Review

Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas (Pisum sativum L.)

Jyoti Devi 1, Gyan P. Mishra 2, Vidya Sagar 3, Vineet Kaswan 3, Rakesh K. Dubey 1, Prabhakar M. Singh 1, Shyam K. Sharma 4 and Tusar K. Behera 1,*

1 ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhni, Varanasi 221 305, India; jyoti17iivr@gmail.com (J.D.); Vidya.Sagar1@icar.gov.in (V.S.); rksdubey@gmail.com (R.K.D.); pm.sivr@gmail.com (P.M.S.)
2 ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, India; gyan.gene@gmail.com
3 Department of Biotechnology, College of Basic Science and Humanities, Sardar Krushinagar Dantiwada Agricultural University, Palanpur, Gujarat-385 506, India; vineektaswan@gmail.com
4 CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; skspbg@yahoo.co.in
* Correspondence: director.iivr@icar.gov.in

Abstract: Globally powdery mildew (PM) is one of the major diseases of the pea caused by Erysiphe pisi. Besides, two other species viz. Erysiphe trifolii and Erysiphe baemunleri have also been identified to infect the pea plant. To date, three resistant genes, namely er1, er2 and Er3 located on linkage groups VI, III and IV respectively were identified. Studies have shown the er1 gene to be a Pisum sativum Mildew resistance Locus ‘O’ homologue and subsequent analysis has identified eleven alleles namely er1-1 to er1-11. Despite reports mentioning the breakdown of er1 gene-mediated PM resistance by E. pisi and E. trifolii, it is still the most widely deployed gene in PM resistance breeding programmes across the world. Several linked DNA markers have been reported in different mapping populations with varying linkage distances and effectiveness, which were used by breeders to develop PM-resistant pea cultivars through marker assisted selection. This review summarizes the genetics of PM resistance and its mechanism, allelic variations of the er gene, marker linkage and future strategies to exploit this information for targeted PM resistance breeding in Pisum.

Keywords: er gene; Erysiphe; marker-assisted selection; Pisum; powdery mildew

1. Introduction

Globally, the pea (Pisum sativum L.; 2n = 2x = 14) is one of the most important cool season legumes consumed both as a vegetable and as a pulse. The pea genome is estimated to be 4.45 Gb, making it one of the largest among the legumes [1]. Peas are low in fat but high in fiber, protein, vitamin C, β-carotene, thiamine, riboflavin and iron content, thereby making it a healthy food capable of meeting the global dietary needs of over 900 million undernourished people [2]. The rich genetic diversity of Pisum has helped this crop to cover the vast geographical area under cultivation [3]. Global area and production of green peas have nearly doubled during the last two decades from 1999 (1.5 m; 11.39 mt) to 2019 (2.8 m; 21.76 mt), respectively. However, only a slight increase in productivity has been recorded rising from 7.6 t/h in 1999 to 7.8 t/h in 2019 [4]. Even those Asian countries with a very high production showed a similar trend, with a minor increase in productivity from 8.3 to 8.5 t/h from 1999 to 2019. This indicates that despite all efforts to increase the yield, the biotic and abiotic stresses continue to play a significant role in yield reduction [5].

Pea productivity is constrained by numerous fungal pathogens of which powdery mildew (PM) caused by Erysiphe species (order Erysiphales, family Erysiphaceae) is the major one. Although the order Erysiphales includes nearly 19–22 accepted genera and...
400 species, the majority of pathogenic species belong to the genus *Erysiphe* [6]. These obligate biotrophic parasites infect nearly 10,000 species of angiosperms, including cereals, pulses, fruits, vegetables and ornamental plants [7,8]. Many of these are host-specific or target a very small number of hosts, suggesting the presence of very specific pathogenesis-related (PR) genes. The pathogen infection on plants is distinguished by easily recognizable patches of white to greyish talcum-like growth with its different causal organisms in various vegetable crops, including peas (*Erysiphe* spp) [9].

The PM can cause up to 25–70% yield losses in peas with a negative impact on yield and its contributing traits (Figure 1) [10]. When the crop is grown for industry processing or seed purposes, the problem becomes more severe, especially under warm dry days and cool-night climatic conditions [11]. The pathogen has been reported all over the world, most notably in pea-growing countries like India, Pakistan, China, the United States, Russia, Germany, the United Kingdom, Italy and Ethiopia. The air-borne movement of the pathogen spores and sexual recombination aid in the production of new virulent races, allowing for the rapid dissemination and adaptability of this devastating pathogen [12]. Although PMs are the most prevalent plant pathogenic fungi, detailed research into the management of this disease is limited due to its obligatory biotrophic nature, which makes ex-situ or in-vitro experiments difficult [13,14]. A few researchers have compiled the information about PM in pea, especially for pathogen control [15], marker-assisted breeding [16] and allelic variation at the *er* locus [17]. However, there is no comprehensive review covering the pathogen, novel variations of the *er* genes/alleles, advances in mapping strategies, linked markers and future strategies to combat the disease. With this backdrop, the current review encompasses various aspects of the host and pathogen and the recent strategies for the management of this deadly disease.

![Figure 1](image_url)

**Figure 1.** Powdery mildew in *Pisum sativum* L. (a): powdery growth of fungus on stems and leaves; (b): the affected pods of commercial cultivar ‘PC-531’ from India; (c): the susceptible and resistant lines growing under natural epiphytic conditions at ICAR-IIVR, Varanasi, India.

2. *Erysiphe* Species Infecting Peas

Although *Erysiphe pisi* is the most predominant fungal species causing PM in peas, still we could not precisely trace when this pathogen was first described as *E. pisi*. However, *Erysiphe polygoni* [18] and *Erysiphe communis* [19] were reported in the literature as early as 1925. In addition, two other species (*Erysiphe trifolii* and *Erysiphe baumleri*) infecting peas have also been identified in the United States, Spain, India and the Czech Republic [15]. The first report of *E. baumleri* infecting pea was in 2001 from the Czech Republic (North Moravia) on the ‘Highlight’ cultivar. The diagnostic traits of different samples of *E. baumleri* and *E. pisi* were known. The symptoms caused by *E. baumleri* progresses relatively slowly and appears mainly on the petioles or leaves and rarely on stems or pods [20]. Attanayake et al. [21] reported *E. trifolii* infection on peas and showed that this species can be distinguished from *E. pisi* using rDNA internal transcribed spacer (ITS) sequences.
and also through morphological characters of chasmothecial appendages that are primarily of the mycelioid type in *E. pisi* and dichotomously branched in *E. trifolii* and *E. baeumleri*. In addition, horizontally extended and colored appendages could easily distinguish *E. trifolii* from *E. baeumleri*. The virulence of these species varies based on the location and symptoms caused by *E. trifolii* and *E. baeumleri* being less severe than those caused by *E. pisi* in the USA and the Czech Republic, respectively. The *E. trifolii* expressed severe symptoms on the pea genotypes carrying *er1* gene at Kanpur, India [22].

3. Screening Methodology and Disease Scale

3.1. Screening under Natural Epiphytic Conditions

In any resistance breeding program, identifying a hot spot is crucial for the disease screening. The genotypes should be grown in replications with a sufficient plant population, along with the spreader rows of susceptible cultivars to ensure a uniform spread of PM inoculum [23]. Standard agronomic practices should be followed to ensure a healthy crop without the use of fungicidal spray. In the event of insufficient inoculum in the field, pre-maintained spores obtained from the susceptible plants should be used to dust over the testing population [24]. The reaction of the genotypes should be recorded 2–3 weeks after inoculation. The F2 plants can be used to study the genetics of the powdery mildew resistance in the F2:3 generation. The trials must be conducted in replication for more reliable conclusions [24].

3.2. Controlled Conditions: Detached Leaf Method

The detached leaf assay has been extensively used for better screening of the genotypes to PM resistance under controlled conditions [25–29]. For this assay, 15–30 days old plant leaflets with petioles are first floated in the Petri dishes containing 5% sucrose and benzimidazole (40–50 ppm) to improve the longevity of detached leaflets. These leaflets are then dusted with PM inoculum, with a camel hair brush or a paintbrush followed by incubation at 25±1°C under 16/8 h day/night cycle [28,30]. The observations should be recorded as per the symptom development, which can occur between 3 to 14 days after inoculation [25,31].

3.3. PM Disease Scale in Pea

Different PM disease scoring scales have been proposed by different researchers and the scales of 0–4, 0–5, 1–5, 0–9, and 0–10 have been used for scoring the PM disease (Table 1).
Table 1. Severity scores and corresponding proportions (%) of the surface area of leaves under disease and different scales used by several workers for powdery mildew scoring in pea.

| Scale   | Description (% Infection)                                                                                                                                                                                                 | Marked as Resistant          | Reference |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|
| 0–9     | 0 = No infection; 1 = 0.1–5%; 2 = 5.1–10%; 3 = 10.1–17%; 4 = 17.1–25%; 5 = 25.1–50%; 6 = 50.1–75%; 7 = 75.1–90%; 8 = 90.1–95%; 9 = 95.1–100%                                                                                   | 0.1–10% = R; 10.1–30% = MR    | [32]      |
| 0–10    | 0 = No infection; 1 = 5%; 2 = 10%; 3 = 15%; 4 = 40%; 5 = 33%; 6 = 46%; 7 = 60%; 8 = 73%; 9 = 86%; 10 = 100%                                                                                                            | Not mentioned                | [33]      |
| 0–9     | 1 = < 1%; 2 = 1–5%; 3 = 5–10%; 4 = 10–20%; 5 = 20–40%; 6 = 40–60%; 7 = 60–80%; 8 = 80–90%; 9 = > 90%                                                                                                            | 0–4 = R                      | [34]      |
| 1–5     | 1 = 1–5%; 2 = 6–20%; 3 = 21–30%; 4 = 31–75%; 5 = 76–100%                                                                                                                                                              | 1–2 = R                      | [20]      |
| 0–4     | 0 = No mycelium growth; 1 = Sparse mycelium growth with little sporulation; 2 = Macroscopically: Slight mycelium growth; Microscopically: Slight to moderate mycelium growth with conidiophores; 3 = Macroscopically: Moderate mycelium growth with moderate to heavy sporulation, 4 = Abundant mycelium growth and sporulation both micro- and macroscopically | 0–2 = R                      | [23]      |
| 0–5     | 0 = No infection; 0.5 = < 10%; 1 = 11–20%; 1.5 = 21–30%; 2 = 31–40%; 2.5 = 41–50%; 3 = 51–60%; 3.5 = 61–70%; 4 = 71–80%; 4.5 = 81–90%; 5 = 91–100%                                               | ≤ 20% = R                    | [35]      |

Where R: Resistant; MR: Moderately Resistant

4. Genetics and Resistance Mechanism

4.1. Genetics

The most economical means of any disease management could be to incorporate resistance gene(s) into any promising commercial varieties lacking such gene(s) [15]. Studies on the inheritance of PM disease revealed three genes, namely er1, er2 and Er3, conferring resistance to Erysiphe species [22], (Figure 2). An investigation into the genetics of powdery mildew resistance (PMR) has been carried out in the past, which has shown different modes of inheritance including single recessive [35,36], single dominant [9,37] and duplicate recessive gene actions [38,39] (Table 2). Hammarlund [19] was the first to investigate PM resistance in peas and reported cumulative factors for susceptibility. Harland [36] discovered some resistant plants in a local Peruvian variety, wherein a single recessive gene (er) control has been recorded, which is now known as er1. The possibility of the multigenic nature of PM had also been supported by many working groups [26–28,40–42]. However, it is well-known that the recessive er1 gene is responsible for the majority of naturally occurring PM resistance [43–46] including the two induced recessive mutations, er1mut1 and er1mut2 [47].

The third resistance gene (Er3) was identified from the wild relative Pisum fulvum line ‘P660-4’ (a selection from ICARDA accession ‘IFPI3261’ from Idlib, Syria), which showed dominant gene action for resistance [9]. Er3 was then introgressed in the cultivated genotypes through hybridization (via male parent) and is now available for use in the breeding program. Recently, Bobkov and Selikhova [37] have confirmed the presence of another dominant gene (identity yet not confirmed) in the P. fulvum line (i-609881), which was originally collected from UIP (Saint Petersburg, Russia). This gene is also being successfully introgressed into various cultivated genotypes through repeated back-crossing.
Figure 2. Summary of powdery mildew resistance in *Pisum* with the timeline of events. Among the three genes reported *er1* was harbored by many accessions and has now been characterized with 11 distinct alleles, of which *er1-1* and *er1-2* are currently used by the breeders. However, *er2* and *Er3* genes were reported in a few accessions only. Blue lines represent the breakdown of the *er1*- and *Er3*-mediated resistance by respective *Erysiphe* species. Green dotted lines denote the temperature-independent response of the resistant genes for respective species, while red dotted lines explain the temperature-dependent response (derived from information available in [20–22,30]); *represents the two induced mutation at *er1* locus where *er1mut1* is also designated as *er1-1*; *er1mut2* is also known as *er1-10.*
4.2. Resistance Mechanism and the Temperature-Based Reaction of Resistant Genes

The resistance mechanism of genes imparting PM resistance have also been studied at the cellular level [27,48] and er1 was found to impart resistance by inhibiting E. pisi invasion of pea epidermal cells. In most pea accessions carrying the er1 gene, the vast majority of E. pisi conidia germinate and form appressoria, but with restricted pathogen growth and no secondary hyphae formation [48]. In contrast, the er2 gene mediated resistance is based mainly on post penetration cell death, mediated by a hypersensitive response (HR). However, on Er3 genes carrying plants, most of the E. pisi conidia penetrates pea epidermal cells and form secondary hyphae, but growth of these established colonies is prevented by a strong HR [28,49], Figure 2. The defense mechanism of HR involves accumulation of reactive oxygen species (ROS), antimicrobial proteins and phytoalexins [48,50,51].

The er1 reportedly provides moderate to complete resistance to all plant parts, whereas er2 (JI2480) confers PM resistance only to the leaves (tissue specific) and is also influenced by leaf age and temperature. Furthermore, penetration resistance conferred by the MLO mutations were associated with formation of papillae in the penetration sites. These papillae are created primarily by the deposition of callose matrix comprising inorganic and organic compounds, which function as physical or chemical barriers to pathogen penetration [48,50]. Besides, formation of protein cross-linking in the host cell wall hampering haustorium formation is also found responsible for resistance mechanisms [48].

Although detailed studies for er1-based resistance and its temperature-independent responses are known [27] (Table 3), er2 and Er3 genes are not yet properly characterized for the temperature response. In the case of E. pisi, the er2 genotype (JI2480) showed complete resistance at 25°C while incomplete resistance at 20°C and susceptibility at 15°C [27]. In contrast, this line was completely resistant against E. trifolii at 20 and 25°C [22]. These results suggest that the resistance in JI2480 to E. pisi is temperature-dependent, while the interaction between this genotype and E. trifolii is temperature-independent. The researchers further demonstrated that E. trifolii could overcome er1 and Er3 resistance in some conditions. However, er2 demonstrated very high resistance to E. trifolii under all environments including locations. It has also been discovered that the er2 gene is effective against both E. pisi and E. trifolii [22].
Table 2. Genetics of powdery mildew resistance in *Pisum*.

| Cross                        | Generations | Genetics                              | Country | Reference |
|------------------------------|-------------|---------------------------------------|---------|-----------|
| Unknown                      | F₂          | Cumulative factors for susceptibility | Sweden  | [19]      |
| Huancabamba × First of All   | F₂, F₃     | Single recessive gene                 | Peru    | [36]      |
| (B5115, B5243, B5064, B5806, PI2106613, PI280064, 46C, R300, NF, 477, 245, Early December, Satha, Bonneville, 31) × S-14 | F₂ and F₃ | Single recessive; duplicate recessive genes | India | [39]      |
| Radley × (JI 1559, JI 2480), JI 1758×JI 2302, JI 1951×JI 210, JI 2480, JI 210×JI 2302, JI 2480×JI 1559 | F₂, F₃ | Single recessive gene | Canada | [30,42] |
| P 1746×MD 1-24, P 1744×P 1760, P 1743×HFP 4, HFP 4×P1881, P 1744×P1757, P 1742×PG3, P 1746-8-1×Pusa 10, P 1760×Pusa 10, P 1746×P 1746-1-1, P 1773-4×P 1760 | F₂ | Single recessive gene | India | [51]      |
| M275-5-1 × Bohatyrs, M275-5-1 × Jupiter, Green feast ×M275-5-1, Traper × ATC1121, M275-5-1 × ATC1121 C2 (P. fulvum line) × Messire | F₂, F₃ | Single recessive gene | Australia | [52] |
| Qizhen 76 × Xucai 1, Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6 | F₂, and F₂, F₃ | Single recessive gene | China | [53] |
| Faloon × 11760-3CR | F₂ | Single recessive gene | Pakistan | [54] |
| Andina × IL6527, San Isidro × IL6527, Andina × F₂, BCr, and UN6651, San Isidro × UN6651 | F₂, and BCs | Single recessive gene | Colombia | [35] |
| Stabil × i-6098881 | F₂ | Single dominant gene | Russia | [37] |

Table 3. Temperature-based response of *er* genes along with their breakdown details.

| Species         | Response  | Gene         |         |         |
|-----------------|-----------|--------------|---------|---------|
|                 |           | *er*₁       | *er*₂   | *Er*₃   |
| *E. pisi*       | Temperature response | Temp Independent [27] | Temp Dependent [27] | Temp Independent [9] |
| Breakdown       | Yes [22,42,56] | Yes [28]     |         |         |
| *E. baeumleri*  | Temperature response | Not Reported | Not Reported | Not Reported |
| Breakdown       | Yes [20] | Not Reported |         |         |
| *E. trifolii*   | Temperature response | Temp Independent [22] | Temp independent [22] | Temperature dependent [22] |
5. Biochemical and Molecular basis of PM Resistance

5.1. The Biochemical Aspect

In response to PM infection, pea plants undergo a series of anatomical, morphological, physiological, biochemical and molecular changes. The resistant (R) genes present in the plant work in tandem with the defense mechanism operational against PM fungal infection. In a recent review, Martins et al. [60] have comprehensively highlighted the multi-layered array of PM defense mechanisms in various legumes. The complex PM infection response results in the rapid generation of reactive oxygen species (ROS), which include free radicals such as superoxide anion (O$_2^-$), hydroxyl radical (OH), and non-radical molecules like hydrogen peroxide (H$_2$O$_2$) and singlet oxygen (‘O$_2$) (Figure 3). The abundance of ROS eventually leads to increased oxidative damage and ultimately cell death [61]. Thus detoxification of excess ROS could be achieved by an efficient enzymic antioxidant system (viz., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), enzymes of ascorbate-glutathione (AsA-GSH) cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)) as well as non-enzymatic antioxidants ((Ascorbate (AsA), glutathione (GSH), carotenoids, tocopherols and phenolics)) [61].

Many studies have suggested that various biochemical parameters play a role in PM disease resistance in different pea genotypes. The role of phenolic compounds in induced resistance to PM infections was initially demonstrated by Maranon [62]. Additionally, the role of different biochemicals was identified in controlling PM resistance such as high phenols and proteins [63]; phenols and peroxidase [64]; alkaloids, proteins, proline, polyphenol oxidase, and peroxidase [65]; peroxidase, polyphenol oxidase and total phenols [66]; total phenol, proteins, polyphenol oxidase, peroxidase, chitinase, and β-1,3-glucanase [67]; SOD and CAT activity [68]. As a result, these bio-markers could be used to identify the resistant plants in the early stage of PM resistance breeding.
Figure 3. A comprehensive layout of plant defense mechanism seemingly operating in the peas. (Derived from [60,61,63,64,67–69]).
On contrary, the sugar content was found higher in the susceptible pea genotypes [63]. When compared with the crops like wheat [12,70], brassica [71], and grapes [72], PM in Pisum is still a poorly investigated trait in terms of defense-related secondary metabolites and their protein products.

Proteomic analysis of a PM-resistant pea genotype JI2480 (carrying er2 gene) and a susceptible cv. Messire (under control and infected conditions) revealed more defense-related proteins accumulation in JI2480 than Messire, which mainly belongs to three functional categories, viz., photosynthesis, carbohydrate catabolism and stress related responses [69]. In addition to the pea as a host, some proteomic studies on the pathogen have also been conducted. Noir et al. [73] presented the first functionally annotated proteome of a PM fungus infecting barley using 2D gel electrophoresis with MALDI-TOF MS and MALDI-TOF/TOF MS/MS. A total of 123 distinct proteins belonging to different metabolic pathways such as lipid, carbohydrates, proteins, and protein processing were identified, which indicate that the protein machinery of conidia is required for meeting the needs as storage structure and germination processes for pathogen multiplication. The proteomic studies of E. pisi isolates showed a high proportion of protein-machinery and heat shock proteins (HSP). The HSPs are a vital component of cell regulatory machinery and play an important role in the survival and spread of the biotrophic Erysiphe pathogen [14].

Hsp90 is required not only for pathogen survival, but also for thermal transitions during the growth cycle, which maintains cellular adaptations [74]. This protein is controlled at transcription and post-transcriptional levels following a heat shock [74]. Hsp90 plays critical roles in the folding and maintenance of a subset of proteins known as client proteins like phosphatases and kinases. A Hsp90 client protein, MAP-Kinase, is an essential component of the cell integrity signaling pathway, which activates the transcription factors required for cell wall integrity maintenance [74]. During the transcriptomic study of the E. pisi; the protein kinases, phosphatases, HSPs and ATPase were identified as the putative effector, with a role in the pathogenicity and virulence [75]. Arthur et al. [76] suggested that many R genes require highly conserved chaperone molecules to limit the pathogen growth. In case of peas, the resistant genotypes were reportedly having two Hsp90 homologues which may contribute to regulate powdery mildew resistance in garden pea [75].

5.2. The Molecular Aspect

The pea plant protects themselves against any fungal invasion by activating a set of defense response genes as studied widely in different plant species like Arabidopsis [73,74,77], Medicago [78], barley [76,79–81], and peas [82]. Barilli et al. [82] studied the gene expression profile of PM-infected and healthy plants (24, 48 and 72 h after inoculation) in three different genotypes of peas JI2302, JI2480 and IFPI3260 carrying er1, er2 and Er3 genes, respectively. Furthermore, of 20 studied genes, 16 showed differential expression. Induction of Chi2 gene that encodes an endo chitinase enzyme responsible for antifungal activity in the resistant genotypes (JI2302 and JI2480) after the PM infection was recorded. Similarly, the Prx7 (encoding an elicitor-inducible peroxidase) expression also got significantly induced after PM infection in the resistant lines JI2302 and IFPI3260. Contrary to this, Prx-7 was found to be down-regulated in infected leaves of JI2480 (er2) at 48 and 72.0 h after inoculation. Conclusively, leaves of JI2302 (er1) showed mainly Pschitin and Chi2 as well as genes encoding for pea defensins, whereas leaves of IFPI3260 (Er3) showed the highest expression of DRR230a, DRR230b and DRR230c (encoding pea defensins) and Prx7 after pathogen inoculation. Compared to er1 and Er3 genotypes, JI2480 (er2) also showed Pschitin and Chi2 accumulation, but with reduced activation of pea defensins.

During infection the E. pisi (Ep) secrets, a number of effectors through haustoria thereby establishes itself in the host. Studies have identified a number of candidate ef-
fectors, which can be used to manage the PM in the peas [83]. The RNA-Seq analysis of Ep-infected pea leaves have identified the candidate-secreted proteins (CSPs) and the candidate-secreted effector proteins (CSEPs) [83]. The qRT-PCR of a few EpCSEP/CSPs confirmed their infection-stage-specific expression and also expression in the haustoria. Host-induced gene silencing has also established the functional roles of EpCSEP001, EpCSEP009 and EpCSP083 genes, while foliar application of EpCSEP/CSP dsRNAs showed a great reduction in the PM disease expression. Homology studies showed the analogous nature of EpCSEP001 and EpCSEP009 with that of fungal ribonucleases belonging to the RALPH family of effectors [83]. RNA seq analysis of E. pisi-infected resistant (JI-2480) and susceptible (Arkel) genotypes showed glycolysis as the key energy source pathway during infection. Moreover, transcription factors like-WRKY-28 and a number of putative pattern recognition receptors, were observed differentially regulated in the resistant genotype, which indicated the activation of host-mediated defense responses when infected with E. pisi. Additionally, in-silico effector search have also identified various putative effectors like peptidyl-prolyl cis-trans isomerase or cyclophilin (CYP) [75].

6. Molecular Characterization of er Genes on Linkage Groups

6.1. Allelic Variations at er1 Locus

The genetic basis of er1 resistance was first reported as a monogenic recessive nearly 73 years ago [36] and is still very stable and effective gene imparting PM resistance in peas. Afterwards, several new alleles have been identified that were derived from either natural or artificial mutagenesis in the PM susceptibility gene, which is part of the mildew resistance locus ‘O’ (MLO) gene family (PsMLO1) [84,85]. This was also supported by Bai et al. [86], who reported that er1 and mlo resistance share common genetic and phytopathological features. Furthermore, resistance conditioned by mlo alleles was observed to function early and typically terminate the pathogenesis before the fungus invades the first host cell [87]. Such a type of immunity was initially reported in a mutant barley population and also in an Ethiopian landrace [88].

Humphry et al. [84] found that the resistance in pea lines JI210, JI1559, JI1951 and JI2302 was due to loss of function in the PsMLO1 locus; whereas resistance in JI2480 (carrying er2) line is caused by a failure of a different gene. Similarly, resistance mediated by the Er3 gene is unrelated to PsMLO1 because both the genes were located on different linkage groups (LGs). Under field conditions, the mlo-based (null allele) PM resistance in barley was found to be complete, while the pea genotypes JI210, JI1559, JI1951, and JI2302 with a null mutation at PsMLO1 showed incomplete resistance to PM. Thus, in pea other MLO homologues may also be contributing to the PM susceptibility [84].

The er1 gene is known to encode a MLO1 like transmembrane protein with a calmodulin-binding domain. Calmodulin is a calcium binding protein where calcium usually acts as an important messenger of stress. The presence of a calmodulin-binding domain indicates the role of the er1 gene in disease response signaling by perceiving the stress signal at the cellular membrane. The structure of the barley MLO1 protein shows that it is composed of seven transmembrane helices and that mutations in cytoplasmic and transmembrane domains of the protein result in impairment of function, leading to disease resistance (https://www.uniprot.org). Similar structural information is still missing for proteins encoded by Pisum er genes and alleles.

To date, 11 alleles of er1 have been identified that include er1-1 to er1-11, which represent prevailing variants of the er1 gene in resistance sources from different geographical origins (Table 4, Figure 2). In an induced mutation study in pea (using ethyl nitrosourea), Leitão and coworkers [47] have identified two altered genes and were named as er1mut1 and er1mut2 in genotypes Solara and Frilene, respectively. Later, the same group could succeed in the sequence-based characterization of the identified mutation and the S(er1mut1) was found having C/G transversion in exon 6, while F(er1mut2)
was due to the G/A transition in exon 10 [89]. Complete co-segregation of the KASPar marker KASPar-er1-1 with the known sequence tagged site (STS) functional marker er1-1_S (er1mut1)_STS, was consistent with the identity of S(‘er1mut1’) as er1-1 [90]. In addition, Ma and coworkers [90] have also described the induced mutation ‘F(er1mut2)’ as er1-10; while Sun and coworkers [91] have also mentioned ‘S(‘er1mut1’) and ‘F(er1mut2)’ as er1-1 and er1-10, respectively.

Humphry et al. [84] and Pavan et al. [92] reported five er1 resistant alleles viz., er1-1 (JI1559), er1-2 (JI1201), er1-3 (JI1951) and er1-5 (ROI3/02). Subsequently, Sudheesh [93] reported a 2-bp insertion in intron 14 in the resistant lines ‘Yarrum and ps1771’. This variation was later described as er1-11 allele [90]. During 2016, two other novel alleles viz., er1-6 (G0001778; [59]) and er1-7 (DDR-11; [58]) were also characterized. In 2019, er1-8 (G0004839) and er1-9 (G0004400) were discovered, which were characterized by a 3-bp (GTG) and a 1-bp (T) deletion in the wild-type PsMLO1 gene, respectively. Many reports clearly demonstrated that the er1-1 and er1-2 are the most common variations at the er locus, and Chinese accessions are far more characterized than any other accessions worldwide [53,94]. Interestingly, Sun et al. [91] studied 55 accessions and found that Chinese accessions (15 accessions carrying er1-1, er1-2, er1-6 and er1-7) has the highest allelic diversity at the er1 locus, followed by the USA (13 accessions; er1-1-2 and

### Table 4. Characterization of er1 gene and putative mutational events at PsMLO1 locus.

| er1 Gene/Allele | Accession/Genotype | Mutational Event at PsMLO1 | Reference |
|----------------|--------------------|---------------------------|-----------|
| er1-1          | JI 1559 (Mexique 4), Yunwan | C66G          | [30,58,84]|
| er1-1          | Tara and Cooper | -            | [58,95]  |
| er1-1 (er1 mut1) | Induced mutation (Solara) | C/G transversion in exon 6 | [47,89]  |
| er1-2          | JI 2302 (Stratagem) | Insertion of unknown size and identity | [30,84]  |
| er1-2          | G0006273 (X9002) | Insertion of unknown size and identity | [91,96]  |
| er1-2          | Xucai 1       | 129-bp deletion and 155-bp & 220-bp insertions | [94]     |
| er1-2          | Yunwan 21, Yunwan 23 | -do- | [94]     |
| er1-2          | G0005576 (Wandou) | -do- | [59]     |
| er1-3          | JI210  | ΔA at position 862 (exon 8) | [84]     |
| er1-4          | JI 1951/Y1 (landrace) | ΔA16 (frameshift) | [30,84]  |
| er1-5          | ROI3/02 | G→A at position 570 (exon 5) | [85,92]  |
| er1-6          | G0001778 (landrace) | Point mutation (T→C) at position 1121 (exon 11) | [59]     |
| er1-6          | G0002235 | -do- | [91]     |
| er1-6          | G0002848 | -do- | [91]     |
| er1-7          | DDR-11 | 10-bp deletion (TCATGTTATT) at exon 1 (111-120) of PsMLO1 | [94]     |
| er1-7          | G0003895, G0003974 | 10-bp deletion (TCATGTTATT) at exon 1 ofPsMLO1(111-120) and 16-bp deletion (CTCATCTTCCCTCCAGG) deletion at position 776-792; and 16-bp (AATTTTTCTGTTCAG) insertion at position 1171 | [58]     |
| er1-7          | G0003931 | 10-bp deletion (TCATGTTATT) at exon 1 ofPsMLO1(111-120) and 5-bp deletion (CTCATCTTCCCTCCAGG) deletion at position 776-792; and 16-bp (AATTTTTCTGTTCAG) insertion at position 1171 | [58]     |
er1-6) and Australian accessions (6 accessions; er1-1, er1-2, er1-9). On the contrary, in a set of Indian accessions held at ICARISAT, Hyderabad, only the er1-2 variant was detected [91].

6.2. Linkage Groups (LGs) of er1, er2 and Er3

The linkage of the er gene with the morphological marker “Gritty” (Gty) was observed and both the factors were assigned to the LGIII [97]. Subsequently, Wolko and Weeden [98] have placed the Gty gene on LGVI. However, with the advancements in molecular breeding tools, the position of these genes is now confirmed (Table 5, Figure 2). The detailed studies have placed the er1 gene on LGVI [99,100], while the er2 gene was localized on LGIII [28]. Fondevilla et al. [101] initially mapped the Er3 gene between the SCAR marker ‘Scw4637’ and the RAPD marker ‘OPAG05 1240’ on an unknown pea LG. However, Cobos et al. [102] have confirmed that two markers viz., AA349 and AD61 were linked to the Er3 gene which was located on the LGIV at 0.39 cM downstream of marker AD61.

Table 5. Confirmed linkage groups of powdery mildew resistance genes in Pisum.

| Gene | Location | Reference |
|------|----------|-----------|
| er1  | LGVI     | [45,46,84,94,96,99,100,103] |
| er2  | LGIII    | [28,104]  |
| Er3  | LGIV     | [102]     |

LGVI now assigned to the chromosome 1; LGIII to chromosome 5; and LGIV to chromosome 4 [1]

6.3. Comparative Mapping

In addition to three genes contributing resistance to PM, there have been a few reports of uncharacterized and incomplete resistance against Erysiphe spp. in peas [9,15]. The MLO locus has been associated with susceptibility in several plant species including legumes. Santos et al. [105] used genetic maps from Lathyrus sativus and L. cicero, as well as genome from P. sativum, L. culinaris, and M. truncatula to develop a comparative linkage map of the MLO locus. This map was constructed with the aim of gaining information about the synteny, conserved sequences of the MLO locus and chromosomal arrangements that exist among these legume species. The LsMLO1 is located on the upper part of LGI and is macrosyntenic to the P. sativum chr1LG6. The locations of MLO1 in P. sativum, L. culinaris, and M. truncatula are at chr1LG6, chromosome 2, and chromosome 6 respectively [106,107], all of which are syntenic to L. sativus LGI. However, the microsynteny between the adjacent markers were not detected between the L. sativus linkage map and the P. sativum genome.
7. Breeding for Powdery Mildew Resistance

7.1. Conventional Approaches

Plant breeders have identified several sources of PM resistance following the screening of large collections of pea germplasm (Table 6). In these identified genotypes, the resistance is primarily controlled by monogenic factors, thus eliminating the effect of the environment on the expression of genes related to PM resistance [108]. If additional factors such as quantitative loci were to be considered, the role of environment in governing resistance could not be ruled out while breeding for PM resistance [15,30]. The knowledge about the role of a favorable environment in disease development has been applied to the cultivation of otherwise susceptible cultivars that are not affected by the disease; this phenomenon is known as disease escape. For example, early-flowering group of garden pea cultivars, such as ‘Arkel’, which despite being susceptible to the disease [29], remains unaffected by the PM and does not suffer losses due to disease escape. The disease is reported to be more prevalent in late maturing or late planted varieties [10,109]. Thus, in addition to the genetic background, significant genotype × environment interaction for PM was observed in studies where PM infection was reported to be favored by long growth cycles [108]. This emphasizes the importance of multilocal/seasonal testing of the accessions for more reliable results [108]. Besides, germplasm augmentation and genetic enhancement including pre-breeding are to be in tandem and continuum of the breeding program.

Interestingly, most of the identified PM-resistant accessions (globally) were found to be carrying the erl gene. However, utilization of these sources is still a matter of concern, as many breeders lack the facilities for the precise screening and detailed characterization. Furthermore, many genotypes that reported PM resistance during the 1990s were found to carry undesirable traits like a poor yield, a low test seed weight (TSW) and susceptibility to lodging. However, there is now a wide variety of PM-resistant pea genotypes available, with a good yield potential, and a high TSW and lodging resistance [2].
Table 6. Powdery mildew-resistant *Pisum* accessions, gene diversity and screening details.

| Immune/Resistant Accessions | Gene | Controlled Screening | Field Screening | Reference |
|-----------------------------|------|----------------------|----------------|-----------|
| SVP951, SVP952              |      |                      |                | [55]      |
| JI2480                      | $er^2$| -                    | -              | [28,40,62]|
| Highlight, AC Tamor, Tara, JI210, JI1951, JI82, JI1210, JI 2302 | $er^2$| Yes                  | Yes            | [30,42]  |
| Wisconsin-7104, HPPC-63, HPPC-95, DPP-26, DPP-54, S-143, Mexico-4, SVP-950, P6588 | $er^1$| Yes                  | Yes            | [43]      |
| JP501A/2, NDVP-8, PMR-20    |      | -                    | No             | [47]      |
| P1746, P1760, HFP4, P1442 (IC37255), P1746-8-1, P1779-4, P1746-24-1 | $er^*$| No                   | Yes            | [51]      |
| Highlight, Kiley, Mukta, M257-3-6, M257-5-1, PSI11, ATC1181 |      | -                    | No             | [52]      |
| Fallon, PS99102238, PS0010128 |      | -                    | Yes            | [31]      |
| $er1mut1$ (mutant from Solara), $er1mut2$ (mutant from Frilene) | $er^1$| Yes                  | Yes            | [47]      |
| Highlight, Mozart, AC Melfort, Fallon, Joell, Lifter, Franklin, Cebeco 1171, Tudor (Cebeco 4119), Cooper (Cebeco 1081), Lu 390—R2, SGL 1977, SGL 2024, SGL 444/2185, Carneval R, Consort R | $er^1$| Yes                  | Yes            | [20]      |
| 9057, 9370, 9375, 10609, 10612, 18293, 18412, 19598, 19611, 19616, 19727, 19750, 19782, 20126, 20152, 20171, It-96, No. 267, No. 380 IC208366, IC208378, IC218988, IC267142, IC278261 |      | -                    | -              | [111]     |
| It-96, No. 267, JI2302      | $er^1$| Yes                  | Yes            | [29]      |
| Alaska, AC Tomour, Arka Ajit, Angoori, CHP-1 C-96, C-778, DAP-2, HUVP-3, JP-15, JP-20, JP-141, JP-625, Punjab -89, PMR-4, PMR-62, PMVAR-1, VRP-22, VRPMR-9, VRPMR-11, KTP-8, VP-233, JM-5, JP-501A/2, E-4, Vasundhra, JP-825 Arka Priya, Arka Pramod, Arka Ajit, IHHR 2-1, IPS-3 | $er^1$| No                   | Yes            | [24]      |
| KPMR-642, KPMR-516, KPMR-497, KPMR-557, VRPMR-11 HFPU, P-1797, P-1783, P-1052, HFP-7, HFP-8, P-1808, P-1820, P-1813, P-1377, P-1422-1, P-1811, IPF-99-25, KMNMR-400, LFP-566, LFP-569, LFP-552, LFP-573, JP-501-A/2, PMR-21, KMNMR-894, P-1280-4, P-1436-9, P-200-11, IPFD-99-13, HVDP-15, DPP-43-2 | $er^1$| Yes                  | Yes            | [68]      |
|                             |      | -                    | Yes            | [113]     |
| LFP-517, LFP-570, JP Ajjila, JP-15 | er1 | No  | Yes | [2] |
|-----------------------------------|-----|-----|-----|-----|
| Kashi Samridhi, VRPMR-10          |     |     |     |     |
| ILS6527, UN6651                   | er1 | No  | Yes | [35]|
| P660-4 (IFP13261)                | Er3 | Yes | Yes | [9] |
| i-609881                          | **Er3?** | Yes | -  | [37]|

*Resistance is governed by a single recessive gene. **The resistance in i-609881 is single dominant gene, however, its identity as Er3 is not yet confirmed.
7.2. Molecular Breeding using Linked DNA Markers

Until recently, the er1 gene was the most commonly used resource in pea breeding to develop PM-resistant cultivars. The cultivation of pea varieties with same PM resistance gene may result in the emergence of new pathogen race(s) following the breakdown of the resistance [15]. On the contrary, a combination of PM resistance genes and alleles may improve the resistance durability. Furthermore, due to the breakdown of resistance under varying environmental conditions, the only option left is to incorporate multi-gene resistance into the cultivated genotypes through gene pyramiding. However, due to overlapping phenotypes produced by the PM resistance genes, pyramiding through a traditional breeding approach is a strenuous exercise. In addition, handling an obligate pathogen like PM further complicates the selection process for PM resistance. To address these issues, molecular markers linked to the PM resistance genes may play a great role in identifying the resistance sources and also in the pyramiding of resistance genes in different pea genotypes. Several DNA markers linked to the PM-resistant genes (er1, er2, Er3) are known (Table 7), which are being used for the marker-assisted selection (MAS). Ghafoor and McPhee [16] provided an in-depth look at the potential of MAS for breeding PM resistance genotypes in peas. The mapping of PMR genes began in the 1990s, and most of these studies were done in F2 mapping populations using a bulked segregant analysis (BSA) approach with varying map distances. Later, these mapped regions were refined further to identify the closest possible markers linked to the identified genes. In addition, the DNA markers were also reported for various alleles of the er1 gene (Table 8; Table S1). The validation studies were also performed and markers like AD61, AD60, and c5DNAmet could be validated in different genetic backgrounds. Like the er1 gene, focus is needed for the identification of allelic diversity of er2 and Er3 genes. Afterwards, allele-specific (AS) markers for er2 and Er3 should be developed so that the pea germplasms could be quickly and precisely screened using either KASP® or AS-PCR markers. This will ultimately help in the AS pyramiding of PM resistance genes (viz., er1, er2 and Er3) in different cultivars (in different combinations) and then their precise deployment in the areas where large scale pea cultivation is being done.
Table 7. The DNA markers linked to powdery mildew resistant genes.

| Primer/Locus | Sequence | Distance (cM) | Marker | Gene | MP | Approach | References |
|-------------|----------|---------------|--------|------|----|----------|------------|
| p236        | RFLP is restriction enzyme-based marker system | 9.8 | RFLP | Er | F2 | - | [100] |
| p149        | RFLP is restriction enzyme-based marker system | 18.0 | RFLP | er1 | RIL5 | BSA | [99] |
| pID18       | RFLP is restriction enzyme-based marker system | 8.7 | RFLP | er1 | RIL5 | BSA | [99] |
| PD 10       | 5'-GGTCTACACC-3' | 2.1 | RAPD | er1 | RIL5 | BSA | [99] |
| ScOPD10506a | (F) 5'-GGTCTACACCATATCTTGATGA-3' | 2.1 | SCAR | er1 | RIL5 | BSA | [99] |
| Sc-OP-16160b | (F) 5'-GGTGACCTCCTATCAGACACAA-3' | 4.0 | SCAR | er1 | F3 | BSA | [114] |
| Sc-OP-181700 | (F) 5'-CCCTCTCGCTATCCAATCC-3' | - | SCAR | er1 | F3 | BSA | [114] |
| OPL-6       | 5'-GAGGGAAGAG-3' | 2.0 | RAPD | er1 | F3 | BSA | [114] |
| OPE16       | 5'-GGT GACTGTG-3' | 4.0 | RAPD | er1 | F3 | BSA | [114] |
| ScOPD 10506b | (F) 5'-GGTGACCTCCTATCAGACACAA-3' | 3.4 | SCAR | er1 | NILs | - | [45] |
| A5c         | (F) 5'-CTGAAAGCATAAGGGGTATCCTAT-C3' (R) 5'-AGCTTTTATAACTCTGTACACAAC-3' | 20.9 | SSR | er1 | F2 | NA | [115] |
| PSMPAD60d   | (F) 5'-GTCCTAGCATTTGACCAAAACACCTACT-3' (R) 5'-ATCATCTAGCAGGAATACACC-3' | 10.4 | SSR | er1 | F2 | BSA | [46] |
| PSMPAA374e  | (F) 5'-GAATATATCTCCTACGCTTGTTAAGC-3' (R) 5'-GACATTTGATGTTTATATATTCAT-3' | 11.6 | SSR | er1 | F2 | BSA | [46] |
| PSMPA5c     | (F) 5'-GAATATATCTCCTACGCTTGTTAAGC-3' (R) 5'-GACATTTTATAACTCTGTACACAAC-3' | 14.9 | SSR | er1 | F2 | BSA | [46] |
| PSMPAA369   | (F) 5'-CCCTCTCGCTATCCAATCC-3' (R) 5'-AGCTTTTATAACTCTGTACACAAC-3' | 24.1 | SSR | er1 | F2 | BSA | [46] |
| PSMPAD51    | (F) 5'-GTAAGTATAGCTGCTTGTTAAGC-3' (R) 5'-GATTTAAATATATATATATT-3' | 25.8 | SSR | er1 | F2 | BSA | [46] |
| OPWO4_637   | 5'-ACAAGCAGCGA-3' | - | RAPD | Er3 | F2 | BSA | [101] |
| Marker     | Primer Sequence  | Repetition | Method  | Marker Type | Population | Source |
|------------|------------------|------------|---------|-------------|------------|--------|
| OPAB01_874 | 5'-CCGTCGGTAGTAAAGAATACTA-3' | 2.8        | RAPD    | Er3         | F2         | BSA    |
| SCABI 874  | (F) 5'-CCGTCGGTAGTAAAGAATACTA-3'  | 2.8        | SCAR    | Er3         | F2         | BSA    |
|           | (R) 5'-CCGTCGGTAGCCACACCA-3'     |            |         |             |            |        |
| ScW4607    | (F) 5'-CAGAAGCGGATGGAGGGGAG-3'   | -          | SCAR    | Er3         | F2         | BSA    |
|           | (R) 5'-CAGAAGCGGATAGCCACACCA-3'  |            |         |             |            |        |
| ScX17 1600 | (F) 5'-GGGACCAAGCTGAGTTCCTGAG-3' | 2.6        | SCAR    | er2         | F2         | BSA    |
|           | (R) 5'-GGGACCAAGCTGAGTTCCTGAG-3'  |            |         |             |            |        |
| ScPO061100y| (F) 5'-CCCCATTTAGACCTTGGCA-3'    | 0.5        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-CCCCATTTAGACCTTGGCA-3'    |            |         |             |            |        |
| ScOPT16488 | (F) 5'-GGCACGAGATCGAGTCGTTGAC-3' | 3.3        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-GGCACGAGATCGAGTCGTTGAC-3'  |            |         |             |            |        |
| ScAGG/CAA125| (F) 5'-GGGTAGAGGATGGCTGAG-3'    | 5.5        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-GGGTAGAGGATGGCTGAG-3'    |            |         |             |            |        |
| ScOPE16b  | (F) 5'-GGGTAGAGGATGGCTGAG-3'    | 9.2        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-GGGTAGAGGATGGCTGAG-3'    |            |         |             |            |        |
| A5c        | (F) 5'-GTTTTGCTTTAATGCTATTCC-3'  | 23.0       | SSR     | er1         | NILs       | BSA    |
|           | (R) 5'-GTTTTGCTTTAATGCTATTCC-3'  |            |         |             |            |        |
| BC210      | -                | 8.2        | RAPD/SCAR| er1         | -          | -      |
| OPB18230   | 5'-CCACGAAGCT-3'             | 11.2       | RAPD    | er1         | F2         | -      |
| ScOPX04600 | (F) 5'-GGTGACGGGACGTCTGAGACCA-3' | 0.6        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-GGTGACGGGACGTCTGAGACCA-3'  |            |         |             |            |        |
| ScOPD 1050a| (F) 5'-GGTCTACCATATCATTCATGAGA-3' | 2.2        | SCAR    | er1         | NILs       | BSA    |
|           | (R) 5'-GGTCTACCATATCATTCATGAGA-3'  |            |         |             |            |        |
| AD60 d     | (F) 5'-TTGACGATGACTGACAGCTGAC-3' | 9.9, 8.7   | SSR     | er1         | F2         | BSA    |
|           | (R) 5'-TTGACGATGACTGACAGCTGAC-3'  |            |         |             |            |        |
| c5DNAmet   | (F) 5'-CCATTTCTGCTGGGAAGTCACCC-3' | 15.4, 8.1  | SSR     | er1         | F2         | BSA    |
|           | (R) 5'-CCATTTCTGCTGGGAAGTCACCC-3'  |            |         |             |            |        |
| AD61       | (F) 5'-CTGAGGTAATGAGAAGTCATGAGA-3' | 0.39       | SSR     | Er3         | F2         | BSA    |

*Where a, b, c, d denotes the same primer used by different researchers; @ This fragment was only present in susceptible progenies; *-in mapping population ‘Xucai 1 × Bawan 6’; **- in mapping population ‘Qizhen 76 × Xucai 1’; Information for the marker BC210 is not available. Where, RFLP: Restriction Fragment Length Polymorphism; RAPD: Random Amplified Polymorphic DNA; SCAR: Sequence Characterized Amplified Region; SSR: Simple Sequence Repeat; RILs: Recombinant Inbred Lines; NILs: Near-Isogenic Lines; BSA: Bulked Segregant Analysis.
Table 8. Allelic diversity studies in *Pisum sativum* with the available details.

| Accessions               | Disease Score PM Isolate | Genetics (Gene) | Mapping Population (Generation) | Nearest Marker (Linkage Distance in cM) | Reference |
|--------------------------|--------------------------|-----------------|---------------------------------|----------------------------------------|-----------|
| C2 (P660-4, *P. fulvum*)| R* CO-01 SDG (Er3)       | C2 × Messire (F2) | SCAB174 (2.8cM)                 | [9,101]                                |
| Eritreo (breeding line C2)| R* NP SDG (Er3)          | C2 × Messire (F2) | AD61 (0.39 cM)                  | [102]                                  |
| Xucai 1                  | R* EPBJ SRG (er1-2)      | Xucai1 × Bawan6 (F2); Qizhen76 × Xucai1 (F2) | AD60 (9.9 cM) and c5DNAmet (8.1 cM)  | [53]                                  |
| Xucai 1                  | R* EPBJ SRG (er1-2)      | Xucai1 × Bawan6 (F2); Qizhen76 × Xucai1 (F2) | AD60 (9.9 cM) and c5DNAmet (8.1 cM)  | [53]                                  |
| G0006273 (X9002)         | I (0) EPYN SRG (er1-2)   | Bawan 6 × X9002 (F2) | AD60 (11.9 cM), c5DNAmet (9.0 cM); PsMLO1-650 (FM) | [96]                                  |
| G0001778 (Dabaiwandou), G0001752, G0001763; G0001764; G0001767, G0001777; G0001778; G0001780; G0003824; G0003825 and G0003826 | I (0) EPYN SRG (er1-6) | G0001778 × Bawan 6 (F2 and F2:3) | SNP1121 (FM); AD60 (8.8 cM) and c5DNAmet (22.8 cM) | [59]                                  |
| DDR-11                   | I (0) EPYN SRG (er1-7)   | DDR-11 × Bawan (F2:3) | ScOPD10-650 (8.3cM); PSMP5A60 (4.2 cM); ScOPE16-1600 (21.4 cM); PSMP5A5 (9.5cM); c5DNAmet (26.2 cM) | [58]                                  |
| G0004389                 | I (0) EPYN SRG (er1-8)   | WSU 28 × G0004389 (F2:3) | c5DNAmet (9.6 cM); AA200 (3.5) | [91]                                  |
| G0004400                 | I (0) EPYN SRG (er1-9)   | Bawan6 × G0004400 (F2:3) | PSMP5A51 (12.2 cM); ScOPX04-880 (4.2 cM) | [91]                                  |
| Yarrum and ps1771        | R* NM SRG (er1-11)       | Kaspa × Yarrum; Kaspa × ps1771 (RIL) | AB71 (4.6 cM) and AD59 (4.3 cM) | [93,115]                              |

Where I, R and S indicate resistance levels viz., immune, resistant, susceptible; *R: Disease score not mentioned; SRG Single recessive gene, SDG: Single dominant gene; EPBJ (NCBI accession number KR912079); EPYN (NCBI, accession number KR957355; FM: functional marker.

8. Durable Resistance Strategies for PM Resistance

8.1. Gene Introgression from Related Species

From time to time, efforts have been made by the researchers to find out new sources of PM resistance, both in cultivated and wild *Pisum* accessions [9,49,118]. The majority of PM-resistant pea accessions were found to belong to the two subspecies viz., *P. sativum* subsp. *sativum* and *P. sativum* subsp. *elatius* [119]. Interestingly, the majority of these accessions are carrying the er1 gene. Another recessive resistance gene er2 was discovered in a few resistant pea germplasm (mostly *P. sativum*) viz., SVP-950, SVP-750, SVP-951, SVP-952 [18,55] and JI2480 [30]. Similarly, the resistant sources for the Er3 gene have been identified in genotype of *P. fulvum* viz., ‘P660-4’ [9,49]. However, as previously noted,
there is a substantial need to search for resistant accessions in other related species, particularly with prior knowledge of crossability barriers of a primary (GP-I), secondary (GP-II) and tertiary (GP-III) gene pool of *Pisum*. There has been a lot of a taxonomical debate about the species concept of *Pisum* [120]. The genus *Pisum* comprises one to five species, depending on taxonomic interpretation and the International Legume Database (ILDIS), and currently recognizes three species viz., (1). *Pisum abyssinicum* (syn. *P. sativum* subsp. *abyssinicum*); (2). *P. fulvum*; and (3). *P. sativum* with two subspecies viz., *P. sativum* subsp. *elatius* and *P. sativum* subsp. *sativum*. The primary gene pool includes the *sativum/elatius* complex, having nuclear-cytoplasmic incompatibility within the complex [121].

Fortunately, many studies on species hybridization barrier in *Pisum* have been conducted which resulted in the generation of F1s, their quantitative characters (stem length, number of nodes, node of first flower, number of pods, seeds and seed weight) and fertility was analyzed [119,121–126]. These groups have adopted different approaches (evolutionary lineage concept of A, B, C and D) by keeping taxonomical distribution aside to study the species barrier. Bogdanova et al. [122] concluded that the divergent wild and endemic peas differ in hybrid sterility in reciprocal crosses from cultivated peas depending upon the allele of a nuclear speciation gene, ‘Sc’s’ involved in nuclear-cytoplasmic compatibility. They reported highly sterile F1 displaying chlorophyll deficiency and variegation, reduction of leaflets and stipules when *P. sativum* subsp. *elatius* accession ‘VIR320’ was used as the female parent with domesticated peas (*P. sativum* subsp. *sativum*). On the contrary, reciprocal hybrids produced normal seeds [121]. This reflects the nuclear–cytoplasmic conflict/incompatibility within the *Pisum* subspecies. The cause of the phenomenon is not yet understood, but it could be due to altered metabolic processes in the plastids of F1 hybrids. *P. fulvum* is a wild *Pisum* species that has little hybridization success with *P. sativum* and is likely to suffer from linkage drag [127]. However, other researchers have successfully utilized this species to transfer the PM resistance into the cultivated genotypes [37,49,118].

8.2. Characterization and Introduction of Resistant Sources

For the development of an elite cultivar for a given ecosystem, the predicted resistance, durability and stability are some of the critical considerations in pea breeding programs [60]. Johnson [128] proposed a strategy for increasing the likelihood of attaining durable, yellow rust resistance in wheat by utilizing a known parent cultivar with proven durable resistance. There are several resistant lines (Table 6) reported in *Pisum*, but most of these have not yet been adequately characterized in terms of the resistance mechanism at allelic level. Fortunately, it is easy to introduce a new cultivar with distinct *R* genes in a crop like *Pisum* because of the short growing cycle and ease in disease identification. Genetic evidence regarding the chromosomal position of PM resistance genes *er2* and *Er3* are known, yet cloning of these loci has not yet been reported.

The preceding discussion has made it very clear that there is a pressing need to incorporate a wide range of genetic sources of resistance to PM in commercial pea cultivars. Unlike wheat, where nearly 200 resistant genes and several QTLs were known [12], there is a meager genic information known for PM resistance in pea. To date only three resistant genes have been reported, that too, with very limited testing for various isolates and species of PM fungus. Furthermore, of three PM resistance genes, use of *er2* and *Er3* is still very limited, with only a few reports of their introgression into some of the elite genotypes [9,28,37]. Although, *er1*, being recessive in nature, is giving a somewhat durable type of resistance to the pea genotypes against PM [27,59]. Still, the use of single gene-based resistance (which is also called as vertical resistance) approach by deploying only *er1* gene in most of the cultivated varieties, to control the PM pathogen is quite threatening and risky. Thus, to avoid any possible breakdown of *er1* based PM resistance, we must use all the available *er* genes through gene pyramiding approach in pea PM resistance breeding program. In addition, diverse PM resistance sources (varieties) of peas
having various \( er \) genes and allelic combinations should be suitably deployed in the major pea growing areas (having diverse virulent PM races) to prevent the possible breakdown of any of the PM resistance gene(s).

### 8.3. Gene Pyramiding and Crop/Cultivar Diversification

The concept of resistance gene pyramiding into a single cultivar through breeding is being advocated in many crops with considerable success [129,130]. More resistance genes should be identified and pyramiding of already known resistance genes should be attempted for the better management of this deadly disease, especially in the areas where individual resistance genes have already been exposed to the pathogen. The combination of all the three genes (\( er1, er2 \) and \( Er3 \)) could be stacked in one cultivar, which then provide a more stringent barrier to pathogen for the disease development by limiting their establishment (through \( er1 \)) as well as triggering the hypersensitive response (through \( er2 \) and \( Er3 \)). This will then result in the potential increase in the durability of PM resistance in such genotypes [15]. Using linked molecular markers, these genes could be easily brought into a single cultivar [37], which is otherwise not possible through morphological selection as the genes are located on distinct positions on the genome and exhibit differential resistance expression. Efforts are being made to combine \( er1 \) and \( er2 \) genes in one background using MAS; however, the published literature on pyramiding of all the three genes is still scanty.

Furthermore, the resistance in the cultivated \( Pisum \) is very specific to a particular agro-climatic zone or environmental conditions, owing to the race-specific nature of PM resistance. Cultivar diversification is another approach for PM disease management that is primarily based on the availability of cultivars with known resistance genes that might be deployed in space or time or at the same time. For the management of the prevailing virulent race of any region, the resistant pea genotype carrying the most effective \( er \) allele/gene with superior agronomic traits can directly be recommended for any particular location. Moreover, identifying genotypes with resistance to multiple \( Erysiphe \) species and isolates may improve the durability of PM resistance. Some of the pea accessions \( \text{viz.} \), J11559 and J11951, had shown very high resistance to the multiple isolates of \( E. pisi \) [30] as well as to the \( E. trifolii \) [22]. Alternatively, these \( er \) alleles/genes can be rapidly transferred to other susceptible cultivars through marker-assisted breeding. Furthermore, overall PM disease pressure can be drastically reduced by undertaking the pea cultivation in the intercropping system, wherein non-host crop species can act as a physical barrier for the disease development and their spread. Villegas-Fernández et al. [131] have successfully demonstrated a clear reduction in the PM disease pressure in peas by intercropping of peas with barley and fava bean in a 50:50 ratio.

### 8.4. Utilization of Susceptibility (S) Genes and Gene Editing for Resistance

Loss of function mutations, such as \( er1 \) and \( er2 \), result in recessive PM resistance [28,84,85,104]; the wildtype \( Er1 \) and \( Er2 \) genes are therefore classified as susceptibility (S) genes. There are many different kinds of S-genes, but generally they are up-regulated during plant–pathogen interactions, and they encode proteins that facilitate host colonization by the pathogen [106,132,133]. S-genes have emerged as a promising alternative to R-genes in PM resistance breeding, due to their broad-spectrum and potentially durable resistance characteristics [132–134]. There is a scope to search for S-gene orthologues in \( Pisum \), using a comparative genomic approach. For example, fourteen \( Mlo \) genes were identified in \( Medicago \) [106]. With new genomic information in \( Pisum \), additional \( Mlo \) loci can be identified. For such novel S-gene(s), loss of function mutations may be created by insertional mutagenesis [135], TILLING (Target induced local lesions in genomes) [136] and CRISPR/Cas-9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) [137] mediated genome editing approaches. This will ultimately result in the development of pea genotypes having wider PM resistance for more number of pathogen races [132]. Recently, the genome editing has been undertaken
for the Mlo locus to achieve the resistance in different crops including wheat [138], grapevine [139], tomato [140] and sweet basil [141].

9. Host–Pathogen Interaction and disease development

*Pisum* species are diverse in their defense capacity against PM pathogens, and the genetic state of both pea plant and the *Erysiphe* spp. influences the outcome of the interaction. An intensive bidirectional signal exchange occurs between the plant and the PM fungus after spore deposition on the pea leaves until the late stages of the infection process [60]. When the pathogen overcomes the physical and chemical barriers present on the host, it identifies the pathogen associated molecular pattern (PAMPs) and/or effectors, thereby activating the PAMP-triggered immunity (PTI) and effector triggered immunity (ETI) [142]. Thus, in any susceptible genotype, the first step is suppression of PTI, which is achieved by the secretion of pathogen effectors, which manipulates the host cell function [143]. Therefore, for a better understanding of the pea–PM interaction during a compatible reaction, there is a need to find the way by which PTI is suppressed and ETS (effector triggered susceptibility) is established [144]. Pathogen effectors have the function of plant innate immunity suppression through host protein (effector target) interaction [143].

While studying the compatible and incompatible interaction between the pea and *E. pisi*, Bhosle et al. [75] identified several putative *er2* gene products having role in the expression of resistance. They identified the upregulation of transcripts of LRR receptor-like serine/threonine-protein kinase in the resistant cultivar suggesting its role in recognition and response to PAMPs [75]. The analysis of *E. pisi* lead to the identification of putative effectors such as GTPase, protein kinase, phosphatases, ATPase, DEAD box helicase, polyubiquitin, peptidyl-prolyl cis-trans isomerase, HSP70 and cytochrome P450. These effectors have a role in the pathogenesis and virulence [75]. A RPM-R homologue was found to upregulate in the resistant cultivar, suggesting a role in the recognition of the avirulence gene product of *E. pisi*. Similar RPM-R protein recognizes *avrRpm1* type III effector avirulence protein in *Pseudomonas syringae* [145].

10. Conclusions

Pea productivity is constrained by PM disease, which is prevalent throughout pea growing regions. The concept of durable resistance in pea for PM resistance through gene pyramiding is still elusive, despite the idea of identifying more stable gene combinations across time and space being well established. In the absence of integrated and continuum germplasm enhancement and pre-breeding programmes, development of PM resistance at a host level is a long process, as it requires the use of wide genetic diversity from GP1/GP-II and GP-III. Among GP-1, cultivated resistant varieties, pre-bred lines (having *er2* and *Er3* gene), genetic and mutant stocks, and mapping populations developed in different pea breeding programs could be utilized (Figure 4). In order to discover novel PM-resistant genes/alleles, the germplasm resources of the GP-II and GP-III gene pool need to be explored systematically. The identified genetic resources could then be used to develop resistant cultivars by adopting the different breeding methods integrated with modern tools of genomics, MAS, transcriptomics, and genomic selection genome editing using CRISPR/Cas9. At the pathogen level, it is necessary to identify and characterize the virulent species/isolates across the different geographical regions of the world. The host–pathogen interaction (epidemiological studies) requires the attention of pathologist/breeders over the diverse growing habitat as the PM resistance is reportedly altered by environmental factors like temperature. A deep understanding of pathogen virulence genes and host resistance genes through transcriptomic and proteomics studies is still in its early stage.
Figure 4. Scheme for powdery mildew management in peas, broadly advocating the utilization and characterization of pea genetic diversity along with the due emphasis on pathogen characterization for effective deployment of existing/novel variations reported for PMR.

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/genes13020316/s1, Table S1. Functional Markers reportedly linked to different er1 alleles.

Author Contributions: T.K.B. and S.K.S.: conceptualized the article; J.D., G.P.M. and V.S.: did the gap analysis; J.D., G.P.M., R.K.D., P.M.S., V.K. and V.S.: performed the article search and wrote the article. All the authors have read and approved the article.

Funding: The work has been funded by Indian Council of Agricultural Research (ICAR), New Delhi, India.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Authors are thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, India for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.
Reference

1. Kreplak, J.; Madou, M.-A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422, doi:10.1038/s41588-019-0480-1.

2. Devi, J.; Sanwal, S.K.; Koley, T.K.; Mishra, G.P.; Karmakar, P.; Singh, P.M.; Singh, B. Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci. Hortic. (Amsterdam). 2019, 244, 141–150, doi:10.1016/j.scienta.2018.09.048.

3. Devi, J.; Dubey, R.K.; Mishra, G.P.; Sagar, V.; Verma, R.K.; Singh, P.M.; Singh, J. Inheritance and stability studies of multi-flowering trait in vegetable pea (Pisum sativum) and its contribution in yield improvement. Sci. Hortic. (Amsterdam). 2021, 287, 110235, doi:10.1016/j.scienta.2021.110235.

4. FAO FAOSTAT. 2019. http://www.fao.org/faostat/en/#home (Accessed on 12th April, 2021).

5. Devi, J.; Sanwal, S.; Koley, T.; Dubey, R.; Singh, P.; Singh, B. Variability and character association studies for horticultural and quality traits in garden pea (Pisum sativum L. var. hortense). Veg. Sci. 2018, 45, 161–165.

6. Callan, B.E.; Carris, L.M. Fungi on living plants substrata, including fruits. In Biodiversity of Fungi; Elsevier: Amsterdam, The Netherlands, 2004; pp. 105–126.

7. Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431, doi:10.3390/microorganisms8091431.

8. Glawe, D.A. The powdery mildews: A Review of the world’s most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 2008, 46, 27–51, doi:10.1146/annurev.phyto.46.081407.104740.

9. Fondevilla S., Torres A.M., Moreno M.T., R.D. Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed. Sci. 2007, 57, 181–184.

10. Gritton, E.; Ebert, R. Interaction of planting indention date and powdery mildew on pea plant performance. J. Amer. Soc. Hort. Sci. 1975, 100, 137–142.

11. Smith, P.; Foster, E.; Boyd, L.; Brown, J.K. The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol. 1996, 45, 302–309, doi:10.1046/j.1365-3099.1996.d01-111.x.

12. Kang, Y.; Zhou, M.; Merry, A.; Barry, K. Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding, Plant Pathol. 2020, 69, 601–617, doi:10.1111/ppa.13166.

13. Bheri, M.; Fareeda, G.; Makandar, R. Assessing host specialization of Erysiphe pisi on garden pea germplasm through genotypic and phenotypic characterization. Euphytica 2016, 212, 1–14, doi:10.1007/s10681-015-1511-3.

14. Bheri, M.; Bhosle, S.; Makandar, R. Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiol. Res. 2019, 222, 25–34, doi:10.1016/j.micres.2019.02.006.

15. Fondevilla, S.; Rubiales, D. Powdery mildew control in pea. A review. Agron. Sustain. Dev. 2012, 32, 401–409, doi:10.1007/s13593-011-0033-1.

16. Ghafoor, A.; McPhee, K. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 2012, 186, 593–607, doi:10.1007/s10681-011-0596-6.

17. Sharma, B. Multiple allelism at Er locus for powdery mildew resistance in pea (Pisum sativum L.). Indian J. Genet. Plant Breed. 2016, 76, 512, doi:10.5987/0975-6906.2016.00699.

18. Heringa, R.J.; van Norel, A.; Tazelaar, M.F. Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 1969, 18, 163–169, doi:10.1007/BF00035687.

19. Hammarlund, C. Genetic Biologide und Physiologische Eimer Erysiphegen. 61. Hereditas 1925, 6, 1.

20. Onďejí, M.; Dostálková, R.; Odstrčilová, L. Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baemleri, a new pathogen of pea. Plant Prot. Sci. 2005, 41, 95–103, doi:10.17221/2729-PPS.

21. Attanayake, R.N.; Glawe, D.A.; McPhee, K.E.; Dugan, F.M.; Chen, W. Erysiphe trifolii- a newly recognized powdery mildew pathogen of pea. Plant Pathol. 2010, 59, 712–720, doi:10.1111/j.1365-3059.2010.02306.x.

22. Fondevilla, S.; Chattopadhyay, C.; Khare, N.; Rubiales, D. Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. Eur. J. Plant Pathol. 2013, 136, 557–563, doi:10.1007/s10658-013-0187-6.

23. Rana, J.C.; Banyal, D.K.; Sharma, K.D.; Sharma, M.K.; Gupta, S.K.; Yadav, S.K. Screening of pea germplasm for resistance to powdery mildew. Euphytica 2013, 189, 271–282, doi:10.1007/s10681-012-0798-6.

24. Reddy, D.C.I.; Preehi, B.; Wani, M.A.; Aghora, T.S.; T.S.; Aswath, C.; Mohan, N. Screening for powdery mildew (Erysiphe pisi D.C.) resistance gene-linked SCAR and SSR markers in five breeding lines of Pisum sativum L. J. Hortic. Sci. Biotechnol. 2015, 90, 79–82.

25. Warkentin, T.D.; Rashid, K.Y.; Zimmer, R.C. Effectiveness of a detached leaf assay for determination of the reaction of pea plants to powdery mildew. Can. J. Plant Pathol. 1995, 17, 87–89, doi:10.1080/07060669509500724.

26. Banyal, D.K.; Tyagi P. D. Comparison of screening techniques for evaluation of resistance among pea genotypes for powdery mildew. In: Ghabroo SK, Bhagat RM, Kapoor AC (eds) Natural resource management for sustainable hill agriculture, vol II. HPKV, Palampur; 1998;

27. Fondevilla, S.; Carver, T.L.W.; Moreno, M.T.; Rubiales, D. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur. J. Plant Pathol. 2006, 115, 309–321, doi:10.1007/s10658-006-9015-6.
28. Katoch, V.; Sharma, S.; Pathania, S.; Banayal, D.K.; Sharma, S.K.; Rathour, R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol. Breeding. 2010, 25, 229–237, doi:10.1007/s11032-009-9322-7.
29. Singh, J.; Dhall, R.K.; Aujla, I.S. Characterization of resistance response of garden pea (Pisum sativum L.) against powdery mildew (Erysiphe pisi DC) in sub-tropical plains of India. Sabra J. Breeding. Genet. 2015, 47, 384–393.
30. Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Inheritance of powdery mildew resistance in pea. Can. J. Plant Sci. 1997, 77, 307–310, doi:10.4141/P96-157.
31. Nisar, M.; Ghafoor, A.; Khan, M.R.; Qureshi, A.S. Screening of Pisum sativum L. germplasm against Erysiphe pisi Syd. Acta Biol. Cracoviensia Ser. Bot. 2006, 48, 33–37.
32. Saari EE; Prescott. JM A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380.
33. Falloon, R.E.; Viljanen, R.; Saari EE; Prescott. JM A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380.
34. Falloon, R.E.; Viljanen, R.; Saari, E.; Prescott, J.M. A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380.
35. Nisar, M.; Ghafoor, A.; Khan, M.R.; Qureshi, A.S. Screening of Pisum sativum L. germplasm against Erysiphe pisi Syd. Acta Biol. Cracoviensia Ser. Bot. 2006, 48, 33–37.
36. Saari EE; Prescott. JM A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380.
37. Falloon, R.E.; Viljanen, R.; Saari EE; Prescott. JM A scale for appraising foliar intensity of wheat diseases. Plant Dis. Report. 1975, 59, 377–380.
84. Sun, S; Deng, D; Wang, Z; Duan, C; Wu, X; Wang, X; Zong, X; Zhu, Z. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theor. Appl. Genet. 2016, 129, 909–919, doi:10.1007/s00122-016-2671-9.

85. Sun, S; Fu, H; Wang, Z; Duan, C; Zong, X; Zhu, Z. Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS One 2016, 11, e0147624, doi:10.1371/journal.pone.0147624.

86. Martins, D; Araújo, S de S; Rubiales, D; Vaz Patto, M.C. Legume crops and biotrophic pathogen interactions: a continuous cross-talk of a multilayered array of defense mechanisms. Plants 2020, 9, 1460, doi:10.3390/plants9111460.

87. Sharma, P; Jha, A.B; Dubey, R.S; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms in plants under stressful conditions. J. Bot. 2012, 1–26, doi:10.1155/2012/217037.

88. Maranon, J. A biochemical study of resistance to mildew in Oenothera. Philipp. J. Sci. 1924, 24, 369–446.

89. Soundhiryan V, Kamalakannan A, Jeya Kumar P, P.V and T.K.S.L. Morphology and biochemical parameters associated with powdery mildew resistance in mongebean. Green Farming 2018, 4, 704–709.

90. Kalia, P; Sharma, S.K. Biochemical genetics of powdery mildew resistance in pea. Theor. Appl. Genet. 1988, 76, 795–799, doi:10.1007/BF00303528.

91. Aly, A.A; Mansour, M.T.M; Mohamed, H.I. Association of increase in some biochemical components with flux resistance to powdery mildew. Gesunde Pflanz. 2017, 69, 47–52, doi:10.1034/j.1364-0109.2017.0387-7.

92. Sarhan, E.A.D; Abd-Elsayed, M.H.F; Ebrahiem, A.M.Y. Biological control of cucumber powdery mildew (Podosphaera xanthii) (Castagne) under greenhouse conditions. Egypt. J. Biol. Pest Control 2020, 30, 65, doi:10.1186/s41938-020-00267-4.

93. Soliman, M.H; El-Mohamedy, R.S.R. Induction of Defense-related physiological and antioxidant enzyme response against powdery mildew disease in okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology 2017, 45, 409–420, doi:10.5941/MYCO.2017.45.4.409.

94. Mohapatra, C; Chand, R; Navathe, S; Sharma, S. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea. Plant Physiol. Biochem. 2016, 106, 54–63, doi:10.1016/j.plaphy.2016.04.035.

95. Curto, M; Camafote, E; Lopez, J.A; Maldonado, A.M; Rubiales, D; Jorrin, J.V. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 2006, 6, S163–S174, doi:10.1002/pmic.200500396.

96. Pazarlar, S; Çetinkaya, N; Bor, M; Ozdemir, F. Oxone triggers different defence mechanisms against powdery mildew (Blumeria graminis DC, Speer f. sp. tritici) in susceptible and resistant wheat genotypes. Funct. Plant Biol. 2017, 44, 1016, doi:10.1071/FP17038.

97. Singh, K.P; Kumari, P; Rai, P.K. Current status of the disease-resistant gene(s)/QTLs, and strategies for improvement in Brassica juncea. Front. Plant Sci. 2021, 12,617405, doi:10.3389/fpls.2021.617405.

98. Agurto, M; Schlechter, R.O; Armijo, G; Solano, E; Serrano, C; Contreras, R.A; Zúñiga, G.E; Arce-Johnson, P. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front. Plant Sci. 2017, 8, 578.

99. Noir, S; Colby, T; Harzen, A; Schmidt, J; Fanstruga, R. A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordi) conidiospores. Mol. Plant Pathol. 2009, 10, 223–236, doi:10.1111/j.1364-3703.2008.00524.x.

100. Leach, M.D; Klipp, E; Cowen, L.E; Brown, A.J.P. Fungal Hsp90: a biological transistor that tunes cellular outputs to therm.

101. Nous, S; Makandar, R. Comparative transcriptome of compatible and incompatible interaction of Erysiphe pisi and garden pea reveals putative defense and pathogenicity factors. FEMS Microbiol. Ecol. 2021, 97(3):1-16, doi:10.1093/femsec/fiaa006.

102. Arthur, J.C; Lich, J.D; Aiziz, R.K; Kotb, M; Ting, J.P-Y. Heat Shock Protein 90 Associates with Monarch-1 and Regulates Its Ability to Promote Degradation of NF-κB-Inducing Kinase. J. Immunol. 2017, 179, 6291–6296, doi:10.4049/jimmunol.179.9.6291.

103. Xiao, S; Ellwood, S; Calis, O; Patrick, E; Li, T; Coleman, M; Turner, J.G. Broad-spectrum mildew resistance in arabidopsis thaliana mediated by RPW8. Science (80-.). 2001, 291, 118–120, doi:10.1126/science.291.5501.118.

104. Foster-Hartnett, D; Danesh, D; Peñuela, S; Sharopova, N; Endre, G; Vandenbosch, K.A; Young, N.D; Samac, D.A. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol. Plant Pathol. 2007, 8, 307–319, doi:10.1111/j.1364-3703.2007.00395.x.

105. Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis — 2001 status. Curr. Opin. Plant Biol. 2001, 4, 301–308, doi:10.1016/S1369-5266(00)00177-1.

106. Gjetting, T; Carver, T.L.W; Skot, L; Lyngkjær, M.F. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol. Plant-Microbe Interact. 2004, 17, 729–738, doi:10.1094/MPMI.2004.17.7.729.

107. Jansen, M; Schaffrath, U. The barley mutant emr2 shows enhanced resistance against several fungal leaf pathogens. Plant Breed. 2009, 128, 124–129, doi:10.1111/j.1439-0523.2008.01604.x.

108. Barilli, E; Rubiales, D; Gjetting, T; Lyngkjær, M.F. Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 2014, 198, 13–28, doi:10.1007/s10681-014-1062-z.

109. Sharma, G; Aminedi, R; Saxena, D; Gupta, A; Banerjee, P; Jain, D; Chandran, D. Effector mining from the Erysiphe pisi haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis. Mol. Plant Pathol. 2019, 20, 1506–1522, doi:10.1111/mpp.12862.

110. Humphry, M; Reinstädler, A; Ivanov, S; Bisseling, T; Panstruga, R. Durable broad-spectrum powdery mildew resistance in pea erl plants is conferred by natural loss-of-function mutations in PsML01. Mol. Plant Pathol. 2011, 12, 866–878, doi:10.1111/j.1364-3703.2011.00718.x.
85. Pavan, S.; Schiavulli, A.; Appiano, M.; Marchotrigiano, A.R.; Cillo, F.; Visser, R.G.F.; Bai, Y.; Lotti, C.; Ricciardi, L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. *Theor. Appl. Genet.* **2011**, *123*, 1425–1431, doi:10.1007/s00122-011-1677-6.

86. Bai, Y.; Pavan, S.; Zheng, Z.; Zappel, N.F.; Reinstädler, A.; Lotti, C.; De Giovanni, C.; Ricciardi, L.; Lindhout, P.; Visser, R.; et al. Naturally occurring broad-spectrum powdery mildew resistance in a central american tomato accession is caused by loss of MLO function. *Mol. Plant-Microbe Interact.* **2008**, *21*, 30–39, doi:10.1094/MPMI-21-1-0030.

87. Lyngkjær, M.F.; Newton, A.C.; Atzema, J.L.; Baker, S.J. The Barley mlo-gene: an important powdery mildew resistance source. *Agronomie* **2000**, *20*, 745–756, doi:10.1051/agro:2000173.

88. Piffanelli, P.; Ramsay, L.; Waugh, R.; Benabdellouma, A.; D’Hont, A.; Hollierich, K.; Jørgensen, J.H.; Schulze-Lefert, P.; Panstruga, R. A barley cultivation-associated polymorphism conveys resistance to powdery mildew. *Nature* **2004**, *430*, 887–891, doi:10.1038/nature02781.

89. Santo, T.; Rashkova, M.; Alabaça, C.; Leitão, J. The ENU-induced powdery mildew resistant mutant pea (*Pisum sativum L.*) lines *S*(er1mut1) and *F*(er1mut2) harbour early stop codons in the *PsMLO1* gene. *Mol. Breed.* **2013**, *32*, 723–727, doi:10.1007/s11032-013-9889-x.

90. Ma, Y.; Coyne, C.J.; Main, D.; Pavan, S.; Sun, S.; Zhu, Z.; Zong, X.; Leitão, J.; McGoey, R.J. Development and validation of breeder-friendly KASP markers for er1, a powdery mildew resistance gene in pea (*Pisum sativum L.*) *Mol. Breed.* **2017**, *37*, 1–7, doi:10.1007/s11032-017-0740-7.

91. Sun, S.; Deng, D.; Duan, C.; Zong, X.; Xu, D.; He, Y.; Zhu, Z. Two novel er1 alleles conferring powdery mildew (*Erysiphe pisi*) resistance identified in a worldwide collection of pea (*Pisum sativum L.*) germplasms. *Int. J. Mol. Sci.* **2019**, *20*, 1–16, doi:10.3390/ijms2005071.

92. Pavan, S.; Schiavulli, A.; Appiano, M.; Miccola, C.; Visser, R.G.F.; Bai, Y.; Lotti, C.; Ricciardi, L. Identification of a complete set of functional markers for the selection of *er1* resistance in *Pisum sativum L.* *Mol. Breed.* **2013**, *31*, 247–253, doi:10.1007/s11032-012-9781-0.

93. Sudheesh, S.; Lombardi, M.; Leonforte, A.; Cogan, N.O.I.; Materne, M.; Forster, J.W.; Kaur, S. Consensus genetic map construction for field pea (*Pisum sativum L.*), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the *er1* powdery mildew resistance gene. *Plant Mol. Biol. Report.* **2015**, *33*, 1391–1403, doi:10.1007/s11105-014-0837-7.

94. Sun, S.; He, Y.; Dai, C.; Duan, C.; Zhu, Z. Two major *er1* alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China. *Crop J.* **2016**, *4*, 353–359, doi:10.1016/j.cj.2016.05.010.

95. Fu H.N.; Sun, S.L.; Zhu, Z.D.; Duan, C.X.; Yang, X.M. Phenotypic and genotypic identification of powdery mildew resistance in pea cultivars or lines from Canada. *J. Plant Genet. Resour.*, **2014**, *15*, 1028–1033.

96. Wang Z.Y.; H.N.Fu; S.L.Sun; C.X.Duan; X.F.Wu; Yang X.M.; Z.Zhu Identification of powdery mildew resistance gene in pea line X9002. *Acta Agron. Sin.* **2015**, *41*, 515–523.

97. Marx GA New linkage relations for chromosome III of *Pisum. Pismus Newsd* **1971**, *3*, 18–19.

98. Weeden NF, W.B. Linkage map for the garden pea *Pisum sativum* based on molecular markers.; In: O’Brien SJ (ed) *Genetic maps, 5th edn.* Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.; 1990.

99. Timmerman, G.M.; Frew, T.J.; Weeden, N.F.; Miller, A.L.; Goulden, D.S. Linkage analysis of *er-1*, a recessive *Pisum sativum* gene for resistance to powdery mildew fungus (*Erysiphe pisi D.C.*). *Theor. Appl. Genet.* **1994**, *88*, 1050–1055, doi:10.1007/BF00220815.

100. Dirlewanger, E.; Isaac, P.G.; Ranade, S.; Belajouza, M.; Cousin, R.; de Vienne, D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in *Pisum sativum L.*. *Theor. Appl. Genet.* **1994**, *88*, 17–27, doi:10.1007/BF00222388.

101. Fondevilla, S.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Identification and validation of RAPD and SCAR markers linked to the gene *Er3* conferring resistance to *Erysiphe pisi* DC in pea. *Mol. Breed.* **2008**, *22*, 193–200, doi:10.1007/s11032-008-9166-6.

102. Cobos, M.J.; Satorovic, Z.; Rubiales, D.; Fondevilla, S. *Er3* gene, conferring resistance to powdery mildew in pea, is located in pea LIGV. *Euphytica* **2018**, *214*, 203, doi:10.1007/s10681-018-2292-2.

103. Tonguc, M.; Weeden, N. Identification and mapping of molecular markers linked to *er1* gene in pea. *J. Plant. Mol. Biol. Biotech.* **2010**, *1*, 1–5.

104. Tiwari KR, Penner GA, W.T. Identification of AFLP markers for powdery mildew resistance gene *er2* in pea. *Pismus Genet* **1999**, *31*, 27–29.

105. Santos, C.; Polanco, C.; Rubiales, D.; Vaz Patto, M.C. The *MLO1* powdery mildew susceptibility gene in *Lathyrus* species: The power of high-density linkage maps in comparative mapping and synteny analysis. *Plant Genome* **2021**, *14*, doi:10.1002/pag2.20090.

106. Rispaï, N.; Rubiales, D. Genome-wide identification and comparison of legume MLO gene family. *Sci. Rep.* **2016**, *6*, 32673, doi:10.1038/srep32673.

107. Polanco, C.; Sáenz de Miera, L.E.; Bett, K.; Pérez de la Vega, M. A genome-wide identification and comparative analysis of the lentil MLO genes. *PLoS One* **2018**, *13*, e0194945, doi:10.1371/journal.pone.0194945.

108. Rubiales, D.; Osuna-Caballero, S.; Gonzalez-Bernal, M.J.; Cobos, M.J.; Flores, F. Pea breeding lines adapted to autumn sowings in broomrape prone Mediterranean environments. *Agronomy* **2021**, *11*, 769, doi:10.3390/agronomy11040769.

109. Shahid, M.; Shah, S.; Shah, A.; Ghifranulhaq; Ali, H.; Ishtiaq, S. Resistance in pea germplasm / lines to powdery mildew under natural conditions. *Mycopath* **2010**, *8*, 77–80.
110. Pandey KK, Pandey PK, Kalloo G, Kumar R, Singh B. Sources of resistance against powdery mildew of pea and its pathogen reaction in natural and artificial conditions. *Veget Sci.* 1999, 26, 160-163.

111. Azmat, M.A.; Khan, A.A.; Saeed, A.; Ashraf, M.; Niaz, S. Screening pea germplasm against *Erysiphe polygonii* for Disease Severity and Latent Period. *Int. J. Veg. Sci.* 2012, 18, 153–160, doi:10.1080/19315260.2011.592571.

112. Azmat, M.A.; Khan, A.A. Inheritance of erl-based broad-spectrum powdery mildew resistance in pea (*Pisum sativum* L.). *Not. Bot. Horti Agrobot.* Cluj–Napoca 2013, 41, 485, doi:10.15835/nba4129144.

113. Chaudhary, J.; Banyal, D.K. Evaluation of pea genotypes for resistance against powdery mildew caused by *Erysiphe pisi*. *Indian Phytopathol.* 2017, 70, doi:10.24838/ipl.2017.v70i1.48999.

114. Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. *Genome* 1999, 41, 440, doi:10.1111/j.gen-41-3-440.

115. Loridon, K.; McPhee, K.; Morin, J.; Dubreuil, P.; Pilet-Nayel, M.L.; Aubert, G.; Rameau, C.; Baranger, A.; Courne, C.; Lejeune-Hénaut, I.; et al. Microsatellite marker polymorphism and mapping in pea (*Pisum sativum* L.). *Theor. Appl. Genet.* 2005, 111, 1022–1031, doi:10.1007/s00122-005-0014-3.

116. Pereira, G.; Marques, C.; Ribeiro, R.; Formiga, S.; Dâmaso, M.; Tavares Sousa, M.; Farinhó, M.; Leitão, J.M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (*Pisum sativum* L.). *Euphytica* 2010, 171, 327–335, doi:10.1007/s10681-009-0003-8.

117. Srivastava, R.K.; Mishra, S.K.; Singh, A.K.; Mohapatra, T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene “er-1” in pea (*Pisum sativum* L.). *Euphytica* 2012, 186, 855–866, doi:10.1007/s10681-012-0650-x.

118. Fondevilla, S.; Carver, T.L.W.; Moreno, M.T.; Rubiales, D. Identification and characterization of sources of resistance to *Erysiphe pisi* Syd. in *Pisum spp*. *Plant Breed.* 2011, 126, 113–119, doi:10.1111/j.1439-0523.2006.01312.x.

119. Kosterin, O.E. Prospects of the use of wild relatives for pea breeding. *Russ. J. Genet. Appl. Res.* 2016, 6, 233–243, doi:10.13462/s2079095716030047.

120. Smykal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; et al. Legume crops phylogeny and genetic diversity for science and breeding. *CRC. Crit. Rev. Plant Sci.* 2015, 34, 43–104, doi:10.1080/07352689.2014.897904.

121. Bogdanova, V.S.; Galieva, E.R. Meiotic abnormalities as expression of nuclear-chloroplastic incompatibility in crosses of *Pisum sativum* subspecies. *Russ. J. Genet.* 2009, 45, 623–627, doi:10.1134/S1022795409050159.

122. Bogdanova, V.S.; Kosterin, O.E.; Yadrikhinskii, A.K. Wild peas vary in their cross-compatibility with cultivated pea (*Pisum sativum subsp. sativum* L.) depending on alleles of a nuclear-chloroplastic incompatibility locus. *Theor. Appl. Genet.* 2014, 127, 1163–1172, doi:10.1007/s00122-014-2288-9.

123. Bogdanova, V.S.; Kosterin, O.E. Hybridization barrier between *Pisum falvum* Sibth. et Smith and *P. sativum* L. is partly due to nuclear-chloroplast incompatibility. *Pisum Genet.* 2007, 39, 8–9.

124. Bogdanova, V.S.; Galieva, E.R.; Kosterin, O.E. Genetic analysis of nuclear-chloroplastic incompatibility in pea associated with cytoplasm of an accession of wild subspecies *Pisum sativum subsp. elatius* (Bieb.) Schnmlahl. *Theor. Appl. Genet.* 2009, 118, 801–809, doi:10.1007/s00122-008-0940-y.

125. Bogdanova, V.S.; Galieva, E.R.; Yadrikhinskii, A.K.; Kosterin, O.E. Inheritance and genetic mapping of two nuclear genes involved in nuclear–chloroplast incompatibility in peas (*Pisum sativum* L.). *Theor. Appl. Genet.* 2012, 124, 1503–1512, doi:10.1007/s00122-012-1804-z.

126. Bogdanova, V.S.; Zyatytsva, O.O.; Mglinetis, A. V.; Shatskaya, N. V.; Kosterin, O.E.; Vasiliev, G. V. Nuclear-chloroplastic conflict in pea (*Pisum sativum* L.) is associated with nuclear and plastidic candidate genes encoding Acetyl-CoA carboxylase subunits. *PLoS One* 2015, 10, e0119835, doi:10.1371/journal.pone.0119835.

127. Hardie, D.C.; Baker, G.J.; Marshall, D.R. Field screening of *Pisum* accessions to evaluate their susceptibility to the pea weevil (*Coleoptera: Bruchidae)*. *Euphytica* 1995, 94, 155–161, doi:10.1007/BF01677994.

128. Johnson, R. Practical breeding for durable resistance to rust diseases in self-pollinating cereals. *Euphytica* 1978, 27, 529–540, doi:10.1007/BF00431799.

129. Prasanna, H.C.; Sinha, D.P.; Rai, G.K.; Krishna, R.; Kashyap, S.P.; Singh, N.K.; Singh, M.; Malathi, V.G. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. *Plant Pathol.* 2015, 64, 256–264, doi:10.1111/ppa.12267.

130. Sagar, V.; Dhawan, G.; Gopala Krishnan, S.; Vinod, K.K.; Ellur, R.K.; Mondal, K.K.; Rathour, R.; Prakash, G.; Nagarajan, M.; Bhowmick, P.K.; et al. Marker assisted introgression of genes governing resistance to bacterial blight and blast diseases into an elite Basmati rice variety, ‘Pusa Basmati 159.’ *Euphytica* 2020, 216, 16, doi:10.1007/s10681-019-2549-4.

131. Villegas-Fernández, A.M.; Amarna, A.A.; Moral, J.; Rubiales, D. Crop diversification to control powdery mildew in pea (*Pisum sativum* L.). *Euphytica* 2013, 195, 479–512, doi:10.1007/s10681-012-0486-7.

132. Langner, T.; Kamoun, S.; Belhaj, K. *CRISPR* Crops: Plant genome editing toward disease resistance. *Annu. Rev. Phytopathol.* 2018, 56, 479–512, doi:10.1146/annurev-phyto-080417-050158.
135. Speulman, E.; Metz, P.L.J.; van Arkel, G.; Hekkert, B. te L.; Stiekema, W.J.; Pereira, A. A Two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the *Arabidopsis* genome. *Plant Cell* 1999, 11, 1853–1866, doi:10.1105/tpc.11.10.1853.

136. Colbert, T.; Till, B.J.; Tompa, R.; Reynolds, S.; Steine, M.N.; Yeung, A.T.; McCallum, C.M.; Comai, L.; Henikoff, S. High-throughput screening for induced point mutations. *Plant Physiol.* 2001, 126, 480–484, doi:10.1104/pp.126.2.480.

137. Schenke, D.; Cai, D. Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors. *iScience* 2020, 23, 101478, doi:10.1016/j.isci.2020.101478.

138. Zhang, Y.; Bai, Y.; Wu, G.; Zou, S.; Chen, Y.; Gao, C.; Tang, D. Simultaneous modification of three homoeologs of *TaEDR1* by genome editing enhances powdery mildew resistance in wheat. *Plant J.* 2017, 91, 714–724, doi:10.1111/tpj.13599.

139. Wan, D.-Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.-Q. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (*Vitis vinifera*). *Hortic. Res.* 2020, 7, 116, doi:10.1038/s41438-020-0339-8.

140. Santillán Martínez, M.I.; Bracuto, V.; Koseoglou, E.; Appiano, M.; Jacobsen, E.; Visser, R.G.F.; Wolters, A.-M.A.; Bai, Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene *PMR4* for resistance against powdery mildew. *BMC Plant Biol.* 2020, 20, 284, doi:10.1186/s12870-020-02497-y.

141. Hasley, J.A.R.; Navet, N.; Tian, M. CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene *ObDMR6* enhances downy mildew resistance. *PLoS One* 2021, 16, e0253245, doi:10.1371/journal.pone.0253245.

142. Boller, T.; He, S.Y. Innate Immunity in Plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. *Science (80-.)*. 2009, 324, 742–744, doi:10.1126/science.1171647.

143. Van der Hoorn, R.A.L.; Kamoun, S. From Guard to Decoy: A new model for perception of plant pathogen effectors. *Plant Cell* 2008, 20, 2009–2017, doi:10.1105/tpc.108.060194.

144. Hoeffle, C.; Hückelhoven, R. Enemy at the gates: traffic at the plant cell pathogen interface. *Cell. Microbiol.* 2008, 10, 2400–2407, doi:10.1111/j.1462-5822.2008.01238.x.

145. Mackey, D.; Belkhadir, Y.; Alonso, J.M.; Ecker, J.R.; Dangl, J.L. *Arabidopsis RIN4* is a target of the type III virulence effector *AvrRpt2* and modulates RPS2-Mediated resistance. *Cell* 2003, 112, 379–389, doi:10.1016/S0092-8674(03)0040-0.