Extracting Verb-Noun Collocations from Text

Jia Yan Jian
Department of Computer Science
National Tsing Hua University
101, Kuangfu Road, Hsinchu, Taiwan
g914339@oz.nthu.edu.tw

Abstract

In this paper, we describe a new method for extracting monolingual collocations. The method is based on statistical methods extracts VN collocations from large textual corpora. Being able to extract a large number of collocations is very critical to machine translation and many other application. The method has an element of snowballing in it. Initially, one identifies a pattern that will produce a large portion of VN collocations. We experimented with an implementation of the proposed method on a large corpus with satisfactory results. The patterns are further refined to improve on the precision ration.

1 Introduction

Collocations are recurrent combinations of words that co-occur more often than chance. Collocations like terminology tend to be lexicalized and have a somehow more restricted meaning than the surface form suggested (Justerson and Katz 1994). The words in a collocation may be appearing next to each other (rigid collocation) or otherwise (flexible/elastic collocations). On the other hand, collocations can be classified into lexical and grammatical collocations (Benson, Benson, Ilson, 1986). Lexical collocations are formed between content words, while the grammatical collocation has to do with a content word with a function word or a syntactic structure. Collocations are pervasive in all types of writing and can be found in phrases, chunks, proper names, idioms, and terminology.

Automatic extraction of monolingual and bilingual collocations are important for many applications, including Computer Assisted Language Learning, natural language generation, word sense disambiguation, machine translation, lexicography, and cross language information retrieval. Hank and Church (1990) pointed out the usefulness of pointwise mutual information for identifying collocations in lexicography. Justeson and Katz (1995) proposed to identify technical terminology based on preferred linguistic patterns and discourse property of repetition. Among many general methods presented in Manning and Schutze (1999), the best method is filtering based on both linguistic and statistical constraints. Smadja (1993) presented a program called XTRACT, based on mean and variance of the distance between two words that is capable of computing flexible collocations. Kupiec (1992) proposed to extract bilingual noun phrases using statistical analysis of cooccurrence of phrases. Smadja, McKeown, and Hatzivassiloglou (1996) extended the EXTRACT approach to handling of bilingual collocation based mainly on the statistical measures of Dice coefficient. Dunning (1993) pointed out the weakness of mutual information and showed that log likelihood ratios are more effective in identifying monolingual collocations especially when the occurrence count is very low.

Smadja’s XTRACT is the seminal work on extracting collocation types. XTRACT involves three different statistical measures related to how likely a pair of words is part of a collocation type. It is complicated to set different thresholds for each of these statistical measures. We decided to research and develop a new and simpler method for extracting monolingual collocations. We describe the experiments and evaluation in Section 3. The limitations and related issues will be taken up in Section 4. We conclude and give future direction in Section 5.
2 The algorithm

We used Sinorama Corpus to develop methods for extracting monolingual collocations. A number of necessary preprocessing steps were carried out. Those preprocessing steps include:
1. Part of speech tagging for English and Chinese test
2. N-gram construction
3. Logarithmic likelihood ratio (LLR) computation

2.1 Extraction of English VN collocations

In our research, we discovered some problems about XTRACT. The problems with XTRACT include:
1. XTRACT produce a list of collocation types rather than instances.
2. XTRACT is complicated because it requires thresholds for three statistical measures.
3. There is no systematic way of setting thresholds for a certain level of confidence.
4. XTRACT is based on the author’s intuition about collocation.
5. XTRACT does not provide explicitly types of collocation.

For the above reasons, we decided to research and explore new methods for extracting monolingual collocations.

2.1.1 Step1: Computing such VN types with high counts

The method has an element of snowballing in it. Initially, one identifies a pattern that will produce a large portion of VN collocation. We started with the following pattern (1):

\[\text{V + ART or POSS + \cdots + N} \]

By extracting such VN types with high counts, we got a list of highly likely collocation types. In addition, we also take the passive form (2) of VN into consideration:

\[\text{ART or POSS + N + \cdots + be + Ved (the passive VN)} \]

The list is further filtered for higher precision: the pairs with LLR lower than 7.88 (confidence level 95%) are removed from consideration.

2.1.2 Step2: Extracting VN patterns from corpus

After obtaining the list, we gather all the instances where the VN appears in the corpus. From the instances, we compute the following patterns (3) for extracting VN collocations:

\begin{align*}
\text{POS preceding V} \\
\text{POS sequence between V and O} \\
\text{POS following O}
\end{align*}

and we also consequently consider the passive form and its context:

\[
\text{Log-likelihood ratio : } \text{LLR}(x;y) = -2 \log \frac{p^x (1-p)^{y-x}}{p^x (1-p)^{y-x}}
\]

\[
k_1 : \# \text{ of pairs that contain x and y simultaneously.}
\]

\[
k_2 : \# \text{ of pairs that contain x but do not contain y.}
\]

\[
n_1 : \# \text{ of pairs that contain y}
\]

\[
n_2 : \# \text{ of pairs that does not contain y}
\]

\[
p_1 = k_1/n_1, \quad p_2 = k_2/n_2, \quad p = (k_1+k_2)/(n_1+n_2)
\]
2.1.3 Step3: Manipulating the correct structure statistics of VN patterns

We eliminated patterns that appear less than three times. These patterns are much more stringent than pattern we started out with. These patterns help us get rid of unlikely VN instances such as “make film” in “make a leap into TV and film,” since the POS sequence of “a leap into TV and” has a low count in the initial batch of “likely” collocations. On the other hand, “make film” in “make my first film” would be kept as a legitimate instance of VN, since the pos sequence of “my first” has rather high count in the initial batch of “likely” collocations.

Actually, the POS sequences of intervening words has a skew distribution concentrating on a dozen of short phrases (see Table1):

VN collocation	Translation	POS of VN
ride a bike	像自行車	vb + at + nn
take my advice	聽我的勸告	vb + pp$ + nn
keep a diary	習近平	vb + at + nn
action will be taken	採取行動	nn + md + be + vbd
problem is solved	解決問題	nn + be + vbd
decision can be made	做決定	nn + md + be + vbd

These patterns can be coupled with other constraints for best results:

1. No punctuation marks should come between V and O
2. The noun closest to the verb takes precedence

For now, we only consider verbs with two obligatory arguments of subject and object. Therefore, we exclude instance like (make, choice) in “make entertainment at home a choice.” We plan to extract VN in three-argument proposition separately.

The other issue has to do with data sparseness. For collocation types with low count, the estimation of LLR is not as reliable. In the future, we will also experiment with using search engine such as Google to estimate word counts and VN instance count for more reliable estimation of LLR.

XTRACT does not touch on the issue of identify VN collocation instances in (6) and exclude that in (5). In our research, we explored the identification of collocation instances and attempt to avoid cases that maybe a correct collocation type but not a correct collocation instance.

… make a leap into TV and film… (5)
… made great efforts to promote documentary film… (6)

2.2 Example

To extract VN collocations, we first run part of speech tagging on sentences. For instance, we get the results of tagging below:

He/pps defines/vbz success/nn for/in a/at paper/nn as/cs not/* needing/vbg to/to exert/vb political/jj influence/nn or/cc obtain/vb financial/jj subsidies/nns ,/, but/cc rather/rb being/beg able/jj to/to rely/vb wholly/rb on/in content/nn to/to attract/vb readers/nns that/cs in/in turn/nn attract/vb advertisers/nns ,/, and/cc thus/rb keep/vb afloat/rb by/in its/pp$ own/jj efforts/nns ./.
After tagging English sentences, we construct N-gram extracted likely VN types with high count from bigram, trigram and fourgram. We then obtained got a list of highly likely collocation types (Table 2). The pairs with LLR lower then 7.88 are eliminated from Table 2. If the pair appeared less than once. we also eliminated the pair.

After obtaining likely collocation types, we gathered all instances where the VN appears in the corpus. The distance between the verb and the object is at most five words. Both of the words before the verb and after the object are recorded. Table 3 shows those patterns of VN instances.

Table 2
A list of highly likely collocation types

Verb	Noun	Count (VN)	Count(V)	Count(N)	llr_score
have	influence	24	5293	57	52.28961
exert	influence	4	14	57	40.58210
exercise	influence	4	23	57	36.09338
reduce	influence	3	188	57	12.43681
eradicate	influence	1	6	57	8.876641
root	influence	1	6	57	8.876641

Table 3
Extracting VN collocation from corpus

Rec	V-1	Verb	N-5	N-4	N-3	N-2	N-1	Noun	N+1	
96335	t'	have					much	influence	on	
55203	woman	have					some	influence	.	
129530	tank	have				a	considerable	influence	on	
122706	He	have				an	influence	on		
123975	mother	have					considerable	influence	.	
125192	Wen	have				a	great	influence	on	
9326	which	have				such	a	powerful	influence	on
56033	as	have				an	enormous	influence	throughout	
67666	have	have				less	influence	than		
76130	have	have				lasting	influence	on		
95098	always	have				a	certain	influence	on	
125182	Xi	have				the	greatest	influence	on	
5704	have	have				a	very	negative	influence	.
1742	have	have			a	deep and	lasting	influence	.	
111368	owner	have				no	less	influence	than	
96654	thus	have				a	decisive	influence	on	
109816	family	have				the	greatest	influence	on	
115428	png	have			be	under	foreign	influence	.	
39165	to	exert						influence	.	
112540	to	exert					political	influence	or	
118754	to	exert					his	influence	to	
106807	to	exert				a	positive	influence	for	
106846	it	exert	a	powerful	cultural	influence	throughout			
46061	whohas	exert					enormous	influence	upon	
123962	best	exercise				a	restrain	influence	on	
40774	and	exercise				her	political	influence	in	
127061	to	reduce					the	influence	of	
3 Experiment and evaluation

We worked with around 50,000 aligned sentences from the Sinorama parallel Corpus in our experiments with an implementation of the proposed method. The average English sentence had 43.95 words. From the experimental data, we have extracted 17,298 VN collocation types. Then, we could obtain 45,080 VN instances for these VN types. See Table 3 for some examples for the verb “influence.”

We select 100 sentences from the parallel corpus of Sinorama magazine to evaluate the performance. A human judge majoring in English identified the VN collocations in these sentences. The manual VN collocations are compared with the instances extracted from the corpus and the result is showed in the Appendix. The evaluation indicates an average recall rate of 74.47% and precision of 66.67%.

Table 4
Experiment result of VN collocation extracted from Sinorama parallel Corpus

#answer keys	#output	#Correct	Recall (%)	Precision (%)
94	105	70	74.47	66.67

It is very difficult to evaluation the experimental results. There were obvious and clear-cut collocations and non collocation, but there were a lot of cases such as “improve environment” and “share housework” that were difficult to judge and may be evaluated differently by different people. There is room for improvement as far as recall and precision ratios are concerned. Nevertheless, the extracted VNs are very diverse and useful for language learning purpose.

4 Discussion

The proposed approach offers a simple algorithm for automatic acquisition of the VN instances from a corpus. The method is particularly interested in following ways:

i. We use a data-driven approach to extract monolingual collocations.
ii. The algorithm is applicable to elastic collocations.
iii. Systematic way of setting thresholds for a certain level of confidence
iv. We could obtained instances of VN collocation through the simple statistical information.

While Xtract extracts VN types, we focus on the VN instances. It is understandable that we would get slightly lower recall and precision rates.

5 Conclusion & Future work

In this paper, we describe an algorithm that employs statistical analyses to extract instance of VN collocations from a corpus. The algorithm is applicable to elastic collocations. The main difference between our algorithm and Xtract lies in that we extract the instances from the sentence instead of extracting the VN types directly.

Moreover, in our research we observe other types related to VN such as VP (ie. verb + preposition) and VNP (ie. verb + noun + preposition). In the future, we will further take these two patterns into consideration to extract more types of verb-related collocations.

References

Benson, Morton., Evelyn Benson, and Robert Ilson. The BBI Combinatory Dictionary of English: A Guide to Word Combinations. John Benjamins, Amsterdam, Netherlands, 1986.
Choueka, Y. (1988) : "Looking for needles in a haystack", Actes RIAO, Conference on User-Oriented Context Based Text and Image Handling, Cambridge, p. 609-623.

Choueka, Y.; Klein, and Neuwitz, E.. Automatic retrieval of frequent idiomatic and collocational expressions in a large corpus. Journal of the Association for Literary and Linguistic Computing, 4(1):34-8, (1983)

Church, K. W. and Hanks, P. Word association norms, mutual information, and lexicography. Computational Linguistics, 1990, 16(1), pp. 22-29.

Dagan, I. and K. Church. Termight: Identifying and translation technical terminology. In Proc. of the 4th Conference on Applied Natural Language Processing (ANLP), pages 34-40, Stuttgart, Germany, 1994.

Dunning, T (1993) Accurate methods for the statistics of surprise and coincidence, Computational Linguistics 19:1, 61-75.

Haruno, M., S. Ikehara, and T. Yamazaki. Learning bilingual collocations by word-level sorting. In Proc. of the 16th International Conference on Computational Linguistics (COLING '96), Copenhagen, Denmark, 1996.

Huang, C.-R., K.-J. Chen, Y.-Y. Yang, Character-based Collocation for Mandarin Chinese, In ACL 2000, 540-543.

Inkpen, Diana Zaiu and Hirst, Graeme. "Acquiring collocations for lexical choice between near-synonyms." SIGLEX Workshop on Unsupervised Lexical Acquisition, 40th meeting of the Association for Computational Lin

Justeson, J.S. and Slava M. Katz (1995). Technical Terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering, 1(1):9-27.

Kupiec, Julian. An algorithm for finding noun phrase correspondences in bilingual corpora. In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio, 1993.

Lin, D. Using collocation statistics in information extraction. In Proc. of the Seventh Message Understanding Conference (MUC-7), 1998.

Melamed, I. Dan. "A Word-to-Word Model of Translational Equivalence". In Procs. of the ACL97. pp 490-497. Madrid Spain, 1997.

Smadja, F. 1993. Retrieving collocations from text: Xtract. Computational Linguistics, 19(1):143-177

Smadja, F., K.R. McKeown, and V. Hatzivassiloglou. Translating collocations for bilingual lexicons: A statistical approach. Computational Linguistics, 22(1):1-38, 1996.

Appendix

The manual VN collocations are compared with the instances extracted from the corpus:

Rec	Manual VN collocations	Automatic extracting VN collocations
162	ask question \ hold conference \ grant amnesty \ realize probability	grant amnesty \ ask question \ realize probability
1647	enforce rule (強化) \ break rule \ enhance image \ forge reputation \ respect law	enhance image \ respect law \ improve organization \ break rule \ reward reputation
2106		
4898		
5857	take power \ do research	done research \ accuse linguistics
6489	make demand \ make improvement \ make breakthrough	make breakthrough
6871	put mark \ release album	release album \ put mark
6887		
7420	take risk \ make start	take risk \ make start \ lead risk
7710	make money \ make profit \ rise price	stop conglomerate \ make money \ rise price \ make profit
7932	eliminate unfairness \ seek equity	seek equity \ eliminate unfairness
8056		
8510	improve environment	improve environment
9326	do research \ have influence	have influence
9433		
10600		
10624	contemplate footstep	
11293	understand meaning	understand meaning
11603		
12937	receive attention \ witness progress	receive attention \ witness progress
13033	promote idea \ invest effort \ share housework \ expend effort	expend effort \ share housework \ promote idea \ invest effort
13491		
13576	test wisdom	
15349	take paycut \ exceed budget \ unload property	show increase \ house price \ unload property
16949		
17106	block view \ make offering	make offering
17608	lose ability	lose ability \ save forest
17924	take effort \ take time	consider success
18183		
18717	carry work	carry work
18745		
19735	bear son	bear son
20002	make money \ think way	make money \ think way
21450	buy portion	
21663	live life	live space
22610		
22306	adopt method	adopt method
23074		
24307	move production	move production \ develop computer
25478	make thing	make thing
26030		
28303	increase chance \ increase production	increase chance \ increase production
28336		
28417	write essay	write essay
28806	write seller	write seller
28826		
29003	make money \ take care \ have time	take care \ make money \ have time
29292		
29736	damage environment	damage environment \ insure recovery \ choose styrofoam \ recover styrofoam
30881	donate kidney \ implant kidney	donate kidney \ implant kidney
31096	drive car \ take transportation \ have responsibility	drive car \ consume pastry \ have responsibility \ wrap candy
32975	instruct student	instruct student
33558	take part in	
33993	take part \ detail research	
33994	have chance	
34008	excite pupil	
34966	have drink \ kick habit	
35113	carry card \ ask carrier \ have drink \ kick habit	
35898	come face	
35906	announce approval \ bear child	
36931	apply concept \ build contact	
36988	apply concept	
37025	start movement	
37811	hear sound	
37916	announcement approval \ bear child	
38197	make adjustment \ build contact	
38200	make adjustment	
38231	spend day	
38626	spend day	
40823	do service	
40873	put effort \ dedicate life	
41102	dedicate life \ achieve dream \ put effort	
41383	gain influence \ spend day	
41532	spend day	
43027	pay a visit to	
43199	follow road	
43304	derive satisfaction	
43465	derive satisfaction	
44052	strip circle	
44276	impose sanction \ endanger specie	
44990	pay a visit to	
45187	pay a visit	
45499	pay visit	
45756	stope frame	
45857	point way	
45905	point way	
46466	charge	strip circle
47134	offend policeman	
47226	offend policeman	
47337	borrow hairpin	offend policeman
47720	receive treatment	
48694	elapse step	