GLOBAL BOUNDEDNESS OF CLASSICAL SOLUTIONS TO A LOGISTIC CHEMOTAXIS SYSTEM WITH SINGULAR SENSITIVITY

XIANGDONG ZHAO
School of Mathematics
Liaoning Normal University
Dalian 116029, China

(Communicated by Christina Surulescu)

ABSTRACT. We consider a chemotaxis system with singular sensitivity and logistic-type source: $u_t = \Delta u - \chi \nabla \cdot (\chi \nabla v) + ru - \mu u^k$, $v_t = \epsilon \Delta v - v + u$ in a smooth bounded domain $\Omega \subset \mathbb{R}^n$ with $\chi, r, \mu, \epsilon > 0$, $k > 1$ and $n \geq 2$. It is proved that the system possesses a globally bounded classical solution when $\epsilon + \chi < 1$. This shows that the diffusive coefficient ϵ of the chemical substance v properly small benefits the global boundedness of solutions, without the restriction on the dampening exponent $k > 1$ in logistic source.

1. Introduction. In this paper, we consider the following chemotaxis system with singular sensitivity and logistic-type source

$$
\begin{cases}
 u_t = \Delta u - \chi \nabla \cdot (\chi \nabla v) + f(u), & x \in \Omega, \ t > 0, \\
 v_t = \epsilon \Delta v - v + u, & x \in \Omega, \ t > 0, \\
 \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, & x \in \partial \Omega, \ t > 0, \\
 (u(x, 0), v(x, 0)) = (u_0, v_0), & x \in \overline{\Omega},
\end{cases}
$$

(1)

where $\chi, \epsilon > 0$, $f(u) = ru - \mu u^k$ with $r, \mu > 0$ and $k > 1$. $\Omega \subset \mathbb{R}^n$ ($n \geq 2$) is a bounded smooth domain. $\frac{\partial}{\partial \nu}$ denotes the derivation with respect to the outer normal of $\partial \Omega$, and for some $q > n$ the initial datum satisfy

$$
\begin{cases}
 u_0 \in C^0(\overline{\Omega}), \ u_0 > 0, \\
 v_0 \in W^{1,q}(\Omega), \ v_0 > 0.
\end{cases}
$$

(2)

Eq. (1) is an extended version of the well-known Keller-Segel system [10] (i.e., $f(u) = 0$), to describe the cells u moving towards the concentration gradient of a chemical substance v produced by the cells themselves. Here the involved singular chemotactic sensitivity function $\frac{\chi}{v}$ is derived by the Weber-Fechner laws. Recall the known results for $\epsilon = 1$ with $f(u) = 0$. All solutions are global in time when $n = 1$.

2020 Mathematics Subject Classification. Primary: 92C17; Secondary: 35Q92, 35K55.

Key words and phrases. Chemotaxis, Singular sensitivity, Boundedness.

The author is supported by the Doctoral Scientific Research Foundation of Liaoning Normal University grant No. 203070091907.
If $\chi < \frac{2}{n}$ with $n \geq 2$, there exists a globally bounded classical solution [6]. With larger chemotactic sensitivity coefficient

$$\chi < \begin{cases} \infty & \text{if } n = 2, \\ \sqrt{\frac{8}{n}} & \text{if } n = 3, \\ \frac{n}{n-2} & \text{if } n \geq 4. \end{cases}$$

the system possesses a global generalized solution [11]. See [1, 7, 12, 14] for more conclusions on chemotaxis models with singular sensitivity. Consider the case of $\epsilon = 1$ and $f(u) = ru - \mu u^k$. If $n, k = 2$, there exist global solutions [2], and globally bounded classical solutions [16] when

$$r > \begin{cases} \frac{\chi^2}{4}, & 0 < \chi \leq 2, \\ \chi - 1, & \chi > 2. \end{cases}$$

If $n, k \geq 2$, the global solvability of classical or generalized solutions has been discussed in [5, 17]. We refer to [8] on the related parabolic-elliptic case.

To study the global boundedness of solutions to the chemotaxis system with singular sensitivity, the main step is to establish the uniform lower bound estimate for chemical signal v. If $f(u) = 0$, this can be arrived thanks to the mass conservation for cell u. However, this a priori uniform estimate on v will be false for the singular chemotaxis model with logistic-type source $ru - \mu u^k$, i.e., the singularity in the chemotactic sensitivity function χ^v may happen. By means of a weighted integral $\int_{\Omega} u^{-p} v^{-q} dx$, we can firstly obtain the desired uniformly lower bound estimate for v, and then study the global solvability of solutions to (1) for $\epsilon = 1$ [16, 17]. In this paper, with a transformation $w = uv^\frac{1}{1-\epsilon}$ inspired by [9, 18], we will obtain $\|w\|_{L^\infty(\Omega)}$ by Moser iteration, and hence the crucial estimate on $\|u\|_{L^q(\Omega)}$ for some $q > \frac{n}{2}$ via an iteration. This will be enough to ensure the global boundedness of solutions to system (1). Now, we state the main results.

Theorem 1.1. Let $n \geq 2$, $\chi, r, \mu > 0$ and $k > 1$. If $\epsilon \in (0, 1)$ and $\chi \in (0, 1 - \epsilon)$, the problem (1) admits a unique global bounded classical solution.

Remark 1. Recall from [16, 17] that the problem (1) with $\epsilon = 1$ admits a globally bounded classical solution provided the chemotactic sensitivity coefficient χ suitably small with respect to $r > 0$, and $k \geq 2$ for $n = 2$ or $k > \frac{n+2}{n+4}$ for $n \geq 3$. Theorem 1.1 says that the system (1) possesses a globally bounded classical solution provided $\chi + \epsilon \in (0, 1)$, without the restriction on the dampening exponent $k > 1$ in the logistic source $ru - \mu u^k$.

Remark 2. By [16, 17] it was known that the uniformly lower bound estimate for v is the main step to establish the global boundedness of the solution to system (1) with $\epsilon = 1$. Differently, without considering this crucial estimate (v may tend to 0), it is proved in Theorem 1.1 that the system admits a globally bounded classical solution via the transformation $uw^{\frac{1}{1-\epsilon}}$ with $\epsilon \in (0, 1 - \chi)$. In other words, the diffusive coefficient $\epsilon \in (0, 1)$ of the chemical signal v properly small benefits the global boundedness of classical solution to system (1).

2. **Preliminaries.** We firstly introduce the local existence of classical solutions to (1) without proof in detail, which can be obtained by the standard contraction argument like that in [16, Lemma 2.1].
Lemma 2.1. With the initial data (2), there exists $T_{\text{max}} \in (0, +\infty)$ and a unique pair (u, v) of functions
\[
\begin{cases}
u \in C^0(\Omega \times [0, T_{\text{max}})) \cap C^{2,1}(\Omega \times (0, T_{\text{max}})), \\
v \in C^0(\Omega \times [0, T_{\text{max}})) \cap C^{2,1}(\Omega \times (0, T_{\text{max}})) \cap L^\infty(0, T_{\text{max}}); W^{1,q}(\Omega),
\end{cases}
\]
satisfying (1) in the classical sense with $u, v > 0$ in $\Omega \times (0, T)$. Moreover, either $T_{\text{max}} = \infty$, or $\lim_{t \to T_{\text{max}}} \left(\|u(\cdot, t)\|_{L^\infty(\Omega)} + \|v(\cdot, t)\|_{W^{1,q}(\Omega)}\right) = \infty$.

Next, we give some a priori estimates of the local classical solution (u, v) to system (1). For convenience, denote $T := T_{\text{max}}$.

Lemma 2.2. It holds for $k > 1$ that
\[
\iint_\Omega ud\mu \leq m_0, \quad t \in (0, T)
\]
with $m_0 = \max\left\{\int_\Omega u_0 d\mu, |\Omega(\frac{1}{\mu})^\frac{1}{p-1}\right\}$.

Proof. Integrate the first equation in (1) over Ω to get
\[
\frac{d}{dt} \iint_\Omega ud\mu = r \iint_\Omega ud\mu - \mu \iint_\Omega u^k d\mu \leq r \iint_\Omega ud\mu - \frac{\mu}{|\Omega|^{k-1}} \left(\iint_\Omega ud\mu\right)^k, \quad t \in (0, T)
\]
by the Hölder inequality, which yields (4) by the Bernoulli inequality [4, Lemma 1.2.4].

According to estimates of the homogeneous Neumann heat semigroups $\{e^{t\Delta}\}_{t > 0}$ in [15, Lemma 1.3 (i)], we have the following lemma.

Lemma 2.3. Assume for $q \geq 1$ that
\[
\|u\|_{L^q(\Omega)} \leq C_1, \quad t \in (0, T)
\]
with some $C_1 > 0$. Then for $r \in \left(1, \frac{na}{n-2q}\right)$ if $q \in \left[1, \frac{n}{2}\right]$, or $r = \infty$ if $q > \frac{n}{2}$ there exists $C_2 > 0$ such that
\[
\|v\|_{L^r(\Omega)} \leq C_2, \quad t \in (0, T).
\]

Proof. Denote $\bar{u} = \frac{1}{|\Omega|} \int_\Omega u d\mu$, and let $\lambda_1 > 0$ denote the first nonzero eigenvalue of $-\Delta$ in Ω under Neumann boundary conditions. Applying [15, Lemma 1.3 (i)] to the second equation in (1), then for $r \in \left(1, \frac{na}{n-2q}\right)$ if $q \in \left[1, \frac{n}{2}\right]$ we have from (4) and (5) that
\[
\|v\|_{L^r(\Omega)} \leq \|v_0\|_{L^r(\Omega)} + \int_0^t \|e^{(t-s)(\epsilon\Delta-1)}u\|_{L^r(\Omega)} ds
\]
\[
\leq \|v_0\|_{L^r(\Omega)} + \int_0^t \|e^{(t-s)(\epsilon\Delta-1)}(u - \bar{u})\|_{L^r(\Omega)} ds + \int_0^t \|e^{(t-s)(\epsilon\Delta-1)}\bar{u}\|_{L^r(\Omega)} ds
\]
\[
\leq \|v_0\|_{L^r(\Omega)} + K_1 \int_0^t \left(1 + [e(t-s)]^{-\frac{n}{2}k}\right)e^{-(\lambda_1 + \frac{n}{2})[e(t-s)]\|u\|_{L^q(\Omega)} ds + m_0|\Omega|^{\frac{1}{q}-1}
\]
\[
\leq \|v_0\|_{L^r(\Omega)} + \frac{K_1 C_1}{\epsilon} \int_0^{\infty} (1 + \alpha)^{-\frac{n}{2}k} e^{-\lambda_1\alpha} d\alpha + m_0\|\Omega\|^{\frac{1}{q}-1} =: C_2
\]
with $K_1 > 0$ for $t \in (0, T)$. Similar calculation to the case of $q > \frac{n}{2}$, we derive the estimate (6) for $r = \infty$ with $C_2 := \|v_0\|_{L^\infty(\Omega)} + \frac{K_1 C_1}{\epsilon} \int_0^{\infty} (1 + \alpha)^{-\frac{n}{2}k} e^{-\lambda_1\alpha} d\alpha + m_0\|\Omega\|^{\frac{1}{q}-1}$.

This completes the proof.

\qed
3. Proof of Theorem 1.1. Let \(m := \frac{1}{1-\epsilon} \) with \(\epsilon \in (0, 1) \). Moreover, denote
\[w := uw^{-m}. \] (7)

Then the system (1) becomes
\[
\begin{align*}
 w_t &= \Delta w + (1 + \epsilon)m \frac{\nabla w \cdot \nabla v}{v^2} + cm(m-1)w \frac{\nabla v^2}{v^2} + (m + r)w - mw^2v^{m-1} - m\mu w^kv^{m(k-1)}, & x \in \Omega, & t > 0, \\
 v_t &= \epsilon \Delta v - v + uw^m, & x \in \Omega, & t > 0, \\
 \frac{\partial w}{\partial \nu} &= \frac{\partial v}{\partial \nu} = 0, & x \in \partial \Omega, & t > 0, \\
 (w(x, 0), v(x, 0)) &= (u_0v_0^{-m}, v_0), & x \in \bar{\Omega}.
\end{align*}
\]
(8)

Notice that \((w, v)\) is also a local classical solution to (8) with \(w, v > 0 \) on \(\bar{\Omega} \times (0, T) \).

Now, we establish the estimate on \(\|w\|_{L^\infty(\Omega)} \).

Lemma 3.1. Let \(n \geq 2 \), \(\chi, r, \mu > 0 \) and \(k > 1 \). If \(\epsilon \in (0, 1) \) and \(\chi \in (0, 1-\epsilon) \), then there exists \(M_1 > 0 \) such that
\[
\|w\|_{L^\infty(\Omega)} \leq M_1, \quad t \in (0, T). \] (9)

Proof. For any \(p > 1 \) and \(\epsilon_0 > 0 \), multiply the first equation of (8) by \(w^{p-1} \) and integrate over \(\Omega \) to have
\[
\frac{1}{p} \frac{d}{dt} \int_\Omega w^p \, dx
= -(p-1) \int_\Omega w^{p-2} |\nabla w|^2 \, dx + (1 + \epsilon)m \int_\Omega \frac{w^{p-1}}{v} \nabla w \cdot \nabla v \, dx
+ cm(m-1) \int_\Omega w^{p-2} \frac{|\nabla v|^2}{v^2} \, dx + (m + r) \int_\Omega w^{p-1} \, dx
- m \int_\Omega w^{p+1} v^{m-1} \, dx - \mu \int_\Omega w^{p+k-1} v^{m(k-1)} \, dx
\leq -(p-1 - \epsilon_0) \int_\Omega w^{p-2} |\nabla w|^2 \, dx + \left[cm(m-1) + \frac{(1 + \epsilon)^2 m^2}{4 \epsilon_0} \right] \int_\Omega w^{p-2} \frac{|\nabla v|^2}{v^2} \, dx
+ (m + r) \int_\Omega w^p \, dx - m \int_\Omega w^{p+1} v^{m-1} \, dx - \mu \int_\Omega w^{p+k-1} v^{m(k-1)} \, dx, \] (10)

by Young’s inequality with \(\epsilon_0 > 0 \) for \(t \in (0, T) \). Notice that \(m = \frac{1}{1-\epsilon} < 1 \) for \(\epsilon \in (0, 1) \) with \(\chi \in (0, 1-\epsilon) \). Again by Young’s inequality, we know
\[
\int_\Omega w^p \, dx = \int_\Omega \left(w^{p+1} v^{m-1} \right)^{\frac{m}{m+p(k-1)+p(1-m)+k-1}} \left(w^{p+k-1} v^{m(k-1)} \right)^{\frac{p(1-m)}{m+p(k-1)+p(1-m)+k-1}} \leq \epsilon_1 \int_\Omega w^{p+1} v^{m-1} \, dx + \epsilon_2 \int_\Omega w^{p+k-1} v^{m(k-1)} \, dx + C(\epsilon_1, \epsilon_2) \|\Omega\|, \] (11)

with \(C(\epsilon_1, \epsilon_2) = \frac{m(1-m)(k-1)^2}{p(1-m)(k-1)^2} \). Let \(\epsilon_0 = \frac{m(1+\epsilon)^2}{4\epsilon(1-m)} \), \(\epsilon_1 = \frac{m}{m+r+1} \) and \(\epsilon_2 = \frac{p}{m+r+1} \). Then for \(p \geq 1 + \epsilon_0 \) it holds from (10) and (11) that
\[
\frac{1}{p} \frac{d}{dt} \int_\Omega w^p \, dx + \frac{1}{p} \int_\Omega w^p \, dx \leq (m + r + 1) \int_\Omega w^p \, dx - m \int_\Omega w^{p+1} v^{m-1} \, dx
- \mu \int_\Omega w^{p+k-1} v^{m(k-1)} \, dx
\leq (m + r + 1) \|\Omega\| C(\epsilon_1, \epsilon_2) =: C_3 \] (12)
for \(t \in (0, T) \). Thus from an ODE comparison argument with (12) we obtain
\[
\int_{\Omega} w^p dx \leq \max \left\{ \int_{\Omega} w_0^p dx, pC_3 \right\}, \ t \in (0, T).
\]
This proves (9) with some \(M_1 > 0 \) via a Moser iteration procedure in [3].

Based on Lemma 3.1, we will derive the estimate on \(\|u\|_{L^q(\Omega)} \) for some \(q > \frac{n}{2} \).

Lemma 3.2. Under the conditions in lemma 3.1, there exists \(q > \frac{n}{2} \) with \(M_2 > 0 \) such that
\[
\int_{\Omega} u^q dx \leq M_2, \ t \in (0, T).
\]
(13)

Proof. If \(1 < q < p \), we have from Young's inequality that
\[
\int_{\Omega} u^q dx = \int_{\Omega} w^q v^{mq} dx \leq \frac{q}{p} \int_{\Omega} w^p dx + \frac{p-q}{p} \int_{\Omega} v^{pq \frac{m}{p-1}} dx.
\]
(14)

According to Lemma 2.3 with (4), it is shown for \(r \in (1, \frac{n}{n-2}) \) that
\[
\|v\|_{L^r(\Omega)} \leq C_4, \ t \in (0, T).
\]
(15)

with some \(C_4 > 0 \).

Let \(q_1 := m^{-1} \) and \(p > \frac{n}{2m} \). Then \(1 < q_1 < p \) and \(\frac{pm}{p-q_1} < \frac{n}{n-2} \). Combining (9), (14) and (15), we obtain
\[
\int_{\Omega} u^{q_1} dx \leq \frac{q_1}{p} \int_{\Omega} w^p dx + \frac{p-q_1}{p} \int_{\Omega} v^{pq_1 \frac{m}{p-1}} dx \leq C_5, \ t \in (0, T)
\]
(16)

with some \(C_5 > 0 \).

Without loss of generality, assume that \(n > 2 \) and \(1 < q_1 \leq \frac{n}{2} \). Based on Lemma 2.3 with (16), we get for \(r \in (1, \frac{nq_1}{n-2q_1}) \) that
\[
\|v\|_{L^r(\Omega)} \leq C_6, \ t \in (0, T)
\]
(17)

with some \(C_6 > 0 \). Now let \(q_2 := m^{-2} \) and \(p > \max\{q_2, \frac{n}{2m}\} \). A simple calculation shows that \(\frac{pm}{p-q_2} < \frac{n}{n-2q_2} \). Hence, it is shown from (14) with (9) and (17) that
\[
\int_{\Omega} u^{q_2} dx \leq \frac{q_2}{p} \int_{\Omega} w^p dx + \frac{p-q_2}{p} \int_{\Omega} v^{pq_2 \frac{m}{p-1}} dx \leq C_7, \ t \in (0, T)
\]
(18)

with \(C_7 > 0 \). Since \(q_l = m^{-l} \to \infty \) as \(l \to \infty \), we can realize \(q_l > \frac{n}{2} \) after finite steps.

Proof of Theorem 1.1. Invoke Lemmas 3.2 and 2.3 to know
\[
\|v\|_{L^\infty(\Omega)} \leq C_8, \ t \in (0, T)
\]
(19)

with some \(C_8 > 0 \). By Lemma 3.1 with(19), we obtain
\[
\|u\|_{L^\infty(\Omega)} \leq \|w_0^m\|_{L^\infty(\Omega)} \leq \|w_0\|_{L^\infty(\Omega)} \|v^m\|_{L^\infty(\Omega)} \leq \tilde{M}, \ t \in (0, T)
\]
with some \(\tilde{M} > 0 \). This together with Lemma 2.1 indicates \(T = T_{\max} = \infty \), i.e.,
the classical solutions are globally bounded.

Acknowledgments. This work was supported by the Doctoral Scientific Research Foundation of Liaoning Normal University (Grant No. 203070091907). The author also thanks the referees for their valuable comments.
REFERENCES

[1] J. Ahn, Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, *J. Differential Equations*, **266** (2019), 6866–6904.

[2] M. Aida, K. Osaka, T. Tsujikawa and A. Yagi, Chemotaxis and growth system with singular sensitivity function, *Nonlinear Anal. Real World Appl.*, **6** (2005), 323–336.

[3] N. D. Alikakos, *L^p* bounds of solutions of reaction-diffusion equations, *Comm. Partial Differential Equations*, **4** (1979), 827–868.

[4] J. W. Cholewa and T. Dlotko, *Global Attractors in Abstract Parabolic Problems*, Cambridge University Press, 2000.

[5] M. Ding, W. Wang and S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, *Nonlinear Anal. Real World Appl.*, **49** (2019), 286–311.

[6] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, *J. Math. Anal. Appl.*, **424** (2015), 675–684.

[7] K. Fujie and T. Senba, Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, *Nonlinearity*, **29** (2016), 2417–2450.

[8] K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, *Nonlinear Anal.*, **109** (2014), 56–71.

[9] A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, *J. Math. Anal. Appl.*, **272** (2002), 138–163.

[10] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, *J. Theoret. Biol.*, **26** (1970), 399–415.

[11] J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, *NoDEA Nonlinear Differential Equations Appl.*, **24** (2017), 33pp.

[12] J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, *Math. Methods Appl. Sci.*, **39** (2016), 394–404.

[13] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, *Funkcial Ekvac.*, **44** (2001), 441–469.

[14] C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, *Nonlinear Anal. Real World Appl.*, **12** (2011), 3727–3740.

[15] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, *J. Differential Equations*, **248** (2010), 2889–2905.

[16] X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, *Z. Angew. Math. Phys.*, (2017), 68.

[17] X. D. Zhao and S. Zheng, Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, *J. Differential Equations*, **267** (2019), 826–865.

[18] X. D. Zhao and S. Zheng, Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, *Math. Methods. Appl. Sci.*, **41** (2018), 2615–2624.

Received March 2020; revised September 2020.

E-mail address: zhaoxd1223@163.com