Responses of a Newly Evolved Auxotroph of Chlamydomonas to B₁₂ Deprivation

Freddy Bunbury,a Katherine E. Helliwell,b,c Payam Mehrshahi,a Matthew P. Davey,a Deborah L. Salmon,c Andre Holzer,a Nicholas Smirnoff,c and Alison G. Smitha,b,c

aDepartment of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
bMarine Biological Association of the United Kingdom, Citadel Hill, Plymouth EX4 4PY, United Kingdom
cSchool of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom

ORCID IDs: 0000-0002-2830-3674 (F.B.); 0000-0002-2068-576X (K.E.H.); 0000-0002-7192-0942 (P.M.); 0000-0002-5220-4174 (M.P.D.); 0000-0002-2575-8278 (D.L.S.); 0000-0003-2439-6364 (A.H.); 0000-0001-5630-5602 (N.S.); 0000-0001-6511-5704 (A.G.S.)

The corrinoid B₁₂ is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B₁₂ dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non-B₁₂-requiring alga *Chlamydomonas reinhardtii* in media supplemented with B₁₂ generated a B₁₂-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B₁₂ auxotroph. Our analyses demonstrate that B₁₂ deprivation of metE7 disrupts C₁ metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B₁₂ deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B₁₂ limitation and an increase in B₁₂ use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B₁₂-producing bacterium. Therefore, although an early B₁₂-dependent alga would likely be poorly adapted to coping with B₁₂ deprivation, association with B₁₂-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B₁₂ limitation better.

Over 50% of algal species require an exogenous source of B₁₂ for growth (Croft et al., 2005), yet large areas of the ocean are depleted of this vitamin (Panzea et al., 2009; Sañudo-Wilhelmy et al., 2012). Eukaryotic algae cannot synthesize B₁₂ and must instead obtain it from certain B₁₂-producing prokaryotes (Croft et al., 2005). Indeed, while dissolved B₁₂ concentrations are positively correlated with bacterioplankton density (Gobler et al., 2007; Panzea et al., 2008), they have been found to negatively correlate with phytoplankton abundance (Ohwada, 1973; Sañudo-Wilhelmy et al., 2006). Furthermore, nutrient amendment experiments suggest that B₁₂ limits phytoplankton growth in many aquatic ecosystems (Bertrand et al., 2007; Browning et al., 2017; Cohen et al., 2017). Despite this, understanding of the physiological and metabolic adaptations that B₁₂-dependent algae use to cope with B₁₂ deprivation is limited.

In many algae, B₁₂ is required as a cofactor for the B₁₂-dependent methionine (Met) synthase enzyme (METH; Helliwell et al., 2011), although some algae encode a B₁₂-independent isoform of this enzyme (METE) and thus do not require B₁₂ for growth. Bertrand et al. (2012) showed that the B₁₂-dependent marine diatom *Thalassiosira pseudonana*, which possesses only METH, responds to B₁₂ scarcity by increasing uptake capacity and altering the expression of enzymes involved in C₁ metabolism. Heal et al. (2019) found that despite these responses, B₁₂ deprivation disrupted the central Met cycle, transulfuration pathway, and polyamine biosynthesis. *Phaeodactylum tricornutum*, a marine diatom that uses but does not depend on B₁₂ (encoding both METE and METH), responds similarly to *T. pseudonana* (Bertrand et al., 2012), but can also rely on increasing expression of METE to maintain the production of methionine. Phyllogenetic analysis of the METE gene among diatoms shows no simple pattern of gene loss or gain, as indeed is the case across the eukaryotes (Helliwell et al., 2013;
Ellis et al., 2017), but there is a clear link between the lack of a functional copy of the METE gene and B12 dependence (Helliwell et al., 2011; Helliwell, 2017).

As with the diatoms, the phylogenetic distribution of METE within the Volvocales (a family of green freshwater algae) points to gene loss on several independent occasions. The genomes of two volvocalean algae, Volvox carteri and Gonium pectorale, contain METE pseudogenes, indicating that B12 dependence has evolved relatively recently in these species (Helliwell et al., 2011). Chlamydomonas reinhardtii is a related alga that possesses a functional copy of METE and so is B12-independent. We were able to generate a METE mutant of C. reinhardtii by experimental evolution in conditions of high vitamin B12 concentration over ~500 cell generations (Helliwell et al., 2015), demonstrating that sustained levels of B12 in the environment can drive METE gene loss. This mutant, which contained a Gulliver-related transposable element in the 9th exon of the METE gene, was completely reliant on B12 for growth, but in the presence of the vitamin it was able to outcompete its B12-independent progenitor. In the absence of B12, the METE mutant would sometimes revert to B12 independence and resume growth. Reversion was found to be due to excision of the transposon to leave behind a wild-type METE gene sequence, but there was a single case where a 9-bp fragment of the transposon was left behind resulting in a stable B12-independent strain, hereafter called metE7.

C. reinhardtii is a well-researched model organism that has been instrumental in improving our understanding of algal photosynthesis, ciliogenesis, and responses to fluctuating nutrient environments (Rochaix, 1995; Grossman, 2000; Dubini et al., 2009). We wanted to use the metE7 mutant of C. reinhardtii to study how recently acquired B12 auxotrophy impacts an organism’s fitness and physiology, and to provide insight into the metabolic challenges that other B12-dependent algae might have faced when they first evolved. In this work, we characterized the responses of metE7 to different vitamin B12 regimes and compared them with the responses of its ancestral B12-independent strain as well as those of a closely related, naturally B12-dependent alga Lobomonas rostrata. The responses to B12 deprivation were quantified by measuring changes in gene expression, cellular composition, photosynthetic activity, and viability and were contrasted against changes under nitrogen deprivation. To assess whether a recently evolved algal B12 auxotroph could improve its survival during B12 deprivation relatively quickly, we subjected metE7 to a further experimental evolution period of several months in limited B12 or co-culture with a B12-producing bacterium and characterized the resulting lines.

RESULTS

B12 Deprivation Causes Substantial Changes to C1 Metabolism in the metE7 Mutant

Met synthase plays a central role in the C1 cycle (Fig. 1A) and thus facilitates nucleotide synthesis and production of the universal methyl donor S-adenosyl-Met, which is essential for many biosynthetic and epigenetic processes (Lieber and Packer, 2002; Ducker and Rabinowitz, 2017). Wild-type C. reinhardtii can operate this cycle in the absence of B12 using the Met synthase variant METE, but metE7 relies solely on the B12-requiring METH isoform. Although our main aim was to characterize the phenotype of a unique experimentally evolved B12-dependent strain, metE7, we also wanted to confirm that the mutation in METE was solely responsible for the B12 dependence of this strain. We therefore generated an independent METE mutant line (metE4) using CRISPR/Cpf1 on a background strain suitable for genetic manipulation (UVM4; Ferenzci et al., 2017). This mutant has an in-frame stop codon resulting in a truncated METE amino acid sequence and, as predicted, exhibits B12 dependence (Supplemental Fig. S1). Having demonstrated the role of METE in providing B12 independence, we returned our focus to the experimentally evolved B12-dependent strain, metE7, which is perhaps

Figure 1. C1 cycle metabolites and transcripts increase during B12 deprivation of metE7. A, Metabolic map of a portion of the C1 cycle centered around METE and METH, with enzyme abbreviations in black, metabolite abbreviations in gray, and arrows depicting enzyme-catalyzed reactions. B, Abundances of six transcripts for enzymes of the C1 cycle measured by RT-qPCR on RNA extracted from the ancestral line and metE7 after 30 h of incubation in mixotrophic conditions with (1000 ng L⁻¹) or without B12. WT, wild type. C, Abundances of Met, SAM, and SAH metabolites measured by HPLC-MS on the same samples as above. Metabolite and transcript abundances are expressed as levels in B12-deprived conditions relative to B12-replete conditions and presented on a log₂ scale. Error bars = SD, n = 3 to 4; ns, not significant. *P < 0.05, **P < 0.01, and ***P < 0.001, Welch’s t test. Wild type, ancestral B12-independent strain; metE7, experimentally evolved B12-dependent line. See also Supplemental Figure S2.
more reflective of B12-dependent algae that have arisen naturally.

Both the wild-type ancestral line and metE7 were precultured in Tris-acetate phosphate (TAP) medium in continuous light with adequate (200 ng·L⁻¹) B12 to maintain a low cellular quota of the vitamin. The cells were then pelleted, washed, and transferred to B12-replete (1000 ng·L⁻¹) or B12-deprived (no B12) TAP medium at 5 × 10⁵ cells/mL and grown for 30 h. Steady-state transcript levels of six enzymes in the C1 cycle were investigated by reverse transcription-quantitative PCR (RT-qPCR; Fig. 1B). In the wild type, three transcripts (METE, SAHI, and MTHFR) were significantly (P < 0.05) upregulated by B12 deprivation, whereas in metE7 transcripts for all six enzymes (including METH, METM, and SHMT2) increased. Levels of the Met-cycle metabolites Met, SAM, and SAH were quantified by HPLC-mass spectrometry (MS). In the wild type, there was no difference in Met, SAM, or SAH levels between the two conditions (Fig. 1C). However, in metE7 cells under B12 deprivation, Met levels were raised 6-fold, which was somewhat unexpected given that Met synthase activity was impeded. SAH levels were also significantly elevated, whereas there was no effect on SAM. Consequently, the SAM:SAH ratio decreased by 10-fold to 3:1 under B12 deprivation. We then studied the dynamics of these changes by measuring metabolites and RNA abundance at several points during 3 d of B12 deprivation and then for 2 d following the addition of 1000 ng·L⁻¹ B12. The transcripts for all six tested C1-cycle genes increased rapidly in the first 6 h and then plateaued; reintroduction of B12 led to an immediate reduction to near initial amounts (Supplemental Fig. S2A). Similar profiles were seen for the metabolites SAM and SAH, although the peak occurred later at 24 h (Supplemental Fig. S2B). Met levels were more variable, but nonetheless there was a similar trend of a peak 24 h after removal of B12. More significantly, the SAM:SAH ratio fell sharply from 30 to less than 1 within 24 h. A subsequent gradual increase occurred over the next 2 d, and resupply of B12 increased this ratio further over the following 2 d. The likelihood therefore is that many cellular processes would be impacted in B12-deprived metE7 cells.

B12 Deprivation Significantly Impacts Cell Physiology and Biochemical Composition

Our data demonstrated a substantial impact of B12 limitation on the expression of C1 metabolic genes as well as the abundance of C1 metabolites. To elucidate downstream consequences of perturbed C1 metabolism, we also characterized broader physiological responses to B12 deprivation. As has been documented previously (Hellwell et al., 2015), growth of metE7 cells was significantly impaired in B12-deprived conditions (Supplemental Fig. S3A). However, by day 2 the B12-deprived cells had a 36% larger diameter resulting in a 150% increase in volume (Fig. 2A; Supplemental Fig. S3B), indicating that cell division was more restricted than overall growth. Moreover, cell viability, which was assayed by the ability of cells to form colonies when plated on B12-replete TAP agar, decreased to below 25% within 4 d of B12 limitation (Supplemental Fig. S3C). This was preceded by a reduction in PSII maximum efficiency (Fv/Fm; Supplemental Fig. S3D), an often-used indicator of algal stress (Parkhill et al., 2001; White et al., 2011).

The biochemical composition of C. reinhardtii cells is altered considerably and similarly under various nutrient deprivations; therefore, we hypothesized that B12 limitation would also induce broadly the same responses (Grossman, 2000; Juergens et al., 2016; S. Saroussi et al., 2017). Therefore, metE7 cells were precultured as before in 200 ng·L⁻¹ B12 and then washed and resuspended in TAP with or without B12 (1000 ng·L⁻¹) and cultured mixotrophically for 4 d. Cultures were visually inspected by microscopy (Fig. 2A), and the amounts of various cellular components were measured on days 2 and 4 (Fig. 2B; Supplemental Fig. S4). Chlorophyll levels declined considerably under B12 deprivation so that by day 4 the cells had a bleached appearance with an 85% lower concentration than the B12-replete cells. Similarly, free fatty acids, polar lipids, and proteins were at least 50% lower under B12-deprivation conditions on day 4. Starch content, on the other hand, showed the largest

![Figure 2](https://example.com/figure2.png)

Figure 2. B12 deprivation of metE7 causes cell enlargement and significant changes in biochemical composition. A, Micrographs taken at 1000× magnification of metE7 cells grown in TAP medium with (1000 ng·L⁻¹) or without B12 over a period of 4 d. B, Biochemical composition of B12-deprived cells on days 2 and 4 of the growth period expressed as mass of those compounds normalized to total cell dry mass and then expressed relative to the amounts in B12 replete conditions. Error bars = SD, n = 5. **P < 0.01 and ***P < 0.001, Welch’s t test. FFA, free fatty acids. See also Supplemental Figures S3–S5.
absolute increase from B12-replete to B12-deprived cells (Supplemental Fig. S4), and triacylglycerides (TAG) were 10-fold higher in B12-deprived cells (Fig. 2B), which effectively balanced the loss of polar lipids and free fatty acids so that overall lipid levels were roughly 8% to 10% of dry mass in both treatments. To look in more detail, quantification of free amino acids and fatty acid composition of all lipid classes was carried out (Supplemental Fig. S5). By day 4, most of the amino acids decreased significantly under B12 depriva-
tion. Particularly noteworthy are the reduction in Met, in contrast with its elevation at an earlier time point, and the increase in Gln, the only amino acid that is more abundant in B12-deprived cells (Supplemental Fig. S5A). Overall the degree of fatty acid saturation was higher under B12 deprivation, due mainly to an increase in the dominant saturated fatty acids palmitate (16:0) and stearate (18:0: Supplemental Fig. S5B), although levels of several unsaturated fatty acids, in particular 16:2, 16:3(7,10,13), 18:1, and 18:2, were also elevated.

Responses to Nitrogen Deprivation Improve Survival under B12 deprivation

B12 deprivation of metE7 causes several changes in biochemical composition, including accumulation of TAG and starch and decreases in chlorophyll and protein, akin to those exhibited following nitrogen deprivation of wild-type *C. reinhardtii* (Cakmak et al., 2012; Park et al., 2015; Yang et al., 2015). To investigate this comparison further we measured growth, viability, and photosynthetic efficiency under both conditions over a time course (Supplemental Fig. S6). metE7 culture density increased more under B12 than nitrogen deprivation (Supplemental Fig. S6A), but started to decline after day 2, unlike under nitrogen deprivation where growth continued more slowly over 4 d. For cell viability, both conditions caused a decline, but whereas loss of viability continued in B12-deprived cells, under nitrogen deprivation the initial loss was followed by recovery (Supplemental Fig. S6B). Maximum photosynthetic efficiency of PSII, however, did not recover under either condition, and its decline was more rapid in nitrogen-deprived cells (Supplemental Fig. S6C).

The increased viability of metE7 under nitrogen deprivation compared with under B12 deprivation suggested that either the metabolic role of B12 would make it intrinsically more difficult to cope without or that the evolutionary naivety of metE7 to B12 dependence would mean it had little time to evolve protective responses to B12 limitation. We therefore tested whether responses to nitrogen deprivation could afford some protection against B12 deprivation. Viability measurements were monitored over several days, and cultures lacking either nitrogen or B12 behaved as previously (Fig. 3A). However, metE7 cells deprived of both nitrogen and B12 simultaneously were more like those starved of nitrogen, with an initial decrease in viability followed by recovery to a level significantly higher than in B12 deprivation alone. As total growth under B12- and nitrogen-deprivation conditions was not significantly different from that under B12 deprivation alone (Supplemental Fig. S7), this apparent protective mechanism in response to nitrogen deprivation is not simply a result of inhibiting growth and hence avoiding severe B12 starvation. Instead, it seems likely that nitrogen deprivation would have elicited photoprotective responses, such as increasing nonphotochemical quenching in order to avoid the accumulation of damaging reactive oxygen species (ROS; Erickson et al., 2015; Saroussi et al., 2016; Saroussi et al., 2017, 2019), initiated the quiescence cycle to mitigate the genomic damage caused by ROS (Takeuchi and Benning, 2019), or activated the gametic survival program (Martin and Goodenough, 1975).

To investigate whether the cell death observed under B12 deprivation of metE7 could be due to ROS, the general ROS-sensitive dye dihydrodichlorofluorescein diacetate was incubated with cells at different time points during nutrient deprivation. We found that ROS levels increased under all nutrient-deprived conditions in the first 2 d but were highest in those cells deprived of...
B12 alone (Fig. 3B). This peak coincided with the start of the substantial decline in cell viability (Fig. 3A). The combination of B12 and nitrogen deprivation reduced ROS levels to similar amounts to those seen in the nitrogen-deprived cells, and therefore may be a factor behind reduced cell death.

Natural B12 Auxotroph Lobomonas rostrata Fares Better under B12-Limiting Conditions than metE7

Considering that metE7 quickly lost viability in the absence of B12 while nitrogen starvation invoked protective responses independent of B12 status, it is possible that as a novel auxotroph, the response of metE7 to B12 deprivation is simply underdeveloped. To test this, we compared the B12 physiology of metE7 with L. rostrata, a naturally B12-dependent member of the same Volvocaceae family of chlorophyte algae (Provasoli, 1958; Sausen et al., 2018). Cell viability was significantly greater in L. rostrata cells compared with the metE7 line after 2–4 d of B12 deprivation despite also growing to a greater density (Supplemental Fig. S8). Moreover, a B12 dose-response experiment, in which the two species were each cultured mixotrophically in a range of B12 concentrations, revealed that L. rostrata reached a higher optical density than metE7 at all B12 concentrations below 90 ng·L⁻¹, whereas the inverse was true above 90 ng·L⁻¹ (Fig. 4A). This indicates that L. rostrata has a lower B12 requirement than metE7.

In the natural environment the ultimate source of B12 is from prokaryotes since they are the only known B12 producers (Warren et al., 2002). In separate studies it was shown that B12-dependent growth of L. rostrata and metE7 can be supported by the B12-synthesizing bacterium Mesorhizobium loti (Kazamia et al., 2012; Helliwell et al., 2015). We therefore directly compared the growth of metE7 and L. rostrata in B12-supplemented (100 ng·L⁻¹) axenic culture and in coculture with M. loti in media lacking a carbon source (TP; Fig. 4A). Even though metE7 grew much more quickly and to a higher density than L. rostrata under axenic, B12-supplemented conditions, it grew less well in coculture with M. loti (Fig. 4B), indicating that B12 provision from the bacterium is less effective at supporting the growth of metE7 than of L. rostrata. This may simply be due to their different B12 requirements, or to more sophisticated symbiotic interactions.

Experimental Evolution in Coculture Improves B12 Use Efficiency and Resilience to B12 Deprivation

Together, our data suggest that the newly evolved metE7 line is poorly adapted to coping with B12 deprivation, but we wanted to determine whether the metE7 line could evolve improved tolerance to B12 limiting conditions, so we used an experimental evolution approach (Supplemental Fig. S9). We designed three distinct conditions, referred to as H, L, and C. Condition H (TAP medium with high [1000 ng·L⁻¹] B12) was a continuation of the conditions that had initially generated metE7 (Helliwell et al., 2015). Condition L (TAP medium with low [25 ng·L⁻¹] B12) was chosen so that B12 would limit growth. Condition C (coculture with M. loti in TAP medium) was a simplification of an environmental microbial community. Eight independent cultures for each condition were established from a single colony and then subcultured once per week over a total period of 10 months (~1000 cell generations). To account for the different growth rates in the three conditions, we applied the dilution rates of 10,000, 100, and 5 times per week in condition H, L, and C, respectively (Supplemental Fig. S9). After 10 months under selective conditions, all 24 cultures had survived and were then treated with antibiotics to remove the M. loti from condition C and to ensure that there were no other contaminating bacteria. We then subcultured all 24 evolved lines alongside eight replicates of the progenitor
strain (which had been maintained on TP agar with 1000 ng·L⁻¹ B₁₂ without subculturing) in mixotrophic conditions with TAP + 200 ng·L⁻¹ B₁₂ three times over 9 d to ensure they were all acclimated to the same conditions. The behaviors of the algal populations, hereafter referred to as metE7, metE7H, metE7L, and metE7C, were then compared with one another for their responses to different B₁₂ concentrations, B₁₂ deprivation, and growth in coculture with the B₁₂-producer *M. loti*.

Under high levels of B₁₂ (>320 ng·L⁻¹), a similar carrying capacity was reached by the progenitor metE7 strain and the metE7H and metE7C populations, whereas metE7L density was significantly lower than the progenitor (Supplemental Fig. S10A). When grown across a range of B₁₂ concentrations to determine a dose response, the metE7C populations reached a significantly higher optical density at the lower concentrations of 20 and 40 ng·L⁻¹ B₁₂ than the other lines (Fig. 5A). The concentration of B₁₂ required to produce half the maximum growth (EC₅₀) of metE7C was therefore much lower than the progenitor metE7 or metE7H (Supplemental Fig. S10B) and this was reflected in the higher B₁₂ use efficiency, i.e. the maximal increase in yield (optical density [OD]₇₃₀) that results from an increase in B₁₂ concentration (Fig. 5B). However, the maximal growth rate of metE7C was significantly lower (Supplemental Fig. S10C), and it is tempting to conclude that this is a necessary trade-off. We also compared the viability of the experimentally evolved lines during B₁₂ deprivation (Fig. 5C). Figure 5C shows that although all lines lost viability during B₁₂ deprivation, metE7L and metE7C survived substantially better, with a median survival time more than a day longer (Fig. 5D) than both the progenitor metE7 and metE7H. Finally, we compared the growth of the evolved lines in coculture with *M. loti*, which showed, perhaps unsurprisingly, that the metE7C lines grew better than the others (Fig. 5E), and at the end of the growth period had a significantly higher number of algae supported per bacterium (Fig. 5F).

To elucidate which factors contributed to improved survival during B₁₂ deprivation, we performed
a multivariable physiological analysis (Fig. 6). Sixteen variables or parameters were measured across the 32 metE7 populations and the dataset (Supplemental Dataset) was visualized in two ways. Figure 6A displays the first two components of a principal component analysis of the data, which confirmed that the experimental evolution populations tended toward forming separate clusters, with the metE7C populations most diverged from the progenitor metE7, due mainly to higher B12 use efficiency and median survival time, but lower maximal growth rate, carrying capacity, and EC50 for B12. Figure 6B is a correlation matrix of the parameters, which reveals those pairs that are most positively or negatively correlated with one another. For example, median survival time was quite highly negatively correlated with maximal growth rate and positively correlated with B12 use efficiency.

A more definitive statistical approach was then used to determine the most important measurements for predicting survival time during B12 deprivation: using stepwise minimization of the Bayesian information criterion of the full additive linear model, the 15 other measurements (all 16 minus median survival time) were reduced to just three. These three measurements, higher B12 use efficiency, lower ROS levels, and lower maximal growth rate, can therefore be considered sufficient to explain longer survival time under B12 deprivation of the metE7 populations. Using the same method, we also investigated which values best predicted growth in coculture with *M. loti*, using algae:bacteria ratio as a proxy for this. We found that algae:bacteria ratio was also optimally predicted by just three measurements: higher algal B12 use efficiency and lower algal maximal growth rate, as for survival time, but also lower algal B12 uptake capacity. Together these results indicate that experimental evolution in coculture not only improves growth in coculture but also increases B12 use efficiency and survival during B12 deprivation.

DISCUSSION

In this study, we exploited a new model system for the evolution of vitamin B12 dependence by analyzing the physiological and metabolic responses to B12 deprivation of an artificially evolved B12-dependent mutant

Figure 6. Analysis of a range of measurements made or parameters calculated from the metE7 progenitor strain and its experimental evolution descendants. A, Plot of the first two principal components derived from principal component analysis applied to these measured variables and calculated parameters. Each point represents an evolved line or replicate of the progenitor strain and is given a color and shape according to experimental evolution condition, which is specified in the key in the top left corner. Ellipses are created to show the 95% of the eight lines belonging to these experimental evolution groups. B, Correlation matrix of all the measured parameters in which white circles represent positive correlation, black circles represent negative correlation, and the size of the circle represents the magnitude of the R² value. B12 use efficiency, carrying capacity, EC50 for B12, and max growth rate were calculated using all time points from the B12 dose response experiment (Fig. 5A). Median survival time was calculated using all measurements of viability during B12 deprivation (Fig. 5C). Algae:Bacteria ratio was taken from the final day (day 9) of coculturing the strains with the bacterium *M. loti* (Fig. 5E). All other variables (B12 uptake [µg absorbed in 1 h per unit OD], max PSII efficiency [Fv/Fm], CFU density [colony forming units per milliliter], OD 730 nm [OD of cultures at 730 nm], cell density [total cells per milliliter], NPQ [nonphotochemical quenching], ROS [ROS per unit OD], Fq/Fv [coefficient of photochemical quenching], protein [protein concentration per unit OD], and lipid [lipid concentration per unit OD]) were the averages of all available measurements taken during B12 deprivation.
of *C. reinhardtii*. Our analyses demonstrate that B\textsubscript{12} deprivation has important consequences for C1 metabolism: we observed a significant increase in the transcript abundance of C1-cycle enzymes in both the wild type and metE7 strain, and a decrease in the methylation index (SAM:SAH ratio) in metE7 only. Moreover, B\textsubscript{12} deprivation of metE7 causes a decrease in chlorophyll, protein, and amino acids, and an increase in starch, lipids, and saturated fatty acids, characteristic of limitation responses to macronutrients such as nitrogen (Cakmak et al., 2012; Yang et al., 2015; Park et al., 2015; Juergens et al., 2016). The rapid loss of viability seen under B\textsubscript{12} deprivation could be averted if the metE7 cells were also limited for nitrogen, suggesting that it is not the lack of B\textsubscript{12} per se that causes cell death, but an inability to respond appropriately. Together this suggests a newly evolved B\textsubscript{12} auxotroph would be poorly adapted to surviving in the natural environment where a B\textsubscript{12} supply is not guaranteed. However, we found that metE7 can be supported for several months by a B\textsubscript{12}-producing bacterium, and experimental evolution under these conditions caused improved B\textsubscript{12} use efficiency and resilience to B\textsubscript{12} deprivation.

B\textsubscript{12} deprivation of metE7 decreased the SAM:SAH ratio 10-fold, mainly due to an accumulation of SAH, reflecting a recent B\textsubscript{12} deprivation study of the diatom *T. pseudonana* (Heal et al., 2019), numerous observational studies of B\textsubscript{12} deficiency in humans (Guerra-Shinohara et al., 2004; Stabler et al., 2006), and studies of disrupted C1 metabolism in Arabidopsis (Mei et al., 2017). As SAH is a competitive inhibitor of methyltransferases (Chiang et al., 1996), this decrease would likely lead to general hypomethylation in metE7. The epigenetic marks methyldeoxyadenosine and methylcytosine are similarly abundant in *C. reinhardtii* and appear to mark active genes and repeat-rich regions, respectively; therefore, the consequences of hypomethylation are unclear (Fu et al., 2015; Lopez et al., 2015). The reduced abundance of B\textsubscript{12}-bound METH under B\textsubscript{12} deprivation would hinder Met synthesis and could cause the observed reduction in protein abundance (Fig. 2B). However, Met levels increased between 12 and 24 h of B\textsubscript{12} deprivation (Supplemental Fig. S2B), suggesting a reduction in its use, proteolysis, or increased synthesis due to higher METH expression or via alternative pathways such as the S-methyl-Met cycle, which is known to play an important regulatory role in plants (Ranocha et al., 2001).

METE transcript abundance showed a much higher dynamic range than METH during B\textsubscript{12} deprivation and reintroduction (Supplemental Fig. S2A), which is reflected by the higher diurnal range of METE observed in global transcriptomics and proteomics datasets (Strenkert et al., 2019). However, on average METE is ~60-fold more abundant than METH in *C. reinhardtii* (Strenkert et al., 2019). This may be due to a lower maximal catalytic rate of METE, as has been observed in *E. coli* (González et al., 1992), or due to its role in the flagella, which contain METE but not METH (Schneider et al., 2008). Under B\textsubscript{12}-deprivation conditions, the activity of METH would be compromised, yet in both metE7 and the ancestral strains, it was upregulated. This is more similar to the B\textsubscript{12}-dependent algae *T. pseudonana* and *Tischrysis lutea*, which also up-regulate METH under B\textsubscript{12} deprivation (Bertrand et al., 2012; Nef et al., 2019), than the B\textsubscript{12}-independent *P. tricornutum*, which decreases METH expression (Bertrand et al., 2013). However, in both *T. pseudonana* and *P. tricornutum*, B\textsubscript{12} deprivation substantially upregulates C1-cycle enzymes including homologs of METM, MTHTFR, and SAH1 (Bertrand et al., 2012), reflecting our findings here and in *L. rostrata* (Hellwell et al., 2014). Under sulfur- and nitrogen-deprivation conditions, these C1-cycle genes are down-regulated (González-Ballester et al., 2010; Schmollinger et al., 2014), suggesting that their up-regulation during B\textsubscript{12} deprivation is not a general response to nutrient stress, but a nutrient-specific one, as indeed is the case for *T. lutea* (Nef et al., 2019).

Chlorosis is a common symptom of nutrient deficiency in *C. reinhardtii*, evident in nitrogen-, sulfur-, iron-, and zinc-limiting conditions; therefore, it is not surprising that B\textsubscript{12} deprivation of metE7 caused a substantial decline in total chlorophyll (Fig. 2B; Kropat et al., 2011; Schmollinger et al., 2014; Juergens et al., 2015). The decrease in total protein content occurred more slowly and was less substantial (50% reduction over 4 d) than that reported under nitrogen and sulfur deprivation (80% reduction within 1 d; Cakmak et al., 2012). During nitrogen and iron starvation in *C. reinhardtii*, membrane lipids decrease drastically concomitant with the increase in TAGs (Siaut et al., 2011; Urzica et al., 2013). This is very much like what we observed for metE7 under B\textsubscript{12} deprivation, although here the level of free fatty acids and polar lipids decreased by a roughly similar amount to the increase in TAGs indicating there is little, if any, de novo fatty acid synthesis. In addition, B\textsubscript{12} deprivation causes similar shifts in fatty acid composition to nitrogen and iron deprivation, most notably a substantial increase in palmitic acid (16:0) and decrease in polyunsaturated 16:4 fatty acid (Msanne et al., 2012; Urzica et al., 2013). Despite these similarities, B\textsubscript{12} deprivation may elicit an increase in TAGs by a different pathway due to disrupted C1 metabolism, as has been observed in several organisms (da Silva et al., 2014; Mei et al., 2017; Visram et al., 2018). This is thought to be due to a reduction in the methylation potential limiting membrane lipid synthesis and hence diverting more lipids toward TAGs (Malanovic et al., 2008; Visram et al., 2018). Therefore, B\textsubscript{12} deprivation could provide a complementary approach to other nutrient deprivation experiments in improving our understanding of lipid metabolism in *C. reinhardtii* and other algae.

From an evolutionary perspective, the prevalence of vitamin B\textsubscript{12} dependence among algae appears somewhat at odds with the severe fitness penalties that would be incurred were they exposed to limiting dissolved B\textsubscript{12} concentrations. This is made more surprising by the fact that the fitness benefit of B\textsubscript{12} dependence under laboratory conditions in replete B\textsubscript{12}, although
statistically significant, is relatively minimal (Helliwell et al., 2015). However, compared to the optimal axenic laboratory conditions in which the metE7 line evolved, in the natural environment multiple nutrients may colimit growth, perhaps even eliciting responses that mitigate against B12 deprivation, as we observed here, and B12-producing bacteria may not simply co-occur with algae but also actively engage in mutualistic interactions (Croft et al., 2005; Kazamia et al., 2012, 2016; Cooper et al., 2019). Furthermore, our evidence suggests that selection under coculture conditions led to the newly evolved B12 auxotroph developing increased B12 use efficiency and becoming better adapted to tolerating B12 limitation, which could make this line more robust to the unreliable B12 supply in the natural environment. However, these improvements appeared to come at the expense of maximal growth rate in B12-replete conditions (Supplemental Fig. S10C), which is not unexpected in light of previous experimental evolution studies in C. reinhardtii (Collins and Bell, 2004). As one of the conserved responses of C. reinhardtii upon detection depletion of various nutrients is to decrease cell division, it is possible that slower growth might even be selected for under B12 deprivation. Indeed, a low growth rate was found to be a significant predictor of greater survival time under B12 deprivation, alongside low ROS levels and high B12 use efficiency.

The fact that metE7 survived a 10-month period either with limited artificial supplementation of B12 or by relying completely on bacterial B12 provision does suggest that even a newly evolved and poorly adapted B12 auxotroph would have ample opportunity to adapt further. What adaptations are likely to improve growth and survival under B12 deprivation are not altogether clear, but it is not unreasonable to assume that exploitation of existing nutrient limitation responses would play a major role. B12 dependence is certainly a risky evolutionary strategy, and one which may have ended in extinction countless times, but our work suggests that even the simplest of symbioses with B12-producing bacteria may be sufficient to ensure the survival and drive the continued evolution of B12-dependent algae.

Materials and Methods

Strains

Mesorhizium loti (MAFF 303099) was a gift from Allan Downie at the John Innes Centre. Algal strains used in this study are shown in Supplemental Table S1 and include Lobomonas rostrata (SAG 45/2), as well as several Chlamydomonas reinhardtii strains derived from strain 12 of wild-type 137c or the cell wall-deficient strain cv15. The stable B12-dependent metE7 and the unstable B12-dependent (S-type) as well as the B12-independent revertant line (R-type) all evolved from the strain 12 of wild-type 137c (Ancestral) as described by Helliwell et al. (2015). Another B12-dependent mutant (metE4) was generated by targeting (CRISPR/Cpf1) knockout of the METE gene in the UVM4 strain using the protocol described in Ferenci et al. (2017). The guide RNA and single-stranded donor oligonucleotide used for homology-directed repair are given in Supplemental Table S2, alongside sequencing primers used to confirm that the modification resulted in a premature stop codon producing an 89 amino-acid protein rather than the full-length sequence of 815 amino acids sequence.

Culture Conditions and Growth Measurements

Algal colonies were maintained quarterly on TAP (Supplemental Table S5) + 1000 ng L\(^{-1}\) cyanocobalamin (B12) agar (1.5% [w/v]) in sealed transparent plastic tubes at room temperature and ambient light. Cultures were grown in TAP or Tris min medium under continuous light or a light-dark period of 16-h light:8-h dark cycle, at 100 µE·m\(^{-2}\)·s\(^{-1}\), at a temperature of 25°C, with rotational shaking at 120 rpm in an incubator (InforsHTMultitron). For nutrient starvation experiments the preculture TAP medium contained 200 ng L\(^{-1}\) of B12, and when cell densities surpassed 10\(^6\) cells mL\(^{-1}\) or an OD730 nm of 0.2, cultures were centrifuged at 2,000 × g for 2 min, followed by supernatant removal and resuspension of the cell pellet in media. For nitrogen deprivation, ammonium chloride was omitted from the media with no replacement. Algal cell density and optical density at 730 nm were measured using a Z2 particle count analyzer (Beckman Coulter) with limits of 2.974 to 9.001 µm, and a FluoroStar Optima (BMG labtech) or Thermo Spectronic UV1 spectrophotometer (ThermoFi sher), respectively. Mean cell diameter was also quantified on a Z2 particle analyzer (Beckman Coulter). Dry mass was measured by filtering 20 mL of culture through preried and weighed grade-5 Whatmann filter paper (Sigma-Aldrich WHA100500), drying at 70°C for 24 h, followed by further weighing on a Secura mass balance (Sartorius). Algal and bacterial viable cell density were determined by plating serial dilutions on solid media and counting colonies to calculate colony-forming units per milliliter (CFU·mL\(^{-1}\)).

Measurement of Photosynthetic Parameters

Then 200 µL of cultures with an OD730 nm > 0.1 were transferred to a 96-well plate, which was then incubated at 25°C in the dark for 20 min. F\(_{0}\) was measured before, and F\(_{m}\) during, a saturating pulse at 6172 µE·m\(^{-2}\)·s\(^{-1}\). The light intensity was increased to 100 µE·m\(^{-2}\)·s\(^{-1}\) and the cells allowed to acclimate for 30 s before another set of fluorescence measurements before and during a saturating pulse. From these fluorescence measurements, the CF imager software calculated nonphotochemical quenching (Fm/Fm’-1), PSII maximum efficiency (Fv/Fm), and the coefficient of photochemical quenching (Fv’/Fv’).

Measurement of Cellular Biochemical Composition

Lipids were extracted from the cell pellet from 10 mL of culture using the chloroform/methanol/water method, and TAGs, polar lipids, and free fatty acids in the total lipid extract and total fatty acid methyl esters were analyzed by gas chromatography-FID and gas chromatography-MS, as described in Supplemental Materials and Methods and Davey et al. (2014). A 1-mL aliquot of algal culture was used for pigment and starch quantification as described in Davey et al. (2014), and a 10-mL aliquot for protein quantification using a Bradford assay and amino acids by HPLC as described in Supplemental Materials and Methods and Helliwell et al. (2018).

Reactive Oxygen Species Quantification

Next, 2 µL of 1 mM 2′,7′ dichlorofluorescein diacetate (Sigma-Aldrich) dissolved in dimethyl sulfoxide was added to 198 µL of cell culture in a black f-bottom 96-well plate (Greiner bio-one) and incubated at room temperature in the dark for 60 min before recording fluorescence at 520 nm after excitation at 485 nm in a Fluorostar Optima Spectrophotometer (BMG labtech). Fresh cell culture media devoid of any cells was used as a blank.

Vitamin B12 Quantification

A 1-mL aliquot of the culture to be tested was boiled for 5 min to release B12 into solution, and then the growth response of a B12-dependent strain of Salmonella typhimurium (AR3612) incubated for 16 h at 37°C in 50% (v/v) 2*M9 media + 50% (v/v) boiled extract was quantified by measuring optical density at 600 nm. B12 concentration was calculated by comparing OD600 nm to a standard curve of known B12 concentrations using a fitted logistic model. To calculate B12 uptake by algal cells, B12 was added to an aliquot of algal culture to a concentration of 1000 ng L\(^{-1}\), followed by incubation for 1 h under previously described growth conditions, then measuring the B12 remaining in the media (supernatant of the centrifuged aliquot). B12 uptake (Initial B12 – remaining B12) was divided by OD730 nm of the aliquot to give B12 uptake capacity in ng L\(^{-1}\)·OD730 nm\(^{-1}\).
SAM and SAH Quantification

Then, 10 mL of samples were centrifuged at 2,000 g for 2 min, supernatant removed, and cell pellet lyophilized at < -40°C and <10 Pa for 12–24 h. Next, 300 μL of 10% (v/v) methanol (liquid chromatography-MS grade) spiked with stable isotope-labeled amino acids (l-amino acid mix; Sigma-Aldrich) was added to each sample. They were vortexed 3 times, every 10 min, before sonicing for 15 min in an ice cold water bath and then centrifuging (16,100 g) for 15 min at 4°C. Quantitative analysis was performed on 150 μL of supernatant using an Agilent 6420B triple quadrupole (QQQ) mass spectrometer (Agilent Technologies) coupled to a 1200 series Rapid Resolution HPLC system. Details of the HPLC-MS are given in the Supplemental Dataset S1, Supplemental Materials and Methods, and Supplemental Table S3.

Transcript Quantification

Total RNA extraction was performed on the cell pellet from 10 mL of algal culture using the RNeasy Plant Mini Kit (QIAGEN). DNase treatment was carried out using TURBO DNA-free kit (Ambion), and cDNA synthesis using SuperScriptII First-Strand synthesis system for RT-PCR (Invitrogen) according to the manufacturer's instructions. RT-qPCR was performed as described in Supplemental Dataset S1, Supplemental Materials and Methods, and Hellwell et al. (2018), using primers listed in Supplemental Table S4.

Artificial Evolution Setup

A culture of metE7 cells was plated on TAP + 1000 ng L⁻¹ B₁₂ agar, and then 8 colonies picked and resuspended in TAP + 200 ng L⁻¹ B₁₂ in a 96-well plate. Each well was split into 3 wells, each in a different 96-well plate containing 200 μL of a different media: TAP + 1000 ng L⁻¹ B₁₂, TAP + 25 ng L⁻¹ B₁₂, and TP medium. M. loti was prepared in a similar manner to metE7, except preculturing was performed in TP + 0.01% (w/v) glycerol. M. loti was added to the TP culture containing metE7 at a density roughly 20 times greater than the alga. The 96-well plates were incubated at 25°C, under continuous light at 176 Plant Physiol. Vol. 183, 2020.

Each well was split into 3 wells, each in a different 96-well plate containing 100 ng L⁻¹ B₁₂, and TAP agar plates where they were stored for 2 weeks during an absence from the lab, meaning that the total time in liquid culture was 10 months. See Supplemental Figure S9 for an illustration of the experimental evolution setup and the tests of B₁₂ dose-response viability during B₁₂ deprivation and growth in coculture with the B₁₂-producer M. loti that were performed on all the evolved lines.

Accession Numbers

Names and gene IDs of genes referred to in the text are given in Supplemental Table S4.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Testing the B₁₂ requirement of several C. reinhardtii strains.

Supplemental Figure S2. C₁ metabolism enzyme transcript and metabolite abundances in metE7 during B₁₂ deprivation and resupply.

Supplemental Figure S3. Characteristics of metE7 cells cultured in B₁₂-replete and B₁₂-deprived conditions.

Supplemental Figure S4. Composition of metE7 cells cultured in B₁₂-replete and B₁₂-deprived conditions.

Supplemental Figure S5. Amino acid and fatty acid composition of metE7 cells in B₁₂-replete and -deprived conditions.

Supplemental Figure S6. Growth and survival of metE7 under nitrogen- and B₁₂-deprivation conditions.

Supplemental Figure S7. Growth and survival of metE7 under a combination of nitrogen- and B₁₂-deprivation conditions.

Supplemental Figure S8. Growth and survival of L. rosetta and metE7 under B₁₂-deprivation conditions.

Supplemental Figure S9. Diagram for the experimental evolution setup and the experiments used to analyze the evolved lines.

Supplemental Figure S10. Growth parameters of the metE7 progenitor strain, and its experimental evolution descendants.

Supplemental Table S1. Information about C. reinhardtii strains used in this study.

Supplemental Table S2. CRISPR/Cpf1 guide RNAs and ssDNA repair templates.

Supplemental Table S3. Optimized values for Mass-spectroscopic analysis of Met cycle metabolites MRM - Positive Polarity.

Supplemental Table S4. RT-qPCR primer sequences.

Supplemental Table S5. TAP medium composition.

Supplemental Dataset S1. Quantified features of experimentally evolved lines.

Supplemental Materials and Methods. Details of the GC-MS, HPLC-MS, RT-qPCR, and statistical analyses.

Received November 8, 2019; accepted February 4, 2020; published February 20, 2020.

LITERATURE CITED

Bertrand EM, Allen AE, Dupont CL, Norden-Krickmar TM, Bai J, Valas RE, Saiito MA (2012) Influence of cobalamycin scarcity on diatom molecular structure and identification of a cobalamycin acquisition protein. Proc Natl Acad Sci USA 109: E1762-E1771.

Bertrand EM, Moran DM, McIvlin MR, Hoffman JM, Allen AE, Saiito MA (2013) Methionine synthase interreplacement in diatom cultures and communities: Implications for the persistence of B₁₂ use by eukaryotic phytoplankton. Limnol Oceanogr 58: 1431-1450.

Bertrand EM, Saiito MA, Rose JM, Riesselman R, Lohan MC, Noble AE, Lee PA, DiTullio GR (2007) Vitamin B₁₂ and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr 52: 1079-1093.

Brownwing TJ, Achterberg EP, Rapp J, Engel A, Bertrand EM, Tagliafuori A, Moore CM (2017) Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551: 242-246.

Cakmak T, Angun P, Demiray YE, Ozkan AD, Elียib Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109: 1947–1957.

Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10: 471–480.

Cohen NR, Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, Cohen NS, Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, da Silva RF, Kelly KB, Al Rajabi A, Jacobs RL (2014) Novel insights on interactions between folate and lipid metabolism. Biofactors 40: 277–283.
Kazamia E, Helliwell KE, Purton S, Smith AG (2016) How mutualisms arise in phytoplankton communities: Building eco-evolutionary principles for aquatic microbes. Ecol Lett 19: 810–822.

Kropat J, Hong-Hermosdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D (2011) A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66: 770–780.

Lieber JS, Packard I (2002) S-Adenosylmethionine: Molecular, biological, and clinical aspects—an introduction. Am J Clin Nutr 76: 1148S–1150S.

Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallacher SD, Merchant SS, Umen J, Pellegrini M (2015) Dynamic changes in the transcriptome and methylome of Chlamydomonas reinhardtii throughout its life cycle. Plant Physiol 169: 2730–2743.

Malanovic N, Streith I, Wolinski H, Rechterger B, Kohlwein SD, Tzehrlets O (2008) S-Adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: Implications for homocysteine as a risk factor of atherosclerosis. J Biol Chem 283: 23989–23999.

Martin NC, Goodenough UW (1975) Genetic differentiation in Chlamydomonas reinhardtii. 1. Production of gametes and their fine structure. J Cell Biol 67: 587–600.

Msanje J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cushman HC (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalga Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75: 50–59.

Nef C, Jung S, Mairat F, Kaas R, Grizeau D, Garnier M (2019) How haptothyes microalgae mitigate vitamin B12 limitation. Sci Rep 9: 8417.

Obwada K (1973) Seasonal cycles of vitamin B12, thiamine and biotin in Lake Kivu. Jap J Iwamizawa patterns of their distribution and ecological significance. Int Rev Gesamten Hydrobiol Hydrograph 58: 85–871.

Panzecca C, Beck AJ, Leblanc K, Taylor GT, Hutchins DA, Sañudo-Wilhelmy SA (2008) Potential cobalt limitation of vitamin B12 synthesis in the North Atlantic Ocean. Global Biogeochem Cycles 22: GB2029.

Panzecca C, Beck AJ, Torvar-Sanchez A, Segovia-Zavala J, Taylor GT, Gобрler CJ, Sañudo-Wilhelmy SA (2009) Distributions of dissolved vitamin B12 and Co in coastal and open-ocean environments Estuarine, Coast Shelf Sci 85: 223–230.

Park JJ, Wang H, Gargouri M, Desphande RR, Skpeper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR (2015) The response of Chlamydomonas reinhardtii to nitrogen deprivation: A systems biology analysis. Plant J 81: 611–624.

Parksill J-P, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield test for PSI as a diagnostic of nutrient stress. J Physiol 517: 517–529.

Provansal L (1958) Nutrition and ecology of protozoa and algae. Annu Rev Microbiol 12: 279–308.

Rancoza P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC, Hanson AD (2001) The S-methylmethylene cycle in angiopsperms: Ubiquity, antiquity and activity. Plant J 25: 579–584.

Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230.

Sañudo-Wilhelmy SA, Cutter LS, Dzurko R, Small ED, Gomez-Consarnau L, Webb EA, Prokopenko MG, Berelson WM, Karl DM (2012) Multiple B-vitamin depletion in large areas of the coastal ocean. Proc Natl Acad Sci USA 109: 14041–14045.

Sañudo-Wilhelmy SA, Gобрler CJ, Okhambamichael M, Taylor GT (2006) Regulation of phytoplankton dynamics by vitamin B12. Geophys Res Lett 33: L04405.

Saroussi S, Karsn DJ, Thomas DC, Blozis CE, Feinb O, poseditz MC, Grossman AR (2019) Alternative outlets for sustaining photosynthesis: Electron transport during dark-to-light transitions. Proc Natl Acad Sci USA 116: 11518–11523.

Sarouss S, Sanz-Lueque E, Kim RG, Grossman AR (2017) Nutrient scavenging and energy management: Acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Curr Opin Plant Biol 39: 114–122.

Sarouss S, Wittkopp TM, Grossman AR (2016) The Type II NADPH dehydrogenase facilitates cyclic electron flow, energy-dependent quenching, and
chlororespiratory metabolism during acclimation of *Chlamydomonas reinhardtii* to nitrogen deprivation. Plant Physiol 170: 1975–1988

Sausen N, Malavasi V, Melkonian M (2018) Molecular phylogeny, systematics, and revision of the type species of Lobomonas, *L. francii* (Volvocales, Chlorophyta) and closely related taxa. J Phycol 54: 198–214

Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, et al (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26: 1410–1435

Schneider MJ, Ulland M, Sloboda RD (2008) A protein methylation pathway in *Chlamydomonas flagella* is active during flagellar resorption. Mol Biol Cell 19: 4319–4327

Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga *Chlamydomonas reinhardtii*: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11: 7

Stabler SP, Allen RH, Dolce ET, Johnson MA (2006) Elevated serum S-adenosylhomocysteine in cobalamin-deficient elderly and response to treatment. Am J Clin Nutr 84: 1422–1429

Strenkert D, Schmollinger S, Gallaher SD, Salomé PA, Purvine SO, Nicora CD, Mettler-Allmann T, Soubeyrand E, Weber APM, Lipton MS, et al (2019) Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci USA 116: 2374–2383

Takeuchi T, Benning C (2019) Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Biotechnol Biofuels 12: 292

Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS (2013) Remodeling of membrane lipids in iron-starved Chlamydomonas. J Biol Chem 288: 30246–30258

Visram M, Radulovic M, Steiner S, Malanovic N, Eichmann TO, Wolinski H, Rechberger GN, Tehlivets O (2018) Homocysteine regulates fatty acid and lipid metabolism in yeast. J Biol Chem 293: 5544–5555

Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19: 390–412

White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102: 1675–1682

Yang D, Song D, Kind T, Ma Y, Høffkens J, Fiehn O (2015) Lipidomic analysis of *Chlamydomonas reinhardtii* under nitrogen and sulfur deprivation. PLoS One 10: e0137948