Expected global warming in the coming decades. High temperatures is a significant future risk, given the 5.52 (CI 3.13-9.74).

Abstract citation ID: ckac131.156

Introduction to the AQ-WATCH Project and the AQ-WATCH Toolkit to fight air pollution

Bastien Caillard

C Li, G Brasseur1,2, C Granier1,4, M Sofiev5, R Timmermans6, S Basart7, G Pfister1, R Kumar7, B Caillard2, Y Boose3

1Environmental Modeling, Max Planck Institute for Meteorology, Hamburg, Germany
2Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, USA
3Laboratoire d’Aérologie, CNRS-Université de Toulouse, Toulouse, France
4NOAA Chemical Sciences Laboratory, CRES, University of Colorado, Boulder, USA
5Atmospheric Composition Modelling Group, Finnish Meteorological Institute, Helsinki, Finland
6Climate, Air and Sustainability Department, The Netherlands Organisation for Applied Scientific Research, Utrecht, Netherlands
7Atmospheric Composition Group, Barcelona Supercomputing Centre, Barcelona, Spain
8INERIS DEVELOPPEMENT SAS, Verneuil-en-Halatte, France
9BreezoMeter Ltd, Haifa, Israel

Contact: bastien.caillard@ineris-developpement.com

Background:

WHO states that 9 out of 10 persons in the world do not breathe clean air and 8 million people die prematurely from air pollution each year. The problem is well understood, but actions to mitigate it are lacking. The purpose of the EU-funded AQ-WATCH Project is precisely to develop effective tools based on the most advanced science technologies to help decision-makers in government and the private sector to address air pollution issues in regions of the world where they operate.

Objectives:

AQ-WATCH aims to develops a supply chain to generate innovative downstream products for improving air quality forecasts and attribution based on existing space/in-situ observations to improve public health and to optimize renewable energy in regions of the world. The project consortium includes research and business-oriented partners, who brings together the required expertise to define the optimal functionalities of these products to bring them to the market.

Results:

The AQ-WATCH products are organized into 5 modules: (1) Air quality atlas, (2) Air quality attribution & mitigation, (3) Dust and fire forecast, (4) Fracking analysis, and (5) Air quality forecast. They are developed for 3 target regions (Beijing, Colorado and Santiago de Chile) and are integrated into a unified user-interface, the AQ-WATCH Toolkit. Product developers and prime users in the target regions are constantly
interacting, and the user feedback is collected, analyzed and included during the product development.

Conclusions:
Collaborative work done in AQ-WATCH shows strategic interaction between our research and business-oriented partners. Contributions from local parties are proven to be valuable for regional adaption of the products. A thorough dissemination including regional workshops is essential to ensure proper knowledge uptake by the target audience. Constant exchange with the private sector is required for a smooth transfer from scientific results to commercialized marketable products.

Key messages:
- The AQ-WATCH Project follows EU’s initiative to utilize its space observations with added values to develop easily-accessible tools to fight air pollution applicable to regions of the world.
- The AQ-WATCH Toolkit is developed with iterative feedback exchanges between product developers and local users to address air pollution issues, and will be eventually exploited to the market.