Energetics of critical oscillators in active bacterial baths

Ashwin Gopal1,2,3,*, Édgar Roldán2 and Stefano Ruffo3,4

1 Department of Physics, Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, India
2 ICTP—The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy
3 SISSA, Via Bonomea 265, 34136 Trieste, Italy
4 INFN Trieste and ISC-CNR, Italy

E-mail: ashwingop12345@gmail.com

Received 2 November 2020, revised 21 January 2021
Accepted for publication 12 February 2021
Published 31 March 2021

Abstract
We investigate the nonequilibrium energetics near a critical point of a nonlinear oscillator immersed in an active bacterial bath. At the critical point, we reveal a scaling exponent of the average power exerted by a constant non-conservative torque $\langle \dot{W} \rangle \sim (D_a/\tau)^{1/4}$, where D_a is the effective diffusivity and τ the correlation time of the bacterial bath described by a Gaussian colored noise. Other features that we investigate are the average stationary power and the variance of the work both below and above the saddle-node bifurcation. Above the bifurcation, the average power attains an optimal, minimum value for finite τ that is below its zero-temperature limit. Furthermore, we reveal a finite-time uncertainty relation for active matter which leads to values of the Fano factor of the work that can be below $2k_B T_{\text{eff}}$, with T_{eff} the effective temperature of the oscillator in the bacterial bath. We analyze different Markovian approximations to describe the nonequilibrium stationary state of the system. Finally, we illustrate our results in the experimental context by considering the example of driven colloidal particles in periodic optical potentials with an \textit{E. Coli} bacterial bath.

Keywords: stochastic thermodynamics, bacterial baths, active matter, nonlinear systems

(Some figures may appear in colour only in the online journal)
1. Introduction

Active systems are inherently out of equilibrium as their constituent units exchange continuously energy with their environment (e.g. free energy from ATP consumption) to produce mechanical work (e.g. cellular motion). As a consequence, active matter leads to a set of physical phenomena that cannot be described using equilibrium statistical mechanics [1, 2], such as collective motion [3, 4], motility-induced phase separation [5–7], noise rectification [8–10], etc. Recent studies within the field of stochastic thermodynamics [11][12] have investigated the signatures of active matter in the fluctuations and/or response of passive probes. Prominent examples include estimating the heat dissipation of biological systems from the fluctuations of few nonequilibrium degrees of freedom [13–16], exploring fundamental bounds for the precision and cost of biomolecular processes [17, 18], and understanding the entropic and frenetic aspects of non-linear response [19, 20].

Besides its fundamental interest, active matter has recently found prominent applications in the experimental context [21–24]. For example, a paradigmatic yet intriguing example is given by the so-called bacterial ratchets [9, 25]. These are composed by a microscopic ratchet wheel with asymmetric teeth (i.e. with broken spatial symmetry) that displays an autonomous rotation when the wheel is immersed in a bacterial bath.

Similar dynamical features like spontaneous oscillations have been reported in biophysical processes like intracellular transport [26] and sound transduction by mechanosensory hair bundles [27, 28], but also in a plethora of artificial nanosystems such as phase-locked loops [29], and superconducting Josephson junctions [30–32]. All this motivates us to study the effects of non-equilibrium fluctuations arising from the interaction of a mesoscopic system with an active bath, in particular at the onset of spontaneous oscillations as is the case of oscillators near a critical point [27, 33]. Recent work in stochastic thermodynamics have revamped the interest on the entropy production near phase transitions [34–36, 38–40], however little is known yet about the non-Markovian effect on the thermodynamics of driven systems embedded in non-equilibrium baths [41–45].

In this work, we focus our efforts on the fluctuations of a driven non-linear (so-called Adler) oscillator in the presence of an active bath. The model describes the motion of a driven Brownian particle in a non-linear periodic potential in the presence of an active bath, see figure 1(a) for an illustration. The motion of the particle is governed by the following one-dimensional overdamped Langevin equation

\[\gamma \dot{x}_t = f - k \sin \left(\frac{2\pi x_t}{L} \right) + \eta_t. \]

In equation (1), \(x_t \) denotes the net distance travelled by the oscillator, \(L \) the period of the nonlinear potential, \(\gamma \) the friction coefficient, \(f \) the external driving torque, \(k \) is the strength of the periodic potential, and \(\eta_t \) is a Gaussian colored noise with zero mean \(\langle \eta_t \rangle = 0 \) and autocorrelation

\[\langle \eta_t \eta_{t'} \rangle = \frac{\gamma^2 D_\eta}{\tau} \exp(-|t - t'|/\tau), \]

i.e. \(\eta_t \) is an Ornstein–Uhlenbeck process. The choice of the correlation function (2) is far from arbitrary; it is inspired in experimental work where the motion of a colloid in a bath of \(E. Coli \) bacteria was described with an instantaneous friction kernel and exponential auto-correlation function [46, 47].

In the absence of noise, equation (1) describes a well-known dynamical system [56] with a saddle-node bifurcation at the critical point \(f = k \) at \(x^* = \pi/2 \). The system relaxes to a stable
Figure 1. (a) Sketch of the active-matter model studied in this work: a driven non-linear stochastic oscillator in an active bath described by equations (1) and (2). A Brownian particle (gray sphere) driven by a torque f is confined in a ring (blue line) and moves in a non-linear potential (orange line) within an active bath, here illustrated with green bacteria. (b) Stochastic trajectories of the total net distance x_t covered by the particle as a function of time t for bath correlation times $\tau = 0.1$ (blue, orange, and green dotted lines) and $\tau = 1$ (red, purple, and violet solid lines): trajectories below the critical point (top, $f = 4$) and above the critical point (bottom, $f = 7$) of the oscillator. The data were obtained from simulations of equations (1) and (2) with time step $\Delta t = 10^{-2}$ using Heun’s numerical integration scheme. The rest of the parameters of the simulations were set to $\gamma = 1$, $L = 2\pi$, $k = 6$ and $D_a = 1$.

fixed point at $x^* = (2\pi/L) \arccos(\sqrt{1 - (f/k)^2})$ when $0 < f/k < 1$, whereas when $f/k > 1$ the system just keeps on oscillating at a frequency that, besides the system parameters, is dependent on the phase of the oscillator. We remark that the variable x_t is obtained by unwrapping the phase of the oscillator $\theta_t = 2\pi x_t/L$ to the real line. Hence, the dynamics of x_t in the presence of noise is akin to the motion of a particle in a one-dimensional tilted periodic potential.

A key feature of the model given by equations (1) and (2) is that, irrespective of the noise properties, the dynamics evolves into a non-equilibrium steady state with time-independent and homogeneous probability current. The thermodynamic signature of such driven motion is characterized by work dissipation and entropy production. Little is known about the stochastic thermodynamics of nonequilibrium non-linear systems immersed in active baths, for example what is the effect of the correlation time of the bath on the average power dissipated and on the work fluctuations? To capture the stochastic thermodynamics induced by the active bath, we will also assume the effect of a thermal bath to be negligible compared to the activity of the bath, which can be experimentally obtained controlling the motility of the bacteria [24, 48].
Such approximation is valid at high concentration of oxygen sources in \textit{E. Coli} bacterial baths [48].

In this article, we discuss the stochastic thermodynamics of the driven oscillator in a bacterial bath described by equations (1) and (2). In section 2, we study the average power inputted into the system in the steady state in the presence of an active bath and compare it with results obtained in the thermal bath limit of small correlation times. Because the system is externally controlled only through a constant external torque, the statistics of the power can be extracted from the current statistics in the stationary state. In section 3, we tackle fluctuations and uncertainty of the work done on the system by looking at its variance and Fano factor, and discuss our results in the context of thermodynamic uncertainty relations. In section 4, we provide numerical estimates of the power exerted in an experimentally realizable setup of a colloidal particle immersed in a bacterial bath. Finally, in section 5 we review the results and explore generalizations to a broader class of stochastic models.

2. Steady-state average power: critical point and beyond

Statistical properties of the driven oscillator (1) have been thoroughly studied for the case of η given by a Gaussian white noise [49]. In the presence of a bath, the variable x can access the entire phase space and fluctuations blur the separation between stalling at the fixed point and the oscillating dynamics. As a consequence the average power becomes an analytic function of external torque even at the critical point, as we will show below. We also discuss how the active bath influences on the power exerted into the system.

The Langevin equation (1) yields a non-Markovian dynamics for x when $\tau > 0$. For analytical ease it is useful to map the dynamics to a Markovian system, by adding an additional degree of freedom [50, 51]. Here we will use the Ornstein–Uhlenbeck process to capture the exponential correlations of the active bath given by equation (2). The corresponding two-dimensional Markovian Langevin equation is given by

$$\dot{x}_t = v_f - v_k \sin(2\pi x_t/L) + \eta_t,$$

$$\tau \dot{\eta}_t = -\eta_t + \sqrt{2D_a \xi_t},$$

where we have introduced the drift variables

$$v_f = f/\gamma, \quad v_k = k/\gamma,$$

and ξ_t is a Gaussian white noise with zero mean $\langle \xi_t \rangle = 0$ and autocorrelation $\langle \xi_t \xi_{t'} \rangle = \delta(t - t')$. Following reference [52] we rewrite equations (3) and (4) as an underdamped Langevin equation

$$\gamma \tau \ddot{x}_t = -\gamma \left[1 + \frac{2\pi v_k \tau}{L} \cos(2\pi x_t/L) \right] \dot{x}_t + f - k \sin(2\pi x_t/L) + \sqrt{2\gamma k_B T_{\text{eff}}} \xi_t,$$

where we have introduced an effective temperature defined as

$$T_{\text{eff}} = \frac{\gamma D_a}{k_B}.$$

Equation (6) is particularly illuminating to understand the dynamics of the model, and useful in the derivation of Markovian approximation as we will show in section 2.5.1. It reveals that
\(m_{\text{eff}} = \gamma \tau \) can be interpreted as an ‘effective mass’ controlling the inertia of the oscillator. Furthermore, one can define a space-dependent effective friction coefficient as

\[
\gamma_{\text{eff}}(x) \equiv \gamma \left[1 + \left(2 \pi \nu_{k} \tau / L \right) \cos(2 \pi x / L) \right]. \tag{8}
\]

Note that for functions which depend only on the spatial variable \(x \), we often remove the subscript. For large correlation times \(\tau \geq L / 2 \pi \nu_{k} \) the effective friction may even take negative values, a feature that can lead to active spontaneous oscillations even for \(f = 0 \) \([53]\). When \(L > 2 \pi \) we can approximate \(\gamma_{\text{eff}}(x) \approx \gamma \left[1 + 2 \nu_{k} \tau / L \right] - 4 \pi \nu_{k} \tau^{2} / L^{2} \) and \(\sin(2 \pi x / L) \approx 2 \pi x / L \), such that equation (6) becomes analogous to a driven Van der Pol oscillator \([54, 55]\).

In what follows we will focus our efforts in deriving finite-time statistics of our active-matter model for which analytical calculations are particularly challenging. The active noise is characterized by its strength and also its exponential autocorrelation through its two independent parameters \(D_{a} \) and \(\tau \), which is a result of the coarse-grained dynamics of the oscillator within the bacterial bath. The noise parameters \(D_{a} \) and \(\tau \) may be experimentally controlled e.g. in a bacterial bath by changing the density of the bacteria or the resources available to them (e.g. food, oxygen, etc). Interestingly, increasing the correlation time \(\tau \) has two competing effects in the dynamics of the oscillator: a ‘cooling’ effect corresponding to a decrease of strength of the active noise and an enhancement of the persistence in the oscillator’s motion. We will often make use of two limits that are of particular physical relevance:

- Thermal bath limit \((\tau \to 0 \text{ and } T_{\text{eff}} \to T)\). Using the effective Einstein relation (7) and the property \(\lim_{\tau \to 0} \exp(-|x|/\epsilon) = 2 \delta(x) \) one gets \(\lim_{\tau \to 0}(\gamma^{2} D_{a} / \tau) \exp(-|t - t'|/\tau) = 2 \gamma k_{B} T \delta(|t - t'|) \), and equation (6) becomes a driven overdamped Langevin equation of a Brownian particle in a thermal bath at temperature \(T \). Within this limit we assume Einstein’s relation \(D = k_{B} T / \gamma \).
- Deterministic limit \((D_{a} \to 0)\). This leads to a dynamical system with a saddle-node bifurcation at the critical point \(f = k \), whose vicinity is characterized by a scaling behavior with respect to the dynamical quantities. Note that \(\tau \to \infty \) also corresponds to the deterministic limit, as from equation (2) \(\eta \) becomes fully correlated while \(D_{a} / \tau \to 0 \).

2.1. Steady-state power

In the presence of the bath, the fluctuations help the oscillator to escape the potential minimum near the fixed point and to complete full rotations (see figure 1(b), bottom). Such dynamics is characterized by a work input by the external torque on the system, which can be quantified using stochastic thermodynamics. Stochastic energetics \([57]\) of active-matter systems is a fruitful area of research \([14, 16, 44, 58]\). For our analysis, we consider the following prescription for the first law of thermodynamics. Let \(U_{t} = -(kL / 2 \pi) \cos(2 \pi x_{t} / L) \) be the energy of the system at time \(t \). The change of the internal energy of the system in the time interval \([0, t]\), \(\Delta U_{t} = U_{t} - U_{0} = Q_{t} + W_{t} + A_{t} \), is decomposed into three different terms. First, the work done on the system \(W_{t} \) has only contributions from the non-conservative torque and is hence given by

\[
W_{t} = \int_{0}^{t} f \dot{x}_{s} \, ds = f(x_{t} - x_{0}), \tag{9}
\]

\(^{5}\) In a more general scenario where the potential is controlled externally following a deterministic time-dependent protocol, the work done on the system reads, \(W_{t} = \int_{0}^{t} \partial_{x} U(x_{s}, x) \, ds + \int_{0}^{t} f \dot{x}_{s} \, ds \) \([57]\).
Second, the heat absorbed Q_t by the system is the energy exchanged with the thermal bath, i.e.,

$$Q_t = -\int_{t_0}^{t} \gamma \dot{x}_t \circ dx_t,$$

where \circ denotes the Stratonovich product [57]. Third, following reference [44], we define the energy exchanged by the system with the active bath as

$$A_t = \int_{0}^{t} \eta_s \circ dx_s.$$

Note that in this prescription, the active noise plays the role of an additional non-conservative force that cannot be measured directly in experiments.

We now use the stochastic energetics framework described above to discuss long-time properties of the work exerted on the oscillator. To this end, we realize that its average value is extensive with time $\langle W_t \rangle \propto t$, hence it is interesting to study the power inputted into the system in the stationary limit. At the steady state, the average power done by the external torque is given by

$$\langle \dot{W} \rangle = f\langle \dot{x} \rangle_{st}$$

where in the second line we have used equation (1) and introduced the steady-state average $\langle F(x) \rangle_{st} \equiv \int dx P_{st}(x)F(x)$ for any real function $F(x)$. One may note that the power is proportional to the particle current, \dot{x}, an important theme in the study of Brownian motors [26].

Since the Langevin equation is non-linear, it is usually easier to work at the level of ensembles to compute the statistics of different thermodynamic quantities. Indeed, the associated Fokker–Planck equation is a linear partial differential equation with non-linear coefficients.

2.2. Power exerted in a thermal bath

First, we discuss as an appetizer the thermal bath limit $\tau \to 0$ and $T_{\text{eff}} \to T$ in which the stationary distribution $P_{st}(x)$ obeys

$$\frac{d}{dx} \left[\left(-v_f + v_k \sin \left(\frac{2\pi x}{L} \right) \right) P_{st}(x) \right] + D \frac{d^2 P_{st}(x)}{dx^2} = 0,$$

which follows from taking $\partial_t P(x, t) = 0$ in the associated Fokker–Planck equation. Following reference [59] we derive in appendix A an exact analytic expression for the average power

$$\langle \dot{W} \rangle = \frac{2Df}{L} \sinh \left(\frac{v_f L}{2D} \right) I_{\frac{v_f L}{2\pi D}} \left(\frac{v_f L}{2\pi D} \right) \left(\frac{v_k L}{2\pi D} \right).$$

Here, $I_z(y)$ is the modified Bessel function of first kind with purely imaginary order, with z and y two real numbers. From equation (15) it can be shown that the average power has a power-law behavior at the critical point ($f \simeq k$) in the limit of D small (see appendix A), given by

$$\langle \dot{W} \rangle = \frac{3^{4/3} \Gamma(2/3)^2}{(4\pi)^{1/3}} - f v_f^{2/3} \left(\frac{D}{L} \right)^{1/3} \approx 1.47 \left(\frac{f^2 D}{\gamma^2 L} \right)^{1/3}.$$

Figure 2 shows that equations (15) and (16) are in excellent agreement with results obtained from numerical simulations of equation (1) in the thermal bath limit, for a wide range of parameters that we explore both below and above the critical point. When the friction and noise
Figure 2. (a) Average power inputted into the oscillator \(\langle \dot{W} \rangle\) in the thermal bath limit \((\tau = 0\) in equations (1) and (2)) as function of the scaled driving torque \(f/k\) for different bath temperatures (see legend): numerical simulations (symbols) and exact analytical expression (15) (lines). (b) Scaling of the average power with \((f^5D/\gamma^2L)\) at the critical point \(f = k\): numerical simulations (symbols) and equation (16). In (a) the parameters of the simulations were set to \(L = 2\pi, \gamma = 1, k = 6\); in (b) \(k = 6\). For both panels we performed \(10^4\) simulation runs each with time step \(\Delta t = 10^{-2}\) and duration \(t_{\text{sim}} = 800\).

balance, the system is transported at a certain average velocity which grows with the bath temperature. Even though the fluctuations are symmetric, the asymmetry caused by the external torque entails an increase of the power with the temperature of the bath as the noise helps to overcome barriers, until it saturates to \(\langle \dot{W} \rangle = f^2/\gamma\) for \(T \to \infty\). The power is a smooth function of \(f/k\) everywhere and exhibits a non-analytic behavior (i.e. discontinuity of its first derivative) in the critical point only in the deterministic limit \((D \to 0)\),

\[
\langle \dot{W} \rangle = \begin{cases} 0, & f \leq k, \\ \frac{f}{\sqrt{v_f^2 - v_c^2}}, & f > k \end{cases} \tag{17}
\]

similarly to a second-order phase transition. Note that in this limit, the average power is independent of the noise strength but also of the period length of the potential \(L\). Figure 2(b) confirms with numerical simulations the scaling of the power with the noise strength as \(D^{1/3}\). Note that the scaling exponent in the thermal bath is dependent on the normal form of the potential [60].

2.3. Power exerted in an active bath

We now ask the question of how controlling the correlation time \(\tau\) of the active bath impacts on the average power exerted in the oscillator near its critical point. To answer this question we plot in figure 3 results from simulations for the stationary power as a function of the reduced torque \(f/k\), for different values of the bath correlation time. Figure 3(a) shows that the power is bounded from below and above by its value in the deterministic \((\tau \to \infty)\) and thermal bath \((\tau \to 0)\) limits, respectively, for the values of \(f\) that we explored. The dependency of the power with \(\tau\) for a given value of \(f\) is highly non-trivial, and a key result of our work that we explain below in section 2.4.
Figure 3. (a) Average steady-state power exerted on the oscillator equations (1) and (2) as a function of the scaled external torque for different correlation times of the bacterial bath: simulations (symbols), analytical expression in the thermal bath limit (equation (15), blue solid line) and analytical expression in the deterministic limit (equation (17), red dotted line). Simulation parameters: $L = 2\pi$, $\gamma = 1$, $k = 6$, $D_a = 1$, $\Delta t = 10^{-2}$. For $\tau = 0.01$ we used $\Delta t = 10^{-3}$. (b) Scaling of the steady-state power with D_a/τ for different correlation times τ and noise strength D_a of the bacterial bath. The solid purple line is to show the different power law nature of the average power $\langle \dot{W} \rangle \sim D^{1/3}$ in the thermal and $\langle \dot{W} \rangle \sim D_a^{1/4}$ of the active bath for any fixed τ. Simulation parameters: $\gamma = 1$, $L = 2\pi$, $f = \frac{k}{2\pi}$, $\Delta t = 10^{-2}$. All these simulations are done for a duration of $t = 400$ in the steady state.

The presence of non-linear potential gives rise to scaling behaviour at the critical point, whose characteristics depend on the form of potential and the properties of the bath. Our numerical results reveal that the average power has a scaling behavior as function of strength of the noise, $\langle \eta_t^2 \rangle = D_a/\tau$, for small values of (D_a/τ) as shown in figure 3(b). These results suggest the scaling behavior

$$\langle \dot{W} \rangle \sim \left(\frac{D_a}{\tau} \right)^{\beta},$$

such that the critical exponent, $\beta = 0.25 \pm 0.01$, which we conjecture to be equal to $1/4$. We remark that the proportionality constant accompanying the term $(D_a/\tau)^{1/4}$ may depend on other parameters of the system. Therefore, we find that the power exerted on the oscillator at its critical point in a bacterial bath displays a slower growth with $D_a^{1/4}$ than with the diffusion coefficient $D^{1/3}$ when immersed in a thermal bath.

2.4. Minimum power in active baths

In this subsection we provide further details about the dependency of the stationary power with the bacterial bath correlation time both below and above the critical point. We first discuss here results from numerical simulations and compare them with theoretical predictions in the thermal bath and deterministic limit.
Below the critical point \(f < k \) the power decreases monotonously with the bacterial bath correlation time (see figure 4(a)) from its thermal bath limit to its deterministic limit. Qualitatively, this behavior can be captured by a driven oscillator in a thermal bath with a temperature that decreases monotonously with \(\tau \). Hence below the critical point, the increasing correlation time of the bath corresponds to an ‘effective cooling’ of the oscillator.

Above the critical point \(f > k \) the power displays a non-monotonous behavior with the bath correlation time \(\tau \) (see figure 4(b)). For small correlation times, the average power decreases with \(\tau \) to a minimum value that can be below the deterministic (i.e. zero temperature) limit. We denote \(\tau_c \) the optimal bath correlation time at which the power is minimized. For larger values of \(\tau \) the power increases from its minimal value to its deterministic limit.

The non-monotonous behavior of \(\langle W \rangle \) vs \(\tau \) results from a competing effect between the decreasing strength of the noise at small \(\tau \) and the effect of increasing persistence for large \(\tau \). For small persistence times \(\tau < \tau_c \), the bacterial bath has an effective ‘cooling effect’ on the oscillator thus decreasing the average power exerted on its motion. For \(\tau > \tau_c \) the persistent motion of the bacteria enhance the current of the oscillator until its deterministic limit for \(\tau \to \infty \).

2.5. Approximation methods

A fully analytical solution of the stationary probability density and thus of the power is particularly challenging and not yet available to our knowledge. Over the last decades, a series of approximations have been developed to tackle fluctuations of stochastic systems in the presence of colored noise, see e.g. [61–66]. The presence of an exponential autocorrelation function implies that the Kramers–Moyal expansion does not converge to a standard Fokker–Planck equation, but to the following partial differential equation with a memory kernel [62].
2.5.1 Small τ approximations. Recently, several approximations have been introduced in the literature to discuss stochastic systems which relax to a nonequilibrium stationary state in the presence of colored noise [14, 52, 67]. Notably such approximations are suited for systems where the coarse-grained probability current (e.g. along the variable x) vanishes, i.e. these approximations predict the same stationary distribution $P_\infty(x)$. A celebrated approximation to equation (19) was developed by Fox in reference [63] using functional calculus. When applied to our model equations (3) and (4) Fox’s approximation yields

\[
\frac{\partial P_{\text{Fox}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\left(v_f - v_k \sin \left(\frac{2\pi x}{L} \right) \right) P_{\text{Fox}}(x,t) \right] + D \frac{\partial^2}{\partial x^2} \left[\frac{P_{\text{Fox}}(x,t)}{1 + (2\pi v_k \tau/L) \cos \left(\frac{2\pi x}{L} \right)} \right].
\]

(20)

where $P_{\text{Fox}}(x)$ stands for the propagator of an auxiliary Markovian process described by the Fokker–Planck equation (20). Such dynamics follows a heterogeneous diffusion process whose statistics converge to that of the actual process $P_{\infty}(x,t) \simeq P(x,t)$ in the limit of τ small. On the other hand, the so-called unified colored noise approximation (UCNA) provides an accurate description both in the limit of τ small and τ large, for Langevin systems moving in conservative potentials. Note that UCNA is formulated at the trajectory level in the (abatic approximation (i.e. neglecting inertial contributions) for $\tau \rightarrow 0$ and $\tau \rightarrow \infty$ yields an overdamped Langevin process whose corresponding Fokker–Planck equation is given by

\[
\frac{\partial P_{\text{UCNA}}(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\left(v_f - v_k \sin \left(\frac{2\pi x}{L} \right) \right) \frac{P_{\text{UCNA}}(x,t)}{1 + (2\pi v_k \tau/L) \cos \left(\frac{2\pi x}{L} \right)} \right] +\]

\[D \frac{\partial^2}{\partial x^2} \left[\frac{1}{1 + (2\pi v_k \tau/L) \cos \left(\frac{2\pi x}{L} \right)} \right] \times \frac{\partial}{\partial x} \left[\frac{P_{\text{UCNA}}(x,t)}{1 + (2\pi v_k \tau/L) \cos \left(\frac{2\pi x}{L} \right)} \right].
\]

(21)

A key difference between Fox’s and UCNA approximations is that their probability currents are related by a space-dependent prefactor $J_{\text{UCNA}}(x,t) = \left[1 + \frac{2\pi v_k \tau}{L} \cos \left(\frac{2\pi x}{L} \right) \right]^{-1} J_{\text{Fox}}(x,t). As
Figure 5. (a) Average steady-state power inputted into the system given by equations (1) and (2) as a function of the correlation time of the bacterial bath: simulations (blue circles), theoretical approximations UCNA $\langle \dot{W} \rangle_{\text{UCNA}}$ (black solid line), and Fox’s $\langle \dot{W} \rangle_{\text{Fox}}$ (red dotted line), and large-τ approximation $\langle \dot{W} \rangle_{LT}$ given by equation (24) (green dashed line). The vertical line is set to $\tau^* = L/(2\pi v_0)$ where both approximations become non-physical. (b) Stationary distribution of the phase $\phi = x \mod L$ for different correlation times of the bath: $\tau = 1$ (simulations blue circles, Fox’s approximation blue solid line) and $\tau = 4.5$ (simulations red circles, Fox’s approximation red dashed line). Inset: probability density of the finite-time velocity obtained from simulations for $\tau = 1$ (blue solid line) and for $\tau = 4.5$ (red dashed line). Parameters of the simulations: $f = 2.5$, $k = 2$, $\gamma = 1$, $D_0 = 1$, $L = 20\pi$. The instantaneous velocity was computed using first order finite difference method in the simulations.

As a consequence, in nonequilibrium conditions ($f \neq 0$) the stationary distributions obtained from Fox’s approximation and UCNA are in general different for any $\tau > 0$, see equations (C.1) and (C.3) in appendix C. This implies that even though the two approximations lead to the same equilibrium distributions (i.e. for $f = 0$), their corresponding nonequilibrium stationary states (i.e. for $f \neq 0$) are different. We remark that the regime of applicability of Fox’s approximation and UCNA is restricted to values of τ such that the effective space-dependent diffusivity in Fox’s and the space-dependent viscosity in UCNA are positive, i.e. when $\tau < \tau^* \equiv L/2\pi v_0$.

We now apply UCNA and Fox’s approximation to obtain estimates of the steady-state power in our active-matter model. To this aim, we evaluate the steady-state average in the definition of the power, see equation (13), by averaging $\sin(2\pi x/L)$ with the numerical stationary solution of equations (20) and (21), yielding the estimates $\langle \dot{W} \rangle_{\text{Fox}}$ and $\langle \dot{W} \rangle_{\text{UCNA}}$, respectively. We investigate the dependency of these estimates with τ above the critical point and compare them with the simulation results reported in the previous section.

Figure 5(a) shows $\langle \dot{W} \rangle_{\text{UCNA}}$ increases monotonously for τ and hence fails to predict the behavior of average power (further numerical evidence can be found in appendix C). On the other hand, $\langle \dot{W} \rangle_{\text{Fox}}$ reproduces the decreasing behavior of the power, and an excellent estimate, for small values of the correlation times at which the stationary distribution of the velocity is close to Gaussian (see figure 5(b)). Both UCNA and Fox’s approximation are unable to predict the power optimization at finite correlation times, which occurs at a time beyond their range of applicability for the example in figure 5. Notably we find that the non-monotonous behavior in the average power is associated with the non-Gaussian distribution of the angular velocity \dot{x} which cannot be captured by Fox’s approximation and UCNA unless one considers higher-order contributions in both (x, \dot{x}) to capture it [52, 67].
2.5.2. Large \(\tau \) approximation. The Fokker–Planck equation associated with the Markovian two-dimensional Langevin equations (3) and (4) in the \((x, \eta)\) space is given by

\[
\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[(v_f - v_k \sin(2\pi x/L) + \eta) P \right] + \frac{\partial}{\partial \xi} \left[\left(\frac{\eta}{\tau} + \frac{D_a}{\tau^2} \frac{\partial}{\partial \eta} \right) P \right],
\]

where \(P \equiv P(x, \xi, t) \) is the probability density to be at \(x_i = x \), and \(\xi_i = \xi \) at time \(t \). In the large correlation time limit, we may neglect the second term in the right-hand side of equation (22) to solve the stationary large-\(\tau \) (LT) marginal distribution

\[
P_{LT}(x) = N^{-1} \left[\frac{1}{v_f - v_k \sin(2\pi x/L)} \right.
\]

\[
\left. + \frac{1}{2} \left(\frac{2D_a}{\tau} \right)^2 \left[\frac{1}{(v_f - v_k \sin(2\pi x/L))^2} \right] + O[(D_a/\tau)^3] \right],
\]

where \(N \) is a normalization factor that depends on the order to which the sum in equation (23) is truncated. Taking terms up to order \(2D_a/\tau \) in \(P_{LT}(x) \), we derive in appendix B a closed form for average power inputted into the system in the large-\(\tau \) approximation, given by,

\[
\langle \dot{W}_{LT} \rangle = \frac{\tau f(v_f^2 - v_k^2)^{3/2}}{(v_f^2 + v_k^2/2)D_a + \tau(v_f^2 - v_k^2)}. \quad (24)
\]

Note that equation (24) converges at large \(\tau \) to the value of the power in the deterministic limit above the critical point of the oscillator, cf equation (17).

Figure 5(a) shows that the approximation given by equation (24) converges from below, at large \(\tau \), to the value of the power obtained from numerical simulations. Even though for the parameters analyzed \(\langle \dot{W}_{LT} \rangle \) provides a loose lower bound for intermediate values of \(\tau \), it captures the increasing behavior of the average power at large \(\tau \) which cannot be reproduced using UCNA and Fox’s approximation.

3. Fluctuations and uncertainty relations

At the mesoscopic scale, fluctuations play a key role in determining the phenomenology of driven oscillators [68–70]. Recent works have established a thermodynamic relation between the minimum rate of dissipation needed to achieve a desired amount of uncertainty within the so-called thermodynamic uncertainty relations [17,71–75]. Motivated by these recent works, we evaluate in this section the fluctuations (variance and Fano factor) of stochastic work exerted to the oscillator in our active-matter model.

To explore the uncertainty in the fluctuations of the work exerted on the oscillator, we evaluate the variance of the stochastic work \(\text{Var}(W_i) = f^2 \langle (x_i^2)_{\text{st}} - (x_i^2) \rangle \). In the thermal bath limit, the variance of the work inputted into the system can be computed in the limit large observation times \(t \) following reference [60], which yields

\[
\text{Var}(W_i) \simeq 2f^2 Df \int_0^L \frac{dx}{x} \left[\int_0^L \frac{dx}{x} f_i(x) \right]^2, \quad (25)
\]

where
\[I_{\pm}(x) = \int_0^L \frac{dx'}{D} \exp \left[\mp kL \cos \left(\frac{2\pi x}{L} \right) \pm kL \cos \left(\frac{2\pi (x + x')}{L} \right) - \frac{2\pi f x}{2\pi k_B T} \right]. \]

(26)

Equation (25) reveals the phenomenon of ‘giant acceleration’ of free diffusion [60] i.e. an enhanced effective diffusion coefficient above the bare diffusivity \(D \) occurring near the critical point of the oscillator. For the case of an oscillator within an active bacterial bath, an analytical expression for the work variance is yet not available to our knowledge.

We analyze the dependency of the work variance with the external torque near the critical point of the oscillator in a thermal bath and an active bacterial bath in figures 6(a) and 6(b) respectively. In the thermal bath limit, the work variance develops a peak near the critical point for small temperatures. This result is a signature of the underlying bifurcation of the non-linear dynamical system, as near the bifurcation point, there is an equal contribution of the variances from oscillating and trajectories stalled at the fixed point. By increasing the bath temperature the work variance increases and its peak value is attained at larger values of the external torque. We also find a scaling behavior \(\text{Var}(W_t) \sim D^{1/3} \) for fixed observation times (data not shown) as expected from equation (25). Notably, in the deterministic (i.e. zero-temperature) limit, the variance is zero for all parameter values.

Within the bacterial bath, the finite-time work variance presents a dependency with the torque that depends strongly on the correlation time of the bath, see figure 6(b). For the parameter values that we explored, we find that below and above the critical point the work variance is below its thermal bath limit, for any value of the bath correlation time \(\tau \). On the contrary, the work variance is enhanced at the oscillator’s critical point when increasing \(\tau \) which is accompanied by a sharpening of the peak as a function of the scaled torque. This is one of key differences between going to the deterministic case, through the two limits: \(D_a \to 0 \) (figure 4(a)) and \(\tau \to \infty \) (figure 4(b)).

For a precise motion of a fluctuating oscillator in the form of a ‘clock’ [76] it is desirable that its time-integrated current \(x \) and hence \(W_t \) display low values of uncertainty, which is associated with a minimal thermodynamic cost i.e. entropy production, following the so-called thermodynamic uncertainty relations. We now discuss the tradeoff between cost and precision by analyzing the value of the Fano factor of the stochastic work \(F_{W_i} = \frac{\text{Var}(W_i)}{\langle W_i \rangle} \) [77–79]. In the thermal bath limit, we have that \(\langle W_i \rangle = \langle W \rangle t \) and also \(\text{Var}(W_i) \propto t \) at large times. Hence for large \(t \), the Fano factor of the work in the thermal bath limit reaches a saturating, finite value given by

\[F_{W_i} = 2 f_D \frac{\int_0^L \frac{dx}{T} I_{\pm}(x) I_-(-x)}{\left(1 - \exp \left[-fL/(k_B T) \right] \right) \left[\int_0^L \frac{dx}{T} I_{\pm}(x) \right]}. \]

(27)

where the functions \(I_{\pm}(x) \) were defined in equation (26). Figure 7(a) shows that the oscillator has highest degree of uncertainty (Fano factor), in a thermal bath, for values of the torque below the critical point, and develops a local maximum for values of \(f \) converging to the critical point in the deterministic limit. Far above the bifurcation point the oscillator obeys the thermodynamic uncertainty relation, \(F_{W_i} \geq 2k_B T \) [17, 80] for all values of the bath temperature. We also find that the bound is saturated in the drift–diffusion limit of the system, i.e. when \(f \gg k \) and the non-linearity of the potential is negligible.
Figure 6. (a) Variance in work exerted into the oscillator immersed in a thermal bath as function of scaled driving torque for different temperatures (see legend): simulations (symbols) and analytical expression equation (25). Parameters: $\gamma = 1, L = 2\pi, k = 6$ and observation time $t = 800$. (b) Variance of the work exerted on the oscillator in an active bacterial bath as function of scaled driving torque for different bath correlation times. Parameters: $\gamma = 1, L = 2\pi, k = 6, D_a = 0.01, \Delta t = 10^{-2}$ and observation time $t = 400$.

Figure 7. (a) Finite-time Fano factor $F_{W_t} = \text{Var}(W_t) / \langle W_t \rangle$ for the work W_t exerted on the oscillator in a thermal bath as a function of the scaled driving torque for different values of the bath temperature (see legend). (b) Finite-time Fano factor for the work exerted on the oscillator in a bacterial bath as a function of the scaled driving torque for different values of the bath correlation time. In (a) and (b) the symbols are obtained from numerical simulations with parameters: $\gamma = 1, L = 2\pi, k = 6, t = 800, \Delta t = 10^{-2}$ for (a), and $\gamma = 1, L = 2\pi, k = 6, D_a = 1, t = 400, \Delta t = 10^{-2}$ for (b). The solid line in panel (a) is obtained from the analytical expression given by equation (27).

In the presence of an active bacterial bath, the work variance peaks below the critical torque, see figure 7(b). When increasing the correlation time of the bath, the optimal value of the torque that leads to maximum work variance shifts towards the critical point, and the power peak becomes sharper. Notably, we conjecture the following thermodynamic uncertainty relation
Figure 8. Numerical verification of the thermodynamic uncertainty relation for active matter (28) above the critical point $f > k$ of the oscillator. The points correspond to ~ 600 values of f, t and τ randomly picked from the range $f \in [8, 70]$, $t \in [1, 40]$ and $\tau \in [50, 200]$ respectively. The solid red line is given by the right-hand side of equation (28). Parameters: $\gamma = 1, L = 2\pi, k = 6, D_a = 1, \Delta t = 5 \times 10^{-3}$. Each of the averages were computed from 2×10^4 trajectories.

for active matter

$$F_{\text{Wi}} \geq 2 k_B T_{\text{eff}} \left[1 - \frac{1 - \exp(-t/\tau)}{t/\tau} \right],$$

which we test numerically in figure 8 for a broad range of system parameters. Note that the right-hand side of the bound (28) equals to the work Fano factor in the limit $f \gg k$ where the oscillator dynamics is a drift–diffusion process in the presence of colored noise (see appendix D). An analogous uncertainty relation for underdamped nonequilibrium Langevin systems was recently derived in Ref. [81]. Figure 8 reveals that a precise input of power in the system with can be achieved within an active bath at large torque $f > k$ and/or observation times comparable or smaller than the bath correlation time $t < \tau$.

4. Connection to experiments: minimal power in bacterial baths

Finally we draw a swift connection to experiments by providing predictions using numerical simulations of our model for parameter choices that are close to previously published experimental works. Gomez–Solano et al performed experiments with driven colloidal particles in water trapped with a toroidal optical trap [82, 83]. In such experiments, the dynamics of the phase was accurately described by Langevin overdamped system subject to a non-linear optical force and to thermal noise, similarly to our model given by equations (1) and (2) in the thermal bath limit. On the other hand, references [24, 47, 48] reported experiments studying the diffusion of micron-sized spherical particles in a film filled with E. Coli bacterial cells harvested from culture media. In particular, the mean-squared displacement of polystyrene beads moving in a freely-suspended bacterial film was accurately described with an instantaneous friction memory kernel and Gaussian colored noise.
Figure 9. (a) Average stationary power inputted into the oscillator in a bacterial bath, described by equations (3) and (4), as a function of the bath correlation time. The inset shows the average stationary current (in revolutions per minute, rpm) as function of correlation time. The results are obtained from numerical simulation of equations (1) and (2) for torque values \(f = 0.95 \text{ rad s}^{-1} \) (yellow diamonds), \(f = 1 \text{ rad s}^{-1} \) (blue squares), and \(f = 1.1 \text{ rad s}^{-1} \) (red circles). The vertical bars are set to the optimal correlation time at which the average power is minimal (\(f = 0.95 \text{ rad s}^{-1} \) solid, \(f = 1 \text{ rad s}^{-1} \) dashed, and \(f = 1.1 \text{ rad s}^{-1} \) dotted). Parameters: \(k = 0.87 \text{ rad s}^{-1} \), \(D_a = 0.63 \mu \text{ms}^{-2} \), and \(A dt = 10^{-2} \). (b) Average power as a function of the bath correlation time for different non-linear periodic potentials, see section 5 for details. Parameters: \(\gamma = 1, L = 2\pi, k = 6, f = 6.5, D_a = 1, A dt = 10^{-2} \).

Using knowledge from the aforementioned experimental work [47, 83], we provide some numerical predictions about the power done on a driven colloidal particle trapped in a toroidal optical tweezer and embedded in a bacterial bath, which yet has not been realized experimentally to our knowledge. We consider a spherical silica particle of radius \(r = 1 \mu \text{m} \) immersed in water at 293K with friction coefficient \(\gamma = 0.16, \text{pNs} \mu \text{m}^{-1} \), which is optically trapped in a toroidal potential of major radius \(R = 4.12 \mu \text{m} \). The strength of the optical potential is \(v_k = 3.6 \text{ rad} \mu \text{ms}^{-1} \). Because we are interested in values of external torque above the critical point we choose \(v_f = 4.2 \text{ rad s}^{-1} \), cf equations (3) and (4). For the active bacterial bath, we took parameter values from reference [47], corresponding to a microscopic particle immersed in an *E.Coli* bacterial bath. More precisely, we used \(D_a = 0.63 \mu \text{ms}^{-2} \) and correlation times of the orders of seconds. For this parameter values, the average power inputted into the particle is of the order of \(\sim 100k_B T \text{ s}^{-1} \) above the critical point, and the optimal correlation time at which the power is minimized is of the order of seconds, see figure 9(a). Interestingly, we also report estimates of the stationary angular current (figure 9(a) inset) which can be of the orders of 60 rpm (i.e. one revolution per second) for moderate values of the external torque, which highlights the possibility of constructing bacterial clocks at the microscale.

5. Discussion

We have shown that the presence of correlations in the noise induced by an active (e.g. bacterial) bath has measurable signatures in the nonequilibrium fluctuations of the work exerted on a non-linear oscillator. In this paper we focussed on Langevin systems given by equations (1)
and (2) which we used to describe the motion of a driven colloidal particle trapped in a periodic potential within a bacterial bath of *E. Coli*. Variants of this model have also been investigated in the context of self-propelled microswimmers confined in a ring, hearing by active mechanosensory hair bundles, and fluctuations of Josephson junctions.

Our numerical results show that the power fluctuations, which is directly related to the steady-state current statistics in our model, depend strongly on the correlation time of the active bacterial bath τ below, at, and above the critical point of the oscillator. Below the critical point, we have found that the average power at steady state is bounded, for all parameter values, from below by its zero-temperature (i.e. deterministic) limit and from above by its value in the limit of thermal fluctuations (i.e. when recovering fluctuation–dissipation). At the critical point, our simulations lead us to conjecture the power-law behaviour $\langle \dot{W} \rangle \sim (D_a/\tau)^{1/4}$, see equation (18), which is genuinely different to the scaling in the thermal bath limit $\langle \dot{W} \rangle \sim D^{1/3}$.

Moreover we found that the scaling of the stationary current in the bacterial bath with the force is $\langle \dot{x} \rangle_{st} \sim f^{\epsilon(\tau)}$, with $\epsilon(\tau) \leq 2/3$ a τ-dependent exponent for which $\epsilon(0) = 2/3$ in the thermal bath limit.

Furthermore, we have unveiled a very rich phenomenology of such active-matter oscillator above its critical point. In particular, both Fox’s and unified coloured noise (UCNA) approximations fail in describing the dependency of the average power as a function of the bath correlation time. Both approximations are unable to explain the key result of this work: the appearance of a minimum in the curve $\langle \dot{W} \rangle$ vs τ, which takes place at a correlation time that leads to negative effective friction coefficient. Strikingly, this result establishes that there exist an optimal correlation time τ^*, near which the average power is below the power done in the oscillator in the zero-temperature limit. By developing a new approximation valid at large τ we have established a new closed form of a lower bound for the power valid at large times and above the oscillator’s critical point, see equation (24). Moreover, we have established a link between the variance and Fano factor of the work and thermodynamic uncertainty relations, and found a finite-time uncertainty relation for active matter (28) that we tested valid in simulations above the critical point. Our bound provides further insights on the violation of the Markovian uncertainty relation as a result of the non Markovian footprints in the dynamics of active systems [84, 85].

It remains an open question to investigate whether the power optimization with the bath correlation time can be further discussed in relation with the frenetic aspects of nonequilibria [19, 20, 86, 87], and whether this result applies to a broader class of systems e.g. for active systems driven by time-dependent deterministic protocols. To serve an appetizer to this challenging task, we show in figure 9 that the power minimization also occurs for different forms of non-linear periodic potential. Hence, we hypothesize that the ingredients needed for this phenomenon are the following: (i) a non-linear periodic potential, (ii) external driving and (iii) an active bath. It will be interesting in the future to study the above phenomena in the context of Brownian motors [26, 88], bacterial ratchets [25], active colloidal heat engines [21, 22, 37], many-particle systems with long-range interactions in the onset of synchronization [89].

Acknowledgments

This work is part of Ministero Università Ricerca MUR-PRIN2017 project ‘Coarse-grained description for non-equilibrium systems and transport phenomena (CO-NEST)’ No. 201798CZL whose partial financial support is acknowledged. AG thanks The Abdus Salam International Centre for Theoretical Physics (ICTP) and Scuola Internazionale Superiore di
Studi Avanzati (SISSA) for the hospitality and financial support. We acknowledge Sarah Loos and Matteo Marsili for a careful reading of our manuscript. We thank Juan M R Parrondo, Andrea Puglisi, Lorenzo Caprini, Christopher Jarzynski, Roman Belousov, Matteo Polettini, Etienne Fodor, Yuzuru Sato, and Jacopo Grilli for stimulating discussions.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Derivation of average power in the thermal bath limit and its scaling form at the critical point

Derivation of equation (15). In the thermal bath limit, the oscillator dynamics is described by the one-dimensional Langevin equation

\[\gamma \dot{x}_t = f - k \sin \left(\frac{2\pi x}{L} \right) + \sqrt{2\gamma k_B T} \xi_t, \tag{A.1} \]

where \(\xi_t \) is Gaussian white noise with zero mean and autocorrelation \(\langle \xi_t \xi_{t'} \rangle = \delta(t - t') \). The Fokker–Planck equation associated with equation (A.1) is

\[\frac{\partial \hat{P}(x, t)}{\partial t} = -\frac{\partial}{\partial x} \left[\left(v_f - v_k \sin \left(\frac{2\pi x}{L} \right) \right) \hat{P}(x, t) \right] + D \frac{\partial^2 \hat{P}(x, t)}{\partial x^2}, \tag{A.2} \]

where \(\hat{P}(x, t) = \sum_{n=-\infty}^{\infty} P(x + nL, t) \) is the reduced probability density, which obeys the normalization condition \(\int_0^L \hat{P}(x, t) \, dx = 1 \) and \(P(x, t) = P(x \pm L, t) \) for all \(x \) and all \(t > 0 \). In the steady state, the probability current

\[\hat{J}(x) = \left(v_f - v_k \sin \left(\frac{2\pi x}{L} \right) \right) \hat{P}_s(x) - D \frac{\partial \hat{P}_s(x)}{\partial x}, \tag{A.3} \]

is constant and independent of \(x \). The solution of equation (A.2) satisfying the aforementioned boundary conditions is

\[\hat{P}_s(x) = C_1 \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \int_{-\infty}^x \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right] \, d\phi, \tag{A.4} \]

where the constants

\[a \equiv \frac{v_f}{D}, \quad b \equiv \frac{v_k L}{2\pi D}. \tag{A.5} \]

Now rearranging the above formula,

\[\hat{P}_s(x) = C_1 \exp [La] \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \]
\[\times \int_{-\infty}^{x+L} \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right] \, d\phi \]
\[= C_1 \exp [La] \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \]
\[\times \left(\sum_{n=0}^{\infty} \int_{x-nL}^{x-(n-1)L} \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right] d\phi \right) \]

\[= C_1 \exp[La] \left(\sum_{n=0}^{\infty} \exp(nLa) \right) \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \]

\[\times \int_{x}^{x+L} \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right] d\phi \]

\[= \frac{1}{N} \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \int_{x}^{x+L} \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right] d\phi, \]

(A.6)

where \(N \) is defined as

\[N = - \frac{(\exp[-La] - 1)}{C_1}. \]

(A.7)

We can fix \(C_1 \) by using the normalization condition \(\int_{0}^{L} \hat{P}_w(x)dx = 1 \),

\[N = \int_{0}^{L} dx \int_{x}^{x+L} d\psi \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \exp \left[- \left(a\phi + b \cos \left(\frac{2\pi \phi}{L} \right) \right) \right]. \]

(A.8)

Making a variable change \(\psi = \phi - x \), we get,

\[N = \int_{0}^{L} dx \int_{0}^{L} d\psi \exp \left[ax + b \cos \left(\frac{2\pi x}{L} \right) \right] \]

\[\times \exp \left[- \left(a(\psi + x) + b \cos \left(\frac{2\pi (\psi + x)}{L} \right) \right) \right] \]

\[= \int_{0}^{L} dx \int_{0}^{L} d\psi \exp \left[-a\psi + 2b \sin \left(\frac{\pi}{L} \psi/2 \right) \sin \left(\frac{\pi}{L} (x + \psi/2) \right) \right] \]

\[= \frac{L^2}{2\pi} \int_{0}^{2\pi} d\psi' \exp[-a'\psi']i_0[2b \sin(\psi'/2)]. \]

(A.9)

Making another variable change \(y = \frac{\psi - \phi}{2} \) for \(0 < \psi' < \pi \) and \(y = \frac{\psi - \phi}{2} \) for \(\pi < \psi' < 2\pi \), and \(a' = \frac{2\pi}{\pi}a = \frac{Lf}{2\pi}, \) we get

\[N = \frac{2\pi^2}{\pi} \exp[-La/2] \int_{0}^{\pi/2} dy \cosh(2a'y) i_0(2b \cos(y)) \]

\[= L^2 \exp[-La/2] I_{a'}(b)I_{-a'}(b), \]

(A.10)

where in the second line we have used the property

\[\int_{0}^{\pi/2} \cos(2\mu x)I_{2\mu}(2a \cos x)dx = \frac{\pi}{2} I_{\mu}(a)I_{\mu + \mu}(a), \]

(A.11)

where the \(I_{\mu}(x) \) is \(\mu \)th order modified Bessel function of first kind with purely imaginary order and real argument \(x \), and equivalently, \(I_{a}(x) \) is the \(a \)th order modified Bessel function of the first
kind and real order \cite{90}. Using equations (A.6) and (15) in equation (A.3) stationary probability current reads

\[J_\alpha = \frac{D}{N} \left(1 - \exp[-La] \right) = \frac{2D}{L^2} \sinh \left(\frac{Lv_f}{2D} \right) \left| \tilde{I}_{\frac{Dv_f}{2\pi D}} \left(\frac{v_kL}{2\pi D} \right) \right|^2. \]

(A.12)

Now using the above results, we can also derive the exact form of average angular frequency in steady state,

\[\langle \dot{k} \rangle_{st} = \frac{2D}{L} \sinh \left(\frac{Lv_f}{2D} \right) \left| \tilde{I}_{\frac{Dv_f}{2\pi D}} \left(\frac{v_kL}{2\pi D} \right) \right|^2. \]

(A.13)

\[\langle \dot{\epsilon} \rangle = f \langle \dot{k} \rangle_{st} = \frac{2D}{L} \sinh \left(\frac{Lv_f}{2D} \right) \left| \tilde{I}_{\frac{Dv_f}{2\pi D}} \left(\frac{v_kL}{2\pi D} \right) \right|^2. \]

(A.14)

From the previous definitions, we can derive an exact form for the average power inputted into the system, equation (15) in the main text, copied here for convenience

\[\langle \dot{\epsilon} \rangle_{st} = \frac{2D}{L} \sinh \left(\frac{Lv_f}{2D} \right) \left| \tilde{I}_{\frac{Dv_f}{2\pi D}} \left(\frac{v_kL}{2\pi D} \right) \right|^2. \]

(A.15)

Scaling form. In the limit \(f \to k \) and \(D \to 0 \), more precisely when \(\frac{k}{f} - 1 \sim \left(1/2 \right) \left(\frac{\gamma D}{f} \right)^{-2/3} \), we can approximate equation (A.15) as follows. Defining

\[u = \left(\frac{v_fL}{6\pi D} \right)^{2/3} \left(\frac{k-f}{f} \right), \quad w = \left(\frac{v_fL}{6\pi D} \right)^{1/3} \frac{\langle \dot{\epsilon} \rangle_{st}}{fv_f}, \]

(A.16)

we get, following \cite{59}

\[w = \frac{3}{2\pi u} \left[I_{1/3}(u^{3/2}) + I_{-1/3}(u^{3/2}) + L_{-1/3}(u^{3/2}) I_{1/3}(u^{3/2}) + L_{1/3}(u^{3/2}) \right]^{-1}. \]

(A.17)

Taking \(u = 0 \), i.e. \(f = k \), we obtain

\[w = \frac{3}{2\pi} 2^{-\frac{2}{3}} \left[\Gamma \left(\frac{2}{3} \right) \right]^2. \]

(A.18)

which implies equation (16) in the main text, copied here for convenience:

\[\langle \dot{\epsilon} \rangle_{st} = \frac{3^{4/3} \Gamma(2/3)^2}{(4\pi)^{2/3}} f v_f^{2/3} \left(\frac{D}{L} \right)^{1/3}, \]

(A.19)

where \(\Gamma(x) \) is the gamma function.

Appendix B. Large correlation time limit

In this section we provide additional details about the derivation of the large-\(\tau \) approximation of the average power given by equation (24). The Fokker–Planck equation for the extended
(x, η) space corresponding to the two-dimensional Markovian representation in equations (3) and (4) is given by

$$\frac{\partial P}{\partial t} = - \frac{\partial}{\partial x} \left[(v_f - v_k \sin (2\pi x/L) + \eta)P \right] + \frac{\partial}{\partial \eta} \left[\left(\frac{\eta}{\tau} + \frac{D_0}{\tau^2} \frac{\partial}{\partial \eta} \right) P \right], \quad (B.1)$$

where $P \equiv P(x, \eta, t)$ is the joint probability density for $x_t = x$, and $\eta_t = \eta$ at time t. In the large correlation time limit the last term of equation (B.1) becomes negligible and hence the stationary solution is approximatively given by

$$\frac{\partial}{\partial x} \left[(v_f - v_k \sin (2\pi x/L) + \eta)P_{st}(x, \eta) \right] \simeq 0. \quad (B.2)$$

Solving for the steady state solution and taking $f(x) = v_f - v_k \sin \left(\frac{2\pi x}{L} \right)$, we get the following large-τ approximation of the stationary conditional distribution

$$P_{st}^{LT}(x|\eta) = \frac{N_{LT}^{-1}}{v_f - v_k \sin \left(\frac{2\pi x}{L} \right) + \eta}, \quad (B.3)$$

where N_{LT} is a normalization constant. Using Bayes theorem and equation (B.3) we find that the stationary joint probability density is given by $P_{st}^{LT}(x, \eta) = P_{st}(\eta)P_{st}^{LT}(x|\eta)$, where $P_{st}(\eta) = \sqrt{2\pi D} \exp \left(-\frac{\eta^2}{2D} \right)$ is the stationary density of the active Ornstein–Uhlenbeck noise.

To find the marginal stationary distribution $P_{st}^{LT}(x)$, we integrate over η and assume. Using these assumptions, we get

$$P_{st}^{LT}(x) = \int_{-\infty}^{\infty} P_{st}^{LT}(x|\eta)P_{st}(\eta) d\eta$$

$$= \int_{-\infty}^{\infty} \frac{N_{LT}^{-1}}{v_f - v_k \sin \left(\frac{2\pi x}{L} \right) + \eta} \sqrt{\frac{\tau}{2\pi D}} \exp \left(-\frac{\tau \eta^2}{2D} \right) d\eta. \quad (B.4)$$

Defining $\eta' = \sqrt{\frac{\tau}{2D}} \eta$ and $a = v_f - v_k \sin \left(\frac{2\pi x}{L} \right)$ and then making the change of variable $y = \eta' + a \sqrt{\frac{\tau}{2D}}$, we get

$$P_{st}^{LT}(x) = N_{LT}^{-1} \sqrt{\frac{\tau}{2\pi D}} \int_{-\infty}^{\infty} dy \frac{1}{y} \exp \left[-\left(y - a \sqrt{\frac{\tau}{2D}} \right)^2 \right]$$

$$= N_{LT}^{-1} \sqrt{\frac{\tau}{2D}} (i \sqrt{\pi}) \text{erf}(a') - i \text{exp}(-a'^2) \text{erfi}(a'), \quad (B.5)$$

where $a' = a \sqrt{\frac{\tau}{2D}}$ and erfi denotes the imaginary error function. Equation (B.5) follows from the property

$$\int_{-\infty}^{\infty} x^n \exp[-(x - \beta)^2] dx = (2i)^{-n} \sqrt{\pi} H_n(i\beta), \quad (B.6)$$

where $H_n(x)$ is the Hermite polynomial of nth order [90], and $H_n(ix) = \frac{\sqrt{\pi}}{2^{\frac{n}{2}}} \exp(-x^2) - i \exp(-x^2) \text{erfi}(x)$. In the large τ limit, we may use the asymptotic expansion of $\text{erfi}(a')$ around $a' \to \infty$

$$\text{erfi}(a') = -i + \frac{\exp(a'^2)}{\sqrt{\pi}} \left[a'^{-1} + \frac{1}{2} a'^{-3} + O(a'^{-5}) \right]. \quad (B.7)$$
Using the expansion (B.7) up to third order in (B.5) we obtain

\[P^a_{st}(x) \simeq N_{LT}^{-1} \frac{1}{2D} \left[\frac{2D}{\tau} \left(\frac{1}{v_f - v_k \sin \left(\frac{2D}{\tau} \right)} + \frac{1}{2} \left(\frac{2D}{\tau} \right)^{3/2} \frac{1}{(v_f - v_k \sin \left(\frac{2D}{\tau} \right))^2} \right) \right]. \]

(B.8)

To compute the average power inputted into the system within this approximation, we evaluate the normalization constant by integrating equation (B.8):

\[1 = \int_0^L P_{LT}(x)dx = N_{LT}^{-1} \frac{1}{2D} \left[\frac{(2v_f^2 + v_k^2)D_x + 2(v_f^2 - v_k^2)^2}{2L(v_f^2 - v_k^2)^{3/2}} \right]. \]

(B.9)

From this result, we find the large-\(\tau \) approximation of the average power given by equation (24), copied here for convenience

\[\langle \dot{W} \rangle = f \langle \dot{x} \rangle = fL N_{LT}^{-1} \]

(B.10)

\[= \left(\frac{2f(v_f^2 - v_k^2)^{1/2}}{((2v_f^2 + v_k^2)D_x + 2(v_f^2 - v_k^2)^2)} \right). \]

(B.11)

Appendix C. Calculation of average power within Fox’s approximation and UCNA

Here we discuss Fox’s and UCNA approximations that we use in section 2.5.1 of the main text. These approximations were successfully applied to describe the equilibrium dynamics of a Langevin system subject to colored noise with small correlation time i.e. \(\sqrt{D\tau} < l_0 \), where \(l_0 \) is the characteristic length of the system. The stationary solution of the Fokker–Planck equation within Fox’s approximation [equation (20)] can be computed following similar algebra as in appendix A:

\[P_{st}^{\text{Fox}}(x) = \frac{1}{N_{\text{Fox}}} \exp(-u_s(x)) \times \int_x^{x+L} dx' \exp \left(u_s(x') \right) \left[1 + \frac{2\pi v_k \tau}{L} \cos \left(\frac{2\pi x'}{L} \right) \right]. \]

(C.1)

where

\[u_s(x) \equiv \frac{1}{D_L} \left[-v_f L x + \frac{v_k L^2}{2\pi} \cos \left(\frac{2\pi x}{L} \right) - \frac{v_f^2 L^2}{4} \cos \left(\frac{4\pi x}{L} \right) - v_f v_k L \sin \left(\frac{2\pi x}{L} \right) \right] - \log \left[1 + \frac{2\pi v_k \tau}{L} \cos \left(\frac{2\pi x}{L} \right) \right]. \]

(C.2)

Note that the first term is equivalent to the potential of the system for the steady state problem in the Markovian regime.

Similarly, for UCNA [65], the stationary distribution of the Fokker–Planck equation (21) is given by

\[P_{st}^{\text{UCNA}}(x) = \frac{1}{N_{\text{UCNA}}} \exp(-u_s(x)) \times \int_x^{x+L} dx' \exp \left(u_s(x') \right) \left[1 + \frac{2\pi v_k \tau}{L} \cos \left(\frac{2\pi x'}{L} \right) \right]^2. \]

(C.3)
Figure 10. UCNA (solid black line) and Fox’s approximation (red dashed line) at small correlation times \(\tau < \gamma / (2\pi v_k) \) compared with results from numerical simulations of equations (3) and (4) (blue circles). (a) Average stationary power as a function of the bacterial bath correlation time. (b) Stationary distribution of the phase \(P_{st}(\phi) \), with \(\phi = x \mod L \), for \(\tau = 0.03 \). The solid and dashed lines are obtained from numerical integration of equations (C.3) and (C.1) respectively. Parameters: \(f = 12, k = 6, L = 2\pi, \gamma = 1, D_a = 1, \Delta t = 10^{-3} \). Statistics for both the panels are computed from \(10^5 \) trajectories.

Therefore, the only difference between these two approximations in the stationary distribution is the extra factor, \(\gamma_{\text{eff}}(x)/\gamma = \left[1 + \frac{2\pi v_k}{L} \cos \left(\frac{2\pi x}{L}\right)\right] \) see equation (8), which enters in the effective underdamped dynamics of the system as a space-dependent friction. Note that such term does not appear in equilibrium, as it appears as a space-dependent prefactor in the probability current. Figure 10 shows that UCNA does not reproduce accurately the phase probability density even for small correlation times when Fox’s approximation works.

The above considerations imply that the key quantity needed to evaluate the average steady state power is the normalization constant, \(N_{\text{Fox}} = \int_0^L dx P_{st}^{\text{Fox}}(x) \) and \(N_{\text{UCNA}} = \int_0^L dx P_{st}^{\text{UCNA}}(x) \). Hence the exact expression for average power inputted into the system in the steady state according to Fox’s approximation and UCNA, are given by

\[
\langle \dot{W}_{\text{Fox}} \rangle = \frac{fDL}{N_{\text{Fox}}} \left(1 - \exp \left[\frac{v_fL}{D}\right]\right), \quad \langle \dot{W}_{\text{UCNA}} \rangle = \frac{fDL}{N_{\text{UCNA}}} \left(1 - \exp \left[\frac{v_fL}{D}\right]\right).
\]

The above quantities are further evaluated by numerical integration of the above normalization condition, figure 10(a). It must noted that both \(N_{\text{Fox}} \) and \(N_{\text{UCNA}} \) are dependent on all the system parameters.

Appendix D. Finite-time uncertainty relation for the work exerted in an active bacterial bath

In the thermal bath limit, it can be analytically shown that, at steady state, thermodynamic uncertainty relations saturate in the continuum limit [17, 80] which corresponds to \(f \gg k \) in our model, see figure 11(a). In such limit, the nonlinear periodic force is negligible with respect to the driving torque and hence the dynamics is well approximated by a drift–diffusion
Figure 11. Uncertainty relations for the work exerted on the oscillator in a thermal (a) and in an active bacterial bath (b). (a) Fano factor $F_{W_t} = \text{Var}(W_t)/\langle W_t \rangle$ as a function of the scaled driving torque in the thermal bath limit, for different values of the bath temperature ($T = D/\gamma k_B$, with D given in the legend). The dashed line is set to $2k_B T$ given by the bound of the thermodynamic uncertainty relation $F_{\beta W_t} \geq 2$ [17, 80]. Parameters: $t = 800, \gamma = 1, L = 2\pi, k = 6$. (b) Finite-time Fano factor for the work done on the oscillator in an active bacterial bath: numerical simulations (symbols) and theoretical bound given by equation (28) (solid lines) for different bath correlation times (see legend). Parameters: $t = 400, \gamma = 1, L = 2\pi, k = 6, D_a = 1, \Delta t = 10^{-2}$. Fano factor for both the panels were computed from 10^4 trajectories.

Inspired by this observation, we find that the Fano-factor also reaches a minimum value above the bifurcation point ($f > k$) in the presence of active bath in the large f limit (see figure 11(b)). In this case, it corresponds to a drift–diffusion process subject to Gaussian colored noise

$$\gamma \dot{x}_i = f + \eta_i,$$

where $\langle \eta_i \rangle = 0$ and $\langle \eta_i \eta_j \rangle = (\gamma^2 D_a/\tau) \exp(-|t - t'|/\tau)$. From the well-known finite-time statistics of the Ornstein–Uhlenbeck process η we obtain $\langle x_i \rangle = vf t$ and $\text{Var}[x_i] = \langle x_i^2 \rangle - \langle x_i \rangle^2 = 2D_a \{t - \tau[1 - \exp(-t/\tau)]\}$, which leads to the finite-time work Fano factor for the drift–diffusion process in the active bath

$$F_{f \gg k, W_t} = \frac{f^2 \text{Var}[x_i]}{f \langle x_i \rangle} = 2D_a \left[1 - \frac{1 - \exp(-t/\tau)}{t/\tau} \right].$$

ORCID iDs

Édgar Roldán 🐦 https://orcid.org/0000-0001-7196-8404
Stefano Ruffo 🐦 https://orcid.org/0000-0003-2911-8718

References

[1] Ramaswamy S 2010 The mechanics and statistics of active matter Annu. Rev. Condens. Matter Phys. 1 323–45
[2] Gompper G et al 2020 The 2020 motile active matter roadmap J. Phys.: Condens. Matter 32 193001

24
[3] Jülicher F, Ajdari A and Prost J 1997 Modeling molecular motors Rev. Mod. Phys. 69 1269
[4] Kumar N, Soni H, Ramaswamy S and Sood A 2014 Flocking at a distance in active granular matter Nat. Commun. 5 4688
[5] Cates M E 2012 Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 75 042601
[6] Narayan V, Ramaswamy S and Menon N 2007 Long-lived giant number fluctuations in a swarming granular nematic Science 317 105–8
[7] Cates M E and Tailleur J 2015 Motility-induced phase separation Annu. Rev. Condens. Matter Phys. 6 219–44
[8] Tailleur J and Cates M E 2009 Sedimentation, trapping, and rectification of dilute bacteria Europhys. Lett. 86 60002
[9] Di Leonardo R et al 2010 Bacterial ratchet motors Proc. Natl Acad. Sci. 107 9541–5
[10] Galajda P, Keymer J, Chaikin P and Austin R 2007 A wall of funnels concentrates swimming bacteria J. Bacteriol. 189 8704–7
[11] Sekimoto K 2010 Stochastic Energetics vol 799 (Berlin: Springer)
[12] Seifert U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75 126001
[13] Roldán É and Parrondo J M 2010 Estimating dissipation from single stationary trajectories Phys. Rev. Lett. 105 150607
[14] Fodor É et al 2016 How far from equilibrium is active matter? Phys. Rev. Lett. 117 038103
[15] Roldán É, Barral J, Martin P, Parrondo J M and Jülicher F 2018 Arrow of time in active fluctuations (arXiv:1803.04743)
[16] Caprini L, Marconi U M B, Puglisi A and Vulpiani A 2019 The entropy production of Ornstein–Uhlenbeck active particles: a path integral method for correlations J. Stat. Mech. 053203
[17] Barato A C and Seifert U 2015 Thermodynamic uncertainty relation for biomolecular processes Phys. Rev. Lett. 114 158101
[18] Gingrich T R and Horowitz J M 2017 Fundamental bounds on first passage time fluctuations for currents Phys. Rev. Lett. 119 170601
[19] Maes C 2020 Frenesy: time-symmetric dynamical activity in nonequilibria Phys. Rep. 850 1–33
[20] Basu U and Maes C 2015 Nonequilibrium response and frenesy J. Phys.: Conf. Ser. 638 012001
[21] Martinez I A, Roldán É, Dinis L and Rica R A 2017 Colloidal heat engines: a review Soft Matter 13 22–36
[22] Krishnamurthy S, Ghosh S, Chatterji D, Ganapathy R and Sood A K 2016 A micrometre-sized heat engine operating between bacterial reservoirs Nat. Phys. 12 1134–8
[23] Bechinger C et al 2016 Active particles in complex and crowded environments Rev. Mod. Phys. 88 045006
[24] Argun A et al 2016 Non-Boltzmann stationary distributions and nonequilibrium relations in active baths Phys. Rev. E 94 062150
[25] Vizsnyiczai G et al 2017 Light controlled 3D micromotors powered by bacteria Nat. Commun. 8 15974
[26] Reimann P 2002 Brownian motors: noisy transport far from equilibrium Phys. Rep. 361 57–265
[27] Nadowski B, Martin P and Jülicher F 2004 Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity Proc. Natl Acad. Sci. 101 12195–200
[28] Shlomovitz R, Roongthumskul Y, Ji S, Bozovic D and Bruinsma R 2014 Phase-locked spiking of inner ear hair cells and the driven noisy Adler equation Interface Focus. 4 20140022
[29] Gupta S C 1975 Phase-locked loops Proc. IEEE 63 291–306
[30] Barone A and Paterno G 1982 Physics and applications of the Josephson Effect (New York: Wiley)
[31] Augello G, Valenti D, Pankratov A L and Spagnolo B 2009 Lifetime of the superconductive state in short and long Josephson junctions Eur. Phys. J. B 70 145–51
[32] Golubev D, Marthaler M, Utsumi Y and Schön G 2010 Statistics of voltage fluctuations in resistively shunted Josephson junctions Phys. Rev. B 81 184516
[33] Martin P, Bozovic D, Choe Y and Hudspeth A J 2003 Spontaneous oscillation by hair bundles of the bullfrog’s saccular J. Neurosci. 23 4533–48
[34] Proesmans K, Toral R and Van den Broeck C 2020 Phase transitions in persistent and run-and-tumble walks Physica A 552 121934
[35] Nguyen B and Seifert U 2020 Exponential volume dependence of entropy-current fluctuations at first-order phase transitions in chemical reaction networks Phys. Rev. E 102 022101
[36] Vroylandt H, Esposito M and Verley G 2020 Efficiency fluctuations of stochastic machines undergoing a phase transition Phys. Rev. Lett. 124 250603
[37] Holubec V and Marathe R 2020 Underdamped active Brownian heat engine Phys. Rev. E 102 060101
[38] Rana S and Barato A C 2020 Precision and dissipation of a stochastic tuning pattern (arXiv:2004.01230)
[39] Seara D S, Machta B B and Murrell M P 2019 Dissipative signatures of dynamical phases and transitions (arXiv:1911.10696)
[40] Martyneec T, Klapp S H and Loos S A 2020 Entropy production at criticality in a nonequilibrium Potts model New J. Phys. 22 093069
[41] Speck T 2016 Stochastic thermodynamics for active matter Europhys. Lett. 114 30006
[42] Horowitz J M and Esposito M 2016 Work producing reservoirs: stochastic thermodynamics with generalized Gibbs ensembles Phys. Rev. E 94 020102
[43] Pietzonka P and Seifert U 2017 Entropy production of active particles and for particles in active baths J. Phys. A: Math. Theor. 51 01LT01
[44] Dabelow L, Bo S and Eichhorn R 2019 Irreversibility in active matter systems: fluctuation theorem and mutual information Phys. Rev. X 9 021009
[45] Loos S A and Klapp S H 2020 Irreversibility, heat and information flows induced by non-reciprocal interactions New J. Phys. 22 123051
[46] Maggi C, Paoluzzi M, Angelani L and Di Leonardo R 2017 Memory-less response and violation of the fluctuation–dissipation theorem in colloids suspended in an active bath Sci. Rep. 7 17588
[47] Wu X-L and Libchaber A 2000 Particle diffusion in a quasi-two-dimensional bacterial bath Phys. Rev. Lett. 84 3017
[48] Maggi C et al 2014 Generalized energy equipartition in harmonic oscillators driven by active baths Phys. Rev. Lett. 113 238303
[49] Risken H 1996 Fokker–Planck equation The Fokker–Planck Equation vol 63–95 (Berlin: Springer)
[50] Koumakis N, Maggi C and Di Leonardo R 2014 Directed transport of active particles over asymmetric energy barriers Soft matter 10 5695–701
[51] Caprini L, Marini Bettolo Marconi U, Puglisi A and Vulpiani A 2019 Active escape dynamics: the effect of persistence on barrier crossing J. Chem. Phys. 150 024902
[52] Bonilla L L 2019 Active Ornstein–Uhlenbeck particles Phys. Rev. E 100 022601
[53] Martin P and Hudspeth A J 1999 Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli Proc. Natl Acad. Sci. 96 14306–11
[54] Belousov R, Berger F and Hudspeth A 2020 Volterra-series approach to stochastic nonlinear dynamics: linear response of the van der pol oscillator driven by white noise Phys. Rev. E 102 032209
[55] Belousov R, Berger F and Hudspeth A 2019 Volterra-series approach to stochastic nonlinear dynamics: the duffing oscillator driven by white noise Phys. Rev. E 99 042204
[56] Strogatz S 2001 Nonlinear Dynamics and Chaos: with applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity) (Boca Raton: CRC Press)
[57] Sekimoto K 1998 Langevin equation and thermodynamics Prog. Theor. Phys. Suppl. 130 17–27
[58] Pietzonka P et al 2019 Autonomous engines driven by active matter: energetics and design principles Phys. Rev. X 9 041032
[59] Stratonovich R L 1967 Topics in the Theory of Random Noise vol 2 (Boca Raton, FL: CRC Press)
[60] Reimann P et al 2001 Giant acceleration of free diffusion by use of tilted periodic potentials Phys. Rev. Lett. 87 010062
[61] Hanggi P and Jung P 1995 Colored noise in dynamical systems Adv. Chem. Phys. 89 239–326
[62] Sancho J M, Miguel M S, Katz S L and Gunton J D 1982 Analytical and numerical studies of multiplicative noise Phys. Rev. A 26 1589
[63] Fox R F 1986 Functional-calculus approach to stochastic differential equations Phys. Rev. A 33 467–76
[64] Masoliver J, West B J and Lindenberg K 1987 Bistability driven by Gaussian colored noise: first-passage times Phys. Rev. A 35 3086–94
[65] Jung P and Hanggi P 1987 Dynamical systems: a unified colored-noise approximation Phys. Rev. A 35 4466–6
[66] Castro F, Wio H S and Abramson G 1995 Colored-noise problem: a Markovian interpolation procedure Phys. Rev. E 52 159–64
[67] Marconi U M B, Puglisi A and Maggi C 2017 Heat, temperature and Clausius inequality in a model for active Brownian particles Sci. Rep. 7 46496
[68] Wang Y, Chik D T W and Wang Z D 2000 Coherence resonance and noise-induced synchronization in globally coupled Hodgkin–Huxley neurons Phys. Rev. E 61 740
[69] Matsumoto K and Tsuda I 1983 Noise-induced order J. Stat. Phys. 31 87–106
[70] Gammaitoni L, Hanggi P, Jung P and Marchesi F 1998 Stochastic resonance Rev. Mod. Phys. 70 223
[71] Horowitz J M and Gingrich T R 2019 Thermodynamic uncertainty relations constrain non-equilibrium fluctuations Nat. Phys. 16 15–20
[72] Hasegawa Y and Van Vu T 2019 Fluctuation theorem uncertainty relation Phys. Rev. Lett. 123 110602
[73] Pigolotti S, Neri I, Roldán É and Jülicher F 2017 Generic properties of stochastic entropy production Phys. Rev. Lett. 119 140604
[74] Di Terlizzi I and Baiesi M 2018 Kinetic uncertainty relation J. Phys. A: Math. Theor. 52 02LT03
[75] Dechant A and Sasa S-I 2018 Current fluctuations and transport efficiency for general Langevin systems J. Stat. Mech. 063209
[76] Barato A C and Seifert U 2016 Cost and precision of Brownian clocks Phys. Rev. X 6 041053
[77] Manikandan S K and Krishnamurthy S 2018 Exact results for the finite time thermodynamic uncertainty relation J. Phys. A: Math. Theor. 51 11LT01
[78] Barato A C and Seifert U 2015 Universal bound on the Fano factor in enzyme kinetics Phys. Rev. Chem. B 119 6555–61
[79] Hyeon C and Hwang W 2017 Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials Phys. Rev. E 96 012156
[80] Gingrich T R, Horowitz J M, Perunov N and England J L 2016 Dissipation bounds all steady-state current fluctuations Phys. Rev. Lett. 116 120601
[81] Fischer LP, Chun H and Seifert U (2020) Free diffusion bounds the precision of currents in underdamped dynamics. Phys. Rev. E. 102
[82] Gomez-Solano J R, Petrosyan A, Ciliberto S, Chetrite R and Gawedzki K 2009 Experimental verification of a modified fluctuation–dissipation relation for a micron-sized particle in a nonequilibrium steady state Phys. Rev. Lett. 103 040601
[83] Gomez-Solano J R, Petrosyan A, Ciliberto S and Maes C 2011 Fluctuations and response in a nonequilibrium micron-sized system J. Stat. Mech. P01008
[84] Saryal S, Friedman H M, Segal D and Agarwalla B K 2019 Thermodynamic uncertainty relation in thermal transport Phys. Rev. E 100 042101
[85] Di Terlizzi I and Baiesi M 2020 A thermodynamic uncertainty relation for a system with memory (arXiv:2005.05226)
[86] Baiesi M, Boksenbojm E, Maes C and Wynants B 2010 Nonequilibrium linear response for Markov dynamics, ii: inertial dynamics J. Stat. Phys. 139 492–505
[87] Roldán É and Vivo P 2019 Exact distributions of currents and Frenesy for Markov bridges Phys. Rev. E 100 042108
[88] Astumian R D and Hanggi P 2002 Brownian motors Phys. Today 55 33–9
[89] Gupta S and Ruffo S 2017 The world of long-range interactions: a bird’s eye view Int. J. Mod. Phys. A 32 1741018
[90] Gradshteyn I S and Ryzhik I M 2014 Table of Integrals, Series, and Products (New York: Academic)