Appendiceal neuroendocrine tumors: Recent insights and clinical implications

John Griniatsos, Othon Michail

INTRODUCTION

In 1907, Oberndorfer[1] first introduced the term “carcinoid” to describe “little carcinomas” of the small intestine which were thought (by him at that time) to be probably benign.

However, the continuous knowledge which was added by studying these tumors for nearly a century strengthened the notion that the above term was inaccurate or inadequate to describe several parameters of this heterogeneous group of gastrointestinal tumors (including the appendiceal one). Thus, the term “carcinoid” was replaced by the term “gastroenteropancreatic neuroendocrine tumors, GEP-NETs”[2]. The term “appendiceal NET” will be used hereafter.

Epidemiology

Although appendiceal NETs constitute an unusual and sporadic entity, it accounts for more than 50% of all primary tumors of the appendix[8].
Benign appendiceal NETs represent the second commonest neuroendocrine neoplasms of the gastrointestinal tract (small bowel NETs being the commonest) and their histological diagnosis is established, usually incidentally, in 0.3%–0.9% of patients undergoing appendicectomy. This means that the probability of a surgeon coming across an appendiceal NET is once for every 100 to 300 appendectomies performed by him. The annual incidence is about 2–3 newly diagnosed cases per million of general population although post-mortem studies increase the incidence to 170 cases per 100,000. The mean age of patients at the time of diagnosis is at end of the second decade of life with an increased incidence among females[88]. The last finding probably reflects the increased use of diagnostic laparoscopy among females for atypical lower abdominal pain and the concomitant laparoscopic appendectomies performed[89].

Malignant appendiceal NETs represent the third commonest (after small bowel and rectum) malignant neuroendocrine neoplasms of the gastrointestinal tract with an annual incidence of 0.63 cases per million of the general population and the mean age of the patients at time of the diagnosis in the 5th decade of life[8].

Clinical presentation

Normally, appendiceal NETs remain asymptomatic. Although accurate preoperative diagnosis using abdominal computed tomography (CT)[8] or ultrasound[81] scans has been reported, the total number of the enrolled patients is extremely small (only case reports have been published) and thus is not suitable for definite conclusions. Therefore, for the vast majority of cases, the diagnosis of appendiceal NETs is established incidentally postoperatively in the specimens of appendectomies which had been performed due to either acute appendicitis or recurrent, chronic, dull, non-specific lower right quadrant abdominal pain[63,12]. Carcinoid syndrome is very uncommon (<1%).

Diagnosis

Since most appendiceal NETs are diagnosed postoperatively, any effort to be diagnosed preoperatively is practically unrealistic so the diagnostic work-up should focus on the early detection of recurrence in patients who have already had surgery.

The use of plasma chromogranin-A levels as a tumor marker contributes to the differential diagnosis from goblet cell carcinoma, the early detection of recurrence and the long term follow-up of metastatic disease. All patients should be investigated 6 and 12 mo postoperatively and then annually while the follow-up should be lifelong[8].

Especially for tumors > 2 cm, a CT scan and somatostatin receptor scintigraphy (SRS) is recommended at 6 mo and 12 mo postoperatively and then annually. Colonoscopy is advised for the early detection of synchronously present or metachronously developed large bowel tumors[18].

Biological behavior

Approximately 80% of appendiceal NETs have a maximum diameter of < 1 cm, 15% have a diameter 1-2 cm and only 5% have a diameter greater than 2 cm[84]. Tumor size greater than 2 cm strongly correlates both to metastatic potential[85] and to an unfavourable 5 years survival rate[84].

Approximately 70%–75% of the tumors are located in the apex, 15%–20% in the body and 5%–10% in the base of the organ[14]. Although there is not enough evidence to support the theory that the location of the tumor correlates to the overall survival, cecum invasion or positive resection margins should be considered for planned future therapeutic strategies[87].

A multifocal pattern of the disease along the appendix has not been described yet. However, the coexistence of appendiceal NET with small bowel or rectal NETs[19] colorectal cancer[20], Crohn's disease[21] and synchronous or metachronous development of malignancies outside the gastrointestinal tract[21] are well documented.

The possibility of lymph node metastases from appendiceal NETs with vascular invasion is estimated as high as 30%[17] but only 1% for tumors with appendiceal mesentry invasion[20]. However, the prognostic significance of appendiceal mesentry invasion remains controversial since its relationship to distant metastases development has been reported as between 0[89] and 4.1%[39]. To date, there have been no reports correlating lymph node metastases to appendiceal serosa invasion.

The rate of cellular proliferation (as it expressed by the Ki-67) does not seem to be of prognostic value.

Classification and staging

Based on the analysis of the published report from the SEER database between 1977-2004, it is suggested that the first proposed TNM classification and staging systems for appendiceal NETs (which was based on the report from the SEER database between 1973-1999)[81] should be modified[22] according to Table 1.

Stage	T	N	M
I	T1	N0	M0
II	T1	N1	M0
III	T2	N0	M0
IV	Any T	Any N	M1

NETs: Neuroendocrine tumors; T1: Tumor < 2 cm; T2: Tumor ≥ 2 cm but < 3 cm; T3: Tumor ≥ 3 cm; N0: No lymph node metastases; N1: Regional lymph node metastases; M0: No metastases; M1: Distant metastases.

Griniatsos J et al. Appendiceal neuroendocrine tumors

Table 1 Classification and staging of appendiceal NETs according to the TNM system

Treatment

Current guidelines[13,22,23] propose simple appendectomy as adequate and curative for the treatment of appendiceal NETs < 1 cm, while for tumors 1-2 cm, a simple appendectomy followed by periodic postoperative follow-up for 5 years is recommended. Right hemicolectomy (within 3 mo from the appen-
The immuno-phenotype of adenocarcinoma and genetic alterations of Cytokeratins (CK) 7 and 20 in appendiceal NETs suggest that for the transformation to the adenocarcinoma type (Type C), the genetic alterations which lead to adenocarcinoma for GCCs is identical to adenocarcinomas but not to NETs.

Based on the above findings, it is proposed that GCCs should constitute a distinct histological and clinical entity different from the appendiceal NETs, while the classification which is proposed by Wang et al. seems to comply to the biological behavior of the tumors and with the prognosis of the patients.

Clinical presentation

In the majority of cases, the disease remains asymptomatic. Acute appendicitis (due to luminal obstruction by the tumor) is the main symptom followed by atypical abdominal pain and abdominal mass. Unusual symptoms are intussusception, gastrointestinal bleeding, bowel obstruction, anemia and miscellaneous urinary manifestations.

In 11% of cases the disease is already metastatic at the time of diagnosis, mainly to the ovaries and peritoneum. However, studies propose that the ovarian metastases should be considered as secondary to adenocarcinoma rather than to appendiceal GCC, further supporting the proposed classification.

Diagnosis

In fact, most appendiceal GCCs are diagnosed postoperatively so any effort for accurate preoperative diagnosis is unrealistic. The diagnostic work-up should focus on the early detection of recurrence in patients who have already had surgery.

Magnetic resonance imaging is more sensitive than CT and PET more sensitive than SRS in the early detection of pulmonary, hepatic and peritoneal metastases. Plasma chromogranin-A levels have no diagnostic value while the periodic measurement of tumor markers related to the mucinous characteristics of the tumor such as CEA, CA 19-9 and CA 125 is recommended. Lifelong screening for synchronous or metachronous malignancies is also recommended.

Treatment

Right hemicolectomy (usually performed after the initial appendectomy) is recommended as the treatment of choice after the histological confirmation of GCC independent of the size of the primary tumor. In female patients with GCC of the appendix, regardless of age, bilateral salpingo-oophorectomy is also advocated. In cases with advanced peritoneal dissemination, cytoreductive surgery with adjuvant intraperitoneal chemotherapy may offer prolonged survival. Adjuvant chemotherapy is usually not effective although it can be used in patients with obvious spread of the disease. Chemotherapeutic protocols are the same as those used in the treatment of colorectal adenocarcinoma.

CONCLUSION

Based on new insights that emerged last decade, the biological behavior of appendiceal NETs ranges from totally...
benign tumors less than 1 cm to goblet cell carcinomas which behave similarly to colorectal adenocarcinoma. Depending on specific clinical and histological characteristics, surgical strategies also vary from simple appendicectomy to radical abdominal procedures (Table 2). Since, in the vast majority of cases, the diagnosis is usually established post-appendicectomy, it is crucial for clinicians to identify the subgroup of patients who require further therapy, to detect early the recurrence based on the chromogranin A plasma levels and to detect early other malignancies which are commonly developed in patients with appendiceal NETs.

REFERENCES

1. Modlin IM, Shapiro MD, Kidd M. Siegfried Oberndorfer: origins and perspectives of carcinoid tumors. Hau_Pinhol2004; 35:1440-1451
2. Chetty R. Requiem for the term ‘carcinoid tumour’ in the gastrointestinal tract? Can J Gastroenterol 2008; 22: 357-358
3. Klöppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann NY Acad Sci 2004; 1014; 13-27
4. Connor SJ, Hanna GB, Frizelle FA. Appendiceal tumors: right hemicolectomy vs. right hemicolectomy + bilateral salpingo-oophorectomy. Dis Colon Rectum 2003; 46: 373-377
5. Weiland LH, Nagorney DM, Dockerty MB. Right hemicolectomy for right hemicolectomy. Arch Surg 2008; 143: 1172-1177
6. O’Connell JB, Ko CY. Updated population-based review of carcinoid tumors. Ann Surg 2007; 246: 2264-2271
7. Safioleas MC, Moulaakis KG, Kontzoglou K, Stamoulis J, Nikou GC, Toutbakis C, Lygidakis NJ. Carcinoid tumors of the appendix. Prognostic factors and evaluation of indications for right hemicolectomy. Hepatogastroenterology 2005; 52: 123-127
8. Khan MN, Moran BJ. Four percent of patients undergoing colorectal cancer surgery may have synchronous appendiceal neoplasia. Dis Colon Rectum 2007; 50: 1856-1859
9. Freeman HJ. Appendiceal carcinoid in Crohn’s disease. Can J Gastroenterol 2003; 17: 43-46
10. Rossi G, Valli R, Bertoloni F, Sighinolfi P, Losi L, Cavazza A, Rivasi F, Luppi G. Does mesoappendix infiltration predict a worse prognosis in incidental neuroendocrine tumors of the appendix? A clinicopathological and immunohistochemical study of 15 cases. Ann J Clin Pathol 2003; 120: 706-711
11. Rindi G, Klöppel G, Cavelaud A, Komminoth P, Römer M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpini, Sacobay JY, Wiedenmann B. TNM staging of midgut and hindgut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2007; 451: 757-762
12. Landry CS, Woodall C, Scoggins CR, McMasters KM, Martin RC 2nd. Analysis of 900 appendiceal carcinoid tumors for a proposed predictive staging system. Arch Surg 2008; 143: 664-670, discussion 670
13. Ramage JK, Davies AH, Ardill J, Bax N, Caplin M, Grossman A, Hawkins R, McNicol AM, Reed N, Sutton R, Thakker R, Aylwin S, Breen D, Garstin WI. Surgical treatment of malignant carcinoid tumors of the appendix. Int J Clin Pract 2007; 61: 431-437
14. Pahlavan PS, Kanthan R. Goblet cell carcinoid of the appendix.
Griniatsos J et al. Appendiceal neuroendocrine tumors

27 Tang LH, Shia J, Soslow RA, Dhall D, Wong WD, O'Reilly E, Qin J, Paty P, Weiser MR, Guillem J, Temple L, Sobin LH, Klimstra DS. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol 2008; 32: 1429-1433

28 Stancu M, Wu TT, Wallace C, Houlihan PS, Hamilton SR, Rashid A. Genetic alterations in goblet cell carcinoids of the vermiform appendix and comparison with gastrointestinal carcinoid tumors. Mod Pathol 2003; 16: 1189-1198

29 Modlin IM, Kidd M, Latich I, Zikusoka MN, Eick GN, Mane SM, Camp RL. Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Ann Surg 2006; 244: 52-60

30 Alsaad KO, Serra S, Schmitt A, Perren A, Chetty R. Cytokeratin 7 and 20 immunoexpression profile in goblet cell and classical carcinoids of appendix. Endocr Pathol 2007; 18: 16-22

31 van Eeden S, Offerhaus GJ, Hart AA, Boerrigter L, Nederlof PM, Porter E, van Velthuysen ML. Goblet cell carcinoid of the appendix: a specific type of carcinoma. Histopathology 2007; 51: 763-773

32 Wang HL, Dhall D. Goblet or signet ring cells: that is the question. Adv Anat Pathol 2009; 16: 247-254

33 Hristov AC, Young RH, Vang R, Yemelyanova AV, Seidman JD, Ronnett BM. Ovarian metastases of appendiceal tumors with goblet cell carcinoidlike and signet ring cell patterns: a report of 30 cases. Am J Surg Pathol 2007; 31: 1502-1511

34 Dromain C, de Baere T, Lumbroso J, Caillet H, Laplanche A, Boige V, Dureux M, Duvillard P, Elias D, Schlumberger M, Sigal R, Baudin E. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 2005; 23: 70-78

35 Mahteme H, Sugarbaker PH. Treatment of peritoneal carcinomatosis from adenocarcinoid of appendiceal origin. Br J Surg 2004; 91: 1168-1173

36 Pham TH, Wolff B, Abraham SC, Drelichman E. Surgical and chemotherapy treatment outcomes of goblet cell carcinoid: a tertiary cancer center experience. Ann Surg Oncol 2006; 13: 370-376

S- Editor Li LF L- Editor Roemmele A E- Editor Yang C