Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions

Guido Giordano, Massimo Pancione, Nunzio Olivieri, Pietro Parcesepe, Marianna Velocci, Tania Di Raimo, Luigi Coppola, Giuseppe Toffoli, Mario Rosario D’Andrea

Guido Giordano, Massimo Pancione, Nunzio Olivieri, Pietro Parcesepe, Marianna Velocci, Tania Di Raimo, Luigi Coppola, Giuseppe Toffoli, Mario Rosario D’Andrea

Abstract
Pancreatic cancer (PDAC) is an aggressive and chemoresistant disease, representing the fourth cause of cancer related deaths in western countries. Majority of patients have unresectable, locally advanced or metastatic disease at time of diagnosis and the 5-year survival rate in these conditions is extremely low. For more than a decade gemcitabine has been the cornerstone of metastatic PDAC treatment, although survival benefit was very poor. PDAC cells are surrounded by an intense desmoplastic reaction that may create a barrier to the drugs penetration within the tumor. Recently PDAC stroma has been addressed as a potential therapeutic target. Nano albumin bound (Nab)-paclitaxel is an innovative molecule depleting...
tumor stroma, through interaction between albumin and secreted protein acidic and rich in cysteine. Addition of nab-paclitaxel to gemcitabine has showed activity and efficacy in metastatic PDAC first-line treatment improving survival and overall response rate vs gemcitabine alone in the MPACT phase III study. This combination represents one of the standards of care in advanced PDAC therapy and is suitable to a broader spectrum of patients compared to other schedules. Nab-paclitaxel is under investigation as a backbone of chemotherapy in novel combinations with target agents or immunotherapy in locally advanced or metastatic PDAC. In this article, we provide an updated and critical overview about the role of nab-paclitaxel in PDAC treatment based on the latest advances in preclinical and clinical research. Furthermore, we focus on the use of nab-paclitaxel within the context of metastatic PDAC treatment landscape and we discuss about future implications in the light of current clinical ongoing trials.

Key words: Nano albumin bound-paclitaxel; Pancreatic cancer; Metastatic disease; Gemcitabine; Folfirinox

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this article, we provide an updated and critical overview about the role of nano albumin bound (Nab)-paclitaxel in pancreatic cancer (PDAC) treatment based on the latest advances in preclinical and clinical research. Furthermore, we focus on the use of Nab-paclitaxel within the context of metastatic PDAC treatment landscape and we discuss about future implications in the light of current clinical ongoing trials.

INTRODUCTION
Pancreatic cancer (PDAC) is a lethal disease with an incidence rate nearly equal to its mortality and it is the fourth cause of cancer-related death worldwide[1,2]. Five-year survival rate is about 5% and it increases to 20% in patients receiving radical surgery, chemotherapy and radiation[3-5]. The majority of patients have locally advanced or metastatic disease at the time of diagnosis and chemotherapy represents the only curative chance, even if prognosis remains very poor[6]. For more than a decade, gemcitabine has been the cornerstone of treatment in metastatic setting, despite of a small advantage in terms of survival[7]. Recently, PDAC stroma has been addressed as a possible target for novel molecules[8,9]. PDAC is characterized by an intense desmoplastic reaction that may explain its high chemoresistance. Tumor stroma contributes to poor vascularization and high intratumoral pressure resulting in reduced drugs penetration within cancer cells[10,11]. Among stromal components, secreted protein acidic and rich in cysteine (SPARC) has been investigated as a potential therapeutic target because of its involvement in PDAC cells proliferation, migration, metastasization and escape mechanisms[12-15]. Nano albumin bound (Nab)-paclitaxel is an innovative molecule obtained by the combination of paclitaxel with nano-particles of albumin[16]. SPARC binds albumin and it has been postulated that “nab-technology” may enhance selective delivery and uptake of paclitaxel in cancer cells[17]. Following the results of the MPACT phase III study, nab-paclitaxel in combination with gemcitabine has become a standard of care in metastatic PDAC first-line therapy[18]. Accordingly, this doublet represents also a valid backbone for the new developing schedules. In this paper, we will focus on molecular structure, mechanism of action, preclinical data, clinical studies and future perspectives regarding nab-paclitaxel in PDAC treatment.

NAB-PACLITAXEL: MOLECULAR STRUCTURE AND MECHANISM OF ACTION
Nab-paclitaxel (ABI 007 or Abraxane®; Celgene) is a 130-nm, albumin-bound, formulation of paclitaxel without any solvents or ethanolf. The Cremophorph® EL free formulation reduces the incidence of infusion adverse reactions and makes premedication with steroids not necessary. This agent is prepared by homogenization of human serum albumin at 3%-4% concentration with paclitaxel[20]. Nab-paclitaxel particles have a reduced diameter that enhances intracellular paclitaxel delivery and thus higher antitumor activity[21]. This molecule has a greater distribution volume, higher concentration and a faster clearance than conventional paclitaxel[22]. After administration of equal doses of nab-paclitaxel and radiolabeled paclitaxel-cremophor to MX-1 xenograft athymic mice, nab-paclitaxel had a more rapid tumor uptake. This resulted in overall increase in the area under the curve and a more effective intratumoral accumulation of nab-paclitaxel compared to paclitaxel-cremophor[23]. Preclinical studies have shown that albumin facilitates transport of paclitaxel across endothelial cells through the gp60 albumin receptor/caveolin-1 pathway (Figure 1). Notably, endothelial transcytosis of nab-paclitaxel was inhibited by methyl β-cyclodextrin, a gp60/caveolin-1 transport inhibitor. In vitro, a significant 9.9 times increase of nab-paclitaxel binding to the endothelial cells of human umbilical vein compared to conventional paclitaxel was recorded. Accordingly, a 4.2 times increased endothelial transcytosis of paclitaxel linked
Figure 1 Nab-paclitaxel mechanism of action. A: After intravenous administration nab-paclitaxel is carried through bloodstream; B: Nab-paclitaxel binds gp60 albumin receptor on the endothelial cell; C: Endothelial transcytosis of nab-paclitaxel through the gp60 albumin receptor/caveolin-1 pathway; D: Interaction between SPARC and nab-paclitaxel both on the pancreatic cancer cells and stromal fibroblasts. SPARC: Secreted protein acidic and rich in cysteine.

to nano-particles of albumin was demonstrated22,24. Furthermore, passive transport through permeable peritumoral vessels could have a role in paclitaxel delivery to cancer cells26. Peculiar and tumor-selective mechanism of action may be partially elucidated by interactions between SPARC and albumin (Figure 1). SPARC is an albumin-binding glycoprotein, also known as osteonectin, overexpressed in different types of tumor such as breast, lung, PDAC and melanoma26. SPARC is expressed both in PDAC stroma and tumor cells, representing a potential target for nab-paclitaxel mechanism of action26. Nevertheless, preclinical data on engineered mouse models (KPC models) demonstrated that SPARC had no role in nab-paclitaxel internalization in tumor cells27. Consistently, tumor delivery of nab-paclitaxel was not related to SPARC expression in patient derived xenograft (PDX) PDAC murine models28.

DEVELOPMENT OF NAB-PACLITAXEL IN PDAC PRECLINICAL MODELS

In the context of a phase I-II study by Von Hoff et al29, PDAC PDX murine models were randomly assigned to control, gemcitabine 100 mg/kg intraperitoneally on days 1 and 5 weekly for 4 wk, nab-paclitaxel 30 mg/kg per day intravenously for 5 consecutive days, and gemcitabine plus nab-paclitaxel in the preceding regimens for 4 wk. This study aimed to evaluate: (1) tumor progression; (2) changes in the pancreatic stroma; and (3) intratumoral drug penetration. Tumor regression was observed in 18%, 36% and 64% of xenografts treated with gemcitabine, nab-paclitaxel alone and both in combination, respectively. A depleted desmoplastic stroma, combined with dilated blood vessels, was found in each of nab-paclitaxel treatment group. Nab-paclitaxel plus gemcitabine resulted in 2.8 fold increased intra-tumor concentration of gemcitabine, compared to gemcitabine alone29. Another study investigated nab-paclitaxel, gemcitabine, docetaxel or control in PDAC cell-lines AsPC-1, BxPC-3, MIA PaCa-2 and Panc-1a. Addition of docetaxel or nab-paclitaxel at IC25, reduced gemcitabine IC50. Tumor growth inhibition after gemcitabine, docetaxel or nab-paclitaxel was 67%, 31% and 72%, respectively. Tumor stromal density, measured through reduction in α-smooth muscle actin, S100A4 and collagen 1 expression, was decreased by nab-paclitaxel better than docetaxel. In the same study, xenograft model was used to evaluate the efficacy of gemcitabine, docetaxel or nab-paclitaxel. Nab-paclitaxel followed by gemcitabine resulted in a longer median survival vs control or gemcitabine alone30. Notably, combination of nab-paclitaxel and gemcitabine improved survival, reduced incidence of metastasis and increased intratumoral gemcitabine levels in KPC mouse models. Those effects were explained by the decrease of cytidine-deaminase, a gemcitabine-metabolizing enzyme31. Engineered mice models of PDAC treated with nab-paclitaxel and gemcitabine, showed a distorted collagen with low cellular content in a preclinical-clinical study. Conversely, cancer-associated fibroblasts were increased in gemcitabine-treated mice. In the clinical section of this study, surgical specimen from patients with resectable PDAC, receiving preoperative treatment with two cycles of nab-paclitaxel and gemcitabine were studied to determine the collagen content and cancer associated fibroblasts density. Tumor samples of patients treated with nab-paclitaxel plus gemcitabine, showed a less abundant fibrillar collagen matrix around the tumor. Consistently, cancer associated fibroblasts were decreased in number, without effects on their activity32. Recently, a preclinical study definitively demonstrated that nab-paclitaxel was superior to conventional paclitaxel in blocking primary tumor progression, depletion of tumor stroma and resulted in a longer survival in PDAC murine models33.

SPARC and nab-paclitaxel both on the pancreatic cancer cells and stromal fibroblasts. SPARC: Secreted protein acidic and rich in cysteine.
NAB-PACLITAXEL AND GEMCITABINE: A STANDARD OF CARE IN METASTATIC PDAC TREATMENT

Combination of nab-paclitaxel and gemcitabine in metastatic PDAC patients was investigated in an open label phase I - II study conducted in four United States centers. In the phase I part of this trial, primary endpoint was to identify the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of gemcitabine 1000 mg/m² followed by nab-paclitaxel 100, 125 or 150 mg/m² administered intravenously on day 1, 8 and 15 of a 28 d cycle. DLTs were sepsis and neutropenia and the MTD was fixed at level 2 (nab-paclitaxel 125 mg/m²). Phase II part of this study continued accrual at MTD to evaluate activity and safety of this combination. A cohort of 67 patients was enrolled and 44 received treatment at MTD. Median overall survival (OS) and progression free survival (PFS) in patients treated at MTD were 12.2 and 7.9 mo, respectively. Overall response rate (ORR) was 48% and overall disease control rate (DCR) was 68%. Most common grade ≥ 3 toxicities were represented by neutropenia (67%), leukopenia (44%), thrombocytopenia (23%), fatigue (21%) and neuropathy (15%). SPARC levels analysis was performed by immunohistochemistry in 36 tumor samples and patients were classified into high-SPARC and low-SPARC. High-SPARC was related to longer OS than low-SPARC (17.8 mo vs 8.1 mo, \(P = 0.0431 \)) and it was significant predictor for OS at multivariate Cox regression model (\(P = 0.041 \))\(^{[29]} \). Phase I - II studies have been performed also in Asian patients. In Japanese population, no differences were observed in grade 3 or higher toxicities compared to the American phase I - II study, using the same schedule\(^{[34]} \). A Chinese phase I - II trial evaluated a different schedule of nab-paclitaxel plus gemcitabine. MTD was fixed at nab-paclitaxel 120 mg/m² in combination with gemcitabine 1000 mg/m² on day 1 and 8 every 3 wk\(^{[35]} \).

MPACT phase III trial

The MPACT trial was an international, multicenter, open label, randomized phase III study involving 11 countries worldwide. Eligible patients were randomly assigned 1:1 to receive either nab-paclitaxel 125 mg/m² plus gemcitabine 1000 mg/m² on days 1, 8, 15 every 4 wk or gemcitabine alone weekly for 7 of 8 wk during first cycle and days 1, 8, 15 every 4 wk in subsequent cycles. Treatment was administered until disease progression or unacceptable toxicity. Eight-hundred sixty-one patients (431 in the experimental arm) were enrolled and stratified according Karnofsky Performance Status (KPS), presence of liver metastases and geographic region. Primary end-point was OS; secondary objectives were PFS and ORR. Age, gender, race, region and KPS were comparable in both study arms. No significant differences in pancreatic tumor site, location of metastases, number of metastatic sites, median CA19.9 levels, previous surgical or medical treatment and biliary stent implantation were observed between nab-paclitaxel plus gemcitabine and single agent gemcitabine groups. In the experimental arm, median duration of treatment was 3.9 mo and median dose intensity was 81% for nab-paclitaxel and 75% for gemcitabine. Addition of nab-paclitaxel to gemcitabine increased significantly median OS over gemcitabine alone (8.5 mo, 95%CI: 7.89-9.53 vs 6.7 mo, 95%CI: 6.01-7.23) with a 28% reduced risk of death (\(HR = 0.72, 95\% CI: 0.62-0.82, P < 0.001 \)). One and two-year survival rates were significantly higher in nab-paclitaxel and gemcitabine group compared to gemcitabine alone (35% vs 22%, \(P < 0.001 \) and 9% vs 4%, \(P = 0.02 \), respectively). Median PFS was prolonged by combination schedule (5.5 mo, 95%CI: 4.5-5.9 vs 3.7 mo, 95%CI: 3.6-4.0; \(HR = 0.69, 95\% CI: 0.58-0.82, P < 0.001 \)) with a significantly higher 12 mo- PFS rate than single agent gemcitabine (16% vs 9%). ORR was increased by addition of nab-paclitaxel to gemcitabine vs gemcitabine alone as assessed both by independent and investigator review (23% vs 7%, \(P < 0.001 \) and 29% vs 8%, \(P < 0.001 \), respectively). Notably, DCR, as evaluated by independent review, was higher in combination than single agent arm (48% vs 33%). Nab-paclitaxel and gemcitabine combination benefit was consistent across the different subgroups in terms of OS and PFS. Patients with more advanced disease, poorer PS, presence of liver metastases, more than 3 metastatic sites and CA19.9 higher than 24, 36 and 42 mo, respectively\(^{[28]} \). Addition of nab-paclitaxel to gemcitabine increased significantly median OS over gemcitabine alone (8.5 mo, 95%CI: 7.89-9.53 vs 6.7 mo, 95%CI: 6.01-7.23) with a 28% reduced risk of death (\(HR = 0.72, 95\% CI: 0.62-0.82, P < 0.001 \)). One and two-year survival rates were significantly higher in nab-paclitaxel and gemcitabine group compared to gemcitabine alone (35% vs 22%, \(P < 0.001 \) and 9% vs 4%, \(P = 0.02 \), respectively). Median PFS was prolonged by combination schedule (5.5 mo, 95%CI: 4.5-5.9 vs 3.7 mo, 95%CI: 3.6-4.0; \(HR = 0.69, 95\% CI: 0.58-0.82, P < 0.001 \)) with a significantly higher 12 mo- PFS rate than single agent gemcitabine (16% vs 9%). ORR was increased by addition of nab-paclitaxel to gemcitabine vs gemcitabine alone as assessed both by independent and investigator review (23% vs 7%, \(P < 0.001 \) and 29% vs 8%, \(P < 0.001 \), respectively). Notably, DCR, as evaluated by independent review, was higher in combination than single agent arm (48% vs 33%). Nab-paclitaxel and gemcitabine combination benefit was consistent across the different subgroups in terms of OS and PFS. Patients with more advanced disease, poorer PS, presence of liver metastases, more than 3 metastatic sites and CA19.9 higher than 24, 36 and 42 mo, respectively\(^{[28]} \).

MPACT study: post hoc analyses

Nab-paclitaxel plus gemcitabine remained an independent predictor of improved OS and PFS also after correction for prognostic factors. In fact, MPACT investigators evaluated the effect of treatments according stratification factors and known prognostic factors (age, sex, KPS, peritoneal carcinomatosis, primary tumor location, pulmonary metastases, liver metastases, Whipple procedure, biliary stent implantation, stage at diagnosis, CA19.9 level).
Combination regimen was more effective than gemcitabine in a larger spectrum of patients[37]. In addition, an elevated neutrophil to lymphocytes ratio (NLR ≥ 5) at baseline resulted as an independent prognostic factor related to a worse OS in an updated multivariate analysis[36]. Nab-paclitaxel plus gemcitabine combination showed activity both on primary and metastatic lesions in terms of tumor shrinkage benefit in a further analysis[38]. In MPACT trial, baseline CA19.9 levels were not a significant predictor of survival; conversely, CA19.9 decrease was related to better outcomes in both arms. An exploratory analysis confirmed the CA19.9 decrease at 8 wk as an early marker of treatment efficacy in terms of OS and ORR[39]. A pre-specified analysis evaluated the role of metabolic response detected by PET scan and compared metabolic response rate with treatment efficacy. Metabolic response rates at 8 wk as well as best metabolic response were higher in nab-paclitaxel plus gemcitabine arm. Metabolic response appeared as predictor of longer OS in both study arms[40]. Nab-paclitaxel plus gemcitabine was related to 54% of any grade neuropathy. Majority of patients experiencing grade 3 neuropathy, improved to grade 1 or less within one-month. Patients who developed peripheral neuropathy received a longer treatment and obtained a longer OS. Survival benefit increased according to the grade of peripheral neuropathy[41]. An exploratory analysis was performed in order to gain insight the role of SPARC expression as prognostic or predictive factor of survival. Neither baseline plasma SPARC levels, nor changes from baseline were predictors of OS. Stromal and tumor levels of SPARC, measured by immunohistochemistry had no correlation with OS[42]. Nab-paclitaxel plus gemcitabine increased OS, PFS and ORR, compared to gemcitabine alone in patients treated until disease progression. Accordingly, more than 50% of patients treated until progression received a second line therapy[43]. In the MPACT study 41% of patients had a nab-paclitaxel dose reduction, 71% had a dose delay, mostly after two cycles of treatment. In nab-paclitaxel plus gemcitabine arm, those modifications led to a longer treatment exposure and OS respect of patients who did not receive reductions or delays[44]. Forty-percent of patients treated in nab-paclitaxel and gemcitabine group received a second line treatment, mostly (74%) with fluoropyrimidines in combination regimens. Second line therapies were related to a significant benefit in OS in both study arms compared to patients without second line therapy. Notably, OS was significantly increased in patients treated with first line nab-paclitaxel plus gemcitabine vs gemcitabine alone (12.8 mo vs 9.0 mo, HR = 0.76, P = 0.015)[45].

NOVEL INVESTIGATIONS WITH NAB- PACLITAXEL IN PDAC

Hypoxia represents a common feature of several malignancies and it correlates with a worse prognosis and resistance to chemo- and radio-therapy[46,47]. TH-302 is a bromo-isophosphoramide mustard that works under conditions of hypoxia. The triplet containing nab-paclitaxel, gemcitabine and TH-302 exhibited superior efficacy in reducing stromal density and cell proliferation compared to TH-302 alone or nab-paclitaxel plus gemcitabine, in human PDAC xenograft models[48]. Combination of nab-paclitaxel with the oral fluoropyrimidine S-1 demonstrated to inhibit proliferation in PDAC cell lines and to decrease relative tumor volume in murine xenograft models[49,50]. An important pathway involved in PDAC stem cells maintenance is represented by Notch signaling[51]. Recently, the oncolytic adenovirus AdNuPARmE1A has showed to interfere with Notch pathway. In PDAC PDX mouse models, administration of nab-paclitaxel and gemcitabine combined with AdNuPARmE1A resulted in a higher therapeutic response than nab-paclitaxel plus gemcitabine combination and AdNuPARmE1A alone[52]. Tumor microenvironment plays a crucial role in PDAC aggressiveness and drug-resistance[53,54]. In this context, pancreatic stellate cells have been addressed as responsible for fibrosis and they have similar characteristics to the monocyte-macrophage lineage. Pamidronate and zoledronic acid are nitrogen-containing bisphosphonates that have showed in vitro anti-proliferative and pro-apoptotic activity on macrophages. In vivo, antitumor effect of nab-paclitaxel is enhanced by the combination with bisphosphonates in PDAC PDX mouse models[55]. Depending on predominant signals within the tumor microenvironment, macrophages can adopt a variety of functional states. In particular, macrophages with M2 phenotype acquire immuno-suppressive and tumor-promoting features[56]. In vitro and in vivo studies showed that nab-paclitaxel is internalized by macrophages via macro-pinocytosis, leading to a polarization towards a potentially tumoricidal M1 phenotype[57]. Insulin-like growth factor (IGF) signaling proteins are overexpressed in PDAC, predicting poor prognosis and higher aggressiveness. A small IGF-1 receptor and Insulin receptor reversible inhibitor (BMS-754807) reduced PDAC relative volume when combined with nab-paclitaxel in PDX mouse models[58].

Phase I-II studies

Several clinical trials in locally advanced or metastatic PDAC treatment included nab-paclitaxel in new therapeutic schedules. A phase I study has investigated the combination of FOLFOX plus nab-paclitaxel in a cohort of 35 patients, aiming to establish the nab-paclitaxel MTD. A dose of 150 mg/m² every 2 wk was identified as MTD and a 20% reduction in oxaliplatin dose was recommended in patients who developed grade 2 neuropathy. This schedule showed a promising activity with 60% response rate and median survival of 15 mo[59]. The four-drug schedule combining
cisplatin, nab-paclitaxel, capecitabine and gemcitabine (PAXG) has been tested in unresectable or borderline resectable PDAC patients. The PAXG regimen was investigated in a phase I trial on 24 patients with the objective to define the recommended phase 2 dose (RP2D) of nab-paclitaxel. A dose of 150 mg/m² every 2 wk resulted as RP2D and major grade 3-4 toxicities were represented by neutropenia (31%), anemia (12%), fatigue (19%), hand-foot syndrome (12%). Disease control was obtained in all 21 patients and 67% of them showed a partial response. Six- and twelve-months PFS rates were 96% and 50% respectively[60]. This novel combination was evaluated in a randomized phase II study in which PAXG was compared to standard nab-paclitaxel plus gemcitabine. Fifty-four patients with unresectable or borderline resectable PDAC were randomized and 26 received PAXG. Primary endpoint of the study was resectability rate and each regimen would have been considered active if at least 4 patients per arm underwent to surgical resection. Both schedules resulted to be active and 5 patients in each arm underwent to surgery[61]. Combination of nab-paclitaxel and gemcitabine has been tested as a therapeutic backbone with target agents. A phase Ib trial evaluated the addition of erlotinib to nab-paclitaxel and gemcitabine in previously untreated advanced PDAC patients. The triplet was not feasible at standard dose of each single agent and it was necessary to reduce both nab-paclitaxel and erlotinib doses to 75 mg/m² and 75 mg/d, respectively. Due to the small number of patients treated at dose level 3, no valid information about activity outcomes were obtained[62]. Recently, combination of nab-paclitaxel with both oral and intravenous fluoropyrimidines has been investigated. A single arm phase II trial evaluated the combination of capecitabine 825 mg/m² orally bis in die on days 1-15 and nab-paclitaxel 125 mg/m² intravenously on days 1 and 8 every 3 wk as a first line treatment in 30 PDAC patients. In patients without relevant adverse reaction after first cycle, the nab-paclitaxel dose was escalated to 100 mg/m² on days 1, 8, 15 every 4 wk. ORR and DCR were 41.4% and 76%, respectively. Major grade 3 toxicities were peripheral neuropathy (23%), neutropenia (17%), hand-foot syndrome (13%), and phototoxic skin reaction (10%)[63]. A randomized phase II study compared the combination of nab-paclitaxel 125 mg/m², leucovorin 400 mg/m², 5-fluorouracil 400 mg/m² bolus, followed by 2400 mg/m² given as 46 h continuous infusion on day 1 and 15 every 4 wk (NABFU schedule) vs standard nab-paclitaxel plus gemcitabine. One hundred-fourteen patients were included with 2:1 randomization in favor of experimental arm. PFS at 4 mo was the primary endpoint. No differences were observed between the experimental arm and the standard treatment (55% vs 54%). NABFU regimen resulted in a higher median OS, as well as higher OS rates at 12 and 18 mo vs nab-paclitaxel plus gemcitabine (11.4 mo vs 9.2 mo, 48% vs 41% and 34% vs 31% respectively). Safety profile was similar in both study arms, except for grade 3 mucositis and diarrhea that were higher in the NABFU treatment group, reflecting the fluorouracil-related toxicities[64,65].

PUTTING NAB-PACLITAXEL IN PDAC LANDSCAPE: PAST, PRESENT...

Despite of promising preclinical and “early” clinical activity, paclitaxel and docetaxel have never showed superiority compared to gemcitabine in PDAC therapy[66]. Conversely, nano-technology improved bioavailability and intratumoral delivery of paclitaxel as well as avoided effects due to cremophor and therefore premedication with steroids. The albumin-bound formulation, acts on tumor microenvironment and depletes stroma through interaction between SPARC and albumin. This mechanism of action favors gemcitabine increased intratumoral concentration, making nab-paclitaxel an ideal partner for this drug. Nab-paclitaxel plus gemcitabine was the first combination to increase survival and response rates in metastatic PDAC treatment compared to gemcitabine alone. This schedule represents one of the standards of care in advanced PDAC first line treatment together with FOLFIRINOX and single agent gemcitabine[67,68]. Among these schedules, the most appropriate therapeutic choice should be guided by patient-related features (age, performance status, comorbidities, preferences), disease characteristics (tumor burden, metastatic sites, biliary stent implantation, bilirubin levels), also taking into consideration previous therapies and cost-effectiveness. In this context, FOLFIRINOX, according to the ACCORD/PRODIGE phase II-III study, could be an option in young, healthy and good performance status patients. Single agent gemcitabine could be used in unfit patients, with poor performance status and few comorbidities where a doublet or a triplet would not be feasible. Nab-paclitaxel and gemcitabine combination appears suitable for a broader spectrum of patients. In fact, MPACT trial was performed on a larger and more heterogeneous population than FOLFIRINOX and gemcitabine pivotal trials (Table 1). This study demonstrated that nab-paclitaxel plus gemcitabine improved survival in metastatic PDAC patients regardless to age, gender, geographic region, KPS, primary tumor location, presence of liver metastases, number of metastatic sites and baseline CA19.9 PDAC incidence is higher in elderly patients although this population is scarcely included in clinical trials[69]. Patients aged ≥ 75 years were not enrolled in the ACCORD/PRODIGE study; conversely they represented 10% of the MPACT population. Nab-paclitaxel plus gemcitabine showed efficacy and improved survival regardless age at a cutoff of 65 years; nevertheless data about “truly elderly”
patients, aged over 75 years were available only on a small proportion of subjects. Real life experiences, with the limitation of retrospective series, suggest that the combination schedule was feasible, active, effective and well tolerated in elderly patients aged more than 70 and 75[70,71]. No data are available about the use of FOLFIRINOX in patients with poor performance status, in fact only subjects with ECOG PS 0-1 were included in the pivotal trial. Addition of nab-paclitaxel to gemcitabine did not improve survival in the KPS 70 (corresponding to ECOG PS of 2) compared to single agent gemcitabine, although these results were limited only to the 8% of MPACT study population. In order to make the best therapeutic choice in this population, physicians should differentiate between ECOG PS 2 due to “tumor burden” or due to comorbidities. In fact, as stated by European Society for Medical Oncology Guidelines for PDAC treatment, nab-paclitaxel plus gemcitabine could be considered an option in patients with ECOG PS 2 due to “heavy tumor load” for best chance of response[72]. Feasibility and flexibility of nab-paclitaxel plus gemcitabine combination allow to treat patients until disease progression. Data from MPACT study post-hoc analysis confirm that the higher exposure to both drugs correlates to better outcomes. Metastatic PDAC subjects treated until disease progression as well as receiving dose delays or modifications within the study, had a longer OS than patients who did not. Introduction of new, active schedules in PDAC first line treatment let to higher proportion of patients to benefit also from further lines of therapy. In fact, in ACCORD/PRODIGE and MPACT study population, 46% and 40% of patients received a second line chemotherapy in the FOLFIRINOX and nab-paclitaxel plus gemcitabine arm, respectively. Real life data show that this number is even higher in nab-paclitaxel and gemcitabine treated subjects, reaching more than 50%(73). Second-line options that have demonstrated efficacy are oxaliplatin plus fluoro-folate (OFF schedule) and nano-liposomal irinotecan plus fluoro-folate according to CONKO-003 and NAPOLI-1 phase III trials results, respectively[74-76]. The choice of nab-paclitaxel as a first-line regimen allows the use of a non-cross-resistant second-line chemotherapy both with oxaliplatin and nano-liposomal irinotecan, whereas FOLFIRINOX does not. Finally, the optimal first-line therapeutic decision should take into account treatment-related costs. Recent data show that patient who initiated first line therapy with nab-paclitaxel plus gemcitabine has similar treatment duration but lower all-cause costs than FOLFIRINOX[77].

CONCLUSION

Innovative technology, peculiar mechanism of action and clinical activity of nab-paclitaxel have made this molecule an intriguing weapon for further studies in PDAC treatment. Several phase I, II and III trials are actually recruiting patients in PDAC therapy in order to investigate nab-paclitaxel based chemotherapy plus immunotherapy or target agents in the metastatic setting (Table 2). Furthermore, recent data from a randomized phase II trial suggest that sequential administration of nab-paclitaxel on day 1, 8, 15 and gemcitabine day 2, 9, 16 every 4 wk as first-line therapy in metastatic PDAC, may be more effective than a concomitant schedule and this approach warrants further studies[78]. Notably, combination of nab-paclitaxel and gemcitabine is under investigation in adjuvant setting (Table 3). APACT is a phase III, multicenter, open label, randomized study of nab-paclitaxel plus gemcitabine vs gemcitabine alone in subjects with surgically resected PDAC. This trial planned to enroll 846 patients evaluating the disease free survival as primary endpoint and study results are expected in the next future. Several studies are ongoing in the locally advanced, borderline resectable or unresectable PDAC (Table 3). In particular, LAPACT is a phase II, international, multicenter, open label, single-arm study in subjects with unresectable, locally advanced PDAC who have not received prior treatment. Nab-paclitaxel and gemcitabine was administered for a maximum of six cycles as induction therapy. Only in patients without disease progression or unacceptable toxicity, the investigator could choose among different options: (1) continuing chemotherapy with the same schedule; (2) chemo-radiation; and (3) surgical resection. Primary end-point was the time to treatment failure (time from the first day of treatment and disease progression or death). An interim analysis evaluated preliminary safety and efficacy data on 47 of 110 planned patients. Induction phase was completed in 60% of patients and 40% discontinued treatment.

Table 1 Patients characteristics in metastatic pancreatic cancer pivotal trials

Phase (yr)	Trial (yr)	Countries	Patients	Median age	Elderly (> 75 yr)	ECOG PS 0-1	ECOG PS 2	Biliary Stent	Multiple metastatic sites
1, 2, 3	FOLFIRINOX	United States, Canada, United Kingdom	342	62	Yes	Yes	Yes	Yes	Yes
	Gemcitabine	France	861	62	Yes	Yes	Yes	Yes	Yes

Phase not specified in the full paper. ECOG PS: Eastern Cooperative Oncology Group Performance Status.
Table 2: Principal clinical trials with nab-paclitaxel in metastatic pancreatic cancer

Study ID	Setting	Study drugs	Phase	Status
NCT02529373	Metastatic	Nab-paclitaxel + Gemcitabine +/- Napabucasin	II	Recruiting
NCT02101021	Metastatic	Nab-paclitaxel + Gemcitabine +/- Mornelotin	III	Active not recruiting
NCT02178904	Metastatic	Nab-paclitaxel + Gemcitabine +/- PEGPH20	III	Recruiting
NCT02436668	Metastatic	Nab-paclitaxel + Gemcitabine +/- Brutinib	II-III	Recruiting
NCT02187501	Metastatic	Sequential Nab-paclitaxel + Gemcitabine / FOLFIRI	II	Active not recruiting
NCT02176755	Metastatic	Nab-paclitaxel + Gemcitabine +/- Erlotinib	II	Recruiting
NCT02086369	Metastatic	Nab-paclitaxel + Gemcitabine +/- Olaratumab	II	Not yet recruiting
NCT02879318	Metastatic	Nab-paclitaxel + Gemcitabine +/- Durvalumab + Tremelimumab	II	Recruiting
NCT02399137	Metastatic	Nab-paclitaxel + Gemcitabine	II	Recruiting
NCT02340117	Metastatic	Nab-paclitaxel + Gemcitabine	II	Recruiting
NCT02124317	Metastatic	Nab-paclitaxel + S-1	II	Active not recruiting
NCT02301626	Metastatic	Nab-paclitaxel + Gemcitabine + ONC01	II	Not yet recruiting
NCT02301557	Metastatic	Nab-paclitaxel + Gemcitabine	II	Not yet recruiting
NCT02732938	Metastatic	Nab-paclitaxel + Gemcitabine + PF-0413609	II	Recruiting
NCT02351991	Metastatic	Nab-paclitaxel + Gemcitabine	II	Recruiting
NCT02000058	Metastatic	Nab-paclitaxel + Gemcitabine	I-II	Not yet recruiting
NCT024259674	Metastatic	Nab-paclitaxel + Gemcitabine	I-II	Recruiting
NCT022705196	Metastatic	Nab-paclitaxel + Gemcitabine + LOAd703 oncolytic virus	I-II	Recruiting
NCT021834235	Metastatic	Nab-paclitaxel + Gemcitabine	I-II	Active not recruiting
NCT01730222	Metastatic	Nab-paclitaxel + Gemcitabine + Cisplatin	I-II	Recruiting
NCT02063500	Metastatic	Nab-paclitaxel + Gemcitabine + 5-fluorouracil + Leucovorin + Bevacizumab +	I-I	Recruiting
NCT01359973	Metastatic	Nab-paclitaxel + Gemcitabine + Hydroxychloroquine	I-I	Recruiting
NCT02504333	Metastatic	Nab-paclitaxel + Gemcitabine followed by FOLFOX	I-I	Recruiting
NCT02050178	Metastatic	Nab-paclitaxel + Gemcitabine + OMP-54728	I	Active not recruiting
NCT02309177	Metastatic	Nab-paclitaxel + Nivolumab + Gemcitabine	I	Recruiting
NCT02514031	Metastatic	Nab-paclitaxel + Gemcitabine	I	Recruiting
NCT01934634	Metastatic	Nab-paclitaxel + Gemcitabine + LCL161	I	Active not recruiting
NCT02101580	Metastatic	Nab-paclitaxel + Gemcitabine	I	Active not recruiting
NCT02138383	Metastatic	Nab-paclitaxel + Gemcitabine + Enzalutamide	I	Active not recruiting
NCT02975141	Metastatic	Nab-paclitaxel + Gemcitabine + Afatinib	I	Recruiting
NCT02227940	Metastatic	Nab-paclitaxel + Gemcitabine + Ceritinib	I	Recruiting
NCT02327123	Metastatic	Nab-paclitaxel + Gemcitabine	I	Recruiting
NCT02501902	Metastatic	Nab-paclitaxel + Palbociclib	I	Recruiting

Nal-Iri: Nanoliposomal irinotecan.

due to adverse events in the majority of cases. DCR was 80% and 13% of patients underwent to surgical resection. Major grade 3-4 toxicities were neutropenia (45%), anemia (13%) and fatigue (11%)[79]. Clinical trials in neo-adjuvant treatment or in locally advanced disease are evaluating integrated strategies containing nab-paclitaxel with both intensity modulated, image guided and stereotactic radiotherapy (Table 3). Actually there are no predictive biomarkers that may guide therapeutic choice in PDAC treatment and may help clinicians to choose the best regimen for each patient. An intense research is ongoing in order to investigate the potential role of micro-RNA as predictive of sensitivity and resistance to the drugs included in the FOLFIRINOX and nab-paclitaxel plus gemcitabine schedules[80].

Introduction of nab-paclitaxel in Oncologist’s portfolio of drugs has represented a very important step forward in PDAC treatment. Nab-paclitaxel plus gemcitabine is one of the standards of care in advanced PDAC therapy and this combination is suitable for a wide spectrum of patients with different features and clinical presentations. This scenario could change rapidly as the result of nab-paclitaxel anticipation in “early settings” and further studies could be required in order to investigate a “re-challenge” in the metastatic disease.

Acknowledgments

All authors thank Celgene Corporation for kind permission to adapt and modify Figure 1 about nab-
paclitaxel mechanism of action from their educational slides kit.

REFERENCES

1 Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Mariaslan LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913-2921 [PMID: 24840647 DOI: 10.1158/0008-5472.CAN-14-0155]

2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 [PMID: 25559415 DOI: 10.3322/caac.21254]

3 SEER Stat Fact Sheets: Pancreas Cancer. 2015. Accessed on 2016-04-15, Available from: URL: http://seer.cancer.gov/statfacts/html/pancreas.html

4 Brunner TB, Seufertlein T. Pancreatic cancer chemoradiation. Best Pract Res Clin Gastroenterol 2016; 30: 617-628 [PMID: 27644090 DOI: 10.1016/j.bpcg.2016.08.001]

5 Kim SM, Eads JR. Adjunctive and Neoadjuvant Therapy for Resectable Pancreatic and Periampullary Cancer. Surg Clin North Am 2016; 96: 1287-1300 [PMID: 27865278 DOI: 10.1016/j.suc.2016.07.004]

6 Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22: 9694-9705 [PMID: 27956793 DOI: 10.3748/wjg.v22.i44.9694]

7 Bursis HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Moridano MR, Cripps MC, Portenoy RK, Stormilo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized trial. J Clin Oncol 1997; 15: 2403-2413 [PMID: 9196156 DOI: 10.1200/JCO.1997.15.6.2403]

8 Garber K. Stromal depletion goes on trial in pancreatic cancer. J Natl Cancer Inst 2010; 102: 448-450 [PMID: 20339135 DOI: 10.1093/jnci/dj113]

9 Hidalgo M. Pancreatic cancer. N Engl J Med 2010; 362: 1605-1617 [PMID: 20427809 DOI: 10.1056/NEJMra0901557]

10 Heinemann V, Reni M, Yehou M, Richel DJ, Macarulla T, Dureux M. Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat Rev 2014; 40: 118-128 [PMID: 23849556 DOI: 10.1016/j.ctrv.2013.04.004]

11 Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des 2012; 18: 2404-2415 [PMID: 22372501 DOI: 10.2174/13816121292402404]

12 Arnold SA, Brekken RA. SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3: 253-273 [PMID: 19809893 DOI: 10.1007/s12079-009-0072-4]

13 Podhajzer OL, Benedetti LG, Girotti MR, Prada F, Salvaterra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27: 691-705 [PMID: 18542844 DOI: 10.1007/s10555-008-9146-7]

14 Infante JR, Matushavayshi H, Sato N, Tonascia J, Klein AP, Riall TA, Yoo C, Iacobuzio-Donahue C, Goggins M. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007; 25: 319-325 [PMID: 17235047 DOI: 10.1200/JCO.2006.07.8782]

15 Neuzillet C, Tijeras-Raballand A, Croz J, Faire S, Hammel P, Raymond E. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 2013; 32: 585-602 [PMID: 23690170 DOI: 10.1007/s10555-013-9439-3]

16 Borzacci E, Von Hoff DD. Nab-paclitaxel and gemcitabine for the treatment of patients with metastatic pancreatic cancer. Expert Rev Gastroenterol Hepatol 2014; 8: 739-747 [PMID: 24882381 DOI: 10.1586/17474124.2014.925799]

17 Desal N. Nab Technology: A Drug Delivery Platform Utilizing Endothelial gp60 Receptor-based Transport and Tumor-derived SPARC for Targeting. Drug Deliv Rep 2008; 37:41

18 Von Hoff DD, Ervin T, Arena PF, Chiosean E, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Islasios J, Renscher MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-1703
Giordano G et al. Nab paclitaxel in pancreatic cancer

August 28, 2017 | Volume 23 | Issue 32 | 5884
and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma.

Monroig-Bosque P, Philip B, Rashed MH, Aslan B, Erdogan MA, Dauer P, Ivan C, Garza RJ, Cohen E, Gao H, Armaiz-Pena GN, Del C Cruz-Monserrate Z, Fuentes-Mattei E, Deng D, Hwang RF, Wang Gonzalez-Villasana V, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates cellular plasticity, chemoresistance and survival. within the pancreatic cancer microenvironment correlates with 12842085

Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Miyamoto Y. MPA.0000000000000501 Pancreas 2016; 45: 425-433 [PMID: 26495780 DOI: 10.1098/ MPA.0000000000000501]

Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Isto T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates cellular plasticity, chemoresistance and survival. within the pancreatic cancer microenvironment correlates with 12842085

Delitto D, Black BS, Sorenson HL, Knowlton AE, Thomas BS, Sorenson HL, Knowlton AE, Thomas BS. Phase 1 study of erlotinib in combination with gemcitabine and nab-paclitaxel in patients with previously untreated advanced pancreatic cancer: an Academic Oncology GI Cancer Consortium study. Cancer Chemother Pharmacol 2016; 77: 693-701 [PMID: 26886016 DOI: 10.1007/s00280-016-2981-2]

Scheithauer W, Kornek G, Prager G, Stranzl N, Laengle F, Romano A, Von Hoff DD. Dose modification and efficacy of nab-paclitaxel plus gemcitabine vs. gemcitabine for patients with metastatic pancreatic cancer: phase III MPACt trial. J Gastrointest Oncol 2016; 7: 469-478 [PMID: 27284481 DOI: 10.21037/ jgjo.2016.01.03]

Chiorean EG, Von Hoff DD, Tabernero J, El-Maraghi R, Ma WW, Reni M, Harris M, Whorf R, Liu H, Li JS, Manax V, Romano A, Lu B, Goldstein D. Second-line therapy after nab-paclitaxel plus gemcitabine or after gemcitabine for patients with metastatic pancreatic cancer. Br J Cancer 2016; 115: 188-194 [PMID: 27351217 DOI: 10.1038/bjc.2016.185]

Vaupe P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007; 26: 225-239 [PMID: 17440684 DOI: 10.1007/s10555-007-9055-1]

Subarbsky P, Hill RP. The hypoxic tumor microenvironment and metastatic progression. Clin Exp Metastasis 2003; 20: 237-250 [PMID: 12741682]

Sun JD, Liu Q, Aliwuala D, Li W, Meng F, Wang Y, Bhupathi D, Ruppell AS, Hart CP. Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer. Cancer Biol Ther 2015; 16: 438-449 [PMID: 25679067 DOI: 10.1080/15384047.2014.1003005]

Suenaga M, Yamada S, Fujii T, Tanaka C, Kanda M, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Koderay A. S-1 plus nab-paclitaxel is a promising regimen for pancreatic cancer in a preclinical model. J Surg Oncol 2016; 113: 413-419 [PMID: 27100026 DOI: 10.1002/jso.24147]

Li JA, Xu XF, Han X, Fang Y, Shi CY, Jin DY, Lou WH. Nab-Paclitaxel Plus S+I Shows Increased Antitumor Activity in Patient-Derived Pancreatic Cancer Xenograft Mouse Models. Pancreas 2016; 45: 425-433 [PMID: 26495780 DOI: 10.1098/ MPA.0000000000000501]

Mato-Berciano A, Raimondi G, Maliani MV, Alemany R, Montolou L, Fillet C. A NOTCH-sensitive uPAR-regulated switch by inhibition of insulin-like growth factor (IGF) signaling in preclinical pancreatic cancer models. Oncotarget 2016; 7: 4698-47001 [PMID: 27127884 DOI: 10.18632/oncotarget.9029]

Safran H, Charpentier KP, Perez K, Mantripragada K, Miner T, DiPietrillo T, Kuritzky B, Aper O, Bishop K, Luppe D, Mitchell K, Rosati K. FOLFOX+Nab-Paclitaxel (FOLFOX-A) for Advanced Pancreatic Cancer: A Brown University Oncology Research Group Phase I Study. Am J Clin Oncol 2016; 39: 619-622 [PMID: 26523444 DOI: 10.1097/COC.0000000000000246]

Reni M, Balzano G, Zanon S, Passoni P, Nicoleti R, Arcidiacono PG, Pei G, Doglioni C, Fugazza C, Ceraldo D, Falconi M, Gianni L. Phase 1B trial of Nab-paclitaxel plus gemcitabine, capetcitabine, and cisplatin (PAXG regimen) in patients with unresectable or borderline resectable pancreatic adenocarcinoma. Br J Cancer 2016; 115: 290-296 [PMID: 27440453 DOI: 10.1038/bjc.2016.209]

Reni M, Zanon S, Balzano G, Passoni P, Costantino A, Pircher C, Chiaravalli M, Nicoleti R, Arcidiacono PG, Pei G, Crippa S, Doglioni C, Fugazza C, Ceraldo D, Falconi M, Gianni L. Randomized phase 2 trial of nab-paclitaxel plus gemcitabine, ± capetcitabine, cisplatin (PAXG regimen) in unresectable or borderline resectable pancreatic cancer. Ann Oncol 2016; 27: 681P [DOI: 10.1093/annonc/mdw371.71]

Cohen SJ, O’Neil BH, Berlin J, Ames P, McKinley M, Horan J, Catalano PM, Davies A, Weeks CD, Leichman L. A phase 1b study of erlotinib in combination with gemcitabine and nab-paclitaxel in patients with previously untreated advanced pancreatic cancer: an Academic Oncology GI Cancer Consortium study. Cancer Chemother Pharmacol 2016; 77: 693-701 [PMID: 26886016 DOI: 10.1007/s00280-016-2981-2]

Scheithauer W, Kornek G, Prager G, Stranzl N, Laengle F, Schindl M, Friedl J, Klech J, Roethlin S, Zielinski C. Phase II trial of capetcitabine plus nab-paclitaxel in patients with metastatic pancreatic adenocarcinoma. J Gastrointest Oncol 2016; 7: 234-238 [PMID: 27034791 DOI: 10.3978/j.issn.2078-6891.2015.107]

Bacht JB, Chibaudel B, Bonnetain F, Valibre F, Hamel P, André T, Louvet C; GERCOR group. A randomized phase II study of weekly nab-paclitaxel plus gemcitabine or simplified LV5FU2 as first-line therapy in patients with metastatic pancreatic cancer: the AFUGEM GERCOR trial. BMC Cancer 2015; 15: 653 [PMID: 26445094 DOI: 10.1186/s12885-015-1656-4]

Dubreuil O, Bacht JB, Hammel P, Desrame J, Meurisse A, Andre T, Debureaud P, Daubh J, Lecomte T, Seitz JF, Tournigand C, Aparicio T, Guerin Meyer V, Taleb J, Hiret S, Volet J, Monier A, Chibaudel B, Bonnetain F, Louvet C. Nab-paclitaxel plus gemcitabine or plus simplified LV5FU2 as first-line therapy in patients with metastatic pancreatic adenocarcinoma: A GERCOR randomized phase II study (AFUGEM). J Clin Oncol 2017; 35: 350

Chiorean EG, Von Hoff DD. Taxanes: impact on pancreatic cancer. Anticancer Drugs 2014; 25: 584-592 [PMID: 24463484 DOI: 10.1097/CAD.0000000000000073]

Conroy T, Desprez F, Ychou M, Bouché O, Guimard R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bnoujna J, Bacht JB, Khemissa-Akouz F, Pérez-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Dureux M; Group Tumeurs Digestives of Unicorn; PRODIGE Intergroup. FOLFIROXIN versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825 [PMID: 21561347 DOI: 10.1056/NEJMoa1101923]
Giordano G et al. Nab-paclitaxel in pancreatic cancer

C, Scarpa A, Tortora G, Cognetti F, Reni M, Milella M. Metastatic pancreatic cancer: Is there a light at the end of the tunnel? World J Gastroenterol 2015; 21: 4788-4801 [PMID: 25944992 DOI: 10.3748/wjg.v21.i16.4788]

Li D, Capanu M, Yu KH, Lowery MA, Kelsen DP, O'Reilly EM. Treatment, Outcomes, and Clinical Trial Participation in Elderly Patients With Metastatic Pancreas Adenocarcinoma. Clin Colorectal Cancer 2015; 14: 269-276.e1 [PMID: 26072442 DOI: 10.1016/j.clcc.2015.05.005]

Giordano G, Vaccaro V, Lucchini E, Musettini G, Bertocchi P, Bergamo F, Giornoni E, Santoni M, Russano M, Capanu M, Yu KH, Lowery MA, Kelsen DP, O'Reilly EM, Meijer LL, Garajova I, Falcone A, Le Large J, Di Marco M, Lamisch J, Vullo F, Giordano G. Second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer 2011; 47: 1676-1681 [PMID: 21565490 DOI: 10.1016/j.ejca.2011.04.011]

Oettle H, Riess H, Stieler JM, Heil G, Schwanner I, Seraphin J, Görner M, Mölle M, Gretan TF, Lakner V, Bischoff S, Sinn M, Dörken B, Pelzer U. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J Clin Oncol 2014; 32: 2423-2429 [PMID: 24982456 DOI: 10.1200/JCO.2013.53.6995]

Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner RA, Chiu CF, Schwartzmann G, Siveke JT, Braiteh F, Moyo V, Belanger B, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Nanopososomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 2016; 387: 545-557 [PMID: 26615328 DOI: 10.1016/S0140-6736(15)60986-1]

McBride A, Bonafede M, Cai Q, Princic N, Tran O, Pelletier C, Patel M. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Corrie P, Qian W, Basu B, Ian Jodrell D, Falk S, Iwuij C, Wasan H, Palmer DH, Scott-Brown M, Wadesley J, Arif SS, A. Babaoglan B, Dalchau KM, Gopinathan A, Chhabra A, Machin A, Neesse A, Tuveson DA, Valle JW, SIEGE Trial Investigators. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Bor J, Lopez-Trabada D, Rivera F, Asselah J, Dörken B, Dörken B, Pelzer U. Second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer 2011; 47: 1676-1681 [PMID: 21565490 DOI: 10.1016/j.ejca.2011.04.011]

Oettle H, Riess H, Stieler JM, Heil G, Schwanner I, Seraphin J, Görner M, Mölle M, Gretan TF, Lakner V, Bischoff S, Sinn M, Dörken B, Pelzer U. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J Clin Oncol 2014; 32: 2423-2429 [PMID: 24982456 DOI: 10.1200/JCO.2013.53.6995]

Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner RA, Chiu CF, Schwartzmann G, Siveke JT, Braiteh F, Moyo V, Belanger B, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Nanopososomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 2016; 387: 545-557 [PMID: 26615328 DOI: 10.1016/S0140-6736(15)60986-1]

McBride A, Bonafede M, Cai Q, Princic N, Tran O, Pelletier C, Patel M. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Corrie P, Qian W, Basu B, Ian Jodrell D, Falk S, Iwuij C, Wasan H, Palmer DH, Scott-Brown M, Wadesley J, Arif SS, A. Babaoglan B, Dalchau KM, Gopinathan A, Chhabra A, Machin A, Neesse A, Tuveson DA, Valle JW, SIEGE Trial Investigators. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Bor J, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Terrebonne E, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Terrebonne E, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Terrebonne E, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Terrebonne E, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415

Lacy J, Portales F, Hammel P, Pazo Cid RA, Manzano Mozo JL, Jae-hoon Kim E, Dowden SD, Berg C, Sastre J, Bathini VG, Terrebonne E, Lopez-Trabada D, Rivera F, Asselah J, Damiani A, Dhindsa N, Bayever E, Von Hoff DD, Chen UT, NAPOLI-1 Study Group. Health care costs and treatment patterns among metastatic pancreatic cancer (MPC) patients (pts) initiating first-line (1L) on nab-paclitaxel/gemcitabine (nab-P+G) or FOLFIRINOX (FFX). J Clin Oncol 2017; 35: 415
