Surface Activities, Antibacterial Activity and Corrosion Inhibition Properties of Gemini Quaternary Ammonium Surfactants with Amido Group and Carboxylic Counterions

Siqi Hu, Duojiao Fu, Hanyu Chen, Hongqin Liu*, and Baocai Xu

Abstract: A series of gemini quaternary ammonium surfactants containing carboxylate counterion with the formula \(C_{17}H_{35}CONH(CH_{2})_{2}N(CH_{3})_{2}(CH)_{2}N(CH_{3})(CH_{2}) NhCO C_{17}H_{35}·2Y \) \((Y=HCOO^-, CH_{3}COO^-, CH_{3}CHOHCOO^-) \) have been synthesized by a counterion conversion process and characterized by Fourier transform infrared spectroscopy and mass spectroscopy. It is found that these surfactants reduce the surface tension of water to a minimum value of 26.78 mN·m\(^{-1}\) at a concentration of 1.21 \(\times 10^{-5} \) mol·L\(^{-1}\). TEM images reveal that aggregates with vesicles or tubular structure are spontaneously formed in these surfactants aqueous solution with the concentration of \(1 \times 10^{-3} \) mol·L\(^{-1}\). It is also found that they are effective corrosion inhibitors for A3 steel in acid solution and have superior antibacterial activity at a concentration of 0.1g·L\(^{-1}\).

Key words: gemini quaternary ammonium surfactant, surface activity, antibacterial activity, corrosion inhibition

1 Introduction

Gemini surfactant has two lipophilic tail groups and hydrophilic head groups\(^1\). Due to the unique chemical structure, gemini surfactant tends to form rather rich array of “self-assembled” structures in aqueous solution, including spherical micelle, ellipsoidal micelle, rodlike micelle, layered micelle, linear micelle, a membrane, vesicle, liquid crystals, sponge and other morphologies, and has better performance, such as low critical micelle concentration (CMC), high thermal stability, strong wettability, adhesion ability, and high surface reduction efficiency, etc\(^2\)\(^-\)\(^9\). In recent years, cationic gemini surfactants especially gemini quaternary ammonium surfactants, which have shown enormous potential applications in various fields, covering detergents, cosmetics, textile dyeing, biotechnology, the pharmaceutical industry, food industry and the petroleum industry, have attracted wide attention from researchers\(^6\)\(^-\)\(^8\).

Studies have shown that a gemini surfactant molecule with the requested properties to specific applications is possible to obtain by structure modification, such as changing its component, hydrophobic chain, counterion, spacer group length, spacer group softness and introducing specific functional groups\(^10\)\(^-\)\(^13\). At present, some studies have reported the influence of positively charged counterions on surfactants, but the effect of negatively charged organic counterions on quaternary ammonium surfactants has rarely been reported\(^14\)\(^-\)\(^15\). In addition, numerous studies have confirmed that the water solubility, biodegradability and the aggregation tendency of the surfactant could be increased by insertion of an amide bond in the surfactant molecule\(^16\)\(^-\)\(^17\). Hoque et al. also demonstrated that surfactants with amido group had stronger surface activity than common hydrocarbon surfactants by small-angle neutron scattering and conductivity methods\(^17\). So, in this paper, a series of gemini quaternary ammonium surfactants were synthesized by introducing amide functional groups and carboxylic counterions into the molecular structure.

The surface properties, corrosion inhibition properties and bacteriostatic activity of them as well as the effect of the counterion were studied. To date, the anions of general gemini quaternary ammonium surfactants are mostly inorganic halogen atoms, which affect their properties and limit their application to a certain extent. The quaternary ammonium gemini surfactant without halogen counterions synthesized by the green chemical reagent dimethyl carbonate in this study meets the requirements of green...
2 Experimental Procedures

2.1 Materials

Methyl stearate, triethylenetetramine and dimethyl carbonate were of analytical grade and purchased from J&K Scientific Ltd. Toluene, sodium hydroxide, formic acid, acetic acid, lactic acid, absolute ethanol, absolute methanol, absolute ethyl ether and acetonitrile were provided by Sinopharm chemical reagent Beijing Co., Ltd. Nutrient broth and benzalkonium chloride solution (50 g L⁻¹) were supplied by Beijing OBO biotech Co., Ltd and Beijing Derun Pharmaceutical Co., Ltd, respectively. Pseudomonas aeruginosa, escherichia coli, staphylococcus aureus and bacillus subtilis were obtained from environmental professional laboratory. The high-purity water (ρ = 18.25 MΩ cm⁻¹) was supplied by an ultrapure laboratory water purification system. N, N, N’-tetramethyl- N, N’-di-(2-stearyl- ethylenediamine methyl carbonate (purity > 98\% were prepared according to a green method reported in our previous paper.

2.2 Synthesis of Gemini Surfactants (17-2-17-2Y)

The 17-2-17-2Y Gemini surfactants were synthesized according to the method reported in our previous paper. The general formula and synthesis procedure for the 17-2-17-2Y surfactants were shown in Scheme 1. Their purity was greater than 98\% and the yield values were 90.5~92.4\%. Owing to the carboxylic counterion of the surfactants, the pH values of the following experimental systems (measurement of surface tension, dynamic light scattering and antibacterial activity) are all about 6.

2.3 Confirmation of Structure

Mass spectroscopy (MS) and Fourier transform infrared (FTIR) analysis of the synthesized Gemini surfactants were performed using AB SCIEX API3200 LC/MS spectrometer and Thermo Fisher Nicolet ISLO FTIR spectrometer, respectively.

2.4 Measurement of Surface Tension

At 25°C, the static surface tension of these Gemini surfactants aqueous solution within a concentration range of 1 x 10⁻⁷-1 x 10⁻² mol L⁻¹ was measured on a Dataphysics tensiometer DCAT11 by the Wilhemy plate method.

2.5 Measurement of Dynamic Light Scattering (DLS)

The size distributions of self-assembled aggregate measurements were performed with Malvern Zetasizer Nano ZS instrument at 25°C with a solid state He-Ne laser (output power of 22 mW at λ = 632.8 nm) as a light source. The scanning scattering angle was set at 173°. Each sample with the concentration of 1 x 10⁻³ mol L⁻¹ equilibrated for 2 min before measurements, and then was measured at least three times. The distribution of diffusion coefficients (D) of the solutes was obtained by analyzing the correlation function of scattering data using CONTIN method. Then the apparent equivalent hydrodynamic radius (R_h) was calculated from Stokes-Einstein equation \(R_h = kT/6\pi\eta D \), where \(k \) was the Boltzmann constant, \(T \) was the absolute temperature, and \(\eta \) was the solvent viscosity.

2.6 Transmission Electron Microscope (TEM)

The TEM sample was prepared as follows: (I) a drop of surfactant aqueous solution with the concentration of 1 x 10⁻³ mol L⁻¹ was dropped onto the clean sealing film; (II) porous carbon support membrane (260 mesh) was put upside down on the surface of the droplet for 10 min; (III) excess of the droplet was sucked from the edge; (IV) the porous carbon support membrane was dried for at least 12 h in a vacuum dryer; (V) a drop of 1% dioxygenium acetate was added to another clean sealing film, then the adsorbed carbon support membrane was put upside down on it and dyed for 15 s; (VI) the porous carbon support

![Scheme 1 Synthesis of 17-2-17-2Y.](image-url)
membrane was dried for at least 12 h in a vacuum dryer. TEM measurements were made using the Oxford X-MAX JEM-2100 operating at an accelerating voltage of 120 kV by a negative-staining method.

2.7 Antibacterial Activity Measurement
Antibacterial activities of these surfactants were determined by monitoring the growth of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus and Bacillus Subtilis) using Finland Bioscreen automatic growth curve instrument. 200 μL bacteria was introduced to the fluid nutrient broth, which was prepared by mixing 1.8 g nutrient broth powder and 100 mL distilled water and was sterilized by autoclave. After cultivating for 12 h with oscillation at 37 °C, 200 μL bacterial suspension was taken out and added to the other freshly prepared sterilized fluid nutrient broth, and oscillated continuously for 6 h to completely motivate the bacteria.

The baseline group consisted of 50 μL sterile water and 450 μL blank nutrient. 50 μL benzalkonium chloride solution with a concentration of 1.00 g·L⁻¹ was mixed with 450 μL bacterial solution to set as the control group. The blank group was prepared by mixing 50 μL sterile water with 450 μL bacterial solution. 50 μL surfactants solution with a concentration gradient of 0.50 and 1.00 g·L⁻¹ prepared by sterile water was mixed with 450 μL bacterial solution to prepare the experimental group. The prepared solution was separately placed into the middle part of the 100-well plates and monitored for 24 h with oscillation at 37 °C, then the optical density (OD) value at 600 nm was measured every other hour.

2.8 Corrosion inhibition measurements
The corrosion inhibition of these surfactants for A3 steel (ρ = 7.86 g·cm⁻³) in 6.00 wt% HCl at 298.15 K was investigated using the weight loss method. A3 steel specimens (50 × 25 × 2 mm), which were first wiped clean with filter paper and then degreased by placed in petroleum ether, were soaked in anhydrous ethanol for 5 min and dried with cold wind, and were stored in a desiccator for 1 h. After that, the specimens were accurately weighted to 0.1 mg. Then 3 parallel specimens were immersed in the 6.00 wt% HCl solutions with and without addition of different concentrations of surfactants with stirring at 298.15 K. After 6 h, the specimens were removed, rinsed with water, further soaked in acid pickling liquid for 5 min, rinsed again with water, put into 5.66 wt% NaOH solution for 30 s, rinsed with distilled water, and immersed in ethanol for 5 min. After that, they were taken out, first placed on filter paper to dry in cold air, then in a desiccator to dry for 1 h, at last accurately weighted to 0.1 mg.

3 Results and Discussion
3.1 Characterization of gemini quaternary ammonium surfactants
The detailed characterization of all the surfactants was done by mass spectroscopy and Fourier transform infrared spectroscopy. The Mass spectra and FTIR spectra of the representative compound 17-2-17-2HCOO⁻ were shown in Figs. 1-3. Spectral characterizations results were as follows. In brief, their structures were confirmed.

17-2-17-2HCOO⁻: Mass Spectra: Cationic scanning M/E: 369.0; Anion scanning M/E: 44.9; FTIR Spectra (KBr, v, cm⁻¹): 3395.18, 3304.94 (N-H), 2917.89, 2849.85 (C-H), 1647.12 (C = O), 1558.60, 1260.05 (C-N, N-H coupling), 1470.89 (C-H), 1420.32 (COO⁻), 1558.60, 1260.05 (C-N, N-H coupling), 1470.89 (C-H), 1420.32 (COO⁻), 720.97 (C-H).

17-2-17-2CH₃COO⁻: Mass Spectra: Cationic scanning M/E: 369.0; Anion scanning M/E: 58.9; FTIR Spectra (KBr, v, cm⁻¹):
Gemini surfactants are between micelles. In addition, the CMC and double-chain compounds aggregate more easily to form some of other gemini surfactants, indicating that these counterions increase. It is because the hydrophilicity of counterions affects the micellization of the surfactants.

The maximum surface excess concentration \(\Gamma_{\text{max}} \) and the minimum area per surfactant molecule \(A_{\text{min}} \) adsorbed at the air-aqueous solution interface, which are listed in Table 1, are calculated according to the Gibbs adsorption equations:

\[
\Gamma_{\text{max}} = \left(\frac{-1}{2.303nRT} \right) \left(\frac{dy}{d\log c} \right) \tag{1}
\]

\[
A_{\text{min}} = \frac{1}{N_A \Gamma_{\text{max}}} \tag{2}
\]

where \(R \) is the gas constant, \(N_A \) is Avogadro’s number, \(T \) is the absolute temperature, and \(n \) is a constant. For gemini quaternary ammonium surfactants, the value of \(n \), which has no effect on the variation trend of the values of \(\Gamma_{\text{max}} \) and \(A_{\text{min}} \) is generally determined as 2 or 3\(^{20,21}\). However, some reports have suggested that it is more appropriate to use a value of 2 for \(n \), because \(n \) is 3, the calculated \(A_{\text{min}} \) is unacceptably large\(^{20}\). In this case, \(n \) is taken as 2. Table 1 shows that these three species of carboxylic counterions have little effect on the values of \(\Gamma_{\text{max}} \) and \(A_{\text{min}} \). The reason may be that, these short alkyl chain counterions such as formic acid and acetate have strong hydrophilicity and weak hydrophobicity, will not or seldom insert into the surface adsorption layer, thus the surface adsorption parameters of these gemini quaternary ammonium surfactants have little change\(^{20}\).

Gemini surfactant	CMC (mol·L\(^{-1}\))	\(\gamma_{\text{CMC}} \) (mN·m\(^{-1}\))	\(\Gamma_{\text{max}} \) \(\times 10^{-10} \) mol·cm\(^{-2}\)	\(A_{\text{min}} \) (nm\(^{2}\))
17-2-17-2HCOO\(^{-}\)	\(1.21 \times 10^{-3} \)	26.78	2.13	0.78
17-2-17-2CH\(_3\)COO\(^{-}\)	\(1.44 \times 10^{-3} \)	27.15	2.29	0.73
17-2-17-2CH\(_3\)CHOHCOO \(^{-}\)	\(2.54 \times 10^{-3} \)	28.12	2.02	0.82

Fig. 3 FTIR spectra of 17-2-17-2HCOO\(^{-}\).

Fig. 4 Plots of \(\gamma \) against the concentration (\(c \)) of 17-2-17-2Y at 25°C, \(Y = \text{HCOO}^{-} \) (●), \(\text{CH\(_3\)COO}^{-} \) (▲), \(\text{CH\(_3\)CHOHCOO}^{-} \) (▼).

3.2 Surface Activity

In Fig. 4, surface tension (\(\gamma \)) is plotted against the concentration (\(c \)) of these surfactant aqueous solutions. The CMC values determined by the inflection point of the \(\gamma-c \) curve and the surface tension at the CMC (\(\gamma_{\text{CMC}} \)) acquired by analyzing the plateau region of the plots are summarized in Table 1. As is seen in Table 1, the \(\gamma_{\text{CMC}} \) values of these gemini quaternary ammonium surfactants are between 26.78 and 28.12 mN·m\(^{-1}\) and the minimum area per surfactant molecule (\(A_{\text{min}} \)) adsorbed at the air-aqueous solution interface, which are listed in Table 1, are calculated according to the Gibbs adsorption equations:

\[
\Gamma_{\text{max}} = \left(\frac{-1}{2.303nRT} \right) \left(\frac{dy}{d\log c} \right) \tag{1}
\]

\[
A_{\text{min}} = \frac{1}{N_A \Gamma_{\text{max}}} \tag{2}
\]

where \(R \) is the gas constant, \(N_A \) is Avogadro’s number, \(T \) is the absolute temperature, and \(n \) is a constant. For gemini quaternary ammonium surfactants, the value of \(n \), which has no effect on the variation trend of the values of \(\Gamma_{\text{max}} \) and \(A_{\text{min}} \) is generally determined as 2 or 3\(^{20,21}\). However, some reports have suggested that it is more appropriate to use a value of 2 for \(n \), because \(n \) is 3, the calculated \(A_{\text{min}} \) is unacceptably large\(^{20}\). In this case, \(n \) is taken as 2. Table 1 shows that these three species of carboxylic counterions have little effect on the values of \(\Gamma_{\text{max}} \) and \(A_{\text{min}} \). The reason may be that, these short alkyl chain counterions such as formic acid and acetate have strong hydrophilicity and weak hydrophobicity, will not or seldom insert into the surface adsorption layer, thus the surface adsorption parameters of these gemini quaternary ammonium surfactants have little change\(^{20}\).
3.3 DLS and TEM Measurements

The sizes and distributions of the aggregates formed in these surfactants aqueous solution with the concentration of $1 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ are investigated by DLS. Seen from Fig. 5, the R_h values of these surfactant solutions are distributed in the range of 40-2000 nm. In addition, at least two hydrated radius distribution peaks were observed in these surfactants solutions, although the first peak of 17-2-17-2HCOO$^-$ is not obvious. The peak near 100 nanometers may correspond to micro vesicles, and the peak of hundreds of nanometers may be assigned to more complex aggregates, such as multilamellar vesicles, tubular micelle, lamellar micelle, etc. Correspondingly, the morphology of aggregates of these gemini surfactants in aqueous solution with the concentration of $1 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ have been studied by TEM measurement. The results are shown in Fig. 6.

Figure 6 shows that the size of these aggregates is practically consistent with the results of DLS. The mixed micelles of spheroidal vesicles and longish tubular structure are observed in aqueous solution of 17-2-17-2HCOO$^-$ (Fig. 6I), the mixture of single-room vesicles and multicenter vesicles (Fig. 6II) are formed in the case of 17-2-17-2CH$_3$COO$^-$, and there mainly exists some longish tubular structure aggregates for 17-2-17-2CH$_3$OHCOO$^-$ (Fig. 6III). It can draw a conclusion that the counterions have little influence on the self-assembly behavior of these surfactants at a high concentration. The formation of various micelles is mainly due to the self-organization of quaternary ammonium cation driven by entropy. Hydrogen bonds between amide groups near the hydrophilic headgroups region can minimize the repulsive interactions among quaternary ammonium groups, which can further stable the micelles.

3.4 Measurements of Antibacterial activity

The bacteriostatic efficiency is calculated according to the following formula:

$$X = \frac{(OD_0 - OD_1)}{OD_0} \times 100\%$$ \hspace{1cm} (3)
where OD₀ and OD₁ refer to the OD values of the bacillus without surfactants and with surfactants at the same time, respectively. According to our previous work, the values at 15 h are used to evaluate the surfactant inhibition for Pseudomonas aeruginosa and Staphylococcus aureus, while the values at 10 h and 12 h are used to evaluate for Escherichia coli and Bacillus subtilis, respectively. The bacteriostatic efficiency of these gemini surfactants solution and 0.1 g·L⁻¹ benzalkonium chloride solution are listed in Table 2. The date presented in Table 2 shows that the antibacterial activities of most of these gemini surfactants with the concentration of 0.05 g·L⁻¹ is better than that of 0.1 g·L⁻¹ benzalkonium chloride solution. At the concentration of 0.1 g·L⁻¹, their bacteriostatic efficiency to Gram-positive and Gram-negative bacteria is more than 85%, indicating excellent bacteriostatic effect. Table 2 also shows that the variation trend of bacteriostatic effect to the same bacteria of ammonium formate, ammonium acetate, and ammonium lactate with the same concentration is gradually decreasing. Sterilization is due to the adsorption and penetration of surfactant molecules at the microbial surface. The counterions wrapped with the positive micelles are diffused manner, gemini surfactants with shorter alkyl chain length of counterions have larger diffusion region and can prevent the bacteria from exchanging substances with the nutrient medium better.

3.5 Corrosion Inhibition

Surfactant molecules adsorb on the metals by electrostatic and chemical adsorption to form a protective layer blocking the active corrosion sites, thereby delaying the corrosion of the metal. The following equation is used to calculate the inhibition efficiency η of these gemini surfactants for the corrosion of A3 steel specimen:

$$\eta = \frac{\Delta m_0 - \Delta m_1}{\Delta m_0} \times 100\%$$

where Δm₀ and Δm₁ are the weight loss of the steel specimen.

Figure 7 presents the variation of η versus the concentration. Figure 7 shows that η increases with the surfactants concentration increases, and a significant inflection point appears. After the inflection point, η increases slowly and tends to be stable, indicating the surfactant molecules have already formed a saturated adsorption in the steel surface. In addition, at the infection point, η values of these three surfactants are more than 90%, suggesting they are effective.

Figure 7 also shows that there is a little change in inhibition efficiency of ammonium formate, ammonium acetate, and ammonium lactate. Moreover, their inhibition efficiency is higher than that of 17-2-17-2CH₃COO³⁻. Yousefi et al. suggested that counterions can form an intermediate bond between the metal surface and the hydrophilic head group to increase the adsorption on the metal surface. The stronger the hydrophilicity of the counterion is, the stron-

Bacteriostatic efficiency	Gemini surfactant	Benzalkonium chloride			
	17-2-17-2HCOO⁻	17-2-17-2CH₃COO⁻	17-2-17-2CH₃CH(OH)COO⁻		
Pseudomonas (%)	0.05	87.3%	80.8%	73.4%	76.0%
aeruginosa (%)	0.1	91.2%	88.6%	86.0%	/
Escherichia (%)	0.05	82.3%	79.3%	81.0%	/
coli (%)	0.1	92.8%	91.7%	89.7%	74.0%
Staphylococcus (%)	0.05	83.4%	82.5%	80.2%	/
aureus (%)	0.1	94.0%	93.1%	91.8%	79.0%
Bacillus (%)	0.05	85.6%	81.2%	78.8%	/
subtilis (%)	0.1	92.5%	90.9%	88.7%	74.0%
ger the binding force with the hydrophilic head group is, thus forming a better protection. In addition, these surfactants can also react with the corrosive medium to reduce the acidity of the corrosive medium, thereby increasing the corrosion inhibition efficiency.

4 Conclusion

In summary, three gemini quaternary ammonium surfactants with carboxylic counterions are synthesized. Studies have shown that the CMC values of these surfactants are $1.21 \times 10^{-5} - 2.54 \times 10^{-4}$ mol·L$^{-1}$, and the γ_{CMC} values are $26.78 - 28.12$ mN·m$^{-1}$, suggesting their higher surface activities. With an increase of the alkyl chain length of the carboxylic counterions, the CMC and γ_{CMC} values of these surfactants increase, and the values of Γ_{max} and A_{min} have little difference. Meanwhile, the DLS and TEM results show that aggregates with vesicles or tubular structure, the R, values of which are distributed in the range of 40-2000 nm, are spontaneously formed in these surfactants aqueous solution with the concentration of 1 mol·L$^{-1}$. These gemini surfactants are also found to have superior antibacterial activity at a concentration of 0.1 g/mL, and the values of Γ_{max} and A_{min} have little difference. Furthermore, they are also effective corrosion inhibitors for A3 steel in acid solution.

Acknowledgment

The work was supported by National Key R&D Program of China (2017YFB0308701), the National Natural Science Foundation of China (21676003), Beijing Municipal Science and Technology Project (Z171100001317015), the Science and Technology Program Key Project of Beijing Municipal Commission of Education (KZ201510011010), the Transformation of Scientific and Technological Achievements-Promotion Plan Project (PXM2016_014213 000028).

References

1) Menger, F.M.; Keiper, J.S. Gemini surfactants. Angew. Chem., Int. Ed. 39, 1906-1920 (2000).
2) Zhang, S.S.; Yu, J.; Wu, J.Z.; Tong, W.; Lei, Q.F.; Fang, W.J. Micellization parameters of six Gemini quaternary ammonium surfactants from measurements of conductivity and surface tension. J. Chem. Eng. Data. 59, 2891-2900 (2014).
3) Fan, Y.X.; Han, Y.C.; Wang, Y.L. Effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solutions. Acta Phys.-Chem. Sin. 32, 214-226 (2016).
4) Sharma, R.; Kamal, A.; Abdinejad, M.; Mahajan, R.K.; Kraatz, H.-B. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv. Colloid Interface Sci. 248, 35-68 (2017).
5) Garcia, M.T.; Kaczwerowska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic gemini surfactants in aqueous solution. J. Mol. Liq. 230, 453-460 (2017).
6) Zhang, S.S.; Ding, S.P.; Yu, J.; Chen, X.R.; Lei, Q.F.; Fang, W.J. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir 31, 12161-12169 (2015).
7) Tuccio, M.; Cardinali, G.; Roscini, L.; Germani, R.; Corte, L. Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids Surf. B 111, 407-417 (2013).
8) Tavano, L.; Infante, M.R.; Riya, M.A.; Pinazo, A.; Vinardell, M.P.; Mitjans, M.; Manresa, M.A.; Perez, L. Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine. Soft Matter 9, 306-319 (2013).
9) Xu, X.J.; Guo, J.W.; Zhong, X. Synthesis and properties of disymmetric gemini surfactants with adamantane spacer. Chin. Chem. Lett. 25, 367-369 (2014).
10) Xu, D.Q.; Pan, Z.W. Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution reaction. Chin. Chem. Lett. 25, 1169-1173 (2014).
11) Avinash, B.; Rekha, G.S.; Setsuko, K.; Takeshi, E.; Kenichi, S.; Masahiko, A.; Hideki, S. Self-aggregation properties of new ester-based gemini surfactants and their rheological behavior in the presence of cosurfactant-monolaurin. Colloids Surf. A 461, 258-266 (2014).
12) Gao, X.R.; Wang, Y.; Zhao, X.X.; Wei, W.L.; Chang, H.H. Equilibrium and dynamic surface tension properties of gemini quaternary ammonium salt surfactants with ester groups. Colloids Surf. A 509, 130-139 (2016).
13) Zhou, X.Q.; Hu, S.Q.; Wang, Y.; Ullah, S.; Hu, J.; Liu, H.Q.; Xu, B.C. The surface adsorption, aggregate structure and antibacterial activity of gemini quaternary ammonium surfactants with carboxylic counterions. Royal Society Open Science 6, 190378 (2019).
14) Wang, C.Y.; Morgner, H. The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counterions therein. Phys. Chem. Chem. Phys. 16, 23386-23393 (2014).
15) Benrraou, M.; Bales, B.L.; Zana, R. Effect of the nature
of the counterion on the properties of anionic surfactants. 1. CMC, ionization degree at the CMC and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. *J. Phys. Chem. B* **107**, 13432-13440 (2003).

16) Stjerndahl, M.; Holmberg, K. Synthesis, stability, and biodegradability studies of a surface-active amide. *J. Surf. Deterg.* **8**, 331-337 (2005).

17) Hoque, J.; Gorugunta, S.; Yarlagadda, V.; Aswal, V.K.; Haklar, J. Effect of amide bonds on the self-assembly of gemini surfactants. *Phys. Chem. Chem. Phys.* **16**, 11279-11288 (2014).

18) Liu, H.Q.; Zhou, X.Q.; Zhang, X.X.; Shi, G.Y.; Hu, J.; Liu, C.Y.; Xu, B.C. Green synthesis, surface activity, micellar aggregation, and corrosion inhibition properties of new gemini quaternary ammonium surfactants. *J. Chem. Eng. Data* **63**, 1304-1315 (2018).

19) Manet, S.; Karpichev, Y.; Bassani, D.; Kliagus-Ahmad, R.; Oda, R. Counteranion effect on micellization of cationic gemini surfactants 14-2-14: Hofmeister and other counterions. *Langmuir* **26**, 10645-10656 (2010).

20) Rosen, M.J. *Surfactants and Interfacial Phenomena*. 2nd ed., Wiley, New York (1989).

21) Patial, P.; Shaheen, A.; Ahmad, I. Synthesis, characterization and evaluation of the surface active properties of novel cationic imidazolium gemini surfactants. *J. Surf. Deterg.* **17**, 253-260 (2014).

22) Tawfik, S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. *J. Ind. Eng. Chem.* **28**, 171-183 (2015).

23) Li, Z.X.; Dong, C.C.; Thomas, R.K. Neutron reflectivity studies of the surface excess of gemini surfactants at the air-water interface. *Langmuir* **15**, 4392-4396 (1999).

24) Yousefi, A. Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions: Experimental and theoretical studies. *RSC Adv.* **5**, 11697-11713 (2015).