CHARACTERIZING CATEGORICALLY CLOSED COMMUTATIVE SEMIGROUPS

TARAS BANAKH, SERHII BARDYLA

Abstract. Let C be a class of T_1 topological semigroups which contains all zero-dimension al Hausdorff topological semigroups. A semigroup X is called C-closed if X is closed in each topological semigroup $Y \in C$ containing X as a discrete subsemigroup; X is projectively C-closed if for each congruence \approx on X the quotient semigroup X/\approx is C-closed. A semigroup X is called chain-finite if for any infinite set $I \subseteq X$ there are elements $x, y \in I$ such that $xy \notin \{x, y\}$. We prove that a semigroup X is C-closed if it admits a homomorphism $h : X \to E$ to a chain-finite semilattice E such that for every $e \in E$ the semigroup $h^{-1}(e)$ is C-closed. Applying this theorem, we prove that a commutative semigroup X is C-closed if and only if X is periodic, chain-finite, all subgroups of X are bounded, and for any infinite set $A \subseteq X$ the product AA is not a singleton. A commutative semigroup X is projectively C-closed if and only if X is chain-finite, all subgroups of X are bounded and the union $H(X)$ of all subgroups in X has finite complement $X \setminus H(X)$.

1. Introduction and Main Results

In many cases, completeness properties of various objects of General Topology or Topological Algebra can be characterized externally as closedness in ambient objects. For example, a metric space X is complete if and only if X is closed in any metric space containing X as a subspace. A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace. A topological group G is Raïkov complete if and only if it is closed in any topological group containing G as a subgroup.

On the other hand, for topological semigroups there are no reasonable notions of (inner) completeness. Nonetheless we can define many completeness properties of semigroups via their closedness in ambient topological semigroups.

A topological semigroup is a topological space X endowed with a continuous associative binary operation $X \times X \to X, (x, y) \mapsto xy$.

Definition 1.1. Let C be a class of topological semigroups.

A topological semigroup X is called C-closed if for any isomorphic topological embedding $h : X \to Y$ to a topological semigroup $Y \in C$ the image $h[X]$ is closed in Y.

A semigroup X is called C-closed if so is the topological semigroup X endowed with the discrete topology.

C-closed topological groups for various classes C were investigated by many authors including Arhangel’skii, Banakh, Choban, Dikranjan, Goto, Lukašć and Uspenskij [1, 2, 11, 14, 22, 26]. Closedness of commutative topological groups in the class of Hausdorff topological semigroups was investigated by Keyantuo and Y. Zelenyuk [20, 27]. Semigroup compactifications of locally compact commutative groups were investigated by Zelenyuk [28, 29]; C-closed topological semilattices were investigated by Gutik, Repovš, Stepp and the authors in [3, 4, 5, 6, 8, 9, 17, 18, 23, 24]. For more information about complete topological semilattices and pospaces we refer to the recent survey of the authors [7].

2020 Mathematics Subject Classification. 22A15, 20M14, 18B40.

Key words and phrases. C-closed semigroup, commutative semigroup, semilattice, group, chain-finite semigroup, periodic semigroup.

The second author was supported by the Austrian Science Fund FWF (Grant M 2967).
We shall be interested in the C-closedness for the classes:

- T_2S of Hausdorff topological semigroups;
- T_2S of zero-dimensional Hausdorff topological semigroups;
- T_1S of topological semigroups satisfying the separation axiom T_1.

Recall that a topological space is zero-dimensional if it has a base of the topology consisting of clopen (= closed-and-open) subsets. A topological space X satisfies the separation axiom T_1 if each finite subset is closed in X.

Since $T_2S \subseteq T_2S \subseteq T_1S$, for every semigroup we have the implications:

$$T_1S\text{-closed} \Rightarrow T_2S\text{-closed} \Rightarrow T_2S\text{-closed}.$$

From now on we assume that C is a class of topological semigroups such that

$$T_2S \subseteq C \subseteq T_1S.$$

Now we recall two known characterizations of C-closedness for semilattices and groups.

Let us mention that a semigroup X is called a semilattice if it is commutative and each element $x \in X$ is an idempotent, which means that $xx = x$. Each semilattice E carries a partial order \leq defined by $x \leq y$ if and only if $xy = x$. In this case $xy = \inf\{x, y\}$. Given two elements x, y of a semilattice we write $x < y$ if $x \leq y$ and $x \neq y$.

A subset C of a semigroup X is called a chain if $xy \in \{x, y\}$ for any elements $x, y \in C$. A subset C of a semilattice is a chain if and only if any elements $x, y \in C$ are comparable in the partial order \leq.

A semigroup X is called chain-finite if X contains no infinite chains. Observe that a commutative semigroup X is chain-finite if and only if its maximal semilattice $E(X) = \{x \in X : xx = x\}$ is chain-finite. Lemma 2.6 from [2] implies that a chain-finite semilattice S is down-complete with respect to the natural partial order \leq, that is every nonempty subset $A \subseteq S$ has the greatest lower bound $\inf A \in S$. In particular, every chain-finite nonempty semilattice contains the least element. Also every chain-finite semilattice contains a maximal element (which is not necessary the greatest element of the semilattice).

The following characterization of C-closed semilattices was proved in [3].

Theorem 1.2. A semilattice X is C-closed if and only if X is chain-finite.

A semigroup X is defined to be

- periodic if for every $x \in X$ there exists $n \in \mathbb{N}$ such that the power x^n is an idempotent;
- bounded if there exists $n \in \mathbb{N}$ such that for every $x \in X$ the power x^n is an idempotent.

It is clear that each bounded semigroup is periodic (but not vice versa).

The following characterization of C-closed commutative groups was obtained by the first author in [2].

Theorem 1.3. A commutative group X is C-closed if and only if X is bounded.

In this paper we characterize C-closed commutative semigroups.

Our principal tool for establishing the C-closedness is the following theorem.

Theorem 1.4. A semigroup X is C-closed if X admits a homomorphism $h : X \to E$ to a chain-finite semilattice E such that for every $e \in E$ the semigroup $h^{-1}(e)$ is C-closed.

Theorem 1.4 will be applied in the proof of the following theorem, which is one of the two main results of this paper.

Theorem 1.5. A commutative semigroup X is C-closed if and only if X is periodic, chain-finite, all subgroups of X are bounded, and for every infinite subset $A \subseteq X$ the set $AA = \{xy : x, y \in A\}$ is not a singleton.

Corollary 1.6. Each subsemigroup of a C-closed commutative semigroup is C-closed.
Remark 1.7. By [2, Proposition 10], the semidirect product $\mathbb{Z} \rtimes \{-1, 1\}$ (endowed with the binary operation $(x, i) \ast (y, j) = (x + i \cdot y, i \cdot j)$) is a C-closed group which is not bounded. This example shows that Theorem 1.3 and Corollary 1.6 can not be generalized to non-commutative semigroups.

Example 1.8. Take any infinite cardinal κ and endow it with the binary operation \ast defined by
$$x \ast y = \begin{cases} 1 & \text{if } x \neq y \text{ and } x, y \in \kappa \setminus \{0, 1\}; \\ 0 & \text{otherwise.} \end{cases}$$

The semigroup $X = (\kappa, \ast)$ was introduced by Taimanov [25]. Gutik [16] proved that the semigroup X is T_1-closed but the quotient semigroup X/I by the ideal $I = \{0, 1\}$ is not T_2S-closed.

Example 1.8 shows that the C-closedness is not preserved by taking quotient semigroups. This observation motivates introducing the definitions of ideally and projectively C-closed semigroups.

Let us recall that a congruence on a semigroup X is an equivalence relation \approx on X such that for any elements $x \approx y$ of X and any $a \in X$ we have $ax \approx ay$ and $xa \approx ya$. For any congruence \approx on a semigroup X, the quotient set X/\approx has a unique semigroup structure such that the quotient map $X \to X/\approx$ is a semigroup homomorphism. The semigroup X/\approx is called the quotient semigroup X by the congruence \approx.

A subset I of a semigroup X is called an ideal if $IX \cup XI \subseteq I$. Every ideal $I \subseteq X$ determines the congruence $(I \times I) \cup \{(x, y) : x = y\} \subseteq X \times X$. The quotient semigroup of X by this congruence is denoted by X/I and called the quotient semigroup of X by the ideal I. If $I = \emptyset$, then the quotient semigroup X/\emptyset can be identified with the semigroup X.

A semigroup X is called
- projectively C-closed if for any congruence \approx on X the quotient semigroup X/\approx is C-closed;
- ideally C-closed if for any ideal $I \subseteq X$ the quotient semigroup X/I is C-closed.

It is easy to see that for every semigroup the following implications hold:

$$\text{projectively } C\text{-closed} \Rightarrow \text{ideally } C\text{-closed} \Rightarrow C\text{-closed}.$$

For a semigroup X the union $H(X)$ of all subgroups of X is called the Clifford part of X. A semigroup X is called
- Clifford if $X = H(X)$;
- almost Clifford if $X \setminus H(X)$ is finite.

The second main result of this paper is the following characterization.

Theorem 1.9. For a commutative semigroup X the following conditions are equivalent:

1. X is projectively C-closed;
2. X is ideally C-closed;
3. the semigroup X is chain-finite, almost Clifford, and all subgroups of X are bounded.

We do not know whether the equivalence (1) \iff (2) in Theorem 1.9 remains true for any (semi)group, see Question 9.2.

Remark 1.10. Theorem 1.9 implies that the projective C-closedness of commutative semigroups is inherited by subsemigroups and quotient semigroups.

Theorems 1.5 and 1.9 will be proved in Sections 6 and 8 after a preliminary work made in Sections 2–5 and 7.

2. The Topological Semigroup of Filters on a Semigroup

In this section for every semigroup X we define the topological semigroup $\varphi(X)$ of filters on X, containing X as a dense discrete subsemigroup. This construction is our principal tool in the proofs of non-C-closedness of semigroups.
We recall that a filter on a set X is any family \mathcal{F} of nonempty subsets of X, which is closed under finite intersections and taking supersets in X. A filter \mathcal{F} is

- free if $\bigcap \mathcal{F} = \emptyset$;
- principal if $\{x\} \in \mathcal{F}$ for some $x \in X$.

A subfamily $\mathcal{B} \subseteq \mathcal{F}$ is called a base of a filter \mathcal{F} if $\mathcal{F} = \{ A \subseteq X : \exists B \in \mathcal{B} \ (B \subseteq A) \}$. By $\varphi(X)$ we denote the set of all filters on X. The set $\varphi(X)$ is partially ordered by the inclusion relation. Maximal elements of the partially ordered set $\varphi(X)$ are called ultrafilters. It is well-known that a filter \mathcal{F} on X is an ultrafilter if and only if for any partition $X = U \cup V$ of X either U or V belongs to \mathcal{F}. By $\beta(X) \subseteq \varphi(X)$ we denote the set of all ultrafilters on X.

Each point $x \in X$ will be identified with the principal ultrafilter $\mathcal{U}_x = \{ U \subseteq X : x \in U \} \in \beta(X) \subseteq \varphi(X)$. So, X can be identified with the subset of $\beta(X)$ consisting of all principal ultrafilters. Thus we get the chain of inclusions $X \subseteq \beta(X) \subseteq \varphi(X)$.

The set $\varphi(X)$ carries the canonical topology generated by the base consisting of the sets

$$\langle U \rangle = \{ U \in \varphi(X) : U \subseteq U \}$$

where $U \subseteq X$ runs over subsets of X. It can be shown that this topology satisfies the separation axiom T_0, i.e., for each distinct points $x, y \in \varphi(X)$ there exists an open set which contains precisely one of them. The set X of principal ultrafilters is dense in $\varphi(X)$ and for each $x \in X$ the singleton $\{ x \} = \{ F \in \varphi(X) : \{ x \} \in F \} = (\{ x \})$ is an open set in $\varphi(X)$. So, X is a dense discrete subspace of $\varphi(X)$. The subspace $\beta(X)$ of ultrafilters is compact, Hausdorff, zero-dimensional, and dense in $\varphi(X)$. Consequently, each subspace of $\beta(X)$ is zero-dimensional and Tychonoff.

If X is a (commutative) semigroup, then $\varphi(X)$ has a natural structure of a (commutative) topological semigroup: for any filters $U, V \in \varphi(X)$ their product UV is the filter generated by the base $\{ UV : U \in U, V \in V \}$, where $UV = \{ uv : u \in U, v \in V \}$. Every neighborhood of UV in $\varphi(X)$ contains a basic neighborhood $\langle UV \rangle$ for some $U \in U$ and $V \in V$. Then U and V are basic neighborhoods of the filters U, V in $\varphi(X)$ such that $\langle U \rangle \cdot \langle V \rangle \subseteq \langle UV \rangle$, which means that $\varphi(X)$ is a topological semigroup, containing X as a dense discrete subsemigroup. Observe that the product of two ultrafilters is not necessarily an ultrafilter, so $\beta(X)$ is not necessarily a subsemigroup of $\varphi(X)$.

3. Some properties of periodic semigroups

In this section we establish some properties of periodic semigroups. Let us recall that a semigroup S is periodic if for every $x \in S$ there exists $n \in \mathbb{N}$ such that x^n is an idempotent of S.

For a subset A of a semigroup S, let

$$\sqrt[n]{A} = \{ x \in X : \exists n \in \mathbb{N} \ (x^n \in A) \}.$$

For an element $e \in S$, the set $\sqrt[n]{e}$ will be denoted by $\sqrt[e]{\mathbb{N}}$. Observe that a semigroup S is periodic if and only if $S = \bigcup_{e \in E(S)} \sqrt[e]{\mathbb{N}}$, where $E(S) = \{ e \in S : ee = e \}$ is the set of idempotents of S.

For an element a of a semigroup S the set

$$H_a = \{ x \in S : (xS^1 = aS^1) \land (S^1x = S^1a) \}$$

is called the \mathcal{H}-class of a. Here $S^1 = S \cup \{ 1 \}$ where 1 is an element such that $1x = x = 1x$ for all $x \in S^1$. We shall assume that $x^0 = 1$ for every $x \in S^1$.

By Corollary 2.2.6 [19], for every idempotent $e \in E(S)$ its \mathcal{H}-class H_e coincides with the maximal subgroup of S, containing the idempotent e. The union

$$H(S) = \bigcup_{e \in E(S)} H_e$$

is the Clifford part of S.

For two subsets A, B of a semigroup S their product in S is defined as

$$A \cdot B = \{ ab : a \in A, b \in B \}.$$
The set $A \cdot B$ will be also denoted by AB.

Lemma 3.1. For any idempotent e of a semigroup S we have

$$(\sqrt{\Pi e} \cdot H_e) \cup (H_e \cdot \sqrt{\Pi e}) \subseteq H_e.$$

Proof. Fix any element $x \in \sqrt{\Pi e}$. First we prove that $xe \in H_e$. Since $x \in \sqrt{\Pi e}$, there exists $n \in \mathbb{N}$ such that $x^n \in H_e$ and hence $x^{2n} \in H_e$. Observe that $xeS^1 = xx^nS^1 \subseteq x^nS^1 = eS^1$ and $eS^1 = x^{2n-1}S^1 = xS^1$ and hence $xeS^1 = eS^1$. By analogy we can prove that $S^1xe = S^1e$. Then $xe \in H_e$ by the definition of the H-class H_e.

Now fix any element $y \in H_e$. Since H_e is a group with neutral element e, we obtain $xy = (xe)y \in H_eH_e = H_e$. By analogy we can prove that $yx \in H_e$.

Let S be a periodic semigroup. Then for any $x \in S$ there exists $n \in \mathbb{N}$ and idempotent $e \in S$ such that $e = x^n$. Assume that there exist $m \in \mathbb{N}$ and idempotent $f \in S$ such that $x^m = f$. Then $e = e^m = (x^n)^m = x^nm = (x^m)^n = f^n = f$ which implies that the monogenic subsemigroup $x^N = \{x^n : n \in \mathbb{N}\}$ of S contains a unique idempotent. This allows us to define a function $\pi : S \to E(S)$ assigning to each $x \in S$ the unique idempotent of the semigroup x^N.

If some element $x \in S$ belongs to a maximal subgroup $H_e \subseteq S$, then $\pi(x) \in x^N \subseteq H_e$ coincides with the unique idempotent e of the group H_e and hence $\pi[H_e] = \{e\}$. Therefore, $\pi[H(S)] = E(S) = \pi[S]$.

For a semigroup S let

$$Z(S) = \{z \in S : \forall x \in S \ (xz = zx)\}$$

be the center of S.

Proposition 3.2. If S is a periodic semigroup with $E(S) \subseteq Z(S)$, then $\pi : S \to E(S)$ is a homomorphism and $H(S)$ is a subsemigroup of S.

Proof. Since $E(S) \subseteq Z(S)$, the set $E(S)$ is a semilattice and hence $E(S)$ carries the partial order \leq defined by $x \leq y$ if and only if $xy = x$.

Claim 3.3. For any $x \in S$ and $y \in Z(S)$ we have $\pi(xy) = \pi(x)\pi(y)$.

Proof. Since S is periodic, there exist numbers $n, m \in \mathbb{N}$ such that $\pi(x) = x^n$ and $\pi(y) = y^m$. Since $xy = yx$, $(xy)^{nm} = x^{nm}y^{mn} = \pi(x)^n\pi(y)^m = \pi(x)\pi(y) \in E(S)$ and hence $\pi(xy) = \pi(x)\pi(y)$.

The following claim implies that $H(S)$ is a subsemigroup of S.

Claim 3.4. For any $x, y \in E(S)$ we have $H_xH_y \subseteq H_{xy}$.

Proof. Take any elements $a \in H_x$ and $b \in H_y$ and observe that since $x, y \in E(S) \subseteq Z(S)$ we have $abS^1 = ayS^1 = yaS^1 = yxS^1 = xyS^1$ and $S^1ab = S^1xb = S^1bx = S^1xy = S^1xy$ and hence $ab \in H_{xy}$.

Claim 3.5. For any $x, y \in S$ we have $\pi(x)\pi(y) \leq \pi(xy)$.

Proof. By Lemma 3.1, $x\pi(x) \in \sqrt{\Pi \pi(x)} \pi(x) \in H_{\pi(x)}$ and $y\pi(y) \in H_{\pi(y)}$. Then $xy\pi(x)\pi(y) = x\pi(x)y\pi(y) \in H_{\pi(x)\pi(y)} \subseteq H_{\pi(x)\pi(y)}$ according to Claim 3.2. Hence $\pi(xy\pi(x)\pi(y)) = \pi(x)\pi(y)$.

By Claim 3.3,

$$\pi(x)\pi(y) = \pi(x\pi(x)y\pi(y)) = \pi(xy\pi(x)\pi(y)) = \pi(xy\pi(x)\pi(y)),$$

which means that $\pi(x)\pi(y) \leq \pi(xy)$.

Claim 3.6. For any $x \in S$ and $y \in H(S)$ we have $\pi(xy) = \pi(x)\pi(y)$.

Proof. It follows from $y \in H(S)$ that $y \in H_{\pi(y)}$ and hence $y = y\pi(y)$. Let y^{-1} be the inverse element of y in the group $H_{\pi(y)}$. By Claims 3.5 and 3.3,

$$\pi(x)\pi(y) \leq \pi(xy) = \pi(xy\pi(y)) = \pi(xy\pi(y)) = \pi(xy\pi(y)) \leq \pi(xy^{-1}) = \pi(x\pi(y)) = \pi(x)\pi(y)$$

and hence $\pi(xy) = \pi(x)\pi(y)$.
Claim 3.7. For every \(x, y \in S \) we have \(\pi(xy) = \pi(yx) \).

Proof. Since \(S \) is periodic, there exists \(n \in \mathbb{N} \) such that \((xy)^n \) and \((yx)^n \) are idempotents. Taking into account that \(E(S) \subseteq Z(S) \), we conclude that
\[
(xy)^n = ((xy)^n)^{n+1} = ((xy)^{n+1})^n = (x(yx)^ny)^n = ((yx)^n(xy)^n = (yx)^n(xy)^n =
\]
and hence \(\pi(xy) = (xy)^n = (yx)^n = \pi(yx) \).

Claim 3.8. For every \(x, y \in S \) we have \(\pi(xy) = \pi(x)\pi(y) \).

Proof. By Claim 3.7, \(\pi(xy) = \pi(yx) \). Let \(e = \pi(xy) = \pi(yx) \). By Claim 3.5, \(\pi(x)\pi(y) \leq \pi(xy) = e \). Since \(S \) is periodic, there exists \(n \in \mathbb{N} \) such that \((xy)^n = e = (yx)^n \). Observe that \(xeS^1 = exS^1 \subseteq eS^1 \) and \(eS^1 = eeS^1 = (xy)^n eS^1 \subseteq xeS^1 \) and hence \(xeS^1 = eS^1 \). Similarly, \(S^1 xe \subseteq S^1 e \) and \(S^1 e = S^1 ee = S^1 e(xy)^n \subseteq S^1 e(xe)^n = S^1 xe \) and hence \(xe \in H_e \). By analogy we can prove that \(ye \in H_e \). By Claim 3.4 and the inequality \(\pi(x)\pi(y) \leq e \), we finally have
\[
\pi(x)\pi(y) = \pi(x)\pi(y)e = \pi(xe)\pi(ye) = \pi(xeye) = e = \pi(xy).
\]

4. Sufficient conditions of C-closedness

In this section we prove some sufficient conditions of the C-closedness of a semigroup. We start with the following lemma that implies Theorem 1.4 announced in the introduction.

Lemma 4.1. A subsemigroup \(X \) of a topological semigroup \(Y \) is closed in \(Y \) if \(X \) admits a continuous homomorphism \(h : X \to E \) to a chain-finite discrete topological semilattice \(E \) such that for every \(e \in E \) the set \(h^{-1}(e) \) is closed in \(Y \).

Proof. To derive a contradiction, assume that \(X \) is not closed in \(Y \). So, we can fix an element \(y \in \overline{X} \setminus X \subseteq Y \). Replacing \(Y \) by \(\overline{X} \), we can assume that \(X \) is dense in \(Y \).

Claim 4.2. If for some \(a \in X^1 \), \(e \in E \), and \(n \in \mathbb{N} \) we have \(ay^n \in h^{-1}(e) \), then \(ay \in h^{-1}(e) \).

Proof. Since \(h^{-1}(e) \) is an open subspace of \(X \), there exists an open subset \(W \subseteq Y \) such that \(W \cap X = h^{-1}(e) \). Assuming that \(ay^n \in h^{-1}(e) \subseteq W \), we can find a neighborhood \(V \subseteq Y \) of \(y \) such that \(aV^n \subseteq W \). Then for every \(v \in X \cap V \) we have \(h(a^p) = h(a^q) = h(a)h(v^n) = h(ay^n) = e \) and hence \(ay \in a(X \cap V) \subseteq a(X \cap V) \subseteq h^{-1}(e) = h^{-1}(e) \).

Claim 4.3. If \(ay \in h^{-1}(e) \) for some \(a \in X^1 \) and \(e \in E \), then the point \(y \) has a neighborhood \(U \subseteq Y \) such that \(aU \subseteq h^{-1}(e) \).

Proof. Since the set \(h^{-1}(e) \) is open in \(X \), there exists an open set \(W \) in \(X \) such that \(h^{-1}(e) = X \cap W \). Since \(ay \in h^{-1}(e) \subseteq W \), there exists a neighborhood \(U \subseteq Y \) of \(y \) such that \(aU \subseteq W \). Then \(a(U \cap X) \subseteq W \cap X = h^{-1}(e) \) and \(aU \subseteq a(U \cap X) \subseteq a(U \cap X) \subseteq h^{-1}(e) = h^{-1}(e) \).

Let \(\mathcal{T}_y \) be the family of all neighborhoods of \(y \) in \(Y \). In the semilattice \(E \) consider the subset
\[
E_y = \{ e \in E : \exists U \in \mathcal{T}_y \ h[X \cap U] \subseteq U \}, \quad \{ f \in E : e \leq f \}.
\]
The set \(E_y \) contains the smallest element of the chain-finite semilattice \(E \) and hence \(E_y \) is not empty. Let \(e \) be a maximal element of \(E_y \) (which exists, because \(E \) is chain-finite) and \(W \in \mathcal{T}_y \) be a neighborhood of \(y \) such that \(h[X \cap W] \subseteq U \).

By induction we shall construct a sequence \((v_n)_{n \in \omega} \) of points of \(W \cap X \) such that for every \(n \in \omega \) the following conditions are satisfied:
(1) $v_0 \cdots v_n y \notin h^{-1}(e) \cup h^{-1}(h(v_0 \cdots v_n))$;
(2) $e < h(v_0 \cdots v_{n+1}) < h(v_0 \cdots v_n)$.

To start the inductive construction, observe that Claim 1.2 implies $y^2 \notin h^{-1}(e)$, so we can find a neighborhood $V \subseteq W$ of y such that $V V \cap h^{-1}(e) = \emptyset$. Choose any element $v_0 \in V \cap X$ and observe that $v_0 y \in V V \subseteq Y \setminus h^{-1}(e)$. Taking into account that $h(v_0) = h(v_0 h v_0) = h(v_0 v_0) \in h[X \cap V V] \subseteq E \setminus \{e\}$ and $v_0 \in V \cap X \subseteq W \cap X \subseteq h^{-1}[\tau e]$, we conclude that $h(v_0) > e$.

We claim that $v_0 y \notin h^{-1}(h(v_0))$. Assuming that $v_0 y \in h^{-1}(h(v_0)) \subseteq X$, we can apply Claim 1.3 and find a neighborhood $U \subseteq V$ of y such that $v_0 U \subseteq h^{-1}(h(v_0))$. By the maximality of e, the set $h[X \cap U]$ is not contained in $h^{-1}[\tau h(v_0)]$, so we can find an element $u \in X \cap U$ such that $h(u) \notin \tau h(v_0)$. Then $h(v_0) \neq h(v_0) \cdot h(u) = h(v_0 u) = h(v_0)$, which is a desired contradiction.

Now assume that for some $n \in \mathbb{N}$ the points $v_0, \ldots, v_{n-1} \in W \cap X$ with $v_0 \cdots v_{n-1} y \notin h^{-1}(e) \cup h^{-1}(h(v_0 \cdots v_{n-1}))$ and $h(v_0 \cdots v_{n-1}) > e$ have been constructed. Claim 1.2 implies $v_0 \cdots v_{n-1} y^2 \notin h^{-1}(e) \cup h^{-1}(h(v_0 \cdots v_{n-1})).$

Since the semigroups $h^{-1}(e)$ and $h^{-1}(h(v_0 \cdots v_{n-1}))$ are closed in Y, we can find a neighborhood $V \subseteq W$ of y such that the set $v_0 \cdots v_{n-1} V V$ is disjoint with the closed set $h^{-1}(e) \cup h^{-1}(h(v_0 \cdots v_{n-1}))$. Choose any element $v_n \in V \cap X$. The choice of W guarantees that $v_n \in V \cap X \subseteq W \cap X$ and hence $h(v_n) \in h[W \cap X] \subseteq \tau e$ and $h(v_0 \cdots v_n) = h(v_0 \cdots v_{n-1}) \cdot h(v_n) \in \tau e \cdot \tau e = \tau e$. On the other hand, $v_0 \cdots v_{n-1} y \in v_0 \cdots v_{n-1} V V$ and hence $v_0 \cdots v_n y$ does not belong to the set $h^{-1}(e) \cup h^{-1}(h(v_0 \cdots v_{n-1}))$. Also the idempotent

$$h(v_0 \cdots v_n) = h(v_0 \cdots v_{n-1} y^2) \in h[X \cap v_0 \cdots v_{n-1} V V]$$

does not belong to the set $\{e\} \cup \{h(v_0 \cdots v_{n-1})\}$, which implies that $e < h(v_0 \cdots v_n) < h(v_0 \cdots v_{n-1})$.

Finally, we show that $v_0 \cdots v_n y \notin h^{-1}(h(v_0 \cdots v_n))$. Assuming the opposite and using Claim 1.3, we can find a neighborhood $U \subseteq W$ of y such that $v_0 \cdots v_n U \subseteq h^{-1}(h(v_0 \cdots v_n))$. Since $h(v_0 \cdots v_n) > e$, the maximality of the element e guarantees that $h[X \cap U] \not\subseteq \tau h(v_0, \ldots, v_n)$, so we can choose an element $u \in X \cap U \setminus h^{-1}[\tau h(v_0, \ldots, v_n)]$ and conclude that $h(v_0 \cdots v_n u) = h(v_0 \cdots v_n) h(u) < h(v_0 \cdots v_n)$, which contradicts $v_0 \cdots v_n u \in v_0 \cdots v_n U \subseteq h^{-1}(h(v_0 \cdots v_n))$. This contradiction completes the inductive step.

After completing the inductive construction, we obtain a strictly decreasing sequence $(h(v_0 \cdots v_n))_{n \in \omega}$ of idempotents in E, which is not possible as E is chain-finite.

Next we prove a sufficient condition of the C-closedness of a bounded semigroup.

Lemma 4.4. A bounded semigroup X is C-closed if $E(X)$ is a C-closed semigroup and for every infinite set $A \subseteq X$ the set AA is not a singleton.

Proof. Assuming that the semigroup X is not C-closed, we can find an isomorphic topological embedding $h : X \rightarrow Y$ of X endowed with the discrete topology to a topological semigroup $(Y, \tau) \in C \subseteq T_1 S$. By our assumption, the set $h[E(X)]$ is closed in Y, being a C-closed semigroup. Being discrete, the subspace $h[X]$ is open in its closure $\overline{h[X]}$. Identifying X with its image $h[X]$ and replacing Y by $\overline{h[X]}$, we conclude that X is a dense open discrete subsemigroup of a topological semigroup $Y \in T_1 S$ such that $E(X)$ is closed in Y.

Since X is bounded, there exists $n \in \mathbb{N}$ such that for every $x \in X$ the power x^n is an idempotent of X. Pick any point $a \in Y \setminus X$. Note that $a^n \in \{x^n : x \in X\} \subseteq E(X) = E(X)$. Let $e = a^n \in E(X)$.

By the continuity of the semigroup operation, the point a has a neighborhood $O_a \subseteq Y$ such that $O_a^n = \{e\}$. Let H_e be the maximal subgroup of Y, containing e. Then $X \cap H_e$ is the maximal subgroup of X containing e. For every $x \in O_a \cap X$ we get $x^n = e$ and hence $x^m \in X \cap H_e$ for all $m \geq n$ (see Lemma 3.1). We claim that for any $m \geq n$ the element a^m belongs to the semigroup X. Taking into account that $(a^m)^n = (a^n)^m = e^m = e$, we can find a neighborhood $U \subseteq Y$ of a^m such that $U^n = \{e\}$.

Next, find a neighborhood $V \subseteq O_a$ of a such that $V^m \subseteq U$. It follows that a^m is contained in the closure of the set $W := \{v^m : v \in V \cap X\} \subseteq X \cap H_e$. Assuming that $a^m \notin X$, we conclude that the
set $W \subseteq U \cap X \cap H_e$ is infinite. Since W is a subset of the group $X \cap H_e$, the product $W^n \subseteq U^n$ is infinite and cannot be equal to the singleton $U^n = \{e\}$. This contradiction shows that $a^m \in X$ for all $m \geq n$. Then there exists a number $k \in \omega$ such that $a^{2k} \notin X$ but $a^{2k+1} \in X$. By the continuity of the semigroup operation, the point $b = a^{2k}$ has a neighborhood $O_b \subseteq Y$ such that $O_b^2 = \{b^2\} \subseteq X$. Since $b \in \overline{X} \setminus X$, the set $A = O_b \cap X$ is infinite and $AA \subseteq O_b^2 = \{b\}$ is a singleton.

Finally we establish a sufficient condition of the C-closedness of a periodic commutative semigroup with a unique idempotent.

Lemma 4.5. A periodic commutative semigroup X with a unique idempotent e is T_1S-closed if the maximal subgroup H_e of X is bounded and for every infinite set $A \subseteq X$ the set AA is not a singleton.

Proof. Assume that the maximal subgroup H_e of X is bounded and for every infinite set $A \subseteq X$ the set AA is not a singleton. To derive a contradiction, assume that X is not T_1S-closed and hence X is a non-closed discrete subsunigroup of some topological semigroup $(Y, \tau) \in T_1S$. Replacing Y by the closure of X, we can assume that X is dense and hence open in Y.

Claim 4.6. The semigroup X is an ideal in Y.

Proof. Given any elements $x \in X$ and $y \in Y$, we should prove that $xy \in X$. Since X is periodic, there exists $n \in \mathbb{N}$ such that $x^n = e$. Consider the set $\sqrt[n]{H_e} = \{b \in X : b^n \in H_e\}$. We claim that $\sqrt[n]{H_e}$ is an ideal in X. Indeed, for any $b \in \sqrt[n]{H_e}$ and $z \in X$ we have $(bz)^n = b^n z^n \in H_e z^n \subseteq H_e$ as H_e is an ideal in X (see Lemma 3.1). Since the group H_e is bounded, the semigroup $\sqrt[E]{H_e}$ is bounded, too. By Lemma 4.4, the bounded semigroup $\sqrt[E]{H_e}$ is T_1S-closed and hence closed in Y.

Taking into account that $\sqrt[E]{H_e}$ is an ideal in X and $x \in \sqrt[E]{H_e}$, we conclude that $xY = xX \subseteq \sqrt[E]{H_e} \cdot X \subseteq \sqrt[E]{H_e} = \sqrt[E]{H_e} \subseteq X$.

Take any point $y \in Y \setminus X$ and consider its orbit $y^\mathbb{N} = \{y^n : n \in \mathbb{N}\}$.

Claim 4.7. $y^\mathbb{N} \cap X = \emptyset$.

Proof. To derive a contradiction, assume that $y^n \in X$ for some $n \in \mathbb{N}$. We can assume that n is the smallest number with this property. It follows that $n \geq 2$ and hence $2n-2 \geq n + (n-2) \geq n$. Then $y^{n-2} \notin X$ and $y^{2n-2} = y^n y^{n-2} \subseteq XY^1 \subseteq X$, because X is an ideal in Y. Since X is an open discrete subspace of the topological semigroup (Y, τ), there exists a neighborhood $U \subseteq \tau$ of y such that $U^{2n-2} = \{y^{2n-2}\}$. Consider the set $A = (U \cap X)^{n-1}$ and observe that $AA \subseteq U^{2n-2} = \{y^{2n-2}\}$ is a singleton. On the other hand, $y^{n-1} \in A \setminus X$ which implies that the set A is infinite. But the existence of such set A contradicts our assumptions.

By our assumption, the maximal subgroup H_e of X is bounded and hence there exists $p \in \mathbb{N}$ such that $x^p = e$ for every $x \in H_e$. Consider the subsemigroup $P = \{x^p : x \in X\}$ in the semigroup X. It follows from $y \in \overline{X}$ that the element y^p belongs to the closure of the set P in Y.

Claim 4.8. $Pe = \{e\}$.

Proof. Given any element $x \in P$, find an element $z \in X$ such that $x = z^p$. By Lemma 3.1, the subgroup H_e is an ideal in X, which implies $ze \in H_e$. The choice of p ensures that $xe = z^p e^p = (ze)^p = e$.

Claim 4.9. For any $x \in P$ there exists $n \in \mathbb{N}$ such that $x(y^p)^m = e$ for all $m \geq n$.

Proof. Since X is an ideal in Y we have $xy^p \in X$. Since X is an open discrete subspace of the topological semigroup (Y, τ), there exists a neighborhood $U \subseteq Y$ of y such that $xU^p = \{xy^p\}$. Choose any element $u \in U \cap X$ and observe that $xu^p = \{xy^p\}$. Let $V = \{v^p : v \in U \cap X\} \subseteq P$ and
observe that $xV = \{xu^p\}$. Then $xVV = xu^pV = u^pxV = u^pxu^p = xu^{2p}$. Proceeding by induction, we can show that $xV^n = xu^{np}$ for every $n \in \mathbb{N}$. Since the semigroup X is periodic, there exists $n \in \mathbb{N}$ such that $u^m = e$. Then for every $m \geq n$, we obtain

$$xV^m = xu^{mp} = xu^{np}u^{p(m-n)} \in xeP = \{e\}$$

by Claim 4.8. Then

$$x(y^p)^m \in xV^m \subseteq \overline{xV^m} = \{e\} = \{e\}.$$

Now we are able to finish the proof of Lemma 4.10. Inductively we shall construct sequences of points $(x_k)_{k \in \mathbb{N}}$ in X, positive integer numbers $(n_k)_{k \in \mathbb{N}}$, $(m_k)_{k \in \mathbb{N}}$ and open neighborhoods $(U_k)_{k \in \mathbb{N}}$ of y in Y such that for every $k \in \mathbb{N}$ the following conditions are satisfied:

(i) $x_k \in U_{k-1}$;

(ii) $x_k^{pm_k} \notin \{e\} \cup \{x_i^{pm_i} : i < k\}$, $x_k^{2pm_k} = e$, and $m_k > n_{k-1}$;

(iii) $x_k(y^p)^{n_k} = e$, $x_k^{U_k^{pm_k}} = \{e\}$, and $n_k > n_{k-1}$;

(iv) $y \in U_k \subseteq U_{k-1}$.

To start the inductive construction, choose any neighborhood $U_0 \subseteq Y$ of y such that $e \notin U_0^p$. Such neighborhood exists since $e \neq y^p$ by Claim 4.7. Also put $n_0 = 2$. Now assume that for some $k \in \mathbb{N}$ and all $i < k$ we have constructed a point x_i, a neighborhood U_i of y and two numbers n_i, m_i satisfying the inductive conditions. Since $y^N \cap X = \emptyset$, there exists a neighborhood $W \subseteq Y$ of y such that $e \notin W^l$ for any natural number $l \leq p(2+2k+k_{l-1})$. Choose any point $x_k \in U_{k-1} \cap W \cap X$. Then $e \neq x_k^l$ for any natural number $l \leq p(2+2k+k_{l-1})$. Since the semigroup X is periodic and has a unique idempotent e, there exists a number l_k such that $(x_k^l)^{l_k+1} = e$. We can assume that l_k is the smallest number with this property. Then $(x_k^p)^{l_k+1} \neq e$. The choice of the neighborhood $W \ni x_k$ ensures that $l_k > n_{k-1} + k + 1$.

Claim 4.10. The set $\{(x_k^p)^{l_k+1} : 0 \leq i \leq k\}$ has cardinality $k+1$.

Proof. Assuming that this set has cardinality smaller than $k+1$, we can find two numbers i, j such that $l_k \leq i < j \leq l_k + k$ and $x_k^{pa} = x_k^{pj}$. The equality $x_k^{pi} = x_k^{pj} = x_k^{pa}x_k^{p(j-i)}$ implies $x_k^{pi} = x_k^{pj}x_k^{np(j-i)}$ for all $n \in \mathbb{N}$. Find a (unique) number $n_k \in \mathbb{N}$ such that $i < n(j-i) < j$. Then

$$x_k^{pm(j-i)}x_k^{pm(j-i)} = x_k^{pm(j-i)-pi}x_k^{pm(j-i)} = x_k^{pm(j-i)-pi}x_k^{pi} = x_k^{pm(j-i)}$$

and hence $x_k^{pm(j-i)}$ is an idempotent. Since the semigroup X contains a unique idempotent, $x_k^{pm(j-i)} = e$ and hence $j > n(j-i) \geq l_k + k + 1$, which contradicts the choice of j. □

By Claim 4.10 there exists a number j such that $0 \leq j \leq k$ and $(x_k^p)^{l_k+j} \notin \{e\} \cup \{x_k^{pm_i} : 1 \leq i < k\}$. Put $m_k = l_k + j$ and observe that

$$(x_k^p)^{2m_k} = (x_k^p)^{l_k+1}(x_k^p)^{l_k+2j-1} \in eP = \{e\}$$

by Claim 4.8. By Claim 4.9 there exists a number $n_k > n_{k-1}$ such that $x_k^p(y^p)^{n_k} = e$. Since X is an open discrete subspace of the topological semigroup Y, there exists a neighborhood $U_k \subseteq U_{k-1}$ of y such that $x_k^p(U_k)^{pm_k} = \{e\}$. This completes the inductive construction.

Now consider the set $A = \{x_k^{pm_k} : k \in \mathbb{N}\}$ of P. The inductive condition (ii) guarantees that A is infinite and $a^2 = e$ for every $a \in A$. Also for any $i < j$ we have

$$x_i^{pm_i}x_j^{pm_j} = x_i^{pm_i}x_j^{pm_i}x_j^{pm_i} = x_i^{pm_i}x_j^{pm_i}x_j^{pm_i} \in x_i^p(U_i)^{pm_i}P = eP = \{e\}.$$

Therefore, $AA = \{e\}$ is a singleton. But the existence of such set A is forbidden by our assumption. □
5. Some properties of T_2S-closed semigroups

Lemma 5.1. For every T_2S-closed semigroup X, its center $Z(X)$ is chain-finite.

Proof. To derive a contradiction, assume that the semigroup $Z(X)$ contains an infinite chain C. Take any free ultrafilter $U \in \beta(X) \subseteq \varphi(X)$ containing the set C. Since C is a chain, for every set $U \subseteq C$ we have $UU = U$, which implies that $UU = U$. Let Y be the smallest subsemigroup of the semigroup $\varphi(X)$, containing the set $X \cup \{U\}$. Since the set C is contained in the center of the semigroup X and $UU = U$, the semigroup Y is equal to the set $X \cup \{xU : x \in X^1\} \subseteq \beta(X)$. Then X is not T_2S-closed, being a proper dense subsemigroup of the Hausdorff zero-dimensional topological semigroup Y. \(\Box\)

Corollary 5.2. For a semilattice X the following conditions are equivalent:

1. X is projectively C-closed;
2. X is C-closed;
3. X is chain-finite.

Proof. The implication (1) \Rightarrow (2) is trivial, the implication (2) \Rightarrow (3) follows from Lemma 5.1. To prove that (3) \Rightarrow (1), assume that the semilattice X is chain-finite. First we show that a homomorphic image of X is chain-finite. Assuming the contrary, pick a homomorphism $h : X \to Y$ such that the semilattice $h[X]$ contains an infinite chain L. Let $\{y_n : n \in \omega\}$ be an infinite subset of L. For each $i \in \omega$, $h^{-1}(y_i)$ is a subsemilattice of X. Since X is chain-finite, so is the semilattice $h^{-1}(y_i)$, $i \in \omega$. Since each chain-finite semilattice has the smallest element, for each $i \in \omega$ we can consider the element $x_i = \inf h^{-1}(y_i) \in h^{-1}(y_i)$. We claim that the set $K = \{x_i : i \in \omega\}$ is an infinite chain in X. Clearly, K is infinite. Fix any $i, j \in \omega$. With no loss of generality we can assume that $y_i y_j = y_j$. Then $x_i x_j \leq x_j$ and $x_j = \inf h^{-1}(y_j)$ the formula above implies that $x_i x_j = x_j$, witnessing that K is an infinite chain which contradicts the chain-finiteness of X. At this point the implication (3) \Rightarrow (1) follows from Lemma 4.1. \(\Box\)

Lemma 5.3. If a semigroup X is T_2S-closed, then for any infinite subset $A \subseteq Z(X)$ the set AA is not a singleton.

Proof. Assume that for some infinite set $A \subseteq Z(X)$ the product AA is a singleton. Choose any free ultrafilter $U \in \beta(X)$ containing the set A and observe that UU is a principal ultrafilter (containing the singleton AA). Then the subsemigroup $Y \subseteq \varphi(X)$ generated by the set $X \cup \{U\}$ is equal to $X \cup \{xU : x \in X^1\}$ and hence is contained in $\beta(X)$. Consequently, X is a non-closed subsemigroup of Hausdorff zero-dimensional topological semigroup Y, which means that X is not T_2S-closed. \(\Box\)

Lemma 5.4. The center $Z(X)$ of any T_2S-closed semigroup X is periodic.

Proof. Assuming that $Z(X)$ is not periodic, find $x \in Z(X)$ such that the powers x^n, $n \in \mathbb{N}$, are pairwise distinct. On the set X consider the free filter \mathcal{F} generated by the base consisting of the sets $x^n \mathbb{N} = \{x^{nk} : k \in \mathbb{N}\}$, $n \in \mathbb{N}$.

Taking into account that $(n+1)!\mathbb{N} \subseteq n!\mathbb{N} + n!\mathbb{N} \subseteq n!\mathbb{N}$ for all $n \in \mathbb{N}$, we conclude that $\mathcal{F} \mathcal{F} = \mathcal{F}$, so \mathcal{F} is an idempotent of the semigroup $\varphi(X)$. Let $Y = X \cup \{a\mathcal{F} : a \in X^1\}$ be the smallest subsemigroup of $\varphi(X)$ containing the set $X \cup \{\mathcal{F}\}$. We endow Y with the subspace topology inherited from $\varphi(X)$. Then Y is a topological semigroup, containing X as a proper dense discrete subsemigroup. Since the space $\varphi(X)$ is T_0 it is sufficient to show that the space Y is zero-dimensional, because zero-dimensional T_0 spaces are Hausdorff.

By I denote the set of all elements $a \in X^1$ such that the function $\mathbb{N} \to X$, $n \mapsto ax^n$, is injective. It is clear that for every $a \in I$ the filter $a\mathcal{F}$ is free and hence does not belong to the set $X \subseteq Y$ of principal ultrafilters.

Claim 5.5. For any $a \in X \setminus I$ the filter $a\mathcal{F}$ is principal.
Proof. By the definition of the set I, there are two numbers $n, k \in \mathbb{N}$ such that $ax^n = ax^{n+k} = ax^k x$ and hence $ax^n = ax^{n+k}$ for all $i \in \mathbb{N}$. Find a number $j \in \mathbb{N}$ such that $0 \leq kj - n < k$ and observe that for every integer number $i > j$ we get $ax^{kj} = ax^{kj-n} x^{k(i-j)} = x^{kj-n} ax^n x^{k(i-j)} = x^{kj-n} ax^n = ax^{kj}$. Consequently, for the set $F = \{x^{kj} : i > j\} \in F$ the set $aF = \{ax^{kj}\}$ is a singleton, which implies that the filter aF is principal.

Claim 5.6. The topological semigroup Y is zero-dimensional.

Proof. We need to show that for any point $y \in Y$, any neighborhood $O_y \subseteq Y$ of y contains a clopen neighborhood of y. If $y \in X$, then y is an isolated point of the space Y and $\{y\}$ is an open neighborhood of y, contained in O_y. To show that the set $\{y\}$ is closed in Y fix any $z \in Y \setminus \{y\}$. Claim 5.5 implies that any element of Y is either a principal ultrafilter or a free filter on X. Anyway, there exists $T \in z$ such that $y \notin T$. It is easy to see that $\langle T \rangle$ is an open neighborhood of z disjoint with $\{y\}$.

Next, assume that $y \notin X$ and hence $y = aF$ for some $a \in X^1$. By Claim 5.5 $a \in I$. Find a set $F = x^{k\mathbb{N}} \in F$ such that $\langle aF \rangle \subseteq O_y$. We claim that the basic open set $\langle aF \rangle$ is closed in Y. Given any point $t \in Y \setminus \langle aF \rangle$, we should find a neighborhood $O_t \subseteq Y$, which is disjoint with $\langle aF \rangle$. If $t \in X$, then the neighborhood $O_t = \{t\}$ of t is disjoint with $\langle aF \rangle$ and we are done. So, we assume that $t \notin X$. In this case $t = bF$ for some $b \in I$, according to Claim 5.5.

We claim that $aF \cap bF = \emptyset$. To derive a contradiction, assume that $aF \cap bF$ contains some common element $ax^{k_{\mathbb{N}}} = bx^{k_{\mathbb{N}}}$ where $n, m \in \mathbb{N}$. Then $ax^{k_{\mathbb{N}+j}} = bx^{k_{\mathbb{N}+j}}$ for all $i \in \mathbb{N}$ and hence the symmetric difference $aF \Delta bF = (aF \setminus bF) \cup (bF \setminus aF) \subseteq (ax^{k_{\mathbb{N}}})_{i \leq n} \cup \{bx^{k_{\mathbb{N}+j}}\}_{j \leq m}$ is finite. Since the filter t is free and $bF \in t$ we obtain that $aF \notin t$, which contradicts the choice of t.

This contradiction shows that $aF \cap bF = \emptyset$ and hence $\langle bF \rangle$ is a neighborhood of the filter t, disjoint with the set $\langle aF \rangle$, which implies that $\langle aF \rangle$ is clopen and the space Y is zero-dimensional.

Therefore, X is not \mathbb{T}_2S-closed.

Lemma 5.7. Assume that X is a periodic \mathbb{T}_2S-closed semigroup with $H(X) \subseteq Z(X)$. If X contains an unbounded subgroup, then for some $e \in E(X)$ and $x \in X$ there exists an infinite set $A \subseteq x \cdot H_e$ such that AA is a singleton.

Proof. To derive a contradiction, assume that X contains an unbounded subgroup but for any $e \in E(X)$, $x \in X$ and an infinite set $A \subseteq x \cdot H_e$ the set AA is not a singleton.

Since $E(X) \subseteq H(X) \subseteq Z(X)$, the set of idempotents $E(X)$ is a semilattice. Let $\pi : X \rightarrow E(X)$ be the map assigning to each $x \in X$ the unique idempotent of the monogenic semigroup $x^\mathbb{N}$. By Proposition 3.2 π is a homomorphism.

Since X contains an unbounded subgroup, for some idempotent $e \in E(X)$ the maximal subgroup H_e containing e is unbounded. By Lemma 5.1 the semilattice $E(X)$ is chain-finite. Consequently, we can find an idempotent e whose maximal group H_e is unbounded but for every idempotent $f < e$ the group H_f is bounded.

In the semigroup X, consider the set $T = \bigcup \{\sqrt{\langle f \rangle} : f \in E(X), fe < e\}$.

Claim 5.8. For every $a \in T$, the set $G_a = \{x \in H_e : ax = ae\}$ is a subgroup of H_e such that the quotient group H_e/G_a is bounded.

Proof. Observe that for any $x, y \in G_a$ we have $axy = aey = ay = ae$, which means that G_a is a subsemigroup of the group H_e. Since the group H_e is periodic, the subsemigroup G_a is a subgroup of H_e. It remains to prove that the quotient group H_e/G_a is bounded. To derive a contradiction, assume that H_e/G_a is unbounded.

Let $f = \pi(a)$. It follows from $a \in T$ that $fe < e$. Now the minimality of e ensures that the group H_{fe} is bounded. Then there exists $p \in \mathbb{N}$ such that $x^p = fe$ for any $x \in H_{fe}$.
Claim 5.9. For every \(x \in H_f \) and \(h \in H_e \) we have \(x^{hp} = x \).

Proof. By Proposition 3.2, \(\pi(feh) = f \pi(e)(h) = fee = fe \) and by Lemma 3.1
\[
feh = feh \cdot fe = feh \cdot \pi(feh) \in H e \pi(feh) = H_f e.
\]
Then \((feh)^p = fe \) and \(x^{hp} = (x^f e)^p = x(fe)^p = xfe = x \). \(\square \)

In the group \(H_e \) consider the subgroup \(G = \{ h^p : h \in H_e \} \). By Proposition 3.2, \(\pi(ae) = \pi(a)\pi(e) = fe \) and hence \((ae)^n \in H_f e \) for some \(n \in \mathbb{N} \). Claim 5.9 ensures that \(a^n G = a^n (e^n G) = (ae)^n G = \{(ae)^n \} = \{a^ne\} \) is a singleton and hence \(G \subseteq G_a^n \). Let \(k \leq n \) be the smallest number such that the subgroup \(G \cap G_{a^k} \) has finite index in \(G \). We claim that \(k \neq 1 \). Assuming that \(G \cap G_{a^k} \) has finite index in \(G \), we conclude that the quotient group \(G / (G \cap G_{a^k}) \) is finite and hence bounded. Since the quotient group \(H_e / G \) is bounded, the quotient group \(H_e / (G \cap G_{a^k}) \) is bounded and so is the quotient group \(H_e / G_a \). But this contradicts our assumption. This contradiction shows that \(k \neq 1 \). The minimality of \(k \) ensures that the subgroup \(G \cap G_{a^{k-1}} \) has infinite index in \(G \). Since the group \(G \cap G_{a^k} \) has finite index in \(G \), the subgroup \(G \cap G_{a^{k-1}} \) has infinite index in the group \(G \cap G_{a^{k-1}} \). So, we can find an infinite set \(I \subseteq G \cap G_{a^k} \) such that \(x \in (G \cap G_{a^{k-1}}) \cap y(G \cap G_{a^{k-1}}) = \emptyset \) for any distinct elements \(x, y \in I \). Observe that for any distinct elements \(x, y \in I \) we have \(a^k x = a^k e = a^k y \) and \(a^k - x \neq a^k - y \) (assuming that \(a^k - x = a^k - y \), we obtain that \(a^k - e = a^k - xx^{-1} = a^k - yx^{-1} \) and hence \(yx^{-1} \in G \cap G_{a^{k-1}} \) which contradicts the choice of the set \(I \)).

Then the set \(A = a^k - I \) is infinite. We claim that \(AA \) is a singleton. Indeed, for any \(x, y \in I \) we have \(a^k - x, a^k - y = a^k - xa^k - 2y = a^k - ea^k - 2y = a^k - e \) and \(a^k - x, a^k - y = a^k - e \). Therefore, \(AA = \{a^k - e\} \). But the existence of such set \(A \) contradicts our assumption. \(\square \)

Let \(Q_\infty = \{ z \in \mathbb{C} : \exists n \in \mathbb{N} (z^n = 1) \} \) be the quasi-cyclic group, considered as a dense subgroup of the compact Hausdorff group \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} \).

Claim 5.10. There exists a homomorphism \(h : H_e \to Q_\infty \) whose image \(h[H_e] \) is infinite.

Proof. By Lemma 5.4 the group \(H_e \) is periodic, so for every \(x \in H_e \) we can choose the smallest number \(p(x) \in \mathbb{N} \) such that \(x^{p(x)} = e \). Since \(H_e \) is unbounded, there is a sequence \((x_n)_{n \in \mathbb{N}} \) of elements such that \(p(x_n) > n \cdot \prod_{k<n} p(x_k) \) for all \(n \in \mathbb{N} \).

For every \(n \in \mathbb{N} \) let \(G_n \) be the subgroup of \(H_e \) generated by the elements \(x_1, \ldots, x_n \). Let \(G_0 = \{ e \} \) be the trivial group and \(h_0 : G_0 \to \{ 1 \} \subseteq Q_\infty \) be the unique homomorphism. By induction, for every \(n \in \mathbb{N} \) we shall construct a homomorphism \(h_n : G_n \to Q_\infty \) such that \(h_n[G_{n-1}] = h_{n-1} \) and \(|h_n[G_n]| > n \). Assume that for some \(n \in \mathbb{N} \) the homomorphism \(h_{n-1} \) has been constructed. Consider the cyclic subgroup \(x_n^n \) generated by the element \(x_n \). Consider the subgroup \(Z = x_n^n \cap G_{n-1} \subseteq x_n^n \) and let \(\varphi : x_n^n \to Q_\infty \) be a homomorphism such that \(\varphi(Z) = h_{n-1}[Z] \) and \(\varphi^{-1}(1) = (h_{n-1}[Z])^{-1}(1) \).

Define the homomorphism \(h_n : G_n \to Q_\infty \) by the formula \(h_n(c x) = \varphi(c)h_{n-1}(x) \) where \(c \in x_n^n \) and \(x \in G_{n-1} \). To see that that \(h_n \) is well-defined, take any elements \(c, d \in x_n^n \) and \(x, y \in G_{n-1} \) with \(cx = dy \) and observe that \(d^{-1}c = yx^{-1} \in x_n^n \cap G_{n-1} \) and hence \(\varphi(d^{-1}c) = h_{n-1}(yx^{-1}) \), which implies the desired equality \(\varphi(c)h_{n-1}(x) = \varphi(d)h_{n-1}(y) \). So, the homomorphism \(h_n \) is well-defined. It is clear that \(h_n[G_{n-1}] = h_{n-1} \) and the image \(h_n[G_n] \) has cardinality
\[
|h_n[G_n]| \geq |h_n[x_n^n]| = |\varphi[x_n^n]| \geq \frac{|x_n^n|}{|Z|} = \frac{|x_n^n|}{|G_{n-1}|} \geq \frac{p(x_n)}{\prod_{k<n} p(x_k)} > n.
\]
After completing the inductive construction, consider the subgroup \(G = \bigcup_{n=1}^\infty G_n \subseteq H_e \) and the homomorphism \(h : G \to Q_\infty \) defined by \(h|G_n = h_n \) for all \(n \in \mathbb{N} \).

Taking into account that \(|h[G]| \geq |h_n[G_n]| > n \) for all \(n \in \mathbb{N} \), we conclude that the image \(h[G] \) is infinite. By a classical result of Baer [13, 21.1], the homomorphism \(h \) can be extended to a homomorphism \(\tilde{h} : H_e \to Q_\infty \). It is clear that the image \(\tilde{h}[H_e] \) is infinite. \(\square \)
Denote by \(\Phi \) the set of all homomorphisms from \(H_e \) to \(Q_\infty \). By the classical Baer Theorem [13, 21.1] on extending homomorphisms into divisible groups, the homomorphisms into \(Q_\infty \) separate points of \(H_e \), which implies that the homomorphism \(\varphi : H_e \rightarrow Q_\infty \), \(\varphi : x \mapsto (\varphi(x))_{\varphi \in \Phi} \), is injective. Identify the group \(H_e \) with its image \(\varphi[H_e] \subseteq Q_\infty \) in the compact topological group \(T^\Phi \) and let \(H_e \) be the closure of \(H_e \) in \(T^\Phi \).

By Claim [5, 10], the family \(\Phi \) contains a homomorphism \(h : H_e \rightarrow Q_\infty \) with infinite image \(h[H_e] \). The subgroup \(h[H_e] \), being infinite, is dense in \(T \). The homomorphism \(h \) admits a continuous extension \(\tilde{h} : H_e \rightarrow \tilde{T} \), \(\tilde{h} : (z_\varphi)_{\varphi \in \Phi} \mapsto z_h \). The compactness of \(\tilde{H}_e \) and density of \(h[H_e] = h[H_e] \) in \(T \) imply that \(\tilde{h}[H_e] = T \).

By Claim [5, 11] for every \(a \in T \) the quotient group \(H_e/G_a \) is bounded. So, we can find a number \(n_a \in N \) such that \(x^{n_a} \in G_a \) for all \(x \in H_e \). Moreover, for any non-empty finite set \(F \subseteq T \) and the number \(n_F = \prod_{a \in F} n_a \in N \), the intersection \(G_F = \bigcap_{a \in F} G_a \) contains the \(n_F \)-th power \(x^{n_F} \) of any element \(x \in H_e \).

Then for every \(y \in h[H_e] \subseteq Q_\infty \), we get \(y^{n_F} \in h[G_F] \), which implies that the subgroup \(h[G_F] \) is dense in \(T \). Let \(G_F \) be the closure of \(G_F \) in the compact topological group \(\tilde{H}_e \). The density of the subgroup \(h[G_F] \) in \(T \) implies that \(h[G_F] = h[G_F] = T \).

By the compactness, \(\tilde{h}\left[\bigcap_{F \in T^\omega} G_F \right] = \bigcap_{F \in T^\omega} \tilde{h}[G_F] = T \). So, we can fix an element \(s \in \bigcap_{F \in T^\omega} G_F \subseteq \tilde{H}_e \) whose image \(\tilde{h}(s) \in T \) has infinite order in the group \(T \). Then \(s \) also has infinite order and its orbit \(s^N \) is disjoint with the periodic group \(H_e \).

Consider the subsemigroup \(S \subseteq \tilde{H}_e \) generated by \(H_e \cup \{s\} \). Observe that \(S \subseteq \prod_{\varphi \in \Phi} Q_\varphi \) where \(Q_\varphi \) is the countable subgroup of \(T \) generated by the set \(Q_\infty \cup \{\varphi(s)\} \).

It is clear that the subspace topology \(\tilde{\tau} \) on \(S \), inherited from the topological group \(\prod_{\varphi \in \Phi} Q_\varphi \) is Tychonoff and zero-dimensional. Then the topology \(\tau' \) on \(S \) generated by the base \(\{U \cap aG_F : U \in \tilde{\tau}, a \in H_e, F \in [T]^{<\omega}\} \) is also zero-dimensional. It is easy to see that \((S, \tau') \) is a topological semigroup and \(s \) belongs to the closure of \(H_e \) in the topology \(\tau' \). Finally, endow \(S \) with the topology \(\tau = \{U \cup D : U \in \tilde{\tau}, D \subseteq H_e\} \). The topology \(\tau \) is well-known in General Topology as the Michael modification of the topology \(\tau' \) (see [12, 5.1.22]). Since the (group) topology \(\tau' \) is zero-dimensional, so is its Michael modification \(\tau \) (see [12, 5.1.22]). Using the fact that \(S \setminus H_e \) is an ideal in \(S \), it can be shown that \((S, \tau) \) is a zero-dimensional topological semigroup, containing \(H_e \) as a dense discrete subgroup. From now on we consider \(S \) as a topological semigroup, endowed with the topology \(\tau \).

Now consider the topological sum \(Y = S \cup (X \setminus H_e) \) of the topological space \(S \) and the discrete topological space \(X \setminus H_e \). It is clear that \(Y \) contains \(X \) as a proper dense discrete subspace.

It remains to extend the semigroup operation of \(X \) to a continuous commutative semigroup operation on \(Y \). In fact, for any \(a \in X, b \in H_e \) and \(n \in N \) we should define the product \(a(bs^n) \). By the periodicity of the semigroup \(X \), there is a number \(p \in N \) such that \(f := a^p \) is an idempotent. If \(fe < e \), then we put \(a(bs^n) = ab \). If \(fe = e \), then the element \(ae \) has power \((ae)^p = a^pe^p = fe = e \) and hence \(ae \) belongs to the semigroup \(\sqrt[N]{H_e} \). By Lemma [5, 1] the subgroup \(H_e \) is an ideal in \(\sqrt[N]{H_e} \). Consequently, \(ae = ace \in H_e \). So, we can put \(a(bs^n) = (aebs^n) \). The choice of \(x \in \bigcap_{F \in T^\infty} G_F \) guarantees that the extended binary operation is continuous. Now the density of \(X \) in \(Y \) implies that the extended operation is commutative and associative. Since \(Y \in T_2S \), the semigroup \(X \) is not \(T_2S \)-closed, which is a desired contradiction completing the proof of Lemma [5, 1].

Lemma 5.11. If a \(T_2S \)-closed periodic semigroup \(X \) has \(X \cdot H(X) \subseteq Z(X) \), then each subgroup of \(X \) is bounded.

Proof. Assuming that \(X \) contains an unbounded subgroup, we can apply Lemma [5, 7] and find elements \(e \in E(X), x \in X \), and an infinite subset \(A \subseteq x \cdot H_e \) such that the set \(AA \) is a singleton. Since \(A \subseteq X \cdot H(X) \subseteq Z(X) \), we can apply Lemma [5, 3] and conclude that the semigroup \(X \) is not \(T_2S \)-closed. But this contradicts our assumption. \(\square \)
Lemma 5.12. Let X be a T_2S-closed semigroup and $e \in E(X)$ be an idempotent such that the semigroup $H_e \cap Z(X)$ is bounded. Then for any sequence $(x_n)_{n \in \omega}$ in $(\sqrt[n]{e} \cap Z(X)) \setminus H_e$ there exists $n \in \omega$ such that $x_n \notin \{x_{n+1}^p : p \geq 2\}$.

Proof. To derive a contradiction assume that there exists a sequence $(x_n)_{n \in \omega}$ in $(\sqrt[n]{e} \cap Z(X)) \setminus H_e$ such that for every $n \in \mathbb{N}$ there exists $p_n \geq 2$ such that $x_{n-1} = x_{n+1}^{p_n}$. Since the semigroup $H_e \cap Z(X)$ is bounded, there exists $n_0 \in \mathbb{N}$ such that $z^{n_0}_x = e$ for every $z \in H_e \cap Z(X)$.

Consider the additive subsemigroup $Q_+ = \{x_n^{p_k} : k, n \in \mathbb{N}\}$ of the semigroup of positive rational numbers endowed with the binary operation of addition of rational numbers. Let $h : Q_+ \to \sqrt[e]{\cap} Z(X)$ be the (unique) homomorphism such that $h(\frac{1}{p_1}) = x_n$ for all $n \in \mathbb{N}$. Then $h(1) = h(\frac{p_1}{p_1}) = x_1 = x_0 \notin H_e$. By Lemma 5.1, the center $Z(X)$ of the T_2S-closed semigroup X is periodic and hence $H_e \cap Z(X)$ is a periodic subgroup of $\sqrt[e]{\cap} Z(X)$. By Lemma 5.1, the subgroup $H_e \cap Z(X)$ is an ideal in $\sqrt[e]{\cap} Z(X)$. Consequently, the preimage $h^{-1}[H_e] = h^{-1}[H_e \cap Z(X)]$ is an upper set in Q_+, which means that for any points $q < r$ in Q_+ with $q \in h^{-1}[H_e]$ we get $r \in h^{-1}[H_e]$. Then $L = h^{-1}[\sqrt[e]{\cap} \setminus H_e]$ is a lower set, which contains 1 and hence contains the interval $Q_+ \cap (0, 1)$. We claim that the restriction $h|L$ injective. Assuming that $h(a) = h(b)$ for some distinct points $a \in L$, we can find natural numbers k and $n < m$ such that $a = \frac{n}{p_1 \ldots p_k}$ and $b = \frac{m}{p_1 \ldots p_k}$. Then $x_k^n = h(a) = h(b) = x_k^m$. By Theorem 1.9 from [10], $x_k^n \in H_e$ and, therefore, $a = \frac{n}{p_1 \ldots p_k} \in h^{-1}[H_e]$. But this contradicts the choice of $a \in L \subseteq Q_+ \setminus h^{-1}[H_e]$.

Let $s = \sup L \in (0, +\infty)$ and $W = \{q \in n_e Q_+ : \frac{s}{2} < q < s\} \subseteq L$. The injectivity of $h|L$ guarantees that the set $h|[W]$ is infinite. Observe that for every points $a, b \in W$ we get $a + b > 2\frac{s}{2} = s$ and hence $h(a + b) = h_e \cap Z(X)$ and thus $h(a + b) = h(a) + e$. Find $z \in Q_+$ such that $a + b = n_e z$. Then $h(a + b) = h(n_e z) e = (h(z) e)^{n_e} e = e$ by the choice of n_e and the inclusion $h(z) e \in \sqrt[e]{\cap} H_e \subseteq H_e$ (see Lemma 5.1). This implies that the infinite set $A = h|[W] \subseteq Z(X)$ has $AA = \{e\}$. Applying Lemma 5.3, we conclude that the semigroup X is not T_2S-closed which contradicts our assumption.

6. Proof of Theorem 1.3

We should prove that a commutative semigroup X is C-closed if and only if X is periodic, chain-finite, all subgroups of S are bounded and for every infinite set $A \subseteq X$ the set AA is not a singleton.

The “only if” part follows from Lemmas 5.1, 5.3, 5.4 and 5.11. To prove the “if” part, assume that X is periodic, chain-finite, all subgroups of S are bounded and for every infinite set $A \subseteq X$ the set AA is not a singleton. By the periodicity, $X = \bigcup_{e \in E(X)} \sqrt[e]{e}$. Consider the map $\pi : X \to E(X)$ assigning to each $x \in X$ the unique idempotent in the monogenic semigroup $x^\mathbb{N}$. By Proposition 3.2, the map π is a semigroup homomorphism. By Lemma 4.5, for every idempotent $e \in E(X)$ the semigroup $\sqrt[e]{e}$ is C-closed. Since X is chain-finite, so is the semilattice $E(X)$. Applying Lemma 4.1, we conclude that the semigroup X is C-closed.

7. C-closedness of quotient semigroups

In this section we prove some lemmas that will be used in the proof of Theorem 1.9.

Lemma 7.1. Let X be a periodic semigroup, $e \in E(X)$ and $Z_n := \{z \in Z(X) : z^n \in H_e\}$ for $n \in \mathbb{N}$. If for some $\ell \in \mathbb{N}$ the set $Z_\ell \setminus H_e$ is infinite, then there exist a finite set $F \subseteq Z_\ell$ and an infinite set $A \subseteq Z_\ell \setminus FX^1$ such that $AA \subseteq F \cup H_e \subseteq FX^1$.

Proof. Lemma 3.1 implies that $Z_n \subseteq Z_{n+1}$ for all $n \in \omega$. Let $Z_\infty = \bigcup_{n \in \mathbb{N}} Z_n = Z(X) \cap \sqrt[e]{\cap}$. By our assumption, there exists a number $\ell \in \mathbb{N}$ such that the set $Z_\ell \setminus H_e$ is infinite. We can assume that ℓ is the smallest number with this property. The obvious equality $Z_1 = Z(X) \cap H_e$ implies that $\ell \geq 2$ and hence the set $Z_{\ell-1} \setminus H_e$ is finite by the minimality of ℓ.

Choose any sequence $(z_n)_{n \in \omega}$ of pairwise distinct elements of the infinite set $Z_\ell \setminus Z_{\ell-1}$.

Claim 7.2. For every \(z \in \mathbb{Z}_\ell \) we have \(z^2 \in \mathbb{Z}_{\ell-1} \).

Proof. In the case \(\ell = 2 \), by the definition of \(\ell \), we get that \(z^2 \in Z(X) \cap H_e = Z_1 \). Assuming \(\ell > 2 \), we have that

\[
(z^2)^{\ell-2} = z^{2\ell-2} = z^\ell z^{\ell-2} \in H_e \cdot \sqrt{H_e} \subseteq H_e,
\]

as \(H_e \) is an ideal in \(\sqrt{H_e} \) by Lemma 3.1. Then \(z^2 \in \mathbb{Z}_{\ell-1} \) according to the definition of \(\mathbb{Z}_{\ell-1} \).

\[\square\]

Claim 7.3. For every \(n \in \mathbb{N} \) we have \(\mathbb{Z}_\infty \cap \mathbb{Z}_n X^1 = \mathbb{Z}_n \).

Proof. For any \(z \in \mathbb{Z}_n \) and \(x \in X^1 \), with \(zx \in \mathbb{Z}_\infty \), we should prove that \((zx)^n \in H_e \). The inclusion \(z \in \mathbb{Z}_n \subseteq Z(X) \) implies \(z^n \in H_e \cap Z(X) \) and \(\pi(z) = e \in Z(X) \). By Claim 7.2, \(e = \pi(zx) = \pi(z) \pi(x) = e \pi(x) \) and \(\pi(e^n) = \pi(e) \pi(x) = e \) and thus \(ex^n \in \sqrt{H_e} \). Then

\[
(zx)^n = z^n x^n = (z^n e) x^n = z^n (ex^n) \in H_e \cdot \sqrt{H_e} \subseteq H_e.
\]

\[\square\]

If for some \(z \in \mathbb{Z}_\ell \), the set \(A = (\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap (z X^1) \) is infinite, then for the finite set \(F = (\mathbb{Z}_{\ell-1} \setminus H_e) \cup \{ e \} \) we have

\[
A \cap F X^1 \subseteq (\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap \mathbb{Z}_{\ell-1} X^1 = \emptyset
\]

by Claim 7.3. On the other hand, applying Claims 7.2 and 7.3, we obtain

\[
AA \subseteq \mathbb{Z}_\ell \cap z^2 X^1 \subseteq \mathbb{Z}_\ell \cap \mathbb{Z}_{\ell-1} X^1 \subseteq \mathbb{Z}_{\ell-1} \subseteq F \cup H_e \subseteq F X^1.
\]

Therefore, the finite set \(F \) and the infinite set \(A \) have the properties required in Lemma 7.1.

So, we assume that for every \(z \in \mathbb{Z}_\ell \), the set \((\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap (z X^1) \) is finite.

Let \(T = \{(i, j, k) \in \omega \times \omega \times \omega : i < j < k \} \) and \(\chi : T \to \{0, 1, 2\} \) be the function defined by the formula

\[
\chi(i, j, k) = \begin{cases}
0 & \text{if } z_i z_j \in \mathbb{Z}_{\ell-1}; \\
1 & \text{if } z_i z_j \notin \mathbb{Z}_{\ell-1} \text{ and } z_i z_j \neq z_i z_k; \\
2 & \text{if } z_i z_j \notin \mathbb{Z}_{\ell-1} \text{ and } z_i z_j = z_i z_k.
\end{cases}
\]

By the Ramsey Theorem 5 in [15], there exists an infinite set \(\Omega \subseteq \omega \) such that \(\chi[T \cap \Omega^3] = \{c\} \) for some \(c \in \{0, 1, 2\} \).

If \(c = 0 \), then the infinite set \(A = \{z_n : n \in \Omega\} \) has \(AA \subseteq \mathbb{Z}_{\ell-1} \subseteq F \cup H_e \subseteq F X^1 \) for the finite set \(F = (\mathbb{Z}_{\ell-1} \setminus H_e) \cup \{ e \} \). On the other hand,

\[
A \cap F X^1 \subseteq (\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap (\mathbb{Z}_{\ell-1} X^1) = \emptyset
\]

by Claim 7.3.

If \(c = 1 \), then for any \(i \in \Omega \) the set \(\{z_i z_j : i < j \in \Omega\} \) is an infinite subset of the set \(z_i Z_\ell \setminus Z_{\ell-1} \subseteq (\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap (z_i X^1) \), which is finite by our assumption. Therefore, the case \(c = 1 \) is impossible.

If \(c = 2 \), then \(z_i z_j = z_i z_k \notin \mathbb{Z}_{\ell-1} \) for any numbers \(i < j < k \) in \(\Omega \). Then for every \(i < k \) in \(\Omega \) we have \(z_i z_k = z_i z^+ \) where \(i^+ = \min\{j \in \Omega : i < j\} \).

Now consider two cases.

1) The set \(A = \{z_i z^+ : i \in \Omega\} \subseteq \mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1} \) is infinite. Observe that for any numbers \(i < j \) in \(\Omega \), applying Claims 7.2 and 7.3, we obtain

\[
z_i z^+ z_j z^+ = z_i z_j z_j z^+ \in z_i^2 Z_\ell \subseteq \mathbb{Z}_{\ell-1} Z_\ell \subseteq \mathbb{Z}_{\ell-1}
\]

and \(z_i z^+ z_i z^+ \in z_i^2 Z_\ell \subseteq \mathbb{Z}_{\ell-1} Z_\ell \subseteq \mathbb{Z}_{\ell-1} \). Then \(AA \subseteq \mathbb{Z}_{\ell-1} \subseteq F \cup H_e \) for the finite set \(F = (\mathbb{Z}_{\ell-1} \setminus H_e) \cup \{ e \} \). Also \(A \cap F X^1 \subseteq (\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap \mathbb{Z}_{\ell-1} X^1 = \emptyset \) by Claim 7.3.

2) The set \(C = \{z_i z^+ : i \in \Omega\} \) is finite. In this case there exists an element \(c \in C \) such that the set \(A = \{i \in \Omega : c = z_i z^+\} \) is infinite. By our assumption, the set \((\mathbb{Z}_\ell \setminus \mathbb{Z}_{\ell-1}) \cap c X^1 \) is finite. Then, taking into account Claim 7.2, the infinite set \(A = \{z_i : i \in \Lambda\} \setminus c X^1 \) satisfies

\[
AA = \{z_i^2 : i \in \Lambda\} \cup \{z_i z_j : i, j \in \Lambda, i < j\} \subseteq \mathbb{Z}_{\ell-1} \cup \{z_i z^+ : i \in \Lambda\} = \mathbb{Z}_{\ell-1} \cup \{c\} \subseteq F \cup H_e \subseteq F X^1
\]
for the finite set $F = (Z_{\ell-1} \setminus H_e) \cup \{c, e\}$. Also

$$A \cap FX^1 \subseteq \left((Z_e \setminus Z_{\ell-1}) \cap (Z_{\ell-1}X^1) \right) \cup (A \cap cX^1) = \emptyset.$$

In all cases we have constructed an infinite set $A \subseteq Z_\ell$ and a finite set $F \subseteq Z_\ell$ such that $AA \subseteq F \cup H_e \subseteq FX^1$ and $A \cap FX^1 = \emptyset$. \hfill \Box

Remark 7.4. The finite set F from the previous lemma can be forced to have at most two elements. For this we need to use one more time the Ramsey Theorem. Let A be the infinite set constructed in the previous lemma. Recall that $AA \subseteq F \cup H_e$ and $A \cap FX^1 = \emptyset$. Write the set $F \cup \{e\}$ as \{f_0, f_1, \ldots, f_n\} where $f_0 = e$. The Pigeonhole Principle implies that there exists $k \leq n$ and an infinite subset $B \subseteq A$ such that $\{x^2 : x \in B\} \subseteq H_e$ if $k = 0$ and $\{x^2 : x \in B\} = \{f_k\}$ if $k > 0$. By $|B|^2$ we denote the set of all two-element subsets of B. Consider the function $\chi : [B]^2 \to \{0, \ldots, n\}$ defined by the formula:

$$\chi((a, b)) = \begin{cases} 0 & \text{if } ab \in H_e; \\ i & \text{if } ab = f_i \text{ for some } i \in \{1, \ldots, n\}. \end{cases}$$

By the Ramsey Theorem, there exist a number $i \in \{0, \ldots, n\}$ and an infinite subset $A' \subseteq B$ such that $\chi\{x, y\} = i$ for any distinct elements $x, y \in A'$. Then for the set $F' = \{f_k, f_i\}$ we have $A'A' \subseteq F' \cup H_e$ and $A' \cap F'X^1 \subseteq A \cap FX^1 = \emptyset$.

Lemma 7.5. Let X be an ideally $T_\infty S$-closed semigroup such that for some $e \in E(X) \cap Z(X)$ the semigroup $H_e \cap Z(X)$ is bounded. Then the set $\left(\sqrt[n]{I_e} \cap Z(X) \right) \setminus H_e$ is finite.

Proof. To derive a contradiction, assume that the set $\left(\sqrt[n]{I_e} \cap Z(X) \right) \setminus H_e$ is infinite. For every $n \in \mathbb{N}$ consider the set

$$Z_n = \{z \in Z(X) : z^n \in H_e\}$$

and let $Z_\infty = \bigcup_{n \in \mathbb{N}} Z_n = Z(X) \cap \sqrt[n]{I_e}$. If for some $\ell \in \mathbb{N}$ the set $Z_\ell \setminus H_e$ is infinite, then we can apply Lemma 7.6 and find a finite set $F \subseteq Z_\ell \subseteq Z(X)$ and infinite set $A \subseteq Z_\ell$ such that $AA \subseteq F \cup H_e \subseteq FX^1$ and $A \cap FX^1 = \emptyset$. Consider the ideal $I = FX^1$ and the quotient semigroup X/I. Then the quotient image $q[A]$ of A in X/I is an infinite set in $Z(X/I)$ such that $q[A]q[A] = q[I]$ is a singleton. By Lemma 5.3 the semigroup X/I is not $T_\infty S$-closed, which contradicts our assumption. This contradiction shows that for every $n \in \mathbb{N}$ the set $Z_n \setminus H_e$ is finite.

Since the semigroup $Z(X) \cap H_e$ is bounded, there exists $p \in \mathbb{N}$ such that $x^p = e$ for all $x \in Z(X) \cap H_e$. Consider the subsemigroup $P = \{z^p : z \in Z_\infty\}$ in Z_∞.

Claim 7.6. $P \cap H_e = \{e\}$.

Proof. Given any element $x \in P \cap H_e$, find $z \in Z_\infty$ such that $x = z^p$. Lemma 3.1 implies that $ze \in \sqrt[n]{e} \cdot e \subseteq H_e$ and hence $(ze)^p = e$ by the choice of p. Then $x = xe = z^p e = (ze)^p = e$. \hfill \Box

Claim 7.7. For every $n \in \omega$ the set $P \setminus Z_n$ is not empty.

Proof. Assuming that $P \setminus Z_n = \emptyset$, we conclude that $P \subseteq Z_n$ and hence $Z_\infty \subseteq Z_{pn}$. Then the set $Z_\infty \setminus H_e \subseteq Z_{pn} \setminus H_e$ is finite, which contradicts our assumption. \hfill \Box

Consider the tree

$$T = \bigcup_{n \in \omega} \{(t_k)_{k \in n} \in P^n : t_0 = e \land (\forall k \in n \setminus \{0\} \ (t(k) \in Z_{2k} \setminus H_e \land t(k)^2 = t(k - 1)))\}$$

endowed with the partial order of inclusion of functions. Since the sets $Z_n \setminus H_e$ are finite, the tree T has finitely many branching points at every vertex. On the other hand, this tree has infinite height. This follows from the fact that for every element $z \in P \setminus Z_{2k}$, there exists $n > k$ such that $z^{2n} \in P \cap H_e = \{e\}$ but $z^{2n-1} \notin H_e$. Then the sequence $(z^{2n-1})_{i \in k}$ belongs to the tree T. By König’s
Lemma 5.7 [21], the tree T has an infinite branch which is a sequence $(z_n)_{n \in \omega}$ in P such that $z_0 = e$ and $z_n^2 = z_{n-1}$, $z_n \in Z_{2^n} \setminus H_e$, for all $n \in \mathbb{N}$. But the existence of such a sequence contradicts Lemma 5.12. \qed

8. Proof of Theorem 1.9

Given a commutative semigroup X, we should prove the equivalence of the following conditions:

1. X is projectively \mathcal{C}-closed;
2. X is ideally \mathcal{C}-closed;
3. X is chain-finite, almost Clifford, and all subgroups are bounded.

The implication (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (3) Assume that X is ideally \mathcal{C}-closed. Then X is \mathcal{C}-closed and by Lemmas 5.1, 5.4, 5.11, $X = Z(X)$ is chain-finite, periodic, and all subgroups of X are bounded. It remains to prove that X is almost Clifford. By Lemma 7.3, for every $e \in E(X)$ the set $\sqrt{\mathcal{P}_e} \setminus H_e$ is finite. Assuming that the semigroup X is not almost Clifford, we conclude that the set $B = \{ e \in E(X) : \sqrt{\mathcal{P}_e} \neq H_e \}$ is infinite. Since the semilattice $E(X)$ is chain-finite, we can apply the Ramsey Theorem and find an infinite antichain $C \subseteq B$ (the latter means that $xy \notin \{x, y\}$ for any distinct elements $x, y \in C$).

Let $R = \{ e \in E(X) : \exists C \in (e < c) \}$. It is straightforward to check that R is an ideal in $E(X)$. Lemma 4.1 and Proposition 5.2 imply that $J = \bigcup_{e \in R} \sqrt{\mathcal{P}_e}$ is an ideal in X. Let us show that the set $I = J \cup \bigcup_{e \in C} H_e$ is an ideal in X. Indeed, fix any $x \in X$ and $y \in I$. If $y \notin J$, then $xy \in J \subseteq I$, because J is an ideal in X. Assume that $y \in H_e$ for some $e \in C$. Then Proposition 5.2 implies that either $xy \in \sqrt{\mathcal{P}_e} \subseteq I$ for some idempotent $f < e$, or $xy \in \sqrt{\mathcal{P}_e}$. In the latter case, since H_e is an ideal in $\sqrt{\mathcal{P}_e}$, we get that $xy = yxe \in H_e \subseteq I$. So, I is an ideal in X. Since X is ideally \mathcal{C}-closed, the quotient semigroup X/I is \mathcal{C}-closed. By the choice of the set C, for every $e \in C$ the set $\sqrt{\mathcal{P}_e} \setminus H_e$ is not empty. Let us show that the set $\sqrt{\mathcal{P}_e} \setminus H_e$ contains an element a_e such that $a_e^2 \in H_e$. Pick any $b \in \sqrt{\mathcal{P}_e} \setminus H_e$. If $b^2 \in H_e$, then put $a_e = b$. Otherwise, let n be the smallest integer such that $b^n \in H_e$, which exists by the periodicity of X. Note that $n > 2$ and $b^{n-1} \in \sqrt{\mathcal{P}_e} \setminus H_e$. Put $a_e = b^{n-1}$ and observe that

$$a_e^2 = (b^{n-1})^2 = b^{2n-2} = b^n b^{n-2} \in H_e b^{n-2} \subseteq H_e.$$

We claim that for the set $A = \{ a_e : e \in C \} \subseteq X \setminus I$ we have $AA \subseteq I$. Since the set $C \subseteq E(X)$ is an antichain, for every distinct $e, f \in C$ we have $ef \neq e$ and hence $ef \in R \subseteq I$. Then Proposition 5.2 implies that for every distinct $e, f \in C$, $a_e a_f \in \sqrt{\mathcal{P}_e} \vee \sqrt{\mathcal{P}_f} \subseteq \sqrt{\mathcal{P}_{ef}} \subseteq I$. Hence $AA \subseteq I$. Moreover, the image $q[A]$ of A in the quotient semigroup X/I is an infinite subset of X/I such that $q[A] = q(A)$ is a singleton, which contradicts Lemma 5.3.

(3) \Rightarrow (1) Assume that X is chain-finite, almost Clifford and all subgroups of X are bounded. Let us show that X is periodic. Elements of $H(X)$ are periodic, since maximal subgroups are bounded. If $x \in X \setminus H(X)$, then the finiteness of $X \setminus H(X)$ and the fact that $E(X) \subseteq H(X)$ imply that for some $n \in \mathbb{N}$ the element $x^n \in H(X)$. Consequently $x^{nm} = e \in E(X)$ for some large enough m, because maximal subgroups are bounded. By Theorem 1.5, the projective \mathcal{C}-closedness of X will be proved as soon as we check that for any congruence \approx on S the quotient semigroup $Y = X/\approx$ is periodic, chain-finite, all subgroups of X/\approx are bounded and for any infinite subset $A \subseteq X/\approx$ the set AA is not a singleton.

Let $q : X \rightarrow Y = X/\approx$ be the quotient homomorphism. The periodicity of Y implies the periodicity of X. To see that X is chain-finite, observe that for every $e \in E(Y)$ the (periodic) semigroup $q^{-1}(e)$ contains an idempotent. This implies that $E(Y) = q[E(X)]$. Since X is chain-finite, its maximal semilattice $E(X)$ is chain-finite. By Corollary 5.2, $E(X)$ is projectively \mathcal{C}-closed and then so is its homomorphic image $E(Y)$. Using Corollary 5.2 one more time, we obtain that the semilattice $E(Y)$ is chain-finite. The following claim implies that the semigroup Y is almost Clifford and all subgroups of Y are bounded.
Claim 8.1. For any idempotent $e \in E(Y)$ there exists an idempotent $s \in E(X)$ such that $q[H_s] = H_e$.

Proof. Since X is chain-finite, the semilattice $E(X) \cap q^{-1}(e)$ contains the smallest idempotent s. We claim that $H_e = q[H_s]$. In fact, the inclusion $q[H_s] \subseteq H_e$ is trivial. To see that $H_e \subseteq q[H_s]$, take any element $y \in H_e \subseteq Y$ and find $x \in X$ with $q(x) = y$. Find $n \in \mathbb{N}$ such that $x^n \in E(X)$ and $y^n = e$. It follows from $y = q(x)$ that $e = y^n = q(x^n)$ and hence $s = sx^n$ by the minimality of s. By Proposition 8.2, $\pi(sx) = \pi(s)\pi(x) = sx^n = s$ and then

$$sx = (ss)x = s(sx) = \pi(sx)sx \in H_{\pi(sx)} = H_s$$

by Lemma 8.1. Finally, $y = ey = q(s)q(x) = q(sx) \in q[H_s]$ and hence $H_e = q[H_s]$. □

It remains to prove that for any infinite subset $A \subseteq Y$ the set AA is not a singleton. This follows from the next lemma.

Lemma 8.2. For any infinite set A in an almost Clifford semigroup S the set AA is infinite.

Proof. Since S is almost Clifford, the set $A \cap H(S)$ is infinite. If for some idempotent $e \in E(S)$ the intersection $A \cap H_e$ is infinite, then for any $a \in A \cap H_e$ the set $a(A \cap H_e) \subseteq (AA) \cap H_e \subseteq AA$ is infinite (since shifts in groups are injective) and hence AA is not a singleton. So, assume that for every $e \in E(S)$ the intersection $A \cap H_e$ is finite.

Then the set $E = \{e \in E(S) : A \cap H_e \neq \emptyset\}$ is infinite. For every $e \in E$, fix an element $a_e \in A \cap H_e$ and observe that $a_e^2 \in AA \cap H_e$, which implies that the set $AA \supseteq \{a_e^2 : e \in E\}$ is infinite. □

9. Some open problems

In this section we ask two open problems, motivated by the results, obtained in this paper.

Question 9.1. Does there exist a T_2S-closed semigroup which is not T_2S-closed?

Question 9.2. Is every ideally C-closed (semi)group projectively C-closed?

References

[1] A. Arhangel’skii, M. Choban, Semitopological groups and the theorems of Montgomery and Ellis, C. R. Acad. Bulg. Sci. 62(8) (2009), 917–922.
[2] T. Banakh, Categorically closed topological groups, Axioms 6:3 (2017), 23.
[3] T. Banakh, S. Bardyla, Characterizing chain-finite and chain-compact topological semilattices, Semigroup Forum 98:2 (2019), 234–250.
[4] T. Banakh, S. Bardyla, Completeness and absolute H-closedness of topological semilattices, Topology Appl. 260 (2019), 189–202.
[5] T. Banakh, S. Bardyla, On images of complete subsemilattices in sequential semitopological semilattices, Semigroup Forum 100 (2020), 662–670.
[6] T. Banakh, S. Bardyla, The interplay between weak topologies on topological semilattices, Topology Appl. 259 (2019), 134–154.
[7] T. Banakh, S. Bardyla, Complete topologized posets and semilattices, Topology Proc. 57 (2021) 177–196.
[8] T. Banakh, S. Bardyla, O. Gutik, The Lawson number of a semitopological semilattice, Semigroup Forum 103 (2021) 24–37.
[9] T. Banakh, S. Bardyla, A. Ravsky, The closedness of complete subsemilattices in functionally Hausdorff semitopological semilattices, Topology Appl. 267 (2019), 106874.
[10] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Vols. I Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
[11] D. Dikranjan, V. Uspenskij, Categorically compact topological groups, J. Pure Appl. Algebra 126 (1998), 149–168.
[12] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[13] L. Fuchs, Infinite Abelian groups, Acad. Press, NY & London, 1970.
[14] M. Goto, Absolutely closed Lie groups, Math. Ann. 204 (1973), 337–341.
[15] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, John Wiley & Sons, Inc., Hoboken, NJ, 1990.
[16] O. Gutik, Topological properties of Taimanov semigroups, Math. Bull. Shevchenko Sci. Soc. 13 (2016) 29–34.
[17] O. Gutik, D. Pagon, D. Repovš, On chains in H-closed topological posespaces, Order 27:1 (2010), 69–81.
[18] O. Gutik, D. Repovš, On linearly ordered H-closed topological semilattices, Semigroup Forum 77:3 (2008), 474–481.
[19] J. Howie, *Fundamentals of Semigroup Theory*, Clarendon Press, Oxford, 1995.
[20] V. Keyantuo, Y. Zelenyuk, *Semigroup completions of locally compact Abelian groups*, Topology Appl. 263 (2019), 199–208.
[21] K. Kunen, *Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Company, (1980).
[22] A. Lukács, *Compact-Like Topological Groups*, Heldermann Verlag: Lemgo, Germany, 2009.
[23] J.W. Stepp, *A note on maximal locally compact semigroups*, Proc. Amer. Math. Soc. 20 (1969), 251–253.
[24] J.W. Stepp, *Algebraic maximal semilattices*, Pacific J. Math. 58:1 (1975), 243–248.
[25] A.D. Taimanov, *An example of a semigroup which admits only the discrete topology*, Algebra i Logika, 12:1 (1973) 114–116 (in Russian).
[26] V. Uspenskij, *Compactifications of topological groups*, Proceedings of the Ninth Prague Topological Symposium Contributed papers from the symposium held in Prague, Czech Republic, August 19–25, 2001, pp. 331–346.
[27] Y. Zelenyuk, *Semigroup extensions of Abelian topological groups*, Semigroup Forum 98 (2019), 9–21.
[28] Y. Zelenyuk, *Continuity in G^{LUC}*, Bulletin of the London Mathematical Society 46:5 (2014), 981–988.
[29] Y. Zelenyuk, *Finite groups in G^{LUC}*, Semigroup Forum 91 (2015), 316–320.

T. Banakh: Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)

Email address: t.o.banakh@gmail.com

S. Bardyla: University of Vienna, Institute of Mathematics, Kurt Gödel Research Center (Austria)

Email address: sbardyla@yahoo.com