Irregular topological indices of certain metal organic frameworks

Yu-Ming Chu, Muhammad Abid, Muhammad Imran Qureshi, Asfand Fahad*, and Adnan Aslam

Abstract: It is interesting to study the molecular topology that provides a base for relationship of physicochemical property of a definite molecule. The topology of a molecule and the irregularity of the structure plays a vital character in shaping properties of the structure like enthalpy and entropy. In this article, we are interested to calculate some irregular topological indices of two classes of metal organic frameworks (MOFs) namely BHT (Butylated hydroxytoluene) based metal (M = Co, Fe, Mn, Cr) organic frameworks (MBHT) and MiTPyP-M2 (TPyP = 5, 10, 15, 20-tetrakis (4-pyridyl) porphyrin and M1, M2, = Fe and Co) MOFs. Also we compare our results graphically.

Keywords: topological descriptors, irregularity indices, chemical graph theory, metal organic frameworks

1 Introduction

Metal organic frameworks (MOFs) are defined by their three-dimensional frameworks formed of metal ions and organic molecules. In MOFs, all metal ions and organic molecules form networks which can get a variety of guest molecules. MOFs have many applications, such as energy storage devices, gas storage, heterogeneous catalysis, and assessment of chemicals (Awais et al., 2020). In 1959, Kinoshita and coworkers were the first ones to study metal organic frameworks (Kinoshita, 1959). Due to their design and synthesis, MOFs gain attention rapidly (Hoskins, 1989). Till now a large number of MOFs have been synthesized and used in many applications especially in gas catalysis (Hall et al., 2016; Lee et al., 2009; Roy et al., 2012), delivery of drugs (Horcajada et al., 2008; Mandal et al., 2017; Vallet-Regi et al., 2007), sensing (Sarkisov et al., 2012), separation (Kim et al., 2017; Li et al., 2009), storage (Kennedy et al., 2013; Murray et al., 2009; Rosi et al., 2003), and absorption (Czaia et al., 2009; Geier et al., 2013; Mu et al., 2010; Park et al., 2017; Queen et al., 2014). MOFs are capable of capturing industrial gases, such as CO\(_2\), SO\(_2\), NO, CO, NO\(_2\), etc. (Dietzel et al., 2009; Lee et al., 2015; Wu et al., 2009). These gases are very dangerous for our environment. For example, the CO\(_2\) continuously changing our climate and effects greenhouse (Rodhe, 1990), acid rain, and smog is due to the emission of SO\(_2\) and NO\(_x\) (Singh and Agarwal, 2007), and CO and NO are very harmful for humans (Olson and Phillips, 1997). For a healthy environment, it is necessary to control these dangerous gases. MOFs have ability to reduce the quantity of CO\(_2\) at room temperature and low pressure. We can study the ability of MOFs to reduce flue gases in these articles (Chakarvarty et al., 2016; Howe et al., 2017; Tan et al., 2017; Yu et al., 2012). We can study for degree based topological invariants of metal-organic networks (Hong et al., 2020).

Let G(V,E) with vertex set V and edge set E be a connected graph of order n = |V(G)| and size m = |E(G)|. The number of edges associated with a vertex is the degree of that vertex. The quantitative topological categorization of irregularity of graphs has an increasing significance for analyzing the structure of deterministic and arbitrary networks and systems occurring in chemistry, biology and common networks. The idea of topological indices was given by Wiener (1947). He also found a strong relation among weiner index and physicochemical properties of compounds. But mathematicians did not work with interest on it for next 20 years. In the mid of 1970s, Wiener index gain popularity and gave some important research articles. After 1990s, a lot of work has done on other distance based topological indices closely related...
to Wiener index. Till now, thousands of topological indices (distance based and degree based topological indices) have found which plays a vital role in chemical graph theory.

Now we present the irregularity topological indices that is calculated here. Albertson (1997) defined a degree based index called the Albertson index (AL) as

\[AL(G) = \sum_{uv \in E} |d_u - d_v| \]

Vučičević and Gasparov (2004) defined the irregularity index IRL and IRLU as

\[IRL(G) = \sum_{uv \in E} |ld_u - ld_v| \quad \text{and} \quad IRLU(G) = \sum_{d \in V} \frac{|ld_u - ld_v|}{\min(d_u, d_v)} \]

Abdoo et al. (2014) defined the total irregularity index (IRRT) as

\[IRRT(G) = \sum_{uv \in E} |d_u - d_v| \]

Gutman (2018) introduced the IRF(G) irregularity index that is. The Randić index (Li and Gutman, 2006) was described as

\[IRF(G) = \sum_{uv \in E} \ln|d_u - d_v| \]

We have some more degree based irregularity topological indices that was studied in Reti et al. (2018). These degree based irregularity topological indices are defined as

1. \[AL(G) = \sum_{uv \in E} |d_u - d_v| = (24cd + 1)[3 – 1] + (6c + 6d – 6)[3 – 2] \]
2. \[IRL(G) = 28.668 cd + 1.282(2c + d) \]
3. \[IRLU(G) = 50.6667cd + 1.6667(c + d) + 0.3333 \]
4. \[IRRT(G) = 28cd + c + d \]
5. \[IRF(G) = 104cd + 2(c + d) + 2 \]
6. \[IRA(G) = 4.3336cd + 0.088(c + d) + 0.0906 \]

Now we present the irregularity topological indices that is calculated here. Albertson (1997) defined a degree based index called the Albertson index (AL) as

\[AL(G) = \sum_{uv \in E} |d_u - d_v| \]

Vučičević and Gasparov (2004) defined the irregularity index IRL and IRLU as

\[IRL(G) = \sum_{uv \in E} |ld_u - ld_v| \quad \text{and} \quad IRLU(G) = \sum_{d \in V} \frac{|ld_u - ld_v|}{\min(d_u, d_v)} \]

Abdoo et al. (2014) defined the total irregularity index (IRRT) as

\[IRRT(G) = \sum_{uv \in E} |d_u - d_v| \]

Gutman (2018) introduced the IRF(G) irregularity index that is. The Randić index (Li and Gutman, 2006) was described as

\[IRF(G) = \sum_{uv \in E} \ln|d_u - d_v| \]

We have some more degree based irregularity topological indices that was studied in Reti et al. (2018). These degree based irregularity topological indices are defined as

1. \[AL(G) = \sum_{uv \in E} |d_u - d_v| = (24cd + 1)[3 – 1] + (6c + 6d – 6)[3 – 2] \]
2. \[IRL(G) = 28.668 cd + 1.282(2c + d) \]
3. \[IRLU(G) = 50.6667cd + 1.6667(c + d) + 0.3333 \]
4. \[IRRT(G) = 28cd + c + d \]
5. \[IRF(G) = 104cd + 2(c + d) + 2 \]
6. \[IRA(G) = 4.3336cd + 0.088(c + d) + 0.0906 \]

Proof: We will use Figure 1 to prove all the above theorems. We can verify the values given in Table 1 for the edges of \(G_1(c,d) \).

1. \[AL(G) = \sum_{uv \in E} |d_u - d_v| = (24cd + 1)[3 – 1] + (6c + 6d – 6)[3 – 2] \]
2. \[IRL(G) = 28.668 cd + 1.282(2c + d) \]
3. \[IRLU(G) = 50.6667cd + 1.6667(c + d) + 0.3333 \]
4. \[IRRT(G) = 28cd + c + d \]
5. \[IRF(G) = 104cd + 2(c + d) + 2 \]
6. \[IRA(G) = 4.3336cd + 0.088(c + d) + 0.0906 \]

2 Irregularity topological indices of 2D structure of M1TPyP-M2 metalorganic frameworks

Let \(G_1(c,d) \) be the graph of 2D structure of M1TPyP-M2 metal organic frameworks, where ‘c’ and ‘d’ are the unit cells in a row and column respectively. The molecular graph of \(G_1(2,2) \) is shown below. We can verified that \(G_1(c,d) \) has 74cd number of vertices and 88cd-2c-2d+1 number of edges.

Theorem 2.1

Let \(G_1(c,d) \) be the graph of 2D structure of M1TPyP-M2 metal organic frameworks, then the irregularity indices of \(G_1(c,d) \) are:

1. \[AL(G) = 56cd + 2(c + d) \]
2. \[IRL(G) = 28.668cd + 1.2822(c + d) – 0.1836 \]
3. \[IRLU(G) = 50.6667cd + 1.6667(c + d) + 0.3333 \]
4. \[IRRT(G) = 28cd + c + d \]
5. \[IRF(G) = 104cd + 2(c + d) + 2 \]
6. \[IRA(G) = 4.3336cd + 0.088(c + d) + 0.0906 \]
7. \[IRDIF(G) = 68.6672cd + 2.6666(c + d) + 0.0001 \]
8. \[IRLF(G) = 30.0224cd + 1.2944(c + d) – 0.1397 \]
9. \[LA(G) = 26.2858cd + 1.2572(c + d) – 0.2572 \]
10. \[IRI(G) = 31.9112cd + 1.3862(c + d) – 0.2876 \]
11. \[IRGA(G) = 3.5336cd + 10.8314(c + d) – 10.6876 \]
12. \[IRBG(G) = 6.5744cd + 0.3188(c + d) – 0.0688 \]

Proof: We will use Figure 1 to prove all the above theorems. We can verify the values given in Table 1 for the edges of \(G_1(c,d) \).
4. \(\text{IRRT}(G) = \frac{1}{2} \sum_{(u,v) \in E} |du - dv| \)
\[
= \frac{1}{2} \left[(24cd + 1)(3-1) + (6c + 6d - 6)(3-2)
ight. \\
\left. + (56cd - 4c - 4d + 2)(3-3) \\
+ (8cd - 4c - 4d + 4)(4-3) \right] \\
= \frac{1}{2} \left[48cd + 2 + 6c + 6d - 6 + 8cd - 4c - 4d + 4 \right] \\
= 28cd + c + d
\]

5. \(\text{IRFG}(G) = \sum_{(u,v) \in E} |du - dv|^2 \)
\[
= \frac{1}{2} \left[(24cd + 1)(3-1)^2 + (6c + 6d - 6)(3-2)^2 \\
+ (56cd - 4c - 4d + 2)(3-3)^2 \\
+ (8cd - 4c - 4d + 4)(4-3)^2 \right] \\
= 96cd + 4 + 6c + 6d - 6 + 8cd - 4c - 4d + 4 \\
= 104cd + 2(c + d) + 2
\]

6. \(\text{IRA}(G) = \sum_{(u,v) \in E} \left(\frac{1}{2} - \frac{1}{2} \right)^2 \)
\[
= \frac{1}{2} \left[\left(\frac{1}{3} - \frac{1}{3} \right)^2 \\
+ (6c + 6d - 6) \left(\frac{1}{3} - \frac{1}{2} \right)^2 \\
+ (56cd - 4c - 4d + 2) \left(\frac{1}{3} - \frac{1}{3} \right)^2 \right] \\
= \frac{1}{2} \left[\left(\frac{1}{3} - \frac{1}{3} \right)^2 + (6c + 6d - 6) \left(\frac{1}{3} - \frac{1}{2} \right)^2 + (56cd - 4c - 4d + 2) \left(\frac{1}{3} - \frac{1}{3} \right)^2 \right]
\]

Figure 1: 2 × 2 supercell of M1TPyP-M2 MOFs (M1, M2 = Fe and Co).

Table 1: Edge partition of 2 × 2 supercell of M1TPyP-M2 MOFs (M1, M2 = Fe and Co)

(deg(x), deg(y)) where xy ∈ E(G1(c, d))	Total number of edges
(1, 3)	24cd + 1
(2, 3)	6c + 6d - 6
(3, 3)	56cd - 4c - 4d + 2
(3, 4)	8cd - 4c - 4d + 4

Table 1: Edge partition of 2 × 2 supercell of M1TPyP-M2 MOFs (M1, M2 = Fe and Co)
\[(8cd - 4c - 4d + 4)]
\[= 2(12c + 0.5 + 0.2(6c + 6d - 6)
+ 0.1429(8cd - 4c - 4d + 4)]
\[= 26.2858cd + 1.2572(c + d) - 0.2572]

10. \(IRD(G) = \sum_{uv \in E} \ln(1 + |du - dv|)\)
\[= (24cd + 1)\ln(1 + |3 - 1|)
+ (6c + 6d - 6)\ln(1 + |3 - 2|)
+ (56cd - 4c - 4d + 2)\ln(1 + |3 - 3|)
+ (8cd - 4c - 4d + 4)\ln(1 + |4 - 3|)
\[= 1.0986(24cd + 1) + 0.6931(6c + 6d - 6)
+ 0.6931(8cd - 4c - 4d + 4)
\[= 31.9112cd + 1 - 3862(c + d) - 0.2876]

11. \(IRGA(G) = \sum_{uv \in E} \ln \frac{du + dv}{2\sqrt{dudv}}\)
\[= (24cd + 1)\ln \frac{3 + 1}{2\sqrt{3 * 1}}
+ (6c + 6d - 6)\ln \frac{3 + 2}{2\sqrt{3 * 2}}
+ (56cd - 4c - 4d + 2)\ln \frac{3 + 3}{2\sqrt{4 * 3}}
+ (8cd - 4c - 4d + 4)\ln \frac{4 + 3}{2\sqrt{4 * 3}}
\[= 0.1438(24cd + 1) + 1.8121(6c + 6d - 6)
+ 0.0103(8cd - 4c - 4d + 4)
\[= 3.5336cd + 10.8314(c + d) - 10.6876]

12. \(IRB(G) = \sum_{uv \in E} \left(\frac{1}{du} - \frac{1}{dv}\right)^2\)
\[= (24cd + 1)\left(\frac{1}{3}^2 - (\frac{1}{3})^2\right)^2
+ (6c + 6d - 6)\left(\frac{1}{3}^2 - (\frac{1}{2})^2\right)^2
+ (56cd - 4c - 4d + 2)\left(\frac{1}{3}^2 - (\frac{1}{3})^2\right)^2
+ (8cd - 4c - 4d + 4)\left(\frac{1}{4}^2 - (\frac{1}{3})^2\right)^2
\[= 0.25(24cd + 1) + 0.1010(6c + 6d - 6)
+ 0.0718(8cd - 4c - 4d + 4)
\[= 6.5744cd + 0.3188(c + d) - 0.0688\]
3 Irregularity topological indices of 2D CoBHT(CO) lattice

Let G2(a,b) be the graph of 2D CoBHT(CO) lattice, where ‘a’ and ‘b’ are the unit cells in a row and column respectively. The molecular graph of G2(2,2) is shown below. We can verified that G2(a,b) has 27ab number of vertices and 36ab-2a-2b number of edges.

Theorem 2
Let G2(a,b) be the graph of 2D structure of CoBHT(CO) lattice, then the irregularity indices of G2(a,b) are:

1. \(AL(G) = 36ab - 2(a+b) \)
2. \(IRL(G) = 13.1832ab \)
3. \(IRLU(G) = 18ab + a + b \)
4. \(IRRt(G) = 18ab - a + b \)
5. \(IRF(G) = 60ab - 2(a+b) \)
6. \(IRA(G) = 0.294ab + 0.3082(a + b) \)
7. \(IRDIF(G) = 27.9996ab + 0.6668(a + b) \)
8. \(IRLFOI(G) = 13.3836ab + 0.0788(a + b) \)
9. \(LA(G) = 12.8ab - 0.0667(a + b) \)
10. \(IRDI(G) = 21.5004ab - 1.3862(a + b) \)
11. \(IRGA(G) = 22.452ab - 3.4544(a + b) \)
12. \(IRB(G) = 5.3292ab - 0.3882(a + b) \)

Proof: We will use Figure 2 to prove all above theorems. We can verify the values given in Table 2 for the edges of G2(a,b).

Table 2: Edge partition of 2 × 2 supercell of 2D CoBHT(CO) lattice

(deg(x), deg(y)) where y < E(G2(a, b))	Total number of edges
(1, 3)	2a + 2b
(2, 2)	2a + 2b
(2, 3)	12ab - 2a - 2b
(2, 4)	12ab - 2a - 2b
(3, 3)	12ab

1. \(AL(G) = \sum_{y \in E(G2)} |d_u - d_v| \)
 \(= (2a + 2b)|3 - 1| + (2a + 2b)|2 - 2| \)
 \(+ (12ab - 2a - 2b)|3 - 2| \)
 \(+ (12ab - 2b - 2b)|4 - 2| + 12ab|3 - 3| \)
 \(= 4a + 4b + 12ab - 2a - 2b + 24ab - 4a - 4b \)
 \(= 36ab - 2(a + b) \)

2. \(IRL(G) = \sum_{y \in E(G2)} |in_u - in_v| \)
 \(= (2a + 2b)|hn3 - hn1| + (2a + 2b)|hn2 - hn2| \)
 \(+ (12ab - 2a - 2b)|hn3 - hn2| \)
 \(+ (12ab - 2a - 2b)|hn4 - hn2| + 12ab|hn3 - hn3| \)
 \(= 1.0986(2a + 2b) + 0.4055(12ab - 2a - 2b) \)
 \(+ 0.6931(12ab - 2a - 2b) = 13.1832ab \)
3. \(IRL(G) = \sum_{uv \in E} \frac{\|d_u - d_v\|}{\min(d_u, d_v)} \)
\[
= (2a+2b) \left[3 - \frac{1}{2} \right] + (2a+2b) \left[2 - \frac{3}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{2}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{4}{2} \right] + 12ab \left[3 - \frac{3}{2} \right] \\
= 4a + 4b + 6ab - a - b + 12ab - 2a - 2b \\
= 18ab + a + b
\]

4. \(IRR(G) = \sum_{uv \in E} |du - dv| \)
\[
= \frac{1}{2} \left[(2a+2b) \left[3 - \frac{1}{2} \right] + (2a+2b) \left[2 - \frac{3}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{2}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{4}{2} \right] + 12ab \left[3 - \frac{3}{2} \right] \right] \\
= \frac{1}{2} \left[4a + 4b + 12ab - 2a - 2b + 24ab - 4a - 4b \right] \\
= 18ab + a - b
\]

5. \(IRF(G) = \sum_{uv \in E} (du - dv)^2 \)
\[
= (2a+2b)(3 - \frac{1}{2})^2 + (2a+2b)(2 - \frac{3}{2})^2 \\
+ (12ab - 2a - 2b)(3 - \frac{2}{2})^2 \\
+ (12ab - 2a - 2b)(4 - \frac{2}{2})^2 + 12ab(3 - \frac{3}{2})^2 \\
= 8a + 8b + 12ab - 2a - 2b + 48ab - 8a - 8b \\
= 60ab - 2(a + b)
\]

6. \(IRA(G) = \sum_{uv \in E} \left(\frac{1}{du - \frac{1}{2}dv} \right)^2 \)
\[
= (2a+2b) \left[\frac{1}{2} \right] ^2 + (2a+2b) \left[\frac{1}{2} \right] ^2 \\
+ (12ab - 2a - 2b) \left[\frac{1}{2} \right] ^2 \\
+ (12ab - 2a - 2b) \left[\frac{1}{2} \right] ^2 \\
+ 12ab \left[\frac{1}{2} \right] ^2 \\
= 0.1786(2a+2b) + 0.0186(12ab - 2a - 2b) \\
+ 0.0059(12ab - 2a - 2b) \\
= 0.294ab + 0.3082(a + b)
\]

7. \(IRDF(G) = \sum_{uv \in E} \frac{du}{dv} - \frac{dv}{du} \)
\[
= (2a+2b) \left[\frac{3 - 1}{2} \right] + (2a+2b) \left[2 - \frac{1}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{2}{2} \right] \\
+ (12ab - 2a - 2b) \left[4 - \frac{2}{2} \right] + 12ab \left[3 - \frac{3}{2} \right] \\
= 2.6667(2a+2b) + 0.8333(12ab - 2a - 2b) \\
+ 1.5(12ab - 2a - 2b) \\
= 27.996ab + 0.6668(a + b)
\]

8. \(IRLF(G) = \sum_{uv \in E} \frac{|du - dv|}{\sqrt{(du - dv)}(du - dv)} \)
\[
= (2a+2b) \left[\frac{3 - 1}{2} \right] + (2a+2b) \left[2 - \frac{1}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{2}{2} \right] \\
+ (12ab - 2a - 2b) \left[4 - \frac{2}{2} \right] + 12ab \left[3 - \frac{3}{2} \right] \\
= 1.1547(2a+2b) + 0.4082(12ab - 2a - 2b) \\
+ 0.7071(12ab - 2a - 2b) \\
= 13.386ab + 0.0788(a + b)
\]

9. \(LA(G) = \sum_{uv \in E} \frac{|du - dv|}{(du - dv)} \)
\[
= 2 \left[(2a+2b) \left[\frac{3 - 1}{2} \right] + (2a+2b) \left[2 - \frac{1}{2} \right] \\
+ (12ab - 2a - 2b) \left[3 - \frac{2}{2} \right] \\
+ (12ab - 2a - 2b) \left[4 - \frac{2}{2} \right] + 12ab \left[3 - \frac{3}{2} \right] \right] \\
= 2[2a + b + 2.4ab - 0.4a - 0.4b] \\
+ 4ab - 0.6667a - 0.6667b \\
= 12.8ab - 0.6667(a + b)
\]
10. \[
IRDI(G) = \sum_{u,v \in E} \ln \left\{ 1 + |du - dv| \right\}
= (2a+2b)\ln[1+|3-1|]+(2a+2b)\ln[1+|4-2|]
+(12ab-2a-2b)\ln[1+|3-2|]
+(12ab-2a-2b)\ln[1+|4-2|]
+12ab\ln[1+|3-3|]
= 1.0986(2a+2b)+0.6931(12ab-2a-2b)
+1.0986(12ab-2a-2b)
= 21.5004ab - 1.3862(a+b)
\]

11. \[
IRGA(G) = \sum_{u,v \in E} \ln \left(\frac{du + dv}{2(du dv)} \right)
= (2a+2b)\ln \left(\frac{3+1}{2(3x1)} + (2a+2b)\ln \left(\frac{2+2}{2(2x2)} \right) \right)
+(12ab-2a-2b)\ln \left(\frac{3+2}{2(3x2)} \right)
+(12ab-2a-2b)\ln \left(\frac{4+2}{2(4x2)} \right)
+12(ab)\ln \left(\frac{3+3}{2(3x3)} \right)
= 0.1438(2a+2b) + 1.8121(12ab-2a-2b)
+ 0.0589(12ab-2a-2b)
= 22.452ab - 3.4544(a+b)
\]

12. \[
IRBG(G) = \sum_{u,v \in E} \left(\frac{du}{2} - \frac{dv}{2} \right)^2
= (2a+2b)\left(\frac{1}{(3)^2} - \frac{1}{(3)^2} \right)^2
+ (2a+2b)\left(\frac{1}{(2)^2} - \frac{1}{(2)^2} \right)^2
+(12ab-2a-2b)\left(\frac{1}{(3)^2} - \frac{1}{(2)^2} \right)^2
+(12ab-2a-2b)\left(\frac{1}{(4)^2} - \frac{1}{(2)^2} \right)^2
+12ab\left(\frac{1}{(3)^2} - \frac{1}{(3)^2} \right)^2
= 0.25(2a+2b) + 0.1010(12ab-2a-2b)
+ 0.3431(12ab-2a-2b)
= 5.3292ab - 0.3882(a+b)
\]

Irregularity indices	\(c = 1, \)	\(c = 2, \)
1. AL(G) = 56cd + 2(c + d)	60	232
2. IRL(G) = 28.668cd + 1.2822(c + d) - 0.1836	31.2324	119.8008
3. IRLU(G) = 50.6676cd + 1.6667(c + d) + 0.3333	54.3334	209.6669
4. IRRt(G) = 28cd + c + d	30	116
5. IRF(G) = 104cd + 2(c + d) + 2	110	426
6. IRA(G) = 4.3336cd + 0.088(c + d) + 0.0906	4.6002	17.7770
7. IRDF(G) = 68.6672cd + 2.6666(c + d) + 0.0001	74.0005	285.3354
8. IRLF(G) = 30.0224cd + 1.2944(c + d) - 0.1397	32.4715	125.1275
9. LA(G) = 26.2858cd + 1.2572(c + d) - 0.2572	28.543	109.9148
10. IRL(G) = 31.9112cd + 1.3862(c + d) - 0.2876	34.3960	132.9020
11. IRAG(G) = 3.5336cd + 10.8314(c + d) - 10.6876 + 14.5088 + 46.7724		
12. IRBG(G) = 6.5744cd + 0.3188(c + d) - 0.0688	7.1432	27.5040

4 Graphical analysis and conclusions

Here we present the graphical analysis and comparison table (Table 3) of some of the irregularity indices of the graph of 2D structure of M1TPyP-M2 metal organic frameworks. Figure 3 contains the graphical values of Albertson index (AL(G)), irregularity IRL(G) and IRLU(G) indices, total irregularity index (IRRt), IRF(G) irregularity index, randic index (IRA(G)), irregularity index IRDIF(G), irregularity index IRLF(G), irregularity index LA(G), irregularity index IRDI(G), irregularity index IRGA(G), and irregularity index IRB(G). In this table, we can check the values of some irregularity indices for some different values of ‘c’ and ‘d’.

Now we present the graphical analysis and comparison table (Table 4) of some of the irregularity indices of the graph of 2D structure of CoBHT(CO) lattice. Figure 4 contains the graphical values of Albertson index (AL(G)), irregularity IRL(G) and IRLU(G) indices, total irregularity index (IRRt), IRF(G) irregularity index, randic index (IRA(G)), irregularity index IRDIF(G), irregularity index IRLF(G), irregularity index LA(G), irregularity index IRDI(G), irregularity index IRGA(G), and irregularity index IRB(G). In this table, we can check the values of some irregularity indices for some different values of ‘a’ and ‘b’.
Acknowledgements: All the authors are thankful to their respective institutes for providing the research facilities.

Funding information: Authors state no funding involved.

Author contributions: Yu-Ming Chu: writing – review and editing; Muhammad Abid: writing – original draft; Muhammad Imran Qureshi: writing – original draft; Asfand Fahad: writing – review and editing, methodology; Adnan Aslam: writing – review and editing, methodology.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

Abdo H., Brandt S., Dimitrov D., The total irregularity of a graph. Disc. Math. Theor. C, 2014, 16, 201-206.
Albertson M., The irregularity of a graph. Ars. Combinatoria, 1997, 46, 219-225.

Awaiz H.M., Jamal M., Javaid M., Topological properties of metal-organic frameworks. Main Group Met. Chem., 2020, 43, 67-76.

Chakarvarty C., Mandal B., Sarkar P., Bis (Dithiolone)-based metal-organic frameworks with superior electronic and magnetic properties: spin frustration to spintronics and gas sensing. J. Phys. Chem. C, 2016, 120, 28307-28319.

Czaja A.U., Trukhan N., Muller U., Industrial application of metal-organic frameworks. Chem. Soc. Rev., 2009, 38, 1284-1293.

Dietzel P.D., Besikiotis V., Blom R., Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem., 2009, 19, 7362-7370.

Geier S.J., Mason J.A., Bloch E.D., Queen W.L., Hudson M.R., Brown C.M., et al., Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic framework M2(dobdc)(M=Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci., 2013, 4, 2054-2061.

Gutman I., Topological indices and irregularity measures. J. Bull., 2018, 8, 469-475.

Hall E.A., Redfern L.R., Wang M.H., Scheidt K.A., Lewis acid activation of a hydrogen bond donor metal-organic framework for catalysis. ACS Catal., 2016, 6, 3280-3285.

Hong G., Gu Z., Javaid M., Awaiz H.M., Siddiqui M.K., Degree-Based Topological Invariants of Metal-Organic Networks. IEEE Access, 2020, 8, 68288-68300.

Horcajada P., Serre C., Maurin G., Ramsahye N.A., Balas F., Vallet-Ragi M., et al., Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130, 6774-6780.

Hoskins R.R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111, 5962-5964.

Howe J.D., Liu Y., Flores L., Dixon D.A., Sholl D.S., Acid gas adsorption on metal-organic framework nanosheets as a model of an “all-surface” material. J. Chem. Theory. Comput., 2017, 13, 1341-1350.

Kennedy R.D., Kruglevicvite V., Clingerman D.J., Mondloch J.E., Peng Y., Wilmer C.E., et al., Carborane-based metal-organic framework with high methane and hydrogen storage capacities. Chem. Mater., 2013, 25, 3539-3543.

Kim J.Y., Balderas-Xicohteincatl R., Zhang L., Kang S.G., Hirscher M., Oh H., et al., Exploring diffusion barrier and chemical affinity of metal organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc., 2017, 139, 15135-15141.

Kinosita Y.M.I., The crystal structure of bis (adiponitrilo) copper (1) nitrate. Bull. Chem. Soc. Jpn., 1959, 32, 1221-1226.

Lee K., Howe J.D., Lin L.C., Smit B., Neaton J.B., Smallmolecule adsorption in one-site metal-organic frameworks: a systematic density functional theory study for rational design. Chem. Mater., 2015, 27, 668-678.

Li J.R., Kuppler R.J., Zhou H.C., Selective gas adsorption and separation in metal organic frameworks. Chem. Soc. Rev., 2009, 38, 1477-1504.

Li X., Gutman I., Mathematical aspects of randic, type molecular descriptors, in Mathematical Chemistry Monographs. University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, Serbia, 2006.

Mandal B., Chung J.S., Kang S.G., Exploring the geometric, magnetic and electronic properties of Hofmann MOFs for drug delivery. Phys. Chem. Chem. Phys., 2017, 19, 31316-31324.

Mu B., Schoenecker P.M., Walton K.S., Gas adsorption study on mesoporous metal-organic frameworkUMCM-1. J. Phys. Chem. C, 2010, 114, 6464-6471.

Murray L.J., Dinca M., Long J.R., Hydrogen storage in metal organic frameworks. Chem. Soc. Rev., 2009, 38, 1294-1314.

Olson J.S., Phillips G.N., Myoglobin discriminates between O2, NO and CO by electrostatic interactions with the bound ligand. J. Biol. Inorg. Chem., 1997, 2, 544-552.

Park J., Howe J.D., Sholl D.S., How reproducible are isothermal measurements in metal-organic frameworks. Chem. Mater., 2017, 29, 10487.

Queen W.L., Hudson M.R., Bloch E.D., Mason J.A., Gonzalez M.I., Lee J.S., et al., Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc)(M=Mg, Mn, Fe, Co, Ni, Cu, Zn). Chem. Sci., 2016, 5, 4569-4581.

Reti T., Sharfdini R., Dregelyi-Kiss A., Hagobin H., Graph irregularity indices used as molecular descriptors in QSPR studies. MATCH-Commun. Math. C., 2018, 79.

Rodhe H., A comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 248, 1217.

Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., Ofkeeffe M., et al., Hydrogen storage in microporous metal organic frameworks. Science, 2003, 300, 1127-1129.

Roy S., George C.B., Ratner M.A., Catalysis by a Zinc porphyrin-based metal-organic framework: from theory to computational design. J. Phys. Chem. C, 2012, 116, 23494-23502.

Sarkisov L., Toward rational design of metal-organic frameworks for sensing applications: efficient calculation of adsorption characteristics in zero loading regime. J. Phys. Chem. C, 2012, 116, 3025-3033.

Singh A., Agarwal M., Acid rain and its ecological consequences. J. Env. Biol., 2007, 29, 15.

Tan K., Zuluaga S., Wang H., Canepa P., Solman K., Cure J., et al., Interaction of acid gases SO2 and NOx with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M=Zn, Mg, Ni, Co). Chem. Mater., 2017, 29, 4227-4235.

Vallet-Regi M., Balas F., Arcos D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46, 7548-7558.

Vukicevic D., Graovac A., Valence connectivities versus Randic, Zagreb and modified Zagreb index: A linear algorithm to check discriminative properties of indices in acyclic molecular graphs. Croat. Chem. Acta, 2004, 77, 501-508.

Wiener H., Structural determination of Paraffin boiling points. J. Am. Chem. Soc., 1947, 17-20.

Wu H., Zhou W., Yildirim T., High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J. Am. Chem. Soc., 2009, 131, 4995-5000.

Yu K., Kiesling K., Schmidt J., Trace flue gas contaminants poison coordinatively unsaturated metal-organic frameworks: implications for CO2 adsorption and separation. J. Phys. Chem. C, 2012, 116, 20480-20488.