Calculation of the axially symmetric eigenfunctions of the finite propagation operator in the near-field diffraction

M S Kirilenko1,2, S G Volotovski2

1Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086
2Image Processing Systems Institute - Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Molodogvardeyskaya str. 151, Samara, Russia, 443001

e-mail: areatangent@gmail.com

Abstract. The propagation of axially symmetric laser beams in the near diffraction (at a distance in the order of the wavelength) can be described by means of an expansion in plane waves, which after considering axial symmetry reduces to an axisymmetric propagation operator involving Fourier-Hankel transforms. The eigenfunctions of the operator, when eigenvalues are close to one, determine the characteristics of the signals (information) transmitted lossless (without distortion). The beam propagation distance and the region of spatial frequency limitation are parameters of the operator and essentially change the set of eigenvalues and functions. We calculate the axisymmetric eigenfunctions of the finite propagation operator in the near diffraction zone and investigate their qualitative and quantitative characteristics depending on the propagation distance and the constraints imposed in the object and spectral domains.

1. Introduction

The basic concept of near field optics is evanescent electromagnetic waves, whose contribution becomes significant when the size of an object or a distance equals to the wavelength or smaller. The value of evanescent waves was ignored in optics until the appearance of near-field microscopes [1-4]. However, near-field optics is not limited to the near-field microscopy. Various theoretical approaches [5-12] and calculation algorithms [13-17] have been developed taken into account evanescent waves. The main idea of the near field optics is to increase the interval of spatial frequencies that ensures the conservation of evanescent components of the source field and thus overcomes the diffraction limit [18-26].

It should be noted that overcoming the diffraction limit can be achieved outside the near-field diffraction zone [27]. In particular, compact localization of laser radiation is achieved by sharp focusing. However, in this case, some additional means can be required: the amplitude or phase apodization of the pupil of the focusing system [28-33], the use of special types of polarization [34-37]...
or the introduction of a phase singularity into the beam [38, 39], and the combination of all these factors [40-43] with the purpose of optimizing the formed field [44-47]. However, a decreased size of the light spot outside the near-field zone is usually accompanied by a significant increase in the side lobes [27, 47-49], while there is no restriction on the size of the light spot at a distance less than the wavelength. The localization of laser radiation can be arbitrarily small, although it depends essentially on the size of the details of the focusing element [50-52] or of the acting beams [53-55].

In this paper we consider the propagation of axially symmetric laser beams in the near diffraction zone (at a distance in the order of the wavelength) by means of a plane wave decomposition involving Fourier-Hankel transforms. The eigenfunctions of such an operator with eigenvalues are close to one, determining the characteristics of signals (data) transmitted lossless (without distortion). The boundedness of the propagation operator in both the spatial and spectral regions leads to numerical eigenfunctions calculation [56-61] being required. We calculated the axisymmetric eigenfunctions of the finite propagation operator in the near diffraction zone and investigated their qualitative and quantitative characteristics depending on the propagation distance and the constraints imposed in the object and spectral domains.

2. Theoretical background

A scalar propagation nonparaxial operator using the plane wave decomposition is as given below [16, 17]:

\[
E(u,v,z) = \iint F(\xi,\eta) \exp \left(ikz \sqrt{1 - \xi^2 - \eta^2} \right) \exp \left[i k (\xi u + \eta v) \right] d\xi d\eta,
\]

\[
F(\xi,\eta) = \frac{1}{\lambda^2} \iint E_0(x,y) \exp \left[-ik(x\eta + y\xi) \right] dx dy,
\]

where \(F(\xi,\eta) \) is the spectrum of the input field expansion by plane waves, \(\Sigma_x : \sigma_x \leq \sqrt{\xi^2 + \eta^2} \leq \sigma_z \) is area of spatial frequencies taken into account. With \(\sigma_x = 0, \sigma_z = 1 \) only propagating waves are considered, and with \(\sigma_x = 1, \sigma_z > 1 \) only evanescent waves are considered.

In the case where the input field is axisymmetric:

\[
E_0(x,y) = E_0(r),
\]

the expression (1) can be simplified:

\[
E(\rho,z) = -ik^2 \int_0^{\sigma_0} \int_0^\rho E_0(r) J_0(k\sigma r) r dr \exp \left(ikz \sqrt{1 - \sigma^2} \right) J_0(k\sigma \rho) \sigma d\sigma,
\]

where \(\rho \) is radial coordinate in output plane, \(\sigma \) is radial coordinate in spectrum plane, \(\sigma_0 \) is radius of spatial frequencies taking into account.

Based on the Nyquist theorem, for numerical realization \(\sigma_0 \) is determined by input field \(\Delta r \) sampling:

\[
\sigma_0 \leq \frac{\lambda}{2\Delta r}.
\]

Propagating waves correspond to the spatial frequencies located in a radius of a circle \(\sigma_0 \leq 1 \). In order to take into account evanescent waves, which contribute at distances less than the wavelength, it is necessary to increase the radius of the considered spatial frequencies to a certain value \(\sigma_z > 1 \), which depends on the distance \(z \) from the aperture. Let us estimate the value.

The integral from equation (1) is considered in polar coordinates only in the region of evanescent waves:
\[E(\rho, \theta, z) = \int_1^\infty \exp \left(-kz\sqrt{\sigma^2 - 1} \right) \left\{ \int_0^{2\pi} F(\sigma, \phi) \exp \left[ik\rho \sigma \cos(0 - \phi) \right] \, d\phi \right\} \sigma \, d\sigma. \] (5)

Let us analyze the part of equation (5), which depends on the polar angle. The exponential factor is equal to unity in absolute value. Spectrum function \(F(\sigma, \phi) \) (for affixed \(\phi \)) decreases not slower than \(1/\sigma \), otherwise Parseval equality is violated. Thus, integration over the angle gives a function that does not increase with increasing \(\sigma \), and for further analysis it can be replaced by a constant:

\[I = \int_1^\infty \exp \left(-kz\sqrt{\sigma^2 - 1} \right) \sigma \, d\sigma = \frac{1}{(kz)^2}. \] (6)

Absolute error after replacing the upper limit by the final value \(\sigma_z \) is:

\[\Delta = \sqrt{\frac{\sigma_z^2 - 1}{kz}} + \frac{1}{(kz)^2} \exp \left(-kz\sqrt{\sigma_z^2 - 1} \right), \] (7)
relative error is:

\[\varepsilon = \frac{\Delta}{I} = \left(kz\sqrt{\sigma_z^2 - 1} + 1 \right) \exp \left(-kz\sqrt{\sigma_z^2 - 1} \right), \] (8)
The value \(\varepsilon \) monotonically decreases with increasing \(\sigma_z \), what can be can be proved by taking the derivative.

With replacement \(t = kz\sqrt{\sigma_z^2 - 1} \), we obtain a function that does not depend on definite values \(\lambda \) and \(z \). To find the admissible cut-off boundary, it is necessary to specify a certain error \(\varepsilon \) and solve the equation (8).

In particular, for \(\varepsilon = 0.04 \) we obtain \(t = 5 \), which is the choice as the upper frequency limit:

\[\sigma_z = \sqrt{\frac{5}{kz}} + 1, \] (9)
provides error of equation (5) calculation not more than 5%.

We rewrite the operator (3) to the form of:

\[E(\rho, z) = \int_0^\infty E_0(r) K(r, \rho, z) r \, dr, \] (10)
where

\[K(r, \rho, z) = -ik^2 \int_0^1 \exp \left(ikz\sqrt{1 - \sigma^2} \right) J_0 \left(\frac{2\pi}{\lambda} \sigma \rho \right) J_0 \left(\frac{2\pi}{\lambda} \sigma r \right) \sigma \, d\sigma. \] (11)

Then the problem of calculating axisymmetric eigenfunctions in the near diffraction zone reduces to the search for the eigenfunctions of the following finite operator:

\[b_n(z) \psi_n(\rho, z) = \int_0^\infty \psi_n(r) K(r, \rho, z) r \, dr, \] (12)
where \(z \) is distance, \(b_n(z) \) are eigenvalues, \(\psi_n(\rho, z) \) are eigenfunctions.

It is clear, the characteristics of the eigenfunctions will depend not only on the propagation distance \(z \), but also on the constraints imposed on the field in the object and spectral domains.

3. Calculation of the axisymmetric eigenfunctions of the finite propagation operator in the near diffraction zone

The calculation of the eigenvalues and eigenfunctions was performed for various values of the parameters at the test wavelength of the laser radiation \(\lambda = 1 \mu m \).
The Figure 1 shows the form of the matrices (11), which are the core of the transformation (12), and the Figure 2 shows the view of the calculated matrices of ordered eigenvectors for various parameters.

![Figure 1](image1.png) \(\text{(a)} \) \(\text{(b)} \)

Figure 1. The amplitude of matrices (11), which are the core of the transformation (12) with (a) \(r_0 = 10 \lambda, \quad z = 0.5 \lambda, \quad \sigma_0 = 10 \), (b) \(r_0 = 10 \lambda, \quad z = 20 \lambda, \quad \sigma_0 = 1 \).

![Figure 2](image2.png) \(\text{(a)} \) \(\text{(b)} \)

Figure 2. The view (amplitude, negative) of the calculated matrices of ordered eigenvectors for various parameters (a) \(r_0 = 10 \lambda, \quad z = 0.5 \lambda, \quad \sigma_0 = 10 \), (b) \(r_0 = 10 \lambda, \quad z = 20 \lambda, \quad \sigma_0 = 1 \).

As can be seen in Figures 1 and 2, constriction of the region of spatial frequencies (decreasing the value of \(\sigma_0 \)) leads to the transformation kernel matrix being filled with nonzero values. In this case, the calculation of eigenvectors becomes more complicated (the Figure 2b).

The Figure 3 shows the graphs of the calculated eigenvalues. It can be seen that the eigenvalue graph has a classical form close to the step function at distances shorter than the wavelength for evanescent waves are taken into account \(|\alpha| > 1 \) (the Figure 3a). If the distance is significantly increased when only propagating waves taken into account \(|\alpha| < 1 \) (the Figure 3b), then a number of eigenvalues absolute values close to unity becomes much smaller.

![Figure 3](image3.png) \(\text{(a)} \) \(\text{(b)} \)

Figure 3. The graphs of eigenvalues absolute values \(b_n(z) \) with (a) \(r_0 = 10 \lambda, \quad z = 0.5 \lambda, \quad \sigma_0 = 10 \), (b) \(r_0 = 10 \lambda, \quad z = 20 \lambda, \quad \sigma_0 = 1 \).

The Figure 4 shows the normalized graphs of the obtained eigenfunctions. Since the functions are generally complex, it shows only the real part of the functions. It can be seen in Fig. 4 that the eigenfunctions in the first case have a classical form, and in the second case they have the "degenerate" one. To improve the situation, it is necessary to increase the size of the input field.
Figure 4. The graphs of the normalized eigenfunction real parts of $\psi_n(r, z)$ (for $n=1$ black thick line, for $n=2$ grey thick line, and for $n=15$ black thin line) with (a) $r_0 = 10\lambda$, $z = 0.5\lambda$, $\sigma_0 = 10$, (b) $r_0 = 10\lambda$, $z = 20\lambda$, $\sigma_0 = 1$.

4. Propagation modeling for fields matched with the calculated eigenfunctions

For modeling propagation of fields in free space we used expression (3). The simulation results for fields matched with the calculated eigenfunctions are shown in Tables 1 and 2.

Table 1. The simulation results for fields matched with the eigenfunctions calculated for parameters $r_0 = 10\lambda$, $z = 0.5\lambda$, $\sigma_0 = 10$.

n	Input amplitude	Spatial spectrum, $\sigma < 1$, $y \in [-10\lambda, 10\lambda]$, $z \in [0.1\lambda, 5\lambda]$	Longitudinal distribution at distance 5λ	Transverse distribution at distance 5λ
1				
2				
15				

As can be seen from the results given in Table 1, the fields matched with the eigenfunctions propagate in free space with preservation of its structure. For low-order eigenfunctions, a longer conservation distance is characteristic than for higher-order functions. In particular, for $n = 1, 2$, the complete conservation of the structure at a distance of 5λ is seen, while for $n = 15$ the peripheral part...
of the field is lost at the same distance. We note that the generated fields and their spatial spectra are similar to the Bessel modes [62].

Table 2. The simulation results for fields matched with the eigenfunctions calculated for parameters $r_0 = 10\lambda$, $\zeta = 20\lambda$, $\sigma_0 = 1$.

n	Input amplitude	Spatial spectrum, $\sigma < 0.5$	Longitudinal distribution, $y \in [-10\lambda, 10\lambda]$, $z \in [5\lambda, 50\lambda]$	Transverse distribution at distance 20λ
1	![Input amplitude](image1)	![Spatial spectrum](image2)	![Longitudinal distribution](image3)	![Transverse distribution](image4)
2	![Input amplitude](image1)	![Spatial spectrum](image2)	![Longitudinal distribution](image3)	![Transverse distribution](image4)
5	![Input amplitude](image1)	![Spatial spectrum](image2)	![Longitudinal distribution](image3)	![Transverse distribution](image4)

As can be seen from the results given in Table 2, the fields matched with the “degenerate” eigenfunctions propagate in free space with preservation of its structure only in the central part.

5. Conclusion

In this paper, the calculation of axially symmetric eigenfunctions of finite propagation operator in the near-field diffraction was performed. It is proved that the qualitative and quantitative characteristics of eigenfunctions depend on the propagation distance and the constraints imposed in the object and spectral domains.

The simulation results show that fields matched with the calculated eigenfunctions propagate in free space with preservation of its structure. For low-order eigenfunctions, a longer conservation distance is characteristic than for higher-order functions.

6. References

[1] Betzig E and Trautman J K 1992 Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit Science 257 189-194
[2] Heinzelmann H and Pohl D W 1994 Scanning near-field optical microscopy Appl. Phys. A 59 89-101
[3] Van Labeke D, Barchiesi D and Baida F 1995 Optical characterization of nanosources used in scanning near-field optical microscopy J. Opt. Soc. Am. A 12 695-703
[4] Novotny L, Sanchez E J and Xie X S 1998 Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams Ultramicroscopy 71 21-29
[5] Bethe H A 1994 Theory of diffraction by small holes Phys. Rev. 66 163-182
[6] Osterberg H and Smith L W 1961 Closed Solutions of Rayleigh's Diffraction Integral for Axial
Points J. Opt. Soc. Am. 51 1050-1054
[7] Wolf E and Marchand E W 1964 Comparison of the Kirchhoff and the Rayleigh-Sommerfeld
Theories of Diffraction at an Aperture J. Opt. Soc. Am. 54 587-594
[8] Gravelsaeter T and Stamnes J J 1982 Diffraction by circular apertures. I: Method of linear
phase and amplitude approximation Applied Optics 21 3644-3651
[9] Girard C and Dereux A 1996 Near-field optics theories Rep. Prog. Phys. 59 657-699
[10] Mieelenz K D 2002 Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-
Value Solutions for Circular Apertures and Slits J. Res. Natl. Inst. Stand. Technol. 107 355-362
[11] Romero J A and Hernández L 2008 Diffraction by a circular aperture: an application of the
vectorial theory of Huygens’s principle in the near field J. Opt. Soc. Am. 25 2040-2043
[12] Li J, Zhu Sh and Lu B 2009 The rigorous electromagnetic theory of the diffraction of vector
beams by a circular aperture Opt. Commun. 282 4475-4480
[13] Cooper I I, Sheppard C J R and Roy M 2005 The numerical integration of fundamental
diffraction integrals for converging polarized spherical waves using a two-dimensional form of
Simpson’s 1/3 Rule Journal of Modern Optics 52 1123-1134
[14] Veerman J A C, Rusch J J and Urbach H P 2005 Calculation of the Rayleigh–Sommerfeld
diffraction integral by exact integration of the fast oscillating factor J. Opt. Soc. Am. A 22 636-
646
[15] Shen F and Wang A 2006 Fast-Fourier-transform based numerical integration method for the
Rayleigh–Sommerfeld diffraction formula Applied Optics 45 1102-1110
[16] Khonina S N, Ustinov A V, Kovalev A A and Volotovsky S G 2010 Propagation of the radially-
limited vortical beam in a near zone. Part I. Calculation algorithms Computer Optics 34 315-
329
[17] Khonina S N, Ustinov A V, Kovalev A A and Volotovsky S G 2014 Near-field propagation of
vortex beams: models and computation algorithms Optical Memory and Neural Networks 23
50-73
[18] Betzig E, Trautman J K, Harris T D, Weiner J S and Kostelak R L 1991 Breaking the diffraction
barrier – Optical microscopy on a nanometric scale Science 251 1468-1470
[19] Pendry J B and Ramakrishna S A 2002 Near-field lenses in two dimensions J. Phys. Condens.
Matter 14 8463-8479
[20] Grbic A and Eleftheriades G V 2004 Overcoming the diffraction limit with a planar left-handed
transmission-line lens Phys. Rev. Lett. 92 117403
[21] Popa B I and Cummer S A 2006 Direct measurement of evanescent wave enhancement inside
passive metamaterials Phys. Rev. E 73 016617
[22] Sheppard C J R 2007 Fundamentals of superresolution Micron 38 165-169
[23] Zhang X and Liu Z 2008 Superlenses to overcome the diffraction limit Nature Materials 7435-
7441
[24] Khonina S N, Serafimovich P G, Savel’ev D A and Pustovoi I A 2012 Diffraction at binary
microaxicons in the near field Journal of Optical Technology 79 626-631
[25] Degtyarev S A, Porﬁirev A P and Khonina S N 2016 Photonic nanohelix generated by a binary
spiral axicon Applied Optics 55 B44-48
[26] Khonina S N and Ustinov A V 2017 Very compact focal spot in the near-field of the fractional
axicon Optics Communications 391 24-29
[27] Di Francia G T 1952 Super-Gain Antennas and Optical Resolving Power Supplto. Nuovo Cim. 9
426-438
[28] Quabis S, Dorn R, Eberler M, Glockl O and Leuchs G 2000 Focusing light to a tighter spot Opt.
Commun. 179 1-7
[29] Wang H, Shi L, Lukyanchuk B, Sheppard C and Chong Ch T 2008 Creation of a needle of
longitudinally polarized light in vacuum using binary optics Nature Photonics 2 501-505
[30] Khonina S N and Volotovsky S G 2010 Investigation of axicon application in high-aperture
focusing system Computer Optics 34 35-51
[31] Khonina S N, Ustinov A V and Pelevina E A 2011 Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system Computer Optics 35 203-219
[32] Reddy A N K, Sagar D K and Khonina S N 2017 Complex pupil masks for aberrated imaging of closely spaced objects Optics and Spectroscopy 123 940-949
[33] Reddy A N K, Sagar D K and Khonina S N 2017 Asymmetric apodization for the coma aberrated point spread function Computer Optics 41(4) 484-488 DOI: 10.18287/2412-6179-2017-41-4-484-488
[34] Dorn R, Quabis S and Leuchs G 2003 Sharper focus for a radially polarized light beam Phys. Rev. Lett. 91 233901
[35] Kozawa Y and Sato S 2007 Sharper focal spot formed by higher-order radially polarized laser beams J. Opt. Soc. Am. A 24 1793-1798
[36] Karpeev S V, Khonina S N, Kazanskiy N L and Alferov S V 2011 Investigation of focusing inhomogeneously polarized higher-order laser beams Computer Optics 35 335-338
[37] Kharitonov S I and Khonina S N 2018 Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide Computer Optics 42(2) 197-211 DOI: 10.18287/2412-6179-2018-42-2-197-211
[38] Helseth L E 2004 Optical vortices in focal regions Opt. Commun. 229 85-91
[39] Khonina S N, Kazanskiy N L and Volotovsky S G 2011 Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system Optical Memory and Neural Networks (Information Optics) 20 23-42
[40] Sheppard C J R and Choudhury A 2004 Annular pupils, radial polarization, and superresolution Appl. Opt. 43 4322-4327
[41] Pereira S Fand Van de Nes A S 2004 Superresolution by means of polarisation, phase and amplitude pupil masks Opt. Commun. 234 119-124
[42] Lerman G M and Levy U 2008 Effect of radial polarization and apodization on spot size under tight focusing conditions Opt. Express 16 4567-4581
[43] Khonina S N and Volotovsky S G 2010 Control by contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures Computer Optics 34 58-68
[44] Beversluis M R, Novotny L and Stranick S J 2006 Programmable vector point-spread function engineering Opt. Express 14 2650-2656
[45] Rao L, Pu J, Chen Zh and Yei P 2009 Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens Opt. & Las. Techn. 41 241-246
[46] Khonina S N and Golub I 2011 Optimization of focusing of linearly polarized light Optics Letters 36 352-354
[47] Khonina S N and Volotovsky S G 2011 Minimization of light or dark focal spot size with controllable growth of side lobes in focusing systems with the high numerical aperture Computer Optics 35 438-451
[48] Berry M V and Popescu S 2006 Evolution of quantum superoscillations and optical superresolution without evanescent waves J. Phys. A 39 6965-6977
[49] Huang F M and Zheludev N I 2009 Super-Resolution without Evanescent Waves Nano Lett 9 1249-1254
[50] Verhagen E, Polman A and Kuipers L 2008 Nanofocusing in laterally tapered plasmonic waveguides Opt. Express 16 45-57
[51] Schnell M, Alonso-González P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A and Hillenbrand R 2011 Nanofocusing of mid-infrared energy with tapered transmission lines Nat. Photonics 5 283-287
[52] Degtyarev S A, Porfirev A P, Ustinov A V and Khonina S N 2016 Singular laser beams nanofocusing with dielectric nanostructures: theoretical investigation Journal of the Optical Society of America B 33 2480-2485
[53] Hell S W and Wichmann J 1994 Breaking the diffraction resolution limit by stimulated-
emission-depletion fluorescence microscopy *Opt. Lett.* 19 780-782

[54] Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A and Bianchini P 2012 Strategies to maximize the performance of a STED microscope *Opt. Express* 20 7362-7374

[55] Khonina S N and Golub I 2012 How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy *J. Opt. Soc. Am. A* 29 2242-2246

[56] Khonina S N, Volotovskii S G and Soifer V A 2001 A method for computing the eigenvalues of prolate spheroidal functions of order zero *Doklady Mathematics* 63 136-138

[57] Kirilenko M S and Khonina S N 2015 Calculation of the eigenfunctions of two lens imaging system *Proc. of SPIE* 9450 945012

[58] Kirilenko M S, Pribylov V V and Khonina S N 2015 Investigation of the free-space propagation operator eigenfunctions in the near-field diffraction *Proc. of Progress in Electromagnetics Research Symposium* 2035-2038

[59] Kirilenko M S, Zubtsov R O and Khonina S N 2015 Calculation of eigenfunctions of a bounded fractional Fourier transform *Computer Optics* 39(3) 332-338

[60] Khonina S N, Kirilenko M S and Volotovsky S G 2017 Defined distribution forming in the near diffraction zone based on expansion of finite propagation operator eigenfunctions *Proc. of SPIE* 201 53-60

[61] Kirilenko M S and Khonina S N 2018 Formation of signals matched with vortex eigenfunction of bounded double lens system *Optics Communications* 410 153-159

[62] Khonina S N and Kotlyar V V 1994 Bessel-mode formers *Proc. of SPIE* 2363 184-190

Acknowledgement

The reported study was funded by RFBR according to the research project № 18-37-00056 (calculation of eigenfunctions) and by the Ministry of Education of the Russian Federation in the framework of the government-assigned task № 3.5319.2017/8.9 (propagation modeling) and by the Federal Agency of Scientific Organizations (Agreement No 007-GZ/C3363/26) (theoretical background).