data Availability Hydrological Sciences Journal pp 1018-1034
[2] Sutikno, S 1981 Pattern of Water Resources Utilization for Domestic Purpose on Srayu River Basin. Disertasi (Yogyakarta: Universitas Gadjah Mada)
[3] Triatmodjo B 2010 Hidrologi Terapan (Yogyakarta: Beta Offset)
[4] Zulkarnaini 1995 Konservasi Sumberdaya Tanah dan Air (Kalam Mulia: Bengkulu)
[5] Susilah S 2013 Studi Analisa Kapasitas Debit Terhadap Kebutuhan Air Bersih Proyeksi Tahun 2009 – 2014 Pada IPA Bantuan Oxfam (PDAM Tirta Mon Pase) Kabupaten Aceh Utara. Teras Jurnal, Vol.3 chapter 3 pp 23-28

[6] Bemmelen V 1949 The Geology of Indonesia Vol IA General Geology of Indonesia and Adjacent Archipelagoes The Hague: Sole Agents: Martinys Nijhoff

[7] Purnama I L S, Trijuni S, Hanafi F, Aulia T and Razali R 2012 Analisis Neraca air di DAS Kupang dan Sengkarang (Yogyakarta: Percetakan Pohon Cahaya)

[8] Tapiador F J, Turk F J, Petersen W, Hou A Y, Garcia-ortega E, Machado L A T, Castro M De 2012 Global precipitation measurement : Methods , datasets and applications Atmospheric Research pp 104–105 pp 70–9

[9] Darmanto D 1996 Hydrological Aspect of Land Use, Lecture Note, GMU (Bakosurtanal, Yogyakarta)

[10] Standar Nasional Indonesia 2002 Penyusunan neraca sumber daya – Bagian 1: Sumber Daya Air Spasial