Robust estimation of heterogeneous treatment effects using electronic health record data

Ruohong Li1 | Honglang Wang2 | Wanzhu Tu1

1Department of Biostatistics and Health Data Science, Indiana University School of Medicine and Fairbanks School of Public Health, Indianapolis, Indiana, USA
2Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA

Correspondence
Wanzhu Tu, Department of Biostatistics and Health Data Science, Indiana University School of Medicine and Fairbanks School of Public Health, Indianapolis, IN, USA.
Email: wtu1@iu.edu

Funding information
National Heart, Lung, and Blood Institute, Grant/Award Numbers: HL 095086, HL 128494; National Institute on Alcohol Abuse and Alcoholism, Grant/Award Numbers: AA025208, U24 AA026969

Estimation of heterogeneous treatment effects is an essential component of precision medicine. Model and algorithm-based methods have been developed within the causal inference framework to achieve valid estimation and inference. Existing methods such as the A-learner, R-learner, modified covariates method (with and without efficiency augmentation), inverse propensity score weighting, and augmented inverse propensity score weighting have been proposed mostly under the square error loss function. The performance of these methods in the presence of data irregularity and high dimensionality, such as that encountered in electronic health record (EHR) data analysis, has been less studied. In this research, we describe a general formulation that unifies many of the existing learners through a common score function. The new formulation allows the incorporation of least absolute deviation (LAD) regression and dimension reduction techniques to counter the challenges in EHR data analysis. We show that under a set of mild regularity conditions, the resultant estimator has an asymptotic normal distribution. Within this framework, we proposed two specific estimators for EHR analysis based on weighted LAD with penalties for sparsity and smoothness simultaneously. Our simulation studies show that the proposed methods are more robust to outliers under various circumstances. We use these methods to assess the blood pressure-lowering effects of two commonly used antihypertensive therapies.

KEYWORDS
L1 regression, additive models, causal inference, heterogeneous treatment effect estimation, high dimensionality

1 | INTRODUCTION

The ultimate goal of precision medicine is to optimize therapeutic outcomes by tailoring medical treatment and care provision according to individual patient characteristics. In practice, such tailoring must be guided by causal treatment effects expressed as functions of the observed patient characteristics \(x\), which account for patient heterogeneity in a given clinical population. But in reality, the true treatment effect function \(\tau_0(x)\) is almost never known and cannot be easily ascertained from clinical trials.

There is a sizable literature on the estimation of treatment effects in the form of \(\tau_0(x)\). With covariates averaged out, \(\tau_0(x)\) is reduced to the average treatment effect \(\tau_0 = \int \tau_0(x)f(x)dx\), which can be estimated from clinical trials as well as observational studies.2 While randomized experiments provide by far the most straightforward estimation of \(\tau_0\), valid
estimates can also be ascertained from observational data, by using the Neyman-Rubin causal model under appropriate assumptions. Estimating treatment effect in the presence of heterogeneity, however, is a much involved task. Popular approaches include the advantage or A-learning (AL) methods that directly model the contrasts among treatments, and the quality or Q-learners that regress the outcomes on patient characteristics. Under the general umbrella of A-learners, Tian et al described a covariate-modification method. More recently, Nie and Wager proposed a two-step learning algorithm that possesses a quasi-oracle property for estimating \(r_0(x) \). Xiao et al further improved the algorithm for enhanced robustness.

The performance of the above causal estimators is often influenced by the features of the observed data. An attractive and readily available data source for causal inference is electronic health records (EHRs), digitalized medical records collected and maintained by health care organizations. While statisticians have long recognized the values of EHR data in causal analysis, they are also keenly aware of the challenges presented by such data, including data outliers and high dimensionality. The former could result in biased estimation and questionable inference, whereas the latter leads to a “curse of dimensionality”.

In this research, we address the above issues in a broader context of heterogeneous treatment effect estimation. Specifically, we put forward a general estimation framework based on weighted score equations. The new formulation unifies many of the existing learners, while retaining the flexibility to accommodate different loss functions, permitting, for example, robust least absolute deviation (LAD) regression. The estimating formula enhances modified-covariate method’s capacity against outliers and extends the robust R-learners (RL’s) ability to handle higher dimensionality, giving each an improvement. The approach’s direct targeting of \(r_0(x) \) relates it nicely to the concept of the AL methods. We performed extensive simulation studies to investigate the new methods’ operational performance, in comparison with the existing ones. We also described a real data application to illustrate the use of the proposed methods.

2 PROPOSED METHODS

2.1 Models and assumptions

We consider the estimation of \(r_0(x) \), the conditional average treatment effect (CATE), within the Neyman-Rubin potential outcome framework. The binary treatment indicator \(T \) takes values 1 or -1, that is, \(T \in \{\pm 1\} \). We let \(Y^{(1)} \) and \(Y^{(-1)} \) be the potential outcomes under \(T = 1 \) and \(T = -1 \), respectively. We assume that data \(\{(Y_i, T_i, X_i)\}_{i=1}^{n} \) are independent and identically distributed (i.i.d.), where the pretreatment covariates \(X_i \) could be high dimensional as in EHR analyses. We require the stable unit treatment value assumption (SUTVA) and write the observed outcome as \(Y = I(T = 1)Y^{(1)} + I(T = -1)Y^{(-1)} \), where \(I(\cdot) \) is an indicator function.

Within this framework, we focus on

\[
\begin{align*}
\tau_0(x) &= E[Y^{(1)} - Y^{(-1)}|X = x] = E[Y|X = x, T = 1] - E[Y|X = x, T = -1] \\
&= \mu_{1}(x) - \mu_{-1}(x),
\end{align*}
\]

where the second part comes from the ignorability assumption defined below. This makes CATE estimation possible when \(X \) contains all confounders. When \(T \in \{\pm 1\} \), we can always express the conditional mean outcome as

\[
E(Y|X, T) = b_0(X) + \frac{T}{2} \tau_0(X),
\]

where \(b_0(x) = \frac{1}{2}(E[Y^{(1)}|X = x] + E[Y^{(-1)}|X = x]) \). This leads to a general interaction model

\[
Y_i = b_0(X_i) + \frac{T_i}{2} \tau_0(X_i) + \epsilon_i,
\]

where \(\epsilon_i \) is subject to Assumption 3 below, along with the other assumptions stipulated by Rubin and Rosenbaum.

In the existing literature, \(r_0(x) \) is often depicted by a simple parametric model. With \(\mu(x) = E[Y|X = x] = b_0(x) + \frac{p(x)}{2} r_0(x) \), one has \(Y_i - \mu(X_i) = \frac{T_i - 2p(X_i) + 1}{2} \tau_0(X_i) + \epsilon_i \), which is exactly the Robinson decomposition used by the RL.
Assumption 1. (Igornorability) Treatment assignment T_i is independent of the potential outcomes $(Y_i^{(1)}, Y_i^{(-1)})$ given the covariates X_i, that is, $\{Y_i^{(1)}, Y_i^{(-1)}\} \perp T_i|X_i\}$.

Assumption 2. (Positivity) The propensity score $p(x) : = P(T = 1|X = x) \in (0, 1)$.

Assumption 3. (Conditional Independence Error) The error is independent of the treatment assignment conditional on covariates, that is, $\{\varepsilon_i \perp T_i|X_i\}$. We further assume that the conditional expectation of error exists.

2.2 A unified formulation for heterogeneous treatment effect estimation

There are two general strategies for estimating $\tau_0(x)$ in (2). The first is to depict the conditional mean function $\mu_t(x) = E[Y|X = x, T = t]$ with a regression model and then obtain the treatment effect estimator $\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$. For example, from the objective function $\sum_{i=1}^n \rho \left(Y_i - b(X_i; \gamma) - \frac{T_i}{2} \tau(X_i; \beta) \right)$, one can estimate β and γ simultaneously, and then achieves a CATE estimate $\hat{\tau}(x) = \tau(x; \hat{\beta})$.\(^9^9\) Such an approach is often referred to as the Q-learning, because its objective function plays a role similar to that of the Q value function in reinforcement learning.\(^9^9\) The frequently used two- or single-learners (T or S-learners for short) are variants of this approach.\(^2^0\)

An alternative strategy, one that we follow in the current research, is to directly target $\tau_0(x)$ in a predefined objective function. This approach is often referred to as the AL.\(^2^1\) AL first emerged in the context of dynamic treatment regime, and was later generalized to one-stage case for treatment effect estimation.\(^8^8\) In this article, we show that there exists a unified formulation for the objective function, written in the form of score equations, that covers many of the existing learners.

Before introducing the general formulation, we first review the existing methods to highlight their connections.

1. The modified outcome methods. Certain transformations of Y could be used to facilitate the estimation of $\tau_0(x)$. Estimation methods relying on such transformations are collectively known as the modified outcome methods. This class of methods includes the inverse propensity score weighting (IPW)\(^2^2^2^2\) and the augmented IPW (AIPW) methods.\(^2^4^4^1\) A common feature of this class of methods is to express the true treatment effect $\tau_0(x)$ as a conditional expectation of the transformed outcome variables. For IPW and AIPW, the transformations are

$$Y_{\text{IPW}} = \frac{T - 2p(X) + 1}{2p(X)(1 - p(X))} \times Y;$$
$$Y_{\text{AIPW}} = \frac{T - 2p(X) + 1}{2p(X)(1 - p(X))} \times [Y - (\mu_1(X)p(X) + \mu_0(X)(1 - p(X)))] .$$

Writing the modified outcome as \tilde{Y} one has $E(\tilde{Y}^*|X) = \tau_0(X)$. An estimate can therefore be obtained by minimizing the square error loss, that is, $\min_{\tau(\cdot)} \sum_{i=1}^n (\tilde{Y}_i^* - \tau(X_i))^2$.

2. The modified covariates methods. An alternative set of methods, collectively known as the modified covariates methods, have been derived from the model (2). The central idea of this approach is to estimate $\tau_0(X)$ by reweighting the loss function instead of the response variable\(^8^8\)

$$L(\tau(\cdot)) = \sum_{i=1}^n \left(\frac{D_i}{p(X_i)} + (1 - D_i) \frac{1}{1 - p(X_i)} \right) \left(Y_i - \frac{T_i - \tau(X_i)}{2} \right)^2 ,$$

where $D_i = (T_i + 1)/2 \in \{0, 1\}$. With appropriate weighting, the minimizer of the population version of the objective function equals to $\tau_0(x)$ as elaborated in Remark 1 below. Furthermore, as shown in Appendix A.1, Y_i can be replaced by $Y_i - g(X_i)$, where $g(X_i)$ is an arbitrary function of X_i. When $p(X_i) = \frac{1}{2}$, the variance of the estimator is minimized when we replace Y_i with $Y_i - \mu(X_i)$. This is known as the modified covariates method with efficiency augmentation (MCM-EA).\(^8^8\)

3. The R-learning method. Nie and Wager recently proposed a method that they referred to as the RL,\(^1^0\) named after Robinson’s decomposition, a technique for estimating the parametric components in partially linear models.\(^2^5\) The efficient AL introduced later in this section shared the same estimating equation of the RL, but the two were derived from different perspectives.\(^5^5^2^6\) Subtracting the marginal mean $E[Y_i|X_i]$ from the outcome, Nie and Wager worked with the following equation
\[Y_i - E[Y_i | X_i] = \left(\frac{T_i}{2} - p(X_i) + \frac{1}{2} \right) \tau_0(X_i) + \epsilon_i, \]

where \(E[\epsilon_i | X_i, T_i] = 0 \). The treatment effect \(\tau_0(x) \) can therefore be estimated by minimizing the following objective function,

\[L(\tau(\cdot)) = \sum_{i=1}^{n} \left(Y_i - \mu(X_i) - \frac{T_i - 2p(X_i) + 1}{2} \tau(X_i) \right)^2, \]

where \(\mu(X_i) \) and \(p(X_i) \) are nuisance quantities estimated in advance.

Examining the relations between MCM-EA and RL, we note that in MCM-EA, since \(E[Y_i - \mu(X_i) - \frac{T_i}{2} \tau_0(X_i) | X_i] \neq 0 \), one uses IPW as an adjustment so that \(E \left[\frac{T_i}{2T_i p(X_i) + (1 - T_i)} \left(Y_i - \frac{T_i}{2} \tau_0(X_i) \right) \right] | X_i = 0 \). In the R-learning, one has \(E[Y_i - \mu(X_i) - (\frac{T_i}{2} - p(X_i) + \frac{1}{2}) \tau_0(X_i) | X_i] = 0 \), so propensity score adjustment becomes unnecessary. This shows the difference and the connection between the R-learning and MCM-EA.

4. The AL methods. By directly targeting at the contrast function (treatment effect function), Robins\(^5\) derived the following equation for CATE estimation,

\[E \left[\left(Y_i - \theta(X_i) - \frac{T_i + 1}{2} \tau_0(X_i) \right) (T_i - 2p(X_i) + 1) | X_i \right] = 0, \]

where \(\theta(\cdot) \) is an arbitrary function, or a more efficient version

\[E \left[\left(Y_i - \mu(X_i) - \frac{T_i - 2p(X_i) + 1}{2} \tau(X_i) \right) (T_i - 2p(X_i) + 1) | X_i \right] = 0, \quad (3) \]

where the first term \(Y_i - \mu(X_i) - \frac{T_i - 2p(X_i) + 1}{2} \tau_0(X_i) \) has mean 0 conditional on \(X_i \). This corresponds exactly to Robinson’s decomposition \(Y_i - \mu(X_i) = \frac{T_i - 2p(X_i) + 1}{2} \tau_0(X_i) + \epsilon_i \) when \(E(\epsilon_i | X_i) = 0 \). Note that \(Y_i - \mu(X_i) - \frac{T_i - 2p(X_i) + 1}{2} \tau_0(X_i) = Y_i - \mu_{-1}(X_i) - \frac{T_i + 1}{2} \tau_0(X_i) \) since \(\mu(x) = \mu_{-1}(x) + p(x) \tau(x) \). The \(\mu_{-1}(x) \) version was used by several authors.\(^{21,27}\)

This shows that Nie’s RL shares the same conceptual essence with Robin’s efficient A-learner, although the two were derived from different perspectives.

In summary, the methods reviewed above, including IPW, AIPW, MCM, MCM-EA, and RL could all be viewed as variants of AL, since they all target \(\tau_0(\cdot) \) directly, with the preestimated plug-in nuisance quantities. We now show that these methods can be formulated under a unified presentation of the objective functions, at the level of score equations.

Noting that the above learners are all based on solutions to some score equations corresponding to the objective functions under the square error loss, we specify the score equations for these methods:

- Modified covariates: \(S_{\text{MCM}} = \frac{T}{2p(X_i) + 1 - T} \left(Y - \frac{T}{2} \tau_0(X) \right); \)
- Modified covariates with efficiency augmentation: \(S_{\text{MCM-EA}} = \frac{T}{2p(X_i) + 1 - T} \left(Y - \mu(X) - \frac{T}{2} \tau_0(X) \right); \)
- R learning (efficient A learning): \(S_{\text{RL}} = \frac{T - 2p(X_i) + 1}{2p(X_i) + 1} \left(Y - \mu(X) - \frac{T - 2p(X_i) + 1}{2} \tau_0(X) \right); \)
- Inverse probability weighting: \(S_{\text{IPW}} = \frac{T - 2p(X_i) + 1}{2p(X_i) + 1} \left(Y - \frac{2p(X_i)(1-p(X_i))}{T - 2p(X_i) + 1} \tau_0(X) \right); \)
- AIPW: \(S_{\text{AIPW}} = \frac{T - 2p(X_i) + 1}{2p(X_i) + 1} \left(Y - \frac{(1 - p(X_i)) \mu_1(X) + p(X_i) \mu_{-1}(X)}{T - 2p(X_i) + 1} \tau_0(X) \right) \).

We note that all score equations listed above can be expressed in one general formulation

\[S = w(x, t) c(x, t) [Y - g(x) - c(x, t) \tau_0(x)], \quad (4) \]

where the two weight functions \(w(x, t) \) and \(c(x, t) \) are subject to the following constraints for all \(x \) and \(t \):
One can show that the existing estimation methods, including MCM, MCM-EA, RL, IPW, and AIPW, are all covered by this general formulation. In Appendix A.1, we show that for each of the above methods, the corresponding functions c and w meet the three conditions.

A few additional remarks are in order for this general expression:

Remark 1. Conditions C1 to C3 are put in place to assure $E(S(X))=0$. It can be shown that under the square error loss function, the estimates derived from (4) are indeed minimizers of the target function, that is, $\tau_0(x) = \arg\min_{\tau(x)} E[w(X, T)|y - g(X, T) - c(X, T)\tau(x)]^2|X = x]$. For detailed proof, see Property 1 in Appendix A.2. A similar result can be obtained under the absolute error loss function; see Property 3 in the same section of the appendix.

Remark 2. For given $w(x, t)$ and $c(x, t)$, one might be able to choose an appropriate $g(x)$ to achieve robustness to model misspecification. For example, the $g(x) = (1 - p(x))\mu_1(x) + p(x)\mu_{-1}(x)$ in the AIPW method with equation

$$E \left[\frac{T_i - 2p(X_i) + 1}{2p(X_i)(1 - p(X_i))} \left(Y_i - g(X_i) - \frac{2p(X_i)(1 - p(X_i))}{T_i - 2p(X_i) + 1} \tau_0(X_i) \right) \Big| X_i \right] = 0$$

leads to double robustness. Specifically, AIPW is robust against misspecification of either propensity score model or both $\mu_{-1}(x)$ and $\mu_1(x)$.

Remark 3. When an additional condition $c(x, 1) = 1 - p(x)$ holds and $g(x) = \mu(x)$, the score equation in (4) leads to an estimator with the minimized variance. For an R learner, we have $c(x, 1) = 1 - p(x)$, and the choice of $g(x) = \mu(x)$ leads to the most efficient estimator. For MCM, this additional condition also holds when $p(x) = \frac{1}{T_i}$, as in the case of randomized clinical trials.

Remark 4. With the unified formulation for the score functions, new estimators can be derived, for example, $E[(T_i - 2p(X_i) + 1)(Y_i - g(X_i) - \frac{T_i}{T_i - 2p(X_i) + 1}\tau_0(X_i))|X_i] = 0$, where $g(X)$ is an arbitrary augmented function of X.

With the score function expressed as in (4), we propose an estimation procedure for CATE $\tau(\cdot)$,

$$\min_{\tau(\cdot)} \frac{1}{n} \sum_{i=1}^{n} w(X_i, T_i)\rho(Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)) + \Lambda_n(\tau(\cdot)),$$

(5)

where $\rho(\cdot)$ is a user-specified loss function, and $\Lambda_n(\cdot)$ is a structural penalty function for $\tau(\cdot)$. This general procedure covers most of the existing methods for heterogeneous treatment effect estimation through a unified formulation.

2.3 Estimation methods under the L_1 loss

The estimation procedure described in (5) is general and flexible in the sense that it allows the analyst: (1) to choose different estimators through the specification of $w(\cdot)$ and $c(\cdot)$; (2) to select $g(\cdot)$ for efficiency enhancement; and (3) to specify a loss function $\rho(\cdot)$ that is most appropriate for the application. This general formulation provides a natural remedy to two practical issues in EHR data analysis: (1) lack of robustness of the L_2-based methods against outliers, (2) lack of accommodation of the high dimensionality of X, and nonlinearity of $\tau(X)$.

Specifically, we put forward a class of robust estimators within the confines of the general estimating function (5). The method accommodates nonlinearity in $\tau(\cdot)$, further enhancing the modeling flexibility. Estimation is implemented under the usual causal inference Assumptions 1 to 3.

Under the L_1-loss function, we show in Appendix A that with Conditions C1 to C3, we have

$$\arg\min_{\tau(\cdot)} E \left[w(X_i, T_i) \cdot |Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)| \Big| X_i = x \right] = \tau_0(x).$$

To increase efficiency, we opt to use $g(X_i) = \mu(X_i)$ in proposed methods.
Herein, we consider the following penalized LAD estimator

$$\min_{\tau(\cdot)} \frac{1}{n} \sum_{i=1}^{n} w(X_i, T_i) |Y_i - \mu(X_i) - c(X_i, T_i)\tau(X_i)| + \Lambda_n(\tau(\cdot)), \quad (6)$$

where Λ_n is added to ensure sparsity at the function level. For simultaneous variable selection and smooth estimation, we adopt a similar penalty term in (6) as described by Meier et al.28

We further assume an additive structure for the treatment effect function $\tau(\cdot)$:

$$\tau(x) = \alpha + m_1(x_1) + m_2(x_2) + \ldots + m_p(x_p),$$

where α is the intercept, and $m_j(\cdot)$ is the jth additive component corresponding to x_j. We write

$$m_j(x_j) = \sum_{k=1}^{K_n+q} B_{jk}(x_j) \beta_{jk},$$

where $\{B_{jk}(x_j)\}_{k=1}^{K_n+q}$ are the B-spline basis functions, K_n and q are number of knots and degree.

Rewriting the spline bases and coefficients as vectors, we have $\tau(x) = \alpha + \beta^T B(x)$, where $B(x) = (B_1^T(x), \ldots, B_{K_n}^T(x))^T = (B_{11}(x_1), B_{12}(x_1), \ldots, B_{1(K_n+q)}(x_1), \ldots, B_{pK_n}(x_p), \ldots, B_{p(K_n+q)}(x_p))^T$, $\beta = (\beta_1^T, \ldots, \beta_p^T)^T = (\beta_{11}, \beta_{12}, \ldots, \beta_{1(K_n+q)}, \ldots, \beta_{pK_n+q})^T$. For simplicity, we choose a common $K_n + q$ for all spline components. Following a suggestion of $K_n = \sqrt{n}/2$, which is of the same order and not too large for implementation.

With this, we define the penalty term in (6) as

$$\Lambda_n(\tau(\cdot)) = \sum_{j=1}^{p} P_{\lambda_1, \gamma}(J(m_j)), \quad \text{with} \quad J(m_j) = \sqrt{||m_j||_n^2 + \lambda_2 I^2(m_j)}, \quad (7)$$

where $||m_j||_n^2 = \frac{1}{n} \sum_{i=1}^{n} m_j^2(X_i) = \frac{1}{n} \beta_j^T D_j \beta_j$ is for variable selection in a group-wise manner, and $I^2(m_j) = \int (m_j'(x))^2 dx = \beta_j^T \Omega_j \beta_j$ is for smoothness of the nonzero components. The integrals $\int B_{jl}^T(x)B_{jl}^T(x) dx$ and $\int B_{jl}^T(x)B_{jl}^T(x) dx$ are the (l, l)th entry of the $(K_n + q) \times (K_n + q)$ matrices D_j and Ω_j, respectively. And $P_{\lambda_1, \gamma}(\cdot)$ is the smoothly clipped absolute deviation (SCAD) penalty defined by its first derivative

$$P'_{\lambda_1, \gamma}(x) = \lambda_1 \{I(x \leq \lambda_1) + \frac{(\gamma \lambda_1 - x)\chi}{(\gamma - 1)\lambda_1} I(x > \lambda_1)\},$$

with $\gamma > 2$ and $P_{\lambda_1, \gamma}(0) = 0$. We use $\gamma = 3.7$ as suggested by Yuan and Lin.29

Hence, optimization of (6) can be expressed as a general group SCAD problem

$$(\hat{\alpha}, \hat{\beta}) = \arg\min_{(\alpha, \beta)} \frac{1}{n} \sum_{i=1}^{n} w(X_i, T_i) |Y_i - g(X_i) - c(X_i, T_i)(\alpha + \beta^T B(X_i))| + \sum_{j=1}^{p} P_{\lambda_1, \gamma}(\sqrt{\beta_j^T M_j(\lambda_2) \beta_j}).$$

where $M_j(\lambda_2) = \frac{1}{n} D_j + \lambda_2 \Omega_j$. By decomposing $M_j = R_j^T R_j$ for some invertible matrix $R_j \in \mathbb{R}^{(K_n + q) \times (K_n + q)}$, we define

$$\hat{\beta}_j = \beta_j^T R_j \quad \text{and} \quad B_j(X_j) = R_j^{-1} B_j(X_j). \quad (8)$$

With these transformations, the optimization of (6) becomes an ordinary LAD regression with a group SCAD penalty

$$(\hat{\alpha}, \hat{\beta}) = \arg\min_{(\alpha, \beta)} \frac{1}{n} \sum_{i=1}^{n} |Y_i^* - w_i^*(X_i, T_i)(\alpha + \hat{\beta}^T B(X_i))| + \sum_{j=1}^{p} P_{\lambda_1, \gamma}(||\hat{\beta}_j||), \quad (9)$$
where \(\| \hat{\beta} \| \) is the Euclidean norm, \(Y_i^* = w(X_i, T_i)(Y_i - g(X_i)) \) and \(w_i^*(X_i, T_i) = w_i(X_i, T_i)c(X_i, T_i) \). The estimation of CATE is therefore \(\hat{\tau}(x) = \hat{\alpha} + \hat{\beta}^T B(x) \).

2.4 | A computational algorithm

To optimize (9), one has to estimate \(\mu(\cdot) \) and \(p(\cdot) \), as they are involved in the weight functions \(w(x, t) \) and \(c(x, t) \). Herein, we use preestimated \(\hat{\mu}(\cdot) \) and \(\hat{\beta}(\cdot) \) as plug-in estimates for solving (9). Estimation accuracy of these quantities, however, can be impeded by the dimension of \(x \) and the uncertainty of the functional forms of the \(x_i \)’s associations with \(T_i \) and \(Y_i \). To remedy, we use a gradient boosting machine (GBM)\(^{30}\) to estimate these two functions, with packages gbm\(^{31}\) and caret.\(^{32}\) In cases of ultra-high dimensional \(x \), one could first use nonparametric independence screening (NIS) method\(^{33}\) to reduce the dimensionality to a moderate one \((n - 1 \text{ or } \log(n)) \) as suggested by Fan and Lv\(^{34}\), before applying our proposed method.

With the plug-in estimates of \(\mu(\cdot) \) and \(p(\cdot) \), we solve the \(L_1 \) optimization problem in (9), by using R package \(\tau \) qPen,\(^{35}\) which is designed for penalized quantile regression in general. The nonconvex group penalized optimization with quantile loss is solved by the extension of quantile iterative coordinate descent algorithm proposed by Peng and Wang.\(^{36}\) For comparison purposes, we also use R package \(\omega \) em\(^{37}\) to ascertain the \(L_2 \) estimators.

The main steps of the procedure are described in Algorithm 1.

Algorithm 1.

Input: Outcome \(Y \), treatment assignment \(T \), and pretreatment covariates \(X \)

1. **Data screening:** Screen covariates with NIS when in situations of ultra-high dimension.
2. **Nuisance quantity estimation:** Estimate \(p(x) \) by using GBM with cross-validation (CV) and estimate \(\mu(x) \) by using \(L_1 \)-based GBM with CV.
3. **Data transformation:** Construct the B-spline design matrix \(B(X) \), calculate \(w(X_i, T_i) \), \(c(X_i, T_i) \), and \(g(X_i) \) following Conditions C1 to C3, and transform \(B(X) \) to \(B(X) \) using (8).
4. **Optimization:** Solve penalized LAD regression (9) with a group SCAD penalty to achieve estimates of \(\alpha \) and \(\hat{\beta} \) with regularization parameters selected by CV.

Output: Calculate \(\hat{\tau}(x) = \hat{\alpha} + \hat{\beta}^T B(x) \).

3 | ASYMPOTOTIC PROPERTIES OF \(\hat{\tau}(x) \)

For theoretical examination, we consider the simple case of a univariate covariate \(X_i \in \mathbb{R} \):

\[
\min_{\tau(\cdot)} \frac{1}{n} \sum_{i=1}^{n} w(X_i, T_i)\rho(Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)),
\]

where \(\rho(\cdot) \) is a loss function that is convex and has unique minimizer at origin. This simplification will not diminish the contribution of the asymptotic analysis, which is complicated by the B-spline approximation and the various loss functions including the \(L_1 \), \(L_2 \), Huber, and Bisquare loss functions.

With a B-spline approximation, we write \(r(x) := \sum_{k=1}^{K_r} \beta_k B_k(x) = B(x)^T \beta \), where \(q \) is the degree of the B-splines and \(K_r \) is the number of knots, which we assume depending on sample size \(n \). Zhou et al\(^{38}\) provided the \(L_\infty \) approximation error for B-splines. In particular, with \(r^*(x) := B(x)^T \beta^* \) as the best \(L_\infty \) approximation to the true function \(r_0(x) \), it satisfies

\[
\sup_{x \in (0,1)} | r^*(x) - r_0(x) - b^0(x) | = o(K_n^{-(q+1)}),
\]

where

\[
b^0(x) = - \frac{r_0^{(q+1)}(x)}{K_n^{(q+1)}} \sum_{k=1}^{K_n} \sum_{\kappa_{k-1} \leq x < \kappa_k} \frac{1}{(q+1)!} \left(\frac{x - \kappa_{k-1}}{K_n^{(q+1)}} \right) = O(K_n^{-(q+1)}),
\]
with \(\{k_k\}_{k=0}^{K_n} \) are the knots in the B-spline approximation, \(\tau_{0}^{(q+1)}(x) \) is the \((q+1)\)th order derivative of \(\tau_0(x) \), and \(Br_q(x) \) is the \(q \)th Bernoulli polynomial.

We focus on the asymptotic theory of the \(L_1 \) spline estimator \(\hat{\tau}(x) = B(x)^T \hat{\beta} \), where

\[
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^{K_n}} L_n(\beta) := \sum_{i=1}^{n} w(X_i, T_i) \rho(Y_i - g(X_i) - c(X_i, T_i) B(X_i)^T \beta).
\]

The error for \(\hat{\tau}(x) \) can be decomposed as a summation of the estimation error and approximation error

\[
\hat{\tau}(x) - \tau_0(x) = \underbrace{\hat{\tau}(x) - \hat{\tau}^*(x)}_{\text{estimation error}} + \underbrace{\hat{\tau}^*(x) - \tau_0(x)}_{\text{approximation error}} = \hat{\tau}(x) - \tau^*(x) + b^2(x) + o(K_n^{-(q+1)}).
\]

We only need to study the estimation error \(\hat{\tau}(x) - \tau^*(x) = B(x)^T (\hat{\beta} - \beta^*) \) thanks to the \(L_\infty \) approximation result by Zhou et al.\(^{38}\)

To show a pointwise asymptotic normality of \(\sqrt{a_n}(\hat{\tau}(x) - \tau^*(x)) \) with a convergence rate \(a_n \) to be specified later in Appendix A, we only need to prove the convergence of \(\sqrt{a_n}(\hat{\beta} - \beta^*) \) since \(\hat{\tau}(x) - \tau^*(x) = B(x)^T (\hat{\beta} - \beta^*) \). For this, denote \(\delta = \sqrt{a_n}(\hat{\beta} - \beta^*) \) and

\[
U_n(\delta) = \sum_{i=1}^{n} \left[w(X_i, T_i) \left\{ \rho \left(U_i - \frac{1}{\sqrt{a_n}} c(X_i, T_i) B(X_i)^T \delta \right) - \rho (U_i) \right\} \right],
\]

where \(U_i = Y_i - g(X_i) - c(X_i, T_i) B(X_i)^T \beta^* \). Then the minimizer \(\hat{\delta}_n \) of \(U_n(\delta) \) is simply our target, that is, \(\hat{\delta}_n = \sqrt{a_n}(\hat{\beta} - \beta^*) \).

If one regards \(\{U_n(\delta)\} \) as a sequence of random functions and the finite-dimensional distributions of \(U_n(\delta) \) converge in distribution to those of some random function \(U(\delta) \) which has a unique minimum, then it will follow that \(\hat{\delta}_n = \sqrt{a_n}(\hat{\beta} - \beta^*) \to_{d} \arg\min(U(\delta)) \), as \(n \to \infty \) per Hjort and Pollard\(^{39}\) and Geyer\(^{40}\).

With a given loss function \(\rho(\cdot) \), we define \(\Phi'(s|X = x, T = t) = E[\rho(Y - g(x) - c(x, t) B(x)^T \beta^* - s)|X = x, T = t] \). Let \(\Phi''(s|X = x, T = t) \) and \(\Phi'''(s|X = x, T = t) \) be the first and second derivative of \(\Phi(s|X = x, T = t) \) with respect to \(s \). Several additional conditions are required for the proof of asymptotic normality:

C4. \(X \) is distributed as \(Q(x) \) on a compact set in \(\mathbb{R} \). Without loss of generality, we assume \(X \in [0, 1] \).

C5. The \(B \)-spline knots are equidistantly located as \(k_k = k/K_n, k = 0, \ldots, K_n \) and the number of knots satisfies \(K_n = O(n^{1/(2q+3)}) \).

C6. The true CATE \(\tau_0(x) \) is \((q+1)\)th order continuously differentiable.

C7. The function \(\rho(u) \) is convex, it has a unique minimizer at zero, and its first and second derivatives exist.

C8. For \(x \in [0, 1] \) and \(t \in \{\pm 1\}, E[\rho'(Y - g(X) - c(X, T) \tau_0(X))^2 |X = x, T = t] < \infty \).

C9. \(\Phi'(s|X = x, T = t) \), \(\Phi''(s|X = x, T = t) \), and \(\Phi'''(s|X = x, T = t) \) are functions of \(s \) and they are bounded and continuous in a neighborhood of zero.

C10. As \(s \to 0, E[|w(X, T)(\rho(U - s) - \rho(U) - \rho'(U)s)|^2] = o(s^2) \).

C11. There exists a \(\gamma > 0 \) such that for any \(x \in [0, 1] \) and \(t \in \{\pm 1\}, E[|w(X, T)c(X, T)\rho'(U)|^{2+\gamma} |X = x, T = t] < \infty \).

Remark 5. The above conditions are needed for establishing an asymptotic normality of the estimator. Conditions C4 to C6 are standard assumptions for \(B \)-spline regression. C5 provides the appropriate conditions of the knots. It suggests that the locations of the knots are set to some extent at regular intervals and the number of knots increases with the sample size. C4 to C6 are needed for controlling the spline approximation bias. C7 and C8 are the general conditions for the loss function. The commonly used \(L_1 \), Huber, and Bisquare loss functions for robust regression all satisfy these conditions. C7 also guarantees the uniqueness of the estimator. C9 and C10 ensure the smoothness of the loss function \(\rho \), which are needed for controlling the remainder term in the Taylor expansion. C11 is needed for satisfying the Lyapunov condition of the central limit theorem.

To describe the asymptotic normality of the spline estimator \(\hat{\tau}(x) \), we introduce two matrices: We define a square matrix \(G \in \mathbb{R}^{(K_n+q) \times (K_n+q)} \) with \((i,j)\)th element \(G_{ij} \)

\[
G_{ij} = \int_{0}^{1} \frac{p(x)}{1 - p(x)} w^2(x, 1) c^2(x, 1) \rho'(U_j)^2 B_i(x) B_j(x) dQ(x),
\]
and another square matrix D of the same dimension with its (i,j)th element being

$$D_{ij} = \int_0^1 \nu(x)B_i(x)B_j(x)dQ(x),$$

where $\nu(x) = p(x)w(x, 1)c(x, 1)^2\rho''(y^{(1)} - g(x) - c(x, 1)B(x)\beta^*) + \left(1 - p(x)\right)w(x, -1)c(x, -1)^2\rho''(y^{(1)} - g(x) - c(x, -1)B(x)\beta^*)$.

Theorem 1. Assuming C1 to C11, as $n \to \infty$, we have $\sqrt{n/K_n}(\hat{\tau}(x) - \tau_0(x) - b^\alpha(x)) \overset{D}{\to} N(0, \Psi(x))$, where $\Psi(x) = \lim_{n \to \infty} \frac{1}{4K_n}B(x)^T D^{-1} G D^{-1} B(x)$.

Remark 6. With the order of K_n larger than $O(n^{1/3})$, the B-spline approximation error $b^\alpha(x)$ can be ignored relative to the order of its variance.

For the rest of the article, we focus on the LAD loss where Conditions C7 to C10 are naturally satisfied, and C11 can be simplified as the following:

C12. There exists a constant $\gamma > 0$ such that $E\{w(X, T)c(X, T)^{2+\gamma}|X = x\} < \infty$.

To describe the asymptotic normality of the spline estimator $\hat{\tau}(x)$ under the L_1 loss, we write matrix D with the (i,j)th element being

$$D_{ij} = \int_0^1 \left[p(x)w(x, 1)c^2(x, 1)f_1(g(x) + c(x, 1)\tau_0(x)|x) + \left(1 - p(x)\right)w(x, -1)c^2(x, -1)f_{-1}(g(x) + c(x, -1)\tau_0(x)|x)\right]B_i(x)B_j(x)dQ(x),$$

where $f_1(y|x)$ and $f_{-1}(y|x)$ are the conditional density functions of $Y^{(1)}$ and $Y^{(-1)}$ given $X = x$, respectively. We give the following theorem for the spline-based LAD regression:

Theorem 2. With conditions C1 to C6 and C12, as $n \to \infty$, we have $\sqrt{n/K_n}(\hat{\tau}(x) - \tau_0(x) - b^\alpha(x)) \overset{D}{\to} N(0, \Psi(x))$, where $\Psi(x) = \lim_{n \to \infty} \frac{1}{4K_n}B(x)^T D^{-1} G D^{-1} B(x)$.

Remark 7. For inference concerning $\tau_0(x)$, the variance of the estimator can be obtained by using resampling methods, as the asymptotic variance is difficult to work with. In a simulation experiment in Appendix B.2.2, we show that the bootstrap C.I. consistent with theoretical C.I.

4 | A SIMULATION STUDY

We conducted an extensive simulation study to evaluate the finite-sample performance of the proposed methods. We considered a large number of parameter settings, including four different learners under two different loss functions: (1) a robust version of the modified covariate method with efficiency augmentation (L_1-MCM-EA), (2) a robust RL (L_1-RL), (3) a robust A-learner (L_1-AL), (4) an L_2-based MCM-EA, (5) an L_2-based RL, (6) an L_2-based AL, and (7) a robust Q-learner (L_1-QL), and (8) an L_2-based Q-learner (L_2-QL). The first six methods are under the umbrella of AL and they are covered by the general formulation in (5). The last two are Q-learning methods, which are not the focus of the current article; we included them only for comparison. The first three methods are what we recommend for situations with a significant number of outliers; Methods 4 to 6 are standard L_2-based learners.

We used the A-learner described by Lu et al.26 The objective functions of the AL methods 3 and 6 shared the same structure, except for the loss function ρ

$$L_n(\beta) = \frac{1}{n} \sum_{i=1}^n \rho \left(Y_i - X_i^T \hat{\tau} - \left[T_i + \frac{1}{2} - \hat{p}(X_i) \right] B(X_i)^T \beta \right) + \Lambda_n(\beta),$$

where γ and $p(x)$ are estimated in advance. We estimated γ by regressing Y on X using a linear regression, and $p(x)$ by regressing $\frac{T_i + 1}{2}$ on X using GBM. The objective functions of the Q-learning methods 7 and 8 shared the same structure...
\[L_n(\gamma, \beta) = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - B(X_i)^T \gamma - \frac{T_i}{2} B(X_i)^T \beta \right) + \Lambda_n(\gamma, \beta), \]

where we used \(L_1 \) or \(L_2 \) loss function for \(\rho \). Note that a difference between the A-learner and RL is the choice of the augmentation. For A-learner we used a linear function as suggested by Lu et al.\(^\text{26}\) to estimate \(\mu(X_i) \); we used \(L_1 \)-based GBM to estimate \(\mu(X_i) \) in the RL.

We designed the simulation study to assess the robustness of the \(L_1 \) and \(L_2 \)-based methods, and to contrast the performance of the A and Q-learners. We also examined the performance of the methods under different sample sizes, dimensionality, and proportions of outliers.

We assessed the performance of the methods using the standard metrics, including bias, variance, mean square error as well as mean absolute error. In addition, we compared the value function \(Q(\hat{\eta}) = E(Y(\hat{\eta})) \), that is, the expected average outcome under treatment \(\hat{\eta} \), where \(\hat{\eta}(x) = 2I(\hat{\tau}(x) > 0) - 1 \), as recommended by each method.\(^\text{41}\) To estimate the \(Q(\hat{\eta}) \) for a given regimen, we conducted a Monte Carlo simulation using model \(Y(\hat{\eta}) = b_0(X) + \hat{\eta} R_0(X) + \epsilon \), replacing \(T \) in (2) by \(\hat{\eta} \), and we set the number of replicates is \(10^6 \). The value function calculated based on the true treatment effects was \(E[Y(\eta^{\text{opt}})] = 1.25 \), where \(\eta^{\text{opt}}(x) = 2I(\tau_0(x) > 0) - 1 \). We also assessed the sensitivity and specificity for variable selection under our penalty. With the number of simulation replication \(R \), we defined

\[
\text{MAE}_v = \frac{1}{R} \sum_{r=1}^{R} |\hat{\tau}^{(r)}(x_v) - \tau_0(x_v)|, \quad \text{MSE}_v = \frac{1}{R} \sum_{r=1}^{R} [\hat{\tau}^{(r)}(x_v) - \tau_0(x_v)]^2,
\]

\[
|\text{Bias}_v|^2 = \frac{1}{R} \sum_{r=1}^{R} (\hat{\tau}^{(r)}(x_v) - \tau_0(x_v))^2, \quad \text{Var}_v = \frac{1}{R} \sum_{r=1}^{R} (\hat{\tau}^{(r)}(x_v) - \overline{\hat{\tau}}(x_v))^2
\]

Sensitivity = \frac{TP}{TP + FN}, \quad \text{Specificity} = \frac{TN}{TN + FP},

where \(x_v \) is the \(v \)th observation from the validation set, \(\hat{\tau}^{(r)}(x) \) is the estimator of \(\tau(x) \) based on the \(r \)th data replication, and \(\overline{\hat{\tau}}(x_v) \) is the average of all estimators of the \(v \)th observation. TP, FN, TN, and FP represented the numbers of true positive, false negative, true negative, and false positive. In this research, the size of the validation set \(n_v \) was set to 200; we summarized the performance over the whole validation set by taking the averages (i.e., \(\text{MSE} = \frac{1}{n_v} \sum_{v=1}^{n_v} \text{MSE}_v \)). For simplicity, we reported MSE, MAE, |Bias|^2, and Var.

4.1 Data generation

We generated data as follows, the dimension of the covariates was indexed by \(p \):

- \(X_i \sim N_p(0, \Sigma) \), \(\text{diag}(\Sigma) = 1 \), \(\text{Corr}(X_{ij}, X_{ik}) = 0.5^{|j-k|}, i = 1, \ldots, n \),
- \(D_{ij} | X_{ij} \sim \text{Bernoulli}(p(X_{ij})), T_i = 2D_i - 1, \logit(p(X_{ij})) = X_{i1} - X_{i2} \),
- \(Y_i = b_0(X_i) + \frac{T_i}{2} \tau_0(X_i) + \epsilon_i, \epsilon_i \sim (1 - \xi_o)N(0, 1) + \xi_o \text{Laplace}(0, 10) \),
- \(b_0(X_i) = 0.5 + 4X_{i1} + X_{i2} - 3X_{i3}, \tau_0(X_i) = 2 \sin(2X_{i1}) - X_{i2} + 3 \tanh(0.5X_{i3}) \),

where \(\eta_o \) represented the proportion of outliers. We considered three settings: (1) Various levels of outliers \(\xi_o \in \{0, 0.05, 0.1, 0.15, 0.2\} \), with \(n = 1000 \) and \(p = 10 \); (2) Various training sample sizes \(n \in \{200, 500, 1000\} \), with \(p = 10 \) and \(\xi_o \in \{0, 0.05\} \); (3) Various dimension of training sample \(p \in \{10, 30, 50\} \), with \(n = 1000 \) and \(\xi_o \in \{0, 0.05\} \).

4.2 Simulation results

Figure 1 showed that when there were outliers, the \(L_1 \)-based methods uniformly outperformed the \(L_2 \)-based methods under the MSE, MAE, and \(Q(\hat{\eta}) \) value. Advantage of the robust methods increased with the proportion of outliers. The robust RL outperformed the robust A-learner because \(\mu(x) \) was not a linear function. And there were little practical
Figure 1 shows the comparison of mean squared error (MSE), mean absolute error (MAE), and value function \(Q(\hat{\eta})\) of the \(L_1\)-MCM-EA (red solid line), \(L_1\)-RL (red solid line), \(L_1\)-AL (red solid line), \(L_1\)-QL (red dashed line), MCM-EA (black solid line), RL (black solid line), AL (black solid line), and QL (black dashed line) under various levels of outliers. When there were outliers, both \(L_1\)-based methods outperformed the \(L_2\)-based methods. Advantage of the \(L_1\)-based methods increased with the proportion of outliers, under MSE, MAE, and \(Q(\hat{\eta})\). AL, A-learning; MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner [Colour figure can be viewed at wileyonlinelibrary.com]

Differences between the robust RL and robust MCM-EA. The Q-learner performed the best under MSE and MAE because it is a one-step estimation procedure, and thus avoiding the errors associated with the nuisance quantity estimation. This is consistent with the observations made by Schulte et al21 that the Q-learner tended to perform better than the standard A-learner when all models were correctly specified. We conducted a separate simulation for a setting where the Q-function was misspecified. The results reported in Appendix B.2.3 showed that in the presence of outliers, bias in the misspecified \(L_1\)-QL was larger than that of the \(L_1\)-MCM-EA, \(L_1\)-RL, and \(L_1\)-AL. The same was also true for MSE and MAE. In terms of the value function \(Q(\hat{\eta})\), \(L_1\)-QL had smaller \(Q(\hat{\eta})\) values than methods under the AL umbrella; findings were consistent with MSE.

Figure 2A-D showed the effects of sample size. Regardless of the presence or absence of outliers, as the sample size increased, MSE and MAE decreased for all methods. When there were no outliers, at a given sample size, the \(L_2\)-based methods tended to perform slightly better than the \(L_1\)-based methods, because the \(L_2\)-based methods were more efficient when the errors were normally distributed. But when there were even a small proportion of outliers, only 5% of errors generated from a different distribution, the robust methods outperformed \(L_2\)-based methods by a noticeable margin. Figure 2E-H showed that the performance of proposed methods without NIS did not change substantially as the dimension of the covariates increased.

Additional simulation details, including the squared bias, variance, MSE, MAE, sensitivity, specificity, and value function of the eight methods were reported in Appendix B.1. We have also examined the effects of dimension and smoother on treatment effect estimation. Those results are included in Appendix B.2.

We conducted additional simulation in one covariate setting, where we calculated the pointwise bootstrap confidence intervals for \(\tau(x)\), under both \(L_1\) and \(L_2\) versions of the MCM-EA and RL methods, with and without penalty. The \(L_1\)-based methods generally produced coverage probabilities very close to the nominal level, even with the presence of outliers, whereas the \(L_2\)-based methods’ coverage sometimes deviated strongly from 0.95. See Appendix B.2, Table B5.

5 | REAL DATA APPLICATION

To illustrate the methods we propose, we estimated the treatment effects of two different antihypertensive therapies by analyzing the observed clinical dataset from the Indiana Network of Patient Care, a local EHR system. The data were a subset of a previous study assessing the blood pressure (BP)-lowering effects of various antihypertensive agents.42 This
analysis compared the BP effects of angiotensin-converting-enzyme inhibitors (ACEI) alone and a combination of ACEI and hydrochlorothiazide (HCTZ). We considered those on ACEI alone as in treatment group A, and those on ACEI+HCTZ as in group B. The primary outcome of interest is clinically recorded systolic BP in response to these therapies. Independent variables included the demographic and clinical characteristics, as well as medication-use behaviors of the study participants. Data from 882 participants were used in the current analysis. Among these, 350 were on the monotherapy of ACEI, and 532 were on the combination therapy of ACEI+HCTZ. Characteristics of the study participants are presented in Table 1. There were four continuous variables (pulse, BMI, age, and medication adherence) and 12 binary variables (gender, race, and 10 comorbidities). The continuous variables were standardized before the analysis and expressed as linear combinations of splines.

We expressed the treatment effect of treatment B, in comparison against treatment A, as a function of the patient characteristics x

$$\tau_0(x) = E[Y^{(B)} - Y^{(A)}|X = x],$$

where $Y^{(A)}, Y^{(B)}$ represented the potential systolic BP of ACEI alone group and ACEI+HCTA group. Since the antihypertensive effect of a therapy is measured by its ability to lower BP, a negative $\tau(x)$ indicates a superior effect of the combination therapy over the monotherapy, for a given x. An important covariate of interest was the level of medication adherence, which we measured with the proportions of days covered (PDC) by the medication.
Table 1. Demographic and clinical characteristics of study subjects

Variable	ACEI (n = 350)	ACEI+HCTZ (n = 532)	P-value
Average systolic BP	134.86 (11.72)	137.49 (14.11)	.004*
Average diastolic BP	80.98 (8.64)	82.26 (9.77)	.046*
Pulse	83.67 (10.36)	81.12 (10.51)	<.001*
BMI	31.75 (8.65)	33.39 (8.79)	.007*
Age	47.83 (12.84)	50.03 (12.43)	.012*
Medication adherence (PDC)	0.45 (0.30)	0.52 (0.27)	<.001*
Male	158 (45.1%)	189 (35.5%)	.005*
Black	144 (41.1%)	290 (54.5%)	<.001*
Diabetes	155 (44.3%)	114 (21.4%)	<.001*
Chronic kidney disease	8 (2.3%)	13 (2.4%)	1.000
Coronary artery disease	10 (2.9%)	15 (2.8%)	1.000
Myocardial infarction	2 (0.6%)	3 (0.6%)	1.000
Congestive heart failure	7 (2.0%)	11 (2.1%)	1.000
Hyperlipidemia	53 (15.1%)	88 (16.5%)	.645
Atrial fibrillation	1 (0.3%)	5 (0.9%)	.461
Stroke	9 (2.6%)	6 (1.1%)	.175
Chronic obstructive pulmonary disease	40 (11.4%)	51 (9.6%)	.443
Depression	88 (25.1%)	132 (24.8%)	.975

Abbreviations: ACEI, angiotensin-converting-enzyme inhibitors; BP, blood pressure; HCTZ, hydrochlorothiazide.

Preliminary data examination showed that the observed systolic BP was right-skewed in both groups. The Shapiro-Wilk’s test further confirmed that the systolic BP was not normally distributed, and there were outliers in the observed outcome (ACEI alone: $W = 0.9912$, $p = 0.035$; ACEI+HCTZ: $W = 0.9617$, $p = 1.498e - 10$). We, therefore, used the L_1-based methods with additive B-splines to analyze the data. Here, the B-splines were used to accommodate the possible nonlinear influences of the independent variables on the treatment effect.

Naive comparison of the systolic BP-effects between the two treatment strategies suggested that the combination therapy (ACEI+HCTZ) was significantly worse than the monotherapy (ACEI alone) in its ability to lower systolic BP (Table 1, 134.86 mm Hg in ACEI vs 137.49 mm Hg in ACEI+HCTZ; $P = .004$). A similar difference was seen in diastolic BP (80.98 mm Hg in ACEI vs 82.26 mm Hg in ACEI+HCTZ; $P = .046$). The observation is counterintuitive because there are no known mechanisms that would explain the attenuated BP benefit of ACEI when HCTZ is added to the treatment regimen. In fact, the current clinical guidelines recommend HCTZ as the first-line therapy for essential hypertension. BP is regulated by hormones in the renin-angiotensin-aldosterone system. ACE inhibitors block the conversion of angiotensin I to angiotensin II, diminishing the latter’s effects on aldosterone production and sodium retention and causing BP reduction. Thiazide diuretics lower BP by suppressing the extracellular fluid volume, which in turn reduces aldosterone secretion. Together, the two drugs are expected to have additive effects in lowering BP. In clinical practice, the two are often used concurrently.

A closer examination of the characteristics of the patients on these therapies showed that patients on the combination therapy were older, more likely to be female, and overweight. Using GBM described in Section 2.3, we examined the mean function of systolic BP $\hat{\mu}(x)$ and the propensity of a patient receiving the combination therapy $\hat{p}(x)$. The estimated propensity score distributions were clearly different for the two treatment groups, whereas the mean functions were similar. See Appendix C. More specifically, the histogram of mean functions overlapped, indicating no apparent...
differences between the mean systolic BP between the two treatment groups. The different propensity score distributions of the two groups clearly showed that nonrandom treatment assignment. The importance levels of the covariates from GBM and additional modeling details were summarized in Appendix C. The systematic differences in patient characteristics between the two treatment groups suggested that a naive comparison was not appropriate and should not be trusted.

We then analyzed the data with the proposed methods. Importantly, both the L_1-MCM-EA and L_1-RL selected BMI and PDC in the final models. The L_2-based methods, on the other hand, only selected PDC. As we have shown in the simulation study, in the presence of outliers, the rates of correct selection of patient characteristics in the proposed methods were substantially greater than that of the L_2-based methods. The estimated treatment effects as functions of BMI and PDC were depicted in Figure 3.

Figure 3 showed that $\hat{\tau}$ gradually decreased as the medication adherence measure PDC increased. Lower $\hat{\tau}$ indicated a stronger efficacy of the combination therapy than the monotherapy. Although decreasing trends were observed in both L_1 and L_2-based methods, the L_2 methods failed to detect any differences between the two therapies, as the 95% confidence intervals for $\hat{\tau}(\text{PDC})$ consistently covered zero. The L_1-based estimators, however, showed a superior BP-lowering effect of the combination therapy, but only when PDC > 90%. The fact that treatment effects varied with medication adherence should not be surprising. As the former US Surgeon General, Dr. C. Everett Koop, wisely observed, “Drugs don’t work in patients who don’t take them.”45 In this analysis, we do not expect significant differences between the treatments when patients are not adherent to the prescribed regimen. Findings such as this are not unexpected in comparative effectiveness analysis of EHR data. Because unlike well-controlled clinical trials, few measures are in place to ensure patients faithfully take their medications in the real-world of clinical care. In the current application, the fact that the L_1-based estimators detected significant differences highlights the proposed methods’ advantage. Using L_1-based estimators, we also examined the influences of BMI on τ, which did not reach the level of statistical significance (data not shown).

To check the conditional independence error assumption, we performed the invariant residual distribution test, invariant environment prediction test, invariant conditional quantile prediction test, invariant targeted prediction test, and invariant residual prediction test.46 The conditional independence error assumption held for both proposed methods at the significant level of .05 (see Table 2).
By looping over \(j = 1, 2, \ldots, 10 \), we calculated \(\hat{Q}(\hat{\eta}) = \frac{1}{10} \sum_{j=1}^{10} \hat{Q}^{(j)}(\hat{\eta}) \). The observed average SBP was 136.45 mmHg, the estimates based on the \(L_1 \)-MCMEA and \(L_1 \)-RL were lower than the observed value. The estimates based on \(L_2 \)-MCMEA and \(L_2 \)-RL were slightly higher than the corresponding \(L_1 \)-based methods. This results in Table 3 showed that the SBP could be reduced if treatment were to be assigned in accordance with the therapy recommended by the estimated treatment regime. Table 4 showed among the patients included in the analysis, 100 (11.3\%) had PDC above 90\%. We further examined the numbers of patients assigned to the two different treatment groups based on the estimated treatment effects. More patients would be assigned to the combination therapy group because it had a significantly greater BP efficacy when patients take their medications. On the other hand, had we used the \(L_2 \) based methods, almost all of the patients would have been assigned to the monotherapy group, which contradicts the recommendations from the current clinical guidelines.

In summary, the naive and \(L_2 \)-based methods showed that the combination therapy of ACEI and HCTZ had a worse BP-lowering effect than the monotherapy of ACEI, a finding that contradicts the recommendations of the current clinical guidelines of hypertension treatment. The \(L_1 \)-based methods have produced results that are better explained by the
existing clinical and biological evidence. The analysis showed that treatment effects tended to improve when patients adhere to their prescribed medications.

6 | DISCUSSION

We started this work searching for a robust estimator for heterogeneous treatment effects that could be used in EHR analysis, where outliers often undermine the validity of estimation. In the process, we discovered a general formulation that not only addresses the issues of outliers but also covers a broad class of learners, including the commonly used A-learner, as well as other learning methods associated with it, such as the inverse propensity weighting, various modified outcome methods, modified covariate methods with or without efficiency augmentation, and the doubly robust method. Through a clever specification of the weight and efficiency augmentation functions, the formulation not only brings together a diverse set of methods under a unified presentation but also facilitates the development of a general-purpose procedure for implementation. Although, we have highlighted the use of the L_1 loss function for increased robustness against outliers in the EHR data, the score equation we described can readily accommodate other loss functions, giving the analyst much-enhanced flexibility in practical data analysis. As we have shown in our simulation studies, the use of L_1 loss function in heterogeneous treatment effect estimation substantially increases the estimation methods’ robustness against outliers. Importantly, the gain in robustness does not appear to inflict a heavy toll on efficiency. Initial theoretical exploration suggests that reasonable asymptotic behavior can still be expected for the resultant estimators under various loss functions. Besides the flexibility in loss function selection, the general formulation also permits the incorporation of other useful features, such as nonparametric specifications of the mean and propensity functions and embedded dimensional reduction tools.

A theoretical examination of the proposed method shows that the resultant estimators possess the desirable property of asymptotic normally, under fairly general regularity conditions, and various commonly used loss functions. Simulation studies have provided strong and consistent empirical evidence on the utility of the proposed methods. Then through a real data application, we demonstrated how the proposed approach could be used in EHR data analysis to quantify treatment effects that varied with patient drug-taking behaviors. The findings are in line with the existing clinical understanding of the therapeutic effects of the treatments. This said, the proposed method’s performance remains to be tested in a wider range of clinical applications. Notwithstanding this limitation, we have taken the first steps in developing a scalable solution to estimate heterogeneous treatment effects in settings that are more prone to various forms of data irregularities.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author under signed Data Use Agreements with Indiana University.

ORCID

Wanzhu Tu https://orcid.org/0000-0002-4236-9135

REFERENCES

1. Gabriel SE. Getting the methods right—the foundation of patient-centered outcomes research. N Engl J Med. 2012;367(9):787.
2. Imai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. JR Stat Soc A Stat Soc. 2008;171(2):481-502.
3. Sekhon JS. The Neyman-Rubin model of causal inference and estimation via matching methods. The Oxford Handbook of Political Methodology. New York: Oxford University Press; 2008;2:1-32.
4. Murphy SA. Optimal dynamic treatment regimes. J Royal Stat Soc Ser B (Stat Methodol). 2003;65(2):331-355.
5. Robins JM. Optimal structural nested models for optimal sequential decisions. Paper presented at: Proceedings of the second seattle Symposium in Biostatistics; 2004:189-326; Springer, New York, NY.
6. Watkins CJCH. Learning from delayed rewards; 1989.
7. Watkins CJ, Dayan P. Q-learning. Mach Learn. 1992;8(3-4):279-292.
8. Tian L, Alizadeh AA, Gentles AJ, Tibshirani R. A simple method for estimating interactions between a treatment and a large number of covariates. J Am Stat Assoc. 2014;109(508):1517-1532.
9. Chen S, Tian L, Cai T, Yu M. A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics. 2017;73(4):1199-1209.
10. Nie X, Wager S. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*. 2020;asaa076. https://doi.org/10.1093/biomet/asaa076.

11. Xiao W, Zhang H, Lu W. Robust regression for optimal individualized treatment rules. *Stat Med*. 2019;38(11):2059-2073.

12. Gunter TD, Terry NP. The emergence of national electronic health record architectures in the United States and Australia: models, costs and questions. *J Med Internet Res*. 2005;7(1):e3.

13. Stuart EA, DuGoff E, Abrams M, Salkever D, Steinwachs D. Estimating causal effects in observational studies using electronic health data: challenges and (some) solutions. *Egems*. 2013;1(3):1–10.

14. Donoho DL. High-dimensional data analysis: the curses and blessings of dimensionality. *AMS Math Challenges Lect*. 2000;1(2000):32.

15. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. *J Educ Psychol*. 1974;66(5):688.

16. Cox DR. The interpretation of the effects of non-additivity in the Latin square. *Biometrika*. 1958;45(1/2):69-73.

17. Rosenthal R, Jacobson L. Pygmalion in the classroom. *Urban Rev*. 1968;3(1):16-20.

18. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. *Biometrika*. 1983;70(1):41-55.

19. Chakraborty B. *Statistical Methods for Dynamic Treatment Regimes*. New York, NY: Springer; 2013.

20. Künzel SR, Sekhon JS, Bickel PJ, Yu B. Metalearners for estimating heterogeneous treatment effects using machine learning. *Proc Natl Acad Sci*. 2019;116(10):4156-4165.

21. Schulte PJ, Tsiatis AA, Laber EB, Davidian M. Q- and A-learning methods for estimating optimal dynamic treatment regimes. *Stat Sci Rev J Inst Math Stat*. 2014;29(4):640.

22. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. *J Am Stat Assoc*. 1952;47(260):663-685.

23. Hirano K, Imbens GW, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. *Econometrica*. 2003;71(4):1161-1189.

24. Robins JM, Rotnitzky A. Semiparametric efficiency in multivariate regression models with missing data. *J Am Stat Assoc*. 1995;90(429):122-129.

25. Robinson PM. Root-N-consistent semiparametric regression. *Econometrica*. 1988;56(4):931-954.

26. Lu W, Zhang HH, Zeng D. Variable selection for optimal treatment decision. *Stat Methods Med Res*. 2019;28(5):1141-1163.

27. Tsiatis AA. *Dynamic Treatment Regimes: Statistical Methods for Precision Medicine*. Boca Raton, FL: CRC Press; 2019.

28. Meier L, Geer S, Bühlmann P. High-dimensional additive modeling. *Ann Stat*. 2009;37(6B):3779-3821.

29. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. *J Royal Stat Soc Ser B (Stat Methodol)*. 2006;68(1):49-67.

30. McCaffrey DF, Ridgeway G, Morral Andrew R. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. *Psychol Methods*. 2004;9(4):403.

31. Ridgeway G, Ridgeway MG. *The GBM Package*. *R Foundation for Statistical Computing*, Vol 5. Vienna, Austria: R Foundation for Statistical Computing; 2004:3.

32. Kuhn Max. *The Caret Package*. *R Foundation for Statistical Computing*, Vienna, Austria: R Foundation for Statistical Computing. 2012. https://cran.r-project.org/package=caret.

33. Fan J, Feng Y, Song R. Nonparametric independence screening in sparse ultra-high-dimensional additive models. *J Am Stat Assoc*. 2011;106(494):544-557.

34. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. *J Royal Stat Soc Ser B (Stat Methodol)*. 2008;70(5):849-911.

35. Sherwood B, Maidman A. rqPen: Penalized Quantile regression. *R package version*; 2016:1.

36. Peng B, Wang L. An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression. *J Comput Graph Stat*. 2015;24(4):676-694.

37. Xiong S, Dai B, Huling J, Qian PZG. Robust regression for optimal individualized treatment rules. *J Comput Graph Stat*. 2015;24(3):676-694.

38. Xiong S, Dai B, Huling J, Qian PZG. Orthogonalizing EM. A design-based least squares algorithm. *Technometrics*. 2016;58(3):285-293.

39. Zhou S, Shen X, Wolfe DA. Local asymptotics for regression splines and confidence regions. *Ann Stat*. 1998;26(5):1760-1782.

40. Guenther DA, Terry NP. The emergence of national electronic health record architectures in the United States and Australia: models, costs and questions. *J Med Internet Res*. 2005;7(1):e3.

41. James PA, Oparil S, Carter BL, et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). *JAMA*. 2014;311(5):507-520.

42. Tu W, Eckert GJ, Decker BS, Howard PJ. Varying influences of aldosterone on the plasma potassium concentration in blacks and whites. *Am J Hypertens*. 2017;30(5):490-494.

43. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. *Biometrics*. 1988;56(4):931-954.

44. Heinze-Deml C, Peters J, Meinshausen N. Invariant causal prediction for nonlinear models. *J Causal Inference*. 2018;6(2):1–35.

45. Shah RD, Bühlmann P. Goodness-of-fit tests for high dimensional linear models. *J Royal Stat Soc Ser B (Stat Methodol)*. 2018;80(1):113-135.

46. Agarwal GG, Studden WJ. Asymptotic integrated mean square error using least squares and bias minimizing splines. *Ann Stat*. 1980;8(6):1307-1325.
SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Li R, Wang H, Tu W. Robust estimation of heterogeneous treatment effects using electronic health record data. Statistics in Medicine. 2021;40:2713–2752. https://doi.org/10.1002/sim.8926

APPENDIX A. DERIVATION AND PROOFS

A.1 Expressing the existing methods in the general formulation
In Appendix A.1, we specify the expressions of \(c(X, T) \), \(w(X, T) \), and \(g(X) \) for MCM-EA, RL, IPW, and AIPW methods. We show they satisfy the constraints associated with the general formulation. For most of the methods, the derivations are similar for \(L_1 \) and \(L_2 \) loss functions. So we show the derivation under the \(L_2 \) loss.

(1) MCM-EA. The objective function of \(L_2 \)-MCM-EA method is

\[
L(\tau(x)) = E \left[\frac{(Y_i - \mu(X_i) - \frac{T_i}{2} \tau(X_i))^2}{T_i p(X_i) + (1 - T_i)/2} \right]_{X_i = x}.
\]

We write

\[
w(X_i, T_i) = \frac{1}{T_i p(X_i) + (1 - T_i)/2}, \quad c(X_i, T_i) = \frac{T_i}{2}, \quad g(X_i) = \mu(X_i).
\]

Then

\[
p(x)w(x, 1)c(x, 1) + (1 - p(x))w(x, -1)c(x, -1) = p(x) \frac{1}{p(x)} - \frac{1}{2} + (1 - p(x)) \frac{1}{1 - p(x)} \left(-\frac{1}{2} \right) = 0
\]

\[
c(x, 1) - c(x, -1) = \frac{1}{2} - \left(-\frac{1}{2} \right) = 1,
\]

which shows the \(c \) and \(w \) functions satisfy Conditions C1 and C2. Condition C3 \((w > 0 \text{ and } c \neq 0)\) is clearly met. The same set of parameters can be used in \(L_1 \) loss. The verification is the same.

(2) R-Learning. The objective function of \(L_2 \)-based R-learning method is

\[
L(\tau(x)) = E \left[\left(Y_i - \mu(X_i) - \frac{T_i - 2p(X_i) + 1}{2} \tau(X_i) \right)^2 \right]_{X_i = x}.
\]

We write

\[
w(X_i, T_i) = 1, \quad c(X_i, T_i) = \frac{T_i - 2p(X_i) + 1}{2}, \quad g(X_i) = \mu(X_i).
\]

Then

\[
p(x)w(x, 1)c(x, 1) + (1 - p(x))w(x, -1)c(x, -1) = p(x)(1 - p(x)) + (1 - p(x))(-p(x)) = 0
\]

\[
c(x, 1) - c(x, -1) = (1 - p(x)) - (-p(x)) = 1.
\]

Therefore, Conditions C1 to C3 are met. The same specification works for \(L_1 \) loss. The verification of AL remains the same.
(3) IPW. The objective function of L_2-based IPW method is

$$L(r(x)) = E \left[\left(\frac{T_i + 1}{2p(X_i)} - \frac{1 - T_i}{2(1 - p(X_i))} \right) Y_i - r(X_i) \right]^2 | X_i = x.$$

We write

$$w(X_i, T_i) = \left(\frac{T_i + 1}{2p(X_i)} - \frac{1 - T_i}{2(1 - p(X_i))} \right)^2, \quad c(X_i, T_i) = \frac{2p(X_i)(1 - p(X_i))}{T_i - 2p(X_i) + 1}, \quad g(X_i) = 0.$$

Then

$$p(x)w(x, 1)c(x, 1) + (1 - p(x))w(x, -1)c(x, -1) = p(x)\frac{1}{p(x)^2}p(x) + (1 - p(x))\frac{1}{(1 - p(x))^2} (p(x) - 1) = 0$$

$$c(x, 1) - c(x, -1) = p(x) - (p(x) - 1) = 1.$$

Therefore, Conditions C1 to C3 are met. The same specification works for the L_1 loss function.

(4) AIPW. The verification of AIPW method is the same.

A.2 Basic properties of the general formulation

Property 1. Under conditions C1 to C3, $r_0(x) = \arg\min_{r(x)} E[w(X_i, T_i)(y - g(X_i) - c(X_i, T_i)r(x))^2 | X_i = x]$.

Proof of Property 1.

$$L(r(x)) = E[w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2 | X_i = x]$$

$$= p(x)E[w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2 | X_i = x, T_i = 1]$$

$$+ (1 - p(x))E[w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2 | X_i = x, T_i = -1]$$

$$= p(x)w(x, 1)E[(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2 | X_i = x, T_i = 1]$$

$$+ (1 - p(x))w(x, -1)E[(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2 | X_i = x, T_i = -1]$$

$$\frac{\partial L(r(x))}{\partial r(x)} = -2p(x)w(x, 1)c(x, 1)[E[Y_i^{(1)} | X_i = x] - g(X_i) - c(X_i, 1)r(x)]$$

$$-2(1 - p(x))w(x, -1)c(x, -1)[E[Y_i^{(-1)} | X_i = x] - g(x) - c(x, -1)r(x)]$$

$$= -2p(x)w(x, 1)c(x, 1)(b_0(x) + \frac{r_0(x)}{2}) + E[E[Y_i^{(1)} | X_i = x] - g(X_i) - c(X_i, 1)r(x)]$$

$$-2(1 - p(x))w(x, -1)c(x, -1)(b_0(x) - \frac{r_0(x)}{2}) + E[E[Y_i^{(-1)} | X_i = x] - g(x) - c(x, -1)r(x)].$$

Conditions C1 to C3 and the conditional independence assumption lead us to $r_0(x) = \arg\min_{r(x)} L(r(x))$.

Property 2. When $c(x, 1) = 1 - p(x)$, the optimal augmentation function is the mean outcome function, that is, $g_0(x) = \mu(x)$.

Proof of Property 2. We provide the optimal $g(\cdot)$ in this section, by optimality we mean the $g(\cdot)$ that minimizes the variance of estimator. Let $S(Y_i, X_i, T_i; r(X_i))$ be the derivative of the objective function $w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)r(X_i))^2$, with respect to r. Then the estimating equation is

$$\frac{1}{n} \sum_{i=1}^n S(Y_i, X_i, T_i; r(X_i)) = \frac{1}{n} \sum_{i=1}^n -2w(X_i, T_i)c(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)r(X_i))$$

$$= \frac{1}{n} \sum_{i=1}^n S_0(Y_i, X_i, T_i; r(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g(X_i) = 0,$$
where \(S_0(Y_i, X_i, T_i; \tau(X_i)) = -2w(X_i, T_i)c(X_i, T_i)[Y_i - c(X_i, T_i)\tau(X_i)] \) is the score function without augmentation. By Condition C1, \(E[2w(X_i, T_i)c(X_i, T_i)g(X_i)] = 0 \), the solution of the augmented score equation always converges to \(\tau_0(\cdot) \) in probability. Following Tian et al.\(^8\) Chen et al.\(^9\) selecting the optimal \(g(\cdot) \) is equivalent to minimizing the conditional variance of

\[
S_0(Y_i, X_i, T_i; \tau_0(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g(X_i),
\]

where \(\tau_0(x) \) is the minimizer of \(E[w(X_i, T_i)(Y_i - c(X_i, T_i)\tau(X_i))^2|X_i = x] \). Noting that

\[
E[\{S_0(Y_i, X_i, T_i; \tau_0(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g(X_i)\}^2|X_i = x] \\
= E[\{S_0(Y_i, X_i, T_i; \tau_0(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g_0(X_i)\}^2|X_i = x] \\
+ E[\{2w(X_i, T_i)c(X_i, T_i)(g_0(X_i) - g(X_i))\}^2|X_i = x] \\
\geq E[\{S_0(Y_i, X_i, T_i; \tau_0(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g_0(X_i)\}^2|X_i = x],
\]

where \(g_0(x) = (1 - p(x))E[Y_i^{(1)} - c(X_i, T_i)\tau(X_i)|X_i = x, T_i = 1] \) satisfies the equation

\[
E[\{S_0(Y_i, X_i, T_i; \tau_0(X_i)) + 2w(X_i, T_i)c(X_i, T_i)g_0(X_i)\} 2w(X_i, T_i)c(X_i, T_i)\eta(X_i)|X_i = x] = 0
\]

for any function \(\eta(\cdot) \). By interaction model (1) and Condition C2, the expression of \(g_0(x) \) can be further simplified to \(g_0(x) = \mu(x) + [1 - p(x) - c(x, 1)]\tau_0(x) \). As \(\tau_0(\cdot) \) is the unknown target, when \(c(x, 1) = 1 - p(x) \), the optimal augmentation function is mean outcome function, that is, \(g_0(x) = \mu(x) \).

Property 3. Under Conditions C1 to C3, \(\tau_0(x) = \arg\min_{\tau(x)} E[w(X_i, T_i)(Y - g(X_i) - c(X_i, T_i)\tau(X_i))]|X_i = x, T_i = t] \).

Proof of Property 3.

\[
L(\tau(x)) = E[w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)|X_i = x, T_i = t] \\
= p(x)E[w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)|X_i = x, T_i = 1] \\
+ (1 - p(x))E[w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)|X_i = x, T_i = -1] \\
= p(x)w(x, 1)E[|Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)||X_i = x, T_i = 1] \\
+ (1 - p(x))w(x, -1)E[|Y_i - g(X_i) - c(X_i, T_i)\tau(X_i)||X_i = x, T_i = -1]
\]

\[
\frac{\partial L(\tau(x))}{\partial \tau(x)} = -p(x)w(x, 1)c(x, 1)E[\text{sgn}(Y_i - g(X_i) - c(X_i, T_i)\tau(X_i))]|X_i = x, T_i = 1] \\
- (1 - p(x))w(x, -1)c(x, -1)E[\text{sgn}(Y_i - g(X_i) - c(X_i, T_i)\tau(X_i))]|X_i = x, T_i = -1]
\]

By Condition C1, the score equation can be written to

\[
F_{Y_i^{(1)}}(g(x) + c(x, 1)\hat{\tau}(x)) - F_{Y_i^{(1)}}(g(x) + c(x, -1)\hat{\tau}(x)) = 0.
\]

Let \(F_{Y_i^{(1)}}(g(x) + c(x, 1)\hat{\tau}(x)) = F_{Y_i^{(1)}}(g(x) + c(x, -1)\hat{\tau}(x)) = q \), where \(q \in (0, 1) \), then

\[
g(x) + c(x, 1)\hat{\tau}(x) = Q_q(Y_i^{(1)}|X_i = x) \\
g(x) + c(x, -1)\hat{\tau}(x) = Q_q(Y_i^{(1)}|X_i = x).
\]
By Condition C2 \((c(x, 1) - c(x, -1) = 1)\), we have

\[
\hat{r}(x) = Q_q(Y_i^{(1)}|X_i = x) - Q_q(Y_i^{(-1)}|X_i = x).
\]

As

\[
Q_q(Y_i^{(1)}|X_i = x) - Q_q(Y_i^{(-1)}|X_i = x) = Q_q(Y_i|X_i = x, T_i = 1) - Q_q(Y_i|X_i = x, T_i = -1)
= Q_q(b_0(X_i) + \frac{r_0(X_i)}{2} + \epsilon_i|X_i = x, T_i = 1) - Q_q(b_0(X_i) - \frac{r_0(X_i)}{2} - \epsilon_i|X_i = x, T_i = -1)
= b_0(x) + \frac{r_0(x)}{2} + Q_q(\epsilon_i|X_i = x, T_i = 1) - b_0(x) + \frac{r_0(x)}{2} - Q_q(\epsilon_i|X_i = x, T_i = -1)
= r_0(x) + Q_q(\epsilon_i|X_i = x, T_i = 1) - Q_q(\epsilon_i|X_i = x, T_i = -1).
\]

By Assumption 3, \(r_0(x) = \arg\min_{\tau(x)} L(\tau(x))\).

\[\Box\]

A.3 Asymptotic properties

To prove Theorem 1, we first introduce two lemmas.

Lemma 1. Under the same assumptions as Theorem 1, \(W_n\) is asymptotically equivalent to the \((K + p)\)-dimensional normal with mean 0 and variance \(G\).

Proof of Lemma 1. Let \(Z_n = -\sqrt{\frac{nK}{n}} \sum_{i=1}^{n} w(x_i, T_i)c(X_i, T_i)B(X_i)^T \delta^*(U_i)\), the conditional expectation of \(w(X_i, T_i)c(X_i, T_i)\rho(U_i)\) with respect to \(X_i\) is as follows. First, we calculate the conditional expectation with respect to \(X_i\) and \(T_i\),

\[
E[w(X_i, T_i)c(X_i, T_i)\rho(U_i)|X_i = x_i] = E[w(x_i, 1)c(x_i, 1)E[\rho'(Y_i^{(1)} - g(X_i) - c(X_i, 1)B(X_i)^T \beta^*)|X_i = x_i, T_i = 1] + (1 - p(x_i))w(x_i, -1)c(x_i, -1)E[\rho'(Y_i^{(-1)} - g(X_i) - c(X_i, -1)B(X_i)^T \beta^*)|X_i = x_i, T_i = -1]
= p(x_i)w(x_i, 1)c(x_i, 1)E[\rho'(Y_i^{(1)} - g(X_i) - c(X_i, 1)B(X_i)^T \beta^*)] - \rho'(Y_i^{(-1)} - g(X_i) - c(X_i, -1)B(X_i)^T \beta^*)|X_i = x_i] \tag{A1}
\]

From (A1) to (A2) is based on Condition C1. Then, based on the interaction model and the distance between \(r_0(x)\) and \(B(x)^T \beta^*\), we have

\[
E[w(X_i, T_i)c(X_i, T_i)\rho(U_i)|X_i = x_i] = p(x_i)w(x_i, 1)c(x_i, 1)x
\left\{ E[\rho'(b(X_i) + \frac{1}{2} r_0(X_i) + \epsilon_i^{(1)} - g(X_i) - c(X_i, 1)b^0(X_i)[1 + \delta(1)]) - \rho'(b(X_i) - \frac{1}{2} r_0(X_i) + \epsilon_i^{(-1)} - g(X_i) - c(X_i, -1)r_0(X_i) - c(X_i, -1)b^0(X_i)[1 + \delta(1)])|X_i = x_i] \right\} \tag{A3}
\]

\[
= p(x_i)w(x_i, 1)c(x_i, 1)x
\left\{ E[\rho'(b(X_i) - [c(X_i, 1) - 0.5] r_0(X_i) + \epsilon_i^{(1)} - c(X_i, 1)b^0(X_i)[1 + \delta(1)]) - \rho'(b(X_i) - [c(X_i, 1) - 0.5] r_0(X_i) + \epsilon_i^{(-1)} - c(X_i, -1)r_0(X_i) - c(X_i, -1)b^0(X_i)[1 + \delta(1)])|X_i = x_i] \right\}, \tag{A4}
\]

where \(\delta(1)\) uniformly holds for all \(x\) by the distance between \(r_0(x)\) and \(B(x)^T \beta^*\). From (A3) to (A4) is based on Condition C2. Let \(\phi(X_i, T_i) = b(X_i) - g(X_i) - [c(X_i, T_i) - 0.5] r_0(X_i) + \epsilon_i^{(T_i)}\), the expectation condition of \(w(X_i, T_i)c(X_i, T_i)\rho(U_i)\) on \(X_i\) is
Let $\mathbf{x} = (x_1, x_2, \ldots, x_n)^T$, we have the conditional expectation equals
\[
E\left[\sqrt{\frac{K_n}{n}} B(x_i)^T \delta \left(\psi(X_i, T_i, U_i) - E[\psi(X_i, T_i, U_i) | X_i = x_i]\right) \right]^{2+\gamma} | X_i = x_i \]
\[
= \left(\frac{K_n}{n}\right)^{\frac{2\gamma}{7}} |B(x_i)^T\delta|^{2+\gamma} E\left[\left(\psi(X_i, T_i, U_i) - E[\psi(X_i, T_i, U_i) | X_i = x_i]\right)^{2+\gamma} + o(1) | X_i = x_i, T_i = 1\right]
\[
= \left(\frac{K_n}{n}\right)^{\frac{2\gamma}{7}} |B(x_i)^T\delta|^{2+\gamma} \left(1 - p(x_i)\right) E\left[\left(w(x_i, 1) c(x_i, 1) \rho'(U_i)\right)^{2+\gamma} + o(1) | X_i = x_i, T_i = 1\right]
\]
\[
+ \left(1 - p(x_i)\right) E\left[\left(w(x_i, -1) c(x_i, -1) \rho'(U_i)\right)^{2+\gamma} + o(1) | X_i = x_i, T_i = -1\right]
\]
\[
\leq O\left(\left(\frac{K_n}{n}\right)^{\frac{2\gamma}{7}} \right),
\]
where the last two steps are derived by Condition C11. The conditional variance of Z_n respect to $X^{(n)}$ can be calculated as following.
\[
V[Z_n | X^{(n)}] = \frac{K_n}{n} \sum_{i=1}^{n} \left(\frac{B(x_i)^T}{\delta}\right)^2 V\left[w(X_i, T_i) c(X_i, T_i) \rho'(U_i) | X_i = x_i \right]
\]
\[
= \frac{K_n}{n} \sum_{i=1}^{n} \left(\frac{B(x_i)^T}{\delta}\right)^2 \left\{ E\left[(w(X_i, T_i) c(X_i, T_i) \rho'(U_i))^2 | X_i = x_i \right]
\]
\[
- E\left[w(X_i, T_i) c(X_i, T_i) \rho'(U_i) | X_i = x_i \right]^2 \right\}
\]
\[
= K_n \delta^T G \delta (1 + o_p(1))
\]
\[
= O(K_n),
\]
where G is the variance of \mathbf{w}_n. Here, the derivation from (A7) to (A8) uses the Condition C8. Because the matrix G is positive definite and has a finite maximum eigenvalue for any bounded function (lemma 6.2 of Zhou et al\cite{20}), there exists the constants d_1 and d_2 such that
\[d_1 \leq \delta^T G \delta \leq d_2. \]

So it follows that

\[
\frac{1}{V[Z_n|X^{(n)}]^{2+\gamma}/2} \sum_{i=1}^{n} E \left[\left| \sqrt{\frac{K_n}{n}} B(X_i)^T \delta \{ \psi(X_i, T_i, U_i) - E[\psi(X_i, T_i, U_i)|X_i] \} \right|^{2+\gamma} \right| X_i \right]
\]

\[
\leq O(K_n^{-\gamma/2}) O \left(n \left(\frac{K_n}{n} \right)^{(2+\gamma)/2} \right)
\]

\[= o(1) \]

since \(\gamma > 0 \). This leads to

\[
\frac{Z_n - E[Z_n|X^{(n)}]}{\sqrt{V[Z_n|X^{(n)}]}} \xrightarrow{D} N(0, 1)
\]

from Lyapunov’s theorem. The conditional expectation of \(Z_n \) respect to \(X^{(n)} \) can be calculated as

\[
E[Z_n|X^{(n)}] = -\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} B(x_i)^T \delta E[\psi(X_i, T_i, U_i)|X_i = x_i]
\]

\[= -\sqrt{nK_n^{-1}} \sum_{i=1}^{n} p(x_i) w(x_i, 1) c(x_i, 1) b_u(X_i) B(x_i)^T \delta x \]

\[
- \Phi'' \left([1 - \alpha^{(T_i)}] c(x_i, T_i) b_u(X_i) [1 + \delta(1)] | X_i = x_i, T_i = 1 \right) c(x_i, 1) - \Phi'' \left([1 - \alpha^{(T_i)}] c(x_i, T_i) b_u(X_i) [1 + \delta(1)] | X_i = x_i, T_i = -1 \right) c(x_i, -1) \right] \left[1 + \delta(1) \right]
\]

\[= -\sqrt{nK_n} \int_{1}^{0} p(x) w(x, 1) c(x, 1) b_u(x) B(x)^T \delta x \]

\[
- \Phi'' \left([1 - \alpha^{(T_i)}] c(x_i, T_i) b_u(X_i) [1 + \delta(1)] | X_i = x, T_i = 1 \right) c(x, 1) - \Phi'' \left([1 - \alpha^{(T_i)}] c(x_i, T_i) b_u(X_i) [1 + \delta(1)] | X_i = x, T_i = -1 \right) c(x, -1) dQ(x) \left[1 + \delta(1) \right]
\]

\[= o \left(\sqrt{nK_n} K_n^{-\gamma/2} \right). \]

The last step is from the proof of lemma 6.10 of Agarwal and Studden[48] and Equation (6), for \(j = -p + 1, \ldots, K_n \), we have

\[
\int_{0}^{1} p(x) w(x, 1) c(x, 1) c(x, t) b_u(x) B_j(x)^T \delta
\]

\[\times \Phi'' \left([1 - \alpha^{(T)}] c(x, T) b_u(X) [1 + \delta(1)] | X = x, T = t \right) dQ(x) \left[1 + \delta(1) \right]
\]

\[= o(K_n^{-\gamma/2 + 2}). \]

by which \(\sqrt{nK_n} o(K_n^{-\gamma/2}) = o(1) \) from the order of \(K_n \) in Theorem 1. Consequently, we have \(E[Z_n|X^{(n)}]/\sqrt{V[Z_n|X^{(n)}]} = o_p(1) \) and Lemma 1 holds.

\textbf{Lemma 2. Let} \(\nu \) \textbf{be a continuous function on the interval} \([0, 1]\), \textbf{then} \(D = O(K_n^{-1}) \). \textbf{Furthermore,} \(D^{-1} = O(K_n) \).

\textbf{Proof of Lemma 2.} The (i, j)-component of \(D \) is

\[
d_{ij} = \int_{0}^{1} \nu(x) B_i(x) B_j(x) dQ(x).
\]

From the fundamental property of B-spline function (lemma 6.1 in Zhou et al[38]), we have

\[
|g_{ij}(\nu)| \leq \sup_{x \in [0, 1]} |\nu(x)| \sup_{x \in [0, 1]} |Q(x)| \max_{ij} \int_{0}^{1} B_i(x) B_j(x) dx = O(K_n^{-1}).
\]
From the property of B-spline function, D is positive definite matrix. Therefore, $D^{-1} = O(K_n)$ is satisfied.

Now, we are ready to prove Theorem 1. For simplicity we write $a_{n} \sim b_{n}$, where random sequence $\{a_{n}\}$ and $\{b_{n}\}$, if $a_{n}/b_{n} = O_P(1)$.

Proof of Theorem 1. The objective function of proposed method is

$$L_n(\beta) = \sum_{i=1}^{n} w(X_i, T_i) \rho(Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta)$$

$$= \sum_{i=1}^{n} w(X_i, T_i) \rho(Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T [\beta - \beta^* + \beta^*])$$

$$= \sum_{i=1}^{n} w(X_i, T_i) \rho(Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta^* - c(X_i, T_i)B(X_i)^T [\beta - \beta^*]).$$

As this minimization problem doesn’t have explicit solution, for the convergence of $\sqrt{n}(\hat{\beta} - \beta^*)$, we modify the objective function $L_n(\beta)$ as follows:

$$U_n(\delta) = \sum_{i=1}^{n} \left[w(X_i, T_i) \left(\rho \left(U_i - \sqrt{\frac{K_n}{n}} c(X_i, T_i)B(X_i)^T \delta \right) - \rho(U_i) \right) \right],$$

where $U_i = Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta^*$. Then the minimizer $\hat{\delta}_n$ of $U_n(\delta)$ can be obtained as

$$\hat{\delta}_n = \sqrt{\frac{n}{K_n}} (\hat{\beta} - \beta^*).$$

Define

$$R_n(\delta) = U_n(\delta) - E[U_n(\delta)|X^{(n)}, T_n] - \sum_{i=1}^{n} w(X_i, T_i) \{ \rho'(U_i) - \rho'(U_i) \{ a_n c(X_i, T_i)B(X_i)^T \delta \} \},$$

where $X^{(n)}$ represents all the observed X. We have $E[R_n(\delta)|X^{(n)}, T_n] = 0$ from the straight calculation. Let

$$r_i = w(X_i, T_i) \{ \rho(U_i - a_n c(X_i, T_i)B(X_i)^T \delta) - \rho(U_i) - \rho'(U_i) \{ a_n c(X_i, T_i)B(X_i)^T \delta \} \}.$$

Then by Conditions C9 and C10 with $s = a_n c(X_i, T_i)B(X_i)^T \delta$, the variance of r_i is

$$V[r_i] = E[(w(X_i, T_i) \{ \rho(U_i - a_n c(X_i, T_i)B(X_i)^T \delta) - \rho(U_i) - \rho'(U_i) \{ a_n c(X_i, T_i)B(X_i)^T \delta \} \})^2 - [w(X_i, T_i) \{ \Phi(a_n c(X_i, T_i)B(X_i)^T \delta|X_i, T_i) - \Phi(0|X_i, T_i) \} - \Phi'(0|X_i, T_i) a_n c(X_i, T_i)B(X_i)^T \delta)]^2$$

$$= o(a_n^2).$$

Therefore, we have from $K_n = o(n^{1/2})$, $E[R_n(\delta)^2] = \frac{1}{n} V[r_i] = o(1)$ and $R_n(\delta) = O_P(1)$. By the definition of $\Phi(t|X, T)$, the Taylor expansion of

$$\Phi(a_n c(X_i, T_i)B(X_i)^T \delta|X_i, T_i)$$

around $a_n = 0$, we have $E[\rho(U_i - a_n c(X_i, T_i)B(X_i)^T \delta)|X_i, T_i] = \Phi(a_n c(X_i, T_i)B(X_i)^T \delta|X_i, T_i)$ and

$$\Phi(a_n c(X_i, T_i)B(X_i)^T \delta|X_i, T_i) = \Phi(0|X_i, T_i) + \Phi'(0|X_i, T_i) a_n c(X_i, T_i)B(X_i)^T \delta + \frac{1}{2} \Phi''(0|X_i, T_i) a_n c(X_i, T_i)B(X_i)^T \delta)^2 + o(a_n^2)$$.

Therefore, the conditional expectation of \(U_n(\delta) \) given \(X_n \) can be written as

\[
E[U_n(\delta)|X^n, T_n] = \sum_{i=1}^{n} w(X_i, T_i) \left[\Phi'(0|X_i, T_i) \alpha_n c(X_i, T_i) B(X_i)^T \delta + \frac{1}{2} \sum_{i=1}^{n} \Phi''(0|X_i, T_i) \{ \alpha_n c(X_i, T_i) B(X_i)^T \delta \}^2 \right] + o(a_n^2).
\]

Thus, we have \(U_n(\delta) \) as

\[
U_n(\delta) = E[U_n(\delta)|X^n, T_n] + \sum_{i=1}^{n} w(X_i, T_i) \{ \rho'(U_i) - E[\rho'(U_i)|X_i, T_i] \} \{ \alpha_n c(X_i, T_i) B(X_i)^T \delta \} + o_p(1)
\]

\[
= -\sqrt{K_n} W_n^T \delta + \frac{K_n}{2} \delta^T G_n \delta + o_p(1),
\]

where

\[
W_n = -\sqrt{\frac{1}{n}} \sum_{i=1}^{n} \rho'(U_i) w(X_i, T_i) c(X_i, T_i) B(X_i)
\]

\[
G_n = \frac{1}{n} \sum_{i=1}^{n} \Phi''(0|X_i, T_i) w(X_i, T_i) c(X_i, T_i) B(X_i)^T B(X_i).
\]

The minimizer of \(U_n(\delta) \) is

\[
\delta = \arg\min_{\delta} \{ U_n(\delta) \} = G_n^{-1} W_n \sqrt{K_n} + o_p(1).
\]

which is the solution of \(\partial Q_n(\delta)/\partial \delta = 0 \). Hence, because \(\delta = \frac{1}{a_n}(\hat{\beta} - \beta^*) \), we have

\[
\sqrt{\frac{n}{K_n}} (\hat{\tau}(x) - \tau^*(x)) = \sqrt{n} B(x)^T G_n^{-1} \frac{W_n}{\sqrt{K_n}} + o_p(1).
\]

The asymptotic variance of \(\hat{\tau}(x) \) is similar to that of \(\hat{\tau}(x) - \tau^*(x) \) because \(W_n \) is the only random vector in the asymptotic form of \(\hat{\tau}(x) \), it is easy to show that

\[
V[\hat{\tau}(x)] = \frac{1}{K_n} B(x)^T G_n V[W_n] G_n B(x)(1 + o(1)),
\]

where \(G_n = D + o(K_n^{-1}) \) and \(v(x) = p(x) w(x, 1) c(x, 1)^2 \rho''(y^{(1)}) - g(x) - c(x, 1) B(x)^T \beta^* + (1 - p(x)) w(x, -1) c(x, -1)^2 \rho''(y^{(1)}) - g(x) - c(x, -1) B(x)^T \beta^* \) due to the Riemann integral, fundamental asymptotic property of B-spline basis, and Lemma 2. Under the condition \(K_n = O(n^{1/(2q+3)}) \), we have

\[
\sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau_0(x) \} = \sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau^*(x) + b^*(x) + o(K_n^{-(q+1)}) \}
\]

and

\[
\sqrt{\frac{n}{K_n}} b^*(x) = O \left(\sqrt{\frac{n}{K_n}} K_n^{-(q+1)} \right) = O(1). \text{ Thus, we have}
\]

\[
\sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau_0(x) - b^*(x) \} \xrightarrow{D} N(0, \Psi(x)),
\]

where \(\Psi(x) = \lim_{n \to \infty} \frac{1}{K_n} B(x)^T D^{-1} G_D^{-1} B(x) \). This completes the proof.

To prove Theorem 2, we introduce two lemmas as well.
Lemma 3. Let \(U_i = w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta^*) \). Under the same assumptions as Theorem 2,

\[
\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} w(X_i, T_i)c(X_i, T_i)B(X_i)^T \delta[1-2I(U_i<0)] \overset{as}{\sim} -\sqrt{K_n}W^T \delta,
\]

where \(W \sim N(0, G) \).

Proof of Lemma 3. Let \(Z_n = -\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} w(X_i, T_i)c(X_i, T_i)B(X_i)^T \delta[1-2I(U_i<0)] \), the conditional expectation of \(w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)] \) respect to \(X_i \) can be calculated as following.

\[
E[w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)]|X_i = x_i]
= p(x_i)w(x_i, 1)c(x_i, 1)E[1-2I(U_i<0)|X_i = x_i, T_i = 1]
+ (1 - p(x_i))w(x_i, -1)c(x_i, -1)E[1-2I(U_i<0)|X_i = x_i, T_i = -1]
= p(x_i)w(x_i, 1)c(x_i, 1)[1-2E[I(U_i<0)|X_i = x_i, T_i = 1] - 1 + 2E[I(U_i<0)|X_i = x_i, T_i = -1]}
= 2p(x_i)w(x_i, 1)c(x_i, 1)P(U_i < 0|X_i = x_i, T_i = -1) - P(U_i < 0|X_i = x_i, T_i = 1)]
= 2p(x_i)w(x_i, 1)c(x_i, 1)P(Y_i^{(-1)} < g(x_i) + c(x_i, -1)B(x_i)^T \beta^*) - P(Y_i^{(1)} < g(x_i) + c(x_i, 1)B(x_i)^T \beta^*)]
= 2p(x_i)w(x_i, 1)c(x_i, 1)P(e_i^{(-1)} < g(x_i) - b(x_i) + [c(x_i, 1) - 0.5]T_0(x_i) + [c(x_i, 1) - 1]b'(x_i)(1 + o(1))|x_i)
= -2p(x_i)w(x_i, 1)c(x_i, 1)b'(x_i)f_{\epsilon_i}(g(x_i) - b(x_i) + [c(x_i, 1) - 0.5]r_0(x_i)|x_i)(1 + o(1))
= o(1).
\]

The derivation from the first equation to the second equation is by Condition C1, that from the third equation to the fourth equation is by Model (1), that to the fifth equation is by proposed Condition C2, the last two steps are by Taylor expansion and the order of \(b'(x_i) \).

Therefore, let \(\psi(X_i, T_i, U_i) = w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)] \), we obtain

\[
E \left[\left| \frac{K_n}{n} B(X_i)^T \delta[\psi(X_i, T_i, U_i) - E[\psi(X_i, T_i, U_i)|X_i = x_i]] \right|^{2+\gamma} \middle| X_i = x_i \right]
= \left(\frac{K_n}{n} \right)^{\frac{2\gamma}{2+\gamma}} |B(X_i)^T \delta|^{2+\gamma} E \left[|\psi(X_i, T_i, U_i)|^{2+\gamma} + o(1) \middle| X_i = x_i \right]
= \left(\frac{K_n}{n} \right)^{\frac{2\gamma}{2+\gamma}} |B(X_i)^T \delta|^{2+\gamma} \left(p(x_i)E[|w(x_i, 1)c(x_i, 1)[1-2I(U_i<0)]|^{2+\gamma} + o(1)|X_i = x_i, T_i = 1] + (1 - p(x_i))E[|w(x_i, -1)c(x_i, -1)[1-2I(U_i<0)]|^{2+\gamma} + o(1)|X_i = x_i, T_i = -1] \right)
\leq O \left(\left(\frac{K_n}{n} \right)^{\frac{2\gamma}{2+\gamma}} \right),
\]

where the last two steps are derived by Condition C12. The conditional variance of \(Z_n \) respect to \(X^{(n)} \) can be calculated as following.

\[
V[Z_n|X^{(n)}] = \frac{K_n}{n} \sum_{i=1}^{n} (B(x_i)^T \delta)^2 V \left[w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)] \middle| X_i = x_i \right]
= \frac{K_n}{n} \sum_{i=1}^{n} (B(x_i)^T \delta)^2 \left\{ E \left[(w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)])^2 \middle| X_i = x_i \right]
- E \left[w(X_i, T_i)c(X_i, T_i)[1-2I(U_i<0)] \middle| X_i = x_i \right]^2 \right\}
= \frac{K_n}{n} \sum_{i=1}^{n} (B(x_i)^T \delta)^2 \left\{ p(x_i)w(x_i, 1)^2c(x_i, 1)^2 + (1 - p(x_i))w(x_i, -1)^2c(x_i, -1)^2 \right\}
\]
from Lyapunov’s theorem. The conditional expectation of Lemma 4.

Proof of Lemma by which LI et al. since

So it follows that

\[
\int_{V[Z_n|X^{(n)}]}^{2+\gamma} \sum_{i=1}^{n} E \left[\left(\sqrt{\frac{K_n}{n}} B(X_i)^T \delta [\psi(X_i, T_i, U_i) - E[\psi(X_i, T_i, U_i)|X_i]] \right)^{2+\gamma} \right] \leq O\left(\frac{K_n}{n}^{(2+\gamma)/2} \right) \]

\[
= o(1)
\]

since \(\gamma \geq 0 \). This leads to

\[
\frac{Z_n - E[Z_n|X^{(n)}]}{\sqrt{V[Z_n|X^{(n)}]}} \overset{D}{\rightarrow} N(0, 1)
\]

from Lyapunov’s theorem. The conditional expectation of \(Z_n \) respect to \(X^{(n)} \) can be calculated as

\[
E[Z_n|X^{(n)}] = -\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} B(X_i)^T \delta E[\psi(X_i, T_i, U_i)|X_i]
\]

\[
= 2\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} p(x_i)w(x_i, 1)c(x_i, 1)b^2(x_i)f_{\tau_0}(g(x_i) - b(x_i) + [c(x_i, 1) - 0.5]\tau_0(x_i))(1 + o(1))
\]

\[
= 2\sqrt{nK_n} \int_0^1 p(u)w(u, 1)c(u, 1)b^2(u)f_{\tau_0}(g(u) - b(u) + [c(u, 1) - 0.5]\tau_0(u)|u)dQ(u)(1 + o(1)).
\]

From the proof of lemma 6.10 of Agarwal and Studden,\(^{48}\) for \(j = -p + 1, \ldots, K_n \), we have

\[
\int_0^1 p(u)w(u, 1)c(u, 1)b^2(u)f_{\tau_0}(g(u) - b(u) + [c(u, 1) - 0.5]\tau_0(u)|u)dQ(u)(1 + o(1)) = o(\frac{1}{\sqrt{nK_n}}).
\]

by which \(\sqrt{nK_n}o(\frac{1}{\sqrt{nK_n}}) = o(1) \). Consequently, we have \(E[Z_n|X^{(n)}]/\sqrt{V[Z_n|X^{(n)}]} \sim o(1) \) and Lemma 3 holds. \(\square \)

Lemma 4. Let \(w_n = \sqrt{\frac{K_n}{n}} w(x_i, t_i)c(x_i, t_i)B(x_i)^T \delta \) \(i = 1, \ldots, n \) for \(\delta \in \mathbb{R}^{K_n+q} \). Then, under the assumptions of Theorem 2,

\[
2\sum_{i=1}^{n} \int_0^{w_n} [I(U_i \leq s) - I(U_i \leq 0)]ds \sim K_n\delta^T D\delta.
\]

Proof of Lemma 4. Let

\[
R_n = 2\sum_{i=1}^{n} \int_0^{w_n} [I(U_i \leq s) - I(U_i \leq 0)]ds.
\]

Since

\[
E \left[\int_0^{w_n} [I(U_i \leq s) - I(U_i \leq 0)]ds | X_i = x_i, T_i = t_i \right]
\]

\[
= \int_0^{w_n} E[I(U_i \leq s) - I(U_i \leq 0)| X_i = x_i, T_i = t_i]ds
\]
\[
E[R_n|X^{(n)}] = -2\frac{K_n}{n} \sum_{i=1}^{n} \left\{ p(x_i)w(x_i, 1)c(x_i, 1)^2f_1 \left(g(x_i) + c(x_i, T_i)\tau^*(X_i) \big| X_i = x_i, T_i = 1 \right) + (1 - p(x_i))w(x_i, -1)c(x_i, -1)^2f_{-1} \left(g(x_i) + c(x_i, T_i)\tau^*(X_i) \big| X_i = x_i, T_i = -1 \right) \right\} \delta^T B(x_i)B(x_i)^T \delta (1 + o(1))
\]
\[
= K_n \delta^T \left\{ \frac{1}{n} \sum_{i=1}^{n} \left\{ p(x_i)w(x_i, 1)c(x_i, 1)^2f_1 (g(x_i) + c(x_i, 1)r_0(x_i)|x_i) + (1 - p(x_i))w(x_i, -1)c(x_i, -1)^2f_{-1} (g(x_i) + c(x_i, -1)r_0(x_i)|x_i)B(x_i)B(x_i)^T \right\} \delta (1 + o_P(1)) \right\}
\]
\[
= K_n \delta^T \mathbf{D} \delta (1 + o_P(1)).
\]

For \(i = 1, \ldots, n \), we have
\[
\int_0^{w_n} [I(u_i \leq s) - I(u_i \leq 0)] ds \leq \sqrt{\frac{K_n}{n} w(x_i, t_i)c(x_i, t_i)B(x_i)^T \delta}.
\]

Therefore, the variance of \(R_n \) can be evaluated as
\[
V[R_n|X^{(n)}] \leq \sum_{i=1}^{n} E \left[\left(\int_0^{w_n} [I(u_i \leq s) - I(u_i \leq 0)] ds \right)^2 \big| X_i = x_i \right] \leq \sqrt{\frac{K_n}{n} \max \{ w(x_i, t_i)c(x_i, t_i) \} E[R_n|X^{(n)}]}.
\]

Since \(E[R_n|X^{(n)}] = O(K_n) \), we obtain \(\sqrt{V[R_n|X^{(n)}]}/E[R_n|X^{(n)}] = o_P(1) \) and hence, Lemma 4 holds.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. The objective function of proposed method is
\[
L(\beta) = \sum_{i=1}^{n} w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta|
\]
\[
= \sum_{i=1}^{n} w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T (\beta - \beta^* + \beta^*)|
\]
\[
= \sum_{i=1}^{n} w(X_i, T_i)|Y_i - g(X_i) - c(X_i, T_i)B(X_i)^T \beta^* - c(X_i, T_i)B(X_i)^T (\beta - \beta^*)|.
\]
Let
\[U_n(\delta) = \sum_{i=1}^{n} \left[U_i - \sqrt{\frac{K_n}{n}} w(X_i, T_i) c(X_i, T_i) B(X_i)^T \delta \right] = U_{1n}(\delta) + U_{2n}(\delta), \]
where
\[U_i = w(X_i, T_i)(Y_i - g(X_i) - c(X_i, T_i) B(X_i)^T \beta^*). \]
Then the minimizer \(\hat{\delta}_n \) of \(U_n(\delta) \) can be obtained as
\[\hat{\delta}_n = \sqrt{\frac{n}{K_n}} (\hat{\beta} - \beta^*). \]

Following the Knight's identity, we can write \(U_n(\delta) \) as
\[U_n(\delta) = U_{1n}(\delta) + U_{2n}(\delta), \]
where
\[U_{1n}(\delta) = -\sqrt{\frac{K_n}{n}} \sum_{i=1}^{n} w(X_i, T_i) c(X_i, T_i) B(X_i)^T \delta [1 - 2I(U_i < 0)] \]
\[U_{2n}(\delta) = 2 \sum_{i=1}^{n} \int_0^{w_{in}} I(U_i \leq s) - I(U_i \leq 0) ds, \]
where \(w_{in} = \sqrt{\frac{K_n}{n}} w(x_i, t_i) c(x_i, t_i) B(x_i)^T \delta. \) From Lemma 3,
\[U_{1n}(\delta) \overset{as}{\sim} - \sqrt{K_n W^T \delta}, \]
where \(W \sim N(0, G). \) Furthermore, Lemma 4 yield
\[U_{2n}(\delta) \overset{as}{\sim} K_n \delta^T D \delta. \]

Therefore, for both methods we obtain
\[U_n(\delta) \overset{as}{\sim} U_{0n}(\delta) = -\sqrt{K_n W^T \delta + K_n \delta^T D \delta}. \]

Because \(U_{0n}(\delta) \) is convex with respect to \(\delta \) and has unique minimizer, the minimizer of \(U_n(\delta) \) converges to \(\delta_0 = \text{argmin}_{\delta} \{ U_{0n}(\delta) \}. \) This fact is detailed in Knight\(^{50}. \) Hence, we have
\[\sqrt{\frac{n}{K_n}} (\hat{\beta} - \beta^*) \overset{as}{\sim} \delta_0 = \text{D}^{-1} \left(\frac{1}{2\sqrt{K_n}} W \right). \]

Since \(\hat{\tau}(x) - \tau^*(x) = B(x)^T (\hat{\beta} - \beta^*) \), we obtain for \(x \in (0, 1) \), as \(n \to \infty \),
\[\sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau^*(x) \} \overset{D}{\to} N(0, \Psi(x)), \]
where \(\Psi(x) = \lim_{n \to \infty} \frac{1}{4K_n} B(x)^T D^{-1} G D^{-1} B(x) \) by the definition of \(W \).

Under the condition \(K_n = O(n^{1/(2q+3)}) \), we have
\[\sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau_0(x) \} = \sqrt{\frac{n}{K_n}} \{ \hat{\tau}(x) - \tau^*(x) - b^*(x) + o(K_n^{-q+1}) \} \]
and \(\sqrt{\frac{n}{K_n}} b^*(x) = O \left(\sqrt{\frac{n}{K_n}} K_n^{-(q+1)} \right) = O(1). \) This completes the proof. \(\blacksquare \)
APPENDIX B. SIMULATION RESULTS

B.1 Simulation results of settings 1 to 3

\(\xi_0 \)	Measurement	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	\(Q(\hat{\eta}) \)
0	MCMEA	0.34	0.08	0.42	0.48	1.00	0.49	1.18
	L\(_1\)-MCMEA	0.27	0.23	0.50	0.52	1.00	0.88	1.18
	RL	0.18	0.24	0.42	0.47	1.00	0.60	1.20
	L\(_1\)-RL	0.14	0.32	0.46	0.50	1.00	0.93	1.19
	AL	0.35	0.19	0.54	0.47	1.00	0.53	1.18
	L\(_1\)-AL	0.28	0.37	0.64	0.52	1.00	0.86	1.18
	QL	0.35	0.16	0.51	0.43	1.00	0.30	1.17
	L\(_1\)-QL	0.16	0.28	0.44	0.46	1.00	0.41	1.19
0.05	MCMEA	0.92	0.59	1.51	0.95	0.90	0.50	1.04
	L\(_1\)-MCMEA	0.27	0.33	0.61	0.53	1.00	0.86	1.17
	RL	0.55	0.79	1.34	0.88	0.94	0.49	1.07
	L\(_1\)-RL	0.15	0.41	0.55	0.55	1.00	0.91	1.18
	AL	0.91	0.69	1.60	0.97	0.88	0.54	1.03
	L\(_1\)-AL	0.32	0.47	0.79	0.55	1.00	0.85	1.17
	QL	0.76	0.54	1.30	0.88	0.96	0.46	1.07
	L\(_1\)-QL	0.17	0.31	0.48	0.48	1.00	0.43	1.18
0.1	MCMEA	1.41	0.75	2.16	1.17	0.72	0.62	0.91
	L\(_1\)-MCMEA	0.28	0.42	0.70	0.56	1.00	0.85	1.16
	RL	1.08	0.99	2.08	1.13	0.77	0.59	0.94
	L\(_1\)-RL	0.15	0.45	0.61	0.57	1.00	0.92	1.18
	AL	1.39	0.88	2.27	1.19	0.70	0.64	0.90
	L\(_1\)-AL	0.34	0.60	0.94	0.60	0.99	0.81	1.16
	QL	1.20	0.66	1.86	1.08	0.86	0.54	0.98
	L\(_1\)-QL	0.17	0.33	0.50	0.50	1.00	0.48	1.18
0.15	MCMEA	1.72	0.88	2.60	1.29	0.58	0.69	0.81
	L\(_1\)-MCMEA	0.30	0.51	0.81	0.61	0.99	0.85	1.15
	RL	1.48	1.12	2.60	1.28	0.62	0.69	0.83
	L\(_1\)-RL	0.15	0.52	0.67	0.60	0.99	0.91	1.17
	AL	1.71	0.99	2.69	1.31	0.56	0.71	0.80
	L\(_1\)-AL	0.39	0.76	1.15	0.67	0.97	0.83	1.15
	QL	1.15	0.78	2.23	1.19	0.79	0.56	0.91
	L\(_1\)-QL	0.18	0.38	0.56	0.53	0.99	0.47	1.17

(Continues)
ξ_o	Measurement	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\eta})$
0.2	MCMEA	1.98	0.98	2.96	1.39	0.46	0.76	0.73
	L_1-MCMEA	0.36	0.67	1.03	0.67	0.98	0.83	1.14
	RL	1.79	1.20	2.99	1.39	0.49	0.75	0.75
	L_1-RL	0.16	0.59	0.75	0.63	0.99	0.89	1.17
	AL	1.95	1.10	3.06	1.40	0.44	0.77	0.73
	L_1-AL	0.50	1.00	1.50	0.75	0.96	0.81	1.13
	QL	1.70	0.88	2.59	1.29	0.70	0.61	0.84
	L_1-QL	0.19	0.42	0.61	0.54	0.99	0.52	1.17

Note: In the presence of outliers, L_1-MCMEA and L_1-RL outperformed their L_2-based counterparts. The MSE and MAE decreased and sensitivity, specificity, and $Q(\hat{\eta})$ increased with sample size.

Abbreviations: AL, A-learning; MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner.

TABLE B2 Simulation results of Setting 2

ξ_o	Sample size	Method	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\eta})$
0.05	200	MCMEA	2.29	0.92	3.21	1.43	0.32	0.83	0.66
		L_1-MCMEA	1.32	1.34	2.65	1.20	0.72	0.62	0.92
		RL	1.76	1.85	3.61	1.47	0.39	0.82	0.71
		L_1-RL	0.72	2.58	3.30	1.34	0.84	0.52	0.97
		AL	2.28	1.49	3.77	1.52	0.26	0.88	0.64
		L_1-AL	1.31	2.77	4.08	1.40	0.60	0.67	0.86
		QL	2.14	0.79	2.92	1.37	0.69	0.57	0.78
		L_1-QL	0.64	1.19	1.83	0.99	0.89	0.37	1.02
500		MCMEA	1.49	0.75	2.24	1.18	0.69	0.65	0.88
		L_1-MCMEA	0.50	0.65	1.14	0.74	0.97	0.71	1.11
		RL	0.98	1.17	2.15	1.14	0.73	0.64	0.91
		L_1-RL	0.26	0.87	1.14	0.79	0.98	0.77	1.14
		AL	1.48	0.97	2.44	1.23	0.63	0.70	1.10
		L_1-AL	0.53	1.04	0.82	0.82	0.96	0.67	0.91
		QL	1.26	0.72	1.97	1.11	0.87	0.50	0.95
		L_1-QL	0.25	0.50	0.75	0.62	0.99	0.46	1.15
1000		MCMEA	0.92	0.59	1.51	0.95	0.90	0.50	1.04
		L_1-MCMEA	0.27	0.33	0.61	0.53	1.00	0.86	1.17
		RL	0.55	0.79	1.34	0.88	0.94	0.49	1.07
		L_1-RL	0.15	0.41	0.55	0.55	1.00	0.91	1.18
		AL	0.91	0.69	1.60	0.97	0.88	0.54	1.03
		L_1-AL	0.32	0.47	0.79	0.55	1.00	0.85	1.17
		QL	0.76	0.54	1.30	0.88	0.96	0.46	1.07
		L_1-QL	0.17	0.31	0.48	0.48	1.00	0.43	1.18
TABLE B2 (Continued)

ξ_0	Sample size	Method	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\eta})$
0	200	MCMEA	1.22	0.73	1.95	1.04	0.84	0.61	1.00
		L_1-MCMEA	1.20	1.10	2.31	1.11	0.83	0.57	0.98
		RL	0.45	0.96	1.41	0.85	0.98	0.62	1.10
		L_1-RL	0.73	2.23	2.96	1.26	0.88	0.53	1.01
		AL	1.22	1.62	2.84	1.17	0.74	0.70	0.94
		L_1-AL	1.19	2.45	3.64	1.29	0.75	0.57	0.93
		QL	1.34	0.33	1.67	1.01	0.93	0.70	1.03
		L_1-QL	0.56	1.03	1.59	0.93	0.92	0.34	1.05
500		MCMEA	0.57	0.26	0.83	1.00	0.65	1.15	0.51
		L_1-MCMEA	0.44	0.50	0.94	0.68	0.99	0.74	1.14
		RL	0.26	0.25	0.51	0.48	1.00	0.62	1.18
		L_1-RL	0.28	0.76	1.04	0.74	0.99	0.81	1.14
		AL	0.55	0.42	0.96	0.64	0.99	0.55	1.15
		L_1-AL	0.47	0.80	1.27	0.73	0.97	0.67	1.13
		QL	0.48	0.29	0.76	0.55	1.00	0.31	1.14
		L_1-QL	0.24	0.45	0.69	0.59	0.99	0.42	1.16
1000		MCMEA	0.38	0.14	0.52	0.50	1.00	0.49	1.18
		L_1-MCMEA	0.27	0.27	0.54	0.52	1.00	0.88	1.18
		RL	0.18	0.13	0.31	0.37	1.00	0.60	1.20
		L_1-RL	0.14	0.36	0.50	0.52	1.00	0.93	1.19
		AL	0.35	0.19	0.54	0.47	1.00	0.53	1.18
		L_1-AL	0.28	0.37	0.64	0.52	1.00	0.86	1.18
		QL	0.35	0.16	0.51	0.43	1.00	0.30	1.17
		L_1-QL	0.16	0.28	0.44	0.46	1.00	0.41	1.19

Note: In the presence of outliers, L_1-MCMEA and L_1-RL outperformed their L_2-based counterparts. The MSE and MAE decreased and sensitivity and specificity increased with sample size.

Abbreviations: AL, A-learning; MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner.

TABLE B3 Simulation results of Setting 3

ξ_0	Dimension	Method	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\eta})$
0.05	10	MCMEA	0.92	0.59	1.51	0.95	0.90	0.50	1.04
		L_1-MCMEA	0.27	0.33	0.61	0.53	1.00	0.86	1.17
		RL	0.55	0.79	1.34	0.88	0.94	0.49	1.07
		L_1-RL	0.15	0.41	0.55	0.55	1.00	0.91	1.18
		AL	0.91	0.69	1.60	0.97	0.88	0.54	1.03
		L_1-AL	0.32	0.47	0.79	0.55	1.00	0.85	1.17
		QL	0.76	0.54	1.30	0.88	0.96	0.46	1.07
		L_1-QL	0.17	0.31	0.48	0.48	1.00	0.43	1.18

(Continues)
ξ_0	Dimension	Method	Bias sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\eta})$
30	MCMEA	1.06	0.61	1.67	1.05	0.87	0.73	1.01	
	L_1-MCMEA	0.31	0.37	0.68	0.56	0.99	0.99	1.17	
	RL	0.62	0.89	1.51	0.98	0.85	0.75	0.99	
	L_1-RL	1.06	0.42	0.60	0.59	1.00	0.98	1.18	
	AL	0.87	0.61	1.48	0.96	0.87	0.72	1.00	
	L_1-AL	0.25	0.33	0.58	0.50	0.99	0.99	1.17	
	QL	1.14	0.63	1.77	1.12	0.80	0.82	1.01	
	L_1-QL	0.32	0.43	0.75	0.59	0.99	0.99	1.17	
	RL	0.69	0.92	1.61	1.05	0.79	0.81	0.98	
	L_1-RL	1.10	0.75	1.85	1.17	0.73	0.84	0.96	
	AL	0.96	0.62	1.58	1.04	0.83	0.75	0.98	
	L_1-AL	0.29	0.34	0.63	0.52	0.98	0.99	1.17	
50	MCMEA	0.35	0.12	0.47	0.51	1.00	0.49	1.18	
	L_1-MCMEA	0.27	0.23	0.50	0.52	1.00	0.88	1.18	
	RL	0.18	0.24	0.42	0.47	1.00	0.60	1.20	
	L_1-RL	0.14	0.32	0.46	0.50	1.00	0.93	1.19	
	AL	0.35	0.19	0.54	0.47	1.00	0.53	1.18	
	L_1-AL	0.28	0.37	0.64	0.52	1.00	0.86	1.18	
	QL	0.35	0.16	0.41	0.43	1.00	0.30	1.17	
	L_1-QL	0.16	0.28	0.44	0.46	1.00	0.41	1.19	
0 10	MCMEA	0.34	0.08	0.42	0.48	1.00	0.49	1.18	
	L_1-MCMEA	0.27	0.23	0.50	0.52	1.00	0.88	1.18	
	RL	0.18	0.24	0.42	0.47	1.00	0.60	1.20	
	L_1-RL	0.14	0.32	0.46	0.50	1.00	0.93	1.19	
	AL	0.35	0.19	0.54	0.47	1.00	0.53	1.18	
	L_1-AL	0.28	0.37	0.64	0.52	1.00	0.86	1.18	
	QL	0.35	0.16	0.41	0.43	1.00	0.30	1.17	
	L_1-QL	0.16	0.28	0.44	0.46	1.00	0.41	1.19	
30	MCMEA	0.35	0.12	0.47	0.51	1.00	0.54	1.18	
	L_1-MCMEA	0.28	0.26	0.54	0.55	1.00	0.99	1.18	
	RL	0.20	0.26	0.46	0.50	1.00	0.60	1.19	
	L_1-RL	0.19	0.32	0.51	0.53	1.00	0.98	1.19	
	AL	0.39	0.19	0.58	0.50	1.00	0.58	1.18	
	L_1-AL	0.30	0.38	0.68	0.55	0.99	0.99	1.18	
	QL	0.30	0.15	0.45	0.46	0.99	0.97	1.13	
	L_1-QL	0.16	0.32	0.48	0.49	0.99	0.99	1.19	
50	MCMEA	0.37	0.15	0.52	0.54	1.00	0.60	1.17	
	L_1-MCMEA	0.29	0.29	0.58	0.58	1.00	0.99	1.18	
	RL	0.21	0.27	0.48	0.53	1.00	0.61	1.17	
	L_1-RL	0.21	0.35	0.56	0.56	1.00	0.99	1.19	
	AL	0.42	0.20	0.62	0.53	1.00	0.63	1.16	
	L_1-AL	0.32	0.40	0.72	0.58	1.00	0.99	1.18	
	QL	0.32	0.17	0.49	0.49	1.00	0.97	1.09	

Note: Effects of the covariate dimension. With the presence of outliers, the L_1-based methods outperformed the L_2-based methods in MSE and MAE.

Abbreviations: AL, A-learning; MCMEA, modified covariates method with efficiency augmentation; RL, R-learner.
B.2 Additional simulation settings and results

B.2 High-dimensional training sample with NIS

We designed and conducted simulation on an additional parameter setting, to assess the performance of the proposed methods in high-dimension situations. As described in Section 2.3, we used NIS to screen the covariates in the first step.

We generated data as follows the dimension of the covariates was indexed by p:

$$X_i \sim N_p(0, \Sigma), \quad \text{diag}(\Sigma) = 1, \quad \text{Corr}(X_{ij}, X_{ik}) = 0.5^{|j-k|}, i = 1, \ldots, n,$$

$$D_i | X_i \sim \text{Bernoulli}(p(X_i)), \quad T_i = 2D_i - 1, \quad \logit(p(X_i)) = X_{i1} - X_{i2},$$

$$Y_i = b_0(X_i) + \frac{T_i}{2}r_0(X_i) + \varepsilon_i, \quad \varepsilon_i \sim (1 - p_o)N(0, 1) + p_o \text{Laplace}(0, 10),$$

$$b_0(X_i) = 0.5 + 4X_{i1} + X_{i2} - 3X_{i3}, \quad r_0(X_i) = 2 \sin(2X_{i1}) - X_{i2} + 3 \tanh(0.5X_{i3}),$$

where p_o is the proportion of outliers, $n = 1000$, $p_o \in \{0, 0.05\}$, and $p \in \{1000, 3000, 5000\}$

Figure B1 shows that the NIS performed well in variable selection, especially when there were outliers.

![FIGURE B1](image)

TABLE B4 Simulation results of Setting 4

ξ_o	Dimension	Method	Bias.sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{d})$
0.05	1000	MCMEA	0.65	0.78	1.43	0.89	0.91	1.00	1.07
		L_1-MCMEA	0.07	0.32	0.38	0.45	0.98	1.00	1.18
		RL	0.61	0.88	1.50	0.91	0.89	1.00	1.06
		L_1-RL	0.06	0.40	0.46	0.50	0.98	1.00	1.18
		AL	0.88	0.78	1.66	0.97	0.86	1.00	1.03
		L_1-AL	0.12	0.41	0.53	0.52	0.98	1.00	1.17
		QL	0.78	0.71	1.50	0.91	0.94	1.00	1.07
		L_1-QL	0.09	0.32	0.40	0.46	0.98	1.00	1.18

(Continues)
ξ_0	Dimension	Method	Bias sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{\theta})$
3000	MCMEA	0.56	0.94	1.51	0.90	0.88	1.00	1.00	1.05
	L_1-MCMEA	0.07	0.41	0.48	0.49	0.95	1.00	1.00	1.17
	RL	0.52	1.13	1.65	0.93	0.87	1.00	1.00	1.04
	L_1-RL	0.07	0.48	0.55	0.53	0.95	1.00	1.00	1.17
	AL	0.77	1.01	1.78	0.98	0.84	1.00	1.00	1.02
	L_1-AL	0.15	0.51	0.66	0.56	0.95	1.00	1.00	1.16
	QL	0.67	0.85	1.52	0.91	0.92	1.00	1.00	1.05
	L_1-QL	0.11	0.39	0.50	0.50	0.95	1.00	1.00	1.17
5000	MCMEA	0.72	0.96	1.68	0.95	0.86	1.00	1.00	1.04
	L_1-MCMEA	0.13	0.43	0.56	0.54	0.93	1.00	1.00	1.16
	RL	0.67	1.10	1.77	0.97	0.85	1.00	1.00	1.04
	L_1-RL	0.12	0.52	0.64	0.57	0.93	1.00	1.00	1.16
	AL	0.98	0.98	1.96	1.03	0.82	1.00	1.00	1.01
	L_1-AL	0.24	0.52	0.76	0.61	0.93	1.00	1.00	1.15
	QL	0.86	0.84	1.70	0.96	0.91	1.00	1.00	1.05
	L_1-QL	0.17	0.42	0.58	0.53	0.93	1.00	1.00	1.16
0 1000	MCMEA	0.10	0.10	0.20	0.33	1.00	1.00	1.00	1.21
	L_1-MCMEA	0.06	0.22	0.28	0.41	1.00	1.00	1.00	1.20
	RL	0.10	0.13	0.23	0.35	1.00	1.00	1.00	1.20
	L_1-RL	0.08	0.28	0.30	0.43	1.00	1.00	1.00	1.20
	AL	0.17	0.12	0.29	0.37	1.00	1.00	1.00	1.19
	L_1-AL	0.11	0.21	0.32	0.39	1.00	1.00	1.00	1.19
	QL	0.22	0.14	0.35	0.39	1.00	1.00	1.00	1.18
	L_1-QL	0.09	0.20	0.29	0.40	1.00	1.00	1.00	1.20
3000	MCMEA	0.12	0.10	0.23	0.35	1.00	1.00	1.00	1.21
	L_1-MCMEA	0.06	0.23	0.29	0.41	1.00	1.00	1.00	1.20
	RL	0.11	0.13	0.24	0.36	1.00	1.00	1.00	1.20
	L_1-RL	0.06	0.28	0.33	0.45	1.00	1.00	1.00	1.20
	AL	0.20	0.13	0.33	0.40	1.00	1.00	1.00	1.19
	L_1-AL	0.10	0.26	0.36	0.45	1.00	1.00	1.00	1.19
	QL	0.22	0.15	0.38	0.41	1.00	1.00	1.00	1.18
	L_1-QL	0.08	0.23	0.31	0.41	1.00	1.00	1.00	1.20
5000	MCMEA	0.15	0.11	0.26	0.39	1.00	1.00	1.00	1.20
	L_1-MCMEA	0.11	0.24	0.35	0.28	1.00	1.00	1.00	1.20
	RL	0.14	0.13	0.28	0.39	1.00	1.00	1.00	1.20
	L_1-RL	0.11	0.30	0.41	0.49	1.00	1.00	1.00	1.20
	AL	0.25	0.13	0.38	0.43	1.00	1.00	1.00	1.19
	L_1-AL	0.18	0.28	0.46	0.51	1.00	1.00	1.00	1.19
	QL	0.30	0.17	0.47	0.45	1.00	1.00	1.00	1.18
	L_1-QL	0.13	0.24	0.37	0.45	1.00	1.00	1.00	1.19

Note: In the presence of outliers, the L_1-based methods performed markedly better than the L_2-based methods.
Abbreviations: AL, A-learning; MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner.
B.2.2 Effects of smoothness penalty

Finally, we investigated the effects of an added smoothness penalty. We considered a situation involving a univariate covariate x. We visualized the performance differences of the L_1 and L_2 methods, with and without the smoothness penalty.

We generated the data of Setting 5 as follows: $X_i \sim \text{Unif}(0, 1)$, $\tau(X_i) = 3\sin(9(X_i - 0.5))$, $p(X_i) = 1/(1 + e^{-X_i})$, $Y_i = 1 + \frac{T_i}{4} \tau_0(X_i) + \epsilon_i$, $\epsilon_i \sim 0.9N(0, 1) + 0.1\text{logNormal}(0, 4)$, the sample size $n = 1000$, and the validation set with a size of 200. From Figures B2 and B3, it is clear that the L_1 methods outperform the L_2 methods, and the L_1 with smoothness penalty greatly improved the performance of the estimation while reducing the variance. The 95% Bootstrap C.I. coverage rate at selected point $x \in \{0.2, 0.5, 0.8\}$ were listed in Table B5. The asymptotic variances of the L_1-MCM-EA methods without penalty at selected point $x \in \{0.2, 0.5, 0.8\}$ are 0.130, 0.110, and 0.137, corresponding 95% asymptotic C.I. coverage rates are 0.957,

FIGURE B2 Panels on the left are L_2-based methods with smoothness penalty. Panels on the right are L_1-based methods, also with smoothness penalties. The black solid line is the estimate from one replication, the black dashed lines represent quantile 95% bootstrap confidence interval from the same replication, and the red solid line represents the true treatment effect function [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE B3 Panels on the left are L_2 loss based methods without smoothness penalties, panels on the right are L_1-based methods without smoothness penalties. The black solid line is the estimate from one replication, the black dashed lines represent quantile 95% bootstrap C.I., the black dotted lines represent the 95% asymptotic C.I. from the same replication, and the red solid line represents the true treatment effect function [Colour figure can be viewed at wileyonlinelibrary.com]
Method	X	$\tau(X)$	95% Bootstrap C.I. Coverage Rate
MCMEA	0.2	−1.28	0.773
	0.5	0	0.955
	0.8	1.28	0.791
L_1-MCMEA	0.2	−1.28	0.954
	0.5	0	0.956
	0.8	1.28	0.945
RL	0.2	−1.28	0.784
	0.5	0	0.962
	0.8	1.28	0.798
L_1-RL	0.2	−1.28	0.950
	0.5	0	0.951
	0.8	1.28	0.951
MCMEA w/o penalty	0.2	−1.28	0.927
	0.5	0	0.928
	0.8	1.28	0.931
L_1-MCMEA w/o penalty	0.2	−1.28	0.955
	0.5	0	0.968
	0.8	1.28	0.963
RL w/o penalty	0.2	−1.28	0.929
	0.5	0	0.926
	0.8	1.28	0.931
L_1-RL w/o penalty	0.2	−1.28	0.959
	0.5	0	0.969
	0.8	1.28	0.962

Note: The L_1-based methods generally produced coverage probabilities very close to the nominal level, even with the presence of outliers, whereas the L_2-based methods’ coverages sometimes deviated strongly from 0.95.

Abbreviations: MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner.

0.973, and 0.959. The asymptotic variances of the L_1-RL methods without penalty at selected points are 0.129, 0.110, and 0.130, corresponding 95% asymptotic C.I. coverage rates are 0.953, 0.969, and 0.957.

B.2.3 Comparison of Q-learning and AL when model is misspecified

We investigated the performance of Q-learning and proposed methods when model is misspecified. We summarize the MSE and MAE of the Q-learning and proposed methods with combination of L_1 and L_2 loss when there is a small amount of outliers.

We generated the data for Setting 6 as follows:

$$X_i \sim N_p(0, \Sigma), \text{diag}(\Sigma) = 1, \text{Corr}(X_{ij}, X_{ik}) = 0.5^{|j-k|}, i = 1, \ldots, n, \quad D_i | X_i \sim \text{Bernoulli}(p(X_i)), T_i = 2D_i - 1, \text{logit}(p(X_i)) = X_{i1} - X_{i2}, \quad Y_i = b_0(X_i) + \frac{T_i}{2} \tau_0(X_i) + \epsilon_i, \epsilon_i \sim (1 - \xi_0)N(0, 1) + \xi_0 \text{Laplace}(0, 10), \quad b_0(X_i) = 0.5 + X_{i1} + X_{i2}^2 - 6X_{i3}, \quad \tau_0(X_i) = 2 \sin(2X_{i1}) - X_{i2} + 3 \tanh(0.5X_{i3}),$$

where $n = 1000, q = 10, \xi_0 = 0.1,$ and $Q(\sigma^{opt}) = 2.18.$ For Q-learning, the objective function is
Simulation results of Setting 6

Method	Bias sq	Var	MSE	MAE	Sensitivity	Specificity	$Q(\hat{q})$
MCMEA	1.50	0.82	2.32	1.21	0.68	0.63	1.85
L_1-MCMEA	0.18	0.64	0.82	0.62	0.99	0.74	2.14
RL	1.57	0.73	2.30	1.21	0.68	0.65	1.86
L_1-RL	0.19	0.63	0.83	0.61	0.99	0.73	2.15
AL	1.43	0.89	2.32	1.20	0.69	0.65	1.87
L_1-AL	0.35	2.25	2.61	0.84	0.94	0.75	2.12
QL	1.66	1.11	2.76	1.31	0.74	0.63	1.81
L_1-QL	3.57	1.01	4.58	1.15	1.00	0.52	2.08

Note: In the presence of outliers, bias in the misspecified L_1-QL was larger than that of the L_1-MCMEA, L_1-RL, and L_1-AL. The same was also true for MSE and MAE.

Abbreviations: AL, A-learning; MCM-EA, modified covariates method with efficiency augmentation; RL, R-learner.

\[L_n(\beta) = \frac{1}{n} \sum_{i=1}^{n} \rho \left(Y_i - X_i^T \gamma - \frac{T_i}{2} B(X_i)^T \beta \right) + \Lambda_n(\beta), \]

where we used L_1 or L_2 loss functions for ρ. The results are summarized in Table B6.

APPENDIX C. REAL DATA APPLICATION

C.1 Existence of outliers

The following figure shows that the outcome observations in both treatment groups are beyond normally distributed.

![Box Plot](image1)

![Normal Curve over Histogram](image2)

![QQ Plot](image3)

Figure C1

Heavy-tailed systolic blood pressure distribution [Colour figure can be viewed at wileyonlinelibrary.com]

C.2 Nuisance quantity estimation

The GBM is used to estimate mean outcome and propensity score. The estimation of two groups are as following figure.
In the application of proposed method, the importance levels from GBM are consistent with the result from regression. The importance levels from GBM and the linear and logistic regression results are summarized in the following two tables.

TABLE C1 Importance levels from the GBM analysis vs coefficients and P-values from regression analysis

Variable	Importance (scaled)	Linear regression coefficient	Linear regression P-value
Average PDC	100.0000	−8.3352	<.001*
BMI	71.4317	0.1217	.022*
Pulse	57.9355	0.0829	.052
Male	51.0437	5.3345	<.001*
Age	40.9329	0.1421	<.001*
Depression	21.7349	−2.7787	.007*
CAD	9.6647	3.9908	.181
Diabetes	8.3385	−1.4464	<.001*
Stroke	5.7007	3.9820	.242
Hyperlipidemia	3.3518	−0.6630	.581
Black	2.9593	0.8341	.351
CKD	1.6875	−4.6852	.101
COPD	0.7970	−1.6243	.272
CHF	0.3214	1.4062	.668
Atrial fibrillation	0	0.2215	.968
MI	0	−5.3773	.405

Abbreviations: GBM, gradient boosting machine; PDC, proportions of days covered.
Variable	Importance (scaled)	Logistic regression coefficient	Logistic regression P-value
BMI	100.0000	0.0342	<.001*
Pulse	75.3721	−0.0162	.028*
Age	65.0922	0.0205	.002*
Diabetes	61.9452	−1.2126	<.001*
Black	27.7566	0.7032	<.001*
Male	8.5503	−0.2410	.123
Hyperlipidemia	5.2229	0.3572	.091
Depression	3.3688	0.2294	.200
COPD	2.6379	−0.2325	.353
CAD	2.0312	0.2867	.577
Stroke	1.9077	−0.9878	.086
CKD	1.1372	0.1413	.772
CHF	0.5027	0.1182	.834
MI	0	0.4516	.678
Atrial fibrillation	0	1.5788	.176

Abbreviation: GBM, gradient boosting machine.