Theoretical cross sections in the $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction

M. Katsuma
Advanced Mathematical Institute, Osaka City University, 558-8585 Osaka, Japan
E-mail: mkatsuma@sci.osaka-cu.ac.jp

Abstract. The $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction seems to be explained by the simple reaction mechanism of the direct-capture potential model. The theoretical cross section at $E_{\text{c.m.}} = 0.3$ MeV is found to be enhanced with the $E2$ transition. This is caused by the tail of the subthreshold 2^+_1 state ($E_x = 6.92$ MeV). The total S-factor is consistent with the previous studies. The photodisintegration of ^{16}O is also found to be dominated by the $E2$ excitation in the vicinity of the α-particle threshold.

1. Introduction
The $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction is considered as a key reaction for the carbon-oxygen ratio in the universe, and it has a great influence on the stellar evolution of massive stars and nucleosynthesis of elements [1]. However, because of the Coulomb barrier, the cross section is too small to measure at the centre-of-mass energy $E_{\text{c.m.}} = 0.3$ MeV, corresponding to the helium burning temperature. To understand the reaction rates, the experimental efforts have been made with the various methods, e.g. [2, 3, 4, 5], including indirect measurements. The cross section of the inverse reaction is expected to be larger than that of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$. The experimental projects with the high-intensity laser are in progress to reveal the tiny cross section, e.g. [6].

Under the circumstances, I have recently calculated the low-energy cross section of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ by using the direct-capture potential model (PM) [7], and have converted them into the reaction rates [8]. In this presentation, I report the theoretical low-energy extrapolation of the cross section and examine the additional resonant contribution to PM [9]. In addition, I discuss the photodisintegration of ^{16}O for the future experiments by the same model [10].

In the next section, the PM is described, briefly. The low-energy cross section and the reaction rates are discussed in § 3. The photoelectric cross section of $^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$ is also illustrated. The summary is in § 4.

2. Potential model (PM)
The PM describes the fundamental process of radiative capture reactions, and it works in the direct reaction mechanism, where only a few degrees of freedom of motion are activated.

The γ-ray angular distribution for $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ at low energies is given by $d\sigma/d\Omega_\gamma = \sum_{j=0}^{4} c_j P_j(cos \theta_\gamma)$, where P_j is the Legendre polynomials, c_j is the coefficient of the expansion, which is calculated from the matrix element of the electromagnetic operator between the initial wave and the final bound state. To generate the initial wave, i.e. the α+^{12}C continuum states, I use the internuclear potential to reproduce the phase shifts of elastic scattering [11] and the α-particle binding energy of 2^+_1 ($E_x = 6.92$ MeV). E_x denotes the excitation energy of ^{16}O. The
From Fig. 2(a), the p-wave (dashed curve) is predominant. At low energies, the d-wave (dotted curve) seems to become more important because the angular distribution has two peaks. The experimental data are taken from [2, 3].

The radiative capture cross section is given by

$$\sigma_{\gamma\alpha} = \frac{4\pi e^2}{\bar{\omega}^2} \sigma_{\alpha\gamma},$$

where k_γ is the wavenumber of photons $k_\gamma = E_\gamma/(\hbar c); E_\gamma = E_{c.m.} + 7.162$ MeV [10].

3. Low-energy cross sections of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$

In this section, I show the calculated results of the cross section from PM. After discussing the additional contribution, I also illustrate the predicted cross section of the inverse reaction.

The calculated γ-ray angular distribution is compared with the experimental data [2, 3] in Fig. 1. The trend of the peak and valley appears to be reproduced by the solid curve obtained from PM. At $E_{c.m.} = 2.267$ MeV, the γ-ray angular distribution has a single peak, that means the p-wave (dashed curve) is predominant. At low energies, the d-wave (dotted curve) seems to become more important because the angular distribution has two peaks. The $E2$ and $E1$ components of the S-factor are shown in Figs. 2(a) and (b) as a function of the incident energy. From Fig. 2(a), the $E2$ transition is found to be enhanced at low energies. This is caused by the subthreshold 2^+_1 state that has the $\alpha+^{12}\text{C}$ cluster structure [9, 15]. For the $E1$ transition, the 1^+_2 molecular resonance is found at $E_{c.m.} \approx 2.4$ MeV ($E_x \approx 9.6$ MeV) in Fig. 2(b).
Table 1. Astrophysical S-factors at $E_{c.m.} = 0.3$ MeV, listed in keV b unit.

	PM [7, 8]	[3]	[4]	[14]
$E1$	3	76 ± 20	79 ± 21	79 ± 21
$E2$	150^{+41}_{-17}	85 ± 30	70 ± 70	120 ± 60
Cascade	18^{+45}_{-14}	4 ± 4	16 ± 16	
Total	171^{+46}_{-22}	165 ± 54	165 ± 107	199 ± 81

![Figure 3. E1+E2 S-factor of 12C(α,γ)16O. The additional resonant contributions are included in the solid curve (PM+BW). The dotted curve is from PM. (Exp.:[2, 3, 5])](image1.png)

![Figure 4. Comparison of the reaction rates between PM and PM+BW. The shade area is the uncertainty of the rates estimated from PM [8]. The result is shown in ratio.](image2.png)

The $\alpha+^{12}$C cluster states play a crucial role in the discussion about the reaction mechanism of 12C(α,γ)16O. The potential used here reproduces the elastic scattering data for $E_{c.m.} < 5$ MeV [7], and it describes the $\alpha+^{12}$C rotational bands very well [15]. The γ-ray angular distribution shown in Fig. 1 seems to be made by the interference between 2^+ and $1^−$. The extrapolated S-factor at $E_{c.m.} = 0.3$ MeV is listed in Table 1. As comparison, the results from [3, 4, 14] are also listed. The total S-factor from PM is consistent with that from [3, 4, 14]. In contrast, the $E1$ and $E2$ components are different. It should be, however, noted that the present result is based on the analysis of the γ-ray angular distribution, that looks good in Fig. 1. The resulting reaction rate resembles the previous results because the total S-factor is comparable. The deduced reaction rate is available in [8].

To examine the contribution from other resonances, the Breit-Wigner (BW) type of the experimental resonances [16] is temporarily appended to PM. Figure 3 shows the sum of the $E1$ and $E2$ S-factors for 12C(α,γ)16O. The dotted curve is the result of PM. The solid curve is the result with the experimental resonances (PM+BW). The contribution from the $1^−$ state ($E_x = 7.12$ MeV) is hindered by the isospin selection rule. Under the weak coupling [7], $1^−$ does not have the large α-particle width. The large difference between two curves can be seen above $E_{c.m.} = 3$ MeV. However, the difference between the derived reaction rates is very small, as shown in Fig. 4. To compare the models, the resulting reaction rate is displayed in ratio. From Figs. 3 and 4, I confirm that the additional resonances do not have the important contribution. I, therefore, consider that the 12C(α,γ)16O reaction is described by PM successfully enough.

Finally, I illustrate the photoelectric cross section of 16O(γ,α)12C in Fig. 5. The solid curve is the result from PM. The dashed and dotted curves are the $E1$ and $E2$ components, respectively. From Fig. 5, the $E2$ excitation is found to dominate the reaction in the vicinity of the α-particle
threshold. I also predict that the coupling between the 1_1^- and 1_2^- states is weak, and that the angular distribution of the emitted α-particle at $E_\gamma \approx 8.5$ MeV is described by the interference between 2_1^+ and 1_2^- as well as the counterpart of 12C(α,γ)16O shown in Fig. 1.

4. Summary
I have discussed the theoretical cross section in the 12C(α,γ)16O reaction obtained from PM. The potential used here is concordant with the optical potential reproducing the elastic scattering data over the wide energy region. In addition, I have shown the calculated result of 16O(γ,α)12C.

The 12C(α,γ)16O reaction seems to be explained by the direct reaction mechanism of PM. The theoretical cross section at $E_{c.m.} = 0.3$ MeV is found to be enhanced with the $E2$ transition. This is caused by the tail of the subthreshold 2_1^+ state having the $\alpha+^{12}$C cluster structure. The PM makes the relatively large $E1$ transition from the 1_2^- molecular resonance at $E_{c.m.} \approx 2.4$ MeV. The γ-ray angular distribution at $E_{c.m.} \approx 1.3$ MeV appears to be made by the interference between 2_1^+ and 1_2^-. The total S-factor at $E_{c.m.} = 0.3$ MeV is consistent with the previous studies. The contribution from other resonances is negligible. The photodisintegration of 16O is also found to be dominated by the $E2$ excitation at the interest energies.

Acknowledgments
I express my gratitude to Professors K. Langanke, P. Descouvemont, and I.J. Thompson for their comments and encouragement. I also thank Y. Kondo for early days of collaboration, and Y. Ohnita and Y. Sakuragi for their hospitality. I am grateful to M. Arnould, A. Jorissen, K. Takahashi and H. Utsunomiya for their encouragement during my stay in Bruxelles.

References
[1] Rolfs C E and Rodney W S 1988 Cauldrons in the Cosmos (Chicago IL: Univ. Chicago Press)
[2] Assunção M et al 2006 Phys. Rev. C 73 055801
[3] Kunz R et al 2001 Phys. Rev. Lett. 86 3244; Kunz R et al 2002 Astrophys. J. 567 643
[4] Buchmann L et al 1996 Phys. Rev. C 54 393; Buchmann L 1996 Astrophys. J. 468 L127
[5] Schürmann D et al 2012 Phys. Lett. B 711 35
[6] Matei C et al 2015 This conference talk; Tesileanu O and Zamfir N V 2015 PoS(NIC XIII) 056
[7] Katsuma M 2008 Phys. Rev. C 78 034606; 2010 Phys. Rev. C 81 029804; 2010 Phys. Rev. C 81 067603
[8] Katsuma M 2012 Astrophys. J. 745 192; Katsuma M 2015 PoS(NIC XIII) 106
[9] Katsuma M 2014 Preprint arXiv:1404.3966 [nucl-th]
[10] Katsuma M 2014 Phys. Rev. C 90 068801
[11] Plaga R et al 1987 Nucl. Phys. A 465 291; Tischhauser P et al 2009 Phys. Rev. C 79 055803
[12] Brandan M E and Satchler G R 1997 Phys. Rep. 285 143; Ingemarsson A et al 1994 Phys. Rev. C 49 1609
[13] Satchler G 1983 Direct Nuclear Reactions (New York: Oxford Univ. Press)
[14] Angulo C et al 1999 Nucl. Phys. A 656 3
[15] Katsuma M 2013 J Phys. G 40 025107; Katsuma M 2014 EPJ Web of Conf. 66 03041
[16] Tilley D R et al 1993 Nucl. Phys. A 564 1