CASE REPORT

Endoscopically controlled removal of a broken intramedullary nail
A new technique

M. Oberst*, K. Schlegel, C. Mory, N. Suedkamp

Department of Orthopaedics and Traumatology, University Hospital of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany

Accepted 2 June 2005

Introduction

Implant breakage is a well known complication of intramedullary nailing and many techniques are described to remove the distal part of a nail. A major disadvantage of all the techniques described is the requirement for an image intensifier in the OR. No technique under direct visual control has been described in the literature.

With the technique of IBE (intramedullary bone endoscopy) we would like to introduce a new endoscopic procedure for removal of a broken nail under direct visual control. The intraoperative use of an image intensifier is not necessary for this new procedure.

Case report

A 78-year-old woman sustained a closed inter-/subtrochanteric fracture of the left femur (AO Type 31-A-3.3) after a fall at home (Fig. 1). The fracture was treated with open reduction, cerclage wires and intramedullary nailing with an AO/ASIF-proximal femoral nail (PFN) (Fig. 2).

Twelve weeks after the operation the patient complained of a sudden onset of pain in the operated leg without a second trauma or fall. Radiographs showed breakage of the nail at the proximal interlocking hole (Fig. 3) and the patient was transferred to our clinic for further treatment.

At revision surgery, the proximal part of the nail and the interlocking screws were removed the usual way. Then the special prototype endoscope for IBE was inserted into the medullary canal from the nail entry point at the tip of the greater trochanter. The proximal end of the broken nail was identified and grasped with a forceps (Fig. 4). Simultaneously, a thin Hohmann retractor was placed into the hole were the distal interlocking screw was removed to push the nail upwards several mm and support the extraction with the forceps (Fig. 5).

After complete removal of the nail, the fracture site was reamed to stimulate bony healing and a long interlocking 360 mm PFN was inserted.
Discussion

There are many descriptions of surgical techniques to remove a broken intramedullary nail in the literature. According to the type of the nail (hollow or solid) long hooks,\(^4,6,8,17,22\) multiple guidewires,\(^1,13\) cerclage wires,\(^12\) grasping devices,\(^2,4\) hand reamers,\(^7,21\) push-out-techniques\(^9\) or pull-out-techniques\(^3,5,10,11,18–20\) in antegrade or retrograde directions are recommended. However, endoscopic controlled removal of a broken intramedullary nail is not mentioned in literature.

In cooperation with the company Wolf-Endoscopes (Knittlingen, Germany) a prototype endoscope was developed in 2002. After the first successful application of the IBE-technique in long bones\(^14\) the endoscope was modified. The actual version is 375 mm in overall length and has a \(10\text{ mm} \times 8\text{ mm}\) oval working canal. The shaft of the endoscope is 11 mm in diameter. It is covered by a sleeve which is 13 mm in diameter to create a thin circular space which allows intensive irrigation (Fig. 5 and 6). Suction is possible at the handset of the endoscope or with a special endoscopic suction tool. A long bipolar coagulation hook is available as well as several forceps. The reliability of the new technique and the special endoscopic tools to work accordingly has been proven already in the first clinical tests. The IBE can be used for cement
removal in revision hip arthroplasty, as a salvage procedure after intramedullary loos of a reamer or for coagulation under visual control in case of endosteal bleeding.16

During the procedure of IBE, local peak pressure rises up to 125 mmHg at the tip of the endoscope. The local pressure is not perpetuated distally. It is far below the high levels of pressure that can be found during reaming or stem implantation in THA. Therefore, local or systemic side effects (fat embolism, local bone necrosis) common to intramedullary reaming in fracture treatment are unlikely.15

The major advantage of the new technique is the direct visualisation of the object that has to be removed. Contrary to the other techniques mentioned above, neither the surgeon nor the patient is exposed to radiation with the image intensifier. A broken nail is identified and grasped under visual control. No fluoroscopy is needed to remove it from the femoral canal. In case of removal of a hollow nail, the IBE-technique could be used additionally to any other pull out or push out technique with hooks, guide wires or other tools mentioned in literature.
References

1. Brewster NT, Ashcroft GP, Scotland TR. Extraction of broken intramedullary nails—an improvement in technique. Injury 1995;26:286.
2. Charnley GJ, Farrington WJ. Laparoscopic forceps removal of a broken intramedullary nail. Injury 1998;29(6):489—90.
3. Firma AJ, Karthaus AJM. Entfernung eines gebrochenen massiven Tibianagels. Unfallchirurg 1998;101:960—2.
4. Franklin JL, Winquist RA, Benirschke SK, Hansen ST. Broken intramedullary nails. J Bone Joint Surg Am 1988;70-A:1463—71.
5. Giannoudis PV, Matthews SJ, Smith RM. Removal of the retained fragment of a broken solid nail by the intra-medullary route. Injury 2001;32:407—10.
6. Incavo SJ, Kristiansen TK. Retrieval of a broken intramedullary nail. Clin Orthop 1986;210:201—2.
7. Kahn M, Schranz PJ, Ward MW. Removal of a broken intramedullary tibial nail using a handreamer. Injury 1997;28(9—10):693—4.
8. Khan FA. Retrieval of a broken intramedullary femoral nail. Injury 1992;23:129—30.
9. Krettek C, Schandelmaier P, Tscherner H. Removal of a broken solid femoral nail: a simple push-out technique. A case report. J Bone Joint Surg Am 1997;79-A:247—51.
10. Levine JW, Georgiadis GM. Removal of a broken cannulated tibia nail. A simple intramedullary technique. J Orthop Trauma 2004;18:247—9.
11. Levy O, Amit Y, Velkes S, Horoszowski H. A simple method for removal of a fractured intramedullary nail. J Bone Joint Surg Br 1993;76-B:502.
12. Marwan M, Ibrahim M. Simple method for retrieval of distal segment of the broken interlocking intramedullary nail. Injury 1999;30:333—5.
13. Middleton RG, McNab ISH, Hashem-Nejad A, Noordeen MHH. Multiple guide wire technique for removal of the short distal fragment of a fractured intramedullary nail. Injury 1995;26:531—2.
14. Oberst M, Bosse A, Holz U. Intramedullary bone endoscopy (IBE), first results of experimental intramedullary endoscopy of long bone. Unfallchir 2002;105(9):853—5.
15. Oberst M, Bosse A, Holz U. Intramedullary pressure during endoscopy of the long bone: experimental results of a new endoscopic technique. Arthroscopy 2004;20(5):552—5.
16. Oberst M, Holz U. Intramedullary bone endoscopy (IBE), first clinical application of a new endoscopic technique. Unfallchir 2005;108(1):75—8.
17. Poehling GG, Webb LX. Retrieval and replacement of a broken Küntscher rod by a closed technique. J Bone Joint Surg Am 1982;64-A:1389—90.
18. Schmiden A, Naumann O, Wentzensen A. Einfache und schnelle Methode zur Entfernung abgebrochener, unaufgebohrter Tibianagel. Unfallchirurg 1999;102:975—8.
19. Sivananthan KS, Raveendran K, Kumar T, Sivananthan S. A simple method for removal of a broken intramedullary nail. Injury 2000;31:433—4.
20. Steinberg EL, Luger E, Menahem A, Helfet DL. Removal of a broken distal closed section intramedullary nail. J Orthop Trauma 2004;18:233—5.
21. Wise DJ, Hutchins PM. Novel method for removal of a broken GK femoral nail. Injury 1996;27:294—5.
22. Zimmerman KW, Klasen HJ. Mechanical failure of intramedullary nails after fracture union. J Bone Joint Surg Br 1983;65-B:274—5.