Utilising a novel surveillance system to investigate species of *Forcipomyia* (*Lasiohelea*) (Diptera: Ceratopogonidae) as the suspected vectors of *Leishmania macropodum* (Kinetoplastida: Trypanosomatidae) in the Darwin region of Australia

Elina Panahi\(^a,\)**, Martin Shivast, Sonja Hall-Mendelin\(^c\), Nina Kurucz\(^d\), Penny A. Rudd\(^a\), Rachel De Araujo\(^b\), Eloise B. Skinner\(^d\), Lorna Melville\(^e\), Lara J. Herrero\(^b,g,\)**

\(^{a}\) Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
\(^{b}\) Mosquito Management, Brisbane City Council, Eagle Farm, QLD, 4009, Australia
\(^{c}\) Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, 4108, Australia
\(^{d}\) Medical Entomology, Centre for Disease Control, Top End Health Service, Casuarina, NT, 0811, Australia
\(^{e}\) Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
\(^{f}\) Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
\(^{g}\) Redland Hospital, Metro South, Queensland Health, Cleveland, QLD, 4163, Australia

Corresponding author. Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia.
Corresponding author. E-mail addresses: elina.panahi@griffithuni.edu.au (E. Panahi), l.herrero@griffith.edu.au (L.J. Herrero).

https://doi.org/10.1016/j.ijppaw.2020.06.004

Received 29 April 2020; Received in revised form 12 June 2020; Accepted 12 June 2020

2213-2244/ © 2020 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

1. Introduction

The leishmaniases are a highly complex group of vector-borne diseases caused by parasites from the genus *Leishmania* (Kinetoplastida: Trypanosomatidae). These parasites cause a wide spectrum of clinical manifestations and are listed by the World Health Organization as one of the most important tropical diseases (Pigott et al., 2014). The leishmaniases are endemic in more than 90 countries with approximately 1 million new infections and more than 50,000 deaths reported annually (Burza et al., 2018). *Leishmania* species known to be important...
human pathogens belong to the subgenera *Leishmania* (*Leishmania*) and *Leishmania* (*Viannia*). Infection with *Leishmania* is acquired through the bite of an infected phlebotomine sandfly, which are currently the only confirmed group of vectors of *Leishmania*. Less than 10% of phlebotomine sandfly species have been incriminated as vectors and their distribution is known to be a critical factor in acquiring leishmaniasis (Burza et al., 2018; Ready, 2013).

Australia was considered a *Leishmania*-free region largely due to the absence of the vector species. However, *Leishmania* (*Mundinia*) *macropodum* (previous nomenclature *Leishmania* sp. AM-2004 and *Leishmania australiensis*) was discovered and identified to cause cutaneous leishmaniasis in macropod species in the Darwin region of Northern Australia (Douglas et al., 2009, 2011; Rose et al., 2004). The absence of a *Leishmania* vector species in Australia has convoluted the understanding of the parasite’s life cycle and raised new questions regarding alternative vectors.

Alternative vectors of the leishmaniasises have been highly debated in scientific literature but currently there is no conclusive evidence demonstrating *Leishmania* transmission by arthropods other than phlebotomine sandflies (Seblova et al., 2014). Various studies have investigated suspected arthropods’ susceptibility to transmit *Leishmania* parasites, through both experimental infections (Almeida et al., 2016; Sadlová et al., 2013; Seblova et al., 2015, 2012) and screening wild-caught arthropods using molecular techniques (Berdjane-Brouk et al., 2012; Dantas-Torres et al., 2010; Douglas et al., 2011; Jaouadi et al., 2015; Manuel et al., 2016; Mukherjee et al., 1997; Solano-Gallego et al., 2012). However, the interaction between *Leishmania* species and its vector is highly complex and specific, and current molecular and field methodologies have not been able to confirm new *Leishmania*-vectors. The parasite undergoes various developmental stages within the vector prior to reaching the infective stage that is transmitted during host blood feeding (Bates, 2007; Kamhawi, 2006). In the early stage of infection, the promastigote phase of the parasite is non-host specific and has been proven to thrive in many insects. If unable to bind to the midgut epithelium in the later stage of infection (when the blood meal is being digested), the promastigotes will be excreted with blood meal remnants. The lack of midgut attachment is the major refractory barrier for *Leishmania* and this phase of attachment marks a true vector (Bates, 2007; Dostalová and Volf, 2012; Sacks and Kamhawi, 2002; Seblova et al., 2012).

In 1999, Robert Killick-Kendrick established criteria to assess vector competency for the transmission of the leishmaniasises. These criteria included: i) Naturally infected vectors must be collected on more than one occasion containing identical *Leishmania* isolates as found in human or reservoir hosts, ii) The vector must feed on humans (anthroponotic) and if zoonotic, also on the animal reservoir host, iii) There needs to be evidence for a strong ecological association between the vector and the host, iv) Full development of the parasite has to occur within the vector after digesting the blood meal, and v) It is imperative that the vector is able to transmit the parasite, via a blood meal, to a susceptible host (Killick-Kendrick, 1999). Douglas et al. (2011) implicated the Ceratopogonid subgenus *Forcipomyia* (*Lasiohelea*) Kieffer as the alternative vector in Northern Australia. However, based on the above criteria, it has yet to be proven if the parasites are transmitted by *F. (Lasiohelea)* during host blood feeding. The majority of *Leishmania* - vector competency studies have not been able to fulfil the fifth Killick-Kendrick criterion with acceptable evidence of parasite transmission by bite (Seblova et al., 2012). Therefore, novel strategies are essential to investigate transmission and incriminate these suspected vectors.

Over the last decade, an arbovirus surveillance system based on the preservation of nucleic acids has become widely applied in disease surveillance (Hall-Mendelin et al., 2017, 2016; Kurucz et al., 2019; van den Hurk et al., 2014; Wipf et al., 2019). Soaked in honey, Flinders Technology Associates (FTA®; Whatman – GE Healthcare Life technologies) cards have been used to detect pathogens during insect sugar feeding (Hall-Mendelin et al., 2017, 2010). This technique has been shown to be inexpensive and efficient when screening for arboviruses, and the implementation of this system for detecting parasites could be of international importance.

By taking advantage of this technique, this research sought to i) assess FTA® card’s potential in *Leishmania* surveillance programs, and ii) investigate if the suspected day-biting midges, *F. (Lasiohelea)*, were able to transmit *L. macropodum* onto the honey-coated FTA® cards, and thereby show evidence on a *Leishmania*-transmission during feeding (criterion v).

2. Materials and methods

2.1. Cultivating *L. macropodum*

Leishmania macropodum parasites had previously been isolated from clinical infected macropod species at the Territory Wildlife Park (TWP). Skin lesions had been grown in biphasic Novy-MacNeal-Nicolle (NNN) medium and incubated at 26 °C for promastigote growth (Douglas et al., 2009). To obtain an on-going *in vitro* culture, promastigotes were cultivated in Grace’s Insect medium (Invitrogen, Australia), containing 20% heat-inactivated foetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin (Sigma-Aldrich) at 26 °C.

2.2. FTA® card preparation

FTA® cards (2.5 cm × 2.5 cm) were coated with honey 24-48 h prior to use. In order to identify which insects had fed on the coated FTA® cards, blue food dye was added to the honey (Hall-Mendelin et al., 2017; 2016). A 2.5 cm slit was carved into the bottom of disposable cups and sealed with adhesive tape. (C) Insects were aspirated directly into the bottom of the containers through a small perforation created before field collection. Once biting midges were collected from the macropods, the small perforation was sealed with a rubber plug. Gauze was used as a lid to seal the top of the containers and fastened securely with a rubber band. The honey-coated FTA® card was inserted through the bottom slit after insect collection and once again sealed with adhesive tape.

Fig. 1. Wax-paper cups were used to contain and maintain field-collected biting midges. (A) Honey-coated FTA® cards were left at room temperature for 48 h allowing even absorption of honey into the cards. (B) A 2.5 cm slit was carved into the bottom of disposable cup and sealed with adhesive tape. (C) Insects were aspirated directly into the bottom of the containers through a small perforation created before field collection. Once biting midges were collected from the macropods, the small perforation was sealed with a rubber plug. Gauze was used as a lid to seal the top of the containers and fastened securely with a rubber band. The honey-coated FTA® card was inserted through the bottom slit after insect collection and once again sealed with adhesive tape.
Waxed-paper containers were converted to contain field-collected biting insects and to hold a FTA® card (Fig. 1). A total of 145 waxed-paper containers were set up, each holding one honey-coated FTA® card.

2.3. Stability of L. macropodum DNA on FTA® cards

To ensure that honey-coated FTA® cards could be used to preserve and identify Leishmania DNA, a pilot experiment was designed to investigate the cards’ ability to detect cultured L. macropodum promastigotes over a 10-week time course. FTA® cards were inoculated with a parasite load between 0 to 10⁶ parasites/card in 10-fold increments in triplicates and stability of DNA was tested at five time points (week 0, 2, 5, 8, and 10). Furthermore, cards had either been coated with honey or without (plain, control group) in order to ensure the use of honey had no effect on parasite detection.

For parasite DNA elution from FTA® cards, the cards were cut into strips and added to a 5 mL tube containing 1 mL molecular grade water kept on ice. To release the DNA from the matrix of the FTA® cards, the tubes were vortexed every 5 min for 10 s for a total of 20 min. The strips kept on ice. To release the DNA from the matrix of the FTA® card, were aspirated directly off macrocards and transferred into waxed-paper containers holding honey-coated FTA® cards and maintained at 30 °C (± 5 °C) with relative humidity at 85% (± 5%). Insects were kept alive in containers (approximately 20 insects/container) with a honey-water solution.

2.4. Study site and insect collection

The collection site was set up at the TWP where identifications were performed with specific Taqman qPCR assays. Published primers rooME-F2 5′-AACCTCCCCAGGACCGTTCTG-3′ and rooME-R2 5′-GTGGCACCCCCGAGACCC-3′, and the Taqman probe LeishME 5′FAM-CAGGCACGTTTGGGAGCG-BHQ1-3′ were used to amplify L. macropodum (Dougall et al., 2009). PCR reactions were made in a 10 μL reaction of 1 × SsoAdvanced™ universal probe supermix, 6 mM MgCl₂ (Bio-Rad Laboratories, Australia), 0.3 μM of primers, 0.05 μM Taqman probe (Sigma-Aldrich, Australia) and 2 μL of DNA template extracted from either insect or FTA® card sample. PCR cycling conditions were as follows: 2 min at 95 °C followed by 35 cycles of 15 s at 95 °C and 40 s at 66 °C with the CFX96 Real Time System (C1000 Thermal Cycler; Bio-Rad Laboratories). Genomic L. macropodum DNA standards from cultivated promastigotes were included in every PCR run to quantify positive insect samples and FTA® cards. Standards were purified from cultured L. macropodum promastigotes and made up of serial dilutions 10⁻¹ - 10⁻⁷ in Tris-EDTA buffer (Sigma-Aldrich, Australia). Moreover, L. macropodum DNA standards were used to determine the qPCR assay’s limit of detection. Parasite detection threshold was identified at ≥ 50 cultured parasites (data not shown here).

3. Results

3.1. Insect collection and identification

Approximately 3000 female L. (Lasiohelea) were aspirated directly off macrocards at the TWP macrocard enclosure. All insects were kept alive in containers (approximately 20 insects/container) with a honey-coated FTA® card. From a subset of 260 biting midges, three species were identified, however only two could be identified with Debenham’s taxonomic key, namely F. (L.) townsennis (n = 49/260) and F. (L.) peregrinator (n = 3/260) (Debenham, 1983; Taylor, 1918). The third species, which was found to be the dominant species (n = 208/260), was the undescribed species previously referred to as Forcipomyia (Lasiohelea) sp. 1 and implicated as a vector of L. macropodum by Dougall et al. (2011).

3.2. Detection of L. macropodum in F. (Lasiohelea)

To confirm ongoing Leishmania circulation at the TWP site, 123 pools (a total of 536 individuals) and 47 individual F. (Lasiohelea) were screened for L. macropodum by real-time qPCR. 14/123 pools and 1/47 individual F. (Lasiohelea) were positive for L. macropodum DNA. High parasitemia was detected in several pools and individual F. (Lasiohelea) with ≥ 5 x 10⁶ parasites (Fig. 2). Moreover, non-destructive DNA extractions from field-collected F. (Lasiohelea) (n = 50) species confirmed L. macropodum DNA in specimens identified as F. (Lasiohelea) sp.1 (n = 2/39; Table 1).
Table 1
Summary of *F. (Lasiohelea)* identified to species-level and those identified as positive for *L. macropodum* by qPCR from non-destructive insect processing.

Species	Identification	qPCR positive
Forcipomyia (Lasiohelea) sp.1	39/50	2/39
Forcipomyia (Lasiohelea) townsvillensis	10/50	0/10
Forcipomyia (Lasiohelea) peregrinator	1/50	0/1

Table 2
Summary of *F. (Lasiohelea)* species detected positive for *L. macropodum* DNA over 1–8 days after collection. Insects were screened either individually (1) or in pools (2 – ≥7).

Number of insects present in the tested sample	1	≥2	3–4	5–6	≥7
Day 1	2/46	1/15	3/19	4/22	5/19
Day 2	0/8	0/1	0/2	1/2	0/1
Day 3	0/12	0/4	0/7	0/3	0/1
Day 4	0/8	0/6	0/1	0/1	0/2
Day 5	1/6	0/6	0/1	–	–
Day 6	0/5	0/3	0/1	–	–
Day 7	0/3	1/2	0/1	–	–
Day 8	0/3	0/1	–	–	–

* Pools of *F. (Lasiohelea)* were not screened on that day.

In addition to the steady-state detection of *L. macropodum* in randomly selected *F. (Lasiohelea)* species, we further examined the possibility of biting midges to sustain infection and support a successful development of *L. macropodum*. Towards this, the presence of *L. macropodum* DNA by qPCR was performed over an 8-day period post insect field-collection. Our data shows that parasite DNA was detected up to 7 days (Table 2) suggesting possible parasite development beyond the blood meal stage (day 2–3).

3.3. Detection of *L. macropodum* on FTA* cards after exposure to field-collected *F. (Lasiohelea)*

Stability of *L. macropodum* DNA on FTA* cards was assessed over a 10-week time course by qPCR. Results are shown for cards inoculated with 10⁶ parasites per card over the 10-week period (Fig. 3). A two-way ANOVA with a post Tukey’s comparison test confirmed the detected parasite load over the 10 weeks were not significantly different. Furthermore, the use of honey was not found to be associated with any interference of parasite load detection or the assay’s sensitivity.

From the field experiments, 145 FTA* cards were screened for *L. macropodum* DNA by qPCR within 60 days’ post-exposure to field collected *F. (Lasiohelea)*. Due to the insect’s small size, a high proportion of *F. (Lasiohelea)* became stuck in the coated honey, and prior to screening with qPCR 44/145 cards (30%) had insects removed. Overall, 7/145 (4.83%) of FTA* cards were detected positive for *L. macropodum* DNA when screened with (n = 4/44) and without (3/101) adhered *F. (Lasiohelea)* (Fig. 4).

4. Discussion

This study had two overall aims. First to investigate the potential use of FTA* cards in *Leishmania* surveillance programs, and second whether this novel technique could provide evidence in support of the outstanding fifth Killick-Kendrick criterion demonstrating that *F. (Lasiohelea)* can transmit *L. macropodum*.

Firstly, this study found that FTA* cards are a valuable surveillance tool, given the ease of use compared to today’s insect screening protocols. These protocols can be time consuming and costly due to the large number of field-collected samples that may need to be processed to confirm disease transmission by a vector. Converting catch containers of CO₂-bated light traps to hold honey-coated FTA* cards has previously shown to be an efficient method for arboviral surveillance in Australia (Hall-Mendelin et al., 2010; Kurucz et al., 2019). Given that *Leishmania* parasites are highly prevalent in developing countries, FTA* cards may offer an alternative inexpensive tool to enhance field surveillance activities for leishmaniasis. Not only will the simple approach of applying the cards in elimination programs substitute the necessary extensive training of personnel, it can preclude the need to screen large samples and analysing insect population to provide evidence of disease transmission. This may benefit programs in remote areas where accessibility to laboratory facilities are limited and samples need to be stored for long-term. *Leishmania macropodum* DNA was shown to be stable on FTA* cards for the entire 10-week time course at room temperature, supporting their suitability for projects where long-term storage is unavoidable. Although not found to be statistically significant, our results suggest that the addition of honey may aid the survival of the pro-mastigotes. However, more work needs to be performed to assess this. Overall, our data does demonstrate that the addition of honey does not have a detrimental effect. One limitation was the ability to detect low parasite load in our long-term experiment when *L. macropodum* pro-mastigotes were inoculated onto FTA* cards (threshold identified at 10⁵ parasites). Although quantification of parasite load might not be important in surveillance programs, insects harbouring a low parasite load, might lead to false-negative results if PCR cannot detect less than...
10^3 parasites on FTA® cards. However, the average number of *Leishmania* promastigotes harboured by phlebotomine sandflies is 5 × 10^4/sandfly thereby minimising the risk of false-negative PCR results (Rogers et al., 2004).

Overall, these findings suggest that FTA® cards could become a valuable public health surveillance tool to survey the emergence and re-emergence of the leishmaniases.

Several studies have suggested the existence of alternative vectors that can transmit *Leishmania* parasites, and these have been highly debated in literature (Seblova et al., 2014). Fulfilling all five Killick-Kendrick criteria with convincing evidence is a difficult task. Most often, studies have been unable to confirm a successful parasite infection within the suspected vector or unable to demonstrate successful transmission to a naïve host during blood feeding. For this study’s second aim, blood fed *F. (Lasiohelea)* were aspirated directly off the macropod host with the purpose of i) assessing a successful *Leishmania* infection in this suspected vector over an 8 day period and ii) allow *F. (Lasiohelea)* to feed on a honey-coated FTA® card thereby potentially depositing infective promastigotes with saliva.

We showed that after exposure to field-collected biting midges, *L. macropodum* DNA was detected on 7/145 (4.83%) of FTA® cards (with and without adhered insects) when screened with qPCR. The limitations with modern molecular screening techniques used in *Leishmania*-vector studies is the identification of the infectious parasite. In the *Leishmania* life cycle, parasites take two distinct forms depending on if they are found in an insect vector (promastigote form) or a mammalian host (amastigote form). These stages are immediately triggered by the change in pH and temperature within the respective hosts (Bates, 2007). Within its vector, the *Leishmania* promastigotes undergo various obligated development stages before becoming infectious promastigotes that are in turn transmitted during blood feeding. The challenge is to confirm the developmental change of amastigote to promastigote forms as well as identifying the various stages of the promastigotes with these molecular screening techniques. Standard PCR is widely used today, however a reverse transcription PCR is required to detect metacyclic-specific transcripts (Giraud et al., 2019). The detected *Leishmania* DNA in this study, can therefore not verify that DNA originated from the infective promastigote stage expectorated with saliva, which
limits the cards’ potential. Interestingly, we detected *L. macropodum* DNA from FTA® cards without insects adhered. This could suggest a successful development of *L. macropodum* in *F. (Lasiohelea)* indicating parasites were expectorated during sugar feeding. However, it is important to emphasise the complexity currently faced in vector studies. Various groups of hematophagous insects are known to defecate during blood feeding, and it is possible that the positive *Leishmania* detection on cards had originated from parasites excreted with faeces, suggesting parasites were not able to develop beyond the blood meal stage (Bates, 2007). Moreover, phlebotomine sandflies are known to undergo pre-diuresis (excrete urine) during blood feeding and one study frequently detected free-swimming forms of infective *Leishmania* promastigotes in urine droplets from phlebotomine sandflies while blood feeding (Sádlová and Volf, 1999). For these reasons, the purpose of adapting this technique in vector competence studies, FTA® cards currently have limitations and thus cannot alone conclusively incriminate a suspected *Leishmania* vector.

Alongside FTA® cards, *F. (Lasiohelea)* species were likewise screened for *L. macropodum* DNA. Overall, our results showed that 3/97 individual and 14/123 pools of screened *F. (Lasiohelea)* were positive with *L. macropodum* DNA. From identifying *L. macropodum* infection over 8-days in field-collected *F. (Lasiohelea)*, DNA was confirmed up to day 7 in 1/5 *F. (Lasiohelea)*, which could indicate a full development and successful infection in stomodeal valve. The *Leishmania* (*Leishmania*) development within the phlebotomine sandfly takes approximately 1 week, though this is dependent on the vector species, parasite species and climatic factors (Kamhawi, 2006). The critical stage for successful *Leishmania* infection within the vector is the blood meal stage as parasites needs to attach to the midgut epithelium to avoid excretion with blood meal remnants (day 2–4) (Bates, 2007; Dostálová and Volf, 2012; Sacks and Kamhawi, 2002; Seblova et al., 2012). Infection beyond the blood meal stage define a true vector. Though our results confirm *Leishmania* DNA at day 7 with qPCR, these assays must be interpreted with caution to avoid misleading results, as stated above. PCR has previously been confirmed to detect *Leishmania* DNA after 7 days post blood meal while microscopic examination failed to detect living parasites by manual gut dissection after day 3 (Seblova et al., 2012). Therefore, it is uncertain if the molecular field screening results from this study indicates *L. macropodum* in its infective stage without microscopic confirmation of living parasites. However, from previous microscopic examination by Dougall et al. (2011), promastigotes in the gut of *F. (Lasiohelea)* midges were identified. More importantly, the presence of promastigote secretory gel (PSG) plug containing leptomonal promastigotes and parasites resembling metacyclic promastigotes (both developed in the parasite’s late stage of infection) were observed in the biting midge when not containing blood meal remnants (Dougall et al., 2011). Whether the entire *F. (Lasiohelea)* subgenus is competent to transmit *Leishmania* is still uncertain. From our non-destructive DNA extraction of insects, we identified *L. macropodum* DNA in *F. (Lasiohelea)* sp.1. Blue dye had been added to the honey to identify which *F. (Lasiohelea)* species had sugar-fed. However, when insects died, they would immediately desiccate, which affected the visibility of the blue dye in honey-fed midges limiting the verification of honey-fed and blood-fed insects.

Forcipomyia (*Lasiohelea*) species were intentionally collected due to their previous implication in the *L. macropodum* life cycle and already fulfilling the Killick-Kendrick criteria i–iv (Dougall et al., 2011). Since the incrimination of the biting midge, they have become a speculative group of vectors of *Leishmania* parasites, with studies investigating their vector competence under laboratory settings (Chanmol et al., 2019; Seblova et al., 2015, 2012). Particularly the biting midge, *Culicoides* (Diptera: Ceratopogonidae), has been used as a model to identify and confirm *Leishmania* infection specifically assessing the *L. (Mundinia)* subgenus (Chanmol et al., 2019; Seblova et al., 2015, 2012). Microscopic examinations provided evidence that *C. sonorensis* was highly susceptible to *L. macropodum* and *L. (Mundinia) entretii*. Both parasites developed through to late-stage infections, migrated successfully to the thoracic midgut and colonised the stomodeal valve, as previously observed by Dougall et al. (2011) in *F. (Lasiohelea)* (Seblova et al., 2015). Interestingly, a recent study found further evidence that *L. (Mundinia) orientalis*, causing human leishmaniasis in Thailand, was likewise able to establish successful infection in *C. sonorensis* with the development of promastigote stages successfully identified from post-infected blood meal (Chanmol et al., 2019). In contrast, parasite species from the subgenus *Leishmania* were unable to develop successful infection in Culicoides similar to *Mundinia* species development in phlebotomine sandflies (Chanmol et al., 2019; Seblova et al., 2015, 2012). Though *Culicoides* and *Forcipomyia* are two different genera and their vector competence should not be considered analogous, these results do support the hypothesis that the Ceratopogonid subgenus *Forcipomyia* (*Lasiohelea)* Kieffer might be an alternative vector to the phlebotomine sandflies causing macropod cutaneous leishmaniasis in the Darwin region.

5. Conclusion

FTA® cards were shown to be a useful tool in *Leishmania* surveillance programs due to their ability for long-term storage and preservation of parasite DNA. Their use in elimination programs can be valuable as they are inexpensive and simple to use in the field. Showing acceptable evidence of *Leishmania* transmission to a naïve host by an alternative vector has yet been demonstrated. This is the first report to investigate the fifth Killick-Kendrick criteria by using FTA® cards. *Leishmania macropodum* DNA was detected on FTA® cards screened with and without *F. (Lasiohelea)* adhered, indicating insects could have possibly fed and expectorated parasites onto the cards. However, due to the identified limitations with FTA® cards in vector competence studies, this research was not able to conclusively confirm *L. macropodum* had successfully infected *F. (Lasiohelea)* beyond the blood meal stage or that the DNA originated from infective promastigotes and expectorated during sugar feeding. *L. macropodum* DNA was identified in *F. (Lasiohelea)* 7 days post field-collection suggesting the parasites had established infection beyond the blood meal stage. However, isolation of parasites and microscopic evidence of infection is the only reliable method to confirm established infection. Taken together, our study was not able to confirm *F. (Lasiohelea)* as the vectors of *L. macropodum* in Northern Australia, however it does support previous findings. Further evidence is required to i) confirm their competence to transmit infective *L. macropodum* during feeding and ii) identify the specific vector(s) of *F. (Lasiohelea)*.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. L.J.H is the recipient of the Australian National Health and Medical Research Council Career Development Award (ID: 105760). We thank the Cai Qubes Funds for their continuous financial support contributed to E.P.’s master dissertation and Ph.D.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgement

We deeply thank Associate Professor Christopher Peacock from the University of Western Australia for kindly providing *L. macropodum* isolates and assisting with cultivating *Leishmania* promastigotes. We are very grateful for all the contribution and support from staff at the Territory Wildlife Park Northern Territory Government, especially...
thanks to Damien Stanioch, Donna Jensen, Trine Kruse, Simon Hollamby and Shael Martin for their assistance during field work. Thanks to Mr. Peter Whelan for guidance on field collection of biting insects.

References

Almeida, V dos A., da Hora, T.N., Rocha, A.M., 2018. The biology and control of Phlebotomine sand flies. In: T. N. da Hora (Ed.), Phlebotomine sand flies. Int. J. Parasitol. 37, 1097–1106. https://doi.org/10.1016/j.ijpara.2017.04.003.

Berdjane-Brouk, Z., Koné, A.K., Djimdé, A.A., Charrel, R.N., Ravel, C., Delaunay, P., 2018. Leishmaniasis. Lancet 392, 951–952. https://doi.org/10.1016/s0140-6736(18)31204-2.

Channol, W., Jariyapan, N., Sompoon, B., Bates, M.D., Bates, P.A., 2019. Development of Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) and the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae). Acta Trop. https://doi.org/10.1016/j.actatropica.2019.105157.

Dantas-Torres, F., Lorusso, V., Testini, G., De Paiva-Cavalcanti, M., Figueredo, L.A., Stanneck, D., Mencke, N., Brandão-Filho, S.P., Alves, L.C., Otranto, D., 2010. Detection of Leishmania infantum in Rhinophsus sanguineus sanguineus from Brazil and Italy. Parasitol. Res. 106, 857–860. https://doi.org/10.1007/s00436-010-1722-4.

Debenham, M., 1983. Australian species of the blood-feeding Forcipomyia subgenera. I: lasiohelea and dacnocorificipion (Diptera: Ceratopogonidae). Aust. J. Zool. Suppl. Ser. 31, 1. https://doi.org/10.1071/AZ9059.

Dostálová, A., Volf, P., 2012. Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors 5, 276. https://doi.org/10.1186/1756-3305-5-276.

Douglas, A., Shilton, C., Low Choy, J., Alexander, B., Walton, S., 2009. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol. Infect. 137, 1516–1520. https://doi.org/10.1017/S0950268809002133.

Douglas, A.M., Alexander, B., Holt, D.C.D., Harris, T., Sultan, A.H., Bates, P.A., Rose, K., Walton, S.F., 2011. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 41, 571–579. https://doi.org/10.1016/j.ijpara.2011.10.008.

Giraud, E., Martin, O., Yakob, L., Rogers, M., 2019. Quantifying Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 37, 1097–1106. https://doi.org/10.1016/j.ijpara.2017.04.003.

Hall-Mendelin, S., Hewitson, G.R., Silva, A.L., Wenceslau, A.A., Albuquerque, G.R., Silva, F.L., 2016. Detection of Leishmania infantum DNA in infected ticks collected from naturally infected dogs. Rev. Bras. Med. Veterinaria 38, 329–333.

Bates, P.A., 2007. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 37, 1097–1106. https://doi.org/10.1016/j.ijpara.2007.04.003.

Hollamby and Shael Martin for their assistance during field work.