Particulate Matters Affecting IncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights

Swagatama Mukherjee1 · Uma Kundu1 · Dhwani Desai3 · Prakash P. Pillai2

Received: 31 May 2021 / Accepted: 14 September 2022 / Published online: 12 November 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with IncRNA dysregulation—a factor that increases predisposition towards the onset or progression of cancer. IncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression—in the case of GBM—can serve as a critical tool to filter down and target specific PMs and IncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with IncRNA dysregulation leading to GBM progression.

Keywords Glioblastoma multiforme · Particulate matter · Long noncoding RNA · In silico studies

Introduction
All solid and liquid particles, suspended in air all together, are called particulate matter and they include hazardous as well as non-hazardous particles (Harrison and Yin 2000). It comprises organic and inorganic particles, e.g., pollen, soot, dust, liquid droplets, and smoke. These particles differ in size, composition, and origin. The sources of PM can be natural as well as manmade. Anthropogenic activities like combustion of fossil fuel in vehicles (Omidvarborna et al. 2015), dust on road, power plants, stubble burning, various industrial processes, and wet cooling towers generate a considerable number of particulates. On the other hand, natural sources of particulate matter are dust storms, forest fires, volcanic eruptions, grassland fire, and sea spray (Anderson et al. 2012; Kundu and Stone 2014). With an increase in industrialization and anthropogenic activities, exposure to these PMs was seen to increase alongside a notable increase in health hazards such as cognitive impairments, respiratory disorders, and even carcinomas (Harrison and Yin 2000; Harbo Poulsen et al. 2020; Santibáñez-Andrade et al. 2020; Shaddick et al. 2020).

Glioblastoma multiforme, based on its histopathological tumors (GBM), is a WHO categorized grade IV brain tumor. It primarily develops in the glial cells, i.e., the astrocytes, microglia, and oligodendrocytes, and is known for its infiltrative and aggressive nature (Urbańska et al. 2014; Hanif et al. 2017). GBM is a highly malignant and essentially incurable form of brain cancer with approximately 3 out of 100,000 cases annually that typically result in deaths in the first 13 to 15 months after diagnosis. GBM, often developing in then trans barrier space of the blood–brain barrier (BBB), displays a high level of heterogeneity and was earlier classified based on their genetic profiles into three molecular subtypes, i.e., proneural, which is commonly seen in younger patients and is less pathological, classical which has low mortality with aggressive chemotherapy and
mesenchymal which shows extensive necrosis and inflammation (Sidaway 2017; D’Alessio et al. 2019). Currently, GBM is classified into primary and secondary subtypes based on the presence of isocitrate dehydrogenase (IDH) gene wherein a wild type is observed in the more clinically found primary GBM while an IDH mutant corresponds to secondary GBM type (Louis et al. 2016; D’Alessio et al. 2019; Silantyev et al. 2019; P. Zhang et al. 2020a). The former may arise de novo, i.e., it begins as a grade IV tumor with no lower grade precursor whereas the latter one progresses from lower grade tumor and leads to grade IV malignant tumors (Zhang et al. 2020b). In addition to the mutational status of IDH, various other predictive markers such as the 6-O-methylguanine DNA methyltransferase (MGMT) enzyme or growth factor receptors such as EGFR and PDGFR can often indicate and correspond to GBM pathology (Brennan et al. 2013). The preferred line of diagnosis of glioblastomas is often imaging-based results via magnetic resonance imaging (MRI), or computed tomography (CT) followed by a standard line of treatment, i.e., surgical resection coupled with chemotherapy and radiation, however, due to its highly infiltrative nature along with technological limitations has left a gap for development of better diagnostic and treatment protocols making the optimal use of biomarkers, in this case specific to GBM (Stupp et al. 2005).

No singular reason can be attributed to the development of GBM in patients but there have been significant results highlighting the role of factors like high-dose exposure to ionizing radiation (Gupta and Burns 2018; Deshors et al. 2019; Todorova et al. 2019), carcinogens in air pollution like particulate matter (PM) (Huang et al. 2017a; Harbo Poulsen et al. 2020), and certain long non-coding RNA (lncRNA) dysregulation (Ma et al. 2020; Miguel et al. 2020) in GBM progression. Disruption of lncRNA is been involved in glioblastoma (Zhang et al. 2019a). They are involved in tumor cell proliferation, invasion, therapy resistance, and cancer stem cell differentiation (Zhang et al. 2019a). Various studies have uncovered consistent evidences supporting the upregulation and downregulation of certain lncRNA in GBMs wherein numerous roles of lncRNAs were seen as decoys, ceRNAs, and epigenetic regulators (Uddin et al. 2020); this points to the need for us to conceptualize and study the dynamics associated with lncRNA dysregulation to optimize disease pathology and therapeutics (Huarte 2015; Dong and Cui 2019; Stackhouse et al. 2020; Zhang et al.).

The application of in silico analysis substitutes exhaustive literature searches and data management. It optimizes and integrates information that is otherwise too vast for comprehension. Primarily, it refers to prediction using computational approaches by data mining, computational modelling, sequence alignments, similarity searches, mathematical modelling, and so on to develop user-friendly databases, making it an advantageous tool in studies employing vast data repositories and procuring results with quicker predictions in a high-throughput mode (Edelman et al. 2010; Iourov et al. 2014; Wilks et al. 2014; Yang et al. 2015; Vougas et al. 2019; Zhu et al. 2020). Use of various databases is now also being employed to primarily study disease models such as cancers—ONCOMINE, NSBI GEO, RNAz—and their regulatory factors such as lncRNAs, to be discussed ahead at length.

Environmental Factors, PMs, and Health Hazards

In the aftermath of decades of industrialization and urbanization, a fold increase in air pollution, causing approximately 7 million deaths worldwide, was observed, declaring it a major environmental crisis. Activities like unsupervised and rampant burning of fossil fuel and unfiltered release of industrial exhausts into the atmosphere slowly noticed a categorical correlative increase in mortality in addition to various health hazards ranging primarily from respiratory disorders, impaired cognitive functions, stroke, loss of white matter, to a variety of carcinomas (Gauderman et al. 2015; Mudu et al. 2020; Santibáñez-Andrade et al. 2020). These particles differ in size categorized by the USEPA. They are divided into 3 categories: (1) coarse particles or PM10, these are the particles with aerodynamic diameter of 10–2.5 μm. These particles can easily penetrate to the lungs and get into the blood stream; (2) fine particles or PM2.5, these are the particles with aerodynamic diameter between 2.5 and 0.1 μm. These particles are capable of crossing the blood–brain barrier; (3) ultrafine particles or PM0.1, these particles have aerodynamic diameter of 0.1 μm or less than that. These particles are known to cause highest oxidative stress (Bhargava et al. 2018; Zhang et al. 2018; Santibáñez-Andrade et al. 2020). Various multietnic studies over the years indicated the presence of particulate matter (PM) to be the common denominator in this case, and thus, active research to identify the intricacies of these carcinogenic particulate matters with disease onset and pathology is being extensively studied.

Metastasis, a process mediated by epithelial mesenchymal transition in the cancer cells, is the key factor responsible for cancer proliferation and various PM particles have been observed to carry out the disease progression by modulation this hallmark of cancer (Sánchez-Pérez et al. 2009; Deng et al. 2013). PM2.5 is one such PM that has been correlated with high proliferative cancers displaying a fold increase in malignancy due to it affecting known EMT mediating pathways such as TGF-β/Wnt pathway, NOTCH signalling pathway, and SMAD signalling pathway. Additionally, PM2.5 has also been seen to play an integral role in cell death resistance by activating PI3K-AKT pathway in the cells in addition
to mediating generation of ROS radicals and induction of mitochondrial stress response (Chen et al. 2005; Sánchez-Pérez et al. 2009; Deng et al. 2013; Heßelbach et al. 2017).

Furthermore, evidences of PM$_{2.5}$ mediating angiogenesis by inducing pro-angiogenic factors and disrupting genomic stability by downregulating DNA repair enzymes and epigenetic alterations strengthen the hypothesized role of this PM as a key causative agent of various medical anomalies, primarily cancer (Huang et al. 2017b; Zhang et al. 2017b; Li et al. 2018a). Evidences from in vitro studies have suggested that exposure to PM2.5 can cause certain changes in the brain that induces tumorigenesis (Zhang et al. 2018; Araújo et al. 2019). Thus, we can infer that PM2.5 can reach the brain via the blood stream crossing the blood–brain barrier (Poulsen et al. 2020). PM2.5 is seen to have prominent role in diseases like Parkinson disease and Alzheimer disease. PM2.5 exposure is related to cell proliferation, anti-apoptotic effects, and activations of angiogenic factors (Santibáñez-Andrade et al. 2020). Epithelial-mesenchymal transition which is said to be the one of the major events that promote tumor metastasis is also seen to be affected by PM2.5 (Xu et al. 2019a), as the risk of cancer mortality increases by several folds when the patient is exposed to PM2.5 after cancer diagnosis (Ou et al. 2020).

Particulate Matters and GBM

The common occurrence of a high air pollution index often increases the possibility of exposure to carcinogenic PMs resulting in onset of disease pathology (Manisalidis et al. 2020; Wu et al. 2020a, b; Ou et al. 2020). Various evidences have highlighted the role of coarse particulate matter in brain inflammation piquing an interest to study the neurodegenerative and tumorigenic effects on exposure to concerning levels of air pollution (Merk et al. 2020; Lu et al. 2021). A prominent European observational study with a cohort sampling method identified positive association between absorbance of PMs as a result of traffic exposure and the occurrence of brain tumors wherein statistically significant associations between air pollutants (PMs) and malignant tumors were noted (Andersen et al. 2018; Zhang et al. 2018) creating a scope for further studying PMs in lieu of brain tumors or gliomas. Furthermore, correlation between exposure to PMs and their effect on neural biomarkers was found in a crossover study with a group of 50 healthy volunteers wherein further indication of disruptions of blood–brain barrier alongside high levels of stress was also noted (Liu et al. 2017).

India being a developing nation has seen a reported increase in various health hazards in the past few decades (Kandlikar 2000; Smith 2000; Manisalidis et al. 2020). Daily exposure to these PMs via their various sources has not only developed numerous pathologies such as asthma, premature pregnancies, and tuberculosis, but also numerous types of cancer such as lung carcinoma, melanomas, and even glioblastomas (Khilnani and Tiwari 2018; Jindal et al. 2020). With over 1.6 million new incidences of cancer detected nationwide, each year, regulation of air pollutants and limited exposure to PMs is imperative apropos of public health and welfare (Krishnatraya and Kataki 2020). Due to the fine size of these PMs, once breathed in and detained in the tissues by internal impaction, PMs can easily travel across the blood–brain barrier (BBB)—the cellular line of defense (Shih et al. 2018). Studies analyzing gene expression of genes associated with neuro-endocrine responses, inflammation, tumorigenesis, and proliferative responses recorded an upregulated response in their expression after prolonged exposure (1–3 months) to these PM. Simultaneous upregulation of genes encoding interleukin 13α1 and cytokine IL-6 further indicated and confirmed instances of inflammation in the brain post-PM exposure. Furthermore, the upregulation of the Ras-related botulinum toxin substrate 1 (RAC1) gene associated with various carcinomas additionally supported the role of these PMs in tumorigenesis.

The onset of glioblastoma cannot be narrowed down to a particular cause, instead the presence of a singular or a myriad of physical, chemical, etiological, epidemiological, or lifestyle-based predispositions can be attributed to the progression of GBM (Ljubimova et al. 2018; Harbo Poulsen et al. 2020). Several studies have notably pointed towards PM playing a role in intracranial central nervous system tumor progression but there have also been inconsistencies and a paucity of conclusive results (Shih et al. 2018; Poulsen et al. 2020). However, epidemiological studies (Andersen et al. 2018; Harbo Poulsen et al. 2020; Turner et al. 2020) specifically investigating the role of PM in tumor malignancy, in the recent years, have categorically indicated the role of PMs (PM$_{2.5}$) as a risk factor in gliomas in addition to other tumor subtypes. Known evidences of PMs dysregulating cellular pathways such as cell cycle (Li and Nel 2006; Longhin et al. 2013; Santovito et al. 2020), angiogenesis (Kaur and Katnoria 2016; Chen et al. 2017), and EMT (Chi et al. 2018; Xu et al. 2019b) indicate towards cancer proliferation, even in the case of glioblastoma. Upregulation of pathways inducing epithelial-mesenchymal transition, angiogenesis, and even drug resistance resulting in various types of carcinomas has been attributed to exposure to PMs; however, studies indicating the involvement of PMs and IncRNA dysregulation highly buttress their role in GBM progression. Evidentiary studies have noted the interaction and upregulation of IncRNAs such as MEG3, HOTAIR, MALAT1, and NEAT1 which are known regulators of EMT by regulating their respective cellular pathways or by acting as ceRNAs and GBM and subsequently contribute to disease progression (Zhou et al. 2015; Li et al. 2018b; Miguel et al. 2020; H. Chen et al. 2019; Q. Chen et al. 2018; Gupta et al. 2010; L. Zhang et al. 2020).
Pathogenic Mechanisms of PMs in GBM Progression

Saturation of the air available to us for breathability with toxic contaminants such as various particulate matters may not have an immediate visible effect alongside clinical symptoms; however, a long-term exposure can undeniably lead to detrimental pathological repercussions such as asthma, chronic obstructive pulmonary disease (COPD), stroke, and carcinomas (Lee et al. 2020). Cancer, irrespective of the type, is a complex web of signalling cascades and their molecular modifiers wherein a small irregularity—in this case, long-term exposure to environmental factors such as PMs—can potentially initiate a ripple effect at a molecular level resulting in dysregulated cell signalling cascade and ultimately resulting in tumor progression. PMs are well studied and researched in lung carcinomas; however, their role at a molecular level has been seen to increase oxidative stress in various other cancer types making it a prominent risk factor initiating the onset of GBM and its progression (Vattanasit et al. 2014). PM-mediated ROS stress response often leads to activation of ROS-sensitive signalling cascades such as the mitogen-activated protein kinases (MAPKs) and its upstream regulatory pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), which in turn leads to overexpression of specific transcription factors potentiating GBM progression. Additionally, PMs have also been seen to induce DNA damages that can potentially activate more than one carcinogenic pathway (Lee et al. 2020; Li et al. 2021). Apart from the known carcinogenic effect of PMs, the extent of their toxicological effect is also directly proportional to their concentration wherein glutathione transferase was observed as one of the key effect modifiers correlating it with a ROS stress response in cells (Orach et al. 2021). GBM progression and etiology could further be attributed to lncRNAs present in the cells. They are often packed and shipped in membrane-bound vesicles, extracellular vesicles, that are compacted with an array of biomolecules and that on uptake by the recipient non-cancerous cell often result in activating and dysregulating known oncogenic pathways; one such crucial cargo content is a variety of ncRNAs (Wang et al. 2018a) (Fig. 3).

PM-Mediated Epigenetic Regulation and GBM Progression

There are various key genes responsible for the development and regulation of various cancers; however, apart from the specific genes, various regulatory elements play a key role as genetic modifiers. Non-coding RNA contributes as one of the key modifiers of any cancer landscape wherein different kinds of ncRNAs such as IncRNAs, miRNAs, circRNAs, and snoRNAs together dysregulate existing cellular pathways leading up to a cancer phenotype (Candido et al. 2019; Rynkeviciene et al. 2018; Zhang et al. 2020a, b, c, d). In glioblastoma, a variety of studies have indicated the role of miRNAs and IncRNAs aiding in cellular proliferation, anti-apoptotic pathways, angiogenesis, and chemoresistance. These non-coding RNAs seem to bind with gene regulatory elements, transcription start sites, and promoter sequences and alter gene expression. Some are even responsible for chromatic modification leading to expression of previously silenced genes. In the case of GBM, various chromatin regulatory elements result in aiding the aggressiveness of the glioma type. In glioblastoma, several types of ncRNA play a pivotal role in leading to GBM progression and also in suppressing it; miRNAs such as mir-21, mir-148a, and mir-5-5p are crucial regulators of GBM progression in addition to lncRNAs HOTAIR, MALAT1, CCAT2, H19, and HIF1α playing a similar regulatory role (Mukherjee and Pillai, 2021; Stella et al. 2021; Gao et al. 2019b; Bountali et al. 2019; Y, Zhang et al. 2020a; L. Chen et al. 2019).

The lncRNA repository is responsible for carrying out a myriad of cellular roles and has a similar effect in brain tissues as well. IncRNAs play a key role in modulating the epigenetic landscape during glioblastoma development (Uddin et al. 2020). The molecular interplay of IncRNA, acting as ceRNAs (competing endogenous RNAs), is intertwined with various miRNAs wherein without undergoing gene modification a variance in phenotypic characteristic is observed (Liz and Esteller 2016; Dashti et al. 2020). IncRNAs, once transcribed, can carry out modifications in gene expression either by causing chromatin rearrangement or by binding to promoters, miRNArsc, or specific proteins such as enhancer of zeste homolog 2 (Ezh2), polycomb-repressive complex (PCR2), DNA methyltransferases (DNMTs), and many more (Wilusz et al. 2009). The interaction of IncRNAs with proteins acts as a key causative agent in cancer progression by aiding in proliferation (Dashti et al. 2020; Jin et al. 2020a, b, c; Luo et al. 2020), invasion (Chen et al. 2018; Zhang et al. 2020a; R. Su et al. 2020), migration (Zhou et al. 2020), apoptosis (Hui et al. 2019), and chemoresistance (Chen et al. 2019d). In gliomas, IncRNAs such as PLAC2 are known to bind to signal transducer and activator of transcription 1 (STAT1) followed by which this complex downregulates the CDK2 causing an arrested cell cycle and inhibition of proliferation (Hu et al. 2018). Interaction of IncRNA NEAT with RNA binding proteins (RBPs) such as Ezh2 which causes promoter silencing of GSK3b, Axin2, and ICAT, in addition to promoting WNT/β catenin signalling as a result of glioma invasiveness (Chen et al. 2018). Interactions with DNA methyltransferases with IncRNAs as seen in the case of LINC00467 have seen to play a role in glioma invasiveness by interacting with the p53 promoter resulting in a change in gene expression (Zhang et al. 2020a).
The molecular interplay of lncRNAs lies in close association with other non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) that are usually 22 nucleotides long and circular RNAs (Y. Zhang et al. 2020a). Commonly found upregulated lncRNAs in the GBM TME such as H19, HOTAIR, SNHG5, Xist, MALAT1, NEAT1, and CRNDE and downregulated lncRNAs such as MEG3 and TUG1 have been observed to aid in angiogenesis, proliferation, apoptosis, and even migration—known hallmarks of cancer progression. CRNDE is a known lncRNA that acts via the mTOR pathway (Wang et al. 2015) involving myc, cyclinD1, p53, and PTEN genes—all known targets of mir384 which in turn is a known regulator of the protein PIWIL4, a key player in STST3 phosphorylation (Zheng et al. 2016). Apoptosis-stimulating protein of p5 (iASPP) gene is a key regulator in the apoptotic pathway, the expression of which is inhibited by the activation of the gene inhibitor activated in turn by the lncRNA UCA1 which also further inhibits the expression of miR-182 (He et al. 2017)—an miR responsible for the cell proliferative pathway (Li et al. 2019). Additionally, an upregulation in then levels of UCA1 downregulates miR-122, which originally is associated with the function of tumor progression and proliferation. HOTAIR is a known lncRNA and a target for miR-326 (Ke et al. 2015) and miR-148b-3p (Wang et al. 2016); combined effects of these lncRNA-miRNA complexes act as good inhibitors for tumor proliferative, migrative, and invasive processes as observed in U251 and U87 (glioblastoma cell lines). Additionally, fibroblast growth factor (FGF) (Lungu et al. 2008), a known target of this lncRNA-miRNA complex, is further seen to activate oncogenic pathways of PI3K/AKT signalling. Furthermore, suppressed expression of HOTAIR results in regulation of apoptosis as correlated with cellular levels of bromodomain and extra-terminal family protein (BRD4) (Pastori et al. 2015). Levels of NEAT1 have been seen to inversely correlate with the patient survival rates (He et al. 2016). It suppresses apoptosis by interacting with miR-449b-5p—an activator of MET oncogene. Furthermore, the miR let-7e is a known direct target of NEAT1 that aids in cell proliferation via the PI3K/AKT pathway (Zhen et al. 2016). MALAT1 remains as the most debatable lncRNA in terms of molecular interplay in cancers. In GBM, MALAT1 has been found to be both downregulated and upregulated wherein higher levels correlate with better survival of patients with glioma. MALAT1 also is known to downregulate the levels of miR-155 which is a known target for FBXW7, a tumor suppressive gene (Cao et al. 2016a). In the context of GBM, the role of FBXW7, the circRNA responsible for coding the FBXW7 185aa, a protein with a key role in modulation of hypoxia as a result of regulating the Warburg effect, has also found its place in modulating the glioblastoma epigenetic landscape (Yang et al. 2018; Yang et al. 2020). A common occurrence in GBM with respect to lncRNA is seen with their role in sponging miRNAs as can be seen in the case of oncogenic lncRNA Sox2ot that sponges mir200 resulting in EMT facilitation; lncRNA PART1 plays a tumor suppressive role by sponging mir190a-3p that consecutively downregulates the PTEN/Akt signalling, H19 acting as ceRNA and regulating EMT by sponging mir130a-3p—a fairly common way of lncRNA-mediated tumorigenesis (Heßelbach et al. 2017; Huang et al. 2017c; Li et al. 2018b; Wang et al. 2018a, b, c; Chen et al. 2019a, c, d; Wang et al. 2019a, b; H. Chen et al. 2020a; W. Chen et al. 2020b; Stackhouse et al. 2020; Feng et al. 2021; Chen et al. 2019a; Jin et al. 2020a, b, c).

A large number of studies exist that correlate the lncRNA dysregulation with GBM progression (Table 1); however, an earlier date of consistent data, joining one of the dots between lncRNA dysregulation and GBM, can now be attributed to PMs. Thus, the detrimental interaction of PMs with known lncRNA species has been correlated with GBM progression. A study with lung epithelial cells elucidates the dysregulated IncRNA landscapes on exposure to PMs indicating a notable abnormal expression of ncRNAs. A substantially high level of MALAT1 expression was triggered by exposure to resulting in EMT (Huang et al. 2017b). Additionally, the involvement of the AHR-CYP1A1 pathway which plays a necessary role in managing the toxicity and physiological impacts of toxic metabolites is seen to interact with various types of lncRNAs making them a notable target to study the interactions of these PMs at a molecular level. lncRNAs have also resulted in cells acquiring cancer cell-like phenotype (CSC) (Huang et al. 2017c; Li et al. 2018b) and have seen to increase the permeability of vascular endothelial cells which plays a crucial role in cancer cell intravasation and extravasation. It does so by inhibiting lncRNA HCG18 (Huang et al. 2017c; Wang et al.). PM2.5-exposed cell gets transformed into cancer cell by being angiogenic with the help of a lncRNA which upregulates VEGF (Yang et al. 2020; Santibáñez-Andrade et al. 2019). Various studies have reported results that categorically suggest the induction of lncRNA MALAT1 in vitro, which initiates a cascade by impacting known EMT regulator Zeb1 consecutively resulting in metastasis and disease progression by downregulating mir-204. MEG3 which is associated with bcl-2- and caspase-induced apoptosis undergoes dysregulation by PM interaction. Increase in HOTAI was also observed by PM obtained from cigarette smoke, and lastly, changes in H19 levels were also noted on exposure to PM, all results notably highlighting the role and involvement of PM in lncRNA interactions (Heßelbach et al. 2017; Li et al. 2018c; Wang et al. 2019a, b). Thus, dysregulated levels of lncRNAs in gliomas and dysregulation of lncRNAs
S. No	IncRNAs (associated with glioblastoma)	Expression level	Role in GBM progression	Interaction with PMs	References
1	TUG1	Downregulation	Proliferation and inhibition of apoptosis	PM2.5	Stackhouse et al. (2020), Liao et al. (2019)
2	GATA6-AS	Downregulation	Proliferation and inhibition of apoptosis	-	Stackhouse et al. (2020), Liao et al. (2019)
3	DGCR5	Downregulation	Anti-apoptotic, proliferation, EMT, invasion	-	Wu et al. (2020a, b)
4	MALAT1	Upregulation	Metastasis and tumorigenesis, invasion, drug resistance	PM2.5	Steinfeld et al. (2015), Stackhouse et al. (2020)
5	CASC7	Downregulation	Tumor progression	PM2.5	Stackhouse et al. (2020), Chen et al. (2019a)
6	CASC9	Upregulation	Tumorigenesis	PM2.5	Liu et al. (2018)
7	LINCO1426	Upregulation	Proliferation, invasion and survival	-	Wang et al. (2020a, b)
8	NEAT1	Upregulation	Proliferation and invasion	PM2.5	Zhou et al. (2018a, b), Chen et al. (2018a)
9	PART1	Downregulation	Tumor progression and cell growth	-	Jin et al. (2020a, b, c)
10	HOTAIRM1	Upregulation	Proliferation, invasion and tumor progression	-	Li et al. (2018a, b, c, d, e), Shi et al. (2020)
11	H19	Upregulation	Proliferation, invasion and angiogenesis	PM2.5	Liu et al. (2020)
12	HOTAIR	Upregulation	Proliferation, invasion, therapy resistance, chromatin remodelling	PM2.5	Stackhouse et al. (2020)
13	CRNDE	Upregulation	Cell growth, invasion, anti-apoptotic	PM2.5	Zhang et al. (2020)
14	MEG3	Downregulation	EMT, invasion, cell proliferation	PM2.5	Buccarelli et al. (2020)
15	AGAP2-AS1	Upregulation	Proliferation	-	Xu et al. (2021)
16	PCAT1	Upregulation	Anti-apoptotic, radiation resistance	-	Zhang et al. (2019a)
17	AHIF	Upregulation	Invasion, anti-apoptotic, radiation resistance	-	Dai et al. (2019, a)
18	LINC01494	Upregulation	Proliferation, migration, invasion	-	Li et al. (2019a, b)
19	GAS5	Downregulation	Proliferation, invasion and migration	PM2.5	Li et al. (2019)
20	ATB	Upregulation	Invasion	-	Bian et al. (2019)
21	TALNEC2	Upregulation	Tumorigenesis, radiation resistance	-	Brodie et al. (2017)
22	LINCO0467	Upregulation	Proliferation and invasion	-	Zhang et al. (2019b)
23	SNHG12	Upregulation	Drug resistance	PM2.5	Lu et al. (2020)
24	MATN1-AS1	Downregulation	Proliferation, invasion	-	Han et al. (2019)
25	NR-002791	Downregulation	Tumorigenesis	-	Wang et al. (2018a, b, c, d)
26	SBF2-AS1	Upregulation	Drug resistance	-	Zhang et al. (2019b)
27	BDNF-AS	Downregulation	Proliferation, invasion, tumor progression	PM2.5	Su et al. (2020)
28	PSED1B-AS1	Upregulation	Tumorigenesis	-	Yao et al. (2020)
29	HOXC-AS3	Upregulation	Proliferation, invasion migration	-	Wang et al. (2019a, b)
30	PXN-AS1	Upregulation	Tumorigenesis	-	Chen et al. (2020a)
31	HIF1A-AS2	Upregulation	Maintain mesenchymal GSC	-	Mineo et al. (2016)
32	HOXB-AS1	Upregulation	Proliferation, invasion, migration	-	Chen et al. (2019)
33	LINCO0470	Upregulation	Tumorigenesis, anti-apoptotic	-	Liu et al. (2018)
34	SOX20T	Upregulation	Proliferation, invasion, tumor progression	-	Su et al. (2017)
35	DLEU1	Upregulation	Proliferation, anti-apoptotic	-	Liu et al. (2019)
36	XIST	Upregulation	Proliferation, invasion, migration	PM2.5	Yao et al. (2014)
37	SNHG7	Upregulation	Tumor progression and cell growth	-	Xue et al. (2018)
38	HAS2-AS1	Upregulation	Tumor progression	-	Zhang et al. (2020a)
39	SNHG6	Upregulation	Proliferation	-	Chen et al. (2018b)
S. No	IncRNAs (associated with glioblastoma)	Expression level	Role in GBM progression	Interaction with PMs	References
-------	--------------------------------------	------------------	--------------------------	----------------------	------------
40	SNHG15	Upregulation	Drug resistance	PM2.5	Li et al. (2019)
41	TRG-AS1	Upregulation	Proliferation	-	Xie et al. (2019)
42	SNHG5	Upregulation	Proliferation	-	Chen et al. (2019)
43	LEF1-AS1	Upregulation	Proliferation, invasion migration	-	Wang et al. (2017)
44	DANCN	Upregulation	Tumor progression	-	Li et al. (2018d)
45	SAMMSON	Upregulation	Proliferation, invasion migration	-	Ni et al. (2021)
46	MIAT	Upregulation	Tumor progression	PM2.5	Bountali et al. (2019)
47	LOXL1-AS1	Upregulation	Proliferation, invasion migration	-	Wang et al. (2018b)
48	TP73-AS1	Upregulation	Drug resistance, invasion migration	PM2.5	Mazor et al. (2019)
49	HOXA-AS3	Upregulation	Proliferation, invasion migration	-	Chen et al. (2020a)
50	ADAMTS9-AS2	Upregulation	Drug resistance	-	Yan et al. (2019)
51	SNHG20	Upregulation	Maintain GSC, tumorigenesis	-	Gao et al. (2019a)
52	PCAT6	Upregulation	Tumor progression	-	Liu et al. (2020)
53	GAPLINC	Upregulation	Tumor progression, cell growth, migration invasion	-	Chen et al. (2019)
54	MNX1-AS1	Upregulation	Proliferation, invasion migration	-	Zhang W et al. (2019a)
55	PABPC1	Upregulation	Proliferation, invasion migration, anti-apoptotic	-	Su et al. (2020)
56	NBAT1	Downregulation	Proliferation	-	Liu et al. (2018b)
57	SCHLAP1	Upregulation	Tumor progression, cell growth, proliferation	-	Ji et al. (2019)
58	MIR4435-2HG	Upregulation	Proliferation, invasion	-	Xu et al. (2020)
59	CASP5	Upregulation	Migration, invasion	-	Zhou et al. (2015)
60	RPSAP52	Upregulation	Maintain GSC	-	Wang et al. (2020a, b, c)
61	UCA1	Upregulation	Anti-apoptotic, migration invasion	PM2.5	Xin et al. (2019)
62	LINC00152	Upregulation	Tumor progression, invasion	-	Chen et al. (2018b)
63	HOXA-AS2	Upregulation	Tumorigenesis	-	Shou et al. (2021)
64	MANITIS	Upregulation	Angiogenesis	-	Leisegang et al. (2017)
65	DCST1-AS1	Upregulation	Proliferation	-	Hu et al. (2004)
66	SNHG4	Upregulation	Proliferation	-	Wang et al. (2020c)
67	LINC00998	Downregulation	Proliferation, tumor progression	-	Cai et al. (2020)
68	TPT1-AS1	Upregulation	Proliferation	-	Gao et al. (2020 Aug 12)
69	LINC01446	Upregulation	Proliferation, tumorigenesis	-	Zhang et al. (2020b)
70	AC016405.3	Downregulation	Proliferation, invasion migration	-	Ren et al. (2019)
71	HOXB13-AS1	Upregulation	Proliferation, tumor progression	-	Xiong et al. (2018)
72	Lnc-TALC	Upregulation	Drug resistance	-	Wu et al. (2019)
73	NCK1-AS1	Upregulation	Drug resistance	-	Chen et al. (2020)
74	HMMR-AS1	Upregulation	Tumorigenesis, proliferation, invasion, radiation resistance	-	Li et al. (2018d)
75	LINC00657	Downregulation	Anti-apoptotic, proliferation	-	Chu et al. (2019)
76	AC030392.1	Downregulation	Drug resistance	-	Xu et al. (2018)
77	RNCR3	Downregulation	Proliferation, anti-apoptotic	-	Zhang et al. (2020b)
78	TUSC7	Downregulation	Drug resistance	-	Shang et al. (2018)
79	RAMP2-AS1′	Downregulation	Tumor progression, proliferation	-	Liu et al. (2016a, b)
80	RP11-838N2.4	Downregulation	Tumor progression	-	Liu et al. (2016b)
by exposure to PMs as elucidated in different carcinomas hypothesize the correlated involvement of PMs in gliomagenesis via epigenetic regulations.

In Silico Approaches: PMs, IncRNA, and GBM Progression Correlation

With the addition of new results around the clock, modern research faces many hurdles when it comes to processing, compartmentalizing, and analyzing the available data. In order to establish favorable and specific connecting links (Fig. 1) from within the consortium of available data, employing the use of analytical or mathematical tools serves as the need of the hour. Bioinformatics paves the way to cinch such scientific occlusions with a diverse range of in silico approaches that not only serve as a crucial data repository but also help research take the much-needed go-ahead in analyzing and building our case to study various medical anomalies such as cancer which exists with various cellular, biological, physical, and etiological connecting links and a high number of casualties. To research, understand, and diagnose any pathology, the cellular transcriptome plays an indispensable role; however, a vast majority of the transcriptome remains unavailable for translation and thus plays a purpose in epigenetically regulating and altering the cellular landscape by sponging, employing decoy moieties, and chelators of various moieties altering the proteome and the cellular landscape with it. With thousands of gene coding for a vast number of transcripts, decoding the specific interactions of one particular transcript at a time becomes a herculean task and thus requires efficient compression and compilation of existing data while maintaining comprehensibility and providing user accessibility. The miniaturization of available vast datasets has been successfully achieved via computational approaches making use of bioinformatics. The ease of shortlisting a target molecule with specific molecular interactions plays a key role in unearthing pathology-specific epigenetic changes wherein the interaction of various non-coding RNAs such as IncRNA, miRNA, and ceRNAs has been mapped to understand the web of interaction (Falzone et al. 2019; Candido et al. 2019; Zhang et al. 2017a; Long and Li 2019; Cao et al. 2016a, b). The repository of available computational databases has made it possible to access and interpret profiling data, RNA seq data, IncRNA-miRNA interactions, (Y. Zhang, et al. 2017b) and many more such parameters which remained elusive to various pathologies resulting from dysregulated pathways such as cancers. The presence of multi-factorial dysregulation is a common occurrence in various cancer types; therefore, to filter out the key molecules amidst a stack of cellular transcripts with significant correlation remains a priority while developing any axes to study cancer types. Computational databases with inbuilt analysis tools have significantly contributed to easing the otherwise cumbersome research methodology.

An important establishment while dealing with a globally occurring disease with high rate of incidence such as glioblastoma is the variety of available databases. These databases, compacted with patient data stored over the years, serve as a key tool in not only understanding the epidemiological impact of the disease but also aiding us build a baseline with respect to the patient variables such as age, gender, ethnicity, and comorbidities. Databases such as The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) (https://www.cancer.gov/tcga) are a research community aiming at correlating phenotype and genotypes in addition to relevant tumor imaging stored in The Cancer Imaging Archive (TCIA). GliomaDB, another interactive and comprehensive database, serves with the purpose of studying gliomagenesis by integrating and optimizing available information on various higher grade and lower grade gliomas from pre-existing databases such as TCGA, Gene Expression Omnibus (GEO) ([CSEL STYLE ERROR: reference with no printed form.]), US Food and Drug Administration (FDA), and many such notable organizations. ONCOMINE (Rhodes et al. 2004), on the other hand, serves as an efficient web-based data mining platform encompassing various cancer microarray databases and remains a robust provider of information of cancer transcriptome (C. Zhao et al. 2020) and proteome (Silantyev et al. 2019). These databases harness the input information and present it in an easily consumable format by employing statistical and mathematical algorithms or data mining via literature survey followed by compilation and compaction of the database. Efficient models that predict the interplay of various biomarkers for glioblastoma making use of in silico approaches wherein expression profiles of
lncRNAs and miRNAs were noted alongside the miRNA- lncRNA interactions which were then further mapped using computational software Cytoscape to elucidate the lncRNA-miRNA interaction network wherein the lncRNAs specifically denoted their role as ceRNAs (Cao et al. 2016b; Zhang et al. 2017a). A similar study with respect to breast cancer elucidated the web of lncRNA-miRNA interactions by identifying specific dysregulated ncRNA that were summarized from existing databases, namely NCBI, and then analyzed with respect to their associations with target genes and their mRNAs alongside gene ontology and the clinical and pathological features of the specific cancer type (Zhang et al. 2017b). Use of microarray analysis alongside gene ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis has also been carried out to study the gene targets of dysregulated lncRNAs and their interactions with specific mRNAs in the case of lung carcinomas caused as a result of PM exposure (Li et al. 2018a).

Just like cancer databases, a vast amount of information with respect lncRNA—one of the parameters of our article—remains available and open for interpretation and hence, in order to screen and strategically obtain the desired information pertaining to gene regulation, epigenetic modulation, or disease model about specific lncRNA or any other transcriptome, web-based interfaces are easily available for public access. Databases such as LNCipedia (Volders et al. 2019) comprehensively summarize lncRNA annotations and sequences which encompass approximately 56,000 genes and 127,802 transcripts wherein it makes use of RNA sequencing data and chromatin state maps in its databases. NRED (Dinger et al. 2009) exists as a database specifically catering annotated expression data of lncRNAs from diverse sources and helps in identifying specific lncRNA with the use of filter searches apropos of genomic context, target specifications such as deletions, overlaps, and so on. NONCODE (Zhao et al. 2016) is another key example of a comprehensive knowledge consortium dedicated to non-coding RNAs (ncRNAs) across various species wherein they are classified based on sample type, demography, gender, and disease type and further provides results based on simple searches for sequence, location, orthologs, function, or expression.

Although there exist databases devoted to singular broad topics such as cancer or lncRNAs, studies with a deep focus on specific disease models, in this case glioblastoma, often require easy navigation to correlate and identify various intricacies such as related gene expression, epigenetic modulation, involved cellular pathways, and angiogenesis (Iser et al. 2017; Sun et al. 2017). Thus, with a growing focus on understanding disease pathology of complex diseases such as GBM, with more than one factor responsible for onset or progression, our lab proposes the need for data accumulation and dataset generation that can correlate known contributing factors such as lncRNA as either biomarkers (Cao et al. 2016a) or molecular agents mediating dysregulation mediated by particulate matter exposure to study GBM progression (Fig. 2). Though, a niche topic, such databases if constructed can aid in quick searches and precise understanding of specific underlying factors such as lncRNA or PMs responsible for specific disease progression.
Remedial and Therapeutic Approaches

GBM is known for its variety of incitants which are responsible for its onset and progression. Other than exposure to any chemical, physical, etiological, or biological carcinogenic causal agent, particulate matter has also significantly contributed to the disease pathology (Urbańska et al. 2014). Due to a high rate of malignancy and poor diagnosis of glioblastoma, treatment strategies have been limited to surgical resection, radiation therapy, and chemotherapeutic drugs such as temozolomide or bevacizumab. However, with the use of nanoparticles, pharmacokinetics, and bio-engineering, new therapeutic strategies with combinational therapy are being actively researched to investigate and curb GBM progression. However, despite the advancements in therapeutics, remedial strategies to curb one’s exposure to PMs can play a decisive and crucial role in avoiding carcinomas.

Decades of epidemiological research have correlated the role of particulate matter with an array of physiological dysregulations and diseases. Once across the BBB, these PMs aid in transcriptome dysregulation by disrupting various cellular pathways that ultimately result in GBM progression via increased invasiveness, angiogenesis, and metastasis. Additionally, PMs such as PM$_{2.5}$ have also been seen to play a role in chemoresistance as seen in the case of doxorubicin, a chemotherapeutic drug associated with inhibiting apoptosis and upregulating levels of glutathione (GSH) (Dai et al. 2019a; Merk et al. 2020).

Particulate matters such as PM$_{2.5}$, PM$_{10}$, ultrafine particles, polycyclic aromatic carbons, benzo[a]pyrene, and various heavy metal exhausts on exposure over time have invariably pointed at a predisposition towards carcinomas. Therefore, a need to develop remedial strategies to eliminate these PMs as causal agents is of pivotal importance. Employing the use of various types of filters to sieve out particulate matter is an important stepping stone in eliminating the inhalation and intake of PMs. Filters with varying pore sizes and types such as porous type, fibrous type, and activated carbon nanotube type efficiently absorb the particulate matter from air sources (Sai Charan et al. 2021). Air purifiers and anti-bacterial nanofiber filters such as HEPA are now commonly being used. Furthermore, actively limiting exposure to known carcinogens such as cigarette smoke or industrial emission by inculcating positive lifestyle changes can have a considerable effect on one’s physiological well-being.

![Graphical illustration representing PM-mediated carcinogenic changes in glial cells potentiating glioblastoma onset and progression](image_url)
Conclusion

The past centuries have undoubtedly observed an increase in air pollution which has been regarded as a top priority in the global agenda. An estimate of 4.2 million deaths on an annual basis can be attributed to air pollution. With 55.3% of the world exposed to particulate matter especially noxious and toxic PMs such as PM$_{2.5}$, a significant impact on health can be seen by an increase in a wide array of diseases such as cognitive abnormalities, respiratory disorders, metal poisoning, and various types of carcinomas. Prolonged exposure to these PMs has significantly seen a detrimental effect on cellular pathways such as lncRNA dysregulation as discussed earlier (Krzyzanowski and Cohen 2008). Several known lncRNAs such as MALAT1, MEG3, HOTAIR, and H19 that are known to regulate various hallmarks of cancer such as epithelial-mesenchymal transition, angiogenesis, metastasis, and resistance to cell death are significantly affected by presence of PMs such as PM$_{2.5}$ and ultrafine particles. Dysregulation of these lncRNAs further leads to activation of various oncogenic cellular pathways resulting in onset or progression of various carcinomas, including glioblastomas (Fig. 3).

Glioblastoma multiforme exists as a fatal morbidity with many precursors and causative agents. Extensive in silico approaches over the years have substantiated the array of gene expressions, mutations, and cellular pathways responsible for the progression of this disease in online repositories and databases. These databases such as TCGA, ONCOMINE, GEO, and many others act as efficient search engines and online archives where one can procure filtered search results to study various aspects of specific diseases (Fig. 4). In the case of GBM, data ranging from patient cases such as gender, ethnicity, patient survival rate, GBM subtype, transcriptomic analysis, gene mutations, known precursors, or even comorbidities are available. This displayed array of data increases the ease of screening and obtaining precise information for extensive research and future studies. However, in the case of diseases with multiple precursors such as GBM, individual databases focus primarily on the one cancer type with searches based on key factors such as cellular (lncRNA) or environmental (PMs). This proposed database is a significant way forward in correlating air pollution with disease pathology. In terms of research, it not only narrows down the search for the desired cellular candidate, in this case a particular lncRNA, responsible for a specific function in GBM progression but also correlates and presents the proposed reason of the dysregulation, i.e., specific particulate matters. The current approach of preparing a database can notably be used for niche research studies, specifically focusing on air pollutants and their effect on the cancer transcriptome.
Acknowledgements The authors would like to thank the fellows and colleagues, Ms. Sangati Pancholi, Ms. Pampa Pain for participating in the discussions during the review manuscript preparation.

Author Contribution SM and UK did the literature search and contributed to the preparation of the main draft of the review manuscript under the supervision of PP; DD assisted in the in silico strategies of the study and helped in conceptualizing the work along with PP.

Availability of Data and Materials Data was obtained after intense literature review from known database repositories.

Declarations

Ethics Approval For this review, ethical approval was not required/applicable.

Consent for Publication The authors grant consent for publication of the review.

Competing Interests The authors declare no competing interests.

References

Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, Sommar JN, Forsberg B, Olsson D, Oftedal B et al (2018) Long-term exposure to ambient air pollution and incidence of brain tumor: The european study of cohorts for air pollution Effects (ESCAPE). Neuro-Oncology 20(3):420–432. https://doi.org/10.1093/neuono/xnz163. [Accessed 21 Jun 2023]. https://www.pmc/articles/PMC5817954/

Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: A review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175. https://doi.org/10.1007/s13181-011-0203-1. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC3550231

Araújo JE, Jorge S, Santos HM, Chiechi A, Galystian A, Lodeiro C, Diniz M, Kleinman MT, Ljubimova JY, Capelo JL (2019) Pro-temocine changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. Sci Total Environ 687:839–848. https://doi.org/10.1016/j.scitotenv.2019.06.102

Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B (2019) Exosomal LncRNA-ATB Activates astrocytes that promote glioma cell invasion. Environ Pollut 234:406–419. https://doi.org/10.1016/j.envpol.2017.11.093

Bhargava A, Tamrakar S, Aglawe A, Lad H, Srivastava RK, Mishra DK, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK (2018) Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environ Pollut 234:406–419. https://doi.org/10.1016/j.envpol.2017.11.093

Bountali A, Tonge DP, Mourtada-Maarabouni M (2019) RNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fate. Int J Biol Macromol 130:878–891

Brennan CW, Verhaak R, McKenna A, Campos B, Noshuehhr M, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462. https://doi.org/10.1016/j.cell.2013.09.034. [Accessed 4 Jun 2021]. https://www.pubmed.ncbi.nlm.nih.gov/24120142

Brodie S, Lee HK, Jiang W, Cazacu S, Xiang C, Poisson LM, Datta I, Kalkanis S, Ginsberg D, Brodie C (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget 8(19):31785–801. https://doi.org/10.18632/oncotarget.15991

Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D’Alessandrissi QG, Giannetti S, Novelli A, Ileri R, Giurato G, Boe A (2020) Deregulated expression of the imprinted DKL1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of LncRNA MEG3. Academic Oup Com 23 Accessed 2021 May 23. https://academic.oup.com/neuro- Oncology/article-abstract/22/12/1771/5847771

Cai H, Yu Y, Ni X, Li C, Hu Y, Wang Y, Chen F (2020) LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-Mediated c-Met/Akt/MTOR Axis. Nature Com 23 Accessed 2021 May 23. https://www.nature.com/articles/s41419-020-03247-6?elqTrackId=6582a165a107467caad4d3ced7231c5

Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M, Falzone L (2019) The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol Rep 42(3):911–922

Cao S, Wang Y, Li J, Lv M, Niu H, Tian Y (2016a) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Res 6(1):2561–2574.

Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X (2016b) Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget 7(27):41737–41747. https://doi.org/10.18632/oncotarget.9569. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC5173902

Chen H, Hou G, Yang J, Chen W. LG-J (2020a) SOX9 promotes glioblastoma cell proliferation through upregulating LncRNA AS1. Oncotarget 11:15189. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs

Chen HH, Zong J, Wang SJ (2019) GAPLINC Splicing MiR-331–3p in Glioblastoma Eur Rev Med Pharmacol Sci. European review. Org. Accessed 23 May 2021. https://www.europeanreview.org/wp-content/uploads/262-270.pdf

Chen JH, Chou FP, Lin HH, Wang CJ (2005) Gaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signals. Arch Toxicol 79(12):694–704. https://doi.org/10.1007/s00204-005-0011-0

Chen L, Gong X, Huang M (2019a) YY1-Activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK Signaling Pathway. Cancer Biother Radiopharm 34(9):589–596. https://doi.org/10.1089/cbr.2019.2779

Chen M, Cheng Y, Yuan Z, Wang F, Yang L, Zhao H (2020) NCK1-AS1 Increases drug resistance of glioma cells to temozolomide by modulating MiR-137/TRIM24. Liebertpub Com 35(2):101–108. https://doi.org/10.1089/cbr.2019.3054

Chen S, Wu X, Hu J, Dai G, Rong A, Guo G (2017) PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells. Mol Med Rep 16(3):2425–2430. https://doi.org/10.3892/mmr.2017.6877. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih. gov/2867750

Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C (2018a) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-catenin pathway by scaffolding EZH2. Clin Cancer Res 24(3):684–695. https://doi.org/10.1158/1078-0432.CCR-17-0605. [Accessed 1 Jul 2021]. http://clincancerres.aacrjournals.org
Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. (2018b) Biology of human tumors long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-Catenin pathway by scaffolding EZH2. AACR. https://doi.org/10.1158/1058-4322.CCR-17-0005. [Accessed 22 May 2021]. http://clincancerres.aacrjournals.org

Chen W, Li Q, Zhang G, Wang H, Zhu Z, Chen L. (2020b) LncRNA HOXA-AS3 promotes the malignancy of glioblastoma through regulating miR-455-5p/USP3 axis. Wiley Online Library 24(20):11755–11767. https://doi.org/10.1002/jcmr.15788. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs

Chen X, Xie R, Gu P, Huang M, Han J, Dong W, Xie W, Wang B, He W, Zhong G et al (2019c) Long noncoding RNA LBCs inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res 25(4):1389–1403. doi. https://doi.org/10.1158/1078-0432.CCR-18-1656. [Accessed 1 Jul 2021]. http://www.clinicancerres.aacrjournals.org

Chen X, Li LQ, Qiu X, Wu H (2019d) Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/MiR-885-3p/HOXB2 Axis. Europepmc Org Accessed 23 May 2021. https://www.europepmc.org/article/med/30784279

Chi Y, Huang Q, Lin Y, Ye G, Zhu H, Dong S (2018) Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J Environ Sci (China) 66:155–164. https://doi.org/10.1016/j.jes.2017.05.002. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/29628082

Chu L, Yu L, Liu J, Song S, Yang H, Han F, Liu F, Hu Y (2019) Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of MiR-190a-3p. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420893

Dai X, Liao K, Zhuang Z, Chen B, Zhou Z, Zhou S, Lin G, Zhang F, Lin Y, Miao Y et al (2019a) AHIF promotes glioblastoma progression and radioresistance via exosomes. Int J Oncol 54(1):261–270. https://doi.org/10.3892/ijo.2018.4621

Dai X, Liao K, Zhuang Z, Chen B, Zhou Z, Zhou S, Lin G et al (2019) AHIF promotes glioblastoma progression and radioresistance via exosomes. Int J Oncol 54(1):261–270. https://doi.org/10.3892/ijo.2018.4621

Dashki S, Ghafari-Fard S, Esfandi F, Osokoei VKR, Arsan-Jang S, Taheri M (2020) Expression analysis of NF-xB interacting long noncoding RNAs in breast cancer. Exp Mol Pathol 110. https://doi.org/10.1016/j.yexmp.2019.104359. [Accessed Ju 1 2021]. https://pubmed.ncbi.nlm.nih.gov/31837323

D’Alessio A, Prietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and Its peritumoral tissue. Cancers 11(4):469

Deng X, Rui W, Zhang F, Ding W, Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrfr2-mediated defense mechanisms against oxidative stress by activating PI3K/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157. https://doi.org/10.1007/s10565-013-9242-5. [Accessed 21 May 2021]. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf

Deshaps P, Toulas C, Arnauduc F, Malric L, Siegfried A, Nicaise Y, Lemarié A, Larriue D, Tosolini M, Cohen-Jonathan Moyal E et al (2019) Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis 10(11):1–15. https://doi.org/10.1038/s41419-019-2055-6

Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: A database of long noncoding RNA expression. Nucleic Acids Res 37(SUPPL. 1):D122–D126. https://doi.org/10.1039/ngrn6117. [Accessed 20 May 2021]. http://nar.oxfordjournals.org/content/37/suppl_1/D122.full

Dong Z, Cui H (2019) Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol 57:45–51. https://doi.org/10.1016/j.semcancer.2018.09.002

Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459. doi. https://doi.org/10.1002/wsbm.75. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/full https://doi.org/10.1002/wsbm.75

Falzone L, Lupo G, La Rosa GRM, Crimi S, Anfuso CD, Salemi R, Rapisarda E, Libra M, Candido S (2019) Identification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancer. Cancers 11(5):610

Feng J, Gao Y, Xu Y, Wang J, Yang X, Wen L (2021) LncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443. Oncol Rev 27:341–347. https://doi.org/10.3727/09650418X15228909735079

Gao XF, He HQ, Zhu XB, Xie SL, Cao Y (2019a) LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/MTOR signaling pathway. Europepmc Org Accessed 23 May 2021. https://www.europepmc.org/article/med/30943748

Gao X, Cao Y, Li J, Wang C, He H (2020) LncRNA TPT1-AS1 sponges MiR-23a-5p in glioblastoma to promote cancer cell proliferation. Cancer Biotherapy and Radiopharmaceuticals. https://doi.org/10.1089/cbr.2019.3484

Gao Y, Xu Y, Wang J, Yang X, Wen L, Feng J (2019b) LncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443. Oncol Rev 27(3):341

Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurrmann F, Gilliland F (2015) Association of improved air quality with lung development in children. N Engl J Med 372(10):905–913. https://doi.org/10.1056/nejmoa1414123

Gupta R, Shah N, Wang K, Kim J, Nature HH (2010) undefined. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature Com [Accessed 22 May 2021]. https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/nature08975&casa_token=AAE6ufsVWKAAAAAA:0L0SaGzsErrCvZtPtpNbKpiLs_zt2GV3Y6v-213Qdrtb_k7vecRRNmsa69wXPx_R7b2zkKldlDZKwqQ

Gupta K, Burns TC (2018) Radiation-induced alterations in the recurrent glioblastoma microenvironment: Therapeutic implications. Front Oncol 8(NOV):503. https://doi.org/10.3389/fonc.2018.00503.

Han N, Yang L, Zhang X, Zhou Y, Chen R, Yu Y, Dong Z, Zhang M (2019) LncRNA MATN1-AS1 prevents glioblastoma cell from proliferation and invasion via RELA regulation and MAPK signaling pathway. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690012

Hanif F, Muzaffar K, Perveen K, … SM-AP journal of, (2017) undefined. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Ncbi Nlm Nih Gov Accessed 22 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563115

Harbo Poulsen A, Arthur Hvidtfeldt U, Sørensen M, Puett R, Ketzel M, Brandt J, Christensen JH, Geels C, Raaschou-Nielsen O (2020) Components of particulate matter air-pollution and brain tumors. Environ Int 144:106046. https://doi.org/10.1016/j.envint.2020.106046

Harrison RM, Yin J (2000) Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci Total Environ 249(1–3):85–101. https://doi.org/10.1016/S0048-9697(99)00513-6
He C, Jiang B, Ma J, Li Q (2016) Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS 124(3):169–174. https://doi.org/10.1111/apm.12480. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/26582084

He Z, Wang Y, Huang G, Wang Q, Zhao D, Chen L (2017) The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys 623–624:1–8. https://doi.org/10.1016/j.abb.2017.01.013. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28173422

Heßelbac K, Kim G-J, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M, H€ T et al (2017) Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Taylor & Francis 12(9):779–792. https://doi.org/10.1080/15592294.2017.1356555. [Accessed 21 May 2021]

Hu YW, Kang CM, Zhao JJ, Nie Y, Zheng L, LiHX, Li X, Wang Q, Qiu YR (2018) LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med 22(1):497–510. https://doi.org/10.1111/jcmm.13338. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28922548

Hu S, Yao Y, Hu X, Zhu Y (2014) LncRNA DCST1-AS1 Downregulates MiR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin Transl Oncol 22: 2230–35. https://doi.org/10.1007/s12994-020-02363-1

Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017a) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 23 Jun 2021]. /pmc/articles/PMC570922

Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017b) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-09818-6. [Accessed 4 Jul 2021]. https://www.nature.com/scientificreports

Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017c) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 21 May 2021]. /pmc/articles/PMC570922

Huarte M (2015) The emerging role of IncRNAs in cancer. Nature 521(7553):1253–1261. https://doi.org/10.1038/nmeth.3981. [Accessed 22 May 2021]. https://www.nature.com/articles/nmeth.3981

Hui B, Xu Y, Zhao B, Ji H, Ma Z, Xu S, He Z, Wang K, Lu J (2019) Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. Onco Targets Ther 12:1043–1057. https://doi.org/10.2147/OTT.S188396. [Accessed 1 Jul 2021]. /pmc/articles/PMC6368419

Iourov IY, Vorsanova SG, Yuvor YB (2014) In silico molecular cyogenetics: A bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cyogenet 7(1):98. https://doi.org/10.1186/s13039-014-0098-z. [Accessed 22 May 2021]. http://www.molecularcyogenetics.org/content/7/1/98

Iser IC, Pereira MB, Lenz G, Wink MR (2017) The epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigation. Med Res Rev 37(2):271–313. https://doi.org/10.1002/med.21408

Ji J, Ran Xu, Ding K, Bao G, Zhang X, Huang B, Wang X et al (2019) Translational cancer mechanisms and therapy long noncoding RNA SCLAP1 forms a growth-promoting complex with HNRPNL in human glioblastoma through stabilisation of ACTN4 and activation of NF-KB signaling. AACR https://doi.org/10.1158/1078-0432.CCR-19-0747

Jin X, Ge LP, Li DQ, Shao ZM, Di GH, Xu XE, Jiang YZ (2020a) LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer 19(1). https://doi.org/10.1186/s12943-020-01210-9. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/32393270

Jin Z, Piao L, Sun G, Lv C, Jing Y, therapy RJ-O (2020b) Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via splicing miR-190a-3p and inactivation of PTEN/akt pathway. Ncbi Nlm Nih Gov [Accessed 22 May 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007780

Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: Current status and future directions. Curr Opin Pulm Med 26(2):128–134. https://doi.org/10.1097/MCP.000000000000642. [Accessed 22 May 2021]. https://journals.lww.com/co-pulmonarymedicine/Fultext/2020/03000/Household_air_pollution_in_India_and_respiratory.5.aspx

Kandlikar M (2000) The causes and consequences of particulate air pollution in urban India: A synthesis of the science. Annu Rev Energy Environ 25:629–684. https://doi.org/10.1146/annurev.energy.25.1.629

Kaur S, Katnoria JK (2016) Role of suspended particulate matter in angiogenesis employing crown gall tumor assay. Int J Pharm Sci Pharmacol Sci 9(1):34. https://doi.org/10.22159/ijpps.2017v9i1.15440. [Accessed 23 Jun 2021]. http://creativecommons.org/licenses/by/4.0

Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li QZ, Wang ZH et al (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6(26):21934–21949. https://doi.org/10.18632/oncotarget.4290. [Accessed 4 Jul 2021]. https://europemc.org/articles/PMC4673137

Kihlman GC, Tiwari P (2018) Air pollution in India and related adverse respiratory health effects: Past, present, and future directions. Curr Opin Pulm Med 24(2):108–116. https://doi.org/10.1097/MCP.0000000000004663

Krishtatrya M, Katakai A (2020) Environmental pollution and cancers in India. Adv in Hum Biol 10(3):95. https://doi.org/10.4103/aihb.aihb_51_20. [Accessed 22 May 2021]. https://www.aiibonline.com/article.asp?issn=2321-8568&year=2020&volume=10;issue=3;spage=95;epage=98;aulast=Krishtatrya

Krzyzanowski M, Cohen A (2008) Update of WHO air quality guidelines. Air Qual Atmos Health 1(1):7–13. https://doi.org/10.1007/s11869-008-0008-9

Kundu S, Stone EA (2014) Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ Sci Process Impacts 16(6):1360–1370. https://doi.org/10.1039/c3em00719g

Lee C-W, Vo TTT, Wu C-Z, Chi M-C, Lin C-M, Fang M-L, Lee I-T (2020) The inducible role of ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: a recent perception. Cancers 2020 12(9):2505. https://doi.org/10.3390/CANCERS12092505

Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Jiong Hu, Miller MJ et al (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136(1):65–79. https://doi.org/10.1161/CIRCULATIONAHA.116.026991

Li C, Hu G, Wei B, Wang L, Liu N (2019b) Oncotargets and therapy, and undefined LncRNA LINC01494 Promotes...
Li J, Cai Y, Wang C, Huang M, Chen J (2019) LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The Effect of LncRNA GAS5 on Glioma Cells. J Neurooncol 143(3):525–536. https://doi.org/10.1007/s11060-019-03185-0

Li J, Zhou L (2018d) Biomedicine and Pharmacotherapy, and undefined OX266.

Liu L, Urch B, Szyszkowicz M, Speck M, Leingartner K, Shutt R, Pelletier G, Gold DR, Scott JA, Brook JR et al (2017) Influence of exposure to coarse, fine and ultrafine particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ Int 101:89–95. https://doi.org/10.1016/j.envint.2017.01.010

Liu H, Li C, Yang J, Sun Y, Zhang S, Yang J, Yang L, Wang Y, Jiao B (2018) Long noncoding RNA CASC9/MiR-519d/STAT3 positive feedback loop facilitates the glioma tumorigenesis. Wiley Online Library 22(12):6338–6344. https://doi.org/10.1111/jccm.13932

Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H et al (2018) A cytoplasmic long noncoding RNA LINCO00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol 11(1). https://doi.org/10.1186/s13045-018-0619-x

Liu J, Wang WM, Zhang XL, Du QH, Li HG, Zhang Y (2018b) Effect of downregulated LncRNA NBAT1 on the biological behavior of glioblastoma cells. Eur Rev Med Pharmacol Sci Accessed 23 May 2021. https://www.eurrevmedical.org/wp/wp-content/uploads/2017-02-27.pdf

Liu X, Chen R, Liu L (2019) Bioscience reports, and undefined SP1–OCT2

Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, Shatalova ES, Kleinman MT, Black KL, Holler E (2018) Coarse particulate matter (PM2.5–10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Scientific Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-23885-3

Long S, Li G (2019) Comprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multicellular. Exp Ther Med 18(2):1081–1090

Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10(1):63. https://doi.org/10.1186/1743-8977-10-63

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Oghahi K, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1. [Accessed 24 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/27157931

Lu C, Yutian Wei, Wang X, Zhang Z, Yin J, Li W, Chen L et al (2020) DNA-Methylation-Mediated activating of LncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer 19(1). https://doi.org/10.1186/s12943-020-1137-5

Lu X, Li R, Yan X (2021) Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res 28(6):6374–6391. https://doi.org/10.1007/s11356-020-12051-w. [Accessed 30 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/33944441

Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G (2008) FGFr1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1. Mol Carcinogenesis 47(6):424–435. https://doi.org/10.1002/mc.20398. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/18041768

Luo N, Zhang K, Li X, Hu Y (2020) ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of...
triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem 121(10):4176–4187. 10.1002/jcb.29572. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/31922280

Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F (2020) LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway. Ecotoxicol Environ Safety 205. 10.1016/j.ecoenv.2020.111327. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/3296149

Manalisidis I, Stavropoulos E, Stavropoulos A, Bezzirtoglou E (2020) Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 8:14. 10.3389/fpubh.2020.00114.

Mazor G, Levin L, Picard D, Ahmadov U, ... Carên H - Cell death and, and undefined (2019) n.d. The LncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-019-1477-5

Merk R, Heßelbach K, Osipova A, Popadić D, Schmidt-Heck W, Kim GJ, Günther S, Piñeres AG, Merfort I, Humar M (2020) Participulate matter (PM2.5) from biomass combustion induces an antioxidative response and cancer drug resistance in human bronchial epithelial cell s. Int J Environ Res Public Health 17(21):1–22. 10.3390/ijerph172118193

Miguel V, Lamas S, Espinosa-Diez C (2020) Role of non-coding RNAs in response to environmental stressors and consequences on human health. Redox Biol 37:101580. 10.1016/j.redox.2020.101580

Mineo M, Ricklefes F, Rooy AK, Lyons SM, Ivanov P - Cell reports, and undefined (2016) n.d. The Long Non-Coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S2211124716305861

Mudu P, Pérez Velasco R, Zastenskaya I, Jarosinska D (2020) The importance and challenge of carcinogenic air pollutants for health risk and impact assessment. Eur J Public Health. 30[Supplement_5]. 10.1093/eurpub/ckaa165.841. [Accessed 21 May 2021]. https://academic.oup.com/eurpub/article/30/Supplement_5/ckaa165.841/5914590

Mukherjee S, Pillai PP (2021) Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochimica et Biophysica Acta (BBA)-General Subjects 130065

Ni H, Wang K, Xie P, Zuo J, Liu W, Liu C (2021) LncRNA SAMMSON knockdown inhibits the malignancy of glioblastoma cells by inactivation of the PI3K/Akt pathway. Cell Mol Neurobiol 41(1):79–90. 10.1007/s10571-020-00833-2

Omidvarboma H, Kumar A, Kim DS (2015) Recent studies on soot modelling for diesel combustion. Renew Sustain Energy Rev 48:635–647. 10.1016/j.rser.2015.04.019

Orach J, Rider CF, Carlsten C (2021) Concentration-dependent health effects of air pollution in controlled human exposures. Environ Int 150:106424. 10.1016/j.envint.2021.106424

Ou J, Pirrozi CS, Horne BD, Hanson HA, Kirchoff AC, Mitchell LE, Coleman NC, Arden C (2020) Atmosphere historic and modern air pollution studies conducted in Utah.mdpi.com. https://doi.org/10.3390/atmos11010941

Pastori C, Kapranov P, Penas C, Peschansky V, Volmar CH, Sarkaria JN, Bregy A, Komotar R, Laurent GS, Ayad NG et al (2015) The bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc Natl Acad Sci USA 112(27):8326–8331. 10.1073/pnas.1424220112. [Accessed 4 Jul 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500283

Poulsen AH, Hvidfeldt UA, Sørensen M, Puett R, Ketzel M, Brandt J, Geels C, Christensen JH, Raaschou-Nielsen O (2020) Intrinsic tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark. Environ Health: A Glob Access Sci Source 19(1). 10.1186/s12940-020-00631-9

Ren S, Xu Y - Cancer science, and undefined (2019) n.d. AC016405. 3, A novel long noncoding RNA, Acts as a tumor suppressor through modulation of TET2 by MicroRNA-19a-5p sponging in glioblastoma. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500966

Rhodes DR, Yu J, Shanker K, Deshpande V, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6. 10.1080/1477550041233129889. [Accessed 20 May 2021]. https://pubmed.ncbi.nlm.nih.gov/15068665

Rynkiewicze R, Simiene J, Strainiene E, Stankevicius V, Usinskie J, Miseikyte Kaubriene E, Meskinyte I, Cicanus J, Suziedelis K (2018) Non-coding RNAs in glioma. Cancers 11(1):17

Sai Charan NV, Krithiga S, Subudhi PS (2021) Review of particulate matter filters. In: lecture notes in electrical engineering. Springer Science and Business Media Deutschland GmbH. 688:419–432. [Accessed 21 May 2021]. https://link.springer.com/article/10.1007/978-981-15-7241-8_30

Sánchez-Pérez Y, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Gutiérrez-Cruz C, Vázquez-López I, García-Cuellar CM (2009) DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 278(2):192–200. 10.1016/j.canlet.2009.01.010

Santibañez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2020) Deciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarks. Int J Mol Sci 21(1):136. 10.3390/ijms21010136

Santibañez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2019) Molecular sciences deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. mdpi.com. https://doi.org/10.3390/jm21010136

Santovito A, Gendusa C, Cervella P, Traversi D (2020) In vitro genomic damage induced by urban fine particulate matter on human lymphocytes. Sci Rep 10:1–7. 10.1038/s41598-020-65785-5. [Accessed 23 Jun 2021].

Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gunny S (2020) Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci 3(1):1–5. 10.1038/s41612-020-0124-2. [Accessed 20 May 2021]. https://doi.org/10.1038/s41612-020-0124-2

Shang C, Tang W, Pan C, Xuanhao Hu, Hong Y (2018) Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting MiR-10a in glioblastoma. Cancer Chemother Pharmacol 81(4):671–678. 10.1007/s00280-018-3522-y

Shih C-H, Chen J-K, Kuo L-W, Cho K-H, Hsiao T-C, Lin Z-W, Lin Y-S, Kang J-H, Lo Y-C, Chuang K-J et al (2018) Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. PTCL Fibre Toxicol 15(1):44. 10.1038/s41598-018-0281-1. [Accessed 4 Jul 2021]. https://particleandfibrotoxicology.biomedcentral.com/articles/10.1038/s41598-018-0281-1

Shi T, Guo D, Xu H, Su G, Chen J, Zhao Z, Shi J et al (2020) HOTAIR1, an enhancer LncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Springer 47:2723–2733. 10.1007/s11033-020-0571-0
Shou J, Gao H, Cheng S, Wang B, Guan H (2021) LncRNA HOXA-AS2 Promotes glioblastoma carcinogenesis by targeting MiR-855-5p/RBBP4 Axis. Cancer Cell Int 21 (1). https://doi.org/10.1186/s12935-020-01690-1

Sidaways P (2017) CNS cancer: Glioblastoma subtypes revisited. Nat Rev Clin Oncol 14(10):587. https://doi.org/10.1038/nrclinonc.2017.122

Silantyev AS, Falzone L, Libra M, Gurina OI, Karashkova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD, Tsatsakis A (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8(8). https://doi.org/10.3390/CELLS8080863. [Accessed 26 Jul 2021]. https://www.pubmed.ncbi.nlm.nih.gov/31405017

Smith KR (2000) National burden of disease in India from indoor air pollution. Proc Natl Acad Sci USA 97(24):13286–13293. https://doi.org/10.1073/pnas.97.24.13286.

Stackhouse CT, Gillespie GY, Willey CD (2020) The roles of IncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9(11). https://doi.org/10.3390/cells9112369.

Steinfeld B, Scott J, Villegas M, Lurie K, Quirk M, Lindberg J, Koerner K (2015) The role of lean process improvement in health care. J Behav Heal Serv Res 42(4):504–518. https://doi.org/10.1007/s13143-015-0186-0

Stella M, Falzone L, Caponetto A, Battaglia R, Mirabella F, Broggi G, Altiere R, Certo F, Calabiano R (2021) Serum extracellular vesicle-derived circhIPK3 and circSMARCA5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals 14(7):618

Stupp R, Mason WP, van den Bent MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/nejmoa043370. https://doi.org/10.1093/jnci/dji135–D139. https://doi.org/10.1093/tan/gky1031. [Accessed 10 May 2021]. https://pubmed.ncbi.nlm.nih.gov/30371849

Vogus K, Sakellaropoulos T, Kotsinas A, Foukas GRP, Ntargaras A, Koinis F, Polyzos A, Myrianthopoulos V, Zhou H, Narang S et al (2019) Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmaco Ther 203:107395. https://doi.org/10.1016/j.pharmthera.2019.107395

Wang J, Liu X, Yan C, Liu J, Wang S (2017) OncoTargets and undefined Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma cells. J Cell Biochem 118(6):5842–5855. https://doi.org/10.1002/jcb.25813405

Wang J, Liu X, Tian N, Han L, Fu Y, Guo Z, Tian Y (2016) MiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol Lett 12(2):879–886. https://doi.org/10.3892/ol.2016.4743.

Wang J, Liu Z, Tian N, Han L, Fu Y, Guo Z, Tian Y (2016) MiR-200b promotes glioblastoma malignancy via targetting SMAD7. Cancer Lett 366(1):23–33. https://doi.org/10.1016/j.canlet.2015.05.027. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/25873322

Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B (2015) CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett 367(2):122–128. https://doi.org/10.1016/j.canlet.2015.03.027. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/25873322

Wang Y, Zhang S, Chen X, Li N, Li J, Jia R, Yan P, Liang H (2018a) Genome and epigenome circRNA AS1 acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532. [Accessed 22 May 2021]. https://cancerreres.aacrjournals.org

Wang H, Li L, Yin L (2018b) Biochemical and biophysical research, and undefined Silencing LncRNA LOXLL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-κB pathway. Elsevier Accepted 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18309148

Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018a) Genome and epigenome CircRNA AS1 acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532.

Wang SJ, Wang H, Zhao CD, Li R (2018a) Long noncoding RNA LINC01426 promotes glioma progression through PI3K/AKT signaling pathway and serves as a prognostic biomarker. Eur Rev Med Pharmacol Sci Accepted 23 May 2021. https://www.eurrev.com/wp-content/uploads/6358-6368.pdf

Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, Wang G (2019a) PM2.5 induces EMT and promotes CSC properties by activating notch pathway in vivo and vitro. Ecotoxicol Environ Saf 178:159–167. https://doi.org/10.1016/j.ecosafe.2019.03.086

Wang Xi, Sun Yi, Tuoye Xu, Qian K, Huang B, Zhang K, Song Z, Qian T, Shi J, Li L (2019b) HOXB13 Promotes proliferation, migration, and invasion of glioblastoma through transcriptional upregulation of LncRNA HOXC-AS3. J Cell Biochem 120(9):15527–15537. https://doi.org/10.1002/jcb.28819

Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM (2020) Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semi Cancer Biol https://doi.org/10.1016/J.SEMCANCER.2020.12.015. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/33370605

Urbanska K, Sokolowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme – an overview. Contemp Oncol 18(5):307–312. https://doi.org/10.5114/woc.2014.40559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248049

Vattanasit U, Navasumrit P, Khadka MB, Kantiwitthayanun J, Promvijit J, Autrup H, Ruchirawat M (2014) Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health 217(1):23–33. https://doi.org/10.1016/j.ijheh.2013.03.002

Volders P, Ankkaert J, Verheggen K, Nuyens J, Martens L, Mestdagh P, Vandesompele J (2019) Lncipedia 5: Towards a reference set of human long non-coding rnas. Nucleic Acids Res47(D1):D135–D139. https://doi.org/10.1093/nar/gky1031. [Accessed 10 May 2021]. https://pubmed.ncbi.nlm.nih.gov/30371849
interaction mechanism in breast cancer based on bioinformatic analysis. Mol Med Rep 16(4):5113–5120. https://doi.org/10.3892/mmr.2017.7304. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28849135

Zhang Y, Lin X, Geng X, Shi L, Li Q, Liu F, Fang C, Wang H (2020a) Advances in circular RNAs and their role in glioma. Int J Oncol 57(1):67–79

Zhang Y, West JJ, Marthur R, Xing J, Hongrefe C, Roselle SJ, Bash JO, Pleim JE, Gan CM, Wong DC (2018) Long-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from (1990) to 2010. Atmos Chem Phys 18(20):15003–15016. https://doi.org/10.5194/acp-18-15003-2018

Zhang Y, Jiang X, Wu Z, Hu D, Jia J, Guo J, Tang T, Yao J, Liu H, Tang H (2020d) Long noncoding RNA LINCO0467 promotes glioma progression through inhibiting p53 expression via binding to DNMT1. J Cancer 11(10):2935–2944. https://doi.org/10.7150/jca.41942.

Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019b) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1139-6

Zhao C, Gao Y, Guo R, Li H, Yang B (2020) Microarray expression profiles and bioinformatics analysis of miRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma. Invest New Drugs 38(5):1227–1235

Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ et al (2016) NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44(D1):D203–D208. https://doi.org/10.1093/nar/gkv1252.

Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y (2016) Long non-coding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumor Biol 37(1):673–683. https://doi.org/10.1007/s13277-015-3843-y.

Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y (2016) CRNDE promotes malignant progression of Glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther 24(7):1199–1215. https://doi.org/10.1038/mt.2016.71. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/27058823

Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y (2018a) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 Targeted by MiR-132. Mol Cancer 17 (1). https://doi.org/10.1186/s12943-018-0849-2

Zhou Y, Dai W, Wang H, Pan H, Wang Q (2018b) Long non-coding RNA CASP5 promotes the malignant phenotypes of human glioblastoma multiforme. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18310143

Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, Xue D, Tian Z, Deng T, Cao Y et al (2020) LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 167(3):295–301. https://doi.org/10.1093/jb/mvz097. [Accessed 1 Jul 2021]. https://academic.oup.com/jb/article/167/3/295/5650411

Zhou X, Ren Y, Zhang Jing, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J et al (2015) HOTAIR is a therapeutic target in glioblastoma. Oncotarget 6(10):8353–8365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480757/

Zhu W, Xie L, Han J, Guo X (2020) The application of deep learning in cancer prognosis prediction. Cancers 12(3):603. https://doi.org/10.3390/cancers12030603.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.