Kostka functions associated to complex reflection groups

Toshiaki Shoji

Abstract. Kostka functions $K_{\lambda,\mu}^\pm(t)$ associated to complex reflection groups are a generalization of Kostka polynomials, which are indexed by a pair λ, μ of r-partitions of n (and by the sign $+$, $-$). It is expected that there exists a close relationship between those Kostka functions and the intersection cohomology associated to the enhanced variety X of level r. In this paper, we study combinatorial properties of $K_{\lambda,\mu}^\pm(t)$ based on the geometry of X. In particular, we show that in the case where $\mu = (\cdots,-,\cdots,\mu(r))$ (and for arbitrary λ), $K_{\lambda,\mu}^-(t)$ has a Lascoux-Schützenberger type combinatorial description.

Introduction

In 1981, Lusztig gave a geometric interpretation of Kostka polynomials in the following sense; let V be an n-dimensional vector space over an algebraically closed field, and put $G = GL(V)$. Let P_n be the set of partitions of n. Let O_λ be the unipotent class in G labelled by $\lambda \in P_n$, and $K = IC(O_\lambda, \bar{Q}_l)$ the intersection cohomology associated to the closure O_λ of O_λ. Let $K_{\lambda,\mu}(t)$ be the Kostka polynomial indexed by $\lambda, \mu \in P_n$, and $\tilde{K}_{\lambda,\mu}(t) = t^{n(\mu)} K_{\lambda,\mu}(t^{-1})$ the modified Kostka polynomial (see 1.1 for the definition $n(\mu)$). Lusztig proved that

$$\tilde{K}_{\lambda,\mu}(t) = t^{n(\lambda)} \sum_{i \geq 0} \dim(\mathcal{H}_x^{2i}K) t^i$$

for $x \in O_\mu \subset O_\lambda$, where $\mathcal{H}_x^{2i}K$ is the stalk at x of the $2i$-th cohomology sheaf $\mathcal{H}^{2i}K$ of K. (0.1) implies that $K_{\lambda,\mu}(t) \in \mathbb{Z}_{\geq 0}[t]$.

Let $P_{n,r}$ be the set of r-tuple of partitions $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ such that $\sum_{i=1}^r |\lambda^{(i)}| = n$ (we write $|\lambda^{(i)}| = m$ if $\lambda^{(i)} \in P_m$). In [S1], [S2], Kostka functions $K_{\lambda,\mu}^\pm(t)$ associated to complex reflections groups (depending on the signs $+$, $-$) are introduced, which are apriori rational functions in t indexed by $\lambda, \mu \in P_{n,r}$. In the case where $r = 2$ (in this case $K_{\lambda,\mu}^-(t) = K_{\lambda,\mu}^+(t)$), it is proved in [S2] that $K_{\lambda,\mu}^\pm(t) \in \mathbb{Z}[t]$. In this case, Achar-Henderson [AH] proved that those (generalized) Kostka polynomials have a geometric interpretation in the following sense; under the previous notation, consider the variety $X = G \times V$ on which G acts naturally. Put $X_{uni} = G_{uni} \times V$, where G_{uni} is the set of unipotent elements in G. X_{uni} is a G-stable subset of X, and is isomorphic to the enhanced nilpotent cone introduced by [AH]. It is known by [AH], [T] that X_{uni} has finitely many G-orbits, which are naturally parametrized by $P_{n,2}$. They proved in [AH] that the modified Kostka polynomial $\tilde{K}_{\lambda,\mu}^\pm(t)$ ($\lambda, \mu \in P_{n,2}$), defined in a similar way as in the original case,
can be written as in (0.1) in terms of the intersection cohomology associated to the closure \overline{O}_λ of the G-orbit $O_\lambda \subset X_{\text{uni}}$.

In the case where $r = 2$, the interaction of geometric properties and combinatorial properties of Kostka polynomials was studied in [LS]. In particular, it was proved that in the special case where $\mu = (-, \mu^{(2)})$ (and for arbitrary $\lambda \in P_{n,2}$), $K_{\lambda,\mu}(t)$ has a combinatorial description analogous to Lascoux-Schützenberger theorem for the original Kostka polynomials ([M, III, (6.5)]).

We now consider the variety $X = G \times V^{r-1}$ for an integer $r \geq 1$, on which G acts diagonally, and let $X_{\text{uni}} = G_{\text{uni}} \times V^{r-1}$ be the G-stable subset of X. The variety X is called the enhanced variety of level r. In [S4], the relationship between Kostka functions $K_{\lambda,\mu}(t)$ indexed by $\lambda, \mu \in P_{n,r}$ and the geometry of X_{uni} was studied. In contrast to the case where $r = 1, 2$, X_{uni} has infinitely many G-orbits if $r \geq 3$. A partition $X_{\text{uni}} = \bigsqcup_{\lambda \in P_{n,r}} X_\lambda$ into G-stable pieces X_λ was constructed in [S3], and some formulas expressing the Kostka functions in terms of the intersection cohomology associated to the closure of X_λ were obtained in [S4], though it is a partial generalization of the result of Achar-Henderson for the case $r = 2$.

In this paper, we prove a formula (Theorem 2.6) which is a generalization of the formula in [AH, Theorem 4.5] (and also in [FGT (11)]) to arbitrary r. Combined this formula with the results in [S4], we extend some results in [LS] to arbitrary r. In particular, we show in the special case where $\mu = (-, \ldots, -, \mu^{(r)}) \in P_{n,r}$ (and for arbitrary $\lambda \in P_{n,r}$) that $K_{-\lambda,\mu}(t)$ has a Lasacoux-Schützenberger type combinatorial description.

1. Review on Kostka functions

1.1. First we recall basic properties of Hall-Littlewood functions and Kostka polynomials in the original setting, following [M]. Let $\Lambda = \Lambda(y) = \bigoplus_{n \geq 0} \Lambda^n$ be the ring of symmetric functions over \mathbb{Z} with respect to the variables $y = (y_1, y_2, \ldots)$, where Λ^n denotes the free \mathbb{Z}-module of symmetric functions of degree n. We put $\Lambda^Q = \mathbb{Q} \otimes_\mathbb{Z} \Lambda$, $\Lambda^Q_n = \mathbb{Q} \otimes_\mathbb{Z} \Lambda^n$. Let s_λ be the Schur function associated to $\lambda \in P_n$. Then $\{s_\lambda \mid \lambda \in P_n\}$ gives a \mathbb{Z}-basis of Λ^n. Let $p_\lambda \in \Lambda^n$ be the power sum symmetric function associated to $\lambda \in P_n$,

$$p_\lambda = \prod_{i=1}^k p_{\lambda_i},$$

where p_m denotes the m-th power sum symmetric function for each integer $m > 0$. Then $\{p_\lambda \mid \lambda \in P_n\}$ gives a \mathbb{Q}-basis of Λ^Q_n. For $\lambda = (1^{n_1}, 2^{n_2}, \ldots) \in P_n$, define an integer z_λ by

$$z_\lambda = \prod_{i \geq 1} i^{m_i} m_i !.$$

(1.1.1)

Following [M, I], we introduce a scalar product on Λ^Q by $\langle p_\lambda, p_\mu \rangle = \delta_{\lambda\mu} z_\lambda$. It is known that $\{s_\lambda\}$ form an orthonormal basis of Λ.

Let $P_\lambda(y;t)$ be the Hall-Littlewood function associated to a partition λ. Then
$$\{P_\lambda \mid \lambda \in \mathcal{P}_n\}$$
gives a $\mathbb{Z}[t]$-basis of $\Lambda^n[t] = \mathbb{Z}[t] \otimes_{\mathbb{Z}} \Lambda^n$, where t is an indeterminate.
Kostka polynomials $K_{\lambda,\mu}(t) \in \mathbb{Z}[t]$ ($\lambda, \mu \in \mathcal{P}_n$) are defined by the formula
\begin{equation}
(1.1.2)
 s_\lambda(y) = \sum_{\mu \in \mathcal{P}_n} K_{\lambda,\mu}(t) P_\mu(y;t).
\end{equation}

Recall the dominance order $\lambda \geq \mu$ in \mathcal{P}_n, which is defined by the condition
$\sum_{j=1}^i \lambda_j \geq \sum_{j=1}^i \mu_j$ for each $i \geq 1$. For each partition $\lambda = (\lambda_1, \ldots, \lambda_k)$, we define an
integer $n(\lambda)$ by $n(\lambda) = \sum_{i=1}^k (i-1) \lambda_i$. It is known that $K_{\lambda,\mu}(t) = 0$ unless $\lambda \geq \mu$,
and that $K_{\lambda,\mu}(t)$ is a monic of degree $n(\mu) - n(\lambda)$ if $\lambda \geq \mu$ ([M, III, (6.5)]). Put
$\widetilde{K}_{\lambda,\mu}(t) = t^{n(\mu)} K_{\lambda,\mu}(t^{-1})$. Then $\widetilde{K}_{\lambda,\mu}(t) \in \mathbb{Z}[t]$, which we call the modified Kostka
polynomial.

For $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathcal{P}_n$ with $\lambda_k > 0$, we define $z_\lambda(t) \in \mathbb{Q}(t)$ by
\begin{equation}
(1.1.3)
 z_\lambda(t) = z_\lambda \prod_{i \geq 1} (1 - t^{\lambda_i})^{-1},
\end{equation}
where z_λ is as in (1.1.1). Following [M, III], we introduce a scalar product on
$\Lambda_\mathbb{Q}(t) = \mathbb{Q}(t) \otimes_{\mathbb{Z}} \Lambda$ by $\langle P_\lambda, p_\mu \rangle = z_\lambda(t) \delta_{\lambda,\mu}$. Then $P_\lambda(y;t)$ form an orthogonal basis
of $\Lambda[t] = \mathbb{Z}[t] \otimes_{\mathbb{Z}} \Lambda$. In fact, they are characterized by the following two properties
([M, III, (2.6) and (4.9)]);
\begin{equation}
(1.1.4)
 P_\lambda(y;t) = s_\lambda(y) + \sum_{\mu < \lambda} w_{\lambda\mu}(t) s_\mu(y)
\end{equation}
with $w_{\lambda\mu}(t) \in \mathbb{Z}[t]$, and
\begin{equation}
(1.1.5)
 \langle P_\lambda, P_\mu \rangle = 0 \text{ unless } \lambda = \mu.
\end{equation}

1.2. We fix a positive integer r. Let $\Xi = \Xi(x) \simeq \Lambda(x^{(1)}) \otimes \cdots \otimes \Lambda(x^{(r)})$ be the ring of symmetric functions over \mathbb{Z} with respect to variables $x = (x^{(1)}, \ldots, x^{(r)})$,
where $x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \ldots)$. We denote it as $\Xi = \bigoplus_{n \geq 0} \Xi^n$, similarly to the case
of Λ. Let $\mathcal{P}_{n,r}$ be as in Introduction. For $\lambda \in \mathcal{P}_{n,r}$, we define a Schur function
$s_\lambda(x) \in \Xi^n$ by
\begin{equation}
(1.2.1)
 s_\lambda(x) = s_{\lambda^{(1)}}(x^{(1)}) \cdots s_{\lambda^{(r)}}(x^{(r)}).
\end{equation}
Then $\{s_\lambda \mid \lambda \in \mathcal{P}_{n,r}\}$ gives a \mathbb{Z}-basis of Ξ^n. Let ζ be a primitive r-th root of unity
in \mathbb{C}. For an integer $m \geq 1$ and k such that $1 \leq k \leq r$, put
$$p_{m}^{(k)}(x) = \sum_{j=1}^{r} \zeta^{(k-1)(j-1)} p_{m}(x^{(j)}),$$
where \(p_m(x^{(j)}) \) denotes the \(m \)-th power sum symmetric function with respect to the variables \(x^{(j)} \). For \(\lambda \in \mathcal{P}_{n,r} \), we define \(p_\lambda(x) \in \Xi^n_C = \Xi^n \otimes Z \ C \) by

\[
(1.2.2) \quad p_\lambda(x) = \prod_{k=1}^r \prod_{j=1}^{m_k} p_{\lambda_{j}}^{(k)}(x),
\]

where \(\lambda^{(k)} = (\lambda_1^{(k)}, \ldots, \lambda_m^{(k)}) \) with \(\lambda_m^{(k)} > 0 \). Then \(\{p_\lambda \mid \lambda \in \mathcal{P}_{n,r}\} \) gives a \(C \)-basis of \(\Xi^n_C \). For a partition \(\lambda^{(k)} \) as above, we define a function \(z_{\lambda^{(k)}}(t) \in C(t) \) by

\[
z_{\lambda^{(k)}}(t) = \prod_{j=1}^{m_k} (1 - \xi^{k-1} t^{\lambda_{j}})^{-1}.
\]

For \(\lambda \in \mathcal{P}_{n,r} \), we define an integer \(z_{\lambda} \) by \(z_{\lambda} = \prod_{k=1}^r r^{m_k} z_{\lambda^{(k)}} \), where \(z_{\lambda^{(k)}} \) is as in (1.1.1). We now define a function \(z_\lambda(t) \in C(t) \) by

\[
(1.2.3) \quad z_\lambda(t) = z_{\lambda} \prod_{k=1}^r z_{\lambda^{(k)}}(t).
\]

Let \(\Xi[t] = Z[t] \otimes Z \Xi \) be the free \(Z[t] \)-module, and \(\Xi_C(t) = C(t) \otimes Z \Xi \) be the \(C(t) \)-space. Then \(\{p_\lambda(x) \mid \lambda \in \mathcal{P}_{n,r}\} \) gives a basis of \(\Xi^n_C(t) \). We define a sesquilinear form on \(\Xi^n_C(t) \) by

\[
(1.2.4) \quad \langle p_\lambda, p_\mu \rangle = \delta_{\lambda,\mu} z_\lambda(t).
\]

We express an \(r \)-partition \(\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)}) \) as \(\lambda^{(k)} = (\lambda_1^{(k)}, \ldots, \lambda_m^{(k)}) \) with a common \(m \), by allowing zero on parts \(\lambda_j^{(i)} \), and define a composition \(c(\lambda) \) of \(n \) by

\[
c(\lambda) = (\lambda_1^{(1)}, \ldots, \lambda_1^{(r)}, \lambda_2^{(1)}, \ldots, \lambda_2^{(r)}, \ldots, \lambda_m^{(1)}, \ldots, \lambda_m^{(r)}).
\]

We define a partial order \(\lambda \geq \mu \) on \(\mathcal{P}_{n,r} \) by the condition \(c(\lambda) \geq c(\mu) \), where \(\geq \) is the dominance order on the set of compositions of \(n \) defined in a similar way as in the case of partitions. We fix a total order \(\lambda > \mu \) on \(\mathcal{P}_{n,r} \) compatible with the partial order \(\lambda > \mu \).

The following result was proved in Theorem 4.4 and Proposition 4.8 in [S1], combined with [S2, §3].

Proposition 1.3. For each \(\lambda \in \mathcal{P}_{n,r} \), there exist unique functions \(P^\pm_\lambda(x;t) \in \Xi^n_Q(t) \) (depending on the signs \(+, - \)) satisfying the following properties.

(i) \(P^\pm_\lambda(x;t) \) can be written as

\[
P^\pm_\lambda(x;t) = s_\lambda(x) + \sum_{\mu < \lambda} u^\pm_{\lambda,\mu}(t)s_\mu(x)
\]

with \(u^\pm_{\lambda,\mu}(t) \in Q(t) \).
(ii) \(\langle P_\lambda^-, P_\mu^+ \rangle = 0 \) unless \(\lambda = \mu \).

1.4. \(P_\lambda^\pm(x; t) \) are called Hall-Littlewood functions associated to \(\lambda \in \mathcal{P}_{n,r} \). By Proposition 1.3, for \(\varepsilon \in \{+, -\} \), \(\{ P_\lambda^\varepsilon \mid \lambda \in \mathcal{P}_{n,r} \} \) gives a \(\mathbb{Q}(t) \)-basis for \(\Xi_{\mathbb{Q}}(t) \). For \(\lambda, \mu \in \mathcal{P}_{n,r} \), we define functions \(K_{\lambda, \mu}^\pm(t) \in \mathbb{Q}(t) \) by

\[
(1.4.1) \quad s_\lambda(x) = \sum_{\mu \in \mathcal{P}_{n,r}} K_{\lambda, \mu}^\pm(t) P_\mu^\pm(x; t).
\]

\(K_{\lambda, \mu}^\pm(t) \) are called Kostka functions associated to complex reflection groups since they are closely related to the complex reflection group \(S_n \times (\mathbb{Z}/r\mathbb{Z})^n \) (see [S1, Theorem 5.4]). For each \(\lambda \in \mathcal{P}_{n,r} \), by putting \(n(\lambda) = n(\lambda^{(1)}) + \cdots + n(\lambda^{(r)}) \), we define an \(a \)-function \(a(\lambda) \) on \(\mathcal{P}_{n,r} \) by

\[
(1.4.2) \quad a(\lambda) = r \cdot n(\lambda) + |\lambda^{(2)}| + 2|\lambda^{(3)}| + \cdots + (r - 1)|\lambda^{(r)}|.
\]

We define modified Kostka functions \(\tilde{K}_{\lambda, \mu}^\pm(t) \) by

\[
(1.4.3) \quad \tilde{K}_{\lambda, \mu}^\pm(t) = t^{a(\mu)} K_{\lambda, \mu}^\pm(t^{-1}).
\]

Remark 1.5. In the case where \(r = 1 \), \(P_\lambda^\pm(x; t) \) coincides with the original Hall-Littlewood function given in 1.1. In the case where \(r = 2 \), it is proved by [S2, Prop. 3.3] that \(P_{\lambda^-}^- = P_{\lambda^+}^+ \), hence \(K_{\lambda, \mu}^- = K_{\lambda, \mu}^+ \in \mathbb{Z}[t] \). Moreover it is shown that \(K_{\lambda, \mu}^\pm(t) \in \mathbb{Z}[t] \), which is a monic of degree \(a(\mu) - a(\lambda) \). Thus \(\tilde{K}_{\lambda, \mu}^\pm(t) \in \mathbb{Z}[t] \). As mentioned in Introduction \(\tilde{K}_{\lambda, \mu}^\pm(t) \) has a geometric interpretation, which imples that \(K_{\lambda, \mu}^\pm(t) \), and so \(P_{\lambda}^\pm(x; t) \) are independent of the choice of the total order \(\prec \) on \(\mathcal{P}_{n,r} \). In the case where \(r \geq 3 \), it is not known whether Hall-Littlewood functions do not depend on the choice of the total order \(\prec \), whether \(K_{\lambda, \mu}^\pm(t) \) are polynomials in \(t \).

2. Enhanced variety of level \(r \)

2.1. Let \(V \) be an \(n \)-dimensional vector space over an algebraic closure \(k \) of a finite field \(F_q \), and \(G = GL(V) \simeq GL_n \). Let \(B = TU \) be a Borel subgroup of \(G \), \(T \) a maximal torus and \(U \) the unipotent radical of \(B \). Let \(W = N_G(T)/T \) be the Weyl group of \(G \), which is isomorphic to the symmetric group \(S_n \). By fixing an integer \(r \geq 1 \), put \(\mathcal{B} = G \times V^{r-1} \) and \(\mathcal{B}_{\text{uni}} = G_{\text{uni}} \times V^{r-1} \), where \(G_{\text{uni}} \) is the set of unipotent elements in \(G \). The variety \(\mathcal{B} \) is called the enhanced variety of level \(r \). We consider the diagonal action of \(G \) on \(\mathcal{B} \). Put \(\mathcal{B}_{n,r} = \{ \mathbf{m} = (m_1, \ldots, m_r) \in \mathbb{Z}_{\geq 0}^r \mid \sum m_i = n \} \). For each \(\mathbf{m} \in \mathcal{B}_{n,r} \), we define integers \(p_i = p_i(\mathbf{m}) \) by \(p_i = m_1 + \cdots + m_i \) for \(i = 1, \ldots, r \). Let \((M_i)_{1 \leq i \leq n} \) be the total flag in \(V \) whose stabilizer in \(G \) coincides with \(B \). We define varieties
\[\tilde{X}_m = \{(x, v, gB) \in G \times V^{r-1} \times G/B \mid g^{-1}xg \in B, g^{-1}v \in \prod_{i=1}^{r-1} M_{p_i} \}, \]

\[\mathcal{X}_m = \bigcup_{g \in G} g(B \times \prod_{i=1}^{r-1} M_{p_i}), \]

and the map \(\pi_m : \tilde{X}_m \to \mathcal{X}_m \) by \((x, v, gB) \mapsto (x, v)\). We also define the varieties

\[\tilde{X}_{m, \text{uni}} = \{(x, v, gB) \in G_{\text{uni}} \times V^{r-1} \times G/B \mid g^{-1}xg \in U, g^{-1}v \in \prod_{i=1}^{r-1} M_{p_i} \}, \]

\[\mathcal{X}_m = \bigcup_{g \in G} g(U \times \prod_{i=1}^{r-1} M_{p_i}), \]

and the map \(\pi_{m, 1} : \tilde{X}_{m, \text{uni}} \to \mathcal{X}_{m, \text{uni}} \), similarly. Note that in the case where \(m = (n, 0, \ldots, 0) \), \(\tilde{X}_m \) (resp. \(\tilde{X}_{m, \text{uni}} \)) coincides with \(\tilde{X} \) (resp. \(\tilde{X}_{\text{uni}} \)). In that case, we denote \(\tilde{X}_m, \pi_m, \) etc. by \(\tilde{X}, \pi, \) etc. by omitting the symbol \(m \). (Note: here we follow the notation in [S4], but, in part, it differs from [S3]. In [S3], our \(\pi_m, \pi_{m, 1} \) are denoted by \(\pi^{(m)}, \pi_1^{(m)} \) for the consistency with the exotic case).

2.2. In [S3, 5.3], a partition of \(\mathcal{X}_{\text{uni}} \) into pieces \(X_\lambda \) is defined

\[\mathcal{X}_{\text{uni}} = \bigsqcup_{\lambda \in \mathcal{P}_{n, r}} X_\lambda, \]

where \(X_\lambda \) is a locally closed, smooth irreducible, \(G \)-stable subvariety of \(\mathcal{X}_{\text{uni}} \). If \(r = 1 \) or \(2 \), \(X_\lambda \) is a single \(G \)-orbit. However, if \(r \geq 3 \), \(X_\lambda \) is in general a union of infinitely many \(G \)-orbits.

For \(m \in \mathcal{P}_{n, r} \), let \(W_m = S_{m_1} \times \cdots \times S_{m_r} \) be the Young subgroup of \(W = S_n \). For \(m \in \mathcal{P}_{n, r} \), we denote by \(\mathcal{P}(m) \) the set of \(\lambda \in \mathcal{P}_{n, r} \) such that \(|\lambda^{(i)}| = m_i \). The (isomorphism classes of) irreducible representations (over \(\bar{\mathbb{Q}}_l \)) of \(W_m \) are parametrized by \(\mathcal{P}(m) \). We denote by \(V_\lambda \) an irreducible representation of \(W_m \) corresponding to \(\lambda \), namely \(V_\lambda = V_{\lambda^{(1)}} \otimes \cdots \otimes V_{\lambda^{(r)}} \), where \(V_\mu \) denotes the irreducible representation of \(S_n \) corresponding to the partition \(\mu \) of \(n \). (Here we use the parametrization such that \(V_{(n)} \) is the trivial representation of \(S_n \)). The following results were proved in [S3].

Theorem 2.3 ([S3, Thm. 4.5]). Put \(d_m = \dim \mathcal{X}_m \). Then \((\pi_m)_* \mathcal{Q}_l[d_m] \) is a semisimple perverse sheaf equipped with the action of \(W_m \), and is decomposed as

\[(\pi_m)_* \mathcal{Q}_l[d_m] \cong \bigoplus_{\lambda \in \mathcal{P}(m)} V_\lambda \otimes \text{IC}(\mathcal{X}_m, \mathcal{L}_\lambda)[d_m], \]

where \(\mathcal{L}_\lambda \) is a simple local system on a certain open dense subvariety of \(\mathcal{X}_m \).
Theorem 2.4 ([S3, Thm. 8.13, Thm. 7.12]). Put \(d'_m = \dim \mathcal{X}_{m, \text{uni}} \).

(i) \((\pi_{m,1})_* \mathcal{Q}_t[d'_m] \) is a semisimple perverse sheaf equipped with the action of \(W_m \), and is decomposed as

\[
(\pi_{m,1})_* \mathcal{Q}_t[d'_m] \cong \bigoplus_{\lambda \in \mathcal{P}(m)} V_{\lambda} \otimes \text{IC}(\overline{\mathcal{X}}_{\lambda}, \mathcal{Q}_t)[\dim X_{\lambda}].
\]

(ii) We have \(\text{IC}(\mathcal{X}_{m, \text{uni}}, \mathcal{L})|_{\mathcal{X}_{m, \text{uni}}} \cong \text{IC}(\overline{\mathcal{X}}_{\lambda}, \mathcal{Q}_t)[\dim X_{\lambda} - d'_m] \).

2.5. For a partition \(\lambda \), we denote by \(\lambda^t \) the dual partition of \(\lambda \). For \(\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)}) \in \mathcal{P}(m) \), we define \(\lambda^t \in \mathcal{P}(m) \) by \(\lambda^t = ((\lambda^{(1)})^t, \ldots, (\lambda^{(r)})^t) \). Assume that \(\lambda \in \mathcal{P}(m) \). We write \((\lambda^{(i)})^t \) as \((\mu_1^{(i)} \leq \mu_2^{(i)} \leq \cdots \leq \mu_{\ell_i}^{(i)}) \), in the increasing order, where \(\ell_i = \lambda^{(i)} \). For each \(1 \leq i \leq r, 1 \leq j < \ell_i \), we define an integer \(n(i, j) \) by

\[
n(i, j) = (|\lambda^{(1)}| + \cdots + |\lambda^{(i-1)}|) + \mu_1^{(i)} + \cdots + \mu_j^{(i)}.
\]

Let \(Q = Q_\lambda \) be the stabilizer of the partial flag \((M_{n(i, j)}) \) in \(G \), and \(U_Q \) the unipotent radical of \(Q \). In particular, \(Q \) stabilizes the subspaces \(M_{n(i, j)} \). Let us define a variety \(\tilde{\mathcal{X}}_{\lambda} \) by

\[
\tilde{\mathcal{X}}_{\lambda} = \{(x, v, gQ) \in G_{\text{uni}} \times V^{r-1} \times G/Q \mid g^{-1}xg \in U_Q, g^{-1}v \in \prod_{i=1}^{r-1} M_{n(i, j)} \}.
\]

We define a map \(\pi_{\lambda} : \tilde{\mathcal{X}}_{\lambda} \to \mathcal{X}_{\text{uni}} \) by \((x, v, gQ) \mapsto (x, v) \). Then \(\pi_{\lambda} \) is a proper map. Since \(\tilde{\mathcal{X}}_{\lambda} \cong G \times^Q (U_Q \times \prod_i M_{n(i, j)}) \), \(\tilde{\mathcal{X}}_{\lambda} \) is smooth and irreducible. It is known by [S3, Lemma 5.6] that \(\dim \tilde{\mathcal{X}}_{\lambda} = \dim X_{\lambda} \) and that \(\text{Im} \pi_{\lambda} \) coincides with \(\overline{\mathcal{X}}_{\lambda} \), the closure of \(X_{\lambda} \) in \(\mathcal{X}_{\text{uni}} \).

For \(\lambda, \mu \in \mathcal{P}_n \), let \(K_{\lambda, \mu} = K_{\lambda, \mu}(1) \) be the Kostka number. We have \(K_{\lambda, \mu} = 0 \) unless \(\lambda \geq \mu \). For \(\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)}) \), \(\mu = (\mu^{(1)}, \ldots, \mu^{(r)}) \in \mathcal{P}(m) \), we define an integer \(K_{\lambda, \mu} \) by

\[
K_{\lambda, \mu} = K_{\lambda^{(1)}, \mu^{(1)}} K_{\lambda^{(2)}, \mu^{(2)}} \cdots K_{\lambda^{(r)}, \mu^{(r)}}.
\]

We define a partial order \(\lambda \geq \mu \) in \(\mathcal{P}_{n,r} \) by the condition \(\lambda^{(i)} \geq \mu^{(i)} \) for \(i = 1, \ldots, r \). Hence \(\lambda \geq \mu \) implies that \(\lambda, \mu \in \mathcal{P}(m) \) for a common \(m \). We have \(K_{\lambda, \mu} = 0 \) unless \(\lambda \geq \mu \). Note that \(\lambda \geq \mu \) implies that \(\mu^t \geq \lambda^t \). We show the following theorem. In the case where \(r = 2 \), this result was proved by [AH, Thm. 4.5].

Theorem 2.6. Assume that \(\lambda \in \mathcal{P}_{n,r} \). Then \((\pi_{\lambda})_* \mathcal{Q}_t[\dim X_{\lambda}] \) is a semisimple perverse sheaf on \(\overline{\mathcal{X}}_{\lambda} \), and is decomposed as

\[
(\pi_{\lambda})_* \mathcal{Q}_t[\dim X_{\lambda}] \cong \bigoplus_{\mu \preceq \lambda} K_{\mu^t, \lambda^t} \mathcal{Q}_t \otimes \text{IC}(\overline{\mathcal{X}}_{\mu^t}, \mathcal{Q}_t)[\dim X_{\mu^t}].
\]
2.7. The rest of this section is devoted to the proof of Theorem 2.6. First we consider the case where \(r = 1 \). Actually, the result in this case is contained in [AH]. Their proof (for \(r = 2 \)) depends on the result of Spaltenstein [Sp] concerning the “Springer fibre” \((\pi_\lambda)^{-1}(z)\) for \(z \in \mathfrak{X}_\lambda \) in the case \(r = 1 \). In the following, we give an alternate proof independent of [Sp] for the later use. Let \(Q \) be a parabolic subgroup of \(G \) containing \(B, M \) the Levi subgroup of \(Q \) containing \(T \) and \(U_Q \) the unipotent radical of \(Q \). (In this stage, this \(Q \) is independent of \(Q \) in 2.5.) Let \(W_Q \) be the Weyl subgroup of \(W \) corresponding to \(Q \). Let \(G_{\text{reg}} \) be the set of regular semisimple elements in \(G \), and put \(T_{\text{reg}} = G_{\text{reg}} \cap T \). Consider the map \(\psi : \tilde{G}_{\text{reg}} \to G_{\text{reg}}, \) where

\[
\tilde{G}_{\text{reg}} = \{(x, gT) \in G_{\text{reg}} \times G/T \mid g^{-1}xg \in T_{\text{reg}}\}
\]

and \(\psi : (x, gT) \mapsto x \). Then \(\psi \) is a finite Galois covering with group \(W \). We also consider a variety

\[
\tilde{G}_{\text{reg}}^M = \{(x, gM) \in G_{\text{reg}} \times G/M \mid g^{-1}xg \in M_{\text{reg}}\},
\]

where \(M_{\text{reg}} = G_{\text{reg}} \cap M \). The map \(\psi \) is decomposed as

\[
\psi : \tilde{G}_{\text{reg}} \xrightarrow{\psi'} \tilde{G}_{\text{reg}}^M \xrightarrow{\psi''} G_{\text{reg}},
\]

where \(\psi' : (x, gT) \mapsto (x, gM) \), \(\psi'' : (x, gM) \mapsto x \). Here \(\psi' \) is a finite Galois covering with group \(W_Q \). Now \(\psi_* \tilde{Q}_l \) is a semisimple local system on \(G_{\text{reg}} \) such that \(\text{End}(\psi_* \tilde{Q}_l) \simeq \tilde{Q}_l[W] \), and is decomposed as

\[
(2.7.1) \quad \psi_* \tilde{Q}_l \simeq \bigoplus_{\rho \in W^\wedge} \rho \otimes L_{\rho},
\]

where \(L_{\rho} = \text{Hom}_W(\rho, \psi_* \tilde{Q}_l) \) is a simple local system on \(G_{\text{reg}} \). We also have

\[
(2.7.2) \quad \psi'_* Q_l \simeq \bigoplus_{\rho' \in W_Q^\wedge} \rho' \otimes L_{\rho'},
\]

where \(L_{\rho'} \) is a simple local system on \(\tilde{G}_{\text{reg}}^M \). Hence

\[
(2.7.3) \quad \psi_* \tilde{Q}_l \simeq \psi''_* \psi'_* Q_l \simeq \bigoplus_{\rho' \in W_Q^\wedge} \rho' \otimes \psi''_* L_{\rho'}.
\]

(2.7.3) gives a decomposition of \(\psi_* \tilde{Q}_l \) with respect to the action of \(W_Q \). Comparing (2.7.1) and (2.7.3), we have
(2.7.4)
\[\psi_* \mathcal{L}'' \simeq \bigoplus_{\rho \in \mathcal{W}^\times} \mathcal{Q}_t^{(\rho, \rho')} \otimes \mathcal{L}_{\rho'} \]

where \((\rho : \rho')\) is the multiplicity of \(\rho'\) in the restricted \(W_Q\)-module \(\rho\).

We consider the map \(\pi : \tilde{G} \to G\), where

\[\tilde{G} = \{(x, gB) \in G \times G/B \mid g^{-1}xg \in B\} \simeq G \times^B B, \]
and \(\pi : (x, gB) \mapsto x\). We also consider

\[\tilde{G}^Q = \{(x, gQ) \in G \times G/Q \mid g^{-1}xg \in Q\} \simeq G \times^Q Q. \]

The map \(\pi\) is decomposed as

\[\pi : \tilde{G} \xrightarrow{\pi'} \tilde{G}^Q \xrightarrow{\pi''} G, \]

where \(\pi' : (x, gB) \mapsto (x, gQ)\), \(\pi'' : (x, gQ) \mapsto x\). It is well-known ([L1]) that

(2.7.5)
\[\pi_* \mathcal{Q}_t \simeq \bigoplus_{\rho \in \mathcal{W}^\times} \rho \otimes \text{IC}(G, \mathcal{L}_\rho). \]

Let \(B_M = B \cap M\) be the Borel subgroup of \(M\) containing \(T\). We consider the following commutative diagram

(2.7.6)
\[
\begin{array}{ccc}
G \times^B B & \xleftarrow{\tilde{p}} & G \times (Q \times^B B) & \xrightarrow{\tilde{q}} & M \times^{B_M} B_M \\
\pi' \downarrow & & \downarrow r & & \downarrow \pi^M \\
G \times^Q Q & \xleftarrow{p} & G \times Q & \xrightarrow{q} & M,
\end{array}
\]

where under the identification \(G \times^B B \simeq G \times^Q (Q \times^B B)\), the maps \(p, \tilde{p}\) are defined by the quotient by \(Q\). The map \(q\) is a projection to the \(M\)-factor of \(Q\), and \(\tilde{q}\) is the map induced from the projection \(Q \times B \to M \times B_M\). \(\pi^M\) is defined similarly to \(\pi\) replacing \(G\) by \(M\). The map \(r\) is defined by \((g, h \star x) \mapsto (g, hxh^{-1})\). (We use the notation \(h \star x \in Q \times^B B\) to denote the \(B\)-orbit in \(Q \times B\) containing \((h, x)\).) Here all the squares are cartesian squares. Moreover,

(a) \(p\) is a principal \(Q\)-bundle.

(b) \(q\) is a locally trivial fibration with fibre isomorphic to \(G \times U_Q\).

Thus as in [S4, (1.5.2)], for any \(M\)-equivariant simple perverse sheaf \(A_1\) on \(M\), there exists a unique (up to isomorphism) simple perverse sheaf \(A_2\) on \(\tilde{G}^Q\) such that \(p^*A_2[a] \simeq q^*A_1[b]\), where \(a = \dim Q\) and \(b = \dim G + \dim U_Q\).
By using the cartesian squares in (2.7.6), and by (2.7.2), we see that
\[\pi^\prime_\ast \bar{Q} \simeq \text{IC}(\tilde{G}^Q, \psi^\prime_\ast \bar{Q}) \], and \(\pi^\prime_\ast \bar{Q} \) is decomposed as

\[(2.7.7) \pi^\prime_\ast \bar{Q} \simeq \bigoplus_{\rho' \in W^\wedge} \bar{Q}^{(\rho'; \rho)} \otimes \text{IC}(G, L') \].

By comparing (2.7.4) and (2.7.7), we have

\[(2.7.8) \pi^\prime\prime_\ast \text{IC}(\tilde{G}^Q, L') \simeq \bigoplus_{\rho' \in W^\wedge} \bar{Q}_l^{(\rho'; \rho)} \otimes \text{IC}(\tilde{G}, \bar{Q}_l \otimes \text{IC}(G, L')) \].

Note that if \(\rho = V_\lambda \) for \(\lambda \in \mathcal{P}_n \), we have

\[(2.7.9) \text{IC}(G, L_\rho) \mid_{G\text{uni}} \simeq \text{IC}(O_\lambda^{\rho}, \bar{Q}_l \mid_{\dim O_\lambda^{\rho} - 2\nu_G}) \]

by [BM], where \(\nu_G = \dim U \). Hence by restricting on \(G\text{uni} \), we have

\[(2.7.10) \pi^\prime\prime_\ast \text{IC}(\tilde{G}^Q, L') \mid_{G\text{uni}} \simeq \bigoplus_{\lambda \in \mathcal{P}_n} \bar{Q}_l^{(V_\lambda : \rho')} \otimes \text{IC}(O_\lambda^{\rho}, \bar{Q}_l \mid_{\dim O_\lambda^{\rho}}) \].

2.8.

Now assume that \(W_Q \simeq S_\mu \) for a partition \(\mu \), where we put \(S_\mu = S_{\mu_1} \times \cdots \times S_{\mu_k} \) if \(\mu = (\mu_1, \ldots, \mu_k) \in \mathcal{P}_n \). Take \(\rho' = \varepsilon \) the sign representation of \(W_Q \).

We have

\[(2.8.1) (V_\lambda : \varepsilon) = (V_{\lambda'} : 1_W) = K_{\lambda', \mu}, \]

where \(1_W \) is the trivial representation of \(W_Q \).

The restriction of the diagram (2.7.6) to the “unipotent parts” makes sense, and we have the commutative diagram

\[\begin{array}{ccc} G \times B U & \xleftarrow{p_1} & G \times Q (Q \times B U) \xrightarrow{q_1} M \times B_M U_M \\ \downarrow & & \downarrow \\ G \times Q \text{uni} & \xrightarrow{p_1} & G \times Q \text{uni} \xrightarrow{q_1} M\text{uni}, \end{array} \]

where \(U_M \) is the unipotent radical of \(B_M \), and \(Q\text{uni}, M\text{uni} \) are the set of unipotent elements in \(Q, M \), respectively. \(p_1, q_1 \) have similar properties as (a), (b) in 2.7. We consider \(\text{IC}(M, L_\varepsilon^M) \) on \(M \), where \(L_\varepsilon^M \) is the simple local system on \(M_{\text{reg}} \) corresponding to \(\varepsilon \in W^\wedge \). Then by (2.7.6), we see that

\[p^\ast \text{IC}(\tilde{G}^Q, L_\varepsilon^M) \simeq q^\ast \text{IC}(M, L_\varepsilon^M). \]

By applying (2.7.9) to \(M \), \(\text{IC}(M, L_\varepsilon^M) \mid_{M\text{uni}} \simeq \text{IC}(\overline{G}, \bar{Q}_l \mid_{\dim \overline{G} - 2\nu_M}) \), where \(\overline{G} \) is the orbit in \(M\text{uni} \) corresponding to \(\varepsilon \) under the Springer correspondence, and \(\nu_M \)
is defined similarly to ν_G. It is known that \mathcal{O}_{ν_G} is the orbit $\{e\} \subset M_{\text{uni}}$, where e is the identity element in M. Hence $\text{IC}(M, \mathcal{L}_e^M)|_{M_{\text{uni}}}$ coincides with $\mathcal{Q}_l[-2\nu_M]$ supported on $\{e\}$. It follows, by (2.8.2)

(2.8.3) The restriction of $\text{IC}(\tilde{G}_Q, \mathcal{L}_e^Q)$ on $G \times Q_{\text{uni}}$ coincides with $i_* \mathcal{Q}_l[-2\nu_M]$, where $i : G \times Q \to G \times Q_{\text{uni}}$ is the closed embedding.

We define a map $\pi_Q : G \times Q U_Q \to G_{\text{uni}}$ by $g \ast x \mapsto gxg^{-1}$. Put $\tilde{G}_1^Q = G \times Q U_Q$.

Proposition 2.9. Under the notation as above,

(i) $\pi'_* \text{IC}(\tilde{G}_Q, \mathcal{L}_e^Q)[2\nu_G]|_{G_{\text{uni}}} \simeq (\pi_Q)_* \mathcal{Q}_l[\dim \tilde{G}_1^Q]$.

(ii) We have

$$(\pi_Q)_* \mathcal{Q}_l[\dim \tilde{G}_1^Q] \simeq \bigoplus_{\mu \in \mathcal{P}_n \atop \mu \leq \lambda} \mathcal{Q}_l^{K_{\lambda, \mu}} \otimes \text{IC}(\mathcal{O}_{\lambda}, \mathcal{Q}_l)[\dim \mathcal{O}_{\lambda}].$$

Proof. Note that $2\nu_G - 2\nu_M = 2 \dim U_Q = \dim \tilde{G}_1^Q$. Thus by (2.8.3),

(2.9.1) $\text{IC}(\tilde{G}_Q, \mathcal{L}_e^Q)[2\nu_G]|_{G \times Q_{\text{uni}}} \simeq i_* \mathcal{Q}_l[\dim \tilde{G}_1^Q]$.

By applying the base change theorem to the cartesian square

$$
\begin{array}{ccc}
G \times Q_{\text{uni}} & \longrightarrow & G \times Q \\
\pi'_1 & & \pi'' \\
\downarrow & & \downarrow \\
G_{\text{uni}} & \longrightarrow & G,
\end{array}
$$

we obtain (i) from (2.9.1) since $\pi_Q = \pi'_1 \circ i$. Then (ii) follows from (i) by using (2.7.10) and (2.8.1). \hfill \Box

2.10. Returning to the setting in 2.5, we consider the case where r is arbitrary. We fix $m \in \mathcal{O}_{n,r}$, and let $P = P_m$ be the parabolic subgroup of G containing B which is the stabilizer of the partial flag $(M_{p_i})_{1 \leq i \leq r}$. Let L be the Levi subgroup of P containing T, and $B_L = B \cap L$ the Borel subgroup of L containing T. Let U_L be the unipotent radical of B_L. Put $\overline{M}_{p_i} = M_{p_i}/M_{p_{i-1}}$ for each i, under the convention $M_{p_0} = 0$. Then L acts naturally on \overline{M}_{p_i}, and by applying the definition of $\pi_{m,1} : \mathcal{F}_{m,\text{uni}} \to \mathcal{F}_{m,\text{uni}}$ to L, we can define

$$
\mathcal{F}_{m,\text{uni}}^L \simeq L \times B_L (U_L \times \prod_{i=1}^{r-1} \overline{M}_{p_i}),
$$

$$
\mathcal{F}_{m,\text{uni}}^L \simeq \bigcup_{g \in L} g(U_L \times \prod_{i=1}^{r-1} \overline{M}_{p_i}) = L_{\text{uni}} \times \prod_{i=1}^{r-1} \overline{M}_{p_i},
$$

and the map $\pi_{m,1}^L : \mathcal{F}_{m,\text{uni}}^L \to \mathcal{F}_{m,\text{uni}}^L$ similarly.
Let $Q = Q_\lambda$ be as in 2.5 for $\lambda \in \mathcal{P}(m)$. Thus we have $B \subset Q \subset P$, and $Q_L = Q \cap L$ is a parabolic subgroup of L containing B_L. We consider the following commutative diagram

\[
\begin{array}{c}
\tilde{X}_{\text{uni}}^{L,Q} \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^{L,Q} \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^{P,Q} \quad \tilde{X}_{\text{uni}}^L \quad \tilde{X}_{\text{uni}}^{P,Q} \quad \tilde{X}_{\text{uni}}^L \\
\downarrow \alpha'_i \quad \downarrow r'_i \quad \downarrow \beta'_i \\
\tilde{X}_{\text{uni}}^{P,Q} \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^{L,Q} \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^{P,Q} \quad \tilde{X}_{\text{uni}}^L \quad \tilde{X}_{\text{uni}}^{P,Q} \quad \tilde{X}_{\text{uni}}^L \\
\downarrow \alpha''_i \quad \downarrow r''_i \quad \downarrow \beta''_i \\
\tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^P \quad \tilde{X}_{\text{uni}}^P \\
\downarrow \pi''_i \\
\tilde{X}_{\text{uni}},
\end{array}
\]

(2.10.1)

where, by putting $P_{\text{uni}} = L_{\text{uni}} U_P$ (the set of unipotent elements in P),

\[
\begin{align*}
\tilde{X}_{\text{uni}}^P &= \bigcup_{g \in P} g(U \times \prod_i M_{p_i}) = P_{\text{uni}} \times \prod_i M_{p_i}, \\
\tilde{X}_{\text{uni}}^{P,Q} &= G \times \tilde{X}_{\text{uni}}^P = G \times (P_{\text{uni}} \times \prod_i M_{p_i}), \\
\tilde{X}_{\text{uni}}^{P,Q} &= P \times B (U \times \prod_i M_{p_i}), \\
\tilde{X}_{\text{uni}}^{Q} &= G \times Q (Q_{\text{uni}} \times \prod_i M_{p_i}), \\
\tilde{X}_{\text{uni}}^{P,Q} &= P \times Q (Q_{\text{uni}} \times \prod_i M_{p_i}).
\end{align*}
\]

$\tilde{X}_{\text{uni}}^{L,Q_L}$ is a similar variety as $\tilde{X}_{\text{uni}}^{P,Q}$ defined with respect to (L, Q_L), namely,

\[
\tilde{X}_{\text{uni}}^{L,Q_L} = L \times Q_L ((Q_L)_{\text{uni}} \times \prod_i M_{p_i}).
\]

The maps are defined as follows; under the identification $\tilde{X}_{\text{uni}} \simeq G \times B (U \times \prod_i M_{p_i}),$ α'_i, α''_i are the natural maps induced from the inclusions $G \times (U \times \prod_i M_{p_i}) \rightarrow G \times (Q_{\text{uni}} \times \prod_i M_{p_i}) \rightarrow G \times (P_{\text{uni}} \times \prod_i M_{p_i}).$ $\pi''_i : g \times (x, v) \mapsto (gxg^{-1}, gv).$ q_1 is defined by $(g, x, v) \mapsto (\bar{x}, \bar{v})$, where $x \mapsto \bar{x}, v \mapsto \bar{v}$ are natural maps $P \rightarrow L, \prod_i M_{p_i} \rightarrow \prod_i M_{p_i}$. \tilde{q}_1 is the composite of the projection $G \times \tilde{X}_{\text{uni}}^P \rightarrow \tilde{X}_{\text{uni}}^{P,Q}$ and the map $\tilde{X}_{\text{uni}} \rightarrow \tilde{X}_{\text{uni}}^{L,Q_L}$ induced from the projection $P \times (U \times \prod_i M_{p_i}) \rightarrow L \times (U_L \times \prod_i M_{p_i}).$ \tilde{q}_1 is defined similarly by using the map $\tilde{X}_{\text{uni}}^{P,Q} \rightarrow \tilde{X}_{\text{uni}}^{L,Q_L}$ induced from the projection $P \times (Q_{\text{uni}} \times \prod_i M_{p_i}) \rightarrow L \times ((Q_L)_{\text{uni}} \times \prod_i M_{p_i}).$ p_1 is the quotient by $P.$ \tilde{p}_1 and \tilde{p}_1 are also quotient by P under the identifications $\tilde{X}_{\text{uni}} \simeq G \times \tilde{X}_{\text{uni}}^{P,Q}, \tilde{X}_{\text{uni}} \simeq G \times \tilde{X}_{\text{uni}}^{P,Q},$ \tilde{p}'_1 is defined similarly to α'_1 and
\(\beta''_1 \) is defined similarly to \(\pi''_1 \). \(r'_1 \) is the natural map induced from the injection \(P \times (U \times \prod M_{p_i}) \to P \times (Q_{\text{uni}} \times \prod M_{p_i}) \), and \(r''_1 \) is the natural map induced from the map \(P \times Q (Q_{\text{uni}} \times \prod M_{p_i}) \to P_{\text{uni}} \times \prod M_{p_i}, g \ast (x, v) \mapsto (gxg^{-1}, gv) \).

Put \(\pi'_1 = \alpha'_1 \circ \beta'_1 : \mathcal{F}_{\text{uni}} \to \mathcal{F}_{\text{uni}}^P \). We have \(\beta''_1 \circ \beta'_1 = \pi''_1 \), and the diagram (2.10.1) is the refinement of the diagram (6.3.2) in [S4] (see also the diagram (1.5.1) in [S4]). In particular, the map \(p_1 \) is a principal \(P \)-bundle, and the diagram \(q_1 \) is a locally trivial fibration with fibre isomorphic to \(\prod M_{p_i} \). Moreover, all the squares appearing in (2.10.1) are cartesian squares. Hence the diagram (2.10.1) satisfies similar properties as in the diagram (2.8.2).

Note that \(L \simeq G_1 \times \cdots \times G_r \), with \(G_i = GL(M_{p_i}) \). Then \(Q_L \) can be written as \(Q_L \simeq Q_1 \times \cdots \times Q_r \), where \(Q_i \) is a parabolic subgroup of \(G_i \). We have

\[
\mathcal{F}_{\text{uni}} = \prod_{i=1}^r (\tilde{G}_i)_{\text{uni}} \times V,
\]
\[
\mathcal{F}_{\text{uni}}^L = \prod_{i=1}^r (\tilde{G}_i)^Q_1 \times V,
\]
\[
\mathcal{F}_{\text{uni}}^L = \prod_{i=1}^r (G_i)_{\text{uni}} \times V,
\]

where \((\tilde{G}_i)_{\text{uni}}, (\tilde{G}_i^Q_1)_{\text{uni}}, \) etc. denote the unipotent parts of \(\tilde{G}_i, \tilde{G}_i^Q_1, \) etc. as in (2.8.2). The maps \(\beta'_1, \beta''_1 \) are induced from the maps \((\tilde{G}_i)_{\text{uni}} \to (\tilde{G}_i^Q_1)_{\text{uni}}, (\tilde{G}_i^Q_1)_{\text{uni}} \to (G_i)_{\text{uni}}, \) and those maps coincide with the maps \(\beta'_1, \beta''_1 \) in 2.7 defined with respect to \(G_i \). Note that \(W_{Q_i} \simeq S(\lambda^{(i)}) \) for each \(i \) by the construction of \(Q = Q_\lambda \) in 2.5. Put

\[
\mathcal{F}_1^Q = G \times Q (U_Q \times \prod M_{p_i}),
\]
\[
\mathcal{F}_1^L = L \times Q (U_{Q_i} \times \prod M_{p_i}),
\]

and let \(i_Q : \mathcal{F}_1^Q \hookrightarrow \mathcal{F}_{\text{uni}}^Q, i_{Q_L} : \mathcal{F}_1^L \hookrightarrow \mathcal{F}_{\text{uni}}^L \) be the closed embeddings. Let \(\pi_{Q_L} : \mathcal{F}_1^L \to \mathcal{F}_{\text{uni}}^L \) be the restriction of \(\beta''_1 \). Let \(\mathcal{O}_L^{(i)} = \mathcal{O}_{(i)^{Q_1}}^{(i)} \times \cdots \times \mathcal{O}_{(i)^{Q_1}}^{(i)} \) be the \(L \)-orbit in \(\mathcal{F}_{\text{uni}}^L \), where \(\mathcal{O}_{(i)^{Q_1}}^{(i)} \) is the \(G_i \)-orbit in \((G_i)_{\text{uni}} \times M_{p_i}\) of type \((\mu^{(i)}), \emptyset)\). Note that if we denote by \(\mathcal{O}_{(i)}^{(i)} \) the \(G_i \)-orbit in \((G_i)_{\text{uni}}\) of type \(\mu^{(i)} \), we have \(\text{IC}(\mathcal{O}_{(i), Q_i}) \simeq \text{IC}(\mathcal{O}_{(i)^{Q_1}, Q_i}) \otimes Q_i \) (the latter term \(Q_i \) denotes the constatn sheaf on \(M_{p_i} \)). Hence the decomposition of \(\pi_{Q_L}^{(i)^{Q_1}} \) into simple components is described by considering the factors \(\text{IC}(\mathcal{O}_{(i)^{Q_1}, Q_i}) \). In particular, by Proposition 2.9, we have

\[
(\pi_{Q_L}^{(i)^{Q_1}})_* Q_i [\dim \mathcal{F}_1^{L, Q_L}] \simeq \bigoplus_{\mu \geq \lambda} \mathcal{Q}_t^{\mu^t, \lambda^t} \otimes \text{IC}(\mathcal{O}_{(i)^{Q_1}, Q_i}) [\dim \mathcal{O}_{(i)^{Q_1}}^{(i)}].
\]

By using the diagram (2.10.1), we see that

\[
\mathcal{g}_1(i_{Q_L})_* Q_i [\dim \mathcal{F}_1^{L, Q_L}] \simeq \mathcal{p}_1(i_Q)_* Q_i [\dim \nabla^L_\lambda].
\]
It follows, again by using the diagram (2.10.1), we have

\[(\alpha''_1)_*(i_Q)_*\bar{Q}_l[\dim \tilde{X}_\lambda] \simeq \bigoplus_{\mu \subseteq \lambda} \bar{Q}_l^{K_{\mu^{', \lambda'}}} \otimes B_\mu,\]

where B_μ is the simple perverse sheaf on $\tilde{\mathcal{X}}_m^{P, \text{uni}}$ characterized by the property that

\[p_1^*B_\mu[a'] \simeq q_1^*\text{IC}(\bar{\mathcal{O}}_\mu, \bar{Q}_l)[b' + \dim \mathcal{O}_L^L]\]

with $a' = \dim P$, $b' = \dim G + \dim U_P + \dim \prod_{i=1}^{r-2} M_{p_i}$.

On the other hand, by Proposition 1.6 in [S4], we have

\[(\pi''_1)_*A_\mu \simeq \text{IC}(\mathcal{X}_m, \bar{Q}_l)[d_m],\]

where $\pi'' : \tilde{\mathcal{X}}_m^P = G \times P (P \times \prod M_{p_i}) \to \mathcal{X}_m$ is an analogous map to π''_1, and A_μ is a simple perverse sheaf on $\tilde{\mathcal{X}}_m^P$ such that the restriction of A_μ on $\tilde{\mathcal{X}}_m^{P, \text{uni}}$ coincides with B_μ, up to shift. Thus by Theorem 2.4 (ii), we have

\[(\pi''_1)_*B_\mu \simeq \text{IC}(\mathcal{X}_m, \bar{Q}_l)[\dim \mathcal{X}_\mu].\]

Since $\pi_\lambda = \pi''_1 \circ \alpha''_1 \circ i_Q$, by applying $(\pi''_1)_*$ on both sides of (2.10.3), we obtain the formula (2.6.1). This completes the proof of Theorem 2.6.

3. \(G^F\)-invariant functions on the enhanced variety and Kostka functions

3.1.

We now assume that G and V are defined over \mathbb{F}_q, and let $F : G \to G$, $F : V \to V$ be the corresponding Frobenius maps. Assume that B and T are F-stable. Then X_λ and \tilde{X}_λ have natural \mathbb{F}_q-structures, and the map $\pi_\lambda : \tilde{X}_\lambda \to \mathcal{X}_\lambda$ is F-equivariant. Thus one can define a canonical isomorphism $\varphi : F^*K_\lambda \simeq K_\lambda$ for $K_\lambda = (\pi_\lambda)_*\bar{Q}_l$. By using the decomposition in Theorem 2.6, φ can be written as

$\varphi = \sum_{\mu} \sigma_\mu \otimes \varphi_\mu$, where σ_μ is the identity map on $\bar{Q}_l^{K_{\mu^{', \lambda'}}}$ and $\varphi_\mu : F^*L_\mu \simeq L_\mu$ is the isomorphism induced from φ for $L_\mu = \text{IC}(\mathcal{X}_\mu, \bar{Q}_l)$. (Note that $\dim X_\lambda - \dim X_\mu$ is even if $\mu \subseteq \lambda$ by [S4, Prop. 4.3], so the degree shift is negligible). We also consider the natural isomorphism $\phi_{\mu :} : F^*L_\mu \simeq L_\mu$ induced from the \mathbb{F}_q-structure of X_μ. By using a similar argument as in [S4, (6.1.1)], we see that

\[\varphi_\mu = q^{d_\mu} \phi_{\mu},\]

where $d_\mu = n(\mu)$. We consider the characteristic function χ_{L_μ} of L_μ with respect to ϕ_{μ}, which is a G^F-invariant function on \mathcal{X}_μ^F.
3.2. Take $\mu, \nu \in \mathcal{P}_{n,r}$, and assume that $\nu \in \mathcal{P}(m)$. For each $z = (x, v) \in X_\mu$ with $v = (v_1, \ldots, v_{r-1})$, we define a variety $\mathcal{G}_{\nu, z}$ by

$$
\mathcal{G}_{\nu, z} = \{(W_{pi}) : x\text{-stable flag } | \ v_i \in W_{pi} \ (1 \leq i \leq r-1), \ x|_{W_{pi}/W_{pi-1}}: \nu^{(i)} \ (1 \leq i \leq r)\}.
$$

If $z \in X^F_\mu$, the variety $\mathcal{G}_{\nu, z}$ is defined over \mathbb{F}_q. Put $g_{\nu, z}(q) = |\mathcal{G}_{\nu, z}|$. Let $\tilde{K}_{\lambda, \mu}(t)$ be the modified Kostka polynomial indexed by partitions λ, μ. The following result is a generalization of Proposition 5.8 in [AH].

Proposition 3.3. Assume that $\lambda, \mu \in \mathcal{P}_{n,r}$. For each $z \in X^F_\mu$, we have

$$
|\pi^{-1}(z)^F| = \sum_{\nu \in \mathcal{P}_{n,r}} |\mathcal{G}_{\nu, z}| \prod_i |\pi^{-1}(x_i)^F|,
$$

where $\pi_{\lambda^{(i)}} : \tilde{\phi}_{\lambda^{(i)}} \rightarrow \tilde{\phi}_{\lambda^{(i)}}$ is a similar map as π_{λ} applied to the case $r = 1$, by replacing G by $G_i = GL(M_{pi})$, and $x_i = x|_{M_{pi}}$ has Jordan type $\nu^{(i)}$. It is known by [L1] that $q^{n(\xi^{(i)})} \chi_{\xi^{(i)}}(x_i) = \tilde{K}_{\xi^{(i)}, \nu^{(i)}}(q)$ for a partition $\xi^{(i)}$ of m_i. It follows, by applying (3.3.1) to the case where $r = 1$, and by the Grothendieck’s fixed point formula, we have

$$
|\pi^{-1}(x_i)^F| = \sum_{\xi^{(i)} \leq \lambda^{(i)}} K_{\xi^{(i)}, \lambda^{(i)}} \tilde{K}_{\xi^{(i)}, \nu^{(i)}}(q).
$$

Then (3.3.2) implies that

$$
\chi_{\lambda^{(i)}} = |\pi^{-1}(z)^F| = \sum_{\nu \in \mathcal{P}_{n,r}} g_{\nu, z}(q) \sum_{\xi \leq \lambda} K_{\xi^{(i)}, \lambda^{(i)}} \tilde{K}_{\xi^{(i)}, \nu^{(i)}}(q) \cdots \tilde{K}_{\nu^{(r)}, \nu^{(r)}}(q).
$$

Proof. Let $\chi_{\lambda^{(i)}, \varphi}$ be the characteristic function of K_{λ} with respect to φ. By Theorem 2.6 together with (3.1.1), we have

$$
\chi_{\lambda^{(i)}, \varphi} = \sum_{\xi \leq \lambda} K_{\xi^{(i)}, \lambda^{(i)}} q^{n(\xi)} \chi_{\xi^{(i)}}.
$$

On the other hand, by the Grothendieck’s fixed point formula, we have $\chi_{\lambda^{(i)}, \varphi}(z) = |\pi^{-1}(z)^F|$ for $z \in X^F_\lambda$. Then if $z = (x, v) \in X^F_\mu$,
Remark 3.4. In general, X_μ consists of infinitely many G-orbits. Hence the value $g_{\nu,z}(q)$ may depend on the choice of $z \in X^F_\mu$. However, if X_μ is a single G-orbit, then X^F_μ is also a single G^F-orbit, and $g_{\nu,z}(q)$ is constant for $z \in X^F_\mu$, in which case, we denote $g_{\nu,z}(q)$ by $g^\mu_{\nu}(q)$. In what follows, we show in some special cases that there exists a polynomial $g^\mu_{\nu}(t) \in \mathbb{Z}[t]$ such that $g^\mu_{\nu}(q)$ coincides with the value at $t = q$ of $g^\mu_{\nu}(t)$.

3.5. We consider the special case where $\mu \in \mathcal{P}(m')$ is such that $m'_i = 0$ for $i = 1, \ldots, r - 2$. In this case, X_μ consists of a single G-orbit. In particular, for $\lambda \in \mathcal{P}_{n,r}$, dim $\mathcal{H}^z_2 IC(\overline{X}_\lambda, Q_t)$ does not depend on the choice of $z \in X_\mu$. We define a polynomial $IC^{-}_{\lambda,\mu}(t) \in \mathbb{Z}[t]$ by

$$IC^{-}_{\lambda,\mu}(t) = \sum_{i \geq 0} \dim \mathcal{H}^z_2 IC(\overline{X}_\lambda, Q_t)t^i.$$

The following result was proved in [S4].

Proposition 3.6 ([S4, Prop. 6.8]). Let $\lambda, \mu \in \mathcal{P}_{n,r}$, and assume that μ is as in 3.5.

(i) Assume that $z \in X^F_\mu$. Then $H^1 IC(\overline{X}_\lambda, Q_t) = 0$ if i is odd, and the eigenvalues of ϕ_0 on $H^2 IC(\overline{X}_\lambda, Q_t)$ are q^i. In particular, $\chi_{\lambda}(z) = IC^{-}_{\lambda,\mu}(q)$.

(ii) $K^{-}_{\lambda,\mu}(t) = t^{\alpha(\lambda)} IC^{-}_{\lambda,\mu}(t^r)$.

As a corollary, we have the following result, which is a generalization of [AH, Prop. 5.8] (see also [LS, Prop. 3.2]).

Corollary 3.7. Assume that μ is as in 3.5.

(i) There exists a polynomial $g^\mu_{\nu}(t) \in \mathbb{Z}[t]$ such that $g^\mu_{\nu}(q)$ coincides with the value at $t = q$ of $g^\mu_{\nu}(t)$.

(ii) We have

$$K^{-}_{\lambda,\mu}(t) = t^{\alpha(\lambda)} \sum_{\nu \leq \lambda} g^\mu_{\nu}(t^r) \widetilde{K}_{\lambda(1),\nu(1)}(t^r) \cdots \widetilde{K}_{\lambda(r),\nu(r)}(t^r).$$

Proof. By Proposition 3.6 (i) and Proposition 3.3, we have

$$IC^{-}_{\lambda,\mu}(q) = q^{-\alpha(\lambda)} \sum_{\nu \leq \lambda} g^\mu_{\nu}(q) \widetilde{K}_{\lambda(1),\nu(1)}(q) \cdots \widetilde{K}_{\lambda(r),\nu(r)}(q).$$

By fixing μ, we consider two sets of functions $\{IC^{-}_{\lambda,\mu}(q) \mid \lambda \in \mathcal{P}_{n,r}\}$ and $\{g^\mu_{\nu}(q) \mid \nu \in \mathcal{P}_{n,r}\}$. If we notice that $\widetilde{K}_{\lambda(1),\nu(1)}(q) \cdots \widetilde{K}_{\lambda(r),\nu(r)}(q) = q^{\alpha(\lambda)}$ for $\nu = \lambda$, (3.7.2) shows that the transition matrix between those two sets is unitriangular. Hence $g^\mu_{\nu}(q)$ is determined from $IC^{-}_{\lambda,\mu}(q)$, and a similar formula makes sense if we replace q by t. This implies (i). (ii) now follows from (3.7.2) by replacing q by t. \qed
3.8. In what follows, we assume that \(\mu \) is of the form \(\mu = (-, \ldots, -, \xi) \) with \(\xi \in \mathcal{P}_n \). In this case, \(g^\xi_\mu(t) \) coincides with the polynomial \(G^\xi_{\mu(1), \ldots, \mu(r)}(t) \) obtained from \(G^\xi_{\mu(1), \ldots, \mu(r)}(\delta) \) discussed in [M, II, 2]. On the other hand, we define a polynomial \(f^\xi_{\mu(1), \ldots, \mu(r)}(t) \) by

\[
P_{\mu(1)}(y; t) \cdots P_{\mu(r)}(y; t) = \sum_{\xi \in \mathcal{P}_n} f^\xi_{\mu(1), \ldots, \mu(r)}(t) P_\xi(y; t).
\]

(3.8.1)

In the case where \(r = 2 \), \(g^\xi_{\mu(1), \mu(2)}(t) \) coincides with the Hall polynomial, and a simple formula relating it with \(f^\xi_{\mu(1), \mu(2)}(t) \) is known ([M, III (3.6)]). In the general case, we also have a formula

\[
g^\xi_{\mu(1), \ldots, \mu(r)}(t) = t^{n(\xi) - n(\nu)} f^\xi_{\mu(1), \ldots, \mu(r)}(t^{-1}).
\]

(3.8.2)

The proof is easily reduced to [M, III (3.6)].

For partitions \(\lambda, \nu^{(1)}, \ldots, \nu^{(r)} \), we define an integer \(c^\lambda_{\nu^{(1)}, \ldots, \nu^{(r)}} \) by

\[
\sum_{\lambda} c^\lambda_{\mu(1), \ldots, \mu(r)} s_\lambda.
\]

In the case where \(r = 2 \), \(c^\lambda_{\mu(1), \mu(2)} \) coincides with the Littlewood-Richardson coefficient.

For \(\lambda \in \mathcal{P}_{n,r} \), put

\[
b(\lambda) = a(\lambda) - r \cdot n(\lambda) = |\lambda^{(2)}| + 2|\lambda^{(3)}| + \cdots + (r - 1)|\lambda^{(r)}|.
\]

(3.8.3)

The following lemma is a generalization of [LS, Lemma 3.4].

Lemma 3.9. Let \(\lambda, \mu \in \mathcal{P}_{n,r} \), and assume that \(\mu = (-, \ldots, -, \xi) \). Then we have

\[
K^-_{\lambda, \mu}(t) = t^{b(\mu) - b(\lambda)} \sum_{\nu \subset \lambda} f^\xi_{\mu(1), \ldots, \mu(r)}(t) K_{\lambda(1), \mu(1)}(t^{r}) \cdots K_{\lambda(r), \mu(r)}(t^{r}),
\]

(3.9.1)

\[
K^-_{\lambda, \mu}(t) = t^{b(\mu) - b(\lambda)} \sum_{\eta \in \mathcal{P}_n} c^\eta_{\lambda(1), \ldots, \lambda(r)} K_{\eta, \xi}(t)
\]

(3.9.2)

Proof. The formula (3.7.1) can be rewritten as

\[
K^-_{\lambda, \mu}(t) = t^{a(\mu) - a(\lambda) + rn(\lambda)} \sum_{\nu \subset \lambda} t^{-rn(\nu)} g^\xi_{\nu(1), \ldots, \nu(r)}(t^{-r}) K_{\lambda(1), \mu(1)}(t^{r}) \cdots K_{\lambda(r), \mu(r)}(t^{r}).
\]

(3.9.3)

Substituting (3.8.2) into (3.9.3), we obtain (3.9.1). Next we show (3.9.2). One can write as
\[s_{\lambda(t)}(y) = \sum_{\mu(t)} K_{\lambda(t),\mu(t)}(t)P_{\mu(t)}(y; t). \]

Hence

(3.9.4)
\[s_{\lambda(1)}(y) \cdots s_{\lambda(r)}(y) = \sum_{\nu \in \mathcal{P}_n,r} K_{\lambda(1),\nu(1)}(t) \cdots K_{\lambda(r),\nu(r)}(t)P_{\nu(1)}(y; t) \cdots P_{\nu(r)}(y; t) \]
\[= \sum_{\nu \in \mathcal{P}_n,r} \sum_{\xi \in \mathcal{P}_n} f_{\xi(1),\ldots,\nu(r)}(t)K_{\lambda(1),\nu(1)}(t) \cdots K_{\lambda(r),\nu(r)}(t)P_{\xi}(y; t). \]

On the other hand,

(3.9.5)
\[s_{\lambda(1)}(y) \cdots s_{\lambda(r)}(y) = \sum_{\eta \in \mathcal{P}_n} c_{\lambda(1),\ldots,\lambda(r)}^{(1)} s_{\eta}(y) \]
\[= \sum_{\eta \in \mathcal{P}_n} c_{\lambda(1),\ldots,\lambda(r)}^{(1)} \sum_{\xi \in \mathcal{P}_n} K_{\eta,\xi}(t)P_{\xi}(y; t). \]

By comparing (3.9.4) and (3.9.5), we have an equality for each \(\xi \in \mathcal{P}_n; \)
\[\sum_{\eta \in \mathcal{P}_n} c_{\lambda(1),\ldots,\lambda(r)}^{(1)} K_{\eta,\xi}(t) = \sum_{\nu \in \mathcal{P}_n,r} f_{\nu(1),\ldots,\nu(r)}(t)K_{\lambda(1),\nu(1)}(t) \cdots K_{\lambda(r),\nu(r)}(t). \]

Combining this with (3.9.1), we obtain (3.9.2). The lemma is proved. \(\square \)

3.10. Let \(\eta' = \lambda' - \theta' \), \(\eta'' = \lambda'' - \theta'' \) be skew diagrams, where \(\theta', \theta'' \subseteq \lambda', \lambda'' \subseteq \lambda'' \) are partitions. We define a new skew diagram \(\eta' * \eta'' = \lambda - \theta \) as follows; write the partitions \(\lambda', \lambda'' \) as \(\lambda' = (\lambda'_1, \ldots, \lambda'_{k'}) \), \(\lambda'' = (\lambda''_1, \ldots, \lambda''_{k''}) \) with \(\lambda'_{k'} > 0 \), \(\lambda''_{k''} > 0 \). Put \(a = \lambda''_{k''} \). We define a partition \(\lambda = (\lambda_1, \ldots, \lambda_{k' + k''}) \) by
\[\lambda_i = \begin{cases}
\lambda'_i + a & \text{for } 1 \leq i \leq k', \\
\lambda''_{i-k'} & \text{for } k' + 1 \leq i \leq k' + k''.
\end{cases} \]

Write partitions \(\theta', \theta'' \) as \(\theta' = (\theta'_1, \ldots, \theta'_{k'}) \), \(\theta'' = (\theta''_1, \ldots, \theta''_{k''}) \) with \(\theta'_{k'} \geq 0 \), \(\theta''_{k''} \geq 0 \). We define a partition \(\theta = (\theta_1, \ldots, \theta_{k' + k''}) \), in a similar way as above, by
\[\theta_i = \begin{cases}
\theta'_i + a & \text{for } 1 \leq i \leq k', \\
\theta''_{i-k'} & \text{for } k' + 1 \leq i \leq k' + k''.
\end{cases} \]

We have \(\theta \subseteq \lambda \), and the skew diagram \(\eta' * \eta'' = \lambda - \theta \) can be defined.

For \(\lambda, \mu \in \mathcal{P}_n \), let \(\text{SST} \) be the set of semistandard tableaux of shape \(\lambda \) and weight \(\mu \). Let \(\lambda \in \mathcal{P}_{n,r} \). An \(r \)-tuple \(T = (T^{(1)}, \ldots, T^{(r)}) \) is called a semistandard tableau of shape \(\lambda \) if \(T^{(i)} \) is a semistandard tableau of shape \(\lambda^{(i)} \) with respect to
the letters \(\{1, \ldots, n\} \). We denote by \(\text{SST}(\lambda) \) the set of semistandard tableaux of shape \(\lambda \). For \(\lambda \in \mathcal{P}_{n,r} \), let \(\tilde{\lambda} \) be the skew diagram \(\lambda^{(1)} \ast \lambda^{(2)} \ast \cdots \ast \lambda^{(r)} \). Then \(T \in \text{SST}(\lambda) \) is regarded as a usual semistandard tableau \(\tilde{T} \) associated to the skew diagram \(\tilde{\lambda} \). Assume \(\pi \in \mathcal{P}_n \). We say that \(T \in \text{SST}(\lambda) \) has weight \(\pi \) if the corresponding tableau \(\tilde{T} \) has shape \(\tilde{\lambda} \) and weight \(\pi \). We denote by \(\text{SST}(\lambda, \pi) \) the set of semistandard tableaux of shape \(\lambda \) and weight \(\pi \).

3.11. In [M, I, (9.4)], a bijective map \(\Theta \)

\[
\Theta : \text{SST}(\tilde{\lambda}, \pi) \cong \coprod_{\nu \in \mathcal{P}_n} (\text{SST}^0(\tilde{\lambda}, \nu) \times \text{SST}(\nu, \pi))
\]

was constructed, where \(\text{SST}^0(\tilde{\lambda}, \nu) \) is the set of tableau \(T \) such that the associated word \(w(T) \) is a lattice permutation (see [M, I, 9] for the definition). Under the identification \(\text{SST}(\tilde{\lambda}, \pi) \cong \text{SST}(\lambda, \pi) \), the subset \(\text{SST}^0(\tilde{\lambda}, \nu) \) of \(\text{SST}(\lambda, \nu) \) is also defined. Then we can regard \(\Theta \) as a bijection with respect to the set \(\text{SST}(\lambda, \pi) \) (and \(\text{SST}^0(\lambda, \nu) \)).

In the case where \(r = 2 \), it is shown in [LS, Cor. 3.9] that \(|\text{SST}^0(\lambda, \nu)| \) coincides with the Littlewood-Richardson coefficient \(c^{(1)}_{\lambda, \pi} \). A similar argument can be applied also to the general case, and we have

Corollary 3.12. Assume that \(\lambda \in \mathcal{P}_{n,r}, \nu \in \mathcal{P}_n \). Then we have

\[
|\text{SST}^0(\lambda, \nu)| = c^{(1)}_{\lambda, \pi}.
\]

3.13. For a semistandard tableau \(S \), the charge \(c(S) \) is defined as in [M, III, 6]. It is known that Lascoux-Schützenberger Theorem ([M, III, (6.5)]) gives a combinatorial description of Koskta polynomials \(K_{\lambda, \mu}(t) \) in terms of semistandard tableaux,

\[
K_{\lambda, \mu}(t) = \sum_{S \in \text{SST}(\lambda, \mu)} t^{c(S)}.
\]

In the case where \(r = 2 \), a similar formula was proved for \(K_{\lambda, \mu}(t) \) in [LS, Thm. 3.12], in the special case where \(\mu = (-, \mu'') \). Here we consider \(K_{\lambda, \mu}(t) \) for general \(r \). Assume that \(\lambda \in \mathcal{P}_{n,r} \) and \(\xi \in \mathcal{P}_n \). For \(T \in \text{SST}(\lambda, \xi) \), we write \(\Theta(T) = (D, S) \) with \(S \in \text{SST}(\nu, \xi) \) for some \(\nu \). We define a charge \(c(T) \) of \(T \) by \(c(T) = c(S) \). We have the following theorem. Note that the proof is quite similar to [LS].

Theorem 3.14. Let \(\lambda, \mu \in \mathcal{P}_{n,r} \), and assume that \(\mu = (-, \ldots, -, \xi) \). Then

\[
K_{\lambda, \mu}^-(t) = t^{b(\mu) - b(\lambda)} \sum_{T \in \text{SST}(\lambda, \xi)} t^{c(T)}.
\]

Proof. We define a map \(\Psi : \text{SST}(\lambda, \xi) \to \coprod_{\nu \in \mathcal{P}_n} \text{SST}(\nu, \xi) \) by \(T \mapsto S \), where \(\Theta(T) = (D, S) \). Then by Corollary 3.12, for each \(S \in \text{SST}(\nu, \xi) \), the set \(\Psi^{-1}(S) \)
has the cardinality $c_{\lambda(1),\ldots,\lambda(r)}^\xi$, and by definition, any $T \in \Psi^{-1}(S)$ has the charge $c(T) = c(S)$. Hence
\[
\sum_{T \in \text{SST}(\lambda, \xi)} t^{c(T)} = \sum_{\nu \in \mathcal{P}_n} \sum_{S \in \text{SST}(\nu, \xi)} c_{\lambda(1),\ldots,\lambda(r)}^\nu t^{c(S)} = \sum_{\nu \in \mathcal{P}_n} c_{\lambda(1),\ldots,\lambda(r)}^\nu K_{\nu, \xi}(t).
\]
The last equality follows from (3.13.1). The theorem now follows from (3.9.2). □

Corollary 3.15. Under the assumption of Theorem 3.14, we have
\[
K_{\lambda, \mu}^-(1) = |\text{SST}(\lambda, \xi)|.
\]

3.16. In the rest of this section, we shall give an alternate description of the polynomial $g_{\nu}(t)$ in the case where $\mu = (-,\ldots,-,\xi)$. For $\nu \in \mathcal{P}_{n,r}$, put $R_{\nu}(x; t) = P_{\nu(1)}(x^{(1)}; t^r) \cdots P_{\nu(r)}(x^{(r)}; t^r)$. Then $\{R_{\nu} \mid \nu \in \mathcal{P}_{n,r}\}$ gives a basis of $\Xi^n[t]$. We define functions $h_{\nu}(t) \in \mathbb{Q}(t)$ by the condition that
\[
(3.16.1) \quad R_{\nu}(x; t) = \sum_{\mu \in \mathcal{P}_{n,r}} h_{\nu}(t) P_{\mu}^-(x; t).
\]

The following formula is a generalization of Proposition 4.2 in [LS].

Proposition 3.17. Assume that $\mu = (-,\ldots,-,\xi)$. Then
\[
h_{\nu}(t) = t^{a(\mu)-a(\nu)} g_{\nu}(t^r).
\]

Proof. The proof is quite similar to that of [LS, Prop. 4.2]. For $\lambda \in \mathcal{P}_{n,r}$, we have
\[
s_{\lambda}(x) = s_{\lambda(1)}(x^{(1)}) \cdots s_{\lambda(r)}(x^{(r)})
\]
\[
= \prod_{i=1}^r \sum_{\nu(1)} K_{\lambda(1),\nu(1)}(t^r) P_{\nu(1)}(x^{(i)}; t^r)
\]
\[
= \sum_{\nu} \prod_{i=1}^r K_{\lambda(1),\nu(1)}(t^r) K_{\lambda(r),\nu(r)}(t^r) \sum_{\mu \in \mathcal{P}_{n,r}} h_{\nu}(t) P_{\mu}^-(x; t)
\]
\[
= \sum_{\mu \in \mathcal{P}_{n,r}} \left(\sum_{\nu} \prod_{i=1}^r K_{\lambda(1),\nu(1)}(t^r) K_{\lambda(r),\nu(r)}(t^r) h_{\nu}(t) \right) P_{\mu}^-(x; t).
\]

Since $s_{\lambda}(x) = \sum_{\mu \in \mathcal{P}_{n,r}} K_{\lambda, \mu}^-(t) P_{\mu}^-(x; t)$, by comparing the coefficients of $P_{\mu}^-(x; t)$, we have
Now assume that $\mu = (-,\ldots,-,\xi)$. If we notice that $K_{\lambda^{(i)},\mu^{(i)}}(t^r) \neq 0$ only when $|\lambda^{(i)}| = |\mu^{(i)}|$, (3.9.3) implies that

$$K_{\lambda,\mu}^{-}(t) = \sum_{\nu \in \mathcal{P}_{n,r}} h_{\mu}^{\nu}(t)K_{\lambda^{(1)},\mu^{(1)}}(t^r) \cdots K_{\lambda^{(r)},\mu^{(r)}}(t^r).$$

Since $(K_{\lambda^{(1)},\mu^{(1)}}(t^r) \cdots K_{\lambda^{(r)},\mu^{(r)}}(t^r))_{\lambda,\mu \in \mathcal{P}_{n,r}}$ is a unitriangular matrix, the proposition follows by comparing (3.17.1) and (3.17.2). □

References

[AH] P.N. Achar and A. Henderson; Orbit closures in the enhanced nilpotent cone, Adv. in Math. 219 (2008), no. 1, 27-62, Corrigendum, ibid. 228 (2011), 2984-2988.

[BM] W. Borho and R. MacPherson; Representations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C.R. Acad. Sci., Paris, Sr.I 292 (1981), 707-710.

[FGT] M. Finkelberg, V. Ginzburg and R. Travkin; Mirabolic affine Grassmannian and character sheaves, Selecta Math. 14 (2009), 607-628.

[L1] G. Lusztig; Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), 169-178.

[LS] S. Liu and T. Shoji; Double Kostka polynomials and Hall bimodule, preprint. arXiv: 1501.05996.

[M] I.G. Macdonald; “Symmetric functions and Hall polynomials”, Claredon Press, Oxford, 1995.

[S1] T. Shoji; Green functions associated to complex reflection groups, J. Algebra 245 (2001), 650-694.

[S2] T. Shoji; Green functions attached to limit symbols, in “Representation theory of algebraic groups and quantum groups”, Adv. Stud. Pure Math., 40. Math. Soc. Japan, Tokyo, 2004, 443-467.

[S3] T. Shoji; Exotic symmetric spaces of higher level - Springer correspondence for complex reflection groups, to appear in Transform. Groups.

[S4] T. Shoji; Enhanced variety of higher level and Kostka functions associated to complex reflection groups, preprint. arXiv: 1507.01240.

[Sp] N. Spaltenstein; The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 = Indag. Math. 38 (1976), 452-456.

[T] R. Travkin; Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Mathematica (New series) 14 (2009), 727-758.