Study of corrosion mechanism of sour gas to cement stone in PUGUANG gas field

Abstract
The gas reservoir of PUGUANG contains high levels of H\textsubscript{2}S and CO\textsubscript{2} with 15\% and 8\% by volume respectively. As to the corrosion of CO\textsubscript{2}/H\textsubscript{2}S mixture to cement, people seldom involve in research. Cement stone samples corroded by H\textsubscript{2}S/CO\textsubscript{2} mixture under different temperature and pressure are tested to probe the change of compressive strength and permeability. Microstructure and corroded products of corroded samples were observed by SEM and XRD. The result shows the corroded products of CO\textsubscript{2}/H\textsubscript{2}S mixture to cement are similar to those by single-component H\textsubscript{2}S or CO\textsubscript{2} gas, except that the amount of expansive crystal produced by H\textsubscript{2}S is reduced. Combination of H\textsubscript{2}S and CO\textsubscript{2} accelerates the corrosion progress, the recession of strength and permeability is more serious than that of single action by H\textsubscript{2}S or CO\textsubscript{2} simultaneously, but CO\textsubscript{2} dominates the whole corrosion process after the long duration. Fly ash and Clay have benefits to resist corrosion of combination of H\textsubscript{2}S and CO\textsubscript{2}.

Keywords: sour gas, cement stone, corrosion, H\textsubscript{2}S, CO\textsubscript{2}, puguang

Introduction
The PUGUANG gas field is the biggest sour gas field in China which contains 15\% and 8\% by volume of H\textsubscript{2}S and CO\textsubscript{2} respectively. Acidic gas and alkaline cement ring will react in wet condition to cause compressive strength reduce and damage seal function of cement ring.2,3 Previous studies focused on the single corrosion mechanism of CO\textsubscript{2} or H\textsubscript{2}S to cement stone, as to the corrosion of CO\textsubscript{2}/H\textsubscript{2}S mixture to cement, people seldom involve in research. Such as Yaoxiao4 & Zhou Shiming5 has studied the change of compressive strength of cement by CO\textsubscript{2}, Ma kaifu6 has made systematic studies on the H\textsubscript{2}S corrosion to cement. What will happen on the cement after the combinatorial action by H\textsubscript{2}S and CO\textsubscript{2} mixture? In this paper test methods are established under well whole condition of PUGUANG gas field,7 the compressive strength and permeability of cement stone are measured before and after corrosion according to API Spec10B. SEM and XRD are used to study the change of micro structure and reaction product before and after corrosion.

Test procedure and cement composition

Experimental process

Experimental parameter: Test parameters are determined according to well condition of PUGUANG gas field as follows:

i. Experimental temperature: 95\°C, 130\°C, 150\°C.

ii. Corrosive media: xH\textsubscript{2}S = 65.2\% xCO\textsubscript{2} = 34.8\%.

iii. Pressure: 15MPa, the partial pressures of H\textsubscript{2}S and CO\textsubscript{2} are 10MPa and 5MPa respectively.

iv. Conservation Time: 21 days.

v. Test water: Simulated formation water.

Table 1 Slurry compositions of group 1 at 95\°C

Composition No.	1	2	3	4	5	6
API G class cement, g	500	500	500	500	500	500
Silica flour, g	-	-	-	-	-	175
Dispersant, g	-	7.5	17.5	15	17.5	-
Filtration controller, g	-	30	30	30	30	-
Latex, g	-	60	60	-	60	-
Al\textsubscript{2}O\textsubscript{3}, g	-	-	-	50	-	-
Clay, g	-	-	50	50	-	-
Fly ash, g	-	-	90	150	75	-
Table 2 Slurry compositions of group 2 at 130°C and 150°C

Composition No.	1	2	3	4	5	6
APIG class cement g	500	500	500	500	600	500
Silica flour g	175	175	150	175	175	
Dispersant, g	-	7.5	17.5	15	17.5	17.5
Filtration controller, g	-	30	30	30	30	30
Latex, g	-	60	60	60	60	60
Al₂O₃, g	-	-	25	50	25	25
Clay, g	25	25	-	25	-	25
Fly ash, g	75	75	150	75	75	75

Result and analysis of test

Change of compressive strengthen and permeability after corrosion

Table 3 shows the change of compressive strengthen and permeability of group 1 cement stone before and after corrosion at 95°C, and Table 4 & 5 show those changes of group 2 at 130°C and 150°C. Table 3–5 shows most of samples present compressive strengthen reduction and permeability increase after corrosion. Sample 3 and 4 show comparatively good corrosion resistance with other samples.

Information in tables also shows that as the temperature rises, the recession of strengthen and permeability is more serious, which presents a complete opposite rule with that of single corrosion by H₂S or CO₂.

Table 3 Change of compressive strengthen and permeability after corrosion at 95°C

Number of Sample	Compressive Strength (Mpa)	Permeability K/(10⁻³um²)				
	Before Corrosion	After Corrosion	Change	Before Corrosion	After Corrosion	Change
1	17.01	18.82	10.64	0.2006	0.3317	65.35
2	13.83	12.13	-12.29	0.2978	0.3351	12.53
3	13.15	11.79	-10.34	0.1903	0.3134	64.69
4	14.23	14.29	0.42	0.3	0.2743	-8.57
5	18.71	14.52	-22.39	0.1677	0.2714	61.84
6	20.47	16.33	-20.22	0.2	0.279	39.5

Table 4 Change of compressive strengthen and permeability after corrosion at 130°C

Number of Sample	Changes in Strength (Mpa)	Permeability K / K/(10⁻³um²)				
	Before Corrosion	After Corrosion	Change	Before Corrosion	After Corrosion	Change
1	25.6	15.2	-40.63	0.623	2.731	338.36
2	18.48	13.38	-27.6	0.621	2.745	342.03
3	14.86	16.22	9.15	0.439	0.362	-17.54
4	18.37	17.69	-3.7	0.417	0.522	25.18
5	13.5	17.46	14.07	0.2988	3.337	769.01
6	14.29	14.29	0	0.556	2.923	425.72

Table 5 change of compressive strengthen and permeability after corrosion at 150°C

Number of sample	Change in strength (Mpa)	Permeability K / K/(10⁻³um²)				
	before corrosion	after corrosion	Change	before corrosion	After Corrosion	Change
1	38.73	21.05	-45.65	0.3255	0.523	60.68
2	32.34	13.56	-58.07	0.2969	2.755	827.92
3	17.18	17.46	1.63	0.2988	0.672	124.9
4	31.58	25.86	-18.11	0.312	1.828	485.9
5	15.93	14.23	-10.67	0.3669	0.4561	24.31
6	20.58	15.52	-24.59	-	-	-
Analysis on reaction products of corroded cement samples

Corroded products analysis at 95°C: Figure 1 is XRD result of sample 1 and Figure 2 is SEM picture of sample 1 and 6 of group 1. Figure 1 shows that there is lots of CaCO₃ crystal in outer layers of sample 1, which are the products of CO₂ reaction. Little CaSO₄ Crystal is founded in the inside of the sample which is the products of H₂S reaction. A large amount of Ca (OH)₂ is founded in the inner of sample 1. Figure 2 shows that there are lots of cracks and pores in both samples of 1 and 6 which verifies the recession of strengthen and permeability. The picture also indicates there is almost no hydrated calcium silicate (CSH) in the cement stone.

Corroded products analysis at 130°C: Figure 3 & 4 are of XRD results of the corroded samples from No.1 to No.6 of group 2 at 130°C. Figure 3 analyzes products in the outer layer of samples and Figure 4 analyzes products of in the core of samples. Figure 3 shows there are large amount of mini-crystal calcium carbonate (CaCO₃ (I)) and calcite (CaCO₃ (II)) and a little gypsum in all the samples. Figure 4 shows almost no Ca(OH)₂ in the core of samples. For lack Ca(OH)₂, CSH lost stability by transforming to C₂SH, which can explain why the recession of strengthen and permeability becoming more serious as the temperature rising. Figure 5 is the SEM pictures of sample 3 and 4. The picture indicates there are lots of cracks and pores in both samples. The picture also indicates There are almost no hydrated calcium silicate (CSH) and Ca(OH)₂ in the cement stone.
Corroded products analysis at 150˚C: Figure 6 & 7 are of XRD results of the corroded samples from No.1 to No.6 of group 2 at 150˚C. Figure 6 analyzes products in the outer layer of samples and Figure 7 analyzes products in the core of samples. Figure 6 shows there are large amount of mini-crystal calcium carbonate (CaCO\(_3\) (I)) and calcite (CaCO\(_3\) (II)) and a little gypsum in all the samples. Figure 7 shows there is CaCO\(_3\) in the core of cement stone which indicates the corroding reaction makes deeper. Figure 8 is the SEM pictures of sample 3 and 5. The picture indicates there are lots of cracks and pores in both samples, and almost no hydrated calcium silicate (CSH and Ca(OH)\(_2\)) in the cement stone. The crystal of CaCO\(_3\) and CaSO\(_4\) is founded in the core of cement which verifies the further corroding reaction with temperature rising.

Corrosion mechanism analysis

Corrosion mechanism of CO2 to cement

Corrosion mechanism of CO\(_2\) to cement composes with reaction formula (1) and (2).\(^{1,8}\)

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \] (1)

\[\text{Ca(OH)}_2 + \text{H}^+ + \text{H}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + \text{2H}_2\text{O} \] (2)

There is almost no CSH gel in the corroded cement stone sample, but there is large volume of C\(_3\)SH, which shows that CSH gel begins to react with CO\(_3\) and produce CaCO\(_3\) and C\(_3\)SH, its reaction composes with the reaction formula (3).\(^{3,9,11}\)

\[\text{CSH} + \text{H}^+ + \text{HCO}_3^- \rightarrow \text{C}_3\text{SH} + \text{CaCO}_3 \] (3)

Corrosion mechanism of H2S to cement

Firstly H\(_2\)S reacts with Ca(OH)\(_2\) to produce CaSO\(_4\),2H\(_2\)O (gypsum) and the volume of solid substance expands, producing fractures in cement stone, then it makes corrosion expanding into the cement until all cement gelatin is corroded and collapsed.

The reaction of H\(_2\)S with cement stone is as following.\(^{1,2}\)

\[\text{Ca(OH)}_2(S) + \text{H}_2\text{S}(g) + \text{H}_2\text{O}(1) \rightarrow \text{CaSO}_4 + \text{2H}_2\text{O} (S) \] (4)

The density of Ca(OH)\(_2\) is 2.24 g/cm\(^3\), while the density of CaSO\(_4\),2H\(_2\)O is 2.30 g/cm\(^3\). Therefore, when corroded by H\(_2\)S, the volume cement stone will expand, and producing fractures in it. CSH gel of cement stone also reacts with H\(_2\)S solution to produce CaSO\(_4\),2H\(_2\)O (gypsum).

The reaction formula is as following.\(^6\)

\[\text{CSH} + \text{H}_2\text{S} + \text{H}_2\text{O} \rightarrow \text{CaSO}_4 \cdot \text{2H}_2\text{O} + \text{C(m)S(n)H(x)} \] (5)

\[\text{CaSO}_4 \cdot \text{2H}_2\text{O} \text{ will continue to react with C3A to produce Ettringite (AFT) catalyzed by Ca(OH)}_2 \text{.} \]

The reaction formula is as following.\(^{1,2}\)

\[\text{C}_3\text{A} + 3(\text{CaSO}_4 \cdot \text{2H}_2\text{O}) + 2\text{Ca(OH)}_2 + 24\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O} \] (6)

The density of Ettringite is 1.73 g/cm\(^3\), too much ettringite generate will cause cement stone expanding split.

Corrosion mechanism of CO2 and H2S mixture to cement

The products corroded by H\(_2\)S and CO\(_2\) mixture to Cement stone are similar to those by single-component gas.\(^{1,5}\) CO\(_2\) dominates the whole corrosion process in the long duration, because its' corroding products are more than the products by H\(_2\)S. For the small quantity of products by H\(_2\)S, expanding split cannot be founded in whole process by combination of H\(_2\)S and CO\(_2\).

Combination of H\(_2\)S and CO\(_2\) accelerates the corrosion progress, the recession of strengthen and permeability is more serious than that of single action by H\(_2\)S or CO\(_2\) simultaneously. As temperature rises, the recession of strengthen and permeability is more serious, which presents a complete opposite rule with that of single corrosion by H\(_2\)S or CO\(_2\).

Conclusion

The temperature of bottom well bore of PUGUANG gas field is 150˚C, and the partial pressures of H\(_2\)S and CO\(_2\) are 10MPa and 5MPa

Citation: Yijin Z, Shiming Z. Study of corrosion mechanism of sour gas to cement stone in PUGUANG gas field. Int J Petrochem Sci Eng. 2016;1(1):4-8. DOI: 10.15406/ipcse.2016.01.00002
respectively, which will bring serious corrosion on cement ring, and damage its’ seal ability. The higher of the temperature rises, the more severe of the recession of strengthen and permeability, which presents a complete opposite rule with that of single corrosion by H_2S or CO_2. The composition of cement slurry is the predominant factor affecting cement corrosion resistance. The introduction of Latex and Fly ash and clay into system will reduce the alkalinity in the cement slurry system and improves the corrosion resistance of set cement. The hydration products are crystallized after corrosion under combination of H_2S and CO_2 and loose arrangement of that crystal is the reason of strength decline and permeability rise. Measures against composite corrosion of H_2S and CO_2 mixture: decline the alkalinity and reduce the porosity of cement slurry.

Acknowledgements

None.

Conflict of interest

The authors declare no conflict of interest.

References

1. N Ximing, D Shidong. Anti-gas migration cement technical under high pressure at north-east Sichuan basin. *J Petroleum drilling techniques*. 2008;36(3):10.

2. J Moore, M Adams, R Allis. Mineralogical and geochemical consequences long-term presence of CO_2 in natural reservoirs: An example from the springerville-St John’s arizona and New Mexico USA. *J Chemical geo-logy*. 2005;217(3-4):365–385.

3. J W Carey, M Wigand, S J Chipera. Analysis and performance of oil well cement with30 years of CO_2 exposure from the SACROC Unit West Texas, USA. *J International journal of greenhouse gas control*. 2007;1(1):75–85.

4. Y Xiao. Carbon dioxide corrosion in oilwell cement and its prevention measures. *J Drilling fluid and completion fluid*. 1998;15(1):8–11.

5. Z Shiming, W Liu, Y Guangguo, et al. Researches of CO_2 corrosion to cement stone at high temperature. *J Petroleum drilling techniques*. 2008;36(6):9–13.

6. M Kailua, Z Shiming, C Yongtao. H_2S corrosion into cement stone at high temperature. *J Petroleum drilling techniques*. 2006;36(6):4–8.

7. Li Tiecheng, Zhou Shimign. Overall cementing technology for puguan gas field. *J Petroleum drilling techniques*. 2011;39(1):78–82.

8. R H Hausler, D W Stegman, C I Cruz. Laboratory study on flow induced localized corrosion in CO_2/H_2S environments. *Corrosion/90*. NACE; p. 143-150.

9. Carlos A Garcia-Gonzalez, Nadia Grouh, Ana Hidalgo. New insights on the supercritical carbon dioxide for the accelerated carbonation of cement pastes. *J of Superc Fluids*. 2007;43(3):500–509.

10. Bruckdorfer R A . Carbon dioxide corrosion in oil well cements. SPE 15176; 1986.

11. G Zhiqin, Z Qing, Y Ping. Study corrosion resisting of cement slurry. *J Drilling Fluid and Completion Fluid*. 2004;21(6):37–40.

12. H Bozong, L Enping, L Guangning. Researches on corrosion of cement sheath of oil/gas well casings. *J Oilfield chemistry*. 1999;16(4):377–383.

13. Nicolas Jacquemet, Jacques Pironon, Vincent Lagneau. Armouring of well cement in H_2S-CO_2 saturated brine by calcite coating: Experiments and numerical modeling. *J Applied Geochemistry*. 2012;27(3):782–795.