Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra

Abdenacer Makhlouf
Université de Haute Alsace,
Laboratoire de Mathématiques, Informatique et Applications,
4, Rue des Frères Lumière, F-68093 Mulhouse, France
e-mail: Abdenacer.Makhlouf@uha.fr

Florin Panaite
Institute of Mathematics of the Romanian Academy
PO-Box 1-764, RO-014700 Bucharest, Romania
e-mail: Florin.Panaite@imar.ro

Abstract

We introduce the Hom-analogue of the L-R-smash product and use it to define the Hom-analogue of the diagonal crossed product. When H is a finite dimensional Hom-Hopf algebra with bijective antipode and bijective structure map, we define the Drinfeld double of H; its algebra structure is a Hom-diagonal crossed product and it has all expected properties, namely it is quasitriangular and modules over it coincide with left-right Yetter-Drinfeld modules over H.

Introduction

Hom-type algebras appeared first in physical contexts, in connection with twisted, discretized or deformed derivatives and corresponding generalizations, discretizations and deformations of vector fields and differential calculus (see [1, 2, 11, 12, 13, 14, 18, 19, 20, 26, 27, 30]). These papers dealt mainly with q-deformations of Heisenberg algebras (oscillator algebras), the Virasoro algebra and quantum conformal algebras, applied in Physics within string theory, vertex operator models, quantum scattering, lattice models and other contexts.

In [24, 29] the authors showed that a new quasi-deformation scheme leads from Lie algebras to a broader class of quasi-Lie algebras and subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras. The study of the class of Hom-Lie algebras, generalizing usual Lie algebras and where the Jacobi identity is twisted by a linear map, has become an active area of research. The corresponding associative algebras, called Hom-associative algebras, where introduced in [34] and it was shown that a commutator of a Hom-associative algebra gives rise to a Hom-Lie algebra. For further results see [3, 22, 23, 33, 35, 36, 37]. The coalgebra counterpart and the related notions of Hom-bialgebra and Hom-Hopf algebra were introduced in [36, 37] and some of their properties, extending properties of bialgebras and Hopf algebras, were described.

*Work supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0635, contract nr. 253/5.10.2011.
The original definitions of Hom-bialgebra and Hom-Hopf algebra involve two different linear maps α and β, with α twisting the associativity condition and β the coassociativity condition. Afterwards, two directions of study were developed, one considering the class such that $\beta = \alpha$, which are still called Hom-bialgebras and Hom-Hopf algebras (cf. [21, 35, 39, 41, 46, 47, 48]) and another one, initiated in [9], where the map α is assumed to be invertible and $\beta = \alpha^{-1}$ (these are called monoidal Hom-bialgebras and monoidal Hom-Hopf algebras). Yetter-Drinfeld modules, integrals, the Drinfeld double and Radford’s biproduct have been studied for monoidal Hom-bialgebras in [13, 16, 31]. Yetter-Drinfeld modules over Hom-bialgebras were studied in [38] and we will introduce the Drinfeld double in this paper. Since Hom-bialgebras and monoidal Hom-bialgebras are different concepts, it turns out that our definitions, formulae and results are also different from the ones in [13, 31].

One of the main tools to construct examples of Hom-type algebras is the so-called ”twisting principle” which was introduced by D. Yau for Hom-associative algebras and since then extended to various Hom-type algebras. It allows to construct a Hom-type algebra starting from a classical-type algebra and an algebra homomorphism.

The twisted tensor product $A \otimes_R B$ of two associative algebras A and B is a certain associative algebra structure on the vector space $A \otimes B$, defined in terms of a so-called twisting map $R : B \otimes A \rightarrow A \otimes B$, having the property that it coincides with the usual tensor product algebra $A \otimes B$ if R is the usual flip map. This construction was introduced in [10, 12] and it may be regarded as a representative for the Cartesian product of noncommutative spaces, see [28, 32] for more on this subject. In [39] we generalized this construction to Hom-associative algebras: if R is a linear map $R : B \otimes A \rightarrow A \otimes B$ between two Hom-associative algebras A and B satisfying some conditions (such an R is called Hom-twisting map), we can construct the so-called Hom-twisted tensor product $A \otimes_R B$, which is a Hom-associative algebra.

The L-R-smash product over a cocommutative Hopf algebra was introduced and studied in a series of papers [4, 5, 6, 7], inspired by the theory of deformation quantization. This construction was substantially generalized in [40], as follows: if H is a bialgebra or quasi-bialgebra and D is an H-bimodule algebra, the L-R-smash product is a certain associative algebra structure on $D \otimes H$, denoted by $D \rhd \rhd H$. A common generalization of twisted tensor products of algebras and L-R-smash products over bialgebras was introduced in [17], under the name L-R-twisted tensor product of algebras.

The diagonal crossed product ([9, 25]) is a construction that associates to a Hopf or quasi-Hopf algebra H with bijective antipode and to an H-bimodule algebra D a certain associative algebra structure on $D \otimes H$, denoted by $D \bowtie H$. It was proved in [10] that we actually have an algebra isomorphism $D \bowtie H \simeq D \bowtie H$. The importance of the diagonal crossed product stems from the fact that, if H is finite dimensional and $D = H^*$, then $H^* \bowtie H$ is the algebra structure of the Drinfeld double of H.

The ultimate aim of this paper is to construct the Drinfeld double of a finite dimensional Hom-Hopf algebra H with bijective antipode and bijective structure map. We can expect from the beginning that its algebra structure has to be a Hom-analogue of a diagonal crossed product between H^* and H, but it is not clear at all a priori how to define this Hom-analogue. So, we proceed as follows. We define first the Hom-analogue of the L-R-twisted tensor product of algebras, which is a natural generalization of the Hom-twisted tensor product. It is defined as follows: if A and B are two Hom-associative algebras and $R : B \otimes A \rightarrow A \otimes B$ and $Q : A \otimes B \rightarrow A \otimes B$ are linear maps satisfying some conditions, the Hom-L-R-twisted tensor product $A \otimes_R B$ is a certain Hom-associative algebra structure on $A \otimes B$. The key result is Proposition 2.3, saying that if Q is bijective then the map $P := Q^{-1} \circ R : B \otimes A \rightarrow A \otimes B$ is a Hom-twisting map (and
we have an algebra isomorphism $A_Q \otimes_R B \simeq A \otimes_P B$). Now if H is a Hom-bialgebra and D is an H-bimodule Hom-algebra, we can define in a natural way a Hom-L-R-twisted tensor product $D_Q \otimes_R H$, which is denoted by $D \bowtie H$ and called the Hom-L-R-smash product. It turns out that, under some extra hypotheses (among them, the existence of a bijective antipode on H), the map Q is bijective, so we have the Hom-twisted tensor product $D \otimes_P H$, where $P = Q^{-1} \circ R$; this will be the Hom-diagonal crossed product $D \bowtie H$ we are looking for. Moreover, if H is a finite dimensional Hom-Hopf algebra with bijective antipode and bijective structure map, we can build such a Hom-diagonal crossed product $H^* \bowtie H$, and this will be the algebra structure of the Drinfeld double $D(H)$.

To find the rest of the structure of $D(H)$, we define left-right Yetter-Drinfeld modules over H, note that they form a braided monoidal category (we analyzed this in detail for left-left Yetter-Drinfeld modules in [38]), prove that the category of modules over $D(H)$ is isomorphic to the category of left-right Yetter-Drinfeld modules and then transfer all the structure from $H \otimes D^H$ to $D(H)$. It turns out that $D(H)$ is a quasitriangular Hom-Hopf algebra, as expected.

1 Preliminaries

We work over a base field k. All algebras, linear spaces etc... will be over k; unadorned \otimes means \otimes_k. For a comultiplication $\Delta : C \to C \otimes C$ on a vector space C we use a Sweedler-type notation $\Delta(c) = c_1 \otimes c_2$, for $c \in C$. Unless otherwise specified, the (co)algebras ((co)associative or not) that will appear in what follows are not supposed to be (co)unital, and a multiplication $\mu : V \otimes V \to V$ on a linear space V is denoted by juxtaposition: $\mu(v \otimes v') = vv'$.

We recall some concepts and results, fixing the terminology to be used throughout the paper. For Hom-structures, we use terminology as in our previous papers [38], [39].

Proposition 1.1 ([77]) Let A and B be two associative algebras and $R : B \otimes A \to A \otimes B$, $Q : A \otimes B \to A \otimes B$ two linear maps, for which we use a Sweedler-type notation $R(b \otimes a) = a_R \otimes_R b_R = a r \otimes r$, and $Q(a \otimes b) = a_Q \otimes_Q b_Q = a q \otimes q$, for all $a \in A, b \in B$, satisfying the following conditions, for all $a, a' \in A$ and $b, b' \in B$:

\[
\begin{align*}
(aa')_R \otimes_R b_R &= a_R a'_R \otimes_R (b_R)_r, \\
a_R \otimes_R (bb')_R &= (a_R)_r \otimes_R b_R b'_R, \\
(aa')_Q \otimes_Q b_Q &= a_Q a'_Q \otimes_Q (b_Q)_q, \\
(aQ) \otimes_Q (bb')_Q &= (aQ)_q \otimes_Q b_Q b'_Q, \\
b_R \otimes_R (aQ)_Q \otimes Q b'_Q &= b_R \otimes_R (aQ)_R \otimes Q b'_Q, \\
aR \otimes_R (bR)_Q \otimes Q a'_Q &= aR \otimes_Q (bQ)_R \otimes Q a'_Q.
\end{align*}
\]

If we define on $A \otimes B$ a multiplication by $(a \otimes b)(a' \otimes b') = a_Q a'_R \otimes_R b_R b'_Q$, then this multiplication is associative. This algebra structure will be denoted by $A_Q \otimes_R B$ and will be called the L-R-twisted tensor product of A and B afforded by the maps R and Q. In the particular case $Q = id_{A \otimes B}$, the L-R-twisted tensor product $A_Q \otimes_R B$ reduces to the twisted tensor product $A \otimes_R B$ introduced in [10], [33], whose multiplication is defined by $(a \otimes b)(a' \otimes b') = a a'_R \otimes_R b_R b'$.

Example 1.2 Let H be a bialgebra and D an H-bimodule algebra in the usual sense, with actions $H \otimes D \to D, h \otimes d \mapsto h \cdot d$ and $D \otimes H \to D, d \otimes h \mapsto d \cdot h$. Define the linear maps

\[R : H \otimes D \to D \otimes H, \quad R(h \otimes d) = h_1 \cdot d \otimes h_2,\]
Q : D ⊗ H → D ⊗ H, \ Q(d \otimes h) = d \cdot h_2 \otimes h_1.

Then we have an L-R-twisted tensor product \(D \otimes_R H \), which is denoted by \(D \sharp H \) and is called the L-R-smash product of \(D \) and \(H \) (cf. [40]). If we denote \(d \otimes h := d \sharp h \), for \(d \in D \), \(h \in H \), the multiplication of \(D \sharp H \) is given by

\[(d \sharp h)(d' \sharp h') = (d \cdot h_2')(h_1 \cdot d') \sharp h_1 h'.\]

If \(H \) is moreover a Hopf algebra with bijective antipode, we can define as well the so-called diagonal crossed product \(D \bowtie H \) (cf. [23], [8]), an associative algebra structure on \(D \otimes H \) whose multiplication is defined (we denote \(d \otimes h := d \bowtie h \)) by

\[(d \bowtie h)(d' \bowtie h') = d(h_1 \cdot d' \cdot S^{-1}(h_3)) \bowtie h_2 h'.\]

If the action of \(H \) on \(D \) is unitail, we have \(D \sharp H \simeq D \bowtie H \), cf. [40].

Definition 1.3 (i) A Hom-associative algebra is a triple \((A, \mu, \alpha)\), in which \(A \) is a linear space, \(\alpha : A \to A \) and \(\mu : A \otimes A \to A \) are linear maps, with notation \(\mu(a \otimes a') = aa' \), such that

\[\alpha(aa') = \alpha(a)\alpha(a'), \quad \text{(multiplicativity)}\]

\[\alpha(a)(a'a'') = (aa')\alpha(a''), \quad \text{(Hom - associativity)}\]

for all \(a, a', a'' \in A \). We call \(\alpha \) the structure map of \(A \).

A morphism \(f : (A, \mu_A, \alpha_A) \to (B, \mu_B, \alpha_B) \) of Hom-associative algebras is a linear map \(f : A \to B \) such that \(\alpha_B \circ f = f \circ \alpha_A \) and \(f \circ \mu_A = \mu_B \circ (f \otimes f) \).

(ii) A Hom-coassociative coalgebra is a triple \((C, \Delta, \alpha)\), in which \(C \) is a linear space, \(\alpha : C \to C \) and \(\Delta : C \to C \otimes C \) are linear maps (\(\alpha \) is called the structure map of \(C \)) such that

\[\alpha(\alpha \otimes \alpha) \circ \Delta = \Delta \circ \alpha, \quad \text{(comultiplicativity)}\]

\[\Delta(\alpha \otimes \alpha) = (\alpha \otimes \Delta) \circ \Delta. \quad \text{(Hom - coassociativity)}\]

A morphism \(g : (C, \Delta_C, \alpha_C) \to (D, \Delta_D, \alpha_D) \) of Hom-coassociative coalgebras is a linear map \(g : C \to D \) such that \(\alpha_D \circ g = g \circ \alpha_C \) and \((g \otimes g) \circ \Delta_C = \Delta_D \circ g \).

Remark 1.4 Assume that \((A, \mu_A, \alpha_A)\) and \((B, \mu_B, \alpha_B)\) are two Hom-associative algebras; then \((A \otimes B, \mu_{A\otimes B}, \alpha_A \otimes \alpha_B)\) is a Hom-associative algebra (called the tensor product of \(A \) and \(B \)), where \(\mu_{A\otimes B} \) is the usual multiplication: \((a \otimes b)(a' \otimes b') = aa' \otimes bb'\).

Definition 1.5 Let \((A, \mu_A, \alpha_A)\) be a Hom-associative algebra, \(M \) a linear space and \(\alpha_M : M \to M \) a linear map.

(i) \((43), (48)\) A left \(A \)-module structure on \((M, \alpha_M)\) consists of a linear map \(A \otimes M \to M \), \(a \otimes m \mapsto a \cdot m \), satisfying the conditions (for all \(a, a' \in A \) and \(m \in M \))

\[\alpha_M(a \cdot m) = \alpha_A(a) \cdot \alpha_M(m), \quad (1.7)\]

\[\alpha_A(a)(a' \cdot m) = (aa') \cdot \alpha_M(m). \quad (1.8)\]

(ii) \((39)\) A right \(A \)-module structure on \((M, \alpha_M)\) consists of a linear map \(M \otimes A \to M \), \(m \otimes a \mapsto m \cdot a \), satisfying the conditions (for all \(a, a' \in A \) and \(m \in M \))

\[\alpha_M(m \cdot a) = \alpha_M(m) \cdot \alpha_A(a), \quad (1.9)\]

\[(m \cdot a) \cdot \alpha_A(a') = \alpha_M(m) \cdot (aa'). \quad (1.10)\]

If \((M, \alpha_M)\), \((N, \alpha_N)\) are left (respectively right) \(A \)-modules (\(A \)-actions denoted by \(\cdot \)), a morphism of left (respectively right) \(A \)-modules \(f : M \to N \) is a linear map with \(\alpha_N \circ f = f \circ \alpha_M \) and \(f(a \cdot m) = a \cdot f(m) \) (respectively \(f(m \cdot a) = f(m) \cdot a \)), \(\forall a \in A, \ m \in M \).
Definition 1.6 ([39], [37]) A Hom-bialgebra is a quadruple \((H, \mu, \Delta, \alpha)\), in which \((H, \mu, \alpha)\) is a Hom-associative algebra, \((H, \Delta, \alpha)\) is a Hom-coassociative coalgebra and moreover \(\Delta\) is a morphism of Hom-associative algebras.

Thus, a Hom-bialgebra is a Hom-associative algebra \((H, \mu, \alpha)\) endowed with a linear map \(\Delta : H \to H \otimes H\), with notation \(\Delta(h) = h_1 \otimes h_2\), such that, for all \(h, h' \in H\), we have:

\[
\Delta(h_1) \otimes \alpha(h_2) = \alpha(h_1) \otimes \Delta(h_2),
\]

\[
\Delta(hh') = h_1 \otimes h'_2,
\]

\[
\Delta(\alpha(h)) = \alpha(h_1) \otimes \alpha(h_2).
\]

Proposition 1.7 ([37], [43]) (i) Let \((A, \mu)\) be an associative algebra and \(\alpha : A \to A\) an algebra endomorphism. Define a new multiplication \(\mu_\alpha := \alpha \circ \mu : A \otimes A \to A\). Then \((A, \mu_\alpha, \alpha)\) is a Hom-associative algebra, denoted by \(A_\alpha\).

(ii) Let \((C, \Delta)\) be a coassociative coalgebra and \(\alpha : C \to C\) a coalgebra endomorphism. Define a new comultiplication \(\Delta_\alpha := \Delta \circ \alpha : C \to C \otimes C\). Then \((C, \Delta_\alpha, \alpha)\) is a Hom-coassociative coalgebra, denoted by \(C_\alpha\).

(iii) Let \((H, \mu, \Delta)\) be a bialgebra and \(\alpha : H \to H\) a bialgebra endomorphism. If we consider the Hom-bialgebra \(\Delta(h) := \Delta(h_1) \otimes \alpha(h_2)\), for all \(h \in H\), then \(H_\alpha = (H, \mu_\alpha, \Delta_\alpha, \alpha)\) is a Hom-bialgebra.

Proposition 1.8 ([48]) Let \((H, \mu_H, \Delta_H, \alpha_H)\) be a Hom-bialgebra. If \((M, \alpha_M)\) and \((N, \alpha_N)\) are \(H\)-modules, then \((M \otimes N, \alpha_M \otimes \alpha_N)\) is also a \(H\)-module, with \(H\)-action defined by \(H \otimes (M \otimes N) \to M \otimes N, h \otimes (m \otimes n) \mapsto h \cdot (m \otimes n) := h_1 \cdot m \otimes h_2 \cdot n\).

Definition 1.9 ([43]) Let \((H, \mu_H, \Delta_H, \alpha_H)\) be a Hom-bialgebra. A Hom-associative algebra \((A, \mu_A, \alpha_A)\) is called a left \(H\)-module Hom-algebra if \((A, \alpha_A)\) is a left \(H\)-module, with action denoted by \(H \otimes A \to A, h \otimes a \mapsto h \cdot a\), such that the following condition is satisfied:

\[
\alpha^2_H(h) \cdot (aa') = (h_1 \cdot a)(h_2 \cdot a'), \quad \forall h \in H, a, a' \in A.
\]

Proposition 1.10 ([43]) Let \((H, \mu_H, \Delta_H)\) be a bialgebra and \((A, \mu_A)\) a left \(H\)-module algebra in the usual sense, with action denoted by \(H \otimes A \to A, h \otimes a \mapsto h \cdot a\). Let \(\alpha_H : H \to H\) be a bialgebra endomorphism and \(\alpha_A : A \to A\) an algebra endomorphism, such that \(\alpha_A(h \cdot a) = \alpha_H(h) \cdot \alpha_A(a)\), for all \(h \in H\) and \(a \in A\). If we consider the Hom-bialgebra \(H_{\alpha_H} = (H, \alpha_H \circ \mu_H, \Delta_H \circ \alpha_H, \alpha_H)\) and the Hom-associative algebra \(A_{\alpha_A} = (A, \alpha_A \circ \mu_A, \alpha_A)\), then \(A_{\alpha_A}\) is a left \(H_{\alpha_H}\)-module Hom-algebra in the above sense, with action denoted by \(H_{\alpha_H} \otimes A_{\alpha_A} \to A_{\alpha_A}, h \otimes a \mapsto h \circ a := \alpha_A(h \cdot a) = \alpha_H(h) \cdot \alpha_A(a)\).

Definition 1.11 ([39]) Assume that \((H, \mu_H, \Delta_H, \alpha_H)\) is a Hom-bialgebra. A Hom-associative algebra \((C, \mu_C, \alpha_C)\) is called a right \(H\)-module Hom-algebra if \((C, \alpha_C)\) is a right \(H\)-module, with action denoted by \(C \otimes H \to C, c \otimes h \mapsto c \cdot h\), such that the following condition is satisfied:

\[
(cc') \cdot \alpha^2_H(h) = (c \cdot h_1)(c' \cdot h_2), \quad \forall h \in H, c, c' \in C.
\]

Proposition 1.12 ([39]) Let \((H, \mu_H, \Delta_H)\) be a bialgebra and \((C, \mu_C)\) a right \(H\)-module algebra in the usual sense, with action denoted by \(C \otimes H \to C, c \otimes h \mapsto c \cdot h\). Let \(\alpha_H : H \to H\) be a bialgebra endomorphism and \(\alpha_C : C \to C\) an algebra endomorphism, such that \(\alpha_C(c \cdot h) = \alpha_C(c) \cdot \alpha_H(h)\), for all \(h \in H\) and \(c \in C\). Then the Hom-associative algebra \(C_{\alpha_C} = (C, \alpha_C \circ \mu_C, \alpha_C)\) becomes a right module Hom-algebra over the Hom-bialgebra \(H_{\alpha_H} = (H, \alpha_H \circ \mu_H, \Delta_H \circ \alpha_H, \alpha_H)\), with action defined by \(C_{\alpha_C} \otimes H_{\alpha_H} \to C_{\alpha_C}, c \otimes h \mapsto c \cdot h := \alpha_C(c \cdot h) = \alpha_C(c) \cdot \alpha_H(h)\).
Proposition 1.13 (39) Let \((D, \mu, \alpha)\) be a Hom-associative algebra and \(T : D \otimes D \to D \otimes D\) a linear map, with notation \(T(d \otimes d') = d^T \otimes d'^T\), for \(d, d' \in D\), satisfying the conditions
\[
(\alpha \otimes \alpha) \circ T = T \circ (\alpha \otimes \alpha),
\]
\[
T \circ (\alpha \otimes \mu) = (\alpha \otimes \mu) \circ T_{13} \circ T_{12},
\]
\[
T \circ (\mu \otimes \alpha) = (\mu \otimes \alpha) \circ T_{13} \circ T_{23},
\]
\[
T_{12} \circ T_{23} = T_{23} \circ T_{12},
\]
where we used a standard notation for the operators \(T_{ij}\), namely \(T_{12} = T \otimes \text{id}_D\), \(T_{23} = \text{id}_D \otimes T\) and \(T_{13}(d \otimes d' \otimes d'') = d^T \otimes d'^T \otimes d''^T\). Then \(D^T := (D, \mu \circ T, \alpha)\) is also a Hom-associative algebra. The map \(T\) is called a Hom-twistor.

Proposition 1.14 (39) Let \((A, \mu_A, \alpha_A)\) and \((B, \mu_B, \alpha_B)\) be two Hom-associative algebras and \(R : B \otimes A \to A \otimes B\) a linear map, with Sweedler-type notation \(R(b \otimes a) = a_R \otimes b_R = a_r \otimes b_r\), for \(a \in A, b \in B\). Assume that the following conditions are satisfied:
\[
\alpha_A(a_R) \otimes \alpha_B(b_R) = \alpha_A(a)_R \otimes \alpha_B(b)_R, \tag{1.20}
\]
\[
(aa')_R \otimes \alpha_B(b) = a_{R'} \otimes \alpha_B((b)_R), \tag{1.21}
\]
\[
\alpha_A(a)_R \otimes (bb')_R = \alpha_A((a)_R) \otimes b_r b'_r, \tag{1.22}
\]
for all \(a, a' \in A\) and \(b, b' \in B\) (such a map \(R\) is called a Hom-twisting map). If we define a new multiplication on \(A \otimes B\) by \((a \otimes b)(a' \otimes b') = aa'_{R'} \otimes b_r b'_r\), then \(A \otimes B\) becomes a Hom-associative algebra with structure map \(\alpha_A \otimes \alpha_B\), denoted by \(\alpha_{A \otimes B}\) and called the Hom-twisted tensor product of \(A\) and \(B\).

Theorem 1.15 (39) Let \((A, \mu_A, \alpha_A)\), \((B, \mu_B, \alpha_B)\) and \((C, \mu_C, \alpha_C)\) be three Hom-associative algebras and \(R_1 : B \otimes A \to A \otimes B\), \(R_2 : C \otimes B \to B \otimes C\), \(R_3 : C \otimes A \to A \otimes C\) three Hom-twisting maps, satisfying the braid condition
\[
(id_A \otimes R_2) \circ (R_3 \otimes id_B) \circ (id_C \otimes R_1) = (R_1 \otimes id_C) \circ (id_B \otimes R_3) \circ (R_2 \otimes id_A). \tag{1.23}
\]

Define the maps
\[
P_1 : C \otimes (A \otimes_{R_1} B) \to (A \otimes_{R_1} B) \otimes C, \quad P_1 = (id_A \otimes R_2) \circ (R_3 \otimes id_B),
\]
\[
P_2 : (B \otimes_{R_2} C) \otimes A \to A \otimes (B \otimes_{R_2} C), \quad P_2 = (R_1 \otimes id_C) \circ (id_B \otimes R_3).
\]
Then \(P_1\) is a Hom-twisting map between \(A \otimes_{R_1} B\) and \(C\), \(P_2\) is a Hom-twisting map between \(A\) and \(B \otimes_{R_2} C\), and the Hom-associative algebras \((A \otimes_{R_1} B) \otimes_{P_1} C\) and \(A \otimes_{P_2} (B \otimes_{R_2} C)\) coincide; this Hom-associative algebra will be denoted by \(A \otimes_{R_1} B \otimes_{R_2} C\) and will be called the iterated Hom-twisted tensor product of \(A, B, C\).

Proposition 1.16 (39) Let \((H, \mu_H, \Delta_H, \alpha_H)\) be a Hom-bialgebra, \((A, \mu_A, \alpha_A)\) a left \(H\)-module Hom-algebra and \((C, \mu_C, \alpha_C)\) a right \(H\)-module Hom-algebra, with actions denoted by \(H \otimes A \to A\), \(h \otimes a \mapsto h \cdot a\) and \(C \otimes H \to C\), \(c \otimes h \mapsto c \cdot h\), and assume that the structure maps \(\alpha_H, \alpha_A, \alpha_C\) are bijective. Then:
(i) We have the following Hom-twisting maps:
\[
R_1 : H \otimes A \to A \otimes H, \quad R_1(h \otimes a) = \alpha_H^2(h_1) \cdot \alpha_A^{-1}(a) \otimes \alpha_H^{-1}(h_2),
\]
Thus, we can consider the Hom-associative algebras $A \otimes_{R_1} H$ and $H \otimes_{R_2} C$, which are denoted by $A\#H$ and respectively $H\#C$ and are called the left and respectively right Hom-smash products. If we denote $a \otimes h := a\#h$ and $h\#c := h \otimes c$, for $a \in A$, $h \in H$, $c \in C$, the multiplications of the smash products are given by

$$
(a\#h)(a'\#h') = a(\alpha_H^{-1}(h_1) \cdot \alpha_A^{-1}(a')) \# \alpha_H^{-1}(h_2)h',
$$

$$
(h\#c)(h'\#c') = h(\alpha_H^{-1}(h_1') \# \alpha_C^{-1}(c) \cdot \alpha_H^{-2}(h_2'))c',
$$

and the structure maps are $\alpha_A \otimes \alpha_H$ and respectively $\alpha_H \otimes \alpha_C$.

(i) Consider as well the trivial Hom-twisting map R and the structure maps are α for all $a, a' \in A$. If we denote $R := \alpha \otimes R$ and is called the Hom-smash product. Its structure map is denoted by $A\#H\#C$ and is called the Hom-twisted tensor product. Its iterations are denoted by A, B, R, Q.

Proposition 2.1 Let (H, μ, Δ, α) be a Hom-bialgebra and $R \in H \otimes H$ an element, with Sweedler-type notation $R = R^1 \otimes R^2 = r^1 \otimes r^2$. Then $(H, \mu, \Delta, \alpha, R)$ is called quasitriangular Hom-bialgebra if the following axioms are satisfied:

$$
(\Delta \otimes \alpha)(R) = \alpha(R^1) \otimes \alpha(r^1) \otimes R^2r^2, \tag{1.24}
$$

$$
(\alpha \otimes \Delta)(R) = R^1r^1 \otimes \alpha(r^2) \otimes \alpha(R^2), \tag{1.25}
$$

$$
\Delta^{\text{cop}}(h)R = R\Delta(h), \tag{1.26}
$$

for all $h \in H$, where we denoted as usual $\Delta^{\text{cop}}(h) = h_2 \otimes h_1$.

2 Hom-L-R-twisted tensor products of algebras

We introduce the Hom-analogue of Proposition 1.1.

Proposition 2.1 Let (A, μ_A, α_A) and (B, μ_B, α_B) be two Hom-associative algebras and $R : B \otimes A \to A \otimes B$, $Q : A \otimes B \to A \otimes B$ two linear maps, with notation $R(a \otimes b) = a_AR \otimes b_R = a_r \otimes b_r$, and $Q(a \otimes b) = a_Q \otimes b_Q = a_q \otimes b_q$, for all $a \in A$, $b \in B$, satisfying the conditions:

$$
\alpha_A(a_R) \otimes \alpha_B(b_R) = \alpha_A(a)_R \otimes \alpha_B(b)_R, \tag{2.1}
$$

$$
\alpha_A(a_Q) \otimes \alpha_B(b_Q) = \alpha_A(a)_Q \otimes \alpha_B(b)_Q, \tag{2.2}
$$

$$
(a a')_R \otimes \alpha_B(b)_R = a_Ra'_R \otimes \alpha_B((b_R)_r), \tag{2.3}
$$

$$
\alpha_A(a)_R \otimes (b b')_R = \alpha_A(a)_r \otimes b_Rb'_R, \tag{2.4}
$$

$$
(a a')_Q \otimes \alpha_B(b)_Q = a_Qa'_Q \otimes \alpha_B((b_Q)_q), \tag{2.5}
$$

$$
\alpha_A(a)_Q \otimes (b b')_Q = \alpha_A(a)_q \otimes b_Qb'_Q, \tag{2.6}
$$

$$
b_R \otimes (a_R)_Q \otimes b'_Q = b_R \otimes (a_Q)_R \otimes b'_Q, \tag{2.7}
$$

$$
a_R \otimes (b_R)_Q \otimes a_Q = a_R \otimes (b_Q)_R \otimes a'_Q, \tag{2.8}
$$

for all $a, a' \in A$ and $b, b' \in B$. Define a new multiplication on $A \otimes B$ by $(a \otimes b)(a' \otimes b') = a_Qa'_R \otimes b_Rb'_Q$. Then $A \otimes B$ with this multiplication is a Hom-associative algebra with structure map $\alpha_A \otimes \alpha_B$, denoted by $A \otimes R_B$ and called the Hom-L-R-twisted tensor product of A and B afforded by the maps R and Q.

7
Proof. The fact that $\alpha_A \otimes \alpha_B$ is multiplicative follows immediately from (2.1) and (2.2). Now we compute (denoting $R = r = \mathcal{R}$ and $Q = q = \mathcal{Q}$):

$$(\alpha_A \otimes \alpha_B) (a \otimes b) [(a' \otimes b') (a'' \otimes b'')]$$

$$(\alpha_A \otimes \alpha_B) (a \otimes b) [(a' \otimes b') (a'' \otimes b'')]$$

$$= (\alpha_A(a) \otimes \alpha_B(b))(a'_{R}a''_{R} \otimes b'b'_{Q})$$

$$= \alpha_A(a)q(a'_{R}a''_{R}) \otimes \alpha_B(b)(b'b'_{Q})q$$

$$= \alpha_A((a'_{R})q)((a'_{R})_{R}(a''_{R})_{R}) \otimes \alpha_B((b'b'_{Q})_{R}(b'b'_{Q})_{R})$$

$$= \alpha_A((a'_{R})_{Q})\alpha_A((a''_{R})_{R}) \otimes ((b'b'_{Q})_{R}(b'b'_{Q})_{R})$$

$$= (a'_{R}a''_{R} \otimes b'b'_{Q}) (\alpha_A(a''_{R}) \otimes \alpha_B(b'b'_{Q}))$$

$$= [(a \otimes b)(a' \otimes b') (\alpha_A \otimes \alpha_B) (a'' \otimes b'')]$$

finishing the proof. \qed

Obviously, a Hom-twisted tensor product $A \otimes_{R} B$ is a particular case of a Hom-L-R-twisted tensor product, namely $A \otimes_{R} B = A \otimes_{Q} B$, where $Q = id_{A \otimes B}$. On the other hand, if A and B are Hom-associative algebras and $Q : A \otimes B \rightarrow A \otimes B$ is a linear map satisfying the conditions (2.2), (2.5) and (2.6), then the multiplication $(a \otimes b)(a' \otimes b') = aQa' \otimes bb'_{Q}$ defines a Hom-associative algebra structure on $A \otimes B$, denoted by $A \otimes_{Q} B$; this is a particular case of a Hom-L-R-twisted tensor product, namely $A \otimes_{Q} B = A \otimes_{R} B$, where R is the flip map $b \otimes a \mapsto a \otimes b$. Also, if $A \otimes_{Q} B$ is a Hom-L-R-twisted tensor product, we can consider as well the Hom-associative algebras $A \otimes_{R} B$ and $A \otimes B$.

By using some computations similar to the ones performed in [39], Propositions 2.6 and 2.10, one can prove the following two results:

Proposition 2.2 Let (A, μ_A, α_A) and (B, μ_B, α_B) be Hom-associative algebras and $A \otimes_{Q} B$ a Hom-L-R-twisted tensor product. Define the linear maps $T, U, V : (A \otimes B) \otimes (A \otimes B) \rightarrow (A \otimes B) \otimes (A \otimes B)$, by

$$T((a \otimes b) \otimes (a' \otimes b')) = (a \otimes b_{R}) \otimes (a' \otimes b'_{Q}),$$

$$U((a \otimes b) \otimes (a' \otimes b')) = (a \otimes b_{R}) \otimes (a' \otimes b'_{Q}),$$

$$V((a \otimes b) \otimes (a' \otimes b')) = (a \otimes b_{R}) \otimes (a' \otimes b').$$

Then T is a Hom-twistor for $A \otimes B$, U is a Hom-twistor for $A \otimes_{R} B$, V is a Hom-twistor for $A \otimes_{Q} B$ and $A \otimes_{Q} B = (A \otimes B)^{T} = (A \otimes B)^{U} = (A \otimes B)^{V}$ as Hom-associative algebras.

Proposition 2.3 Let (A, μ_A) and (B, μ_B) be two associative algebras, $\alpha_A : A \rightarrow A$ and $\alpha_B : B \rightarrow B$ algebra maps and $A \otimes_{Q} B$ an L-R-twisted tensor product such that $(\alpha_A \otimes \alpha_B) \circ R = R \circ (\alpha_B \otimes \alpha_A)$ and $(\alpha_A \otimes \alpha_B) \circ Q = \alpha_Q \circ (\alpha_A \otimes \alpha_B)$. Then we have a Hom-L-R-twisted tensor product $A_{\alpha_A} \otimes_{Q} B_{\alpha_B}$, which coincides with $(A \otimes_{Q} B)_{\alpha_A \otimes \alpha_B}$ as Hom-associative algebras.

The next result is the Hom-analogue of [17], Proposition 2.9.
Proposition 2.4 Let $A_\mathcal{Q} \otimes_R B$ be a Hom-L-R-twisted tensor product of the Hom-associative algebras (A, μ_A, α_A) and (B, μ_B, α_B) with bijective structure maps α_A and α_B and assume that Q is bijective with inverse Q^{-1}. Then the map $P : B \otimes A \rightarrow A \otimes B$ defined by $P = Q^{-1} \circ R$ is a Hom-twisting map, and we have an isomorphism of Hom-associative algebras $Q : A \otimes_R B \simeq A_\mathcal{Q} \otimes_R B$.

Proof. Let $a, a' \in A$ and $b, b' \in B$; we denote $Q^{-1}(a \otimes b) = a_{Q^{-1}} \otimes b_{Q^{-1}} = a_{q^{-1}} \otimes b_{q^{-1}}$, $P(b \otimes a) = a_{P} \otimes b_{P} = a_{q} \otimes b_{q}$, $Q = q = \overline{Q} = \overline{q}$. The relation (1.20) for P follows immediately from (2.1) and (2.2). Now we compute:

\[
Q(a_P a'_P \otimes \alpha_B((b_P)_P)) = ((a_R)_R^{-1}(a'_R)_R^{-1})_Q \otimes \alpha_B(((b_R)_R^{-1})_r)_Q
\]

\[
= ((a_R)_R^{-1}(a'_R)_R^{-1})_Q \otimes \alpha_B(((b_R)_R^{-1})_r)_Q)
\]

\[
= ((a_R)_R^{-1}Qa'_P \otimes \alpha_B(((b_R)_R^{-1})_r)_Q)
\]

\[
= (a_R)_R^{-1}Qa'_P \otimes \alpha_B((b_R)_r)
\]

\[
= (a_R)_R^{-1} \otimes \alpha_B(b)_R = R(\alpha_B(b) \otimes a).
\]

By applying Q^{-1} to this equality we obtain $P(a_B(b) \otimes a') = a_P a'_P \otimes \alpha_B((b_P)_P)$, which is (1.21) for P. Similarly one can prove (1.22) for P, so P is indeed a Hom-twisting map. Since Q satisfies (2.2), the only thing left to prove is that $Q : A \otimes_R B \rightarrow A_\mathcal{Q} \otimes_R B$ is multiplicative. We compute:

\[
Q((a \otimes b)(a' \otimes b'))
\]

\[
= (a'_P)_Q \otimes (b_P)_Q
\]

\[
= (a'_P)_Q \otimes \alpha_B(a^{-1}_B(b_P)_Q)
\]

\[
= a_{Q}(a'_P)_Q \otimes \alpha_B(a^{-1}_B(b_P)_Q)
\]

\[
= a_{Q}(a'_P)_Q \otimes \alpha_B((a^{-1}_B(b_P)_Q))_Q
\]

\[
= q \alpha_B((a^{-1}_B(b_P)_Q))_Q
\]

\[
= q \alpha_B((a^{-1}_B(b_P)_Q)_Q)
\]

\[
= a_{q}(a'_P)_Q \otimes \alpha_B((a^{-1}_B(b_P)_Q)_Q)
\]
Proposition 2.5 Let \(A \otimes R_1 \otimes R_2 \otimes C \) be an iterated Hom-twisted tensor product of the Hom-associative algebras \((A, \mu_A, \alpha_A)\), \((B, \mu_B, \alpha_B)\), \((C, \mu_C, \alpha_C)\) for which the map \(R_3 : C \otimes A \rightarrow A \otimes C \) is the flip map \(c \otimes a \mapsto a \otimes c \). Define the linear maps

\[
R : B \otimes (A \otimes C) \rightarrow (A \otimes C) \otimes B, \quad R(b \otimes (a \otimes c)) = (a_{R_1} \otimes c) \otimes b_{R_1},
\]
\[
Q : (A \otimes C) \otimes B \rightarrow (A \otimes C) \otimes B, \quad Q((a \otimes c) \otimes b) = (a \otimes c_{R_2}) \otimes b_{R_2}.
\]

Then we have a Hom-L-R-twisted tensor product \((A \otimes C) \otimes_R B\), and an isomorphism of Hom-associative algebras \(A \otimes R_1 \otimes R_2 \otimes C \simeq (A \otimes C) \otimes_R B\), \(a \otimes b \otimes c \mapsto (a \otimes c) \otimes b\).

Proof. One has to prove the relations (2.1)-(2.8) for \(R \) and \(Q \). The relations (2.1)-(2.6) are easy consequences of the fact that \(R_1 \) and \(R_2 \) are Hom-twisting maps, (2.7) is trivially satisfied while (2.8) is a consequence of the braid relation, which in our situation \((R_3 \text{ is the flip})\) boils down to

\[
a_{R_1} \otimes (b_{R_1})_{R_2} \otimes c_{R_2} = a_{R_1} \otimes (b_{R_1})_{R_2} \otimes c_{R_2}, \quad \text{for all} \quad a \in A, b \in B, c \in C.
\]

So indeed \((A \otimes C) \otimes_R B\) is a Hom-L-R-twisted tensor product, with multiplication

\[
((a \otimes c) \otimes b)((a' \otimes c') \otimes b') = (a a'_{R_1} \otimes c_{R_2} c') \otimes b_{R_1} b'_{R_2}.
\]

Again because \(R_3 \) is the flip, the multiplication in the iterated Hom-twisted tensor product \(A \otimes R_1 \otimes R_2 \otimes C \) is given by \((a \otimes b \otimes c)(a' \otimes b' \otimes c') = a a'_{R_1} \otimes b_{R_1} b'_{R_2} \otimes c_{R_2} c'\), so obviously we have

\[
A \otimes R_1 \otimes R_2 \otimes C \simeq (A \otimes C) \otimes_R B.
\]

\(\square \)

3 Hom-L-R-smash product

Definition 3.1 Let \((A, \mu_A, \alpha_A)\) be a Hom-associative algebra, \(M \) a linear space and \(\alpha_M : M \rightarrow M \) a linear map. Assume that \((M, \alpha_M)\) is both a left and a right \(A \)-module (with actions denoted by \(A \otimes M \rightarrow M \), \(a \otimes m \mapsto a \cdot m \) and \(M \otimes A \rightarrow M \), \(m \otimes a \mapsto m \cdot a \)). We call \((M, \alpha_M)\) an \(A \)-bimodule if the following condition is satisfied, for all \(a, a' \in A, m \in M \):

\[
\alpha_A(a) \cdot (m \cdot a') = (a \cdot m) \cdot \alpha_A(a').
\]

(3.1)

Remark 3.2 Obviously, \((A, \alpha_A)\) is an \(A \)-bimodule.

We prove now that this is indeed the "appropriate" concept of bimodule for the class of Hom-associative algebras. Recall first from [31] the following concept. Let \(C \) be a class of (not necessarily associative) algebras, \(A \in C \) and \(M \) a linear space with two linear actions \(a \otimes m \mapsto a \cdot m \) and \(m \otimes a \mapsto m \cdot a \) of \(A \) on \(M \). On the direct sum \(A \oplus M \) one can introduce an algebra structure (called the semidirect sum or split null extension) by defining a multiplication in \(A \oplus M \) by

\[
(a, m)(a', m') = (aa', m \cdot a' + a \cdot m'),
\]

for all \(a, a' \in A \) and \(m, m' \in M \). Then, if \(A \oplus M \) with this algebra structure is in \(C \), we say that \(M \) is an \(A \)-bimodule with respect to \(C \). If \(C \) is the class of all associative algebras or of all Lie algebras, one obtains the usual concepts of bimodule for these types of algebras. We have then the following result:
Proposition 3.3 Let \((A, \mu_A, \alpha_A)\) be a Hom-associative algebra, \(M\) a linear space, \(\alpha_M : M \to M\) a linear map and two linear actions \(a \otimes m \mapsto a \cdot m\) and \(m \otimes a \mapsto m \cdot a\) of \(A\) on \(M\). Then the split null extension \(B = A \oplus M\) is a Hom-associative algebra with structure map \(\alpha_B\) defined by \(\alpha_B((a, m)) = (\alpha_A(a), \alpha_M(m))\) if and only if \((M, \alpha_M)\) is an \(A\)-bimodule as in Definition 3.1.

Proof. It is easy to see that
\[
\alpha_B((a, m))[m', m''](a', m'') = (\alpha_A(a)(a' a''), \alpha_M(m) \cdot (a' a'') + \alpha_A(a) \cdot (m' \cdot a'')) \\
+ \alpha_A(a) \cdot (a' \cdot m''),
\]

so the multiplication on \(B\) is Hom-associative if and only if
\[
\alpha_M(m) \cdot (a' a'') + \alpha_A(a) \cdot (m' \cdot a'') + \alpha_A(a) \cdot (a' \cdot m'') = (m' \cdot a'') \cdot \alpha_A(a'') + (a' \cdot m'') \cdot \alpha_A(a''') + (aa') \cdot \alpha_M(m'')
\]
for all \(a, a', a'' \in A\) and \(m, m', m'' \in M\). Also, clearly \(\alpha_B\) is multiplicative if and only if
\[
\alpha_M(m \cdot a') + \alpha_M(a \cdot m') = \alpha_M(m \cdot a') + \alpha_A(a) \cdot \alpha_M(m')
\]
for all \(a, a' \in A\) and \(m, m' \in M\). It is then obvious that if \((M, \alpha_M)\) is an \(A\)-bimodule then \(B\) is Hom-associative. Conversely, assuming the two relations above, we take \(m' = m'' = 0\), then \(m = m' = 0\), then \(m = m'' = 0\) in the first relation and \(m = 0\), then \(m' = 0\) in the second relation and we obtain the five relations saying that \((M, \alpha_M)\) is an \(A\)-bimodule. \(\square\)

Similarly to Theorem 4.5 in [48], one can prove the following result:

Proposition 3.4 Let \((A, \mu_A)\) be an associative algebra, \(\alpha_A : A \to A\) an algebra endomorphism, \(M\) an \(A\)-bimodule in the usual sense with actions \(A \otimes M \to M\), \(a \otimes m \mapsto a \cdot m\) and \(M \otimes A \to M\), \(m \otimes a \mapsto m \cdot a\), and \(\alpha_M : M \to M\) a linear map satisfying the conditions \(\alpha_M(a \cdot m) = \alpha_A(a) \cdot \alpha_M(m)\) and \(\alpha_M(m \cdot a) = \alpha_M(m) \cdot \alpha_A(a)\) for all \(a \in A, m \in M\). Then \((M, \alpha_M)\) becomes a bimodule over the Hom-associative algebra \(A_{\alpha_A}\) with actions \(A_{\alpha_A} \otimes M \to M\), \(a \otimes m \mapsto a \cdot m := \alpha_M(a \cdot m) = \alpha_A(a) \cdot \alpha_M(m)\) and \(M \otimes A_{\alpha_A} \to M\), \(m \otimes a \mapsto m \cdot a := \alpha_M(m \cdot a) = \alpha_M(m) \cdot \alpha_A(a)\).

Definition 3.5 Let \((H, \mu_H, \Delta_H, \alpha_H)\) be a Hom-bialgebra. An \(H\)-bimodule Hom-algebra is a Hom-associative algebra \((D, \mu_D, \alpha_D)\) that is both a left and a right \(H\)-module Hom-algebra and such that \((D, \alpha_D)\) is an \(H\)-bimodule.

We can introduce now the Hom-analogue of the L-R-smash product.

Theorem 3.6 Let \((H, \mu_H, \Delta_H, \alpha_H)\) be a Hom-bialgebra, \((D, \mu_D, \alpha_D)\) an \(H\)-bimodule Hom-algebra, with actions denoted by \(H \otimes D \to D\), \(h \otimes d \mapsto h \cdot d\) and \(D \otimes H \to D\), \(d \otimes h \mapsto d \cdot h\), and assume that the structure maps \(\alpha_D\) and \(\alpha_H\) are both bijective. Define the linear maps
\[
R : H \otimes D \to D \otimes H, \quad R(h \otimes d) = \alpha_H^{-2}(h_1) \cdot \alpha_D^{-1}(d) \otimes \alpha_H^{-1}(h_2),
\]
\[
Q : D \otimes H \to D \otimes H, \quad Q(d \otimes h) = \alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h_2) \otimes \alpha_H^{-1}(h_1),
\]
for all \(d \in D, h \in H\). Then we have a Hom-L-R-twisted tensor product \(D \otimes_R H\), which will be denoted by \(D \triangleright H\) (we denote \(d \otimes h := d \triangleright h\) for \(d \in D, h \in H\)) and called the Hom-L-R-smash product of \(D\) and \(H\). The structure map of \(D \triangleright H\) is \(\alpha_D \otimes \alpha_H\) and its multiplication is
\[
(d \triangleright h)(d' \triangleright h') = [\alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h_2)][\alpha_H^{-2}(h_1) \cdot \alpha_D^{-1}(d')] \triangleright \alpha_H^{-1}(h_2 h_1).
\]
Proof. Note first that $D \# H$, so R satisfies the conditions (2.1), (2.3). With a proof similar to the one in [39], one can prove that the map D satisfies the conditions (2.2), (2.5), (2.6).

Proof of (2.7):

$$h_R \otimes (d_R)Q \otimes h'_Q = \alpha_H^{-1}(h_2) \otimes (\alpha_H^{-2}(h_1) \cdot \alpha_D^{-1}(d))Q \otimes h'_Q$$

$$= \alpha_H^{-1}(h_2) \otimes \alpha_D^{-1}(\alpha_H^{-2}(h_1) \cdot \alpha_D^{-1}(d)) \cdot \alpha_H^{-1}(h'_1)$$

$$= \alpha_H^{-1}(h_2) \otimes (\alpha_H^{-2}(h_1) \cdot \alpha_D^{-2}(d)) \cdot \alpha_H^{-2}(h'_2) \otimes \alpha_H^{-1}(h'_1)$$

(1.7)

$$= \alpha_H^{-1}(h_2) \otimes \alpha_H^{-2}(h_1) \cdot (\alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h'_2)) \otimes \alpha_H^{-1}(h'_1)$$

(1.9)

$$= h_R \otimes (\alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h'_2))R \otimes \alpha_H^{-1}(h'_1)$$

$$= h_R \otimes (d_Q)R \otimes h'_Q.$$

finishing the proof.

As a consequence of Proposition 2.3 we immediately obtain the following result:

Proposition 3.7 Let (H, μ_H, Δ_H) be a bialgebra and (D, μ_D) an H-bimodule algebra in the usual sense, with actions denoted by $H \otimes D \rightarrow D$, $h \otimes d \mapsto h \cdot d$ and $D \otimes H \rightarrow D$, $d \otimes h \mapsto d \cdot h$. Let $\alpha_H : H \rightarrow H$ be a bialgebra endomorphism and $\alpha_D : D \rightarrow D$ an algebra endomorphism such that $\alpha_D(h \cdot d) = \alpha_H(h) \cdot \alpha_D(d)$ and $\alpha_D(d \cdot h) = \alpha_D(d) \cdot \alpha_H(h)$ for all $d \in D$, $h \in H$. If we consider the Hom-bialgebra $H_{\alpha_H} = (H, \alpha_H \circ \mu_H, \Delta_H \circ \alpha_H, \alpha_H)$ and the Hom-associative algebra $D_{\alpha_D} = (D, \alpha_D \circ \mu_D, \alpha_D)$, then D_{α_D} is an H_{α_H}-bimodule Hom-algebra with actions $H_{\alpha_H} \otimes D_{\alpha_D} \rightarrow D_{\alpha_D}$, $h \otimes d \mapsto h \triangleright d := \alpha_D(h \cdot d) = \alpha_H(h) \cdot \alpha_D(d)$ and $D_{\alpha_D} \otimes H_{\alpha_H} \rightarrow D_{\alpha_D}$, $d \otimes h \mapsto d \triangleright h := \alpha_D(d \cdot h) = \alpha_D(d) \cdot \alpha_H(h)$. If we assume that moreover the maps α_H and α_D are bijective, if we denote by $D_{\alpha_H} \# H$ the L-R-smash product between D and H, then $\alpha_D \otimes \alpha_H$ is an algebra endomorphism of $D_{\alpha_H} \# H$ and the Hom-associative algebras $(D_{\alpha_H} \# H)_{\alpha_D} \otimes \alpha_H$ and $D_{\alpha_D} \# H_{\alpha_H}$ coincide.

Example 3.8 Let $(H, \mu_H, \Delta_H, \alpha_H)$ be a Hom-bialgebra such that α_H is bijective. The vector space H^* becomes a Hom-associative algebra with multiplication and structure map defined by:

$$(f \bullet g)(h) = f(\alpha^{-2}_H(h_1))g(\alpha^{2}_H(h_2)).$$
for all \(f, g \in H^* \) and \(h \in H \). Then for any \(p, q \in \mathbb{Z} \), this Hom-associative algebra \(H^* \) can be organized as an \(H \)-bimodule Hom-algebra (denoted by \(H^*_{p,q} \)) with actions defined as follows:

\[
\begin{align*}
\rightarrow &: H \otimes H^* \to H^*, \quad (h \to f)(h') = f(\alpha_H^{-2}(h')\alpha_H^{p}(h)), \\
\leftarrow &: H^* \otimes H \to H^*, \quad (f \leftarrow h)(h') = f(\alpha_H^{q}(h)\alpha_H^{-2}(h')).
\end{align*}
\]

for all \(h, h' \in H \) and \(f \in H^* \). Note that \(\beta \) is bijective and \(\beta^{-1} = \alpha_H^* \), the transpose of \(\alpha_H \).

So, we can consider the Hom-L-R-smash product \(H^*_{p,q} \triangleright H \), whose structure map is \(\beta \otimes \alpha_H \) and whose multiplication is

\[
(f \triangleright h)(f' \triangleright h') = [\alpha_H^*(f) \leftarrow \alpha_H^{-2}(h'_2)] \bullet [\alpha_H^{-2}(h_1) \rightarrow \alpha_H^*(f')] \triangleright \alpha_H^{-1}(h_2h'_1).
\]

Example 3.9 Let \((H, \mu_H, \Delta_H, \alpha_H) \) be a Hom-bialgebra, \((A, \mu_A, \alpha_A) \) a left \(H \)-module Hom-algebra and \((C, \mu_C, \alpha_C) \) a right \(H \)-module Hom-algebra, with actions denoted by \(H \otimes A \to A \), \(h \otimes a \mapsto h \cdot a \) and \(C \otimes H \to C \), \(c \otimes h \mapsto c \cdot h \). Define \(D := A \otimes C \) as the tensor product Hom-associative algebra. Define the linear maps

\[
\begin{align*}
H \otimes (A \otimes C) &\to A \otimes C, \quad h \cdot (a \otimes c) = h \cdot a \otimes \alpha_C(c), \\
(A \otimes C) \otimes H &\to A \otimes C, \quad (a \otimes c) \cdot h = \alpha_A(a) \otimes c \cdot h.
\end{align*}
\]

Then one can easily check that \(A \otimes C \) with these actions becomes an \(H \)-bimodule Hom-algebra.

Assume that moreover the structure maps \(\alpha_H, \alpha_A, \alpha_C \) are bijective, so we can consider the Hom-L-R-smash product \((A \otimes C) \triangleright H \). Then, by writing down the formula for the multiplication in \((A \otimes C) \triangleright H \), and then by applying Proposition 2.5, we obtain that \((A \otimes C) \triangleright H \) is isomorphic to the two-sided Hom-smash product \(A\#H\#C \).

4 Hom-diagonal crossed product

Definition 4.1 (i) If \((A, \mu, \alpha) \) is a Hom-associative algebra, we say that \(A \) is unital if there exists an element \(1_A \in A \) such that

\[
\begin{align*}
\alpha(1_A) &= 1_A, \\
1_Aa &= a1_A = \alpha(a), \quad \forall \ a \in A.
\end{align*}
\]

If \(f : A \to B \) is a morphism of Hom-associative algebras, we say that \(f \) is unital if \(f(1_A) = 1_B \).

(ii) If \((C, \Delta, \alpha) \) is a Hom-coassociative coalgebra, we say that \(C \) is counital if there exists a linear map \(\varepsilon_C : C \to k \) such that

\[
\begin{align*}
\varepsilon_C \circ \alpha &= \varepsilon_C, \\
\varepsilon_C(c_1)c_2 &= c_1\varepsilon_C(c_2) = \alpha(c), \quad \forall \ c \in C.
\end{align*}
\]

If \(f : C \to D \) is a morphism of Hom-coassociative coalgebras, we say that \(f \) is counital if \(\varepsilon_D \circ f = \varepsilon_C \).

Definition 4.2 ([36], [37]) A Hom-Hopf algebra \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S) \) is a Hom-bialgebra such that \((H, \mu_H, \alpha_H, 1_H) \) is a unital Hom-associative algebra, \((H, \Delta_H, \alpha_H, \varepsilon_H) \) is a counital Hom-coassociative coalgebra, and \(S : H \to H \) is a linear map (called the antipode) such that

\[
\Delta_H(1_H) = 1_H \otimes 1_H.
\]

13
Proposition 4.3 Let \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a Hom-Hopf algebra with bijective antipode and \((D, \mu_D, \alpha_D)\) an \(H\)-bimodule Hom-algebra, with actions \(H \otimes D \to D\), \(h \otimes d \mapsto h \cdot d\) and \(D \otimes H \to D\), \(d \otimes h \mapsto d \cdot h\), such that \(\alpha_D\) and \(\alpha_H\) are both bijective and

\[
1_H \cdot d = d \cdot 1_H = \alpha_D(d), \quad \forall \, d \in D.
\] \hfill (4.15)

Then the map \(Q : D \otimes H \to D \otimes H\), \(Q(d \otimes h) = \alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h_2) \otimes \alpha_H^{-1}(h_1)\) is bijective, with inverse \(Q^{-1} : D \otimes H \to D \otimes H\), \(Q^{-1}(d \otimes h) = \alpha_D^{-1}(d) \cdot \alpha_H^{-2}(S^{-1}(h_2)) \otimes \alpha_H^{-1}(h_1)\).

Proof. We check only that \(Q^{-1} \circ Q = id\), the proof for \(Q \circ Q^{-1} = id\) is similar and left to the reader. We compute:

\[
(Q^{-1} \circ Q)(d \otimes h) = Q^{-1}(\alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h_2) \otimes \alpha_H^{-1}(h_1))
\]

\[
= \alpha_D^{-1}(\alpha_D^{-1}(d) \cdot \alpha_H^{-2}(h_2)) \cdot \alpha_H^{-2}(S^{-1}(\alpha_H^{-1}(h_1)_2)) \otimes \alpha_H^{-1}(\alpha_H^{-1}(h_1)_1)
\]

\[
= \alpha_D^{-2}(d) \cdot \alpha_H^{-3}(h_2) \cdot \alpha_H^{-2}(S^{-1}(\alpha_H^{-1}(h_1)_2)) \otimes \alpha_H^{-1}(h_1)_1
\]

\[
= \alpha_D^{-2}(d) \cdot \alpha_H^{-3}(h_2) \cdot \alpha_H^{-3}(S^{-1}(h_1)_2) \otimes \alpha_H^{-1}(h_1)
\]

\[
= \alpha_D^{-1}(d) \cdot (\alpha_H^{-4}(h_2) \alpha_H^{-4}(S^{-1}(h_1)_2)) \otimes \alpha_H^{-1}(h_1)
\]

\[
= \alpha_D^{-1}(d) \cdot (\alpha_H^{-4}(h_2) \alpha_H^{-4}(S^{-1}(h_1)_2)) \otimes \alpha_H^{-1}(h_1)
\]

\[
= \alpha_D^{-1}(d) \cdot (\alpha_H^{-4}(h_2) \alpha_H^{-4}(S^{-1}(h_1)_2)) \otimes \alpha_H^{-1}(h_1)
\]

\[
= \alpha_D^{-1}(d) \cdot 1_H \otimes \alpha_H^{-1}(h_1 \varepsilon_H(h_2))
\]

\[
= d \otimes h,
\]

finishing the proof. \(\square\)

Assume now that we are in the hypotheses of Proposition 4.3 and consider the Hom-L-R-smash product \(D \triangleright H = D \circ Q \otimes_R H\). Since the map \(Q\) is bijective, we can apply Proposition 2.4 and we obtain that the map \(P : H \otimes D \to D \otimes H\), \(P = Q^{-1} \circ R\) is a Hom-twisting map and we have an isomorphism of Hom-associative algebras \(Q : D \otimes_H H \simeq D \triangleright H\).
Let \(\alpha_H \in \text{Hom}_H \text{Aut}(H) \) be a Hom-twisting map, so the multiplication of \(D \triangleleft \triangleright H \) is defined (denoting \(d \otimes h := d \triangleright h \)) by

\[
(d \triangleright h)(d' \triangleright h') = d[(\alpha_H^{-3}(h_1) \cdot \alpha_D^{-2}(d')) \cdot \alpha_H^{-3}(S^{-1}(h_2)_2)] \triangleright \alpha_H^{-2}(h_2)_1 h'.
\]

By a direct computation, one can check that the "twisting principle" holds also for diagonal crossed products, namely:

Proposition 4.5 Assume that we are in the hypotheses and notation of Proposition 3.7, assuming moreover that \(\alpha_H \) and \(\alpha_D \) are bijective and \((H, \mu_H, \Delta_H, 1_H, \varepsilon_H)\) is a unital and counital Hopf algebra with bijective antipode \(S \) and we have \(\alpha_H(1_H) = 1_H, \varepsilon_H \circ \alpha_H = \varepsilon_H, S \circ \alpha_H = \alpha_H \circ S \). Then \(H \alpha_H = (H, \mu_H \circ \mu_H, \Delta_H \circ \alpha_H, \alpha_H, 1_H, \varepsilon_H, S) \) is a Hom-Hopf algebra, the \(H \alpha_H \)-bimodule Hom-algebra \(D \alpha_D = (D, \mu_D \circ \mu_D, \Delta_D) \) satisfies the hypotheses of Proposition 3.3, the map \(\alpha_D \otimes \alpha_H \) is an algebra endomorphism of the diagonal crossed product \(D \triangleleft \triangleright H \) and the Hom-associative algebras \((D \triangleleft \triangleright H)_{\alpha_D \otimes \alpha_H}\) and \(D \alpha_D \triangleleft \triangleright H \alpha_H \) coincide.

We need to characterize (left) modules over a Hom-diagonal crossed product, and we obtain first a characterization of (left) modules over a Hom-twisted tensor product. We begin with some definitions.

Definition 4.6 Let \(A \otimes_R B \) be a Hom-twisted tensor product of the unital Hom-associative algebras \((A, \mu_A, \alpha_A, 1_A)\) and \((B, \mu_B, \alpha_B, 1_B)\). We say that \(R \) is a unital Hom-twisting map if, for all \(a \in A, b \in B \), we have \(R(1_B \otimes a) = a \otimes 1_B \) and \(R(b \otimes 1_A) = 1_A \otimes b \). If this is the case, then \(A \otimes_R B \) is unital with unit \(1_A \otimes 1_B \), the maps \(A \to A \otimes_R B, a \mapsto a \otimes 1_B \) and \(B \to A \otimes_R B, b \mapsto 1_A \otimes b \) are unital morphisms of Hom-associative algebras and for all \(a \in A, b \in B \) we have

\[
(a \otimes 1_B)(1_A \otimes b) = \alpha_A(a) \otimes \alpha_B(b).
\]

Remark 4.7 Let \(D \triangleleft \triangleright H = D \otimes_R H \) be a Hom-diagonal crossed product such that \(D \) is a unital Hom-associative algebra and \(h \cdot 1_D = 1_D \cdot h = \varepsilon_H(h)1_D \), for all \(h \in H \). Then \(P \) is a unital Hom-twisting map, so \(D \triangleleft \triangleright H \) is unital with unit \(1_D \triangleleft \triangleright 1_H \).

Remark 4.8 If \(H \) is a Hom-Hopf algebra with bijective antipode and such that \(\alpha_H \) is bijective, we consider the \(H \)-bimodule Hom-algebra \(H_{p,q}^* \) defined in Example 3.3. It is easy to see that \(H_{p,q}^* \) is unital with unit \(\varepsilon_H \), its structure map \(\beta \) is bijective, we have \(1_H \mapsto f = f \mapsto 1_H = \beta(f) \), for all \(f \in H^* \), and \(h \mapsto \varepsilon_H = \varepsilon_H \mapsto h = \varepsilon_H(h) \varepsilon_H \), for all \(h \in H \). Consequently, the Hom-diagonal crossed product \(H_{p,q}^* \triangleleft \triangleright H \) is unital with unit \(\varepsilon_H \triangleleft \triangleright 1_H \).

Definition 4.9 If \((A, \mu_A, \alpha_A, 1_A)\) is a unital Hom-associative algebra and \((M, \alpha_M)\) is a left \(A \)-module, we say that \(M \) is unital if \(1_A \cdot m = \alpha_M(m), \forall m \in M \). If \(\alpha_A \) is bijective, we denote by \(A \text{-} M \) the category whose objects are unital left \(A \)-modules \((M, \alpha_M)\) with \(\alpha_M \) bijective, the morphisms being morphisms of left \(A \)-modules.

Proposition 4.10 Let \(R: B \otimes A \to A \otimes B \) be a unital Hom-twisting map between the unital Hom-associative algebras \((A, \mu_A, \alpha_A, 1_A)\) and \((B, \mu_B, \alpha_B, 1_B)\). Let \(M \) be a linear space and \(\alpha_M: M \to M \) a linear map, and assume that \(\alpha_A, \alpha_B, \alpha_M \) are bijective. Then \((M, \alpha_M) \) is a
We prove (1.7):

\[\alpha_B(b) \cdot (a \cdot m) = \alpha_A(a_R) \cdot (b_R \cdot m), \quad \forall a \in A, b \in B, m \in M. \quad (4.17) \]

If this is the case, the left \(A \otimes_R B \)-module structure on \(M \) is given by

\[(a \otimes b) \cdot m = a \cdot (\alpha_B^{-1}(b) \cdot \alpha_M^{-1}(m)), \quad \forall a \in A, b \in B, m \in M. \quad (4.18) \]

Proof. If \((M, \alpha_M) \) is a unital left \(A \otimes_R B \)-module (with action denoted by \(\cdot \)), define actions of \(A \) and \(B \) on \(M \) by \(a \cdot m = (a \otimes 1_B) \cdot m \) and \(b \cdot m = (1_A \otimes b) \cdot m \). Obviously we have \(1_A \cdot m = 1_B \cdot m = \alpha_M(m) \), and the conditions (1.7) and (1.8) for the actions of \(A \otimes_R B \) follow immediately from the ones corresponding to the action of \(A \otimes_R B \). We need to prove (4.17). We compute:

\[
((1_A \otimes b)(a \otimes 1_B)) \cdot \alpha_M(m) = \begin{align*}
&= (1_A a_R \otimes b_R 1_B) \cdot \alpha_M(m) \\
&= (\alpha_A(a_R) \otimes \alpha_B(b_R)) \cdot \alpha_M(m) \\
&= \alpha_A(a_R) \cdot (\alpha_B^{-1}(b) \cdot \alpha_M^{-1}(m)).
\end{align*}
\]

On the other hand, by using (1.8), we have

\[
((1_A \otimes b)(a \otimes 1_B)) \cdot \alpha_M(m) = (1_A \otimes \alpha_B(b)) \cdot ((a \otimes 1_B) \cdot m) = \alpha_B(b) \cdot (a \cdot m),
\]

\[
((a_R \otimes 1_B)(1_A \otimes b_R)) \cdot \alpha_M(m) = \begin{align*}
&= (\alpha_A(a_R) \otimes 1_B) \cdot ((1_A \otimes b_R) \cdot m) \\
&= \alpha_A(a_R) \cdot (b_R \cdot m),
\end{align*}
\]

so we obtain \(\alpha_B(b) \cdot (a \cdot m) = \alpha_A(a_R) \cdot (b_R \cdot m) \). Finally, to prove (4.18), we compute:

\[
a \cdot (\alpha_B^{-1}(b) \cdot \alpha_M^{-1}(m)) = \begin{align*}
&= (a \otimes 1_B) \cdot ((1_A \otimes \alpha_B^{-1}(b)) \cdot \alpha_M^{-1}(m)) \\
&= (\alpha_A^{-1}(a) \otimes 1_B)(1_A \otimes \alpha_B^{-1}(b)) \cdot m \\
&= (a \otimes b) \cdot m.
\end{align*}
\]

Conversely, assume that \((M, \alpha_M) \) is a unital left \(A \)-module and a unital left \(B \)-module and (4.17) holds, and define an action of \(A \otimes_R B \) on \(M \) by \((a \otimes b) \cdot m = a \cdot (\alpha_B^{-1}(b) \cdot \alpha_M^{-1}(m)) \). We have

\[
(1_A \otimes 1_B) \cdot m = 1_A \cdot (1_B \cdot \alpha_M^{-1}(m)) = 1_A \cdot m = \alpha_M(m).
\]

We prove (4.7):

\[
\alpha_M((a \otimes b) \cdot m) = \begin{align*}
&= \alpha_M(a \cdot \alpha_M^{-1}(b \cdot m)) \\
&= \alpha_A(a) \cdot (b \cdot m) \\
&= \alpha_A(a) \cdot (\alpha_B^{-1}(b \cdot \alpha_M^{-1}(m))) \\
&= \alpha_A(a) \cdot (\alpha_B(b) \cdot \alpha_M(m)) \\
&= \alpha_A(a) \cdot \alpha_B(b) \cdot \alpha_M(m).
\end{align*}
\]
Now we prove (1.8):
\[(a \otimes b)(a' \otimes b') \cdot \alpha_M(m) = (aa'_R \otimes b_R b') \cdot \alpha_M(m) = (aa'_R) \cdot ([\alpha_B^{-1}(b_R)\alpha_B^{-1}(b')] \cdot m) = (aa'_R) \cdot (b_R \cdot (\alpha_B^{-1}(b') \cdot \alpha_M^{-1}(m))) \]
\[(1.8) \alpha_A(a) \cdot (a'_R \cdot \alpha_M^{-1}(b_R \cdot (\alpha_B^{-1}(b') \cdot \alpha_M^{-1}(m)))) \]
\[(1.7) \alpha_A(a) \cdot (b \cdot (\alpha_A^{-1}(a') \cdot (\alpha_B^{-1}(b') \cdot \alpha_M^{-1}(m)))) \]
\[(1.7) \alpha_A(a) \cdot (b \cdot \alpha_M^{-1}(a' \cdot (\alpha_B^{-1}(b') \cdot \alpha_M^{-1}(m))) = (\alpha_A(a) \otimes \alpha_B(b)) \cdot (a' \cdot (\alpha_B^{-1}(b') \cdot \alpha_M^{-1}(m))) = (\alpha_A \otimes \alpha_B)(a \otimes b) \cdot ((a' \otimes b') \cdot m), \]
finishing the proof. \(\square\)

Corollary 4.11 Let \(D \bowtie H\) be a Hom-diagonal crossed product such that \(D\) is unital and \(h \cdot 1_D = 1_D \cdot h = \varepsilon_H(h)1_D, \forall h \in H\). If \(M\) is a linear space and \(\alpha_M : M \rightarrow M\) a bijective linear map, then \((M, \alpha_M)\) is a unital left \(D \bowtie H\)-module if and only if \((M, \alpha_M)\) is a unital left \(D\)-module and a unital left \(H\)-module (actions denoted by \(\cdot\)) such that, \(\forall h \in H, d \in D, m \in M\):
\[
\alpha_H(h) \cdot (d \cdot m) = [\alpha_H^{-2}(h_1) \cdot \alpha_D^{-1}(d) \cdot \alpha_H^{-2}(S^{-1}((h_2)_2))] \cdot (\alpha_H^{-2}((h_2)_1) \cdot m), \quad (4.19)
\]
and if this is the case then we have
\[
(d \bowtie h) \cdot m = d \cdot (\alpha_H^{-1}(h) \cdot \alpha_M^{-1}(m)), \quad \forall d \in D, h \in H, m \in M. \quad (4.20)
\]

5 Left-right Yetter-Drinfeld modules

Definition 5.1 \([39]\) Let \((C, \Delta_C, \alpha_C)\) be a Hom-coassociative coalgebra, \(M\) a linear space and \(\alpha_M : M \rightarrow M\) a linear map. A right \(C\)-comodule structure on \((M, \alpha_M)\) consists of a linear map \(\rho : M \rightarrow M \otimes C\) satisfying the following conditions:
\[
\begin{align*}
(\alpha_M \otimes \alpha_C) \circ \rho &= \rho \circ \alpha_M, \\
(\alpha_M \otimes \Delta_C) \circ \rho &= (\rho \otimes \alpha_C) \circ \rho.
\end{align*}
\]
We usually denote \(\rho(m) = m_{(0)} \otimes m_{(1)}\). If \(C\) is counital, then \((M, \alpha_M)\) is called counital if \(\varepsilon_C(m_{(1)})m_{(0)} = \alpha_M(m)\), for all \(m \in M\). If \((M, \alpha_M)\) and \((N, \alpha_N)\) are right \(C\)-comodules, a morphism of right \(C\)-comodules \(f : M \rightarrow N\) is a linear map with \(\alpha_N \circ f = f \circ \alpha_M\) and \(f(m)_{(0)} \otimes f(m)_{(1)} = f(m_{(0)}) \otimes m_{(1)}\), for all \(m \in M\).

The concept of left-left Yetter-Drinfeld module over a Hom-bialgebra was introduced in \([38]\). Similarly one can introduce left-right Yetter-Drinfeld modules. Since we will be interested here to work over Hom-Hopf algebras, we will impose unitality conditions and bijectivity of structure maps in the definition.
Definition 5.2 Let \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a Hom-Hopf algebra with bijective antipode and bijective \(\alpha_H\). Let \(M\) be a linear space and \(\alpha_M : M \rightarrow M\) a bijective linear map. Then \((M, \alpha_M)\) is called a left-right Yetter-Drinfeld module over \(H\) if \((M, \alpha_M)\) is a unital left \(H\)-module (action denoted by \(\cdot\)) and a counital right \(H\)-comodule (coaction denoted by \(m \mapsto m_{(0)} \otimes m_{(1)} \in M \otimes H\)) satisfying the following compatibility condition, for all \(h \in H, m \in M\):

\[
\alpha_H(h_1) \cdot m_{(0)} \otimes \alpha_H^2(h_2) \alpha_H(m_{(1)}) = (h_2 \cdot m)_{(0)} \otimes (h_2 \cdot m)_{(1)} \alpha_H^2(h_1).
\] (5.3)

We denote by \(HYD^H\) the category whose objects are left-right Yetter-Drinfeld modules over \(H\), morphisms being linear maps that are morphisms of left \(H\)-modules and right \(H\)-comodules.

Remark 5.3 Similarly to what happens for left-left Yetter-Drinfeld modules (see [38]), left-right Yetter-Drinfeld modules over Hopf algebras become, via the "twisting procedure", left-right Yetter-Drinfeld modules over Hom-Hopf algebras.

Remark 5.4 Similarly to what happens for Hopf algebras, one can prove that condition (5.3) is equivalent to (for all \(h \in H, m \in M\))

\[
(h \cdot m)_{(0)} \otimes (h \cdot m)_{(1)} = \alpha_H^{-1}((h_2)_1) \cdot m_{(0)} \otimes [\alpha_H^{-2}((h_2)_2) \alpha_H^{-1}(m_{(1)})] S^{-1}(h_1).
\] (5.4)

Similarly to what we have proved in [38] for left-left Yetter-Drinfeld modules, one can prove the following result:

Proposition 5.5 Let \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a Hom-Hopf algebra with bijective antipode and bijective \(\alpha_H\).

(i) If \((M, \alpha_M)\) and \((N, \alpha_N)\) are objects in \(HYD^H\), then \((M \otimes N, \alpha_M \otimes \alpha_N)\) becomes an object in \(HYD^H\) (denoted in what follows by \(\hat{M} \otimes \hat{N}\)) with structures

\[
H \otimes (M \otimes N) \rightarrow M \otimes N, \quad h \otimes (m \otimes n) \mapsto h_1 \cdot m \otimes h_2 \cdot n,
\]

\[
M \otimes N \rightarrow (M \otimes N) \otimes H, \quad m \otimes n \mapsto (m_{(0)} \otimes n_{(0)}) \otimes \alpha_M^{-2}(n_{(1)} m_{(1)}).
\]

(ii) \((k, id_k)\) is an object in \(HYD^H\), with action and coaction defined by \(h \cdot \lambda = \varepsilon_H(h) \lambda\) and \(\lambda_{(0)} \otimes \lambda_{(1)} = \lambda \otimes 1_H\), for all \(\lambda \in k\).

(iii) \(HYD^H\) is a braided monoidal category, with tensor product \(\hat{\otimes}\), unit \((k, id_k)\), associativity constraints, unit constraints and braiding and its inverse defined (for all \((M, \alpha_M)\), \((N, \alpha_N)\), \((P, \alpha_P)\) in \(HYD^H\) and \(m \in M, n \in N, p \in P, \lambda \in k\)) by

\[
a_{M,N,P} : (M \hat{\otimes} N) \hat{\otimes} P \rightarrow M \hat{\otimes} (N \hat{\otimes} P), \quad a_{M,N,P}((m \otimes n) \otimes p) = \alpha_M^{-1}(m) \otimes (n \otimes \alpha_P(p)),
\]

\[
l_M : k \hat{\otimes} M \rightarrow M, \quad l_M(\lambda \otimes m) = \lambda \alpha_M^{-1}(m),
\]

\[
r_M : M \hat{\otimes} k \rightarrow M, \quad r_M(m \otimes \lambda) = \lambda \alpha_M^{-1}(m),
\]

\[
c_{M,N} : M \hat{\otimes} N \rightarrow N \hat{\otimes} M, \quad c_{M,N}(m \otimes n) = \alpha_N^{-1}(n_{(0)}) \otimes \alpha_M^{-1}(\alpha_H^{-1}(n_{(1)}) \cdot m),
\]

\[
c_{M,N}^{-1} : N \hat{\otimes} M \rightarrow M \hat{\otimes} N, \quad c_{M,N}^{-1}(n \otimes m) = \alpha_N^{-1}(\alpha_H^{-1}(S(n_{(1)}) \cdot m) \otimes \alpha_N^{-1}(n_{(0)})).
\]

The proof of the following result is straightforward and is left to the reader.

Proposition 5.6 Let \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a Hom-Hopf algebra with bijective antipode and bijective \(\alpha_H\). Consider the unital Hom-associative algebra \(H^*\), with multiplication and structure map defined by

\[
(f \cdot g)(h) = f(\alpha_H^{-2}(h_1)) g(\alpha_H^{-2}(h_2)), \quad \forall f, g \in H^*, \; h \in H,
\]
\[\beta : H^* \to H^* , \quad \beta(f)(h) = f(\alpha_H^{-1}(h)), \quad \forall f \in H^*, \quad h \in H. \]

(i) If \((M, \alpha_M)\) is a counital right \(H\)-comodule, with coaction \(m \mapsto m(0) \otimes m(1)\), then \((M, \alpha_M)\) becomes a unital left \(H^*\)-module, with action \(f \cdot m = f(m(1))m(0)\), for all \(f \in H^*, \ m \in M\).

(ii) Assume that \(H\) is moreover finite dimensional. If \((M, \alpha_M)\) is a unital left \(H^*\)-module (action denoted by \(\cdot\)), then \((M, \alpha_M)\) becomes a counital right \(H\)-comodule, with coaction defined by \(M \to M \otimes H, \ m \mapsto \sum_e e^* \cdot m \otimes e\), where \(\{e_i\}\), \(\{e^i\}\) is a pair of dual bases in \(H\) and \(H^*\) (of course, the coaction does not depend on the choice of the dual bases).

Let again \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a Hom-Hopf algebra with bijective antipode and bijective \(\alpha_H\). From now on, we will denote by \(H^*\) the unital \(H\)-bimodule Hom-algebra \(H_{0,0}^*\) (notation as in Example 3.3), whose unit is \(\varepsilon_H\), multiplication \(\cdot\), structure map \(\beta\) and \(H\)-actions

\[
\rightarrow : H \otimes H^* \to H^*, \quad (h \mapsto f)(h') = f(\alpha_H^{-2}(h')h),
\]

\[
\leftarrow : H^* \otimes H \to H^*, \quad (f \mapsto h)(h') = f(h\alpha_H^{-2}(h')).
\]

For \(f \in H^*\) and \(h \in H\), we will also denote \(f(h) = (f, h)\).

To simplify notation in the proofs of the next results, we will use the following form of Sweedler-type notation:

\[
\begin{align*}
&h_1 \otimes (h_2)_1 \otimes (h_2)_2 = h_1 \otimes h_{21} \otimes h_{22}, \\
&h_1 \otimes ((h_2)_1)_1 \otimes ((h_2)_1)_2 \otimes (h_2)_2 = h_1 \otimes h_{211} \otimes h_{212} \otimes h_{22}, \quad \text{etc}...
\end{align*}
\]

Proposition 5.7 We have a functor \(F : \mathcal{H}_YD^H \to H^* \bowtie H^*\mathcal{M}\), given by \(F((M, \alpha_M)) = (M, \alpha_M)\) at the linear level, with \(H^* \bowtie H\)-action defined by

\[
(f \bowtie h) \cdot m = (f, (\alpha_H^{-1}(h) \cdot \alpha_M^{-1}(m))(1))/(\alpha_H^{-1}(h) \cdot \alpha_M^{-1}(m))(0),
\]

for all \(f \in H^*, \ h \in H, \ m \in M\). On morphisms, \(F\) acts as identity.

Proof. Let \((M, \alpha_M) \in \mathcal{H}_YD^H\). Since \(M\) is a unital right \(H\)-comodule, it becomes a unital left \(H^*\)-module by Corollary 4.11. The only thing we need to prove in order to have \((M, \alpha_M)\) a unital left \(H^* \bowtie H\)-module with the prescribed action is the compatibility condition

\[
\alpha_H(h) \cdot (f(m(1))m(0)) = \langle (\alpha_H^{-2}(h_1) \mapsto \alpha_H^{-2}(S^{-1}(h_{22})), (\alpha_H^{-2}(h_{21}) \cdot m(1)) \mapsto (\alpha_H^{-2}(h_{21}) \cdot m)(0),
\]

for all \(f \in H^*, \ h \in H, \ m \in M\). We compute the right hand side as follows:

\[
\begin{align*}
\text{RHS} &= (\alpha_H^{-2}(h_1) \mapsto \alpha_H^{-2}(S^{-1}(h_{22})))\alpha_H^{-2}((\alpha_H^{-2}(h_{21}) \cdot m)(1))\alpha_H^{-2}(h_{21}) \cdot m)(0) \\
&= (\alpha_H^{-4}(S^{-1}(h_{22}))(\alpha_H^{-2}(h_{21}) \cdot m)(1))\alpha_H^{-2}(h_{21}) \cdot m)(0) \\
&= (f, \alpha_H^{-3}(S^{-1}(h_{22}))(\alpha_H^{-2}(h_{21}) \cdot m)(1))\alpha_H^{-1}(h_{21})\alpha_H^{-2}(h_{21}) \cdot m)(0).
\end{align*}
\]

By replacing \(h\) with \(\alpha_H^2(h)\), it turns out that we need to prove the following relation:

\[
\alpha_H^3(h) \cdot (f(m(1))m(0)) = (f, [\alpha_H^{-1}(S^{-1}(h_{22})))\alpha_H^{-3}(h_{21}) \cdot m)(1)]\alpha_H(h_{21}) \cdot m)(0).
\]

Note first that, by repeatedly applying (1.11), we obtain

\[
h_1 \otimes h_{211} \otimes h_{212} \otimes h_{22} = h_1 \otimes \alpha_H(h_{21}) \otimes \alpha_H(h_{221}) \otimes h_{222} \otimes \alpha_H^{-2}(h_{222}). (5.5)
\]
Now we can compute:

\[
\langle f, [\alpha^{-1}_H(S^{-1}(h_{22}))\alpha^{-3}_H((h_{21}\cdot m)_{(1)})]\alpha_H(h_1)\rangle (h_{21}\cdot m)_{(0)}
\]

\[\equiv \langle f, \{\alpha^{-1}_H(S^{-1}(h_{22}))[(\alpha^{-5}_H(h_{2122})\alpha^{-4}_H(m_{(1)}))\alpha^{-3}_H(S^{-1}(h_{211}))]\}\alpha_H(h_1)\rangle \alpha^{-1}_H(h_{2121})\cdot m_{(0)}\]

\[\underline{Hom-assoc.} \equiv \langle f, \{[\alpha^{-2}_H(S^{-1}(h_{22}))(\alpha^{-5}_H(h_{2122})\alpha^{-4}_H(m_{(1)}))\}\alpha^{-2}_H(S^{-1}(h_{211}))\}\alpha_H(h_1)\rangle \alpha^{-1}_H(h_{2121})\cdot m_{(0)}\]

\[\underline{Hom-assoc.} \equiv \langle f, \{[(\alpha^{-5}_H(S^{-1}(h_{2222}))\alpha^{-5}_H(h_{2221}))\alpha^{-3}_H(m_{(1)})]\alpha^{-1}_H(S^{-1}(h_{21}))\}\alpha_H(h_1)\rangle \cdot h_{221}\cdot m_{(0)}\]

\[\equiv \langle f, \{[\varepsilon_H(h_{222})]_1\alpha^{-1}_H(S^{-1}(h_{21}))\}\alpha_H(h_1)\rangle h_{221}\cdot m_{(0)}\]

\[= \langle f, \alpha^{-2}_H(m_{(1)})\alpha^{-1}_H(S^{-1}(h_{21}))\}\alpha_H(h_1)\alpha_H(h_{22})\cdot m_{(0)}\]

\[\equiv \langle f, \alpha^{-1}_H(m_{(1)})\{\alpha^{-1}_H(S^{-1}(h_{12}))\}\alpha_H(h_{2})\}\alpha_H(h_2)\cdot m_{(0)}\]

\[\underline{Hom-assoc.} \equiv \langle f, \alpha^{-1}_H(m_{(1)})\varepsilon_H(h_{1})\alpha_H(h_2)\}\alpha_H(h_2)\cdot m_{(0)}\]

\[= \langle f, \alpha^{-1}_H(m_{(1)})\varepsilon_H(h_{1})\rangle \alpha_H(h_2)\cdot m_{(0)}\]

\[\underline{Hom-assoc.} \equiv \langle f, \alpha^{-1}_H(m_{(1)})\varepsilon_H(h_{1})\rangle \alpha_H(h_2)\cdot m_{(0)}\]

and this is exactly what we wanted to prove. The fact that morphisms in \(H \triangleright \triangleright H M\) become morphisms in \(H^* \triangleright H M\) is easy to prove and is left to the reader. \(\square\)

Proposition 5.8 If \(H\) is finite dimensional, then we have a functor \(G : H^{\triangleright \triangleright} H M \rightarrow H \triangleright \triangleright H^*\), given by \(G((M, \alpha_M)) = (M, \alpha_M)\) at the linear level, and \(H^*-\)action and \(H^*\)-coaction on \(M\):

\[h \cdot m = (\varepsilon_H \otimes h) \cdot m,\]

\[M \rightarrow M \otimes H, \quad m \mapsto (e^i \otimes 1_H) \cdot m \otimes e_i := m_{(0)} \otimes m_{(1)},\]

where \(\{e_i\}, \{e^i\}\) is a pair of dual bases in \(H\) and \(H^*\). On morphisms, \(G\) acts as identity.

Proof. It is obvious that, for \((M, \alpha_M) \in H^{\triangleright \triangleright} H M\), \(G(M)\) is a unital left \(H\)-module and a counital right \(H\)-comodule (the coaction is obtained from the left \(H^*\)-action, which in turn is obtained by restricting the \(H^* \triangleright H^*\)-action). We need to prove the Yetter-Drinfeld compatibility condition \([5.3]\). Note first that by \([1.11]\) we have (for all \(h \in H\))

\[h_{11} \otimes h_{121} \otimes h_{122} \otimes h_2 = \alpha_H(h_{11}) \otimes \alpha_H(h_{21}) \otimes h_{221} \otimes \alpha^{-2}_H(h_{222}). \tag{5.6}\]

Note also that, by applying on an element in \(H\) on the first tensor component, one can see that

\[\beta((h \rightarrow \alpha^*_{H^2}(e^i)) \mapsto g) \otimes e_i = \beta(e^i) \otimes (g\alpha^{-2}_H(e_i))\alpha^2_H(h), \tag{5.7}\]

for all \(h, g \in H\). Now we compute:
\[
\begin{align*}
\alpha_H(h_1) \cdot m(0) & \otimes \alpha_H^2(h_2) \alpha_H(m(1)) \\
& = (\varepsilon \triangleright \alpha_H(h_1)) \cdot ((e^i \triangleright 1_H) \cdot m) \otimes \alpha_H^2(h_2) \alpha_H(e_i) \\
& \overset{\text{(1.8)}}{=} ((\varepsilon \triangleright h_1)(e^i \triangleright 1_H)) \cdot \alpha_M(m) \otimes \alpha_H^2(h_2) \alpha_H(e_i) \\
& = \{\beta(\alpha_H^2(h_1) \rightarrow \alpha_H^2(e^i)) \leftarrow \alpha_H^{-3}(S^{-1}(h_{12})) \triangleright \alpha_H^{-1}(h_{121})\} \cdot \alpha_M(m) \otimes \alpha_H^2(h_2) \alpha_H(e_i) \\
& \overset{\text{5.7}}{=} (\beta(e^i) \triangleright \alpha_H^{-1}(h_{121})) \cdot \alpha_M(m) \otimes \alpha_H^2(h_2) \{[\alpha_H^{-2}(S^{-1}(h_{122})) \triangleright \alpha_H^{-1}(e_i)]h_{11}\} \\
& \overset{\text{Hom-associ.}}{=} (\beta(e^i) \triangleright \alpha_H^{-1}(h_{121})) \cdot \alpha_M(m) \otimes \{\alpha_H(h_2)[\alpha_H^{-2}(S^{-1}(h_{122}))] \triangleright \alpha_H^{-1}(e_i)\} \alpha_H(h_{11}) \\
& \overset{\text{Hom-associ.}}{=} (\beta(e^i) \triangleright h_{21}) \cdot \alpha_M(m) \otimes \{[\alpha_H^{-2}(h_{222}) \alpha_H^{-2}(S^{-1}(h_{211})) \triangleright e_i] \alpha_H(h_1)\} \\
& \overset{\text{4.14}}{=} (\beta(e^i) \triangleright h_{21}) \cdot \alpha_M(m) \otimes (\varepsilon(h_{22})h_{1}e_i) \alpha_H(h_1) \\
& = (\beta(e^i) \triangleright \alpha_H(h_2)) \cdot \alpha_M(m) \otimes \alpha_H(e_i) \alpha_H^2(h_1) \\
& \overset{\text{4.20}}{=} \beta(e^i) \cdot (h_2 \cdot m) \otimes \alpha_H(e_i) \alpha_H^2(h_1) \\
& = (h_2 \cdot m(0) \otimes (h_2 \cdot m)(1)) \alpha_H^2(h_1),
\end{align*}
\]

where for the last equality we used the fact that \{\alpha_H(e_i)\} and \{\beta(e^i)\} is also a pair of dual bases. So indeed \(M \in \mathcal{H}YD^H\). We leave to the reader to prove that morphisms in \(\mathcal{H} \triangleright \mathcal{H} \mathcal{M}\) become morphisms in \(\mathcal{H}YD^H\). \(\square\)

Since it is obvious that the functors \(F\) and \(G\) are inverse to each other, we obtain:

Theorem 5.9 If \(H\) is a finite dimensional Hom-Hopf algebra with bijective antipode and bijective structure map, the categories \(\mathcal{H} \triangleright \mathcal{H} \mathcal{M}\) and \(\mathcal{H}YD^H\) are isomorphic.

6 The Drinfeld double

We recall first a variation of a result in \([38]\):

Theorem 6.1 \((38)\) Let \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, R)\) be a unital and counital quasitriangular Hom-bialgebra such that \(\alpha_H\) is bijective and \((\alpha_H \otimes \alpha_H)(R) = R\). Then \(\mathcal{H} \mathcal{M}\) is a prebraided monoidal category, with tensor product defined as in Proposition \((3.8)\) unit \((k, id_k)\) with action \(h \cdot \lambda = \varepsilon_H(h)\lambda\) for all \(h \in H, \lambda \in k\), associativity constraints defined by the same formula as the ones of the category \(\mathcal{H}YD^H\), i.e. \(a_{M,N,P} = \alpha_M^{-1} \otimes id_N \otimes \alpha_P\), for \(M,N,P \in \mathcal{H} \mathcal{M}\), and prebraiding defined by \(c_{M,N} : M \otimes N \to N \otimes M\), \(c_{M,N}(m \otimes n) = \alpha_N^{-1}(R^2 \cdot n) \otimes \alpha_M^{-1}(R^1 \cdot m)\), for all \(M,N \in \mathcal{H} \mathcal{M}\).

Let now \((H, \mu_H, \Delta_H, \alpha_H, 1_H, \varepsilon_H, S)\) be a finite dimensional Hom-Hopf algebra with bijective antipode and bijective \(\alpha_H\). We will construct the Drinfeld double \(D(H)\) of \(H\), which will be a quasitriangular Hom-Hopf algebra.

As a Hom-associative algebra, \(D(H)\) is the Hom-diagonal crossed product \(H^* \triangleright H\). So, its unit is \(\varepsilon_H \triangleright 1_H\), its structure map is \(\beta \otimes \alpha_H\) and its multiplication is defined by

\[
(f \triangleright h)(f' \triangleright h') = f \cdot [(\alpha^{-3}_H(h_1) \rightarrow \alpha^2_H(f')) \leftarrow \alpha^{-3}_H(S^{-1}(h_{22}))] \triangleright \alpha^2_H(h_{21})h',
\]
for all $f, f' \in H^*$ and $h, h' \in H$, where $\beta = \alpha_H^{-1}$ and

$$(f \cdot g)(h) = f(\alpha_H^{-2}(h_1))g(\alpha_H^{-2}(h_2)),
\rightarrow: H \otimes H^* \to H^*, \quad (h \vdash f)(h') = f(\alpha_H^{-2}(h')h),
\leftarrow: H^* \otimes H \to H^*, \quad (f \leftarrow h)(h') = f(h\alpha_H^{-2}(h')).$$

By Theorem 5.9, the category $D(H)_M$ is isomorphic to $H\mathcal{YD}^H$, which is a braided monoidal category. We transfer the structure from $H\mathcal{YD}^H$ to $D(H)_M$ and then to $D(H)$. We obtain thus the following result:

Theorem 6.2 $D(H)$ is a quasitriangular Hom-Hopf algebra and we have an isomorphism of braided monoidal categories $D(H)_M \simeq H\mathcal{YD}^H$. The structure of $D(H)$ is the following.

Its counit is $\varepsilon(f \triangleright h) = f(1_H)\varepsilon_H(h)$, for all $f \in H^*$, $h \in H$.

Its comultiplication is defined by

$$\Delta : D(H) \to D(H) \otimes D(H), \quad \Delta(f \triangleright h) = (f_2 \circ \alpha_H^{-2} \triangleright h_1) \otimes (f_1 \circ \alpha_H^{-2} \triangleright h_2),$$

where we denoted $\mu_H^* : H^* \to H^* \otimes H^*$, the dual of μ_H, defined by $\mu_H^*(f) = f_1 \otimes f_2$ if and only if $f(hh') = f_1(h)f_2(h')$, for all $h, h' \in H$.

The quasitriangular structure is the element

$$R = \sum_i (\varepsilon_H \triangleright \alpha_H^{-1}(e_i)) \otimes (e^i \triangleright 1_H) \in D(H) \otimes D(H),$$

where $\{e_i\}$, $\{e^i\}$ is a pair of dual bases in H and H^*. It satisfies the extra condition $((\beta \otimes \alpha_H) \otimes (\beta \otimes \alpha_H))(R) = R$.

The antipode of $D(H)$ is given by the formula

$$S_{D(H)}(f \triangleright h) = (\varepsilon_H \triangleright S(\alpha_H^{-1}(h)))(f \circ \alpha_H \circ S^{-1} \triangleright 1_H), \quad \forall f \in H^*, h \in H.$$

Proof. We leave most of the details to the reader. Let us note that in order to prove (1.24), one has to prove first that $\Delta^{op}(\varepsilon_H \triangleright h)R = R\Delta(\varepsilon_H \triangleright h)$ and $\Delta^{op}(f \triangleright 1_H)R = R\Delta(f \triangleright 1_H)$, for all $f \in H^*$, $h \in H$. Let us prove one of the two properties of the antipode, namely

$$(f \triangleright h)S_{D(H)}((f \triangleright h)2) = f(1_H)\varepsilon_H(h)\varepsilon_H \triangleright 1_H.$$

Note that as a consequence of the Hom-associativity of H we have

$$(ab)(cd) = \alpha_H(a)(\alpha_H^{-1}(bc)d), \quad \forall a, b, c, d \in H. \quad (6.1)$$

Now we compute:

$$(f \triangleright h)S_{D(H)}((f \triangleright h)2)$$

$$= (f_2 \circ \alpha_H^{-2} \triangleright h_1)S_{D(H)}(f_1 \circ \alpha_H^{-2} \triangleright h_2)$$

$$= [(f_2 \circ \alpha_H^{-1} \triangleright 1_H)(\varepsilon_H \triangleright \alpha_H^{-1}(h_1))](\varepsilon_H \triangleright S(\alpha_H^{-1}(h_2)))(f_1 \circ \alpha_H^{-1} \circ S^{-1} \triangleright 1_H)$$

$$\overset{\text{(6.1)}}{=} (f_2 \circ \alpha_H^{-2} \triangleright 1_H)([\beta^{-1} \circ \alpha_H^{-1}](\varepsilon_H \triangleright \alpha_H^{-1}(h_1)))(\varepsilon_H \triangleright S(\alpha_H^{-1}(h_2)))$$

$$\quad (f_1 \circ \alpha_H^{-1} \circ S^{-1} \triangleright 1_H)$$

$$= (f_2 \circ \alpha_H^{-2} \triangleright 1_H)(\beta^{-1} \circ \alpha_H^{-1})(h_1S(h_2))(f_1 \circ \alpha_H^{-1} \circ S^{-1} \triangleright 1_H).$$
\[(4.8) \]
\[
\varepsilon_H(h)(f_2 \circ \alpha_H^{-2} \bowtie 1_H)(f_1 \circ \alpha_H^{-2} \circ S^{-1} \bowtie 1_H)
\]
\[
= \varepsilon_H(h)((f_2 \circ \alpha_H^{-2}) \bullet (f_1 \circ \alpha_H^{-2} \circ S^{-1}) \bowtie 1_H)
\]
\[
\equiv f(1_H)\varepsilon_H(h)\varepsilon_H \bowtie 1_H,
\]
finishing the proof. □

References

[1] L. Alvarez-Gaumé, C. Gomez, G. Sierra, *Quantum group interpretation of some conformal field theories*, Phys. Lett. B 220(1-2), 142–152 (1989).

[2] N. Aizawa, H. Sato, *q-deformation of the Virasoro algebra with central extension*, Phys. Lett. B 256(1), 185–190 (1991). N. Aizawa, H. Sato, Hiroshima University preprint HUPD-9012 (1990).

[3] F. Ammar, Z. Ejbehi, A. Makhlouf, *Cohomology and deformations of Hom-algebras*, J. Lie Theory 21(4), 813–836 (2011).

[4] P. Bieliavsky, P. Bonneau, Y. Maeda, *Universal deformation formulae, symplectic Lie groups and symmetric spaces*, Pacific J. Math. 230, 41–57 (2007).

[5] P. Bieliavsky, P. Bonneau, Y. Maeda, *Universal deformation formulae for three-dimensional solvable Lie groups*, in “Quantum field theory and noncommutative geometry”, 127–141, Lecture Notes in Phys., 662, Springer, Berlin, 2005.

[6] P. Bonneau, M. Gerstenhaber, A. Giaquinto, D. Sternheimer, *Quantum groups and deformation quantization: Explicit approaches and implicit aspects*, J. Math. Phys. 45, 3703–3741 (2004).

[7] P. Bonneau, D. Sternheimer, *Topological Hopf algebras, quantum groups and deformation quantization*, in ”Hopf algebras in noncommutative geometry and physics”, 55–70, Lecture Notes in Pure and Appl. Math. 239, Marcel Dekker, New York, 2005.

[8] D. Bulacu, F. Panaite, F. Van Oystaeyen, *Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications*, Comm. Math. Phys. 266, 355–399 (2006).

[9] S. Caenepeel, I. Goyvaerts, *Monoidal Hom-Hopf algebras*, Comm. Algebra 39, 2216–2240 (2011).

[10] A. Cap, H. Schichl, J. Vanzura, *On twisted tensor products of algebras*, Comm. Algebra 23, 4701–4735 (1995).

[11] M. Chaichian, D. Ellinas, Z. Popowicz, *Quantum conformal algebra with central extension*, Phys. Lett. B 248(1-2), 95–99 (1990).

[12] M. Chaichian, A. P. Isaev, J. Lukierski, Z. Popowi, P. Prevnajder, *q-deformations of Virasoro algebra and conformal dimensions*, Phys. Lett. B 262(1), 32–38 (1991).

[13] M. Chaichian, P. Kulish, J. Lukierski, *q-deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras*, Phys. Lett. B 237(3-4), 401–406 (1990).
M. Chaichian, Z. Popowicz, P. Prevnajder, *q*-Virasoro algebra and its relation to the *q*-deformed KdV system, Phys. Lett. B 249(1), 63–65 (1990).

Y. Chen, L. Zhang, *The category of Yetter-Drinfel’d Hom-modules and the quantum Hom-Yang-Baxter equation*, J. Math. Phys. 55, 031702 (2014).

Y. Chen, Z. Wang, L. Zhang, *Integrals for monoidal Hom-Hopf algebras and their applications*, J. Math. Phys. 54, 073515 (2013).

M. Ciungu, F. Panaite, *L-R-smash products and L-R-twisted tensor products of algebras*, Algebra Colloq. 21(1), 129–146 (2014).

T. L. Curtright, C. K. Zachos, *Deforming maps for quantum algebras*, Phys. Lett. B 243(3), 237–244 (1990).

E. V. Damaskinsky, P. P. Kulish, *Deformed oscillators and their applications* (Russian), Zap. Nauch. Semin. LOMI 189, 37–74 (1991); Engl. transl. in J. Soviet Math. 62(5), 2963–2986 (1992).

C. Daskaloyannis, *Generalized deformed Virasoro algebras*, Mod. Phys. Lett. A 7(9), 809–816 (1992).

M. Elhamdadi, A. Makhlouf, *Hom-quasi-bialgebras*, Contemp. Math. 585 (Eds. N. Andruskiewitch, J. Cuadra and B. Torrecillas), Amer. Math. Soc., Providence, RI (2013).

Y. Fregier, A. Gohr, S. D. Silvestrov, *Unital algebras of Hom-associative type and surjective or injective twistings*, J. Gen. Lie Theory Appl. 3(4), 285–295 (2009).

A. Gohr, *On Hom-algebras with surjective twisting*, J. Algebra 324, 1483–1491 (2010).

J. T. Hartwig, D. Larsson, S. D. Silvestrov, *Deformations of Lie algebras using σ-derivations*, J. Algebra 295, 314–361 (2006).

F. Hausser, F. Nill, *Diagonal crossed products by duals of quasi-quantum groups*, Rev. Math. Phys. 11, 553–629 (1999).

N. Hu, *q*-Witt algebras, *q*-Lie algebras, *q*-holomorph structure and representations, Algebra Colloq. 6(1), 51–70 (1999).

C. Kassel, *Cyclic homology of differential operators, the Virasoro algebra and a q-analogue*, Commun. Math. Phys. 146, 343–351 (1992).

P. Jara Martínez, J. López Peña, F. Panaite, F. Van Oystaeyen, *On iterated twisted tensor products of algebras*, Internat. J. Math. 19, 1053–1101 (2008).

D. Larsson, S. D. Silvestrov, *Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities*, J. Algebra 288, 321–344 (2005).

K. Q. Liu, *Characterizations of the quantum Witt algebra*, Lett. Math. Phys. 24(4), 257–265 (1992).

L. Liu, B. Shen, *Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras*, J. Math. Phys. 55, 031701 (2014).
[32] J. López Peña, F. Panaite, F. Van Oystaeyen, *General twisting of algebras*, Adv. Math. **212**, 315–337 (2007).

[33] A. Makhlouf, *Paradigm of nonassociative Hom-algebras and Hom-superalgebras*, Proceedings of the ”Jordan Structures in Algebra and Analysis” Meeting (Eds. J. Carmona Tapia, A. Morales Campoy, A. M. Peralta Pereira, M. I. Ramirez Ivarez), Publishing House: Circulo Rojo, 145–177 (2010).

[34] A. Makhlouf, S. Silvestrov, *Hom-algebra structures*, J. Gen. Lie Theory Appl. **2**(2), 51–64 (2008).

[35] A. Makhlouf, S. Silvestrov, *Notes on formal deformations of Hom-associative and Hom-Lie algebras*, Forum Math. **22**(4), 715–759 (2010).

[36] A. Makhlouf, S. Silvestrov, *Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras*, Published as Chapter 17, pp. 189–206, in ”Generalized Lie theory in Mathematics, Physics and Beyond” (Eds. S. Silvestrov, E. Paal, V. Abramov, A. Stolin), Springer-Verlag, Berlin (2008).

[37] A. Makhlouf, S. Silvestrov, *Hom-algebras and Hom-coalgebras*, J. Algebra Appl. **9**(4), 553–589 (2010).

[38] A. Makhlouf, F. Panaite, *Yetter-Drinfeld modules for Hom-bialgebras*, J. Math. Phys. **55**, 013501 (2014).

[39] A. Makhlouf, F. Panaite, *Twisting operators, twisted tensor products and smash products for Hom-associative algebras*, arXiv:math.QA/1402.1893.

[40] F. Panaite, F. Van Oystaeyen, *L-R-smash product for (quasi-)Hopf algebras*, J. Algebra **309**, 168–191 (2007).

[41] R. D. Schafer, “An introduction to nonassociative algebras”, Academic Press, New York and London, 1966.

[42] A. Van Daele, S. Van Keer, *The Yang–Baxter and Pentagon equation*, Compositio Math. **91**, 201–221 (1994).

[43] D. Yau, *Module Hom-algebras*, e-Print arXiv:0812.4695 (2008).

[44] D. Yau, *Hom-bialgebras and comodule Hom-algebras*, Int. E. J. Algebra. **8**, 45–64 (2010).

[45] D. Yau, *Hom-algebras and homology*, J. Lie Theory **19**, 409–421 (2009).

[46] D. Yau, *Hom-quantum groups I: Quasitriangular Hom-bialgebras*, J. Phys. A **45**(6), 065203, 23 pp (2012).

[47] D. Yau, *Hom-quantum groups II: Cobraided Hom-bialgebras and Hom-quantum geometry*, e-Print arXiv:0907.1880 (2009).

[48] D. Yau, *Hom-quantum groups III: Representations and module Hom-algebras*, e-Print arXiv:0911.5402 (2009).

[49] D. Yau, *Hom-Yang-Baxter equation, Hom-Lie algebras and quasitriangular bialgebras*, J. Phys. A **42**(16), 165202, 12 pp (2009).