From mainland to islands: colonization history in the tree frog *Kurixalus* (Anura: Rhacophoridae)

Guo-Hua Yu a,b,†, Li-Na Du a,b,†, Ji-Shan Wang c, Ding-Qi Rao c, Zheng-Jun Wu a,b,*, and Jun-Xing Yang c,*

aKey Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China, bGuangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, 541004, China, and cState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China

*Address correspondence to Jun-Xing Yang and Zheng-Jun Wu. E-mail: yangjx@mail.kiz.ac.cn and wu_zhengjun@aliyun.com.

†These authors contributed equally to this work.

Handling editor: Zhi-Yun Jia

Received on 26 December 2019; accepted on 9 May 2020

Abstract

The origin and colonization history of *Kurixalus*, a genus of small arboreal tree frogs breeding exclusively in shallow swamps, is under disputed. On the basis of comprehensive sampling program, the evolutionary history of *Kurixalus* is investigated based on 3 mitochondrial genes. Our results indicate that the genus *Kurixalus* originated in the Asian mainland and subsequently arrived at its current distribution in Borneo, Taiwan, Ryukyu, and Hainan islands by a series of dispersal events. Moreover, the colonization of Taiwan from mainland Asia has occurred 2 times. The initial colonization of Taiwan occurred at 3.46–8.68 Mya (95% highest posterior density), which rejects the hypothesis that *Kurixalus* probably originated from Taiwan during the early Oligocene and favors the model of Neogene-origin rather than the model of Quaternary-origin for Taiwanese *Kurixalus*. *Kurixalus eiffingeri* has dispersed from Taiwan to the Ryukyus once or 2 times pending more data. Both transoceanic dispersal and landbridge dispersal have played a role in the colonization process; the former resulted in the colonization of Taiwan and the Ryukyus and the latter led to the colonization of Borneo and Hainan.

Key words: colonization, *Kurixalus*, landbridge, Neogene-origin, Taiwan Island, transoceanic dispersal

Taiwan and Ryukyu islands are a part of the island-arc system along the western edge of the Pacific Ocean (Vita-Finzi 2000); the former is separated from Asian mainland by the Taiwan Strait, a shallow strait about 130-km-wide at narrowest point and 60 m in average depth (Figure 1A). These continental islands emerged from the waters almost simultaneously owing to the collision between the Luzon arc and Eurasian margins during the Late Miocene (Sibuet and Hsu 2004; Huang 2017). After the emergence of Taiwan Island in the Late Miocene (ca. 6.5 Mya; Huang 2017) or early Pliocene (4–5 Mya; Ali 2018, 2020), they gradually acquired their floras and faunas mostly from the Eurasian mainland via exposed landbridge across the Taiwan Strait (Wang 1987; Hikida and Ota 1997) or via transoceanic dispersal (He et al. 2018). Based on the splitting time between the island species and their mainland relatives, 2 origin models were proposed for the colonization of Taiwan: the Quaternary-origin and Neogene-origin models (Lin et al. 2002; Su et al. 2016).

Members of the frog family Rhacophoridae are an example of a group whose distribution range extends across the entire region mentioned above. Rhacophorids are small-to-large frogs bearing several arboreal adaptations, including cartilaginous intercalary...
elements between the terminal and penultimate phalanges, and toe discs. This family displays a remarkable variety of reproductive modes including aquatic development, terrestrial gel-nesting, terrestrial foam-nesting, and terrestrial direct development, which facilitates less dependence on standing water bodies and may have provided new opportunities for dispersal (Meegaskumbura et al. 2015), and it is widely distributed across Asia with a disjunct occurrence in Africa (Frost 2020). Consistent with the Quaternary-origin model, rhacophorid frogs were supposed to have migrated from Chinese continent to Taiwan via landbridge during the Pleistocene glacial periods (Lue and Chen 1986), but there is no fossil record showing when the migration happened and few empirical studies have been performed to test this hypothesis (Yang et al. 1994). The genus Kurixalus, which is 1 of 4 rhacophorid genera occurring in Taiwan, currently comprises 18 recognized species (Frost 2020) and 5 unnamed lineages (Yu et al. 2018), distributed widely on the Asian continent and adjacent islands, including Taiwan, Ryukyu, Hainan, Sunda Islands, and Philippine archipelago. Contrary to the hypothesis of Lue and Chen (1986), Lv et al. (2018) considered that Kurixalus have originated in Taiwan during the Oligocene (32.8 Mya; Huang 2017) or early Pliocene (4–5 Mya; Ali 2018, 2020), which has also been pointed out by Ali (2020). Moreover, the ancestor of Kurixalus lenquanensis might have come from Taiwan Island (Yu et al. 2017a). Thus, origin and colonization history of Kurixalus needs further examination.

Here we reconstructed the phylogenetic relationships and ancestral biogeographic areas of Kurixalus and estimated the lineage divergence times to investigate the evolutionary history of Kurixalus and to test for the hypothesis of Quaternary-origin of Taiwanese rhacophorid frogs.

Materials and Methods

Data preparation

The classifications of Frost (2020) and Yu et al. (2018) were followed and a total of 57 individuals belonging to 15 recognized and 6 unnamed species of Kurixalus were included in this study (Appendix). Sequences encoding 3 mitochondrial genes (12S rRNA, 16S rRNA, and COI) were amplified and sequenced for K. lenquansenisis and Kurixalus sp6 using the primers and experiment protocols of Yu et al. (2017b), and homologous sequences of other
species were downloaded from GenBank. Eleven species representing 10 genera of Rhacophoridae were included as hierarchical outgroups according to Yu et al. (2009) and homologous sequences of them were obtained from GenBank.

Phylogenetic analysis

Sequences were aligned using the MUSCLE option in MEGA version 7.0 (Kumar et al. 2016) with the default parameters. Fragments of the 3 mitochondrial genes were treated as 1 partition for subsequent analyses because not all homologous sequences are available for some species. The Corrected Akaike Information Criterion (AICc) was used to select the best model of nucleotide substitution in jModeltest version 2.1.10 (Darriba et al. 2012). Bayesian phylogenetic inference and Maximum likelihood analysis were performed in MrBayes version 3.1.2 (Ronquist et al. 2012) and RAxML-HPC version 8.2.10 (Stamatakis 2014), respectively, based on the selected substitution model. For the Bayesian analysis, 2 runs were performed simultaneously with 4 Markov chains starting from random trees and the chains were run for 5,000,000 generations being sampled every 100 generations. Convergence and burn-in were checked using the program Tracer version 1.6 (Rambaut et al. 2014). Finally, the first 25% of the sampled trees were discarded as burn-in and the remaining trees were used to create a consensus tree and to estimate Bayesian posterior probabilities (BPPs). For the maximum likelihood analysis, node support was estimated by 1,000 rapid bootstrap replicates.

Divergence dating

Lineage divergence times were estimated using an uncorrelated log-normal relaxed molecular clock model in BEAST version 1.8.0 (Drummond et al. 2012). We chose the birth-death process as the tree prior because of the mixed inter- and intraspecies sampling in the Philippine archipelago (Brown and Diesmos 2012). The estimated temporal framework for diversification in Sanguila et al. (2011) and Gonzalez et al. (2014). The Corrected Akaike Information Criterion (AICc) was used to select the best model of nucleotide substitution in jModeltest version 2.1.10 (Darriba et al. 2012). Bayesian phylogenetic inference and Maximum likelihood analysis were performed in MrBayes version 3.1.2 (Ronquist et al. 2012) and RAxML-HPC version 8.2.10 (Stamatakis 2014), respectively, based on the selected substitution model. For the Bayesian analysis, 2 runs were performed simultaneously with 4 Markov chains starting from random trees and the chains were run for 5,000,000 generations being sampled every 100 generations. Convergence and burn-in were checked using the program Tracer version 1.6 (Rambaut et al. 2014). Finally, the first 25% of the sampled trees were discarded as burn-in and the remaining trees were used to create a consensus tree and to estimate Bayesian posterior probabilities (BPPs). For the maximum likelihood analysis, node support was estimated by 1,000 rapid bootstrap replicates.

Results

Phylogeny

Our mitochondrial gene fragments consisted of 402 bp from 12S rRNA, 878 bp from 16S rRNA, and 807 bp from COI region. The model TIM2 + I + G was selected as the best-fit model by AICc. As this model is not available in MrBayes or RAxML, we replaced it with the GTR + I + G model in the phylogenetic analyses because the TIM2 model is a special case of the GTR model. Bayesian inference and Maximum likelihood analysis yielded similar topologies (Figure 2). *Kurixalus appendiculatus* was reconstructed as the sister to the clade consisted of all other congeners. The 4 species from Taiwan and the Ryukyu islands did not form a monophyly and they were grouped in 2 sibling clades with strong support values: one consisting of 3 island species (*K. eiffingeri*, *K. beryllinus*, and *K. wangi*) and one comprising 1 island species (*K. idiootocus*) and 2 mainland species (*K. lenguansis* and K. sp6). Furthermore, *K. lenguansis* and K. sp6 are paraphyletic with respect to *K. idiootocus*. The 4 specimens of *K. eiffingeri* from the Ryukyu Islands (A120, E43, E44, and E45) were grouped into 2 separated lineages with weak support, indicating that *K. eiffingeri* in the Ryukyu Islands probably have originated once or 2 times.

Divergence time estimation and ancestral range estimation

The initial divergence within *Kurixalus* was dated back to ca. 10.97 Mya (95% highest posterior density [HPD]: 7.03–16.54) (Figure 3B, Table 1). The time of most recent common ancestor (TMRCA) of all Taiwanese *Kurixalus* was estimated to be 5.60 Mya (95% HPD: 3.46–8.68) and the TMRCA of *K. idiootocus* and K. sp6 was estimated to be ca. 1.58 Mya (95% HPD: 0.76–2.77). The 2 lineages of *K. eiffingeri* from the Ryukyu Islands were grouped
together in the BEAST analysis (Figure 3) and they diverged from Taiwanese lineages ca. 2.18 Mya (95% HPD: 1.31–3.43).

The BioGeoBEARS analyses revealed that the model of DIVALIKE + j was the best-fit biogeographical model (Table 2) and the 2 methods reconstructing ancestral range (BSSVS and DIVALIKE + j) obtained similar results (Figure 3B, Table 1). The ancestral range of *Kurixalus* was inferred to be Indochina-South China with single colonization of Sunda Islands-Philippine archipelago (Figure 3B). Two colonization events from mainland China to Taiwan Island were identified; 1 for the ancestor of *K. eiffingeri*, *K. berylliniris*, and *K. wangi* and 1 for...
Figure 3. Biogeographic division of Kurixalus (a) and divergence dating and ancestral area reconstruction (b). Color of branch indicates the BSSVS reconstruction and color of node cycle indicates the DIVALIKE + j reconstruction. Detected historical colonized events are labeled with numbers at nodes. The original map (approval number: GS(2019)1652) was downloaded from the website of Ministry of Natural Resources of the People’s Republic of China.

Table 1. Divergence time estimates (95% HPD) and BSSVS and DIVALIKE + j ancestral range reconstructions for selected nodes as defined in Figure 3B (only area with highest probability is presented)

Node	Node age (95% HPD) Mya	Ancestral range reconstructions	
		BSSVS	DIVALIKE + j
1	10.97 (7.03–16.54)	ii, 0.974	ii, 0.987
2	5.60 (3.46–8.68)	ii, 0.794	ii, 0.962
3	1.58 (0.76–2.77)	ii, 0.891	ii, 0.976
4	2.18 (1.31–3.43)	iii, 0.909	iii, 0.829
5	1.89 (1.02–3.11)	iii, 0.959	iii, 0.988
6	0.39 (0.17–0.71)	ii, 0.991	ii, 0.988

Discussion

The ancestral area reconstruction indicated that originally the genus Kurixalus occurred in Asian mainland and subsequently it dispersed to the continental islands of East and Southeast Asia by multiple colonization events. The most ancient divergence in Kurixalus is the split between Bornean species and the remaining species at ca.

the lineage giving rise to K. idiootocus, Kurixalus eiffingeri dispersed from Taiwan to the Ryukyu Islands. There were another 2 colonization routes including the dispersal of the ancestor of K. naso to southern Tibet-Indian subcontinent from Indochina-South China and the dispersal of K. hainanus to Hainan Island from Asian mainland.
10.97 Mya (95% HPD: 7.03–16.54) (Node 1; Figure 3). A continuous land connection between Borneo and mainland Southeast Asia existed throughout much of the Neogene during times of lowered sea levels and would have allowed fairly unhindered migration of terrestrial biota (Moss and Wilson 1998). The ancestor of *Kurixalus* endemic to Borneo might have colonized the former Sundaland from mainland Southeast Asia during times of lowered sea levels. Subsequently, it might be isolated from its mainland relatives owing to the rise of the sea level during the global middle Miocene climate maximum, which resulted in extensive inundations of the former Sundaland and the loss of connection of Borneo to mainland Southeast Asia (Moss and Wilson 1998). The ancestor of *Kurixalus* might have colonized the former Sundaland from mainland and subsequently it arrived at its current distribution in mainland Indochina (Hall 1998; Stelbrink 2015).

Contrary to the hypothesis that *Kurixalus* probably originated from Taiwan and there was no dispersal across the Taiwan Strait (Lv et al. 2018), we found that Taiwanese *Kurixalus* probably originated from mainland Asia via 2 colonization events (Figure 3). Initially, the ancestor of *K. eiffingeri*, *K. berylminiris*, and *K. wangi* dispersed to Taiwan and split from mainland species at 3.46–8.68 Mya (95% HPD; Figure 3, Table 1). This estimation coincides with that the Taiwan Island initially emerged from the waters at 4–5 Mya (Ali 2018, 2020) or 6.5 Mya (Huang et al. 1997; Lin et al. 2003; Huang 2017). Based on this result, we reject the hypothesis that Taiwanese rhacophorid frogs have originated from mainland China during the Pleistocene glacial periods (Quaternary-origin model; Lue and Chen 1986), instead favoring the model of Neogene-origin for Taiwanese *Kurixalus*. The late Miocene-origin or early Pliocene-origin has also been suggested for other Taiwanese animals (e.g., Creer et al. 2001; Lin et al. 2002; Shih et al. 2006; Chiang et al. 2010; Su et al. 2016). There are 2 potential mechanisms to explain the initial dispersal of *Kurixalus* to Taiwan: landbridge connection or transoceanic dispersal. The data of oxygen isotope demonstrated that the landbridge across the Taiwan Strait did not emerge until the sea level was frequently <60 m after 2.6 Mya (Figure 1B; Miller et al. 2005, 2011). Therefore, we consider that the initial colonization of Taiwan in *Kurixalus* might be the result of transoceanic dispersal, which has been supported in other insular amphibians (e.g., Vences et al. 2003; Komaki et al. 2017) and has been proposed as the predominant pathway for the colonization of Taiwan (He et al. 2018) and Madagascar (Crottini et al. 2012).

After the initial colonization of the Taiwan Island in *Kurixalus* during Pliocene to Late Miocene, the lineage giving rise to *K. idiootocus* also dispersed to the Taiwan Island and split from its mainland sister at 0.76–2.77 Mya (95% HPD; Figure 3, Table 1). As illustrated in Figure 1B, sea level was frequently <60 m during the Pleistocene, which resulted in repeated landbridge connections between the Taiwan Island and mainland Asia since 2.6 Mya. Thus, we posit that the lineage of *K. idiootocus* might have colonized the Taiwan Island by dispersal via landbridge, although it is also possible that the ancestor of *K. idiootocus* has arrived at Taiwan via transoceanic dispersal at 2.6–2.77 Mya.

Kurixalus eiffingeri might have dispersed from Taiwan to the Ryukyu Islands once or 2 times (Figures 2 and 3). More data will be needed to resolve the phylogenetic relationship between the 2 Ryukyus clades and to achieve a precise estimation of number of dispersal between Taiwan and Ryukyu (Figure 2). The Taiwan-Yonaguni Strait between the Ryukyu Islands and Taiwan has a maximum sill depth of 770 m (Nakamura 2013) with average depth of >200 m (Osozawa et al. 2012), implying that a landbridge between Taiwan and Ryukyu has never occurred during past millions years, even if the sea level was below ~120 m (Figure 1). Thus, we consider that the colonization of Ryukyu from Taiwan in *K. eiffingeri* was also the result of transoceanic dispersal. Similar colonization route has also been reported for the Japanese stream treefrog (*Komaki et al. 2017*) and the Okinawa tree lizard (*Yang et al. 2018*).

Kurixalus hainanus in Hainan originally came from Asian mainland and split from mainland populations at 0.17–0.71 Mya (Node 6; Figure 3). Although Hainan is separated from southern mainland China by the Qiongzhou Strait, they were joined together frequently when the sea level was <40 m during the past million years (Figure 1D) because the strait is shallow with depth <40 m (Ali 2018). Thus, we consider that *K. hainanus* colonized Hainan via landbridge dispersal, which was also supported in bat (*Mao et al. 2010*) and lizard (*Huang et al. 2013*). Considering that the landbridge across the Qiongzhou Strait occurred multiple times during the past millions years (*Shi et al. 2006*), a phylogeographic study employing broad sampling will be necessary to investigate whether *K. hainanus* colonized Hainan once or multiple times and whether *K. hainanus* recolonized mainland Asia, which has been detected in other species (e.g., *Mao et al. 2010*).

The ancestral range of the lineage giving rise to *K. yangi*, *K. naso*, and *K. sp1* was reconstructed as Indochina-South China and the split between *K. naso* and the clade of *K. yangi* and *K. sp1* was estimated to be ca. 1.89 Mya (95% HPD: 1.02–3.11) (Node 5; Figure 3). This result supports the hypothesis that *Kurixalus* might have colonized the Indian subcontinent from northern Indochina (*Yu et al. 2018*). Lv et al. (2018) supposed that *Kurixalus* might have colonized the Indian subcontinent via a landbridge on the basis of the record of *K. appendiculatus* in India (*Dinesh et al. 2013*). This inference should be treated with caution because *K. appendiculatus* likely only occurs in Philippines and Sunda islands and the record of *K. appendiculatus* in India is likely a misidentification of *K. naso* or other relative according to our earlier work (*Yu et al. 2017b*). Geographically *K. naso* and the clade of *K. yangi* and *K. sp1* are distributed on the west and east side of Patkai Range, respectively, implying that the uplift of Patkai Range during the early Pleistocene might have driven the divergence between them.

In conclusion, the genus *Kurixalus* originally occurred in Asian mainland and subsequently it arrived at its current distribution in Borneo, Taiwan, Ryukyu, and Hainan by a series of dispersal events. Both transoceanic dispersal and landbridge dispersal have played a role in the colonization process; the former resulted in the colonization of

Table 2. Comparison of the 6 models of ancestral area estimations of *Kurixalus*

Model	Ln L	n	d	e	j	AICc_wt
DEC	−57.08	2	0.0060	0.0084	0	1.0 × 10⁻⁵
DEC + j	−45.84	3	1.00 × 10⁻¹²	0.0012	0.26	
DIVALIKE	−52.71	2	0.0061	1.00 × 10⁻¹²	0	0.0008
DIVALIKE + j	−44.86	3	1.00 × 10⁻¹²	1.00 × 10⁻¹²	0.012	0.70
BAYAREALIKE	−73.26	2	0.0087	0.060	0	9.8 × 10⁻¹³
BAYAREALIKE + j	−47.99	3	1.00 × 10⁻⁷	1.00 × 10⁻⁷	0.013	0.031

The model with highest value of AICc_wt was selected as the best model. n, number of parameters; d, rate of dispersal; e, rate of extinction.
Taiwan and Ryukyu and the latter led to the colonization of Borneo and Hainan. In addition, *Kurixalus* might have colonized the Indian subcontinent from northern Indochina. Results in the present study favor the model of Neogene-origin rather than the model of quaternary-origin or Oligocene-origin for Taiwanese *Kurixalus*. Considering that only mitochondrial markers were used in this study owing to the absence of nuclear data for most *Kurixalus* species outside of China, which may lead to a biased understanding on the phylogeny if evolutionary factor such as mitochondrial capture, gene introgression, or incomplete lineage sorting occurred, further evidence based upon inclusion of more taxa and nuclear markers will be needed to achieve a complete understanding on the evolutionary history of *Kurixalus*.

Acknowledgments

We deeply appreciate 3 reviewers for their constructive advises on the manuscript and deeply appreciate Jason R. Ali for his kindly help. Thanks go to Huan Liu for his assistance during the field surveys.

Funding

This work was supported by the National Natural Science Foundation of China (31301870 and 31872212), Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University (19-A-01-06), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China (ERESEP2020Z22), and Natural Science Foundation of Yunnan Province (2015FB176).

Author’s Contributions

G.-H.Y., J.-X.Y., and Z.-J.W. designed the study. G.-H.Y. and J.-S.W. collected samples. G.-H.Y. and L.-N.D performed the laboratory work, analyzed the data, and wrote the manuscript. D.-Q.R., J.-X.Y., and Z.-J.W. edited the manuscript. All authors read and approved the last version of the manuscript.

Conflict of Interest

We declare that all authors have no competing interest.

Appendix

Samples used in this study

Species	Locality	Voucher No	12S	16S	COI
Buergeria buergeri	Hiroshima, Japan	–	AB127977	AB127977	AB127977
Linixalus ocellatus	Hainan, China	–	GQ285672	GQ285672	KP996840
Thelodera rhododiscus	Guangxi, China	–	EU215530	EU215530	KP996753
Feibyla palpebralis	Yunnan, China	–	EU215546	EU215546	DQ486863
Gracixalus gracilipes	–	GQ285668	GQ285668	–	KP987672
Chiromantis rufescens	Africa	–	AF458126	AF458126	KU079577
Rhacophorus schlegelii	Hiroshima, Japan	–	AB202078	AB202078	AB202078
Polypedates megacephalus	Guangxi, China	–	AY458598	AY458598	AY458598
Phlantus abditus	Krong Pa, Vietnam	–	GQ285673	GQ285673	–
Raborchistes menglaensis	Yunnan, China	–	GQ285676	GQ285676	–
Raborchistes parvulus	Thailand	–	LC012865	LC012865	KP987900
Kurixalus appendiculatus	Bukit Sarang, Sarawak, Malaysia	FMNH 267896	JQ060948	JQ060937	KX554539
Kurixalus eiffinger	Ryukyu Islands, Japan	A120	–	DQ468673	DQ468681
Kurixalus eiffinger	Taiwan, China	11320	–	DQ468672	DQ468680
Kurixalus eiffinger	Taiwan, China	11333	–	DQ468670	DQ468678
Kurixalus eiffinger	Taiwan, China	E01	–	–	KT259075
Kurixalus eiffinger	Taiwan, China	E03	–	–	KT259077
Kurixalus eiffinger	Taiwan, China	E05	–	–	KT259079
Kurixalus eiffinger	Taiwan, China	E22	–	–	KT259096
Kurixalus eiffinger	Taiwan, China	E27	–	–	KT259101
Kurixalus eiffinger	Taiwan, China	E36	–	–	KT259110
Kurixalus eiffinger	Ryukyu Islands, Japan	E43	–	–	KT259117
Kurixalus eiffinger	Ryukyu Islands, Japan	E44	–	–	KT259118
Kurixalus eiffinger	Ryukyu Islands, Japan	E45	–	–	KT259119
Kurixalus eiffinger	Taiwan, China	E46	–	–	KT259120
Kurixalus idiootocus	Taiwan, China	A127	–	DQ468674	DQ468682
Kurixalus idiootocus	Taiwan, China	–	AB933306	KT259131	
Kurixalus beryllinis	Taiwan, China	11311	–	DQ468669	DQ468677
Kurixalus beryllinis	Taiwan, China	B02	–	–	KT259056
Kurixalus beryllinis	Taiwan, China	B05	–	–	KT259059
Kurixalus wuani	Taiwan, China	11328	–	DQ468671	DQ468679
Kurixalus wuani	Taiwan, China	W11	–	–	KT259074
Kurixalus banaensis	Krong Pa, Gia Lai, Vietnam	ROM 32986	GQ285667	GQ285667	–
Kurixalus viridescens	Hon Ba, Khanh Hoa, Vietnam	VNVMN 03802	AB933284	AB933284	–
References

Ali JR, 2018. Islands as biological substrates: continental. J Bioger 45: 1003–1018.

Ali JR, 2020. Geological data indicate that the interpretation for the age-calibrated phylogeny for the Kurixalus-genus frogs of South, South-east and East Asia (Lv et al. 2018) needs to be rethought. Mol Phylogenet Evol 145:10653.

Bintanja R, van de Wal RSW, Oerlemans J, 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437: 125–128.

Brown RM, Diesmos AC, 2009. Philippines, biology. In: Gillespie R, Clague DR, editors. Encyclopedia of Islands. Brekeley (CA): University of California Press. 723–732.

Burnham KP, Anderson DR, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York (NY): Springer Science & Business Media.

Chiang TY, Lin HD, Shao KT, Hsu KC, 2010. Multiple factors have shaped the biogeographical pattern as revealed by nested clade analysis of the bamboo viper (Trimeresurus stejnegeri) within Taiwan. Mol Phylogenet Evol 29:1969–1973.

Drummond AJ, Suchard MA, Xie D, Rambaut A, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol BioI Evol 29:1969–1973.

Hall R, 1998. The plate tectonics of Cenozoic SE Asia and the distribution of terrestrial vertebrates endemic to Taiwan. Mol Phylogenet Evol 72:35–41.

He J, Gao Z, Liu S, Jiang H, 2018. Geographical and temporal origins of amphibia of India with IUCN Red list status. Zoological Survey of India. Available at: http://indiabiodiversity.org/document/show/630.

Huang C, 2017. Geological ages of Taiwan stratigraphy and tectonic events. Sci Sin Terrae 72:772–772.

Lv Q, Li S, Liu W et al., 2018. Vertebrate distribution and tectonic events in Taiwan: an updated nested clade phylogeographical analysis. J Biogeol 45:2458–2470.

Narain KV, Singh P, Sita R, 2014. Archipelago colonization by ecologically dissimilar amphibians: evaluating the expectation of common evolutionary history of geographical diffusion in co-distributed rainforest tree frogs in islands of Southeast Asia. Mol Phylogenet Evol 72:35–41.
