INTRINSICALLY LIPSCHITZ FUNCTIONS WITH NORMAL TARGET IN CARNOT GROUPS

GIOACCHINO ANTONELLI* AND ANDREA MERLO**

Abstract We provide a Rademacher theorem for intrinsically Lipschitz functions $\phi : U \subseteq W \rightarrow L$, where U is a Borel set, W and L are complementary subgroups of a Carnot group, where we require that W is a Carnot subgroup and L is a normal subgroup. Our hypotheses are satisfied for example when W is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.

Keywords Carnot groups, intrinsically Lipschitz functions, Rademacher theorem, area formula.

MSC (2010) 53C17, 22E25, 28A75, 49Q15, 26A16.

1 Introduction

In the last years there has been an increasing interest towards Geometric Measure Theory in the non-smooth setting, and in particular in the setting of sub-Riemannian Carnot groups for what concerns the notion of rectifiability. This line of research was initiated by the result in [1] in which the authors proved that the first Heisenberg group H^1 is not k-rectifiable, according to Federer’s definition (see [6]), for $k \geq 2$.

In this note we focus on the notion of intrinsically Lipschitz functions and intrinsically differentiable functions in the setting of Carnot groups. We refer the reader to [8] for a wide study of the notion of intrinsically Lipschitz function and to [5] for some recent developments. The notion of intrinsically differentiable function has been introduced in [10] and then widely studied in the last years: we refer the reader to [2, 4, 9, 7, 3] for some developments.

One of the main open questions in this area of research is whether a Rademacher type theorem holds. Namely, is it true that every intrinsically Lipschitz function between complementary subgroups of a Carnot group is intrinsically differentiable almost everywhere? Some first answers have been given in [7, 9] in the setting of Carnot groups G of type *, i.e., a class larger than Carnot groups of step 2, and for maps $\phi : U \subseteq W \rightarrow L$, where U is open and W and L are complementary subgroups of G, with L horizontal and one-dimensional. Up to now it is not known either if the results in [7, 9] hold in arbitrary Carnot groups or if, in some special case, one can prove a Rademacher type theorem with L horizontal not necessarily one-dimensional.

In this note we prove that a Rademacher type theorem with normal target is true in arbitrary Carnot groups, provided that the function is defined on a subset of a Carnot subgroup. We provide also an area formula for maps that satisfy our hypotheses.

Theorem 1.1. Let W and L be two complementary subgroups of a Carnot group G. Let us assume that L is normal and let $U \subseteq W$ be a Borel set. Let $\phi : U \subseteq W \rightarrow L$ be an intrinsically Lipschitz function. Then, if we call $\Phi : U \rightarrow G$ the graph map of ϕ, we have that Φ is Lipschitz.
We now describe what is the parametrizing function of some translation of the intrinsic graph of a function.

\[\delta \]

Thus in order to complete the proof of Theorem 1.1 we have to deduce that the graph map \(\Phi \) for maps that parametrizes \(C^1 \) holds for intrinsically Lipschitz horizontal surfaces in arbitrary Carnot groups. We stress also that an area formula is satisfied for example when \(\mathcal{W} \) is horizontal. Thus our theorem holds for intrinsically Lipschitz horizontal surfaces in arbitrary Carnot groups. We stress also that an area formula for maps that parametrizes \(C^1 \)-submanifolds, that is a more restrictive condition than being intrinsically Lipschitz, has been recently obtained in [12].

The proof of Theorem 1.1 is considerably simpler than the proof of a low-codimensional Rademacher theorem because in that case it may not be true, as in our case, that the intrinsic Lipschitz property of \(\mathcal{W} \) has been recently obtained in [12]. In fact we apply Pansu-Rademacher theorem and Magnani’s area formula to deduce that the graph map \(\Phi \) is Lipschitz differentiable almost everywhere and the area formula holds. Thus in order to complete the proof of Theorem 1.1, we are left to relate the Pansu differentiability of the graph map \(\Phi \) with the intrinsic differentiability of the map \(\phi \), and this is done in Proposition 2.1.2.

Acknowledgments: The authors are grateful to Enrico Le Donne for several suggestions that led to an improvement of this note. They are also grateful to Sebastiano Don for precious comments.

2 Preliminaries

For the basic terminology on Carnot groups and graded groups we refer the reader to [13]. We recall some notation. Every graded group has a one-parameter family of dilations that we denote by \(\{ \delta_\lambda : \lambda > 0 \} \). We will indicate with \(\delta_\lambda \) both the dilation of factor \(\lambda \) on the group and its differential.

Given a graded group \(G \), we fix a homogeneous norm \(\| \cdot \| \) on \(G \), which is unique up to bi-Lipschitz equivalence. Moreover, by [11, Theorem 5.1] on every Carnot group there exists a slight variation of the anisotropic homogeneous norm that induces a left-invariant homogeneous distance \(d \). We eventually fix this particular homogeneous norm from now on. We also recall that with *homogeneous homomorphism* we mean a homomorphism that commutes with \(\delta_\lambda \), for every \(\lambda > 0 \). We now deal with complementary subgroups and maps between them.

Definition 2.1 (Complementary subgroups). Given a Carnot group \(G \) with identity \(e \), we say that two subgroups \(\mathcal{W} \) and \(\mathcal{L} \) are *complementary subgroups* in \(G \) if they are homogeneous, i.e., closed under the action of \(\delta_\lambda \) for every \(\lambda > 0 \), \(G = \mathcal{W} \cdot \mathcal{L} \), and \(\mathcal{W} \cap \mathcal{L} = \{ e \} \).

Given two complementary subgroups \(\mathcal{W} \) and \(\mathcal{L} \) in a Carnot group \(G \), we denote the *projection maps* from \(G \) onto \(\mathcal{W} \) and onto \(\mathcal{L} \) by \(\pi_\mathcal{W} \) and \(\pi_\mathcal{L} \), respectively. Defining \(g_\mathcal{W} := \pi_\mathcal{W} g \) and \(g_\mathcal{L} := \pi_\mathcal{L} g \) for any \(g \in G \), one has

\[g = (\pi_\mathcal{W} g) \cdot (\pi_\mathcal{L} g) = g_\mathcal{W} \cdot g_\mathcal{L}. \]

We now describe what is the parametrizing function of some translation of the intrinsic graph of a function. Unless anything different is declared, we eventually fix from now on two arbitrary complementary subgroups \(\mathcal{W} \) and \(\mathcal{L} \) of a Carnot group \(G \).

Definition 2.2 (Intrinsic graph). Given a function \(\phi : U \subseteq \mathcal{W} \to \mathcal{L} \), we define the *intrinsic graph* of \(\phi \) as follows:

\[\text{graph}(\phi) := \{ \Phi(w) := w \cdot \phi(w) : w \in U \} =: \Phi(U). \]

Definition 2.3 (Intrinsic translation of a function). Given a function \(\phi : U \subseteq \mathcal{W} \to \mathcal{L} \), we define, for every \(q \in G \),

\[U_q := \{ a \in \mathcal{W} : \pi_\mathcal{W}(q^{-1} \cdot a) \in U \}, \]

and \(\phi_q : U_q \subseteq \mathcal{W} \to \mathcal{L} \) by setting

\[\phi_q(a) := \pi_\mathcal{L}(q^{-1} \cdot a)^{-1} \cdot \phi(\pi_\mathcal{W}(q^{-1} \cdot a)). \]
Proposition 2.1. Given a function $\phi : U \subseteq \mathbb{W} \to \mathbb{L}$, and $q \in G$, the following facts hold:

(a) $\text{graph}(q \cdot \phi) = q \cdot \text{graph}(\phi)$;

(b) if L is normal one gets that, for all $a \in U$,

$$\pi_{\mathbb{W}}(q^{-1} \cdot a) = q_{\mathbb{W}}^{-1} \cdot a, \quad \pi_{\mathbb{L}}(q^{-1} \cdot a) = a^{-1} \cdot q_{\mathbb{W}} \cdot q_{\mathbb{L}}^{-1} \cdot q_{\mathbb{W}}^{-1} \cdot a, \quad (3)$$

and thus

$$\phi(q)(a) = a^{-1} \cdot q_{\mathbb{W}} \cdot q_{\mathbb{L}}^{-1} \cdot q_{\mathbb{W}}^{-1} \cdot a \cdot \phi(q_{\mathbb{W}}^{-1} \cdot a), \quad U_q = q_{\mathbb{W}} \cdot U; \quad (4)$$

Proof. The proof of (a) directly follows from (2), which yields

$$a \cdot \phi(q)(a) = q \cdot \pi_{\mathbb{W}}(q^{-1} \cdot a) \cdot \phi(\pi_{\mathbb{W}}(q^{-1} \cdot a)), \quad \forall a \in U_q, \quad (5)$$

Let us prove (b). Since L is normal, the following holds:

$$a^{-1} \cdot q_{\mathbb{W}} \cdot q_{\mathbb{L}}^{-1} \cdot q_{\mathbb{W}}^{-1} \cdot a = a^{-1} \cdot q_{\mathbb{W}} \cdot q_{\mathbb{L}}^{-1} \cdot (a^{-1} \cdot q_{\mathbb{W}})^{-1} \in L.$$

Moreover it holds that $q_{\mathbb{W}}^{-1} \cdot a \in \mathbb{W}$, and since

$$q_{\mathbb{W}}^{-1} \cdot a \cdot a^{-1} \cdot q_{\mathbb{W}} \cdot q_{\mathbb{L}}^{-1} \cdot q_{\mathbb{W}}^{-1} \cdot a = q^{-1} \cdot a,$$

the equation (3) holds and then (4) is a consequence of (3) and (2). \hfill \square

For the notion of intrinsically Lipschitz function we refer the reader to [8]. We explicitly recall here, for the reader’s benefit, only the notions of intrinsically linear and intrinsically differentiable functions. For these definitions, and the study of some properties related, we refer the reader to [2, 10, 9, 7, 17, 3]. Eventually, in order to fix the notation, we recall the notion of Pansu differentiability, see also [16].

Definition 2.4 (Intrinsically linear function). The map $\ell : \mathbb{W} \to \mathbb{L}$ is said to be intrinsically linear if graph(ℓ) is a homogeneous subgroup of G.

Definition 2.5 (Intrinsically differentiable function). Let $\phi : U \subseteq \mathbb{W} \to \mathbb{L}$ be a function with U Borel in \mathbb{W}. Fix a density point1 $a_0 \in \mathcal{D}(U)$ of U, let $p_0 := \phi(a_0)^{-1} \cdot a_0^{-1}$ and denote by $\phi_{p_0} : U_{p_0} \subseteq \mathbb{W} \to \mathbb{L}$ the shifted function introduced in Definition 2.3. We say that ϕ is intrinsically differentiable if there is an intrinsically linear map $d\phi_{a_0} : \mathbb{W} \to \mathbb{L}$ such that

$$\lim_{b \to c, \ b \in U_{p_0}} \frac{\|d\phi_{a_0}(b)^{-1} \cdot \phi_{p_0}(b)\|}{\|b\|} = 0. \quad (6)$$

The function $d\phi_{a_0}$ is called the intrinsic differential of ϕ at a_0. Notice that one can take the limit in (6) because, if $a_0 \in \mathcal{D}(U)$, then $c \in \mathcal{D}(U_{p_0})$. This last claim comes from the invariant properties of Proposition 2.1.

Remark 2.1 (Intrinsic differentiability and tangent subgroups). Whenever the intrinsic differential introduced in Definition 2.5 exists, it is unique: see [7, Theorem 3.2.8]. Let us recall the notion of tangent subgroup to the graph of a function. If we fix $\phi : U \subseteq \mathbb{W} \to \mathbb{L}$, we say that a homogeneous subgroup T of G is a tangent subgroup to graph(ϕ) at $a_0 \cdot \phi(a_0)$ if the following facts hold:

(a) T is a complementary subgroup of L;

(b) The limit

$$\lim_{\lambda \to \infty} \delta_{\lambda} \left((a_0 \cdot \phi(a_0))^{-1} \cdot \text{graph}(\phi) \right) = T, \quad \text{holds in the sense of Hausdorff convergence on compact subsets of } G.$$

1 If $k := \text{dim}_{\mathcal{H}}(\mathbb{W})$ is the Hausdorff dimension of \mathbb{W}, we say that $a_0 \in U$ is a density point of U, and we write $a_0 \in \mathcal{D}(U)$, if $H^k(\mathbb{W}(U \cap B(a_0, r)) / H^k(\mathbb{W}(B(a_0, r))) \to 1$ as r goes to 0.
In [7] the authors state the following: a function \(\phi : U \subseteq \mathbb{W} \to \mathbb{L} \), with \(U \) open, is intrinsically differentiable at \(a_0 \) if and only if graph(\(\phi \)) has a tangent subgroup \(T \) at \(a_0 \cdot \phi(a_0) \) and moreover \(T = \text{graph}(d^G \phi_{a_0}) \). The proof of this latter claim follows from [7, Theorem 3.2.8], that shows one part of the statement, and generalizing [9, Theorem 4.15].

Definition 2.6 (Pansu differentiability). Let \(\mathbb{W} \) and \(\mathbb{G} \) be two arbitrary graded groups endowed with two homogeneous left-invariant distances \(d_{\mathbb{W}} \) and \(d_{\mathbb{G}} \), respectively. Given \(f : U \subseteq \mathbb{W} \to \mathbb{G} \) with \(U \) Borel and a density point \(a_0 \in \mathcal{D}(U) \), we say that \(f \) is Pansu differentiable at \(a_0 \) if there exists a homogeneous homomorphism \(d f_{a_0} : \mathbb{W} \to \mathbb{G} \), that we call Pansu differential at \(a_0 \), such that

\[
\lim_{a \in U, a \to a_0} \frac{d G(f(a_0))^{-1} \cdot f(a), d f_{a_0}(a_0^{-1} \cdot a)}{d W(a, a_0)} = 0.
\]

3 \ PROOF OF THE THEOREM

In what follows we prove that, in case \(\mathbb{L} \) is normal, the intrinsic differentiability of a function \(\phi \) can be read as the Pansu differentiability of the graph map \(\Phi \). We start with a lemma.

Lemma 3.1. Let \(\mathbb{W} \) and \(\mathbb{L} \) be two complementary subgroups of a Carnot group \(\mathbb{G} \), with \(\mathbb{L} \) normal. The map \(\ell : \mathbb{W} \to \mathbb{L} \) is intrinsically linear if and only if the graph map of \(\ell \), i.e., \(\ell : \mathbb{W} \to \mathbb{G} \) defined as \(L(\omega) := w \cdot \ell(\omega) \), is a homogeneous homomorphism.

Proof. The proof is contained in [4, Part (i) of Proposition 3.23]. In the reference it is stated and proved for Heisenberg groups, but the proof of Part (i) holds verbatim in our context, because it merely uses the fact that \(\mathbb{L} \) is normal.

The forthcoming proposition is inspired by [4, Proposition 3.25(i)]. We give a detailed proof in our context, since the last part of the argument, i.e., the part in which we invoke the forthcoming Lemma 3.3, is different with respect to the reference.

Proposition 3.2. Let \(\mathbb{W} \) and \(\mathbb{L} \) be two complementary subgroups of a Carnot group \(\mathbb{G} \), with \(\mathbb{L} \) normal. Let \(\phi : U \subseteq \mathbb{W} \to \mathbb{L} \) be a function with \(U \) Borel. Given a density point \(a_0 \in \mathcal{D}(U) \), we have that \(\phi \) is intrinsically differentiable at \(a_0 \) if and only if the graph map \(\Phi : U \subseteq \mathbb{W} \to \mathbb{G} \) is Pansu differentiable at \(a_0 \). Moreover if any of the previous two holds we have the following formula:

\[
d_{\mathbb{W}}(w) = \cdot d^G_{\mathbb{W}}(w), \quad \forall w \in \mathbb{W}.
\]

Proof. Let us first notice that \(p_0 := \phi(a_0)^{-1} \cdot a_0^{-1} = a_0^{-1} \cdot a_0 \phi(a_0)^{-1} \cdot a_0^{-1} \), and thus, from the fact that \(\mathbb{L} \) is normal,

\[
(p_0)_{\mathbb{W}} = a_0^{-1}_0, \quad (p_0)_{\mathbb{L}} = a_0 \phi(a_0)^{-1} \cdot a_0^{-1}.
\]

(7)

Let us assume that \(\phi \) is intrinsically differentiable at \(a_0 \). We are going to prove that the graph map \(\Phi \) is Pansu differentiable at \(a_0 \). From the intrinsic differentiability of \(\phi \), we know that there exists the intrinsic differential \(d^\phi \phi_{a_0} \) as in Definition 2.5, which is an intrinsically linear map by definition. We define its graph map

\[
d\Phi_{a_0}(w) := w \cdot d^\phi \phi_{a_0}(w), \quad \forall w \in \mathbb{W}.
\]

(8)

From Lemma 3.1, it follows that the map \(d\Phi_{a_0} \) is a homogeneous homomorphism. We show that it is the Pansu differential of the graph map \(\Phi \). Indeed, let us take \(w \in U \) and compute

\[
d\Phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot \phi(a_0)^{-1} \cdot \Phi(w) = d^\phi \phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot w^{-1} \cdot a_0 \cdot \phi(a_0)^{-1} \cdot a_0^{-1} \cdot w \cdot \phi(w) =
\]

\[
d^\phi \phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot \phi_{p_0}(a_0^{-1} \cdot w),
\]

(9)

where in the first equality we used the definition (8) and in the second one we used (7) and the explicit expression in the first equality of (4). Notice that, from the second equality of (4) and the first equality of (7), we get that \(U_{p_0} = a_0^{-1} \cdot U \). Thus (9), jointly with the intrinsic differentiability of \(\phi \), see (6), tells us that

\[
\lim_{w \to a_0} \frac{d\Phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot \phi_{a_0}^{-1} \cdot \phi(w)}{\|a_0^{-1} \cdot w\|} = 0,
\]
that implies the Pansu differentiability of \(\Phi \) at \(a_0 \) with differential \(d\Phi_{a_0} \).

Vice versa, let us assume that the graph map \(\Phi \) is Pansu differentiable at \(a_0 \). Thus there exists a homogeneous homomorphism \(d\Phi_{a_0} : \mathcal{W} \to G \) such that

\[
\lim_{w \to a_0, w \in U} \frac{\|d\Phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot \Phi(a_0)^{-1} \cdot \Phi(w)\|}{\|a_0^{-1} \cdot w\|} = 0. \tag{10}
\]

By using the fact that \(L \) is normal, and by simple computations, we get that

\[
\pi_\mathcal{W} (d\Phi_{a_0}[a_0^{-1} \cdot w]^{-1} \cdot \Phi(a_0)^{-1} \cdot \Phi(w)) = ((d\Phi_{a_0}[a_0^{-1} \cdot w])_\mathcal{W})^{-1} \cdot a_0^{-1} \cdot w, \quad \forall w \in U.
\]

Now notice that since there exists a geometric constant \(C > 0 \) such that \(\|g_\mathcal{W}\| \leq C\|g\| \) for every \(g \in G \) (see \cite[Proposition 2.12]{8}), from the previous equality and (10) we deduce

\[
\lim_{w \to a_0, w \in U} \frac{\|((d\Phi_{a_0}[a_0^{-1} \cdot w])_\mathcal{W})^{-1} \cdot a_0^{-1} \cdot w\|}{\|a_0^{-1} \cdot w\|} = 0. \tag{11}
\]

Since \(d\Phi_{a_0} \) is a homogeneous homomorphism, the limit in (11) allows us to use the forthcoming Lemma 3.3 with \(U_e := a_0^{-1} \cdot U \). This leads to the equality \(\pi_\mathcal{W} \circ (d\Phi_{a_0}) = (id)_\mathcal{W} \).

Thus, by using the splitting, for every \(w \in \mathcal{W} \) it holds \(d\Phi_{a_0}[w] = w \cdot d^\mathcal{W} \Phi_{a_0} [w] \) for some map \(d^\mathcal{W} \Phi_{a_0} : \mathcal{W} \to L \).

Now we are in a position to apply Lemma 3.1 to deduce that \(d^\mathcal{W} \Phi_{a_0} \) is intrinsically linear, because its graph is a homogeneous homomorphism being a Pansu differential. Now the intrinsic differentiability of \(\phi \) at \(a_0 \), with intrinsic differential \(d^\mathcal{W} \Phi_{a_0} \), follows by joining the computations in (9) with (10).

\[\square\]

Lemma 3.3. Let \(\mathcal{W} \) and \(L \) be two complementary subgroups of a Carnot group \(G \) and let \(U_e \subseteq \mathcal{W} \) be a Borel set containing the identity \(e \) and for which \(e \) is a density point. Let us assume \(F : \mathcal{W} \to G \) is a continuous homogeneous map, i.e., it commutes with \(\delta_\lambda \) for every \(\lambda > 0 \). Let us further assume that

\[
\lim_{w \to w, w \in U_e} \frac{\|(F(w)\mathcal{W})^{-1} \cdot w\|}{\|w\|} = 0.
\]

Then \(F(w)_{\mathcal{W}} = w \) for every \(w \in \mathcal{W} \).

Proof. Notice first that the map \(w \to (F(w)\mathcal{W})^{-1} \) is a homogeneous map. Indeed, from the homogeneity of \(F \), the homogeneity of the projection onto \(\mathcal{W} \) and the homogeneity of the inverse, respectively, we get

\[
((F(\delta_\lambda w)\mathcal{W})^{-1} = ((\delta_\lambda F(w)\mathcal{W})^{-1} = (\delta_\lambda (F(w)\mathcal{W}))^{-1} = \delta_\lambda ((F(w)\mathcal{W}))^{-1}, \quad \forall \lambda > 0. \tag{12}
\]

Set \(\mathcal{W}^D := \{w \in \mathcal{W} : \|w\| = 1\} \). Since \(e \) is a density point of \(U_e \subseteq \mathcal{W} \), the following holds: there exists \(D \subseteq \mathcal{W}^D \), dense in \(\mathcal{W}^D \), such that, for every \(w \in D \), there exists an infinitesimal sequence \(\{t_j\}_{j \in \mathbb{N}} \) such that \(\delta_1 t_j w \in U_e \) for all \(j \in \mathbb{N} \).

Fix \(w \in D \). We claim that \(F(w)_{\mathcal{W}} = w \) so that by density and the continuity of \(F \) the thesis follows. Indeed, let us fix \(\epsilon > 0 \). By hypothesis, and since there exists an infinitesimal sequence \(\{t_j\}_{j \in \mathbb{N}} \) such that \(\delta_1 t_j w \in U_e \), we get that there is \(t_{j_0} > 0 \) such that

\[
\|(F(\delta_{t_{j_0}} w)\mathcal{W})^{-1} \cdot \delta_{t_{j_0}} w\| \leq \epsilon \|\delta_{t_{j_0}} w\|.
\]

By the homogeneity in (12), the homogeneity of the norm and the fact that \(\|w\| = 1 \), since \(w \in D \subseteq \mathcal{W}^D \), we get

\[
\|(F(w)\mathcal{W})^{-1} \cdot w\| \leq \epsilon.
\]

Thus from the fact that \(\epsilon > 0 \) is arbitrary we get the sought conclusion. \[\square\]

2 Indeed if \(U \subseteq \mathcal{W} \) is Borel and for \(\mathcal{H}^1 \)-\(\mathcal{W} \)-almost every point in \(U \) there exist a sequence \(h_j(x) \) converging to \(e \) and \(0 < \lambda(x) < 1 \) with \(B[x \cdot h_j(x), \lambda(x) ||h_j(x)||] \cap E = \emptyset \) for all \(j \in \mathbb{N} \), then \(\mathcal{H}^1 \mathcal{W} (E) = 0 \).
We are now in a position to prove our Theorem 1.1. Let us recall the definition of the Jacobian of a homogeneous map. Take a **homogeneous map** \(F : \mathcal{W} \to G \) between **graded groups** \(\mathcal{W} \) and \(G \), equipped with homogeneous left-invariant distances \(d_{\mathcal{W}} \) and \(d_{G} \), respectively. Denote by \(k := \dim_{H}(\mathcal{W}) \) the Hausdorff dimension of \(\mathcal{W} \). The Jacobian of \(F \) is

\[
J(F) := \frac{\mathcal{H}^{k}(F(B(e,1)))}{\mathcal{H}^{k}(B(e,1))},
\]

where \(B(e,1) \) is the ball centered at the identity \(e \), and of radius 1.

Proof of Theorem 1.1. Since \(L \) is **normal**, we can use [8, Proposition 3.7] and thus, from the fact that \(\phi \) is intrinsically Lipschitz, we deduce that the graph map \(\Phi : U \subseteq \mathcal{W} \to G \) is Lipschitz. If in addition \(\mathcal{W} \) is a **Carnot subgroup**, we are in a position to apply Rademacher theorem (see [16] and [14, Theorem 3.9]) to the graph map \(\Phi : U \subseteq \mathcal{W} \to G \), in order to conclude that it is \(\mathcal{H}^{k}, \mathcal{W} \)-almost everywhere Pansu differentiable on \(U \). Eventually, we apply Proposition 3.2 to conclude that every point of Pansu differentiability of \(\Phi \) is a point of intrinsic differentiability of \(\phi \). Finally, the area formula (i) is a direct consequence of the area formula in [15, Theorem 4.3.4] applied to the graph map \(\Phi \), after having noticed that \(\Phi : U \subseteq \mathcal{W} \to G \) is injective.

\(\square \)

Remark 3.1. By joining the conclusions of Theorem 1.1 and Remark 2.1 we can conclude that in our hypotheses the intrinsically Lipschitz property guarantees the existence, at \((\Phi)_{*}(\mathcal{H}^{k}, \mathcal{U}) \)-almost every point on the graph of \(\phi \), of a tangent subgroup. Moreover, from Proposition 3.2 we get that, whenever the Pansu differential \(d\Phi_{e} \) exists, then \(\phi \) is intrinsically differentiable at \(x \) and \(d\Phi_{e}[w] = w \cdot d\Phi_{x}[w] \) for all \(w \in \mathcal{W} \). Taking into account this equality, the definition of the Jacobian (13) and Remark 2.1 we stress that the area element \(J(d\Phi_{e}) \) in the area formula (i) only depends on the geometry of the tangent subgroup of graph(\(\phi \)) at \(\Phi(x) \), which is graph(d\(\Phi_{x} \)).

Remark 3.2. The hypotheses of Theorem 1.1 are satisfied whenever we take an intrinsically Lipschitz function \(\phi : U \subseteq \mathcal{W} \to \mathbb{L} \), with \(\mathcal{W} \) **horizontal**, and \(U \) **Borel**. Thus our result applies in particular to intrinsically Lipschitz horizontal surfaces in arbitrary Carnot groups.

Remark 3.3. If we do not assume \(L \) to be **normal** in the hypotheses of Theorem 1.1, the graph map \(\Phi : U \subseteq \mathcal{W} \to \mathbb{L} \) may not be Lipschitz when \(\phi \) is intrinsically Lipschitz. The forthcoming example is also found in [8].

Indeed, let us take the second Heisenberg group \(\mathbb{H}^{2} \), with a basis of the Lie algebra given by \((X_{1}, X_{2}, X_{3}, X_{4}, X_{5}) \), where the only nontrivial relations are \([X_{1}, X_{3}] = [X_{2}, X_{4}] = X_{5} \). Let us identify \(\mathbb{H}^{2} \) with \(\mathbb{R}^{5} \) by means of exponential coordinates of the first kind. Set, in exponential coordinates, \(\mathcal{W} := \{ (0, x_{2}, x_{3}, x_{4}, x_{5}) : x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{R} \} \) and \(\mathbb{L} := \{ (x_{1}, 0, 0, 0, 0) : x_{1} \in \mathbb{R} \} \). We notice that \(\mathcal{W} \) is a **Carnot subgroup** and \(\mathbb{L} \) is **not normal**.

It is easily seen that the map \(\phi : \mathcal{W} \to \mathbb{L} \) defined as \(\phi(0, x_{2}, x_{3}, x_{4}, x_{5}) := (1, 0, 0, 0, 0) \) for every \((x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{R}^{4}\) is intrinsically Lipschitz. Moreover, if we fix \(\epsilon > 0 \) we have that \(\Phi(0, 0, \epsilon, 0, 0) = (1, 0, \epsilon, 0, -\epsilon/2) \) and \(\Phi(0, 0, 0, 0, 0) = (1, 0, 0, 0, 0) \). Thus

\[
\|\Phi(0, 0, \epsilon, 0, 0)^{-1} \cdot \Phi(0, 0, \epsilon, 0, 0)\| = \|\Phi(0, 0, \epsilon, 0, -\epsilon)\| \sim_{\epsilon \to 0} e^{1/2},
\]

and then \(\Phi \) cannot be Lipschitz with respect to the induced metric, since \(\|\phi(0, 0, \epsilon, 0, 0)\| \sim_{\epsilon \to 0} \epsilon \).

References

[1] Luigi Ambrosio and Bernd Kirchheim. “Rectifiable sets in metric and Banach spaces”. In: Math. Ann. 318.3 (2000), pp. 527–555. ISSN: 0025-5831.

[2] Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone. “Intrinsic regular hypersurfaces in Heisenberg groups”. In: J. Geom. Anal. 16.2 (2006), pp. 187–232. ISSN: 1050-6926.

[3] Gioacchino Antonelli, Daniela Di Donato, Sebastiano Don, and Enrico Le Donne. *Characterizations of uniformly differentiable co-horizontal intrinsic graphs in Carnot groups*. Preprint on arXiv, arXiv:2005.11390.

[4] Gabriella Arena and Raul Serapioni. “Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs”. In: Calc. Var. Partial Differential Equations 35.4 (2009), pp. 517–536. ISSN: 0944-2669.

[5] Vasileios Chousionis, Katrin Fässler, and Tuomas Orponen. “Intrinsic Lipschitz graphs and vertical \(\beta \)-numbers in the Heisenberg group”. In: Amer. J. Math. 141.4 (2019), pp. 1087–1147. ISSN: 0002-9327.
[6] Herbert Federer. *Geometric measure theory*. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969, pp. xiv+676.

[7] Bruno Franchi, Marco Marchi, and Raul Paolo Serapioni. “Differentiability and approximate differentiability for intrinsic Lipschitz functions in Carnot groups and a Rademacher theorem”. In: *Anal. Geom. Metr. Spaces* 2.1 (2014), pp. 258–281.

[8] Bruno Franchi and Raul Paolo Serapioni. “Intrinsic Lipschitz graphs within Carnot groups”. In: *J. Geom. Anal.* 26.3 (2016), pp. 1946–1994. issn: 1050-6926.

[9] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. “Differentiability of intrinsic Lipschitz functions within Heisenberg groups”. In: *J. Geom. Anal.* 21.4 (2011), pp. 1044–1084. issn: 1050-6926.

[10] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. “Intrinsic Lipschitz graphs in Heisenberg groups”. In: *J. Nonlinear Convex Anal.* 7.3 (2006), pp. 423–441. issn: 1345-4773.

[11] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. “On the structure of finite perimeter sets in step 2 Carnot groups”. In: *J. Geom. Anal.* 13.3 (2003), pp. 421–466. issn: 1050-6926.

[12] Antoine Julia, Sebastiano Nicolussi Golo, and Davide Vittone. *Area of intrinsic graphs and coarea formula in Carnot groups*. Preprint on arXiv, arXiv:2004.02520.

[13] Enrico Le Donne. “A primer on Carnot groups: homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries”. In: *Anal. Geom. Metr. Spaces* 5.1 (2017), pp. 116–137.

[14] Valentino Magnani. “Differentiability and area formula on stratified Lie groups”. In: *Houston J. Math.* 27.2 (2001), pp. 297–323. issn: 0362-1588.

[15] Valentino Magnani. *Elements of geometric measure theory on sub-Riemannian groups*. Scuola Normale Superiore, Pisa, 2002, pp. viii+195. isbn: 88-7642-152-1.

[16] Pierre Pansu. “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”. In: *Ann. of Math.* (2) 129.1 (1989), pp. 1–60. isbn: 0003-486X.

[17] Francesco Serra Cassano. “Some topics of geometric measure theory in Carnot groups”. In: *Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1*. EMS Ser. Lect. Math. Eur. Math. Soc., Zürich, 2016, pp. 1–121.