TGF-β1 Promotes Osteosarcoma Cell Migration and Invasion Through the miR-143-Versican Pathway

Fengfeng Li, Shaohua Li, Tao Cheng

Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
Department of Orthopedics, Tenth People’s Hospital of Tongji University, Shanghai, China

Key Words
Osteosarcoma • TGF-β1 • Versican • MiR-143 • Migration • Invasion

Abstract
Background & Aims: TGF-β1 is an abundant cytokine present in the tumour microenvironment. It has been shown to trigger versican expression in human osteosarcoma cells, which may account for the metastatic potential of these cells. However, the underlying mechanism of TGF-β1-mediated metastasis remains unclear. The aim of this study was to evaluate the roles of versican in TGF-β1-induced osteosarcoma cell migration and invasion. Methods: Sixty paired osteosarcoma tumour tissues and adjacent normal tissues were obtained, and the relationship between Enneking stage and versican expression was tested by ANOVA analysis. Real-time PCR or Western blot was used to detect versican, Smad and miR-143 expression. Osteosarcoma cell migration and invasion was assessed using Boyden chambers. A luciferase reporter assay was employed to validate the miR-143-versican interaction. Results: Both versican isoforms, V0 and V1, were significantly differentially expressed in tumours at different stages. TGF-β1 promoted osteosarcoma cell migration and invasion in vitro by up-regulating versican. Furthermore, TGF-β1 suppressed miR-143 expression through a Smad 2/3-dependent pathway. miR-143 directly targets the versican 3’-UTR, and anti-miR-143 or versican knockdown blocked the effects of TGF-β1. Conclusion: Our results suggest that TGF-β1 up-regulates versican expression by suppressing miR-143, and this pathway is important for osteosarcoma cell migration and invasion.

Introduction
Osteosarcoma is the most common primary bone cancer, and it is characterised by a high propensity for local invasion and early metastasis [1]. Because of advances in chemotherapy and surgery, patients with localised disease have a 65–70% chance of 5-year relapse-
free survival [2]. However, patients with metastatic disease or relapse have less chance of survival, and treatment options have not greatly improved over the past several decades [3]. Therefore, a clearer understanding of metastasis biology is required to develop novel strategies to improve cancer mortality and outcomes.

Osteosarcoma growth and development are influenced by the tumour microenvironment, which is filled with various cytokines. Transforming growth factor-β (TGF-β) is one of the most abundant cytokines in the tumour microenvironment, and it is important in tumour initiation and progression [4]. Notably, high-grade human osteosarcomas express higher levels of TGF-β1 compared to low-grade variants [5]. TGF-β1 induces cell cycle progression and proliferation [6, 7] and may establish a positive feedback loop to promote extracellular matrix (ECM) remodelling and tumour progression [8]. In addition to the effects of TGF-β1, TGF-β2 triggers versican expression in human osteosarcoma cells and may account for their metastatic potential [9].

Versican is an ECM-related gene that encodes a large chondroitin sulphate proteoglycan [10]. Alternative splicing of versican mRNA generates four isoforms, designated V0, V1, V2 and V3 [11, 12]. Increased versican levels have been reported in many malignancies and are associated with cancer relapse and poor patient outcome in breast cancer [13], non-small cell lung cancer [14], oral squamous cell carcinoma [15], and other cancer types [12]. In addition to regulating adhesion [16], proliferation [17] and apoptosis [17, 18], versican has been shown to bind hyaluronan, accumulate in the pericellular matrix and promote cancer cell motility [19]. Despite these findings, however, the functional role of versican in osteosarcoma progression has yet to be thoroughly evaluated.

In the present study, we studied the effect of versican expression in osteosarcoma cell migration and invasion and explored the mechanism by which TGF-β1 up-regulates versican expression. We found that versican expression correlated with osteosarcoma progression and TGF-β1 promoted osteosarcoma cell motility in vitro by up-regulating versican. Furthermore, TGF-β1 suppressed miR-143 expression, which directly targets the versican 3’-UTR. Thus, our data suggest that the TGF-β-miR-143-versican pathway plays an important role in osteosarcoma progression and suggests its potential application in cancer therapy.

Materials and Methods

Patients and tumour samples

Surgically resected paired osteosarcoma tumour tissues and adjacent normal tissues were obtained from 60 primary osteosarcoma patients between 2006 and 2011 at the Sixth Affiliated People’s Hospital of Shanghai Jiaotong University (Shanghai, China) with informed consent. All tumour samples were classified according to Enneking surgical stage [20] (stage I, 9 cases; stage II A, 21 cases; stage II B, 20; stage III, 10 cases), and normal tissues were confirmed to be normal. The experiments were approved by the ethics committee of Shanghai Jiaotong University, Shanghai, China.

Cell culture

The human osteosarcoma cell lines MG63 and U2OS were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and cultured in DMEM (Invitrogen) supplemented with 10% (v/v) foetal bovine serum (Invitrogen), 100 IU/ml penicillin, and 100 mg/ml streptomycin at 37°C in a humidified incubator containing 5% CO₂.

For TGF-β1 treatment, cells were then treated with recombinant human TGF-β1 (R&D systems, Minneapolis, MN, USA) or TGF-β1-neutralising antibody (TGF-β RII Antibody, R&D systems) at the indicated concentrations for 3 d.

Real-time PCR

Total RNA was isolated from osteosarcomas or cells using Trizol (Invitrogen), and reverse transcription was performed with the Superscript First-Strand Synthesis System (Invitrogen, Carlsbad, CA) following the manufacturer’s instructions. Expression of mature miRNA was determined using TaqMan miRNA
Western blotting

Cells were lysed in M-PER Protein Extraction Reagent (Pierce) containing protease inhibitors (Roche Applied Science). For versican analysis, protein lysates were first digested using chondroitinase ABC (Sigma-Aldrich) for 3 h at 37°C. Proteins were separated by polyacrylamide gels and transferred to PVDF membranes (Merck Millipore, Billerica, MA, USA). Blots were blocked for 1 h at room temperature and incubated with antibodies against versican (Sigma-Aldrich), p-Smad2, Smad2, p-Smad3, Smad3 or β-actin (all from Santa Cruz) for 1 h at room temperature. After incubation with horseradish peroxidase-conjugated secondary antibody for 1 h, the blots were visualised by enhanced chemiluminescence (ECL, GE Healthcare).

Lentiviral versican shRNA vector construction

Multiple short hairpin RNAs (shRNA) targeting versican (V0/V1 isoform) were designed and screened for effective versican knockdown. For lentivirus construction, oligonucleotides with the following sequences were cloned into the pHBLV-U6-Puro lentiviral RNAi vector (Hanbio, Shanghai, China): 5’-GACCTATACCACAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’. Recombinant lentivirus containing versican shRNA was produced by co-transfection of 293T cells with PSPAX2 and PMD2G plasmids with LipoFiter (Hanbio). Lentivirus-containing supernatants were harvested 48 h after transfection, and recombinant lentiviruses were concentrated by ultracentrifugation.

miRNA and shRNA transfection

For transient overexpression or suppression of miR-143, 30 nM miR-143 mimic or anti-miR-143 (Ambion) was transfected using LipoFiter (Hanbio). Cells were used for further assays 3 d after transfection. Cells transfected with Mimic NC or Anti-NC (Ambion) were used as negative controls.

For versican or Smad 2/3 knockdown, cells were transduced with lentiviral RNAi vector containing versican shRNA or Smad 2/3 shRNA lentiviral particles (Santa Cruz) in the presence of 5 μg/ml polybrene. After 24 h, culture medium was removed and fresh medium was added. Three days after transduction, 5 mg/ml puromycin was added to the medium. Empty lentivector lent-PURO or Control shRNA lentiviral particles (Santa Cruz) were used as negative controls (Lv-NC). After 3 weeks of antibiotic selection, stable versican or Smad 2/3 knockdown cells were obtained.

In vitro migration and invasion assay

For migration assays, 3×10^4 cells were trypsinised and seeded into the upper chamber of Boyden chambers (8 μM pores, BD Biosciences). For invasion assays, Boyden chambers were precoated with Matrigel (BD Bioscience, USA). In both assays, cells were plated in chambers containing serum-free medium, and chambers were immersed in medium containing 10% foetal bovine serum. After 24 h incubation, non-migrating or invading cells were removed from the upper chamber and cells on the bottom surface of the membrane were fixed with 4% paraformaldehyde and stained with crystal violet. Five random fields per chamber were imaged under a microscope, and the number of migrated cells was quantified. Each experiment was repeated three times.

Luciferase reporter assay

Full-length versican 3’-UTR was amplified by PCR from genomic DNA using the following primers: 5’-TCCCTAAATGGCGAATCTGTG-3’ and 5’-GTGTAGTAAAGAAGGATTGTTAGTT-3’. miR-143 targeting sites

Primers	sequences
Versican V0-F	5’-GACCTATACCACAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’
Versican V0-R	5’-GACCTATACCACAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’
Versican V1-F	5’-GACCTATACCACAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’
Versican V1-R	5’-GACCTATACCACAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’
β-actin-F	5’-CTTAAACGCTCAATATAGAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’
β-actin-R	5’-CTTAAACGCTCAATATAGAGTGAAGTTCAAGAGACTTCACTGTGGTATAGG -3’

For versican or Smad 2/3 knockdown, cells were transduced with lentiviral RNAi vector containing versican shRNA or Smad 2/3 shRNA lentiviral particles (Santa Cruz) in the presence of 5 μg/ml polybrene. After 24 h, culture medium was removed and fresh medium was added. Three days after transduction, 5 mg/ml puromycin was added to the medium. Empty lentivector lent-PURO or Control shRNA lentiviral particles (Santa Cruz) were used as negative controls (Lv-NC). After 3 weeks of antibiotic selection, stable versican or Smad 2/3 knockdown cells were obtained.

In vitro migration and invasion assay

For migration assays, 3×10^4 cells were trypsinised and seeded into the upper chamber of Boyden chambers (8 μM pores, BD Biosciences). For invasion assays, Boyden chambers were precoated with Matrigel (BD Bioscience, USA). In both assays, cells were plated in chambers containing serum-free medium, and chambers were immersed in medium containing 10% foetal bovine serum. After 24 h incubation, non-migrating or invading cells were removed from the upper chamber and cells on the bottom surface of the membrane were fixed with 4% paraformaldehyde and stained with crystal violet. Five random fields per chamber were imaged under a microscope, and the number of migrated cells was quantified. Each experiment was repeated three times.

Luciferase reporter assay

Full-length versican 3’-UTR was amplified by PCR from genomic DNA using the following primers: 5’-TCCCTAAATGGCGAATCTGTG-3’ and 5’-GTGTAGTAAAGAAGGATTGTTAGTT-3’. miR-143 targeting sites
in the versican 3′-UTR were mutated using the QuikChange site-directed mutagenesis kit (Stratagene). Wild-type or mutant versican 3′-UTR was inserted into the firefly luciferase pMir-report vector (Ambion). Reporter vectors were co-transfected with miR-143 mimics or anti-miR-143 using LipoFiter (Hanbio). After 48 h, luciferase activity was measured using the Dual Luciferase Assay System (Promega) according to the manufacturer’s protocol. Luciferase activity was normalised to the internal control Renilla luciferase activity.

Statistical analysis
Data are presented as the means ± SD and were analysed with an unpaired two-tailed Student’s t-test or ANOVA followed by S-N-K test. \(P < 0.05 \) was considered statistically significant.

Results

Versican expression correlates to osteosarcoma progression
We first compared V0 and V1 versican isoform expression in various stages of human osteosarcoma and adjacent normal tissues by real-time-PCR. As shown in Fig. 1, V0 and V1 expression was statistically significantly different among different stage osteosarcomas \((p < 0.001) \). V0 expression was significantly higher in stage II, IIA, IIB and III, and V1 expression was significantly higher in stage III compared to normal tissues \((p < 0.05) \).

TGF-β1 promotes osteosarcoma cell motility by up-regulating versican expression
Previous studies have indicated that TGF-β2 induces versican V0 and V1 expression [9]. To validate whether TGF-β1 also regulates versican V0 and V1 expression in osteosarcoma, we treated two osteosarcoma cell lines with various concentrations of TGF-β1 or TGF-β1-neutralising antibody (TGF-β1 Ab) and measured versican V0 and V1 expression by Real-time-PCR. TGF-β1 treatment \((\text{from 0.1 ng/ml}) \) significantly increased versican V0 and V1 expression in both MG63 and U2OS cells (Fig. 2A and B). In contrast, TGF-β1-neutralising antibody \((10 \mu g/ml) \), which block endogenous TGF-β1, down-regulated versican V0 and V1 expression (Fig. 2A and B). Versican V0 and V1 protein expression showed similar trends after TGF-β1 or TGF-β1 Ab treatment (Fig. 2C and D).

To further understand the effect of TGF-β1 and versican V0 and V1 on osteosarcoma cell motility, we generated stable knockdowns of versican (V0 and V1) in both MG63 and U2OS cells. Both versican V0 and V1 expression significantly decreased, as measured by Real-time PCR (Fig. 3A and B). Treatment of cells with exogenous TGF-β1 dramatically increased MG63 and U2OS cell migration and invasion, while TGF-β1 Ab treatment decreased cell migration.
Fig. 2. TGF-β increases versican expression. MG63 (A and C) and U2OS (B and D) cells were treated with the indicated concentration of TGF-β1 or TGF-β1-neutralising antibody (TGF-β1 Ab) for 3 d. Versican (VCAN) V0 and V1 expression was detected by Real-time-PCR (A and B) and Western blotting (C and D). *p<0.05, compared to control.

Fig. 3. TGF-β promotes osteosarcoma cell motility by up-regulating versican. MG63 (A) and U2OS (B) cells were transfected with versican shRNA lentivector or negative control lentivector (Lv-NC), and versican (VCAN, V0 and V1) expression was detected by Real-time PCR. MG63 (C) and U2OS (D) cells transfected with versican shRNA or Lv-NC were treated with TGF-β1 (5 ng/ml) or TGF-β1 Ab (10 μg/ml). Migration and invasion was measured across Transwell chambers. *p<0.05, compared to control, # p<0.05, compared to TGF-β1 group.
and invasion (Fig. 3C and D). Versican knockdown significantly abrogated the effect of TGF-β1 on migration and invasion in MG63 and U2OS cells (Fig. 3C and D), suggesting that versican acts downstream of TGF-β1 to induce cell migration and invasion.

TGF-β1 suppresses miR-143 expression in osteosarcoma cells

To explore the mechanism by which TGF-β1 up-regulates versican expression, we examined miR-143, which has been reported to directly repress versican expression [22]. To determine whether TGF-β1 regulates versican expression through miR-143 in osteosarcoma cells, we examined miR-143 expression after exogenous TGF-β1 expression or inhibition of TGF-β1. As shown in Fig. 4A and B, miR-143 expression significantly decreased upon exogenous TGF-β1 addition, while its expression increased upon TGF-β1 Ab treatment in a concentration-dependent manner. We next examined whether TGF-β1-mediated miR-143 downregulation required Smad2 and Smad3 phosphorylation. TGF-β1 caused a marked increase in Smad2 and Smad3 activation, which was significantly repressed by Smad 2/3 shRNA transfection (Fig. 4 C and D). Real-time PCR showed that Smad 2/3 knockdown rescued the TGF-β1-mediated inhibition of miR-143 expression (Fig. 4E and F), suggesting that TGF-β1 suppresses miR-143 expression through Smad 2/3-dependent pathways.
TGF-β1 promotes osteosarcoma cell motility through miR-143-versican interactions

MiR-143 has been shown to repress versican expression in smooth muscle cells by targeting the versican 3'UTR [22]. We validated whether the same interaction exists in osteosarcoma cells. Luciferase reporter assays revealed that luciferase activity induced by the wild-type versican 3'UTR significantly decreased or increased in the presence of miR-143 or anti-miR-143 (anti-143) and the luciferase reporter plasmid harbouring the wild type or mutated predicted miR-143 binding site of versican 3'UTR, as indicated. Firefly luciferase activity was measured and normalised to Renilla luciferase activity. MG63 (C and E) and U2OS (D and F) cells were transfected with miR-143 or anti-miR-143. (C and D), miR-143 expression was detected by Real-time PCR. (E and F), Versican (VCAN) expression was examined by Western blotting. *p<0.05, compared to control.

To assess whether miR-143 is responsible for the TGF-β-dependent up-regulation of versican, we treated osteosarcoma cells transfected with miR-143, anti-miR-143 or versican shRNA with TGF-β1 or TGF-β1 Ab, and examined versican expression by Real-time PCR. As shown in Fig. 6A-D, miR-143 abrogated TGF-β1-induced versican up-regulation and anti-miR-143 significantly attenuated TGF-β1 Ab-induced versican down-regulation in both osteosarcoma cell lines.

We next sought to determine whether the miR-143-versican pathway is responsible for TGF-β1-enhanced osteosarcoma cell motility. MiR-143 or anti-miR-143 significantly attenuated the effect of TGF-β1 or TGF-β1 Ab. Versican knockdown abrogated the effect of TGF-β1 Ab and anti-miR-143 co-treatment on cell migration and invasion (Fig. 6E and H). These data suggest that regulation of versican by miR-143 is essential for TGF-β1-induced osteosarcoma cell migration and invasion.
Fig. 6. TGF-β promotes osteosarcoma cell motility through the miR-143-versican pathway. Osteosarcoma cells transfected with miR-143 or mimic NC were treated with TGF-β1 (5 ng/ml). (A and B), Versican (VCAN, V0 and V1) expression was detected by Real-time PCR. Osteosarcoma cells transfected with versican shRNA were re-transfected with anti-miR-143 or anti-NC in the presence of TGF-β1 Ab (10 μg/ml). (C and D), Versican (VCAN, V0 and V1) expression was detected by Real-time PCR. (E-H), Osteosarcoma cells were transfected and treated as described in A-D. Migration and invasion was measured with Transwell chambers. A, C, E, G for MG63 cells and B, D, F, H for U2OS cells. *p<0.05, compared to control.

Discussion

Although it is one of the most important factors in the bone environment [23], the role of TGF in osteosarcoma is far from clear. Here, we found that TGF-β1 promotes osteosarcoma...
cell migration and invasion through the miR-143-versican pathway, providing a new perspective for the function of TGF in osteosarcoma metastasis.

Versican belongs to the family of large aggregating proteoglycans, which primarily localise within the ECM [24]. Versican has been described in a number of tumour types, and can regulate many cellular processes [12]. In mammals, versican exists as four possible splice variants (V0-V3), and V0 and V1 are the most common isoforms expressed in cancer tissues [13, 25]. In this study, we found that versican V0 and V1 isoforms were over-expressed in high-stage osteosarcoma tissues compared to normal tissues, suggesting that versican may contribute to osteosarcoma metastasis.

Previous studies have shown that TGF-β regulates versican expression in various cells [25-27], however, the underlying mechanism is largely unknown. In the current study, we found that exogenous TGF-β1 significantly increased versican V0 and V1 expression in both MG63 and U2OS cells. In contrast, TGF-β1 Ab down-regulated versican expression, indicating that TGF-β1 Ab blocked the effects of endogenous TGF-β1. These data are consistent with recent studies showing that osteosarcoma cells secrete TGF-β1 [28]. In further support of this, we observed a significant attenuation in TGF-β1-induced migration and invasion in versican-knockdown osteosarcoma cells (Fig. 3C and D).

Furthermore, TGF-β1 and versican were linked by miR-143, which has previously been shown to suppress versican expression in smooth muscle cells [22]. We found that miR-143 inhibited versican expression in osteosarcoma cells by binding its 3’-UTR. Similar to the effect of TGF-β3 in mesenchymal stem cells (MSCs) [29], TGF-β1 treatment suppressed miR-143 expression in osteosarcoma cells.

MiR-143 has been shown to be downregulated in several cancers, and it functions as a tumour suppressor [30-32]. To our knowledge, ours is the first study to demonstrate that miR-143 mediates TGF-β1-induced osteosarcoma cell migration and invasion by targeting versican. In addition, miR-143 and versican were shown to be necessary for TGF-β1-enhanced migration and invasion of osteosarcoma cells, suggesting that the miR-143-versican pathway is a critical regulator of osteosarcoma metastasis.

Previous functional studies indicated that versican promotes cell motility by binding HA to subsequently activate CD44-mediated downstream signalling [13, 24]. Both HA and CD44 have been reported to enhance osteosarcoma metastasis [33, 34]. Further investigation is required to comprehensively understand the roles of these three factors in osteosarcoma progression.

Taken together, our results demonstrate that versican V0 and V1 are relevant markers of osteosarcoma progression and are involved in TGF-β1-induced osteosarcoma cell migration and invasion. Furthermore, TGF-β1 up-regulates versican V0 and V1 expression by suppressing miR-143, which can directly bind the versican 3’-UTR. Understanding the role of the TGF-β1-miR-143-versican pathway in osteosarcoma progression may aid the development of new treatment strategies for osteosarcoma.

Disclosure Statement

The authors report no conflicts of interest.

References

1. McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH: The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 2011;11:1223-1232.
2. Osborne TS, Khanna C: A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol 2012;146:132-142.
3. Meyers PA: Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 2009;9:1035-1049.
β

4 Yang L, Pang Y, Moses HL: TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010;31:220-227.

5 Franchi A, Arganini L, Baroni G, Calzolari A, Capanna R, Campanacci D, Caldora P, Masi L, Brandi ML, Zampi G: Expression of transforming growth factor β isoforms in osteosarcoma variants: association of tgfβ1 with high-grade osteosarcomas. J Pathol 1998;185:284-289.

6 Schedlich LJ, Vension VM, Baxter RC: TGF-β-induced expression of IGFBP-3 regulates IGF1R signaling in human osteosarcoma cells. Mol Cell Endocrinol 2013;377:56-64.

7 Matsuyma S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K, Aburatani H, Mishima HK, Imamura T, Miyazono K, Miyazawa K: SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res 2003;63:7791-7798.

8 Mintz MB, Sowers R, Brown KM, Hilmer SC, Massa B, Huvos AG, Meyers PA, LaFleur B, McDonough WS, Henry MM, Ramsey KE, Antonucci CR, Chen W, Healey JH, Daluski A, Berens ME, MacDonald TJ, Gorlick R, Stephan DA: An expression signature classifies chemotherapeutic-resistant pediatric osteosarcoma. Cancer Res 2005;65:1748-1754.

9 Nikitovic D, Zafiropoulos A, Katonis P, Tsatsalaks A, Theocharis AD, Karamanos NK, Tzanakakis GN: Transforming growth factor-beta as a key molecule triggering the expression of versican isoforms v0 and v1, hyaluronan synthase-2 and synthesis of hyaluronan in malignant osteosarcoma cells. IUBMB Life 2006;58:47-53.

10 Wight TN, Merrilees MJ: Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 2004;94:1158-1167.

11 Naso MF, Zimmermann DR, lozzo RV: Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J Biol Chem 1994;269:32999-33008.

12 Ricciardelli C, Sakko A, Ween M, Russell D, Horsfall D: The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009;28:233-245.

13 Ricciardelli C, Brooks JH, Suwiwat S, Sakko AJ, Mayne K, Raymond WA, Seshadri R, LeBaron RG, Horsfall DJ: Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res 2002;8:1054-1060.

14 Pirinen R, Leinonen T, Böhm J, Johansson R, Popponen K, Kumpulainen E, Kosma V-M: Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol 2005;36:44-50.

15 Pukkila M, Kosunen A, Popponen K, Virtaniemi J, Kellokoski J, Kumpulainen E, Pirinen R, Nuutinen J, Johansson R, Kosma V-M: High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma. J Clin Pathol 2007;60:267-272.

16 Ang LC, Zhang Y, Cao L, Yang BL, Young B, Kiani C, Lee V, Allan K, Yang BB: Versican enhances locomotion of astrocytoma cells and reduces cell adhesion through its G1 domain. J Neuropathol Exp Neurol 1999;58:597-605.

17 Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng P-S, Wu Y, Lee V, Slingerland J, Dumont D, Yang BB: The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 2005;16:1330-1340.

18 LaPierre DP, Lee DY, Li S-Z, Xie Y-Z, Zhong L, Sheng W, Deng Z, Yang BB: The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res 2007;67:4742-4750.

19 Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S, Marshall VR, Tilley WD, Horsfall DJ: Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 2007;282:10814-10825.

20 Enneking WF, Spanier SS, Goodman MA: A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res 1980;153:106-120.

21 Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-408.

22 Wang X, Hu G, Zhou J: Repression of versican expression by microRNA-143. J Biol Chem 2010;285:23241-23250.

23 Janssens K, ten Dijke P, Janssens S, Van Hul W: Transforming growth factor-beta 1 to the bone. Endocr Rev 2005;26:743-774.

24 Wu YJ, Pierre DPLA, Wu J, Yee AJ, Yang BB: The interaction of versican with its binding partners. Cell Res 2005;15:483-494.
Li/Li/Cheng: TGF-β1-miR-143-Versican in Osteosarcoma

Sakko AJ, Ricciardelli C, Mayne K, Tilley WD, Lebaron RG, Horsfall DJ: Versican accumulation in human prostatic fibroblast cultures is enhanced by prostate cancer cell-derived transforming growth factor beta1. Cancer Res 2001;61:926-930.

Arslan E, Basserhoff AK, Nickl-Jockschat T, Doerfelt A, Bogdahn U, Hau P: The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-beta2. Br J Cancer 2007;96:1560-1568.

Yeung T-L, Leung CS, Wong K-K, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ, Mok SC: TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 2013;73:5016-5028.

Tu B, Peng Z-X, Fan Q-M, Du L, Yan W, Tang T-T: Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp Cell Res 2014;320:164-173.

Yang B, Guo H, Zhang Y, Dong S, Ying D: The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation. BMB Rep 2011;44:28-33.

Kojima S, Enokida H, Yoshino H, Itesako T, Chiyomaru T, Kinoshita T, Fuse M, Nishikawa R, Goto Y, Naya Y, Nakagawa M, Seki N: The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet 2014;59:78-87.

Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, Ochi M: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 2014;445:381-387.

Wu XL, Cheng B, Li PY, Huang HJ, Zhao Q, Dan ZL, Tian DA, Zhang P: MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol 2013;19:7758-7765.

Arai E, Nishida Y, Wasa J, Urakawa H, Zhuo L, Kimata K, Kozawa E, Futamura N, Ishiguro N: Inhibition of hyaluronan retention by 4-methylumbellifereone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer 2011;105:1839-1849.

Gvozdenovic A, Arlt MJE, Campanile C, Brennecka P, Husmann K, Li Y, Born W, Muff R, Fuchs B: CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Miner Res 2013;28:838-847.