Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review

Ishita Gupta 1,*, Shona Pedersen 1 ©, Semir Vranic 1 © and Ala-Eddin Al Moustafa 1,2, ©

1 College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; spedersen@qu.edu.qa (S.P); svranic@qu.edu.qa (S.V.)
2 Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
* Correspondence: ishita.gupta@qu.edu.qa (I.G.); aalmoustafa@qu.edu.qa (A.-E.A.M.);
Tel.: +974-4403-6643 (I.G.); +974-4403-7817 (A.-E.A.M.)

Simple Summary: Recently, the interactions between microbiota and the host have been reported to induce the onset and progression of human cancer via epithelial–mesenchymal transition (EMT). In contrast, some microorganisms can protect against cancer growth, indicating an anticancer therapeutic action of such microbiota. In the review, we summarize findings from the literature, exploring the underlying mechanisms by which pathogenic microorganisms induce EMT. We also highlight the potential of exploiting these complex interactions for developing new biological therapies.

Abstract: Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial–mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.

Keywords: microbiota; gut; epithelial–mesenchymal transition; dysbiosis; cancer

1. Introduction

Epithelial cells are apicobasal polarized cells that function as physical barriers. They are tightly bound to adjacent cells, and the extracellular matrix (ECM) is regulated by E-cadherins and cytokeratins, respectively [1,2]. However, under certain conditions, including developmental processes, wound healing, repair, and tumor progression, epithelial cells lose their high degree of plasticity and attain migratory and invasive capabilities [3]. During the alteration of epithelial cells, junctional proteins are relocalized, or a more severe event occurs, such as the epithelial–mesenchymal transition (EMT) initiation [4,5]. During EMT, epithelial cells undergo loss of cell-to-cell junction and reorganization of the actin cytoskeleton; thus, nonmotile epithelial cells are converted to motile and invasive mesenchymal phenotypic cells [6]. Morphologically, epithelial cells lose their polygonal phenotype and acquire an elongated fibroblast morphology; these events are regulated by vimentin, fibronectin, and N-cadherin [4,5]. EMT is characterized by loss of E-cadherin and translocation of β-catenin from the cell membrane to the nucleus, followed by activation of several mesenchymal markers (e.g., vimentin, fibronectin, and N-cadherin) [4,5].
Though several growth factors activate signaling pathways to control EMT gene expression, some EMT-signaling pathways are regulated by microbial pathogens [7,8].

Previous studies reported that microbe invasion might alter the transforming growth factor β (TGFβ); thus, the TGFβ receptor phosphorylates and activates transcription factors Smad-2 and Smad-3, which heterodimerize with Smad-4 to form the Smad complex [9–11]. The Smad complex recruits the Ras-MAPK pathway leading to cell growth; proliferation; differentiation; migration; and, therefore, cancer progression [12,13].

In this review, we present a brief overview of the human gut microbiome, focusing on gut dysbiosis during EMT. We present data from the literature that shed light on their possible role in this crucial event, further triggering carcinogenesis and its progression.

2. Microbiota

Of the total human cell count, around 90% are associated with the presence of microbiota, while the remaining 10% are microbiome-free [14]. Nevertheless, it is postulated that the number of microbial genes is approximately ten times higher than the number of human genes [14]. Primarily located in the gut, the microbes play a vital role in nutrient uptake [15] and influence the development of healthy intestinal immune responses [16]. Any modification or change in the microbiota composition disrupts the microbe–immune system relationship, further inducing the onset and development of several human inflammatory disorders that may lead to EMT [17,18].

The Human Microbiome Project (HMP) was a two-phase research initiative that used metagenomics and whole-genome sequencing in the first phase to recognize and distinguish the whole human microbiota [19]. In the second phase, the project revealed the role of microbes in human diseases using multiple omics techniques [19,20]. Although alterations in genes regulating DNA repair are mainly responsible for the onset and progression of tumorigenesis, the HMP indicated a role of dysbiotic microbiota in cancer progression [19].

With recent advancements, the use of genomics, epigenomics, proteomics, metabolomics, and transcriptomics elucidated host–microbiota interactions and their underlying mechanisms in human diseases; however, its role in carcinogenesis is still nascent. While viruses express active oncoproteins that can induce cell transformation leading to tumor formation or progression, dysbiosis-induced carcinogenesis arises after multiple hits [21]. An in vivo study using gnotobiotic (including germ-free) mouse models reported that microbes affect metabolism and inflammation, provoking the onset and progression of cancer [22].

Due to the extensive presence of microbes in the gut, several studies have primarily focused on the effects of altered microbiota in colorectal cancer pathogenesis [23–32]. Nevertheless, recent investigations have shown a correlation between dysbiosis and other cancers, including breast, oral, lung, skin, and reproductive tract [33–41]. The following section discusses the interplay between the host and the microbiota in triggering the onset of cancer via EMT.

3. Microbiota-Induced Epithelial–Mesenchymal Transition

Microbes induce EMT by attaching to the mucosal layers and trigger the breakdown of intercellular adhesion between epithelial cells. Bacterial adhesins bind to epithelial proteins’ E-cadherin/catenin complex, thus altering cell polarity and downstream signaling pathways, leading to EMT [42]. A study by Chen and colleagues reported that immunosuppression due to severe inflammation that overwhelms both regulatory T-cells and dendritic cells was significantly associated with the onset of EMT [43,44]. In the colon, Fusobacterium nucleatum (F. nucleatum) enhances the release of inflammatory cytokines [45]; in the urogenital tract, infection with Lactobacillus spp. triggers the release of interleukins [39].
Figure 1. Molecular pathways depicting the microbiome-induced EMT and chronic inflammation. *F. nucleatum*: *E. coli* strains producing genotoxic compound colibactin can bind to the DNA leading to DNA damage by triggering reactive oxygen species (ROS) and activating the Erk pathway. Activation of Erk stimulates Vimentin and N-cadherin expression, leading to EMT. Microbes express microorganism-associated molecular patterns (MAMPs) and are recognized by macrophages via TLRs. They can either produce ROS from macrophages or trigger the production of proinflammatory cytokines (IL-1, IL-6, IL-8, IL-23, and TNF) via various signaling pathways. Proinflammatory cytokines can activate STAT3 and NF-κB signaling, leading to activation of c-myc oncogene and MMP13, respectively, which progress to EMT, chronic inflammation, and eventually cancer. Simultaneously, virulence factors, FadA and BFT, can disrupt E-cadherin and trigger β-catenin/Wnt signaling pathways resulting in subsequent activation of the STAT3 and NF-κB pathways.
One of the most common bacteria the Gram-negative, microaerophilic bacteria, Helicobacter pylori (H. pylori) is present in the digestive tract in approximately 50% of the population worldwide [46,47]. In addition to its causative role in inflammation and ulceration in gastric epithelial cells, H. pylori can trigger toll-like receptors-2 and -5 (TLR2 and TLR5) to activate NFκB [48]. On the other hand, the virulent cytotoxic factors of H. pylori, CagA, and VacA can disrupt epithelial cell function. CagA disrupts the apical junctional complex and actin-cytoskeletal rearrangements. In contrast, VacA destroys the barrier function of tight junctions, leading to loss of epithelial cell-to-cell adhesion and loss of cell polarity [49–51]. Brandt and colleagues [52] reported that CagA could induce the release of IL-8 via the Ras/Mek/Erk/NFκB signaling pathways (Figure 1). Following this, another study by Yin et al. [53] showed that pathogenic strains of H. pylori enhance the expression of vimentin, Snail, and Slug supported by upregulated levels of gastrin; MMP7; and soluble heparin-binding epidermal growth factor. The studies support the role of H. pylori in the remodeling of actin filaments leading to the onset of EMT [52,53].

Moreover, E. coli is present in the gastrointestinal tract within a few hours after birth and generally harmonizes with its human hosts [54]. However, during the loss of intestinal barrier permeability due to the relocalization of junctional proteins, E. coli triggers the onset of diarrhea [55]. In chronic cases, the event can lead to EMT. Studies reported that diffusely adherent E. coli (DAEC) could infect intestinal epithelial cells and promote EMT by activating MAPK and PI3K pathways (Figure 1) [56–58]. In addition, the bacteria will stimulate the overexpression of HIF-1α protein, accentuating loss of E-cadherin and cytokeratin 18 and upregulation of fibronectin, signifying a possible role of E. coli in EMT [59].

In contrast, several bacterial products, such as lipopolysaccharide (LPS), flagellin, and muramyl dipeptides (MDP), are extensively studied. LPS, a vital part of the outer membrane of Gram-negative bacteria, is an endotoxin that binds to TLR4 [60]. Although earlier studies reported that LPS-induced EMT is very scarce, Zhao et al. demonstrated that LPS reduced the expression of the epithelial biomarker E-cadherin in intrahepatic biliary epithelial cells [61]. In contrast, the expression of mesenchymal markers S100A4 and α-SMA was enhanced [61]. More importantly, this investigation reported that LPS leads to overexpression of TGFβ-1 [61], an important inducer of EMT via Smad 2/3 [62]. Silencing of Smad 2/3 expression in these cells triggered E-cadherin expression and inhibited S100A and α-SMA deregulation, indicating that LPS induced EMT via the TGFβ1/Smad2/3 pathway [61]. Similar to LPS, flagellin and MDP are also found to trigger EMT. Both flagellin and MDP trigger the NFκB and MAPK signaling pathways [63,64]. In addition, flagellin stimulates the production of TGF-β and TGFβ1, which are known inducers of EMT [65]. Similarly, MDP also induces the expression patterns of genes responsible for invasive cell growth in intestinal epithelial cells and EMT [66].

4. Microbiota-Enhanced Carcinogenesis via Epithelial–Mesenchymal Transition

Dysbiosis is associated with host inflammatory responses and EMT in various sites favoring cancer progression. In cancer cells, EMT activation is related to the presence of altered infiltrating tumor-associated macrophages (TAMs), which produce soluble growth factors and inflammatory cytokines and promote extracellular matrix remodeling, angiogenesis, immunosuppression, and cancer cell invasion [67]. In addition, several studies reported that cancer microbiota initiates EMT and tumorigenesis via metabolic reprogramming (Figure 1) [68–70]. In the following subsections, we will focus on the presence of microbial colonies in different anatomical sites and their underlying signaling mechanisms responsible for triggering EMT leading to cancer progression.

4.1. Respiratory Tract Microbiota

The nasal epithelium is predominated by bacteroidetes, firmicutes, proteobacteria, and actinobacteria [71]. However, a wide variation in the microbial composition has been reported based on several factors, including humid environment, temperature, and local-
ization within the respiratory tract [72]. The nasal microbiota can alter the expression and functions of regulators of the olfactory signaling transduction pathways [71], in addition to the onset of allergic rhinitis and chronic rhinosinusitis [72]. Microbes act as epithelial barriers in the nasal cavity and can promote tissue-remodeling [73]. During microbial infections, the mucociliary clearance is altered, and nasal microbiota is not removed from the airways; thus, they attach to the mucosal surface, form colonies, and produce soluble virulence-associated factors [74]. Ziesemer et al. reported that alpha-hemolysin, a cytotoxic agent released by *Staphylococcus aureus* (S. aureus) in human airway epithelial cells, enhanced actin filament remodeling due to disruption of cell-to-cell contact and the focal adhesions leading to the augmented penetrability of the epithelial layer [75]. Moreover, *S. aureus* is involved in nasal polyposis pathogenesis [76]; nasal polyps lack expression of E-cadherin and occluding, while TGFβ and vimentin are overexpressed compared with healthy nasal mucosa [77], indicating a role of *S. aureus* in EMT.

On the other hand, the lung is primarily composed of Bacteroidetes and Firmicutes [78,79]. During respiratory diseases, mucus production presents suitable environmental and nutrient conditions for the microbes to thrive; hence, the microbial composition is altered [80]. This altered microbial composition promotes genotoxic and virulent effects, leading to deregulated metabolism, inflammation, and immune response, features of lung cancer development [80]. A recent study by Jin and colleagues [81] used lung adenocarcinoma mouse models with *Kras* mutations and *p53* deletion to study microbiota-induced inflammation in different myeloid cells. The study reported that in adenoviral (*Sftpc-Cre*) infected mice, the local microbiota activated myeloid cells (neutrophils) to enhance the production of IL-1β, IL-23, and γδ T cells to stimulate inflammation and tumor cell proliferation through IL-17. Thus, germ-free or antibiotic-exposed mice are drastically protected against lung adenocarcinoma compared to adenoviral (*Sftpc-Cre*) infected mice [81].

Previous studies have investigated the role of gut microbiota in extra-gastrointestinal tumors [33,35], including lung cancer [34,36,37]. Recently, *Enterococcus* and *Bifidobacterium* were associated with the onset of lung cancer and, therefore, suggested as a potential diagnostic biomarker in lung cancer [82]. On the other hand, differential expression of gut microbiota was also observed in lung cancer; the expressions of *Escherichia-Shigella, Enterobacter, Dialister, Kluyvera*, and *Faecalibacterium* were reduced in lung cancer patients, while *Veillonella, Fusobacterium, and Bacteroides* were augmented in comparison with healthy individuals [37]. Moreover, non-small-cell lung cancer (NSCLC) patients had higher levels of gut bacteria when compared with healthy controls [83]. However, on the contrary, down-regulated levels of gut butyrate-producing bacteria (*Clostridium leptum, Faecalibacterium prausnitzii, Ruminococcus, and Clostridial cluster I spp.*) were recently reported in NSCLC patients [84]. Liu et al. [85] carried out 16S ribosomal RNA (rRNA) gene amplicon sequencing in 30 lung cancer patients compared with 16 healthy individuals. They reported that gut microbiota dysbiosis in lung cancer correlates with altered metabolic and immunologic functions involved in the development and progression of lung cancer.

Similarly, a recent study by Zheng and colleagues utilized the 16S rRNA gene sequencing analysis and revealed the microbiota spectrum of lung cancer patients [86]. The study further reported a potential gut microbial signature for the prediction of early-stage lung cancer [86]. Another recent investigation demonstrated that prebiotics and probiotics have a latent protective effect on lung carcinogenesis [87]. Although studies have reported altered gut microbiome as a potential diagnostic and prognostic marker [88], further studies are warranted to examine the underlying mechanisms of the gut microbiome in the onset and progression of lung cancer.

Nonetheless, studies have also indicated an interaction between the gastrointestinal (GI) and respiratory tracts known as the gut–lung axis by altering microbial and immune functions [89] through a complex bidirectional axis involving blood and lymphatic circulation [90,91]. Dysregulation in the gut–lung axis is implicated in pathogen colonization, tissue damage, and the onset of carcinogenesis [92,93]. There are different pathways involved in the role of the gut–lung axis in lung cancer pathogenesis. TLRs on the intestinal
epithelial cells surface identify microbial ligands and induce TLR innate-adaptive immunity; immune cell migration triggers the gut mucous membranes [94]. Inflammation is another mechanism involved in gut–lung-axis-induced lung cancer; microbes migrate from the GI tract to the bloodstream via the mucosal barrier and induce lung inflammation, further augmenting the innate systemic response [95–97]. In addition, secondary metabolites produced from bile acids by gut bacteria and alteration of the gut microbiota cause DNA damage, produce toxins, and initiate cancer development; deregulated metabolism triggers toxic metabolite formation in the lungs and contributes to the development of lung cancer [98–100]. With the potential role of the gut–lung axis in lung cancer pathogenesis, the possibility of its manipulation for developing biological therapeutic agents needs to be studied further.

4.2. Gastrointestinal (GI) Tract Microbiota

Recently, it has been reported that microbial pathogens, especially intestinal microorganisms, play an essential role in carcinogenesis; intestinal dysbiosis can induce immune response triggering chronic inflammation and, in adverse conditions, leading to cancer progression [101].

Oral cancer arises from the oral mucosa, and approximately 15% of the cases are attributed to oral microbial dysbiosis [102]. The oral cavity is inhabited by various microbial species, including Porphyromonas gingivalis (P. gingivalis), F. nucleatum, Streptococci, Peptostreptococci, and Prevotella [103]. Dysbiosis of the oral microbiome alters the immune response resulting in an increased risk of the onset of periodontal diseases and oral squamous cell carcinoma (OSCC) [104–106]. Chronic infection in oral cells by P. gingivalis induces the expression of CD44 and CD133, which activate matrixins (MMPs-1 and -10) along with Slug, Snail, and Zeb1 leading to EMT [107,108]. This process of chronic-infection-induced EMT in the oral cavity results in oral cells developing invasive and migrative properties [107,108].

The role of microbiota has been assessed in esophageal cancer; in comparison to normal esophagus tissue, reduced microbial diversity is reported in Barrett’s esophagus, esophageal adenocarcinoma (EAC), and esophageal squamous cell carcinoma (ESCC) [109–118]. In EAC, Akkermansia and Gram-negative bacteria, Lactobacilli, Prevotella, Leprotrichia, and Enterobacteriaceae are augmented with loss of Streptococci [109,114,119]; in ESCC, Streptococci, Fusobacteria, Veillonella, and P. gingivalis are abundant with reduced Lautropia, Bulleidia, Catonella, Corynebacterium, Morella, Peptococcus, Treponema, and Cardiobacterium [111,115,116,120]. An in vivo study using a xenograft model reported microbial pathogens to play a role in increased uptake of metabolic glucose in addition to EMT in the esophagus [121]. Moreover, dietary intake is reported to affect the microbial composition in esophageal cancer pathogenesis. Kaakoush and colleagues performed an in vivo study using Sprague Dawley rats; the rats were given an obeseogenic diet and had an altered esophageal microbiota associated with chronic gastrointestinal diseases compared with normal diet-fed rats [122]. Another recent in vivo study involved transgenic mice (L2-IL1B mice) fed a high-fat diet; the study reported dysbiosis of the esophageal and gut microbiota resulting in inflammation and development of esophageal tumors in comparison with mice fed a normal diet [123]. Moreover, Riboflavin, a vitamin B2 supplement, impacts the balance between gut microbiota and esophageal mucosal integrity [124]. In vivo studies reported that riboflavin deficiency alters the gut microbiota and leads to esophageal epithelial atrophy [125,126]. The role of H. pylori in esophageal cancer is conflicting. Although the reduced H. pylori incidence is associated with an increased risk of EAC, there was no significant association between H. pylori infection and ESCC [127–129]. However, one study reported that H. pylori infection is associated with ESCC in the non-Asian population; in the Asian population, it showed a converse relation [128]. On the contrary, studies in the US and Swedish populations failed to find an association between H. pylori infection and EAC incidence [130,131]. These studies indicate a need to investigate the role of H. pylori in the onset and development of esophageal cancer.
However, *H. pylori* is the most common cause of gastric cancer and is classified as a class I carcinogen involved in the onset of gastric cancer pathogenesis by inducing inflammation and alteration of the gastric mucosal integrity [132–136]. Human gastric microbiota profiling revealed differential microbiota profiles between chronic gastritis, metaplasia, and gastric cancer, indicating that dysbiosis is associated with cancer progression [132,137–143]. Gastric colonization with *H. pylori* and *Clostridium*, *Lactobacillus*, and *Bacteroides* enhance inflammation with upregulated IL-11 expression and oncogenic genes, *Ptger4* and *Tgf-β*, plausibly regulated by the y-associated protein 1 (YAP1) [123,144]. Gastric microbiota analysis using 16S rRNA gene profiling demonstrated a distinct dysbiotic microbial community with plausible genotoxicity in gastric cancer in comparison to chronic gastritis [132]. In addition to the abundance of *H. pylori* in gastric cancer, oral-associated bacteria have also been found in patients with gastric cancer [136]. Several other investigations also reported the loss of *H. pylori* in gastric cancer in lieu of the dominant presence of *Clostridium*, *Enterococcus*, *Fusobacterium*, *Veillonella*, *Leptotrichia*, *Staphylococci*, and *Lactobacillus* species [141,145]. Similarly, another study reported the presence of *F. nucleatum* to correlate with an overall worse prognosis in Laurens’s diffuse-type gastric cancer [146]. Lately, in vivo studies revealed that a high-fat diet in mice stimulates gastric dysbiosis and the enhanced presence of *Lactobacilli*, intestinal metaplasia, STAT3, and accumulation of β-catenin; these changes provide a protumorigenic gastric microenvironment leading to the onset and development of gastric cancer [147,148].

Contrary to gastric cancer, the role of *H. pylori* in colorectal cancer (CRC) pathogenesis is unclear. Dysbiosis of the gut microbiota is reported in tissues of CRC when compared with normal tissue [23–32]. Sears and Pardoll suggested the “alpha-bug” (enterotoxigenic *Bacteroides fragilis*) hypothesis for colorectal cancer, where they found that oncogenic microorganisms can modify the mucosal immune response and colonic bacterial community to promote colorectal cancer [149]. On the other hand, Tjalsma and colleagues [150] proposed another model for colorectal cancer, known as the “driver passenger”, where they explained that tumors induced by microbes (driver) are subsequently replaced by other symbiotic microbes (passengers) and can alter the local infectious environment, further promoting tumorigenesis. Different gut microbiota species are found in different stages of CRC progression; Gram-positive bacteria (*Firmicutes* and *Actinobacteria*), Gram-negative bacteria (*Enterobacteriaceae*, *Proteobacteria*, *Burkholderiales*, and *Sutterellia*) are dominant in CRC [151]. Furthermore, the microbe *Oscillospira* is lost during the transition from advanced adenoma to early CRC [30]. One commonly detected microbial pathogen in CRC is *F. nucleatum*, which correlates with an elevated risk of CRC recurrence and chemoresistance [45,152,153]. *F. nucleatum* adheres to the colonic mucosa and interacts with Fap2 and integrin α2/β1 promoting cell proliferation and triggering the NF-κB pathway (Figure 1), in addition to the inhibition of natural killer cell response and accumulation of myeloid cells. These events alter the tumor microenvironment leading to microbial metastatic spread [45,154]. Furthermore, *E. coli* is also associated with the development of colon cancer; *E. coli* regulates the production of colibactin, a genotoxic *E. coli* strain resulting in DNA double-strand breaks, gut microbiota dysbiosis, stimulation of the NF-κB and Wnt/β-catenin pathways, as well as inflammation of the colonic mucosa, further stimulating cell proliferation [155,156]. In addition to these microbes, Fragilysin is another microbe present in the gut [157]. Fragilysin attaches to the epithelial receptors of the colon and initiates the NF-κB pathway, thus leading to an increase in colon cell growth, proliferation, and DNA damage [158,159]. On the other hand, Fragilysin also triggers cell proliferation and c-MYC activation by deregulating the Wnt/β-catenin signaling pathway via E-cadherin cleavage [158–160].

Likewise, a recent report indicates that oral and gut microbiota dysbiosis enhance bacterial invasion, which correlates with pancreatic cancer incidence [161]; however, studies are scarce on this particular topic. At the same time, other investigations reported that *P. gingivalis* in the oral cavity increased the risk of the onset of pancreatic ductal adenocarcinoma and cancer [162,163]. However, the role of *H. pylori* is contradictory in pancreatic
cancer; while Wei et al. [164] suggested *H. pylori* as a risk factor for the development of pancreatic cancer, another study failed to detect *H. pylori* in pancreatic tissue or fluid by PCR [165]. It is also evidenced that *H. pylori* secretes cytotoxins and vacuolins, and induces chronic inflammation and DNA damage, leading to pancreatic carcinogenesis [165,166]. Furthermore, 16s rRNA gene sequencing in pancreatic ductal adenocarcinoma identified 13 different microbe phyla, of which the most abundant were *Proteobacteria*, followed by *Bacteroides* and *Firmicutes* [167]. Commonly, duodenal or biliary bacterial reflux promotes translocation and colonization of the gut microbiota in the pancreas [167], enhancing the development and progression of pancreatic cancer [168].

4.3. Female Reproductive Tract Microbiota

The cervicovaginal tract comprises a diversified and complex microbial community named cervicovaginal microbiome (CVM), regulating different physiological disorders [169,170]. Although the CVM is composed of different microbe communities, it is highly dominated by the genus *Lactobacillus* (*Lactobacillus crispatus*, *Lactobacillus iners*, *Lactobacillus gasseri*, or *Lactobacillus jensenii*) [171,172]. In addition to maintaining tissue homeostasis [173] and a local pH lesser than 4.5 [174], lactobacilli adhere to epithelial cells by forming microcolonies and serve as a barrier to protect the genital environment from infectious pathogens [175], countering bacterial vaginosis, yeast infections, and sexually transmitted diseases (STDs) [176,177]. The imbalance of the CVM triggers abnormal cell proliferation, chronic inflammation, genome instability, STDs, premature births, and cancers of the vaginal tract [40,178–180]. Enhanced vaginal dysbiosis induces proinflammatory cytokines and chemokines production, followed by an inflammatory response [181] and dysregulation of the immune response favoring a tumor-promoting microenvironment [182,183]. The presence of *Atopobium vaginae* and *Porphyromonas* sp. in the reproductive tract, along with an increased vaginal pH (>4.5), correlated with the onset of endometrial cancer [184]. On the other hand, in cervical cancer, Laniewski et al. [39] reported that a low abundance of lactobacilli is associated with increased vaginal pH and enhanced secretion of various inflammatory cytokines, including interleukins (IL-2, IL-4, and IL-36γ), MIP-1β, IP-10, Flt-3L, and sCD40L. A study by Mitra and colleagues [185] reported high bacterial variation and loss of lactobacilli to be associated with cervical intraepithelial neoplasia (CIN) progression and cytological lesion severity. In addition, several studies have linked vaginal dysbiosis with human papillomavirus (HPV) infection in different grades of CIN and cervical cancer [185–188]. A study by Kwasniewski [189] reported dysbiosis of vaginal microbiota to induce the development of HPV-induced cervical cancer, indicating a role of vaginal microbiota in regulating viral persistence. Other studies also reported an association of reduced lactobacilli with an increased risk of HPV infection and bacterial vaginosis [186,190]. Lactobacilli reduce microbiome composition, triggering inflammation that can stimulate the expression of high-risk HPV oncogenes (E6 and E7) and malignant cell proliferation [191]. Studies also reported differential expression of microbiota in ovarian cancer tissues compared with normal tissues. Chronic infection with *Proteobacteria* and *Firmicutes* induces an inflammatory immune response leading to the onset and progression of ovarian carcinogenesis [38,41].

Since the gut microbiota shares approximately 30% of bacterial species, including *Firmicutes*, *Bacteroidetes*, *Proteobacteria*, *Actinobacteria*, and *Fusobacteria* [191], and regulates circulating estrogen (estrobolome), it is suggested that there is a crosstalk between the gut/estrobolome and related risk of vaginal diseases including malignancies [191–194]. The gut microbiome may be regarded as a reservoir for vaginal microbes. The Group B streptococcus is present in the gut; however, if present in the vagina of pregnant women, it can induce premature delivery [195]. Enhanced levels of lactobacilli in the vagina reduce bacterial vaginosis [196]. However, the intake of oral probiotics was found to inhibit bacterial vaginosis, indicating an influence on the gut microbiome in the vagina [197]. In addition, *Lactobacillus*, *Bacteroides*, *Bifidobacterium*, and *Akkermansia* are associated with enhanced levels of short-chain fatty acids (SCFA) [198]; a differential role of SCFA has been
shown between the gut and the vagina [191]. In the gut, SCFAs have anti-inflammatory characteristics and regulate the intestinal epithelial barrier [198]; whereas, in the vagina, SCFAs’ expression might be linked with several proinflammatory biomarkers [199]. In ovarian cancer, Xu et al. [200] demonstrated that intestinal dysbiosis activates tumor-associated macrophages and increases circulating levels of proinflammatory cytokines (IL-6 and TNF-α), promoting the onset of EMT.

Nevertheless, vaginal pathogens inducing diseases of the gut are still inconclusive. While studies reported delivery via the vagina or cesarean section to protect against asthma and gastroenteritis [201,202], another study did not find any association between the mode of delivery and respiratory or gut diseases [203]. While the gut microbiome is contemplated as one of the vital regulators of circulating estrogens, studies supporting the role of estrogen-related signaling and high-risk HPV-induced cancer are nascent and warrant further research [192–194]. Table 1 summarizes the roles of various gut microbiota in the onset of some common cancers.

Study	Detection Method	Bacterium Species	Expression Levels
Colorectal Cancer			
Boehm et al. (2020) [146]	Probe-based quantitative PCR	Fusobacterium nucleatum	Upregulated
Mori et al. (2018) [151]	16S rRNA gene sequencing	Sutterella and Escherichia/Shigella	Upregulated
Yu et al. (2017) [153]	Quantitative PCR	Fusobacterium nucleatum	Upregulated
Mima et al. (2015) [204]	Molecular pathological epidemiology database	Fusobacterium nucleatum	Upregulated
Mira-Pascual et al. (2015) [205]	16S rRNA gene pyrosequencing and quantitative PCR	Methanobacteriales, Methanobrevibacterium, Fusobacterium nucleatum, Enterobacteriaceae, Akkermansia muciniphila, and Blautia cocoides	Upregulated
Tahara et al. (2014) [206]	Quantitative real-time PCR	Fusobacterium nucleatum and pan-fusobacterium	Upregulated
Zackular et al. (2014) [32]	16S rRNA gene sequencing	Ruminococcaceae, Clostridium, Pseudomonas, and Porphyromonadaceae	Upregulated
Bonnet et al. (2014) [155]	PCR	Escherichia coli	Upregulated
Nugent et al. (2014) [207]	Quantitative real-time PCR	Bifidobacterium, Eubacteria, Escherichia coli, Clostridium, and Bacteroides	Upregulated
Wu et al. (2013) [208]	Pyrosequencing of the 16S rRNA gene V3 region	Bacteroides, Fusobacterium, and Campylobacter	Upregulated
Warren et al. (2013) [209]	Metatranscriptomic analysis	Faecalibacterium and Rosebush	Downregulated
McCoy et al. (2013) [210]	16S rRNA quantitative PCR and pyrosequencing	Fusobacterium	Upregulated
Brim et al. (2013) [211]	Human intestinal Tract Chip (HITChip) and 16S rRNA gene barcoded 454 pyrosequencing	Bacteroidetes and Firmicutes	Upregulated
Castellarin et al. (2012) [152]	Quantitative PCR	Fusobacterium nucleatum	Upregulated
Sanapareddy et al. (2012) [212]	454 titanium pyrosequencing of the V1–V2 region of the 16S rRNA gene	Firmicutes, Bacteroidetes, Pseudomonas, Helicobacter, Actinobacteria, Lactobacillus, Actinobacter, and Proteobacteria	Upregulated
Marchesi et al. (2011) [213]	Deep rRNA sequencing	Rosebush, Fusobacterium, and Faecalibacterium	Upregulated
Shen et al. (2010) [214]	Terminal restriction fragment length polymorphism, clone sequencing and fluorescent in situ hybridization analysis of the 16S rRNA genes	Dorea spp. and Faecalibacterium spp.	Upregulated
Table 1. Cont.

Study	Detection Method	Bacterium Species	Expression Levels
Esophageal Cancer			
Nie et al. (2014) [128]	Meta-analysis	Helicobacter pylori	Downregulated
Chow et al. (1998) [127]	Antigen-specific ELISA	Helicobacter pylori	Downregulated
Gastric Cancer			
Boehm et al. (2020) [116]	Probe-based quantitative PCR	Fusobacterium nucleatum	Upregulated
Hansen et al. (2020) [134]	18S rDNA sequencing	Malassezia	Upregulated
Hsieh et al. (2018) [145]	16S ribosomal DNA analysis	Fusobacterium and Clostridium	Upregulated
Ferriera et al. (2018) [132]	16S rRNA next-generation sequencing	Helicobacter pylori	Downregulated
Yu et al. (2017) [136]	16S rRNA gene sequencing	Helicobacter pylori	Upregulated
Sohn et al. (2017) [140]	Bar-coded 454 pyrosequencing of the 16S rRNA gene	Streptococcus pseudopneumoniae, S. parasanguinis, and S. oralis	Upregulated
Aviles-Jimenez et al. (2014)[139]	Microarray G3 PhyloChip analysis	Pseudomonas, Lactobacillus coleohominis, and Lachnospiraceae	Upregulated
Dicksved et al. (2009) [215]	Terminal restriction fragment length polymorphism analysis in combination with 16S rRNA gene cloning and sequencing	Streptococcus, Lactobacillus, Veillonella, and Prevotella	Upregulated
Chow et al. (1998) [127]	Antigen-specific ELISA	Helicobacter pylori	Downregulated
Lung Cancer			
Sobhani et al. (2011) [216]	Quantitative PCR and pyrosequencing	Bifidobacterium, Faecalibacterium, Streptococcus, and Veillonella	Downregulated
Gui et al. (2020) [84]	Quantitative PCR	Faecalibacterium prausnitzii, Clostridium leptum, Ruminococcus spp., Clostridial cluster I, Clostridial cluster XIVa, and Roseburia spp.	Downregulated
Zhuang et al. (2019) [82]	16S rRNA next-generation sequencing	Enterococcus	Upregulated
Liu et al. (2019) [137]	16S rRNA gene amplicon sequencing	Fusobacteria, Prevotella, Proteobacteria, Streptococcus, Verrucomicrobiota, and Veillonella	Upregulated
Zhang et al. (2018) [37]	16S rRNA gene sequencing	Bacteroides, Veillonella, and Fusobacterium	Upregulated
Apostolou et al. (2011) [217]	Reverse-transcription polymerase chain reaction	Escherichia-Shigella, Kluyvera, Fecalibacterium, Enterobacter, and Dialister	Downregulated
Pancreatic Ductal Adenocarcinoma			
Jesnowski et al. (2010) [165]	Nested PCR	Helicobacter pylori	No expression
Ovarian Cancer			
Chan et al. (1996) [218]	Combined PCR-ELISA Assay	Mycoplasma	Upregulated

5. Microbiome-Based Therapies (Biotherapy)

Gut microbiota in EMT-induced carcinogenesis is also involved in response to cancer therapy and toxicities [219,220]. The gut microbiota dysbiosis can modify both the systemic immune system and the response to chemotherapeutic agents [221,222]. However, cancer therapeutic drugs and antibiotics administration during the surgical or chemotherapeutic
intervention can alter the gut microbiota. Moreover, chemotherapy and radiotherapy induce significant gut dysbiosis by destroying intestinal or colonic mucosa and altering several metabolic pathways leading to the risk of colitis [223–225].

To overcome these challenges, studies have focused on restoring the gut microbiota and helped pave the way for therapeutic strategies. For instance, fecal microbiota transplantation (FMT) was primarily used to treat \textit{Clostridioides difficile} infection (CDI) by retention enemas and became common practice over the last decade [226,227]. FMT is administered through several ways, including infusion via nasogastric tube, oral capsules colonoscopy, and enema [228]; similar response rates were achieved for both oral administration and colonoscopy [229]. FMT is emerging as a candidate therapeutic option for treating several gut dysbiotic nonmalignant diseases, including irritable bowel syndrome, inflammatory bowel disease, multidrug-resistant diseases, metabolic syndrome, diabetes, nonalcoholic fatty liver disease, neuropsychiatric disorders, and autoimmune diseases [230–233]. However, although there are clinical trials observing the use of FMT against cancer in clinical practice, this still lies nascent [234–236].

On the other hand, probiotics involve the intake of bacteria or a combination of live organisms via supplements to maintain the normal microflora in the body [237]. Research has explored several commercially available probiotics in clinical trials, especially in CRC tumorigenesis. Interestingly, such studies demonstrated the efficacy of probiotic VSL#3 in CRC [238,239]; contrarily, another investigation reported that VSL#3 alters the mucosal microbial composition and enhances tumor growth [240]. In addition, although the effect of probiotic administration has been examined in several clinical trials in cancer patients, the studies majorly focused on the analysis of microbe dysbiosis [241–245]. Hence, more studies are required to assess the differential outcome of probiotics against cancer.

As previously stated, diet plays a role in gut microbiota composition and their metabolomic and transcriptomic profiles [147,246,247]. Numerous reports have indicated diet intake as a potential anticancer intervention [246,248,249]. On the other hand, prebiotics and postbiotics can also alter gut microbiota. Substances, including fructans, induce the growth of certain bacteria and modify SCFA levels within the gut; fructans were found to increase the efficacy of chemo- and radiotherapeutic agents in murine models [250]. In humans, use of postbiotics was studied against CRC and it was found that intake of butyrogenesis from high-fat-diet foods suppressed CRC carcinogenesis [251].

Finally, it is known that the use of antibiotics is associated with significant alteration in gut microbiota and worse clinical outcomes [252]. For example, patients with NSCLC demonstrated poor prognoses when given antibiotics before and after the start of treatment with immune checkpoint blockade [253]. Similarly, when administered anti-Gram-positive antibiotics, chronic lymphocytic leukemia patients had poor overall survival and response rates and earlier disease progression [253]. However, it might be useful to develop targeted antibiotics and bacteriophages to target the microbiota efficiently and improve therapeutic response selectively. In contrast, bacteriophages are the most significant and distinct members of the gut virobiota and have demonstrated efficiency in structuring the gut microbiota and targeting specific bacterial colonies [254,255]. Although these studies highlight the critical role of gut microbiota and biotherapy in the management of certain diseases, including cancer, additional studies are warranted to understand the underlying mechanisms and their plausible impact on the normal flora and immune system.

6. Conclusions

This review presents a concise outlook on the role of dysbiotic microbiota in EMT by altering transcription factors and deregulating signaling pathways, mainly STAT3, Wnt/\(\beta\)-catenin, and NF-\(\kappa\)B. Although the role of microbes is well-defined in health and disease, their function in enhancing cancer progression via EMT is still nascent. Microbes inducing fibrin production or cancer have been implicated in EMT. Hence, understanding and unraveling the impact of the microbiota in inducing EMT and, therefore, cancer
progression can help develop novel therapeutic regimens and biotherapies for human
diseases, including cancers.

Author Contributions: Conceptualization, A.-E.A.M.; writing-original draft preparation, I.G.; writing-
review and editing, S.V., S.P. and A.-E.A.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank A. Kassab for her critical reading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

α-SMA Alpha smooth muscle actin
β-catenin Beta-catenin
γδ T cells Gamma delta T cells
CagA Cytotoxin-associated gene A
CIN Cervical intraepithelial neoplasia
c-MYC Cellular myelocytomatosis
CRC Colorectal cancer
CVM Cervicovaginal microbiome
DAEC Diffusely adherent
EAC Esophageal adenocarcinoma
E-cadherin Epithelial cadherin
ECM Extracellular matrix
E. coli *Escherichia coli*
EMT Epithelial mesenchymal transition
ERK Extracellular-signal-regulated kinase
ESCC Esophageal squamous cell carcinoma
E. nucleatum *Fusobacterium nucleatum*
Flt-3L FMS-like tyrosine kinase 3 ligand
GI Gastrointestinal
HIF-1α Hypoxia-inducible factor 1-alpha
H. pylori *Helicobacter pylori*
HMP Human Microbiome Project
HPV Human papillomavirus
IL Interleukin
IP-10 Interferon gamma-induced protein 10
Kras Kirsten rat sarcoma viral oncogene homolog
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MDP Muramyl dipeptides
MIP Macrophage Inflammatory Proteins
MMPs Matrix metalloproteases
N-cadherin Neural cadherin
NF-κB Nuclear factor kappa light chain enhancer of activated B cells
NSCLC Non-small-cell lung cancer
OSCC Oral squamous cell carcinoma
PCR Polymerase chain reaction
P. gingivalis *Porphyromonas gingivalis*
References

1. Farquhar, M.G.; Palade, G.E. Junctional complexes in various epithelia. *J. Cell Biol.* 1963, 17, 375–412. [CrossRef] [PubMed]
2. Lee, J.L.; Streuli, C.H. Integrins and epithelial cell polarity. *J. Cell Sci.* 2014, 127, 3217–3225. [CrossRef]
3. Grünert, S.; Jechlinger, M.; Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. *Nat. Rev. Mol. Cell Biol.* 2003, 4, 657–665. [CrossRef]
4. Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. *Annu. Rev. Cell Dev. Biol.* 2011, 27, 347–376. [CrossRef] [PubMed]
5. Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. *Cell* 2009, 139, 871–890. [CrossRef]
6. Chapnick, D.A.; Warner, L.; Bernet, J.; Rao, T.; Liu, X. Partners in crime: The TGFβ and MAPK pathways in cancer progression. *Cell Biosci.* 2011, 1, 42. [CrossRef]
7. Zhao, M.; Mishra, L.; Deng, C.-X. The role of TGF-β/SMAD4 signaling in cancer. *Int. J. Biol. Sci.* 2018, 14, 111–123. [CrossRef]
8. Qiu, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature* 2010, 464, 59–65. [CrossRef] [PubMed]
9. Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. *Cell* 2006, 124, 837–848. [CrossRef] [PubMed]
10. Inagaki, H.; Suzuki, T.; Nomoto, K.; Yoshikai, Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin + CD44+ T cells in sites of inflammation. *Infect. Immun.* 1996, 64, 3280–3287. [CrossRef]
11. Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. *Nat. Rev. Immunol.* 2009, 9, 313–323. [CrossRef]
12. Wiertjesma, S.P.; van Bergenhogewouwen, J.; Garssen, J.; Knippels, L.M.J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. *Nutrients* 2021, 13, 886. [CrossRef]
13. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. *Nature* 2012, 486, 207–214. [CrossRef] [PubMed]
20. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 2014, 16, 276–289. [CrossRef]

21. Morgillo, E.; Dallio, M.; Della Corte, C.M.; Gravina, A.G.; Viscardi, G.; Loguerico, C.; Giardiello, F.; Federico, A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: A Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018, 20, 721–733. [CrossRef] [PubMed]

22. Bhatt, A.P.; Redinbo, M.R.; Bultman, S.J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 2017, 67, 326–344. [CrossRef] [PubMed]

23. Coker, O.O.; Wu, W.K.K.; Wong, S.H.; Sung, J.J.Y.; Yu, J. Altered Gut Archaea Composition and Interaction with Bacteria Are Associated With Colorectal Cancer. Gastroenterology 2020, 159, 1459–1470.e1455. [CrossRef] [PubMed]

24. Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut microbiome development along the colorectal adenoma–cancerinoma sequence. Nat. Commun. 2015, 6, 6528. [CrossRef] [PubMed]

25. Liu, W.; Zhang, X.; Xu, H.; Li, S.; Lau, H.C.-H.; Chen, Q.; Zhang, B.; Zhao, L.; Chen, H.; Sung, J.J.-Y.; et al. Microbial Community Heterogeneity Within Colorectal Neoplasia and its Correlation With Colorectal Carcinogenesis. Gastroenterology 2021, 160, 2395–2408. [CrossRef]

26. Nakatsu, G.; Zhou, H.; Wu, W.K.K.; Wong, S.H.; Coker, O.O.; Dai, Z.; Li, X.; Szeto, C.H.; Sugimura, N.; Lam, T.Y.-T.; et al. Altered Gut Microbiota Are Associated With Colorectal Cancer and Survival Outcomes. Gastroenterology 2018, 155, 529–541.e525. [CrossRef]

27. Thomas, A.M.; Manghi, P.; Asnicar, F.; Pasolli, E.; Armanini, F.; Zolfo, M.; Beghini, F.; Manara, S.; Karcher, N.; Pozzi, C.; et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019, 25, 667–678. [CrossRef]

28. Wang, Y.; Yan, X.; Wu, X.; Zhang, C.; Liu, J.; Hou, S. Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathog. 2021, 13, 2. [CrossRef]

29. Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019, 25, 679–689. [CrossRef]

30. Yang, T.-W.; Lee, W.-H.; Tu, S.-J.; Huang, W.-C.; Chen, H.-M.; Sun, T.-H.; Tsai, M.-C.; Wang, C.-C.; Chen, H.-Y.; Huang, C.-C.; et al. Enterotype-based Analysis of Gut Microbiota along the Conventional Adenoma-Carcinoma Colorectal Cancer Pathway. Sci. Rep. 2019, 9, 10923. [CrossRef]

31. Yang, Y.; Misra, B.B.; Liang, L.; Bi, D.; Weng, W.; Wu, W.; Cai, S.; Qin, H.; Goel, A.; Li, X.; et al. Integrated microbiome and metabolism analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Thranostics 2019, 9, 4101–4114. [CrossRef]

32. Zackular, J.P.; Rogers, M.A.M.; Ruffin, M.T.t; Schloss, P.D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 2014, 7, 1112–1121. [CrossRef] [PubMed]

33. Fernández, M.F.; Reina-Pérez, I.; Astorga, J.M.; Rodriguez-Carrillo, A.; Plaza-Díaz, J.; Fontana, L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public Health 2018, 15, 1747. [CrossRef]

34. Gui, Q.F.; Lu, H.F.; Zhang, C.X.; Xu, Z.R.; Yang, Y.H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet. Mol. Res. 2015, 14, 5642–5651. [CrossRef] [PubMed]

35. Raza, M.H.; Gul, K.; Arshad, A.; Riaz, N.; Waheed, U.; Rauf, A.; Aldakheel, F.; Alduraywish, S.; Rehman, M.U.; Abdullah, M.; et al. Microbiota in cancer development and treatment. J. Cancer Res. Clin. Oncol. 2019, 145, 49–63. [CrossRef]

36. Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.; Alou, M.T.; Daill, T.; Karcher, N.; Pozzi, C.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [CrossRef]

37. Zhang, W.Q.; Zhao, S.K.; Luo, J.W.; Dong, X.P.; Hao, Y.T.; Li, H.; Shan, L.; Zhou, Y.; Shi, H.B.; Zhang, Z.Y.; et al. Alterations of fecal bacterial communities in patients with lung cancer. Am. J. Transl. Res. 2018, 10, 3171–3185.

38. Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Alwine, J.C.; Coukos, G.; Robertson, E.S. The ovarian cancer oncobiome. Sci. Rep. 2019, 9, 10923. [CrossRef]

39. Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013, 14, 195–206. [CrossRef]

40. Chen, L.; Gibbons, D.L.; Gossami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014, 5, 5241. [CrossRef] [PubMed]
Cancers 2022, 14, 2964

44. Sacdalan, D.B.; Lucero, J.A. The Association Between Inflammation and Immunosuppression: Implications for ICI Biomarker Development. OncoTargets Ther. 2021, 14, 2053–2064. [CrossRef]

45. Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013, 14, 207–215. [CrossRef]

46. Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, W.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [CrossRef]

47. Mitchell, H.M. The epidemiology of Helicobacter pylori. Curr. Top. Microbiol. Immunol. 1999, 241, 11–30. [CrossRef]

48. Smith, M.F., Jr.; Mitchell, A.; Li, G.; Ding, S.; Fitzmaurice, A.M.; Ryan, K.; Crowe, S.; Goldberg, J.B. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 2003, 278, 32592–32560. [CrossRef]

49. Papini, E.; Satin, B.; Norais, N.; de Bernard, M.; Telford, J.L.; Rappuoli, R.; Montecucco, C. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest. 1998, 102, 813–820. [CrossRef]

50. Amniesa, M.R.; Vogelmann, R.; Covacci, A.; Tompkins, L.S.; Nelson, W.J.; Falkow, S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003, 300, 1430–1434. [CrossRef]

51. Murata-Kamiya, N.; Kurashima, Y.; Teishikata, Y.; Yamahashi, Y.; Saito, Y.; Higashi, H.; Aburatani, H.; Akiyama, T.; Peek, R.M., Jr.; Miyazono, K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 305–320. [CrossRef] [PubMed]

52. Dominguez, C.; David, J.M.; Palena, C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin. Cancer Biol. 2017, 47, 177–184. [CrossRef] [PubMed]

53. Sun, L.; Suo, C.; Li, S.T.; Zhang, H.; Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 51–66. [CrossRef] [PubMed]
69. Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 2019, 9, 1300. [CrossRef]

70. Mikó, E.; Vida, A.; Kovács, T.; Ujlaki, G.; Trencsényi, G.; Mártón, J.; Sári, Z.; Kovács, P.; Boratkó, A.; Hujber, Z.; et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Biophys. Acta Bioenerg. 2018, 1859, 958–974. [CrossRef]

71. François, A.; Grebert, D.; Rhimi, M.; Mariadassou, M.; Naudon, L.; Rabot, S.; Meunier, N. Olfactory epithelium changes in germfree mice. Sci. Rep. 2016, 6, 24687. [CrossRef] [PubMed]

72. Rawls, M.; Ellis, A.K. The microbiome of the nose. Ann. Allergy Asthma Immunol. 2019, 122, 17–24. [CrossRef] [PubMed]

73. Salzano, F.A.; Marino, L.; Salzano, G.; Botta, R.M.; Cascone, G.; D’Agostino Fiorenza, U.; Selleri, C.; Casolaro, V. Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. J. Immunol. Res. 2018, 2018, 2724951. [CrossRef]

74. Evans, S.E.; Xu, Y.; Tuvim, M.J.; Dickey, B.F. Inducible innate resistance of lung epithelium to infection. Annu. Rev. Physiol. 2010, 72, 413–435. [CrossRef]

75. Ziesemer, S.; Eiffler, I.; Schönberg, A.; Müller, C.; Hochgräfe, F.; Beule, A.G.; Hildebrandt, J.P. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J. Allergy Clin. Immunol. 2008, 121, 110–115. [CrossRef]

76. Patou, J.; Gevaert, P.; Van Zele, T.; Holtappels, G.; van Cauwenberge, P.; Bachert, C. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J. Allergy Clin. Immunol. 2008, 121, 110–115. [CrossRef]

77. Meng, J.; Zhou, P.; Liu, Y.; Liu, F.; Yi, X.; Liu, S.; Holtappels, G.; Bachert, C.; Zhang, N. The development of nasal polypy disease involves early nasal mucosal inflammation and remodelling. PLoS ONE 2013, 8, e82373. [CrossRef]

78. Dickson, R.P.; Erb-Downward, J.R.; Martinez, F.J.; Huffnagle, G.B. The Microbiome and the Respiratory Tract. Ann. Rev. Physiol. 2016, 78, 481–504. [CrossRef]

79. Mur, L.A.; Huws, S.A.; Cameron, S.J.; Lewis, P.D.; Lewis, K.E. Lung cancer: A new frontier for microbiome research and clinical translation. Ecamnergmedicalscience 2018, 12, 866. [CrossRef]

80. Mao, Q.; Jiang, F.; Yin, R.; Wang, J.; Xia, W.; Dong, G.; Ma, W.; Yang, Y.; Xu, L.; Hu, J. Interplay between the lung microbiome and lung cancer. Cancer Lett. 2018, 415, 40–48. [CrossRef] [PubMed]

81. Jin, C.; Lagoudas, G.K.; Zhao, C.; Lagoudas, G.K.; Zhao, C.; Ameh, S.; Bullman, S.; Bhutkar, A.; Hu, B.; Zhao, M.F.; Liang, G.D.; Zhang, M.C.; Li, Y.G.; Zhao, J.B.; Gao, Y.N.; et al. Dysbiosis of the Gut Microbiome is associated with Tumor Biomarkers in Lung Cancer. Int. J. Biol. Sci. 2019, 15, 107–118. [CrossRef]

82. Zhuang, H.; Cheng, L.; Wang, Y.; Zhang, Y.K.; Zhao, M.F.; Liang, G.D.; Zhang, M.C.; Li, Y.G.; Zhao, J.B.; Gao, Y.N.; et al. Dysbiosis of the Gut Microbiome in Lung Cancer. Front. Cell. Infect. Microbiol. 2019, 9, 112. [CrossRef]

83. Botticelli, A.; Putignani, L.; Zizzari, I.; Chierico, F.D.; Reddel, S.; Pietro, F.D.; Quagliarello, A.; Onesti, C.E.; Raffaele, G.; Mazzuca, F.; et al. Changes of microbiome profile during nivolumab treatment in NSCLC patients. J. Clin. Oncol. 2018, 36, e15020. [CrossRef]

84. Gómez-Rúa, M.; Trujillo, R.; Castellanos, R.; Fernández-Díaz, R.; Mateo, A.; Gómez-Rúa, M.; Trujillo, R.; Castellanos, R.; Fernández-Díaz, R.; Mateo, A.; et al. Changes in the Gut Microbiome Predicts the Early-stage Lung Cancer. J. Cell. Biochem. 2019, 120, 105–114. [CrossRef] [PubMed]

85. Gill, N.; Wlodarska, M.; Finlay, B.B. The future of mucosal immunology: Studying an integrated system-wide organ. Nat. Immunol. 2010, 11, 558–560. [CrossRef] [PubMed]

86. Renz, H.; Brandtzæg, P.; Hornef, M. The impact of perinatal development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 2012, 12, 9–23. [CrossRef]

87. Bingen, L.; Faire, M.; Rodapevic-Robin, N.; Mey, M.; Berthon, J.Y.; Bernaler, M.; Bernalier-Donadille, A.; Vasson, M.P.; Faire, M.; Rodapevic-Robin, N.; Mey, M.; Berthon, J.Y.; Bernaler, M.; Bernalier-Donadille, A.; Vasson, M.P.; et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. J. Oncol. 2017, 2017, 505371. [CrossRef] [PubMed]

88. Hooper, L.V.; Littman, D.R.; MacPherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [CrossRef] [PubMed]

89. Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122, 107–118. [CrossRef]

90. Samuelson, D.R.; Welsh, D.A.; Shellito, J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 2015, 6, 1085. [CrossRef] [PubMed]

91. Dumas, A.; Bernard, L.; Poquet, Y.; Lugo-Villarino, G.; Neyrolles, O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell. Microbiol. 2018, 20, e12966. [CrossRef] [PubMed]
96. Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016, 65, 575–583. [CrossRef] [PubMed]

97. Kim, M.; Gu, B.; Madison, M.C.; Song, H.W.; Norwood, K.; Hill, A.A.; Wu, W.J.; Corry, D.; Kheradmand, F.; Diehl, G.E. Cigarette Smoke Induces Intestinal Inflammation via a Th17 Cell-Neutrophil Axis. Front. ImmunoI. 2019, 10, 75. [CrossRef]

98. Boursi, B.; Mamtani, R.; Haynes, K.; Yang, Y.X. Recurrent antibiotic exposure may promote cancer formation—Another step in understanding the role of the human microbiota? Eur. J. Cancer 2015, 51, 2655–2664. [CrossRef] [PubMed]

99. Druzhinin, V.G.; Matskova, L.V.; Fucic, A. Induction and modulation of genotoxicity by the bacteriome in mammals. Mutat. Res./Rev. Mutat. Res. 2018, 776, 70–77. [CrossRef]

100. Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [CrossRef] [PubMed]

101. Van Raay, T.; Allen-Vercoe, E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol. Spectr. 2017, 5, 99–130. [CrossRef] [PubMed]

102. Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in oral microbiota associated with oral cancer. Sci. Rep. 2017, 7, 11773. [CrossRef] [PubMed]

103. Lee, W.H.; Chen, H.M.; Yang, S.F.; Lin, F.M.; Tsai, L.L.; Wu, B.C.; Hsin, C.H.; Chuang, C.Y.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 16540. [CrossRef] [PubMed]

104. Whitmore, S.E.; Lamont, R.J. Oral bacteria and cancer. PLoS Pathog. 2014, 10, e1003933. [CrossRef]

105. Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The microflora associated with human oral carcinomas. Oral Oncol. 1998, 34, 304–308. [CrossRef]

106. Karpinski, T.M. Role of oral microbiota in cancer development. Microorganisms 2019, 7, 20. [CrossRef]

107. Ha, N.H.; Woo, B.H.; Kim, D.J.; Ha, E.S.; Choi, J.I.; Kim, S.J.; Park, B.S.; Lee, J.H.; Park, H.R. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumour Biol. 2015, 36, 9947–9960. [CrossRef] [PubMed]

108. Sztukowska, M.N.; Ojo, A.; Ahmed, S.; Carenbauer, A.L.; Wang, Q.; Shumway, B.; Jenkinson, H.F.; Wang, H.; Darling, D.S.; Lamont, R.J. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell. Microbiol. 2016, 18, 844–858. [CrossRef]

109. Snider, E.J.; Comprés, G.; Freedberg, D.E.; Khianbian, H.; Nobel, Y.R.; Stump, S.; Uhlemann, A.-C.; Lightdale, C.J.; Abrams, J.A. Alterations to the esophageal microbiome associated with progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Epidemiol.Prev. Biomark. 2019, 28, 1687–1693. [CrossRef] [PubMed]

110. Wang, Q.; Rao, Y.; Guo, X.; Liu, N.; Liu, S.; Wen, P.; Li, S.; Li, Y. Oral microbiome in patients with oesophageal squamous cell carcinoma. Sci. Rep. 2019, 9, 19055. [CrossRef] [PubMed]

111. Chen, X.; Winckler, B.; Lu, M.; Cheng, H.; Yuan, Z.; Yang, Y.; Jin, L.; Ye, W. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE 2015, 10, e0143603. [CrossRef] [PubMed]

112. Blackett, K.; Siddhi, S.; Cleary, S.; Steed, H.; Miller, M.; Macfarlane, S.; Macfarlane, G.; Dillon, J. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: Association or causality? Aliment. Pharmacol. Ther. 2013, 37, 1084–1092. [CrossRef] [PubMed]

113. Cass, S.; Hamilton, C.; Miller, A.; Jupiter, D.; Khanipov, K.; Booth, A.; Pyles, R.;KR ill, T.; Reep, G.; Okereke, I. Novel ex vivo model to examine the mechanism and relationship of esophageal microbiota and disease. Biomedicines 2021, 9, 142. [CrossRef] [PubMed]

114. Elliott, D.R.F.; Walker, A.W.; O’Donovan, M.; Parkhill, J.; Fitzgerald, R.C. A non-endoscopic device to sample the esophageal microbiota: A case-control study. Lancer Gastroenterol. Hepatol. 2017, 2, 32–42. [CrossRef]

115. Li, D.; He, R.; Hou, G.; Ming, W.; Fan, T.; Chen, L.; Zhang, L.; Jiang, W.; Wang, W.; Lu, Z. Characterization of the esophageal microbiota and prediction of the metabolic pathways involved in esophageal cancer. Front. Cell. Infect. Microbiol. 2020, 10, 268. [CrossRef]

116. Shao, D.; Vogtmann, E.; Liu, A.; Qin, J.; Chen, W.; Abnet, C.C.; Wei, W. Microbial characterization of esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma from a high-risk region of China. Cancer Res. 2019, 125, 3993–4002. [CrossRef]

117. Peters, B.A.; Wu, J.; Pei, Z.; Yang, L.; Purdue, M.P.; Freedman, N.D.; Jacobs, E.J.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Oral microbiome composition reflects prospective risk for esophageal cancer. Cancer Res. 2017, 77, 6777–6787. [CrossRef]

118. Narihiko, M.; Tanabe, C.; Yamada, Y.; Igaki, H.; Tachimori, Y.; Kato, H.; Muto, M.; Montesano, R.; Sakamoto, H.; Nakajima, Y. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004, 95, 569–574. [CrossRef]

119. Lopetuso, L.R.; Severgnini, M.; Pecere, S.; Ponziani, F.R.; Boskoski, I.; Larghi, A.; Quaranta, G.; Masucci, L.; Ianiro, G.; Camboni, T. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS ONE 2020, 15, e0231789. [CrossRef]

120. Liu, Y.; Lin, Z.; Lin, Y.; Chen, Y.; Peng, X.-E.; He, F.; Liu, S.; Yan, S.; Huang, L.; Lu, W. Streptococcus and Prevotella are associated with the prognosis of oesophageal squamous cell carcinoma. J. Med. Microbiol. 2018, 67, 1058–1068. [CrossRef] [PubMed]

121. Chen, M.-F.; Lu, M.-S.; Hsieh, C.-C.; Chen, W.-C. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell. Oncol. 2021, 44, 373–384. [CrossRef] [PubMed]
122. Kaakoush, N.O.; Lecomte, V.; Maloney, C.A.; Morris, M.J. Cross-talk among metabolic parameters, esophageal microbiota, and host gene expression following chronic exposure to an obesogenic diet. Sci. Rep. 2017, 7, 45753. [CrossRef] [PubMed]

123. Münch, N.S.; Fang, H.-Y.; Ingermann, J.; Maurer, H.C.; Anand, A.; Kellner, V.; Sahm, V.; Viethaler, M.; Baumeister, T.; Wein, F. High-fat diet accelerates carcinogenesis in a mouse model of Barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology 2019, 157, 492–506.e2. [CrossRef] [PubMed]

124. Pham, V.T.; Fehlbaum, S.; Seifert, N.; Richard, N.; Bruins, M.J.; Sybesma, W.; Rehman, A.; Steinitz, R.E. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome—A pilot study. Gut Microbes 2021, 13, 1875774. [CrossRef]

125. Pan, F.; Zhou, L.-L.; Luo, H.-J.; Chen, Y.; Long, L.; Wang, X.; Zhuang, P.-T.; Li, E.-M.; Xu, L.-Y. Correction: Dietary riboflavin deficiency induces genomic instability of esophageal squamous cells that is associated with gut microbiota dysbiosis in rats. Food Funct. 2020, 11, 10979. [CrossRef]

126. Pan, F.; Zhang, L.-L.; Luo, H.-J.; Chen, Y.; Long, L.; Wang, X.; Zhuang, P.-T.; Li, E.-M.; Xu, L.-Y. Dietary riboflavin deficiency induces arboflavinosis and esophageal epithelial atrophy in association with modification of gut microbiota in rats. Eur. J. Nutr. 2021, 60, 807–820. [CrossRef]

127. Chow, W.-H.; Blaser, M.J.; Blot, W.J.; Gammon, M.D.; Vaughan, T.L.; Risch, H.A.; Perez-Perez, G.I.; Schoenberg, J.B.; Stanford, J.L.; Rotterdam, H. An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res. 1998, 58, 588–590.

128. Nie, S.; Chen, T.; Yang, X.; Huai, P.; Lu, M. Association of Helicobacter pylori infection with esophageal adenocarcinoma and squamous cell carcinoma: A meta-analysis. Dis. Esophagus 2014, 27, 645–653. [CrossRef]

129. Peek, R.M.; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2002, 2, 28–37. [CrossRef]

130. Kumar, S.; Metz, D.C.; Ginsberg, G.G.; Kaplan, D.E.; Goldberg, D.S. Oesophageal and proximal gastric adenocarcinomas are rare after detection of Helicobacter pylori pylori infection. Aliment. Pharmacol. Ther. 2020, 51, 781–788. [CrossRef]

131. Doorakkers, E.; Lagergren, J.; Santoni, G.; Engstrand, L.; Brusselaers, N. Helicobacter pylori eradication treatment and the risk of Barrett’s esophagus and esophageal adenocarcinoma. Helicobacter 2015, 20, e12688. [CrossRef] [PubMed]

132. Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018, 67, 226–236. [CrossRef] [PubMed]

133. Amieva, M.; Peek Jr, R.M. Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology 2016, 150, 64–78. [CrossRef] [PubMed]

134. Hansen, A.; Johannesen, T.B.; Spiegelhauer, M.; Kupcinski, J.; Urba, M.; Skieceviciene, J.; Jonaitis, L.; Frandsen, T.; Kupcinski, L.; Fuursted, K. Distinct composition and distribution of the gastric mycobiota observed between dyspeptic and gastric cancer patients evaluated from gastric biopsies. Microb. Health Dis. 2020, 2, e340.

135. Spiegelhauer, M.R.; Kupcinski, J.; Johannesen, T.B.; Urba, M.; Skieceviciene, J.; Jonaitis, L.; Frandsen, T.H.; Kupcinski, L.; Fuursted, K.; Andersen, L.P. Transient and persistent gastric microbiome: Adherence of bacteria in gastric cancer and dyspeptic patient biopsies after washing. J. Clin. Med. 2020, 9, 1882. [CrossRef] [PubMed]

136. Yu, G.; Torres, J.; Hu, N.; Medrano-Guzman, R.; Herrera-Goepfert, R.; Humphrys, M.S.; Wang, L.; Wang, C.; Ding, T.; Ravel, J. Molecular characterization of the human stomach microbiota in gastric cancer patients. Front. Cell. Infect. Microbiol. 2017, 7, 302. [CrossRef]

137. Liu, X.; Shao, L.; Liu, X.; Ji, F.; Mei, Y.; Cheng, Y.; Liu, F.; Yan, C.; Li, L.; Ling, Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine 2019, 40, 336–348. [CrossRef]

138. Hu, Y.-L.; Pang, W.; Huang, Y.; Zhang, Y.; Zhang, C.-J. The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics. Front. Cell. Infect. Microbiol. 2018, 8, 433. [CrossRef]

139. Aviles-Jimenez, F.; Vazquez-Jimenez, F.; Medrano-Guzman, R.; Mantilla, A.; Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 2014, 4, 4202. [CrossRef]

140. Sohn, S.-H.; Kim, N.; Jo, H.J.; Kim, J.; Park, J.H.; Nam, R.H.; Seek, Y.-J.; Kim, Y.-R.; Lee, D.H. Analysis of Gastric Body Microbiota in Helicobacter pylori-Negative and -Positive Gastritis Among High Incidence of Gastric Cancer Area. J. Cancer Prev. 2017, 22, 115–125. [CrossRef]

141. Gantuya, B.; El-Serag, H.B.; Matsumoto, T.; Ajami, N.J.; Oyuntsetseg, K.; Azzaya, D.; Uchida, T.; Yamaoka, Y. Gastric Microbiota in Helicobacter pylori-Negative and -Positive Gastritis Among High Incidence of Gastric Cancer Area. Cancers 2019, 11, 504. [CrossRef] [PubMed]

142. Li, Q.; Yu, H. The role of non-H. pylori bacteria in the development of gastric cancer. Am. J. Cancer Res. 2020, 10, 2271–2281. [PubMed]

143. Thorell, K.; Bengtsson-Palme, J.; Liu, O.H.-F.; Gonzales, R.V.P.; Nooaw, I.; Rabeneck, L.; Paszat, L.; Graham, D.Y.; Nielsen, J.; Lundin, S.B.; et al. In Vivo Analysis of the Viable Microbiota and Helicobacter pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infect. Immun. 2017, 85, e00317-17. [CrossRef] [PubMed]

144. Molenkamp, J.; Nguyen, T.-M.-T.; Brown, I.; Mohamed, A.; Lim, Y.; Barclay, J.; Hodson, M.P.; Hennessy, T.P.; Krause, L.; Morrison, M.; et al. Chronic High-Fat Diet Induces Early Barrett’s Esophagus in Mice through Lipidome Remodeling. Biomolecules 2020, 10, 776. [CrossRef]
145. Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2
146. Boehm, E.T.; Thon, C.; Kupcinskas, J.; Steponaitiene, R.; Skieveziciene, J.; Canbay, A.; Malfertheiner, P.; Link, A. Fusobacterium
nucleatum is associated with worse prognosis in Lauren’s diffuse type gastric cancer patients. Sci. Rep. 2020, 10, 16240. [CrossRef]
147. Arita, S.; Ogawa, T.; Murakami, Y.; Kinoshita, Y.; Okazaki, M.; Inagaki-Ohara, K. Dietary Fat-Accelerating Leptin Signaling
Promotes Promutagenic Gastric Environment in Mice. Nutrients 2019, 11, 2127. [CrossRef]
148. Arita, S.; Inagaki-Ohara, K. High-fat-diet–induced modulations of leptin signaling and gastric microbiota drive precancerous
lesions in the stomach. Nutrition 2019, 67–68, 110566. [CrossRef]
149. Sears, C.L.; Pardoll, D.M. Perspective: Alpha-bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis. 2011, 203,
306–311. [CrossRef]
150. Tjalsma, H.; Boelij, A.; Marchesi, J.R.; Dutilh, B.E. A bacterial driver-passerenger model for colorectal cancer: Beyond the usual
suspects. Nat. Rev. Microbiol. 2012, 10, 575–582. [CrossRef]
151. Mori, G.; Rampelli, S.; Orena, B.S.; Rengucci, C.; De Maio, G.; Barbieri, G.; Passardi, A.; Casadei Gardini, A.; Frassineti, G.L.;
Gaiarsa, S.; et al. Shifts of Faecal Microbiota During Sporadic Colorectal Carcinogenesis. Sci. Rep. 2018, 8, 10329. [CrossRef] [PubMed]
152. Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.;
Moore, R.A.; et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012, 22, 299–306. [PubMed]
153. Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum
nucleatum Promotes Chemosresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [CrossRef] [PubMed]
154. Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2
mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 2016, 20, 215–225. [CrossRef]
155. Bonnet, M.; Buc, E.; Sauvanet, P.; Darcha, C.; Dubois, D.; Pereira, B.; Déchelotte, P.; Bonnet, R.; Pezet, D.; Darfeuille-Michaud, A.
Colonization of the Human Gut by E. coli and Colorectal Cancer Risk. Clin. Cancer Res. 2014, 20, 859–867. [CrossRef]
156. Sun, J.; Hobert, M.E.; Duan, Y.; Rao, A.S.; He, T.-C.; Chang, E.B.; Madara, J.L. Crossstalk between NF-κB and β-catenin pathways
in bacterial-colonized intestinal epithelial cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 289, G29–G137. [CrossRef]
157. Moncrief, J.S.; Duncan, A.J.; Wright, R.L.; Barroso, L.A.; Wilkins, T.D. Molecular characterization of the fragilysin pathogenicity
islet of enterotoxigenic Bacteroides fragilis. Infect. Immun. 1998, 66, 1735–1739. [CrossRef]
158. Cheng, W.T.; Kantilal, H.K.; Davamani, F. The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation.
Malays. J. Med. Sci. 2020, 27, 9–21. [CrossRef]
159. Sears, C.L.; Geis, A.L.; Housseau, F. Bacteroides fragilis fragilis subverts mucosal biology: From symbiont to colon carcinogenesis.
J. Clin. Invest. 2014, 124, 4166–4172. [CrossRef]
160. Wu, S.; Rhee, K.-J.; Zhang, M.; Franco, A.; Sears, C.L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and
γ-secrectase-dependent E-cadherin cleavage. J. Cell Sci. 2007, 120, 1944–1952. [CrossRef]
161. Ertz-Archambault, N.; Keim, P.; Von Hoff, D. Microbiome and pancreatic cancer: A comprehensive topic review of literature. World J. Gastroenterol. 2017, 23, 1899–1908. [CrossRef]
162. Michaud, D.S.; Izard, J.; Wilhelm-Benartzi, C.S.; You, D.H.; Grote, V.A.; Tjønneland, A.; Dahm, C.C.; Overvad, K.; Jenab, M.;
Fedirko, V.; et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 2013, 62, 1764–1770. [CrossRef] [PubMed]
163. Fan, X.; Aklesyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.;
Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study.
Gut 2018, 67, 120–127. [CrossRef] [PubMed]
164. Wei, M.Y.; Shi, S.; Liang, C.; Meng, Q.C.; Hua, J.; Zhang, Y.Y.; Liu, J.; Zhang, B.; Xu, J.; Yu, X.J. The microbiota and microbiome in
pancreatic cancer: More influential than expected. Mol. Cancer 2019, 18, 97. [CrossRef] [PubMed]
165. Jesnowski, R.; Isaksson, B.; Möhrcke, C.; Bertsch, C.; Bulajic, M.; Schneider-Brachert, W.; Klöppel, G.; Lowenfels, A.B.; Maison-
neauve, P.; Löh, J.M. Helicobacter pylori in autoimmune pancreatitis and pancreatic carcinoma. Pancreatology 2010, 10, 462–466. [CrossRef]
166. Knorr, J.; Ricci, V.; Hatakeyama, M.; Backert, S. Classification of Helicobacter pylori Virulence Factors: Is CagA a Toxin or Not?
Trends Microbiol. 2019. [CrossRef] 2017, 27, 731–738. [CrossRef]
167. Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambrinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [CrossRef]
168. Thomas, R.M.; Gharabi, R.Z.; Gauthier, J.; Beveridge, M.; Pope, J.L.; Guijarro, M.V.; Yu, Q.; He, Z.; Ohiand, C.; Newsome, R.; et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018, 39, 1068–1078. [CrossRef]
169. Benner, M.; Ferwerda, G.; Joosten, I.; van der Molen, R.G. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum. Reprod. Update. 2014, 20, 393–415. [CrossRef]
170. Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. *Nat. Commun.* 2017, 8, 875. [CrossRef]

171. Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulley, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. *Proc. Natl. Acad. Sci. USA* 2011, 108 (Suppl. S1), 4680–4687. [CrossRef]

172. Smith, B.C.; Zolnik, C.P.; Usyk, M.; Chen, Z.; Kaiser, K.; Nucci-Sack, A.; Peake, K.; Diaz, A.; Viswanathan, S.; Strickler, H.D.; et al. Distinct Ecological niche of anae, oral, and Cervical Mucosal Microbiomes in Adolescent Women. *Yale J. Biol. Med.* 2016, 89, 277–284.

173. Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. *Nature* 2007, 449, 811–818. [CrossRef] [PubMed]

174. Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. *Front. Immunol.* 2018, 9, 376. [CrossRef] [PubMed]

175. Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. *Front. Physiol.* 2019, 6, 81. [CrossRef] [PubMed]

176. Ma, B.; Forney, L.J.; Ravel, J. Vaginal microbiome: Rethinking health and disease. *Annu. Rev. Microbiol.* 2012, 66, 371–389. [CrossRef] [PubMed]

177. Freitas, A.C.; Bocking, A.; Hill, J.E.; Money, D.M. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. *Microbiome* 2018, 6, 117. [CrossRef] [PubMed]

178. Smith, S.B.; Ravel, J. The vaginal microbiota, host defence and reproductive physiology. *J. Physiol.* 2017, 595, 451–463. [CrossRef] [PubMed]

179. Bik, E.M.; Bird, S.W.; Bustamante, J.P.; Leon, L.E.; Nieto, P.A.; Addae, K.; Alegría-Mera, V.; Bravo, C.; Bravo, D.; Cardenas, J.P.; et al. A novel sequencing-based vaginal health assay combining self-sampling, HPV detection and genotyping, STI detection, and vaginal microbiome analysis. *PLoS ONE* 2019, 14, e0215945. [CrossRef] [PubMed]

180. Walthé-Antóinio, M.R.; Chen, J.; Multiniu, F.; Hokenstad, A.; Distad, T.J.; Cheek, E.H.; Keeney, G.L.; Creedon, D.J.; Nelson, H.; Mariani, A.; et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. *Genome Med.* 2016, 8, 122. [CrossRef] [PubMed]

181. Mitra, A.; MacIntyre, D.A.; Lee, Y.S.; Smith, A.; Marchesi, J.R.; Lehne, B.; Bhatia, R.; Lyons, D.; Paraskevaidis, E.; Li, J.V.; et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. *Sci. Rep.* 2015, 5, 16865. [CrossRef] [PubMed]

182. Di Paola, M.; Sani, C.; Clemente, A.M.; Iossa, A.; Perissi, E.; Castronovo, G.; Tanturli, M.; Rivero, D.; Cozzolino, F.; Cavaleri, D.; et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. *Sci. Rep.* 2017, 7, 10200. [CrossRef]

183. Lee, J.E.; Lee, S.; Lee, H.; Song, Y.M.; Lee, K.; Han, M.J.; Sung, J.; Ko, G. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. *PLoS ONE* 2013, 8, e63514. [CrossRef] [PubMed]

184. Norenhag, J.; Du, J.; Olovsson, M.; Verstraeten, H.; Engstrand, L.; Brusselaers, N. The vaginal microbiota, human papillomavirus and cervical dysplasia: A systematic review and network meta-analysis. *BJOG* 2020, 127, 171–180. [CrossRef]

185. Kwasniewski, W.; Wolun-Cholewa, M.; Kotarski, J.; Warchol, W.; Kuzma, D.; Kwasniewska, A.; Zdziezicka-Jozefiak, A. Microbiota dysbiosis is associated with HPV-induced cervical carcinoma. *Oncol. Lett.* 2018, 16, 7035–7047. [CrossRef] [PubMed]

186. Brusselaers, N.; Shrestha, S.; van de Wijgert, J.; Verstraeten, H. Vaginal dysbiosis and the risk of human papillomavirus and cervical cancer: Systematic review and meta-analysis. *Am. J. Obstet. Gynecol.* 2019, 221, 9–18.e18. [CrossRef]

187. Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen–gut microbiome axis: Physiological and clinical implications. *Maturitas* 2017, 103, 45–53. [CrossRef] [PubMed]

188. Ding, L.; Liu, C.; Zhou, Q.; Feng, M.; Wang, J. Association of estradiol and HPV/HPV16 infection with the occurrence of cervical squamous cell carcinoma. *Oncol. Lett.* 2019, 17, 3548–3554. [CrossRef]

189. James, C.D.; Morgan, I.M.; Bristol, M.L. The relationship between estrogen-related signaling and human papillomavirus positive cancers. *Pathogens* 2020, 9, 403. [CrossRef] [PubMed]

190. Yuan, X.-Y.; Liu, H.-Z.; Liu, J.-F.; Sun, Y.; Song, Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. *Future Microbiol.* 2021, 16, 671–685. [CrossRef] [PubMed]

191. Antonio, M.A.; Rabe, L.K.; Hillier, S.L. Colonization of the rectum by Lactobacillus species and decreased risk of bacterial vaginosis. *J. Infect. Dis.* 2005, 192, 394–398. [CrossRef]

192. Homayouni, A.; Bastani, P.; Ziyadi, S.; Mohammad-Alizadeh-Charandabi, S.; Ghaliab, M.; Mortazavian, A.M.; Mehrabany, E.V. Effects of probiotics on the recurrence of bacterial vaginosis: A review. *J. Low. Genit. Tract Dis.* 2014, 18, 79–86. [CrossRef]
22. Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [CrossRef] [PubMed]
Cancers 2022, 14, 2964

223. Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [CrossRef]

224. Montassier, E.; Gastinne, T.; Vangay, P.; Al-Ghali, G.A.; Bruley des Varannes, S.; Massart, S.; Moreau, P.; Potel, G.; de La Cochetière, M.F.; Batard, E.; et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 2015, 42, 515–528. [CrossRef]

225. Gerassy-Vainberg, S.; Blatt, A.; Danin-Poleg, Y.; Gershovich, K.; Sabo, E.; Nevelsky, A.; Daniel, S.; Dahan, A.; Ziv, O.; Dheer, R.; et al. Radiation induces proinflammatory dysbiosis: Transmission of inflammatory susceptibility by host cytokine induction. Gut 2018, 67, 97–107. [CrossRef]

226. Schwan, A.; Sjölin, S.; Trottestam, U.; Aronsson, B. Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. Lancet 1983, 2, 845. [CrossRef]

227. Gough, E.; Shaikh, H.; Manges, A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 2011, 53, 994–1002. [CrossRef]

228. Brandt, L.J. Fecal Microbiota Transplant: Respice, Adspice, Prospice. J. Clin. Gastroenterol. 2015, 49 (Suppl. S1), S65–S68. [CrossRef]

229. Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.-J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of Oral Capsule–vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 2017, 318, 1985–1993. [CrossRef]

230. Kanaa, S.; Raffals, L.E. The Microbiome in Crohn’s Disease: Role in Pathogenesis and Role of Microbiome Replacement Therapies. Gastroenterol. Clin. N. Am. 2017, 46, 481–492. [CrossRef]

231. Khanna, S. Microbiota Replacement Therapies: Innovation in Gastrointestinal Care. Clin. Pharmacol. Ther. 2018, 103, 102–111. [CrossRef] [PubMed]

232. Vindigni, S.M.; Surawicz, C.M. Fecal Microbiota Transplantation. Gastroenterol. Clin. N. Am. 2017, 46, 171–185. [CrossRef] [PubMed]

233. Gupta, A.; Saha, S.; Khanna, S. Therapies to modulate gut microbiota: Past, present and future. World J. Gastroenterol. 2020, 26, 777–788. [CrossRef] [PubMed]

234. Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [CrossRef]

235. Mohty, M.; Malard, F.; D’Incan, E.; Thomas, X.; Recher, C.; Michallet, A.-S.; Peterlin, P.; Vekhoff, A.; Vey, N.; Plantamura, E. Prevention of dysbiosis complications with autologous fecal microbiota transplantation (auto-FMT) in acute myeloid leukemia (AML) patients undergoing intensive treatment (ODYSEE study): First results of a prospective multicenter trial. Blood 2017, 130, 2624.

236. Taur, Y.; Jenq, R.R.; Ubeda, C.; van den Brink, M.; Pamer, E.G. Role of intestinal microbiota in transplantation outcomes. Best Pract. Res. Clin. Haematol. 2015, 28, 155–161. [CrossRef]

237. Guarner, F.; Schaafsma, G.J. Probiotics. Int. J. Food Microbiol. 1998, 39, 237–238. [CrossRef]

238. Zhu, Y.; Michelle Luo, T.; Jobin, C.; Young, H.A. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011, 309, 119–127. [CrossRef]

239. Appleyard, C.B.; Cruz, M.L.; Isidro, A.A.; Arthur, J.C.; Jobin, C.; De Simone, C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 301, G1004–G1013. [CrossRef]

240. Arthur, J.C.; Gharaibeh, R.Z.; Uronis, J.M.; Perez-Chanona, E.; Sha, W.; Tomkovich, S.; Mühlbauer, M.; Fodor, A.A.; Jobin, C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci. Rep. 2013, 3, 2868. [CrossRef]

241. Hibberd, A.A.; Lyra, A.; Ouwehand, A.C.; Rolny, P.; Lindegren, H.; Cedgård, L.; Wettergren, Y. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 2017, 4, e000145. [CrossRef] [PubMed]

242. Gianotti, L.; Morelli, L.; Galbiati, F.; Rocchetti, S.; Coppola, S.; Beneduce, A.; Gilardini, C.; Zonenschain, D.; Nespoli, A.; Braga, M. Therapies to modulate gut microbiota: Past, present and future. Cell Host Microbe 2015, 17, 72–84. [CrossRef]

243. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [CrossRef]
248. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature* 2014, 505, 559–563. [CrossRef]

249. Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; et al. Dietary intervention impact on gut microbial gene richness. *Nature* 2013, 500, 585–588. [CrossRef]

250. Taper, H.S.; Roberfroid, M.B. Possible adjuvant cancer therapy by two prebiotics—inulin or oligofructose. *In Vivo* 2005, 19, 201–204.

251. O’Keefe, S.J.D. Diet, microorganisms and their metabolites, and colon cancer. *Nat. Rev. Gastroenterol. Hepatol.* 2016, 13, 691–706. [CrossRef] [PubMed]

252. Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. *PLoS ONE* 2010, 5, e9836. [CrossRef] [PubMed]

253. Pflug, N.; Kluth, S.; Vehreschild, J.J.; Bahlo, J.; Tacke, D.; Biehl, L.; Eichhorst, B.; Fischer, K.; Cramer, P.; Fink, A.M.; et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. *Oncoimmunology* 2016, 5, e1150399. [CrossRef] [PubMed]

254. Cieplak, T.; Soffer, N.; Sulakvelidze, A.; Nielsen, D.S. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. *Gut Microbes* 2018, 9, 391–399. [CrossRef]

255. Zuo, T.; Wong, S.H.; Lam, K.; Lui, R.; Cheung, K.; Tang, W.; Ching, J.Y.L.; Chan, P.K.S.; Chan, M.C.W.; Wu, J.C.Y.; et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. *Gut* 2018, 67, 634–643. [CrossRef] [PubMed]