About the embedding of one dimensional cellular automata into hyperbolic cellular automata

Maurice Margenstern
Université Paul Verlaine – Metz, IUT de Metz,
LITA EA 3097, UFR MIM,
Campus du Saulcy,
57045 METZ Cédex 1, FRANCE
Web page: http://www.lita.sciences.univ-metz.fr/~margens

Abstract — In this paper, we look at two ways to implement one-dimensional cellular automata into hyperbolic cellular automata in three contexts: the pentagrid, the heptagrid and the dodecagrid, these tilings being classically denoted by \{5, 4\}, \{7, 3\} and \{5, 3, 4\} respectively.

Key words: cellular automata, weak universality, hyperbolic spaces, tilings.

1 Introduction

In this paper, we look at the possibility to embed one-dimensional cellular automata, 1D- for short, into hyperbolic cellular automata in the pentagrid, the heptagrid or the dodecagrid which are denoted by \{5, 4\}, \{7, 3\} and \{5, 3, 4\} respectively. We consider 1D-cellular automata which are deterministic and whose number of cells is infinite.

First, we shall prove a general theorem, and then we shall try to strengthen it at the price of a restriction on the set of cellular automata which we wish to embed in the case of the pentagrid.

The first theorem says:

Theorem 1 There is a uniform algorithm to transform a deterministic 1D-cellular automaton with \(n\) states into a deterministic cellular automaton in the pentagrid, the heptagrid or the dodecagrid with, in each case, \(n+1\) states. Moreover, the cellular automaton obtained by the algorithm is rotation invariant.

Later on, as we consider deterministic cellular automata only, we drop this precision. This theorem has a lot of corollaries, in particular we get this one, about weak universality:

Corollary 1 There is a weakly universal cellular automaton in the pentagrid, in the heptagrid and in the dodecagrid which is weakly universal and which has three states exactly, one state being the quiescent state. Moreover, the cellular automaton is rotation invariant.

We prove Theorem 1 and Corollary 1 in Section 2. In particular, we remind the notion of rotation invariance, especially for the 3D case. In Section 3, we
strengthen the results, but this needs a restriction on the cellular automata under consideration in the case of the pentagrid.

2 Proof of Theorem 1 and its corollary

The idea of theorem 1 is very simple. Consider a one-dimensional cellular automaton A. The support of the cells of A is transported into a structure of the hyperbolic grid which we consider as a line of tiles. In each one of the three tilings which we shall consider, we define the line of tiles in a specific way. We examine these case, one after the other.

2.1 In the pentagrid

In the case of the pentagrid, it is the set of cells such that one side of the cells is supported by the same line of the hyperbolic plane which we assume to be a line of the tiling, call it the guideline of the implementation. It is a line supported by a side of a cell fixed once for all, see Figure 1. In this figure, the line is represented by the yellow cells along the guideline. Note that a yellow cell has exactly two yellow neighbours. The cells are generated by the shift along the guideline which transforms one of the neighbours of the cell into the cell itself.

![Figure 1](image-url)

Figure 1 Implementation of a cellular automaton in the pentagrid. The yellow cells represent the line of tiles used for the 1D-CA. The blue cells represent the cells which receive the new state.
In the figure, the yellow colour is assumed to represent the \(n \) states of the original automaton. The blue cells represent the additional state which is different from the \(n \) original ones.

In the figure, there are three hues of blue which allow us to represent the tree structure of the tiling. These different hues represent the same state.

From the figure, it is plain that we have the following situation: yellow cells have exactly two yellow cells among their neighbours, the cell itself not being taken into account. A blue cell has at most one yellow cell in its neighbourhood. Accordingly, this difference is enough to define the implementation of the rules in the pentagrid.

Denote the format of a rule by \(\eta_0 \eta_1 \ldots \eta_5 \eta_0 \) where \(\eta_0 \) is the current state of the cell, \(\eta_i \) is the current state of neighbour \(i \) of the cell and \(\eta_0 \) is the new state of the cell, obtained after the rule was applied. We assume that the rules are rotation invariant. This means that if \(\pi \) is a circular permutation on \(\{1, 5\} \) and if \(\eta_0 \eta_1 \ldots \eta_5 \eta_0 \) is a rule of the automaton, \(\eta_0 \eta_{\pi(1)} \ldots \eta_{\pi(5)} \eta_0 \) is also a rule of the automaton. As we assume the rules to be invariant, the numbering has only to be fixed according to the orientation: we consider that it increases from 1 to 5 as we clockwise turn around the tile. Which side is number 1 is not important. However, for the convenience of the reader, we fix it as follows.

We may assume that the central cell has coordinate 0. We number its sides from 1 to 5, 1 being the number of the sides which is shared by a yellow cell on the left-hand side of the figure, the other sides being increasingly numbered while clockwise turning around the tile. The left-hand part of the yellow line is the right-most branch of the tree which spans the corresponding quarter attached to the central cell, see [3, 4] for explanations. In this cells, number 1 is given to the side shared with the father and the others are also defined as for the central cells. In particular, all the cells have their side 2 supported by the line defining the yellow cells. On the right-hand side of the central cell, we have a branch defined by the middle son of the white nodes, starting from the root of the corresponding tree. We take the same convention for the numbering of the sides, number 1 being given to the side shared with the father. Then, we notice that all the cells of this part of the yellow line have their side 5 on the line.

Now, the rules for a blue cell are: \(b \eta_1 \ldots \eta_5 b \), all \(\eta_i \)’s being \(b \) except possibly one of them. The rules for a yellow cell are: \(\eta_0 \eta_1 b \eta_4 b \eta_0 \), where \(\eta_1 \eta_0 \eta_4 \rightarrow \eta_0 \) is the unique rule of \(A \) which can be associated to the cell.

2.2 In the heptagrid

Figure 2 illustrates the implementation in the case of the heptagrid.

This time, the guideline is not a line of the tiling as the lines which support a side cut each second tile they meet. However, it is possible to define a guideline by taking the mid-point lines: it was proved in [3] that the mid-points of two contiguous sides of a heptagon define a line which cuts the other tiles at the mid-points of two contiguous sides. It is not difficult to see that exactly two neighbours of a cell crossed by the guideline are also crossed by this line, in the same way, through the mid-points of two consecutive sides and are in the
same half-plane defined by the guideline. By taking the shift along the guideline which transforms one of these neighbours into the cell itself we can generate all the cells which belong to the expected line.

In the setting of the heptagrid, the format of a rule is defined in terms which are very similar to those used for the pentagrid. The main difference is that here, the interval $[1..5]$ is replaced by $[1..7]$. The numbering of the sides is defined in the same way as in the pentagrid. Indeed, as known from [3], the pentagrid and the heptagrid are spanned by the same tree. Again, fixing number 1 to the side shared with the father and a side, fixed once for all, in the case of the central cell, the cells which are above the central cell have their sides 2 and 3 meeting the guideline and the cells which are below have theirs side 6 and 7 meeting the guideline.

![Figure 2](image_url)

Figure 2 Implementation of a cellular automaton in the heptagrid. The yellow cells represent the line of tiles used for the 1D-CA. The blue cells represent the cells which receive the new state.

Also, this time, the format of the rule is $\eta_0\eta_1...\eta_7\eta_0^1$. Now, looking at Figure 2 we can see that the rules for the blue cells are of the form $b\eta_1...\eta_7b$ where, among $\eta_1...\eta_7$ two states exactly are b. Moreover, these states are in consecutive neighbours of the cell, taking into account the circular structure of the neighbouring. This means that there is a circular permutation of the numbers such that $\eta_1 = \eta_2 = b$. Now, for a yellow cell, the format of the rules is $\eta_0\eta_1 b b b \eta_4 b b b \eta_0^1$ for the central cell together with the cells which are below, and $\eta_0\eta_1 b b \eta_4 b b b \eta_0^1$ for the cells above the central cell. The central cell and those which are below apply the rule $\eta_1\eta_0\eta_5 \rightarrow \eta_0^1$ of the automaton. The cells which
are above the central cell apply the rule $\eta_4 \eta_0 \eta_1 \rightarrow \eta_0^3$ of the automaton.

Accordingly, we proved Theorem 1 for what are the grid of the hyperbolic plane which we considered. It can easily be proved that the same result holds for all the grids of the hyperbolic plane of the form $\{p,4\}$ and $\{p+2,3\}$, with $p \geq 5$.

2.3 In the dodecagrid

In the dodecagrid, we use the representation introduced in [7]. We briefly remind it here for the convenience of the reader.

In fact, we consider the projection of the dodecahedra on a plane which is defined by a fixed face of one of them: this will be the plane of reference Π_0. The trace of the tiling on Π_0 is a copy of the pentagrid. So that, using a projection of each dodecahedron which is in contact with Π_0 and on the same half-space it defines which we call the half-space above Π_0, we obtain a representation of the line which is given by Figure 3. Indeed, the projection of each dodecahedron on this face looks like a Schlegel diagram, see [7, 3] for more details on this tool dating from the 19th century.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dodecagrid.png}
\caption{Implementation of a cellular automaton in the dodecagrid. The yellow cells represent the line of tiles used for the one-dimensional CA. The blue cells represent the cells which receive the new state.}
\end{figure}

Accordingly, the guideline is simply a line of the pentagrid which lies on Π_0. On the figure, we can see that the line which implements the one-dimensional cellular automaton is represented by the yellow cells, the other cells which receive
the new state being blue. This line of yellow cells will be also called the **yellow line**. As in Figures 1 and 2, the different hues of blue are used in order to show the spanning trees of the pentagrid, dispatched around the central cell.

To define the rules of a cellular automaton, we also introduce a numbering of the faces of a dodecahedron which will allow us to number the neighbours. This numbering is given by Figure 4.

![Figure 4](image.png)

Figure 4 The numbering of the faces of dodecahedron. Face 0 is delimited by the biggest pentagon of the figure.

Accordingly, the format of a rule is of the form $\eta_0\eta_1...\eta_{12}\eta_0$. Now, as the rules are assumed to be rotation invariant, which face receives number 1 is not important. However, for the convenience of the reader, we shall adopt the following convention. For all the yellow cells, we consider that the face which is on Π_0 is face 0. Accordingly, the numbers should appear in Figure 5 as they appear in Figure 4. Moreover, we consider that the other face of the cell which is in contact with the guideline is face 5.

Now, we take this occasion to remember how we can see whether two numberings of the dodecahedron are obtained from one another by a positive displacement in the space.

2.3.1 Rotation invariance

The question is the following: how does a motion which leaves the dodecahedron globally invariant affect the numbering of its faces, an initial numbering being fixed as in Figure 4?
In fact, it is enough to consider products of rotations as we do not consider reflections in planes. The simplest way to deal with this problem is the following. Consider a motion which preserves the orientation, we shall say a **positive** motion. As it leaves the dodecahedron globally invariant, it transforms the face into another one. Accordingly, fix face 0. Then its image can be any face of the dodecahedron, face 0 included. Let \(f_0 \) be the image of face 0. Next, fix a second face which shares an edge with face 0, for instance face 1. Then its image \(f_1 \) is a face which shares an edge with \(f_0 \). It can be any face sharing a face with \(f_0 \). Indeed, let \(f_2 \) be another face sharing an edge with \(f_1 \). Then, composing the considered positive motion with a rotation around \(f_0 \) transforming \(f_1 \) into \(f_2 \), we get a positive motion which transforms \((0, 1)\) into \((f_0, f_2)\). This proves that we get all the considered positive motion leaving the dodecahedron globally invariant, by first fixing the image of face 0, say \(f_0 \) and then by taking any face \(f_1 \) sharing an edge with \(f_0 \). Note that once \(f_0 \) and \(f_1 \) are fixed, the images of the other faces are fixed, thanks to the preservation of the orientation. Accordingly, there are 60 of these positive motions and the argument of the proof shows that they are all products of rotations leaving the dodecahedron globally invariant.

Figure 5 gives an illustrative classification of all these rotations. The upper left picture represents the image of a Schlegel diagram of a dodecahedron with the notation introduced in Figure 4. Each image represents a positive motion. Its characterization is given by the couple of numbers under the image: it has the form \(f_0 f_1 \), where \(f_0 \) is the image of face 0 and \(f_1 \) is the image of face 1. The figure represents two sub-tables, each one containing 30 images. Each row
represents the possible images of f_1, f_0 being fixed. The image of face 0 is the
back of the dodecahedron. The image of face 1 is the place of face 1 in Figure 4.
As an example, $f_0 = 0$ for the first row of the left-hand side sub-table, and in
the first row, the first image gives $f_1 = 1$, so that it represents the identity. The
other images of the row represent the rotations around face 0.

Table 1 The faces around a given face.

	1	2	3	4	5
0	1	5	4	3	2
1	0	2	7	6	5
2	0	3	8	7	1
3	0	4	9	8	2
4	0	5	10	9	3
5	0	1	6	10	4
6	1	7	11	10	5
7	1	2	8	11	6
8	2	3	9	11	7
9	3	4	10	11	8
10	4	5	6	11	9
11	6	7	8	9	10

The construction of Figure 5 was performed by an algorithm using Table 1.
For each face of the dodecahedron, the table gives the faces which surround it
in the Schlegel diagram, taking the clockwise order when looking at the face
from outside the dodecahedron, this order coinciding with increasing indices
in each row. This coincides with the usual clockwise order for all faces as in
Figure 4 except for face 0 for which the order is counter-clockwise when looking
above the plane of the projected image. The principle of the drawings consists
in placing f_0 onto face 0 and f_1 onto face 1. The new numbers of the faces are
computed by the algorithm as follows. Being given the new numbers f_0 and f_1 of
two contiguous faces φ_0 and φ_1 in the Schlegel diagram, the algorithm computes
the position of φ_1 as a neighbour of φ_0 in the table. This allows to place f_1
on the right face. Then, the algorithm computes the new numbers of the faces
which are around φ_1 in the table: it is enough to take the position of φ_0 as a
neighbour of φ_1 and then to turn around the neighbours of f_1, looking at the
new numbers in the row f_1 of the table, starting from the position of f_0. This
gives the new numbers of the faces which surround face 1. It is easy to see that
we have all faces of the dodecahedron by turning around face 1, then around
face 5, then around face 7 and at last around face 8. As in these steps, each
round of faces starts from a face whose new number is already computed, the
algorithm is able to compute the new numbers for the current round of faces,
using Table 1 to find the new numbers. Let us call this algorithm the rotation
algorithm.

Thanks to the rotation algorithm, it is easy to compute the rotated forms
of a rule of the cellular automaton.
2.3.2 The rules in the dodecagrid

Let $\eta^0_0 \cdots \eta^1_{11}$ be a rule of the automaton: η^0_i is the current state of the cell, η_i is that of the neighbour which the cell can see through its face i, η^1 is the new state of the cell. Remember that the current state of a cell is its state at time t and that its new state is its state at time $t+1$, after the rule was applied at time t. We shall decide that a neighbour is numbered by the number of the face through which it is seen by the cell. By assumption, this numbering is a rotated image of the numbering defined by Figure 4. Later we shall call $\eta^0_0 \cdots \eta^1_{11}$ the context of the rule. Let μ be a positive motion leaving the dodecahedron globally invariant. The rotated form of the rule defined by μ is $\eta^0_{\mu(0)} \cdots \eta^1_{\mu(11)} \eta^1$ and, similarly, $\eta^0_{\mu(0)} \cdots \eta^1_{\mu(11)}$ is the rotated form by μ of the context of the initial rule. We say that the cellular automaton is rotation invariant if and only two rules having contexts which are rotated forms of each other always produce the same new state.

Now, thanks to our study, we have a syntactic criterion to check this property. We fix an order of the states. Then, for each rule, we compute its minimal form. This form is obtained as follows. We compute all rotated forms of the rule and, looking at the obtained contexts as words, we take their minimum in the lexicographic order. The minimal form of a rule is obtained by appending its new state to this minimum. Now it is easy to see that:

Lemma 1 (see [7]) A cellular automaton on the dodecagrid is rotation invariant if and only if for any pair of rules, if their minimal forms have the same context, they have the same new state too.

Now, checking this property can easily be performed thanks to the rotation algorithm.

As we already indicated, we decided that face 0 of the cells belonging to the line of the implementation are on Π_0 and that the other face which has a side on the guideline is face 5. As a consequence, a yellow cell is in contact with two yellow neighbours by its faces 1 and 4. We decide that the face 1 of a cell is the same as the face 4 of the next yellow neighbour and, accordingly, its face 4 is the same as the face 1 of the other yellow neighbour. This allows to define two directions on the yellow line. The direction from left to right on the one-dimensional cellular automaton is, by convention, the direction from face 1 to face 4 of the same cell.

For the proof of Theorem 1 in the case of the dodecagrid, the rules for a blue cell have the form $b \eta_1 \cdots \eta_{12} b$ with all states in $\eta_1 \cdots \eta_{12}$ being b except, possibly, one of them. From the just defined convention on the numbering of the faces of the yellow cells, the rules for a yellow cell are of the form $\eta^0 b \eta_1 b b \eta_4 b b b b b b b b b \eta^1$, where $\eta_1 \eta^0 \eta_4 \rightarrow \eta^1$ is the rule of the one-dimensional cellular automaton.

Now, as the blue cells have at most one yellow neighbour and as the yellow cells have two yellow neighbours exactly, the difference between the rules is clearly recognizable.

This completes the proof of Theorem 1.
Now, the proof of Corollary 1 is very easy: it is enough to apply the theorem to the elementary cellular automaton defined by rule 110 which is now known to be weakly universal, see [11].

3 Refinement of Theorem 1

Now, we shall prove that, under particular hypotheses in the case of the pentagrid and no restriction in the case of the heptagrid and of the dodecagrid, a 1D cellular automaton with \(n \) states can be simulated by hyperbolic cellular automaton with \(n \) states too.

In order to formulate this hypothesis, consider a one-dimensional deterministic cellular automaton \(A \). Say that a state \(s \) of \(A \) is fixed in the context \(x, y \) in this order, if the rule \(xsy \to s \) belongs to the table of transitions of \(A \). As an example, a quiescent state for \(A \), usually denoted by 0, is fixed in the context 0, 0. Now, we say that \(A \) is a fixable cellular automaton if it has a quiescent state 0 which is also fixed in the context 1, 0, and another state, denoted by 1, such that 1 is fixed in the context 0, 0.

We can now formulate the following results:

Theorem 2 There is an algorithm which transforms any fixable 1D cellular automaton \(A \) with \(n \) states into a rotation invariant cellular automaton \(B \) in the pentagrid with \(n \) states too, such that \(B \) simulates \(A \) on a line of the pentagrid.

Theorem 3 There is an algorithm which transforms any deterministic 1D cellular automaton \(A \) with \(n \) states into a rotation invariant deterministic cellular automaton \(B \) in the heptagrid, the dodecagrid respectively, with \(n \) states too, such that \(B \) simulates \(A \) on a line of the heptagrid, the dodecagrid respectively.

First, we prove Theorem 2.

To this purpose, we consider Figure 6. In this figure, the yellow colour is still used to represent any state of the automaton \(A \). Now, the green colour represents the quiescent state 0, and the red one represents the state 1 which is fixed in the context 0, 0. We also assume that 0 is fixed in the context 1, 0.

We shall consider all the neighbours of the central cell. Its red neighbour will be numbered by 1, and the others from 2 to 5, increasing as we clockwise turn around the cell. We also consider the cells which just has one vertex in common with the central cell. All the other cells are in quiescent state or they belong to the yellow line or are neighbouring a cell belonging to this line. In this latter case, such a cell is obtained from one of those we consider around the central cell by a shift along the guideline.

Define \(B \) with \(n \) states represented by different letters from those used from \(A \). We fix a bijection between the states of \(A \) and those of \(B \) in which \(B \) is associated to the state 1 of \(A \) and \(W \) is associated to the state 0 of \(A \).

Consider the configuration around the central cell. If we write the states of the cell and then those of its neighbours according to the order of their numbers, we get the following word: \(YBZWX \), where \(X, Y, Z \) are taken among the
states of B. Now, if $Z = B$, we can start from this neighbour in state B which has number 3, and we get the word $YBWXBW$ in which we see B in position 4. If $X = B$, then we get the word $YBBWZW$ in which we see B in position 2. In both case, the configuration around the cell is different from the one we obtain by starting from position 1. We can synthesise this information as follows:

	1	2	3	4	5	
0	Y	B	W	Z	W	X
	B	W	X	B	W	
	B	B	W	Z	W	
11	B	Y	W	W	W	
21	W	B	W	W	W	
12	W	Y	W	W	W	B
	B	W	W	W	B	
	B	B	W	W	B	
	B	W	W	W	W	
22	B	W	W	W	W	Z
	B	W	W	W	W	
13	Z	Y	B	W	T	W
	B	B	W	T	W	
	B	W	T	W	Y	
	B	W	Y	B	W	

The first line corresponds to the configuration which triggers the application of the rule of A corresponding to $XYZ \rightarrow X'$. Clearly, as already noticed with the positions of the fixed B and W, the other lines do not correspond to the application of a rule of A.

We shall do this for all the neighbours of the central cell, and in Table 2 we can see all the possible configurations for the neighbours of the central cell.

Table 2 Table of the configurations around the central cell in the pentagrid for the automaton B.

	1	2	3	4	5	
0	Y	B	W	Z	W	X
	B	W	X	B	W	
	B	B	W	Z	W	
11	B	Y	W	W	W	
21	W	B	W	W	W	
12	W	Y	W	W	W	B
	B	W	W	W	B	
	B	B	W	W	B	
	B	W	W	W	W	
22	B	W	W	W	W	Z
	B	W	W	W	W	
13	Z	Y	B	W	T	W
	B	B	W	T	W	
	B	W	T	W	Y	
	B	W	Y	B	W	

	1	2	3	4	5	
24	W	Z	W	W	W	W
14	W	Y	W	W	W	W
24	W	W	W	W	W	X
	B	W	W	W	W	
15	X	Y	W	U	B	W
	B	W	U	B	W	
	B	B	W	Y	W	
	B	W	Y	W	U	
25	W	X	W	W	W	B
	B	W	W	W	W	
	B	B	W	W	W	
	B	W	W	W	W	

In Table 2 we indicate the coordinate of the cell which we represent together with its state. Then, if there are states as U, X, Y, Z, T, we also represent the case when one of this variable takes the value B and we represent the
configuration around the cell when this B is put onto position 1.

![Figure 6](image)

Figure 6 Implementation of a 1D cellular automaton in the pentaclip. The yellow cells represent the line of tiles used for the 1D-CA. The green cells represent the cells which receive a particular state among the states of the 1D-CA.

Figure 6 allows us to check the correctness of Table 2. Now, looking at the table, we can see that there are several cases. In the first one, the table displays one configuration only. This is the case for cell 2₁ for instance. Its state is W and the configuration around it is BWWWW, with B in position 1. This configuration is compatible with the application of a rule of A. From the first row of the table associated to the central cell, we can see that the states corresponding to a rule of A are those which lie in the guideline, namely the states in positions 3 and 5 in this order: position 5 as the left-hand side neighbour and position 3 as the right-hand side neighbour. We shall denote this as the configuration 5₁₀₃. As cell 2₁ does not belong to the guideline, its state must be unchanged. This requires the rule WWW → W, which exists as 0 is a quiescent state for A. We have a similar situation for cells 2₃ and 1₄ when state Z is B for cell 2₃ and when state Y is B for cell 1₄. We remain with one cell with a single configuration: cell 1₁ in state B with the configuration YWWW. When Y is B, we have that the rules of A can be applied and the configuration 5₁₀₃ is now: WBW, and the state must remain unchanged, requiring the rule WBW → B. Now, this rule exists in the table of transition of A as A is fixable: state 1 is fixed for the configuration 0, 0.

Now, let us consider the cells 2₂ and 2₄. In these cases, there is a variable
state in position 5, the others being W. If the variable takes the value B, then, taking this B in position 1, we get a situation corresponding to the cases of cell 2_1 or 1_1.

Next, consider the cells 1_2 and 2_5, where we have the same situation, exactly. In the configuration of the first line, we get the next one if Y is B in the case of cell 1_2, when X is B in the case of cell 2_5. This configuration allows the application of a rule of A. The configuration $5_2 \cdot 3$ being BWW and the state of the cell having to remain unchanged, this requires the rule $BWW \rightarrow W$. This corresponds to the rule $100 \rightarrow 0$ which belongs to the transitions of A as 0 is stable for the configuration $1, 0$. Now, if we take the state B of the initial configuration in cells 1_2 and 2_5 in position 1, we get a configuration which is compatible with the application of a rule of A when Y or X is W, otherwise we get B in position 2 also which bars the application of a rule of A. Now, in this case, we have the situation which was already analysed in the case of cell 2_1 for instance.

At last, we remain with the cells 1_3 and 1_5. Note that if we put the state U in position 1 in the case of cell 1_5, we have exactly the same configuration as the first line of the table for cell 1_3. Accordingly, it is enough to look at cell 1_3. Now, the first configuration does not allow an application of a rule of A as we have B in position 2, which is illustrated by the second line of this entry of the table. Now, if we put this B in position 1, this is illustrated by the third line, we get a configuration which requires a rule of the automaton A. Considering the configuration $5_2 \cdot 3$ and the state of the cell being Z, we need the rule $YZT \rightarrow Z'$ which is a rule of A, by assumption, as cell 1_3 belongs to the yellow line. It remains to see at what happens when T is B if this B is put in position 1. As shown by the forth line, the initial B then occurs in position 4 which bars an application of a rule of automaton A.

Now, from this study, we can see that for each cell around the central cell and for this cell also, there is at most one configuration around the cell which is compatible with the application of a rule of A. In fact, the single case which we did not study is a cell in state W which does not belong to the yellow line and whose neighbours are also in state W. Such a configuration is not compatible with the application of a rule of A and, of course, we decide that in this case, the state of the cell is unchanged. From our study, we also have seen that when a rule of A can be applied to a cell which does not belong to the yellow line, then the rule never changes the state of the cell, thanks to the hypothesis that A is fixable.

And so, B works as follows: if around the cell there is a configuration which is compatible with the application of a rule of A, the state is changed according to this rule of A, otherwise the state is not changed.

This completes the proof of Theorem 2.

Now, let us turn to the case of the heptagrid. In this case, the situation is in some sense easier as it requires no special hypothesis on the deterministic 1D cellular automaton. Indeed, the fact is that due to the number of neighbours, there is a way to differentiate the cells belonging to the yellow line from those
which do not. As mentioned in Subsection 2.2, the yellow line is now implemented along a mid-point line of the heptagrid which is fixed, once for all. As in the case of the pentagrid, the yellow colour represents any state of automaton \(A \). Now, we assume that \(A \) has at least two states, 0 and 1. In Figure 4 these state are represented in green and in red respectively. As in the case of the pentagrid, we use different hues of green in order to make visible the tree structure which spans the tiling. Now, it is easy to see that the configurations allowing the application of a rule of \(A \) are reached only in the case of cells of the yellow line and that for these cells, among the rotated contexts, exactly one is compatible with the application of a rule of \(A \). This can be checked on the figure and we report this examination in Table 3.

Table 3

Table of the configurations around the central cell in the pentagrid for the automaton \(B \).

1	2	3	4	5	6	7		
0	Y	X	B	W	B	Z	W	W
	B	B	W	B	Z	W	W	X
	B	Z	W	X	B	W		
	B	W	W	X	B	W		
1	X	Y	W	W	U	B	W	B
	B	W	W	U	B	W	B	
	B	B	W	B	Y	W	W	
	B	W	B	Y	W	W	U	
	B	Y	W	W	U	B	W	
1	Y	X	W	W	W	W	W	
	B	X	W	W	W	W	W	
	B	W	W	W	W	W	Y	
1	W	Y	B	W	W	W	B	
	B	B	W	W	W	B	B	
	B	W	W	W	W	B	Y	

Looking at each entry of the table attached to a cell, we can see that there is at most a single configuration which is compatible with the application of a rule of \(A \). In the other configurations, there is either a state \(B \) in a position where the state \(W \) is expected or the converse situation. Moreover, the admissible configuration occurs only for the cells which are on the yellow line and never for the others. Accordingly, the rule which consists in applying the rule of \(A \) when there is one for that and to leave the current state unchanged otherwise works more easily here. This completes the proof of Theorem 3 in the case of the heptagrid.
Let us now look at the same problem in the case of the dodecagrid. This, time, we can take advantage of a bigger number of neighbours and of their spatial display to strengthen the difference between a cell of the yellow line which is implemented as indicated in Subsection 2.3 and the cells which does not belong to this line. The way in which we establish this difference is illustrated by Figure 8. In this figure, the yellow colour represents the states of B which, by construction, are in bijection with those of A. As previously, the green colour is associated with the state W which corresponds to the quiescent state 0 of A, and the red colour is associated with the state B which corresponds to the state 1 of A.

![Figure 7 Implementation of a cellular automaton in the heptagrid. The yellow cells represent the line of tiles used for the 1D CA. The green cells represent the cells which receive a particular state among the states of the 1D CA.](image)

Now, each cell of the yellow line has four red neighbours. Numbering the cells as indicated in Subsection 2.3, the faces with a red neighbour are: 0, 3, 9 and 10, see figure 9 which represents a cut in the plane of the face 4 of a yellow cell. Due to the fact that face 0 is on the plane Π_0, we can see only three red faces on the cells of the yellow line in Figure 8.

Now, let us consider the cells which do not belong to the yellow line. How many faces can they share with a red cell? The answer to this question is: at most 2.

Consider any cell. Its faces belong to planes which are either perpendicular or non-secant. If the faces have a common vertex, then their supporting planes
have a common line which supports an edge of the faces. Now, if two faces F_0 and F_1 do not have a common vertex, there are two situations. In the first situation, there is a third face F_2 such that F_2 shares a side s_0 with F_0 and another one s_1 with F_1. As s_0 and s_1 do not have a common point, there is a side s_2 of F_2 which is in contact with both s_0 and s_1: s_2 is supported by a line which is the common perpendicular of the lines supporting s_0 and s_1. As the planes supporting the faces F_0 and F_1 are both perpendicular to F_2, the line supporting s_2 is also the common perpendicular of the planes supporting F_0 and F_1. In the second situation, such a third face does not exist but then, faces F_0 and F_1 are opposite in the dodecahedron: they are the reflection of each other under the reflection in the centre of the dodecahedron. Indeed, if we consider the face which is opposite to F_0, the faces which do not touch F_0 and for which there is a third face sharing a common edge with F_0 and its opposite face F_0' are all around the face F_0'. And so, if F_1 is none of them it is F_0'. Now, in this case, the perpendicular raised from the centre of F_0 is also the perpendicular raised from the centre of F_1.

![Image of a cellular automaton in the heptagrid](image)

Figure 8 Implementation of a cellular automaton in the heptagrid. The yellow cells represent the line of tiles used for the 1D CA. The green cells represent the cells which receive a particular state among the states of the 1D CA.

From these geometrical considerations, we have that two neighbours of a cell have no face in common. Now, consider two faces F_0 and F_1 of a yellow cell C sharing an edge. We know that around this edge there are four dodecahedra: C itself, the reflection C_{F_0} of C in face F_0, the reflection C_{F_1} of C in face F_1 and a fourth one, D, which is the reflection of C in the common edge of F_0 and F_1, see
Figure 9 Now, as the planes supporting F_0 and F_1 are perpendicular, this means that D shares a face with C_{F_0} as well as another face with C_{F_1}. Accordingly, there are neighbours of a red neighbour of a yellow cell which are in contact with two red neighbours. They are not in contact with other red cells. Indeed, in the above situation, consider that C is a yellow cell and that C_{F_0} and C_{F_1} are red ones. Then D is green and it is not in contact with another red cell: the closest red cell is E, the one which shares the face 3 of C with C. Now, the plane Π of the face 3 of C cuts the space in two half-spaces: one contains E, the other contains C and also C_{F_0}, C_{F_1} and D. Assuming that C_{F_1} is in contact with Π, if not it is the case of C_{F_0}, the above analysis on the faces of a dodecahedron tells us that the plane of the face shared in common by D and C_{F_1} is non-secant with Π and so, D and E are far from each other. Note that a cell which does not belong to the yellow line, which is a neighbour of a cell of the yellow line and which is green is not the neighbour of a red cell not belonging to the yellow line. This comes from the same analysis as two neighbours of a cell are not neighbours of each other.

From this analysis, it is clear that a yellow cell has four red neighbours exactly and that all other cells have at most two red neighbours. In the case of four neighbours, they are exactly those defined above and illustrated by Figures 8 and 9 and the determination of which neighbours plays the role of the left- or right-hand side neighbour is immediate. Accordingly, the rule which consists
in applying the rule of 4 when there are four red neighbours and to leave the
current state unchanged when this not the case works still more easily here.
This completes the proof of Theorem 3.

Now, we can see that from Theorem 3 we have as an immediate corollary:

Corollary 2 There is a weakly universal rotation invariant cellular automaton
on the heptagrid, as well as in the dodecagrid with two states exactly.

In both cases, we apply the construction defined in the proof of Theorem 3
to the elementary cellular automaton with rule 110. Now, if we look at the
transitions of rule 110, we can see that 0 is a quiescent state, that it is fixed for
the context 1, 0 and that 1 is fixed for the context 0, 0. This proves that the
elementary cellular automaton with rule 110 is fixable. Consequently, applying
Theorem 3 to this 1D-cellular automaton, we get:

Corollary 3 There is a weakly universal rotation invariant cellular automaton
on the pentagrid with two states exactly.

4 Conclusion

With this result, we reached the frontier between decidability and weak univer-
sality for cellular automata in hyperbolic spaces: starting from 2 states there
are weakly universal such cellular automata, with 1 state, there are none, which
is trivial.

What can be done further?

In fact there are at least three possible directions. The first one is the fron-
tier between decidability and undecidability which requires the simulation of a
cellular automaton or of a Turing machine, in both cases, starting from a finite
initial configuration. There is a result by Lindgren and Nordahl, see [2], to the
smallest universal Turing machines known at the present moment, see [6], we
obtain a deterministic 1D-cellular automaton which is universal with 12 states.
Now, this result cannot be immediately transported to the tilings we have con-
considered here as the general frame considered in Section 2 as well as in Section 3
defines an initially infinite configuration. Moreover, we have no result in the
other direction, except the trivial case of a unique state. In particular, it is
not known whether there is an analogue of Codd’s theorem in the case of the
hyperbolic plane.

The second direction starts with the remark that Corollaries 2 and 3 deal
with only three tilings. Now, it is well known that in the hyperbolic plane, there
are infinitely many tilings on which we can implement cellular automata. And
so, what can be said for these cases?

For what is the plane, the same technique as described in Section 3 works
in all tilings of the form \(\{ p, 4 \} \) and \(\{ p+2, 3 \} \) with \(p \geq 5 \). The cases \(p = 5 \)
correspond to the pentagrid and the heptagrid respectively. Most probably,
this work also for \(p = 6 \) and \(p = 7 \) in the pentagrid. Now, starting from \(p = 7 \)
in the heptagrid and \(p = 9 \) in the pentagrid, we can use a technique similar to
the one used for the dodecagrid: we can decide that the yellow cells have four red neighbours put at appropriate contiguous places around them and this will be enough to distinguish yellow cells from the others.

There is a third direction. The result proved in this paper suffers the same defect as the result indicated in [7] with 3 states. The results proved in this paper can be obtained in a not too complicate manner by an appropriate implementation of rule 110 which is weakly universal, as already mentioned. In the case of the dodecagrid, the author proved a similar result with 3 states but involving a much more elementary construction which is also an actual 3D construction. In the case of the heptagrid, he obtained 4 states with an actual planar construction, see [5][8] and the best result known for the pentagrid is 9 states, see [10], again with elementary tools and using an actual planar construction. What can be done in this direction is also an interesting question.

Accordingly, there is some work ahead, probably the hardest as we are now so close to the goal.

References

[1] M. Cook. Universality in elementary cellular automata, *Complex Systems*, (2004), 15(1), 1-40.

[2] Lindgren K. and Nordahl M.G., Universal computation in simple one-dimensional cellular automata. *Complex Systems*, 4, 299–318, (1990).

[3] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Volume 1, Theory, *OCP*, Philadelphia, (2007), 422p.

[4] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Volume 2, Implementation and computations, *OCP*, Philadelphia, (2008), 360p.

[5] M. Margenstern, A new universal cellular automaton on the ternary heptagrid, *arXiv*:0903.2108[cs.FL], (2009), 35pp.

[6] M. Margenstern, Surprising Areas in the Quest for Small Universal Devices, *Electronic Notes in Theoretical Computer Science*, 225, (2009), 201-220.

[7] M. Margenstern, A weakly universal cellular automaton in the hyperbolic 3D space with three states, *arXiv*:1002.4290[cs.FL], (2010), 54pp.

[8] M. Margenstern, A universal cellular automaton on the heptagrid of the hyperbolic plane with four states, *Theoretical Computer Science*, (2010), accepted.

[9] M. Margenstern, G. Skordev, Tools for devising cellular automata in the hyperbolic 3D space, *Fundamenta Informaticae*, 58, N°2, (2003), 369-398.

[10] M. Margenstern, Y. Song, A new universal cellular automaton on the pentagrid, *Parallel Processing Letters*, 19(2), (2009), 227-246.

[11] S. Wolfram. A new kind of science, *Wolfram Media, Inc.*, (2002).