Cumulative evidence for relationships between multiple variants in 8q24 and colorectal cancer incidence

Yu Tong, PhD³, Huiqing Wang, MD³, Shiping Li, PhD³, Fengyan Zhao, PhD³, Junjie Ying, PhD³, Yi Qu, PhD³, Dezhi Mu, MD, PhD³,∗

Abstract

Genome-wide association studies (GWAS) have identified multiple independent cancer susceptibility loci at chromosome 8q24. We conducted a comprehensive research synopsis and meta-analysis to evaluate associations between 6 variants in 8q24 and risk of colorectal cancer using data from 31 eligible articles totaling 41,942 cases and 49,968 controls.

Of the 6 variants located in 8q24, 3 were significantly associated with risk of colorectal cancer. In particular, both homozygous TT and heterozygous CT genotypes of rs10505477, as well as the GG and TG genotypes of rs6983267, were associated with risk of colorectal cancer.

Our study provides summary evidence that common variants in the 8q24 are associated with risk of colorectal cancer in this large-scale research synopsis and meta-analysis. Further studies are needed to explore the exact role of the variants in the 8q24 involved in the etiology of colorectal cancer.

Abbreviations: GWAS = genome-wide association studies, HWE = Hardy-Weinberg equilibrium, IncRNAs = long noncoding RNAs, SNPs = single nucleotide polymorphisms.

Keywords: 8q24, colorectal cancer, genetic variant, susceptibility

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related mortality worldwide. Many influencing factors are associated with the risk of CRC. Among the risk factors and causes for CRC, inherited genetic factors account for approximately 35% of the disease etiology.[1] In the past few years, several genome-wide association studies (GWAS) have identified novel loci that are associated with CRC risk, including variants on 8q24, 8q23.3, 10p14, 11q23, 15q13, 18q21, and so on.[2,3]

Variants on 8q24 have shown strong evidence of an association with the risk of CRC in different populations. The human c-myc gene is located at 8q24 on the long arm of chromosome 8. Variant rs6983267 was firstly identified to be significantly associated with colorectal cancer.[1] In 2007, Tomlinson and colleagues[4] conducted a genome-wide association study of 550,000 tag SNPs (single nucleotide polymorphisms) in 930 familial colorectal tumor cases and 960 controls and found that the most strongly associated SNP was rs6983267. In the same year, Poynter et al.[5] conducted a case-unaffected sibling analysis using population- and clinic-based discordant sibships to investigate the associations between common variants at 8q24 and risk of CRC, and detected statistically significant associations between rs6983267 and rs10505477 on 8q24 and risk of CRC. More recently, long noncoding RNAs (lncRNAs) originated from the 8q24 region show relevance with multiple types of cancers. A large proportion of these lncRNAs that surrounds the essential Wnt target MYC gene, show significant association with CRC incidence, the extent of malignancy, and patient prognosis.[6] CAT1-S, known as CARLo-5, is upregulated in premalignant conditions during CRC transformation. Knockdown of CAT1-S decreased CRC cell growth in vitro and in vivo. Interestingly, the expression of CCAT1-S is significantly correlated with the allele status of the SNP rs6983267. Further study demonstrated that the rs6983267-containing region interacts with CCAT1-S promoter and regulate its expression.[7] Based on the above compelling evidence, it was hypothesized that the genetic variants in the 8q24 region played important roles in colorectal carcinogenesis.

In the present study, we performed a comprehensive meta-analysis, involving a total of 41,942 cases and 49,968 controls, to evaluate all genetic studies that investigated associations between 6 variants in the 8q24 region and risk of colorectal cancer.

2. Methods

All methods were based on guidelines proposed by the Human Genome Epidemiology Network for systematic review of genetic
association studies and followed the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. As it is a meta-analysis of the previous works of literature, approval of the ethics committee was not required.

2.1. Search strategy and selection criteria

We systematically searched PubMed and Embase to identify genetic association studies published in print or online before February 8th, 2018 in English language using key terms “8q24” and “variant or polymorphism or genotype” and “colorectal cancer or colorectal carcinoma or colorectal tumor.” The eligibility of each study was assessed independently by 2 investigators (YT and HW). The articles included in the meta-analysis must meet the following inclusion criteria: evaluating the associations of genetic variants in the 8q24 with risk of colorectal cancer; providing age-adjusted or multivariate-adjusted risk estimates (e.g., relative risks [RRs], hazard ratios [HRs], odds ratios [ORs], 95% confidence intervals [CIs] or standard errors [SEs] or sufficient data to calculate these estimates). Studies were excluded when: they lacked sufficient information; they were not published as full reports, such as conference abstracts and letters to editors; and they were studies of cancer mortality (rather than incidence).

2.2. Data extraction

Data were extracted by 2 investigators (YT and HW), who used recommended guidelines for reporting on meta-analyses of observational studies. Data extracted from each eligible publication included first author, publishing year, study design, method of case selection, source population, ethnicity of participants, sample size, variants, major and minor alleles, genotype counts for cases and controls, Hardy–Weinberg equilibrium (HWE) among controls. Ethnicity was classified as African (African descent), Asian (East Asian descent), Caucasian (European descent), or other (including Native Hawaiians, Latinos, etc.) based on the ethnicity of at least 80% of the study population. In total, 31 eligible publications had sufficient data available for extraction and inclusion in meta-analyses.

2.3. Statistical analysis and assessment of cumulative evidence

The odds ratio was used as the metric of choice for each study. To detect overall genetic associations, allele frequencies were computed for studies reporting allele and genotype data. Pooled odds ratios were computed by the fixed effects model and the random effects model based on heterogeneity estimates. Once an overall gene effect was confirmed, the genetic effects and mode of inheritance were estimated using the genetic model-free approach suggested by Minelli et al. We performed Cochran’s Q test and calculated I² statistic to evaluate heterogeneity between studies. I² values < 25% represent no or little heterogeneity, values 25% to 50% represent moderate heterogeneity, and values > 50% represent large heterogeneity. Sensitivity analyses were conducted to examine if the significant association would be lost when the first published report was excluded, or studies deviated

![Flow diagram of included and excluded studies](image-url)
from HWE in controls were excluded. Harbord’s test was performed to evaluate publication bias. Small study bias was calculated by Egger’s test. All analyses were conducted using Stata, version 14.0 (StataCorp, College Station, TX, 2017), with the `metan`, `metabias`, `metacum`, and `metareg` commands.

3. Results

3.1. Eligible studies

Our initial database search identified 146 potentially relevant studies. Based on a review of titles and abstracts, 74 articles were included.

Study, year	Study design	Country/region	Ethnicity	Variant	Cases/Controls
Real et al, 2014[14]	Case–control study	Spain	Caucasian	rs10505477	500/801
Danaei et al, 2012[15]	Case–control study	Iran	Asian	rs6983267	110/120
Li et al, 2011[16]	Hospital-based case-control study	China	Asian	rs6983267	430/786
Cui et al, 2010[17]	Case–control study	Japan	Asian	rs6983267	6161/4494
Middeldorp et al, 2009[18]	Case–control study	Netherlands	Caucasian	rs6983267	959/1340
Pittman et al, 2008[19]	Case–control study	United Kingdom	Caucasian	rs6983267	3583/2579
Li et al, 2008[20]	Population-based case-control study	USA	Caucasian	rs6983267	561/721
Tomlinson et al, 2007[21]	Case–control study	Netherlands	Caucasian	rs6983267	4261/3752
Yang et al, 2010[22]	Case–control study	USA	Caucasian	rs6983267	90/132
Yang et al, 2012[23]	Case–control study	USA	Caucasian	rs6983267	401/518
Wokockiety et al, 2008[24]	Case–control study	Poland	Caucasian	rs6983267	779/1910
Poynter et al, 2007[25]	Population-based case-control study	USA	Caucasian	rs10505477	1341/2193
Curtin et al, 2009[26]	Cohort study	United Kingdom and USA	Caucasian	rs10505477	1071/1040
Matsuo et al, 2009[27]	Case–control study	Japan	Asian	rs6983267	925/934
Schafmayer et al, 2009[28]	Case–control study	Germany	Caucasian	rs10505477	1084/1050
Kupfer et al, 2010[29]	Case–control study	USA	African	rs6983267	795/985
Xing et al, 2011[30]	Case–control study	China	Asian	rs6983267	2124/2124
Holst et al, 2010[31]	Case–control study	Sweden	Caucasian	rs6983267	1737/1741
Ishimaru et al, 2012[32]	Case–control study	Japan	Asian	rs6983267	1511/2008
Mates et al, 2012[33]	Hospital-based case-control study	Romania	Caucasian	rs6983267	151/182
Li et al, 2012[34]	Case–control study	China	Asian	rs6983267	229/267
Kupfer et al, 2009[35]	Hospital-based case-control study	USA	African	rs10505477	288/202
Hutter et al, 2010[36]	Population-based case-control study	USA	Caucasian	rs10505477	281/237
Haerian et al, 2014[37]	Case–control study	Iran	Caucasian	rs6983267	165/151
Lubbe et al, 2012[38]	Case–control study	United Kingdom	Caucasian	rs6983267	3146/4051
Gruber et al, 2007[39]	Population-based case-control study	USA	Caucasian	rs10505477	1860/1936
Tan et al, 2015[40]	Case–control study	China	Asian	rs10505477	1049/1030
Shaker et al, 2017[41]	Case–control study	Egypt	Caucasian	rs6983267	120/96
Hosono et al, 2015[42]	Hospital-based case-control study	Japan	Asian	rs6983267	1105/1163
Nan et al, 2012[43]	Case–control study	USA	Caucasian	rs6983269	807/1623
Jing et al, 2017[44]	Case–control study	China	Asian	rs6983267	4633/4614
Of the 6 variants located in 8q24, 3 were significantly associated with risk of colorectal cancer, including rs10505477, rs6983267, and rs10090154 and colorectal cancer (data not shown).

3.2. Allelic associations

Of the 6 variants located in 8q24, 3 were significantly associated with risk of colorectal cancer, including rs10505477, rs6983267, and rs1447295, rs7837328, and rs10808556. No significant associations were found between rs1447295, rs7837328, and rs10808556. No significant association with risk of colorectal cancer was found for Asians (OR=1.19, 95% CI: 1.14, 1.24, Q=11.13, P=1.133, I²=37.1%). No publication bias was found in the eligible studies (Harbord’s test P=.840, Table 2).

3.2.2. rs6983267 T & G

Twenty-nine studies were included (Table 1), and a significant association with risk of colorectal cancer was found (P=6.66×10⁻⁸, OR=1.15, 95% CI: 1.09, 1.21; Q=14.58, P=.013, I²=38.3%, Fig. 2A). A similar pattern was observed for Caucasians (P=6.48×10⁻⁸, random effect OR=1.14, 95% CI: 1.08, 1.20; Q=11.13, P=.133, I²=37.1%). No publication bias was found in the eligible studies (Harbord’s test P=.594, Table 2).

3.2.3. rs10808556 T & G

Three studies were included (Table 1), and a significant association with risk of colorectal cancer was found (P=2.54×10⁻¹¹, random effect OR=1.17, 95% CI: 1.14, 1.21; Q=82.00, P=.000, I²=59.8%, Fig. 2B). Significant association was also found for Asians (P=1.71×10⁻¹³, random effect OR=1.19, 95% CI: 1.14, 1.25; Q=16.99, P=.049, I²=47.0%) and Caucasians (P=4.40×10⁻¹¹, random effect OR=1.17, 95% CI: 1.11, 1.22; Q=60.82, P=.000, I²=65.5%). No publication bias was found in the eligible studies (Harbord’s test P=.594, Table 2).

3.3. Genotype comparison

3.3.1. rs10505477 C > T

Of the 9 studies, 5 reported genotype information. The genotype effects for TT versus CC (OR1) and CT versus CC (OR2) were calculated for each study. A multivariate meta-analysis was conducted to estimate the pooled risk (Table 2). There was a significantly increased risk of colorectal cancer among individuals with the homozygous TT genotype (P=2.14×10⁻⁶, random effect OR1=1.27, 95% CI: 1.17, 1.39; Q=7.44, P=.115, I²=46.2%) and heterozygous CT genotype (P=6.80×10⁻⁶, random effect OR2=1.19, 95% CI: 1.10, 1.28; Q=3.77, P=.438, I²=0.0%).

3.3.2. rs6983267 T > G

Of the 29 studies, 21 reported genotype information. The genotype effects for GG versus TT (OR1) and TG versus TT (OR2) were calculated for each study. A multivariate meta-analysis was conducted to estimate the pooled risk (Table 2). There was a significantly increased risk of colorectal cancer among individuals with the homozygous GG genotype (P=2.30×10⁻¹³, random effect OR1=1.37, 95% CI: 1.26, 1.50; Q=69.80, P=.000, I²=67.0%) and heterozygous TG genotype (P=5.04×10⁻⁸, random effect OR2=1.16, 95% CI: 1.10, 1.23; Q=41.95, P=.009, I²=43.2%).

3.4. Sensitivity analysis

Sensitivity analysis for the results of 8q24 variants and colorectal cancer risk demonstrated that the obtained results were statistically robust and no individual study affected the pooled OR significantly (Table 2).

4. Discussion

To our knowledge, this study is the largest and most comprehensive assessment of literatures on associations between genetic variants in the 8q24 region and colorectal cancer risk. Preliminary meta-analyses were mostly limited to single or less SNPs in relation to colorectal cancer. Here we performed a research synopsis and meta-analysis to systematically evaluate associations between 6 variants in 8q24 region and risk of colorectal cancer using data from 31 articles totaling 41,942 cases and 49,968 controls. Our study not only provides an update of the variants analyzed previously, but also evaluates more variants that have not been analyzed in previous meta-analyses.
Of the 6 variants located in 8q24, 3 were significantly associated with risk of colorectal cancer. Our primary analysis shows that, the rs10505477 (P=1.08 × 10⁻¹², OR=1.48), rs6983267 (P=2.54 × 10⁻²¹, OR=1.17), rs10808556 (P=1.97 × 10⁻₉, OR=1.18) were significantly associated with risk of colorectal cancer. In particular, both homozygous TT (P=2.14 × 10⁻¹⁹, OR1=1.27) and heterozygous CT (P=6.80 × 10⁻⁶, OR2=1.19) genotypes of rs10505477, as well as the GG (P=2.30 × 10⁻¹³, OR1=1.37) and TG (P=5.04 × 10⁻⁸, OR2=1.16) genotypes of rs6983267, were associated with risk of colorectal cancer. Our findings were based on several gene-association studies, including several thousand participants, and were robust in terms of study design and sensitivity analyses. We found no evidence of publication bias or small study bias based on funnel plots. Using data from Phase 3 of the 1000 Genomes Project,⁸ we found that rs6983267 is in strong LD with both the rs10505477 and the rs10808556 in Europeans and Asians (r² > 0.05 for all tests), whereas it is in weak LD (r² < 0.05 for all tests) in Africans. These findings suggest that variants may be distinct in different ethnic groups.

Multiple variants have been identified to be correlated with CRC risk. These variants might be involved in signaling pathway, and lead to higher CRC risk subsequently.⁹,¹⁰ The 8q24 region is a desert with multiple SNPs associated with CRC risk. More recently, this region was proposed as a typical transcriptional super-enhancer region with multiple SNPs associated with CRC risk. Further functional studies are needed to explore the exact mechanisms of 8q24 variants involved in parthenogenesis of colorectal cancer.

5. Conclusion

Our study provides evidence that common 3 variants in the 8q24 region are associated with risk of CRC. Further functional studies are needed to explore the exact mechanisms of 8q24 variants involved in parthenogenesis of colorectal cancer.

Author contributions

Data were extracted independently by Yu Tong and Huiqing Wang, Yu Tong, Shiping Li, Fengyan Zhao, and Dezhi Mu contributed to writing the manuscript. Data with any disagreement was adjudicated by Yi Qu.

Data curation: Shiping Li.

Investigation: Huiqing Wang, Fengyan Zhao, Junjie Ying.

Software: Yu Tong.

Writing – original draft: Yi Qu.

Writing – review & editing: Dezhi Mu.

Dezhi Mu orcid: 0000-0002-2599-7041

References

[1] Li M, Zhou Y, Chen P, et al. Genetic variants on chromosome 8q24 and colorectal neoplasia risk: a case-control study in China and a meta-analysis of the published literature. PLoS One 2011;6:e18251.

[2] Cui R, Okada Y, Jang SG, et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 2011;60:799–805.
Tong et al. Medicine (2018) 97:35

[3] Berndt SI, Potter JD, Haarra A, et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet 2008;17:2665–72.

[4] Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 2007;39:984–8.

[5] Poynter JN, Figueiredo JC, Comito DV, et al. Variants on 8q24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res 2007;67:11128–32.

[6] Shen P, Pichler M, Chen M, et al. To Wnt or lose: the missing non-coding linc in colorectal cancer. Int J Mol Sci 2017;18:2003.

[7] Kim T, Cui R, Jeon YJ, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA 2014;111:4173–8.

[8] Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015;31:3555–7.

[9] Zou D, Lou J, Ke J, et al. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLCA2AS expression. Eur J Cancer 2018:931–9.

[10] Li J, Zou L, Zhou Y, et al. A low-frequency variant in SMAD7 modulates TGF-beta signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinogen 2017;56:1798–807.

[11] Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013;155:934–47.

[12] Li J, Zou L, Zhou Y, et al. A low-frequency variant in SMAD7 modulates TGF-beta signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinogen 2017;56:1798–807.

[13] Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013;155:934–47.

[14] Real LM, Ruiz A, Gayan J, et al. A colorectal cancer susceptibility new variant on chromosome 8q24.21 is associated with sporadic colorectal cancer in the general population. Mol Oncol 2012;6:1044–9.

[15] Middeldorp A, Jageman-Chang S, van Eijk R, et al. Enrichment of MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA 2014;111:4173–8.

[16] Pittman AM, Broderick P, Sullivan K, et al. CASP8 variants D302H and D302N are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res 2007;67:11128–32.

[17] Pittman AM, Broderick P, Sullivan K, et al. CASP8 variants D302H and D302N are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res 2007;67:11128–32.

[18] Middeldorp A, Jagmohan-Changur S, van Eijk R, et al. Enrichment of MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA 2014;111:4173–8.

[19] Yang B, Thyagarajan B, Hooker S, et al. Genetic heterogeneity in colorectal cancer associations between African and European Americans. Gastroenterology 2010;139:1677–85.

[20] Yang B, Thyagarajan B, Gross MD, et al. No evidence that associations of incident, sporadic colorectal adenoma with its major modifiable risk factors differ by chromosome 8q24 region rs6983267 genotype. Mol Carcinogen 2014;53(suppl 1):E187–192.

[21] Yang B, Thyagarajan B, Gross MD, et al. No evidence that associations of incident, sporadic colorectal adenoma with its major modifiable risk factors differ by chromosome 8q24 region rs6983267 genotype. Mol Carcinogen 2014;53(suppl 1):E187–192.

[22] Curtin K, Lin WY, George R, et al. Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev 2009;18:616–21.

[23] Matsus K, Suzuki T, Ito H, et al. Association between an 8q24 locus and the risk of colorectal cancer in Japanese. BMC Cancer 2009;9:379.

[24] Schafmayer C, Buch S, Volske H, et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int J Cancer 2009;124:75–80.

[25] Kupfer SS, Anderson JR, Hooker S, et al. Genetic heterogeneity in colorectal cancer associations between African and European Americans. Gastroenterology 2010;139:1677–85.

[26] Xiong F, Wu C, Bi X, et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev 2010;19:1835–41.

[27] von Holst S, Picelli S, Edler D, et al. Association studies on 11 published colorectal cancer risk loci. Brit J Cancer 2010;103:575–80.

[28] Ishimaru S, Mimori K, Yamamoto K, et al. Increased risk for CRC in diabetic patients with the nonrisk allele of SNPs at 8q24. Ann Surg Oncol 2012;19:2833–8.

[29] Mates IN, Jinga V, Cuki IE, et al. Single nucleotide polymorphisms in colorectal cancer: associations with tumor site and TNM stage. J Gastrointest Liver Dis 2012;21:45–52.

[30] Li FX, Yang XX, Hu NY, Du HY, Ma Q, Li M. Single-nucleotide polymorphism associations for colorectal cancer in southern Chinese population. Chin J Cancer Res 2012;24:29–35.

[31] Kupfer SS, Torres JB, Hooker S, et al. Novel single nucleotide polymorphism associations with colorectal cancer on chromosome 8q24 in African and European Americans. Carcinogenesis 2009;30:1353–7.

[32] Hutter CM, Slattery ML, Duggan DJ, et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer 2010;10:670.

[33] Haerian MS, Haerian BS, Rooki H, et al. Association of 8q24.21 rs10505477-rs6983267 haplotype and age at diagnosis of colorectal cancer. Asian Pac J Cancer Prev 2014;15:569–74.

[34] Lubbe SJ, Whiffin N, Chandler I, et al. Relationship between 16 susceptibility loci and colorectal cancer phenotype in 3146 patients. Carcinogenesis 2012;33:108–12.

[35] Gruber SB, Moreno V, Rozek LS, et al. Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther 2007;6:1143–7.

[36] Tan C, Hu W, Huang Y, et al. Risk of sixteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget 2016;7:77651–63.

[37] Shaker OG, Senousy MA, Elbaz EM. Association of rs6983267 at 8q24, a functional polymorphism, with colorectal cancer risk in southern Chinese population. Chin J Cancer Res 2012;24:29–35.

[38] Xiong F, Wu C, Bi X, et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev 2010;19:1835–41.

[39] Nan H, Morikawa T, Suuriniemi M, et al. Aspirin use, 8q24 single nucleotide polymorphism associations for colorectal cancer in southern Chinese population. Chin J Cancer Res 2012;24:29–35.