Constraints on key $^{17}\text{O}(\alpha,\gamma)^{21}\text{Ne}$ resonances and impact on the weak s process

M. Williams, A.M. Laird, A. Choplin, P. Adsley, B. Davids, U. Greife, K. Hudson, D. Hutcheon, A. Lennarz and C. Ruiz

1TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
2Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
3Institut d'Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Brussels, Belgium
4Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
5Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA
6Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
7Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
8Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada

This work has been published, M. Williams et al., Phys. Rev. C 105, 065805 (2022).

![MCP-DSSD time-of-flight against DSSD energy for one resonance in $^{17}\text{O}(\alpha,\gamma)$](image)

Fig. 1. MCP-DSSD time-of-flight against DSSD energy for one resonance in $^{17}\text{O}(\alpha,\gamma)$. The red circles show coincidence events within the separator time-of-flight window. The black line is the graphical cut around the ^{21}Ne recoils. The colour plot are all of the events.
Fig. 2. s-process yields with various $^{17}\text{O}(a,g)$ and $^{17}\text{O}(a,n)$ reaction rates. The median, lower and upper curves show the s-process yields from the $^{17}\text{O}(a,g)$ reaction rates from the present works. The Full Stellar Model curves show the reaction rate using the $^{17}\text{O}(a,g)$ rate from Best et al.1 or the Best rate divided by a factor of ten.