Grassmann sheaves and the classification of vector sheaves

M. H. Papatriantafillou – E. Vassiliou∗

Abstract

Given a sheaf of unital commutative and associative algebras \(\mathcal{A} \), first we construct the \(k \)-th Grassmann sheaf \(\mathcal{G}_\mathcal{A}(k, n) \) of \(\mathcal{A}^n \), whose sections induce vector subsheaves of \(\mathcal{A}^n \) of rank \(k \). Next we show that every vector sheaf over a paracompact space is a subsheaf of \(\mathcal{A}^\infty \). Finally, applying the preceding results to the universal Grassmann sheaf \(\mathcal{G}_\mathcal{A}(n) \), we prove that vector sheaves of rank \(n \) over a paracompact space are classified by the global sections of \(\mathcal{G}_\mathcal{A}(n) \).

Introduction

Let \(\mathcal{A} \) be a sheaf of unital commutative and associative algebras over the ring \(\mathbb{R} \) or \(\mathbb{C} \). A vector sheaf \(\mathcal{E} \) is a locally free \(\mathcal{A} \)-module. For instance, the sections of a vector bundle provide such a sheaf. However, a vector sheaf is not necessarily free, as is the case of the sections of a non trivial vector bundle.

Recently, vector sheaves gained a particular interest because they serve as the platform to abstract the classical geometry of vector bundles and their connections within a non smooth framework. This point of view has already been developed in [7] (see also [8] for applications to physics, and [10] for the reduction of the geometry of vector sheaves to the general setting of principal sheaves).

A fundamental result of the classical theory is the homotopy classification of vector bundles (of rank, say, \(n \)) over a fixed base. The construction of the classifying space, and the subsequent classification, are based on the

∗The authors were partially supported by University of Athens Research Grands 70/4/5639 and 70/4/3410, respectively.
Grassmann manifold (or variety) $G_k(\mathbb{R}^n)$ of k-dimensional subspaces of \mathbb{R}^n. In this respect we refer, e.g., to [5] and [6]. However, considering vector sheaves, we see that a homotopy classification is not possible, since the pull backs of a vector sheaf by homotopic maps need not be isomorphic, even in the trivial case of the free A-module A, as we prove in Section 1. Consequently, any attempt to classify vector sheaves (over a fixed space X) should not involve pull-backs and homotopy.

In this paper we develop a classification scheme based on a sort of universal Grassmann sheaf. More explicitly, for fixed $k \leq n \in \mathbb{N}$, in Section 2 we construct –in two equivalent ways– a sheaf $G_A(k, n)$, legitimately called the k-th Grassmann sheaf of A^n, whose sections coincide (up to isomorphism) with vector subsheaves of A^n of rank k (Proposition 2.3). Then, inducing in Section 3 the vector sheaf A^∞, we show that every vector sheaf over a paracompact space is a subsheaf of A^∞ (Theorem 3.1). A direct application of the previous ideas leads us to the construction of the universal Grassmann sheaf $G_A(n)$ of rank n. The main result here (Theorem 3.5) asserts that arbitrary vector sheaves of rank n, over a paracompact base space, coincide –up to isomorphism– with the sections of $G_A(n)$.

1. Vector sheaves and homotopy

For the general theory of sheaves we refer to standard sources such as [1], [2], [4], and [9]. In what follows we recall a few definitions in order to fix the notations and terminology of the present paper.

Throughout the paper A denotes a fixed sheaf of unital commutative and associative K-algebras ($K = \mathbb{R}, \mathbb{C}$) over a topological space X. An A-module $E \equiv (E, \pi, X)$ is a sheaf whose stalks E_x are A_x-modules so that the respective operations of addition and scalar multiplication

$$E \times_X E \longrightarrow E \quad \text{and} \quad A \times_X E \longrightarrow E$$

are continuous. In particular, a vector sheaf of rank n is an A-module E, locally isomorphic to A^n. This means there is an open covering $U = \{U_\alpha\}, \alpha \in I,$ of X and $A|_{U_\alpha}$-isomorphisms

$$\psi_\alpha: E|_{U_\alpha} \longrightarrow A^n|_{U_\alpha}, \quad \alpha \in I.$$

The category of vector sheaves of rank n over X is denoted by $V^n(X)$. More details, examples and applications of vector sheaves can be found in [7], [8], and [10].
As already mentioned in the Introduction, we shall show, by a concrete counterexample, that homotopic maps do not yield isomorphic pull-backs, even in the simplest case of the free \(A \)-module \(A \). In fact, we consider two non-isomorphic algebras \(A_0 \) and \(A_1 \) and a morphism of algebras \(\rho: A_0 \to A_1 \).

Given now a topological space \(X \) and a fixed point \(x_0 \in X \), for every open \(U \subseteq X \) we set
\[
A(U) := \begin{cases}
A_0, & x_0 \in U, \\
A_1, & x_0 \notin U,
\end{cases}
\]
while, for every open \(V \subseteq U \), \(\rho_U^V: A(U) \to A(V) \) denotes the corresponding (restriction) map, defined by
\[
\rho_U^V := \begin{cases}
id: A_0 \to A_0, & \text{if } x_0 \in V, \\
\rho: A_0 \to A_1, & \text{if } U \supset x_0 \notin V, \\
id: A_1 \to A_1, & \text{if } x_0 \notin U.
\end{cases}
\]

It is not difficult to show that \((A(U), \rho_U^V)\) is a presheaf whose sheafification is a sheaf of algebras, denoted by \(\mathcal{A} \equiv (\mathcal{A}, \pi, X) \). It is clear that
\[
\mathcal{A}_{x_0} = \lim_{U \in \mathcal{N}(x_0)} A(U) = A_0.
\]

On the other hand, if there is an \(x_1 \in X \) admitting a neighborhood \(V \in \mathcal{N}(x_1) \) with \(x_0 \notin V \) (a fact always ensured if \(X \) is a \(T_1 \)-space), then
\[
\mathcal{A}_{x_1} = \lim_{x_1 \in W \subseteq V} A(W) = A_1,
\]
which is not isomorphic to \(\mathcal{A}_{x_0} \). Hence, a vector sheaf, even a free one, need not have locally isomorphic fibres.

Let now \(\alpha: [0, 1] \to X \) be a continuous path with \(\alpha(0) = x_0 \) and \(\alpha(1) = x_1 \). For any topological space \(Y \), we define the map
\[
f: [0, 1] \times Y \to X \quad \text{with} \quad f(t, y) := \alpha(t).
\]

Obviously, this is a homotopy between the constant maps \(f_0 = x_0: Y \to X \) and \(f_1 = x_1: Y \to X \). As a result, taking the pull-backs of \(\mathcal{A} \) by the latter, we see that, for every \(y \in Y \),
\[
f_0^*(\mathcal{A})_y = \{(y, a) \mid a \in \mathcal{A}_{x_0} \} = \{y\} \times A_0,
\]
\[
f_1^*(\mathcal{A})_y = \{(y, b) \mid b \in \mathcal{A}_{x_1} \} = \{y\} \times A_1;
\]
that is, we obtain two non-isomorphic stalks, thus proving the claim.
2. The Grassmann sheaf of rank k in A^n

As in Section 1, A is a sheaf of unital commutative and associative K-algebras over a given topological space X. We denote by Σ_X the topology of X and fix $n \in \mathbb{N}$. For $k \in \mathbb{N}$ with $k \leq n$ and any $U \in \Sigma_X$, we define the set

$$G_A(k, n)(U) := \{ \mathcal{S} \text{ subsheaf of } A^n|_U : \mathcal{S} \cong A^k|_U \},$$

that is, $G_A(k, n)(U)$ consists of the free submodules of $A^n|_U$ of rank k. If, for every $U, V \in \Sigma_X$ with $V \subseteq U$,

$$\rho^U_V : G_A(k, n)(U) \longrightarrow G_A(k, n)(V) : \mathcal{S} \mapsto \mathcal{S}|_V$$

denotes the natural restriction, it is clear that the collection

(2.1) $\quad G_A(k, n) := (G_A(k, n)(U), \rho^U_V)$

determines a presheaf. Moreover, it is a monopresheaf. Indeed, if $U = \bigcup_{i \in I} U_i$ and $\mathcal{E}_1, \mathcal{E}_2 \in G_A(n, k)(U)$ with $\mathcal{E}_1|_{U_i} = \mathcal{E}_2|_{U_i}$, for all $i \in I$, then $\mathcal{E}_1 = \mathcal{E}_2$. However, it is not complete: If $\mathcal{E}_i \in G_A(n, k)(U_i)$, with $\mathcal{E}_i|_{U_i \cap U_j} = \mathcal{E}_j|_{U_i \cap U_j}$, then $\mathcal{E} := \bigcup_{i \in I} \mathcal{E}_i$ is a vector sheaf over U, but not necessarily a free $A|_U$-module.

Definition 2.1. The k-th Grassmann sheaf of A^n, denoted by $G_A(k, n)$, is defined to be the sheaf generated by the presheaf $G_A(k, n)$.

Since $G_A(k, n)$ is not complete, it does not coincide with the complete presheaf

(2.2) $\quad (G_A(k, n)(U), r^U_V),$

of (continuous) sections of $G_A(k, n)$. We shall describe $G_A(k, n)$ via another complete presheaf. As a matter of fact, we consider the presheaf

(2.3) $\quad V_A(k, n) := (V_A(k, n)(U), \lambda^U_V),$

where now

$$V_A(k, n)(U) := \{ \mathcal{S} \text{ subsheaf of } A^n|_U : \mathcal{S} \in \mathcal{V}^k(U) \}$$

and

$$\lambda^U_V : V_A(k, n)(U) \longrightarrow V_A(k, n)(V) : \mathcal{S} \mapsto \mathcal{S}|_V$$

are the natural restrictions. In contrast to $G_A(k, n)$, $V_A(k, n)$ is obviously a complete presheaf.
Lemma 2.2. The sheaf generated by $V_A(k, n)$ is isomorphic to $G_A(k, n)$.

Proof. Clearly, for every $U \in \mathcal{T}_X$, $G_A(k, n)(U) \subseteq V_A(k, n)(U)$, that is, $G_A(k, n)$ is a sub-presheaf of $V_A(k, n)$. Besides, for every $E \in V_A(k, n)(U)$ and every $x \in U$, there is $V \in \mathcal{T}_X$ with $x \in V \subseteq U$, so that $E|_V$ is free of rank k, namely $E|_V \in G_A(k, n)(V)$. Thus, $G_A(k, n)(U)$ and $V_A(k, n)(U)$ define the same sheaf $G_A(k, n)$.

Since $V_A(k, n)$ is complete, it is isomorphic with the sheaf of sections of $G_A(k, n)$, thus we have the following interpretation of the elements of $G_A(k, n)(X)$.

Proposition 2.3. The global sections of the k-th Grassmann sheaf $G_A(k, n)$ coincide –up to isomorphism– with the vector subsheaves of A^n of rank k.

3. The universal Grassmann sheaf

The preliminary results of the preceding section hold for every base space X. Here we prove that if X is a paracompact space, then any vector sheaf can be interpreted as a section of an appropriate universal Grassmann sheaf.

First we prove a Whitney-type embedding theorem. To this end, for every sheaf of algebras A, we consider the presheaf

$$ U \mapsto \prod_{i \in \mathbb{N}} A_i(U), \quad U \in \mathcal{T}_X, $$

where $A_i = A$, for every $i \in \mathbb{N}$, with the obvious restrictions. This presheaf generates the infinite fibre product

$$ A^\infty := \prod_{i \in \mathbb{N}} A_i, $$

which is a free A-module. Then, we obtain:

Theorem 3.1. Let X be a paracompact space. Then every vector sheaf E of finite rank over X is a subsheaf of A^∞.

Proof. Let E be a vector sheaf of rank, say, k. Since X is paracompact, a reasoning similar to that of [5, Proposition 5.4] proves that E is free over a countable open covering $\{U_i\}_{i \in \mathbb{N}}$ of X. Let $\psi_i : E|_{U_i} \to A^k|_{U_i}$, $i \in \mathbb{N}$, be the
respective family of \(\mathcal{A} \)-module isomorphisms. The same open covering has a countable locally finite open refinement (\[3\] Ch. VIII, Theorem 1.4), with a subordinate partition of unity \(\{\alpha_i : X \to \mathbb{R}\}_{i \in \mathbb{N}} \) (ibid., Ch. VIII, Theorem 4.2). For every \(i \in \mathbb{N} \), we define the map \(\alpha_i \psi_i : \mathcal{E} \to \mathcal{A}^k \) by
\[
\alpha_i \psi_i(u) := \begin{cases}
\alpha_i(\pi(u)) \psi_i(u), & \pi(u) \in U_i, \\
0, & \pi(u) \notin U_i.
\end{cases}
\]
Therefore, \(\alpha_i \psi_i \) is an \(\mathcal{A} \)-module morphism, whose restriction to the interior of \(\text{supp} \alpha_i \subseteq U_i \) is an isomorphism.

We consider the fibre product \(\prod_{i \in \mathbb{N}} (\mathcal{A}^k)_i \), where \((\mathcal{A}^k)_i \equiv \mathcal{A}^k \), for every \(i \in \mathbb{N} \), and we denote by \(p_i : \prod_{i \in \mathbb{N}} (\mathcal{A}^k)_i \longrightarrow (\mathcal{A}^k)_i \) the corresponding projections. The universal property of the product ensures the existence of a unique \(\mathcal{A} \)-morphism
\[
\psi : \mathcal{E} \longrightarrow \prod_{i \in \mathbb{N}} (\mathcal{A}^k)_i,
\]
such that
\[
p_i \circ \psi = \alpha_i \psi_i.
\]
Then \(\psi \) is a monomorphism. In fact, let \(0 \neq u \in \mathcal{E}_x \) with \(\psi_x(u) = 0 \). There is \(i \in \mathbb{N} \), with \(\alpha_i(x) > 0 \), thus \(\alpha_i(x) \psi_{i,x}(u) \neq 0 \), a contradiction. Hence, \(\mathcal{E} \) is identified with its image \(\psi(\mathcal{E}) \leq \prod_{i \in \mathbb{N}} (\mathcal{A}^k)_i \). Since
\[
\prod_{i \in \mathbb{N}} (\mathcal{A}^k)_i \equiv \prod_{i \in \mathbb{N}} \mathcal{A}_i,
\]
where \(\mathcal{A}_i = \mathcal{A} \), for every \(i \in \mathbb{N} \), the assertion is proven.

We shall show that a further restriction on the topology of \(X \) leads to an embedding of \(\mathcal{E} \) into a smaller sheaf. To this end, assume that \(\mathcal{E} \) is a vector sheaf of rank \(k \), which is free over a finite open covering \(\{U_i\}_{1 \leq i \leq n} \) of \(X \). Let \(\psi_i : \mathcal{E}|_{U_i} \to \mathcal{A}^k|_{U_i} \) be the respective \(\mathcal{A} \)-module isomorphisms, and \(\{\alpha_i : X \to \mathbb{R}\}_{1 \leq i \leq n} \) a subordinate partition of unity. Considering the maps \(\alpha_i \psi_i : \mathcal{E} \to \mathcal{A}^k \), as before, we obtain the sheaf morphism
\[
f : \mathcal{E} \longrightarrow \mathcal{A}^{kn} : u \mapsto (\alpha_1(\pi(u)) \cdot \psi_1(u), \ldots, \alpha_n(\pi(u)) \cdot \psi_n(u))
\]
which embeds \(\mathcal{E} \) into the free \(\mathcal{A} \)-module \(\mathcal{A}^{kn} \). Therefore we have proved the following:
Proposition 3.2. Over a compact space X, every vector sheaf of finite rank is a subsheaf of a free \mathcal{A}-module of finite rank.

Clearly, every free \mathcal{A}-module \mathcal{A}^n is a submodule of the free \mathcal{A}-module $\bigoplus_{i \in \mathbb{N}} \mathcal{A}_i$, with $\mathcal{A}_i = \mathcal{A}$, for every $i \in \mathbb{N}$. Thus we obtain:

Corollary 3.3. Over a compact space X, every vector sheaf of finite rank is a subsheaf of the free \mathcal{A}-module $\bigoplus_{i \in \mathbb{N}} \mathcal{A}_i$.

We are now in a position to repeat the constructions of Section 2 in a more general way. For every $n \in \mathbb{N}$, we define the set

$$G_{\mathcal{A}}(n)(U) := \{S \text{ subsheaf of } \mathcal{A}^\infty|_U : S \cong \mathcal{A}^n|_U\}.$$

Then the collection

$$G_{\mathcal{A}}(n) := (G_{\mathcal{A}}(n)(U), \rho^n_U), \quad U \in \mathcal{T}_X,$$

where ρ^n_U denotes the obvious restriction, is a non-complete monopresheaf.

Definition 3.4. The sheaf $G_{\mathcal{A}}(n)$, generated by the presheaf $G_{\mathcal{A}}(n)$, is called the universal Grassmann sheaf of rank n.

The respective complete presheaf of the sections of $G_{\mathcal{A}}(n)$ is isomorphic to the presheaf

$$V_{\mathcal{A}}(n) := (V_{\mathcal{A}}(n)(U), \lambda^n_U), \quad U \in \mathcal{T}_X,$$

where now

$$V_{\mathcal{A}}(n)(U) := \{S \text{ subsheaf of } \mathcal{A}^\infty|_U : S \in V^n(U)\}$$

and λ^n_U are the natural restrictions.

As a result, adapting the proof of Proposition 2.3 to the present situation, we obtain the main result of this work, namely the following classification of vector sheaves:

Theorem 3.5. If X is a paracompact space, then the vector sheaves of rank n (over X) coincide –up to isomorphism– with the global sections of the universal Grassmann sheaf $G_{\mathcal{A}}(n)$.
References

[1] G. L. Bredon: *Sheaf Theory*, 2nd edition, GTM 170, Springer-Verlag, New York, 1997.

[2] C. H. Dowker: *Lectures on Sheaf Theory*, Tata Inst. Fund. Research, Bombay, 1962.

[3] J. Dugundji: *Topology*, Allyn and Bacon, Boston, 1966.

[4] R. Godement: *Topologie Algébrique et Théorie des Faisceaux*, 3ème édition, Hermann, Paris, 1973.

[5] D. Husemoller: *Fibre Bundles*, 3rd edition, Springer, New York, 1994.

[6] D. W. Kahn: *Introduction to Global Analysis*, Academic Press, New York, 1980.

[7] A. Mallios: *Geometry of Vector Sheaves. An axiomatic approach to differential geometry* (in 2 volumes), Kluwer, Dordrecht, 1998.

[8] A. Mallios: *Modern Differential Geometry in Gauge Theories* (in 2 volumes), Birkhäuser, New York, 2006.

[9] B. R. Tennison: *Sheaf Theory*, London Mathematical Society Lecture Note Series 20, Cambridge University Press, Cambridge, 1975.

[10] E. Vassiliou: *Geometry of Principal Sheaves*, Springer, New York, 2005.