Application of oxygen saturation variability analysis for the detection of exacerbation in individuals with COPD: A proof-of-concept study

Ahmed Al Rajeh1,2 | Amar S. Bhogal3,4 | Yunkai Zhang3 | Joseph T. Costello5 | John R Hurst1 | Ali R. Mani3

1UCL Respiratory, Royal Free Campus, Division of Medicine, University College London, London, UK
2Department of Respiratory Care, King Faisal University, Al-Ahsa, Saudi Arabia
3Network Physiology Laboratory, Division of Medicine, UCL, London, UK
4Medical School, University of Birmingham, Birmingham, UK
5Extreme Environment Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK

Correspondence
Ali R Mani, Network Physiology Laboratory, Royal Free Campus, Division of Medicine, UCL, London, NW3 2PF, UK.
Email: a.r.mani@ucl.ac.uk

Abstract

Background: Individuals with chronic obstructive pulmonary disease (COPD) commonly experience exacerbations, which may require hospital admission. Early detection of exacerbations, and therefore early treatment, could be crucial in preventing admission and improving outcomes. Our previous research has demonstrated that the pattern analysis of peripheral oxygen saturation (SpO2) fluctuations provides novel insights into the engagement of the respiratory control system in response to physiological stress (hypoxia). Therefore, this pilot study tested the hypothesis that the pattern of SpO2 variations in overnight recordings of individuals with COPD would distinguish between stable and exacerbation phases of the disease.

Methods: Overnight pulse oximetry data from 11 individuals with COPD, who exhibited exacerbation after a period of stable disease, were examined. Stable phase recordings were conducted overnight and one night prior to exacerbation recordings were also analyzed. Pattern analysis of SpO2 variations was carried examined using sample entropy (for assessment of irregularity), the multiscale entropy (complexity), and detrended fluctuation analysis (self-similarity).

Results: SpO2 variations displayed a complex pattern in both stable and exacerbation phases of COPD. During an exacerbation, SpO2 entropy increased ($p = 0.029$) and long-term fractal-like exponent (α_2) decreased ($p = 0.002$) while the mean and standard deviation of SpO2 time series remained unchanged. Through ROC analyses, SpO2 entropy and α_2 were both able to classify the COPD phases into either stable or exacerbation phase. With the best positive predictor value (PPV) for sample entropy (PPV = 70%) and a cut-off value of 0.454. While the best negative predictor value (NPV) was α_2 (NPV = 78%) with a cut-off value of 1.00.

Conclusion: Alterations in SpO2 entropy and the fractal-like exponent have the potential to detect exacerbations in COPD. Further research is warranted to examine if SpO2 variability analysis could be used as a novel objective method of detecting exacerbations.
1 | INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a global health burden estimated to affect 251 million people worldwide and carries with it high mortality (Husebo et al., 2014; Mathers & Loncar, 2006). In COPD, individuals commonly experience exacerbations of their illness leading to a sudden deterioration in their health (Al Rajeh et al., 2020). Patients report that exacerbations are the most disruptive aspect of living with COPD (Zhang et al., 2021). These data suggest that there is a significant exchange of information between \(S_pO_2 \) and other respiratory variables (i.e. tidal volume, minute ventilation, respiratory rate, end-tidal oxygen, and carbon dioxide pressure) during graded normobaric hypoxia in healthy participants (Jiang et al., 2021). Fluctuations in these respiratory variables were reflected in the \(S_pO_2 \) signal, specifically in \(S_pO_2 \) entropy (Jiang et al., 2021), a measure that describes the unpredictability and irregularity of these \(S_pO_2 \) signals (Richman & Moorman, 2000). Calculated using a well-established algorithm (Richman & Moorman, 2000), \(S_pO_2 \) entropy may reveal additional information about cardiorespiratory control in health and disease (Jiang et al., 2021).

To date, the usefulness of \(S_pO_2 \) variability analysis has not been studied extensively in COPD. Accordingly, this pilot study investigated the hypothesis that \(S_pO_2 \) variability would distinguish between the two phases of COPD (stable vs. exacerbation). As \(S_pO_2 \) entropy is easily computed and incorporated into bedside monitors or smart devices, this method could assist in the earlier detection of COPD exacerbations and, following faster access to the necessary treatment, ultimately result in an improved prognosis (Qureshi et al., 2014; Wilkinson et al., 2004).

2 | METHODS

2.1 | Participants

From September 2016 to January 2018, participants were recruited from COPD clinics and pulmonary rehabilitation...
classes at three separate sites in London. All participants were fully informed and submitted written consent forms. The UK Health Research Authority and Royal Free Hospital local committee granted ethical approvals on data collection (16/LO/1120). The inclusion criteria consisted of COPD diagnosis [smoking history ≥10 pack years and post-bronchodilator FEV1/FVC <0.7 (suggesting a non-reversible obstructive lung disease pattern)], one or more self-reported moderate or severe exacerbations of their COPD in the last 12 months, and the ability to attend scheduled appointments and use study equipment. Individuals were excluded if they had an existing diagnosis of obstructive sleep apnea either via self-report or results of STOP-Bang and Epworth questionnaires (Johns, 1991; Nagappa et al., 2015), and/or significant co-morbidities of obstructive sleep apnea either via self-report or results of overnight monitoring.

The clinical recordings used for analysis are credited to a recently published pilot randomized controlled trial regarding COPD exacerbation detection (Al Rajeh et al., 2020). The data in this analysis derive from one arm of this study looking at overnight monitoring of COPD (n = 44). Some of the data, including individual demographics and mean \(S_{pO_2} \), but importantly not any \(S_{pO_2} \) variability data, have already been published in the referenced study (Al Rajeh et al., 2020). In the original study, only 13 participants exacerbated in the time frame of the study and were included in the analysis. The quality of \(S_{pO_2} \) recording for two individuals was limited (less than 90 mins continuous \(S_{pO_2} \) signal) and therefore these participants were excluded from the analysis (n = 11). In the study, there were 7 male participants and 4 female participants (n = 11) with an average age (SD) of 71.8 (10.4) years. Of these participants, 3 were current smokers, with 8 ex-smokers. The baseline clinical characteristics for the population studied can be found in Table 1.

Table 1: Summary of the baseline demographics of the study participants

	Age	BMI	MRC Dyspnea Scale	FEV1 (%)
All Participants	71.8 ± 10.4	24.6 ± 6.70	2.82 ± 0.874	47.7 ± 18.8
(n = 11)				

All data are expressed as mean ±SD

2.3 \(S_{pO_2} \) variability

The longest duration of time that all individuals had of uninterrupted \(S_{pO_2} \) data was ~90 min, so the first available 90-min recording was used for the analyses. Well-established measures within this field to analyze the patterns of variability (Bhogal & Mani, 2017), including standard deviation (SD), sample entropy, Multiscale Entropy (MSE), and Detrended Fluctuation Analysis (DFA) (Bhogal & Mani, 2017) were employed.

Details of these methods and associated algorithms are described in detail elsewhere [DFA (Peng et al., 1995), MSE (Costa et al., 2002), and sample entropy (Richman & Moorman, 2000)]. In brief, sample entropy looks at the complexity of a time series by analyzing the probability of repetition of a signal, with a particular length (\(m \)) and degree of tolerance (\(r \)). In this study, sample entropy was determined under the settings of \(m = 2 \) and \(r = 0.2 \) as previously described (Richman & Moorman, 2000). MSE looks at entropy at different time scales, and as such is seen as an extension of sample entropy. The trends of entropy change within this time scales provide further information on the complexity of a data set. For this analysis, MSE was used over five scales in accordance with current practice (Costa et al., 2002). Finally, to examine the fractality of the \(S_{pO_2} \) data, we employed DFA as it looks at the self-similarity of a time series providing information on the fractal-like dynamics present (Peng et al., 1995). In a DFA plot, the logarithm of fluctuation (standard deviation divided by the square root of the sampling rate) is plotted against the logarithm of the time scale. The long-term correlation exponent, which is the slope of the line on a log-log scale, provides information on the scaling properties of the signal.

The clinical recordings used for analysis are credited to a recently published pilot randomized controlled trial regarding COPD exacerbation detection (Al Rajeh et al., 2020). The data in this analysis derive from one arm of this study looking at overnight monitoring of COPD (n = 44). Some of the data, including individual demographics and mean \(S_{pO_2} \), but importantly not any \(S_{pO_2} \) variability data, have already been published in the referenced study (Al Rajeh et al., 2020). In the original study, only 13 participants exacerbated in the time frame of the study and were included in the analysis. The quality of \(S_{pO_2} \) recording for two individuals was limited (less than 90 mins continuous \(S_{pO_2} \) signal) and therefore these participants were excluded from the analysis (n = 11). In the study, there were 7 male participants and 4 female participants (n = 11) with an average age (SD) of 71.8 (10.4) years. Of these participants, 3 were current smokers, with 8 ex-smokers. The baseline clinical characteristics for the population studied can be found in Table 1.
deviation) of detrended time series is plotted against the logarithm of scale \((n)\). The slope of this line is known as the scaling exponent \((\alpha)\). Previous studies proved there to be a “cross-over” in \(S_pO_2\) DFA graph, thus the short-term and long-term scaling exponent, \(\alpha_1\) and \(\alpha_2\) are calculated separately as described elsewhere (Bhogal & Mani, 2017). All calculations were completed in MATLAB (Matworks R2020b).

2.4 Statistical analysis

All statistical tests were performed using MATLAB (Matworks R2020b) and SPSS software. A paired two-tailed Student’s t-test was employed for comparing the mean, SD, \(\alpha_1\) and \(\alpha_2\) of COPD individuals \((n = 11)\) during a stable phase to that of the same cohort a day prior to the clinical diagnosis of an exacerbation. A two-way ANOVA was used to analyze the results of MSE, with statistical significance taken as a \(p\)-value less than 0.05.

![Figure 1](image1.png)

Figure 1 Representative 90-minute \(S_pO_2\) signals recorded from an individual with COPD at (a) stable phase and (b) a day prior to clinical diagnosis of exacerbation (exacerbation phase). X-axis is the data points of the pulse oximeter signals recording (1 sample every 4 seconds), and Y-axis is the \(S_pO_2\) (%)

3 RESULTS

3.1 Pattern analysis of \(S_pO_2\) variability

The \(S_pO_2\) signals for exacerbation and stable phase show a complex pattern (see Figure 1). A summary of mean \(S_pO_2\) and the various variability indices are displayed in Table 2. Overall, mean \(S_pO_2\) during the stable phase was not statistically different to that of the exacerbation phase \((91.4 \pm 1.89\% \ vs. \ 90.6 \pm 2.11\%; \ p = 0.125)\), likewise, the mean SD of both phases were similar (Table 2).

Mean sample entropy increased \((0.395 \pm 0.101 vs. 0.505 \pm 0.159; \ p < 0.05)\) during exacerbation. This indicates an increased irregularity of the signal; however, in order to assess whether this change was random or complex, we analyzed the data using MSE (Bhogal & Mani, 2017). This difference is constantly observed across the increasing scale factor using MSE (Figure 2), where the values of mean sample entropy during exacerbation were all higher than that of the stable phase. Two-way ANOVA analysis showed that there was a significant difference in the MSE between the stable phase and exacerbation phase \((F_{\text{group}} = 8.63, \ p = 0.004)\), highlighting the increased amount of information and complexity during an exacerbation. Additionally, an increasing trend of sample entropy value from scale 1 to 5 in both COPD phases was observed (Figure 2), revealing that fluctuated \(S_pO_2\) time series is not a random process (Costa et al., 2002).

From DFA, the short-term scaling exponent, \(\alpha_1\) of the stable phase \((\alpha_1 = 1.17 \pm 0.110)\) and exacerbation \((\alpha_1 = 1.15 \pm 0.137)\) were between values expected from operating characteristic (ROC) curves of sample entropy at 5 scales, \(\alpha_1\) and \(\alpha_2\) of individuals were plotted by SPSS for further investigation of the differences in these indices between the two phases and their potential to detect early exacerbation (exacerbation phase). Area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and a cutoff value of each index were also determined from ROC curves.

![Table 2](image2.png)

Table 2 Summary of \(S_pO_2\) mean and variability indices in 11 individuals with COPD during stable phase and exacerbation phase

All data are expressed as mean ±SD, and the \(p\)-value is calculated using a Student’s paired t-test. Bold values reflect a statistically significant difference between the groups \((p\)-value < 0.05).
Brownian noise ($\alpha = 1.50$) and 1/f dynamics ($\alpha = 1.00$); however, their values did not differ between phases ($p = 0.55$). However, the long-term scaling exponent, α_2, of both phases approached closer to 1/f dynamics ($\alpha_2 = 1.04 \pm 0.114$ in stable and $\alpha_2 = 0.925 \pm 0.107$ in exacerbation), confirming that S_{pO_2} fluctuations have a fractal-like pattern (Bhogal & Mani, 2017). Statistical significance was shown between α_2 of exacerbation vs stable phase ($p < 0.01$), validating there was a slight reduction in scaling exponent and shift toward white noise dynamics during exacerbation. Two example graphs of the DFA analysis obtained from the S_{pO_2} time series are shown in Appendix A.

3.2 | ROC analysis of S_{pO_2}

ROC curves assessing the sensitivity and specificity of S_{pO_2} variability indices in classifying stable from exacerbation phase are presented in Figure 3. Sample Entropy and α_2 exhibited a significant AUC with values of 0.702 and 0.777 respectively (Table 2). MSE indices at scales 2 and 3, also had a significant statistical AUC with values of 0.711 and 0.719 respectively (Table 2). The best positive predictor value (PPV) was for sample entropy (PPV = 70%) with a cut-off value of 0.454. The best negative predictor value (NPV) was for α_2 (NPV = 78%) with a cut-off value of 1.00.

4 | DISCUSSION

This study tested the hypothesis that the pattern of S_{pO_2} variations in overnight recordings of individuals with COPD would distinguish between stable and exacerbation phases. In support of the hypothesis, our novel findings suggest that sample entropy at different scales increases, while the long-term scaling exponent (α_2) decreases, a day prior to the clinical diagnosis of an exacerbation of COPD. These indices were also different during the stable and

![FIGURE 2 Multiscale entropy (MSE) graph describing the overall complexity of the individuals with COPD at stable phase and exacerbation. The error bars are calculated sample error of the mean values](image)

![FIGURE 3 ROC curve for classifying COPD phase (stable or exacerbation) based on S_{pO_2} variability indices](image)
exacerbation phases, while mean S_pO_2 remained stable throughout. Furthermore, in terms of sensitivity, specificity, PPV, and NPV from ROC analyses, sample entropy of the original S_pO_2 time series and α_2 of DFA appear to have the best diagnostic capabilities to support earlier detection of COPD exacerbations.

This study extends our earlier work in S_pO_2 variability analysis in healthy individuals after exposure to hypoxia to individuals with chronic lung disease (Bhogal & Mani, 2017; Costello et al., 2020; Jiang et al., 2021). We have shown an increased sample entropy in healthy participants during exposure to normobaric hypoxia (Costello et al., 2020; Jiang et al., 2021) and here we have similarly demonstrated a higher sample entropy 0.395–0.505, and in all scales in MSE, following COPD exacerbation. Interestingly, these previous reports established that there is an inverse correlation between mean S_pO_2 and S_pO_2 Sample Entropy under both normoxic and hypoxic environments in healthy individuals (Bhogal & Mani, 2017; Costello et al., 2020), with lower oxygen saturation correlated with higher S_pO_2 entropy. This relationship was not observed in the current study (Appendix B), which could suggest a compromise in the cardiorespiratory integrity in COPD (O'Donnell et al., 2020). Another consideration for the lack of correlation between mean S_pO_2 and sample entropy in our cohort; could be the wide range of S_pO_2 values included in the present study (individuals with COPD) versus the other reports in healthy participants. Nevertheless, future studies with a larger number of participants could test this hypothesis.

According to Pincus (1994), higher entropy signifies greater amounts of information being processed in a complex physiological system, reflecting the enhanced connections and communications across various components within that system (Pincus, 1994). In terms of the cardiorespiratory system and its homeostatic control of oxygen saturation, Jiang et al. (2021) provided further insight by using a network physiology approach to show that the information controlling oxygen saturation was communicated across several key components of the cardiorespiratory system. Therefore, when this system is under hypoxic stress either through a decrease in the fraction of inspired oxygen or in a clinical state (COPD); the transfer of information is increased across these components to maintain mean S_pO_2. This is demonstrated by the rise in sample entropy when healthy individuals are hypoxic (Costello et al., 2020), as well as during an exacerbation in COPD (see Figure 2 and Table 2).

The sample entropy in both stable and exacerbation phases of COPD (0.395 ± 0.101 vs. 0.505 ± 0.159) is notably less than the sample entropy value of healthy individuals (0.98 ± 0.28) with the same mean value of mean S_pO_2 (93.94 ± 1.85%) during hypoxic challenge (Jiang et al., 2021). This may be attributed to the disruption of functional connectivity within cardiorespiratory system when COPD is diagnosed (Donaldson et al., 2012). This is reflected in the impaired response to hypoxia and changes in ventilation that often lead to hypercapnia (Abdo & Heunks, 2012). This disruption in the control system limits the adaptive response to hypoxia during exacerbation, thus reflected by a limited increase in sample entropy. This hypothesis requires further examination with more stringent control of possible confounders such as age, lifestyle (e.g., smoking), and environment. For example, we have reported that aging reduces S_pO_2 entropy in otherwise healthy individuals (Bhogal & Mani, 2017). This supports the theory that the integrity of cardiorespiratory control system is affected by aging and chronic diseases such as COPD (O’Donnell et al., 2020; Strait & Lakatta,). However, future studies should aim to compare S_pO_2 entropy between age-matched healthy cohorts and COPD individuals in different phases to help explain the changes seen in an exacerbation and better predict future exacerbations.

It is now well-established that the DFA of S_pO_2 signals results in two scaled components, one representing short-term (α_1) and the other long-term (α_2) fractal-like fluctuations (Bhogal & Mani, 2017). Table 2 illustrates a statistically significant decrease in α_2 upon exacerbation while α_1 remains stable. Interestingly, this data trend contradicts a study assessing DFA’s usefulness in diagnosing childhood sleep apnea-hypopnoea (Vaquerizo-Villar et al., 2018). Like COPD, sleep apnea is also associated with hypoxia; however, it is due to episodic upper airway collapse during sleep (Stradling et al., 2004). By applying DFA in their study, Vaquerizo-Villar et al. (2018) observed an increased α_1 with intensified apnea-hypopnoea severity while α_2 was unaltered. These results are likely due to the different underlying pathophysiology in the two diseases. Despite both leading to dyspnea, apnea-hypopnoea is associated with acute episodic hypoxia reflected by alternation in the short-term scaling component (α_1). While in COPD, individuals suffer from chronic hypoxia leading to changes in the long-term scaling component (α_2) (Khatri & Ioachimescu, 2016). Furthermore, the faster breathing pattern in younger children, and the associated dynamics of apnea-hypopnoea occurrences, may also translate to shorter time scales being more sensitive than longer time scales in disease relative to adults.

Although the values of the ROC analysis of the sample entropy and α_2 showed moderate levels of sensitivity and specificity, this was the first attempt to suggest their potential in supporting earlier diagnosis of COPD exacerbations. Judging from the ‘zigzag’ shape of the ROC analysis
4.1 | Limitations and future research

Like other pilot studies, the major limitation of the current study is the small sample size. The source of S_pO_2 recording data in this study was from a pilot randomized controlled trial testing the effectiveness of overnight physiological monitoring to predict COPD exacerbation (Al Rajeh et al., 2020). With the limited sample, there is a risk of low statistical power and type II error. However, despite the small sample size, our results reached statistical significance. This demonstrates the potential of S_pO_2 variability analysis in non-invasively detecting early exacerbations for timely treatment and the need for future studies with larger sample sizes. This method also has the potential to monitor exacerbation recovery and provide an objective tool for discharge in these individuals, and future studies can help determine this.

Since data were obtained from a randomized clinical trial with regular follow-up of the participants, the chance of selection bias is low. However, a possible source of bias in this study is the availability of long (>90 min) continuous S_pO_2 signal in the participants. In the present study, two participants had less than 90 min continuous S_pO_2 signals in their stable phase and were not included in this study. Future studies can investigate this limitation in a larger multicentre trial to assess the value of S_pO_2 pattern analysis in the prediction of exacerbation.

It is difficult to estimate an accurate cut-off for separation of stable versus exacerbation phase based on such a small sample size. To further test the validity of the cut-off value, we randomly selected samples from stable periods of the same participants recorded at different days and measured S_pO_2 Sample Entropy. The mean (±SD) of the randomly selected samples was 0.341 ± 0.134 ($n = 11$) which was not significantly different from data presented in Table 2 for the S_pO_2 Sample Entropy of stable phase (0.395 ± 0.101). Furthermore, the rate of false positive was 18% when the cut-off in Table 3 was used for the prediction of exacerbation. While these pilot results are promising, a comprehensive analysis of the reportability of S_pO_2 variability indices is required prior to the translation of these findings into clinical practice.

Another limitation of this study is the severity of exacerbation was not measured. An exacerbation was defined as the need for oral corticosteroids or antibiotics, as judged by the patient’s clinician or self-management plan.
This practical approach has its shortcomings as the prescription of oral corticosteroids/antibiotics following the worsening of respiratory symptoms may vary among practitioners and healthcare systems (Celli et al., 2021 Sep 27).

Hurst et al., previously reported that a combined oximetry score (i.e., the positive magnitude in standard deviation units of the fall in S_O^2 and the rise in heart rate) could predict the onset of an exacerbation, prior to clinical diagnosis (Hurst, Donaldson, et al., 2010). We had limited access to high quality continuous signals 2–3 days prior to diagnosis of exacerbation in the current study and could only include S_O^2 variability analysis one day prior to clinical diagnosis of exacerbation. Therefore, future studies can extend our pilot study by developing wearable devices suitable for long-term signal recording for S_O^2 fluctuation analysis. In addition, similar to this combined oximetry score, novel analytical methods (e.g., transfer entropy) have the potential to assess the interaction of heart rate and S_O^2 time series in order to develop a comprehensive physiomarker for the non-invasive assessment of patients with COPD. Application of these methods in healthcare warrant further investigations in larger studies.

5 | CONCLUSION

This is a proof-of-concept study demonstrating that S_O^2 fluctuation analysis has the potential to be used to support earlier detection of exacerbations in individuals with COPD. Specifically, the sample entropy increases and there is an alteration in fractal-like behavior of S_O^2 fluctuations during exacerbation. As pulse oximetry has recently been expanded beyond the measurement of absolute peripheral oxygen saturation, measurement of S_O^2 dynamics has the potential to be incorporated into smart devices to assist the early diagnosis of COPD exacerbations.

ACKNOWLEDGMENTS
We gratefully acknowledge the study participants, and the support we have received from the pulmonary rehabilitation recruitment sites and staff.

CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS
Ahmed Al Rajeh and John R Hurst conceived and designed the original clinical study and collected clinical data. Amar S Bhogal, Joseph T. Costello, and Ali R Mani formulated the concept of oxygen saturation variability analysis in COPD. Yunkai Zhang and Ali R Mani performed the computational analysis and evaluated the data. Amar S Bhogal, Yunkai Zhang and Ali R Mani wrote the first manuscript draft and all authors revised it for important intellectual content. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author.

ORCID
Ali R. Mani https://orcid.org/0000-0003-0830-2022

REFERENCES
Abdo, W. F., & Heunks, L. M. A. (2012). Oxygen-induced hypercapnia in COPD: myths and facts. Critical Care, 16(5), 323. https://doi.org/10.1186/cc11475

Adibi, A., Sin, D. D., Safari, A., Johnson, K. M., Aaron, S. D., Fitzgerald, J. M., & Sadatsafavi, M. (2020). The Acute COPD Exacerbation Prediction Tool (ACCEPT): A modelling study. The Lancet Respiratory Medicine, 8(10), 1013–1021. https://doi.org/10.1016/S2213-2600(19)30397-2

Al Rajeh, A. M., Aldabayan, Y. S., Aldhahir, A., Pickett, E., Quaderi, S., Alqahtani, J. S., Mandal, S., Lipman, M. C. I., & Hurst, J. R. (2020). Once daily versus overnight and symptom versus physiological monitoring to detect exacerbations of chronic obstructive pulmonary disease: Pilot randomized controlled trial. JMIR mHealth uHealth, 8(11), e17597. https://doi.org/10.2196/17597

Al Rajeh, A. M., & Hurst, J. R. (2016). Monitoring of Physiological Parameters to Predict Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): A systematic review. Journal of Clinical Medicine, 5(12), 108. https://doi.org/10.3390/jcm5120108

Alqahtani, J. S., Aquilina, J., Bafadhel, M., Bolton, C. E., Burgoyne, T., Holmes, S., King, J., Loots, J., McCarthy, J., Quint, J. K., & Ridsdale, H. A. (2021). Research priorities for exacerbations of COPD. The Lancet Respiratory Medicine, 9(8), 803–936. https://doi.org/10.1016/S2213-2600(21)00227-7

Bhogal, A. S., & Mani, A. R. (2017). Pattern analysis of oxygen saturation variability in healthy individuals: Entropy of pulse oximetry signals carries information about mean oxygen saturation. Frontiers in Physiology, 8, 555. https://doi.org/10.3389/fphys.2017.00555/full

Buekers, J., Theunis, J., De Boever, P., Vaes, A. W., Koopman, M., Janssen, E. V., Wouters, E. F. M., Spruit, M. A., & Aerts, J.-M. (2019). Wearable finger pulse oximetry for continuous oxygen saturation measurements during daily home routines of patients with Chronic Obstructive Pulmonary Disease (COPD) over one week: Observational study. JMIR mHealth and uHealth, 7(6), e12866. https://doi.org/10.2196/12866

Burton, C., Pinnock, H., & McKinstry, R. (2015). Changes in tele-monitored physiological variables and symptoms prior to exacerbations of chronic obstructive pulmonary disease. Journal of Telematics and Telecare, 21(1), 29–36. https://doi.org/10.1177/1357633X14562733

Celli, B. R., Fabbri, L. M., Aaron, S. D., Agusti, A., Brook, R., Criner, G. J., Franssen, F. M. E., Humbert, M., Hurst, J. R., O’Donnell,
D. Pantoni, L., Papi, A., Rodriguez-Roisin, R., Sethi, S., Torres, A., Vogelmeier, C. F., & Wedzicha, J. A. (2021). An Updated definition and severity classification of COPD exacerbations: The rome proposal. *American Journal of Respiratory and Critical Care Medicine* (in press). https://doi.org/10.1164/rccm.202108-1819PP

Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. *Physical Review Letters*, 89(6), 068102. https://doi.org/10.1103/PhysRevLett.89.068102

Costello, J. T., Bhogal, A. S., Williams, T. B., Beker, O., Sabir, A., Tipton, M. J., Corbett, J. O., & Mani, A. R. (2020). Effects of normobaric hypoxia on oxygen saturation variability. *High Altitude Medicine & Biology*, 21(1), 76–83. https://doi.org/10.1089/ham.2019.0092

Donaldson, G. C., Seemungal, T. A. R., Hurst, J. R., & Wedzicha, J. A. (2012). Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. *European Respiratory Journal*, 40(5), 1123–1129. https://doi.org/10.1183/09031936.00180811

Hurst, J. R., Donaldson, G. C., Quirt, J. K., Goldring, J. I., Patel, A. R., & Wedzicha, J. A. (2010). Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study. *BMJ Pulmonary Medicine*, 10(1), 52. https://doi.org/10.1186/1476-1345-10-52

Hurst, J. R., Vestbo, J., Anzueto, A., Locantore, N., Müllerova, H., Tal-Singer, R., Miller, B., Lomas, D. A., Agusti, A., MacNeel, W., Calverley, P., Rennard, S., Wouters, E. F. M., & Wedzicha, J. A. (2010). Susceptibility to exacerbation in chronic obstructive pulmonary disease. *New England Journal of Medicine*, 363(12), 1128–1138. https://doi.org/10.1056/NEJMoa0909883

Husebo, G. R., Bakke, P. S., Aanerud, M., Hardie, J. A., Ueland, T., Gronseth, R., Persson, L. J. P., Aukrust, P., & Eagan, T. M. (2014). Predictors of exacerbations in chronic obstructive pulmonary disease–results from the Bergen COPD cohort study. *PLoS One*, 9(10), e109721. https://doi.org/10.1371/journal.pone.0109721

Jiang, Y., Costello, J. T., Williams, T. B., Panyapiean, N., Bhogal, A. S., Tipton, M. J., Corbett, J., & Mani, A. R. (2021). A network physiology approach to oxygen saturation variability during normobaric hypoxia. *Experimental Physiology*, 106(1), 151–159. https://doi.org/10.1113/EP088755

Johns, M. W. (1991). A new method for measuring daytime sleepiness: the Epsworth sleepiness scale. *Sleep*, 14(6), 540–545. https://doi.org/10.1093/sleep/14.6.540

Khatri, S. B., & Iaconis, O. C. (2016). The intersection of obstructive lung disease and sleep apnea. *Cleveland Clinic Journal of Medicine*, 83(2), 127–140. https://doi.org/10.3949/ccjm.83a.14104

Lee, S.-D., Huang, M.-S., Kang, J., Lin, C.-H., Park, M. J., Oh, Y.-M., Kwon, N., Jones, P. W., & Sakov, D. (2014). The COPD assessment test (CAT) assists prediction of COPD exacerbations in high-risk patients. *Respiratory Medicine*, 108(4), 600–608. https://doi.org/10.1016/j.rmed.2013.12.014

Mackay, A. J., Donaldson, G. C., Patel, A. R. C., Jones, P. W., Hurst, J. R., & Wedzicha, J. A. (2012). Usefulness of the Chronic Obstructive Pulmonary Disease Assessment Test to evaluate severity of COPD exacerbations. *American Journal of Respiratory and Critical Care Medicine*, 185(11), 1218–1224. https://doi.org/10.1164/rccm.201110-1843OC

Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. *SartemJ, editor. PLoS Medicine*, 3(11), e424. https://doi.org/10.1371/journal.pmed.0030442

Nagappa, M., Liao, P., Wong, J., Auckley, D., Ramachandran, S. K., Memtsoudis, S., Mokhlesi, B., & Chung, F. (2015). Validation of the STOP-Bang Questionnaire as a screening tool for obstructive sleep Apnea among different populations: A systematic review and meta-analysis. *PLoS One*, 10(12), e0143697. https://doi.org/10.1371/journal.pone.0143697

O’Donnell, D. E., Milne, K. M., James, M. D., de Torres, J. P., & Neder, J. A. (2020). Dyspnea in COPD: New Mechanistic Insights and Management Implications. *Advances in Therapy*, 37(1), 41–60. https://doi.org/10.1007/s12255-019-01128-9

Peng, C.-K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. *Chaos: an Interdisciplinary Journal of Nonlinear Science*, 5(1), 82–87. https://doi.org/10.1063/1.166141

Pincus, S. M. (1994). Greater signal regularity may indicate increased system integration. *Mathematical Biosciences*, 122(2), 161–181. https://doi.org/10.1006/2040-6223.2014.0143697

Qureshi, H., Sharafkhaneh, A., & Hanania, N. A. (2014). Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. *Therapeutic Advances in Chronic Disease*, 5(5), 212–227. https://doi.org/10.1177/204062314328362

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. *American Journal of Physiology-Heart and Circulatory Physiology*, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Stradling, J. R., & Davies, R. J. O. (2004). Sleep. 1: Obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history. *Thorax*, 59(1):73–78.

Strait, J. B., & Lakatta, E. G. (2012). Aging-associated cardiovascular changes and their relationship to heart failure. *Heart Failure Clinics*, 8(1), 143–164. https://doi.org/10.1016/j.hfc.2011.08.011

Vaquerizo-Villar, F., Álvarez, D., Kheirandish-Gozal, L., Gutiérrez-Tobal, G. C., Barroso-Garcia, V., Crespo, A., del Campo, F., Gozal, D., & Hornero, R. (2018). Detrended fluctuation analysis of the oximetry signal to assist in paediatric sleep apnoea-hypopnoea syndrome diagnosis. *Physiological Measurement*, 39(11), 114006. https://doi.org/10.1088/1361-6579/aae66a

Wilkinson, T. M. A., Donaldson, G. C., Hurst, J. R., Seemungal, T. A. R., & Wedzicha, J. A. (2004). Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. *American Journal of Respiratory and Critical Care Medicine*, 169(12), 1298–1303. https://doi.org/10.1164/rccm.200310-1443OC

Zhang, Y., Morgan, R. L., Alonso-Coello, P., Wiercioch, W., Bala, M. M., Jaeschke, R. R., Styczeń, K., Pardo-Hernandez, H., Selva, A., Ara Begum, H., Morgano, G. P., Waligóra, M., Agarwal, A., Ventresca, M., Strzebońska, K., Wasylewski, M. T., Blanco-Silvente, L., Kerth, J.-L., Wang, M., ... Schünemann, H. J. (2018). A systematic review of how patients value COPD outcomes. *European Respiratory Journal*, 52(1), 1800222. https://doi.org/10.1183/13993003.00222-2018

How to cite this article: Al Rajeh, A., Bhogal, A. S., Zhang, Y., Costello, J. T., Hurst, J. R., & Mani, A. R. (2021). Application of oxygen saturation variability analysis for the detection of exacerbation in individuals with COPD: A proof-of-concept study. *Physiological Reports*, 9, e15132. https://doi.org/10.14814/phy2.15132
APPENDIX A

Figure A1 Two examples of DFA graphs on \(S_pO_2 \) variability data showing the linear trend when plotting scale and detrended fluctuations on a log-log scale. This graph represents the stable phase (red dots) and the exacerbation phase (blue dots) of a participant with COPD. \(\alpha_1 \) and \(\alpha_2 \) are short-term and long-term scaling exponent respectively.

APPENDIX B

Figure B1 (a) Correlation between mean \(S_pO_2 \) and \(S_pO_2 \) Sample Entropy in individuals with COPD in Stable phase. (b) Correlation between mean \(S_pO_2 \) and \(S_pO_2 \) Sample Entropy in individuals with COPD in Exacerbation phase. There is no significant correlation between mean \(S_pO_2 \) and \(S_pO_2 \) entropy in individuals with COPD. This is unlike previous reports in healthy individuals where Entropy of \(S_pO_2 \) exhibits a significant inverse correlation with mean \(S_pO_2 \). For more information please see (Bhogal & Mani, 2017; Costello et al., 2020). Sample Entropy is calculated at scale 1 with \(m = 2 \) and \(r = 0.2 \).
APPENDIX C

FIGURE C1 Bland-Altman plot of sample entropy (SampEn) in 90 min vs. 60 min S_3O_2 signal duration