A B S T R A C T

Land use is characterized by the arrangements, activities and inputs that people undertake in a certain land cover type to produce change. It affects soil properties, overall soil health and the distribution supply of soil nutrients by directly altering biological transformations in the rooting zone. The present study “Assessment of soil microbial status under different land use systems in North western zone of Kashmir” was carried out to ascertain the biological properties of soils under five land use systems, viz., Forestry, Horticulture, Agriculture, Agri-Horti, Pasture at different locations viz., Gulmarg, Pattan, Ruhama, Baramulla, Sopore. The results revealed that, contrary to agro-ecosystem soils, forest showed the highest bacterial counts (cfu×10^6/g soil) with mean value of (178.46) while, the lowest (68.60) was found in agriculture land use system. The highest fungal count (cfu×10^5/g soil) with mean value (96.53) was observed in forest land use system and lowest (16.20) in agriculture land use. The highest actinomycetes count (cfu ×10^5/g soil) with mean value (73.86) was found in forest land use and lowest count (9.66) in agriculture land use. The highest azotobacter count (cfu ×10^5/g soil) was found in forest land use with mean value of (63.53) and lowest in agriculture (8.33). The highest phosphate solubilizing bacteria count (cfu ×10^5/g soil) was found in forest land use with mean value of (33.06) and lowest in agriculture (7.53). Our study confirmed that, the highest microbial count was found in forest soils and lowest in agriculture soils, probably because of presence of larger carbon source in the form of organic matter present in the forest soils as compared to other land use systems.

Keywords

Land use system, Microbial count, Bacteria, Kashmir, Soil

Article Info

Accepted: 04 July 2018
Available Online: 10 August 2018

Introduction

Land use is characterized by the arrangements, activities and inputs, that people undertake in a certain land cover type to produce change or maintain it (Abad et al., 2014). It influences soil aggregation, aggregate stability and overall soil health and practices affect the distribution and supply of soil nutrients by directly altering soil properties and there by
influencing biological transformations in the rooting zone (Nisar and Lone, 2013). The conversion of Forest Reserve to other land uses in recent times has caused many complex changes in the forest ecosystem whose impact raises diverse ecological problems (Awotoye et al., 2013). The conversion of forests into agriculture land had negative impacts on soil and diversely affects soil Carbon and Nitrogen levels (Michel et al., 2010).

Diverse microbial communities are supported by soil that plays an important role in ecosystem level processes such as, decomposition of organic matter and nutrient cycling. One cubic meter of soil may house many hundreds of species of bacteria, actinomycetes, fungi, and algae. The richness, abundance and activity of the microbial community is vulnerable to influence by soil physical and chemical properties such as pH, moisture, organic matter content, and nutrient availability.

Alterations in the physical and chemical nature of the soil may lead to change in soil microbial community, composition, number and changes in microbial function (Bello et al., 2013). Land use systems such as forestry, pasture, cultivated land etc., provide stability and sustainability to the farming system.

The main aim of the study was to determine the effects of land use on the nature and population of microorganisms as soil microbial communities are susceptible to changes with different agricultural practices and land use management. Therefore, the present investigation entitled “Assessment of soil microbial status under different land use systems in North western zone of Kashmir” was carried out in district Baramulla of Jammu and Kashmir as the area has witnessed changes in the land use, for instance, the conversion of forests/pastures into cropland or a shift from agriculture to horticulture use.

Materials and Methods

Location of the investigated area

The study entitled “Assessment of soil biological properties under different land use systems in North western zone of Kashmir” has been carried out in district Baramulla of Jammu and Kashmir. The district is situated at 34.1980° N Longitude and 74.3636° E Latitude (Fig 1), at an average elevation of 1593 meters (5226 feet). The area encompasses many land uses and among them five dominant land uses are agriculture, forest, pasture, agri-horti and horticulture land use systems.

Site selection and collection of soil samples

Five land use systems viz., Forestry, Horticulture (Vegetables and Fruits), Agriculture, Agri-Horti, Pasture as shown in Fig. 2 at five different locations viz., Gulmarg, Pattan, Ruhama, Baramulla, Sopore of district Baramulla were identified for present study. The description of sampling sites under different land use systems is given in Table 1 and Fig 3. From these locations three sites per land use system were identified for collection of soil sample. Purposive sampling method was followed for collection of composite soil samples from each site with three replicates from a depth of 0-20 cm (Maqbool et al., 2017). The field moist soil samples were stored in refrigerator at temperature less than 4°C for determining the biological properties using standard procedures (sofi et al., 2016)

Estimation of total microbial count

Serial dilution pour plate technique by (Aneja, 2001) was used for estimation of total bacterial, fungal, actinomycetes, azotobacter, phosphate solubilizing bacteria using specific media i.e., nutrient agar media (NA), Martins Rose Bengal media, Actinomycetes agar,
Ashby's media, pikovaskaya's media respectively. One gram of the rhizosphere soil was placed in 9 ml of sterilized distilled water under aseptic conditions. Serial dilution of 10^2, 10^3, 10^4, 10^5, 10^6 were prepared. One ml of aliquot from specific dilution was added over cooled and solidified nutrient media (NA) in petriplates. The plates were rotated for uniform distribution. The plates were incubated at temperatures specific to particular microbe for 2-3 days. The colonies that developed on media were counted by electronic colony counter. Three replications were taken for each sample. The bacterial count was expressed as colony forming unit per gram of soil (Cfu/g soil).

Statistical analysis

Statistical analysis was carried out by using standard statistical procedures of Gomez and Gomez (1984) and SPSS window version 20.0 (SPSS Inc., Chicago, USA) packages.

Results and Discussion

Total Bacterial Count

The data (Table 2) revealed, that the total viable bacterial count ranged from 8.00 to 244.00 cfu ×10^6 /g soil. Contrary to agro-ecosystem soils, forest and pasture showed the highest bacterial counts (Fig 4). The highest bacterial count (cfu×10^6 /g soil) was found in forest land use with mean value of (178.46) followed by pasture (173.86), horticulture (vegetables) (168.46), agri-horti (158.53), horticulture (fruits) (117.86). While, the lowest (68.60) was found in agriculture land use.

The number of soil bacteria in the cultivated land was lower than that in the other land use systems. This is probably because of presence of larger carbon source in the form of organic matter present in the forest and pasture land. This carbon source needed for metabolism may have increased the growth and activities of bacteria in soils of these land use systems. The slightly lower pH of the uncultivated land use type may have also encouraged the growth of bacteria which strive in that level of soil pH. Soil pH has been shown to greatly influence soil microbial community (Ibekwe et al., 2012). Similar results that bacterial count was significantly affected by different land use system and conditions, and the highest bacterial count was found in surface soils of forest land use, grassland and lowest in cultivated land was also reported by Bello et al., (2013), Asadu et al., (2015), Kumar et al., (2017)

Total fungal count

The mean value of total viable fungi count (cfu×10^5/g soil) is presented in (Table 2). The lowest (16.20) was recorded in agriculture land use and highest (96.53) was related in forest followed by pasture (63.46), horticulture (vegetables) (52.33), agri-horti (44.53), horticulture (fruits) (32.40). The mean fungal count forest soils were generally much higher than the other soils in the study area (Fig 5). The total viable fungal count ranged from 0.00 to 120.00 cfu ×10^5 /g soil. It might be due to low pH and higher organic matter in the forest soils. It is also possible that the presence of trees in this land use system may have encouraged the presence of ectomycorrhizal fungi which colonize most tree species whereas changes in soil physical properties resulting from tillage operations common in cultivated land may have equally contributed to the reduced number of fungi in the cultivated land. This is because fungi are easily influenced by changes in soil and environmental conditions (Sui et al., 2012). Fungal structure (hyphal growth) is greatly affected by conventional agricultural practices. Furthermore, the presence of trees in the forestland may have reduced the impact of heavy rainfall and other climatic variables thus, favoring abundant growth of fungi in the forest land Asadu et al., (2015).
Table 1 Description of sampling sites under different Land Use Systems of District Baramulla

Land Use System	Location	Site	Site No.
Forest			
	Tangmarg	C-37	S1
		C-39	S2
		Chamdinala	S3
	Pattan	Palhalan	S1
		Reengh	S2
		Parihaspora	S3
	Ruhama	Rawchha	S1
		Sangrampora	S2
		Mandinu	S3
	Baramulla main	Veerivan	S1
		Sheeri	S2
		Sheeri	S3
	Sopore	Zaloora	S1
		Harwan	S2
		Latishat	S3
Horticulture			
Vegetable		Tangmarg	S1
		Kunzer	S2
		Tangmarg	S3
	Pattan	Palhalan	S1
		Hanjura	S2
		Zangam	S3
	Ruhama	Tragpora	S1
		Dangiwacha	S2
		Ladura	S3
	Baramulla main	Delina	S1
		Arampora	S2
		Johama	S3
	Sopore	Samad-Abad	S1
		Jalalabad	S2
		Mazbug	S3
Fruit			
	Tangmarg	Gokhama	S1
		Kunzer	S2
		Tangmarg	S3
	Pattan	Gooin	S1
		Hanjura	S2
		Zangam	S3
	Ruhama	Sangrampora	S1
		Dangiwacha	S2
		Hadipora	S3
	Baramulla main	Veerivan	S1
		Johama	S2
		Nadihal	S3
	Sopore	Saidpora	S1
		Shangergund	S2
Towns	Village	District	
-----------------------	--------------------------	------------	
Tangmarg	Hygam	S3	
	Agriculture		
	Druroo	S1	
	Shraie	S2	
	Reram	S3	
	Pattan		
	Gooin	S1	
	Hanjura	S2	
	Zangam	S3	
	Ruhama		
	Hachivi Pora	S1	
	Batsum	S2	
	Watrigam	S3	
	Baramulla main		
	Johama	S1	
	Sheeri	S2	
	Chakla	S3	
	Sopore		
	Samad-Abad	S1	
	Shiva	S2	
	Daranambal	S3	
	Agri-Horti		
	Tangmarg		
	Shraie	S1	
	Reram	S2	
	Sadkipora reram	S3	
	Pattan		
	Paripora	S1	
	Palhalan	S2	
	Palhalan	S3	
	Ruhama		
	Hadipora	S1	
	Ladura	S2	
	Tragpora	S3	
	Baramulla main		
	Arampora	S1	
	Johama	S2	
	Bear	S3	
	Sopore		
	Brath	S1	
	Goripora	S2	
	Botingoo	S3	
	Pasture		
	Tangmarg		
	Gulmarg pasture-1	S1	
	Gulmarg pasture-2	S2	
	Gulmarg pasture-3	S3	
	Pattan		
	Hyderbeigh	S1	
	Palhalan ghat	S2	
	Tapeer payeen	S3	
	Ruhama		
	Behrampora	S1	
	Panzala	S2	
	Khusipora	S3	
	Baramulla main		
	Darpora Delina	S1	
	Delina	S2	
	Janbazpora	S3	
	Sopore		
	Warpora	S1	
	Nengli	S2	
	Hanjipora Hygam	S3	
Table 2: Microbial count of soil under different Land Use Systems

LUS	Location	Site	Total viable Bacteria cfu × 10^6 g^-1 soil	Total viable Fungi cfu × 10^5 g^-1 soil	Total viable Actinomycetes cfu × 10^5 g^-1 soil	Azotobacter cfu × 10^5 g^-1 soil	Phosphate solubilizing bacteria cfu × 10^5 g^-1 soil
Forestry	Tangmarg	S₁	240	120	88	72	32
		S₂	236	108	76	64	36
		S₃	244	116	84	68	20
	Pattan	S₁	232	88	72	60	16
		S₂	116	92	80	76	24
		S₃	228	103	86	80	76
	Ruhama	S₁	108	100	92	84	8
		S₂	104	112	96	81	28
		S₃	221	96	68	56	12
	Baramulla	S₁	112	84	52	48	44
		S₂	119	76	64	52	40
		S₃	159	80	56	40	32
	Sopore	S₁	231	97	60	36	28
		S₂	92	104	77	76	52
		S₃	235	72	57	60	48
Range	Mean ± S.E	95% C.I	92.00-244.00	72.00-120.00	52.00-96.00	36.00-84.00	8.00-76.00
Horticulture	Tangmarg	S₁	201	61	45	39	37
1) Vegetables		S₂	159	69	64	55	53
		S₃	205	33	29	23	21
	Pattan	S₁	150	37	25	19	17
		S₂	141	49	37	31	25
		S₃	189	41	21	15	9
	Ruhama	S₁	137	57	13	7	2
		S₂	143	71	41	35	33
		S₃	133	68	49	43	37
	Baramulla	S₁	145	86	53	39	29
		S₂	173	65	57	47	45
		S₃	221	53	33	10	13
	Sopore	S₁	210	45	44	29	17
		S₂	191	29	25	0	9
		S₃	129	21	17	7	4
Range | Mean ± S.E | 95% C.I
--- | --- | ---
129.00-221.00 | 168.46±8.17 | 150.94-186.00
21.00-86.00 | 52.33 ±4.67 | 42.30-62.36
13.00-64.00 | 36.86±3.93 | 28.41-45.31
0.00-55.00 | 26.60±4.28 | 17.41-35.78
2.00-53.00 | 23.40±3.95 | 14.91-31.88

Fruits

Range	Mean ± S.E	95% C.I				
Tangmarg	S1	100	44	30	20	12
	S2	104	16	13	8	4
	S3	96	52	40	36	32
Pattan	S1	108	28	19	12	8
	S2	124	32	10	21	0
	S3	128	48	37	28	20
Ruhama	S1	107	20	14	3	0
	S2	201	18	16	10	3
	S3	127	24	0	4	9
Baramulla	S1	91	36	4	15	16
	S2	101	43	20	16	11
	S3	109	15	8	9	2
Sopore	S1	99	30	12	0	13
	S2	121	41	28	24	20
	S3	152	39	32	30	27

Agriculture

Range	Mean ± S.E	95% C.I				
Tangmarg	S1	96	16	8	4	4
	S2	92	4	4	8	2
	S3	73	20	12	0	8
Pattan	S1	84	8	3	1	12
	S2	91	19	15	9	3
	S3	76	28	20	12	7
Ruhama	S1	88	12	0	3	20
	S2	62	20	17	11	16
	S3	89	31	0	5	2
Baramulla	S1	58	43	30	16	14
	S2	72	24	13	7	0
	S3	80	0	7	13	9
Sopore	S1	8	3	0	17	10
	S2	20	15	11	0	6
	S3	40	0	5	19	0

Range	Mean ± S.E
8.00-96.00 | 68.60±6.91
0.00-43.00 | 16.20±3.16
0.00-30.00 | 9.66±2.19
0.00-19.00 | 8.33±1.60
0.00-20.00 | 7.53±1.55
Int. J. Curr. Microbiol. App. Sci. (2018) 7(8): 266-279

95% C.I	53.76-83.44	9.40-22.99	4.96-14.36	4.88-11.78	4.19-10.86											
Agri-Horti	**Tangmarg**	**S** 1	200	57	40	36	37									
	S 2	156	64	56	52	48										
	S 3	204	28	24	20	16										
	Pattan	**S** 1	135	32	20	16	11									
	S 2	148	44	32	28	20										
	S 3	150	36	17	12	4										
	Ruhama	**S** 1	132	52	8	20	0									
	S 2	137	43	36	32	28										
	S 3	128	68	44	40	32										
	Baramulla	**S** 1	140	56	48	0	24									
	S 2	152	60	52	44	40										
	S 3	216	48	28	17	8										
	Sopore	**S** 1	208	40	36	8	12									
	S 2	148	24	19	21	21										
	S 3	124	16	12	4	0										
Range Mean ± S.E	**95% C.I**	**124.00-216.00**	**158.53±8.10**	**140.97-176.08**	**16.00-68.00**	**44.53±3.95**	**36.04-53.01**	**8.00-56.00**	**31.46±3.81**	**23.27-39.65**	**0.00-52.00**	**23.33±3.89**	**14.97-31.68**	**0.00-48.00**	**20.06±3.81**	**11.88-28.25**
Fig.1 Map of study area

Fig.2 Map showing sampling sites under Different land use systems

Fig.3 Sampling sites

Fig.4 Graph showing bacterial count under different land use systems
Fig. 5 Graph showing fungal count under different land use systems

Fig. 6 Graph showing Actinomycetes count under different land use systems

Fig. 7 Graph showing Azotobacter count under different land use systems
The results are in unison with the findings of Bello et al., (2013), Asadu et al., (2015), Kumar et al., (2017) who also reported that fungal count was significantly affected by different land use systems however, the highest fungal count of surface and sub-surface soils was found in forest land.

Total actinomycetes count

The total viable actinomycetes count (cfu $\times 10^5$/g soil) ranged from 0.00-96.00 (Table 2). The highest actinomycetes count (cfu $\times 10^5$/g soil) was found in forest land use (Fig 6) with mean value of (73.86), followed by pasture (43.26), horticulture (vegetables) (36.86), agri-horti (31.46). The lowest actinomycetes count (9.66) was found in agriculture land use as compared to other soils in the study area followed by horticulture (fruits) (18.86). This may be due to higher pore space as well as more organic material in forest and grassland which is added to the soil through leaf litter which serves as a source of energy for microbial population with good vegetation cover is reason for increased microbial activity. Moreover, the more activity of microorganisms in grassland and forests are also due to presence of more plant roots. The less microbial count in cultivated land is due to low organic matter and use of fertilizers and more tillage practices. The results corroborate the findings of Okonkwo (2010) who also reported that continuous cultivation led to a decrease in the population of bacteria, actinomycetes and algae. Kumar et al., (2017) also found that actinomycetes count was significantly affected by different land use system and conditions. However, the highest actinomycetes count of surface and sub-surface soils was found in forest land use

Total azotobacter count

The perusal of data (Table 2) reveals that the total azotobacter count (cfu $\times 10^5$/g soil) ranged from (0.00-84.00). The highest count was observed in natural ecosystems as compared to cultivated lands in study area (Fig 7). The highest azotobacter count (cfu $\times 10^5$/g soil) was found in forest land use with mean value of (63.53) followed by pasture (29.73), horticulture (vegetables) (26.60) and lowest in agriculture (8.33), horticulture (fruits) (15.73), agri-horti (23.33). The highest microbial count in forests could be attributed
to more organic matter in forest soils and its accumulation in soil which acts as food for microorganisms. Higher organic matter levels also result in favorable soil temperature; improve plant root growth and in turn healthy microbial populations. The results are in agreement with the findings of Bello et al., (2013), Asadu et al., (2015), Kumar et al., (2017). Maurya et al., (2012) also reported highest azotobacter population in agro-forestry and lowest in cultivated lands.

Total Phosphate solubilizing bacteria Count

The phosphate solubilizing bacteria count (cfu \(\times 10^5/\text{g soil} \)) ranged from (0.00-76.00) in different land use systems (Table 2). The diversity in population density of phosphate solubilizing bacteria was maximum in soil of forestry followed by pasture and lowest in agriculture (Fig 8). The highest phosphate solubilizing bacteria count (cfu \(\times 10^5/\text{g soil} \)) was found in forest land use with mean value of (33.06) followed by pasture (31.46), horticulture (vegetables) (23.40), agri-horti (20.06), and lowest in agriculture (7.53), horticulture (fruits) (11.80). The low phosphate solubilizing bacteria population in cultivated land may be attributed to the reason that application of agrochemicals, especially pesticides might be associated with the population density declines of phosphate solubilizing bacteria as a response to changing of environmental conditions for microbial growth as soil microbes are very sensitive to external disturbances in their habitats. The application of pesticide can substantially affect populations and activity of phosphate solubilizing bacteria (Sethi et al., 2013) and biochemical processes including dissolution of soil phosphorus because of the negative impact of pesticide on the synthesis and metabolism of both enzymes and proteins (Srinivasulu and Rangaswamy, 2014). High population in forest soils may be due to higher pore space and organic material added to the soil through leaf litter which serves as a source of energy for microbial population.

Land use systems such as forestry, pasture, cultivated land etc., provide stability and sustainability to the farming system. It affects soil properties, overall soil health and the distribution supply of soil nutrients by directly altering biological transformations in the rooting zone. The present study under five land use systems, viz., Forestry, Horticulure, Agriculture, Agri-Horti, and Pasture at different locations revealed that the highest microbial count was found in forest soils and lowest in agriculture soils, probably because of presence of larger carbon source in the form of organic matter present in the forest soils as compared to other land use systems.

References

Abad, J.R., Khosravi, H. and Alamdarlou, E.H. 2014. Assessment the effects of land use changes on soil physicochemical properties in Jafarabad of Golestan province, Iran. *Bulletin of Environment, Pharmacology and Life Sciences*. 3 (3): 296-300.

Aneja, R.K. 2001. Experiments in Microbiology, Plant Pathology, tissue culture and mushroom production technology. Third edition. New age International Publishers, Pvt. New Delhi, pp. 568.

Asadu C. L. A., Nwafor I. A., Chibuike G. U. 2015. Contributions of Microorganisms to Soil Fertility in Adjacent Forest, Fallow and Cultivated Land Use Types in Nsukka, Nigeria. *International Journal of Agriculture and Forestry*. 5(3): 199-204.

Awotoye. O.O, Adebola. S.I. and Matthew. O.J. 2013. The effects of land-use changes on soil properties in a humid tropical location; Little-Ose forest
reserve, south-western Nigeria. *Research Journal of Agricultural and Environmental Management*. 2(6): 176-182.

Bello. H. S, Isa. T, Isa. M. A. and Akinmuisere. K. 2013. Effects of land use on the nature and population of microorganisms in the semi-arid region of north-eastern Nigeria. *International journal of environment*. 2(1): 224-230

Dinesh. K, Upadhyay. G.P, Anil. D and Bhutia. K.G. 2017. Assessment of soil biological properties under different land uses in barog-dhillon watershed in solan district of Himachal Pradesh. *International Journal of Chemical Studies*. 5(4): 221-224

Gomez and Gomez, 1984. Statistical methods for Agricultural Research. Wiley and Wiley Publications.

Ibekwe, A.M., Poss, J.A., Grattan, S.R., Grieve, C.M., and Suarez, D., 2012. Bacterial diversity in cucumber (*Cucumis sativus*) rhizosphere in response to salinity, soil pH, and boron. *Soil Biology and Biochemistry*. 42. 567-575.

Maqbool. M, Rasool. R and Ramzan. S. (2017). Soil physico-chemical properties as impacted by different land use systems in district Ganderbal, Jammu and Kashmir: India. *International Journal of Chemical Studies*. 5(4): 832-840.

Michel. K.Y, Pascal K.T.A, Souleymane K, Jerome E.T, Yao T., Luc. A and Danielle. B. 2010. Effects of land-use types on soil organic carbon and nitrogen dynamics in mid-west Côte d’Ivoire. *European Journal of Scientific Research*. 2 211-222.

Nisar, M and Lone, F.A. 2013. Effect of landuse/landcover change on soils of a kashmir himalayan catchment-sindh. *International Journal of Research In Earth & Environmental Sciences*. 1(1): 13-27.

Okonkwo, C.I. (2010). Effect of Burning and Cultivation on Soil Properties and Microbial Population of Four Different Land Use Systems in Abakaliki. *Research Journal of Agriculture and Biological Sciences*. 6 (6): 1007-1014.

Sethi, S., Mathur. N and Bhatnagar. P 2013. Effects of synthetic pyrethroids on phosphate solubilizing activity of microorganisms. *International Journal of Current Microbiology and Applied Sciences*. 2(12): 240-246

Sofi. J.A., Bhat. A.G., Kirmani. N.A., Wani. J.A., Lone. A.L., Mumtaz A. G., Dar. G.I.H. 2016. Soil quality index as affected by different cropping systems in northwestern Himalayas. *Environment Monitoring Assessment*. 188:161.

Srinivasulu and Rangaswamy. 2014. OMICS Group: e Books: Enzymes and Pesticides.

Sui, X., Feng, F., Lou, X., Zheng, J., and Han, S., 2012. Relationship between microbial community and soil properties during natural succession of forest land. *African Journal of Microbiology Research*. 6(42): 7028-7034.

How to cite this article:

Fozia Shafiq Wani, Farida Akhter, Shakeel Mir, Zahoor Ahmed Baba, Showkat Maqbool, Mohammad Yousuf Zargar and Sajad Un Nabi. 2018. Assessment of Soil Microbial Status under Different Land Use Systems in North Western Zone of Kashmir. *Int.J.Curr.Microbiol.App.Sci*. 7(08): 266-279. doi: https://doi.org/10.20546/ijcemas.2018.708.032