Association of Habitual Alcohol Consumption With Long-term Risk of Type 2 Diabetes Among Women With a History of Gestational Diabetes

Stefanie N. Hinkle, PhD; Wei Bao, MD, PhD; Jing Wu, MD, MSc; Yangbo Sun, MD, PhD; Sylvia H. Ley, PhD; Deirdre K. Tobias, ScD; Frank Qian, MD, MPH; Shristi Rawal, PhD; Yeyi Zhu, PhD; Jorge E. Chavarro, MD, ScD; Frank B. Hu, MD, PhD; Cui Lin Zhang, MD, PhD

Abstract

IMPORTANCE Women with gestational diabetes are at high risk for type 2 diabetes. Identifying modifiable dietary and lifestyle factors, such as alcohol intake, that can be useful in delaying or preventing progression to overt type 2 diabetes is of particular interest.

OBJECTIVE To evaluate the association between alcohol consumption and risk for type 2 diabetes among women with a history of gestational diabetes.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included women from the Nurses’ Health Study II cohort who reported a history of gestational diabetes and were followed up from January 1, 1991, to December 31, 2017, as part of the Diabetes & Women’s Health Study. Data analysis was performed from 2020 to 2021.

EXPOSURES Dietary intakes, including alcohol, were assessed every 4 years using validated food-frequency questionnaires.

MAIN OUTCOMES AND MEASURES Multivariable Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% CIs for the association of alcohol intake with risk for incident type 2 diabetes after a pregnancy during which gestational diabetes was diagnosed.

RESULTS A total of 4740 women were included in the study; the mean (SD) age at baseline was 38.2 (5.0) years, and the median follow-up time was 24 years (interquartile range, 18-28 years), resulting in 78 328 person-years of follow-up. During this period, 897 incident cases of type 2 diabetes were reported. After adjustment for major dietary and lifestyle factors, compared with women who did not consume any alcohol, only alcohol consumption of 5.0 to 14.9 g/d was associated with decreased risk for incident type 2 diabetes (HR, 0.45; 95% CI, 0.33-0.61); there was no association of alcohol consumption of 0.1 to 4.9 g/d or 15.0 g/d or more (maximum, 74.2 g/d) with risk of type 2 diabetes (0.1 to 4.9 g/d: HR, 0.87 [95% CI, 0.73-1.03]; ≥15.0 g/d: HR, 0.62 [95% CI, 0.37-1.04]). After additional adjustment for body mass index, women who reported alcohol consumption of 5.0 to 14.9 g/d had a 41% lower risk for developing incident type 2 diabetes compared with those who did not consume any alcohol (0.1-4.9 g/d: HR, 1.02 [95% CI, 0.85-1.23]; ≥15.0 g/d: HR, 0.75 [95% CI, 0.42-1.33]).

CONCLUSIONS AND RELEVANCE In this cohort study, among women with a history of gestational diabetes, usual alcohol intake of 5.0 to 14.9 g/d (approximately 0.5-1 drinks per day) was associated with a lower risk for type 2 diabetes. These findings should be interpreted in the context of other known risks and benefits of alcohol consumption when considering clinical recommendations for individual women with a history of gestational diabetes.

Key Points

Question Among women with a history of gestational diabetes, is there an association of habitual alcohol intake with subsequent risk for type 2 diabetes?

Findings In this cohort study of 4740 women with a history of gestational diabetes, after adjustment for major dietary and lifestyle factors and body mass index, women who consumed 5.0-14.9 g/d had a 41% lower risk for developing incident type 2 diabetes compared with those who did not consume any alcohol.

Meaning These findings should be interpreted in the context of other known risks and benefits of alcohol consumption when considering clinical recommendations for individual women with a history of gestational diabetes.
Abstract (continued)

known risks and benefits of alcohol consumption when considering clinical recommendations for
individual women with a history of gestational diabetes.

Introduction

Prevention of type 2 diabetes is a recognized public health priority. 1 Women with a history of
gestational diabetes have an especially high risk for type 2 diabetes, with a more than 7-fold
increased risk compared with women without a history gestational diabetes. 2-4 The role of major risk
factors, particularly modifiable dietary and lifestyle factors, in delaying or preventing progression
from gestational diabetes to overt type 2 diabetes, is of particular interest. One such factor includes
light to moderate alcohol consumption, which has been consistently associated with a lower risk for
type 2 diabetes, 5 particularly in women from the general population. 6 However, it is unclear whether such findings translate to women with a history of gestational diabetes.

Hendriks 7 hypothesized that light to moderate alcohol consumption may improve glucose
metabolism and insulin sensitivity through modulation of adipokine expression and reduced
systemic inflammation. However, because of known risks, heavy alcohol consumption is not
recommended. 8,9 In this study, we used data from a large, prospective cohort with up to 27 years of
follow-up to examine associations of habitual alcohol consumption with subsequent risk for type 2
diabetes risk among women with a history of gestational diabetes.

Methods

Study Population

The analytical population for this cohort study comprised 4740 women with a history of gestational
diabetes in the Nurses’ Health Study II (NHSII) as part of the Diabetes & Women’s Health Study. 10
The protocol for this study was approved by the Institutional Review Board of the Brigham and
Women’s Hospital and Human Subjects Committee Review Board of the Harvard TH Chan School of
Public Health in accordance with the Declaration of Helsinki. 11 According to the informed consent
document signed by NHSII participants, return of completed questionnaires implied consent to use
the data in ongoing health research. This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline for cohort studies.

The NHSII was established in 1989 and is an ongoing prospective cohort study of 116,430 female
nurses aged 24 to 44 years at enrollment. 10 Participants received biennial questionnaires on health-
related behaviors and disease outcomes. The follow-up rate as of 2017 for women with gestational
diabetes was 88%. Participants in the NHSII were identified as having a history of gestational
diabetes based on self-report on the 1991 questionnaire, incident gestational diabetes reported on
biennial questionnaires through 2001, or report of a physician’s diagnosis of gestational diabetes on
the 2009 pregnancy questionnaire. A high level of surveillance for gestational diabetes has been
confirmed in the NHSII, with 83% of women reporting that they had undergone a glucose challenge
test during pregnancy and 100% reporting frequent prenatal urine screening. 12 Participants were
excluded from analyses if they reported chronic disease (type 2 diabetes, cardiovascular disease, or
cancer [not including nonmelanoma skin cancers]) before the pregnancy during which gestational
diabetes was diagnosed or before return of their first post-gestational diabetes food frequency
questionnaire (FFQ), had a multiple-gestation pregnancy, or did not return any post-gestational
diabetes FFQs.
Exposure Measurement

Every 4 years since 1991, participants reported the prior year’s dietary intake using a validated semiquantitative FFQ. For total alcohol intake in kilocalories, the adjusted FFQ intraclass correlation coefficient was 0.91, and the Spearman correlation coefficient compared with 7-day dietary records was 0.86. Participants were asked how often, on average, over the previous year they consumed beer (regular and light beer), wine (red and white wine), and liquor. Alcohol consumption (in grams per day) was calculated as the sum of daily drinks multiplied by average alcohol content (beer, 12.8 g/12-oz serving; light beer, 11.3 g/12-oz serving; wine, 11.0 g/4-oz serving; and liquor, 14.0 g/serving). Portion size for wine was increased to 5 oz (148 mL) in 2003, and alcohol content was adjusted accordingly. Women were grouped into 4 alcohol categories: women who reported no alcohol consumption and those reporting alcohol consumption of 0.1 to 4.9 g/d, 5.0 to 14.9 g/d, or 15.0 g/d or more. For analyses on alcohol type, women were grouped according to servings to better reflect the distribution of intake: none, 1 serving per month, 2 to 3 servings per month, 1 to 2 servings per week, and 3 or more servings per week. Because liquor consumption was low, the highest consumption category was 1 or more servings per week.

To represent habitual diet after a pregnancy during which gestational diabetes was diagnosed and to reduce measurement error, cumulative mean alcohol consumption was calculated based on each post-gestational diabetes FFQ; for example, the 1999 cumulative mean amount was obtained using intake reported in 1991, 1995, and 1999. If a woman was pregnant when she completed the FFQ, the FFQ was considered missing.

Covariate Assessment

Covariates were chosen a priori based on prior knowledge as factors associated with type 2 diabetes or with lifestyle and therefore potentially also with alcohol intake. Information on age, weight, race/ethnicity, family history of diabetes, smoking status, age at first birth, use of oral contraceptives, and menopausal status was derived from the responses on biennial questionnaires. Covariate status was updated over time during follow-up. Parity was defined as the number of pregnancies lasting more than 6 months. Diet quality was characterized using the Alternate Healthy Eating Index 2010 (AHEI-2010) with alcohol omitted. Total physical activity in metabolic equivalents was ascertained by reported frequency of engaging in common recreational activities. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Lactation history was requested in 1993, 1997, and 2003; total duration was calculated based on the number of months that women reported complete cessation of breastfeeding after each birth.

Outcome Measurement

Participants who reported physician-diagnosed type 2 diabetes on a biennial questionnaire were mailed a supplemental questionnaire regarding symptoms, diagnostic tests, and hypoglycemic therapy to confirm self-reported diagnoses. Diagnoses were confirmed if at least 1 of the following was reported: (1) at least 1 symptom of diabetes (excessive thirst, polyuria, weight loss, or hunger) plus a fasting glucose concentration of 7.8 mmol/L or greater (to convert to mg/dL, divide by 0.0555) or random glucose concentration of 11.1 mmol/L or greater; (2) in the absence of symptoms, at least 2 elevated glucose concentrations on different occasions (fasting glucose concentration ≥ 7.8 mmol/L, random glucose concentration ≥ 11.1 mmol/L, and/or 2-hour postload glucose concentration ≥ 11.1 mmol/L on an oral glucose tolerance test); or (3) treatment with insulin or oral hypoglycemic medication. For reports of gestational diabetes after 1998, revised criteria were applied using a fasting glucose concentration cutoff of 7.0 mmol/L. A subgroup validation study conducted in a similar cohort of female nurses in the US reported a high accuracy rate of 98% when our classification was compared with medical records.
Statistical Analysis

Data analysis was performed from 2020 to 2021. We defined baseline as the questionnaire period in which participants first reported a pregnancy with gestational diabetes (i.e., 1991 for prevalent gestational diabetes and the year of the index pregnancy for incident gestational diabetes). We compared categories of alcohol consumption using analysis of variance for continuous variables and the χ^2 test for categorical variables.

We computed follow-up time from the date of gestational diabetes diagnosis to a diagnosis of type 2 diabetes, death, or return of last questionnaire, whichever came first. We stopped updating exposure, diet, and physical activity covariate status if a participant reported incident cardiovascular disease or cancer. We used Cox proportional hazards regression models to estimate hazard ratios (HRs) and 95% CIs for the association of risk of type 2 diabetes with total alcohol consumption and consumption of liquor, beer, and wine. Model covariates included age, parity (1, 2, 3, or ≥4), age at first live birth (≤24, 25-29, or ≥30 years), race/ethnicity (White, Black, Hispanic, Asian, or other), family history of diabetes (yes or no), oral contraceptive use (current, former, or never), menopausal status (premenopausal or postmenopausal), cigarette smoking status (current, former, or never), lactation length (<1 month, 1-6 months, >6 to 12 months, >12 to 24 months, or >24 months), physical activity level (quartiles), total energy intake (quartiles), AHEI-2010 diet quality score without the alcohol component (quartiles), coffee consumption (quartiles), and tea consumption (quartiles). Sugar-sweetened beverages were not included in the models because they are a component of the AHEI-2010. We included updated BMI (continuous) in the model separately because directionality between alcohol intake and BMI is not clear. We also included a sensitivity analysis based on BMI at baseline. Associations by alcohol type were adjusted for intake of other types of alcohol (i.e., liquor model included beer and wine).

Tests for multiplicative interaction were performed to evaluate modification of associations by factors associated with type 2 diabetes, including family history of type 2 diabetes (yes or no), diet quality (i.e., AHEI-2010 score, at or above median or below median), physical activity (at or above median or below median), and obesity (BMI <30 or ≥30); we conducted stratified analyses by these factors. To address potential bias by medical surveillance for type 2 diabetes, we conducted a sensitivity analysis restricting cases of type 2 diabetes to reports of at least 1 symptom of diabetes by participants at the time of diagnosis. We excluded cases of type 2 diabetes reported within the first 2 years of follow-up and women with total alcohol consumption of 30.0 g/d or more because few women (0.7%) consumed amounts of alcohol above this threshold. All statistical analyses were performed using SAS, version 9.4 (SAS Institute Inc). A 2-sided $P < .05$ was considered to be statistically significant.

Results

A total of 4740 women were included in the study; the mean (SD) age at baseline was 38.2 (5.0) years, and the median follow-up time was 24 years (interquartile range [IQR], 18-28 years). The median time from diagnosis of gestational diabetes to development of type 2 diabetes was 16 years (IQR, 12-22 years). A total of 897 cases of incident type 2 diabetes (18.9%) among the 4740 participants were identified, contributing 78,328 person-years of follow-up. At baseline, 2386 women (50.3%) reported no alcohol consumption in the previous month. Among women who consumed alcohol, median total intake was 2.3 g/d (IQR, 1.1-5.6 g/d), approximately equivalent to 1 drink per week. A total of 113 women (2.4%) reported alcohol consumption of 15.0 g/d or more. The types of alcohol most frequently consumed were beer (median, 0.9 g/d; IQR, 0.1-3.7 g/d) and wine (median, 0.7 g/d; IQR, 0.4-1.6 g/d). Women who consumed greater amounts of alcohol at baseline were more likely to be older, to be White individuals, to currently be using oral contraceptives, to have current smoking status, to have lower BMI, and to be more physically active; they also consumed more total calories and more coffee but fewer sugar-sweetened beverages and less tea.
The median change in alcohol consumption among all alcohol consumption groups during follow-up was 0 g/d (0.1-1.9 g/d).

In the adjusted model including major dietary and lifestyle factors, compared with women who did not consume any alcohol, only alcohol consumption of 5.0 to 14.9 g/d was associated with a decreased risk for incident type 2 diabetes (HR, 0.45; 95% CI, 0.33-0.61); there was no association of alcohol consumption of 0.1 to 4.9 g/d or 15.0 g/d or more (maximum, 74.2 g/d) with risk of type 2 diabetes (0.1 to 4.9 g/d: HR, 0.87 [95% CI, 0.73-1.03]; ≥15.0 g/d: HR, 0.62 [95% CI, 0.37-1.04]).

After additional adjustment for BMI, women who reported alcohol consumption of 5.0 to 14.9 g/d had a 41% lower risk for developing incident type 2 diabetes (HR, 0.59; 95% CI, 0.42-0.81); consumption of 0.1 to 4.9 g/d and consumption of 15.0 g/d or more were still not associated with risk.

Table 1. Age-Standardized Baseline Participant Characteristics According to Alcohol Consumption Among Women With a History of Gestational Diabetes

Characteristic	Baseline alcohol consumptiona
	0 g/d (n = 2386)
	0.1-4.9 g/d (n = 1700)
	5.0-14.9 g/d (n = 541)
	≥15.0 g/d (n = 113)
Age, mean (SD), y	
At baseline	38.1 (5.0)
	38.0 (4.9)
	38.7 (5.3)
	39.6 (4.8)
At first birth	27.2 (5.0)
	27.6 (4.9)
	28.0 (5.2)
	27.8 (4.6)
At index gestational diabetes pregnancy	32.3 (4.9)
	32.1 (4.6)
	33.1 (5.0)
	33.3 (5.0)
Race/ethnicity, No. (%)	
White	2110 (88.4)
	1589 (93.4)
	504 (93.6)
	111 (96.5)
Black	53 (2.2)
	18 (1.1)
	5 (1.0)
	0
Hispanic	50 (2.1)
	24 (1.4)
	10 (1.8)
	1 (2.7)
Asian	101 (4.3)
	17 (1.0)
	1 (0.2)
	0
Other	13 (0.6)
	9 (0.5)
	1 (0.2)
	0
Family history of diabetes, No. (%)	667 (28.0)
	442 (26.0)
	130 (24.2)
	33 (28.5)
Parity, No. (%)	
1	459 (19.7)
	323 (19.2)
	106 (19.5)
	18 (16.4)
2	1042 (43.6)
	777 (45.7)
	267 (49.5)
	50 (53.5)
3	562 (23.6)
	422 (24.9)
	117 (21.7)
	23 (20.1)
≥4	268 (11.3)
	152 (9.0)
	44 (8.0)
	10 (8.6)
Oral contraceptive use, No. (%)	
Current	143 (6.0)
	131 (7.7)
	50 (9.4)
	14 (14.2)
Former	1875 (78.6)
	1344 (79.0)
	419 (77.5)
	96 (83.4)
Never	349 (14.6)
	215 (12.9)
	71 (13.0)
	3 (2.4)
Postmenopausal, No. (%)	142 (6.0)
	77 (4.9)
	29 (4.2)
	4 (2.9)
Smoking status, No. (%)	
Current	219 (9.2)
	195 (11.4)
	75 (13.8)
	26 (21.9)
Former	440 (18.5)
	450 (26.6)
	179 (33.3)
	33 (32.0)
Never	1727 (72.3)
	1055 (62.0)
	287 (52.8)
	54 (46.1)
BMI at baseline, mean (SD)	28.1 (6.8)
	26.4 (6.0)
	24.8 (5.0)
	24.7 (4.8)
Physical activity level, mean (SD), MET h/wk	15.4 (19.9)
	18.2 (24.3)
	21.7 (24.7)
	23.2 (35.7)
Length of lactation, mean (SD), mo	15.4 (15.5)
	14.4 (13.5)
	14.9 (14.2)
	13.8 (12.2)
Total calories consumed, mean (SD), kcal/d	1879 (590)
	1918 (552)
	2030 (555)
	2122 (566)
AHEI-2010 score, mean (SD)	42.4 (10.5)
	43.7 (10.0)
	45.2 (10.6)
	43.1 (9.5)
SSB, mean (SD), servings/d	0.6 (1.0)
	0.4 (0.8)
	0.4 (0.8)
	0.3 (0.7)
Coffee consumption, mean (SD), servings/d	1.0 (1.5)
	1.4 (1.6)
	1.8 (1.6)
	2.2 (1.6)
Tea consumption, mean (SD), servings/d	0.8 (1.2)
	0.8 (1.1)
	0.7 (1.1)
	0.5 (0.9)
Alcohol consumption, median (IQR), servings/d	
Total	0.0 (0.0-0.0)
	1.8 (0.9-2.7)
	8.3 (6.2-11.0)
	21.6 (16.5-29.5)
Liquor	0.0 (0.0-0.0)
	0.0 (0.0-0.0)
	0.0 (0.0-0.0)
	0.1 (0.0-0.1)
	0.1 (0.0-0.4)
	0.9 (0.1-1.4)
Beer	0.0 (0.0-0.0)
	0.0 (0.0-0.1)
	0.3 (0.1-0.5)
	0.4 (0.1-0.9)
Wine	0.0 (0.0-0.0)

Abbreviations: AHEI-2010, Alternate Healthy Eating Index 2010 with alcohol component removed; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); IQR, interquartile range; MET, metabolic equivalent; SSB, sugar-sweetened beverages.

a Data are from the Nurses’ Health Study II (1989-2017). All values except age are directly standardized to the age distribution of the study population. Baseline was defined as 1991 for prevalent gestational diabetes and the year of the index pregnancy for incident gestational diabetes. Comparisons across categories of alcohol consumption were statistically significant (P < .05) for all variables except family history of diabetes.
of type 2 diabetes, but the results were attenuated (0.1-4.9 g/d: HR, 1.02 [95% CI, 0.85-1.23]; ≥15.0 g/d: HR, 0.75 [95% CI, 0.42-1.33]). In analyses stratified by factors associated with type 2 diabetes, HRs did not significantly differ among strata (Table 3). Although estimates differed by obesity status, they were too imprecise for meaningful conclusions to be made.

Sensitivity analyses for main results yielded consistent findings in general. When adjustments were made for baseline BMI, results were similar. Compared with no alcohol consumption, consumption of 0.1 to 4.9 g/d or 15.0 g/d or more was not associated with risk of type 2 diabetes (0.1-4.9 g/d: HR, 1.02 [95% CI, 0.85-1.23]; ≥15.0 g/d: HR, 0.75 [95% CI, 0.42-1.33]), but consumption of 5.0 to 14.9 g/d was associated with decreased risk (HR, 0.59; 95% CI, 0.42-0.81). Restricting type 2 diabetes cases to reports of at least 1 symptom of diabetes by participants (n = 375) at the time of diagnosis yielded similar results but a slightly stronger association with alcohol consumption of 5.0 to 14.9 g/d (HR, 0.30; 95% CI, 0.16-0.56); for alcohol consumption of 0.1 to 4.9 g/d, the HR was 0.96 (95% CI, 0.73-1.27), indicating no association, and for consumption of 15.0 g/d or more, the HR was 0.49 (95% CI, 0.17-1.40), indicating no association. When limited to women reporting alcohol consumption of less than 30.0 g/d (n = 4727) and adjusted for major dietary and lifestyle factors, alcohol consumption of 15.0 to 29.9 g/d was associated with a 47% lower risk for type 2 diabetes (HR, 0.53; 95% CI, 0.29-0.97); however, there was no association after additional adjustment for BMI (HR, 0.66; 95% CI, 0.34-1.26). Findings were robust to the exclusion of type 2 diabetes diagnoses made during the first 2 years of follow-up. Compared with no alcohol consumption, the fully adjusted HR for consumption of 0.1 to 4.9 g/d was 1.03 (95% CI, 0.85-1.24), indicating no association; for consumption of 5.0 to 14.9 g/d, the HR was 0.59 (95% CI, 0.43-0.82), indicating an association with decreased risk of type 2 diabetes; and for consumption of 15.0 g/d or more, the HR was 0.75 (95% CI, 0.42-1.33), indicating no association.

Analyses by type of alcohol are shown in Table 4. In fully adjusted models, compared with no liquor consumption, consumption of liquor was not associated with risk of type 2 diabetes. Compared with no beer consumption, beer consumption of 1 to 2 servings per week and 3 or more servings per week was associated with decreased risk of type 2 diabetes. Compared with no wine consumption, consumption of 3 or more servings per week was inversely associated with risk of type 2 diabetes in the age-adjusted and multivariable analyses (age-adjusted analysis: HR, 0.46; 95% CI,
Table 3. Habitual Alcohol Consumption and Risk of Type 2 Diabetes Among Women With a History of Gestational Diabetes Stratified by Family History of Diabetes, Diet Quality, Physical Activity, and Body Mass Index

Variable	Cumulative mean consumption of alcohol			
	0 g/d	0.1-4.9 g/d	5.0-14.9 g/d	≥15.0 g/d
Family history of diabetes				
No				
Women, No.	840	1269	471	125
Women with type 2 diabetes, No.	184	202	32	7
Person-years	16266	21385	7091	1726
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	1.01 (0.77-1.32)	0.55 (0.34-0.89)	0.42 (0.17-1.01)
Yes				
Women, No.	483	776	222	51
Women with type 2 diabetes, No.	142	172	27	9
Person-years	8055	10347	3104	647
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.94 (0.67-1.32)	0.50 (0.28-0.89)	0.91 (0.35-2.34)
AHEI-2010 score^a				
Less than median score^c				
Women, No.	639	805	179	43
Women with type 2 diabetes, No.	194	189	17	8
Person-years	13885	15555	3871	892
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.93 (0.70-1.23)	0.40 (0.22-0.75)	0.82 (0.32-2.07)
Median score or greater^c				
Women, No.	684	1240	514	133
Women with type 2 diabetes, No.	132	185	42	8
Person-years	10437	16177	6323	1480
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	1.07 (0.79-1.47)	0.63 (0.39-1.02)	0.65 (0.25-1.69)
Physical activity^a				
Less than median level^d				
Women, No.	747	930	223	60
Women with type 2 diabetes, No.	207	200	27	8
Person-years	14047	15294	3744	928
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.86 (0.65-1.13)	0.53 (0.32-0.88)	0.75 (0.30-1.89)
Median level or greater^d				
Women, No.	576	1115	470	116
Women with type 2 diabetes, No.	119	174	32	8
Person-years	10274	16438	6451	1444
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.98 (0.71-1.36)	0.60 (0.35-1.01)	1.08 (0.46-2.52)
BMI^a				
<30.0				
Women, No.	645	1179	510	131
Women with type 2 diabetes, No.	88	113	23	9
Person-years	17735	25769	9157	2134
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.93 (0.64-1.36)	0.53 (0.29-0.98)	1.37 (0.56-3.36)
≥30.0				
Women, No.	678	866	183	45
Women with type 2 diabetes, No.	238	261	36	7
Person-years	6587	5963	1037	238
Multivariable analysis including BMI, HR (95% CI)^b	1 [Reference]	0.99 (0.77-1.27)	0.61 (0.39-0.96)	0.36 (0.13-1.00)

Abbreviations: AHEI-2010, Alternate Healthy Eating Index 2010; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); HR, hazard ratio.

^a All tests for interaction between alcohol and family history of diabetes, diet quality, physical activity, and BMI were not significant (P > .05).

^b Adjusted for all variables given in the Statistical Analysis subsection of the Methods section except the variable of interest.

^c The median AHEI-2010 score was 44.6 (IQR, 38.4-51.7).

^d The median physical activity level was 11.9 metabolic equivalent h/wk (IQR, 5.5-22.7).
Discussion

In this prospective cohort study of women with a history of gestational diabetes followed up for up to 27 years, alcohol consumption between 5.0 and 14.9 g/d was associated with a 55% lower risk for type 2 diabetes (HR, 0.45; 95% CI, 0.33-0.61) compared with no alcohol consumption. The association was independent of demographic and other major dietary and lifestyle factors. Additional adjustment for BMI slightly attenuated the findings, although alcohol consumption of 5.0 to 14.9 g/d remained associated with a 41% lower risk for type 2 diabetes (HR, 0.59; 95% CI, 0.42-0.81).

Prior studies of alcohol consumption and type 2 diabetes have been conducted mainly among the general population, whereas our study focused on a population of women with a history

Table 4. Type of Alcohol Consumption and Risk of Type 2 Diabetes Among Women With a History of Gestational Diabetes
Variable
Liquor
Servings, median (IQR)
Women, No.
Women with type 2 diabetes, No.
Person-years
Age-adjusted analysis, HR (95% CI)
Multivariable analysis, HR (95% CI)c
Multivariable analysis including BMI, HR (95% CI)d
Beer
Servings, median (IQR)
Women, No.
Women with type 2 diabetes, No.
Person-years
Age-adjusted analysis, HR (95% CI)
Multivariable analysis, HR (95% CI)c
Multivariable analysis including BMI, HR (95% CI)d
Wine
Servings, median (IQR)
Women, No.
Women with type 2 diabetes, No.
Person-years
Age-adjusted analysis, HR (95% CI)
Multivariable analysis, HR (95% CI)c
Multivariable analysis including BMI, HR (95% CI)d

Abbreviations: BMI, body mass index; HR, hazard ratio; IQR, interquartile range.

a The 2 to 3 servings per month category includes all values greater than 1 serving per month to less than 1 serving per week and therefore includes some values greater than 1 but less than 2 servings per month. However, for simplicity the label is 2 to 3 servings per month.

b For liquor, column shows data for 1 or more servings; for beer and wine, 1 to 2 servings. The upper bounds for liquor, beer, and wine were 4.9 servings per day, 4.6 servings per day, and 3.2 servings per day, respectively.

c Adjusted for age, parity (1, 2, 3, or ≥4), alcohol consumption (in grams per day), race/ethnicity (White, Black, Hispanic, Asian, or other), family history of diabetes (yes or no), oral contraceptive use (current, former, or never), menopausal status (premenopausal or postmenopausal), cigarette smoking status (current, former, or never), lactation (<1 month, 1-6 months, 6-12 months, 12 to 24 months, or >24 months), physical activity (quartiles), total energy intake (quartiles), Alternate Healthy Eating Index 2010 diet quality score (quartiles), coffee consumption (quartiles), tea consumption (quartiles). Each alcohol type model was concurrently adjusted for intake of other types of alcohol (ie, liquor model was adjusted for beer and wine).

d Multivariable model additionally adjusted for BMI (continuous).
of gestational diabetes, 18.9% of whom had received a diagnosis of type 2 diabetes during follow-up. In our study, after adjustment for BMI, alcohol consumption of 0.1 to 4.9 g/d was not associated with risk for type 2 diabetes, although consumption of 5.0 to 14.9 g/d was associated with a 41% lower adjusted risk for type 2 diabetes. The latter finding is consistent with a 43% estimated lower risk associated with consumption of 12 to 24 g/d among women in the general population and a 33% estimated reduction in risk associated with consumption of 5.0 of 14.9 g/d in the entire NHSII cohort. However, our results for alcohol consumption of 0.1 to 4.9 g/d varied from the overall findings for the NHSII cohort, in which alcohol consumption of 0.1 to 4.9 g/d was associated with a 20% lower risk for type 2 diabetes; no benefit was observed in our study. Although the reason for such discrepancy is uncertain, there are a few potential contributing factors. Women in the present study were followed up for a longer period; they also had a greater risk for type 2 diabetes, and women with gestational diabetes may have more insulin resistance and more systemic inflammation, potentially requiring a higher threshold for alcohol consumption to demonstrate a benefit. Also, in the NHSII cohort, alcohol consumption of 15.0 to 29.9 g/d was associated with a 58% lower risk for type 2 diabetes, which differs from our findings. Only 2.4% of women in our study reported alcohol consumption of 15 g/d or more at baseline, limiting our power to examine risks associated with heavy consumption.

A meta-analysis of intervention studies revealed that alcohol consumption of 11 to 40 g/d by women was associated with improved insulin sensitivity and hemoglobin A1c levels during a follow-up period of 2 to 12 weeks. Schrieke et al hypothesized that the effect of alcohol on both limiting glucose concentration and increasing insulin concentration after a meal may be associated with improved glucose control and a lower risk for type 2 diabetes. Also, alcohol consumption of up to 15 g/d in women is associated with increased concentrations of high-density lipoprotein cholesterol and adiponectin, which in turn may be associated with a lower risk for type 2 diabetes; the causal relationship between these factors is not known. In addition, greater alcohol consumption is associated with lower plasma fetuin-A levels, a liver-derived protein that can cause insulin resistance. Nonetheless, excess alcohol consumption leads to hepatic de novo lipogenesis and promotes the development of fatty liver disease, which may be associated with an increased risk for type 2 diabetes.

In our analyses, habitual alcohol consumption of 5.0 to 14.9 g/d was associated with a lower type 2 diabetes risk independent of BMI, and there was no association between alcohol consumption of 0.1 to 4.9 g/d and 15.0 g/d or more and risk for type 2 diabetes after adjustment for BMI, although the estimates were attenuated. At baseline, women who consumed alcohol had a lower BMI than women who did not consume alcohol; however, a strength of this study was the longitudinal follow-up with updated BMI. Findings regarding the association between habitual alcohol intake and weight gain have varied, with some studies showing no association between light to moderate alcohol consumption and weight gain and others showing a positive association. As reported by Huang et al, previous observational studies have suggested that wine is more strongly associated with a lower risk for type 2 diabetes than beer or liquor. In our analysis, only beer consumption of 1 or more servings per week was associated with lower risk for type 2 diabetes, whereas wine and liquor consumption were not associated with this risk. Results for liquor were imprecise owing to limited consumers. Although some null findings by alcohol type could be attributable to a lack of power, there may also have been differences in behavioral factors by the type of alcohol consumed. Our study was conducted with data from a well-characterized prospective cohort with comprehensive adjustment for lifestyle factors, although we cannot rule out residual confounding. Also, it is possible that there may be more reporting error for wine than for beer because of differences in servings and consumption patterns.

Although our findings suggest that alcohol consumption of 5.0 to 14.9 g/d compared with no consumption is associated with a 41% lower risk for type 2 diabetes among women with a history of gestational diabetes, they should not be interpreted in isolation from other health outcomes. Among those who consume alcohol, consumption of 0.1 to 14.9 g/d has been associated with improved

Alcohol Consumption and Type 2 Diabetes in Women With a History of Gestational Diabetes

JAMA Network Open. 2021;4(9):e2124669. doi:10.1001/jamanetworkopen.2021.24669

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 10/21/2021
cardiovascular outcomes and lower all-cause mortality, although consumption levels as low as 5 to 9 g/d have been associated with a modest increase in the risk for breast cancer. Thus, careful balancing of risks and benefits is needed. Consistent with the 2020 Dietary Guidelines for Americans, which recommend that adults who do not consume alcohol do not initiate drinking, it may not be prudent for those with a history of gestational diabetes who do not consume alcohol to initiate drinking alcohol solely to reduce their risk for type 2 diabetes.

Strengths and Limitations

This study has strengths, including the prospective cohort study design, which strengthens the temporal direction of associations; long-term follow-up; a large sample size; a high rate of follow-up; and detailed and repeated assessments of alcohol consumption with validated questionnaires. Our study also included adjustments for multiple potential confounding lifestyle factors, including dietary quality, physical activity, lactation history, and BMI.

This study also has limitations. Although NHSII participants were registered nurses at enrollment, potentially reducing confounding by educational attainment or differential access to health care, residual confounding remains possible. Misclassification of alcohol consumption was possible owing to underreporting; however, alcohol consumption measured by the FFQ has been validated against food diaries and using high-density lipoprotein cholesterol level. Also, screening bias may exist because women who were more health conscious and therefore visited a physician more regularly may have had a greater chance of receiving a medical diagnosis than those who were less health conscious. However, we found similar results in our sensitivity analyses restricting cases to only those in women experiencing symptoms of type 2 diabetes, which minimizes concerns for this bias. This study consisted predominantly of White women in the US whose alcohol consumption was relatively low, potentially limiting generalizability. Also, we lacked information on binge drinking and whether alcohol was consumed with meals, which may be important if the mechanism is related to postprandial glucose and insulin metabolism; further research is warranted. The sample size may have precluded us from detecting modification of associations by risk factors. Also, statin use may be a confounder; however, because of the small number of women treated with statins in 1999 (the first year statin treatment was assessed), we could not adjust for statin use.

Conclusions

In this cohort study, an inverse association was observed between alcohol consumption of 5.0 to 14.9 g/d and risk for type 2 diabetes among women with a history of gestational diabetes. Findings should be interpreted in the context of other known risks and benefits of alcohol consumption when considering clinical recommendations for individual women with a history of gestational diabetes.
Health and Tropical Medicine, New Orleans, Louisiana (Ley); Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts (Tobias); Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts (Tobias, Qian, Chavarro, Hu); Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (Qian); Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey (Rawal); Division of Research, Kaiser Permanente Northern California, Oakland (Zhu); Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts (Chavarro, Hu); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts (Chavarro, Hu).

Author Contributions: Drs Hinkle and Bao served as co–first authors and contributed equally to this work. Drs Hinkle and Zhang are the guarantors of this work. Drs Wu and Zhang had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Bao, Tobias, Hu, Zhang.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Hinkle, Bao, Rawal, Chavarro.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Hinkle, Bao, Wu, Tobias, Qian, Zhang.

Obtained funding: Chavarro, Zhang.

Administrative, technical, or material support: Rawal, Chavarro, Hu.

Supervision: Zhang.

Conflict of Interest Disclosures: Dr Chavarro reported receiving grants from the National Institutes of Health (NIH) during the conduct of the study. No other disclosures were reported.

Funding/Support: This study was supported by contract HHSN275201000020C from the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, research grant R21 HD091458 from the NIH (Dr Bao), grant P2OGM109036 from the National Institute of General Medical Sciences, NIH (Dr Ley), and grant KOIDK120807 from the National Institute of Diabetes and Digestive and Kidney Diseases, NIH (Dr Zhu). The Nurses’ Health Study II was funded by research grants DK58845, CA50385, P30 DK46200, U01 CA176726, R01 CA67262, and U01 HL145386-01 from the NIH.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: Drs Hinkle and Zhang are employees of the US Federal Government.

Additional Contributions: We thank the study participants for their contributions.

REFERENCES
1. Herman WH, Zimmet P. Type 2 diabetes: an epidemic requiring global attention and urgent action. Diabetes Care. 2012;35(5):943-944. doi:10.2337/dc12-0298
2. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5(1):47. doi:10.1038/s41572-019-0098-8
3. Vounzoulaki E, Khunti K, Abner SC, Tan BK, Davies MJ, Gillies CL. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. doi:10.1136/bmj.m1361
4. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773-1779. doi:10.1016/S0140-6736(09)60731-5
5. Neuenschwander M, Ballon A, Weber KS, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368. doi:10.1136/bmj.l2368
6. Li XH, Yu FF, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. Am J Clin Nutr. 2016;103(3):818-829. doi:10.3945/ajcn.115.114389
7. Hendriks HFJ. Moderate alcohol consumption and insulin sensitivity: observations and possible mechanisms. Ann Epidemiol. 2007;17(5):S40-S42. doi:10.1016/j.annepidem.2007.01.009
8. Guy J, Peters MG. Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol Hepatol (N Y). 2013;9(10):633-639.
Alcohol Consumption and Type 2 Diabetes in Women With a History of Gestational Diabetes

9. Mostofsky E, Mukamal KJ, Giovannucci EL, Stampfer MJ, Rimm EB. Key findings on alcohol consumption and a variety of health outcomes from the Nurses’ Health Study. *Am J Public Health*. 2016;106(9):1586-1591. doi: 10.2105/AJPH.2016.303336

10. Zhang C, Olsen SF, Hinkle SN, et al; Diabetes & Women’s Health Study team. Diabetes & Women’s Health (DWH) Study: an observational study of long-term health consequences of gestational diabetes, their determinants and underlying mechanisms in the USA and Denmark. *BMJ Open*. 2019;9(4):e025517. doi: 10.1136/bmjopen-2018-025517

11. World Medical Association. *World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects*. *JAMA*. 2013;310(20):2191-2194. doi: 10.1001/jama.2013.281053

12. Solomon CG, Willett WC, Carey VJ, et al. A prospective study of pregravid determinants of gestational diabetes mellitus. *JAMA*. 1997;278(13):1078-1083. doi: 10.1001/jama.1997.03550130052036

13. Salvini S, Hunter DJ, Sampson L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. *Int J Epidemiol*. 1989;18(4):858-867. doi: 10.1093/ije/18.4.858

14. Giovannucci E, Colditz G, Stampfer MJ, et al. The assessment of alcohol consumption by a simple self-administered questionnaire. *Am J Epidemiol*. 1991;133(8):810-817. doi: 10.1093/oxfordjournals.aje.a115960

15. Yuan C, Spiegelman D, Rimm E, et al. Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. *Am J Epidemiol*. 2018;187(5):1051-1063. doi: 10.1093/aje/kwx328

16. Yuan C, Spiegelman D, Rimm E, et al. Validity of a dietary questionnaire assessed by comparison with multiple weighed dietary records or 24-hour recalls. *Am J Epidemiol*. 2017;185(7):570-584. doi: 10.1093/aje/kww104

17. Bilder DA, Bakian AV, Viskochil J, et al. Maternal prenatal weight gain and autism spectrum disorders. *Pediatrics*. 2013;132(5):e1276-e1283. doi: 10.1542/peds.2013-1188

18. Hu FB, Stampfer MJ, Rimm E, et al. Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. *Am J Epidemiol*. 1999;149(6):531-540. doi: 10.1093/oxfordjournals.aje.a009849

19. Chiue SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk of chronic disease. *J Nutr*. 2012;142(6):1009-1018. doi: 10.3945/jn.111.157222

20. Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. *Int J Epidemiol*. 1994;23(5):991-999. doi: 10.1093/ije/23.5.991

21. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. *Epidemiology*. 1999;10(6):466-473. doi: 10.1097/00001648-199910000-00009

22. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. *Diabetes*. 1979;28(12):1039-1057. doi: 10.2337/diab.28.12.1039

23. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. *Diabetes Care*. 1997;20(7):1183-1197. doi: 10.2337/diacad.20.7.1183

24. Manson JE, Rimm EB, Stampfer MJ, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. *Lancet*. 1991;338(8770):774-778. doi: 10.1016/0140-6736(91)90664-B

25. Wannamethee SG, Camargo CA Jr, Manson JE, Willett WC, Rimm EB. Alcohol drinking patterns and risk of type 2 diabetes mellitus among younger women. *Arch Intern Med*. 2003;163(11):1329-1336. doi: 10.1001/archinte.163.11.1329

26. Davis CL, Gutt M, Liabre MM, et al. History of gestational diabetes, insulin resistance and coronary risk. *J Diabetes Complications*. 1999;13(4):216-222. doi: 10.1016/S1056-8727(99)00048-3

27. Schrieks IC, Heil AL, Hendriks HF, Mukamal KJ, Beulens JW. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. *Diabetes Care*. 2015;38(4):723-732.

28. Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. *BMJ*. 2011;342:d636. doi: 10.1136/bmj.d636

29. Wilson PWF, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. *Arch Intern Med*. 2007;167(10):1068-1074. doi: 10.1001/archinte.167.10.1068
30. Schmidt MI, Duncan BB, Bang H, et al; Atherosclerosis Risk in Communities Investigators. Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care. 2005;28(8):2013-2018. doi:10.2337/diacare.28.8.2013

31. Haase CL, Tybjærg-Hansen A, Nordestgaard BG, Fri Kane-Schmidt R. HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes. 2015;64(9):3328-3333. doi:10.2337/db14-1603

32. Ley SH, Sun Q, Jimenez MC, et al. Association between alcohol consumption and plasma fetuin-A and its contribution to incident type 2 diabetes in women. Diabetologia. 2014;57(1):93-101. doi:10.1007/s00125-013-3077-8

33. Imamura F, Fretts AM, Marklund M, et al. Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. 2020;17(6):e1003102. doi:10.1371/journal.pmed.1003102

34. Wannamethee SG, Field AE, Colditz GA, Rimm EB. Alcohol intake and 8-year weight gain in women: a prospective study. Obes Res. 2004;12(9):1386-1396. doi:10.1038/oby.2004.175

35. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392-2404. doi:10.1056/NEJMoa104296

36. Huang J, Wang X, Zhang Y. Specific types of alcoholic beverage consumption and risk of type 2 diabetes: a systematic review and meta-analysis. J Diabetes Investig. 2017;8(1):56-68. doi:10.1111/jdi.12537

37. Cao Y, Willett WC, Rimm EB, Stampfer MJ, Giovannucci EL. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies. BMJ. 2015;351:h4238. doi:10.1136/bmj.h4238

38. US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th ed. December 2020. Accessed March, 7, 2021. https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials

39. Tobias DK, Hu FB, Chavarro J, Rosner B, Mozaffarian D, Zhang C. Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch Intern Med. 2012;172(20):1566-1572. doi:10.1001/archinternmed.2012.1747

40. Bao W, Tobias DK, Bowers K, et al. Physical activity and sedentary behaviors associated with risk of progression from gestational diabetes mellitus to type 2 diabetes mellitus: a prospective cohort study. JAMA Intern Med. 2014;174(7):1047-1055. doi:10.1001/jamainternmed.2014.1795

41. Ley SH, Chavarro JE, Li M, et al. Lactation duration and long-term risk for incident type 2 diabetes in women with a history of gestational diabetes mellitus. Diabetes Care. 2020;43(4):793-798. doi:10.2337/dc19-2237

42. Bao W, Yeung E, Tobias DK, et al. Long-term risk of type 2 diabetes mellitus in relation to BMI and weight change among women with a history of gestational diabetes mellitus: a prospective cohort study. Diabetologia. 2015;58(6):1212-1219. doi:10.1007/s00125-015-3537-4