The Resting-State Neural Network of Delay Discounting

Fan Yang, Xueting Li* and Ping Hu*

Department of Psychology, Renmin University of China, Beijing, China

Delay discounting is a common phenomenon in daily life, which refers to the subjective value of a future reward decreasing as a function of time. Previous studies have identified several cortical regions involved in delay discounting, but the neural network constructed by the cortical regions of delay discounting is less clear. In this study, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to measure the spontaneous neural activity in a large sample of healthy young adults and used the Monetary Choice Questionnaire to directly measure participants’ level of delay discounting. To identify the neural network of delay discounting at rest, we used an individual difference approach to explore brain regions whose spontaneous activities were related to delay discounting across the whole brain. Then, these brain regions served as seeds to identify the neural network of delay discounting. We found that the fractional amplitude of low-frequency fluctuations (fALFF) of the left insula were positively correlated to delay discounting. More importantly, its connectivity to the anterior cingulate cortex was read out for participants’ behavioral performance in the task of delay discounting. In short, our study provides empirical evidence that insula-anterior cingulate cortex connectivity may serve as a part of the neural network for delay discounting.

Keywords: delay discounting, fALFF, functional connectivity, the insula, neural network

INTRODUCTION

Life is full of dilemma. Your friend invites you to a big dinner, when you have just decided to lose weight; when you turn on the computer and decide to focus on work, a pop-up window reminds you that the latest episode of your favorite show has just been released. In these situations, you are faced with two options: a small but immediate reward (SIR, the big dinner, and the latest episode) or a large but delayed reward (LDR, the healthier weight, and the work). Although obviously the rational choice is LDR, we often choose SIR instead. This phenomenon is called delay discounting (Kirby and Marakovic, 1995), which refers to the subjective value of a future reward decreasing as a function of time (Kirby et al., 1999). Therefore, if the subjective value of LDR is smaller than SIR, we choose SIR. Delay discounting is found to be associated with many problematic behaviors, such as low academic performance (Kirby et al., 2005), internet addiction (Saville et al., 2010), substance abuse (Kollins, 2003), and pathological gambling (Dixon et al., 2003).

Many studies have been conducted to explore the neural mechanism of delay discounting. Neuroimaging studies have identified several brain regions involved in delay discounting, including the precuneus (McClure et al., 2007; Lim et al., 2017), the dorsolateral prefrontal cortex (Monterosso et al., 2007; Ho et al., 2016), the ventromedial prefrontal cortex (Marco-Pallares et al., 2010; Civai et al., 2016), the insula (McClure et al., 2007; Wittmann et al., 2016; Clewett et al., 2014; Grodin et al., 2017), and the anterior cingulate cortex (ACC) (Monterosso et al., 2007;
According to the MCQ (Kirby et al., 1999), we calculated participants' choices based on their genuine preference. Their choice was randomly selected from the 27 items to ensure the not only monetary compensation but also the reward based on the MCQ. After finishing the questionnaire, each participant received 7 days’ compensation. There was no time limit for the participants to fill in the questionnaire. The k values in the MCQ, each of them had a corresponding choice pattern. The k value whose choice pattern was most approximate to the participant's was the k value indicating this participant's degree of delay discounting. Finally, as the k values were not normally distributed, we performed log-transformation to obtain the ln(k) values.

Intelligence—Raven's Advanced Progressive Matrices

Previous studies indicate that there is a significant correlation between intelligence and delay discounting (Shamosh et al., 2008; Shamosh and Gray, 2008). Therefore, we included intelligence as a confounding factor which was indicated by Raven score (Raven et al., 1998). Raven's Advanced Progressive Matrices contains 36 items, requiring the participants to select the missing figure to complete a 3 × 3 matrix. The number of correct answers in 30 min was taken as the Raven score of each participant.

Image Acquisition

Resting-state functional magnetic resonance imaging (fMRI) scanning was conducted on a 3T Siemens Trio scanner (MAGENTOM Trio, a Tim system) with a 12-channel phase-arrayed coil at Beijing Normal University Imaging Center for Brain Research, Beijing, China. During the resting-state scan, participants were instructed to keep still, remain awake, close their eyes, and not purposely think of anything. The RS-fMRI scanning consisted of 240 contiguous echo-planar imaging (EPI) volumes (TR = 2000 ms; TE = 30 ms; flip angle = 90°; number of slices = 33; matrix = 64×64; FOV = 200 × 200 mm²; acquisition voxel size = 3.125 × 3.125 × 3.6 mm³). Additionally, high-resolution T1-weighted images were obtained with a magnetization-prepared gradient echo sequence (MPRAGE: TR/TE/TI = 2530/3.39/1100 ms; flip angle = 7°; matrix = 256×256; number of slices = 128; voxel size = 1 × 1 × 1.33 mm³) for spatial registration.

Image Data Preprocessing

Resting-state functional magnetic resonance imaging image data were preprocessed with FSL (FMRIB Software Library). The preprocessing steps included head motion correction (by aligning each volume to the middle volume of the 4-D image with MCMFLIRT), spatial Gaussian smoothing (FWHM = 6 mm), realignment, intensity normalization, and the removal of linear trends. To better eliminate the influences of psychological noise on our subsequent analysis, we regressed out 18 nuisance signals from cerebrospinal fluid, white matter, global brain average, and motion correction parameters. The registration of each participant's RS-fMRI to the anatomical images was accomplished by using FMRIB's Linear Image Registration Tool (FLIRT) (Jenkinson and Smith, 2001; Jenkinson et al., 2002) to produce a six-degree-of-freedom affine transformation matrix. The registration of each participant's anatomical images to the Montreal Neurological Institute (MNI) space was carried out by using FLIRT to calculate a 12 degree-of-freedom linear affine matrix. Because low-frequency fluctuations are sensitive to brain activity in gray matter, we defined a gray mask with the possibility of movement artifacts.

MATERIALS AND METHODS

Participants

A total of 310 college students (186 women, 18–23 years of age, mean age = 20.36, SD = 0.85, 8 without age information) participated this study. Participants reported no history of neurological or psychiatric disorders. This study was approved by the Institutional Review Board of Beijing Normal University. Prior to the experiment, written informed consent was obtained from all participants.

Measures of Behaviors

Delay Discounting—Monetary Choice Questionnaire

Our study used MCQ (Kirby et al., 1999) to evaluate the degree of delay discounting for each participant. MCQ consists of 27 items, for each item, the participants chose between one SIR and one LDR. For example, “Would you prefer ¥31 today or ¥85 in 7 days?” There was no time limit for the participants to fill in the MCQ. After finishing the questionnaire, each participant received not only monetary compensation but also the reward based on their choice randomly selected from the 27 items to ensure the participants made choices based on their genuine preference. According to the MCQ (Kirby et al., 1999), we calculated k values to represent the participants’ degree of delay discounting. The larger the k value, the higher the participant's impulsivity, which means that the participant was more likely to choose SIRs. There are 10 k values in the MCQ, each of them had a corresponding choice pattern. The k value whose choice pattern was most
Statistical Analysis
Since 38 participants had missing scan data, 6 participants had missing age or gender information, and 2 participants’ Raven scores were outside ±3 standard deviations, 264 participants (159 women, 18–23 years of age, mean age = 21 years, SD = 2.12) were included in the following analyses. The kurtosis and skewness of age (0.05, −0.21) and Raven scores (−0.12, −0.30) were within the range from −1 to +1, which indicates the normality of age and intelligence (Marcoulides and Hershberger, 1997).

Fractional Amplitude of Low-Frequency Fluctuations-Delay Discounting Correlation Analysis
To explore the relationship between delay discounting and spontaneous neural activities, we calculated the correlation between the Ln(k) values and the fALFF values of each voxel across the whole brain, with age, gender, intelligence, and head motion parameter as the confounding factors. According to Zou et al. (2008) and Zuo et al. (2010), each participant’s fALFF value of each voxel was obtained through dividing the sum of amplitudes across the entire frequency range (0–0.25 Hz) by a fractional sum of the amplitudes within the low-frequency range (0.01–0.1 Hz). Multiple comparison correction was conducted by Gaussian random field theory (GRF) in the DPABI (Yan et al., 2016). The threshold at the voxel level was $p < 0.05$ and at the cluster level was $p < 0.05$.

Resting-State Functional Connectivity-Delay Discounting Correlation Analysis
Based on the results from the fALFF-delay discounting correlation analysis, our study examined the neural network of delay discounting at resting-state by using resting-state functional connectivity (RSFC). Firstly, we used the clusters obtained in the fALFF-delay discounting correlation analysis as the seeds. And we calculated the mean time series from all voxels in each seed for each participant. Secondly, for each participant, the RSFC of each voxel was defined as the correlation on the mean time series between the seed and other voxels. Voxel by voxel, the RSFC was calculated across the whole brain, with age, gender, intelligence, and head motion parameter as the confounding factors. Finally, for each seed, we calculated the correlation between the RSFC of each voxel and the Ln(k) values to identify the brain network involved in delay discounting. We transformed r maps to T-score maps. Multiple comparison correction was conducted by GRF in the DPABI (Yan et al., 2016) for the correlations between the RSFC of each voxel to the insula and the Ln(k) values. The threshold at the voxel level was $p < 0.05$ and at the cluster level was $p < 0.05$.

RESULTS
The degree of delay discounting for each participant was indexed by the Ln(k) value. A higher Ln(k) suggests a greater discount on future rewards, so individuals with higher Ln(k) likely prefer immediate rewards (i.e., SIRs). The kurtosis (−0.05) and skewness (−0.04) of participants’ delay discounting were within the range from −1 to +1, which indicates the normality of the Ln(k) values (Marcoulides and Hershberger, 1997). The mean of Ln(k) values was −5.18 and the standard deviation was 1.54, which suggested that the variance of the Ln(k) values was suitable for the individual difference approach to explore the neural correlates of delay discounting.

DISCUSSION
In the current study, we used RS-fMRI to explore the resting-state neural network of delay discounting in a large sample of healthy young adults. First, we found a positive correlation between the Ln(k) values and the fALFF values of the left insula, revealing that...
individuals with larger intensity of spontaneous neural activities in the insula discounted future rewards more sharply, and were more likely to choose SIRs over LDRs. Second, we used the delay discounting-related insula as a seed to construct the neural network for delay discounting, and found that the Ln(k) values were positively associated with the strength of the insula-ACC RSFC, suggesting the stronger the connectivity between the insula and the ACC, the more the participants preferred SIR. It is important to note that as the individual difference approach was adopted, the neural network identified in our study reflected the individual differences in delay discounting, which suggests a role for neural networks in other aspects of delay discounting. The insula and the ACC are important nodes of the salience network, and therefore our study illustrates how the salience network plays a pivotal role in delay discounting at resting-state.

In methodology, our study supplements previous studies on the resting-state neural network in three ways. First, instead of pre-selecting regions of interest to construct the neural network of delay discounting as previous studies did (Schmaal et al., 2012; Dias et al., 2013; Contreras-Rodriguez et al., 2015; Rosch et al., 2018; Holmes et al., 2020), here with a large sample of participants we had sufficient power to perform a whole-brain analysis to thoroughly explore the neural correlates of delay discounting. Second, rather than indirectly measuring delay discounting with variables affecting delay discounting (Guo and Feng, 2015; Xin et al., 2020; Zhang et al., 2021), here we used the Monetary Choice Questionnaire to directly calculate Ln(k) as an index for delay discounting. Finally, we tested healthy adult participants, which can extend the findings from previous studies based on mental health patients and adolescents (Dias et al., 2013; Contreras-Rodriguez et al., 2015; Wang et al., 2017; Zhu et al., 2017; Rosch et al., 2018; Holmes et al., 2020) to a larger population.

Our novel finding of the insula's role in delay discounting during rest was in accordance with previous studies using task-based fMRI on healthy participants or patients (Wittmann et al., 2007; Hoffman et al., 2008; Wittmann et al., 2010; Avsar et al., 2013; Lim et al., 2017; Miranda-Olivos et al., 2021). Specifically, our finding that lower intensity of spontaneous neural activities was correlated with the preference of LDRs...
perfectly echoes the finding from a lesion study, where patients with damaged insulas preferred to choose LDRs (Sellitto et al., 2016). This finding also supports the hypothesis that the insula may modulate delay discounting by controlling the impulsivity of choosing immediate rewards (Menon and Uddin, 2010), not the hypothesis of uncertainty of future rewards (Paulus et al., 2003). Indeed, individuals with high intensity of resting fluctuations at rest may overshadow the neural activity in a task, which makes the inhibition of impulsivity more difficult. Without sufficient cognitive control, individuals may thus prefer immediate rewards.

The resting neural network constructed with the insula serving as a seed also showed correlations with delay discounting. Importantly, only the connectivity between the insula and the ACC reached significance. The insula and the ACC are two key nodes of the salience network (SN), consistent with previous studies showing that the SN is involved in delay discounting through the processing of high-level cognitive control (Li et al., 2013; Chen et al., 2017, 2018; Grodin et al., 2017; Zhu et al., 2017). The SN is a large network consisting of multiple cortical and subcortical regions (Seeley et al., 2007; Menon and Uddin, 2010). Our study illuminates the role of the insula and the ACC of the SN in delay discounting, which advises future studies to narrow down the scope of the interaction of these two regions in delay discounting. It is interesting to note that the insula and ACC are considered to be domain-general regions involved in a variety of processes, such as emotion (Ernst et al., 2014; Gasquoine, 2014; Nelson et al., 2015), autonomic functions (Cechetto, 2014; Rolls, 2016; Roquet and Conti, 2021), and self-referential processing (Northoff et al., 2006; Hu et al., 2016; Yoon et al., 2019). Our finding of the insula-ACC network involved in delay discounting is not contradictory to this mainstream perspective. First, our study did not support the exclusivity of the insula and ACC in delay discounting, because in the study we only ruled out the possible confounding factor of general intelligence in delay discounting. Second, delay discounting is a complex phenomenon, which consists of multiple cognitive components such as cognitive control and reward evaluation (Peters and Buechel, 2011; Miedl et al., 2012; Stanger et al., 2013; Frost and McNaughton, 2017; Patros et al., 2018). These cognitive components are likely recruited for other tasks as well. Therefore, the network identified in this study was only specific but not exclusive to delay discounting. Moreover, note that our network analysis was restricted to the seed of the insula, which was localized by its relevance to behavioral performance of delay discounting with the measure of fALFF. Therefore, we certainly missed abundant neural correlates of delay discounting, some of which may lie in the SN. Future studies shall use pre-defined SN nodes, such as the anterior insula, amygdala, ventral striatum, and hypothalamus, to investigate their relationship to delay discounting. Besides, previous studies have also reported that the interaction during rest between the SN with other large-scale neural networks (e.g., executive control network, default mode network, and frontoparietal network) is also associated with delay discounting (Li et al., 2013; Zhu et al., 2017; Chen et al., 2018). In this study, we tested a large sample of participants and performed a whole-brain analysis, but we failed to find the association between cross-network resting-state connectivity and behavioral performance in delay discounting. One possibility is that here we only explored the network centering in the insula, which might miss significant contributions from connectivity not consisting of the insula. However, we believe this is unlikely given the critical role of the insula in delay discounting, the statistical power of this study, and the direct measure of delay discounting. Future studies with more dedicate designs are needed to examine the cross-network functional connectivity in delay discounting.

In sum, our study employed RS-fMRI to demonstrate the neural correlates in the resting state of delay discounting. We first correlated the fALFF values with participants' behavioral...
performance in delay discounting and established that the spontaneous activities in the insula were related to delay discounting at the regional level. We further used the delay discounting-related insula as a seed to investigate the neural work in delay discounting. Our study gives new empirical evidence that as the key nodes of the SN, the connectivity between the insula and the ACC is involved in delay discounting. An important but unaddressed issue is the cognitive components underlying delay discounting. Delay discounting consists of a variety of cognitive components, such as reward valuation, time perception, conflict detection, and cognitive control (Wittmann and Paulus, 2008; Claus et al., 2011; Frost and McNaughton, 2017; Dennis et al., 2020; Lukinova and Erlich, 2021). However, the behavioral index of the delay discounting used in our study (k value) was not able to be further decomposed into these cognitive components. On the other hand, the neural correlates of delay discounting may shed light on the cognitive components of delay discounting. For example, previous studies have shown that the ACC is an important node in the reward circuit (Breiter and Rosen, 1999; Haber and Knutson, 2010; Liu et al., 2016); therefore, the insula-ACC connectivity for delay discounting suggests the overlap between the SN and the reward circuit. That is, the function of reward evaluation may underlie delay discounting, which needs to be examined in future studies.

REFERENCES

Avsar, K. B., Weller, R. E., Cox, J. E., Reid, M. A., White, D. M., and Lahti, A. C. (2013). An fMRI investigation of delay discounting in patients with schizophrenia. Brain Behav. 3, 384–401. doi: 10.1002/brb3.135

Breiter, H. C., and Rosen, B. R. (1999). "Functional magnetic resonance imaging of brain reward circuitry in the human," in Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug use: In honor of Lennart Heimer, J. F. McGinty, (New York, NY: New York Academy of Sciences), 523–547. doi: 10.1117/1.1749-6632.1999.tb09287.x

Cechetto, D. F. (2014). Cortical control of the autonomic nervous system. Exp. Physiol. 99, 326–331. doi: 10.1113/exphysiol.2013.075192

Chen, Z., Guo, Y., and Feng, T. (2017). Delay discounting is predicted by scale-free dynamics of default mode network and salience network. Neuroscience 362, 219–227. doi: 10.1016/j.neuroscience.2017.08.028

Chen, Z., Guo, Y., Suo, T., and Feng, T. (2018). Coupling and segregation of large-scale brain networks predict individual differences in delay discounting. Biol. Psychol. 133, 63–71. doi: 10.1016/j.biopsycho.2018.01.011

Civai, C., Hawes, D. R., DeYoung, C. G., and Rustichini, A. (2016). Intelligence and Extraversion in the neural evaluation of delayed rewards. J. Res. Personal. 61, 99–108. doi: 10.1016/j.jrp.2016.02.006

Claus, E. D., Kiehl, K. A., and Hutchison, K. E. (2011). Neural and Behavioral Mechanisms of Impulsive Choice in Alcohol Use Disorder. Alcohol. Clin. Exp. Res. 35, 1209–1219. doi: 10.1111/j.1530-0277.2011.01455.x

Clewett, D., Luo, S., Hsu, E., Ainslie, G., Mather, M., and Monterosso, J. (2014). Increased Functional Coupling Between the Left Fronto-Parietal Network and Anterior Insula Predicts Steeper Delay Discounting in Smokers. Hum. Brain Mapp. 35, 3774–3787. doi: 10.1002/hbm.22436

Contreras-Rodriguez, O., Albein-Urrios, N., Perales, J. C., Martinez-Gonzalez, J. M., Vilar-Lopez, R., Fernandez-Serrano, M. J., et al. (2015). Cocaine-specific neuroplasticity in the ventral striatum network is linked to delay discounting and drug relapse. Addiction 110, 1953–1962. doi: 10.1111/add.13076

Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M., and Deary, I. J. (2019). Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 76, 101376. doi: 10.1016/j.intell.2019.10.1376

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Institutional Review Board of Beijing Normal University, Bejing, China. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

XL and PH designed the study. XL ran the experiments. FY analyzed the data. All authors wrote the manuscript, contributed to the article, and approved the submitted version.

FUNDING

This study was supported by National Social Science Foundation of China (Major Program) (19ZDA021).

Dennis, L. E., Kohno, M., McCready, H. D., Schwartz, D. L., Schwartz, B., Lahna, D., et al. (2020). Neural correlates of reward magnitude and delay during a probabilistic delay discounting task in alcohol use disorder. Psychopharmacology 237, 263–278. doi: 10.1007/s00213-019-05364-3

Dias, T. G. C., Wilson, V. B., Bathula, D. R., Iyer, S. P., Mills, K. L., Thurlow, B. L., et al. (2013). Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 23, 33–45. doi: 10.1016/j.euroneuro.2012.10.015

Dixon, M. R., Marley, J., and Jacobs, E. A. (2003). Delay discounting by pathological gamblers. J. Appl. Behav. Anal. 36, 449–458. doi: 10.1001/jama.2003.36.44

Ernst, J., Boker, H., Hattenschwiler, J., Schupbach, D., Northoff, G., Seifritz, E., et al. (2014). The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc. Cogn. Affect. Neurosci. 9, 857–863. doi: 10.1093/scan/nst058

Frost, R., and McNaughton, N. (2017). The neural basis of delay discounting: a review and preliminary model. Neurosci. Biobehav. Rev. 79, 48–65. doi: 10.1016/j.neubiorev.2017.04.022

Gasquigne, P. G. (2014). Contributions of the Insula to Cognition and Emotion. Neuropsychol. Rev. 24, 77–87. doi: 10.1007/s11065-014-9246-9

Grodin, E. N., Cortes, C. R., Spagnolo, P. A., and Momenan, R. (2017). Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence. Drug Alcohol Depend. 179, 100–108. doi: 10.1016/j.drugalcdep.2017.06.014

Guo, Y., and Feng, T. (2015). The mediating role of LPFC-vmPFC functional connectivity in the relation between regulatory mode and delay discounting. Behav. Brain Res. 292, 252–258. doi: 10.1016/j.bbr.2015.06.035

Haber, S. N., and Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology 35, 4–26. doi: 10.1038/npp.2009.129

Ho, B.-C., Koeppel, J. A., and Barry, A. B. (2016). Cerebral white matter correlates of delay discounting in adolescents. Behav. Brain Res. 305, 108–114. doi: 10.1016/j.bbr.2016.03.004

Hoffman, W. F., Schwartz, D. L., Huckans, M. S., McFarland, B. H., Meiri, G., Stevens, A. V., et al. (2008). Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology 201, 183–193. doi: 10.1007/s00213-008-1261-1
Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., and London, E. D. (2012). Altered Neural Reward Representations in Pathological Gamblers Revealed by Delay and Probability Discounting. J. Neurosci., 28, 1167–1173. doi: 10.1523/jneurosci.2225-20.2021

Roscio, K. S., Motsokhny, S. H., and Nebel, M. B. (2018). ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting. J. Neurodev. Disord. 10:34. doi: 10.1186/s11689-018-9254-9

Saville, B. K., Gisbert, A., Kopp, J., and Telesco, C. (2010). Internet addiction and delay discounting in college students. Psychol. Record 60, 273–286. doi: 10.1007/bf03395707

Schmaa, L., Goudriaan, A. E., van der Meer, J., van den Brink, W., and Veltman, D. J. (2012). The association between cingulate cortex glutamate concentration and delay discounting is mediated by resting state functional connectivity. Brain Behav. 2, 553–562. doi: 10.1002/brb3.74

Seeley, W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenn, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356. doi: 10.1523/jneurosci.5587-06.2007

Sellitto, M., Ciaramelli, E., Mattioli, F., and di Pellegrino, G. (2016). Reduced Sensitivity to Sooner Reward During Intertemporal Decision-Making Following Insula Damage in Humans. Front. Behav. Neurosci. 9:367. doi: 10.3389/fnbeh.2015.00367

Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R. A., et al. (2008). Individual Differences in Delay Discounting Relation to Intelligence, Working Memory, and Anterior Prefrontal Cortex. Psychol. Sci. 19, 904–911. doi: 10.1111/j.1467-9280.2008.02175.x

Shamosh, N. A., and Gray, J. R. (2008). Delay discounting and intelligence: a meta-analysis. Intelligence 36, 289–305. doi: 10.1016/j.intell.2007.09.004

Stanger, C., Elton, A., Ryan, S. R., James, A. G., Budney, A. J., and Kilts, C. D. (2013). Neuroeconomics and Adolescent Substance Abuse: individual Differences in Neural Networks and Delay Discounting. J. Am. Acad. Child Adolesc. Psychiat. 52, 747–755. doi: 10.1016/j.jaac.2013.04.013

Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T.,ouchi, R., et al. (2011). Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity. PLoS One 6:e25532. doi: 10.1371/journal.pone.0025532

van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., and Carter, C. S. (2004). Errors without conflict: implications for performance monitoring theories of anterior cingulate cortex. Brain Cogn. 56, 267–276. doi: 10.1016/j.bandc.2004.06.007

Wang, S., Zhou, M., Chen, T., Yang, X., Chen, G., and Gong, Q. (2017). Delay discounting is associated with the fractional amplitude of low-frequency
fluctuations and resting-state functional connectivity in late adolescence. *Sci. Rep.* 7:10276. doi: 10.1038/s41598-017-11109-z

Wittmann, M., Leland, D. S., and Paulus, M. P. (2007). Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. *Exp. Brain Res.* 179, 643–653. doi: 10.1007/s00221-006-0822-y

Wittmann, M., Lovero, K. L., Lane, S. D., and Paulus, M. P. (2010). Now or later? Striatum and insula activation to immediate versus delayed rewards. *J. Neurosci.* Psychol. Econ. 3, 15–26. doi: 10.1037/a0017252

Wittmann, M., and Paulus, M. P. (2008). Decision making, impulsivity and time perception. *Trends Cogn. Sci.* 12, 7–12. doi: 10.1016/j.tics.2007.10.004

Xia, M., Wang, J., and He, Y. (2013). BrainNet Viewer: a Network Visualization Tool for Human Brain Connectomics. *PLoS One* 8:e68910. doi: 10.1371/journal.pone.0068910

Xin, Y., Xu, P., Aleman, A., Luo, Y., and Feng, T. (2020). Intrinsic prefrontal organization underlies associations between achievement motivation and delay discounting. *Brain Struct. Fun.* 225, 511–518. doi: 10.1007/s00429-019-01982-x

Yan, C.-G., Wang, X.-D., Zuo, X.-N., and Zang, Y.-F. (2016). DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. *Neuroinformatics* 14, 339–351. doi: 10.1007/s12021-016-9299-4

Yoon, H. J., Seo, E. H., Kim, J. J., and Choo, I. H. (2019). Neural Correlates of Self-referential Processing and Their Clinical Implications in Social Anxiety Disorder. *Clin. Psychopharmacol. Neurosci.* 17, 12–24. doi: 10.9758/cpn.2019.17.1.12

Zhang, R., Chen, Z., Xu, T., and Feng, T. (2021). The neural basis underlying the relation between the action identification level and delay discounting: the medial and orbital frontal cortex functional connectivity with the precuneus. *Int. J. Psychophysiol.* 159, 74–82. doi: 10.1016/j.jippsycho.2020.11.014

Zhu, X., Cortes, C. R., Mathur, K., Tomasi, D., and Momenan, R. (2017). Model-free functional connectivity and impulsivity correlates of alcohol dependence: a resting-state study. *Add. Biol.* 22, 206–217. doi: 10.1111/adb.12272

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. *J. Neurosci. Methods* 172, 137–141. doi: 10.1016/j.jneurneuro.2008.04.012

Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. (2010). The oscillating brain: complex and reliable. *Neuroimage* 49, 1432–1445. doi: 10.1016/j.neuroimage.2009.09.037

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Yang, Li and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.