Non-LTE model atmosphere analysis of the early ultraviolet spectra of Nova OS Andromedae 1986

Greg J. Schwarz, Peter H. Hauschildt, S. Starrfield, E. Baron, France Allard, Steven N. Shore and G. Sonneborn

1Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA
2Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451, USA
3Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 131, Norman, OK 73019-0225, USA
4Department of Physics, Wichita State University, Wichita, KS 67260-0332, USA
5Department of Physics and Astronomy, Indiana University South Bend, 1700 Mishawaka Avenue, South Bend, IN 46634-7111, USA
6Laboratory for Astronomy and Solar Physics, Code 681, Goddard Space Flight Center, Greenbelt, MD 20771, USA

Accepted 1996 September 9. Received 1996 August 29; in original form 1996 May 9

ABSTRACT

We analyse the early, optically thick, ultraviolet spectra of Nova OS And 1986 using a grid of spherically symmetric, non-LTE, line-blanketed, expanding model atmospheres and synthetic spectra with the following set of parameters: $5000 \lesssim T_{\text{model}} \lesssim 60000$ K, solar abundances, $\rho \propto r^{-3}$, $v_{\text{max}} = 2000$ km s$^{-1}$, $L = 6 \times 10^4$ L_{\odot}, and a statistical or microturbulent velocity of 50 km s$^{-1}$. We use the synthetic spectra to estimate the model parameters corresponding to the observed IUE spectra. The fits to the observations are then iteratively improved by changing the parameters of the model atmospheres – in particular, T_{model} and the abundances – to arrive at the best fits to the optically thick pseudo-continuum and the features found in the IUE spectra.

The IUE spectra show two different optically thick subphases. The earliest spectra, taken a few days after maximum optical light, show a pseudo-continuum created by overlapping absorption lines. The later observations, taken approximately 3 weeks after maximum light, show the simultaneous presence of allowed, semiforbidden and forbidden lines in the observed spectra.

Analysis of these phases indicates that OS And 1986 had solar metallicities, except for Mg which showed evidence of being underabundant by as much as a factor of 10. We determine a distance of 5.1 kpc to OS And 1986, and derive a peak bolometric luminosity of $\sim 5 \times 10^4 L_{\odot}$. The computed nova parameters provide insights into the physics of the early outburst and explain the spectra seen by IUE. Lastly, we find evidence in the later observations for large non-LTE effects of Fe II which, when included, lead to much better agreement with the observations.

Key words: stars: abundances – stars: individual: Nova OS And 1986 – novae, cataclysmic variables – ultraviolet: stars.
1 INTRODUCTION

Novae occur in binary systems where the secondary fills its Roche lobe and accretes mass on to a white dwarf primary. The accreted mass collects on the white dwarf until the temperature and pressure at the interface between the core and envelope become so great that a thermonuclear runaway (TNR) occurs. The liberation of energy from the TNR produces the nova explosion which ejects mass from the white dwarf. If the nova ejects enough mass, the gas will be optically thick during its early evolution. Model atmosphere analyses of the optically thick nova spectra can then be used to determine many physical parameters of the nova ejecta, including the energy distribution, the model temperature, the velocity structure, elemental abundances and density distributions as a function of time. These results provide strong constraints on hydrodynamic calculations of the initial nova explosion, and give insights into the physical phenomena underlying the outburst.

In this paper, we present the results of modelling of the early, optically thick, phase of OS And 1986 (Nova Andromeda 1986) with non-LTE (NLTE) model atmospheres. In Section 2, we review the basic parameters of OS And 1986 and derive the reddening and distance. We do this because the determination of the reddening to OS And 1986 is critical for accurate modelling of the nova spectra, while the distance determines the absolute properties, e.g. the luminosity. Section 3 discusses the IUE observations and the changes observed in the spectra during the early, optically thick, evolution. Section 4 reviews the PHOENIX stellar atmosphere code, including the recent addition of the NLTE treatment of Fe II and O I. We show the results of the model atmosphere synthetic spectra fits to the IUE spectra in Section 5. The computed parameters for the best comparison of the IUE data are shown as a function of time to illustrate the physics of the outburst. In Section 6, we compare synthetic spectra calculated with Fe II in LTE, and show that the later, optically thick, spectra can only be fitted by synthetic spectra with Fe II in NLTE. Concluding remarks are presented in Section 7.

2 DETERMINATION OF THE BASIC PARAMETERS OF OS AND 1986

OS And 1986 was discovered by Suzuki (1986) on 1986 December 5. Kondo & Kosai (1986) reported a position of RA = 23h 9m 47s.72, Dec. = +47° 12' 0.8 (equinox 1950) corresponding to a galactic longitude of 106° 05 and a galactic latitude of −12° 12. Observations in the ultraviolet (UV) with the International Ultraviolet Explorer (IUE) began on 1986 December 9, with excellent temporal coverage until the discovery of SN 1987A in 1987 February limited the availability of IUE.

Optical maximum occurred between December 7.5 UT (Kikuchi, Kondo & Mikami 1988) and December 8.94 UT (IAU Circ. 4282) with an apparent visual magnitude of approximately 6.3. The UV maximum occurred between December 13.9 UT and December 16.9 UT with an integrated flux (1175–3200 Å) ≥ 6.8 × 10^-9 erg cm^-2 s^-1. OS And 1986 had an optical t_e (the time it takes the light curve of the nova to decline 3 mag below maximum) of 20 ± 1 d (Kikuchi et al. 1988). This makes OS And 1986 a ‘fast’ nova according to the speed classification defined by Payne-Gaposhkin (1957). The t_e (the time in the UV), which is usually greater than the t_e in the optical, was about 60 d (Austin et al. 1990).

Andrillat (1986) reported broad, intense emission lines of Hβ through Hα and Fe II (multiplets 27, 28, 37, 38, 42 and 43) in spectra taken on December 15 to 21. The Hβ lines showed a blueshifted absorption component, with a mean radial velocity increasing from 1190 km s^-1 on December 15 to 1270 km s^-1 on December 21. This is in agreement with values obtained by Changchun, Yafeng & Ling (1988). Based on the strong optical Fe II lines, OS And 1986 was a standard Fe II (Williams 1992), or CO-type nova, suggesting that the nova occurred on the surface of a white dwarf composed of carbon and oxygen.

Kikuchi et al. (1988) observed changes in the polarization properties of OS And 1986 that they attribute to the formation of dust around 15 to 20 d after optical maximum. They report a 3.5-mag decrease from their observations starting 20 d after visual maximum. The photometric system used by Kikuchi et al. is transformable to the standard UBV system, but only when the radiation is dominated by continuum light, i.e., at maximum light. A transformation to a standard system is impossible as the nova evolves toward an emission-line-dominated spectrum, because the passband is narrower than the standard V filter and emission lines such as Hα are excluded. We have therefore compiled a light curve for OS And 1986 from the IAU circulars and AA VSO visual observation (Mattei 1995, private communication) (see Fig. 1).

This light curve clearly shows a dip starting in 1987 early January and lasting until mid-March of 1987 when the light curve resumed its exponential decline. This dip in the light curve is a characteristic of the formation of an optically thick dust shell. This is contrary to Gehrz’s (1988) assertion, based on infrared photometry, that OS And 1986 is a case where no substantial dust shell developed. The strength of the dip in the V band is 1.5 ± 0.5 mag. The rapid appearance of a dust shell is surprising when compared to other novae with optically thick dust shells reviewed by Gehrz (1988) and Shore et al. (1994). The dust shell in OS And 1986 appeared in half the time of the one in V1370 Aql, a very fast (t_e = 10 d) nova and 1/3 the time of the slow novae FH Ser and LW Ser (t_e = 67 and 55 d, respectively).

2.1 Extinction and reddening corrections

The determination of the external reddening and interstellar extinction curve for OS And 1986 is necessary for modelling the spectra accurately. Due to the poor response of the LWP camera on the IUE satellite between 2000 and 2300 Å, the 2175-Å feature cannot be used to determine the reddening. This wavelength region was also noisy in later, optically thin, spectra. Therefore, other ways to determine the amount of reddening of a nova, and we summarize them here.

(1) From a literature search for all Galactic classical novae with UBV photometry, van den Bergh & Younger (1987) determined that the intrinsic colour of a nova at t_e (the time to fall 2 mag) is (B−V)_0 = −0.02 ± 0.04 mag. Milani, Favero & Tonell (1986) report a (B−V) of +0.25 at t_e, corresponding to an E(B−V) of +0.27 ± 0.04 mag.

© 1997 RAS, MNRAS 284, 669–684

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
Ultraviolet spectra of Nova OS Andromae 1986

Figure 1. The light curves compiled from IAU circulars (triangles) and AAVSO observations (dots) of Nova And 1986 and IAU circulars (diamonds) for Nova LMC 1992. Both of the novae are fast CO-type nova. The AAVSO data confirm the presence of a 1.5-mag dip in the light curve of OS And 1986 in early January that lasted for ~6 weeks. The dates indicate the times that the IUE spectra used in this paper were taken.

(2) The intrinsic colour index of classical Galactic novae at maximum is given by Allen (1973) as \((B-V)_{\text{max}} = 0.2\). Krisciunas (1986) reports a value of \((B-V)_{\text{max}} = +0.41\) on 1986 December 9.3 (UT), which implies an \(E(B-V)\) of 0.21 mag.

(3) Miroshnichenko (1988) analysed the UBV photometry of more than 20 novae and found that the time almost immediately after maximum light, when the colour index remains approximately constant (called the 'stabilization stage'), can be used to find \(E(B-V)\). The average intrinsic colour for novae in Miroshnichenko's study is \((B-V)_0 = -0.11 \pm 0.02\) during the stabilization stage. From IAU circulars and the photometry of Kikuchi et al. (1988), we estimate that this stage started around December 18 (UT) and continued for 10 d. The average \((B-V)\) during this time is 0.23, implying an \(E(B-V) = 0.34\) mag.

(4) A different approach is to analyse line-of-sight extinction toward stars or galaxies in the direction of the nova. Austin et al. (private communication) used the colour excess map compiled by Burstein & Heiles (1982) to show that OS And 1986 lies in a region where \(E(B-V) = 0.24\) mag. The mean reddening of the four values is 0.26 mag. For OS And 1986, therefore, we adopt an estimate of \(E(B-V) = 0.25 \pm 0.05\) mag.

2.2 Absolute magnitude and distance determination

A determination of the distance is essential for determining absolute properties of a nova. A great deal of effort has been expended on determining \(M_V\), and thus the distance, of nova from samples of novae with independently known distances. A compilation of maximum magnitude versus the rate of decline (MMRD) relationships is published in Chochol et al. (1993) for V1974 Cyg 1992. The relations are:

1. \(M_{0,V} = -10.70 + 2.41 \log(t_2)\) (Cohen 1985);
2. \(M_{0,V} = -7.89 - 0.81 \arctan \left(\frac{1.32 - \log(t_2)}{0.19} \right)\) (Capaccioli et al. 1989);
3. \(M_{0,V} = -11.75 + 2.5 \log(t_3)\) (Schmidt 1957);
4. \(M_{15,V} = -5.6 \pm 0.14\) (Cohen 1985), and
5. \(M_{15,V} = -5.23 \pm 0.39\) (van den Bergh & Younger 1987).

Here \(M_{0,V}\) and \(M_{15,V}\) are the absolute \(V\) magnitudes at maximum and 15 d after maximum, respectively. OS And 1986 had a \(t_2\) of 8 ± 1 d. The mean absolute magnitude at maximum light from the first three methods is \(M_{0,V} = -8.6\). If we assume an extinction of \(A_V = 3.1E(B-V) = 0.78\) mag, then the distance to OS And 1986 is 6.6 kpc. A visual inspection of the light curve shows that 15 d after optical maximum OS And 1986 had \(V \approx 9\). Using the same extinction as before and the mean \(M_{15,V}\) from the last two methods, we find a distance to OS And 1986 of 5.3 kpc.
The MMRD relationships depend on a statistical fit to surveys containing different composition classes and different speed classes of novae. These methods work well in determining an average relationship for all novae in the sample, but when applied to an individual nova they cannot be very accurate because of the large spread in the properties of individual novae.

There is another approach to determine the distance to novae which is not based on statistical methods (Starrfield et al. 1992). We require a similar nova at a known distance and with a known extinction and reddening. Novae in the LMC are a good choice, because seven different novae have been observed in the LMC with IUE, it is at a well-established distance, and the extinction and reddening to the LMC is small. One fast CO-type LMC nova, LMC 1992 (hereafter LMC 92), exhibited an outburst very similar to OS And 1986, except that LMC 92 was faster with $t_3 = 16 \pm 2$ d. We have obtained an IUE composite spectrum of LMC 92 on 1992 November 20 (SWP46299 + LWP24328) at approximately the same stage of spectral development as OS And 1986 on 1986 December 13 (see Fig. 2). The LMC 92 spectrum displays most of the same features and mimics the shape of the pseudo-continuum of OS And 1986. If we assume that the UV luminosity of OS And 1986 was the same as LMC 92 at this epoch, then the distance to OS And 1986 is given by

$$D_{OS} = D_{92} \sqrt{\frac{f_{92}}{f_{OS}}}.$$

where f_{92} and f_{OS} are the total dereddened UV fluxes (1175 to 3300 Å) of LMC 92 and OS And 1986, respectively (dereddened with an $E(B-V)$ of 0.15 ± 0.05 and 0.25 ± 0.05 mag). Gould (1995) reports a value of 47.3 ± 0.8 kpc to the centre of the LMC. We allow an additional ± 500 pc due to the uncertainty in the location of LMC 92 within the LMC, and adopt $D_{92} = 47.3 \pm 1.3$ kpc. The total observed UV flux of LMC 92 and OS And 1986 are $(3.9 \pm 1.7) \times 10^{-10}$ and $(3.3 \pm 1.3) \times 10^{-8}$ erg s$^{-1}$ cm$^{-2}$, respectively. Using the flux ratio, we determine a distance of 5.1 ± 1.5 kpc. Here the dominant source of error is the uncertainties in the reddening. This distance places OS And 1986 at a distance of 1.1 ± 0.3 kpc below the Galactic plane. This is outside the Galactic disc and suggests that OS And 1986 is not from a young disc population.

Using the distance determined from this technique, we find that OS And 1986 had $M_{O,V} = -8.0 \pm 0.7$. The mass of the underlying white dwarf can then be estimated from the formula derived by Livio (1992),

$$M_{WD} \approx 10^{[0.1 (M_{O,V}-8.3-M_{O,B})/0.00]}$$

where $M_{O,B}$ is the absolute B magnitude at visual maximum, and M_{WD} is the mass of the white dwarf in solar masses. The equation is an approximation, since it is only a function of the absolute B magnitude and it neglects effects such as the white dwarf's luminosity, magnetic field, the mass accretion rate and the composition of the accreted material. Nevertheless, Livio's equation gives an estimate of the white dwarf
Table 1. Basic parameters of OS And 1986.

Parameter	Value
Date discovered	Dec. 5th, 1986 (IAUC 4281)
Equatorial Coordinates (1950)	$\alpha = 23^h 9^m 47.^s72 \delta = +47^\circ 0.'08$ (IAUC 4282)
Galactic Coordinates	$l = 106.0^\circ 5b = -12.9^\circ$
Date of V_max and value	6.3 on 1986 December 8 (IAUC 4283)
B-V at Maximum	+0.41 (IAUC 4283)
V band at 15 days after maximum	9
t_2 time	8 ± 1 days
t_3 time	20 ± 1 days
Speed Class (Payne-Gaposchkin 1957)	Fast
Velocity of Expansion	1200 km s$^{-1}$ (IAUC 4289)
Underlying White Dwarf type	Carbon-Oxygen
White Dwarf Mass	0.9 ± 0.2 M$_\odot$
Mean E(B-V)	0.25 ± 0.05
M_v	-8.0 ± 0.7
Distance	5.1 ± 1.5 kpc
Scale height	1.1 ± 0.3 kpc

Table 2. Components of the IUE spectra.

Date	spectrum number (UT)	time (s)	exposure (s)	spectrum range (nm)	Observed flux (ergs s$^{-1}$ cm$^{-2}$)
Dec 9, 1986	LWP9668	25:52	30	200-330	3.6e-9
	SWP9836	23:00	600	117-195	2.0e-10
Dec 11, 1986	LWP9682	03:54	20	261-330	3.4e-9
	SWP9681	02:15	60	200-261	1.0e-9
	SWP9682	03:38	300	117-195	5.2e-10
Dec 13, 1986	LWP9708	22:51	20	261-330	3.9e-9
	LWP9709	23:55	40	200-261	1.6e-9
	SWP9875	22:56	120	117-195	1.3e-9
Dec 16, 1986	LWP9718	23:16	20	200-330	4.2e-9
	SWP9894	22:13	240	117-195	1.8e-9
Dec 27, 1986	LWP9794	01:56	15	270-330	1.4e-9
	LWP9795	03:00	70	200-270	1.6e-9
	SWP9980	02:53	90	117-195	2.7e-9
Jan 4, 1987	LWP9857	19:43	15	270-330	3.9e-10
	LWP9858	20:44	120	200-270	5.8e-10
	SWP30021	19:48	60	117-195	1.2e-9

*Flux is a lower limit.

mass of 0.9 ± 0.2 M$_\odot$. Table 1 summarizes the basic parameters of OS And 1986.

3 OBSERVATIONS

We have retrieved high- and low-resolution archival IUE spectra of OS And 1986 obtained with the long-wavelength primary (LWP: 2000–3300 Å) and the short-wavelength primary (SWP: 1175–1950 Å) cameras. These spectra were reduced at Goddard Space Flight Center (GSFC) Regional Data Analysis Facility (RDAF) using the standard IUE software and special-purpose IDL routines.

IUE took three high-dispersion spectra ($R = 10^4$) and 29 low-dispersion spectra ($R = 300$) of OS And 1986 during the first month after discovery while the nova atmosphere was still optically thick. Unfortunately, not all of these spectra are suitable for analysis. Due to the IUE satellite's small dynamic range, some spectra have their strongest features overexposed, while some shorter exposure spectra under-expose the weakest regions. On a few days, two low-resolution LWP and SWP spectra were taken within one hour of each other. One of each low-resolution pair was a long exposure, while the other two were short exposures. This was done to compensate for the limited dynamic range of IUE. We therefore combined the best-exposed portions of each spectrum to provide a final spectrum for that particular time. Table 2 gives the dates on which suitable low-resolution IUE spectra exist, and the image numbers and exposure information of each spectrum.

The optically thick phase of a nova outburst can be divided into three distinct phases. These are the 'fireball' phase (Gehrz 1988; Shore et al. 1993), the 'continuous mass-loss' phase (Hauschildt et al. 1994a) and the 'pre-nebular' phase.

The 'fireball' is the first stage in a nova's development and marks the phase when the ejected material is adiabatically expanding and cooling from very high initial temperatures. The cooling of this optically thick material shifts the flux...
peak from the UV to optical wavelength and causes a steep decline in the UV. Because the fireball ejecta become optically thin before maximum light in the V band, it is difficult to obtain spectra during this relatively rapid phase of development of the nova. Only for novae discovered very early during the rise to maximum in V, such as V1974 Cyg (Shore et al. 1993; Hauschildt et al. 1994a) and Nova LMC 1991 (Schwarz et al., in preparation), has this interesting ‘fireball’ phase been observed. OS And 1986 was probably just past the fireball phase at the time of the first IUE observations.

The fireball ejecta become progressively more transparent and the deeper layers of the nova atmosphere become visible as the optical flux passes through maximum. Previous work (Hauschildt et al. 1994b, 1995) on Nova Cas 1993 has shown that nova atmospheres have sufficient radiation pressure to drive mass-loss at this epoch, while the optical emission lines show strong P-Cygni profiles, indicative of a continuous outflow. We therefore term this the ‘continuous mass-loss’ phase. It is around this time that the ‘iron curtain’ comes to dominate the spectrum. The temperature drop from the ‘fireball’ phase causes higher ions to recombine, which in turn causes a large increase in UV opacity. This explains why the ‘continuous mass-loss’ phase is characterized by a pseudo-continuum created by overlapping absorption lines, mainly of Fe II. The pseudo-continuum peaks strongly at longer wavelengths (\(\approx 3000 \) Å), with almost undetectable flux at the shorter wavelengths where the opacity is largest.

The first two spectra in Fig. 3 and Table 2 show OS And 1986 in this early ‘continuous mass-loss’ phase. These spectra are very similar in appearance, except that the integrated flux is about 30 per cent higher on December 11. There is almost no flux shortward of 1500 Å on either day. The spectra are dominated by features that appear to be emission lines, but these ‘lines’ are in reality regions of transparency where the opacity is reduced. The features between 2600 and 2700 Å, and between 2900 and 3000 Å, are gaps in the Fe II line absorption (Hauschildt et al. 1994a). Mg II 2800 Å (and possibly Al m 1860 Å) is the only true emission line which is present during this epoch, and it is strongly blended with Fe II lines.

As this phase progresses, the overall slope in the UV spectra evolves, so that the pseudo-continuum gradually appears to flatten. The drop in density from the expansion causes a decrease in line opacity in this spectral region. This ‘lifting of the iron curtain’ (Hauschildt et al. 1992, 1994a; Shore et al. 1994) causes the flux peak to shift gradually into the SWP region of the spectrum (see Section 5).

The ‘lifting of the iron curtain’ in OS And 1986 is shown in the middle two spectra in Fig. 3 and in Table 2. These spectra show an increase of about a factor of 3 in integrated flux below 2000 Å with respect to the first two spectra. The increase is so great that the spectrum above 1700 Å is overexposed on December 16. The dramatic increase in the SWP region and the slight increase in total integrated flux of the LWP give the impression that the spectra have flattened. Table 2 shows that at this time OS And 1986 reached its maximum in the UV. This is directly attributable to the increase in radius of the ejected gas and subsequent drop in Fe II opacity.

The ‘pre-nebular’ phase is characterized by the emergence of moderately ionized (\(\leq 54\,\text{eV} \)) ionization potential from the presence of He II), allowed, semiforbidden and forbidden emission lines superimposed on a pseudo-continuum that is peaked toward the blue. These lines are formed in the outer region of the atmosphere where the density is sufficiently low for nebular emission lines to appear. As the opacity continues to drop, these lines strengthen and the spectra begin to resemble those obtained during the optically thin ‘nebular’ phase of other novae.

The last two spectra in Fig. 3 and Table 2 show this phase in OS And 1986. Their pseudo-continua are strongly sloped to the blue and are dominated by pre-nebular lines. The strongest of the lines are due to O I, N I, He II, C II, N II, Mg II and N III. A complete list of the pre-nebular lines is given in Table 3. At this phase, the strongest lines are from CNO ions with low-ionization states such as O I (1304 Å), C II (1335 Å) and N III (1750 Å). In addition, there is evidence of emission lines to the metastable \(\Pi^0 \) and \(\Delta^0 \) states of N I during this phase. The strongest emission lines from N I (Moore 1993) are

\[
\begin{align*}
(1) & \quad 3d(3D) - 2p(3P^*) \text{ at } 1310 \, \text{Å}; \\
(2) & \quad 3d(3P) - 2p(3P^*) \text{ at } 1319 \, \text{Å}; \\
(3) & \quad 3s(3D) - 2p(3P^*) \text{ at } 1411 \, \text{Å}; \\
(4) & \quad 3s(3P) - 2p(3P^*) \text{ at } 1743 \, \text{Å}; \\
(5) & \quad 3s(3D) - 2p(3D^0) \text{ at } 1243 \, \text{Å}; \\
(6) & \quad 3s(3P) - 2p(3D^0) \text{ at } 1493 \, \text{Å}.
\end{align*}
\]

Fig. 4 shows the N I emission lines in the December 27 high-resolution UV spectrum, SWP29981. The line at 1319 Å is clearly seen, while the line at 1310 Å is blended with O I 1304 Å (Fig. 4a). Interstellar absorption lines of O I and C II 1336 Å can also be seen. In Fig. 4(b), the line at 1411 Å is blended with an unidentified line at 1415 Å. The O Iv and Si Iv lines around 1401 Å are present but weak and severely blended. The location of the line centre in Fig. 4(c) indicates that the strong line near 1486 Å is not N Iv, but rather N I at 1493 Å (see Scott et al. 1995). The C Iv line at 1550 Å is present, but is also weak. In Fig. 4(d), the N III line at 1750 Å is clearly blended with the N I line at 1743 Å.

4 MODEL ATMOSPHERES

4.1 Model construction

The spectral synthesis of the early spectra of OS And 1986 were calculated using the method described by Hauschildt & Baron (1995). Therefore, we provide here only a brief description of the method and summarize the recent changes to Hauschildt’s NLTE expanding, stellar atmosphere code phoenix.

PHOENIX solves the special relativistic equation of radiative transfer (SSRTE) in the Lagrangian frame self-consistently with the multilevel, NLTE rate equations and the special relativistic radiative equilibrium (RE) equation in the Lagrangian frame. Numerical methods used in PHOENIX include the following: (i) the solution of the SSRTE is done using the operator splitting method described by Hauschildt (1992), (ii) the RE equation is solved by an Unsold–Lucy-type temperature correction scheme (Allard 1990), and (iii) the multilevel NLTE continuum and line transfer
Figure 3. The IUE low-resolution spectra of OS And 1986 during the optically thick phase. The 'X' symbols indicate badly exposed points. The date of each spectra is: (a) December 9.9, (b) December 11.1, (c) December 13.9, December 16.9, (d) December 28.0, and (e) January 4.8 UT.
problem is treated using the operator splitting method described by Hauschildt (1993).

The following species are treated in NLTE: H I (10 levels), Mg II (18 levels), Ca II (5 levels), Ne I (26 levels) and O I (36 levels) (Hauschildt et al. 1994a). The lines are represented by depth-dependent Gaussian profiles with 25 wavelength points per permitted NLTE line.

Table 3. Emission lines present during the ‘pre-nebular’ phase.

λ(Å)	Identification	Comments
1304	O I	
1335	C II	
1358	O I	
1402	O IV	
1411	N I	
1483	N I	
1550	C IV	
1640	He II	
1666	O III	
1743	N I	
1750	N II	
1907	C III	
2145	N II	
2322	[O III]	weak/blend
2327	C II	
2471	[O II]	
2800	Mg II	

A recent addition to the PHOENIX atmosphere code is a fully NLTE treatment of Fe II. This ion plays an important role in the formation of early nova spectra because of its high abundance and low ionization threshold. We used an Fe II model atom that includes 617 levels, over 10⁴ primary permitted transitions and over 10⁶ secondary transitions (Hauschildt & Baron 1995; Hauschildt et al. 1996). Its inclusion considerably alters our synthetic spectra and dramatically improves the fits to the IUE data when compared with LTE treatments. This will be demonstrated in Section 6.

In addition to the NLTE lines, the models self-consistently include line blanketing by the most important (∼10⁶) metal lines selected from the Kurucz (1994) line list. The entire list contains close to 42 million lines; however, not all of them are important for a particular nova model. Therefore, before each temperature iteration, a subset is selected from the original list by a process described in Hauschildt et al. (1992, 1994a). We treat line scattering in the metal lines of LTE species (approximately) by parametrizing the albedo for single scattering, α. The detailed calculation of α would require a full NLTE treatment for all lines and continua, which is outside of the scope of this paper. Tests have shown that the line profiles do not depend sensitively on α as a direct result of the velocity gradient in nova photospheres, and that our approach is reasonable. An average value of α = 0.95 is used; recent results indicate that this is an acceptable choice (Hauschildt & Baron 1995). The continuous absorption and scattering coefficients are calculated using the species and cross-sections described in Allard & Hauschildt (1995) and Hauschildt et al. (1995).
4.2 The model parameters

The model atmospheres are characterized by the following parameters (see Hauschildt et al. 1992 for details):

1. the reference radius R, which is the radius where either the continuum optical depth in absorption or extinction at 5000 Å is unity;
2. the model temperature T_{model}, which is defined by

 $$T_{\text{model}} = (L/4\pi R^2)\sigma,$$

 where σ is Stefan’s constant;
3. the density parameter, N, $[\rho(r) < r^{-\gamma}]$;
4. the maximum expansion velocity, given by $v = M/4\pi R^2\rho$, with the mass-loss rate, $M(r)$, assumed to be a constant;
5. the density, ρ_{cut}, at the outer edge of the envelope;
6. the statistical velocity, ξ, treated as depth-independent isotropic turbulence, and
7. the element abundances.

We emphasize that for extended model atmospheres, one should not assign a physical interpretation to the parameter combination of T_{model} and R. Previous work (Hauschildt et al. 1992, 1994a, 1995) has called the model temperature an ‘effective temperature’, or T_{eff}, but this is technically not correct. In plane-parallel stellar atmospheres, it is possible to define an ‘effective temperature’ as the temperature of a blackbody emitting the equivalent flux. However, in an extended atmosphere there is no longer a unique radius at which this can be defined. By using a reference radius at a prescribed continuum optical depth-scale at $\lambda = 5000$ Å we define a model temperature. We emphasize that the model temperature must be regarded only as a convenient numerical parameter used to describe the model, and that it is not directly comparable to any observationally determined radius except at 5000 Å. Pistinmer et al. (1995) present a detailed discussion of nova atmosphere parametrization.

5 RESULTS OF NLTE MODELLING

The parameters that affect the synthetic spectra most sensitively are the model temperature, the density parameter and the metal ($Z > 2$) abundances. Previous work (Hauschildt et al. 1992, 1994a) and hydrodynamic calculations of nova outbursts (Starrfield et al. 1992) have shown that the post-optical-maximum optically thick phases are best modelled with $N \approx 3$. With N fixed at 3, we created three libraries of synthetic spectra where only the model temperature was varied. Each library consisted of models with metal abundances (by number) of 0.5, 1 and 2 times the solar value. We did this for two reasons. The metal-rich synthetic spectra were calculated, because nova theory predicts that metals (namely CNO) should be enhanced relative to hydrogen because of mixing of accreted material with core white dwarf material (Politano et al. 1995). To investigate the possibility that the secondary star of OS And is a metal-poor subdwarf since it lies outside the Galactic disc, we created the metal-poor synthetic spectra.

A maximum velocity of $v_{\text{max}} = 2000$ km s$^{-1}$ was chosen as a reasonable guess, while a statistical velocity of $\xi = 50$ km s$^{-1}$ was chosen as a typical value for hot stars. The model’s luminosity was chosen as $6 \times 10^4 L_\odot$ (see Section 2.2). The outer pressure, P_{out}, was set to 10^{-3} dyn cm$^{-2}$ to ensure that the material above the model atmosphere was optically thin at all wavelengths. The synthetic spectra were convolved with a Gaussian kernel with 5-Å resolution to simulate the low-resolution IUE spectra.

In Fig. 5, we show a collection of synthetic spectra compared to the IUE spectrum of December 11. Figs 5(a), (b), and (c) show the best-fitting synthetic spectrum with the metal-rich, solar and metal-poor abundances, respectively. Notice that increasing the metallicity (Fig. 5a) produces a spectrum that has a higher model temperature (19000 K) than the solar-abundance synthetic spectrum (17000 K; Fig. 5b), which in turn is hotter than the metal-poor synthetic spectrum (16000 K; Fig. 5c). We will explain this phenomenon shortly and describe how it can be used to determine the model temperature of the nova.

Although these three synthetic spectra fit the IUE spectrum well at most wavelengths, below 1500 Å they predict about 100 times the observed flux. In principle, this region of the spectrum can be used to determine the CNO abundances because of the large opacity from the numerous CNO lines located below 1500 Å. Increasing the CNO abundance reduces the flux in the synthetic spectra in this spectral region. However, our LTE treatment of CNO does not significantly improve the fits of the synthetic spectra with CNO abundances greater than 10 times solar. An accurate analysis of this spectral region requires that all CNO ions be treated in NLTE, and this is currently being implemented. We therefore cannot yet say by how much the CNO elements may be overabundant.

Most of the spectral features are reproduced by the synthetic spectra in the region between 1500 and 2600 Å. The flux in the synthetic spectra is generally too low by as much as 40 per cent between 2300 and 2600 Å. We stress that in this region, it is only important for the synthetic spectra to show the same features as seen in the IUE spectrum and not to reproduce the flux precisely. This is because the exact shape of the interstellar extinction curve, particularly the strength of the 2175-Å absorption feature, is not known for OS And 1986.

The features above 2600 Å, caused by the gaps in the distribution of iron-peak absorption lines, are well fitted by all of the synthetic spectra. All three synthetic spectra predict too much flux at Mg II (2800 Å). A synthetic spectrum with the magnesium abundance (relative to solar) reduced by a factor of 10 was found to substantially improve the fit to the Mg II emission line. Because of the strength of this resonance transition we cannot determine the magnesium abundance with high precision, but it seems likely that magnesium is depleted relative to hydrogen, possibly by as much as a factor of 10 (from a solar abundance).

The reason that all three synthetic spectra exhibit a good comparison to the IUE data is the relative insensitivity of the iron curtain to the details of the model. In Fig. 6(a), we plot the metal-rich synthetic spectrum with a model temperature of 17000 K (dotted line) and a solar-metallicity synthetic spectrum with the same model temperature (solid line). The higher metallicity spectrum shows stronger metal lines, mostly Fe, in the optical as compared to the solar-metallicity spectrum. However, in the UV, the presence of the iron curtain implies that a synthetic spectrum with larger metal abundances has an increased opacity. This produces a steeper UV pseudo-continuum, which can be seen in the
Figure 5. The IUE low-resolution spectrum on December 11 and best-fitting synthetic spectra with metallicities of (a) twice solar, (b) solar and (c) half solar. The solid line represents the IUE spectrum, and the synthetic spectrum is overplotted as a dotted line. An 'X' symbol marks an overexposed or badly exposed IUE point. The feature at 1215 Å is geocoronal Lyman α emission.
flux ratios. In order to produce a UV synthetic spectrum which resembles the solar-metallicity spectrum at 17000 K (dotted line) but using a higher metallicity, we must increase the model temperature by 2000 K. The depopulation of Fe II by the hotter radiation field is balanced by the increase in Fe abundance. Even though different combinations of model temperature and metallicity produce UV spectra that are qualitatively similar, Fig. 6(b) shows clearly that the optical continuum relative to the UV is very different between the two spectra. Unfortunately, there are no flux-calibrated optical spectra for OS And 1986 during the optically thick epoch to help us determine the metallicity. This underscores the need to have flux-calibrated optical observations together with the UV observations for novae.

We cannot yet say which of the three synthetic spectra is most representative of OS And 1986 (from this IUE spectrum alone), since the comparisons are essentially the same in these low-resolution IUE spectra. To resolve the ambiguity, we used high-resolution IUE spectra. In Fig. 7, we show the IUE high-resolution spectrum [LWP9719 (2400 to 2780 Å) + LWP9717 (2780 to 3200 Å)] of 1986 December 16 as a dashed line to facilitate viewing. Figs 7(a), (b) and (c) show the best-fitting synthetic spectra with 2 ($T_{\text{model}} = 20000$ K), 1 ($T_{\text{model}} = 20000$ K) and 0.5 ($T_{\text{model}} = 19000$ K) times solar metallicities, respectively (solid line). The twice solar synthetic spectrum produces absorption features between 2850 and 2900 Å and between 3250 Å that are stronger than observed. The Fe II absorption in the wing of Mg II at 2750 Å is too weak, the flux predicted blueward of 2600 Å is too low, and the flux longer than 3250 Å is too high, compared to the IUE spectrum. These results force us to abandon the high-metallicity models for OS And 1986.

The other two synthetic spectra fit most of the features fairly well and reproduce the flux throughout the IUE spectrum except for the Mg II 2800 Å line. We suspect that at this epoch the Mg II line includes an additional component from the outermost optically thin regions of the atmosphere. This component is not currently included in the model calculations, and an analysis of Mg II at this epoch would have to account for this 'pre-nebular' contribution. A careful examination of Figs 7(a) and (b) shows that the synthetic spectrum with solar metallicities gives a slightly better fit. The features at 2500, 2610 and 2675 Å, and the flux redward of 3000 Å, are in better agreement with the observed IUE spectrum. Although we adopt the synthetic spectra library with solar metallicity for the rest of the discussion, we point out that the metal-poor model is not inconsistent with the IUE data alone.

5.1 Time development of the model atmosphere

Each model atmosphere calculates nova properties at 50 logarithmically spaced depth points between $\tau_{\text{rad}} = 10^{-6}$ and 10^5, where τ_{rad} is the optical depth of the continuum at
Figure 7. The IUE high-resolution spectrum on December 16 and best-fitting synthetic spectra with metallicities of (a) twice solar, (b) solar and (c) half solar. The dotted line now represents the IUE spectrum, and the synthetic spectrum is overlapped as a solid line. An 'X' symbol marks an overexposed or badly exposed IUE point.

5000 Å. We use the information contained in the \(\tau \) grids, from the best-fitting model atmospheres, to illustrate the physics in optically thick UV nova spectra.

The optical depth, electron temperature and density are presented at a fixed radius of \(10^{13} \) cm as a function of time in Figs 8(a)-(c). The figures show that as the nova evolves, the optical depth decreases, the electron temperature increases, and the density drops at this radius. The interpretation is that as the nova expands, the density drops and the deeper, hotter layers are exposed. The outer layers decrease in density due to expansion and are exposed to a hotter radiation field, allowing the strong 'pre-nebular' emission lines to appear superimposed on top of the pseudo-continuum.

The 'lifting' of the iron curtain is illustrated in Fig. 8(d). This figure shows the Fe II number density as a function of time at \(\tau_{\text{red}} = 1 \) in the solar-abundance model atmosphere. During the earliest epochs of the 'continuous mass-loss' phase, the number density of Fe II is high, which produces the increased opacity in the UV spectrum. The Fe II number density falls rapidly during expansion, which is manifested in the observed UV spectra as a flux increase in UV.

In Fig. 8(e), we show the bolometric flux. It has been shown (Hauschildt et al. 1995) that the synthetic spectra are insensitive to the luminosity of the model atmosphere, and thus we cannot determine the luminosity from the synthetic spectra alone. We can find the bolometric flux of OS And through another method. First, we note that the synthetic spectrum, which best fits each IUE spectrum, includes regions outside the wavelength regime of IUE. By summing the flux in each synthetic spectrum, we arrive at a bolometric flux for each epoch of the IUE data. The plot shows that the flux was constant, within the limits of our error, for about the first week after visual maximum when it then declined. This decline is due to the presence of strong pre-nebular emission lines in the UV and the optical (Changchun et al. 1988) beginning in late December. Since these lines are not included in the synthetic spectrum's bolometric flux, and are a significant contribution to the flux (of order 10 per cent in the UV alone), the last two data points are only lower limits. Using the distance determined in Section 2, the bolometric luminosity of OS And 1986 is \((5 \pm 2) \times 10^4 \text{L}_\odot \), or about the Eddington limit for a 1-M_\odot white dwarf. This is in agreement with the white dwarf mass derived in Section 2.
In addition, the constant bolometric flux of the early optically thick nova is consistent with the reddening determined in Section 2. If the luminosity is constant, then the maximum integrated flux in the optical is equal to the maximum integrated flux in the UV. We use photoelectric B and V magnitudes, converted to fluxes using Allen (1973), on 1986 December 9.34 (IAU Circ. 4282) to approximate the maximum integrated optical flux. The maximum integrated UV flux is equal to the maximum optical flux when $E(B-V) \approx 0.25$ mag.

6 Fe II NLTE VERSUS Fe II LTE

In LTE models, the occupation numbers, the opacity and the emissivity are assumed to be locally in thermodynamic equilibrium throughout the atmosphere. Generally, while the assumption of LTE should be acceptable in stars, an accurate treatment for nova atmospheres demands that the most important species be treated in NLTE. This is because nova atmospheres have large temperature and density gradients, low densities and highly non-Planckian radiation fields, and thus must exhibit NLTE behaviour.

Fe II LTE model atmospheres with model temperatures ≈ 17000 K produce synthetic spectra that are very similar to their NLTE model counterparts. At this model temperature, the departures from LTE are not significant (see Hauschildt et al. 1996). However, in hotter models, the NLTE effects in Fe II are considerable. The hotter radiation field prevents the recombination of Fe III to Fe II, thus decreasing the Fe II abundance. Figs 9(a) and (b) give the LTE (triangles) versus the NLTE Fe II (diamonds) number density as a function of optical depth for the best-fitting synthetic spectra on December 11 ($T_{\text{LTE}} = T_{\text{model}} = 17000$ K) and December 27 ($T_{\text{LTE}} = T_{\text{model}} = 27000$ K and $T_{\text{model}} = 25000$ K). The cooler model atmospheres show essentially the same Fe II abundances in the outer atmosphere, regardless of the way Fe II is treated. In the hotter models, however, the LTE model shows a severe overabundance of Fe II, by as much as 10^3, in the outer regions of
Figure 9. The Fe II number abundance as a function of the optical depth. The diamonds represent the NLTE models, and the triangles are the LTE models. (a) is for the 'cool' model atmospheres, and (b) is for the hotter model atmospheres.

the atmosphere. The consequences of the increased Fe II number density can be seen in the synthetic spectra. In Figs 10(a) and (b), we show the December 27 IUE spectrum compared to the solar-abundance synthetic spectrum from the model atmospheres used in Fig. 9(b). The strong allowed, semiforbidden and forbidden lines in the spectrum arise from the optically thin ejecta beyond the largest radii considered in the model atmospheres. The pseudo-continuum is well reproduced by both synthetic spectra, but the LTE spectrum shows very strong Fe II emission lines at 2410, 2640 and 2780 Å (Fig. 10a). The Fe II emission in the wing of the Mg II 2800 Å produces a very strong line, which equals the intensity of Mg II observed in OS And 1986. The NLTE synthetic spectrum shows none of these Fe II emission features and a weak Mg II line in Fig. 10 (b). The Mg II is further reduced in strength if the model atmosphere is reduced in magnesium abundance by a factor of 10. Additional Mg II emission is produced from the optically thin ejecta beyond the outer model radius. In order to produce the features in the pseudo-continuum seen in the IUE spectrum, Fe II must be treated in NLTE. The LTE models overpopulate Fe II resulting in very strong Fe II lines that are not observed in the IUE spectrum.

7 SUMMARY

OS And 1986 was a fast CO-type nova, whose ejecta were optically thick in the UV for about one month after visual maximum. This fact, along with the early IUE coverage, makes it an ideal candidate to determine the chemical composition and physical conditions in the early nova outburst by using a model atmosphere analysis. In order to accurately model the data, we require the reddening. The four different methods used in this study give $E(B-V) = 0.25 \pm 0.05$ mag as the reddening to OS And 1986. To determine the absolute properties, such as the luminosity, we have derived a distance to OS And 1986 of 5.1 ± 1.5 kpc. At this distance and at a galactic latitude of -12° OS And 1986 is >1 kpc below the Galactic disc.

To model OS And 1986 we created three synthetic spectral libraries (varying only the model temperature) with different abundance sets. As a starting point, the first library contains solar-abundance synthetic spectra. Because of the location of OS And 1986 in the Galaxy, and to investigate the possibility that OS And 1986 may be a member of the metal-poor halo population, the second library consists of metal-poor synthetic spectra. Since earlier studies of Nova V1974 Cyg 1992 and Nova V705 Cas 1993 (Hauschildt et al. 1994a,b) reported enhancements of the metals C, N, O and Fe relative to hydrogen, we produced a set of metal-rich synthetic spectra for the last library.

The IUE spectra are best fitted by synthetic spectra with solar metallicities, although we cannot rule out the metal-poor synthetic spectra with the IUE data alone. The fact that we do not find evidence for a metal enhancement is puzzling, since theory predicts that CNO elements should be enhanced relative to hydrogen caused by the mixing of white dwarf core material with accreted material (Starrfield 1989). Further, the synthetic spectra are in better agreement at 2800 Å when the Mg abundance is decreased from solar by an order of magnitude in all models. A possible explanation is that the secondary star of OS And 1986 is a Galactic halo subdwarf. A subdwarf would provide metal-poor material that was accreted on to the white dwarf. Mixing with the white dwarf core would enhance the CNO elements but leave the high-Z metals, e.g. Mg, Fe, etc., essentially...
unchanged. Unfortunately, we were not able to determine the CNO elemental abundances very accurately, but the ‘pre-nebular’ spectra show strong line emission from the CNO elements, indicating that these elements are overabundant with respect to solar. We have shown that treating other elements, namely Fe II, in NLTE significantly improves the fits to the IUE spectra. Future work will include a more accurate determination of the CNO abundances using model atmospheres with CNO in NLTE (Hauschildt et al. 1996).

The model atmospheres give insight into the physical conditions of the outburst. During the ‘continuous mass-loss’ phase, the models show that the atmosphere is relatively ‘cool’ and dense, while the Fe II abundance is high. The synthetic spectra show, and the IUE spectra confirm, that the spectra at this epoch are dominated by Fe II absorption. As the nova shell expands, the electron temperatures rise and the electron densities drop at a fixed location in space. The density and opacity drop due to expansion and the ejecta outside the model atmosphere are now exposed to a hotter radiation field. This leads to the formation of the ‘pre-nebular’ lines seen superimposed on the hot pseudocontinuum in the IUE spectra.

The model atmospheres also provide the bolometric flux. We use synthetic spectra to determine the flux of OS And 1986 at all wavelengths, and our derived distance to obtain a bolometric luminosity of \((5 \pm 1) \times 10^4\) \(L_\odot\), or roughly the Eddington limit for a 1-M\(_\odot\) white dwarf. OS And maintained a constant bolometric luminosity for 10 d after maximum light in \(V\). After that time, the contribution from emission lines formed outside of the model atmosphere becomes significant and the bolometric luminosity calculated from our model atmospheres drops.

ACKNOWLEDGMENTS
It is a pleasure to thank J. Krautter, S. Pistinner, G. Shaviv, J. Truran and R. Wade for stimulating discussions. This work was supported in part by NASA and NSF grants to Arizona State University, University of Oklahoma and Wichita State University. Some of the calculations presented in this paper were performed on the IBM SP2 of the Cornell Theory Center (CTC), and on the Cray C90 of the San Diego Supercomputer Center (SDSC), supported by the NSF; we thank them for a generous allocation of computer time. The ultraviolet data were obtained with the International Ultraviolet Explorer Telescope, and we gratefully acknowledge the support of the IUE observatory in obtaining these data.

REFERENCES
Allard F., 1990, PhD thesis, Univ. Heidelberg
Allard F., Hauschildt P. H., 1995, ApJ, 445, 433
Allen C. W., 1973, Astrophysical Quantities. Athlone, London
Andrillat Y., 1986, IAU Circ. 4289
Austin S., Starrfield S., Saizar P., Shore S. N., Sonneborn G., 1990, Proc. Int. Symp. ‘Evolution in Astrophysics’, Toulouse, France. ESA SP310, Noordwijk, p. 367
684 G. J. Schwarz et al.

Burstein D., Heiles C., 1982, AJ, 87, 1165
Capaccioli M., Della Valle M., D’Onofrio M., Rosino L., 1989, AJ, 97, 1622
Changchun H., Yafeng C., Ling C., 1988, Vistas Astron., 31, 275
Chochol D., Hric L., Urban Z., Komzik R., Grygar J., Papousek J., 1993, A&A, 277, 103
Cohen J. G., 1985, ApJ, 292, 90
Gehrz R. D., 1988, ARA&A, 26, 377
Gould A., 1995, ApJ, 452, 189
Hauschildt P. H., 1992, J. Quant. Spectrosc. Radiat. Transfer, 47, 433
Hauschildt P. H., 1993, J. Quant. Spectrosc. Radiat. Transfer, 50, 301
Hauschildt P. H., Baron E., 1995, J. Quant. Spectrosc. Radiat. Transfer, 54, 987
Hauschildt P. H., Wehrse R., Starrfield S., Shaviv G., 1992, ApJ, 393, 307
Hauschildt P. H., Starrfield S., Austin S., Wagner R. M., Shore S. N., Sonneborn G., 1994a, ApJ, 422, 831
Hauschildt P. H., Starrfield S., Shore S. N., Gonzalez-Riestra R., Sonneborn G., Allard F., 1994b, AJ, 108, 1008
Hauschildt P. H., Starrfield S., Shore S. N., Allard F., Baron E., 1995, ApJ, 447, 829
Hauschildt P. H., Baron E., Starrfield S., Allard F., 1996, ApJ, 462, 386
Kikuchi S., Kondo M., Mikami Y., 1988, PASP, 40, 491
Kondo M., Kosai H., 1986, IAU Circ. 4282
Krisiunas K., 1986, IAU Circ. 4282
Kurucz R. L., 1994, Atomic Data of Fe, Co, and Ni, Kurucz CD-ROM No. 22
Livio M., 1992, ApJ, 393, 516
Milani G. A., Favero G., Tonello A., 1986 IAU Circ. 4306
Miroshnichenko A. S., 1988, SvA, 32, 298
Moore C., 1993, Tables of spectra of Hydrogen, Carbon, Nitrogen, Oxygen Atoms and Ions. Ann Arbor, CRC Press
Payne-Gaposchkin C., 1957, The Galactic Novae. New York, Dover
Pistinner S., Shaviv G., Hauschildt P. H., Starrfield S., 1995, ApJ, 451, 724
Politano M., Starrfield S., Truran J. W., Weiss A., Sparks W. M., 1995, ApJ, 448, 807
Schmidt Th., 1957, Z. Astrophys., 41, 182
Scott A. D. et al., 1995, A&A, 296, 439
Shore S. N., Sonneborn G., Starrfield S., Gonzalez-Riestra R., Ake T. B., 1993, AJ, 106, 2408
Shore S. N., Sonneborn G., Starrfield S., Gonzalez-Riestra R., Polidan R. S., 1994, AJ, 421, 344
Starrfield S., 1989, in Bode M., Evans A., eds, Classical Novae. Wiley, New York, p. 39
Starrfield S., 1992, in Shade J., McLusky G., Kondo J., eds, Realm of Interacting Binary Stars. Kluwer, Dordrecht, p. 209
Starrfield S., Shore S. N., Sparks W. M., Sonneborn G., Truran J. W., Politano M., 1992, ApJ, 391, L71
Suzuki M., 1986, IAU Circ. 4281
van den Bergh S., Younger P. F., 1987, A&AS, 70, 125
Williams R. E., 1992, AJ, 104, 725

© 1997 RAS, MNRAS 284, 669–684

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System