This paper discusses the problem of testing misspecifications in semiparametric regression models for a large family of econometric models under rather general conditions. We focus on two main issues that typically arise in econometrics. First, many econometric models are estimated through maximum likelihood or pseudo-ML methods like, for example, limited dependent variable or gravity models. Second, often one might not want to fully specify the null hypothesis. Instead, one would rather impose some structure like separability or monotonicity. In order to address these points we introduce an adaptive omnibus test. Special emphasis is given to practical issues like adaptive bandwidth choice, general but simple requirements on the estimates, and finite sample performance, including the resampling approximations.

1. INTRODUCTION

When estimating structural econometric models, it is quite difficult to find a situation where economic theory or other information from outside the data enables us to fully specify a model without taking the risk of a serious misspecification. However, to a certain extent (parametric) modeling is needed by the researcher, or required by the nature of data in order to overcome problems like identification, estimation, interpretation, and numerical performance. To manage this trade-off we make use of semiparametric models. They enable us to include available information and necessary restrictions, keeping the rest unspecified. The specification imposed is not limited to parametric functional forms; it can be either the separability of inputs, monotonicity, or the conditional distribution. The latter, for
example, might be explored to estimate the mean function of limited dependent responses where alternative estimators are either difficult to obtain or hard to calculate (cf. Lewbel and Linton, 2002).

Although under such semiparametric approaches the risk of misspecification is considerably reduced, the problem is not negligible. For example, within the framework of conditionally parametric models the root-n consistency of the parameters of interest is not obtained for free; it is obtained under stronger conditions including the correctness of all prior information. Consider the so-called Tobit model, where a linear structure in the index function might be recommended by economic theory. However, it does not guide us when choosing the conditional distribution of the latent variable. The censored Gaussian density is typically chosen just for convenience. Similarly, the pseudo-ML fails if either the moments of interest (typically the mean) are not correctly specified or the score functions do not constitute a valid set of moment conditions. For example, the Poisson pseudo-ML for gravity models becomes inconsistent if there is zero-inflation, i.e., a hurdle for trade.

As a conclusion of the above discussion we concentrate on problems where the main interest is related to the conditional mean. Regression tests are mainly available for purely parametric null hypotheses. However, economic theory does not fully specify the index plus the conditional distribution. Instead, it might be that it introduces assumptions such as additivity transformations, homothetical (Lewbel and Linton, 2007) or weak separability. In these cases, the null hypothesis to be tested is semiparametric, like for example, the one with regard to insignificant interactions (Sperlich, Tjøstheim, and Yang, 2002). Therefore we are testing semiparametric null hypotheses that are related to the mean function which is often estimated by (pseudo-) ML methods. So our null hypothesis is about the mean, not the conditional distribution, although it may be affected by its particular choice.

For testing a parametric regression model against a broad set of alternatives, many specification tests are available. Following Hart (1997), two main approaches are considered: statistics that compare parametric vs nonparametric fits, and those that appear as a weighted average of the residuals. The literature on specification testing has been increasing with almost every new volume of an econometrics or statistics journal; see Gonzalez-Manteiga and Crujeiras (2013) for a review. Nonetheless, nonparametric testing is still less common for semiparametric latent variable models (see Pardo-Fernández, Van Keilegom, and González-Manteiga, 2007). Here we introduce a feasible omnibus test where the null hypothesis can be any semi- (or non-) parametric regression model. The testing target and the test statistic are both original. Moreover, the test is data adaptive, giving special emphasis to calibration (see Sperlich, 2013). In order to provide a broadly applicable procedure, we require the estimates of the null model to fulfill rather general conditions. Many of the semiparametric econometric models are based on kernel smoothing, especially when thinking of profiled likelihood based estimates. We therefore have decided on a test statistic that evaluates kernel-convoluted differences.¹ Using kernels or other smoothing methods,
a bandwidth needs to be chosen which regularizes the smoothness of the potential alternatives.

Although the problem of bandwidth selection for a test is related to the question of calibration and power, it is often not treated very carefully. The so-called adaptive tests try to balance the need for calibration on the one hand, and the power maximization on the other; see for example, Kallenberg and Ledwina (1995), Spokoiny (2001), Härdle, Sperlich, and Spokoiny (2001), or Guerre and Lavergne (2005). We adapt the ideas in the latter three articles to our problem. However, there is an important difference between the articles mentioned and ours: Our null hypothesis is semiparametric whereas theirs are fully parametric. This leads to some conditions on how the smoothing of the null model relates to the alternative one in order to obtain a consistent test. As in the above-mentioned papers, and since the asymptotic properties are not very helpful with finite samples, to approximate the critical values the inference is done via resampling methods. This reminds us that for a nonparametric test with a semiparametric null hypothesis one has to choose at least three regularization parameters: one for estimating the null, one for the test (referring to the smoothness of the alternative), and one for estimating the critical value. The last one is either the bandwidth for generating bootstrap samples under the null or the size of subsamples when subsampling is applied instead. Note that this triple choice problem is not specific to our problem but typical for all smoothing based tests with a semiparametric null. While the bandwidth for the null model could be chosen from standard criteria for regression estimation (see Köhler, Schindler, and Sperlich, 2013), the testing bandwidth should ideally maximize power. This is why we propose an adaptive test which automatically provides such a bandwidth. We further discuss methods to select the regularization parameter of the resampling procedure to reach calibration of the test. As we give special emphasis to the practicability of our procedures, we study in detail the resulting performance of our proposals.

Summarizing, we present a practical though general approach which allows for testing semiparametric hypotheses that are quite frequently used in the specification of econometric models such as qualitative response models, truncated and Tobit type specifications and duration models. A main theoretical result of this contribution is that a nonparametric test of a semiparametric null hypothesis is considered. It highlights the conditions on the smoothing that have to be performed in the different steps.

2. TEST STATISTIC PROPOSAL

Suppose that we have a sample of \(n \) independent replicates \(\{(Y_i, X_i)\}_{i=1}^n \) from the pair of random variables \(Y \in R, X \in \mathcal{X} \) with \(\mathcal{X} \) being a compact set \(\mathcal{X} \subset R^d \), such that the conditional distribution of \(Y \) given \(X \) is \(f_{Y|X} (y, x) \). As we already pointed out in the INTRODUCTION, our interest is focused on testing the correct specification of the regression function.
\[m(x) = \int y \ell_{Y|X}(y, x) \, dy. \] (1)

There exist a plethora of consistent regression specification tests that do not depend on a prespecified choice of \(\ell_{Y|X}(y, x) \). However, in some situations of interest for economists, such as multiindex models (Tobit type models, Amemiya, 1973) practitioners prefer to work under standard assumptions such as Gaussian errors in the underlying latent variable model.

If this is the case, the null hypothesis will take the form

\[m_0(x) = \int y \ell^0_{Y|X}(y, x; \theta, \eta_1, \ldots, \eta_p) \, dy, \] (2)

with a family of conditional distributions

\[\left\{ \ell^0_{Y|X}(y, x; \theta, \eta_1, \ldots, \eta_p) : \theta \in \Theta, \eta_1(x_1) \in \mathcal{H}_1, \ldots, \eta_p(x_p) \in \mathcal{H}_p \right\}, \] (3)

where \(\Theta \) is a compact subset of \(\mathbb{R}^k \), \(\mathcal{H}_1, \ldots, \mathcal{H}_p \) are respectively compact subsets in \(\mathbb{R} \), and \(V \) is a compact subset in \(\mathbb{R}^v \). The vectors \(x_j \in \mathcal{X}_d_j \), \(j = 1, \ldots, p \), are mutually exclusive subsets of \(x \) such that \(\mathcal{X} = \mathcal{X}_d_1 \times \cdots \times \mathcal{X}_d_p \). Further, the \(\eta \) are assumed to be unknown smooth functions \(\eta_j : \mathcal{X}_d_j \to \mathcal{H}_j \) that take values in a set

\[\Gamma_j = \left\{ \varphi \in C^2(\mathcal{X}_d_j) : \varphi(x_j) \subset \mathcal{H}_j \text{ for all } x_j \in \mathcal{X}_d_j \right\}. \]

In order to motivate our problem of interest consider the latent regression model

\[y^* = x_1^T \gamma + \eta(x_2) + u, \] (4)

where the \(u_i \)'s are assumed to be random drawings from \(N(0, \sigma^2) \), \(\gamma \) is an unknown vector of parameters that needs to be estimated, and a nonparametric relationship \(\eta(\cdot) \) that also needs to be estimated. Assume the following mechanism of censoring,

\[y = \begin{cases}
 y^* & \text{if } y^* > 0 \\
 0 & \text{if } y^* \leq 0.
\end{cases} \]

Then

\[
\log \ell^0_{Y|X}(y, x; \theta, \eta) = \mathbf{1}_{\{y = y^*\}} \frac{1}{2} \left[-\ln(2\pi) - \ln(\sigma^2) - \left(\frac{y - x_1^T \gamma - \eta(x_2)}{\sigma} \right)^2 \right]
\]

\[+ \mathbf{1}_{\{y = 0\}} \ln \left[1 - \Phi \left(\frac{x_1^T \gamma + \eta(x_2)}{\sigma} \right) \right], \]

and the regression function takes the form

\[m_0(x) = \Phi \left(\frac{x_1^T \gamma + \eta(x_2)}{\sigma} \right) \left\{ x_1^T \gamma + \eta(x_2) + \sigma \frac{\phi \left(\frac{x_1^T \gamma + \eta(x_2)}{\sigma} \right)}{1 - \Phi \left(\frac{x_1^T \gamma + \eta(x_2)}{\sigma} \right)} \right\}, \]
where $\phi(\cdot)$ and $\Phi(\cdot)$ stand respectively for the probability density function (pdf) and the Gaussian distribution function. Note that for the null hypothesis to be true, we do not only need a correct specification of (4); we also need correct specification of the censoring mechanism, the conditional distribution, and the homoskedasticity assumption. Of course there are situations such as nonexisting moments, quantiles, or other robust quantities where focusing on the likelihood would be more natural. In many cases the estimator for $m(x)$ under the null can be calculated directly from some consistent estimators $\hat{\theta}$ and $\hat{\eta}_1, \ldots, \hat{\eta}_p$, and may generally be written as

$$\hat{m}_S(x) = \int y \ell^0_{Y|X} \left(y, x; \hat{\theta}, \hat{\eta}_1, \ldots, \hat{\eta}_p \right) dy.$$

We will specify the above-mentioned consistent estimators in assumption (C.1). Let $\omega(u) \geq 0$ be a bounded weight function. Then the testing problem can be written as

$$H_0 : m(x) = m_0(x) \ \forall x \in X \text{ for which } \omega(x) > 0,$$

$$H_1 : m(x) \neq m_0(x) \ \text{with } x \in X \text{ for which } \omega(x) > 0.$$

Several alternative testing approaches are conceivable. Comparison studies (Dette, von Lieres und Wilkau, and Sperlich, 2005; Roca-Pardiñas and Sperlich, 2007) show that a quite successful one is to construct a statistic with convoluted differences in order to mitigate the bias problem in testing. For a kernel function $K : \mathbb{R}^d \to \mathbb{R}$, and bandwidth h, define

$$I_h \left(\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_p, \hat{\theta} \right) = \int \left[\frac{1}{nh^d} \sum_{j=1}^{n} K \left(\frac{x - X_j}{h} \right) (Y_j - \hat{m}_S(X_j)) \right]^2 \omega(x) dx.$$

(5)

The properties of this statistic depend both on the choice of the bandwidth h, and the asymptotic behavior of $\hat{\theta}$ and $\hat{\eta}_1, \ldots, \hat{\eta}_p$. On these grounds, it is important to discuss how the smoothing parameters and the estimators are chosen. With respect to the estimators, for the parametric part θ, we require a root-n consistent estimator. In this way, the parametric estimator does not affect the asymptotic distribution of the test statistic. For the nonparametric estimators, only one minimal requirement of uniform convergence at a certain nonparametric rate, r, is assumed.

(C.1) The function $\ell^0_{Y|X}$ is Lipschitz continuous in all its arguments. Under H_0 we have

$$\sup_{x_j \in X_j} \left| \hat{\eta}_j(x_j) - \eta_j(x_j) \right| = O_p \left(n^{-r_j} (\log n)^{r_j} \right)$$

for $\frac{1}{2} \leq r_j < \frac{1}{2}$, $j = 1, \ldots, p$, and $\hat{\theta} = \theta + O_p \left(n^{-1/2} \right)$, as n tends to infinity.
This requirement is rather general since it is fulfilled by most part of nonparametric estimators that appear in econometric literature. Furthermore, by imposing this condition we avoid the need for statistical properties of the test to depend either on the form of the estimator for the η_j’s or on their bandwidth parameters. As was already established in Stone (1982), the optimal rate of convergence, r_j, depends on the smoothness class in which η_j is assumed to be, the dimension of x_j or the type of deviation function we are choosing. More precisely, the uniform maximal deviation converges slowly to zero by a factor $\log n$ (see Mack and Silverman, 1982, Sect. 3). Note that r_j is strictly smaller than $1/2$ as is also expected in nonparametric literature. For example, if the second derivative of η_j is Hölder continuous and the dimension of x_j is d_j, the optimal rate will take the value $r_j = \frac{2}{4+d_j}$. We also impose that $r_j \geq \frac{1}{4}$. That is, the rate of convergence does not have to be too slow. The same condition is also imposed in Severini and Wong (1992) for the nonparametric estimator which is included in the conditionally parametric model. For an example of an estimator for η_j that fulfills these conditions see Rodriguez-Poo, Sperlich, and Vieu (2012, Sect. 5).

The choice of bandwidth h in (5) should ideally maximize the power of the test. As the distribution of I_h will vary with h, it is natural to consider the standardized version

$$T_h = \frac{nh^{d/2}I_h(\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_p, \hat{\theta}) - h^{-d/2}\hat{B}}{\sqrt{\hat{V}}}$$

where \hat{B} is an estimator of the expectation of $nh^{d/2}I_h$ under H_0,

$$B = \int K^2(u)du \int \sigma^2(u)p(u)\omega(u)du,$$

and \hat{V} an estimator of the variance of $nh^{d/2}I_h$, i.e.,

$$V = \int K^{(2)}(u)^2du \int \sigma^4(u)p^2(u)\omega^2(u)du.$$

Here, we denote by $K^{(2)}$ the convolution of kernel K, p is the marginal density of X, and $\sigma^2(x)$ is the conditional variance of Y given X. The standardization (6) creates a family of test statistics $\{T_h, h \in H_n\}$, where the choice of h marks the difference between the null and the global alternative. Following the idea of adaptive testing (Spokoiny, 2001) we propose to use the test statistic

$$T^* = \max_{h \in H_n} T_h,$$

where the value of h is taken from a set of bandwidths H_n with cardinality J_n, namely

$$H_n = \left\{ h = h_{\max}a^k : h \geq h_{\min}, k = 0, 1, 2, \ldots \right\}, \quad 0 < h_{\min} < h_{\max}, 0 < a < 1.$$

(10)
Another relevant issue in the computation of the test statistic is the estimation of $\sigma^2(x)$. Note that this variance expression appears in (7) and (8). Horowitz and Spokoiny (2001) propose an estimator for $\sigma^2(x)$ that needs to be consistent under the alternative. Often such an estimator is not easily available or it is only under the costs of further restrictions. For example, the difference estimator they propose works only reasonably well in one-dimensional regression problems. Here, we do not need such a strong condition but instead we just ask for an estimator of $\sigma^2(x)$ fulfilling the following assumption

\[(C.2) \quad \sup_x \left| \hat{\sigma}^2(x) \hat{p}(x) - \sigma^2(x) p(x) \right| = o_p \left(h^{\mu/2} / \log n \right), \text{for some } \mu > 0 \text{ and for all } h \in H_n.\]

Guerre and Lavergne (2005) discuss some drawbacks of the Horowitz–Spokoiny approach and propose an alternative choice of h that will be considered in Section 4 together with its practical implementation.

An analytical expression for the critical values of T^* needs extreme value theory. As this is cumbersome and it gives little helpful approximations in practice, we propose resampling strategies. No matter whether (wild) bootstrap or subsampling is applied, for the resampling estimates, say $\hat{m}_S(x)$ and $\hat{\sigma}^2(x)$, we ask for similar conditions as in Horowitz and Spokoiny (2001), that is:

\[(C.3) \quad \text{As } n \text{ tends to infinity, conditionally on the sample } \{X_1, X_2, \ldots, X_n\} \]

\[
\sup_x \left| \hat{m}_S(x) - \hat{m}_S(x) \right| = O_p \left(\left| m(x) - \hat{m}_S(x) \right| \right), \\
\sup_x \left| \hat{\sigma}^2(x) - \hat{\sigma}^2(x) \right| = O_p \left(\left| \sigma^2(x) - \hat{\sigma}^2(x) \right| \right).
\]

Note that assumption (C.3) is rather general. In order to be more precise about the consistency of the resampling estimates we have to be more specific about the model and the estimators considered, thereby losing the sought-after generality. For the consistency of related bootstrap problems see for example, Giné and Zinn (1990) or Härdle, Huet, Mammen, and Sperlich (2004). The alternative subsampling (Politis, Romano, and Wolf, 1999) procedure works similarly. One draws subsamples of size $n_s < n$ from the original sample $\{X_i, Y_i\}_{i=1}^n$. Take $b = h (n/n_s)^r$ as the bandwidth for the subsampling estimator to calculate the subsample analogs, \hat{T}^*, where r is the chosen bandwidth rate. Finally, compute the empirical $1 - \alpha$ quantile as above. In cases where H_0 is violated, as n tends to infinity, $nh^{d/2}I_h$ grows faster than $n_s b^{d/2}I^*_b$, and therefore \hat{T}^* will become larger than T^*, resulting in a rejection of H_0. General results on asymptotic theory can be found in Politis, Romano, and Wolf (2001). To our knowledge, the choice of the optimal subsample size n_s for non- and semiparametric specification testing has only been dealt with by Delgado, Rodriguez-Póó, and Wolf (2001) and Neumeyer and Sperlich (2006).
One may also estimate \hat{B}, \hat{V}, and this way implicitly also $\sigma^2(x)$ by resampling. For the bootstrap we generate samples $\{X_i, Y_i^*\}_{i=1}^n$ with Y_i^* drawn from the estimated null distribution, and calculate \hat{T}^* as T^* earlier. Repeating this many times we can calculate the empirical $1 - \alpha$ quantile of \hat{T}^*, t_α, and use it as a critical value for T^*.

3. ASYMPTOTIC BEHAVIOR

For ease of notation but without loss of generality we set $p = 2$ for the rest of the paper. Recall that the level and power of our test will depend on the theoretical properties of $\hat{\eta}_1$ and $\hat{\eta}_2$ (as we set $p = 2$), appearing in the test through $\hat{m}_S(x)$. Therefore, we first analyze the properties of this regression function estimator and afterward the properties of the test. We use the following assumption on Y:

(B.1) For some $s > 0$, $E|Y|^s < \infty$ and $\int |Y|^s \, dy = M_s < \infty$.

The first result is a crucial tool when studying our test statistic. Note that by having considered a separable model we avoid the curse of dimensionality under the null.

Lemma 1. Under conditions (C.1) and (B.1), if the null hypothesis H_0 is true, for n tending to infinity,

$$\sup_{x \in \mathcal{X}} |\hat{m}_S(x) - m(x)| = O_p \left(b_n n^{-r_1} (\log n)^{r_1} + b_n n^{-r_2} (\log n)^{r_2} \right) + O_p \left(b_n n^{-1/2} \right),$$

where b_n is an increasing sequence for which $\sum b^{-s}_n$ converges.

To study the properties of statistic T^* we need the following additional conditions:

(S.1) The function $m(x)$ is β-times continuously differentiable at point $x_j \in \mathcal{X}_j \subset \mathbb{R}^{d_j}$.

(S.2) Densities p and p_j of $X_j, j = 1, 2$, are β-times continuously differentiable on \mathcal{X}_j.

(S.3) Let $\alpha(x)_{2+\mu} = E \left(Y^{2+\mu} \big| X = x \right)$. The function $\alpha(x)_{2+\mu}$ is bounded from above and below for $\mu = 0$ and for some $\mu > 0$ at any place in the support of \mathcal{X}.

(K.1) K is a compactly supported and continuously differentiable kernel of order β satisfying $\int K(u) \, du = 1$.

These are standard conditions on kernel and smoothness of densities and conditional expectations. The next set of conditions defines the set of bandwidths for the test statistic and relates it to the smoothing applied when estimating the null model \hat{m}_S.

(H.1) The set H_n of bandwidths has the structure (10) with $h_{max} > h_{min} = n^{-\frac{1}{d}}$ and h_{max} is at most $C_H n^{\frac{2}{d}} (2r-1) b^{-2}_n (\log n)^{-2r}$ for some finite constant $C_H > 0$, and $r = \min\{r_1, r_2\}$. Furthermore, $J_n \sim \log n$ as n tends to infinity.
Assumption (H.1) might be considered as the analog to Horowitz and Spokoiny (2001). However, there is an important difference. The fact that we have a non- or semiparametric null hypothesis increases the bias problem. The standard bias problem in nonparametric testing has often been solved by smoothing the (parametric) estimator under the null hypothesis, too. In our case, we smooth the function estimate under the null which already shows nonparametric rates of convergence, see Section 4. In this problem controlling the upper bound of the set H_n depends on the rate of convergence of $\hat{m}_{S}(x)$. In the case $r = \frac{1}{2}$, i.e., when the null hypothesis is fully parametric, the upper bound coincides with that assumed by Horowitz and Spokoiny (2001). However, if the estimator under the null exhibits a nonparametric rate as it does in our case, then h_{max} must tend to zero at a rate that adapts to the convergence rate of the estimator. As usual, conditions (S.1), (S.2), and (K.1) take care of the reduction of the higher order terms of the bias. Then, the asymptotic behavior of the test under H_0 is given by

THEOREM 1. Assume that conditions (C.1)–(C.3), (S.1)–(S.3), (B.1), (K.1), and (H.1) hold. If the null hypothesis H_0 is true, then for n tending to infinity

$$P \left(T^* > t_\alpha \right) \to \alpha.$$

In order to determine the power, we define a sequence of local alternatives.

$$H_\alpha : m(x_1, x_2) = m_0(x_1, x_2) + \gamma_n \int \psi(y, x_1, x_2) dy, \quad (11)$$

where the function $\psi(\cdot)$, not depending on n, shall describe the deviation from the conditional density under the null, respectively from the mean function, and the sequence γ_n is supposed to be such that:

(A.1) For all $h \in H_n$, $\gamma_n \sqrt{nh^{d/2}} \to \infty$.

(A.2) $\psi(\cdot)$ is continuous and $\vartheta(x) := \int y \psi(y, x_1, x_2) dy \neq 0$.

It is clear that assumptions (A.1) and (A.2) on the one hand are also related to the bias problem that has been mentioned above. On the other hand, they guarantee the detection of local alternatives by our statistic. Note that conditions (A.1) and (H.1) do not entail mutual constraints.

THEOREM 2. Assume that conditions (C.2)–(C.3), (S.1)–(S.3), (K.1), and (H.1) hold. If the alternative H_α is true with (A.1) and (A.2), then we have for $n \to \infty$ that

$$P \left(T^* > t_\alpha \right) \to 1.$$

Theorem 2 says that our test has nontrivial power only against sequences of local alternatives for which γ_n tends to zero at a rate that is smaller than \sqrt{n}. It is known that tests based on weighted parametric residuals have nontrivial power
against local alternatives for which the rate is exactly \sqrt{n}. Thus, at least in terms of the asymptotic local power these tests appear to dominate tests that require slower rates. However, as discussed in Guerre and Lavergne (2002) or Horowitz and Spokoiny (2001), at an exact rate of \sqrt{n} no omnibus test can have nontrivial power uniformly over nonartificial classes of functions $\psi(\cdot)$, respectively $\vartheta(x)$ in (11). Moreover, what we can see, recall (A.1), is that for γ_n the optimal rate is $o\left(\frac{1}{\sqrt{nhd_{d/2}}}\right)$ as expected, cf. Guerre and Lavergne (2002). How fast this can be, obviously depends on h, and the fastest rate therefore on h_{max}. Concluding, we can see from (A.1) and (H.1) that the rate slows down for semi- and nonparametric (separable) null hypotheses compared to testing problems where the null is parametric.

4. FINITE SAMPLE PERFORMANCE AND AN ALTERNATIVE BANDWIDTH CHOICE

To illustrate the performance of our testing procedure we present simulation results for different models with censored responses:

$$y = \begin{cases} \kappa(x) + u & \text{if } \kappa(x) + u > 0 \\ 0 & \text{otherwise,} \end{cases}$$

(12)

where $x = (x_1, x_2)^T$ with $X_1 \sim U[0, 2]^2$, $X_2 \sim U[-1, 1]^q$, and i.i.d. (independent and identically distributed) errors u. Under H_0 we suppose $u \sim N(0, \sigma^2)$ and $\kappa_0(x) = x_1^T \gamma + \eta(x_2), \quad x_1 = (x_{11}, x_{12})^T, \quad q = 1,$

(13)

where γ, $\eta(\cdot)$, and error variance σ^2 are arbitrary. Then we have

$$E[y|x] = \Phi(\kappa_0(x)/\sigma) \{\kappa_0(x) + \sigma \lambda(\kappa_0(x)/\sigma)\}, \quad \lambda(v) = \phi(v)\Phi^{-1}(v)$$

(14)

with ϕ and Φ indicating the normal density and its cumulated distribution function. The different real data generating processes (DGPs) are as follows:

$$\kappa_1(x) = x_1^T \gamma + \sin(2.5x_2), \quad \gamma = (-1, 1.5)^T,$$

(15)

$$\kappa_2(x) = \kappa_1(x) + (2x_{11}x_{12} - 2),$$

(16)

$$\kappa_3(x) = \kappa_1(x) + 2(x_{11} - 1)^2 - 2/3,$$

(17)

all with an additional $N(0, 0.5^2)$ error term u. Further, we generate data as in (15) but replacing the error u by

$$u^* \sim (\chi_1^2 - 1) \cdot 8^{-1/2}, \quad \text{and} \quad u^{**} \sim U\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$$

(18)

So the error variance is always 0.5^2 to make it particularly hard for our test to detect this kind of misspecification, cf. (14). Finally, we also consider models with $x_2 = (x_{21}, x_{22}) \in \mathbb{R}^2$, $X_2 \sim U[-1, 1]^2$, and

$$\kappa_4(x) = x_1^T \gamma + x_{21}x_{22}, \quad \gamma = (-1, 1.5)^T$$

(19)
\[\kappa_5(x) = \kappa_4(x) + (x_{11} - 1)^2 - 1/3. \]

(20)

Note that in (15) to (20), models (15) and (19) are the only ones that belong to the null hypothesis \(H_0 \); (compare with (13)) for the other models, the additional terms (deviating from the null model) are centered to zero such that they do not affect the censoring threshold in (12). We also simulated models without such centering (not shown here). In those cases the power of the test is always overwhelming. We concentrate here on the presentation of the cases where the detection of an alternative is a hard problem. Notice that variation that is due to the deviation from \(H_0 \) (i.e., \(E[\kappa_0(X) - \kappa_j(X)]^2, j = 1, 2 \)) takes the value of 28/9 in (16), whereas in (17), it takes the value of 16/45. Recall that we are only concerned by the effect of a misspecification in the regression estimation.

For the simulations we use only 250 bootstrap samples, respectively subsamples. In empirical research one should certainly take more. If we have available (under \(H_0 \)) consistent estimators of \(\kappa_0 \) and \(\sigma^2 \) (even root-n of the latter), the bootstrap sample can be generated by \(Y^*_i = \max\{0, \hat{\kappa}_0(x_i) + N(0, \hat{\sigma}^2)\} \). This is actually a bootstrap from a known parametric distribution, i.e., the normal censored at zero, with semiparametric first and parametric second moments. The estimation of the model under the null hypothesis is done according to Rodríguez-Póo, Sperlich, and Vieu (2003). The percentages of rejections under the null are calculated out of 500 simulation runs, whereas only 250 are used to approximate the rejection levels under \(H_1 \). As we use uniform distributions for all covariates in this simulation, we set \(w(x) = 1 \) for the entire simulation study. Otherwise, an obvious choice is either a trimming weight or the density of \(X \) such that the integral can be replaced by the sample average.

As has been discussed earlier in this paper, there exist some alternative approaches to make a nonparametric test adaptive in the sense of choosing the bandwidth of the test, \(h \), adaptively. Among them, the approach of Guerre and Lavergne (2005) seems to be a quite promising one, but they yield their excellent results applying the method to a rather different test statistic and problem. We briefly explain how we modified and implemented their idea for our statistic \(T^c_h \), respectively \(I^c_h \). Since they assumed to have available a centered (under \(H_0 \)) test statistic, let us consider \(I^c_h := \{I_h - E_0[I_h]\} \), where \(E_0 \) refers to the expectation under \(H_0 \). Then, select \(h \) by

\[
 h_{GL} = \arg \max_{h \in H_n} \left(I^c_h - 2\sqrt{2 \ln n \text{Var}_0[I^c_h - I^c_h_{\max}]} \right),
\]

(21)

where \(\text{Var}_0 \) refers to the variance under \(H_0 \). In our context \(h_{\max} \) is the largest bandwidth in \(H_n \), cf. Guerre and Lavergne (2005). The final test statistic is \(I^c_{h_{GL}} / \text{Var}_0[I^c_{h_{\max}}] \). For each bandwidth \(h \), the bootstrap can be used to approximate \(E_0[I_h], \text{Var}_0[I^c_h - I^c_h_{\max}], \text{and Var}_0[I^c_h] \). This is what we have done in our simulation study. In our context this approach gives basically the same results for all simulated models and rejection levels as we obtained for our test.
Therefore we conclude that both approaches seem to be reasonable alternatives for the choice of the testing bandwidth h_{η} in (5) although Guerre and Lavergne (2005) showed some theoretical advantages of their approach. In practice this might vary for different testing problems, models, and implementations.

The bandwidths h_{η} to estimate the nonparametric part $\eta(\cdot)$ of the null model (13) can be chosen by jackknife or generalized cross validation, depending on the particular estimation problem. This gives bandwidths that produce slightly undersmoothed estimates. Trying out various bandwidths for each h_{η} on a reasonable range we have always obtained rather similar results. This might be due to the adaptive selection of h, determined by a naive grid search with $J_n = 15$ and $a = 1.05$, cf. (10). Let us denote by h^*_η the bandwidth(s) used to (pre)estimate the null model from which the bootstrap samples will be drawn. The h^*_η should be chosen depending on h_{η} in such a way that it fulfills assumption (C.3).

In Tables 1 and 2 are given the rejection levels and bootstrap p-values for models (15) to (18) for sample size $n = 200$ applying bootstrap with

Table 1. The bootstrap p-values and percentages of rejections at various significance levels for different models when sample size is $n = 200$ when $h^*_\eta = h_{\eta}$

DGP	Horowitz–Spokoiny	Guerre–Lavergne		
	Bootstrap p-value	Significance levels	Bootstrap p-value	Significance levels
(15), H_0	.452	.012 .058 .120 .170	.469	.012 .054 .096 .162
(16)	.005	.896 .972 .992 .992	.005	.896 .972 .992 .992
(17)	.000	1.00 1.00 1.00 1.00	.000	1.00 1.00 1.00 1.00
(18), u^*_i	.413	.028 .072 .144 .224	.413	.028 .072 .144 .224
(18), u^{**}_i	.433	.012 .068 .124 .180	.433	.012 .068 .124 .180

Table 2. The bootstrap p-values and percentages of rejections at various significance levels for different models when sample size is $n = 200$ when $h^*_\eta = h_{\eta}n^{1/5-1/6}$

DGP	Horowitz–Spokoiny	Guerre–Lavergne		
	Bootstrap p-value	Significance levels	Bootstrap p-value	Significance levels
(15), H_0	.435	.008 .072 .132 .184	.459	.012 .054 .096 .162
(16)	.009	.896 .968 .980 .984	.009	.896 .968 .980 .984
(17)	.000	1.00 1.00 1.00 1.00	.000	1.00 1.00 1.00 1.00
(18), u^*_i	.421	.024 .080 .132 .188	.421	.024 .080 .132 .188
(18), u^{**}_i	.459	.008 .048 .096 .144	.459	.008 .048 .096 .144
\[h_\eta = 1.75\sigma_x/n^{1/5}, \quad h^*_\eta = h_\eta, \quad \text{and} \quad h^{**}_\eta = h_\eta n^{1/5-1/6}, \] respectively. Here, \(\sigma_x \) denotes the vector of sample standard deviation(s) of \(X_2 \). We used second order quartic kernels, and we set \(h_{max} = 3\sigma_x/n^{1/7} \) in (10). Table 1 gives the results when using the \(h \)-adaptive test of Horowitz and Spokoiny (2001); Table 2 gives the results when applying the \(h \)-adaptive method of Guerre and Lavergne (2003). The bootstrap p-values are the (average) percentage of bootstrap statistics which have been larger than the original test statistic. First, we see that the test almost holds the level under \(H_0 \) for \(h^*_\eta = h_\eta \) but is a bit less reliable if \(h^{**}_\eta = h_\eta n^{1/5-1/6} \). The differences between the two bandwidth adaptive methods are minor, which is in accordance with the simulation results of Guerre and Lavergne (2005) for more ‘regular’ (or let us say ‘smooth’) alternatives. The test detects clearly when the functional form of the conditional expectation is misspecified. Even though the deviation from \(H_0 \) is much larger in (16), our test detects the one in model (17) more easily. One reason could be that model (17) is smoother and thus the alternative gets estimated more easily; another reason could be that the bootstrap samples were generated with the residuals from \(H_0 \). When the functional form is correctly specified and only the error distribution deviates from \(H_0 \), the test does not reject the null as long as this misspecification has no effect on the regression estimation. In Table 3 we see that in (18), \(u^*_{i} \), has no effect on the estimation of the parametric part. Nevertheless, we find nontrivial power for the case of asymmetric error distribution, \(u^{**}_i \), even though it affects the regression estimation only very mildly. Actually, when we increase \(n \) to 400, at the nominal 5% significance level we reject in about 7.5% of all cases, and for \(n = 500 \) in about 10%.

When we consider our models with multidimensional nonparametric parts (speaking of nonparametric parts that cannot be decomposed into lower dimensional separable components), then much larger samples are required to make the asymptotics work. For models as in (19) and (20), 1,000 or more observations are necessary. The problem is that for a semiparametric null hypothesis the variance decomposition does not work well enough to make the bootstrap work. This easily leads to tests that are either too liberal or have almost trivial power. In most of the literature it is just proposed to choose the bandwidths \(h^*_\eta \) adequately. So far there exist neither results nor clear guidelines for their practical choice. In Figure 1 we see how the bootstrap rejection levels converge for model (19) to the nominal size (\(\alpha \)) by increasing \(n \), using \(h_\eta = 1.75\sigma_x/n^{1/9}, \quad h^*_\eta = h_\eta n^{1/9-1/13}, \)

Table 3. Average and standard deviation (in parentheses) of the parameter estimates for the different models when sample size is \(n = 200 \)
True coef.
(15), \(H_0 \)
-1.0
1.5
and a 4th order optimal product kernel. Note that we tried many other bandwidth combinations: However, for moderate sample sizes we cannot get rid of the size problem for any reasonable bandwidth. A detailed discussion of the calibration problem in nonparametric testing is given in Sperlich (2013). The power of the test seems to be rather strong but this might be misleading due to the size problem.

The subsampling exists as an alternative resampling method. This—at least in our simulations—has turned out to be rather reliable concerning the size of the test, even for small samples. As the problem of finding the optimal subsample size in nonparametric testing is known (see e.g., Neumeyer and Sperlich, 2006), we concentrate here on both the size and the power of the test but we take the subsample size as given.

In Table 4 we give the number of rejections when the sample size is $n = 300$, the subsample size is $n_s = 250$, the bandwidth $h_\eta = 2\sigma_x/n^{1/9}$ with 4th order optimal product kernels, and $h_{\max} = 3 \cdot \text{stdev}(X) \cdot n^{-1/8}$ in (10). Again we tried several bandwidths, and again the results do not vary much as long as h_η provides a reasonable smoothing, i.e., do not strongly over- or undersmooth. Taking a cross validation bandwidth is again a good choice. Table 4 shows that even for small samples and multidimensional nonparametric parts, subsampling achieves both the objective of holding the size (being conservative for our subsample size) and obtaining nontrivial power.

Table 4. The subsampling p-values and percentages of rejections at various significant levels for different models when sample size is $n = 300$, and subsample size $n_s = 250$

DGP	p-value	Desired significance level			
		1%	5%	10%	15%
(19), H_0	.388	.002	.026	.052	.104
(20)	.049	.385	.645	.817	.900
NOTES

1. Else, empirical process technologies had to be applied which are based on somewhat different assumptions and therefore test for slightly different alternatives.

2. Härdle, Sperlich, and Spokoiny (2001) consider a semiparametric additive model but test for the parametric part whereas they consider the rest as a nuisance parameter which is recommended to be estimated with the smallest possible bias, i.e., to strongly undersmooth.

3. You need even more if, for example, a statistic like in Zheng (1996) is used for the test.

4. The main Fortran codes used for our simulation studies are available via the web page of the second author Stefan Sperlich, presently at www.unige.ch/ses/dasc/sperlich/FORTRAN-ET.txt.

REFERENCES

Amemiya, T. (1973) Regression analysis when the dependent variable is truncated normal. *Econometrica* 41, 997–1016.

Delgado, M.A., J.M. Rodriguez-Poo, & M. Wolf (2001) Subsampling cube root asymptotics with an application to Manski’s MSE. *Economics Letters* 73, 241–250.

Dette, H., C. von Lieres und Wilkau, & S. Sperlich (2005) A comparison of different nonparametric methods for inference on additive models. *Journal of Nonparametric Statistics* 17, 57–81.

Giné, E. & J. Zinn (1990) Bootstrapping general empirical measures. *Annals of Probability* 18, 851–869.

Gonzalez-Manteiga, W. & R.M. Crujeiras (2013) An updated review of goodness-of-fit tests for regression models. With discussion. *Test* 22, 361–447.

Guerre, E. & P. Lavergne (2002) Optimal minimax rates for nonparametric specification testing in regression models. *Econometric Theory* 18, 1139–1171.

Guerre, E. & P. Lavergne (2005) Rate-optimal data-driven specification testing for regression models. *Annals of Statistics* 33, 840–870.

Härdle, W., S. Huet, E. Mammen, & S. Sperlich (2004) Bootstrap inference in semiparametric generalized additive models. *Econometric Theory* 20, 265–300.

Härdle, W., S. Sperlich, & V. Spokoiny (2001) Structural tests in additive regression. *Journal of the American Statistical Association* 96, 1333–1347.

Hart, J. (1997) *Nonparametric Smoothing and Lack-of-Fit Tests*. Springer Series in Statistics. Springer.

Horowitz, J. & V. Spokoiny (2001) An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. *Econometrica* 69, 599–632.

Kallenberg, W.C.M. & T. Ledwina (1995) Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests. *Annals of Statistics* 23, 1594–1608.

Köhler, M., A. Schindler, & S. Sperlich (2014) A review and comparison of bandwidth selection methods for kernel regression. *International Statistical Review* 81, 405–415.

Lewbel, A. & O. Linton (2002) Nonparametric censored and truncated regression. *Econometrica* 70, 765–779.

Lewbel, A. & O. Linton (2007) Nonparametric matching and homothetically separable functions. *Econometrica* 75, 1209–1228.

Mack, Y.P. & B.W. Silverman (1982) Weak and strong uniform consistency of kernel regression estimates. *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete* 61, 405–415.

Neumeyer, N. & S. Sperlich (2006) Comparison of separable components in different samples. *Scandinavian Journal of Statistics* 33, 477–501.

Pardo-Fernández, J.C., I. Van Keilegom, & W. González-Manteiga (2007) Goodness-of-fit tests for parametric models in censored regression. *Canadian Journal of Statistics* 35, 249–264.

Politis, D.N., J.P. Romano, & M. Wolf (1999) *Subsampling*. Springer-Verlag.

Politis, D.N., J.P. Romano, & M. Wolf (2001) On the asymptotic theory of subsampling. *Statistica Sinica* 11, 1105–1124.
APPENDIX

A.1. Proof of Lemma 1

For the proof of Lemma 1 we first need to establish the following proposition:

PROPOSITION 1. Assume that condition (C.1) holds. Under \(H_0 \) we have

\[
\sup_y \sup_{x_1 \in \mathcal{X}_1} \sup_{x_2 \in \mathcal{X}_2} \sup_{\theta \in \Theta} \left| \ell_Y^0 \left(y, x_1, x_2; \hat{\theta}, \hat{\eta}_1, \hat{\eta}_2 \right) - \ell_Y^0 \left(y, x_1, x_2; \theta, \eta_1, \eta_2 \right) \right| = O_p \left(n^{-r_1} (\log n)^{r_1} + n^{-r_2} (\log n)^{r_2} \right) + O_p \left(n^{-1/2} \right)
\]

as \(n \) tends to infinity.

Proof of Proposition 1. Since by assumption (C.1), \(\ell_Y^0 \) is differentiable we have

\[
\left| \ell_Y^0 \left(y, x_1, x_2; \hat{\theta}, \hat{\eta}_1, \hat{\eta}_2 \right) - \ell_Y^0 \left(y, x_1, x_2; \theta, \eta_1, \eta_2 \right) \right| \leq C \left(|\hat{\eta}_1(x_1) - \eta_1(x_1)| + |\hat{\eta}_2(x_2) - \eta_2(x_2)| + |\hat{\theta} - \theta| \right).
\]

This is uniform because \(\mathcal{X}_1, \mathcal{X}_2, \) and \(\Theta \) are compact sets. So condition (C.1) applies. \(\square \)

Proof of Lemma 1. The proof of this result will be a direct consequence of Proposition 1 since

\[
m(x) = \int y \ell_Y^0 \left(y, x_1, x_2 \right) dy.
\]

So we can write

\[
m(x) - \tilde{m}_S(x) = \left| \int y \left(\ell_Y^0 \left(y, x_1, x_2 \right) - \ell_Y^0 \left(y, x_1, x_2; \hat{\theta}, \hat{\eta}_1(x_1), \hat{\eta}_2(x_2) \right) \right) dy \right|.
\]

(A.22)
Furthermore, under the null hypothesis we have
\[\int y \ell_{Y|X} (y, x_1, x_2) \, dy = \int y \ell_{Y|X}^0 (y, x_1, x_2; \theta, \eta_1(x_1), \eta_2(x_2)) \, dy. \tag{A.23} \]

Thus, the left hand side of (A.22) is equal to
\[\left| \int y \left(\ell_{Y|X}^0 (y, x_1, x_2; \theta, \eta_1(x_1), \eta_2(x_2)) - \ell_{Y|X}^0 (y, x_1, x_2; \hat{\theta}, \hat{\eta}_1(x_1), \hat{\eta}_2(x_2)) \right) \, dy \right|. \tag{A.24} \]

Note that (A.24) is bounded by
\[\left| \int \sup_{y} \sup_{x_1 \in \mathcal{X}_1} \sup_{x_2 \in \mathcal{X}_2} \sup_{\theta \in \Theta} \left(\ell_{Y|X}^0 (y, x_1, x_2; \hat{\theta}, \hat{\eta}_1(x_1), \hat{\eta}_2(x_2)) - \ell_{Y|X}^0 (y, x_1, x_2; \theta, \eta_1(x_1), \eta_2(x_2)) \right) \, dy \right|. \]

Noting that since \(P(|Y_n| > b_n) \leq b_n^{-s} E[Y]^s \), it follows with probability one that \(|y_n| \leq b_n\) for all sufficiently large \(n \), and since \(b_n \) is increasing,
\[|y_j| \leq b_n, \quad \text{for all} \quad j \leq n, \]
therefore
\[\int_{|y| < b_n} |y| \, dy = O(b_n). \]

Now, using the fact that by Mack and Silverman (1982),
\[\int_{|y| \geq b_n} |y| \, dy \leq M_s b_n^{1-s}, \tag{A.25} \]

it follows that (A.25) is bounded by \(O(b_n^{1-s}) \) with probability one. Apply now Proposition 1 and the proof is done. \(\blacksquare \)

A.2. Proof of Theorem 1

In order to provide Theorem 1 we need a few technical results presented in Lemmas 2–7. In the following, as above, double hat (like e.g., \(\hat{\hat{\eta}}_1 \)) refers to estimators from the resamples.

Lemma 2. Assume conditions (S.1)–(S.2), (B.1), (C.1), (K.1), and (H.1) hold, and let
\[U_n = \int \left[\frac{1}{nh^d} \sum_{j=1}^n K \left(\frac{x - X_j}{h} \right) (m(X_j) - \tilde{m}_S(X_j)) \right]^2 \omega(x) \, dx. \]

Then, for some \(\mu > 0 \), under the null hypothesis, \(H_0 \),
\[E[U_n]^{2+\mu} = o \left(\frac{1}{n^{2+\mu} h^{2(2+\mu)}} \right) \]
as \(n \) tends to infinity.
Proof of Lemma 2. We rewrite

\[
E[U_n]^{2+\mu} = \frac{1}{n^{2(2+\mu)}h^{2d(2+\mu)}} \times E \left\{ \int \left[\sum_{j=1}^{n} K \left(\frac{x-X_j}{h} \right) (m(X_j) - \hat{m}_S(X_j)) \right]^2 \omega(x) \, dx \right\}^{2+\mu},
\]

so it can be seen that

\[
E[U_n]^{2+\mu} \leq C n^{-(2+\mu)} \sup_x |m(x) - \hat{m}_S(x)|^{2(2+\mu)} \times \left\{ \int \left(\sum_{j=1}^{n} \left| K \left(\frac{x-X_j}{h} \right) \right| \right)^2 \omega(x) \, dx \right\}^{2+\mu}.
\]

Applying (S.2) and a strong law of large numbers we obtain

\[
E[U_n]^{2+\mu} \leq C \sup_x |m(x) - \hat{m}_S(x)|^{2(2+\mu)} \left\{ \int p^2(x) \omega(x) \, dx \right\}^{2+\mu} + o_P(1),
\]

and by Lemma 1

\[
E[U_n]^{2+\mu} = O \left(n^{-(2+\mu)r} (\log n)^{(2+\mu)r} h^{2+\mu} \right),
\]

where \(r \) was defined as \(\max \{r_1, r_2\} \). Since \(h \in H_n \), by condition (H.1)

\[
E[U_n]^{2+\mu} = o \left(\frac{1}{n^{2+\mu} h^{\frac{2}{2} (2+\mu)}} \right)
\]

what closes the proof.

Now, for the following we define \(\varepsilon_j = Y_j - m(X_j) \).

Lemma 3. Assume that conditions (C.1), (S.1)–(S.3), (B.1), (K.1), and (H.1) hold, and let

\[
V_n = \int \left(\frac{1}{nh_d} \right)^2 \sum_{j=1}^{n} \varepsilon_j K^2 \left(\frac{x-X_j}{h} \right) \{m(X_j) - \hat{m}_S(X_j)\} \omega(x) \, dx.
\]

Then, for some \(\mu > 0 \) under the null hypothesis \(H_0 \) one has

\[
E[V_n]^{2+\mu} = o \left(\frac{1}{n^{2+\mu} h^{\frac{4}{2} (2+\mu)}} \right)
\]

as \(n \) tends to infinity.
Proof of Lemma 3. We have
\[
E [V_n]^{2+\mu} \leq \left(\sup_x |m(x) - \widehat{m}_S(x)| \right)^{2+\mu} \left(\frac{1}{nh^{d/2}} \right)^{4+2\mu}
\times E \left[\int \sum_{j=1}^n e_j K^2 \left(\frac{x - X_j}{h} \right) \omega(x) \, dx \right]^{2+\mu}.
\]
Integrating by substitution and using a standard inequality for expectations gives
\[
E [V_n]^{2+\mu} \leq \sup_x \left\{ m(x) - \widehat{m}_S(x) \right\}^{2+\mu} \left(\int K^2(u) \, du \right)^{2+\mu}
\times \sum_{j=1}^n E \left[e_j \alpha(X_j) \right]^{2+\mu}.
\]
Using Lemma 1 and assumptions (S.3) and (H.1) and recalling that \(h \in H_n \) we obtain
\[
E [V_n]^{2+\mu} = o \left(\frac{1}{n^{2+\mu} h^{d(2+\mu)}} \right).
\]
This closes the proof.

Lemma 4. Assume conditions (C.1), (S.1)–(S.3), (K.1), (L.6), and (H.1) hold, and let
\[
W_n = \int \left(\frac{1}{nh^{d/2}} \right)^2 \sum_{j} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) e_k \{ m(X_j) - \widehat{m}_S(X_j) \} \omega(x) \, dx.
\]
Then, under the null hypothesis, \(H_0 \),
\[
E [W_n]^{2+\mu} = o \left(\frac{1}{n^{2+\mu} h^{d(2+\mu)}} \right)
\]
as \(n \) tends to infinity.

Proof of Lemma 4. If we use for any integer \(\mu > 0 \) the notation
\[
F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu})
\]
\[
= \int_{x_1} \ldots \int_{x_{2+\mu}} K \left(\frac{x_1 - X_{j_1}}{h} \right) K \left(\frac{x_1 - X_{k_1}}{h} \right) \ldots K \left(\frac{x_{2+\mu} - X_{j_{2+\mu}}}{h} \right)
\times K \left(\frac{x_{2+\mu} - X_{k_{2+\mu}}}{h} \right) \epsilon_{k_1} \ldots \epsilon_{k_{2+\mu}} \omega(x_1) \ldots \omega(x_{2+\mu}) \, dx_1 \ldots dx_{2+\mu},
\]
then we have directly that
\[
E \left(W_n^{2+\mu} \right) \leq \left(\sup_x \{ m(x) - n \widehat{m}_S(x) \} \right)^{2+\mu} \frac{1}{n^{2(2+\mu)} h^{2(2+\mu)d}}
\times \sum_{k_1} \sum_{j_1 \neq k_1} \ldots \sum_{k_{2+\mu} j_{2+\mu} \neq k_{2+\mu}} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right].
\]
If we denote by \(I \) the set composed of all the \(2(2+\mu) \)-integers \((j_1, k_1, \ldots j_{2+\mu}, k_{2+\mu}) \) such that \(j_i \neq k_i, \forall i \), this last inequality can be written as:

\[
E \left(W_{n}^{2+\mu} \right) \leq \left(\sup_x \{m(x) - \hat{m}_S(x)\} \right)^{2+\mu} \frac{1}{n^{2(2+\mu)}h^{2(2+\mu)d}} \sum_{I} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right].
\]

Now we will decompose the set \(I \) of indices according to the number of distinct integers among the different \(k_i \). More precisely, we can write \(I = I_1 \cup \cdots \cup I_{2+\mu} \), where \(I_m = \{(j_1, k_1, \ldots j_{2+\mu}, k_{2+\mu}) \in I \text{ such that } Card(k_1, \ldots k_{2+\mu}) = m \} \), so that the previous inequality can be rewritten as:

\[
E \left(W_{n}^{2+\mu} \right) \leq \left(\sup_x \{m(x) - \hat{m}_S(x)\} \right)^{2+\mu} \frac{1}{n^{2(2+\mu)}h^{2(2+\mu)d}} \sum_{m=1, \ldots 2+\mu} \sum_{I_m} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right].
\]

By independence of the data, note that if \(m > 1 + \mu/2 \), i.e., if one among the \(k_i \) appears only once, we have \(E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) = 0 \right] \). So we have finally

\[
E \left(W_{n}^{2+\mu} \left) \right. \leq \left(\sup_x \{m(x) - \hat{m}_S(x)\} \right)^{2+\mu} \frac{1}{n^{2(2+\mu)}h^{2(2+\mu)d}} \sum_{m=1, \ldots 1+\mu/2} \sum_{I_m} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right].
\]

Next, for some \(m \in \{1, \ldots, 2+\mu\} \), let us compute \(E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right] \). Using again the same technique, we can define:

\(I_{m,s} = \{(j_1, k_1, \ldots j_{2+\mu}, k_{2+\mu}) \in I_m \text{ such that } Card(j_1, \ldots j_{2+\mu}, k_{2+\mu}) = s \} \),

and we have \(I_m = I_{m,1} \cup \cdots \cup I_{m,2+\mu+m} \). For \((j_1, k_1, \ldots j_{2+\mu}, k_{2+\mu}) \in I_{m,s} \) we can do exactly \(s + 1 + \mu/2 \) integrations by substitution, so that

\[
\forall (j_1, k_1, \ldots j_{2+\mu}, k_{2+\mu}) \in I_{m,s}, \quad E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right] = O(h^{(1+\mu/2+s)d}).
\]

Because of \(Card(I_{m,s}) = O(n^s) \), we have directly

\[
\sum_{I_{m,s}} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right] = O \left(n^s h^{(1+\mu/2+s)d} \right).
\]

Finally, we get

\[
\sum_{I_m} E \left[F(j_1, k_1, \ldots, j_{2+\mu}, k_{2+\mu}) \right] = \sum_{s=1 \ldots 2+\mu+m} O \left(n^s h^{(1+\mu/2+s)d} \right) = O \left(n^{2+\mu+m} h^{(3+1+\mu/2+m)d} \right).
\]
Let us now come back to the term $E[W_n^{2+\mu}]$. By using the last equality for any $m = 1, \ldots, 1 + \mu/2$, we have

$$E[W_n^{2+\mu}] \leq \left(\sup_x (m(x) - \hat{m}_S(x)) \right)^{2+\mu} \frac{1}{n^{2(2+\mu)} h^{2(2+\mu)d}} \sum_{m=1,\ldots,1+\mu/2} \times O\left(n^{2+\mu+m} h^{3(1+\mu/2)+m} d\right)$$

\[\leq \left(\sup_x (m(x) - \hat{m}_S(x)) \right)^{2+\mu} \frac{1}{n^{2(2+\mu)} h^{2(2+\mu)d}} \sum_{m=1,\ldots,1+\mu/2} \times O\left(n^{3(1+\mu/2)} h^{2(2+\mu)} d\right)\]

\[= O\left(n^{-(1+\mu/2)} \sup_x (m(x) - \hat{m}_S(x)) \right)^{2+\mu}.
\]

Then, because of Lemma 1, given that $h \in H_n$ and assumption (H.1), we have

$$\sup_x \left\{ m(x) - \hat{m}_S(x) \right\} = o\left(n^{-1/2} h^{-d/2}\right),$$

and we arrive finally at

$$E[W_n^{2+\mu}] = o\left(n^{-2-\mu} h^{-d-\frac{d\mu}{2}}\right).$$

Lemma 5. Assume that conditions (C.1)–(C.2), (S.1)–(S.3), (B.1), (K.1), and (H.1) hold. Then, for all z, we have under H_0 and as n tends to infinity:

$$P\left(\max_{h \in H_n} |T_h - T_{h0}| > z \right) = o(1),$$

where

$$T_{h0} = \frac{nh^{d/2} I_h^0 (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - h^{-d/2} B}{\sqrt{V}},$$

$$I_h^0 (\eta_1, \eta_2, \theta) = \int \left[\frac{1}{nh^{d}} \sum_{j=1}^{n} K \left(\frac{x - X_j}{h} \right) (Y_j - m (X_j)) \right]^2 \omega(x) dx.$$

Proof of Lemma 5. By assumptions (S.2) and (S.3) and using definitions (5) and (A.26), a Taylor expansion around V gives

$$T_h - T_{h0} = \frac{nh^{d/2} \left(I_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - I_h^0 (\eta_1, \eta_2, \theta) \right) - h^{-d/2} (\hat{B} - B)}{\sqrt{V}} + o_p \left(\hat{V} - V \right)$$

as n tends to infinity. Then, using the triangle inequality we obtain

$$P\left(\max_{h \in H_n} |T_h - T_{h0}| > z \right) \leq P \left(\max_{h \in H_n} \left| \frac{nh^{d/2} \left(I_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - I_h^0 (\eta_1, \eta_2, \theta) \right) - h^{-d/2} (\hat{B} - B)}{\sqrt{V}} \right| > z/2 \right)$$

\[+ P \left(\max_{h \in H_n} \left| \frac{h^{-d/2} (\hat{B} - B)}{\sqrt{V}} \right| > z/2 \right).\]
We treat each of the above terms separately. For the first term of the right-hand side in (A.28) the following inequality holds

\[
P \left(\max_{h \in H_n} \left| nh^{d/2} \left| I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) - I^0_h (\eta_1, \eta_2, \theta) \right| \right| > z \right) \leq \frac{J_n (nh^{d/2})^{2+\mu}}{z^2} E \left[I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) - I^0_h (\eta_1, \eta_2, \theta) \right]^{2+\mu},
\]

for some \(\mu > 0 \). Let us now decompose \(I_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) \) and \(I^0_h (\eta_1, \eta_2, \theta) \) as

\[
I^0_h (\eta_1, \eta_2, \theta) = S^0_h (\eta_1, \eta_2, \theta) + R^0_h (\eta_1, \eta_2, \theta),
\]

where

\[
S^0_h (\eta_1, \eta_2, \theta) = \int \left(\frac{1}{nh^d} \right)^2 n K^2 \left(\frac{x - X_j}{h} \right) e^2_j \omega (x) dx,
\]

and

\[
R^0_h (\eta_1, \eta_2, \theta) = \int \left(\frac{1}{nh^d} \right)^2 \sum_j \sum_{k \neq j} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) e_j e_k \omega (x) dx.
\]

\[
I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) = S^0_h (\eta_1, \eta_2, \theta) + R^0_h (\eta_1, \eta_2, \theta) + U_n + 2V_n + 2W_n,
\]

where \(U_n, V_n, \) and \(W_n \) are defined in previous lemmas. Then, the following inequality holds

\[
E \left[I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) - I^0_h (\eta_1, \eta_2, \theta) \right]^{2+\mu} = E \left[U_n + 2V_n + 2W_n \right]^{2+\mu} \leq C_1 E \left[U_n \right]^{2+\mu} + C_2 E \left[V_n \right]^{2+\mu} + C_3 E \left[W_n \right]^{2+\mu},
\]

for some constants \(C_1, C_2, C_3 > 0 \).

Now, applying Lemmas 2–4, and assumption (H.1) the first term of the r.h.s. in (A.28) tends to zero as \(n \) tends to infinity.

For the second term holds the following bound,

\[
P \left(\max_{h \in H_n} \left| nh^{-d/2} \left(\hat{B} - B \right) \right| > z \right) \leq \frac{J_n h^{-d/2}}{z^2} E \left[\hat{B} - B \right]^{2+\mu},
\]

and substituting \(\hat{B} \) and \(B \) by their definitions in (7) we obtain

\[
E \left[\hat{B} - B \right]^{2+\mu} = \left\{ \int K^2 (t) dt \right\}^{2+\mu} \times E \left\{ \int \left[\hat{\sigma}^2 (u) \hat{p} (u) - \sigma^2 (u) p (u) \right] \omega (u) du \right\}^{2+\mu}
\]

and

\[
E \left[\hat{B} - B \right]^{2+\mu} = O \left(\left\{ \sup_x \left[\hat{\sigma}^2 (x) \hat{p} (x) - \sigma^2 (x) p (x) \right] \right\}^{2+\mu} \right).
\]
Now using assumptions (C.2) and (H.1) we get
\[J_n h^{-\frac{\mu d}{2}} E \left[\hat{B} - B \right]^{\frac{2+\mu}{2}} = o(1). \]
This closes the proof.

Lemma 6. Assume that conditions (C.1) and (C.2), (S.1)–(S.3), (B.1), (K.1), and (H.1) hold. Then, as \(n \) tends to infinity,
\[\max_{h \in H_n} T_{h0} - \max_{h \in H_n} \tilde{T}_{h0} \to d 0, \]
where
\[\tilde{T}_{h0} = \frac{n h^{d/2} \tilde{I}_h(\eta_1, \eta_2, \theta) - h^{-d/2} B}{\sqrt{V}} \]
(A.29)
\[\tilde{I}_h(\eta_1, \eta_2, \theta) = \int \left[\frac{1}{n h^d} \sum_{j=1}^n K \left(\frac{x - X_j}{h} \right) \left(\tilde{Y}_j - m(X_j) \right) \right]^2 \omega(x) \, dx, \]
(A.30)
and \(\tilde{Y}_j = m(X_j) + \sigma(X_j) \epsilon_j^* \) with \(\epsilon_j^* \) being resampled errors (having mean zero and variance one).

Proof of Lemma 6. Let \(\tilde{I}_h(\eta_1, \eta_2, \theta) = \tilde{S}_h^0(\eta_1, \eta_2, \theta) + \tilde{R}_h^0(\eta_1, \eta_2, \theta) \), where
\[\tilde{S}_h^0(\eta_1, \eta_2, \theta) = \int \left(\frac{1}{n h^d} \sum_{j=1}^n K \left(\frac{x - X_j}{h} \right) \right)^2 \sigma^2(X_j) \epsilon_j^* \omega(x) \, dx, \]
\[\tilde{R}_h^0(\eta_1, \eta_2, \theta) = \int \left(\frac{1}{n h^d} \sum_{k \neq j} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) \right) \sigma(X_j) \sigma(X_k) \epsilon_j^* \epsilon_k^* \omega(x) \, dx. \]
Moreover, as it is known from the proof of Lemma 5 that
\[I_h^0(\eta_1, \eta_2, \theta) = S_h^0(\eta_1, \eta_2, \theta) + R^0_h(\eta_1, \eta_2, \theta). \]
In order to prove the lemma we will first show that
\[\max_{h \in H_n} V^{-1/2} \left(\tilde{S}_h^0(\eta_1, \eta_2, \theta) - S_h^0(\eta_1, \eta_2, \theta) \right) = o_p(1). \]
(A.31)
If this result holds, to show the lemma it suffices to prove that the joint distributions of \(V^{-1/2} R^0_h(\eta_1, \eta_2, \theta) \) and \(V^{-1/2} R^0_h(\eta_1, \eta_2, \theta) \) are asymptotically the same.
We first show (A.31). Write
\[\max_{h \in H_n} \left\{ V^{-1/2} \tilde{S}_h^0(\eta_1, \eta_2, \theta) - V^{-1/2} S_h^0(\eta_1, \eta_2, \theta) \right\} \]
\[= \max_{h \in H_n} V^{-1} \int \left(\frac{1}{n h^d} \sum_{j=1}^n K^2 \left(\frac{x - X_j}{h} \right) \right) \left\{ \epsilon_j^2 - \sigma^2(X_j) \epsilon_j^* \right\} \omega(x) \, dx. \]
To prove (A.31), it suffices to show that for $n \to \infty$

$$
\sum_{h \in H_n} V^{-1} \mathbb{E} \left[\int \left(\frac{1}{nh^d} \right)^2 \sum_{j=1}^{n} K^2 \left(\frac{x - X_j}{h} \right) \left\{ \varepsilon_j^2 - \sigma^2(X_j) \varepsilon_j^* e_j^2 \right\} \omega(x) \frac{dx}{n} \right]^2 = o(1). \quad (A.32)
$$

Note that taking iterated expectations, using the i.i.d. structure of our observations and integrating by substitution, it is straightforward to show that

$$
\mathbb{E} \left[\int \frac{1}{nh^d} \sum_{j=1}^{n} K^2 \left(\frac{x - X_j}{h} \right) \left\{ \varepsilon_j^2 - \sigma^2(X_j) \varepsilon_j^* e_j^2 \right\} \omega(x) \frac{dx}{n} \right]^2 = O \left(\frac{1}{n^2 h^2 d} \right) + O \left(\frac{1}{n^3 h^3 d} \right).
$$

Hence, (A.32) is of order $O \left(\frac{1}{n^2 h^2 d} \right)$. Now, using (10) and because $h \in H_n$, this is indeed of order $O \left(\frac{1}{n^2 h^2 d} \max \right)$, and (A.31) is proved.

Then, the proof that the joint distributions of $V^{-1/2} \bar{R}_h^0(\eta_1, \eta_2, \theta)$ and $V^{-1/2} R_h^0(\eta_1, \eta_2, \theta)$ are asymptotically the same follows the same lines of the proof of Lemma 10 in Horowitz and Spokoiny (2001, p. 622). \hfill \blacksquare

Lemma 7. Assume that conditions (C.1)–(C.3), (S.1)–(S.3), (B.1), (K.1), and (H.1) hold. Then, for all z, under H_0, and for $n \to \infty$

$$
P \left(\max_{h \in H_n} \left| \hat{\bar{T}}_h - \bar{T}_{h0} \right| > z \right) = o(1),
$$

where

$$
\hat{T}_h = \frac{nh^{d/2} I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) - h^{-d/2} \hat{B}}{\sqrt{\hat{V}}}, \quad (A.33)
$$

$$
I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) = \int \frac{1}{nh^d} \sum_{j=1}^{n} K \left(\frac{x - X_j}{h} \right) \left(Y_j - \hat{m}_S(X_j) \right) \omega(x) \frac{dx}{n}, \quad (A.34)
$$

$$
\hat{B} = \int K^2(u)du \int \hat{\sigma}^2(u) \hat{p}(u) \omega(u) du, \quad (A.35)
$$

$$
\hat{V} = \int K^{(2)}(u)du \int \hat{\sigma}^4(u) \hat{p}^2(u) \omega^2(u) du, \quad (A.36)
$$

and $\hat{m}_S(x)$ and $\hat{\sigma}^2(x)$ are resampling estimators.

Proof of Lemma 7. Using (A.29) and (A.33), under conditions (S.2) and (S.3) a Taylor expansion around V gives

$$
\hat{T}_h - \bar{T}_{h0} = \frac{nh^{d/2} \left\{ I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) - I_h \left(\eta_1, \eta_2, \theta \right) \right\} - h^{-d/2} \left(\hat{B} - B \right)}{\sqrt{\hat{V}}} + o \left(\hat{V} - V \right)
$$

as n tends to infinity. Now, by the triangle inequality
We treat each of the above terms by separate. By a standard inequality,}

\[
P \left(\max_{h \in H_n} \left| T^*_h - \tilde{T}_{h0} \right| > z \right) \leq P \left(\max_{h \in H_n} \left| \frac{nh^{d/2} \left\{ I_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - \tilde{I}_h (\eta_1, \eta_2, \theta) \right\}}{\sqrt{V}} \right| > z \right)
+ P \left(\max_{h \in H_n} \left| \frac{h^{-d/2} \left| \hat{B} - B \right|}{\sqrt{V}} \right| > z \right). \tag{A.37}
\]

for some \(\mu > 0 \). Noting that

\[
I_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - \tilde{I}_h (\eta_1, \eta_2, \theta) = S_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - S^0_h (\eta_1, \eta_2, \theta) + R_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) - R^0_h (\eta_1, \eta_2, \theta) + U_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta})
+ 2V_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) + 2W_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}),
\]

where

\[
S_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) = \int \left(\frac{1}{nh^d} \right)^{2} \sum_{j=1}^{n} K^2 \left(\frac{x - X_j}{h} \right) \hat{\sigma}^2 (X_j) \varepsilon^*_j \omega (x) dx,
\]

\[
R_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) = \int \left(\frac{1}{nh^d} \right)^{2} \sum_{j \neq k} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) \times \hat{\sigma} (X_j) \hat{\sigma} (X_k) \varepsilon^*_j \varepsilon^*_k \omega (x) dx,
\]

\[
U_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) = \int \left[\frac{1}{nh^d} \sum_{j=1}^{n} K \left(\frac{x - X_j}{h} \right) (\hat{m}_S (X_j) - \hat{m}_S (X_j)) \right]^2 \omega (x) dx,
\]

\[
V_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) = \int \left(\frac{1}{nh^d} \right)^{2} \sum_{j=1}^{n} \varepsilon^*_j K^2 \left(\frac{x - X_j}{h} \right) (\hat{m}_S (X_j) - \hat{m}_S (X_j)) \omega (x) dx,
\]

and

\[
W_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) = \int \left(\frac{1}{nh^d} \right)^{2} \sum_{j \neq k} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) \times \varepsilon^*_j (\hat{m}_S (X_j) - \hat{m}_S (X_j)) \omega (x) dx,
\]
the following bound holds

\[
E \left[I_h (\eta_1, \eta_2, \theta) - I_h \left(\hat{\eta}_1, \hat{\eta}_2, \hat{\theta} \right) \right]^{2+\mu} \\
= E \left[S_h - S^0_h + R_h - R^0_h + U_h + 2V_h + 2W_h \right]^{2+\mu} \\
\leq C_1 E \left[S_h - S^0_h \right]^{2+\mu} + C_2 E \left[T_h - T^0_h \right]^{2+\mu} + C_3 E \left[U_h \right]^{2+\mu} + C_4 E \left[V_h \right]^{2+\mu} \\
+ C_5 E \left[W_h \right]^{2+\mu},
\]

for some constants \(C_1, C_2, C_3, C_4, C_5 > 0 \).

\[
E \left[S_h - S^0_h \right]^{2+\mu} \leq \left(\frac{1}{nh^d} \right)^{2(2+\mu)} \left(\sup_x |\hat{\sigma}^2 (X_j) - \sigma^2 (X_j)| \right)^{2+\mu} \\
\times E \left[\int \sum_{j=1}^n K^2 \left(\frac{x - X_j}{h} \right) \varepsilon_j^* \omega(x) dx \right]^{2+\mu}.
\]

Furthermore, integrating by substitution there exists a constant \(C > 0 \) such that

\[
E \left[\int \sum_{j=1}^n K^2 \left(\frac{x - X_j}{h} \right) \varepsilon_j^* \omega(x) dx \right]^{2+\mu} \\
\leq C \left(\int K^2 (u) du \right)^{2+\mu} \sum_{j=1}^n E \left[\varepsilon_j^* \omega (X_j) \right]^{2+\mu}. \tag{A.38}
\]

Applying (C.2) and the bound achieved in (A.38) we get

\[
n^{2+\mu} h^{d(2+\mu)} \log n E \left[S_h - S^0_h \right]^{2+\mu} = o (1).
\]

Following the same lines as above it is straightforward to show that the second term,

\[
R_h - R^0_h = \int \left(\frac{1}{nh^d} \right)^{2} \sum_j \sum_{k \neq j} K \left(\frac{x - X_j}{h} \right) K \left(\frac{x - X_k}{h} \right) \\
\times \left\{ \hat{\sigma} (X_j) \hat{\sigma} (X_k) - \sigma (X_j) \sigma (X_k) \right\} \varepsilon_j^* \varepsilon_k^* \omega (x) dx,
\]

is also of order \(o \left(\frac{1}{n^{2+\mu} h^{d(2+\mu) \log n}} \right) \), as \(n \) tends to infinity.

The terms \(U_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) \), \(V_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) \), and \(W_h (\hat{\eta}_1, \hat{\eta}_2, \hat{\theta}) \) can be treated as in Lemmas 2–4 respectively by replacing assumption (C.1) by assumption (C.3).

Proof of Theorem 1. The proof of this result is done if we can show that \(\hat{T}^* \) and \(T^* \) have identical asymptotic distribution. This follows directly from previous lemma, since as \(n \) tends to infinity, we have by Lemma 5 that \(\max_{h \in H_n} T_h = \max_{h \in H_n} T^* \), while Lemma 6 ensures that \(\max_{h \in H_n} T_h \) and \(\max_{h \in H_n} \tilde{T}^* \) have identical asymptotic distribution. So, because Lemma 7 ensures that \(\max_{h \in H_n} \tilde{T}^* \) and \(\max_{h \in H_n} T^* \) have the same asymptotic distribution.
A.3. Proof of Theorem 2

The proof works by following the lines of the proof for Theorem 1 but replacing Lemmas 2–7 by similar results stated under the alternative hypothesis. We start the proof by stating the following Lemmas, along which the notations used above.

Lemma 8. Let U_n be defined as in Lemma 2 but now under hypothesis H_a. Then, under the assumptions of Theorem 2 we have for any $h \in H_n$ that $U_n = C \gamma_n^2 + o_p \left(n^{-1} h^{-d/2} \right)$ as n tends to infinity.

Proof of Lemma 8. The proof follows the lines of the one for Lemma 2, but now assuming H_a and that consequently expression (A.39) holds. Then we obtain

$$U_n = U_{1n} + U_{2n} + U_{12n},$$

where

$$U_{1n} = \gamma_n^2 \int \left[\frac{1}{nh^d} \sum_i K \left(\frac{x - X_i}{h} \right) \vartheta (X_i) \right]^2 \omega(x) dx,$$

$$U_{2n} = \int \left[\frac{1}{nh^d} \sum_i K \left(\frac{x - X_i}{h} \right) \left\{ m_0 (X_i) - \hat{m}_S (X_i) \right\} \right]^2 \omega(x) dx,$$

$$U_{12n} = 2 \gamma_n \int \left[\frac{1}{nh^d} \sum_i K \left(\frac{x - X_i}{h} \right) \vartheta (X_i) \right] \left[\frac{1}{nh^d} \sum_i K \left(\frac{x - X_i}{h} \right) \left\{ m_0 (X_i) - \hat{m}_S (X_i) \right\} \right] \omega(x) dx.$$

Applying (S.2) and a strong law of large numbers we obtain $U_{1n} = C \gamma_n^2 + o_p (1)$. Furthermore, $|U_{2n}| = o_p \left(n^{-1} h^{-d/2} \right)$ by Lemma 2. Finally, integrating by substitution, applying a strong law of large numbers and conditions (H.1) and (A.1), $U_{12n} = o_p \left(U_{1n} \right)$.

Lemma 9. Now, define V_n as in Lemma 3 but as above under hypothesis H_a. Then, under the assumptions of Theorem 2 we have for any $h \in H_n$ that $V_n = o_p (U_n)$ when n tends to infinity.

Proof of Lemma 9. The proof basically follows the arguments as in Lemma 3, but now we analyze the behavior under H_a. Note that H_a implies

$$\int y \ell_{Y|X_1, X_2} (y, x_1, x_2) dy = \int y \ell_{Y|X_1, X_2}^0 (y, x_1, x_2 \theta) dy + \gamma_n \int y \psi (y, x_1, x_2) dy,$$

where $\vartheta (x) = \int y \psi (y, x_1, x_2) dy$ is a bounded continuous function on its support, see (A.3). Then
\[V_n \equiv V_{1n} + V_{2n} = \gamma_n \int \left(\frac{1}{nh^d} \right)^2 \sum_j \varepsilon_j K^2 \left(\frac{x-X_j}{h} \right) \vartheta(x) \omega(x) dx \]

(A.40)

\[+ \int \left(\frac{1}{nh^d} \right)^2 \sum_j \varepsilon_j K^2 \left(\frac{x-X_j}{h} \right) \{m_0(X_j) - \hat{m}_S(X_j)\} \omega(x) dx. \]

\[V_{1n} = \frac{\gamma_n}{nh^d} \times \frac{1}{nh^d} \sum_{j=1}^n \varepsilon_j \vartheta(X_j) \int K^2 \left(\frac{x-X_j}{h} \right) \omega(x) dx. \]

(A.41)

Integrating by substitution and using the smoothness conditions on \(\omega(x) \) then

\[V_{1n} = \frac{\gamma_n}{nh^d} \left[\int K^2(u) du \times \frac{1}{n} \sum_{j=1}^n \vartheta(X_j) \omega(X_j) \varepsilon_j \right] \]

(A.42)

\[+ \frac{\gamma_nh^2}{nh^d} \left[\int u^2 K^2(u) du \times \frac{1}{n} \sum_{j=1}^n \vartheta''(X_j) \omega''(X_j) \varepsilon_j \right] \]

(A.43)

\[+ o_p \left(\frac{\gamma_nh^4}{nh^d} \right). \]

(A.44)

Under the conditions established in the lemma, standard central limit theorems apply so that \(\frac{1}{n} \sum_{j=1}^n \vartheta(X_j) \omega(X_j) \varepsilon_j \) and \(\frac{1}{\sqrt{n}} \sum_{j=1}^n \vartheta''(X_j) \omega''(X_j) \varepsilon_j \) have expectation zero and are bounded in probability. Specifically,

\[V_{1n} = C - \frac{\gamma_n}{n^{3/2}h^d} + o_p \left(\frac{\gamma_n}{n^{3/2}h^d} \right). \]

(A.45)

Further, the term \(V_{2n} \) can be bounded as follows,

\[|E(V_{2n})| \leq \sup_x |m_0(x) - \hat{m}_S(x)| \frac{1}{nh^{2d}} \int E|\varepsilon_1| K^2 \left(\frac{x-X_1}{h} \right) \omega(x) dx. \]

Integration by substitution gives

\[|E(V_{2n})| = O_p \left(\sup_x |m_0(x) - \hat{m}_S(x)| \frac{1}{nh^d} \right) + o_p \left(\sup_x |m_0(x) - \hat{m}_S(x)| \frac{1}{nh^d} \right). \]

Using assumptions (C.1) and (H.1) and recalling that \(h \in H_n \),

\[|E(V_{2n})| = o_p \left(n^{-1}h^{-d/2} \right). \]

(A.46)

For the variance expression we obtain

\[\text{Var}(V_{2n}) = \frac{1}{n^4h^{4d}} \sum_{j=1}^n \text{Var} \left[\int \varepsilon_j (m_0(X_j) - \hat{m}_S(X_j)) K^2 \left(\frac{x-X_j}{h} \right) \omega(x) dx \right], \]

\[|\text{Var}(V_{2n})| \leq C \left\{ \frac{1}{n^4h^{4d}} \sum_{j=1}^n \text{Var} \left[\int |\varepsilon_j| K^2 \left(\frac{x-X_j}{h} \right) \omega(x) dx \right] \right\} \times \left(\sup_x |m_0(x) - \hat{m}_S(x)| \right)^2. \]
Integrating by substitution, using conditions (C.1) and (H.1) and recalling that $h \in H_n$,

$$|Var(V_{2n})| = o_p\left(\frac{1}{n^2h^d}\right). \quad (A.47)$$

Then, from (A.40), (A.41), (A.45), (A.46), and (A.47) we finally get

$$V_n = C' \gamma_n \frac{1}{n^{3/2}h^d} + o_p\left(\gamma_n \frac{1}{n^{3/2}h^d}\right) + o_p\left(n^{-1}h^{-d/2}\right).$$

Apply conditions (A.1) and (H.1) and for all $h \in H_n$ the proof is done.

Lemma 10. Define now W_n as in Lemma 4 but under hypothesis H_a. Then, under the assumptions of Theorem 2 we have for any $h \in H_n$ that $W_n = o_p(U_n)$ as n tends to infinity.

Proof of Lemma 10. The proof of this result is based on the proof of Lemma 4. The bias term is $E(W_n) = 0$. For the variance term proceed as in the proof of Lemma 7 but using H_a, and therefore equality (A.39). We obtain $E\left(W_n^2\right) \leq \frac{C\gamma_n^2}{n}$. This closes the proof of the Lemma.

Lemma 11. Under the assumptions required either for Theorem 1 or 2, we have $|\alpha| \leq M < \infty$.

Proof of Lemma 11. Because of Lemmas 7 and 8, under the conditions of either Theorem 1 or 2 we have $\max_h \hat{T}_h = \max_h T_{h0} + o_p(1)$. So it suffices to see that

$$\forall h, T_{h0} = O_p\left(nh^{d/2}\right) \quad (A.48)$$

to get the proof. Note that (A.48) is obtained as long as we have

$$\forall h, I_0(h)(\eta_1, \eta_2, \theta) \leq C < \infty \quad (A.49)$$

which is easy to obtain by working the terms out.

Lemma 12. Under the assumptions of Theorem 2, and $n \to \infty$, we have for any z

$$P\left(\max_{h \in H_n} |T_h - T_{h0}| > z\right) \to 1.$$

Proof of Lemma 12. Using the same kind of decomposition as in Lemma 5 the claimed result follows directly from Lemmas 8–11.

Proof of Theorem 2. Note that for the proof of Lemma 6 we did not use the null hypothesis H_0. So, the results of this lemma are still available here. Under the alternative, H_a, and adding assumptions (A.1) to (A.3) the results in Lemma 7 also apply. So, by combining results of Lemmas 6 and 7, we get directly that

$$\max_{h \in H_n} T_{h0} = \max_{h \in H_n} \hat{T}_h + o_p(1).$$

So it suffices to combine this with Lemma 12 to close the proof of Theorem 2.