Interference cancellation through interference alignment for downlink of cognitive cellular networks

M. Moussa, F. Foukalas and T. Khattab

Interference cancellation through interference alignment (IA) at the downlink of cognitive cellular networks is proposed. IA helps the spatial resources to be shared among primary and secondary cells, and thus it can provide higher degrees of freedom (DoFs) through interference cancellation. The achievable DoFs are derived and depicted. The achievable sum rates applying water-filling optimal power allocation are analysed and calculated.

Introduction: Cognitive cellular networks rely on efficient interference management and one key technology is interference alignment (IA) [1, 2]. IA was initially proposed as a technique for increasing the degrees of freedom (DoFs) by achieving interference-free signalling dimensions in multiple-input–multiple-output systems [3]. IA as cognitive radio application should allow secondary users (SUs) to exploit the dimensions that are unused by the primary users (PUs) [4]. In this Letter, we provide for the cancellation of two types of interferences in the downlink of a cognitive cellular network by applying an IA technique. To our knowledge, downlink IA has been recently investigated in [5] but not in a cognitive cellular network for interference cancellation.

Both ‘intra-cell’ interference, which is caused by transmissions intended to the other users operating in the same cell, and ‘inter-cell’ interference, which is caused by transmissions occurring in the other cells [6] are assumed. To be specific, based on the model proposed in [7], we consider that the base station (BS) of the primary cell (pCell) has knowledge of the channel state information (CSI) within its cell received from its own PUs, whereas the BS of the secondary cell (sCell) has knowledge of the CSI of all the channels including the PUs. We provide the bounds of the considered IA technique providing the design of the signalling scheme. We depict the achievable DoF regions and explain how the interference cancellation is achieved through the proposed IA. Moreover, we provide rate maximisation for both PUs and SUs using water-filling optimal power allocation over the singular values of the produced channel matrices.

Interference cancellation through IA: The interference cancellation scheme in [7] is first assumed. The DoF region is denoted as $D = \{d_p, d_s, d_k, d_s\} \in \mathbb{R}^4$, where d_p and d_s are defined as the interference-free signalling dimensions for PUs P and SUs S, respectively. The maximum sum DoF d_p and the maximum sum DoF for the primary and secondary cells d_s and d_k can be found in [7]. In addition to the bounds presented in [7], both d_s and d_k are bounded by the difference between the number of transmit and receive antennas in the sCell, that is, $d_s \leq M_s - N_s$ and $d_k \leq M_k - N_k$. This bound will be proved in the subsection below on interference cancellation on the sCell. The number of available dimensions on each transmit and receive antenna is denoted with the quartet (M_s, M_k, N_s, N_k) and provide the achievable region of the cognitive cellular network setup. Fig. 1 shows how the DoFs of the DoF system are affected by this quartet of values. It is also illustrated how the number of streams transmitted in each cell affects the possible number of interference-free streams that could be transmitted in the other cell. As illustrated, the bounds d_s and d_k on the horizontal axis clearly limits the DoF in the sCell.

Interference cancellation at pCell: We consider the primary transmission. Let \mathbf{x}^p and \mathbf{x}^s denote the $[d_p \times 1]$ and $[d_s \times 1]$ data streams intended to users P_1 and P_2, respectively. To construct \mathbf{x}^p, \mathbf{x}^p and \mathbf{x}^s are processed through the $[M_p \times d_p]$ and $[M_s \times d_s]$ beam-forming/pre-coding matrices V_P and V_P, respectively, and then added as follows:

$$\mathbf{x}_p = \sum_{l=1}^{d_p} v_{p,l} x_{p,l}^{p} + \sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s}$$

(1)

where $v_{p,l}^{p}$ and $v_{k,l}^{s}$ are the lth and the kth columns of the matrices V_P and V_P, respectively. The pre-coding matrices V_P and V_P are designed to cancel part of the intra-cell interference within the pCell corresponding to the dimension of the null space between P and the PUs. We denote this dimension by $Z = (M_p - N_p)$. The first Z columns of V_P and V_P, i.e. $v_{p,1}^{p}, \ldots, v_{Z}^{p}$ and $v_{k,1}^{s}, \ldots, v_{Z}^{s}$, are chosen in the null spaces of H_0 and H_P, respectively. The rest of the $(d_p - Z)$ and $(d_s - Z)$ vectors of the matrices V_P and V_P, respectively, are randomly selected with elements chosen according to an isotropic distribution.

The signal transmitted by S is designed to cancel the remaining part of the intra-cell interference within the pCell as follows:

$$y_P = \left[\begin{array}{c} H_0 y_P^{d_p} + \sum_{l=1}^{d_p} H_P v_{p,l} x_{p,l}^{p} + \sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s} - H_0 H_P^{T} (H_P H_P)^{-1} H_0 v_{p,l} x_{p,l}^{p} \\ H_0^{T} \left(\sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s} \right) + z_P \end{array} \right]$$

(2)

and the signal received at P_2 can be similarly defined. As shown in (2), the intra-cell interference in the pCell is totally cancelled using the pre-coding matrices.

To recover their data, P_1 and P_2 pass their received signals through the $[N_P \times d_p]$ and $[N_P \times d_s]$ post-processing matrices U_P and U_P. These post-processing matrices are formed as follows: for the user P_1 to decode $x_{p,1}^{p}$, it picks a zero-forcing vector, $u_{p,1}^{p}$, orthogonal to the space not containing $x_{p,1}^{p}$ for $1 \leq l \leq d_p$. The user P_2 picks the columns of U_P similarly.

Interference cancellation at sCell side: Here, we describe the secondary transmission scheme. The signal received at S_1 is given by

$$y_s = H_s \left[\begin{array}{c} \sum_{l=1}^{d_s} v_{s,l} y_{s,l}^{s} + \sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s} \\ + \sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s} + \sum_{l=1}^{d_s} v_{k,l} x_{k,l}^{s} \end{array} \right] + z_s$$

(4)

The signal received at S_2 can be similarly defined. The secondary’s pre-coding vectors, V_s and V_s, are designed to zero-force the intra-cell interference within the sCell. Without the loss of generality, choose
the first d_S rows of H_S, $[h_{11}^d, \ldots, h_{d_S}^d]^T$ and the first d_G rows of H_S, $[h_{d_S+1}^d, \ldots, h_{d_G}^d]^T$ to construct the following spaces:

$$S1 = [h_{11}^d, \ldots, h_{d_S}^d]^T; H_S] \quad (5)$$

$$S2 = [h_{d_S+1}^d, \ldots, h_{d_G}^d]^T; H_S] \quad (6)$$

The columns of V_S and V_t are selected as follows: for $1 \leq g \leq d_S$, the $[M_k \times 1]$ vector $v_{g,1}$ will be picked in the null space of $S1$ excluding the gth row. Similarly, for $1 \leq h \leq d_S$, the $[M_k \times 1]$ vector $v_{h,1}^*$ will be picked in the null space of $S2$ excluding the hth row. Hence, the bound $d_S \leq M_k - N_S$ results [7].

Achievable sum rates: In this Section, we analyse the achievable rate in the pCell and sCell.

pCell rate: Let Q^P denote the source power covariance matrix of the symbols in x^P that is transmitted by P, and intended for user P_i. We are interested in finding the source covariance matrix Q^P that maximises the achievable sum rate in the pCell, R_p, with an average power Q_{av}. This problem can be expressed as follows [8]:

$$\max Q^P \quad \frac{1}{2} \sum_{i=1}^{2} \log_2 \left(I_{d_i} + \frac{1}{\sigma^2} U_i^T [H V_{i}^H] Q^P [H V_i^H] U_i \right)$$

subject to:

$$Q^P \succeq 0, \quad \text{for } i \in \{1, 2\}$$

$$\sum_{i=1}^{2} \text{tr}(V_i Q^P V_i^H) \leq Q_{av}$$

(7)

where

$$[H V_i^H] = \sum_{n=0}^{d_i} H_n V_i^H s_n^P + \sum_{n=1}^{d_i} \sum_{n=2}^{d_i} H_n H_n^T (H_n V_i^H s_n^P - H_n V_i^H s_i^P) v_i^T v_i^H$$

for $i \in \{1, 2\}$, $j \in \{1, 2\}$, $j \neq i$.

Equation (7) is solved using the water-filling algorithm that works as follows:

- Find the singular value decomposition $\Phi_i \Gamma_i \Psi_i^H$ of the matrix $U_i^T [H V_i^H]$ for P_i with $i \in \{1, 2\}$. The term Γ_i is a $[d_i \times d_i]$ diagonal matrix that contains the singular values $\{ \gamma_i \}_{i=1}^{d_i}$ representing the received signal-to-noise ratio (SNR) for each user.
- Using the water-filling concept, calculate the $[d_i \times d_i]$ matrices Q^P as follows:

$$Q^P = \Psi_i \hat{Q}^P \Psi_i^H$$

(9)

where Λ is the common Lagrange multiplier chosen to satisfy the constraints in (7).

- Find the optimal transmit power, Q^P, based on the result of the water-filling methodology and the received SNR using the right singular vector, Ψ_i, as follows:

$$Q^P = \Psi_i \hat{Q}^P \Psi_i^H$$

(10)

sCell rate: Similar to the analysis provided for the pCell, the source covariance matrix Q^S that maximises the achievable sum rate in the sCell, R_s, can be found by solving

$$\max Q^S \quad \frac{1}{2} \sum_{j=1}^{2} \log_2 \left(I_{d_j} + \frac{1}{\sigma^2} U_j^T H S V_S Q^S V_S^H H_S^T U_S \right)$$

subject to:

$$Q^S \succeq 0, \quad \text{for } j \in \{1, 2\}$$

$$\sum_{j=1}^{2} \text{tr}(V_S Q^S V_S^H) \leq Q_{av}$$

(11)

This is solved again using the methodology based on the water-filling algorithm that we described above.

Fig. 2 depicts the primary sum rate against the secondary sum rate of a $(5, 5, 5, 3)$ CRN for different values of average transmit power Q_{av}. The

![Fig. 2 Primary sum rate against secondary sum rate of (5, 5, 5, 3) CRN](image_url)

Conclusion: We have investigated an IA technique for the downlink of a cognitive cellular network that allows complete interference cancellation and efficient utilisation of the available DoF. We present details about the signalling and the achievable DoF regions and next derive the analysis for the rate maximisation within each cell. The results of the achievable DoF and sum rate within each cell highlight the performance of the proposed scheme.

Acknowledgment: This publication was made possible by the National Priorities Research Program (NPRP) award, NPRP 6-1326-2-532, from the Qatar National Research Fund (QNRF).

© The Institution of Engineering and Technology 2015

25 July 2014
doi: 10.1049/el.2014.2656

One or more of the Figures in this Letter are available in colour online.

M. Moussa, F. Foukalas and T. Khattab (Electrical Engineering, Qatar University, Doha, Qatar)

E-mail: foukalas@qu.edu.qa

References

1. Liu, Y., Cai, L.X., Shen, X., and Luo, H.: ‘Developing cognitive cellular networks under dynamic resource management’, *IEEE Wirel. Commun.*, 2013, 20 (2), pp. 32–88
2. Gollakota, S., David Perli, S., and Katabi, D.: ‘Interference alignment and cancellation’, *ACM SIGCOMM Comput. Commun. Rev.*, 2009, 39 (4), pp. 159–170
3. Cadambe, V.R., and Jafar, S.A.: ‘Interference alignment and degrees of freedom of the K-user interference channel’, *IEEE Trans. Inf. Theory*, 2008, 54 (8), pp. 3425–3441
4. Perlaza, S.M., Fawaz, N., Lasaulce, S., and Debbah, M.: ‘From spectrum pooling to space pooling: opportunistic interference alignment in MIMO cognitive networks’, *IEEE Trans. Signal Process.*, 2010, 58 (7), pp. 3728–3741
5. Suh, C., Ho, M., and Tse, D.: ‘Downlink interference alignment’, *IEEE Trans. Commun.*, 2011, 59 (9), pp. 2616–2626
6. Andrews, J.: ‘Interference cancellation for cellular systems: a contemporary overview’, *IEEE Wirel. Commun.*, 2005, 12 (2), pp. 19–29
7. Shahshahaniem, M., Koyluoglu, O.O., Khattab, T., and El Gamal, H.: ‘Joint interference cancellation and dirty paper coding for cognitive cellular networks’. IEEE Wireless Communications and Networking Conf. (WCNC 2011), Cancun, Mexico, March 2011, pp. 1972–1976
8. Amir, M., El-Keyi, A., and Nafeh, M.: ‘Constrained interference alignment and the spatial degrees of freedom of MIMO cognitive networks’, *IEEE Trans. Inf. Theory*, 2011, 57 (5)