Optical Properties of Fe3O4 Magnetic Fluid from Iron Sand

by Samian Samian
Optical Properties of Fe₃O₄ Magnetic Fluid from Iron Sand

To cite this article: A Puspitaningrum et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 202 012054

View the article online for updates and enhancements.
Optical Properties of Fe₃O₄ Magnetic Fluid from Iron Sand

A Puspitaningrum¹, A Taufiq¹,², A Hidayat¹,², Suryono¹,², N Hidayat¹,² and Samian³

¹Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (State University of Malang), Jalan Semarang No 5, Malang 65145, Indonesia
²Center for Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (State University of Malang), Jl. Semarang 5, Malang 65145, Indonesia
³Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jalan Satorejo, Surabaya 60115, Indonesia

Email: arif.hidayat.fnipa@um.ac.id

Abstract: Nowadays, a high sensitive sensor for the magnetic field has become an essential tool that vastly desired in several fields, especially in biomedical application. Therefore, the development of preparing material for the magnetic sensor becomes crucial to be conducted. In this experiment, we propose the use of Fe₃O₄ magnetic fluid prepared from a local iron sand in Indonesia as a material for a magnetic sensor. In this work, optical activities of the Fe₃O₄ magnetic fluid as the effect of magneto-optics were performed under varying external magnetic field. The polarization direction change of the laser was detected as a function of the external magnetic field with the exponential function. Moreover, the intensity collected by a photodetector exhibited a linear correlation with the external magnetic field. These phenomena become strong evidence that the prepared Fe₃O₄ magnetic fluid opens potential to be applied further as sensors, especially as a high sensitive optics-based sensor for the magnetic field.

Keywords: Magnetic fluid, Fe₃O₄, iron sand, polarization, magneto-optic.

1. Introduction
Magnetic fluid or often called as ferrofluid is a stable colloidal suspension consisting of magnetic nanoparticles with single-domain character and dispersing in a suitable liquid carrier [1]. The surfactant-based magnetic fluid has good stability broadening its applications in many fields. The applications cover such as for controlling lubricant migration [2], for antibacterial and anticancer [3], as a contrast agent for magnetic resonance imaging [4], for magnetic field sensor [1], and so forth. Furthermore, for application in a big amount, the development of synthesis method of local natural substance based magnetic fluid which is inexpensive and abundant is significant by using natural iron sand, for example.

Magnetic nanoparticle in the ferrofluid forms a colloid magnetic system caused by its permanent magnetic moment [5]. The distributed particles act as single-domain magnetic particles in the position
of random Brownian motion without the influence of external magnetic field. However, if it is exposed to an external magnetic field, the particles motions will be regular since they undergo a tensile stress along the field direction. It means that the dipolar interaction of the magnetic domains tends to increase. When the dipolar interaction becomes strong enough, the particles undergo the structure change [6–7]. First, the head-tail of the magnetic particles oriented randomly knits each other as long as the field direction by forming a number of chains. This chain-like structure is the result of the competition between the magnetic dipolar interaction and thermal interaction [8]. After that, these chains experience aggregation again through lateral smelting forming a bundle of the chain [9]. This phenomenon is known as zipping effect as well. Two effects happening simultaneously are interaction induced by thermal fluctuation and inhibitor of the local lateral field caused by the topology defect in the dipolar chain correlated to the type of this structure formation. As a consequence, there are many significant changes in the fluid characteristics observed. Regarding this case, specifically, the characteristics of magneto-optic and magneto-viscous are essential things and have attracted many experts’ attention in the last years. Therefore, in this work, a study focused on the optical characteristic of Fe_3O_4 magnetic fluid detected by using magneto-optic effect is significant.

The magneto-optic effect is a symptom related to the light wave interaction with the external magnetic field applied in a material. The light polarization describes the vector orientation of electrical field from the light wave of a certain period in one period of vibration. In the light polarized circularly, the direction of propagation and the orientation of electrical field form either right and left round [10]. When the light wave propagates to penetrate the active optical material, the right and left polarization vector of the light wave moves with different velocity [11]. This difference is shown as the different magneto-optic effect. The magneto-optic effect causes changes of optical parameters of materials [12]. The optical activity of material changes with the application of magnetic field. The magneto-optic effect can give information on the change of optical characteristics of the material that can be measured through the material ability in changing the polarization angle of light wave penetrating the material. The light polarization orientation in a material caused by the external magnetic field can be learned by using Faraday rotation effect. If the fluid is used as an active material in the Faraday rotation effect, the weak external magnetic field is enough to see the rotation of polarization angle and the light intensity change. This phenomenon is interesting in developing the magnetic field sensor especially for detecting the weak magnetic field like the magnetic field within a body.

Based on the explanation above, it is paramount to study the optical characteristic of Fe_3O_4 magnetic fluid made from iron sand. In this work, specifically, the study is focused on the magneto-optic effect happening on the Fe_3O_4 magnetic fluid.

2. Experimental Method
The Fe_3O_4, magnetic fluid was prepared by using a coprecipitation- sonochemical method. The purified Fe_3O_4 powders as a main precursor was selected from natural iron sand following our previous works [13–17]. However, in this work, the synthesis method was developed by combining the coprecipitation as reported in our previous works with the sonochemical route using ultrasonic bath at a frequency of 40 KHz at room temperature for 1 hour. Furthermore, the preparation of the magnetic fluid was tracked by the previous work [18] but modified by adding more water to enhance the homogeneity of the magnetic particles. The chemical reaction of the magnetite particle formation in this work is presented in the equation (1).

$$\text{Fe}^{2+} + 2\text{Fe}^{3+} + 8\text{OH}^- \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2\text{O}$$ (1)

The phase purity, crystal structure, and particle size of the sample were characterized by means of X-Ray Diffractometer (XRD) at ambient temperature. Furthermore, the optical properties of the magnetic fluid as a function of the external magnetic field was investigated by using a set magneto-optical experiment as presented in the following figure.
In Figure 1, number 1 represents the laser He-Ne “CVI Melles Griot” input: 115/230 VAC, max = 39.5 Hz, 50 - 400, number 2 represents the glass with the size of 2 cm × 1.5 cm × 0.3 cm with the glass thickness of 1 mm, number 3 represents the screen, number 4 represents the external magnetic field, number 5 represents the optical detector “THORLABS” Si Amplified Detector, PDA 100A-EC, number 6 represents the digital AVO-meter FLUKE 179 with the accuracy of 0.001 mV. Practically, the experiment was conducted by placing the magnetic fluid in the glass. The laser was the directed to the magnetic fluid and detected by the screen and or the optical detector. The external magnetic field varied during the experiment and measured by using a digital Teslameter MG - 3002 with the resolution of 0.01 mT. The data were collected both from the set of (a) and (b) experiments regarding Figure 1.

3. Results and Discussion
X-ray diffraction pattern of the Fe₃O₄ magnetic fluid is shown in Figure 2. Based on the quantitative analysis by using Rietica program [19], the Fe₃O₄ particle was structured in the inverse spinel with the space group of Fd-3 m Z. The statistic parameters of the quantitative analysis were of GoF = 0.34, Rwp = 15.18, Rp = 10.78. It means that the refinement model was highly acceptable in fitting the experimental data. The lattice parameters and crystal volume were respectively \(a = b = c = 8.368 \) Å and \(V = a \times b \times c = 585.97 \) Å³. These results are similar to the crystal parameters of the Fe₃O₄ nanoparticles preparing from iron sand by other synthesis method [13]. Furthermore, the particle size of the Fe₃O₄ particle was approximately 9 nm after determined by using a Debye Scherer’s formula. Therefore, this particle size becomes a substantial evidence that the Fe₃O₄ particle prepared in this work is suitably dispersed in a liquid carrier to form a stable magnetic fluid.
Figure 2. XRD pattern of the dried Fe₃O₄ fluid at room temperature.

Figure 3 presents the effect of magnetic field on the optical characteristic of the Fe₃O₄ magnetic fluid indicated by the shift of laser beam on the screen. The amount of beam shift is shown visually in Figure 3. In Figure 3 (a), we can see that the laser light spreads over the screen. This condition happens when the laser light holds the screen directly without passing a glass beam containing ferrofluid and external magnetic field. When the glass beam containing ferrofluid is placed between laser and screen (laser shot to the glass beam containing ferrofluid), a beam arises directing to the angle of 50° as visualized in Figure 3 (b). After giving external magnetic field like in Figure (c) until Figure (n), we can see that the laser light beam seen on the screen gets widening and moving far from the x-axis.

Qualitatively, the amount of polarization angle shift influenced by the external magnetic field is shown in Figure 4. This figure shows the rotation graph of polarization angle due to the symptom of magneto-optic in the Fe₃O₄ magnetic fluid. In the range of 0 mT up to 123.8 mT, the beam shift happens in the amount of 50° to 70°. The polarization angle rotation tends to increase linearly in the magnetic field range of 0 mT to 30 mT; while above 30 mT, the polarization angle rotation increases gradually or exponentially. Generally, when a light beam penetrates an active optical object, it will transform into two light beams polarized circularly [20]. The phenomenon of polarization angle rotation happens through Faraday effect. Generally, Faraday effect is expressed as $\theta = V \times H \times I$, where V is constant of Verdet material, H is the given magnetic field, and I is the length of the optical path or the thickness of Fe₃O₄ magnetic fluid [21].
Figure 3. The polarization angle of the laser (a) for direct beam of the laser without Fe₃O₄ magnetic fluid and in the absence of external magnetic field: for the Fe₃O₄ magnetic fluid under magnetic field of (b) 0 mT (c) 0.7 mT (d) 2.2 mT (e) 3.6 mT (f) 5.1 mT (g) 21.8 mT (h) 36.4 mT (i) 50.9 mT (j) 65.5 mT (k) 80.1 mT (l) 94.7 mT (m) 109.2 mT, and (n) 123.8 mT.
Figure 4. Polarization angle vs. external magnetic field (H) of the Fe$_3$O$_4$ magnetic fluid

Physically, the polarization angle rotation causes the increase of light intensity since the magnetic field interaction of the light wave with the external static magnetic field given to Fe$_3$O$_4$ magnetic field as a magneto-optic effect. The graph of intensity change as a function of the magnetic field is shown in Figure 5. One of the interesting phenomena in this work is the appealing of polarization although the external magnetic field was not given to the Fe$_3$O$_4$ magnetic fluid. In physics, this phenomenon occurs because laser brings the magnetic field causing the magnetic moment of Fe$_3$O$_4$ in fluid undergoes orientation. The magnetic moment orientation of Fe$_3$O$_4$ induces its particle orientation as well. Since Fe$_3$O$_4$ magnetic fluid is super-paramagnetic, how small the external field is given, it can induce the magnetic moment of the particle. Meanwhile, the flexibility of fluid compared to film, powder or bulk contribute as well to the easiness of magnetic particle orienting in the magnetic fluid. This case is different from the laser light intensity increasing linearly as a function of external magnetic field. The linear relationship between intensity and external magnetic field has an ideal potential to optical based magnetic field sensor. This experiment result is in line with the experiment result conducted by Nair et al. [14].
Figure 5. Voltage vs. external magnetic field of the magnetic fluid. V represents the intensity measured by using photodetector (in Volt unit)

Some reports in the literature show the occurrence of magneto-optic effect in the magnetic fluid [22,23]. The most important magneto-optic effect shown by the magnetic fluid is Faraday rotation, Faraday Ellipticity, Kerr Effect, linear dichroism, birefringence, and so forth [24]. Furthermore, it has been shown as well that Faraday rotation can happen in a railroad like-way. This quantization is correlated to the magnetic moment tunneling of resonance in the case of smaller size-quantum particles [25]. The theory of no-reciprocity demonstrates that the rotation direction of the polarized light depends on only the magnetic field direction [26]. Furthermore, the reciprocity of Faraday effect shown by the magnetic fluid and magneto-optic glass explains that although the magnetic field direction is reversed, the rotation of the polarized light is still similar to the first case [27]. Regarding this case, there are many tools developed based on the magnetic fluid such as a sensor, isolator, and modulator designed efficiently by controlling the magneto-optic effect [28,29]. Thereby, based on the result of this study, the Fe₃O₄ magnetic fluid as the preparation result of iron sand has an ideal potential to be developed further as a high sensitive optics-based magnetic sensor.

4. Conclusion
We have successfully prepared the Fe₃O₄ magnetic fluid from natural iron sand. The Fe₃O₄ magnetic fluid exhibited a magneto-optical phenomenon. The Fe₃O₄ magnetic fluid induced the change of polarization angle and its intensity originated from the external magnetic field. The change of polarization angle tended to increase exponentially as a function of external magnetic field. Furthermore, the intensity of the laser increases linearly with increasing external magnetic field. These phenomena become an essential data that the prepared Fe₃O₄ magnetic fluid opening the high potential for developing sensor, especially as a high sensitive optics-based magnetic sensor.
5. References

[1] Zheng Y, Dong X, Chan C C, Shun P P and Su H 2015 Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer Opt. Commun. 336 5–8

[2] Ke H, Huang W and Wang X 2016 Controlling lubricant migration using ferrofluids Tribol. Int. 93 Part A 318–23

[3] Sheikh L, Vohra R, Verma A K and Nayar S 2015 Biomimetically Synthesized Aqueous Ferrofluids Having Antibacterial and Anticancer Properties Mater. Sci. Appl. 6 242–50

[4] Casula M F, Corrias A, Arosio P, Lasic D F, Sen T, Floris P and Bruce I J 2011 Design of water-based ferrofluids as contrast agents for magnetic resonance imaging J. Colloid Interface Sci. 357 50–5

[5] Rosenweig R E 2014 Ferrohydrodynamics (Mineola, New York: Dover Publications, Inc)

[6] Mendeleev V S and Ivanov A O 2004 Ferrofluid aggregation in chains under the influence of a magnetic field Phys. Rev. E 70

[7] Zubarev A Y and Ishakova I L 2006 Direct and inverse domain structures in ferrofluids Phys. Stat. Mech. Its Appl. 367 55–68

[8] Laskar J M, Philip J and Raj B 2009 Experimental evidence for reversible zippering of chains in magnetic nanofluids under external magnetic fields Phys. Rev. E 80

[9] Born M, Wolf E and Hecht E 2000 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light Phys. Today 53 77–8

[10] Hopster H and Oepen H P 2005 Magnetic microscopy of nanostructures (Berlin; New York: Springer)

[11] Iizuka K 2002 Elements of photonics (New York, N.Y: Wiley-Interscience)

[12] Mann V R, Farimani M H R and Shahtahmasibi N 2014 Study of magnetic and structural and optical properties of Zn doped Fe$_3$O$_4$ nanoparticles synthesized by co-precipitation method for biomedicale application Akush. Gimelkol. (Sofia) 15 238–47

[13] Taufiq A, Sunaryono, Rachman Putra E G, Okazawa A, Watanabe I, Kojima N, Pratapa S and Darminto 2015 Nanoscale Clustering and Magnetic Properties of Mn$_{Fe_2}$O$_4$ Particles Prepared from Natural Magneteite J. Supercond. Nov. Magn. 28 2855–63

[14] Pratapa S, Susanti L, Insany Y A S, Alfatti Z, Hartono B, Mashuri, Taufiq A, Fuad A, Trivikantoro, Baqya M A, Purwawiningsih S, Yahya E and Darminto 2010 XRD line-broadening characteristics of M-oxides (M=Mg, Mg-Al, Y, Fe) nanoparticles produced by coprecipitation method Alp. Conf. Proc. 1284 125–8

[15] Sunaryono, Taufiq A, Munaji, Indarto B, Trivikantoro, Zainuri M and Darminto 2013 Magneto-elasticity in hydrogels containing Fe$_3$O$_4$ nanoparticles and their potential applications Alp. Conf. Proc. 1555 S3–6

[16] Sunaryono, Taufiq A, Putra E G R, Okazawa A, Watanabe I, Kojima N, Nugraha S, Soontaranon S, Zainuri M, Trivikantoro, Pratapa S and Darminto 2015 Small-Angle X-Ray Scattering Study on PVA/Fe$_3$O$_4$ Magnetic Hydrogels Mater. 116 50027

[17] Sunaryono, Taufiq A, Mashuri, Pratapa S, Zainuri M, Trivikantoro and Darminto 2015 Various Magnetic Properties of Magnetic Nanoparticles Synthesized from Iron-Sands by Coprecipitation Method at Room Temperature Mater. Sci. Forum 827 229–34

[18] Taufiq A, Sunaryono, Rachman Putra E G, Pratapa S and Darminto 2015 Nano-Structural Studies on Fe$_3$O$_4$ Particles Dispersing in a Magnetic Fluid Using X-Ray Diffractometry and Small-Angle Neutron Scattering Mater. Sci. Forum 827 213–8

[19] Hunter B A 1998 Rietica - A visual Rietveld program News. Int. Union Crystallogr. Comm. Powder Diffraction

[20] Khandalou R, Ahmad M, Shamel K and Kalantari K 2013 Synthesis and Characterization of Rice Straw/Fe$_3$O$_4$ Nanocomposites by a Quick Precipitation Method Molecules 18 6597–607

[21] Nair S S, Rajesh S, Abraham V S and Anantharaman M R 2010 Ferrofluid Thin Films as Optical Gaussimeters Proposed for Field and Magnetic Moment Sensing Indian Acad. Sci. 34 no 2 245–9
[22] Lacoste D, Donatini F, Neveu S, Serughetti J A and Van Tiggelen B A 2000 Photonic Hall effect in ferrofluids: Theory and experiments Phys. Rev. E 62 3934–43
[23] Davies H W and Llewellyn J P 1980 Magneto-optic effects in ferrofluids J. Phys. Appl. Phys. 13 2327–36
[24] Kooij E S, Galéa A C and Poelsema B 2006 Versatile transmission ellipsometry to study linear ferrofluid magneto-optics J. Colloid Interface Sci. 304 261–70
[25] Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil V and Neveu S 2009 Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements J. Magn. Magn. Mater. 321 1148–54
[26] Donatini F, Jamon D, Monin J and Neveu S 1999 Experimental investigation of longitudinal magneto-optic effects in four ferrite ferrofluids in visible-near infrared spectrum IEEE Trans. Magn. 35 4311–7
[27] Deb P, Gogoi M and Karmakar P K 2012 Anomalous magneto-optic Faraday rotation behavior due to resonant tunneling of magnetic moment J. Opt. 41 41–7
[28] Massard C, Taverdet J L, Brouillet S and Donnet C 2007 Hybrid Sol–gel thin films for magneto-optical applications: Chemical, optical and tribological study Surf. Coat. Technol. 202 1067–72
[29] Wang S, Sun C, Du L, Yao C and Yang Y 2012 Reciprocity of Faraday effect in ferrofluid: Comparison with magneto-optical glass Opt. - Int. J. Light Electron Opt. 123 553–8

Acknowledgements
The authors (AT and AH) very appreciate DRPM-KEMENRISTEKDIKTI, Republic of Indonesia, for supporting “HIBAH PENELITIAN” 2016-2017.
Optical Properties of Fe3O4 Magnetic Fluid from Iron Sand

ORIGINALITY REPORT

SIMILARITY INDEX	17%
INTERNET SOURCES	12%
PUBLICATIONS	15%
STUDENT PAPERS	0%

PRIMARY SOURCES

1. china.iopscience.iop.org
 Internet Source
 2%

2. oro.open.ac.uk
 Internet Source
 2%

3. www.greater-magnetism.eu
 Internet Source
 1%

4. Surajit Brojabasi, B.B. Lahiri, John Philip. "External magnetic field dependent light transmission and scattered speckle pattern in a magnetically polarizable oil-in-water nanoemulsion", *Physica B: Condensed Matter*, 2014
 Publication
 1%

5. eprints.lib.okayama-u.ac.jp
 Internet Source
 1%

6. Li, Q.. "Experimental investigations on transport properties of magnetic fluids", *Experimental Thermal and Fluid Science*, 200511
 Publication
 1%
| | Title | Authors | Journal/Source |
|---|--|---|---|
| 7 | A Taufiq, N Wahyuni, W Elyani, S Sunaryono, N Hidayat, N Mufti, A Hidayat. "Structural, | | "Structural, Band Gap Energy, and Magnetic Characters of Fe Cr O Nanoparticles for Preparing Ferrofluids" |
| | Band Gap Energy, and Magnetic Characters of Fe Cr O Nanoparticles for Preparing Ferrofluids | |", Journal of Physics: Conference Series, 2018 |
| 8 | Pham Hoai Linh, Nguyen Chi Thuan, Nguyen Anh Tuan, Pham Van Thach et al. "Invitro toxicity | | "Invitro toxicity test and searching the possibility of cancer cell line extermination by magnetic heating |
| | test and searching the possibility of cancer cell line extermination by magnetic heating | | with using Fe O magnetic fluid", Journal of Physics: Conference Series, 2009 |
| | with using Fe O magnetic fluid", Journal of Physics: Conference Series, 2009 | | |
| 9 | J Sharpe. "Measurement of moisture content by neutron counting", British Journal of | | British Journal of Applied Physics, 1953 |
| | Applied Physics, 1953 | | |
| 10| Wang, S.. "Reciprocity of Faraday effect in ferrofluid: Comparison with magneto-optical | | Optik - International Journal for Light and Electron Optics, 2012 |
| | glass", Optik - International Journal for Light and Electron Optics, 201203 | | |
| 11| hobbydocbox.com | | |
| 12| Y E Gunanto, M P Izaak, E Jobiliong, L Cahyadi, W A Adi. "High purity Fe O from Local | | "High purity Fe O from Local Iron Sand Extraction", Journal of |
| | Iron Sand Extraction", Journal of | | |
Qiang Li. "Measurement of the Viscosity of Dilute Magnetic Fluids", International Journal of Thermophysics, 01/2006

Li, Q.. "Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field", Experimental Thermal and Fluid Science, 200904

DEVI, M, P P DUTTA, and D MOHANTA. "Analytical calculation of chain length in ferrofluids", Bulletin of Materials Science, 2015.
Exclude quotes	Off
Exclude bibliography	On
Exclude matches	< 10 words
GRADEMARK REPORT

FINAL GRADE	GENERAL COMMENTS
/0	Instructor

PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	