Lasers in Cholesteatoma Surgery: A Systematic Review

Kimberley Lau, MSc\(^1\), Marios Stavrakas, PhD\(^1\)\(\ast\), Mark Yardley, MPhil\(^1\), and Jaydip Ray, PhD\(^1\)

Abstract

Objectives: The mainstay of cholesteatoma treatment is surgical and requires the removal of all squamous epithelium from the underlying normal structure. The application of laser technology in middle ear and mastoid surgery has shown promise in achieving both disease eradication and hearing preservation. This systematic review aims to include studies that have assessed the application of laser to the treatment of cholesteatoma and to review its outcomes in terms of disease eradication as well as hearing results. Method: Two independent researchers conducted a systematic review of the literature on MEDLINE and Cochrane library, according to PRISMA guidance. Result: The search resulted in 12 papers, reporting on 536 participants that fulfilled the inclusion criteria. The hearing results did not show that using laser surgery improved hearing in cholesteatoma surgery, but neither has the use of laser shown to deteriorate hearing. With regards to the prevention of residual/recurrent cholesteatoma, the current literature reports a residual/recurrent rate of 0% to 33%. The complication rate of facial palsy is 0.6%. Conclusion: While there is certainly a role for future studies especially randomised large-cohort prospective comparative studies, the current literature suggests that laser may have a role in prevention or minimizing of residual cholesteatoma and generally have a safe hearing outcome profile.

Keywords

LASER, cholesteatoma, otology, otolaryngology

Introduction

Cholesteatoma is a collection of squamous epithelium with potential to cause progressive erosion and destruction of important structures within the temporal bone. The mainstay of treatment for this disease is surgical and requires the removal of all squamous epithelium from the underlying normal structure. While the prime objective of mastoid surgery for cholesteatoma is complete disease removal, creating a safe, dry, and disease-free ear,\(^1\) preservation of hearing is also one of the important objectives. Traditionally, mastoïdectomy techniques can be classified into 2 main categories: canal wall down and canal wall up. In recent times, a variety of surgical modifications have been developed and techniques such as transcanal endoscopic ear surgery\(^2,3\) and laser-assisted cholesteatoma surgery have been applied.

The application of laser technology in middle ear and mastoid surgery has shown promise in achieving both disease eradication and hearing preservation. This systematic review aims to include studies that have assessed the application of laser to the treatment of cholesteatoma and to review its outcomes in terms of disease eradication as well as hearing results.

Methods

The systematic review was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).\(^4\) A systematic computer-based literature search was performed on the biomedical bibliographic databases: MEDLINE and Cochrane library. The search was performed by 2 independent
researchers and included the search terms: “(cholesteatoma) AND (laser)” with the filters: “Text availability: Full Text,” “Species: Humans,” and “Language: English.”

Inclusion and Exclusion Criteria

The inclusion and exclusion criteria for the population of interest, outcomes, and study design are presented in Table 1.

Data Analysis

Two authors (K.L. and M.S.) independently selected studies, extracted data, and assessed the quality of included studies. Data were extracted from each study and included information on the article identification, year of publication, population (continent), evaluation period (for longitudinal studies),

Table 1. Inclusion and Exclusion Criteria.
Inclusion criteria
Population
Case reports
Outcomes
Presence or absence of disease on follow-up
Study design
Full-text was available

Figure 1. Flowchart of the study selection process.
number of patients, hearing assessment methods, residual or recurrent cholesteatoma outcomes, and mean age of subjects.

Results

The electronic searches identified 44 citations. Of these, 28 were excluded after reviewing their title and abstract. Of the remaining 16 citations obtained as full-text, 4 were excluded as they were review papers.1,5-7 Twelve studies, reporting on 536 participants, fulfilled the inclusion criteria and were included in the systematic review. A PRISMA flowchart of the study selection process is shown in Figure 1.

The characteristics of the included studies are shown in Table 2. These studies were published between 1997 and 2020 and conducted in America, Asia, and Europe. Four of them were case reports,8-11 5 were retrospective cohort studies,12-16 and 3 were prospective cohort studies.17-19 Recruited participant numbers ranged from 28,11 to 200.16

Application of Laser and Reported Complications

Table 3 summarizes the different ways laser was applied in surgery in all groups.

Hearing Results

Hearing results were not reported in 4 papers.9,10,13,19 Hearing thresholds were reported using either pure tone audiogram results, bone conduction thresholds only, or distorted product otoacoustic emission (for children). Because of the heterogeneous way of reporting hearing outcomes, it was not possible to compare hearing outcomes in different groups. Table 4 shows a summary of hearing outcomes and in general, any worsening of hearing was limited to a range of deterioration between 0.3 to 15 dB.

Disease Eradication

As part of their outcome measure, 9 papers10,11,13-19 looked at the presence or absence of residual disease at either a second stage operation, with diffusion-weighted magnetic resonance imaging or computed tomography scan at least 12 months after the first operation or clinical observation. There were 2 papers that had a control group and compared the outcomes of laser versus no laser, while Hamilton in 200517 showed that using a laser significantly reduced the chance of residual disease after 12 months, Sharma et al in 202019 did not report any significant

Reference	Design	Population	Number of patients	Type of laser used	Laser setting	Type of surgery (primary or revision)	Mean age in years (range)
Nagel 199712	Retrospective cohort study	Europe	18	Er: YAG	0.2 mm spot size, pulse mode 0.25 milliseconds, rate of 2 Hz, total energy 225-25 000 mJ	Primary	Not reported (7-64)
Nishizaki et al, 20018	Case report	Asia	2	KTP	0.4 mm spot size, 4-5 W for 0.2 seconds in pulse mode	Primary	31.5 (21-42)
Hamilton, 200517	Prospective cohort study	Europe	36	KTP	Not reported	Primary	Not reported (6.6-75.3)
Hamilton, 201018	Prospective cohort study	Europe	149	KTP	Not reported	Primary	34 (4-82)
Eskander et al, 20109	Case report	America	3	KTP	300-800 mW in a single or repeated pulse mode with duration of 4 seconds at 0.05 seconds intervals	Revision	11.7 (8-14)
Yau et al, 201513	Retrospective cohort study	America	7	Argon	1 W and pulsed duration of 100 milliseconds on and 100 milliseconds off	I Revision	24 (6-48)
Lee et al, 201514	Retrospective cohort study	Asia	10	CO2	3 W continuous mode	Primary	3.5 (1-5.5)
Landegger and Cohen, 201610	Case report	America	3	CO2	2.4 W, single pulse, 100 millisecond	I Revision	7.4 (6-11)
Stevens et al, 201811	Case report	America	2	CO2	200-micron spot size, 2-4 W on continuous pulse mode	I Revision	25 (16-35)
Basu and Hamilton, 201915	Retrospective cohort study	Europe	36	KTP	Not reported	Primary	Not reported (14-82)
Lee et al, 201916	Retrospective cohort study	Asia	200	CO2	1 W in continuous mode	Primary	35 (15-82)
Sharma et al, 202019	Prospective cohort study	America	70	KTP	0.3 W (eg, on the stapes superstructure) and 1 W (eg, with a defocused beam to ablate potentially unseen remnants)	Primary	10.5 (1.8-18)
difference between using the laser or not. The other papers report their recurrence rate between 0% and 33%.10,11,13-16,18 Table 5 summarized the disease eradication outcomes.

Discussion

In the last 2 decades there have been a variety of publications looking at the outcomes of laser on cholesteatoma surgery. Majority of them have been nonrandomized retrospective cohort studies and case reports, with very few large longitudinal cohort studies with a control group.

While laser surgery is thought to facilitate atraumatic dissection of cholesteatoma from mobile ossicles and therefore reducing the risk of trauma to the cochlea from mechanical traction, there has only been one study18 that compared the outcomes from 2 groups that were treated with laser (patients with ossicular chain intact vs disrupted). The hearing results did not show that using laser surgery improved hearing in...
cholesteatoma surgery, but neither has the use of laser shown to
deteriorate hearing.

With regard to the prevention of residual/recurrent choles-
teatoma, the current literature reports a residual/recurrent rate
of 0% to 33% with 2 prospective papers comparing between a
laser and nonlaser group. A single well-designed comparative
study has shown sufficient benefit to lead to the claim that KTP
laser use in cholesteatoma surgery has been shown to reduce
the risk of residual cholesteatoma with a number needed to treat
4 cases.17 However, the follow-up duration of the studies
mentioned in this review has not been sufficient to provide a
dependable assessment regarding the longer-term effects of
laser-assisted surgery on the recidivism of cholesteatoma,
which is a time-dependent phenomenon. Continued long-term
vigilance in this regard is therefore recommended.

Even though there were a variety of lasers being reportedly
in use, there was no evidence portraying any laser as being
ineffective at removing cholesteatoma. There have also been
no studies directly comparing the different types of laser and
any difference in clinical outcomes. Facial palsy is a potential
complication of laser-assisted surgery and most papers recom-
mend not applying laser to anywhere near or directly to the
facial nerve. Combining all the cases together, the complica-
tion rate of facial palsy was 0.6%.

While there is certainly a role for future studies especially
randomised large-cohort prospective comparative studies, the
current literature suggests that laser may have a role in preven-
tion or minimizing of residual cholesteatoma and generally
have a safe hearing outcome profile.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

Table 5. Disease Eradication Outcomes.

Reference	Design	Length of follow-up (after first operation)	Method of detecting residual/recurrent disease	Number of patients	Presence of control group	Results
Hamilton, 200517	Prospective cohort study	At least 12 months	Second stage operation	36	Yes, n = 33 (no laser)	Non laser: 30% residual Laser group: 2.8% residual (P = .003). Preservation of ossicular chain group: 11.2% residual Interrupted ossicular chain group: 11.6% residual (P = .88)
Hamilton, 201018	Prospective cohort study	12 months	Second stage operation	149	No	
Yau et al, 201513	Retrospective cohort study	Mean follow-up 19 months (range: 5-38)	MRI diffusion-weighted	7	No	No recurrence
Lee et al, 201514	Retrospective cohort study	Not reported	Clinical examination	10	No	No recurrence
Landegger and Cohen, 2016	Case report	6-7 months	Second stage operation	3	No	33% recurrence
Stevens et al, 201811	Case report	8 months	Second stage operation	2	No	No recurrence, but one lost to follow-up
Basu and Hamilton, 201915	Retrospective cohort study	12 months	Second stage operation	36	No	No recurrence
Lee et al, 201916	Retrospective cohort study	8-12 months	CT imaging. Second-look operations were performed when CT suggestive of disease Second-stage surgery (n = 46), MRI diffusion-weighted (n = 4), (mean of 3.2 years postoperative), observation in clinic (n = 33; mean follow-up of 3.0 years).	200	No	7.5% had residual disease
Sharma et al, 202019	Prospective cohort study	More than 12 months follow-up	Second stage operation	60	Yes, n = 13 (no laser)	Laser group: 6% residual Non laser: 7.6% residual

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging.
References

1. Kuo CL, Liao WH, Shiao AS. A review of current progress in acquired cholesteatoma management. *Eur Arch Oto-Rhino-Laryngology*. 2015;272(12):3601-3609. doi:10.1007/s00405-014-3291-0

2. Marchioni D, Mattioli F, Alicandri-Ciuelli M, Presutti L. Endoscopic approach to tensor fold in patients with attic cholesteatoma. *Acta Otolaryngol*. 2009;129(9):946-954.

3. Tarabichi M, Nogueira JF, Marchioni D, Presutti L, Pothier DD, Ayache S. Transcanal endoscopic management of cholesteatoma. *Otolaryngol Clin North Am*. 2013;46(2):107-130.

4. Moher D, Shamseer L, Clarke M, et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. *Syst Rev*. 2015;4(1):1.

5. Le Nobel GJ, James AL. Recommendations for potassium-titanyl-phosphate laser in the treatment of cholesteatoma. *J Int Adv Otol*. 2016;12(3):332-336. doi:10.5152/iao.2016.2838

6. McCaffer CJ, Pabla L, Watson C. Curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery: description of use and review of the relevant literature. *J Laryngol Otol*. 2018;132(4):360-363. doi:10.1017/S0022215118000117

7. James AL, Papsin BC. Some considerations in congenital cholesteatoma. *Curr Opin Otolaryngol Head Neck Surg*. 2013;21(5):431-439. doi:10.1097/MOM.0b013e328364b457

8. Nishizaki K, Yuen K, Ogawa T, Nomiyama S, Okano M, Fukushima K. Laser-assisted tympanoplasty for preservation of the ossicular chain in cholesteatoma. *Am J Otolaryngol-Head Neck Med Surg*. 2001;22(6):424-427. doi:10.1053/ajot.2001.28081

9. Eskander A, Holler T, Papsin BC. Delayed facial nerve paresis after using the KTP laser in the treatment of cholesteatoma despite inter-operative facial nerve monitoring. *Int J Pediatr Otorhinolaryngol*. 2010;74(7):823-824. doi:10.1016/j.ijpolor.2010.03.052

10. Landegger LD, Cohen MS. Use of the flexible fiber CO2 laser in pediatric transcanal endoscopic middle ear surgery. *Int J Pediatr Otorhinolaryngol*. 2016;85:154-157. doi:10.1016/j.ijpolor.2016.03.039

11. Stevens SM, Walters ZA, Tawfik K, Samy RN. Two consecutive cases of persistent stapled artery managed with a carbon dioxide laser. *Ann Otol Rhinol Laryngol*. 2018;127(1):59-63. doi:10.1177/0003489417742921

12. Nagel D. The Er: YAG laser in ear surgery: first clinical results. *Lasers Surg Med*. 1997;21(1):79-87. doi:10.1002/(SICI)1096-9101(1997)21:1<79::AID-LSM12>3.0.CO;2-4

13. Yau AY, Mahboubi H, Maducdoc M, Ghavami Y, Djalilian HR. Curved adjustable fiberoptic laser for endoscopic cholesteatoma surgery. *Otol Neurotol*. 2015;36(1):61-64. doi:10.1097/mao.0000000000000527

14. Lee CH, Kim YJ, Kim YJ, Yoo CK, Kim HM, Ahn JC. Transcanal CO2 laser-enabled ablation and resection (CLEAR) for intratympanic membrane congenital cholesteatoma. *Int J Pediatr Otorhinolaryngol*. 2015;79(12):2316-2320. doi:10.1016/j.ijpolor.2015.10.035

15. Basu S, Hamilton J. Treatment using diffuse laser energy of cochlear and vestibular fistulas caused by cholesteatoma. *J Laryngol Otol*. 2019;133(2):102-105. doi:10.1017/S0022215111900173

16. Lee CH, Kim MK, Kim HM, Won C, Shin TH, Kim SY. Endaural Laser-Assisted Single-Stage Inside-Out Cholesteatoma Surgery (LASIC) to treat advanced congenital cholesteatoma. *Otol Neurotol*. 2019;40(7):927-935. doi:10.1097/MAO.0000000000002299

17. Hamilton JW. Efficacy of the KTP laser in the treatment of middle ear cholesteatoma. *Otol Neurotol*. 2005;26(2):135-139. doi:10.1097/0129492-200503000-00001

18. Hamilton JW. Systematic preservation of the ossicular chain in cholesteatoma surgery using a fiber-guided laser. *Otol Neurotol*. 2010;31(7):1104-1108. doi:10.1097/MAO.0b013e3181e9beb3

19. Sharma SD, Swarup A, James AL. Use of the KTP laser in totally endoscopic cholesteatoma surgery. *J Laryngol Otol*. 2020;134(4):362-365. doi:10.1017/S0022215120000420