Cre Recombinase Mediates the Removal of Bacterial Backbone to Efficiently Generate rSV40

Xiaoxia Shi, Matthew Ryan Ykema, Jaco Hazenoot, Lysbeth ten Bloemendaal, Irene Mancini, Machteld Odijk, Peter de Haan, and Piter J. Bosma

1Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, the Netherlands; 2Amarna Therapeutics B.V., Leiden, the Netherlands

Gene therapy has been shown to be a feasible approach to treat inherited disorders in vivo. Among the currently used viral vector systems, adeno-associated virus (AAV) vectors are the most advanced and have been applied in patients successfully. An important drawback of non-integrating AAV vectors is their loss of expression upon cell division, while repeating systemic administration lacks efficacy due to the induction of neutralizing antibodies. In addition, a significant percentage of the general population is not eligible for AAV-mediated gene therapy due to pre-existing immunity. Development of additional viral vectors may overcome this hurdle. Simian virus 40 (SV40)-derived vectors have been reported to transduce different tissues, including the liver, and prevalence of neutralizing antibodies in the general population is very low. This renders recombinant SV40 (rSV40) vector an interesting candidate for effective (re-)administration. Clinical use of SV40 vectors is in part hampered by less advanced production methods compared to AAVs. To optimize the production of rSV40 and make it better suitable for clinical practice, we developed a production system that relies on Cre recombinase-mediated removal of the bacterial plasmid backbone.

INTRODUCTION

Recent clinical successes demonstrate that gene therapy is a novel and effective treatment option for inherited genetic disorders. The choice of gene therapy vector depends on the tissue and disease targeted. For rapidly dividing tissues, integrating vectors, i.e., lentiviral vectors, are essential to provide long-term correction. For in vivo treatment of quiescent tissues, like the retina and the liver, non-integrating adeno-associated virus (AAV) vectors have been shown to provide long-term correction in pre-clinical animal models and in patients. However, the efficacy of AAV-mediated liver-directed gene therapy is lost rapidly in young animals due to continuous hepatocyte replication in the growing liver. Loss of efficacy is a hurdle toward this approach, since repeated treatment is not possible due to the host’s immune responses toward the AAV vector induced by the first treatment. Presently, AAV-mediated liver-directed gene therapy, therefore, is not applicable in young children. In addition, natural exposure to AAV is frequently early in life, and it results in the prevalence of neutralizing antibodies toward AAV in a significant percentage of the general population. This renders gene therapy treatment with AAV in a part of the patients suffering from an inherited liver disease ineffective. Developing therapeutic strategies to overcome this problem will allow treatment of these patients and also of patients who have received a nontherapeutic vector dose in early phase studies.

Simian virus 40 (SV40)-based vectors could be a promising alternative to AAV vectors for gene replacement therapy for liver diseases. This virus has been widely studied as a gene delivery vector, and it was the first eukaryotic virus of which the entire genome was sequenced. SV40 is a non-enveloped polyomavirus, containing a circular double-stranded DNA genome of 5,234 bp. The SV40 early promoter drives the expression of the early gene encoding the large and small T antigens (LTAg and STag). LTAg is essential for genome replication and activation of the late promoter that drives the expression of the late gene encoding the capsid proteins VP1, VP2, and VP3. To generate replication-defective SV40 vectors, the early gene is removed, leaving 2.7 kb of available space to clone exogenous genomic material. Absence of the early protein, the major SV40 antigen, prevents the production of all viral proteins. Such replication-defective SV40 vectors are presumed to be non-immunogenic in humans, and systemic injection of SV40 vector particles does not elicit a detectable neutralizing antibody response, allowing repeated treatments. Furthermore, the pre-existing immunity toward SV40 in the general population is very low. In view of the limitations of the currently used vectors, the low prevalence of pre-existing immunity, and the possibility to re-inject make SV40 a highly appealing vector for treating mono-genetic disorders.

Other properties that render SV40 promising as a gene delivery vector are as follows: (1) its wide host range: SV40 enters the cell by binding the major histocompatibility complex class 1 (MHC1) present on the...
membrane of most cell types;24–28 (2) transduction of different tissues, such as liver, spleen, kidney, and bone marrow, with gene transfer percentages as high as 80%–90% having been reported;29–31 and (3) long-term transgene expression: when transgene expression is achieved, the level is generally consistent in experiments lasting well over 1 year in vivo and in vitro (random integration could play a role in prolonged expression, albeit lower than the levels obtained with AAV vectors).29–31

Despite these promising characteristics, the use of SV40 vectors to correct inherited diseases in pre-clinical animal models is very limited, which in part is due to the lack of an efficient production method. One of the steps complicating the production of rSV40 is the need to excise the vector genome from the bacterial backbone. This step is needed because of the size restraints of the SV40 capsid.29 In addition, this removal is needed for reasons of safety, as the presence of the E. coli origin and an antibiotic resistance gene is unwanted. Currently, removal of the bacterial backbone is done by restriction enzyme cutting, gel purification, and self-ligation to generate the circular SV40 vector genome that can be transfected into a packaging cell line, such as COS-1 or COS-7, and propagated.32–35 This method, however, is time consuming, expensive, and results in lower transfection efficiencies due to the relaxed DNA conformation of the re-circularized plasmids. To overcome this, we tested the feasibility of producing SV40 vector particles using Cre recombinase-mediated removal of the bacterial backbone. To this end, an SV40 vector destination plasmid pSVac was used, in which the vector genome is flanked by Lox-P sites to allow specific removal of the bacterial backbone by Cre recombinase expressed in SV40 vector packaging cells.36 We here show that expression of Cre recombinase in COS-1 and SuperVero cells results in an efficient removal of the bacterial backbone.

RESULTS

Cre Recombinase-Mediated Production of rSVLuc

COS-1 cells were transfected with the following: (1) the rSVLuc36 plasmid with Lox-P sites flanking the SV genome; (2) the rSVLucΔLox-P plasmid without Lox-P site co-transfected with a Cre-expressing plasmid; and, (3) as a negative control, a GFP-expressing plasmid. At 5 days after transfection, the medium was harvested and the titer of rSVLuc was determined using qPCR. The number of vector genomes produced by the Cre-mediated excision of the SV40 genome from rSVLuc co-transfected with the Cre plasmid was comparable to that produced by the Not1-mediated excision of the SV40 genome from rSVLucΔLox-P (Figure 1A). Co-transfection with a CMV-GFP plasmid, not expressing Cre, did not result in a significant production of rSV40 (Figure 1B). The Cre-mediated excision of the rSV40 genome was confirmed by amplification with primers flanking the Lox-P sites, resulting in an amplicon of the expected size only upon co-transfection of rSVLuc with the Cre-expressing plasmid (Figure 1C). To further confirm Cre-mediated removal, the amplicons were sequenced showing a single Lox-P site flanked by
the expected viral genome sequences, thereby indeed demonstrating Cre-mediated recombination (Figure S2). Furthermore, the Southern blot analysis results showed that the vector genomes present in rSV40 preparations produced by both methods are very similar (Figure 3C). A comparison between this Cre-expressing cell line and co-transfection of an rSV-UGT1A1 vector, showed that both methods resulted in a comparable titer of rSV40 (Figure 4C).

Inducible Cre-Expressing Packaging COS-1 Cell-Mediated Production of rSV40

To further optimize the rSV40 production method, we generated a stable COS-1 cell line with doxycycline-inducible expression of Cre-GFP. Upon the addition of doxycycline, a strong increase of Cre recombinase protein and mRNA was seen (Figures 2A and 2B). To determine the optimal time of Cre induction for the efficient production of rSV40, rSV-Luc and rSV-GFP plasmids were transfected to the cells at different time points after doxycycline addition. The rSV40-containing medium was harvested at 3 days after transfection and used to infect COS-1 cells. The luciferase expression (Figure 2C) and GFP expression, detected by fluorescence-activated cell sorting (FACS) (Figure 2D), both showed that 16 hr of Cre induction prior to the transfection is sufficient for efficient rSV40 production. After 16 hr the efficiency of viral production did not increase further (Figures 2C and 2D). Thus, 16 hr of doxycycline pre-treatment is sufficient to use the Cre-inducible cell line to produce rSV40.

The significant difference in viral genome titer of doxycycline-treated and untreated cells clearly demonstrates that Cre expression is needed for efficient rSV40 vector production (Figure 3A). To further confirm Cre-mediated recombination and excision of the rSV40 genome, the Lox-P-flanking region was amplified. Amplicons with the expected size were present in the medium from cells both treated and untreated with doxycycline (Figure 3B), as subsequently confirmed by sequence analysis (sequencing data not shown). A comparison between this Cre-expressing cell line and co-transfection of an rSV40 construct with a Cre-expressing plasmid showed that both methods resulted in a comparable titer of rSV40 (Figure 3C).

COS-1-indCre-Mediated Production of rSV-UGT1A1

To demonstrate the efficacy of the novel rSV40 production method for a therapeutic application of rSV40, the human UGT1A1 cDNA was inserted into pAM310. A UGT1A1-encoding vector can be used to correct UGT1A1 deficiency, as seen in Crigler-Najjar syndrome. An rSV-hUGT1A1 plasmid was transfected to Cre-GFP-COS-1 cells, which were pre-treated with doxycycline for 16 hr. At 3 days after transfection, the medium was harvested and the titer of rSV-hUGT1A1 was determined by qPCR. The number of vector genomes in the medium, assayed by qPCR, demonstrated that rSV40 particles are formed and released into the medium upon the induction of Cre expression (Figure 4A). Next, PCR (Figure 4B) and sequencing confirmed Cre-mediated excision of the rSV40 genome. To demonstrate the functionality of the produced rSV-hUGT1A1, the viral vector was used to transduce COS-1 cells. The expression of hUGT1A1 in the transduced cells confirmed that functional rSV40-hUGT1A1 vectors were produced (Figure 4C).

SuperVero-indCre-Mediated Production of rSV40s

To generate a cell line for efficient production of clinical grade rSV40s, we generated SuperVero cells with inducible Cre expression (Figures 5A and 5B), and we used these cells to produce rSV-Luc and rSV-hUGT1A1. The results showed that inducible Cre-expressing SuperVero cells can produce rSV40 vector without contamination.

Figure 2. Production of rSV40 by COS-1 Cells with Inducible Cre Expression

(A and B) COS-1 cells were transduced with a lentiviral vector with inducible Cre expression and selected by neomycin. Selected cells (CreGFP-COS-1) and parental COS-1 cells were treated with 1 μg/mL doxycycline for 48 hr. The presence of Cre protein was determined by western blotting (A) and of Cre mRNA by qRT-PCR (B). (C and D) CreGFP-COS-1 cells were incubated with 1 μg/mL doxycycline for 0, 8, 12, 16, 24, 48, and 72 hr before transfection with rSVLuc or rSVGFP plasmids. Medium containing rSVLuc or rSVGFP was collected 3 days after transfection and used to infect COS-1 cells, followed by measuring the luciferase expression by luminescence (C) and determining the GFP expression by FACS (D). Data represent the mean ± SD of triplicate experiments.
of detectable levels of replication-competent Tag-positive wild-type (WT) SV40 (the large T antigen was undetectable using qPCR). The number of vector genomes in the medium assayed by qPCR demonstrated that rSV40 particles are formed and released into the medium upon the induction of Cre expression (Figure 5C), and PCR (Figure 5D) confirmed Cre-mediated excision of the rSV40 genome. The luminescence intensity (Figure 5E) and western blot results (Figures 5F and 5G) demonstrated the functionality of the produced rSVLuc and rSV-hUGT1A1, respectively.

DISCUSSION

Many papers have reported the use of rSV40 vectors to treat inherited disorders in pre-clinical animal models. The wide host range renders it a promising vector not only for the liver but also for organs like the brain and the lung using local administration. Upon systemic injection, rSV40 mainly targets the hepatocytes, and the dispersion to other tissues can be reduced further by administration into the hepatic artery or portal vein. Although SV40 gives good expression in human cell lines in vivo in mice and rat, the expression levels provided by rSV40 are clearly lower compared to AAV. The cause of this lower expression levels in vivo is unclear but could be species specific, for instance, due to a low affinity of the murine MHC1 for SV40, preventing efficient cell entry.

All in vivo studies used restriction enzyme-mediated excision of the viral genome from the plasmid, a time consuming, expensive, and laborious method, requiring agarose gel purification and overnight ligation. To optimize rSV40 production, two Lox-P sites flanking the SV40 genome have been inserted to allow Cre-mediated excision of the genome from the bacterial backbone. When compared to the restriction enzyme-mediated removal, the Cre-mediated excision by co-transfecting a Cre-expressing plasmid was at least comparable. For the Not1-mediated excision, more plasmid was required to compensate for the lower transfection efficiency of the relaxed plasmid structure, resulting from the enzyme-mediated removal followed by overnight ligation compared to the super-coiled plasmid structure used with co-transfection. Thus, the efficiency of rSV40 production using co-transfection of a Cre-expressing plasmid with the rSV40 plasmid appears comparable to that of the Not1-mediated excision. In addition, the absence of a signal for ampicillin in a sensitive qPCR demonstrates that Cre-mediated excision of the rSV40 vector genome results in effective removal of the bacterial backbone from the produced rSV40 batches. Furthermore, a Southern blot of rSVLuc produced using Not1 alongside Cre-mediated excision revealed a very similar pattern, further confirming both methods result in the production of similar rSV40 batches. The smear seen in both preparations may result from incomplete DNase digestion of non-packaged genomes or from small pieces of SV40 genomes packaged upon prolonged production. The presence of these partial SV40 genomic fragments could also explain the background signal that, albeit very low, is detectable by qPCR in the absence of Cre expression (Figure 1A), Sequencing of the Lox-P site-containing region demonstrated that the rSV40 genome was indeed excised by Cre-mediated recombination.
between two rSV40 vector genomes, resulting in an unwanted product too large to be packaged.46 In the absence of doxycycline, the low levels of rSV40 genome could be detected. This is most likely due to low-level expression of Cre due to leakiness of the promoter. The qPCR data show that, in the absence of doxycycline, Cre expression, albeit very low, is seen, confirming the data reported by others.46–48 Upon the addition of doxycycline, the production of rSV40 is much higher, showing that Cre expression is limited in the absence of doxycycline. The efficiency of the production was similar to that obtained after co-transfecting the rSV40 plasmids with the Cre-expressing plasmid. Comparison with the Not1-mediated excision of viral genome is difficult since the amounts of plasmid used for that method are higher, but both Cre-based methods have comparable efficiency.

By using the inducible Cre-expressing COS-1 cells, we produced rSV40 viral vectors encoding reporter genes; the firefly luciferase; GFP; and a therapeutic gene, UGT1A1. Because Tag has been removed from the rSV40 plasmids, it has to be provided in trans by the production cell line, such as COS-1. This cell line contains an integrated copy of the SV40, mutated at its origin of replication, in its genome, and it is used by most groups to produce rSV40.44,49–51 A major drawback of this cell line is that, due to extensive overlap between the integrated genome and the rSV40 plasmids, homologous recombination is possible. As a result, there is a risk of generation replication-competent wild-type SV40 revertants when producing rSV40 in this cell line. In view of the tumorigenic potential of the LTag proteins, the presence of WT SV40 contaminants in clinical grade batches of rSV40 vector needs to be avoided. In our results, LTag containing WT SV40 in rSV40 vector produced by COS-1 during the first three passages was undetectable, but it was detected thereafter. The generation of LTag-positive SV40 over time is similar to that reported by other groups that could also detect WT SV40 after the fourth amplification round.52,49 The chance of homologous recombination to occur can be minimized by reducing the sequence overlap between the plasmid and the SV40 genes integrated in the production cell line.

In conclusion, by inserting Lox-P sites in the bacterial backbone of rSV40 plasmids, we have developed an efficient rSV40 production method, which is more convenient and time saving than other methods for producing SV40 vectors. This method can be used in our novel SuperVero cell line, allowing an efficient production of clinical-grade rSV40 vectors.

MATERIALS AND METHODS

Generation of rSV-hUGT1A1

The primers hUGT1A1F (5'-CACCACCCCTTGCTCCTCA-3') and hUGT1A1R (5'-TCAATGCTCTGGATTTTG-3') were used to amplify the hUGT1A1 cDNA for gateway-mediated entry into pENTR/D/TOPO (Invitrogen). After sequencing to check for mutations, the hUGT1A1 was inserted into the attR1 and attR2 sites of the destination vector pAM310 (AMARNA, Leiden) by LR recombination, resulting in rSV-hUGT1A1.

Production of rSV40

Not1-mediated excision of the rSV40 genome from the plasmids was performed as reported in Kondo et al.51 In short, 20 μg plasmid was cut, and the rSV40 genome band was isolated from a 0.7% agarose gel using Zippy Clean (Zymo Research, Freiburg, Germany) and ligated in an overnight ligation using 10 units/μg DNA T4...
DNA ligase (Promega, Benelux, Leiden). The re-circularized rSV40 genome was transfected into COS-1 or SuperVero cells using Polyethylenimine (PEI). At 3 days after the transfection, the medium was collected, filtered through a 0.45-μm filter, aliquoted, and stored at −80°C.

Cre recombinase excision of the bacterial backbone was performed by co-transfecting rSV40 plasmids with a CMV-Cre plasmid, in a ratio of 2:1 using PEI into COS-1 cells, with a CMV-GFP plasmid as a negative control. The medium from the transfected COS-1 cells was collected at day 5 after transfection, filtered, aliquoted, and stored at −80°C.

These seeding stocks were used to infect fresh COS-1 cells using 400 vector genomes/cell, and medium was collected at day 3, filtered, and stored at −80°C. The titer of these vector batches varied between 10⁷ and 10⁸ vg/mL.

Southern Blot Hybridization of rSV40 Vector DNA from rSVLuc batches was purified and isolated using phenol-chloroform extraction. The luciferase and SV40 capsid gene VP2 primers (see Table 1) were designed for making DIG-labeled probe by PCR using the Roche DIG-probe synthesis kit (Roche, Germany). As a positive control, rSVLuc plasmid, was linearized by NotI digestion, and a different number of DNA copies was loaded alongside the purified rSVLuc vector DNA on a 0.8% agarose gel. After electrophoresis, the DNA was blotted to a Hybond XL membrane overnight, hybridized with luciferase and VP2 DIG-labeled probe, and visualized by LAS4000.

qPCR Titer Determination of rSV40 Samples were treated with 1 μL/10 μL medium DNase (1 unit/μL) (Promega, Benelux, Leiden) for 30 min at 37°C. DNase was inactivated at 95°C for 5 min. Primers toward firefly luciferase, GFP, luciferase, UGT1A1, or the SV40 capsid gene VP2 were used to perform the qPCR. Standard curves were generated using 10-fold serial dilutions of the rSV40 production plasmids. The qPCR was done using Fast SYBR Green Master Mix (Thermo Fisher Scientific, CA, USA) in an LC480 (Light Cycler; Roche) at 95°C for 5 min, followed by 45 cycles at 95°C for 10 s, 60°C for 10 s, and 72°C for 15 s.

Confirming Cre Recombinase Excision of the rSV40 Vector Genome rSV40-containing medium was treated with DNase (1 μL/10 μL medium DNase [1 unit/μL]) (Promega, Benelux, Leiden) for 30 min at 37°C. DNase was inactivated at 95°C for 5 min. A region encompassing the Lox-P site was amplified using a primer in the
VP1 sequence and a primer in the luciferase, GFP, or hUGT1A1 gene sequence, respectively, followed by sequencing of the resulting amplicons. Primers used for the different constructs are listed in Table 2.

Generating Producer Cell Lines with Inducible Cre Expression

For the preparation of a Cre-expressing lentiviral vector, using LR recombination, a GFP-tagged Cre gene was introduced to pInducer2052 (Addgene) vector. The resulting pInducer-Cre-GFP plasmid was co-transfected with pMDLg, pRSV-REV, and pVSVg to HEK293T (Addgene) vector. The resulting pInducer-Cre-GFP plasmid was transfected into 293T cells using PEI to produce lentiviral vector, as reported previously.53

Producing rSV40 Vectors Using Inducible CreGFP-COS-1 or CreGFP-SuperVero Cells

COS-1 or SuperVero cells were incubated with 1 µg/mL doxycycline for different times before the PEI-mediated transfection of rSV40 plasmids was performed. rSV40 particles were harvested from the medium 3 days after transfection, and the titer of the rSV40 vectors produced was determined by qPCR using primers toward the VP2 gene.

rSV-luc and rSVGFP Transduction

COS-1 cells were transduced with 100 µL rSVLuce with 400 vector genomes/cell in a 96-well plate. At 3 days after transduction, the luciferase expression intensity of transduced cells was measured using a luminometer. COS-1 cells were transduced with rSVGFP with 400 vector genomes/cell in a 12-well plate. At 3 days after transduction, the cells were harvested and GFP mean fluorescence was measured using flow cytometry.

rSV-hUGT1A1 Transduction

COS-1 cells were transduced in 6-well plates with 400 vector genomes/cell of rSV-hUGT1A1; 48 hr after transduction, the cells were washed once with PBS and cells were lysed with radioimmunoprecipitation assay (RIPA; 50 mM Tris [pH 8.0], 150 mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, and 0.1% SDS) buffer and Protease Inhibitor (1:100 dilution) (Roche, Germany) for 20 min. 30 µg cell lysate was loaded onto a 10% Acrylamide gel and blotted to polyvinylidene fluoride (PVDF) membrane (semi-dry blotting, 1 hr, 0.05 mA per gel). A monoclonal antibody toward UGT1A1 (1:700 dilution) followed by a goat anti-mouse HRP-labeled second antibody (Dakoplast, the Netherlands) (1:5,000) was used to detect expression of UGT1A1, as described previously.54

Statistics

All results are given as mean ± SD. Statistical significance was determined by two-tailed Student’s t test using GraphPad Prism 7 (GraphPad, La Jolla, CA, USA).

Supplemental Information

Supplemental Information includes three figures and one table and can be found with this article online at https://doi.org/10.1016/j.omtm.2018.02.010.

Author Contributions

X.S. and P.J.B. designed and wrote the manuscript; M.R.Y., J.H., and L.t.B. contributed to all experiments, including generation of the constructs; I.M., M.O., and P.d.H. provided the SVLuce and the SuperVero cell line and critically read the manuscript.

Acknowledgments

X.S. is the recipient of a fellowship from the China Scholarship Council (CSC). M.R.Y. received a Fulbright Scholarship from the U.S. State Department.

References

1. Smith, B.K., Collins, S.W., Conlon, T.J., Mah, C.S., Lawson, L.A., Martin, A.D., Fuller, D.D., Cleaver, B.D., Clement, N., Phillips, D., et al. (2013). Phase III trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum. Gene Ther. 24, 630–640.

2. Herson, S., Hentati, F., Rigollet, A., Behin, A., Romero, N.B., Leturcq, F., Laforêt, P., Masonobe, T., Amouri, R., Haddad, H., et al. (2012). A phase I trial of adeno-associated virus serotype 1-g-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain 135, 483–492.
45. Hastie, A.R., and Pruitt, S.C. (2007). Yeast two-hybrid interaction partner screening through in vivo Cre-mediated Binary Interaction Tag generation. Nucleic Acids Res. 35, e141.

46. Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J., Jr., Chapman, H.A., Jr., Shapiro, S.D., and Elias, J.A. (2000). Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093.

47. Zhu, Z., Zheng, T., Lee, C.G., Homer, R.J., and Elias, J.A. (2002). Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol, Volume 13 (Elsevier), pp. 121–128.

48. Zhu, Z., Ma, B., Homer, R.J., Zheng, T., and Elias, J.A. (2001). Use of the tetracycline-controlled transcriptional silencer (TTS) to eliminate transgene leak in inducible overexpression transgenic mice. J. Biol. Chem. 276, 25222–25229.

49. Arad, U., Ben-Nun-Shaul, O., El-Latif, M.A., Nissim, O., and Oppenheim, A. (2002). A new packaging cell line for SV40 vectors that eliminates the generation of T-antigen-positive, replication-competent recombinants. Virology 304, 155–159.

50. Strayer, D.S. (2000). Effective gene transfer using viral vectors based on SV40. In Gene Targeting Protocols. Methods in Molecular Biology, E.B. Kmiec, ed. (Humana Press), pp. 61–74.

51. Gluzman, Y. (1981). SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182.

52. Meerbrey, K.L., Hu, G., Kessler, J.D., Roarty, K., Li, M.Z., Fang, J.E., Herschkowitz, J.L., Burrows, A.E., Ciccia, A., Sun, T., et al. (2011). The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl. Acad. Sci. USA 108, 3665–3670.

53. Seppen, J., Rijnberg, M., Gooreman, M.P., and Oude Elferink, R.P. (2002). Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J. Hepatol. 36, 459–465.

54. Peters, W.H., Allebes, W.A., Jansen, P.L., Poels, L.G., and Capel, P.J. (1987). Characterization and tissue specificity of a monoclonal antibody against human uridine 5’-diphosphate-glucuronosyltransferase. Gastroenterology 93, 162–169.