A novel strategy for disarming quorum sensing in *Pseudomonas aeruginosa-Chlorella emersonii KJ725233*

Sneha Sawant Desai¹, Reema Devi Singh², Sukhendu B Ghosh³, Varsha Kelkar¹*

¹Department of Biotechnology, University of Mumbai, Kalina, Santacruz E, Mumbai, India.
²Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.

ABSTRACT

Pseudomonas aeruginosa has emerged as a serious nosocomial threat with a high morbidity and mortality rate, especially in immunocompromised patients. Its pathogenicity is attributed to the virulence modulating – quorum sensing system. The coexistence of *Chlorella emersonii KJ725233*, a novel microalga with *P. aeruginosa*, pointed to its subterfuge to alter the pathogenicity of its partners. The study was, thus, aimed at determining the ability of *C. emersonii* to modulate the pathogenesis of the aggressor *P. aeruginosa*. With a MIC of 0.5 mg mL⁻¹, the methanolic extract of *C. emersonii KJ725233* was able to inhibit the synthesis of pyocyanin (62.48 ± 1.11%), protease (84.72 ± 1.11%), elastase (73.47 ± 0.11%), pyochelin (69.95 ± 7.12%), rhamnolipid (86.76 ± 0.48%), and polysaccharide (44.72 ± 1.58%) which are established virulence factors of *P. aeruginosa*. RT-PCR studies indicated the downregulation of its quorum sensing genes, *lasI* (86.63 ± 5.98%), *lasR* (85.56 ± 3.45%), *rhlI* (88.33 ± 3.56%), *rhlR* (88.73 ± 2.91%), and *pqsA* (72.61 ± 1.91%) which are known to play a crucial role in the pathogenesis of the organism. The presence of phytol in the methanolic extracts was indicated by its GC-HRMS analysis. With an ability to effectively incapacitate the virulence system of *P. aeruginosa*, *C. emersonii KJ725233* presents itself as an efficient disarming agent with a potential use in pharmaceutical formulations.

1. INTRODUCTION

Pseudomonas aeruginosa, an opportunistic pathogen known to readily develop antibiotic resistance, has been widely implicated in nosocomial infections [1]. The CDC ESKAPE lists this as a priority pathogen not only due its clinical relevance in various disease and conditions such as cystic fibrosis, cancer, immunocompromised individuals, burns, and implanted medical devices [2,3] but also due to its association with high morbidity and mortality rates in such individuals [4]. *P. aeruginosa* is known to regulate its pathogenicity using the cell to cell communication called quorum sensing (QS) [1]. QS permits these bacteria to scrutinize their cell population through the release of signaling molecules called autoinducers [5] and establish infection.

QS systems in *P. aeruginosa* are systematized hierarchically with *las* system consisting of LasI and LasR as the synthase and regulator, respectively, at the top [6,7]. It uses N-3-(oxo-dodecanoyl)-L-homoserine lactone (OdDHL) as a signaling molecule and further regulates the *rhl* and the *pqs* systems. The *rhl* system consists of RhlI and RhlR as the synthase and regulator, respectively. It uses N-butanoylhomoserine (BHL) lactone as a signaling molecule, whereas the *pqs* system uses 2-heptyl-3-hydroxy-4-quinolone (PQS) as a signaling molecule [7]. During bacterial growth, these autoinducers (OdDHL, BHL, and PQS) accrue in the culture environment till it attains the threshold concentration that instigates the signaling necessary for the regulation of virulence genes expression [5]. QS has, thus, become a primary target in therapeutics [8].

At the source, freshwater microalga is known to exist in symbiotic relationship with the bacterial inhabitants. *C. emersonii KJ725233* is one such microalga that coexisted with bacterial population in an artificial pond in the Western regions of Maharashtra. It has been isolated, identified by 18s rDNA sequencing, and has exhibited the presence of phenolics such as flavonoids [9,10]. The present study is one of the first to report the anti-quorum sensing potential of a microalga against *P. aeruginosa*. The methanolic extract of *C. emersonii KJ725233* has displayed anti-pseudomonas activity [9] making it worthwhile to determine its anti-quorum sensing potential. The study for the 1st time reports the downregulation of quorum sensing system of the priority pathogen *P. aeruginosa* by any microalga so far to the best of our knowledge.

The present study was undertaken after identifying coexistence of *C. emersonii KJ725233* with *P. aeruginosa*. This observation necessitated the investigation of the defensive stratagem of this microalga with pathogenic bacterial neighbors.
2. MATERIALS AND METHODS

2.1. Culture and Culturing Conditions

C. emersonii KJ725233 was isolated from Western regions of Maharashtra, India [10]. *C. emersonii* KJ725233 was mass cultured in BG-11 media with 12h:12 h light:dark conditions and with 12 h of photoperiod for a period of 30 days.

2.2. Preparation of Extract

After 30 days of incubation, the biomass was harvested by centrifugation at 5000 rpm for 20 min and dried at 60°C for a period of 24 h. The extract was prepared by sonicating (LABMAN sonicator – Digital Ultrasonic Cleaner LMUC Series, India) dried biomass in methanol at a concentration of 0.1 g mL⁻¹ for 40 min. These suspensions were centrifuged at 5000 rpm for 20 min and the supernatant was transferred to a crucible. The extraction was repeated thrice and all the supernatants were pooled together. These were dried at 28 ± 1°C and reconstituted in dimethyl sulfoxide at a concentration of 5 mg mL⁻¹.

2.3. Minimum Inhibitory Concentration

The antimicrobial potential of *C. emersonii* KJ725233 against *P. aeruginosa* MTCC1688 was determined by agar well diffusion method [9]. The MIC of the methanolic extract was determined by broth microdilution method [11] using an inoculum density of 1*10⁶ cells mL⁻¹. The methanolic extract was used at concentrations from 0.1 to 1 mg mL⁻¹, whereas quercetin was used as a positive control at concentrations of 2–20 µg mL⁻¹. To determine whether the MIC was bactericidal or bacteriostatic, the culture from both the MIC tube of the extract and quercetin was plated on sterile LB agar plates.

2.4. Spectroscopic Determination of Anti-Quorum Sensing Potential of *C. emersonii* KJ725233 against *P. aeruginosa* MTCC1688 in terms of Quantitative inhibition of its Virulence Factors

A 3 mL of 1*10⁶ cells mL⁻¹ were inoculated with varying concentrations, namely, 0.042, 0.083, 0.125, 0.166, and 0.333 mg mL⁻¹ of the methanolic extract and 3.33 µg mL⁻¹ of quercetin in glycerol supplemented nutrient broth medium [glycerol (3%), meat extract (0.1%), yeast extract (0.2%), peptone (0.5%), and sodium chloride (0.5%)] for pyocyanin inhibition assay, CYKN [casein (1%), dipotassium dihydrogen phosphate (0.2%), yeast extract (0.5%), and sodium chloride (0.5%)] for protease and elastase inhibition assay; LB broth for pyochelin inhibition and in tryptone soy broth [tryptone (1.7%), peptone (0.15%), sodium chloride (0.5%), dipotassium hydrogen phosphate (0.25%), dextrose (0.25%), and malt extract (0.15%)] for polysaccharide and biofilm inhibition. These were incubated at 37°C for 24 h. At the end of incubation, the supernatant was obtained by centrifugation at 5000 rpm for 20 min and processed as earlier described for pyocyanin [12-14], protease [14-17], elastase [18], rhamnolipid [19], pyochelin [20,21], polysaccharide [22], and biofilm formation [23,24]. Alterations in quorum sensing gene expression of *P. aeruginosa* KJ725233 by quantitative real-time polymerase chain reaction (qRT-PCR)

To determine the alterations in the quorum sensing genes of *P. aeruginosa* MTCC1688, 1*10⁶ cell mL⁻¹ were incubated with 1 mg mL⁻¹ of CEME at 37°C for 24 h. The total RNA was extracted using TRI reagent (Sigma, USA) by following the manufacturer’s protocol. cDNA was synthesized from RNA using Thermo Fisher Scientific – RevertAid First Strand cDNA synthesis kit. The PCR reaction was performed on LightCycler® 480 Instrument II – Roche (Switzerland) using LightCycler® 480 SYBR Green I master mix. PCR conditions employed were −94°C for 5 min for 1 cycle, 40 cycles at 94°C for 30 s, 59°C for 30 s, and 72°C for 30 s using primers mentioned in Table 1. The primers were designed using *Pseudomonas* genome database (https://www.pseudomonas.com/) and Primer BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi). RpoD was used as a housekeeping gene. Melting curves analysis was performed at the end of amplification to confirm data quality. Fold change in target gene expression was translated into critical threshold cycle (Cₜ) calculated by delta-delta Cₜ algorithms [25].

2.5. Identification of Bioactives in CEME by GC-HRMS

GC-HRMS analysis was carried out using GC (Agilent Technologies, USA) equipped with Accucutoff MS with HP-5 MS capillary column 30 m in length with an internal diameter of 0.32 mm and film thickness of 0.25 µm containing 5% phenyl polysiloxane [9].

2.6. Statistical Analysis

All the experiments were performed in triplicates. Data were analyzed by one-way ANOVA and are presented as mean±SD. *P* < 0.05 was considered less significant.

3. RESULTS

3.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

The antibacterial activity of the methanolic extract of *C. emersonii* KJ725233 against *P. aeruginosa* MTCC1688 is reported earlier [9]. To determine the MIC of the methanolic extract, broth dilution method was used and the MIC for the methanolic extract of *C. emersonii*

Table 1: Primer sequences for RT-PCR.

Primer	Sequences (5’–3’)	Amplicon size (bp)
RpoD forward	CGATCGGTGACACGCAAGAT	176
RpoD reverse	GTTCATGTCAGTGCGGAACG	192
Lasf forward	GCGGAAGAGTTCGATAAAAA	68
Lasf reverse	GCTCTTGAACACTTGAGCA	83
LasR forward	CTGTGGAATGCTCAAGGACTAC	210
LasR reverse	ACCGAACCTCCGCAGA	120
Rhlf forward	GCTCTTGATCGTGGAAA	153
Rhlf reverse	GTTCCGAGATGGTCGAAGCTG	176
Rhir forward	TCGGAATGTGGTCTGGAG	219
Rhir reverse	GGCACCGAAGTCCGATAGC	176
PqsA forward	CCG ACCCTACAT TCTCTCCCC	156
PqsA reverse	GACTTGGGATTGATCACGCG	176
KJ725233 was found to be 0.5 mg mL\(^{-1}\) whereas that of quercetin was 6 \(\mu\)g mL\(^{-1}\) [Figure 1]. However, the MIC of the methanolic extract (0.5 mg mL\(^{-1}\)) was found to be bacteriostatic whereas that of quercetin (6 \(\mu\)g mL\(^{-1}\)) was found to be bactericidal in nature.

3.2. Quantitative Inhibition of Virulence factors of \(P.\ aeruginosa\) MTCC 1688 by CEME

The present study dealt with the spectrophotometric determination of inhibition of \(P.\ aeruginosa\) virulence factors, namely, pyocyanin, protease, elastase, pyochelin, rhamnolipid, polysaccharides, and biofilm production. CEME at 0.33 mg mL\(^{-1}\) exhibited 62.48 \(\pm\) 1.11% pyocyanin inhibition, 84.72 \(\pm\) 1.11% protease inhibition, 73.47 \(\pm\) 0.11% elastase inhibition, 69.95 \(\pm\) 7.12% pyochelin inhibition, 86.76 \(\pm\) 0.48% rhamnolipid inhibition, 44.72 \(\pm\) 1.58% polysaccharide inhibition, and 83.77 \(\pm\) 6.48% biofilm inhibition. On the other hand, quercetin at 3.33 \(\mu\)g mL\(^{-1}\) exhibited 42.72 \(\pm\) 2.04% pyocyanin inhibition, 59.05 \(\pm\) 3.33% protease inhibition, 30.12 \(\pm\) 1.81% elastase inhibition, 67.88 \(\pm\) 7.83% pyochelin inhibition, 50.62 \(\pm\) 2.20% rhamnolipid inhibition, 28.57 \(\pm\) 2.58% polysaccharide inhibition, and 26.86 \(\pm\) 0.52% biofilm inhibition [Figure 2].

3.3. Alteration in the Expression of Quorum Sensing Genes of \(P.\ aeruginosa\) MTCC 1688 by CEME

The relative expression of the target genes of \(P.\ aeruginosa\) was determined by comparing them with the reference \(rpoD\) gene. Relative expression levels of these genes in \(P.\ aeruginosa\) treated with CEME were compared with that of the untreated \(P.\ aeruginosa\) and expressed in terms of fold change by \(2^{\Delta\Delta}Ct\) method. Percent reduction in gene expression was determined by 1-FC*100 [26] [Figure 3]. Although CEME was used at a concentration 100 folds higher than that of quercetin; quercetin was found to affect las, rhl, and pqs system 13.93–27.03 times more as compared to CEME [Figure 3].

3.4. Bioactives in CEME

GC-HRMS analysis enabled the identification of the bioactives present in the methanolic extract of \(C.\ emersonii\) KJ725233. Phytol was one of the major compounds identified at 21.51 min with a peak area of 64.77%. In addition to phytol, 1-docosene, hexadecane, bicyclohexylidene-2-oxocyclohexyl methane, pentadecanoic acid, 14-methyl, methyl ester, and 9,12-octadecadienoic acid methyl ester were also identified in CEME [9].

4. DISCUSSION

A serious concern about \(P.\ aeruginosa\) infections is the higher mortality rate in immunocompromised patients (70–80%) compared to other bacterial infections such as \(Staphylococcus\) or other Gram-negative bacteria [27]. The ability of pathogenic bacteria such as \(P.\ aeruginosa\) to induce a diseased condition depends on its potential to synthesize agents such as toxins and adhesion molecules collectively termed as “virulence factors” that violently destroy the host immune system [28]. \(P.\ aeruginosa\) possesses a multitude of virulence factors such as pyocyanin, proteases, siderophores, rhamnolipids, polysaccharides, and biofilm [29]. Pyocyanin acts as a virulence factor primarily because of its ability to generate ROS by oxidizing glutathione with simultaneous reduction of oxygen as well as by interfering in the electron transport by accepting an electron from NAD or NADP and transferring it to oxygen [12,30,31]. It is produced by different strains of \(P.\ aeruginosa\)
Flavonoids suppress antibiotic quorum quenchers that interfere and disrupt the bacterial quorum sensing systems in P. aeruginosa [9,47]. The presence of phenolics and flavonoids in C. emersonii KJ725233 as described earlier [9] may have contributed to its anti-quorum sensing potential in terms of pyocyanin, elastase, protease, pyochelin, rhamnolipid, polysaccharide, and biofilm formation inhibition as seen in the present study. Phytol a quorum sensing inhibitor reported to inhibit biofilm formation, pyocyanin production, and motility of P. aeruginosa was identified in the methanolic extract of C. emersonii KJ725233 [9,47]. The quorum sensing inhibitors present in the methanolic extract of C. emersonii KJ725233 were found to downregulate all the three QS systems [Figure 3]. In addition, the oxidative stress reportedly induced by pyocyanin can also be counteracted by the strong antioxidant potential exhibited by the methanolic extract of C. emersonii KJ725233 [9]. However, though methanolic extract of C. emersonii KJ725233 was used at a concentration 100 times higher than that of quercetin; quercetin was found to affect las, rhl, and pqs system 13.93–27.03 folds more. The downregulation of the lasI and rhl genes of P. aeruginosa by natural compounds such as quercetin, halogenated furanones, baicalin, and terpinen-4-ol either alone or in combination with an antibiotic has only been reported so far [48-51].

5. CONCLUSION

C. emersonii KJ725233 interferes with both the AHL and the PQS quorum sensing systems in P. aeruginosa. Since these QS systems regulate virulence in P. aeruginosa, C. emersonii KJ725233 can prove to be a potential biocontrol agent that aids in disarming the pathogenicity of such a virulent microbe. It exhibits itself as a probable candidate for use as an additive in an anti-virulence drug formulation which, however, requires in vivo evaluation. Since there are more than 30,000 identified microalgal species with over 15,000 bioactives compounds, the study, thus, sets the podium to unravel another reservoir of pharmaceutically significant quorum sensing disarmer from the sea of untapped microalgal species.

6. CONFLICT OF INTEREST

Authors declared that there are no conflicts of interests.

7. FINANCIAL SUPPORT AND SPONSORSHIP

None.

REFERENCES

1. Maisuria VB, Santos YL, Tufenkji N, Deziel E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 2016;6:1-12.
2. Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem 2017;292:4064-76.
3. Aboushieb HM, Omar HM, Abozahra R, Eisheredy A, Baraka K. Correlation of quorum sensing and virulence factors in Pseudomonas aeruginosa isolates in Egypt. J Infect Dev Ctries 2015;9:1091-9.
4. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003;22:3803-15.
5. Jaramillo-Colorado B, Olivera-Verbel J, Stashenko EE, Wagner-
Dobler I, Kunze B. Anti-quorum sensing activity of essential oils from colombian plants. Nat Prod Res 2012;26:1075-86.
6. Kim B, Park JS, Choi HY, Kwak JH, Kim WG. Differential effects of alkyl gallates on quorum sensing in Pseudomonas aeruginosa. Sci Rep 2019;9:7741.
7. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015;6:26-41.
8. Hurley MN, Camara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J 2012;40:1014-23.
9. Savant SS, Kelkar-Mane V. Nutritional profile, antioxidant, antimicrobial potential, and bioactive profiles of Chlorella emersonii KJ725233. Asian J Pharm Clin Res 2018;11:220-5.
10. Savant SS, Joshi AA, Bhagwat AM, Kelkar-Mane V. Tapping the antioxidant potential of a novel isolate-Chlorella emersonii. World J Pharm Res 2014;3:726-39.
11. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimum inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008;3:163-5.
12. El-Foully MZ, Sharaf AM, Shahn AA, El-Bialy HA, Omara AM. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci 2015;8:36-48.
13. Tan LY, Yong WF, Chan KG. Silencing quorum sensing through extraction of Melicope lum-ankenda. Sensors 2012;12:4339-51.
14. Rahman PK, Pasirayi G, Auger V, Ali Z. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Biotechnol Appl Biochem 2010;55:45-52.
15. Iiyama K, Takahashi E, Lee JM, Mon H, Morishita M, Kusakabe T, et al. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 2017;364:1-7.
16. Coelho DF, Saturno TP, Fernandes FF, Mazzola PG, Silveira E, Tambourgi EB. Azoscein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. Biomed Res Int 2016;2016:1-7.
17. Najafi MF, Deo baggage D, Deo baggage D. Potential application of protease isolated from Pseudomonas aeruginosa pd100. Electron J Biotechnol 2005;8:197-203.
18. Galdino AC, Branquinha MH, Santos AL, Viganor L. Pseudomonas aeruginosa and its arsenal of proteases: Weapons to battle the host. In: Chakraborti S, Dhalla NS, editors. Pathophysiological Aspects of Proteases. Singapore: Springer; 2017. p. 351-64.
19. Teplitski M. Quorum-Sensing: A Battle With No End in Sight. India: Clinical Microbiol Diagn 2016;5:1-6.
20. Jin H, Yardeni EH, Koledkin-Gal I. Biofilms: Maintenance, development, and disassembly of bacterial communities are determined by QS cascades. In: Kalai VC, editor. Quorum Sensing Vs Quorum Quenching: A Battle With No End in Sight. India: Springer; 2015. p. 23-37.
21. Castaneda-Tamez P, Ramirez-Peris J, Perez-Velazquez J, Kuttler C, Jalalimanehs A, Saucedo-Mora MA, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol 2018;9:1348.
22. Cheluvappa R, Shimmon R, Dawson M, Hilmer SN, Couteur DG. Reactions of Pseudomonas aeruginosa pyocyanin with reduced glutathione. Acta Biochim Pol 2008;55:571-80.
23. Galdino AC, Viganor L, Ziccardi M, Nunes AP, Dos Santos KR, Branquinha MH, et al. Heterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa. Enferm Infecct Microbiol Clin 2017;35:630-7.
24. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol Med 2016;22:1077-90.
25. Cornelis P, Dingermans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013;3:75.
26. Laabir M, Jamieson WD, Lewis SE, Diggle SP, Jenkins AT. A new assay for rhamnolipid detection-important virulence factors of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2014;98:7199-209.
27. Kiran GS, Hassan S, Sajayan A, Selvin J. Quorum quenching compounds from natural sources. In: Sugathan S, Pradeep NS, editors. Bioresource and Bioprocess in Biotechnology. Vol. 2. Exploring Potential Biomolecules. Singapore: Springer; 2017. p. 351-64.
46. Manefield M, Nys R, Naresh K, Roger R, Givskov M, Peter S, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999;145:283-91.

47. Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M. In vitro anti-quorum sensing activity of phytol. Nat Prod Res 2015;29:374-7.

48. Bose SK, Chauhan M, Dhingra N, Chhibber S, Harjai K. Terpinen-4-ol attenuates quorum sensing regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Future Microbiol 2020;15:127-42.

49. Ahmed AK, Rudden M, Smyth T, Dooley JS, Marchant R, Banat IM. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol 2019;103:3521-35.

50. Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. Plos One 2017;12:e0176883.

51. Ouyang J, Sun F, Feng W, Sun Y, Qiu X, Xiong L, et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 2016;120:966-74.

How to cite this article:
Desai SS, Singh RD, Ghosh SB, Kelkar V. A novel strategy for disarming quorum sensing in Pseudomonas aeruginosa-Chlorella emersonii KJ725233. J App Biol Biotech. 2020;8(05):78-83. DOI: 10.7324/JABB.2020.80510