Large-Scale Survey for Tickborne Bacteria, Khammouan Province, Laos

Andrew J. Taylor, Khamsing Vongphayloth, Malavanh Vongsouvath, Marc Grandadam, Paul T. Brey, Paul N. Newton, Ian W. Sutherland,1 Sabine Dittrich1

We screened 768 tick pools containing 6,962 ticks from Khammouan Province, Laos, by using quantitative real-time PCR and identified Rickettsia spp., Ehrlichia spp., and Borrelia spp. Sequencing of Rickettsia spp.—positive and Borrelia spp.—positive pools provided evidence for distinct genotypes. Our results identified bacteria with human disease potential in ticks in Laos.

Rickettsia, Borrelia, Ehrlichia, Anaplasma, and Coxiella spp. are tick-associated bacteria and well-described human pathogens. All of these bacteria, except Coxiella spp., are primarily transmitted through tick bites and cause febrile disease with a wide spectrum of severity. Tickborne bacterial pathogens are believed to be an underrecognized cause of acute febrile illness in Southeast Asia (1).

In Laos, spotted fever group Rickettsia have been shown to cause undifferentiated fever in 2% of febrile hospitalized adult patients (2). However, data on bacteria in ticks in Laos are sparse. To date, 1 Rickettsia sp. has been identified in a Boophilus sp. tick from Luang Namtha Province; this species showed 99.8% similarity with the Rickettsia sp. FUJ98 ompA gene (3). No other tickborne bacteria have been reported from Laos. Therefore, we investigated Rickettsia, Borrelia, Ehrlichia, Anaplasma, and Coxiella spp. in ticks from Khammouan Province, Laos.

The Study
We collected ticks in Nakai District, Khammouan Province, during the dry seasons (December–April) during 2012–2014, as previously described (4) (online Technical Appendix Figures 1, 2, http://wwwnc.cdc.gov/EID/article/22/9/15-1969-Techapp1.pdf). A total of 6,692 ticks were pooled (n = 768 pools, 1–10 ticks/pool) according to genus, sex, developmental stage, collection period, and site. One Amblyomma testudinarium nymph that contained a blood meal was processed separately.

We extracted DNA by using the NucleoSpin 8 Virus Extraction Kit (Macherey-Nagel, Düren, Germany). Pools were screened by using single quantitative real-time PCRs specific for Rickettsia spp. (17-kDa gene), Borrelia spp. (23S rRNA gene), Anaplasma spp. (major surface protein 2 gene), Ehrlichia spp. (16S rRNA gene), and Coxiella spp. (IS1111) (5–8) (online Technical Appendix Table 1). Five microliters of diluted (1:10) template containing 1× Platinum Supermix-UDG (Invitrogen, Carlsbad, CA, USA) and bovine serum albumin (40 mg/mL) were used for each assay. Positive and nontemplate controls were included in each run. Screening by PCR was performed once per sample. In concordance with published guidelines, results were considered positive if they had a cycle quantitation (Cq) value <40 and likely positive if they had a Cq value 40–45 (9).

Sequencing was attempted for pools with Cq values <40 (online Technical Appendix Table 2) and performed by Macrogen (Seoul, South Korea). Consensus sequences were analyzed by using CLC Main Workbench 7 (http://www.clcbio.com/products/clc-main-workbench/) and BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and submitted to GenBank. Phylogenetic trees were constructed by using the Kimura 2-parameter model and the neighbor-joining method. Bootstrap values were determined by using 1,000 replications.

A total of 768 tick pools containing 6,692 ticks were screened. Pools contained 3 genera of ticks: 59.9% (460/768) Haemaphysalis spp., 36.3% (279/768) A. testudinarium, and 3.8% (29/768) Dermacentor auratus. Of the pools, 3% (23/768) contained adults, 36.5% (280/768) contained larvae, and 60.5% (465/768) contained nymphs (Table 1).

Rickettsia spp. were identified in 5.7% (44/768) of pools, and an additional 2.3% (18/768) of pools were likely positive for Rickettsia spp. Sequences consistent with 5 described Rickettsia species or genotypes were identified: R. tamurae, R. japonica, Rickettsia sp. ATT, Rickettsia sp. Kagoshima6, and Rickettsia sp. TwKM01 (Table 2; Figure 1).

Three novel genotypes (Table 2) were identified that might be new species. Candidatus Rickettsia laoensis (pool 447) was identified in 1 Haemaphysalis sp. pool. Phylogenetic analysis of 2845–2920-bp concatenated sequences of gltA, sca4, and ompB genes suggested that this bacteria

1These senior authors contributed equally to this article.
belonged to the \textit{R. massiliae} group of rickettsiae (online Technical Appendix Figure 3). \textit{Candidatus} Rickettsia mahosotii (pools 81 and 372) was identified in \textit{Haemaphysalis} spp. and \textit{A. testudinarium} pools. Phylogenetic analysis of \textit{gltA}, \textit{sca4}, and \textit{ompB} genes suggested that this bacteria belonged to the \textit{R. rickettsii} group (online Technical Appendix Figure 3). \textit{Candidatus} Rickettsia khammouanensis was identified in 1 \textit{Haemaphysalis} sp. nymph pool (pool 120). Phylogenetic analysis of \textit{gltA}, 17-kDa, and \textit{ompB} genes suggested a relationship with the \textit{R. helvetica} group (online Technical Appendix Figure 4).

In addition, 15 \textit{A. testudinarium} pools showed dual peaks for 17-kDa gene sequences, which suggested the presence of \textit{R. tamurae} and \textit{Rickettsia} sp. ATT. Sequencing of \textit{sca4}, \textit{ompA}, and \textit{ompB} genes from 1 of these pools (pool 239) identified unique sequences (Table 2; online Technical Appendix Figure 4).

\textit{Borrelia} spp. were identified in 1.6\% (12/768) of pools (Table 1). Two unique sequences obtained from \textit{Haemaphysalis} spp. pools showed 99.3\% (298/300) (GenBank accession no. KR733069) and 98.7\% (296/300) (accession no. KR733068) identity with Shiretoko \textit{Haemaphysalis Borrelia} sp. (AB897888). Phylogenetic analysis confirmed that both bacteria were closely related to Shiretoko \textit{Haemaphysalis Borrelia} sp. (accession no. B897888) and belong to the relapsing fever group of \textit{Borrelia} (Figure 2).

Twelve (1.6\%) of 768 pools were positive for \textit{Ehrlichia} spp. (Table 1); an additional 6 pools (0.8\%) were likely positive. One short sequence from a \textit{Haemaphysalis} sp. nymph pool (pool 357) was obtained, and this sequence showed 100\% identity (116/116 bases) with the genus \textit{Ehrlichia}.

No pools were positive for \textit{Anaplasma} spp., but 2 were likely positive (Table 1). Although not all pools were tested for \textit{Coxiella} spp. (n = 511), 1 pool (0.2\%) was positive, and 4 pools were likely positive for \textit{C. burnetti}. No confirmatory sequences were obtained from these pools. The 1 tick that contained a blood meal (\textit{A. testudinarium nymph}) showed negative results by screening PCRs.

Conclusions

This study provides evidence that \textit{Rickettsia} spp., \textit{Borrelia} spp., and \textit{Ehrlichia} spp. are present in ticks in Laos. Several \textit{Rickettsia} spp. identified in this study are human pathogens. Infections with \textit{R. tamurae} (2) and \textit{R. japonica} are well described in Southeast Asia (10). However, the pathogenicity of \textit{Rickettsia} sp. TwkM01 (11), \textit{Rickettsia} sp. ATT (12), \textit{Rickettsia} sp. kagoshima6 genotypes (13) and potential novel \textit{Candidatus} Rickettsia laoensis, \textit{Candidatus} Rickettsia mahosotii, and \textit{Candidatus} Rickettsia khammouanensis is unknown. \textit{Candidatus} Rickettsia khammouanensis is phylogenetically related to \textit{R. helvetica}, for which there is serologic evidence for its role as a human pathogen in Laos (2). Unique \textit{ompA}, \textit{ompB}, and \textit{sca4} sequences identified in this study (Table 2) might indicate the presence of

Table 1. Tick pools tested for bacteria after screening by quantitative PCR, Khammouan Province, Laos

Bacteria and tick species	Total	Larvae	Nymphs	Adult males	Adult females
\textit{Rickettsia} spp.					
All	44/768 (5.7)	6/280 (2.1)	37/465 (8.2)	0/12 (0)	1/11 (9.1)
\textit{Amblyomma testudinarium}	27/279 (10.0)	0/61 (0)	27/217 (12.9)	0/1 (0)	0/1 (0)
\textit{Haemaphysalis G1}	5/398 (1.3)	8/194 (4.1)	9/200 (4.5)	0/3 (0)	0/1 (0)
\textit{H. hystricis}	1/6 (16.7)	NS	NS	0/3 (0)	1/3 (33.3)
\textit{Dermacentor auratus}	1/29 (3.4)	0/0 (0)	1/26 (3.8)	0/2 (0)	0/1 (0)
\textit{Ehrlichia} spp.					
All	12/768 (1.6)	4/280 (1.4)	6/465 (1.3)	1/12 (8.3)	1/11 (9.1)
\textit{A. testudinarium}	2/279 (0.7)	0/61 (0)	2/217 (0.9)	0/1 (0)	0/1 (0)
\textit{Haemaphysalis G1}	8/398 (2.0)	4/194 (2.1)	4/200 (2.0)	0/3 (0)	0/1 (0)
\textit{H. aborensis}	2/6 (33.3)	NS	NS	1/3 (33.3)	1/3 (33.3)
\textit{Borrelia} spp.					
All	12/768 (1.6)	2/280 (0.7)	8/465 (1.7)	2/12 (16.7)	NS
\textit{A. testudinarium}	2/279 (0.7)	1/61 (1.6)	1/217 (0.5)	0/1 (0)	0/1 (0)
\textit{Haemaphysalis G1}	6/398 (1.5)	1/194 (0.5)	5/200 (2.5)	0/3 (0)	0/1 (0)
\textit{Haemaphysalis G1.2}	1/13 (7.7)	NS	1/13 (7.7)	NS	NS
\textit{H. aborensis}	2/6 (33.3)	NS	NS	2/3 (66.7)	0/3 (0)
\textit{D. auratus}	1/29 (3.4)	0/0 (0)	1/26 (3.8)	0/2 (0)	0/1 (0)
\textit{Coxiella} spp.					
All	5/511 (1.0)†	4/187 (2.1)†	1/310 (0.3)	0/8 (0)	0/6 (0)
\textit{Haemaphysalis G1}	5/279 (1.8)†	4/162 (2.5)†	1/117 (0.9)	NS	NS
\textit{Anaplasma} spp.					
All	2/768 (0.3)†	0/280 (0)†	0/465 (0)†	0/12 (0)	0/11 (0)
\textit{A. testudinarium}	1/279 (0.4)†	0/61 (0)	1/217 (0.5)†	0/1 (0)	0/1 (0)
\textit{Haemaphysalis G1}	1/398 (0.3)†	1/194 (0.5)†	0/200 (0)	0/3 (0)	0/1 (0)

*NS, no samples were available for screening.
†Includes samples with cycle quantitation values <40 and 40–45.
Table 2. Sequence data for Rickettsia species isolated from ticks, Khammouan Province, Laos*

Tick pool	Tick species and stage	Rickettsia spp. gene, GenBank accession no., and % similarity (no. matching nucleotides/total)
110	Amblyomma testudinarium nymph	Unclear sequence
177, 180, 216, 220 A. testudinarium nymph	KR733070, 100.0 (355/355) with R. tamurae AB114425	KT753265, 99.8 (1,096/1,096) with R. tamurae AB812551
315 A. testudinarium nymph	KT753267, 98.8 (407/412) with R. raoultii JX885457	KT753268, 99.9 (1,036/1,037) with Rickettsia kagoshima6 JQ697956
239 A. testudinarium nymph	KT753271, 99.7 (360/361) with Rickettsia sp. ATT AF483196	KT753272, 99.7 (1,046/1,051) with R. tamurae (AB812551)/KT753273, 99.2 (367/370) with Rickettsia sp. hmn77 KC566999
76, 337, 450, 453 Haemaphysalis G1 nymphs (3), A. testudinarium nymph (1)	KT753277, 98.4 (417/423) with R. raoultii JX885457	KT753278, 99.9 (1,037/1,038) with Rickettsia kagoshima6 JQ697956
81, 372 Haemaphysalis G1 nymphs, A. testudinarium nymph (17 kDa only)	KT753283, 99.0 (408/412) with R. raoultii JX885457	KT753284, 99.5 (1,090/1,096) with R. sibirica U59734
120 Haemaphysalis G1 nymph	KT753287, 96.1 (391/407) with R. helvetica GU827073	KT753288, 97.1 (370/381) with Candidatus Rickettsia rara DQ365805
407 Haemaphysalis hysticas adult	KT733074, 100.0 (413/413), R. japonica AP011533	KT753281, 100.0 (1,063/1,063), R. japonica AP011533
447 Haemaphysalis G1 nymph	KT753291, 98.6 (407/413) with R. massilae CP000683	KT753290, 99.6 (961/965) with R. raoultii JX885455

*New sequences were compared with reference sequences. NS, not sequenced.

Rickettsia sp. ATT (12), which was previously believed to be identical to R. tamurae (14), and suggests that it might be a distinct species. Further studies, including whole-genome sequencing, are required to identify and confirm these novel genotypes and understand their role in human disease.

Borrelia spp. sequences identified in Haemaphysalis spp. pools were shown to have high concordance with the Shiretoko Haemaphysalis Borrelia isolated from Haemaphysalis spp. ticks and deer in Japan (15). The species belongs to the relapsing fever group of Borrelia and is related to B. lonestari.

Sequence data for Ehrlichia spp. indicated the presence of these bacteria but were not sufficient to identify them to the species level. The Cq values were high (40–45) for Anaplasma spp., but no sequence data were obtained. Coxiella spp. were screened by using primers for IS1111, which are not specific for C. burnetii, and no confirmatory sequence data were obtained. Because of limited reagents, screening of all 768 pools for Coxiiella sp. was not completed. Further work is required to investigate the presence of these bacteria in Laos.

Our study had several limitations. First, pooling of ticks precludes an accurate assessment of prevalence of bacterial pathogens. Second, sequences obtained from some A. testudinarium pools had dual peaks, suggestive of multiple infections, and could therefore not be interpreted. Third, ticks were collected only from 1 area in Laos.
DISPATCHES

(Khammouan Province); thus, extrapolating findings to the entire country must be done cautiously.

Our results highlight the frequency of tickborne bacterial infections in Laos. These findings emphasize the need for further research of tick-associated bacteria and their role in human disease.

Acknowledgments

We thank the staff of Mahosot Hospital, especially Soulignasack Thongpaseuth, for providing technical assistance, and Al Richards and Ju Jiang for fruitful discussions.

This study was supported by the US Naval Medical Research Center–Asia in support of the Department of Defense Global

Figure 1. Phylogenetic analysis of *Rickettsia* spp. in ticks, Khammouan Province, Laos. The tree was constructed by using partial nucleotide sequences (350 bp) of the 17-kDa gene, the Kimura 2-parameter model, and the neighbor-joining method. Analyses were supported by bootstrap analysis with 1,000 replications. Numbers along branches are bootstrap values. GenBank accession numbers are shown for reference sequences. Sample numbers for each tick are shown in parentheses. Scale bar indicates nucleotide substitutions per site.

Figure 2. Phylogenetic analysis of *Borrelia* spp. in ticks, Khammouan Province, Laos. The tree was constructed by using partial nucleotide sequences (299–323 bp) of the flaB gene, the Kimura 2-parameter model, and the neighbor-joining method. Analyses were supported by bootstrap analysis with 1,000 replications. Numbers along branches are bootstrap values. GenBank accession numbers are shown for reference sequences. Sample numbers for each tick are shown in parentheses. Scale bar indicates nucleotide substitutions per site.
Large-Scale Survey for Tickborne Bacteria, Laos

Emerging Infections Surveillance Program, the Institut Pasteur du Laos, and the Wellcome Trust of Great Britain.

Dr. Taylor is a research physician at the Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK. His primary research interest is infectious diseases.

References
1. Blacksell SD, Kantipong P, Watthanaworawit W, Turner C, Tanganuchitcharnchai A, Jintawon S, et al. Underrecognized arthropod-borne and zoonotic pathogens in northern and northwestern Thailand: serological evidence and opportunities for awareness. Vector Borne Zoonotic Dis. 2015;15:285–90. http://dx.doi.org/10.1089/vbz.2015.1776
2. Phongmany S, Rolain JM, Phetsouvanh R, Blacksell SD, Soukkhaseum V, Rasachack B, et al. Rickettsial infections and fever, Vientiane, Laos. Emerg Infect Dis. 2006;12:256–62. http://dx.doi.org/10.3201/eid1202.050900
3. Kernif T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al. Bartonella and Rickettsia in arthropods from the Lao PDR and from Borneo, Malaysia. Comp Immunol Microbiol Infect Dis. 2012;35:51–7. http://dx.doi.org/10.1016/j.cimid.2011.10.003
4. Vongphayloth K, Brey PT, Robbins RG, Sutherland IW. First survey of the hard tick (Acari: Ixodidae) fauna of Nakai District, Khammouane Province, Laos, and an updated checklist of the ticks of Laos. Systematic and Applied Acarology. 2016;21:166–80. http://dx.doi.org/10.11158/saa.21.2.2
5. Wright CL, Nadolny RM, Jiang J, Richards AL, Sonenshine DE, Gaff HD, et al. Rickettsia parkeri in gulf coast ticks, southeastern Virginia, USA. Emerg Infect Dis. 2011;17:896–8. http://dx.doi.org/10.3201/eid1705.101836
6. Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42:3164–8. http://dx.doi.org/10.1128/JCM.42.7.3164-3168.2004
7. Fournier PE, Thuny F, Richet H, Lepidi H, Casalta JP, Arzouni JP, et al. Comprehensive diagnostic strategy for blood culture-negative endocarditis: a prospective study of 819 new cases. Clin Infect Dis. 2010;51:131–40. http://dx.doi.org/10.1086/653675
8. Loftis AD, Massung RF, Levin ML. Quantitative real-time PCR assay for detection of Ehrlichia chaffeensis. J Clin Microbiol. 2003;41:3870–2. http://dx.doi.org/10.1128/JCM.41.8.3870-3872.2003
9. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. http://dx.doi.org/10.1373/clinchem.2008.112797
10. Takada N, Fujita H, Kawabata H, Ando S, Sakata A, Takano A, et al. Spotted fever group Rickettsia sp. closely related to Rickettsia japonica, Thailand. Emerg Infect Dis. 2009;15:610–1.
11. Tsui PY, Tsai KH, Weng MH, Hung YW, Liu YT, Hu KY, et al. Molecular detection and characterization of spotted fever group rickettsiae in Taiwan. Am J Trop Med Hyg. 2007;77:883–90.
12. Hirunkanokpun S, Kittayapong P, Cornet J-P, Gonzalez J-P. Molecular evidence for novel tick-associated spotted fever group rickettsiae from Thailand. J Med Entomol. 2003;40:230–7. http://dx.doi.org/10.1603/0022-2585-40.2.230
13. Gaowa, Ohashi N, Aochi M, Wuritu D, Wu, Yoshikawa Y, et al. Rickettsiae in ticks, Japan, 2007–2011. Emerg Infect Dis. 2013;19:338–40. http://dx.doi.org/10.3201/eid1902.120856
14. Fournier PE, Takada N, Fujita H, Raoul D. Rickettsia tamurae sp. nov., isolated from Amblyomma testudinarium ticks. Int J Syst Evol Microbiol. 2006;56:1673–5. http://dx.doi.org/10.1099/ijs.0.64134-0
15. Lee K, Takano A, Taylor K, Sashika M, Shimozuru M, Konnai S, et al. A relapsing fever group Borrelia sp. similar to Borrelia lonestari found among wild sika deer (Cervus nippon yesoensis) and Haemaphysalis spp. ticks in Hokkaido, Japan.Ticks Tick Borne Dis. 2014;5:841–7. http://dx.doi.org/10.1016/j.ttbdis.2014.06.006

Address for correspondence: Andrew J. Taylor; Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, Research Building, University of Oxford, Oxford OX3 7FZ, UK; email: andrewtaylor9@gmail.com
Large-Scale Survey for Tickborne Bacteria, Khammouan Province, Laos

Technical Appendix

Technical Appendix Table 1. Primers and probes used for screening quantitative PCR in large-scale survey for tickborne bacteria, Khammouan Province, Laos*

Bacteria	Gene	Primer or probe	Sequence, 5′→3′	Reference†
Rickettsia spp	17 kDa	R17K128F2	F-GGGCGGATGAAAYAACAAAG	(5)
Spotted fever group	17 kDa	R17K238R	R-CCTACACCTACCTCCVACAAG	(5)
Spotted fever group	17 kDa	R1K7202TACP	P-CGAAATGGAAAACAGTAGGTC	(5)
Borrelia spp	23S rRNA	Bb23Sr	R-TATTATGGCCAGCGGGGA	(6)
Borrelia spp	23S rRNA	Bb23Sp	P-AGATGGTAGGGAGCCCAAGCAGGT	(6)
Coxliella spp	IS1111	IS1111l	R-CAAGAACGGTACGGTGGC	(7)
Coxliella spp	IS1111	IS1111l	R-CAAGAACGGTACGGTGGC	(7)
Coxliella spp	IS1111	IS1111probe	P-CGAGGGAAACAGTAGGTC	(7)
Ehrlichsia spp	16S rRNA	EHR16S-17	P-GCGGAGCAGCTACACAT	(8)
Ehrlichsia spp	16S rRNA	EHR16S-97	R-CGAGGTCGACACTAAATTATT	(8)
Ehrlichsia spp	16S rRNA	EHR16S-38	P-CGAGGTCGACACTAAATTATT	(8)
Anaplasma spp	ms2	ApMSP2f	F-ATGGAAGGTGTTGTTGTTGTTGATG	(6)
Anaplasma spp	ms2	ApMSP2r	R-TTGGTCTTGGAAGCGCTGTA	(6)
Anaplasma spp	ms2	ApMSP2p	P-TTGGTCCGAGGGTCTGTTAGG	(6)
*F, forward; IS, insertion sequence; ms2, major surface protein 2; P, probe; R, reverse.
†References are in the text of the article.

Technical Appendix Table 2. Primers used for sequencing in large-scale survey for tickborne bacteria, Khammouan Province, Laos*

Bacteria	Gene	Primer	Sequence, 5′→3′	Size, bp	Reference†
Rickettsia spp	17 kDa	R17KM61F†	F-.ACTTTACAAATTTCAAAACCATA	524	(1)
Spotted fever group	17 kDa	R17K31F†	R-CTTTGCGCTACTAAACATTACT	524	(1)
Spotted fever group	17 kDa	R2609Rnewt†	R-CTTTGCGCTACTAAACATTACT	434	(1)
Spotted fever group	gltA	Rs1DF†	R-ATGCAACTTGGAGAATAAA	1,237	(2)
Spotted fever group	gltA	Rs1SF†	R-GGGGCGCTCGCTACGCGGG	382	(2)
Spotted fever group	gltA	Cs1DF†	R-GGGGCGCTCGCTACGCGGG	382	(2)
Spotted fever group	gltA	Cs1SF†	R-GGGGCGCTCGCTACGCGGG	382	(2)
Spotted fever group	sca4	RsD49F†	R-GGGGCGCTCGCTACGCGGG	1,078	(3)
Spotted fever group	sca4	RsD928F†	R-GGGGCGCTCGCTACGCGGG	1,078	(3)
Spotted fever group	sca4	RsD1826R†	R-GGGGCGCTCGCTACGCGGG	899	(3)
Spotted fever group	ompA	RompA50F†	R-GGGGCGCTCGCTACGCGGG	692	(4)
Spotted fever group	ompA	RompA642R†	R-GGGGCGCTCGCTACGCGGG	692	(4)
Spotted fever group	ompA	RompA701R†	R-GGTGCTCGCTACGCGGG	692	(4)
Spotted fever group	ompB	RompB115F†	R-GGTGCTCGCTACGCGGG	1,902	(5)
Spotted fever group	ompB	RompB607F†	R-GGTGCTCGCTACGCGGG	1,902	(5)
Spotted fever group	ompB	RompB1902R†	R-GGTGCTCGCTACGCGGG	1,265	(5)
Borrelia spp	fla B	280F†	R-GGTGCTCGCTACGCGGG	1,452	(5)
Borrelia spp	fla B	754R†	R-GGTGCTCGCTACGCGGG	437	(6)
Borrelia spp	fla B	301F†	R-GGTGCTCGCTACGCGGG	437	(6)
Borrelia spp	fla B	737R†	R-GGTGCTCGCTACGCGGG	437	(6)
Ehrlichsia spp	16S rRNA	Ehr165F	R-GGTGCTCGCTACGCGGG	437	(7)
Ehrlichsia spp	16S rRNA	Ehr16SR	R-GGTGCTCGCTACGCGGG	437	(7)
*F, forward; R, reverse.
†First reaction.
‡Second reaction.
References

1. Maina A. Sero-epidemiology and molecular characterization of Rickettsiae infecting humans, selected animals and arthropod vectors in Asembo, western Kenya, 2007–2010 [Doctoral dissertation]. Nairobi (Kenya): Jomo Kenyatta University of Agriculture and Technology; 2012.

2. Roux V, Rydkina E, Eremeeva M, Raoult D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int J Syst Bacteriol. 1997;47:252–61. PubMed http://dx.doi.org/10.1099/00207713-47-2-252

3. Jiang J, Sangkasuwan V, Lerdthusnee K, Sukwit S, Chuenchitra T, Rozmajzl P, et al. Human infection with Rickettsia honei Thailand. Emerg Infect Dis. 2005;11:1473–5. PubMed http://dx.doi.org/10.3201/eid1109.050011

4. Fournier PE, Roux V, Raoult D. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol. 1998;48:839–49. PubMed http://dx.doi.org/10.1099/00207713-48-3-839

5. Roux V, Raoult D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol. 2000;50:1449–55. PubMed http://dx.doi.org/10.1099/00207713-50-4-1449

6. Clark KL, Leydet B, Hartman S. Lyme borreliosis in human patients in Florida and Georgia, USA. Int J Med Sci. 2013;10:915–31. PubMed http://dx.doi.org/10.7150/ijms.6273

7. Dittrich S, Phuklia W, Turner GD, Rattanavong S, Chansamouth V, Dumler SJ, et al. Neorickettsia sennetsu as a neglected cause of fever in South-East Asia. PLoS Negl Trop Dis. 2015;9:e0003908. PubMed http://dx.doi.org/10.1371/journal.pntd.0003908

8. Phongmany S, Rolain JM, Phetsouvanh R, Blacksell SD, Soukkhaseum V, Rasachack B, et al. Rickettsial infections and fever, Vientiane, Laos. Emerg Infect Dis. 2006;12:256–62. PubMed http://dx.doi.org/10.3201/eid1202.050900

9. Kernif T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al. Bartonella and Rickettsia in arthropods from the Lao PDR and from Borneo, Malaysia. Comp Immunol Microbiol Infect Dis. 2012;35:51–7. PubMed http://dx.doi.org/10.1016/j.cimid.2011.10.003
Technical Appendix Figure 1. Khammouan Province (red star), Laos, where ticks were collected in this study (see Technical Appendix Figure 2). Locations of previous studies investigating *Rickettsia* spp. in Laos are shown by the green star (8) and blue star (9).
Technical Appendix Figure 2. Location of tick collections sites (red stars) in Khammouan Province, Laos.
Technical Appendix Figure 3. Phylogenetic analysis of gltA, sca4, and ompB genes of candidate novel Rickettsia spp., Kammouan Province, Laos. The tree was constructed by using concatenated partial nucleotide sequences (2,845–2,920 bp) of gltA, sca4, and ompB genes; the Kimura-80 model; and the neighbor-joining method. Analyses were supported by using bootstrap analysis with 1,000 replications. Numbers along branches are bootstrap values. Sample numbers identifying each tick pool from this study are shown in parentheses after the sequence name. Scale bar indicates nucleotide substitutions per site.

Technical Appendix Figure 4. Phylogenetic analysis of gltA, 17 kDa, and ompB genes of Rickettsia spp., Kammouan Province, Laos. The tree was constructed by using partial nucleotide sequences (1,114–1,117 bp) of concatenated sequences of gltA, 17-kDa, and ompB genes; the Kimura-80 model; and the neighbor-joining method. Analyses were supported by using bootstrap analysis with 1,000 replications. Numbers along branches are bootstrap values. Sample numbers identifying each tick pool from this study are shown in parentheses after the sequence name. Scale bar indicates nucleotide substitutions per site.