Intraoperative time out to promote the implementation of the critical view of safety in laparoscopic cholecystectomy: a video-based assessment of 343 procedures

Pietro Mascagni1, 2, MD; María Rita Rodríguez-Luna3, MD; Takeshi Urade4, MD, PhD; Emanuele Felli5, MD; Patrick Pessaux5 MD, PhD; Didier Mutter3, 4, 5, MD, PhD, FACS; Jacques Marescaux3 MD, FACS, (Hon) FRCS, (Hon) FJSES; Guido Costamagna2, 6, MD, FACG, FJGES; Bernard Dallemagne3, 4, 5, MD; Nicolas Padoy1, 4, PhD

1. ICube, University of Strasbourg, CNRS, IHU Strasbourg, France
2. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
3. Institute for Research against Digestive Cancer (IRCAD), Strasbourg, France
4. IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
5. Department of Digestive and Endocrine Surgery, University of Strasbourg, Strasbourg, France
6. Center for Endoscopic Research, Therapeutics and Training (CERTT), Università Cattolica S. Cuore, Rome, Italy

Corresponding author:
Pietro Mascagni, MD,
ICube, c/o IHU-Strasbourg,
1, place de l’hôpital,
67000 Strasbourg, France
Phone: +33 3 90 41 36 00
Fax: +33 3 90 41 36 99
Email: p.mascagni@unistra.fr
Funding: This study is partially supported by an EAES Research Grant and by French State Funds managed by the “Agence Nationale de la Recherche (ANR)” National Research Agency through the “Investissements d’Avenir” (Investments for the Future) Program under the ANR-10-IAHU-02 (IHU-Strasbourg) grant.
ABSTRACT

Background: The critical view of safety (CVS) is poorly adopted in surgical practices although it is ubiquitously recommended to prevent major bile duct injuries during laparoscopic cholecystectomy (LC). This study aims to determine whether performing a short intraoperative time out can improve CVS implementation.

Methods: Surgeons performing LCs at an academic centre were invited to perform a 5-second long time out to verify CVS before dividing the cystic duct (5-second rule). The primary endpoint was to compare the rate of CVS achievement between LCs performed in the year before and the year after the 5-second rule. The CVS achievement rate was computed using the mediated video-based assessment of two independent reviewers. Clinical outcomes, LC workflows, and postoperative reports were also compared.

Results: Three hundred and forty-three (171 before and 172 after the 5-second rule) of the 381 LCs performed over the 2-year study were analysed. After the implementation of the 5-second rule, the rate of CVS achievement increased significantly (15.9 vs 44.1 %; P<0.001) as well as the rate of bailout procedures (8.2 vs 15.7 %; P=0.045), the median time to clip the cystic duct or artery (17:26 [interquartile range: 16:46] vs 23:12 [17:16] minutes; P=0.007), and the rate of postoperative CVS reporting (1.3 vs 28.8 %; P<0.001). Morbidity was comparable (1.75 vs 2.33 % before and after the 5-second rule respectively; P=0.685).

Conclusion: Performing a short intraoperative time out improves CVS implementation during LC. Systematic intraoperative cognitive aids should be studied to sustain the uptake of guidelines.

Key words: Quality improvement; Surgical safety; Video-based assessment; Cognitive aids; Intraoperative time out; Critical view of safety; Bile duct injuries; Laparoscopic cholecystectomy.
Introduction

Surgical societies are united in promoting research, education, and quality improvement (QI) initiatives to prevent bile duct injuries (BDIs) since this dreaded adverse event of laparoscopic cholecystectomy (LC) puts a heavy burden on patients’ survival and quality of life, surgeons’ career, and health systems’ expenditures.

Achieving a critical view of safety (CVS) in LC is widely recommended to prevent the visual perceptual illusion which causes 97% of major BDIs, the most severe iatrogenic lesion of the common bile duct. However, the incidence of BDIs in LC remains stable at 0.3 to 1.5%, a rate at least three times higher than the figures commonly reported for open cholecystectomy 30 years ago. In addition, the complexity of BDIs seems to have increased over time, with a trend towards more proximal injuries.

The frequently described poor uptake and subjective assessment of formal CVS in surgical practices might account for the non-decreasing rate of BDIs. To promote the implementation of CVS, multi-society guidelines on BDI prevention suggested to perform a momentary pause to recall and verify the CVS before clipping and dividing the cystic duct or artery based solely on the opinion of experts.

It has been hypothesised that performing an intraoperative time out could serve as a procedural cognitive aid to recall and apply essential safety measures such as CVS, in the same way as the implementation of the surgical safety checklist serves as a cognitive aid in the perioperative setting.

The aim of the present before and after QI study was to evaluate the effect of performing a 5-second long intraoperative time out before the division of the cystic duct through a video-based assessment (VBA) of a large series of LCs.
Methods

This QI study was approved by the local medical research and ethical committee (CE-2020-178). The study follows a before and after design and it is reported according to the Standards for QUality Improvement Reporting Excellence (SQUIRE) guidelines.

Participants

To facilitate QI research and education, patients undergoing surgery in the Department of General, Digestive, and Endocrine Surgery of the Nouvel Hôpital Civil (Strasbourg, France) are routinely asked to give their consent for data recording. Prospectively collected data of patients over 18 years of age and undergoing a LC for benign conditions between November 2017 and November 2019 were analysed retrospectively.

Quality improvement intervention

As part of an institution-wide initiative to promote the implementation of best practices to ensure a safe LC, two authors of the study (PM and NP) were invited for a short presentation during the morning surgical staff meeting. During this brief intervention, the authors asked surgeons to verify CVS achievement in a 5-second long intraoperative time out before clipping or dividing the cystic duct or artery. To foster attention and reinforce the concept, the first operators were asked to indicate and verbalise CVS criteria to their assistant during the 5-second time out. This procedure was called the “5-second rule” (Figure 1). Surgeons were not exposed to further education on CVS or interventions on LC during the study period.
The 5-second rule
Intraoperative time out
to assess CVS achievement in LC

- Pause 5 seconds before clipping the cystic duct or artery
- Point and explain CVS criteria to your assistant

Figure 1. The 5-second rule QI intervention. A slide used to explain the concept of the 5-second rule intraoperative time out. A parallelism was drawn with aviation given the extensive use of cognitive aids such as checklists and time outs to improve the safety of flights.

Video-based assessment

Laparoscopic videos of LC procedures performed the year before and the year after the 5-second rule were independently reviewed by a surgical trainee (PM) and a hepatobiliary pancreatic surgeon (TU) with over 300 LCs of experience. Reviewers timestamped the beginning, the first application of a clip in the hepatocystic triangle, and the end of each procedure. Following extensive training, the two independent reviewers assessed the achievement of CVS criteria according to a previously validated binary method\(^2\). The CVS was defined as the view of only 2 tubular structures, the cystic duct and artery, entering the gallbladder (2-structure criterion, C1), a hepatocystic triangle well dissected from adipose and connective tissue (hepatocystic triangle criterion, C2), and the separation of the lowest part of the gallbladder from the cystic plate (cystic plate criterion, C3)\(^7\). In the event of disagreement on CVS assessment, mediation was conducted by a third study author (BD) with over 3500 LCs of experience. Finally, video reviewers annotated whether an intraoperative
cholangiogram (IOC) was performed and if surgical operators bailed out to a fundus-first cholecystectomy, subtotal cholecystectomy or converted/aborted the laparoscopic procedure.

Outcomes and statistical analysis

The primary endpoint of the study was to compare the rate of CVS achievement the year before and the year after the implementation of the 5-second rule. The CVS achievement rate was computed using the mediated VBA of CVS criteria, after exclusion of bailout (fundus-first or subtotal cholecystectomy), converted or aborted procedures.

Secondary endpoints aimed to compare the LC procedures performed before and after the 5-second rule regarding clinical outcomes, bailout, IOC, operating times, and postoperative CVS reporting.

Patients’ baseline characteristics, operative reports, and clinical outcomes data were collected from electronic medical records whereas all other endpoints were annotated on LC videos.

Major bile duct injuries were defined as the transection or significant laceration of the common hepatic duct or the common bile duct²⁵.

Inter-rater agreement between reviewers assessing CVS criteria in videos was quantified in terms of Cohen's *kappa*. The level of agreement was considered almost perfect (*κ* > 0.90), strong (*κ* 0.80-0.90), moderate (*κ* 0.60-0.79), weak (*κ* 0.40-0.59), minimal (*κ* 0.21-0.39), or no agreement (*κ* 0-0.20)²⁶.

Categorical variables were reported with integers and frequency (%) and were compared using Fisher’s exact test. Odds ratio (OR) and its 95 % confidence intervals (CI) were also reported when comparing categorical values. Normally distributed continuous variables were reported with means (±standard deviation) and compared using the two-tailed independent samples *t*-test whereas not normally distributed continuous variables were reported with medians (±interquartile range) and compared using the Mann-Whitney rank test. Missing data were not
statistically imputed following a complete case analysis approach. Findings with p values <0.050 were considered statistically significant. All analyses were implemented in Python using the SciPy library consisting of a package for statistical functions.

Results

The 5-second rule QI intervention took place on December 4, 2018. A total of 381 LC procedures were logged during the 2-year long study period. After exclusion of 6 procedures with incomplete video recordings and 32 procedures for which clinical information could not be collected, 171 and 172 LC procedures respectively performed the year before and the year after the 5-seconds rule by 17 different surgeons were included in the study. The inter-rater agreement between reviewers assessing CVS criteria in the 343 LC videos was moderate, with Cohen’s $kappa$ ranging from 0.72 to 0.78.

Patients’ and diseases’ presentations

After the implementation of the 5-second rule, significantly more patients were operated on for a previous acute cholecystitis (39.2 % vs 51.7 % before and after the 5-second rule respectively; OR 1.66, 95 % CI 1.08 to 2.56; $P=0.023$) and had higher aspartate transaminase (22 [±10] vs 24 [±15] U/L; $P=0.041$) and gamma-glutamyl transferase (27 [±35] vs 38 [±75] U/L; $P=0.021$) levels. A comparison of patients’, diseases’, and operators’ characteristics is shown in Table 1.
Table 1. Comparison between the two study groups. Categorical variables were reported with absolute numbers (frequency), normally distributed continuous variables with means (standard deviation) and not normally distributed continuous variables with medians (interquartile range). Significant differences are presented in bold.

Patients’ presentation	Before (number: 171)	After (number: 172)	OR	95% CI	p value
Female patients	104 (60.8 %)	101 (58.7 %)	0.92	0.60 to 1.41	0.741
Age (years)	54 (±27)	58 (±27)	NA	NA	0.411
BMI	27 (±8)	28 (±7)	NA	NA	0.819
ASA	2 (±1)	2 (±1)	NA	NA	0.796
Elective	166 (97.1 %)	167 (97.0 %)	1.00	0.29 to 3.54	1.000
Previous UGI surgery	13 (7.6 %)	14 (8.1 %)	1.08	0.49 to 2.36	1.000
Previous ERCP	23 (13.5 %)	27 (15.7 %)	1.20	0.66 to 2.19	0.647
Previous percutaneous drain	8 (4.7 %)	15 (8.7 %)	1.95	0.8 to 4.72	0.194

Indication for LC*					
AC	4 (2.3 %)	4 (2.3 %)	0.99	0.24 to 4.04	1.000
Previous AC	67 (39.2 %)	89 (51.7 %)	1.66	1.08 to 2.56	0.023
Symptomatic cholelithiasis	80 (46.8 %)	68 (39.5 %)	0.74	0.48 to 1.14	0.192
Previous choledocholithiasis	23 (13.5 %)	25 (14.5 %)	1.09	0.59 to 2.02	0.877
Acute biliary pancreatitis	1 (0.6 %)	1 (0.6 %)	0.99	0.06 to 16.02	1.000
Previous pancreatitis	27 (15.8 %)	19 (11.1 %)	0.66	0.35 to 1.24	0.209

Laboratory findings					
Leukocytes (10⁹/L)	7,109 (±2,865)	6,760 (±3,165)	NA	NA	0.294
ALT (U/L)	23 (±17)	27 (23)	NA	NA	0.109
AST (U/L)	22 (±10)	24 (±15)	NA	NA	0.041
ALP (U/L)	76 (±31)	77 (±34)	NA	NA	0.180
GGT (U/L)	27 (±35)	38 (±75)	NA	NA	0.021
CRP (mg/L)	4 (±5.4)	4 (±10)	NA	NA	0.132
TB (µmol/L)	9.92 (±6.33)	9.06 (±6.16)	NA	NA	0.620
DB (µmol/L)	3.08 (±2.22)	3.42 (±3.08)	NA	NA	0.072
IB (µmol/L)	6.16 (±5.30)	6.33 (±4.62)	NA	NA	0.842

Surgical operators					
Senior residents**	106 (62.0 %)	108 (62.8 %)	1.03	0.67 to 1.60	0.911

*Patients may have more than one indication for surgery.
**The remaining procedures were all performed by consultant surgeons.

OR: odds ratio; CI: confidence interval; BMI: body mass index; ASA: American Society of Anaesthesiologist score; UGI: upper gastrointestinal surgery; AC: acute cholecystitis; ERCP: endoscopic retrograde cholangiopancreatography; ALT: alanine aminotransferase; AST: aspartate transaminase; ALP: alkaline phosphatase; GGT: gamma-glutamyl transferase; CRP: C-reactive protein; TB: total bilirubin; DB: direct/conjugated bilirubin; ID: indirect/unconjugated bilirubin.
LC procedures

Overall, surgical operators bailed out from conventional LCs more frequently after the implementation of the 5-second rule (14 [8.2 %] vs 27 [15.7 %] before and after the 5-second rule respectively; OR 2.09, 95 % CI 1.05 to 4.14; P=0.045). Specifically, a greater number of surgeons switched to a fundus-first cholecystectomy (7 [4.1 %] vs 22 [12.8 %]; OR 3.44, 95 % CI 1.43 to 8.28; P=0.006) rather than opting for a subtotal cholecystectomy (2 [1.8 %] vs 3 [1.7 %]; OR 1.50, 95 % CI 0.25 to 9.09; P=1.000) or to abort the LC (5 [2.9 %] vs 2 [1.2 %]; OR 0.39, 95 % CI 0.07 to 2.04; P=0.283). The rate of IOC was comparable between the study groups (13 [7.6 %] vs 11 [6.4 %]; OR 0.83, 95 % CI 0.36 to 1.91; P=0.679).

Excluding bailout procedures, the CVS achievement rate increased from 25 of 157 (15.9 %) procedures to 64 of 145 procedures (44.1 %) after the implementation of the 5-second rule (OR 4.17, 95 % CI 2.43 to 7.15; P<0.001). The greatest improvements were noted for the achievement of the cystic plate criterion (42 [26.8 %] vs 93 [64.1 %] before and after the 5-second rule respectively; OR 4.90, 95 % CI 3.00 to 7.99; P<0.001). However, the hepatocystic triangle criterion (51 [32.5 %] vs 86 [59.3 %]; OR 3.03, 95 % CI 1.89 to 4.85; P<0.001) and the 2-structure criterion (85 [54.1 %] vs 104 [71.7 %]; OR 2.15, 95 % CI 1.33 to 3.47; P=0.002) were also significantly more achieved after the implementation of the intraoperative time out. The evolution of the CVS achievement rate over the 2-year study period can be seen in Figure 2.
A sub-analysis on the CVS achievement rate of consultants and senior residents is shown Figure 3.

Figure 2. Evolution of the CVS achievement rate over the 2-year study. The vertical dashed red line marks the day of the 5-second rule QI intervention; each dot on the continuous blue line represents the CVS achievement rate averaged over sets of 15 procedures and the dashed blue line denotes the average value before and after the 5-second rule CVS achievement rate.

Figure 3. CVS achievement rate of consultants and senior residents. After the implementation of the 5-second rule, the CVS achievement rate significantly improved among consultants (17 [29.3 %] vs 27 [50.9 %] before and after the 5-second rule respectively; OR 2.50, 95 % CI 1.15 to 5.47; P=0.032) and senior residents (7 [7.2 %] vs 34 [39.1 %]; OR 8.25, 95 % CI 3.42 to 19.91; P<0.001).
Finally, operating times were comparable (46:11 [±34:36] vs 53:03 [±36:50] minutes before and after the 5-second rule respectively; \(P=0.088\)). However, surgeons spent more time before applying clips in the hepatocystic triangle after the implementation of the 5-second rule (17:26 [±16:46] vs 23:12 [±17:16] minutes; \(P=0.007\)).

CVS reporting

All but 27 missing operative reports were retrieved. After exclusion of operative reports of bailout procedures, 151 and 118 reports respectively from before and after the 5-second rule were analysed. The vast majority of the operative reports in both study groups described the dissection of Calot’s triangle (148 of 151 [98.0 %] vs 116 of 118 reports [98.3 %]) before and after the 5-second rule respectively; OR 1.18, 95 % CI 0.19 to 7.15; \(P=1.000\) and the identification of the cystic artery and the cystic duct, namely the 2-structure criterion of CVS (146 [96.7 %] vs 115 [97.5 %]; OR 1.31, 95 % CI 0.31 to 5.61; \(P=1.000\)). However, explicit CVS reporting (2 [1.3 %] vs 34 [28.8 %]; OR 30.15, 95 % CI 7.07 to 128.68; \(P<0.001\)), description of the hepatocystic triangle criterion (0 vs 26 [22.0 %]; \(P<0.001\)), and the cystic plate criterion (0 vs 26 [22.0 %]; \(P<0.001\)) increased significantly after the 5-second rule.

LC clinical outcomes

No major BDIs nor fatalities occurred during the study period. Length of hospital stay (0 [±2] vs 0 [±2] days before and after the 5-second rule respectively; \(P=0.970\)), readmission (1 [0.6 %] vs 3 [1.7 %]; OR 3.02, 95 % CI 0.31 to 29.30; \(P=0.623\)), and reintervention (1 [0.58 %] vs 1 [0.58 %]; OR 0.99, 95 % CI 0.06 to 16.02; \(P=1.000\)) rates were comparable among the study groups. Morbidity was also comparable (2 [1.2 %] vs 4 [2.3 %]; OR 2.01, 95 % CI 0.36 to 11.13; \(P=0.685\)), with an overall bile leak rate of 5 in 343 LCs [1.5 %]. Details on patients who experienced morbidity in the study period can be found in Table 2.
Table 2. Patients who experienced adverse events during the study.

Patient	Study group	Indication for LC	CVS or bailout	Operating time (hh:mm:ss)	Adverse event (if BDI, Strasberg type)	Dindo-Clavien grade	Treatment
1	Before	Previous AC, previous pancreatitis	Not achieved	01:30:00	BDI (A)	IIIb	Laparoscopic suture of Luschka duct
2	Before	Previous AC, previous pancreatitis	Converted	02:52:00	BDI (A)	IIIb	Percutaneous drain, ERCP stenting
3	After	Previous AC, previous pancreatitis	Not achieved	01:00:00	BDI (A)	IIIb	Percutaneous drain
4	After	Symptomatic cholelithiasis	Not achieved	00:32:00	BDI (C)	IIIb	Percutaneous drain, laparoscopic lavage
5	After	Previous AC, previous pancreatitis, previous cholelithiasis	Fundus-first LC	02:00:00	Intra-abdominal hematoma	IIIb	Percutaneous drain
6	After	Previous AC, previous cholelithiasis	Subtotal LC	03:32:00	BDI (A)	IIIb	Percutaneous drain, ERCP stenting

LC: laparoscopic cholecystectomy; CVS: critical view of safety; BDI: bile duct injury; AC: acute cholecystitis; ERCP: endoscopic retrograde cholangiopancreatography.
Discussion

The present quality improvement (QI) study evaluated the impact of the 5-second rule intraoperative cognitive aid in a series of 343 LCs using a validated protocol for the video assessment of the CVS21. In this study, implementing a 5-second long intraoperative time out to verify the CVS before dividing the cystic duct led to an approximately threefold increase in the average CVS achievement rate (Figure 2). Improvements were consistent across the 3 CVS criteria and across surgical operators with different levels of experience (Figure 3). In addition, the more frequent decision to bail out, the longer time taken to carefully dissect the hepatocystic triangle, and the increased rate of postoperative CVS reporting after implementation of the 5-second rule suggest an increased awareness towards CVS principles and the so-called “Culture of Safety in Cholecystectomy”29.

These findings are in line with the results of a previous pilot study evaluating the effect of comprehensive education and a CVS time out in a series of 101 LC cases performed over a 5-month study period30 and confirm the recommendations1, 30 on the importance of performing an intraoperative pause to implement best practices in LC.

The present findings hint at a series of observations which deserve further research. With respect to overall LC safety, the fact that CVS-aware surgeons seem to have a lower threshold to bail out from difficult procedures may be positive20. However, in the present series surgeons have more often opted for a fundus-first cholecystectomy rather than a subtotal cholecystectomy. The right threshold for bailing out and the best alternative to a standard LC are a matter of fervid scientific debate1, 31-33 and future studies should be designed to address these points.

With respect to the CVS, the achievement rate before the 5-second rule intervention was impressively low, an observation also reported by a recent work14. Soon after the QI intervention, the rate of CVS achievement peaked to almost 70 % but then stabilised at
approximately 45% at 1 year (Figure 2). The peak suggests the operating know-how to correctly implement CVS. On the other hand, the reduction in CVS achievement over time may indicate a decline in the application of the 5-second rule. Overall, the inconsistent implementation of CVS together with its subjective assessment and reporting12-14 might hamper efforts to prevent BDIs in LC. These limitations have traditionally been addressed mostly through education. To better penetrate surgical practices, cholecystectomy-specific intraoperative checklists35 and stepwise guidelines for difficult cases36 have also been developed. Today, surgeons and computer scientists from various institutions including ours have teamed up and embarked on a series of surgical data science studies37-39 which will hopefully lead to the development of context-aware40 computer vision solutions capable of automatically reminding, univocally assessing23 and objectively reporting safety measures such as the CVS41.

Finally, this study has some limitations. From a methodological standpoint, the use of VBA is both a merit and a drawback. VBA is increasingly recognised as a valuable approach to objectively study intraoperative surgical performance17,40, especially when operative reports are known to be unreliable as in the case of the CVS12,41. However, the potential Hawthorne effect (i.e. behaviour changes due to the subjects’ awareness of being observed, also known as the clinical trial effect) impedes to conclude to what extent the improvements in CVS achievement rates were either due to the operators’ awareness of being recorded or to the 5-seconds rule. This is especially true since the application of the 5-second rule by surgeons was not appropriately studied through in-person observations in the operating room. The absence of an observer in the operating room and the fact that our institution systematically records surgical procedures for QI and education certainly decreases the Hawthorne effect. However, the extent to which this is the case is unknown44 so far. From a clinical perspective, the study was not adequately powered to spot a difference in clinical outcomes. This is a limitation
common to most studies on BDIs in LC, as an impractical large number of patients would be necessary to spot a statistically significant difference in the incidence of such a rare adverse event19. However, the CVS achievement rate, which is the primary endpoint of this study, is considered to be an acceptable process measure of LC safety given the widely accepted correlation between this critical view and the prevention of major BDIs. Finally, as the vast majority of LC cases included were performed in the elective setting due to video recording constraints, further research is required to confirm the impact of the 5-second rule time out in the acute setting.

In conclusion, the 5-second rule time out significantly increased the CVS achievement rate. Overall, the findings of the present article offer a practical strategy to improve the uptake of safety principles in LC. Future studies should explore the use of intraoperative cognitive aids and develop solutions to sustain their positive effect over time.

Acknowledgments

The authors would like to acknowledge Guy Temporal for his assistance with English proofreading, Deepak Alapatt for his recommendations on statistical analyses, and Armine Vardazaryan for her help in the organisation of the video analyses.

The present study was not pre-registered in an independent institutional registry.
References

1. Michael Brunt L, Deziel DJ, Telem DA, Strasberg SM, Aggarwal R, Asbun H, et al. Safe cholecystectomy multi-society practice guideline and state-of-the-art consensus conference on prevention of bile duct injury during cholecystectomy. *Surg Endosc.* 2020 Jul; **34**: 2827–2855.

2. Törnqvist B, Strömberg C, Persson G, Nilsson M. Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study. *Bmj.* British Medical Journal Publishing Group; 2012; **345**: e6457.

3. Booij KAC, de Reuver PR, van Dieren S, van Delden OM, Rauws EA, Busch OR, et al. Long-term Impact of Bile Duct Injury on Morbidity, Mortality, Quality of Life, and Work Related Limitations. *Ann Surg.* 2018 Jul; **268**: 143–150.

4. Alkhaffaf B, Decadt B. 15 years of litigation following laparoscopic cholecystectomy in England. *Ann Surg.* LWW; 2010; **251**: 682–685.

5. Fletcher R, Cortina CS, Kornfield H, Varelas A, Li R, Veenstra B, et al. Bile duct injuries: a contemporary survey of surgeon attitudes and experiences. *Surg Endosc.* Springer; 2019: 1–6.

6. Berci G, Hunter J, Morgenstern L, Arregui M, Brunt M, Carroll B, et al. Laparoscopic cholecystectomy: first, do no harm; second, take care of bile duct stones. *Surg Endosc.* 2013 Apr; **27**: 1051–1054.

7. Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic cholecystectomy. *J Am Coll Surg.* 1995; **180**: 101–125.

8. Way LW, Stewart L, Gantert W, Liu K, Lee CM, Whang K, et al. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. *Ann Surg.* Lippincott, Williams, and Wilkins; 2003; **237**: 460.

9. Pucher PH, Brunt LM, Davies N, Linsk A, Munshi A, Rodriguez HA, et al. Outcome trends and safety measures after 30 years of laparoscopic cholecystectomy: a systematic review and pooled data analysis. *Surg Endosc.* Springer; 2018; **32**: 2175–2183.

10. A Prospective Analysis of 1518 Laparoscopic Cholecystectomies: The Southern Surgeons Club. *N Engl J Med.* 1991 Apr 18; **324**: 1073–1078.

11. Chuang KI, Corley D, Postlethwaite DA, Merchant M, Harris HW. Does increased experience with laparoscopic cholecystectomy yield more complex bile duct injuries? *Am J Surg.* 2012 Apr 1; **203**: 480–487.

12. Nijssen MAJ, Schreinemakers JMJ, Meyer Z, Van Der Schelling GP, Crolla R, Rijken AM. Complications after laparoscopic cholecystectomy: a video evaluation study of whether the critical view of safety was reached. *World J Surg.* Springer; 2015; **39**: 1798–1803.
13 Stefanidis D, Chintalapudi N, Anderson-Montoya B, Oommen B, Tobben D, Pimentel M. How often do surgeons obtain the critical view of safety during laparoscopic cholecystectomy? *Surg Endosc*. Springer; 2017; 31: 142–146.

14 Korndorffer Jr JR, Hawn MT, Spain DA, Knowlton LM, Azagury DE, Nassar AK, *et al.* Situating Artificial Intelligence in Surgery: A Focus on Disease Severity. *Ann Surg*. LWW; 2020; 272: 523–528.

15 van Klei WA, Hoff RG, van Aarnhem EEHL, Simmermacher RKJ, Regli LPE, Kappen TH, *et al.* Effects of the Introduction of the WHO “Surgical Safety Checklist” on In-Hospital Mortality: A Cohort Study. *Ann Surg*. 2012 Jan; 255: 44–49.

16 Merry AF, Mitchell SJ. Advancing patient safety through the use of cognitive aids. *BMJ Qual Saf*. BMJ Publishing Group Ltd; 2016 Oct 1; 25: 733–735.

17 Feldman LS, Pryor AD, Gardner AK, Dunkin BJ, Schultz L, Awad MM, *et al.* SAGES Video-Based Assessment (VBA) program: a vision for life-long learning for surgeons. *Surg Endosc*. 2020 Aug 1; 34: 3285–3288.

18 Ogrinc G, Davies L, Goodman D, Batalden P, Davidoff F, Stevens D. SQUIRE 2.0 (Standards for QUality Improvement Reporting Excellence): revised publication guidelines from a detailed consensus process. *Am J Crit Care*. AACN; 2015; 24: 466–473.

19 Conrad C, Wakabayashi G, Asbun HJ, Dallemagne B, Demartines N, Diana M, *et al.* IRCAD recommendation on safe laparoscopic cholecystectomy. *J Hepato-Biliary-Pancreat Sci*. Wiley Online Library; 2017; 24: 603–615.

20 Felli E, Mascagni P, Wakabayashi T, Mutter D, Marescaux J, Pessaux P. Feasibility and value of the critical view of safety in difficult cholecystectomies. *Ann Surg*. LWW; 2019; 269: e41.

21 Mascagni P, Fiorillo C, Urade T, Emre T, Yu T, Wakabayashi T, *et al.* Formalizing video documentation of the Critical View of Safety in laparoscopic cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety. *Surg Endosc*. Springer; 2019; 1–6.

22 Mascagni P, Spota A, Felli E, Perretta S, Pessaux P, Dallemagne B, *et al.* Conclusive Identification and Division of the Cystic Artery: A Forgotten Trick to Optimize Exposure of the Critical View of Safety in Laparoscopic Cholecystectomy. *J Am Coll Surg*. Elsevier; 2019; 229: e5–e7.

23 Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C, *et al.* Artificial Intelligence for Surgical Safety: Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning. *Ann Surg* [Internet]. 2020 Nov 18 [cited 2020 Nov 20]; *Publish Ahead of Print*. Available from: https://journals.lww.com/annalsofsurgery/Abstract/9000/Artificial_Intelligence_for_Surgical_Safety__94005.aspx

24 Shinohara K, Naito H, Matsui Y, Hikono M. The effects of “finger pointing and calling” on cognitive control processes in the task-switching paradigm. *Int J Ind Ergon*. Elsevier; 2013; 43: 129–136.
Melton GB, Lillemoe KD, Cameron JL, Sauter PA, Coleman J, Yeo CJ. Major bile duct injuries associated with laparoscopic cholecystectomy: effect of surgical repair on quality of life. Ann Surg. 2002 Jun; 235: 888–895.

McHugh ML. Interrater reliability: the kappa statistic. Biochem Medica. Medicinska naklada; 2012 Oct 15; 22: 276–282.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. Nature Publishing Group; 2020; 17: 261–272.

Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. Lippincott, Williams, and Wilkins; 2004; 240: 205.

Strasberg SM. A teaching program for the “culture of safety in cholecystectomy” and avoidance of bile duct injury. J Am Coll Surg. Elsevier; 2013; 217: 751.

Chen CB, Palazzo F, Doane SM, Winter JM, Lavu H, Chojnacki KA, et al. Increasing resident utilization and recognition of the critical view of safety during laparoscopic cholecystectomy: a pilot study from an academic medical center. Surg Endosc. 2017 Apr 1; 31: 1627–1635.

Pucher PH, Brunt LM, Fanelli RD, Asbun HJ, Aggarwal R. SAGES expert Delphi consensus: critical factors for safe surgical practice in laparoscopic cholecystectomy. Surg Endosc. Springer; 2015; 29: 3074–3085.

Iwashita Y, Hibi T, Ohyama T, Umezawa A, Takada T, Strasberg SM, et al. Delphi consensus on bile duct injuries during laparoscopic cholecystectomy: an evolutionary cul-de-sac or the birth pangs of a new technical framework? J Hepato-Biliary-Pancreat Sci. Wiley Online Library; 2017; 24: 591–602.

Strasberg SM, Pucci MJ, Brunt LM, Deziel DJ. Subtotal Cholecystectomy—“Fenestrating” vs “Reconstituting” Subtypes and the Prevention of Bile Duct Injury: Definition of the Optimal Procedure in Difficult Operative Conditions. J Am Coll Surg. 2016 Jan 1; 222: 89–96.

Cengiz Y, Lund M, Jänes A, Lundell L, Sandblom G, Israelsson L. Fundus first as the standard technique for laparoscopic cholecystectomy. Sci Rep. Nature Publishing Group; 2019 Dec 10; 9: 18736.

Connor SJ, Perry W, Nathanson L, Hugh TB, Hugh TJ. Using a standardized method for laparoscopic cholecystectomy to create a concept operation-specific checklist. HPB. 2014 May 1; 16: 422–429.

Wakabayashi G, Iwashita Y, Hibi T, Takada T, Strasberg SM, Asbun HJ, et al. Tokyo Guidelines 2018: surgical management of acute cholecystitis: safe steps in laparoscopic cholecystectomy for acute cholecystitis (with videos). J Hepato-Biliary-Pancreat Sci. Wiley Online Library; 2018; 25: 73–86.
37 Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, et al. Surgical data science for next-generation interventions. Nat Biomed Eng. Nature Publishing Group; 2017; 1: 691–696.

38 Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, et al. Surgical Data Science -- from Concepts to Clinical Translation. ArXiv201102284 Cs Eess [Internet]. 2020 Oct 30 [cited 2020 Nov 6]; Available from: http://arxiv.org/abs/2011.02284

39 Mascagni P, Padoy N. OR black box and surgical control tower: Recording and streaming data and analytics to improve surgical care. J Visc Surg [Internet]. 2021 Mar 9 [cited 2021 Mar 10]; Available from: https://www.sciencedirect.com/science/article/pii/S1878788621000163

40 Vercauteren T, Unberath M, Padoy N, Navab N. CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer-Assisted Interventions. Proc IEEE. IEEE; 2019; 108: 198–214.

41 Mascagni P, Alapatt D, Urade T, Vardazaryan A, Mutter D, Marescaux J, et al. A Computer Vision Platform to Automatically Locate Critical Events in Surgical Videos: Documenting Safety in Laparoscopic Cholecystectomy. Ann Surg [Internet]. 2021 Mar 4 [cited 2021 Mar 10]; Publish Ahead of Print. Available from: https://journals.lww.com/annalsofsurgery/Abstract/9000/A_Computer_Vision_Platform_to_Automatically_Locate.93788.aspx

42 Jung JP, Zenati MS, Dhir M, Zureikat AH, Zeh HJ, Simmons RL, et al. Use of video review to investigate technical factors that may be associated with delayed gastric emptying after pancreaticoduodenectomy. JAMA Surg. American Medical Association; 2018; 153: 918–927.

43 Rawlings A, Hodgett SE, Matthews BD, Strasberg SM, Quasebarth M, Brunt LM. Single-incision laparoscopic cholecystectomy: initial experience with critical view of safety dissection and routine intraoperative cholangiography. J Am Coll Surg. Elsevier; 2010; 211: 1–7.

44 Choi WJ, Jung JJ, Grantcharov TP. Impact of Hawthorne effect on healthcare professionals: a systematic review. Univ Tor Med J. 2019 May 2; 96: 21-32–21–32.