Mobility gap and quantum transport in a functionalized graphene bilayer

Ahmed Missaoui, Jouda Jemaa Khabthani, Nejm-Eddine Jaidane, Didier Mayou and Guy Trambly de Laissardièere

1 Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire 1060 Tunis, Tunisia
2 Laboratoire de la Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire 1060 Tunis, Tunisia
3 CNRS, Inst NEEL, F-38042 Grenoble, France
4 Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
5 Laboratoire de Physique Théorique et Modélisation, CNRS and Université de Cergy-Pontoise, 95302 Cergy-Pontoise, France

E-mail: guy.trambly@u-cergy.fr

Received 2 February 2018, revised 20 March 2018
Accepted for publication 27 March 2018
Published 18 April 2018

Abstract
In a Bernal graphene bilayer, carbon atoms belong to two inequivalent sublattices A and B, with atoms that are coupled to the other layer by p_σ bonds belonging to sublattice A and the other atoms belonging to sublattice B. We analyze the density of states and the conductivity of Bernal graphene bilayers when atoms of sublattice A or B only are randomly functionalized. We find that for a selective functionalization on sublattice B only, a mobility gap of the order of 0.5 eV is formed close to the Dirac energy at concentration of adatoms $c \geq 10^{-2}$. In addition, at some other energies conductivity presents anomalous behaviors. We show that these properties are related to the bipartite structure of the graphene layer.

Keywords: graphene bilayer, quantum transport, electronic structure, functionalization

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic properties at nanoscale are the key to the novel applications of low-dimensional and nanomaterials in electronic and energy technologies. In particular, a lot of research has been devoted to understanding the remarkable electronic structure and transport properties of bilayer (or multilayers) of graphene [1–14]. Depending on the stacking, the charge carriers were shown, both theoretically [15–21] and experimentally [22–27], to behave like massless Dirac particles or massive particles with chirality. Electronic properties can be tuned by various means and in particular by electrostatic gate or by adding of static defects and functionalization by adatoms or admolecules of monolayer (MLG) [7, 13, 14, 28–42] and bilayer (BLG) [20, 21, 24, 26]. For example, one can open a band gap in this system by electrostatic gating [22, 23]. Recently such locally coupled structures have been also observed in chemical vapor deposition (CVD) graphene samples [26, 41] where, due to rippling, the layers were decoupled in some regions, while being connected in others. It has also been shown that UV irradiation, which results in water dissociative adsorption on graphene of few % of adsorbates, can induce a tunable reversible gap [42].

In this work, we investigate the density of states and the conductivity of a Bernal bilayer graphene (BLG) when the upper layer is functionalized by adatoms. There are two types of site on the upper layer, as shown in figure 1. Sites of sublattice A are above a carbon atom of the lower layer whereas sites of sublattice B are not. Therefore it is possible in principle to functionalize selectively atoms which belong to sublattice A or to sublattice B only. We consider here, that, within the functionalized sublattice, the repartition of the functionalized atoms is random. As a main result we find that, when only sublattice B is functionalized a mobility...
gap of the order of 0.5 eV is formed close to the Dirac energy at concentration of adatoms $c \geq 10^{-2}$. Furthermore for both sublattice functionalization the conductivity increases in some Fermi energy window, when the concentration of functionalized sites increases. This is because the functionalization is not just introducing scattering centers but deeply changes the electronic structure. As we show, the creation of the gap and the abnormal behavior of the conductivity are related to the bipartite nature of the monolayer and bilayer graphene.

2. Method

The BLG studied here consists of the bottom layer 1 and of the top layer 2 as shown in figure 1. The top layer 2 is functionalized whereas the bottom layer 1 keeps its perfect structure. There are four carbon atoms in the unit cell, two carbons A_1, B_1 in layer 1 and A_2, B_2 in layer 2 where A_2 lies on the top of A_1. We use an electronic model where only p_z orbitals are taken into account, since we are interested in the low energy physics i.e. electronic states close to the Dirac energy. The adsorbates which create a covalent bond with a carbon atom of the graphene upper layer is represented by removing the p_z orbitals of the functionalized carbon atoms [7, 31, 43–46]. The missing p_z orbitals are distributed randomly only on sites of the top layer 2 in the sublattice A or B. The tight-binding (TB) Hamiltonian for p_z orbitals has the form:

$$\hat{H} = \sum_{\langle i,j \rangle} t_{ij} \left(c_i^\dagger c_j + c_i^\dagger c_j^\dagger \right)$$

where c_i^\dagger and c_i create and annihilate respectively an electron on site i, $\langle i,j \rangle$ is the sum on index i and j with $i \neq j$, and t_{ij} is the hopping matrix element between two p_z orbitals i and j. We analyze the average local density of states (LDOS) on the sublattices A or B of each plane, and the conductivity as a function of the position of the Fermi energy. Densities of states are computed by recursion (Lanczos algorithm) [47] in real-space on sample containing a few 10^7 carbon atoms with periodic boundary conditions. Within the Kubo-Greenwood formalism we compute the microscopic conductivity $\sigma_m(E)$ [37] using the real-space method developed by Mayou, Khanna, Roche and Triozon [48–52] (see supplementary material section 4 (stacks.iop.org/JPhysCM/30/195701/mmedia)). σ_m is the semi-classical conductivity that does not take into account the quantum corrections due to multiple scattering effects. Typically this quantity represents a room temperature conductivity when multiple scattering effects are destroyed by dephasing due to the electron–phonon scattering.

3. Results

We present first calculations performed with the standard nearest neighbor hopping Hamiltonian (TB1): $t_0 = 2.7$ eV for intra-layer hopping between A and B atoms, and $t_1 = 0.34$ eV for nearest neighbor inter-layer hopping between A_1 and A_2 atoms. The advantage of this simple Hamiltonian TB1 is to allow a detailed physical discussion of the physical mechanism involved. These results are confirmed by analyzing a more realistic Hamiltonian description that takes into account hopping beyond the nearest neighbor hopping model (TB2) (supplementary material, section 1). TB2 has been used successfully to study the electronic structure in rotated bilayer of graphene [17–19] in good agreement with STM density of states measurements [53, 54] and for transport calculations [21, 35, 37, 38].

3.1. Results with nearest-neighbor hopping Hamiltonian (TB1)

The total density of states for both layers (TDOS), $n(E)$, are shown figures 2(a.1) and (b.1) respectively for A and B vacant atoms in layer 2. As explained in the following and in supplementary material (section 2), each missing orbital in the A2 sublattice (resp. B2 sublattice) of the top layer 2 produces one midgap states at Dirac energy $E_D = 0$ that spreads on $\{A_1, B_2\}$ sublattices (resp. $\{A_2, B_1\}$). This is similar to the case of a monolayer of graphene where vacancies in sublattice A (resp. B) produce midgap states at Dirac energies $E_D = 0$ that are located in sublattice B (resp. A) [44, 55]. In figures 2(a.1), (b.1) and (c) the midgap states at $E_D = 0$ are not included in plotted DOSs and in the calculation of the conductivity (supplementary material sections 2 and 4). Vacancies on the A2 sublattice do not produce a gap in the TDOS, whereas B2 vacancies induce a quasi-gap clearly seen around $E_D = 0$. Its width, $\Delta E_g = 2E_0$, increases when c increases and saturates at a value $2t_0$. In B2 vacancies case, unphysical small oscillations appeared in the total DOS and local DOSs. Those oscillations are numerical artifacts related to the termination of the continuous fraction expansion of the Green function used in the recursion method (see supplementary material sections 2 and 3, and [47]). The presence of these unphysical oscillations in the case of B2 vacancies whereas there is no oscillations in the cases of A1 vacancies, confirms the emergence of a gap by B2 vacancies.

The conductivity $\sigma_m(E)$, is shown figures 2(a.2) and (b.2) for A_2 vacant atoms and B_2 vacant atoms, respectively. In both cases, the conductivity at large energies $|E| \gg 1$ eV is inversely proportional to the concentration c of vacancies. This is expected from the Boltzmann theory if the vacancies are seen only as scattering centers which give a finite lifetime to the eigenstates of the perfect Bernal bilayer. For smaller energies, corresponding to usual E_F values, the variation of the conductivity with the concentration c of vacancies is not

![Figure 1. Bilayer structure with sublattice $\alpha = \{A_1, B_2\}$ (square), and sublattice $\beta = \{A_2, B_1\}$ (circle).](image-url)
consistent with Boltzmann theory. Indeed, with vacancies on A2 sublattice, for small E values, $\sigma(E)$ increases strongly when c increases. With vacancies on B2 sublattice, for energies above the quasi-gap, i.e. $E > E_b$, if $c < c_l \simeq 1.5\%$, $\sigma(E)$ decreases when c increases (as expected in Boltzmann theory); whereas for $c > c_l$, $\sigma(E)$ increases when c increases.

All these spectacular results show that the effect of selective functionalization is not just to induce scattering for the states of the perfect bilayer. This is also confirmed by analyzing the selective functionalization of a sublattice of the MLG. As shown in figure 2(c), it leads to the creation of a quasi-gap which width increases with concentration of adatoms. Let us recall that for a monolayer and bilayer with vacancies that are randomly distributed on the two sublattices A and B ([21, 37, 46, 56] and Refs. there in) the low energy DOS presents a peak which is reminiscent of the midgap states but has a finite width.

3.2. Results with Hamiltonian including hopping beyond nearest neighbor (TB2)

Now we present results calculated using TB2 model, including hopping beyond nearest neighbors, in place of TB1 model (supplementary material (section 1)). The TDOS, $n(E)$, the average LDOS, $n_i(E)$ with $i = A_1, A_2, B_1, B_2$, and the conductivity, $\sigma_m(E)$, are shown in figure 3 for A2 vacant atoms and B2 vacant atoms. In both cases the midgap states, produced by missing orbitals are displaced to negative energy by the effect of the hopping beyond nearest neighbors (TB2) as in MLG [35, 38, 44] and BLG with vacancies randomly distributed [21]. In addition these states appear in an energy window of a fraction of an eV that depends on the concentration of functionalized sites. It is interesting to note that the peak of vacancy states is split into a double peak when we increase the

![Figure 2. Electronic density of states and conductivity computed from TB1 in BLG: with (a.1) and (a.2) A2 vacant atoms, and with (b.1) and (b.2) B2 vacant atoms: (a.1) and (b.1) total DOS $n(E)$ (dashed lines TDOS without vacancy); (a.2) and (b.2) microscopic conductivity $\sigma_m(E)$. c is the concentration of vacancies with respect to the total number of atom in BLG. (c) TDOS of MLG with A vacant atoms and (d) the corresponding E_m^{σ} value versus the concentration c_m of vacancies with respect to the total number of atom in MLG. As explained in the supplementary material (sections 2 and 4), theses plots do not include the midgap states at $E_D = 0$. Spectrum is symmetric with respect to Dirac energy $E_D = 0$.](image-url)
concentration of vacancies. That splitting indicates a coupling between vacancy states that are all located on the same sublattice. The symmetry of the electronic properties with respect to $E_B = 0$ of TB1 model is broken; but, qualitatively, the anomalous conductivity found in the case of TB1 model is still found with TB2 model. The main difference between TB1 and TB2 is in the energy window where the midgap states appear.

With A_2 vacant atoms, the average LDOS (figure 3(a.2)) shows that midgap states is located on B_2 orbitals of the same layer, as expected from the uncompensated theorem with TB1. For $c \geq c_1 \simeq 1\%$, $\sigma_M(E)$ increases strongly when c increases (figure 3(a.3)). This increase is maximum (several order of magnitude) for energies close to -0.6 and 0.3 eV, and it is smaller for energies corresponding to the midgap peak.

With B_2 vacant atoms, the average LDOS (figure 3(b.2)) shows that midgap states is located on A_2 orbitals (layer 2) and on B_1 orbitals (layer 1), as expected from a bipartite Hamiltonian analysis with TB1 [57]. The quasi-gap is found for $0 < E \leq E_m$, instead of $-E_b < E \leq E_b$ with TB1, since for negative energies midgap states are present in the case of TB2. σ_M is very small for E corresponding to midgap states, and these energys correspond at a mobility quasi-gap (figure 3(b.3)). As a result, similarly to TB1 model, a mobility quasi-gap is found for $-E_b < E \leq E_b$ with TB2 too. Moreover for $c \leq c_1 \simeq 1-1.5\%$ and for $E > E_m$, $\sigma(E)$ increases strongly when c increases (as with TB1).

4. Discussion: interpretation of the results by bipartite lattice

We analyze now the origin for the formation of the gap in the MLG with selective functionalization on sublattices A (or B) and then show how it leads to the properties of the BLG. Quite generally an eigenstate with energy E of the MLG with or without vacancies, can be written as $|\varphi\rangle = |\varphi_A\rangle + |\varphi_B\rangle$, with states $|\varphi_A\rangle$ ($|\varphi_B\rangle$) belonging to the sublattice A (B). It is easy to show that $|\varphi_A\rangle$ and $|\varphi_B\rangle$ are eigenstates of the effective Hamiltonian $\hat{H} = \hat{H}_0^2$ with eigenvalue $E = \varepsilon_m$. \hat{H} acts only within the sublattices A and B and does not couple them.

For example for the perfect MLG, \hat{H} is the Hamiltonian of a triangular lattice of A atoms (B atoms),

$$\hat{H}_A = \sum_i \tilde{\varepsilon}_A c^\dagger_A c_A + \sum_{(i,j)} \tilde{\varepsilon}_0 c^\dagger_A c_B + \text{h.c.},$$

(2)

where c^\dagger_A and c_A creates and annihilates respectively a state of an electron A, and with $\tilde{\varepsilon}_A = 3\tilde{\varepsilon}_0$ and $\tilde{\varepsilon}_0 = \tilde{\varepsilon}_A$. The middle of \hat{H} band ($E = 0$) corresponds to the lowest energy of \hat{H} band ($E = \varepsilon_m^2 = 0$).

The effect of vacancies on the DOS away from zero energy can be understood by considering the effective Hamiltonian of the sublattice A that contains the vacancies. This Hamiltonian has the form given in equation (2) but with functionalized sites that are simply deleted. Without vacancies the coordination η of each atom of A sublattice is 6 (average number of A–A nearest neighbors of A sublattice). With a small concentration c_m of vacancies in A sublattice, the average coordination is $\eta \equiv 6(1 - c_m[\%]/100)$. The center of the A band is fixed by on-site energies, $\tilde{\varepsilon}_A$, and it is not affected by vacancies; but the width of the band will decrease when η decreases (i.e. when c_m increases). As expected from this simple tight-binding argument, the minimum values, $E_m = E_m^0$, of the spectrum of \hat{H}, found numerically (figure 2(d)), is almost proportional to the concentration c_m of vacancies. Consequently the average A DOS, $\tilde{\sigma}_A$, has a gap induced by vacancies for $0 \leq E \leq E_m^0$. This means that DOS in the A and B sublattices of MLG also presents a gap for $-E_m \leq E \leq E_m$ (figure 2(c)). Moreover, each vacancy in sublattice A also induces a zero energy midgap states in sublattice B. Note that similar results are obtained on a square lattice which is also a bipartite lattice (supplementary material, section 3).

Let us consider now the case of the bilayer with vacancies on the A_2 sublattice. In this case the midgap states of the top layer 2 are located only on sublattice B_2 and are not coupled to the lower layer 1. Therefore layer 1 is just coupled to a semi-conductor (top layer 2) with a gap in the energy range $-E_m \leq E \leq E_m$. The results shown above mean that t_1 is sufficiently small that the mixing between states of layer 1 and 2 is small. Therefore layer 1 has essentially the electronic structure of an isolated MLG without defects. This explains why the TDOS is similar to that of a graphene layer. In addition when the vacancies concentration increases, E_m increases and the decoupling between the two layers is more efficient. Therefore at a given energy the lifetime of states in the lower layer 1 increases and the conductivity increases when concentration increases. Transport in the bilayer at these energies $-E_m \leq E \leq E_m$ is mainly through the lower layer 1.

The case of vacancies on the B_2 sublattice is slightly more complex. Again at energies E such that $-E_m \leq E \leq E_m$ the mixing between states of layer 1 and states in the continuum of layer 2 is small. However in that case the midgap states of layer 2 are located on sublattice A_2 and are coupled to the sublattice A_1 of the lower layer 1. The effect of the interlayer coupling alone is to couple midgap states of A_2 with specific linear combinations of states of A_1 and to produce bonding and anti-bonding states at energies t_1 and $-t_1$. We consider now the case where the concentration of adatoms is sufficient to have $E_m \geq t_1$. Therefore at energies E such that $-t_1 \leq E \leq t_1$ these specific states in sublattice A_1 appear as decoupled from the other states of layer 1. They act thus as vacancies in the MLG (layer 1) and this produces a quasi-gap with midgap states in sublattice B of layer 1. For that reason, a quasi-gap exists in both layers in the energy range $-t_1 \leq E \leq t_1$ and it is seen in the TDOS. Similarly to the previous case, increasing the concentration can also increase the conductivity for energies E such that $t_1 \leq |E| \leq E_m$.

These analyses of the effect of selective functionalization are confirmed by detailed studies of the bipartite Hamiltonian of BLG [57].
5. Conclusion

We have analyzed the density of states and the conductivity of graphene Bernal bilayer (BLG) when the upper layer is functionalized by adatoms. Since there are two inequivalent sublattices A and B, that correspond to carbon atoms that are more or less coupled to the lower layer, we study the effect of a selective functionalization of sublattices A or B. As we show...
this selective functionalization leads to the creation of a gap when sublattice B of the upper layer is randomly functionalized with a concentration of adatoms $c \gg 10^{-2}$. This gap is a fraction of one eV for the DOS and of at least 0.5 eV for the mobility. This phenomenon is intimately related to the bipartite structure of the graphene lattice and the maximum width of the gap is of the order of the interlayer coupling energy. Other functionalizations of sites are possible if both layers can be functionalized. In this case also we find that electronic structure and transport properties can be deeply modified by a selective functionalization [57]. We believe that the phenomenon due to selective functionalization could be observed in carefully prepared graphene bilayers or even in other 2D materials.

Acknowledgments

The authors wish to thank C Berger, W A de Heer, L Magaud, P Mallet and J-Y Veuillen for fruitful discussions. The numerical calculations have been performed at Institut Néel, Grenoble, and at the Centre de Calculs (CDC), Université de Cergy-Pontoise. We thank Y Costes, CDC, for computing de Grenoble, and at the Centre de Calculs (CDC), Université de Cergy-Pontoise. We thank Y Costes, CDC, for computing. The authors wish to thank C Berger, W A de Heer, L Magaud, P Mallet and J-Y Veuillen for fruitful discussions. The numerical calculations have been performed at Institut Néel, Grenoble, and at the Centre de Calculs (CDC), Université de Cergy-Pontoise. We thank Y Costes, CDC, for computing. The authors wish to thank C Berger, W A de Heer, L Magaud, P Mallet and J-Y Veuillen for fruitful discussions. The numerical calculations have been performed at Institut Néel, Grenoble, and at the Centre de Calculs (CDC), Université de Cergy-Pontoise. We thank Y Costes, CDC, for computing.

ORCID iDs

Guy Trambly de Laissardièrè @ https://orcid.org/0000-0001-9065-7337

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[2] Berger C et al 2004 Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics J. Phys. Chem. B 108 19912–6
[3] Hashimoto A, Suegaka K, Gloter A, Urita K and Iijima S 2004 Direct evidence for atomic defects in graphene layers Nature 430 870
[4] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005 Experimental observation of the quantum hall effect and Berry’s phase in graphene Nature 438 201
[5] Wu X, Li X, Song Z, Berger C and de Heer W A 2007 Weak antilocalization in epitaxial graphene: evidence for chiral electrons Phys. Rev. Lett. 98 136801
[6] Zhou S Y, Siegel D A, Fedorov A V and Lanzara A 2008 Metal to insulator transition in epitaxial graphene induced by molecular doping Phys. Rev. Lett. 101 086402
[7] Robinson J P, Schomerus H, Oroszlány L and Fal’ko V I 2008 Adsorbate-limited conductivity of graphene Phys. Rev. Lett. 101 196803
[8] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109–62
[9] Chen J-H, Cullen W G, Jang C, Fuhrer M S and Williams E D 2009 Defect scattering in graphene Phys. Rev. Lett. 102 236805
[10] Bostwick A, McChesney J L, Emtsev K V, Seyller T, Horn K, Kevan S D and Rotenberg E 2009 Quasiparticle transformation during a metal-insulator transition in graphene Phys. Rev. Lett. 103 056404
[11] Ni Z H et al 2010 On resonant scatterers as a factor limiting carrier mobility in graphene Nano Lett. 10 3868–72
[12] Nakahara S, Iijima T, Ogawa S, Suzuki S, Li S-L, Tsukagoshi K, Sato S and Yokoyama N 2013 Conduction tuning of graphene based on defect-induced localization ACS Nano 7 5694–700
[13] Zhao P-L, Yuan S, Katsnelson M I and De Raedt H 2015 Fingerprints of disorder source in graphene Phys. Rev. B 92 045437
[14] Barrejon M, Primo A, Gomez-Escalonilla M J, Fierro J L G, Garcia H and Langa F 2015 Covalent functionalization of n-doped graphene by n-alkylation Chem. Commun. 51 16916–9
[15] Ferreira A, Viana-Gomes J, Nilsson J, Mucciolo E R, Peres N M R and Castro Neto A H 2011 Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers Phys. Rev. B 83 165402
[16] McCann E and Koshino M 2013 The electronic properties of bilayer graphene Rep. Prog. Phys. 76 056503
[17] Trambly de Laissardièrè G, Mayou D and Magaud L 2010 Localization of dirac electrons in rotated graphene bilayers Nano Lett. 10 804–08
[18] Trambly de Laissardièrè G, Mayou D and Magaud L 2012 Numerical studies of confined states in rotated bilayers of graphene Phys. Rev. B 86 125413
[19] Trambly de Laissardièrè G, Namavar O F, Mayou D and Magaud L 2016 Electronic properties of asymmetrically doped twisted graphene bilayers Phys. Rev. B 93 235135
[20] Van Tuan D and Roche S 2016 Anomalous ballistic transport in disordered bilayer graphene: a dirac semimetal induced by dimer vacancies Phys. Rev. B 93 041403
[21] Missaoui A, Khabthani J J, Jaidane N-E, Mayou D and Trambly de Laissardièrè G 2017 Numerical analysis of electronic conductivity in graphene with resonant adsorbates: comparison of monolayer and bernal bilayer Eur. Phys. J. B 90 75
[22] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Controlling the electronic structure of bilayer graphene Science 313 951–4
[23] Zhang Y, Tang T-T, Girir C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820
[24] Stabile A A, Ferreira A, Li J, Peres N M R and Zhu J 2015 Electrically tunable resonant scattering in fluorinated bilayer graphene Phys. Rev. B 92 121411
[25] Ulstrup S et al 2014 Ultrafast dynamics of massive dirac fermions in bilayer graphene Phys. Rev. Lett. 112 257401
[26] Jen L et al 2015 Topological valley transport at bilayer graphene domain walls Nature 520 650
[27] Rozhkov A V, Shoychakov A O, Akhanmanov A and Nori F 2016 Electronic properties of graphene-based bilayer systems. Phys. Rep. 648 1–104
[28] Lherbier A, Biel B, Niquet Y M and Roche S 2008 Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects Phys. Rev. Lett. 100 036803
[29] Yuan S, De Raedt H and Katsnelson M I 2010 Modeling electronic structure and transport properties of graphene with resonant scattering centers Phys. Rev. B 82 115448
[30] Leconte N, Moser J, Ordejon P, Tao H, Lherbier A, Bachtold A, Alsina F, Sotomayor Torres C M, Charlier J-C and Roche S 2010 Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition *ACS Nano* **4** 4033–8

[31] Skrynnik Y V and Loktev V M 2010 Electrical conductivity in graphene with point defects *Phys. Rev. B* **82** 085436

[32] Skrynnik Y V and Loktev V M 2011 Metal-insulator transition in hydrogenated graphene as manifestation of quasiparticle spectrum rearrangement of anomalous type *Phys. Rev. B* **83** 085421

[33] Leconte N, Lherbier A, Varchon F, Ordejon P, Roche S and Charlier J-C 2011 Quantum transport in chemically modified two-dimensional graphene: from minimal conductivity to anderson localization *Phys. Rev. B* **84** 235420

[34] Lherbier A, Dubois S M-M, Declerck X, Roche S, Niquet Y-M and Charlier J-C 2012 Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition *Phys. Rev. Lett.* **106** 046803

[35] Trambly de Laisserdi G and Mayou D 2011 Electronic transport in graphene: quantum effects and role of local defects *Mod. Phys. Lett. B* **25** 1019–28

[36] Lherbier A, Dubois S M-M, Declerck X, Niquet Y-M, Roche S and Charlier J-C 2012 Transport properties of graphene containing structural defects *Phys. Rev. B* **86** 075402

[37] Trambly de Laisserdi G and Mayou D 2013 Conductivity of graphene with resonant and nonresonant adsorbates *Phys. Rev. Lett.* **111** 146601

[38] Trambly de Laisserdi G and Mayou D 2014 Conductivity of graphene with resonant adsorbates: beyond the nearest neighbor hopping model *Adv. Nat. Sci.: Nanosci. Nanotechnol.* **5** 015007

[39] Gargiulo F, Autès G, Virk N, Barthel S, Rössner M, Toller I, R M, Wehling T O and Yazyev O V 2014 Electronic transport in graphene with aggregated hydrogen adatoms *Phys. Rev. Lett.* **113** 246601

[40] Yuan S, Wehling T O, Lichtenstein A I and Katsnelson M I 2012 Enhanced screening in chemically functionalized graphene *Phys. Rev. Lett.* **109** 156601

[41] Yan W, Li S-Y, Yin L-J, Qiao J-B, Nie J-C and He L 2016 Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction *Phys. Rev. B* **93** 195408

[42] Xu Z, Ao Z, Chu D and Li S 2016 Uv irradiation induced reversible graphene band gap behaviors *J. Mater. Chem. C* **4** 8459–65

[43] Pereira V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2006 Disorder induced localized states in graphene *Phys. Rev. Lett.* **96** 036801

[44] Pereira V M, Lopes dos Santos J M B and Castro Neto A H 2008 Modeling disorder in graphene *Phys. Rev. B* **77** 115109

[45] Wang T O, Yuan S, Lichtenstein A I, Geim A K and Katsnelson M I 2010 Resonant scattering by realistic impurities in graphene *Phys. Rev. Lett.* **105** 056802

[46] Ducastelle F 2013 Electronic structure of vacancy resonant states in graphene; a critical review of the single-vacancy case *Phys. Rev. B* **88** 075413

[47] Pettifor D G and Waire D L (ed) 1987 *The Recursion Method and its Applications* (Berlin: Springer)

[48] Mayou D 1988 Calculation of the conductivity in the short-mean-free-path regime *Eurphys. Lett.* **6** 549

[49] Mayou D and Khamma S N 1995 A real-space approach to electronic transport *J. Phys.* **15** 1199–211

[50] Roche S and Mayou D 1997 Conductivity of quasi-periodic systems: a numerical study *Phys. Rev. Lett.* **79** 2518–21

[51] Roche S and Mayou D 1999 Formalism for the computation of the rksky interaction in aperiodic systems *Phys. Rev. B* **60** 322–8

[52] Tiozon F, Vidal J, Mosseri R and Mayou D 2002 Quantum dynamics in two- and three-dimensional quasiperiodic tilings *Phys. Rev. B* **65** 220202

[53] Brihuega I, Mallet P, González-Herrero H, Trambly de Laisserdi G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J-Y 2012 Unraveling the intrinsic and robust nature of van hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis *Phys. Rev. Lett.* **109** 196602

[54] Cherkez V, Trambly de Laisserdi G, Mallet P and Veuillen J-Y 2015 Van Hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy *Phys. Rev. B* **91** 155428

[55] Peres N M R, Guinea F and Castro Neto A H 2006 Electronic properties of disordered two-dimensional carbon *Phys. Rev. B* **73** 125411

[56] Cresti A, Ortmann F, Louvet T, Van Tuan D and Roche S 2013 Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes *Phys. Rev. Lett.* **110** 196601

[57] Missaoui A 2017 Study of quantum transport properties in two-dimensional systems Carbon-based: Graphene, organic semiconductors *PhD Thesis* Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis