Impact of Nutrient Levels and Growth Regulators on Yield, Plant Nutrient Content, Plant Nutrient Uptake and Soil Nutrient Content of transplanted Pigeonpea in Northern Transition Zone of Karnataka

C. Lavanya*, H.B. Babalad and P.L. Patil

1Department of Agronomy, 3Department of Soil Science and Agricultural Chemistry, College of Agriculture, UAS, Dharwad-580005, Karnataka India
2Department of Agronomy, College of Agriculture, Vijayapura, UAS, Dharwad-580005, Karnataka, India

*Corresponding author

A B S T R A C T

A field experiment was conducted at Main Agricultural Research Station, UAS, Dharwad during kharif, 2017 to study the effect of nutrient levels and growth regulators on yield, plant nutrient content, plant nutrient uptake and soil nutrient content of transplanted pigeonpea under rainfed conditions. The experiment comprising of 3 nutrient levels as main plots and 4 sub plot treatments of foliar application of micronutrients and growth regulators compared with 1 single control were laid out in split plot design with 3 replications. The results showed that among nutrient levels, application of 50:100 N:P2O5 kg ha⁻¹ (N3) recorded significantly higher organic carbon, nitrogen, phosphorus and potassium content in soil after harvest and significantly higher nitrogen, phosphorus and potassium uptake by crop at harvest. Significantly higher zinc uptake was recorded with application of 25:50 N:P2O5 kg ha⁻¹ (N1). Significantly higher grain yield was recorded with 37.5:75 N:P2O5 kg ha⁻¹ (N2) as compared to N1 which was at par with N3. Among the interactions, significantly higher nitrogen uptake and grain yield was recorded with application of N2 along with foliar spray of salicylic acid (0.02%) + ZnSO4 (0.5%) + soluble boron (0.2%) (F2). Significantly higher phosphorus and potassium uptake was recorded with treatment N3F2.

Keywords: Growth regulators, Nutrients, Content, Uptake and Transplanted Pigeonpea

Introduction

Pulses are the important group of food crops belonging to the family Fabaceae. India ranks first in both area and production of all important pulses grown during kharif. As the pulses are mostly grown in rainfed conditions, special care and management has to be taken to sustain productivity. Low yield of pulses is also due to the fact that they are sown on

449
marginal lands with low fertility and poor nutrition, because of this we are unable to harness 50 per cent of their potential yield levels. To meet the present requirements and fulfill the future projected demands of pulses by 2030 A.D., an annual growth rate of 4.2 per cent production is required. Hence, there is a need to enhance the productivity of pulses by optimizing the plant nutrition by providing macro and micro nutrients and growth regulators.

Pigeonpea [Cajanus cajan (L.) Millsp.] is one of the most important remunerative pulse crops which is being cultivated and consumed by major countries of the world. It also plays an important role in sustaining soil fertility by adding large quantity of leaf litter improving, deep root system and fixing atmospheric nitrogen. Pigeonpea, being a legume is capable of fixing atmospheric nitrogen through symbiosis but the symbiotic nitrogen fixation alone is not enough to meet high nitrogen requirements of the crop. Unlike direct sown pigeonpea transplanted crop puts up more growth, accumulate more dry matter, bear more pods and produce higher yield, and hence the nutrient demand by the crop is more. In order to ensure the optimum nitrogen requirement and to meet the potential demand of the crop, application of nitrogenous fertilizers needs to be assessed. Further, pigeonpea response to phosphorus have been generally positive and in some cases highly significant realized that it improves growth and yield attributes, root and nodule development. Therefore, phosphorus is a key nutrient for increasing productivity of pulses in general and pigeonpea in particular.

Supplemental nutrition of micro-nutrients plays a crucial role in increasing seed yield in pulses (Chandrashekar and Bangarusamy, 2003). Foliar application of micro nutrients is considered to be an efficient and economic method to supplement the requirement of the crop which in turn leads to enhanced yield. In addition, it was found more advantageous than soil application with the elimination of losses through leaching and precipitation thereby increases its use efficiency. Boron is highly water soluble, hence lost by leaching when applied to the soil. To avoid this, boric acid or solubor (a soluble commercial borate) are used for foliar application thus meeting the boron requirement of the crop efficiently. Application of growth regulators helps in better growth and also help in retention of more number of pods per plant which ultimately leads to increased biological yield thereby, increase the nutrient uptake per plant.

The low yield of pigeonpea is mainly attributed to inadequate and imbalanced nutrient application particularly with respect to nitrogen and phosphorus. Several studies showed that the transplanted pigeonpea has higher yield potential compared to direct sown pigeonpea (Jamadar et al., 2014, Sujatha and Babalad, 2018). The potential yield could be achieved in transplanted pigeonpea with optimizing the nutrient requirement of crops and use of growth regulators for better retention of flowers and pods. This necessitates the evaluation of nutrient levels for transplanted pigeonpea along with growth regulators as the present recommendations are for the direct sown pigeonpea. With this background, the present investigation was conducted to find out the optimum nutrient requirement for higher yield of transplanted pigeonpea.

Materials and Methods

The experiment was conducted at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka on medium deep black soils under rainfed condition during kharif 2017. During the crop growth period, a total rainfall of 582.8 mm was received which was optimum for good
growth and higher yield. The soil of the experimental site was clay with pH of 7.1 and EC of 0.32 dS m\(^{-1}\). The soil was medium in organic carbon (0.53 %) and low in available nitrogen (249 kg ha\(^{-1}\)) and medium in available P\(_2\)O\(_5\) (28 kg ha\(^{-1}\)) and available K\(_2\)O (286 kg ha\(^{-1}\)). The experiment comprising of three nutrient levels (25:50 N:P\(_2\)O\(_5\) kg ha\(^{-1}\), 37.5:75 N:P\(_2\)O\(_5\) kg ha\(^{-1}\) and 50:100 N:P\(_2\)O\(_5\) kg ha\(^{-1}\)) as main plot treatments and four subplots mainly, foliar application of micronutrients and growth regulators [NAA (0.05 %) + zinc sulphate (0.5 %) + soluble boron (0.2 %), salicylic acid (0.02 %) + zinc sulphate (0.5 %) + soluble boron (0.2 %), zinc sulphate (0.5 %) + soluble boron (0.2 %) and Control (No growth regulators and micronutrients)] as sub plot treatments and one single control (FYM 6 t ha\(^{-1}\) + 25:50 N:P\(_2\)O\(_5\) kg ha\(^{-1}\) + ZnSO\(_4\) 15 kg ha\(^{-1}\) + soluble boron 2.5 kg ha\(^{-1}\) soil application at the time of planting) was laid out in split plot design with three replications.

Seeds of pigeonpea variety TS 3R were dry seed dressed with Trichoderma at the rate of 4 g kg\(^{-1}\) seeds and later treated with Rhizobium and Pseudomonas fluroscence cultures at the rate of 500 g ha\(^{-1}\) seed. The seedlings were raised in polythene bags from last week of May to last week of June for 4 weeks. With the help of marker the hills were made at 120 cm × 60 cm spacing and seedlings were transplanted immediately after receipt of rain during last week of June. The recommended quantity of FYM (6 t ha\(^{-1}\)) was applied two weeks before transplanting of the crop. Nitrogen and phosphorus were applied in the form of urea and DAP, respectively. The entire quantity of nitrogen and phosphorus fertilizers were applied as per the treatments (25:50 N:P\(_2\)O\(_5\) kg ha\(^{-1}\), 37.5:75 N:P\(_2\)O\(_5\) kg ha\(^{-1}\) and 50:100 N:P\(_2\)O\(_5\) kg ha\(^{-1}\)) to each plot by ring method around the plant and covered with soil. Foliar application of growth regulators NAA (0.05 %) and salicylic acid (0.02 %) along with micronutrients ZnSO\(_4\) (0.5 %) and soluble boron (0.2 %) were applied at flowering and 15 days after flowering. At each foliar application, 750 l of spray solution mixture per ha was used. Spray solution was prepared accordingly with the recommended concentrations and the zinc sulphate was neutralized with lime before spray in order to avoid scorching effect on plants.

Results and Discussion

Effect of nutrient levels and growth regulators on yield of transplanted pigeonpea

The growth and yield attributing characters of transplanted pigeonpea were found to be greatly influenced by soil fertility and application of nutrients. Significantly higher grain yield (2958 kg ha\(^{-1}\)) was recorded with application of 37.5:75 N:P\(_2\)O\(_5\) kg per hectare as compared to present recommended dose of 25:50 N:P\(_2\)O\(_5\) kg per hectare (2673 kg ha\(^{-1}\)) but it was statistically on par (2908 kg ha\(^{-1}\)) with application of 50:100 N:P\(_2\)O\(_5\) kg per hectare (Table 1). The increase in yield with application of 37.5:75 N:P\(_2\)O\(_5\) kg per hectare over application of 25:50 N:P\(_2\)O\(_5\) kg per hectare was 10 per cent (Table 1). Yield is dependent upon the sum total of growth and development of crop at different phenological stages and is the cumulative expression of different yield attributes mainly number of pods per plant, number of seeds per pod and test weight of seeds. These findings are in conformity with the findings of Siddaraju (2008) who recorded higher growth and yield in cluster bean on application of fertilizer dose at 50:100:60 kg N:P\(_2\)O\(_5\):K\(_2\)O per hectare.

The increase in yield with application of 37.5:75 N:P\(_2\)O\(_5\) kg per hectare over application of 25:50 N:P\(_2\)O\(_5\) kg per hectare was 10 per cent (Table 1). Yield is dependent upon the sum total of growth and development of crop at different phenological stages and is the cumulative expression of different yield attributes mainly number of pods per plant, number of seeds per pod and test weight of seeds. These findings are in conformity with the findings of Siddaraju (2008) who recorded higher growth and yield in cluster bean on application of fertilizer dose at 50:100:60 kg N:P\(_2\)O\(_5\):K\(_2\)O per hectare.

Among different foliar sprays of micronutrients and growth regulators at flowering and 15 days after flowering in
transplanted pigeonpea, foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) recorded significantly higher grain yield (3230 kg ha⁻¹) as compared to no spray which recorded significantly lower grain yield (2307 kg ha⁻¹). These findings are in accordance with those of Rajabi et al., (2013) who recorded that on foliar application of 1200 micromolar of salicylic acid increased the maximum number of pods per plant in chickpea. Foliar spray of micronutrients alone also recorded on par results with respect to grain yield (3039 kg ha⁻¹) when salicylic acid was sprayed along with micronutrients (Table 1).

Husk and stalk yield is primarily a function of vegetative growth of the crop in terms of number of leaves per plant. In the present study, application of balanced fertilization significantly influenced the husk and stalk yield (11511 kg ha⁻¹) of transplanted pigeonpea at 50:100 N:P₂O₅ kg per hectare but it was on par with 37.5:75 N:P₂O₅ kg per hectare, respectively (Table 1). The better fertilization to the crop and other management practices influence the husk and stalk yield of the crop positively. The findings were also in accordance with Singh et al., (2006) in pigeonpea who reported that by increasing the nutrient levels upto 150 and 200 per cent RDF there was increased husk and stalk yield.

Interactions between nutrient levels and foliar spray of micronutrients and growth regulators

Significantly higher grain yield (3484 kg ha⁻¹) was recorded with application of 37.5:75 N:P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) when compared to single control. Significantly lower stalk and husk yield was recorded with application of 25:50 N:P₂O₅ kg per ha without foliar spray (8066 kg ha⁻¹) and application of 37.5:75 N:P₂O₅ kg per ha without foliar spray (8,553 kg ha⁻¹) and on par results were obtained with spray of NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) and foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %) and application of 50:100 N:P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) and foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %) which were on par with each other (Table 1). Similar results were recorded in pigeonpea by Rameshwar (2003) who reported that the yield attributing characters and yield of pigeonpea were higher with foliar spray of IAA + boron + zinc and least impact was observed in IAA and micronutrients spray alone. The combination of nutrient levels and growth regulators helps to sustain the yield of transplanted pigeonpea with higher productivity.

Significantly higher grain yield (18 %) was recorded with application of 37.5:75 N:P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) as compared to recommended practice (single control). The former treatment has noticed 13 per cent higher grain yield over single control with application of 37.5:75 N:P₂O₅ kg per ha along with foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %). Whereas it was 10 per cent higher grain yield with application of 37.5:75 N:P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) over single control (Table 1).

Significantly higher husk and stalk yield (13012 kg ha⁻¹) was recorded with application of 50:100 N:P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) when compared to single control. Significantly lower stalk and husk yield was recorded with application of 25:50 N:P₂O₅ kg per ha without foliar spray (8066 kg ha⁻¹) and application of 37.5:75 N:P₂O₅ kg per ha without foliar spray (8,553 kg ha⁻¹) and on par results were obtained with
all the remaining treatment combinations (Table 1).

Effect of nutrient levels and growth regulators on number of root nodules and leaf litter fall of transplanted pigeonpea

Significantly higher number of root nodules per plant was recorded with application of 37.5:75 N:P₂O₅ kg per hectare and 50:100 N:P₂O₅ kg per hectare along with foliar spray of micronutrients and growth regulators, foliar spray of micronutrients alone and without spray when compared to single control. Application of 25:50 N:P₂O₅ kg per hectare along with foliar spray of micronutrients and growth regulators and without spray of micronutrients and growth regulators showed on par results (Table 1).

Significantly higher leaf litter fall per hectare was recorded with application of 37.5:75 N:P₂O₅ kg per hectare and 50:100 N:P₂O₅ kg per hectare along with foliar spray of micronutrients and growth regulators, foliar spray of micronutrients alone and without spray when compared to single control. Application of 25:50 N:P₂O₅ kg per hectare along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %), foliar spray of micronutrients alone and without spray recorded on par results (Table 1).

Effect of nutrient levels and growth regulators on plant nutrient content and uptake of nutrients

Nutrient content in any crops is not only dependent on the growth and development of crops but also the concentration of various nutrients. Therefore, the quantum of nutrient uptake is largely determined by the total biological yield. Results in the present study revealed that 50:100 N:P₂O₅ kg per ha recorded significantly higher nitrogen (0.97 % and 139.0 kg ha⁻¹), phosphorus (0.08 % and 10.8 kg ha⁻¹) and potassium (0.48 % and 39.0 kg ha⁻¹) at 90 days after transplanting and higher nitrogen (2.5 % and 360.5 kg ha⁻¹), phosphorus (0.27 % and 38.9 kg ha⁻¹) and potassium (0.84 % and 116.8 kg ha⁻¹) content and uptake by crop at harvest and it was on par with application of 37.5:75 N:P₂O₅ kg per ha. Whereas, the treatment receiving 25:50 kg ha⁻¹ recorded significantly lower nutrient content and nutrient uptake at all the stages of crop growth (Table 2). Pulse crops are endowed with unique property of fixing atmospheric nitrogen in amount greater than their own requirements but the availability of other nutrients especially P is important for pulse production which is to be supplied externally. These results were supported by in hybrid pigeonpea.

This confirms the findings of Singh et al., (2016) and Sudhir (2010) where application of 200 per cent recommended dose of fertilizer (40:80:40:40 N:P₂O₅:K₂O:S kg ha⁻¹) significantly increased total uptake of N (108.16 kg ha⁻¹), P₂O₅ (8.3 kg ha⁻¹), K₂O (98.1 kg ha⁻¹) and S (25.2 kg ha⁻¹) in hybrid pigeonpea. But it was statistically at par with 150 per cent RDF (30:60:30:30 N:P₂O₅:K₂O:S kg ha⁻¹). Singh et al., (2006) and Srivastava and Srivastava (1993) also reported the similar results in pigeonpea by increasing the nutrient levels upto 150 and 200 per cent RDF.

Nutrient uptake of transplanted pigeonpea showed significant results as influenced by foliar spray of micronutrients and growth regulators. At 90 DAT, significantly higher nitrogen uptake (129.5 kg ha⁻¹), phosphorus uptake (9.7 kg ha⁻¹) and potassium (43.5 kg ha⁻¹) was recorded with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %) as compared to without spray. At harvest, significantly higher phosphorus uptake (38.3 kg ha⁻¹) and
potassium uptake (117.5 kg ha\(^{-1}\)) was recorded with foliar spray of salicylic acid (0.02 %) + ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %) as compared to without spray (Table 2). Foliar spray of ZnSO\(_4\) + soluble boron (0.2 %) and foliar spray of NAA (0.05 %) + ZnSO\(_4\) + soluble boron (0.2 %) and foliar spray of ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %) recorded on par results. Significantly higher nitrogen uptake (335.1 kg ha\(^{-1}\)) at harvest was recorded with foliar spray of ZnSO\(_4\) + soluble boron (0.2 %) followed by foliar spray of ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %) and foliar spray of NAA (0.05 %) + ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %). Among the foliar spray of micronutrients and growth regulators, non significant results were obtained at 90 DAT with respect to boron uptake. At harvest, higher boron uptake (Table 3) was recorded with foliar spray of salicylic acid (0.02 %) + ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %), foliar spray of NAA (0.05 %) + ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %), foliar spray ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %) as compared to no spray.

Effect of nutrient levels and growth regulators on nutrient content in the soil

The nutrient content in the soil after harvest of crop (Table 3) differed significantly as influenced by nutrient levels. Application of 50:100 N:P\(_2\)O\(_5\) kg per ha recorded significantly higher organic carbon content (5.4 g kg\(^{-1}\)), available nitrogen (266.3 kg ha\(^{-1}\)), available phosphorus (29.6 kg ha\(^{-1}\)) and available potassium in soil (231.5 kg ha\(^{-1}\)) as compared to application of 25:50 N:P\(_2\)O\(_5\) kg per ha and with application of 37.5:75 N:P\(_2\)O\(_5\) kg per ha. The soil organic carbon content (5.3 g kg\(^{-1}\)), available nitrogen (258.9 kg ha\(^{-1}\)), available phosphorus (28.9 kg ha\(^{-1}\)) and available potassium in soil (230.6 kg ha\(^{-1}\)) did not differ significantly. Similar findings were reported by Raju et al., (1991) in chickpea who recorded higher nutrient status of soil after harvest due to the application of increasing levels of nutrients.

Interactions between nutrient levels and foliar spray of micronutrients and growth regulators

Among the interactions, Significantly higher nitrogen uptake (157.5 kg ha\(^{-1}\)) at 90 DAT (Table 2) was recorded with application of 50:100 N:P\(_2\)O\(_5\) kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO\(_4\) (0.5 %) + soluble boron (0.2 %) when compared to single control.
Table 1 Number of root nodules per plant, leaf litter fall, grain yield, husk and stalk yield of transplanted pigeonpea as influenced by different nutrient levels and growth regulators

Treatments	Number of root nodules per plant	Leaf litter fall (kg ha⁻¹)	Grain yield (kg ha⁻¹)	Husk and stalk yield (kg ha⁻¹)					
	60 DAT	90 DAT	90 DAT	120 DAT	60 DAT	90 DAT	90 DAT	120 DAT	
Nutrient levels (N)									
N₁	23.5⁻ᵇ⁻⁻⁻	185.₁⁻ᵇ⁻⁻⁻	508.7⁻ᵇ⁻⁻⁻	836.3⁻ᵃ⁻⁻⁻	2.67⁻ᵇ⁻⁻⁻	9.7⁻₀₁⁻ᵇ⁻⁻⁻			
N₂	28.2⁻ᵃ⁻⁻⁻	217.₄⁻ᵃ⁻⁻⁻	586.₄⁻ᵃ⁻⁻⁻	922.₃⁻ᵃ⁻⁻⁻	2.₉⁻⁵⁻ᵇ⁻⁻⁻	10.₈⁻₈₁⁻ᵃ⁻⁻⁻			
N₃	28.₉⁻ᵃ⁻⁻⁻	218.₈⁻ᵃ⁻⁻⁻	5₈₇.₇⁻ᵃ⁻⁻⁻	9₀₆.₈⁻ᵃ⁻⁻⁻	2.₉⁻⁰⁻ᵃ⁻ᵇ⁻⁻⁻	1₁.₅⁻₁₁⁻ᵃ⁻⁻⁻			
S. Em.±	0.₃₈⁻	5.₄₅⁻	1₆.₀₈⁻	2₁.₈₅⁻	6₈⁻	3₈₁⁻			
Foliar application of growth regulators and micronutrients (F)									
F₁	2₆.₈⁻ᵃ⁻⁻⁻	2₀₄.₅⁻ᵃ⁻⁻⁻	₅₅₁.₇⁻ᵃ⁻⁻⁻	₈₇₅.₈⁻ᵇ⁻⁻⁻	2.₈₀⁻ᵇ⁻⁻⁻	1₀.₉⁻₁₉⁻ᵃ⁻⁻⁻			
F₂	2₇.₃⁻ᵃ⁻⁻⁻	2₁₀.₅⁻ᵃ⁻⁻⁻	₅₆₇.₈⁻ᵃ⁻⁻⁻	₁₀₀₇.₈⁻ᵃ⁻⁻⁻	₃.₂₃⁻ᵃ⁻⁻⁻	₁₁.₅₀⁻ᵇ⁻⁻⁻			
F₃	2₆.₃⁻ᵃ⁻⁻⁻	2₀₅.₈⁻ᵃ⁻⁻⁻	₅₅₉.₂⁻ᵃ⁻⁻⁻	₉₅₁.₃⁻ᵇ⁻⁻⁻	₃.₀₃⁻ᵇ⁻⁻⁻	₁₁.₁₁⁻ᵃ⁻⁻⁻			
F₄	2₆.₉⁻ᵃ⁻⁻⁻	2₀₇.₇⁻ᵃ⁻⁻⁻	₅₆₄.₉⁻ᵃ⁻⁻⁻	₇₁₉.₄⁻ᶜ⁻⁻⁻	₂.₃₀⁻ᶜ⁻⁻⁻	₉.₂₀⁻ᵇ⁻⁻⁻			
S. Em.±	₀.₇₈⁻	₅.₅₂⁻	₁₆.₃₈⁻	₂₇.₉₂⁻	₉₀⁻	₅₅₇⁻			
Interaction (N×F)									
N₁ F₁	2₂.₉⁻ᵇ⁻⁻⁻	₁₇₆.₈⁻ᶜ⁻⁻⁻	₄₇₇.₀⁻ᵇ⁻⁻⁻	₈₅₁.₈⁻ᵇᵈ⁻⁻⁻	₂.₇₃⁻ᵇᵈ⁻⁻⁻	₁₀.₂₁⁻ᵇᶜ⁻⁻⁻			
N₁ F₂	2₄.₅⁻ᵇ⁻ᵇ⁻⁻⁻	₁₈₈.₉⁻ᵇᶜ⁻⁻⁻	₅₀₉.₆⁻ᵃᵇ⁻⁻⁻	₉₂₂.₁⁻ᵇᵈ⁻⁻⁻	₂.₉₅₋ᵇᵈ⁻⁻⁻	₁₀.₁₇⁻ᵇᶜ⁻⁻⁻			
N₁ F₃	₂₂.₆⁻ᵇ⁻ᵇ⁻⁻⁻	₁₸₆.₉⁻ᵇᶜ⁻⁻⁻	₅₁₅.₃⁻ᵃᵇ⁻⁻⁻	₉₁₇.₅⁻ᵇᵈ⁻⁻⁻	₂.₉₀⁻ᵇᵈ⁻⁻⁻	₁₀.₃₅⁻ᵇᶜ⁻⁻⁻			
N₁ F₄	₂₃.₈⁻ᵇᵈ⁻⁻⁻	₁₸₇.₉⁻ᵇᶜ⁻⁻⁻	₅₃₂.₉⁻ᵃᵇ⁻⁻⁻	₆₅₃.₇⁻ᵇ⁻⁻⁻	₂.₀₉⁻ᵇ⁻⁻⁻	₈.₀₆⁻ᵇ⁻⁻⁻			
N₂ F₁	₂₇.₈⁻ᶜ⁻⁻⁻	₂₁₄.₃⁻ᵃ⁻⁻⁻	₅₇₈.₂⁻ᵃ⁻⁻⁻	₉₀₄.₇⁻ᵇᵈ⁻⁻⁻	₂.₉₀⁻ᵇᵈ⁻⁻⁻	₁₁.₁₄⁻ᵇ⁻⁻⁻			
N₂ F₂	₂₈.₇⁻ᵇ⁻⁻⁻	₂₂₁.₃⁻ᵃ⁻⁻⁻	₅₉₇.₀⁻ᵃ⁻⁻⁻	₁₀₈₆.₄⁻ᵃ⁻⁻⁻	₃.₄₈⁻ᵃ⁻⁻⁻	₁₁.₃₃⁻ᵇ⁻⁻⁻			
N₂ F₃	₂₇.₉₋ᵇᶜ⁻⁻⁻	₂₁₄.₉⁻ᵃ⁻⁻⁻	₅₇₉.₆⁻ᵃ⁻⁻⁻	₁₀₄₀.₈⁻ᵃᵇ⁻⁻⁻	₃.₃₃⁻ᵃᵇ⁻⁻⁻	₁₂.₁₇⁻ᵇ⁻⁻⁻			
N₃ F₁	₂₈.₄⁻ᵇ⁻⁻⁻	₂₁₉.₀⁻ᵇ⁻⁻⁻	₅₉₀.₇⁻ᵃ⁻⁻⁻	₆₅₇.₃⁻ᵇ⁻⁻⁻	₂.₁₀⁻ᵇ⁻⁻⁻	₈.₅₅⁻ᵇ⁻⁻⁻			
N₃ F₂	₂₉.₇⁻ᵇ⁻⁻⁻	₂₂₂.₃⁻ᵃ⁻⁻⁻	₅₉₉.₇⁻ᵃ⁻⁻⁻	₈₇₀.₉⁻ᵇᵈ⁻⁻⁻	₂.₇₉⁻ᵇᵈ⁻⁻⁻	₁₁.₀₇⁻ᵇ⁻⁻⁻			
N₃ F₃	₂₸.₇⁻ᵇᵈ⁻⁻⁻	₂₂₁.₃⁻ᵃ⁻⁻⁻	₅₹₇.₀⁻ᵃ⁻⁻⁻	₁₀₁₃.₄ᵃ⁻ᵇ⁻⁻⁻	₃.₄₉⁻ᵇ⁻⁻⁻	₁₃.₀₁₋ᵇ⁻⁻⁻			
N₃ F₄	₂₸.₅⁻ᵇᵈ⁻⁻⁻	₂₁₆.₁ᵃᵇ⁻⁻⁻	₅₇₁.₃ᵃ⁻⁻⁻	₈₄₇.₂ᵈ⁻⁻⁻	₂.₇₁⁻ᵈ⁻⁻⁻	₁₀.₉₉⁻ᵇ⁻⁻⁻			
S. Em.±	₁.₃₅⁻	₉.₅₆⁻	₂₈.₃₈⁻	₄₈.₃₆⁻	₁₅₅⁻	₉₆₅⁻			
Single control (SC)									
SC	₂₂.₉₀⁻	₁₸₂.₇₄⁻	₅₁₀.₉₉⁻	₉₁₄.₇₇⁻	₂.₉₃⁻	₁₀.₆₄⁻			
S. Em.±	₁.₂₆⁻	₉.₄₈⁻	₂₈.₀₃⁻	₄₆.₉₁⁻	₁₅₀⁻	₉₁₃⁻			
LSD (0.05)	₃.₆₉⁻	₂₇.₆₇⁻	₈₁.₈₂⁻	₁₃₆.₉₁⁻	₄₃₈⁻	NS⁻			

N= Nutrient levels
F= Foliar application of growth regulators and micronutrients
N₁=25:50 N:P₂O₅ kg ha⁻¹
N₂=37:75 N:P₂O₅ kg ha⁻¹
N₃=50:100 N:P₂O₅ kg ha⁻¹
F₁=NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
F₂=Salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
F₃=ZnSO₄ (0.5 %) + soluble boron (0.2 %)
F₄= Control (No growth regulators and micronutrients)
SC (RPP)=Single control (FYM 6 t ha⁻¹ + 25:50 N:P₂O₅ kg ha⁻¹ + ZnSO₄ 15 kg ha⁻¹ + soluble boron 2.5 kg ha⁻¹)
NS= Non significant; DAT= Days after transplanting.
Table 2 Nutrient content and nutrient uptake of transplanted pigeonpea as influenced by different nutrient levels and growth regulators

Treatments	Nutrient content at 90 DAT	Nutrient uptake at 90 DAT	Nutrient uptake at Harvest									
	N (%)	P (%)	K (%)	N (%)	P (%)	K (%)	N (kg ha⁻¹)	P (kg ha⁻¹)	K (kg ha⁻¹)	N (kg ha⁻¹)	P (kg ha⁻¹)	K (kg ha⁻¹)
Nutrient levels (N)												
N₁	0.75ᵃ	0.06ᵇ	0.57ᵃ	1.98ᵃ	0.24ᵇ	0.71ᵇ	93.1ᵇ	6.9ᵇ	39.6ᵇ	360³ᵃ	38.9ᵇ	116.8ᵃ
N₂	0.89ᵇ	0.07ᵃ	0.59ᵃ	2.43ᵇ	0.25ᵇ	0.81ᵇ	123.1ᵇ	9.2ᵇ	47.6ᵇ	336³ᵃ	34.6ᵇ	115.7ᵇ
N₃	0.97ᵇ	0.08ᵇ	0.48ᵇ	2.5ᵇ	0.27ᵇ	0.84ᵇ	139.0ᵇ	10.8ᵇ	39.0ᵇ	360³ᵃ	38.9ᵇ	116.8ᵃ
S.Em.±	0.00³	0.00³	0.02³	0.08³	0.02³	0.00³	11.7	0.3	1.2	12.1	1.2	3.2
Foliar application of growth regulators and micronutrients (F)												
F₁	0.87ᵃ	0.07ᵃ	0.57ᵃ	2.38ᵇ	0.26ᵇ	0.79ᵇ	120.1ᵇ	9.0ᵇ	42.9ᵇ	326.7ᵇ	35.7ᵇ	107.8ᵇ
F₂	0.87ᵃ	0.07ᵃ	0.56ᵃ	2.22ᵇ	0.26ᵇ	0.80ᵇ	129.5ᵇ	9.7ᵇ	43.5ᵇ	327.1ᵇ	38.3ᵇ	117.5ᵃ
F₃	0.87ᵃ	0.07ᵃ	0.56ᵃ	2.36ᵇ	0.26ᵇ	0.78ᵇ	123.2ᵇ	9.5ᵇ	43.4ᵇ	335.1ᵇ	36.9ᵇ	111.8ᵇ
F₄	0.97ᵇ	0.07ᵇ	0.49ᵇ	2.27ᵇ	0.25ᵇ	0.79ᵇ	100.9ᵇ	7.7ᵇ	38.5ᵇ	261.3ᵇ	28.8ᵇ	90.4ᵇ
S.Em.±	0.00³	0.00³	0.02³	0.10³	0.01³	0.00³	14.9	0.5³	1.5³	23.8	2.4	3.7
Interaction (N×F)												
N₁ F₁	0.76ᵃ	0.06ᵃ	0.66ᵃ	2.10ᵇ	0.26ᵇ	0.71ᵇ	97.9ᵇ	7.4ᵇ	43.9ᵇ	271.9ᵇ	33.7ᵇ	91.5ᵇ
N₁ F₂	0.75ᵃ	0.06ᵃ	0.64ᵇ	1.90ᵇ	0.24ᵇ	0.70ᵇ	98.4ᵇ	7.5ᵇ	45.0ᵇ	249.5ᵇ	31.5ᵇ	91.9ᵇ
N₁ F₃	0.75ᵃ	0.06ᵃ	0.55ᵇ	2.00ᵇ	0.25ᵇ	0.70ᵇ	99.1ᵇ	7.3ᵇ	39.0ᵇ	265.2ᵇ	33.2ᵇ	92.9ᵇ
N₁ F₄	0.76ᵃ	0.05ᵇ	0.41ᶜ	1.93ᶜ	0.24ᶜ	0.72ᶜ	77.0ᶜ	5.5ᶜ	30.6ᶜ	196.1ᵈ	24.4ᶜ	72.9ᵃ
N₂ F₁	0.89ᵇ	0.07ᵇ	0.61ᵇ	2.41ᵇ	0.25ᵇ	0.85ᵇ	127.6ᵇ	9.7ᶜ	49.0ᵇ	338.6ᵇ	35.1ᵇ	119.5ᵇ
N₂ F₂	0.89ᵇ	0.07ᵇ	0.62ᵇ	2.52ᵇ	0.27ᵇ	0.84ᵇ	132.5ᵇ	10.1ᶜ	51.1ᶜ	373.4ᵇ	40.0ᵇ	124.6ᵇ
N₂ F₃	0.89ᵇ	0.06ᵇ	0.69ᵇ	2.44ᵇ	0.24ᵇ	0.84ᵇ	137.6ᵇ	9.8ᶜ	55.8ᶜ	378.4ᵇ	37.2ᵇ	129.8ᵇ
N₂ F₄	0.89ᵇ	0.07ᵇ	0.42ᶜ	2.37ᵇ	0.25ᵇ	0.83ᶜ	94.6ᶜ	7.2ᵈ	34.7ᵇ	252.7ᵈ	26.7ᵈ	88.9ᵈ
N₃ F₁	0.97ᵇ	0.07ᵇ	0.43ᶜ	2.62ᵇ	0.26ᵇ	0.81ᶜ	134.6ᵇ	9.9ᶜ	36.0ᶜ	363.4ᵇ	36.1ᵇ	112.4ᵇ
N₃ F₂	0.97ᵇ	0.07ᵇ	0.42ᶜ	2.23ᵇ	0.26ᵇ	0.83ᶜ	157.5ᵇ	11.6ᶜ	34.5ᵇ	362.6ᵇ	42.3ᶜ	134.9ᵃ
N₃ F₃	0.96ᵇ	0.08ᵇ	0.44ᶜ	2.63ᵇ	0.28ᵇ	0.80ᶜ	133.0ᵇ	11.3ᶜ	35.4ᵇ	363.7ᵇ	38.7ᵃ	110.5ᵇ
N₃ F₄	0.96ᵇ	0.08ᵇ	0.63ᵇ	2.50ᵇ	0.27ᵇ	0.80ᵇ	131.0ᵇ	10.4ᵇ	50.2ᵇ	342.8ᵇ	37.0ᵇ	109.2ᵇ
S.Em.±	0.01	0.00³	0.04³	0.17³	0.02³	0.02³	8.73	0.92³	2.68³	41.1³	3.12³	8.3³

Single control (SC)

SC	0.77	0.06	0.64	2.43	0.22	0.70	104.7	7.7	45.7	330.0	29.9	95.2
S.Em.±	0.01	0.00³	0.04³	0.20³	0.03³	0.01³	8.2	0.8³	2.68³	37.9³	3.2³	8.1³
LSD (0.05)	0.04	9.25	0.11	NS	NS	0.03	23.9	2.4	7.8	110.6	9.2	23.9

N= Nutrient levels Fe= Foliar application of growth regulators and micronutrients
N₁=25:50 N-P₂O₅ (kg ha⁻¹) F₁= NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
N₂=37.5:75 N-P₂O₅ (kg ha⁻¹) F₂= Salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
N₃=50:100 N-P₂O₅ (kg ha⁻¹) F₃= ZnSO₄ (0.5 %) + soluble boron (0.2 %)
F= Control (No growth regulators and micronutrients)
SC (RPP)=Single control (FYM 6 t ha⁻¹ + 25:50 N-P₂O₅, 15 kg ha⁻¹ + soluble boron 2.5 kg ha⁻¹)
NS= Non significant; DAT= Days after transplanting
Table 3 Micronutrient uptake and nutrient content of soil of transplanted pigeonpea as influenced by different nutrient levels and growth regulators

Treatments	Micronutrient uptake (90 DAT)	Harvest	Nutrient content of soil after harvest (Kg ha⁻¹)					
	Zn (g ha⁻¹)	B (g ha⁻¹)	Zn (g ha⁻¹)	B (g ha⁻¹)	OC (g kg⁻¹)	N (kg ha⁻¹)	P (kg ha⁻¹)	K (kg ha⁻¹)
N₀	25.5ᵃ	33.9ᵃ	71.8ᵃ	76.1ᵃ	5.0ᵇ	240.6ᵇ	28.3ᵇ	224.9ᵇ
N₁	25.0ᵇ	34.5ᵇ	67.6ᵇ	79.1ᵃ	5.3ᵃ	258.9ᵇ	28.9ᵇ	230.6ᵃ
N₂	24.4ᵇ	30.2ᵇ	62.7ᵇ	75.2ᵃ	5.4ᵃ	266.3ᵃ	29.6ᵃ	231.5ᵃ
S.Em.⁺	0.63	2.13	2.29	1.24	0.1	2.82	0.22	1.96

Foliar application of growth regulators and micronutrients (F)								
F₀	25.2ᵃ	33.4ᵃ	73.4ᵃ	83.3ᵃ	5.1ᵃ	258.1ᵃ	28.9ᵃ	227.9ᵃ
F₁	25.3ᵃ	32.6ᵃ	68.8ᵃ	84.8ᵃ	5.3ᵃ	257.1ᵃ	28.8ᵃ	230.6ᵃ
F₂	25.0ᵇ	33.6ᵇ	72.3ᵃ	82.5ᵃ	5.3ᵇ	257.6ᵇ	28.9ᵇ	230.4ᵇ
F₃	24.4ᵇ	31.9ᵇ	54.1ᵇ	56.7ᵇ	5.2ᵇ	260.4ᵇ	29.1ᵇ	230.7ᵇ
S.Em.⁺	0.57	1.23	1.95	2.90	0.04	4.82	0.37	3.35

Interaction (N×F)								
N₀ F₀	25.4ᵃ	34.3ᵇ	73.5ᵃ	81.0ᵃ	4.8ᵃ	250.5ᵃ	28.3ᵃ	216.8ᵃ
N₀ F₁	25.6ᵃ	33.0ᵇ	74.9ᵃ	83.9ᵃ	5.0ᵃ	247.4ᵃ	28.1ᵃ	220.5ᵃ
N₀ F₂	25.9ᵇ	34.5ᵇ	76.4ᵇ	82.1ᵃ	5.1ᵇ	249.0ᵇ	28.2ᵇ	231.7ᵇ
N₀ F₃	25.0ᵇ	34.1ᵇ	57.2ᶜ	57.4ᵇ	5.0ᵇ	251.7ᵇ	28.4ᵇ	230.5ᵇ
N₁ F₀	25.1ᵃ	36.0ᵇ	72.6ᵃ	84.5ᵃ	5.4ᵃ	259.1ᵃ	29.0ᵃ	235.6ᵃ
N₁ F₁	25.1ᵇ	33.8ᵇ	70.5ᵇ	89.4ᵇ	5.2ᵇ	258.0ᵇ	28.9ᵇ	232.2ᵇ
N₁ F₂	25.0ᵇ	34.7ᵇ	73.0ᵃ	84.2ᵃ	5.3ᵇ	257.3ᵇ	28.9ᵇ	226.8ᵇ
N₁ F₃	24.8ᵇ	33.3ᵇ	54.3ᶜ	58.4ᵇ	5.4ᵇ	261.2ᵇ	29.2ᵇ	227.9ᵇ
N₂ F₀	25.1ᵃ	30.0ᵇ	69.1ᵇ	84.3ᵃ	5.3ᵃ	264.7ᵃ	29.4ᵃ	231.4ᵃ
N₂ F₁	25.1ᵇ	30.9ᵇ	60.8ᶜ	81.1ᵃ	5.5ᵇ	265.7ᵇ	29.5ᵇ	228.4ᵇ
N₂ F₂	24.0ᵇ	31.6ᵇ	70.0ᵇ	81.1ᵃ	5.3ᵇ	266.6ᵇ	29.6ᵇ	232.5ᵇ
N₂ F₃	23.4ᵃ	28.4ᵇ	50.9ᶜ	54.3ᵇ	5.3ᵇ	268.4ᵇ	29.7ᵇ	233.5ᵇ
S.Em.⁺	0.98	2.82	3.37	5.03	0.2	8.35	0.64	8.18

Single control (SC)								
SC	30.97	31.79	75.81	83.15	5.2	247.6	28.1	224.2
S.Em.⁺	1.20	3.37	3.50	5.01	0.2	7.67	0.59	5.33
LSD (0.05)	3.50	9.85	10.20	14.61	NS	NS	NS	NS

N = Micronutrient levels (N)
F = Foliar application of growth regulators and micronutrients
N₀ = 25:50 N-P₂O₅ kg ha⁻¹
F₀ = NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
N₁ = 37:57 N-P₂O₅ kg ha⁻¹
F₁ = Salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %)
N₂ = 50:100 N-P₂O₅ kg ha⁻¹
F₂ = ZnSO₄ (0.5 %) + soluble boron (0.2 %)
F₃ = Control (No growth regulators and micronutrients)
SC (RPP) = Single control (FYM 6 t ha⁻¹ + 25:50 N-P₂O₅ kg ha⁻¹ + ZnSO₄ 15 kg ha⁻¹ + soluble boron 2.5 kg ha⁻¹)
NS = Non Significant
DAT = Days after transplanting
[Initial OC=5.3 g kg⁻¹, N=249 kg ha⁻¹, P₂O₅=28 kg ha⁻¹, K₂O=298 kg ha⁻¹]
Application of 50:100 N: P₂O₅ kg per ha along with foliar spray of NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %), foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %) and no spray and application of 37.5:75 N: P₂O₅ kg per ha along with foliar spray of salicylic acid (0.02 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %), foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %), foliar spray of ZnSO₄ (0.5 %) + soluble boron (0.2 %), application of 50:100 N: P₂O₅ kg per hectare along with foliar spray NAA (0.05 %) + ZnSO₄ (0.5 %) + soluble boron (0.2 %), application of 50:100 N: P₂O₅ kg per hectare along with foliar spray ZnSO₄ (0.5 %) + soluble boron (0.2 %). Single control treatment showed higher zinc uptake (30.97 g ha⁻¹) at 90 DAT when compared to other treatment combinations.

At harvest, higher boron uptake was recorded with application of 37.5:75 N: P₂O₅ kg per ha and 50:100 N: P₂O₅ kg per ha along with foliar spray of micronutrients and growth regulators, foliar spray of micronutrients alone and single control. Significantly lower boron uptake was recorded with no spray.

Acknowledgement

I deem it a proud privilege to express my deepest sense of gratitude and thanks to my considerate advisor, Dr. H. B. Babalad, Professor and head, Dept. of Agronomy, college of Vijayapura, University of Agricultural Sciences, Dharwad and chairman of my Advisory Committee for his inspiring and noble guidance. I express my esteemed heartfelt thanks to the members of my Advisory Committee, Dr. H. T. Chandranath, Professor, Department of Agronomy, University of Agricultural Sciences, Dharwad and Dr. P. L. Patil, Professor, Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Dharwad for their constant encouragement, valuable suggestions, sensible criticism and constructive guidance during the course of this investigation.

References

Amin, S., Zaharah, A. R. and Che, F. I., 2014, Interaction effects of phosphorus and zinc on their uptake and phosphorus absorption and translocation in sweet corn (*Zea mays* var. *Saccharata*) grown in a
tropical soil. Asian J. Plant Sci., 13(3): 129-135.
Chandrasekar, C. N. and Bangarusamy, U., 2003, Maximizing the yield of mungbean by foliar application of growth regulating chemicals and nutrients. Madras Agric. J., 90(1-3): 142-145.

Devrajan, R., Sheriff, M. M., Ramanathan, G. and Selvankumari, G., 1980, Effect of phosphorus and zinc fertilization on yield, content and its uptake by pulse crops. Indian J. Res., 14(1): 47-52.

Habib, M., 2012, Effect of supplementary nutrition with Fe, Zn chelates and urea on wheat quality and quantity. African J. Biotechnol., 11(11): 2661-2665.

Jamadar, M. I., Sajjan, A. S. and Kumar, S., 2014, Economic analysis of seed production in transplanted pigeonpea [Cajanus cajan (L.) Millsp.]. Int. J. Com. Bus. Manage., 7(1): 63-66.

Rajabi, L., Sajedi, N. A. and Roshandel, M., 2013, Response of yield and yield component of dry land chickpea to salicylic acid and super absorbent polimer. J. Crop Prodn. Res., 4(4): 343-353.

Raju, A., Rathod, P. S., Dharmaraj and Chavan, M., 1991, Influence of different nutrient levels application on yield and economics of chickpea. Karnataka J. Agric. Sci., 25(3): 482-485.

Rameshwar, P., 2003, Impact of foliar application of indole acetic acid (IAA), boron and zinc on physiology and sink capacity of pigeonpea [Cajanus cajan (L.) Millsp.]. M.Sc. (Agri.) Thesis, Indira Gandhi Agric. Univ., Raipur.

Siddaraju, R., 2008, Influence of varieties, planting densities and fertilizer levels on seed yield and quality of cluster bean (Cyamopsis tetragonoloba (L.) Taub.). Ph. D. Thesis, Univ. Agric. Sci., Bangalore, Karnataka, India.

Singh, R. S., Srivastava, G. P. and Sanjay, K., 2006, Fertilizer management in pigeonpea based intercropping systems. II. Nutrient removal and net change in soil fertility. J. Crop Res. (BAU), 18(1): 39-43.

Singh, S. K., Kumari, N., Karmakar, S., Puran, A. N. and Pankaj, S. C., 2016, Productivity, economics and nutrient uptake of hybrid pigeonpea as influenced by different fertility and lime levels under rainfed conditions. Environ. Ecol., 34(2) 726-729.

Srivastava, G. P. and Srivastava, V. C., 1993, Response of rainbow pigeonpea (Cajanus cajan) to phosphorus and sulphur in acid red-loam soil (Paleustalf). Indian J. Agric. Sci., 63(1): 43-44.

Sudhir, K. S., 2010, Effect of nutrient levels and lime on productivity of hybrid pigeon pea (Cajanus cajan L.). M.Sc. (Agri.) Thesis, Birsa Agric. Univ., Ranchi, Jharkhand.

Sujatha H. T. and Babalad H. B., 2018, System Productivity and Economics of Transplanted and Direct Sown Pigeonpea at Different Cropping Geometry and Intercropping Systems Int. J. Pure App. Biosci. 6 (1): 694-700.

Vitthal, D. S., 2001, Physiological studies on chemical regulation of translocatoin of assimilates in groundnut (Arachis hypogaea L.). Ph. D. Thesis. Mahatma Phule Krishi Vidy Apeeth, Rahuri, Ahmednagar, Maharashtra, India.

How to cite this article:
Lavanya, C., H.B. Babalad and Patil, P.L. 2020. Impact of Nutrient Levels and Growth Regulators on Yield, Plant Nutrient Content, Plant Nutrient Uptake and Soil Nutrient Content of transplanted pigeonpea in Northern Transition Zone of Karnataka. Int.J.Curr.Microbiol.App.Sci. 9(08): 449-459. doi: https://doi.org/10.20546/ijcmas.2020.908.053