INTRODUCTION

Coexistence of sympatric species is facilitated by differences in the use of resources, that is, resource partitioning (Schoener, 1974). Resource partitioning occurs in several dimensions, with regard to resources. Ultimately, the sum of these dimensions constitutes the ecological niche of an organism, that is, the set of biotic and abiotic conditions in which a species can persist (Holt, 2009). This includes both the distribution of a species and its interactions with other species, but also factors relevant to the fine-scale distribution of species (e.g., microhabitats), their biotic interactions as well as their diet (Wiens et al., 2010).

With a notable adaptive radiation in their evolutionary history, and over 1,300 known species worldwide (Fenton & Simmons, 2015), bats have an important role in supporting global ecosystems through their dietary preferences. This is evidenced primarily through the consumption of nocturnal insects and dispersal of nutrients, pollen, and seeds (Patterson, Willig, & Stevens, 2003). Research on the feeding behavior of species is essential to understanding ecosystem function and the impacts of pollution, habitat destruction, and global climate change (Boyles & Storm, 2007; Kunz, Braun de Torrez, Bauer, Lobova, & Fleming, 2011; Vesterinen, 2015; Vesterinen et al., 2016). Furthermore, establishing factors influencing the extinction risk of bats is essential for their conservation, because they help identify endangered species and provide the basis for conservation (Safi & Kerth, 2004). However, these factors may be difficult to discern between species of bats, of which many appear to share portions of their ecological niches, such as habitat and apparently diet.

Table for five, please: Dietary partitioning in boreal bats

Eero J. Vesterinen1,2* | Anna I. E. Puisto1* | Anna S. Blomberg1,3 | Thomas M. Lilley4,5

1Biodiversity Unit, University of Turku, Turku, Finland
2Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
3Department of Biology, University of Turku, Turku, Finland
4Institute of Integrative Biology, University of Liverpool, Liverpool, UK
5Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland

Correspondence
Eero J. Vesterinen, Biodiversity Unit, University of Turku, Turku, Finland.
Email: ejvest@utu.fi
and
Thomas M. Lilley, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
Email: thomas.lilley@helsinki.fi

Funding information
Emil Aaltosen Säätiö; H2020 Marie Skłodowska-Curie Actions; Jane ja Aatos Erkon Säätiö

Abstract
Differences in diet can explain resource partitioning in apparently similar, sympatric species. Here, we analyzed 1,252 fecal droppings from five species (Eptesicus nilssonii, Myotis brandtii, M. daubentoni, M. mystacinus, and Plecotus auritus) to reveal their dietary niches using fecal DNA metabarcoding. We identified nearly 550 prey species in 13 arthropod orders. Two main orders (Diptera and Lepidoptera) formed the majority of the diet for all species, constituting roughly 80%–90% of the diet. All five species had different dietary assemblages. We also found significant differences in the size of prey species between the bat species. Our results on diet composition remain mostly unchanged when using either read counts as a proxy for quantitative diet or presence-absence data, indicating a strong biological pattern. We conclude that although bats share major components in their ecology (nocturnal life style, insectivory, and echolocation), species differ in feeding behavior, suggesting bats may have distinctive evolutionary strategies. Diet analysis helps illuminate life history traits of various species, adding to sparse ecological knowledge, which can be utilized in conservation planning.

KEYWORDS
Chiroptera, dietary analysis, metabarcoding, prey size, resource partitioning
Even though some degree of food mixing is required for most species, it is thought that the diets of terrestrial mammals are generally highly specialized (Pineda-Munoz & Alroy, 2014). Indeed, when viewed in its entirety, the dietary diversity in bats is huge, ranging from insectivores, frugivores, and nectarivores to piscivores, carnivores, and even sanguinivores (Kunz, 1998). However, closely related species often occupy similar ecological niches, suggesting that components of the diet overlap to a high degree (Lara, Pérez, Castillo-Guevara, & Serrano-Meneses, 2015; Losos, 2008; Münkemüller, Boucher, Thuiller, & Lavergne, 2015; Razgour et al., 2011; Wilson, 2010). This phylogenetic signal in food webs is associated with the tendency of related species to share habitat and body size (Rezende, Albert, Fortuna, & Bascombe, 2009). For instance, insectivorous bats are generally small, because of the negative correlation between size and echolocation frequency of a bat. High-frequency echolocation calls are needed for the detection of small prey (Brigham, 1991). Nevertheless, species with identical niches rarely exist (Wiens et al., 2010).

Consisting of ca. 430 species sharing similar morphology, the insectivorous family Vespertilionidae [Gray 1821] is a useful group for research on resource partitioning (Aldridge & Rautenbach, 1987; Saunders & Barclay, 1992). Vespertilionidae exhibits only subtle interspecific morphological variation compared to members of the other bat families, even among distantly related species. This has posed a challenge in elucidating their evolutionary history (Jones, Purvis, MacLarnon, Bininda-Emonds, & Simmons, 2002; Van Den Bussche & Lack, 2013). Similarities in morphology are mirrored in diet; the almost cosmopolitan vesper bats are primarily insectivorous (Hoofer & Bussche, 2003; Simmons, 2005; Van Den Bussche & Lack, 2013). However, based on feeding behavior, vesper bat species have been classified to guilds of either aerial-hawking, gleaning, or trawling bats according to their foraging behavior (Norberg & Rayner, 1987). Recent advances in molecular methodology have begun to offer a deeper insight into the cryptic diet of these animals (Roslin, Majaneva, & Clare, 2016; Vesterinen et al., 2016; Vesterinen, Lilley, Laine, & Wahlberg, 2013). Vesper bats within the same feeding guild appear to share a great proportion of their diet (Roswag, Becker, & Encarnação, 2018). Because insectivorous bats opportunistically consume prey that may be periodically abundant (Vesterinen et al., 2013), this leads to significant temporal changes in the diet (Vesterinen et al., 2016), but could additionally result in a large overlap in dietary niches, suggesting resource partitioning occurs in other ecological dimensions.

Here, we unravel the resource partitioning of five resident vespertilionid bats in southwestern Finland through deep dietary analysis, including prey species identification, an estimate for prey body size and temporal changes in diet using fecal DNA barcoding. At high northern latitudes, the distribution of bats is constrained by extreme environmental demands and prey availability is more seasonal than elsewhere in their range (Clare et al., 2014; Shively & Barboza, 2017; Shively, Barboza, Doak, & Jung, 2017). The ranges of these five species (Eptesicus nilssonii [Keyserling & Bläsius, 1839], Myotis daubentonii [Kuhl, 1817], M. mystacinus [Kuhl, 1817], M. brandti [Eversmann, 1845], and Plecotus auritus [Linnaeus, 1758]) show considerable overlap, suggesting that trophic resource partitioning is important in supporting the species in Fennoscandia. We expect to see clear guild-specific segregation in diet between the three different feeding guilds presented by our species, trawling (M. daubentonii), gleaning (P. auritus), and aerial hawking (Figure 1; M. brandti, M. mystacinus, and E. nilssonii), and that we will see at least a partial dietary overlap among the members of the aerial hawker. Because of the opportunistic foraging behavior of insectivorous bats (Vesterinen et al., 2013), we also predict significant temporal changes in diet throughout the sampling season (but see Vesterinen et al., 2016). Finally, we predict a positive correlation between predator and prey size, which could be due to the negative correlation between bat size and echolocation frequency, hindering the ability to detect small prey items (Brigham, 1991). To the best of our knowledge, of the species studied here, molecular data on diet exist only for M. daubentonii (Galan et al., 2018; Krüger, Clare, Greif, et al., 2014; Krüger, Clare, Symondson, Keiis, & Petersen, 2014; Vesterinen et al., 2013, 2016), although the dietary contents of all species have previously been described through morphological analysis of fecal remains (Rydell, 1986; Vaughan, 1997).

FIGURE 1 One of the study species, Myotis brandti, foraging in its natural environment near the study area in southwestern Finland. M. brandti catches its prey mainly in flight in an open or semi-open environment. The current study is the first ever published molecular analysis of its diet: Geometrid and tortricid moths constituted half of its diet, while mosquitoes, midges, and flies formed another large part of the menu, approximately one-third. Photograph credits: Mr. Risto Lindstedt
2 | MATERIALS AND METHODS

2.1 | Study species

Of the 13 species of bats occurring in Finland, the species sampled here represent the most common and accessible (*Myotis daubentonii, Eptesicus nilssonii, M. brandtii, M. mystacinus, and Plecotus auritus*). Based on both the Finnish Biodiversity Information Facility (www.laji.fi) databases and our own bat sampling, spanning for more than 10 years, these bat species constitute approximately 90%–98% of all bat occurrences in Finland, and have been the focus of most bat research in Finland so far (Jakava-Viljanen, Lilley, Kyheröinen, & Huovilainen, 2010; Laine, Lilley, Norrdahl, & Primmer, 2013; Lilley et al., 2013; Lilley, Stauffer, Kanerva, & Eeva, 2014; Lilley, Veikkolainen, & Pulliainen, 2015; Veikkolainen, Vesterinen, Lilley, & Pulliainen, 2014).

Of the sampled species, only the Northern bat (*Eptesicus nilssonii*) has a range encompassing all of Finland, with records extending far above the Arctic Circle, all the way to Utsjoki at 69°45′27″, 27°1′29″ (Figure 2b; Iso-livari, 1988; IUCN, 2016a). Although records of *M. daubentonii* extend to the Arctic Circle (Figure 2a; IUCN, 2008a; Siivonen & Wermundsen, 2008), the distributions of most of the other focal species, *M. mystacinus, M. brandtii,* and *P. auritus,* are considered to reach their northern limits in central Finland (Figure 2c–e; IUCN, 2008b, 2008c, 2016b). These five species, with the addition of the extremely rare *M. nattererii* and *M. dasycneme,* are most likely the only regularly hibernating species in Finland, whereas the other species

![Figure 2](https://example.com/fig2.png)

FIGURE 2 The map showing the distribution of each studied bat species in northeastern Eurasia: (a) *Myotis daubentonii,* (b) *Eptesicus nilssonii,* (c) *M. brandtii,* (d) *M. mystacinus,* and (e) *Plecotus auritus* with a star denoting the focal area of the current study. (f) Locations of the roost sites for each bat species in the current study in southwestern Finland: NAU = Nautelankoski (*M. daubentonii*), RUI = Ruissalo (*M. brandtii*), SJÀ = Sahajärvi (*E. nilssonii*), SSA = Särkisalo (*E. nilssonii*), LAI = Laiterla (*P. auritus* and *M. mystacinus*), and ROT = Rotholma (*P. auritus* and *M. brandtii*)
migrate or are infrequent visitors (but see Ijäs, Kahilainen, Vasko, & Lilley, 2017).

2.2 | Field sampling

Fecal pellets were collected between April and July 2014 (Table 1) from day roosts of five species of bats in southwestern Finland, and all these roosts were in buildings within approximately 60 km of each other (Figure 2f). The pellets were collected by placing a clean paper sheet under the roosting bats the day before the collection, and collecting the droppings the next day. The collection was repeated for two or three consecutive days within a period of two weeks. Pellets were stored in RNA later at −20°C until laboratory analysis.

2.3 | Laboratory work

We aimed to pool 25 droppings (from the same roost and same time point) into each sample to maximize the number of droppings without the need to analyze hundreds of fecal pellets individually. Only four samples included less than 25 droppings, and for these, we pooled every available pellet for the given time point per roost. We focused sampling on roosts inhabited by a single species, and likewise, we intended to pool pellets from a single species into a single pooled sample. In total, we initially sampled 1,252 fecal pellets from the five bat species in this study (Table 1). The DNA was extracted using NucleoSpin® DNA Stool Kit (product nr 740472, Macherey-Nagel, Düren, Germany) following the manual (version April 2016/Rev. 01) “Protocol for fresh or frozen stool samples” with following modifications: step 1) we used on average 360 mg (±91 mg) of starting material per sample (samples dried only briefly on paper prior to the weighing), and we increased the amount of lysis buffer ST1 to 1,000 µl to increase the amount of supernatant in the subsequent stages; step 2) we used Tissue Lyser II (Cat No. 85300, Qiagen, Hilden, Germany) 2 × 30 s at full speed; step 3) we centrifuged the samples at 13,000 g for 5 min, after which the supernatant was transferred into a new tube; and in the final step DNA was eluted into 100 µl of SE buffer.

We used a single primer pair (SFF-145f: 5′-GTHACHGCYAYGCHTTYGTAATAAT-3′ and SFF-351r: 5′-CTCCWGRTGDGCWAGRTTTC-3′; primers and PCR setup from Walker, Williamson, Sanchez, Sobek, & Chambers, 2016) to test the DNA extraction success in the pooled samples and confirm the bat species by molecular analysis and another primer pair to amplify the potential prey (ZBJ-ArtF1c: 5′-AGATATTGGAACWTTATATTTTATTTTTGG-3′ and ZBJ-ArtR2c: 5′-WACTAATCAATTWCCAAATCCTC-3′; primers and PCR setup from Zeale, Butlin, Barker, Lees, & Jones, 2011). Despite the proposed bias in Zeale primers toward Diptera and Lepidoptera (Clarke, Soubrier, Weyrich, & Cooper, 2014), we chose these for several reasons: (a) These are the most widely applied markers, (b) many species have been detected using exactly the same primers, even though claimed to be nonamplifiable in the earlier criticism, and (c) we wanted to allow comparison of our results with those of other studies using the same primers (Clare et al., 2014; Kaunisto, Roslin, Sääksjärvi, & Vesterinen, 2017; Koskinen et al., 2018; Krüger, Clare, Greif, et al., 2014; Krüger, Clare, Symondson, et al., 2014; Vesterinen et al., 2013, 2016; Wirta et al., 2015; Eitzinger et al., 2018). The PCR and library construction closely followed Kaunisto et al. (2017).

Table 1 Information on the sampling details and characteristics of the field and molecular data. *Time/roost sampling points per bat species denote how many times per roost the species was sampled: M. daubentonii was sampled from only a single roost (NAU; see Figure 2 for locations of the roost sites in the current study), E. nilssonii was sampled separately from two roosting sites (SJÄ, SSA), M. mystacinus and P. auritus were sampled from the same roost (LAI), and M. brandtii was sampled at two locations (RUI), one of which was shared by P. auritus (ROT). We found no statistical differences between samples from different bat species in the total reads, total prey species richness, or the average number of prey in each pellet.

	All samples	Myotis daubentonii	Eptesicus nilssonii	M. brandtii	M. mystacinus	Plecotus auritus
Sampling period						
29th Apr–7th Aug 2014	20	30	9	10	1	11
Pooled samples	51	20	9	10	1	11
Pellets in total	1,215	453	225	250	25	262
Avg. prey species per pellet	3.1 ± 1.4	3.0 ± 1.7	2.9 ± 1.1	3.3 ± 0.9	4.2	3.1 ± 1.6
Total prey reads	5,449,755	1,768,337	1,030,783	1,128,927	119,416	1,402,292
Avg. reads per sample	106,858 ± 52,134	88,417 ± 42,780	114,531 ± 69,513	112,893 ± 50,648	119,416	127,481 ± 51,818
Prey species	547	340	301	329	105	277
Avg. prey species per sample	69.7 ± 23.8	60.6 ± 22.6	71.8 ± 26.9	83.3 ± 23.2	105.0	69.2 ± 17.7
TABLE 2 Prey species observed in the current study. For simplicity, prey species are reported as presence or absence for each bat species. First column stands for the prey number used in the plotweb analysis (Figures 3 and 4). If species name was not available in the molecular species assignment, the BIN cluster number is reported, as listed in Barcode of Life Database (https://v4.boldsystems.org). The bat species are abbreviated as follows: Md = *Myotis daubentonii*, En = *Eptesicus nilssonii*, Mb = *M. brandti*, Mm = *M. mystacinus*, and Pa = *Plecotus auritus*.

No	Prey taxa	Md	En	Mb	Mm	Pa
1	Araneae					
2	Anyphaenidae					
3	Anyphaena accentuata	1	1	1	1	1
4	Araneidae					
5	Larinioides patagiatus	0	1	0	0	0
6	Linyphiidae					
7	Diplostyla concolor	0	1	0	0	0
8	Ergone sp.	0	0	0	0	1
9	Philodromidae					
10	Philodromus cespitum	0	1	1	0	0
11	Theridiidae					
12	Cryptochaeta riparia	1	0	0	0	0
13	Thomisidae					
14	Xysticus sp. 1	0	0	1	0	0
15	Xysticus sp. 2	1	0	1	0	0
16	INSECTA					
17	Blattodea					
18	Coleoptera					
19	Cantharidae					
20	Podabrus alpinus	0	1	0	0	0
21	Carabidae					
22	Acupalpus parvulus	0	1	0	0	1
23	Badister dilatatus	0	1	0	0	0
24	Pterostichus adstrictus	1	1	1	0	1
25	Pterostichus melanarius	1	1	1	1	1
26	Pterostichus nigrita	1	0	0	0	0
27	Cerambycidae					
28	Acanthoecus aedilis	0	1	0	0	1
29	Coleoptera sp.	0	1	0	0	0
30	Curculionidae					
31	Brachyderes incanus	0	0	0	0	1
32	Strophosoma capitatum	0	0	0	0	1
33	Dytiscidae					
34	Laccophilus comes	0	1	0	0	0
35	Orectochilus villosus	1	1	1	0	1

(Continues)
No	Prey taxa	Md	En	Mb	Mm	Pa
50	Chironomus sp.1	1	1	1	0	1
51	Chironomus sp.2	1	1	1	0	1
52	Cladopelma sp.	1	1	0	0	
53	Cladopelma sp. 1TE	1	1	0	1	
54	Conchapelopia melanops	1	1	1	0	
55	Conchapelopia sp. 1	1	0	0	0	
56	Chironomus sp.2	1	1	1	0	1
57	Cladopelma sp.	1	1	1	0	1
58	Cladopelma sp. 1TE	1	1	0	1	
59	Conchapelopia melanops	1	1	1	0	
60	Conchapelopia sp. 1	1	0	0	0	
61	Demicryptochironomus sp.	0	1	0	0	
62	Dicrotendipes longicollis	0	1	1	0	
63	Dicrotendipes nervosus	1	1	1	0	
64	Dicrotendipes triomus	1	0	1	0	
65	Endochironomus tendens	1	1	0	0	
66	Glyptotendipes bimaculatus	0	1	0	0	
67	Glyptotendipes carchinellus	1	1	0	1	
68	Glyptotendipes lobiferus	1	1	1	0	
69	Glyptotendipes sp.	1	0	0	0	
70	Glyptotendipes sp. 1	1	1	0	0	
71	Heterotrichoscladius marcius	0	1	0	0	
72	Kiefferulus sp.	1	0	1	0	
73	Metriocnemus sp. 3ES	0	0	1	0	
74	Microchironomus tener	0	0	1	0	
75	Microtendipes chloris	1	1	0	0	
76	Microtendipes pedellus	1	1	0	0	
77	Microtendipes sp.	1	1	0	0	
78	Orthocladiinae sp.	1	1	1	0	
79	Parachironomus digitalis	1	0	1	0	
80	Parachironomus monochromus	1	0	0	0	
81	Paracladopelma sp. 1	1	0	0	0	
82	Paracladopelma sp. 2	1	0	0	0	
83	Paranytarsus dissimilis	0	0	1	0	
84	Polypedilum convictum	1	0	0	0	
85	Polypedilum nubeculosum	1	1	1	0	
86	Polypedilum pedestre	0	0	1	0	
87	Polypedilum sordens	1	1	0	0	
88	Polypedilum sp.	1	0	1	0	

(Continues)
No	Prey taxa	Md	En	Mb	Mm	Pa
125	Rhamphomyia caesia	0	0	0	1	0
126	Rhamphomyia nigripennis	1	1	0	0	1
127	Rhamphomyia nr. anaxo	1	0	0	0	0
128	Rhamphomyia sp.	0	1	0	0	0
129	Rhamphomyia umbripennis	0	0	1	0	0
130	Rhamphomyia valga	0	1	1	0	0
131	Fanniidae					
132	Fannia minutipalpis	0	0	1	0	0
133	Fannia sociella	1	1	0	0	0
134	Nycteribia kolenati	1	1	0	1	0
135	Bicellaria simplicipes	0	1	0	0	1
136	Macrocera stigma	0	0	1	0	0
137	Austrolimnophila unica	0	1	0	0	1
138	Dicranomyia didyma	1	0	0	0	0
139	Dicranomyia frontalis	0	0	0	1	0
140	Dicranomyia modesta	1	1	0	0	0
141	Dicranomyia sp.	1	1	0	1	0
142	Elophila maculata	1	0	1	1	0
143	Erioptera divisa	1	0	1	0	0
144	Erioptera sp.	1	1	1	0	0
145	Gonomyia tenella	0	1	0	0	0
146	Helius longirostris	1	1	0	0	0
147	Limonia rubeculosa	1	0	0	0	0
148	Limonia trivittata	1	0	1	1	0
149	Metalimnobia bifasciata	1	0	0	1	1
150	Metalimnobia quadrimotata	1	1	1	1	1
151	Molophilus sp.	0	0	0	0	1
152	Phylidorea squalens	0	1	0	0	0
153	Rhipidia maculata	1	1	1	0	1
154	Symplecta stictica	1	0	1	0	0
155	Helina evecta	1	1	0	0	0
156	Hydrotaea armipes	0	0	0	1	0
157	Hydrotaea irritans	0	0	0	1	1
158	Muscina levida	0	0	0	0	1
159	Mydaea new sp. nr urbana	0	1	0	0	0
160	Polietes lardarius	1	0	1	0	1

(Continues)
No	Prey taxa	Md	En	Mb	Mm	Pa
195	Phorocera obscura	1	1	1	0	0
196	Siphona geniculata	0	1	0	0	0
197	Tipulidae					
198	Nephotoma aculeata	1	1	1	0	1
199	Nephotoma lunulicornis	1	1	0	0	0
200	Tipula fascipennis	1	1	1	1	1
201	Tipula fulvipennis	0	1	0	0	0
202	Tipula lateralis	1	0	0	0	0
203	Tipula lunata	0	1	1	1	1
204	Tipula maxima	1	1	0	0	0
205	Tipula nubeculosa	0	1	1	0	1
206	Tipula paludosa	1	1	0	0	0
207	Tipula pterei	1	1	0	1	1
208	Tipula scripta	1	1	0	0	0
209	Tipula truncorum	1	1	0	0	0
210	Tipulidae sp.	0	1	0	0	0
211	Trichocera regulationis	1	1	0	0	0
212	Trichocera sp.	1	0	0	0	0

Ephemeroptera

No	Prey taxa	Md	En	Mb	Mm	Pa
213	Procloeon bifidum	1	0	0	0	0
214	Caenis horaria	1	1	0	1	1
215	Ephemerella vulgata	1	1	0	0	0
216	Heptageniida					
217	Heptagenia sulphurea	1	1	0	0	0
218	Siphlonurida					
219	Siphlonurus alternatus	1	0	0	0	0

Hemiptera

No	Prey taxa	Md	En	Mb	Mm	Pa
220	Eucerophis betulae	0	1	1	0	1
221	Eucerophis punctipennis	0	1	0	0	1
222	Cicadellidae					
223	Lygus pratensis	0	1	1	0	1
224	Neolycus contaminatius	1	0	1	1	0

Hymenoptera

No	Prey taxa	Md	En	Mb	Mm	Pa
225	Astrophora splenium	0	0	1	0	1
226	Diadegma majale	0	0	1	0	0
227	Hyposoter PRO-3	0	0	1	0	0
228	Mesoschorus sp.	1	0	0	0	0
229	Mesoschorus vitticollis	0	1	0	0	0
230	Pleolphus sp.	0	0	0	0	0

Trichoceridae

No	Prey taxa	Md	En	Mb	Mm	Pa
231	Dolerus vestigialis	1	0	0	0	0
232	Pachyprotasis rapae	1	0	0	0	0

Lepidoptera

No	Prey taxa	Md	En	Mb	Mm	Pa
233	Nematopogon swammerdamellus	1	1	0	0	0
234	Atolmis rubricollis	1	0	0	0	0
235	Eilema depressum	0	0	0	0	0
236	Argyresthiida					
237	Argyresthia valida	1	1	1	1	1
238	Argyresthia goadartella	1	1	1	1	1
239	Argyresthia retinella	0	1	0	0	0

Batrachedrididae

No	Prey taxa	Md	En	Mb	Mm	Pa
240	Batrachedra pinicolella	1	0	0	0	0

Bucculatricidae

No	Prey taxa	Md	En	Mb	Mm	Pa
241	Bucculatrix cidarella	0	0	0	0	0
242	Bucculatrix thoracella	1	0	0	0	0
243	Bucculatrix ulmella	1	1	0	0	0
244	Coleophora betulella	1	1	1	0	0
245	Coleophora kuehnella	0	0	1	0	0
246	Coleophora spinella	1	0	1	1	1
247	Coleophora versurella	1	1	0	0	0

Crambidae

No	Prey taxa	Md	En	Mb	Mm	Pa
250	Acentria ephemerella	1	0	0	0	0
251	Agriphila inquinatella	1	0	0	0	0
252	Agriphila selasella	1	0	0	0	0
253	Agriphila straminella	0	0	0	0	0
254	Calamotropha pauperella	1	0	1	0	0
255	Chrysoteuchia culmella	0	1	0	0	0
256	Crambus lathoniellus	1	0	0	0	0
257	Crambus pascuellus	0	0	0	1	1

(Continues)
TABLE 2 (Continued)

No	Prey taxa	Md	En	Mb	Mm	Pa
258	Donacaula mucronella	1	1	0	0	1
259	Eolophila nymphaeata	1	0	0	1	1
260	Evergestis extimalis	1	0	1	0	1
261	Nymphula rutiludata	1	0	1	0	0
262	Ostrinia nubilalis	1	0	1	0	0
263	Scoparia ancipitella	1	0	1	1	1
264	Scoparia subfusca	1	0	0	0	0
265	Udea lutealis	1	0	0	1	0

Depressariidae

No	Prey taxa	Md	En	Mb	Mm	Pa
266	Agonopterix angelicella	1	1	1	0	1
267	Agonopterix arenella	1	0	1	0	1
268	Agonopterix ciliella	1	0	1	1	1
269	Agonopterix heracliana	1	1	1	0	1
270	Agonopterix propinquella	1	0	1	0	0
271	Depressaria daucella	1	1	1	0	1
272	Depressaria emeritella	1	1	1	0	1
273	Depressaria lobanotidella	1	1	1	0	1
274	Depressaria olerella	1	1	1	0	1
275	Depressaria radiella	1	0	0	0	0
276	Depressaria sordidatella	1	1	0	0	1

Drepanidae

No	Prey taxa	Md	En	Mb	Mm	Pa
277	Drepana falcatoria	1	0	0	0	0
278	Falcaria lacertinaria	1	0	1	0	0
279	Tethea or	0	0	0	0	1
280	Tetheella fluctuosa	1	1	1	0	1

Elachistidae

No	Prey taxa	Md	En	Mb	Mm	Pa
281	Elachista adsicetella	0	0	1	1	1

Endromidae

No	Prey taxa	Md	En	Mb	Mm	Pa
282	Endromis versicolora	0	1	1	0	1
283	Epermenia illigerella	1	0	0	0	0

Erebidae

No	Prey taxa	Md	En	Mb	Mm	Pa
284	Calliteara pudibunda	0	1	1	0	1
285	Diaeris sannio	1	1	0	0	1
286	Herminia tarsipennalis	0	0	1	0	1
287	Hypena crassalis	0	1	0	0	1
288	Macrochilo cribrumalis	1	1	1	1	1
289	Rivula sericealis	0	0	1	1	0
290	Scoliopteryx libatrix	0	0	0	0	1
291	Spilarctia luteum	1	0	0	0	1

Gelechiidae

No	Prey taxa	Md	En	Mb	Mm	Pa
292	Carpatolechia fugitellae	0	0	1	0	0
293	Carpatolechia proximella	1	1	1	0	1
294	Caryocolum vicinella	1	1	1	1	1
295	Chionodes electella	1	1	1	1	1

(Continues)
No	Prey taxa	Md	En	Mb	Mm	Pa
339	Scopula floslactata	1	0	0	0	1
340	Scopula immutata	1	0	0	0	0
341	Selenia dentaria	1	0	1	0	1
342	Xanthorhoe montanata	1	1	1	0	0
343	Xanthorhoe quadrifasciata	1	0	1	1	1
344	Xanthorhoe spadicearia	0	1	0	0	0
345	Orthotelia sparganella	1	0	1	0	0
346	Caloptilia alchimiella	0	0	1	0	0
347	Caloptilia betulicola	0	1	1	0	0
348	Caloptilia elongella	0	1	1	0	0
349	Caloptilia hemidactylella	1	0	1	0	0
350	Caloptilia populetorum	0	1	1	0	0
351	Parornix betulae	1	1	1	0	0
352	Parornix devoniella	1	1	1	0	1
353	Phyllonorycter harrissella	0	0	1	0	0
354	Pharmacis fusconebulosa	0	0	1	1	1
355	Dendrolimus pini	1	1	1	0	1
356	Lasiocampa quercus	1	1	1	0	1
357	Macrothylacia rubi	1	1	1	0	1
358	Lyocuris clerkella	0	1	1	0	0
359	Pseudatemelia elsa	0	1	0	0	0
360	Pseudatemelia josephiniae	1	1	0	1	1
361	Mompha sturnipennella	1	0	1	0	0
362	Mompha subbistrigella	1	1	1	0	0
363	Acronicta auricoma	1	0	0	0	0
364	Acronicta rumicis	1	0	0	0	1
365	Agrochola helvola	0	0	0	0	1
366	Agrotis clavis	1	1	1	1	1
367	Agrotis exclamationis	1	1	1	0	1
368	Allophyes oxyacanthae	0	0	1	0	1
369	Apamea crenata	0	0	1	0	1
370	Apamea remissa	1	1	1	1	1
371	Apamea sclopcina	0	0	0	0	1
372	Apamea sordens	1	1	1	0	1
373	Autographa gamma	1	1	1	0	1
374	Autographa pulchrina	0	0	0	0	1

(Continues)
No	Prey taxa	Md	En	Mb	Mm	Pa
415	Colias palaeno	0	1	0	0	0
416	Plutella xyllostella	1	1	1	0	1
417	Prays fraxinellla	0	0	1	0	0
418	Taleporia tubulosa	0	1	0	0	0
419	Gillmeria pallidactyla	1	0	1	1	0
420	Dioryctria abietella	0	0	0	1	1
421	Agilia tau	0	1	0	0	1
422	Saturnia pavonia	0	0	1	0	1
423	Deilephila elpenor	0	0	0	0	1
424	Morophaga choragella	0	0	1	0	0
425	Nemapogon nigralbella	0	0	1	0	0
426	Nemapora betulinella	0	0	1	0	0
427	Niditinea striolia	0	0	1	0	0
428	Triaxomera fulvimitrella	1	0	1	0	0
429	Tischeria ekebladella	0	1	1	0	0
430	Acleris forsskaleana	1	0	1	1	1
431	Acleris lipsiana	1	0	1	1	1
432	Acleris logiana	1	1	1	0	1
433	Acleris notana	1	0	1	0	1
434	Adoxophyes orana	1	1	1	1	1
435	Aethes smeathmanniana	1	1	1	0	1
436	Agapeta hamana	0	1	0	0	0
437	Aleimma loefflingiana	0	1	1	1	1
438	Ancyliis badiana	1	0	0	0	0
439	Ancyliis laetana	0	0	1	0	0
440	Ancyliis mitterbacheriana	1	0	1	0	0
441	Ancyliis myrtillana	1	1	0	0	1
442	Aphelia paleana	0	1	0	0	0
443	Apotomis fraterculana	1	1	0	1	0
444	Apotomis infida	1	0	0	0	0
445	Archips podanus	1	0	1	0	1
446	Bactra lancealana	1	0	0	0	0
447	Celypha rivulana	1	0	0	0	0
448	Clepsis spectrana	1	0	0	0	0

(Continues)
VESTERINEN ET AL.

except we used MyTaq HS Red Mix (product nr BIO-25048, Bioline, UK) polymerase throughout the protocol. In short, the first-step PCR reactions included tagged locus-specific primers targeting either predator or prey COI gene, and the second-step PCR followed directly after this including Illumina-specific adapters with a unique dual-index combination for each single reaction. After this, the individual libraries were pooled (SFF and ZBJ in separate pools at this stage) by equal volume (2 µl each library) and each pool was purified using dual-SPRI (solid-phase reversible immobilization) beads as in Vesterinen et al. (2016). To summarize the SPRI method, 80 µl SPRI was added on top of 100 µl library pool, vortexed thoroughly and incubated at room temperature for 5 min. The mix was then briefly centrifuged and placed on a strong magnet until clear, after

No	Prey taxa	Md	En	Mb	Mm	Pa
491	Paraswammerdamia conspersella	1	0	1	0	1
492	Paraswammerdamia nebulella	1	0	1	0	1

TABLE 2 (Continued)

No	Prey taxa	Md	En	Mb	Mm	Pa
493	Ypsolopa asperella	0	1	0	0	0
494	Ypsolopa falcella	1	1	1	0	0
495	Ypsolopa parenthesella	1	1	1	0	1
496	Ypsolopa scabrella	1	0	1	0	1
497	Ypsolopa sylvella	1	0	1	0	0
498	Ypsolopa ustella	1	0	1	0	1

Megaloptera

SIALIDAE
499

Neuroptera

CHRSYSIDAE
500
501
502

Hemerobididae

503	Hemerobius contumax	1	1	1	1	1
504	Hemerobius fenestratus	0	1	1	1	1
505	Hemerobius humulinus	1	1	1	1	1
506	Hemerobius pini	0	1	0	1	1
507	Hemerobius stigma	1	1	1	1	1
508	Wesmaelius concinnus	1	1	1	1	1

Neuroptera sp.

| 509| 0 | 1 | 1 | 0 | 0 |

ORTHOPTERA

PSOCODEA
510

Trichoptera

GOERIDAE
513

Lepidostomatidae

| 514| Lepidostoma hirtum | 1 | 1 | 1 | 0 | 0 |

Leptoceridae

515	Athripsodes cinereus	1	1	0	0	0
516	Ceraclea albimacula	1	0	1	0	0
517	Ceraclea annulicornis	1	0	0	0	0
518	Ceraclea dissimilis	1	0	0	0	0
519	Ceraclea excisa	1	0	0	0	0
520	Ceraclea fulva	1	1	0	1	0

(Continues)
TABLE 3 Permutational multivariate analysis of variance (adonis) for prey communities for the studied bat species using Bray–Curtis dissimilarity matrix (for RRA) or Jaccard similarity (for presence–absence data) of presence or absence of prey species in each sample. Terms added sequentially (first to last) to the model. The only significant Bonferroni-corrected 𝑝-value (𝑝b) is denoted with an asterisk, indicating that as a whole, the diet changes during the sampling season, although this effect was only observed with the PA data, but not in the RRA data.

Predictor	df	𝑆	𝑅2	𝑝b
Relative read abundance data				
Predator	4	1.46	0.12	0.0001*
Week	10	0.92	0.18	0.9544
Predator × Week	7	0.96	0.13	0.7598
Residuals	29	0.57		
Total	50		1.00	
Presence/absence data				
Predator	4	1.77	0.13	0.0001*
Week	10	1.06	0.20	0.1372
Predator × Week	7	0.99	0.13	0.5561
Residuals	29	0.54		
Total	50		1.00	

Predictor of the sequences were conducted according to Kaunisto et al. (2017). Consequently, paired-end reads were merged (SFF: ∼90% reads successfully merged; ZBJ: ∼85%) and trimmed for quality using program USEARCH with “fastq_maxee_rate” algorithm with threshold 1 (Edgar, 2010). Primers were removed using python program cutadapt (SFF: ∼99% reads passed; ZBJ: ∼96%) (Martin, 2011). We then dereplicated reads using USEARCH “fastx_uniques” algorithm with option “minuniquesize 2”, and then, we applied USEARCH UNOISE3 algorithm to cluster these unique reads into ZOTUs (zero-radius operational taxonomical units; Edgar, 2016). In short, UNOISE algorithm allows the simultaneous a) detection and removal of chimeras (PCR artifacts where two fragments of different origin bind together), point errors (substitutions due to incorrect base calls and gaps due to omitted or spurious base calls), and b) results in ZOTUs (zero-radius OTUs) that are superior to conventional 97% OTUs for most purposes, because they provide the maximum possible biological resolution given the data available (Edgar, 2016). Finally, reads were mapped back to the original trimmed reads to establish the total number of reads in each sample using USEARCH “otutab” algorithm. After processing, our datasets for this study consisted of 5,449,755 prey reads (produced with primers ZBJ-ArtF1c and ZBJ-ArtR2c) and 1,452,602 bat reads (produced with primers SFF-145f and SFF-351r).

The remaining reads (roughly 30% of total output of the sequencing run; ZBJ: 2,618,342 + SFF: 721,684) were used in another study.

We used the following strict criteria for including prey species in the data: (a) Sequence similarity with the reference sequence had to be at least 98% for the ZOTU to be given any (even higher taxa) assignment, and (b) at least ten reads of the final assigned prey species were required to be present in the final data. We assigned the ZOTUs to species as accurately as possible, utilizing a large reference sequence collection orchestrated by the Finnish Barcode of Life campaign (FinBOL: www.finbol.org) and BOLD database (Ratnasingham & Hebert, 2007), and confirmed that all the prey species were actually recorded from (southern) Finland. After the above trimming, we were able to identify and retain 93% of all the prey reads. To account for the even distribution of reads into separate samples, we used ANOVA to test samples from different bat species for differences in the total reads per sample, total prey species richness per sample, and the average number of prey in each pellet (prey richness divided by the number of pooled pellets). The reads originating from bats in the second dataset were used to confirm the bat species identity. The molecular confirmation of bat species revealed a switch in roost occupancy (M. mystacinus to E. nilssonii) in the middle of the sampling season, which resulted in only one pooled sample of M. mystacinus. Also, we removed two mixed samples, containing DNA from two distinct bat species. Labeled raw reads and ZOTUs are available in the Dryad Digital Repository: https://doi.org/10.5061/dryad.6880rf1.

A number of metric measurements strongly correlate with the biomass in insects (Garcia-Barros, 2015; Gruner, 2003). Thus, for data on taxon-specific prey size (wingspan for Lepidoptera and thorax length for all the other prey taxa) we referred to earlier dietary studies from Finland (Kaunisto et al., 2017; Vesterinen et al., 2016), or to literature or pictures from reference databases. Wingspan for lepidopteran prey was chosen as it was highly available, accessible, and reliable. The prey taxa where the size could not be determined (e.g., due to a compound taxon that was too large to be reliable or
TABLE 4 Pairwise permutational multivariate analysis of variance (pairwise.adonis) for prey communities for each of the studied bat species using Bray–Curtis dissimilarity matrix (for RRA) or Jaccard similarity (for presence–absence data) of presence or absence of prey species in each sample. Significant Bonferroni-corrected p-values (p_b) are denoted with an asterisk. All the bat species pairs significantly differ in their prey species composition, except comparisons with M. mystacinus, which was represented with only one sample.

Pairs	df	F	R^2	p_b
Relative read abundance data				
Plecotus auritus versus Myotis mystacinus	11	1.29	0.11	1.00
P. auritus versus M. daubentonii	30	3.07	0.10	0.01*
P. auritus versus M. brandtii	20	2.35	0.11	0.01*
P. auritus versus Eptesicus nilssonii	19	2.34	0.12	0.01*
M. mystacinus versus M. daubentonii	20	1.19	0.06	0.49
M. mystacinus versus M. brandtii	10	1.03	0.10	1.00
M. mystacinus versus E. nilssonii	9	1.10	0.12	1.00
M. daubentonii versus M. brandtii	29	2.24	0.07	0.01*
M. daubentonii versus E. nilssonii	28	1.60	0.06	0.05*
M. brandtii versus E. nilssonii	18	1.59	0.09	0.04*
Presence/absence data				
P. auritus versus M. mystacinus	11	1.16	0.10	1.00
P. auritus versus M. daubentonii	30	3.83	0.12	0.01*
P. auritus versus M. brandtii	20	2.81	0.13	0.01*
P. auritus versus E. nilssonii	19	2.52	0.12	0.01*
M. mystacinus versus M. daubentonii	20	1.44	0.07	1.00
M. mystacinus versus M. brandtii	10	1.21	0.12	0.88
M. mystacinus versus E. nilssonii	9	1.22	0.13	1.00
M. daubentonii versus M. brandtii	29	2.55	0.08	0.01*
M. daubentonii versus E. nilssonii	28	2.63	0.09	0.01*
M. brandtii versus E. nilssonii	18	1.65	0.09	0.01*

Informative, such as "Orthoptera sp." were omitted from the prey size analysis. For the predator size analysis, we extracted forearm (FA) length measurements from bat banding data collected from the study area. Forearm length is a standard measurement for bats, and it has been shown to highly correlate with the full body length ($R^2 = 0.933$; Meng, Zhu, Huang, Irwin, & Zhang, 2016). After discarding repeatedly encountered bat individuals, as well as those with unclear identification or no data on size, we ended up with 1,553 distinct individuals from the bat banding data.

2.5 Data analysis

Traditionally, the read count (or read abundance) data produced in metabarcoding studies are directly transformed into presence/absence data, considered to be more cautious and less biased than using read counts. However, the latest opinion on the field seems to suggest that using normalized read abundance data could be even less biased than mere converting to p/a data (Deagle et al., 2018; see also Vesterinen, 2015; Vesterinen et al., 2016). For this reason, we chose to use relative read abundance (RRA: calculated as the proportion of reads per each prey item in each sample). To make the comparison to earlier studies possible, we also prepared the secondary set of analysis using p/a data or more precisely the modified frequency of occurrence (MFO) data throughout the analysis. MFO was calculated as the proportion of occurrences of each prey taxa in each sample scaled to 100% across all prey items (see Deagle et al. (2018) for the terminology and further discussion on the topic).

To begin our data analysis, we calculated prey species accumulation curves to account for sampling adequacy (Colwell & Coddington, 1994). We used R package “iNEXT” to resample the prey reads and frequencies for each bat species and plotted these against accumulated prey species richness (Hsieh, Ma, & Chao, 2016; R Core Team, 2013).

In order to unfold the trophic interactions resolved by the DNA analysis, we used package bipartite (Dormann, Gruber, & Fründ, 2008) implemented in program R to draw interaction webs for each bat predator species using both RRA and MFO data. For those two cases, where two different bat species were observed in the same roost, we constructed additional webs to analyze the diet between separate samples in each location using RRA data. To further estimate patterns among the dietary assemblages of the five species, we used principal coordinates analysis (PCoA) based on Bray–Curtis dissimilarity (Jaccard similarity for presence/absence data) between samples (Davis, 2002; Podani & Miklós, 2002).

Then, to study the effects of predator species and temporal variation (as week number) on variation in prey species composition in each sample, we conducted a permutational multivariate analysis of variance (with Bray–Curtis for RRA and Jaccard for presence/absence data), using 9,999 random permutations to evaluate statistical significance (Anderson, 2001)(PERMANOVA; Anderson, 2001). Analysis of variance was carried out using “adonis” in software R with package “vegan” (Oksanen et al., 2013). Variation was further dissembled using pairwise analysis of variance with package “pairwise.adonis” between all bat species using Bonferroni correction for p-values (Martinez Arbizu, 2017).

Finally, we used information on predator and prey sizes to add dimensions to our attempt to segregate the ecological guilds and predator species. The bat banding data ($n = 1,553$) consisted of unequal sample sizes for the five bat species with unequal variances (Levene’s test for homogeneity of variance: $p = 0.0012$), and thus, to compare the forearm lengths (size) of the five bat species, we used a
Kruskal–Wallis analysis of variance (nonparametric ANOVA) procedure to compare body size (FA length) as a function of predator size using command “kruskal.test” in R (Kruskal & Wallis, 1952). To further study the difference between bat species pairs, we applied the Tukey and Kramer (Nemenyi) test with Tukey-Dist approximation for independent samples with R package “PMCMR” (Pohlert, 2014; Sach, 1997, pp. 395–397, 662–664). The same tests were applied to test prey size (wingspan or thorax length as explained above) differences between the bat species.

RESULTS

3.1 General aspects of the diet and the study

Altogether, we identified 547 distinct prey species in 13 arthropod orders (Table 1). The main prey order for *M. daubentonii* and *E. nilssonii* was Diptera (56% and 77% of all reads, respectively). For *M. brandii*, *M. mystacinus*, and *P. auritus*, Lepidoptera was the largest prey order (65%, 74%, and 72%, respectively). The only other very abundant prey orders included Trichoptera (15% of reads in *M. daubentonii* diet) and Coleoptera (19% in *P. auritus*). The observed summed prey species richness per bat species varied from 105 prey species to 340 prey species (Tables 1 and 2). From technical point of view, our data show even average distribution of reads across samples (although with high variation), and the average number of prey species per pellet calculated across samples did not differ between bat species (Table 1). The species accumulation curves showed that for *M. mystacinus* the sampling was rather inadequate, but for others more comparable to each other in terms of reads per bat species (Figure 3a), although when using presence/absence data, the curves did not seem to reach the plateau yet (Figure 3b). Nevertheless, we kept *M. mystacinus* in all the analysis, but interpret the results with relevant caution.

Table 6

| Compared pairs | Bats
|----------------|------|----------------|----------------|
| | n = 1,553 | | n = 1,807 | | n = 1,642 | |
| *Plecotus auritus* versus *Myotis mystacinus* | <0.0001 | 0.0008 | 0.9980 |
| *P. auritus* versus *M. daubentonii* | <0.0001 | <0.0001 | <0.0001 |
| *P. auritus* versus *M. brandii* | <0.0001 | <0.0001 | <0.0001 |
| *P. auritus* versus *E. nilssonii* | 0.5700 | 0.0003 | 0.0040 |
| *M. mystacinus* versus *M. daubentonii* | <0.0001 | 0.6635 | 0.2240 |
| *M. mystacinus* versus *M. brandii* | 0.4800 | 0.8516 | 0.1590 |
| *M. mystacinus* versus *Eptesicus nilssonii* | <0.0001 | 0.7223 | 0.3680 |
| *M. daubentonii* versus *M. brandii* | <0.0001 | <0.0001 | 0.9810 |
| *M. daubentonii* versus *E. nilssonii* | <0.0001 | 1.0000 | 0.9580 |
| *M. brandii* versus *E. nilssonii* | <0.0001 | 0.0010 | <0.0001 |

Table 5

Tukey and Kramer (Nemenyi) test with Tukey-Dist approximation for independent samples with R package “PMCMR” between all the bat species for bat forearm length, Lepidoptera prey wing span, or other prey body length. The number of records is listed for each group. The significant p-values are bolded (chi-square was corrected for ties)

3.2 Dietary patterns of the studied bats

The quantitative prey assemblages (RRA) seem to be very different for all the bat species, as revealed by the bipartite analysis (Figure 4a). However, when using frequencies (MFO), these patterns are not that clear (Figure 4b). In the current study, different bat species were mainly sampled in different roosts, but luckily prey use does not seem to be vastly related to the roost site, as can be seen from the bipartite analysis from the two sites where two different bat species were sampled from the same roost (Figure 5a,b). The prey use patterns were further illustrated in the PCoA ordinations: Both RRA and presence/absence data ordinations grouped the bat species according to their respective feeding guilds based on differences in the prey species assemblages (Figure 6a,b). In the RRA plotting, first coordinate explained 10.5% and the second coordinate 7.5% of the variation in the data (Figure 6a), and in the plot using presence/absence data, the first and the second coordinates explained 15% and 9.9% of the variation (Figure 6b), respectively, so for
3.3 | Dietary patterns in the feeding guilds

The feeding guilds are also easily separated by looking at the diet at the prey family level (here using percentages from relative read abundance data, but approximately the same ratios can be drawn from the presence-absence data; Table 2): The trawling species (*M. daubentonii*) predominantly consumes a single prey family, Chironomidae (45.8% of all the reads), which is a highly abundant and species-rich family in southwestern Finland (Lilley, Ruokolainen, Vesterinen, Paasivirta, & Norrdahl, 2012; Paasivirta, 2012, 2014), but constrained to the vicinity of aquatic environment, where the bat collects its prey from the water surface (Nilsson, 1997). The gleaner (*P. auritus*) relies on the plentiful moth family Noctuidae (57.2%), which is either caught in flight or from surfaces on vegetation, as some of the prey species are mainly diurnal (Silvonen et al., 2014). The other largely consumed prey family for *P. auritus* was the coleopteran family Carabidae (18.7%), which is most probably foraged from the ground. The third guild, hawks, consists of three bat species (*E. nilssonii*, *M. brandtii*, and *M. mystacinus*), which all have distinct prey family spectrum. *E. nilssonii* is known to be Nematocera specialist (Rydell, 1986), and we can confirm this observation: *E. nilssonii* preyed upon Pediocidae (21.3%), Trichoceridae (18.4%), Tipulidae (13.0%), and also on chironomids (10.7%). The other two hawks relied solely on moths: *M. brandtii’s* menu included Tortricidae (26.5%) and Geometridae (24.3%). Interestingly, at least one very abundant prey species *Agriopis aurantiaria* (Geometridae) only flies during October and after that, so this moth must have been caught by *M. brandtii* as larvae on leaves or while hanging from the tree (Silvonen et al.,...
2014). On the other hand, *M. mystacinus* foraged on the moth families Argyresthiidae (21.0%), Geometridae (16.5%), and Lypusidae (11.3%), which all have distinct life strategies and behavioral ecologies (Silvonen et al., 2014).

3.4 Temporal aspects and predator-prey size analysis

The strong assorting patterns of different bat species seen in plotwebs and PCoA were confirmed when comparing all bat species’ diet’s together in the analysis of variance (Table 3: Predator: RRA data, $df = 4$, $R^2 = 0.12$, $p = 0.0001$; PA data, $df = 4$, $R^2 = 0.05$, $p = 0.0033$). Despite the limited temporal span of the sampling for each bat (Table 1: 8 weeks for *M. daubentonii* and *P. auritus*; 5 weeks for *M. brandtii* and *E. nilssonii*), we tested the dietary variation in time, but found no significant variation between weeks (Table 3: Week). Temporal pattern was same for all bat species (Table 3: Predator \times Week).

When the prey assemblages were analyzed separately in pairwise PERMANOVA between species, the diet was significantly different in all compared pairs, except those with *M. mystacinus*, which was present in the sample with only one sample (Table 4). The same
pattern occurred in both RRA and PA data (Table 4). The diet explained only 6%–13% of the total variance (Table 4).

The bat species differed significantly in size according to the banding data (Figure 7a, Kruskal-Wallis $H = 867.29, df = 4, p < 0.0001$), further confirmed by the pairwise analysis, where all the bats differed from each other significantly (Table 5). Similarly, the prey size differed significantly between bat species (Lepidoptera prey: $H = 118.58, df = 4, p < 0.0001$; other prey $H = 34.5, df = 4,$

FIGURE 7 (a) Size of adult bats (measured by the length of forearm), (b) size of lepidopteran prey taxa (measured by the wingspan), and (c) size of other than lepidopteran prey taxa (measured by the body length) for each of bat species in the current study. The number of records is denoted for each group.
Diet comparisons between sympatric bat species using molecular methods are still relatively scarce, but often show considerable
overlap in diet, even at the lower taxon level (Krüger, Clare, Greif, et al., 2014; Krüger, Clare, Symondson, et al., 2014; Salinas-Ramos et al., 2015; Ware, 2016). Most studies focus on either closely related species, or species that share a feeding guild, such as the two trawling bats (M. daubentonii and M. dasycneme) in a study by Krüger, Clare, Greif, et al., 2014; Krüger, Clare, Symondson, et al., 2014. In the current study, we compared the diet of five vesperpilionsid bats, representing three different guilds. According to our analysis, all three guilds are clearly evident, with little overlap between the aerial hawks (M. brandtii and E. nilssonii) and the trawling bat (M. daubentonii). These dietary overlaps are likely to be explained by the opportunistic and sporadic consumption of a very few prey items, such as mass-emerging chironomids, moths, mayflies, and caddisflies. Plecotus auritus, the species considered a gleaner and moth specialist, showed a marked difference in PCoA ordination compared to the other two groups. We also discovered a significant difference in the size of prey consumed, with the larger P. auritus consuming larger prey species, whereas the smaller bat, M. brandtii, consumed smaller prey items. This is not surprising as it is generally accepted that the echolocation used by aerial insectivorous bats renders smaller prey items unavailable to larger bats (Brigham, 1991; Waters, Rydell, & Jones, 1995). Additionally, P. auritus, among other members of the genus, possesses a suite of morphological characters (low wing-loading, large pinna, low-frequency hearing), which allow them to use both acoustic gleaning and aerial-hawking foraging strategies to capture prey (Coles, Guppy, Anderson, & Schlegel, 1989; Norberg & Rayner, 1987). It is possible that some noctuid prey individuals have been foraged as larvae, as the flight peak of most noctuid prey in the current study is later than the sampling period. Also, the importance of a comprehensive reference library (Mutanen et al., 2012; Pentinsaari, Hebert, & Mutanen, 2014; Pilipenko, Salmela, & Vesterinen, 2012), which allows the correct and reliable identification of most prey items, needs to be pointed out once more. This offers the possibility of deeper ecological dietary studies, such as prey size analysis (Pentinsaari et al., 2014). While some prey items had not been described with a scientific species-level name in this study, a reliable estimate of their size could be inferred using the so-called barcode index numbers (BIN; Ratnasingham & Hebert, 2013) to trace the images for measurements. This emphasizes the significance of public and easy-accessible reference library systems, such as BOLD (Ratnasingham & Hebert, 2007). Although some studies still rely on OTUs (operational taxonomical units) instead of biological species, we highlight the importance of actual prey species determination, which allows a deeper and more robust insight into dietary ecology.

The molecular work carried out in this analysis not only highlights the deep insight offered by metabarcoding, but also underlines the dynamic and complementary nature of DNA-based analysis. Based on our earlier field work, we had chosen species-specific roosting sites for the diet analysis of five bat species, to obtain an equal sampling effort. However, when confirming the fecal “donor” by the means of metabarcoding, we noticed some discrepancies between the field data and confirmed data, that is, our M. mystacinus roost was confirmed as an E. nilssonii roost. In future, the molecular confirmation of noninvasively collected samples should be a standard approach, either by traditional Sanger sequencing or cost-effective next-generation sequencing (NGS), depending on the number of samples and the predator and prey species. Also, the importance of a comprehensive reference library (Mutanen et al., 2012; Pentinsaari, Hebert, & Mutanen, 2014; Pilipenko, Salmela, & Vesterinen, 2012), which allows the correct and reliable identification of most prey items, needs to be pointed out once more. This offers the possibility of deeper ecological dietary studies, such as prey size analysis (Pentinsaari et al., 2014). While some prey items had not been described with a scientific species-level name in this study, a reliable estimate of their size could be inferred using the so-called barcode index numbers (BIN; Ratnasingham & Hebert, 2013) to trace the images for measurements. This emphasizes the significance of public and easy-accessible reference library systems, such as BOLD (Ratnasingham & Hebert, 2007). Although some studies still rely on OTUs (operational taxonomical units) instead of biological species, we highlight the importance of actual prey species determination, which allows a deeper and more robust insight into dietary ecology.

The main drawbacks of the molecular methods are the highly challenging interpretations of the quantitative aspects of the diet, that is, are the most frequently consumed prey items also the most important in terms of biomass and energy gain? While the current practice in many molecular ecological dietary studies using metabarcoding appears to mostly rely on frequency of occurrence (but see Vesterinen et al., 2016), the read counts may actually hold some important quantitative information (Deagle et al., 2018). Here, we tested our data using both frequency of occurrence and read count data and found no major differences in the outcome of the analysis, or more importantly, in the interpretation of the results. This suggests our data have strong ecological message that holds despite the methodological approach used.

Our study supports the existence of dietary flexibility in generalist bats and dietary niche overlapping, especially in bats of the same feeding guild in a highly seasonal ecosystem (Roswag et al., 2018). In fact, it could be the flexibility in feeding strategies which allows species
to sustain populations in arctic and subarctic regions (Shively et al., 2017). Additionally, a great proportion of niche differentiation most likely also occurs outside the diet dimension where an almost infinite number of possible axes exist for competing species in the n-dimensional niche hyper-volume (Hutchinson, 1957). Even minor differences in a number of different axes can result in a substantial overall difference (Privitera et al., 2008). Clearly, the next logical step is to utilize deep dietary analysis, alongside other ecological (LIDAR: light detection and ranging method, etc.) and behavioral (GPS-tracking) datasets to begin to understand niche realization and resource partitioning in species to a far higher accuracy than has been available to date.

ACKNOWLEDGEMENTS

We thank Emma Kosonen, Ville Vasko, and Jarmo Markkanen for assistance in collecting samples. We thank Seppo Koponen, Anssi Teräs, Juha Salokannel, Jurka Salmela, Mikko Pentinsaa, Pasi Sihvonen, and Veikko Rinne for expert opinions on the prey taxa. We acknowledge Prof. Kai Norrdahl and Jenni Prokkola for invaluable comments on the manuscript. We thank Maija Laaksonen for artwork in the figures and Risto Lindstedt for a great picture of Myotis brandtii in its natural environment. We thank Zoological Museum and Department of Biology of the University of Turku for allowing the use of the molecular laboratory. This study was supported by Finnish Functional Genomics Centre, University of Turku and Åbo Akademi and Biocenter Finland. We acknowledge CSC–IT Center for Science Ltd., Espoo, Finland, for the allocation of computational resources. This study was funded by Emil Aaltonen CSC–IT Center for Science Ltd., Espoo, Finland, for the allocation of computational resources. This study was supported by Finnish Functional Genomics Centre, University of Turku and Åbo Akademi and Biocenter Finland. We acknowledge CSC–IT Center for Science Ltd., Espoo, Finland, for the allocation of computational resources. This study was funded by Emil Aaltonen Foundation (EJV). Jane and Aatos Erkko Foundation (EJV, AIEP), and H2020 Marie Skłodowska-Curie Actions (TML, 706196).

AUTHOR CONTRIBUTIONS

EJV and TML designed the study, collected the data, and wrote the first version of manuscript. ASB collected samples in the field and gathered prey species measurements and the map data. AIEP and EJV conducted the molecular work and data analysis. All authors contributed to the final version of the manuscript.

DATA ACCESSIBILITY

Labeled raw reads and OTUs are available in the Dryad Digital Repository: https://doi.org/10.5061/dryad.6880rf1.

ORCID

Eero J. Vesterinen http://orcid.org/0000-0003-3665-5802

Thomas M. Lilley http://orcid.org/0000-0001-5864-4958

REFERENCES

Aizpurua, O., Budinski, I., Georgiakakis, P., Gopalakrishnan, S., Ibáñez, C., Mata, V., ... Alberdi, A. (2018). Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Molecular Ecology, 27(3), 815–825. https://doi.org/10.1111/mec.14474

Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution, 9, 134–147. https://doi.org/10.1111/2041-210X.12849

Alberdi, A., Garin, I., Aizpurua, O., & Aihartza, J. (2012). The foraging ecology of the Mountain Long-Eared Bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One, 7, e35692. https://doi.org/10.1371/journal.pone.0035692

Aldridge, H. D. J. N., & Rautenbach, I. L. (1987). Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56, 763–778. https://doi.org/10.2307/4947

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance: Non-parametric MANOVA for Ecology. Austral Ecology, 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.xx

Boyles, J. G., & Storm, J. J. (2007). The perils of picky eating: Dietary breadth is related to extinction risk in insectivorous bats. PLoS One, 2, e672. https://doi.org/10.1371/journal.pone.0000672.

Brigham, R. M. (1991). Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small? The American Naturalist, 137, 693–703. https://doi.org/10.1086/285188

Clare, E. L., Barber, B. R., Sweeney, B. W., Hebert, P. D. N., & Fenton, M. B. (2011). Eating local: Influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20, 1772–1780. https://doi.org/10.1111/j.1365-294X.2011.05040.x

Clare, E. L., Symondson, W. O. C., Broders, H., Fabianek, F., Fraser, E. E., MacKenzie, A., ... Reimer, J. P. (2014). The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Molecular Ecology, 23, 3618–3632. https://doi.org/10.1111/mec.12542

Clarke, L. J., Soubrier, J., Weyrich, L. S., & Cooper, A. (2014). Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Molecular Ecology Resources, 14, 1160–1170. https://doi.org/10.1111/1755-0998.12265

Coles, R. B., Guppy, A., Anderson, M. E., & Schlegel, P. (1989). Frequency sensitivity and directional hearing in the gleaning bat, Plecotus auritus (Linnaeus 1758). Journal of Comparative Physiology, 165, 269–280. https://doi.org/10.1007/BF00619201

Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, 345, 101–118. https://doi.org/10.1098/rstb.1994.0091

Davis, J. C. (2002). Statistics and data analysis in geology, 3rd ed. New York, NY: J. Wiley.

Deagle, B. E., Thomas, A. C., McNnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., ... Eveson, J. P. (2018). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology, 1–16. https://doi.org/10.1111/mec.14734

Dietz, C., Nill, D., & von Helversen, O. (2009). Bats of Britain. London, UK: Europe and Northwest Africa. A & C Black.

Dormann, C. F., Gruber, B., & Fründ, J. (2008). Introducing the Bipartite Package: Analysing Ecological Networks. Interaction, 1, 0.2413793.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

Edgar, R. C. (2016). UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv, 081257. https://doi.org/10.1101/081257

Eitzinger, B., Abrego, N., Gravel, D., Huotari, T., Vesterinen, E. J., & Roslin, T. (2018). Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis - variable environment, stable diet. Molecular Ecology. https://doi.org/10.1111/mec.14872

Erwin, T. L. (1982). Tropical forests: Their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36, 74–75.
Fenton, M. B., & Simmons, N. B. (2015). *Bats: A world of science and mystery*. Chicago, IL: The University of Chicago Press.

Galan, M., Pons, J.-B., Tournayre, O., Pierre, É., Leuchtmann, M., Pontier, D., & Charbonnel, N. (2018). Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. *Molecular Ecology Resources*, 18(3), 474–489. https://doi.org/10.1111/1755-0998.12749

García-Barros, E. (2015). Multivariate indices as estimates of dry body weight for comparative study of body size in Lepidoptera. *Noto Lepidopterologica*, 38, 59–74. https://doi.org/10.3897/nl.38.8957

Gruner, D. S. (2003). Regressions of length and width to predict arthropod biomass in the Hawaiian Islands. *Pacific Science*, UC Davis Previously Published Works, 57, 325–336. https://doi.org/10.1353/psc.2003.0021

Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: A world of science and myopathy. *Symposia on Quantitative Biology*, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). *iNEXT*: An R package for rarefaction and extrapolation of species diversity (Hill numbers). *Molecular Ecology Resources*, 16(5), 1–63. https://doi.org/10.1111/1755-0998.12749

Hutchinson, G. E. (1957). Concluding Remarks. *Cold Spring Harbor Symposium on Quantitative Biology*, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Ijäs, A., Kahilainen, A., Vasko, V. V., & Lilley, T. M. (2017). Evidence of the chiropteran family vespertilionidae. *Acta Chiropterologica*, 19, 127–139. https://doi.org/10.15181/AC17.19.1.010

Iso-livari, L. (1988). Vertebrates of Inari Lapland. *Kevo Notes*, 1, 1–12.

IUCN (2008a). *Myotis daubentonii*: Stubbe, M., Aro, B., & Ketola, T. *Myotis daubentonii* and *Pipistrellus nathusii*. *Acta Chiropterologica*, 10(Suppl. 2), 1965–1966. https://doi.org/10.1073/pnas.0905137106

IUCN (2008b). *Myotis daubentonii*: Stubbe, M., Aro, B., & Ketola, T. *Myotis daubentonii* and *Pipistrellus nathusii*. *Acta Chiropterologica*, 10(Suppl. 2), 1965–1966. https://doi.org/10.1073/pnas.0905137106

IUCN (2008c). *Eptesicus nilssonii*. *Acta Chiropterologica*, 10(Suppl. 2), 1965–1966. https://doi.org/10.1073/pnas.0905137106

Krüger, F., Clare, E. L., Greif, S., Siemers, B. M., Symondson, W. O. C., & Sommer, R. S. (2014). An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species *Myotis dasycneme* and *Myotis daubentonii*. *Molecular Ecology*, 23, 3675–3671. https://doi.org/10.1111/mec.12512

Ijäs, A., Kahilainen, A., Vasko, V. V., & Lilley, T. M. (2017). Evidence of the chiropteran family vespertilionidae. *Acta Chiropterologica*, 19, 127–139. https://doi.org/10.15181/AC17.19.1.010

IUCN (2008b). *Myotis daubentonii*: Stubbe, M., Aro, B., & Ketola, T. *Myotis daubentonii* and *Pipistrellus nathusii*. *Acta Chiropterologica*, 10(Suppl. 2), 1965–1966. https://doi.org/10.1073/pnas.0905137106

Hoofer, S. R., & Buschke, R. A. V. D. (2003). Molecular phylogenetics of the chiropteran family vespertilionidae. *Acta Chiropterologica*, 5(Suppl. 1), 1–63. https://doi.org/10.3161/001.005.s101

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). *Methods in Ecology and Evolution*, 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613

Hutchinson, G. E. (1957). Concluding Remarks. *Cold Spring Harbor Symposium on Quantitative Biology*, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Laine, V. N., Lilléy, T. M., Norrdahl, K., & Primmer, C. R. (2013). Population genetics of Daubenton’s bat (Myotis daubentonii) in the Archipelago Sea, SW Finland. *Annales Zoologi Fennici*, 50, 303–315. https://doi.org/10.5735/085.050.0505

Sommer, R. S. (2014). An integrative approach to detect subtle trophic similarity in the sympatric north european trawling bat species Myotis daubentonii and Myotis dasycneme. *Acta Chiropterologica*, 14, 347–356. https://doi.org/10.3161/150811012X661666

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. *Journal of the American Statistical Association*, 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441

Kunz, T. H. (1998). *Bat biology and conservation*, 1st ed. Washington, DC: Smithsonian Institution Press.

Kunz, T. H., Bruna de Torres, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. *Annals of the New York Academy of Sciences*, 1223, 1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x

Kunz, T. H., Bruna de Torres, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. *Annals of the New York Academy of Sciences*, 1223, 1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x

Lavoie, T. M., & Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). *Biological Reviews of the Cambridge Philosophical Society*, 77, 223–259. https://doi.org/10.1017/S1464793101005899
Vesterinen, E. J., Lilley, T., Laine, V. N., & Wahlberg, N. (2013). Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton’s bat (Myotis daubentonii) in southwestern Finland. *PLoS One*, 8, e82168. https://doi.org/10.1371/journal.pone.0082168

Vesterinen, E. J., Ruokolainen, L., Wahlberg, N., Peña, C., Roslin, T., Laine, V. N., ... Lilley, T. M. (2016). What you need is what you eat? Prey selection by the bat *Myotis daubentonii*. *Molecular Ecology*, 25, 1581–1594. https://doi.org/10.1111/mec.13564

Walker, F. M., Williamson, C. H. D., Sanchez, D. E., Sobek, C. J., & Chambers, C. L. (2016). Species from feces: Order-wide identification of chiropterans from guano and other non-invasive genetic samples. *PLoS One*, 11, e0162342. https://doi.org/10.1371/journal.pone.0162342

Ware, R. L. (2016). *Niche partitioning in Great British bats through dietary specialisation* (a thesis submitted for the degree of PhD at the University of Warwick). Warwick, UK: University of Warwick.

Waters, D. A., Rydell, J., & Jones, G. (1995). Echolocation call design and limits on prey size: A case study using the aerial-hawking bat *Nyctalus leisleri*. *Behavioral Ecology and Sociobiology*, 37, 321–328. https://doi.org/10.1007/BF00174136

Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., ... Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. *Ecology Letters*, 13, 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x

Wilson, R. P. (2010). Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. *Functional Ecology*, 24, 646–657. https://doi.org/10.1111/j.1365-2435.2009.01654.x

Wirta, H. K., Vesterinen, E. J., Hambäck, P. A., Weingartner, E., Rasmussen, C., Reneerkens, J., ... Roslin, T. (2015). Exposing the structure of an Arctic food web. *Ecology and Evolution*, 5, 3842–3856. https://doi.org/10.1002/ece3.1647

Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C., & Jones, G. (2011). Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. *Molecular Ecology Resources*, 11, 236–244. https://doi.org/10.1111/j.1755-0998.2010.02920.x

How to cite this article: Vesterinen EJ, Puisto AIE, Blomberg AS, Lilley TM. Table for five, please: Dietary partitioning in boreal bats. *Ecol Evol*. 2018;8:10914–10937. https://doi.org/10.1002/ece3.4559