The evolution characteristics of organic sulfur structure in various Chinese high organic sulfur coals

Yuegang Tang¹, Cong Chen¹, Xiaolong Li¹, Qiang Wei¹, Xin Guo¹, Robert B Finkelman², Weiwei Li³ and Xuan Huan¹

Abstract
Understanding the organic sulfur structure and its evolution characteristics is crucial to the desulfurization of coal, as they are the dominant factors determining the removal of organic sulfur from coal. To learn the organic sulfur structure characteristics, a series of high-organic-sulfur coals from China with different ranks were studied by coal petrology, structural chemistry, and organic geochemistry theory in this paper. Coal petrological analysis shows some of the high-organic-sulfur coals with high TPI values and low GI values indicating that they have experienced unusual conditions when the coal was forming. Through the FTIR analysis, the organic sulfur structural parameters show the relative abundance of aliphatic sulfur (thiol, thioether and sulfone) in these coals decreased with the increasing coal rank and the relative abundance of aromatic sulfur in coal generally showed an increasing trend with increasing coalification, divided into three different evolutionary stages (0.37%–1.40%, 1.40%–1.99% and 1.99%–3.93% of Rm). Comprehensive analysis shows that EID and TPI had a significant correlation with the organic sulfur structural parameters, which means regardless of the coal rank the impact of the environment on the structure of organic sulfur is independent. These results give a new insight into organic sulfur characteristics in coal and its evolution characteristics with coal rank, which are potentially useful for the efficient removal of the organic sulfur from coal.

¹College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China
²Department of Geosciences, University of Texas at Dallas, Richardson, USA
³College of Mining Engineering, North China University of Science and Technology, Tangshan, China

Corresponding author:
Yuegang Tang, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Ding No. 11 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.
Email: tyg@vip.163.com
Keywords
High organic sulfur coal, rank, evolution, organic sulfur structure, coal petrology

Introduction

The environmental impacts of coal combustion and utilization cannot be ignored, especially the pollution caused by the release of sulfur from coal (Abelson, 1975; Davut and Sibel, 1997; Medunić et al., 2016a, 2018a, 2018b; Train, 1975), compelling scholars to study the geochemical characteristics of the genesis and sources of sulfur in coal (Casagrande and Ng, 1979; Casagrande and Siefert, 1977; Casagrande et al., 1989; Chou, 1997, 2012; Dai et al., 2008, 2017, 2018; Lei et al., 1994; Ren et al., 1994, 1996; Tang et al., 1993, 1996, 1997, 2002, 2015; Yang and Zhao, 2018). Coal with an organic sulfur content of 4% to 11% is referred to as superhigh-organic-sulfur (SHOS) coals (Chou, 1997). The SHOS coals and their very high organic sulfur contents, are not common and have attracted the attention of researchers (Dai et al., 2008, 2017, 2018; Li and Tang, 2014; Li et al., 2015; Medunić et al., 2020; Smith and Batts, 1974; Torres-Ordóñez et al., 1990; White et al., 1990; Zhao et al., 2014, 2020). In some special cases the sulfur content in coal is high and the organic sulfur content exceeds 50% of total sulfur (Dai et al., 2008, 2017, 2018; Li and Tang, 2013, 2014; Li et al., 2015; Medunić et al., 2016b; Sinninghe Damsté et al., 1999; Smith and Batts, 1974; Torres-Ordóñez et al., 1990; White et al., 1990; Zhao et al., 2014). Studying the evolution characteristics of organic sulfur compounds, the source of the organic sulfur, and the relationship between organic sulfur and the coal-forming environment in these special cases can provide guidance for the rational utilization and removal of organic sulfur to achieve clean utilization of coal (Ken and Nandi, 2018; Kumar et al., 2019; Kumar and Kumar, 2018; Liu et al., 2019; Shen et al., 2019; Singh et al., 2012a, 2013, 2018; Medunić et al., 2019).

The petrological characteristics of coal retains some information on the coal-forming parent materials and coal-forming environment (Diessel, 1986; Diessel and Gammidge, 1998; Gayer et al., 1999; Gentzis and Goodarzi, 1990; Lei et al., 1994, 1995a, 1995b; Singh et al., 2012b, 2016). Analysis of the coal maceral composition and its organic sulfur structural characteristics can provide important information for understanding the genetic mechanism and coal-forming environment of high organic sulfur coals. Since the emergence of infrared spectroscopy, it has become an indispensable tool for the identification, quantitative determination and structural study of organic compounds. Infrared spectroscopy studies of organic solids such as coal, oil shale, and kerogen have made great progress since the 1960s (Bent and Brown, 1961; Cline Li et al., 2018; Guo and Bustin, 1998; He et al., 2017; José et al., 1996; Lis et al., 2005; Liu et al., 2018; Mastalerz and Bustin, 1993; Painter et al., 1978, 1981, 1985; Tang et al., 2018; Wang et al., 2011; Zhao et al., 2015). At present, Fourier Transform Infrared Spectroscopy (FTIR) is often used to obtain chemical structural parameters and also an important means for studying the molecular structure of coal (Chen et al., 2012; He et al., 2017; Jiang et al., 2019; Liu et al., 2018; Supaluknari et al., 1988; Tang et al., 2018; Yan et al., 2020).

Therefore, studying the coal-forming environment, organic sulfur structure, and the organic sulfur structure evolution of coal can be of great significance for the efficient removal of organic sulfur to achieve the clean utilization of coal. This study focused on the structural characteristics of organic sulfur and coal petrological characteristics in high
organic sulfur coals from China with different rank to better understanding the coal-forming environment, organic sulfur structure and evolution characteristics of organic sulfur in coals with different ranks.

Experimental

Samples

In this study 10 raw coal samples with different coal ranks were collected from different regions of China and they are all bench samples except XF, GH and YQ. XF and YQ are channel samples which collected cut as 20-cm wide and 10-cm deep channels. Each coal bench sample was cut over an area about 20-cm wide and 10-cm deep by an interval of 10–30 cm for coal seam. The sampling locations are shown in Figure 1 and the descriptions of these samples are listed in Table 1.

Analytical method

Proximate analysis was performed following ASTM Standard D3173-11 (2011), ASTM Standard D3174-11 (2011) and ASTM Standard D3175-11 (2011). The total sulfur and forms of sulfur were determined according to the ASTM Standard D3177-02 (2011) and ASTM Standard D2492-02 (2012). Ultimate analysis was determined based on ASTM Standard D5373-08 (2011). The maximum reflectance of vitrinite (Rm %) was determined by Leitz Orthoplan microscope equipped with a Daytronic mainframe 9005.

![Figure 1. Distribution of sampling locations on the map of China.](image-url)
spectrophotometer following ASTM Standard D 2798-2011a (2011). As for petrologic analysis, coal samples was ground to 20 mesh for preparation of the polished pellet, more than 500 counts were taken for each polished pellet under oil-immersion white light using a magnification of 500×. The classification and quantification of coal macerals is according to the International Committee for Coal and Organic Petrography system-ICCP 1994 system (1998, 2001).

Samples subjected to FTIR study were raw coal ground to 200 mesh and prepared with KBr pressed into thin pellets. A Bruker TENSOR 27 FTIR was used with a scan range of 450–4000 cm⁻¹, 32 scans with a resolution of 4 cm⁻¹. The curve-fitting of the FTIR statistics was performed using Origin software. The Statistical Product and Service Solutions (SPSS) software was used to analyze the relationship between the index of coal petrology and FTIR organic sulfur structure parameters.

Results and discussion

Coal chemistry and vitrinite reflectance

Proximate analysis, ultimate analysis, total sulfur and forms of sulfur analysis results are listed in Table 2. The coal samples organic sulfur content is between 0.92 and 12.09 and JJP8-5, CM6-1, SSP11-5, LL3-9 and GH are considered to be SHOS coals. They are all high organic sulfur coals except WTP15-4. Even though the WTP15-4 coal sample’s organic sulfur content $S_{o,d}$ is 0.92%, the ratio of organic sulfur to total sulfur is 90%, making it
appropriate to study the structure of the organic sulfur. Sample XF has a moisture content of 18.37% reflecting its low coal rank, and WTP15-4 has a moisture content of 3.84%, which is higher than other samples (0.19–0.44%). This is because in this high metamorphic degree anthracite coal, molecules are arranged more neatly, the internal surface area of coal increases and the amount of adsorbed water increases (Zettlemoyer et al., 1975).

Petrological analysis

Determining the maceral composition of coal can provide information about the coal-forming environment. The coal maceral composition of the samples is shown in Table 3. The content of vitrinite in the coal samples ranged from 51.4 to 84.2 (Vol. %), inertinite from 5.4 to 41.9 (Vol. %), liptinite from 0 to 18.3 (Vol. %) and mineral matter from 2.0 to 31.5 (Vol. %). Collodetrinite was the main vitrinite maceral varying from 2.6 to 61.1 (Vol. %), and fusinite was the main inertinite maceral varying from 0.6 to 13.6 (Vol. %).

Diessel (1986) proposed the ‘Gelification Index (GI)’ and ‘Tissue Preservation Index (TPI)’ to determine the coal facies and depositional environments relations. Diessel and Gammadge (1998) also defined ‘Excess Inertodetrinite’ (EID). In general, the value of ‘Excess Inertodetrinite (EID)’ is negative. When EID is greater than 0, it indicates a special peat swamp environment, which means there was strong oxidation and/or allochthonous dispersal. According to the formula petrological parameters of coal samples were calculated (see Table 4). These coal samples petrological parameters value of GI are from 2.99 to 18.30, EID from -0.23 to 2.29, TPI from 0.12 to 3.79.

\[
GI = \frac{\text{total vitrinite} + \text{macrinite}}{\text{semifusinite} + \text{fusinite} + \text{inertodetrinite}} \\
TPI = \frac{\text{telovitrinite} + \text{semifusinite} + \text{fusinite}}{\text{detrovitrinite} + \text{gelovitrinite} + \text{macrinite} + \text{inertodetrinite}}
\]
As seen in Figure 2(a) the high organic sulfur coals’ TPI and EID are inversely proportional, and TPI values are mostly very low between 0~2, except for YQ (see Figure 2(b)). Previous studies showed that the formation of high organic sulfur coals is closely related to
the activity of microorganisms and the strong microbial activity leads to substantial decomposition of plant tissue and poor preservation of tissue structure resulting in low TPI values (Dai et al., 2000; Gayer et al., 1999; Gentzis and Goodarzi, 1990; Lei et al., 1995b; Shao et al., 2003; Tang et al., 2002). However, YQ’s TPI is significantly higher than that of the other samples, indicating that the plant structure is well preserved during coal formation and that YQ’s coal-forming environment is more stable than the others.

According to Figure 2(b), the GI values of XF, W9-17, SSP11-5, CM6-1 and WTP15-4 are very high (>5.0) indicating that they have experienced strong gelification during coal formation. The results are consistent with previous studies that showed that the formation of high organic sulfur coal is inseparable from the gelification of coal (Kang et al., 1999; Lei et al., 1994, 1995a, 1995b; Shao et al., 2003; Tang et al., 2002). However, YQ’s TPI is significantly higher than that of the other samples, indicating that the plant structure is well preserved during coal formation and that YQ’s coal-forming environment is more stable than the others.

According to Figure 2(b), the GI values of XF, W9-17, SSP11-5, CM6-1 and WTP15-4 are very high (>5.0) indicating that they have experienced strong gelification during coal formation. The results are consistent with previous studies that showed that the formation of high organic sulfur coal is inseparable from the gelification of coal (Kang et al., 1999; Lei et al., 1994, 1995a, 1995b; Shao et al., 2003; Tang et al., 2002). As shown in Figure 2(c), the EID values of W9-17, YQ, JJP8-5, CM6-1 and LL3-9 are all greater than 0, especially

Figure 2. GI, EID and TPI parameters of coal samples.
JJP8-5, CM6-1 and LL3-9, indicating that the coal-forming environment of the three coals had experienced oxidation and/or allochthonous dispersal.

FTIR results and discussion

The FTIR analysis results are discussed in two parts, the overall coal structure and the organic sulfur structure parameters.

Coal structure analysis. Figure 3 depicts the FTIR spectrum of all samples after normalization. Taking the LL3-9 sample as an example, the procedure of curve-fitting is shown in Figure 4. In Figure 3, from top to bottom, are samples XF, JJP8-5, W9-17, XY10-3, CM6-1, SSP11-5, LL3-9, GH, YQ, and WTP15-4, with R_{max} values of 0.37%, 0.72%, 1.08%, 1.15%, 1.40%, 1.75%, 1.80%, 1.99%, 2.55% and 3.93%, respectively. Overall, as the coal rank increases, the number of functional groups and peak positions decrease. In particular, the stretching vibration at 2800–3000 cm$^{-1}$ of aliphatic structural functional groups became increasingly weaker. In sample WTP15-4, which has the highest coal rank, it almost disappeared. The 700–900 cm$^{-1}$ region reflects the vibration of the adjacent H atoms outside the aromatic hydrocarbons (Colthup et al., 1990; Painter et al., 1985).

The relative vibrational strength of the 700–900 cm$^{-1}$ region in the XF, JJP8-5, W9-17, XY10-3, CM6-1, SSP11-5, LL3-9 and YQ samples is increasing, which is consistent with previous studies (José et al., 1996; Kuehn et al., 1982; Mastalerz and Bustin, 1993) showing that as the coal rank increases, the degree of aromatization of coal is enhanced. The

![Figure 3. Comparison of FTIR spectra of coal samples.](image-url)
vibrational strength of the 700–900 cm\(^{-1}\) aromatic core functional group of GH and WTP15-4, the 4–5 adjacent H atoms at 750 cm\(^{-1}\) and the 3 adjacent hydrogen atoms at 810 cm\(^{-1}\) are weakened, whereas the relative intensity of vibration of 2 adjacent hydrogen atoms at 870 cm\(^{-1}\) is enhanced. This indicates that as the degree of coal rank increases, the coal tends to be graphitized and the simple aromatic hydrocarbons condense into polycyclic aromatic hydrocarbons, resulting in a decrease in the H atoms outside the aromatic ring (José et al., 1996; He et al., 2017). As shown in Figure 3, the GH main vibration peak is significantly different from the other samples, and the vibration peak is the strongest at

Figure 4. Curve-fitting FTIR spectrum of Sample LL3-9.

(a). Absorbance bands of thiophene.
(b). Absorbance bands of sulfone.
(c). Absorbance bands of thioether.
(d). Absorbance bands of thiol.
(e). Absorbance bands of aromatic hydrocarbon.
1300–1450 cm$^{-1}$, which are the CH$_3$ and CH$_2$ asymmetric deformation vibrations of the alkyl chain structure. This is mainly due to the unusual coal-forming environment of the GH sample (Dai et al., 2008), which has the highest organic sulfur content among all samples and experienced strong biodegradation in the later coalification. The result is the conversion of high carbon number alkanes to low carbon numbers, leading to an increase in the proportion of vibration peaks at 1300–1450 cm$^{-1}$ (Zhao et al., 2014).

Organic sulfur structure analysis. The FTIR spectrum of the organic sulfur structure in coal was analyzed by peak fitting. According to previous studies (Colthup et al., 1990; Kofranek et al., 1992; Li and Li, 1991; Nunziante et al., 1999; Quigley, 1996), the assignment of organic sulfur compound absorption peaks is listed in Table 5 and the absorption areas of curve-fitting FTIR spectrum of all samples are listed in Table 6. According to the results of previous studies (Guo et al., 1996; Mastalerz and Bustin, 1993), the ratios of the relative abundance of aromatic to aliphatic functional groups, $I_1=\text{areas of (3000–3100)}/\text{areas of (2800–3000)}$ and $I_2=\text{areas of (700–900)}/\text{areas of (2800–3000)}$, are used to indicate the aromaticity of coal. The greater the ratio, the greater the aromaticity of the coal. Thus, we calculate the area ratios as:

Table 5. Frequency and assignment of organic functional groups in high organic sulfur coals (Colthup et al., 1990; Li and Li, 1991; Kofranek et al., 1992; Quigley, 1996; Nunziante et al., 1999).

Functional group	Symbol	Peak (cm$^{-1}$)	Absorbancea	Commentsb
Thiol SH	H	2525–2530	w	str.
Thiother C-S	I	692–698	w-m	str.
Sulfone SO$_2$-C	J	1100–1126	w-m	sym. str.
Thiophene	K	1395–1412	w	ring str.
Aromatic C=C	L	1550–1610	s	C=C ring

aw, weak; m, medium; s, strong; w-m, weak to medium.
bstr., stretching vibration; asy., asymmetric; sym., symmetric.

Table 6. Absorption areas of curve-fitting FTIR spectrum of coal samples.*

Sample	Thiol (cm$^{-1}$)	Sulfone (cm$^{-1}$)	Thiophene (cm$^{-1}$)	Aromatics (cm$^{-1}$)
XF	6.6137	0.0494	0.0368	57.849
JJP8-5	0.0022	5.8981	1.156	25.7696
W9-17	0.0015	0.9143	1.6692	50.1046
XY10-3	0.0056	bdl	0.9824	32.6431
CM6-1	0.0002	5.3649	0.9934	13.6098
SSP11-5	0.0008	1.8844	0.2868	15.1961
LL3-9	0.0028	0.9766	0.6015	8.8326
GH	0.0328	2.5318	1.2032	13.2027
YQ	0.0083	0.8844	0.2789	31.2036
WTP15-4	0.0317	0.26155	0.2815	6.0276

*bdl, below detection limit.
Using the A/B, A/C and B/C as the aromaticity parameters of organic sulfur in coal (see Table 7), we conducted a comprehensive analysis of the structural characteristics of organic sulfur in coal.

Figure 5(a) shows the trend of the FTIR aromatization parameter A/B of organic sulfur structure of high organic sulfur coals with ranks plus the WTP15-4 sample. In general, aromaticity of organic sulfur is increased with the increasing coal rank. It can be seen from Figure 5(a) that there are three stages, in the first stage (when R_m is between 0.37% and 1.4%) the relative abundance of aromatic sulfur to aliphatic sulfur increases slowly with the coal rank increase; the second stage (when R_m is between 1.4% and 1.99%) the relative abundance of aromatic sulfur to aliphatic sulfur increases rapidly with the coal rank increase; the third stage (when R_m is between 1.99% and 3.93%) the relative abundance of aromatic sulfur increases slowly again. These results are similar to the previous studies on the aromaticity of carbon atoms in coal, with three distinct stages of evolution (He et al., 2017; Ouyang et al., 2016; Suggate, 1998). Taking all samples of different coal ranks into consideration, the polynomial trend line (R^2 = 0.9586) obtained by fitting A/B with coal rank is also in line with the general laws of nature. When the sulfur content in coal is constant, with the increase of coal rank, the relative of aromatic sulfur increases and the abundance of aliphatic sulfur decreases. The relative abundance of aromatic sulfur to aliphatic sulfur will become larger and larger.

Figure 5(b) shows the trend of FTIR aromatization parameters A/C of organic sulfur structure with different coal ranks in high organic sulfur coals. Over all, it can be seen in Figure 5(b) that the A/C values increase with the coal rank increase, but will not increase indefinitely. It will increase only to a certain critical value, and this critical value depends on

Table 7. Organic sulfur structure parameters of the FTIR spectrum.

Sample No.	A/B	A/C	B/C
XF	0.00	0.00	0.12
JJP8-5	0.21	0.06	0.27
W9-17	0.21	0.01	0.05
XY10-3	0.14	0.00	0.03
CM6-1	0.34	0.16	0.47
SSP11-5	0.59	0.08	0.14
LL3-9	1.00	0.18	0.18
GH	1.77	0.51	0.29
YQ	1.73	0.06	0.04
WTP15-4	4.21	0.40	0.10
the amount of organic sulfur content in coal. Figure 5(c) shows the trend of FTIR aromatization parameters B/C of organic sulfur structure with different coal ranks in high organic sulfur coals. In general, the B/C values decrease as the coal rank increase. There are two reasons for this result, one is with the coal rank increase, aliphatic sulfur changes into aromatic sulfur and the abundance of aliphatic sulfur decreases. Another reason is that with the coal rank increase, the abundance of aromatic C = C increase.

Figure 5. Correlation between organic sulfur structural parameters and R_m: (a) A/B (ratio of aromatic sulfur to aliphatic sulfur); (b) A/C (ratio of aromatic sulfur to aromatic C = C); (c) B/C (ratio of aliphatic sulfur to aromatic C = C).
Above all, this also indicates that in the macromolecular structure of coal the organic sulfur compounds also follow the general rule of changing from chain to cyclic organic sulfur compounds as the degree of coal rank increases. Organic sulfur compounds structural evolution is unified with coal macromolecular structure that is with increasing coal metamorphism and increasing coal rank, aromatics increase and chain hydrocarbons and branches decrease.

Comprehensive analysis

It can be seen from Figure 6 there is a clear relationship between TPI, EID and organic sulfur aromatization parameters. Statistical analysis shows that the EID value and the B/C value show a good linear positive correlation where as TPI value and the B/C value show a good linear negative correlation under the condition that the hypothesis test is established (significance level \(\alpha < 0.05 \), and there is no correlation between coal rank and GI. It shows that B/C has a correlation with TPI, EID and is not affected by the coal rank. The TPI and EID index is closely related to coal-forming environment. This shows that the structural characteristics of organic sulfur in coal are affected by the coal-forming environment in addition to the coal rank. Therefore, when studying the structural characteristics and trends of organic sulfur in coal, we should consider not only the coal rank but also the effect of the coal-forming environment on organic sulfur structure when the organic sulfur compounds forms.

Conclusions

In summary, a series of high organic sulfur coals with different coal ranks was analyzed by petrology and FTIR. Coal petrological analysis shows coal macerals are predominantly vitrinite and inertinite, some of the high-organic-sulfur coals with high GI values and low TPI values (CM6-1, XF), some of the high-organic-sulfur coals with high TPI values...
and low GI values (YQ). We suggest that some high organic sulfur coals (JJP8-5, LL3-9 and CM6-1) have experienced oxidation or intrusion of exotic waters in the early peat period. FTIR analysis shows the structural characteristics of organic sulfur in different coal ranks are different. Overall, the aromaticity of organic sulfur increases with coal rank increase, but it divided into three stages (0.37%–1.40%, 1.40%–1.99% and 1.99%–3.93% of R_m). In addition to the influence of coal rank, the structural characteristics of organic sulfur in coal are also affected by the coal-forming environment. The impact of the coal-forming environment on the structure of organic sulfur is independent of coal rank. Therefore, not only is the coal rank important but also the coal formation environment must be considered when removing the organic sulfur from coal in the processing and utilization.

Highlights

1. CM6-1 with the highest GI and EID values (18.30 and 2.29 respectively), and the lowest TPI values (0.12).
2. The evolution of organic sulfur structure divided into three stages (0.37%–1.40%, 1.40%–1.99% and 1.99%–3.93% of R_m).
3. The impact of the coal-forming environment on the structure of organic sulfur is independent and significant.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the National Key Basic Research and Development Program “973” Project of China (Grant No. 2012CB214901), and the National Natural Science Foundation of China (Grant No. 41872175 and 41172146/D0208).

ORCID iD

Yuegang Tang https://orcid.org/0000-0002-2260-6113

References

Abelson PH (1975) Control of sulfur dioxide emissions from coal. *Science (New York, N.Y.)* 189(4199): 253–253.

ASTM D3177-02 (2011) *Test Method for Total Sulfur in the Analysis Sample of Coal and Coke from Coal*. West Conshohocken, PA: ASTM International.

ASTM Standard D2798-2011a (2011) *Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal*. West Conshohocken, PA: ASTM International.

ASTM Standard D3173-11 (2011) *Test Method for Moisture in the Analysis Sample of Coal and Coke*. West Conshohocken, PA: ASTM International.

ASTM Standard D3174-11 (2011) *Test Method for Ash in the Analysis Sample of Coal and Coke from Coal*. West Conshohocken, PA: ASTM International.

ASTM Standard D3175-11 (2011) *Test Method for Volatile Matter in the Analysis Sample of Coal and Coke*. West Conshohocken, PA: ASTM International.
ASTM Standard D5373-08 (2011) Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. West Conshohocken, PA: ASTM International.

ASTM Standard D2492-02 (2012) Standard Test Method for Forms of Sulfur in Coal. West Conshohocken, PA: ASTM International.

Bent R and Brown JK (1961) The infra-red spectra of macerals. Fuel 40: 47–56.

Casagrande D and Ng L (1979) Incorporation of elemental sulphur in coal as organic sulphur. Nature 282(5739): 598–599.

Casagrande D and Siefert K (1977) Origins of sulfur in coal: Importance of the ester sulfate content of peat. Science (New York, N.Y.) 195(4279): 675–676.

Casagrande DJ, Finkelman RB and Caruccio FL (1989) The nonparticipation of organic sulfur in acid mine drainage generation. Environmental Geochemistry and Health 11(3–4): 187–192.

Chen Y, Mastalerz M and Schimmelmann A (2012) Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology 104: 22–33.

Chou CL (1997) Geologic factors affecting the abundance, distribution, and speciation of sulfur in coals. In: Proceedings of the 30th international geological congress (ed. Q Yang), vol. 18, Part B, Geology of Fossil Fuels-Coal. The Netherlands: VSP, Utrecht, pp.47–57.

Chou CL (2012) Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology 100: 1–13.

Cline II CJ, Faul UH, David EC, et al. (2018) Redox-influenced seismic properties of upper-mantle olivine. Nature 555(7696): 355–358.

Colthup NB, Daly LH and Wiberley SE (1990) Introduction to Infrared and Raman Spectroscopy. 3rd ed. Boston: Academic Press, pp.355–385.

Dai SF, Ai T, Zhou Q, et al. (2000) Depositional environment and sulfur distribution of high-sulfur coal in Wuda mining area. Coal Geology & Exploration 28: 1–4 (in Chinese with English abstract).

Dai SF, Ren DY, Zhou Y, et al. (2008) Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology 255(1–2): 182–194.

Dai SF, Xie PP, Colin RW, et al. (2017) Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan coalfield, Guangxi, China. Ore Geology Reviews 88: 235–250.

Dai SF, Xie PP, David F, et al. (2018) The occurrence of buddingtonite in super-high-organic-sulphur coals from the Yishan coalfield, Guangxi, Southern China. International Journal of Coal Geology 195: 347–361.

Davut U and Sibel Ö (1997) Correlations for the combustible sulfur contents of Turkish coals from sulfur forms and CaO analyses. Fuel 76: 995–997.

Diessel CFK (1986) On the correlation between coal facies and depositional environments. Advances in the Study of the Sydney Basin. In: Proceedings of 20th Symposium of University of Newcastle, pp.19–22.

Diessel CFK and Gammidge L (1998) Isometamorphic variations in the reflectance and fluorescence of vitrinite – a key to depositional environment. International Journal of Coal Geology 36(3–4): 167–222.

Gayer R, Rose M, Dehmer J, et al. (1999) Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal – Case study from the South Wales Variscan foreland basin. International Journal of Coal Geology 40(2–3): 151–174.

Gentzis T and Goodarzi F (1990) Petrology, depositional environment and utilization potential of late Paleocene coals from the Obed-Marsh deposit, West-Central Alberta, Canada. International Journal of Coal Geology 16(4): 287–308.

Guo YT and Bustin R (1998) Micro-FTIR spectroscopy of liptinite macerals in coal. International Journal of Coal Geology 36(3–4): 259–275.

Guo YT, Renton JJ and Penn JH (1996) FTIR microspectroscopy of particular liptinite-lopinite rich, Late Permian coals from Southern China. International Journal of Coal Geology 29(1–3): 187–197.
He X, Liu X, Nie B, et al. (2017) FTIR and Raman spectroscopy characterization of functional groups in various rank coals. *Fuel* 206: 555–563.

International Committee for Coal and Organic Petrology (1998) The new vitrinite classification (ICCP system 1994). *Fuel* 77: 349–358.

International Committee for Coal and Organic Petrology (2001) The new inertinite classification (ICCP system 1994). *Fuel* 80: 459–471.

Jiang JY, Yang WH, Cheng YP, et al. (2019) Molecular structure characterization of Middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification. *Fuel* 239: 559–572.

José VI, Edgar M and Rafael M (1996) FTIR study of the evolution of coal structure during the coalification process. *Organic Geochemistry* 24: 6–7.

Kang XD, Yang Q, Zhang R, et al. (1999) Occurrence state and origin of organic sulfur in Late Paleozoic coal, North China. *Earth Science* 4: 413–417 (in Chinese with English abstract).

Ken BS and Nandi BK (2018) Effect of some operational parameters on desulphurization of high sulphur Indian coal by KOH leaching. *Energy Exploration & Exploitation* 36(6): 1674–1691.

Kofranek M, Tomáš K, Lischka H, et al. (1992) Ab initio studies on heterocyclic conjugated polymers: Structure and vibrational spectra of thiophene, oligothiophenes and polythiophene. *Journal of Molecular Structure: theochem* 259: 181–198.

Kuehn DW, Snyder RW, Davis A, et al. (1982) Characterization of vitrinite concentrates. 1. Fourier transform infrared studies. *Fuel* 61(8): 682–694.

Kumar A, Singh AK, Singh PK, et al. (2019) Desulfurization of Giral Lignite of Rajasthan (Western India) using Burkholderia sp. GR 8–02. *International Journal of Coal Preparation and Utilization* 1–17.

Kumar D and Kumar D (2018) Chapter 10-high-sulphur coal washing. In: Kumar D and Kumar D (eds) *Sustainable Management of Coal Preparation*. UK: Woodhead Publishing, pp.231–241.

Lei JJ, Pu YY and Ren DY (1995b) Bacterium-like bodies and its significance in high organosulfur coal from guiding. *Acta Petrologica Sinica* 4: 456–461 (in Chinese with English abstract).

Lei JJ, Ren DY, Han DX, et al. (1995a) The distribution of organosulfur in macerals of coals accumulated in different environments. *Coal Geology & Exploration* 5: 14–19 (in Chinese with English abstract).

Lei JJ, Ren DY, Tang YG, et al. (1994) Sulfur-accumulating model of superhigh organosulfur coal from guiding, China. *Chinese Science Bulletin* 39: 1818–1821.

Li S and Li Y (1991) FTIR spectra of matrix isolated complexes between sulfur compounds. *Spectrochimica Acta. Part A* 47(2): 201–209.

Li WW and Tang YG (2013) Characteristics of the rare earth elements in a high organic sulfur coal from Chenxi, Hunan province. *Journal of Fuel Chemistry and Technology* 41: 540–549 (in Chinese with English abstract).

Li WW and Tang YG (2014) Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi coalfield, Southern China. *International Journal of Coal Geology* 127: 3–13.

Li WW, Tang YG, Zhao QJ, et al. (2015) Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China. *Fuel* 155: 115–121.

Lis GP, Mastalerz M, Schimmelmann A, et al. (2005) FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Rv in type-II kerogens from Devonian black shales. *Organic Geochemistry* 36(11): 1533–1552.

Liu S, Sang S, Wang T, et al. (2018) The effects of CO₂ on organic groups in bituminous coal and high-rank coal via Fourier transform infrared spectroscopy. *Energy Exploration & Exploitation* 36(6): 1566–1592.

Liu Z, Wang G, Li P, et al. (2019) Investigation on combustion of high-sulfur coal catalyzed with industrial waste slags. *Journal of the Energy Institute* 92(3): 621–629.
Mastalerz M and Bustin RM (1993) Electron microprobe and micro-FTIR analyses applied to maceral chemistry. International Journal of Coal Geology 24(1–4): 333–345.

Medunić G, Ahel M, Božičević Mihalić I, et al. (2016a) Toxic airborne S, PAH, and trace element legacy of the superhighorganic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash. Science of the Total Environment 566–567: 306–319.

Medunić G, Radenović A, Bajramović M, et al. (2016b) Once grand, now forgotten: What do we know about the superhigh-organic-sulphur Raša coal? Rudarsko-Geološko-Naftni Zbornik 31(1): 27–45.

Medunić G, Kuharić Z, Krivohlavek A, et al. (2018a) Geochemistry of croatian superhigh-organic-sulphur Raša coal, imported low-S coal, and bottom ash: Their Se and trace metal fingerprints in seawater, clover, foliage, and mushroom specimens. International Journal of Oil, Gas and Coal Technology 18(1/2): 3–24.

Medunić G, Kuharić Z, Krivohlavek A, et al. (2018b) Selenium, sulphur, trace metal, and BTEX levels in soil, water, and lettuce from the Croatian Raša Bay contaminated by superhigh-organic-sulphur coal. Geosciences 8(11): 408–426.

Medunić G, Singh PK, Singh AL, et al. (2019) Use of bacteria and synthetic zeolites in remediation of soil and water polluted with superhigh-organic-sulfur Raša coal (Raša Bay, North Adriatic, Croatia). Water 11: 1419.

Medunić G, Grigore M, Dai SF, et al. (2020) Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology 217: 103344.

Nunziante CS, Dobos S and Stirling A (1999) FTIR spectra of thiophene in Ar and N2 matrices. Co-condensation with Cu and CO. Vibrational Spectroscopy 20(1): 59–67.

Ouyang ZQ, Liu D, Cai Y, et al. (2016) Fractal analysis on heterogeneity of pore-fractures in middle–high rank coals with NMR. Energy Fuels 30(7): 5449–5458.

Painter PC, Coleman MM, Jenkins RG, et al. (1978) Fourier transform infrared studies of acid-demineralized coal. Fuel 57(2): 125–126.

Painter PC, Snyder RW, Starinic M, et al. (1981) Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Applied Spectroscopy 35(5): 475–485.

Painter PC, Starinic M and Coleman MM (1985) Determination of Functional Groups in Coal by Fourier Transform Interferometry. Academic Press: New York, pp.169–240.

Quigley WWC, Yamamoto HD, Aegerter PA, et al. (1996) Infrared spectroscopy and temperature-programmed desorption study of adsorbed thiophene on γ-Al2O3. Langmuir 12(6): 1500–1510.

Ren DY, Tang YG and Lei JJ (1994) Study on sulfur occurrence regulation and pyrite magnetism of Late Permian coal in Southwestern China. Journal of China University of Mining and Technology 4: 65–73.

Ren DY, Tang YG, Lei JJ, et al. (1996) The study on regularity of sulfur occurrence and pyrite magnetism of Late Permian coal in Southwest China. In: Progress in Geology of China (1993–1996), Special Edition of China Geological Reviews. China Coal Industry Publishing House: Beijing, pp.875–880.

Shao LY, Jones T, Gayer R, et al. (2003) Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield, Southern China. International Journal of Coal Geology 55(1): 1–26.

Shen Y, Wang M, Hu Y, et al. (2019) Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal. Fuel 249: 427–433.

Sinninghe Damsté JS, White CM, Green JB, et al. (1999) Organosulfur compounds in sulfur-rich Raša coal. Energy & Fuels 13: 728–738.

Singh AK, Kumar A, Singh PK, et al. (2018) Bacterial desulphurization of low rank coal: A case study of Eocene lignite of Western Rajasthan. India, Energy Sources Part A: Recovery, Utilization, and Environmental Effects 40(10): 1199–1208.
Singh AL, Singh PK, Kumar A, et al. (2012a) Desulfurization of selected hard and brown coal samples from India and Indonesia with Ralstonia sp and Pseudoxanthomonas sp. *Energy Exploration & Exploitation* 30(6): 985–998.

Singh PK, Rajak PK, Singh MP, Singh, et al. (2016) Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India. *Understanding the Evolution through Petrological Modelling International Journal of Coal Science & Technology* 3(2): 148–164.

Singh PK, Singh AL, Kumar A, et al. (2013) Control of different pyrite forms on desulfurization of coal with bacteria. *Fuel* 106: 876–879.

Singh PK, Singh MP, Singh AK, et al. (2012b) Petrographic and geochemical characterization of coals from Tиру valley, Nagaland, NE India. *Energy Exploration & Exploitation* 30(2): 171–192.

Smith JW and Batts BD (1974) The distribution and isotopic composition of sulfur in coal. *Geochimica et Cosmochimica Acta* 38(1): 121–133.

Suggate RP (1998) Analytical variation in Australian coals related to coal type and rank. *International Journal of Coal Geology* 37(3–4): 179–206.

Supaluknari S, Larkins FP, Redlich P, et al. (1988) An FTIR study of Australian coals: Characterization of oxygen functional groups. *Fuel Processing Technology* 19(2): 123–140.

Tang YG, He X, Cheng AG, et al. (2015) Occurrence and sedimentary control of sulfur in coals of China. *Journal of China Coal Society* 40: 1977–1988 (in Chinese with English abstract).

Tang YG, Huan X, Lan CY, et al. (2018) Effects of coal rank and high organic sulfur on the structure and optical properties of coal-based graphene quantum dots. *Acta Geologica Sinica* 92(3): 1218–1230.

Tang YG, Ren DY and Zhao FH (1997) The formation models of sulfur in the Late Permian coal of Sichuan. *Journal of China University of Mining & Technology* 7: 84–89.

Tang YG, Ren DY, Zhang J, et al. (1996) The magnetism of coal pyrites and its genesis. *Chinese Science Bulletin* 41: 44–48.

Tang YG, Shao X, Lei JJ, et al. (1993) XPS study on different genesis of sulfur in high-sulfur coals. *Journal of Fuel Chemistry and Technology* 21: 413–418 (in Chinese with English abstract).

Tang YG, Zhang H, Peng SP, et al. (2002) Study on occurrence mode and geological genesis of organic sulfur in coal in China. *Journal of Shandong University of Science and Technology (Natural Science)* 21: 1–4 (in Chinese with English abstract).

Torres-Ordonez RJ, Calkins WH and Klein MT (1990) *Geochemistry of Sulfur in Fossil Fuels, Symposium Series* 429. USA: American Chemical Society, pp.287–295.

Train RE (1975) Sulfur dioxide pollution. *Science (New York, N.Y.)* 189(4205): 748–750.

Wang SQ, Tang YG, Schobert HH, et al. (2011) FTIR and 13C NMR investigation of coal component of Late Permian coals from Southern China. *Energy Fuels* 25(12): 5672–5677.

White CM, Douglas LJ, Anderson RR, et al. (1990) Organosulfur constituents in rasa coal. *ACS Symposium* 261–286.

Yan JC, Lei ZP, Li ZK, et al. (2020) Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. *Fuel* 268: 117038.

Yang YL and Zhao QJ (2018) Analysis of aromatic hydrocarbon in medium-to high-sulfur coals from Fenxi, Shanxi Province. *World Journal of Engineering* 15(6): 786–791.

Zettelmoyer AC, Micale FJ and Klier K (1975) *Water A Comprehensive Treatise: Water in Disperse Systems*. New York: Plenum, pp.249–291.

Zhao QJ, Niu YJ, Xie ZZ, et al. (2020) Geochemical characteristics of elements in coal seams 41 and 42 of Heshan coalfield, South China. *Energy Exploration & Exploitation* 38(1): 137–157.

Zhao QJ, Tang YG, Li WW, et al. (2014) Compositional characteristics of sulfur-containing compounds in high sulfur coals. *Energy Exploration & Exploitation* 32(2): 301–316.

Zhao ZF, Tang YG, Wei Q, et al. (2015) Evolution characteristics of sulfur-bearing structures of low and medium rank coal with high organic sulfur content. *Coal Geology & Exploration* 43: 17–22 (in Chinese with English abstract).