A fast and low-power microelectromechanical system-based non-volatile memory device

Citation for published version:
Lee, SW, Park, SJ, Campbell, EEB & Park, YW 2011, 'A fast and low-power microelectromechanical system-based non-volatile memory device' Nature Communications, vol. 2, 220, pp. -. DOI: 10.1038/ncomms1227

Digital Object Identifier (DOI):
10.1038/ncomms1227

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nature Communications

Publisher Rights Statement:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices.
A s the first demonstration of a non-volatile semiconductor memory with a floating gate was introduced in the mid-1960s, various types of memory devices, such as PROM, EPROM, EEPROM and flash memory have been developed. At present, NAND- and NOR-type flash memories are widely used for computer memories and other portable devices because of the low cost of production and well-developed fabrication technology. However, a flash memory has a relatively low operation speed with ~10 μs programming and ~10 ms erasing time, much slower than other electronic components. Recently, extensive studies have been performed to improve memory performance in terms of retention time, endurance, integration, speed and energy consumption. Non-volatile data storage devices, such as FERAM, MRAM, PRAM, SONOS and ReRAM, have been investigated. The demonstration of carbon nanotube (CNT) field-effect transistors (FET) has opened up the possibility of using CNT in non-volatile memory devices. However, to date, any demonstrated devices, based on static CNT transistors, have limitations of low operation speed and/or short retention times. Such limitations may be overcome by making use of mechanical motion. Radio frequency microelectromechanical system (RF MEMS) switches have been shown to provide several advantages such as high-speed switching, ultra-low losses, high isolation, high linearity of relays and low-power consumption. Memory devices based on the electromechanical motion of nanotubes have been demonstrated, including three terminal relays, crossed nanotube arrays and vertical nanoscale memory cells; however, there are considerable challenges associated with the reproducible fabrication and operation of such devices.

In this article, we demonstrate a novel non-volatile memory device consisting of a static transistor channel and a movable cantilever switch that is used to directly charge/discharge a floating gate. A CNT is used as the active channel between the source and drain electrodes, and the amount of charge on the floating gate is controlled by the cantilever. The basic memory properties of our device, such as the retention characteristics at the programmed/erased states and the endurance performance, are investigated. The possibility of multityple bit programming with the device was demonstrated by changing the voltage on the cantilever. The write and the erase operation speed were estimated by measuring the switching speed of the cantilever. The power consumption of the device was calculated and compared with commercially available flash memories. The experimental results show that the device performance is superior to that of conventional flash memories.

Results
Device fabrication and operation concept. The design concept can easily be extended to other memory architectures in which a floating gate needs to be quickly and efficiently charged and discharged, however, there is an advantage of the CNT-FET design as demonstrated here. The floating gate provides a potential barrier for the charge carriers in the CNT-FET and can rapidly switch between on and off states. In ordinary flash memories, the floating gate, surrounded by a thin insulating barrier, is placed on a metal–oxide–semiconductor field-effect transistor (MOSFET) channel as shown in Figure 1a. Electrons tunnel to the floating gate through the insulating dielectric on application of a high voltage to the control gate. The tunnelling of electrons through the oxide layer causes a time delay resulting in a low operation speed and also limits the number of useful cycles that can be achieved. To greatly increase the operation speed, we use a microelectromechanical (MEM) metallic cantilever that directly contacts a metallic floating gate. A schematic drawing of the device is illustrated in Figure 1b. Unlike a conventional flash cell, the channel between source and drain in our device is replaced with a semiconducting CNT, and a MEM cantilever and actuating electrode are introduced. The cantilever is anchored at one end and it is suspended above the actuating electrode and the floating gate. When a bias voltage is applied to the actuating electrode, the resultant electrostatic force pulls down the cantilever until it contacts the floating gate. The cantilever is composed of Cr/Al/Cr triple layers and the floating gate is made of Au. The Au floating gate is placed on top of an 80 nm-thick Al₂O₃ layer. In this configuration, the floating gate is charged at the instant of contact. The charge on the floating gate controls the source-drain current through the CNT channel. No back gate voltage is applied. Devices with both side floating gates

Figure 1 | Device concept and operation processes. (a) Schematic illustration of an ordinary flash memory cell. A floating gate surrounded by an insulating layer is located on the MOSFET. Electrons are injected/tunnel through the thin oxide layer and are stored in the floating gate. (b) Schematic diagram of the MEMS-based non-volatile memory device. The CNT is used for the source/drain channel and a MEM cantilever is added to transfer charges to the floating gate. (c) Field-emission scanning electron microscope image of the device. Colour-coded to show the main elements: source/drain (red), floating gate (yellow) and cantilever/actuating electrode (blue). Scale bar, 2 μm. (d) Diagrams demonstrating the programming (upper three panels)/erasing (lower three panels) processes. Blue/red colours indicate the polarities of the applied voltages.
and top floating gates were fabricated and characterized. A field-emission scanning electron microscope image of the whole structure is shown in Figure 1c. The source/drain, floating gate and cantilever/actuating electrode are coloured by red, yellow and blue, respectively. The detailed fabrication process is described in the Methods section and the Supplementary Figures S1 and S2. The CNTs used in our experiment were p-type semiconducting. The on/off switching ratio was determined to be 10^6–10^{10} by measuring the back gate voltage dependence of the source-drain current of the CNT channel (see the Supplementary Fig. S3). The operation of the device is shown in Figure 1d. Here the red and blue colours indicate positive and negative polarities, respectively. The programming process is the following (see Fig. 1d, upper): (1) when a positive voltage is applied to the actuating electrode while the cantilever is biased negatively, the cantilever is pulled down by the attractive electrostatic force to the floating gate. (2) At the moment of contact, the negative charges in the cantilever charge the floating gate instantaneously. By inducing negative charges on the floating gate, the CNT channel is turned ‘ON’ with hole-transport. We define this as the ‘programmed state’ or bit ‘1’. (3) By turning off the actuating electrode voltage, the cantilever is moved back to the original position and the contact between the cantilever and the floating gate is switched off. The floating gate remains negatively charged, and the CNT channel is maintained in the ‘programmed state’. The ‘erased state’ or bit ‘0’ is obtained by reversing the programming processes (Fig. 1d, lower). (The continuous on–off switching processes are shown in the Supplementary Video.)

Retention characteristics. To investigate the non-volatility of the device, the retention times of programmed/erased states were measured. Figure 2a shows retention characteristics for a side-floating gate device. The device was initially erased by applying $+4\,\text{V}$ on the cantilever and pulsing (200 ms pulse duration) $-12\,\text{V}$ on the actuating electrode. The programmed state was obtained by applying $-6\,\text{V}$ on the cantilever and pulsing (200 ms pulse duration) $+10\,\text{V}$ on the bottom electrode. The source–drain current (I_{DS}) of the CNT-FET in the programmed state (blue line) was monitored with $V_G = 100\,\text{mV}$ for 41,000 s (more than 11 h). After the retention test of the programmed state, the erased state was also monitored (red line). Figure 2b shows similar retention characteristics of a top-floating gate device, where 24 V was applied between the cantilever and the actuating electrode. The I_{DS} through the CNT-FET is retained at a constant value in each state with ca 4–5 orders of magnitude difference between off and on states. There is no sign of degradation of this value within the measurement time window (up to 41,000 s), a much longer retention time is expected as the floating gate is completely isolated without any electrical connections or significant leakage once the cantilever has been positioned in the up-state.

Endurance test. Figure 3a shows the endurance characteristics under repeated programming and erasing cycles of a side-floating gate device over 600 s, corresponding to ca 500 cycles. Initially, the device was erased and after 20s the test was started with the programming and erasing processes as shown in Figure 3a. Figure 3b shows an enlarged section of figure 3a in which the I_{DS} is shown together with the voltage pulses applied to the cantilever (purple) and actuating electrode (green). For the 500 programming and erasing cycles, the device shows successful operation with stable current levels at about 10^{-8} A in the programmed state and about 10^{-12} A in the erased state. The only limitation in the endurance rate is the number of switching cycles of the MEM cantilever. The typical endurance rate of a flash memory is 10–100 thousand cycles. On the other hand, MEMS switches are known to have more than 100 million switching cycles. It can therefore be expected that the CNT memory device presented here can have endurance rates more than 1,000 times better than flash memory devices.

Multinary bit programming. The possibility of multinary bit programming for the side-floating gate device has also been investigated. Conventional flash memories have been developed from the single level cell (bit 1 or zero) memory to the multi-level cell by controlling the tunnelling time of electrons through the insulating barrier. The quantity of charges on the floating gate of the CNT-FET, however, can simply be controlled by adjusting the applied bias voltage to the cantilever and, consequently, the charge level on the gate can affect directly the current flow in the CNT channel. Figure 4a shows I_{DS} controlled by different cantilever bias voltages. I_{DS} has a value of 10^{-11} A when the device is initially in the erased state ($+4\,\text{V}$ on the cantilever per $-12\,\text{V}$ of pulse on the actuating electrode). The time duration of the applied pulse on the actuating electrode was fixed at 200 ms for each bit level. The multi-level programmed states are obtained by applying cantilever bias voltages from $-1\,\text{V}$ to $-10\,\text{V}$. At $-3\,\text{V}$ of bias on the cantilever, the programmed state has ten times higher current (10^{-11} A) than that of the erased state (10^{-12} A). The current level can be continually increased up to 2×10^{-7} A when the cantilever bias voltage has been increased to $-9\,\text{V}$. Even though the currents are seen to fluctuate at some intermediate states (for example, at -6, -5 and $-2\,\text{V}$ of cantilever bias), one can see the clear discrete level of I_{DS} at each programmed state. Retention times for the intermediate programmed states have not been determined but are longer than 300 s. For higher cantilever bias voltages, the
current saturates at 2×10^{-7} A. The average I_{DS} versus cantilever voltages are plotted in Figure 4a. The error bars indicate the standard deviation of 250 measurement data points during 300 s for each intermediate state. For this memory device, multi-level programming is realized by a simple change of voltage on the cantilever. Therefore, the controllability is much easier and the density of multi-level bits can be much higher than for flash memories.

Operation speed. Finally, the speed of the presented memory device is much faster than for flash memories, as the programming and erasing operation speeds correspond to the mechanical switching speed of the cantilever. There is no intrinsic time delay due to the tunnelling current as in the flash memory. The spring constant and the resonance frequency of the cantilever are determined by the physical dimensions (width, length and thickness) and Young’s modulus of the cantilever material. The maximum speed of the cantilever, in principle given by the resonance frequency, governs the device speed. Measurements were performed to determine the resonant frequency and the switching speed of the cantilevers. The resonant frequency was found to be 8.5 MHz giving a maximum expected switching speed of ca 60 ns. The actual time required to switch the cantilever on was found to be ca 130 ns with ca 145 ns for switching off. The detailed resonance frequency and switching speed measurements on the cantilever are described in the Methods section and the results are shown in the Supplementary Figures S4 and S5. The switching times are much faster than the speed of conventional flash memories. More systematic investigations on the resonance frequency and switching characteristics are on-going. It would be relatively straightforward to decrease the size of the cantilever to increase the switching speed even more. For example, three terminal relays and vertical memory cells based on actuators and control of individual CNTs have been demonstrated and have switching speeds of at least an order of magnitude higher, although the reproducible fabrication of CNT cantilevers and the problems of stiction at the nanoscale are still challenging.

Discussion We have developed a memory device consisting of a CNT-FET combined with a metallic MEM cantilever with the following advantages. (1) Endurance rating: for the programming and erasing process in an ordinary flash cell, the thin oxide layer may be damaged by the high electric field needed to transfer electrons, which limits the endurance rating. However, in the device presented here, oxide durability is not an issue as the charges are transferred directly to the floating gate via the metallic cantilever. The endurance rating is determined by the number of switching cycles of the MEM cantilever, and it is known that RF MEMS switches can typically endure approximately
Mechanical resonance frequency and switching speed test. The resonance frequency test was carried out by using the optical interferometer method\(^\text{[51]}\). The schematic of the measurement set up is shown in Supplementary Figure S4a. The ac signal was applied through the actuation electrode located under the suspended micro cantilever structure. The change of the reflected laser signal from the cantilever on mechanical resonance was detected by the high-speed photo receiver. Supplementary Figure S4b is the mechanical resonance measurement result of the micromanetile in our CNT-based MEM memory device. The mechanical resonance frequency of the cantilever was detected to be 8.5 MHz.

The switching speed measurements were performed using a function generator (Yokogawa FG300), a high precision oscilloscope (Yokogawa DL1740 Digital Oscilloscope, Yokogawa), and an amplifier (NF HAS4101 High speed bipolar amplifier) in ambient atmosphere. Supplementary Figure S5a shows the schematic measurement set up. A square shape input signal with amplitude of 13 V was applied between the cantilever and actuation electrode and the output signal at the drain electrode was monitored with the oscilloscope. Note that for this experiment, a new three terminal micromechanical system, which has no floating gate was prepared so that we could measure the time at which contact was made between the cantilever and the drain electrode (taking the place of the floating gate). The dimension of the cantilever and the fabrication procedure is the same as for the floating gate devices presented in the main paper. Supplementary Figures S5b and S5c show the switching speed measurement results of the switching motion and release motion respectively. Also, Supplementary Figures S5d and S5e show that the circuit delay times of our experimental setup for the switching signals are ca 35 ns. The time for switching on the device was found to be ca 130 ns with a time of ca 145 ns to switch off.

References

1. Kahng, D. & Sze, S. M. A floating gate and its application to memory devices. Bell Syst. Tech. J. 46, 1288–1295 (1967).
2. Benin, W. D. & Brewer, J. F. A Volatile Semiconductor Memory Technology – A Comprehensive Guide to Understanding and Using NVM Devices (IEEE PRESS, 1998).
3. Masuoka, F., Asano, M., Ishihashi, H., Komuro, T. & Tanaka, S. A new flash EEPROM cell using triple polysilicon technology. IEDM Tech. Dig. 17.3, 464–467 (1984).
4. Shim, S. J., Yeh, F. C., Wang, X. W. & Ma, T. P. SONOS-type flash memory cell with metal/AlOx/SiN/Si/NI/Si structure for low-voltage high-speed program/erase operation. IEEE Elec. Dev. Lett. 29, 512–514 (2008).
5. Hanafi, H. I., Tiwari, S. & Khan, I. Fast and long retention-time nano-crystal memory. IEEE Trans. Elec. Dev. 43, 1355–1358 (1996).
6. Kim, K. & Song, Y. J. Integration technology for ferroelectric memory devices. Microelectronics. Reliab. 43, 385–398 (2003).
7. Tehrani, S. et al. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 703–714 (2003).
8. Hwang, Y. N. et al. Writing current reduction for high-density phase-change RAM. IEEE IEDM. Tech. Dig. 37.1, 37.1.4 (2003).
9. Bu, J. & White, M. H. E. Considerations in designed SONOS nonvolatile memory Devices. Solid State Electron. 45, 113–120 (2001).
10. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).
11. Waser, R., Dittmann, R., Staikov, G. & Sott, K. Redox-based resistive switching mechanisms – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
12. Ahn, S. E. et al. Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater. 20, 924–928 (2008).
13. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).
14. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).
15. Fuhrer, M. S., Kim, B. M., Durkop, T. & Brintlinger, T. High-mobility nanotube transistor memory. Nano. Lett. 2, 755–759 (2002).
16. Radosavljevic, M., Freitag, M., Thadani, K. V. & Johnson, A. T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano. Lett. 2, 761–764 (2002).
17. Marty, L., Naud, C., Chaumont, M. & Bonnot, A. M. Self-assembled single wall carbon nanotube field effect transistors. IEEE nano 1, 240–243 (2003).
18. Rinkö, M., Johansson, A., Paraoanu, G. S. & Törmä, P. High-speed memory from carbon nanotube field effect transistors with high-K gate dielectric. Nano. Lett. 9, 643–647 (2009).
19. Ganguly, U., Kan, E. C. & Zhang, Y. Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals. Appl. Phys. Lett. 87, 043108 (2005).
20. Rebez, G. M. & Muldavin, J. B. RF MEMS switches and switch circuits. IEEE microwave mag. 2, 59–71 (2001).
21. Lee, S. W. et al. A three-terminal carbon nanoray. Nano. Lett. 4, 2027–2030 (2004).
22. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–96 (2000).
23. Jang, J. E. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat. Nanotechnol. 3, 26–30 (2008).
24. Svensson, J. et al. A carbon nanotube transistor with 5 ps gate delay. Nanotechnology 19, 325201 (2008).
25. Hyman, D. et al. Surface-micromachined RF MEMS switches on GaAs substrates. Int. J. RF Microwave Computer-Aided Eng. 9, 348–361 (1999).
26. Mihailovich, R. E. et al. MEM relay for reconfigurable RF circuits. IEEE Microw. Wireless Compon. Lett. 11, 53–55 (2001).
27. Brewer, J. E. & Gill, M. Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using NVM Devices (IEEE Press, John Wiley & Sons, 2008).

28. Lineback, J. R. Four-state cell called density key. Electronics 55, 81–82 (1982).
29. Eriksson, A. et al. Direct transmission detection of tunable mechanical resonance in an individual carbon nanofiber relay. Nano. Lett. 8, 1224–1228 (2008).
30. Cho, G., Kim, Y. B. & Lombardi, F. Assessment of CNTFET based circuit performance and robustness to PVT variations. IEEE Int. Midwest Symp. Circuits Syst. 1106–1109 (2009).
31. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).
32. Avouris, P. Carbon nanotube electronics and photonics. Physics Today 62, 34–40 (2009).
33. Kudryashov, V. A., Krasnov, V. V., Huq, S. E., Frewett, P. D. & Hall, T. J. Electron beam lithography using chemically-amplified resist: resolution and profile control. Microelectron. Eng. 30, 305–308 (1996).
34. Borzenko, T., Gould, C., Schmidt, G. & Molenkamp, L. W. Metallic air-bridges fabricated by multiple acceleration voltage electron beam lithography. Microelectron. Eng. 75, 210–215 (2004).
35. Carr, D. W. & Craighead, H. G. Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography. J. Vac. Sci. Tech. B 15, 2760–2763 (1997).

Acknowledgments
This work was supported by the Leading Foreign Research Institute Recruitment Program (0409-20100156), the NSI-NCRC (0543-2009009177) of NRF and the FPRD of BK21, through the Ministry of Education, Science and Technology (MEST), Korea. Partial support for Y.W.P. was provided by the Brothers Jacob and Marcus Wallenberg Memory Foundation grant administered by the Royal Swedish Academy of Sciences (KVA), Sweden. S.W.L. was supported by the NRF (2008-331-C00099). The WCU program of the MEST (R31-2008-000-10057-0) and Korea-Swedish research cooperation program (STINT and NRF) supported S.W.L. and E.E.B.C. The authors thank H.S. Kim for his help in the sample preparation for the speed measurements.

Author contributions
S.W.L. planned and designed the experiments. S.J.P. performed the fabrication and the measurements. S.W.L., S.J.P., E.E.B.C. and Y.W.P. analysed the data and wrote the paper. Y.W.P. supervised the project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lee, S.W. A fast and low-power microelectromechanical system-based non-volatile memory device. Nat. Commun. 2:220 doi: 10.1038/ncomms1227 (2011).

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/