The importance of adherence and persistence in the elderly atrial fibrillation patient

Elaine M. Hylek*

Department of Medicine 72 East Concord Street, Boston University School of Medicine, Boston, MA 02118, USA

Older adults with atrial fibrillation are at the highest risk of ischaemic stroke yet are the least likely to be prescribed anticoagulant therapy, adhere to this therapy, and maintain long-term persistence with this therapy. The reasons for this under-treatment are multifactorial and include patient-driven factors, physician-driven factors, medical system complexities, and current unknowns regarding the biology and natural history of AF. Understanding these challenges to stroke prevention and addressing identified barriers to medication adherence and persistence in this vulnerable age group will improve outcomes related to AF.

Older adults with atrial fibrillation are at the highest risk of ischaemic stroke. Without anticoagulation, the average incidence of ischaemic stroke in this age group is ~8-10% per year. The 30-day mortality from an AF-related stroke is ~24% and those who survive often have life-altering neurological disability.

The most convincing early evidence supporting the use of anticoagulant therapy for older adults came from the 2007 Birmingham Atrial Fibrillation Treatment of the Aged Study (BAFTA) wherein individuals aged 75 years or older were randomized to receive either warfarin or aspirin (75 mg per day). The primary endpoint was fatal or disabling stroke, intracranial haemorrhage, or systemic embolus. The trial enrolled 973 individuals with a mean age of 81.5 years. Among those treated with warfarin, there were 24 primary events (21 strokes, 2 other intracranial haemorrhages, and 1 systemic embolus) and 48 primary events (44 strokes, 1 other intracranial haemorrhage, and 3 systemic emboli) among those participants randomized to aspirin. The annual risk of extracranial haemorrhage was 1.4% (warfarin) vs. 1.6% (aspirin) (relative risk 0.87, 0.43-1.73). This seminal trial demonstrated the superior efficacy of anticoagulation therapy for stroke prevention compared to aspirin and the underappreciated hazards of aspirin in this older age group.

Further validation of these findings ultimately led to changes in clinical practice guidelines which no longer included aspirin as a treatment option for stroke prevention in AF.

Despite the heightened risk for stroke, elderly individuals with AF are least likely to receive anticoagulant therapy. Among 429,417 individuals with AF prospectively enrolled in the Practice Innovation and Clinical Excellence Registry (PINNACLE), ~50% received oral anticoagulant therapy including the highest risk patients. Similar findings were reported from the Global Anticoagulant Registry in the FIELD (GARFIELD) study. Among 10,614 patients with newly diagnosed AF, 59% of higher risk patients defined as having a CHA2DS2-VASc score of 2 or greater received anticoagulant therapy.

Once initiated, persistence with anticoagulant therapy remains a challenge. A recent study of 66,090 individuals with AF newly starting a non-vitamin K oral anticoagulant (NOAC) and naive to anticoagulation found that 59% persisted in taking the medication at 6 months and subsequently further declined to 31.6% at 12 months. Rates of adherence and persistence were considerably higher in a Danish study, perhaps in part attributable to different methodologies to assess exposure. Importantly, this study documented wide gaps in drug refills of 7-89 days that were common across treatment groups. Incidence rates for medication-specific gaps per 1000 person-years were 339.1
for apixaban, 306.3 for dabigatran, 199.7 for rivaroxaban, and 424.3 for vitamin K antagonists (VKA). Medication gaps exceeding 90 or more days were 27.6, 37.2, 25.8, and 57.5, respectively. These data attest to the frequent interruptions in therapy that occur in clinical practice that render patients vulnerable to thrombotic events. The association of medication nonadherence with stroke outcomes was demonstrated in a study of 64,661 individuals with AF initiating oral anticoagulant therapy identified within a US commercial insurance database. The investigators used the proportion of days covered (PDC) as the metric to determine drug exposure. During a median follow-up of 1.1 years, 47.5% of patients prescribed a NOAC (apixaban, dabigatran, or rivaroxaban) achieved the benchmark of adherence, a PDC of 80% or greater. For patients taking warfarin, this percentage was even lower, 40.2%. For patients with a CHA2DS2-VASc score >3, the risk of stroke increased according to duration of time off therapy: hazard ratio, 1.96 (95% CI 1.48–2.60) for gaps of 1 to 3 months, 2.64 (95% CI 1.93–3.61) for 3–6 months, and 3.66 (95% CI 2.68–5.01) for 6 months or longer compared with not taking oral anticoagulants <1 week. In a study of primary care practices in Germany, adherence and treatment persistence were measured for new users of rivaroxaban, dabigatran, and VKA among 7265 individuals with AF. The mean age of patients included was 74 years. At 6 months, the percentage of patients still taking the drug was 66.0%, 60.3%, and 58.1%, respectively. At 1 year, these proportions further declined to 53.1%, 47.3%, and 25.5%, respectively. Older age, renal dysfunction, and concomitant use of antiplatelet drugs were significantly associated with a lower likelihood of anticoagulant drug persistence of >180 days.

Factors associated with medication adherence and long-term persistence

Adherence and long-term persistence of drug therapy among elderly individuals are challenging for many reasons including patient-driven factors, physician-driven factors, and factors related to the medical system (Figure 1). From a patient perspective, complex regimens, competing priorities, cost, polypharmacy, and lack of information on drug benefit and side effects often lead to cessation of treatment or omission of doses. Understanding the indication and belief of personal vulnerability are integral to adherence and persistence. Perhaps the most critical step is the initial discussion of AF, the risks related to AF, and the benefits and risks of anticoagulant therapy with a trusted physician. Key messages are revisited and reinforced at each subsequent episode of care. Physician judgement on what constitutes drug candidacy and personal interpretation of ‘do no harm’ are key components of the initial and refill prescription decisions. As shown in the GARFIELD registry, physician perceptions about bleeding risk, fall risk, ability to adhere to treatment, among others, constituted 48% of the reasons for not prescribing anticoagulant therapy. In addition, the increasingly complex patterns of care and process barriers within complicated medical systems lead to fragmentation and breakdowns in communication. Seamless delivery of care with consistent management is difficult across multiple surgical and medical disciplines and care settings particularly amid changes in a patient’s health status. When a hospitalization occurs, medication reconciliation spans four stages of care and needs to account for drug-relevant changes in the patient’s health status: home to hospital, medical or surgical discharge to rehabilitation facility, discharge to home, and post-discharge outpatient physicians’ follow-up and evaluation. Communication of these changes throughout this continuum and ultimately to the physician responsible for the patient’s long-term management is paramount.

Lastly, uncertainties related to the biology and natural history of AF itself constitute a grey area in patient management that inevitably leads to practice variation in long-term prescription persistence. Debates and individual physician beliefs regarding burden of AF and stroke risk, in addition to mechanistic uncertainty regarding the relative contribution of atrial substrate vs. rhythm, create different thresholds for long-term anticoagulation therapy for patients with paroxysmal AF and for those patients after cardioversion or ablation. Among patients with a documented history of AF presenting with an acute ischaemic stroke, Aronis et al. found that having been diagnosed with paroxysmal AF and being age 80 years or older were the most potent factors associated with not taking an anticoagulant at the time of the stroke. Rigorous studies to define the efficacy and safety of ‘triggered’ intermittent anticoagulant therapy based on smartphone alerts, patient pulse taking, or other AF detection modalities are also direly needed before these strategies permeate clinical practice. The extent to which the concept of intermittent definable risk affects patients’ long-term commitment to anticoagulation therapy also warrants study.

Bleeding and fall risk

Bleeding events are the most common reason for stopping anticoagulant treatment and perception of bleeding risk is pivotal in the decision to start therapy. The most feared complication of anticoagulant therapy is intracranial haemorrhage with resultant morbidity and mortality of 76% among individuals taking warfarin. The incidence of intracranial haemorrhage among patients randomized to warfarin in the AF trials was 0.7–0.8% per year. Importantly, the hazard of this complication was reduced on average by ~50% with the use of the factor Xa and direct thrombin inhibitors. To further mitigate, the risk of intracranial haemorrhage in the older age group, concomitant aspirin should be avoided, and blood pressure control maintained. Resumption of anticoagulant therapy following an intracranial bleed is often a therapeutic dilemma given different risks of recurrence depending on location, lobar vs. deep, and aetiology. Few data exist on risks of recurrence with resumption or initiation of NOACs in these settings.

The gastrointestinal tract is the most common site of bleeding in the elderly with peptic ulcer disease the most frequent aetiology followed by diverticular disease. The risk of upper and lower gastrointestinal haemorrhage is substantially increased by antiplatelet therapy and nonsteroidal anti-inflammatory drugs with some gastric
protection provided by proton pump inhibitors.31,32 Although the NOACs significantly reduced the risk of intracranial bleeding, gastrointestinal bleeding was either increased or comparable to warfarin. In contrast to intracranial hemorrhage, the morbidity and mortality associated with gastrointestinal bleeding was found to be 3\% among patients taking warfarin.24

Major bleeds often result in permanent discontinuation of treatment. Physician and patient thresholds to resume treatment following a major or minor bleed often diverge. Multiple studies have demonstrated that patients most value avoidance of a disabling stroke and would trade-off multiple major bleeds to avoid one ischaemic stroke.33–36 Resumption of anticoagulant therapy following gastrointestinal haemorrhage has been shown to lower mortality and reduce thromboembolic events without a significant increase in recurrent haemorrhage.37 Selection bias was a considered limitation of this nonrandomized study in that healthier patients may have been chosen to resume treatment. These findings were subsequently confirmed in a large meta-analysis that showed resumption of warfarin therapy was associated with a reduction in thromboembolic events and mortality without a statistically significant increase in recurrent gastrointestinal bleeding.38 The risk of recurrence depends on aetiology and success of remedial intervention. Optimal timing of resumption across the spectrum of patient stroke risk and underlying cause is largely unstudied. Given the documented risk of increased thromboembolic events with larger gaps in treatment, the interval off therapy is best kept to a minimum of a few days, if possible, especially for those at highest risk of stroke.

Older adults at risk for falls constitute a particularly vulnerable group as the risk for both stroke and bleeding are significantly increased compared to peers without this risk. For most patients, the net clinical benefit still weighs in favour of anticoagulation because of the morbidity and mortality associated with ischaemic stroke.39 However, more data are needed on the effectiveness of NOACs in routine clinical practice outside of randomized trials.40,41 Measures to reduce fall risk should be vigorously sought at the time of initiation and throughout the course of anticoagulant therapy. Balance training, core strengthening, removal of environmental hazards, improved lighting, and avoidance of medications that induce or exacerbate orthostasis and autonomic dysfunction are a few strategies to mitigate the risk of serious falls.

Summary

Anticoagulant therapy is highly effective in preventing stroke in AF. For elderly individuals, this is a particularly germane issue given their heightened risk of ischaemic stroke. The weight of current evidence favours anticoagulation in this age group while actively seeking interventions to reduce risk of harm.42–47 Clinicians and patients need further and continuing education regarding the relative

Figure 1

Medication adherence and persistence are driven by patient, physician, and system specific factors, which are all interrelated.

Factors Affecting Adherence and Persistence of Drug Therapy
Patient Perspective
- Complex regimens
- Competing priorities
- Cost
- Polypharmacy
- Lack of understanding of drug benefits and side effects
- Misconceptions of personal vulnerability
Physician Perspective
- Judgment of drug candidacy
- Interpretation of “do no harm”
- Perceptions about bleeding risk, fall risk, and ability to adhere to treatment
- Burden of AF-substrate versus rhythm
- Clinical context of AF
System Complexity
- Complex patterns of care
- Multiple sites of care
- Drug-relevant changes in health status
- Process barriers
- Fragmentation and multiple hand-offs
- Breakdowns in communication

Cessation of treatment or omission of doses

Not prescribing therapy or discontinuation of therapy

Inconsistencies in drug therapy management

Downloaded from https://academic.oup.com/eurheartj/article/22/Supplement_1/I38/5905891 on 28 September 2020 by guest
Adherence and persistence in the elderly AF patient

risks of morbidity from ischaemic events and that of minor and major haemorrhagic complications related to therapy. Identifying the barriers to adherence and implementation of strategies to promote medication persistence will lead to more effective therapy.

Acknowledgement
J.R. Hylek for creation of the Figure.

Conflict of interest: E.M.H. has received research funding from Abbott, Bristol Myers Squibb, and Janssen, and hono- raria from Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Janssen, Medtronic, Pfizer, and Roche. This paper was published as part of a supplement financially sup- ported by an unrestricted educational grant from Daiichi Sankyo Europe GmbH.

References
1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983-988.
2. Hylek EM, Go AS, Chang Y, Jensvold NG, Hentay LE, Selby JV, Singer DE. Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. N Engl J Med 2003;349:1019-1026.
3. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in the atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010;137:263-272.
4. Mant J, Hobbs FD, Fletcher K, Roalfe A, Fitzmaurice D, Lip GY, Murray E; BAFTA Investigators; Midland Research Practices Network (MidRec). Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet 2007;370:493-503.
5. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Avezov S, Bax JJ,et al. 2016 ESC Guidelines on the management of atrial fibrillation developed in the context of the ESC Research Group onolemics and the Working Groups on Heart Rhythm Disorders and Structural Heart Disease. Eur Heart J 2016;37:2893-2962.
6. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS Guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Eur Heart J 2016;37:2893-2962.
7. Hsu JC, Maddox TM, Kennedy KF, Katz DF, Marzec LN, Lubitz SA, Gehr AK, Turakhia MP, Marcus GM. Oral anticoagulants in patients with atrial fibrillation across the spectrum of stroke risk: Insights from the NCDR PINNACLE registry. JAMA Cardiol 2016;1:55-62.
8. Kakkar AK, Mueller I, Bassand J-P, Fitzmaurice DA, Goldhaber SZ, Goto S, Haas S, Hacke W, Lip GY, Mantovani LG, Turpie AGG, van Eckels M, Misselwitz F, Rushton-Smith S, Kayani G, Wilkinson P, Verheugt FW; for the GARFIELD Registry Investigators. Risk profiles and antithrombotic treatment of patients newly diagnosed with atrial fibrillation at risk of stroke: perspectives from the International, Observational, Prospective GARFIELD Registry. PloS One 2013;8:e663479.
9. Manzoor BS, Lee TA, Sharp LK, Walton SM, Galanter W, Nutescu EA. Real-world adherence and persistence with direct oral anticoagulants in adults with atrial fibrillation. Pharmacotherapy 2017;37:1221-1230.
10. Sorensen R, Jamie Nielsen B, Langtved Paillesgaard J, J-Young Lee C, Torp-Pedersen C. Adherence with oral anticoagulation in non-valvular atrial fibrillation: a comparison of vitamin K antagonists and non-vitamin K antagonists. Eur Heart J Cardiovasc Pharmacother 2017;3:151-156.
11. Granger CB, Lopes RD, Hanna M, Anseli J, Hylek EM, Alexander JH, Thomas L, Wang J, Baitz MC, Verheugt F, Lawrence J, Xavier D, Wallentin L. Clinical events after transitioning from apixaban versus warfarin to warfarin at the end of the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Am Heart J 2015;169:25-30.
12. Patel MR, Hellkamp AS, Lokhnygina Y, Piccinin JP, Zang Z, Mohanty S, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Becker RC, Nessel CC, Berkowitz SD, Calif RM, Fox KAA, Mahaffey KW. Outcomes of discontinuing rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: analysis from the ROCKET AF trial (rivaroxaban once-daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation). J Am Coll Cardiol 2013;61:651-658.
13. Yao X, Abraham NS, Caleb Alexander G, Crown W, Montori VM, Sangaranalingham LR, Gersh BJ, Shah N, Noseworthy PA. Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. J Am Heart Assoc 2016;5:e003074.
14. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med 2005;353:487-497.
15. Kronish IM, Ye S. Adherence to cardiovascular medications: lessons learned and future directions. Prog Cardiovasc Dis 2013;55:590-600.
16. Cramer J. Identifying and improving compliance patterns. In: JA Cramer, B Spiller, eds. Patient Compliance in Medical Practice and Clinical Trials. New York: Raven Press; 1991. p387-392.
17. Elliott WJ, Maddy R, Toto R, Bakris G. Hypertension in patients with diabetes: overcoming barriers to effective control. Postgrad Med 2000;107:29-32.
18. Beyer-Westendorf J, Eihiken B, Evers T. Real-world persistence and adherence to oral anticoagulation for stroke risk reduction in patients with atrial fibrillation. Europace 2016;18:1150-1157.
19. Romero J, Avendano R, Diaz JC, Tavera J, Luperchio D, Fi Blase L. Is it safe to stop oral anticoagulation after catheter ablation for atrial fibrillation? Expert Rev Cardiovasc Ther 2019;17:31-41.
20. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalqutst JE, Corley SD; Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002;347:1825-1833.
21. Peretz MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Dag N, Gummipudendi SE, Beattay A, True Hills M, Desai S, Granger CB, Desai M, Turakhia MP; Apple Heart Study Investigators. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019;381:1909-1917.
22. Daccarett M, Badger TJ, Akoun N, Burson N, Mahnkopf C, Vergara G, Kholmovski E, McCann CJ, Parker D, Brachmann J, Macleod RS, Marrouche NF. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol 2011;57:831-838.
23. Aronis KN, Thigpen JL, Waldo AL, Forster K, Henault LE, Singer MC, Go AS, Chang Y, Hylek EM, Hellkamp AS, Halperin J, Zielinski M, Antman EM; ENGAGE AF-TIMI 48 Investigators. Edoxaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Am Heart J 2017;182:1825-1833.
24. Fang MC, Go AS, Chang Y, Hylek EM, Hentay LE, Jensvold NG, Singer DE. Death and disability from warfarin-associated intracranial and extracranial hemorrhages. Am J Med 2007;120:700-705.
25. Guedes MM, Ruff CT, Braunwald E, Murphy SA, Vlissides SD, Halperin JL, Waldo AL, Ezechowitz MD, Weitz JJ, Spinbar J, Ruzyllo W, Ruda M, Kortesun Y, Betcher J, Shi M, Grip LT, Patel SP, Patel I, Hanyok J, Mercuri M, Antman EM; ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:2093-2104.
38. Chai-Adisaksopha C, Hillis C, Monreal M, Witt DM, Crowther M.

34. Devereaux PJ, Anderson DR, Gardner MJ, Putnam W, Flowerdew GJ,

33. Alonso-Coello P, Montori VM, Sola` I, Schu¨nemann HJ, Devereaux P,

31. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

32. Pilotto A, Franceschi M, Leandro G, Paris F, Niro V, Longo MG,

30. Yachimski PS, Friedman LS. Gastrointestinal bleeding in the elderly.

29. Goldstein JN, Greenberg SM. Should anticoagulation be resumed

26. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh

25. Breithardt G, Halperin JL, Hankey GJ, Giroud X, Varrone J, Zivin

24. Deveraux PA, Anderson DR, Gardner MJ, Putnam W, Flowereud JW,

23. Malaney P, Lipshultz SI, Lip GYH, Manley PB, Bhatia V, McCullough

22. Lane DA, Mayerhoff J, Rohner U, Lip G. Patients’ perceptions of

21. Witt DM, Delate T, Garcia DA, Clark NP, Hylek EM, Agno W,

20. Chai-Adisaksopha C, Hillis C, Monreal M, Witt DM, Crowther M.

19. Halvorsen S, Atar D, Yang H, De Caterina R, Erol C, Garcia D,

18. Halperrin JL, Hankey GJ, Jaukiewicz P, Avezum A, Bahit MC,

17. Yachimski PS, Friedman LS. Gastrointestinal bleeding in the elderly.

16. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

15. Halperrin JL, Hankey GJ, Jaukiewicz P, Avezum A, Bahit MC,

14. Halperrin JL, Hankey GJ, Jaukiewicz P, De Caterina R, Wojdyla

13. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

12. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

11. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

10. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

9. Halvorsen S, Atar D, Yang H, De Caterina R, Erol C, Garcia D,

8. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM,

7. Hylek EM, Held C, Alexander JH, Lopes RD, De Caterina R, Wojdyla

6. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh

5. Breithardt G, Halperin JL, Hankey GJ, Giroud X, Varrone J, Zivin

4. Deveraux PA, Anderson DR, Gardner MJ, Putnam W, Flowereud JW,

3. Malaney P, Lipshultz SI, Lip GYH, Manley PB, Bhatia V, McCullough

2. Lane DA, Mayerhoff J, Rohner U, Lip G. Patients’ perceptions of

1. Witt DM, Delate T, Garcia DA, Clark NP, Hylek EM, Agno W,