On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions

Abstract

The modeling and statistical analysis of lifetime data are crucial for statisticians and researchers in almost all applied sciences including engineering, medical sciences/biological sciences, insurance, finance, amongst others. One parameter lifetime distributions that are popular in Statistics literature for modeling lifetime data are exponential and Lindley distributions. An extensive study has been carried out by Shanker et al., for modeling lifetime data using Lindley and exponential distributions and observed that there are many lifetime data where these distributions are not suitable from theoretical and applied point of view. Recently Shanker has introduced one parameter Lifetime distributions namely “Aradhana distribution” and “Sujatha distribution” for modeling lifetime data.

In the present paper the interrelationships and comparative studies of Aradhana, Sujatha, Lindley and exponential distributions have been made to model lifetime data. The relationships, their distributional properties and estimation of parameter have been discussed. The applications and goodness of fit of these distributions for modeling lifetime data through various examples from engineering, medical science and other fields have also been discussed and explained.

Keywords: aradhana distribution, sujatha distribution, lindley distribution, exponential distribution, statistical properties, estimation of parameter, goodness of fit

Introduction

The time to the occurrence of event of interest is known as lifetime or survival time or failure time in reliability analysis. The event may be failure of a piece of equipment, death of a person, development (or remission) of symptoms of disease, health code violation (or compliance). The modeling and statistical analysis of lifetime data are crucial for statisticians and researchers in almost all applied sciences including engineering, medical sciences/biological sciences, insurance and finance, amongst others.

Shanker has introduced one parameter continuous distributions named, “Aradhana distribution” and “Sujatha distribution” for modeling lifetime data from engineering and medical science and studied its various mathematical properties, estimation of its parameter, and its applications. A number of continuous distributions for modeling lifetime data have been introduced in statistical literature including exponential, Lindley, gamma, lognormal and Weibull, amongst others. The exponential, Lindley and the Weibull distributions are more popular in practice than the gamma and the lognormal distributions because the survival functions of the gamma and the lognormal distributions cannot be expressed in closed forms and both require numerical integration. Though Aradhana, Sujatha, Lindley and exponential distributions are of one parameter, Aradhana, Sujatha and Lindley distributions have advantage over the exponential distribution that the exponential distribution has constant hazard rate and mean residual life function whereas the Aradhana, Sujatha, and Lindley distributions have increasing hazard rate and decreasing mean residual life function. Further, Aradhana and Sujatha distributions of Shanker have flexibility over both Lindley and exponential distributions.

Aradhana, sujatha, lindley and exponential distributions

Shanker introduced a new one parameter continuous distribution named, ‘Aradhana distribution’ for modeling lifetime data from engineering and medical science. This distribution is a three-component mixture of an exponential (θ) distribution, a gamma (2θ) distribution and a gamma (3θ) distribution with their mixing proportions \(\frac{\theta}{\theta + 2\theta} \), \(\frac{2\theta}{\theta + 2\theta} \) and \(\frac{2\theta}{\theta + 2\theta} \) respectively. It has been shown by Shanker that Aradhana distribution is flexible than the Lindley distribution for modeling lifetime data in reliability and in terms of its hazard rate shapes and it gives better fit than Akash, Shanker, Lindley and exponential distributions in modeling lifetime data. Shanker has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker has also obtained a Poisson mixture of Aradhana distribution named, “Poisson-Aradhana distribution (PAD)” for modeling count data.

Shanker introduced another one parameter continuous distribution named, ‘Sujatha distribution’ for modeling lifetime data from engineering and medical science. This distribution is also a three-component mixture of an exponential (θ) distribution, a gamma (2θ) distribution and a gamma (3θ) distribution with their mixing proportions \(\frac{\theta}{\theta + 2\theta} \), \(\frac{2\theta}{\theta + 2\theta} \) and \(\frac{2\theta}{\theta + 2\theta} \) respectively. It has been shown by Shanker that Sujatha distribution is flexible than the Lindley distribution for modeling lifetime data in reliability and...
in terms of its hazard rate shapes and it gives better fit than Lindley and exponential distributions in modeling lifetime data. Shanker et al. has discussed its various mathematical and statistical properties including its shape, moment generating function, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic orderings, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, Renyi entropy measure, stress-strength reliability, amongst others. Shanker et al. has also obtained a Poisson mixture of Sujatha distribution named, “Poisson-Sujatha distribution (PSD)” for modeling count data.

The Lindley distribution is a two-component mixture of an exponential (θ) distribution and a gamma ($2,\theta$) distribution with their mixing proportions $\frac{\alpha}{\alpha+\beta}$ and $\frac{\beta}{\alpha+\beta}$ respectively and is given by Lindley in the context of Bayesian Statistics as a counter example of fiducial Statistics. A detailed study about its various mathematical properties, estimation of parameter and application showing the superiority of Lindley distribution over exponential distribution for the waiting times before service of the bank customers has been done by Ghitany et al. The Lindley distribution has been generalized, extended, mixed, modified and its detailed applications in reliability and other fields of knowledge by different researchers including Sankaran, Zakerzadeh & Dolati, Nadarajah et al., Deniz & Ojeda, Bakouch et al., Shanker & Mishra, Shanker & Amanuel, Ghitany et al., Shanker et al. are some among others.

In statistical literature, exponential distribution was the first widely used lifetime distribution model in areas ranging from studies on the lifetimes of manufactured items to research involving survival or remission times in chronic diseases. The main reason for its wide usefulness and applicability as lifetime model is partly because of the availability of simple statistical methods for it and partly because it appeared suitable for representing the lifetimes of many phenomenons such as various types of manufactured items.

Let T be a continuous random variable representing the lifetimes of individuals in some population. The expressions for probability density function, $f(t)$, cumulative distribution function, $F(t)$, hazard rate function, $h(t)$, mean residual life function, $m(t)$, mean μ_t^*, variance μ_t^*, coefficient of variation ($C.V.$), coefficient of Skewness ($C.S.$), coefficient of kurtosis ($C.K.$), and index of dispersion (γ) of Aradhana and Sujatha distributions are summarized in Table 1 and of Lindley and exponential distributions are summarized in Table 2.

A table of values for coefficient of variation ($C.V$), coefficient of Skewness ($C.S$), coefficient of Kurtosis ($C.K.$), and index of dispersion (γ) for Aradhana, Sujatha and Lindley distributions for varying their parameter for comparative study are summarized in the Table 3.

The condition under which Aradhana, Sujatha, Lindley and exponential distributions are Over-dispersion ($\mu < \sigma^2$), equi-dispersion ($\mu=\sigma^2$) and under-dispersion ($\mu > \sigma^2$) of Aradhana, Sujatha, Lindley and exponential distributions for varying values of their parameter are presented in Table 4.

Graphs of coefficient of variation ($C.V$), coefficient of skewness ($C.S$), coefficient of kurtosis ($C.K.$) and index of dispersion (γ) for Aradhana, Sujatha, and Lindley distributions are presented for varying values of their parameter θ in Figure 1.

Estimation of parameter

Estimate of the parameter of aradhana distribution

Let $(t_1,t_2,t_3, \ldots , t_n)$ be a random sample from Aradhana distribution. The maximum likelihood estimate (MLE) $\hat{\theta}$ of θ and the method of moment estimate (MOME) of θ is the solution of the following cubic equation

$$7\theta^3 + (2\theta - 1)\theta^2 + 2(\theta - 2)\theta - 6 = 0$$

Estimate of the parameter of sujatha distribution

Let $(t_1,t_2,t_3, \ldots , t_n)$ be a random sample from Sujatha distribution. The maximum likelihood estimate (MLE) $\hat{\theta}$ of θ and the method of moment estimate (MOME) of θ is the solution of the following cubic equation

$$7\theta^3 + (\theta - 1)\theta^2 + 2(\theta - 1)\theta - 6 = 0$$

Estimate of the parameter of lindley distribution

Let $(t_1,t_2,t_3, \ldots , t_n)$ be a random sample of size n from Lindley distribution. The MLE $\hat{\theta}$ of θ and MOME $\hat{\theta}$ of θ is given by

$$\hat{\theta} = \frac{(\tau - 1) + \sqrt{\tau^2 - 4\tau}}{2\tau}, \quad \tau > 0,$$

where τ is the sample mean.

Estimate of the parameter of exponential distribution

Let $(t_1,t_2,t_3, \ldots , t_n)$ be a random sample of size n from exponential distribution. The MLE $\hat{\theta}$ of θ and MOME $\hat{\theta}$ of θ is given by

$$\hat{\theta} = \frac{1}{\bar{t}}, \quad \tau$$

where \bar{t} is the sample mean.

Applications and goodness of fit

In this section the goodness of fit test of Aradhana, Sujatha, Lindley and exponential distributions for following sixteen real lifetime data-sets using maximum likelihood estimate have been discussed.

In order to compare Aradhana, Sujatha, Lindley and exponential distributions, $-2\ln L$, AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC (Bayesian Information Criterion), K-S Statistics (Kolmogorov-Smirnov Statistics) for all sixteen real lifetime data-sets have been computed and presented in Table 5. The formulae for computing AIC, AICC, BIC, and K-S Statistics are as follows:

$$AIC = -2\ln L + 2k, \quad AICC = AIC + \frac{2k(k+1)}{n-k-1}, \quad BIC = -2\ln L + k \ln n$$

$$D = \sup |F(x) - F_0(x)|, \quad \tau = k, \quad n = \text{the sample size and } F_0(x) \text{ is the empirical distribution function. The best fitting is the distribution which corresponds to lower values of } -2\ln L, \text{ AIC, AICC, BIC, and K-S statistics.}$$

The best fitting has been shown by making $-2\ln L$, AIC, AICC, BIC, and K-S Statistics in bold.

Concluding remarks

In this paper an attempt has been made to find the suitability of
Aradhana, Sujatha, Lindley and exponential distributions for modeling real lifetime data from engineering, medical science and other fields. Firstly a table for values of the various characteristics of Aradhana, Sujatha, Lindley and exponential distributions has been presented for different values of their parameter which reflects their nature and behavior. The condition under which Aradhana, Sujatha, Lindley and exponential distributions are over-dispersed, equi-dispersed, and under-dispersed has been given. Several lifetime data from medical science, engineering and other fields of knowledge have been fitted using Aradhana, Sujatha, Lindley and exponential distributions to study the advantages and disadvantages of these distributions. The goodness of fit test of these distributions using Kolmogorov-Smirnov tests indicate that each has advantages and disadvantages for modeling lifetime data.

Table 1 Characteristics of Aradhana and Sujatha Distributions

Characteristic Formulas
Aradhana distribution
$f(t) = \frac{\theta^3}{\theta^2 + 2\theta + 2}(1+t)^2 e^{-\theta t}$
$F(t) = 1 - \left[1 + \frac{\theta t(\theta t + 2\theta + 2)}{\theta^2 + 2\theta + 2}\right] e^{-\theta t}$
$h(t) = \frac{\theta^3(1+t)^2}{\theta t(\theta t + 2\theta + 2) + (\theta^2 + 2\theta + 2)}$
$m(t) = \frac{\theta^5 t^2 + 2\theta t(\theta + 2) + (\theta^2 + 4\theta + 6)}{\theta \left[\theta t(\theta t + 2\theta + 2) + (\theta^2 + 2\theta + 2)\right]}$
$\mu_1 = \frac{\theta^3 + 4\theta + 6}{\theta(\theta^2 + 2\theta + 2)}$
$\mu_2 = \frac{\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12}{\theta^2(\theta^2 + 2\theta + 2)^2}$
$C.V. = \frac{\sigma}{\mu_1} = \frac{\sqrt{\theta^4 + 8\theta^3 + 24\theta^2 + 24\theta + 12}}{\theta^2 + 4\theta + 6}$
$\sqrt{\beta_1} = \frac{2 \left(\theta^6 + 12\theta^5 + 54\theta^4 + 100\theta^3\right)}{(\theta^4 + 8\theta^3 + 24\theta^2 + 24\theta + 12)^{3/2}}$
$\beta_2 = \frac{3 \left(3\theta^8 + 48\theta^7 + 304\theta^6 + 944\theta^5 + 1816\theta^4\right)}{(\theta^4 + 8\theta^3 + 24\theta^2 + 24\theta + 12)^2}$
$\gamma = \frac{\sigma^2}{\mu_1} = \frac{\theta^4 + 8\theta^3 + 24\theta^2 + 24\theta + 12}{\theta(\theta^2 + 2\theta + 2)(\theta^2 + 4\theta + 6)}$

| **Sujatha distribution** |
| $f(t) = \frac{\theta^3}{\theta^2 + \theta + 2}(1+t^2) e^{-\theta t}$ |
| $F(t) = 1 - \left[1 + \frac{\theta t(\theta t + \theta + 2)}{\theta^2 + \theta + 2}\right] e^{-\theta t}$ |
| $h(t) = \frac{\theta^3(1+t^2)}{\theta t(1+t^2) + \theta^2 + \theta + 2}$ |
| $m(t) = \frac{\theta^2(t^2 + t + 1) + 2\theta(t+1) + 6}{\theta \left[(\theta^2 + \theta + 2) + \theta t(\theta t + \theta + 2)\right]}$ |
| $\mu_1 = \frac{\theta^2 + 2\theta + 6}{\theta(\theta^2 + \theta + 2)}$ |
| $\mu_2 = \frac{\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12}{\theta^2(\theta^2 + \theta + 2)^2}$ |
| $C.V. = \frac{\sigma}{\mu_1} = \frac{\sqrt{\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12}}{\theta^2 + 2\theta + 6}$ |
| $\sqrt{\beta_1} = \frac{2 \left(\theta^6 + 6\theta^5 + 36\theta^4 + 44\theta^3\right) + 54\theta^2 + 36\theta + 24}{(\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12)^{3/2}}$ |
| $\beta_2 = \frac{3 \left(3\theta^8 + 24\theta^7 + 172\theta^6 + 376\theta^5 + 736\theta^4\right)}{(\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12)^2}$ |
| $\gamma = \frac{\sigma^2}{\mu_1} = \frac{\theta^4 + 4\theta^3 + 18\theta^2 + 12\theta + 12}{\theta(\theta^2 + \theta + 2)(\theta^2 + 2\theta + 6)}$ |

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28–38. DOI: 10.15406/bbij.2016.04.00087
Table 2 Characteristics of Lindley and Exponential Distributions

	Lindley Distribution	Exponential Distribution
	\(f(t) = \frac{\theta^2}{\theta+1} (1+t)e^{-\theta t} \)	\(f(t) = \theta e^{-\theta t} \)
	\(F(t) = 1 - \frac{\theta+1+\theta t}{\theta+1} e^{-\theta t} \)	\(F(t) = 1 - e^{-\theta t} \)
	\(h(t) = \frac{\theta^2 (1+t)}{\theta+1+\theta t} \)	\(h(t) = \theta \)
	\(m(t) = \frac{\theta + 2 + \theta t}{\theta(\theta+1+\theta t)} \)	\(m(t) = \frac{1}{\theta} \)
	\(\mu_1' = \frac{\theta+2}{\theta(\theta+1)} \)	\(\mu_1' = \frac{1}{\theta} \)
	\(\mu_2 = \frac{\theta^2 + 4\theta + 2}{\theta^2(\theta+1)^2} \)	\(\mu_2 = \frac{1}{\theta^2} \)
	\(CV = \frac{\sigma}{\mu_1'} = \sqrt{\frac{\theta^2 + 4\theta + 2}{\theta+2}} \)	\(CV = \frac{\sigma}{\mu_1'} = 1 \)
	\(\sqrt{\beta_1} = \frac{2(\theta^3 + 6\theta^2 + 6\theta + 2)}{(\theta^2 + 4\theta + 2)^{3/2}} \)	\(\sqrt{\beta_1} = 2 \)
	\(\beta_2 = \frac{3(3\theta^3 + 24\theta^2 + 44\theta^2 + 32\theta + 8)}{(\theta^2 + 4\theta + 2)^2} \)	\(\beta_2 = 9 \)
	\(\gamma = \frac{\sigma^2}{\mu_1'} = \frac{\theta^2 + 4\theta + 2}{\theta(\theta+1)(\theta+2)} \)	\(\gamma = \frac{\sigma^2}{\mu_1'} = \frac{1}{\theta} \)

Table 3 Values of \(\mu_1', \mu_2, CV, \sqrt[3]{\beta_1}, \beta_2, \) and \(\gamma \) of Aradhana, Sujatha and Lindley distributions for varying values of the parameter \(\theta \)

Values of \(\theta \) for Aradhana Distribution
0.01
299.000
29999.990
CV

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28-38. DOI: 10.15406/bbij.2016.04.00087
Table Continued

Values of θ for Aradhana Distribution
1.155
5.000
100.334

Values of θ for Aradhana Distribution
0.01
299.493
30000.737
CV
1.155
5.000
100.172

Values of θ for Aradhana Distribution
0.01
199.010
19999.020
CV
1.414
6.000
100.493

Table 4 Over-dispersion, equi-dispersion and under-dispersion of Aradhana, Sujatha, Lindley and exponential distributions for varying values of their parameter θ.

Distribution	Over-Dispersion $\theta < 1.283826505$	Equi-Dispersion $\mu = \sigma^2$	Under-Dispersion $\theta > 1.283826505$
Aradhana	$\theta < 1.283826505$	$\theta > 1.283826505$	
Sujatha	$\theta < 1.364271174$	$\theta = 1.364271174$	$\theta > 1.364271174$
Lindley	$\theta = 1.170086487$		
Exponential	$\theta < 1$		$\theta > 1$

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28-38. DOI: 10.15406/bbij.2016.04.00087
On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions

Table 5 MLE's, -2ln L, AIC, AICC, BIC, K-S Statistics of the fitted distributions of Data sets 1-16

Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Data 1						
Aradhana	1.346393	149.88	151.88	151.94	154.02	0.345
Sujatha	1.350050	154.81	156.81	156.87	158.95	0.349
Lindley	0.996116	162.56	164.56	164.62	166.70	0.371
Exponential	0.663647	177.66	179.66	179.73	181.80	0.402
Aradhana	0.0043272	952.58	954.58	954.62	957.18	0.186
Sujatha	0.0043566	951.78	953.78	953.78	954.91	0.185
Data 2						
Lindley	0.028859	983.11	985.11	985.15	987.71	0.242
Exponential	0.014635	1044.87	1046.87	1046.91	1049.48	0.357
Aradhana	0.0040968	227.28	229.28	229.47	230.41	0.108
Sujatha	0.0041232	227.17	229.17	229.36	230.30	0.107
Lindley	0.0027321	231.47	233.47	233.66	234.61	0.149
Exponential	0.0013845	242.87	244.87	245.06	246.01	0.263
Data 3						
Aradhana	0.0013454	1255.26	1257.26	1257.30	1259.86	0.069
Sujatha	0.0013484	1255.54	1257.54	1257.58	1260.14	0.070
Lindley	0.000897	1251.34	1253.34	1253.38	1255.95	0.098
Exponential	0.0004505	1280.52	1282.52	1282.56	1285.12	0.190

Figure 1 Graphs of coefficient of variation (C.V), coefficient of skewness ($\sqrt{\beta_1}$), coefficient of kurtosis (β_2) and index of dispersion (γ) for Aradhana, Sujatha, and Lindley distributions are for varying values of their parameter θ.

Figure 1 Graphs of coefficient of variation (C.V), coefficient of skewness ($\sqrt{\beta_1}$), coefficient of kurtosis (β_2) and index of dispersion (γ) for Aradhana, Sujatha, and Lindley distributions are for varying values of their parameter θ.

Table 5 MLE's, -2ln L, AIC, AICC, BIC, K-S Statistics of the fitted distributions of Data sets 1-16

Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Data 1						
Aradhana	1.346393	149.88	151.88	151.94	154.02	0.345
Sujatha	1.350050	154.81	156.81	156.87	158.95	0.349
Lindley	0.996116	162.56	164.56	164.62	166.70	0.371
Exponential	0.663647	177.66	179.66	179.73	181.80	0.402
Aradhana	0.0043272	952.58	954.58	954.62	957.18	0.186
Sujatha	0.0043566	951.78	953.78	953.78	954.91	0.185
Data 2						
Lindley	0.028859	983.11	985.11	985.15	987.71	0.242
Exponential	0.014635	1044.87	1046.87	1046.91	1049.48	0.357
Aradhana	0.0040968	227.28	229.28	229.47	230.41	0.108
Sujatha	0.0041232	227.17	229.17	229.36	230.30	0.107
Lindley	0.0027321	231.47	233.47	233.66	234.61	0.149
Exponential	0.0013845	242.87	244.87	245.06	246.01	0.263
Data 3						
Aradhana	0.0013454	1255.26	1257.26	1257.30	1259.86	0.069
Sujatha	0.0013484	1255.54	1257.54	1257.58	1260.14	0.070
Lindley	0.000897	1251.34	1253.34	1253.38	1255.95	0.098
Exponential	0.0004505	1280.52	1282.52	1282.56	1285.12	0.190
Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
------------	---------------------	---------	--------	--------	--------	---------------
Aradhana	0.029756	794.28	796.28	796.34	798.56	0.182
Sujatha	0.029898	794.48	796.48	796.54	798.77	0.183
Lindley	0.019841	789.04	791.04	791.10	793.32	0.133
Exponential	0.010018	806.88	808.88	808.94	811.16	0.198
Aradhana	0.115577	989.49	991.49	991.52	994.39	0.399
Sujatha	0.116194	985.69	987.69	987.72	990.59	0.396
Lindley	0.077247	1041.64	1043.64	1043.68	1046.54	0.448
Exponential	0.04006	1130.26	1132.26	1132.29	1135.16	0.525
Aradhana	0.013206	801.83	803.83	803.90	805.90	0.297
Sujatha	0.013234	802.84	804.84	804.91	806.90	0.298
Lindley	0.008804	763.75	765.75	765.82	767.81	0.245
Exponential	0.004421	744.87	746.87	746.94	748.93	0.166
Aradhana	0.013364	608.87	610.87	610.96	612.65	0.278
Sujatha	0.013394	609.39	611.39	611.48	613.17	0.279
Lindley	0.008910	579.16	581.16	581.26	582.95	0.219
Exponential	0.004475	564.02	566.02	566.11	567.80	0.145
Aradhana	0.290304	874.71	876.71	876.74	879.56	0.179
Sujatha	0.289633	879.82	881.82	881.85	884.67	0.187
Lindley	0.196045	839.06	841.06	841.09	843.91	0.116
Exponential	0.106773	828.68	830.68	830.72	833.54	0.077
Aradhana	0.049506	350.55	352.55	352.69	353.95	0.415
Sujatha	0.049887	352.47	354.47	354.61	355.87	0.418
Lindley	0.0033021	323.27	325.27	325.42	326.67	0.345
Exponential	0.016779	305.26	307.26	307.40	308.66	0.213
Aradhana	1.132874	116.06	118.06	118.18	119.59	0.169
Sujatha	1.146073	115.54	117.54	117.66	119.07	0.164
Lindley	0.823821	112.61	114.61	114.73	116.13	0.133
Exponential	0.532081	110.91	112.91	113.03	114.43	0.089
Aradhana	0.276551	638.34	640.34	640.38	642.94	0.080
Sujatha	0.284621	639.64	641.64	641.68	644.24	0.088
Lindley	0.186571	638.07	640.07	640.12	642.68	0.058
Exponential	0.101245	658.04	660.04	660.08	662.65	0.163
Aradhana	0.024537	193.60	195.60	195.91	196.31	0.453
Sujatha	0.024634	193.94	195.94	196.25	196.65	0.454
Lindley	0.01636	181.34	183.34	183.65	184.05	0.386
Exponential	0.008246	173.94	175.94	176.25	176.65	0.277
Aradhana	1.123193	56.37	58.37	58.59	59.36	0.302
Sujatha	1.136745	57.50	59.50	59.72	60.49	0.309
Lindley	0.816118	60.50	62.50	62.72	63.49	0.341
Exponential	0.526316	65.67	67.67	67.90	68.67	0.389

Table Continued
Table Continued

Model	Parameter Estimate	-2ln L	AIC	AICC	BIC	K-S Statistic
Data Set 1						
Aradhana	0.094318	242.23	244.23	244.37	245.66	0.274
Sujatha	0.095610	241.50	243.50	243.64	244.93	0.270
Lindley	0.062988	253.99	255.99	256.13	257.42	0.333
Exponential	0.032455	274.53	276.53	276.67	277.96	0.426
Data Set 2						
Aradhana	0.917023	219.90	221.90	221.96	224.13	0.350
Sujatha	0.936119	221.61	223.61	223.67	225.84	0.362
Lindley	0.659000	238.38	240.38	240.44	242.61	0.390
Exponential	0.407941	261.74	263.74	263.80	265.97	0.434

Data Set 1 The data set represents the strength of 1.5cm glass fibers measured at the National Physical Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are taken from Smith & Naylor. The data (× 10^5) are presented below (after subtracting 65)

Strength (MPa)
0.55
0.74
0.77
0.81
1.24

Data Set 2 The data is given by Birnbaum & Saunders on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data (X × 10^3) are presented below (after subtracting 65)

Observations
5
43
55
64
69
76
84
98

Data Set 3 The data set is from Lawless. The data given arose in tests on endurance of deep groove ball bearings. The data are the number of million revolutions before failure for each of the 23 ball bearings in the life tests

Million Revolutions
17.88
68.44

Data Set 4 The data is from Picciotto and arose in test on the cycle at which the Yarn failed. The data are the number of cycles until failure of the yarn

Cycles
86
264
166
93
400
20

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28-38. DOI: 10.15406/bbij.2016.04.00087
Data Set 5 This data represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal.

12	15	22	24	24	32	32	33	34	38	38	43	44
48	52	53	54	54	55	56	57	58	58	59	60	60
60	60	61	62	63	65	65	67	68	70	70	72	73
75	76	81	83	84	85	87	91	95	96	98	99	
109	110	121	127	129	131	143	146	146	175	175	211	233
258	258	263	297	341	341	376						

Data Set 6 This data is related with behavioral sciences, collected by Balakrishnan et al. [27]. The scale “General Rating of Affective Symptoms for Preschoolers (GRASP)” measures behavioral and emotional problems of children, which can be classified with depressive condition or not according to this scale. A study conducted by the authors in a city located at the south part of Chile has allowed collecting real data corresponding to the scores of the GRASP scale of children with frequency in parenthesis.

19(16),	20(15),	21(14),	22(9),	23(12),	24(10),	25(6),	26(9),	27(8),	28(5),	29(6),
30(4),	31(3),	32(4),	33,	34,	35(4),	36(2),	37(2),	39	42	44

Data Set 7 The data set reported by Efron represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using radiotherapy (RT).

6.53	7	10.42	14.48	16.1	22.7	34	41.55	42	45.28	49.4	53.62	63
64	83	84	91	108	112	129	133	133	139	140	140	146
149	154	157	160	160	165	146	149	154	157	160	160	165
173	176	218	225	241	248	273	277	297	405	417	420	440
523	583	594	1101	1146	1147							

Data Set 8 The data set reported by Efron represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT).

12.20	23.56	23.74	25.87	31.98	37	41.35	47.38	55.46	58.36	63.47	68.46	78.26
74.47	81.43	84	92	94	110	112	119	127	130	133	140	146
155	159	173	179	194	195	209	249	281	319	339	432	469
519	633	725	817	1776								

Data set 9 This data set represents remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee & Wang.

0.08	2.09	3.48	4.87	6.94	8.66	13.11	23.63	0.20	2.23	3.52	4.98	6.97
9.02	13.29	0.40	2.26	3.57	5.06	7.09	9.22	13.80	25.74	0.50	2.46	3.64
5.09	7.26	9.47	14.24	25.82	0.51	2.54	3.70	5.17	7.28	9.74	14.76	6.31
0.81	2.62	3.82	5.32	7.32	10.06	14.77	32.15	2.64	3.88	5.32	7.39	10.34
14.83	34.26	0.90	2.69	4.18	5.34	7.59	10.66	15.96	36.66	1.05	2.69	4.23
5.41	7.62	10.75	16.62	43.01	1.19	2.75	4.26	5.41	7.63	17.12	46.12	1.26
2.83	4.33	5.49	7.66	11.25	17.14	79.05	1.35	2.87	5.62	7.87	11.64	17.36
1.40	3.02	4.34	5.71	7.93	11.79	18.11	1.46	4.40	5.85	8.26	11.98	19.13
1.76	3.25	4.50	6.25	8.37	12.02	20.2	3.31	4.51	6.54	8.53	12.03	
20.28	2.02	3.36	6.76	12.07	21.73	2.07	3.36	6.93	8.65	12.63	22.69	

Data Set 10 This data set is given by Linhart & Zucchini, which represents the failure times of the air conditioning system of an airplane.

23	261	87	7	120	14	62	47	225	71	246	21	42
20	5	12	120	11	3	14	71	11	14	11	16	90
1	16	52	95									

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28-38. DOI: 10.15406/bbij.2016.04.00087
Data Set 11 This data set used by Bhaumik et al.,31 is vinyl chloride data obtained from clean upgradient monitoring wells in mg/l

	5.1	1.2	1.3	0.6	0.5	2.4	0.5	1.1	8	0.8	0.4	0.6	0.9
0.4	2	0.5	5.3	3.2	2.7	2.9	2.5	2.3	1	0.2	0.1	0.1	
1.8	0.9	2	4	6.8	1.2	0.4	0.2						

Data Set 12 This data set represents the waiting times (in minutes) before service of 100 Bank customers and examined and analyzed by Ghitany et al.,7 for fitting the Lindley distribution

	0.8	0.8	1.3	1.5	1.8	1.9	1.9	2.1	2.6	2.7	2.9	3.1	3.2
3.3	3.5	3.6	4.0	4.1	4.2	4.2	4.3	4.3	4.4	4.4	4.6	4.7	
4.7	4.8	4.9	4.9	5.0	5.3	5.5	5.7	5.7	6.1	6.2	6.2	6.2	
6.3	6.7	6.9	7.1	7.1	7.1	7.1	7.4	7.6	7.7	8.0	8.2	8.6	
8.6	8.6	8.8	8.8	8.9	8.9	9.5	9.6	9.7	9.8	10.7	10.9	11.0	
11.0	11.1	11.2	11.2	11.5	11.9	12.4	12.5	12.9	13.0	13.1	13.3	13.6	
13.7	13.9	14.1	15.4	15.4	17.3	17.3	18.1	18.2	18.4	18.9	19.0	19.9	
20.6	21.3	21.4	21.9	23.0	27.0	31.6	33.1	38.5					

Data Set 13 This data is for the times between successive failures of air conditioning equipment in a Boeing 720 airplane. Proshcan74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326

	74	57	48	29	502	12	70	21	29	386	59	27	153

Data Set 14 This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark33

	1.1	1.4	1.3	1.7	1.9	1.8	1.6	2.2	1.7	2.7	4.1	1.8	1.5
1.2	1.4	3	1.7	2.3	1.6	2							

Data Set 15 This data set is the strength data of glass of the aircraft window reported by Fuller et al.,34

	18.83	20.8	21.657	23.03	23.23	24.05	24.321	25.5	25.52	25.8	26.69	26.77	26.78
27.05	27.67	29.9	31.11	33.2	33.73	33.76	33.89	34.76	35.75	35.91	36.98	37.08	
37.09	39.58	44.045	45.29	45.381									

Data Set 16 The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm35

	1.312	1.314	1.479	1.552	1.700	1.803	1.861	1.865	1.944	1.958	1.966	1.997
2.006	2.021	2.027	2.055	2.063	2.098	2.140	2.179	2.224	2.240	2.253	2.270	
2.272	2.274	2.301	2.301	2.359	2.382	2.382	2.426	2.434	2.435	2.478	2.490	
2.511	2.514	2.535	2.554	2.566	2.570	2.586	2.629	2.663	2.662	2.648	2.684	
2.697	2.726	2.770	2.773	2.800	2.809	2.818	2.821	2.848	2.880	2.954	3.012	
3.067	3.084	3.090	3.096	3.128	3.233	3.433	3.585	3.585	3.858			

Acknowledgement
None.

Conflict of interest
None.

References
1. Shanker R, Hagos F, Sujatha S. On modeling of lifetime data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal. 2015;2(5):1–9.
2. Shanker R. Aradhana distribution and Its Applications. International Journal of Statistics and Applications. 2016a;6(1):23–34.
3. Shanker R. Sujatha distribution and Its Applications. To appear in “Statistics in Transition new Series”. 2016b:17(3).
4. Shanker R. The discrete Poisson-Aradhana distribution. Communicated. 2016c.
5. Shanker R. The discrete Poisson-Sujatha distribution. International Journal of Probability and Statistics. 2016d;5(1):1–9.
6. Lindley DV. Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society Series. 1958B;20(1):102–107.
7. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Applications. Mathematics and Computers in Simulation. 2008;78(4):493–506.
8. Sankaran M. The discrete Poisson-Lindley distribution. Biometrics. 1970;26(1):145–149.

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. Biom Biostat Int J. 2016;4(1):28–38. DOI: 10.15406/bbij.2016.04.00087
On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions

9. Zakerzadeh H, Dolati A. Generalized Lindley distribution. *Journal of Mathematical extension*. 2009;3(2):13–25.
10. Nadarajah S, Bakouch HS, Tahmashi R. A generalized Lindley distribution. *Sankhya B*. 2011;73(2):331–359.
11. Deniz EG, Ojeda EC. The discrete Lindley distribution-Properties and Applications. *Journal of Statistical Computation and Simulation*. 2011;81(11):1405–1416.
12. Bakouch SH, Al-Zahrani BM, Al-Shomrani AA, et al. An extended Lindley distribution. *Journal of Korean Statistical Society*. 2012;41(1):75–85.
13. Shanker R, Mishra A. A quasi Lindley distribution. *African journal of Mathematics and Computer Science Research*. 2013a;6(4):64–71.
14. Shanker R, Mishra A. A two- parameter Lindley distribution. *Statistics in transition new series*. 2013b;14(1):45–56.
15. Shanker R, Mishra A. A quasi Poisson-Lindley distribution. *To appear in, “Journal of Indian Statistical Association”*. 2016.
16. Shanker R, Amanuel AG. A new quasi Lindley distribution. *International Journal of Statistics and systems*. 2013;8(2):143–156.
17. Ghitany M, Al-Mutairi D, Balakrishnan N, Al-Enezi I. Power Lindley distribution and associated inference. *Computational Statistics and Data Analysis*. 2013;64:20–33.
18. Shanker R, Sharma S, Shanker R. A two-parameter Lindley distribution for modeling waiting and survival times data. *Applied Mathematics*. 2013;4:363–368.
19. Shanker R, Hagos F, Sharma S. On Two Parameter Lindley distribution and Its Applications to model lifetime data. *Biometrics & Biostatistics International Journal*. 2016a;3(1):1–8.
20. Shanker R, Hagos F, Sharma S. On quasi Lindley distribution and Its Applications to model lifetime data. *International Journal of Statistical distributions and Applications*. 2016 b;2(1):1–7.
21. Shanker R, Hagos F, Sujatha S. On modeling of Lifetimes data using one parameter Akash, Lindley and exponential distributions. *Biometrics & Biostatistics International Journal*. 2016c;3(2):1–10.
22. Smith RL, Naylor JC. A comparison of Maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. *Applied Statistics*. 1987;36(3):358–369.
23. Birnbaum ZW, Saunders SC. Estimation for a family of life distributions with applications to fatigue. *Journal of Applied Probability*. 1969;6(2):328–347.
24. Lawless JF. Statistical models and methods for lifetime data, John Wiley and Sons, New York, USA; 1982.
25. Picciotto R. Tensile fatigue characteristics of a sized polyester/viscose yarn and their effect on weaveng performance, Master thesis, North Carolina State, University of Raleigh, USA; 1970.
26. Bjerkedal T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. *Am J Hyg*. 1960;72(1):130–148.
27. Balakrishnan N, Victor L, Antonio S. A mixture model based on Birnbaum-Saunders Distributions, A study conducted by Authors regarding the Scores of the GRASP (General Rating of Affective Symptoms for Preschoolers), in a city located at South Part of the Chile; 2010.
28. Efron B. Logistic regression, survival analysis and the Kaplan-Meier curve. *Journal of the American Statistical Association*. 1988;83(402):414–425.
29. Lee ET, Wang JW. Statistical methods for survival data analysis, 3rd edition, John Wiley and Sons, New York, USA; 2003.
30. Linhart H, Zucchini W. Model Selection. John Wiley, New York, USA; 1986.
31. Bhaumik DK, Kapur K, Gibbons RD. Testing Parameters of a Gamma Distribution for Small Samples. Technometrics. 2009;51(3):326–334.
32. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 2013;5:375–383.
33. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biometrical Sciences. John Wiley, New York, USA; 1975.
34. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. *SPIE Proceedings*. 1994;2286:419–430.
35. Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K Umekawa S, editors. Progress in Science in Engineering Composites. ICCM-IV, Tokyo; 1982. p. 1129–1136.

Citation: Shanker R, Fesshaye H. On modeling of lifetime data using aradhana, sujatha, lindley and exponential distributions. *Biom Biostat Int J*. 2016;4(1):28–38.
DOI: 10.15406/bbij.2016.04.00087