Analytic expressions for the isosteric heat of adsorption from adsorption isotherm models and two-dimensional SAFT-VR equation of state

Flor R. Siperstein | Carlos Avendaño | Jordan J. Ortiz | Alejandro Gil-Villegas

1Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford, UK
2División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León, Guanajuato, Mexico

Correspondence
Flor R. Siperstein, Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. Email: flor.siperstein@manchester.ac.uk

Funding information
DAIP-University of Guanajuato (Mexico), Grant/Award Numbers: CIIC 1143/2016, CIIC 348/2019; Royal Academy of Engineering Newton Research Collaboration Program (3)-NRCP1516/1/124

Abstract
The isosteric heat of adsorption is an important thermodynamic property used to characterize and optimize adsorption processes. In this work, analytic expressions for isosteric heats of adsorption are derived for a collection of commonly used isotherm models and a two-dimensional molecular equation of state based on the SAFT-VR approach. The use of these expressions is presented with an example of adsorption of nitrous oxide, N\(_2\)O, on biochar, which is a waste biomass charcoal that exhibits high adsorption potential. The results show that accurate fitting of the adsorption isotherms leads to consistent results obtained with different approaches; however, the predicted isosteric heat of adsorption exhibits strong variations in the regions where experimental data is insufficient such in the region of low pressure/low coverage. Convergence on the prediction of the isosteric heat of adsorption by the different models is only observed in the region where no extrapolation of experimental data is needed.

KEYWORDS
adsorption, biochar, isosteric heat, isotherms, SAFT

1 | INTRODUCTION

Adsorption is a ubiquitous separation technique in science and engineering and, in many cases, is preferred over other alternatives for separation of gases due to its low economic cost compared to separation techniques such as cryogenic distillation and membrane separation that requires low temperatures conditions and pumping at high pressures, respectively.\(^1\) Theoretical understanding of adsorption is challenging due to the many factors that affect the process such as roughness of the adsorbent, pore size and shape distributions, as well as local fluid–fluid and fluid–solid interactions.\(^2\) The isosteric heat of adsorption, also known as differential enthalpy of adsorption, is a valuable thermodynamic property used for the design and optimization of adsorption processes as it provides information about adsorbate–adsorbate and adsorbate–adsorbent interactions. In homogeneous adsorbents, for example, the isosteric heat of adsorption remains constant at low adsorbate loadings indicating that the interactions between adsorbed molecules do not contribute to the adsorption energy. At high adsorbate loading, however, lateral adsorbate–adsorbent interactions become significant, thus causing an increase on the isosteric heat of adsorption.\(^3,4\) A different behavior is observed in energetically heterogeneous adsorbents in which the isosteric heat of adsorption decreases as the adsorbate loading increases as molecules tend to adsorb on high-energy sites even at low pressures.\(^4\)

The isosteric heat of adsorption for pure components can be obtained from calorimetric measurements or from adsorption...
isotherms measured at different temperatures. Under this approach, a Clapeyron-type relationship is used to determine the isosteric heat of adsorption Q_{st}:

$$Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T} \right)_n,$$

(1)

where n is the amount adsorbed, p and T are the pressure and absolute temperature of the system, and R is the universal gas constant. Details for the derivation of Equation (1) can be found elsewhere. Equation (1) is only valid for pure components and perfect gases and has led to some confusion when working with mixtures or high pressure systems. Therefore, Myers suggested to use the concept of differential enthalpy of adsorption, Δh^a, defined as the partial molar enthalpy of adsorption:

$$\Delta h^a = \left[\frac{\partial \Delta h^a}{\partial n} \right]_{T,p} = h^a - h^i = -RT^2 \left[\frac{\partial f_i}{\partial T} \right]_{n^a,n^i},$$

(2)

where Δh^a is the integral enthalpy of adsorption, h^a and h_i are the molar enthalpies of the adsorbed phase and in the perfect gas reference state; f_i is the fugacity of component i, and n^i is the amount adsorbed of component i. Other authors have also used the concept of partial molar enthalpies of adsorption to study adsorption of liquids and mixtures.

Q_{st} and Δh^a are the same for pure components at low pressures (where the ideal gas approximation is valid). Analytic expressions for Q_{st} or Δh^a are readily available for pure components using simple isotherm models or two-dimensional (2D) fluids, but not necessarily for those that accurately represent experimental data. In this article, we derive a collection of expressions that can be used to determine Q_{st}, or equivalent Δh^a, for a variety of commonly used adsorption isotherms: extensions of the Langmuir model, virial-type adsorption isotherms, Freundlich, Sips and Toth isotherms, as well as a 2D equation of state (EoS) based on perturbation theory, within the SAFT-VR approach framework. As an example, we apply the derived expressions to the adsorption of N$_2$O on biochar (BC) to compare the results obtained from using common isotherms and the molecular-based 2D-SAFT-VR EoS.

2 Adsorption Models

2.1 Langmuir model

Equation (1) is easily applied when the adsorption isotherm is written with the amount adsorbed as independent variable, and the pressure as calculated variable. Take as an example the Langmuir adsorption isotherm given by

$$n = n_{sat} b p / (1 + b p),$$

(3)

where n is the amount adsorbed, n_{sat} is the saturation capacity, b is the adsorption affinity, and p is the pressure of the system. The Langmuir isotherm can also be written as:

$$p = \frac{1}{b} \left(\frac{n}{n_{sat}} \right).$$

(4)

Following the assumptions of the Langmuir model where the saturation capacity n_{sat} is independent of temperature, but the adsorption affinity b depends on temperature, the isosteric heat of adsorption for the Langmuir model can be written as:

$$Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T} \right)_n = -RT^2 \left(\frac{\partial \ln b}{\partial T} \right).$$

(5)

Various temperature dependences have been suggested for the adsorption affinity. Assuming that the temperature dependence of the adsorption affinity follows an Arrhenius expression:

$$b = b_0 \exp \left(-E \right).$$

(6)

then

$$\frac{d \ln b}{dT} = \frac{E}{RT^2},$$

(7)

where the pre-exponential factor b_0 is related to the entropy of saturation, and E to the differential enthalpy of adsorption, where it is understood that $E < 0$. Therefore, the isosteric heat of adsorption for the Langmuir model is simply given by

$$Q_{st} = -E,$$

(8)

assuming that b_0 is independent of temperature. Formally, the pre-exponential factor b_0 in the adsorption affinity is a function of temperature, and is related to the vibrational partition function of the adsorbed molecule and the ideal gas contribution. In the classical limit, the temperature dependence of the pre-exponential factor can be written as:

$$b = b_0 \left[\frac{h^2}{2 \pi m k T} \right]^{3/2} \left[\frac{k T}{h^2} \right]^3 \exp \left(-E' \right),$$

(9)

where h is the Planck’s constant, k is the Boltzmann constant, m is the mass of the particle, and ν is the frequency of vibration of atoms adsorbed on the substrate, therefore

$$\frac{d \ln b}{dT} = \frac{d \ln b_0}{dT} + \frac{1}{2} \frac{d \ln T}{dT} + \frac{1}{2} \frac{d}{dT} \left(\frac{-E'}{RT^2} \right) = \frac{1}{2} \frac{E'}{RT^2},$$

(10)

and the resulting isosteric heat can be written as:

$$Q_{st} = -E' - \frac{1}{2} RT.$$

(11)
The Langmuir model assumes that the saturation capacity \(n_{\text{sat}} \) is independent of temperature, but adsorption may not take place on well-defined sites in practical applications and as a consequence, there is a temperature dependence of the saturation capacity as suggested by Hill.\(^5\) Then, the isosteric heat of adsorption for the Langmuir model with temperature-dependent \(n_{\text{sat}} \) is be given by

\[
Q_{\text{st}} = -RT^2 \left[\frac{d \ln b}{dT} + \frac{d \ln (n_{\text{sat}} - n)}{dT} \right]
\]

\[
= -RT^2 \frac{d \ln b}{dT} - \frac{RT^2 n_{\text{sat}}}{n_{\text{sat}} - n} \frac{dT}{dT}.
\]

A functional form for the temperature dependence of the saturation capacity can be given by

\[
\Gamma = -\frac{d \ln n_{\text{sat}}}{dT} = -\frac{1}{n_{\text{sat}}} \frac{dn_{\text{sat}}}{dT},
\]

where \(\Gamma \) is a measure of the adsorbed phase thermal expansion coefficient. Therefore, the expression for the isosteric heat of adsorption for the modified Langmuir isotherm that follows is:

\[
Q_{\text{st}} = RT^2 \left[\frac{d \ln p}{dT} \right]_n = -RT^2 \left[\frac{d \ln b}{dT} - \frac{n_{\text{sat}}}{n_{\text{sat}} - n} \Gamma \right]
\]

\[
= -RT^2 \left[\frac{d \ln b}{dT} - (1 + b)p \Gamma \right].
\]

2.2 Multisite Langmuir model

An analytic expression for the isosteric heat of adsorption is not necessarily straightforward when the adsorption isotherms become more complex. An expression for the isosteric heat of adsorption for the dual-site Langmuir model has been reported,\(^25\) where an explicit expression for the pressure \(p \) as a function of the amount adsorbed \(n \) is obtained from a quadratic equation and used in Equation (1). Starting from the dual-site Langmuir equation:

\[
n = \frac{n_{\text{sat,1}}b_1p}{1 + b_1p} + \frac{n_{\text{sat,2}}b_2p}{1 + b_2p},
\]

the pressure is given as:

\[
p = \frac{(\beta^2 + 4\alpha n)^{0.5} - \beta}{2\alpha},
\]

where:

\[
\alpha = (n_{\text{sat,1}} + n_{\text{sat,2}} - n)b_1b_2,
\]

and

\[
\beta = (n_{\text{sat,1}} - n)b_1 + (n_{\text{sat,2}} - n)b_2.
\]

The expression for calculating the isosteric heat of adsorption assuming that the number of sites is independent of temperature is given by:

\[
Q_{\text{st}} = RT^2 \left[\frac{-1}{(\beta^2 + 4\alpha n)^{0.5} \frac{dT}{dT}} \right.
\]

\[
\left. + \left(\frac{2n}{(\beta^2 + 4\alpha n)^{0.5}} \left(\frac{\beta^2 - \beta}{(\beta^2 + 4\alpha n)^{0.5} - \beta} \right) - \frac{1}{\alpha} \right) \frac{dT}{dT} \right].
\]

where

\[
\frac{dT}{dT} = \left(n_{\text{sat,1}} + n_{\text{sat,2}} - n \right) \left(\frac{db_1}{dT} + \frac{db_2}{dT} \right).
\]

An alternative approach to obtain the isosteric heat of adsorption is to differentiate implicitly any adsorption isotherm where the pressure appears as independent variable. For the dual-site Langmuir model in Equation (15) with the number of sites independent of temperature, we have:

\[
\frac{d \ln p}{dT} = \frac{n_{\text{sat,1}}b_1p}{1 + b_1p} + \frac{n_{\text{sat,2}}b_2p}{1 + b_2p}
\]

that leads to:

\[
\frac{d \ln p}{dT} = \frac{n_{\text{sat,1}}(1 + b_2p)^2 \frac{dT}{dT} + n_{\text{sat,2}}(1 + b_1p)^2 \frac{dT}{dT}}{n_{\text{sat,1}}(1 + b_2p)^2 + n_{\text{sat,2}}(1 + b_1p)^2},
\]

resulting in an expression for the isosteric heat of adsorption as:

\[
Q_{\text{st}} = -RT^2 \frac{n_{\text{sat,1}}(1 + b_2p)^2 \frac{dT}{dT} + n_{\text{sat,2}}(1 + b_1p)^2 \frac{dT}{dT}}{n_{\text{sat,1}}b_1(1 + b_2p)^2 + n_{\text{sat,2}}b_2(1 + b_1p)^2}
\]

This approach is easily generalized to a multisite Langmuir isotherm, with \(i \) number different types of adsorption sites\(^10\):

\[
n = \sum_{i} \frac{n_{\text{sat},ib_i}}{1 + b_i}
\]

where

\[
\frac{d \ln p}{dT} = \left[\sum_{i} \frac{n_{\text{sat},ib_i}}{1 + b_i} \right] \left[\sum_{i} \frac{n_{\text{sat},ib_i}}{(1 + b_i)^2} \right]^{-1}
\]
It is easy to show that Equation (26) reduces to Equation (23) for the case when only two types of sites are present. Then, the isosteric heat of adsorption for the multisite-Langmuir model with number of sites independent of temperature is given by:

\[
Q_{\text{st}} = -RT^2 \left[\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2} \frac{d n_i}{d t} \right] \frac{1}{\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2}} \tag{27}
\]

A more general case could also consider that the number of sites or maximum amount adsorbed depends on temperature, as shown in Equation (13). Then, the isosteric heat of adsorption becomes:

\[
Q_{\text{st}} = -RT^2 \left[\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2} \frac{d n_i}{d t} + \sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2} \ln \left(\frac{1}{(1 + b_i p)} \right) \right] \frac{1}{\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2}} \tag{28}
\]

or in terms of the adsorbed phase expansion coefficient:

\[
Q_{\text{st}} = -RT^2 \left[\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2} \frac{d}{d t} \ln b_i - \sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2} \frac{d n_i}{d t} \right] \frac{1}{\sum \frac{n_{\text{sat}} b_i}{(1 + b_i p)^2}} \tag{29}
\]

A generalization of the Langmuir model\(^\text{11}\) captures the variation in the asymptotic amount adsorbed at different temperatures by including the exponents \(s\) and \(t\) in the following equation:

\[
p = \frac{1}{b} \exp \left(-\frac{\eta u N_0 n_{\text{sat}}}{RT} \right) \times \left(\frac{n/n_{\text{sat}}}{1 - n/n_{\text{sat}}} \right) \tag{30}\]

where \(u\), \(\eta\), and \(n_{\text{sat}}\) are constants and \(b\) has the temperature dependence given in Equation (6). Then, the isosteric heat of adsorption is given by:

\[
Q_{\text{st}} = -E - u \eta N_0 n_{\text{sat}}, \tag{31}\]

assuming that both \(s\) and \(t\) are independent of temperature.

2.3 Virial equation

The virial equation to describe adsorption of fluids in porous materials can be written as a polynomial expansion of the form\(^\text{15}\):

\[
\ln p = \ln n + \sum c_i n_i \tag{32}\]

where the Henry’s constant \(b\) is given as \(\ln b = -c_0\) and the temperature dependence for the other constants has been suggested to have the following form:

\[
c_i = a_i + b_i, \tag{33}\]

where \(a_i\) and \(b_i\) are adjustable parameters.

For this isotherm, the isosteric heat of adsorption is given as:

\[
Q_{\text{st}} = -R \sum a_i n_i. \tag{34}\]

The virial isotherm given in Equation (32) is unable to describe adsorption isotherms with well defined saturation capacities. An alternative formulation using a Langmuir type saturation capacity is sometimes used\(^\text{16}\):

\[
\ln p = \ln \frac{n}{n_{\text{sat}}} + \sum c_i n_i \tag{35}\]

where the isosteric heat of adsorption is given by:

\[
Q_{\text{st}} = -RT^2 \Gamma \frac{n_{\text{sat}}}{n_{\text{sat}} - n} - R \sum a_i n_i \tag{36}\]

2.4 Freundlich and Sips models

Freundlich proposed a simple and empirical model with two adjustable parameters that is often used to describe adsorption of organic vapors on activated carbon (AC) and other heterogeneous surfaces, that is, materials with different types of adsorption sites with different energies of adsorption.\(^\text{17}\) The Freundlich isotherm is given by

\[
n = b p^n, \tag{37}\]

where \(b\) is the Freundlich constant that denotes that adsorption capacity of the substrate and \(n\) is an empirical exponent that indicates the adsorption intensity of the substrate.

The isosteric heat of adsorption for this isotherm, assuming that both adjustable parameters are temperature dependent is given as:

\[
Q_{\text{st}} = -RT^2 \left(\frac{d \ln b}{t} + \frac{d \ln c_i}{t} \right). \tag{38}\]

An extension of the Freundlich model, proposed by Sips\(^\text{18}\) is often referred to as the Langmuir–Freundlich model, where the adsorption isotherm is given by:

\[
n = \frac{n_{\text{sat}} (bp)^n}{1 + (bp)^n}, \tag{39}\]

and the isosteric heats of adsorption assuming that all adjustable parameters are temperature dependent is given by:
The BET equation is often used for porous materials characterization because it allows estimating the surface area of a mesoporous or macroporous material under certain assumptions. Even though the isotherms used with the BET model are often measured at a single temperature (77 K for nitrogen), if they were to be measured at different temperatures, it would be possible to calculate the isosteric heat of adsorption. Consider the BET isotherm written as:

\[
\phi = -RT^2 \frac{d \ln b}{dT} = -RT^2 \frac{d \ln n_{\text{sat}}}{dT} + \frac{1 + (bp)^t}{t} \left[\frac{1 + (bp)^t}{t} \ln(1 + (bp)^t) - \frac{(bp)^t \ln(bp)}{t} \right] \left(\frac{1}{T} \right) \]

where \(n_{\text{sat}}, b, \) and \(t \) are adjustable parameters. The isosteric heat of adsorption for this model is given by:

\[
Q_{st} = -RT^2 \left[\frac{d \ln b}{dT} + \frac{1 + (bp)^t}{t} \frac{d \ln n_{\text{sat}}}{dT} + \frac{\ln(bp)}{t} \right] \tag{40} \]

\[
\frac{d \ln b}{dT} = \frac{1 + (bp)^t}{t} \left[\frac{1 + (bp)^t}{t} \ln(1 + (bp)^t) - \frac{(bp)^t \ln(bp)}{t} \right] \left(\frac{1}{T} \right) \]

2.5 Toth

The Freundlich and Sips adsorption isotherm models can describe well experimental data but they have an important disadvantage: the slope of the adsorption isotherm at the limit of zero pressure is not defined. The isotherm model proposed by Toth overcomes this problem and is given by:

\[
n = \frac{n_{\text{sat}} bp}{1 + (bp)^t} \tag{41} \]

where \(n_{\text{sat}}, b, \) and \(t \) are adjustable parameters. The isosteric heat of adsorption for this model is given by:

\[
Q_{st} = -RT^2 \frac{d \ln b}{dT} - RT^2 \left[1 + (bp)^t \right] \frac{d \ln n_{\text{sat}}}{dT} + \frac{1 + (bp)^t}{t} \left[\frac{1 + (bp)^t}{t} \ln(1 + (bp)^t) - \frac{(bp)^t \ln(bp)}{t} \right] \left(\frac{1}{T} \right) \tag{42} \]

2.6 BET

The BET equation is often used for porous materials characterization because it allows estimating the surface area of a mesoporous or macroporous material under certain assumptions. Even though the isotherms used with the BET model are often measured at a single temperature (77 K for nitrogen), if they were to be measured at different temperatures, it would be possible to estimate the isosteric heat of adsorption. Consider the BET isotherm written as:

\[
\nu = \frac{\nu_m p / p^0}{1 - p / p^0} \left(1 + (c-1) (p / p^0) \right) \tag{43} \]

where \(\nu \) is the volume adsorbed, \(\nu_m \) is the volume of the monolayer, \(p \) is the pressure, \(p^0 \) is the saturation pressure at the temperature of the isotherm, and \(c \) is an adjustable parameter, related to the difference in the energy of adsorption of the first layer and the other layers. Assuming that \(\nu_m \) and \(c \) are independent of temperature, the isosteric heat of adsorption is given by:

\[
Q_{st} = RT^2 \frac{d \ln p^0}{dT} \tag{44} \]

A more general expression can be obtained when considering that \(\nu_m \) and \(c \) are temperature dependent, then the isosteric heat of adsorption is given as:

\[
Q_{st} = N_0 c_{fw} + RT + 4c_{fw} \left(5z_{fw} - 1 \right) \gamma_{fw} \left(n, \gamma_{fw} \right) \phi \left(z_{fw} \right) \tag{48} \]

2.7 2D-SAFT-VR EoS

Most adsorption models such as the Langmuir and the BET isotherms use the concept of adsorption sites in which equilibrium is described as the balance between the energy of the molecules adsorbed on these sticky sites and the gain of translational entropy from the desorption of the molecules from the substrate. An alternative description of adsorption is introduced from the use of 2D molecular-based equations of state where the adsorbed phase is represented as a 2D fluid in equilibrium with a 3D bulk phase.

Within this approximation and the framework of the Barker and Henderson perturbation theory, it is possible to model the adsorption of particles interacting via a square-well (SW) pair potential. A more robust theoretical model for complex fluids comprised of nonlinear associating molecules can be obtained through the use of more sophisticated molecular-based equations of state such as the Statistical Associating Fluid Theory originally developed by Gubbins and coworkers. Different incarnation of SAFT have been developed, but in this work, we opt for the use of SAFT-VR methodology due to their flexibility in the shape of the pair intermolecular potential. Using this approach, Martinez et al. and Jiménez-Serratos et al. reported the development of a 2D SW SAFT-VR EoS for associating chain molecules. This theory has been applied in the modeling of adsorption on ACs, graphene and MOFs of several substances and their mixtures like nitrogen, methane, carbon dioxide, methanol, water, and hydrogen as well as complex fluids such as asphaltene in porous rocks.

The 2D-SAFT-VR approach considers that bulk and adsorbed phases are formed by spherical particles of diameter \(\sigma \) interacting via SW potentials with energy well depths and attractive ranges parameters \(\epsilon_{\text{bulk}}, \lambda_{\text{bulk}} \) and \(\epsilon_{\text{ads}}, \lambda_{\text{ads}} \) for both phases, respectively; interactions between bulk-adsorbed fluid particles are neglected whereas surface-adsorbed-particles interaction is also modeled with an SW potential with parameters \(\epsilon_{\text{fw}}, \lambda_{\text{fw}} \). The expression for the isosteric heat of the 2D-SAFT-VR EoS is given by:

\[
Q_{st} = N_0 c_{fw} + RT + 4c_{fw} \left(5z_{fw} - 1 \right) \gamma_{fw} \left(n, \gamma_{fw} \right) \phi \left(z_{fw} \right) \tag{48} \]
where \(N_0 \) is Avogadro’s number, \(\gamma \) and \(g_{\text{rad}} \) are the 2D hard-disk packing fraction and radial distribution function, respectively, and \(\gamma_{\text{eff}} \) and \(\Phi \) are parameters of the mean-attractive energy of the adsorbed particles. Details of the theory and the derivation of Equation (48) are given in Appendix.

3 | CASE OF STUDY: ADSORPTION OF \(N_2O \) ON BC

Adsorption of \(N_2O \) on BC is taken as the case of study for the application of the various models to characterize adsorption isotherms and their associated equations for the isosteric heat of adsorptions derived in previous sections. BC is a waste carbon-rich porous material produced by thermal decomposition of biomass at low-oxygen conditions\(^{40,41} \) that has attracted considerable attention due to properties such as high stability against decay and high adsorption capacities of nutrients, which are properties attractive for soil enrichment, as well as their high capacity for adsorbing both heavy-metals present in wastewater and greenhouse gases dispersed in the atmosphere.\(^{42} \) \(N_2O \) is a powerful greenhouse gas that is known to have strong warming is approximately 300 times more that \(\text{CO}_2 \).\(^{43,44} \)

We begin our discussion with the use of the Langmuir isotherm model to represent the experimental adsorption data of \(N_2O \) on several types of BCs and ACs reported by Cornelissen et al.\(^{40} \) The values for the saturation capacity \(n_{\text{sat}} \) and the adsorption affinity \(b \) for the adsorption of \(N_2O \) at different temperatures on a BC with a BET surface area of 60.1 m\(^2\) g\(^{-1}\), hereafter referred to as BC-60, are presented in Table 1 for pressures in the range 0.03 to 0.66 atm. The values of these parameters are the same as those originally reported by Cornelissen et al.\(^{40} \) As expected, both \(n_{\text{sat}} \) and \(b \) decrease as the temperature decreases indicating a reduction of the adsorption capacity of the material. The Langmuir isotherms using the parameters reported in Table 1 are shown in Figure 1, where it is observed that the fitting of the model to the experimental adsorption data is good, particularly at high temperatures. The error \(\delta_n \) on the fitting of property \(X \) for all the isothermal models presented in this work is quantified using the average absolute deviation given by

\[
\delta_X = \frac{1}{N_p} \sum_{i=1}^{N_p} \left| \frac{X_{\text{exp}} - X_{\text{cal}}}{X_{\text{exp}}} \right|,
\]

where \(X_{\text{exp}} \) and \(X_{\text{cal}} \) are the experimental and computed values of variable \(X \), respectively, and \(N_p \) is the number of experimental points. For the Langmuir isotherm, the error on the fitting of the amount adsorbed \(\delta_n \) is lower than 3% for all temperatures reported in the range 263–313 K.

A more general form of representing experimental data for different systems and temperatures is by obtaining the dependence of the Langmuir parameters as function of temperature for a specific system. The affinity parameter, for example, can be represented using an Arrhenius-type model given in Equation (6), in which the pre-exponential factor \(b_0 \) as well as activation energy \(E \) can be determined using experimental data at different temperatures. For the case of the saturation capacity \(n_s \), the temperature dependence is obtained through the calculation of \(\Gamma \) defined in Equation (13). Using again the experimental data reported by Cornelissen et al.\(^{40} \) for different types of ACs and BCs, the fitted values for \(b_0, E, \) and \(\Gamma \) are reported in Table 2.

The reported experimental data were also fitted with other models described in this work: first- and second-order virial, Freundlich, Sips, Toth, and dual site Langmuir isotherms. The results for these models to represent the adsorption isotherms of \(N_2O \) on BC-60 are presented in Figure 1. The constants obtained from the

TABLE 1 Langmuir isotherm parameters, \(n_{\text{sat}} \) and \(b \), for the representation of the adsorption of \(N_2O \) on biochar BC-60 at different temperatures reported by Cornelissen et al.\(^{40} \) The fitting error \(\delta_n \) on the amount adsorbed \(n \) is also reported.

\(T \) (K)	\(n_{\text{sat}} \) (cm\(^3\) g\(^{-1}\))	\(b \) (atm\(^{-1}\))	\(\delta_n \) (%)
263.15	44.79	8.91	2.98
273.15	40.20	7.09	2.93
283.15	36.56	5.68	2.82
293.15	33.31	4.28	2.54
303.15	30.29	3.37	2.22
313.15	27.59	2.58	1.95

FIGURE 1 Adsorption isotherms for \(N_2O \) on biochar BC-60 using experimental data from Cornelissen et al.\(^{40} \) The amount adsorbed \(n \) is expressed as volume of \(N_2O \) at STP per gram of sorbent, that is, in units of cm\(^3\) g\(^{-1}\). From top to bottom, the temperatures correspond to the range 263.15–313.15 K in increments of 10 K, respectively. Symbols correspond to the experimental isotherms while solid curves are the fitted isotherms calculated using the different models this work. Parameters for these models are reported in Tables 2–9. The blue area indicates the region where at least one experimental point for each experimental isotherm is present. In this region, no extrapolation is needed to calculate the isosteric heats of adsorption [Color figure can be viewed at wileyonlinelibrary.com]
fitting these isotherms are reported in Tables 3–8. The results indicate that the best representation of the experimental adsorption data is observed using adsorption models that take into account heterogeneity of the energetic surface, which is not surprising since BC and AC are highly heterogeneous. These isotherm models correspond to the Sips, Toth, and dual-site Langmuir isotherms (cf. Tables 6–8), being the Toth isotherm model the one that exhibits the smallest fitting error likely for all temperatures due to the accurate representation of the low-pressure adsorption regime by this model.

The results for isosteric heats of adsorption Q_a for N$_2$O on BC-60 are shown in Figure 2. These results were obtained in two different ways: (a) from direct numerical differentiation of isotherms at six different temperatures calculated using the parameters reported in Tables 1–8, and (b) from the equations derived in this work using the temperature dependence of the adjustable parameters, also reported in Tables 1–8. The equations presented in this work give values of Q_a consistent with those obtained from numerical differentiation suggesting that small deviations are due to errors in fitting different parameters rather than in the derivation of the equations. It is interesting to note, that all the models converge to similar values of Q_a only in the region where no extrapolation of the experimental data, corresponding to either low or high loadings, is needed. This region is represented by the blue rectangle shown in Figures 1 and 2. This behavior highlights the uncertainty in the estimation of the zero coverage heats of adsorption from differentiation of isotherms at different temperatures, as well as the extrapolation to high loadings.

Despite the errors in the fitting of the isotherms being small in all models, extrapolations to zero coverage predict values of the isosteric heat that may vary significantly based on the model selected. In this case, the Langmuir model and the second-order virial equation with three adjustable parameters exhibit similar behavior in extrapolations at zero coverage, whereas the Toth isotherm and the first-order virial equation with two adjustable parameters give similar values at zero coverage. It should be highlighted that the Q_a from the dual-Langmuir model have an unphysical maxima at low coverage. In general, it is considered that the magnitude of the enthalpy of adsorption decreases with coverage due to adsorbent heterogeneities or increases due to interactions between adsorbed molecules. There is no physical reason for the enthalpy of adsorption to increase at low

Table 2

Temperature-dependent Langmuir isotherm parameters for different types of BCs and ACs. E and b_0 correspond to the activation energy and pre-exponential factor in the Arhenius-type model (cf. Equation (6)). Γ corresponds to the adsorbed phase thermal expansion coefficient defined in Equation (13). Experimental adsorption isotherms used for the fitting are taken from Cornelissen et al.40 The fitting error δ_p on the pressure p is also reported. The gradients of the parameters $-\ln b$, c_1, and c_2 with respect to the temperature T evaluated at $T = 293.15$ K are reported in the last row.

Material	E (kJ mol$^{-1}$)	b_0 (atm$^{-1}$)	Γ (K$^{-1}$)
BC-60	17.0	0.00392	0.00961
BC-176	15.8	0.00748	0.00904
BC1	23.8	0.00616	0.01239
BC-286	12.8	0.01128	0.00697
AC-775	11.0	0.03567	0.01171
AC-569	15.9	0.00484	0.00913

Abbreviations: AC, activated carbon; BC, biochars.

Table 3

Parameters for the virial isotherm truncated to first order (two constants) for the adsorption of N$_2$O on BC-60. Experimental adsorption isotherms used for the fitting are taken from Cornelissen et al.40 The fitting error δ_p on the pressure p is also reported. The gradients of the parameters $-\ln b$ and c_1 with respect to the temperature T evaluated at $T = 293.15$ K are reported in the last row.

T (K)	$-\ln b$	c_1 (cm3 g$^{-1}$)	δ_p (%)
263.15	-6.925	0.0720	2.04
273.15	-6.318	0.0696	1.85
283.15	-5.807	0.0673	1.78
293.15	-5.259	0.0637	1.79
303.15	-4.828	0.0626	1.75
313.15	-4.386	0.0612	1.58

$d/dT | T = 293.15 K = 0.0486 - 0.000216$

Table 4

Parameters for the virial isotherm truncated to second order (three constants) for the adsorption of N$_2$O on BC-60. Experimental adsorption isotherms used for the fitting are taken from Cornelissen et al.40 The fitting error δ_p on the pressure p is also reported. The gradients of the parameters $-\ln b$, c_1, and c_2 with respect to the temperature T evaluated at $T = 293.15$ K are reported in the last row.

T (K)	$-\ln b$	c_1 (cm3 g$^{-1}$)	c_2 (cm3 g$^{-1}$)	δ_p (%)
263.15	-6.368	0.032400	6.7x10$^{-4}$	2.10
273.15	-5.980	0.040469	5.9x10$^{-4}$	1.95
283.15	-5.593	0.045192	5.3x10$^{-4}$	1.93
293.15	-5.117	0.045349	5.4x10$^{-4}$	1.92
303.15	-4.727	0.046632	5.7x10$^{-4}$	1.87
313.15	-4.314	0.046714	6.4x10$^{-4}$	1.69

$d/dT | T = 293.15 K = 0.0397 - 0.000254$

Table 5

Parameters for the Freundlich isotherm for the adsorption of N$_2$O on BC-60. Experimental adsorption isotherms used for the fitting are taken from Cornelissen et al.40 The fitting error δ_p on the amount adsorbed n is also reported. The gradients of the parameters b and t with respect to the temperature T evaluated at $T = 293.15$ K are reported in the last row.

T (K)	b (cm3 g$^{-1}$ atm$^{-1}$)	t	δ_p (%)
263.15	46.09	0.3271	2.55
273.15	40.95	0.3782	2.86
283.15	36.64	0.4305	3.09
293.15	32.29	0.4988	3.35
303.15	28.15	0.5560	3.60
313.15	24.05	0.6199	3.78

$d/dT | T = 293.15 K = -0.4371 - 0.4651$
coverages and then decrease. It should also be noted that for both
the Freundlich and Sips models Q_a diverged at low coverages. The slope
of both, the Freundlich and Sips isotherms are not constant in the
limit of zero pressure, which can introduce further problems in the
extrapolation. The lower exponents that result from the fit of the
experimental data to the Freundlich equation may result in extremely
large (and unrealistic) slopes at low pressures for the low temperature
isotherms.

All the isotherm models previously discussed have in common
that the adsorption equilibrium is described as the balance between
the energetic contribution due to molecules adsorbed in active sites
and the gain in entropy from the molecules escaping from the sub-
strate. An alternative interpretation to the adsorption of fluids on solid
substrates corresponds to the equilibrium of a 2D fluid phase, rep-
resenting the adsorbed phase, with a 3D bulk phase. In this context,
the so-called 2D-SAFT-VR EoS has been previously reported to
describe the adsorption of gases on solids. Here, this molecular-based
EoS has been used to represent the adsorption of N$_2$O on BC-60. The
SW parameters in the 2D-SAFT-VR equation for bulk N$_2$O gas ($\lambda_{\text{bulk}},$
σ_{bulk}, and ϵ_{bulk}) have been obtained from fitting to the critical values of
density, temperature and pressure, according to the data reported by
NIST.45 The SW bulk parameters are very similar to those used by
other authors with similar molecular-based equations of state.46 The
adsorbed phase parameters have been obtained following the proce-
dure used in previous 2D-SAFT-VR studies,22,23 assuming that the
size of the particles and the energy-well depth of the SW interaction
are not modified by the adsorption process, that is, $\sigma_{\text{ads}} = \sigma_{\text{bulk}}$ and
$\epsilon_{\text{ads}} = \epsilon_{\text{bulk}}$, respectively. The effect of the substrate on the adsorbed
fluid is only taken into account in the range of the SW potential of the

Table 6: Parameters for the Sips isotherm for the adsorption of N$_2$O on BC-60

T (K)	n_{sat} (cm3 g$^{-1}$)	b (atm$^{-1}$)	t	δ_n (%)
263.15	62.16	3.560	0.6159	0.49
273.15	55.20	2.830	0.6638	0.53
283.15	51.66	2.277	0.7055	0.61
293.15	46.83	1.843	0.7610	0.72
303.15	41.48	1.626	0.8114	0.83
313.15	36.24	1.434	0.8656	0.85

$d/dT | T = 293.15 K = -0.5103 - 0.0419 0.00499$

Table 7: Parameters for the Toth isotherm for the adsorption of N$_2$O on BC-60

T (K)	n_{sat} (cm3 g$^{-1}$)	b (atm$^{-1}$)	t	δ_n (%)
263.15	75.03	25.851	0.4137	0.038
273.15	68.71	13.801	0.4470	0.035
283.15	65.12	8.290	0.4697	0.036
293.15	63.04	4.576	0.4969	0.037
303.15	57.94	2.936	0.5341	0.032
313.15	48.50	1.969	0.6123	0.023

$d/dT | T = 293.15 K = -0.4772 - 0.4449 0.00395$

Table 8: Parameters for the dual-site Langmuir isotherm for the adsorption of N$_2$O on BC-60

T (K)	$n_{\text{sat},1}$	b_1	$n_{\text{sat},2}$	b_2	δ_n (%)
263.15	39.90	4.935	8.201	447.3	0.76
273.15	37.87	4.274	5.572	286.6	0.77
283.15	36.16	3.516	4.035	192.1	0.76
293.15	34.46	2.867	2.437	181.0	0.74
303.15	32.09	2.430	1.441	167.7	0.82
313.15	29.70	1.989	0.746	153.9	0.85

$d/dT | T = 293.15 K = -0.2002 - 0.0598 0.1254 - 5.242$

Table 9: Molecular parameters for the 2D-SAFT-VR equation of state for the adsorption of N$_2$O on BC-60

Parameter	Value
λ_{bulk}	1.769
σ_{bulk} (Å)	3.3551
(c_{bulk}/k) (K)	161.01
λ_{ads}	1.270
σ_{ads} (Å)	3.3551
(c_{ads}/k) (K)	161.01
λ_{ω}	0.11
(c_{ω}/k) (K)	2.98674
S_0 (m2 g$^{-1}$)	167.17
ω (K$^{-1}$)	0.002972

The fitting error δ_n on the amount adsorbed n is also reported. The gradients of the parameters $n_{\text{sat},1}$, b_1, $n_{\text{sat},2}$, and b_2 with respect to the temperature T evaluated at $T = 293.15$ K are reported in the last row.
in the Langmuir model. The isosteric heat predicted by the 2D-SAFT-VR EoS is similar to the predicted by the other adsorption isotherm models, and the prediction of this property at low coverages exhibits a similar behavior as the one observed by the Langmuir and second-order virial models.

4 | CONCLUSIONS

In this work, we have presented a collection of equations to calculate the isosteric heat of adsorption for gases derived from some of the most common models for adsorption. The use of simple isotherm models is very common in the literature, despite of having evidence that the experimental data does not follow the assumptions of the selected model. More complex isotherms can adjust better experimental data, but often require more parameters to fit, as has been reviewed by Foo and Hameed. The use of a more complex approach like the 2D-SAFT-VR EoS becomes attractive because less adjustable parameters are required than the simpler isotherm models, and also because it is possible to improve the molecular description through a more realistic intermolecular interaction, as recently reported using a Mie intermolecular potential model.

It is impossible to say which model discussed in this work is better or more accurate to extrapolate the isosteric heats of adsorption, but this article highlights that care must be taken in the extrapolations of the heats of adsorption, even if the model fits well the adsorption isotherms. As our results demonstrate very different behavior, even some unrealistic behavior, is observed for both low and high coverage since these regions have been extrapolated.

ACKNOWLEDGMENTS

The authors are grateful for the support of the Royal Academy of Engineering Newton Research Collaboration Programme (3) - NRC15156/1/124 for this work. Authors also acknowledge DAIP-University of Guanajuato (Mexico) for the grants CIIC 1143/2016 and CIIC 348/2019.

AUTHOR CONTRIBUTIONS

Flor R. Siperstein: Conceptualization; formal analysis; funding acquisition; investigation; methodology; writing-original draft; writing-review and editing. Carlos Avendaño: Formal analysis; investigation; methodology; writing-original draft; writing-review and editing. Alejandro Gil-Villegas: Formal analysis; funding acquisition; investigation; methodology; writing-original draft; writing-review and editing.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Flor R. Siperstein https://orcid.org/0000-0003-3464-2100
Carlos Avendaño https://orcid.org/0000-0002-3157-7318
Alejandro Gil-Villegas https://orcid.org/0000-0002-3267-9762
REFERENCES

1. Nicholson D, Gubbins KE. Separation of carbon dioxide–methane mixtures by adsorption: effects of geometry and energetics on selectivity. J Chem Phys. 1996;104:8126-8134.

2. Balbuena PB, Gubbins KE. Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir. 1993;9:1801-1814.

3. Snurr RQ, Bell AT, Theodorou DN. Prediction of adsorption of aromatic hydrocarbons in silicate from grand canonical Monte Carlo simulations with biased insertions. J Phys Chem. 1993;97:13742-13752.

4. Sircar S, Cao D. Heat of adsorption. Chem Eng Technol. 2002;25:945-948.

5. Hill TL. Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J Chem Phys. 1949;17:520-535.

6. Myers AL. Thermodynamics of adsorption in porous materials. AIChE J. 2002;48:145-160.

7. Bulles S, Sandler SI, Xiong R. Isosteric heats of gas and liquid adsorption. Langmuir. 2013;29:10416-10422.

8. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. 1916:38:2221-2295.

9. Honig JM, Mueller CR. Adaptation of lattice vacancy theory to gas adsorption phenomena. J Phys Chem. 1962;66:1305-1308.

10. Nitta T, Shigetomi T, Kuro-Oka M, Katayama T. An adsorption isotherm of multi-site occupancy model for homogeneous surface. J Chem Eng Japan. 1984;17:39-45.

11. Martínez GM, Basmadjian D. Towards a general gas adsorption isotherm. Chem Eng Sci. 1996;51:1043-1054.

12. Yao C. Extended and improved Langmuir equation for correlating adsorption equilibrium data. Sep Purif Technol. 2000;19:237-242.

13. Bai R, Yang RT. A thermodynamically consistent Langmuir model for mixed gas adsorption. J Colloid Interface Sci. 2001;239:296-302.

14. Zhang P, Wang L. Extended Langmuir equation for correlating multi-layer adsorption equilibrium data. Sep Purif Technol. 2010;70:367-371.

15. Czeperlki L, Jagiello J. Virial-type thermal equation of gas-solid adsorption. Chem Eng Sci. 1989;44:797-801.

16. Sipserstein FR, Myers AL. Mixed-gas adsorption. AIChE J. 2001;47:1141-1159.

17. Freundlich HMF. Über die adsorption in lösungen. AIChE J. 1971;69:311-317.

18. Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16:490-495.

19. Toth J. State equations of the solid gas interface layer. Acta Chim Acad Sci Hung. 1971:69:311-317.

20. Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106:4168-4186.

21. Martínez A, Castro M, McCabe C, Gil-Villegas A. Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory. J Chem Phys. 2007;126:074707.

22. Jiménez-Serratos G, Santillán S, Avendaño C, Castro M, Gil-Villegas A. Molecular thermodynamics of adsorption using discrete-potential systems. Oil Gas Sci Technol. 2008;63:329-341.

23. Trejos VM, Becerra M, Figueroa-Gerstenmaier S, Gil-Villegas A. Theoretical modelling of adsorption of hydrogen onto graphene, MOFs and other carbon-based substrates. Mol Phys. 2014;112:2330-2338.

24. Lee LL. Molecular Thermodynamics of Nonideal Fluids. Stoneham, MA: Butterworths Series in Chemical Engineering; 1988.

25. Mason JA, Sumida K, Hemm ZR, Krishna R, Long JR. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energ Environ Sci. 2011;4:3030-3040.

26. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multi-molecular layers. J Am Chem Soc. 1938;60:309-319.
APPENDIX

The 2D-SAFT-VR method21,22 considers that molecules in both the adsorbed and bulk phases interact via SW potentials $u_{sw}(r, \sigma, \epsilon, \lambda)$

$$u_{sw}(r) = \begin{cases}
\infty & \text{if } r \leq \sigma \\
-\epsilon & \text{if } 0 \leq r \leq \lambda w \\
0 & \text{if } r > \lambda w
\end{cases} \quad (A1)$$

where σ is the particle’s diameter, ϵ is the energy well-depth, and λ is the attractive range of the potential. The model assumes that the bulk and adsorbed particles have the same size σ, but the attractive interaction is modified due to the effect of the substrate, and the values of the ϵ and λ potential parameters corresponding to the bulk and adsorbed phases are different. We will denote by $(\epsilon_{bulk}, \lambda_{bulk})$ and $(\epsilon_{ads}, \lambda_{ads})$ the bulk and adsorbed SW particle-particle interaction parameters, respectively. Typically, $\epsilon_{ads} \approx 0.8 \epsilon_{bulk}$ and $\lambda_{ads} < \lambda_{bulk}$ in order to reproduce the experimental ratio of the critical temperatures of the adsorbed and bulk fluid phases $T_{c}^{ads}/T_{c}^{bulk} \approx 0.4$.22,29,51 However, just in order to reduce the number of molecular parameters that requires the model, we can consider the effect of the substrate into the adsorbed particle-particle interaction only in the range of the potential and to assume that $\epsilon_{ads} = \epsilon_{bulk}$. This approximation has given accurate predictions of adsorption isotherms of CO\textsubscript{2} in AC with the Mie intermolecular potential50 and we have used this approximation in this work.

The interaction potential u_{pw} exerted on the adsorbed particles by a planar structureless surface is also given by an SW potential with parameters $(\epsilon_{w}, \lambda_{w})$, written as a function of the orthogonal coordinate distance z between the particle and the surface. If $z = 0$ is set at the position of contact of the particle with the surface then u_{pw} is given by:

$$u_{pw}(z) = \begin{cases}
\infty & \text{if } z < 0 \\
-\epsilon_{w} & \text{if } 0 \leq z \leq \lambda_{w} \sigma \\
0 & \text{if } z > \lambda_{w} \sigma
\end{cases} \quad (A2)$$

The Helmholtz free energy of the adsorbed fluid can be written as:22,23

$$\frac{A_{ads}}{\eta_{ads} RT} = \frac{A_{2D}}{\eta_{ads} RT} - \ln \left(\frac{\lambda_{w} \sigma}{\lambda_{w}} \right) - N_{0} \epsilon_{w} \gamma_{eff} / RT \quad (A3)$$

where η_{ads} is the number of moles in the adsorbed phase, λ_{w} is the de Broglie’s thermal wavelength, and N_{0} is Avogadro’s number. Details of the Helmholtz free energy of the bulk fluid are given in References 22 and 23.

The thermodynamic properties of the adsorbed phase are determined by the equilibrium condition

$$p = \frac{RT \rho_{ads} \lambda_{w} \sigma e^{\Delta u_{2D} - N_{0} \epsilon_{w} / RT}}{\epsilon_{w}} \quad (A5)$$

where $\rho_{ads} = \eta_{ads} / S$ and Δu_{2D} are the molar density and excess chemical potential of the adsorbed fluid, respectively, and S is the surface area. According to Equations (1) and (A5), the isosteric heat of the 2D-SAFT-VR is given by

$$Q_{st} = N_{0} \epsilon_{w} + RT + RT^{2} \frac{\partial}{\partial T} \left(\frac{\Delta u_{2D}}{RT} \right) \quad (A6)$$

For nonassociating fluids, the first-order-perturbation term for Δu_{2D} is given by23:22

$$\frac{\Delta u_{2D}}{RT} = \frac{25 \gamma - 16 \gamma^{2}}{8(1 - \gamma)^{2}} - 8 \log(1 - \gamma) - 2n_{vdW} \rho_{ads} \Phi(\gamma_{eff}) / RT \quad (A7)$$

where n_{vdW} is the van der Waals energy constant, γ is the 2D packing fraction $\gamma = N_{0} \rho_{ads} \pi \sigma^{2} / 4$, $\Phi(\gamma_{eff})$ is the contact value of the hard-disks radial distribution function given in terms on an effective packing fraction γ_{eff} and $\Phi(\gamma_{eff})$ is a function determined by Φ_{sd} and its first density derivative. Following previous work, we use the Henderson hard-disks EoS52

$$\Phi_{sd}(\sigma, \gamma_{eff}) = \frac{1 - 7 \gamma_{eff} / 16}{(1 - \gamma_{eff})^{2}} \quad (AB)$$

and

$$\gamma_{eff} = d_{1} \gamma + d_{2} \gamma^{2} \quad (A9)$$

with
\[d_1 = 1.4215 - 0.405625 \lambda_{ads} - 0.03869981 \lambda_{ads}^2 \]

(A10)

\[d_2 = 1.5582 - 1.89768 \lambda_{ads} + 0.405215 \lambda_{ads}^2 \]

(A11)

and

\[\alpha_{vdW} = \sigma_{vdW} \sigma^2 (\lambda_{ads}^2 - 1)/2 \]

(A12)

The corresponding expression for \(\Phi(\gamma_{\text{eff}}) \) is

\[\Phi = 1 + \frac{(25 - 7 \gamma_{\text{eff}})(2 \gamma_{\text{eff}} - d_1 \gamma)}{2(1 - \gamma_{\text{eff}})(16 - 7 \gamma_{\text{eff}})} \]

(A13)

The expressions for the augmented vdW EoS can be obtained from Equation (A7) assuming \(g_{vdW}(\sigma, \gamma_{\text{eff}}) = 1 \), and consequently \(\Phi(\gamma_{\text{eff}}) = 1 \).