YANG-MILLS FIELDS ON B-BRANES

ANDRÉS VIÑA

Abstract. Considering the B-branes over a complex manifold Y as objects of the bounded derived category $D^b(Y)$, we define holomorphic gauge fields on B-branes and the Yang-Mills functional for these fields. These definitions are a generalization to B-branes of concepts that are well known in the context of vector bundles. Given $\mathcal{F} \in D^b(Y)$, we show that the Atiyah class $a(\mathcal{F}) \in \text{Ext}^1(\mathcal{F}, \Omega^1(\mathcal{F}))$ is the obstruction to the existence of gauge fields on \mathcal{F}. We determine the B-branes over $\mathbb{C}P^n$ that admit holomorphic gauge fields. We prove that the set of Yang-Mills fields on the B-brane \mathcal{F}, if it is nonempty, is in bijective correspondence with the points of an algebraic subset of \mathbb{C}^m defined by $m \cdot s$ polynomial equations of degree ≤ 3, where $m = \dim \text{Hom}(\mathcal{F}, \Omega^1(\mathcal{F}))$ and s is the number of non-zero cohomology sheaves $H^i(\mathcal{F})$. We show sufficient conditions under them any Yang-Mills field on a reflexive sheaf of rank 1 is flat.

MSC 2020: 53C05, 58E15, 18G10

1. Introduction

In this article, we extend the well-known concepts of gauge field and Yang-Mills field on vector bundles to B-branes. From the mathematical point of view, a B-brane over a compact connected complex n-manifold Y is an object of $D^b(Y)$, the bounded derived category of coherent analytic sheaves over Y [1 Sect. 5.4 [2 Sect. 5.3].

A holomorphic vector bundle V over Y is a particular case of B-brane over Y. A holomorphic gauge field on V, in mathematical terms a holomorphic connection on V [3], allows us to define a derivative of the holomorphic sections of V along any “direction” in Y, giving rise to holomorphic sections. That is, the holomorphic gauge field gives identifications between the “infinitesimally close” fibers of V. Conversely, such consistent identifications determine a gauge field.

Not every holomorphic vector bundle supports holomorphic connections, unlike what happens in the smooth category; for example, the vanishing of the Chern class is a necessary and sufficient condition for

Key words and phrases. Yang-Mills fields, holomorphic connections, coherent reflexive sheaves, derived categories.
the existence holomorphic connections on a line bundle (see Appendix). Moreover, if the set of these gauge fields is non-empty, it is an affine space associated to a finite dimensional vector space. These properties will hold in the extension of the holomorphic gauge fields to more general B-branes.

Gauge fields on coherent sheaves. Given a holomorphic vector bundle V over the manifold Y, a holomorphic gauge field on V can be regarded as a right inverse of the projection $\pi : J^1(V) \to V$, where $J^1(V)$ is the 1-jet bundle of V. For details see [28, Sect. 3.1].

That approach admits a natural translation to the context of the coherent sheaves. If F is a coherent sheaf over the compact analytic manifold Y, we define a holomorphic gauge field on F as a right inverse of the natural morphism $J^1(F) \to F$, where $J^1(F)$ is the corresponding 1-jet sheaf. Denoting by Ω^p the sheaf of the holomorphic p-forms on Y, that inverse determines a morphism of abelian sheaves $\nabla : F \to \Omega^1(F) := \Omega^1 \otimes_O F$, which satisfies the Leibniz’s rule. Conversely, such a morphism defines a holomorphic gauge field in the above sense.

The obstruction to the existence of a holomorphic connection on the sheaf \mathcal{F} is an element of the group $\text{Ext}^1(F, \Omega^1(\mathcal{F}))$. Furthermore, when the set of holomorphic gauge fields on \mathcal{F} is nonempty, it is an affine space associated to the finite dimensional vector space $\text{Hom}(\mathcal{F}, \Omega^1(\mathcal{F}))$.

The curvature of the holomorphic gauge field ∇ is defined in the usual way and turns out to be an element $K_\nabla \in \text{Hom}(\mathcal{F}, \Omega^2(\mathcal{F}))$. When $\mathcal{K}_\nabla = 0$, we say that ∇ is flat.

If ∇ is a flat holomorphic connection on \mathcal{F}, then one has the complexes $(A^{\bullet,0}(\mathcal{F}) := A^{\bullet,0} \otimes_O \mathcal{F}, \nabla)$, where $A^{p,q}$ is the sheaf of C^∞ differential forms of type (p,q) on Y, the complex $(\Omega^\bullet(\mathcal{F}), \nabla)$ and $(A^\bullet(\mathcal{F}), \nabla + \bar{\partial})$.

If on every fibre \mathcal{F}_x is defined an Hermitian metric \langle , \rangle_x such that $\{\langle , \rangle_x\}_x$ is a “smooth” family (see Definition [2]), we say that \mathcal{F} is a Hermitian sheaf. When \mathcal{F} is a locally free sheaf, this definition coincides with the usual on holomorphic vector bundles [30, Chap. III].

Using the index formula, we prove the following theorem, which asserts that the Euler characteristic of the above complexes, when \mathcal{F} is a locally free Hermitian sheaf, is determined by certain characteristic classes of Y and the rank of \mathcal{F}.

Theorem 1. Let \mathcal{F} be a Hermitian locally free sheaf of rank r over the Kähler n-manifold Y. If ∇ is a holomorphic flat gauge field on \mathcal{F}, then

$$\chi(\Omega^\bullet(\mathcal{F})) = r \text{e}(Y) = \chi(A^\bullet(\mathcal{F})), \quad \chi(A^{\bullet,0}(\mathcal{F})) = (-1)^n r \text{td}_C(\hat{Y}),$$
Where \(\chi(\mathcal{C}^*) = \sum_i (-1)^i \dim \Gamma(Y, \mathcal{C}^i) \), \(e(Y) \) is the Euler class of \(Y \), and \(\text{td}_c(Y) \) is the complexified Todd class of manifold conjugated of \(Y \) (i.e., if the complex structure of \(Y \) is defined by the endomorphism \(J \), the one of \(\bar{Y} \) is defined by \(-J \)).

Yang-Mills fields on sheaves. If \(Y \) is a Kähler manifold, on the set of holomorphic connections over the Hermitian sheaf \(\mathcal{F} \), one defines the Yang-Mills functional \(\mathcal{YM} \). The value of \(\mathcal{YM} \) at a connection \(\nabla \) is the squared norm \(\|K_{\nabla}\|_2^2 \) of its curvature. The stationary points of functional \(\mathcal{YM} \) are the Yang-Mills gauge fields on \(\mathcal{F} \). The set of such critical points will be denoted by \(\mathcal{YM}(\mathcal{F}) \). We will prove the following theorems.

Theorem 2. If \(\mathcal{F} \) admits a holomorphic gauge field and
\[m = \dim \text{Hom}(\mathcal{F}, \Omega^1(\mathcal{F})). \]
Then the set \(\mathcal{YM}(\mathcal{F}) \), of holomorphic Yang-Mills fields on \(\mathcal{F} \), is in bijective correspondence with the points of an algebraic set in \(\mathbb{C}^m \) defined by \(m \) algebraic equations of degree \(\leq 3 \). In particular, if \(m = 2 \) and the cardinal of \(\mathcal{YM}(\mathcal{F}) \) is finite, then \(\# \mathcal{YM}(\mathcal{F}) \leq 9 \).

Theorem 3. Let \(\mathcal{F} \) be a coherent reflexive Hermitian sheaf with rank 1 over a Hodge manifold, such that \(c_1(\mathcal{F}) = 0 \). Then a holomorphic gauge field on \(\mathcal{F} \) is Yang-Mills, iff it is flat.

Yang-Mills fields on a \(B \)-brane. As we said, a \(B \)-brane on \(Y \) is a complex \((\mathcal{F}^*, \delta^*) \) of analytic coherent sheaves on \(Y \). According to the preceding paragraphs, it is reasonable to define a gauge field on this brane as an element of \(\text{Hom}_{D^b(Y)}(\mathcal{F}^*, J^1(\mathcal{F}^*)) \) which lifts the identity on \(\mathcal{F}^* \).

Using that the derived category \(D^b(\mathbb{P}^n) \) is generated by the family
\[E = \{ \mathcal{O}_{\mathbb{P}^n}(-n), \mathcal{O}_{\mathbb{P}^n}(-n+1), \ldots, \mathcal{O}_{\mathbb{P}^n}(-1), \mathcal{O}_{\mathbb{P}^n} \}, \]
we prove the following theorems.

Theorem 4. The cardinal of the set of holomorphic gauge fields on any \(B \)-brane over \(\mathbb{P}^n \) is \(\leq 1 \).

Particular \(B \)-branes over \(\mathbb{P}^n \) are the complexes consisting of direct sum of copies of \(\mathcal{O}_{\mathbb{P}^n} \)
\[\cdots \to \bigoplus_{i \in S_p} \mathcal{O}_{\mathbb{P}^n} \xrightarrow{d^p} \bigoplus_{i \in S_{p+1}} \mathcal{O}_{\mathbb{P}^n} \to \cdots \]
where the \(S_p \) are finite sets and the coboundary operators are constant matrices. We will prove the following theorem.
Theorem 5. A B-brane on \mathbb{P}^n admits a holomorphic gauge field iff it is isomorphic to a brane of the form (1.2).

When Y is a Hodge manifold, it is a projective smooth variety and by the GAGA correspondence the analytic coherent sheaves on Y can be considered as algebraic ones. Moreover, the category $D^b(Y)$ is equivalent to the homotopy category $K^b(Y)_{\text{coh}}$ of complexes of injective sheaves with coherent and bounded cohomology (see Subsection 3.1.2). Considering \mathcal{F}^* as an object of $K^b(Y)_{\text{coh}}$, we set $\overline{\Omega^1(\mathcal{F}^*)}$ for an object of $K^b(Y)_{\text{coh}}$ quasi-isomorphic to $\Omega^1(\mathcal{F}^*)$. In this way, a gauge field ψ on \mathcal{F}^* is a homotopy class of morphisms between the complexes \mathcal{F}^* and $\overline{\Omega^1(\mathcal{F}^*)}$, considered as complex of abelian sheaves. Thus, that homotopy class determines for each j a unique morphism $\vartheta^j : \mathcal{H}^j(\mathcal{F}^*) \to \mathcal{H}^j(\Omega^1(\mathcal{F}^*))$, between the corresponding cohomology sheaves. In summary, the gauge field on \mathcal{F}^* defines a family of connections ϑ^j on the cohomology sheaves $\mathcal{H}^j(\mathcal{F}^*)$.

When the cohomology sheaves \mathcal{H}^j are Hermitian, in which case we say that \mathcal{F}^* is Hermitian, we define the value of the Yang-Mills functional on the above gauge ψ as $\sum_i (-1)^i \|K_{\psi^i}\|^2$. Thus, the Yang-Mills functional is a kind of Euler characteristic of the gauge field. This definition of the Yang-Mills functional on branes generalizes the one given for coherent sheaves, obviously.

The gauge field ψ is a Yang-Mills field if it is a stationary point of Yang-Mills functional. We will also prove the following result.

Theorem 6. Let $(\mathcal{F}^*, \delta^*)$ be a Hermitian B-brane on the Hodge manifold Y, such that sheaves $\mathcal{H}^i(\mathcal{F}^*)$ are reflexive. A gauge field ψ on the brane is a Yang-Mills field iff ϑ^i is a Yang-Mills field on $\mathcal{H}^i(\mathcal{F}^*)$ for all i.

In Theorem 7, we generalize the result given in Theorem 2, about the cardinal of the set of Yang-Mills fields on a sheaf, to a general brane.

The article is organized in two sections. In Section 2, we define the gauge fields on a coherent sheaf. In the first subsections of this section, we revise the definition of the 1-jet sheaf of a coherent sheaf \mathcal{F} because, although this is well known in algebraic geometry, it is not so well known in the community of mathematical physicists. We prove also Theorem 1, above mentioned. The Yang-Mills functional is introduced in Subsection 2.2, where Theorems 2 and 3 are proved. We also describe some properties of the Yang-Mills fields on reflexive sheaves.

In Section 3 are considered the gauge fields on a general B-brane. In Subsection 3.1, we give the definition of gauge field on a B-brane and prove Theorems 4 and 5 about the existence of gauge fields on branes.
over \mathbb{P}^n. We define in Subsection 3.2 the Yang-Mills functional, showing
the reasons on which this definition is based and prove Theorems 6 and 7.

For the sake of completeness we give in the Appendix a simple proof,
in the context of the Čech cohomology, of the following well-known fact
in algebraic geometry and which has been mentioned above: A neces-
sary and sufficient condition for the existence of holomorphic connec-
tions on a line bundle L is the vanishing of $c_1(L)$. This result can
certainly be generalised to bundles of arbitrary rank \[3\], but perhaps
such a simple proof might be of interest to some mathematical physi-
cists.

2. Gauge fields on coherent sheaves

2.1. Gauge fields on a sheaf. As explained in the Introduction, the
existence of a gauge field on a coherent sheaf \mathcal{F} over a compact con-
ected complex manifold Y should define an isomorphism between the
stalks of \mathcal{F} at any “infinitesimally close” points of Y.

The idea of being infinitesimally close can formulated by means of
the first infinitesimal neighborhood $Y^{(1)}$ of the diagonal of Y [10] page
698. If R is a \mathbb{C}-algebra, $\text{Hom}(\text{Spec } R, Y)$ is the set of points of Y with
values in R. Two points x_1, x_2 are infinitesimally close if the morphism
$(x_1, x_2) : \text{Spec } R \to Y \times Y$ factorizes through $Y^{(1)}$ [6] page 6]. In this
case, there is a morphism $h : \text{Spec } R \to Y^{(1)}$ such that $\pi_i h = x_i$, where
$Y \xrightarrow{\pi_1} Y^{(1)} \xrightarrow{\pi_2} Y$ are the projections. Given a sheaf \mathcal{F} on Y, each element
α of the set
\[(\alpha) \] gives rise to the morphism $h^*(\alpha) : x_1^* \mathcal{F} \to x_2^* \mathcal{F}$. Therefore, following
Deligne, one can consider a holomorphic gauge field on \mathcal{F} as an element
of (2.1) which is the identity on Y.

On the other hand, each element of (2.1) determines, via the adjun-
tion isomorphism, a morphism $\mathcal{F} \to \pi_1^* \pi_2^* \mathcal{F}$, and conversely.

As $\pi_1^* \pi_2^* \mathcal{F}$ is the first jet sheaf $\mathcal{J}(\mathcal{F})$ of the coherent sheaf \mathcal{F}, in the
following paragraphs we review the definition of the jet sheaf and also
that of first neighborhood of the diagonal.

2.1.1. Neighborhood of the diagonal. We denote by $i : \Delta \hookrightarrow Y \times Y$ the
embedding of the diagonal. As a closed subvariety, Δ is defined by an
ideal J of $\mathcal{O} := \mathcal{O}_{Y \times Y}$. We will consider the following ringed spaces
\[(Y, \mathcal{O}), \quad Y^{(1)} = \left(\Delta, \mathcal{O}_{Y^{(1)}} := (\hat{\mathcal{O}}/J^2)|_{\Delta} \right), \quad (Y \times Y, \hat{\mathcal{O}}).\]
$Y^{(1)}$ is the first infinitesimal neighborhood of Δ.
The \mathcal{O}-\mathcal{O}-bimodule structure in $\mathcal{O}_Y^{(1)}$. We set $p_1, p_2 : Y \times Y \to Y$ for the corresponding projection morphisms. The natural morphisms between the above topological spaces are shown in the following commutative diagram

\[Y \xrightarrow{k} \Delta \xrightarrow{i} Y \times Y \xrightarrow{p_1} Y \]

Given $f \in \mathcal{O}$ and $l \in \hat{\mathcal{O}}$, the product

\[(l + \mathcal{J}^2) \cdot f = l \circ p_2 + \mathcal{J}^2 \]

defines a right \mathcal{O}-module structure on $\hat{\mathcal{O}}/\mathcal{J}^2$. More explicitly, $(l(x, y) + \mathcal{J}^2) \cdot f = l(x, y)f(y) + \mathcal{J}^2$. Analogously, $f \cdot (l + \mathcal{J}^2) = (f \circ p_1)l + \mathcal{J}^2$ gives to $\hat{\mathcal{O}}/\mathcal{J}^2$ a left \mathcal{O}-module structure. However, the restrictions to $\mathcal{J}/\mathcal{J}^2$ of these left and right \mathcal{O}-module structures are equivalent.

The isomorphism $\mathcal{O} \oplus \Omega^1 \simeq \mathcal{O}_Y^{(1)}$. The cotangent sheaf $\Omega^1 := \Omega^1_Y$ can be identified with the pullback $j^{-1}(\mathcal{J}/\mathcal{J}^2)$ [7, p. 407]. This identification is defined by the correspondence

\[\xi : j^{-1}(\mathcal{J}/\mathcal{J}^2) \to \Omega^1, \quad g + \mathcal{J}^2 \mapsto (d_x g)|_Y, \]

where $d_x g$ is the exterior derivative of g with respect to the variables x; i.e. considering g as function of the variables x and keeping the variables y constant.

If $l \in \hat{\mathcal{O}}$, the correspondence $l + \mathcal{J}^2 \mapsto l \circ j \oplus (d_x l)|_Y$ defines an isomorphism of right \mathcal{O}-modules

\[j^{-1}(\hat{\mathcal{O}}/\mathcal{J}^2) \overset{\sim}{\simeq} \mathcal{O} \oplus \Omega^1. \]

When the abelian sheaf $\mathcal{O} \oplus \Omega^1$ is endowed with the left \mathcal{O}-action

\[f \cdot (h \oplus \alpha) := fh \oplus (h df + f \alpha), \]

where $\alpha \in \Omega^1$, then m in (2.5) is an isomorphism of left \mathcal{O}-modules. We summarize those well-known results in the following proposition.

Proposition 1. With the notations above introduced:

1. The \mathcal{O}-modules $j^{-1}(\mathcal{J}/\mathcal{J}^2)$ and Ω^1 are canonically isomorphic.
2. The correspondence (2.5) defines an isomorphism between the right \mathcal{O}-modules $j^{-1}(\mathcal{O}/\mathcal{J}^2)$ and $\mathcal{O} \oplus \Omega^1$.
3. Equipped $\mathcal{O} \oplus \Omega^1$ with the left \mathcal{O}-structure defined in (2.6), the correspondence (2.5) is also an isomorphism of left \mathcal{O}-modules.

The exact sequence of right $\hat{\mathcal{O}}$-modules

\[0 \to \mathcal{J}/\mathcal{J}^2 \to \hat{\mathcal{O}}/\mathcal{J}^2 \to \hat{\mathcal{O}}/\mathcal{J} \to 0 \]
gives rise, by means the functor j^{-1}, the exact sequence of right \mathcal{O}-modules
\begin{equation}
0 \to j^{-1}(\mathcal{J}/\mathcal{J}^2) \to j^{-1}(\hat{\mathcal{O}}/\mathcal{J}^2) \to j^{-1}(\hat{\mathcal{O}}/\mathcal{J}) \to 0,
\end{equation}
or in other terms $0 \to \Omega^1 \to \mathcal{O} \oplus \Omega^1 \to \mathcal{O} \to 0$.

2.1.2. The first jet sheaf. We denote by $\pi_a = p_a \circ i : \Delta \to Y$, for $a = 1, 2$. One has the following morphism of sheaves rings over Δ (see Subsection 2.1.1)
\begin{equation}
\pi_a^{-1}\mathcal{O} \longrightarrow \mathcal{O}_{Y(1)} = \hat{\mathcal{O}}/\mathcal{J}^2, \quad h \mapsto h \circ \pi_a + \mathcal{J}^2.
\end{equation}
In particular, one can consider $\mathcal{O}_{Y(1)}$ as a right $\pi_a^{-1}\mathcal{O}$-module.

Given \mathcal{F} a left \mathcal{O}-module on Y, its inverse image by π_a is left $\mathcal{O}_{Y(1)}$-module
\begin{equation}
\pi_a^{-1}\mathcal{O} \longrightarrow \mathcal{O}_{Y(1)} = \hat{\mathcal{O}}/\mathcal{J}^2.
\end{equation}
And the first jet sheaf $\mathcal{J}^1(\mathcal{F})$ of \mathcal{F} is left \mathcal{O}-module defined by
\begin{equation}
\mathcal{J}^1(\mathcal{F}) = \pi^*_a \pi^*_a(\mathcal{F}).
\end{equation}

Since π^*_a is the left adjoint of π_a, one has
\begin{equation}
\text{Hom}_\mathcal{O}(\mathcal{F}, \mathcal{J}^1(\mathcal{F})) = \text{Hom}_{\mathcal{O}_{Y(1)}}(\pi^*_a \mathcal{F}, \pi^*_a \mathcal{F}).
\end{equation}

If \mathcal{H} is a left $\mathcal{O}_{Y(1)}$-module, the \mathcal{O}-structure on $\pi^*_a \mathcal{H}$ is defined by $f \cdot s = (f \circ \pi_1) s$, where $f \in \mathcal{O}$ and $s \in \mathcal{H}$. On the other hand, the \mathcal{O} action on
\begin{equation}
k^* \mathcal{H} = \mathcal{O} \otimes_{k^{-1}\mathcal{O}_{\Delta}} k^{-1}\mathcal{H}
\end{equation}
is determined by $f \cdot (1 \otimes s) = f \otimes s = 1 \otimes gs = 1 \otimes (f \circ \pi_1) s$, where $f = g \circ k$. Hence, $k^* \mathcal{H}$ and $\pi^*_a \mathcal{H}$ are isomorphic \mathcal{O}-modules. Thus, by
\begin{equation}
\mathcal{J}^1(\mathcal{F}) = k^{-1}(\mathcal{O}_{Y(1)}) \otimes_\mathcal{O} \mathcal{F} = j^{-1}(\hat{\mathcal{O}}/\mathcal{J}^2) \otimes_\mathcal{O} \mathcal{F}.
\end{equation}

By Proposition 1, $\mathcal{J}^1(\mathcal{F})$ is de abelian sheaf $\mathcal{F} \oplus \Omega^1(\mathcal{F})$ endowed with the following left \mathcal{O}-module structure
\begin{equation}
f(\sigma \oplus \beta) = f\sigma \oplus (f\beta \oplus df \otimes \sigma).
\end{equation}

One has the morphism of abelian sheaves
\begin{equation}
\eta : \mathcal{F} \to \mathcal{J}^1(\mathcal{F}) = \mathcal{F} \oplus \Omega^1(\mathcal{F}), \quad \sigma \mapsto \sigma \oplus 0.
\end{equation}

And from (2.11), it follows
\begin{equation}
f \eta(\sigma) = \eta(f\sigma) + df \otimes \sigma.
\end{equation}

Summarizing, one has the exact sequence of \mathcal{O}-modules
\begin{equation}
0 \to \Omega^1(\mathcal{F}) \to \mathcal{J}^1(\mathcal{F}) \to \mathcal{F} \to 0,
\end{equation}
where \oplus is the direct sum in the category of abelian sheaves and the left \mathcal{O}-action on the central term is defined according to (2.11).

Thus, taking into account (2.1) and (2.9), we give the following definition.

Definition 1. A holomorphic gauge field on the coherent sheaf F is an element $\text{Hom}(F, J^1(F))$ that is a right inverse of the \mathcal{O}-module morphism $\pi : J^1(F) \to F$.

2.1.3. *The Atiyah class.* The exact sequence (2.13), defines an element $a(F)$ of $\text{Ext}^1(F, \Omega^1(F))$, called the Atiyah class of F. The exact sequence (2.13) does not split, in general, in the category of \mathcal{O}-modules. Thus, there will exist gauge fields on F iff the Atiyah class $a(F)$ vanishes.

If there exists a right inverse ψ of π; then $\pi(\psi - \eta) = 0$; and thus $\nabla := \psi - \eta$ takes its values in $\Omega^1(F)$. Moreover, by (2.12), for $f \in \mathcal{O}$ and $\sigma \in F$

$$\nabla(f\sigma) = f\psi(\sigma) - f\eta(\sigma) + df \otimes \sigma = f\nabla(\sigma) + df \otimes \sigma;$$

that is, for ∇ holds the Leibniz’s rule.

We denote by \mathcal{C} the set consisting of all morphisms of \mathcal{C}_Y-modules $\nabla : F \to \Omega^1(F)$ satisfying (2.14). An element $\nabla \in \mathcal{C}$ determines the morphism of \mathcal{O}-modules

$$\kappa : F \oplus \Omega^1(F) \to \Omega^1(F), \quad (\sigma, \beta) \mapsto \beta - \nabla(\sigma).$$

κ is a left inverse of i. Hence, κ defines a splitting of the extension (2.13) and thus it determines a right inverse of π; i.e. a holomorphic gauge field ψ on F. We have proved the following proposition.

Proposition 2. If $a(F) = 0$, then the map $\nabla \mapsto \nabla + \eta$ defines a bijective correspondence between \mathcal{C} and the set of holomorphic gauge fields on the coherent sheaf F.

Proposition 3. The set of holomorphic gauge fields on the coherent sheaf F, if it is nonempty, is an affine space associated to the finite dimensional vector space $\Gamma(Y, \text{Hom}(F, \Omega^1(F)))$.

Proof. The exact sequence (2.13) gives rise to corresponding Ext-sequence

$$0 \to \text{Hom}(F, \Omega^1(F)) \xrightarrow{\mu} \text{Hom}(F, J^1(F)) \xrightarrow{\lambda} \text{Hom}(F, F) \xrightarrow{\nu} \text{Ext}^1(F, \Omega^1(F)).$$

Since $\mu(\phi) = \pi \circ \phi$, the existence of a holomorphic gauge field ψ on F, is equivalent to $1_F \in \text{im}(\mu) = \ker(\nu)$. In fact, the Atiyah class $a(F)$ is the image of 1_F by ν.
If ψ and ψ_1 are gauge fields on the coherent sheaf \mathcal{F}, then $\mu(\psi_1 - \psi) = 0$; i.e., $\psi_1 - \psi \in \text{im}(\lambda)$. Thus, the set of holomorphic gauge fields on \mathcal{F}, if nonempty, is an affine space with vector space $\text{Hom}(\mathcal{F}, \Omega^1(\mathcal{F})) = \Gamma(Y, \mathcal{H}om(\mathcal{F}, \Omega^1(\mathcal{F})))$. As $\mathcal{H}om(\mathcal{F}, \Omega^1(\mathcal{F}))$ is a coherent sheaf, the space of holomorphic gauge fields on \mathcal{F}, is a finite dimensional affine space.

\[\square \]

2.1.4. Flat gauge fields. Given a holomorphic connection on \mathcal{F}, it defines a morphism of C-modules $\nabla : \Omega^k(\mathcal{F}) \to \Omega^{k+1}(\mathcal{F})$ in the usual way. The composition $\mathcal{K}_\nabla := \nabla(1) \circ \nabla : \mathcal{F} \to \Omega^2(\mathcal{F})$ is the curvature of ∇; furthermore,

\[(2.15) \quad \mathcal{K}_\nabla \in \text{Hom}(\mathcal{F}, \Omega^2(\mathcal{F})) = \Gamma(Y, \mathcal{H}om(\mathcal{F}, \Omega^2(\mathcal{F}))). \]

The connection is said to be flat if $\mathcal{K}_\nabla = 0$. In this case, one has the complex

\[(2.16) \quad \Omega^\bullet(\mathcal{F}) : \Omega^0(\mathcal{F}) \xrightarrow{\nabla} \Omega^1(\mathcal{F}) \xrightarrow{\nabla(1)} \Omega^2(\mathcal{F}) \to \]

A homomorphic connection (not necessarily flat) on a locally free sheaf \mathcal{F} determines a C-linear map

\[\nabla : \mathcal{A}(\mathcal{F}) \to \mathcal{A}^{1,0}(\mathcal{F}), \]

satisfying $\nabla(f \tau) = \partial(f) \tau + f \nabla \tau$, for f a smooth function and τ a section of $\mathcal{A}(\mathcal{F})$. In fact, given φ is a section of $\mathcal{A}(\mathcal{F})$, let $s = \{s_a\}_a$ be a local local frame for \mathcal{F}, then $\varphi = \sum_a f^a s_a$, where the f^a are smooth functions. We set $\nabla(\varphi) = \sum_a (\partial(f^a)s_a + f^a \nabla s_a)$. This is a well-defined section of $\mathcal{A}^{1,0}(\mathcal{F})$ (independent of the chosen frame s).

If ∇ is flat, the extension of ∇ allows us to define the complex

\[(2.17) \quad \mathcal{A}^\bullet(\mathcal{F}) : \mathcal{A}^{0,0}(\mathcal{F}) \xrightarrow{\nabla} \mathcal{A}^{1,0}(\mathcal{F}) \xrightarrow{\nabla(1)} \mathcal{A}^{2,0}(\mathcal{F}) \to \]

Analogously, by means of $\nabla + \bar{\partial}$, one can construct the following complex, assumed that ∇ is flat,

\[(2.18) \quad \mathcal{A}^\bullet(\mathcal{F}) : \mathcal{A}^0(\mathcal{F}) \xrightarrow{\nabla + \bar{\partial}} \mathcal{A}^1(\mathcal{F}) \xrightarrow{\nabla + \bar{\partial}} \mathcal{A}^2(\mathcal{F}) \to \]

Theorem 1 gives the values of the Euler-Poincaré characteristic of the complexes (2.16), (2.17) and (2.18), defined from a holomorphic flat gauge field on the locally free sheaf \mathcal{F}.

Proof of Theorem 1. As the dimension is an Euler-Poincaré mapping, one has

\[(2.19) \quad \chi(C^\bullet) = \sum_i (-1)^i \dim H^i(\Gamma(Y, C^\bullet)). \]
The \(p \)-column of the following commutative diagram is a fine resolution of \(\Omega^p(F) \).

\[
\begin{array}{ccccccc}
\Omega^0(F) & \xrightarrow{\nabla} & \Omega^1(F) & \xrightarrow{\nabla} & \Omega^2(F) & \xrightarrow{\nabla} \\
\downarrow i & & \downarrow i & & \downarrow i & \\
\mathcal{A}(F) & \xrightarrow{\nabla} & \mathcal{A}^{1,0}(F) & \xrightarrow{\nabla} & \mathcal{A}^{2,0}(F) & \xrightarrow{\nabla} \\
\downarrow \partial & & \downarrow -\bar{\partial} & & \downarrow \partial & \\
\mathcal{A}^{0,1}(F) & \xrightarrow{\nabla} & \mathcal{A}^{1,1}(F) & \xrightarrow{\nabla} & \mathcal{A}^{2,1}(F) & \xrightarrow{\nabla} \\
\downarrow \partial & & \downarrow -\bar{\partial} & & \downarrow \partial & \\
\end{array}
\]

Hence, the total complex \((\mathcal{A}^\bullet(F), D := \nabla + \bar{\partial})\) defined by the double complex \((\mathcal{A}^{p,q}(F), \nabla, (-1)^p \bar{\partial})\) is \(q \)-isomorphic to the complex in the top row of diagram, i.e., the complex (2.16). But that total complex is just (2.18). Hence,

\[(2.20) \quad H^k(\Gamma(Y, \Omega^\bullet(F))) \simeq H^k(\Gamma(Y, \mathcal{A}^\bullet(F))). \]

The complex \(\Gamma(Y, \mathcal{A}^\bullet(F)) \), of global sections of (2.18) is elliptic, since the principal symbol of the operator \(D = \nabla + \bar{\partial} \) is equal to the one of the exterior derivative, \(d \).

The Kähler metric and the Hermitian structure determine, in the usual way, an inner product \(\cdot \cdot \) in the spaces \(\Gamma(Y, \mathcal{A}^k(F)) \). We denote by \(D^\dagger \) the adjoint to \(D \) with respect to this inner product. We can apply the index formula to the operator operator

\[P = D + D^\dagger : \Gamma(Y, \mathcal{A}^{even}(F)) \to \Gamma(Y, \mathcal{A}^{odd}(F)). \]

The characteristic classes of \(F \) vanish, since it admits a holomorphic gauge field [3, Theorem 6]; thus the Chern character \(\text{ch}(F) = r \). Then, by the index formula (see [27, page 21])

\[(2.21) \quad \text{Index } P = r \cdot e(Y). \]

On the other hand, the operator \(\Delta := P^\dagger P = PP^\dagger = D^\dagger D + DD^\dagger \),

\[\Delta : \bigoplus_k \Gamma(Y, \mathcal{A}^k(F)) \to \bigoplus_k \Gamma(Y, \mathcal{A}^k(F)) \]

is self-adjoint. Thus,

\[\bigoplus_k \Gamma(Y, \mathcal{A}^k(F)) = \ker(\Delta) \oplus \text{im}(\Delta), \]

and this decomposition is orthogonal [22, Theorem 5.5, Chap III]. It is easy to check that \(\text{im}(\Delta) \), in turn admits the orthogonal decomposition
im(D) ⊕ \text{im}(D^\dagger). Reasoning as in Hodge decomposition, it is shown that
\begin{equation}
 H^i(\Gamma(Y, \mathcal{A}^\bullet(\mathcal{F}))) \simeq \{ \varphi \in \Gamma(Y, \mathcal{A}^i(\mathcal{F})) \mid \Delta \varphi = 0 \}. \tag{2.22}
\end{equation}

If \(P^\dagger P \varphi = 0 \), then 0 = \((P^\dagger P \varphi) \diamond \varphi = (P \varphi) \diamond (P \varphi)\); so \(P \varphi = 0 \). That is, \(\ker(P^\dagger P) = \ker(P) \). Thus, by (2.22)
\begin{equation}
 \ker(P) = \{ \varphi \in \Gamma(Y, \mathcal{A}_{\text{even}}(\mathcal{F})) \mid \Delta \varphi = 0 \} \simeq \bigoplus_k H^{2k}(\Gamma(Y, \mathcal{A}^\bullet(\mathcal{F}))).
\end{equation}

Analogously, \(\text{coker}(P) = \ker(P^\dagger) \simeq \bigoplus_k H^{2k+1}(\Gamma(Y, \mathcal{A}^\bullet(\mathcal{F}))) \). From (2.19) together with (2.21) and (2.20), it follows the first assertion of theorem.

For the case of complex (2.17), we set \(Q \) for the operator
\[Q = \nabla + \nabla^\dagger : \Gamma(Y, \mathcal{A}_{\text{even}, 0}(\mathcal{F})) \to \Gamma(Y, \mathcal{A}_{\text{odd}, 0}(\mathcal{F})). \]

By de index formula \cite[page 28]{27} \cite[page 258]{22}
\begin{equation}
 \text{Index } Q = (-1)^n \left(\frac{\text{ch}(\sum_i (-1)^i \mathcal{A}^{i,0}(\mathcal{F})) \, e(T)}{e(T)} \right)[Y]. \tag{2.23}
\end{equation}

The Euler classes of the holomorphic and antiholomorphic tangent bundles to \(Y \) satisfies \(e(T) = (-1)^n e(\bar{T}) \). Furthermore, \(\mathcal{A}^{i,0} \simeq \Lambda^i T \) and (see \cite[page 242]{22})
\[\text{ch} \left(\sum_i (-1)^i \Lambda^i T \right) = (-1)^n e(T) \, \text{td}(T)^{-1}. \]

Thus, (2.23) reduces to \(\text{Index } Q = (-1)^n r \, \text{td}(\bar{Y}) \).

As in the case of the above operator \(P \), one has
\[\ker(Q) = \ker(Q^\dagger Q) = \bigoplus_k H^{2k}(\Gamma(Y, \mathcal{A}^{\bullet,0}(\mathcal{F}))), \]
and similarly for \(\text{coker}(Q) \). Then the theorem follows. \(\square \)

2.2. Holomorphic Yang-Mills fields. In general, the fiber at \(x \in Y \) of a coherent \(\mathcal{O} \)-module \(\mathcal{G} \) will be denoted by \(\mathcal{G}(x) := \mathcal{G}_x / \mathfrak{m}_x \mathcal{G}_x \), where \(\mathfrak{m}_x \) is the maximal ideal of \(\mathcal{O}_x \). If \(\mathcal{Z} \) is a section of \(\mathcal{G} \) the corresponding vector in \(\mathcal{G}(x) \) is denoted by \(Z(x) \).

The singularity set \(\mathcal{S} \) of \(\mathcal{G} \) is an analytic subset of \(Y \) whose codimension is greater or equal to 1. Moreover, \(\mathcal{G} \) is locally free on \(Y \setminus \mathcal{S} \). We set \(\mathcal{G} \) for the vector bundle over \(Y \setminus \mathcal{S} \) with fibers \(\mathcal{G}(x) := \mathcal{G}(x) \), determined by the locally free sheaf \(\mathcal{G}|_{Y \setminus \mathcal{S}} \).

Definition 2. A Hermitian metric on the coherent sheaf \(\mathcal{G} \) is a set \(\{ \langle \cdot, \cdot \rangle_x \}_{x \in Y} \) of Hermitian metrics on the fibers of \(\mathcal{G} \), such that, for \(\mathcal{Z}_1, \mathcal{Z}_2 \) sections of \(\mathcal{F} \) on an open \(U \) of \(Y \), the map \(x \in U \mapsto (Z_1(x), Z_2(x))_x \)
is C^∞. A sheaf endowed with a Hermitian metric is called a Hermitian sheaf.

If Y is a Kähler manifold and $Z_1, Z_2 \in \Gamma(Y, \mathcal{S})$, we set
\[(2.24)\]
\[
(Z_1, Z_2) = \int_Y \langle Z_1(x), Z_2(x) \rangle_x \, \text{dvol} = \int_{Y \setminus S} \langle Z_1(x), Z_2(x) \rangle_x \, \text{dvol}.
\]

Let \mathcal{F} be a coherent sheaf on Y. For each $x \in Y$, we denote by α_x and λ_x the natural morphisms
\[
(Hom_{\mathcal{O}}(F, \Omega^k(F)))_x \xrightarrow{\alpha_x} \text{Hom}_{\mathcal{O}_x}(\mathcal{F}_x, \Omega^k_x \otimes \mathcal{F}_x) \xleftarrow{\lambda_x} \Omega^k_x \otimes \mathcal{F}_x \xrightarrow{\text{End}_{\mathcal{O}_x}(\mathcal{F}_x)}.
\]
As F is coherent, α_x is isomorphism [9, page 239]. Furthermore, if F_x is free, then λ_x is bijective. Hence, for each point x outside of the singularity set S of F, the fibre of $Hom_{\mathcal{O}}(\mathcal{F}, \Omega^k(\mathcal{F}))$ at x can be identified with the vector space $\Omega^k(x) \otimes \text{End}(F(x))$.

In particular, the curvature $\mathcal{K} := \mathcal{K}_\nabla$ of a holomorphic connection ∇, defined in (2.15), determines the vector
\[(2.25)\]
\[K(x) \in \Omega^2(x) \otimes \text{End}(F(x))\]
for each $x \in Y \setminus S$. That is, K is a 2-form $\text{End}(F)$-valued.

If \mathcal{F} is a Hermitian sheaf. The Kähler structure on Y and metric Hermitian on \mathcal{F} induce a metric on $\Omega^2 \otimes \text{End}(F)$, which will also denoted $\langle \cdot, \cdot \rangle$. According to (2.24), one defines
\[(2.26)\]
\[\|\mathcal{K}_\nabla\|^2 = \int_{Y \setminus S} \langle K_\nabla, K_\nabla \rangle \, \text{dvol} = \int_{Y \setminus S} |K_\nabla \wedge \ast K_\nabla|,
\]
where $|\cdot|$ is the corresponding norm on $\text{End}(F)$ and \ast is the Hodge star operator.

More concretely, if locally K_∇ can be expressed as $\alpha \otimes A$, with α a 2-form and A a local section of $\text{End}(F)$, then the integrand in (2.26) is $(\alpha \wedge \ast \alpha) \langle A \circ A \rangle$. In a local unitary frame of $\text{End}(F)$, if the connection is compatible with the metric, the matrix \check{A} associated to A is antihermitian and $\langle A \circ A \rangle = -\text{tr}(\check{A} \check{A})$. That is,
\[(2.27)\]
\[|K_\nabla \wedge \ast K_\nabla| = -\text{tr}(K_\nabla \wedge \ast K_\nabla).
\]
Assumed the set of holomorphic gauge fields on \mathcal{F} is nonempty, the correspondence
\[
\nabla \in \{\text{holomorphic gauge fields on } \mathcal{F}\} \mapsto \mathcal{YM}(\nabla) = \|\mathcal{K}_\nabla\|^2
\]
is the Yang-Mills’ functional [11, page 417] [23, page 44] [24, page 357]. The fields on which \mathcal{YM} vanishes are the vacuum states of the corresponding Yang-Mills theory [11, page 447]. The gauge fields, where
the functional takes a stationary value are the \textit{holomorphic Yang-Mills fields}.

If ∇ is a vacuum state, by (2.26) it follows $K_\nabla = 0$, and from the Nakayama’s lemma one deduces $K_\nabla = 0$; that is, ∇ is a flat connection.

Let us assume that the sheaf \mathcal{F} admits a holomorphic gauge field ∇_0. By Proposition 3, given E_1, \ldots, E_m, a basis of $\text{Hom}(\mathcal{F}, \Omega^2(\mathcal{F}))$, any holomorphic gauge field can be written $\nabla = \nabla_0 + \sum \lambda_i E_i$, with $\lambda_i \in \mathbb{C}$. The curvature

$$K_\nabla = \nabla \circ \nabla = K_{\nabla_0} + \sum_i \lambda_i B_i + \sum_{ij} \lambda_i \lambda_j B_{ij},$$

where the B’s are elements of $\text{Hom}(\mathcal{F}, \Omega^2(\mathcal{F}))$. Thus,

$$\|K_\nabla\|^2 = (K_\nabla, K_\nabla) = P(\lambda_1, \ldots, \lambda_m),$$

where P is a polynomial of degree ≤ 4 in the variables λ_i.

\textbf{Proof of Theorem 2.} The Yang-Mills fields are those ∇ defined by constants λ_i which satisfy the algebraic equations of degree ≤ 3

$$\frac{\partial P}{\partial \lambda_i} = 0, \quad i = 1, \ldots, m. \quad (2.28)$$

The case $m = 2$ is a consequence of Bézout’s theorem. \hfill \square

2.2.1. \textit{Reflexive sheaves.} When Y is a Hodge manifold, then it is a smooth projective variety, according to a well-known Kodaira’s theorem. By the GAGA correspondence, the coherent analytic sheaves on Y can be identified with the algebraic ones. From now on in this Section 2.2, we assume that Y is a Hodge manifold.

On the other hand, the reflexive sheaves on an algebraic variety might be thought as “vector bundles with singularities” [13, page 121]. The following properties show that these singularities may be in some cases “irrelevant”. If \mathcal{G} is a reflexive sheaf on the algebraic variety X, then the codimension of the singularity set Sing of \mathcal{G} is greater than 2 [13, Cor. 1.4]. Hence, the restriction $\Gamma(X, \mathcal{G}) \to \Gamma(X \setminus \text{Sing}, \mathcal{G})$ is an isomorphism [15, Prop. 1.11].

Let us assume that \mathcal{F} is reflexive sheaf on the Hodge manifold Y, endowed with a Hermitian metric. Then $\mathcal{E}nd(\mathcal{F})$ and $\mathcal{H}om(\mathcal{F}, \Omega^k \otimes \mathcal{F})$ are also reflexive sheaves [21, Chapter V, Proposition (4.15)]. On the other hand, if \mathcal{S} is the singularity locus of \mathcal{F}, one has the isomorphism

$$\mathcal{H}om(\mathcal{F}, \Omega^k \otimes \mathcal{F})|_{Y \setminus \mathcal{S}} \simeq (\Omega^k \otimes \mathcal{E}nd(\mathcal{F}))|_{Y \setminus \mathcal{S}}$$

Thus, we have the isomorphisms

$$\Gamma(Y, \mathcal{H}om(\mathcal{F}, \Omega^k \otimes \mathcal{F})) \simeq \Gamma(Y \setminus \mathcal{S}, \Omega^k \otimes \mathcal{E}nd(\mathcal{F})) \simeq \Gamma(Y, \Omega^k \otimes \mathcal{E}nd(\mathcal{F})).$$
Moreover, these finite dimensional vector spaces are also isomorphic to the space of global sections \(\Gamma(Y \setminus S, \Omega^k \otimes \text{End}(F)) \) of the vector bundle \(\Omega^k \otimes \text{End}(F) \). In particular, \(\mathcal{K}_\nabla \), the curvature of a holomorphic connection \(\nabla \) on \(\mathcal{F} \), is determined by the 2-form \(\text{End}(F) \)-valued \(\mathcal{K}_\nabla \) defined over \(Y \setminus S \).

We denote

\[
(2.29) \quad (p) \nabla : \Gamma(Y \setminus S, \Omega^p \otimes O \text{End}(F)) \to \Gamma(Y \setminus S, \Omega^{p+1} \otimes O \text{End}(F)),
\]

the operator defined by the connection \(\nabla \). In this notation Bianchi's identity is read as

\[
(2) \quad \nabla \mathcal{K}_\nabla = 0.
\]

If \(\nabla \) is a holomorphic gauge field on \(\mathcal{F} \), according to Proposition 3, any other field is of the form \(\nabla + \varepsilon \), with \(\varepsilon \in \text{Hom}(\mathcal{F}, \Omega^1 \otimes O \mathcal{F}) \). By the above identifications \(\varepsilon \) is determined by the corresponding section \(E \in \Gamma(Y \setminus S, \Omega^1 \otimes \text{End}(F)) \).

Considering a "variation" \(\nabla_\varepsilon = \nabla + \varepsilon \) of \(\nabla \), then \(\mathcal{K}_{\nabla_\varepsilon} = \mathcal{K}_\nabla + \varepsilon \nabla E + O(\varepsilon^2) \), where \(\nabla E \) is the covariant derivative of \(E \).

\[
(2.30) \quad (1/2) \frac{d}{d\varepsilon} \bigg|_{\varepsilon = 0} ||\mathcal{K}_{\nabla_\varepsilon}||^2 = \int_{Y \setminus S} \langle \mathcal{K}_\nabla, \nabla E \rangle \, d\text{vol} =: (\mathcal{K}_\nabla, \nabla E).
\]

Therefore, \(\nabla \) is a Yang-Mills field if for any "variation" \(\varepsilon \) of \(\nabla \)

\[
(2.31) \quad (\mathcal{K}_\nabla, \nabla E) = 0.
\]

In particular, the flat holomorphic gauge fields are Yang-Mills.

On the other hand, the orthogonality condition (2.31) which satisfy the Yang-Mills fields gives rise to the following proposition.

Proposition 4. The holomorphic gauge field \(\nabla \) on the reflexive sheaf \(\mathcal{F} \) is a Yang-Mills field iff its curvature \(\mathcal{K}_\nabla \in \Gamma(Y \setminus S, \Omega^2 \otimes \text{End}(F)) \) is orthogonal to the vector space \(\text{im}((1) \nabla) \).

Corollary 1. If \(H^2(\Gamma(Y, \Omega^* \otimes \text{End}(F))) = 0 \), then any Yang-Mills field on \(\mathcal{F} \) is flat.

Proof. By Bianchi’s identity \(\mathcal{K}_\nabla \in \text{ker}((2) \nabla) \). By the hypothesis \(\mathcal{K}_\nabla \in \text{im}((1) \nabla) \). If \(\nabla \) is a Yang-Mills field, then \(\mathcal{K}_\nabla \) is a vector orthogonal to \(\text{im}((1) \nabla) \), according to Proposition 4. Thus, \(\mathcal{K}_\nabla = 0 \), and by Nakayama lemma \(\mathcal{K}_\nabla = 0 \).

A flat connection on a vector bundle defines a \(D \)-module structure on the corresponding \(O \)-module. Thus, by the Riemann-Hilbert correspondence, one has the following corollary.
Corollary 2. Let \mathcal{F} be a locally free sheaf such that $H^2(\Gamma(Y, \Omega^\bullet \otimes \text{End}(F))) = 0$. If \mathcal{F} admits a holomorphic Yang-Mills field, then it is defined by a representation of $\pi_1(Y)$.

Under hypotheses very different from ours, other authors have shown that vector bundles that support holomorphic connections are actually flat vector bundles (see [4, 5]).

The orthogonality condition (2.31) implies $(1)\nabla^\dagger K \nabla = 0$, where
$$(1)\nabla^\dagger : \Gamma(Y \setminus S, \Omega^2 \otimes_\mathcal{O} \text{End}(F)) \to \Gamma(Y \setminus S, \Omega^1 \otimes_\mathcal{O} \text{End}(F))$$
is the adjoint of $(1)\nabla$. By the Bianchi’s identity, if ∇ is a Yang-Mills field, then
$$(2)\nabla K \nabla = 0, \quad (1)\nabla^\dagger K \nabla = 0,$$
and conversely.

2.2.2. The case rank $\mathcal{F} = 1$. Let us assume that \mathcal{F} is a locally free sheaf of rank 1. It is known that a necessary and sufficient condition for \mathcal{F} to admit a connection is that F is flat (see Proposition 12 in Appendix).

On the other hand, $\mathcal{E}nd(\mathcal{F})$ is the sheaf associated to the trivial line bundle $\mathbb{C} \times Y \to Y$. Let s be a local frame of the corresponding line bundle F. A holomorphic connection ∇ on \mathcal{F} is locally determined by a holomorphic 1-form A, $\nabla s = As$. In this frame $\nabla(\beta) = \partial \beta + A \wedge \beta - (-1)^p \beta \wedge A = \partial \beta$, for any $\text{End}(F)$-valued p-form β. Thus, the operator (2.29) reduces to
$$(p)\nabla = \partial : \Gamma(Y, \Omega^p) \to \Gamma(Y, \Omega^{p+1}).$$
The curvature of this connection is given by the holomorphic 2-form ∂A, and the Bianchi’s identity reduces to the obvious relation $\partial K_\mathcal{F} = 0$.

In this case, the complex $(\Omega^\bullet \otimes \text{End}(F), \nabla)$ is the holomorphic de Rham complex $(\Omega^\bullet, \partial)$ [29, Sect 8.2.1]. Denoting by $\mathcal{A}^{p,q}$ the sheaf of the smooth (p,q)-forms on Y, then $(\mathcal{A}^{p,\bullet}, \partial)$ is a fine resolution of Ω^p. Thus, as in the proof of Theorem 1, the total complex associated to the double complex complex $(\mathcal{A}^{p,q}, \partial, (-1)^p \bar{\partial})$ is quasi-isomorphic to the holomorphic de Rham complex. Since this total complex is precisely the usual de Rham complex, one has
$$(2.34) \quad H^j(\Gamma(Y, \Omega^\bullet)) = H^j(Y, \mathbb{C}).$$

Proof of Theorem 3. We can assume that it is a line bundle [13, Prop. 1.9]; thus, the singularity locus S is the empty set. Since $c_1(\mathcal{F}) = 0$, the Atiyah class vanishes (see Proposition 12 in Appendix) and \mathcal{F} admits holomorphic connections.
Let ∇ be a holomorphic gauge field on \mathcal{F}. By the Bianchi's identity, K_∇ defines a cohomology class in the space \((2.34)\) with $j = 2$. Any other gauge field $\tilde{\nabla}$ is an element of $\nabla + \text{Hom}(\mathcal{F}, \Omega^1 \otimes \mathcal{O})$. As \mathcal{F} is a locally free sheaf with rank 1 \((2.35)\)

$$\text{Hom}(\mathcal{F}, \Omega^1 \otimes \mathcal{O}) \simeq \Gamma(Y, \Omega^1 \otimes \text{End}(\mathcal{F})) \simeq \Gamma(Y, \Omega^1).$$

By (2.33), the curvature of $\tilde{\nabla}$ has the form $K_{\tilde{\nabla}} = K_\nabla + \partial E$, with $E \in \Gamma(Y, \Omega^1)$ a holomorphic 1-form. As $\bar{\partial} E = 0$, the curvatures K_∇ and $K_{\tilde{\nabla}}$ determine the same cohomology class. We will denote by c this cohomology class, defined by curvature of any holomorphic gauge field on \mathcal{F}.

If $\hat{\nabla}$ is an arbitrary Yang-Mills field, then $K_{\hat{\nabla}}$ satisfies (2.32); that is, $K_{\hat{\nabla}}$ is ∂-harmonic. As Y is a Kähler manifold, $K_{\hat{\nabla}}$ is also d-harmonic. Hence, the norm of $K_{\hat{\nabla}}$ minimizes the corresponding norm in its cohomology class. That is,

\[(2.36)\]

$$\mathcal{YM}(\hat{\nabla}) = \|K_{\hat{\nabla}}\|^2 = \min\{\|\beta\|^2 \mid \beta \in c\}.$$

On the other hand, if ∇_0 is a holomorphic gauge field, \(\frac{1}{2\pi}[K_{\nabla_0}] = c_1(\mathcal{F}) = 0\). That is,

$$K_{\nabla_0} = (\partial + \bar{\partial})(B^{1,0} + B^{0,1}).$$

Since K_{∇_0} is a $(2,0)$-form, it follows $\bar{\partial} B^{1,0} = 0$ and $dB^{0,1} = 0$. That is, $K_{\nabla_0} = \partial B^{1,0}$. The holomorphic connection $\nabla := \nabla_0 - B^{1,0}$ has curvature zero, hence it satisfies (2.31); that is ∇ is a Yang-Mills field. Therefore the cohomology class $c = 0$. It follows from (2.36), that \(|K_{\nabla}| = 0\), for any holomorphic Yang-Mills field. \hfill \square

Proposition 5. Let \mathcal{L} be a line bundle with $c_1(\mathcal{L}) = 0$. If the Hodge number $h^{1,0}(Y) = 1$, then either the cardinal $\# \text{YM}(\mathcal{L}) = 1$, or any gauge field on \mathcal{L} is Yang-Mills. The latter case occurs when $H^0(Y, \Omega^1) = \mathbb{C}$.

Proof. The vanishing of the Chern class implies that there exist homolorphic gauge fields on \mathcal{L}. Let ∇_0 denote a holomorphic gauge field. According to (2.35), any other gauge field is an element of $\nabla_0 + \Gamma(Y, \Omega^1)$

Since $h^{1,0}(Y) = 1$, any holomorphic gauge field on \mathcal{L} is of the form $\nabla = \nabla_0 + \lambda E$, with $\lambda \in \mathbb{C}$ and $0 \neq E \in H^0(Y, \Omega^1)$. The curvature

$$K_\nabla = K_{\nabla_0} + \lambda \nabla_0(E).$$

Hence the polynomial

$$P(\lambda) \equiv \|K_\nabla\|^2 = \|K_{\nabla_0}\|^2 + 2\lambda(K_{\nabla_0}, \nabla_0(E)) + \lambda^2\|\nabla_0(E)\|^2.$$
If $\nabla_0(E) \neq 0$ the equation $\frac{dP}{dx} = 0$ has only one solution, so $\#\text{YM}(\mathcal{L}) = 1$. By contrast, when $\nabla_0(E) = 0$, it follows that $P(\lambda) = \|K_{\nabla_0}\|^2$, for all λ. Hence, in this case, the Yang-Mills functional is constant; thus, every holomorphic gauge field is a Yang-Mills field. On the other hand, since $0 = \nabla_0(E) = \partial E$, then E is constant. \hfill \square

3. Fields on a brane

3.1. Gauge fields on a B-brane. Let $(\mathcal{F}^\bullet, \delta^\bullet)$ be a B-brane on the complex manifold Y; that is, \mathcal{F}^\bullet is an object of the category $D^b(Y)$, the bounded derived category of coherent sheaves over Y. According to the observation at the beginning of Subsection 2.1 (see (2.1)), we define a gauge field on the brane \mathcal{F}^\bullet as an element of $\text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, J^1(\mathcal{F}^\bullet))$ which lifts the automorphism identity of $(\mathcal{F}^\bullet, \delta^\bullet)$. This condition will be explained below in the rigorous definition of this concept.

As π_i is flat, $L\pi_i^*$ is the usual inverse image π_i^*. By the adjunction relation (3.1) $\text{Hom}_{D^b(Y)}(\pi_1^*\mathcal{F}^\bullet, \pi_2^*\mathcal{F}^\bullet) \simeq \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, J^1(\mathcal{F}^\bullet))$, where

$$J^1(\mathcal{F}^\bullet) := R\pi_1^*\pi_2^*\mathcal{F}^\bullet \simeq \mathcal{O}_{Y(i)} \otimes L\mathcal{F}^\bullet.$$

Therefore, the gauge fields on \mathcal{F}^\bullet are elements of the group

$$\text{Ext}^0(\mathcal{F}^\bullet, J^1(\mathcal{F}^\bullet));$$

i.e., open strings between \mathcal{F}^\bullet and $J^1(\mathcal{F}^\bullet)$ with ghost number 0 [1, Sect. 5.2], [20].

As $\mathcal{O}_{Y(i)}$ is the locally free module $\mathcal{O} \oplus \Omega^1$, then $J^1(\mathcal{F}^\bullet) \simeq \mathcal{F}^\bullet \oplus \Omega^1(\mathcal{F}^\bullet)$, with \mathcal{O}-structure given by (see (2.11))

$$f \ast (\sigma^\bullet \oplus \beta^\bullet) = f\sigma^\bullet \oplus (f\beta^\bullet + df \otimes \sigma^\bullet).$$

The exact sequence of complexes of \mathcal{O}-modules

$$0 \to \Omega^1(\mathcal{F}^\bullet) \xrightarrow{i} J^1(\mathcal{F}^\bullet) \xrightarrow{\pi} \mathcal{F}^\bullet \to 0$$

determines a distinguished triangle

$$\Omega^1(\mathcal{F}^\bullet) \xrightarrow{i} J^1(\mathcal{F}^\bullet) \xrightarrow{\pi} \mathcal{F}^\bullet \xrightarrow{+1}$$

in the category $D^b(Y)$ [19, page 46], [3, page 157]. As $\text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \cdot)$ is a cohomological functor, it follows that

$$\text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \Omega^1(\mathcal{F}^\bullet)) \to \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, J^1(\mathcal{F}^\bullet)) \xrightarrow{\pi_0} \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \mathcal{F}^\bullet) \to \text{Ext}^1(\mathcal{F}^\bullet, \Omega^1(\mathcal{F}^\bullet)) \to$$
is an exact sequence. The Atiyah class of \mathcal{F}^\bullet is the image of $1 \in \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \mathcal{F}^\bullet)$ in $\text{Ext}^1(\mathcal{F}^\bullet, \Omega^1(\mathcal{F}^\bullet))$. Thus, we give the following definition.

Definition 3. A gauge field on \mathcal{F}^\bullet is an element $\psi \in \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \mathcal{F}^\bullet)$, such that $\pi \circ \psi = 1 \in \text{Hom}_{D^b(Y)}(\mathcal{F}^\bullet, \mathcal{F}^\bullet)$.

From the above exact sequence, it follows the following proposition.

Proposition 6. The vanishing of the Atiyah class \mathcal{F}^\bullet is a necessary and sufficient condition for the existence of gauge fields on this brane. Furthermore, the set of gauge fields on \mathcal{F}^\bullet, if is nonempty, is an affine space over the finite dimensional vector space $\text{Ext}^0(\mathcal{F}^\bullet, \Omega^1(\mathcal{F}^\bullet))$.

3.1.1. **Gauge fields on B-branes over \mathbb{P}^n.** According to the Beilinson spectral sequence [25, Chap. 2, Sect. 3.1] the set (1.1) is a strong complete exceptional sequence in the derived category $D^b(\mathbb{P}^n)$ [17, Sect 8.3]. Thus, $D^b(\mathbb{P}^n)$ is equivalent to the smallest triangulated subcategory that contains this exceptional family.

As usual, we denote with $\mathcal{F}^\bullet[l]$, with $l \in \mathbb{Z}$, the complex \mathcal{F}^\bullet shifted l to the left. Given \mathcal{A}, \mathcal{B} elements of the generating set (1.1), let us consider morphisms h between $\mathcal{A}' := \mathcal{A}[l]$ and $\mathcal{B}' := \mathcal{B}[l']$. We denote by $\text{Cone}(h) = \mathcal{A}'[1] \oplus \mathcal{B}'$ the mapping cone of h [8, page 154]. We define $E^{(1)}$ the set obtained adding to E the elements of the form $\text{Cone}(h)$. Hence, an element of $E^{(1)}$ is a complex whose term at a position p is either 0, or $\mathcal{O}(k)$, or a direct sum of $\mathcal{O}(k_1) \oplus \mathcal{O}(k_2)$, with $-n \leq k, k_1, k_2 \leq 0$.

Repeating the process with the elements of $E^{(1)}$, one obtains $E^{(2)}$, etc. The objects of the triangulated subcategory generated by the family E are elements which belong to some $E^{(m)}$. Therefore, an object of the triangulated subcategory of $D^b(\mathbb{P}^n)$ generated by (1.1) is a complex $(\mathcal{G}^\bullet, d^\bullet)$, where \mathcal{G}^p is a sheaf of the form

$$\mathcal{G}^p = \bigoplus_{i \in S_p} \mathcal{O}(k_{pi}),$$

with $-n \leq k_{pi} \leq 0$ and i varying in a finite set S_p. (When i “runs over the empty set”, the direct sum is taken to be 0).

Proof of Theorem 4. In general, given two bounded below complexes A^\bullet and B^\bullet in an abelian category \mathfrak{A}, the complex $\text{Hom}^\bullet(A^\bullet, B^\bullet)$ is defined by (see [18, page 17])

$$\text{Hom}^m(A^\bullet, B^\bullet) = \prod_{p \in \mathbb{Z}} \text{Hom}_\mathfrak{A}(A^p, B^{p+m}),$$

(3.4)
with the differential δ_H.

$$ (\delta_H g)^p = \delta_B^{m+p} g^p + (-1)^{m+1} g^{p+1} \delta_A. \tag{3.5} $$

As the complex \mathcal{G}^\bullet defined in (3.3) consists of locally free \mathcal{O}-modules, then [14, Chap III, 6.5.1]

$$ \text{Hom}_{D^b(\mathbb{P}^n)}(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) = H^0\text{Hom}^\bullet(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) = \{ g \in \text{Hom}^0(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) \mid \delta_H g = 0 \}, $$

where δ_H is the operator defined in (3.5). Hence, according to (3.4), it follows

$$ \text{Hom}_{D^b(\mathbb{P}^n)}(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) \subset \text{Hom}^0(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) = \prod_p \text{Hom}(\mathcal{G}^p, \Omega^1(\mathcal{G}^p)). $$

By the additivity of the functor $\text{Hom}(\mathcal{O}, \mathcal{O})$, it follows

$$ \text{Hom}_{D^b(\mathbb{P}^n)}(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) \subset \prod_p \bigoplus_{i,j} \text{Hom}(\mathcal{O}(k_{pj}), \Omega^1(k_{pj})), $$

where $\Omega^1(k)$ is the twisted sheaf $\Omega^1 \otimes_{\mathcal{O}} \mathcal{O}(k)$.

The summand $\text{Hom}(\mathcal{O}(k_{pj}), \Omega^1(k_{pj}))$ is equal to

$$ \text{Hom}(\mathcal{O}, \Omega^1(k_{pj} - k_{pi})) = \Gamma(\mathbb{P}^n, \Omega^1(k_{pj} - k_{pi})) = 0, $$

since $H^0(\mathbb{P}^n, \Omega^1(k)) = 0$, for any k [25, page 4]. Therefore,

$$ \text{Hom}_{D^b(\mathbb{P}^n)}(\mathcal{G}^\bullet, \Omega^1(\mathcal{G}^\bullet)) = 0. $$

From Proposition 6 it follows Theorem 4. \qed

Proof of Theorem 5. Let ψ be a holomorphic gauge field on the above B-brane \mathcal{G}^\bullet. Then

$$ \psi \in \text{Hom}_{D^b(\mathbb{P}^n)}(\mathcal{G}^\bullet, \mathcal{I}(\mathcal{G}^\bullet)) = H^0\text{Hom}^\bullet(\mathcal{G}^\bullet, \mathcal{I}(\mathcal{G}^\bullet)) \subset \prod_p \text{Hom}(\mathcal{G}^p, (\Omega^1(\mathcal{G}^p) \oplus \mathcal{G}^p)). $$

Thus, ψ determines a family $\{ \psi^p : \mathcal{G}^p \to \Omega^1(\mathcal{G}^p) \oplus \mathcal{G}^p \}$ of morphisms of \mathcal{O}-modules. As ψ is a right inverse of π (Definition 3), $\psi^p = \nabla^p \oplus \text{id}^p$, where $\nabla^p : \mathcal{G}^p \to \Omega^1(\mathcal{G}^p)$. The property $\psi(f \sigma) = f \ast \psi(\sigma)$ implies that $\nabla(f \sigma) = df \sigma + f \nabla(\sigma)$, for $f \in \mathcal{O}$. Hence, ∇^p is a holomorphic connection on \mathcal{G}^p, for any p.

The trace of the curvature of ∇^p is a holomorphic 2-form on \mathbb{P}^n; as $H^0(\mathbb{P}^n, \Omega^2) = 0$, that trace vanishes. Hence, the first Chern class of vector bundle associated to the locally free sheaf \mathcal{G}^p vanishes.

On the other hand, the first Chern class of \mathcal{G}^p is the sum

$$ \sum_i c_1(\mathcal{O}(k_{pi})). $$
This class is 0 iff $k_{pi} = 0$ for all i, since the $k_{pi} \leq 0$.

Therefore, the existence of a holomorphic gauge field on the brane G^\bullet defined in (3.3) implies that G^\bullet is a sequence of direct sum of copies of O

\[\cdots \to \bigoplus_{i \in S_p} O \xrightarrow{d_p} \bigoplus_{i \in S_{p+1}} O \to \cdots \]

Since $\text{Hom}_O(O, O) \simeq \mathbb{C}$, the map d_p is given by a constant complex matrix.

On the other hand, given the brane (3.6), if the set of indices S_p has m_p elements, on $ \oplus_{1}^{m_{p}} O$ we define the map φ_p^p,

\[\varphi_p^p(\sigma_1 \oplus \cdots \oplus \sigma_{m_{p}}) = \partial \sigma_1 \oplus \cdots \oplus \partial \sigma_{m_{p}}. \]

It is a holomorphic connection on $ \oplus_{1}^{m_{p}} O$. Moreover, the family $\{\varphi_p\}$ is compatible with the “constant” differentials d_p. Thus, this family is a holomorphic gauge field on the brane defined by the complex (3.6). □

3.1.2. The homotopy category. Let X be a smooth projective variety. The category $\text{Coh}(X)$ of coherent sheaves over X has not enough injectives, for this reason it is convenient to regard $D^b(X)$ as a subcategory of $D^b(\mathcal{O}_X)$, the bounded derived category of the \mathcal{O}_X-modules. In fact, $D^b(X)$ is equivalent to $D^b(\mathcal{O}_X)_{\text{coh}}$, the full subcategory of $D^b(\mathcal{O}_X)$ consisting of the complexes with coherent cohomology [12, Chapter II] [26, Exp II]. Thus, $D^b(X)$ can be identified with the homotopy category whose objects are the complexes G^\bullet of injective \mathcal{O}_X-modules, such that its cohomogy is bounded and coherent; i.e. $H^i(G^\bullet)$ is coherent and vanishes for $|j| >> 0$. We will denote this homotopy category by $K^b(X)_{\text{coh}}$.

Henceforth, we assume that Y is a Hodge manifold; in this way we can identify coherent analytic sheaves on Y with algebraic ones. Hence, the B-branes on Y can be considered as objects of $K^b(Y)_{\text{coh}}$.

In accordance with the preceding paragraph, one can assume that the brane $(\mathcal{F}^\bullet, \delta^\bullet)$ is a complex of injective \mathcal{O}-modules with coherent cohomology modules satisfying $H^i(\mathcal{F}^\bullet) = 0$ for $|i| >> 0$. Moreover,

\[\text{Hom}_{D^b(Y)}(\pi_1^*\mathcal{F}^\bullet, \pi_2^*\mathcal{F}^\bullet) \simeq \text{Hom}_{K^b(Y)_{\text{coh}}}(\mathcal{F}^\bullet, \mathcal{J}^1(\mathcal{F}^\bullet)), \]

where $\mathcal{J}^1(\mathcal{F}^\bullet)$ is an object of $K^b(Y)_{\text{coh}}$ q-isomorphic to $\mathcal{J}^1(\mathcal{F}^\bullet)$.

Thus, the elements of the space (3.1) can be identified with morphisms in the homotopy category $K^b(Y)_{\text{coh}}$.

From now on in this subsection, we delete the bullets in the notation for the complexes and set $\mathcal{J} := \mathcal{J}^1(\mathcal{F}^\bullet)$. Then there is a morphism
The gauge field ψ can be regarded as a morphism in $K^b(Y)_{\text{coh}}$, $\hat{\psi} : \mathcal{F} \to \widehat{\mathcal{J}}$, such that $\hat{\pi} \circ \hat{\psi} = 1$.

On the other hand, $\hat{\psi}$ as a morphism of a homotopy category, determines a well-defined morphism of \mathcal{O}-modules between the cohomologies, that will be denoted in bold,

$$\psi^j : \mathcal{H}^j(\mathcal{F}) \to \mathcal{H}^j(\widehat{\mathcal{J}}) = \mathcal{H}^j(\mathcal{J}).$$

Similarly, one has the canonical projection

$$\pi^j : \mathcal{H}^j(\mathcal{J}) = \mathcal{H}^j(\mathcal{F}) \oplus (\Omega^1 \otimes_\mathcal{O} \mathcal{H}^j(\mathcal{F})) \to \mathcal{H}^j(\mathcal{F}),$$

satisfying $\pi^j \psi^j = 1$.

We set η^j for the morphism of abelian sheaves defined by the inclusion in the direct sum

$$\eta^j : \mathcal{H}^j(\mathcal{F}) \to \mathcal{H}^j(\mathcal{J}) = \mathcal{H}^j(\mathcal{F}) \oplus (\Omega^1 \otimes_\mathcal{O} \mathcal{H}^j(\mathcal{F})), \quad \text{Hence, } \pi^j(\psi^j - \eta^j) = 0, \text{ and thus } \psi^j - \eta^j \text{ defines a morphism of abelian sheaves}$$

$$(3.7) \quad \vartheta^j : \mathcal{H}^j(\mathcal{F}) \to \Omega^1 \otimes_\mathcal{O} \mathcal{H}^j(\mathcal{F}),$$

which, by (3.2), satisfies the Leibniz’s. That is,

Proposition 7. The gauge field ψ on the brane \mathcal{F} determines on each sheaf $\mathcal{H}^j(\mathcal{F})$ a connection ϑ^j.

Definition 4. The gauge field ψ is called flat, if the curvature of the connection ϑ^j vanishes, for all j.

Remark 1. Let ψ, ϕ be two gauge fields on \mathcal{F}, we set

$$\xi := \phi - \psi \in \text{Hom}_{K^b(Y)}(\mathcal{F}, \mathcal{J}(\mathcal{F})), \quad \text{and denote by } \hat{\xi} \text{ the corresponding morphism } \mathcal{F} \to \mathcal{J}(\mathcal{F}) \text{ in the category } K^b(Y)_{\text{coh}}. \text{ Thus, } \hat{\xi} \text{ determines a well defined morphism of } \mathcal{O}\text{-modules between the cohomologies, } \xi^j : \mathcal{H}^j(\mathcal{F}) \to \mathcal{H}^j(\mathcal{J}). \text{ On the other hand, as } \phi \text{ and } \psi \text{ are gauge fields, } \hat{\pi} \hat{\xi} = 0. \text{ Hence, } \xi^j \text{ defines morphisms of } \mathcal{O}\text{-modules } \zeta^j(\xi) : \mathcal{H}^j(\mathcal{F}) \to \Omega^1 \otimes_\mathcal{O} \mathcal{H}^j(\mathcal{F}). \text{ We denote by } \hat{\vartheta}^j \text{ and } \chi^j \text{ the connections on } \mathcal{H}^j(\mathcal{F}) \text{ determined by } \hat{\psi} \text{ and } \hat{\phi}, \text{ respectively. Since } \xi^j = (\phi^j - \eta^j) - (\psi^j - \eta^j), \text{ it follows that } \chi^j = \vartheta^j + \zeta^j(\xi). \text{ In short, } \zeta^j(\xi) \text{ is the “variation” on the connection } \vartheta^j \text{ induced by the “variation” } \xi \text{ of the gauge field } \psi.$$

3.2. Yang-Mills fields on a brane. The result deduced in the following paragraph gives us a suggestion for the definition of the Yang-Mills functional over the gauge fields on a brane.
3.2.1. An Euler-Poincaré mapping. Let \mathcal{A} be a coherent sheaf on the Hodge manifold Y, and $\alpha : \mathcal{A} \to \Omega^1(\mathcal{A})$ a holomorphic connection on \mathcal{A}. Denoting by $\mathcal{S}_\mathcal{A}$ the singularity set of \mathcal{A}, on $Y \setminus \mathcal{S}_\mathcal{A}$ we define differential form

$$\Phi(\mathcal{A}, \alpha) := \text{tr}(K_\alpha \wedge \ast K_\alpha) \in \Gamma(Y \setminus \mathcal{S}_\mathcal{A}, \Omega^{1\text{top}}),$$

K_α being the curvature of α considered as an $\text{End}(\mathcal{A})$-valued 2-form.

By \mathcal{E}, we denote the category whose objects are pairs (\mathcal{A}, α). A morphism $f : (\mathcal{A}, \alpha) \to (\mathcal{B}, \beta)$ is a morphism of coherent sheaves compatible with the connections; i.e. such that $(1 \otimes f) \circ \alpha = \beta \circ f$.

Proposition 8. If $0 \to (\mathcal{A}, \alpha) \xrightarrow{f} (\mathcal{B}, \beta) \xrightarrow{g} (\mathcal{C}, \gamma) \to 0$, is an exact sequence in \mathcal{E}, then on $Y \setminus \mathcal{S}$

$$\Phi(\mathcal{B}, \beta) = \Phi(\mathcal{A}, \alpha) + \Phi(\mathcal{C}, \gamma),$$

where \mathcal{S} is the union of the singularity sets of \mathcal{A}, \mathcal{B}, and \mathcal{C}.

Proof. Let $y_0 \in Y \setminus \mathcal{S}$. As the exact sequence splits locally on $Y \setminus \mathcal{S}$, there exists an open neighborhood U of y_0 such that $g|_U$, in the sequence of locally free modules $0 \to \mathcal{A}|_U \xrightarrow{f|_U} \mathcal{B}|_U \xrightarrow{g|_U} \mathcal{C}|_U \to 0$, has a right inverse h.

Let a be a frame for $\mathcal{A}|_U$, then $\alpha(a) = A \cdot a$, where A is a matrix of 1-forms on U. Furthermore, a can be chosen so that $A(y_0) = 0$. Similarly, let c be a frame for $\mathcal{C}|_U$, then $\gamma(c) = C \cdot c$ and we choose c so that $C(y_0) = 0$. From the splitting, it follows that $\{f(a), h(c)\}$ is a frame for $\mathcal{B}|_U$. By the compatibility of the connections with f and g,

$$\beta(f(a)) = (1 \otimes f)(\alpha(a)) = (1 \otimes f)(A \cdot a) = A \cdot f(a).$$

On the other hand, $\beta(h(c)) = R \cdot f(a) + S \cdot h(c)$, with R and S matrices of 1-forms. But,

$$C \cdot c = \gamma(c) = \gamma(gh(c)) = (1 \otimes g)(\beta(h(c))) = (1 \otimes g)(R \cdot f(a) + S \cdot h(c)).$$

As $g \circ f = 0$ and $g \circ h = 1$, it follows that $C = S$. That is, the matrix of the connection β in the frame $\{f(a), h(c)\}$ is

$$\text{(3.8)}$$

$$M := \begin{pmatrix} A & R \\ 0 & C \end{pmatrix}$$

Since $A(y_0) = 0$ and $C(y_0) = 0$, the matrix of $K_\alpha(y_0)$, of the curvature of α at the point y_0, is dA. Analogous the matrix of $K_\gamma(y_0)$ is dC. The one of $K_\beta(y_0)$ is the exterior derivative of $[\alpha, \gamma]$, since $M \wedge M = 0$ at y_0. Then

$$\text{tr}(K_\beta(y_0) \wedge \ast K_\beta(y_0)) = \text{tr}(dA \wedge \ast dA) + \text{tr}(dC \wedge \ast dC)$$

$$= \text{tr}(K_\alpha(y_0) \wedge \ast K_\alpha(y_0)) + \text{tr}(K_\gamma(y_0) \wedge \ast K_\gamma(y_0)).$$
As \(y_0 \) is an arbitrary point of \(Y \setminus \mathcal{S} \), it follows the proposition.

Let \((\mathcal{G}^\bullet, \delta^\bullet)\) be a bounded complex of coherent sheaves on the manifold \(Y \). Let \(\nabla^\bullet \) be a family of holomorphic connections, compatible with the operators \(\delta^\bullet \). That is, \(\nabla^i : \mathcal{G}^i \to \Omega^1(\mathcal{G}^i) \) is a holomorphic gauge field on the coherent sheaf \(\mathcal{G}^i \) such that

\[
(1 \otimes \delta^i)\nabla^i = \nabla^{i+1} \delta^i.
\]

Hence, \(\nabla^i(\operatorname{Ker}(\delta^i)) \subset \operatorname{Ker}(1 \otimes \delta^i) \) and a similar relation for the image \(\operatorname{Im}(\delta^i - 1) \). It follows that \(\nabla^i \) induces a connection \(\theta^i \) on the cohomology \(\theta^i : \mathcal{H}^i(\mathcal{G}^\bullet) \to \mathcal{H}^i(\Omega^1(\mathcal{G}^\bullet)) \).

Obviously, the restrictions of \(\nabla^i \) determine connections on \(\operatorname{Ker}(\delta^i) \) and \(\operatorname{Im}(\delta^i - 1) \), respectively. one has the exact sequence

\[
0 \to (\operatorname{Ker}(\delta^i), \nabla^i) \to (\mathcal{G}^i, \nabla^i) \to (\operatorname{Im}(\delta^i), \nabla^{i+1}) \to 0
\]

in the category \(\mathcal{C} \). Similarly, we have the exact sequence

\[
0 \to (\operatorname{Im}(\delta^i - 1), \nabla^i) \to (\operatorname{Ker}(\delta^i), \nabla^i) \to (\mathcal{H}^i, \theta^i) \to 0.
\]

Corollary 3. Denoting with \(\mathcal{S} \) the union of the singularity sets of the sheaves \(\mathcal{G}^i \), then on \(Y \setminus \mathcal{S} \)

\[
\sum_i (-1)^i \operatorname{tr}(K_{\nabla^i} \wedge *K_{\nabla^i}) = \sum_i (-1)^i \operatorname{tr}(K_{\theta^i} \wedge *K_{\theta^i}).
\]

Proof. From Proposition 8 together with (3.9), it follows

\[
\Phi(\mathcal{G}^i, \nabla^i) = \Phi(\operatorname{Ker}(\delta^i), \nabla^i) + \Phi(\operatorname{Im}(\delta^i), \nabla^{i+1}).
\]

From (3.10), one obtains an analogous relation. Taking the alternate sums

\[
\sum_i (-1)^i \Phi(\mathcal{G}^i, \nabla^i) = \sum_i (-1)^i \Phi(\mathcal{H}^i, \theta^i).
\]

\[\square\]

3.2.2. The Yang-Mills functional

We propose a definition for the Yang-Mills functional over gauge fields on a brane. This proposal is based on the following considerations:

1. It is reasonable to require that this definition generalizes the one for coherent sheaves.
2. As a gauge field is a homotopy class of a morphism of complexes, it seems convenient to move on the cohomology of these complexes.
(3) Let E^\bullet be a bounded complex of Hermitian vector bundles over the Kähler manifold Y, and ∇^\bullet a family of connections compatible with the Hermitian metrics and the coboundary operators. Denoting by $H^i(E^\bullet)$ the cohomology bundles, there exist connections θ^i on those bundles, induced by the family ∇^\bullet. By Corollary 3 together with (2.27), one has the following equality of Euler-Poincaré type.

$$\sum_i (-1)^i \|K_{\nabla^i}\|^2 = \sum_i (-1)^i \|K_{\theta^i}\|^2.$$

On the basis of the above considerations, it seems appropriate to define the value of the Yang-Mills functional on the gauge ψ on the brane \mathcal{F}^\bullet as $\sum_i (-1)^i \|K_{\theta^i}\|^2$.

More precisely, taking into account Proposition 7, we adopt the following definitions.

Definition 5. The brane $(\mathcal{F}^\bullet, \delta^\bullet)$ is called a Hermitian brane, if the cohomology sheaves H^j are Hermitian.

Let $(\mathcal{F}^\bullet, \delta^\bullet)$ be a Hermitian brane on the Hodge manifold Y. Given a gauge field ψ on the brane \mathcal{F}^\bullet, by Proposition 7 one has the family of curvatures K_{θ^i} of the connections induced on the cohomologies. We denote by S^i the singularity set of the cohomology sheaf \mathcal{H}^i and let $S := \cup S^i$. On $Y \setminus S$ all the \mathcal{O}-modules \mathcal{H}^i are locally free and we denote by H^i the corresponding vector bundles. One has the respective curvature 2-forms

$$K_{\theta^i} \in \Gamma(Y \setminus S, \Omega^2 \otimes_\mathcal{O} \mathcal{End}(H^\bullet)).$$

Definition 6. Given a gauge field ψ on the Hermitian B-brane $(\mathcal{F}^\bullet, \delta^\bullet)$, we define the value of the Yang-Mills functional at ψ by

$$(3.12) \quad \mathcal{YM}(\psi) = \sum_i (-1)^i \|K_{\theta^i}\|^2.$$

The Yang-Mills fields on the brane $(\mathcal{F}^\bullet, \delta^\bullet)$ are the critical points of this functional.

Note that, if $(\mathcal{F}^\bullet, \delta^\bullet)$ is an acyclic complex, then the Yang-Mills functional for this complex is identically zero.

Example 1. Let $\mathcal{A}^\bullet := (\mathcal{A}^\bullet, d^\bullet_A, \alpha^\bullet)$ be a complex in the category \mathcal{C}; i.e, a complex of coherent sheaves with a family of holomorphic connections compatible with the coboundary operator d_A. Let $f := (f^\bullet)$ a morphism $f^\bullet : \mathcal{A}^\bullet \to \mathcal{B}^\bullet$ in \mathcal{C}; that is, f is a morphism of complexes compatible with the connections. One can consider the mapping cone \mathcal{E}^\bullet of f. Thus, $\mathcal{E}^\bullet = (\mathcal{A}^\bullet[1] \oplus \mathcal{B}^\bullet, d^\bullet_C, \nabla^\bullet_C)$, with $d_C(a, b) =$
\[(d(a), (-1)^{\text{degree}} f(a) + db) \text{ and } \nabla(a, b) = (\alpha(a), \beta(b)). \]

In fact, \((1 \otimes d_C) \circ \nabla = \nabla \circ d_C\) and thus \(\mathcal{C}^\bullet\) is a complex of the category \(\mathcal{C}\).

For each \(i\) one has the following exact sequence in the category \(\mathcal{C}\)
\[
0 \to \mathcal{B}^i \to \mathcal{C}^i \to \mathcal{A}^{i+1} \to 0.
\]

From Proposition 8, \(\Phi(\mathcal{B}^i) + \Phi(\mathcal{A}^{i+1}) = \Phi(\mathcal{C}^i)\). Multiplying by \((-1)^i\) and summing
\[
\sum (-1)^i \text{tr}(K_{\beta^i} \wedge *K_{\beta^i}) + \sum (-1)^i \text{tr}(K_{\alpha^{i+1}} \wedge *K_{\alpha^{i+1}})
= \sum (-1)^i \text{tr}(K_{\nabla^i} \wedge *K_{\nabla^i})).
\]

Let us assume that

- \(\mathcal{A}^i\) and \(\mathcal{B}^i\) Hermitian sheaves for all \(i\).
- \(\alpha^i\) and \(\beta^i\) are Hermitian gauge fields (i.e., compatible with the metric) on \(\mathcal{A}^i\) and \(\mathcal{B}^i\), respectively.

Then one defines on \(\mathcal{C}^i\) the metric \(\langle \langle a, b \rangle, \langle a', b' \rangle \rangle := \langle a, a' \rangle + \langle b, b' \rangle\).

The connection \(\nabla^i\) is compatible with this metric. From the equality (3.13) together with (2.27), one deduces the following proposition.

Proposition 9. With the above notations and under the above hypotheses, \(\alpha\) and \(\beta\) determine in a natural way a gauge field \(\nabla\) on the mapping cone of \(f^*\) satisfying
\[
\mathcal{Y}\mathcal{M}(\beta) - \mathcal{Y}\mathcal{M}(\alpha) = \mathcal{Y}\mathcal{M}(\nabla).
\]

On the other hand, in the context of the branes theory, the fact that the branes \(\mathcal{A}^\bullet, \mathcal{B}^\bullet\) and \(\mathcal{C}^\bullet\) are the members of the distinguished triangle \(\mathcal{A}^\bullet \to \mathcal{B}^\bullet \to \mathcal{C}^\bullet \to \mathcal{A}^\bullet[1]\) means that \(\mathcal{A}^\bullet\) and \(\mathcal{C}^\bullet\) can potentially bind together to form the brane \(\mathcal{B}^\bullet[1\text{ Section 6.2.1}]\). Thus, the additive nature of equation (3.14) is consistent with this interpretation.

3.2.3. Yang-Mills fields

If \(\phi\) and \(\psi\) are gauge fields on the \(B\)-brane \((\mathcal{F}^\bullet, \delta^\bullet)\) and \(\xi = \phi - \psi\), using the notations introduced in Remark 1, the connections on the cohomologies induced by \(\phi\) and \(\psi\) satisfy
\[
\chi^j(\xi) = \partial^j + \zeta^j(\xi),
\]

with
\[
\zeta^j(\xi) \in \Gamma(Y \setminus S, \Omega^1 \otimes_\mathcal{O} \mathcal{E}nd(H^j)).
\]

With the mentioned notation, an infinitesimal variation \(\psi_\epsilon\) of \(\psi\) is given by a family \(\epsilon^j \zeta^j\), with \(\epsilon^j \in \mathbb{C}\), which defines a morphism between \(\mathcal{F}^\bullet\) and \(\mathcal{J}(\mathcal{F}^\bullet)\) in the homotopy category. In this case, for the connections on the cohomologies, one has \(\chi^j = \partial^j + \epsilon^j \zeta^j\). Furthermore, on \(Y \setminus S\) the curvatures satisfy
\[
K_{\chi^j} = K_{\partial^j} + \epsilon^j \partial^j(\zeta^j) + O((\epsilon^j)^2),
\]
\(\vartheta^j(\zeta^j) \) being the covariant derivative of \(\zeta^j \) considered as a section of \(\Omega^1 \otimes_{\mathcal{O}} \text{End}(H^j) \).

The functional \(\mathcal{Y} \mathcal{M} \) takes at the gauge field \(\psi \) a stationary value if

\[
\frac{\partial}{\partial \epsilon} \mathcal{Y} \mathcal{M}(\psi_{\epsilon}) \big|_{\epsilon = 0} = 0,
\]

for all \(i \) and any variation of \(\psi \). That is, if

\[
(3.15) \quad \langle K_{\vartheta^i}, \vartheta^i(\zeta^i) \rangle = 0,
\]

for all \(i \) and for any \(\zeta^i \) defined by a variation of \(\psi \). Therefore, by (2.31), one has the following proposition.

Proposition 10. Let \((F^\bullet, \delta^\bullet)\) be a Hermitian brane, such that the sheaves \(H^i(F^\bullet) \) are reflexive, and let \(\psi \) gauge field on \(F^\bullet \). If \(\vartheta^i \) is a Yang-Mills field on \(H^i \) for all \(i \), then \(\psi \) is a stationary point of the Yang-Mills functional; i.e. \(\psi \) is a Yang-Mills field on the brane.

The following proposition is a converse to Proposition 10.

Proposition 11. Let \(F^\bullet \) be a Hermitian B-brane as in Proposition 10. If \(\nabla^\bullet \) is a Yang-Mills field on \(F^\bullet \), then the connection \(\vartheta^i \) induced on \(H^i \) is a Yang-Mills field on this sheaf.

Proof. We will consider \((F^\bullet, \delta^\bullet)\) as an object of the category \(K^b_{\text{coh}}(Y) \); that is, we assume that \((F^\bullet, \delta^\bullet)\) is a complex of injective \(\mathcal{O} \)-modules such that its cohomology is bounded and coherent.

As \(\text{Ker}(\delta^i) \) is a submodule of the injective \(\mathcal{O} \)-module \(F^i \), then \(\text{Ker}(\delta^i) \) is a retract of \(F^i \) and thus it is also an injective \(\mathcal{O} \)-module. Therefore, the following short exact sequence

\[
0 \to \text{Ker}(\delta^i) \to F^i \to \text{Coim}(\delta^i) \to 0
\]

splits. That is, \(F^i \cong \text{Ker}(\delta^i) \oplus \text{Coim}(\delta^i) \).

Since \(\text{Im}(\delta^{i-1}) \) is a retract of the injective \(\mathcal{O} \)-module \(\text{Ker}(\delta^i) \), the following short exact sequence also splits

\[
0 \to \text{Im}(\delta^{i-1}) \to \text{Ker}(\delta^i) \to H^i \to 0.
\]

Thus,

\[
(3.16) \quad F^i \cong H^i \oplus G^i,
\]

where \(G^i \) is isomorphic to the direct sum of \(\text{Coim}(\delta^i) \) and \(\text{Im}(\delta^{i-1}) \). As \(H^i \) and \(G^i \) are summands in a direct sum decomposition of an injective \(\mathcal{O} \)-module, they are also injective.

On the other hand, the coboundary operator \(\delta^i : F^i \to F^{i+1} \) induces via the isomorphisms (3.16) to the morphism

\[
(3.17) \quad \delta^i : H^i \oplus G^i \to H^{i+1} \oplus G^{i+1}, \quad (a, b) \mapsto (0, \delta^i b).
\]
Given $\xi \in \text{Hom}_{K^b_{\text{coh}}(Y)}(\mathcal{F}^*, \Omega^1 \otimes_0 \mathcal{F}^*)$, according to Remark 1, it determines $\zeta^i \in \text{Hom}(\mathcal{H}^i, \Omega^1 \otimes_0 \mathcal{H}^i)$. As ∇^* is a Yang-Mills field (3.15) is satisfied.

A general “variation” of ϑ^j is defined by an element $\tau \in \text{Hom}(\mathcal{H}^j, \Omega^1 \otimes_0 \mathcal{H}^j)$. We need to prove that

$$\langle K_{\vartheta^i}, \vartheta^j(\tau) \rangle = 0,$$

for any variation τ.

The morphism τ can be extended $C_i : \mathcal{H}^i \oplus \mathcal{G}^i \to \Omega^1 \otimes_0 (\mathcal{H}^i \oplus \mathcal{G}^i)$,

where

$$C^i(a, b) = \begin{cases} (\tau(a), 0), & \text{if } i = j \\ (0, 0), & \text{if } i \neq j \end{cases}$$

Moreover, the C_i are compatible with the coboundaries. For example for $i = j$, by (3.17), $((1 \otimes \delta^j) \circ C^j)(a, b) = (1 \otimes \delta^j)(\tau(a), 0) = 0$; and $C^{j+1} \circ \delta^j(a, b) = 0$. Thus, by the isomorphism (3.16) the C_i determine a morphism $\xi : \mathcal{F}^* \to \Omega^1 \otimes_0 \mathcal{F}^*$ in the category $K^b_{\text{coh}}(Y)$, and the corresponding ζ^i induced in the cohomologies are all 0 except when $i = j$, in which case $\zeta^j = \tau$. Hence, by (3.15),

$$\langle K_{\vartheta^i}, \vartheta^j(\tau) \rangle = 0.$$

This holds for any “variation” τ of ϑ^j. That is, by (2.31), ϑ^j is a Yang-Mills field on \mathcal{H}^i.

Proof of Theorem 6. From Proposition 11 together with Proposition 10, it follows Theorem 6.

Let us assume that the set of gauge fields on the brane \mathcal{F}^* is nonempty. Let m be the dimension of the vector space $\text{Ext}^0(\mathcal{F}^*, \Omega^1(\mathcal{F}^*))$. We denote by ξ_1, \ldots, ξ_m a basis of this vector space. According to Proposition 6, any gauge field ψ on the brane can be expressed

$$\psi = \tilde{\psi} + \sum a \lambda_a \xi_a$$

$\tilde{\psi}$ being a fixed gauge field and $\lambda_a \in \mathbb{C}$. The corresponding connection ∇^i on \mathcal{F}^i is of the form

$$\nabla^i = \tilde{\nabla}^i + \sum a \lambda_a \xi^i_a,$$

with $\xi^i_a \in \text{Hom}(\mathcal{F}^i, \Omega^1(\mathcal{F}^i))$. Hence, the connections on the cohomology sheaves \mathcal{H}^i can be written in the form

$$\vartheta^i = \tilde{\vartheta}^i + \sum a \lambda_a \zeta^i_a.$$
The corresponding curvatures satisfy
\[K_{\tilde{\theta}^i} = K_{\theta^i} + \sum_a \lambda_a \tilde{\theta}^i(\zeta_a^i) + \sum_{a,b} \lambda_a \lambda_b \zeta_a^i \wedge \zeta_b^i. \]

Therefore \(\|K_{\theta^i}\|^2 \) is a polynomial \(P^i(\lambda_1, \ldots, \lambda_m) \) of degree \(\leq 4 \).

By Theorem 6, the critical points of the Yang-Mills functional on \(\mathcal{F}^* \) correspond to the points \((\lambda_1, \ldots, \lambda_m) \in \mathbb{C}^m\) which satisfy the equations \(\frac{\partial P^i}{\partial \lambda_a} = 0 \) for \(a = 1, \ldots, m \) and for all \(i \). We have the following result, which generalizes Theorem 2.

Theorem 7. Assume the cohomology sheaves \(H^i \) of the brane \(\mathcal{F}^* \) are reflexive and the set of gauge fields on \(\mathcal{F}^* \) is nonempty. Then this set is in bijective correspondence with the points of a subvariety of \(\mathbb{C}^m \) defined by \(m \cdot s \) polynomials of degree \(\leq 3 \), where \(m := \dim \text{Ext}^0(\mathcal{F}^*, \Omega^1(\mathcal{F}^*)) \) and \(s \) the number of nontrivial sheaves \(H^i \).

4. Appendix

Let \(L \) be a holomorphic line bundle over the Kähler manifold \(Y \). We denote by \(\mathcal{U} = \{U_a\}_a \) a good cover of \(Y \), such that the restrictions \(L|_{U_a} \) are trivial. Let \(\{\varphi_{ab}\} \) denote the corresponding cocycle of \(Z^1(\mathcal{U}, \mathcal{O}^*) \). By the simply connectedness of each \(U_{ab} \), one can define \(\frac{1}{2\pi i} \log \varphi_{ab} \), and \(\zeta := \{\frac{1}{2\pi i} \partial \log \varphi_{ab}\} \) is a Čech cocycle in \(Z^1(\mathcal{U}, \Omega^1) \).

Lemma 1. The cocycle \(\zeta \) is a coboundary iff the Atiyah class \(a(L) = 0 \).

Proof. A holomorphic gauge field in the trivialization \(L|_{U_a} \) is of the form \(\partial + B_a \), with \(B_a \) a holomorphic 1-form on \(U_a \). The local connections \(\{\partial + B_a\} \) can be glued to form a holomorphic connection on \(L \) iff on \(U_{ab} \)

\[B_b - B_a = \partial \log \varphi_{ab}, \]

for all \(a, b \). Equivalently, if the cocycle \(\zeta \) is a coboundary. \(\square \)

If \(\beta \in Z^0(\mathcal{U}, \Omega^1) \) satisfies \(\delta \beta = \zeta \), where \(\delta \) is the Čech coboundary operator, then \(-d\beta \) is the 2-form on \(Y \) determined by \(\zeta \). Such a \(\beta \) can be construct from a Hermitian metric on \(L \).

A Hermitian metric on \(L \) is defined by a family \(\{f_a : U_a \to \mathbb{R}_{>0}\}_a \) of \(C^\infty \) functions, such that \(f_b = \varphi_{ab} \varphi_{ab} f_a \). Letting \(\beta_a = \frac{1}{2\pi i} \partial \log f_a \), since the transition functions \(\varphi_{ab} \) are holomorphic one has

\[(\delta \beta)_{ab} = \frac{1}{2\pi i} \partial \log (\varphi_{ab} \varphi_{ab}) = \zeta_{ab}. \]

On the other hand,

\[-d\beta = \frac{i}{2\pi} \bar{\partial} \partial \log f_a. \]
Thus,
\[
(\delta(-d\beta))_{ab} = \frac{-1}{2\pi i} \partial \bar{\partial} \log(\varphi_{ab}\bar{\varphi}_{ab}) = 0.
\]
That is, \(-d\beta\) is a 2-form on \(Y\).

Associated to the Hermitian metric is defined the corresponding Chern connection, whose curvature form is given by \(\partial \bar{\partial} \log f_a\). Therefore, the cocycle \(\zeta\) defines the first \(c_1(L)\). From Lemma 11, it follows the following known result [3].

Proposition 12. \(L\) admits a holomorphic gauge field iff \(c_1(L) = 0\).

Thus, \(L\) supports a holomorphic gauge field iff \(L\) is flat.

REFERENCES

[1] P. S. Aspinwall: D-branes on Calabi-Yau manifolds. In J.M. Maldacena (ed) *Progress in String Theory*, World Sci. Publ., 2005, 1-152.

[2] P. S. Aspinwall et al.: *Dirichlet branes and mirror symmetry*. Clay mathematics monographs vol 4. Amer. Math. Soc., Providence 2009.

[3] M. Atiyah: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181-207 (1957).

[4] I. Biswas: Vector bundles with holomorphic connection over a projective manifold with tangent bundle of negative degree. Proc. Amer. Math. Soc. 126 (1998) 2827-2843.

[5] I. Biswas and J. N. Iyer: Holomorphic connections on some complex manifolds. C. R. Acad. Sci. Paris, Ser. I 344 (2007) 577-580.

[6] P. Deligne: *Équations différentielles à points singuliers réguliers*. Lecture Notes 163. Springer-Verlag, Berlin 1970.

[7] D. Eisenbud: *Commutative algebra with a view toward algebraic geometry*. Springer-Verlag (1995).

[8] S. I. Gelfand and Y. I. Manin: *Methods of homological algebra*. Springer, Berlin 2002.

[9] H. Grauert and R. Remmert *Coherent analytic sheaves*. Springer-Verlag. Berlin 1984.

[10] P. Griffiths and J. Harris: *Principles of algebraic geometry*. John Wiley, New York 1994.

[11] M. J. D. Hamilton: *Mathematical gauge theory*. Springer 2017.

[12] R. Hartshorne: *Residues and Duality*. Lecture Notes in Math., vol. 20, Springer-Verlag, Berlin 1966.

[13] R. Hartshorne: Stable reflexive sheaves. Math. Ann. 254, 121-176 (1980).

[14] R. Hartshorne: *Algebraic geometry*. Springer-Verlag 1983.

[15] R. Hartshorne: Generalized divisors on Gorenstein schemes. Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin. Part III, vol 8 1994 287-339.

[16] D. Huybrechts: *Complex geometry*. Springer, Berlin 2005.

[17] D. Huybrechts: *Fourier-Mukai transforms in algebraic geometry*. Oxford U. P., Oxford 2006.

[18] B. Iversen: *Cohomology of sheaves*. Springer-Verlag. Berlin 1986.
[19] M. Kashiwara, and P. Schapira: *Sheaves on manifolds*. Springer-Verlag 2002.
[20] S. Katz and E. Sharpe: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6 979-1030 (2003).
[21] S. Kobayashi: *Differential geometry of complex vector bundles*. Iwanami Shoten Publishers and Princeton University Press, Princeton 1987.
[22] H. B. Lawson and M.-L. Michelson: *Spin geometry*. Princeton U.P., Princeton 1989.
[23] J. D. Moore: *Lectures on Seiberg-Witten Invariants*. Springer, Berlin 2001
[24] G. L. Naber: *Topology, geometry and gauge fields*. Springer, New York 2011.
[25] Ch. Okonek, M. Schneider and H. Spindler: *Vector Bundles on Complex Projective Spaces*. Birkhäuser, Basel 1988.
[26] Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), dirigé par P. Berthelot, A. Grothendieck, L. Illusie, avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Math., vol. 225, Springer-Verlag, Berlin 1971.
[27] P. Shanahan: *The Atiyah-Singer index theorem*. Lecture Notes in Mathematics 638. Springer-Verlag, Berlin 1978.
[28] A. Viña: Gauge fields on coherent sheaves. arXiv:2109.11841 [math. AG].
[29] C. Voisin: *Hodge Theory and Complex Algebraic Geometry*. Cambridge U. P., Cambridge 2002.
[30] R. O. Wells: *Differential Analysis on Complex Manifolds*. Springer, New York 2008.

Departamento de Física. Universidad de Oviedo. García Lorca 18. 33007 Oviedo. Spain.

Email address: vina@uniovi.es