Splitting cycles in graphs*

David A. Johannsen and David J. Marchette
Naval Surface Warfare Center
Code Q33
17320 Dahlgren Road
Dahlgren, VA 22448-5100

May 10, 2014

Abstract

The goal of this paper is to describe a sufficient condition on cycles in
graphs for which the edge ideal is splittable. We give an explicit splitting
function for such ideals.

1 Algebraic preliminaries

We begin by recalling some definitions and theorems from commutative algebra.
What follows in this introductory section is contained in the paper of Eliahou
and Kervaire ([1]). Let \(I \) be a monomial ideal in a polynomial ring whose
coefficient field has characteristic zero. We will denote by \(\mathcal{G}(I) \) a minimal set
of generators for \(I \) (in fact, the minimal set of generators). That is, \(\mathcal{G}(I) \) is the
set of all monomials in \(I \) that are not proper multiples of any monomial in \(I \).
We note that if \(I \) is the edge ideal of a simple graph, \(G \), then the monomials
corresponding to the edges of \(G \) are such a minimal set of generators.

Definition 1 A monomial ideal, \(I \), is splittable if \(I \) is the sum of two nonzero
monomial ideals, \(J \) and \(K \), that is, \(I = J + K \), such that

(1) \(\mathcal{G}(I) \) is the disjoint union of \(\mathcal{G}(J) \) and \(\mathcal{G}(K) \)

(2) there is a splitting function

\[
\mathcal{G}(J \cap K) \to \mathcal{G}(J) \times \mathcal{G}(K) \\
\phi(w) \mapsto (\phi(w), \psi(w))
\]

*This work was funded by NSWCDD through the In-house Laboratory Independent Research (ILIR) program
(a) for all \(w \in G(J \cap K) \), \(w = \text{lcm}(\psi(w), \phi(w)) \),
(b) for every subset \(S \subset G(J \cap K) \), both \(\text{lcm}(\phi(S)) \) and \(\text{lcm}(\psi(S)) \) strictly divide \(\text{lcm}(S) \).

If \(J \) and \(K \) satisfy both the above properties, then we say that \(I = J + K \) is a splitting of \(I \).

The following theorem, which relates the minimal free resolution of each ideal in the splitting to the minimal free resolution of their sum (see [1]), is of central importance in what follows.

Theorem 2 (Eliahou-Kervaire) Suppose \(I \) is a splittable monomial ideal with splitting \(I = J + K \). Then for all \(i \geq 0 \),

\[
\beta_i(I) = \beta_i(J) + \beta_i(K) + \beta_{i-1}(J \cap K).
\]

2 Splitting cycles

We now want to apply the notion of splitting monomial ideals to the specific case of edge ideals associated to simple (and undirected) graphs. In particular, we want to “split along” a particular subgraph. To this end, we recall some standard definitions from graph theory and we establish the notation and conventions that we will use in what follows.

If \(G \) is a simple graph with edge set \(E \) and vertex set \(V = \{x_1, \ldots, x_n\} \), then the *edge ideal* of \(G \) is the (square-free quadratic) monomial ideal \(I(G) = \langle x_ix_j \mid \{x_i, x_j\} \in E \rangle \) contained in the polynomial ring \(R = k[x_1, \ldots, x_n] \). We will hereafter assume that the field \(k \) has characteristic zero (so the reader may feel free to take \(k \) to be any of \(\mathbb{Q} \), \(\mathbb{R} \), or \(\mathbb{C} \)).

We now suppose that \(G \) is a graph of order \(n \) that contains an (induced) \(k \)-cycle with no chords, where \(k \geq 4 \). We will adopt the following notation. Let \(G = (V, E) \), where \(V \) are the vertices and \(E \) are the edges in the graph \(G \). Let \(U = \{u_1, \ldots, u_k\} \) denote the vertices in the \(k \)-cycle and \(W = \{w_1, \ldots, w_{n-k}\} \) denote the vertices of \(G \) not contained in the cycle. Then, \(V = U \sqcup W \).

Now, let \(E_U = \{u_1u_2, u_2u_3, \ldots, u_{k-1}u_k, u_ku_1\} \); i.e., \(E_U \) is the \(k \)-cycle contained in \(G \). Also denote \(E_W = \{w_pw_q \mid w_p, w_q \in W \text{ and } w_pw_q \in E \} \). Finally, let \(E_X = \{u_iw_p \mid u_i \in U \text{ and } w_p \in W \text{ and } u_iw_p \in E \} \). Just as we wrote for the vertices of \(G \), we can write the edges as a disjoint union, \(E = E_U \sqcup E_W \sqcup E_X \).

We will often denote the \(k \)-cycle by \(C_k = (U, E_U) \). Recall, also, that if \(H \subset G \) is a subgraph, then by the *complement* of \(H \) in \(G \) we shall mean the subgraph of \(G \) consisting of all vertices of \(G \) and those edges in \(G \) that are not in \(H \). Finally, to simplify the notation, we will adopt the convention in what follows that *any subscript appearing on a “\(u \)” labeled vertex (i.e., a vertex in \(U \)) will be understood to be (mod \(k \)).*

We wish to parallel the work that Hà and Van Tuyl did on splitting edges in a graph [2]. In what follows, we prove a sufficient condition for a cycle to be splitting. We begin by making the obvious definition.
Definition 3 We denote by $G \setminus C_k$ the complement of the k-cycle in G (i.e., $G \setminus C_k = (V, E_W \cup E_X)$). Then, a k-cycle, C_k, is a splitting cycle if $\mathcal{I}(G) = \mathcal{I}(C_k) + \mathcal{I}(G \setminus C_k)$ is a splitting.

Now, let G be a graph containing an induced k-cycle with no chords. We denote the edge ideal of the graph, G, by $I := \mathcal{I}(G)$, and we then let $J := \mathcal{I}(C_k)$ and $K := \mathcal{I}(G \setminus C_k)$.

Lemma 4 With the notation above, $I = J + K$.

Proof 1 The proof of this lemma is essentially a tautology. Note that $\mathcal{G}(J) = E_U$ and that $\mathcal{G}(K) = E_W \cup E_X$. Thus, $\mathcal{G}(I) = \mathcal{G}(J) \cup \mathcal{G}(K)$, and the result is immediate. □

We now want to characterize the minimal generating set of the intersection of the ideals J and K, $\mathcal{G}(J \cap K)$. Before stating the lemma we recall some facts about the minimal generating sets of monomial ideals. First, if J and K are monomial ideals, then the intersection, $J \cap K$ is generated by the set

$$\{\text{lcm}(f, g) \mid f \in J, g \in K\}$$

(see, for example, [3]). Then, one reduces this generating set to a minimal one by checking for pairwise divisibility.

Lemma 5 Let $I, J,$ and K be as defined above. Furthermore, let

$$A = \{u_iu_{i+1}w_p \mid u_iw_p \in E_U \text{ and } (u_iw_p \in E_X \text{ or } u_{i+1}w_p \in E_X)\}$$

$$B = \{u_iu_{i+1}u_jw_p \mid u_iu_{i+1}w_p \in E_U \text{ and } u_jw_p \in E_X \text{ and } u_iu_{i+1}w_p, u_{i+1}u_jw_p \notin A\}$$

$$C = \{u_iu_{i+1}w_pw_q \mid u_iu_{i+1}w_p \in E_U \text{ and } w_pw_q \in E_W \text{ and } u_iu_{i+1}w_p, u_{i+1}w_q \notin A\}$$

Then $\mathcal{G}(J \cap K) = A \sqcup B \sqcup C$.

Proof 2 We provide a constructive proof of this lemma. To construct the set $\mathcal{G}(J \cap K)$ one begins by considering all possible products of elements of $\mathcal{G}(J)$ and $\mathcal{G}(K)$. From this set, remove any duplicate monomials. Then, using the characterization of the minimal generating set as the maximal set such that no element divides any other, we reduce this collection.

We begin by identifying the monomials in our proposed $\mathcal{G}(J \cap K)$ that contain a square (i.e., a u_i^2 for some i). We replace these degree four monomials with the degree three monomial in which u_i replaces the u_i^2. Note that there can be no terms containing a w_p^2 since $\mathcal{G}(J)$ contains only u variables and our graph is assumed to be simple (so there is no p such that $w_p^2 \in \mathcal{G}(K)$). Then the degree three monomials are exactly the set A.

Continuing, we next eliminate the redundant degree four monomials that are of degree three in the u variables and degree one in the w variables. These are precisely the the degree four monomials that are contained in the ideal generated by A (i.e., that are multiples of some element of A). So, we want to remove...
redundant monomials of the form $u_iu_{i+1}u_jw_p$; that is, we want to determine when $u_iu_{i+1}u_jw_p$ is a multiple of some $u_ku_{k+1}w_q \in A$, some k. First, note that we must have $p = q$. Suppose not; i.e., suppose that $w_p \neq w_q$. We are assuming that $u_ku_{k+1}w_q \mid u_iu_{i+1}u_jw_p$. Now $U \cap W = \emptyset$ implies $u_k \nmid w_p$ (and similarly $u_{k+1} \nmid w_p$, of course) and, by assumption, $w_q \nmid w_p$. Thus, $u_ku_{k+1}w_q \mid u_iu_{i+1}u_j$. However, both monomials are of degree three and $w_q \nmid u_m$ for any m. This is a contradiction. Thus, $p = q$. Now, $u_ku_{k+1}w_p \mid u_iu_{i+1}u_jw_p$ if and only if $u_ku_{k+1} \mid u_iu_{i+1}u_j$. Thus, either $k = i$, or $k = i + 1$ and $j = k + 1 (= i + 2)$. This is precisely the set B.

The final step in producing $G(J \cap K)$ is to eliminate the degree four monomials that are of degree two in both u and w and that are contained in the ideal generated by A (note, we obviously needn’t consider multiples of elements of the set B). Elements of degree two in both u and w must be of the form $u_iu_{i+1}wqw_q$, as they are products of elements of $G(J)$ and $G(K)$. Thus, an element of this form is a multiple of an element of A if $u_iu_{i+1}w_q \in A$ or $u_iu_{i+1}w_q \in A$. This is precisely the set C.

The very nature of our construction (i.e., eliminating redundant monomials) guarantees that the decomposition is as a disjoint union.\square

We are now ready to state and prove the main proposition about splitting cycles. In the proposition immediately below, we give a sufficient condition on a cycle for the cycle to be splitting.

Proposition 6 If there is no $i \in \{1, \ldots, k\}$ such that $u_iw_p, u_{i+1}w_q \in E$ then C_k is a splitting cycle. Equivalently, the cycle, C_k, is splitting if it contains no adjacent vertices of degree greater than 2.

Proof 3 We first comment that the equivalence of the two statements of the proposition is immediate and obvious. So, we now proceed with the proof of the first statement in the proposition.

Using the notation introduced in Lemma 5, we first define a splitting function, $G(J \cap K) \to G(J) \times G(K)$, by

$$w \mapsto (\phi(w), \psi(w)) = \begin{cases}
(u_iu_{i+1}, u_iw_p), & w \in A \text{ and } u_iw_p \in E_X \\
(u_iu_{i+1}, u_{i+1}w_p), & w \in A \text{ and } u_{i+1}w_p \in E_X \\
(u_iu_{i+1}, u_jw_p), & w \in B \\
(u_iu_{i+1}, w_pw_q), & w \in C.
\end{cases}$$

Now, we need to verify that our function satisfies conditions (a) and (b) given in Definition 7. Note the condition (a) is an immediate consequence of the decomposition of $G(J \cap K)$ given in Lemma 3 above. So, let $S \subset G(J \cap K)$. Our description of $G(J \cap K)$ in Lemma 3 implies that each element of S is divisible by some w_p while no element of $\phi(S)$ is divisible by any w_p. Thus, $\text{lcm}(\phi(S))$ strictly divides $\text{lcm}(S)$.

We introduce one more notational convenience. We define the (open) neighborhood of a k-cycle, C_k, to be the union of the (open) neighborhoods of the vertices in the cycle minus the vertices in the cycle itself. That is

$$N(C_k) := (\bigcup_{u_i \in C_k} N(u_i)) \setminus U$$
We can now conveniently characterize $\psi(S)$ as follows:

$$
\psi(S) = \{ u_jw_p \mid w_p \in \mathcal{N}(\mathcal{C}_k) \} \cup \{ w_pw_q \mid w_p, w_q \notin \mathcal{N}(\mathcal{C}_k) \}
$$

We now note that, by our assumption, if for some $j \in \{1, \ldots, k\}$ we have $u_jw_p \in \psi(S)$, then we must have $u_{j-1}w_r, u_{j+1}w_s \notin \psi(S)$ for any $r, s \in \{1, \ldots, n-k\}$. However, for any $S \subset \mathcal{G}(J \cap K)$ we must have some $i \in \{1, \ldots, k\}$ for which u_iu_{i+1} divides $\text{lcm}(S)$. Thus, the divisibility is strict. □

We should emphasize that the splitting that we have constructed in the proof of Proposition 6 is valid only when the cycle has no chords. That is, if \mathcal{C}_k has an edge $\{u_i, u_j\}$ where i and j are not consecutive integers (mod (k)), then the decomposition of the minimal generating set of the intersection, $\mathcal{G}(J \cap K)$, given in Lemma 5 does not hold. Consequently the splitting function given in Proposition 6 is not actually a splitting. In fact, in this case we won’t have even specified a function on $\mathcal{G}(J \cap K)$, as monomials of the form $u_iu_iu_j$ appear in $\mathcal{G}(J \cap K)$ and our definition of the splitting function does not indicate where such terms would be mapped. Furthermore, the proof of strict divisibility given in Proposition 6 relies the presence of w_p terms for the strict divisibility.

In Proposition 6 above, we showed sufficiency of the condition on degrees of vertices to guarantee that a cycle is splitting. We now provide an example to show that the condition is not also necessary.

Example 7 Let G be the graph given below.

We will now show that the Eliahou-Kervaire formula holds for the Betti numbers if we split along the four cycle. Let $I = < u_1u_2, u_2u_3, u_3u_4, u_1u_4, u_1w_1, u_2w_1 >$. Then, let $J = < u_1u_2, u_2u_3, u_3u_4, u_1u_4 >$, and $K = < u_1w_1, u_2w_1 >$. It is now easy to show that $J \cap K = < u_1u_2w_1, u_2u_3w_1, u_1u_4w_1 >$. Then we have,
One can easily see that the Betti numbers sum as indicated in Theorem 2, while G has adjacent vertices of degree three (namely, u_1 and u_2).

We should say that it is probably not a surprise that such examples exist. It has long been known that there are ideal decompositions for which one can show that no splitting function exists, but for which the formula for the Betti numbers given in Theorem 2 holds.

We now want to illustrate that the construction of a splitting that we gave above fails for graphs not satisfying the hypotheses of our proposition. In particular, we consider a graph having adjacent vertices of degree greater than two. We then demonstrate that there is no splitting function if one wishes to split along the cycle. Furthermore, we show that the Betti number formula of Eliahou and Kervaire does not hold for the edge ideal of this graph.

Example 8 Consider the graph, G:

Then $V = \{u_1, u_2, u_3, u_4, w_1, w_2\} = \{u_1, u_2, u_3, u_4\} \cup \{w_1, w_2\} = U \sqcup W$, and $E = E_U \sqcup E_W \sqcup E_X$ where $E_U = \{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$, $E_W = \emptyset$, $E_X = \{u_1w_1, u_2w_1, u_3w_2, u_4w_2\}$.

Then the edge ideal is given by,

$$I := I(G) = <u_1u_2, u_2u_3, u_3u_4, u_4u_1, u_1w_1, u_2w_1, u_3w_2, u_4w_2> = <E_U \sqcup E_W \sqcup E_X>.$$

Then, if we wish to split along the 4-cycle, we must take

$$J := <u_1u_2, u_2u_3, u_3u_4, u_4u_1> = <E_U>, $$
and

\[K := \langle u_1w_1, u_2w_1, u_3w_2, u_4w_2 \rangle = \langle E_X \sqcup E_W \rangle. \]

Then it is easy to see that \(G(J \cap K) = \{ u_1u_2w_1, u_2u_3w_1, u_2u_3w_2, u_1u_4w_1, u_1u_4w_2 \} \).

We now will show that there exists no splitting function for this decomposition of the edge ideal (i.e., \(I = J + K \) and \(G(I) = G(J) \sqcup G(K) \)). We begin trying to construct a function \(G(J \cap K) \rightarrow G(J) \times G(K) \) satisfying property (a) of Definition 1. It’s quite easy to see that this requirement forces us to define

\[
\begin{align*}
G(J \cap K) & \to G(J) \times G(K) \\
u_1u_2w_1 & \mapsto \begin{cases} u_1w_1 \\
u_2w_1 \end{cases} \\
u_1u_4w_1 & \mapsto (u_1u_4, u_1w_1) \\
u_2u_3w_1 & \mapsto (u_2u_3, u_2w_1) \\
u_1u_4w_2 & \mapsto (u_1u_4, u_4w_2) \\
u_2u_3w_2 & \mapsto (u_2u_3, u_3w_2)
\end{align*}
\]

Now, choose \(S = G(J \cap K) \) and we have

\[
lcm(\psi(S)) = u_1u_2u_3u_4w_1w_2
\]

Note that the least common multiple that we computed is the same no matter what choice we make for the image \(\psi(u_1u_2w_1) \). Thus, there is no splitting function if one decomposes the edge ideal along the 4-cycle.

This example also illustrates why the hypotheses of Proposition 6 are necessary. That is, it is precisely the requirement that adjacent vertices of the cycle are not both connected to the complement of the cycle that guarantees that the property (b) of Definition 1 holds.

We now also show that, unlike Example 7, the Betti numbers do not sum as in the Eliahou-Kervaire formula. Then, one computes the Betti numbers of \(I \), \(J \), and \(K \) to be:

\(\beta(I) \)	1	2	3	4	total
1	8	12	5	-	8
2	-	2	4	2	4
total	8	14	9	2	30

\(\beta(J) \)	1	2	3	total
1	4	4	1	4
total	4	4	1	9

\(\beta(K) \)	1	2	3	4	total
1	4	2	-	-	4
2	-	4	4	1	4
total	4	6	4	1	15
The Betti numbers of \((J \cap K)\) are:

\[
\begin{array}{c|ccc}
\text{ } & 1 & 2 & 3 \\
1 & - & - & - \\
2 & 6 & 6 & - \\
3 & - & - & 1 \\
\hline
\text{total} & 6 & 6 & 1
\end{array}
\]

Now, one can easily see that, for \(\beta_4\), the Eliahou-Kervaire formula holds:

\[
\beta_4(I) = \beta_4(J) + \beta_4(K) + \beta_3(J \cap K),
\]

However, the formula does not hold otherwise:

\[
\begin{align*}
\beta_3(I) & \neq \beta_3(J) + \beta_3(K) + \beta_2(J \cap K) \\
\beta_2(I) & \neq \beta_2(J) + \beta_2(K) + \beta_1(J \cap K).
\end{align*}
\]

Thus, the cycle is neither splitting nor does the sum formula for Betti numbers hold.

Thus, we have shown a sufficient condition for a cycle to be splitting, and provided an example showing that our condition is not also necessary. If one hopes to use our result (together with the result of Hà and Van Tuyl, \([2]\)) to provide a recursive algorithm for the computation of the Betti numbers of graphs that are not chordal, but that contain a cycle that satisfies the hypotheses of Proposition \([6]\) then one must be able to compute \(\beta_{i-1}(J \cap K)\) for these cycles. This is the problem to which we are currently turning our attention.

Though a recursive algorithm to compute the Betti numbers of graphs that are not chordal is still out of reach, as an application of our proposition we can now give the Betti numbers for a special class of graphs that are not chordal. In the following example, we derive the formula for the Betti numbers of a wheel graph with an odd number of vertices and every other spoke missing.

Example 9 As a non-trivial example, consider the graph defined as follows: \(G = (V, E)\) with \(V = \{w, u_1, \ldots, u_{2k}\}\), \(E = \{u_1u_2, \ldots, u_{2k-1}u_{2k}, u_{2k}u_1, uu_2, uu_4, \ldots, uu_{2k}\}\). This is a wheel graph with an odd number of vertices and every other spoke missing. In this case, \(J\) corresponds to \(C_{2k}\) and \(K\) to \(S_k = \text{star}(k)\), the subgraph consisting of the hub and remaining \(k\) spokes of the wheel. It is easy to see that \(J \cap K = wI(C_{2k})\). Thus \(\beta_{i,j}(G) = \beta_{i,j}(C_{2k}) + \beta_{i,j}(S_k) + \beta_{i-1,j}(C_{2k})\). Formulas for each of these is known, see \([4]\). Putting this together with the recursive algorithm of \([2]\), we see that for \(k > 1\), the wheel graph \(W(n)\) on \(n = 2k + 1\) vertices has Betti numbers given by

\[
\beta_{i,j}(W) = \begin{cases}
\beta_{i,j}(C_{2k}) + \beta_{i,j}(S_k) + \beta_{i-1,j}(C_{2k}) + \sum_{a=k}^{2k-1} \binom{a}{i}, & j = i + 2 \\
\beta_{i,j}(C_{2k}) + \beta_{i,j}(S_k) + \beta_{i-1,j}(C_{2k}), & \text{else}
\end{cases}
\]

8
References

[1] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), no. 1, 1-25. MR 1037391 (91b:13019)

[2] H.T. Hà and A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals, J. Algebra 309 (2007), no. 1, 405-425. MR 2301246 (2008a:13016)

[3] R. Villarreal, Monomial Algebras, Marcel Dekker, New York, 2001.

[4] S. Jacques, Betti numbers of graph ideals, University of Sheffield, Ph.D. Thesis. math arXiv: 0410107v1.