Scientific Research Report

Oral Health Behaviour and Predictors of Oral Health Behaviour Among Patients With Diabetes in the Republic of Mauritius

Nesha Paurobally*, Estie Kruger, Marc Tennant

International Research Collaborative – Oral Health and Equity, School of Human Sciences, University of Western Australia, Crawley, Australia

ARTICLE INFO

Article history:
Available online 17 April 2021

Key words:
Oral health
Diabetes complications
Oral hygiene
Prevention
Mauritius

ABSTRACT

Objectives: To investigate the oral care habits and assess the determinants of oral care behaviour among people with diabetes in the Republic of Mauritius.

Methods: The present study draws on data collected from 589 dentate persons with diabetes by means of a close-ended questionnaire. Multivariate logistic regression analyses were used to estimate the association of different demographic and clinical factors with recommended dental hygiene practices.

Results: The majority of the participants brushed at least twice daily (84.2%), never flossed (88.6%), attended dental clinics on need only (87.1%), and did not monitor their blood glucose levels regularly (69.9%). Neither awareness about the increased risk of periodontal disease and xerostomia nor receiving advice from diabetes care providers was found to be associated with good oral hygiene or increased service utilisation. The experience of oral diseases did not encourage recommended oral health practice, with participants without experience with periodontal disease being 3 times more likely to floss (odds ratio [OR], 2.9; P = .045). Regular dental visits were strongly associated with self-reported type 1 diabetes (OR, 7.8; P = .025). Participants from urban areas were more than twice as likely to visit their dental care provider at least once annually (OR, 2.3; P = .006). Regular dental attendance (OR, 3.7; P = .011) and flossing (OR, 4.5; P = .012) were strongly associated with one another.

Conclusion: There is widespread noncompliance with regular flossing and dental service utilisation. Our findings highlight the need for an emphasis on preventive care through the provision of integrated medical and dental interventions to high-risk individuals suffering from both diabetes and chronic periodontitis.

Introduction

Diabetes, a group of metabolic disorders characterised by hyperglycaemia, is a major global health crisis. In 2019, it was estimated that 463 million adults worldwide were living with diabetes mellitus, and it is expected that this number will increase to 700 million people by 2045.1 The Republic of Mauritius has a very high prevalence of diabetes, with about one-fifth of the population suffering from the disease.2 Moreover, a high percentage (33%) of the country’s known cases of diabetes have poor metabolic control.

Depending on the pathogenesis of the disease, diabetes is classified into 4 main groups: type 1 diabetes (T1DM), type 2 diabetes (T2DM), gestational diabetes (GDM), and specific types of diabetes due to other causes.3 Persistent hyperglycaemia in uncontrolled or poorly controlled diabetes is associated with serious systemic complications. Hence, the treatment of diabetes focuses on the prevention or delay of these complications4 and is mainly directed towards glycaemic control, which is assessed by measuring the level of glycosylated haemoglobin (HbA1c). Although there are no specific oral lesions associated with diabetes, prolonged
hyperglycaemia can cause oral manifestations such as burning sensation of the oral mucosa, xerostomia, caries, and periodontal disease (gingivitis and periodontitis), leading to premature tooth loss.5 Numerous studies have revealed an increased prevalence of dental caries, mainly root caries,6 though there is no evidence of a causal relationship. Conversely, painful, mobile and missing teeth lead to bad nutrition, increasing the risk of incidence of T2DM or poorer glucose control in patients with diabetes.7 Xerostomia among patients with diabetes is mainly due to old age and the side effects of medication. Of substantial importance is the link between diabetes and periodontitis, which is the irreversible form of periodontal disease and is characterised by the destruction of the supporting structures of the teeth: the periodontal ligament and alveolar bone. Consistent evidence has emerged showing a bidirectional relationship between the two diseases. Diabetes increases the risk for periodontitis, and periodontal inflammation negatively affects glycaemic control.8,9 The increased severity of periodontal disease in patients with uncontrolled or poorly controlled diabetes has been found to potentiate the morbidity and premature mortality associated with systemic complications of diabetes.9

Current evidence suggests that regular dental visits can positively impact diabetes management and prevent diabetes complications by enabling prevention, early detection, and treatment of periodontal disease.10 Intensive oral hygiene can reduce oral inflammation and slow periodontal deterioration in persons with diabetes. Although regular tooth brushing and dental visits can reduce periodontitis by 34% and 32%, respectively, poor oral health considerably increases the risk of having periodontitis 2- to 5-fold.11 Nonetheless, people with diabetes have been shown to have poor compliance with recommended oral hygienic practices such as brushing twice a day, cleaning proximal and interdental surfaces at least once daily, and visiting a dental care provider at least once annually.12 Considering the impact of periodontal disease on diabetes and the benefits of good oral health practices in minimising the risk of periodontal disease, it is important to ensure that people with diabetes are motivated to engage in good oral hygiene behaviours.

Notwithstanding the fact that noncommunicable diseases, which include, among others, diabetes and oral diseases, constitute nearly 80% of the burden of diseases in Mauritius,13 there are limited studies on the oral hygiene practices of the Mauritian population in general and to our knowledge none pertaining strictly to oral care of people with diabetes. This study was designed to evaluate the oral hygiene practices as well as their determinants among people with diabetes in the country.

Methods

Ethics

The study protocol was reviewed and approved by the University of Western Australia Human Research Ethics Committee and the National Ethics Committee, Ministry of Health and Quality of Life of Mauritius.

Study sample and inclusion criteria

Between 2016 and 2018, persons attending diabetes clinics and with self-reported diabetes were invited to participate in a survey by completing a close-ended questionnaire. Thirteen geographically distributed diabetes clinics were selected to provide access to a large number of patients with diabetes and to include patients with diabetes from both urban and rural areas. Data was collected to ensure that patients attending both private and public clinics participated. On the day of data collection, all attendees at the clinics were invited to participate. Participation was voluntary. All participants were provided with oral and written information about the study, and they provided their signed, informed consent before inclusion in this survey.

A total of 720 persons with diabetes filled in the questionnaire and 131 of them were edentulous. Only data from the questionnaires filled in by dentate participants were selected for the purpose of the present study.

Questionnaire

The self-reported anonymous close-ended questionnaire was developed following a comprehensive review of the literature. Its feasibility was confirmed in a previous pilot study among patients with diabetes in Mauritius. Results of the pilot study indicated that some questions needed more response options; these were subsequently added. The questionnaire included 17 questions grouped under 5 categories: (i) demography (ie, age, gender, education, rural or urban residence); (ii) medical status (the number of years since diagnosed with diabetes, type of diabetes, treatment received); (iii) general health and oral hygiene practices (last glucose test, annual visits to diabetes care providers, visits to dental care providers, frequency of tooth brushing and flossing); (iv) knowledge about the association between diabetes and oral health (receiving advice from diabetes and dental care providers, knowledge about oral and systemic complications of diabetes), and (v) present and past experience of oral complications of diabetes (xerostomia and periodontal disease). Data about the experience of caries and systemic complications were not recorded.

In the case of unaccompanied patients with no reading and writing skills, the researcher asked the questions verbally in Creole (local spoken dialect) and filled in the form in their presence.

Measures

The main outcome variables for this study were (i) brushing at least twice daily; (ii) flossing at least once daily; and (iii) visiting a dental care provider at least once annually. Demographic characteristics (age, gender, rural or urban residence, education); health status (number of years since diagnosis, self-reported type of diabetes); dental care habits (flossing and tooth brushing for dental visits, and dental follow-up for flossing and tooth brushing); receiving advice from diabetes or dental care provider; knowledge about oral and systemic complications of diabetes and the experience of periodontitis and xerostomia were considered as potential covariates.
For the purpose of statistical analyses oral health habit items were dichotomised as follows:

- brushing at least 2 times a day versus less frequently
- flossing at least once daily versus less frequently
- visiting a dental care provider at least once annually versus on need only

Statistical analysis

The data were analysed using SPSS version 25 for Mac OS X. Univariate statistical analysis of differences between subgroups was performed using the χ^2 test. All tests were 2-sided with $P < .05$ set as the significance level. Further analysis using multiple logistic regression was performed to identify the variables most strongly associated with the dental care habits of persons with diabetes.

Results

Of a total of 589 dentate participants, 247 (41.9%) were aged 60 years and older; 332 (56.4%) were female, 316 (53.8%) had less than secondary education (data missing for 2 participants), and 316 (53.7%) lived in rural areas.

The study results show that though a high percentage of the participants had visited their treating doctor at least once during the year preceding this study (94.5%, 5 participants did not remember), the majority could not recall which type of diabetes they suffered from (Table 1). More than half of the cohort had not monitored their blood sugar level for more than a week prior to this survey (54.5%). Though the majority of the participants (84.2%) brushed their teeth at least twice daily, there was limited adherence to recommended daily flossing (3.4%) and at least once annual dental visits (12.9%). A high percentage of participants did not receive advice from their diabetes care provider about the importance of regular dental check-ups (82.0%) or from their dental care providers about the importance of glycaemic control (73.5%). Awareness about systemic complications of diabetes (68.4%-82.2%) was more widespread than that about oral complications (30.1%-53.8%).

Univariate analyses identified the following variables to be significantly associated with the recommended oral care practices: age, gender, self-reported type of diabetes, and knowledge about renal and cardiac complications of diabetes with brushing at least twice daily (Table 2); education, number of years prior to this study since diagnosis of diabetes and frequency of dental visits with flossing frequency (Table 3); and age, education, address, self-reported type of diabetes, receiving advice from diabetes and dental care providers, flossing frequency, awareness about caries as a possible complication of diabetes, and experience of periodontal disease with annual dental visits (Table 4). Multivariate logistic regression analyses were performed to find, after adjusting for confounders, the variables most strongly associated with recommended oral health behaviours (Table 5).

Brushing

Participants who were in the 40-59 and 60 and older age groups were, respectively, 8 (odds ratio[OR], 8.0; CI, 2.31-27.78) and 7 (OR, 6.8; CI, 1.95-23.44) times more likely to observe the recommended brushing frequency. Brushing twice daily was most prevalent among women (OR, 2.8; CI, 1.72-4.64), participants with self-reported T2DM (OR, 3.5; CI, 1.20-10.28) and persons aware about their increased risk of renal complications (OR, 2.8; CI, 1.05-3.02). Only a small number of participants ($n=15$) had gestational diabetes, and they brushed their teeth at least twice daily.

Flossing

The likelihood of flossing at least once daily was highest among participants diagnosed with diabetes between 5 and 9 years prior to this study (OR, 5.1; CI, 1.52-16.85) and with annual dental check-ups (OR, 3.7; CI, 1.35-9.91). After adjusting for confounders, experience of periodontal disease replaces education as a factor associated with regular flossing. Participants with no experience of periodontal disease were nearly 3 times more likely to floss at least once daily (OR, 2.9; CI, 1.02-8.48).

Dental visits

After adjusting for confounders, dental service utilisation was highest among participants with tertiary education (OR, 5.4; CI, 2.04-14.38), city dwellers (OR, 2.3; CI, 1.27-4.31), and amongst participants with self-reported T1DM (OR, 7.8; CI, 1.29-46.78). Similarly, receiving advice about the importance of glycaemic control from dental care providers (OR, 2.9; CI, 1.57-5.40), regular flossing (OR, 4.5; CI, 1.39-14.42), and being aware of caries as a possible complication of diabetes (OR, 2.2; CI, 1.25-3.90) increased the odds of regular dental visits. Recent diagnosis of diabetes gained significance as a strong predictor of regular dental visits (OR, 2.5; CI, 1.25-5.04).

Discussion

Diabetes and oral self-care practices are essential in the prevention of systemic and periodontal complications of diabetes. Diabetes self-care includes ongoing self-monitoring of blood glucose levels for people using insulin, for people on medication that may cause hypoglycaemia, and during pregnancy or other conditions in which data on glycaemic patterns is required. Self-monitoring may help with self-management and medication adjustment. Recommended oral hygiene practices include brushing twice daily, flossing at least once daily, and regular dental visits. The present study provides evidence that in Mauritius, despite the high prevalence of both diabetes and oral diseases, the majority of individuals with diabetes fail to comply with recommended diabetes and oral hygiene practices.

The national health care system in Mauritius includes public and private infrastructure, with care provided in the public sector being free of any user cost at the point of use. Nonetheless, a high percentage of people diagnosed with
diabetes have poor metabolic control. This coupled with the high mortality and morbidity rate among Mauritians suffering from diabetes highlights the urgency of implementing measures for better glycaemic control, including regular monitoring of blood sugar level. The American Diabetes Association recommends that when self-monitoring blood glucose levels, diabetes care providers need to ensure that patients receive ongoing instruction and regular evaluation of technique, results, and their ability to use data from self-monitoring of blood glucose to adjust therapy. The observed

Table 1 – Demographic and clinical characteristics.

Demographic and clinical characteristics	Number (n)	Percentage (%)
Age (years)		
<20	36	6.1
20-39	66	11.2
40-59	240	40.7
≥60	247	41.9
Gender		
Male	257	43.6
Female	332	56.4
Education		
None	53	9.0
Primary	263	44.8
Secondary	237	40.4
Tertiary	34	5.8
Address		
Rural	316	53.7
Urban	273	46.3
Years since diagnosis of diabetes		
<5 years	220	37.8
5-9 years	129	22.2
≥10	233	40.0
Self-reported type of diabetes		
Type 1	73	12.4
Type 2	70	11.9
Gestational	15	2.5
Do not know	431	73.2
Treatment		
Insulin only	135	23.0
Oral hypoglycaemic only	346	58.8
Insulin and oral hypoglycaemic	79	13.4
Diet	28	4.8
Last glucose test		
Same day	177	30.1
Week before	91	15.4
Month before	181	30.7
More than a month	140	23.8
Annual medical visit		
Yes	552	94.5
No	32	5.5
Frequency of dental visits		
Every 6 months	32	5.4
Annually	44	7.5
On need	501	85.1
Never	12	2.0
Toothbrushing frequency		
Once daily	93	15.8
At least twice daily	496	84.2
Flossing frequency		
Never	522	88.6
Occasionally	47	8.0
At least once daily	20	3.4
Received advice from diabetes care provider		
Yes	106	18.0
No	483	82.0
Received advice from dental care provider		
Yes	156	26.5
No	433	73.5
Aware about complications: Ocular		
Yes	484	82.2
No	105	17.8
Renal		
Yes	456	77.4
No	133	22.6
Cardiac		
Yes	403	68.4
No	186	31.6
Caries		
Yes	177	30.1
No	412	69.9
Periodontal disease		
Yes	220	37.4
No	369	62.6
Xerostomia		
Yes	317	53.8
No	272	46.2
Experience of periodontal disease		
Yes	299	50.8
No	290	49.2
Experience of xerostomia		
Yes	295	50.4
No	290	49.6
nonadherence to regular monitoring in the present study may point to limited awareness about the importance of glycaemic control in the prevention of diabetes complications as well as a lack of confidence in using a glucometer and in interpreting the results.

The present study supports the evidence that people with diabetes appear to neglect flossing as a recommended oral care habit and are more likely to visit a diabetes care provider than a dental care provider for an annual check-up. The observed nonadherence to recommended oral health practices may be linked to limited awareness about the risks and consequences of poor oral health and poor diabetes management. Similarly, misconceptions about oral health that promote harmful behaviours such as avoiding flossing in the presence of bleeding may explain the findings that experience of periodontal disease negatively impacted flossing. Lack of knowledge amplified by the fact that diabetes and dental care providers in Mauritius do not address oral health care as an essential component of diabetes care highlights the need for preventive interventions to raise awareness about the bidirectional association between diabetes and oral health and to promote recommended health behaviours as a routine part of clinical care. However, neither awareness about the increased risk of oral diseases (periodontal disease and xerostomia) nor receiving advice from diabetes care providers about the importance of regular dental visits was found to be associated with increased service utilisation. Similarly, receiving advice about the importance of glycaemic control from dental care providers did not predict regular glucose self-monitoring (p = .803) or annual visits to the diabetes care provider (p = .232). These findings may point to an inadequacy in the advice being provided or

Table 2 – Toothbrushing frequency according to demography and health status.

Factors	Brushing frequency	P value			
	Once daily	At least twice daily			
Age					
<20	16	44.4	20	55.6	.000*
20-39	11	16.7	55	83.3	
40-59	28	11.7	212	88.3	
≥60	38	15.4	209	84.6	
Gender					
Male	60	23.3	197	76.7	.000*
Female	33	9.9	299	90.1	
Education					
None and primary	46	14.6	270	85.4	.374
Secondary	39	16.5	198	83.5	
Tertiary	8	23.5	26	76.5	
Address					
Rural	54	17.1	262	82.9	.352
Urban	39	14.3	234	85.7	
Years since diagnosis					
<5 years	39	17.7	181	82.3	.522
5-9 years	17	13.2	112	86.8	
≥10 years	36	15.5	197	84.5	
Self-reported DM type					
Type 1	20	27.4	53	72.6	.001*
Type 2	4	5.7	66	94.3	
Do not know	69	16.0	362	84.0	
GDM	0	0.0	15	100.0	
Dental visits					
At least once annually	12	15.8	64	84.2	1.000
On need	81	15.8	432	84.2	.506
Received advice from DM care provider					
Yes	19	17.9	87	82.1	
No	74	15.3	409	84.7	
Received advice from dental care provider					
Yes	25	16.0	131	84.0	.925
No	68	15.7	365	84.3	
Aware about complications: Ocular					
Yes	71	14.7	413	85.3	.109
No	22	21.0	83	79.0	
Renal					
Yes	61	13.4	395	86.6	.003*
No	32	24.1	101	75.9	
Cardiac					
Yes	54	13.4	349	86.6	.019
No	39	21.0	147	79.0	
Caries					
Yes	22	12.4	155	87.6	.143
No	71	17.2	341	82.8	
Periodontal disease					
Yes	33	15.0	187	85.0	.685
No	60	16.3	309	83.7	
Xerostomia					
Yes	50	15.8	267	84.2	.990
No	43	15.8	229	84.2	
Experience of periodontal disease					
Yes	45	15.1	254	84.9	.617
No	48	16.6	242	83.4	
Experience of xerostomia					
Yes	47	15.9	248	84.1	.800
No	44	15.2	246	84.8	

DM = diabetes mellitus; GDM = gestational diabetes mellitus.
* p < .05.
the ineffectiveness of actions focussed solely on oral self-care, clinical treatment, and chairside preventive advice at the individual level.25

Common oral diseases shares common economic, psycho-social, environmental, political, and cultural risk factors with other major chronic diseases. As such, effective management of periodontal disease may be enhanced with adequate public health policies that recognise the impact of social determinants of disease as well as the role that dental professionals could play in chronic disease management.26 In 2007, the government of Mauritius implemented the National Service Framework for Diabetes (NSFD)27 with the aim to decrease the incidence of diabetes, review the clinical management of people with diabetes to prevent or delay the onset of complications, and to minimise the impact of long-term complications. However, the key interventions of the NSFD exclude measures for the prevention of oral complications, thus confirming the difficulty in identifying chronic periodontitis as a public health problem and maintaining the neglected role of dental care providers in diabetes management. Based on this and on the findings of our study, the implementation of public health policies to improve chronic disease management in Mauritius may include the following: establishing a dental public health service that will facilitate research, identify barriers for oral health care, and build capacity for public health intervention; since data show that oral health initiatives operating in isolation often lead to duplication of effort and lack of consistency with health messages and wasted resources,25 increase the dental workforce from the current 3.3 per

Factors	Flossing frequency			P value	
	Never/Occasionally	At least once daily			
	n	%	n	%	
Age (years)					
< 20	34	94.4	2	5.6	.703
20-39	63	95.5	3	4.5	
40-59	294	97.5	6	2.5	
≥ 60	238	96.4	9	3.6	
Gender					
Male	248	96.5	9	3.5	.900
Female	321	96.7	11	3.3	
Education					
None and primary	310	98.1	6	1.9	.043*
Secondary	226	95.4	11	4.6	
Tertiary	31	91.2	3	8.8	
Address					
Rural	304	96.2	12	3.8	.562
Urban	265	97.1	8	2.9	
Total	569	96.6	20	3.4	
Self-reported DM type					
Type 1	68	93.2	5	6.8	.236
Type 2	67	95.7	3	4.3	
Do not know	420	97.4	11	2.6	
GDM	14	93.3	1	6.7	
Years since diagnosis					
< 5	216	98.2	4	1.8	.005*
5-9	119	92.2	10	7.8	
≥ 10	228	97.9	5	2.1	
Dental visits					
At least once annually	69	90.8	7	9.2	.003*
On need	500	97.5	13	2.5	
Received advice from DM care provider	100	94.3	6	5.7	.155
No	469	97.1	14	2.9	
Received advice from dental care provider	152	97.4	4	2.6	.504
Yes	417	96.3	16	3.7	
No	103	98.1	2	1.9	
Aware about complications: Ocular					
Yes	466	96.3	18	3.7	.352
No	131	98.5	2	1.5	
Renal					
Yes	438	96.1	18	3.9	.171
No	181	97.3	5	2.7	
Cardiac					
Yes	388	96.3	15	3.7	.520
No	181	97.3	5	2.7	
Caries					
Yes	172	97.2	5	2.8	.616
No	397	96.4	15	3.6	
Periodontal disease					
Yes	213	96.8	7	3.2	.825
No	356	96.5	13	3.5	
Xerostomia					
Yes	308	97.2	9	2.8	.421
No	261	96.0	11	4.0	
Experience of periodontal disease					
Yes	293	98.0	6	2.0	.059
No	276	95.2	14	4.8	
Experience of xerostomia					
Yes	287	97.3	8	2.7	.343
No	278	95.9	12	4.1	

DM = diabetes mellitus; GDM = gestational diabetes mellitus.

* P < .05.
10,000 population28 to allow inclusion of dental care providers in multidisciplinary teams involved in the management of chronic diseases; invest in the training of periodontists as to date the public dental service of Mauritius does not include any; ensure equitable access to oral health facilities in both rural and urban areas to counter the observed disparity in the likelihood of dental visits between the 2 areas; drive the reorientation of dental health services towards an evidence-based led preventive approach because according to the last published National Health Accounts13 curative services predominate over promotive and preventive services in Mauritius; and encourage establishing dedicated health units and nonprofit organisations to complement government actions. The higher adherence to annual dental visits among participants with T1DM compared to T2DM may be linked to the existence of the Diabetes and Vascular Centre and of the nongovernmental organisation T1Diams (https://www.t1diams.org), which are 2 entities that cater to the clinical and educational needs of patients with T1DM respectively. Additional measures may include increasing affordability of oral hygiene necessities such as toothbrushes, interdental cleaning aids, and fluoride toothpaste for those at a socioeconomic disadvantage.

\begin{table}[h]
\centering
\caption{Frequency of dental visits according to demography and health status.}
\begin{tabular}{lccc}
\hline
Factors & Frequency of dental visits & & P value \\
 & \begin{tabular}{c}
At least once annually \\
\begin{tabular}{cc}
\textbf{n} & \textbf{\%} \\
\end{tabular}
\end{tabular} & \begin{tabular}{cc}
On need only \\
\begin{tabular}{cc}
\textbf{n} & \textbf{\%} \\
\end{tabular}
\end{tabular} & \\
\hline
\multicolumn{4}{l}{Age (years)} \\
<20 & 14 & 38.9 & 22 & 61.1 & .000* \\
20-39 & 16 & 24.2 & 50 & 75.8 & \\
40-59 & 27 & 11.3 & 213 & 88.8 & \\
\geq60 & 19 & 7.7 & 228 & 92.3 & \\
\hline
\multicolumn{4}{l}{Gender} \\
Male & 37 & 14.4 & 220 & 85.6 & .341 \\
Female & 39 & 13.7 & 293 & 86.3 & .000* \\
\hline
\multicolumn{4}{l}{Education} \\
None and primary & 21 & 6.6 & 295 & 93.4 & .000* \\
Secondary & 40 & 16.9 & 197 & 83.1 & \\
Tertiary & 15 & 44.1 & 19 & 55.9 & \\
\hline
\multicolumn{4}{l}{Address} \\
Rural & 31 & 9.8 & 285 & 90.2 & .016* \\
Urban & 45 & 16.5 & 228 & 83.5 & \\
\hline
\multicolumn{4}{l}{Years since diagnosis} \\
<5 & 30 & 13.6 & 190 & 86.4 & .662 \\
5-9 & 19 & 14.7 & 110 & 85.3 & \\
\geq10 & 27 & 11.6 & 206 & 88.4 & \\
\hline
\multicolumn{4}{l}{Self-reported DM type} \\
Type 1 & 28 & 38.4 & 45 & 61.6 & .000* \\
Type 2 & 17 & 24.3 & 53 & 75.7 & \\
Do not know & 29 & 6.7 & 402 & 93.3 & \\
GDM & 2 & 13.3 & 13 & 86.7 & \\
\hline
\multicolumn{4}{l}{Received advice from DM care provider} \\
Yes & 31 & 29.2 & 75 & 70.8 & .000* \\
No & 45 & 9.3 & 438 & 90.7 & \\
\hline
\multicolumn{4}{l}{Received advice from dental care provider} \\
Yes & 34 & 21.8 & 122 & 78.2 & .000* \\
No & 42 & 9.7 & 391 & 90.3 & \\
\hline
\multicolumn{4}{l}{Brushing frequency} \\
Once daily & 12 & 12.9 & 81 & 87.1 & 1.000 \\
At least twice daily & 64 & 12.9 & 432 & 87.1 & \\
\hline
\multicolumn{4}{l}{Flossing frequency} \\
Never/occasionally & 69 & 12.1 & 500 & 87.9 & .003* \\
At least once daily & 7 & 35.0 & 13 & 65.0 & \\
\hline
\multicolumn{4}{l}{Aware about complications: Ocular} \\
Yes & 68 & 14.0 & 416 & 86.0 & .075 \\
No & 8 & 7.6 & 97 & 92.4 & \\
\hline
\multicolumn{4}{l}{Renal} \\
Yes & 65 & 14.3 & 391 & 85.7 & .070 \\
No & 11 & 8.3 & 122 & 91.7 & \\
\hline
\multicolumn{4}{l}{Cardiac} \\
Yes & 52 & 12.9 & 351 & 87.1 & 1.000 \\
No & 24 & 12.9 & 162 & 87.1 & \\
\hline
\multicolumn{4}{l}{Caries} \\
Yes & 38 & 21.5 & 139 & 78.5 & .000* \\
No & 38 & 9.2 & 374 & 90.8 & \\
\hline
\multicolumn{4}{l}{Periodontal disease} \\
Yes & 35 & 15.9 & 185 & 84.1 & .093 \\
No & 41 & 11.1 & 328 & 88.9 & \\
\hline
\multicolumn{4}{l}{Xerostomia} \\
Yes & 39 & 12.3 & 278 & 87.7 & .639 \\
No & 37 & 13.6 & 235 & 86.4 & \\
\hline
\multicolumn{4}{l}{Experience of periodontal disease} \\
Yes & 30 & 10.0 & 269 & 90.0 & .035* \\
No & 46 & 15.9 & 244 & 84.1 & \\
\hline
\multicolumn{4}{l}{Experience of xerostomia} \\
Yes & 30 & 10.2 & 265 & 89.8 & .053 \\
No & 45 & 15.5 & 245 & 84.5 & \\
\hline
\end{tabular}
\end{table}

DM = diabetes mellitus; GDM = gestational diabetes mellitus.

* P < .05.
history update, oral examination, periodontal evaluation, radiographic review, scaling, root planning, polishing, review of plaque removal efficiency essential for preventing disease progression. The outcomes of SPT depend on multiple factors, including adherance to SPT, which in addition decreases with increasing periodontal risk profile. This added to the evidence that level of oral hygiene maintained by patients during healing and maintenance is critical for periodontal treatment success and highlights how the participants’ limited annual (7.5%) or every 6 months (5.4%) utilisation of dental care may compromise diabetes management and increase their risk of systemic complications. Our findings point out the need to target individuals more at risk of developing periodontal disease and more likely to benefit from intensive interventions for prevention and management. Focussing specific preventive measures towards high-risk individuals such as people with both diabetes and chronic periodontal disease through a common risk factor approach will ensure continuity of care and ease of compliance.

Limitations

Self-reported data provided by study participants were not validated against their medical or dental records. Response bias may have influenced respondents to overreport attendance at diabetes clinics as well as tooth brushing behaviour. Memory bias may have influenced responses about the number of years since diagnosed with diabetes and about receiving advice from health care providers.

Conclusion

This is the first study that investigated dental care practices and dental service utilisation among patients with diabetes in Mauritius. Based on the participants’ visits to diabetes and dental care providers and on their oral care habits, it is clear that although regular tooth brushing is widespread, oral health is not a major priority and a routine practice for this group of participants. The insights gained from the present

Table 5 – Logistic regression analysis with recommended dental behaviours as dependent variables.

Dependent variable	Factors in final model	Adjusted OR	95% CI	P value	
Brushing at least twice daily	Age (years)	20-39	1.0 (Ref)	.004	
		40-59	2.5	0.78-8.06	.128
		60+	6.8	1.95-23.44	.003
	Gender	Male	1.0 (Ref)	.000	
		Female	2.5	1.72-4.64	.000
	Self-reported DM type	Do not know	1.0 (Ref)	.004	
		Type 1	2.0	0.71-5.84	.186
		Type 2	3.5	1.20-10.28	.022
	GDM		—	—	0.998
	Aware of renal complications	No	1.0 (Ref)	.035	
		Yes	1.8	1.05-3.02	.032
Flossing at least once daily	Years since diagnosis	<5 years	1.0 (Ref)	.011	
		5-9 years	5.1	1.52-16.87	.008
		≥10 years	1.4	0.36-5.23	.647
Dental visits	On need	1.0 (Ref)	.017		
	At least once annually	3.7	1.35-9.91	.011	
Experience of periodontal disease	Yes	1.0 (Ref)	.034		
	No	2.9	1.02-8.48	.045	
Dental visits at least once annually	Education	None and primary	1.0 (Ref)	.003	
	Secondary	1.8	0.97-3.41	.061	
	Tertiary	5.4	2.04-14.38	.001	
Address	Rural	1.0 (Ref)	.005		
	Urban	2.3	1.27-4.31	.006	
	≥10 years	1.0 (Ref)	.023		
	<5 years	2.5	1.25-5.04	.010	
	5-9 years	1.1	0.54-2.46	.716	
Years since diagnosis	GDM	1.0 (Ref)	.000		
	Type 1	7.8	1.29-46.78	.025	
	Type 2	3.4	0.56-19.96	.183	
	Do not know	1.2	0.21-6.72	.833	
Self-reported DM type	Received advice from dental care provider	No	1.0 (Ref)	.001	
	Yes	2.9	1.57-5.40	.001	
Flossing frequency	Never or occasionally	1.0 (Ref)	.016		
	At least once daily	4.5	1.39-14.42	.012	
Aware of caries as complication	No	1.0 (Ref)	.007		
	Yes	2.2	1.25-3.90	.006	

CI = confidence interval; DM = diabetes mellitus; GDM = gestational diabetes mellitus; OR = odds ratio.

* OR is high, and 95% CI for brushing at least twice daily cannot be calculated.
study suggest several opportunities for improving diabetes and periodontal disease management in the country. These include interventions at both the individual and population levels, such as increasing awareness about the bidirectional association between diabetes and oral disease and the importance of adhering to recommended health practices; focusing on prevention; establishing continuity of care by including dentists in the multidisciplinary team involved in diabetes management; and ensuring access to dental care irrespective of geographical location and type of diabetes.

Author contributions

NP planned the study, collected and analysed the data, drafted and revised the manuscript, approved the final manuscript; EK contributed to study planning and data analysis, critically commented on the manuscript, approved the final manuscript; MT critically commented on the draft manuscript and approved the final manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Conflict of interest

None disclosed.

Acknowledgements

The authors are grateful to the Ministry of Health and Wellness of the Republic of Mauritius, T1Diams, Clinic Darné, and Dr Ballysing M. for enabling data collection.

References

1. International Diabetes Federation. IDF diabetes atlas 2019. 2020. Available from: https://www.diabetesatlas.org. Accessed 12 March 2020.
2. Magliano D, Shaw J, Zimmet P, et al. The trends in diabetes and cardiovascular disease risk in Mauritius: the Mauritian non communicable diseases survey 2015, Port Louis, Mauritius: Ministry of Health and Quality of Life; 2015.
3. American Diabetes Association. Classification and diagnosis of diabetes: in Standards of Medical Care in Diabetes. Diabetes Care 2020;43(Suppl 1):S14–31.
4. American Diabetes Association. Comprehensive medical evaluation and assessment of comorbidities: in Standards of Medical Care in Diabetes. Diabetes Care 2020;43(Suppl 1):S37–47.
5. Verhuijs MJL, Loos BG, Gerdes VEA, et al. Evaluating all potential oral complications of diabetes mellitus. Front Endocrinol (Lausanne) 2019;10:56.
6. Hintao J, Teanpaisan R, Chongsuvivatwong V, et al. Root surface and coronal caries in adults with type 2 diabetes mellitus. Community Dent Oral Epidemiol 2007;35(4):302–9.
7. Borgenakke W. IDF Diabetes Atlas: diabetes and oral health—a two-way relationship of clinical importance. Diabetes Res Clin Pract 2019;157:107839.
8. D’Aiuto F, Gable D, Syed Z, et al. Evidence summary: the relationship between oral diseases and diabetes. Br Dent J 2017;222(12):944–8.
9. Graziani F, Gennai S, Solini A, et al. A systematic review and meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes. An update of the EFP-AAP review. J Clin Periodontol 2018;45(2):167–87.
10. Chapple IL, Genco R. Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Periodontol 2013;84: S106–12.
11. Lertpimonchai A, Rattanasiri S, Arj-Öng Vallibhakara S, et al. The association between oral hygiene and periodontitis: a systematic review and meta-analysis. Int Dent J 2017;67(6):352–43.
12. Poudev P, Griffiths R, Wong VW, et al. Oral health knowledge, attitudes and care practices of people with diabetes: a systematic review. BMC Public Health 2018;18(1):577.
13. National Health Accounts 2017. Port Louis, Mauritius: Ministry of Health and Quality of Life; 2018.
14. The Royal Australian College of General Practitioners (RACGP). General practice management of type 2 diabetes: 2016–18. East Melbourne, VIC, Australia: RACGP; 2016.
15. American Diabetes Association. Diabetes technology: in Standards of Medical Care in Diabetes. Diabetes 2020;43(Suppl 1):S77–88.
16. FDI World Dental Federation. Prevention. Available from: https://www.fdiworlddental.org/oral-health/prevention. Accessed 16 December 2020.
17. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study. Lancet 2017;392:1859–922.
18. Bernabe E, Marcenes W, Hernandez CR, et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the Global Burden of Disease 2017 Study. J Dent Res 2020;99(4):362–73.
19. Tabesh M, Shaw JE, Zimmet PZ, et al. Association between type 2 diabetes mellitus and disability: what is the contribution of diabetes risk factors and diabetes complications? J Diabetes 2018;10(9):744–52.
20. Pugo Gunsam P, Banka S. Oral health status and behaviour of Mauritians visiting private dental clinics. Health Educ Pract 2011;11(1):34–48.
21. Tomar SL, Lester A. Dental and other health care visits among U.S. adults with diabetes. Diabetes Care 2000;23(10):1505–10.
22. Lindenmeyer A, Bowyer V, Rozcoe J, et al. Oral health awareness and care preferences in patients with diabetes: a qualitative study. Fam Pract 2013;30(1):113–8.
23. Yuen HK, Wolf BJ, Bondyopadhyay D, et al. Oral health knowledge and behavior among adults with diabetes. Diabetes Res Clin Pract 2009;86(3):239–46.
24. Paurobally N, Kruger E, Tennant M. Are diabetes and dental care providers in the Republic of Mauritius advising patients about the importance of oral health in diabetes management? Int J Dent Hygiene [Preprint]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/idh.12479. Accessed 12 April 2021.
25. Wart A, Petersen PE. Periodontal health through public health – the case for oral health promotion. Periodontol 2000 2012;60(1):147–55.
26. Batchelor P. Is periodontal disease a public health problem? Br Dent J 2014;217(8):405–9.
27. National Service Framework for Diabetes. The national service framework for diabetes—Mauritius A ten-year programme. Port Louis, Mauritius: Ministry of Health and Quality of Life; 2007.

28. Ministry of Health and Wellness. Health statistics report 2019. 2020. Available from: https://health.govmu.org/Pages/Statistics/Health/Mauritius.aspx. Accessed 15 April 2020.

29. Tonetti MS, Eickholz P, Loos BG, et al. Principles in prevention of periodontal diseases: consensus report of group 1 of the 11th European Workshop on Periodontology on effective prevention of periodontal and peri-implant diseases. J Clin Periodontol 2015;42(S16):S5–S11.

30. Sonnenschein SK, Kohnen R, Ruetters M, et al. Adherence to long-term supportive periodontal therapy in groups with different periodontal risk profiles. J Clin Periodontol 2020;47 (3):351–61.

31. Sanz-Martín I, Cha JK, Yoon SW, et al. Long-term assessment of periodontal disease progression after surgical or non-surgical treatment: a systematic review. J Periodontal Implant Sci 2019;49(2):60–75.

32. Petit C, Schmeltz S, Burg A, et al. Risk factors associated with long-term outcomes after active and supporting periodontal treatments: impact of various compliance definitions on tooth loss. Clin Oral Investig 2019;23(11):4123–31.

33. Van der Weijden GA, Dekkers GJ, Slot DE. Success of non-surgical periodontal therapy in adult periodontitis patients: a retrospective analysis. Int J Dent Hyg 2019;17(4):309–17.

34. Lindhe J, Socransky SS, Nyman S, et al. “Critical probing depths” in periodontal therapy. J Clin Periodontol 1982;9 (4):323–36.

35. Kornman KS. Contemporary approaches for identifying individual risk for periodontitis. Periodontol 2000 2018;78(1):12–29.