DIMENSIONAL ANALYSIS OF FRACTAL INTERPOLATION FUNCTIONS

S. VERMA AND S. JHA

Abstract. We provide a rigorous study on dimensions of fractal interpolation function defined on a closed and bounded interval of \(\mathbb{R} \) which is associated to a continuous function with respect to a base function, scaling functions and a partition of the interval. In particular, we provide an exact estimation of the box dimension of \(\alpha \)-fractal functions.

1. INTRODUCTION

The idea of fractal interpolation functions was introduced by Barnsley [3]. Many authors attempted to calculate the box and Hausdorff dimensions of the graph of fractal interpolation functions corresponding to a data set, see for instance \([3, 14, 18, 23, 27]\). Furthermore, some authors \([19, 29]\) have studied the properties of fractal interpolation functions corresponding to a data set.

Here we first start with iterated function system, for more details see \([4]\).

1.1. Iterated Function System. Let \((X, d)\) be a complete metric space, and let \(H(X)\) be the family of all nonempty compact subsets of \(X\). We define the Hausdorff metric

\[
h(A, B) := \max \left\{ \max_{a \in A} \min_{b \in B} d(a, b), \max_{b \in B} \min_{a \in A} d(a, b) \right\}.
\]

It is well known that \((H(X), h)\) is a complete metric space. Let \(k\) be a positive integer, and let, for \(i = 1, 2, \ldots, k\), \(w_i\) be contraction selfmap of \(X\), i.e., there exist real numbers \(R_i \in [0, 1)\) such that

\[d(w_i(x), w_i(y)) \leq R_id(x, y) \quad \forall \ x, y \in X.
\]

Definition 1.1. The system \(\{(X, d); w_1, w_2, \ldots, w_k\}\) is called an iterated function system, IFS for short.

The IFS generates the mapping \(W\) from \(H(X)\) into \(H(X)\) given by

\[W(A) = \bigcup_{i=1}^{k} w_i(A).
\]

The Hutchinson-Barnsley map \(W\) defined above is then a contraction mapping, with respect to the Hausdorff metric \(h\), the Lipschitz constant \(R_\ast := \max\{R_1, R_2, \ldots, R_k\}\).

Thus, by the Banach contraction principle, there exists a unique nonempty compact subset \(A\) such that \(A = \bigcup_{i=1}^{k} w_i(A)\). Such a set \(A\) is termed the attractor of the IFS.

The reader is referred to \([3, 4, 20]\) for the upcoming technical introduction. The method of constructing fractal interpolation functions (FIFs) is as follows:

Key words and phrases. Iterated function systems, Fractal interpolation functions, Hausdorff dimension, Box dimension, Open set condition.
1.2. Fractal Interpolation Functions. Consider a set of interpolation points \(\{(x_n, y_n) : n = 1, 2, \ldots, N\} \) with strictly increasing abscissa. Set \(J = \{1, 2, \ldots, N - 1\} \), \(I = [x_1, x_N] \) and for \(j \in J \), let \(I_j = [x_j, x_{j+1}] \). For \(j \in J \), let \(L_j : I \to I_j \) be a contraction homeomorphism such that
\[
L_j(x_1) = x_j, L_j(x_N) = x_{j+1}, j \in J.
\]
For \(j \in J \), let \(F_j : I \times \mathbb{R} \to \mathbb{R} \) be a mapping satisfying
\[
|F_j(x, y) - F_j(x, y_*)| \leq \kappa_j |y - y_*|,
\]
\[
F_j(x_1, y_1) = y_j, F_j(x_N, y_N) = y_{j+1}, j \in J,
\]
where \((x, y), (x, y_*) \in K\) and \(0 \leq \kappa_j < 1\) for all \(j \in J \). We shall take
\[
L_j(x) = a_j x + b_j, \quad F_j(x, y) = \alpha_j y + q_j(x).
\]
In the above expressions \(a_j \) and \(b_j \) are determined so that the conditions \(L_j(x_1) = x_j, L_j(x_N) = x_{j+1} \) are satisfied. The multipliers \(\alpha_j \), called scaling factors, are such that \(-1 < \alpha_j < 1\) and \(q_j : I \to \mathbb{R} \), \(j \in J \) are suitable continuous functions satisfying the “join-up conditions” imposed for the bivariate maps \(F_j \). That is, \(q_j(x_1) = y_j - \alpha_j y_1 \) and \(q_j(x_N) = y_{j+1} - \alpha_j y_N \) for all \(j \in J \). Now define functions \(W_j : I \times \mathbb{R} \to I \times \mathbb{R} \) for \(j \in J \) by
\[
W_j(x, y) = (L_j(x), F_j(x, y)).
\]
Theorem 1 in \[3\] says that the IFS \(\mathcal{I} := \{I \times \mathbb{R}; W_1, W_2, \ldots, W_{N-1}\} \) defined above has a unique attractor which is the graph of a function \(g \) which satisfies the following functional equation reflecting self-referentiality:
\[
g(x) = \alpha_j g(L_j^{-1}(x)) + q_j(L_j^{-1}(x)), x \in I_j, j \in J.
\]
In \[3\], Barnsley gave an estimate for the Hausdorff dimension of an affine FIF. Falconer \[1\] also estimated the Hausdorff dimension of an affine FIF. Further, in \[4, 5, 14\], Barnsley and his collaborators calculated the box dimensions for classes of affine FIFs. In \[6\], Barnsley and Massopust computed the box dimensions of FIFs generated by bilinear maps. In \[15\], Hardin and Massopust produced a formula for the box dimension of vector-valued multivariate FIFs. In this article, we focus on dimensions of a special type of FIFs known as \(\alpha \)-fractal function.

1.3. \(\alpha \)-Fractal Functions: a Fractal Perturbation Process. The idea in the construction of a FIF can be adapted to obtain a class of fractal functions associated with a prescribed continuous function on a compact interval in \(\mathbb{R} \). To this end, as is customary, let us denote by \(C(I) \), the space of all continuous real-valued functions defined on a compact interval \(I = [x_1, x_N] \) in \(\mathbb{R} \). We shall endow \(C(I) \) with the uniform norm. Let \(f \in C(I) \) be prescribed, referred to as the germ function. Let us consider the following elements to construct the IFS.

1. A partition \(\Delta := \{x_1, x_2, \ldots, x_N : x_1 < x_2 < \cdots < x_N\} \) of \(I = [x_1, x_N] \).
2. For each \(j \in J \), let \(\alpha_j : I \to \mathbb{R} \) be continuous functions with \(\|\alpha_j\|_\infty = \max_j ||\alpha_j||_\infty < 1 \). These functions are referred to as scaling functions. Consider \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_{N-1}) \in (C(I))^{N-1} \), referred to as scaling vector.
3. A continuous function \(b : I \to \mathbb{R} \) such that \(b(x_1) = f(x_1), b(x_1) = f(x_N) \) and \(b \neq f \), termed base function.
Let us define maps

\[L_j(x) = a_j x + b_j, \]
\[F_j(x, y) = \alpha_j(x)y + f(L_j(x)) - \alpha_j(x)b(x). \]

(1.1)

By Theorem 1 in [3] one can see that the corresponding IFS \(\mathcal{I} := \{ I \times \mathbb{R}; W_1, W_2, \ldots, W_{N-1} \} \), where

\[W_j(x, y) = \left(L_j(x), F_j(x, y) \right), \]

has a unique attractor, which is the graph of a continuous function, denoted by \(f_{\Delta, b}^{\alpha} \) and its graph has a non-integer Hausdorff-Besicovitch dimension. One can treat \(f_{\Delta, b}^{\alpha} \) as a “fractal perturbation” of \(f \).

Definition 1.2. The function \(f_{\Delta, b}^{\alpha} \) is called the \(\alpha \)-fractal function corresponding to \(f \) with respect to \(\Delta \) and \(b \).

There has been a great interest to study the properties of \(\alpha \)-fractal function \(f^{\alpha} \), the reader is referred to [20] [21]. Akhtar et-al [1] calculated the box dimension of graph of \(f^{\alpha} \). Recently the authors of [25] estimated the box dimension of the graph of \(f^{\alpha} \). We refer the reader to [26] for the bivariate \(\alpha \)-fractal functions and further developments. In this article, we study the box and Hausdorff dimensions of graph of \(f^{\alpha} \) deeply. Our results are generalizing certain existing results in an exciting manner.

We skip definitions of the box and Hausdorff dimensions and refer the reader to [10] for their definitions.

2. Main Theorems

Note 2.1. We define a metric \(d \) on \(I \times \mathbb{R} \) as follows

\[d((x, y), (z, w)) = c_1|x - z| + c_2|(y - f^{\alpha}(x)) - (w - f^{\alpha}(z))| \quad \forall (x, y), (z, w) \in I \times \mathbb{R}. \]

Then \(d \) is a metric on \(I \times \mathbb{R} \). Furthermore, \((I \times \mathbb{R}; d) \) is a complete metric space.

Remark 2.2. We recall the functional equation

\[f^{\alpha}(x) = f(x) + \alpha_j(L_j^{-1}(x)).(f^{\alpha} - b)(L_j^{-1}(x)) \quad \forall x \in I_j, j \in J. \]

Now for every \(x \in I_j \) and \(j \in J \), we have

\[
|f^{\alpha}(x) - f(x)| = |\alpha_j(L_j^{-1}(x)).(f^{\alpha} - b)(L_j^{-1}(x))|
= |\alpha_j(L_j^{-1}(x))|| (f^{\alpha} - b)(L_j^{-1}(x))|
\leq ||\alpha_j||_{\infty}|| f^{\alpha} - b||_{\infty}
\leq ||\alpha||_{\infty}|| f^{\alpha} - b||_{\infty}.
\]
The above implies that \(\| f^\alpha - f \|_\infty \leq \| \alpha \|_\infty \| f^\alpha - b \|_\infty \). Using triangle inequality we obtain \(\| f^\alpha - f \|_\infty \leq \| \alpha \|_\infty \| f^\alpha - f \|_\infty + \| \alpha \|_\infty \| f - b \|_\infty \). Finally we have \(\| f^\alpha - f \|_\infty \leq \frac{\| \alpha \|_\infty}{1 - \| \alpha \|_\infty} \| f - b \|_\infty \). Further, we have
\[
\| f^\alpha \|_\infty - \| f \|_\infty \leq \| f^\alpha - f \|_\infty \leq \frac{\| \alpha \|_\infty}{1 - \| \alpha \|_\infty} \| f - b \|_\infty .
\]
Therefore, we get \(\| f^\alpha \|_\infty \leq \| f \|_\infty + \frac{\| \alpha \|_\infty}{1 - \| \alpha \|_\infty} \| f - b \|_\infty := M \).

We should mention that the techniques involved in the proof of the next proposition is same as [4, Theorem 4].

Proposition 2.3. The map \(W_j : I \times [-M, M] \rightarrow I \times [-M, M] \) is a contraction map with respect to the above metric provided
\[
\max \left\{ a_j + \frac{2c_2 Mk_{\alpha_j}}{c_1}, \| \alpha_j \|_\infty \right\} < 1
\]
and \(\alpha_j : I \rightarrow \mathbb{R} \) satisfies \(|\alpha_j(x) - \alpha_j(y)| \leq k_{\alpha_j}|x - y| \).

Proof. Let \((x, y), (z, w) \in I \times [-M, M] \). We have
\[
d(W_j(x, y), W_j(z, w)) = c_1|L_j(x) - L_j(z)|
\]
\[
= c_2 \left| \alpha_j(x)y + f(L_j(x)) - \alpha_j(x)b(x) - f^\alpha(L_j(x)) \right|
\]
\[
= c_2 \left| \alpha_j(z)w + f(L_j(z)) - \alpha_j(z)b(z) - f^\alpha(L_j(z)) \right|
\]
\[
\leq c_2 |\alpha_j(x) - \alpha_j(z)| (w - f^\alpha(z))
\]
Further, we get
\[
d(W_j(x, y), W_j(z, w)) \leq c_1|L_j(x) - L_j(z)|
\]
\[
+ c_2 |\alpha_j|_\infty |(y - f^\alpha(x)) - (w - f^\alpha(z))| + 2M c_2 k_{\alpha_j} |x - z|
\]
\[
= c_1 |\alpha_j|_\infty |x - z|
\]
\[
+ c_2 |\alpha_j|_\infty |(y - f^\alpha(x)) - (w - f^\alpha(z))| + 2M c_2 k_{\alpha_j} |x - z|
\]
\[
= \left(a_j + \frac{2c_2 Mk_{\alpha_j}}{c_1} \right) c_1 |x - z|
\]
\[
+ c_2 |\alpha_j|_\infty |(y - f^\alpha(x)) - (w - f^\alpha(z))|
\]
\[
\leq \max \left\{ a_j + \frac{2c_2 Mk_{\alpha_j}}{c_1}, |\alpha_j|_\infty \right\} \left(c_1 |x - z| \right.
\]
\[
+ c_2 (y - f^\alpha(x)) - (w - f^\alpha(z)) \right) \right)
\]
\[
= \max \left\{ a_j + \frac{2c_2 Mk_{\alpha_j}}{c_1}, |\alpha_j|_\infty \right\} d((x, y), (z, w)) .
\]
This completes the proof. \(\square \)
We say that an IFS \(\{ X; w_1, w_2, \ldots, w_k \} \) satisfies the open set condition if there exists a non-empty open set \(U \) with
\[
\bigcup_{i=1}^{k} w_i(U) \subset U
\]
and terms present in the above union are disjoint. Further, if the above \(U \) satisfies \(U \cap A \neq \emptyset \) then we call that the IFS satisfies the strong open set condition. Now we are ready to prove the following.

Theorem 2.4. Let \(\mathcal{I} := \{ I \times \mathbb{R}; W_1, W_2, \ldots, W_{N-1} \} \) be the IFS as defined earlier such that
\[
|r_i||(x, y) − (w, z)||_2 ≤ ||W_j(x, y) − W_j(w, z)||_2 ≤ R_i||(x, y) − (w, z)||_2,
\]
for every \((x, y), (w, z)\) \(\in I \times \mathbb{R} \), where \(0 < r_i ≤ R_i < 1 \) \(\forall i \in \{1, 2, \ldots, N−1\} \). Then \(s_* ≤ \dim_H(\text{Graph}(f^\alpha)) ≤ s^* \), where \(s_* \) and \(s^* \) are determined by \(\sum r_i^n = 1 \) and
\[
\sum_{i=1}^{N} R_i^n = 1 \text{ respectively.}
\]

Proof. Following Proposition 9.6 in [10] we have the required upper bound. For the lower bound of Hausdorff dimension of \(\text{Graph}(f^\alpha) \) we proceed as follows.

Define \(U = (x_1, x_N) \times \mathbb{R} \). It is plain to see that
\[
L_i((x_1, x_N)) \cap L_j((x_1, x_N)) = \emptyset,
\]
for every \(i, j \in J := \{1, 2, \ldots, N−1\} \) with \(i \neq j \). This immediately yields
\[
W_i(U) \cap W_j(U) = \emptyset,
\]
for every \(i, j \in J \) satisfying \(i \neq j \). Using \(U \cap \text{Graph}(f^\alpha) \neq \emptyset \), one deduces that the IFS satisfies the SOSC. Since \(U \cap \text{Graph}(f^\alpha) \neq \emptyset \), we have an index \(i \in J^* \) with \(\text{Graph}(f^\alpha)_i \subset U \), where \(J^* := \cup_{m \in \mathbb{N}} \{1, 2, \ldots, N−1\}^m \), that is, the set of all finite sequences which are made up of the elements of \(J \) and \(\text{Graph}(f^\alpha)_i := W_i(\text{Graph}(f^\alpha)) := W_i \circ W_{i_2} \circ \cdots \circ W_{i_m}(\text{Graph}(f^\alpha)) \) for \(i \in J^m \) (\(m \)-times Cartesian product of \(J \) with itself) and for \(m \in \mathbb{N} \). Now, it is obvious that for any \(n \) and \(j \in J^n \), the sets \(\text{Graph}(f^\alpha)_{ij} \) are disjoint. Furthermore, the IFS \(\{ W_{i_j} : j \in J^n \} \) satisfies the hypotheses of Proposition 9.7 in [10]. Therefore, with the notation \(r_j = r_{j_1}r_{j_2} \cdots r_{j_n} \) we have \(s_n ≤ \dim_H(G^*) \), where \(G^* \) is an attractor of the above-said IFS and \(\sum_{j \in J^n} r_j^n = 1 \). Since \(G^* \subset \text{Graph}(f^\alpha) \), we get \(s_n ≤ \dim_H(G^*) \leq \dim_H(\text{Graph}(f^\alpha)) \). Suppose that \(\dim_H(\text{Graph}(f^\alpha)) < s_*, \) where \(\sum_{i=1}^{N−1} r_i^n = 1 \). This gives \(s_n < s_* \). Using the previous estimates, we have
\[
(2.1) \quad r_i^{-r_i^n} \geq \sum_{j \in J^n} r_j^n \dim_H(\text{Graph}(f^\alpha)) \geq \sum_{j \in J^n} r_j^n \dim_H(\text{Graph}(f^\alpha)) \cdot r_j^n \geq \sum_{j \in J^n} r_j^n \max_{\text{max}} \dim_H(\text{Graph}(f^\alpha)) \cdot r_j^n = r_n(\dim_H(\text{Graph}(f^\alpha)) \cdot s_*),
\]
where \(r_{\text{max}} = \max\{r_1, r_2, \ldots, r_{N-1}\} \). Since \(r_{\text{max}} < 1 \) and the term on left side in the above expression is bounded, we have a contradiction as \(n \) tends to infinity. Thus our claim is wrong. This implies that \(\dim_H(\text{Graph}(f^\alpha)) \geq s_* \), which is the required result. \(\square \)

Remark 2.5. Under the assumptions of Proposition 2.3 we may find a upper bound for the Hausdorff dimension of graph of \(\alpha \)-fractal function \(f^\alpha \) using the above theorem.

Remark 2.6. Note that the open set \((0, 1) \times \mathbb{R} \) will serve for our purpose to satisfy the strong open set condition for \(\{I \times \mathbb{R}; W_j : j = 1, 2, \ldots, N-1\} \). With the aid of the above theorem we are able to improve Theorem 4 in [3]. In particular, with the notation in [3] we can omit the following condition from that theorem:

\[
t_1, t_N \leq (\text{Min}\{a_1, a_N\})(\sum_{n=1}^{N-1} t_n^{l})^{1/l}.
\]

Remark 2.7. Schief [24] followed the technique of Bandt [2] and proved that open set and strong open set conditions are equivalent for similitudes. Further Peres, Rams, Simon, and Solomyak [22] showed Schief’s theorem for self-conformal maps. The same result with a different approach can be seen in [12, 16, 30]. We do not know whether or not the open set and strong open set conditions are equivalent for \(\alpha \)-fractal functions.

Remark 2.8. It is known that for a pure self-similar set or self-conformal set \(\mathcal{A} \), \(\dim_H(\mathcal{A}) = \dim_B(\mathcal{A}) = \dim_{\overline{B}}(\mathcal{A}) \), for more details see [11]. Note that the nature of \(\alpha \)-fractal functions depend on the IFS parameter. In particular, one can obtain pure self-similar or partial self similar \(\alpha \)-fractal functions by choosing suitable scaling functions and thus for \(\alpha \)-fractal functions we may or may not get the equal dimensions.

Remark 2.9. Here we talk about continuity of the Hausdorff dimension. Note that, in general Hausdorff dimension is not a continuous function. For example, \(A_n := [-\frac{1}{p^n}, \frac{1}{p^n}] \to A := \{0\} \) in Hausdorff metric but \(\dim_H(A_{\mathcal{A}}) = 1 \) does not converge to \(\dim_H(A) = 0 \). In [25], the continuous dependence of \(\alpha \)-fractal function on the parameters is studied. One may pose a question of continuity of the Hausdorff dimension of \(\alpha \)-fractal function with respect to the parameters involved. However, it seems that the result may not hold in general.

3. Oscillation Spaces

We refer the reader to [7, 9] for oscillation spaces. Let \(Q \subset [0, 1] \) \(p \)-adic subinterval so that \(Q = \left[\frac{i}{p^m}, \frac{i+1}{p^m} \right] \) for some integers \(m \geq 0 \) and \(0 \leq i < \frac{1}{p^m} \). For a continuous function \(f : [0, 1] \to \mathbb{R} \), we define oscillation of \(f \) over \(Q \)

\[
R_f(Q) = \sup_{x, y \in Q} |f(x) - f(y)| = \sup_{x \in Q} f(x) - \inf_{y \in Q} f(y),
\]

and total oscillation of order \(m \),

\[
\text{Osc}(m, f) = \sum_{|Q|=p^{-m}} R_f(Q),
\]
where the sum ranges over all p-adic intervals $Q \subset [0, 1]$ of length $|Q| = \frac{1}{p^m}$.

Let $\beta \in \mathbb{R}$. We define the oscillation space $\mathcal{V}^\beta(I)$ by

$$
\mathcal{V}^\beta(I) = \left\{ f \in \mathcal{C}(I) : \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, f)}{p^m(1-\beta)} < \infty \right\}.
$$

One can define

$$
\mathcal{V}^{\beta-}(I) = \{ f \in \mathcal{C}(I) : f \in \mathcal{V}^{\beta-}(I) \forall \epsilon > 0 \},
$$

and

$$
\mathcal{V}^{\beta+}(I) = \{ f \in \mathcal{C}(I) : f \notin \mathcal{V}^{\beta+}(I) \forall \epsilon > 0 \}.
$$

Now, let us write the next two theorems as a prelude.

Theorem 3.1 ([7], Theorem 4.1). Let f be a real-valued continuous function defined on I, we have

$$
\dim_B(\text{Graph}(f)) \leq 2 - \gamma \iff f \in \mathcal{V}^{\gamma-}(I) \text{ if } 0 < \gamma \leq 1
$$

and

$$
\dim_B(\text{Graph}(f)) \geq 2 - \gamma \iff f \in \mathcal{V}^{\gamma+}(I) \text{ if } 0 \leq \gamma < 1.
$$

Theorem 3.2 ([9], Theorem 3.1). Let $f : I \to \mathbb{R}$ be a continuous function and let $0 < \gamma < 1$. Then we have

$$
\dim_B(\text{Graph}(f)) = 2 - \gamma \iff f \in \cap_{\beta<\gamma} \mathcal{V}^\beta(I) \cup \cup_{\beta>\gamma} \mathcal{V}^\beta(I).
$$

Lemma 3.3. Let $f, g \in \mathcal{C}(I)$ and $\lambda \in \mathbb{R}$. Then, for $m \in \mathbb{N}$ we have the following

1. $\text{Osc}(m, \lambda f) = |\lambda| \text{Osc}(m, f)$
2. $\text{Osc}(m, f + g) \leq \text{Osc}(m, f) + \text{Osc}(m, g)$
3. $\text{Osc}(m, fg) \leq \|g\|_\infty \text{Osc}(m, f) + \|f\|_\infty \text{Osc}(m, g)$.

Proof.

(1) For $m \in \mathbb{N}$ and $f, g \in \mathcal{C}(I)$, one proceeds as follows

$$
\text{Osc}(m, \lambda f) = \sum_{|Q|=p^{-m}} R_{\lambda f}(Q)
$$

$$
= \sum_{|Q|=p^{-m}} \sup_{x,y \in Q} |(\lambda f)(x) - (\lambda f)(y)|
$$

$$
= \sum_{|Q|=p^{-m}} |\lambda| \sup_{x,y \in Q} |f(x) - f(y)|
$$

$$
= |\lambda| \sum_{|Q|=p^{-m}} |f(x) - f(y)|
$$

$$
= |\lambda| \text{Osc}(m, f).
$$
(2) Turning to second item we have

\[\text{Osc}(m, f + g) = \sum_{Q = p^{-m}} R_{f+g}(Q) \]

\[= \sum_{Q = p^{-m}} \sup_{x, y \in Q} |(f + g)(x) - (f + g)(y)| \]

\[\leq \sum_{Q = p^{-m}} \left(\sup_{x, y \in Q} |f(x) - f(y)| + \sup_{x, y \in Q} |g(x) - g(y)| \right) \]

\[= \sum_{Q = p^{-m}} R_f(Q) + \sum_{Q = p^{-m}} R_g(Q) \]

\[= \text{Osc}(m, f) + \text{Osc}(m, g). \]

(3) The third item follows through the following lines.

\[\text{Osc}(m, fg) = \sum_{Q = p^{-m}} R_{fg}(Q) \]

\[= \sum_{Q = p^{-m}} \sup_{x, y \in Q} |(fg)(x) - (fg)(y)| \]

\[= \sum_{Q = p^{-m}} \sup_{x, y \in Q} |f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)| \]

\[\leq \sum_{Q = p^{-m}} \left(\sup_{x, y \in Q} |g(x)||f(x) - f(y)| + \sup_{x, y \in Q} |f(y)||g(x) - g(y)| \right) \]

\[\leq \sum_{Q = p^{-m}} \left(|g|_{\infty} \sup_{x, y \in Q} |f(x) - f(y)| + |f|_{\infty} \sup_{x, y \in Q} |g(x) - g(y)| \right) \]

\[= |g|_{\infty} \sum_{Q = p^{-m}} R_f(Q) + |f|_{\infty} \sum_{Q = p^{-m}} R_g(Q) \]

\[= |g|_{\infty} \text{Osc}(m, f) + |f|_{\infty} \text{Osc}(m, g). \]

Thus, the proof of the lemma is complete. \(\square \)

Proposition 3.4. Let \(f \in V^\beta(I) \), we define \(\|f\|_{V^\beta} := \|f\|_{\infty} + \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, f)}{p^m(1-\beta)}. \)

Then \(\|\cdot\|_{V^\beta} \) forms a norm on \(V^\beta(I) \).

Proof. Through simple and straightforward calculations, we have

\[\|f\|_{V^\beta} = 0 \]

\[\iff \|f\|_{\infty} = 0 \text{ and } \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, f)}{p^m(1-\beta)} = 0 \]

\[\iff f = 0, \]

(2)

\[\|\lambda f\|_{V^\beta} = \|\lambda f\|_{\infty} + \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, \lambda f)}{p^m(1-\beta)} \]

\[= |\lambda| \|f\|_{\infty} + |\lambda| \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, f)}{p^m(1-\beta)} \]

\[= |\lambda| \|f\|_{V^\beta}, \]

and
\begin{align*}
\|f + g\|_{V^\beta} &= \|f + g\|_\infty + \sup_{m \in \mathbb{N}} \frac{Osc(m, f + g)}{p^m(1-\beta)} \\
&\leq \|f\|_\infty + \|g\|_\infty + \sup_{m \in \mathbb{N}} \frac{Osc(m, f + g)}{p^m(1-\beta)} \\
&\leq \|f\|_\infty + \|g\|_\infty + \sup_{m \in \mathbb{N}} \frac{Osc(m, f)}{p^m(1-\beta)} + \sup_{m \in \mathbb{N}} \frac{Osc(m, g)}{p^m(1-\beta)} \\
&= \|f\|_{V^\beta} + \|g\|_{V^\beta},
\end{align*}

hence the proof. \hfill \Box

Lemma 3.5. Let \((f_n)\) be a sequence of continuous functions that converges uniformly to some \(f : I \to \mathbb{R}\) and \(m \in \mathbb{N}\), then we have
\[
Osc(m, f_n) \to Osc(m, f).
\]
Furthermore, let \((f_n)\) be a sequence in \(V^\beta(I)\) that converges uniformly to some \(f : I \to \mathbb{R}\), then we have
\[
\sup_{m \in \mathbb{N}} \frac{Osc(m, f)}{p^m(1-\beta)} \leq \liminf_{n \to \infty} \sup_{m \in \mathbb{N}} \frac{Osc(m, f_n)}{p^m(1-\beta)}.
\]

Proof. Let \(m \in \mathbb{N}\), we have
\[
\begin{align*}
\lim_{n \to \infty} Osc(m, f_n) &= \lim_{n \to \infty} \sum_{|Q|=p^{-m}} R_{f_n}(Q) \\
&= \lim_{n \to \infty} \sum_{|Q|=p^{-m}} \sup_{x,y \in Q} |f_n(x) - f_n(y)| \\
&= \sum_{|Q|=p^{-m}} \lim_{n \to \infty} \sup_{x,y \in Q} |f_n(x) - f_n(y)| \\
&= \sum_{|Q|=p^{-m}} \sup_{x,y \in Q} |f(x) - f(y)| \\
&= Osc(m, f).
\end{align*}
\]

Now for \(m \in \mathbb{N}\), we get
\[
\begin{align*}
\frac{Osc(m, f)}{p^m(1-\beta)} &= \sum_{|Q|=p^{-m}} \sup_{x,y \in Q} |f(x) - f(y)| \\
&= \sum_{|Q|=p^{-m}} \frac{\sup_{x,y \in Q} |f_n(x) - f_n(y)|}{p^m(1-\beta)} \\
&= \lim_{n \to \infty} \frac{\sum_{|Q|=p^{-m}} \sup_{x,y \in Q} |f_n(x) - f_n(y)|}{p^m(1-\beta)} \\
&= \lim_{n \to \infty} \frac{Osc(m, f_n)}{p^m(1-\beta)} \\
&\leq \liminf_{n \to \infty} \left(\sup_{m \in \mathbb{N}} \frac{Osc(m, f_n)}{p^m(1-\beta)} \right).
\end{align*}
\]

Thus, the proof of the lemma is complete. \hfill \Box
We claim that
\[\|f_n - f_k\|_{V^\beta} < \epsilon \quad \forall \ n, k \geq n_0. \]
By definition of \(\|\cdot\|_{V^\beta} \) one gets \(\|f_n - f_k\|_{V^\beta} < \epsilon \quad \forall n, k \geq n_0. \) Since \((C(I), \|\cdot\|) \) is a Banach space, we have a continuous function \(f \) with \(\|f_n - f\|_{\infty} \to 0 \) as \(n \to \infty. \) We claim that \(f \in V^\beta(I) \) and \(\|f_n - f\|_{V^\beta} \to 0 \) as \(n \to \infty. \) Let \(m \in \mathbb{N} \) and \(n \geq n_0. \)
In view of Lemma 3.3 we have
\[
\|f_n - f\|_{\infty} + \frac{\text{Osc}(m, f_n - f)}{p^m(1-\beta)} = \lim_{k \to \infty} \left(\|f_n - f_k\|_{\infty} + \frac{\text{Osc}(m, f_n - f_k)}{p^m(1-\beta)} \right)
\leq \lim_{k \to \infty} \left(\|f_n - f_k\|_{\infty} + \sup_{m' \in \mathbb{N}} \frac{\text{Osc}(m', f_n - f_k)}{p^{m'}(1-\beta)} \right)
\leq \sup_{k \geq n_0} \left(\|f_n - f_k\|_{\infty} + \sup_{m' \in \mathbb{N}} \frac{\text{Osc}(m', f_n - f_k)}{p^{m'}(1-\beta)} \right)
= \sup_{k \geq n_0} \|f_n - f_k\|_{V^\beta}
\leq \epsilon.
\]
The above is true for every \(m \in \mathbb{N}. \) Therefore, we obtain \(f - f_{n_0} \in V^\beta(I). \) Using Lemma 3.3 we have \(f = f - f_{n_0} + f_{n_0} \in V^\beta(I), \) and \(\|f_n - f\|_{V^\beta} \leq \epsilon \quad \forall n \geq n_0. \)

Remark 3.7. If \(|L_j(I)| = \frac{1}{p^j} \) for some \(k_j \in \mathbb{N} \) with \(\sum_{j \in J} \frac{1}{p^j} = 1 \), then for \(m \geq \max_{j \in J} \{k_j\} \) we have
\[
\text{Osc}(m, f) = \sum_{j \in J} \text{Osc}(m, f, L_j(I)),
\]
where \(\text{Osc}(m, f, L_j(I)) = \sum_{\|Q\|=p^{-m}, Q \subseteq L_j(I)} R_f(Q). \)

Proof. Since \(I = \bigcup_{j \in J} L_j(I) \) and \(\sum_{j \in J} \frac{1}{p^j} = 1 \) we have
\[
\text{Osc}(m, f) = \sum_{\|Q\|=p^{-m}} R_f(Q)
= \sum_{j \in J} \sum_{\|Q\|=p^{-m}, Q \subseteq L_j(I)} R_f(Q)
= \sum_{j \in J} \text{Osc}(m, f, L_j(I)).
\]

\[
(3.1)
\]

Theorem 3.8. Let \(f, b, \alpha_j \ (j \in J) \in V^\beta(I) \) be such that \(b(x_1) = f(x_1) \) and \(b(x_N) = f(x_N) \). Further we assume that \(|L_j(I)| = \frac{1}{p^j} \) for some \(k_j \in \mathbb{N} \) with \(\sum_{j \in J} \frac{1}{p^j} = 1. \)

For \(\max \left\{ \|\alpha\|_{\infty} + \sup_{m \in \mathbb{N}} \frac{\text{Osc}(m, \alpha_j)}{p^m(1-\beta)}, \sum_{j \in J} \|\alpha_j\|_{\infty} \right\} < 1, \) we have \(f^\alpha \in V^\beta(I). \)
Proof. Let \(\mathcal{V}_f^\beta(I) = \{g \in \mathcal{V}^\beta(I) : g(x_1) = f(x_1), g(x_N) = f(x_N)\}\). We observe that the space \(\mathcal{V}_f^\beta(I)\) is a closed subset of \(\mathcal{V}^\beta(I)\). It follows that \(\mathcal{V}_f^\beta(I)\) is a complete metric space with respect to the metric induced by norm \(\|\cdot\|_{\mathcal{V}^\beta}\). We define a map \(T : \mathcal{V}_f^\beta(I) \to \mathcal{V}_f^\beta(I)\) by
\[
(Tg)(x) = f(x) + \alpha_j(L_j^{-1}(x)) \ (g - b)(L_j^{-1}(x))
\]
for all \(x \in I_j\), where \(j \in J\). First we observe that the mapping \(T\) is well-defined. Using Remark \([x\overline{4}1]\) for \(g, h \in \mathcal{V}_f^\beta(I)\) we have
\[
\|Tg - Th\|_{\mathcal{V}^\beta} = \|Tg - Th\|_\infty + \frac{Osc(m, Tg - Th)}{p^{\alpha(1-\beta)}}
\]
\[
\leq \|\alpha\|_\infty \|g - h\|_\infty + \sum_{j \in J} \|\alpha_j\|_\infty \|g - h\|_\infty\sup_{m \in \mathbb{N}} \frac{Osc(m, g - h)}{p^{\alpha(1-\beta)}}
\]
\[
+ \sum_{j \in J} \|g - h\|_\infty \sup_{m \in \mathbb{N}} \frac{Osc(m, \alpha_j)}{p^{\alpha(1-\beta)}}
\]
\[
\leq \left(\|\alpha\|_\infty + \sum_{j \in J} \|\alpha_j\|_\infty \sup_{m \in \mathbb{N}} \frac{Osc(m, \alpha_j)}{p^{\alpha(1-\beta)}} \right) \|g - h\|_\infty
\]
\[
+ \left(\sum_{j \in J} \|\alpha_j\|_\infty \sup_{m \in \mathbb{N}} \frac{Osc(m, g - h)}{p^{\alpha(1-\beta)}} \right) \|g - h\|_{\mathcal{V}^\beta}
\]
\[
\leq \max \left\{ \|\alpha\|_\infty + \sum_{j \in J} \|\alpha_j\|_\infty \sup_{m \in \mathbb{N}} \frac{Osc(m, \alpha_j)}{p^{\alpha(1-\beta)}}, \sum_{j \in J} ||\alpha_j||_\infty \right\} \|g - h\|_{\mathcal{V}^\beta}.
\]
From the hypothesis, it follows that \(T\) is a contraction map on \(\mathcal{V}_f^\beta(I)\). Using the Banach contraction principle, we get a unique fixed point of \(T\), namely \(f^\alpha \in \mathcal{V}_f^\beta(I)\). Furthermore, since \(T(f^\alpha) = f^\alpha\), we write \(f^\alpha\) as a part of the functional equation:
\[
f^\alpha(L_j(x)) = f(L_j(x)) + \alpha_j(x) (f^\alpha - b)(x)
\]
for every \(x \in I\) and \(j \in J\). Now with \(J := \{1, 2, 3, \ldots, N - 1\}\) we define functions \(W_j : I \times \mathbb{R} \to I \times \mathbb{R}\) for \(j \in J\) by
\[
W_j(x, y) = \left(L_j(x), \alpha_j(x)y + f(L_j(x)) - \alpha_j(x)b(x) \right).
\]
We show in the last part of the proof that graph of the associated fractal function \(f^\alpha\) is an attractor of the IFS \(\{I \times \mathbb{R}; W_j, j \in J\}\). Following the proof of Theorem 1 appeared in \([3]\) we may prove that attractor of the above IFS is graph of a function. It remains to show that it is actually the graph of fractal perturbation \(f^\alpha\). To see that we use the functional equation and \(I = \cup_{j \in J} L_j(I)\) and get
\[
\cup_{j \in J} W_j(Graph(f^\alpha)) = \cup_{j \in J} \{W_j(x, f^\alpha(x)) : x \in I\}
\]
\[
= \cup_{j \in J} \left\{ (L_j(x), \alpha_j(x)f^\alpha(x) + f(L_j(x)) - \alpha_j(x)b(x)) : x \in I \right\}
\]
\[
= \cup_{j \in J} \left\{ (L_j(x), f^\alpha(L_j(x))) : x \in I \right\}
\]
\[
= \cup_{j \in J} \left\{ (x, f^\alpha(x)) : x \in L_j(I) \right\}
\]
\[
= Graph(f^\alpha),
\]
Remark 3.9. Let $0 < \gamma \leq 1$ and f, b, α_j be suitable functions satisfying the hypothesis of Theorem 3.12. Then, Theorem 3.1 yields that $\dim_B(\text{Graph}(f^\alpha)) \leq 2 - \gamma$.

Remark 3.10. Having Theorem 3.12 in mind, we may ask the assumptions on the parameters for which $f^\alpha \in \bigcap_{\beta < 1} \mathcal{V}^\beta(I) \setminus \bigcup_{\beta > \gamma} \mathcal{V}^\beta(I)$. This question remains open.

Before stating the upcoming remark, we define the Hölder space as follows:

$${\mathcal{H}}^s(I) := \{g : I \to \mathbb{R} : g \text{ is Hölder continuous with exponent } s\}.$$

If we equip the space $\mathcal{H}^s(I)$ with norm $\|g\|_s := \|g\|_\infty + |g|_s$, where $|g|_s = \sup_{x \neq y} \frac{|g(x) - g(y)|}{|x - y|^s}$, then it forms a Banach space.

Remark 3.11. Let us start with the following example: the function $f : [0, 1] \to \mathbb{R}$ defined by $f(x) = |x - \frac{1}{2}|^\beta$, where $0 < \beta < 1$, is a simple example of a function in $\bigcap_{\beta < 1} \mathcal{V}^\beta(I)$ which is only in the Hölder space $\mathcal{H}^\beta(I)$. Therefore, the dimension of the graph is 1 while the classical result only provides us with the upper bound $2 - \beta$. Note that [9] the spaces $\mathcal{V}^\beta(I)$ are refined version of Hölder spaces. Hence, our result obtained here generalizes many previous results, see, for instance, [1][25].

The next theorem has been proved in [25] using the series expansion. We here give a different proof which we feel, is more general and direct.

Theorem 3.12. Let f, b and α be Hölder continuous with exponent s such that $b(x_1) = f(x_1)$ and $b(x_N) = f(x_N)$. Then with the notation $a := \min\{\alpha_j : j \in J\}$ we have f^α is Hölder continuous with exponent s provided $\frac{\|\alpha\|_\infty}{a^s} < 1$.

Proof. Let $\mathcal{H}_s^\alpha(I) := \{g \in \mathcal{H}^s(I) : g(x_1) = f(x_1), g(x_N) = f(x_N)\}$. Applying the definition of closed set, we see that the set $\mathcal{H}_s^\alpha(I)$ is a closed subset of $\mathcal{H}^s(I)$. Because $\mathcal{H}^\alpha(I)$ is a Banach space as mentioned, it follows that $\mathcal{H}_s^\alpha(I)$ is a complete metric space with respect to the metric induced by aforementioned norm $\|\cdot\|_s$ for $\mathcal{H}^s(I)$. We define a map $T : \mathcal{H}_s^\alpha(I) \to \mathcal{H}_s^\alpha(I)$ by

$$(Tg)(x) = f(x) + \alpha_j(L_j^{-1}(x))(g-b)(L_j^{-1}(x))$$

for all $x \in I_j$ where $j \in J$. First we shall show that T is well-defined. For this let us note that

$${[Tg]}_s = \max_{j \in J} \frac{|Tg(x) - Tg(y)|}{|x - y|^s} \\ \leq \max_{j \in J} \left[\sup_{x \neq y, x, y \in I_j} \frac{|f(x) - f(y)|}{|x - y|^s} + \sup_{x \neq y, x, y \in I_j} \frac{\alpha_j(L_j^{-1}(x)) (|g-b|L_j^{-1}(x)) - (g-b)(L_j^{-1}(y))}{|x - y|^s} + \sup_{x \neq y, x, y \in I_j} \frac{(|g-b)(L_j^{-1}(y))| \alpha_j(L_j^{-1}(x)) - \alpha_j(L_j^{-1}(y))}{|x - y|^s} \right]$$

$$\leq [f]_s + \frac{\|\alpha\|_\infty}{a^s} ([g]_s + [b]_s) + \frac{\|g-b\|_\infty}{a^s} [\alpha]_s,$$
where \([\alpha]_s = \max_{j \in J} \sup_{x \neq y, x, y \in I} \frac{|\alpha_j(x) - \alpha_j(y)|}{|x - y|^s} \). For \(g, h \in \mathcal{H}_f^s(I) \), we have

\[
\|Tg - Th\|_\mathcal{H} = \|Tg - Th\|_\infty + [Tg - Th]
\leq \|\alpha\|_\infty \|g - h\|_\infty + \|\alpha\|_a^\infty [g - h]_s + \|g - h\|_a^\infty [\alpha]_s
\leq \|\alpha\|_a^\infty \|g - h\|_\mathcal{H}.
\]

Since \(\|\alpha\|_a^\infty < 1 \), it follows that \(T \) is a contraction self map on \(\mathcal{H}_f^s(I) \). Thanks to Banach contraction principle, a unique fixed point of \(f \) exists. This proves the result.

Remark 3.13. By dint of a more spirited effort (see [25]), we can observe with the help of the above theorem that the Hölder constant of the map \(f^{\alpha} \) depends only on the germ function \(f \), the partition \(\Delta \) and the parameter maps \(b, \alpha \).

Note that for equidistant nodes we have \(a = a_j = \frac{1}{N-1} \).

Theorem 3.14. Let \(f \) be a germ function, and \(b, \alpha_j \) be suitable continuous functions such that

\[
|f(x) - f(y)| \leq k_f|x - y|^{s},
\]

\[
|b(x) - b(y)| \leq k_b|x - y|^{s},
\]

\[
|\alpha_j(x) - \alpha_j(y)| \leq k_\alpha|x - y|^{s}
\]

for every \(x, y \in I, j \in J \), and for some \(k_f, k_b, k_\alpha > 0, s \in (0, 1] \). Further, assume that there are constants \(K_f, \delta_\alpha > 0 \) such that for each \(x \in I \) and \(\delta < \delta_0 \) there exists \(y \in I \) with \(|x - y| \leq \delta \) and \(|f(x) - f(y)| \geq K_f|x - y|^{s} \). We have \(\dim_B(G_{f^{\alpha}}) = 2 - s \) provided that \(\|\alpha\|_a < a^s \).

Proof. In the light of Theorem 3.12 and \(\|\alpha\|_a < a^s \), we have \(f^{\alpha} \) is Hölder continuous with the same exponent \(s \). That is, we may consider

\[
|f^{\alpha}(x) - f^{\alpha}(y)| \leq k_{f^{\alpha}}|x - y|^{s}
\]

for some \(k_{f^{\alpha}} > 0 \). We obtain a bound for upper box dimension of the graph of the fractal function \(f^{\alpha} \) as follows: For \(0 < \delta < 1 \), let \(N_\delta(G_{f^{\alpha}}) \) be the number of \(\delta \)-boxes that cover graph of \(f^{\alpha} \), with \([\cdot] \) the ceiling function, we have

\[
N_\delta(G_{f^{\alpha}}) \leq \sum_{i=1}^{\lceil \frac{1}{\delta} \rceil} \left(1 + \left[\frac{R_{f^{\alpha}}((i - 1)\delta, i\delta)}{\delta} \right] \right)
\leq \sum_{i=1}^{\lceil \frac{1}{\delta} \rceil} \left(2 + \frac{R_{f^{\alpha}}((i - 1)\delta, i\delta)}{\delta} \right)
= 2 \left[\frac{1}{\delta} \right] + \sum_{i=1}^{\lceil \frac{1}{\delta} \rceil} R_{f^{\alpha}}((i - 1)\delta, i\delta)
\leq 2 \left[\frac{1}{\delta} \right] + \sum_{i=1}^{\lceil \frac{1}{\delta} \rceil} k_{f^{\alpha}} \delta^{s-1}.
\]
Consequently, we deduce

\[
\dim_B(\text{Graph}(f^\alpha)) = \lim_{\delta \to 0} \frac{\log N_\delta(\text{Graph}(f^\alpha))}{-\log \delta} \leq 2 - s.
\]

It is sufficient to prove the following bound for lower box dimension:

\[
\dim_B(\text{Graph}(f^\alpha)) \geq 2 - s.
\]

We recall the self-referential equation

\[
f^\alpha(x) = f(x) + \alpha_j(L_j^{-1}(x)) \left[f^\alpha(L_j^{-1}(x)) - b(L_j^{-1}(x)) \right],
\]

for every \(x \in I_j \) and \(j \in J \). For \(x, y \in I_j \) such that \(|x - y| \leq \delta \), we obtain

\[
|f^\alpha(x) - f^\alpha(y)| = |f(x) - f(y) + \alpha_j(L_j^{-1}(x)) f^\alpha(L_j^{-1}(x)) - \alpha_j(L_j^{-1}(y)) f^\alpha(L_j^{-1}(y)) - \alpha_j(L_j^{-1}(x)) b(L_j^{-1}(x)) + \alpha_j(L_j^{-1}(y)) b(L_j^{-1}(y))| \\
\geq |f(x) - f(y)| - \|\alpha\|_\infty \left| f^\alpha(L_j^{-1}(x)) - f^\alpha(L_j^{-1}(y)) \right| \\
- \|\alpha\|_\infty \left| b(L_j^{-1}(x)) - b(L_j^{-1}(y)) \right| \\
- (\|b\|_\infty + \|f^\alpha\|_\infty) |\alpha_j(L_j^{-1}(x)) - \alpha_j(L_j^{-1}(y))|.
\]

With the help of Equation (3.2), we obtain

\[
|f^\alpha(x) - f^\alpha(y)| \geq K_f |x - y|^s - \|\alpha\|_\infty k_f a^s |L_j^{-1}(x) - L_j^{-1}(y)|^s \\
- \|\alpha\|_\infty k_b |L_j^{-1}(x) - L_j^{-1}(y)|^s \\
- (\|b\|_\infty + M) k_a |x - y|^s \\
\geq K_f |x - y|^s - \|\alpha\|_\infty k_f a^s |x - y|^s \\
- \|\alpha\|_\infty k_a a^{-s} |x - y|^s \\
- (\|b\|_\infty + M) a^{-s} k_a |x - y|^s \\
= (K_f - (k_f a + k_b) |\alpha|_\infty a^{-s} - (\|b\|_\infty + M) a^{-s} k_a) |x - y|^s.
\]

Let \(K := K_f - (k_f a + k_b) |\alpha|_\infty a^{-s} - (\|b\|_\infty + M) a^{-s} k_a \). For \(\delta = a^m \), we estimate

\[
N_\delta(\text{Graph}(f^\alpha)) \geq \sum_{i=1}^{a^{-m}} \max \left\{ 1, \left[a^{-m} R_{f^\alpha} [(i-1)\delta, i\delta] \right] \right\} \\
\geq \sum_{i=1}^{a^{-m}} \left[a^{-m} R_{f^\alpha} [(i-1)\delta, i\delta] \right] \\
\geq \sum_{i=1}^{a^{-m}} \left[K a^{-m} a^{ms} \right] \\
\geq a^{-m} a^{-m} K a^{ms} \\
= K a^{m(s-2)}.
\]
Using the above bound for $N_\delta(\text{Graph}(f^\alpha))$, we obtain

$$
\lim_{\delta \to 0} \frac{\log \left(N_\delta(\text{Graph}(f^\alpha)) \right)}{-\log(\delta)} \geq \lim_{m \to \infty} \frac{\log \left(Ka^m(s-2i) \right)}{-m \log a} = 2 - s,
$$

establishing the result.

Corollary 3.15. If we consider the Bernstein polynomial as the base function, then for a Lipschitz f, we obtain a sequence of Bernstein α-fractal functions (see [8, 28] for details). For each $n \in \mathbb{N}$, let G be the graph of the Bernstein α-fractal function. Then under the hypothesis of Theorem 3.14, we obtain $\dim_H(G) \leq 1$.

Remark 3.16. In [1], Nasim et al. computed the box dimension of α-fractal function under certain condition. But for the Hölder exponent $s \in (0, 1)$ the author has calculated the obvious upper bound as $2 - s$. However, in this article, in Theorem 3.14, we have calculated the exact estimation of the box dimension of α-fractal function under suitable condition.

Theorem 3.17. Let $f, \alpha_j (j \in J)$ and b be Hölder continuous with exponent s such that $b(x_1) = f(x_1)$ and $b(x_N) = f(x_N)$. If $\|a\|_H < a^s$ with $a = \min\{a_j : j \in J\}$ then

$$
1 \leq \dim_H(\text{Graph}(f^\alpha)) \leq 2 - s.
$$

Proof. We will proceed by defining a map $\Phi : \text{Graph}(f^\alpha) \to I$ by $\Phi((x, f(x))) = x$. Then

$$
|\Phi((x, f(x))) - \Phi((y, f(y)))| = |x - y| \leq \|(x, f(x)) - (y, f(y))\|_2.
$$

That is, Φ is a Lipschitz map. Using a properties of Hausdorff dimension (see [10]), we have $\dim_H(\text{Graph}(f^\alpha)) \leq \dim_H(\text{Graph}(f^\alpha))$. It is easy to check that the map Φ is onto. Hence we have $\dim_H(\text{Graph}(f^\alpha)) \geq \dim_H(I) = 1$. We recall a well-known result, see [10], which relates the Hausdorff dimension and box dimension in the following sense:

$$
\dim_H(C) \leq \dim_B(C) \leq \overline{\dim}_B(C)
$$

for any bounded set $C \subset \mathbb{R}^n$. Theorem 3.12 and the first part of Theorem 3.14 yield the required upper bound for the Hausdorff dimension of the graph of fractal function f^α. □

Definition 3.18. Let $f : I \to \mathbb{R}$ be a function. For each partition $P : t_0 < t_1 < t_2 < \cdots < t_n$ of the interval I, we define

$$
V(f, I) = \sup_P \sum_{i=1}^n |f(t_i) - f(t_{i-1})|,
$$

where the supremum is taken over all partitions P of the interval I. If $V(f, I) < \infty$, we say that f is of bounded variation. The set of all functions of bounded variation on I will be denoted by $BV(I)$. We define a norm on $BV(I)$ by $\|f\|_{BV} := \|f(t_0)\| + V(f, I)$. Moreover, the space $BV(I)$ is a Banach space with respect to this norm.

Liang [17] proved that
Theorem 3.19. If $f \in C(I) \cap BV(I)$, then $\dim_{H}(\text{Graph}(f)) = \dim_{B}(\text{Graph}(f)) = 1$.

The next remark is straightforward but useful for the upcoming theorem.

Remark 3.20. Let f be real-valued function on $I = [0, 1]$. For $c, d \in \mathbb{R}$, we define a function $g(x) = f(cx + d)$ on a suitable domain. If f is of bounded variation on I then g is also of bounded variation on its domain.

We present the following remark for the sake of independent interest.

Remark 3.21. We know that f^{α} satisfies the self-referential equation

$$f^{\alpha}(x) = f(x) + \alpha_{j}(L_{j}^{-1}(x)) \cdot (f^{\alpha} - b)(L_{j}^{-1}(x)) \quad \forall \ x \in I_{j}, \ j \in J.$$

The self-referential equation may also be written in the following manner

$$\alpha_{j}(L_{j}^{-1}(x)) \cdot b(L_{j}^{-1}(x)) = f(x) - f^{\alpha}(x) + \alpha_{j}(L_{j}^{-1}(x)) \cdot f^{\alpha}(L_{j}^{-1}(x)) \quad \forall \ x \in I_{j}, \ j \in J.$$

Further, we assume f, f^{α} and α_{j} ($j \in J$) be of bounded variation with $\alpha_{j} > 0$ or < 0 on I. Using algebra of bounded variation functions (see [13]), one concludes that b is of bounded variation.

The following theorem is a generalization of [25, Theorem 4.8]. However, we present the proof for reader’s convenience.

Theorem 3.22. Let $f \in BV(I)$. Suppose that $\triangle = \{x_{1}, x_{2}, \ldots, x_{N} : x_{1} < x_{2} < \cdots < x_{N}\}$ is a partition of $I, b \in BV(I)$ satisfying $b(x_{1}) = f(x_{1}), b(x_{N}) = f(x_{N})$, and α_{j} ($j \in J$) are functions in $BV(I)$ with $\|\alpha\|_{BV} < \frac{1}{2(N-1)}$. Then, the fractal perturbation f^{α} corresponding to f is of bounded variation on I.

Proof. Let $BV_{\alpha}(I) = \{g \in BV(I) : g(x_{1}) = f(x_{1}), \ g(x_{N}) = f(x_{N})\}$. We may see (using the definition of closed set) that $BV_{\alpha}(I)$ is a closed subset of $BV(I)$. Being a close subset of Banach space $BV(I)$, the space $BV_{\alpha}(I)$ is a complete metric space when endowed with metric induced by norm $\|g\|_{BV} := |g(x_{1})| + V(g, I)$. Define the RB operator $T : BV_{\alpha}(I) \rightarrow BV_{\alpha}(I)$ by

$$(Tg)(x) = f(x) + \alpha_{j}(L_{j}^{-1}(x)) \left[g(L_{j}^{-1}(x)) - b(L_{j}^{-1}(x))\right],$$

for every $x \in I_{j}$ and $j \in J$. As done in previous theorems we note that T is well-defined. Let $P : t_{0} < t_{1} < t_{2} < \cdots < t_{m}$ be a partition of the interval I_{j}, where $m \in \mathbb{N}$. Consider

$$
\| (Tg - Th)(t_{i}) - (Tg - Th)(t_{i-1}) \| = \big| \alpha_{j}(L_{j}^{-1}(t_{i})) (g - h)(L_{j}^{-1}(t_{i})) \big| \\
- \big| \alpha_{j}(L_{j}^{-1}(t_{i-1})) (g - h)(L_{j}^{-1}(t_{i-1})) \big| \\
\leq \big| \alpha_{j}(L_{j}^{-1}(t_{i})) \big| \big| (g - h)(L_{j}^{-1}(t_{i})) \big| \\
- \big| (g - h)(L_{j}^{-1}(t_{i-1})) \big| + \big| (g - h)(L_{j}^{-1}(t_{i-1})) \big| \\
\cdot \big| \alpha_{j}(L_{j}^{-1}(t_{i})) - \alpha_{j}(L_{j}^{-1}(t_{i-1})) \big| \\
\leq \| \alpha \|_{\infty} \cdot \big| (g - h)(L_{j}^{-1}(t_{i})) - (g - h)(L_{j}^{-1}(t_{i-1})) \big| \\
+ \| g - h \|_{\infty} \big| \alpha_{j}(L_{j}^{-1}(t_{i})) - \alpha_{j}(L_{j}^{-1}(t_{i-1})) \big|.
$$
Summing over $i = 1$ to m, we have

$$
\sum_{i=1}^{m} \left| (Tg - Th)(t_i) - (Tg - Th)(t_{i-1}) \right|
\leq \|\alpha\|_\infty \sum_{i=1}^{m} \left| (g - h)(L_j^{-1}(t_i)) - (g - h)(L_j^{-1}(t_{i-1})) \right|
+ \|g - h\|_\infty \sum_{i=1}^{m} \left| \alpha_j(L_j^{-1}(t_i)) - \alpha_j(L_j^{-1}(t_{i-1})) \right|
\leq \|\alpha\|_\infty \|g - h\|_{BV} + \|g - h\|_\infty \|\alpha\|_{BV}
\leq \|\alpha\|_{BV} \left(\|g - h\|_{BV} + \|g - h\|_\infty \right)
\leq 2\|\alpha\|_{BV} \|g - h\|_{BV}.
$$

The above inequality holds for any partition of I_j. Therefore, one gets

$$
\|Tg - Th\|_{BV} \leq 2(N - 1)\|\alpha\|_{BV} \|g - h\|_{BV}.
$$

Since $\|\alpha\|_{BV} < \frac{1}{2(N - 1)}$, T is a contraction on the complete metric space $BV_*(I)$. Applying the Banach fixed point theorem we have a unique fixed point f^α of T. Moreover, the fixed point f^α of T satisfies the self-referential equation, that is,

$$
f^\alpha(x) = f(x) + \alpha_j(L_j^{-1}(x)) \left[f^\alpha(L_j^{-1}(x)) - b(L_j^{-1}(x)) \right],
$$

for every $x \in I_j$ and $j \in J$.

\[\square \]

Theorem 3.23. Let the germ function f and the parameter b be continuous functions of bounded variation. Suppose $\alpha_j (j \in J)$ are functions of bounded variation with $\|\alpha\|_{BV} < \frac{1}{2(N - 1)}$. Then $\dim_H(\text{Graph}(f^\alpha)) = \dim_B(\text{Graph}(f^\alpha)) = 1$.

Proof. Theorem 3.19 and Theorem 3.22 produce the result. \[\square \]

We shall denote by $AC(I)$ the Banach space of all absolutely continuous functions on I with its usual norm (denoted by $\|\cdot\|_{AC}$).

Theorem 3.24. Let $f \in AC(I)$. Suppose that $\Delta = \{x_1, x_2, \ldots, x_N : x_1 < x_2 < \cdots < x_N \}$ is a partition of I, $b \in AC(I)$ satisfying $b(x_1) = f(x_1)$, $b(x_N) = f(x_N)$, and $\alpha_j (j \in J)$ are functions in $AC(I)$ with $\|\alpha\|_{AC} < \frac{1}{2(N - 1)}$, where $a = \min\{a_j : j \in J\}$. Then, the fractal perturbation f^α corresponding to f is absolutely continuous on I.

Proof. Let $AC_*(I) = \{g \in AC(I) : g(x_1) = f(x_1), \ g(x_N) = f(x_N)\}$. We observe (using the sequential definition of a closed set) that $AC_*(I)$ is a closed subset of $AC(I)$. Since $AC(I)$ endowed with $\|g\|_{AC} := |g(x_1)| + \int_{x_1}^{x_N} |g'(x)|dx$ is a complete normed linear space, the set $AC_*(I)$ is a complete metric space when equipped with metric induced by aforesaid norm. Define the RB operator $T : AC_*(I) \to AC_*(I)$ by

$$
(Tg)(x) = f(x) + \alpha_j(L_j^{-1}(x)) \left[g(L_j^{-1}(x)) - b(L_j^{-1}(x)) \right],
$$
for every \(x \in I_j \) and \(j \in J \). We note that the conditions on \(f \) and \(b \) dictate the function \(T \) to be well-defined. Consider

\[
\int_{L_j(x_1)}^{L_j(x_N)} |(Tg - Th)'(x)| dx \leq \frac{1}{a_j} \int_{L_j(x_1)}^{L_j(x_N)} |\alpha_j'(L_j^{-1}(x))(g - h)(L_j^{-1}(x))| dx \\
+ \frac{1}{a_j} \int_{L_j(x_1)}^{L_j(x_N)} |\alpha_j(L_j^{-1}(x))(g - h)'(L_j^{-1}(x))| dx \\
= \frac{1}{a_j} \int_{x_1}^{x_N} |\alpha_j'(y)(g - h)(y)| dy \\
+ \frac{1}{a_j} \int_{x_1}^{x_N} |\alpha_j(y)(g - h)'(y)| dy \\
\leq \frac{\|g - h\|_\infty}{a_j} \int_{x_1}^{x_N} |\alpha_j'(y)| dy \\
+ \frac{\|\alpha_j\|_\infty}{a_j} \int_{x_1}^{x_N} |(g - h)'(y)| dy.
\]

Summing over \(j = 1 \) to \(N - 1 \), we have

\[
\sum_{j=1}^{N-1} \int_{L_j(x_1)}^{L_j(x_N)} |(Tg - Th)'(x)| dx \leq \frac{2(N - 1)\|\alpha\|_\text{AC}}{a} \|g - h\|_\text{AC}.
\]

Therefore, one gets

\[
\|Tg - Th\|_\text{AC} \leq \frac{2(N - 1)\|\alpha\|_\text{AC}}{a} \|g - h\|_\text{AC}.
\]

Since \(\|\alpha\|_\text{AC} < \frac{a}{2(N - 1)} \), we deduce that \(T \) is a contraction on the complete metric space \(\mathcal{AC} (I) \). Moreover, the fixed point \(f^\alpha \) of \(T \) satisfies the self-referential equation, that is,

\[
f^\alpha(x) = f(x) + \alpha_j(L_j^{-1}(x)) \left[f^\alpha(L_j^{-1}(x)) - b(L_j^{-1}(x)) \right],
\]

for every \(x \in I_j \) and \(j \in J \).

\[\square \]

Combining Theorem 3.22 and Theorem 3.22, one can immediately deduce the following.

Theorem 3.25. Let the germ function \(f \) and the parameter \(b \) be absolutely continuous functions. Suppose \(\alpha_j \ (j \in J) \) are absolutely continuous functions with \(\|\alpha\|_\text{AC} < \frac{a}{2(N - 1)} \). Then \(\dim_H(\text{Graph}(f^\alpha)) = \dim_B(\text{Graph}(f^\alpha)) = 1 \).

Acknowledgements. The first author thanks Dr. P. Viswanathan for his suggestions, support and encouragement during preparation of the manuscript.

References

1. Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, *Box dimensions of α-fractal functions*, Fractals 24 (2016), no. 3, 1650037, 13.
2. C. Bandt and S. Graf, *Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure*, Proc. Amer. Math. Soc. 114 (1992), no. 4, 995–1001.
3. M. F. Barnsley, *Fractal functions and interpolation*, Constr. Approx. 2 (1986), no. 4, 303–329.
4. M. F. Barnsley, *Fractals Everywhere*, Academic Press, Inc., Boston, MA, 1988.
5. M. F. Barnsley, J. Elton, D. Hardin, and P. Massopust, *Hidden variable fractal interpolation functions*, SIAM J. Math. Anal. 20 (1989), no. 5, 1218–1242.
6. M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J. Approx. Theory 192 (2015), 362–378.
7. A. Carvalho, Box dimension, oscillation and smoothness in function spaces, J. Funct. Spaces Appl. 3 (2005), no. 3, 287–320.
8. A. K. B. Chand, S. Jha, and M. A. Navascués, Kantorovich-Bernstein α-fractal functions in Lp spaces, Quaest. Math. 43 (2020), no. 2, 227–241.
9. A. Delu and B. Jawerth, Geometrical dimension versus smoothness, Constr. Approx. 8 (1992), no. 2, 211–222.
10. K. Falconer, Fractal Geometry, second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003, Mathematical Foundations and Applications.
11. K. J. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc. 106 (1989), no. 2, 543–554.
12. A. H. Fan and K. S. Lau, Iterated function system and Ruelle operator, J. Math. Anal. Appl. 231 (1999), no. 2, 319–344.
13. R. A. Gordon, Real Analysis: A first course, second ed., Addison Wesley, 2001.
14. D. P. Hardin and P. R. Massopust, The capacity for a class of fractal functions, Comm. Math. Phys. 105 (1986), no. 3, 455–460.
15. ______, Fractal interpolation functions from R^n into R^m and their projections, Z. Anal. Anwendungen 12 (1993), no. 3, 535–548.
16. K. S. Lau, H. Rao, and Y. L. Ye, Corrigendum: “Iterated function system and Ruelle operator” [J. Math. Anal. Appl. 231 (1999), no. 2, 319–344; MR1669203 (2001a:37013)] by Lau and A. H. Fan, J. Math. Anal. Appl. 262 (2001), no. 1, 446–451.
17. Y. S. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlinear Anal. 72 (2010), no. 11, 4304–4306.
18. P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, Inc., San Diego, CA, 1994.
19. ______, Interpolation and Approximation with Splines and Fractals, Oxford University Press, Oxford, 2010.
20. M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwendungen 24 (2005), no. 2, 401–418.
21. ______, Fractal approximation, Complex Anal. Oper. Theory 4 (2010), no. 4, 953–974.
22. Y. Peres, M. Rams, K. Simon, and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2689–2699.
23. H. J. Ruan, W. Y. Su, and K. Yao, Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory 161 (2009), no. 1, 187–197.
24. A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115.
25. S. Verma and P. Viswanathan, A revisit to α-fractal function and box dimension of its graph, Fractals 27 (2019), no. 6, 1950090, 15.
26. ______, A fractal operator associated with bivariate fractal interpolation functions on rectangular grids, Results Math. 75 (2020), no. 1, Paper No. 28, 26.
27. N. Vijender, Approximation by hidden variable fractal functions: a sequential approach, Results Math. 74 (2019), no. 4, Paper No. 192, 23.
28. ______, Bernstein fractal trigonometric approximation, Acta Appl. Math. 159 (2019), 11–27.
29. H. Y. Wang and J. S. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory 175 (2013), 1–18.
30. Yuan-Ling Ye, Separation properties for self-conformal sets, Studia Math. 152 (2002), no. 1, 33–44.

Department of Mathematics, IIT Delhi, New Delhi, India 110016
Email address: saurabhb331146@gmail.com

Department of Mathematics, NIT Rourkela, India 769008
Email address: jhasa@nitrkl.ac.in