Laparoscopic Transabdominal Preperitoneal Repair for Recurrent Obturator Hernia: A Case Report

Shoji Hirajima*, Hiroki Kobayashi, Tsuyoshi Takagi, Kanhisa Fukumoto
Department of Surgery, Nishijin Hospital, Kyoto, Japan

*Corresponding author: Shoji Hirajima, Department of Surgery, Nishijin Hospital, 1035, Mizomaecho, Kamigyo-ku Kyoto-shi, Kyoto, 602-8319, Japan. Tel: +81754618800; Fax: +81754615514; Email: shoji-hi@koto.kpu-m.ac.jp

Citation: Hirajima S, Kobayashi H, Takagi T, Fukumoto K (2018) Laparoscopic Transabdominal Preperitoneal Repair for Recurrent Obturator Hernia: A Case Report. J Surg: JSUR-1143. DOI: 10.29011/2575-9760. 001143

Received Date: 09 June, 2018; Accepted Date: 15 June, 2018; Published Date: 22 June, 2018

Abstract

A 74-year-old female visited our hospital due to right lower abdominal discomfort. She underwent a computed tomography scan of the pelvis, and a soft tissue shadow was seen between the external obturator and pectineal muscles. On examination, she had a soft and flat abdomen and did not exhibit any signs of peritoneal irritation. The Howship-Romberg sign was present. She had never given birth, but had undergone a hernioplasty for a right-sided obturator hernia 13 years ago at another hospital. However, the details of the hernioplasty were not clear. She was diagnosed with a right-sided obturator hernia and underwent elective repair by laparoscopic Transabdominal Preperitoneal Repair (TAPP). At 12 postoperative months, the abdominal pain had not recurred. Obturator hernias are rare, and most cases are found as incarcerated hernias. It is rare to find an obturator hernia without intestinal obstruction. Herein, we report a case in which a recurrent obturator hernia was successfully treated with TAPP.

Keywords: HowShip-Romberg Sign; Obturator Hernia; TAPP

Introduction

Obturator hernias account for 0.07-1% of all hernias [1]. They tend to occur in elderly, emaciated, and multiparous females. Owing to their non-specific clinical symptoms, the diagnosis of obturator hernias is often delayed, and patients commonly present with acute intestinal obstruction. Delayed surgical intervention is associated with high mortality (mortality rate: 11-50%) [2,3]. However, abdominal Computed Tomography (CT) is useful for obtaining a definitive preoperative diagnosis, which enables surgical interventions to be performed, and hence, helps to reduce the incidence of complications, including those that require lower bowel resection, and the mortality rate [4,5]. Open surgery is the most common treatment for obturator hernias at many institutions. However, laparoscopic techniques are being used increasingly frequently. The use of laparoscopic techniques to treat obturator hernias was reported to be associated with less severe loss of function in the lower extremities, fewer postoperative complications, and a faster return to work than conventional surgery [6].

Case Report

A 74-year-old female (height: 144 cm, weight: 39 kg) visited our hospital due to right lower abdominal discomfort. She had never given birth, but had undergone a hernioplasty for a right-sided obturator hernia 13 years ago at another hospital. Her abdomen was soft and flat. The Howship-Romberg sign was observed. A CT scan of the pelvis showed a soft tissue shadow between the external obturator muscle and the pectineal muscle (Figure 1).
A CT scan of the pelvis showed a soft tissue shadow between the external obturator muscle and the pectineal muscle. There was no connection between the soft tissue shadow and the small intestine. No signs of ileus were observed. Based on the patient’s CT and clinical findings, her pain was considered to have been caused by a right-sided obturator hernia. Since no intestinal obstruction was observed, elective laparoscopic Transabdominal Preperitoneal Repair (TAPP) was performed. A laparoscope was inserted via an umbilical port, and two working ports were created in the lower abdomen (Figure 2).

A laparoscopic evaluation showed that the omentum had passed into the right obturator foramen (Figure 3).

Figure 1: A CT scan of the pelvis showed a soft tissue shadow between the external obturator muscle and the pectineal muscle.

There was no connection between the soft tissue shadow and the small intestine. No signs of ileus were observed. Based on the patient’s CT and clinical findings, her pain was considered to have been caused by a right-sided obturator hernia. Since no intestinal obstruction was observed, elective laparoscopic Transabdominal Preperitoneal Repair (TAPP) was performed. A laparoscope was inserted via an umbilical port, and two working ports were created in the lower abdomen (Figure 2).

Figure 2: A laparoscope was inserted via an umbilical port, and two working ports were created in the bilateral lower abdomen.

A laparoscopic evaluation showed that the omentum had passed into the right obturator foramen (Figure 3).

Figure 3: A laparoscopic evaluation showed that the omentum had passed into the right obturator foramen.

The arrow shows the obturator foramen.

The preperitoneal space was dissected around the obturator hernia (Figure 4a).

Figure 4a: The preperitoneal space was dissected around the obturator hernia. The arrows show the obturator foramen.

A large sheet of prosthetic mesh was placed in the preperitoneal area to cover the obturator foramen and femoral ring. The mesh was fixed with the three absorbable tacks at Cooper’s ligament (Figure 4b).

Figure 4b: The preperitoneal space was dissected around the obturator hernia. The arrows show the obturator foramen.
laparoscopic surgery can be performed for obturator hernias, as well as inguinal hernias [13,14].

The preoperative diagnosis of obturator hernias is usually challenging since their clinical signs and symptoms are non-specific. The Howship-Romberg sign is only seen in 30-50% of patients, and palpable masses are detected in <20% of patients. Delays in surgical intervention can contribute to an increased need for intestinal resection and greater perioperative mortality [15]. CT exhibits high diagnostic accuracy (90%) for obturator hernias and is regarded as the most useful diagnostic tool in cases of suspected obturator hernias. However, some studies have indicated that there is no benefit of using CT in such cases. We suggest that CT scans should be performed in patients with abdominal pain without any obvious cause since it is difficult to diagnose obturator hernias without CT. In conclusion, TAPP repair seems to be a safe, feasible, and minimally invasive technique for emergency obturator hernia repair.

References

1. Mantoo SK, Mak K, Tan TJ (2009) Obturator hernia: diagnosis and treatment in the modern era. Signap Med J 50: 866-870.
2. Lo CY, Lorentz TG, Lau PW (1994) Obturator hernia presenting as small bowel obstruction. Am J Surg 167: 396-398.
3. Yokoyama Y, Ymaguchi A, Isogai M, Horii A, Kaneoka Y (1999) Thirty-six cases of obturator hernia: does computed tomography contribute to postoperative outcome? World J Surg 23: 214-216.
4. Haraguchi M, Matsu S, Kanetaka T, Tokai H, Azuma T, et al. (2007) Obturator hernia in an ageing society. Ann Acad Med Signap 36: 413-415.
5. Kammor M, Mafune K, Hirashima T, Kawahara M, Hashimoto M, et al. (2004) Forty-three cases of obturator hernia. Am J Surg 187: 549-552.
6. Mesci A, Korkmaz B, Dinckan A, Colak T, Balci N, et al. (2012) Digital evaluation of the muscle functions of the lower extremities among inguinal hernia patients treated using three different surgical techniques: a prospective randomized study. Surg Today 42: 157-163.
7. Wada Y, Otsuka H, Adachi K (2015) Laparoscopic Views of Obturator Hernia. J Gastrointest Surg 19: 1925-1926.
8. Losanoff JE, Richman BW, Jones JW (2002) Obturator hernia. J Am Coll Surg 194: 657-663.
9. Takada T, Ikusaka M, Ohira Y, Noda K, Tsukamoto T (2011) Paraosminal hip pain. Lancet 377: 1464.
10. Yip AW, AhChong AK, Lam KH (1993) Obturator hernia: A continuing diagnostic challenge. Surgery 119: 266-269.
11. Neumayer L, Giobbie-Hurder A, Jonasson O, Fitzgibbons R Jr, Dunlop D, et al. (2004) Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med 350: 1819-1827.
12. Mahon D, Decadt B, Rhodes M (2003) Prospective randomized trial of laparoscopic (transabdominal preperitoneal) vs. open (mesh) repair for bilateral and recurrent inguinal hernia. Surg Endosc 17: 1386-1390.

Figure 4b: A large sheet of prosthetic mesh was placed in the preperitoneal area to cover the obturator foramen and femoral ring. The mesh was fixed with three absorbable tacks at Cooper’s ligament. The arrows show the obturator foramen.

The patient’s postoperative course was satisfactory. Twelve months have passed since the surgery without the abdominal pain recurring.

Discussion

Obturator hernias are most common in multiparous, emaciated, elderly women because such women have wider pelvis and larger obturator canals. Emaciation seems to be a safe, feasible, and minimally invasive technique for emergency obturator hernia repair.
13. Nasir BS, Zendejas B, Ali SM, Groenewald CB, Heller SF, et al. (2012) Obturator hernia: The Mayo Clinic experience. Hernia 16: 315-319.

14. Otowa Y, Kanemitsu K, Sumi Y, Nakamura T, Suzuki S, et al. (2014) Laparoscopic trans-peritoneal hernioplasty (TAPP) is useful for obturator hernias: report of a Case. Surg Today 44: 2187-2190.

15. Rodriguez-Hermosa JI, Codina-Cazador A, Maroto-Genover A, Puig-Alcántara J, Sirvent-Calvera JM, et al. (2008) Obturator hernia: clinical analysis of 16 cases and algorithm for its diagnosis and treatment. Hernia 12: 289-297.