A Conditional Cascade Model for Relational Triple Extraction

Feiliang Ren∗
renfeiliang@cse.neu.edu.cn
Northeastern University
Shenyang, China

Longhui Zhang∗
Northeastern University
Shenyang, China

Shujuan Yin
Northeastern University
Shenyang, China

Xiaofeng Zhao
Northeastern University
Shenyang, China

Shilei Liu
Northeastern University
Shenyang, China

Bochao Li
Northeastern University
Shenyang, China

ABSTRACT

Tagging based methods are one of the mainstream methods in relational triple extraction. However, most of them suffer from the class imbalance issue greatly. Here we propose a novel tagging based model that addresses this issue from following two aspects. First, at the model level, we propose a three-step extraction framework that can reduce the total number of samples greatly, which implicitly decreases the severity of the mentioned issue. Second, at the intra-model level, we propose a confidence threshold based cross entropy loss that can directly neglect some samples in the major classes. We evaluate the proposed model on NYT and WebNLG. Extensive experiments show that it can address the mentioned issue effectively and achieves state-of-the-art results on both datasets. The source code of our model is available at: https://github.com/neukg/ConCasRTE.

CCS CONCEPTS

Computing methodologies → Information extraction.

KEYWORDS

relational triple extraction, class imbalance issue

1 INTRODUCTION

Taking unstructured text (often sentences) as input, relational triple extraction (RTE for short) aims to extract triples that are in the form of (subject, relation, object), where both subject and object are entities and they are connected semantically by relation. RTE is important for some tasks like automatic knowledge graph construction.

∗Both authors contribute equally to this research and are listed randomly.

Nowadays, the methods that jointly extract entities and relations are dominant in RTE. Lots of novel joint extraction methods have been proposed [1, 5, 6, 14, 21–23, 25, 29], and they achieve much better results than the pipeline based methods. According to the extraction routines taken, most of existing joint extraction methods can be roughly classified into following three kinds. (i) Tagging based methods [21, 22, 29] that often use binary (positive and negative) tag sequences to determine: (1) the start and end tokens of entities, and (2) all the relations for each entity pair. (ii) Table-filling based methods [8, 13, 20, 28] that maintain a table for each relation and the items in a table usually denotes the start and end positions of two entities (or even the types of these entities) that possess this relation. (iii) Seq2Seq based methods [15, 25–27] that view a triple as a token sequence and generate a triple in some orders, such as first generate a relation, then generate entities, etc.

Recently, tagging based methods are attracting more and more research interests due to their superiority in both the performance and the ability of extracting triples from complex sentences that contain overlapping triples [27] or multiple triples. However, in these methods, the negative class usually contains far more samples than the positive class since there are always much more non-entity tokens in a sentence and most entity pairs possess only a very small number of relations. Therefore, these methods suffer from the class imbalance issue greatly: the major classes (here is the negative class) have far more samples than the minor classes (here is the positive class). This issue is very harmful to performance because it makes the training inefficient and the trained model biased towards the major classes [3, 9]. Most recent methods for addressing this issue can be divided into following two kinds [3]: (i) re-sampling based methods [31] that adjust the number of samples directly by adding repetitive data for the minor classes or removing data for the major classes; and (ii) cost-sensitive re-weighting based methods [3, 11, 12] that influence the loss function by assigning relatively higher costs to samples from minor classes. However, as [3] point out that the first ones are error-prone, and the second ones often make some assumptions on the sample difficulty and data distribution, but these assumptions do not always hold.

Obviously, the key of addressing the class imbalance issue is to narrow the number gap between samples in the classes of major and minor. Following this line, we propose ConCasRTE, a Conditional Cascade RTE model that can address this issue existed in the tagging based RTE methods from following two aspects. First, we propose a three-step extraction framework. Compared with existing two-step extraction framework [21, 22] that first extracts subjects then extracts objects and relations simultaneously based on the subjects
extracted, this new framework generates far less samples. Thus it narrows the mentioned number gap implicitly due to the fact that the less samples there are, the less possibility there would be a large mentioned number gap. Second, we propose a confidence threshold based cross entropy loss function that can directly neglect lots of samples in the major classes, which narrows the mentioned number gap explicitly. We evaluate ConCasRTE on two benchmark datasets, namely NYT and WebNLG. Extensive experiments show it is effective and achieves the state-of-the-art results on both datasets.

2 METHODOLOGY

The architecture of ConCasRTE is shown in Figure 1. There are four main modules in it: an Encoder module, a Subject-Tagger module, an Object-Tagger module, and a Relation Extraction module (RE for short). These modules work in a cascade manner. And the latter three modules form a three-step extraction framework: first extracts subjects, then extracts objects, and finally extracts relations.

Encoder
Firstly, a pre-trained BERT-Base (Cased) model [4] is used to generate an initial representation (denoted as \(h_i \)) for each token in an input sentence. Then the context features for subjects, objects, and relations are generated with Eq.(1), where \(W_{(.)} \in \mathbb{R}^{d_h \times d_h} \) are trainable weights, and \(b_{(.)} \in \mathbb{R}^{d_h} \) are biases.

\[
\begin{align*}
 h^i_{sub} &= W_{sub}h^i + b_{sub} \\
 h^i_{obj} &= W_{obj}h^i + b_{obj} \\
 h^i_{rel} &= W_{rel}h^i + b_{rel}
\end{align*}
\]

Subject/Object Taggers
Taking each token in a sentence as input, Subject-Tagger uses two binary tag sequences to determine whether it is the start and end tokens of a subject, as shown in Eq.(2).

\[
\begin{align*}
 p_{start}^{s,i} &= \sigma(W^{s}_{start}\ h^i_{sub} + b_{start}^s) \\
 p_{end}^{s,i} &= \sigma(W^{s}_{end}\ h^i_{sub} + b_{end}^s)
\end{align*}
\]

where \(p_{start}^{s,i} \) and \(p_{end}^{s,i} \) denote the probabilities of the \(i \)-th token being the start and end tokens of a subject respectively.

Subsequently, taking each extracted subject as an input prior condition, Object-Tagger extracts all objects of this subject. It also uses two binary tag sequences to determine whether a token in the input sentence is the start and end tokens of an object that can form a (subject, object) pair with the input subject, as shown in Eq.(3).

\[
\begin{align*}
 p_{start}^{o,i,k}&= \sigma(W^{o}_{start}\ h^i_{obj} \circ v^k + b_{start}^o) \\
 p_{end}^{o,i,k}&= \sigma(W^{o}_{end}\ h^i_{obj} \circ v^k + b_{end}^o)
\end{align*}
\]

where \(v^o_k \) is the vector representation of the \(k \)-th input subject and \(v^i \) is obtained by simply averaging all its tokens’ vector representations; \(p_{start}^{o,i,k} \) and \(p_{end}^{o,i,k} \) denote the probabilities of the \(i \)-th input token being the start and end tokens of an object that can form an entity pair with the \(k \)-th input subject; \(\circ \) denotes the hadamard product operation.

RE
Taking each (subject, object) pair as input, RE extracts all relations for this input entity pair, as shown in Eq.(4).

\[
p_{r}^{k,j} = \frac{1}{|LOC|} \sum_{i \in LOC} \sigma(W_{r} h_{\text{rel}}^{i} \circ v_{s}^{k} \circ v_{o}^{j} + b_{r}^{k,j}) \]

\[
LOC = \{loc_{s}^{k,\text{start}}, loc_{s}^{k,\text{end}}\} \cup \{loc_{o}^{j,\text{start}}, loc_{o}^{j,\text{end}}\}
\]

where \(v_{s}^{k} \text{ and } v_{o}^{j} \) are vector representations of the \(k \)-th subject and \(j \)-th object, and \(v_{s}^{k} \) is obtained by the same way as \(v_{s}^{k} \); \(p_{r}^{k,j} \in \mathbb{R}^{|R|} \) is a probability sequence, \(|R| \) is the size of the relation set \(R \), and each item in \(p_{r}^{k,j} \) corresponds to a specific relation and is used to determine whether this relation should be assigned to the input entity pair; \(loc_{s}^{k,\text{start}} \text{, } loc_{s}^{k,\text{end}} \text{, } loc_{o}^{j,\text{start}} \text{ and } loc_{o}^{j,\text{end}} \) denote the start and end positions of the two input entities; \(LOC \) is the position range of the input entity pair, and \(|LOC| \) is the number of tokens in this pair.

In Eq.(2)-(4), \(W^{s}_{(.)}, W^{o}_{(.)}, W_{r} \in \mathbb{R}^{1 \times d_h}, W_{(.)} \in \mathbb{R}^{|R| \times d_h} \) are weights, \(b_{sub}^{s}, b_{end}^{s}, b_{start}^{o}, b_{end}^{o} \in \mathbb{R}^{d_h} \) are biases, and \(\sigma \) is a sigmoid function.

Confidence Threshold based Loss
Traditional loss functions like cross entropy usually assign lower costs to samples whose predictions are correct and the model is confident for these predictions (here we say a model is confident for a prediction if it assigns a very high or a very low probability for this prediction). The major classes usually account for the majority of these low cost samples due to the overwhelming number of samples in them. So it would bring following two benefits if we directly neglect these low cost samples. First, most of the neglected samples would be in the major classes. Second, neglecting these samples wouldn’t have much impact on the model training since the predictions of these samples are correct and confident. Accordingly, the class imbalance issue would be alleviated greatly by such a neglect operation. Inspired by this, we propose a confidence threshold based cross entropy loss which makes a model only be trained by the samples whose predictions are...
are not confident or incorrect, as shown in Eq. (5)-(7).

\[
\begin{align*}
 ce'(p, t) &= \xi \ast ce(p, t) \\
 ce(p, t) &= -[t rop + (1 - t) log(1 - p)] \\
 \xi &= \begin{cases}
 0, & (t - T)(p - T) > 0 \land |p - 0.5| > C \\
 1, & \text{otherwise}
 \end{cases}
\end{align*}
\]

where \(ce'\) is the proposed loss; \(ce\) is a basic binary cross entropy loss; \(p \in (0, 1)\) is a prediction probability and \(t \in (0, 1)\) is its true tag; \(\xi\) is a switch coefficient to determine whether the model be trained by an input sample; \(T\) is a hyperparameter used to determine whether a prediction is assigned 1 or 0; \(C \in [0, 0.5]\) is a hyperparameter and we call it as confidence threshold; \(|p - 0.5| > C\) means the model is confident for the prediction: the larger the confidence threshold is set, the higher confident degree of the model for its predictions is required; and \((t - T)(p - T) > 0\) means the prediction is correct.

Finally, the proposed loss is used for training of the modules of Subject-Tagger, Object-Tagger, and RE. The overall loss of ConCasRTE is defined as the sum of these separated losses. During training, we take the popular teacher forcing strategy where the ground truth samples are used as input. To alleviate the exposure bias issue, we add some randomly generated noise samples into the ground truth samples and use them together.

3 EXPERIMENTS

3.1 Experiment Settings

Datasets Here following two benchmark datasets are used: NYT [17] and WebNLG [7]. Both of them have two different versions according to following two annotation standards: 1) annotating the last token of each entity, and 2) annotating the whole entity span. Following TPLinker [20], we denote the datasets based on the first standard as NYT* and WebNLG*, and the datasets based on the second standard as NYT and WebNLG. Some statistics of these datasets are shown in Table 1: EPO, SEO, and Normal refer to entity pair overlapping, single entity overlapping, and no overlapped triples respectively [27]. Note a sentence can belong to both EPO and SEO.

Evaluation Metrics The standard micro precision, recall, and F1 score are used to evaluate the results. There are two match standards for the RTE task: (i) Partial Match: an extracted triplet is regarded as correct if the predicted relation and the head of both subject entity and object entity are correct; (ii) Exact Match: a triplet is regarded as correct only when its entities and relation are completely matched with a correct triple. Here we follow [19–21]: use Partial Match on NYT* and WebNLG*, and use Exact Match on NYT and WebNLG.

Implementation Details AdamW [10] is used to train ConCasRTE. All the hyperparameters are determined based on the results on the development set. Finally, they are set as follows. On NYT and NYT*, the batch size is set to 18 and epoch is set to 100. On WebNLG and WebNLG*, the batch size is set to 6 and epoch is set to 50. On all datasets, the learning rate is set to \(1 \ast 10^{-5}\), the confidence threshold (C in Eq. (7)) is set to 0.1, and all other thresholds are set to 0.5.

Baselines Following strong state-of-the-art models are taken as baselines: ETL-Span [22], WDec [14], RSAN [23], RIN [18], PMEI [19], CasRel [21], and TPLinker [29]. We also implement a LSTM-encoder version of ConCasRTE where 300-dimensional GloVe embeddings [16] and 2-layer stacked BiLSTM are used.

3.2 Experimental Results

Main Results The main experimental results are shown in Table 2. We can see that ConCasRTE is very effective. On all datasets and under both match standards, it consistently outperforms all the compared state-of-the-art baselines in term of F1. As for other metrics, ConCasRTE achieves the best results on most of cases, and even the exceptions are very close to the best results.

Evaluations on Complex Sentences Here we evaluate ConCasRTE’s ability for extracting triples from complex sentences that contain overlapping triples or multiple triples. This ability is widely discussed by existing work, and can be viewed as an important metric to evaluate the robustness of a model. For fair comparison, we follow the settings of some previous best models [20, 21]: (i) classifying sentences according to the degree of entity overlapping and the number of triples contained in a sentence, and (ii) conducting experiments on different subsets of NYT* and WebNLG*.

The results are in Table 3, which demonstrate the great superiority of ConCasRTE for handling both kinds of complex sentences. On both datasets, it achieves much better results than the compared baselines. In fact, ConCasRTE inherits the main strengths of existing tagging based methods for extracting triples from complex sentences, while well addresses the class imbalance issue existed in these methods, thus it achieves much better results.

Detailed Analyses Table 4 shows some detailed experimental results about the proposed extraction framework and loss function. All these results are obtained when the BERT-based encoder used.

First, we evaluate the effectiveness of the proposed extraction framework. To this end, we implement ConCasRTEc, a variant that uses the basic binary cross entropy loss. Then we compare it with CasRel (the current best tagging based RTE model) since the main difference between them is the extraction framework. We can see ConCasRTEc achieves much better results on all datasets. In fact, the proposed framework can reduce the total number of samples greatly, which is much helpful for alleviating the class imbalance issue. Taking a 1-token sentence as example, the number of samples in ConCasRTE is \(2l + 2sl + n|R|\) (is the number of subjects extracted, and \(n\) is the number of all (subject, object) pairs). In this number, \(2l, 2sl,\) and \(n|R|\) are generated by the modules of Subject-Tagger, Object-Tagger, and RE respectively. In CasRel, the number of samples is \(2l + 2sl|R|\), where \(2l\) and \(2sl|R|\) are generated by its modules of subject extraction and object-relation extraction respectively. Usually \(n \ll l, \) thus \(2l + 2sl + n|R| \ll 2l + 2sl + l|R| < 2l + 2sl|R|\). And there are \(2l + 2n + 1 + 2sl\) samples in the positive classes of ConCasRTE and CasRel respectively (\(t\) is the number of triples), and the difference between these two numbers can be negligible since both are very small. So the number gap between samples in classes of positive and negative in ConCasRTE is much smaller than

Table 1: Statistics of datasets.
Category

Train
Normal
EPO
SEO

| 2l | 2sl | n|R| |
|---|---|---|
| 1 | 1 | 1 |
| 2l | 2sl | n|R| |
| 4 | 4 | 4 |
Table 2: Main experiments. * means the results are produced by us by running the available source code.

Model	Partial Match		Exact Match	
	NYP*	WebNLG*	NYP	WebNLG
	Prec. Rec. F1	Prec. Rec. F1	Prec. Rec. F1	Prec. Rec. F1
ETL-Span	84.9 72.3 78.1	84.0 91.5 87.6	85.5 71.7 78.0	84.3 82.0 83.1
WDDec	- - -	- - -	- - -	- - -
RSAN	- - -	85.7 83.6 84.6	80.5 83.8 82.1	- - -
RIN	87.2 87.3 87.3	87.6 87.0 87.3	83.9 85.5 84.7	77.3 76.8 77.0
CasRelLSTM	84.2 83.0 83.6	86.9 80.6 83.7	84.5 84.0 84.2	78.8 77.7 78.2
PMELSTM	88.7 86.8 87.8	88.7 87.6 88.1	86.0 82.0 84.0	91.9 81.6 86.4
TPLinkerLSTM	83.8 83.4 83.6	90.8 90.3 90.5	- - -	- - -
CasRelBERT	89.7 89.5 89.6	93.4 90.1 91.8	89.8* 88.2* 89.0*	88.3* 84.6* 86.4*
PMERBERT	90.5 89.8 90.1	91.0 92.9 92.0	88.4 88.9 88.7	80.8 82.8 81.8
TPLinkerBERT	91.3 92.5 91.9	91.8 92.0 91.9	91.4 92.6 92.0	88.9 84.5 86.7
ConCasRTELSTM	88.1 86.6 87.3	91.2 90.8 91.0	86.6 82.3 84.4	88.3 83.9 86.0
ConCasRTERBERT	92.9 92.3 92.6	93.8 92.5 93.1	92.9 92.1 92.5	90.6 88.1 89.3

Table 3: F1 scores on sentences with different overlapping pattern and different triplet number. Results of CasRel are copied from TPLinker directly. "T" is the number of triples contained in a sentence.

Model	NYP*	WebNLG*	Normal SEO EPO	WebNLG*	Normal SEO EPO	
	Prec. Rec. F1	Prec. Rec. F1	T = 1 T = 2 T = 3 T = 4 T ≥ 5	Prec. Rec. F1	Prec. Rec. F1	
CasRelBERT	87.3 91.4 92.0	88.2 90.3 91.9	94.2 83.7	92.1 91.9 92.0	94.2 83.7	92.1 91.9 92.0
TPLinkerBERT	90.1 93.4 94.0	90.0 92.8 93.1	90.0 87.9	92.6 92.5 93.3	88.0 90.1	94.6 93.3
ConCasRTERBERT	90.6 94.0 94.1	90.5 93.8 93.4	95.2 91.7	91.1 93.3 93.8	90.7 91.9	95.5 93.4

Table 4: Detailed Results (F1). ↑ means increased scores.

Models	NYP*	WebNLG*	NYP	WebNLG
ConCasRTE_{CE}	91.8	91.9	91.6	87.9
ConCasRTE_{DiffW}	92.1	92.4	91.8	88.4
ConCasRTE_{Res}	92.5	92.7	91.9	88.7
ConCasRTE_{Floss}	92.5	92.9	92.2	89.0
ETL-Span_{Clos}	78.9(7.0)	88.8(1.2)	78.8(10.8)	84.1(10.0)
CasRel_{Clos}	90.0(7.0)	92.3(7.0)	89.6(9.6)	87.9(1.5)
TPLinker_{Clos}	92.2(7.3)	92.5(7.6)	92.3(7.3)	88.1(1.4)

that in CasRel, which makes the class imbalance issue alleviated greatly.

Second, we evaluate the proposed loss function from the aspects of ability for addressing the class imbalance issue and adaptability.

(i) Ability Evaluation. To evaluate the proposed loss function’s ability for addressing the class imbalance issue, we implement following variants that use different methods for addressing the mentioned issue. (1) ConCasRTE_{DiffW}: a variant that assigns different weights for the losses of positive and negative classes (here 0.75 for the positive and 0.25 for the negative). (2) ConCasRTE_{Res}: a re-sampling based variant that randomly selects some samples from the negative class so that makes the proportion between samples in the classes of positive and negative be a predefined threshold (here is 1:5). (3) ConCasRTE_{Floss}, a variant that uses Focal Loss [11] (its hyperparameter γ is set to 2). We can see that the proposed loss brings the greatest performance improvement over ConCasRTE_{CE} than all the compared methods, which demonstrates the proposed loss is more effective. Different from existing state-of-the-art methods like Focal Loss, the proposed loss function does not try to increase the importance of samples in the minor classes. Instead, it directly removes some samples in the major classes so as to narrow the number gap between samples in the major and minor classes. These comparison results show this strategy is more effective.

(ii) Adaptability Evaluation. The proposed loss is applicable to a wide range of models since we don’t make any assumptions about the data distribution. For example, it can be used not only in the tagging based methods, but also in other kinds of methods. To evaluate this, we transplant it to following diverse models including ETL-Span, CasRel, and TPLinker. These new models are marked by a subscript "Clos". Results show that all these new models achieve significant improvement over their original ones on all datasets.

4 CONCLUSIONS

In this paper, we propose a novel conditional cascade RTE model. It contains following two novelties for addressing the class imbalance issue existed in the tagging based methods. First, we propose a simple but effective three-step extraction framework. Second, we propose an effective and adaptive confidence threshold based cross entropy loss function. We evaluate the proposed model on two benchmark datasets. Experiments show that both novelties can alleviate the class imbalance issue effectively, and they help the proposed model achieve state-of-the-art results on both datasets.
ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China (No.2018YFC0830701), the National Natural Science Foundation of China (No.61572120), the Fundamental Research Funds for the Central Universities (No.N181602013 and No.N171602003), Ten Thousand Talent Program (No.ZX20200035), and LiaoNing Distinguished Professor (No.XLYC1902057).

REFERENCES

[1] Giannis Bekoulis, Johannes Deleu, Thomas Demester, and Chris Develder. 2018. Joint entity recognition and relation extraction as a multi-head selection problem. Expert Systems With Applications 114 (2018), 34–45.

[2] Yee Seng Chan and Dan Roth. 2011. Exploiting Syntactic-semantic Structures for Relation Extraction. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 551–560.

[3] Yin Cui, Mengjin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-Balanced Loss Based on Effective Number of Samples. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 9268–9277.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina T. Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 4171–4186.

[5] Markus Eberts and Adrian Ulges. 2019. Span-Based Joint Entity and Relation Extraction with Transformer Pre-Training. In ECAI 2006–2013.

[6] Tso-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. 2019. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 1409–1418.

[7] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. Creating Training Corpora for NLG Micro-Planners. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 179–188.

[8] Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy. 2016. Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. The COLING 2016 Organizing Committee, Osaka, Japan, 2537–2547.

[9] Justin M. Johnson and Taghi M. Khoshgoftaar. 2019. Survey on deep learning with class imbalance. Journal of Big Data 6, 1 (2019), 1–54.

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2020. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 2 (2020), 518–527.

[12] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar. 2020. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020).

[13] Dale Schuurmans. 2003. Kernel methods. In 1st International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[14] Tapas Nayak and Hwee Tou Ng. 2020. Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 8528–8535.

[15] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1532–1543.

[16] Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations and their mentions without labeled text. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 148–163.

[17] Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao, and Xudong Liu. 2020. Recurrent Interaction Network for Jointly Extracting Entities and Classifying Relations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 3722–3732.