Kinetic Energy Release Distributions for C$_2^+$ Emission from Multiply Charged C$_{60}$ and C$_{70}$ Fullerenes

Henrik Cederquist
Nicole Haag
Zoltan Berenyi
Peter Reinhed

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/782

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork

Part of the Physics Commons

Recommended Citation

H. Cederquist et al., "Kinetic Energy Release Distributions for C$_2^+$ Emission from Multiply Charged C$_{60}$ and C$_{70}$ Fullerenes," Journal of Physics: Conference Series, vol. 163, no. 1, Institute of Physics - IOP Publishing, Jan 2009.
The definitive version is available at https://doi.org/10.1088/1742-6596/163/1/012088

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.
Kinetic energy release distributions for C\(^{+2}\) emission from multiply charged C\(_{60}\) and C\(_{70}\) fullerenes

To cite this article: H Cederquist et al 2009 J. Phys.: Conf. Ser. 163 012088

View the article online for updates and enhancements.
Kinetic energy release distributions for C_2^+ emission from multiply charged C_{60} and C_{70} fullerenes

H Cederquist$, N$ Haag$, Z$ Berényi$, P$ Reinhed$, D$ Fischer$, M$ Gudmundsson$, H$ A$ B$ Johansson$, H$ T$ Schmidt$ and$ H$ Zettergren2

1 Department of Physics, Stockholm University, AlbaNova University Center, S-10691
Stockholm, Sweden
2 Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
E-mail: cederquist@physto.se

Abstract. We present a systematic study of experimental kinetic energy release distributions for the asymmetric fission processes $C_q^+ + C_{60} \rightarrow C_{(q-1)}^+ + C_{58}^+ + C_2$ and $C_q^+ + C_{70} \rightarrow C_{(q-1)}^+ + C_{68}^+ + C_2$ for mother ions in charge states $q = 4–8$ produced in collisions with slow highly charged ions. Somewhat to our surprise, we find that the KERD for asymmetric fission from C_q^+ are considerably wider and have larger most likely values than the C_{q-1}^+ distributions in the corresponding charge states when $q > 4$.

1. Introduction

Collision experiments on the extraordinary stable and symmetric fullerenes are particularly useful for the identification of the main mechanisms behind electron transfer processes, energy deposition and fragmentation. Indeed a very large number of such studies has been carried out since the 1990s (see e.g. [1] and references therein). When fullerenes collide with slow highly charged atomic ions several electrons may be transferred and multiply ionized intact fullerenes may be produced. Depending on their internal excitation energy, fullerene ions may also fragment within the experimental time frame of a few microseconds. The kinetic energy release distributions (KERD) in these unimolecular fragmentation processes provide valuable information on the energetics and dynamics of the individual reactions, with positions and shapes governed by the potential energy surfaces describing the interactions of the separating fragments in the exit channel. Unlike neutral C_2 evaporation,

$$ C_q^+ \rightarrow C_{q-1}^+ + C_2, \quad (n = 60, 70) \tag{1} $$

for which kinetic energy release distributions have been measured earlier [2–4], much less is known about the C_2^+ emission process (asymmetric fission),

$$ C_q^+ \rightarrow C_{(q-1)}^+ + C_2, \quad (n = 60, 70). \tag{2} $$

In this work, we present the first systematic study of experimental KERD for asymmetric fission (2) of C_{60}^+ and C_{70}^+ with $q = 4–8$. A single experimental KERD has been reported by Senn et al. [5] in 1998, but the more recent results on kinetic energy releases in asymmetric fission of multiply charged fullerenes [6, 7] are given as single (typical) values only. There are also no theoretical studies that could suggest a functional form for KERD of (2).
2. Experiment
For the present study, we have designed a new linear recoil-ion-momentum spectrometer which has been optimized for measurements of KERD for fragmenting complex molecules. The spectrometer, which is described in more detail in [8], consists of an acceleration region with 19 ring electrodes in a grounded housing with a small aperture for the collinear target jet, a field-free drift region, and a position sensitive detector with two microchannelplates (MCP, 40 mm in diameter) and a resistive anode. The dimensions of the spectrometer are chosen such that first order time focusing for different trajectory starting points is achieved. Collimated fullerene target jets effusing from a sublimation oven are crossed with a pulsed (2 kHz, 5 µs pulse length) beam of 57 keV Xe$^{19+}$ ions ($v = 0.4$ a.u.) from a 14.5 GHz Electron Cyclotron Resonance (ECR) ion source.

Intact ionized fullerenes and charged fragments are extracted towards the detector directly after the passage of the ion beam by homogeneous acceleration fields of 6.0 or 9.0 V/mm. The ion flight times, as deduced from the time differences between the extraction pulses and signals from the MCP, and the corresponding four anode corner signals, yielding the position on the detector, are stored on an event-by-event basis.

3. Data analysis
Two-dimensional detector images for multiply charged C$_{58}^+$ and C$_{68}^+$ fragments from fission (2) and evaporation (1) (see figure 1, left, for an example) are converted to radial intensity distributions (cf. figure 1, right), which are then used to extract distributions of kinetic energy releases, $P(\epsilon)$, by means of a simulation and fitting procedure. SIMION 7.0 simulations of the radial distributions are performed taking into account the actual initial conditions and assumed

![Figure 1](image_url)

Figure 1. (Color online) Left: Two-dimensional detector images for C$_{58}^{5+}$ (upper panel) and C$_{68}^{5+}$ (lower panel) due to fragmentation of C$_{70}$ and C$_{60}$ mother ions, respectively. Right: Corresponding experimental radial distributions with fitted/simulated distributions. Contributions from fission and evaporation are indicated. The background is assumed to be uniform (intensity linear in r) up to $r = 16$ mm. Events with $r > 16$ mm are disregarded in the fit. For comparison, the radial distributions of intact C$_{70}^{5+}$ and C$_{60}^{5+}$ ions are indicated by dashed lines (not to scale).
Figure 2. Kinetic energy release distributions in asymmetric fission reactions of multiply charged C_{60} (——) and C_{70} (- - - -), as functions of charge state, q. The distributions shown are optimized to reproduce the experimental data in the described simulation and fitting procedure.

Figure 3. The most likely kinetic energy release values for fission of C_{60}^{q+} and C_{70}^{q+}, $\tilde{\epsilon}_f$, are shown as functions of q. In the case of C_{60}, there is almost perfect agreement with theoretical values for the reverse activation barriers obtained by high level Density Functional Theory (DFT) transition state calculations [10] (cf. figure 3a). A comparison with earlier experimental kinetic energy release measurements is shown in part b of figure 3. The wide experimental distributions which we obtain show that kinetic energy releases may also be several eV smaller or larger than the reverse activation barrier. The lower energies may be explained as due to couplings of the reaction coordinate with other internal degrees of freedom leading to a situation in which the reverse barrier may partially be transformed to internal energy. The larger kinetic energy release
values may possibly relate to remaining electronic excitations. At the moment, the mechanism behind this excitations is not completely clear and needs to be studied in further detail.

We believe that the observed differences between C_{60} and C_{70} are, at least partly, related to a larger polarizability due to the larger overall size of C_{70}. This effect, however, which is taken into account in the electrostatic model calculations [6, 11] plotted in figure 3a, cannot fully explain the observed differences, which are unexpectedly large. Additionally, the probably lower C_{70} fission barriers [8], the larger number of vibrational degrees of freedom for C_{70} and C_{68} in comparison to C_{60} and C_{58}, the inhomogeneous charge distribution on C_{70} ions [13] and the non-spherical shape may play a role. Also the fact that there is a larger number of C_{68} isomers and that several transformations between them are needed to reach the energetically most stable one, may lead to a situation where less excess energy is released as relative translational energy of the fragments.

Acknowledgments
The support by the European Project ITS LEIF (No. RII3/026015) is gratefully acknowledged.

References
[1] Campbell E E B and Rohmund F 2000 Rep. Prog. Phys. 63 1061
[2] Matt S et al 1999 Chem. Phys. Lett. 303 379
[3] Gluch K et al 2004 Chem. Phys. Lett. 385 449
[4] Climen B et al 2007 Chem. Phys. Lett. 437 17
[5] Senn G, Märk T D and Scheier P 1998 J. Chem. Phys. 108 990
[6] Jensen J et al 2004 Phys. Rev. A 69 053203
[7] Tomita S et al 2003 Phys. Rev. A 67 063204
[8] Haag N et al 2008 Phys. Rev. A (accepted)
[9] Klots C E 1991 Z. Phys. D 21 335
[10] Díaz-Tendero S, Alcamí M and Martín F 2005 Phys. Rev. Lett. 95 013401
[11] Zettergren H et al 2002 Phys. Rev. A 66 032710
[12] Scheier P, Dünser B and Märk T D 1995 Phys. Rev. Lett. 74 3368
[13] Zettergren H, Alcamí M and Martín F 2008 ChemPhysChem 9 861