Family History as a Risk Factor for Iron Deficiency Anemia among Korean Adolescents: Data from the Fifth Korea National Health and Nutrition Examination Survey (KNHANES)

Hee Won Chueh, M.D., Ph.D.1, Yun Chang Choi, M.D.1, Jung Hyun Shin, M.D.2 and Jae Ho Yoo, M.D., Ph.D.1

1Department of Pediatrics, College of Medicine, Dong-A University, 2Department of Pediatrics, Good Gangan Hospital, Busan, Korea

Background: Iron deficiency anemia (IDA) is prevalent throughout the world. However, there is limited information regarding whether familial factors are associated with the risk of adolescent IDA.

Methods: This study evaluated the association between adolescent IDA and family history of IDA using data from the fifth Korea National Health Nutrition Survey (2010-2012). Data from 10-18-year-old children who underwent laboratory testing were analyzed.

Results: The overall prevalence of IDA was 3.1% (95% confidence interval [CI]: 2.4-4.1%), with prevalence of 0.5% among boys (95% CI: 0.2-1.3%) and 6.2% among girls (95% CI: 4.6-8.3%). The prevalence of IDA was associated with female sex (odds ratio [OR]: 13.43, 95% CI: 4.92-36.65; P<0.001) and a family history of IDA (OR: 3.12, 95% CI: 1.11-8.76; P=0.03). Other risk factors for IDA were receiving social welfare support (OR: 3.31, 95% CI: 1.45-7.56; P=0.031), low maternal education (OR: 3.12, 95% CI: 1.39-6.99; P=0.006), receiving charitable food support (OR: 2.27: 95% CI: 0.95-5.44; P=0.04), poor body-image (OR: 2.14, 95% CI: 1.16-3.93; P=0.026), and weight-loss efforts (OR: 2.42, 95% CI: 1.27-4.61; P=0.01). Nutritional supplementation protected against IDA (OR: 0.40, 95% CI: 0.19-0.82; P=0.007), although adolescents with awareness of nutritional labels had a high IDA prevalence (OR: 8.06, 95% CI: 1.71-38.05; P<0.001).

Conclusion: A family history of IDA was an independent risk factor for IDA. Further studies are needed to determine whether family-level educational interventions can reduce the risk of adolescent IDA.

Key Words: Anemia, Iron-deficiency, Adolescent, Family medical history

Introduction

Iron deficiency anemia (IDA) is prevalent in underdeveloped, developing, and even developed countries. The world-wide prevalence of iron deficiency among pre-school children is approximately 25%, and the prevalence in-
CREASES IN RURAL AREAS OR COUNTRIES WITH A LOW DEVELOPMENT INDEX [1]. THE PREVALENCE OF IDA IN SOUTH KOREA WAS 0.7% FOR MEN (95% CONFIDENCE INTERVAL [CI]: 0.3-1.0%) AND 8.0% FOR WOMEN (95% CI: 6.8-9.2%), BASED ON DATA FROM THE 5th KOREA NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY (KNHANES) [2]. THE RISK OF IDA IS ASSOCIATED WITH LOW BIRTH WEIGHT [3,4], FEMALE SEX DURING THE REPRODUCTIVE AGE [5], PROLONGED BREAST FEEDING WITH UNFORTIFIED FOOD [3], MENSES [5], LOW SOCIO-ECONOMIC STATUS [1,6], AND LOW MATERNAL EDUCATION [6]. STUDIES REGARDING IDA IN INFANCY HAVE DEMONSTRATED THAT IDA CAN LEAD TO SERIOUS COGNITIVE PROBLEMS THAT EXTEND INTO ADULTHOOD [7-10].

MATERNAIDURING THE PERINATAL PERIOD CAN ALSO INFLUENCE THE CHILD’S RISK OF DEVELOPING ANEMIA, WHICH CAN ALSO LEAD TO VARIOUS HEALTH PROBLEMS [11-14]. HOWEVER, PREVIOUS STUDIES REGARDING THE INFLUENCE OF MATERNAL IDA ON THE CHILD’S RISK OF ANEMIA HAVE VARIOUS LIMITATIONS. FOR EXAMPLE, MOST STUDIES HAVE FOCUSED ON THE INFLUENCE OF MATERNAL IDA ON INFANTS AND TODDLERS, AND FEW STUDIES HAVE EXAMINED THE FAMILY-RELATED EFFECTS OF IDA AMONG OLDER CHILDREN. NEVERTHELESS, THE RISK OF IDA LATER IN LIFE CAN BE RELATED TO THE INDIVIDUAL’S SOCIO-ECONOMIC STATUS, LIFESTYLE, AND HABITS. IN THIS CONTEXT, FAMILY SETTINGS CAN INFLUENCE INDIVIDUALS’ FOOD HABITS AND PREFERENCES, LIFESTYLE (E.G., EXERCISE), NUTRITIONAL SUPPLEMENTATION, AND HEALTH INTERESTS, WHICH MIGHT ALL AFFECT THE PREVALENCE AND RISK OF IDA LATER IN LIFE.

OUR STUDY AIMED TO DETERMINE WHETHER PARENTAL IDA AFFECTED THE RISK OF IDA AMONG KOREAN ADOLESCENTS WHO WERE INCLUDED IN THE 5th KNHANES. THIS SURVEY IS SOUTH KOREA’S LARGEST NATION-WIDE CROSS-SECTIONAL STUDY, AND HAS BEEN CONDUCTED EVERY 3 YEARS SINCE 1998 BY THE KOREAN MINISTRY OF HEALTH AND WELFARE. THE 5th KNHANES (2010-2012) IS THE ONLY SURVEY THAT INCLUDED LABORATORY TESTING FOR HEMOGLOBIN, SERUM IRON, TOTAL IRON-BINDING CAPACITY, AND FERRITIN IN ADULTS AND ADOLESCENTS OVER 10 YEARS OF AGE. FURTHERMORE, THE SURVEY IS PERFORMED USING FAMILY-LEVEL UNITS, WHICH MAKES THE 5th KNHANES IDEAL FOR EXAMINING THE PREVALENCE OF ADOLESCENT IDA AND ITS RELATIONSHIPS WITH A FAMILY HISTORY OF IDA AND OTHER RISK FACTORS.

MATERIALS AND METHODS

1) STUDY POPULATION

The KNHANES participants were randomly selected using a stratified multistage sampling process, although individuals were excluded if they were in a nursing home or facility, soldiers, prisoners, or non-Koreans. Women who were pregnant, and the individuals who were in treatment of chronic disorder, including pulmonary tuberculosis, chronic renal failure requiring dialysis, various cancer, chronic rheumatoid disorders, liver cirrhosis at the time of the survey were excluded. The primary data from the 5th KNHANES were searched for records of participants who were 10-18 years old, and these participants were matched to their parents’ records. The available laboratory data included red blood cell counts, hemoglobin levels, serum iron levels, serum total iron-binding capacity, and serum ferritin levels. The participants’ records also contained data regarding various socio-economic factors, such as family income, education level, and reception of various forms of social welfare support. Finally, the records contained data regarding each participant’s physical and mental health, such as feelings of happiness and healthiness, health interests, body image, attempts and methods for losing weight, exercise, nutritional supplementation, and nutritional knowledge.

2) VARIABLE DEFINITIONS

The World Health Organization’s criteria for anemia were adopted, which identify anemia based on a hemoglobin level of <12.0 g/dL (<15 years old), <13.0 g/dL (≥15-year-old males), or <12.0 g/dL (≥15-year-old females). The presence of IDA was identified based on the coexistence of age-dependent anemia, serum ferritin levels of <15 ng/mL, and transferrin saturation of <16%.

Body mass index (BMI) was used to classify the participants as obese (BMI of ≥25 kg/m² at >18 years old or ≥95% of the age-specific reference value at <18 years old), normal weight, or underweight (BMI of <18.5 kg/m² at >18 years old or ≤5% of the age-specific reference value at <18 years old). The age-specific reference values
were obtained from the 2007 standard growth chart for Korean children and adolescents. Household income was divided into quartiles based on data from the time of the survey. Participants were considered to perform regular exercise if they performed medium-intensity exercise at least 3 times per week.

3) Statistical analysis

The KNHANES is designed to provide a complex and representative sample of participants, based on stratification, clustering, and unequal weighting. All statistical analyses were performed according to the relevant strata, clusters, and weightings from the guidelines regarding the use of primary KNHANES data, which are published by the Korean Centers for Disease Control and Prevention [15]. Prevalences of IDA and their 95% CI were calculated and compared using the chi-square test. In addition, the chi-square test was used to evaluate the associations between IDA prevalence and socioeconomic, personal, and family factors. Two-sided P-values of <0.05 were considered statistically significant. All statistical analyses were performed using IBM SPSS software (version 22.0; IBM Corp., Armonk, NY).

Results

The 5th KNHANES included 31,596 randomly selected individuals from 11,520 families, with a total of 25,534 participants (M:F=1.18:1). A total of 2,918 adolescents aged 10 to 18 (M:F=1.15:1) completed the laboratory test. Fig. 1 shows the study flow chart.

The overall prevalence of IDA was 4.5% (95% CI: 4.1-4.8%), which was similar to the result from a previous study of IDA [2]. The prevalence of IDA in adolescents was 3.1% (95% CI: 2.4-4.1%).

Several variables were analyzed to identify the risk associated with IDA (Table 1). Female sex was a risk factor for IDA (odds ratio [OR]: 8.2, 95% CI: 7.5-8.8), although male sex was not (OR: 0.9, 95% CI: 0.7-1.2), and this difference was statistically significant (P<0.001). Adolescent girls showed a higher risk of IDA than adolescent boys (P<0.001). The socioeconomic variables exhibited inconsistent associations with adolescent IDA. For example, a high prevalence of adolescent IDA was associated with receiving social welfare support (P<0.03), low maternal education (P<0.006), and receiving charitable food support (P<0.04). A family history of IDA was also associated with a high prevalence of IDA (P<0.03). In addition, the prevalence of IDA was associated with poor body image (P<0.026) and weight control efforts (P<0.01). Nutritional supplement was associated with decreased IDA in adolescents (P<0.007), although nutrition education did not have a significant impact on IDA reduction (P<0.08). However, adolescents who were aware of nutritional labels had a high prevalence of IDA (P<0.001).

The multivariate model included all of the variables from Table 1, and the results are shown in Table 2. Low household income, receiving social welfare support, and low maternal education were not significant risk factors. However, the risk of adolescent IDA was independently associated with a family history of IDA (P<0.03), female sex (P<0.04), no nutritional education (P<0.01), and awareness of nutritional labels (P<0.009). Interestingly, unlike in the univariate analysis, obesity was independently associated with IDA (P<0.001). However, IDA was not significantly associated with poor body image (P<0.007), weight control efforts (P<0.019), nutritional supplementation (P<0.866), or use of nutritional labels (P<0.622).

![Fig. 1. Study flow chart.](image-url)
Table 1. Prevalence and risk of iron deficiency anemia according to various factors

Factor	Prevalence (95% CI)	Odds ratio (95% CI)	P-value
Sex			
Male	0.5 (0.2-1.3)	13.43 (4.92-36.65)	<0.001
Female	6.2 (4.6-8.3)		
Household income quartile			
Quartile 1	5.5 (2.6-8.4)	2 vs. 1	0.295
	3.2 (1.6-4.9)	3 vs. 1	
Quartile 2	2.2 (0.8-3.5)	4 vs. 1	
Quartile 3	2.1 (0.6-3.6)		
Quartile 4	2.0 (0.5-3.6)		
Social welfare support			
Yes	25.0 (11.1-38.9)	3.31 (1.45-7.56)	0.031
No	9.5 (6.8-12.2)		
Paternal education			
Until high school	12.3 (7.1-17.5)	2.15 (0.98-4.72)	0.056
College/university or later	7.7 (3.5-11.8)		
Maternal education			
Until high school	12.6 (8.8-17.2)	3.12 (1.39-6.99)	0.006
College/university or later	6.1 (2.44-9.8)		
Family history of IDA			
Yes	18.7 (8.9-28.4)	3.12 (1.11-8.76)	0.030
No	6.3 (1.7-10.9)		
Charitable food support			
Yes	15.8 (5.2-26.4)	2.27 (0.95-5.44)	0.040
No	10.3 (7.2-13.4)		
Body image			
Poor	17.2 (10.7-23.6)	2.14 (1.16-3.93)	0.026
Good	8.9 (5.9-11.8)		
Weight control efforts			
Yes	14.7 (10.3-19.16)	2.42 (1.27-4.61)	0.010
No	7.1 (3.7-10.4)		
Obesity (≥25 kg/m² or ≥95 percentile)			
Yes	10.2 (0.9-21.7)	0.448 (0.11-1.82)	0.836
No	11.4 (8.5-14.3)		
Regular exercise			
Yes	15.2 (4.0-26.4)	0.71 (0.26-1.95)	0.510
No	13.8 (10.0-17.5)		
Nutritional education			
Yes	6.6 (1.65-11.5)	1.73 (0.75-4.01)	0.076
No	12.1 (8.5-15.6)		
Nutritional supplements			
Yes	6.6 (2.5-9.4)	0.40 (0.19-0.82)	0.007
No	13.1 (9.2-17.0)		
Nutritional label awareness			
Yes	12.7 (9.1-16.3)	8.06 (1.71-38.05)	<0.001
No	1.7 (0.9-4.3)		
Nutrition label use			
Yes	16.8 (9.7-23.9)	0.57 (0.29-1.13)	0.147
No	10.54 (6.3-14.8)		

IDA, iron deficiency anemia; CI, confidence interval.

Discussion

This study evaluated IDA among Korean adolescents using nationally representative data, and revealed that the prevalence of IDA among Korean adolescents was associated with several previously reported risk factors, such as low economic status, female sex, low maternal education, and receiving social welfare [2,6,10,16,17]. Interestingly, although obesity is reportedly associated with IDA [2,18-22], we could only detect a significant relationship between obesity and IDA in multivariate analysis. Thus, further studies are needed to evaluate the relationship between IDA and obesity.

Infants, and pregnant or premenopausal women are age groups that are at-risk for IDA, and previous studies have usually evaluated these groups [3,4,11,12,23,24]. However, adolescence is an important period of rapid growth and development, which require adequate nutritional supplies. In addition, adolescents are still influenced by their family circumstances and lifestyle, as well as other social interactions with classmates and peers. However, few studies have evaluated IDA among adolescents [25,26] and the duration of the "maternal effect" remains unclear, as previous studies have focused on the association of maternal anemia or iron...
Table 2. Multivariate analysis of risk factors for iron deficiency anemia

	Odds ratio (95% CI)	P-value
Sex	22.04 (1.11-438.82)	0.043
Household income quartile	1.75 (0.79-3.87)	0.083
	2 vs. 1	
	3 vs. 1	
	4 vs 1	
Social welfare support	0.66 (0.02-28.31)	0.828
Charitable food support	4.19 (1.45-12.15)	0.023
Family history of IDA	4.51 (1.09-18.69)	0.034
Low paternal education	0.39 (0.09-1.82)	0.221
Low maternal education	6.82 (0.96-48.44)	0.055
Poor body image	1.61 (0.26-9.93)	0.607
Weight control efforts	2.34 (0.44-12.55)	0.319
Obesity	4.53 (0.86-23.93)	0.001
Regular exercise	1.89 (0.21-17.73)	0.574
No nutritional education	6.82 (1.08-4.31)	0.012
Nutritional supplementation	0.85 (0.13-5.69)	0.866
Nutritional label awareness	8.1 (1.7-38.5)	0.596
Nutritional label use	0.64 (0.11-3.78)	0.622

IDA, iron deficiency anemia; CI, confidence interval.

deficiency and IDA among neonates, infants, or toddlers [11,12,14,21,24]. In this context, maternal knowledge and feeding practices affect their children’s risk of IDA [6,21], although the child’s preferred foods and eating habits might change over time and be affected by their family members, classmates, or peers.

Obesity in children and adolescents is a disease entity that can be influenced by the family setting [27-29]. In addition, children with type 2 diabetes mellitus tend to have family members with type 2 diabetes [30]. Also, adolescents with a parental history of diabetes have increased risks of overweight/obesity, hypertension, and metabolic syndrome [31]. In this context, the present study revealed that a family history of IDA was significantly associated with an increased risk of adolescent IDA, which might be similar to the familial relationships for other chronic disorders mentioned above (e.g., obesity, diabetes mellitus, and metabolic syndrome). However, cause-result relationship of the familial factors and increased prevalence of adolescent IDA is still weak. Therefore, close mechanisms of the familial effect to the occurrence of IDA should be further investigated. Interestingly, Korean schools provide lunch programs for school-aged children, with middle- and high-school students also having access to dinner programs. Thus, individual-level differences in meal contents are mainly attributable to breakfast, inter-meal snacks, and weekend meals.

The present study revealed that lifestyle factors (e.g., regular exercise) did not protect against IDA. In addition, poor body image and efforts to lose weight were associated with increased risks of IDA, which suggests that these factors might lead to nutritional imbalance and deficiency. The relationship between nutritional label awareness and IDA is difficult to interpret, although it is possible that adolescents might focus on calorie contents instead of health-promoting nutrients. This possible relationship might be related to the same mechanism as the relationships between IDA and poor body image or efforts to lose weight. Nevertheless, the present study has limited ability to explain the underlying factors, and further studies are needed to understand and develop risk models for examining the relationship between familial factors and adolescents with IDA. Furthermore, the present study revealed that nutritional education did not protect against IDA, which indicates that current education interventions are not effectively improving health and nutrition knowledge in Korean adolescents aged 10 to 18. Moreover, maternal education level was significantly related to the prevalence of IDA among adolescents, which suggests that maternal knowledge and interest regarding nutrition and health still exert some effect on their children’s health.

Conclusion

The present study revealed that the development of IDA in adolescents was related to a family history of IDA. Therefore, additional studies are needed to better understand the relationship between family setting and adolescent IDA. Furthermore, additional measures should be developed to prevent IDA among adolescents, and it is possible that family-level educational interventions may help address this issue.
References

1. Petry N, Olofin I, Hurrell RF, et al. The proportion of anemia associated with iron deficiency in low, medium, and high Human Development Index countries: A Systematic Analysis of National Surveys, Nutrients 2016;8:E693.

2. Lee JO, Lee JH, Ahn S, et al. Prevalence and risk factors for iron deficiency anemia in the Korean population: results of the fifth Korean National Health and Nutrition Examination Survey, J Korean Med Sci 2014;29:224-9.

3. Joo EY, Kim KY, Kim DH, Lee JE, Kim SK. Iron deficiency anemia in infants and toddlers, Blood Res 2016;51:268-73.

4. MacQueen BC, Christensen RD, Ward DM, et al. The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study, J Perinatol 2017;37:436-40.

5. Liu K, Kaffes AJ. Iron deficiency anaemia: a review of diagnosis, investigation and management, Eur J Gastroenterol Hepatol 2012;24:109-16.

6. Goswmai S, Das KK. Socio-economic and demographic determinants of childhood anemia, J Pediatr (Rio J) 2015;91:471-7.

7. Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron deficiency, N Engl J Med 1991;325:687-94.

8. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency anemia, Pediatrics 2000;105:E51.

9. Lozoff B, Smith JB, Kaciroti N, Clark KM, Guevara S, Jimenez E. Functional significance of early-life iron deficiency: outcomes at 25 years, J Pediatr 2015;163:1260-6.

10. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years, Arch Pediatr Adolesc Med 2006;160:1108-13.

11. Alwan NA, Hamamy H. Maternal iron status in pregnancy and long-term health outcomes in the offspring, J Pediatr Genet 2015;4:111-23.

12. Abu-Ouf NM, Jan MM. The impact of maternal iron deficiency and iron deficiency anemia on child’s health, Saudi Med J 2015;36:146-9.

13. Sorensen HJ, Nielsen PR, Pedersen CB, Mortensen PB. Association between prepartum maternal iron deficiency and offspring risk of schizophrenia: population-based cohort study with linkage of Danish national registers, Schizophr Bull 2011;37:982-7.

14. Zeeshan F, Bari A, Farhan S, Jabeen U, Rathore AW. Correlation of maternal and childhood VitB12, folic acid and ferritin levels, Pak J Med Sci 2017;33:162-6.

15. Guidelines for utilizing primary data of the fifth Korean National Health and Nutrition Examination Survey (2010-2012), Cheongju, Korea: Korean Centers for Disease Control, 2014. (Accessed January 31, 2018, at https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4).

16. Habib MA, Black K, Soofi SB, et al. Prevalence and predictors of iron deficiency anemia in children under five years of age in Pakistan, A Secondary Analysis of National Nutrition Survey Data 2011-2012, PLoS One 2016;11:e0155051.

17. Cardoso MA, Scopel KK, Muniz PT, Villamor E, Ferreira MU. Underlying factors associated with anemia in Amazonian children: a population-based, cross-sectional study, PLoS One 2012;7:e36341.

18. Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F. Obesity and iron deficiency: a quantitative meta-analysis, Obes Rev 2015;16:1081-93.

19. Chang JS, Chen YC, Owaga E, Palupi KC, Pan WH, Bai CH. Interactive effects of dietary fat/carbohydrate ratio and body mass index on iron deficiency anemia among Taiwanese women, Nutrients 2014;6:3929-41.

20. Zanin FH, da Silva CA, Bonomo É, et al. Determinants of iron deficiency anemia in a cohort of children aged 6-71 months living in the Northeast of Minas Gerais, Brazil, PLoS One 2015;10:e0139555.

21. Gupta S, Venkateswaran R, Gorenflo DW, Eyer AE. Childhood iron deficiency anemia, maternal nutritional knowledge, and maternal feeding practices in a high-risk population, Prev Med 1999;29:152-6.

22. Han SJ, Hong YJ, Son BK, Choi JW, Hyun YI, Kim SK. Iron status in Korean middle school students and possible association with obesity, Korean J Hematol 2005;40:159-66.

23. Elalfy MS, Hamdy AM, Malouf SS, Megeed RI. Pattern of milk feeding and family size as risk factors for iron deficiency anemia among poor Egyptian infants 6 to 24 months old, Nutr Res 2012;32:93-9.

24. Rahman MM, Abe SK, Rahman MS, et al. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: systematic review and meta-analysis, Am J Clin Nutr 2016;103:495-504.

25. Shaw NS, Iron deficiency and anemia in school children and adolescents, J Formos Med Assoc 1996;95:692-8.

26. De Andrade Cairo RC, Rodrigues Silva L, Carneiro Bustani N, Ferreira Marques CD. Iron deficiency anemia in adolescents; a literature review, Nutr Hosp 2014;29:1240-9.

27. Halliday JA, Palma CL, Mellor D, Green J, Rennah AO. The relationship between family functioning and child and adolescent overweight and obesity; a systematic review, Int J Obes (Lond) 2014;38:480-93.

28. Blake-Lamb T, Boudreau AA, Matathia S, et al. Strengthening integration of clinical and public health systems to prevent maternal-child obesity in the First 1,000 Days: A Collective Impact approach, Contemp Clin Trials 2018;65:46-52.

29. Robertson W, Fleming J, Kamal A, et al. Randomised controlled trial evaluating the effectiveness and cost-effectiveness of 'Families for Health', a family-based childhood obesity...
treatment intervention delivered in a community setting for ages 6 to 11 years, Health Technol Assess 2017;21:1-180.

30. Kaufman F, Type 2 diabetes in children and young adults: a "new epidemic", Clin Diabetes 2002;20:217-8.

31. Lee CY, Lin WT, Tsai S, et al, Association of parental over-weight and cardiometabolic diseases and pediatric adiposity and lifestyle factors with cardiovascular risk factor clustering in adolescents, Nutrients 2016;8:E567.