A note on the scale dependence of the Burkardt sum rule

Jian Zhou

Nikhef and Department of Physics and Astronomy,
VU University Amsterdam, De Boelelaan 1081,
NL-1081 HV Amsterdam, The Netherlands

Abstract

In this short note, we argue that the Burkardt sum rule for the Sivers functions can be used to check the consistency of evolution equations of three-parton correlators.
Sum rules are often very useful for providing model independent constraints for non-perturbative objects. Among them, the Burkardt sum rule [1] is of particular interest in studying transverse single spin asymmetry (SSA) phenomenology. It states that the net transverse momentum carried by partons inside a transversely polarized nucleon vanishes when summing over all parton flavors,

\[\sum_{a=q,d,g} \langle k_\perp^a \rangle = 0 \]

(1)

Expressed in terms of the Sivers functions [2], it takes form,

\[\sum_{a=q,d,g} \int_0^1 dx \int d^2 k_\perp \frac{k_\perp^2}{x} f_1^a T(x, k_\perp^2) = 0 \]

(2)

The Burkardt sum rule was first derived in Ref. [1], and previously has been proved in an alternative way by Lorce [3]. It has been checked in various model calculations [4–8].

Using the well-known tree-level relations between the \(k_\perp^2 \) moment of the Sivers functions and the corresponding collinear twist-3 correlations [9], the sum rule can be re-expressed as,

\[\int_0^1 dx T^{(+)}_G(x, x) + \sum_{a=q,d,g} \int_0^1 dx T^a_F(x, x) = 0 \]

(3)

where \(T_F \) is the Qiu-Sterman (QS) function [10, 11], and \(T^{(+)}_G \) is the C-even tri-gluon correlation [12–14]. The scale dependence of the sum rule thus can be investigated by using the scale evolution equations of the relevant twist-3 correlations \(T_F \) and \(T^{(+)}_G \) which already existed in the literatures [15–26]. Note that this subject has also been studied from a different aspect of view in Ref. [27].

We start from the scale evolution equation for quark QS function \(T^q_F(x, x) \) [15–23],

\[\frac{\partial T^q_F(\xi, \xi, \mu^2)}{\partial \ln \mu^2} \bigg|_{q,q \to q} = \frac{\alpha_s}{2\pi} \int_{\xi}^x \frac{dx}{x} \left[C_F \left\{ \frac{1+z^2}{(1-z)_+} + \frac{3}{2} \delta(1-z) \right\} T^q_F(x, x) \
\right. \]

\[+ \frac{C_A}{2} \left\{ \frac{1+2z}{1-z} T^q_F(\xi, x) - \frac{1+z^2}{1-z} T^q_F(x, x) - 2\delta(1-z) T^q_F(x, x) \right\} \
\left. - \frac{N_c}{2} T^q_F(\xi, x) + \frac{1}{2N_c} (1-2z) T^q_F(\xi, \xi-x) - \frac{1}{2N_c} \tilde{T}^q_F(\xi, \xi-x) \right] \]

(4)

where \(z = \xi/x \). The last two terms in the above formula contain anti-quark contribution.
We proceed by carrying out the integration over ξ on both sides of the above equation,

$$\frac{\partial T_F^q(\mu^2)}{\partial \ln \mu^2} |_{q, q\to q} = \frac{\alpha_s}{2\pi} C_A \left\{ \int dx dz \frac{1 + \frac{z}{1 - z}}{1 - z} T_F^q(z, x) - T_F^q(\mu^2) \int dz \frac{1 + \frac{z^2}{1 - z}}{1 - z} \right. $$

$$\left. - \int dx dz \bar{T}_F^q(z, x) - 2 T_F^q(\mu^2) \right\} + \frac{\alpha_s}{2\pi 2 N_c} \int dx dz \left\{ (1 - 2z)T_F^q(z, (z - 1)x) - \bar{T}_F^q(z, (z - 1)x) \right\} (5)$$

where we introduce the short hand notation $T_F^q(\mu^2) = \int d\xi T_F^q(\xi, \xi, \mu^2)$. The same analysis applies to the scale evolution of anti-quark QS function $T_F^q(\mu^2)$. Note that our convention for T_F^q differs from the one used in Ref. [15] by a minus sign, such that the relation between the k_1^2 moment of the anti-quark Sivers function and T_F^q is the same as the relation for the quark ones in a same process (for example, SIDIS process). Combining quark and anti-quark contributions, one obtains,

$$\frac{\partial}{\partial \ln \mu^2} \left[T_F^q(\mu^2) + T_F^q(\mu^2) \right]|_{q, q\to q, q} = \frac{\alpha_s}{2\pi} C_A \left\{ \int dx dz \frac{1 + \frac{z}{1 - z}}{1 - z} \left[T_F^q(z, x) + T_F^q(z, x) \right] \right. $$

$$\left. - \int dx dz \frac{1 + \frac{z^2}{1 - z}}{1 - z} \left[T_F^q(\mu^2) + T_F^q(\mu^2) \right] \right. $$

$$\left. - \int dx dz \left[\bar{T}_F^q(z, x) + \bar{T}_F^q(z, x) \right] - 2 \left[T_F^q(\mu^2) + T_F^q(\mu^2) \right] \right\} (6)$$

To arrive the above result, we have made use of the symmetry properties $T_F^{q, \bar{q}}(x_1, x_2) = T_F^{\bar{q}, q}(x_2, x_1)$, $\bar{T}_F^{q, \bar{q}}(x_1, x_2) = -\bar{T}_F^{\bar{q}, q}(x_2, x_1)$ and the relations $T_F^q(x_1, -x_2) = T_F^q(x_1, x_2)$, $T_F^q(x_1, -x_2) = T_F^q(-x_1, x_2)$ [15, 18].

The scale evolution of the tri-gluon correlation $T_G^{(+)}$ also receives the contribution from quark and anti-quark [18, 24]

$$\frac{\partial T_G^{(+)}(\xi, \xi, \mu^2)}{\partial \ln \mu^2} |_{q, q\to g} = \frac{\alpha_s}{2\pi} \sum_{q, \bar{q}} \int dx C_A 2 \left\{ \frac{1 + (1 - z)^2}{z} \left[T_F^q(x, x) + T_F^q(x, x) \right] \right. $$

$$\left. - \frac{2 - z}{z} \left[T_F^q(x, x - \xi) + T_F^q(x, x - \xi) \right] + \left[T_F^F(x - \xi, x) + T_F^q(x - \xi, x) \right] \right\} (7)$$

Carrying out the integration over ξ on both sides of the equation and changing the integration
variable $z \to 1 - y$,

$$\frac{\partial T^{(+)}_G(\mu^2)}{\partial \ln \mu^2} |_{q,\bar{q},g} = \frac{\alpha_s}{2\pi} \sum_{q,\bar{q}} \frac{C_A}{2} \left[T^q_F(\mu^2) + T^{\bar{q}}_F(\mu^2) \right] \int dy \frac{1 + y^2}{1 - y}$$

$$+ \int dx \int dy \left(-\frac{1 + y}{1 - y} \right) [T^q_F(x, yx) + T^{\bar{q}}_F(x, yx)]$$

$$+ \int dx \int dy \left[T^q_F(yx, x) + T^{\bar{q}}_F(yx, x) \right] \right\}$$

Adding up Eq. 6 and Eq. 8, we obtain,

$$\frac{\partial}{\partial \ln \mu^2} \left[T^q_F(\mu^2) + T^{\bar{q}}_F(\mu^2) + T^{(+)}_G(\mu^2) \right] |_{q,\bar{q},g} = -\frac{\alpha_s}{2\pi} \sum_{q,\bar{q}} C_A \left[T^q_F(\mu^2) + T^{\bar{q}}_F(\mu^2) \right] \right\} = 0$$

We now consider the contribution from the tri-gluon correlation $T^{(+)}_G(x, x)$ to the scale evolution of the quark and anti-quark QS functions. It is worthy to mention that the O type tri-gluon correlation (related to the function $T^{(−)}_G(x, x)$) contributes the same in magnitude and opposite in sign to both the quark and anti-quark Sivers functions. This is not surprising because the O type tri-gluon relation is related to the k_{\perp} moment of the spin dependent odderon which measures the difference between particle and anti-particle scattering \[28\]. Therefore, to study the scale dependence of the sum rule, we only need to consider $T^{(+)}_G(x, x)$ contribution which has been given in Refs. \[15, 21, 26\],

$$\frac{\partial T^q_F(\xi, \xi, \mu^2)}{\partial \ln \mu^2} |_{g \to q} = \frac{\alpha_s}{2\pi} \int \frac{dx}{\xi} \frac{1}{2} \left[z^2 + (1 - z)^2 \right] T^{(+)}_F(x, x)$$

which leads to

$$\frac{\partial T^q_F(\mu^2)}{\partial \ln \mu^2} |_{g \to q} = \frac{\alpha_s}{2\pi} \frac{1}{3} T^{(+)}_G(\mu^2)$$

The same equation applies to the anti-quark case.

We move on to discuss the contribution from the tri-gluon correlation $T^{(+)}_G$ to the scale evolution of itself. Three different evolution equations have been derived by three groups, respectively \[15, 18, 25\]. The possible source of the discrepancy between the results in Refs. \[15, 25\] is that the different parametrization for the tri-gluon correlations have been used \[13, 14\]. We are not able to localize the source of the discrepancy between the results \[18, 25\], as the authors of paper \[18\] derived the evolution equations in a very different formalism.
Here, we use the one obtained in Ref. [25],

\[
\frac{\partial}{\partial \ln \mu_F^2} \left[\frac{N(\xi, \xi) - N(\xi, 0)}{\xi} \right] \bigg|_{g \rightarrow g} = \frac{\alpha_s}{2\pi} C_A \int_\xi^1 \frac{dx}{x^2} \left\{ \frac{(z^2 - z + 1)^2}{z(1-z)} [N(x, x) - N(x, 0)] + \frac{1 + z^2}{2z(1-z)} N(\xi, x) - \frac{1 + (1-z)^2}{2z(1-z)} N(\xi, x - \xi) - \frac{z^2 + (1-z)^2}{2z(1-z)} N(\xi, x - x) + \frac{\alpha_s}{2\pi} \right \}
\]

\[
\left\{ C_A \left[1 \frac{11}{6} - \frac{n_f}{3} \right] [N(\xi, \xi) - N(\xi, 0)] \right\}
\]

(12)

where the combination of the N type tri-gluon correlation defined in Ref. [14] can be related to \(T_G^{(+)} \) through the following identity,

\[
\frac{x}{2\pi} T_G^{(+)}(x, x) = -4M_N [N(x, x) - N(x, 0)]
\]

(13)

Carrying out the integration over \(\xi \) on the both sides of Eq. 12, we obtain,

\[
\frac{T_G^{(+)}(\mu^2)}{\partial \ln \mu_F^2} \bigg|_{g \rightarrow g} = -\frac{\alpha_s}{2\pi} C_A T_G^{(+)}(\mu^2) - \frac{\alpha_s n_f}{2\pi} T_G^{(+)}(\mu^2)
\]

(14)

To arrive the above compact expression, we have used the same mathematical trick, i.e. changing integration variable \(z \rightarrow 1-y \), as well as the symmetry properties for the N type tri-gluon correlation: \(N(x_1, x_2) = N(x_2, x_1) \), \(N(x_1, x_2) = -N(-x_1, -x_2) \).

Collecting the intermediate results presented in Eq. 9, Eq. 11, and Eq. 14, one obtains,

\[
\partial \sum_{q, \bar{q}, g} \left[T_F^q(\mu^2) + T_F^\bar{q}(\mu^2) + T_G^{(+)}(\mu^2) \right] \bigg|_{g \rightarrow g} = -\frac{\alpha_s}{2\pi} C_A \sum_{q, \bar{q}, g} \left[T_F^q(\mu^2) + T_F^\bar{q}(\mu^2) + T_G^{(+)}(\mu^2) \right]
\]

(15)

It is worthy to mention that all terms on the right side of the equation entirely come from the so-called boundary terms first discovered by Braun, Manashov and Pirnay [18]. We reexpress the above formula as,

\[
\partial \sum_{a=q, \bar{q}, g} \left\langle k_{a, \perp}^2(\mu^2) \right\rangle \bigg|_{g \rightarrow g} = -\frac{\alpha_s}{2\pi} C_A \sum_{a=q, \bar{q}, g} \left\langle k_{a, \perp}^2(\mu^2) \right\rangle
\]

(16)

which can be readily solved,

\[
\sum_{a=q, \bar{q}, g} \left\langle k_{a, \perp}^2(Q_h^2) \right\rangle = e^{-\frac{C_A}{2\pi} \int_0^\mu \frac{d\mu'}{\mu'} \alpha_s(\mu') \frac{\mu'}{\mu} \sum_{a=q, \bar{q}, g} \left\langle k_{a, \perp}^2(\mu^2) \right\rangle}
\]

(17)

This is the main result of our short note. It is easy to see that the Burkardt sum rule holds at any scale provided that it is satisfied at one arbitrary scale. If the Burkardt sum rule were
violated at a low initial scale for some unknown reason, judging from the above formula, it will be asymptotically satisfied at higher scale.

To summarize: We found that the Burkardt sum rule is stable under QCD scale evolution if one uses the tri-gluon evolution equation obtained in Ref. [25]. However, without making any model dependent assumption for the function $T_G^{(+)}$, we are not able to show that the Burkardt sum rule is preserved under QCD scale evolution when the different tri-gluon evolution equations are used [15, 18]. These findings might shed new light on the controversy about the tri-gluon scale evolution.

Acknowledgments: I am grateful to A. Metz for initiating this work and the critical reading of the manuscript. I also would like to thank D. Boer and P. Mulders for helpful discussions and valuable comments. This research has been supported by the EU “Ideas” program QWORK (contract 320389).

[1] M. Burkardt, Phys. Rev. D **69**, 057501 (2004) [hep-ph/0311013].
[2] D. W. Sivers, Phys. Rev. D **41**, 83 (1990).
[3] C. Lorcé, [arXiv:1502.06656 [hep-ph]].
[4] K. Goeke, S. Meissner, A. Metz and M. Schlegel, Phys. Lett. B **637**, 241 (2006) [hep-ph/0601133].
[5] A. Courtoy, F. Fratini, S. Scopetta and V. Vento, Phys. Rev. D **78**, 034002 (2008) [arXiv:0801.4347 [hep-ph]].
[6] A. Courtoy, S. Scopetta and V. Vento, Phys. Rev. D **79**, 074001 (2009) [arXiv:0811.1191 [hep-ph]].
[7] B. Pasquini and F. Yuan, Phys. Rev. D **81**, 114013 (2010) [arXiv:1001.5398 [hep-ph]].
[8] B. Pasquini and P. Schweitzer, Phys. Rev. D **83**, 114044 (2011) [arXiv:1103.5977 [hep-ph]].
[9] D. Boer, P. J. Mulders and F. Pijlman, Nucl. Phys. B **667**, 201 (2003) [hep-ph/0303034].
[10] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. **36**, 140 (1982) [Yad. Fiz. **36**, 242 (1982)]; Phys. Lett. B **150**, 383 (1985).
[11] J.-w. Qiu and G. F. Sterman, Phys. Rev. Lett. **67**, 2264 (1991);
[12] X. -D. Ji, Phys. Lett. B **289**, 137 (1992).
[13] Z. -B. Kang and J. -W. Qiu, Phys. Rev. D 78, 034005 (2008) [arXiv:0806.1970 [hep-ph]].

[14] H. Beppu, Y. Koike, K. Tanaka and S. Yoshida, Phys. Rev. D 82, 054005 (2010) [arXiv:1007.2034 [hep-ph]].

[15] Z. -B. Kang and J. -W. Qiu, Phys. Rev. D 79, 016003 (2009).

[16] J. Zhou, F. Yuan and Z. -T. Liang, Phys. Rev. D 79, 114022 (2009).

[17] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009).

[18] V. M. Braun, A. N. Manashov and B. Pirnay, Phys. Rev. D 80, 114002 (2009).

[19] J. P. Ma and H. Z. Sang, JHEP 1104, 062 (2011) [arXiv:1102.2679 [hep-ph]].

[20] A. Schafer and J. Zhou, Phys. Rev. D 85, 117501 (2012) [arXiv:1203.5293 [hep-ph]].

[21] J. P. Ma and Q. Wang, Phys. Lett. B 715, 157 (2012) [arXiv:1205.0611 [hep-ph]].

[22] Z. B. Kang and J. W. Qiu, Phys. Lett. B 713, 273 (2012) [arXiv:1205.1019 [hep-ph]].

[23] P. Sun and F. Yuan, Phys. Rev. D 88, no. 11, 114012 (2013) [arXiv:1308.5003 [hep-ph]].

[24] A. Schafer and J. Zhou, Phys. Rev. D 88, no. 1, 014008 (2013) [arXiv:1302.4600 [hep-ph]].

[25] A. Schafer and J. Zhou, arXiv:1308.4961 [hep-ph].

[26] L. Y. Dai, Z. B. Kang, A. Prokudin and I. Vitev, arXiv:1409.5851 [hep-ph].

[27] P. G. Ratcliffe and O. V. Teryaev, arXiv:1406.1604 [hep-ph].

[28] J. Zhou, Phys. Rev. D 89, no. 7, 074050 (2014) [arXiv:1308.5912 [hep-ph]].