Consent process for elective total hip and knee arthroplasty

Nicolas Beresford-Cleary, Jane Halliday, Leela Biant, Steffen Breusch
Department of Orthopaedics, Edinburgh University, The Royal Infirmary of Edinburgh at Little France, Edinburgh, United Kingdom

ABSTRACT

Purpose. To assess the consent process for elective primary total hip replacement (THR) and total knee replacement (TKR) in our hospital.

Methods. Consent processes of 47 THR and 53 TKR patients performed by 11 surgeons were reviewed. Complications that were documented were recorded, as was the grade of surgeon (consultant or specialist trainee) performing consent, and the location at which this took place. Comparisons were made between rates of documented, clinically significant complications discussed during consent, and those listed in the British Orthopaedic Association (BOA), in the literature, and other joint registries.

Results. The consent processes of 37, 57, and 6 patients were conducted by consultants, specialist trainees, and both, respectively. 13% and 21% of THR patients had ‘revision’ and ‘heterotropic ossification’, respectively, documented as complications, neither of which were listed on the BOA consent form. In 23% of THR and 32% of TKR patients, none of the BOA-listed complications was documented. In 13% of THR and 15% of TKR patients, no complications were documented. In 13% of THR and 17% of TKR patients, only non-specific descriptions of complications (e.g. morbidity, mortality and medical complications) were used in their consent forms.

Conclusion. Documentation of complications for THR and TKR patients was often incomplete and variable. The use of structured, procedure-specific consent forms is recommended.

Key words: arthroplasty, replacement, hip; arthroplasty, replacement, knee; guideline; informed consent

INTRODUCTION

Informed consent for surgery is a process in which a patient is provided with clinically salient features of the procedure and alternative options and gives
authorisation to proceed. It aims to respect the individual’s autonomy and protect him/her from potential harm. It may be written, verbal or implied. Comprehensive documentation of the consent process helps protect the surgeon from subsequent complaints or litigation by keeping a record that the patient was informed of the potential complications of the surgery.

No English statute sets out the principles of consent. Nonetheless, case law has established that touching a patient without valid consent may constitute the civil or criminal offence of battery. There may be a claim of negligence if a health professional fails to obtain proper consent and the patient suffers harm as a result of treatment. The National Health Service faces an estimated £4.4 billion liability for negligence cases. Damage of tissues (vessels, nerves, and other underlying structures) are the commonest complications for which surgeons are sued, accounting for 38% of all claims settled by the Medical Defence Union between 1990 and 1999. Infection accounts for 12%. Complaints can also be filed through the National Health Service or professional bodies.

We assessed the consent process for elective primary total hip replacement (THR) and total knee replacement (TKR) in our hospital, and compared the documentation and rates of clinically significant complications with those listed in the British Orthopaedic Association (BOA), the United Kingdom

Table 1	Complication rates listed in the British Orthopaedic Association (BOA), joint registries, and the literature	
Complication	Rate (%)	% of our patients informed of such complication
Total hip replacement		
Bleeding necessitating transfusion*	2-5 25.519 to 32.520	9 (including blood vessel damage)
Blood vessel damage*	<1 0.0311 to 0.0821, 22	-
Prosthesis wear*	2-5 Necessitating revision: 0.0223	36
Loosening*	2-5 Necessitating revision: 7 to 9.724	49
Revision*	1.49,11-15	-
Heterotopic ossification*	- 43; severe: 945	-
Leg length discrepancy of ±1 cm*	2-5 Uncemented: 5617; cemented: 2317	47
Dislocation*	2-5 2.9 to 2.623 to 4.826	76
Infection*	0.77 to 1.37 to 1.624	66
Nerve damage*	<1 Femoral, sciatic, peroneal nerves: 0.09 to 3.728	45
Bone damage (fracture)*	<1 1.129	30
Deep vein thrombosis*	2-5 Symptomatic: 2.710; asymptomatic: 13.210	66
Pulmonary embolism*	<1 Non-fatal: 0.731 to 0.932; fatal: 0.2234	57
Myocardial infarction*	0.411	-
Death*	0.511	34
Pain	2-5 Severe/very severe: 12.134	11
Altered wound healing	<1 -	Scarring: 9
Total knee replacement		
Pain*	2-5 1 month: 44.4; 3 months: 22.6; 6 months: 18.4; 12 months: 13.15	21
Dissatisfaction*	- 14.46 to 19.47	-
Bleeding necessitating transfusion*	2-5 15.136	13
Blood vessel damage*	<1 0.0821 to 0.1722	13
Revision*	- 6.69,11-15	-
Knee stiffness*	2-5 1.37 to 3.738 to 5.318; necessitating manipulation under anaesthesia: 2.39	40
Prosthesis wear*	2-5 Necessitating revision: 7 to 15.10	21
Infection*	1.648	68
Deep vein thrombosis*	2-5 Symptomatic: 1.810; asymptomatic: 38.110	68
Pulmonary embolism*	<1 0.731 to 0.8146; fatal: 0.1531	62
Myocardial infarction*	0.411	-
Death*	0.511	21
Nerve damage*	<1 Peroneal: 0.331; overall: 1.328	32
Bone damage (fracture)*	<1 Supracondylar fracture: 0.3 to 2.541; patellar fracture: 0.05 to 21.38; tibial fracture: rare	-
Altered wound healing	<1 -	-
Joint dislocation	<1 -	-
Leg length discrepancy	<1 -	-

* Clinically significant complications that should be discussed during the consent process
Department of Health,7 the General Medical Council,8 other joint registries,9–15 and the literature.16–47

MATERIALS AND METHODS

Consent processes of 47 and 53 patients who underwent elective primary THR and TKR, respectively, between October 2009 and March 2010 in our hospital by 11 surgeons were randomly selected for review. The consent form was a universal form designed for any surgical or medical procedure. There was no space designated for listing surgical complications. Complications that were documented were recorded, as was the grade of surgeon (consultant or specialist trainee) performing consent, and the location at which this took place.

Comparisons were made between rates of clinically significant complications (e.g. bleeding necessitating transfusion, nerve damage, and leg length discrepancy of ≥1 cm) that were documented in the BOA form,6 joint registries,9–15 and the literature.16–47 Amended terms were used (e.g. ‘leg length discrepancy’ for ‘altered leg length’16–18) when not found in the BOA form. For each complication, the percentage of patients that had that complication discussed and documented was calculated.

RESULTS

The consent processes of 37, 57, and 6 patients were conducted by consultants, specialist trainees, and both, respectively. 23 THR and 21 TKR complications were documented in the joint registries and the literature, whereas 14 TKR and THR complications were documented in the BOA consent form6 (Table 1).

According to joint registries,9–15 the overall mean revision rates for THA and TKR were 11.4% and 6.6% per year, respectively.13 The rate of heterotopic ossification after THA was 43%, and in 9% it was severe.45 14% to 19%46 of TKR patients were dissatisfied with outcome in terms of pain and function. 13% and 21% of THR patients had ‘revision’ and ‘heterotopic ossification’, respectively, documented as complications, neither of which were listed on the BOA consent form. Similarly 4% and 11% of TKR patients had ‘revision’ and ‘dissatisfaction’, respectively, documented as complications, neither of which were listed on the BOA consent form.

In 23% of THR and 32% of TKR patients, none of the BOA-listed complications was documented. In 13% of THR and 15% of TKR patients, no complications were documented. In 13% of THR and 17% of TKR patients, only non-specific descriptions of complications (e.g. morbidity, mortality and medical complications) were used in their consent forms (Table 2). Non-specific description of complications may be insufficient to protect the surgeons against subsequent complaints or litigation. Discussion of the complications usually occurred in the outpatient clinics and pre-admission clinics (Table 2).

DISCUSSION

In 13 of 28 malpractice lawsuits against orthopaedic surgeons,3 the plaintiffs alleged that they had experienced a complication that had not been described preoperatively. Documentation of complications that are discussed during the consent process provides evidence to defend the breach of duty allegation.48 Nonetheless, such documentation is often incomplete and variable.49,50

There is a lack of consensus as to which complications are clinically significant enough to be discussed with patients.51–53 The guidelines of the Department of Health state that patients should be informed of any ‘material’ or ‘significant’ risks in the proposed treatment, any alternatives to it, and the risks incurred by doing ‘nothing’.7 The General Medical Council advises clinicians to inform patients of adverse outcomes that may result from the proposed treatment options (including taking no action).8 The use of structured, procedure-specific consent forms for documentation of complications is recommended.

ACKNOWLEDGEMENTS

We thank Mr A Wood for his advice on data collection.
REFERENCES

1. Berg JW, Appelbaum PS, Parker LS, Lidz CW. Informed consent: legal theory and clinical practice. 2nd ed. New York: Oxford University Press; 2001.
2. Earle M. The future of informed consent in British common law. Eur J Health Law 1999;6:235–48.
3. Bhattacharyya T, Yeon H, Harris MB. The medical-legal aspects of informed consent in orthopaedic surgery. J Bone Joint Surg Am 2005;87:2395–400.
4. Mayor S. NHS faces increase of £500m in clinical negligence liability. BMJ 2002;324:997.
5. Pownall M. Tissue damage is commonest cause of surgical negligence suits. BMJ 1999;318:692A.
6. Atrey A, Leslie I, Carvell J, Gupte C, Shepperd JA, Powell J, et al. Standardised consent forms on the website of the British Orthopaedic Association. J Bone Joint Surg Br 2008;90:422–3.
7. Department of Health. Good practice in consent implementation guide. Available from http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_4005762 2001.
8. General Medical Council. Seeking patient's consent: the ethical considerations. Available from http://www.gmc-uk.org/guidance/ethical_guidance/consent_guidance_index.asp 1999.
9. Swedish Hip Arthroplasty Register Annual Report 2008, Shortened version. Available from http://www.jru.ortho.gu.se/2008.
10. Swedish Knee Arthroplasty Register Annual Report. Available from http://www.knee.nko.se/english/online/thePages/publication.php 2009.
11. Lucht U. The Danish Hip Arthroplasty Register. 2000.
12. Norwegian Arthroplasty Register Annual Report 2008. 2008.
13. Scottish Arthroplasty Project Annual Report 2009. Available from http://www.arthro.scot.nhs.uk/.
14. National Joint Registry Sixth Report. 2010. Available from http://www.njrcentre.org.uk/njrcentre/AbouttheNJR/Publicationsandreports/Annualreports/tabid/86/Default.aspx.
15. Canadian Joint Replacement Registry Annual Report 2008-2009. Available from http://secure.cihi.ca/cihiweb/DispPage.jsp?cw_page=services_cjr_e.
16. Beard DJ, Palan J, Andrew JG, Nolan J, Murray DW, EPOS Study Group. Incidence and effect of leg length discrepancy following total hip arthroplasty. Physiotherapy 2008;84:91–6.
17. Ahmad R, Sharma V, Sandhu B, Bishay M. Leg length discrepancy in total hip arthroplasty with the use of cemented and uncemented femoral stems. A prospective radiological study. Hip Int 2009;19:264–7.
18. Konyves A, Bannister GC. The importance of leg length discrepancy after total hip arthroplasty. J Bone Joint Surg Br 2005;87:151–7.
19. Boralessa H, Goldhill DR, Tucker K, Mortimer AJ, Grant-Casey J. National comparative audit of blood use in elective primary unilateral total hip replacement surgery in the UK. Ann R Coll Surg Engl 2009;91:599–605.
20. Pedersen AB, Mehnert F, Overgaard S, Johnsen SP. Allogeneic blood transfusion and prognosis following total hip replacement: a population-based follow up study. BMC Musculoskelet Disord 2009;10:167.
21. Parvizi J, Pulido L, Slenker N, Macgibeny M, Purtill JJ, Rothman RH. Vascular injuries after total joint arthroplasty. J Arthroplasty 2008;23:1115–21.
22. Calligaro KD, Dougherty MJ, Ryan S, Booth RE. Acute arterial complications associated with total hip and knee arthroplasty. J Vasc Surg 2003;38:1170–7.
23. Malchau H, Herberts P. Prognosis of total hip replacement. Revision and re-revision rate in THR: a revision-risk study of 148,359 primary operations. 65th Annual Meeting of the American Academy of Orthopedic Surgeons. New Orleans, USA, 1998.
24. Lucht U. The Danish Hip Arthroplasty Register. Acta Orthop Scand 2000;71:433–8.
25. Meek RM, Allan DB, McPhillips G, Kerr L, Howie CR. Late dislocation after total hip arthroplasty. Clin Med Res 2008;6:178–21.
26. Berry DJ, von Knoch M, Schleck CD, Harmsen WS. The cumulative long-term risk of dislocation after primary Charnley total hip arthroplasty. J Bone Joint Surg Am 2004;86:9–14.
27. Blom AW, Taylor AH, Pattison G, Whitehouse S, Bannister GC. Infection after total hip arthroplasty. The Avon experience. J Bone Joint Surg Br 2003;85:956–9.
28. Brown GD, Swanson EA, Nercessian OA. Neurologic injuries after total hip arthroplasty. Am J Orthop (Belle Mead NJ) 2003;37:191–7.
29. Berry DJ. Epidemiology: hip and knee. Orthop Clin North Am 1999;30:183–90.
30. Quinlan DJ, Eikelboom JW, Dahl OE, Eriksson BI, Sidhu PS, Hirsh J. Association between asymptomatic deep vein thrombosis detected by venography and symptomatic venous thromboembolism in patients undergoing elective hip or knee surgery. J Thromb Haemost 2007;5:1438–43.
31. Mantilla CB, Horlocker TT, Schroeder DR, Berry DJ, Brown DL. Frequency of myocardial infarction, pulmonary embolism, deep venous thrombosis, and death following primary hip or knee arthroplasty. Anesthesiology 2002;96:1140–6.
32. Phillips CB, Barrett JA, Losina E, Mahomed NN, Lingard EA, Guadagnoli E, et al. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am 2003;85:20–6.
33. Howie C, Hughes H, Watts AC. Venous thromboembolism associated with hip and knee replacement over a ten-year period: a population-based study. J Bone Joint Surg Br 2005;87:1675–80.
34. Nikolajsen L, Brandsborg B, Lucht U, Jensen TS, Kehlet H. Chronic pain following total hip arthroplasty: a nationwide
questionnaire study. Acta Anaesthesiol Scand 2006;50:495–500.

35. Brander VA, Stulberg SD, Adams AD, Harden RN, Bruehl S, Stanos SP, et al. Predicting total knee replacement pain: a prospective, observational study. Clin Orthop Relat Res 2003;416:27–36.

36. Amin A, Watson A, Mangwani J, Nawabi D, Aaluwalia R, Loeflter M. A prospective randomised controlled trial of autologous retransfusion in total knee replacement. J Bone Joint Surg Br 2008;90:451–4.

37. Kim J, Nelson CL, Lotke PA. Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. J Bone Joint Surg Am 2004;86:1479–84.

38. Gandhi R, de Beer J, Leone J, Petruccelli D, Winemaker M, Adili A. Predictive risk factors for stiff knees in total knee arthroplasty. J Arthroplasty 2006;21:46–52.

39. Namba RS, Inacio M. Early and late manipulation improve flexion after total knee arthroplasty. J Arthroplasty 2007;22(6 Suppl 2):58–61.

40. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am 2006;88:2146–51.

41. Idusuyi OB, Morrey BF. Peroneal nerve palsy after total knee arthroplasty. Assessment of predisposing and prognostic factors. J Bone Joint Surg Am 1996;78:177–84.

42. Lombardi AV Jr, Mallory TH, Vaughn BK, Krugel R, Honkala TK, Sorscher M, et al. Dislocation following primary posterior-stabilized total knee arthroplasty. J Arthroplasty 1993;8:633–9.

43. Tharani R, Nakasone C, Vince KG. Periprosthetic fractures after total knee arthroplasty. J Arthroplasty 2005;20(4 Suppl 2):27–32.

44. Australian National Joint Replacement Registry Annual Report. 2009.

45. Neal B, Gray H, MacMahon S, Dunn L. Incidence of heterotopic bone formation after major hip surgery. ANZ J Surg 2002;72:808–21.

46. Noble PC, Conditt MA, Cook KE, Mathis KB. The John Insall Award: Patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 2006;452:35–43.

47. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 2010;468:57–63.

48. Hassan M. Informed consent and the law—an English legal perspective. Dig Dis 2008;26:23–7.

49. Ellamushi HE, Khan R, Kitchen ND. Consent to surgery in a high risk specialty: a prospective audit. Ann R Coll Surg Engl 2000;82:213–6.

50. Paterick TE, Paterick ZR, Fletcher G. Informed consent and transesophageal echocardiography: a review of patient responses. Int J Cardiol 2010;143:227–9.

51. McManus PL, Wheatley KE. Consent and complications: risk disclosure varies widely between individual surgeons. Ann R Coll Surg Engl 2003;85:79–82.

52. McLaren A, Morris-Stiff G, Casey J. Issues of consent in renal transplantation. Ann R Coll Surg Engl 2001;83:343–6.

53. Berman L, Curry L, Gusberg R, Dardik A, Fraenkel L. Informed consent for abdominal aortic aneurysm repair: the patient’s perspective. J Vasc Surg 2008;48:296–302.