Adaptive population structure shifts in invasive parasitic mites, Varroa destructor

Arrigo Moro1,2 | Tjeerd Blacquière3 | Bjørn Dahle4,5 | Vincent Dietemann2,6 | Yves Le Conte7 | Barbara Locke8 | Peter Neumann1,2 | Alexis Beaurepaire1,2,7

Abstract

Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host–parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of Varroa destructor, a novel parasite of Apis mellifera originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host. To do so, mites infesting two categories of hosts in four European regions were compared: (a) adapted hosts surviving through means of natural selection, thereby expected to impose strong selective pressure on the mites, and (b) treated host populations, surviving mite infestations because acaricides are applied, therefore characterized by a relaxed selection imposed by the host on the mites. Significant genetic divergence was found across regions, partially reflecting the invasion pattern of V. destructor throughout Europe and indicating local adaptation of the mite to the host populations. Additionally, varying degrees of genotypic changes were found between mites from adapted and treated colonies. Altogether, these results indicate that V. destructor managed to overcome the genetic bottlenecks following its introduction in Europe and that host-mediated selection fostered changes in the genetic structure of this mite at diverse geographic scales. These findings highlight the potential of parasites to adapt to their local host populations and confirm that adaptations developed within coevolutionary dynamics are a major determinant of population genetic changes.

KEYWORDS
coevolution, genetic diversity, host–parasite interactions, invasive species, population genetics, population structure
INTRODUCTION

Coevolution is a process of reciprocal evolutionary changes between interacting species (Ehrlich & Raven, 1964; Thompson, 2005). Adaptations developed within host–parasite interactions strongly shape the genetics of the coevolving species (Anderson & May, 1982; Thompson, 2005; Woolhouse et al., 2002). Notably, the rate of genetic changes is expected to be particularly swift in parasite populations compared to their hosts because of their shorter generation time (Paterson et al., 2010; Schmid-Hempel, 2011). Yet, the selection of specific parasite adaptations is not uniform for parasites infesting distinct populations of hosts, because different selective forces may act on these populations (Gandon & Zandt, 1998). These forces, composed of diverse elements of environmental factors or unique host population adaptations, generally result in the genetic diversification of parasite populations at varying geographic scales, thereby generating geographic mosaics of coevolution (Thompson, 2005).

Although adaptations of parasites to their host traits have been studied extensively in silico (Gandon & Michalakis, 2002), and in vitro (Brockhurst & Koskella, 2013), evidences of mosaics of coevolution in invasive parasites infesting novel hosts remain scarce. The relatively recent coevolving system between the Western honey bee, *Apis mellifera*, and the obligate ectoparasitic mite, *Varroa destructor*, represents an ideal opportunity to investigate the impact of host adaptations on parasite evolution in real time (Dietemann et al., 2012; Oldroyd, 1999). Originally, *V. destructor* infested colonies of Eastern honey bees, *Apis cerana*, in Asia (Oldroyd, 1999; Rath, 1999). However, the introduction of *A. mellifera* colonies in the native range of the parasite resulted in the mite shifting host in the middle of the 20th century, and in its spread to almost all locations where beekeeping with the Western honey bee is practiced (Traynor et al., 2020). The spread of these parasites was particularly swift in Europe. Having been first detected in eastern regions of the continent in the beginning of the 1970s, it had dispersed throughout most of the continent just two decades later (Rosenkranz et al., 2010).

Out of the many *V. destructor* haplotypes found in *A. cerana* colonies (Navajas, 2010), only two are known to have switched to *A. mellifera* and to have emigrated from Asia (Anderson & Trueeman, 2000). In addition to this original bottleneck, and coupled with the incestuous mating behavior of the mite (Rosenkranz et al., 2010), the host shift and subsequent spread of the pest has resulted in a highly homogenous genetic population structure within the invasive populations of *V. destructor* (Solignac et al., 2005). Despite this low genetic diversity, *V. destructor* has flourished as an invasive parasite, with devastating consequences for its new host (Neumann & Carreck, 2010; Potts, Blesmeijer, et al., 2010) and the quasi-eradication of wild honey bee populations in Europe (Jaffé et al., 2010; Moritz et al., 2007). In *A. mellifera* colonies, mite population growth is exponential (Martin, 1998) and, due to its ability to vector lethal honey bee viruses (Beaurepaire et al., 2020; Traynor et al., 2020), survival of susceptible colonies is dependent on annual mite control treatments implemented by beekeepers (Boecking & Genersch, 2008; Le Conte et al., 2010).

These regular mite treatments may remove the selective pressure imposed by the parasite (May & Anderson, 1990; Schmid-Hempel, 2011), thereby limiting the full potential of host adaptations (Fries & Camazine, 2001; Neumann & Blacquière, 2017) as well as the selection pressure of the host on *V. destructor*. Only occasionally were populations of European Western honey bees in France, Sweden, The Netherlands, and Norway left untreated and had the opportunity to adapt by means of natural selection (Fries et al., 2006; Kruitwagen et al., 2017; Le Conte et al., 2007; Locke, 2016; Oddie et al., 2017; Panziera et al., 2017). These adapted small honey bee populations, in France, The Netherlands, Norway, and Sweden, are considered resistant as they are surviving without the need for acaricide treatments by expressing a wide variety of traits that enable them to interfere with *V. destructor* population growth (Locke, 2016; Mondet et al., 2020).

Given that populations of *V. destructor* were genetically homogenous upon their introduction in Europe (Solignac et al., 2005), the adaptation potential of this invasive parasite has received little attention (Eliash & Mikheyev, 2020). Yet, the reduced diversity and common origin of the recently introduced mites represents a perfect starting point to study how adaptation to novel host populations and different environments can induce genetic diversification in the parasite. More specifically, when coevolving with adapted *A. mellifera* colonies, mites would be expected to swiftly develop counter-adaptations against the resistance traits of the hosts in order to survive. Such adaptations should result in changes in the levels of genetic diversity and population structure of the mites (Schulte et al., 2010, 2013). For instance, the length of brood production during the season, which is a trait known to enable honey bee survival to *V. destructor* (Locke, 2016), may influence the yearly number of mite reproductive cycles and the level of recombination of inbred mite lineages (Beaurepaire et al., 2017). In contrast, mites infesting susceptible colonies that require regular treatments may face different selective forces. In this case, treatments may relax the selective pressure of mite infestation on the hosts but are instead a strong selective pressure on the parasite population, which could also lead to the development of resistance toward treatments (González-Cabrera et al., 2018; Martin, 2004; Milani, 1999). Consequently, the genetic structure of *V. destructor* populations infesting honey bee colonies that are adapted to the mite versus those that are susceptible and require mite control for survival may follow different evolutionary paths and result in a geographic mosaic of coevolution (Thompson, 2005). To investigate this hypothesis, we performed an analysis of the genetic diversity and population structure of mites infesting five adapted and five treated honey bee populations located in four European regions. Our results show significant genetic diversification across *V. destructor* populations in the studied regions and host populations, thereby suggesting that mites have overcome the initial bottleneck of their introduction and are adapting to their local host populations as predicted by the geographic mosaic of coevolution theory (Thompson, 2005).
2 MATERIALS AND METHODS

2.1 Sampling

In this study, adapted honey bee populations are defined as groups of colonies that have survived V. destructor infestations without the need for treatments for more than ten years, and do not require treatments to survive for extended periods. In contrast, the susceptible host populations are defined as treated since they require frequent treatments and/or management practice in order to survive mite infestations. Such treated populations generally show significantly lower expression levels of mite resistance traits compared to adapted ones (Mondet et al. 2020). In 2017, adult female V. destructor mites were sampled from 32 treated and 28 sympatric adapted A. mellifera colonies, in various locations across four different regions: France, Netherlands, Sweden, and Norway (Tables 1 and 2). Mite samples were initially divided into 11 groups (Table 1), reflecting the apiary location and type of colony they were infesting (i.e., adapted or treated).

The treatments of the treated colonies differed across the studied regions (Table 1). The adapted and treated colonies were located in the same apiary at two locations (Avignon, France; Lelystad, Netherlands). At all other locations, the distance between treated and surviving colonies ranged from 2.5 to 325 km (Table 2). The mites (N = 1,310) were collected on adult workers using standard methods (i.e., powdered sugar, Dietemann et al., 2013) during the summer of 2016 and 2017 and were immediately transferred into 95% EtOH and stored at −20°C until DNA extraction.

2.2 DNA extraction and genotyping

Established protocols were followed to isolate total mite DNA (Beaurepaire et al., 2017). In brief, mites were washed twice in ddH₂O to remove the EtOH and then individually distributed in 96-well plates filled with 100 µl of Chelex™ solution. Individual mites were then crushed with sterile pipette tips, 5 µl of 10 mg/ml Proteinase K was added, and their DNA was extracted following Walsh et al. (2013).

Initially, 20 microsatellites (Beaurepaire et al., 2017; Cornman et al., 2010; Evans, 2000) were tested on 12 individual mites from each location (N = 132) to assess the genetic diversity and population structure of the V. destructor samples. PCRs were conducted as detailed in Beaurepaire et al. (2019). Seven of the tested markers were polymorphic over all regions and were thus chosen for genotyping all samples (N = 1,310, Table 3). Twenty-four mites were genotyped for each colony whenever the infestation level allowed to. PCR products were sent to Genoscreen (Lille, France) to run on a 3730XL sequencer (Applied Biosystems®, Carlsbad, CA). All mites were genotyped using the Peak Scanner TM software v 1.0 (Applied Biosystems®, Carlsbad, CA).

2.3 Microsatellite DNA analyses

In total, 1,310 mites were individually genotyped at seven polymorphic loci (Table 1). Notably, the data from Sweden (165 mites) have already been published in Beaurepaire et al. (2019) and are used here to compare the amplitude of genetic changes across distinct mite groups. To verify the independence of the markers used, all locus pairs were tested for linkage disequilibrium using the software Fstat V 2.9.3 (Goudet, 1995).

To assess genetic differences between V. destructor infesting adapted versus susceptible A. mellifera populations in the different locations, the mites were initially grouped depending on apiary location and the type of host colonies they infested (i.e., adapted or treated; Table 1). To confirm this a priori sample clustering, the levels

Region	Location (coordinates)	Group	Treatment	N colonies	N mites
France	Avignon (43°54′56.3″N, 4°52′39.4″E)	Adapted (1)	None	6	171
	Avignon (43°54′56.1″N, 4°52′37.7″E)	Treated	Amitraz	6	168
	Solérieux (44°20′40″N, 4°49′33.2″E)	Treated	Amitraz	8	90
Netherlands	Tiengemeten (51°43′56″N, 4°20′54″E)	Adapted (2)	None	6	195
	Lelystad (52°32′09″N, 5°32′21″E)	Adapted (2)	None	6	143
	Lelystad (52°32′8.42″N, 5°32′20.02″E)	Treated	Oxalic Acid	6	96
Norway	Sørumtangen (60°03′12.6″N, 11°05′26.8″E)	Adapted (5)	None	5	175
	Hilton (60°04′12.1″N, 11°07′13.3″E)	Treated	Oxalic Acid	4	107
Sweden	Gotland (57°4′7.3″N, 18°12′27.0″E)	Adapted (3–4)	None	5	53
	Gotland (57°22′27.0″N, 18°40′24.3″E)	Treated (4)	Oxalic Acid	4	38
	Uppsala (59°49′4.9″N, 17°39′22.9″E)	Treated (4)	Oxalic Acid	4	74
Total				60	1,310

Note: Region, location, and origin of experimental colonies, acaricide treatment occurrence and type, number of sampled hives, and number of mites genotyped are shown. Some of the mite groups listed are numbered to provide references to previous studies (1. Le Conte et al., 2007, 2. Panzier et al., 2017, 3. Locke, 2016, 4. Beaurepaire et al., 2019, and 5. Oddie et al., 2017).
Note: A significant but low positive correlation was found between spatial and genetic distance (Mantel test, \(R^2 = 0.1393; p = .001 \)). Codes between brackets indicate the mite groups (Ad: adapted, Tr: treated), and numbers provide references to previous studies (1. Le Conte et al., 2007, 2. Panziera et al., 2017, 3. Locke, 2016, 4. Beaurepaire et al., 2019, and 5. Oddie et al., 2017).

***Stands for highly significant \(p \)-values (\(p < 0.001 \)).

TABLE 2

Sampled locations and distances between adapted and treated apiaries in each country

Region	Location 1	Location 2	Spatial distance (km)	Genetic distance \((D_{est}) \)
France	Avignon (Ad, 1)	Avignon (Tr)	0.01	0.029***
France	Solérieux (Tr)	Avignon (Tr)	45	0.009***
Netherlands	Tiengemeten (Ad, 2)	Lelystad (Tr)	100	0.103***
Netherlands	Lelystad (Ad, 2)	Lelystad (Tr)	0.01	0.081***
Norway	Serumtangen (Ad, 5)	Hilton (Tr)	2.5	0.009***
Sweden	Gotland (Ad, 3–4)	Uppsala (Tr, 4)	325	0.021***
Sweden	Gotland (Ad, 3–4)	Gotland (Tr, 4)	10	0.028***
Sweden	Uppsala (Tr, 4)	Gotland (Tr, 4)	325	0.041***

Note: The annealing temperature (\(T_A \)) and average fragment size (Size, bp) of the primers as well as the number of alleles (\(N_A \)) and average heterozygosity (\(H_o \)) scored during the analysis are listed.

TABLE 3

General information on the microsatellite primers used for the analysis

Name	Reference	\(T_A \)	Size	\(N_A \)	\(H_o \)
VD307	Cormman et al. (2010)	60	162	2	0.059
VJ292	Evans (2000)	60	233	4	0.005
VJ294	Evans (2000)	58	170	4	0.027
VJ295	Evans (2000)	58	150	4	0.002
Vdes01	Beaurepaire et al. (2017)	60	400	4	0.065
Vdes02	Beaurepaire et al. (2017)	60	296	2	0.041
Vdes03	Beaurepaire et al. (2017)	60	303	2	0.043

Note: The annealing temperature (\(T_A \)) and average fragment size (Size, bp) of the primers as well as the number of alleles (\(N_A \)) and average heterozygosity (\(H_o \)) scored during the analysis are listed.
with missing data were excluded from the dataset, resulting in a total of 863 individuals.

3 | RESULTS

No significant linkage disequilibrium between pairs of markers was detected after correction for multiple comparisons (all \(p \)-values > .05). The AMOVA confirmed our a priori grouping, indicating that sampling regions and host groups (i.e., treated versus adapted) were significantly (\(p \) < .01) structuring V. destructor populations (i.e., responsible for 41.9% and 7.6% of the total genetic variance observed, respectively; Table 4).

Variable, but low levels of observed heterozygosity (\(H_o = 0.002–0.065 \)) and number of alleles (\(N_A = 2–4 \)) were found across the seven markers over all samples (Table 3). For all mite groups, the rarefaction analyses showed that allelic richness only increased marginally after \(-40 \) mites were analyzed (Figure 1). The comparison of allelic divergence of V. destructor populations in Europe revealed diverging patterns across the sampled regions. This analysis revealed very low allelic divergence between France and the Netherlands (\(D_{est} = 0.01, p < .001 \)), while mites from Sweden were more markedly differentiated from mites of these two regions (\(D_{est} = 0.12, p < .001 \)). Surprisingly, the genetic divergence levels between samples from these three locations and mites from Norway were thrice as high (\(D_{est} = 0.32–0.38, p < .001 \); Figure 2).

The comparison of genetic diversity across mite groups infesting the different host populations revealed that the mean number of alleles and the observed heterozygosity levels did not differ significantly between these groups (Kruskal–Wallis tests, \(p > .05 \); Figure 3). However, the levels of genetic differentiation between mites sampled from adapted and treated populations within each region resulted all significant, with diverse \(D_{est} \) levels (Figure 2). Notably, the degree of genetic differentiation weakly but significantly correlated with the distance separating the groups (Mantel test, \(R^2 = 0.14, p = .001 \); Figure 4). However, looking more closely at the pairwise comparisons between mite infesting different host groups revealed that mite genetic differentiation is not clearly determined by geographic distance. For instance, the level of divergence between mites in the two treated French populations was very low (\(D_{est} = 0.01 \)) and nonsignificant (Table 5) despite the distance separating these two groups (45 km). In contrast, higher and significant differences (\(D_{est} = 0.029–0.048, p < .001 \)) were found when these two groups were compared with the mites infesting the French adapted population, despite the fact that one of the treated host group was in the same apiary as the adapted honey bees. Also, the lowest level of divergence in the Netherlands occurred between the two adapted groups (\(D_{est} = 0.013, p < .001 \)), in spite of the \(-100 \) km separating them. In parallel, the pairwise allelic comparisons revealed that mites from the adapted host population in France and from Tiengemeten in the Netherlands were not significantly genetically different (\(D_{est} = 0.002, p = .056 \), Table 5), while mites infesting susceptible populations in these two regions were (\(D_{est} = 0.07–0.08; p < .001 \), Table 5). Moreover, the average level of population divergence found between mites treated with Amitraz and mites groups treated with oxalic acid (average \(D_{est} = 0.21, \pm 0.21 \text{ SD} \)) did not differ significantly from that obtained when mite groups treated with oxalic acid were compared with each other (average \(D_{est} = 0.27, \pm 0.14 \text{ SD}, t \text{ test}, p = .63 \).

TABLE 4 AMOVA results

Variation	Sigma	%	\(p \)-Value
Between Region	1.185	41.89	**
Between Group within Region	0.187	6.62	**
Within groups	1.456	51.48	**

Note: Variations between hierarchical grouping levels are reported. Levels of significance are indicated with stars (*\(p \)-value = .01). Only samples with less than 5% missing values (\(N = 863 \)) were considered in this analysis.

FIGURE 1 Rarefaction analysis.
Mean allelic richness as a function of the standardized sample size calculated with ADZE (Szpiech et al., 2008) for all the mite groups analyzed. The red dash line indicates the threshold, identified by the rarefaction analysis, below which the sample size is considered insufficient to capture the genetic diversity of the groups.
The analysis of multilocus genotypes (MLGs) showed 139 distinct mite genotypes over all groups (Table 6). A total of 36 genotypes were shared between the two host population (i.e., adapted and treated) and represented the majority of the samples (74.5%). Additionally, 48 genotypes, representing 11.1% of the total number of mites included in the MLG analysis, were only found in adapted colonies across all locations, while 55 (14.4%) were found only in treated populations. Several private MLGs (i.e., MLGs found only in one group) were detected in every group. Their numbers (N = 3–13) varied between groups, but only represented a minor proportion of the sampled mites (0.5%–4.1%, Table 6).

Overall, contrasting patterns of MLG diversity could be observed when comparing mites from adapted and treated populations across the different locations (Figure 5). Notably, in France, significantly higher levels of the Shannon index (H) were found in mites infesting the adapted host population (95% CI = 2.9–3.3) compared to the two mite groups sampled from the treated populations of the same region (95% CI = 2.0–2.5 and 2.4–2.8). The same pattern was found in one adapted population of the Netherlands (95% CI = 3.1–3.5) when compared to the adapted (95% CI = 2.4–2.8) and treated populations (95% CI = 2.4–2.9) from the same region. In addition, the distribution of the dominant MLGs varied significantly between adapted
and treated colonies in each location (Fisher exact tests corrected for multiple testing, $p < .05$, Figure 6).

4 | DISCUSSION

Our results suggest that the genetic structure of European V. destructor is shaped by their interactions with their local host populations. These findings reveal that sympatric and allopatric mite populations are experiencing significant levels of genetic divergence that are probably caused by both unique host population traits and environmental differences across locations.

A weak and significant interaction ($R^2 = 0.14$, $p = .001$) was found between the genetic and geographic distance separating the mite groups, indicating that geographic isolation can explain a small part of the genetic differences found between distant mite populations. Additionally, the pattern of genetic differentiation documented here appears to be further explained by the invasion history of the parasite in Europe. Historical reports of this invasion showed that V. destructor arrived in Europe through two routes. First, the mite is believed to have been introduced in 1971–72 in Eastern European countries and to slowly spread to the Northern regions of the continent, including Sweden (Griffiths & Bowman, 1981; Rosenkrantz et al., 2010). Second, the parasite was introduced in Germany in 1977, a source from which mites from France and Netherlands derived (Nixon, 1983; Potts, Roberts, et al., 2010; Ruttnier & Ritter, 1980). After its introduction in Europe, the trading of honey bee colonies between regions became restricted and subjected to strict regulations (European Commission, 1992), so to limit the spread of the parasite across countries. Our results match these previous reports of introduction as the low genetic differentiation between mites infesting French and Dutch honey bees suggests that these populations derived from a common origin, while more elevated levels of differentiation between these two locations and Sweden suggest a distinct introduction. However, the level of differentiation between mites from these three regions compared to Norwegian mites was much higher, pointing to a third introduction event. This hypothesis matches reports on the arrival of V. destructor in Norway, which was first found in the spring of 1993 in Oslo, while the natural spread of the mite was still confined to the southernmost part of Sweden. V. destructor was in fact found for the first time in Sweden on the island of Gotland in 1987 (Fries, 1987) and later in Malmö, on the southern Swedish mainland, in the spring of 1991 (Fries, 1991). Notably, the first identification of V. destructor infesting colonies along the Norwegian–Swedish border was reported in 1995, two years after the arrival of the mite in Norway, and was considered to be caused by a natural spread of the parasites from Norwegian apiaries. To date, the precise origin of the mites infesting Norwegian honey bee colonies remains to be identified. Nevertheless, this is the first report of a previously unknown route of introduction of V. destructor into Europe. Notably, the marked differentiation of these mites from all the other groups analyzed here may suggest that the Norwegian V. destructor originate from a different source population.

Over all the V. destructor populations sampled, relatively low numbers of alleles and heterozygosity levels were detected. However, the number of alleles detected appears to be higher than initially reported by other authors investigating the genetic diversity of V. destructor infesting several European honey bee populations with microsatellites (Solignac et al., 2005). When genotyping 92 mites from Avignon with 13 polymorphic markers over a decade ago, these authors obtained a total of 1.3 alleles per marker. In the present study, taking place some 15 years later, 171 and 168 mites were sampled in two honey bee groups from Avignon, yielding more alleles per markers (i.e., an average of 2.4 and 2.1 alleles per marker). This temporal increase does not seem to be caused by the different sample sizes used between the two studies, as the rarefaction analysis showed that a sample size of 40 mites is enough to accurately quantify the diversity of invasive populations of V. destructor. Additionally, the analyses performed in the current study further suggest that V. destructor populations have diversified since their introduction in Europe, as shown by the high differences between and within locations from the same countries. When comparing the distribution of mite genotypes, a relatively high number of MLGs ($N = 139$ MLGs out of 1,310 mites genotyped) were found across the honey bee populations, including many rare MLGs private to specific regions and populations. Notably, the distribution of MLGs significantly differed across the populations studied, and strong and significant differences were also found when performing pairwise allelic differentiation analyses between regions. Altogether, these results suggest that the mites are adapting to their local host populations, despite the relatively recent genetic bottlenecks caused by both the host shift and introduction of the mite in Europe (Solignac et al. 2005).

In addition to the diversification of V. destructor across Europe, the comparison between mites infesting sympatric adapted and treated host colonies revealed intriguing patterns of genetic structure. Although the specific mechanisms of horizontal large-scale transmission of the parasite currently remain unknown, the mite can easily spread within and between apiaries of a given region (Frey et al., 2011; Fries & Camazine, 2001). In molecular terms, this high transmission may prevent genetic isolation of mites infesting honey bee colonies within and across apiaries (Beaurepaire et al., 2015).
Despite this, we here observed significantly different allelic patterns and MLG distribution between *V. destructor* samples infesting adapted and treated honey bee colonies in all the four regions studied. These differences may be explained by numerous factors. First, neutral processes such as genetic drift may cause isolated mite populations to diverge (Freeland et al., 2011). However, the differences reported here do not seem to result entirely from this factor as the patterns of genetic differentiation have been found to be consistently dependent on mite–host association in every location (Figures 2 and 5). Although a weak isolation by distance at the continental scale was found, the patterns of genotypic differences between *V. destructor* infesting adapted and treated populations did not vary according to the distance separating the groups in a given region. For example, differences remained significant even in locations where the two host populations were located at the very same apiary (i.e., Lelystad, the Netherlands, and Avignon, France).

Second, acaricide treatments of the susceptible colonies could have affected the population structure of the mites. The application of pesticides is known to lead to the development of resistance in pest populations (Georghiou, 1972), *V. destructor* being no exception (Martin, 2004; Milani, 1999; Spreafico et al., 2001). Although we here did not test directly for the presence of acaricide resistance, the variability of microsatellites markers in response to pesticide-driven population genetic changes can provide indirect evidence for changes in genotypic diversity and structure caused by pesticides (de Meeûs et al., 2007; Osakabe et al., 2009; Pascual-Ruiz et al., 2014). Notably, the use of acaricides should reduce population sizes and diversity levels. As a consequence, an increase of the level of genetic divergence between treated and nontreated populations may also

TABLE 5	Pairwise population divergence indexes (*D*_{est})	
France	Ad Avignon	Tr Avignon
Tr Avignon	0.029***	0.009 n.s.
Tr Solérieux	0.048***	
Netherlands	Ad Tiengemeten	Ad Lelystad
Ad Lelystad	0.013***	
Tr Lelystad	0.103***	0.081***
Sweden	Ad Gotland	Tr Gotland
Tr Gotland	0.021***	
Tr Uppsala	0.028***	0.041***
Norway	Tr Hilton	
Ad Sørumtangen	0.009***	

Note: Results of pairwise population differentiation indices across countries when pooling all mites of a given region (overall), comparing treated colonies (Tr), and comparing adapted colonies (Ad). Numbers indicate *D*_{est} value, and stars and “n.s.” indicate p-value of the test (“***: p < .001, n.s.: nonsignificant). Values are color-coded according to the degree of *D*_{est} (red = high, yellow = moderate, and green = low).
occur (Osakabe et al., 2009; Uesugi et al., 2009). Here, the number of alleles and the levels of heterozygosity did not differ significantly between mites from adapted and treated colonies, but the diversity of mite MLGs and/or the amplitude of genetic divergence varied between these groups across populations. Notably, three of the four treated populations examined in this study (Netherlands, Sweden, and Norway) have been regularly treated with oxalic acid to control *V. destructor* infestations. This organic acaricide has high and consistent efficacy (Gregorc & Planinc, 2001) and works through contact by killing mites by means of high acidity (Nanetti, 1999). Given this very general mode of action, oxalic acid is not expected to select for any particular lineage of mites, as it has been demonstrated in a previous study, where even after a repeated and prolonged exposure to this compound, mites remained susceptible (Maggi et al., 2017). In contrast, the synthetic acaricide (i.e., Amitraz) used to treat the susceptible colonies in Avignon and Solérieux can foster the development of resistance in *V. destructor* (Kamler et al., 2016) and could have caused some of the genetic differences between mites from adapted and treated host populations in France. However, the number of alleles and level of heterozygosity of mites infesting treated hosts in France was as low as in the other mite groups. Moreover, the average level of population divergence obtained in mites treated with Amitraz versus oxalic acid and in populations treated with oxalic acid only did not differ significantly. Altogether, these findings suggest that the acaricide treatments of the susceptible colonies did not greatly affect the genetic diversity and population structure of *V. destructor*.

TABLE 6 Comparison of mite multilocus genotypes

Region	Group	Number of MLGs and proportion of mites	Number of private MLGs and proportion of mites		
		Number of MLGs	Proportion of mites	Number of private MLGs	Proportion of mites
France	Avignon (Ad)	77 (30.2%)	32 (9.73%)	23 (6.62%)	9 (1.27%)
	Avignon (Tr)	33 (11.94%)	22 (8.57%)	8 (1.16%)	3 (0.46%)
	Solérieux (Tr)	24 (7.18%)	17 (5.37%)	12 (3.44%)	4 (1.13%)
Netherlands	Tiengemeten (Ad)	92 (29.08%)	41 (10.78%)	37 (8.57%)	13 (1.97%)
	Lelystad (Ad)	27 (11.12%)	21 (8.77%)	8 (1.04%)	3 (0.46%)
	Lelystad (Tr)	24 (7.18%)	13 (4.94%)	12 (3.27%)	3 (0.85%)
Norway	(Ad)	32 (27%)	12 (15.64%)	18 (3.94%)	4 (0.58%)
	(Tr)	20 (11.36%)	8 (11.66%)	12 (1.85%)	
Sweden	Gotland (Ad)	56 (13.67%)	15 (4.17%)	21 (3.48%)	10 (1.51%)
	Gotland (Tr)	28 (6.84%)	7 (1.84%)	7 (1.16%)	2 (0.32%)
	Uppsala (Tr)	13 (2.67%)	3 (0.58%)	3 (0.58%)	
Overall	(Ad)	127 (51.45%)	48 (11.12%)		
	(Tr)	130 (48.55%)	55 (14.37%)		

Note: The number and proportion of mite multilocus genotypes (MLGs) across the locations and groups of honey bee colonies are shown. The number of private MLGs exclusive to each group of mites is also reported. The codes between brackets indicate the mite groups (Ad: adapted, Tr: treated), and numbers provide references to previous studies (1. Le Conte et al., 2007, 2. Panzier et al., 2017, 3. Locke, 2016, 4. Beaurepaire et al., 2019, and 5. Oddie et al., 2017), while the percentages represent the proportion of individuals out of the 863 mites included in this analysis.
Another factor that may explain the results documented here lies in the natural adaptations of honey bee colonies to *V. destructor*. Most strikingly, the pairwise comparisons revealed that mites from adapted colonies from France and one location of the Netherlands (Tiengemeten) were not significantly genetically different, while the mite infesting susceptible colonies in these two regions were. This may suggest parallel evolution similar to their honey bee hosts (Locke et al., 2012; Oddie et al., 2018). On the other hand, the patterns of change in the diversity of MLGs between mites infesting the adapted and treated host populations were not consistent across regions. For instance, in the populations located in France and the Netherlands, a higher diversity of MLGs was observed in the adapted colonies compared to local treated ones. In contrast, the level of MLG diversity was higher in the treated colonies from Norway and was not significantly different between the three groups located in Sweden. Possibly, in some surviving populations, host-mediated selection may promote mite genotypes expressing a decreased level of reproduction (i.e., selection for lower parasite virulence; Seeley, 2007), while in others, the hosts may select for mite genotypes having specific chemical mimicry abilities (Kather et al., 2015; Le Conte et al., 2015). These results suggest that different selective forces may be acting on the various mite groups, thereby representing hot spots and cold spots of evolution as postulated by the geographic mosaic of coevolution theory (Thompson, 2005). Although the particular host traits shaping the population structure of *V. destructor* remain to be discovered, these results confirm previous findings documenting significant temporal changes of population structure between parasites sampled in adapted and susceptible honey bee colonies over nine years (Beaurepaire et al., 2019). Altogether, these results provide empirical evidence that honey bee selective pressure influences *V. destructor* population structure, as previously observed in other systems (birds-fleas: Alves et al., 2019; donkeys-helminths: Decaestecker et al., 2007; kangaroos-worms: Koskella & Lively, 2009).

In conclusion, the data presented here show that the genetic structure of *V. destructor* populations differs across European regions and across sympatric groups of varroa mite-adapted and treated hosts, resulting in a geographic mosaic of coevolution between the ectoparasitic mites and their hosts in different populations throughout Europe. These findings shed new light into the interactions between *V. destructor* and *A. mellifera*, and highlight the so far underestimated role of the mite adaptations in this system (Eliash & Mikheyev, 2020). Half a century after its introduction into Europe, the ongoing genetic diversification of *V. destructor* in Europe illustrates well the evolutionary potential of parasites and represents a prominent example of ongoing coevolution between hosts and parasites.

ACKNOWLEDGMENTS

The authors of this work wish to express their sincere gratitude to COLOSS for providing the platform for the conception and realization of this project and to the beekeepers maintaining the experimental colonies. This study was financially supported by the Ricola Foundation Nature and Culture, the Vinetum Foundation, and The Persephone Charitable and Environmental Trust. TB acknowledges the Dutch Ministry of Agriculture, Nature and Food Quality and the European Commission for financial support (Projects NL 05/2.2; NL 08/2.1; NP 11/2.1; NP 14-6.1; NP 17.1).
CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Arrigo Moro: Data curation (lead); Formal analysis (lead); Visualization (lead); Writing-original draft (lead); Writing-review & editing (lead). Tjeerd Blacquière: Conceptualization (equal); Data curation (supporting); Methodology (equal); Validation (supporting); Writing-original draft (supporting); Writing-review & editing (supporting). Bjorn Dahle: Conceptualization (equal); Data curation (supporting); Methodology (equal); Validation (supporting); Writing-original draft (supporting); Writing-review & editing (supporting). Vincent Dietemann: Conceptualization (supporting); Investigation (supporting); Methodology (supporting); Writing-original draft (supporting); Writing-review & editing (supporting). Locke Barbara: Conceptualization (equal); Data curation (supporting); Methodology (equal); Validation (supporting); Writing-original draft (supporting); Writing-review & editing (supporting). Peter Neumann: Conceptualization (equal); Funding acquisition (lead); Methodology (equal); Project administration (equal); Resources (lead); Writing-original draft (supporting); Writing-review & editing (supporting). Alexis Beaurepaire: Conceptualization (lead); Data curation (equal); Formal analysis (supporting); Methodology (lead); Project administration (supporting); Supervision (lead); Validation (lead); Writing-original draft (lead); Writing-review & editing (lead).

DATA AVAILABILITY STATEMENT
The dataset used in this study can be found here: https://datadryad.org/stash/share/e_WnWloADcFQut8RpxoVZ2StvUVdfL30hts2bd7PFA.

ORCID
Peter Neumann https://orcid.org/0000-0001-5163-5215
Alexis Beaurepaire https://orcid.org/0000-0002-9832-5609

REFERENCES
Alves, J. M., Carneiro, M., Cheng, J. Y., Lemos de Matos, A., Rahman, M. M., Loog, L., Campos, P. F., Wales, N., Eriksson, A., Manica, A., Strive, T., Graham, S. C., Afonso, S., Bell, D. J., Belmont, L., Day, J. P., Fuller, S. J., Marchandeu, S., Palmer, W. J., ... Jiggins, F. M. (2019). Parallel adaptation of rabbit populations to myxoma virus. Science, 363(6433), 1319–1326. https://doi.org/10.1126/science.aau7285
Anderson, D. L., & Trueman, J. W. M. (2000). Varroa jacobsi (Acari: Varroidae) is more than one species. Experimental & Applied Acarology, 24(3), 165–189.
Anderson, R. M., & May, R. M. (1982). Coevolution of hosts and parasites. Parasitology, 85(2), 411–426. https://doi.org/10.1017/S0031182000055360
Beaurepaire, A. L., Krieger, K. J., & Moritz, R. F. A. (2017). Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infection, Genetics and Evolution, 50, 49–54. https://doi.org/10.1016/j.meegid.2017.02.011
Beaurepaire, A. L., Moro, A., Mondet, F., Le Conte, Y., Neumann, P., & Locke, B. (2019). Population genetics of ectoparasitic mites suggest arms race with honeybee hosts. Scientific Reports, 9(1), 11355. https://doi.org/10.1038/s41598-019-47801-5
Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., Chejanovsky, N., Gajda, A., Heerman, M., Panziera, D., Smaghe, G., Yañez, O., de Miranda, J. R., & Dalmon, A. (2020). Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects, 11(4), 239. https://doi.org/10.3390/insects11040239
Beaurepaire, A. L., Truong, T. A., Fajardo, A. C., Dinh, T. Q., Cervancia, C., & Moritz, R. F. A. (2015). Host specificity in the honeybee parasitic mite, Varroa spp. in Apis mellifera and Apis cerana. PLoS One, 10(8), e0135103. https://doi.org/10.1371/journal.pone.0135103
Boecking, O., & Genersch, E. (2008). Varroosis – the ongoing crisis in bee keeping. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 3(2), 221–228. https://doi.org/10.1007/s00003-008-0331-y
Brockhurst, M. A., & Koskella, B. (2013). Experimental coevolution of species interactions. Trends in Ecology & Evolution, 28(6), 367–375. https://doi.org/10.1016/j.tree.2013.02.009
Cormann, R. S., Schatz, M. C., Johnston, J. S., Chen, Y.-P., Pettis, J., Hunt, G., Bourgeois, L., Elisk, C., Anderson, D., Grozinger, C. M., & Evans, J. D. (2010). Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics, 11(1), 602. https://doi.org/10.1186/1471-2164-11-602
de Meuës, T., McCoy, K. D., Prugnolle, F., Chevilllon, C., Durand, P., Hurtrez-Boussès, S., & Renaud, F. (2007). Population genetics and molecular epidemiology or how to “débusquer la bête”. Infection, Genetics and Evolution, 7(2), 308–332. https://doi.org/10.1016/j.meegid.2006.07.003
Decaestecker, E., Gaba, S., Raeymaekers, J. A. M., Stoks, R., Van Kerckhoven, L., Ebert, D., & De Meester, L. (2007). Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature, 450(7171), 870–873. https://doi.org/10.1038/nature06291
Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., Wauquiez, Q., Tannahill, C., Frey, E., Ziegelmann, B., Rosenkranz, P., & Ellis, J. D. (2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1–54. https://doi.org/10.3896/IBRA.1.52.1.09
Dietemann, V., Pflugfelder, J., Anderson, D., Charrièrè, J.-D., Chejanovsky, N., Dainat, B., de Miranda, J., Delaplane, K., Dillier, F. X., Fuch, S., Gallmann, P., Gauthier, L., Imdorf, A., Koeniger, N., Kralj, J., Meikle, W., Pettis, J., Rosenkranz, P., Sammatarao, D., ... Neumann, P. (2012). Varroa destructor: Research avenues towards sustainable control. Journal of Apicultural Research, 51(1), 125–132. https://doi.org/10.3896/IBRA.1.51.1.15
Dynes, T. L., De Roode, J. C., Lyon, J. I., Berry, J. A., Delaplane, K. S., Brosi, B. J. (2017). Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie, 48(1), 93–101. https://doi.org/10.1007/s13592-016-0453-7
Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18(4), 586–608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x
Elbash, N., & Mikheyev, A. (2020). Varroa mite evolution: A neglected aspect of worldwide bee collapses? Current Opinion in Insect Science, 39, 21–26. https://doi.org/10.1016/j.cois.2019.11.004
European Commission. (1992). Council Directive 92/65/EC. European Commission.
Evans, J. D. (2000). Microsatellite loci in the honey bee parasitic mite Varroa jacobsi. Molecular Ecology, 9(9), 1436–1438. https://doi.org/10.1046/j.1365-294x.2000.00998-3.x
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491. https://doi.org/10.1093/genetics/131.2.479
Fries, I., & Camazine, S. (2001). Implications of horizontal and vertical Varroavalstret, biologi & diagnos
Fries, I. (1991). Lantbruksinformation.
Fries, I. (1987). Diagnostik av kvalstret Varroa jacobsoni. Bitidningen, 86, 335–342.
Fries, I. (1991). Varroaokvalstret, biologi & diagnos. Lantbruksinformation.
Fries, I., & Camazine, S. (2001). Implications of horizontal and vertical Varroavalstret, biologi & diagnos.
Fries, I., Imdorf, A., & Rosenkranz, P. (2006). Survival of mite infested host colonies. Apidologie, 37(5), 564–570.
Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolution and host-parasite coevolution: Interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15(3), 451–462.
Georgiou, G. P. (1972). The evolution of resistance to pesticides. Annual Review of Ecology and Systematics, 3(1), 133–168.
González-Cabrera, J., Hummam, H., Rodríguez-Vargas, S., Kennedy, P. J., Krieger, K., Altreuher, G., Hertel, A., Hertlein, G., Nauen, R., & Williamson, M. S. (2018). A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. Journal of Pest Science, 91(3), 1137–1144. https://doi.org/10.1007/s10340-018-0968-y
Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86(6), 485–486. https://doi.org/10.1093/jhered/ej411
Gregorc, A., & Planinc, I. (2001). Acaricidal effect of oxalic acid in honeybee colonies. Apidologie, 32(4), 333–340. https://doi.org/10.1051/apido:2001133
Griffiths, D. A., & Bowman, C. (1981). World distribution of the mite Varroa jacobsoni, a parasite of honeybees. Bee World, 62(4), 154–163.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
Jaffé, R., Dietemann, V., Allsopp, M. H., Costa, C., Crewe, R. M., Dall’olio, R., De la rúa, P., El-nweimi, M. A. A., Fries, I., Keczi, N., Meusel, M. S., Paxton, R. J., Shaibi, T., Stolle, E., & Moritz, R. F. (2010). Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology, 24(2), 583–593. https://doi.org/10.1111/j.1523-1739.2009.01331.x
Jost, L. (2008). Gst and its relatives do not measure differentiation. Molecular Ecology, 17(8), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x
Kamler, M., Nesvorná, M., Stara, J., Erban, T., & Hubert, J. (2016). Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Experimental and Applied Acarology, 69(1), 1–9. https://doi.org/10.1007/s10893-016-0223-8
Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/peerj.281
Kather, R., Drijfhout, F. P., Shemilt, S., & Martin, S. J. (2015). Evidence for passive chemical camouflage in the parasitic mite Varroa destructor. Journal of Chemical Ecology, 41(2), 178–186. https://doi.org/10.1007/s10886-015-0548-2
Koksella, B., & Lively, C. M. (2009). Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution, 63(9), 2213–2221. https://doi.org/10.1111/j.1558-5646.2009.00711.x
Kruitwagen, A., van Langevelde, F., van Dooremalen, C., & Blacquière, T. (2017). Naturally selected honey bee (Apis mellifera) colonies resistant to Varroa destructor do not groom more intensively. Journal of Apicultural Research, 56(4), 354–365. https://doi.org/10.1080/0021839.2017.1329797
Le Conte, Y., de Vaublanc, G., Crauser, D., Jeanne, F., Rousseau, J. C., & Bécard, J. M. (2007). Honey bee colonies that have survived Varroa destructor. Apidologie, 38(6), 566–572. https://doi.org/10.1051/apido:2007040
Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: Can Varroa explain part of the colony losses? Apidologie, 41(3), 353–363. https://doi.org/10.1051/apido:2010017
Le Conte, Y., Huang, Z. Y., Roux, M., Zeng, Z. J., Christidès, J.-P., & Bagnères, A.-G. (2015). Varroa destructor changes its cuticular hydrocarbons to mimic new hosts. Biology Letters, 11(6), 20150233. https://doi.org/10.1098/rsbl.2015.0233
Locke, B. (2016). Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie, 47(3), 467–482. https://doi.org/10.1007/s13592-015-0412-8
Locke, B., Conte, Y. L., Crauser, D., & Fries, I. (2012). Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecology and Evolution, 2(6), 1144–1150. https://doi.org/10.1002/ece3.248
Maggi, M. D., Damiani, N., Brasesco, C., Szwarski, N., Mitton, G., Mariani, F., Sammataro, D., Quintana, S., & Eguaras, M. (2017). The susceptibility of Varroa destructor against oxalic acid: A study case. Bulletin of Insectology, 70(1), 39–44.
Mantel, N. (1967). The detection of disease clustering and a Generalized Regression Approach. Cancer Research, 27(2), 209–220.
Martin, S. (1998). A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecological Modelling, 109(3), 267–281. https://doi.org/10.1016/S0304-3800(98)00059-3
Martin, S. J. (2004). Acaricide (pyrethroid) resistance in Varroa destructor. Bee World, 85(4), 67–69. https://doi.org/10.1080/000572X.2004.11099632
May, R. M., & Anderson, R. M. (1990). Parasite-host coevolution. Parasitology, 100(51), S89–S101. https://doi.org/10.1017/S0031182000073042
Milani, N. (1999). The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie, 30(2–3), 229–234. https://doi.org/10.1051/apido:19990211
Mondet, F., Beaugepare, A., McAfee, A., Locke, B., Alaux, C., Blanchard, S., Danka, B., & Le Conte, Y. (2020). Honey bee survival mechanisms against the parasitic Varroa destructor: A systematic review of phenotypic and genomic research efforts. International Journal for Parasitology, 50(6–7), 433–447. https://doi.org/10.1016/j.ijpara.2020.03.005
Moritz, R. F. A., Kraus, F. B., Kryger, P., & Crewe, R. M. (2007). The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. Journal of Insect Conservation, 11(4), 391–397. https://doi.org/10.1007/s10814-006-9054-5
Nanetti, A. (1999). Oxalic acid for mite control—Results and review. FAIR CT97-3686.
Navajas, M. J. (2010). Tracking the colonisation history of the invasive species Varroa destructor. In M. W. Sabelis, & J. Bruin (Eds.), Trends in Apaculture (pp. 375–378). Springer.
Neumann, P., & Blacquière, T. (2017). The Darwin cure for apiculture? Natural selection and managed honeybee health. Evolutionary Applications, 10(3), 226–230. https://doi.org/10.1111/eva.12448
Neumann, P., & Carreck, N. L. (2010). Honey bee colony losses. Journal of Apicultural Research, 49(1), 1–6. https://doi.org/10.3896/IBRA.1.49.1.01
