Comparative analysis of the durability of normal sections reinforced rubber concrete with fiber and reinforced concrete bending elements

A.E. Polikutin¹, A.V. Levchenko¹, D.N. Korotkih²

¹Department of Bi Structures, Bases and Foundations, Voronezh State Technical University, Voronezh20 let Oktyabryast., 84, 394006, Russia
²Department of technology of building materials, products and structures, Voronezh State Technical University, Voronezh 20 let Oktyabryast., 84, 394006, Russia

E-mail: Alevchenko@vgasu.vrn.ru

Abstract. To solve problems, associated with the research of the resistance of the normal section of reinforced rubber concrete with fiber bending elements resistance to the action of external loads were produced and tested for cross-bending samples-beams of size 60×120×1400 mm. The percentage of longitudinal reinforcement is set as an optimization parameter in the experiment, has the greatest impact on the resistance of normal sections of the bending elements. The response function was the strength of normal sections. For comparison, was calculated of durability of normal sections for concrete B25 according to the applicable norms.

1. Introduction

It should be noted that in General, the work of building structures made of composites for special purposes, similar to reinforced concrete. However, the nature of such structures has a specificity associated with the need (in some cases) partial account of the tensile zone in the calculation of durability; with features of physical and mechanical properties of rubber concrete – first of all, in terms of taking into account the increased deformability of composites and, as well as increased durability and a higher level of cracking. The above causes the use of design prerequisites for reinforced concrete elements in relation to composite building structures, with the necessary refinement of the design dependencies.

Rubber concrete characteristic favorable deformation-strength characteristics, good insulating and damping properties, high adhesion to metal surfaces, etc., However, the main feature distinguishing rubcon is it large water and chemical resistance. For example, the coefficient of chemical resistance in water is 1, and in solutions of the most common acids, alkalis or salts is close to this value. Studies show that the size of rubcon adhesion, for example, to the metal surface is 12 ... 13 MPa (0.8...0.9 rubcon tensile strength), for comparison, a similar figure in cement 0.5...0.7 MPa. High chemical resistance and adhesion, together with the value of the rubcon thermal expansion coefficient close to steel, ensure the creation and effective operation of reinforced rubber fiber concrete structures at all stages of their exploitation. Insertion to the composition of the Canton of steel fiber leads to the fact that the constructions of armorubcon with fiber have even more advanced performance and can be effectively used in various fields of industrial production. In the process studies of the properties of
rubcon and building structures on its basis, which is engaged: Yu. M. Borisov[1,2,3,4], Potapov Yu. B [5,6] and other researchers [8-12], was proved the effectiveness of this material and designs based on it. The composition of fiberrubcon and its properties are presented in table. 1.2.

The name of components	Contents of components, wt. (%)
Rubber SKDN-N	8,2
Sulphur technical	4,0
Thiuram-D	0,4
Zinc oxide	1,2
Calcium oxide	0,4
Fly ash	7,8
Sand	24,2
Crushed stone	49,8
Fibers from metal-cord waste (fiber)	4,0

Table 2. Physico-mechanical properties of fibrorubcon.

Properties	Value for fiber rubber concrete
Compressive strength, (MPa)	70…100
Tensile strength, (MPa)	10…20
The modulus of elasticity, (MPa)	8000…20000
Poisson ratio	0,2…0,3
Shrinkage, (mm/m)	–

This paper is devoted to the comparison of the strength of normal sections bending elements rectangular cross section produced of reinforced fiber rubber concrete with analogical reinforced concrete beams exposed to cross-bending with different percentages of longitudinal reinforcement.

2. **Experimental researches of armofiberrubcon and comparison of reinforced concrete**

To achieve this goal have been made and tested armofiberrubcon beams with the same variable parameter, as the percentage of longitudinal reinforcement. To compare the work of the studied structures with reinforced concrete, their calculation was carried out by [14]. The parameters of the experimental and theoretically calculated armofiberrubcon and reinforced concrete beams add in table 3.

Table 3. Parameters of experimental and theoretically calculated beams.

The length of the beam, (mm)	1400
Beam width, (mm)	60
Beam height, (mm)	120
Number and diameter of longitudinal reinforcement bars, (mm)	0; 1Ø8; 1Ø10; 1Ø12; 2Ø10; 2Ø12;
The percentage of longitudinal reinforcement, (%)	0; 0,8; 1,25; 1,8;2,5; 3,6

The load scheme of the bending elements is shown in figure 1.
Figure 1. The load scheme and the section of the bending elements

The beam installed in the press is shown in figure 2

Figure 2. Test beam in the press

The results of experimental studies armofiberrubcon bending elements are summarized in table 4

Beam code	The diameter of the rods	Percentage of reinforcement	M_{ult} (kN*m)
BRF - 0(0)	0	0	2,616
BRF - 0,8 (8)	8	0,8	3,78
BRF - 1,25 (10)	10	1,25	5,588
BRF - 1,8 (12)	12	1,8	6,772
BRF - 2,5 (2x10)	2x10	2,5	8,774
BRF - 3,6 (2x12)	2x12	3,6	11,282

The theoretical calculation of the ultimate destructive moment for reinforced concrete elements was carried out according to [13] p.8.1 according to the following formulas:

\[M_{ult} = R_b \cdot b \cdot x \cdot (h_0 - 0.5x), \] \hspace{1cm} (1)

where

\[x = R_s \cdot A_s / R_b \cdot b \] \hspace{1cm} (2)

The results of calculations of reinforced concrete beams are summarized in table 5
Table 5. The results of calculation of reinforced concrete beams and comparison of destructive moments.

Beam code	The diameter of the rods	Percentage of reinforcement	\(M_d \), (kN*m)	\(M_{ult} \), (kN*m)	\(M_d / M_{ult} \)
BR - 0.8 (8)	8	0.8	3.78	1.08	3.5
BR - 1.25 (10)	10	1.25	5.588	1.63	3.44
BR - 1.8 (12)	12	1.8	6.772	2.24	3.03
BR - 2.5 (2x10)	2x10	2.5	8.774	2.92	3.01
BR - 3.6 (2x12)	2x12	3.6	11.282	3.77	2.99

As a result of the calculation of the first group of limit States, according to SP 63.13330.2012, reinforced concrete beams with the same geometric characteristics and the percentage of reinforcement made of concrete B25, received that the value of the breaking moment will be less than that of the experimental samples of fiberrubcon 3 times. For comparison of the destructive bending moment on a figure 3 shows the graphs of dependence of the destructive bending moment on the percentage of reinforcement for structures made of fiber-rubber concrete and concrete B25 with longitudinal reinforcement.

![Figure 3](image)

Figure 3. Graphs of the dependence of the destructive bending moment on the percentage of longitudinal reinforcement for armofiberrubcon structures and reinforced concrete (B25).

From the graph we can say about the need to increase the size of the cross section of the bending elements made of traditional reinforced concrete, for the perception of similar destructive load.

According to [13], for the selection of the cross section, we set the width of the element and select its height, by analogy with the tested samples, we retain the ratio \(b / h =1/2 \).

As a result of the calculation stated in [13], we obtain the values of \(h_0 \) and adding to it the value of the protective layer we obtain \(h \). The results of section selection are given in table 6.
Beam code	The diameter of the rods	h₀, (mm)	a, (mm)	h, (mm)	b, (mm)
BR - 0,8 (8)	8	122,6	15	138	60
BR - 1,25 (10)	10	133,3	15	149	75
BR - 1,8 (12)	12	142,1	15	158	80
BR - 2,5 (2×10)	2×10	156,9	15	172	85
BR - 3,6 (2×12)	2×12	172,9	15	188	90

3. Summary

From table 6 it is seen that for the perception of bending moment, which was destroyed fiberrubcon samples of the cross-sectional area of reinforced concrete beams made of concrete B25 with a similar reinforcement bar should be increased by 2.35 times, which in turn increases the weight and material consumption of the structure.

The effectiveness of the use in the construction of products and structures made of fiber rubber concrete, due to the favorable combination of its physical and mechanical characteristics, as well as the ability to obtain elements and structures with high load-bearing capacity. Especially effective is the use of rubber concrete with fiber in the manufacture and protection of elements, parts and structures exploitation in aggressive environments of various types: groundwater, sewage, precipitation, solar radiation, industrial products, etc.

Bending elements of rectangular cross-section with the addition of fibers and reinforced with non-stressed reinforcement, can be used as:
- floor beams and flooring, lintels of a door, window or other openings of buildings and structures, where the presence of aggressive environment of industrial or other origin;
- as bending structural elements of bridges and Railways;
- elements of foundations (in particular, foundation beams) exploitation under aggressive groundwater

The use of reinforced fiber rubber concrete in load-bearing structures due to its high durability leads to a reduction of material and weight of structures. This helps to reduce the cost of production and exploitation of building structures (in the construction of new and reconstruction of existent buildings and constructions), the addition of fiber in the structure allows to increase the crack bending moment and destructive bending moment, and high chemical resistance ensures life of the structure and reliable work throughout the period of exploitation in conditions of different aggressive environments.

Acknowledgments
We thank the center for collective use on the basis of VSTU for assistance with experimental research

References
[1]. Borisov Yu Polikutin A Nguyen Fan Dhuy 2010 Investigation of bearing capacity of normal sections of two-layer, rubcon-concrete bending elements, Bulletin of the Central regional office RAASN: collection of scientific articles, Voronezh pp 133-137
[2]. Borisov Yu Polikutin A Nguyen Fan Dhuy 2010 The Stress-strain state of normal sections of two-layer, rubcon-concrete bending elements of building structures, Scientific Herald of VSACE "Architecture and construction", Voronezh pp 18-24
[3]. Borisov Yu Panfilov D Kashtanov S Yudin Ye 2010 Construction disperses reinforced composites. Structural mechanics and design, 2 pp 32-37
[4]. Borisov Yu Polikutin A Chudinov A Atanov A 2011 Objectives and methodology of experimental studies of the normal sections of bending elements T-profile from armorubcon,
Scientific Herald of the Voronezh state University of architecture and construction. Series: High technology. Ecology pp 52-57

[5]. Potapov Yu 1998 High-performance composites based on liquid rubbers, Materials of international scientific-technical conference (IV Academic reading RAASN) "Actual problems of construction material science": collection of scientific works, (Penza) pp 16-17

[6]. Potapov Yu Rubcon 2000 A new class of corrosion resistant construction materials, Building materials of the XXI century, pp 9-10

[7]. Nguyen Phan Dhuy 2010 Double-layered, rubcon-concrete bending elements of building structures, Diss. PhD of tech. sciences: 05.23.01 (Voronezh)

[8]. Panfilov D 2004 Dispersed reinforced building composites based on polybutadiene oligomer, Diss. PhD of tech. sciences: 05.23.05 (Voronezh)

[9]. Perekalsky O 2006 Building composites based on polybutadiene oligomers for radiation protection, Diss. PhD of tech. sciences: 05.23.05, (Voronezh)

[10]. Pinaev S 2001 Short compressed elements of building structures from an effective composite based on butadiene polymer, Diss. PhD of tech. sciences (Voronezh)

[11]. Polikutin A 2002 Strength and crack resistance of oblique sections of bending elements of building structures from armorubcon, Diss. PhD of tech. sciences: 05.23.01 (Voronezh)

[12]. Chmykhov V 2002 Rubber concrete resistance to aggressive environment, Diss. PhD of tech. sciences: 05.23.05, (Voronezh)

[13]. Baykov V Sigalov E 1991 Reinforced concrete structures: general course: textbook for universities. - 5th ed. p 767

[14]. SP 63.13330.2012 2012 Concrete and reinforced concrete structures. Fundamentals. The updated edition of SNiP 52-01-2003 (with Amendments No. 1, 2) by NIIZHB named A. A. Gvozdev.