Genome Wide Transcriptomic Analysis of WRKY Gene Family Response to Biotic Stresses in Malus × domestica

Hanghang Zhang*, Liu Yang*, Ruli Zhou, Yingli Zhang, Zhengyang Wang, Hongguang Pang, Tuanhui Bai, Shangwei Song, Jian Jiao, Miaomiao Wang, Jiancan Feng, Chunhui Song#, Xianbo Zheng#

College of Horticulture, Henan Agricultural University, Zhengzhou, China

Email: *songchunhui060305@126.com, *xianboz163.com

Abstract

Apple (Malus × domestica Borkh.) is a perennial woody plant that often suffers from various biological stresses. Many harmful pathogens can infect apple trees and lead to reduced production. We comprehensively identified the WRKY genes in the apple genome and analyzed their expression in response to several biotic stressors, including Alternaria alternata, Pythium ultimum, Botryosphaeria dothidea, Erwinia amylovora, Penicillium expansum, Gymnosporangium yamadai, and Apple replant disease. There were 113 MdWRKYs identified in the apple genome. Twenty-two MdWRKYs were differentially expressed in response to at least five pathogens. Promoter sequence analysis showed that these genes carried many defense- and stress-responsive elements, such as MeJA-response elements, salicylic acid-response elements, and W-box elements, in their promoters. Transient expression assays showed that MdWRKY40a and MdWRKY54h played negative roles in defense against B. dothidea infection. WRKY40 and WRKY60 and the MdWKRY33s might play important roles in responding to pathogens and are conserved in some plants. These differentially expressed MdWRKYs might play key roles in the apple response to multiple pathogens.

Keywords

Apple, WRKY, Transcription Factor, Pathogens, Big Data

*These authors have contributed equally to this work.
#Corresponding Author.
1. Introduction

Apple (Malus × domestica Borkh.) is an important fruit crop cultivated on a great deal of land around the world. Many harmful pathogens infect apple trees and lead to a reduction in yields [1] [2]. Fungicides are commonly used in orchards to control and prevent fungal diseases. But fungicides have adverse effects on the environment and can result in pathogen resistance. Screening disease-resistant genetic resources and breeding disease-resistant cultivars combine to form one of the effective strategies to resist pathogens. Therefore, it is important to understand the molecular mechanism of pathogen infection in apple and to identify disease resistance genes.

WRKY transcription factors are known to participate in the defense responses of higher plants [3]. A growing number of WRKY transcription factors have been proved to play roles in host-pathogen interactions between different plants and pathogens. The WRKY transcription factors are characterized by the conserved 7-amino acid sequence WRKYGQK at the N-terminal and the zinc finger motif at the C-terminal. The WRKY family was divided into 3 groups based on the number of WRKY sequences and the zinc finger sequence. Group I WRKY proteins contain two WRKY domains and a C2H2 zinc-finger motif, while the group II and group III have only one WRKY domain and either a C2H2 or C2HC zinc-finger motif, respectively. The WRKY domain can bind to a W-box (TTGACC/T) cis-element in a promoter to stimulate or repress target gene expression. The W-box appears in the promoters of many plant genes that are associated with defense [4].

In Arabidopsis, several WRKY genes have been proved to associate with responses to pathogen infections. The Group IIa members AtWRKY18, AtWRKY40 and AtWRKY60 interact with each other to regulate defense pathways [5]. WRKY18, WRKY40, and WRKY33 each bind to the promoters of more than 1000 genes involved in signal perception and transduction not only during microbial-associated molecular pattern-triggered immunity (MTI) but also upon damage-associated molecular pattern-triggered immunity [6]. WRKY22 and WRKY29 are induced by the MAPK pathway involved in plant responses to both bacterial and fungal pathogens, and transient expression of WRKY29 in leaves leads to reduced disease symptoms [7]. WRKY53 and WRKY70 both positively modulate systemic acquired resistance (SAR) [8]. The Group I members WRKY3 and WRKY4 play positive roles in plant resistance to necrotrophic pathogens. WRKY14 has a negative effect on plant resistance to biotrophic pathogens [9]. The group IIId members WRKY11 and WRKY17 are negative regulators of basal resistance in Arabidopsis [10].

Some of the apple WRKY genes have been demonstrated to be involved in plant defense. MdWRKYN1 and MdWRKY26 are targeted by miRNAs and are involved in apple resistance to leaf spot disease caused by Colletotrichum spp. [11]. MdWRKY100 positively regulates apple resistance to Colletotrichum gloeosporioides infection [12]. Ectopic expression of MdWRKY1 (homolog of AtWRKY15) in tobacco plants enhances resistance to Phytophthora parasitica.
and activates the expression of PR genes [13]. MdWRKY15 improves apple resistance to *Botryosphaeria dothidea* via the salicylic acid-mediated pathway by directly binding the *MdICS1* promoter [14] (Zhao et al., 2020). MdWRKY46 enhances apple resistance to *B. dothidea* by activating the expression of *MdPBS3.1* in the salicylic acid signaling pathway [15]. MdWRKY31 regulates plant resistance to *B. dothidea* through the SA signaling pathway by interacting with *MdHIR4* [16].

Apple is a commercially cultivated fruit that is important economically and is favored by consumers, and thus is extensively studied. There are large amounts of publicly available data on apples, including genomic sequences, transcriptomic and metabolic datasets. Although the WRKY gene family has been analysed genome-wide in several species, including *Arabidopsis*, wheat, grapes, poplar, and strawberry [4] [16] [17] [18] [19] [20]. The responses of WRKY genes in apple to drought, flooding, and plant hormone have also been studied [21] [22]. Numerous WRKY genes were identified that play roles during infection by multiple pathogens. Considering the important roles of the WRKY family in plant disease responses, this study aimed to analyze the responses of WRKY transcription factors in apple to biotic stress through analysis of several published transcriptomic datasets.

2. Material and Methods

2.1. Identification of MdWRKY Genes in the Apple Genome

Arabidopsis AtWRKY protein sequences retrieved from TAIR (The Arabidopsis Information Resource: http://www.arabidopsis.org/) were used as BLASTP queries against the apple genome GDDH13_1-1 [23](https://iris.angers.inra.fr/gddh13/the-apple-genome-downloads.html) using a stand-alone version of BLAST (Basic Local Alignment Search Tool: http://blast.ncbi.nlm.nih.gov) [24]. Similar sequences with e-values < 0.0001 were further inspected for conservation of the WRKY domain (WRKYGQK signature amino sequence) using the domain analysis programs Pfam (Protein family: http://xfam.org/) [25] and Conserved Domain Search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) [26] with default cutoff parameters. ExPASY (http://www.expasy.org/tools/) was used to predict the isoelectric point (pI) and molecular weight (MW) of each MdWRKY. The position of each gene on the apple chromosomes and their exon/intron structure were depicted with TBtools [27] based on the genome annotation information of the apple genome GDDH13_1-1. Conserved motifs of the MdWRKYs were searched using the Multiple Expectation maximization for Motif Elicitation tool (MEME version 4.9.1, http://meme.nbcr.net/meme/cgi-bin/meme.cgi).

2.2. Phylogenetic Analysis and Classification of Apple MdWRKY Genes

The *Arabidopsis* and apple WRKY amino sequences were used for phylogenetic tree construction. The phylogenetic tree was constructed using the MEGA 7
program with the neighbor-joining (NJ) method, 1000 bootstrap replicates, and partial deletion parameters. The apple WRKYs were divided into different groups according to the conserved WRKY and zinc finger domains.

2.3. Expression Analysis of the MdWRKY Genes in Apple

The expression of the MdWRKYs members in different tissues was determined by published transcriptomics data (Supplemental Table S1). qRT-PCR was also used to measure the expression of several MdWRKYs in the leaf, shoot, root, flower, and fruit from the 4 years old apple rootstock M9-T337. Primers for qRT-PCR were designed to amplify 100 - 200 bp target fragments using NCBI Primer Blast (Supplemental Table S3). Quantitative real-time PCR was performed using the Bio-Rad CFX Connect Real-Time PCR Detection System. The reaction volume was 20 μL with 100 ng of template cDNA. PCR amplification conditions were as follows: 95°C for 5 min for initial denaturation, then 45 cycles of 94°C for 20 s, 60°C for 20 s (determined by the primer), and 72°C for 10 s. Fluorescence was measured at the end of each cycle. The apple Actin gene was used as an internal standard in the analysis. The relative expression level of each gene was calculated according to the 2^−ΔΔCT method. Values for mean expression and standard error (SE) were calculated from the results of three independent replicates.

The expression responses of the MdWRKYs to apple replant disease (ARD), Alternaria alternata, Pythium ultimum, Botryosphaeria dothidea, Erwinia amylovora, Penicillium expansum, and Gymnosporangium yamadae were determined by the transcriptome data downloaded from the NCBI SRA (Supplemental Table S2).

After filtering low quality reads and contaminant sequences, the clean reads were aligned to the Malus × domestica genome GDDH13_1-1 using the HISAT2 software. The Stringtie software was used to assemble the transcripts [28]. Gene expression was calculated using the Fragments Per Kilobase of transcript per Million fragments mapped reads method (FPKM). DESeq2 software was used to estimate differentially expressed genes [29]. Genes with an FDR < 0.1 and |log₂(fold change)| ≥ 1 between two samples were identified as differentially expressed genes.

2.4. Promoter Analysis for Cis-Acting Regulatory Elements

For each MdWRKY gene, a 2000-bp sequence upstream of the start codon was retrieved from the GDDH13_1-1 genome and was submitted to the PlantCARE website to search the cis-acting regulatory elements [30].

2.5. Botryosphaeria dothidea Infection Assays

Botryosphaeria dothidea was isolated from the apple orchard and maintained on Potato Dextrose Agar medium in the dark at 28°C.

Full coding sequences of MdWRKY40a and MdWRKY54h were ligated into
the overexpression vector SAK-227 to generate the vectors *MdWRKY40a-OE* and *MdWRKY54h-OE*. About 300-bp fragments specific to either *MdWRKY40a* or *MdWRKY54h* were ligated into the virus induced gene silence (VIGS) vector TRV2 to generate *TRV-MdWRKY40a* or *TRV-MdWRKY54h*. *Agrobacterium tumefaciens* transformed with the VIGS or OE recombinant vectors was injected into mature 'Pink Lady' apple fruits as described previously [31]. The empty vectors were the controls. After *A. tumefaciens* infiltration, the injection holes were inoculated with freshly grown *B. dothidea* mycelia. The apples inoculated with *Agrobacterium tumefaciens* and *B. dothidea* were stored in darkness at 28˚C, and the symptoms were recorded on 4 days post inoculation (dpi). Fifteen apples were inoculated with each treatment combination. Each apple was inoculated with two holes, one as control, and the other as silence or overexpression treatment, on the opposite side of the apple fruit peels. The area of each spot was measured and compared to control.

3. Results

3.1. Identification and Classification of Apple *MdWRKY* Genes

A total of 113 members homologous to the *WRKY* transcription factor family were identified from the apple genome. All members were systematically numbered, as shown in Table 1, based on their similarity to genes in *Arabidopsis thaliana*. Among the 113 apple *WRKY* transcription factors, the peptide length ranged from 80 amino acid (aa) residues (*MdWRKY44b*) to 924 aa (*MdWRKY44e*). The molecular weight of the predicted proteins ranged from 9.28 (*MdWRKY44b*) to 102.78 kDA (*MdWRKY44e*). The isoelectric point ranged from 4.81 (*MdWRKY69b*) to 9.99 (*MdWRKY11c*).

A phylogenetic tree was constructed with the *WRKY* protein sequences of apple and *Arabidopsis* (Figure 1). According to the results of the phylogenetic tree and conserved domain analysis, the apple *WRKY* family could also be divided into three subgroups: Group I, Group II and Group III. There were 31 *MdWRKY*s in Group I, 65 in Group II, and 17 in Group III. Group II was further divided into five subgroups, with Group IIa containing 6 members, Group IIb containing 14 members, Group IIc containing 18 members, Group IId containing 14 members, and Group IIe containing 13 members.

The 113 *MdWRKY*s were distributed across the 17 apple chromosomes (Figure 2). Chromosomes 12 and 15 each carried the most *MdWRKY*s, 10. Chromosomes 01, 07, and 09 each carry 9 *MdWRKY*s. Chromosomes 04 and 17 have 8 *MdWRKY*s. The other chromosomes carried between 2 and 6 *MdWRKY*s. Three genes were mapped to the unassembled scaffolds.

Because the apple genome underwent chromosomal doubling events during evolution, most of the apple *MdWRKY*s that are orthologous to *Arabidopsis* have two homologous genes, such as *MdWRKY1*, *MdWRKY6*, *MdWRKY7*, *MdWRKY9*, *MdWRKY13b*, *MdWRKY14*, *MdWRKY15*, *MdWRKY20*, *MdWRKY22*,
Table 1. Informations of *MdWRKY* genes.

Gene name	Gene ID	Group	Location	Strand	mRNA length	aa	MW	pI
MdWRKY1a	MD09G1121600	I	Chr09:9379281-9382725	+	2100	484	53.15	5.94
MdWRKY1b	MD17G1112600	I	Chr17:9643152-9646837	+	1988	471	51.66	6.67
MdWRKY1c	MD03G1044400	I	Chr03:3511777-3516305	–	2595	732	79.51	5.96
MdWRKY2a	MD04G1244700	I	Chr04:32067852-32071212	–	2154	717	78.55	5.99
MdWRKY2b	MD12G1260600	I	Chr12:32647306-32651367	–	2587	718	78.96	6.41
MdWRKY2c	MD13G1067600	I	Chr13:4637048-4640408	+	2230	526	57.34	7.37
MdWRKY3a	MD16G1066500	I	Chr16:4642014-4644789	+	2125	528	57.20	8.39
MdWRKY3b	MD09G1048300	IIb	Chr09:3166930-3174316	+	1413	470	51.18	7.70
MdWRKY3c	MD17G1048400	IIb	Chr17:3528939-3531555	+	1729	455	49.96	7.70
MdWRKY3d	MD08G1227200	IIb	Chr08:29356105-29358646	+	1858	570	62.31	5.35
MdWRKY4a	MD15G1419600	IIb	Chr15:52086817-52089361	+	1767	582	64.17	5.10
MdWRKY4b	MD08G1127200	IId	Chr08:11928202-11930014	+	1335	341	36.96	9.33
MdWRKY4c	MD15G1106600	IId	Chr15:7467131-7469028	+	1376	338	36.70	9.46
MdWRKY4d	MD13G2391000	IId	Chr13:24320203-24321656	–	1233	281	30.73	9.99
MdWRKY4e	MD16G1244300	IId	Chr16:26579453-26581081	–	1370	284	30.92	9.87
MdWRKY5a	MD10G1096000	IId	Chr10:15057933-15058421	+	489	162	17.96	9.30
MdWRKY5b	MD07G1110400	Iic	Chr07:12683567-12688395	+	1092	236	26.78	8.21
MdWRKY5c	MD01G1013500	Iic	Chr01:6515683-6519808	+	1393	270	30.43	8.93
MdWRKY5d	MD15G1337100	Iic	Chr15:37891029-37895909	–	1173	271	30.24	8.93
MdWRKY5e	MD05G1265200	Ile	Chr05:40011060-40015621	+	1479	492	53.78	5.85
MdWRKY5f	MD10G1243000	Ile	Chr10:33776504-33781157	+	2075	493	53.24	6.05
MdWRKY5g	MD12G1177500	IId	Chr12:15663260-15665127	–	1629	330	35.97	6.65
MdWRKY5h	MD15G1287300	IId	Chr15:26365198-26366819	–	1369	331	36.24	9.54
MdWRKY5i	MD08G1094900	IId	Chr08:7968389-7970451	+	1455	356	38.64	9.41
MdWRKY5j	MD15G1078200	IId	Chr15:5334685-5336858	–	1691	342	37.21	9.26
MdWRKY6a	MD03G1188900	I	Chr03:25924164-25929514	–	2258	584	63.85	5.97
MdWRKY6b	MD11G1205000	I	Chr11:29914448-29918933	–	2118	588	63.96	5.87
MdWRKY6c	MD04G1226400	IId	Chr04:30603205-30604718	+	1222	325	36.59	9.77
MdWRKY6d	MD12G1243400	IId	Chr12:31414877-31416020	+	942	313	35.30	9.96
MdWRKY6e	MD06G1062800	IId	Chr06:10770799-10772691	–	1419	318	35.88	9.58
MdWRKY6f	MD01G1071300	Ile	Chr01:17602924-17604669	+	1512	349	37.65	8.20
MdWRKY6g	MD07G1311400	Ile	Chr07:18815423-18816949	–	1301	348	37.66	6.82
MdWRKY6h	MD09G1285400	Ile	Chr09:36364455-36366937	+	2092	350	38.39	5.86
MdWRKY6i	MD17G1278100	Ile	Chr17:33812003-33814316	+	1656	346	38.17	6.29
MdWRKY6j	MD01G1210200	Ile	Chr01:30413680-30415409	+	1413	470	51.76	5.08
MdWRKY7a	MD07G1280300	Ile	Chr07:34424687-34425782	+	837	278	31.07	7.25

DOI: 10.4236/ajps.2021.125058 863 American Journal of Plant Sciences
Gene	Chr	Start	End	Genomic Location				
MD06G1091200	IIe	Chr06:21994255-21995556	+	888	295	33.55	5.49	
MD14G1112200	IIe	Chr14:18037604-18039324	+	1218	315	35.65	5.05	
MD06G1104100	III	Chr06:24218568-24220572	-	1489	351	39.42	5.73	
MD14G1123000	III	Chr14:19736610-19738943	-	1594	355	39.87	5.66	
MD02G1007900	I	Chr02:496443-499890	-	1844	473	52.03	8.82	
MD15G1152100	I	Chr15:11267047-11270466	-	1479	434	48.12	7.37	
MD03G1057400	I	Chr03:4579079-4582074	-	2168	571	62.55	7.08	
MD11G1059400	I	Chr11:5068503-5071526	-	2174	572	62.90	6.81	
MD12G1181000	I	Chr12:26084482-26086791	-	1870	512	56.72	6.80	
MD04G1167700	I	Chr04:25792146-25794577	-	2022	520	57.71	7.23	
MD09G1224500	IIa	Chr09:27404228-27406362	-	1397	320	35.31	7.72	
MD17G1223100	IIa	Chr17:27209201-27211741	+	1743	321	35.67	8.23	
MD01G1215300	III	Chr01:30851473-30853003	-	1044	347	38.71	5.94	
MD07G1285200	III	Chr07:34745168-34746713	-	1029	342	38.05	5.50	
MD07G1285400	III	Chr07:34761880-34763425	-	1029	342	38.05	5.50	
MD05G1349800	IIb	Chr05:46759691-46762704	-	2242	606	65.35	7.78	
MD10G1324500	IIb	Chr10:40512430-40515449	-	2354	611	65.65	6.63	
MD09G1111200	IIb	Chr09:8267211-8270166	-	2013	625	68.20	6.34	
MD17G1099000	IIb	Chr17:8402127-8405223	-	2341	645	69.96	6.44	
MD01G1071600	I	Chr01:17669166-17671888	+	657	218	24.56	9.36	
MD07G1131000	I	Chr07:18748505-18750267	-	935	222	24.93	9.36	
MD01G1123900	I	Chr01:23690319-23691083	-	653	208	23.62	8.92	
MD04G1112800	I	Chr04:19827951-19828792	-	441	146	16.66	9.60	
MD12G1129000	I	Chr12:20418703-20419358	+	243	80	9.28	9.85	
MD12G1128800	I	Chr12:20397217-20403016	+	2791	470	51.46	9.00	
MD04G1113100	I	Chr04:19846116-19851149	-	2824	470	51.52	8.93	
MD06G1115200	I	Chr06:25425907-25429273	+	3026	924	102.78	5.33	
MD06G1138500	I	Chr06:28356819-28357724	+	581	150	17.15	9.56	
MD14G1154500	I	Chr14:24914608-24915904	+	955	148	17.09	9.59	
MD01G1078000	III	Chr01:18445739-18447924	-	1224	353	39.17	5.30	
MD07G1146900	III	Chr07:21450190-21453542	-	2205	356	39.73	5.48	
MD03G1197600	IIb	Chr03:27003520-27006281	+	1781	538	58.93	6.44	
MD11G1213500	IIb	Chr11:31232215-31235905	+	1626	541	58.97	6.46	
MD13G1150700	IIc	Chr13:11807823-11809934	-	1539	385	42.70	6.11	
MD16G1151000	IIc	Chr16:11906129-11908067	-	1368	371	41.14	5.60	
MD04G1131000	IIc	Chr04:21800375-21802338	-	967	297	33.41	5.73	
MD12G1144100	IIc	Chr12:22324583-22326472	-	894	297	33.08	5.94	
MD08G1067700	IIc	Chr08:5387244-5388373	-	741	161	18.24	8.56	
Genes	Chr15:3683177-3684465	+	915	161	18.18	5.65		
-------	----------------------	---	-----	------	-------	------		
Md WRKY50b	MD15G1054000	Ilc	Chr15:36715332-36718649	+	802	199	22.27	5.87
Md WRKY51	MD15G1331300	Ilc	Chr15:37086797-27089009	–	1196	339	37.73	6.42
Md WRKY54a	MD12G1189200	III	Chr12:27213135-27215427	–	1370	332	37.18	5.77
Md WRKY54b	MD12G1189700	III	Chr12:27219059-27219447	–	1110	369	40.60	5.69
Md WRKY54c	MD12G1189600	III	Chr12:27224756-27226237	–	714	237	27.26	8.29
Md WRKY54d	MD04G1175500	III	Chr04:26653551-26655300	–	1002	333	37.19	5.38
Md WRKY54e	MD04G1175600	III	Chr04:26669452-26671247	–	1035	344	38.25	6.01
Md WRKY54f	MD01G1668000	III	Chr01:27287662-27291066	–	1498	303	34.23	5.71
Md WRKY54g	MD07G1234700	III	Chr07:30816225-30818950	–	1407	302	33.97	6.40
Md WRKY54h	MD07G1234600	III	Chr07:30813251-30815403	+	1029	342	37.44	5.48
Md WRKY54i	MD13G1064700	Iic	Chr13:4465565-4471604	–	1653	346	37.73	6.63
Md WRKY55a	MD01G1168500	III	Chr01:27285229-27286785	+	687	228	25.66	7.86
Md WRKY55b	MD07G1234600	III	Chr07:30813251-30815403	+	1029	342	37.44	5.48
Md WRKY55c	MD01G1039500	IIa	Chr15:2783151-2784898	+	1208	302	33.60	7.22
Md WRKY55d	MD00G1143500	IIa	Chr00:31227045-31229422	+	1538	334	36.98	7.14
Md WRKY56a	MD15G1039500	IIa	Chr15:2783151-2784898	+	1208	302	33.60	7.22
Md WRKY56b	MD01G1168500	III	Chr01:27285229-27286785	+	687	228	25.66	7.86
Md WRKY56c	MD01G1039500	IIa	Chr15:2783151-2784898	+	1208	302	33.60	7.22
Md WRKY56d	MD15G1039600	IIa	Chr15:2798151-2799702	+	905	286	32.09	8.18
Md WRKY61a	MD14G1196100	IIb	Chr14:28655099-28658370	+	1755	584	63.31	6.51
Md WRKY61b	MD06G1189100	IIb	Chr06:32608598-32612425	+	2298	683	73.47	7.32
Md WRKY61c	MD13G1077900	IIb	Chr13:5478407-5482438	–	2008	571	61.85	5.96
Md WRKY61d	MD16G1077700	IIb	Chr16:5438696-5444408	–	2259	587	64.14	6.44
Md WRKY65a	MD05G1295700	IIe	Chr05:43023494-43025466	–	1133	273	30.20	5.81
Md WRKY65b	MD10G1275800	IIe	Chr10:36698263-36699996	–	1310	266	29.50	5.10
Md WRKY65c	MD09G1235100	IIe	Chr09:29539556-29542546	–	1140	250	27.40	5.47
Md WRKY65d	MD00G1140800	IIe	Chr00:30743431-30745181	–	1196	268	30.83	4.81
Md WRKY65e	MD03G1292900	IIe	Chr03:36975267-36977012	–	992	260	30.34	5.17
Md WRKY71a	MD10G1266000	IIc	Chr10:35935449-35937762	–	1615	327	35.94	6.49
Md WRKY71b	MD05G1290300	IIc	Chr05:42212192-42214208	–	1288	319	35.12	6.64
Md WRKY71c	MD09G1150700	IIc	Chr09:11892767-11895678	–	1683	369	41.36	7.84
Md WRKY71d	MD17G1138100	IIc	Chr17:12392128-12394598	–	1211	365	41.25	6.79
Md WRKY71e	MD05G1204400	IIId	Chr05:33402565-33405458	–	2071	354	39.96	9.70
Md WRKY71f	MD10G1191400	IIId	Chr10:28819078-28822211	–	1821	355	39.95	9.68
Md WRKY75a	MD16G1122400	I	Chr16:8821613-8823564	–	486	161	18.04	9.08
Md WRKY75b	MD13G1121100	I	Chr13:8993050-8995368	–	1221	190	21.71	9.74
Md WRKY75c	MD09G1008800	I	Chr09:616602-619344	+	694	216	24.76	9.14
Md WRKY75d	MD17G1001500	I	Chr17:91553-93431	–	672	223	25.60	9.14
Figure 1. Phylogenetic tree of apple and *Arabidopsis* WRKY transcription factors. Apple (Md) protein sequences are colored in pink, *Arabidopsis* (At) in green. Groups are based on *Arabidopsis*. Genes were first named according to homology with *Arabidopsis*, then within apple, due to genome duplication events.

MdWRKY23, MdWRKY26, MdWRKY29, MdWRKY32, MdWRKY40, MdWRKY45, MdWRKY49, MdWRKY50, MdWRKY55, MdWRKY57, MdWRKY65, MdWRKY72, and *MdWRKY74*. Due to chromosomal fragment duplication, some genes have multiple homologous genes (equal to or greater than 3), such as the 8 homologous *MdWRKY54* genes.

3.2. Gene Structure and Motif Analysis of *MdWRKYs*

The predicted structures of the *MdWRKY* genes are shown in Figure 3(b). The
number of predicted exons ranged from 1 to 7. *MdWRKY44c* and *MdWRKY44d* each contained 7 exons. *MdWRKY11e* contained 1 exon. MEME detected 10 distinct conserved motifs in the MdWRKYs (*Figure 3(c)*). In general, the homologs had similar motifs. Motifs 1, 2, and 3 are *WRKY* domains and appeared

![Figure 2](image_url)

Figure 2. Chromosomal location of the *MdWRKYs* transcription factors. Seventeen apple chromosomes are shown. Three genes did not mapped to any chromosome but mapped to scaffold sequences (not shown).
Figure 3. Phylogenetic tree, gene structure and protein motif analysis of MdWRKYs. (a) Phylogenetic analysis of MdWRKYs, constructed by the neighbor-joining method in MEGA 7.0 software. (b) Gene structure of MdWRKYs. Introns, exons, and untranslated region (UTR) are represented by black lines, brown boxes, and light green boxes respectively. The length of each intron and exon is indicated. Each section of bar represents 1 kb. (c) Conserved motif analysis of MdWRKYs with MEME. Each colored box represents a conserved motif. Details are included with Supplementary Figure S1.

In all MdWRKY proteins. In Group IIc, I, Ila, and Ilb, motif 6 and motif 9 together with motifs 1, 2, and 3 consist of the WRKY domain. Motif 4 and motif 7 compose of another WRKY domain that only appeared in some Group I members. Motif 5 was highly similar with leucine zipper (LZ) domains that appear in some AtWRKYs, which could mediate protein dimerization. Motif 5 appeared in all the Group IIa and IIb members and in some of Group IId and III members. Motif 10 appeared in the N-terminal of some Group I members. Motif 8 appeared in Group IId.

3.3. Expression Analysis of MdWRKYs in Different Tissues

The expression levels of the 113 MdWRKYs in different tissues were extracted from published transcriptome data (Figure 4). MdWRKY11a, MdWRKY69b, MdWRKY44c, MdWRKY58a, MdWRKY1a, MdWRKY32a, MdWRKY15a,
Figure 4. The expression analysis of *MdWRKYs* in different tissues by transcriptome. Gene expression of *MdWRKYs* was quantified in flower (red), fruit (blue), leaf (yellow), root (purple), shoot apex (green), and fruit (pink) and displayed by the log₁₀ (FPKM). Genes that showed low or no expression in these six tissues are not shown in the figure.
MdWRKY74a, MdWRKY11b, MdWRKY11b, and MdWRKY54g were highly expressed in the most organs. Among the MdWRKYs, MdWRKY54g showed the highest expression in the leaf, while MdWRKY11a was the highest expressed in the root. MdWRKY69b showed the highest expression in the fruit, stem, and flower. MdWRKY44c was the highest expressed in the shoot apex.

Other genes showed highly tissue-specific expression. MdWRKY29b was only expressed in the root. MdWRKY74b was only expressed in the stem. MdWRKY71c was only expressed in the fruit. About 15 MdWRKYs, MdWRKY47b, MdWRKY55a, MdWRKY27a, MdWRKY45b, MdWRKY44b, MdWRKY141a, MdWRKY75a, MdWRKY27b, MdWRKY27b, MdWRKY11b, MdWRKY41c, MdWRKY75d, and MdWRKY11e showed low abundance in these tissues within this dataset and are not shown in the figure. MdWRKY20b, MdWRKY32b, MdWRKY44d, MdWRKY54d, MdWRKY57a, MdWRKY57b, and MdWRKY61d were undetected in these tissues and are not shown in the figure.

We further examined expression of eight MdWRKY genes in different tissues by qRT-PCR (Figure 5). The results showed that MdWRKY33a, MdWRKY40a, MdWRKY51, and MdWRKY75b were highly expressed in the root. MdWRKY42a was detected in all examined tissues, with higher expression in the root and flower. MdWRKY54b showed higher expression in the leaf and shoot compared to other tissues. MdWRKY60c showed higher expression in the leaf and fruit. MdWRKY71b showed higher expression in the leaf and root.

3.4. Expression Analysis of MdWRKYs in Response to Pathogens

The expression of the MdWRKYs in response to pathogens was determined (Figure 6). Alternaria alternata can cause apple Alternaria blotch disease, which often results in defoliation of the tree. Transcriptome analysis was used to determine the response in apple leaves to A. alternata infection at 0, 12, 18, 36, and 72 hours post inoculation (hpi) [32]. There were 59 differentially expressed MdWRKYs after Alternaria infection (Figure 6(a)). MdWRKY61c, MdWRKY32b,
Figure 6. Heatmap of differentially expressed MdWRKYs in response to biotic stress. Transcriptome datasets from published studies were mined for data on the 113 MdWRKYs identified in the apple genome. Datasets were from apples infected with (a) Alternaria alternata; (b) apple replant disease (ARD); (c) Pythium ultimum; (d) Botryosphaeria dothidea; (e) Erwinia amylovora; (f) Penicillium expansum; and (g) Gymnosporangium yamadae. The color scales of panels (a) and (d) were used to indicate the gene expression level corresponding to the log10(FPKM). The color scales of panels (b), (c), (e), (f), and (g) were used to indicate the gene expression level corresponding to the log10(FPKM_Treatment/FPKM_Control).
and MdWRKY61a were downregulated after *Alternaria* inoculation. MdWRKY33b reached its highest value at 12 hpi, MdWRKY15a, MdWRKY50a, MdWRKY75c, MdWRKY42a, MdWRKY15d, MdWRKY71b, MdWRKY54e, MdWRKY50b, MdWRKY40a, and MdWRKY48a reached their highest values at 18 hpi. The expression of MdWRKY14b, MdWRKY47b, MdWRKY2c, and MdWRKY60b peaked at 36 hpi. MdWRKY169a, MdWRKY23b, MdWRKY30b, MdWRKY69b, MdWRKY41a, MdWRKY48b, MdWRKY44d, MdWRKY27a, MdWRKY65a, MdWRKY71a, MdWRKY3b, MdWRKY33d, MdWRKY33c, MdWRKY42b, MdWRKY60a, MdWRKY61d, MdWRKY15b, MdWRKY45a, MdWRKY61b, MdWRKY29b, MdWRKY75b, MdWRKY69c, MdWRKY11c, MdWRKY54g, and MdWRKY15c reached their highest expression levels at 72 hpi. MdWRKY19c, MdWRKY60d, MdWRKY71d, MdWRKY51, MdWRKY42d, MdWRKY30a, MdWRKY54h, MdWRKY29a, MdWRKY40b, MdWRKY32a, MdWRKY47a, MdWRKY161a, MdWRKY160c, MdWRKY64a, MdWRKY33a, and MdWRKY11d reached their highest expression values at 18 hpi, and showed a second peak at 72 hpi.

Replanting apple trees in land previously used as apple orchards or nurseries often results in apple replant disease (ARD). ARD weakens apple trees and affects fruit yield and quality [33] [34]. Cultivating the ARD-susceptible apple rootstock M26 on ARD-affected soil significantly upregulated MdWRKY75b and MdWRKY51 expression in leaves (Figure 6(b)).

Pythium ultimum is a primary component of the ARD pathogen complex identified in orchard soil [35]. Roots of the replant-tolerant rootstock G935 and the replant-susceptible rootstock B9 were infected by *Py. ultimum* and sampled at 24 hpi, 48 hpi, and 72 hpi for transcriptome analysis [36]. There were 53 differentially expressed *MdWRKY*s after *Py. ultimum* infection (Figure 6(c)). *MdWRKY*48a, *MdWRKY*2a, *MdWRKY*15c, *MdWRKY*27b, *MdWRKY*41c, *MdWRKY*41b, and *MdWRKY*51 showed similar expression patterns: upregulated at 24 hpi and downregulated at the 72 hpi in the susceptible B9, but downregulated at 24 hpi and upregulated at 72 hpi in the resistant G935. *MdWRKY*40b, *MdWRKY*33b, *MdWRKY*71a, *MdWRKY*74a, *MdWRKY*33a, *MdWRKY*93c, *MdWRKY*75c, *MdWRKY*29a, *MdWRKY*45a, *MdWRKY*47a, *MdWRKY*69c, *MdWRKY*44c, *MdWRKY*33a, *MdWRKY*33d, *MdWRKY*33c, *MdWRKY*29b, *MdWRKY*15a, and *MdWRKY*60d were downregulated at 24 hpi, but upregulated at 72 hpi in B9. *MdWRKY*43c, *MdWRKY*15b, *MdWRKY*54c, *MdWRKY*69b, *MdWRKY*65b, *MdWRKY*40a, and *MdWRKY*40b were upregulated at 24 hpi, but downregulated at 48 hpi and 72 hpi in G935. *MdWRKY*46a, *MdWRKY*54b, *MdWRKY*61d, *MdWRKY*60a, *MdWRKY*14b, *MdWRKY*54h, and *MdWRKY*93a were upregulated at 24 hpi in G935. *MdWRKY*22b, *MdWRKY*42b, and *MdWRKY*60c were upregulated at 48 hpi in G935. Also in G935, *MdWRKY*44c, *MdWRKY*33a, *MdWRKY*33d, and *MdWRKY*29b showed low levels of expression at 24 hpi, high levels at 48 hpi, and then downregulation at 72 hpi.

Apple fruit ring rot disease caused by *Botryosphaeria dothidea* has severe im-
pacts on China apple production. Transcriptomics was used to analyze gene expression in fruit from resistant and susceptible trees infected with *B. dothidea* at 48 hours after inoculation (hai), 72 hai, and 96 hai [2]. The result showed that there were 19 differentially expressed genes after *B. dothidea* infection (Figure 6(d)). *MdWRKY71b, MdWRKY42a, MdWRKY47a,* and *MdWRKY71a* were upregulated in the resistant trees, but downregulated in the susceptible trees. *MdWRKY61c* was downregulated at 72 hai but upregulated at 96 hai in the susceptible trees. *MdWRKY2a* was downregulated at 48 hai in the susceptible trees. *MdWRKY71c, MdWRKY75c, MdWRKY71d,* and *MdWRKY46a* were downregulated in the resistant trees, but upregulated in the susceptible trees. *MdWRKY57a* was upregulated at 72 hai in the resistant trees. *MdWRKY50a, MdWRKY51, MdWRKY60c, MdWRKY54g, MdWRKY54h,* and *MdWRKY50b* were upregulated at 48 hai in the susceptible trees. *MdWRKY33d* was upregulated at 72 hai and 96 hai in the susceptible trees. *MdWRKY175d* was upregulated at 96 hai in the susceptible trees.

Fire blight disease incited by *Erwinia amylovora* is a serious disease of susceptible apple, pear, quince, and other rosaceous hosts. Transcriptomics was used to analyze Malling 7 rootstock with high root area (HRA) or low root area (LRA) response to *E. amylovora* on 4 days post inoculation (dpi) and 8 dpi [37]. A total of 38 *MdWRKYs* were differentially expressed after *E. amylovora* infection (Figure 6(e)). About 31 of the *MdWRKYs* were upregulated 8 dpi in the HRA. Only *MdWRKY65a* was downregulated at 4 dpi in HRA. *MdWRKY42a, MdWRKY33a, MdWRKY30a, MdWRKY11b,* and *MdWRKY20a* were upregulated at 4 dpi in the LRA. *MdWRKY30b* was upregulated at 4 dpi and 8 dpi in the LRA. *MdWRKY48b, MdWRKY71a, MdWRKY60b, MdWRKY71b, MdWRKY48a, MdWRKY50a, MdWRKY75a,* and *MdWRKY51* were downregulated at 8 dpi in the LRA. *MdWRKY175c* and *MdWRKY175b* were downregulated at 4 dpi and 8 dpi in the LRA.

Penicillium expansum can infect apple fruit through wounds, causing blue mold disease that results in fruit rot. Transcriptomics was used to analyze the mature apple fruit of the susceptible ‘Royal Gala’ and resistant *Malus sieversii*-Pl613981 in response to *Pe. expansum* inoculation at 6 hpi, 24 hpi, and 48 hpi [38]. In the *Malus sieversii*, most of the differentially expressed *MdWRKYs* were significantly downregulated at 48 hpi (Figure 6(f)). *MdWRKY65a* expression peaked at 6 hpi. *MdWRKY42a, MdWRKY33d, MdWRKY75c, MdWRKY75b,* and *MdWRKY40b* were significantly upregulated at 24 hpi. *MdWRKY65a* was significantly upregulated at 6 hpi. In ‘Gala’, there were only 5 differentially expressed *MdWRKYs*. *MdWRKY33d* and *MdWRKY40b* were significantly upregulated at 24 hpi. *MdWRKY58a* was significantly downregulated at 24 hpi. *MdWRKY75c* was significantly downregulated at 24 hpi and 48 hpi. *MdWRKY42a* was significantly upregulated at 48 hpi.

Apple rust disease, caused by *Gymnosporangium yamadae*, is one of the major threats to apple orchards. Transcriptomics was used to analyze gene expres-
sion in apple leaves infected by *G. yamadae* at 10 dpi and 30 dpi [39]. There were 80 differentially expressed *MdWRKYs* after infection (Figure 6(g)). *MdWRKY71a, MdWRKY75a, MdWRKY27b, MdWRKY47b, MdWRKY21b, MdWRKY29b, MdWRKY60d, MdWRKY71b, MdWRKY2b,* and *MdWRKY49a* were upregulated at 10 dpi. *MdWRKY57b, MdWRKY74a, MdWRKY45b, MdWRKY24e, MdWRKY69a,* and *MdWRKY22c* were downregulated at 10 dpi. *MdWRKY39c, MdWRKY21a, MdWRKY13b, MdWRKY58a, MdWRKY21c, MdWRKY44c, MdWRKY42c, MdWRKY13a,* and *MdWRKY15d* were upregulated at 30 dpi. *MdWRKY23a, MdWRKY61d,* and *MdWRKY14b* were upregulated at 30 dpi. *MdWRKY30b, MdWRKY50b, MdWRKY46b, MdWRKY61a, MdWRKY40b, MdWRKY30a, MdWRKY55b, MdWRKY54b, MdWRKY54e,* and *MdWRKY50a,* were upregulated at 30 dpi. *MdWRKY30b, MdWRKY50b, MdWRKY46b, MdWRKY61a, MdWRKY40b, MdWRKY30a, MdWRKY55b, MdWRKY54b, MdWRKY54e,* and *MdWRKY50a,* were upregulated at 30 dpi. *MdWRKY9c, MdWRKY21a, MdWRKY13b, MdWRKY58a, MdWRKY71b, MdWRKY2a,* and *MdWRKY49a* were upregulated at 10 dpi and 30 dpi. *MdWRKY75c, MdWRKY47a, MdWRKY45b,* and *MdWRKY60c* were upregulated at 10 dpi and 30 dpi. *MdWRKY69b* and *MdWRKY29b* were downregulated at 10 dpi and 30 dpi. *MdWRKY71c* and *MdWRKY60c* were upregulated at 10 dpi and 30 dpi. *MdWRKY89c* and *MdWRKY29b* were downregulated at 10 dpi and 30 dpi. *MdWRKY33d, MdWRKY41b, MdWRKY41c,* and *MdWRKY33b, MdWRKY60a,* were upregulated at 10 dpi and 30 dpi. *MdWRKY42a, MdWRKY48a, MdWRKY41a,* and *MdWRKY60a, MdWRKY55a,* were upregulated at 10 dpi, but downregulated at 30 dpi. *MdWRKY74b, MdWRKY42d,* and *MdWRKY54f, MdWRKY32a,* and *MdWRKY69b* were downregulated at 10 dpi, but upregulated at 30 dpi.

In summary, about 22 *MdWRKYs* showed differential expression in response to at least five pathogens (Figure 7). *MdWRKY33d* and *MdWRKY75c* were differentially expressed after infection with 6 pathogens, including *A. alternata, B. dothidea, E. amylovora, G. yamadae, Pe. expansum,* and *Py. ultimum*. *MdWRKY51* was differentially expressed after infection with 5 diseases, including ARD, *A. alternata, B. dothidea, E. amylovora,* and *Py. ultimum*. *MdWRKY75b* was differentially expressed after infection with 5 diseases, including ARD, *A. alternata,* *E. amylovora,* and *Pe. expansum*. *MdWRKY33a, MdWRKY33b, MdWRKY33c,* and *MdWRKY30a,* were differentially expressed after infection with 5 pathogens, namely *A. alternata, E. amylovora, G. yamadae,* and *Pe. expansum*. *MdWRKY42a* and *MdWRKY71b* were differentially expressed after infection with 5 pathogens, including *A. alternata, B. dothidea, E. amylovora,* *G. yamadae,* and *Pe. expansum*. *MdWRKY71a, MdWRKY54h,* and *MdWRKY60c* showed differential expression after infection with 5 pathogens, namely *A. alternata, B. dothidea, E. amylovora, G. yamadae,* and *Py. ultimum*.

3.5. *MdWRKYs* Promoter Analysis

We further analyzed the promoters of the 22 differentially expressed *MdWRKYs*
Figure 7. Summary of the differential expression of the *MdWRKYs* in response to biotic stresses. Data is from published transcriptomes.

(Figure 8). These genes carried many defense- and stress-responsive elements.

The promoters of 17 *MdWRKYs* contained a MeJA-response cis-element. The G-Box, ABRE, CAAT-box, and TATA-box cis-elements appeared in the 15 *MdWRKYs* members promoters. The promoters of 14 *MdWRKYs* contained ARE cis-elements. The promoters of 12 *MdWRKYs* contained salicylic acid response element cis-elements.

3.6. The Role of *MdWRKY40a* and *MdWRKY54h* in *Botryosphaeria dothidea* Infection

Through big data analysis, we have identified 22 differentially expressed *MdWRKYs* in response to at least five pathogens. *MdWRKY40a* and *MdWRKY54h* were further selected to test for their roles during *B. dothidea* infection. Especially for *MdWRKY54h*, there is less reports about its function in pathogens infection. When apple fruits transiently silenced and inoculated with...
Figure 8. Cis-element analysis of the *MdWRKYs* promoters.

B. dothidea, the TRV-MdWRKY40a and TRV-MdWRKY54h constructs significantly decreased the lesion size compared with the control (Figure 9(a) and Figure 9(b)). On the contrary, overexpression of *MdWRKY40a-OE* and *MdWRKY54h-OE* reduced resistance to *B. dothidea* (Figure 9(c) and Figure 9(d)). The disease spot size of apple fruits transiently expressing *MdWRKY40a-OE* and *MdWRKY54h-OE* were significantly larger than the control. These results indicated that *MdWRKY40a* and *MdWRKY54h* promote growth of *B. dothidea* or decrease plant resistance.

4. Discussion

In this paper, we systematically identified 113 *MdWRKYs* in the apple genome and analyzed their response to seven pathogens. Among these *MdWRKYs*, 22 *MdWKRYs* showed differential expression in response to at least 5 pathogens. The 22 differentially expressed *MdWKRYs* may play roles during the apple response to pathogens. The two WRKYs in group IIa, *MdWRKY40* and *MdWRKY60* mainly responded to infection *A. alternata*, *E. amylovora*, *G. yamadae*, *Pe. expansum*, and *Py. ultimum*. These genes are homologous to *AtWRKY18*, *WRKY40*, and *WRKY60*, which have been intensively studied and shown to be induced in response to biotrophic, hemibiotrophic and necrotrophic fungi [5] [6] [40]. Fifteen WRKY TF genes, including *WRKY18*, *WRKY40*, and *WRKY33*, were strongly (>4-fold) induced 30 min after flg22 treatment in *Arabidopsis* seedlings [41]. *WRKY18*, *WRKY40*, and *WRKY33* were identified as hub genes within a proposed WRKY regulatory network [6] [42]. *PtrWRKY40*
Figure 9. The role of *MdWRKY40a* and *MdWRKY54h* in *Botryosphaeria dothidea* infection. (a) The phenotypes of apples inoculated with *B. dothidea* after silencing *MdWRKY40a* and *MdWRKY54h* by VIGS were recorded 4 days post inoculation (dpi). Fruit injected with *Agrobacterium tumefaciens* containing empty vector (pTRV2) and inoculated with *B. dothidea* were the control. (b) Relative spot size on apples after silencing *MdWRKY40a* and *MdWRKY54h* by VIGS and inoculation with *B. dothidea* at 4 dpi. The area of each spot was measured and compared to control. Fifteen apples were inoculated with each treatment combination. (c) The phenotypes of apple inoculated with *B. dothidea* during transient overexpression of *MdWRKY40a* and *MdWRKY54h* were recorded at 4 dpi. Fruit injected with *Agrobacterium tumefaciens* containing empty vector (SAK-277) and inoculation with *B. dothidea* were the control. (d) Relative spot size on apples during transient overexpression of *MdWRKY40a* and *MdWRKY54h* and inoculation with *B. dothidea* 4 dpi. The area of each spot was measured and compared to control. Fifteen apples were inoculated with each treatment combination.

plays a negative role in resistance to hemibiotrophic fungi in poplar but functions as a positive regulator of resistance toward the necrotrophic fungi in *Arabidopsis* [43]. *GmWRKY40*, from *Glycine max* L., enhances the resistance to *Phytophthora sojae* [44]. In *Malus hupehensis*, *MhWRKY40b* were induced by the powdery mildew (*Podosphaera leucotricha*) [37]. In *Malus × domestica*, 4 *MdWRKY33s* were induced by *A. alternata*, *Pe. expansum*, *Py. ultimum*, *G. yamadae*, and *E. amylovora*. *MdWRKY33a* and *MdWRKY33d* were also induced by ARD and *B. dothidea*, respectively. *Arabidopsis WRKY33* is a key positive resistance regulator against the necrotrophic fungi *Alternaria brassicicola* and *Botrytis cinerea* [45] [46]. Hence, the group IIA members WRKY40 and WRKY60 and group I member WRKY33 may play important roles in responding to pathogens and are conserved in plants.

WRKY15a and WRKY15b were also differentially expressed in response to pathogen infection, including *A. alternata*, *E. amylovora*, *G. yamadae*, *Pe. expansum*, and *Py. ultimum*. In oilseed rape, overexpression of *BnWRKY15* si-
multaneously increases the susceptibility of B. napus to S. sclerotiorum and down-regulates BnWRKY33 [47]. Although AtWRKY71 is involved in controlling shoot branching and accelerates flowering in Arabidopsis [48] [49], MdwRKY71a and MdwRKY71b showed differential expression after infecting B. dothidea, E. amylovora, G. yamadae, and Py. Ultimum in apple.

MdwRKY42a and MdwRKY42b showed differential expression in response to 5 pathogen infection. MdwRKY42a (named MdwRKY31 in [16]) regulates plant resistance to B. dothidea through the SA signaling pathway by interacting with MdhIR4. In rice, WRKY42 negatively regulates the rice response to Magnaporthe oryzae by suppressing JA signaling-related genes [50].

MdwRKY54h and MdwRKY40a showed differential expression after infection with B. dothidea, A. alternata, E. amylovora, G. yamadae, and Py. ultimum. In the transcriptome of apple fruit inoculated B. dothidea, MdwRKY54h was upregulated in the sensitive genotype. Transient expression assays showed that MdwRKY40a and MdwRKY54h play negative roles in defense against B. dothidea infection.

These MdwRKYs are conserved in apple and other plants. Some of them had been verified to played roles in the pathogen response in plants. The identified WRKYs genes will provide clues for apple and other plants in pathogens infection research.

In Arabidopsis, apple and other plants, many WRKY genes are responsive to pathogen infection. About 75 MdwRKYs were differentially expressed in response to at least 2 pathogens. About one-quarter of the MdwRKYs contain a W-box element. The WRKY-WRKY regulation network complex has been characterized based on the auto- and cross-regulation patterns through the WKRY domain/W-box and physical interaction between WRKY members [5] [6] [47] [50]. In addition, plant hormones, like MeJA and SA, are involved in systemic acquired resistance [14] [51] [52] [53] [54]. Many WRKY promoters contain MeJA- and SA-responsive elements. Some WRKYs also enhance disease resistance by involvement in MeJA and SA synthesis or signal transduction [14] [44] [53]. Therefore, pathogens, WKRY proteins, and hormones come together in a regulatory network that may be the cause of the many different expression patterns seen for the WRKY gene family after inoculation with pathogens.

5. Conclusion

In short, we identified 113 MdwRKY members in the apple genome and analyzed their expression patterns in response to various biological stressors. Twenty-two MdwRKYs showed differential expression in response to at least five pathogens. MdwRKY40a and MdwRKY54h played negative roles in resistance to Botryosphaeria dothidea. Autoregulation, cross-regulation, and physical interaction between WRKY members and cross-regulation between pathogens, WRKY proteins, and hormones may work together to create the many MdwRKY expression patterns after inoculation with pathogens.
Acknowledgments

This work was supported by Youth Program of National Natural Science Foundation of China (31801844), Innovation team project of Henan University (19IRTSTHN009), the Special Fund for Henan Agriculture Research System (Z2018-11-03), and the National Key Research and Development Program of China (2018YFD1000300 and 2019YFD1000100).

Author Contribution Statement

XZ and CS conceived and designed research; HZ, LY, RZ, YZ and CS conducted experiments; XZ, ZW, HP, TB, SS, JJ, MW and JF revised manuscript and edited language; HZ and CS analyzed the data and finalized the manuscript. All authors read and approved the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Xu, J., Li, M., Jiao, P., Tao, H., Wei, N., Ma, F. and Zhang, J. (2015) Dynamic Transcript Profiles of "Qinguan" Apple (Malus × Domestica) Leaves in Response to Marssonina coronaria Inoculation. Frontiers in Plant Science, 6, Article No. 842. https://doi.org/10.3389/fpls.2015.00842

[2] Shen, F., Huang, Z., Zhang, B., Wang, Y., Zhang, X., Wu, T., Xu, X., Zhang, X. and Han, Z. (2019) Mapping Gene Markers for Apple Fruit Ring Rot Disease Resistance Using a Multi-Omics Approach. G3: Genes, Genomes, Genetics, 9, 1663-1678. https://doi.org/10.1534/g3.119.400167

[3] Eulgem, T. (2006) Dissecting the WRKY Web of Plant Defense Regulators. PLoS Pathogens, 2, Article No. e126. https://doi.org/10.1371/journal.ppat.0020126

[4] Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000) The WRKY Superfamily of Plant Transcription Factors. Trends in Plant Science, 5, 199-206. https://doi.org/10.1016/S1360-1385(00)01600-9

[5] Xu, X., Chen, C., Fan, B. and Chen, Z. (2006) Physical and Functional Interactions between Pathogen-Induced Arabidopsis WRKY18, WRKY40, and WRKY60 Transcription Factors. The Plant Cell, 18, 1310-1326. https://doi.org/10.1105/tpc.105.037523

[6] Birkenbihl, R.P., Kracher, B., Roccaro, M. and Somssich, I.E. (2017) Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity. The Plant Cell, 29, 20-38. https://doi.org/10.1105/tpc.16.00681

[7] Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M. and Sheen, J. (2002) MAP Kinase Signalling Cascade in Arabidopsis Innate Immunity. Nature, 415, 977-983. https://doi.org/10.1038/415977a

[8] Wang, D., Amornsiripanitch, N. and Dong, X. (2006) A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathogens, 2, Article No. e123.
[9] Lai, Z., Vinod, K., Zheng, Z., Fan, B. and Chen, Z. (2008) Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens. *BMC Plant Biology*, 8, Article No. 68. https://doi.org/10.1186/1471-2229-8-68

[10] Journot-Catalino, N., Somssich, I.E., Roby, D. and Kroj, T. (2006) The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in *Arabidopsis Thaliana*. *The Plant Cell*, 18, 3289-3302. https://doi.org/10.1105/tpc.106.044149

[11] Zhang, Q., Li, Y., Zhang, Y., Wu, C., Wang, S., Hao, L., Wang, S. and Li, T. (2017) Md-MiR156ab and Md-MiR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. *Frontiers in Plant Science*, 8, Article No. 526. https://doi.org/10.3389/fpls.2017.00526

[12] Zhang, F., Wang, F., Yang, S., Zhang, Y., Xue, H., Wang, Y., Yan, S., Wang, Y., Zhang, Z. and Ma, Y. (2019) Md WRKY100 Encodes a Group I WRKY Transcription Factor in *Malus domestica* That Positively Regulates Resistance to *Colletotrichum gloeosporioides* Infection. *Plant Science*, 286, 68-77. https://doi.org/10.1016/j.plantsci.2019.06.001

[13] Fan, H., Wang, F., Gao, H., Wang, L., Xu, J. and Zhao, Z. (2011) Pathogen-Induced MdWRKY1 in ‘Qinguan’ Apple Enhances Disease Resistance. *Journal of Plant Biology*, 54, 150-158. https://doi.org/10.1007/s12374-011-9151-1

[14] Zhao, X., Qi, C., Jiang, H., Zhong, M., You, C., Li, Y. and Hao, Y. (2020) MdWRKY15 Improves Resistance of Apple to *Botryosphaeria dothidea* via the Salicylic Acid-Mediated Pathway by Directly Binding the MdICS1 Promoter. *Journal of Integrative Plant Biology*, 62, 527-543. https://doi.org/10.1111/jipb.12825

[15] Zhao, X., Qi, C., Jiang, H., Zhong, M., Zhao, Q., You, C., Li, Y. and Hao, Y. (2019) MdWRKY46-Enhanced Apple Resistance to *Botryosphaeria dothidea* by Activating the Expression of MdPRS3.1 in the Salicylic Acid Signaling Pathway. *Molecular Plant-Microbe Interactions*, 32, 1391-1401. [https://doi.org/10.1093/mpmi/eru007](https://doi.org/10.1093/MPMI-03-19-0008-R)

[16] Dong, J., Chen, C. and Chen, Z. (2003) Expression Profiles of the Arabidopsis WRKY Gene Superfamily during Plant Defense Response. *Plant Molecular Biology*, 51, 21-37. https://doi.org/10.1023/A:1020780022549

[17] Zhu, X., Liu, S., Meng, C., Qin, L., Kong, L. and Xia, G. (2013) WRKY Transcription Factors in Wheat and Their Induction by Biotic and Abiotic Stress. *Plant Molecular Biology Reporter*, 31, 1053-1067. https://doi.org/10.1007/s11105-013-0565-4

[18] Guo, C., Guo, R., Xu, X., Gao, M., Li, X., Song, J., Zheng, Y. and Wang, X. (2014) Evolution and Expression Analysis of the Grape (*Vitis vinifera* L.) WRKY Gene Family. *Journal of Experimental Botany*, 65, 1513-1528. https://doi.org/10.1093/jxb/eru007

[19] Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., Lu, W., Fan, D. and Luo, K. (2014) Genome-Wide Identification and Characterization of the *Populus* WRKY Transcription Factor Family and Analysis of Their Expression in Response to Biotic and Abiotic Stresses. *Journal of Experimental Botany*, 65, 6629-6644. https://doi.org/10.1093/jxb/eru381

[20] Chen, P. and Liu, Q. (2019) Genome-Wide Characterization of the WRKY Gene Family in Cultivated Strawberry (*Fragaria × Ananassa* Duch.) and the Importance of Several Group III Members in Continuous Cropping. *Scientific Reports*, 9, Article No. 8423. https://doi.org/10.1038/s41598-019-4479-7

[21] Meng, D., Li, Y., Bai, Y., Li, M. and Cheng, L. (2016) Genome-Wide Identification
and Characterization of WRKY Transcriptional Factor Family in Apple and Analysis of Their Responses to Waterlogging and Drought Stress. *Plant Physiology and Biochemistry*, 103, 71-83. https://doi.org/10.1016/j.plaphy.2016.02.006

[22] Lui, S., Luo, C., Zhu, L., Sha, R., Qu, S., Cai, B. and Wang, S. (2017) Identification and Expression Analysis of WRKY Transcription Factor Genes in Response to Fungal Pathogen and Hormone Treatments in Apple (*Malus Domestica*). *Journal of Plant Biology*, 60, 215-230. https://doi.org/10.1016/j.plaphy.2016.02.006

[23] Daccord, N., Celton, J., Linsmith, G., Becker, C., Choinsne, N., Schijlen, E., et al. (2017) High-Quality *de Novo* Assembly of the Apple Genome and Methylome Dynamics of Early Fruit Development. *Nature Genetics*, 49, 1099-1106. https://doi.org/10.1038/ng.3886

[24] Mount, D.W. (2007) Using the Basic Local Alignment Search Tool (BLAST). *Cold Spring Harbor Protocols*, 2007, pdb.top17. https://doi.org/10.1101/pdb.top17

[25] Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., et al. (2014) Pfam: The Protein Families Database. *Nucleic Acids Research*, 42, D222-D230. https://doi.org/10.1093/nar/gkt1223

[26] Lu, S., Wang, J., Chitasaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., et al. (2020) CDD/SPARCLE: The Conserved Domain Database in 2020. *Nucleic Acids Research*, 48, D265-D268. https://doi.org/10.1093/nar/gkj2991

[27] Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y. and Xia, R. (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Molecular Plant*, 13, 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009

[28] Pertea, M., Kim, D., Pertea, G.M., Leek, J.T. and Salzberg, S.L. (2016) Transcript-Level Expression Analysis of RNA-Seq Experiments with HISAT, StringTie and Ballgown. *Nature Protocols*, 11, 1650-1667. https://doi.org/10.1038/nprot.2016.095

[29] Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. *Genome Biology*, 15, Article No. 550. https://doi.org/10.1186/s13059-014-0550-8

[30] Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. and Rombouts, S. (2002) PlantCARE, A Database of Plant CIS-Acting Regulatory Elements and a Portal to Tools for In Silico Analysis of Promoter Sequences. *Nucleic Acids Research*, 30, 325-327. https://doi.org/10.1093/nar/30.1.325

[31] Jiang, Y., Liu, C., Yan, D., Wen, X., Liu, Y., Wang, H., Dai, J., Zhang, Y., Liu, Y., Zhou, B. and Ren, X. (2017) MdHB1 Down-Regulation Activates Anthocyanin Biosynthesis in the White-Fleshed Apple Cultivar 'Granny Smith.' *Journal of Experimental Botany*, 68, 1055-1069. https://doi.org/10.1093/jxb/erx029

[32] Zhu, L., Ni, W., Liu, S., Cai, B., Xing, H. and Wang, S. (2017) Transcriptomics Analysis of Apple Leaves in Response to *Alternaria alternata* Apple Pathotype Infection. *Frontiers in Plant Science*, 8, Article No. 22. https://doi.org/10.3389/fpls.2017.00022

[33] Weiß, S., Liu, B., Reckwell, D., Beerhues, L. and Winkelmann, T. (2017) Impaired Defense Reactions in Apple Replant Disease-Affected Roots of *Malus domestica* “M26.” *Tree Physiology*, 37, 1672-1685. https://doi.org/10.1093/treephys/tpx108

[34] Weiß, S. and Winkelmann, T. (2017) Transcriptome Profiling in Leaves Representing Aboveground Parts of Apple Replant Disease Affected *Malus domestica* ‘M26’ Plants. *Scientia Horticulturae*, 222, 111-125. https://doi.org/10.1016/j.scienta.2017.05.012
[35] Shin, S., Zheng, P., Fazio, G., Mazzola, M., Main, D. and Zhu, Y. (2016) Transcriptome Changes Specifically Associated with Apple (Malus domestica) Root Defense Response during Pythium ultimum Infection. *Physiological and Molecular Plant Pathology*, **94**, 16-26. https://doi.org/10.1016/j.pmpp.2016.03.003

[36] Zhu, Y., Shao, J., Zhou, Z. and Davis, R.E. (2019) Genotype-Specific Suppression of Multiple Defense Pathways in Apple Root during Infection by *Pythium ultimum*. *Horticulture Research*, **6**, Article No. 10. https://doi.org/10.1038/s41438-018-0087-1

[37] Singh, J., Fabrizio, J., Desnosues, E., Silva, J.P., Busch, W. and Khan, A. (2019) Root System Traits Impact Early Fire Blight Susceptibility in Apple (Malus × Domestica). *BMC Plant Biology*, **19**, Article No. 579. https://doi.org/10.1186/s12870-019-2202-3

[38] Ballester, A.-R., Norelli, J., Burchard, E., Abdelfattah, A., Levin, E., González-Candelas, L., Droby, S. and Wisniewski, M. (2017) Transcriptomic Response of Resistant (PI613981-Malus Sieversii) and Susceptible (“Royal Gala”) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection. *Frontiers in Plant Science*, **8**, Article No. 1981. https://doi.org/10.3389/fpls.2017.01981

[39] Tao, S., Auer, L., Morin, E., Liang, Y. and Duplessis, S. (2019) Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium Yamadae at Two Sporulation Stages. *Molecular Plant-Microbe Interactions*, **33**, 444-461. https://doi.org/10.1093/MPMI-07-19-0208-R

[40] Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z. and Xu, X. (2010) Roles of *Arabidopsis* WRY18, WRY20 and WRY20 Transcription Factors in Plant Responses to Abscisic Acid and Abiotic Stress. *BMC Plant Biology*, **10**, Article No. 281. https://doi.org/10.1186/1471-2229-10-281

[41] Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D.G., Felix, G. and Boller, T. (2004) Bacterial Disease Resistance in *Arabidopsis* through Flagellin Perception. *Nature*, **428**, 764-767. https://doi.org/10.1038/nature02485

[42] Choura, M., Reïbâ, A. and Masmoudi, K. (2015) Unraveling the WRKY Transcription Factors Network in *Arabidopsis thaliana* by Integrative Approach. *Network Biology*, **5**, 55-61.

[43] Karim, A., Jiang, Y., Guo, L., Ling, Z., Ye, S., Duan, Y., Li, C. and Luo, K. (2015) Isolation and Characterization of a Subgroup IIA WRKY Transcription Factor PnWRKY40 from *Populus trichocarpa*. *Tree Physiology*, **35**, 1129-1139. https://doi.org/10.1093/treephys/tpv084

[44] Cui, X., Yan, Q., Gan, S., Xue, D., Wang, H., Xing, H., Zhao, J. and Guo, N. (2019) *GmWRKY40*, a Member of the WRKY Transcription Factor Genes Identified from *Glycine max* L., Enhanced the Resistance to *Phytophthora sojae*. *BMC Plant Biology*, **19**, Article No. 598. https://doi.org/10.1186/s12870-019-2132-0

[45] Birkenbihl, R.P., Diezel, C. and Somssich, I.E. (2012) *Arabidopsis* WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis Cinerea Infection. *Plant Physiology*, **159**, 266-285. https://doi.org/10.1104/pp.111.192641

[46] Zheng, X.-Y., Spivey, N.W., Zeng, W., Liu, P. P., Fu, Z.Q., Klessig, D.F., He, S.Y. and Dong, X. (2012) Coronatine Promotes *Pseudomonas syringae* Virulence in Plants by Activating a Signaling Cascade That Inhibits Salicylic Acid Accumulation. *Cell Host & Microbe*, **11**, 587-596. https://doi.org/10.1016/j.chom.2012.04.014

[47] Liu, F., Li, X., Wang, M., Wen, J., Yi, B., Shen, J., Ma, C., Fu, T. and Tu, J. (2018) Interactions of WRY13 and WRY33 Transcription Factors and Their Roles in the Resistance of Oilseed Rape to *Sclerotinia* Infection. *Plant Biotechnology Journal*, **16**, 911-925. https://doi.org/10.1111/pbi.12838
[48] Yu, Y., Liu, Z., Wang, L., Kim, S.G., Seo, P.J., Qiao, M., Wang, N., Li, S., Cao, X., Park, C.M. and Xiang, F. (2016) WRKY71 Accelerates Flowering via the Direct Activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. The Plant Journal, 85, 96-106. https://doi.org/10.1111/tpj.13092

[49] Guo, D., Zhang, J., Wang, X., Han, X., Wei, B., Wang, J., Li, B., Yu, H., Huang, Q., Gu, H., Qu, L. J. and Qin, G. (2015) The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis. The Plant Cell, 27, 3112-3127. https://doi.org/10.1105/tpc.15.00829

[50] Cheng, H., Liu, H., Deng, Y., Xiao, J., Li, X. and Wang, S. (2015) The WRKY45-2 WRKY13 WRKY42 Transcriptional Regulatory Cascade Is Required for Rice Resistance to Fungal Pathogen. Plant Physiology, 167, 1087-1099. https://doi.org/10.1104/pp.114.256016

[51] Bostock, R.M. (2005) Signal Crosstalk and Induced Resistance: Straddling the Line between Cost and Benefit. Annual Review of Phytopathology, 43, 545-580. https://doi.org/10.1146/annurev.phyto.41.052002.095505

[52] Durrant, W.E. and Dong, X. (2004) Systemic Acquired Resistance. Annual Review of Phytopathology, 42, 185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421

[53] Li, J., Brader, G. and Palva, E.T. (2004) The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16, 319-331. https://doi.org/10.1105/tpc.016980

[54] Kim, K.C., Lai, Z., Fan, B. and Chen, Z. (2008) Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. The Plant Cell, 20, 2357-2371. https://doi.org/10.1105/tpc.107.055566
Supplemental Data Legends

Table S1. Transcriptome data used for tissues expression analyses.

Tissue	SRR NO.	Cutivar
Leaf	SRR767668	hybrid M49
Root	SRR768132	Galaxy
Fruit	SRR768133	hybrid M67
Shoot apex	SRR768134	Granny Smith
Stem	SRR768135	Granny Smith
Flower	SRR768137	Gala

Table S2. Transcriptome data used for meta-analysis of biotic stress responses.

Pathogens	Pathogen	Cutivar	Tissue	Objective	BioProject	Reference article
Alternaria alternate	Fungi	Starking Delicious	Leaf	Response to Alternaria alternata	PRJNA349086	[32]
apple replant disease (ARD)	-	M26	Leaf	Response to apple replant disease (ARD)	PRJNA362843	[34]
Pythium ultimum	Fungi	B.9, G.935	Root	Response to Pythium ultimum	PRJNA407578	[36]
Botryosphaeria dothidea	Fungi	Royal Gala, P161983—Malus sieversii	Fruit	Response to Penicillium expansum	PRJNA383305	[38]
Erwinia amylovora	Bacteria	Malling 7	Root	Response to Erwinia amylovora	PRJNA507638	[37]
Penicillium expansum	Fungi	'Jonathan’—'Golden Delicious'	fruit	Apple Fruit Ring Rot Disease Resistance	PRJNA392908	[2]
Gymnosporangium yamadae	Fungi	Fuji	Leaf	Response to Gymnosporangium yamadae	PRJNA549565	[39]
Table S3. Primer sequences for qRT-PCR.

Gene name	Forward primer	Reverse primer	Purpose
Md WRKY33a	GAGGCAGCCAAACATCAGAAG	ATGCATCCCTGCCCTGCTCT	qRT-PCR
Md WRKY40a	CTTGTG7CCAGACCGAAGCA	AGGGAAGGACATCTATTGCCA	
Md WRKY42a	CTTCCTG7TGTCGTGACACA	CCGGGAAGCTGTAATGTTC	
Md WRKY51	ACAAAATGGGAAGCTGAGGTT	ATAGCTCGACATCATCTCGGT	
Md WRKY54h	TCGTCCATTCCCATCGTCA	CGTCCCACTGCAGTTTTGA	
Md WRKY60c	TCTCGATCTGTGCAGGATCCA	AGGTCTTGCAATGGAAACGTG	
Md WRKY71b	GTATGAAAGGCAAGCAAAC	TGGGGCATTTGAAACAAAGT	
Md WRKY75b	TTCTCCCGTGCCTGCGAAC	TCTCAGATGGCTGTCACCAC	

Vector construction

Gene name	Forward primer	Reverse primer	Purpose
TRV-Md WRKY40a	ATTCTGTGAGTAAGGTACGGAGATTC	CCGGACATGCGCCCGCTGCAGCTACCTCA	
TRV-Md WRKY54h	ATTCTGTGAGTAAGGTACGGAGATTC	TCCCGGCGATGCGCGGCGCTGAGCCTC	
WRKY40a-OE	GTGGAATCCCGAAGCAATCCAGTTACGATACATGCAAT	TCCCTTTACCAGTGAATGATGGTTAATGATATATATTGTTTTGA	
WRKY54h-OE	GTGGACCAGGCTACGAGCAGAACACACCCAGGAAGAAGA	TCCCTTTACCAGTGAATGATGGTTAATGATATATATTGTTTTGA	

Figure S1. Motif consensus sequences for Figure 3.