Orthonormal bases on $L^2(\mathbb{R}^+)$

G. Chadzitaskos, M. Havlíček, J. Patera

April 2, 2020

Abstract

Explicit form of eigenvectors of selfadjoint extension H_ξ, parametrized by $\xi \in (0, \pi)$, of differential expression $H = -\frac{d^2}{dx^2} + \frac{x^2}{4}$ considered on the space $L^2(\mathbb{R}^+)$ are derived together with spectrum $\sigma(H_\xi)$. For each ξ the set of eigenvectors form orthonormal basis of $L^2(\mathbb{R}^+)$.

1 Introduction

A selfadjoint (s. a.) Hamiltonian H_D of the one–dimensional linear harmonic oscillator is generated by the differential expression

$$H = -\frac{d^2}{dx^2} + \frac{x^2}{4}$$

(1)

with appropriate definition domain D. It is known that operator H_D has pure point spectrum and its eigenfunctions form orthonormal basis in $L^2(\mathbb{R})$, and H_D is unique s.a. operator generated by H on $L^2(\mathbb{R})$.

The situation is quite different on $L^2(\mathbb{R}^+)$, there is one–parametric set of s.a. operators H_ξ, $\xi \in (0, \pi)$ with corresponding definition domains D_ξ and with the same differential expression (1) ([1], p. 137). All these s.a. operators are s.a. extensions of the closed symmetric operator \hat{H} with the domain $\hat{D} = \bigcap_{\xi \in (0, \pi)} D_\xi$. Following the theorem ([2] p. 246) all these extension have the same essential spectrum. As e.g. $\sigma_{ess}(H_{\xi=0}) = \emptyset$, the same is valid for all operators H_ξ. In other words, for any $\xi \in (0, \pi)$ there exist ONB formed by eigenvectors of H_ξ.

The purpose of this contribution is to derive their explicit form and express $\sigma(H_\xi)$.

1
2 Parabolic cylinder functions

The parabolic cylinder functions [3] (9.240, 9.210)

\[D_\nu(x) = e^{-\frac{x^2}{4}} \left[\sqrt{\frac{\pi}{2}} \frac{\nu}{\Gamma\left(\frac{1}{2}\right)} \Phi_1\left(-\frac{\nu}{2}, \frac{3}{2}, \frac{x^2}{2}\right) - \sqrt{\frac{\pi}{2}} \frac{\nu}{\Gamma\left(\frac{1}{2}\right)} x_1 \Phi_1\left(-\frac{\nu}{2}, \frac{1}{2}, \frac{x^2}{2}\right) \right] \]

are the solutions of the Weber differential equation [3] (9.255)

\[\left(\frac{d^2}{dx^2} - \frac{x^2}{4} + \frac{\nu}{2} \right) D_\nu(x) = 0. \]

Values \(\nu \in \{0, 1, 2, \ldots\} \equiv \mathbb{N}_0 \) need special attention, because of

\[\frac{1}{\Gamma\left(-\frac{\nu}{2}\right)} = 0, \quad \Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right) = \infty \quad \text{for} \quad \nu = 1, 3, 5, \ldots \]

and

\[\frac{1}{\Gamma\left(-\frac{\nu}{2}\right)} = \infty, \quad \Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right) = 0 \quad \text{for} \quad \nu = 0, 2, 4, \ldots. \]

Definition (2) then gives \(D_\nu(x) = h_\nu(x) \) known hermitian functions [3] (9.253).

The following relations holds for PCFs [3](7.711, 8.370, 8.372):

\[\int_0^\infty |D_\nu(x)|^2 dx = \frac{1}{c(\nu)^2}, \quad c(\nu) = \sqrt{\frac{2}{\pi} \frac{\Gamma(-\nu)}{\Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right) \Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right)}}, \quad \beta(-\nu) = \sum_{k=0}^{\infty} \frac{(-1)^k}{-\nu + k} \]

(note that \(c(\nu) \) \(D_\nu \) is normalized), and

\[\int_0^\infty D_\nu(x)D_\mu(x)dx = \frac{\pi^{\frac{1}{2}(\nu+\mu+1)}}{\mu - \nu} \left[\frac{1}{\Gamma\left(\frac{1}{2} - \frac{\mu}{2}\right) \Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right)} - \frac{1}{\Gamma\left(\frac{1}{2} - \frac{\nu}{2}\right) \Gamma\left(-\frac{\nu}{2}\right)} \right]. \]

3 Two Lemmas and two Theorems

It is known that the differential expression [11]

\[H = -\frac{d^2}{dx^2} + \frac{x^2}{4} \]

with definition domain

\[D_\xi(H) := \{ f \in \hat{D}, f(0) \cos \xi - f'(0) \sin \xi = 0 \}, \]

is selfadjoint operator on \(L^2(R^+) \) for all \(\xi \in (0, \pi) \), and \(\hat{D} = \{ f \ f' \in a.c.(0, \infty) : f, Hf \in L^2(R^+) \} \) [1] (p. 127, p. 137)
So, if \(D_\nu \) will belong to \(D_\xi(H) \) for some \(\nu \) then \(D_\nu \) will be eigenvector of considered self adjoint operator with eigenvalues \(\nu + 1/2 \). Eq. (3) guarantees that \(D_\nu \) lies in \(L^2(\mathbb{R}^+) \).

The last condition gives relation
\[
D_\nu(0) \cos \xi - D'_\nu(0) \sin \xi = 0. \tag{6}
\]
Values \(D_\nu(0) \) and \(D'_\nu(0) \) can be calculated using definition (2), but we have to distinguish two cases:

1. \(\nu \notin \mathbb{N}_0 \) when we obtain
\[
\eta \Gamma\left(-\frac{\nu}{2}\right) - \Gamma\left(\frac{1-\nu}{2}\right) = 0, \quad \eta = \frac{1}{\sqrt{2}} \cot \xi. \tag{7}
\]

2. \(\nu \in \mathbb{N}_0 \) when
\[
h_\nu(0) \cos \xi - h'_\nu(0) \sin \xi = 0. \tag{8}
\]
If \(\nu \) is odd \(h_\nu(0) = 0, \ h'_\nu(0) = 1 \), and Eq. (8) is fulfilled only if \(\xi = 0 \). If \(\nu \) is even then \(h_\nu(0) = 1, \ h'_\nu(0) = 0 \), and Eq. (8) is fulfilled if \(\xi = \frac{\pi}{2} \). In both cases condition (8) is fulfilled by the set of Hermitian functions \(\{h_0, h_2, h_4, \ldots\} \) and \(\{h_1, h_3, h_5, \ldots\} \), respectively. It is known that both sets form orthonormal bases in \(L^2(\mathbb{R}^+) \).

Eq. (7) has to be solved for \(\nu \).
First we prove two lemmas.

Lemma 1:

1. If \(\nu \in (2M - 1, 2M), M = 1, 2, \ldots \) or \(\nu < 0 \), then \(\beta(-\nu) \geq 0 \),

2. If \(\nu \in (2M - 2, 2M - 1), M = 1, 2, \ldots \), then \(\beta(-\nu) < 0 \).

Proof:

1. Using relation
\[
\beta(-\nu) = \sum_{k=0}^{\infty} \frac{1}{(-\nu + 2k)(-\nu + 2k + 1)},
\]
(8.372), it is possible to show by elementary calculation that \((-\nu + 2k)(-\nu + 2k + 1) > 0 \) for all \(k = 0, 1, \ldots \) if \(\nu \in (2M - 1, 2M), M = 0, 1, \ldots, \) or \(\nu < 0 \).

2. In this case we rewrite the sum \(\beta(-\nu) \) in the following form:
\[
\beta(-\nu) = -\frac{1}{\nu} \sum_{k=0}^{\infty} \frac{1}{-\nu + k + 1} + \frac{1}{-\nu + k + 2} = -\frac{1}{\nu} \sum_{k=0}^{\infty} \frac{1}{(-\nu + k + 1)(-\nu + k + 2)}.
\]
For considered values of $\nu \in (2M - 2, 2M - 1), M = 1, 2, \ldots$ the products $(-\nu + k + 1)(-\nu + k + 2)$ are positive, and therefore all denominators of the members in the previous sum are positive and so $\beta \leq 0$ (note that $-\frac{1}{2} < 0$). □

Remark: Comparing functions $\Gamma(\nu)$ and $\beta(\nu)$ we have relation

$$\text{sgn} \Gamma(\nu) = \text{sgn} \beta(\nu), \, \nu \in \mathbb{R}.$$

It shows that normalization factor $c(\nu)$ (Eq.3)) is correctly defined.

Lemma 2:

Function $y(\nu) := \frac{\Gamma(-\frac{\nu+1}{2})}{\Gamma(-\frac{\nu}{2})}$ has the following properties:

1. There are asymptotes for $\nu_{\text{as}} \in \{2n+1|n \in \mathbb{N}_0\}$ and $\lim_{\nu \to \nu_{\text{as}}} y(\nu) = \infty$, $\lim_{\nu \to \nu_{\text{as}}^{-}} y(\nu) = -\infty$. Further $\lim_{\nu \to -\infty} y(\nu) = +\infty$.
2. The set $\{2n|n \in \mathbb{N}_0\}$ consists of all zero points of y.
3. In the intervals $(-\infty, 1), (M, M+1), M = 0, 1, \ldots$ y is continuous decreasing function.

Proof:

1. First assertion is a direct consequence of explicit form (8.314) of function Γ.

For the remaining assertions it is sufficient to prove that sequence $\{y(-2n)|n \in \mathbb{N}_0\}$ is growing and $\lim_{n \to \infty} y(-2n) = +\infty$. As $y(-2n)$ can be expressed as $y(-2n) = \frac{\Gamma(n + \frac{1}{2})}{\Gamma(n)} = \frac{\sqrt{\pi}(2n-1)!!}{2^n(n-1)!}$ the assertion can be easily verified.

2. Γ-function has no zero points. Therefore $y(\nu) = 0$ iff $|\Gamma(-\frac{\nu}{2})| = \infty$, i.e. $\nu = 2n$.

3. For $y'(\nu)$ we obtain

$$\frac{dy(\nu)}{d\nu} = \frac{1}{2} \frac{\Gamma(-\frac{\nu}{2})}{\Gamma(-\frac{\nu}{2})^2} [\psi(-\frac{\nu}{2}) - \psi(\frac{1}{2})], \, \psi(\mu) = \frac{d}{d\mu} \lg \Gamma(\mu).$$

Using the relations

$$\psi(-\frac{\nu}{2}) - \psi(\frac{1}{2}) = -2 \beta(-\nu), \, \text{and} \, \Gamma(-\nu) = \frac{2^{\frac{\nu-1}{2}}}{\sqrt{\pi}} \Gamma(\frac{1-\nu}{2}) \Gamma(-\frac{\nu}{2}),$$

we obtain

$$\frac{dy(\nu)}{d\nu} = -2\nu \frac{\sqrt{\pi}}{\Gamma(-\frac{\nu}{2})^2} \Gamma(-\nu) \beta(-\nu).$$

As $\Gamma(-\nu) \beta(-\nu) > 0$ (see Remark) the proof is completed. □
The consequence of this Lemma is Theorem

Theorem 1:
For any \(\eta \in \mathbb{R} \) and any \(M \in \mathbb{N} = \{1, 2, \ldots\} \) there is just one solution \(\nu^{(M)}_\eta \) of Eq. (7) in the interval \(I_M \), where

\[
I_1 = (-\infty, 1), \quad I_M = (2M - 1, 2M + 1), \quad M = 2, 3, \ldots
\]

No further solution of Eq. (7) exists.

\(\nu_{-2.18} \)	\(\nu_{-0.51} \)	\(\nu_0 \)	\(\nu_{0.23} \)	\(\nu_{0.51} \)	\(\nu_{0.97} \)	\(\nu_{2.18} \)
0.77051	0.399912	0	-0.311391	-0.875066	-2.33401	-9.95
2.66471	2.26065	2	1.86885	1.71369	1.5141	1.26337
4.59639	4.20523	4	3.90249	3.78578	3.62177	3.36297
6.54552	6.1743	6	5.91892	5.82117	5.67849	5.42659
8.50776	8.15402	8	7.92911	7.84326	7.715227	7.47292
10.4764	10.1394	10	9.93622	9.85874	9.74156	9.50897
12.4503	12.1283	12	11.9415	11.8704	11.7617	11.5382
14.4281	14.1195	14	13.9457	13.8795	13.7777	13.5626
16.409	16.1123	16	15.9491	15.887	15.7908	15.5834
18.3922	18.1062	18	17.9519	17.8932	17.8019	17.6014
20.3773	20.101	20	19.9543	19.8985	19.8113	19.6172

Figure 1: Function \(y(\nu) = \frac{\Gamma(1-\nu)}{\Gamma(-\nu)} \)

Let us denote \(\Omega_\xi \) the set
\[\Omega_\xi = \{ \nu^{(M)}_{\cot_\xi}, \ M = 1, 2, \ldots, \xi \in (0, \pi), \nu^{(M)}_{\cot_\xi} = \nu^{(M)}_\eta, \] (we understand \(\Omega_0 = \{ 0, 2, 4, \ldots \} \)).

Denote, further, by \(\mathcal{E}_\xi \) the set
\[\mathcal{E}_\xi = \{ c(\nu)D_\nu | \nu \in \Omega_\xi \}. \]

The set \(\mathcal{E}_\xi \subset \mathcal{D}_\xi \) contains all eigenvectors of s.a. operator \(H_\xi \), and the set \(\{ \nu + \frac{1}{2}, \nu \in \Omega_\xi \} \) contains all eigenvalues of \(H_\xi \).

Note that orthogonality of two different eigenvectors can been seen also from the Eq. (4). For different \(\mu, \nu \) fulfilling the condition \(\Gamma(\frac{1-\mu}{2})/\Gamma(\frac{1-\nu}{2}) = \eta \), (what is our case), Eq. (4) is the scalar product in \(L^2(R^+) \) equal zero. Moreover, the Eq. (3) guarantees that the eigenvectors are normalized.

Denote, further, \(\hat{H} \) restriction of \(H_\xi \) to domain
\[\tilde{D} = \{ f \in \tilde{D}, \ f(0) = f'(0) = 0 \} \subset D_\xi(H) \subset L^2(R^+). \]

Operator \(\hat{H} \) is closed, symmetric with deficiency indices \((1, 1) \) (prop. 4.8.6, p.129), and \(H_\xi \) is a s. a. extension of \(\hat{H} \) for any \(\xi \in (0, \pi) \). S.a. extensions \(H_{\xi=0} \) and \(H_{\xi=x} \) have pure point spectrum, it is equivalent to existence of orthonormal bases in \(L^2(R^+) \) : in the case \(D_{\xi=0}(H) = \{ h_{2n+1} | n = 0, 1, 2, \ldots \} \), and in the case \(D_{\xi=x}(H) = \{ h_{2n+1} | n = 0, 1, 2, \ldots \} \). As we mentioned in introduction, the same is true for all \(H_\xi \).

Consequently, one can write theorem

Theorem 2

The set \(\mathcal{E}_\xi \) consisting of eigenvectors of \(H_\xi \) is an orthonormal basis in \(L^2(R^+) \) for any \(\xi \in (0, \pi) \), and \(\sigma(H_\xi) = \{ \nu + \frac{1}{2}, \nu \in \Omega_\xi \} \).

4 Concluding remarks

Presented results can be translated to the case \(L^2(R^-) \). In this case
\[\tilde{\mathcal{E}}_\xi := \{ \tilde{D}_\nu | \nu \in \Omega_\xi \}, \tilde{D}_\nu(x) := D_\nu(-x) \]
is ONB in \(L^2(R^-) \). These two bases can be combined to the base in \(L^2(R) \). As \(L^2(R) = L^2(R^+) \oplus L^2(R^-) \). Then for any pair \((\xi, \sigma) \in (0, \pi) \times (0, \pi) \) the set \(\mathcal{E}_\xi \oplus \tilde{\mathcal{E}}_\sigma \) is basis in \(L^2(R) \). Explicitly
\[\mathcal{E}_\xi \oplus \tilde{\mathcal{E}}_\sigma = \{ (D_\nu, 0), \nu \in \Omega_\xi \} \cup \{ (0, \tilde{D}_\nu), \nu \in \Omega_\sigma \}. \]

Known ONB \(\{ h_n, n = 0, 1, \ldots \} \) of \(L^2(R) \) consisting of hermitian functions is not contained in this set. Functions \(h_n \) are eigenvectors of s.a. operator \(H_D \) with definition domain
\[D = \{ f, f' \text{ absolutely continuous}, f, Hf \in L^2(R) \}. \]
and operator H_D is physically interpreted as Hamiltonian of quantum linear harmonic oscillator.

Acknowledgement

All authors acknowledge the financial support from RVO14000 and "Centre for Advanced Applied Sciences", Registry No. CZ.02.1.01/0.0/0.0/16_019/0000778, supported by the Operational Programme Research, Development and Education, co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic.

The authors (G.C., M.H.) thank P. Exner for helpful discussion.

References

[1] J. Blank, P. Exner, M. Havlíček, Hilbert Space Operators in Quantum Physics, 2nd edition, Springer, 2008.

[2] J. Weidmann, Linear Operators in Hilbert Space, Springer Verlag, New York 1980

[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, Fizmatfiz, Moskva 1963