Rett Syndrome in Males: A Case Report and Review of Literature

Gurneet Chahil 1, Anudeep Yelam 1, Pradeep C. Bollu 1

1. Neurology, University of Missouri, Columbia, USA

Corresponding author: Anudeep Yelam, anudeepyelam@gmail.com

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder in which a period of normal development is followed by regression of previously acquired skills. RTT was originally thought to be present exclusively in females. However, advances in genetic testing and phenotypic identification revealed that it is not a female-only disorder as cases of males with similar phenotype were reported. RTT was considered lethal in males as it has an X-linked dominant inheritance. The purpose of this review is to report a case of RTT in young male and elaborate genetics and phenomenology of this disorder in males.

Categories: Genetics, Neurology, Pediatrics
Keywords: reet syndrome

Introduction

Rett syndrome (RTT) is a neurodevelopmental disorder that is primarily seen in females [1]. It was first described by Andreas Rett in 1966 in two young girls noting normal development in the first year of life followed by regression with loss of previously developed skills [2]. It is characterized by a brief period of normal development followed by loss of acquired skills like hand use and speech, autistic features, gait abnormalities, head growth deceleration, stereotypic hand movements, and breathing irregularities [3]. Majority of the patients with RTT are females [4].

Case Presentation

A 16-year-old male patient was brought by his parents to a genetics clinic with complaints of developmental delay and tremor. He was a full-term infant with an uneventful delivery. He started walking around 18 months of age, spoke his first words at the age of two. Other problems included nervousness, immature behaviors, lack of eye contact during conversations, and aggressive behavior. His mother reported that he began to have a tremor in the hands around three years of age. Diagnostic workup included magnetic resonance imaging (MRI) of the brain, urine organic and amino acids, lactate, pyruvate, and lead levels along with chromosomal and DNA analysis for fragile X which were all unremarkable. His family history was significant for mental retardation. Maternal grandmother had three mentally retarded brothers with tremors, two of whom died in their forties. The patient's brother also seems to have a speech delay along with tremors since the age of three.

His tremors worsened gradually, and he started to have difficulties with fine motor control including difficulty with drinking out of a cup along with increased aggression and behavioral changes. His teachers reported that he was biting, kicking, spitting and getting into conflicts with other children. He was seen by a child psychiatrist at that time and was started on risperidone, valproic acid and Adderall (amphetamine and dextroamphetamine) which seemed to help with his behaviors.

On examination, he has high nasal bridge, slightly down-slanting palpebral fissures, long philtrum, and thin upper lip. On neurological exam, he has slightly increased deep tendon reflexes throughout. Babinski sign was positive on the right, but a normal plantar response was noted on the left side. Bilateral hand tremors were noted, both at rest and in action. He was walking slowly without much arm swing and had a slightly stooped forward posture. A full psychological evaluation was done which showed a Leiter scale IQ of 91. The Vineland adaptive behavior scale showed functioning at the 19-month level. On the childhood autism rating scale (CARS) he scored 31 to 32, consistent with mild autism. He was enrolled in a special education program and speech therapy.

Genetic testing was ordered in both the patient and his brother that was positive for a Rett syndrome methyl-CpG-binding protein 2 (MECP2) mutation, A140V in both the boys.

Discussion

Research and literature have shown a strong correlation between mutations in the methyl-CpG-binding protein 2 (MECP2) and RTT [5]. Originally, the near complete absence of males with classic RTT postulated a
Rett syndrome is a neurodevelopmental disorder that is commonly seen in girls. Although rare, physicians should not dismiss the diagnosis of Rett syndrome in males. It is imperative to do a genetic evaluation of males presenting with Rett-like symptoms and to be aware of the diverse phenotypic variation in RTT. Management is supportive, treating any associated conditions along with physical, occupational, speech therapy for their daily functioning. There is still limited literature on RTT in males, and this needs to be explored more.

Conclusions

Rett syndrome is a neurodevelopmental disorder that is commonly seen in girls. Although rare, physicians should not dismiss the diagnosis of Rett syndrome in males. It is imperative to do a genetic evaluation of males presenting with Rett-like symptoms and to be aware of the diverse phenotypic variation in RTT. Management is supportive, treating any associated conditions along with physical, occupational, speech therapy for their daily functioning. There is still limited literature on RTT in males, and this needs to be explored more.

Additional Information

Disclosures

Human subjects: Consent was obtained by all participants in this study. University of Missouri IRB issued approval N/A. Case reports are not "research" by definition, there is no requirement for the IRB to approve a HIPAA waiver or review/acknowledge the HIPAA Authorization. The Case Report request above has been acknowledged. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References
1. Hagberg B, Aicardi J, Dias K, Ramos O: A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol. 1983, 14:471-479. 10.1002/ana.410140412

2. Rett A: On a unusual brain atrophy syndrome in hyperammonemia in childhood (Article in German). Wien Med Wochenschr. 1966, 116:725-726.

3. Neul JL, Kaufmann WE, Glaze DG, et al.: Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010, 68:944-950. 10.1002/ana.22124

4. Reichow B, George-Puskar A, Lutz T, Smith IC, Volkmar FR: Brief report: systematic review of Rett syndrome in males. J Autism Dev Disord. 2015, 45:5377-5385. 10.1007/s10803-015-2519-1

5. Masuyama T, Matsuo M, Jing JJ, et al.: Classic Rett syndrome in a boy with R133C mutation of MECP2. Brain Dev. 2005, 27:439-442. 10.1016/j.braindev.2004.10.002

6. Leonard H, Silberstein I, Falk R, et al.: Occurrence of Rett syndrome in boys. J Child Neurol. 2001, 16:333-338. 10.1177/088307380101600505

7. Tate P, Skarnes W, Bird A: The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat Genet. 1996, 12:205-208. 10.1038/ng0296-205

8. Chahroul M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007, 56:422-437. 10.1016/j.neuron.2007.10.001

9. Zeev BB, Yaron Y, Schanen NC, et al.: Rett syndrome: clinical manifestations in males with MECP2 mutations. J Child Neurol. 2002, 17:20-24. 10.1177/088307380201700505

10. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999, 23:185-188. 10.1038/13810

11. Ohki I, Shimotake N, Fujita N, Jee J, Ikegami T, Nakao M, Shirakawa M: Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell. 2001, 105:487-497. 10.1016/S0092-8674(01)00324-5

12. Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L: In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci. 2011, 35:1563-1574. 10.1111/j.1460-9568.2011.07658.x

13. Castro J, Mellios N, Sur M: Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome.Curr Opin Neurol. 2013, 26:154-159. 10.1097/WCO.0b013e58255f19a7

14. Buchovecky CM, Turley SD, Brown HM, et al.: A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet. 2013, 45:1013-1020. 10.1038/ng.2714

15. Topcu M, Akyerli C, Sayi A, Toruner GA, Kokcugu SR, Cimbis M, Ozcelik T: Somatic mosaicism for a MECP2 mutation associated with classic Rett syndrome in a boy. Eur J Hum Genet. 2002, 10:77-81. 10.1038/sj.ejhg.5200745

16. Collins AL, Levenson JM, Vilaythong AP, et al.: Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004, 13:2679-2689. 10.1093/hmg/ddh282