Fucoxanthin, A Xanthophyll from Macro- and Microalgae: Extraction Techniques, Bioactivities and Their Potential Application in Nutra- and Cosmeceutical Industries

Dedi Noviendri¹,* Diini Fithriani¹, and Reno F. Hasrini²

¹ Research Center for Marine and Fisheries Product Processing and Biotechnology. Ministry of Marine Affairs and Fisheries. Republic of Indonesia. Jl. KS Tubun Petamburan VI. Central Jakarta. Indonesia.
² Center of Agro-Based Industry (BBIA), Ministry of Industry, Republic Indonesia. Jl. H. Juanda No 11 Bogor, West Java, Indonesia

Abstract. Some works of literature reported that fucoxanthin has diverse potential benefits for human health. Thus, this review would explain the sources of fucoxanthin, extraction techniques, bioactivities, and its potential application in Nutra- and cosmeceutical industries. Brown algae, such as Padina australis, Undaria pinnatifida; and the microalgae, such as Chaetoceros gracilis, Phaeodactylum tricornutum were sources of fucoxanthin. Then, the chemical structure of this xanthophyll is unique and that confers its biological activities. And then, the extraction process of fucoxanthin from macro- and microalgae is more safe, accessible, and economic, although this xanthophyll can be synthesized chemically. Generally, there are two techniques for the extraction of fucoxanthin, namely liquid solvent (conventional), and supercritical carbon dioxide (non-conventional) extractions. Furthermore, there are some bioactivities of fucoxanthin, including its activities of anticancer, anti diabetic, antiobesity, antioxidant; protective effects of skin, bone, and eyes. Based on in vivo assay of the animal, it has no adverse effects of fucoxanthin supplementation. Therefore, this xanthophyll might be applied in both the Nutra- and cosmeceutical industries. In the future, fucoxanthin and its derivatives would be important for human health, contributing to the beauty industry, and playing an important in the prevention of cancer and the disease related to lifestyle.

1 Introduction

About 800 kinds of xanthophylls have been reported in nature up until 2018 [1]. This class of carotenoid, especially fucoxanthin is abundant in macro- and microalgae as a photoprotection component, and the complex of light-harvesting for the photosynthesis process [2]. The fucoxanthin chemical structure contains a 5.6-monoepoxide and an allenic

* Corresponding author: dedinov@yahoo.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
bond [3] (Fig. 1). Its chemical structure is unique and that confers its biological activities. And then, some kinds of literature reported that fucoxanthin has diverse potential benefits for human health [4]. So, this review would explain the sources of fucoxanthin, its extraction techniques, bioactivities, and its potential application in both the Nutra- and cosmeceutical industries.

Fig. 1. The fucoxanthin chemical structure

2 Sources of Fucoxanthin

Fucoxanthin is found in macroalgae, especially brown algae, and microalgae, or a number of diatoms [5-7]. This compound is a major xanthophyll carotenoid in the chloroplast of brown algae [8], namely *Padina australis* [9], *Sargassum horneri* [10], *Undaria pinnatifida* [11], *Laminaria japonica* [12]; in microalgae or diatoms [13] such as *Phaeodactylum tricornutum* [14], *Chaetoceros gracilis* [15], *Isochrysis galbana* [16]; and a small amount in red seaweed, such as *Chondria crassicaulis*, *Mazzaella japonica*, and *Gloioptis furcate* [17]. The content of fucoxanthin in brown algae is about 0.1-1.0 mg/g (0.01-0.10 %) of the dry cell weight [18], while in diatoms is about 1.00-2.50% of the dry cell weight [19, 20]. The sources data of fucoxanthin from macro and microalg (from years 2018 to 2020) are shown in Table 1.

Table 1. The sources of fucoxanthin from macro and macroalg (from 2018 to 2020).

Year	Source	Species	Country	References
2018	BS	*Alaria esculenta*	Ireland	[21]
		Ascolophyllum nodosum	Ireland	[21]
		Colpomenia sinuosa	Iran	[22]
		Dictyota indica	Iran	[22]
		Fucus serratus	Ireland	[21]
		Fucus vesiculosus	Ireland	[21]
		Himanthalia elongata	Ireland	[21]
		Iyengaria stellate	Iran	[22]
		Laminaria hyperborea	Ireland	[21]
		Laminaria digitata	Ireland	[21]
		Laminaria japonica	China	[23]
		Laminaria japonica	Korea	[12]
		Laminaria japonica	Taiwan	[24]
		Padina australis	Indonesia	[25]
		Padina tenuis	Iran	[22]
		Padina tetraestromatica	India	[26]
		Pelvetia canaliculata	Ireland	[21]
		Saccharina japonica	Korea	[27]
		Saccharina japonica	Korea	[29]
		Saccharina latissima	Ireland	[21]
		Saccorhiza polyschides	Ireland	[21]
		Sargassum polycystum	Malaysia	[29]
		Sargassum siliculosum	Malaysia	[29]
		Sphaerotrichia divaricata	Japan	[30]
Fucoxanthin is found in macroalgae, especially brown algae, and microalgae, or diatoms [5-7]. This compound is a major xanthophyll carotenoid in the chloroplast of brown algae [8], namely Phaeodactylum tricornutum [11], while in diatoms it is about 1.0 - 2.5% of the dry cell weight [19, 20].

Table 1

Year	Country	Source
2018	Ireland	Ascophyllum nodosum
2018	Japan	Laminaria japonica
2018	Korea	Undaria pinnatifida
2018	USA	Isochrysis galbana
2018	USA	Pavlova lutheri
2018	China	Nitzschia laevis
2018	China	Nitzschia sp
2018	Portugal	Isochrysis galbana
2019	Ireland	Porphyra umbilicalis
2019	Korea	Undaria pinnatifida
2019	Korea	Gracilaria edulis
2019	Korea	Undaria pinnatifida
2019	Korea	Chaetoceros calcitrans
2019	Korea	Nitzschia laevis
2019	Korea	Nitzschia sp
2019	Korea	Pavlova lutheri
2019	Korea	Isochrysis galbana
2019	Korea	Nitzschia laevis
2019	USA	Pavlova lutheri
2019	USA	Isochrysis galbana
2019	USA	Nitzschia laevis
2019	USA	Nitzschia sp
2019	China	Pavlova lutheri
2019	China	Isochrysis galbana
2019	China	Nitzschia laevis
2019	China	Nitzschia sp
2019	Portugal	Pavlova lutheri
2019	Portugal	Isochrysis galbana
2019	Portugal	Nitzschia laevis
2019	Portugal	Nitzschia sp
2019	Italy	Pavlova lutheri
2019	Italy	Isochrysis galbana
2019	Italy	Nitzschia laevis
2019	Italy	Nitzschia sp
2019	USA	Pavlova lutheri
2019	USA	Isochrysis galbana
2019	USA	Nitzschia laevis
2019	USA	Nitzschia sp

References

[1-30]
3 Fucoxanthin Extraction

Generally, there are two main techniques to extract fucoxanthin, namely liquid solvent extraction (conventional), and supercritical carbon dioxide (SC-CO$_2$), usually use CO$_2$ as a co-solvent (nonconventional) [98-100]. In the liquid solvent extraction with organic solvents, the recovery of solvent is a crucial period, mainly because of the environmental and economic problems. This technique has disadvantages, such as there are remind residue of solvent in the extract, the possible thermal degradation of the extract, and has low selectivity [101]. Additionally, the disadvantage of the liquid solvent extraction needed
many solvents in its technique. However, the extraction technique with liquid organic solvents is the most effective in the extraction of carotenoids [102]. In contrast, the extraction with SC-CO$_2$ has an advantage, mainly due to the environment. This extraction technique is a process free of waste, prevents oxidation reactions, allow low-temperature use, does not cause thermal degradation of extract, and do not need the removal of solvent [103-105]. Additionally, this extraction technique has an advantage, mainly due to the economy, namely only needed a small amount of organic solvent, and needed a short time to the extraction process [106].

4 Fucoxanthin and Their Biological Activities

Fucoxanthin is a xanthophyll exhibiting several health benefits. This compound has remarkable biological properties for human health [109], such as anti-inflammatory activity [108-115], hepatoprotective effect [12,98,116-118], cardioprotective activity [119-121], anticancer [26,116,119,122-131], antidiabetic [75,132-134], antiobesity [135-139], antioxidant [65,131,140-146], skin protective effect [111,113,147-153], neuroprotective activity [75,155-161], osteoprotective effect [162,163], and eyes protective effect [164-166]. The biological activities of fucoxanthin for human health are shown in Fig. 2.

![Fig. 2. The biological activities of fucoxanthin for human health](image)

5 Dietary and Safety

There are two derivatives of fucoxanthin in the metabolism of mammals, namely fucoxanthinol and amarouciaxanthin A. In the digestive tract of mammals, the dietary fucoxanthin is hydrolyzed into fucoxanthinol. Then, in the liver, fucoxanthinol is dehydrogenated to amarouciaxanthin A. [167] (Fig. 3). Maeda [168] and Zhang et al., [169] reported that the fucoxanthin in common toxicity assay is a safe component as a food of functional, and safe pharmaceutical ingredient. Based on in vivo assay of the animal, it has no adverse effects of fucoxanthin supplementation. Additionally, macro brown algae, such Undaria pinnatifida (Wakame) that contain much fucoxanthin has been consumed as edible algae for centuries in Eastern Asian countries [168].
6 Potential Application of Fucoxanthin in Nutra- and Cosmeceutical Industry

Fucoxanthin reported exhibit an array of beneficial biological activities on human health [169] including antidiabetic, antiobesity, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, osteoprotective, and eyes protective effect. Then, Muradian et al., [170] reported that fucoxanthin and its derivatives consumption as food supplements are good options for the treatment of metabolic syndrome and the prevention of obesity, diabetes type 2, and disease of the heart.

Furthermore, fucoxanthin exerts strong anti-inflammatory and antioxidant effects. This compound can be applied as photoprotection of skin to inhibit the negative effects of UV radiation, or as an ingredient of Nutra- and cosmeceutical to prevent the diseases of oxidative stress [171,172]. Hence, fucoxanthin has great potential for application in Nutra- [173], and cosmeceutical industries [174]. Galasso et al. [175] reported that there are main industrially produced fucoxanthin as a Nutra-, and cosmeceutical application, namely both of the industries were in China, such as Leili Natural Products Co., Ltd and AlgaNova International. In the future, fucoxanthin and its derivatives would be important for human health, contributing to the beauty industry, and playing an important in the prevention of cancer and the disease related to lifestyle.
7 Conclusion

Fucoxanthin is found in macroalgae, especially brown algae, and microalgae, or a number of diatoms. The chemical structure of this xanthophyll is unique and that confers its biological activities. Then, based on their bioactivities, fucoxanthin has a wide range of potential applications and might be applied in both the Nutra- and cosmeceutical industries.

References

1. T. Maoka, J. Nat. Med 74 (2020)
2. N. Irvani, R. Hajiaghaee, A.R. Zarekarizi, J. Med. Plants 17, 6 (2018)
3. H.R.B. Raghavendran, A. Sathivel, S. Rekha, Gastric and hepatic protective effects of algal components (Woodhead Publishing Limited, 2013)
4. T. Rengarajan, R. Rajendran, N. Nandakumar, M.P. Balasubramanian, I. Nishigaki, Nutrients, 5, 4978 (2013)
5. T.M. Karpiński, A. Adameczak, Antioxidants 8, 239 (2019)
6. S. Wang, S.K. Verma, I.H. Said, L. Thomsen, M.S. Ullrich, N. Kuhnert, Microb. Cell Fact 17, 110 (2018)
7. S. Xia, K. Wang, L. Wan, A. Li, Q. Hu, C. Zhang, Mar. Drugs 11, 2667 (2013)
8. N. Abu-Ghannam, E. Shannon, Seaweed Carotenoid, Fucoxanthin, as Functional Food, in Microbial Functional Foods and Nutraceuticals, (John Wiley & Sons, UK, 2017)
9. R. Aisyah, R. Rachmat, D. Rahmat, D. Noviendri, J. Ilmiah Kes 19, 59 (2020)
10. K. Teramukai, S. Kakui, F. Beppu, M. Hosokawa, K. Miyashita, Innov. Food Sci. Emerg. Technol 60, 102302 (2020)
11. C. Osório, S. Machado, J. Peixoto, S. Bessada, F.B. Pimentel, R.C. Alves, M.B.P.P. Oliveira, Separations 7, 33 (2020)
12. E.J. Jang, S.C. Kim, J-H. Lee, J.R. Lee, I.K. Kim, S.Y. Baek, Y.W. Kim, BMC Complement. Altern. Med 18, 97 (2018)
13. J. Peng, J-P. Yuan, C-F. Wu, J-H. Wang, Mar. Drugs 9, 1806 (2011)
14. M. Tanabe, Y. Ueno, M. Yokono, J-R. Shen, R. Nagao, S. Akimoto, Photosynth. Res (2020)
15. R. Nagao, Y. Ueno, S. Akimoto, J-R. Shen, Photosynth. Res (2020)
16. J. Matos, C. Cardoso, A. Gomes, A.M. Campos, P. Fale, C. Afonso, N.M. Bandarra, Food Funct 10, 7333 (2019)
17. E. Susanto, A.S. Fahmi, M. Hosokawa M, K. Miyashita, Mar. Drugs 17, 630 (2019)
18. L-J. Wang, Y. Fan, R.L. Parsons, G-R. Hu, P-Y. Zhang, F-L. Li, Mar. Drugs 16, 33 (2018b)
19. Z. Yi, M. Xu, M. Magnusdottir, Y. Zhang, S. Brynjolfsson, W. Fu, Mar. Drugs 13, 6138 (2015)
20. B. Guo, B. Liu, B. Yang, P. Sun, X. Lu, J. Lu, F. Chen, Mar. Drugs 14, 125 (2016)
21. E. Shannon E, N, Abu-Ghannam N, Int. J. Food Sci. Technol (2018).
22. M.K. Yousefi, M.S. Hashtroudi, A.M. Moradi, A.R.Ghasempur, Global J. Environ. Sci. Manage 4, 81(2018)
23. S. Xu, W.C. Liao, W. Chen, B. Kang, J. Chen, Y. Lin, IOP Conference, Series: Earth and Environmental Science 146, 012077 (2018)
24. Y-C. Chen, C-Y. Cheng, C-T. Liu, Y-M. Sue, T-H. Chen, Y-H. Hsu, P-A. Hwang, C-H. Chen, J. Ethnopharmacol 224, 391 (2018)
25. T.H.P. Brotosudarmo, Heriyanto, Y. Shioi, Indriatmoko, M.A.S. Adhiwibawa, R. Indrawati, L. Limantara, Philipp. J. Sci 147, 47 (2018)
26. H. Ravi, N. Kurrey, Y. Manabe, T. Sugawara, V. Baskaran, Mater. Sci. Eng. C 91, 785 (2018)
27. A.T. Getachew, P.S. Saravana, Y.J. Cho, H.C. Woo, B.S. Chun, J. CO₂ Util 25, 137 (2018)
28. D.T. Vo, P.S. Saravana, H-C. Woo, B-S. Chun, J. CO₂ Util 26, 359 (2018)
29. M.W.S. Lim, K.M. Tan, L.Y. Chew, K.W. Kong, S.W. Yan, J. Aquat. Food Prod. Technol (2018)
30. H. Maeda, S. Fukuda, H. Izumi, N. Saga, Mar. Drugs 16, 0255 (2018)
31. Z.A. Deviyani, K. Basah, A. Bahtiar, Int. J. Morphol 36, 979 (2018)
32. X. Sun, Y. Xu, L. Zhao, H. Yan, S. Wang, D. Wang, RSC Adv 8, 35139 (2018)
33. N. Zaharudin, D. Staerk, L.O. Dragsted, Food Chem (2018)
34. H. Li, Y. Xu, X. Sun, S. Wang, J. Wang, J. Zhu, D. Wang, L. Zhao, Food Hydrocol (2018)
35. S. Komba, E. Kotake-Nara, W. Tsuzuki, Mar. Drugs 16, 275 (2018)
36. S.C. Foo, F.M. Yusoff, M.Y. Imam MU, J.B. Foo, N. Ismail, N.H. Azmi, Y.S. Tor, N.M.H. Khong, M. Ismail, Biotechnol. Rep 20, (2018)
37. H. Wang, Y. Zhang, L. Chen L, W. Cheng, T. Liu, Bioprocess Biosyst. Eng 41, 1061 (2018a)
38. G.D. Lena, I. Casini, M. Lucarini, G. Lombardi-Boccia, Food Res. Int (2018)
39. M.S. Sahin, M.I. Khazi, Z. Demirel, M.C. Dalay, Biocatal. Agric. Biotechnol (2018)
40. X. Lu, H. Sun, W. Zhao, K-W. Cheng, F. Chen, B. Liu, Mar. Drugs 16, 219 (2018)
41. P. Sun, C-C. Wong, Y. Li, Y. He, X. Mao, T. Wu, Y. Ren, F. Chen, Food Chem (2018)
42. S. Xia, B. Gao, J. Fu, J. Xiong, C. Zhang, J. Biosci. Bioeng 1 (2018)
43. D.D McClure, A. Luiz, B. Gerber, G.W. Barton, J.M. Kavanagh, Algal Res 29, 41 (2018)
44. W. Zhang, F. Wang, B. Gao, L. Huang, C. Zhang, Algal Res 32, 193 (2018)
45. H. Staleva-Musto, R. West, M. Trathnigg, D. Bina, R. Latvin, T. Polivk, Faraday Discuss (2018)
46. Z. Yi, Y. Su, M. Xu, A. Bergmann, S. Inghorsson, O. Rolffson, K. Salehi-Ashtiani, S. Brynolfsson, W. Fu, Mar. Drugs 16 (2018)
47. A. Delbrut, P. Albina, T. Lapierre, R. Pradelles, E. Dubreucq, Molecules (2018)
48. A. Gille, U. Neumann, S. Louis, S.C. Bischoff, K. Briviba, J. Funct. Foods 49, 285 (2018)
49. I-K. Mok, J.K. Lee, J.H. Kim, C-H. Pan, S.M. Kim, Food Chem (2018)
50. M.M.A. Nur, W. Muizelaar, P. Boelen, A.G.J. Buma, J. Appl. Phycol (2018)
51. E. Bigiagl, L. Cinci, A. Niccolai, N. Biondi, L. Rodolfi, M. D’Ottavio, M. D’Ambrosio, M. Lodovici, M.R. Tredici, C. Luceri, Algal Res 34, 244 (2018)
52. U. Kim, D-H. Cho, J. Heo, H-S. Kim, J. Mar. Biosci. Biotechnol 11, 14 (2019)
53. T. Ishika, D.W. Laird, P.A. Bahri, N.R. Moheimani, J. Appl. Phycol 31, 1535 (2019)
54. J. Su, K. Guo, M. Huang, Y. Liu, J. Zhang, L. Sun, D. Li, K-L. Pang, G. Wang, L. Chen, Z. Liu, Y. Chen, Q. Chen, L. Huang, Front. Pharmacol 10, 906 (2019)
55. M. Peraman, S. Nachimuthu, Phcog. Mag 15, S243 (2019)
56. E. Medina, P. Cerezal, J. Morales, M.C. Ruiz-Dominguez, DYNA 86, 174 (2019)
57. H-L. Wu, X-Y. Fu, W-Q. Cao, W-Z. Xiang, Y-J. Hou, J-K. Ma, Y. Wang, C-D. Fan, J. Agric. Food Chem 67, 2212 (2019)
58. B. Guo, Yang, X. Pang, T. Chen, F. Chen, K-W. Cheng, Food Funct (2019)
59. B. Guo, T. Oliviero, V. Fogliano, V. Fogliano, Y. Ma, F. Chen, E. Capuano, J. Agric. Food Chem (2019)
60. X. Lu, B. Liu, Y. He, B. Guo, H. Sun, F. Chen, Biocatal. Biotechnol 294, 122145 (2019)
61. Y. Cui, S.R. Thomas-Hall, P.M. Schenk, Food Chem 297, 124937 (2019a)
62. H. Cui, H. Ma, Y. Cui, X. Zhu, S. Qin, R. Li, J. Biosci. Bioeng (2019b)
63. X. Yuan, L. Liang, K. Liu, L. Xie, L. Huang, W. He, Y. Chen, T. Xue, J. Appl. Phycol (2019)
64. A. Gille, B. Stojnic, F. Derwenskus, A. Trautmann, U. Schmid-Staiger, C. Posten, K. Briviba, A. Palou, M.L. Benet, J. Ribot, Nutrients 11, 796 (2019)
65. U. Neumann, F. Derwenskus, V.F. Fliuster, U. Schmid-Staiger, T. Hirth, S.C. Bischof, Antioxidants 8, 183 (2019)
66. R. Nagao, Y. Ueno, M. Yokono, J-R. Shen, S. Akimoto, Photosynth. Res (2019)
67. A. Kawee-ai, A.T. Kim, S.M. Kim, J. Oceanol. Limnol 37, 928 (2019)
68. S.Y. Koo, J-H. Hwang, S-H. Yang, J-I. Um, K.W. Hong, K. Kang, C-H. Pan, K.T. Hwang, S.M. Kim, Mar. Drugs 17, 311 (2019)
69. R.U. Arifah, S. Sedjati, E. Supriyantini, A. Ridlo, Bul. Oseano. Marina 8, 25 (2019)
70. S. Mohamadnia, O. Tavakoli, M.A. Faramarzi, Z. Shamsollahi, Aquaculture (2019)
71. R. Frassini, Y.P. da Silva, S. Moura, L.Z. Villela, A.P. Martins, P. Colepicolo, M.T. Fujii, N.S. Yokoya, C.M.P. de Pereira, V.R.Z.B. Pereira, J.A.P. Henriques, M. Roesch-Ely, Adv. Biol. Chem 9, 167 (2019)
72. E. Susanto, A.S. Fahmi, M. Hosokawa, K. Miyashita, Mar. Drugs 17, 630 (2019)
73. P. Paudel, S.H. Seong, H.A. Jung, J.S. Choi, Chem-Biol. Interact 310, 108757 (2019)
74. Y-T. Chau, H-Y. Chen, P-H. Lin, S-M. Hsia, Mar. Drugs 17 (2019)
75. Z-L. Kong, S. Sudirman, Y-C. Hsu, C-Y. Su, H-P. Kuo, Int. J. Mol. Sci 20, 4485 (2019)
76. P.S. Saravana, K. Shanmugapriya, C.R.N. Gereni, S-J Chae, H-W. kang, H-C. Woo, B-S. Chun, Ultrason - Sonochem 55, 105 (2019)
77. M. Terasaki, Y. Kuramitsu, M. Kojoma, S-Y. Kim, T. Tanaka, H. Maeda, K. Miyahita, C. Kawagoe, S. Kohno, M. Mutoh, J. Funct. Foods (2019).
78. J. Wang, Y. Ma, J. Yang, L. Jin, Z. Gao, L. Xue, L. Hou, L. Sui, J. Liu, X. Zou, J. Cell. Mol. Med 1 (2019)
79. S. Yin, M. Shibata, T. Hagiwara, Food Sci. Technol. Res 25, 765 (2019)
80. S.C. Foo, N.M.H. Khong, F.M. Yusoff, Algal Res 51, 102061 (2020)
81. S. Akimoto, Y. Ueno, M. Yokono, J-R. Shen, R. Nagao, Photosynth. Res (2020)
82. C.A. Popovich, M.B. Faraoni, A. Sequeira, Y. Daglio, L.A. Martin, A.M. Martinez, M.C. Damiani, M.C. Matulewicz, P.I. Leonardi, Algal Res 51, 102030 (2020)
83. S. Gérin, T. Delhez, A. Corato, C. Remacle, F. Franck, J. Appl. Phycol 32, 1581 (2020)
84. R. Yang, D. Wei, Front. Bioeng. Biotechnol 8, 820 (2020)
85. R. Nagao, M. Yokono, Y. Ueno, J-R. Shen, S. Akimoto, J. Phys. Chem. B (2020)
86. S.Y. Kang, H. Kang, J.E. Lee, C.S. Jo, C.B. Moon, J. Ha, J.S. Hwang, J. Choi, J. Cosmet. Sci 71, 53 (2020)
87. T-B. Hao, Y-F. Yang, S. Balamurugan, D-W. Li, W-D. Yang, H-Y. Li, Algal Res 47, 101872 (2020)
88. T.K. Marella, A. Tiwari, Biores. Technol 307, 123245 (2020)
89. R.G. de Oliveira-Júniora, R. Grougnet, P-E. Bodet, A. Bonnet, E. Nicolau, A. Jebali, J. Rumin, L. Picot, Algal Res 51, 102035 (2020)
90. F. Gao, I. Teles, R.H. Wijffels, M.J. Barbosa, Biore. Technol (2020)
91. R. Gallego, C. Tardif, C. Parreira, T. Guerra, M.J. Alves, E. Ibáñez, M. Herrero, J. Sep. Sci 43, 1967 (2020)
92. R.S.N. Tavares, C.M. Kawakami, K.d.C. Pereira, G.T.d. Amaral, C.G. Benevenuto, S.S. Maria-Engler, P. Colepicolo, H.M. Debonsi, L.R. Gaspar, Antioxidants 9, 328 (2020)
93. N. Oliyaei, M. Moosavi-Nasab, A.M. Tamaddon, M. Fazeli, Food Sci. Nutr 8, 226 (2020)
94. P-T. Wang, S. Sudirman, M-C. Hsieh, J-Y. Hu, Z-L. Kong, Biomed. Pharmacother 125, 109992 (2020)
95. K. Teramukai, S. Kakui, F. Beppu, M. Hosokawa, K. Miyashita, Innov. Food Sci. Emerg. Technol 60, 102302 (2020)
96. N.K.E. Wati, L. Suhendra, N.M. Wartini, J. Reka. Manaj. Agroindustr 8, 80 (2020)
97. V. Raji, C. Loganathan, G. Sadhasivam, S. Kandasamy, K. Poomani, P. Thayumanavan, Int. J. Biol. Macromol 148, 696 (2020)
98. K. Thiyagarasaiyar, B-H. Goh, Y-J. Jeon, Y-Y. Yow, Mar. Drugs 18 (2020)
99. J. Fabrowska, B. Leska, G. Schroeder, B. Messyasz, M. Pikosz, Biomass and extracts of algae as materials for cosmetics. In Marine Algae Extracts, Processes, Products, and Applications, (Wiley-VCH-Verl: Weinheim, Germany, 2015)
100. N. Mezzomo, S.R.S. Ferreira, J. Chem 2016 (2016)
101. E. Reverchon, I.D. Marco, J. Supercrit. Fluids 38, 146 (2006)
102. L.M. Kopas, J.J. Warthesen, J. Food Sci 60, 773 (1995)
103. P.T.V. Rosa, M.M.A. Meireles, J. Supercrit. Fluids 34, 109 (2005)
104. E.M.Z. Michielin, L.F.V. Bresciani, L. Danielski, R.A. Yunes, S.R.S. Ferreira, J. Supercrit. Fluids 33, 131 (2005)
105. B. Díaz-Reinoso, A. Moure, H. Domínguez, J.C. Parajó, J. Agric. Food Chem 54, 2441 (2006)
106. C. Turner, J.W. King, L. Mattiasson, J. Chromatogr. A 936, 215 (2001)
107. T. Rengarajan, R. Rajendran, N. Nandakumar, M.P. Balasubramanian, I. Nishigaki, Nutrients 5, 4978 (2013)
108. N. Nakatani, Y. Kono, F. Beppu, Y. Okamatsu-Ogura, Y. Yamano, K. Miyashita, M. Hosokawa, Biochem. Biophys. Res. Commun (2020)
109. S. Li, X. Ren X, Y. Wang, J. Hu, H. Wu, S. Song, C. Yan, Food Funct (2020)
110. M. Liu, W. Li, Y. Chen, X. wan, J. Wang, Life Sci 255, 117850 (2020)
111. C. Natsume, N. Aoki, T. Aoyama, K. Senda, M. Matsui, A. Ikegami, K. Tanaka, Y-T. Azuma, T. Fujita, Int. J. Mol. Sci 21, 2180 (2020)
112. J. Zheng, X. Tian, W. Zhang, P. Zheng, P. Huang, G. Ding, Z. Yang, Mar. Drugs 17, 552 (2019)
113. A. Rodríguez-Luna, J. Ávila-Román, H. Oliveira, H. Oliveira, V. Motilva, E. Talero, Mar. Drugs 17, 451 (2019)
114. Y-P. Yang, Q-Y. Tong, S-H. Zheng, M-D. Zhou, Y-M. Zheng, T-T. Zhou, Nat. Prod. Res 34 (2018)
115. J-H. Choi, N-H. Kim, S-J. Kim, H-J. Lee, S. Kim, J. Biochem. Mol. Toxicol 30, 111 (2016)
116. X. Jin, T.T. Zhao, D. Shi, M.B. Ye, Q. Ye, Drug Dev. Res 80, 209 (2019)
117. C.L. Liu, A.L. Liang, M.L. Hu, Toxicol. in Vitro 25, 1314 (2011)
118. M-N. Woo, S-M. Jeon, H-J. Kim, M-K. Lee, S-K. Shin, Y.C. Shin, Y-B. Park, M-S. Choi, Chem-Biol. Interact 186, 316 (2010)
119. F. Wang, H. Zhang, G. Lv, Z. Liu, X. Zheng, X. Wu, Phcog. Mag 16, 214 (2020)
120. H. Yoshida, H. Yanai, K. Ito, Y. Tomono, T. Koikeda, H. Tsuchahara, N. Tada, Atherosclerosis 209, 520 (2020)
121. M. Matsumoto, M. Hosokawa, N. Matsukawa, M. Hagio, A. Shinoki, M. Nishimukai, K. Miyashita, T. Yajima, H. Hara, Eur. J. Nutr 49, 243 (2010)
122. M. Terasaki, M. Ikuta, H. Kojima, T. Tanaka, H. Maeda, K. Miyashita, M. Mutoh, J. Clin. Med 9, 90 (2020)
123. Y. Li, L. Tao, L. Bao, A. Chinnathambi, S.A. Alharbi, J. Cui, Phcog. Mag 16, 311 (2020)
124. Y. Long, X. Cao, R. Zhao, S. Gong, L. Jin, C. Feng, Environ. Toxicol 1 (2020)
125. R.K. Saini, Y-S. Keum, M. Daglia, K.R. Rengasamy, Pharmacol. Res 157, 104830 (2020)
126. I. Jaswir, D. Noviendri, M. Taher, F. Mohamed, F. Octavianti, W. Lestari, A.G. Mukti, S. Nirwandar, B.B.H. Almansori, Molecules 24, 947 (2019)
127. M. Terasaki, N. Matsumoto, R. Hashimoto, T. Endo, H. Maeda, J. Hamada, K. Osada, K. Miyashita, M. Mutoh, J. Clin. Biochem. Nutr 64, 52 (2019)
128. Z. Wang, H. Li, M. Dong, P. Zhu, Y. Cai, J. Cancer Res. Clin. Oncol 145, 293 (2019)
129. H-L. Wu, X-Y. Fu, W-Q. Cao, W-Z. Xiang, Y-J. Hou, J-K. Ma, Y. Wang, C-D. Fan, J. Agric. Food Chem 67, 2212 (2019)
130. Y. Jin, S. Qiu, N. Shao, J. Zheng, Med. Sci. Monit 24, 11 (2018)
131. M. Sujatha, P. Suganya, V. Pradeepa, Int. J. Innov. Res. Sci. Eng. Technol 6, 16734 (2017)
132. K. Miyashita, F. Beppu, M. Hosokawa M, X. Liu, S. Wang, Arch. Biochem. Biophys 686, 108364 (2020)
133. H.A. Jung, M.N. Islam, C.M. Lee, H.O. Jeong, H.Y. Chung, H.C. Woo, J.S. Choi, Fish. Sci 78, 1321 (2012)
134. S. Nishikawa, M. Hosokawa, K. Miyashita, Phytomedicine 19, 389 (2012)
135. X. Sun, H. Zhao, Z. Liu, X. Sun, D. Zhang, S. Wang, Y. Xu, G. Zhang, D. Wang, J. Agric. Food Chem 68, 5118 (2020)
136. S. Zarei, H. Hosseiniyan, J. Mar. Med 1, 129 (2019)
137. A. Grasa-López, Á. Miliar-García, L. Quevedo-Corona, N. Paniagua-Castro, G. Escalona-Cardoso, E. Reyes-Maldonado, M-E. Jaramillo-Flores, Mar. Drugs 14 (2016)
138. M-J. Seo, Y-J. Seo, C-H. Pan, O-H. Lee, K-J. Kim, B-Y. Lee, Phytother. Res, 30, 1802 (2016)
139. M.A. Gammone, N. D’Orazio, Mar. Drugs 13, 2196 (2015)
140. Z. Guvatova, A. Dalina, E. Marusich, E. Pudova, A. Snezhkina, G. Krasnov, A. Kudryavtseva, S. Leonov, A. Moskalev, Mech. Ageing Dev (2020)
141. G. Yang, L. Jin, D. Zheng, X. Tang, J. Yang, L. Fan, X. Xie, Mar. Drugs 17, 702 (2019)
142. T.T. Dang, M.C. Bowyer, I.A.V. Altena, C.J. Scarlett, Int. J. Food Sci. Technol 53, 174 (2018)
143. Y. Zhang, H. Fang, Q. Xie, J. Sun, R. Liu, Z. Hong, R. Yi, H. Wu, Molecules 19, 2100 (2014)
144. N. Molina, A.C. Morandi, A.P. Bolin, R. Otton, Int. Immunopharmacol 22, 41 (2014)
145. A. Kawee-ai, A. Kuntiya, S.M. Kim, Nat. Prod. Commun, 8, 1381 (2013)
146. A.W. Ha, S.J. Na, W.K. Kim, Nutr. Res. Pract 7, 475 (2013)
147. Y-J. Lee, G-W. Nam, Cosmetics 7, 14 (2020)
148. S.Y. Kang, H. Kang, J.E. Lee, C.S. Jo, C.B. Moon, J. Ha, J.S. Hwang, J. Choi, J. Cosmet. Sci 71, 53 (2020)
149. R.S.N. Tavares, S.S. Maria-Engler, P. Colepicolo, H.M. Debonsi, M. Schäfer-Korting, U. Marx, L.R, Gaspar, C. Zoschke, Pharmaceutics 12, 136 (2020b)
150. L.M. Cordenonsi, A. Santer, R.M. Sponchiado, N.R. Wingert, R.P. Raffin, E.E.S. Schapoval, AAPS PharmSciTech 21, 32 (2020)
151. L.M. Cordenonsi, A. Facchendini, M. Catanzaro, M. Catanzaro, M.C. Bonfoni, S. Rossi, L. Malavasi, R.P. Raffin, E.E.S. Schapoval, C. Lanni, G. Sandri, F. Ferrari, Int. J. Pharm 567, 118487 (2019)
152. A. Rodríguez-Luna, J. Ávila-Román, M.L. González-Rodríguez, M.J. Cózar, A.M. Rabasco, V. Motilva, E. Talero, Mar. Drugs 16, 378 (2018)
153. M. Matsui, K. Tanaka, N. Higashiguchi, H. Okawa, Y. Yamada, K. Tanaka, S. Taira, T. Aoyama, M. Takenishi, C. Natsume, Y. Takakura, N. Fujita, T. Hashimoto, T. Fujita, J. Pharmacol. Sci 132, 55 (2016)
154. X-S. Zhang, Y. Lu, T. Tao, H. Wang, G-J. Liu, C. Liu, D-Y. Xia, C-H. Hang, W. Li, Mol. Neurobiol (2020)
155. G. Sun, T. Xin, R. Zhang, C. Liu, Q. Pang, Phcog. Mag 16, 51 (2020)
156. M. Alghazwi, S. Smid, I. Musgrave, W. Zhang, Neurochem. Int 124, 215 (2019)
157. L. Hu, W. Chen, F. Tian, C. Yuan, H. Wang, H. Yue, Biomed. Pharmacother 106, 1484 (2018)
158. J. Yu, J-J. Lin, R. Yu, S. He, Q-W. Wang, W. Cui, J-R. Zhang, Food Nutr. Res 61, 1304678 (2017)
159. D. Zhao, S-H. Kwon, Y.S. Chun, M-Y. Gu, H.O. Yang, Neurochem. Res 42, 667 (2017)
160. J. Lin, J. Yu, J. Zhao, K. Zhang, J. Zheng, J. Wang, C. Huang, J. Zhang, X. Yan, W.H. Gerwick, Q. wang, W. Cui, S. He, Oxid. Med. Cell. Longev 2017, 6792543 (2017b)
161. L. Zhang, H. Wang, Y. Fan, Y. Gao, X. Li, Z. Hu, K. Ding, Y. Wang, X. Wang, Scient. Rep 7, 46763 (2017)
162. L. Guo, M. Dang, Q. Song, W. Zhang, B. Li, Phcog. Mag, 16, 242 (2020)
163. S.K. Das, R. Ren, T. Hashimoto, K. Kanazawa, J. Agric. Food Chem 58, 6090 (2010)
164. S-J. Chen, C-J. Lee, T-B. Lin, H-Y. Peng, H-J. Liu, Y-S. Chen, K-W. Tseng, Mar. Drugs 17, 152 (2019)
165. S-J. Chen, C-J. Lee, T-B. Lin, H-J. Liu, S-Y. Huang, J-Z. Chen, K-W. Tseng, Mar. Drugs 14, 13 (2016)
166. Y. Liu, L. Meng, X. Zhang, Q. Chen, C. Haixiu, L. Sun, G-M. Liu. J. Agric. Food Chem (2016).
167. A. Asai, L. Yonekura, A. Nagao, British J. Nutr 100, 273 (2008)
168. H. Maeda, Anti-obesity and anti-diabetic activities of algae. Ch. 13 (Woodhead Publishing Limited, 2013)
169. H. Wu, T. Li, G. Wang, S. Dai, H. He, W. Xiang, Chin. J. Oceanol. Limnol 34, 391 (2016)
170. K. Muradian, A. Vaiserman, K-J. Min, V.E. Fraifeld, Nutr. Metabol. Cardiovasc. Dis 25, 891 (2015)
171. J.A. Nichols, S.K. Katiyar, Arch. Dermatol. Res 302, 71 (2010)
172. J-Y. Berthon, R. Nachat-Kappes, M. Bey, J-P. Cadoret, I. Renimel, E. Filaire, Free Radic. Res 51, 555 (2017)
173. M.F. Hossain, M. Rashid, T. Burniston, M. Ahmed, W. Wu, K.A. Kataye, R. Sidhu, M. Justice, S. Abdelfattah, J. Obes. Weight-Loss Medici 5, 031 (2019)
174. S-J. Heo, Y-J. Jeon, J. Photochem. Photobiol. B: Biol 95, 101 (2009)
175. C. Galasso, C. Corinaldesi, C. Sansone, Antioxidants 6 (2017)