BIO-CONTROL AND ULTRASTRUCTURE OF POST-HARVEST PATHOGENIC FUNGI OF APPLE FRUITS

Mamdouh S. Serag*, Zakaria A. Baka, Amira I. Farg and Marwa T. Mohiesien

Address(es):
Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta-34517, Egypt
*Corresponding author: mamdouhserag054@gmail.com

Regular article
OPEN ACCESS

ARTICLE INFO
Received 10. 1. 2021
Revised 31. 10. 2022
Accepted 3. 11. 2022
Published 1. 12. 2022

ABSTRACT
Post-harvest pathogenic fungi of fruits cause huge losses. Apples fruits are important for consumers. The antifungal activity of aqueous and ethanolic extracts of eleven medicinal plants at five concentrations (0, 1, 3, 5, 10; w/v) were tested against Alternaria alternata. Inhibition of fungal growth, along with the lower Dm values of the ethanolic extract of the tested plants compared to those of the aqueous extract exhibited more efficient antifungal activity. The ultrastructure of the fungal hyphae without treatment (control) showed normal hyphae enclosed by a wall composed of three layers in which the middle layer is more electron-denser than the outer and inner layers. An intact plasma membrane was also observed. In addition, an electron-dense material was observed at the tip of the hyphae. The cytoplasm contained several organelles. On the other hand, the treated hyphae with the ethanolic extracts of the mixture of E. citriodora and T. capitatus exhibited many changes as noted in both T.S and L.S such as the increase of the electron density of the outer layer of the hyphal wall more than the control, also numerous big lipid bodies were almost occupied the cytoplasm. Eucalyptus citriodora and Thymus capitatus had a potential as antifungal agent for biocontrol of post-harvest pathogenic fungi of tested apple fruits.

Keywords: Antifungal activity, Bio-control, Alternaria, Post-harvest Fungi, Apple Fruits, Medicinal Plants

INTRODUCTION
Post-harvest diseases are a significant issue for the agricultural sector, particularly in underdeveloped nations. According to estimates, post-harvest losses account for 10% to 40% of all agricultural produce loss worldwide (Enyiukwu et al. 2014; Sernait et al, 2020). The apple tree, Malus domestica Borkh.cv. Borkher, is a significant tree in every country and produces fruits that belong to the Rosaceae family. In wealthy nations, it was estimated that 20 to 25 percent of fruits were damaged after harvest (Singh and Sharma, 2007). The fungal infections that cause diseases before and after harvest include Botrytis cinerea, Alternaria alternata, Penicillium spp., Mucor spp, and Aspergillus spp (Wan and Tian, 2005). Synthetic fungicides are the most popular technique of defending plants from fungal attack, but their overdose, coupled with high costs, the existence of residues, and the development of resistance, has had a detrimental impact on human health and the environment (Paster and Bulleran, 1988). The antibacterial effects of several therapeutic plant extracts could be beneficial. Alkaloids, tannins, saponins, glycosides, and flavonoids are potent secondary metabolites that these plants may possess that have antifungal properties (Maswada and Elzaawely, 2013). One of the most prevalent diseases of various fruits is Alternaria (Agrios, 1997). According to Troncoso-Rojas and Tiznado-Hernández (2014), the Alternaria alternata (Kessler) genus is a significant disease that grows while quince fruits are stored, becomes visible during the marketing phase, and consequently causes significant post-harvest losses. The major aim of this work was to conduct a survey of post-harvest harmful fungi. evaluation of some medicinal plants' aqueous preparations for eradicating these infections. Additionally, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) tests were done to determine whether this extract had any inhibitory effects or not.

MATERIAL AND METHODS
Plant samples collection
From New Damietta, Egypt's natural habitats, eleven different types of medicinal plants were collected (Table 1). These plants were deposited in the herbarium of the Botany and Microbiology Department, Faculty of Science, Damietta University, according to Taeckholm (1974) and Boulos (2009). The plant samples were washed with tap and then rinsed in distilled water and air dried at laboratory temperature (25-29°C) till they become crispy. Dried parts of the plants were ground using a blender and sieved to remove coarse particles and kept for further use.

Preparation of plant extracts
Each plant's used part weighed one gramme, which was then extracted on a shaker at 150 rpm for 24 hours at 25°C using either distilled water or 95% ethanol in 10 ml volume of solvent. The mixture was centrifuged twice at 4000 rpm for 10 minutes after being filtered using sterile Whiteman filter paper No. 1. For the ethanol extract, the dry residue was re-suspended in half of the original volume after the ethanol had completely evaporated, while the aqueous extract was concentrated into half of the original volume and DMSO was added (dimethyl sulfoxide). In order to prevent contamination, the supernatant was put into conical flasks and sterilized by being placed for 10 minutes in a digital water bath at 100°C. Various volumes (0, 1, 3, and 5) were tested against different fungi pathogens.

Collection of spoiled fruits
The infected apple fruits (M. domestica) were collected from the local markets from Damietta Governorate. Spoiled fruits with fungal infections were chosen and transferred to laboratory in sterile plastic polyethylene bags and isolation of fungal pathogens was made.

Isolation and identification of fungal pathogens
According to the Al-Hindi et al. (2011) method, fungus pathogens were isolated from the fruits. The outermost portions of the diseased fruits were sliced into thin sections (2 mm in diameter), which were then surface sterilized in 0.1% mercuric chloride for 2-3 min before being rinsed three times with sterile distilled water. Sections were plated on water agar, and the mycelium was then transferred to sterile Potato Dextrose Agar (PDA) plates that were pre-mixed with penicillin (100,000 Units/L). The plates were incubated for 6-7 days at 27°C. Until pure cultures were produced, subcultures were created aseptically from the plates into comparable clean PDA plates and cultured under comparable circumstances. The isolated fungi were identified using macro- and microscopically methods. Macroscopic identification was based on mycelia color and culture development patterns. minuscule amounts of the fungus were tested against different fungi pathogens.

Preparation of plant extracts
Each plant's used part weighed one gramme, which was then extracted on a shaker at 150 rpm for 24 hours at 25°C using either distilled water or 95% ethanol in 10 ml volume of solvent. The mixture was centrifuged twice at 4000 rpm for 10 minutes after being filtered using sterile Whiteman filter paper No. 1. For the ethanol extract, the dry residue was re-suspended in half of the original volume after the ethanol had completely evaporated, while the aqueous extract was concentrated into half of the original volume and DMSO was added (dimethyl sulfoxide). In order to prevent contamination, the supernatant was put into conical flasks and sterilized by being placed for 10 minutes in a digital water bath at 100°C. Various volumes (0, 1, 3, and 5) were tested against different fungi pathogens.

Fungi as bio-control agents
Penicillium roqueforti, which was isolated from Roquefort cheese, and three entophytic fungi, Chaetomium globosum, Emericellera nidulans, and Sordaria fimicola, which were kindly provided by the Arab Society for Fungal Conservation's Fungarium at Suez Canal University's Faculty of Science in
Ismaelia, Egypt, were among the five fungal species tested for their antifungal activity *Trichoderma herzianum* was graciously provided by Plant Pathology Department, Faculty of Agriculture, Mansoura University.

Table 1 List of plant species used for aqueous and ethanolic of extracts

Species	Common name	Family	Used Part
Moringa oleifera Lam.	*Moringa*	*Moringaceae*	Seeds
Ziziphus spinosa-christi (L.)	*Sidr*	*Rhamnaceae*	Leaves
Melia azedarach (L.)	*Chinaberry tree*	*Meliaceae*	Leaves
Nicotiana glauca Graham	*Tobacco tree*	*Solanaceae*	Fruits
Cyperus rotundus (L.)	*Purple nutseed*	*Cyperaceae*	Rhizomes
Schinus terebinthifolius Raddi	*Brazilian pepper*	*Anacardiaceae*	Seeds
Lantana camara (L.)	*Tickberry wild sage*	*Verbenaceae*	Leaves
Zygophyllum aygumentum (L.)	*Rotate*	*Zygophyllaceae*	Shoot
Delonix regia (Boj. ex Hook.) Raf.	*Royal poinciana*	*Fabaceae*	Bark
Eucalyptus citriodora L'Hér	*Myrtle*	*Myrtaceae*	Shoot
Thymus capitatus (L.) Hoffm. et Link	*Thyme*	*Lamiaceae*	Shoot

Mixture of the best bio-control agents

E. citriodora and *T. capitatus*, the two most effective bio-control agents discovered, were put to the test singly or in combination; in the latter case, the two extracts were either given in half dose or full dose. The purpose of this experiment was to determine whether the combined effect of the two extracts is synergistic, additive, or antagonistic. It was decided to investigate the antifungal activity of five concentrations: 0, 1, 2, 3, and 5%.

Evaluation of antifungal activity In Vitro

According to Baka (2014), the food poisoning technique was applied with modification. The produced bio-control agents in various doses were tested against an isolate of *Alternaria alternata* found in apple fruits. For *Alternaria alternata*, the solidified extract-amended media in the Petri plates were inoculated, each alone at the centre with 7 mm inoculums disc of each tested fungus. The fungal growth's diameter (in cm) and the percentage of inhibition of fungal growth compared to the control were assessed. The fatal concentration that inhibits fungal growth by 50% was used to determine the relative efficacy of both plant extracts and microbial filtrates (LC50).

Antifungal activity of In Vivo

With slight adjustments, Badawy et al. (2012)'s method for evaluating the antifungal activity in vivo was used. Fresh apple fruits that were in good health were cleaned with tap water before being sterilised by immersion in 70% ethanol for 1 minute, followed by three times in sterile distilled water, and then allowed to dry. A 0.7 cm disc of the margins of recently developed *A. alternata* that was 7 days old and freshly grown was used to inoculate each treatment. Fruits that were roughly equivalent in weight and volume were randomly divided into 6 equal groups, each with 3 fruits.

After 24 hours of *A. alternata* infection, six treatments were carried out as follows: spraying apple fruits with ethanol extracts of *T. capitatus* only at a concentration of 5%, *E. citriodora* only at a concentration of 10%, and a mixture of ethanol extracts of both *E. citriodora* and *T. capitatus* at a concentration of 2%. Two control sets were also prepared: a healthy set as a negative control, and an infected Fruits that had been treated were placed in plastic bags and incubated for 28 days at 25°C and >85% RH. Every week, the effectiveness of the therapy was evaluated. There were three trials with three fruits each in each replication. By measuring the black zone's diameter and calculating the percentage of disease incidence compared to the infected control, researchers were able to assess the effectiveness of the treatment. Alternaria infection manifests as a black zone around the infected location.

The inhibitory effect by electron microscopy

Scanning Electron Microscopy (SEM)

According to Park et al., (2009) the samples were prepared for SEM observation. Fungal hyphae prior to sporulation were handled in the following manner in order to examine the impact of plant extract on the hyphae of both *Alternaria alternata* using SEM. First, colonies on both control and treatment plates had hyphal discs (diameter 1 cm) cut from the actively expanding margin. These discs were then fixed for two hours at room temperature with 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH7.2). The fixed hyphal discs were then passed through a graded ethanol series of 70, 80, and 90%, once for ten minutes at each concentration, before being washed twice for ten minutes each in the same buffer (three times; 30 min at each concentration). The samples were critical point dried with CO2 in a Polaron CPD 7501 critical point drying machine (VG Microtech, East Grinstead, UK). Then, using a spatter coater system in a high-vacuum chamber (Polaron SC7620, VG Microtech), the fixed material was mounted on stubs using double-sided carbon tape and coated with gold/palladium for 150 s at 9 mA. Using a JEOL model JSM-6510LV scanning electron microscope (JEOL Ltd., Tokyo, Japan), the samples were examined and digital pictures were recorded.

Transmission Electron Microscopy (TEM)

samples (1 mm3) of a fungal culture were evaluated and processed by TEM using Hayat's method (2000) using extracts of a combination of *Eucalyptus citriodora* and *Thymus capitatus* (0.3%, 1.5%) for *A. alternata*. The samples were initially submerged for two hours at four degrees Celsius in a solution of 3% (v/v) glutaraldehyde in 0.1M sodium cacodylate buffer, pH 7.0. They were then washed in the same buffer and post-fixed in 1% (v/v) OsO4. They were then imbedded in Spurr's resin after being dehydrated using a graduated series of ethanol solutions. On Formvar-coated copper grids, ultrathin slices were obtained, stained with uranyl acetate (UA) and lead citrate (LC), and then analysed using a JEOL (JEM-2100) transmission electron microscope (JEOL Ltd., Tokyo, Japan).

Statistical analysis

The inhibition zone of fungal growth estimated as percentage of the control was arcsine transformed before performing statistical analysis to ensure homogeneity of variance. Data were analyzed using SPSS version 22. Main separation was performed using the Duncan’s multiple range tests at p<0.05.

RESULTS AND DISCUSSION

Isolation and identification of fungal pathogens

Three fungal infections were found to be infecting the apple fruit in the local markets of New Damietta, according to the preliminary examination into the occurrence of post-harvest deterioration of the fruit (Table 2). The following isolated fungi attacked the apple fruits used for testing. *Aspergillus niger*, *Penicillium expansum*, and *Alternaria alternata* were discovered to be the most prevalent fungi species (Table 2).

Table 2 Number of colonies and the occurrence of isolated fungal species from spoiled fruits of apple. Each value is the mean of 5 replicates ± SE.

Disease	Isolated fungus	No. of colonies	Relative occurrence (% of total)
Alternaria rot	*Alternaria alternata* (Fr.)	13	4.48
Blue mold rot	*Keissl*	10	3.44
Black mold rot	*Penicillium expansum* Link	9	3.1

Antifungal activity of plant extracts

Five different concentrations (0, 1, 3, and 10%) of aqueous and ethanol extracts from eleven different plant species were used to investigate A's susceptibility to fungus development. A *alternata.* Table 3 showed that plant species and extract type had an impact on fungal growth as well as a highly significant variance in fungus susceptibility.
Table 3 Four-way ANOVA of the effect of the main factors (plant species, type of extract and concentration of the extract) and their interactions on the inhibition percentage of Alternaria alternata.

Source of variation	Df	F	Significant
Plant species	10	1	2101.675
Extract	4	1	4044.657
Fungus * Plant species	10	1	163.753
Fungus * Extract	4	1	77.348
Plant species * Extract	10	1	79.208
Plant species * Conc.	40	1	114.209
Extract * Conc.	4	1	158.929
Fungus * Plant species * Extract	10	1	33.380
Fungus * Plant species * Conc.	40	1	17.574
Fungus * Extract * Conc.	4	1	6.930
Plant species * Extract * Conc.	40	1	15.317
Fungus * Plant species * Extract * Conc.	40	1	8.586

All of the examined plants’ aqueous and ethanol extracts had an impact on A. alternata, although the ethanol extract had a stronger inhibitory effect on the test fungus’ development than the water extract did. Thymus capitatus had the strongest inhibitory effect out of the 11 plant species, with average inhibition (for both aqueous and ethanol extracts) of 41% and 53%, respectively. With an average inhibition of 28.4% and 42%, respectively, compared to control, Eucalyptus citriodora placed second. Nicotiana glauca, on the other hand, demonstrated the least efficient one, with average inhibition of 6% and 4.8%, respectively. Depending on the type of extract and fungus, the remaining eight plant species displayed mild inhibition of varying degrees and ranks. The increase of the concentration of the plant extract led to a progressive inhibition of fungal growth; yet, the concentration-response relationship differed in test fungus according to plant species and type of extract. For example, a saturable trend with variable magnitude depending on the fungus, plant species and the extract was noticed in terms of both extracts of Moringa oleifera, Ziziphus spina-christi and Delonix regia on test fungus. Furthermore, both extracts of Melia azedarach on A. alternata (Figure 1).

In example A, the ethanol extract showed this saturable trend more frequently than the aqueous extract. Additionally, the test fungus was solely treated with aqueous extracts of Cyperus rotundus and Lantana camara. At the concentration where the difference between the two extracts is the greatest, the ethanol extract of the studied plant species had a higher inhibitory impact on fungal growth than the aqueous extract. In the case of the effects of Melia azedarach, Schinus terebinthifolius, Eucalyptus citriodora, and Delonix regia on test fungus, this difference increased with the concentration of plant extracts. Lantana camara and Thymus capitatus on and Nicotiana glauca and Zygoxyphillum aegyptium on both displayed a pattern of maximal difference in the moderate quantities of the extract.

Table 4 Effect of plant species and type of extract on the growth of A. alternata. Each value is the mean of 5 replicates ± SE. Means with common letters are not significantly different at p<0.05.

Scientific name	Inhibition of fungal growth (% of control)	Aqueous extract	Ethanol extract
Nicotiana glauca	5.23 ± 1.31a	6.89 ± 1.76a	
Schinus terebinthifolius	6.18 ± 1.44b	12.4 ± 2.23bc	
Lantana camara	6.23 ± 2.22bc	20.4 ± 3.78a	
Delonix regia	6.27 ± 1.21bc	10.7 ± 1.85a	
Ziziphus spina-christi	10.8 ± 1.85c	11.8 ± 2.13c	
Melia azedarach	12.1 ± 3.64c	34.5 ± 6.03c	
Eucalyptus citriodora	15.0 ± 3.86d	41.8 ± 8.32c	
Zygoxyphillum aegyptium	18.2 ± 4.26e	26.8 ± 5.04gh	
Cyperus rotundus	19.1 ± 3.65f	22.6 ± 4.43i	
Moringa oleifera	27.0 ± 4.37g	27.5 ± 4.58i	
Thymus capitatus	35.6 ± 8.15h	46.8 ± 9.37j	

The concentration-response correlations of Figure 1 were used to compute the relative potency of the aqueous and ethanol extracts of the studied plant species on fungal growth in Table 5. In general, the LC50 value of the various species’ ethanol extracts was significantly lower than that of the aqueous extract. The amount of fungal growth inhibition caused by the aqueous extract in the majority of A. alternata was too small to allow for the determination of the LC50. Only the most potent plant species (Thymus capitatus), Eucalyptus citriodora, and Schinus terebinthifolius’ LC50 of the aqueous extract could be estimated.
FIGURE 1. Effect of aqueous and ethanolic plant extracts of *Moringa oleifera*, *Ziziphus spina-christi*, *Melia azedarach*, *Nicotiana glauca*, *Cyperus rotundus* and *Lantana camara* on growth of *A. alternata*. Each value is the mean of three replicates ± S.E.

FIGURE 1 Cont. Effect of aqueous and ethanolic extracts of *Schinus terebinthifolius*, *Zygophyllum aegyptium*, *Delonix regia*, *Eucalyptus citriodora* and *Thymus capitatus* on growth of *A. alternata*. Each value is the mean of three replicates ± S.E.

In Vivo activity of plant extracts on fruits

The most promising *In Vitro* results were used to guide the use of plant extracts in *vivo*, which was done to see whether there was a difference between the two types of research. Following infection by 24 hours, six treatments were administered, each lasting for 21 days, or until deterioration of the whole fruits in the infected control was noticed. According to Table (6), the type of treatment, the length of storage, and their interaction all had a highly significant impact on the fungal susceptibility.

Table 6 Two-way ANOVA of the effect of the main factors (Treatment, and storage period) and their interactions on the percentage inhibition of *Alternaria alternata*

Source of variation	df	F	Sig.
Treatment	4	9346.372	0.000
Time	3	11285.335	0.000
Treatment* Time	4	2217.396	0.000

The diameter of the infected area, which is an indication to disease spreading, increased by extending of storage period. Furthermore, the results indicated that all the treatments significantly decreased the infected area during the storage period (21 days), compared with the untreated control.

Trails of spraying the apple fruits with fungicide, *E. citriodora* only, *T. capitatus* only and the mixture of both showed a significant reduction in the infection of the fruit with different magnitude (Figure 2).
It was clear that, at the end of the first week, it was noticed that the fungal infection was negligible in case of spraying by the mixture and 30% by *T. capitatus* (Figure 3) and (Plates 1, 2 and 3).

Figure 3 Time course of infection progress of apple fruits by *A. alternata* in response to application of several antifungal agents. Each value is the mean of 3 replicates ± SE.

Plate 1 Apples previously infected with *A. alternata* after 7 days of treatments as A: infected control, B: treatment with *E. citriodora* only, C: treatment with fungicide only, D: treatment with *T. capitatus* only and E: treatment with mixture of both *E. citriodora* and *T. capitatus*.

Plate 2 Apples previously infected with *A. alternata* after 14 days of treatments as A: infected control, B: treatment with *E. citriodora* only, C: treatment with fungicide only, D: treatment with *T. capitatus* only and E: treatment with mixture of both *E. citriodora* and *T. capitatus*.

Plate 3 Apples previously infected with *A. alternata* after 21 days of treatments as A: infected control, B: treatment with *E. citriodora* only, C: treatment with fungicide only, D: treatment with *T. capitatus* only and E: treatment with mixture of both *E. citriodora* and *T. capitatus*. Electron Microscopy

Inhibitory effect of the mixture of *E. citriodora* and *T. capitatus* ethanolic extracts on *A. alternata*. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used. Plates (4 A and B) showed that the untreated *A. alternata* hyphae as observed by SEM appeared normal, with no deformity and normal conidia were observed with verruculose surface ornamentation. A filiform peak with smooth surface was also noticed (Plates 4B and C). In contrast, *A. alternata* hyphae treated with ethanolic extract of the mixture of both *E. citriodora* and *T. capitatus* revealed a strong detrimental effect of the extract on both the hyphal and spore morphology. Deformity in hyphae was observed in the form of flattened hyphae, in addition affected and abnormal spores were noted (Plates 5 A, B and C). Furthermore, the ultrastructure of *A. alternata* hyphae and conidia without treatment (control) as observed by TEM showed normal hyphae enclosed by a wall composed of three layers in which the middle layer is more electron-denser than the outer and inner layers. An intact plasma membrane was also observed. In addition, an electron-dense material was observed at the tip of the hyphae. The cytoplasm contained several organelles such as the nucleus, lipid bodies and vacuoles (Plates 6 A and B). On the other hand, the hyphae of *A. alternata* treated with the ethanolic extracts of the mixture of *E. citriodora* and *T. capitatus* exhibited many dramatic changes as noted in both T.S and L.S such as the increase in the electron density of the outer layer of the hyphal wall more than the control, also numerous big lipid bodies were almost occupied the cytoplasm. In addition, vacuoles were filled with small particles were also observed (Plates 7 A, B and C).

Plate 4 SEM micrographs showing untreated hyphae (control) of *Alternaria alternata*. (A). Low magnification of normal hyphae. No deformity was observed. Bar = 50 μm. (B). A magnified part of A showing normal hyphae and conidia (arrows). Bar = 10 μm. (C). A magnified part of B showing normal hyphae. Note a conidium (C) with verruculose surface ornamentation. Note also filiform beak (arrow) with smooth surface. Bar = 10 μm.

Plate 5 SEM micrographs showing treated hyphae of *Alternaria alternata* by concentration 1.5% of mixture of both *Eucalyptus citriodora* and *Thymus capitatus*. (A). Low magnification showing deformed hyphae and spores. Bar = 50
µm. (B). A magnified part of A showing deformed hyphae (arrows) and affected spores (SP). Bar = 10 µm. (C). A magnified part of B showing flattened hyphae (arrows) and abnormal spores (SP). Bar = 10 µm.

Plate 6 EM micrographs of Alternaria alternata hyphae. A and B, showing untreated (control) normal hypha. (A). L. S. of a hypha enclosed by a wall (W) and intact plasma membrane (P). The hyphal cell contains lipid bodies (L). Note the septum (S). Note also the electron-dense material at the tip of the hypha (arrow). Bar = 5 µm. (B). Normal hypha. Note that the hyphal wall (W) is composed of three layers, the middle layer is more electron-denser than the outer and inner layers. Note also the nucleus (N), lipid bodies (L) and vacuoles (V) inside the cytoplasm of the hypha. Bar = 5 µm.

Plate 7 TEM micrographs of Alternaria alternata hyphae. A, B and C showing treated hyphae with concentration 1.5% mixture of both Eucalyptus citriodora and Thymus capitatus. (A). L. S. of a hypha showing an electron-dense layer (arrows) is deposited on the outer surface of hyphal wall (W). Note that the hyphal wall became more electron-denser than that of the control. Note numerous lipid bodies (L) and electron-dense vesicles (VS) inside the hyphal cytoplasm. A septum (S) can also be seen. Bar = 2 µm. (B). Showing two hyphae (T. S. and L.S). Note granulated cell walls (W) and electron-dense layer (arrows) deposited on the outer surface of the wall. Note also big lipid bodies (L) are almost occupy the electron-dense cytoplasm (CY). A hyphal septum can also be seen. Bar = 2 µm. (C). Showing two hyphae with thick granulated wall (W). Note an electron-dense layer deposited on the outer surface of the wall (arrows). Note also lipid bodies (L) and vacuoles (V) filled with small particles. Bar = 2 µm.

DISCUSSION

Post-harvest loss of fruits due to the fungal infection is considered a severe global problem in particular the developing countries (Baka et al., 2015). In support to the present results, Amiri and Bompeix (2005) reported numerous Penicillium spp. associated with post-harvest fruit spoilage. Of these species, Penicillium expansum, P. digitatum, P. crustosum, and P. solitum had been recognized as the most frequent causative agents of apple spoilage (Kim et al., 2005). Alternaria spp. is also a major fungal pathogen, which infect various local fruits such as apple.

Several factors control fruit invasion by fungal pathogens especially after harvest. The most measured parameter is the shelf life problem that is tied to the shelf life time of fruits. But, due to their dangerous consequences on human health, biological control of fruit spoilage is the current trend to solve this problem (Tsollo, 2004; Enyiukwu et al., 2014). Many studies had reported the use of bio-control agents for post-harvest fruits diseases (Manjula et al., 2005). The eleven plant species tested in the present study exhibited diverse antifungal activities which varied according to the fungal species, plant species and type of solvent. In general, Eucalyptus citriodora and Thymus capitatus exhibited the most effective effect against A. alternata whereas Nicotiana glauca was the least effective.

The differences in toxicity recorded between extracts are likely to be influenced by several factors such as the method of extraction, type of extracting solvent (the efficiency of the solvent to extract bioactive substances, variation in quantity of the active constituents and the difference in bioactive constituents between plants. The composition of bioactive compounds in turn vary from species to species, climatic conditions, and the physiological stage of plant development (Pandey, 2007). In this study, ethanol had a greater capability for the extraction of active substances from tested plants than did water which is in agreement with the results obtained by Stephan et al. (2005) and the postulation of Pandey (2007) that the type of solvent and the ability of the solvent in extraction affect the inhibitory activity of the plant extracts.

The antifungal activity of Eucalyptus citriodora and Thymus capitatus can be related to the unique secondary bioactive compounds produced by the two species. In this respect, Lee (2007) reported the occurrence of several active antifungal compounds, like citronellal and isopulegol in Eucalyptus citriodora essential oil and ρ-cymene, γ-terpinene and thymol in Thymus capitatus. These active substances, because of their considerable lipophilicity, are subjected to extraction by ethanol to a greater extent than by water, which can partially explain the stronger antifungal efficiency of the ethanol extract.

In agreement with Shagai et al. (2012) reported that aqueous extracts and ethanol of Eucalyptus spp. share some components, but differ in others. Both the aqueous and ethanolic extracts contain high amounts of saponins, while the aqueous extract contains tannins, saponins, flavonoids, terpenoids and anthraquinones but no alkaloids, flavonoids and terpenoids; however, the ethanolic extract contains tannins and steroids but no glycosides and anthraquinone. The presence of these phytochemicals in Eucalyptus spp. justifies manipulation of the plant in the management and bio control of various diseases or spoilage fruits.

Likewise, it had been reported that Thymus capitatus has a powerful antifungal activity by virtue of its high content of a wide range of bioactive compounds like essential oils which can act as biogenic precursors of phenolic compounds such as ρ-cimene, γ-terpinene, and β-caryophyllene; in addition to its high content of phenols such as carvacrol (Mariateresa et al., 2013). The mechanism of action of carvacrol and thymol as fungicides appears to be through the inhibition of ergosterol biosynthesis and disruption of membrane integrity of the fungus as reported by Bouchra et al. (2003) and Ahmed et al. (2011).

In addition, phytochemical screening of Thymus capitatus revealed the presence of saponins, resins, flavonoids, essential and fixed oils; compounds of profound inhibitory effect fungi (Kandil et al., 1994). Effective bioefficiency of thyme essential oils against B. cinerea as post-harvest fungi on apple fruits (Banani et al., 2018).

Seed extract of Moringa oleifera showed pronounced inhibition of linear growth of Alternaria alternata, A. solani, Fusarium oxysporum, F. solani and F. chlamydosporum, Rhizoctonia solani, Sclerotium rolfsii and Macrophomina phaseolina (Anwar et al., 2015). The inhibitory activity of aqueous extracts of Cyperus rotundus rhizomes, Melia azedarach leaves and Lantana camara leaves against Alternaria brassicae, aqueous extracts of ginger, turmeric, and garlic have been effective in reducing growth of A. alternata growth and disease. The major chemical components of C. rotundus are essential oils, flavonoids, terpenoids, sesquiterpenoids, acyrapane, cyperene, cyperenone, asellinone, rotundene, valencene, cyperol, gurjune, trans-calamene, decadene, gacatorene, cadalene, amuurolene, gmuurolene, cyperotorundone, mustakone, isocypelerol and acyperone (Imam et al., 2014)

The present work revealed that Nicotiana glauca exhibited the least antifungal activity against A. alternata. The low activity of N. glauca could be the result of the extraction of active substances by Ochoa Fuentes et al. (2012). The antifungal activity of plant extracts may be related to the presence of many bioactive compounds such as flavonoids, terpenoids and flavonoids, which may be responsible for the antifungal activity against A. alternata.
terpenoids, alkaloids, tannins, steroids, glycosides and phenolics. The function of phenolics is due to their amphipathicity which facilitate their interactions with biomembrane and thus induce the antimicrobial activity. The antifungal activity of alkaloids was already reported in several studies including different plant extracts (Veldhuzen et al., 2004). Results indicated that the values of LC50 of the ethanolic extracts are more frequent and of lower magnitude than those of the aqueous extracts and that Eucalyptus citriodora and Thymes capitatus yielded the lowest LC50 among the studied species. Normally, the lower the LC50, the more potent is the antifungal activity of the extract. LC50 for E. citriodora extract has been measured 70 mg/L. This means that the antifungal activity of this extract is too weak to the extent that the relative inhibition of fungal growth never attained 50% even at the top concentration used (10% v/v).

The difference among pathogens in response to treatment with plant extracts may be due to their genetic or physiological differences. (Kumari et al., 2015). The present work revealed marked sensitivity of A. alternata. Similarly, Hadizadeh et al. (2009) reported that Zeopsha spinosa-christi ethanolic extracts were effective on A. alternata. In Vitro application of plant extracts against Post-harvest pathogenic fungi of fruits their result revealed that most of the concentrations of the extracts that were investigated were not efficient enough when assessed in the post-harvest assay, despite having demonstrated a high in vitro antifungal effect. Potentials of some plant extract was evaluated as biocontrol against post-harvest fungi (Sernit et al., 2020).

Several In Vitro and In Vivo investigations suggested that the essential oils and plant extracts could be used as effective antifungal bio-control agent against many phytopathogenic fungi (El-Mohamedy et al., 2013). In line with this, many plants synthesize substances that are useful for controlling the growth of microorganisms with the advantage of being non-phytotoxic, systemic and biodegradable (Kumari et al., 2015). The efficiency of disease in In Vivo can be reduced by combination of both chemical and bio-control agents as stated by Dubroy et al. (1998) who found that tests in citrus packinghouses indicated that bio-control alone cannot provide adequate control and must be combined with diluted fungicides or other methods to control post-harvest infection.

The In Vivo test to control Alternaria rot disease in apple, demonstrated that the infection was in the form of lesions. This is in agreement with Vilanova et al. (2012) who found that infection was in the form of lesions on fruits infected by Penicillium digitatum and lesions were not developed beyond the initial infection site. It was clear that all the treatments used in the present work showed a significant reduction in the infection of the fruits with different magnitude without completely destroying the pathogen. It is clear that, in general, the mixture of E. citriodora and T. capitatus was more potent. As far as the author is aware very little is known about the use of Penicillium roqueforti as a bio-control agent for the fungal post-harvest diseases of fruits. The antifungal activity of P. roqueforti against A. alternata explained on the basis of its ability to produce volatile terpenes such as, limonene, β-caryophyllene and other alternations (Shankar et al., 2013). The present work revealed marked sensitivity of A. alternata. Similarly, Hadizadeh et al. (2009) reported that Zeopsha spinosa-christi ethanolic extracts were effective on A. alternata.

In conclusion, the antifungal activity of aqueous and ethanolic extracts of some medicinal plants was tested. Out of the tested medicinal plants the T. capitatus and E. citriodora extracts, is similar to those produced by some synthetic fungicides and other plant extracts (Bianchi et al., 1997). Increase in the size and number of vacuoles along with other alternations might also, in turn, modify the activity of membrane enzymes involved in the formation of cell wall, causing anomalous development. However, the response to extracts seems to be different depending on the target agent used and this was clear A. alternata.

REFERENCES
Al-Hindi, R. R., Al-Najada, A. R., & Mohamed, S. A. (2011). Isolation and identification of some fruit spoilage fungi: Screening of Plant wall degrading enzymes. African Journal of Microbiology Research, 5(4), 443-448. https://doi.org/10.5897/AJM2010.289
Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M. L., & Spadaro, D. (2018). Thyme and savory essential oil efficacy and induction of resistance against Botrytis cinerea through priming of defense responses in apple. Foods, 7(2), 11. https://doi.org/10.3390/foods7020011
Bianchi, A., Zambonelli, A., D'Aulelio, A. Z., & Bellesia, F. (1997). Ultrasonic studies of the effects of Allium sativum on phytopathogenic fungi in vitro. Plant Disease, 81(12), 1241-1246. https://doi.org/10.1094/pidis.1997.81.11.1241
Bouchra, C., Achouri, M., Hassani, L. I., & Hmanouchi, M. (2003). Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fruits. Journal of ethnopharmacology, 89(1), 165-169. https://doi.org/10.1016/S0378-7741(03)00275-7
Bouhous, L. (2009). Flora of Egypt checklist, revised annotated edition. Al-Hadara Publishing, Cairo, 198-201.doi: (not found)
Chejine, N. V. (2008). Mycrolora of some salad vegetables. Bio-research, 6(2), 392-395
Cristani, M., D’Arrigo, M., Mandalar, G., Castelli, F., Saspeto, M. G., Miceli, D., & Trombetta, D. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of agricultural and food chemistry, 55(15), 6300-6308. DOI:10.1021/jf070494x
Droby, S., Cohen, L., Dau, A., Weiss, B., Horev, B., Chalutz, E., & Shachnin, A. (2006). In vitro antimicrobial testing of olive oil: A yeast preparation for the biological control of postharvest decay of citrus. Biological Control, 12(2), 97-101. https://doi.org/10.1016/j.biocontrol.1998.06.015

CONCLUSION

The severity of disease in packinghouses indicated that bio-degradable bodies and thickening of cell wall induced by the mixture of T. capitatus and E. citriodora extracts, is similar to those produced by some synthetic fungicides and other plant extracts (Bianchi et al., 1997). Increase in the size and number of vacuoles along with other alternations might also, in turn, modify the activity of membrane enzymes involved in the formation of cell wall, causing anomalous development. However, the response to extracts seems to be different depending on the target agent used and this was clear A. alternata.
