Chemistry of Carbon-Chain Molecules in Star Forming Regions
- Formation Pathway of HC$_3$N in G28.28-0.36 Hot Core -

Kotomi Taniguchi & Masao Saito

Dept. of Astronomical Science, The Graduate University for Advanced Studies
Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Nagano, Japan

We carried out observations of three 13C isotopologues of HC$_3$N with the $J = 9 - 8$ and $10 - 9$ rotational lines toward a hot core G28.28-0.36 with the 45-m radio telescope of the Nobeyama Radio Observatory in order to investigate the main formation pathway of HC$_3$N. The abundance ratios are found to be 1.0 (± 0.2) : 1.00 : 1.47 (± 0.17) (1σ) for [H13CCCN] : [HC13CCN] : [HCC13CN]. From the results, we propose that the main formation pathway of HC$_3$N is the neutral-neutral reaction between C$_2$H$_2$ and CN. We also compare the results among the different star-forming regions, from a low-mass starless core to a high-mass star-forming core.

1 Introduction

1.1 Carbon-Chain Molecules in Low-Mass Star-Forming Regions

Carbon-chain molecules give us various information about star formation processes. Carbon-chain molecules can be used as good indicators of starless and star-forming cores. They are abundant in young dark clouds, because they are efficiently formed by the gas-phase ion-molecule reactions. In star-forming cores, they are deficient, while saturated complex organic molecules (COMs) are abundant, namely hot corino chemistry, which is similar to hot core chemistry for high-mass star-forming regions.

In contrast to hot corinos, Sakai et al. detected various carbon-chain molecules in the low-mass star-forming region L1527. They proposed that CH$_4$ evaporated from grain mantles forms carbon-chain species efficiently. Such chemistry was named warm carbon chain chemistry (WCCC). The short prestellar core phase would lead WCCC sources. In this way, two scenarios of low-mass star formation, short and long prestellar core phases, have been proposed from the differences in the chemical composition in star-forming cores.

In molecular scale, the main formation pathways have been investigated at the cyanopolyyne peak in Taurus Molecular Cloud-1. Deriving 13C isotopic fractionation, differences in abundances among the 13C isotopologues, is useful for tracing chemical reactions. The main formation pathways of HC$_3$N and HC$_5$N have been revealed. The main formation mechanism of HC$_5$N is the ion-molecule reactions between hydrocarbon ions (C$_5$H$_2^+$; $n = 3 - 5$) and nitrogen atoms followed by electron recombination reactions, whereas the neutral-neutral reaction between C$_2$H$_2$ and CN was proposed as the main formation pathway of HC$_3$N. We can directly study dominant chemical reactions from the observations deriving 13C isotopic fractionation.

Thus, the chemistry of carbon-chain molecules has been studied well from molecular level to chemical evolution in low-mass star-forming regions, and we obtain knowledge about the relationships between chemistry and physics during star formation processes.

1.2 Carbon-Chain Molecules in High-Mass Star-Forming Regions

While there are a lot of studies about carbon-chain molecules in low-mass star-forming regions, there were few studies in high-mass star-forming regions. Only in recent years, Green et al. detected HC$_3$N with the $J = 12 - 11$ rotational lines (31.951777 GHz, $E_u = 10$ K) toward 35 hot cores with the Tidbinbilla 34-m telescope. Their results seemed to support the chemical model calculation conducted by Chapman et al. previously. Chapman et al. showed that cyanopolyynes (HC$_{2n+1}$N; $n = 1 - 4$) can be efficiently formed by C$_2$H$_2$ evaporated from grain mantles in hot core regions. However, the beam size of the Tidbinbilla 34-m telescope at the
32 GHz band was 0.95 arcmin, the $J = 12 - 11$ rotational line can be easily excited in the dark clouds, and the excitation temperatures of HC$_5$N were not derived. Their observational results then were not enough to confirm that HC$_5$N is formed in hot cores. The chemistry of carbon-chain molecules has been hardly understood yet.

2 Our Research Aims

Our studies aim to reveal the chemistry of carbon-chain molecules from molecular level to chemical evolution, applying the methods established in low-mass star-forming regions. First, we are carrying out observations of carbon-chain molecules toward 17 high-mass starless cores (HM-SCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45-m radio telescope. The main purpose of these survey observations is to investigate whether the $N[HC_3N]$ and/or $HC_5N]/N[N_2H^+]$ ratios can be used as chemical evolutionary tracers in high-mass star-forming regions. Second, we carry out observations of long carbon-chain molecules toward hot cores with the Robert C. Byrd Green Bank Telescope (GBT) (K. Taniguchi et al., submitted to ApJ), the Karl G. Jansky Very Large Array (VLA) (K. Taniguchi et al., in prep.), and the Nobeyama 45-m radio telescope (K. Taniguchi et al., submitted to ApJ). We have been doing data reductions and discussing now to establish new carbon-chain chemistry in hot core regions from these observations. Third, the main formation pathway of HC$_3$N has been investigated toward the hot core G28.28-0.36. In this proceeding, we mainly summarize this topic.

3 Investigation of Main Formation Pathway of HC$_3$N in a Hot Core G28.28-0.36

We carried out observations of the three 13C isotopologues of HC$_3$N (H13CCCN, HC13CCN, and HCC13CN) with the $J = 9 - 8$ and $10 - 9$ rotational lines toward G28.28-0.36 with the Nobeyama 45-m telescope. G28.28-0.36 is classified as the Spitzer GLIMPSE extended green objects (EGOs)\(^8\), and one of the hot cores where Green et al. detected HC$_5$N\(^6\). Figure 1 shows the spectra of the three 13C isotopologues of HC$_3$N, and its normal species observed simultaneously\(^9\). The abundance ratios are derived to be 1.0 (\pm0.2) : 1.00 : 1.47 (\pm0.17) (1σ) for [H13CCCN] : [HC13CCN] : [HCC13CN]\(^9\). Therefore, the abundances of H13CCCN and HC13CCN are comparable with each other, and HCC13CN is more abundant than the others.

![Figure 1](image-url) -- The spectra of the normal species and the three 13C isotopologues of HC$_3$N in G28.28-0.36 with the Nobeyama 45-m telescope.
From the results, we discuss the main formation pathway of HC$_3$N in the hot core G28.28-0.36. We investigate the possible formation pathways leading to HC$_3$N using the UMIST Database for Astrochemistry 2012, as shown in Figure 2. There are four possible formation pathways as following:

Pathway 1: the ion-molecule reactions between C$_3$H$_n^+$ ($n = 3 - 5$) and nitrogen atoms followed by electron recombination reactions,

Pathway 2: the ion-molecule reaction between HCN and C$_2$H$_2^+$ followed by electron recombination reaction,

Pathway 3: the neutral-neutral reaction between C$_2$H and HNC, and

Pathway 4: the neutral-neutral reaction between C$_2$H$_2$ and CN.

In Figure 1, we define $a : b : c$ for [H13CCCN] : [HC13CCN] : [HCC13CN]. We also show the expected relationships among a, b, and c by each formation pathway in Figure 2. We find that our observational results can match with only Pathway 4 (C$_2$H$_2$ + CN). Therefore, the main formation pathway of HC$_3$N in G28.28-0.36 is the neutral-neutral reaction between C$_2$H$_2$ and CN. This conclusion is consistent with the chemical model calculation.

![Figure 2 – Possible Formation Pathways of HC$_3$N.](image)

4 Comparison with Other Star-Forming Regions

We summarize the observational results of 13C isotopic fractionation of HC$_3$N in various star-forming regions in Table 1. We also carried out the same observations toward L1527 in order to compare between low-mass and high-mass star-forming cores. L1527 is one of the WCCC sources, and the main formation pathway of HC$_3$N was predicted by the chemical model calculation. Recently, other observations deriving 13C isotopic fractionation of HC$_3$N in L1527 were carried out, and their results are consistent with our results within 1-sigma errors. The results in TMC-1 and Serpens South 1A are summarized as low-mass and high-mass starless cores, respectively. We also show the typical temperature and density in each region in Table 1.

Source	H13CCCN	HC13CCN	HCC13CN	source type	Temperature [K]	Density [cm$^{-3}$]
L1527	0.9 (±0.2)	1.00	1.29 (±0.19)	WCCC	20 - 30	105
G28.28-0.36	1.0 (±0.2)	1.00	1.47 (±0.17)	hot core	100 - 200	106
TMC-1 CP4	1.0	1.0	1.4 (±0.2)	dark cloud	10	104
Serpens South 1A13	0.91 (±0.09)	1.00	1.32 (±0.09)	IRDC	15	105

We recognize the same 13C isotopic fractionation pattern in all of the four sources; Characteristic 1: the abundances of H13CCCN and HC13CCN are comparable with each other, and
Characteristic 2: HCC\(^{13}\)CN is more abundant than the other two isotopologues. As discussed in Section 3, this \(^{13}\)C isotopic fractionation pattern can be explained by the neutral-neutral reaction between C\(_2\)H\(_2\) and CN. In summary, the primary formation pathway of HC\(_3\)N may be common from low-mass prestellar cores to high-mass star-forming cores.

5 Conclusions & Future Works

We carried out observations of the three \(^{13}\)C isotopologues of HC\(_3\)N in order to investigate its primary formation pathway in the hot core G28.28-0.36. This study is the first one to apply the \(^{13}\)C isotopic fractionation method in both low-mass and high-mass star-forming cores. The results suggest that the neutral-neutral reaction between C\(_2\)H\(_2\) and CN is more dominant than the other formation pathways in both low-mass and high-mass star-forming cores, as well as starless cores.

As future works of the \(^{13}\)C isotopic fractionation method, we propose investigations about dependences on the spatial distributions. We can study dependence of chemical reactions on the physical conditions in detail using the interferometry. This method requires very high sensitivities, because we need to obtain spectra of \(^{13}\)C isotopologues with high signal-to-noise ratios. ALMA will be able to solve the matter.

We also develop the studies about the chemistry of carbon-chain molecules established in low-mass star-forming regions into high-mass star-forming regions. In particular, we can reveal the chemistry of carbon-chain molecules in hot cores soon. This will provide us a new aspect of chemistry in hot core regions, which is not well understood today. From these studies, we will investigate similarities and differences of the chemistry of carbon-chain molecules between high-mass and low-mass star-forming regions, in order to obtain information about a massive-star formation scenario.

Acknowledgments

We would like to express our thanks to the staff of the Nobeyama Radio Observatory. K. T. is most grateful to Dr. Tetsuhiro Minamidani, Dr. Yusuke Miyamoto, Dr. Hiroyuki Kaneko (NRO), Dr. Atsushi Nishimura (Nagoya Univ.), Dr. Tomoya Hirota, Dr. Fumitaka Nakamura (NAOJ), Dr. Kazuhiro Dobashi, and Dr. Tomomichi Shimoikura (Tokyo Gakugei Univ.) for fruitful advice and comments. K. T. deeply appreciates Dr. Hiroyuki Ozeki (Toho University) discussing, advising and encouraging me.

References

1. H. Suzuki et al, ApJ 392, 551 (1992).
2. T. Hirota et al, ApJ 699, 585 (2009).
3. N. Sakai et al, ApJ 672, 371 (2008).
4. S. Takano et al, A&A 329, 1156 (1998).
5. K. Taniguchi et al, ApJ 817, 147 (2016).
6. C.-E. Green et al, MNRAS 443, 2252 (2014).
7. J. F. Chapman et al, MNRAS 394, 221 (2009).
8. C. J. Cyganowski et al, ApJ 136, 2391 (2008).
9. K. Taniguchi et al, ApJ 830, 106 (2016).
10. D. McElroy et al, A&A 550, A36 (2013).
11. G. E. Hassel et al, ApJ 681, 1385 (2008).
12. M. Araki et al., ApJ 833, 291 (2016).
13. J. Li et al, ApJ 824, 136 (2016).