Some Formulas for the Generalized Kolakoski Sequence $Kol(a, b)$

Abdallah Hammam*

Université Moulay Ismaïl, Faculté des sciences Département de Mathématiques et Informatique, 50020 Meknès, Morocco

*Corresponding author: a.hammam@fs.umi.ac.ma

Abstract We present here a new approach to investigate the Kolakoski sequence $Kol(a, b)$. In the first part of this paper, we give some general identities. In the second, we state our main result, which concerns the frequency of the letters in the case where a and b are odd. Finally, we give an algorithm to compute the term K_n in the particular case of $Kol(1, 3)$.

Keywords: Kolakoski sequence, recursion, recursive formula

1. Introduction

The Kolakoski sequence $Kol(a, b)$ or $(K_n)_{n \geq 1}$ comes from the generalization of the well-known Oldenburger-Kolakoski sequence $Kol(1, 2)$ \{4,5,8\}. It starts with $K_1 = a$, contains only letters from the alphabet set \{a, b\} and it doesn't change by the run length encoding operator Δ.

The case where a and b are odd, has been explored by Baake et al \[1\] who found a connection between the generalized Kolakoski sequence and some deformed model sets. They used Perron-Frobenius Theorem and found that the frequency of '3' in $Kol(1, 3)$ is ≈ 0.60.

Brlek et al \[2\] studied smooth words on 2-letter alphabet having the same parity and proved that the frequency of both letters is $\frac{1}{2}$ when a and b are even.

They also presented an expression of the asymptotic density of the letter b when $a = 1$ and b is odd of the form $\frac{1}{\sqrt{2b-1} - 1}$. The case when $a+b$ is odd is more difficult.

Shen \[6\] has investigated this case but, did focus his work on some "expansion" functions rather than on the frequency of letters. Until now, no expression of the limiting density of the letters is available.

2. Notation

We first introduce some definitions and notation:

Let $\Sigma = \{a, b\}$ where a and b are positive integers: $a < b$, be the input alphabet set and let Σ^* be the set of all finite words over Σ. We let Δ denote the run-length encoding operator, such that if W is an element of Σ^*, then $\Delta(W)$ will be the new word containing lengths of blocs of similar digits, in the initial word W. For instance, $\Delta(3335542) = 11241$.

As a consequence, if we let denote NW for every $N \geq 1$ the word $12...NKKKKK...K$ with $K_1 = a$ then $\Delta(a)W_N = WS_N$. Here, S_N is the partial sum defined by:

$$S_N = \sum_{j=1}^{N} K_j.$$

In the end, we define the density of the letter 'b' in the word W_N by

$$\rho_N = \frac{\left| \{1 \leq j \leq N : K_j = b \} \right|}{N}.$$
We will try to find \(\lim_{N \to \infty} \rho_N \).

3. Some Identities for the General Kolakoski Sequence \(\text{Kol}(a, b) \)

Lemma 1. For every \(N \geq 1 \):
\[
[a_1^N + b_1^N] = [a_1^N + b_1^N] + \frac{1 - (-1)^N}{2}
\]
where
\[
[b_1^N] = \left\{ \begin{array}{l}
1 \leq j \leq N : K_j = b \text{ and } j \text{ even} \\
1 \leq j \leq N : K_j = b \text{ and } j \text{ odd}
\end{array} \right.
\]
\[
[a_1^N] = \left\{ \begin{array}{l}
1 \leq j \leq N : K_j = a \text{ and } j \text{ even} \\
1 \leq j \leq N : K_j = a \text{ and } j \text{ odd}
\end{array} \right.
\]

Proof. This equality simply means that if \(N \) is even, then in \(K_1K_2...K_N \), there are as many odd indices as even ones, and if \(N \) is odd, the number of odd indices is greater by 1. As a consequence, we have the following useful equality
\[
[a_1^N + b_1^N] = \frac{1}{2} \left(N + \frac{(-1)^N - 1}{2} \right)
\]

Lemma 2. For every \(N \geq 1 \):
\[
2\rho_{SN} - 1 = \sum_{j=1}^{N} (-1)^j K_j.
\]

Proof. For each \(N \geq 1 \), we have by definition,
\[
S_N = (a + (b - a)\rho_N) N.
\]

When we integrate the word \(W_N = K_1K_2...K_N \), the odd indices will become \'(aaa...\) and the even will be transformed to \'(bbb...\). So
\[
S_{2N} = \sum_{j=1}^{N} K_j \left(\frac{1 - (-1)^j}{2} + \frac{1 + (-1)^j}{2} \right)
\]
\[
= \frac{a + b}{2} S_N + \frac{b - a}{2} \sum_{j=1}^{N} (-1)^j K_j
\]
but, on the other hand, we have
\[
S_{2N} = (a + C\rho_{SN}) S_N
\]
with \(C = b - a \). Thus, after simplification, we find
\[
2\rho_{SN} - 1 = \sum_{j=1}^{N} (-1)^j K_j.
\]

Lemma 3. If we put \(C = b - a \), then for every \(N \geq 1 \):
\[
2\rho_{S2N} - 1 = C \left([b_1^{SN}] - [b_1^{SN}] \right) + a \frac{(-1)^N - 1}{2}.
\]

Proof. Written using the cardinals defined above, equation (4) becomes
\[
[2\rho_{SN} - 1] S_N = b \left([b_1^N] - [b_1^N] \right) + a \left([a_1^N] - [a_1^N] \right)
\]
\[
= C \left([b_1^N] - [b_1^N] \right) + a \left([a_1^N] - [a_1^N] \right)
\]
and by equation (1), we get
\[
[2\rho_{SN} - 1] S_N = C \left([b_1^N] - [b_1^N] \right) + a \frac{(-1)^N - 1}{2}.
\]

Finally, equation (5) is simply obtained by replacing \(N \) by \(S_N \) and using the fact that \((-1)^{S_N} = (-1)\).

4. The Density of \(b \)'s in \(\text{Kol}(a, b) \)

When we integrate the finite word \(W_N = K_1K_2...K_N \), we get the word \(W_N = \Delta_{K_N} W_N = K_1K_2...K_N \) and the letters change with respect to a certain transformation which depends on the parity of \(a \) and \(b \).

4.1. The Density of \(b \)'s in \(\text{Kol}(2m+1, 2m+2n+1) \)

In this case, the integration operation is defined by the following matrix
\[
\begin{bmatrix}
[b_1^{SN}] \\
[b_1^{SN}] \\
[a_1^{SN}]
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & m + n \\
0 & 0 & m + n + 1
\end{bmatrix}
\begin{bmatrix}
[b_1^N] \\
[b_1^N] \\
[a_1^N]
\end{bmatrix}
\]
This matrix comes from the fact that \(S_N \) and \(N \) have the same parity.

Proposition 4. If \(\lim_{N \to \infty} \rho_N \exists \), then \(L \) is a root of the following third order equation
\[
(2x - 1)(Cx + a)^2 = \frac{C}{2}
\]
where \(C = b - a \).

Proof. Using lemma 3, we have
\[
\left(2\rho_{S2N} - 1 \right) S_{2N} = C \left([b_1^{SN}] - [b_1^{SN}] \right) + a \frac{(-1)^{S_N} - 1}{2}
\]
and finally, by equation (2),
\[
\left(2\rho_{S,N} - 1\right)S_{2,N} = \frac{C}{2}N + \frac{a+b}{2}(-1)^{N-1} - \frac{1}{2}.
\]

And if we use equation (3), we obtain
\[
\left(2\rho_{S,N} - 1\right)\left[C\rho_{S,N} + a\right]C\rho_{N} + a = \frac{C}{2} + \frac{a+b}{2}(-1)^{N-1} - \frac{1}{2}N.
\]

As a consequence, if we assume that \(\lim_{N \to \infty} \rho_{N}\) exists \(= L\), then \(\lim_{N \to \infty} \rho_{S,N} = \lim_{N \to \infty} \rho_{S,N} = L\) and when \(N \to \infty\) equation (7) gives
\[
(2L-1)[C.L + a]2 = b - \frac{a}{2}.
\]

If we put \(y = Cx + a\), equation (6) will take the form
\[
\left(y - \frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{4}.
\]

And a graphical study shows that this equation has always a real solution \(y > \frac{a+b}{2}\) corresponding to a density \(L > \frac{1}{2}\) given by
\[
L = \left(D + \frac{2A^2}{6D} + \frac{A}{3} - a\right) \frac{1}{C}
\]
with \(A = \frac{a+b}{2}, B = \frac{C^2}{4}\) and
\[
D = \left(108*B + 8*A^3 + 12*\sqrt{81*B^2 + 12*B*A^3}\right)^{\frac{1}{3}}.
\]

For instance, with \(a = 1\) and \(b = 3\), we find the same value of Baake et al [1] \((L \approx 0.60278\).

4.2. The Density of \(b\)'s in \(\text{Kol}(2m, 2m + 2n)\)

In this case, the integration operation is defined by the following matrix
\[
\begin{bmatrix}
3^2 & 1^2 & 3^2 \\
W_{S_N} & 1^1 & 3^2 \\
W_{S_{2,N}} & 1^1 & 333^{3} \\
W_{S_{3,N}} & 1 & 333111333
\end{bmatrix}
\]

4.3. The Density of \(b\)'s in \(\text{Kol}(2m+1, 2m+2n)\)

In this case, the integration operation is defined by the following matrix
\[
\begin{bmatrix}
3^2 & 1^2 & 3^2 \\
W_{S_N} & 1^1 & 333^{2} \\
W_{S_{2,N}} & 131^1 & 333111333^{2} \\
W_{S_{3,N}} & 1333^1 & 33311133313331133311333
\end{bmatrix}
\]

The structure of the matrix changes at each iteration. This shows the complexity of this case and explains the difficulty to find the density.

5. Expression the Term \(K_n\) for \(a = 1\) and \(b = 3\)

Proposition 5. Let \(N \geq 1\) and \(p\) be the unique integer satisfying \(S(2, p) \leq N < S(2, p + 1)\) then
\[
K_n = \begin{cases}
2 + (-1)^p & \text{if } N - S(2, p) = 0 \\
2 - (-1)^p & \text{if } N - S(2, p) = 1 \\
3 & \text{if } 4 \leq N - S(2, p) \leq 6 \\
\end{cases}.
\]

Table 1. How the 1's of \(nW\) are transformed by \(\Delta_1^1\)

\(W_n\)	\(1^1\)	\(1^2\)
\(W_{S_N}\)	\(1\)	\(3^2\)
\(W_{S_{2,N}}\)	\(1^1\)	\(333^{3}\)
\(W_{S_{3,N}}\)	\(1\)	\(333111333\)

Table 2. How the 3's of \(nW\) are transformed by \(\Delta_1^1\)

\(W_n\)	\(3^1\)	\(3^2\)
\(W_{S_N}\)	\(111^1\)	\(333^{2}\)
\(W_{S_{2,N}}\)	\(131^1\)	\(333111333^{2}\)
\(W_{S_{3,N}}\)	\(1333^1\)	\(33311133313331133311333\)
Proof. For every \(p > 0 \), we have that \(S_{p+1} - S_p = K_p \leq 3 \)
and in the worst case,
\[
S_{2,p+1} = S_{S_{p+1}} = S_{3+S_p}
\]
which gives
\[
S_{2,p+1} - S_{2,p} = S_{3+S_p} - S_{2+S_p} + S_{2+S_p} - S_{1+S_p} + S_{1+S_p} - S_p \\
\leq 3 + 3 + 3 = 9.
\]

Using a disjunction of cases argument and Table 1 and Table 2, we derive the expression of term \(K_N \).
As an example, for \(N = 10 \), we have \(S_{2,2} = 10 \) and \(S_{2,3} = 13 \), so \(p = 2 \) and \(K_N = 2 - (-1)^p = 1 \).

6. Concluding Remarks

The approach adopted here is, in a certain way, similar to the method used by Sing [7] in the case where \(a \) and \(b \) are even. The difference is that we treat the terms of the sequence as numbers instead of string of characters. We also revealed the dependence of the sequence on the parity of the partial sum \(S_N \).

We obtained our main result of proposition 4, by a simple recursive relation, and without any additional condition on \(a \) and \(b \).

We understand now why the case where \(a \) and \(b \) have not the same parity is complex.
Our next investigation will focus on this case.

Acknowledgements

The author would like to express his gratitude to Anonymous referees for their careful reading of the manuscript and for giving me some of their precious time.

References

[1] M. Baake and B. Sing, Kolakoski (3,1) is a (deformed) model set, *Canad. Math. Bull.* 47(2):168-90 (2004).
[2] S. Brlek, D. Jamet and G. Paquin, Smooth words on 2-letter alphabet having same parity, *Theoretical Computer Science, Elsevier*, 2008, 393 (1-3), pp 166-181.
[3] A. Hammam, Some new Formulas for the Kolakoski Sequence A000002. *Turkish Journal of Analysis and Number Theory*. 2016; 4(3):54-59.
[4] W. Kolakoski, Problem 5304: Self Generating Runs, *Amer. Math. Monthly* 72 (1965), 674.
[5] Rufus Oldenburger, Exponent trajectories in symbolic dynamics, *Trans Amer. Math. Soc.* 46 (1939), 453-466.
[6] B. Shen, A uniformness of the Kolakoski sequence, graph, connectivity and correlations (2017) arXiv :1703.00180.
[7] B. Sing, Kolakoski(2m,2n) are limit-periodic Model Sets, *arXiv* 0207037.
[8] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.