Spectroscopy results from Belle

Sookyung Choi (for the Belle Collaboration)*
Gyeongsang National University
E-mail: schoi@gnsu.ac.kr

We report recent results on the charmonium and charmoniumlike states based on a large data sample recorded at the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

The Xth Nicola Cabibbo International Conference on Heavy Quarks and Leptons,
October 11-15, 2010
Frascati (Rome) Italy

*Speaker.
1. Introduction

Starting with the observation of the $\eta_c(2S)$ state, a number of new states have been observed by Belle. Some of these have been identified as being the predicted, but not-yet-seen, charmonium states, while others, designated by X, Y & Z, are considered to be candidates for new types of charmoniumlike states such as hybrid $c\bar{c}$-gluon states or multiquark states either of the molecular type ($c\bar{c}q\bar{c}q$) or the diquark-diantiquark ($cq\bar{c}q$) type. Here, recent XYZ state-related measurements are reported and examined in the context of possible charmonium assignments.

2. The $X(3872)$

The $X(3872)$ was discovered by Belle in the $J/\psi \pi^+\pi^-$ mass spectrum in exclusive $B \to KX(3872)$ decay [1] in a 140 fb$^{-1}$ data sample; it was subsequently seen in three other experiments. One curious fact about the $X(3872)$ is the near equality of its mass and the $m_{D^0}+m_{D^{*0}}$ threshold. The latest PDG world averaged mass [2] is 3871.56 ± 0.22 MeV, while the D^0D^{*0} mass threshold is 3871.79 ± 0.30 MeV. The CDF group reported that only the J^{PC} options 1$^{++}$ and 2$^{++}$ are compatible with the J/ψ and $\pi\pi$ helicity angle distributions [3]. It is also now well established that the $\pi\pi$ system in $X \to J/\psi \pi^+\pi^-$ comes from $\rho \to \pi\pi$ decays.

2.1 $X(3872) \to \gamma J/\psi(\psi')$

The observation of $X(3872)$ in $\gamma J/\psi(\psi')$ final states ensures that the charge-conjugation parity of the $X(3872)$ is $C = +1$. The first reported evidence for $X(3872) \to \gamma J/\psi$ was given by Belle [4] using in $B \to KX(3872)$ decays in a 256fb$^{-1}$ data sample with a signal significance of $\sim 4\sigma$.

BaBar also reported $X(3872)$ decays to both $\gamma J/\psi$ and $\gamma\psi'$ final states in the $B^+ \to K^+ \gamma J/\psi(\psi')$ process [5], with signal significances of 3.6 σ and 3.5 σ, respectively. Their measured product of branching fractions are $B(B^+ \to K^+X(3872)) \times B(X(3872) \to \gamma J/\psi) = (2.8 \pm 0.8) \times 10^{-6}$ and $B(B^+ \to K^+X(3872)) \times B(X(3872) \to \gamma\psi') = (9.5 \pm 2.8) \times 10^{-6}$. The ratio of these branching fractions is $\frac{B(B^+ \to K^+\gamma J/\psi)}{B(B^+ \to K^+\gamma\psi')} = 3.4 \pm 1.4$, which is large for a DD^*0 molecular state [3].

This year Belle studied the $\gamma J/\psi(\psi')$ final states using their full data sample of $772 \times 10^6 B\bar{B}$ events [7]. The $B \to K\gamma J/\psi$ channel is dominated by $B \to K\chi_{c1}; \chi_{c1} \to \gamma J/\psi$ decays and this is used as a calibration reaction; the branching fraction for the well known $B^+ \to K^+\chi_{c1}$ decay is measured to be $(4.94 \pm 0.35) \times 10^{-4}$, which agrees well with the PDG value [8]. Belle also reported first evidence for $B \to K\chi_{c2}$ (via $\chi_{c2} \to \gamma J/\psi$) with 3.6 σ significance. The branching fraction for $B^+ \to K^+\chi_{c2}$ is measured to be $(1.11 \pm 0.37) \times 10^{-5}$. The ratio of branching fractions $\frac{B(B^+ \to K^+\gamma J/\psi)}{B(B^+ \to K^+\gamma\psi')}$ is 0.022 ± 0.007, which is a measure of the factorization suppression factor for $J^{PC} = 2^{++}$. In the same $\gamma J/\psi$ final state but at higher masses, there is a clear $X(3872) \to \gamma J/\psi$ signal with 4.9 σ significance. Figure [9] shows $M_{J/\psi}$ mass distributions in exclusive (a) $B^+ \to K^+\gamma J/\psi$ and (b) $B^0 \to K^0\gamma J/\psi$ decay. The product of branching fractions for $B \to KX$ and $X \to \gamma J/\psi$ is measured to be $(1.8 \pm 0.5) \times 10^{-6}$, which agrees with the BaBar result. However, there is no significant signal for $B^+ \to K^+X$ and $X \to \gamma\psi'$ decay. Figures [10] show the $M_{\gamma\psi'}$ mass distributions in $B^+ \to K^+\gamma\psi'$ decay for (c) $\psi' \to \ell^+\ell^-$ and (d) $\psi' \to J/\psi\pi^+\pi^-$ decays. An upper limit of the product of branching fractions is determined to be $B(B^+ \to K^+X) \times (X \to \gamma\psi') < 3.4 \times 10^{-6}$. The
Figure 1: $\gamma J/\psi$ mass distributions (top) for (a) $B^+ \rightarrow K^+ \chi(3872)$ and (b) $B^0 \rightarrow K_s^0 \chi(3872)$ candidate events with subsequent $\chi(3872) \rightarrow \gamma J/\psi$ decay. $\gamma\psi'$ mass distributions (bottom) for (a) $B^+ \rightarrow K^+ \chi(3872)$ candidate events with subsequent $\chi(3872) \rightarrow \gamma\psi'$ decay, where $\psi' \rightarrow \ell^+\ell^-$ in (c) and $\pi^+\pi^- J/\psi$ in (d).

The ratio of branching fractions of its 90% CL upper limit is $\frac{B(X \rightarrow \gamma\psi')}{B(X \rightarrow \gamma J/\psi)} < 2.1$, in contradiction with the BaBar result.

2.2 $X(3872) \rightarrow \omega J/\psi$

In the $D^0 \bar{D}^0$ molecular model of Swanson [6], the J^{PC} is assumed to be 1^{++}, in which case the $D^0 \bar{D}^0$ component is dominant, with small admixtures of $\omega J/\psi$ and $\rho J/\psi$. In this model, $X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ decays were predicted to occur at about half the rate for $X(3872) \rightarrow \pi^+\pi^- J/\psi$ decay. Belle performed a search for this $3\pi J/\psi$ decay mode.

Figure 3(b) shows the $Y(3940)$ seen in $\omega J/\psi$ mass distribution in $B \rightarrow K \omega J/\psi$ decay. In the $X(3872)$ mass region, which is at the right edge of the kinematic boundary, Belle observes a signal in the 3π mass spectrum corresponding to the sub-threshold decay $X(3872) \rightarrow \omega J/\psi$. The measured number of signal events was 12.4 ± 4.1, from which the ratio of the branching fractions $\frac{B(X \rightarrow \omega J/\psi)}{B(X \rightarrow \pi^+\pi^- J/\psi)}$ is determined to be 1.0 ± 0.5 [4].

This year BaBar reanalyzed $B \rightarrow K \omega J/\psi$ final states using a relaxed omega mass selection [5] $0.5 < m_{3\pi} < 0.9$ GeV and saw a similar ω signal. Using their reported branching fraction, we obtain the combined ratio from Belle and BaBar to be $\frac{B(X \rightarrow \omega J/\psi)}{B(X \rightarrow \pi^+\pi^- J/\psi)} = 0.8 \pm 0.3$. In addition, BaBar reports that the $M_{3\pi}$ mass spectrum from the $X_{3872} \rightarrow J/\psi\omega$ final states is suppressed near its upper kinematic boundary by a centrifugal barrier factor that is consistent with a P-wave. Their P-wave (2$^{-}$) fit (χ^2/NDF = 3.53/5) to the $M_{3\pi}$ mass distribution is favored over their S-wave (1$^{+}$) fit (χ^2/NDF = 10.17/5). This would be bad for a molecular interpretation of $X(3872)$, however, this corresponds to only about a 1.5 σ effect.

2.3 Charmonium possibilities of $X(3872)$

From the CDF angular analysis results [3], the only two possible J^{PC} assignments for the X...
are 1^{++} and 2^{-+}; all other J^{PC} values are ruled out with high confidence. In this section, we survey charmonium possibilities for $X(3872)$ with these two J^{PC} assignments.

For the 1^{++} assignment, the possible undiscovered charmonium state is χ_{c1}'. For the $X(3872) = \chi_{c1}'$ assignment, the following puzzling questions arise.

- Since the mass of χ_{c2}' is now known to be 3930 MeV [10], the mass of χ_{c1}' is expected to be ~ 3905 MeV. Therefore, the mass of $X(3872)$ is too low for it to be the χ_{c1}'.

- Barnes et al. [11] estimated the partial width for $\Gamma(\chi_{c1}' \to \gamma \psi') \sim 180$ keV, while $\Gamma(\chi_{c1}' \to \gamma J/\psi) \sim 14$ keV. So, the ratio of of partial widths $\frac{\Gamma(\chi_{c1}' \to \gamma \psi')}{\Gamma(\chi_{c1}' \to \gamma J/\psi)}$ should be much bigger than unity. Therefore, the χ_{c1}' assignment would be a possible option if the BaBar measurement is right, which gives a large partial width for the $\gamma \psi'$ mode.

- $\Gamma(X \to \pi^+ \pi^- J/\psi) = (3.4 \pm 1.2) \times \Gamma(X \to \gamma J/\psi)$ is estimated to be about 45 keV using the Barnes value for $\Gamma_{\gamma J/\psi}$ and the measured ratio of $\frac{\Gamma_{\pi^+ \pi^- J/\psi}}{\Gamma_{\gamma J/\psi}}$. This partial width for $X \to \pi^+ \pi^- J/\psi$ decay is huge for an isospin-violating transition; other isospin violating transitions in the charmonium system are less than 1 keV (e.g., $\Gamma(\psi' \to \pi^0 J/\psi) \sim 0.4$ keV [2]).

For the 2^{-+} assignment, the possible undiscovered charmonium state is the singlet D-wave state known as the $\eta_{c2}(1D_2)$. For this assignment, the following questions arise.

- Y. Jia et al. [12] estimated the partial widths to be $\Gamma(\eta_{c2} \to \gamma \psi') \sim 0.4$ keV and $\Gamma(\eta_{c2} \to \gamma J/\psi) \sim 9$ keV. This favors the Belle measurement where the ratio $\frac{\Gamma(\eta_{c2} \to \gamma \psi')}{\Gamma(\eta_{c2} \to \gamma J/\psi)}$ is smaller.

- Using the well established mass of its multiplet partner, $M(\psi'') = 3770$ MeV, the mass of the η_{c2} is estimated to be 3837 MeV. Thus, the $X(3872)$ mass is high for η_{c2}.

- $\Gamma(X \to \pi^+ \pi^- J/\psi) = (3.4 \pm 1.2) \times \Gamma(X \to \gamma J/\psi)$ is about 30 keV using the Jia $\gamma J/\psi$ width. This is also large for an isospin-violating transition.

- For the $2^{-+}(\eta_{c2})$ assignment, the branching fraction for the $B^+ \to K^+ \eta_{c2}$ is too high for a non-factorizable decay. Other two $B^+ \to K^+ h_c$ and $B^+ \to K^+ \chi_{c2}$ decay, which is also non-factorizable and suppressed by an angular momentum barrier, are just barely seen in the huge Belle data sample.

- The branching fraction for $\eta_{c2} \to D \bar{D}$ is expected to be small [13], but the averaged ratio from both Belle and BaBar is $\frac{\Gamma(X \to D \bar{D}^*)}{\Gamma(X \to \pi \pi J/\psi)} = 9.5 \pm 3.1$, which is high for the η_{c2}.
3. More X and Y states near 3940 MeV

Belle observed three states near 3940 MeV via three different production and decay channels [8, 10, 14]. Among these three, the $Z(3930)$ state, which is produced in the $\gamma\gamma \rightarrow D\overline{D}$ process, is generally considered to be the charmonium χ_{c2}' state, even though the mass $M=3929 \pm 5 \pm 2$ MeV is somewhat lower than potential model predictions. The $X(3940)$ is observed in the $D\overline{D}$ mass spectrum from double charmonium production in $e^+e^- \rightarrow J/\psi D\overline{D}$ annihilation and the $Y(3940)$ is observed in the $\omega J/\psi$ mass spectrum in $B \rightarrow K\omega J/\psi$ decays. The mass and width of the $X(3940)$ ($Y(3940)$) are measured to be $M=3942^{+7}_{-6} \pm 6$ (3934 ± 11 ± 13) MeV and $\Gamma = 37^{+26}_{-15} \pm 8$ (87 ± 22 ± 26) MeV. Although the masses are similar, the $X(3940)$ and $Y(3940)$ appear to be different states: the $X(3940)$ ($Y(3940)$) has not been seen in the $\omega J/\psi (D\overline{D})^*$ final state in $B \rightarrow X(Y)K$ decays.

It is important to search for $\omega J/\psi$ (or DD^*) in two-photon collisions, where its spin-parity of resonance is preferentially constrained to be $J^P=0^+$ or 2^\pm. Belle observed a 7.7 σ enhancement in the $\omega J/\psi$ system [13] produced in the $\gamma\gamma \rightarrow \omega J/\psi$ process; the mass and total width are measured to be $M=3915 \pm 3 \pm 2$ MeV and $\Gamma=17 \pm 10 \pm 3$ MeV. This state, denoted by $X(3915)$, is probably related to one of the three above-mentioned states in the 3.90-3.95 GeV mass region. If we assume the $X(3915)$ is 0^+ (2^\pm) resonance, the product of the two-photon decay width and branching fraction to $\omega J/\psi$ is determined to be $\Gamma_{\gamma\gamma}(X(3915))B(X \rightarrow \omega J/\psi) = 61 \pm 17 \pm 8 (18 \pm 5 \pm 2)$ eV for $J^P=0^+(2^+)$. For comparison, the measured product of the two-photon decay width and branching fraction for $Z(3930) \rightarrow D\overline{D}$ is 180 ± 50 ± 30 eV. If the $X(3915)$ is the $Z(3930)$ (χ_{c2}'), the ratio of branching fractions $BF(\chi_{c2}' \rightarrow \omega J/\psi) / BF(\chi_{c2} \rightarrow D\overline{D})$ is large for an above-open-charm-threshold charmonium state. Also, for both the 0^+ and 2^\pm options, if we assume that the $\gamma\gamma$ partial width is ~ 1 keV, which is typical for charmonium states, $\Gamma_{\omega J/\psi}$ would be of the order of 1 MeV, which is large for charmonium.

The $\Gamma(Y_{3940} \rightarrow \omega J/\psi)$ partial width is also estimated to be large using the averaged product branching fraction from Belle and BaBar to be $B(B^+ \rightarrow K^+ Y_{3940}) \times B(Y_{3940} \rightarrow \omega J/\psi) = (5.0 \pm 0.8) \times 10^{-5}$ and the PDG averaged $\Gamma(Y_{3940}) = 40^{+18}_{-13}$ MeV. If we assume the maximum possible branching fraction for $B \rightarrow KY_{3940}$ is 10×10^{-4} (the branching fraction for $B \rightarrow KJ/\psi$), the partial width for $\Gamma(Y_{3940} \rightarrow \omega J/\psi)$ is determined to be larger than order 1 MeV, which is large for conventional charmonium.

4. The $Y(4260)$ and Y_b

The $1^-\!-\!$ $Y(4260)$ state was first discovered by BaBar [16] and confirmed by Belle [17] in the $J/\psi\pi^+\pi^-$ in radiative $e^+e^- \rightarrow \gamma_{SR}Y(4260)$ process. The partial width for $Y \rightarrow \pi^+\pi^-J/\psi$ is determined to be larger than 0.5 MeV at the 90% CL level by Mo et al. [18], which is much larger than that for $\psi' \rightarrow \pi^+\pi^-J/\psi$. This large partial width is one of the remarkable properties of the $Y(4260)$ that have led to various exotic interpretations of its quark content. An interesting question is whether or not there exist counterparts in the $s\bar{s}$ and/or $b\bar{b}$ quark systems.

Belle reported an anomalously large $e^+e^- \rightarrow \Upsilon(1,2S)\pi^+\pi^-$ production cross section near the peak of the $\Upsilon(5S)$ resonance at $\sqrt{s} \sim 10.87$ GeV measured with a 21.7 fb$^{-1}$ data sample [19]. If they assume that the signal events only come from decays of the $\Upsilon(5S)$ resonance, their extracted partial
widths are \(\sim 300 \) times larger than those for corresponding transitions from the \(\Upsilon(4S) \). Recently, Belle measured the energy dependence of the \(e^+e^- \rightarrow \Upsilon(nS)\pi\pi \) \((n=1,2,3) \) production cross section using data accumulated at seven different cm energy points near the \(\Upsilon(5S) \) resonance. A new common peak structure was observed for all three \(e^+e^- \rightarrow \Upsilon(1,2,3S)\pi^+\pi^- \) cross sections. A fit using Breit-Wigner resonance function with a common mass and width to these peaks, shown in Fig. 3, gives a mass and width of \(M=10888^{+2.7}_{-2.6}+3.1 \) MeV and \(\Gamma=30^{+8.3}_{-7.0} \) MeV[20], which are not consistent with any known \(bb \) state such as the \(\Upsilon(10860) \). This can be considered to be a candidate for a \(Y_{b^b} \)-type state in the \(bb \) system.

5. Charged \(Z^+ \) states

A charged charmonium-like state could not be a \(c\bar{c} \) charmonium state; its minimal quark structure would have to be a \(c\bar{u}\bar{d} \) tetraquark arrangement. The charged \(Z(4430)^+ \) state was first observed by Belle as a peak in the \(\pi^+\psi' \) mass distribution in exclusive \(B^+ \rightarrow K^+\pi^+\psi' \) decays[21]. It was confirmed by a subsequent reanalysis using a Dalitz plot formalism[22] that includes all possible intermediate \(K\pi \) resonances. This Dalitz analysis method was first employed in the observation of two other charged \(Z_1^+ \) and \(Z_2^+ \) states that are seen to decay to \(\pi^+\chi_{c1} \) final states in exclusive \(B \rightarrow K\pi^+\chi_{c1} \) decays[23]. The Dalitz-plot analysis demonstrated that these \(Z \) states are not produced by reflections from any known and possibly unknown resonances in the \(K\pi \) channel. However, BaBar searched for the \(Z(4430)^+ \), but did not see a significant signal[24].

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00177).

References

[1] S.-K. Choi, S.L. Olsen \textit{et al.} (Belle Collaboration), \textit{Observation of a narrow charmonium-like state in exclusive } \(B^\pm \rightarrow K^\pm\pi^+\pi^-J/\psi \) decay, \textit{Phys. Rev. Lett.} \textbf{91}, 262001 (2003).

[2] 2010 Updated Table from Particle Data Group

[3] A. Abulencia \textit{et al.} (CDF Collaboration), \textit{Analysis of the Quantum Numbers } \(J^{PC} \) \textit{of the } \(X(3872) \) \textit{Particle, Phys. Rev. Lett.} \textbf{98}, 132002 (2007).
[4] K. Abe et al. (Belle Collaboration), Evidence for $X(3872) \rightarrow \gamma J/\psi$ and the sub-threshold decay $X(3872) \rightarrow \omega J/\psi$, [arXiv:hep-ex/0505037] (2005).

[5] B. Aubert et al. (BaBar Collaboration), Evidence for $X(3872) \rightarrow \gamma (2S)J/\psi$ in $B^\pm \rightarrow X(3872)K^\pm$ decays, and a study of $B \rightarrow \eta \gamma K$, Phys. Rev. Lett 102, 132001 (2009).

[6] E.S. Swanson, Diagonalistic decays of the $X(3872)$, Phys. Lett. B 598, 197 (2004).

[7] V. Bhardwaj, talk at the International Workshop on Heavy Quarkonia (QWG7 at Fermilab 2010).

[8] S.-K. Choi, S.L. Olsen et al. (Belle Collaboration), Observation of a near-threshold $\omega J/\psi$ mass enhancement in exclusive $B \rightarrow K\omega J/\psi$ decay, Phys. Rev. Lett. 94, 182002 (2005).

[9] P. del Amo Sanchez et al. (BaBar collaboration), Evidence for the decay $X(3872) \rightarrow J/\psi \omega$, Phys. Rev. D 82, 011001 (2010).

[10] S. Uehara et al. (Belle Collaboration), Observation of a χ_{c2} Candidate in $\gamma\gamma \rightarrow D\bar{D}$ Production at Belle, Phys. Rev. Lett. 96, 082003 (2006).

[11] T. Barnes, S. Godfrey and E.S. Swanson, Higher Charmonia, Phys. Rev. D 72, 054026 (2005).

[12] Y. Jia, W. Sang and J. Xu, Is the $J^P = 2^-$ assignment for the $X(3872)$ compatible with the radiative transition data?, [arXiv:1007.4541v2 [hep-ph]].

[13] Y.S. Kalashnikova and A.V. Nefediev, $X(3872)$ as a $1D_2$ charmonium state, [arXiv:1008.2895v2 [hep-ph]].

[14] P. Pakhlov et al. (Belle Collaboration), Production of new charmoniumlike states in $e^+e^- \rightarrow J/\psi D^+\bar{D}^-$ at $\sqrt{s} \sim 10.6$ GeV, Phys. Rev. Lett. 100, 202001 (2008).

[15] S. Uehara, et al. (Belle Collaboration), Observation of a charmonium-like enhancement in the $\gamma\gamma \rightarrow \omega J/\psi$ process, Phys. Rev. Lett. 104, 092001 (2010).

[16] B. Aubert et al. (BaBar Collaboration), Observation of a Broad Structure in the $\pi^+\pi^- J/\psi$ Mass spectrum at 4.26 GeV/c^2, Phys. Rev. Lett. 95, 142001 (2006).

[17] C.Z. Yuan et al. (Belle Collaboration), Measurement of the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Cross section via Inital state Radiation at Belle, Phys. Rev. Lett. 99, 182004 (2007).

[18] H. Mo et al. Determining the upper limit of Γ_{ee} for the $Y(4260)$, Phys. Lett. B 640, 182 (2006).

[19] K.F. Chen et al. (Belle Collaboration), Observation of Anomalous $Y(1S)\pi^+\pi^-$ and $Y(2S)\pi^+\pi^-$ Production near the $Y(5S)$ Resonance, Phys. Rev. Lett. 100, 112001 (2008).

[20] K.F. Chen et al. (Belle Collaboration), Observation of an enhancement in e^+e^- to $Y(1S)\pi^+\pi^-$, $Y(2S)\pi^+\pi^-$, and $Y(3S)\pi^+\pi^-$ production near $\sqrt{s} = 10.89$ GeV at Belle, Phys. Rev. D 82, 091106 (2010).

[21] S.-K. Choi, S. L. Olsen et al. (Belle Collaboration), Observation of a resonance-like structure in the $\pi^\pm\eta^\prime$ mass distribution in exclusive $B \rightarrow K\pi^\pm\eta^\prime$ decays, Phys. Rev. Lett. 100, 142001 (2008).

[22] R. Mizuk et al. (Belle Collaboration), Dalitz analysis of $B \rightarrow K\pi^+\eta^\prime$ decays and the $Z(4430)^+$, Phys. Rev. D 80, 031104 (2009).

[23] R. Mizuk, R. Chistov et al. (Belle Collaboration), Observation of two resonance-like structures in the $\pi^+\chi_{c1}$ mass distribution in exclusive $\overline{B} \rightarrow K^-\pi^+\chi_{c1}$ decays, Phys. Rev. D 78, 072004 (2008).

[24] B. Aubert et al. (BaBar Collaboration), Search for the $Z(4430)^+$ at BABAR, Phys. Rev. D 79, 112001 (2009).