Compilação de Critérios Diagnósticos de Insuficiência Renal Aguda em Cirurgia Cardíaca

Comparison of Diagnostic Criteria for Acute Kidney Injury in Cardiac Surgery

Márcio Campos Sampaio¹, Carlos Alberto Gonçalves Máximo¹, Carolina Moreira Montenegro¹, Diandro Marinho Mota¹, Tatiana Rocha Fernandes¹, Antonio Carlos Mugayar Bianco², Celso Amodeo¹, Antonio Carlos Cordeiro¹

Dante Pazzanese Institute of Cardiology - Department of Hypertension and Nephrology ¹ - Dante Pazzanese Institute of Cardiology - Intensive Care Unit ², São Paulo, SP – Brasil

Resumo

Fundamento: Há grande controvérsia quanto ao diagnóstico de Insuficiência Renal Aguda (IRA), existindo mais de 30 diferentes definições.

Objetivo: Avaliar a incidência e os fatores de risco para desenvolvimento de IRA no pós-operatório de cirurgia cardíaca de acordo com os critérios RIFLE, AKIN e KDIGO, e comparar o poder prognóstico desses critérios.

Métodos: Estudo de corte transversal que incluiu 321 pacientes (62 [53 – 71] anos, 140 homens) consecutivamente submetidos à cirurgia cardíaca entre junho de 2011 e janeiro de 2012. Os pacientes foram acompanhados por 30 dias, com vistas ao desenvolvimento de um desfecho composto (mortalidade, necessidade de diálise e internação prolongada).

Resultados: A incidência de IRA variou de 15% – 51%, conforme o critério diagnóstico adotado. Enquanto a idade se associou ao risco de IRA nos três critérios, houve variação nos demais determinantes. Durante o acompanhamento, 89 pacientes apresentaram o desfecho e todos os critérios se associaram ao risco aumentado na análise Cox univariada e após o ajuste para idade, sexo, diabetes e tipo de cirurgia. Contudo, após novo ajuste para tempo de circulação extracorpórea e presença de baixo débito cardíaco, apenas o diagnóstico de IRA pelo critério KDIGO manteve esta associação significativa (HR= 1,89 [95% IC: 1,18 – 3,06])

Conclusões: A incidência e os fatores de risco para IRA pós-cirurgia cardíaca têm grande variação de acordo com os critérios diagnósticos utilizados. Em nossa análise, o critério KDIGO se mostrou superior ao AKIN e ao RIFLE quanto ao seu poder prognóstico (Arq Bras Cardiol. 2013; [online].ahead print, PP.0-0).

Palavras-chave: Falência Renal Aguda; Cirurgia Cardíaca; Hemodiálise; Revascularização miocárdica.

Abstract

Background: There is considerable controversy regarding the diagnosis of Acute Kidney Injury (AKI), and there are over 30 different definitions.

Objective: To evaluate the incidence and risk factors for the development of AKI following cardiac surgery according to the RIFLE, AKIN and KDIGO criteria, and compare the prognostic power of these criteria.

Methods: Cross-sectional study that included 321 consecutively patients (median age 62 [53-71] years; 140 men) undergoing cardiac surgery between June 2011 and January 2012. The patients were followed for up to 30 days, for a composite outcome (mortality, need for dialysis and extended hospitalization).

Results: The incidence of AKI ranged from 15% - 51%, accordingly to the diagnostic criterion adopted. While age was associated with risk of AKI in the three criteria, there were variations in the remaining risk factors. During follow-up, 89 patients developed the outcome and all criteria were associated with increased risk in the univariate Cox analysis and after adjustment for age, gender, diabetes, and type of surgery. However, after further adjustment for extracorporeal circulation and the presence of low cardiac output, only AKI diagnosed by the KDIGO criterion maintained this significant association (HR= 1.89 [95% CI: 1.18 – 3.06]).

Conclusion: The incidence and risk factors for AKI after cardiac surgery vary significantly according to the diagnostic criteria used. In our analysis, AKI the KDIGO criterion was superior to AKIN and RIFLE with regard its prognostic power (Arq Bras Cardiol. 2013; [online].ahead print, PP.0-0).

Keywords: Kidney Failure, Chronic; Cardiac Surgical Procedures; Myocardial Revascularization; Renal Dialysis.

Full texts in English - http://www.arquivosonline.com.br

Correspondência: Antonio Carlos Cordeiro •
Dante Pazzanese Institute of Cardiology - Department of Hypertension and Nephrology.
Avenida Dr. Dante Pazzanese 500, Vila Mariana, CEP 04012-909, São Paulo, SP - Brasil
E-mail: accordeirojr@uol.com.br
Artigo recebido em 21/11/12; revisado em 06/02/13; aceito em 21/02/13.

DOI: 10.5935/abc.20130115
Introdução

Anualmente em torno de um milhão de cirurgias cardíacas são realizadas em todo o mundo, e essas cirurgias acarretam alterações fisiopatológicas em diversos órgãos. Esse fato é ainda agravado pelo progressivo envelhecimento da população em geral, trazendo consigo um aumento da prevalência de doenças crônicas que fazem aumentar o risco cirúrgico.

A probabilidade de desenvolvimento de Insuficiência Renal Aguda (IRA) após a realização de uma cirurgia cardíaca varia de 1% – 30%, de acordo com o critério diagnóstico adotado e o tipo de cirurgia cardíaca. O desenvolvimento de IRA traz profundo impacto no prognóstico de pacientes submetidos a cirurgia cardíaca, com mortalidade estimada em 15% – 30%; sendo interessante observar que mesmo pequenos aumentos da creatinina plasmática se associam significativamente à mortalidade. Além disso, o prognóstico se torna ainda mais reservado nos pacientes que necessitam de terapia dialítica, havendo um aumento de aproximadamente oito vezes no risco de morte, mesmo após a correção para outras comorbidades e complicações pós-operatórias.

Apesar da reconhecida importância da insuficiência renal aguda, um dos grandes problemas na condução de estudos sobre o tema é a falta de um consenso quanto ao seu diagnóstico, de forma a haver mais de 30 diferentes definições. Atualmente, destacam-se três critérios diagnósticos de IRA: RIFLE (do acrônimo “Risk, Injury, Failure, Loss of kidney function, and End-stage renal failure”); AKIN (“Acute Kidney Injury Network”); e KDIGO (“Kidney Disease: Improving Global Outcomes”). O objetivo do presente estudo foi determinar a incidência e os fatores de risco para desenvolvimento de IRA no pós-operatório de cirurgia cardíaca de acordo com cada um dos critérios descritos, bem como comparar o poder prognóstico desses critérios.

Métodos

Desenho do estudo

Realizamos um estudo de corte transversal com acompanhamento prospectivo, que incluiu 321 pacientes (62 [53 – 71] anos, 140 homens) submetidos a cirurgia cardíaca, para troca valvar, revascularização miocárdica, ou ambas (cirurgia combinada), no Instituto Dante Pazzanese de Cardiologia, entre 3 de junho de 2011 e 23 de janeiro de 2012.

Seleção de pacientes

Fomram incluídos todos os pacientes, entre 18 e 80 anos, consecutivamente submetidos a cirurgia de revascularização miocárdica, troca valvar ou ambos os procedimentos (cirurgia combinada) no Instituto Dante Pazzanese de Cardiologia (IDPC). Os critérios de exclusão foram idade inferior a 18 ou superior a 80 anos, cirurgias para correção de cardiopatias congêneres, cirurgias para correção de aneurisma de aorta e pacientes com creatinina plasmática igual ou superior a 2,5 mg/dL no período pré-operatório. Os pacientes foram abordados a partir do período pós-operatório imediato e acompanhados, a partir de então, por um período de 30 dias, com vistas à identificação dos casos de IRA, bem como necessidade de hemodiálise, internação prolongada e óbito. A dosagem de creatinina foi realizada no pré-operatório e após o procedimento cirúrgico, diariamente, por um período de sete dias, pelo Laboratório Central do IDPC. O ritmo de filtração glomerular foi determinado pela equação de Cockcroft-Gault. Os dados pré e transoperatórios foram coletados mediante revisão de prontuário / descrição cirúrgica e os pesquisadores não exerceram nenhuma influência na condução dos pacientes. O estudo foi avaliado e aprovado pelo Comitê de Ética em Pesquisa do IDPC.

Definição de internação prolongada, baixo débito cardíaco e insuficiência renal aguda

A definição de internação prolongada foi feita com base na mediana e percentis (8 [6 – 14] dias) do tempo decorrido entre a cirurgia cardíaca e a alta hospitalar dos participantes do estudo; dessa forma, definimos como “pacientes com internação prolongada” aqueles com período de internação pós-cirúrgica igual ou superior a 15 dias. O diagnóstico de baixo débito cardíaco foi feito com base na necessidade de uso de pelo menos três agentes vasoativos ou suporte hemodinâmico por meio de balão intra-aórtico durante admissão na unidade de terapia intensiva. O diagnóstico de IRA se baseou nas variações da creatinina sérica no período de sete dias, segundo três diferentes critérios, quais sejam: AKIN: Elevação da creatinina igual ou superior a 0,3 mg/dL; ou igual ou superior a 1,5 vezes a creatinina basal em intervalos “móveis” de 48 horas; RIFLE: Elevação da creatinina igual ou superior a 1,5 vezes a creatinina basal em um intervalo de até sete dias; KDIGO: Elevação da creatinina igual ou superior a 0,3 mg/dL em 48h; ou igual ou superior a 1,5 vezes a creatinina basal em um intervalo de até sete dias.

Análise estatística

As variáveis foram representadas por média e desvio-padrão, mediana e percentis (25 – 75), ou valor absoluto (n) e relativo (%), conforme apropriado. Comparações de variáveis entre dois grupos distintos foram realizadas pelo teste de Mann-Whitney, quando de variáveis contínuas; e qui-quadrado de Pearson, quando de variáveis categóricas. Realizamos análises de regressão logística uni e multivariadas para determinar os fatores associados ao desenvolvimento de IRA por cada um dos métodos estudados. Análises de sobrevida foram realizadas pelo método de Kaplan-Meier e pelo modelo de risco proporcional de Cox, tendo-se adotado um desfecho composto (morte ou internação prolongada). Todas as probabilidades de significância (valores de p) apresentadas são do tipo bicaudal e valores menores que 0,05 foram considerados estaticamente significantes. A análise estatística foi realizada com o software SPSS 13.0 (SPSS Inc., Chicago IL, 2004).

Resultados

Características gerais da população estudada e incidência de IRA

As características demográficas e clínicas dos pacientes incluídos no estudo estão sumarizadas na tabela 1. É interessante ressaltar que foi utilizada Circulação
Extracorpórea (CEC) em todos os pacientes estudados e a incidência de IRA variou de 15% – 51%, conforme o critério diagnóstico adotado.

Fenótipo dos pacientes de acordo com o diagnóstico de IRA pelos diferentes critérios

A tabela 2 compara as características clínicas e demográficas dos pacientes de acordo com o desenvolvimento ou não de injúria renal, por cada um dos critérios avaliados. Em resumo, quando utilizou o critério AKIN, os pacientes que desenvolveram IRA tinham idade mais avançada e menor ritmo de filtração glomerular (RFG), além de maior prevalência do uso de insulina, da realização de cirurgia valvar e/ou combinada e do desenvolvimento de baixo débito cardíaco. Pelo critério RIFLE, os pacientes que apresentaram IRA diferiam dos demais apenas pela idade mais avançada e maior prevalência de baixo débito cardíaco. Por fim, quando aplicado o critério KDIGO, além da idade mais avançada, os pacientes que desenvolveram insuficiência renal aguda também apresentavam maior prevalência do uso de insulina e do desenvolvimento de baixo débito cardíaco.

Determinantes de IRA após cirurgia cardíaca

Buscando determinar os fatores independentemente associados ao desenvolvimento de IRA pelos diferentes critérios diagnósticos estudados, desenvolvemos uma série de análises de regressão logística, como apresentadas na tabela 3. Dessa forma, observamos que os fatores independentemente associados ao risco de desenvolvimento de IRA pelo critério AKIN foram idade, uso de insulina e cirurgia valvar (pura e combinada). Nos critérios RIFLE, os fatores de risco identificados foram idade, tempo de CEC e desenvolvimento de baixo débito cardíaco. Quando o desenvolvimento de IRA foi determinado pelo critério KDIGO, os fatores que se associaram ao maior risco foram a idade, uso de insulina e o baixo débito cardíaco.

Associação entre diagnóstico de IRA e eventos

Durante o acompanhamento houve 11 mortes (sete por sepse e quatro por choque cardiogênico), seis pacientes necessitaram de hemodiálise e 75 tiveram internação prolongada, computando-se um total de 92 eventos combinados em 89 pacientes (tab. 2). Pacientes com diagnóstico de IRA pelos critérios AKIN, RIFLE e KDIGO apresentaram risco aumentado para o desenvolvimento de eventos na análise de Kaplan-Meier (fig. 1). Na análise de Cox univariada, os pacientes com diagnóstico de IRA pelos critérios AKIN (HR: 1,99 [95% IC: 1,29 – 3,08]), RIFLE (HR: 2,15 [95% IC: 1,32 – 3,51]) e KDIGO (HR: 2,45 [95% IC: 1,57 – 3,82]) apresentaram risco aumentado para o desenvolvimento de eventos; e essa associação persistiu mesmo após o ajuste para idade, sexo, diabetes e tipo de cirurgia. Contudo, após novo ajuste para tempo de CEC e a presença de baixo débito, apenas o diagnóstico de IRA pelo critério KDIGO manteve essa associação significativa (HR = 1,89 [95% IC: 1,18 – 3,06]), como demonstrado na tabela 4.

Discussão

A incidência de insuficiência renal aguda após cirurgia cardíaca em nossa população foi de 15% pelo critério RIFLE\(^4\), 19% pelo KDIGO\(^10\) e 51% pelo AKIN\(^9\). Nossos dados demonstram que existem importantes diferenças entre os critérios diagnósticos neste que acreditamos ter sido o primeiro estudo a compará-los nesse tipo de população. Pacientes com diagnóstico de IRA, independentemente do critério utilizado, apresentaram maior mortalidade e maior risco de eventos combinados (morte, necessidade de diálise e/ou internação prolongada); nossos resultados reforçam e vão ao encontro às evidências prévias quanto ao mau prognóstico associado ao desenvolvimento de IRA\(^4,10\). É interessante reafirmar, contudo, que dois pacientes com diagnóstico de IRA pelo critério AKIN, mas sem injúria renal pelos critérios RIFLE e KDIGO, necessitaram de terapia renal substitutiva no pós-operatório.

Apesar de todo avanço no conhecimento da patogênese e tratamento da IRA, essa ainda é uma complicaçãorelativamente comum em pacientes graves e se associa à
Tabela 2 – Características demográficas e clínicas dos 321 pacientes submetidos à cirurgia cardíaca de acordo com a presença ou ausência de IRA por diferentes critérios

	AKIN (IRA (-) (n = 158))	IRA (+) (n = 163)	P	RIFLE (IRA (-) (n = 273))	IRA (+) (n = 48)	P	KDIGO (IRA (-) (n = 259))	IRA (+) (n = 62)	P
Idade (anos)	60 (51 – 68)	65 (55 – 73)	0,001	61 (52 – 71)	67 (58 – 76)	0,003	61 (52 – 71)	65 (56 – 75)	0,006
Homens (n, %)	70 (44%)	70 (43%)	0,806	120 (44%)	20 (42%)	0,768	113 (44%)	27 (44%)	0,991
IMC (Kg/m²)	27,4 ± 5,3	26,9 ± 5,1	0,369	27,3 ± 5,2	26,9 ± 4,9	0,473	27,2 ± 5,2	27,1 ± 5,0	0,559
Diabetes (n, %)	49 (31%)	46 (28%)	0,584	82 (30%)	13 (27%)	0,679	75 (29%)	20 (32%)	0,609
IAM prévio (n, %)	55 (35%)	47 (29%)	0,250	87 (32%)	15 (31%)	0,932	83 (32%)	19 (31%)	0,831
Uso de Estatinas	108 (70%)	112 (70%)	0,883	185 (69%)	35 (75%)	0,475	175 (69%)	45 (74%)	0,481
Uso de Insulina	7 (4%)	20 (12%)	0,011	20 (7%)	7 (15%)	0,007	17 (7%)	10 (16%)	0,013
Hemoglobina (g/dL)	13,5 ± 5,2	13,4 ± 2,0	0,416	13,7 ± 4,2	13,1 ± 1,8	0,094	13,8 ± 4,3	13,1 ± 1,7	0,074
RFG (ml/min)	81,0 (67,1 – 102,7)	65,9 (53,0 – 94,2)	<0,001	74,0 (58,9 – 96,6)	71,1 (54,7 – 108,6)	0,674	74,4 (59,1 – 97,0)	70,5 (55,5 – 105,8)	0,959
Tipo de Cirurgia									
RM	90 (57%)	68 (42%)	<0,001	135 (50%)	23 (48%)	0,314	129 (50%)	29 (47%)	0,185
Cirurgia Valvar	64 (41%)	75 (46%)		121 (44%)	18 (37%)		115 (44%)	24 (39%)	
Cirurgia Combinada	4 (2%)	20 (12%)		17 (6%)	7 (15%)		15 (6%)	9 (14%)	
Tempo de CEC (h)	1,4 (1,2 – 1,8)	1,5 (1,2 – 2,1)	0,071	1,4 (1,2 – 1,8)	1,5 (1,2 – 2,3)	0,206	1,4 (1,2 – 1,8)	1,5 (1,2 – 2,3)	0,247
Balanço Volêmico (ml)	-250 (-895 – 300)	-226 (-820 – 397)	0,567	-240 (-895 – 300)	-250 (-799 – 560)	0,432	-240 (-803 – 295)	-240 (-775 – 553)	0,275
Baixo débito cardíaco (n, %)	3 (2%)	12 (7%)	0,020	9 (3%)	6 (13%)	0,005	6 (2%)	9 (15%)	<0,001
Internação Prolongada (n, %)	30 (19%)	45 (28%)	0,086	65 (24%)	10 (21%)	0,715	57 (22%)	18 (29%)	0,246
Necessidade de Diálise (n, %)	0 (0%)	6 (4%)	0,030	2 (1%)	4 (8%)	0,005	2 (1%)	4 (7%)	0,014
Óbito (n, %)	1 (1%)	10 (6%)	0,011	3 (1%)	8 (17%)	<0,001	3 (1%)	8 (13%)	<0,001
Eventos combinados	31 (20%)	58 (36%)	0,002	68 (25%)	21 (44%)	0,013	60 (23%)	29 (47%)	<0,001

IMC: Índice de massa corporal; IAM: Infarto agudo do miocárdio; RFG: Ritmo de filtração glomerular; RM: Revascularização miocárdica; CEC: Circulação extracorpórea.

1 Dados apresentados como média ± DP, mediana (25-75 percentis) ou valores absolutos (n) e relativos (%).
mortalidade de forma independente de outros fatores de risco. Além disso, ainda existem várias controvérsias a respeito do assunto, especialmente no que tange à definição de IRA. A falta de consenso leva à imprecisão nos dados existentes na literatura; contudo também fica claro que as incidências de IRA descritas em nosso estudo são comparáveis às existentes na literatura. Tomados em conjunto, esses dados demonstram que as incidências de IRA relatadas variaram entre 19% e 30%, enquanto pelo critério AKIN a incidência relatada variou entre 26% e 49%. Encontramos apenas um estudo que tenha avaliado a incidência de IRA pelo critério KDIGO, sendo essa de 15%. Encontramos apenas um estudo que tenha avaliado a incidência de IRA pelo critério KDIGO, sendo essa de 15%. Mesmo com a utilização de critérios semelhantes, a incidência de IRA ainda é bastante variável.

Dentre as variáveis clínicas avaliadas, a idade se associou ao risco de IRA independentemente do critério utilizado, refletindo possivelmente a menor tolerância, dos pacientes mais idosos, às flutuações hemodinâmicas e às existentes na literatura; contudo também fica claro que mesmo com a utilização de critérios semelhantes, a incidência de IRA pós-cirurgia cardíaca ainda é bastante variável.
eletrolíticas comumente observadas nesse tipo de intervenção cirúrgica18,19. Curiosamente, apesar de a presença de DM não se associar ao risco de IRA em nossos pacientes, o uso de insulina aumentou esse risco em mais de três vezes pelos critérios AKIN e KDIGO; o que provavelmente denota a existência de diferentes graus de risco, de acordo com o tempo de exposição e da gravidade do diabetes2,23. Em comparação à revascularização miocárdica, a cirurgia valvar e combinada aumentou o risco de IRA pelo critério AKIN em, respectivamente, duas e quatro vezes; reforçando evidências prévias que apontam para o risco aumentado de insuficiência renal nesse tipo de cirurgia2,12,24,25. O tempo aumentado de circulação extracorpórea elevou em quase duas vezes o risco de declínio da função renal pelo critério RIFLE; de fato, um tempo de CEC superior a 90 minutos se relaciona ao aumento na excreção urinária de marcadores de lesão tubular renal26 e há evidências de que cirurgias sem CEC se associam ao risco menor para desenvolvimento de insuficiência renal aguda27,28. A presença de baixo débito cardíaco foi o fator mais fortemente associado ao aumento no risco de IRA, tanto pelo critério RIFLE (aproximadamente quatro vezes) quanto pelo KDIGO (aproximadamente sete vezes); de fato, o desenvolvimento de baixo débito cardíaco é um reconhecido preditor de IRA12,29-31. Tomados em conjunto, nossos resultados mostram que existe grande variação entre os fatores determinantes de IRA, de acordo com o critério diagnóstico utilizado; é importante que esse fato seja salientado, pois pode implicar a inacurácia de escores preditores de IRA, quando desenvolvidos com base em um único critério diagnóstico.

Uma das contribuições mais importantes do presente estudo foi a comparação do poder prognóstico dos diferentes critérios de IRA. Nesse sentido, demonstramos que apesar dos três critérios avaliados se associarem ao maior risco de eventos adversos na análise univariada e mesmo após o ajuste para comorbidades e tipo de cirurgia, apenas o critério KDIGO manteve o poder prognóstico quando levadas em consideração variáveis hemodinâmicas (isto é, tempo de CEC e baixo débito cardíaco); esses resultados sugerem a superioridade do critério KDIGO, quando em comparação ao RIFLE e ao AKIN. Contudo, uma série de limitações deve ser levada em consideração...
Conclusão
A incidência de insuficiência renal aguda pós-cirurgia cardíaca e os fatores de risco para o seu desenvolvimento têm grande variação de acordo com os critérios diagnósticos utilizados e essa informação deve ser levada em consideração quando do desenvolvimento de escores preditores de IRA. Em nossa análise, o critério KDIGO se mostrou superior ao AKIN e ao RIFLE quanto ao seu poder prognóstico.

Referências
1. Rosner MH, Portilla D, Okusa MD. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med. 2008;23(1):3-18.
2. Grayson AD, Khater M, Jackson M, Fox MA. Valvular heart operation is an independent risk factor for acute renal failure. Ann Thorac Surg. 2003;75(6):1829-35.
3. Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19-32.
4. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1999;107(4):343-8.
5. Macedo E, Castro I, Yu L, Abdulkader RR, Vieira JM Jr. Impact of mild acute kidney injury (AKI) on outcome after open repair of aortic aneurysms. Ren Fail. 2008;30(3):287-96.
6. Barbosa RR, Cestari PF, Canezelli JT, Peres GM, Ibanez TL, da Silva PV, et al. Impact of renal failure on in-hospital outcomes after coronary artery bypass surgery. Arq Bras Cardiol. 2011;97(3):249-53.
7. Brito DJ, Nina VJ, Nina RV, Figueiredo Neto JA, Oliveira MI, Salgado JV, et al. Prevalence and risk factors for acute renal failure in the postoperative of coronary artery bypass grafting. Rev Bras Cir Cardiovasc. 2009;24(3):297-304.
8. Santos FO, Silveira MA, Maia RB, Monteiro MD, Martinelli R. Acute renal failure after coronary artery bypass surgery with extracorporeal circulation — incidence, risk factors, and mortality. Arq Bras Cardiol. 2004;83(2):150-4; 145-9.
9. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technologies: the Second International Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204-12.
10. Mehta RL, Kellum JA, Shah SV, Molleritis BA, Ronco C, Warnock DC, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.
11. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter. Suppl. 2012;2:1-138.
12. Palomba H, de Castro I, Neto AL, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS Score. Kidney Int. 2007;72(5):624-31.
13. Conlon PJ, Stafford-Smith M, White WD, Newman MF, King S, Winn MP, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant. 1999;14(5):1158-62.
14. Zanardo G, Micheilin P, Paccagnella A, Rosi P, Calo M, Saldandin V, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107(6):1489-95.
15. Mangano CM, Diamondstone LS, Ramsay JG, Mikielin P, Hershkowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med. 1998;128(3):194-203.
16. Machado MN, Miranda RC, Takakura IT, Sarmiento E, Santos CA, Oliveira MA, et al. Acute kidney injury after on-pump coronary artery bypass graft surgery. Arq Bras Cardiol. 2009;93(3):247-52.
17. de Mendonca A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26(7):915-21.
18. Bellomo R, Kellum J, Ronco C. Acute renal failure: time for consensus. Intensive Care Med. 2001;27(11):1685-8.
19. Engberg P, Suri RM, Li Z, Casey ET, Daly RC, Dearani JA, et al. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2011;15(1):R16.
20. Roberts AM, Kraker RS, Dacey LJ, Charlesworth DC, Leavitt BJ, Helm RE, et al; Northern New England Cardiovascular Disease Study Group. Cardiogenic-associated acute kidney injury: a comparison of two consensus criteria. Am Thorac Surg. 2010;90(6):1939-43.
21. D’Onofrio A, Cruz D, Bolgan I, Auricchio A, Cresce GD, Fabbrini A, et al. RIFLE criteria for cardiac surgery-associated acute kidney injury: risk factors and outcomes. Congest Heart Fail. 2010 Jul;16 Suppl 1:S32-6.

22. Ho J, Reslerova M, Galli B, Nickerson PW, Rush DN, Sood MM, et al. Serum creatinine measurement immediately after cardiac surgery and prediction of acute kidney injury. Am J Kidney Dis. 2012;59(2):196-201.

23. Kubal C, Srivivasan AK, Grayson AD, Fabri BM, Chalmers JA. Effect of risk-adjusted diabetes on mortality and morbidity after coronary artery bypass surgery. Ann Thorac Surg. 2005;79(5):1570-6.

24. Tuttle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41(1):76-83.

25. Rodrigues AJ, Evora PR, Bassetto S, Alves Junior L, Scorzoni Filho A, Araujo WF, et al. Risk factors for acute renal failure after heart surgery. Rev Bras Cir Cardiovasc. 2009;24(4):441-6.

26. Boldt J, Brenner T, Lehmann A, Suttner SW, Kumle B, Isgro F. Is kidney function altered by the duration of cardiopulmonary bypass? Ann Thorac Surg. 2003;75(3):906-12.

27. Beauford RB, Saunders CR, Niereimt LA, Luncefard TA, Karanam R, Pendergast T, et al. Is off-pump revascularization better for patients with non-dialysis-dependent renal insufficiency? Heart Surg Forum. 2004;7(2):E141-6.

28. Ascione R, Nason G, Al-Ruzzeh S, Ko C, Ciulli F, Angelini GD. Coronary revascularization with or without cardiopulmonary bypass in patients with preoperative nondialysis-dependent renal insufficiency. Ann Thorac Surg. 2001;72(6):2020-5.

29. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162-8.

30. Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801-9.

31. Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, et al; Society of Thoracic Surgeons National Cardiac Surgery Database Investigators. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208-16.