PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a Chinese Han population

Bao Zang¹, Chen Chen¹, Jian-Qiang Zhao¹

¹Department of Thoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China

Correspondence to: Bao Zang; email: zangb126621@163.com
Keywords: PD-1, esophageal cancer, case-control study
Received: November 2, 2019 Accepted: February 4, 2020 Published: February 21, 2020

Copyright: Zang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Programmed death-1 (PD-1) polymorphisms have been associated with esophageal cancer risk. Here, the aims of this case-control study were to explore whether three PD-1 polymorphisms (rs10204525, rs7421861, and rs36084323) were related with the risk and clinical features of esophageal cancer in Chinese Han subjects (n = 814 cases and 961 controls). We found that rs10204525 and rs7421861, but not rs36084323, conferred increased susceptibility to esophageal cancer. Subgroup analysis revealed that all three loci increased the risk of esophageal cancer among men, and that rs10204525 and rs7421861 correlated with increased risk among patients ≥ 60 years old. The rs10204525 and rs7421861 polymorphisms were associated with higher TNM stage, and rs10204525 was associated with distant metastasis. The combination of smoking and either the rs10204525 or rs7421861 genotype conferred an increased risk to esophageal cancer, which is indicative of potential gene-environment interactions. The rs10204525 and rs7421861 polymorphisms correlated with increased PD-1 gene and protein levels, and Kaplan-Meier survival curves showed higher PD-1 gene expression was related to poorer overall survival. These data indicate the rs10204525 and rs7421861 polymorphisms of PD-1 gene confer an increased risk of esophageal cancer among Chinese Han individuals.

INTRODUCTION

Esophageal cancer is the 8th most common tumor and the 6th cause of tumor associated death in the world [1]. The 5-year survival rate of this disorder is only 15–25%, owing to the aggressive nature of the disease and resistance to therapy. Approximately 50% of esophageal cancer patients worldwide occur in China. Patients typically present with progressive dysphagia when diagnosed [2]. Esophageal cancer can arise in the upper (<10% of cases), middle (>50%), or lower (>20%) segment of the esophagus [2, 3]. Patients in high-risk areas in China therefore undergo routine endoscopic screening, which is useful for early diagnosis and effective treatment of esophageal cancer.

Surgical or endoscopic resection and chemoradiotherapy are the standard treatments for esophageal cancer, although the therapeutic strategy varies according to stage [4, 5]. Many patients who present with resectable esophageal cancer ultimately develop local recurrence and metastasis [6]. These patients are primarily managed with chemotherapy (e.g. fluoropyrimidine/platinum) [7]. Additional chemotherapy methods include capecitabine, S-1, infusional 5-fluorouracil (5-FU) and other 5-FU pro-drugs, and oxaliplatin or cisplatin [7]. The response rates to 5-FU in combination with cisplatin were reported to be 30–40% and 40–50% for esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC), respectively [6]. In total, improvements of chemotherapy were disappointing over the last 3 decades, and
current efforts should pay attention to targeted therapies and immunotherapy. Several new drugs such as ramucirumab, capcitabine, oxaliplatin, and everolimus have also demonstrated therapeutic efficacy in esophageal cancer [6, 8–12]. However, some patients have developed resistance to these therapies, and the underlying mechanisms were complex and poorly understood. Drug resistance may in part be mediated by the long non-coding RNA CCAT1 [13]. Additionally, microRNA-10b and CDKN3 have been shown to contribute to cisplatin resistance [14, 15].

Esophageal cancer contains 2 primary pathological subtypes: adenocarcinoma and ESCC. Similar genetic and environmental risk factors for esophageal adenocarcinoma and ESCC have been identified including gender, race, obesity, nutrition, smoking, and alcohol consumption [1]. Interestingly, polymorphisms in the programmed death-1 (PD-1) gene (located in chromosome 2q37.3) have been associated with esophageal cancer risk and prognosis [16–18].

PD-1, a 50–55 kDa type I transmembrane glycoprotein, was first isolated from activated T cells [19, 20]. It consists of a transmembrane domain, extracellular domain, and intracellular region. It is reported to express on the surface of some immune cells including activated monocytes, T cells, natural killer cells, B cells, and NK T cells [21, 22]. PD-1 negatively regulated the regulatory and effector T cells. It plays a critical role in suppressing the immune response to promote self-tolerance [23]. However, by suppressing the immune response, it can contribute to cancer progression. PD-1 gene expression was associated with T cell activation-induced apoptosis in murine T cell hybridomas [24]. Additionally, persistent PD-1 expression in tumor-infiltrating lymphocytes was related with poor prognosis and cancer recurrence [25]. Two FDA-approved monoclonal antibodies targeting PD-1 including pembrolizumab and nivolumab have demonstrated efficacy for several cancer treatment [26, 27]. Anti-PD-1 therapy promoted regression of advanced tumors and improved survival, particularly among subsets of patients with solid tumors, and demonstrated durable effects and tolerable toxicities [27]. Biomarkers including density of tumor infiltrating lymphocyte, mismatch-repair deficiency, PD-L1 expression, and tumor mutational burden, predicted treatment effect of anti-PD-1 therapy [26].

PD-1 gene polymorphisms were associated with the risk of various cancers [1, 28–30]. Beyond foregoing disorders, PD-1 is overexpressed in different cancers, including esophageal cancer. For example, the rs2227981, rs2227982, and rs3608432 polymorphisms were related to lung adenocarcinoma risk and prognosis [31]. However, no associations were observed in basal cell carcinoma [32]. The PD-1.5 C/T polymorphism increased the risk of cervical [33], lung [34], gastric [35], colon [36], thyroid cancers [37]. The rs2227982 C>T polymorphism associated with gastric cardia adenocarcinoma risk [38]. Interestingly, it was reduced the risk of breast cancer [39] and increased the risk of ovarian cancer [40]. Hua et al. mentioned that PD-1 gene polymorphisms may regulate the breast cancer susceptibility and prognosis in Chinese individuals [41], while inconsistent findings were obtained in the study by Haghshenas et al. [42]. Thus, several meta-analyses were conducted to solve these conflicting findings [43–45]. Data summarized that PD-1 rs11568821 and rs2227981 polymorphisms decreased the overall cancer risk, and PD-1 rs7421861 polymorphism was associated with an increased risk of overall cancer [43]. No significant association between some SNPs (rs2227982, rs10204525, rs36084323, and rs2890658 polymorphisms) and overall cancer risk was obtained [43]. To be honest, these loci of PD-1 gene might be potential biomarkers for predicting susceptibility to cancers and therapeutic markers for cancer treatment.

Considering the vital role of PD-1 gene polymorphisms in cancers, we designed this hospital-based case-control study containing 814 esophageal cancer patients and 961 healthy controls. The aims of this case-control study were to investigate whether three PD-1 gene polymorphisms (rs10204525, rs36084323, and rs7421861) were related with esophageal cancer risk and clinical features in Chinese subjects.

RESULTS

Population characteristics

We performed a case-control study consisting of 814 esophageal cancer patients and 961 age- and gender-matched controls. The baseline characteristics of these patients including TNM stage, pathological grade, and distant metastases are shown in Table 1. The mean ages of the controls and cases were 60.91 and 60.66 years, respectively. No differences were observed in smoking or alcohol between the two groups. The majority of the patients (85%) were diagnosed with ESCC.

PD-1 polymorphisms increase the risk of esophageal cancer

We evaluated the associations between three polymorphisms in PD-1 (rs10204525, rs7421861, and rs36084323) and the risk of esophageal cancer. The distributions of the genotypes of the PD-1 variants among the case and control populations are presented in Table 2 and Supplementary Figure 1. The GG genotype of rs10204525 polymorphism increased the risk of
Table 1. Patient demographics and risk factors in esophageal cancer.

Characteristics	Case (N=814)	Control (N=961)	P
Age	60.66 (36-82)	60.91 (38-85)	0.495
Sex			0.440
Male	577(70.9%)	665(69.2%)	
Female	237(29.1%)	296(30.8%)	
Smoking			0.771
YES	430(52.8%)	501(52.1%)	
NO	384(47.2%)	460(47.9%)	
Alcohol			0.358
YES	470 (57.7%)	534(55.6%)	
NO	344(42.3%)	427(44.4%)	
TNM stage			
I+II	424(52.1%)		
III+IV	390(47.9%)		
Pathological grading			
Well differentiation	320(39.3%)		
Moderately differentiation	378(46.4%)		
Poorly differentiation	116(14.3%)		
Histology			
Squamous cell carcinoma	782(96.1%)		
Others	32(3.9%)		
Distant metastasis			
M0	723(88.8%)		
M1	91(11.2%)		

TNM stage = Tumor node metastasis stage

esophageal cancer compared to the more common AA genotype (GG vs. AA: adjusted odds ratio [OR] = 1.65, 95% confidence interval [CI] = 1.12–2.45; \(P = 0.012 \)). This association was significant under recessive, dominant, and allelic models. The TT genotype of rs7421861 was related with a 1.45-fold higher risk of esophageal cancer compared to the CC genotype (TT vs. CC: OR = 1.45, 95% CI = 1.06–1.99; \(P = 0.022 \)). We did not observe an association between rs36084323 polymorphism and esophageal cancer risk.

We next stratified patients by age, gender, pathological subtype, alcohol consumption, and smoking. The genotype numbers among different subgroups are summarized in Supplementary Figure 2. The association between rs10204525 polymorphism and the esophageal cancer risk was stronger among men, those who smoked or consumed alcohol, and those ≥ 60 years old (Table 3). The rs7421861 polymorphism demonstrated a significant association with esophageal cancer risk among men and among smokers (Table 3). The rs36084323 polymorphism was only related to esophageal cancer risk among men. Finally, rs10204525 and rs7421861 polymorphisms increased the risk of ESCC (Supplementary Tables 1 and 2).

Cross-over analysis

We next analyzed the joint effects of the \(PD-1 \) polymorphisms and either smoking or alcohol consumption on esophageal cancer risk (Table 4). The GG genotype of rs10204525 did not confer an increased risk to esophageal cancer. Additionally, smoking had no association with the risk of esophageal cancer. However, smokers with the GG genotype of rs10204525 polymorphism showed an increased risk of esophageal cancer compared to non-smokers with the AA genotype (OR = 1.93, 95% CI = 1.13–3.28; \(P = 0.014 \)). These data indicate that there is a strong interaction between the GG genotype of rs10204525 and smoking. The TT genotype of rs7421861 was also not associated with an increased risk of esophageal cancer. However, smokers with the TT genotype of rs7421861 had a significantly increased risk of esophageal cancer. No interaction between rs36084323 and either smoking or alcohol consumption was observed.
Table 2. Genotype frequencies of PD-1 gene polymorphisms in cases and controls.

Models	Genotype	Case (n, %)	Control (n, %)	OR (95% CI)	P-value	P (FDR)	OR (95% CI)	P-value	
rs10204525	Co-dominant	AA	420(51.7%)	551(57.4%)	1.00(reference)	-	-	-	-
	Heterozygote	AG	329(40.5%)	359(37.4%)	1.20(0.99-1.46)	0.066	1.20(0.99-1.46)	0.070	
	Homozygote	GG	63(7.8%)	50(5.2%)	1.65(1.12-2.45)	0.012	1.67(1.13-2.48)	0.010	
	Dominant	AA	420(51.7%)	551(57.4%)	1.00(reference)	-	-	-	-
		GG+AG	392(48.3%)	409(42.6%)	1.26(1.04-1.52)	0.017	1.26(1.04-1.52)	0.017	
	Recessive	AG+AA	749(92.2%)	910(94.8%)	1.65(1.12-2.45)	0.012	1.67(1.13-2.48)	0.010	
		GG	63(7.8%)	50(5.2%)	1.53(1.04-2.25)	0.030	1.55(1.06-2.28)	0.025	
Allele	A	1169(72.0%)	1461(76.1%)	1.00(reference)	-	-	-	-	
	G	455(28.0%)	459(23.9%)	1.24(1.07-1.44)	0.005	0.015	-	-	
rs36084323	Co-dominant	GG	673(82.8%)	761(79.2%)	1.00(reference)	-	-	-	-
	Heterozygote	GA	132(16.2%)	188(19.6%)	0.79(0.62-1.02)	0.066	0.79(0.62-1.01)	0.064	
	Homozygote	AA	8(1.0%)	12(1.2%)	0.75(0.31-1.86)	0.539	0.75(0.30-1.85)	0.530	
	Dominant	GG	673(82.8%)	761(79.2%)	1.00(reference)	-	-	-	-
		AA+GA	200(20.8%)	200(20.8%)	0.79(0.62-1.01)	0.056	0.79(0.62-1.00)	0.054	
	Recessive	GA+GG	805(99.0%)	949(98.8%)	1.00(reference)	-	-	-	-
		AA	8(1.0%)	12(1.2%)	0.79(0.32-1.93)	0.600	0.78(0.32-1.92)	0.589	
Allele	G	1478(90.9%)	1710(89.0%)	1.00(reference)	-	-	-	-	
	A	148(9.1%)	212(11.0%)	0.81(0.65-1.01)	0.058	0.058	-	-	
rs7421861	Co-dominant	CC	343(42.2%)	457(47.6%)	1.00(reference)	-	-	-	-
	Heterozygote	CT	370(45.5%)	411(42.8%)	1.19(0.98-1.46)	0.072	1.20(0.98-1.46)	0.074	
	Homozygote	TT	100(12.3%)	92(9.6%)	1.45(1.06-1.99)	0.022	1.44(1.05-1.97)	0.024	
	Dominant	CC	343(42.2%)	457(47.6%)	1.00(reference)	-	-	-	-
		TT+CT	503(52.4%)	503(52.4%)	1.25(1.03-1.50)	0.023	1.24(1.03-1.50)	0.024	
	Recessive	CT+CC	713(87.7%)	868(90.4%)	1.00(reference)	-	-	-	-
		TT	100(12.3%)	92(9.6%)	1.32(0.98-1.79)	0.067	1.32(0.97-1.78)	0.074	
Allele	C	1056(64.9%)	1325(69.0%)	1.00(reference)	-	-	-	-	
	T	570(35.1%)	595(31.0%)	1.20(1.04-1.38)	0.010	0.015	-	-	

*aThe genotyping was successful in 812 cases and 960 controls for rs10204525; The genotyping was successful in 813 cases and 961 controls for rs36084323; The genotyping was successful in 813 cases and 960 controls for rs7421861.

Bold values are statistically significant (P <0.05).

bP (FDR) values were calculated with false discovery rate (FDR) and P < 0.05/3 was considered significant.

Adjust for sex, age, smoking and drinking.

PD-1 gene polymorphisms correlate with the clinical features of esophageal cancer patients

We next investigated the relationship between PD-1 gene polymorphisms and the clinical characteristics of esophageal cancer patients (Table 5). The GG genotype of rs10204525 polymorphism increased the risk of distant metastasis (OR = 2.21, 95% CI = 1.16–4.23; P = 0.014) and higher TNM stage (OR = 1.81, 95% CI = 1.05–3.12; P = 0.032). The AG genotype of rs10204525 was related to an increased risk of ESCC (OR = 1.61, 95% CI = 1.05–2.46; P = 0.029). Finally, the TT genotype of rs7421861 was associated with higher TNM stage.

PD-1 polymorphisms are related with PD-1 levels and prognosis among esophageal cancer patients

The PD-1 expression levels were measured by qRT-PCR and ELISA in 150 esophageal cancer patients with different genotypes of rs10204525 and rs7421861 polymorphisms. Results showed PD-1 expression levels are significantly higher in GG genotype versus AA genotype carriers (P = 0.013; Figure 1). Similar findings
Variable	Genotypes (case/control)	Heterozygous model	Homozygous model	Recessive model	Dominant model		
	Wild	Heterozygote	Homozygous	AG vs. AA	GG vs. AA	GG vs. AA+AG	GG+AG vs. AA
rs10204525							
Sex							
Male	299/388	236/244	41/33	1.26(0.99-1.59); 0.057	1.61(0.99-2.61); 0.052	1.47(0.92-2.35); 0.112	**1.30(1.04-1.63); 0.023**
Female	121/163	93/115	22/17	1.09(0.76-1.56); 0.642	1.74(0.89-3.43); 0.107	1.68(0.87-3.25); 0.122	1.17(0.83-1.65); 0.361
Smoking							
Yes	222/290	168/185	38/26	1.19(0.90-1.56); 0.219	**1.91(1.13-3.24); 0.017**	**1.78(1.06-2.98); 0.029**	1.28(0.98-1.65); 0.066
No	198/261	161/174	25/24	1.22(0.92-1.62); 0.169	1.37(0.76-2.48); 0.292	1.26(0.71-2.25); 0.429	1.14(0.94-1.63); 0.124
Alcohol							
Yes	240/301	191/209	38/24	1.15(0.88-1.49); 0.303	**1.99(1.16,3.40); 0.013**	**1.87(1.11,3.17); 0.020**	1.23(0.96,1.58); 0.100
No	180/250	138/150	25/26	1.29(0.95,1.73); 0.110	1.34(0.75,2.39); 0.330	1.21(0.69,2.14); 0.512	1.29(0.97,1.71); 0.085
Age (years)							
<60	207/238	134/158	22/21	0.98(0.73,1.31); 0.868	1.21(0.64,2.26); 0.559	1.22(0.66,2.25); 0.531	1.00(0.75,1.33); 0.989
≥60	213/313	195/201	41/29	**1.43(1.10,1.85); 0.008**	**2.08(1.25,3.45); 0.005**	**1.78(1.09,2.92); 0.022**	**1.51(1.17,1.94); 0.001**
rs36084323	GG	GA	AA	GA vs. GG	AA vs. GG	AA vs. GG+GA	AA+GA vs. GG
Sex							
Male	484/520	87/135	6/10	0.69(0.52-0.93); 0.015	0.65(0.23-1.79); 0.399	0.69(0.25-1.91); 0.472	**0.69(0.52-0.92); 0.011**
Female	189/241	45/53	2/2	1.08(0.70-1.68); 0.724	1.28(0.78-9.14); 0.809	1.26(0.18-8.99); 0.820	1.09(0.71-1.68); 0.697
Smoking							
Yes	355/395	71/101	4/5	0.78(0.56-1.09); 0.152	0.89(0.24-3.34); 0.863	0.93(0.25-3.49); 0.916	0.79(0.57-1.09); 0.154
No	318/366	61/87	4/7	0.81(0.56-1.16); 0.243	0.66(0.19-2.27); 0.507	0.68(0.20-2.35); 0.546	0.80(0.56-1.13); 0.201
Alcohol							
Yes	388/417	75/111	6/6	0.73(0.53,1.00); 0.053	1.08(0.34,3.36); 0.901	1.14(0.37,3.56); 0.821	0.86(0.59,1.24); 0.416
No	285/344	57/77	2/6	0.89(0.61,1.30); 0.558	0.40(0.08,2.01); 0.268	0.41(0.08,2.05); 0.278	0.74(0.54,1.02); 0.307
Age (years)							
<60	300/322	58/86	5/10	0.72(0.50,1.05); 0.086	0.54(0.18,1.59); 0.261	0.57(0.19,1.68); 0.309	0.70(0.49,1.00); 0.053
≥60	173/439	74/102	3/2	**1.77(0.29,10.62); 0.348**	;**0.535** ;	**1.81(0.30,10.90); 0.348**	**0.87(0.63,1.21); 0.407**
rs7421861	CC	CT	TT	CT vs. CC	TT vs. CC	TT vs. CC+CT	TT+CT vs. CC
Sex							
Male	233/318	272/283	71/63	**1.31(1.04-1.66); 0.025**	**1.54(1.05-2.25); 0.026**	**1.34(0.94-1.92); 0.109**	**1.35(1.08-1.70); 0.009**
Female	110/139	98/128	29/29	0.97(0.67-1.39); 0.858	1.26(0.71-2.24); 0.423	1.28(0.74-2.22); 0.370	1.02(0.73-1.44); 0.900
Smoking							
Yes	174/240	195/221	61/39	1.22(0.93-1.60); 0.160	**2.16(1.38-3.37); 0.001**	**1.95(1.28-2.99); 0.002**	**1.36(1.05-1.76); 0.021**
No	169/217	175/190	39/53	1.18(0.89-1.58); 0.95(0.60-1.50); 0.87(0.56-1.35); 1.13(0.86-1.49);			
Alcohol

	Yes	No	Age (years)	
	191/261	152/196	<60 143/205	22/225
	222/225	148/186	≥60 200/252	197/241

Age	Case	Control	OR (95% CI); P value			
<60	44/45	56/47143	0.253	0.809	0.535	0.377
≥60	4/45	58/143	0.73(0.53,1.00); 0.053	1.08(0.34,3.36); 0.901	1.14(0.37,3.56); 0.821	0.86(0.59,1.24); 0.416
	4/45	58/143	0.89(0.61,1.30); 0.558	0.40(0.08,2.01); 0.268	0.41(0.08,2.05); 0.278	0.74(0.54,1.02); 0.307
	4/45	58/143	0.58(0.34,1.00); 0.053	0.57(0.19,1.68); 0.261	0.70(0.49,1.00); 0.309	0.87(0.63,1.21); 0.307

Bold values are statistically significant (P <0.05).

Table 4. Genetic (G) and environmental (E) factors 2*4 fork analysis.

G^a	E^b	Case	Control	OR (95% CI); P value	Reflecting information		
rs10204525	Smoking	+	+	38	26	1.93(1.13,3.28); 0.014	G, E combined effect
	+	-	25	24	1.37(0.76,2.48); 0.291	G alone effect	
	-	+	222	290	1.01(0.78,1.30); 0.944	E alone effect	
	-	-	198	261	1.00 (reference)	Common control	
AG vs. AA	Smoking	+	+	168	185	1.20(0.91,1.58); 0.206	G, E combined effect
	+	-	161	174	1.22(0.92,1.62); 0.169	G alone effect	
	-	+	222	290	1.01(0.78,1.30); 0.944	E alone effect	
	-	-	198	261	1.00 (reference)	Common control	
GG vs. AA	Drinking	+	+	38	50	1.06(0.66,1.68); 0.819	G, E combined effect
	+	-	25	24	1.45(0.80,2.62); 0.220	G alone effect	
	-	+	240	301	1.11(0.86,1.43); 0.434	E alone effect	
	-	-	180	250	1.00 (reference)	Common control	
AG vs. AA	Drinking	+	+	191	209	1.27(0.97,1.67); 0.088	G, E combined effect
	+	-	138	150	1.28(0.95,1.73); 0.109	G alone effect	
	-	+	240	301	1.11(0.86,1.43); 0.434	E alone effect	
	-	-	180	250	1.00 (reference)	Common control	
rs36084323	Smoking	+	+	4	5	0.99(0.27,3.73); 0.993	G, E combined effect
	+	-	4	7	0.71(0.21,2.45); 0.585	G alone effect	
	-	+	355	366	1.21(0.98,1.48); 0.079	E alone effect	
	-	-	318	395	1.00 (reference)	Common control	
AA vs. GG	Smoking	+	+	71	101	0.87(0.62,1.22); 0.431	G, E combined effect
	+	-	61	87	0.87(0.61,1.25); 0.450	G alone effect	
	-	+	355	366	1.21(0.98,1.48); 0.079	E alone effect	
	-	-	318	395	1.00 (reference)	Common control	
GA vs. GG	Drinking	+	+	6	6	1.21(0.39,3.78); 0.747	G, E combined effect
	+	-	2	6	0.40(0.08,2.01); 0.251	G alone effect	
	-	+	388	417	1.12(0.91,1.38); 0.277	E alone effect	
	-	-	285	344	1.00 (reference)	Common control	
AA vs. GG	Drinking	+	+	75	111	0.82(0.59,1.14); 0.229	G, E combined effect
were obtained for the rs7421861 polymorphism ($P = 0.024$). Similarly, increased PD-1 plasma levels are shown by Elisa (Figure 2). Moreover, higher PD-1 expressions showed worse overall survival among esophageal cancer patients (Figure 3). Thus, the mutant genotype of rs10204525 or rs7421861 polymorphism might contribute to worse survival of esophageal cancer patients by increasing the PD-1 expression.

DISCUSSION

In this study, we investigated the relationship between PD-1 gene variants and the risk of esophageal cancer and found PD-1 gene rs7421861 and rs10204525 polymorphisms increased the risk of esophageal cancer in Chinese individuals. The combination of smoking and these genotypes showed a significantly higher risk for esophageal cancer. In addition, genotypes of rs10204525 and rs7421861 polymorphisms were shown to be associated with increased PD-1 gene and protein levels. Furthermore, higher PD-1 expressions were correlated with worse survival of esophageal cancer patients.

Increased expression of programmed death-ligand 1 (PD-L1) has frequently been observed in the brain, gastrointestinal tract, lung, liver, colorectum, kidney, pancreas, ovary, bladder, and esophagus cancers [46–49]. Monoclonal antibodies targeting PD-1 block the interaction with PD-L1 and have demonstrated efficacy in various malignancies [50]. PD-L1 expression was associated with clinical features in esophageal cancer and kidney clear cell carcinoma [51, 52]. Overexpression of PD-1 was also observed in hepatocellular carcinoma and adjacent tissue, and was correlated with the rs10204525 polymorphism in PD-1 [53].

The relationship between PD-1 gene loci and cancer risk has been extensively studied, but the conclusions are inconsistent. As reported, PD-1 gene rs2227982 C>T polymorphism other than rs10204525 A>G or rs7421861 T>C polymorphism was associated with gastric cardia adenocarcinoma [38]. PD-1 was highly expressed on liver cancer tissues and adjacent tissues and the PD-1 level was remarkably associated with PD-1 gene rs10204525 polymorphism [53]. Yeo et al. showed PD-L1 expression was unregulated in lung squamous cell carcinoma [54]. Moreover, the PD-L1 8923 A/C polymorphism [55] and PD-1 1.5 C/T polymorphism [34] are risky factors of non-small cell lung cancer (NSCLC). Another study observed a significant link between the PD-1 gene rs2227982 polymorphism and breast cancer risk in northwest Chinese women [39]. A meta-analysis concluded the
Table 5. The associations between PD-1 gene polymorphisms and clinical characteristics of esophageal cancer.

Characteristics	Genotype distributions
rs10204525	GG
Pathological grading	
MD/WD	121//156
OR (95%CI); P-value	1.0 (reference)
Pathological grading	
PD/WD	52/156
OR (95%CI); P-value	1.0 (reference)
Distant metastasis	
M1/M0	52/368
OR (95%CI); P-value	1.0 (reference)
Tumor node metastasis stage	
T3+T4 / T1+T2	206/214
OR (95%CI); P-value	1.0 (reference)
Histology	
Squamous/Not Squamous	349/71
OR (95%CI); P-value	1.0 (reference)
rs36084323	GG
Pathological grading	
MD/WD	321/268
OR (95%CI); P-value	1.0 (reference)
Pathological grading	
PD/WD	93/268
OR (95%CI); P-value	1.0 (reference)
Distant metastasis	
M1/M0	80/593
OR (95%CI); P-value	1.0 (reference)
Tumor node metastasis stage	
T3+T4 / T1+T2	320/353
OR (95%CI); P-value	1.0 (reference)
Histology	
Squamous/Not Squamous	569/104
OR (95%CI); P-value	1.0 (reference)
rs7421861	CC
Pathological grading	
MD/WD	157/136
OR (95%CI); P-value	1.0 (reference)
Pathological grading	
PD/WD	50/136
OR (95%CI); P-value	1.0 (reference)
Distant metastasis	
M1/M0	44/299
OR (95%CI); P-value	1.0 (reference)
Tumor node metastasis stage	
T3+T4 / T1+T2	149/194
OR (95%CI); P-value	1.0 (reference)
Histology	
Squamous/Not Squamous	296/47
OR (95%CI); P-value	1.0 (reference)

Bold values are statistically significant (P < 0.05). PD = Poorly differentiation, MD= Moderately differentiation, WD= Well differentiation.
The AA genotype of rs10204525 in PD-1 gene was previously associated with an increased risk of esophageal cancer and proposed to be a predictive biomarker for ESCC [17]. The rs36084323 T>C polymorphism previously reduced the risk of esophagogastric junction adenocarcinoma (EGJA) while the rs7421861 polymorphism increased the risk of EGJA in Chinese subjects [18]. In addition, the PD-1 T_{rs10204525G}C_{rs36084323}rs7421861 haplotype significantly associated with a decreased risk of EGJA [18]. The rs10204525 polymorphism was not related to ESCC risk in the full cohort. However, a stratified analysis demonstrated that it was associated with a reduced risk of ESCC among male and younger patients [16]. Here we found PD-1 rs10204525 and rs7421861 polymorphisms, but not rs36084323, increased the risk for esophageal cancer,

![Figure 1](https://example.com/figure1.png)

Figure 1. Relative PD-1 mRNA expression among patients in each genotype group. (A) rs10204525; (B) rs7421861.

![Figure 2](https://example.com/figure2.png)

Figure 2. Plasma PD-1 levels among patients in each genotype group. (A) rs10204525; (B) rs7421861.
which are obviously inconsistent with the above studies. The conflicting findings may be attributed to some causes, such as clinical heterogeneity. The pathological types were different among these studies, as we studied several pathological types, rather than single cancer types such as EGJA [18] and ESCC [16]. Secondly, the sample sizes of these studies were diverse. Thirdly, living environment and diets may also affect the results.

Furthermore, stratified analyses of age, smoking, sex, and alcohol status were conducted. The rs10204525, rs36084323, rs7421861 polymorphisms increased the risk of esophageal cancer among men in our study. Subgroup analysis revealed that rs10204525 polymorphism elevated the risk of esophageal cancer among patients who consumed alcohol and among patients ≥ 60 years old. Cross-over analysis indicated that smoking in combination with either the rs10204525 or rs7421861 polymorphism significantly contributed to an increased risk of esophageal cancer.

Next, we explored the associations between PD-1 gene polymorphisms and clinical features of esophageal cancer. It was found that rs7421861 and rs10204525 polymorphisms were associated with distant metastasis, and that rs7421861 was also associated with higher TNM stage. However, rs36084323 polymorphism was not associated with esophageal cancer metastasis. Interestingly, both the rs10204525 and rs7421861 polymorphisms were associated with higher PD-1 gene and plasma levels in esophageal cancer patients. Furthermore, Kaplan-Meier survival curves showed higher PD-1 gene expression contributed to worse survival of esophageal cancer patients. These results are in line with those of previous studies, which demonstrated associations between PD-L1 polymorphisms and poor prognosis [54] and survival [56] among lung cancer patients. Thus, we assumed PD-1 gene variants increased the PD-1 gene levels, thereby contributing to esophageal cancer metastasis and worse survival.

This present study did have some potential limitations. First, the limited sample size of this study could not exactly uncover the relationship of the PD-1 gene rs7421861, rs10204525, rs36084323 polymorphisms with esophageal cancer susceptibility. Second, the cases and controls were selected only from Chinese population. Different diet culture, living environment, habits and customs may also contribute to the development of this disorder and selection bias to the whole ethnic groups can still not be ignored. Third, further functional analyses were necessary to uncover how the PD-1 gene polymorphisms affect esophageal cancer. Fourth, we could not perform related experiments to explore the underlying mechanisms by which the PD-1 variants conferred an increased risk to esophageal cancer. Moreover, only three variants of PD-1 gene were explored. Last, potential gene-gene or gene-environment interactions were not obtained.

In summary, the rs7421861 and rs10204525 polymorphisms in PD-1 gene increase the risk of esophageal cancer in a Chinese Han population. These polymorphisms could be potential diagnostic and therapeutic biomarkers. However, the conclusions still need further validation by more studies with large sample sizes in other ethnicities.
MATERIALS AND METHODS

Subjects

814 patients with newly diagnosed esophageal cancer and 961 cancer-free controls were enrolled from the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University. All patients were ≥ 18 years old with no history of other cancers. Patients with history of esophageal disease, a second primary tumor, or tumor of unknown origin were excluded. The controls consisted of individuals who received a comprehensive health examination and had no related history of cancer or autoimmune disease.

Patient demographics and other clinical data were collected using a written questionnaire. Smokers were regarded as smoking more than one cigarette per day for at least 1 year. Drinkers were defined as consumption of alcoholic beverages more than once a week for ≥ 1 year. The Institutional Review Board of Huai’an No.1 People’s Hospital approved this study. Written informed consent was got from all participants. Patient confidentiality was maintained according to the Helsinki declaration.

DNA extraction and genotyping

Peripheral blood (2 mL) was collected from each patient following surgery. Patients were enrolled in the study if post-operative pathological analysis confirmed a diagnosed of esophageal cancer. Using a Puregene DNA Purification Kit, Genomic DNA was obtained from peripheral blood (Gentra, Minneapolis, MN, USA). DNA concentration and purity were analyzed by absorbance and gel electrophoresis, respectively. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) on a MassARRAY system (Sequenom, San Diego, CA, USA). Approximately 5% of the samples were randomly used for repeat assays and a 100% concordance rate was observed.

Quantitative RT-PCR

Total RNA was isolated from peripheral venous blood using the Trizol reagent (Invitrogen, Carlsbad, CA, USA). RNA was reverse-transcribed into cDNA using the SuperScript™ II Reverse Transcriptase (Invitrogen). Relative PD-1 expression was quantified by real-time PCR using TaqMan® assays. Beta-actin was used as an internal reference. The forward and reverse primers were as follows: 5'-GCACGAGGGACAATAGGA-3', 5'-GAC AATGGTAGGCATACT C-3' (PD-1); 5'-AGGTCGGTGT GAACGGATTG-3', 5'-TGATAGCAGCTGATGTTG AGGTCA-3' (GAPDH). Relative gene expression of PD-1 was calculated by the 2^ΔΔCT method.

ELISA

PD-1 levels in plasma were evaluated using a human PD-1 ELISA kit (Sino Biological, Beijing, China). The absorbance was assessed by use of a Tecan Infinite F50 Absorbance Microplate Reader (Tecan, Männedorf, Switzerland). Plasma PD-1 levels were quantified using a standard curve.

Kaplan-Meier survival analysis

The prognostic value of PD-1 mRNA expression in ESCC was assessed using OncoLnc (http://www.oncolnc.org), which contains survival data for 144 patients derived from The Cancer Genome Atlas dataset. Hazard ratios and 95% CIs were obtained using a Cox proportional-hazards model.

Statistical analysis

All statistical analyses were performed using SPSS 13.0 (IBM, Armonk, NY, USA). Graphs were generated using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). The observed genotype frequencies in controls were calculated for Hardy-Weinberg equilibrium test using goodness-of-fit chi-square tests [57]. Categorical variables were assessed using χ² tests and displayed as frequencies (percentages). Continuous variables in a normal distribution were evaluated using independent samples t-tests or one-way analysis of variance and expressed as the mean ± standard deviation. Logistic regression assuming allelic, dominant, recessive, and co-dominant models was performed to analyze the associations between the polymorphisms and disease risk. P values < 0.05 were considered significant [58, 59].

AUTHOR CONTRIBUTIONS

Conceived of and designed the study, BZ; Designed the methodology, BZ and CC; Validated the results, JQZ; Performed the analysis, CC and JQZ; Contributed analytical resources, JQZ; Collected the data, CC; Wrote the manuscript, BZ; Edited the manuscript, CC.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern
countries. World J Gastroenterol. 2015; 21:7933–43. https://doi.org/10.3748/wjg.v21.i26.7933 PMID:26185366

2. Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA. 2013; 310:627–36. https://doi.org/10.1001/jama.2013.226450 PMID:23942681

3. Ahmed O, Ajani JA, Lee JH. Endoscopic management of esophageal cancer. World J Gastrointest Oncol. 2019; 11:830–41. https://doi.org/10.4251/wjgio.v11.i10.830 PMID:31662822

4. Hofstetter W, Swisher SG, Correa AM, Hess K, Putnam JB Jr, Ajani JA, Dolormente M, Francisco R, Komaki RR, Lara A, Martin F, Rice DC, Sarabia AJ, et al. Treatment outcomes of resected esophageal cancer. Ann Surg. 2002; 236:376–84. https://doi.org/10.1097/00000658-200209000-00014 PMID:12192324

5. Hulscher JB, van Sandick JW, de Boer AG, Wijnhoven BP, Tijssen JG, Fockens P, Stalmeier PF, ten Kate FJ, van Dekken H, Obertop H, Tilanus HW, van Lanschot JJ. Extended transthoracic resection compared with limited transthiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002; 347:1662–69. https://doi.org/10.1056/NEJMoa022343 PMID:12444180

6. Zhao Y, Dai Z, Min W, Sui X, Kang H, Zhang Y, Ren H, Wang XJ. Perioperative versus Preoperative Chemotherapy with Surgery in Patients with Resectable Squamous Cell Carcinoma of Esophagus: A Phase III Randomized Trial. J Thorac Oncol. 2015; 10:1349–56. https://doi.org/10.1097/JTO.0000000000000612 PMID:26287319

7. Ku GY. Systemic therapy for esophageal cancer: chemotherapy. Linchuang Zhongliuxue Zazhi. 2017; 6:49. https://doi.org/10.21037/cco.2017.07.06 PMID:29129089

8. Dutton SJ, Ferry DR, Blazeby JM, Abbas H, Dahle-Smith A, Mansoor W, Thompson J, Harrison M, Chatterjee A, Falk S, Garcia-Alonso A, Fyfe DW, Hubner RA, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Oncol. 2014; 15:894–904. https://doi.org/10.1016/S1470-2153(14)70024-5 PMID:24950987

9. Conroy T, Galais MP, Raoul JL, Bouché O, Gourgou-Bourgade S, Douillard JY, Etienne PL, Boige V, Martel-Lafay I, Michel P, Llacer-Moscardo C, François E, Créhange G, et al, and Fédération Francophone de Cancérologie Digestive and UNICANCER-GI Group. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol. 2014; 15:305–14. https://doi.org/10.1016/S1470-2153(14)70028-2 PMID:24556041

10. Robb WB, Messager M, Dahan L, Mornex F, Maillard E, D’Journo XB, Triboulet JP, Bedenne L, Seitz JF, Mariette C, and Fédération Francophone de Cancérologie Digestive, and Société Française de Radiothérapie Oncologique, and Union des Centres de Lutte Contre le Cancer, and Groupe Coopérateur Multidisciplinaire en Oncologie, and French EsoGAstric Tumour working group - Fédération de Recherche En Chirurgie. Patterns of recurrence in early-stage oesophageal cancer after chemoradiotherapy and surgery compared with surgery alone. Br J Surg. 2016; 103:117–25. https://doi.org/10.1002/bjs.9959 PMID:26511668

11. Zhu HD, Guo JH, Mao AW, Lv WF, Ji JS, Wang WH, Lv B, Yang RM, Wu W, Ni CF, Min J, Zhu GY, Chen L, et al. Conventional stents versus stents loaded with (125)iodine seeds for the treatment of unresectable oesophageal cancer: a multicentre, randomised phase 3 trial. Lancet Oncol. 2014; 15:612–19. https://doi.org/10.1016/S1470-2153(14)70131-7 PMID:24742740

12. Créhange G, Maingon P, Peignaux K, N’guyen TD, Mirabel X, Marchal C, Verrelle P, Roullot B, Bonnetain F, Bedenne L, and Federation Francophone de Cancérologie Digestive and UNICANCER-GI Group. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol. 2014; 15:305–14. https://doi.org/10.1016/S1470-2153(14)70028-2 PMID:24556041

13. Hu M, Zhang Q, Tian XH, Wang JL, Niu YX, Li G. IncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinog. 2019; 58:2207–22. https://doi.org/10.1002/mc.23109 PMID:31544294

14. Wu K, Hu Y, Yan K, Qi Y, Zhang C, Zhu D, Liu D, Zhao S. microRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J Cell Physiol. 2020; 235:1247–58. https://doi.org/10.1002/jcp.29040 PMID:31267531

15. Wang J, Che W, Wang W, Su G, Zhen T, Jiang Z. CDKN3 promotes tumor progression and confers cisplatin resistance via RAD51 in esophageal cancer. Cancer Manag Res. 2019; 11:3253–64.
Li Y, Wang N, Huang X, Cao SR, Shan BE. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015; 21:24–33.

https://doi.org/10.1016/j.molmed.2014.10.009
PMID: 25440090

26. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018; 17:129.

https://doi.org/10.1186/s12943-018-0864-3
PMID: 30139382

27. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015; 125:3384–91.

https://doi.org/10.1172/JCI80011
PMID: 26325035

28. Collins TF, Black TN. Effects of FD & C Red No. 40 on rat intrauterine development. Food Cosmet Toxicol. 1980; 18:561–68.

https://doi.org/10.1172/JCI80011
PMID: 7203303

29. Huang CH, Wong RH, Wei JC, Tsay MD, Chen WC, Chen HY, Shih WT, Chiou SP, Tu YC, Lee HS. Effects of genetic polymorphisms of programmed cell death 1 and its ligands on the development of ankylosing spondylitis. Rheumatology (Oxford). 2011; 50:1809–13.

https://doi.org/10.1093/rheumatology/ker211
PMID: 21791547

30. Liu C, Jiang J, Gao L, Hu X, Wang F, Shen Y, Yu G, Zhao Z, Zhang X. A Promoter Region Polymorphism in PDCD-1 Gene Is Associated with Risk of Rheumatoid Arthritis in the Han Chinese Population of Southeastern China. Int J Genomics. 2014; 2014:247637.

https://doi.org/10.1155/2014/247637
PMID: 24804191

31. Huang K, Hu E, Li W, Lv J, He Y, Deng G, Xiao J, Yang C, Zhao X, Chen L, Wang X. Association of PD-1 polymorphisms with the risk and prognosis of lung adenocarcinoma in the northeastern Chinese Han population. BMC Med Genet. 2019; 20:177.

https://doi.org/10.1186/s12881-019-0914-7
PMID: 31718573

32. Fathi F, Ebrahimim H, Eslami A, Hafezi H, Eskandari N, Motedayyen H. Association of programmed death-1 gene polymorphisms with the risk of basal cell carcinoma. Int J Immunogenet. 2019; 46:444–50.

https://doi.org/10.1111/iji.12447
PMID: 31293069

33. Li XF, Jiang XQ, Zhang JW, Jia YJ. Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population. Genet
34. Yin L, Guo H, Zhao L, Wang J. The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population. Int J Clin Exp Med. 2014; 7:5832–36. PMID:25664115

35. Savabkar S, Azimzadeh P, Chaleshi V, Nazemalhosseini Mojarrad E, Aghdaei HA. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with gastric cancer. Gastroenterol Hepatol Bed Bench. 2013; 6:178–82. PMID:24834269

36. Mojtabahi Z, Mohmedi M, Rahimifar S, Erfani N, Hosseini SV, Ghaderi A. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene. 2012; 508:229–32. https://doi.org/10.1016/j.gene.2012.07.059 PMID:22892379

37. Haghshenas MR, Dabbaghmanesh MH, Miri A, Ghaderi A, Erfani N. Association of PDCD1 gene markers with susceptibility to thyroid cancer. J Endocrinol Invest. 2017; 40:481–86. https://doi.org/10.1007/s40618-016-0579-5 PMID:27943063

38. Tang W, Chen Y, Chen S, Sun B, Gu H, Kang M. Programmed death-1 (PD-1) polymorphism is associated with gastric cardia adenocarcinoma. Int J Clin Exp Med. 2015; 8:8086–93. PMID:26221374

39. Ren HT, Li YM, Wang XJ, Kang HF, Jin TB, Ma XB, Liu XH, Wang M, Liu K, Xu P, Yao QL, Dai ZJ. PD-1 rs2227982 Polymorphism Is Associated With the Decreased Risk of Breast Cancer in Northeast Chinese Women: A Hospital-Based Observational Study. Medicine (Baltimore). 2016; 95:e3760. https://doi.org/10.1097/MD.0000000000003760 PMID:27227944

40. Tan D, Sheng L, Yi QH. Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer. Cancer Biomark. 2018; 21:287–97. https://doi.org/10.3233/CBM-170357 PMID:29171986

41. Hua Z, Li D, Xiang G, Xu F, Jie G, Fu Z, Jie Z, Da P, Li D. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat. 2011; 129:195–201. https://doi.org/10.1007/s10549-011-1440-3 PMID:21487727

42. Haghshenas MR, Naemii S, Talei A, Ghaderi A, Erfani N. Program death 1 (PD1) haplotyping in patients with breast carcinoma. Mol Biol Rep. 2011; 38:4205–10. https://doi.org/10.1007/s11033-010-0542-z PMID:21113674

43. Hashemi M, Karami S, Sarabandi S, Moazeni-Roodi A, Malecki A, Ghavami S, Wichec E. Association between PD-1 and PD-L1 Polymorphisms and the Risk of Cancer: A Meta-Analysis of Case-Control Studies. Cancers (Basel). 2019; 11:E1150. https://doi.org/10.3390/cancers11081150 PMID:31405171

44. Da LS, Zhang Y, Zhang CJ, Bu LJ, Zhu YZ, Ma T, Gu KS. The PD-1 rs36084323 A > G polymorphism decrease cancer risk in Asian: A meta-analysis. Pathol Res Pract. 2018; 214:1758–64. https://doi.org/10.1016/j.prp.2018.09.015 PMID:30249505

45. Dong W, Gong M, Shi Z, Xiao J, Zhang J, Peng J. Programmed Cell Death-1 Polymorphisms Decrease the Cancer Risk: A Meta-Analysis Involving Twelve Case-Control Studies. PLoS One. 2016; 11:e0152448. https://doi.org/10.1371/journal.pone.0152448 PMID:27031235

46. Nom T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007; 13:2151–57. https://doi.org/10.1158/1078-0432.CCR-06-2746 PMID:17404099

47. Jacobs JF, Idema AJ, Bol FK, Nierkens S, Grauer OM, Wesseling P, Grootenhuis JA, Hoogerbrugge PM, de Vries IJ, Adema GJ. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol. 2009; 11:394–402. https://doi.org/10.1215/15228517-2008-104 PMID:19028999

48. Fay AP, Signoretti S, Callea M, Teló GH, McKay RR, Song J, Carvo I, Lampron ME, Kaymakcalan MD, Poli-de-Figueiredo CE, Bellmunt J, Hodi FS, Freeman GJ, et al. Programmed death ligand-1 expression in adrenocortical carcinoma: an exploratory biomarker study. J Immunother Cancer. 2015; 3:3. https://doi.org/10.1186/s40425-015-0047-3 PMID:25767716

49. Katsuya Y, Fujita Y, Horinouchi H, Ohe Y, Watanabe S, Tsuchiya Y, Horinouchi H, Ohe Y, Watanabe S, Tsuta K. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer. 2015; 88:154–59. https://doi.org/10.1016/j.lungcan.2015.03.003 PMID:25799277

50. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013; 2:662–73.
51. Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K, Tsushima F, Otsuki N, Yagita H, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005; 11:2947–53. https://doi.org/10.1158/1078-0432.CCR-04-1469 PMID: 15837746

52. Thompson RH, Dong H, Kwon ED. Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res. 2007; 13:709s–15s. https://doi.org/10.1158/1078-0432.CCR-06-1868 PMID: 17255298

53. Li Z, Li N, Li F, Zhou Z, Sang J, Chen Y, Han Q, Lv Y, Liu Z. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine (Baltimore). 2016; 95:e5749. https://doi.org/10.1097/MD.0000000000005749 PMID: 28033288

54. Yeo MK, Choi SY, Seong IO, Suh KS, Kim JM, Kim KH. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. Hum Pathol. 2017; 68:103–11. https://doi.org/10.1016/j.humpath.2017.08.016 PMID: 28851662

55. Ma Y, Liu X, Zhu J, Li W, Guo L, Han X, Song B, Cheng S, Jie L. Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. Int J Clin Exp Med. 2015; 8:16585–91. PMID: 26629188

56. Lee SY, Jung DK, Choi JE, Jin CC, Hong MJ, Do SK, Kang HG, Lee WK, Seok Y, Lee EB, Jeong JY, Shin KM, Yoo SS, et al. Functional polymorphisms in PD-L1 gene are associated with the prognosis of patients with early stage non-small cell lung cancer. Gene. 2017; 599:28–35. https://doi.org/10.1016/j.gene.2016.11.007 PMID: 27838455

57. Zhang J, Zhuo Z, Li W, Zhu J, He J, Su J. XRCC1 gene polymorphisms and risk of neuroblastoma in Chinese children. Aging (Albany NY). 2018; 10:2944–53. https://doi.org/10.18632/aging.101601 PMID: 30362960

58. Cheng J, Zhuo Z, Xin Y, Zhao P, Yang W, Zhou H, Zhang J, Gao Y, He J, Li P. Relevance of XPD polymorphisms to neuroblastoma risk in Chinese children: a four-center case-control study. Aging (Albany NY). 2018; 10:1989–2000. https://doi.org/10.18632/aging.101522 PMID: 30089098

59. Zhuo ZJ, Zhang R, Zhang J, Zhu J, Yang T, Zou Y, He J, Xia H. Associations between lncRNA MEG3 polymorphisms and neuroblastoma risk in Chinese children. Aging (Albany NY). 2018; 10:481–91. https://doi.org/10.18632/aging.101406 PMID: 29615542
Supplementary Figure 1. The genotype numbers of rs10204525, rs7421861, and rs36084323 polymorphisms among esophageal cancer patients and controls.
Supplementary Figure 2. The genotype numbers among different subgroups regarding (A) rs10204525 polymorphism, (B) rs36084323 polymorphism, and (C) rs7421861 polymorphism.
Supplementary Tables

Supplementary Table 1. Genotype frequencies of PD-1 gene polymorphisms in patients with esophageal squamous cell carcinoma and controls.

Models	Genotype	Case (n, %)	Control (n, %)	OR (95% CI)	P-value	OR (95% CI)	P-value
rs10204525							
wild	AA	404 (51.2%)	551 (57.4%)	1.0 (reference)	1.0 (reference)		
Heterozygote	AG	316 (40.1%)	359 (37.4%)	1.20 (0.99,1.46)	0.071	1.20 (0.99,1.47)	0.068
Homozygote	GG	69 (8.7%)	50 (5.2%)	1.64 (1.10,2.43)	0.015	1.65 (1.11,2.45)	0.013
Dominant	AA	404 (51.2%)	551 (57.4%)	1.0 (reference)		1.0 (reference)	
	GG+AG	385 (48.8%)	409 (42.6%)	1.25 (1.04,1.52)	0.020	1.26 (1.04,1.52)	0.018
Recessive	AG+AA	720 (91.3%)	910 (94.8%)	1.0 (reference)		1.0 (reference)	
	GG	69 (8.7%)	50 (5.2%)	1.52 (1.03,2.24)	0.035	1.53 (1.04,2.26)	0.032
Allele	A	1124 (71.2%)	1461 (76.1%)	1.0 (reference)		1.0 (reference)	
	G	454 (28.8%)	459 (23.9%)	1.29 (1.11,1.50)	0.001		
rs36084323							
wild	GG	645 (82.6%)	761 (79.2%)	1.0 (reference)		1.0 (reference)	
Heterozygote	GA	128 (16.4%)	188 (19.6%)	0.80 (0.63,1.03)	0.083	0.80 (0.63,1.03)	0.082
Homozygote	AA	8 (1.0%)	12 (1.2%)	0.79 (0.32,1.94)	0.601	0.77 (0.31,1.90)	0.569
Dominant	GG	645 (82.6%)	761 (79.2%)	1.0 (reference)		1.0 (reference)	
	AA+GA	136 (17.4%)	200 (20.8%)	0.80 (0.63,1.02)	0.074	0.80 (0.63,1.02)	0.071
Recessive	GA+GG	773 (99.0%)	949 (98.8%)	1.0 (reference)		1.0 (reference)	
	AA	8 (1.0%)	12 (1.2%)	0.82 (0.33,2.01)	0.663	0.80 (0.33,1.98)	0.630
Allele	G	1418 (90.8%)	1710 (89.0%)	1.0 (reference)		1.0 (reference)	
	A	144 (9.2%)	212 (11.0%)	0.82 (0.66,1.02)	0.080		
rs7421861							
wild	CC	329 (42.1%)	457 (47.6%)	1.0 (reference)		1.0 (reference)	
Heterozygote	CT	355 (45.5%)	411 (42.8%)	1.20 (0.98,1.47)	0.075	1.20 (0.98,1.46)	0.081
Homozygote	TT	97 (12.4%)	92 (9.6%)	1.47 (1.07,2.01)	0.020	1.47 (1.07,2.02)	0.019
Dominant	CC	329 (42.1%)	457 (47.6%)	1.0 (reference)		1.0 (reference)	
	TT+CT	452 (57.9%)	503 (52.4%)	1.25 (1.03,1.51)	0.022	1.25 (1.03,1.51)	0.024
Recessive	CT+CC	684 (87.6%)	868 (90.4%)	1.0 (reference)		1.0 (reference)	
	TT	97 (12.4%)	92 (9.6%)	1.34 (0.99,1.81)	0.059	1.34 (0.99,1.82)	0.056
Allele	C	1013 (64.9%)	1325 (69.0%)	1.0 (reference)		1.0 (reference)	
	T	549 (35.1%)	595 (31.0%)	1.21 (1.05,1.39)	0.009		

*aThe genotyping was successful in 780 cases and 960 controls for rs10204525; The genotyping was successful in 781 cases and 961 controls for rs36084323; The genotyping was successful in 781 cases and 960 controls for rs7421861.

Bold values are statistically significant (P <0.05).

*bAdjust for sex, age, smoking and drinking.
Supplementary Table 2. Genotype frequencies of PD-1 gene polymorphisms in patients with other pathological types of esophageal cancer (not including esophageal squamous cell carcinoma) and controls.

Models	Genotype	Case (n, %)*	Control (n, %)*	OR (95% CI)	P-value	OR (95% CI)b	P-valueb
rs10204525							
Wild	AA	16 (50.0%)	551 (57.4%)	1.0 (reference)		1.0 (reference)	
	AG	13 (40.6%)	359 (37.4%)	1.25(0.59,2.62)	0.561	1.22(0.58,2.56)	0.608
	GG	3 (9.4%)	50 (5.2%)	2.07(0.58,7.33)	0.261	2.12(0.60,7.58)	0.246
	GG+AG	16 (50.0%)	409 (42.6%)	1.35(0.67,2.73)	0.407	1.32(0.65,2.68)	0.439
	GG	3 (9.4%)	50 (5.2%)	1.88(0.56,6.39)	0.310	1.96(0.57,6.67)	0.284
	A	45 (70.3%)	1461 (76.1%)	1.0 (reference)			
	G	19 (29.7%)	459 (23.9%)	1.34(0.78,2.32)	0.289		
rs36084323							
Wild	GG	28 (87.5%)	761 (79.2%)	1.0 (reference)		1.0 (reference)	
	GA	4 (12.5%)	188 (19.6%)	0.58(0.20,1.67)	0.311	0.56(0.20,1.63)	0.290
	AA	0 (0%)	12 (1.2%)	N/A	N/A		
Dominant	GG	28 (87.5%)	761 (79.2%)	1.0 (reference)		1.0 (reference)	
	AA+GA	4 (12.5%)	200 (20.8%)	0.54(0.19,1.57)	0.259	0.53(0.18,1.52)	0.237
	A	60 (93.8%)	1710 (89.0%)	1.0 (reference)			
	T	4 (6.3%)	212 (11.0%)	0.37(0.13,1.02)	0.055		
rs7421861							
Wild	CC	14 (43.8%)	457 (47.6%)	1.0 (reference)		1.0 (reference)	
	CT	15 (46.9%)	411 (42.8%)	1.19(0.57,2.50)	0.643	1.24(0.59,2.60)	0.126
	TT	3 (9.4%)	92 (9.6%)	1.06(0.30,3.78)	0.923	1.07(0.30,3.80)	0.576
Dominant	CC	14 (43.8%)	457 (47.6%)	1.0 (reference)		1.0 (reference)	
	TT+CT	18 (56.3%)	503 (52.4%)	1.17(0.57,2.38)	0.668	1.20(0.59,2.46)	0.609
	CO+C	29 (90.6%)	868 (90.4%)	1.0 (reference)		1.0 (reference)	
	TT	3 (9.4%)	92 (9.6%)	0.98(0.29,3.27)	0.969	0.96(0.29,3.23)	0.949
Allele	C	43 (67.2%)	1325 (69.0%)	1.0 (reference)			
	T	21 (32.8%)	595 (31.0%)	1.08(0.64,1.85)	0.757		

*The genotyping was successful in 32 cases and 960 controls.
Bold values are statistically significant (P <0.05).

bAdjust for sex, age, smoking and drinking.