Uranium, thorium and REE partitioning into sulfide liquids: Implications for reduced S-rich bodies

Anke Wohlers *, Bernard J. Wood

Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

Received 20 July 2016; accepted in revised form 25 January 2017; available online 24 February 2017

Abstract

We have performed experiments at 1.5 GPa over the temperature range 1400–2100 °C to determine the partitioning of lithophile elements (U, Th, Eu, Sm, Nd, Zr, La, Ce, Yb) between sulfide liquid, low-S metals and silicate melt. The data demonstrate pronounced increases in partitioning of all the lithophile elements into sulfide at very low FeO contents (<1 wt%) of the silicate melt such that $D_{U} = \frac{U_{sulfide}}{U_{silicate}}$ exceeds 1 and may be >10 in some cases. Similarly D_{Sm} may be >2 under the same conditions of low silicate FeO. This strong partitioning behaviour is found only be important in S-rich metals, however because the observed effect of low FeO on partitioning is uniquely confined to metallic melts close to stoichiometric FeS in composition.

The results and the effects of FeS content of the metal and FeO content (or activity) of the silicate may be understood in terms of exchange reactions such as:

$$\text{UO}_2 + 2\text{FeS} = 2\text{FeO} + \text{US}_2$$

Silicate sulfide sulfiide

High concentrations of FeS (in metal) and low FeO contents of the silicate melts drive the reaction to the right, favouring high US_2 in the sulfide and hence high D_{U}. The effect is, we find, enhanced by the high solubility of S in the silicate (up to 11 wt%) at low FeO contents. This S content greatly reduces the activity coefficient of FeO in the silicate melt, enhancing the displacement of the reaction to the right.

For sulfide-silicate partitioning at 1.5 GPa and 1400 °C we obtain D_{Nd}/D_{Sm} of about 1.4 and $D_{Th} \approx 0.1D_{U}$. With increasing temperature the differences between these geochemically similar element pairs decreases such that, at 2100 °C D_{Nd}/D_{Sm} is 1.0 and D_{Th}/D_{U} is about 0.3. We used these results, together with D_{U} and D_{Sm} to model addition of a putative Mercury-like component (with FeS core) to early Earth. We find that the 1400°C results could lead to a significant (~11 ppm) 142Nd anomaly in silicate Earth and add >8 ppb U to the core, but lead to an unreasonably high Th/U of silicate Earth (4.54). Based on the 2100 °C results the 142Nd anomaly would be 0 but addition of the sulfur-rich body could add up to 10 ppb of U to the core, generating, when the accompanying 21 ppb Th is also considered, ~3 TW of the energy required for the geodynamo. In this case, the Th/U ratio of silicate Earth would approximate 4.3, within the range of some estimates.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Sulfide-silicate partitioning; High-pressure experiments; Partitioning behaviour; Lithophile elements; Trace elements

* Corresponding author.

E-mail address: Anke.Wohlers@earth.ox.ac.uk (A. Wohlers).

http://dx.doi.org/10.1016/j.gca.2017.01.050
0016-7037/© 2017 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. INTRODUCTION

The partition coefficients of many elements between sulfide and silicate liquids follow simple relationships between log \(D_i \) and \(-\log[\text{FeO}] \) where \([\text{FeO}]\) refers to the FeO content of the silicate melt (Kiseeva and Wood, 2013). One implication of this observation is that even relatively lithophile elements may partition significantly into sulfide at sufficiently low FeO contents of the silicate. This hypothesis was confirmed by Wohlers and Wood (2015) who showed that, under highly reducing conditions (4–6 log \(\log f_{\text{O}_2} \) units below the IW buffer) and relatively low temperatures (1400–1650 °C) U, Sm, Nd and other lithophile elements partition strongly into FeS liquids relative to silicate melts. At 1.5 GPa and 1400 °C for example, the partition coefficient for uranium \((D_U = \frac{[\text{U}]_{\text{sulfide}}}{[\text{U}]_{\text{silicate}}} \) approaches 15 while that for Sm can be greater than 2. The rare earth elements were also found to fractionate quite strongly one from another as they partition between sulfide and silicate liquid with, for example \(D_{\text{Nd}}/D_{\text{Sm}} \) of 1.1–1.4 and \(D_{\text{Nd}}/D_{\text{Sm}} \) of 0.1–0.6.

Wohlers and Wood (2015) explored the implications of the sulfide-silicate partitioning results by considering the effects on Earth of accretion of a highly reduced sulfur-rich body (similar to Mercury) to the growing planet. They calculated increases (Wood and Kiseeva, 2015) the lithophile elements at low FeO content. At this stage we believe that pressure effects are of secondary importance to those of temperature and composition and a lack of systematic pressure effects is as shown below, generally confirmed by our study.

2. EXPERIMENTAL AND ANALYTICAL PROCEDURES

Starting compositions and experimental conditions are summarized in Table 1. Major and minor compositions of silicate, sulfide and metal experiments are given in Tables 2–5. Partition coefficients \((D) \) are in Table 6. Experiments were performed at 1.5 GPa and 1635 °C and 2100 °C. Two different, haplobasaltic starting mixtures were used for experiments. For experiments performed at 2100 °C, the starting mixture consisted of \(~50\text{wt} \% \text{FeS}\) and \(~50\text{wt} \% \text{a synthetic silicate close to the 2 GPa eutectic system (Liu and Presnall, 1990).} \) At 1635 °C, experiments contained a mixture of 50 wt% of variable mixtures of FeS, Fe and FeS\(_2\) together with 50 wt% synthetic silicate corresponding to the 1.5 GPa eutectic in anorthite-diopside-forsterite (Presnall et al., 1978). The sulfur-free experiments, were
3% NiS in order to provide a second internal standard used for the metal constituent. The FeS was doped with the experiment. Analytical-grade FeS, Fe and NiS were amounts (2–21%) of FeSi$_2$ or FeO were added to the starting material in desired proportions, and ground under of 1000–2000 ppm. The silicate was mixed with the metal oxides were mixed with CaCO$_3$ as the source of calcium and 2 mm I.D. MgO capsules. Experiments were conducted in either graphite or MgO capsules and were doped with a lithophile trace element mix. 1.3% NiS was added to the FeS. Experiments were carried out in either graphite or MgO capsules and were doped with a lithophile trace element mix. 1.3% NiS was added to the FeS. Experiments were performed in a 1/2-inch diameter piston-cylinder apparatus using an external BaCO$_3$ sleeve with an SiO$_2$-glass inner sleeve and graphite furnace of 8 mm O.D. and 6 mm I.D for experiments at 1635 °C and 1650 °C. The unsealed graphite capsule was separated from the graphite furnace by an MgO spacer which had been fired at 1000 °C to ensure dryness. Fired MgO spacers were employed above and below the capsule with the former having a 1.7 mm hole for the thermocouple. At 2100 °C, the BaCO$_3$ sleeve was replaced by pyrophyllite and the graphite furnace reduced to 5 mm O.D. 3 mm I. D. The space in between the furnace and silica glass sleeve was filled by a machined polycrystalline MgO cylinder. Temperatures were controlled and monitored by a tungsten-rhenium thermocouple (W$_{95}$Re$_{5}$-W$_{74}$Re$_{26}$), and temperature was maintained within ±2 °C. The thermocouple was introduced into the center of the cell, just above the capsule and separated from it by a 0.5 mm alumina disc to prevent puncture of the capsule by the thermocouple. Experiment duration was between 10 min and 2 h. These experimental durations have been found to be sufficient to reach constant partitioning of trace elements in the capsule sizes used in this study (Tuff et al., 2011; Kiseeva and Wood, 2013). Experiments were quenched by turning off the power supply to the furnace. After quench, the capsule was inspected for cracks and evidence of leaks under a binocular microscope. Complete, unfractured capsules were mounted in acrylic and polished for optical examination and analysis by electron microprobe and Laser Ablation ICPMS.

The experimental conditions, major and trace element compositions of the run products, and the resulting partition coefficients are presented in Tables 1–6.

Run	Starting composition	T (°C)	Time (min)	Capsule type
663	An$_{60}$Di$_{28}$Fo$_{13}$ + 32%FeS + 18%Fe + 2%FeSi$_2$	1635	45	Graphite
664	An$_{60}$Di$_{28}$Fo$_{13}$ + 32%Fe + 18%Fe + 3%FeSi$_2$	1635	45	Graphite
665	An$_{60}$Di$_{28}$Fo$_{13}$ + 32%FeS + 18%Fe + 7%FeSi$_2$	1635	45	Graphite
666	An$_{60}$Di$_{28}$Fo$_{13}$ + 32%FeS + 18%Fe + 8%FeSi$_2$	1635	45	Graphite
667	An$_{60}$Di$_{28}$Fo$_{13}$ + 32%FeS + 18%Fe + 10.5%FeSi$_2$	1635	45	Graphite
699	An$_{60}$Fo$_{13}$Q$_2$ + 4%Fe + 8%FeSi$_2$	2100	45	Graphite
697	An$_{60}$Fo$_{13}$Q$_2$ + 4%Fe + 12%FeSi$_2$	2100	10	Graphite
700	An$_{60}$Fo$_{13}$Q$_2$ + 39%FeS + 21%FeSi$_2$	2100	10	Graphite
701	An$_{60}$Fo$_{13}$Q$_2$ + 40%FeS + 20%FeO	2100	10	Graphite
706	An$_{60}$Fo$_{13}$Q$_2$ + 48%Fe + 4%FeSi$_2$	1650	30	MgO
702	An$_{60}$Fo$_{13}$Q$_2$ + 47%Fe + 6%FeSi$_2$	1650	30	MgO
703	An$_{60}$Fo$_{13}$Q$_2$ + 43%Fe + 14%FeSi$_2$	1650	30	MgO
704	An$_{60}$Fo$_{13}$Q$_2$ + 41%Fe + 18%FeSi$_2$	1650	30	MgO
681	An$_{60}$Fo$_{13}$Q$_2$ + 48%Fe + 4%FeSi$_2$	1650	60	Graphite
682	An$_{60}$Fo$_{13}$Q$_2$ + 45%Fe + 10%FeSi$_2$	1650	60	Graphite
683	An$_{60}$Fo$_{13}$Q$_2$ + 47%Fe + 6%FeSi$_2$	1650	60	Graphite
684	An$_{60}$Fo$_{13}$Q$_2$ + 43%Fe + 14%FeSi$_2$	1650	60	Graphite
685	An$_{60}$Fo$_{13}$Q$_2$ + 41%Fe + 18%FeSi$_2$	1650	60	Graphite

Experiments were carried out in either graphite or MgO capsules and were doped with a lithophile trace element mix. 1.3% NiS was added to the FeS.

Abbreviations: An (Anorthite), Di (Diopside), Fo (Forsterite), Q (Quartz).

Starting composition after Presnall et al., 1978b and Liu and Presnall, 1990a.

Starting composition proportions are given in wt%.
After quenching the experiments, textural observation shows that the initial starting mixtures separated into large sulfide or metal "blobs" of several hundred micron size, which are embedded in a silicate matrix (Fig. 1b, c). The good physical separation between the metallic and silicate liquids enables analysis of both phases using electron microprobe and LA-ICP-MS. The run conditions of all experiments are well above the iron melting temperature and sulfide liquidus conditions determined by Zhang and Hirschmann (2016), which ensures that samples were completely molten during the experiment. In graphite capsules, the silicate liquid quenches to a homogeneous glass (Fig. 1b) while the sulfide melt quenches to a mixture of sulfides which, based on microprobe standard deviations (Table 3) are fairly homogeneous on the 10 μm length scale. The sulfides tend to crack during quenching which leads to the contrasts shown in Fig. 1b. In MgO capsules (Fig. 1c) the silicate quenches to a mixture of glass and elongated quench crystals and includes occasional equant liquidus olivines (Fig. 1c). At low FeO contents in the silicate liquid (<0.5%), two immiscible metallic liquids are present in some S-rich experiments after quench (Table 3), one FeS-rich liquid and a second Fe-Si liquid. An example is shown in the backscattered-electron (BSE) photomicrograph of Fig. 1a, where the central Fe-Si liquid is surrounded by an FeS-rich liquid. The Fe-Si liquid quenches to a homogeneous glass. The silicate liquid quenches to a mixture of glass and elongated crystals and includes occasional equant liquidus olivines (Fig. 1c).

Table 2

Major element composition of silicate glass.

Run	663	664	665	666	667					
n	62	77	53	84	35					
MgO	19.87	0.11	19.71	0.11	18.41	0.18	19.57	0.11	17.75	0.36
Al₂O₃	10.30	0.18	9.38	0.20	8.79	0.09	8.18	0.10	9.99	1.11
SiO₂	49.11	0.48	49.80	0.94	48.97	0.57	48.95	0.34	49.19	0.50
S	1.59	0.08	3.21	0.08	6.00	0.09	6.78	0.10	7.70	0.10
CaO	17.83	0.15	17.45	0.30	15.86	0.16	14.60	0.16	14.78	0.25
FeO	0.63	0.23	0.55	0.14	0.51	0.18	0.49	0.15	0.45	0.13
Total	99.32	100.10	98.54	98.56	99.87					
log[FeO]/C₀	-0.20	-0.26	-0.29	-0.31	-0.34					

P = 1.5 GPa, T = 1635 °C

Run	699	670	701
n	38	35	50
MgO	8.53	1.67	5.47
Al₂O₃	15.82	0.85	16.43
SiO₂	58.16	0.76	60.68
S	6.62	0.17	6.81
CaO	9.81	0.37	9.81
FeO	0.67	0.31	0.63
Total	99.60	99.84	101.78
log[FeO]/C₀	-0.18	-0.20	-0.13

P = 1.5 GPa, T = 2100 °C

Run	681	682	683
n	40	40	40
MgO	29.10	8.87	30.91
Al₂O₃	16.10	4.27	15.35
SiO₂	42.29	0.61	42.22
CaO	9.95	3.17	9.67
FeO	0.48	0.06	0.32
Total	97.92	98.47	97.66
log[FeO]/C₀	-0.32	-0.50	-0.76

P = 1.5 GPa, T = 1650 °C

Run	681	682	683
n	57	65	65
MgO	6.59	0.24	6.43
Al₂O₃	21.49	0.17	21.30
SiO₂	59.01	0.24	59.45
CaO	11.48	0.10	11.52
FeO	0.47	0.41	0.30
Total	99.93	99.00	98.78
log[FeO]/C₀	-0.33	-0.52	-0.75

Values in wt%; σ = calculated from error propagation; n = number of measurements.
alloy and was found to have extremely low concentrations of U (1.8 ± 0.96 ppm), Th (0.12 ± 0.04 ppm) and the investigated REE (Zr, La, Ce, Nd, Sm, Eu, and Yb) < 0.57 ± 0.48 ppm.

2.1. Microanalysis

Major element compositions of experimental products were determined using the JEOL 8600 electron microprobe in the Archaeology Department at the University of Oxford. Analyses of silicate glasses and sulfides were determined in wavelength dispersive (WDS) mode using a 15 kV accelerating voltage with a beam current of 20 nA and a defocused 10 μm spot. At least 20 analyses of the silicate and metal phases were performed in each experimental product. Count times for major elements (Si, Al, Ca, Mg, Fe in silicate, Fe in metal) were 30 s on the peak and 15 s on the background. Minor elements (S, Ni, O) were analyzed for 60 s peak and 30 s on the seconds background. A range of natural and synthetic standards was used for calibration. Standards for silicate were wollastonite (Si, Ca), jadeite (Al), periclase (Mg) and hematite (Fe). Almandine was used as a secondary standard to check the silicate calibration. Standards for S-bearing metal phases were Ni metal (Ni), galena (S) and hematite (Fe, O). Oxygen in the metallic phase was determined using the Kα peak and an LDE crystal. We determined uranium and samarium contents of 3 product S-rich metals as a check on our Laser Ablation-ICP-MS analyses. In this case we used the Mα peak for U and Lα peak for Sm and employed standards of UO2 and SmPO4 respectively and a PET crystal. Operating conditions were 15 kV, 40 nA, and a 10 μm beam. Count time for uranium was 120 s on peak and 60 s background. samarium was analyzed for 150 s on the peak and 75 s background.

Trace elements in silicates and sulfides were measured by Laser Ablation ICPMS employing a NexION 300 quadropole mass spectrometer coupled to a New Wave Research UP213 Nd:YAG laser at the University of Oxford. A laser repetition rate of 10 Hz and 25–50 μm spot size were used.

Table 3
Major element composition of quenched sulfide liquids and metal liquids.

Sulfide liquids

P = 1.5 GPa, T = 1635 °C

Run	n	σ	664°	665°	666°	667°
663	32	0.15	0.00	29.31	68.08	97.55
664	15	0.20	0.01	1.19	1.53	97.56
665	15	0.07	0.02	32.17	65.30	97.08
666	15	0.08	0.02	2.76	2.57	95.72
667	15	0.14	0.02	32.83	64.08	96.10

Run	n	σ	699°	700°	701°	
663	10	0.01	0.01	35.49	61.99	97.49
664	16	0.02	0.01	35.76	61.31	97.13
665	16	0.05	0.02	0.41	0.72	0.60
666	16	0.13	0.02	34.50	60.86	0.60
667	16	0.47	0.80	1.14	0.77	0.26

Metallic liquids

P = 1.5 GPa, T = 1650 °C

Run	n	σ	662°	663°	664°
706	20	0.00	1.79	97.62	99.42
702	20	0.01	0.04	3.42	96.58
703	20	0.00	0.05	0.05	90.89
704	20	0.00	0.25	8.25	87.76

Run	n	σ	681°	682°	683°	684°	685°
681	50	0.03	2.61	94.09	96.74	98.06	
682	38	0.23	0.36	0.78	98.06	97.67	
683	38	0.09	6.08	91.89	98.06	97.67	
684	41	0.11	0.17	0.55	93.27	98.06	
685	41	0.08	0.43	0.75	88.88	97.67	

Values in wt%; σ = calculated from error propagation; n = number of measurements.

a = Sulfide contains small blobs of Fe-Si alloy liquid with extremely low lithophile trace element concentrations.
for silicate and sulfide phases with an energy density of \(~1.2\) \text{Jcm}^{-2}. Operating in time-resolved mode, we employed 20 s of background acquisition, followed by ablation for 60 s. Between analyses we employed a 60–90 s "wash-out" time. The following masses were counted: \(^{24}\text{Mg}, \ 27\text{Al}, \ 28\text{Si}, \ 56\text{Fe}, \ 60\text{Ni}, \ 43\text{Ca}, \ 90\text{Zr}, \ 139\text{La}, \ 140\text{Ce}, \ 142\text{Nd}, \ 152\text{Sm}, \ 153\text{Eu}, \ 174\text{Yb}, \ 232\text{Th}, \ 238\text{U}. Our external standard was NIST610 glass and we typically collected 3 spectra.

Table 4
Trace element concentration in silicate glass.

P = 1.5 GPa, \ T = 1635^\circ C

Run	663	664	665	666	667
n	10	10	10	10	10
Zr90	2795	2765	2776	3115	2345
La139	1499	1488	1477	1753	1306
Ce140	7	0.1	0.1	6	6
Nd142	1167	1171	1166	1368	1030
Sm152	1840	1876	1917	2233	1660
Eu153	1602	1630	1644	1919	1415
Yb174	2130	2218	2353	2781	2046
Th232	2349	2242	2486	2896	2195
U238	2257	2141	2005	2200	1657
Ni60	7	4	11	46	18

P = 1.5 GPa, \ T = 2100^\circ C

Run	699	697	700	701	
n	10	10	10	10	
Zr90	2795	2765	2776	3115	2345
La139	1499	1488	1477	1753	1306
Ce140	7	0.1	0.1	6	6
Nd142	1167	1171	1166	1368	1030
Sm152	1840	1876	1917	2233	1660
Eu153	1602	1630	1644	1919	1415
Yb174	2130	2218	2353	2781	2046
Th232	2349	2242	2486	2896	2195
U238	2257	2141	2005	2200	1657
Ni60	7	4	11	46	18

P = 1.5 GPa, \ T = 1650^\circ C

Run	706	702	703	704	
n	10	10	10	10	
Zr90	2795	2765	2776	3115	2345
La139	1499	1488	1477	1753	1306
Ce140	7	0.1	0.1	6	6
Nd142	1167	1171	1166	1368	1030
Sm152	1840	1876	1917	2233	1660
Eu153	1602	1630	1644	1919	1415
Yb174	2130	2218	2353	2781	2046
Th232	2349	2242	2486	2896	2195
U238	2257	2141	2005	2200	1657
Ni60	7	4	11	46	18

P = 1.5 GPa, \ T = 1650^\circ C

Run	681	682	683	684	685
n	10	10	10	10	10
Zr90	2795	2765	2776	3115	2345
La139	1499	1488	1477	1753	1306
Ce140	7	0.1	0.1	6	6
Nd142	1167	1171	1166	1368	1030
Sm152	1840	1876	1917	2233	1660
Eu153	1602	1630	1644	1919	1415
Yb174	2130	2218	2353	2781	2046
Th232	2349	2242	2486	2896	2195
U238	2257	2141	2005	2200	1657
Ni60	7	4	11	46	18

Values in ppm; \(\sigma\) = calculated from error propagation; \(n\) = number of measurements.
Table 5
Trace element concentration in quenched sulfide liquids and metal liquids.

Sulfide liquids

$P = 1.5$ GPa, $T = 1635 ^\circ C$

Run	663	664	665	666	667	
n	10	8	27	21	27	
Zr90	9	1	66	2	2	
La139	3	2	6	2	2	
Ce140	0.2	0.03	0.4	0.1	2	
Nd142	21	2	52	15	199	
Sm152	27	2	70	20	281	
Eu153	110	12	170	56	412	
Yb174	4	0.5	14	3	60	
Th232	1	0.4	8	2	77	
U238	78	4	242	59	1137	
Ni60	15,766	475	15,714	1063	12,694	1123

$P = 1.5$ GPa, $T = 2100 ^\circ C$

Run	699	700	701	
n	5	5	5	
Zr90	221	24	70	
La139	91	28	29	
Ce140	1	0.4	2	
Nd142	80	22	27	
Sm152	137	35	29	
Eu153	121	34	15	
Yb174	127	23	36	
Th232	102	32	169	
U238	238	57	477	
Ni60	2331	415	2383	868

Metallic liquids

$P = 1.5$ GPa, $T = 1650 ^\circ C$

Run	706	702	703	704
n	6	6	6	6
Zr90	0.08	0.04	0.04	0.05
La139	0.06	0.04	0.01	0.01
Ce140	0.03	0.03	0.01	0.01
Nd142	0.06	0.05	0.05	0.07
Sm152	0.10	0.07	0.05	0.05
Eu153	0.09	0.06	0.01	0.002
Yb174	0.07	0.04	0.03	0.02
Th232	0.07	0.03	0.004	0.001
U238	0.07	0.03	0.10	0.17
Ni60	52	1	52	1

$P = 1.5$ GPa, $T = 1650 ^\circ C$

Run	684	685
n	6	6
Zr90	1.1	1.0
La139	0.1	0.1
Ce140	0.1	0.1
Nd142	0.1	0.1
Sm152	0.3	0.4
Eu153	0.3	0.2
Yb174	0.1	0.1
Th232	0.1	0.1
U238	0.4	0.4
Ni60	99	8

Values in ppm; $\sigma =$ calculated from error propagation; $n =$ number of measurements.
Run	663	664	665	666	667	668				
Zr90	0.003	0.000	0.018	0.006	0.119	0.012	0.202	0.048	0.241	0.034
La139	0.018	0.002	0.044	0.016	0.164	0.032	0.146	0.078	0.262	0.016
Ce140	0.027	0.005	0.061	0.018	0.203	0.041	0.180	0.072	0.332	0.036
Nd142	0.018	0.002	0.044	0.013	0.171	0.030	0.163	0.060	0.283	0.015
Sm152	0.014	0.001	0.037	0.010	0.147	0.023	0.144	0.016	0.249	0.015
Eu153	0.068	0.008	0.105	0.035	0.251	0.049	0.234	0.078	0.328	0.019
Yb174	0.002	0.000	0.006	0.001	0.025	0.002	0.050	0.028	0.040	0.006
Th232	0.001	0.000	0.003	0.001	0.031	0.005	0.032	0.014	0.070	0.004
U238	0.035	0.002	0.113	0.028	0.567	0.078	0.483	0.168	1.036	0.060
Ni60	2182	1350	1429	1343	275	133	493	127	149	154

Metallic liquids

Run	699	697	700	701	702	703	704	
Zr90	0.304	0.033	0.614	0.105	1.233	0.125	0.011	0.003
La139	0.202	0.061	0.327	0.056	0.394	0.166	0.010	0.003
Ce140	0.193	0.059	0.391	0.066	0.500	0.258	0.000	/
Nd142	0.235	0.066	0.380	0.057	0.481	0.189	0.010	0.003
Sm152	0.245	0.063	0.379	0.047	0.475	0.186	0.010	0.004
Eu153	0.229	0.065	0.216	0.025	0.219	0.112	0.019	0.004
Yb174	0.168	0.030	0.222	0.044	0.333	0.103	0.005	0.002
Th232	0.125	0.040	0.195	0.035	0.341	0.114	0.005	0.002
U238	0.441	0.107	0.942	0.106	1.417	0.326	0.046	0.005
Ni60	286	241	150	146	45	39	323	180

Notes

- **Sulfide liquids**
 - \(P = 1.5 \text{ GPa}, \ T = 1635 \text{ °C} \)
 - Run 663, 664, 665, 666, 667
 - **Metallic liquids**
 - \(P = 1.5 \text{ GPa}, \ T = 1650 \text{ °C} \)
 - Run 699, 697, 700, 701

\(\sigma \) = calculated from error propagation.
of this at the beginning and end of each sequence of 10–15 unknowns. BCR-2G standard was used as a secondary standard to check the accuracy of the calibration (supplementary Table 1). Ablation yields were corrected by referencing to the known concentrations of Si and Ca (silicate glass) and Fe (sulfides and metals), which had been determined by microprobe. Data reduction was performed offline using the Glitter 4.4.3 software package, which enabled us to identify occasional metal inclusions in the silicate analyses. Since the Fe content of the NIST610 standard is

Fig. 1. Backscattered-electron (BSE) photomicrographs of representative experiments at 1.5 GPa. (A) shows an experimental charge (#700) at 2100 °C, where ~21% FeSi₂ was added to the starting mix, yielding a separate Fe-Si-liquid “surrounded by a sulfide rim embedded in homogeneous silicate glass. (B) Experiment #663 at 1635 °C shows a sulfide “blob” in silicate glass. (C) Experiment #702 shows a “blob” of metallic liquid at 1650 °C in silicate glass containing elongated quench crystals.
only 460 ppm, the background is high and the matrices are very different, cross-checks on the sulfide and metal analyses were required. Wohlers and Wood (2015) used Ni as a second internal standard on the microprobe and Laser Ablation ICP-MS, and observed no offset in apparent Ni concentration between microprobe and Laser Ablation-ICP-MS analyses. Additionally, the U and Sm contents of three experimental quenched liquid sulfides were measured by both electron microprobe and Laser Ablation-ICP-MS (Wohlers and Wood, 2015). Electron microprobe data for the three samples yielded U contents of 3280 ± 490 ppm, 1164 ± 224 ppm and 991 ± 69 ppm, results which are in very good agreement with the Laser Ablation-ICP-MS values of 2960, 951 and 927 ppm respectively. Corresponding microprobe data for Sm are 707 ± 110 ppm, 319 ± 87 ppm and 277 ± 38 ppm, also in excellent agreement with the Laser Ablation-ICP-MS results of 719, 326 and 300 ppm respectively. Given this agreement we consider that there should be no systematic bias in our analyses of the S-rich metals for U, Th and the REE.

3. RESULTS

We begin by considering partitioning of trace elements between silicate and a metallic phase which is close in composition to FeS, stoichiometric iron sulfide. Although partitioning of elements between silicate and sulfide depends on the ratio of oxygen fugacity to sulfur fugacity, neither of these variables can be explicitly determined for our experiments. For this reason it is necessary that we redefine partitioning in terms of an exchange reaction with Fe, which simplifies theoretical treatment (Kiseeva and Wood, 2013). In the case of U (IV) the appropriate reaction is:

\[
\text{UO}_2 + 2\text{FeS} = 2\text{FeO} + \text{US}_2
\]

Silicate sulfide silicate sulfide

The equilibrium constant for reaction (1) may be defined as follows in terms of the activities (a_i) of the 4 components:

\[
K_1 = \frac{a_{\text{US}_2}}{a_{\text{UO}_2} \cdot a_{\text{FeS}}}
\]

Following Kiseeva and Wood (2013) we assume that the ratio of activity of US_2 to UO_2 is approximately equal to the sulfide-silicate partition coefficient for uranium:

\[
D_U = \frac{[\text{U}]}{[\text{U}]}_{\text{sulfide}} \approx \frac{a_{\text{US}_2}}{a_{\text{UO}_2}}
\]

Making this substitution into (2), taking logarithms and assuming that the sulfide is close to pure FeS (a_{FeS} = 1) we obtain, following Kiseeva and Wood (2013):

\[
\log D_U \approx A - 2 \log[\text{FeO}]
\]

In Eq. (4) constant A is related to the equilibrium constant while [FeO] refers to the concentration of FeO in the silicate in appropriate units. The important point is that the uranium partition coefficient should increase as the FeO content of the silicate melt decreases. For this reason we plot, in Fig. 2, logD_U versus the logarithm of the FeO content of the silicate melt in weight percent.

Fig. 2 shows data collected in this study together with those of Wohlers and Wood (2015). As can be seen, and as predicted, D_U is highest at the lowest values of FeO in the silicate melt and decreases with increasing FeO. This trend continues up to FeO concentrations in the silicate of about 3%, then flattens to a minimum and starts to increase with increasing FeO. The increase arises from the increasing oxygen content of the sulfide and the fact that lithophile U tends to follow oxygen (Wood and Kiseeva, 2015) into the sulfide as FeS starts to absorb FeO from the silicate.

Fig. 2 shows that the general features of the plot of logD_U versus log[FeO] described by Wohlers and Wood (2015) apply at all temperatures between 1400 °C and 2100 °C. The temperature effect on uranium partitioning appears to be negligible in this temperature range, the most important feature being that U partition coefficients exceed 10 at the lowest FeO concentrations investigated.

Fig. 3 shows the ratio D_{Th}/D_U for our sulfide-silicate partitioning data. As can be seen, lower temperature data, from experiments at 1400–1650 °C indicate D_{Th}/D_U of the order of 0.1 in the region where D_U is high. Experiments at higher temperature (2100 °C) indicate much stronger partitioning of Th into the sulfide, with D_{Th}/D_U of the order of 0.3 in the low FeO region. This result is important because segregation of sulfide from silicate at low FeO concentration would raise the Th/U of the residual silicate Earth and estimates of the latter place constraints on how plausible and significant the sulfide segregation process may have been in the early Earth. Raising D_{Th}/D_U lowers the impact of sulfide segregation on the Th/U ratio of silicate Earth which means that greater amounts of sulfide removal to the core would be permissible. We deal with quantitative estimates of the effect later in the study.

In order to consider the potential 142Nd anomaly in BSE which would be generated by sulfide segregation to the core under reducing (low FeO) conditions, we require measurements of the sulfide-silicate partition coefficients D_Sm and D_Nd. Fig. 4 shows the ratio D_U/D_Sm measured experimentally. As can be seen, there is excellent consistency between the results at different temperatures and the ratio D_U/D_Sm is in the range 2.5–10 in the low FeO region. This means that D_Sm values of the order of 1–3 (Table 6 and Wohlers and Wood, 2015) would be plausible under conditions of sulfide segregation at low FeO content of the silicate. Fig. 5 shows the D_Nd/D_Sm ratio for the same experiments. At 1400 °C, D_Nd is significantly greater than D_Sm with D_Nd/D_Sm ratios commonly in the range 1.3–1.5. As shown by Wohlers and Wood (2015), the greater compatibility of Nd in sulfide relative to Sm has the potential to lead to a 142Nd isotope anomaly in silicate Earth which is of the same order as that proposed by Boyet and Carlson (2005). In distinct contrast, however, are the results at 2100 °C. Under these conditions and in all our high temperature experiments D_Nd and D_Sm were found to be virtually identical. Thus, the high temperature conditions of high D_{Th}/D_U also correspond to D_Nd equal to D_Sm.
4. DISCUSSION

4.1. Implications of results for accretion of reduced S-rich bodies to early Earth

Fig. 6 shows 4 illustrative models of U content of the core and 142Nd anomaly of the mantle (relative to bulk Earth) based on our partitioning data at low temperature (6a,b) and at 2100 °C (6c,d). For these illustrative calculations we assumed that Earth incorporated a reduced body having the same S content as CI chondrite (5.25–6.25%) (Lodders and Fegley, 1998) which translates to 15–21% by mass of FeS depending on whether or not the H and C in CI chondrite had been lost. We took values of D_{Sm}...
of 1–3, consistent with the highest values we had measured (this study and Wohlers and Wood, 2015) and assumed that the Nd and Sm were added to the FeS core at the beginning of the solar system. The latter assumption yields the largest possible 142Nd anomaly. The 142Nd anomaly was calculated using a 146Sm half-life and $(^{146}$Sm$/^{144}$Sm)$_{\text{initial}}$ of 68 Myr and 0.0094 respectively (Kinoshita et al., 2012). If we use the alternative values of 103 Myr and 0.0085 (Boyet and Carlson, 2005) then the calculated 142Nd anomaly is 10% lower than that shown. Note that presence of an FeS liquid
core would not, consistent with the experiments discussed above, preclude the presence of an Fe-Si inner core. As can be seen (Fig. 6a), adding 25% of this FeS-rich body to the Earth with a single stage of instantaneous core-merging could, given the low temperature partitioning behaviour lead to 5–8 ppb of U in the core, Th/U of silicate Earth of 4.23–4.41 and a 142Nd anomaly in the mantle relative to bulk Earth of 6–10 ppm. The exact magnitude of the latter in the silicate Earth is subject to discussion, given the possibility of nucleosynthetic effects in meteorite parent bodies and a value of <5 ppm has recently been proposed (Burkhardt et al., 2016). An alternative view (Qin and Carlson, 2016) is of a higher 142Nd anomaly, closer to the original estimate (~20 ppm) even after correction for nucleosynthetic effects. For reference, a 142Nd anomaly of 20 ppm generated at the origin of the solar system corresponds to (147Sm/144Nd) of 0.209 and a current ε143Nd of +8.4, within the MORB range (Boyet and Carlson, 2005). Increasing the reduced body mass and sulfide content to 35% of total Earth Mass and 0.20 respectively (Fig. 6b) leads to 8–12 ppb U in the core, Th/U of silicate Earth of 4.54–4.76 and mantle 142Nd anomaly of 11–16 ppm relative to bulk Earth. For reference, a 142Nd anomaly of 20 ppm corresponds to 147Sm/144Nd of Fig. 6c and d show similar calculations performed using the partition coefficients appropriate for 2100 °C. In this case the virtually identical values of DSm and DNd mean that little or no 142Nd anomaly could be present in BSE. On the other hand, considerably greater amounts of U and Th could dissolve in the resultant core with much lower effect on the Th/U ratio.

Fig. 6. This figure shows the uranium content (ppb) and the mantle 142Nd anomaly (ppm) predicted from experimental results at low temperature (1400 °C) (6a,b) and at 2100 °C (6c,d). Fig 6a shows the calculated effect of adding a body of 20% Earth mass, containing 0.15 mass fraction sulfide to the growing earth. This yields 3.8 wt% sulfur in the core. DU/DSm was fixed at 5, DNd/DSm at 1.5 and DU/DT at 0.1, consistent with results at 1400 °C. b) is using the same values as in a), except adding a reduced body of 35% of the Earth mass, with 0.2 mass fraction sulfide, corresponding to 7% S in the core. c) and d) using the same mass fractions of reduced body as in a) and b), but with DU/DSm fixed at 3, DNd/DSm at 1 and DU/DT of 0.3, consistent with our results at 2100 °C.
of silicate Earth because D_{Th}/D_{U} is much higher than at 1400°C. Thus, for example, dissolution of 10 ppb of U in the core would be accompanied by 21 ppb of Th and Th/U of silicate Earth would be 4.3, within the range of some estimates (Tatsumoto, 1978; Allegre et al., 1986). The estimated U and Th contents of the core would lead to 3 TW, sufficient to provide a large proportion of the energy required for the geodynamo (Murrell and Burnett, 1986; Wohlers and Wood, 2015) without taking account of 40K as a potential additional energy source (Murthy et al., 2003; Nimmo et al., 2004). Note that the scenarios shown in Fig. 6 refer to a terrestrial core containing between 3.8 and 7.0 wt% S. The concentration of cosmochemically abundant volatile S in the core is unknown, but recent suggestions range from a cosmochemical estimate of 1.7 wt% (Dreibus and Palme, 1996) to 6 wt% (Morard et al., 2013) from liquid metal density measurements and 14.7 wt% (Seagle et al., 2006) from high temperature-high pressure equation of state measurements.

4.2. Effect of metal composition on partitioning behaviour

In the previous section, we demonstrated that U, Nd, Sm and other lithophile elements would partition strongly into a FeS-rich planetary core under conditions where the FeO content of the coexisting silicate liquid is very low. This behaviour would have, as shown in Fig. 6, the potential to establish significant concentrations of U and Th in the core and to generate an appreciable 142Nd anomaly in the coexisting silicate mantle. Since S is less abundant in the solar system than Fe, however, and is more volatile than Fe we expect that planetary cores generally have an excess of Fe over S. We therefore wished to consider whether the strong partitioning of lithophile elements into sulfide also applies to metallic alloys with Fe/S > 1.

We performed experiments at 1635°C and 1.5 GPa (Table 1) in which the FeS was mixed with Fe and FeSi$_2$ in an attempt to generate silicate melts with low FeO content coexisting with metals of variable S/(S + Fe). Partitioning of all the lithophile elements into the metallic phase was observed to decline rapidly with decreasing S content of the latter. In order to represent the data (Fig. 7), we considered partitioning in terms of an exchange reaction analogous to reaction (1):

$$UO_2 + 2Fe = U + 2FeO$$

silicate metal metal silicate

For which the equilibrium constant is:

$$K_1 = \frac{a_{FeO} \cdot a_U}{a_{Fe} \cdot a_{UO_2}}$$

Equating, as before, activity with concentration this should simplify to:

$$K''_{1} \approx \frac{D_{U}}{D_{Fe}}$$

where D_{U} and D_{Fe} refer to the metal-silicate partition coefficients of U and Fe, respectively.

Fig. 7 shows a plot of $\log K''_{1}$ versus the S/(S + Fe) ratio of the metal showing our data and those of Wheeler et al. (2006) and Bouhifd et al. (2013). Note that the previous results from pressures of 2–20 GPa, and ours (1.5 GPa) are broadly consistent with one another. We see no systematic effects of pressure on partitioning which indicates that the latter are less important than compositional effects. As can be seen, the partition coefficients for U drop by 3 orders
of magnitude as the S/(S + Fe) decreases from ~0.5 to 0. Similar decreases are observed for D_{Si} (from 0.48 to 0.01), Nd, Eu, Tb and all the other lithophile elements we have investigated here. These observations demonstrate that the strong partitioning of lithophile elements into the metallic phase is confined to metals close in composition to stoichiometric sulfide.

4.3. Effects of FeO concentration on lithophile element partitioning

We turn now to a quantitative explanation for the U-shaped nature of the curve of $\log D_U$ versus $\log [FeO]$ in Fig. 2. This type of behavior has been observed for a number of strongly lithophile elements including Ti, Ce, Nb and Ta (Wood and Kiseeva, 2013) and U, Sm and Nd (Wohlers and Wood, 2015). From Eq. (4), we anticipate a slope of -2 on our plot of $\log D_U$ versus $\log [FeO]$. As can be seen from Fig. 2, however, the theoretical slope only applies to a small range of FeO contents. The deviations imply that there are strong nonidealities of either sulfide and/or silicate liquids and that these nonidealities are correlated with the FeO content of the silicate melt. We deal with potential nonidealities of sulfide and silicate in turn.

The sulfide liquid in equilibrium with FeO-bearing silicate melt has a certain fraction of its S replaced by oxygen. Kiseeva and Wood (2013, 2015) showed that, at 1.5 GPa and temperatures of 1300 °C to 1500 °C, there is an excellent correlation between the FeO content of the silicate liquid and the oxygen content in the sulfide, empirically expressed as:

$$O (wt\%) \text{ sulfide} \approx 0.24 \text{FeO (wt\%)} \text{silicate}$$

(8)

Taking account of the differences in atomic weight, this correlation can also be expressed in terms of approximately equal weight percentages of FeO in both phases:

$$[\text{FeO}] \text{ (sulf)} \text{ wt\%} \sim [\text{FeO}] \text{ (silicate) wt\%}.$$

Kiseeva and Wood (2015) showed that, as the FeO contents of sulfide and silicate increase beyond 10 wt\%, there are increases in the sulfide-silicate partition coefficients of strongly lithophile elements (Mn, Ti, Ce etc) and decreases in the partition coefficients of strongly chalcophile elements such as Ni and Cu. This behavior was attributed to a tendency of lithophile elements to “follow” oxygen into the sulfide and of chalcophile elements to be progressively repelled by the increasing oxygen content of the sulfide. Kiseeva and Wood (2015) parameterized the effect of oxygen in the sulfide on the partitioning between silicate and sulfide by using the epsilon-model of non-ideal interaction in metallic liquids (Wagner, 1962; Ma, 2001). Although not specifically developed for sulfides, Wood and Kiseeva (2015) showed that this simple model reproduces the trace element partitioning with a single “oxygen parameter” in most cases. The principle is that there are interactions between the sulfide component of metal M (MS_n/2) and the FeS and FeO components of the sulfide. If these interactions are different, there will be at least one term in the partitioning expression which arises from the differences in activity coefficients of MS_n/2 dissolved in FeO-rich and in FeO-poor sulfide. In the simplest case a single interaction parameter should approximate the observed effect (Wood and Kiseeva, 2015):

$$\log D_M \approx A - \frac{n}{2} \log [\text{FeO}]_{\text{sil}} + \epsilon_{\text{FeO}\text{ sil}} \log(1 - x_{\text{FeO}}^{\text{sil}})$$

(9)

In Eq. (9) the interaction parameter $\epsilon_{\text{FeO}\text{ sil}}$ takes account of the metal-oxygen interaction in the sulfide and $x_{\text{FeO}}^{\text{sil}}$ to the mole fraction of FeO in the sulfide. We fit the partition coefficient data for U, Sm and Eu in the temperature range from 1400 °C to 1500 °C to Eq. (9) assuming oxidation states of +4, +3 and 2 for U, Sm and Eu respectively. The data for each element were fitted to the equation using the stepwise linear regression model of the SPSS statistic package. Fig. 8 shows that the model of Eq. (9) evolves from the straight line of Eq. (4) to a U-shaped curve and that these 3 elements fit the model reasonably well at high FeO contents. The approach of Eq. (9) does not, however, yield the high partition coefficients at very low FeO conditions ($\log [\text{FeO}]_{\text{sil}} < 0$) as observed by Wöhlers and Wood (2015) and in this study.

When considering the additional effects which might explain the strong upward curvature in $\log D_U$ at low FeO content, we discounted any effect of the sulfide liquid. This is because the latter only have small excesses of Fe over the “ideal” FeS stoichiometry. The more plausible effect is one involving sulfur in the silicate melt. At low FeO contents (<1 wt\%) the S content of the silicate melt rises rapidly, reaching values of ~11 wt\% at 2100 °C. Similar dramatic increases in S solubility at low FeO contents and strongly reducing conditions have been observed previously (Kilburn and Wood, 1997; McCoy et al., 1999; Rose-Weston et al., 2009; Zolotov et al., 2013; Malavergne et al., 2014). It is well known that there is a strong interaction between S and FeO dissolved in silicate melt (O’Neill and Mavrogenes, 2002) and we began with the hypothesis that it is this S-FeO interaction which causes the pronounced increases in D_U at low FeO and high S concentrations.

O’Neill and Mavrogenes (2002) measured the solubility of sulfur in silicate melt at 1 atm and 1400 °C as a function of the ratio f_{O_2}/f_{S_2}. They parameterized their results in terms of the compositional dependence of C_S, the “sulfide capacity” of the melt as follows:

$$\ln[C_S] = A_0 + \sum_i X_i A_i$$

(10)

where A_0 and A_i are constants and X_i are the molecular fractions of the oxide components i in the silicate melt on a single cation basis i.e SiO_2, Al_2O_3, FeO etc. The coefficient A_{Fe} was found to be large and positive (+26) for all of the fitting procedures they adopted. As such, the FeO content of the silicate melt has the largest positive influence on sulfur solubility, with the implication being that addition of FeO lowers the activity coefficient of S in the silicate melt. An obvious corollary of this observation should be that high S contents of the silicate melt lower the activity coefficient of FeO. Consider the exchange reaction for U:

$$\text{UO}_2 + 2\text{FeS} = 2\text{FeO} + \text{US}_2$$

(11)
Le Chatelier’s principle requires that, if we lower the activity of FeO, by lowering its activity coefficient, then the equilibrium will be displaced to the right, favoring entry of U into the sulfide and hence increasing DU. This is what we observe (Fig. 7). In our original derivation of the dependence of DU on FeO content, we explicitly assumed that the activity coefficient of FeO is constant, however, enabling us to replace FeO activity by concentration:

$$\log D_U \approx A - 2 \log[\text{FeO}]$$

We therefore need to take account of S-FeO interactions in the silicate melt which act to increase DI for lithophile elements. This is most readily done by extending the model which we have applied to the sulfide liquid (Eq. (9)) to S-FeO interactions in the silicate liquid. Assuming that the S-FeO term is only significant when FeO is present in the melt in trace quantities, this approach (Ma, 2001) leads to the following expression:

$$\log D_M \approx A - n \frac{\log[\text{FeO}]_{\text{sil}}} {2} \log(1 - x_{\text{FeO}^{4+}}) + \frac{n}{2} e_{\text{SFeO}_{\text{sil}}} \log(1 - x_{\text{S}^{2-}})$$

In Eq. (12) the parameters A, n, $e_{\text{SFeO}_{\text{sil}}}$ and $x_{\text{FeO}^{4+}}$ correspond those in Eq. (9) while $x_{\text{FeO}^{4+}}$ refers to the S-FeO interaction parameter for the silicate and $x_{\text{S}^{2-}}$ to the anion ratio S/(S + O) of the silicate melt. Partition coefficient data for each element were fitted to Eq. (12) using the stepwise linear regression model of the SPSS statistical package by assuming that the REE, except Eu$^{2+}$ are oxidation state +3 and U, Th and Zr are in the +4 state.

As can be seen from Fig. 9, the additional parameter $e_{\text{SFeO}_{\text{sil}}}$ correctly reproduces the strong upward curvature of $\log D_M$ at very low values of $\log[\text{FeO}]$. Our best fit values of $e_{\text{SFeO}_{\text{sil}}}$ are negative and of similar order for all the elements studied except Eu and Ni (Table 7). The agreement is of the correct sign and order to confirm our hypothesis that the upward curvature is due to strong decrease of the FeO activity coefficient as S concentration increases. It implies a decline of $\gamma_{\text{FeO}^{4+}}$ from just over 1.0 to about 0.05 at the highest S contents of silicate melt measured here. Qualitatively, we would anticipate an increase in apparent $e_{\text{SFeO}_{\text{sil}}}$ with decreasing lithophile and increasing chalcophile nature of the trace element substituent. This is what we observe for Eu$^{2+}$, a nominally lithophile element which forms the very
stable sulfide EuS. Confirmation is provided by the fitted \(\xi_{\text{FeO}} \) for Ni\(^{2+}\) which is large and of opposite sign to that for all the other elements. This means that, as generally expected, Ni is more chalcophile than Fe and that the activity coefficient of NiO in the silicate decreases more strongly with increasing S than does that of FeO. Thus, counterintuitively, it appears that the more lithophile a trace element the more strongly it partitions into sulfide at low FeO content of the silicate melt. This is because the FeO activity coefficient in the silicate melt decreases with increasing S content of the melt. Conversely, chalcophile elements partition less strongly into the sulfide at low FeO contents because the increasing S content of the silicate melt “pulls” them back into the silicate (Wood and Kiseeva, 2015).

5. CONCLUSIONS

We have confirmed our earlier observations (Wohlers and Wood, 2015) that the lithophile elements U, Sm and Nd partition strongly into sulfide relative to silicate when the FeO concentration in the latter is below 1 wt%. Under conditions of FeO < 0.50% \(D_U \) (sulfide/silicate partition coefficient) approaches 15.3 at 1400 °C and 1.5 GPa while \(D_{\text{Sm}} \) is \(\sim 2 \). The partition coefficient for uranium, \(D_U \) and the ratio \(D_U/D_{\text{Sm}} \) are relatively insensitive to temperature, at fixed FeO content of the silicate, over the temperature range 1400–2100 °C. In contrast, Th becomes relatively more chalcophile with \(D_{\text{Tl}}/D_a \) increasing from \(\sim 0.1 \) to \(\sim 0.3 \) over this temperature interval. Measurements of rare earth element partitioning demonstrate that \(D_{\text{Nd}}/D_{\text{Sm}} \) decreases with increasing temperature from \(\sim 1.4 \) at 1400 °C and 1.5 GPa to \(\sim 1.0 \) at 2100 °C.

Fig. 9. shows logDM values for U, Sm and Eu as functions of FeO content of silicate liquid at 1.5 GPa and 1400–1500 °C. The grey curves refer to the fits to Eq. (9), as shown in Fig. 8. The red curves correspond to the calculated fits to Eq. (12), Comparison of measured logDM values and predicted fits (Eq. (12)) shows that the partitioning of U, Sm and Eu can be described by considering both the effects of oxygen solubility in sulfide and sulfur solubility in silicate liquid.
The pronounced increase of lithophile element partition coefficients into sulfide at low FeO content is, we believe, most likely due to the coupling between the activity coefficients of S and FeO in the silicate melt. At low FeO concentrations the S contents of the silicate in equilibrium with sulfide liquid rise dramatically with values of \(\sim 1 \) wt% S being reached at FeO concentration of 0.75. Under these conditions the activity coefficient of FeO may decrease from a value of \(\sim 1.5 \) to \(\sim 0.05 \). This effect drives all lithophile elements into the coexisting sulfide, as can be shown from Le Chatelier’s principle. We modeled the effect of S on FeO activity by extending the Kiseeva and Wood (2013) model of partitioning into sulfide liquid as follows:

\[
\log D_{\text{M}} \approx A - \frac{n}{2} \log [\text{FeO}]_{\text{sil}} + S_{\text{FeO}}^{M} \log (1 - x_{\text{FeO}}^{M}) + \frac{n}{2} S_{\text{FeO}}^{S} \log (1 - x_{\text{FeO}}^{S})
\]

(12)

Thus, sulfide-silicate partition coefficient \(D_{\text{M}} \) (for element M) depends on the FeO content of the silicate \([\text{FeO}]\), the valency of the element \(n \) and two interaction parameters \(S_{\text{FeO}}^{M} \) and \(S_{\text{FeO}}^{S} \). The former refers to the interaction between M and oxygen in the sulfide and is only significant at FeO contents of the sulfide in excess of 1 wt%. The second parameter \(S_{\text{FeO}}^{S} \) refers to the S-FeO interaction parameter for the silicate and \(x_{\text{FeO}}^{S} \) to the anion ratio S/(S + O) of the silicate melt. This parameter takes account of the reduction in FeO activity coefficient in the silicate melt as its sulfur content increases.

When these experimental data are considered in the context of a sulfur-rich but highly reduced (low FeO) body with affinities to the planet Mercury, it can be seen that segregation of a sulfide core could generally lead to the core having higher U/Th and Nd/Sm than the mantle. If such a reduced body had been incorporated into Earth early in solar system history it would have left silicate Earth with superchondritic Sm/Nd and Th/U ratios. In such a case the sulfide core of the body would add up to 10 ppb of U to Earth’s core, generating, when the accompanying 21 ppb Th is also considered, \(\sim 3 \) TW of the energy required for the geodynamo. In this case, the Th/U ratio of silicate Earth would approximate 4.3. Entry of U and Th into the core would be accompanied by a superchondritic Sm/Nd of silicate Earth, with corresponding small (<14 ppm) excesses of \(^{142}\text{Nd} \) occurring provided the sulfide formed in the first few million years of solar system history.

ACKNOWLEDGMENTS

This work was supported by the European Research Council grant number 267764 and the NERC grant NE/N003926/1.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2017.01.050.

REFERENCES

Allegre C. J., Dupre B. and Lewin E. (1986) Thorium uranium ratio of the Earth. Chem. Geol. 56, 219–227.

Bouhifd M. A., Andraault D., Bolfan-Casanova N., Hammouda T. and Devidal J. L. (2013) Metal-silicate partitioning of Pb and U: effects of metal composition on oxygen fugacity. Geochim. Cosmochim. Acta 114, 13–28.

Boyet M. and Carlson R. W. (2005) \(^{142}\text{Nd} \) evidence for early (~4.53Ga) global differentiation of the silicate Earth. Science 309, 576–581.

Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth’s mantle inferred from (SM)-S-146-Nd-142 systematics. Earth Planet. Sci. Lett. 250, 254–268.

Burkhardt C., Borg L. E., Brennecka G. A., Shollenberger Q. R., Dauphas N. and Kleine T. (2016) A nucleosynthetic origin for the Earth’s anomalous Nd-142 composition. Nature 537, 394–398.

Dreibus G. and Palme H. (1996) Geochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta 60, 1125–1130.

Kilburn M. R. and Wood B. J. (1997) Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–148.

Kinoshita N., Paul M., Kashiv Y., Collon P., Deibel C. M., DiGiovine B., Greene J. P., Henderson D. J., Jiang C. L., Marley S. T., Nakanishi T., Pardo R. C., Rehm K. E., Robertson D., Scott R., Schmitt C., Tang X. D., Vondraske R. and Yokoyama A. (2012) A Shorter Sm-146 Half-Life Measured and Implications for Sm-146-Nd-142 Chronology in the Solar System. Science 335, 1614–1617.

Kiseeva E. S. and Wood B. J. (2013) A simple model for chalcophile element partitioning between sulfide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 383, 68–81.

Kiseeva E. S. and Wood B. J. (2015) The effect on the composition and temperature on chalcophile and lithophile element partitioning into mafic magmas. Earth Planet. Sci. Lett. 424, 280–294.

Liu T. C. and Presnall D. C. (1990) Liquidus phase-relationships on the join Anorthite-Forsterite-Quartz at 20 Kbar with applications to basalt petrogenesis and igneous spharirine. Contrib. Mineral. Petrolog. 104, 735–742.

Lodders K. and Fegley B. J. (1998) The Planetary Scientist’s Companion. Oxford University Press, Oxford, UK.

Ma Z. (2001) Thermodynamic description for concentrated metallic solutions using interaction parameters. Metall. Mater. Trans. B 32, 87–103.

Malavergne V., Tarrida M., Combes R., Bureau H., Jones J. H. and Schwandt C. (2007) New high-pressure and high-temperature metal/silicate partitioning of U and Pb: implications for the cores of the Earth and Mars. Geochim. Cosmochim. Acta 71, 2637–2655.

Malavergne V., Cordier P., Righter K., Brunet F., Zanda B., Addad A., Smith T., Bureau H., Surblé S., Kaepaet C., Charon E. and Hewins R. H. (2014) How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett. 394, 186–197.

McCoy T. J., Dickinson T. L. and LoRgrén G. E. (1999) Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746.

Morard G., Siebert J., Andraault D., Guignot N., Garbarino G., Guyot F. and Antonangeli D. (2013) The Earth’s core composition from high pressure density measurements of liquid iron alloys. Earth Planet. Sci. Lett. 373, 169–178.
Murrell M. T. and Burnett D. S. (1986) Partitioning of K, U, and Th between sulfide and silicate liquids: implication for radioactive heating of planetary cores. *J. Geophys. Res.* 91(B8), 8126–8136.

Murthy V. R., Westrenen W. V. and Fei Y. (2003) Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. *Nature* 423, 163–165.

Nimmo F., Price G. D., Brodholt J. and Gubbins D. (2004) The influence of potassium on core and geodynamo evolution. *Geophys. J. Int.* 156(2), 363–376.

Nittler L. R., Starr R. D., Weider S. Z., McCoy T. J., Boynot W. V., Ebel D. S., Ernst C. M., Evans L. G., Goldsten J. O., Hamara D. K., Lawrence D. J., McNutt R. L., Schlemm C. E., Solomon S. C. and Sprague A. L. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. *Science* 333, 1847–1850.

O’Neill H. S. C. and Mavrogenes J. A. (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 degrees and 1 bar. *J. Petrol.* 43, 1049–1087.

Presnall D. C., Dixon S. A., Dixon J. R., Odonnell T. H., Brenner N. L., Schrock R. L. and Dycus D. W. (1978) Liquidus phase relations on join diopside–forsterite–anorthite from 1 am to 20 kbar – their bearing on generation and crystallization of basaltic magma. *Contrib. Mineral. Petrol.* 66, 203–220.

Qin L. P. and Carlson R. W. (2016) Nucleosynthetic isotope anomalies and their cosmochemical significance. *Geochem. J.* 50, 43–65.

Rose-Weston L., Brenan J. M., Fei Y. W., Secco R. A. and Frost D. J. (2009) Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation. *Geochim. Cosmochim. Acta* 73, 4598–4615.

Seagle C. T., Campbell A. J., Heinz D. L., Shen G. Y. and Prakapenka V. B. (2006) Thermal equation of state of Fe,S and implications for sulfur in Earth’s core. *J. Geophys. Res. Solar Earth* 111.

Smith D. E., Zuber M. T., Phillips R. J., Solomon S. C., Hauck S. A., Lemoine F. G., Mazarico E., Neumann E. A., Peale S. J., Margot J. L., Johnson C. L., Torrence M. H., Perry M. E., Rowlands D. D., Goossens S., Head J. W. and Taylor A. H. (2012) Gravity field and internal structure of Mercury from MESSENGER. *Science* 336, 214–217.

Tatsumoto M. (1978) Isotopic composition of lead in Oceanic Basalt and its implication to mantle evolution. *Earth Planet. Sci. Lett.* 38, 63–87.

Tuff J., Wood B. J. and Wade J. (2011) The effect of Si on metal-silicate partitioning of siderophile elements and implications for the conditions of core formation. *Geochim. Cosmochim. Acta* 75, 673–690.

Wagner C. (1962) *Thermodynamics of Alloys*. Addison-Wesley, Reading, MA.

Wheeler K. T., Walker D., Fei Y., Minarik W. G. and McDonough W. F. (2006) Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: implications for radioactivity in the Earth core. *Geochim. Cosmochim. Acta* 70, 1537–1547.

Wohlers A. and Wood B. J. (2015) A Mercury-like component of early Earth yield uranium in the core and high mantle Nd142. *Nature* 520, 337–340.

Wood B. J. and Kiseeva E. S. (2015) The trace element partitioning into sulfide: how lithophile elements become chalcophile and vice versa. *Am. Mineral.* 100, 2371–2379.

Zhang Z. and Hirschmann M. (2016) Experimental constrains on mantle sulfide melting up to 8 GPa. *Am. Mineral.* 101, 181–192.

Zolotov M. Y., Sprague A. L., Hauck S. A., Nittler L. R., Solomon S. C. and Weider S. Z. (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. *J. Geophys. Res. Planet.* 118, 138–146.

Associate editor: Marc Norman