Abstract and References. Applied physics

DOI: 10.15587/1729-4061.2022.263671
CHARACTERIZATION OF HIGH IMPEDANCE OF MULTILAYER COPLANAR WAVEGUIDE TRANSMISSION LINE DESIGN FOR INTEGRATION WITH NANODEVICES (p. 6–14)

Katipa Chezhimbayeva
Almaty University of Power Engineering and Telecommunications named after Gumarbek Dauleyev;
Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-5642-8143

Gulsaya Nurzhabayeva
Almaty University of Power Engineering and Telecommunications named after Gumarbek Dauleyev;
Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-0176-0768

Haris Norshakila
Universiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, Jalan Pantai Remis,
Perak, Malaysia
ORCID: https://orcid.org/0000-0002-1661-2226

Terahertz technology has recently attracted the attention of the researchers due to its wide range of applications such as security and military, biomedicine and health care, astronomy and biology. There are many scrutinized research papers among the terahertz applications with nanodevices such as self-switching devices. They need monolithic microwave integrated circuits for integration. It is evident that the system impedance of transmission lines is 50 Ω. However, the main limitation of self-switching diodes is high level of impedance in megaohms which is a huge value and is not so easy to implement. Paper focuses on the design and simulation of the coplanar waveguide transmission line structures with higher impedance by applying multilayer technology for the integration with self-switching diodes. Using multilayer technology in design allows wide range of impedances. Two approaches have been targeted such that meets all the requirements of integration with nanodevice. First approach is a widening the gap of the polyimide dielectric layers used in the fabrication of these components. Several design structures have been considered such as positioning the location of signal and grounds contacts with respect to the position of the dielectric layers. As the result the highest characteristic impedance of about 90 Ω was achieved at operating frequency of 110 GHz. Secondly, novel coplanar waveguide transmission line structure was investigated where the V-shape structure was joined with the signal elevated structure. The terahertz application research may effect on high data transmission rate of no less than 10 GBit/s and thereby in increase of traffic volume.

Keywords: coplanar waveguide transmission line, self-switching nanodevice, multilayer technique, monolithic microwave integrated circuit.

References
1. Betz, A. L., Boreiko, R. T. (1996). A practical Schottky Mixer for 5THz (Part II). Seventh International Symposium on Space Terahertz Technology. Charlottesville, 503–510. Available at: https://www.nrao.edu/meetings/isstt/papers/1996/1996503510.pdf
2. Siegel, P. H., Smith, R., Gadis, M., Martin, S., Podosek, J., Zimmermann, U. (1995). 2.5 THz GaAs Monolithic Membrane-diode mixer. A new planar circuit realisation for high frequency semiconductor components. Ninth International Conference on space THz Technology, Pasadena.
3. Matos, J., Song, A. M., Vasallo, B. G., Pardo, D., Gonzalez, T. (2005). THz operation of self-switching nano-diodes and nano-transistors. Nanotechnology II. doi: https://doi.org/10.1117/12.699126
4. De Lucia, F. C. (2002). THz spectroscopy - techniques and applications. 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278). doi: https://doi.org/10.1109/mwsm.2002.1012158
5. Gobus, T. R., Woolard, D. L., Samuels, A. C., Gelmont, B. L., Hesler, J., Crowe, T. W., Bykhovskaya, M. (2002). Submillimeter-wave Fourier transform spectroscopy of biological macromolecules. Journal of Applied Physics, 91 (9), 6105–6113. doi: https://doi.org/10.1063/1.1466878
6. Siegel, P. H. (2002). Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50 (3), 910–928. doi: https://doi.org/10.1109/22.989974
7. Ozanliyeva, S., Kadirbayeva, G., Chezhimbayeva, K. (2022). Evaluation of the effectiveness of the effect of photosensitization on the spectral characteristics of the fiber Bragg grating. Eastern-European Journal of Enterprise Technologies, 3 (5 (117)), 6–14. doi: https://doi.org/10.15587/1729-4061.2022.259653
8. Robertson, I. D., Lucyszyn, S. (Eds.) (2001). RFIC and MMIC Design and Technology Institute of Engineering and Technology. doi: https://doi.org/10.1049/pbcs013e
9. Kilby, J. S., Keonjian, E. (1959). Design of a semiconductor-solid-circuit adder. 1959 International Electron Devices Meeting. doi: https://doi.org/10.1109/edm.1959.187137
10. Ezzoddine, A. K. (2007). Advances in Microwave and Millimeter-wave Integrated Circuits. 2007 National Radio Science Conference. doi: https://doi.org/10.1109/narc.2007.371341
11. Balocco, C., Kasjoo, S. R., Zhang, L. Q., Alimi, Y., Winnerl S., Song, A. M. (2017). Planar Terahertz Nanodevices. 6th European Microwave Integrated Circuits Conference. Manchester.
12. Van Tayen Vo, Krishnamurthy, L., Qung Sun, Rezazadeh, A. A. (2006). 3-D low-loss coplanar waveguide transmission lines in multilayer MIMs. IEEE Transactions on Microwave Theory and Techniques, 54 (6), 2864–2871. doi: https://doi.org/10.1109/tmtt.2006.875458
13. Lu, X. F., Xu, K. Y., Wang, G., Song, A. M. (2008). Material and process considerations for terahertz planar nanodevices. Materials Science in Semiconductor Processing, 11 (3-6), 407–410. doi: https://doi.org/10.1016/j.mssp.2008.09.015
14. Song, A. M. (2004). Room-temperature Ballistic Nanodevices, Encyclopedia of Nanoscience and Nanotechnology, 9, 371–389. Available at: https://personalpages.manchester.ac.uk/staff/A.Song/publications/Emn.pdf
15. Lewin, R., Maximov, I., Shorubalko, I., Samuelson, L., Thylén, L., Xu, H. Q. (2002). High frequency characterization of a GaN/InP electronic waveguide T-branch switch. Journal of Applied Physics, 91 (4), 2398–2402. doi: https://doi.org/10.1063/1.1429801
16. Worschech, L., Fischer, F., Forchel, A., Kamp, M., Schweizer, H. (2001). High Frequency Operation of Nanoelectronic Y-Branch
The object of this study is the thermophysical properties of polymer micro- and nanocomposites, as well as the dependence of their heat conductivity with structural characteristics when using different types of fillers. A set of experimental studies of heat conductivity and specific heat capacity of polymer micro- and nanocomposite materials for polyamide 6 and carbon nanotubes, copper and aluminum as matrix and fillers was carried out. When obtaining composites, a method was used that is based on the mixing of components in the polymer melt. The content of fillers varied from 0.3 to 10 %, and the temperature of composite materials – from 305 to 500 K.

Experimental dependences of heat conductivity coefficients of the studied composites on the content of the filler were derived. It was established that according to the value of these coefficients in order of their reduction, these composite materials are ranked as follows: composites with fillers with carbon nanotubes, copper, and aluminum. It was found that only one percolation threshold varied from 0.3 to 10 %, and the temperature of composite materials – from 305 to 500 K.

The regularities of changes in the specific heat capacity of the composites under consideration on their temperature when varying within the above limits of the filler content were investigated. The analysis of the influence of the content of fillers on the degree of crystallinity of the polymer matrix of the investigated composite materials was carried out. It is shown that with an
increase in the content of fillers, the degree of crystallinity decreases. The relationship between the thermally conductive properties of the composites under consideration and the specified degree of crystallinity has been established. Higher values of heat conductivity of composites correspond to lower values of the degree of crystallinity.

The reported results can be widely used in the development of highly heat conductive composites for various engineering applications.

Keywords: polymer micro- and nanocomposites, carbon nanotubes, heat conductivity coefficient, specific heat capacity.

References

1. Xu, X., Chen, J., Zhou, J., Li, B. (2018). Thermal Conductivity of Polymers and Their Nanocomposites. Advanced Materials, 30 (17), 1705544. doi: https://doi.org/10.1002/adma.201705544

2. Mohammad Nejad, S., Srivastava, R., Bellusi, F. M., Chávez Thielemann, H., Asnari, P., Fasano, M. (2021). Nanoscale thermal properties of carbon nanotubes/epoxy composites by atomistic simulations. International Journal of Thermal Sciences, 150, 106588. doi: https://doi.org/10.1016/j.ijthermalsci.2020.106588

3. Yang, L., Zhang, L., Li, C. (2020). Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites. Composites Science and Technology, 200, 108429. doi: https://doi.org/10.1016/j.compscitech.2020.108429

4. Fialko, N., Dinzhos, R., Sherenkovskii, J., Meranova, N., Ivorskia, D., Korzhyk, V. et. al. (2021). Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies, 4 (5 (112)), 21–26. doi: https://doi.org/10.15587/1729-4061.2021.2360915

5. Datsyuk, V., Trotsenko, S., Trakakis, G., Boden, A., Vyzas-Assimakopoulos, K., Parthenios, J. et. al. (2020). Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, 82, 106317. doi: https://doi.org/10.1016/j.polymertesting.2019.106317

6. Fialko, N. M., Dinzhos, R. V., Sherenkovskiy, Y. V., Meranova, N. O., Navrodskaya, R. A. (2017). Heat conductivity of polymeric micro- and nanocomposites based on polyethylene at various methods of their preparation. Industrial Heat Engineering, 39 (4), 21–26. doi: https://doi.org/10.31472/ihe.4.2017.03

7. Sharifizadeh, E., Cheraghi, K. (2021). Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mechanics of Materials, 160, 103990. doi: https://doi.org/10.1016/j.mechmat.2021.103990

8. Regueg, F., Ricci, L., Bouyacoub, N., Belbachir, M., Bertoldo, M. (2019). Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polymer Bulletin, 77 (2), 929–948. doi: https://doi.org/10.1007/s00289-019-02762-3

9. Soudmand, B. H., Shelesh-Nezhad, K., Salimi, Y. (2020). A combined differential scanning calorimetry-dynamic mechanical thermal analysis approach for the estimation of constrained phases in thermoplastic polymer nanocomposites. Journal of Applied Polymer Science, 137 (41), 49260. doi: https://doi.org/10.1002/app.49260

10. Siddique, S., Smith, G. D., Yates, K., Mishra, A. K., Matthews, K., Csetenyi, L. J., Njuguna, J. (2019). Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. Journal of Polymer Research, 26 (6). doi: https://doi.org/10.1007/s10965-019-1802-9

11. Fialko, N., Dinzhos, R., Sherenkovskii, J., Meranova, N., Alishko, S., Ivorska, D. et. al. (2021). Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European Journal of Enterprise Technologies, 6 (12 (114)), 34–39. doi: https://doi.org/10.15587/1729-4061.2021.245274

12. Dolinskiy, A. A., Fialko, N. M., Dinzhos, R. V., Navrodskaya, R. A. (2017). Influence of receipt methods of polymeric micro- and nanocomposites on their thermophysical properties. Industrial Heat Engineering, 37 (4), 5–13. doi: https://doi.org/10.31472/ihe.4.2015.01

13. Han, Z., Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36 (7), 914–944. doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004

14. Oklitin, A. S. (Ed.) (1984). Teploprovodnost' tverdykh tel. Moscow: Energoatomizdat, 321. Available at: https://search.rsl.ru record/00101190076

DOI: 10.15587/1729-4061.2022.263649

THE EFFECT OF HYBRID NANOFLUID CuO-TiO2 ON RADIATOR COOLING EFFICIENCY

Sudarmadji

State Polytechnic of Malang, Malang, Indonesia

ORCID: https://orcid.org/0000-0002-3572-2711

Irwann Bambang

State Polytechnic of Malang, Malang, Indonesia

ORCID: https://orcid.org/0000-0002-6917-1145

Sugeng Hadi Susilo

State Polytechnic of Malang, Malang, Indonesia

ORCID: https://orcid.org/0000-0003-3077-2039

This study aims to improve the performance of the vehicle’s cooling system called the radiator, which is part of increasing energy efficiency. Research has been done to investigate the convective heat transfer of hybrid nanofluid, using CuO and TiO2 nanoparticles and water-ethylene glycol (RC) as base fluids on a radiator. The mass concentration of the hybrid nanoparticles varied from 0.25 %, 0.30 %, and 0.35 %. For the preparation of the hybrid nanofluid through a two-step method, by mixing dry samples of CuO and TiO2 nanoparticles (50:50) and then the mixture of radiator coolant, RC (60 % water and 40 % ethylene glycol). The fluid flow varies from 20 liters per minute to 28 liters per minute. Temperature variations range from 70 °C to 90 °C by using controlled heating. Four thermocouples measure the inlet and outlet hot fluid flow and the airflow before and after the radiator. The experiment showed that the overall heat transfer coefficient increases remarkably with the increase of the hybrid nanoparticle concentration under various flow rate values. The maximum overall heat transfer coefficient increases by about 83 % compared to pure radiator coolant under 0.35 % mass concentration at a flow rate of 22 liters per minute and a temperature of 70 °C. It has also been found that the heat transfer rate is highly dependent on the radiator’s mass fraction and flow rate. Increasing the mass concentration shows maximum enhancement in heat transfer rate. Inlet temperature also enhances the heat transfer rate, but its effect is small compared to nanofluid’s mass concentration and flow.
rate. This study reveals that hybrid nanofluids can be suitable as a working fluid, especially in small-scale heat transfer devices.

Keywords: hybrid nanofluid, overall heat transfer coefficient, radiator coolant, cooling fluids.

References

1. Choi, U. S. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Application of Non-Newtonian Flows. ASME Journal of Heat Transfer, 66, 99–105.

2. Mursheed, S. M. S., Leong, K. C., Yang, C. (2005). Enhanced thermal conductivity of TiO2 – water based nanofluids. International Journal of Thermal Sciences, 44 (4), 367–373. doi: https://doi.org/10.1016/j.ijthermallsci.2004.12.005

3. Wang, X.-Q., Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 46 (1), 1–19. doi: https://doi.org/10.1016/j.ijthermalsci.2006.06.010

4. Hwang, K. S., Jang, S. P., Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52 (1–2), 193–199. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032

5. Fotukian, S. M., Nasr Esfahany, M. (2010). Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. International Communications in Heat and Mass Transfer, 37 (2), 214–219. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.003

6. Vajha, R. S., Das, D. K., Namburu, P. K. (2010). Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat and Fluid Flow, 31 (4), 613–621. doi: https://doi.org/10.1016/j.ijheatfluidflow.2010.02.016

7. Xuan, Y., Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, 43 (19), 3701–3707. doi: https://doi.org/10.1016/S0017-9310(99)00369-5

8. Sudarmadji, S., Soeparman, S., Wahyudi, S., Hamidy, N. (2014). Effects of cooling process of Al2O3/water nanofluid on convective heat transfer. FME Transaction, 42 (2), 155–160. doi: https://doi.org/10.5937/14021555

9. Tijani, A. S., Sudirman, A. S. bin. (2018). Thermos-physical properties and heat transfer characteristics of water/antifreeze and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48–57. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083

10. Ahmed, S. A., Ozkaynakm, M., Süzen, A., Menlik, T., Fahed, A. (2018). Improving car radiator performance by using TiO2–Water nanofluid. Engineering Science and Technology, an International Journal, 21 (5), 996–1005. doi: https://doi.org/10.1016/j.ijestch.2018.07.008

11. Singh Sokhal, G., Gangacharyulu, D., Bulasara, V. K. (2018). Influence of copper oxide nanoparticles on the thermophysical properties and performance of flat tube of vehicle cooling system. Vacuum, 157, 268–276. doi: https://doi.org/10.1016/j.vacuum.2018.08.048

12. Subhedar, D. G., Ramani, B. M., Gupta, A. (2018). Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering, 11, 26–34. doi: https://doi.org/10.1016/j.csite.2017.11.009

13. Devireddy, S., Mekala, C. S. R., Veereldhi, V. R. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121–126. doi: https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002

14. Sudarmadji, S., Santoso, S., Susilo, S. H. (2021). Analysis of the effect of ultrasonic vibration on nanofluid as coolant in engine radiator. Eastern-European Journal of Enterprise Technologies, 5 (5 (113)), 6–13. doi: https://doi.org/10.15587/1729-4061.2021.241694

15. Suresh, S., Venkitaraj, K. P., Selvakumar, P., Chandrasekar, M. (2012). Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54–60. doi: https://doi.org/10.1016/j.expthermflusci.2011.11.007

16. Hamid, K. A., Azi, W. H., Nabil, M. F., Mamat, R. (2018). Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. International Journal of Heat and Mass Transfer, 118, 617–627. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.036

17. Toghraie, D., Chaharsoghi, V. A., Afraid, M. (2016). Measurement of thermal conductivity of ZnO–TiO2–EG hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 125 (1), 527–535. doi: https://doi.org/10.1007/s10973-016-5436-9

18. Hemmat Esfe, M., Behbahani, P. M., Arani, A. A. A., Sarlak, M. R. (2016). Thermal conductivity enhancement of SiO2–MWCNT (85:15 %)–EG hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 128 (1), 249–258. doi: https://doi.org/10.1007/s10973-016-5893-9

19. Ramalingam, S., Dhairiyasamy, R., Govindasamy, M. (2020). Assessment of heat transfer characteristics and system physiognomies using hybrid nanofluids in an automotive radiator. Chemical Engineering and Processing - Process Intensification, 150, 107886. doi: https://doi.org/10.1016/j.cep.2020.107886

20. Koçak Soylu, S., Atmaca, I., Aslturk, M., Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157, 113743. doi: https://doi.org/10.1016/j.applthermaleng.2019.113743

21. Sarkar, J., Ghosh, P., Adil, A. (2015). A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177. doi: https://doi.org/10.1016/j.rser.2014.11.023

22. Sahid, N. S. M., Rahman, M. M., Kadingama, K., Maleque, M. A. (2017). Experimental investigation on properties of hybrid nanofluids (TiO2 and ZnO) in water–ethylene glycol mixture. Journal of mechanical engineering and sciences, 11 (4), 3087–3094. doi: https://doi.org/10.15282/jmes.11.4.2017.11.0277

23. Pak, B. C., Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11 (2), 151–170. doi: https://doi.org/10.1016/S08916159(88)8946559

24. Takabi, B., Salehi, S. (2014). Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid. Advances in Mechanical Engineering, 6, 147059. doi: https://doi.org/10.1155/2014/147059

25. Duanthongsuks, W., Wongwises, S. (2008). Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. International Communications in Heat and Mass Transfer, 35 (10), 1320–1326. doi: https://doi.org/10.1016/j.icheatmasstransfer.2008.07.015
26. Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal Conductivity of Nanoparticle - Fluid Mixture. Journal of Thermophysics and Heat Transfer, 13 (4), 474–480. doi: https://doi.org/10.2514/2.6486

27. Ranga Babu, J. A., Kumar, K. K., Srinivasa Rao, S. (2017). State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews, 77, 551–565. doi: https://doi.org/10.1016/j.rser.2017.04.040

28. Esfe, M. H., Esfandeh, S., Amiri, M. K., Afrand, M. (2019). A novel applicable experimental study on the thermal behavior of SWCNTs(60%)-MgO(40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technology, 342, 998–1007. doi: https://doi.org/10.1016/j.powtec.2018.10.008

DOI: 10.15587/1729-4061.2022.263686

OPTIMIZATION OF THE TECHNOLOGY FOR DESIGNING SENSITIVE GAS SENSORS BASED ON ZINC OXIDE USING A SOL-GEL METHOD (p. 30–36)

Oleh Neshpor
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-0670-5445

Natalya Deynepko
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-8438-0618

Roman Ponomarenko
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-6300-3108

Artem Maiboroda
Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Protection of Ukraine, Cherkasy, Ukraine
ORCID: https://orcid.org/0000-0001-6108-9772

Mykhaylo Kropyva
Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Protection of Ukraine, Cherkasy, Ukraine
ORCID: https://orcid.org/0000-0002-1111-8747

Oleg Blyashenko
Ministry of Defence of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-1500-0487

Serhii Yerenenko
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-3685-4713

Volodymyr Sydorenko
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-4584-486X

Vasyl Servatyuk
The National Defence University of Ukraine named after Ivan Cherniakhovskiy, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6444-1425

Andrii Pruskyi
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9132-7070

This paper has investigated the nanostructured samples of zinc oxide intended for use as a gas sensor. Experimental samples were obtained by the economical sol-gel method, suitable for large-scale production. The dependence of the efficiency of gas sensors based on zinc oxide on temperature was established. The electrical properties of experimental samples were investigated in the air in the range of values of the initial voltage of 5–30 V and at temperatures of 320, 370, and 450 K.

It was established that the current-voltage characteristic for nanosized zinc oxide is non-ohmic, but the nature of the curves can change due to an increase in the operating temperature. The obtained experimental dependences are explained by the peculiarities of the morphology of the obtained nanostructured zinc oxide, which affects the value of the contact resistance in the structure. A large number of nanoscale particles leads to an increase in the number of energy barriers, which negatively affects the sensitivity of experimental samples to the gaseous medium. The study of the sensitivity of samples to the established gaseous medium, namely 100 ppm CO, was carried out.

The electrical conductivity of zinc oxide is determined by oxygen vacancies that are electron donors, and, accordingly, the conductivity activation energy is determined by the donor levels formed by vacancies in the ZnO forbidden zone. During heating, there is a decrease in the resistance of the sample with increasing temperature; electrical conductivity is determined by the thermal generation of electrons. Understanding the dependence of the sensor sensitivity on temperature and the use of sensitive ZnO layers of different morphology will make it possible to recognize gaseous components in a complex mixture.

Keywords: zinc oxide, semiconductor structure, gas sensor, sol-gel method, volt-ampere characteristic, temperature dependence, gas environment, gas analyzer, reducing gas, contact resistance.

References

1. Pospelov, B., Rybkina, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027

2. Paraguay D., F., Miki-Yoshida, M., Morales, J., Solis, J., Estrada L., W. (2000). Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 373 (1-2), 137–140. doi: https://doi.org/10.1016/s0040-6090(00)01120-2

3. Vambol, S., Vambol, V., Sychikova, Y., Deynepko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: https://doi.org/10.15587/1729-4061.2017.83847

4. Lv, Y., Guo, L., Xu, H., Chu, X. (2007). Gas-sensing properties of well-crystalline ZnO nanorods grown by a simple route. Physica E: Low-Dimensional Systems and Nanostuctures, 36 (1), 102–105. doi: https://doi.org/10.1016/j.physe.2006.09.014

5. Vanalakar, S. A., Patil, V. L., Harale, N. S., Vhanalakar, S. A., Gang, M. G., Kim, J. Y. et. al. (2015). Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sensors and Actuators B: Chemical, 221, 1195–1201. doi: https://doi.org/10.1016/j.snb.2015.07.084

6. Jia, X., Fan, H., Afzal, M., Wu, X., O’Brien, P. (2011). Solid state synthesis of tin-doped ZnO at room temperature: Characteriza-
13. Umar, A., Akhtar, M. S., Al-Hajry, A., Al-Assiri, M. S., Almebad, N. Y. (2012). Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. Materials Research Bulletin, 47 (9), 2407–2414. doi: https://doi.org/10.1016/j.materresbull.2012.05.028

14. Pawar, R. C., Lee, J.-W., Patil, V. B., Lee, C. S. (2013). Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sensors and Actuators B: Chemical, 187, 323–330. doi: https://doi.org/10.1016/j.snb.2012.11.100

15. Znaidi, L. (2010). Sol–gel-deposited ZnO thin films: A review. Materials Science and Engineering: B, 174 (1-3), 18–30. doi: https://doi.org/10.1016/j.mseb.2010.07.001

16. Chavan, A., Shivaraj, B. W., Murthy, H. N. N., A, V., Holla, V., Shandilya, S. et. al. (2015). Parametric Study of Sol Gel Technique for Fabricating ZnO Thin Films. Procedia Materials Science, 10, 270–278. doi: https://doi.org/10.1016/j.mspro.2015.06.050

17. Deyneko, N. (2020). Study of Methods for Producing Flexible Solar Cells for Energy Supply of Emergency Source Control. Materials Science Forum, 1006, 267–272. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.267

18. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.135127
Анотацi

АНОТАЦI

APPLIED PHYSICS

DOI: 10.15587/1729-4061.2022.263671

ХАРАКТЕРИСТИКА ВИСОКОІМПЕДАНСНОЇ КОНСТРУКЦІЇ БАГАТОШАРОВОЇ КОПЛАНАРНОЇ ХВИЛЬОВИДНОЇ ЛІНІЇ ПЕРЕДАЧІ ДЛЯ ІНТЕГРАЦІЇ З НАНОПРИСТРОЯМИ (с. 6–14)

Gulsaya Nurzhaubayeva, Katipa Chezhimbayeva, Norshakila Haris

Терагерцова технологія нещодавно привернула увагу дослідників через її широкий спектр застосувань, таких як безпека та військові, біомедицина та охорона здоров’я, астрономія та біологія. Серед терагерцових додатків з нанопристроями, такими як пристрої з автоматичним перемиканням, є багато ретельних досліджень. Їм потрібні монолітні мікрохвильові інтегральні схеми для інтеграції з діодами, що самоперемикаються, що має типовий схематичний вигляд з низкою високим імпедансь. Однак основним обмеженням діодів, що самоперемикаються, є високий рівень імпедансу в мегаомах. В основному, основна увага приділяється проектуванню та моделюванню копланарних хвилевідних структур з високим імпедансом із застосуванням багатошарової технології для інтеграції з діодами, що самоперемикаються. Використання багатошарової технології конструкції дозволяє уникати перевага в формуванні шарів поліімідного діелектрика, які використовуються при виготовленні цих компонентів. Було розглянуто декілька проектних структур, таких як позиціонування розташування сигнальних та заземлюючих контактів щодо положення діелектричних шарів. В результаті було досягнуто максимального хвильового опору близько 90 Ом на робочій частоті 110 ГГц. По-друге, було досліджено нову копланарну хвилеводну структуру, в якій структура V-подібної форми була з’єднана з підприємницьким сигналом. Дослідження застосування терагерцового діапазону може вплинути на високу швидкість передачі даних не менше 10 Гбіт/с і тим самим збільшити обсяг трафіку.

Ключові слова: копланарна хвилеводна лінія передачі, наноустрій, що самоперемикається, багатошарова технологія, монолітна НВЧ інтегральна схема.

DOI: 10.15587/1729-4061.2022.263417

ВСТАНОВЛЕННЯ ВПЛИВУ ТИПУ МІКРО- ТА НАНОНАПОВНЮВАЧІВ НА ТЕПЛОФІЗІЧНІ ВЛАСТИВОСТІ ВИСОКОТЕПЛОПРОВІДНИХ ПОЛІМЕРНИХ КОМПОЗИТІВ НА ОСНОВІ ПОЛІАМІДУ 6 (с. 15–20)

Н. М. Фіалко, Р. В. Дінжос, Ю. В. Щеренковський, Н. О. Меранова, В. П. Бабак, В. М. Коржик, М. М. Лазаренко, Н. П. Полозенко, О. Ю. Пархоменко, В. М. Махровський

Об’єктом дослідження є теплофізичні властивості полімерних мікро- та нанокомпозитів, а також взаємозв’язок їх теплопровідності зі структурними характеристиками при використанні різних типів наповнювачів. Виконано комплекс експериментальних досліджень теплопровідності і питомої теплоємності полімерних мікро- і нанокомпозиційних матеріалів для поліаміду 6 та вуглецевих нанотрубок, міді та алюмінію в якості матриці та наповнювачів. При отриманні композитів застосовувався метод, який базується на змішуванні матеріалів у розплаві поліаміду. Вміст наповнювачів змінювався від 0,3 до 10 %, температура композиційних матеріалів – від 305 до 500 К.

Одержано експериментальні залежності коефіцієнтів теплопровідності досліджуваних композитів від вмісту наповнювачів. Встановлено, що за значенням цих коефіцієнтів у порядку їх зменшення вказані композиційні матеріали ранжируються таким чином: композити з наповнювачами з вуглецевих нанотрубок, міді та алюмінієм. Виявлено, що при застосуванні матриці з поліаміду 6 спостерігається тільки один поріг перколяції.

Досліджено закономірності зміни питомої теплоємності композитів, що розглядаються, від їх температури при варіюванні в вказаному році.

Виконано аналіз впливу вмісту наповнювачів на ступінь кристалічності полімерної матриці досліджуваних композиційних матеріалів. Показано, що зі збільшенням вмісту наповнювачів ступінь кристалічності зменшується. Встановлено залежність між теплопровідними властивостями композитів, що розглядаються, і вказаним ступенем кристалічності. Більшим значенням тепло- провідності композитів відповідають нижчих значень ступеня кристалічності.

Отримані результати можуть широке використовуватися при розробці високотеплопровідних композитів для різних інженерних додатків.

Ключові слова: полімерні мікро- і нанокомпозити, вуглецеві нанотрубки, коефіцієнт теплопровідності, питома теплоємність.

DOI: 10.15587/1729-4061.2022.263649

ВПЛИВ ГІБРИДНОЇ НАНОРІДИНИ CuO-TiO2 НА РОБОТУ РАДІАТОРА (с. 21–29)

Sudarmadji Sudarmadji, Bambang Irawan, Sugeng Hadi Susilo

Це дослідження спрямоване на покращення продуктивності системи охолодження автомобіля, що називається радіатором, що співвідносяться до виходу ефективності виробництва. Було проведено дослідження для вивчення коефіцієнтів теплопередачі гібридної
нанорідини з використанням наночастинок CuO та TiO₂ та води та етиленгліколю (RC) як базових рідин на радіаторі. Масова концентрація гібридних наночастинок варіювалась від 0,25 %, 0,30 % та 0,35 %. Для приготування гібридної нанорідини двостадійним методом змішують сухі зразки наночастинок CuO та TiO₂ (50:50), а потім суміш охолоджуючої рідини радіатора RC (60 % води та 40 % етиленгліколю). Витрата рідини варіюється від 20 літрів за хвилину до 28 літрів за хвилину. Діапазон температур варіюється від 70 до 90 °C при використанні контролюваного нагрівання. Чотири термопари вимірюють потік гарячої рідини на вході та вихо-ді, а також потік повітря до та після радіатора. Експеримент показав, що загальний коефіцієнт теплопередачі помітно збільшується із збільшенням концентрації гібридних наночасток при різних значеннях швидкості потоку. Максимальний загальний коефіцієнт теплопередачі збільшується приблизно на 83 % порівняно з чистою рідиною, що охолоджує, радіатора при масовій концентрації 0,35 % при витраті 22 літри в хвилину і температурі 70 °C. Також було виявлено, що швидкість теплопередачі залежить від масової частки радіатора і швидкості потоку. Збільшення масової концентрації показує максимальне збільшення швидкості теплообміну. Температура на вході також збільшує швидкість теплопередачі, але її вплив невеликий у порівнянні з масовою концентрацією нанорідини та швидкістю потоку. Це дослідження показує, що гібридні нанорідини можуть бути придатні як робоча рідина, особливо в невеликих пристроях теплопередачі.

Ключові слова: гібридна нанорідина, загальний коефіцієнт теплопередачі, теплоносій радіатора, рідини, що охолоджують.

DOI: 10.15587/1729-4061.2022.263686

ОПТИМІЗАЦІЯ ТЕХНОЛОГІЇ СТВОРЕННЯ ЧУТЛИВИХ ГАЗОВИХ СЕНСОРІВ НА ОСНОВІ ОКСИДУ ЦИНКУ ПРИ ВИКОРИСТАННІ ЗОЛЬ-ГЕЛЬ МЕТОДА (c. 30–36)

О. В. Нешир, Н. В. Дейненко, Р. В. Пономаренко, А. О. Майборода, М. О. Кропива, О. В. Бляшенко, С. А. Єременко, В. Л. Сидоренко, В. М. Серватюк, А. В. Пруський

В роботі досліджено наноструктуровані зразки оксиду цинку, призначеного для використання в якості газового сенсору. Експериментальні зразки були отримані економічним та придатним для широкомасштабного виробництва золь-гель методом. Встановлено залежність ефективності газових сенсorem на основі оксиду цинку від температури. Досліджено електричні властивості експериментальних зразків в повітряному середовищі в діапазоні значень початкової напруги 5–30 В та за температур 320, 370 та 450 К. Встановлено, що для нанорозмірного оксиду цинку вольт-амперна характеристика є неомічною, проте характер кривих може змінюватись за рахунок підвищення робочої температури. Отримані експериментальні залежності пояснюються особливостями морфології отриманого наноструктурованого оксиду цинку, яка впливає на величину контактного опору в структурі. Велика кількість нанорозмірних частинок призводить до зростання кількості енергетичних бар’єрів, що негативно впливає на чутливість експериментальних зразків до газового середовища. Проведено дослідження чутливості зразків до встановленого газового середовища, а саме 100 ppm CO. Електропровідність оксиду цинку визначається вакансіями, які є донорами електронів, і, відповідно, енергією активізації впливає на збільшення електропровідності від температури. Розуміння залежності чутливості сенсора від температури та використання чутливих шарів ZnO різної морфології дасть можливість до розпізнавання газоподібних компонентів у складній суміші.

Ключові слова: оксид цинку, напівпровідникована структура, газовий сенсор, золь-гель метод, вольт-амперна характеристика, температура залежність, газове середовище, газоаналізатор, відновний газ, контактний опір.