Anticancer Effect of Natural Product Sulforaphane by Targeting MAPK Signal through miRNA-1247-3p in Human Cervical Cancer Cells

Meng Luo 1, Dian Fan 1,*, Yinan Xiao 2, Hao Zeng 2,*, Dingyue Zhang 1,*, Yunuo Zhao 1,*, Xuelei Ma 1,2

1 Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; luomeng_1017@163.com (L.M.);
2 West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China;
fan-dian@foxmail.com (F.D.); yinan_xiao@163.com (X.Y.N.); 13540285357@163.com (Z.H.);
2017141082017@stu.scu.edu.cn (Z.D.Y.); 2087247019@qq.com (Z.Y.N.);
* Correspondence: drmaxuelei@gmail.com;

Abstract: The prognosis of cervical cancer remains poor. Sulforaphane, an active ingredient from cruciferous plants, has been identified as a potential anticancer agent in various cancers. However, there is little information about its effect on cervical cancer. Here, we conducted a present study to uncover the effect and the potential mechanisms of sulforaphane on cervical cancer. HeLa cells were treated with sulforaphane, and cell proliferation and apoptosis were assessed by Cell Counting Kit-8, Western blot, flow cytometry, and immunofluorescence. Then, next-generation sequencing (NGS) and bioinformatics tools were used to analyze mRNA-seq, miRNA-seq, and potential pathways. Finally, qRT-PCR, Cell Counting Kit-8, flow cytometry, small RNAs analysis, and Western blot were performed to evaluate the biological function of miR1247-3p and MAPK pathway in HeLa cell lines. Sulforaphane significantly suppressed the viability and induced apoptosis of HeLa cells. NGS and bioinformatics analysis showed sulforaphane exerted its anti-tumor activities through miR1247-3p and the MAPK signaling pathway. Further analysis suggested that sulforaphane could activate MAPK pathway via down-regulating the expression of miR-1247-3p. Sulforaphane inhibited proliferation and promoted apoptosis of HeLa cells via down-regulation of miR-1247-3p and activating the MAPK pathway. These findings provide preliminary experimental evidence for the treatment of cervical cancer with sulforaphane.

Keywords: Sulforaphane; Cervical cancer; Next-generation sequencing; Kyoto Encyclopedia of Genes and Genomes; MiR-1247-3p; MAPK pathway.

List of Abbreviations: CCK8 = cell counting kit 8, DMSO = dimethyl sulfoxide, GO = Gene Ontology, KEGG = Kyoto Encyclopedia of Genes and genomes, MAPK = mitogen-activated protein kinase, miRNA = microRNA, NGS = next-generation sequencing, qRT-PCR = quantitative real-time polymerase chain reaction, PI = propidium iodide

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cervical cancer has become the fourth most common malignancy among women worldwide due to its high incidence and mortality rate[1] [2]. There are around 528,000 newly-diagnosed cervical cancer cases and 266,000 deaths every year, according to the latest global cancer statistics [3]. To date, effective treatments for patients with cervical cancer include surgery, chemotherapy, and radiotherapy[4]. Given many potential adverse side effects in these
traditional treatments, so it is worthwhile to search for a novel effective treatment for cervical cancer [5].

Sulforaphane, an herbal isothiocyanate typically abundant in cruciferous vegetables such as broccoli, cauliflower, and cabbage, has many biological effects such as anti-inflammation, anti-oxidation [6]. In particular, due to its anticarcinogenic role in pancreatic cancer, it has been noteworthy recently [7]. The antiproliferative and radiosensitizing properties for head and neck tumors also have been reported [8]. Although previous studies have identified the anti-tumor potential of sulforaphane in various kinds of cancers [9,10], the role of sulforaphane in cervical cancer has not been well recognized. MicroRNAs (miRNAs) are short, non-coding RNAs that play important roles in regulating many biological processes involving almost all aspects of cell physiology [11,12]. Typically, they regulate protein expression levels in physiological and pathophysiological processes by conjugating with complementary sequences of their target mRNAs [13,14]. As there are around 1000 miRNAs in the human genome, which modulate approximately one-third of the human genes [15], miRNAs are the most abundant regulators [16].

Accumulating evidence has shown that sulforaphane exerts its therapeutic effects through modulating the expression of cancer-related miRNAs on a variety of cancers, including colon cancer [17], lung cancer [18], gastric cancer [19], pancreatic cancer [20], skin cancer [21], acute myeloid leukemia [22], and nasopharyngeal cancer [23]. Besides, the previous study has demonstrated that miR-3156-3p, negatively associated with the incidence of HPV-positive cervical cancer, acted as a tumor-suppressive miRNA [24]. Furthermore, targeting MACC1, miR-338-3p could regulate the proliferation of cervical cancer cells via the MAPK pathway [25]. However, no elaborate research has found the association between miRNAs and sulforaphane in inhibiting cervical cancer until now. Therefore, given the anti-tumor capability of sulforaphane, we aimed at validating the anticancer activities and mechanisms of sulforaphane in cervical cancer, including downstream target miRNA and relevant signal pathway initiated by the miRNA.

In our study, we found that miR-1247-3p was highly related to both the apoptosis rate of cervical cancer cells cultured with sulforaphane and the activation of the MAPK pathway. Based on the high throughput sequencing and bioinformatics analysis, we ultimately disclosed the role of the miR-1247-3p-induced MAPK signal pathway in inhibition of cervical cancers treated with sulforaphane.

2. Materials and Methods

2.1. Materials.

Sulforaphane was purchased from MedChem Express (#HY-13755, MCE, Monmouth Junction, NJ, USA) and dissolved in DMSO (Sigma, Saint Louis, USA) at the concentration of 10mM and protected from light. It stored as small aliquots at -20°C for long term preservation. The primers for miR-12315 (HmiRQP4717), miR-1247-3p (HmiRQP3407), miR-33b-3p (HmiRQP0431), miR-320-5p (HmiRQP4731) and small nuclear RNA-U6 (RNU6, #HmiRQP9001) were obtained by Genecopoeia (Rockville, MD, USA). The sequence of miR-12315 inhibitor was: AUGGUGUCGGAAAAUCG UAGCCGAAGACACCUCGGAGCA GAGACCGA CACCGCCA. The sequence of miR-1247-3p mimic was: CCCCCGGGAACGUCGAGACUGGAGC. The sequence of miR-320a-5p inhibitor was: CGGAAGAGAGGGCGCCAAGAAGG. The sequence of miR-33b-3p mimic was: CCCCCGGGAACGUCGAGACUGGAGC.
CAGUGCU CGGCAGUGCAGCCC. The sequence of inhibitor NC was: CAGUACUUUUGUGUAGUACAA. The sequence of mimic NC was: UUGUACUACACAAAGUACUG.

2.2. Cell culture.

Human cervical cancer cell lines HeLa was purchased from the American Model Culture Collection (ATCC), which was preserved by the State Key Laboratory of Biotherapy of Sichuan University. The cell was cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Gibco), 100 unit/mL penicillin (Beyotime, SH, China), and 100 mg/mL streptomycin (Beyotime). These cells were cultured in a humid chamber at 37°C under 5% CO2 in the atmosphere.

2.3. Cell viability assay.

CCK8 kit was used to detect cell proliferation. Briefly, 5x10³ cells were plated in 96-well plates. After attachment overnight, cells were treated with sulforaphane (0, 10, 20, 40µM) for 24h, and then incubated in 10% CCK-8 for another 2h. The cells in the 0 µM-treated group were cultured with the same volume of DMSO as the 40µM-treated group. The cell proliferation rate was measured at 450nm absorbance. The experiment was carried out three times.

2.4. Transcriptome sequencing and analysis.

HeLa cells were harvested for RNA extraction after 8 h of sulforaphane treatment at a concentration of 40 µM. The cells incubated with the same volume of DMSO as the sulforaphane (40µM)-treated group were set as the control. Each group included three samples. Trizol Reagent (Invitrogen, San Diego, CA, USA) was used to isolate total RNA. Illumina HiSeq 2500 platform was utilized to perform transcriptome sequencing, and 150bp paired-end raw reads were generated. Illumina sequencing was carried out at Novogene, Beijing, China. The expression level of each transcript was measured as the number of clean reads mapped to its reference sequence (GRCh 38). Kallisto[26] was adopted to align and quantify clean reads, genes expressed in at least 1 sample were defined as detected genes. Differential expression analysis was performed through the DEseq2(v 1.24.0) R package [27], DEGs were selected out based on the interval of p < 0.05 & |log2 (fold change)| > 1. Enrichment of pathways was performed by KOBAS 3.0[28] with the corresponding groups of DEGs. The hypergeometric test method was Fisher's exact test, and the FDR correction method was Benjamini and Hochberg.

2.5. Small RNA Sequencing and Analysis.

Small RNAs were sequenced by Illumina Hiseq 2500/2000 platform, and 50 bp single-end reads were generated. Clean data were obtained by removing adaptor sequences, collapsing reads with the same sequence, and reads with less than 15 bases in length from raw data. Then, clean data were analyzed based on the miRDeep2 (2.0.0.8)[29]. Small RNA reads were mapped to miRNA precursors from miRBASE release 22.1[30] by miRDeep2, which allowed zero mismatches. Mapped reads were quantified by miRDeep2. Reads were matched to human miRNA precursors using bowtie2[31], and 1520 miRNAs were detected. Analysis of the differential expressed miRNAs(DEMs) between sulforaphane-untreated and sulforaphane-
treated groups was performed by the DEseq2 R package. P< 0.05 & |log2 (fold change)| > 2 was set to as the significance threshold in this test. The target genes of DEMs were predicted by TargetScanHuman(v 7.2)[32]. The Enrichment of KEGG pathways was performed by KOBAS 3.0 with the target genes.

2.6. Flowcytometry.

FITC-Annexin V/PI Detection Kit I (BD Biosciences, San Jose, CA) was used for quantifying the apoptotic cell rate after sulforaphane treatment. The HeLa cells (5×10^5 cells/well) were plated in 6-well plates. After 24 h incubation, the cells were cultured with different concentrations of sulforaphane for 24 h. Then the cells were collected and incubated with Annexin V-FITC for 5 min in the dark and then stained with PI for 5 min. The sample was sorted by NovoCyte flow cytometry. Data were analyzed by NovoExpress 1.1.2 software.

2.7. miRNA transfection.

MiR-1247-3p mimic and its scrambled control (NC) were both purchased from GenePharma (Shanghai, China). For transfection, the cells were seeded at a density of 4×10^4 cells per well into 6-well culture plates. As the cells reached 50–80% confluence, transient transfection was performed by using Lipofectamine™ 3000 (Invitrogen) according to the manufacturers’ protocol. The transfection was stopped after 24 hours, and cells were collected for subsequent experiments, including cell viability and apoptosis assays. In cell viability assay, the cells transfected with different miRNA mimics were administrated with sulforaphane (0, 10, 20, and 40µM) for 24h. In apoptosis assay, the flow cytometry detected the apoptotic cell rate of sulforaphane-treated cells (0, 40µM) for 24h. The cells in the sulforaphane (0 µM)-treated group(control group) were incubated with the same volume of DMSO as the sulforaphane (40 µM)-treated group.

2.8. Immunofluorescence.

HeLa cells were seed onto a 14-mm cover glass in 24-well plate and incubated overnight. Cells were treated by different concentrations of sulforaphane for 48h. Then the culture medium was removed, and cells were washed twice with PBS, fixed with 4% parafomaldehyde for 10min and washed three times. The unspecific binding sites were blocked with PBST containing 1% BSA and 0.05% Triton X-100. Subsequently, cells were incubated with primary antibody overnight at 4°C. The secondary antibodies combined with FITC were used. DAPI was performed to stained cell nuclei, and the samples were examined with fluorescence microscopy.

2.9. RT-PCR.

To confirm the bioinformatics analysis, total RNA was extracted by using RNA Extraction Kit (TIANGEN BIOTECH, DP419) after treatment with or without sulforaphane (40 µM) for 8 h, and reverse transcribed to cDNA by using Prime Script RT Kit (Takara, RR036) according to the manufacturers’ instructions. The qPCR array was performed by using SYBR Select Master Mix (Invitrogen, 4472908) with specific gene primers in StepOnePlus PCR System (Thermo). RT-qPCR was conducted by the following conditions: 95°C for 15 min, followed by 40 cycles of 94°C for 20 s and 60°C for 34 s. RNU6 was used as an internal reference. The target genes expression levels were measured by using the 2^−ΔΔCt method.
2.10. Western blot.

The harvested cells were washed twice with a pre-cooled PBS buffer. Cellular proteins were extracted in RIPA lysis buffer (Biosharp, Guangzhou, GD, China), including protease inhibitor cocktail (Millipore) over ice for 30 minutes. The supernatant was gathered by centrifuging at 13000rpm for 15 min at 4°C. The protein concentrations of samples were evaluated by BCA protein assay kit (Beyotime, China). Afterwards, the protein extracts were separated in SDS-PAGE gel and transferred onto nitrocellulose (NC) membranes (Merck Millipore, MS, USA). Then, the membranes were blocked at room temperature for 1.5h and incubated with proper primary antibody and the corresponding secondary antibody. These primary antibodies were purchased from HuaBio (Hangzhou, ZJ, China), including anti-Cytochrome C antibody (#ET1610-16), anti-Bax antibody (#ET1603-34), anti-β-Actin antibody (#R1207-1). The other primary antibodies were purchased from Cell Signaling Technology, including anti-p-ERK (#4370), anti-ERK(#4695), (anti-p-JNK(#9255), anti – JNK(#9252), anti-p-P38(#4511) and anti -P38(#8690). The specific protein bands were detected via chemiluminescence detection.

2.11. Statistical analysis.

All the statistics were carried out in GraphPad Prism 7 and 8. All data are shown as mean ± SD. A two-tailed Student’s t-test was used to analyze statistical significance. The statistic differences are shown as * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significance.

3. Results and Discussion

3.1. Sulforaphane inhibited the proliferation and induced apoptosis of HeLa cells.

To evaluate the effect of sulforaphane on cell viability, the HeLa cell was cultured with sulforaphane of different concentrations (0, 10, 20, 40, and 60µM) for 24 h. According to the results of our CCK-8 array, sulforaphane suppressed the viability of HeLa cells in a concentration-dependent manner (Fig. 1A).

Figure 1. Sulforaphane inhibited the proliferation and induced apoptosis of HeLa cells. (A) The viability of cells pre-treated with sulforaphane (0, 10, 20, 40, 60µM) was detected. (B) Flow cytometric analysis of HeLa cells apoptosis using the Annexin V/PI dual-labeling technique after sulforaphane treatment (0, 10, 20, 40µM)) for 24h. (C) Apoptosis of the sulforaphane-treated group and control group were calculated by TUNEL assays. (D) Protein level expression of apoptosis in cell pre-treated with 0, 10, 20, and 40µM sulforaphane. Data are shown as mean ± SEM (n=3); * P<0.05, ** P<0.01, *** P<0.001 vs. control group.
As shown in Fig. 1B, the flow cytometry analysis showed the apoptotic rate of HeLa cells of 40µM treatment after 24h remarkably increased compared with the rate of 0µM after 24h. Moreover, the apoptosis rate determined by the TUNEL assay increased (Fig. 1C). To further investigate apoptosis induced by sulforaphane, we analyzed the expression of Bcl-2, Bax, and Cytochrome C. As demonstrated in Fig. 1D, the expression level of anti-apoptotic Bcl-2 decreased. At the same time, pro-apoptotic Bax and Cytochrome C were up-regulated in a dose-dependent manner, which contributed to an increase in the Bax/Bcl-2 expression ratio. All of these proteins were crucial molecular regulators in the mitochondrial-mediated apoptotic pathway [33]. These data indicated that sulforaphane could inhibit the proliferation and induce the apoptosis of HeLa cells.

3.2. An integrated analysis of altered mRNAs and miRNAs via high-throughput sequencing.

According to the previous results, transcriptome sequencing and bioinformatics analysis were performed to the HeLa cells treated with sulforaphane at a concentration of 40 µM for 8h. Next-generation sequencing was applied to identify a large number of altered mRNAs and miRNAs after treatment. The analysis of transcription sequencing data described that a total of 21,582 expressed genes were detected.

![Figure 2](https://biointerfaceresearch.com/)
Figure 2. High throughputs RNA sequencing of the sulforaphane treatment group and control group. (A) Heatmap of the count data of miRNAs that expression changed significantly (P<0.05) in HeLa cells treated with sulforaphane 40µM for 8 hours (n=3). (B) Hierarchical clustering heatmap of TPM data of significantly changed genes after sulforaphane treatment. The color density indicates the average expression of a given gene, with each row normalized by z-score. (C) GO plot of genes with different expression levels (P < 0.05) of the sulforaphane-treated group in the biological process category of GO enrichment analysis. Red and blue dots in the scatter plot of outer wheel show up-regulated genes and downregulated genes, respectively; the inner wheel demonstrates the z-score.

The expression level of 7838 genes changed significantly (P < 0.05) in the sulforaphane-treated group compared with the control group (Fig 2A). Ultimately, 2041 DEGs were identified by the DEseq2(v 1.24.0) R package. After the analysis of miRNA sequencing data, a total of 1588 miRNAs were spotted. Then the differential expression analysis of these detected miRNAs was performed between the sulforaphane-treated group and the control group.
(Fig 2B). Finally, 101 significantly changed miRNAs were found (P < 0.05), which contained 39 up-regulated miRNAs and 62 downregulated miRNAs. To better determine the function of DEGs after sulforaphane expose, gene ontology (GO) enrichment analysis was used to find significantly enriched terms, leading to a more comprehensive understanding of the effects sulforaphane exerting on HeLa cells (Fig 2C). The results displayed that many biological processes were significantly altered after sulforaphane treatment, including response to unfolding protein (GO: 0006986), reproductive structure development (GO: 0048608), reproductive system development (G0:0061458), embryonic organ development(GO: 0048568).

3.3. Upregulation of miR-1247-3p promoted cell proliferation and induced anti-apoptosis in HeLa cells.

Several studies suggested that sulforaphane initiated its anti-tumor and anti-inflammatory activities by regulating several miRNAs[23,34-37]. To further explore the role of sulforaphane, we evaluated miRNAs expression via high throughput RNA sequencing. Further, we identified the differential expression level of the miRNAs by the volcano plot in both the control group and the experiment group, as shown in Fig. 3A. Among the four significantly differentially expressed miRNAs, two miRNAs were up-regulated (miR-320a-5p, miR-12135), and the other two miRNAs were downregulated (miR-1247-3p, miR-33b-3p). qPCR was used to confirm the differential miRNA expression.

Figure 3. MiR-1247-3p was validated to regulate sulforaphane-induced apoptosis in HeLa cells. (A) A Volcano plot of miRNA microarray analysis, which was described with the log2 (fold change) of miRNAs expression level and p-value based on −log10. The red dots mean the DEMs based on p<0.05 (represented by black horizontal line) and 4-fold expression difference (represented by two black vertical lines), and the top changed four DEMs were labeled. (B) Relative miRNA expression in HeLa cells after sulforaphane treatment (40 µM). (C) The viability of HeLa cells transfected with top changed four DEMs. (D) Flow cytometry analysis of apoptosis rate between the control group and miR-1247-3p transfected group by using the Annexin V/PI dual-labeling technique after 40uM sulforaphane treatment for 24h. Data are shown as mean ± SEM (n=3); * P < 0.05, ** P < 0.01, *** P < 0.005.
The expression of these miRNAs, except for miR-320a-5p, was consistent with RNA-sequencing results (Fig.3B). Next, we tried to examine whether the four miRNAs would impact tumor cell proliferation. The result of the CCK-8 array exhibited that miR-1247-3p mimic could significantly increase HeLa cell proliferation (Fig.3C). Additionally, flow cytometry results confirmed that miR-1247-3p mimic dramatically inhibited cell apoptosis induced by sulforaphane (Fig. 3D). Thus, these results suggested miR-1247-3p could contribute to the anti-apoptotic effect of sulforaphane on HeLa cells.

3.4. Sulforaphane activated MAPK signaling pathway through downregulating miR-1247-3p.

To find the mechanism of sulforaphane-induced apoptosis and further investigate the functions of miR-1247-3p, 2725 target genes were obtained (SupplyTable1) to predict the potential target pathways of miR-1247-3p (Fig 4A). Then KEGG pathway analysis was also carried out to explore the signaling pathways of the DEGs between sulforaphane-untreated and treated groups. The top 10 significantly enriched pathways are shown in Fig 4B, and the results are shown in SupplyTable 2. Some studies have revealed that sulforaphane exerted anti-tumor and anti-inflammatory effects via regulating MAPK signaling pathway[38-43].

Figure 4 Sulforaphane activated MAPK signaling pathway via downregulating miR-1247-3p. (A) KEGG pathway enrichment analysis for target genes of miR-1247-3p, the top 10 significantly enriched pathways are presented. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs between the sulforaphane treatment group and control group, the top 10 significantly enriched pathways are selected. For each KEGG pathway, the blue bar shows the p-value based on −log10 of the pathway, and the red line present hit genes number. (C) Western blot analysis of protein level of MAPK pathway in HeLa cells treated with 40uM of sulforaphane for 0.5 h, 1h, and 2h. Expressions of all the proteins were up-regulated with increasing time. (D) Protein expression levels of main factors in MAPK pathway after treatment with sulforaphane with or without miR-1247-3p mimic transfection.

So we tried to examine whether miR-1247-3p was implicated in the regulatory effect of sulforaphane via MAPK pathway on HeLa cells. The results showed that sulforaphane remarkably elevated the phosphorylation levels of JNK, P38, ERK (Fig. 4C). To further confirm these results, we detected JNK, P38, ERK protein levels between the mimic control group and miR-1247-3p mimic group. Results in Fig. 4D showed that the expression of p-JNK,
p-P38, and p-ERK in cells transfected with miR-1247-3P mimic was much lower than that in mimic control-transfected cells. Therefore, these results implied that sulforaphane might downregulate miR-1247-3p to activate MAPK signaling pathway.

4. Conclusions

In summary, high throughput sequencing was applied in sulforaphane-treated HeLa cells, and we identified miR1247-3p downregulation was implicated in the pro-apoptosis effect of sulforaphane. Additionally, miR1247-3p-driven MAPK signaling pathway might be attributable to the apoptosis of HeLa cells. Based on the aforementioned mechanism, sulforaphane could serve as a promising anticancer agent in the treatment of cervical cancer.

Funding

This research received no external funding.

Acknowledgments

Yunuo Zhao and Dian Fan performed the molecular biology experiments. Meng Luo, Yinan Xiao, and Dingyue Zhang wrote the draft. Hao Zeng performed the miRNA chip analysis. Xuelei Ma designed the research and provided fund support.

Conflicts of Interest

The authors declare no conflict of interest.

Data Availability Statement

The raw data of next-generation sequencing used to support the findings of this study are available from the corresponding author upon request.

References

1. Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjose, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. *Lancet Glob Health* **2020**, *8*, e191-e203, https://doi.org/10.1016/S2214-109X(19)30482-6.
2. Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. *Lancet* **2019**, *393*, 169-182, https://doi.org/10.1016/S0140-6736(18)32470-X.
3. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer* **2015**, *136*, E359-386, https://doi.org/10.1002/ijc.29210.
4. Sawaya, G.F.; Smith-McCune, K.; Kuppermann, M. Cervical Cancer Screening: More Choices in 2019. *JAMA* **2019**, *321*, 2018-2019, https://doi.org/10.1001/jama.2019.4595.
5. Rachmadi, L.; Siregar, N.C.; Kanoko, M.; Andrijono, A.; Bardosono, S.; Suryandari, D.A.; Sekarutami, S.M.; Hernowo, B.S. Role of Cancer Stem Cell, Apoptotic Factor, DNA Repair, and Telomerase Toward Radiation Therapy Response in Stage IIIIB Cervical Cancer. *Oman Med J* **2019**, *34*, 224-230, https://doi.org/10.5001/omj.2019.43.
6. Singh, K.; Connors, S.L.; Macklin, E.A.; Smith, K.D.; Fahey, J.W.; Talalay, P.; Zimmerman, A.W. Sulforaphane treatment of autism spectrum disorder (ASD). *Proc Natl Acad Sci U S A* **2014**, *111*, 15550-15555, https://doi.org/10.1073/pnas.1416940111.
7. Rodova, M.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. *PLoS One* **2012**, *7*, https://doi.org/10.1371/journal.pone.0046083.
8. Elkashty, O.A.; Ashry, R.; Elghanam, G.A.; Pham, H.M.; Su, X.; Stegen, C.; Tran, S.D. Broccoli extract improves chemotherapeutic drug efficacy against head-neck squamous cell carcinomas. *Med Oncol* **2018**, *35*, https://doi.org/10.1007/s12032-018-1186-4.
Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. *Int J Mol Med* **2018**, *42*, 2447-2458, https://doi.org/10.3892/ijmm.2018.3860.

Singh, K.B.; Hahm, E.R.; Alumkal, J.J.; Foley, L.M.; Hitchens, T.K.; Shiva, S.S.; Parikh, R.A.; Jacobs, B.L.; Singh, S.V. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. *Carcinogenesis* **2019**, *40*, 1545-1556, https://doi.org/10.1093/carcin/bgz155.

Bushati, N.; Cohen, S.M. MicroRNA functions. *Annu Rev Cell Dev Biol* **2007**, *23*, 175-205.

Lu, T.X.; Rothenberg, M.E. MicroRNA. *J Allergy Clin Immunol* **2018**, *141*, 1202-1207, https://doi.org/10.1016/j.jaci.2017.08.034.

Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; Maitland, A.; Mostafavi, S.; Montojo, J.; Shao, Q.; Wright, G.; Bader, G.D.; Morris, Q. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Research* **2010**, *38*, W214-W220, https://doi.org/10.1093/nar/gkq537.

Kinser, H.E.; Pincus, Z. MicroRNAs as modulators of longevity and the aging process. *Hum Genet* **2020**, *139*, 291-308, https://doi.org/10.1007/s00439-019-02046-0.

Zhou, B.; Zhao, X.X.; Li, Y.S.; Gao, S.M.; Dai, X.D.; Zhu, H.L.; Luo, H. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients. *Sci Rep-Uk* **2017**, *7*, https://doi.org/10.1038/srep42899.

Koolivand, M.; Ansari, M.; Piroozian, F.; Moein, S.; Malek, A.; Alyoussef, A.; Taha, M. Antitumor activity of sulforaphane in melanoma cell lines. *Exp Dermatol* **2019**, *28*, 23-34, https://doi.org/10.1111/exd.13802.

Kiani, S.; Akhavan-Niaki, H.; Fattahi, S.; Kavoosian, S.; Babaian Jelodar, N.; Bagheri, N.; Najafi Zarrini, H. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. *Gene* **2018**, *678*, 115-123, https://doi.org/10.1016/j.gene.2018.08.026.

Kan, S.F.; Wang, J.; Sun, G.X. Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. *Int J Mol Med* **2018**, *42*, 2447-2458, https://doi.org/10.3892/ijmm.2018.3860.

Singh, K.B.; Hahm, E.R.; Alumkal, J.J.; Foley, L.M.; Hitchens, T.K.; Shiva, S.S.; Parikh, R.A.; Jacobs, B.L.; Singh, S.V. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. *Carcinogenesis* **2019**, *40*, 1545-1556, https://doi.org/10.1093/carcin/bgz155.
32. Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. *Elife* 2015, 4, https://doi.org/10.7554/eLife.05005.

33. Goan, Y.G.; Wu, W.T.; Liu, C.I.; Neoh, C.A.; Wu, Y.J. Involvement of Mitochondrial Dysfunction, Endoplasmic Reticulum Stress, and the PI3K/AKT/mTOR Pathway in Nobiletin-Induced Apoptosis of Human Bladder Cancer Cells. *Molecules* 2019, 24, https://doi.org/10.3390/molecules24162881.

34. Lan, F.; Pan, Q.; Yu, H.; Yue, X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. *J Neurochem* 2015, 134, 811-818, https://doi.org/10.1111/jnc.13174.

35. Eren, E.; Tufekci, K.U.; Isci, K.B.; Tastan, B.; Genc, K.; Genc, S. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells. *Front Immunol* 2018, 9, https://doi.org/10.3389/fimmu.2018.00036.

36. An, Y.W.; Jhang, K.A.; Woo, S.Y.; Kang, J.L.; Chong, Y.H. Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. *Neurobiol Aging* 2016, 38, 1-10, https://doi.org/10.1016/j.neurobiolaging.2015.10.016.

37. Wang, D.X.; Zou, Y.J.; Zhuang, X.B.; Chen, S.X.; Lin, Y.; Li, W.L.; Lin, J.J.; Lin, Z.Q. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3beta/beta-catenin signaling pathways. *Acta Pharmacol Sin* 2017, 38, 241-251, https://doi.org/10.1038/aps.2016.122.

38. Reddy, S.A.; Shelar, S.B.; Dang, T.M.; Lee, B.N.; Yang, H.; Ong, S.M.; Ng, H.L.; Chui, W.K.; Wong, S.C.; Chew, E.H. Sulforaphane and its methylcarbonyl analogs inhibit the LPS-stimulated inflammatory response in human monocytes through modulating cytokine production, suppressing chemotactic migration and phagocytosis in a NF-kappaB- and MAPK-dependent manner. *Int Immunopharmacol* 2015, 24, 440-450, https://doi.org/10.1016/j.intimp.2014.12.037.

39. Shan, Y.; Wang, X.; Wang, W.; He, C.; Bao, Y. p38 MAPK plays a distinct role in sulforaphane-induced up-regulation of ARE-dependent enzymes and down-regulation of COX-2 in human bladder cancer cells. *Oncol Rep* 2010, 23, 1133-1138, https://doi.org/10.3822/or_0000742.

40. Ren, J.; Yuan, L.; Wang, Y.; Chen, G.; Hu, K. Benzyl sulforaphane is superior to sulforaphane in inhibiting the Akt/MAPK and activating the Nrf2/ARE signalling pathways in HepG2 cells. *J Pharm Pharmacol* 2018, 70, 1643-1653, https://doi.org/10.1111/jphp.13015.

41. Qin, S.; Yang, C.; Huang, W.; Du, S.; Mai, H.; Xiao, J.; Lu, T. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-kappaB signaling pathways in LPS-activated BV-2 microglia. *Pharmacol Res* 2018, 133, 218-235, https://doi.org/10.1016/j.phrs.2018.01.014.

42. Mondal, A.; Biswas, R.; Rhee, Y.H.; Kim, J.; Ahn, J.C. Sulforaphene promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. *Gen Physiol Biophys* 2016, 35, 25-34.

43. Kim, B.G.; Fujita, T.; Stankovic, K.M.; Welling, D.B.; Moon, I.S.; Choi, J.Y.; Yun, J.; Kang, J.S.; Lee, J.D. Sulforaphane, a natural component of broccoli, inhibits vestibular schwannoma growth in vitro and in vivo. *Sci Rep* 2016, 6, 36215, https://doi.org/10.1038/srep36215.
SupplyTable 1

Target	SupplyTable 1	
BOK	SFRP5	
CXCR3	TRX2R	
SHOX	HMBS	
CRX	KIAA0513	
KCTD17	MEX3R	
SLC25A34	MARVELD1	
DLX2	AOAH	
C1QTNF6	HSH2D	
SELM	SYVN1	
PNMA6C	SLC39A3	
PNMA6A	LY6G5B	
SMIM7	TUSC5	
AL590822.2	IL31	
LTPB4	HIC1	
AGXT	PSME3	
PHLDB3	TCL1A	
C17orf103	REM1	
GNLY	OTUD6A	
ALKBH4	TSSK6	
TMUB1	RNF125	
TECPR1	C17orf107	
CCL17	C10orf105	
SPEF1	IER5L	
TOR4A	C3orf80	
AC115618.1	STX4	
FOXA3	CASP16	
B4GALT3	USP11	
CEP72	PTGES2	
NDP	MGAT5B	
SERPINF2	STAT5A	
C1orf62	VPS37B	
ORAI2	PPP1R27	
PTRPN2	LHFP5L	
IL25	SCNN1G	
TREML1	CSNK2B-LY6G5B-1181	
LUC7L	DDXT1	
FLJ00104	TEMEM95	
AC025278.1	NEU1	
TRPV2	IL23R	
RP11-863K10.7	DDDO1	
TUBB2B	DZANK1	
GNB1L	RP11-834C11.12	
ARHGDIG	PDDC1	
ANKS6	AC006967.1	
ZMAT3	GPR108	
PTGES	C19orf25	
GOSR2	SYT5	
MAP4	HAGHL	
AC000003.2	SMPD3	
PLCXD1	POU3F1	
CTXN1	CTD-2054N24.2	
CACNG4	ALDH1A3	
UTS2R	GAB4	
BTBD19	GJD3	
PNMA3	VAV1	
C1orf35	SIX2	
	ARL5C	
	MCF2L2	
	VSTM4	
	BARHL1	
	WDR20	
	AC140061.12	
	RP11-297N6.4	
	NXF1	
	KCNE3	
	FAM63B	
	TBC1D22A	
	DUSP22	
	MFA3	
	HOXC5	
	LRTM2	
	GREM2	
	MICU1	
	HTR4	
	CHRM1	
	NDUF57	
	RP11-644F5.10	
	RAX2	
	TMSB10	
	EFCAB4A	
	AL591479.1	
	C11orf96	
	C2orf88	
	C19orf33	
	AAED1	
	ADM	
	ZNF70	
	EVX2	
	AP3S2	
	ZNF835	
	CTB-102L5.4	
	CASP2	
	HABP4	
	BHLHA9	
	LRRN4CL	
	PAX2	
	ARMS2	
	NYAP1	
	CNNM4	
	CYP4F2	
	MNM1T1	
	RP11-831H9.11	
	C11orf48	
	FBLIM1	
	FAM169B	
	ACAD10	
	MARK2	
	PCDH1	
	VHHL1	
	DPYSL5	
	RP11-131H24.4	
	CCDC81	
ABHD17B	CDKL1	SSTR1
ABHD17B	A4GALT	LSM4
GDPD1	TLE6	PRDM12
CHST13	MIF	C8orf31
C8orf226	AC021860.1	IKBK
INPP5D	CRKL	PITPNM3
CARD14	ZNF154	ESM1
WBSCR16	CXorf56	SSTR5
TXNRD1	CTRC	PEPD
LRRC1	KIF14	FAM213A
GPR75	ZFPL1	FOXB1
SCARF1	OVGP1	C1orf229
ENGASE	TPM1	FOXN1
ADRB1	XPNPEP2	FAM53C
LRPN1	SGSM1	FAM83C
AGPAT2	OA23	RABAC1
MDM4	G6PD2	NAT8L
PARP10	CREB3L3	PRRG3
RASD2	C14orf182	CERS1
STAT1	AC140481.2	BIRC5
KCNK13	C14orf182	SH2D3A
SFTPC	MRFAP1	DNAJA3
AJAP1	PPARD	DMRTA2
ZNF454	MIF2	IGF2
LCNL1	IGHMBP2	CLUH
POU4F1	PAOX	FRAT2
ULK3	ZNF106	FEV
C1orf38-AF3S2	TRIM8	FECH
B3GAT3	Z90849.1	UBE2L3
WDHC8	ZNF791	SBF1
PSAPL1	LRRCDN3	DNAJB1
KHL17L	SP140L	BTBD11
L2HGDH	FOXC2	PEX26
SLC6A1	CHST6	SNPH
SLC30A7	CD209	AL626787.1
FOXD2	SOCS2	ATG9B
ATXN7L3	FAM9B	U2AF1L
DHR5D4	GTF2IRD1	TBC1D13
FAM84A	MRPL28	AP000350.10
ZNF430	MOG5	GJA5
RASA3	SYK	TRMT112
GLRA4	TBC1D28	ZFAND4
ZBTB8A	HCLS1	C1QTNF4
JFTM5	C1orf159	AC004899.1
CPZ	RRP7A	UPF1
CLPS	AP005482.1	STX16
TIMM44	PSMG4	DNAJC5
JVD	EIF4EBP2	ZNF213
PRKAB1	ALPI	ALAD
KCNIP3	NR1I3	TMEM259
NFIX	TAF8	AL645728.1
MDM2	OGG1	FEZF1
TXNRD2	SOWAHD	NUDC
MTRN2L4	AMER3	PRKAR1B
SLC52A3	CPT1A	LAX1
ZNF234	FADS6	DLGAP2
AC009892.10	RP11-93B14.6	SLC18A1
USP36	AFMID	LRR3
FOXK1	GRK1	SULT1A1
MRPL55	DIRAS1	KIAA0754
CELF5	VWA1	HOXB6
GABPB2	TACSTD2	ZBTB7C
PTK6	CBX6	
COL4A5	WNT7B	CELF6
-------------	------------	-----------
AC006486.1	TNFSF10	NUBP2
SLC39A11	CTSD	XYL1T2
POM121L7	C12orf68	EN1
SMARC3D3	FAM60A	AMBP
SYT15	DAND5	SERF1A
CCM2L	CALML6	SERF1B
TMEM107	FAM76A	AC016559.1
AL359091.2	TOMM40	FANCC
GATA2	CSAR2	DAB2IP
STPG1	AC016722.1	GGA3
ELF3	TMEM132E	DXS51
SNCB	CPLX2	SCRT2
NTSR1	LYZ	FCRLB
KCNAB3	SYNDIG1	ARSK
ARH2OS	Cxcl14	PIM1
NWI1	HM13	CD300C
RTN4RL1	FAM86A	ZBTB47
TARS2	CACNB1	URA5
MED6	RCAN1	CHRNA1
AC005003.1	KALRN	GLTP
FBXL18	GINS4	RAB40C
HAGH	NCR3L1G1	WIZ
AL020996.1	FAM110D	CEACAM18
TMEM145	BLOC1S3	GDPD5
NLRP12	STAU1	KANK2
LINC09098	APOBEC3A	SFMBT2
FAHD1	CEACAM5	SLC35E3
MLC1	CD300E	NT5C1A
TEN1	OSCAR	NRTN
FAIM2	CAMK1D	RBM7
ING5	METTL8	CIC
MPV17L	FAM78A	C19orf40
MUL1	SPTBN2	RADIL
SIGLEIC1	PIGW	MX1
C14orf23	NKX6-3	TNNT2
MCAT	CYB561	CARD10
KCNH6	OSBP1L2	SERBP1
GNB2	FAM156B	AC105020.1
RNASEK	SCRT1	NBSL1
C2orf48	FAM156A	LRR2C7
SLC44A4	CHMP6	STS51A2
VM01	RPH3AL	RBM3
CCL5	SLC39A13	ANKRD40
PLEKHA4	SLC9A1	TRPM2
TPD52L2	ALDH18A1	EPN3
TSPO	CDC14B	FAM64A
CDK10	DNAJC14	LOH12CR2
MAGEB10	GPR35	NCS1
CTB-167G5.5	ARHGAP19-SL1F1	AC079210.1
PPID	SCNS5A	ALDH3B1
AL357673.1	C5orf45	ENSG00000270466
CTA-299D3.8	ADAMTS4	SOTA
CAP3	COPG1	NSMF
DPH7	SLC14A2	ZNF773
NTRK2	HIST1H2AG	PHYHD1
MTHFSID	ZNF175	NXX2-5
ADCK4	C4orf26	NAT9
ROGDI	ZNF157	RPS15A
APCDD1L	HPCA1	PAK4
SNAJ1	ZGLP1	WDFC1
AC022532.1	NEK8	NDLN2
FDX1L	ATP13A1	FOXM1
-------	---------	-------
ENTPD6	NRXN2	VASH1
NELFB	METTL7A	PPP2R1A
RSL1D1	NBEAL2	RFNG
TRAPPC2	TNFRSF1B	TMEM106A
TRIM54	KCTD5	ACOT4
WIP1	RETSAF	CENPH
FGFR4	KLHL30	CEP22
PIP1R3G	SOBP	GCM1
PIPOX	TMCO3	DUSP13
KIAA1257	ATP6V1B1	KREMEN1
PPP1R8	FBLN5	CHST8
CARM1	C7orf43	ULBP3
NAALADL1	MYO5A	TCHP
ICAM4	MKNK2	ARHGAP40
MBOAT1	SLC2A6	DLST
NR1H2	P2RX7	TMEM150C
PRKX	HIF0	TLR7
EXT1	NRP3	VSIG8
FFAR2	CYTH4	AL161915.1
LGI3	C10orf55	TBX4
LAIR1	TNFSF14	NRG1
UBE2G2	CDK5R2	NUTM2E
TLR10	C2orf15	ATP2A3
APOL2	MRPL30	KCNMB1
PRDM8	CASC10	TRPV1
TAF13	COQ10B	SHPK
LLRC14B	SPC24	ZCCHC4
EFNA2	SYNGR1	ARHGGEF8
FLJ30594	SNRPB	TSGA13
COX7B	TBC1D32	SYT3
LYRM2	PTX4	ATG4B
NFI	HAND1	TULP1
DUX4L2	TBCCD1	PRKAB2
TUBB6	TAF1	BIVM
OSM	RAB8A	ATMN
P4HB	RRP1B	CECR1
ELMOD1	IFFO1	APJ1B2
ARF5	UBXN2A	GA32L1
AC112693.2	MLX	SLMO1
ANO10	ECSIT	CXCR2
CRCP	ZNF143	SLC25A15
TMED4	LYSMD1	JAKMIP3
ADRBK1	CA13	RNF44
ARL6IP1	IL10RB	C4orf40
APITD1-CORT	TAB1	MEN1
C9orf66	INPP5E	PALM
CTD-2162K18.4	NANO5	DPP9
INPP1L	FRMD1	EBI3
ASCL5	FAM219A	MARVELD2
ANKR3D36	EFHD2	PI4K2A
GJA9	RICTOR	TMEM130
NICN1	QRFP	PTCHD2
ZFP42	ATP1F1	HOXB4
TUBA3D3	NT	WNT3A
ID3	LPCAT2	ZNF827
ZBP1	UST	VPS53
GTPBP3	IL21R	PPP6R1
CTD-2366P22.1	TCF7	COLQ
TWF2	BAIAP2L1	CCDC18
FAM86B1	ZNF512B	CSorf64
DDX31	ARM5	PRSS38
XK8R	H6PD	ST3GAL2
------	------	---------
ALG1	LCN6	PTBP1
AL450307.1	ZBTB80S	BRSK1
MLT4	ICOSLG	AC135983.2
CIB2	TNFAIP3	WFIKKN2
RIOK3	HIST2H3C	BHLHA15
KBTBD6	NCK2	PBX1
PIM2	HIST2H3A	ZBTB25
SLC2A14	MYO1C	C8orf64-SGK3
POLH	ADM2	CRTC1
AKT1S1	GDNF	ZNF35A
Cbcor82	SNAPC2	NDE1
TOR2A	TMEM105	KLC1
USP24	ZNF697	SOX18
RNF224	PDXL2	C6orf123
RWDD2A	HSPA6	RBBP9
ACO19	ZNF556	LTBP4R
SLC2A3	RAB3D	THEMIS2
VGF	ABCB8	NOTO
SPDEF	HISTH2BF	CYP8B1
FAM53A	BSG	ZNF43
EVC	C21orf2	ZFR2
CTDSP2	FAM20C	MBD3
PARD6G	ARFP1	ARHGAP39
SIRT6	WDR92	CEP104
TGF2	ZBTB39	NRARP
HMG20A	RIN1	RBM43
GRK7	C1orf35	FAM9C
MAPK8IP3	SCAMP5	AC011484.1
CYP51A1	ZNF492	ASB1
ZNF383	ZNF44	PTGDR2
PSTP1P2	SLC16A13	LDOC1
PRGG2	MAVS	ABHD12
TECPR2	POU4F3	AMPD2
RP11-1118M6.1	ZNF91	MKS1
FLNB	STAC2	ZNF557
AC137932.1	DAPP1	ZNF573
RAE71E	SLC25A32	FGF22
LMOD3	PARD6B	SMIM14
AC084121.16	FBXL22	FARP11
MS4A7	EXD1	NUBPL
PYGB	PIWIL2	SLC2A8A
MRT04	KCNT1	ZNF878
BPN1	1-Mar	IFNAR1
AC104841.2	PDE6G	SHH
KRT15	ORT7D2	CDC25B
ECT2L	PDE4C	CCDC137
C1orf111	AC093157.1	EGR3
KCNF1	KRT6B	LPGA1
DUSP18	SLC29A4	ANKR62
TSNARE1	HCAR1	FAM132A
TAFID	C2orf50	PGP
RAB3B	WDR5B	CCDC117
STK40	MOCOS	SNAI3
CD82	ANKR29	SVOP
MYO3B	THAP5	PHYHIP
ZNF362	PARD3B	CCRN4L
CALM3	HAPLN4	ZIM3
MINOS1	CASKIN1	MALL
CLSTN1	VHL	TRMT2B
NHLH1	ECE1	NIPAL2
SYNE2	GCAT	PLD3
https://doi.org/10.33263/BRIAC111.79437972		7958
https://biointerfaceresearch.com/		

7958
Gene	Gene	Gene																																																																																																																																																																																							
ZNF665	GINM1	APOL4																																																																																																																																																																																							
HTR1D	RIPPLY3	PM20D1																																																																																																																																																																																							
RD3	NFATC2IP	GAS2L3																																																																																																																																																																																							
TP53	VPR1	MYADM																																																																																																																																																																																							
PHF20	DUX4L5	BCL2L2																																																																																																																																																																																							
STK11	C2orf46	CBX7																																																																																																																																																																																							
TSPYL1	FOX33	BEGAIN																																																																																																																																																																																							
DTX3L	MAPK14	DNAAP3																																																																																																																																																																																							
POM121	GATC	CCDC85B																																																																																																																																																																																							
WBP2	FAM173A	ADAP1																																																																																																																																																																																							
ZFYVE26	SNX22	ZNF554																																																																																																																																																																																							
SSBP3	LAMP3	WTIP																																																																																																																																																																																							
CX3CL1	SUN2	PLAT																																																																																																																																																																																							
TAF1L	SLC26A4	CCNJ																																																																																																																																																																																							
NR2F6	TNN13	MRPS17																																																																																																																																																																																							
SPI1	RGS9BP	RAD23A																																																																																																																																																																																							
ESCO2	KEAP1	ZBTB42																																																																																																																																																																																							
PMM2	RHD13	SAE1																																																																																																																																																																																							
RBM48	CLEC16A	AC008132.1																																																																																																																																																																																							
ARSD	FAM19A5	DSG3																																																																																																																																																																																							
LL22NC03-63E9.3	SEMA7A	S1PR2																																																																																																																																																																																							
ZNF587B	PDLM5	TOR1AIP1																																																																																																																																																																																							
SCARA3	CES4A	ICMT																																																																																																																																																																																							
SGK3	GJB1	ZNF726																																																																																																																																																																																							
HRH1	FUT1	TNFRSF11A																																																																																																																																																																																							
SOST	ERAP2	OMP																																																																																																																																																																																							
VWA3A	FOXQ1	ATP6V1A																																																																																																																																																																																							
AC145676.2	ZNF101	AMBRA1																																																																																																																																																																																							
KCNJ5	AQP2	KANK4																																																																																																																																																																																							
C21orf90	OPA3	TNRC6C																																																																																																																																																																																							
PSMB11	POUF2	LDLR																																																																																																																																																																																							
YPEL2	DUX4	SERINC5																																																																																																																																																																																							
NOS1AP	MYO16	FAM73A																																																																																																																																																																																							
TNFAIP2	DUX4L3	ACACB																																																																																																																																																																																							
ANKRD63	DUX4L7	NAIP																																																																																																																																																																																							
PHF21B	DUX4L4	ZNF749																																																																																																																																																																																							
MFSD7	LHX3	GBP2																																																																																																																																																																																							
NAPA	ITGAX	TFA4																																																																																																																																																																																							
NUAK2	DUX4L6	PP115K1																																																																																																																																																																																							
PAICS	ADCY9	SERPINB9																																																																																																																																																																																							
POL2D	MYOD1	AP000350.4																																																																																																																																																																																							
RPH3A	LILRB3	MAPK11																																																																																																																																																																																							
ATAD3C	FAM217B	MAFG																																																																																																																																																																																							
RPS21	EREG	ZFP90																																																																																																																																																																																							
TLC2D	RFX1	PTPLB																																																																																																																																																																																							
HRH4	PRR26	RASAL1																																																																																																																																																																																							
TNK2	USP54	KLHL6																																																																																																																																																																																							
LAMP2	ZNF793	NRF1																																																																																																																																																																																							
OTOF	VEGFA	NCCRP1																																																																																																																																																																																							
AC079612.1	MBP	GMPS																																																																																																																																																																																							
KCNK6	INMT	SOX1																																																																																																																																																																																							
TRAFD1	C6orf223	SLC11A1																																																																																																																																																																																							
ZNF813	SURF6	OR2C3																																																																																																																																																																																							
ACVRL1	PITX1	GNL3L																																																																																																																																																																																							
KCNK5	AC006372.1	HIST1H3F																																																																																																																																																																																							
OLFML2A	HLA-E	SCN2B																																																																																																																																																																																							
ALG12	MPL	ATP2B3																																																																																																																																																																																							
GPR82	KRT186	SYNP3																																																																																																																																																																																							
GSX1	CDH4	STX2																																																																																																																																																																																							
SLC35B4	ARX	C11orf70																																																																																																																																																																																							
GPR176	AL021546.6	IL2RB																																																																																																																																																																																							
ZNF528	DOK7	PAX5																																																																																																																																																																																							
Gene	Gene	Gene																																																																																																																																																																																							
--------	--------	--------																																																																																																																																																																																							
SCARF2	PSMB2	STK17B																																																																																																																																																																																							
RNF34	LIPH	FGFRL1																																																																																																																																																																																							
CASP8	WDR55	MPLKIP																																																																																																																																																																																							
CRISPLD2	NPAS4	NBL1																																																																																																																																																																																							
IGFlN1	KCNC1	DGKQ																																																																																																																																																																																							
9-Sep	GLTPD1	MAFA																																																																																																																																																																																							
IRF5	ZSCAN22	THRA																																																																																																																																																																																							
CA12	SP1	INSR																																																																																																																																																																																							
FAM213B	PHKA2	VMA21																																																																																																																																																																																							
SMARC1D	MGAT3	ARIH1																																																																																																																																																																																							
SCD5	GNE	SGTB																																																																																																																																																																																							
PGBD4	TRIM35	NIPAL1																																																																																																																																																																																							
PHF7	UBN2	ZNF562																																																																																																																																																																																							
CCDC40	KIAA1147	STC25																																																																																																																																																																																							
NUDT4	ABCF3	SERTAD2																																																																																																																																																																																							
PITPNM2	NUP155	ZC3HAV1																																																																																																																																																																																							
GMEB2	CST3	GPR56																																																																																																																																																																																							
ISLR2	C14orf132	TTL																																																																																																																																																																																							
SLC46A1	FKBP14	S1PR3																																																																																																																																																																																							
NAGPA	RNF4	IMPDH1																																																																																																																																																																																							
ACVR1B	THAP6	FBXO27																																																																																																																																																																																							
OTUD3	MCC	TMEM170A																																																																																																																																																																																							
ANKS3	FSD2	UBE2W																																																																																																																																																																																							
HIF1AN	CACNA1C	UBA2																																																																																																																																																																																							
DENR	KIAA1919	BCKDK																																																																																																																																																																																							
FKTN	ITGB3	NARF																																																																																																																																																																																							
TCF21	BRCA1	DUSP19																																																																																																																																																																																							
FGD2	GPR116	RPUSD1																																																																																																																																																																																							
HSPB6	TEF	SMYD4																																																																																																																																																																																							
UNCG	FLG2	SLX4																																																																																																																																																																																							
PIAS4	MINOS1-NBL1	FRRS1L																																																																																																																																																																																							
HRAS	PRELP	CLKN																																																																																																																																																																																							
DCAF16	SRRM4	NOM1																																																																																																																																																																																							
DHDDS	GPR144	CHRNA4																																																																																																																																																																																							
ZNF2	ZNF695	PPARA																																																																																																																																																																																							
DCP1A	ZNF397	ZFP36L1																																																																																																																																																																																							
TMEM236	EFNA3	HOXD3																																																																																																																																																																																							
TMEM236	MTL5	C19orf54																																																																																																																																																																																							
SLC7A6	ICA1L	YPEL1																																																																																																																																																																																							
SLIT1	MCCC2	DSG2																																																																																																																																																																																							
IL17RE	FEM1A	DSYK																																																																																																																																																																																							
MFSDB2	ZNF618	TNFRSF8																																																																																																																																																																																							
FUT3	NXX3-2	EXOSC10																																																																																																																																																																																							
FZD7	CTSF	SP9																																																																																																																																																																																							
SFN5	TEF2	KLHL21																																																																																																																																																																																							
ZNF418	MAP2K4	DCTN3																																																																																																																																																																																							
OTUD5	UTP11L	CD96																																																																																																																																																																																							
FICD	GRINA	APIS3																																																																																																																																																																																							
COL27A1	KNOP1	AKIP1																																																																																																																																																																																							
MFN1	SYTL4	CTU1																																																																																																																																																																																							
SPRYD3	ZNF543	OTUD7B																																																																																																																																																																																							
TAL2	TAS2R5	PPM1F																																																																																																																																																																																							
NCLN	ARMC10	RARG																																																																																																																																																																																							
RPL36	CASZ1	SLC9A5																																																																																																																																																																																							
MCMDC2	ZNF669	MIEF1																																																																																																																																																																																							
ACSS1	LPIN3	SMIM19																																																																																																																																																																																							
TSTA3	NR1H2	KRTX3																																																																																																																																																																																							
RPS6KB1	FAM83H	AZG1																																																																																																																																																																																							
STK32A	IL11	SLC12A5																																																																																																																																																																																							
PKAA1	ARID3A	LOH12CR1																																																																																																																																																																																							
I1ZF4	SPPL2A	JTPRIP1L2																																																																																																																																																																																							
ACTRT3	GRIN3A	TMEM1844B																																																																																																																																																																																							
SLC12A3	GPR123	KIAA0930	SPOCD1	SPN	ASB16	PHACTR2	B3GALNT2	CHL1	LRRC10B	KIAA1614	DENND6B	ZNF487	SP8	TAPBP	AC019294.1	LLGL2	AIRE	TXNDC15	SP110	OCLN	WWP2	ITPK1	ELOVL3	PACSIN2	FAM227A	LRRC58	YIPF4	GIT2	FBXO46	CLSPN	FSCN1	SFRP1	POM121C	APLN	RNF144A	C1orf170	MR1	TMEM127	LRP10	AGMAT	ZNF740	GNB5	BRJ3BP	CDKN2B	FAM160B2	TPSEAR	RASGRF1	ELAVL1	HIST1H3E	USP20	LEPROT	MGRN1	HK2	GPR37L1	SLC16A8	CLCN2	LYRM7	GRAMD4	SEMA6C	C2CD4C	DDR1	NAI1F1	ITGA11	AKNA	SEC22C	IRGQ	CDC42EP1	HOXB3	GIPR	CEMP1	RAB11FIP3	HOOK3	FAM22B	OPRL1	TMEM109	COX6B2	SLC26A2	SGMS2	PIK3C2B	CSPG4	ASIC4	TTLL12	ATF7IP	MACC1	PPP1R12B	GRK5	FOPNL	TOX4	ZNF850	QPCTL	NPAS1	DYNC1L2	MIEF2	AVL9	ST5	SYT7	C4orf29	MITF	FBXO45	UNC5A	TBX20	C2orf73	TPCN1	FBXO331	KCNE4	NECAB3	CTRL	KAT7	FAM212B	ZRANB3	MYO1D	ADAMTS13	SH3PXD2A	RBBP4	TNFRSF25	NKPD1	STON2	IFNLR1	HEPACAM	FAM43B	UMODL1	CR1	C20orf1144	DDIT4	PAX8	ITGA2	BAI2	CCDC71L	FAT2	NBEAL1	NEURL1B	CLCN7	RTCA	PNPLA3	RPS350E9.3	TRABD2B	PSMB1	LRR4C2	DENND6A	CELSR1	TRPM4	ZNF451	FOXO1	SPATA5	SCN4B	NRCL3	NT5DC3	CSNK1G2	STS	LIXIL	NFKBID	TMEM55B	CD72	RAN	KIAA0355	BBC3	ITPKC	SKOR1	SRXN1	TIA1	RNF157	GLG1	GPR5C5B	SPRED3	SNX11	S100B	TRPV3	RFX2	C1orf106	KAZALD1	COL5A1	F11R	C19orf55	DDX49	FOXL1	ATXN3	SRGAP1	LRRD1	SYNRG	MLLT3	EVX1	BTD	ZBED1	LRIG2	STEAP2
Gene Name	Gene Name	Gene Name																																																																																																																																																																																							
------------	------------	------------																																																																																																																																																																																							
ZFYVE20	RNF7	LSM11																																																																																																																																																																																							
RARA	CNNM3	HIST1H2BD																																																																																																																																																																																							
RUNX3	DSC3	SLC3F6																																																																																																																																																																																							
INTU	SLC12A6	HRK																																																																																																																																																																																							
ZNF816	PEX13	RGS3																																																																																																																																																																																							
GNPNAT1	PGPEP1	CD3G																																																																																																																																																																																							
TRUB2	RUFY3	CAPN15																																																																																																																																																																																							
KIAA0825	STK4	NRG2																																																																																																																																																																																							
UNC13A	PHLDA3	ESPN																																																																																																																																																																																							
NOL9	SLC43A2	SMAD9																																																																																																																																																																																							
GSTK1	SRPX2	PPP2R3B																																																																																																																																																																																							
ZNF621	FAM163A	LPP																																																																																																																																																																																							
CENPI	TSPAN11	LEPREL1																																																																																																																																																																																							
PGAM5	ZDBF2	BMPR1A																																																																																																																																																																																							
CACNA1A	NOP9	JUND																																																																																																																																																																																							
RNF114	NDOR1	BSRPY																																																																																																																																																																																							
EPS812	SPNS2	NMT1																																																																																																																																																																																							
CD3EAP	HK1	SYLT3																																																																																																																																																																																							
GRM6	ELN2	TPPP																																																																																																																																																																																							
STRA6	C2CD2L	NPTX1																																																																																																																																																																																							
FRMD4A	TH	ITGB8																																																																																																																																																																																							
CPNE5	SH3GL1	HAUS3																																																																																																																																																																																							
REEP3	PLEKH4B	WDR31																																																																																																																																																																																							
SOX12	ACSF3	ZNF85																																																																																																																																																																																							
CCDC127	SLC35A2	DUSP2																																																																																																																																																																																							
N4BP1	KIF26A	STRIP2																																																																																																																																																																																							
ACTR1A	ATCAY	SF3B5																																																																																																																																																																																							
RAPGEF1	NARFL	DNMRT3A																																																																																																																																																																																							
CARD8	ATP6V1C2	FBXL16																																																																																																																																																																																							
ZNF710	PCDHB11	LAMC3																																																																																																																																																																																							
UBOX5	MLXIP	MAP3K9																																																																																																																																																																																							
NEUROG3	PLCH2	FBXL2																																																																																																																																																																																							
CEP135	PL2G6	PHF15																																																																																																																																																																																							
ZNF629	ELK4	ZNF857																																																																																																																																																																																							
ATAD5	KCNJ6	SBSR2																																																																																																																																																																																							
ZMYM1	KCNAB2	WDR70																																																																																																																																																																																							
CEBPD	KIAA1456	AGAP1																																																																																																																																																																																							
SLC9A3R2	NNX6-2	LPHN1																																																																																																																																																																																							
HAP1	SRM	H2AFV																																																																																																																																																																																							
ZNF460	DPPA3	CCDC142																																																																																																																																																																																							
COX19	TONSL	KCNK3																																																																																																																																																																																							
C17orf51	HSD17B13	HGFAC																																																																																																																																																																																							
ZNF207	MPRIP	ZNF841																																																																																																																																																																																							
MLLT1	HIC2	PRKCB																																																																																																																																																																																							
REXO1	AC021218.2	SLC25A29																																																																																																																																																																																							
NTN1	MY09B	TMEM255B																																																																																																																																																																																							
RPUSD4	AL049840.1	C9orf69																																																																																																																																																																																							
PDCL3	NXN	EV5																																																																																																																																																																																							
TRAF3IP2	PEX2	GDF11																																																																																																																																																																																							
RAD23B	ELL	NR6A1																																																																																																																																																																																							
ZNF564	ZNF155	PODXL																																																																																																																																																																																							
UHRF1BP1	RABL5	MINK1																																																																																																																																																																																							
GBX2	PLEKHA6	SLC22A23																																																																																																																																																																																							
ITFG3	ZNF805	LRC4																																																																																																																																																																																							
CACNA1H	TMEHM184A	ACOX1																																																																																																																																																																																							
TMEM104	IKBP	GLRX3																																																																																																																																																																																							
SLC7A1	DRAxin	HIST1H2BO																																																																																																																																																																																							
CHMP1B	CRX2	DES1																																																																																																																																																																																							
PADD2	MTRMR9	AGPAT3																																																																																																																																																																																							
RPS6KA2	KIAA1210	AKAP13																																																																																																																																																																																							
PACS1	TLN2	TERT																																																																																																																																																																																							
NPY4R	PTPN14	SLC33A1																																																																																																																																																																																							

https://doi.org/10.33263/BRIAC111.79437972
LIMK1	ISM2	ARPC2
PLEKHM2	AP5B1	METTL21A
PPARGC1B	LDLRAD2	ISL2
DNAJC3	RC3H1	FAM211A
XKR4	SGS3	LURAP1
PLXNB1	RNASEH2C	HELLS
TGFBR2	KCNQ4	VIPR2
MIOX	MUC20	TRIM67
YY1	RASSF2	SHISA7
EXOSC2	C3orf36	C6orf141
ZNF730	TMEM120B	CDC42BPG
PHAX	CNK1A1	TIMM8A
ACAN	GXYLT2	PLBD2
RIP2C	SRD5A1	RUNX1
WNK2	FAM131A	IQSEC1
EXOC8	GNA11	ZNF431
GLYR1	HMX2	SELRC1
RPP25	APIG1	AC007040.11
XIAP	ZNF738	SNIP1
SDK1	IL17RD	SIM2
DGKE	FOXE1	APBA1
ATG12	SNAP29	RNF165
TMEM192	ANKRD33B	FTO
SMC5	MED13L	HMGB1
CLN8	ADAM19	PLXDC1
AGPAT6	KIF21B	INHBB
HMX3	SAPCD2	IRAK3
PDP2	SERINC3	ZNF19
ZNF442	QSOX1	PER1
KCTD20	FBXO48	TNFRSF13C
KLHL11	FGD4	HELB
DHODH	SIRT5	ANKRD45
SOX4	ARHGGEF15	SNIP2
GREB1	FBXO10	KCNC3
LSM14A	VENTX	IQCE
ZER1	VWA5B1	ATG13
MED9	HSPG2	C21orf59
FZD3	DGRC2	ZNF283
IGF2R	MYLK3	TTC9C
RACN3	ZNF585B	CLDN19
RASSF6	DGKD	SGC8
TBRG1	LRCH3	IREB2
UQCC1	ZNF696	HSPA4L
SIT1	PTPRS	PPP6R3
BCAR1	COL5A2	TRIM59
PAPOLG	HECTD3	CBX5
TFAP2B	ATP5G1	CERS4
ATPS5	NDUFA7	TNS4
ADAMTS17	IKZF3	HIPK2
CANT1	SLC12A7	PLEKHG5
OSTM1	DYM	RNF126
SFXN1	SDF4	RIMS3
TEX22	RAD1	AC018755.1
OTUD7A	IMPAD1	TBC1D24
GLCM	TRAPPC2P1	SLC15A2
SGPP2	BNIP2	APBA2
AGAP2	MANEAL	KIAA2018
MCM8	GRM1	CYB5R3
AN07	THSD4	FRMPD4
VKORC1L1	WDR12	SLC25A1
ZNRF3	TNFRSF14	LRRRC47
ZNF551	ABHD15	PLIN5
GLDN	PVR	PTCD1
---------	---------	--------
CPLX1	MYH9	RRPI2
AGTRAP	KLF16	WDR91
EPHA10	SP6	ZNF566
ZC3H8	CMKL1R1	LRRC28
NOVA2	CENPP	SIPA1L3
LONRF2	NOL10	XRC3C3
TMX4	IGF1R	FN1KR3
TBC1D16	HIST3H2BB	ZNF394
ZBTB20	GCNT4	HIST1H2BG
PHACTR4	HS3ST1	COrf23
PHACTR1	FAM83F	HSPE1-MOB4
PANK4	CAPZB	VMAC
ZDHHC3	C1orf75	C10orf54
ZNF799	PAFAH1B1	VPS13D
PPM1K	RANBP3	CPM
AP5S1	FASTKD2	ZNF419
C4orf33	MNT	PLEKH2G
ONECUT3	MMS22L	PTBP2
HOXD11	ARSG	VPS33A
ZBTB3	CLCN5	GNAL
EXPH5	MPPE1	SP5
SH3BP2	PRSS21	MTPAP
HDLBP	MAG13	SFT2D2
COL9A2	PDK3	CENPC
ZDHHC24	C1orf52	MAP2K3
PPI1R16B	KLHDC10	CSPP1
AAK1	COLGALT2	PMPCA
PRICKLE1	CAMSAP1	SARM1
CENPN	C15orf38	POLM
NONO	RWDD1	SYAP1
RPL18A	GMPPB	HMHA1
EHBP1L1	THAP1	TENM3
GNB4	TRAF6	ZFPK3
CAMK4	RXRA	METTL2
BCORL1	RPTOR	GRK4
HSPA5	RAB10	GATAD2B
FBXL20	NUP205	DNAL1
DCP2	UGOT1	CDK9
TRPM6	USH1G	TMEM151A
MOB4	CLMN	TIAF1
SLC9A7	TSHZ2	GRIK3
LMTK2	EFR3B	SLC25A16
GDPF7	UTP15	CHD5
SZT2	COPA	AMD1
AMDHD2	MTUS2	BMP2R
ZNF546	NEUKOD2	ZNF701
P2RY2	HSD17B12	FKBP9
DARS2	KLHL24	ANX6
ENOSF1	KCND3	RILPL1
FCF1	PPL6	GPT2
MAGI1	RAB11FIP4	TMEM168
SPIRE2	ZFP30	DUSP28
METTL16	RBM28	MICA
GK5	TNRC6B	B3GALT1
LRRK1	POU2F1	KIN
GAS7	DCPS	TFPD2
UTP6	SEMA3E	SSH3
EIF3L	TRIP11	DOCK11
ZNF35	VPS13B	ATF6
BPTF	NTNG2	HOMEZ
C1orf5	GPR153	GNPTAB
4-111.79437972	7965	
---	---	
SMS	BDH1	
EHD2	SUSD1	
SIAE	TPCN2	
SLC4A8	ZSCAN2	
ZNF347	SF3B1	
ACO3	MYCBP	
SLC25A36	KIAA1551	
ZSCAN29	WSBR27	
SLC2A5	CELSR2	
PIGQ	ZNF766	
HHIP	SWAP1	
POTEM	GNA3	
POTEG	ZNF324B	
BRCC3	PLXNA3	
NEDD4L	IBA57	
FAM162A	HABP2	
YIPF2	URM1	
NCAM1	NETO2	
LHFPL4	LETM1	
ZNF446	TBRG4	
TANC2	SNCA	
SLC7A11	RBBP8	
PLXNA1	SERPINA4	
NPR1	FKR	
LPAR3	POLR1C	
C1orf40	ADH5	
TOPBP1	B4GALT7	
SDHAF1	RSN11L	
ZNF708	TAOK1	
ZSWIM7	PDE12	
CCDC93	GABRB3	
ANAPC16	PHC3	
OGFOD3	C19orf47	
CIAO1	MTMR10	
MEX3A	PURB	
MYO18A	ZHX3	
LHX1	GGCX	
ARHGAP27	ZNF790	
CLUAP1	TIMM50	
MAP1LC3B	NFE2L1	
SUMO2	IL18BP	
TCEANC2	LANCL3	
SMAD4	CD248	
ABHD2	SHB	
MKI67IP	E2F3	
RNF41	ARHGAP35	
GNG7	EPHA8	
GDAP1L1	ANKRD13B	
TMEM220	ANK1	
TMEM186	FLJ27365	
INPP5K	ERN1	
KLHL4	ALPK3	
TTC4	NAV2	
NTRK3	C20orf194	
NFRK2	GALNT10	
GTF3C6	GTF2F1	
USP13	PSKH1	
GEMIN6	RPL14	
FASN	CC2D1B	
SNRPD1	LIG3	
CLSTN2	TSPAN14	
CLPB	ANGEL2	
RPL24	MESDC2	
SMU1	ZSCAN16	
LAT1	SNRPD3	
SHEPXD2B	MRPS30	
PTN2	CFD	
KIAA0101	AKR1D9	
IMPA2	PIAS2	
DPY19L1	TMED7	
FAM179A	PTPRJ	
POTEG	PLAGL2	
BID	MAPK9	
DRG1	NACC2	
CCDC77	MAP2K6	
THEM4	EMB	
PDZD8	SUMO1	
RNF19B	MRPL48	
VCL	RNF19B	
PQLC2	MGA	
CTSB	NDUF51	
RSU1	SPRYD7	
CCBE1	ARRB1	
ZZE1F1	ELP3	
ATR	ABR	
EHD1	EHD1	
WISP2	TTC39A	
PTPDC1	TSPAN31	
CA5B	ORC1	
ORC1	F10	
ARSA	SLFN12	
RAP1A	HOXB13	
ZNF639	ADARB1	
Gene	Gene	Gene
------	------	------
TSKU	FOXRED2	DNA2
ADHFE1	TGS1	MRGPRF
MYPN	SOX11	ASH2L
GADD45GIP1	CHSY3	ALG9
IRF1	GSR	GMPR
ALDH6A1	NDUFA4	CNBP
NDUFC1	POLR3B	ALG14
ELP6	CCER2	PFAS
SOCS7	NADSYN1	AP3M1
LAYN	MED28	SCARB2
ST3GAL6	NABP1	SOGA3
CEP68	ZNF259	PCNP
TLE3	PCM1	RBM15B
PTCHD1	GTPBP4	CDX2
SOG2	LPAR2	TENM4
FANCA	RPP14	CABLES1
CDK4	PRR24	POLR2E
LIMS1	VPS18	PKG1
SLC16A10	RP1-170019.20	RFFL
SCIN	TTF2	SMURF1
C7orf55-LUC7L2	SMAD2	XPO5
RAB13	FAM83D	RRAGD
SLC1A5	HOXA9	OCIAD2
MGP	F2RL1	C7orf55
HJURP	APOA1	DNLZ
CDH6	SIK2	FHL2
ATP5F1	ODF2L	PELP1
C17orf85	PPM1D	TIFA
HLX	NME1-NME2	C21orf58
MON2	FLYWCH2	ACO1
AGTTPB1	C5orf55	MTDH
ADRBK2	HSDL2	GLA
RBM4B	CENPM	SIRPA
ABCF1	AGXT2	URGCP
DDX19B	ABCG8	ALKBH1
SIRT3	MAML2	MGA1
SARDH	MRPS14	DCAF10
EM7	CLYBL	MON1B
SBNO1	GTDC1	DNAJB5
CNKSR3	FANCN	HIST1H1C
DNAK21	ATG2B	TEAD3
C1orf21	C14orf80	MMS19
SDCCAG3	NME2	ZNF559
SORCS2	ZNF177	C3
SLC35F5	TXNL1	UBR4
NUP43	P4HA2	IJS1
NAGS	PSD4	RAB40B
NXPE3	ABCG2	MRPL17
ABHD6	USP1	GLI4
BZW1	APOPT1	STX1B
PRIM1	CTSV	FADS1
AQR	ATP6V0E1	ZNF526
IMP4	FGFR10P	EMLIN2
ETFDH	PYCR1	CHAF1B
LUC7L2	NMT1	CKAP2L
XPNPEP1	CALCCOCO2	RFC2
AK1	MTHFR	RNF40
ZNF445	PLAC8	ZFAND5
TXNL4A	MPI	MSANTD4
SLC38A9	SLC35C2	ZNF107
GPRI33	PHB2	ZADH2
PDE7A	NDUFA3	KNSTRN
Gene	Gene	Gene
--------	--------	--------
VGLL3	PCDHB2	BAG2
SRSF9	GPRIN3	APSZ1
TBC1D15	TMEM135	MCTS1
NSUN3	HTT	TEMEM179
IPO9	CORO7	GPR34
PTGR2	PPL2	ANP32E
TIGD2	DOCK7	UGGT2
COMTD1	TM4SF5	STX7
COP53	RASSF4	TAF1B
CKAP4	DR1	NIF3L1
CEP63	KCMF1	HSPIB3
LMF1	ITGA1	RPL33
RMDN1	MAPK8IP2	PANK2
SELK	MRPS23	ZNF843
AIG1	ANKLE2	AKR7A2
FYTTD1	GLP2R	RPL23
CHSY1	ARFIP2	CLEC4C
SSBP2	EIF4E	LRG1
YME1L1	CYB5D1	SLC22A18AS
RRM2	TTC3	GTF2H5
KB-1507C5.2	TMEM134	ABI2
INO80	ACTR10	KLL36
SNAPC3	ATP6V1E1	DEFB105B
HINFP	LMAN2L	PSMC4
RAD51L3-RFL	MED16	CCS
RBFA	PRCD	ZNF423
ZNF668	DBNL	LETMD1
HMGB2	METTL22	C3orf83
SLC8A1	MTHFD1	PIGP
HAS2	NINJ1	DEFB105A
DSN1	CYB5R4	CACNG1
TOP3A	AGT	CCL24
SHOC2	TFCP2	JSY1
C16orf72	MMP15	GTF2H4
TTC38	CAND1	AVP1
PAN2	MAPK1	POLE
RNF24	ZMYM4	UBP1
C4orf32	DNAJC10	SF3A1
SGOL1	CDS2	IGF3
NTMT1	RPL37A	PLAA
ECHDC3	PRFS1	ERC1
PRPF6	FND3C3B	ALOX15
RELT	AC106017.1	PNRC1
CMBL	NEK9	FAM58E
FBXO3	TMEM106B	RBM25
TMEM86B	RNF115	KY
SKP1	G3BP2	NCF1
ZNF607	POLA2	ERVV-V
CADM1	GRWD1	CHID1
SERPING1	DCUN1D5	COX16
LYRM4	DYRK1B	IL17RA
MTO1	RNMTL1	UBASH3A
TRIOBP	SERPINH1	SAMD15
EMC2	TPNO1	ZNF611
NCKAP1	WDR88	AKR1D1
SLBP	LDHA	FPR2
DNAJC30	TIMM10	CABP4
ENAH	CAPZA2	TTPA
SLC30A5	ORMDL2	CLPP
DD2	DNTTIP2	BSND
NUP1L2	NLN	PTAFR
SCO1	CHD7	CD300L

https://doi.org/10.33263/BRIAC111.79437972
Gene 1	Gene 2	Gene 3
IL12RB2	TG	CCNO
MYOZ2	EMG1	VASN
LUC7L3	NLRP9	KLF2
CDN1F	ASB6	CAPRIN1
RBM23	AC135178.1	RLI1
LHPF	TIMD4	CYP20A1
HIF1A	SRSF3	NKD2
CD84	CD3D	NAA50
CD226	NDUFB5	ANKFY1
C10orf71	C9orf3	FOSL2
FPR1	MTMR8	TRIM38
FLH5	ZNF417	SRSF1
PRPF4	SHC3	NQO2
MBD5	MYO1F	S100A16
ACOT2	SEMA4F	MXR8
TLK2	RBP4	PPAP2B
AGAP9	TRIM72	CCNT1
GABRB2	SLC16A3	NUP93
GRAP2	BCDIN3D	KIF1C
CRIP1	ATP5J2-PTCD1	MSR2
DDX4	EMC1	ATP5G3
PPIA	SMTNL2	ST20-MTHFS
AKAP1	SPTLC3	STRADA
RANBP3L	PARP2	ZNF326
NCL	ZFP36L2	PEX16
MYBPC1	SLC22A15	POLD4
ATIC	RCN2	WDR13
TRA2B	SSTR2	HEYL
ABCB11	UQCR11	C1QTNF8
GLTSCR2	GPI	ZNF426
SLFN12L	ZNF8	PLA2G16
EPHX2	SELPLG	RIMKLA
FDFT1	NRXN3	PPDPF
GPR78	ALOX5AP	6-Mar
SPATS2L	ALDOA	MTHFS
BTLA	UBC	SC5D
SLC22A12	C1orf210	USP4
YIF1B	BRIP1	HSPA1B
GRM4	PRMT7	VCAM1
MAMDC4	TFB1M	MRPL15
SND1	MTFMT	XBP1
KLIHC8A	PRR11	KIAA0408
ABCA6	PSMB9	ARRDC2
TIMM23	DNAH17	GM2A
SLC24A4	C1orf32	OSTF1
CRP		
Supplementary Table 2

Databases: KEGG PATHWAY

Statistical test method: hypergeometric test / Fisher's exact test

FDR correction method: Benjamini and Hochberg

Term	ID	P-Value	Corrected P-Value	
Pathways in cancer	hsa05200	1.25E-09	0.006618	
Rap1 signaling pathway	hsa04015	2.64E-08	0.005771	
PI3K-Akt signaling pathway	hsa04151	1.25E-07	0.004322	
Ras signaling pathway	hsa04014	3.78E-07	0.004322	
Transcriptional misregulation in cancer	hsa05202	3.8E-07	0.004322	
Neuroactive ligand-receptor interaction	hsa04080	9.6E-07	0.004322	
MAPK signaling pathway	hsa04010	1.2E-06	0.004322	
Signaling pathways regulating pluripotency of stem cells	hsa04350	7.8E-06	0.004322	
Regulation of actin cytoskeleton	hsa04810	2.87E-06	0.004322	
Metabolic pathways	hsa01100	3.62E-06	0.004322	
TNF signaling pathway	hsa04688	3.71E-05	0.004322	
FoxO signaling pathway	hsa04068	3.86E-05	0.004322	
Renal cell carcinoma	hsa05211	3.9E-05	0.004322	
Glycine serine and threonine metabolism	hsa00260	4.87E-05	0.004322	
Influenza A	hsa05164	5.56E-05	0.004322	
Longevity regulating pathway - multiple species	hsa04213	6.003102	0.004322	
Insulin resistance	hsa04931	6.000107	0.004322	
Measles	hsa05162	6.000134	0.004322	
Apoptosis	hsa04210	6.000134	0.004322	
p53 signaling pathway	hsa04115	6.000134	0.004322	
mTOR signaling pathway	hsa04150	6.000134	0.004322	
Circadian rhythm	hsa04710	6.000134	0.004322	
beta-Alanine metabolism	hsa00410	6.000134	0.004322	
Longevity regulating pathway	hsa04211	6.000134	0.004322	
Jak-STAT signaling pathway	hsa04630	6.000134	0.004322	
Endocytosis	hsa04144	6.000134	0.004322	
Axon guidance	hsa04360	6.000134	0.004322	
Alcoholism	hsa05034	6.000134	0.004322	
Hippo signaling pathway	hsa04390	6.000134	0.004322	
HTLV-I infection	hsa05166	6.000134	0.004322	
Notch signaling pathway	hsa04330	6.000134	0.004322	
Hepatitis C	hsa05160	6.000134	0.004322	
Focal adhesion	hsa04510	6.000134	0.004322	
Inositol phosphate metabolism	hsa00562	6.000134	0.004322	
Prolactin signaling pathway	hsa04917	6.000134	0.004322	
Arginine and proline metabolism	hsa00330	6.000134	0.004322	
Estrogen signaling pathway	hsa04915	6.000134	0.004322	
Melanogenesis	hsa04916	6.000134	0.004322	
cAMP signaling pathway	hsa04024	6.000134	0.004322	
Protein digestion and absorption	hsa04974	6.000134	0.004322	
Basal cell carcinoma	hsa05217	6.000134	0.004322	
EGFR tyrosine kinase inhibitor resistance	hsa01521	6.000134	0.004322	
Selenocompound metabolism	hsa00450	6.000134	0.004322	
Melanoma	hsa05218	6.000134	0.004322	
TGF-beta signaling pathway	hsa04350	6.000134	0.004322	
Endocrine resistance	hsa01522	6.000134	0.004322	
Dorso-ventral axis formation	hsa04320	6.000134	0.004322	
Aldosterone-regulated sodium reabsorption	hsa04960	6.000134	0.004322	
Herpes simplex infection	hsa05168	6.000134	0.004322	
Chemokine signaling pathway	hsa04962	6.000134	0.004322	
Hematopoietic cell lineage	hsa04640	6.000134	0.004322	
Tryptophan metabolism	hsa00380	6.000134	0.004322	
Prostate cancer	hsa05215	6.000134	0.004322	
Lysine degradation	hsa00310	6.000134	0.004322	
HIF-1 signaling pathway	hsa04066	6.000134	0.004322	
Thyroid hormone signaling pathway	hsa04919	6.000134	0.004322	
Tryptophan metabolism	hsa00380	6.000134	0.004322	
Legionellosis	hsa05134	6.000134	0.004322	
ECM-receptor interaction	hsa04512	6.000134	0.004322	
ABC transporters	hsa02010	6.000134	0.004322	
Cystine and methionine metabolism	hsa00270	6.000134	0.004322	
Acute myeloid leukemia	hsa05221	6.000134	0.004322	
Peroxisome	hsa04146	6.000134	0.004322	
Adipocytokine signaling pathway	hsa04920	6.000134	0.004322	
Pathway	ID	P	Log2FC	
--	------	-----	--------	
Inflammatory mediator regulation of TRP channels	hsa04060	22	265	
Alanine aspartate and glutamate metabolism	hsa00250	6	35	
Glycosphingolipid biosynthesis - lacto and neolacto series	hsa00601	5	26	
Natural killer cell mediated cytotoxicity	hsa04650	13	135	
Sphingolipid signaling pathway	hsa04071	12	121	
MicroRNAs in cancer	hsa05206	23	299	
Insulin signaling pathway	hsa04910	13	139	
Aldosterone synthesis and secretion	hsa04925	9	81	
AMPK signaling pathway	hsa04152	12	125	
RNA transport	hsa03013	15	172	
Wnt signaling pathway	hsa04310	13	143	
Glutamatergic synapse	hsa04724	11	114	
Huntington's disease	hsa05016	16	193	
Insulin secretion	hsa04911	9	85	
Amoebiasis	hsa05146	10	100	
AGE-RAGE signaling pathway in diabetic complications	hsa04933	10	101	
Calcium signaling pathway	hsa04020	15	180	
Glucagon signaling pathway	hsa04922	10	102	
eGMP-PKG signaling pathway	hsa04922	14	167	
Cocaine addiction	hsa05030	6	49	
Synaptic vesicle cycle	hsa04721	7	63	
Viral carcinogenesis	hsa05203	16	205	
Proteoglycans in cancer	hsa03520	16	205	
Ovarian steroidogenesis	hsa04913	6	50	
Caffeine metabolism	hsa00232	2	5	
Glial cell line transformation	hsa05214	7	65	
Aminoacyl-tRNA biosynthesis	hsa00970	7	66	
Phospholipase D signaling pathway	hsa04072	12	144	
Glycosaminoglycan biosynthesis - keratan sulfate	hsa00533	3	15	
Amphetamine addiction	hsa05031	7	67	
Hepatitis B	hsa05161	12	146	
Vitamin B6 metabolism	hsa00750	2	6	
Osteoclast differentiation	hsa04380	11	132	
Protein processing in endoplasmic reticulum	hsa04141	13	166	
Regulation of lipolysis in adipocytes	hsa04923	6	56	
Non-small cell lung cancer	hsa05223	6	56	
Leukocyte transendothelial migration	hsa04670	10	118	
Epstein-Barr virus infection	hsa05169	15	204	
Systemic lupus erythematosus	hsa05322	11	136	
Neurotrophin signaling pathway	hsa04722	10	120	
B cell receptor signaling pathway	hsa04662	7	73	
Other glycan degradation	hsa00511	3	18	
Fetal activation	hsa04611	10	122	
Tight junction	hsa04330	11	139	
Other types of O-glycan biosynthesis	hsa00514	4	31	
Biosynthesis of amino acids	hsa01230	7	75	
Propanoate metabolism	hsa00640	4	32	
Carbohydrate digestion and absorption	hsa04973	5	46	
RNA degradation	hsa03018	7	77	
HEDGEhog signaling pathway	hsa03430	4	47	
Apoptosis - multiple species	hsa04215	4	33	
Steroid biosynthesis	hsa00100	5	30	
Cholinergic synapse	hsa04725	9	111	
Valine leucine and isoleucine degradation	hsa00360	5	25	
Circadian entrainment	hsa04713	8	95	
Tyrosine metabolism	hsa00350	4	35	
Phosphatidylinositol signaling system	hsa04070	8	95	
Pancreatic cancer	hsa05212	6	66	
Glycolysis / Gluconeogenesis	hsa00010	6	67	
Mineral absorption	hsa04978	5	52	
Endometrial cancer	hsa03253	5	52	
Choline metabolism in cancer	hsa05231	8	101	
Fc epsilon RI signaling pathway	hsa04664	6	68	
Ubiquitination mediated proteolysis	hsa04120	10	137	
Small cell lung cancer	hsa05222	7	86	
Histidine metabolism	hsa00340	3	24	
RIG-I-like receptor signaling pathway	hsa04622	6	70	
Chagas disease (American trypanosomiasis)	hsa05142	8	104	
Pathway/Condition	ID	rank	pValue	
--	------	------	----------	
Thyroid hormone synthesis	hsa04918	6	0.11769	
T cell receptor signaling pathway	hsa04660	8	0.118859	
Gap junction	hsa04540	7	0.119267	
Fatty acid elongation	hsa00602	3	0.120021	
Pyruvate metabolism	hsa00620	4	0.122007	
Cell cycle	hsa04110	9	0.1254	
Chronic myeloid leukemia	hsa05220	6	0.128646	
Tuberculosis	hsa05152	12	0.128995	
NOD-like receptor signaling pathway	hsa04621	5	0.131451	
Fatty acid biosynthesis	hsa00061	2	0.136529	
Ascorbate and aldarate metabolism	hsa00053	3	0.139806	
Phototransduction	hsa04744	3	0.139806	
Platinum drug resistance	hsa01524	6	0.140073	
Fc gamma R-mediated phagocytosis	hsa04666	7	0.144571	
Glycolipid metabolism	hsa00561	5	0.144711	
Serotonicgeric synapse	hsa04726	8	0.151497	
Glycosphingolipid biosynthesis - globale series	hsa00603	2	0.151522	
Long-term depression	hsa04730	5	0.151548	
Adrenergic signaling in cardiomyocytes	hsa04261	10	0.154941	
Carbon metabolism	hsa01200	8	0.156481	
Hippo signaling pathway - multiple species	hsa04392	3	0.160592	
Pancreatic secretion	hsa04972	7	0.160882	
Non-alcoholic fatty liver disease (NASH)	hsa04932	10	0.16369	
Colorectal cancer	hsa05210	5	0.165616	
Nicotinate and nicotinamide metabolism	hsa00760	3	0.171316	
Progesterone-mediated oocyte maturation	hsa04914	7	0.172196	
Endocrine and other factor-regulated calcium reabsorption	hsa04961	4	0.179927	
Sphingolipid metabolism	hsa00600	4	0.179927	
Mucin type O-Glycan biosynthesis	hsa00512	3	0.182236	
Amino sugar and nucleotide sugar metabolism	hsa00520	4	0.18872	
Type II diabetes mellitus	hsa04930	4	0.18872	
Vascular smooth muscle contraction	hsa04270	8	0.193437	
Long-term potentiation	hsa04720	5	0.195919	
Primary bile acid biosynthesis	hsa00120	2	0.198744	
Phenylalanine metabolism	hsa00360	2	0.198744	
Central carbon metabolism in cancer	hsa05230	5	0.202836	
Amyotrophic lateral sclerosis (ALS)	hsa05014	4	0.215869	
SNARE interactions in vesicular transport	hsa04130	3	0.216001	
Toll-like receptor signaling pathway	hsa04620	7	0.220603	
Erib signaling pathway	hsa04012	6	0.224333	
GABIEergic synapse	hsa04727	6	0.224333	
African trypanosomiasis	hsa05143	3	0.227536	
Salivary secretion	hsa04970	6	0.231416	
Cell adhesion molecules (CAMs)	hsa04514	9	0.232694	
Bile secretion	hsa04976	5	0.234456	
Pentose and glucuronate interconversions	hsa00040	3	0.239183	
BR signaling pathway	hsa03320	5	0.242564	
Rheumatoid arthritis	hsa05323	6	0.245786	
One carbon pool by folate	hsa00670	2	0.247388	
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate	hsa00532	2	0.247388	
Pathogenic Escherichia coli infection	hsa05130	4	0.253542	
Pancreatitis anemia pathway	hsa03460	4	0.253542	
Adherens junction	hsa04520	5	0.258996	
NF-kappa B signaling pathway	hsa04064	6	0.260405	
Pertussis	hsa05133	5	0.267309	
Regulation of autophagy	hsa04140	3	0.286589	
Nicotine addiction	hsa05033	3	0.286589	
Bacterial invasion of epithelial cells	hsa05100	5	0.292575	
Antigen processing and presentation	hsa04612	5	0.292575	
Biosynthesis of unsaturated fatty acids	hsa01040	2	0.296367	
Bladder cancer	hsa05219	3	0.298573	
Oxytocin signaling pathway	hsa04921	9	0.301824	
VEGF signaling pathway	hsa04370	4	0.312149	
Retrograde endocannabinoid signaling	hsa04723	6	0.320797	
Arachidonic acid metabolism	hsa00590	4	0.320260	
Fatty acid degradation	hsa00071	3	0.33463	
Vasopressin-regulated water reabsorption	hsa04962	3	0.33463	
Taste transduction	hsa04742	5	0.335474	
Renin secretion	hsa04924	4	0.341941	
Maturity onset diabetes of the young	hsa04950	2	0.34484	
Ether lipid metabolism	hsa00565	3	0.346643	
Raw text	ID	g	p-value	
----------	----	---	----------	
Salmonella infection	hsa05132	5	0.361476	0.4536
Alzheimer's disease	hsa05010	9	0.362661	0.4549
Butanoate metabolism	hsa00650	2	0.376553	0.470076
Fatty acid metabolism	hsa01212	3	0.382511	0.472233
Dopaminergic synapse	hsa04728	7	0.385328	0.472353
Synthesis and degradation of ketone bodies	hsa00072	1	0.38641	0.472353
GuRH signaling pathway	hsa04912	5	0.404857	0.492475
Citrate cycle (TCA cycle)	hsa00020	2	0.40761	0.493684
Taurome and hypotaurine metabolism	hsa00430	1	0.414306	0.493684
Glutathione metabolism	hsa00480	3	0.429571	0.510288
Glycrophospholipid metabolism	hsa00564	5	0.439305	0.512429
Base excision repair	hsa03410	2	0.452716	0.526293
Non-homologous end-joining	hsa03450	1	0.462947	0.530164
Prion diseases	hsa05020	2	0.481671	0.547988
Lysosome	hsa04142	6	0.490866	0.55257
Oocyte meiosis	hsa04114	6	0.490866	0.55257
Glycosphingolipid biosynthesis - ganglio series	hsa00604	1	0.508594	0.565358
Viral myocarditis	hsa05416	3	0.519209	0.575623
Hypertrophic cardiomyopathy (HCM)	hsa05410	4	0.525731	0.581799
Purine metabolism	hsa00230	8	0.549076	0.599938
Fat digestion and absorption	hsa04975	2	0.562575	0.612159
2-Oxocarboxylic acid metabolism	hsa01210	1	0.569897	0.615889
Shigellosis	hsa05131	3	0.571183	0.616842
Porphyria and chlorophyll metabolism	hsa00860	2	0.575147	0.620539
Dilated cardiomyopathy	hsa05414	4	0.587225	0.631028
Glycosaminoglycan degradation	hsa00531	1	0.588584	0.631028
Epithelial cell signaling in Helicobacter pylori infection	hsa05120	3	0.606039	0.642751
mRNA surveillance pathway	hsa03015	4	0.603916	0.646031
Drug metabolism - other enzymes	hsa00983	2	0.622767	0.661718
Arginine biosynthesis	hsa00220	1	0.623557	0.661718
Metabolism of xenobiotics by cytochrome P450	hsa00980	3	0.646683	0.68192
Proximal tubule bicarbonate reclamation	hsa04964	1	0.65559	0.687708
Mismatch repair	hsa03430	1	0.65559	0.687708
N-Glycan biosynthesis	hsa00510	2	0.655695	0.687708
Vitamin digestion and absorption	hsa04977	1	0.670525	0.70006
alpha-Linolenic acid metabolism	hsa00592	1	0.684841	0.712655
Complement and coagulation cascades	hsa04610	3	0.696786	0.724031
Phagosome	hsa04145	6	0.704373	0.729833
Chemical carcinogenesis	hsa05204	3	0.719735	0.742898
Glyoxylate and dicarboxylate metabolism	hsa06820	1	0.724167	0.746623
Staphylococcus aureus infection	hsa05150	2	0.732262	0.754554
Linoleic acid metabolism	hsa00591	1	0.736154	0.757543
Steroid hormone biosynthesis	hsa00140	2	0.740738	0.762609
Galactose metabolism	hsa00052	1	0.758588	0.777663
Ribosome biogenesis in eukaryotes	hsa03008	3	0.767993	0.786689
RNA polymerase	hsa03020	1	0.769079	0.786923
Fructose and mannose metabolism	hsa00051	1	0.779115	0.79586
Morphine addiction	hsa05023	3	0.780469	0.797106
Cytosolic DNA-sensing pathway	hsa04623	2	0.786896	0.803182
Retinol metabolism	hsa00830	2	0.793845	0.809284
Inflammatory bowel disease (IBD)	hsa05321	2	0.800592	0.814985
Primary immunodeficiency	hsa05340	1	0.815085	0.827534
Drug metabolism - cytochrome P450	hsa00982	2	0.81967	0.832006
Leishmaniasis	hsa05140	2	0.847849	0.857477
Gastric acid secretion	hsa04971	2	0.847849	0.857477
Arrhythmogenic right ventricular cardiomyopathy (ARVC)	hsa05412	3	0.847849	0.857477
Pyrimidine metabolism	hsa00240	3	0.851017	0.862133
Basal transcription factors	hsa03022	1	0.870412	0.878553
Parkinson's disease	hsa05012	4	0.882593	0.889869
Malaria	hsa05144	1	0.89152	0.898179
Intestinal immune network for IgA production	hsa04672	1	0.896237	0.902732
Autoimmune thyroid disease	hsa05320	1	0.91314	0.918749
Starch and sucrose metabolism	hsa05000	1	0.923986	0.929952
Ribosome	hsa03010	1	0.947254	0.958674
Olfactory transduction	hsa04740	2	0.947254	0.958674