Revealing the secrets of Norway’s seafloor – geological mapping within the MAREANO programme and in coastal areas

Reidulv Bøe*, Lilja Rún Bjarnadóttir, Sigrid Elvenes, Margaret Dolan, Valérie Bellec, Terje Thorsnes, Aave Lepland and Oddvar Longva

Geological Survey of Norway (NGU), Postal Box 6315 Torgarden, 7491 Trondheim, Norway

Abstract: Results from geological mapping within the MAREANO (Marine Areal Database for Norwegian Coasts and Sea Areas) programme and mapping projects in the coastal zone reveal a rich and diverse seafloor in Norwegian territories. The geomorphology and sediment distribution patterns reflect a complex geological history, as well as various modern-day hydrodynamic processes. By early 2019, MAREANO has mapped more than 200 000 km² (c. 10%) of Norwegian offshore areas, spanning environmental gradients from shallow water to more than 3000 m depth, with ocean currents in places exceeding 1 m s⁻¹ and water temperatures below −1°C. Inshore, along the 100 000 km-long Norwegian coastline, the Geological Survey of Norway (NGU) has conducted a series of seabed mapping projects in collaboration with local communities, industry and other stakeholders, resulting in detailed seabed and thematic maps of seabed properties covering c. 10 000 km² (11% of the areas). Bathymetric and geological maps produced by MAREANO and coastal mapping projects provide the foundation for benthic habitat mapping when combined with biological and oceanographic data. Results from the mapping conducted over the past decade have significantly increased our understanding of Norway’s seafloor and contributed to the knowledge base for sustainable management. Here we summarize the main results of these mapping efforts.

The multidisciplinary Norwegian seabed mapping programme MAREANO (Thorsnes et al. 2008; MAREANO 2019) is a collaboration between the Geological Survey of Norway (NGU), the Institute of Marine Research (IMR) and the Norwegian Mapping Authority (Norwegian Hydrographic Service (NHS)). The programme is financed by the Ministry of Trade, Industry and Fisheries, and the Ministry of Climate and Environment. These ministries, along with the ministries of Petroleum and Energy, Local Government and Modernisation, and Transport and Communications, form the MAREANO Steering Board.

Between 2006 and early 2019, more than 200 000 km² of seabed have been mapped (Fig. 1), corresponding to around 10% of the Norwegian offshore area. The areas mapped span broad environmental gradients with water depths extending to more than 3000 m, ocean currents exceeding 1 m s⁻¹ and seawater temperatures below −1°C. Dramatic landscapes (Fig. 2) have been observed, with canyons up to 1 km deep formed by fluid-flow processes and sliding, and locally almost subvertical margins. Continental slopes vary in width from 30 km to more than 100 km, with gradients locally reaching 60°. Shelf plains and banks (30–300 m water depth) and cross-shelf troughs (200–500 m water depth) occur over wide areas, and a rich faunal diversity has been observed (e.g. Bellec et al. 2008, 2009, 2010, 2016, 2017a, b; 2019; Chand et al. 2008, 2009, 2012; Thorsnes et al. 2008, 2009, 2016a, b, 2017; Bøe et al. 2009, 2012, 2015, 2016; Buhl-Mortensen et al. 2009a, b, 2012, 2015; Dolan et al. 2009, 2012b; Elvenes et al. 2012, 2013, 2016; Rise et al. 2013, 2015, 2016a, b; Elvenes 2014; King et al. 2014; Bjarnadóttir et al. 2016, 2017; Diesing and Thorsnes 2018).

Results from MAREANO (MAREANO 2019) have contributed significantly to the revision of Norway’s management plan for the Barents Sea–Lofoten areas, as well as the management plan for the Norwegian Sea (Fig. 2). These plans are used by Norwegian authorities in their management of the northern seas, particularly in relation to fisheries and petroleum activities.

Spatial management of the Norwegian nearshore areas is the responsibility of coastal municipalities. Municipal jurisdiction extends to 1 nautical mile off-shore of a baseline joining the outermost islets and skerries. Coastal marine areas cover c. 90 000 km², comprising a wide range of environments from rocky, exposed shallows to fjords up to 1300 m...
Fig. 1. Areal coverage of seabed sediments (grain size) maps at scale 1:1,000,000–1:4,000,000 by April 2019. Areas mapped in higher detail in Norwegian areas are shown with black (MAREANO and previous projects in the North Sea) and red outlines (coastal mapping projects). L, Lofoten.
deep. Through a series of mapping projects in cooperation with local authorities and other stakeholders, NGU has published geology-focused seabed maps and derived thematic maps ('marine base maps': Elvenes et al. 2019; NGU 2019a) covering c. 10,000 km² of the coastal areas (Fig. 1; see below). These offer invaluable knowledge to marine spatial planners and the many users of the Norwegian coastal zone.

In this paper, we describe the mapping process and the geological maps produced by NGU. The geological maps (e.g. Fig. 3), along with bathymetry, biological data and oceanographic modelling results, form the basis for further mapping and modelling of benthic habitats (including biotopes, nature types, vulnerable habitats, etc.) both offshore and in the coastal zone (e.g. Buhl-Mortensen et al. 2009a, b, 2012, 2015; Dolan et al. 2009, 2012a; Bekkby et al. 2012; Elvenes et al. 2013; Gonzalez-Mirelis and Buhl-Mortensen 2015). Mapping of the environmental chemistry of the seabed sediments (e.g. Pb and PAH) is included in the MAREANO programme and in multiple coastal mapping projects (e.g. Elvenes et al. 2018; Jensen et al. 2018; Knies and Elvenes 2018).

All maps from MAREANO and NGU’s coastal mapping projects are published online and are freely available for viewing, downloading and WMS use (MAREANO 2019; NGU 2019a). Additionally, a series of composite, printable PDF MAREANO maps is published online (e.g. Bjarnadóttir et al. 2017; NGU 2019a).

Fig. 2. Example of nearshore–offshore seabed morphology mapped by MAREANO, Lofoten–Vesterålen, north Norway. V, Vesterålsgrunnen. See Figure 1 for the location of Lofoten.

Methods

MAREANO

Mapping of a new area commences with multibeam echo-sounder surveys by NHS or external contractors according to defined standards (NHS 2018). Other bathymetry data may be available from the petroleum industry, research institutions or the Olex database (mainly single-beam echo-sounder data) (e.g. Elvenes et al. 2012).

Multibeam echo sounders are used for detailed mapping of the bathymetry. Furthermore, co-registered backscatter data provide additional information on the composition and structure of the seafloor through the amplitude of the returned signal from the seafloor (e.g. Lurton and Lamarche 2015). Bathymetry data are processed by NHS and subcontractors (data correction and cleaning), and, after quality control, NHS produces terrain models at horizontal resolutions appropriate to the sounding density (in the range 2–50 m). Backscatter datasets are processed from raw data by NGU using industry-standard software to produce mosaics with a pixel resolution of 1–50 m, depending on the data density and quality. Since 2010, water column data have also been acquired as part of the MAREANO multibeam echo-sounder surveys. Subcontractors acquire sub-bottom profiler data (only a few surveys prior to 2018), yielding additional information about the structure and composition of the uppermost c. 100 m of the seafloor.
IMR and NGU plan and arrange common sampling cruises. Given MAREANO’s wide mapping focus, the station planning must take broad-scale environmental variability into consideration, including both geological and biological diversity, as well as identifying suitable locations for retrieving samples for chemical analysis. High-resolution bathymetry and backscatter data, supplemented with available oceanographic model data, are fundamental to this station planning process.

While early MAREANO station planning was essentially expert driven (but guided by a simple unsupervised classification of the physical environment), MAREANO has now phased in more objective and automated methods (Thorsnes et al. 2015). The sampling effort is matched as far as possible to the scale of the map product(s) and available budgets. Approximately 10 stations per 1000 km² have been visited for the collection of video data, allowing visual observation of seabed sediments and megafauna. A proportion of these stations (generally two per 1000 km²) are so-called full stations where a range of sampling gear (see below) is used in support of multidisciplinary mapping (geology, biology, chemistry). These general averages in terms of station density have been adapted from area to area in recent years, depending on the complexity of the seabed and/or the length of the video lines. In 2018, the sampling density for video and geological grab samples was increased to 20 stations per 1000 km², in connection with a reduction in the length of video lines from 700 to 200 m. This change allows more locations to be documented which generally increases the environmental space observed within a similar timeframe.

MAREANO employs the towed video platforms Campod and Chimaera for seabed video surveying deployed from relatively large, stable research vessels with dynamic positioning (e.g. R/V G.O. Sars). These platforms are equipped with a low-light charge-coupled device (CCD) (forward-looking) and high-definition (HD) video cameras, in addition to

Fig. 3. Landscapes and landforms in an area mapped by the MAREANO programme outside north Norway. The map is made for viewing at a scale of 1:100 000. S, Sveinsgrunnen; M, Malangsdjupet. See Figure 2 for the location of Andøya.
lights, scale indicator and a geopositioning transponder accurate to c. 2% of the water depth. The HD camera has a manual zoom and focus, and is mounted on a pan-and-tilt device. The video platforms are used both temporarily parked on the seabed for detailed studies and in a transect mode towed by the ship along a predefined survey line. The height above the seabed is maintained by a winch operator using visual observations from the forward-looking camera.

A variety of other physical sampling gear is used by MAREANO at full stations including grab, box corer, multicorer and gravity corer, all providing material and information from the seafloor and uppermost metres of the seafloor for geological and ecological (infauna and epifauna) studies. The multicorer is used for environmental sampling of undistorted core material. Epibenthic sledge and beam trawl are employed to sample fauna on and above the seabed. Oceanographic properties are measured with CTD, ADCP and rosette sampler.

During MAREANO sampling cruises, sub-bottom profiler data (e.g. TOPAS topographical parametric sonar) are acquired during transit between all stations and along selected transects covering features of special interest (e.g. sand waves or pockmarks observed in multibeam bathymetry). Sub-bottom penetration depends on grain size and compaction of the seabed, and may be up to 100 m with a vertical resolution of 0.5–1 m in fine-grained sediments. These data support the geological interpretation and are particularly useful for the production of NGU’s sediment genesis map (see below). Sub-bottom profiler data are now also regularly acquired during the MAREANO multibeam mapping cruises.

Coastal mapping

Coastal mapping projects have so far been limited to areas with existing multibeam data available from NHS or other sources (e.g. the Norwegian Defence Research Establishment (FFI)). Additional multibeam data are occasionally acquired during NGU cruises. Pre-cruise station planning for video surveying and physical sampling in the coastal zone is expert-driven, based on multibeam bathymetry and backscatter, and the number and distribution of stations vary depending on seabed complexity and the availability of existing observations. Commonly, 100–200 stations are visited per 1000 km². Automated methods for station planning, like those now adopted by MAREANO, need to be improved before they integrate the complexities of the coastal environment and the geologist’s need for ground truthing, particularly when multibeam backscatter datasets from multiple sources are applied, as these can be challenging to harmonize.

In the coastal zone, where surveys are generally conducted from NGU’s 17 m-long research vessel R/V Seisma, video data are recorded by means of a towed platform equipped with one low-light CCD camera and one HD camera, as well as lights, scale indicator and geopositioning transponder. Camera settings are locked during operation, and the platform is kept at 0.5–1 m above the seabed while the ship is moving at low speed. Video lines are generally 50–300 m long. Their final lengths are adapted en route depending on the heterogeneity of the observed seabed. The main sampling gears consist of grab and multicorer or Niemistö-corer.

Sub-bottom profiler (TOPAS) data are also acquired on coastal mapping cruises on R/V Seisma during transits between stations, as well as along selected transects, and data are used to support the geological interpretations.

Results

In MAREANO, geological seabed maps based on high-quality multibeam echo-sounder data (5 m grids) and seabed ground-truth data include seabed sediments (grain size), seabed sediments (genesis), sedimentary environment, and landscapes and landforms. These are all mapped for use at the scale 1:100 000 (digitizing scale c. 1:50 000) (Table 1) and coarser. Marine base maps for the coastal zone are generally made for use at the scale 1:20 000 (digitizing scale c. 1:10 000). In both cases, map scales may vary depending on the purpose, multibeam data quality and available ground-truth data.

Landslapes and landforms

The marine landscape mapping performed by MAREANO delimits broad-scale morphological elements (Thorsnes et al. 2009). Landscape classification is based on the national nature description and typification system NiN (Nature types in Norway: Artsdatabanken 2019). NiN defines landscapes as large geographical areas with a visually homogeneous character. Through a semi-automated GIS method (Elvenes 2014), bathymetry data and derived terrain attributes (e.g. slope, curvature, relative relief, relative vertical position) are used to categorize all areas of the seabed as one of the following classes: strandflat; smooth continental slope; marine canyon; marine valley; shallow-marine valley; fjord; deep sea plain; continental slope plain; continental shelf plain; and hilly/mountainous marine landscape (Fig. 3). Strandflat is the crystalline platform which characterizes large parts of the Norwegian coast and in many areas contrasts sharply with the sedimentary rocks of the continental shelf. Fjords and marine valleys are the results of concentrated glacial erosion...
during repeated glaciations, with fjords incising the mainland. Continental shelf plain is the residual low-relief landscape between marine valleys on the continental shelf.

For areas with multibeam data coverage, MAREANO’s marine landscape maps are based on bathymetry data with a horizontal resolution of 50 m and are at a scale of 1:100 000. In other areas, maps are based on best available resolution data such as Olex or IBCAO bathymetry, which are generally of lower quality (larger uncertainty) than multibeam data. Landscape delineation in areas without multibeam data coverage is, therefore, conducted at coarser map scales – typically 1:500 000–1:1 000 000. Marine landscape maps do not form part of the coastal marine base maps, although some mapped areas are covered by the MAREANO classification.

Marine landforms (Figs 3 & 4) are mapped in MAREANO based on detailed bathymetry and sub-bottom profiler data, supported by video observations of the seabed. Landforms are interpreted and digitized manually in GIS as polygons or lines, depending on the type of landform and size. Examples of landforms mapped are drumlin, moraine, esker, meltwater channel, crevasse-fill ridge, glacial lineation, glaciotectonic hole, glaciotectonic hill, sediment wave field, channel, canyon, slide scarp, slide front, slide fan, submarine slide and pockmark area. A collaboration has been developed between MAREANO, the British MAREMAP programme and the Irish INFOMAR programme to develop a common framework for morphological and geomorphological mapping (Dove et al. 2016).

Thousands of cold-water coral reefs occur on the Norwegian continental shelf and in the coastal zone (e.g. Mortensen et al. 2001; Bøe et al. 2016; Thorsnes et al. 2016a, 2017; Jarna et al. 2017). From 2018, offshore coral carbonate mounds are mapped by a methodology that combines image segmentation and spatial prediction based on multibeam bathymetry. The results of Diesing and Thorsnes (2018) show that, for a limited study area, the image-object mean planar curvature is the most important predictor, and their approach allows the presence and absence of carbonate mounds to be mapped.

Map products:	MAREANO	Coastal mapping projects	
Seabed sediments (grain size)	Included:	Included:	
Map scale/raster resolution:	1:100 000–1:3 000 000	1:10 000–1:50 000	
Seabed sediments (genesis)	Yes	No	
Sedimentary environment	Yes	No	
Accumulation areas	No	Yes	
Anchoring conditions	No	Yes	
Digability	No	Yes	
Slope >30°	No	Yes	
Slope (raster)	No	Where	
Seabed terrain (raster)	Yes	Where permitted	
Backscatter (raster)	Yes	Where permitted	
Landforms	Yes	Where permitted	
Marine landscapes	Yes	Where permitted	
Mapping strategy	Large and coordinated mapping efforts, long-term planning	Smaller projects in cooperation with local authorities and stakeholders	
Video transects	Length	Standardized: 700 m pre-2018, 200 m from 2018	Adjusted to local conditions, often 200–300 m
Number	Standardized but varying from area to area, typically 5–20 transects per 1000 km²	Adjusted to local conditions, often c. 100 transects per 1000 km²	
Video platform Samples	Towed and stationary on seabed Sediment grab and other sampling equipment, standardized number of samples	Towed Mainly sediment grab; number of samples adjusted to local conditions	

R. Bøe et al.
Fig. 4. Landscapes and landforms mapped by MAREANO. (a) Continental shelf and slope with canyons and slides outside Vesterålen, north Norway. In this area, water depths increase from around 50 m on the Sveinsgrunnen Bank to 200 m in the Malangsdjupet Trough and to more than 2000 m in the Lofoten Basin. See Figure 3 for the location of Sveinsgrunnen and Malangsdjupet. (b) Sand waves (up to 5 m high) and coral reefs (up to 17 m high) in the Hola Trough outside Vesterålen, north Norway. Water depths are 70–90 m on the Vesterålsgrunnen Bank and 200–270 m in the Hola Trough. See Figure 2 for the locations of Hola and Vesterålsgrunnen. (c) Iceberg plough marks and pockmarks in the Barents Sea. In this area, with water depths of around 270 m, pockmarks are 20–50 m across and 2–5 m deep, while plough marks are 60–70 m wide and 6–7 m deep. See Figure 1 for the location.
with high accuracy. This method is currently being scaled up for application to wider areas. Prior to the development of Diesing and Thorsnes’ (2018) method in 2018, coral reefs and associated sediments were manually digitized and classified as ‘bioclastic sediments’ (Bellec et al. 2014). In the seabed sediments (grain size) map (see the following subsection), coral carbonate mounds are indicated as ‘mud, sand and gravel of biological origin’, while, in the seabed sediments (genesis) map, they are classified as ‘bioclastic sediment’.

Seabed sediments (grain size)

The seabed sediments (grain size) map (Fig. 5) reflects the sediment or bottom type in the uppermost c. 10 cm of the seabed, categorized as one of 35 defined classes (NGU 2019b). Most of the classes comprise a mixture of grain sizes (e.g. ‘gravelly sand’ or ‘mud and sand with gravel, cobbles and boulders’), which is a signature of predominantly glacially influenced environments.

For expert-driven interpretation and compilation of the grain-size map, all available data (i.e. multi-beam bathymetry and backscatter, videos, seabed samples taken with grab, box corer, and multicorer, as well as sub-bottom profiler data) are used by the geologist, and published literature is consulted where available. The classification of sediment type is determined by the final scale of the map and the degree of detail in the data used for interpretation and map compilation.

Seabed sediments (genesis)

The seabed sediments (genesis)/Quaternary geology map reveals processes on the seafloor during and after the last ice age. The map describes deposits and bottom types in the upper 1–2 m of the seafloor (i.e. not only the surface deposits influenced by the most recent processes).

For mapping of seabed sediments (genesis), the geologist chooses from amongst 32 sediment/bottom type classes (NGU 2019c). Examples include

![Fig. 5. Seabed sediments (grain size) in an area mapped by the MAREANO programme outside north Norway. The map is made for viewing at a scale of 1:100 000.](image-url)
suspension deposit, glaciomarine deposit, bedload (traction) deposit, contourite, glaciofluvial deposit, till, mass-movement deposit, debris-flow deposit and exposed bedrock. Vast areas, especially on the continental shelf, are dominated by sediments deposited in glacial environments.

The map is based on the seabed sediments (grain size), as well as the landscapes and landforms maps, in addition to further interpretation of multibeam bathymetry, and sub-bottom profiler and seismic data. The classification of sediment type is determined by the final scale of the map and the degree of detail in the data used for interpretation and map compilation. So far, seabed sediments (genesis) maps have only been compiled within MAREANO for the offshore areas.

Sedimentary environment

The sedimentary environment map is based on the seabed sediments (grain size) map and the datasets used for producing that map. A predefined number of classes is used for compilation (NGU 2019d). The main purpose of the map is to visualize areas of erosion and deposition of sediments, and how bottom currents influence the seabed.

Deposition of fine-grained sediments (mud and sandy mud) primarily occurs in deep or sheltered waters. Erosion may remove fines and deposit sand where bottom currents become weaker or where sand is transported back and forth by tidal currents. The shallowest areas are often dominated by erosion, although fine-grained sediments may accumulate in local, topographical depressions. A lag deposit of sandy gravel, cobbles and boulders is often formed where bottom currents (wave, tidal or oceanographic currents) are strong. Grain size generally indicates the strength of the bottom currents; mud suggests weak bottom currents, while coarser sediments or erosion suggest stronger currents.

Marine base maps in the coastal zone

The marine base maps published by NGU since 2003 (Sandberg et al. 2005; Longva et al. 2008; Thorsnes et al. 2013; Elvenes et al. 2019) present geological information relevant to end users outside the geological community in a format that is comprehensible to geologists and non-geologists alike. As described above, sediment type mapping in Norwegian nearshore areas is based on pre-existing multibeam echo-sounder data ground-
truthed by video observation and physical samples. Figure 6 shows an example of shaded bathymetry, backscatter and interpreted sediment types from a Norwegian fjord.

Since grain size can be difficult for the non-specialist to interpret with respect to everyday applications, the detailed, full-coverage maps of seafloor sediment types (grain size) are supplemented with thematic maps based on expert knowledge of sediment properties and on high-resolution multibeam data. A full stack of marine base maps will contain shaded relief bathymetry and slope data of the highest permitted resolution (given military restrictions), seafloor sediments (grain size), anchoring conditions, digability and accumulation basins (examples shown in Fig. 7). Most marine base maps published since 2015 have a scale of 1:20 000. This suite of applied marine base maps conveys useful information on the coastal marine environment to managers, industry, fishermen, recreational users, marine scientists, etc., even in areas where access to high-resolution multibeam bathymetry is restricted by the Norwegian defence authorities.

Harmonized maps for EMODnet Geology

The EMODnet (European Marine Observation and Data Network) Geology portal (EMODnet Geology 2019) aims to provide harmonized information on marine geology in Europe. NGU has delivered harmonized datasets at different scales (both MAREANO and coastal data) on landscapes and landforms, seafloor substrates (seafloor sediments (grain size)), the Quaternary (seafloor sediments (genesis)), the pre-Quaternary, mineral occurrences, sediment accumulation rates, geological events and probabilities, and coastal behaviour.

Summary

Results from MAREANO and coastal mapping projects show that Norway has a rich and diverse seafloor. The geomorphology and sediment-distribution patterns reflect a long geological history and complex modern-day hydrodynamic processes. By 2019, approximately 10% of the Norwegian seafloor had been mapped: c. 200 000 km2.

Fig. 7. Marine base maps. Example of use of the seafloor sediments (grain size) map (in addition to detailed bathymetry) for compilation of the derived thematic maps for anchoring conditions, digability and accumulation basins. See Figures 5 and 6 for the legends to the seafloor sediments (grain size) map. In the thematic maps, the most favourable conditions for anchoring are shown in green; for digging, in light grey; and for soft-sediment accumulation, in blue.
offshore and 10,000 km² in the coastal zone. Geological maps by MAREANO include seabed sediments (grain size), seabed sediments (genesis), sedimentary environment, and landscapes and landforms. These are made for use at a scale of c. 1:100 000. Marine base maps for the coastal zone include seabed sediments (grain size) and the derived maps – anchoring conditions, digability and accumulation basins – made for use at a scale of c. 1:20 000. Bathymetric and geological maps produced by MAREANO and coastal mapping projects, along with biological and oceanographic data, have been found to form an invaluable basis for further mapping and modelling of benthic habitats, with grain-size and landscape maps often serving as important predictor variables. In addition, mapping of seabed chemistry (including pollution) is included in the working programmes of both MAREANO and the coastal mapping projects.

Acknowledgements We would like to thank all participants of the MAREANO programme and the coastal mapping projects, onshore and offshore, for their invaluable cooperation. Matthias Forwick and an anonymous reviewer are thanked for constructive comments to a previous version of the manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author contributions RB: conceptualization (equal), data curation (equal), formal analysis (equal), funding acquisition (equal), investigation (equal), methodology (equal), project administration (equal), resources (equal), supervision (equal), validation (equal), visualization (equal), writing – original draft (lead), writing – review & editing (lead); LRB: funding acquisition (equal), methodology (equal), project administration (equal), resources (equal), writing – review & editing (supporting); SE: formal analysis (equal), investigation (equal), project administration (equal), visualization (equal), writing – review & editing (supporting); MD: conceptualization (supporting), methodology (equal), writing – review & editing (supporting); VB: formal analysis (equal), investigation (equal), visualization (equal); TT: conceptualization (equal), funding acquisition (equal), methodology (equal), project administration (equal), resources (equal); AL: data curation (lead), validation (equal), visualization (equal); OL: conceptualization (equal), funding acquisition (equal), methodology (equal).

Data availability statement The datasets generated and/or analysed during the current study are available in the NGU repository, www.mareano.no and www.ngu.no.

References

Artsdatabanken. 2019. Natur i Norge. Artsdatabanken, Trondheim, Norway, https://www.artsdatabanken.no/NiN [accessed 30 January 2019].

Bekkby, T., Moy, F.E. et al. 2012. The Norwegian program for mapping of marine habitats – providing knowledge and Maps for ICZMP. In: Moksness, E., Dahl, E. and Sistrup, J. (eds) Global Challenges in Integrated Coastal Zone Management. Wiley-Blackwell, Chichester, UK, 21–30.

Bellec, V., Wilson, M., Bøe, R., Rise, L., Thorsnes, T., Buhl-Mortensen, L. and Buhl-Mortensen, P. 2008. Bottom currents interpreted from iceberg ploughmarks revealed by multibeam data at Tromsøflaket, Barents Sea. Marine Geology, 249, 257–270, https://doi.org/10.1016/j.margeo.2007.11.009.

Bellec, V.K., Dolan, M.F.J., Bøe, R., Thorsnes, T., Rise, L., Buhl-Mortensen, L. and Buhl-Mortensen, P. 2009. Sediment distribution and seabed processes in the Troms II area – offshore North Norway. Norwegian Journal of Geology, 89, 29–40.

Bellec, V.K., Bøe, R., Rise, L., Slagstad, D., Longya, O. and Dolan, M.F.J. 2010. Rippled scour depressions on continental shelf bank slopes off Nordland and Troms, North Norway. Continental Shelf Research, 30, 1056–1069, https://doi.org/10.1016/j.csr.2010.02.006.

Bellec, V., Thorsnes, T. and Bøe, R. 2014. Mapping of Biotic Sediments – Data, Methods and Confidence. NGU Report 2015.043, https://www.ngu.no/upload/Publicasjoner/Rapporter/2015/2015_043.pdf.

Bellec, V., Rise, L., Bøe, R. and Dowdeswell, J. 2016. Glacially related gullies on the upper continental slope, SW Barents Sea margin. Geological Society, London, Memoirs, 46, 381–382, https://doi.org/10.1144/M46.31.

Bellec, V.K., Bøe, R., Rise, L., Lepland, A. and Thorsnes, T. 2017a. Seabed Sedimentary Environments and Sediments (Genesis) in the Nordland VI Area off Northern Norway. NGU Report 2017.046, https://www.ngu.no/upload/Publicasjoner/Rapporter/2017/2017_046.pdf.

Bellec, V.K., Bøe, R., Rise, L., Lepland, A., Thorsnes, T. and Bjarnadóttir, L.R. 2017b. Seabed sediments (grain size) of Nordland VI, offshore north Norway. Journal of Maps, 13, 608–620, https://doi.org/10.1080/17445467.2017.1348307.

Bellec, V.K., Bøe, R. et al. 2019. Sandbanks, sandwaves and megagripples on Spitsbergenbanken, Barents Sea. Marine Geology, 416, https://doi.org/10.1016/j.margeo.2019.105998.

Bjarnadóttir, L.R., Ottesen, D., Dowdeswell, J.A. and Bugge, T. 2016. Unusual iceberg ploughmarks on the Norwegian continental shelf. Geological Society, London, Memoirs, 46, 283–284, https://doi.org/10.1144/M46.126.

Bjarnadóttir, L.R., Ottesen, D. et al. 2017. Geologisk havbunnskart, Kart 65000900, Mai 2017. M 1:100 000. Norges geologiske undersøkelse, Trondheim, Norway, https://www.ngu.no/upload/Kart%20%20og%20data/Marinegeologiske%20kart/GEOLOGISK_HAVBUNN_SKART_65000900.pdf.

Bøe, R., Bellec, V.K., Dolan, M.F.J., Buhl-Mortensen, P.B., Buhl-Mortensen, L. and Rise, L. 2009. Giant sand waves in the Hola glacial trough off Vesterålen,
North Norway. *Marine Geology, 267*, 36–54, https://doi.org/10.1016/j.margeo.2009.09.008

Bøe, R., Bellec, V.K., Rise, L., Buhl-Mortensen, L., Chand, S. and Thorsnes, T. 2012. Catastrophic fluid escape venting-tunnels and related features associated with large submarine slides on the continental rise off Vesteraalen–Troms, North Norway. *Marine and Petroleum Geology, 38*, 95–103, https://doi.org/10.1016/j.marpetgeo.2012.08.008

Bøe, R., Skårðhamar, J. et al. 2015. Sandwaves and sand transport on the Barents Sea continental slope offshore northern Norway. *Marine and Petroleum Geology, 60*, 34–53, https://doi.org/10.1016/j.marpetgeo.2014.10.011

Bøe, R., Bellec, V., Dolan, M., Buhl-Mortensen, P., Rise, L. and Buhl-Mortensen, L. 2016. Cold-water coral reefs in the Hola glacial trough off Vesteraalen, North Norway. *Geological Society, London, Memoirs, 46*, 309–310, https://doi.org/10.1144/M46.8

Buhl-Mortensen, P.B., Buhl-Mortensen, L., Dolan, M., Dammheim, J. and Kröger, K. 2009a. Megafaunal diversity associated with marine landscapes of northern Norway: a preliminary assessment. *Norwegian Journal of Geology, 89*, 163–171.

Buhl-Mortensen, P., Dolan, M.F.J. and Buhl-Mortensen, L. 2009b. Prediction of benthic biotopes on a Norwegian offshore bank using a combination of multivariate analysis and GIS classification. *ICES Journal of Marine Science, 66*, 2026–2032, https://doi.org/10.1093/icesjms/fsp200

Buhl-Mortensen, L., Bøe, R., Dolan, M.F.J., Buhl-Mortensen, P., Thorsnes, T., Elvenes, S. and Hodnesdal, H. 2012. Banks, troughs and canyons on the continental margin off Lofoten, Vesterålen, and Troms, Norway: In: Harris, P.T. and Baker, E.K. (eds) *Sea-floor Geomorphology as Benthic Habitat*. Elsevier, Amsterdam, 703–715, https://doi.org/10.1016/B978-0-12-385140-6.00051-7

Buhl-Mortensen, L., Hodnesdal, H. and Thorsnes, T. (eds). 2015. *The Norwegian Sea Floor, New Knowledge from MAREANO for Ecosystem-Based Management. MAREANO*. MAREANO.

Chand, S., Rise, L. et al. 2008. Active venting system offshore Northern Norway. *Eos, Transactions of the American Geophysical Union, 89*, 261–262, https://doi.org/10.1029/2008EO090001

Chand, S., Rise, L., Ottesen, O., Dolan, M.F.J., Bellec, V. and Bøe, R. 2009. Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: morphology and genesis. *Marine and Petroleum Geology, 26*, 1035–1042, https://doi.org/10.1016/j.marpetgeo.2008.09.002

Chand, S., Thorsnes, T. et al. 2012. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate. *Earth and Planetary Science Letters, 331–332*, 305–314, https://doi.org/10.1016/j.epsl.2012.03.021

Diesing, M. and Thorsnes, T. 2018. Mapping of cold-water coral carbonate mounds based on geomorphometric features: an object-based approach. *Geosciences, 8*, 34, https://doi.org/10.3390/geosciences8020034

Dolan, M.F.J., Mortensen, P.B., Thorsnes, T., Buhl-Mortensen, L., Bellec, V. and Bøe, R. 2009. Developing seabed nature-type maps offshore Norway: initial results from the MAREANO programme. *Norwegian Journal of Geology, 89*, 17–28.

Dolan, M.F.J., Elvenes, S. et al. 2012a. *Marine geumnkart i Sør-Troms: Rapport om biotopmodellering*. NGU Report 2012.070, https://www.ngu.no/upload/Publikasjoner/Rapport/2012/2012_070.pdf

Dolan, M.F.J., Thorsnes, T., Leth, J., Alhandani, Z., Guinan, J. and Van Lancker, V. 2012b. *Terrain Characterization from Bathymetry Data at Various Resolutions in European Waters – Experiences and Recommendations*. NGU Report 2012.045, https://www.ngu.no/upload/Publikasjoner/Rapport/2012/2012_045.pdf

Dove, D., Carter, G. et al. 2016. *Seabed Geomorphology: A Two-Part Classification System*. British geological Survey, Marine Geoscience Programme, Open Report OR/16/001, http://nora.nerc.ac.uk/id/eprint/514946/1/Seabed_Geomorphology_classification_BGS_Open_Report.pdf

Elvenes, S. 2014. *Landscape Mapping in MAREANO*. NGU Report 2013.035, https://www.ngu.no/upload/Publikasjoner/Rapport/2013/2013_035.pdf

Elvenes, S., Buhl-Mortensen, P. and Dolan, M.F.J. 2012. Evaluation of Alternative Bathymetry Data Sources for MAREANO: A Comparison of Olex Bathymetry and Multibeam Data for Substrate and Biotope Mapping. *NGU Report 2012.030*, https://www.ngu.no/upload/Publikasjoner/Rapport/2012/2012_030.pdf

Elvenes, S., Dolan, M.F.J., Buhl-Mortensen, P. and Bellec, V.K. 2013. An evaluation of compiled single-beam bathymetry data as a basis for regional sediment and biotope mapping. *ICES Journal of Marine Science, 71*, 867–881, https://doi.org/10.1093/icesjms/fst154

Elvenes, S., Bøe, R. and Rise, L. 2016. Post-glacial sand drifts burying De Geer moraines on the continental shelf off North Norway. *Geological Society, London, Memoirs, 46*, 261–262, https://doi.org/10.1144/M46.25

Elvenes, S., Knies, J. and Rasmussen, T. 2018. Forurensningsstas i havbunnsedimenter i Ofotfjorden, Tysfjorden og Tjeldsundet. NGU Report 2017.047, https://www.ngu.no/upload/Publikasjoner/Rapport/2017/2017_047.pdf

Elvenes, S., Bøe, R., Lepland, A. and Dolan, M.F.J. 2019. Marine base maps, Søre Sunnmøre, Norway. *Journal of Maps, 15*, 686–696, https://doi.org/10.1080/17445647.2019.1659865

EMONet Geology. 2019. *European Marine Observation and Data Network*. EMONet Geology, http://www.emodnet-geology.eu [accessed 30 January 2019].

Gonzalez-Mirelis, G. and Buhl-Mortensen, P. 2015. Modelling benthic habitats and biotopes off the coast of Norway to support spatial management. *Ecological Informatics, 30*, 284–292, https://doi.org/10.1016/j.ecoinf.2015.06.005

Jarna, A., Elvenes, S. and Bøe, R. 2017. Kartlegging av korallforekomster i Romsdalssjorden, Harvefjorden og rundt Gossa ved hjelp av dybdedata fra multistrålelekkoddel. NGU Report 2017.033, https://www.ngu.no/upload/Publikasjoner/Rapport/2017/2017_033.pdf

Jensen, H.K.B., Knies, J. and Bellec, V. 2018. Miljøgeøkemiske data og datateresultater fra MAREANO Øst – MAREANO. NGU Report 2018.018,
Revealing the secrets of Norway’s seafloor

https://www.ngu.no/upload/Publikasjoner/Rapporter/2018/2018_018.pdf

King, E.L., Bøe, R., Bellec, V.K., Rise, L., Skarðhamar, J., Ferré, B. and Dolan, M. 2014. Contour current driven continental slope-situated sandwaves with effects from secondary current processes on the Barents Sea margin offshore Norway. Marine Geology, 353, 108–127, https://doi.org/10.1016/j.margeo.2014.04.003

Knies, J. and Elvenes, S. 2018. Sedimentationsmiljø og historisk utvikling i forurensningsstøttes i sjøområdene i Ofot-regionen. NGU Report 22018.007, https://www.ngu.no/upload/Publikasjoner/Rapporter/2018/2018_007.pdf

Longva, O., Arvesen, B., Ulssrud, E., Hestvik, O.B., Martinsen, J. and Roaldsnes, T. 2008. Nye marine grunnkart i fiskeri- og havbruksnæringen – sluttrapport. NGU Report 2008.034, https://www.ngu.no/upload/Publikasjoner/Rapporter/2008/2008_034.pdf

Lurton, X. and Lamarche, G. (eds). 2015. Backscatter Measurements by Seafloor-Mapping Sonars. Guidelines and Recommendations. GeoHab Report, http://geohab.org/wp-content/uploads/2018/09/BWSG-REPORT-MAY2015.pdf

MAREANO. 2019. MAREANO Collecting Marine Knowledge. MAREANO, http://mareano.no/en [accessed 26 August 2019].

Mortensen, P.B., Holvand, M.T., Fosså, J.H. and Furevik, D.M. 2001. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. Journal of the Marine Biological Association, 81, 581–597, https://doi.org/10.1017/S002531540100426X

NGU. 2019a. Geological Survey of Norway. http://www.ngu.no. [accessed 26 August 2019].

NGU. 2019b. Classification of Sediments Based on Grain Size Composition (Folk, 1954, Modified). Norges geologiske undersøkelse, Trondheim, Norway, https://www.ngu.no/Mareano/Grainsize.html [accessed 27 March 2019].

NGU. 2019c. Seabed Sediments – Genesis. Norges geologiske undersøkelse, Trondheim, Norway, https://www.ngu.no/Mareano/SedGenesis.html [accessed 27 March 2019].

NGU. 2019d. Sedimentary Environment. Norges geologiske undersøkelse, Trondheim, Norway, https://www.ngu.no/Mareano/SedEnvironment.html [accessed 27 March 2019].

NHS. 2018. Technical Specifications. Norwegian Hydrographic Service (NHS), Stavanger, Norway, https://www.mareano.no/resources/files/om_mareano/arbeidsmater/standarder/Appendix-B-Technical-Specifications-1.pdf [accessed 25 March 2019].

Rise, L., Bøe, R. et al. 2013. The Lofoten–Vesterålen continental margin, North Norway: canyons and mass movement activity. Marine and Petroleum Geology, 45, 134–149, https://doi.org/10.1016/j.marpgeo.2013.04.021

Rise, L., Bellec, V.K., Chand, S. and Bøe, R. 2015. Pockmarks in the southwestern Barents Sea and Finnmark fjords. Norwegian Journal of Geology, 94, 263–282.

Rise, L., Bellec, V., Ottesen, D., Bøe, R. and Thorsnes, T. 2016a. Hill–hole pairs on the Norwegian continental shelf. Geological Society, London, Memoirs, 46, 203–204, https://doi.org/10.1144/M46.42

Rise, L., Bøe, R., Bellec, V., Thorsnes, T. and Dowdeswell, J. 2016b. Canyons and slope instability on the Lofoten–Vesterålen continental margin, North Norway. Geological Society, London, Memoirs, 46, 407–408, https://doi.org/10.1144/M46.36

Sandberg, J.H., Thorsnes, T., Bekkby, T., Longva, O., Christensen, O., Andresen, K.H.B. and Lepland, A. 2005. Future perspectives for ICZPM in relation to aquaculture. In: Howell, B. and Flos, R. (eds) Aquaculture Europe: Lessons from the Past to Optimise the Future. EAS Special Publications, 35, 53–58.

Thorsnes, T., Buhl-Mortensen, L. and Skyseth, T. 2008. Integrated mapping of the seafloor and ecosystems in the Arctic – the MAREANO programme. Gråsteinen, 12, 115–125.

Thorsnes, T., Erikstad, L., Dolan, M.F.J. and Bellec, V.K. 2009. Submarine landscapes along the Lofoten–Vesterålen–Senja margin, northern Norway. Norwegian Journal of Geology, 89, 5–16.

Thorsnes, T., Sandberg, J.H., Longva, O., Røyland, G., Jakobsen, P.-A. and Hestvik, O.B. 2013. Nye marine grunnkart i fiskeri-og havbruksnæringen – Fase 2. NGU Report 2013.037, https://www.ngu.no/upload/Publikasjoner/Rapporter/2013/2013_037.pdf

Thorsnes, T., van Son, T.C. et al. 2015. An Assessment of Scale, Sampling Effort and Confidence for Maps Based on Visual and Acoustic Data in MAREANO. NGU Report 2015.043, https://www.ngu.no/upload/Publikasjoner/Rapporter/2015/2015_043.pdf

Thorsnes, T., Bellec, V.K. and Dolan, M.F.J. 2016a. Coldwater coral reefs and glacial landforms from Sula Reef, mid-Norwegian shelf. Geological Society, London, Memoirs, 46, 307–308, https://doi.org/10.1144/M46.74

Thorsnes, T., Rise, L., Bellec, V.K. and Chand, S. 2016b. Shelf-edge slope failure and reef development: Trænadjupet Slide, mid-Norwegian shelf. Geological Society, London, Memoirs, 46, 413–414, https://doi.org/10.1144/M46.75

Thorsnes, T., Bjarnadóttir, L.R. et al. 2017. National programmes: Geomorphological Mapping at Multiple Scales for Multiple Purposes. In: Micallef, A., Krøstel, S. and Savini, A. (eds) Submarine Geomorphology. Springer, Cham, Switzerland, 535–552.