RESEARCH ARTICLE

Collateral Chemoresistance to Anti-Microtubule Agents in a Lung Cancer Cell Line with Acquired Resistance to Erlotinib

Hiroshi Mizuuchi1,2, Kenichi Suda1,2, Katsuaki Sato1, Shuta Tomida3, Yoshihiko Fujita3, Yoshihisa Kobayashi1, Yoshihiko Maehara2, Yoshitaka Sekido4, Kazuto Nishio3, Tetsuya Mitsudomi1*

1 Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan, 2 Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, 3 Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan, 4 Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan

* mitsudomi@surg.med.kindai.ac.jp

Abstract

Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs.

OPEN ACCESS

Citation: Mizuuchi H, Suda K, Sato K, Tomida S, Fujita Y, Kobayashi Y, et al. (2015) Collateral Chemoresistance to Anti-Microtubule Agents in a Lung Cancer Cell Line with Acquired Resistance to Erlotinib. PLoS ONE 10(4): e0123901. doi:10.1371/journal.pone.0123901

Academic Editor: Noriko Gotoh, Institute of Medical Science, University of Tokyo, JAPAN

Received: December 10, 2014
Accepted: February 23, 2015
Published: April 14, 2015

Copyright: © 2015 Mizuuchi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper.

Funding: This work was partly supported by Takeda Science Foundation to T.M., Grants-in-Aid for Scientific Research (25830119 to K.S.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Kaibara Morikazu Medical Science Promotion Foundation to K.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Introduction

Adenocarcinoma is the most common histological subtype of lung cancer, and somatic mutation of the epidermal growth factor receptor (EGFR) is present in approximately 40% and 20% of these tumors in East-Asians and Caucasians, respectively [1]. Treatment of lung adenocarcinoma patients with EGFR tyrosine kinase inhibitors (TKIs) prolongs progression-free survival compared with conventional cytotoxic chemotherapy [2–5]. However, the development of acquired resistance to EGFR-TKIs is almost inevitable. Many molecular or histological aberrations underlying this acquired resistance have been reported, including EGFR T790M secondary mutation, MET amplification, ERBB2 amplification, hepatocyte growth factor overexpression, epithelial to mesenchymal transition (EMT), and small cell lung cancer transformation [6,7].

Strategies to cope with acquired resistance to EGFR-TKIs that are based on each different resistant mechanism would be ideal, and such approaches are currently being developed. However, in current clinical practice, these patients are typically treated with cytotoxic chemotherapeutic agents, selection of which is often empirical. It is also unclear whether acquired resistance to EGFR-TKIs affects sensitivity to cytotoxic drugs.

In this study, we evaluate the growth inhibitory effects of these cytotoxic drugs by comparing cells resistant to an EGFR-TKI with their parent cells using an in vitro model. Isogenic resistant clones derived from parental cells have a common genetic background, and this resistance model is able to be used to evaluate the influence of different resistant mechanisms on chemosensitivity.

Materials and Methods

Cell lines and reagents

The human lung adenocarcinoma cell lines HCC827, HCC4006 and H358 were kind gifts from Dr AF Gazdar (Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas). These cell lines have been commonly used in in vitro experiments [8–13]. PC9 cells were kindly provided from Dr K Nishio (Department of Genome Biology, Kinki University Faculty of Medicine). This cell line has also been commonly used in previous researches elsewhere [14,15]. Acquired resistant cell lines established from these cells, PC9/ZD cells and HCC827TRB10 cells, were kindly provided from Dr K Nishio and Dr K Furugaki (Chugai Pharmaceutical Co., Ltd.), respectively [15,16]. HCC827ER, HCC827EPR, HCC4006ER and H358ER were established in our previous work [9,10,17]. Table 1 provides a summary of the mutational status and sensitivity to erlotinib of these cell lines [9,10,15–17]. Cells were cultured in RPMI1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) at 37°C in a humidified incubator with 5% CO2. Cisplatin (CDDP), gemcitabine (GEM), docetaxel (DOC), paclitaxel (PAC), vinorelbine (VNR), erlotinib, and entinostat were purchased from Selleck Chemicals (Houston, TX).

Growth inhibition assay

Cell viability was measured using a Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan) as previously described [17]. Briefly, 3 × 10³ cells (2 × 10³ cells for HCC827TRB10) were plated into each well of 96-well flat-bottomed plates and grown in RPMI-1640 containing 10% FBS. After 24 hours, dimethyl sulfoxide (DMSO), CDDP, GEM, DOC, PAC, VNR, and erlotinib with or without entinostat were added at the indicated drug concentration, and cells were incubated for an additional 72 hours. A colorimetric assay was performed after addition of 10 μl Cell Counting Kit-8 reagent to each well, and the plates were incubated at 37°C for 2–4
hours. Absorbance at 450 nm was read using a multiplate reader (Tecan, Männedorf, Switzerland). Percent growth was expressed relative to DMSO-treated controls.

RNA isolation and gene expression array analysis

Gene expression array analyses were carried out to assess differences between HCC4006 and HCC4006ER cells as previously described [18]. Briefly, cells were cultured without erlotinib until subconfluency. After an 8-hour exposure to 2 μM erlotinib, total RNA was isolated using mirVana miRNA Isolation Kit (Qiagen, Venlo, the Netherlands). RNA (100 ng) from each sample was processed for hybridization using GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA). After hybridization, the chips were processed using a High-Resolution Microarray Scanner Genechip Scanner 3000 7G (Affymetrix). The Robust Multichip Averaging (RMA) procedure was performed for normalization using the open-source R programming environment.

Antibodies and western blot analysis

Anti-E-cadherin, anti-ATP-binding cassette subfamily B, member 1 (ABCB1), anti-class III beta-tubulin (TUBB3) and anti-beta-actin antibodies were purchased from Cell Signaling Technology (Beverly, MA).

Preparation of total cell lysates and immunoblotting was performed as previously described [17]. Cells were cultured without erlotinib until subconfluency, and media was changed to RPMI with 10% FBS containing DMSO or 1 μM entinostat. After 72 hours, cells were rinsed with phosphate-buffered saline (PBS), lysed in sodium dodecyl sulfate (SDS) buffer and homogenized. Approximately 30 μg of total cell lysate protein was subjected to SDS polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes (Bio-Rad, Hercules, CA). After blocking with 2.5% nonfat dry milk and 2.5% bovine serum albumin in PBS, membranes were incubated with primary antibodies (1:1000) overnight, washed with PBS, reacted with secondary antibody (1:1000), treated with ECL solution (GE Healthcare, Fairfield, CT). Chemiluminescence was detected by EOS Kiss X6i (Canon, Tokyo, Japan). Expression values of TUBB3 relative to beta-actin were determined using Just TLC software (Sweden, Lund, Sweden).
Preparation of cell block and immunohistochemistry

Cells grown to subconfluency were trypsinized, centrifuged and fixed with 15% neutral buffered formalin for 3 hours. Following centrifugal separation and removal of solution, the alginate sodium containing pellet was turned into a gel by drop of calcium chloride. These gels were embedded in paraffin.

Sections (4 μm) were deparaffinized and heat-induced epitope retrieval was performed with Target Retrieval Solution, pH 9 (Dako, Carpinteria, CA). Slides were treated with 3% hydrogen peroxide for 30 min and then incubated with a primary anti-ABCB1 (P-glycoprotein) antibody (1:100, Dako) overnight. Immunoreactions were detected using the Envision+ System-HRP (Dako) according to manufacturer’s protocol. The reactions were visualized followed by counter staining with hematoxylin.

Reverse-transfection of small-interfering RNAs

Cells were reverse-transfected with 10 nM small interfering RNAs (siRNAs) mixed with Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). The validated siRNAs specific for ABCB1 (ABCB1-1, 5′-CGAUACAUGGUUUUCGAU-3′; ABCB1-2, 5′-GUUUGUCUACAGUGUA-3′), CDH1 (5′-CGUAUACCCCUGUGGUUC-3′) and nonspecific siRNAs were purchased from Applied Biosystems (Foster City, CA). Twenty-four hours after reverse-transfection, the indicated drugs were added, and cell viability was measured using the Cell Counting Kit 8 after an additional 72 hours.

Results

All cell lines with acquired resistance to erlotinib except HCC4006ER demonstrated similar sensitivity to cytotoxic drugs compared with their parental cells

We first studied the sensitivity of cell lines to five cytotoxic agents that are commonly used in the treatment of NSCLC. CDDP, GEM, DOC, PAC and VNR sensitivity was assessed in HCC827, HCC4006, PC9 and H358 cells, as well as their EGFR-TKI resistant derivatives. In HCC827 cells and their three EGFR-TKI resistant clones (HCC827ER, HCC827EPR and HCC827TRB10), we failed to detect a difference in sensitivity to any of the five cytotoxic agents (Fig 1 and Table 2). This was also case with PC9, H358 and their resistant clones. On the other hand, in HCC4006ER cells, IC50 values for DOC, PAC and VNR were increased by approximately 41-, 43-, 28-fold, respectively (Fig 1 and Table 2). All three drugs to which cells showed decreased sensitivity (DOC, PAC and VNR) were anti-microtubule drugs, acting either through inhibition of microtubule polymerization (vinca alkaloids) or by depolymerization (taxanes).

ABCB1 overexpression induces insensitivity to anti-microtubule drugs in HCC4006ER cells

HCC4006ER cells were established by stepwise exposure to erlotinib (from 20 nM to 2 μM) over 4 months in our previous work [10]. To explore the molecular alterations underlying acquired resistance to anti-microtubule agents, we performed a gene expression array analysis comparing HCC4006ER cells with parental HCC4006 cells. Expression of CDH1 in HCC4006ER cells was significantly decreased compared with HCC4006 cells, confirming the previous report (Table 3) [10]. Additionally, we observed increased expression of ZEB1 and ZEB2 which both regulate EMT by 27- and 23-fold, respectively. On the other hand, stem cell
markers such as OCT4, SOX2, NANOG and GATA4 and cancer stem cell (CSC)–like markers including ALDH1A1, CD44 and CD133 were not upregulated (Table 4).

Amongst the top 50 up-regulated and 50 down-regulated genes in HCC4006ER cells compared with HCC4006 parental cells (Table 2), we identified that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated by approximately 40-fold in HCC4006ER cells. On the other hand, no other ABC transporter family member was overexpressed to a similar extent in HCC4006ER cells (Table 5). Overexpression of ABCB1, a drug efflux pump has been reported to confer inherent or acquired resistance to anti-microtubule drugs [19–24].
Immunoblotting and immunohistochemistry of cell blocks also confirmed the overexpression of ABCB1 protein in HCC4006ER cells but not in parental HCC4006 cells (Fig 2). Moreover, increased expression of class III beta-tubulin (TUBB3) has also been reported to be a predictive marker for clinical outcome of taxane/vinorelbine-based chemotherapy [25]. However, immunoblotting demonstrated that the expression level of TUBB3 in HCC4006ER cells was not altered (Fig 2). Gene expression array also revealed that alteration of TUBB3 was

Table 3. Top 30 genes altering expression between HCC406 and HCC4006ER cells.
Upregulated genes in HCC4006ER cells compared with HCC4006 cells
Gene Symbol
ODZ2
COL8A1
SFRP2
RGS4
NNMT
244567_at
GAS1
GNG4
PDE1A
BEX1
CNN1
GNG4
PTX3
FAM101B
GNG4
1561064_a_at
COL11A1
HMCN1
SHISA2
ADAMTS2
SLC16A1
PAX6
AK5
ABCB1
NNMT

doi:10.1371/journal.pone.0123901.t003

Table 4. Relative expression levels of stem cell /cancer stem cell (CSC)-like markers in HCC4006ER cells compared with HCC4006.

Type	Gene Symbol	log$_2$ (ratio)
stem cell	POU5F1 (OCT4)	0.17
	SOX2	0.14
	NANOG	0.08
	GATA4	0.50
CSC-like	ALDH1A1	-0.88
	CD44	-1.11
	PROM1(CD133)	-2.37

doi:10.1371/journal.pone.0123901.t004
less than 2 fold (data not shown). Since it is reported that docetaxel-resistant cell line expressed ~50-fold more TUBB3 than parental cells [26], we assumed that the contribution of TUBB3 in our system was minimal.

We next evaluated the role of overexpressed ABCB1 in acquired resistance to anti-microtubule drugs by using two validated siRNAs for ABCB1. siRNA-mediated knockdown of ABCB1 partially sensitized HCC4006ER cells to anti-microtubule agents (Fig 3). In contrast, ABCB1 depletion did not restore erlotinib sensitivity in HCC4006ER cells (Fig 3).

We also investigated whether loss of E-cadherin activity influences sensitivity to anti-microtubule agents. Knockdown of CDH1 (gene encoding E-cadherin) in HCC4006 cells did not affect sensitivity to any of the three anti-microtubule agents (Fig 4).

Entinostat alleviates resistance to anti-microtubule drugs via suppression of ABCB1 in HCC4006ER cells

We next treated HCC4006ER cells with the class I histone deacetylase (HDAC) inhibitor entinostat, which reverses EMT in HCC4006ER cells and restores sensitivity to erlotinib as described in our previous study [10]. Here, entinostat did not alter sensitivity to anti-microtubule agents in HCC4006 cells (Fig 5). However, this agent restored sensitivity to anti-microtubule drugs in HCC4006ER cells (Fig 5). To explore the molecular mechanism which entinostat achieves this, we examined the expression levels of ABCB1 in HCC4006ER cells with or without exposure to 1 μM entinostat. Treatment with entinostat markedly reduced the expression of ABCB1 protein after 72 hours (Fig 5).

Table 5. Relative expression levels of ABC transporter family in HCC4006ER cells compared with HCC406.

Gene Symbol	log2 (ratio)	Gene Symbol	log2 (ratio)
ABCA1	0.46	ABCC12	0.38
ABCA12	-4.17	ABCC13	0.23
ABCA13	-2.68	ABCC2	-0.38
ABCA2	0.37	ABCC3	-1.84
ABCA3	-0.45	ABCC4	2.02
ABCA4	-0.46	ABCC5	0.51
ABCA5	1.84	ABCC6	-0.80
ABCA6	0.05	ABCC8	0.56
ABCA7	-0.95	ABCC9	-0.21
ABCA8	-0.68	ABCD1	0.26
ABCA9	-0.33	ABCD2	0.04
ABCB1	5.32	ABCD3	0.90
ABCB10	-0.12	ABCD4	0.39
ABCB11	0.37	ABCE1	1.15
ABCB4	-0.26	ABCF1	0.64
ABCB5	0.54	ABCF2	0.65
ABCB6	0.26	ABCF3	-0.10
ABCB7	-0.51	ABCG1	-1.73
ABCB8	-0.03	ABCG2	-0.66
ABCB9	0.37	ABCG4	-0.16
ABCC1	-0.77	ABCG5	0.00
ABCC10	-0.86	ABCG8	0.35
ABCC11	0.47		

doi:10.1371/journal.pone.0123901.005
We have previously shown that HCC4006ER cells are resistant to erlotinib through acquisition of EMT as characterized by the down-regulation of E-cadherin expression [10]. In the present study, we observed that HCC4006 ER cells have a similar sensitivity to CDDP and GEM compared with their parental cell line, but are more resistant to anti-microtubule agents. ABCB1 overexpression in HCC4006ER cells was responsible for this phenomenon. However, restoration of sensitivity to anti-microtubule agents by ABCB1 siRNA was not complete. This may be due to involvement of other genes than ABCB1 which was suggested by expression profiling or incomplete suppression of ABCB1 gene expression in our system (Table 3). On the other hand,

Fig 2. Expression of proteins which were reported to be associated with sensitivity to anti-microtubule agents. (A) Protein expression was evaluated by western blot analysis. Expression values of class III beta-tubulin (TUBB3) relative to beta-actin were determined using Just TLC software. (B) Representative images of HCC4006 and HCC4006ER cells immunohistochemically stained with antibodies to ATP-binding cassette subfamily B, member 1 (ABCB1).

doi:10.1371/journal.pone.0123901.g002
ABCB1 expression was not related to sensitivity to erlotinib. In fact, Noguchi et al. previously reported that ABCB1 induction in two lung cancer cell lines did not change sensitivity to erlotinib [27]. ABC transporters including ABCB1 have been reported to be implicated in promoting cancer stem cell (CSC)-like properties [28]. Although our HCC4006ER cells did not show increased expression of the other CSC-like markers (Table 5), Shien et al. have recently reported similar observations that gefitinib-resistant HCC827 cells exhibiting both EMT features and CSC properties with overexpression of ABCB1 were resistant to DOC and PAC [29]. Therefore, this “collateral” cross-resistance to erlotinib and anti-microtubule agents resulted from two distinct mechanisms, both of which were thought to be a cause of or result from EMT (Fig 6).

Alternatively, there are several examples in which resistance to EGFR-TKI and chemotherapeutic agents shared the same molecular mechanism. PTEN deficiency renders PC9 cells resistant to cisplatin and also reduces their sensitivity to erlotinib [30]. AXL overexpression confers resistance to gefitinib and cisplatin in HCC4006 and HCC827 cells [31]. These mechanisms have also been reported to induce resistance to EGFR-TKIs [32,33]. Therefore, they can be
regarded as “shared” cross-resistance to EGFR-TKI and cytotoxic drugs, in contrast to the “collateral” resistance described here.

We also found that the class I HDAC inhibitor entinostat restored sensitivity to anti-microtubule drugs through down-regulation of ABCB1 protein. We have previously shown that entinostat restores sensitivity to erlotinib by promoting E-cadherin re-expression [10]. These observations suggest that the EMT phenotype and ABCB1 overexpression observed in HCC4006ER cells was at least partly attributable to histone deacetylation. Therefore, HDAC inhibition might be an attractive approach to combine with EGFR-TKI to delay or suppress the emergence of resistance.

In contrast to the above, five cell lines with acquired resistance to erlotinib, (two by T790M secondary mutations, one each by MET amplification, loss of amplified EGFR and IGF1R hyperactivation) did not exhibit any detectable change in sensitivity to five cytotoxic agents. This is consistent with previous in vitro observations that demonstrated that EGFR-TKI resistant cells with T790M or MET amplification showed sensitivity to cytotoxic agents similar to that of their parental cells [14,29]. These alterations are considered to account for more than 60–70% of cases of acquired resistance to EGFR-TKIs [7]. Therefore, it can be hypothesized that sensitivity to cytotoxic agents does not change before or after EGFR-TKI treatment and
vice versa in the majority of cases. This hypothesis is consistent with the finding that overall survival of the patients treated with platinum-doublet chemotherapy as the first line treatment is not significantly different from that of patients treated with front-line EGFR-TKI, provided that the cross-over was high enough in patients with lung cancer harboring EGFR mutation [2,3].

In conclusion, we have demonstrated that erlotinib resistance in a cell line harboring EGFR mutation conferred a “collateral” resistance to anti-microtubule agents via upregulation of ABCB1. However, this phenomenon appeared exceptional and chemosensitivity was not influenced by EGFR-TKI resistance in most cases.
Acknowledgments
The authors are grateful to Dr Furugaki for providing cell lines and Ms Kitayama and Mr Wada for technical assistance.

Author Contributions
Conceived and designed the experiments: HM K. Suda TM. Performed the experiments: HM K. Suda K. Sato YF YK TM. Analyzed the data: HM ST. Contributed reagents/materials/analysis tools: HM K. Suda ST YS KN. Wrote the paper: HM K. Suda YM TM.

References
1. Suda K, Tomizawa K, Mitsudomi T (2010) Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 29: 49–60. doi:10.1007/s10555-010-9209-4 PMID: 20108024
2. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362: 2380–2388. doi:10.1056/NEJMoa0909530 PMID: 20573926
3. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11: 121–128. doi:10.1016/S1470-2045(09)70364-X PMID: 20022809
4. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer.

Fig 6. Diagram for the proposed mechanisms of cross-resistance to EGFR-TKIs and anti-microtubule agents. (A) HCC4006ER cells which were established by chronic exposure to erlotinib lose expression of E-cadherin and overexpress ABCB1. These alterations confer acquired resistance to EGFR-TKIs and anti-microtubule agents, respectively. (B) A histone deacetylase inhibitor entinostat sensitizes HCC4006ER cells to EGFR-TKIs and anti-microtubule agents via re-expression of E-cadherin and suppression of ABCB1, respectively.

doi:10.1371/journal.pone.0123901.g006
(OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12: 735–742. doi: 10.1016/S1470-2045(11)70184-X PMID: 21783417

5. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive, non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13: 239–246. doi: 10.1016/S1470-2045(11)70393-X PMID: 22285168

6. Suda K, Mizuuchi H, Maehara Y, Mitsudomi T (2012) Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, duc-
tility, and destiny. Cancer Metastasis Rev 31: 807–814. doi: 10.1007/s10555-012-9391-7 PMID: 22736441

7. Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11: 473–481. doi: 10.1038/nrclinonc.2014.104 PMID: 24981256

8. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043. PMID: 17463250

9. Suda K, Murakami I, Katayama T, Tomizawa K, Osada H, Sekido Y, et al. (2010) Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin Cancer Res 16: 5489–5498. doi: 10.1158/1078-0432.CCR-10-1371 PMID: 21062933

10. Suda K, Tomizawa K, Fuji M, Murakami H, Osada H, Maehara Y, et al. (2011) Epithelial to mesenchy-
mal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resis-
tance to erlotinib. J Thorac Oncol 6: 1152–1161. doi: 10.1097/JTO.0b013e318216ee52 PMID: 21597390

11. Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, et al. (2013) A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGFR2-FGFR1 autocrine growth loop. Oncogenesis 2: e39. doi: 10.1038/oncsis.2013.4 PMID: 23552882

12. Puri N, Salgia R (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog 7: 9. PMID:19240370

13. Hurbin A, Wislez M, Busser B, Antoine M, Tenaud C, Rabbe N, et al. (2011) Insulin-like growth factor-1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J Cancer 128: 2761–2769. doi: 10.1002/ijc.26063 PMID: 21736048

14. Breen L, Murphy L, Keenan J, Clynes M (2008) Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In Vitro 22: 1234–1241. doi: 10.1016/j.tiv.2008.04.005 PMID: 18514476

15. Adams DJ, Knick VC (1995) P-glycoprotein mediated resistance to 5′-nor-anhydro-vinblastine (Navel-
bine). Invest New Drugs 13: 13–21. PMID: 7499103

16. McDonald SL, Stevenson DA, Moir SE, Hutchence AW, Haines NE, Heys SD, et al. (2005) Genomic changes identified by comparative genomic hybridisation in docetaxel-resistant breast cancer cell lines. Eur J Cancer 41: 1086–1094. PMID: 15862759

17.URETTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13: 239–246. doi: 10.1016/S1470-2045(11)70393-X PMID: 22285168

18. Chen LM, Liang YJ, Zhang X, Su XD, Dai CL, Wang FP, et al. (2009) Reversal of P-gp-mediated multi-
drug resistance by Bromotetrandrine in vivo is associated with enhanced accumulation of chemothera-
pual drug in tumor tissue. Anticancer Res 29: 4597–4604. PMID: 20032409

19. Kotake S, Mitsudomi T, Inoue M, Murakami I, Sekido Y, et al. (2010) Differential patterns of resistance to EGFR-TKIs in EGFR-mutated NSCLC cells. Cancer Sci 101: 167–172. doi: 10.1111/j.1349-7006.2009.01368.x PMID: 19804422

20. Furugaki K, Iwai T, Moriya Y, Harada N, Fujimoto-Ouch K (2014) Loss of an EGFR-amplified chromo-
some 7 as a novel mechanism of acquired resistance to EGFR-TKIs in EGFR-mutated NSCLC cells. Lung Cancer 83: 44–50. doi: 10.1016/j.lungcan.2013.10.003 PMID: 24192512

21. Suda K, Mizuuchi H, Sato K, Takemoto T, Iwasaki T, Mitsudomi T (2014) The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J Cancer 135: 1002–1006. doi: 10.1002/ijc.28737 PMID: 24458568

22. Kurahashi I, Fujita Y, Arao T, Kurata T, Koh Y, Sakai K, et al. (2013) A microarray-based gene expres-
sion analysis to identify diagnostic biomarkers for unknown primary cancer. PLoS One 8: e63249. doi: 10.1371/journal.pone.0063249 PMID: 23671674

23. Chen LM, Liang YJ, Zhang X, Su XD, Dai CL, Wang FP, et al. (2009) Reversal of P-gp-mediated multi-
drug resistance by Bromotetrandrine in vivo is associated with enhanced accumulation of chemothera-
pual drug in tumor tissue. Anticancer Res 29: 4597–4604. PMID: 20032409

24. Suda K, Mizuuchi H, Maehara Y, Mitsudomi T (2012) Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, duc-
tility, and destiny. Cancer Metastasis Rev 31: 807–814. doi: 10.1007/s10555-012-9391-7 PMID: 22736441

25. Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11: 473–481. doi: 10.1038/nrclinonc.2014.104 PMID: 24981256

26. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043. PMID: 17463250

27. Puri N, Salgia R (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog 7: 9. PMID:19240370

28. Hurbin A, Wislez M, Busser B, Antoine M, Tenaud C, Rabbe N, et al. (2011) Insulin-like growth factor-1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J Cancer 128: 2761–2769. doi: 10.1002/ijc.26063 PMID: 21736048

29. Chen LM, Liang YJ, Zhang X, Su XD, Dai CL, Wang FP, et al. (2009) Reversal of P-gp-mediated multi-
drug resistance by Bromotetrandrine in vivo is associated with enhanced accumulation of chemothera-
pual drug in tumor tissue. Anticancer Res 29: 4597–4604. PMID: 20032409

PLOS ONE | DOI:10.1371/journal.pone.0123901 April 14, 2015 13 / 14
24. Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, et al. (2013) Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther 12: 1829–1836. doi: 10.1158/1535-7163.MCT-13-0208 PMID: 23861346

25. Yang YL, Luo XP, Xiao L (2014) The prognostic role of the class III beta-tubulin in non-small cell lung cancer (NSCLC) patients receiving the taxane/vinorelbine-based chemotherapy: a meta-analysis. PLoS One 9: e93997. doi: 10.1371/journal.pone.0093997 PMID: 24705847

26. Li WJ, Zhong SL, Wu YJ, Xu WD, Xu JJ, Tang JH, et al. (2013) Systematic expression analysis of genes related to multidrug-resistance in isogenic docetaxel- and adriamycin-resistant breast cancer cell lines. Mol Biol Rep 40: 6143–6150. PMID: 24078162

27. Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsushashi J, Sugimoto Y (2009) Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 100: 1701–1707. doi: 10.1111/j.1349-7006.2009.01213.x PMID: 19493273

28. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13: 714–726. doi: 10.1038/nrc3599 PMID: 24060863

29. Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, et al. (2013) Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res 73: 3051–3061. doi: 10.1158/0008-5472.CAN-12-4136 PMID: 23542356

30. Chin TM, Quinlan MP, Singh A, Sequist LV, Lynch TJ, Haber DA, et al. (2008) Reduced Erlotinib sensitivity of epidermal growth factor receptor-mutant non-small cell lung cancer following cisplatin exposure: a cell culture model of second-line erlotinib treatment. Clin Cancer Res 14: 6867–6876. doi: 10.1158/1078-0432.CCR-08-0032 PMID: 18980981

31. Kurokawa M, Ise N, Omi K, Goishi K, Higashiyama S (2013) Cisplatin influences acquisition of resistance to molecular-targeted agents through epithelial-mesenchymal transition-like changes. Cancer Sci 104: 904–911. doi: 10.1111/cas.12171 PMID: 23566288

32. Yamamoto C, Basaki Y, Kawahara A, Nakashima K, Kage M, Izumi H, et al. (2010) Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res 70: 8715–8725. doi: 10.1158/0008-5472.CAN-10-0043 PMID: 20959484

33. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44: 852–860. doi: 10.1038/ng.2330 PMID: 22751098