Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Encephalitis, Viral
L Turtle and T Solomon, University of Liverpool, Liverpool, UK
© 2014 Elsevier Inc. All rights reserved.

This article is a revision of the previous edition article by Richard T Johnson, volume 2, pp 138–143, © 2003, Elsevier Inc.

Introduction

Encephalitis refers to the inflammation of the brain. The term includes both viral infections of the brain with predominantly gray matter disease and acute disseminated encephalomyelitis (ADEM), an immune-mediated demyelinating disease. In addition, other immune-mediated forms of encephalitis associated with antibodies to voltage-gated potassium channels, or N-methyl-D-aspartate (NMDA) receptors, are being recognized with increasing frequency; being not viral associated, they are not discussed further here. Clinically, acute viral encephalitis and ADEM usually manifest with fever, severe headache, neck stiffness, alterations of consciousness, focal neurological signs, and often seizures, especially in children. The pathology of acute viral encephalitis is characterized by mononuclear inflammatory cells in a perivascular distribution in the gray matter and meninges and neural cell destruction with neuronphagia. The pathology of ADEM or postinfectious encephalomyelitis is characterized by perivenular mononuclear cell inflammation and demyelination predominantly in the white matter of the brain and the spinal cord. Both forms of encephalitis are linked primarily with viral infections, but both are also associated with some bacterial infections. Rarely, acute encephalitis may be due to fungal and parasitic infection, and ADEM may be associated with vaccines. The two forms of encephalitis occur because of different spectra of viruses and involve different mechanisms of pathogenesis. Following some general comments on viral pathogenesis, the two forms of encephalitis are discussed separately.

Pathogenesis

Viruses can be released by infected humans or animals in saliva, respiratory droplets, breast milk, feces, urine, semen, vaginal secretions, blood, or tissue. Viruses have no mobility but must penetrate strong barriers to enter the body of a susceptible human host. The skin is covered by a layer of keratinized cells that will not sustain virus replication, but arthropods and animal bites, needles, and tissue transplantation can breach this barrier directly (Table 1). The mucous membranes of the respiratory, gastrointestinal, and genitourinary tract are protected by secretory immunoglobulins (Ig), and all are monitored by macrophages that phagocytize viruses and other particles. In addition, the respiratory tract has a mucus coating and cilia that beat the film containing inhaled particles outward and away from the epithelial cells of the lower respiratory tract, and the gastrointestinal and genitourinary tracts have extremes of acidity. A few noneveloped, acid-resistant viruses (adenoviruses, enteroviruses, paroviruses, and reoviruses) can survive passage through the acidity and solvents of the gastrointestinal tract.

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis

Once permissive host cells are infected in the subcutaneous tissue, the mucous membranes, or the hematopoietic system (particularly macrophages), viruses replicate usually locally before there is invasion of the central nervous system (CNS). Spread into the CNS is via nerves or the blood (Table 2). For many years, the nerves, both peripheral and olfactory, were regarded as the sole portals into the CNS, and early experimental studies documented the neural transmission of rabies virus, herpes simplex virus, and polioviruses. Nerve endings have receptors for some viruses, and the viruses are

Table 1 Entry for viruses causing human viral encephalitis

Route of entry in natural infection	Viruses
Inoculation	Arboviruses
Animal bite	Rabies virus
Blood transfusion	Herpesvirus simiae
Transplantation	Cytomegalovirus
Intentional	Hepatitis B virus
Respiratory	Human immunodeficiency virus
Droplet	Human T-cell lymphotropic virus
Saliva	Rabies virus
Enteric	Creutzfeld–Jakob disease
Venereal	Vaccine viruses
Transplacental	Mumps virus
Source	Minyamard human encephalitis
transported by the retrograde axon transport system to the cell bodies, where replication is possible. This transport occurs in the peripheral nervous system along motor and sensory fibers and also within the CNS, exemplified by the movement of polioviruses between spinal cord motor neurons and corresponding cortical neurons. The olfactory pathway is a unique venue for neural spread because the olfactory rods extend out from the olfactory mucosa and the central processes of the olfactory neurons synapse within the CNS. Thus, a single neuron can provide transport from the ambient environment to the CNS. Despite this direct connection, few aerosol or respiratory infections have been found to invade through the olfactory route.

Although early studies concluded that the blood–brain barrier was impenetrable by viruses, most viruses do invade the CNS from the blood. Some viruses infect cerebral endothelial cells or choroid plexus epithelial cells and ‘replicate before spreading’ into the CNS. Others cross uninfected vascular endothelial cells into the brain in endocytotic vesicles or within infected mononuclear cells (e.g., human immunodeficiency virus (HIV)). Invasion from blood depends on the magnitude and duration of the viremia. Viruses in the blood are promptly removed by the reticuloendothelial system and, similar to other particles, speed of clearance is size dependent. Small viruses (e.g., flavivirus such as the West Nile virus) are removed more slowly, and many larger viruses avoid clearance by growth in leukocytes or adhesion to red cells.

Within the CNS, specific cell populations may be vulnerable to specific viruses. For example, rabies virus infects only neurons, and early in infection neurons that modify behavior are selectively affected. This explains the unique clinical syndrome of vigilance and agitation. Similarly, polioviruses selectively infect and destroy motor neurons causing the syndrome of flaccid paralysis. Arboviruses infect primarily neurons, especially in the basal ganglia, and herpes simplex virus infects neurons, glia, and endothelial cells. JC virus selectively lyses oligodendrocytes causing demyelinating disease. Enteroviruses and mumps virus infect primarily meningeal and ependymal cells; therefore, they usually cause benign meningitis and only rarely are associated with encephalitis.

Neuroinvasiveness, neurotropism, and neurovirulence are features of viruses that need to be differentiated. Neuroinvasiveness is the ability to penetrate the CNS. Traditionally, neurotropism referred to the ability to infect neural cells other than neurons and is distinct from neuronotropism, which indicates the ability to infect neurons; however, in more recent literature, the term neurotropism is applied to both types of infection. Neurovirulence relates to the ability to cause disease. Thus, mumps virus that can often be recovered from spinal fluid during uncomplicated parotitis is highly neuroinvasive, is neurotropic in ependymal cells but not neuronotropic, and has a low level of neurovirulence. In contrast, most arbovirus infections are asymptomatic or cause only fever, malaise, and minor systemic symptoms. On rare occasions when arboviruses infect the brain, they usually cause encephalitis with a significant death rate; thus, these viruses are not highly neuroinvasive but are highly neurotropic (and neuronotropic) and neurovirulent. It must be noted that

Pathway	Experimental hosts	Natural disease of humans
Neural	Herpes simplex virus	Rabies virus
	B virus	Herpes simplex viruses
	Rabies virus	Varicella–zoster virus
	Polioviruses	Herpes simiae (B virus)
	Reovirus, type 3	Polioviruses
	Bornavirus	
	Scrapie agent	
	Creutzfeldt–Jakob disease agent	
Olfactory	Herpes simplex virus	?Herpes simplex virus, type 1
	Polioviruses	Aerosol infections with rabies and arboviruses
	Arboviruses	
	Coronavirus	
Hematogenous	Herpes simplex virus	Enteroviruses (poliovirus, coxsackievirus, and echoviruses)
	Cytomegalovirus	Cytomegalovirus
	Polioviruses	Epstein–Barr virus
	Coxsackieviruses	Mumps virus
	Mumps virus	Measles virus
	Lympohocytic choriomeningitis virus	Adenovirus
	Most arboviruses	Filoviruses
	Paroviruses	Lymphocytic choriomeningitis virus
	Reovirus, type 1	Other arenaviruses
	Simian immunodeficiency virus	Arboviruses
	Other lentoviruses and oncoviruses	Human immunodeficiency virus
		Human T-cell lymphotropic virus

Note: ? denotes some uncertainty.
Source: Modified from Johnson RT (1998) *Viral Infections of the Nervous System*, 2nd edn. Philadelphia: Lippincott Raven.
Encephalitis, Viral

neuroinvasiveness and neurovirulence are also dependent on a myriad of host factors, such as age, immune responses, and genetic constitution.

Acute Viral Encephalitis

Epidemiology

The incidence of acute encephalitis is estimated between 3.5 and 7.4 per 100,000 persons per year (which is approximately one-third the incidence of viral meningitis). Encephalitis has been associated with approximately 100 different viruses that cause disease of variable severity (Table 3). Encephalitis is more common in children than in adults and varies by gender, season, and geographical location. For example, CNS complications of mumps virus infections are three times more common in males than females. Seasonally, enterovirus infections are more common in summer and early fall, lymphocytic choriomeningitis virus infections are more common in winter, and arbovirus infections are more common during the feeding season of the transmitting arthropod. There is marked geographical variation in the incidence and causes of viral encephalitis. For example, rabies causes more than 25,000 deaths per year in India but only 1–5 deaths in the US. Each year a variety of arboviruses cause 200–2000 cases of encephalitis in the US, tickborne encephalitis virus causes a few thousand cases in Europe, whereas Japanese encephalitis virus causes approximately 68,000 cases in Asia.

Clinical Findings

Clues to the causative agent may be found in a history of travel, family illnesses, recreational activities, sexual history, animal exposures, and past immunization. General examination may show a rash in enterovirus, herpesvirus 6 and 7, and West Nile virus infections; herpangina in coxsackievirus infections; adenopathy in HIV, Epstein–Barr virus, and cytomegalovirus infections; parotitis in mumps or lymphocytic choriomeningitis virus infections; or pneumonitis in adenovirus, lymphocytic choriomeningitis, or Nipah virus infections.

The classic clinical symptoms and signs of encephalitis are fever, headache, nuchal rigidity, depression of consciousness, focal neurological signs, and often seizures. Occasionally, fever is not present at the time of presentation, stupor may obscure a complaint of headache, or nuchal rigidity may be absent; thus, no finding is absolute. Spinal fluid examination is critical for diagnosis. Typically, a mononuclear cell pleocytosis, modest elevation of protein, normal glucose concentration, and often increased pressure are found. Early in disease, polymorphonuclear cells may predominate or fluid may be acellular, but within 24 h a mononuclear cell response usually evolves. In some infections, mild depressions of glucose concentration are present. The presence of red cells may suggest herpetic encephalitis, but the finding is neither consistent nor specific.

Rabies and herpes simplex virus encephalitis usually present with characteristic syndromes. Rabies may present as either an ascending paralysis simulating the Guillain–Barré syndrome or an altered mental status with periods of confusion with bizarre behavior and autonomic signs progressing to intense agitation with aerophobia and hydrophobia. Acute flaccid paralysis can also be a feature of flavivirus encephalitides, such as West Nile encephalitis, Japanese encephalitis, and tickborne encephalitis. Herpes simplex virus encephalitis usually localizes to one or both temporal lobes, which may manifest initially as subtle anoma, followed by bizarre behavior, hallucinations, aphasia, and quadratic visual field defects. Imaging studies typically show low-density lesions in one or both temporal lobes with enhancement and mass effect. Only approximately half of patients with encephalitis with temporal lobe signs prove to have herpes simplex virus encephalitis. Arboviral encephalitis, however, often causes thalamic lesions on imaging. More than 90% of patients with herpetic encephalitis have temporal lobe changes, but herpes simplex virus causes only 10% of cases of encephalitis (even fewer in some geographical regions) and other agents may occasionally mimic these symptoms and signs.

Diagnosis

Diagnosis of herpes simplex virus encephalitis is important because it is the most common cause of fatal nonepidemic encephalitis worldwide, and there is specific treatment that can reduce the fatality rate approximately from 70% to 20%. The second diagnostic imperative is to rule out nonviral disease that can masquerade as viral encephalitis and that requires specific therapies (Table 4). Establishing a definitive

Table 3 Severity of acute encephalitis with different viruses

Virus(es)	Severity of encephalitis
Rabies virus	>99% of cases are fatal
Herpes simplex viruses	>70% of cases are fatal (if untreated)
Arboviruses	1–50% of cases are fatal (dependent on virus and age of host)
Lymphocytic choriomeningitis virus	Common mild encephalitis; rare deaths
Mumps virus \(^a\)	Common mild encephalitis; rare deaths
Cytomegalovirus	Occasional encephalitis with infectious mononucleosis
Epstein–Barr virus \(^b\)	Occasional encephalitis with infectious mononucleosis
Adenoviruses	Rare cases of serious encephalitis in children
Human immunodeficiency virus	Rare acute encephalitis at the time of primary infection
Human herpesvirus 6	Mild encephalitis in children
Coxsackieviruses and echoviruses	Rare fatal encephalitis in neonates

\(^a\)California encephalitis is fatal in <1% of children, western equine encephalitis in 10% of infants, St. Louis encephalitis in 20% of elderly persons, and eastern equine encephalitis in 50% of individuals of all age groups.

\(^b\)Some fatal cases have the pathology of postinfectious encephalomyelitis. Some viruses may cause acute encephalitis and acute disseminated encephalomyelitis. Source: Modified from Johnson RT (1998) Viral Infections of the Nervous System, 2nd edn. Philadelphia: Lippincott Raven.
Diagnosis can also have significant public health implications depending on the agent identified.

Diagnosis is dependent on identifying virus in spinal fluid or brain tissue or on serological tests that often require a convalescent serum too late to aid in acute management. In herpes simplex and other herpesvirus infections, polymerase chain reactions can identify specific viral DNA in spinal fluid. In many arbovirus infections, IgM-capture enzyme-linked immunoassays on spinal fluid can quickly identify specific viral infections.

Table 4 Diseases that can masquerade as viral encephalitis

Infectious agents	Rocky Mountain spotted fever
Rickettsia	
Bacteria	Spirochetes
	Syphilis (secondary or meningovascular)
	Leptospirosis
	Borrelia burgdorferi (Lyme disease)
	Mycoplasma pneumoniae infection
	Cat scratch fever
	Listeriosis
	Brucellosis (particularly *Brucella melitensis*)
	Tuberculosis
	Typhoid fever
	Whipple’s disease
	Parameningeal infections (epidural and petrositis)
	Partially treated bacterial meningitis
	Subacute bacterial endocarditis
	Brain abscess
Fungi	Cryptococcosis
	Coccidioidomycosis
	Histoplasmosis
	North American blastomycosis
	Candidiasis
Parasites	Toxoplasmosis
	Cysticercosis
	Echinococcosis
	Trichinosis
	Trypanosomiasis
	Plasmodium falciparum infection
	Naegleria and *Acanthamoeba*
Noninfectious conditions	Glomatosis cerebi
Tumors	Carcinomatous meningitis
	Ruptured intracerebral cysts
Collagen	Systemic lupus erythematosis
Vascular	Rheumatoid meningitis
	Vascultis
Other inflammatory diseases	Sarcoïdosis
	Behcet’s disease
	Uveoncephalitis syndromes
	Autoimmune encephalopathy
Drug-induced meningitis	Non-steroidal anti-inflammatory drugs (NSAIDs)

Source: Modified from Johnson RT (1998) *Viral Infections of the Nervous System*, 2nd edn. Philadelphia: Lippincott Raven.

Table 5 Viruses associated with acute disseminated encephalomyelitis

Virus(es)	Frequency	Comment
Vaccinia virus*	1:60–1:100 000	Eliminated by discontinuation of vaccination
Measles virus	1:1000	Almost eliminated by introduction of vaccine
Varicella–zoster virus	1:4000	Largely associated with acute cerebellar ataxia
Rubella virus	< 1:20 000	Reduced 99% in the US by vaccine
Epstein–Barr virus	Rare	In early weeks of infectious mononucleosis
Mumps virusb	Rare	Reduced 99% in the US by vaccine
Influenza viruses	Rare	
Nonspecific respiratory disease	Rare	

*Occurred with variola virus infection (smallpox), but the frequency was never accurately determined.

Although acute demyelination has been reported in a few fatal cases, mumps virus meningitis and/or encephalitis usually represent direct infection of neural cells.

Source: Modified from Johnson RT (1996) Acute encephalitis. *Clinical Infectious Diseases* 23: 219–226.

Acute Disseminated Encephalomyelitis

Epidemiology

Historically, ADEM accounted for one-third of cases of acute encephalitis. Vaccine practices have reduced or eliminated the major causes (Table 5). Cessation of vaccinia infections to prevent smallpox and institution of immunizations for measles, mumps, rubella, and varicella viruses have eliminated the majority of cases of ADEM. Indeed, in nations with successful immunization policies, the majority of cases are now related to nonspecific upper respiratory infections.

Clinical Findings

A history is often obtained that an exanthem or a nonspecific respiratory or gastrointestinal illness preceded the encephalitis symptoms by 5 days to 3 weeks. For example, postmeasles encephalomyelitis typically begins 4–8 days after the rash when the child has defervesced and is returning to normal activities. Headache, fever, and depressed consciousness develop abruptly, often with focal neurological signs and seizures. Postvaricella encephalitis is commonly limited to acute cerebellar ataxia.

The spinal fluid may show a mild pleocytosis and protein elevation, but in one-third of patients these analyses remain normal. Assays for myelin basic protein are often positive, consistent with the demyelinating nature of the disease. Magnetic resonance imaging is the more definitive test, often showing multifocal white matter lesions with enhancement suggesting inflammatory lesions of similar age.
Diagnosis

In ADEM, virus isolation or serological studies are of little aid in diagnosis. A similar clinical–pathological syndrome follows immunization with rabies and Japanese encephalitis vaccines prepared in neural tissues and, in the case of rabies vaccines, has been shown to be associated with an immune response to myelin basic protein. Similar lymphoproliferative responses to myelin basic protein have been shown in postmeasles encephalomyelitis and in postvaricella cerebellar ataxia, indicating an analogous autoimmune mechanism. Indeed, in ADEM after measles, the virus cannot be found in the brain by virus isolation, immunocytochemical staining, or in situ hybridization; in this disease, encephalitis occurs without evidence of neuroinvasion.

Treatment and Prevention

Specific drug treatments are available only for herpesvirus infections. The incidence of HIV-associated encephalitis has been reduced by antiviral therapy, but whether this represents only a postponement of CNS disease is yet to be determined; recent data suggest that many people with HIV will progress to some form of neurocognitive deterioration. Rabies is unique in that postexposure treatment with vaccine and immune globulin can reduce the hazard of disease, but once clinical symptoms have developed, no treatment is effective. Vaccines can prevent measles, mumps, rubella, chickenpox, Japanese encephalitis, and tickborne virus infections. An additional bonus of measles immunization has been elimination vast reduction in cases of subacute sclerosing panencephalitis.

Further Reading

Johnson RT (1996) Acute encephalitis. Clinical Infectious Diseases 23: 219–226.
Johnson RT (1998) Viral Infections of the Nervous System, 2nd edn. Philadelphia: Lippincott Raven.
Solomon T (2009) Encephalitis and infectious encephalopathies. In: Doraghy M (ed.) Brain’s Diseases of the Nervous System, 12th edn., ch. 42, pp. 1355–1428. Oxford: Oxford University Press.
Solomon T, Hart IJ, and Beeching NJ (2007) Viral encephalitis: A clinician’s guide. Practical Neurology 7: 288–305.