Divergent Evolution of Progesterone and Mineralocorticoid Receptors in Terrestrial Vertebrates and Fish Influences Endocrine Disruption

Michael E. Baker
Division of Nephrology-Hypertension
Department of Medicine, 0735
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0735

Center for Academic Research and Training in Anthropogeny (CARTA)
University of California, San Diego
La Jolla, CA 92093

Correspondence to: mbaker@ucsd.edu

Abstract:
There is much concern about disruption of endocrine physiology regulated by steroid hormones in humans, other terrestrial vertebrates and fish by industrial chemicals, such as bisphenol A, and pesticides, such as DDT. These endocrine-disrupting chemicals influence steroid-mediated physiology in humans and other vertebrates by competing with steroids for receptor binding sites, disrupting diverse responses involved in reproduction, development and differentiation. Here I discuss that due to evolution of the progesterone receptor (PR) and mineralocorticoid receptor (MR) after ray-finned fish and terrestrial vertebrates diverged from a common ancestor, each receptor evolved to respond to different steroids in ray-finned fish and terrestrial vertebrates. In elephant shark, a cartilaginous fish, ancestral to ray-finned fish and terrestrial vertebrates, both progesterone and 17,20β-dihydroxy-progesterone activate the PR. During the evolution of ray-finned fish and terrestrial vertebrates, the PR in terrestrial vertebrates continued responding to progesterone and evolved to weakly respond to 17,20β-dihydroxy-progesterone. In contrast, the physiological progestin for the PR in zebrafish and other ray-finned fish is 17,20β-dihydroxy-progesterone, and ray-finned fish PR responds weakly to progesterone. The MR in fish and terrestrial vertebrates also diverged to have different responses to progesterone. Progesterone is a potent agonist for elephant shark MR, zebrafish MR and other fish MRs, in contrast to progesterone’s opposite activity as an antagonist for aldosterone, the physiological
mineralocorticoid for human MR. These different physiological ligands for fish and terrestrial vertebrate PR and MR need to be considered in applying data for their disruption by chemicals in fish and terrestrial vertebrates to each other.

Introduction

Adrenal and sex steroid receptors belong to the nuclear receptor family, a diverse group of transcription factors that arose in multicellular animals [1–3]. These ligand-activated transcription factors include the estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) [1,4–6]. Binding of steroids (Figure 1) to their cognate receptors initiates a complex process involving steroid-dependent conformational changes in the receptor and the binding of the hormone-receptor complex to co-regulator proteins and specific hormone-response elements on DNA in target cells, which leads to transcription of genes important in diverse physiological pathways involved in differentiation, development, reproduction, immune responses, homeostasis and stress responses in vertebrates [7–12].

This special issue focusses on endocrine disruption of steroid receptors, which is a major concern for the health of humans and fish and other wild-life [13–17]. Endocrine disruption is a consequence of our modern industrial society and the explosive increase in the volume and variety of synthetic chemicals that are released into the environment, which then disrupt steroid hormone physiology by interfering with the activation of steroid receptor mediated transcription. Studies of the effects of synthetic chemicals on the physiology of zebrafish [18–25] have been useful in deciphering the biological effects and the mechanism of action of many chemicals and drugs for use in evaluating their effects on human health. Compared to mice, zebrafish are relatively inexpensive to maintain, and they can be bred in large numbers. An important advantage of zebrafish embryos is that they are optically transparent, which allows microscopic observations of organs as they develop.
Figure 1. Structures of vertebrate adrenal and sex steroids.
In terrestrial vertebrates, cortisol, corticosterone, aldosterone, progesterone, estradiol and testosterone are the major circulating adrenal and sex steroids. Estradiol is important in female and male physiology [26]. Aldosterone is the main physiological mineralocorticoid in terrestrial vertebrates [27,28]. Cortisol and corticosterone are physiological glucocorticoid in vertebrates [5,8]. Cortisol also activates the MR, although at about a 10-fold higher steroid concentration than aldosterone [29,30]. Testosterone and progesterone are reproductive hormones in males and females, respectively. Progesterone is an antagonist for the MR in humans [31], alligators and Xenopus [29] and an agonist for fish MRs [29,32,33].
Here I use an evolutionary perspective to discuss a largely ignored difference between human and fish in the responses of their PR and MR to different physiological steroids, and this, I propose, indicates the need for caution in extrapolating data about chemical disruption of the PR and MR in fish to human physiology and vice versa. Other hormone receptors, e.g. androgen receptor, in terrestrial vertebrates and fish also have different physiological ligands, and, thus, provide an inaccurate assumption that some chemicals are endocrine disruptors for both fish and terrestrial vertebrates.

Steroid receptors evolved about 550 million years ago.

Multicellular animals evolved about 1 billion years ago [1,34–38]. Orthologs of the ER and a 3-keto-receptor receptor (SR) appear about 550 million years ago in an ancestor of modern amphioxus, a cephalochordate that evolved at the base of the vertebrate line [1,35,39–42]. The 3-keto-steroid-receptor is the ancestor of the PR, MR, GR and AR [35,39,40]. An ortholog of the PR evolved in ancestor of modern sea lampreys and hagfish, which are jawless fish (Cyclostomes) [43–45]. A corticoid receptor (CR), which is the ancestor of the MR and GR, also evolved in an ancestral jawless fish [1,5,34,35,40]. An AR and a distinct GR and MR evolved in cartilaginous fishes, ancestors of sharks, skates and rays, which are jawed vertebrates that diverged from bony vertebrates about 450 million years [5,46]. Land animals and ray-finned fish diverged about 425 million years ago [47,48]. Here I discuss the implications for endocrine disruption of the PR and MR in ray-finned fish and terrestrial vertebrates, which evolved to respond to different physiological steroids after their split about 425 million years ago [47,48].

Different Physiological Steroids are Transcriptional Activators of the Progesterone Receptor in Ray-Finned Fish and Terrestrial Vertebrates.

The physiological steroid for transcriptional activation of human PR is progesterone [49–51] (Figure 1), which has a half maximal response (EC50) of 0.12 nM for human PR (Table 1). Human PR has little activity for progesterone analogs containing a 17α-hydroxyl group (Figure 2, Table 1). Thus, addition of a 17α-hydroxyl group to form 17αOH-Progesterone (17αOH-Prog) (Figure 2) increases the EC50 to 132 nM and addition of a second hydroxyl at C20 to form 17α,20β-OH-Progesterone (17α,20β-P, 17α,20β-OH-P) (Figure 2) increases the EC50 to 344 nM for human PR.
Table 1. EC50 values for steroid activation of elephant shark PR, human PR and zebrafish PR.

A. Progesterone, 20β-OH-Progesterone, 17α-OH-Progesterone.

	Progesterone	20β-OH-Progesterone	17α-OH-Progesterone
Elephant shark PR	**0.18 nM**	**0.48 nM**	**0.36 nM**
Human PR	**0.13 nM**	**4.6 nM**	**113.0 nM**
Zebrafish PR	**296.2 nM**	Not Determined	**193.4 nM**

*Chen et al. Biology of Reproduction 82, 171–181 (2010)
**Lin et al. bioRxiv, 2021 doi: https://doi.org/10.1101/2021.01.20.427507, (n.d.).

B. Fish progestins: 17α,20β-dihydroxy-4-pregnene-3-one, 17α,20β,21-trihydroxy-4-pregnen-3-one.

	17α,20β-dihydroxy-4-pregnene-3-one	17α,20β,21-trihydroxy-4-pregnen-3-one
Elephant shark PR	EC50 (M)	EC50 (M)
	2.6 nM	**34.4 nM**
Human PR	**408 nM**	**Not active**
Zebrafish PR	**8 nM**	**40.9 nM**

*Chen et al. Biology of Reproduction 82, 171–181 (2010)
**Lin et al. bioRxiv, 2021 doi: https://doi.org/10.1101/2021.01.20.427507, (n.d.).

C. Corticosteroids: Cortisol, 11-deoxycortisol, Corticosterone, DOC.

	Cortisol	11-deoxycortisol	Corticosterone	DOC
Elephant shark PR	EC50 (M)	EC50 (M)	EC50 (M)	EC50 (M)
	52.4 nM	**0.47 nM**	**10.5 nM**	**0.19 nM**
Human PR	**826 nM**	**39 nM**	**8.2 nM**	**1.4 nM**
Zebrafish PR	*Inactive at 1uM*	Not Determined	Not Determined	Not Determined

*Chen et al. Biology of Reproduction 82, 171–181 (2010)
**Lin et al. bioRxiv, 2021 doi: https://doi.org/10.1101/2021.01.20.427507, (n.d.).

Abbreviations:
Fish progestins: 20β-OH-Prog = 20β-hydroxy-progesterone.
17α,20β-DP, 17α,20β-P = 17α,20β-dihydroxy-4-pregnene-3-one,
20β-S, 17α,20β,21-P = 17α,20β,21-trihydroxy-4-pregnen-3-one.
Corticosteroids: DOC=11-deoxycorticosterone.
Figure 2. Structures of steroids that activate the progesterone receptor and mineralocorticoid receptors in elephant shark, ray-finned fish and humans.

The physiological progestins for the PR in zebrafish and other ray-finned fish are 17,20β-dihydroxy-progesterone and 17,20β,21-trihydroxy-pregn-4-en-3-one, which also activate elephant shark PR (Table 2) [52]. Ray-finned fish PR respond weakly to progesterone [52–54], while human PR and elephant shark PR are activated by progesterone [55]. Spironolactone, which has structural similarities to progesterone activates ray-finned fish PR and elephant shark PR [55], while spironolactone inhibits transcriptional activation of human PR [31]. Progesterone and spironolactone activate elephant shark MR and ray-finned fish MR and inhibit transcriptional activation of human MR.

Similar to human PR, elephant shark PR has a low EC50 (0.18 nM) for progesterone (Table 1). However, compared to human PR, the response to hydroxylated progesterone analogs is very different in elephant shark PR, which has low EC50s for 17α-OH-Prog (EC50=0.36 nM) and 17α,20β-P (EC50=2.6 nM) (Figure 2) (Table 1) [55], two steroids that have little activity for human PR (Table 1). Like elephant shark PR, fish PR has a strong response to 17,20β-P, which is important in fish reproductive physiology, including acting as a maturation inducing hormone of teleost fish [52,56–60]. Indeed, 17,20β-P is the major physiological progestin in fish, although in some fish, 17,20β,21-trihydroxy-pregn-4-en-3-one (17,20β,21-P, 20β-S,) is a physiological progestin [52–54,61]. Importantly, progesterone is a weak activator of the PR in zebrafish PR [59] (Table 1) and other fish [52–54].

Thus, after the split of ray-finned fish and terrestrial vertebrates from an ancestral cartilaginous fish, their PRs evolved to respond to different steroids.

Progesterone is a Transcriptional Activator of Fish MR and a Transcriptional Inhibitor of the Human MR.

Although aldosterone is the physiological mineralocorticoid in humans and other terrestrial vertebrates [27,28,62–67], cortisol and corticosterone (Figures 1, 2) also are transcriptional activators of human MR. Among these steroids, aldosterone has the lowest EC50 (Table 2). Moreover, despite the high affinity of progesterone for human MR [31,68–70], progesterone is an antagonist for human MR [31,69,71]. Interestingly, spironolactone, an anti-mineralocorticoid that is used clinically to inhibit aldosterone activation of human MR, has structural similarities to progesterone (Figure 2) [31,69,72,73].
Table 2. EC50 values for activation by progestins, spironolactone and corticosteroids of elephant shark MR, human MR and zebrafish MR.

A. Progesterone, 19-norProgesterone, 17-OH-Progesterone and Spironolactone activation of elephant shark MR, human MR and zebrafish MR.

	Progesterone	19-norProg	17-OH-Prog	Spironolactone
	EC50 (M)	EC50 (M)	EC50 (M)	EC50 (M)
Elephant shark MR	**0.45 nM	**0.11 nM	*1.4 nM	*0.55 nM
	*0.27 nM	*0.043 nM		
Human MR	Not active	Not active	Not active	Not active
Zebrafish MR	*2.4 nM	*0.94 nM	*18 nM	*3.8 nM

**Katsu et al. J. Steroid Biochemistry & Molecular Biology, 210, 2021.
*Katsu et al. Sci Signal.2019, 12(584):eaar2668. doi: 10.1126/scisignal.aar2668.

B. Corticosteroid activation of elephant shark MR, human MR and zebrafish MR.

	Aldosterone	Cortisol	Corticosterone
	EC50 (M)	EC50 (M)	EC50 (M)
Elephant shark MR	**0.14 nM	**1.6 nM	**0.61 nM
	*0.11 nM	*0.46 nM	*0.17 nM
Human MR	*0.27 nM	*5.5 nM	*1.2 nM
Zebrafish MR	*0.082 nM	*0.44 nM	*0.3 nM

**Katsu et al. J. Steroid Biochemistry & Molecular Biology, 210, 2021.
*Katsu et al. Sci Signal.2019, 12(584):eaar2668. doi: 10.1126/scisignal.aar2668.
#Katsu et al. Sci Signal. 2018 Jul 3;11(537):eaao1520. doi: 10.1126/scisignal.aao1520.

However, instead of inhibiting fish MR, progesterone is a strong activator of the MR in trout [32], sturgeon [33], gar [33] and zebrafish [29,69,74], while spironolactone activates the MR in trout [32] and zebrafish [29,69,74,75], as well as in elephant shark MR [74,76]. Activation by progesterone and spironolactone of the MR in ray-finned fish conserves the MR response in cartilaginous fish [74,76], while, in a mammalian ancestor, the MR [69,71,77] diverged to be inhibited by progesterone and spironolactone. Interestingly, activation of the MR
by progesterone and spironolactone is conserved in lungfish [69,71,77,78], in which synthesis of aldosterone evolved [71,79–81]. It is in amphibians that the mutation in the MR that conferred antagonist activity for progesterone and spironolactone evolved [69,71,77].

These differences between the response in humans and fish of the PR and MR to steroids indicates that some responses of the PR and MR to environmental chemicals will differ between human and fish. This difference also may occur when using zebrafish for testing new drugs for treating cancer and other diseases in humans [18,21–24].

Regarding the physiological role of zebrafish MR, unexpectedly, the MR does not appear to regulate sodium uptake, the classical “mineralocorticoid function”, in zebrafish, although the MR is expressed in kidney and gill. Instead, cortisol regulates sodium uptake in zebrafish through transcriptional activation of the GR [82–84], indicating that the MR has other functions in fish kidney and gill, as well as in non-traditional organs, such a heart and brain [63,64,73,84–86]. Thus, differences in functions of the MR and GR in humans and zebrafish also need to be considered when testing chemicals for endocrine disruption and when developing pharmaceuticals for human health.

Lastly, divergent evolution of other steroid receptors in fish and terrestrial vertebrates may also be relevant for different responses to xenobiotics by steroid receptors in humans and fish. For example, in humans, testosterone and dihydrotestosterone are the physiological androgens. In fish, 11-ketotestosterone is an important androgen [87–89]. Analysis of transcriptional activation by androgens and other steroids in fish, humans and elephant sharks may uncover additional evolutionary insights that have practical application to our health.

Funding, Contributions and Competing Interests.

Funding: M.E.B. was supported by UC San Diego Foundation Research fund #3096.

Author contributions: M.E.B. wrote the paper.

Competing Interests: M.E.B. has no competing interests.

REFERENCES

[1] Bridgham JT, Eick GN, Larroux C, et al. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS
Biol. 2010;8(10):e1000497. Published 2010 Oct 5. doi:10.1371/journal.pbio.1000497, (n.d.).

[2] Evans RM, Mangelsdorf DJ. Nuclear Receptors, RXR, and the Big Bang. Cell. 2014 Mar 27;157(1):255-66. doi: 10.1016/j.cell.2014.03.012. PMID: 24679540; PMCID: PMC4029515., (n.d.).

[3] Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol. 2004 Oct;21(10):1923-37. doi: 10.1093/molbev/msh200. Epub 2004 Jun 30. PMID: 15229292., (n.d.).

[4] Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889-895. doi:10.1126/science.3283939, (n.d.).

[5] Baker ME, Nelson DR, Studer RA. Origin of the response to adrenal and sex steroids: Roles of promiscuity and co-evolution of enzymes and steroid receptors. J Steroid Biochem Mol Biol. 2015;151:12-24. doi:10.1016/j.jsbmb.2014.10.020, (n.d.).

[6] Whitfield GK, Jurutka PW, Haussler CA, Haussler MR. Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function. J Cell Biochem. 1999;Suppl 32-33:110-22. doi: 10.1002/(sici)1097-4644(1999)75:32+<110::aid-jcb14>3.0.co;2-t. PMID: 10629110., (n.d.).

[7] Fuller PJ. Novel interactions of the mineralocorticoid receptor. Mol Cell Endocrinol. 2015 Jun 15;408:33-7. doi: 10.1016/j.mce.2015.01.027. Epub 2015 Feb 7. PMID: 25662276., (n.d.).

[8] Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol. 2017;18(3):159-174. doi:10.1038/nrm.2016.152, (n.d.).

[9] Bulynko YA, O’Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry. 2011 Jan 25;50(3):313-28. doi: 10.1021/bi101762x. Epub 2010 Dec 29. PMID: 21141906; PMCID: PMC3647688., (n.d.).

[10] Changeux JP, Christopoulos A. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell. 2016 Aug 25;166(5):1084-1102. doi: 10.1016/j.cell.2016.08.015. PMID: 27565340., (n.d.).

[11] Cotnoir-White D, Laperrière D, Mader S. Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol Cell Endocrinol. 2011 Mar 1;334(1-2):76-82. doi: 10.1016/j.mce.2010.10.021. Epub 2010 Nov 4. PMID: 21056084., (n.d.).

[12] Beato M, Arnemann J, Chalepakis G, Slater E, Willmann T. Gene regulation by steroid hormones. J Steroid Biochem. 1987;27(1-3):9-14. doi: 10.1016/0022-4731(87)90288-3. PMID: 2826895., (n.d.).

[13] le Maire A, Bourguet W, Balaguer P. A structural view of nuclear hormone receptor: endocrine disruptor interactions. Cell Mol Life Sci. 2010 Apr;67(8):1219-37. doi: 10.1007/s00018-009-0249-2. Epub 2010 Jan 9. PMID: 20063036., (n.d.).

[14] McLachlan JA. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond. Andrology. 2016 Jul;4(4):684-94. doi: 10.1111/andr.12206. Epub 2016 May 27. PMID: 27230799., (n.d.).

[15] Baker ME, Lathe R. The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. J Steroid Biochem Mol Biol. 2018 Nov;184:29-37. doi: 10.1016/j.jsbmb.2018.07.001. Epub 2018 Jul 20. PMID: 30009950., (n.d.).
[16] La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patiatsu HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020 Jan;16(1):45-57. doi: 10.1038/s41574-019-0273-8. Epub 2019 Nov 12. PMID: 31719706; PMCID: PMC6902641., (n.d.).

[17] Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol. 2020 Feb 15;502:110665. doi: 10.1016/j.mce.2019.110665. Epub 2019 Nov 21. PMID: 31760044., (n.d.).

[18] Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol. 2013 Sep;137:165-73. doi: 10.1016/j.jsbmb.2013.01.003. Epub 2013 Jan 30. PMID: 23376612., (n.d.).

[19] Bambino K, Chu J. Zebrafish in Toxicology and Environmental Health. Curr Top Dev Biol. 2017;124:331-367. doi: 10.1016/bs.ctdb.2016.10.007. Epub 2016 Dec 21. PMID: 28335863; PMCID: PMC5836480., (n.d.).

[20] Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Mar;149(2):187-95. doi: 10.1016/j.cbpc.2008.10.099. Epub 2008 Oct 14. PMID: 18955160., (n.d.).

[21] Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007 May;8(5):353-67. doi: 10.1038/nrg2091. PMID: 17440532., (n.d.).

[22] Fazio M, Zon LI. Fishing for answers in precision cancer medicine. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10306-10308. doi: 10.1073/pnas.1713769114. Epub 2017 Sep 15. PMID: 28916734; PMCID: PMC5625937., (n.d.).

[23] Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, Ferreira MG. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8234-E8243. doi: 10.1073/pnas.1618389114. Epub 2017 Aug 23. PMID: 28835536; PMCID: PMC5625889., (n.d.).

[24] Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol. 2019 May;34(5):751-762. doi: 10.1007/s00467-018-3921-7. Epub 2018 Mar 3. PMID: 29502161; PMCID: PMC6424945., (n.d.).

[25] Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat Toxicol. 2021 May;234:105813. doi: 10.1016/j.aquatox.2021.105813. Epub 2021 Mar 20. PMID: 33812311., (n.d.).

[26] Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007 Jul;87(3):905-31. doi: 10.1152/physrev.00026.2006. PMID: 17615392., (n.d.).

[27] Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545-556. doi: 10.1016/s0092-8674(01)00241-0., (n.d.).

[28] Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev. 2015;95(1):297-340. doi: 10.1152/physrev.00011.2014., (n.d.).

[29] Katsu Y, Oka K, Baker ME. Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: Allosteric influence on steroid specificity. Sci Signal. 2018;11(537):esa01520. Published 2018 Jul 3. doi:10.1126/scisignal.aaa5150., (n.d.).
[30] Hellal-Levy C, Couette B, Fagart J, Souque A, Gomez-Sanchez C, Rafestin-Oblin M. Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett. 1999;464(1-2):9-13. doi:10.1016/s0014-5793(99)01667-1, (n.d.).

[31] Geller DS, Farhi A, Pinkerton N, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119-123. doi:10.1126/science.289.5476.119, (n.d.).

[32] Sturmc, Bury N, Dengreville L, et al. 11-deoxycorticosterone is a potent agonist of the rainbow trout (Oncorhynchus mykiss) mineralocorticoid receptor. Endocrinology. 2005;146(1):47-55. doi:10.1210/en.2004-0128, (n.d.).

[33] Sugimoto A, Oka K, Sato R, Adachi S, Baker ME, Katsu Y. Corticosteroid and progesterone transactivation of mineralocorticoid receptors from Amur sturgeon and tropical gar. Biochem J. 2016;473(20):3655-3665. doi:10.1042/BCJ20160579, (n.d.).

[34] Bridgham JT, Carroll SM, Thornton JW. Evolution of hormone-receptor complexity by molecular exploitation. Science. 2006;312(5770):97-101. doi:10.1126/science.1123348, (n.d.).

[35] Baker ME. Steroid receptors and vertebrate evolution. Mol Cell Endocrinol. 2019 Oct 1;496:110526. doi: 10.1016/j.mce.2019.110526. Epub 2019 Jul 31. PMID: 31376417., (n.d.).

[36] Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D, Roper KE, Fernandez-Valverde SL, Degnan SM, Degnan BM. Pluripotency and the origin of animal multicellularity. Nature. 2019 Jun;570(7762):519-522. doi: 10.1038/s41586-019-1290-4. Epub 2019 Jun 12. PMID: 31189954., (n.d.).

[37] Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713):20150476. doi: 10.1098/rstb.2015.0476. Erratum in: Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718): PMID: 27994119; PMCID: PMC5182410., (n.d.).

[38] Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol. 2021 Feb;11(2):200359. doi: 10.1098/rsob.200359. Epub 2021 Feb 24. PMID: 33622103; PMCID: PMC8061703., (n.d.).

[39] Bridgham JT, Brown JE, Rodriguez-Mari A, Catchen JM, Thornton JW. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet. 2008 Sep 12;4(9):e1000191. doi: 10.1371/journal.pgen.1000191. PMID: 18787702; PMCID: PMC2527136., (n.d.).

[40] Thornton JW. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5671-6. doi: 10.1073/pnas.091553298. Epub 2001 May 1. PMID: 11331759; PMCID: PMC33271., (n.d.).

[41] Escriva H. My Favorite Animal, Amphioxus: Unparalleled for Studying Early Vertebrate Evolution. Bioessays. 2018 Dec;40(12):e1800130. doi: 10.1002/bies.201800130. Epub 2018 Oct 17. PMID: 30328120., (n.d.).

[42] Mizuta T, Kubokawa K. Presence of sex steroids and cytochrome P450 genes in amphioxus. Endocrinology. 2007 Aug;148(8):3554-65. doi: 10.1210/en.2007-0109. Epub 2007 Apr 19. PMID: 17446181., (n.d.).
[43] Smith JJ, Saha NR, Amemiya CT. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr Comp Biol. 2010 Jul;50(1):130-7. doi: 10.1093/icb/icq023. Epub 2010 Apr 19. PMID: 21558194; PMCID: PMC3140258., (n.d.).

[44] Bryant SA, Herdy JR, Amemiya CT, Smith JJ. Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus). Mol Biol Evol. 2016 Sep;33(9):2337-44. doi: 10.1093/molbev/msw104. Epub 2016 Jun 10. PMID: 27288344; PMCID: PMC4989109., (n.d.).

[45] Shimeld SM, Donoghue PC. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development. 2012 Jun;139(12):2091-9. doi: 10.1242/dev.074716. PMID: 22619386., (n.d.).

[46] Venkatesh B, Lee AP, Ravi V, et al. Elephant shark genome provides unique insights into gnathostome evolution [published correction appears in Nature. 2014 Sep 25;513(7519):574]. Nature. 2014;505(7482):174-179. doi:10.1038/nature12826, (n.d.).

[47] Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL. Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13698-703. doi: 10.1073/pnas.1206625109. Epub 2012 Aug 6. PMID: 22869754; PMCID: PMC3427055., (n.d.).

[48] Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1638-43. doi: 10.1073/pnas.0307968100. Epub 2004 Feb 2. PMID: 14757817; PMCID: PMC341801., (n.d.).

[49] Conneely OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW. Reproductive functions of progesterone receptors. Recent Prog Horm Res. 2002;57:339-355. doi:10.1210/rp.57.1.339, (n.d.).

[50] Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502-519. doi:10.1210/edrv.18.4.0308, (n.d.).

[51] Grimm SL, Hartig SM, Edwards DP. Progesterone Receptor Signaling Mechanisms. J Mol Biol. 2016 Sep 25;428(19):3831-49. doi: 10.1016/j.jmb.2016.06.020. Epub 2016 Jul 2. PMID: 27380738., (n.d.).

[52] Scott AP, Sumpter JP, Stacey N. The role of the maturation-inducing steroid, 17,20beta-dihydroxypregn-4-en-3-one, in male fishes: a review. J Fish Biol. 2010;76(1):183-224. doi:10.1111/j.1095-8649.2009.02483.x, (n.d.).

[53] Canario AV, Scott AP. Effects of steroids and human chorionic gonadotrophin on in vitro oocyte final maturation in two marine flatfish: the dab, Limanda limanda, and the plaice, Pleuronectes platessa. Gen Comp Endocrinol. 1990 Feb;77(2):161-76. doi: 10.1016/0016-6480(90)90301-2. PMID: 2307340., (n.d.).

[54] Canario AV, Scott AP. Structure-activity relationships of C21 steroids in an in vitro oocyte maturation bioassay in rainbow trout, Salmo gairdneri. Gen Comp Endocrinol. 1988 Aug;71(2):338-48. doi: 10.1016/0016-6480(88)90262-6. PMID: 3203879., (n.d.).

[55] Lin X, Takagi W, Hyodo S, Ijiri S, Katsu Y, Baker, ME Regulation by Progestins, Corticosteroids and RU486 of Activation of Elephant Shark and Human Progesterone Receptors: An Evolutionary Perspective. bioRxiv, 2021 doi: https://doi.org/10.1101/2021.01.20.427507, (n.d.).
[56] Ikeuchi T, Todo T, Kobayashi T, Nagahama Y. A novel progestogen receptor subtype in the Japanese eel, Anguilla japonica. FEBS Lett. 2002;510(1-2):77-82. doi:10.1016/s0014-5793(01)03220-3, (n.d.).

[57] Todo T, Ikeuchi T, Kobayashi T, Kajiura-Kobayashi H, Suzuki K, Yoshikuni M, Yamauchi K, Nagahama Y. Characterization of a testicular 17alpha, 20beta-dihydroxy-4-pregnen-3-one (a spermiation-inducing steroid in fish) receptor from a teleost, Japanese eel (Anguilla japonica). FEBS Lett. 2000 Jan 7;465(1):12-7. doi:10.1016/s0014-5793(99)01714-7. PMID: 10620698., (n.d.).

[58] Hanna RN, Daly SC, Pang Y, et al. Characterization and expression of the nuclear progestin receptor in zebrafish gonads and brain. Biol Reprod. 2010;82(1):112-122. doi:10.1095/biolreprod.109.078527, (n.d.).

[59] Chen SX, Bogerd J, García-López A, et al. Molecular cloning and functional characterization of a zebrafish nuclear progesterone receptor. Biol Reprod. 2010;82(1):171-181. doi:10.1095/biolreprod.109.077644, (n.d.).

[60] Garrocó C, Ait-Aissa S, Boulah Touf A, Creusot N, Hinfray N, Bourguet P, Brion F. Human and Zebrafish Nuclear Progesterone Receptors Are Differently Activated by Manifold Progestins. Environ Sci Technol. 2020 Aug 4;54(15):9510-9518. doi: 10.1021/acs.est.0c02056. Epub 2020 Jul 21. PMID: 32650635., (n.d.).

[61] Trant JM, Thomas P. Structure-activity relationships of steroids in inducing germinal vesicle breakdown of Atlantic croaker oocytes in vitro. Gen Comp Endocrinol. 1988 Aug;71(2):307-17. doi: 10.1016/0016-6480(88)90259-6. PMID: 3203878., (n.d.).

[62] Funder JW. Minireview: Aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology. 2010 Nov;151(11):5098-102. doi: 10.1210/en.2010-0465. Epub 2010 Sep 22. PMID: 20861235., (n.d.).

[63] Joëls M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol. 2017 Jul;234(1):T49-T66. doi:10.1530/JOE-16-0660. PMID: 28634266., (n.d.).

[64] Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev. 2016;68(1):49-75. doi:10.1124/pr.115.011106, (n.d.).

[65] Baker ME, Katsu Y. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Evolution of the mineralocorticoid receptor: sequence, structure and function. J Endocrinol. 2017;234(1):T1-T16. doi:10.1530/JOE-16-0661, (n.d.).

[66] Hawkins UA, Gomez-Sanchez EP, Gomez-Sanchez CM, Gomez-Sanchez CE. The ubiquitous mineralocorticoid receptor: clinical implications. Curr Hypertens Rep. 2012;14(6):573-580. doi:10.1007/s11906-012-0297-0, (n.d.).

[67] Shibata S. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor and NaCl transport mechanisms in the renal distal nephron. J Endocrinol. 2017;234(1):T35-T47. doi:10.1530/JOE-16-0669, (n.d.).

[68] Arriza JL, Weinberger C, Cerelli G, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237(4812):268-275. doi:10.1126/science.3037703, (n.d.).

[69] Fuller PJ, Yao YZ, Jin R, et al. Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist. Proc Natl Acad Sci U S A. 2019;116(37):18578-18583. doi:10.1073/pnas.1903172116, (n.d.).
[70] Rupprecht R, Reul JM, van Steensel B, et al. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol. 1993;247(2):145-154. doi:10.1016/0922-4106(93)90072-h, (n.d.), (n.d.).

[71] Baker ME, Katsu Y. Progesterone: An enigmatic ligand for the mineralocorticoid receptor. Biochem Pharmacol. 2020 Jul;177:113976. doi: 10.1016/j.bcp.2020.113976. Epub 2020 Apr 17. PMID: 32305433., (n.d.).

[72] Funder JW. RALES, EPHESUS and redox. J Steroid Biochem Mol Biol. 2005 Feb;93(2-5):121-5. doi: 10.1016/j.jsbmb.2004.12.010. Epub 2005 Jan 28. PMID: 15860254., (n.d.).

[73] Funder JW. Reconsidering the roles of the mineralocorticoid receptor. Hypertension. 2009 Feb;53(2):286-90. doi: 10.1161/HYPERTENSIONAHA.108.119966. Epub 2009 Jan 12. PMID: 19139379., (n.d.).

[74] Katsu Y, Kohno S, Oka K, et al. Transcriptional activation of elephant shark mineralocorticoid receptor by corticosteroids, progesterone, and spironolactone. Sci Signal. 2019;12(584):eaar2668. Published 2019 Jun 4. doi:10.1126/scisignal.aar2668, (n.d.), (n.d.).

[75] Pippal JB, Cheung CM, Yao YZ, Brennan FE, Fuller PJ. Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Mol Cell Endocrinol. 2011 Jan 30;332(1-2):58-66. doi: 10.1016/j.mce.2010.09.014. Epub 2010 Oct 12. PMID: 20932876., (n.d.).

[76] Katsu Y, Shariful IMD, Lin X, Takagi W, Urushitani H, Kohno S, Hyodo S, Baker ME. N-terminal Domain Regulates Steroid Activation of Elephant Shark Glucocorticoid and Mineralocorticoid Receptors. J Steroid Biochem Mol Biol. 2021 Feb 27:105845. doi: 10.1016/j.jsbmb.2021.105845. Epub ahead of print. PMID: 33652098., (n.d.).

[77] Fuller PJ, Yao YZ, Yang J, Young MJ. Structural determinants of activation of the mineralocorticoid receptor: an evolutionary perspective. J Hum Hypertens. 2021 Feb;35(2):110-116. doi: 10.1038/s41371-020-0360-2. Epub 2020 May 28. PMID: 32467588., (n.d.).

[78] Katsu Y, Oana S, Lin X, Hyodo S, Baker ME. Aldosterone and Dexamethasone Activate African Lungfish Mineralocorticoid Receptor: Increased Activation After Removal of the Amino-Terminal Domain Regulates Steroid Activation of Elephant Shark Glucocorticoid and Mineralocorticoid Receptors. J Steroid Biochem Mol Biol. 2021 Nov 25;364(1-2):113-25. doi: 10.1016/j.jsbmb.2021.106024. Epub ahead of print. PMID: 34774724., (n.d.).

[79] Joss JM. Lungfish evolution and development. Gen Comp Endocrinol. 2006 Sep 15;148(3):285-9. doi: 10.1016/j.ygcen.2005.10.010. Epub 2005 Dec 7. PMID: 16337631., (n.d.).

[80] Joss JM. The Australian lungfish, Neoceratodus forsteri: a personal story. Gen Comp Endocrinol. 2011;173(1):1-3. doi:10.1016/j.ygcen.2011.05.004, (n.d.).

[81] Joss, J. M., D. Arnold-Reed and R. Balment. “The steroidogenic response to angiotensin II in the Australian lungfish, Neoceratodus forsteri.” Journal of Comparative Physiology B 164 (2004): 378-382., (n.d.).

[82] Cruz SA, Lin CH, Chao PL, Hwang PP. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio). PLoS One. 2013;8(10):e77997. Published 2013 Oct 29. doi:10.1371/journal.pone.0077997, (n.d.).

[83] Kumai Y, Nesan D, Vijayan MM, Perry SF. Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Mol Cell Endocrinol. 2012 Nov 25;364(1-2):113-25. doi: 10.1016/j.mce.2012.08.017. Epub 2012 Sep 1. PMID: 22963886., (n.d.).
[84] Takahashi H, Sakamoto T. The role of “mineralocorticoids” in teleost fish: relative importance of glucocorticoid signaling in the osmoregulation and “central” actions of mineralocorticoid receptor. Gen Comp Endocrinol. 2013;181:223-228. doi:10.1016/j.ygcen.2012.11.016, (n.d.).

[85] Funder JW. Aldosterone, hypertension and heart failure: insights from clinical trials. Hypertens Res. 2010 Sep;33(9):872-5. doi: 10.1038/hr.2010.115. Epub 2010 Jul 15. PMID: 20631715., (n.d.).

[86] de Kloet ER, Joëls M. Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation. Physiol Behav. 2017 Sep 1;178:13-20. doi: 10.1016/j.physbeh.2016.12.045. Epub 2017 Jan 13. PMID: 28089704., (n.d.).

[87] Olsson PE, Berg AH, von Hofsten J, Grahn B, Hellqvist A, Larsson A, Karlsson J, Modig C, Borg B, Thomas P. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone. Reprod Biol Endocrinol. 2005 Aug 17;3:37. doi: 10.1186/1477-7827-3-37. PMID: 16107211; PMCID: PMC1192819., (n.d.).

[88] Zhang Q, Ye D, Wang H, Wang Y, Hu W, Sun Y. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology. 2020 Jun 1;161(6):bqaa048. doi: 10.1210/endocr/bqaa048. PMID: 32222764., (n.d.).

[89] Fetter E, Smetanová S, Baldauf L, Lidzba A, Altenburger R, Schüttler A, Scholz S. Identification and Characterization of Androgen-Responsive Genes in Zebrafish Embryos. Environ Sci Technol. 2015 Oct 6;49(19):11789-98. doi: 10.1021/acs.est.5b01034. Epub 2015 Sep 9. PMID: 26308493., (n.d.).