Supplementary Note

1. Derivation of adjusted phenotype for TAPE-WP

Here we consider a sample of size N. Suppose each individual has N_{R_i} relatives with known phenotype. Let F_{ij} denote the kinship coefficient between individual i and its j'th relative, and let D_{ij} denote the phenotype for the j'th relative of individual i. Denote Y_i as the observed phenotype of individual i, Y'_i as a latent phenotype indicating whether the individual will have the disease in the future. $Z_i = Pr(Y'_i = 1 | Y_i, F_i, D_i)$ as the adjusted phenotype indicating latent disease risk given the observed phenotype Y_i and relative information. With the assumption that $Pr(Y'_i = 1 | Y_i = 1, F_i, D_i) = 1$, we get the following equation:

$$Z_i = \mathbb{I}(Y_i = 1) + \mathbb{I}(Y_i = 0) Pr(Y'_i = 1 | Y_i = 0, F_i, D_i)$$

We form an estimator of $Pr(Y'_i = 1 | Y_i = 0, F_i, D_i)$ by

$$\hat{Pr}(Y'_i = 1 | Y_i = 0, F_i, D_i) = \rho \cdot r_i$$

where ρ is a pre-specified constant indicating the increase in latent disease risk among controls given all N_{R_i} relatives of an individual are cases. For the analysis in this paper $\rho = 0.5$ was used. We further define

$$r_i = \frac{\sum_{j=1}^{N_{R_i}} F_{ij} \mathbb{I}(D_{ij} = 1)}{\sum_{j=1}^{N_{R_i}} F_{ij}}$$

which is a measure for the proportion of affected relatives weighted by kinship coefficient.

As an illustrative example, consider a simple setting where each individual has phenotypic information of one parent (kinship coefficient is 0.25), i.e., $N_{R_i} = 2$ and $F_{i1} = 0.25$, ($i = 1, \ldots, N$). If an unaffected individual i has an affected parent, then $r_i = 1$, the adjusted phenotype $Z_i = 0.5$, which is equivalent to GWAX3.

2. Extension of adjusted phenotype to include age information

The phenotype adjustment step of TAPE can be easily applied to account for information indicative of latent disease risk among controls other than family disease status. One potentially useful information is age. The aging process plays a crucial part in late-onset diseases (LODs), influencing both the missing heritability and case-control imbalance in observational studies, which adds to the difficulty in obtaining sufficient power in testing the association between disease and genetic variants. Several theories were established to examine the mechanism of LODs. The mutation accumulation model states that genetic products generated since birth gradually accumulate as one ages, which can eventually lead to the manifestation of disease at an older age\(^2^1\). The latent damage model of antagonistic pleiotropy explains the disease effect in elder age as a result of the late effect from a mutation occurred earlier in life\(^2^2\). Patterns of LOD development are further explored using computer simulations, which shows that for diseases such as Alzheimer’s Disease and type II diabetes, there is a rapid change in the difference of effective variant minor allele frequency between cases and controls along with age. Study results also showed that the average polygenic risk among unaffected individuals decreases with older age\(^2^3\). Recall from previous section the formula to estimate \(Pr(Y'_{i} = 1|Y_i = 0, F_i, D_i)\):

\[
\widehat{Pr}(Y'_{i} = 1|Y_i = 0, F_i, D_i) = \rho \cdot r_i
\]

where \(\rho\) indicates the increase in latent disease risk among controls given all \(N_R\) relatives of an individual are cases and was previously set to be constant across all controls. To capture the potential influence of age on a control’s disease risk, we can use survival curve as a surrogate of polygenic risk at a certain age and construct \(\rho\) as a function of \(A_i\), age of individual \(i\):

\[
\rho_i = \rho_0 \hat{S}(A_i = a)
\]
with \(\hat{S}(\cdot) \) being an estimator for survival function \(S(\cdot) \) and \(\rho_0 \) a pre-defined scaling parameter. Several different approaches exist to estimate the survival function, including Life Table and Kaplan-Meier approach, but is not the focus of this paper.

3. Phenotype adjustment based on the presence of genetically related individuals

To investigate the influence of including related individuals for LT-FH phenotype adjustment in TAPE-LTFH as well as LT-FH in the current study, we compared the performance for two additional approaches, TAPE-LTFHc and LT-FHc, both adjusting phenotypes based on the presence of genetically related individuals. Specifically, for unrelated individuals, we generated the adjusted phenotypes using the original LT-FH procedure conditioning on the individuals’ case-control status as well as family disease history, which can be denoted as the estimated posterior mean genetic liability \(E(\epsilon_g|Y, FH) \), where \(\epsilon_g \) represents the genetic liability for the target individual, \(Y \) represents the binary case-control status of the individual, and \(FH \) includes all case-control status from the individual’s family members (e.g. parents, siblings); for individuals with genetically related individuals in the data, we adjusted the phenotype conditioning only on the individuals’ case-control status only, denoted as \(E(\epsilon_g|Y) \), without using family disease history.

Type I error simulation: We evaluated the type I error rates for TAPE-LTFHc and LT-FHc under the two relatedness structure for a range of case-control ratios (Table S5). As expected, the empirical type I error rates were lower for both TAPE-LTFHc and LT-FHc as compared to their counterparts TAPE-LTFH and LT-FH, since the adjusted phenotypes in TAPE-LTFHc and LT-FHc are not affected by the correlation induced by parent-offspring or sibling pairs. However, we still observed type I error inflation in LT-FHc when case-control ratio is more unbalanced (1:99). Under the simulation settings with a population consisting of 625 8-member families and 5,000 independent individuals, results from TAPE-LTFHc were consistently more conservative than that from TAPE-WP. This is because TAPE-LTFHc still included the kinship matrix
as an additional variance component, even though the adjusted phenotypes used did not require further accounting for kinship-induced correlation as TAPE-LTFH did.

Power Simulation: The results for the power evaluation of TAPE-LTFHc and LT-FHc in terms of the average χ^2 statistics and the proportion of causal SNPs significant at the empirical α level are shown in Figures S13 and S14, respectively. For both the relatedness structure with parent-offspring/sibling pairs and that with 8-member families, TAPE-LTFHc and LT-FHc generally yielded lower power than TAPE-WP. The loss of power of TAPE-LTFHc and LT-FHc compared to TAPE-LTFH and LT-FHC was largely due to the lack of family disease information integration among the related individuals.

4. UK Biobank analysis results using TAPE-LTFHc and LT-FHc

We investigated the performance of TAPE-LTFHc and LT-FHc for biobank data using two binary traits (type II diabetes with a case-control ratio 1:20 and Parkinson’s disease with a case-control ratio 1:350) in the UK Biobank. The Q-Q plots stratified by MAF were presented in Figure S15. Similar to the results from LT-FH, the observed quantile distribution of $-\log_{10}(p)$ corresponding to SNPs with MAF < 0.01 for LT-FHc method in the QQ plot for Parkinson’s disease curved off in the middle of the graph, indicating potential type I error inflation due to unaccounted-for relatedness structure.

We also assessed the calibration of TAPE-LTFHc and LT-FHc measured by attenuation ratios (Table S6). For Parkinson’s disease, which has a relatively more unbalanced case-control ratio, TAPE-LTFHc yielded lower attenuation ratios than TAPE-WP, while LT-FHc yielded the highest attenuation ratio of 0.313, indicating poorer calibration. For type II diabetes, the attenuation ratios from both TAPE-LTFHc and LT-FHc were kept at a relatively low level.

The above biobank analysis results were in line with our simulation studies, which indicated that adjusting phenotypes for independent individuals only can help lowering type I error rates for both TAPE-LTFHc and
LT-FHc, but at the cost of a decrease in detection power. In addition, for diseases with a more unbalanced case-control ratio, TAPE-LTFHc was shown to better control type I error inflation than LT-FHc.

Supplementary Figures

Supplementary Figure 1. Illustration of phenotypic concordance between related individuals. Suppose both parents are affected with a disease with a relatively low prevalence in a family consisting of two parents (1,2) and two offsprings (3,4), then the estimated latent risks for 3 and 4 are both $Z=0.5$ considering only parental disease history. Since 3 and 4 share the same family disease status, they get identical value of estimated latent risk as adjusted phenotype in the TAPE framework, while for non-related individuals the probability of getting the same family disease status is lower and the gap enlarges with a lower disease prevalence. As a result, the concordance of adjusted phenotype is higher among related individuals compared to independent individuals.
Supplementary Figure 2. Skewed distribution of inferred disease risk after incorporating family disease history for 10 UK Biobank binary traits with sample size 408,898, comparing TAPE-WP and LT-FH. For each method, the quantitative inferred disease risk is divided into 5 bins of equal size with width \((\text{max} - \text{min})/6\).
Supplementary Figure 3. Skewed distribution of inferred disease risk in simulation data with sample size 10,000 and case-control ratios ranging from 1:99 to 10:90, comparing GWAX and LT-FH. For each method, the quantitative inferred disease risk is divided into 5 bins of equal size with width \((max − min/6)\).

Supplementary Figure 4. Q-Q plot for additional simulation analyses, comparing TAPE-WP, TAPE-misk, TAPE-nok.
Supplementary Figure 5. Pedigree for the 8-member family. a: True relatedness structure. The family consists of individuals 3-10, but excludes founders 1 and 2 in the dotted box. b: Mis-specified relatedness structure. Siblings 3 and 4 are treated as independent.
Supplementary Figure 6. Simulation results for empirical power for causal variants with sample size $N=10000$, comparing TAPE-WP, TAPE-LTFH, LT-FH and SAIGE using empirical α. **a:** Mixture population containing 5000 independent individuals and 2500 pairs of siblings; **b:** Mixture population containing 5000 independent individuals and 625 families with 8 members each. For each set, a total of 100,000 independent variants were simulated and 1% variants were selected as causal variants with 4 different effect sizes. A total of 100 datasets were generated to calculate empirical power.
Supplementary Figure 7. Log-log plot of computation time under varying sample size, comparing TAPE-WP (labeled as TAPE), SAIGE and LT-FH. Samples were randomly selected from 408,898 white British individuals in UK Biobank data for Type II diabetes using $M = 100,000$ variants. Projected computation time for 21 million variants with MAF $\geq 0.01\%$ was plotted. Computation time for TAPE-LTFH is similar to that for TAPE-WP and is therefore omitted.
Supplementary Figure 8. Q-Q plots for 10 phenotypes in UK Biobank.
Supplementary Figure 9. Manhattan plots for 10 phenotypes in UK Biobank. Red: clumped significant variants from TAPE that were not detected by SAIGE; blue: clumped significant variants detected by both TAPE and SAIGE. a: results from TAPE-WP; b: results from TAPE-LTFH.

a.
b.

Type II diabetes (1:20)

Hypertension (1:4)

Parkinsons Disease (1:360)

Chronic Bronchitis (1:136)

Dementias (1:406)

Colorectal Cancer (1:87)

Lung Cancer (1:181)

Ischemic Heart Disease (1:11)

Depression (1:33)

Cerebral Ischemia (1:138)
Supplementary Figure 10. Manhattan plot for the KoGES data association test results from SAIGE (first row), TAPE-LTFH (second row) and TAPE-WP (third row) (N=72,298). **a**: Diabetes; **b**: Gastric Cancer. For plots from TAPE-WP, red marks clumped significant variants from TAPE-WP that were not detected by SAIGE; blue marks clumped significant variants detected by both TAPE and SAIGE. Significant clumped variants are identified using a window width of 5Mb and a linkage disequilibrium threshold of 0.1.
Supplementary Figure 11. Q-Q plot for KoGES results from SAIGE, TAPE-LTFH and TAPE-WP (N=72,298), categorized by MAF. Up: Diabetes; Bottom: Gastric Cancer
Supplementary Figure 12. Scatter plots for 10 phenotypes in UK Biobank. X axis: negative log p-values from SAIGE; Y axis: negative log p-values from TAPE-WP.
Supplementary Figure 13. Average χ^2 values of causal variants with sample size N=10,000, comparing TAPE-WP, TAPE-LTFHc, LT-FHc and SAIGE. For each dataset, 100,000 independent variants were simulated and 1% variants were selected as causal variants with 4 different effect sizes. A total of 100 datasets were generated to calculate average χ^2 values. MAFs of variants were 0.1. a: 5,000 independent individuals and 2,500 pairs of siblings; b: Mixture population containing 5000 independent individuals and 625 families with 8 members each.
Supplementary Figure 14. Simulation results for empirical power for causal variants with sample size N=10000, comparing TAPE-WP, TAPE-LTFHc, LT-FHc and SAIGE using empirical α. **a:** Mixture population containing 5000 independent individuals and 2500 pairs of siblings; **b:** Mixture population containing 5000 independent individuals and 625 families with 8 members each. For each set, a total of 100,000 independent variants were simulated and 1% variants were selected as causal variants with 4 different effect sizes. A total of 100 datasets were generated to calculate empirical power.
Supplementary Figure 15. Q-Q plots for 2 phenotypes in UK Biobank, comparing TAPE-WP, TAPE-LTFHc, LT-FHc and SAIGE. **a:** type II diabetes; **b:** Parkinson’s disease.

a.

- **Type II diabetes (250.2)**
 - MAF < 0.01
 - MAF 0.01-0.05
 - MAF > 0.05

b.

- **Parkinson’s Disease (332)**
 - MAF < 0.01
 - MAF 0.01-0.05
 - MAF > 0.05

Supplementary Tables

Supplementary Table 1. Number of significant variants and loci for 10 binary traits (case-control ratio in parentheses) in UK Biobank data among white British individuals. a: Number of significant variants; b: Number of significant clumped variants; c: Number of significant clumped variants with MAF < 1%. Significant clumped variants are identified using a window width of 5Mb and a linkage disequilibrium threshold of $r^2 = 0.1$.

Phenotype (case-control ratio)	#Variants (TAPE-WP)	#Variants (TAPE-LTFH)	#Variants (SAIGE)
Type II diabetes (1:20)	4480	5450	1737
Parkinson’s Disease (1:360)	2635	2628	2
Dementias (1:406)	831	892	128
Lung Cancer (1:181)	757	885	11
Depression (1:33)	59	76	22
Hypertension (1:4)	10721	11284	7246
Chronic Bronchitis (1:136)	456	552	81
Colorectal Cancer (1:87)	493	432	65
Ischemic Heart Disease (1:11)	4909	5243	1799
Cerebral Ischemia (1:138)	50	67	0

Phenotype (case-control ratio)	#Variants (TAPE-WP)	#Variants (TAPE-LTFH)	#Variants (SAIGE)
Type II diabetes (1:20)	154	181	70
Parkinson’s Disease (1:360)	7	9	1
Dementias (1:406)	63	67	14
Lung Cancer (1:181)	11	14	3
Depression (1:33)	3	4	3
Hypertension (1:4)	252	273	185
Chronic Bronchitis (1:136)	12	15	2
Colorectal Cancer (1:87)	16	16	3
Ischemic Heart Disease (1:11)	139	142	63
Cerebral Ischemia (1:138)	6	5	0
Phenotype (case-control ratio)	#Variants (TAPE-WP)	#Variants (TAPE-LTFH)	#Variants (SAIGE)
--------------------------------	---------------------	-----------------------	------------------
Type II diabetes (1:20)	8	17	9
Parkinson’s Disease (1:360)	2	2	0
Dementias (1:406)	11	12	2
Lung Cancer (1:181)	0	3	0
Depression (1:33)	2	2	2
Hypertension (1:4)	2	10	8
Chronic Bronchitis (1:136)	0	4	0
Colorectal Cancer (1:87)	0	0	0
Ischemic Heart Disease (1:11)	8	13	4
Cerebral Ischemia (1:138)	0	0	0

Supplementary Table 2. Attenuation ratios from TAPE-WP, TAPE-LTFH and LT-FH for 10 binary traits (case-control ratio in parentheses) in UK Biobank data among white British individuals.
Supplementary Table 3. Computation time (hour) under varying sample size, comparing TAPE-WP (labeled as TAPE), SAIGE and LT-FH. Samples were randomly selected from 408,898 white British individuals in UK Biobank data for Type II diabetes. Null model time: Time (hour) for null model estimation using $M = 100,000$ variants was reported. P-value time: Projected computation time (hour) for testing 21 million variants with MAF $\geq 0.01\%$ was listed. Computation time for TAPE-LTFH is similar to that for TAPE-WP and is therefore omitted in the table.

N	Method	Null Model Time	P-value Time	Total Time
10000	TAPE	1.27	3.36	4.63
10000	SAIGE	2.02	1.84	3.86
10000	LT-FH	0.15	2.73	2.88
20000	TAPE	2.84	5.51	8.35
20000	SAIGE	2.66	3.36	6.02
20000	LT-FH	0.16	5.56	5.72
40000	TAPE	5.98	9.93	15.91
40000	SAIGE	5.28	6.65	11.93
40000	LT-FH	0.20	10.82	11.02
100000	TAPE	24.00	23.53	47.53
100000	SAIGE	19.98	15.23	35.21
100000	LT-FH	0.85	16.49	17.34
200000	TAPE	87.78	46.21	133.99
200000	SAIGE	60.17	30.61	90.78
200000	LT-FH	2.14	32.24	34.38
408898	TAPE	190.25	94.47	284.72
408898	SAIGE	109.02	62.58	171.60
408898	LT-FH	6.51	67.70	74.21
Supplementary Table 4. Disease prevalence of sample individuals and their relatives for two binary phenotypes in the KoGES data.

Prevalence	Diabetes	Gastric Cancer
Among samples	7.6%	0.52%
Paternal	4.6%	4.38%
Maternal	8.1%	2.30%
Siblings	6.3%	2.51%
Supplementary Table 5. Empirical type I error rates for TAPE-WP, TAPE-LTFHc, LT-FHc and SAIGE, estimated using 10^9 independent SNPs and a sample size of 10,000 ($\alpha = 5 \times 10^{-8}$). Two types of population structure were considered: 1) Sample consists of 2,500 pairs of siblings and 5,000 independent individuals; 2) Sample consists of 625 8-member families and 5,000 independent individuals.

Case:Control	MAF	TAPE-WP	TAPE-LTFHc	LTFHc	SAIGE
2,500 pairs of siblings and 5,000 independent individuals					
1:99	0.001	4.977e-08	3.597e-08	4.542e-06	4.418e-08
5:95	0.001	5.115e-08	3.318e-08	9.018e-07	4.368e-08
10:90	0.001	5.476e-08	5.330e-08	5.067e-07	4.641e-08
1:99	0.01	5.455e-08	1.192e-07	5.288e-07	3.963e-08
5:95	0.01	5.143e-08	9.848e-08	1.441e-07	4.341e-08
10:90	0.01	5.459e-08	9.002e-08	1.002e-07	4.980e-08
1:99	0.10	5.007e-08	7.330e-08	3.669e-08	3.964e-08
5:95	0.10	5.213e-08	7.498e-08	5.042e-08	4.355e-08
10:90	0.10	6.416e-08	5.357e-08	4.952e-08	4.650e-08
625 8-member families and 5,000 independent individuals					
1:99	0.001	3.329e-08	1.969e-08	4.687e-06	3.832e-08
5:95	0.001	3.051e-08	1.451e-08	9.327e-07	4.245e-08
10:90	0.001	2.967e-08	1.051e-08	4.189e-07	4.721e-08
1:99	0.01	3.742e-08	1.587e-08	5.558e-07	4.547e-08
5:95	0.01	3.156e-08	1.193e-08	1.440e-07	4.311e-08
10:90	0.01	2.978e-08	8.790e-09	8.318e-08	4.324e-08
1:99	0.10	3.113e-08	1.237e-08	7.449e-08	3.895e-08
5:95	0.10	3.050e-08	8.744e-09	4.947e-08	4.232e-08
10:90	0.10	3.163e-08	6.615e-09	4.941e-08	4.546e-08

Supplementary Table 6. Attenuation ratios from TAPE-WP, TAPE-LTFHc and LT-FHc for 2 binary traits (case-control ratio in parentheses) in UK Biobank data among white British individuals.

	TAPE-WP	TAPE-LTFHc	LT-FHc
Type II diabetes (1:20)	0.109	0.093	0.048
Parkinson’s Disease (1:360)	0.125	0.000	0.313
REFERENCES

1. Liu, J. Z., Erlich, Y. & Pickrell, J. K. Case-control association mapping by proxy using family history of disease. *Nature genetics* **49**, 325 (2017).