IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

Helen M. Lazear1, Alissa Lancaster2, Courtney Wilkins3, Mehul S. Suthar3, Albert Huang3, Sarah C. Vick1, Lisa Clepper2, Larissa Thackray4, Margaret M. Brassil3, Herbert W. Virgin4, Janko Nikolich-Zugich5, Ashlee V. Moses3, Michael Gale Jr. 2, Klaus Fruh 2, Michael S. Diamond 1,4,6

1 Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2 Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, Oregon, United States of America, 3 University of Washington School of Medicine, Seattle, Washington, United States of America, 4 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 5 Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, United States of America, 6 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3−/−xIrf7−/− double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3−/−xIrf5−/−xIrf7−/− triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar−/−). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar−/− mice. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs−/− mDC. The relative equivalence of TKO and Mavs−/− responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IFR-5.

Introduction

The type I interferon (IFN) signaling network is an essential component of the innate immune response against viral infections, and also functions to shape adaptive immunity [1–4]. Infected cells initiate an antiviral response upon recognition of non-self pathogen-associated molecular patterns (PAMPs), which are detected by host pattern recognition receptors (PRRs) [2,5–8]. PRRs that recognize RNA viruses include members of the Toll-like receptor (TLR3 and TLR7) and the RIG-I-like receptor (RLR; RIG-I and MDA5) families. TLRs and RLRs recognize distinct PAMPs in different locations (extracellular/endosomes and cytoplasm, respectively) and activate signaling cascades to initiate antiviral and inflammatory responses. TLR3 binds to double-stranded RNA and recruits the adaptor molecule TRIF to activate the kinases TRAF and IKK-ε, which in turn activates the latent transcription factors IRF-3, IRF-7, and NF-kB. Single-stranded RNA is recognized by TLR7, which uses the adaptor molecule MyD88 to activate TRAF and IKK-ε, and subsequently NF-kB- and IRF-7-dependent transcription. RLRs interact with the mitochondria-associated adaptor molecule MAVS (also called IPS-1, VISA, or CARDIF), which signals through the kinases TBK1 and IKK-ε to activate IRF-3, IRF-7, and NF-kB and initiate type I IFN production.

A canonical model for type I IFN production after RNA virus infection is a two-step positive feedback loop that is regulated by IRF-3 and IRF-7 [9,10]. In the first phase, viral sensing by TLRs or RLRs induces nuclear localization of IRF-3, which in concert with NF-kB and ATF-2/c-Jun stimulates transcription, synthesis, and secretion of IFN-β and IFN-α4 by infected cells. In the second
expression of most IFN-β-expressed in many tissues, IRF-7 is an ISG required for the induction directly by IRF-3 [14,15]. While IRF-3 is constitutively required to activate the full antiviral response, a subset of ISGs is [11]. ISGs act by a variety of mechanisms to render cells resistant to WNV infection in cells and in mice. We found that induction of IFN and ISGs was largely abolished in TKO mDC, but sustained in TKO macrophages. Because IFN and ISG induction also was absent in mDC lacking MAVS, a key mediator of RLR signaling, our results suggest a novel signaling link between IRF-5 and MAVS. This study establishes the molecular pathways responsible for IFN induction in mDC and suggests a cross-talk between IRF-5 and RLR signaling pathways.

We hypothesized that IRF-5 might be responsible for the residual IFN-β production in DKO mice, because IRF-5 contributes to Ifnb mRNA expression downstream of the PRR TLR7 and adaptor molecule MyD88, both of which limit WNV pathogenesis in vivo [28,30,39]. To test this, we generated Ifβ−/−×Irf5−/−×If7−/− (TKO) mice and found that these mice were highly vulnerable to infection with WNV. The combined loss of IRF-3, IRF-5, and IRF-7 largely abrogated type I IFN and ISG expression in mDC, and microarray analysis of WNV-infected mDC revealed a set of genes induced in DKO but not in TKO cells. Because the limited set of genes induced in WNV-infected TKO mDCs was absent in Mavs−/− mDCs, we conclude that the RLR-MAVS signaling pathway dominantly regulates innate immune gene induction in mDCs during WNV infection, and that IRF-3, IRF-5, and IRF-7 coordinately mediate this response. Our results establish a new linkage between the IRF-5 and the RLR signaling pathways in induction of the antiviral IFN response.

TKO mice are highly vulnerable to viral infections

We hypothesized that IRF-5 might be responsible for the residual IFN-β production in DKO mice, because IRF-5 contributes to Ifnb mRNA expression downstream of the PRR TLR7 and adaptor molecule MyD88, both of which limit WNV pathogenesis in vivo [28,30,39]. To test this, we generated Ifβ−/−×Irf5−/−×If7−/− (TKO) mice and defined their response to viral infection. TKO mice were viable, fertile, and produced progeny according to normal Mendelian frequencies (data not shown). We infected WT, DKO, and TKO mice with a virulent WNV strain (New York 2000, WNV-NY) and found that TKO mice succumbed to infection earlier than DKO mice (mean time to death (MTD): 4.0 days versus 5.7, P<0.0001). TKO mice died marginally later than Ifnar−/− mice, which do not respond to type I IFN and fail to control WNV replication (MTD: 4.0 days versus 3.7, P<0.001). [Figure 1A]. Because TKO, DKO and Ifnar−/− mice all succumbed so rapidly to WNV-NY infection, it was difficult to appreciate biologically meaningful differences in susceptibility among the three genotypes. To address this, we infected these mice with a attenuated WNV strain (Madagascar 1978, WNV-MAD) that inefficiently antagonizes JAK/STAT signaling [23]. With this virus, we observed a pronounced increase in mortality of TKO mice compared to DKO mice (Figure 1B). Whereas 100% of TKO mice succumbed to WNV-MAD infection, only 20% of DKO mice died (P<0.001). TKO mice were equally vulnerable to WNV-MAD infection as Ifnar−/− mice (P>0.05), and no statistical difference in MTD was observed (9.0 days for TKO versus 8.2 days for Ifnar−/− mice, P>0.05). Similar results were observed upon infection with murine norovirus (MNV), an unrelated non-enveloped positive-sense RNA virus. TKO mice were more vulnerable to MNV infection than DKO mice, with only 1 of 11 TKO mice surviving,
compared to 100% survival for DKO mice \((P<0.0001) \) (Figure 1C). However, the TKO mice did not show the same susceptibility as \(Ifnar^{-/-} \) mice \((P<0.0001) \), and the MTD was greater in TKO compared to \(Ifnar^{-/-} \) mice (7.8 days versus 5.3 days, \(P<0.001 \)). The observation that lethality in TKO mice more closely matched that of \(Ifnar^{-/-} \) mice after WNV infection compared to MNV suggests that there may be virus-specific differences in the particular transcription factors responsible for mediating the antiviral response. Overall, the loss of IRF-5 in the setting of an IRF-3 and IRF-7 deficiency renders mice more vulnerable to viral infection and early death, approaching that seen in mice that cannot respond to type I IFN.

To understand the basis of the increased susceptibility of TKO mice to viral infection, we infected WT, DKO, TKO, and \(Ifnar^{-/-} \) mice with WNV-NY or WNV-MAD and measured viral burden in the draining lymph node, serum, spleen and brain at 2 days (WNV-NY) or 6 days (WNV-MAD) after infection (Figure 1D–G). Viral infection in TKO mice was similar to that observed in \(Ifnar^{-/-} \) mice \((P>0.05) \) in all tissues examined, except for the spleen after WNV-MAD infection where titers in TKO mice were greater than in \(Ifnar^{-/-} \) mice (25-fold, \(P<0.05 \)). After infection with WNV-NY, TKO mice had higher viral loads than DKO mice in the draining lymph node (13-fold, \(P<0.01 \)), spleen (5-fold, \(P<0.01 \)), and brain (9-fold, \(P<0.05 \)). After infection with WNV-MAD, TKO mice had higher viral loads than DKO mice in the serum (124-fold, \(P<0.01 \)) and spleen (169-fold, \(P<0.01 \)).

Serum antiviral activity

To determine whether the enhanced vulnerability of TKO mice was due to an inability to generate a systemic antiviral response, we measured type I IFN levels in the serum of mice infected with WNV-NY (2 days after infection) or WNV-MAD (6 days after infection) (Figure 2). Unexpectedly, we detected type I IFN activity in the serum of TKO mice infected with WNV-NY or WNV-MAD, and the amount present was not different from DKO mice \((P>0.05) \). While the serum levels of type I IFN in
TKO and DKO mice were diminished compared to WT mice after WNV-NY infection and equivalent to WT after WNV-MAD infection, substantially higher levels of type I IFN were detected in the serum from Ifnar−/− mice (29-fold after WNV-NY infection, P<0.01; 416-fold after WNV-MAD infection, P<0.0001). The high level of type I IFN in Ifnar−/− mice likely is a result of high viral replication in the absence of IFN-mediated antiviral effector functions combined with the absence of IFNAR molecules to bind and internalize type I IFN in the serum. Despite the combined absence of IRF-3, IRF-5, and IRF-7, TKO mice still produced type I IFN after WNV infection, albeit at lower levels in the context of markedly enhanced infection.

Figure 2. Type I IFN activity in serum. WT, Ifnar−/− x Ifrb−/−, DKO, Ifra−/− x Ifrb−/− x Ifr7−/−, TKO, and Ifnar−/− mice were infected with 10^4 PFU of WNV-NY or WNV-MAD and serum levels of type I IFN were measured 2 (WNV-NY) or 6 (WNV-MAD) days after infection using a bioassay. Data represent the mean ± SEM of 5 to 9 mice per group. DKO and Ifnar−/− groups were compared to TKO by a two-way ANOVA; asterisks indicate differences that are statistically significant (****, P<0.0001). doi:10.1371/journal.ppat.1003118.g002

Figure 3. Gene induction in TKO mDC. TKO mDC respond to IFN-β but not to PRR stimulation

TKO mDC respond to IFN-β treatment but not to PRR stimulation

Since TKO mDC failed to induce expression of selected ISGs in response to WNV-NY infection, we tested their capacity to express ISGs in response to other inflammatory stimuli including IFN-β and the PAMP RNA, poly(I:C). Although TKO mDC failed to induce Ifnb expression after WNV-NY infection, they retained the ability to respond to its signaling, inducing WT levels of Ifnb, Oas1a, Cxcl10, and Ccl11 at 24 hours after IFN-β treatment. However, these cells showed an ablated response to poly(I:C) or LPS, with no induction of Ifnb or the tested ISGs. Thus, TKO mDC are defective in transmitting MyD88- and TRIF-dependent signals after PAMP sensing, whereas the JAK/STAT-ISGF3 signaling pathway remains intact. As observed previously, although DKO mDC induced a WT-like pattern of ISGs after WNV infection, they had a diminished response to stimulation by the TLR4 ligand LPS or by poly(I:C), which is recognized by TLR3 and MDa5 [22]. This suggests that WNV infection activates a broader range of PRRs than poly(I:C) or LPS treatment alone.

Microarray analysis reveals a MAVS-dependent signal through IRF-5 in mDCs

Analysis of selected ISGs in TKO mDC infected with WNV-NY suggested a profound loss of gene induction, results that also were seen previously in Mavs−/− cells [27]. To evaluate this in greater detail, we performed a microarray analysis to profile gene expression in TKO mDC. In TKO mDCs, we did not detect expression of any of the tested ISGs, although these were highly expressed in WNV-infected WT and DKO mDC (Figure 3C and [22]). In contrast, most of these proteins were induced in TKO macrophages, although their expression was delayed compared to WT cells: ISG expression was detected in TKO macrophages only at 48 hours after infection, whereas expression was detected in WT cells within 12 hours of infection. Unlike other ISGs, Ifit3 was not expressed in TKO macrophages even at 48 hours after infection, despite being induced in DKO macrophages [22]. The lack of virus-induced ISG expression in TKO mDC resembled the phenotype observed in cells lacking the RLR-signaling adaptor, MAVS [27].

To further define the ISGs expressed in an IRF-3, IRF-5, or IRF-7 dependent manner, we infected mDC and macrophages from WT, DKO, TKO, and Ifnar−/− mice with WNV-NY and measured the induction of Ifnb, Oas1a, Cxcl10, and Ccl11 mRNA at 24 hours after infection by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (Figure 3E and F). These genes were selected as known representatives of different ISG induction pathways. Rd22 and Cxcl10 can be induced directly by PRR signaling and IFN-3 mediated transcriptional regulation, whereas expression of Oas1a depends more strictly upon IFN-β signaling [14,15,20]. Consistent with the western blot results, all four genes were induced strongly in WT and DKO mDC, but not in TKO mDC. In contrast, TKO macrophages retained the ability to express Ifnb and the tested ISGs, although the level of gene induction was equivalent to or less than WT cells, even in the context of enhanced viral replication. As observed previously, although DKO mDC induced a WT-like pattern of ISGs after WNV infection, they had a diminished response to stimulation by the TLR4 ligand LPS or by poly(I:C), which is recognized by TLR3 and MDa5 [22]. This suggests that WNV infection activates a broader range of PRRs than poly(I:C) or LPS treatment alone.

Microarray analysis reveals a MAVS-dependent signal through IRF-5 in mDCs

Analysis of selected ISGs in TKO mDC infected with WNV-NY suggested a profound loss of gene induction, results that also were seen previously in Mavs−/− cells [27]. To evaluate this in greater detail, we performed a microarray analysis to profile gene expression in TKO mDC. In TKO mDCs, we did not detect expression of any of the tested ISGs, although these were highly expressed in WNV-infected WT and DKO mDC (Figure 3C and [22]). In contrast, most of these proteins were induced in TKO macrophages, although their expression was delayed compared to WT cells: ISG expression was detected in TKO macrophages only at 48 hours after infection, whereas expression was detected in WT cells within 12 hours of infection. Unlike other ISGs, Ifit3 was not expressed in TKO macrophages even at 48 hours after infection, despite being induced in DKO macrophages [22]. The lack of virus-induced ISG expression in TKO mDC resembled the phenotype observed in cells lacking the RLR-signaling adaptor, MAVS [27].

To further define the ISGs expressed in an IRF-3, IRF-5, or IRF-7 dependent manner, we infected mDC and macrophages from WT, DKO, TKO, and Ifnar−/− mice with WNV-NY and measured the induction of Ifnb, Oas1a, Cxcl10, and Ccl11 mRNA at 24 hours after infection by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (Figure 3E and F). These genes were selected as known representatives of different ISG induction pathways. Rd22 and Cxcl10 can be induced directly by PRR signaling and IFN-3 mediated transcriptional regulation, whereas expression of Oas1a depends more strictly upon IFN-β signaling [14,15,20]. Consistent with the western blot results, all four genes were induced strongly in WT and DKO mDC, but not in TKO mDC. In contrast, TKO macrophages retained the ability to express Ifnb and the tested ISGs, although the level of gene induction was equivalent to or less than WT cells, even in the context of enhanced viral replication. As observed previously, although DKO mDC induced a WT-like pattern of ISGs after WNV infection, they had a diminished response to stimulation by the TLR4 ligand LPS or by poly(I:C), which is recognized by TLR3 and MDa5 [22]. This suggests that WNV infection activates a broader range of PRRs than poly(I:C) or LPS treatment alone.

Microarray analysis reveals a MAVS-dependent signal through IRF-5 in mDCs

Analysis of selected ISGs in TKO mDC infected with WNV-NY suggested a profound loss of gene induction, results that also were seen previously in Mavs−/− cells [27]. To evaluate this in greater detail, we performed a microarray analysis to profile gene expression in TKO mDC. In TKO mDCs, we did not detect expression of any of the tested ISGs, although these were highly expressed in WNV-infected WT and DKO mDC (Figure 3C and [22]). In contrast, most of these proteins were induced in TKO macrophages, although their expression was delayed compared to WT cells: ISG expression was detected in TKO macrophages only at 48 hours after infection, whereas expression was detected in WT cells within 12 hours of infection. Unlike other ISGs, Ifit3 was not expressed in TKO macrophages even at 48 hours after infection, despite being induced in DKO macrophages [22]. The lack of virus-induced ISG expression in TKO mDC resembled the phenotype observed in cells lacking the RLR-signaling adaptor, MAVS [27].

To further define the ISGs expressed in an IRF-3, IRF-5, or IRF-7 dependent manner, we infected mDC and macrophages from WT, DKO, TKO, and Ifnar−/− mice with WNV-NY and measured the induction of Ifnb, Oas1a, Cxcl10, and Ccl11 mRNA at 24 hours after infection by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (Figure 3E and F). These genes were selected as known representatives of different ISG induction pathways. Rd22 and Cxcl10 can be induced directly by PRR signaling and IFN-3 mediated transcriptional regulation, whereas expression of Oas1a depends more strictly upon IFN-β signaling [14,15,20]. Consistent with the western blot results, all four genes were induced strongly in WT and DKO mDC, but not in TKO mDC. In contrast, TKO macrophages retained the ability to express Ifnb and the tested ISGs, although the level of gene induction was equivalent to or less than WT cells, even in the context of enhanced viral replication. As observed previously, although DKO mDC induced a WT-like pattern of ISGs after WNV infection, they had a diminished response to stimulation by the TLR4 ligand LPS or by poly(I:C), which is recognized by TLR3 and MDa5 [22]. This suggests that WNV infection activates a broader range of PRRs than poly(I:C) or LPS treatment alone.
expression patterns in TKO and Mavs2/2 mDC 24 hours after WNV infection at a multiplicity of infection (MOI) of 25. To identify the specific contributions of IRF-5 and type I IFN signaling to the transcriptional response, studies also were performed with WT, DKO, and Ifnar2/2 mDCs. The level of WNV infection of the cells used for the microarray was assessed by flow cytometry using an anti-WNV monoclonal antibody (Figure 5A). TKO and Mavs2/2 mDC had significantly higher rates of infection compared to WT (P<0.05 and P<0.01, respectively), whereas infection of DKO and Ifnar2/2 mDC surprisingly was not different than WT (P>0.05). Nonetheless, for all genotypes tested, only a fraction (up to 15%) of cells stained...
positive for WNV antigen at 24 hours after infection, suggesting that uninfected cells contributed substantially to the gene induction profile observed in this experiment.

Gene induction was measured by comparing WNV-infected samples to mock-infected cells of the same genotype, to control for differential basal expression of some genes. We considered genes to be expressed differentially in response to WNV infection if they exhibited a fold change of ± 1.5 and a P-value < 0.05. WNV-infected WT mDCs showed a broad transcriptional response, particularly of genes that are induced by PRR and type I IFN signaling. 445 genes were expressed differentially in WNV-infected mDC compared to mock-infected cells (Table S1). The 50 most upregulated genes (Figure 3B) included ISGs with previously described antiviral activity (Ift2, Ifi2, Ifi3, Igs15, Igs20, and Pup12) [13, 41–43], members of the 2'-5'-oligoadenylate synthetase family (Oas1g, Oas2, Oas3, and Oas2) [12, 44, 45], components of the PRR/type I IFN (Ddx58, Ddx59, Ifnb1, Ifna2, Ift2, Stat1, and Stat2) and ISG15 (Ig15, Ube2l6, Usp8) [12] pathways, as well as nucleotide metabolism factors (Cnpk2 and Atp5c). The particular gene upregulated in DKO mDC were similar to those in WT cells, although the magnitude of induction was lower in DKO cells, consistent with previous observations [22]. In contrast, a restricted set of 22 genes was expressed differentially in WNV-infected Ifnar$^{-/-}$ mDCs (Figure 3B and Table S2). Remarkably few genes were expressed differentially either in TKO or Mavs$^{-/-}$ mDC upon WNV-NY infection, suggesting that the RLR signaling pathway is critical for initiating the type I IFN and antiviral responses in this cell type.

To validate the results of the microarray analysis, we performed qRT-PCR with the same RNA samples that were used for transcriptional profiling (Figure 5C) and measured the expression of Cxcl10, Ift2, Ifnb, Igs15, Iftm3, and Ccl2. The induction pattern measured by qRT-PCR corroborated the microarray results. These eight genes (listed above in order of relative expression level) were induced in WT and DKO cells but not in TKO or Mavs$^{-/-}$ cells. Consistent with the patterns observed by microarray, Cxcl10, Ift2, Ifnb, Igs15, and Ccl2 were induced in Ifnar$^{-/-}$ cells (i.e., are IFN-independent), whereas Ddx58, Iftm3, and Ccl2 were not (i.e., are IFN-dependent). Ift2 (ISG56) is an ISG that is highly upregulated upon WNV infection [17, 21, 27, 46–49], thus its absence from the infection-induced biotest was unexpected. Upon further analysis by qRT-PCR, we found that Ifit1 was induced to high levels in infected WT, DKO, and Ifnar$^{-/-}$ mDC but not TKO or Mavs$^{-/-}$ cells. This quality control assessment reveals that the single ifit1 probe on our microarray chip was defective, and that ifit1 expression is induced in Ifnar$^{-/-}$ cells after WNV infection.

To identify genes whose expression was dependent strictly upon IRF-5 and MAVS, we considered those upregulated in WT but not in Mavs$^{-/-}$ cells (MAVS-dependent) or in WT and DKO but not in TKO cells (IRF-5 dependent). Since TKO and Mavs$^{-/-}$ mDC failed to produce IFN-β in response to WNV infection (Figure 3 and [27]), we stratified our analysis to consider only genes that were upregulated in Ifnar$^{-/-}$ mDC, so as to exclude those whose differential expression might be secondary to the lack of IFN signaling in Mavs$^{-/-}$ and TKO cells. The IFN-independent set of genes (Figure 6A and Table S2 and S3) included Ift2, Ifna2, Cxcl10, Ift2, Ifi3, Ccl2, Il6, and Ccl5, all of which are induced by IRF-3 without a requirement for IFNAR-mediated signaling [14, 15]. Further analysis revealed that IFN-independent genes included cytokines (Ift2, Igs15, Ccl5, Ccl2), antiviral restriction factors (Ift2, Ifna2, Ift2, Stat1, and Stat2), and components of the unfolded protein response (Ppp1r15a, Chac1, and Ift2) by qRT-PCR using the same RNA samples used for the microarray (Figure 6B). We confirmed that three of these genes were upregulated in WNV-infected TKO mDC (Ift2, Ddit3, and Gadd45a) (Figure 6C). The qRT-PCR data did however, yield some differences: (a) Ift2 induction was not detected in Mavs$^{-/-}$ mDC by qRT-PCR; (b) Ddit3 was upregulated in a MAVS-independent manner; (c) Rs1 and Nfkbiz were not upregulated in TKO cells; (d) while Ppp1r15a was upregulated in Ifnar$^{-/-}$ mDC, it also was induced in DKO mDC; and (e) by qRT-PCR we failed to detect expression of Chac1 in mock- or WNV-infected mDC of any genotype, although it was induced in WNV-infected cortical neurons (data not shown).

The absence of gene induction in TKO mDC compared to DKO cells could reflect a direct role for IRF-5 in ISG induction or an indirect effect of the loss of IFN-β production in TKO mDC.
Figure 5. Microarray analysis of WNV infected mDC. mDC from WT, Irf3^{−/−} x Irf7^{−/−} DKO, Irf3^{−/−} x Irf5^{−/−} x Irf7^{−/−} TKO, Mavs^{−/−} and Ifnar^{−/−} mice were infected with WNV-NY at an MOI of 25 and total RNA was harvested 24 hours later. A. WNV infection of mDC from the indicated genotypes as assessed by anti-WNV MAb staining at 24 hours after infection. B. Heatmap showing the 50 genes with the greatest fold change in expression in WNV-infected mDC compared to mock-infected cells, according to the indicated color scale. The gray portion of the color scale, labeled “ns” for non-significant, represents genes that failed to meet the cutoff criteria for induction. Gene expression was assessed by microarray analysis on Illumina chips. Each column represents the mean of three independent samples per genotype. C. Quantitative RT-PCR was performed on the same RNA samples analyzed by microarray to detect expression of the indicated target genes. Gene expression was normalized to Gapdh and is displayed as the fold increase compared to mock-infected cells on a log2 scale. Data represent the average of three independent samples and are expressed as the mean ± SEM. The dotted line indicates a 1.5-fold increase in expression.

doi:10.1371/journal.ppat.1003118.g005
Figure 6. Type I IFN signaling mediates gene induction by IRF-5 and MAVS.

A. Heatmap displaying 22 genes induced upon WNV infection in Ifnar^−/− mDC (greater than 1.5 fold upregulated compared to mock-infected cells, P<0.05).

B. Expression of selected IFN-independent genes was validated by qRT-PCR using the same RNA samples analyzed by microarray. Gene expression was normalized to Gapdh and is displayed as the fold increase compared to mock-infected cells on a log2 scale. Data represent the average of three independent samples and are expressed as the mean ± SEM. The dotted line indicates a 1.5-fold increase in expression.

C. Venn diagram of the expression patterns of IFN-independent genes, based on microarray and qRT-PCR analyses. D. DKO mDC were treated with 25 μg/ml of an IFNAR-blocking antibody (MAR1-5A3) or an isotype control antibody (GIR-208) for one hour prior to infection with WNV-NY at an MOI of 0.1. Total RNA was isolated after 24 hours and relative gene expression was measured by qRT-PCR. Expression of the indicated target genes was normalized to Gapdh and is displayed as the fold increase compared to untreated cells on a log2 scale. Data represent the average of four samples from two independent experiments and are expressed as the mean ± SEM.

E. mDC from WT, Irf5^−/−, and DKO mice were infected with WNV-NY at an MOI of 0.1 and qRT-PCR was performed as in panel D. Data represent the average of 12 samples from four independent experiments, are displayed as the fold increase compared to untreated cells on a log2 scale, and are expressed as the mean ± SEM. F. mDC from WT, Irf5^−/−, DKO, and TKO mice were infected with SeV at an MOI of 3 and qRT-PCR was performed as in panel D. Data represent the average of six samples from two independent experiments, are displayed as the fold increase compared to untreated cells on a log2 scale, and are expressed as the mean ± SEM.
To test this, we inhibited type I IFN signaling in DKO cells using an IFNAR-blocking monoclonal antibody (MAR1-5A3, [50]) and used qRT-PCR to measure gene induction in response to WNV-NY infection (Figure 6D). As expected, the IFNAR-blocking antibody prevented induction of Oas1a, a known IFN-dependent ISG [13], but did not impair induction of IIfb, Cxcl10 and Tnf if were induced too weakly to observe differences between the IFNAR-blocking and control MAbs. However, the IFNAR-blocking antibody abolished induction of Cxcl10, Rsad2, Ifi1, and Ifi22, even though these genes are considered to be IFN-independent [14,15] and were induced in IIfar−/− mDC (Figure 5C). Collectively, these results suggest that IRF-5 contributes to the induction of IFN-β expression after WNV infection in mDC, but does not induce ISG expression directly. To further define the contribution of IRF-5 to IFN and ISG induction in mDC, we infected WT, IIf5−/−, and DKO mDC with WNV (Figure 6E) and WT, IIf5−/−, DKO, and TKO cells with Sendai virus (SeV), a negative sense RNA paramyxovirus (Figure 6F) and measured gene expression by qRT-PCR. We found no change in the induction of IIfb, Oas1a, Rsad2, or Cxcl10 in IIf5−/− mDC compared to WT cells (P>0.05), indicating that loss of IRF-5 alone in mDCs is not sufficient to impact the antiviral response, analogous to results seen with IRF-3 [21]. Consistent with this observation, we observed no significant difference in WNV-NY replication between IIf5−/− and WT mDC (P>0.05) (Figure 6G). Although DKO mDC retained intact IFN and ISG responses after WNV infection, this pattern surprisingly was not observed following SeV infection: the induced expression of several ISGs (Oas1a, Rsad2, and Cxcl10) was lost in both DKO and TKO mDC. While our results with DKO and TKO cells after WNV infection establish that IRF-5 contributes to the type I IFN response in mDCs, the critical nature of the IFN induction pathways in these key sentinel cells may have resulted in the maintenance of redundant signaling pathways to sustain antiviral gene programs. Indeed, the distinct ISG induction phenotypes after WNV and SeV infection in DKO and TKO mDCs suggest that activation of these parallel pathways may differ among diverse viruses.

The similar gene induction profiles observed between TKO and Mavs−/− mDC by microarray and qRT-PCR suggested a functional interaction between IRF-3 and MAVS. To test this hypothesis, we transfected WT, DKO, and TKO immortalized mouse embryonic fibroblasts (MEFs) with plasmids encoding myc-tagged forms of a constitutively active RIG-I (N-RIG) and/or IRF-5. Ectopic expression of N-RIG and IRF-5 was detected in MEFs 24 hours after transfection by western blotting (Figure 7A) and qRT-PCR (data not shown). As expected, we observed increased expression of ISGs (e.g., Rsad2, Ifi1, and Oas1a) in WT MEFs transfected with N-RIG compared to untransfected cells (Figure 7B–D). Transfection of N-RIG alone in DKO cells failed to induce these ISGs, suggesting that endogenous IRF-5 in MEFs is not adequately expressed or activated to induce ISGs after a MAVS-dependent signal; these results agree with prior studies showing that the combined loss of IRF-3 and IRF-7 in MEFs abolished the ISG response after WNV infection [22,27]. In comparison, co-transfection of N-RIG and IRF-5 together but not IRF-5 alone enhanced ISG induction in DKO and TKO MEFs. Thus, MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway.

Discussion

In the present study, we generated IIf5−/− × IIf5−/− × Ifi1−/− TKO mice to establish that these three IRF family transcription factors coordinately regulate IFN-β production and ISG expression in mDC. We found that antiviral gene induction was ablated almost entirely in mDC from TKO or Mavs−/− mice, suggesting a dominant role for MAVS in initiating the antiviral response and pointing to a novel signaling interaction between IRF-5 and the RLR signaling pathway.

As TKO mice succumbed to WNV infection with similar kinetics compared to IIfar−/−, we expected they would be completely defective at producing type I IFN. Nonetheless, we detected type I IFN activity in the serum of infected TKO mice, suggesting that some cells must produce type I IFN by a pathway that is independent of IRF-3, IRF-5, and IRF-7. Macrophages or related cells (e.g., inflammatory monocytes) may be one source of this residual type I IFN in vivo, as TKO macrophages cultured ex vivo expressed IIfb as well as a subset of ISGs in response to WNV infection. Type I IFN induction in TKO macrophages could be mediated in part by IRF-1, which regulates expression of antiviral genes independently of type I IFN in the context of several other viral infections [13,51,52]. Consistent with this, Ifi1−/− macrophages supported enhanced WNV replication compared to WT controls [40], and viral replication in TKO macrophages did not phenocopy IIfar−/− cells. Nonetheless, IRF-1 was not sufficient to induce the full complement of ISGs in macrophages, as IIfb and ISG expression in TKO macrophages was diminished and delayed compared to WT cells. Furthermore, IFIT3 was not expressed in TKO macrophages, although it was sustained in DKO cells [22]. It remains unclear whether the genes upregulated in TKO macrophages were induced by IRF-1 directly, by another transcription factor, or downstream of IFN-β production by these cells.

We measured ISG induction in infected mDC to determine whether a lack of antiviral effector gene expression explained the failure of TKO mice and mDC to control WNV replication. In our experiments, fewer than 15% of mDC were infected at 24 hours, even when a high MOI of 25 was used. Increasing the MOI to 100 achieved only marginally higher rates of infection (data not shown) and was not practical for the scale of the microarray experiments. Sorting infected cells by flow cytometry prior to transcriptional profiling analysis was not feasible as infected cells must be permeabilized to detect intracellular WNV antigens and recombinant WNV expressing green fluorescent protein are attenuated and/or unstable [33–55]. In our microarray studies, uninfected cells likely contributed substantially to the ISG expression signatures observed. Indeed, few genes were induced in WNV-infected TKO or Mavs−/− mDC, even though these cells would be expected to upregulate genes associated with cell stress, survival, and metabolism in response to replication by a cytopathic virus. Some components of the unfolded protein response, including Ddit3 and Gadd45α, were upregulated in infected TKO mDC; additional genes likely were induced in infected cells but may have been below the statistical cutoffs used in our analysis due to dilution of the transcripts in a large pool of mRNA from uninfected cells.

Viral infection induces the expression of ISGs both directly (by IRF-3 after PAMP detection and PRR signaling) and indirectly (by...
IFN-β production and IFNAR signaling), the latter occurring in both infected and uninfected cells. Given the large proportion of uninfected cells, we would expect genes induced by IFNAR signaling to predominate. Indeed, only a small subset of genes was induced after WNV infection of Ifnar-/- mDC (22 genes, compared to 445 in WT mDC). This may reflect the relatively low infection rates, an inherent inefficiency of IFNAR-independent gene induction pathways, or viral countermeasures that antagonize the type I IFN response in highly infected cells \[56\]. Of the 22 genes induced in WNV-infected Ifnar-/- mDC, several (Ifnb, Cxcl10, Ifit1, and Ifit2) have direct or indirect antiviral activity against WNV \[13,24,41,42,57–59\] and are induced directly by IRF-3 \[14,15\]. Other genes induced in WNV-infected Ifnar-/- mDC included components of the unfolded protein response, such as Ddit3 and Ppp1r15a. Ddit3 (CHOP) has been shown to promote expression of Ppp1r15a (Gadd34) and Trib3 \[60–62\], two IFN-independent induced genes detected in our microarray analysis. While induction of these genes may represent a response to the cellular stress caused by viral infection, the unfolded protein response also constitutes a cellular defense that limits replication of diverse viruses, including WNV \[60,63,64\]. DDIT3 inhibits WNV replication, and WNV may induce expression of Ppp1r15a to reverse DDIT3-mediated translational inhibition \[60\]. In contrast, PPP1R15A is required for IFN-β production and contributes to controlling replication of chikungunya virus \[65\].

Although global gene induction in response to WNV infection has been reported previously \[46–49,66,67\], our results represent the first such analysis in DCs, which are a sentinel cell type coordinating the innate and adaptive antiviral immune responses, as well as among the first cells infected following a mosquito bite \[8,68\]. Some of the genes we identified in mDCs also were detected in microarray analyses of WNV-infected MEFs \[46\], human kidney epithelial cells \[48\], or human retinal pigmented epithelium \[47\]. Induction of these genes (e.g., Rsad2, Ifit2, Isg15, Isg20, and Stat1) thus does not depend on cell type-specific transcription factors. Other WNV-induced genes, however, may be specific to DCs or restricted cell types. As an example, the chemokine Cxcl10 was one of the most highly induced genes in our analysis, yet it was induced at much lower levels or not at all in fibroblasts and epithelial cells \[46–48\]. CXC1L10 contributes to clearance of WNV infection from the CNS by recruiting effector T cells, and is the dominant chemokine secreted by neurons after WNV infection \[57\].

Only one of the 22 genes differentially expressed in Ifnar-/- mDC, Ddit3, was induced in Mavs-/- mDC, suggesting that the IFN-independent induction signal is conveyed almost entirely by MAVS. Since Mavs-/- mDC failed to produce IFN-β, we surmise
that both type I IFN-dependent and -independent pathways of ISG induction are abrogated in these cells. This conclusion agrees with earlier studies on induction of selected sets of genes in Mavs$^{-/-}$ mDC infected with WNV or rabies virus [27,69]. Although Mavs$^{-/-}$ cells should retain TLR-mediated antiviral gene induction pathways (which signal through TRIF and MyD88), we observed almost no ISG induction in Mavs$^{-/-}$ mDC after WNV infection. Thus, RLRs likely are the dominant PRRs that sense WNV infection in mDC; these results are consistent with the essentially intact antiviral responses reported in WNV-infected Tk$^{3^-/-}$ and Myd88$^{-/-}$ mDC [26,28].

Although our microarray and qRT-PCR analyses identified 16 genes that were differentially expressed in WNV-infected Iftm1$^{-/-}$ and DKO but not TKO mDC, when gene expression was analyzed from WNV-infected DKO cells that were treated with an antibody blocking type I IFN signaling, only Iftm1 gene induction was sustained. These data suggest that in the absence of IRF-3 and IRF-7, IRF-5 is sufficient to induce IFN-β production in response to WNV infection, but unlike IRF-5 [14,15], does not induce ISGs directly (Figure 8). Although IRF-5 has been suggested to promote IFN-independent expression of some ISGs including Pkr and Isg20 in NDV-infected cells [38], IRF-3 may have contributed to these responses. The observed anti-WNV response in DKO mDC likely results from IRF-5-dependent IFN-β production, and the uncontrolled viral replication in TKO mDC is secondary to a lack of IFN-β and resultant absence of ISG induction. This model suggests that cell types having ancillary pathways for IFN-β induction (such as IRF-1 in macrophages) can mount antiviral responses even in the absence of IRF-3, IRF-5, and IRF-7.

We did not anticipate that the Mavs$^{-/-}$ and TKO mDC would phenocopy one another with respect to ISG induction, since IRF-5 has not been previously implicated in the RLR signaling pathway [35–37]. IRF-5 originally was described as an inducer of pro-inflammatory cytokines (e.g., IL-6 and TNF-α) [35–37]. IRF-5 expression and antiviral activity, however, appears significantly reduced levels of pro-inflammatory cytokines (e.g., IL-6 and TNF-α) but subsequently was suggested to contribute to the type I IFN antiviral response. Iftm1$^{-/-}$ m mice have increased susceptibility to viral infections, slightly reduced levels of type I IFN in serum, and more significantly reduced levels of pro-inflammatory cytokines [35,37]. IRF-5 expression and antiviral activity, however, appears restricted to a limited set of cell types, including monocytes and DCs [35,39,70]. Thus, a relative absence of IRF-5 expression in fibroblasts and neurons may explain the observation that type I IFN induction after WNV infection in these cell types is abolished by the combined deletion of IRF-3 and IRF-7 [22]. However, the ability of alternate IRFs to compensate for IRF-3 and IRF-7 in fibroblasts also may depend on the particular viral stimulus, as type I IFN production was essentially absent in DKO fibroblasts infected with WNV, herpes simplex virus, vesicular stomatitis virus, or encephalomyocarditis virus [19,22], but low-level production of Iftm1 and Iftm2 mRNA was sustained in DKO fibroblasts infected with chikungunya virus [33]. IRF-5 preferentially stimulates the IFN-β and IFN-α promoters, rather than other IFN-α subtypes, which also suggests that it contributes to the primary type I IFN response, prior to amplification via autocrine and paracrine signaling [35]. The IFN-α subtypes induced in IRF-5-expressing cells vary from those induced in IRF-7-expressing cells, suggesting that the IRF expression patterns within a cell modulate the breadth of the type I IFN response [70].

Although MAVS previously was known to induce IFN-β production via IRF-3 and IRF-7, our experiments suggest that RLR signaling also activates IRF-5 to induce IFN-β production in mDC; the subcellular location where this occurs (e.g., mitochondrion) and through what signaling intermediates remains unknown. A recent study suggested that activation of RLR signaling acts to inhibit induction of inflammatory cytokines by IRF-5 [71]; although the net result was different, this study is consistent with our observation of a functional interaction between IRF-5 and MAVS and with a prior proteomic study demonstrating a physical interaction between these two proteins [72]. Future studies will be required to delineate the mechanistic and functional intermediates that link and regulate the IRF-5 and RLR signaling pathways.

Materials and Methods

Viruses

The WNV-NY strain (3000.0259) was isolated in New York in 2000 and passaged once in C6/36 Aedes aegypti cells to generate a virus stock that was used in all experiments except for the microarray analysis [73,74]. For the microarray studies, mDCs were infected in the Fröh laboratory with the WNV New York 1999 strain that was propagated in C6/36 cells [75]. The attenuated strain WNV-MAD was amplified in Vero cells and has been previously described [23]. MNV strain MNV1.CW3 [76] was propagated in RAW 264.7 cells (ATCC) and a concentrated stock was prepared as previously described [77]. The SeV virus strain Fushimi was propagated in chicken embryos and provided by D. Lenschow and M. Holtzman (Washington University, St Louis, MO).

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institution Animal Care and Use Committee at the Washington University School of Medicine (Assurance Number: A3381-01). Dissections and footpad injections were performed under anesthesia that was induced and maintained with ketamine hydrochloride and xylazine, and all efforts were made to minimize suffering.

Mouse experiments

All mice used were on an inbred C57BL/6 background. WT mice were commercially obtained (Jackson Laboratories). Ifnar$^{-/-}$×Ifih1$^{-/-}$ DKO, Ifna2$^{-/-}$, and Iftm1$^{-/-}$ mice have been reported previously [22,31,36]. Ifb3$^{-/-}$×Ifh3$^{-/-}$×Ifih1$^{-/-}$ TKO mice were generated by crossing DKO and Ifb3$^{-/-}$ mice. Ifb3$^{-/-}$ and TKO mice were genotyped for a mutation in the Dock2 gene, which can arise spontaneously in some Ifb3$^{-/-}$ mice [78]; none of the TKO mice had homozygous mutations in Dock2. Mass$^{-/-}$ mice were generated directly from C57BL/6 embryonic stem cells [34]. All deficient mice were bred in the animal facilities of the Washington University School of Medicine and genotyped prior to experimentation. For WNV infections, 105 PFU was diluted in Hank’s Balanced Salt Solution supplemented with 1% heat-inactivated fetal bovine serum and 8 to 12 week-old mice were inoculated by footpad injection in a volume of 50 μl. For MNV infections, 7 to 8 week-old mice were inoculated orally with 5×104 PFU in 25 μl of PBS and monitored for survival for 21 days.

Measurement of viral burden

To monitor viral spread in vivo, mice were infected with 105 PFU of virus and sacrificed at 2 days after infection (WNV-NY) or 6 days after infection (WNV-MAD). After extensive perfusion with PBS, organs were harvested, weighed, homogenized and virus was titered by plaque assay on BHK21-15 cells [74]. Viral burden in serum and inguinal lymph node was measured using fluorogenic qRT-PCR using primers and probes.
Figure 8. Model of Type I IFN and ISG induction in mDC. WNV infection is sensed by PRR from the RLR family (RIG-I and MDA5, green) or TLR family (TLR3 and TLR7, yellow and orange). PRR signal through their respective adaptor molecules (MAVS, TRIF, MyD88), which activates cellular kinases (TBK1, IKKe, TRAF6, IRAK1). Phosphorylation of IRF-3, IRF-5, and IRF-7 (blue) induces nuclear localization, and in concert with other transcription factors (e.g., NF-κB), results in induced expression of IFN-β and ISGs. IRF-3, IRF-5, and IRF-7 are each sufficient to induce expression of IFN-β (red), which can signal through IFNAR to activate expression of hundreds of ISGs (pink). Some ISGs, including Ifna, Oas1a, and Pkr, are dependent strictly upon IFN signaling for their induction. Others, including Ifi1, Ifi2, Rads2, and Cxcl10, can be induced directly by IRF-3, although IRF-5 apparently is not sufficient to induce these genes independently of IFN signaling. In addition to being activated by TLR7 signaling through MyD88, IRF-5 is activated by MAVS through an uncharacterized pathway.

doi:10.1371/journal.ppat.1003118.g008

IRF-3, -5, and -7 Mediate the IFN Response in mDC
to WNV-NY or WNV-MAD envelope gene sequences (Table S4). Viral RNA in the lymph node was normalized to Gapdh levels in tissue samples. Viral RNA from serum was isolated using a Viral RNA Mini Kit (Qiagen). Total RNA from lymph nodes was extracted using the E.Z.N.A. total RNA kit (Omega Bio-tech) and DNase-treated to remove genomic DNA. Quantitative RT-PCR was performed using One-Step RT-PCR Master Mix and a 7500 Fast Real-Time PCR System (Applied Biosystems).

Quantification of type I IFN activity
Levels of biologically active type I IFN in serum were determined using an encephalomyocarditis virus I929 cytopathic effect bioassay as described [79]. The amount of type I IFN per ml of serum was calculated from a standard curve using IFN-β (PBL InterferonSource) and adjusted for the background inhibitory activity of naïve serum (approximately 0.1 IU/ml). The inhibitory activity of naïve serum was type I IFN-independent because it was acid labile but resistant to treatment with heat (56°C) or the IFNAR-blocking antibody MAR1-5A3 [17,50].

Primary cell infections
Macrophage and mDC cultures were generated as described previously [79]. Briefly, bone marrow was isolated from WT, DKO, TKO, If5−/−, or Ifna−/− mice and cultured for seven days in the presence of 40 ng/ml M-CSF (PeproTech) to generate macrophages or with 20 ng/ml GM-CSF and 20 ng/ml IL-4 (PeproTech) to produce mDC. Multi-step virus growth analysis was performed after infection at a MOI of 0.01 for macrophages or 0.001 for mDC. Supernatants were titrated by focus-forming assay on Vero cells. mDCs were treated for 24 hours with 500 IU/ml of IFN-β (PBL InterferonSource), and 50 μg/ml of poly(I:C) (InvivoGen), or 5 μg/ml of LPS (List Biological Laboratories). Macrophages and mDC were infected with WNV-NY at an MOI 0.1 for 24 hours. MEFS were harvested 24 hours after transfection. Total RNA was extracted using the E.Z.N.A. total RNA kit (Omega Bio-teck) or RNeasy kit (Qiagen) and treated with DNase. Fluorogenic qRT-PCR was performed using One-Step RT-PCR Master Mix and a 7500 Fast Real-Time PCR System (Applied Biosystems) with the indicated Taqman primers and probes (Table S4). Gene induction was normalized to Gapdh levels and expressed on a log 2 scale as fold increase over mock according to the ΔΔCt method [84].

Statistical analysis
Data were analyzed with GraphPad Prism software. Viral burdens were compared using the Mann-Whitney test. Serum type I IFN levels, viral growth curves and qRT-PCR were compared using a 2-way ANOVA. Kaplan-Meier survival curves were analyzed by the log rank test and mean times to death were compared by Student’s T-test.

Supporting Information
Figure S1 Genotyping of TKO mice. DNA from the tails of the indicated mice was amplified by PCR using primers specific for IRF-3, IRF-5, or IRF-7 and separated by agarose gel electrophoresis. The band sizes confirmed the genotypes of the knockout mice.

Table S1 Gene induction in WNV-NY infected mDC. All genes (445) for which expression level in at least one genotype was ≥1.5-fold changed at 24 hours after WNV infection (P<0.05, without correction for false discovery). Values represent the mean of three independent samples for each genotype. “Fold change” refers to the relative fold change of expression in WNV-infected mDC compared with mock-infected controls of the same genotype. DKO: If5−/−×If7−/−; TKO: If5−/−×If5−/−×If7−/−.

IFN-3, -5, and -7 Mediate the IFN Response in mDC
Western blotting
Macrophages and mDC were lysed in RIPA buffer (10 mM Tris, 150 mM NaCl, 0.02% sodium azide, 1% sodium deoxycholate, 1% Triton X-100, 0.1% SDS, pH 7.4), with protease inhibitors (Sigma). Samples (20 μg) were resolved by electrophoresis on 10% SDS-polyacrylamide gels. Following transfer of proteins, membranes were blocked with 5% non-fat dried milk and probed with the following panel of primary antibodies: rabbit anti-IFIT2 and -IFIT3 (provided by Dr. G. Sen, [83]); rabbit anti-IRF-3 and anti- IRF-5 (Origene); mouse anti-tubulin (Sigma); rabbit anti-GAPDH (Santa Cruz); rabbit anti-STAT1 (Cell Signaling); goat-anti WNV NS3 (R&D Systems); mouse anti-myc (Santa Cruz). Western blots were incubated with peroxidase-conjugated secondary antibodies (Jackson Immunoresearch and Sigma) and visualized using ECL reagents (Amersham Biosciences and Pierce).

Measurement of ISG expression by qRT-PCR
mDCs were treated for 24 hours with 500 IU/ml of IFN-β (PBL InterferonSource), 50 μg/ml of poly(I:C) (Invitrogen), or 5 μg/ml of LPS (List Biological Laboratories). Macrophages and mDC were infected with WNV-NY at an MOI 0.1 for 24 hours. MEFS were harvested 24 hours after transfection. Total RNA was extracted using the E.Z.N.A. total RNA kit (Omega Bio-teck) or RNeasy kit (Qiagen) and treated with DNase. Fluorogenic qRT-PCR was performed using One-Step RT-PCR Master Mix and a 7500 Fast Real-Time PCR System (Applied Biosystems) with the indicated Taqman primers and probes (Table S4). Gene induction was normalized to Gapdh levels and expressed on a log 2 scale as fold increase over mock according to the ΔΔCt method [84].

Transfection and ectopic expression
MEFS prepared from WT, DKO, or TKO mice were immortalized after transfection with the plasmid pSV2, which encodes for the large T antigen of SV40. MEFS were transfected using Lipofectamine 2000 (Invitrogen) with plasmids expressing myc-tagged forms of murine IRF-5 (Origene) or residues 1–229 of human RIG-I (N-RIG) [92]. Cells were lysed 24 hours post-transfection and analyzed by qRT-PCR and western blotting.

Microarray analysis of mDCs
Bone marrow cells were cultured in RPMI supplemented with 10% fetal bovine serum, penicillin/streptomycin, L-glutamine, non-essential amino acids, 55 μM β-mercaptoethanol and 20 ng/ml recombinant mouse GM-CSF (eBioscience) for six days in non-essential amino acids, 55 μM β-mercaptoethanol, 1% Triton X-100, 0.1% SDS, pH 7.4), with protease inhibitors (Sigma). Samples (20 μg) were resolved by electrophoresis on 10% SDS-polyacrylamide gels. Following transfer of proteins, membranes were incubated with peroxidase-conjugated secondary antibodies (Jackson Immunoresearch and Sigma) and visualized using ECL reagents (Amersham Biosciences and Pierce).

Table S1 Gene induction in WNV-NY infected mDC. All genes (445) for which expression level in at least one genotype was ≥1.5-fold changed at 24 hours after WNV infection (P<0.05, without correction for false discovery). Values represent the mean of three independent samples for each genotype. “Fold change” refers to the relative fold change of expression in WNV-infected mDC compared with mock-infected controls of the same genotype. DKO: If5−/−×If7−/−; TKO: If5−/−×If5−/−×If7−/−.

(DOCX)
Table S2 IFN-independent gene induction. Genes are shown for which expression level in Ifnar−/− mDC was ≥1.5-fold changed at 24 hours after WNV infection (P<0.05, without correction for false discovery). Values represent the mean of three independent samples for each genotype. “Fold change” refers to the relative fold change of expression in WNV-infected mDC compared with mock-infected controls of the same genotype. DKO: Ifβ2−/−×Ifγ2−/−; TKO: Ifβ2−/−×Ifγ5−/−×Ifγ7−/−.

(DOCX)

Table S3 Genes induced in IFNAR and DKO, but not TKO mDC. Genes are shown for which expression level in Ifnar−/− and DKO mDC was ≥1.5-fold changed at 24 hours after WNV infection (P<0.05), but which fell short of these cutoffs in TKO cells. Values represent the mean of three independent samples for each genotype. “Fold change” refers to the relative fold change of expression in WNV-infected mDC compared with mock-infected controls of the same genotype. DKO: Ifβ2−/−×Ifγ2−/−; TKO: Ifβ2−/−×Ifγ5−/−×Ifγ7−/−.

(DOCX)

Table S4 Primers and probes used for quantitative RT-PCR.

(DOCX)

Acknowledgments

The authors thank M. Noll for help generating and screening the TKO mice, and H. Ramos, G. Blahnik, and E. Duan for assistance with some of the experiments. Transcriptional profiling and some of the bioinformatics analysis was performed by the Collaborative Genomics Center (CGC) at VGTI-Florida.

Author Contributions

Conceived and designed the experiments: HML AL MSS LT MG KF MSD. Performed the experiments: HML AL MSS SCV LC LT MMB. Analyzed the data: HML AL CW MSS AH LC LT AMV MG KF MSD. Wrote the paper: HML CW MSS LT HWV MG KF JNZ MS. Supervised work performed in his or her laboratory: HWV MG KF. Financially supported the studies: JNZ MG KF MSD. Supervised work performed in his or her laboratory: HWV MG KF. Performed the experiments: HML AL MSS LT MG KF.

References

1. Welsh RM, Bahk K, Marshall HD, Urban SL. (2012) Type 1 interferons and antiviral CDS T cell responses. PLoS Pathog 8: e1002352.
2. Paun A, Pitha PM. (2007) The innate antiviral response: new insights into a continuing story. Adv Virus Res 69: 1–66.
3. Wang BN, Fish EN. (2012) The yin and yang of viruses and interferons. Trends Immunol 33: 190–197.
4. Le Bou A, Tough DF. (2002) Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14: 432–436.
5. Jensen S, Thomsen AR. (2012) Sensing of RNA viruses: a review of innate immunity receptors involved in recognizing RNA virus infection. J Virol 86: 2900–2910.
6. Ramos HJ, Gale M, Jr. (2011) RIG-I Like Receptors and Their Signaling. Cytoskeleton 68: 111–124.
7. Wilkins C, Gale M, Jr. (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22: 41–47.
8. Diamond MS, Gale M, Jr. (2012) Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 33: 522–530.
9. Honda K, Takaoka A, Taniguchi T. (2006) Type I interferon gene induction by interferon regulatory factor family of transcription factors. Immunity 25: 549–560.
10. Paun A, Pitha PM. (2007) The IFR family, revisited. Biochimie 89: 744–753.
11. Platanias LC. (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5: 375–386.
12. Sadler AJ, Williams BR. (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8: 569–580.
13. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485.
14. Grandvaux N, Servant MJ, VerOever B, Sen GC, Balachandran S, et al. (2002) Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76: 5532–5539.
15. Nakaya T, Sato M, Hata N, Asagiri M, Suemori H, et al. (2001) Gene induction pathways mediated by distinct IRFs during viral infection. Biochem Biophys Res Commun 283: 1150–1156.
16. Prakash A, Smith E, Lee CK, Levy DE. (2005) Toll-like receptor 7 mediates West Nile virus replication and spread in neurons of the central nervous system. J Virol 84: 12125–12138.
17. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, et al. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. J Virol 78: 10549–10556.
18. Suthar MN, Ma DY, Thomas S, Lund JM, Zhang N, et al. (2010) IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog 6: e1000757.
19. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485.
20. Grandvaux N, Servant MJ, VerOever B, Sen GC, Balachandran S, et al. (2002) Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76: 5532–5539.
21. Nakaya T, Sato M, Hata N, Asagiri M, Suemori H, et al. (2001) Gene induction pathways mediated by distinct IRFs during viral infection. Biochem Biophys Res Commun 283: 1150–1156.
22. Prakash A, Smith E, Lee CK, Levy DE. (2005) Tissue-specific positive feedback requirements for production of type I interferon following virus infection. J Biol Chem 280: 10651–10657.
23. Daffis S, Suthar MS, Sutter KL, Gale M, Jr., et al. (2008) Interferon regulatory factor IRF-7 mediates innate immune response and provides protection against lethal West Nile virus infection. J Virol 82: 4643–4657.
24. Isaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N, et al. (2006) Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74: 1125–1131.
25. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–777.
26. Schmid S, Mordstein M, Kochs G, Garcia-Sastre A, Teneoever BR. (2010) Transcription factor redundancy ensures induction of the antiviral state. J Biol Chem 285: 42013–42022.
27. Daffis S, Samuel MA, Keller BG, Gale M, Jr., Diamond MS (2007) Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog 3: e106.
39. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, et al. (2005) The interferon regulatory factor-3, IRF3, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280: 17005–17012.

40. Brien JD, Daffis S, Lazzer HM, Cho H, Suthar MS, et al. (2011) Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8+ T cell immune responses against West Nile virus infection. PLoS Pathog 7: e1002230.

41. Jiang D, Weidner JM, Qian M, Pan XB, Guo H, et al. (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J Virol 84: 8332–8341.

42. Sorettet KJ, Brien JD, Thackray LB, Virgin HW, Cresswell P, et al. (2011) The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J Virol 85: 11557–11566.

43. Atisha M, Akyilmiz M, Frolova EI, Frolov I (2012) New PARP Gene with an Anti-Alphavirus Function. J Virol 86: 8147–8160.

44. Eskelinen S, Hartmann R, Kjeldgaard NO, Justesen J (2002) Gene structure of the murine 2'-5'-oligoadenylate synthetase family. Cell Mol Life Sci 59: 1212–1222.

45. Eskelinen S, Justesen J, Schierup MH, Hartmann R (2003) Characterization of the 2'-5'-oligoadenylate synthetase ubiquitin-like family. Nucleic Acids Res 31: 3166–3173.

46. Scherbik SV, Stockman BM, Brinton MA (2007) Differential expression of interferon (IFN) regulatory factors and IFN-stimulated genes at early times after West Nile virus infection of mouse embryo fibroblasts. J Virol 81: 12005–12018.

47. Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJ (2012) Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis 18: 730–743.

48. Fredericksen BL, Smith M, Katz GE, Shi PY, Gale M, Jr. (2004) The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78: 7737–7747.

49. Koh WL, Ng ML (2005) Molecular mechanisms of West Nile virus pathogenesis in brain cell. Emerg Infect Dis 11: 629–632.

50. Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, et al. (2006) Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res 26: 804–819.

51. Kanazawa N, Kurosaki M, Sakamoto N, Enomoto N, Itsui Y, et al. (2004) The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 interferon-independent activation of interferon-inducible genes and resistance to response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78: 7737–7747.

52. Ben SJ, Wang L, Berman M, Kang YK, Dorf ME (2011) Mapping a dynamic innate immune protein interaction network regulating type I interferon production. Immunity 35: 426–440.

53. Ebel GD, Dupuis AP, Nogu K, Nicholas D, Kauffman E, et al. (2001) Partial genetic characterization of West Nile virus strains, New York State, 2000. Emerg Infect Dis 7: 650–653.

54. Diamond MS, Shrestha B, Marria A, Mahan D, Engle M (2003) B Cells and Antibody Play Critical Roles in the Immediate Defense of Disseminated Infection by West Nile Encephalitis Virus. Journal of Virology 77: 2578–2586.

55. Jiang D, Weidner JM, Qian M, Pan XB, Guo H, et al. (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J Virol 84: 8332–8341.

56. Bourgeois MA, Denovlo SD, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebral of horses experimentally infected with West Nile virus. PLoS One 6: e24171.

57. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349–9360.

58. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349–9360.

59. Smith SM, Moran AP, Duggan SP, Ahmed SE, Mohamed AS, et al. (2011) The Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. J Immunol 186: 2462–2471.

60. He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13: 393–403.

61. Ambrose RL, Mackenzie JM (2011) West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. J Virol 85: 2723–2732.

62. Clavirino G, Claudio N, Cordier T, Dalet A, Judith D, et al. (2012) Induction of GADD34 Is Necessary for dslRNA-Dependent Interferon-beta Production and Participates in the Control of Chikungunya Virus Infection. PLoS Pathog 8: e1002709.

63. Venter M, Myers TG, Wilson MA, Kindl TJ, Pawska JT, et al. (2005) Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342: 119–140.

64. Bourgeois MA, Denovlo SD, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebral of horses experimentally infected with West Nile virus. PLoS One 6: e24171.

65. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349–9360.

66. Bourgeois MA, Denovlo SD, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebral of horses experimentally infected with West Nile virus. PLoS One 6: e24171.

67. Bourgeois MA, Denovlo SD, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebral of horses experimentally infected with West Nile virus. PLoS One 6: e24171.