Multiple Symmetry-Protected Dirac Nodal Lines in A Quasi-One-Dimensional Semimetal

Zhanyang Hao1,*, Weizhao Chen1,*, Yuan Wang1, Jiayu Li1, Xiao-Ming Ma1, Yu-Jie Hao1, Ruie Lu1, Zecheng Shen1, Zhicheng Jiang2,5, Wanling Liu2, Qi Jiang2, Xiao Lei1,6, Le Wang1, Ying Fu1,7, Liang Zhou1, Lianglong Huang1, Zhengtaí Liu2, Mao Ye2, Dawei Shen2, Jiawei Mei1, Hongtao He1, Cai Liu1, Ke Deng1, Chang Liu1, Qihang Liu1,3,4,#, Xiao Lei1,6, Le Wang1, Ying Fu1,7, Liang Zhou1, Ke Deng1, Chang Liu1, Qihang Liu1,3,4,#, Xiaoyi Chen1,8

1 Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

2 State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

3 Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China.

4 Shenzhen Key Laboratory of for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.

5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

6 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

7 Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa, Macau 999078, P. R. China.

*These authors contributed equally to this work.

#Correspondence should be addressed to Q.L. (liuqh@sustech.edu.cn) and C.C. (chency@sustech.edu.cn)
Abstract

Nodal-line semimetals (NLSMs) contains Dirac/Weyl type band-crossing nodes extending into shapes of line, loop and chain in the reciprocal space, leading to novel band topology and transport responses. Robust NLSMs against spin-orbit coupling typically occur in three-dimensional materials with more symmetry operations to protect the line nodes of band crossing, while the possibilities in lower-dimensional materials are rarely discussed. Here we demonstrate robust NLSM phase in a quasi-one-dimensional nonmagnetic semimetal TaNiTe$_5$. Combining angle-resolved photoemission spectroscopy measurements and first-principles calculations, we reveal how reduced dimension can interact with nonsymmorphic symmetry and result into multiple Dirac-type nodal lines with four-fold degeneracy. Our findings suggest rich physics and application in (quasi-)one-dimensional topological materials and call for further investigation on the interplay between the quantum confinement and nontrivial band topology.
Introduction

Symmetry plays an essential role in topological phases of matter because it determines the way in which different wavefunctions are forced to have the same energy eigenvalue, i.e., degeneracy. When the valence and conduction bands cross and form distinct point-contact nodes instead of opening a gap, the system turns to a topological semimetal [1]. Following the concept of particle physics, such elementary excitations could be described as Dirac [2-8] and Weyl fermions [9-20], as well as triply-degenerate [21-24] and double Dirac fermions[25], etc., manifesting novel phenomena such as ultrahigh mobility[8] and unusual magnetic transport behaviors [26,27]. In addition, the possible nodal structure in topological semimetals could also extend to shapes of line, loop and chain in the reciprocal space, leading to the so-called nodal-line semimetals (NLSMs)[28-33]. Typically, NLSMs, especially those robust against spin–orbit coupling (SOC), usually occurs in three-dimensional (3D) materials with more symmetry operations (e.g., mirror and nonsymmorphic symmetries) that protect the Dirac band crossing[34-42]. In comparison, the possibility of robust NLSM phase against SOC in lower-dimensional materials are rarely explored [43-45]. Only very recently, indirect evidence of nonsymmorphic symmetry-protected nodal lines from tunneling spectroscopy was reported based on a two-dimensional (2D) platform, tri-atomic layers bismuth[46]. Direct evidence of robust lower-dimensional NLSMs is still missing.

Here, we report the realization of robust Dirac nodal lines (DNLs), i.e., nodal lines with four-fold degeneracy, in a quasi-one-dimensional (Q1D) nonmagnetic semimetal TaNiTe₅. Combining angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we reveal that the interplay between nonsymmorphic symmetry and Q1D geometry results into multiple DNLs robust against SOC, as presented by three key features: (1) four-fold degenerate nodes (Dirac cones) at the boundary (Z point) of the bulk Brillouin zone (BZ); (2) these Dirac cones extend through the whole 3D BZ along T − Z − T line and form DNLs; (3) multiple nodal loops in Z − A − R plane. The consistency between ARPES measurements and DFT calculations justifies the above claims and provides direct evidence of the first-discovered Q1D NLSM phase robust against SOC in TaNiTe₅. Our results open a door for topological states of matter in Q1D materials and call for further investigation on the interplay between the quantum confinement and nontrivial band topology.
Lattice structure and characterization

FIG. 1. (a) Schematic Q1D lattice structure of TaNiTe$_5$. The single crystals are cleaved along ac plane (bottom panel) for ARPES measurement. (b) Single crystal XRD pattern with all the peaks indexed. The inset shows the optical image of needle-like Q1D single crystals. (c) Field dependent transverse resistivity (ρ_{xx}) and Hall resistivity (ρ_{yx}) measured at 1.6 K for magnetic field parallel to the b axis and current parallel to the a axis.

Single crystals of TaNiTe$_5$ adapt an orthorhombic layered structure with a space group $Cmcm$ (No. 63)[47-49]. The lattice constants can be inferred from powder X-ray diffraction (XRD) (Fig. S1) and single crystal XRD results (Table S1) with $a = 3.657$ Å, $b = 13.125$ Å and $c = 15.119$ Å. As shown in Fig. 1(a), the one-dimensional NiTe$_2$ chains arrange along the crystallographic a axis and form a quasi-2D layer via linking chains of Ta atoms along the c axis. For ARPES measurement, cleavage occurs parallel to these ac layers ([010]) and normal to the b axis. The crystals grow in the shape of needles along a axis (Fig. 1(b) inset). All the peaks of single crystal XRD pattern in Fig. 1(b) can be indexed as (0 L 0) reflections and no trace of impurity phase can be detected, indicating its high crystalline quality. Field-dependent resistivity measurement was performed with magnetic field parallel to the b axis and current parallel to the a axis. The transverse resistivity ρ_{xx} show linear behavior at low field region (-4 T $< B < 4$ T), indicating possible linear dispersions close to the Fermi level. No saturation can be inferred for field up to 15 T, in contrast to recent report[47]. The Hall resistivity shows generally positive slope with field and clearly non-linear behavior, suggesting multiple Fermi surfaces and hole-type carriers. All these deduced electronic features are confirmed by ARPES data discussed below.
Multiple Dirac nodal lines in Q1D TaNiTe$_5$

FIG. 2. (a) The 3D BZ of bulk TaNiTe$_5$ and the projected BZ for the ARPES measured [010] surface with high-symmetry points specified. (b) DFT calculated electronic band structure of TaNiTe$_5$ along high-symmetry directions with SOC, where the Dirac nodal lines and Dirac cones for different bands near Fermi level are highlighted in red, blue, and green, respectively. (c) The line nodes on $Z - A - R$ plane for different bands, which correspond to red, blue, and green band crosses as shown in (b).

To uncover the topological properties of TaNiTe$_5$, we start from DFT calculation with the lattice constants obtained from our XRD results. Fig. 2(b) shows the calculated band structures of TaNiTe$_5$ with SOC on high-symmetry k-paths illustrated in Fig. 2(a). Firstly, it can be clearly seen that the band crossings at the Z point with linear dispersion in k_x ($Z - A$) and k_y ($\Gamma - Z$) directions, forming the typical four-fold degenerate Dirac cones. This is because nonsymmorphic symmetry $g'_y = \{M_y\} = \{0, \frac{1}{2}, 0\}$ and $s_{2y} = \{c_{2y}\} = \{0, \frac{1}{2}, 0\}$ fulfills the anti-commutation relationship with inversion at Z, leading to an extra two-fold degeneracy between two pairs of Kramers doublets. Secondly, along the k_z direction, the Dirac cones extend from point Z to point T, resulting into robust DNLs against strong SOC. These Dirac cones and DNLs features are highlighted in red, blue, and green for the bands near the Fermi level along $\Gamma - Z - T$ path shown in Fig. 2(b). Thirdly, the band width along k_x ($A - Z$) direction is around 1.5 eV, almost 5 times larger than that along k_y ($\Gamma - Z$) and k_z ($T - Z$), reflecting its Q1D character of TaNiTe$_5$. Interestingly, these strongly dispersed bands along $A - Z - R$ path appear in pairs, forming Type-I Dirac cones on point Z, Type-II Dirac cones on point R, and cross each other several times forming Type-II Dirac cones in between, which are also highlighted in colors in Fig. 2(b). Further DFT calculation confirms that all Dirac cones connect each other forming nodal lines and nodal loops on $k_y = \frac{n\pi}{b} (Z - A - R)$ plane, as
shown in Fig. 2(c). We prove that these DNLs are protected by nonsymmorphic symmetry in the presence of strong SOC in TaNiTe₅, providing evidence of robust NLSM phase in a Q1D system (see Supplementary materials for details).

FIG. 3. (a) Schematic 3D BZ and the location of the DNLs along T − Z − T line in the top Z − A − T plane. Red open circles between Z and T indicate the positions where ARPES spectra in (d) are taken. (b) Comparison between Fermi surfaces from ARPES (left) and DFT (right) for single crystal ac plane (Γ − Z − A plane) of TaNiTe₅. (c) Comparison between dispersions along Γ − Z − Γ from ARPES raw spectra (left), 2D curvature (middle) and DFT (right). (d) Photon energy dependent dispersion along Γ − T − Γ for k_z covering half of the 3D BZ from Z to T.

Our ARPES measurements provide direct evidence of these multiple DNL features. We first analyze the Dirac cone at bulk Z point and DNLs along T − Z − T line as indicated in Fig. 3(a). Fermi surface and bands measured by ARPES and projected from DFT calculation are shown in comparison in Fig. 3(b, c). For ARPES measurement, the photon energy was selected as 50 eV, so it approximately covers the Γ − Z − A plane, see Fig. S2 for systematic photon energy-dependent data. Satisfactory agreement between experiment and theory is reached considering the detailed Fermiology and spectrum. In particular, the four-fold Dirac cone crossing at the bulk Z point (as discussed in Fig. 2) can be clearly resolved by ARPES, as marked in Fig. 3(c) by green arrows. This measured Dirac cone corresponds to the calculated one shown in green lines in Fig. 2(b). The calculated Dirac cone shown in red lines is above the Fermi level and the one in blue lines is too weak to be resolved (blue arrows in Fig. 3(c)).

Judging from the highlighted dispersion in the curvature plot, this Dirac crossing is gapless at Z point. Furthermore, in Fig. 3(d) we present the spectra of this Dirac crossing at different k_z planes measured by varying the incident photon energy. It is clear that this Dirac crossing remains gapless across the 3D BZ, composing a DNL from
Z to T point as indicated by the green curves in Fig. 2(c) and Fig. 3(a). It is noted that this DNL shows clear dispersion along Z − T line in DFT (Fig. 2(b)) but is quite flat from ARPES, likely attributed to the k_z broadening of low-energy ARPES and the functional chosen in DFT to estimate the interlayer coupling. Nevertheless, photon energy dependent ARPES measurement corroborates DFT calculation and establishes a gapless Dirac cone at bulk Z point and a gapless DNL along T − Z − T line in the 3D BZ.

FIG. 4. (a) Schematic 3D BZ and the location of the nodal loops in T − Z − A plane. Red solid circles between Z and A indicate the positions where ARPES spectra in (e) are taken. (b, c, d) Comparison between spectra along Z → A direction from DFT bands (b), ARPES raw spectra (c) and 2D curvature ARPES spectra (d). (e) Systematic evolution of spectra (2D curvature) along k_y at different k_x values. Colored arrows in (c, d and e) indicate the Dirac crosses from the corresponding band pairs shown in the DFT calculation (b).

Considering the nodal loops locating in T − Z − A plane, we can also find strong evidence of their corresponding Dirac crosses from the satisfactory match between ARPES and DFT. In Fig. 4(a) bottom panel, the nodal loops from three pairs of bands close to the Fermi level are shown in T − Z − A plane with red, blue, green colors as in Fig. 2(c). ARPES spectra and DFT dispersion along k_x (Z → A) direction are shown in comparison in Fig. 4(b, c, d). In the present DFT energy-momentum window (Fig. 4(b)), two Dirac crosses can be identified for the green pair of bands, four Dirac crosses for the blue pair and three for the red, with all the band pairs containing both type I and type II Dirac cones. The dashed ellipses in Fig. 4(b) point out regions where the Dirac gaps are too small to be resolved in ARPES spectra. Except that, all the features predicted by DFT can be identified in the ARPES spectra, as emphasized in Fig. 4(c).
and 4(d)by arrows colored correspondingly. The existence of multiple type I and type II Dirac crosses along k_x ($Z \rightarrow A$) direction provides strong evidence for the nodal loops shown in Fig. 4(a).

Further evidence of these Dirac crosses can also be derived from the ARPES spectra along k_y (parallel to $\Gamma - Z - \Gamma$) direction at different values of k_x. As shown in Fig. 4(e), ARPES spectra along k_y direction at different k_x positions present evolution of the Dirac crosses corresponding to the nodal loop shape. When the k_x positions of the spectra, as specified by red circles in Fig. 4(a) bottom panel, coincide with the nodal loops, gapless Dirac crosses can be identified directly in the 2D curvature spectra. These Dirac crosses are also emphasized by arrows whose colors correspond to the band pairs. When the k_x positions are off the nodal loops, gaps open for the Dirac cone. The correspondence between ARPES and DFT down to very detailed level establishes solid evidence of multiple Dirac nodal loops in $T - Z - A$ plane.

Summary

Combining ARPES measurements, DFT calculations and symmetry analysis, we have demonstrated how reduced dimension can interact with nonsymmorphic symmetry and reshape the band topology in a Q1D semimetal. The resulting multiple robust Dirac crosses and DNLs against SOC suggest fertile physics in lower-dimensional topological systems[50-52]. Compared to their 3D and 2D counterparts, Q1D topological materials could be better suited for device exploitation due to their reduced dimensionality, especially in devices utilizing coherent spin transport[53,54]. Our work would stimulate further effort in exploring these rich physics and applications in Q1D topological materials.
ACKNOWLEDGEMENTS

This work is supported by National Key R&D Program of China (Grants No. 2020YFA0308900), the National Natural Science Foundation of China (NSFC) (Grants No. 12074163, No. 12074161), NSFC Guangdong (No. 2016A030313650), the Shenzhen High-level Special Fund (Grants No. G02206304 and No. G02206404), the Guangdong Innovative and Entrepreneurial Research Team Program (Grants No. 2019ZT08C044), Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000), the University Innovative Team in Guangdong Province (No. 2020KCXTD001), Guangdong Provincial Key Laboratory for Computational Science and Material Design under Grant No. 2019B030301001, the Science, Technology and Innovation Commission of Shenzhen Municipality (No. KQTD20190929173815000) and Center for Computational Science and Engineering of Southern University of Science and Technology.
References:

[1] N. P. Armitage, E. J. Mele & A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Reviews of Modern Physics 90, 015001, doi:10.1103/RevModPhys.90.015001 (2018).

[2] A. A. Burkov, M. D. Hook & L. Balents. Topological nodal semimetals. Physical Review B 84, 235126 (2011).

[3] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai & Z. Fang. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Physical Review B 85, 195320 (2012).

[4] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele & A. M. Rappe. Dirac Semimetal in Three Dimensions. Physical Review Letters 108, 140405 (2012).

[5] Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai & Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Physical Review B 88, doi:10.1103/PhysRevB.88.125427 (2013).

[6] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain & Y. L. Chen. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Materials 13, 677–681, doi:10.1038/nmat3990 (2014).

[7] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain & Y. L. Chen. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 343, 864 (2014).

[8] M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou & M. Z. Hasan. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun 5, 3786, doi:10.1038/ncomms4786 (2014).

[9] A. A. Burkov & L. Balents. Weyl Semimetal in a Topological Insulator Multilayer. Physical Review Letters 107, 127205 (2011).

[10] X. G. Wan, A. M. Turner, A. Vishwanath & S. Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Physical Review B 83 (2011).

[11] G. Xu, H. Weng, Z. Wang, X. Dai & Z. Fang. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr_{2}Se_{4}. Physical Review Letters 107, 186806 (2011).

[12] S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin & M. Z. Hasan. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun 6, 7373, doi:10.1038/ncomms8373 (2015).

[13] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai & B. A. Bernevig. Type-II Weyl semimetals. Nature 527, 495–498, doi:10.1038/nature15768 (2015).

[14] H. Weng, C. Fang, Z. Fang, B. A. Bernevig & X. Dai. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X 5, doi:10.1103/PhysRevX.5.011029 (2015).

[15] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi & H. Ding. Observation of Weyl nodes in TaAs. Nature Physics 11, 724–727, doi:10.1038/nphys3426 (2015).
[16] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia & M. Zahid Hasan. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. *Nature Physics* **11**, 748–754, doi:10.1038/nphys3437 (2015).

[17] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia & M. Z. Hasan. Discovery of a Weyl fermion semimetal and topological Fermi arcs. *Science* **349**, 613 (2015).

[18] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C. Chou, R. J. Cava & M. Z. Hasan. Observation of Fermi arc surface states in a topological metal. *Science* **347**, 294 (2015).

[19] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan & Y. L. Chen. Weyl semimetal phase in the non-centrosymmetric compound TaAs. *Nature Physics* **11**, 728–732, doi:10.1038/nphys3425 (2015).

[20] Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S. K. Mo, C. Felser, B. Yan & Y. L. Chen. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. *Nature Materials* **15**, 27–31, doi:10.1038/nmat4457 (2016).

[21] B. Q. Lv, Z. L. Feng, Q. N. Xu, X. Gao, J. Z. Ma, L. Y. Kong, P. Richard, Y. B. Huang, V. N. Strocov, C. Fang, H. M. Weng, Y. G. Shi, T. Qian & H. Ding. Observation of three-component fermions in the topological semimetal molybdenum phosphide. *Nature* **546**, 627–631, doi:10.1038/nature22390 (2017).

[22] J. Z. Ma, J. B. He, Y. F. Xu, B. Q. Lv, D. Chen, W. L. Zhu, S. Zhang, L. Y. Kong, X. Gao, L. Y. Rong, Y. B. Huang, P. Richard, C. Y. Xi, E. S. Choi, Y. Shao, Y. L. Wang, H. J. Gao, X. Dai, C. Fang, H. M. Weng, G. F. Chen, T. Qian & H. Ding. Three-component fermions with surface Fermi arcs in tungsten carbide. *Nature Physics* **14**, 349–354, doi:10.1038/s41567-017-0021-8 (2018).

[23] H. Weng, C. Fang, Z. Fang & X. Dai. Topological semimetals with triply degenerate nodal points in δ-phase tantalum nitride. *Physical Review B* **93**, doi:10.1103/PhysRevB.93.241202 (2016).

[24] Z. Zhu, G. W. Winkler, Q. Wu, J. Li & A. A. Soluyanov. Triple Point Topological Metals. *Physical Review X* **6**, doi:10.1103/PhysRevX.6.031003 (2016).

[25] B. J. Wieder, Y. Kim, A. M. Rappe & C. L. Kane. Double Dirac Semimetals in Three Dimensions. *Phys Rev Lett* **116**, 186402, doi:10.1103/PhysRevLett.116.186402 (2016).

[26] M. Koshibo & T. Ando. Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism. *Physical Review B* **81**, doi:10.1103/PhysRevB.81.195431 (2010).

[27] W. Zhang, R. Yu, W. Feng, Y. Yao, H. Weng, X. Dai & Z. Fang. Topological aspect and quantum magnetoresistance of beta-Ag2Te. *Physical Review Letters* **106**, 156808, doi:10.1103/PhysRevLett.106.156808 (2011).

[28] A. A. Burkov, M. D. Hook & L. Balents. Topological nodal semimetals. *Physical Review B*
C. Fang, Y. Chen, H.-Y. Kee & L. Fu. Topological nodal line semimetals with and without spin-orbital coupling. *Physical Review B* **92**, doi:10.1103/PhysRevB.92.081201 (2015).

T. Bzdusek, Q. Wu, A. Ruegg, M. Sigrist & A. A. Soluyanov. Nodal-chain metals. *Nature* **538**, 75–78, doi:10.1038/nature19099 (2016).

C. Fang, H. Weng, X. Dai & Z. Fang. Topological nodal line semimetals. *Chinese Physics B* **25**, doi:10.1088/1674-1056/25/11/117106 (2016).

R. Yu, Z. Fang, X. Dai & H. Weng. Topological nodal line semimetals predicted from first-principles calculations. *Frontiers of Physics* **12**, doi:10.1007/s11467-016-0630-1 (2017).

S.-Y. Yang, H. Yang, E. Derunova, S. S. P. Parkin, B. Yan & M. N. Ali. Symmetry demanded topological nodal-line materials. *Advances in Physics: X* **3**, doi:10.1080/23746149.2017.1414631 (2018).

J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhro, S. Tran, C. N. Lau, J. Wei & Z. Mao. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe. *Phys Rev Lett* **117**, 016602, doi:10.1103/PhysRevLett.117.016602 (2016).

L. M. Schoop, M. N. Ali, C. Strasser, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. Parkin, B. V. Lotsch & C. R. Ast. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. *Nat Commun* **7**, 11696, doi:10.1038/ncomms11696 (2016).

B. B. Fu, C. J. Yi, T. T. Zhang, M. Caputo, J. Z. Ma, X. Gao, B. Q. Lv, L. Y. Kong, Y. B. Huang, P. Richard, M. Shi, V. N. Strocov, C. Fang, H. M. Weng, Y. G. Shi, T. Qian & H. Ding. Dirac nodal surfaces and nodal lines in ZrSiS. *Science Advances* **5**, eaau6459, doi:10.1126/sciadv.aau6459 (2019).

Q. Xu, Z. Song, S. Nie, H. Weng, Z. Fang & X. Dai. Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure. *Physical Review B* **92**, 205310, doi:10.1103/PhysRevB.92.205310 (2015).

Y. Sun, Y. Zhang, C.-X. Liu, C. Felser & B. Yan. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. *Physical Review B* **95**, doi:10.1103/PhysRevB.95.235104 (2017).

J. N. Nelson, J. P. Ruf, Y. Lee, C. Zeledon, J. K. Kawasaki, S. Moser, C. Joziwak, E. Rotenberg, A. Bostwick, D. G. Schlom, K. M. Shen & L. Moreschini. Dirac nodal lines protected against spin-orbit interaction in IrO2. *Physical Review Materials* **3**, doi:10.1103/PhysRevMaterials.3.064205 (2019).

X. Xu, J. Jiang, W. J. Shi, V. Süß, C. Shekhar, S. C. Sun, Y. J. Chen, S. K. Mo, C. Felser, B. H. Yan, H. F. Yang, Z. K. Liu, Y. Sun, L. X. Yang & Y. L. Chen. Strong spin-orbit coupling and Dirac nodal lines in the three-dimensional electronic structure of metallic rutile IrO2. *Physical Review B* **99** (2019).
[43] S. M. Young & C. L. Kane. Dirac Semimetals in Two Dimensions. *Phys Rev Lett* **115**, 126803, doi:10.1103/PhysRevLett.115.126803 (2015).

[44] M. Ashton, J. Paul, S. B. Sinnott & R. G. Hennig. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. *Phys Rev Lett* **118**, 106101, doi:10.1103/PhysRevLett.118.106101 (2017).

[45] D. Wang, F. Tang, J. Ji, W. Zhang, A. Vishwanath, H. C. Po & X. Wan. Two-dimensional topological materials discovery by symmetry-indicator method. *Physical Review B* **100**, doi:10.1103/PhysRevB.100.195108 (2019).

[46] X. Cui, Y. Li, D. Guo, P. Guo, C. Lou, G. Mei, C. Lin, S. Tan, Z. Liu, K. Liu, Z. Lu, H. Petek, L. Cao, W. Ji & M. Feng. Two-dimensional Dirac nodal-line semimetal against strong spin-orbit coupling in real materials. *arXiv:2012.15220* (2021).

[47] C. Xu, Y. Liu, P. Cai, B. Li, W. Jiao, Y. Li, J. Zhang, W. Zhou, B. Qian, X. Jiang, Z. Shi, R. Sankar, J. Zhang, F. Yang, Z. Zhu, P. Biswas, D. Qian, X. Ke & X. Xu. Anisotropic Transport and Quantum Oscillations in the Quasi-One-Dimensional TaNiTe5: Evidence for the Nontrivial Band Topology. *J Phys Chem Lett* **11**, 7782-7789, doi:10.1021/acs.jpclett.0c02382 (2020).

[48] Z. Chen, M. Wu, Y. Zhang, J. Zhang, Y. Nie, Y. Qin, Y. Han, C. Xi, S. Ma, X. Kan, J. Zhou, X. Yang, X. Zhu, W. Ning & M. Tian. Three-dimensional topological semimetal phase in layered TaNiTe5 probed by quantum oscillations. *Physical Review B* **103**, doi:10.1103/PhysRevB.103.035105 (2021).

[49] E. W. Liimatta & J. A. Ibers. Synthesis, structures, and conductivities of the new layered compounds Ta3Pd3Te14 and TaNiTe5. *Journal of Solid State Chemistry* **78**, 7-16 (1989).

[50] J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig & C. Felser. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. *Nature* **575**, 315-319, doi:10.1038/s41586-019-1630-4 (2019).

[51] R. Noguchi, T. Takahashi, K. Kuroda, M. Ochi, T. Shirasawa, M. Sakano, C. Bareille, M. Nakayama, M. D. Watson, K. Yaji, A. Harasawa, H. Iwasawa, P. Dudin, T. K. Kim, M. Hoesch, V. Kandyba, A. Giampietri, A. Barinov, S. Shin, R. Arita, T. Sasagawa & T. Kondo. A weak topological insulator state in quasi-one-dimensional bismuth iodide. *Nature* **566**, 518-522, doi:10.1038/s41586-019-0927-7 (2019).

[52] G. Autes, A. Isaeva, L. Moreschini, J. C. Johannsen, A. Pisoni, R. Morí, W. Zhang, T. G. Filatova, A. N. Kuznetsov, L. Forro, W. Van Den Broek, Y. Kim, K. S. Kim, A. Lanzara, J. D. Denlinger, E. Rotenberg, A. Bostwick, M. Grioni & O. V. Yazyev. A novel quasi-one-dimensional topological insulator in bismuth iodide beta-BiI4. *Nat Mater* **15**, 154-158, doi:10.1038/nmat4488 (2016).

[53] H.-M. Guo. A brief review on one-dimensional topological insulators and superconductors. *Science China Physics, Mechanics & Astronomy* **59**, doi:10.1007/s11433-015-5773-5 (2016).

[54] D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen, Z. X. Shen, H. C. Manoharan & Y. Cui. Topological insulator nanowires and nanoribbons. *Nano Lett* **10**, 329-333, doi:10.1021/nl903663a (2010).