WHAT ABOUT A,B IF $AB-BA$ AND A COMMUTE.

GERALD BOURGEIOIS

Abstract. Let A,B be complex $n \times n$ complex matrices such that $AB-BA$ and A commute. We show that, if $n=2$ then A,B are simultaneously triangularizable and if $n \geq 3$ then there exists such a couple A,B such that the pair (A,B) has not property L of Motzkin-Taussky and such that B and C are not simultaneously triangularizable.

Notations. i) If U is a square matrix, then $\sigma(U)$ denotes the spectrum of U.

ii) Let A,B be complex $n \times n$ complex matrices. If there exists an invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are upper triangular then we say that A and B are ST.

iii) Denote by I_n and 0_n the identity matrix and the zero matrix of dimension n.

Definition. (See [3]). A pair (A,B) of complex $n \times n$ matrices is said to have property L if for a special ordering of the eigenvalues $(\lambda_i)_{1 \leq n},(\mu_i)_{1 \leq n}$ of A,B, the eigenvalues of $xA+yB$ are $(x\lambda_i+y\mu_i)_{1 \leq n}$, for all values of the complex numbers x,y.

Remark. If A,B are ST then (A,B) has property L, but the converse is false (see [3]).

We deal with the couples (A,B) such that $AB-BA$ and A commute. If (A,B) is such a couple, then for every complex numbers λ, μ, $(A+\lambda I_n,B+\mu I_n)$ is another one. Then we may assume that A and B are invertible matrices, or on the contrary, that they are singular. In the sequel, we put $C=AB-BA$.

Several well-known results are gathered in the following Proposition.

Proposition 1. Let A,B be complex $n \times n$ matrices. We assume that C and A commute. Then C is a nilpotent matrix and the pair (B,C) has property L of Motzkin-Taussky. Moreover, if A,B are invertible, then $A^{-1}B^{-1}C,B^{-1}A^{-1}C$ and $B^{-1}C$ are nilpotent matrices.

Proof. C is nilpotent by virtue of [1]. According to [2], one has, for every real t, $e^{tA}Be^{-tA}=B+tC$ and therefore $\sigma(B+tC)=\sigma(B)$. Reasoning by a continuity argument, we can conclude that the pair (B,C) has property L.

Now we assume that A,B are invertible. One has $A^{-1}CB^{-1}=CA^{-1}B^{-1}=ABA^{-1}B^{-1}-I_n$. In [3] Theorem 2, it is shown that $ABA^{-1}B^{-1}-I_n$ is a nilpotent matrix. Since $\sigma(A^{-1}B^{-1}C)=\sigma(CA^{-1}B^{-1})=\{0\}$ and $\sigma(B^{-1}A^{-1}C)=\sigma(A^{-1}CB^{-1})=\{0\}$, we conclude that $A^{-1}B^{-1}C$ and $B^{-1}A^{-1}C$ are also nilpotent matrices. Finally the fact that CB^{-1} is nilpotent (or equivalently $B^{-1}C$ is nilpotent) is also proven in [3] (see the proof of theorem 1).

There are strong relations on the one hand between A and C and on the other hand between B and C. We may wonder whether A and B are simultaneously triangularizable or, at least, the pair (A,B) has property L. We have a positive answer in the following case.
Definition. A complex matrix A is said to be non-derogatory if for all $\lambda \in \sigma(A)$, the number of Jordan blocks of A associated with λ is 1.

Proposition 2. If A is a non-derogatory matrix and if $AC = CA$, then A and B are ST.

Proof. Necessarily, C is a polynomial in A. According to [5, Theorem 1], A and B are ST. □

Remark. i) Note that the set of derogatory matrices is included in the set NS of non-separable matrices (they have at least one multiple eigenvalue). NS is an algebraic variety in $M_n(C)$ of codimension 1 and therefore is a null set in the sense of Lebesgue measure (see [6] for an outline of the proof).

ii) If we fix the matrix A, then the equation $A(AB - BA) = (AB - BA)A$ is linear in the unknown B. More precisely $B \in \ker(\phi)$ where $\phi : X \to A^2 X + X A^2 - 2 X A X$. Therefore $\phi = A^2 \otimes I + I \otimes (A^T)^2 - 2 A \otimes A^T = \psi^2$ where $\psi = A \otimes I - I_n \otimes A^T$. Thus, if $\sigma(A) = (\lambda_i)_i$, then $\sigma(\psi) = (\lambda_i - \lambda_j)_i,j$ and $\sigma(\phi) = ((\lambda_i - \lambda_j)^2)_i,j$. We deduce that the expression $i(A) = \dim(\ker(\psi^2)) - \dim(\ker(\psi))$ is linked to the existence of B such that $AB - BA$ and A commute and such that A, B are not ST.

Now we prove our main result.

Proposition 3. i) If $n = 2$ and $CA = AC$, then A and B are ST.

ii) If $n \geq 3$ then there exists a couple A, B such that $AB - BA$ and A commute, satisfying

- the pair (A, B) has not property L.
- B and C are not ST.

Proof. i) According to a previous remark, we may assume that A is derogatory, that is a scalar matrix, and we conclude immediately.

ii) It is sufficient to find such a counterexample (A_0, B_0) when $n = 3$. Indeed, if $n > 3$, then consider the couple $(A_0 \oplus 0_{n-3}, B_0 \oplus 0_{n-3})$.

Now we suppose $n = 3$ and A_0 is chosen as a derogatory matrix, for instance

$A_0 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Here ψ is nilpotent, $\dim(\ker(\psi)) = 5$, $\dim(\ker(\psi^2)) = 8$ and we search associated matrices B. Amongst numerous solutions, we choose this one

$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

- (A_0, B) has not property L because $\sigma(A_0) = \{0\}$ and for every couple of complex numbers (t, x), $\chi_{t A_0 + B}(x) = x^3 - t$.
- We observe that $\text{Trace}(B^2 C^2) = -1$, that implies that B and C are not ST. □

To show that two complex matrices are ST, the McCoy Theorem (see [8]) contains no finite verification procedure. The following test admits a finite one (see [7, Theorem 6]).

Theorem 1. Two $n \times n$ complex matrices A and B are ST if and only if for every $k \in \{1, n^2 - 1\}$, each matrix in the form $U_1 \cdots U_k(AB - BA)$ (where, for every i, U_i is A or B) has a zero trace.

Proposition 4. If $n \geq 4$, then there exist derogatory matrices A_1 such that A_1 and each associated matrix B are ST.
WHAT ABOUT A, B IF $AB - BA$ AND A COMMUTE.

Proof. We take $n = 4$ and $A_1 = \text{diag}(J_2, J_2)$ where J_2 is the Jordan nilpotent block of dimension 2. Here $\text{dim}(\ker(\psi)) = 8$, $\text{dim}(\ker(\psi^2)) = 12$ and $i(A_1) = \frac{1}{4} < i(A_0)$.

The associated matrices B are in the form $B = \begin{pmatrix} * & * & * & * \\ 0 & * & 0 & * \\ * & * & * & * \\ 0 & * & 0 & * \end{pmatrix}$ where each $*$ represents an arbitrary complex entry. Using Theorem 1, we verify (with Maple software) that the 65534 considered matrices have a zero trace. Thus A_1 and B are ST. □

Acknowledgments
The author thanks professor R. Horn for bringing this problem to his attention.

References
[1] D.C. Kleinecke. On operator commutators. Proc. Amer.Math. Soc. vol 8 (1957), p.535-536.
[2] J.E. Campbell. On a law of combination of operators bearing on the theory of continuous transformation groups. Proc. London Math. Soc. vol 28 (1897) p. 381-390.
[3] T.S. Motzkin, O. Taussky. Pairs of matrices with property L. II. Transactions of the AMS. Vol 80, N 2 (1955). p. 387-401.
[4] C.R. Putnam, A. Wintner. On the spectra of group commutators. Proc. Amer. Math. Soc. Vol 9 (1958). p. 360-362.
[5] G. Bourgeois. How to solve the matrix equation $XA - AX = f(X)$. Linear Algebra and Applications. Vol 434, issue 3 (2011), p. 657-668.
[6] P. Neumann, C. Praeger. Cyclic matrices over finite fields. J. London. Math. Soc. (2) 52 (1995), p.263-284.
[7] Y. Alp’in, N. Koreshkov. On the simultaneous triangulability of matrices. Mathematical notes, Vol. 68, No. 5, 2000.
[8] R. Horn, C. Johnson. Matrix analysis. Cambridge university press, Cambridge, 1985.

GÉRALD BOURGEIOS, GAATI, UNIVERSITÉ DE LA POLYNÉSIE FRANÇAISE, BP 6570, 98702 FAA’A, TAHITI, POLYNÉSIE FRANÇAISE.

E-mail address: gerald.bourgeois@upf.pf