DETECTION OF *Leishmania (Viannia)* IN *Nyssomyia neivai* AND *Nyssomyia whitmani* BY MULTIPLEX POLYMERASE CHAIN REACTION, IN SOUTHERN BRAZIL

Herinha Coeto NEITZKE-ABREU(1), Kárin Rosi REINHOLD-CASTRO(1), Mateus Sahaini VENAZZI(2), Regiane Bertin de Lima SCODRO(3), Alessandra de Cassia DIAS(1), Thaís Gomes Verzignassi SILVEIRA(1,3), Ueslei TEODORO(1) & Maria Valdrinez Campana LONARDONI(1,3)

SUMMARY

Sandflies transmit pathogens of leishmaniasis. The natural infection of sandflies by *Leishmania (Viannia)* was assessed in municipalities, in the state of Paraná, in Southern Brazil. Sandflies were collected with Falcão and Shannon traps. After dissection in search of flagellates in digestive tubes and identification of the species, female sandflies were submitted to the Multiplex Polymerase Chain Reaction (multiplex PCR) for detection of the fragment of the kDNA of *Leishmania (Viannia)* and the fragment from the IVS6 cacophony gene region of the phlebotomine insects. The analysis was performed in pools containing seven to 12 guts from females of the same species. A total of 510 female sandflies were analyzed, including nine *Migonemyia migonei*, 17 *Pintomyia fischeri*, 216 *Nyssomyia neivai*, and 268 *Nyssomyia whitmani*. Although none of the females was found naturally infected by flagellates through dissection, the fragment of DNA from *Leishmania (Viannia)* was shown by multiplex PCR in one sample of *Ny. neivai* (0.46%) and three samples of *Ny. whitmani* (1.12%). It was concluded that *Ny. neivai* and *Ny. whitmani* are susceptible to *Leishmania* infection, and that multiplex PCR can be used in epidemiological studies to detect the natural infection of the sandfly vector, because of its sensitivity, specificity and feasibility.

KEYWORDS: Cutaneous leishmaniasis; Sandfly; PCR; *Leishmania*; *Nyssomyia whitmani*; *Nyssomyia neivai*.

INTRODUCTION

Knowledge of the fauna composition, behavior, rates of natural infection of the sandfly, *Leishmania* species identification, and environmental characteristics of endemic areas are essential for the public-health services responsible for protecting populations that live in areas in which leishmaniasis is endemic. Leishmaniasis has worldwide propagation. In Brazil, cutaneous leishmaniasis (CL) has been reported in all states.

Cases of CL have increased significantly since the 1980s, and are appearing over wider areas in the State of Paraná, in the South of Brazil. This disease has been recorded in occupied areas for more than a century, even in urban areas, contrary to expectations that human pressure would eliminate natural foci and reduce the incidence of this endemic disease. The organization of rural areas in the Brazilian colonial period created environmental conditions that clearly favor CL transmission.

There are several reports of *Leishmania* detection in sandflies in endemic CL areas in Brazil and in the world. However, considering the wide geographical distribution of this dermatosis in the Americas, knowledge of the natural infection rate of sandflies is still insufficient to estimate the risk of *Leishmania* infection in many endemic areas.

Given the occurrence of autochthonous CL cases in several municipalities, in the state of Paraná, natural infection rates of sandflies by *Leishmania (Viannia)* were investigated, in order to identify the species of *Leishmania* present in locations where cases of this disease had been reported.

MATERIAL AND METHODS

Sandfly collection: Sandflies were collected in the localities of Recanto Marista, Água Azul Farm and Flor de Maio Grange, in the municipalities of Doutor Camargo, Fênix and Mandaguari, respectively, in the state of Paraná, where CL cases had been reported. Sandflies were collected from January through September 2006, from 6 p.m. to 6 a.m., with Falcão light traps and a Shannon trap, installed in woods, domiciles, peridomicile and domestic-animal shelters (cattle shelter and pigsty). The collected insects were kept alive for further dissection and observation of the natural infection by flagellates.

Dissection and identification of sandflies: The dissection was carried out in an insecticide-free environment, eliminating the risk of infection due to the multiplication of the parasites. The dissection was performed in pools containing seven to 12 guts from females of the same species. A total of 510 female sandflies were analyzed, including nine *Migonemyia migonei*, 17 *Pintomyia fischeri*, 216 *Nyssomyia neivai*, and 268 *Nyssomyia whitmani*. Although none of the females was found naturally infected by flagellates through dissection, the fragment of DNA from *Leishmania (Viannia)* was shown by multiplex PCR in one sample of *Ny. neivai* (0.46%) and three samples of *Ny. whitmani* (1.12%). It was concluded that *Ny. neivai* and *Ny. whitmani* are susceptible to *Leishmania* infection, and that multiplex PCR can be used in epidemiological studies to detect the natural infection of the sandfly vector, because of its sensitivity, specificity and feasibility.

SUMMARY

Sandflies transmit pathogens of leishmaniasis. The natural infection of sandflies by *Leishmania (Viannia)* was assessed in municipalities, in the state of Paraná, in Southern Brazil. Sandflies were collected with Falcão and Shannon traps. After dissection in search of flagellates in digestive tubes and identification of the species, female sandflies were submitted to the Multiplex Polymerase Chain Reaction (multiplex PCR) for detection of the fragment of the kDNA of *Leishmania (Viannia)* and the fragment from the IVS6 cacophony gene region of the phlebotomine insects. The analysis was performed in pools containing seven to 12 guts from females of the same species. A total of 510 female sandflies were analyzed, including nine *Migonemyia migonei*, 17 *Pintomyia fischeri*, 216 *Nyssomyia neivai*, and 268 *Nyssomyia whitmani*. Although none of the females was found naturally infected by flagellates through dissection, the fragment of DNA from *Leishmania (Viannia)* was shown by multiplex PCR in one sample of *Ny. neivai* (0.46%) and three samples of *Ny. whitmani* (1.12%). It was concluded that *Ny. neivai* and *Ny. whitmani* are susceptible to *Leishmania* infection, and that multiplex PCR can be used in epidemiological studies to detect the natural infection of the sandfly vector, because of its sensitivity, specificity and feasibility.

KEYWORDS: Cutaneous leishmaniasis; Sandfly; PCR; *Leishmania*; *Nyssomyia whitmani*; *Nyssomyia neivai*.
out under a stereoscope; the legs and wings were removed and the dissection was carried out by making two incisions in the distal portion of the abdomen and, with zigzag movements, the digestive tubes were removed and examined under an optical microscope (400 x) in the search for flagellates and the identification of the species of the sandfly26. The nomenclature of the species follows GALATI13.

After dissection and identification26 of species, digestive tubes were stored at -18 °C in tubes containing 150 µL STE buffer (0.1 M NaCl, 10 mM Tris-base; Na\textsubscript{2}EDTA-2H\textsubscript{2}O 1 mM, pH 8.0), each containing seven to 12 guts from females of the same species.

Extraction of DNA: The samples were macerated, and DNA was extracted with a solution of guanidine isothiocyanate and phenol, and hydrated in 20 µL of ultra-pure H\textsubscript{2}O\textsubscript{15}. For each group of 22 samples submitted for DNA extraction, one negative control (male sandflies) and one positive control [male sandflies plus 105 L. (V.) braziliensis promastigotes] were used.

Multiplex PCR: Two pairs of primers were used: MP3H (5’-GAA CGG GGT TTC TGT ATG C-3’) and MP1L (5’-TAC TCC CGC ACA TGC CTC TG-3’)10 to amplify a fragment of 70-bp from the mini circle region of the kinetoplast (kDNA) of the *Leishmania* (Viannia), and 5Llca (5’-TGG CCG AAC ATA ATG TTA G-3’) and 3Llca (5’-CCA CGA ACA AGT TCA ACA TC-3’)10 to amplify a fragment of 220-bp from the *IVS6* cactophagy gene region of the phlebotomine insects.

The PCR reaction mixture (final volume 25 µL) was composed of 0.5 µM of each of the primers (Invitrogen Life Technologies, São Paulo, Brazil), 0.2 mM dNTP (Invitrogen, Carlsbad, CA, USA), 1U Platinum Taq DNA Polymerase, (Invitrogen, Carlsbad, CA, USA), 1.5 mM MgCl\textsubscript{2}, 1X enzyme buffer, and 2 µL DNA template. The amplification was carried out in a PC Thermocycler (Biometra, Germany) at 94 °C for seven min to activate the enzyme, followed by 30 cycles, each divided into three stages, of denaturation (1.5 min at 95 °C), annealing (1.5 min at 57 °C), and polymerization (two min at 72 °C). After this, the extension was continued for a further 10 min at 72 °C, and the tubes were then kept at 4 °C until analysis14. The amplification products were submitted to electrophoresis in 2% of agarose gel (Invitrogen, Paisley, Scotland, UK) stained with 0.1 µg/mL ethidium bromide, at 10-15 V/cm. The presence of bands was observed in a transilluminator (Macro Vue23 UV-20, Hoefer). For every five samples, one positive control [reaction mixture plus L. (V.) braziliensis DNA] and one negative control (reaction mixture plus water) were added.

RESULTS

In total, 510 (52 pools) female sandflies were analyzed by dissection and multiplex PCR, including nine *Migonemys migonei* (one pool), 17 *Pintomyia fischeri* (two pools), 216 *Nyssomyia neivai* (22 pools), and 268 *Nyssomyia whitmani* (27 pools) (Table 1). A total of 244 female sandflies were collected at Recanto Marista, 107 at Água Azul Farm, and 159 at Flor de Maio Grange (Table 1).

All 52 sandfly pools contained the 220-bp fragment from the *IVS6* cactophagy gene region of the sandflies, and four pools (7.7%) showed the 70-bp fragment from the mini circle kDNA of *Leishmania* (Viannia) (Fig. 1). The minimal infection rate of *Ny. neivai* was 0.46% (1/216), and of *Ny. whitmani* was 1.12% (3/268). At Recanto Marista one *Ny. neivai* pool with *Leishmania* infection was detected on the porch of a domicile; at Água Azul Farm, one *Ny. whitmani* pool was detected in the peridomicle (near the woods); and at Flor de Maio Grange, two *Ny. whitmani* pools were detected, one on the porch of a domicile and another from a domestic-animal shelter. The minimal infection rate of Recanto Marista was 0.41% (1/244), of Flor de Maio Grange was 1.26% (2/159), and at Água Azul Farm was 0.93% (1/107).

DISCUSSION

M. migonei, *Pi. fischeri*, *Ny. neivai*, and *Ny. whitmani* are frequently found in Brazil2,4,11,34,35,44. Both species detected with *Leishmania* infection are widely propagated in Brazil4,5,6,9,20,21 and in the state of

Table 1

Specimens/Localities (Municipalities)	Recanto Marista (Doutor Camargo)	Água Azul Farm (Fênix)	Flor de Maio Grange (Mandaguari)	Total
Migonemyia migonei Na	9	0	0	9
Positive pools / Poolsa	0/1	0/0	0/0	0/1
Nyssomyia whitmani Na	19	97	152	268
Positive pools / Poolsa	0/2	1/10	2/15	3/27
Nyssomyia neivai Na	216	0	0	216
Positive pools / Poolsa	1/22	0/0	0/0	1/22
Pintomyia fischeri Na	0	10	7	17
Positive pools / Poolsa	0/0	0/1	0/1	0/2
Total Na	244	107	159	510
Positive pools / Poolsa	1/25	1/11	2/16	4/52

aNumber of Specimens; bNumber of positive pools/number of pools composed. Each pool contained seven to 12 guts from females of the same species.
NEITZKE-ABREU, H.C.; REINHOLD-CASTRO, K.R.; VENAZZI, M.S.; SCODRO, R.B.L.; DIAS, A.C.; SILVEIRA, T.G.V.; TEODORO, U. & LONARDONI, M.V.C. - Detection of Leishmania (Viannia) in Nyssomyia neivai and Nyssomyia whitmani by Multiplex Polymerase Chain Reaction, in Southern Brazil. Rev. Inst. Med. Trop. Sao Paulo, 56(5): 391-5, 2014.

The advantage of employing the multiplex PCR technique is that, in addition to the primers for detection of Leishmania (Viannia), the pair of primers used for internal control can assess the presence of probable interference from digestive contents of insects, which can inhibit the detection of Leishmania.31,34

The results show the susceptibility of sandflies to Leishmania strains. The minimum infection rates in Ny. neivai (0.46%, 1/216) and Ny. whitmani (1.12%, 3/268) are low, and might explain the low CL endemicity in the municipalities in question. Multiplex PCR, because of its sensitivity, specificity and feasibility, can be used in epidemiological studies to detect the natural infection of the sandfly vector.

RESUMO

Deteccão de Leishmania (Viannia) em Nyssomyia neivai e Nyssomyia whitmani por Multiplex Reação em Cadeia da Polimerase, no sul do Brasil

Flebotomíneos transmitem os patógenos das leishmanioses. Foi avaliada a infecção natural de flebotomíneos por Leishmania (Viannia) em municípios do Estado do Paraná, sul do Brasil. Os flebotomíneos foram coletados com armadilhas de Falcão e Shannon. Após dissecação para pesquisa de flagelados no tubo digestório e identificação das espécies, as fêmeas de flebotomíneos foram submetidas a Multiplex Reação em Cadeia da Polimerase (multiplex PCR) para a detecção do fragmento do DNA de Leishmania (Viannia) e do fragmento do gene IVS6 da cacofonia de flebotomíneos. A análise foi realizada em pools contendo sete a 12 tubos digestórios de fêmeas da mesma espécie. Um total de 510 fêmeas foram analisadas, incluindo nove M. migonei migonii, 17 P. ficheri, 216 N. neivai e 268 N. whitmani. Embora nenhuma fêmea tenha sido encontrada naturalmente infectada com flagelados pela dissecação, o fragmento de DNA de Leishmania (Viannia) foi mostrado por multiplex PCR em uma amostra de Ny. neivai (0.46%) e três amostras de Ny. whitmani (1,12%). Conclui-se que Ny. neivai e Ny. whitmani são suscetíveis à infecção por Leishmania, e que multiplex PCR, devido à sua sensibilidade, especificidade e viabilidade, pode ser utilizada em estudos epidemiológicos para a detecção da infecção natural do inseto vetor.

ACKNOWLEDGEMENTS

The authors would like to thank Colégio Marista, Água Azul Farm, and Flor de Maio Grange, for the permission granted to conduct the assessments, and for logistical support. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Process 410550/2006-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Araucária for their financial support.

REFERENCES

1. Azevedo ACR, Rangel EF, Costa EM, David J, Vasconcelos AW, Lopes UE. Natural infection of Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho, 1939) by Leishmania of the braziliensis complex in Baturité, Ceará State, northeast Brazil. Mem Inst Oswaldo Cruz. 1990;85:251.
2. Azevedo ACR, Rangel EF, Queiroz RG. Lutzomyia migonei (França, 1920) naturally infected with peripatellar flagellates in Baturité, a focus of cutaneous leishmaniasis in Ceará State, Brazil. Mem Inst Oswaldo Cruz. 1990;85:479.

393
NEITZKE-ABREU, H.C.; REINHOLD-CASTRO, K.R.; VENAZZI, M.S.; SCODRO, R.B.L.; DIAS, A.C.; SILVEIRA, T.G.V.; TEODORO, U. & LONARDONI, M.V.C. - Detection of Leishmania (Viannia) in Nyssomyia neivai and Nyssomyia whitmani by Multiplex Polymerase Chain Reaction, in Southern Brazil. Rev. Inst. Med. Trop. Sao Paulo, 56(5): 391-5, 2014.
36. Pita-Pereira D, Souza GD, Pereira TA, Zwetsch A, Britto C, Rangel EF. Lutzomyia (Pintomyia) fischeri (Diptera: Psychodidae: Phlebotominae), a probable vector of American cutaneous leishmaniasis: detection of natural infection by Leishmania (Viannia) DNA in a specimens from the municipality of Porto Alegre (RS), Brazil, using multiplex PCR assay. Acta Trop. 2011;120:273-5.

37. Reinhold-Castro KR, Scodro RBL, Dias-Sversutti AC, Neitzke HC, Rossi RM, Kuhl JB, et al. Avaliação de medidas de controle de flebotomíneos. Rev Soc Bras Med Trop. 2008;41:269-76.

38. Rocha LSO, Santos CB, Falqueto A, Grimaldi Jr G, Cupolillo E. Molecular biological identification of monoxenous trypanosomatids and Leishmania from anthropophilic sand flies (Diptera: Psychodidae) in Southeast Brazil. Parasitol Res. 2010;107:465-8.

39. Rodríguez N, Aguilar CM, Barrios MA, Barker DC. Detection of Leishmania braziliensis in naturally infected individual sandflies by the polymerase chain reaction. Trans R Soc Trop Med Hyg. 1999;93:47-9.

40. Rodríguez N, Lima H, Aguilar CM, Rodríguez A, Barker DC, Convit J. Molecular epidemiology of cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg. 2002;96(Suppl 1):105-9.

41. Saraiva L, Carvalho GML, Gontijo CM, Quaresma PF, Lima ACVMR, Falcão AL, et al. Natural infection of Lutzomyia neivai and Lutzomyia sallesi (Diptera: Psychodidae) by Leishmania infantum chagasi in Brazil. J Med Entomol. 2009;46:1159-63.

42. Silva AM, Camargo NJ, Santos DR, Massafera R, Ferreira AC, Postai C, et al. Diversidade, distribuição e abundância de flebotomíneos (Diptera: Psychodidae) no Paraná. Neotrop Entomol. 2008;37:209-25.

43. Teodoro U, Santos DR, Santos AR, Oliveira O, Poiani LP, Silva AM, et al. Preliminary information on sandflies in the north of Paraná State, Brazil. Rev Saúde Publica. 2006;40:327-30.

44. Teodoro U, Lonardoni MVC, Silveira TGV, Dias AC, Abbas M, Alberton D, et al. Luz e galinhas como fatores de atração de Nyssomyia whitmani em ambiente rural, Paraná, Brasil. Rev Saúde Publica. 2007;41:383-8.

45. Teodoro U, Santos DR, Santos AR, Oliveira O, Poiani LP, Kuhl JB, et al. Avaliação de medidas de controle de flebotomíneos no norte do Estado do Paraná, Brasil. Cad Saúde Publica. 2007;23:3997-404.

46. Teodoro U, Santos DR, Silva AM, Massafera R, Imazu LE, Monteiro WM, et al. Fauna de flebotomíneos em municípios do norte pioneiro do estado do Paraná, Brasil. Rev Patol Trop. 2010;59:322-30.

47. World Health Organization. Leishmaniasis. Available from: http://goo.gl/PfM9n.

Received: 23 September 2013
Accepted: 10 March 2014