Data Article

Hydrolysis data for bis(4-cyanophenyl) phenyl phosphate including rate constants and activation parameters

V.E. Terekhov a, V.V. Aleshkevich a, E.S. Afanaseva a, S.S. Nechausova a, A.V. Babkin a, B.A. Bulgakov a, *, A.V. Kepman a, b, V.V. Avdeev a

a Lomonosov Moscow State University, Department of Chemistry, 119991, Leninskie Gory, 1-3, Moscow, Russia
b Institute of New Carbon Materials and Technologies, Russia

ARTICLE INFO

Article history:
Received 2 August 2019
Received in revised form 28 October 2019
Accepted 13 November 2019
Available online 22 November 2019

Keywords:
Hydrolysis
Aryl phosphate
Rate constant
Activation parameters
Phthalonitrile resins
Reactive diluent

ABSTRACT

Hydrolysis data for Bis(4-cyanophenyl) phenyl phosphate (CPP), introduced as a reactive diluent for phthalonitrile monomers, under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the substrate and the reaction products are given. Pseudo-first order rate constants are determined for CPP at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: bbulgakov@inumit.ru (B.A. Bulgakov).

https://doi.org/10.1016/j.dib.2019.104858
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset contains raw NMR-spectroscopy data for CPP (can be opened with e.g. ACDLabs Spectrus processor), analyzed 1H, 13C and 31P spectra (Figs. 1–3), raw chromatograms of the HPLC hydrolysis study including initial chromatograms of CPP, 4-cyanophenol and phenol, and chromatograms obtained during the hydrolysis study, as well as calculated rate constants and activation parameters (Tables 2 and 3), concentration/time plots (Figs. 5–7), analyzed 1H, 13C, and 31P spectra of the hydrolysis products (Figs. 8–10).

2. Experimental design, materials and methods

2.1. Materials

4-cyanophenol and phenyldichlorophosphate were obtained from Sigma Aldrich and used as received. Toluene and pyridine were obtained from Chimmed (Moscow, Russia). Toluene was distilled over sodium metal and pyridine was distilled over CaH$_2$, according to standard procedures [1].

Acetonitrile (HPLC grade) was obtained from Sigma Aldrich and used as received. Buffer solutions with pH 4, 7 and 10 were purchased from Panreac Applichem. According to the product description, the pH of these buffers was maintained in a temperature ranging from 20 °C to 100 °C.
2.2. Monomer CPP synthesis

1 g (0.008 mol) of anhydrous potassium bromide and 6.32 g (0.08 mol) of pyridine were added to a solution of 9.52 g (0.08 mol) of 4-cyanophenol in 50 mL of dry toluene. The mixture was stirred at 70 °C for 30 minutes under an inert atmosphere of argon in a 100 ml three-neck flask. Then, 8.44 g (0.04 mol) of phenyl dichlorophosphate was added dropwise. The mixture was stirred at 70 °C for 24 hours under an inert atmosphere. After that, the reaction mixture was cooled, filtered from pyridine hydrochloride and the filtrate was washed with water (3 × 30 mL). The water layer was washed with toluene (3 × 10 mL) and the combined organic phases were dried over anhydrous sodium sulfate. The solution was then evaporated using a rotary evaporator and the residue was dried at 80 °C for 2 hours under 5 mmHg. 14.25 g of yellowish solid was obtained at a yield of 95%. According to the NMR 1H spectrum, the product purity was defined as 95%. To obtain a purity greater than 99%, flash chromatography on silica gel was carried out (eluent – CH2Cl2:MeOH 29:1). 13.47 g (89.5% of total yield) of the product was obtained as a white solid after evaporation of the solvent. 1H, 13C and 31P NMR spectra are presented in Figs. 1–3.

1H NMR (600 MHz, DMSO-d6) δ ppm 7.21–7.39 (m, 3H), 7.47 (t, J = 7.79 Hz, 2H), 7.53 (d, J = 8.44 Hz, 4H), 7.98 (d, J = 8.53 Hz, 4H)
13C NMR (151 MHz, DMSO-d6) δ ppm 109.14, 117.96, 119.93 (d, J = 4.42 Hz), 121.23 (d, J = 5.53 Hz), 126.39, 130.41, 134.97, 149.42 (d, J = 7.74 Hz), 152.74 (d, J = 6.64 Hz)
31P NMR (243 MHz, DMSO-d6) δ ppm –15.71.

Anal. Calcd. for C20H13N2O4P: C 63.84, H 3.48, N 7.44, Found C 63.81, H 3.53, N 7.40.
2.3. Methods

To study the hydrolysis reaction HPLC analysis was carried out for the collected samples with an Agilent 1260 chromatographer equipped with a column ZORBAX Eclipse Plus C18 (column temperature = 30°C; flow rate = 0.8 mL/min). The gradient elution method was used, and the elution program is presented in Table 1. Agilent ChemStation software was used to develop chromatograms.

2.4. Sample preparation and hydrolysis study

To obtain the initial solution monomer CPP was diluted in acetonitrile to reach concentration 2 mg/ml. Then, the initial solution (10 ml) and buffer solution (10 ml) were heated to the aimed temperature (25, 50 or 80°C) and mixed under severe stirring with a magnetic bar. From this moment the reaction time was measured. The reaction mixture was held in a water bath under stirring and aliquots (1 ml) were withdrawn in certain time intervals, then sealed in 1.5 ml glass vials equipped with septum heads and frozen in liquid nitrogen to prevent any chemical processes. Samples were unfrozen immediately before HPLC analysis.
In the case of the hydrolysis study under pH 10, withdrawn samples were poured into 10 μl of concentrated HCl and shaken to prevent further hydrolysis. Then, they were immediately frozen in liquid nitrogen as reported for the hydrolysis of phthalonitrile phosphate and phosphonate [2].

Two series of aliquots were selected to obtain the average values of the peak areas in the chromatograms.

2.5. HPLC-analysis

Series of solutions of CPP, 4-cyanophenol and phenol with concentrations 1.50, 1.25, 1.00, 0.75, 0.50, 0.25 mg/ml were prepared for each substance by subsequent dilution of the initial solutions (2 mg/ml) with acetonitrile for LC calibration. Concentrations of the studied compounds were determined based on calibration by automatic analysis with Agilent ChemStation software.

An assumption was made for the results' interpretation: hydrolysis of the monomer CPP was considered as a pseudo-first-order reaction due to the sufficiently higher water concentration in experimental than the substrate's concentrations. It was established that hydrolysis passed only by 4-
Table 1
Elution program applied for LC analysis.

Time, min	Acetonitrile, %	H₂O, %
0–5	55	45
5–25	55–98	45–2
25–28	98	2
28–33	98–55	2–45
33–35	55	45

Table 2
Rate constants and conversion for hydrolysis of CPP at various pH values.

T, °C	pH 4	Conversion, %	pH 7	Conversion, %	pH 10	Conversion, %
	k, s⁻¹		k, s⁻¹		k, s⁻¹	
25	1.20 × 10⁻⁶	20 (48 h)	9.72 × 10⁻⁶	80 (48 h)	1.36 × 10⁻⁴	91 (5 h)
35	2.70 × 10⁻⁶	40 (48 h)	2.47 × 10⁻⁵	100 (48 h)	4.28 × 10⁻⁴	100 (3 h)
50	7.31 × 10⁻⁶	68 (48 h)	8.33 × 10⁻⁵	100 (12 h)	2.15 × 10⁻³	97.5 (30 min)
60	1.89 × 10⁻⁵	73 (24 h)	2.21 × 10⁻⁴	100 (6 h)	4.94 × 10⁻³	99 (15 min)
80	6.45 × 10⁻⁵	58 (4 h)	9.69 × 10⁻⁴	100 (1.5 h)	–	100 (3 min)

Fig. 4. Established hydrolysis reaction of CPP under pH = 4, 7 and 10.

Fig. 5. InC-time plots for phthalonitrile CPP hydrolysis at different temperatures and pH 4.
cyanophenol elimination [3] (Fig. 4). Concentration (lnC) versus time plots were obtained (Figs. 5–7). Pseudo-first order constants and activation parameters were calculated (Tables 2–3). 1H, 13C and 31P NMR spectra of hydrolysis' products are presented on Figs. 8–10.
Fig. 8. 1H NMR spectrum of products of hydrolysis.

Fig. 9. 13C NMR spectrum of products of hydrolysis.
Acknowledgements

The work was supported by Ministry of Science and Higher Education of the Russian Federation. Contract No. 14.607.21.0204 (RFMEFI60718X0204).

Table 3
Activation parameters of CPP hydrolysis.

pH	E_A, kcal/mole	A, s$^{-1}$
4	15.22	1.73×10^5
7	17.52	6.87×10^7
10	20.43	1.31×10^{11}
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] W.L.F. Armarego, C. Chai, Purification of Laboratory Chemicals, Elsevier Inc., 2009, https://doi.org/10.1016/C2009-0-26589-5.

[2] K.S. Belsky, A.V. Sulimov, B.A. Bulgakov, A.V. Babkin, A.V. Kepman, Hydrolysis rate constants and activation parameters for phosphate- and phosphonate-bridged phthalonitrile monomers under acid, neutral and alkali conditions, Data Br. 13 (2017) 10–17, https://doi.org/10.1016/j.dib.2017.05.015.

[3] V.E. Terekhov, V.V. Aleshkevich, E.S. Afanaseva, S.S. Nechausov, A.V. Babkin, B.A. Bulgakov, A.V. Kepman, V.V. Avdeev, Bis(4-cyanophenyl) phenyl phosphate as viscosity reducing comonomer for phthalonitrile resins, React. Funct. Polym. 139 (2019) 34–41, https://doi.org/10.1016/J.REACTFUNCTPOLYM.2019.03.010.