SUPPLEMENTARY MATERIAL

Degradation of meropenem by heterogeneous photocatalysis using TiO$_2$/fiberglass substrates

Alejandro Altamirano Briones1, Iván Cóndor Guevara1, David Mena2, Isabel Espinoza2, Christian Sandoval-Pauker4, Luis Ramos Guerrero1,3, Paul Vargas Jentzsch2,* and Florinella Muñoz Bisesti2

1 Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas - ESPE, Av. Gral. Rumiñahui s/n, 171103 Sangolquí, Ecuador

2 Departamento de Ciencias Nucleares, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170525 Quito, Ecuador.

3 Centro de Investigación de Alimentos_CIAL, Universidad UTE, Av. Mariscal Sucre y Mariana de Jesús, 170527 Quito, Ecuador.

4 Laboratorio de Fisicoquímica, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile.

CONTENTS

Figure S1. a) Fiberglass disc before impregnation b) prepared TiO$_2$/fiberglass substrate

Table S1. Average content of TiO$_2$ immobilized on the fiberglass substrates

Figure S2. SEM images of the TiO$_2$/fiberglass substrate. The size of some agglomerates of TiO$_2$ immobilized on fiberglass is reported

Figure S3. Point of zero charge of the TiO$_2$/fiberglass substrate

Figure S4. Statistical analysis of the effect of the pH value on the pseudo-first order rate constant of the photocatalytic degradation meropenem

Figure S5. Statistical analysis of the effect of the reuse of the TiO$_2$/fiberglass substrate on the removal of MER after 60 min of reaction (pH = 5.7)

4 pages
The average content of TiO$_2$ on each substrate was determined by a gravimetric analysis. For this, the initial weight of the cleaned fiberglass discs was measured. After the immobilization procedure, the plates were dried at 100 °C for 24 h, after this step, the weight of the substrates was measured again. For the calculation of the content of TiO$_2$, it was assumed that TiO$_2$, silicon and ethanol were homogeneously distributed in the suspension during the immobilization. As a result, the silicon/TiO$_2$ mass ratio right after the immobilization was 3.0. Nevertheless, after the drying process, the silicon/TiO$_2$ mass ratio changed because of the loss of volatile compounds from the silicon mixture. For this reason, a correction was introduced considering a silicon (dry)/silicon (wet) mass ratio of 0.206 ± 0.02 determined in a separate gravimetric analysis. The area of the substrates (47.1 cm2) was calculated considering the internal and external diameters of the discs. Gravimetric data was measured for 115 substrates, and the average results are presented on Table S1.

Table S1. Average content of TiO$_2$ immobilized on the fiberglass substrates

	Initial weight (g)	Final weight (g)	TiO$_2$ and dry silicon immobilized (g)	*TiO$_2$ immobilized (mg/cm2)
Average**	1.8857	2.0503	0.1645	2.1578
Standard deviation**	0.1573	0.1661	0.0253	0.3319
Figure S2. SEM images of the TiO$_2$/fiberglass substrate. The size of some agglomerates of TiO$_2$ immobilized on fiberglass is reported.

Figure S3. Point of zero charge of the TiO$_2$/fiberglass substrate.
Figure S4. Statistical analysis of the effect of the pH value on the pseudo-first order rate constant of the photocatalytic degradation meropenem

Figure S5. Statistical analysis of the effect of the reuse of the TiO$_2$/fiberglass substrate on the removal of MER after 60 min of reaction (pH = 5.7)