Mice cohabiting with familiar conspecific in chronic stress condition exhibit methamphetamine-induced locomotor sensitization and augmented consolation behavior.

Paulo Eduardo Cameiro de Oliveira
Federal University of São Carlos

Isabela Miranda Camona
Federal University of São Carlos

Mariana Casarotto
Federal University of São Carlos

Lara Maria Silveira
Federal University of São Carlos

Anna Cecília Bezerra de Oliveira
Federal University of São Carlos

Azair Canto-de-Souza (✉ souzaalm@ufscar.br)
Federal University of São Carlos

Research Article

Keywords: Emotional Contagion, Cross-sensitization, Methamphetamine, Mice, Restraint Stress, Consolation, Anxiety, Familiarity

Posted Date: December 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1171703/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Recognize and share emotions are essential for species survival, but in some cases, living with a conspecific in distress condition may induce negative emotional states through empathy-like processes. Studies have reported that stressors promote psychiatric disorders in both, who suffers directly and who witness these aversive episodes, principally whether social proximity is involved. However, the mechanisms underlying the harmful outcomes of emotional contagion needs more studies, mainly in the drug addiction-related behaviors. Here, we investigated the relevance of familiarity and the effects of cohabitation with a partner submitted to chronic stress in the anxiety-like, locomotor sensitization and consolation behaviors. Male swiss mice were housed in pairs during different periods to test the establishment of familiarity and the stress-induced anxiety behavior in the elevated plus maze. Another cohort was housed with a conspecific subjected to repeated restraint stress (1h/day) for 14 days. During chronic restraint the allogrooming was measured and after the stress period mice were tested in the open field for evaluation of anxiety and locomotor cross-sensitization induced by methamphetamine. We found that familiarity was established after 14 days of cohabitation and the anxiogenic behavior appeared after 14 days of stress. Repeated restraint stress also increased anxiety in the open field test and induced locomotor cross-sensitization in the stressed mice and their cagemates. Cagemates also exhibited increase in consolation behavior after stress sessions when compared to control mice. These results indicate that changes in drug abuse-related, consolation and affective behaviors may be precipitate through emotional contagion in familiar conspecifics.

1. Introduction

Empathy is the ability to share emotions where the subject takes the perspective of the object, and this phenomenon generates the same affective states (Preston de Waal, 2002; de Waal, 2008). Although this is evolutionarily essential for species survival, this process may be as deleterious as a direct experience to aversive stimuli since it induces similar autonomic and behavioral responses (Benuzzi et al., 2018; Lamm et al., 2011; Panksepp and Lahvis, 2011; de Waal, 2008). Thus, witnessing a conspecific in suffering conditions could drive negative emotional states (Blanchard et al., 2004; Feinstein et al., 2013; Langeland et al., 2004; Pfefferbaum et al., 2000).

Due to its importance, animal models have been developed to understand the neurobiological basis of empathy-like behaviors, such as emotional contagion, consolation, and helping activity (Bartal et al., 2011; Burkett et al., 2016; Karakilic et al., 2018; Knapska et al., 2006; Langford et al., 2006; Mogil, 2015). Studies from our laboratory, for example, observed anxiogenic-like behaviors and anhedonia in mice living with a conspecific subjected to chronic restraint stress (Carneiro de Oliveira et al., 2017) and neuropathic conditions (Baptista-de-Souza et al., 2015; 2021; Carmona et al., 2016; Cezar et al., 2020). In this sense, through emotional contagion, researchers have emphasized that distress-induced psychiatric disorders, such as anxiety and depression, can occur vicariously.

Besides anxiety- and depression-like disorders, drug abuse is a relapsing psychiatric illness frequently associated with stress conditions (Camarini et al., 2018; Koob et al., 2014; Moal, 2016; Piazza et al., 1990) which an important process involved is the cross-sensitization. Therefore, drug effects become successively greater after chronic exposure to stressors. A clinical study conducted by Booij and co-workers (2016) reported cross-sensitization between amphetamine and stress through the observation of enhanced physiological parameters such as anxiety, cortisol, and heart rate. Moreover, chronic exposure to several types of stress, such as restraint (Carneiro de Oliveira et al., 2016; Cruz et al., 2012; Deroche et al., 1992; Doremus-Fitzwater et al., 2010; Kabbaj et al., 2002; Lepsch et al., 2006), footshock (Cheng et al., 2020) and social defeat (Johnston et al., 2015; Nikulina et al., 2004; 2012; Rudolph et al., 2020; Yap et al., 2005), induces behavioral cross-sensitization in rodents. Thus, despite not being deeply explored, psychological stress may cause drug abuse-like behaviors similar to those experienced stress directly. For instance, studies demonstrated increased rewarding effects of cocaine and alcohol in animals that witnessed chronic defeat stress applied to their...
cagemates (Barchiesi et al., 2021; Garcia-Carachure et al., 2020). However, no studies have verified the consequences of vicarious stress in drug-induced locomotor sensitization.

Additionally, it is relevant to highlight the role of familiarity in empathy-related behaviors when the subjects face the object in suffering. Preclinical studies found increased emotional responses in siblings, sexual mates, and cagemates, but not strangers, witnessing the other in a distressful situation (Gonzalez-Liencres et al., 2014; Jeon et al., 2010; Langford et al., 2006; Lidhar et al., 2017; Lu et al., 2018; Martin et al., 2015; Pisanský et al., 2017). For example, in humans, there is a higher prevalence of alcohol/drug abuse in family members and caregivers of patients with long-lasting disturbances compared to age-matched individuals coexisting with healthy individuals (Bayen et al., 2014; Bellis et al., 2001; Gallant and Connell, 1997; Rumpold et al., 2016; Weber et al., 2020). This interpersonal proximity is also required for another empathy-related behavior, the consolation. Consolation is a prosocial behavior in which an uninvolved spectator expends affiliative contact toward a distressed conspecific, aiming for a calming effect (Preston de Waal, 2002; de Waal, 2008). Research has shown increased allogrooming - analogous behavior to consolation in rodents, toward a familiar experience of pain (Du et al., 2020; Li et al., 2018; Lu et al., 2018), social defeat stress (Li et al., 2019), and footshock (Burkett et al., 2016; Kiyokawa et al., 2019; Knapska et al., 2010). However, these studies evaluated allogrooming in cases of acute stress, but not during chronic stress.

For this purpose, in the present study, we investigated the time period necessary for the establishment of familiarity through the exhibition of anxiety-like behavior in the elevated plus maze. We also assessed whether cohabitation with a conspecific subjected to repeated restraint stress may provoke anxiety and locomotor cross-sensitization induced by methamphetamine in the open field test. Finally, we quantified the allogrooming behavior after the stress sessions on three different days to evaluate the influence of chronic stress on consolation-like behaviors.

2. Materials And Methods

2.1. Subjects and ethics

In this study, 455 male, 21-day-old, Swiss mice (18-20 g) obtained from the animal breeding facility of the Federal University of São Carlos, São Paulo, Brazil, were moved to the animal facility of the Psychobiology Group laboratory. After one week of habituation, mice were housed in two per cage [19 cm (width) × 30 cm (length) × 14 cm (height), cage floor covered with sawdust]. Mice were maintained under a regular light-dark cycle (12h/12h, lights on at 07:00) and controlled temperature (24 ± 1°C) with unrestricted access to food and water, except during the brief test periods. The experiments were conducted during the light phase between 09:00 and 17:30. All procedures were performed in accordance with the recommended protocol approved by the Brazilian Guidelines for Care and Use of Animals for Scientific and Educational Purposes, elaborated by The National Council of Control of Animal Testing (CONCEA). This study was approved by the Ethics Committee on Animal Experiments (CEUA 4996150816).

2.2. Drugs

Methamphetamine was dissolved in saline (0.9% NaCl) and injected intraperitoneally at a dose of 1.5 mg/kg for the cross-sensitization experiment. The doses were based on a pilot study.

2.3. Restraint stress

Chronic restraint stress was induced using a PVC tube [14 cm (length) × 3 cm (diameter)]. One of the animals (stress) was placed inside the tube one hour a day in its housing box in the presence of its conspecific (cagemate) in an adjacent room. Animals from the control group were transferred to another adjacent room during the stress period (Carneiro de Oliveira et al., 2017).
2.4. Body weight gain

To assess whether restraint was effective, all subjects were weighted after the first and last stress sessions (15th and 28th day; see Experimental Procedures for details). Weight gain was calculated based on the equation \[(\text{weight on 28th day}) - (\text{weight on 15th day})\] (Carneiro de Oliveira et al., 2017).

2.5. Elevated plus-maze (EPM)

The EPM test assessed anxiety-like behaviors. The EPM used was similar to that described by Lister (1987) and consisted of a wooden maze coated by plastic laminate, raised 38.5 cm from the floor, with four arms arranged in a plus format with two opposite arms closed by transparent glass walls (30 × 5 × 15 cm), connected by a common central platform (5 × 5 cm) with two opposite open arms (30 × 5 × 0.25 cm). All tests were conducted during the light phase of the light-dark cycle, under the illumination of 77 lux on the floor of the apparatus (Carneiro de Oliveira et al., 2017). The animals were placed in the center of the maze, facing an open arm. The number of entries and time spent in each arm were recorded for 5 min. An entry was considered when the animal placed all four paws into an arm. Conventional measures were the percentage of open arm entries (%OE) \[(\text{open/total entries})\times100\] and the percentage of time spent in open arms \[(\text{open/total time})\times100\]. These activities have been used as an index of anxiety behavior (Lister, 1987; Rodgers Johnson, 1995). The number of closed-arm entries (CEs) was used to measure locomotor activity in mice. Complementary behaviors measured were the percentage of the time spent in the central platform \[(\text{central/total time})\times100\], the number of head-dippings (exploratory movement of head/shoulders over sides of the maze), percentage of protected head-dipping \[(\text{protected/total})\times100\], the number of stretch-attend postures (SAP; an exploratory posture in which the mouse stretches forward and retracts to the original position without locomotion), and the percentage of protected SAP \[(\text{protected/total})\times100\]. Behaviors such as head-dipping and SAP were used to measure risk assessment (Rodgers and Johnson, 1995). Depending on where these behaviors were exhibited, they were counted as protected or unprotected. In line with previous studies, the closed arms and central platform were together designated as protected areas of the maze, while the open arms were designated as unprotected areas (Rodgers and Johnson, 1995). Between tests, the apparatus was cleaned with ethanol 20% and dried with a cloth. All sessions were recorded using a vertically mounted camera linked to a computer for the posterior analysis. Test videos were scored by a highly trained observer using the free software package X-PloRat (Tejada et al., 2017).

2.6. Open field test (OFt)

All mice were tested in an open field for five minutes to assess anxiety. The first contact of a rodent with an open arena was used to evaluate the emotional variations induced by a novel environment. In this sense, animals exhibit a behavior called thigmotaxis, or a tendency to stay close to the walls, avoiding unknown open areas (Gould et al., 2009; Treit and Fundytus, 1989). On the test day, all groups were exposed to an opaque plastic arena with a dark floor (41 cm [length] × 34 cm [width] × 16 cm [height]). The apparatus was cleaned with ethanol 20% for each test. The behaviors were recorded using video equipment, and the following parameters were analyzed: number of entries in the center zone (EC), total time spent in the center zone in seconds (TC), percentage of time spent in the center zone (%TC), distance travelled in the center zone in meters (DC), percentage of distance travelled in the center zone (%DC), and total locomotor activity. The exploration of the center zone was used as an index of anxiety-like behavior (Archer, 1973; Gould et al., 2009) and total locomotor activity was used to verify some motor impairment. The behaviors were analyzed using ANY maze software (Stoelting Co., Wood Dale, IL, USA) (Morais-Silva et al., 2016a; Morais-Silva et al., 2016b). Video equipment recorded the behavior in the whole arena and the center zone was post included through the ANY maze software [24,6 cm (length) x 20,4 cm (width)].

2.7. Locomotor sensitization
On the test day, all groups were exposed to an opaque plastic arena with a dark floor [41 cm (length) × 34 cm (width) × 16 cm (height)], which was the same as that used for OFt. The animals were placed in the center of the arena and allowed to move freely for 15 min (900s) for habituation to the open field. The first 5 min of habituation was used to evaluate anxiety-like behaviors, as described above (item 2.7). After OFt, the animals remained in the arena, and the locomotor activity was measured as the habituation period. At the end of the habituation, the mice were removed from the arena, received an intraperitoneal saline injection (100 µL/10 g body weight) and returned to the open field for more than 30 min. After saline, mice were injected with methamphetamine (1.5 mg/kg, i.p.) and the locomotor activity was measured for 60 min (Leão et al., 2013; Whitaker et al., 2016). The habituation, saline, and methamphetamine periods were recorded using video equipment for post analysis. The open field was cleaned with ethanol 20% between each animal. Locomotor activity was measured using the ANY-maze software (Stoelting Co., Wood Dale, IL, USA) (Morais-Silva et al., 2016a; Morais-Silva et al., 2016b).

2.8. Consolation-like behavior

Consolation behavior parameters were latency of allogrooming onset, time spent performing allogrooming, time spent doing self-grooming, and percentage of animals that exhibited allogrooming behavior on each assessed day. Allogrooming consists of rhythmic licks or rubs with paws of another animal body or head. Grooming directed toward the rear (anogenital, genital, or tail) was excluded (Burkett et al., 2016; Du et al., 2020; Li et al., 2019).

2.9. Experimental Design

2.9.1. Influence of familiarity in anxiety-like behaviors of mice tested in the EPM.

In previous studies from our laboratory, we investigated the consequences of living with a conspecific subjected to chronic restraint stress (Carneiro de Oliveira et al., 2017) or chronic neuropathic pain (Baptista-de-Souza et al., 2015; 2021; Carmona et al., 2016; Cezar et al., 2020; Rodrigues Tavares et al., 2021; Zaniboni et al., 2018) for 14 days. In these studies, mice were kept in dyads for 14 days before the beginning of stress sessions or sciatic nerve constriction to establish familiarity, as proposed by Langford and colleagues (2006). In this context, the protocols lasted 28 days in which in the first 14 days, mice developed familiarity, and in the next 14 days, mice were chronically exposed to conspecific distress. Here, we assessed temporal differences in familiarity establishment and stress-induced emotional contagion. As described above (Section 2.3), male mice were subjected to repeated restraint stress in the presence of their cages (n=40) and the control group (n=61) was left undisturbed during the stress session. Thus, we had four study periods: 14 total days, 7 days to establish familiarity and exposure to conspecific stress for 7 days [(14:7-7), control (n=17) and cagemate (n=12)]; 21 total days, 7 days to establish familiarity and exposure to conspecific stress for 14 days [(21:7-14), control (n=17), and cagemate (n=9)]; 21 total days, 14 days to establish familiarity and exposure to conspecific stress for 7 days [(21:14-7), control (n=18) and cagemate (n=9)]; 28 total days, 14 days to establish familiarity and exposure to conspecific stress for 14 days [(28:14-14) control (n=9) and cagemate (n=10)]. Twenty-four hours after the last stress session, control and cagemate groups were tested in the EPM for analysis of anxiety-like behaviors (Figure 1A). The animals were transferred to the experimental room 30 min before the test for acclimatization and then placed in the EPM and allowed to move freely for 5 min (300 s).

2.9.2. Assessment of anxiety-like behaviors in the OFt and evaluation of locomotor cross-sensitization induced by methamphetamine challenge.

At the 1st experiment day (weaning), 128 male mice were housed in pairs for 14 days and left undisturbed until the 14th day, except for cage cleaning. On the 15th day, the animals were divided into two groups: stress, in which one animal of each pair was subjected to restraint stress for 1 h for 14 days; cagemate, an observer that witnessed conspecific
exposure to restraint stress and control, in which no animal of the dyad was exposed to restraint stress. Seven days after the last stress session, the mice were submitted to OFt (Figure 1B). The animals were transferred to the experimental room 30 min before the test for acclimatization and then placed in the center of the arena and allowed to move freely for 5 min (300 s), as described in Section 2.7. All subjects were weighed on the 15th and 28th days for evaluation of body weight gain. Seven days after the last stress session, as described above (item 2.10.3), 128 male mice from all groups [control (n=44); stress (n=42) and cagemate (n=42)] were submitted to locomotor sensitization test (Figure 1C). The habituation to the apparatus started immediately after the OFt and lasted 10 min (600 s). After the habituation period, mice were injected with saline (100 µL/10 g body weight), and their locomotor activity was measured for more than 30 min. Lastly, the animals were administered methamphetamine (1.5 mg/kg, i.p.) and the distance travelled was estimated for 60 min (3,600 s). After data analysis, the groups were divided (n_{total}/3 for each condition group) in high-, mid-, and low-response groups considering the distance travelled during the methamphetamine period, generating nine different groups [high response: control (n=15), stress (n=14), and cagemate (n=14); mid-response: control (n=14), stress (n=14), cagemate (n=14); low response: control (n=15), stress (n=14), cagemate (n=14)].

2.9.3. Assessment of consolation-like behaviors.

Consolation-like behavior was assessed on the 15th, 21st, and 28th days after the stress sessions. At the end of the stress session, mice were returned to the home cage and consolation behaviors from the control (n=20) and cagemate (n=21) groups were recorded for 15 min for posterior analysis (Figure 1B). The animals for evaluation of the interaction after the stress sessions were randomly chosen to reduce the amount of the video analyzed.

FIGURE 1 ABOUT HERE

2.10. Statistical analysis

All data were initially evaluated for homogeneity of variance (Levene's test). To determine the influence of familiarity and number of stress sessions, data were analyzed using Student's t-test for independent samples. Data from body weight gain, OFt, and locomotor cross-sensitization were analyzed using one-way analysis of variance (ANOVA) considering stress factors (with or without stress). For difference of prevalence of subjects that displayed allogrooming behavior in each day of measurement considering the control and cagemate groups we used Fisher's exact test. Consolation-like behavior data were subjected to a two-way ANOVA considering stress and day factors. When ANOVA analyses were statistically significant, Newman-Keuls post hoc test was applied for comparisons among the groups. Results of statistical tests with p-values less than 0.05 were considered significant.

3. Results

3.1. Emotional contagion-induced anxiety behavior is seen only after 14 days of familiarity and 14 days of repeated stress.

Student's t-test revealed differences in the percentage of open arm entries [t_{(17)}= 3.51; p<0.05] and time spent in open arms [t_{(17)}= 2.09; p=0.052] only in the 28:14-14 protocol period (Table 1), demonstrating an anxiogenic-like effect induced by 14 days of familiarity, followed by 14 days of witnessing the restraint stress. Regarding the complementary behaviors, 14:7-7 diminished the frequency of total SAP [t_{(27)}= 9.19; p<0.05] and augmented the percentage of protected SAP [t_{(27)}= -2.75; p<0.05] and total head-dipping [t_{(27)}= -2.94; p<0.05] in the cagemate group (Table 1). Protocol periods of 21 days, 21:7-14 [t_{(24)}= -2.39; p<0.05] and 21:14-7 [t_{(25)}= -2.45; p<0.05], only increased the percentage of protected head-dipping in the cagemate group (Table 1). The protocol period of 28 days (28:14-14) induced an increase in the percentage of time in the center of the EPM [t_{(17)}= -2.45; p<0.05], percentage of protected SAP [t_{(17)}= -3.68; p<0.05], and
percentage of protected head-dipping $[t_{(17)} = -4.14; p<0.05]$ of cagemate compared to the respective control group (Table 1). Taken together, these data show that despite the protocol periods with 14 and 21 total days promoted changes in EPM parameters assessed, anxiogenic-like behaviors were observed only after 14 days to establish familiarity, followed by 14 days of exposure to vicariously restrained stress sessions.

TABLE 1 ABOUT HERE

3.2. Chronic stress promotes anxiogenic-like behavior in cagemate and stress groups, but provoked lower weight gain only in restrained mice.

Table 2 shows the weight gain measurements in the control (n=44), cagemate (n=42), and stress (n=42) groups during 14 days of restraint stress. Statistical analysis indicated diminished body weight gain in the stress group compared to the control and cagemate groups $[F_{(2,127)} = 80.91; p<0.05]$.

TABLE 2 ABOUT HERE

Figure 2 and Table 3 present anxiety-like behavior of control (n=44), cagemate (n=42), and stress (n=42) groups tested in open field 7 days after the last restraint stress session. One-way ANOVA followed by Newman–Keuls post hoc test revealed that cagemate and stress groups demonstrated a lower percentage of distance travelled (%DC) $[F_{(2,127)} = 6.06; p<0.05]$ and percentage of time spent (%TC) $[F_{(2,127)} = 3.89; p<0.05]$ in the center of the open field arena, but not the total distance travelled $[F_{(2,127)} = 0.85; p=0.43]$ during the test compared to control. There is a difference in the absolute time spent (TC) $[F_{(2,127)} = 3.97; p<0.05]$, but not in absolute distance travelled (DC) $[F_{(2,127)} = 1.54; p=0.22]$ and number of entries (EC) $[F_{(2,127)} = 1.91; p=0.15]$ in the center of the apparatus (Table 3).

FIGURE 2 ABOUT HERE

TABLE 3 ABOUT HERE

3.3. Repeated restraint induces locomotor cross-sensitization after systemic methamphetamine administration in cagemate and stress groups.

Figure 3 summarizes the locomotor activity of control, cagemate, and stress groups of high-, mid-, and low-responsive mice after administration of methamphetamine. One-way ANOVA followed by Newman–Keuls post hoc test showed that the cagemate and stress groups of high- $[F_{(2,40)} = 3.78; p<0.05$, figure 3A] and mid- $[F_{(2,39)} = 17.54; p<0.05$, Figure 3C], but not low-responsive $[F_{(2,40)} = 0.85; p=0.43$, Figure 3E] mice exhibited higher distance travelled during 60 min of locomotor cross-sensitization test compared to the respective control groups.

FIGURE 3 ABOUT HERE

Figures 3B, 3D, and 3F depict locomotor activity of all mice in 5-min blocks during habituation and after systemic administration of saline and methamphetamine. Planned comparisons indicated differences in some 5-min blocks for high responsive mice [55: cagemate vs. control (p<0.05); 60: cagemate vs. control (p<0.05); 65: stress and cagemate vs. control (p<0.05); 70: stress and cagemate vs. control (p<0.05); 75: cagemate vs. control (p<0.05) and stress vs. control (p=0.081); 80: stress vs. control (p<0.05); 90: stress vs. control (p<0.05) and cagemate vs. control (p=0.054)], for mid-responsive mice [65: stress and cagemate vs. control (p<0.05); 70: stress and cagemate vs. control (p<0.05); 75: stress and cagemate vs. control (p<0.05); 80: stress and cagemate vs. control (p<0.05); 85: stress and cagemate vs. control (p<0.05); 90: stress and cagemate vs. control (p<0.05); 95: stress and cagemate vs. control (p<0.05); 100: stress and cagemate vs. control (p<0.05)].
but not for low-responsive mice. One-way ANOVA for all 5-min blocks including habituation, saline, and methamphetamine periods may be seen on Table 4.

TABLE 4 ABOUT HERE

3.4. Augmented self-grooming and consolation-like behavior from cagemate toward stressed mice.

Figure 4 depicts the consolation-like behavior evaluated through the percentage of subjects which exhibited allogrooming behavior (Figure 4A), latency of first allogrooming episode (Figure 4B) and time spent doing allogrooming (Figure 4C) from control and cagemate groups toward their conspecifics in each evaluated day. Statistical analysis of the sample proportion revealed differences in the percentage of subjects displaying allogrooming between control and cagemate groups in the 15th and 28th days. In the first and last stress days (15th and 28th days) the prevalence of animals showing allogrooming is greater in the cagemate cagemate group (p<0.05). In the control group the prevalence of allogrooming was 25% (n=5) in the 15th and 20% (n=4) in the 28th day, while this prevalence among stressed animals was 66.7% (n=14) in the 15th and 57.1% (n=12) in the 28th day. In the 21st day the proportion of mice exhibiting allogrooming behavior was 25% (n=5) in the control group vs. 52.4% (n=11) in the cagemate group (p=0.11). A two-way ANOVA indicated a significant effect of stress [F(1,45)=5.98; p<0.05], but not the day factor [F(2,45)=1.28; p=0.29]. There was no influence of the interaction between the factors [F(2,45)=0.99; p=0.38] at the time of allogrooming. For the latency to start allogrooming, statistical analysis showed the influence of stress [F(1,45)=33.76; p<0.05], but not the day factor [F(2,45)=0.06; p=0.94]. There was no effect of interaction between the factors [F(2,45)=1.02; p=0.37] in the latency of the beginning of the consolation-like behavior. Newman–Keuls post hoc test revealed that the cagemate group started allogrooming toward stressed conspecifics in less time than the control in all days assessed (p<0.05). Together, these data suggest that cohabitation with a partner subjected to chronic stress induces increased consolation-like behavior, as seen as augmented time spent in allogrooming and diminished latency to begin this behavior.

FIGURE 4 ABOUT HERE

Table 5 shows time spent in self-grooming of control (n=20) and cagemate (n=21) groups measured on the 15th, 21st, and 28th days in the end of restraint stress sessions. Two-way ANOVA indicated influence of stress [F(1,117)=23.63; p<0.05] and day factors [F(2,117)=4.41; p<0.05]. Statistical analysis also revealed a strong trend in the interaction between stress and day factors [F(2,117)=2.94; p=0.057] on self-grooming behavior. Newman–Keuls post hoc test demonstrated that cagemate spent more time doing self-grooming behavior than the control group on the 15th day (p<0.05), almost on the 21st day (p=0.058), but not on the 28th day (p=0.49). Inside the cagemate group, self-grooming behavior on the 15th day is higher than the 21st and 28th days evaluated (p<0.05). Cagemate group spent more in self-grooming behavior on the 15th day than any day from the control group (p<0.05), on the 21st day compared to the 28th day (p<0.05), and almost to 15th day from the control group (p=0.064).

TABLE 5 ABOUT HERE

4. Discussion

In the present study, we observed that restraint stress for 14 days added to 14 days to establish familiarity is necessary for the development of anxiogenic-like behaviors displayed by cagemates. Furthermore, we found that witnessing a conspecific subjected to chronic restraint stress for 14 days induced anxiety-like behavior in the open field test and promoted locomotor cross-sensitization to methamphetamine in high- and mid-responsive mice. Lastly, we demonstrated that cagemates exhibited higher consolation behavior after stress sessions than the control group.
In the current study, we found that the anxiogenic effects exhibited by cagemates depend on the degree of familiarity, since emotional contagion was observed after cohabitation for 14 days. Langford et al. (2006) have already shown the importance of familiar bounds in the sensitivity of visceral pain. Specifically, they demonstrated that siblings displayed enhanced abdominal writhes compared to strangers when subjected to intraperitoneal acetic acid administration. This empathy-related behavior was observed only after at least 14 days of living together (Langford et al., 2006). Following the findings of the Langford group, several studies replicated the influence of familiarity on the social modulation of abdominal pain (Lu et al., 2018; Martin et al., 2015). In another context, subjects observing siblings, sexual mates, or same-sex cagemates receiving footshocks froze more than the group witnessing strangers in suffering (Gonzalez-Liencres et al., 2014; Jeon et al., 2010). Moreover, rodents may develop fear conditioning through the observation of conspecifics that undergo tone-paired footshock, an approach known as observational fear learning. In this case, siblings displayed more freezing than strangers after tone presentation (Lidhar et al., 2017; Pisansky et al., 2017).

Interestingly, empathy-related behaviors are not exclusively for familiar individuals, since empathy may be increased by the previous distress experience of the observer (Luo et al., 2020). As proposed by Preston and de Waal (2002), the behaviors of the subject (observer) are automatically and unconsciously driven by the same neural substrates activated in the object (demonstrator), inducing the representation of the resembling emotional states. The more similar and socially bounded greater is the identification of the subject with the object, which augments the matching of the behavioral and autonomic responses (de Waal, 2008).

Confirming previous results from our group, we found that living with conspecifics subjected to repeated restraint stress increases anxiety-like behavior in cagemates, as well as directly stressed mice, tested in the open field (Carneiro de Oliveira, 2017). Moreover, our previous findings also reported emotional contagion in mice provoked by neuropathic pain. In these studies, cohabitation with a mouse subjected to chronic pain diminished the exploration of open arms in the EPM (Baptista-de-Souza et al., 2015; Carmona et al., 2016; Cezar et al., 2020) and causes hypersensitivity to visceral pain (Baptista-de-Souza et al., 2015; 2021; Rodrigues Tavares et al., 2021; Zaniboni et al., 2018). Taken together, our data corroborate studies from literature showing emotional contagion through approaches that the cagemate witnesses or shares aversive stimuli.

For instance, studies have reported that mice or rats observing traumatic events, in this case, conspecifics subjected to repeated social defeat, elicited enhanced avoidance of open arms (Kochi et al., 2017; Sial et al. 2016), affecting (Patki et al., 2014; 2015), or not (Warren et al., 2013), the general locomotor activity in the open field. Additionally, Miao et al. (2018) found decreased exploratory activity of spectator pregnant mice in the open arms after successive exposure to mate social defeat. Conversely, Li et al. (2020) showed that mandarin voles witnessing partners subjected to chronic social defeat did not display changes in time spent in the central area and the total distance travelled by the open field.

Regarding empathy for pain, a body of evidence, including data from our group, has shown the effects of emotional contagion of pain-promoting alterations in anxiety-like behaviors of cagemates. Using a model of chronic neuropathic pain, researchers from our laboratory demonstrated anxiogenic-related behaviors in mouse cages tested in EPM and open fields (Baptista-de-Souza et al., 2015; Carmona et al., 2016; Cezar et al., 2020). In approaches where cagemates live with conspecifics in other kinds of pain conditions, such as melanoma-bearer mice (Tomiyoshi et al., 2009), formalin-induced paw inflammation (Mohammadi et al., 2018; Nazeri et al., 2019; Parent et al., 2012) and neuropathy (Wallace et al., 2008), augmented anxiety through tests conducted in EPM and open field models was also observed. These results reinforce the idea of observational contagion in rodents through the ability to recognize the negative emotional state of a conspecific.

Chronic restraint stress increased the acute psychomotor effects of methamphetamine in both stress and control groups. Several studies have shown cross-sensitization between repeated restraint stress and psychostimulants such as cocaine (Lepsch et al., 2006) andamphetamine (Carneiro de Oliveira et al., 2016; Cruz et al., 2012; Deroche et al.,
1992; Doremus-Fitzwater et al., 2010; Kabbaj et al., 2002). However, no previous studies have investigated the vicarious consequences of restraint in psychostimulant-induced locomotor behavior. Interestingly, Garcia-Carachure et al. (2020) assessed the influence of witnessing chronic social defeat stress in cocaine-conditioned place preference and observed a higher preference for cocaine-paired place in vicarious-stressed group when compared to non-stressed controls. Thus, these findings indicate that vicarious stress as direct exposure to harmful situations may modify drug effects and induce seeking behaviors.

We also found a higher consolation behavior from cagemates toward their stressed partners than the control group. We evaluated the latency for the beginning of allogrooming and the time spent in allogrooming on the 1st, 7th, and 14th days of stress sessions. Our findings demonstrated that the cagemate group reduced the latency to start allogrooming and enhanced the duration of this consolation-like behavior. Previous studies have reported that the interaction with a cagemate in a distress situation enhances the consolation behavior (Burkett et al., 2016; Du et al., 2020; Kiyokawa et al., 2019; Knapska et al., 2010; Li et al., 2018, 2019; Lu et al., 2018). In these studies, the results demonstrated enhanced allogrooming from observers toward their mate demonstrators subjected to social defeat stress procedure (Li et al., 2019) or footshock (Burkett et al., 2016; Kiyokawa et al., 2019; Knapska et al., 2010). Furthermore, studies have shown that observers diminish the latency to start and enhance allogrooming toward demonstrators in pain situations (Du et al., 2020; Li et al., 2018; Lu et al., 2018). Taken together, these findings highlight the concern of observers with conspecific distress conditions.

Previous studies assessing the behavioral mechanisms of consolation usually evaluated the influence of acute aversive stimuli on allogrooming. Thus, our data investigating the consolation-like behavior over the stress period has no precedent in the literature. Note that the consolation was inefficient in preventing the development of anxiety-like behavior and locomotor sensitization, corroborating the findings of Li et al. (2019). This process, also known as social buffering in some cases, can prevent or reverse the expression of anxiety-like behavior induced by aversive stimuli (Burkett et al., 2016; Kiyokawa et al., 2019). Therefore, due to its relevance, continued research focused on the consequences and motivations of consolation behavior is needed.

Surprisingly, although statistical analysis did not indicate differences among the days of measurements visually, we may see a tendency to decrease the time in consolation as well as increase the latency through the subsequent days. The data obtained from self-grooming show that the time engaged in this behavior declines over time. It is well-established that self-grooming, in some situations, may denote augmented stress conditions (Fernández-Teruel and Estanislau, 2016; Kalueff et al., 2016; Song et al., 2016) inciting us to suggest a habituation to repeated stress sessions by cagemates. Thus, based on self-grooming results, we could extrapolate this behavior adaptation to allogrooming, indicating a coping process exhibited by cagemates without affecting anxiogenesis. Although plausible, this hypothesis needs to be confirmed through further investigations.

In conclusion, we observed the presence of emotional contagion in familiar mice through increased anxiety behavior in both stress and cagemate groups. It is important to highlight that cohabitation with a partner in a harmful situation should not be analyzed as a simple psychological stress, but needs to be viewed as a complex process that demands perception of the aversive condition, identification of negative emotional state from another, and engagement in relieving conspecific distress. The consolation behavior reveals an emotional arousal that motivates the cagemate to display prosocial behavior. Therefore, our findings demonstrate that empathy-based concerns directed to a familiar conspecific in distress conditions may provoke psychological disturbances and augmented drug seeking.

Declarations

Acknowledgments
The experiments described in this manuscript were funded by CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technical Development) and FAPESP (17/25409–0), Brazil. P.E. Carneiro de Oliveira received PNPD/CAPES scholarship; I.M. Carmona was recipient of CAPES research scholarship; A.C.B Oliveira received CNPq scholarship; A. Canto-de-Souza was recipient of CNPq research fellowships (309201/2015–2). The authors would like to thank Dr. Fábio Cardoso Cruz and Dr. Marcelo Tadeu Marin for chemicals and material support.

Author Contributions

P.E. Carneiro de Oliveira: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, Project administration, Writing – original draft preparation, Writing – review & editing. I.M. Carmona: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, Project administration, Writing – original draft preparation, Writing – review & editing. M. Casarotto: Data curation, Formal analysis, Investigation, Project administration, Writing – review & editing. L.M. Silveira: Data curation, Formal Investigation, Writing – review & editing. A.C.B Oliveira: Data curation, Formal Investigation, Writing – review & editing. A. Canto-de-Souza: Conceptualization, Funding acquisition, Project administration, Writing – review & editing, Supervision. All authors approved the final version to be published.

Conflict of interest statement

The authors have no conflicts of interest to declare.

References

1. Archer, J. Tests for emotionality in rats and mice: a review. (1973). Anim. Behav. 21, 205–235. https://doi.org/10.1016/s0003-3472(73)80065-x.

2. Baptista-de-Souza, D., Nunciato, A.C., Fachini, G., Pereira, B.C., Zaniboni, C.R., Canto-de-Souza, A. (2015). Anxiogenic-like effects and hypernociception on cagemate induced by cohabitated with mice under neuropathic pain, Behav. Pharmacol. 26, 664–672.

3. Baptista-de-Souza, D., Rodrigues Tavares, L.R., Canto-de-Souza, L., Nunes-de-Souza, R.L., Canto-de-Souza, A. (2021). Behavioral, hormonal, and neural alterations induced by social contagion for pain in mice. Neuropharmacology. 203, 108878. https://doi.org/10.1016/j.neuropharm.2021.108878.

4. Barchiesi, R., Chanthongdee, K., Domi, E., Gobbo, F., Coppola, A., Asratian, A., Toivainen, S., Holm, L., Augier, G., Xu, L., Augier, E., Heilig, M., Barbier, E. (2021). Stress-induced escalation of alcohol self-administration, anxiety-like behavior, and elevated amygdala Avp expression in a susceptible subpopulation of rats. Addict. Biol. 26, e13009. https://doi.org/10.1111/adb.13009.

5. Bartal, I. B-A., Decety, J., Mason, P. (2011). Empathy and pro-social behavior in rats.

6. Science. 334, 1427-1430. https://doi.org/10.1126/science.1210789.

7. Bayen E., Jourdan, C., Ghout, I., Darnoux, E., Azerad, S., Vallat-Azouvi, C., Weiss, J.J., Aegerter, P., Pradat-Diehl, P., Joël, M.E., Azouvi, P. (2016). Objective and Subjective Burden of Informal Caregivers 4 Years After a Severe Traumatic Brain Injury: Results From the PariS-TBI Study. J. Head Trauma Rehabil. 31, 59–67. https://doi.org/10.1097/HTR.0000000000000079.

8. Benuzzi, F., Lui, F., Ardizzi, M., Ambrosecchia, M., Ballotta, D., Righi, S., Pagnoni, G., Gallese, V., Porro, C.A. (2018). Pain mirrors: neural correlates of observing self or others’ facial expressions of pain. Front. Psychol. 9,1825.
9. Blanchard, E.B., Kuhn, E., Rowell, D.L., Hickling, E.J., Wittrock, D., Rogers, R.L., Johnson, M.R., Steckler, D.C. (2004). Studies of the vicarious traumatization of college students by the September 11th attacks: effects of proximity, exposure and connectedness. Behav. Res. Ther. 42, 191–205. https://doi.org/10.1016/S0005-7967(03)00118-9.

10. Booij, L., Welfeld, K., Leyton, M., Daghet, A., Boileau, I., Siblon, I., Baker, G.B., Diksic, M., Soucy, J-P., Puressner, J.C., Cawley-Fiset, E., Casey, K.F., Benkelfat, C. (2016). Dopamine cross-sensitization between psychostimulant drugs and stress in healthy male volunteers. Transl. Psychiatry. 6, e740. https://doi.org/10.1038/tp.2016.6.

11. Burkett, J.P., Andari, E., Johnson, Z. V., Curry, D.C., de Waal, F.B.M., Young, L.J. (2016). Oxytocin-dependent consolation behavior in rodents. Science. 351, 375–378. https://doi.org/10.1126/science.aac4785.

12. Camarini, R., Marianno, P., Era, M. (2018). Social factors in ethanol sensitization.

13. Int. Ver. Neurobiol. 140, 53-80. https://doi.org/10.1016/bs.im.2018.07.003.

14. Carmona, I.M., Baptista-de-Souza, D., Canto-de-Souza, A. (2016). Anxiogenic-like behaviors induced by living with a conspecific in neuropathic pain condition are attenuated by systemic injection of midazolam in mice. Pain 17.4, S58-S59.

15. Camerio de Oliveira, P.E., Leão, R.M., Bianchi, PC., Marin, M.T., Planeta, C.S., Cruz, F.C. (2016). Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of deltaFosB in the nucleus accumbens. Front. Behav. Neurosci. 10, 173. https://doi.org/10.3389/fnbeh.2016.00173.

16. Camerio de Oliveira, P.E., Zaniboni, C.R., Carmona, I.M., Fonseca, A.R., Canto-de-Souza, A. (2017). Preliminary behavioral assessment of cagemates living with conspecifics submitted to chronic restraint stress in mice. Neurosci. Lett. 657, 204–210. https://doi.org/10.1016/j.neulet.2017.07.008

17. Cezar, B.G., Carmona, I.M., Baptista-de-Souza, D., Nunes-de-Souza, R.L., Canto-de-Souza, A. (2020). Differential modulation of the anterior cingulate and insular cortices on anxiogenic-like responses induced by empathy for pain. Neuropsychopharmacol. 108413. https://doi.org/10.1016/j.neuropharm.2020.108413

18. Cheng, C-N., Huang, A.C.W., Wu, S-J. (2020). Roles of nucleus accumbens shell and core in footshock-induced stress altering behavioral sensitization by methamphetamine in acquisition and testing. Behav. Brain Res. 380, 112434. https://doi.org/10.1016/j.bbr.2019.112434.

19. Cruz, F.C., Marin, M.T., Leão, R.M., Planeta, C.S. (2012). Stress-induced cross-sensitization to amphetamine is related to changes in the dopaminergic system. J. Neural Transm. (Vienna). 119, 415–424. https://doi.org/10.1007/s00702-011-0720-8.

20. De Bellis, M.D., Broussard, E.R., Herring, D.J., Wexler, S., Moritz, G., Benitez, J.G. (2001). Psychiatric co-morbidity in caregivers and children involved in maltreatment: a pilot research study with policy implications. Child Abuse Negl. 25, 923–944. https://doi.org/10.1016/s0145-2134(01)00247-2.

21. Deroche, V, Piazza, P.V., Casolini, P., Maccari, S., Le Moal, M., Simon, H. (1992). Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion. Brain Res. 598, 343–348. https://doi.org/10.1016/0006-8993(92)90205-n.

22. de Waal, F.B.M. (2008). Putting the altruism back into altruism: the evolution of empathy. Annu. Rev. Psychol. 59, 279–300.

23. Doremus-Fitzwater, T.L., Spear, L.P. (2010). Age-related differences in amphetamine sensitization: effects of prior drug or stress history on stimulant sensitization in juvenile and adult rats. Pharmacol. Biochem. Behav. 96, 198–205. https://doi.org/10.1016/j.pbb.2010.05.005.

24. Du, R., Luo, W-J., Geng, K-W, Li, C-L., Yu, Y., Wei, N., Chen, J. (2020). Empathic contagious pain and consolation in laboratory rodents: species and sex comparisons. Neurosci. Bull. 36, 649–653. https://doi.org/10.1007/s12264-
020-00465-y.

25. Feinstein, A., Audet, B., Waknine, E. (2014). Witnessing images of extreme violence: a psychological study of journalists in the newsroom. JRSM Open. 5, 2054270414533323. https://doi.org/10.1177/2054270414533323.

26. Fernández-Teruel, A., Estanislau, C. (2016). Meanings of self-grooming depend on an inverted U-shaped function with aversiveness. Nat. Rev. Neurosci. 17, 591. https://doi.org/10.1038/nrn.2016.102.

27. Gallant, M.P., Connell, C.M. (1997). Predictors of decreased self-care among spouse caregivers of older adults with dementing illnesses. J. Aging Health. 9, 373–395. https://doi.org/10.1177/0898264397090306.

28. García-Carachure, I., Flores-Ramirez, F.J., Castillo, S.A., Themann, A., Arenivar, M.A., Preciado-Piña, J., Zavala, A.R., Lobo, M.K., Iñiguez, S.D. (2020). Enduring effects of adolescent ketamine exposure on cocaine- and sucrose-induced reward in male and female C57BL/6 mice. Neuropsychopharmacology. 45, 1536–1544. https://doi.org/10.1038/s41386-020-0654-7.

29. González-Liencres, C., Juclck, G., Tas, C., Friebé, A., Brüne, M. (2014). Emotional contagion in mice: the role of familiarity. Behav. Brain Res. 263, 16–21. https://doi.org/10.1016/j.bbr.2014.01.020.

30. Gould, T.D., Dao, D.T., Kovacsics, C.E. (2009). "The open field test", in Mood and anxiety related phenotypes in mice, Neuromethods, ed. T. D. Gould (Humana Press) 1-20. https://doi.org/10.1007/978-1-60761-303-9_1.

31. Jeon D., Kim S., Chetana M., Jo D., Ruley H.E., Lin S-Y., Rabah D., Kinet J-P., Shin H-S., (2010). Observational fear learning involves affective pain system and Ca	extsubscript{v}1.2 Ca	extsuperscript{2+} channels in ACC. Nat. Neurosci. 13, 482–488. https://doi.org/10.1038/nn.2504.

32. Johnston, C.E., Herschel, D.J., Lasek, A.W., Hammer Jr, R.P., Nikulina, E.M. (2015). Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor. Neuropharmacology. 89, 325–334. https://doi.org/10.1016/j.neuropharm.2014.10.010.

33. Kabbaj M, Isgor C, Watson SJ, Akil H.Stress during adolescence alters behavioral sensitization to amphetamine. Neuroscience. 2002;113(2):395–400. doi: 10.1016/s0306-4522(02)00188-4.

34. Kaluweff, A.V., Stewart, A.M., Song, C., Berridge, K.C., Graybiel, A.M., Fentress, J.C. (2016). Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 17, 45–59. https://doi.org/10.1038/nrn.2015.

35. Karakilic, A., Kizildag, S., Kandis, S., Guvendi, G., Koc, B., Camsari, G.B., Camsari, U.M., Ates, M., Arda, S.G., Uysal, N. (2018). The effects of acute foot shock stress on empathy levels in rats. Behav. Brain Res. 349, 31–36. https://doi.org/10.1016/j.bbr.2018.04.043.

36. Kiyokawa, Y., Li, Y., Takeuchi, Y. (2019). A dyad shows mutual changes during social buffering of conditioned fear responses in male rats. Behav. Brain Res. 366, 45–55. https://doi.org/10.1016/j.bbr.2019.03.024.

37. Knapska, E., Mikosz, M., Werka, T., Maren, S. (2010). Social modulation of learning in rats. Learn. Mem. 17, 35–42. https://doi.org/10.1101/lm.1670910.

38. Knapska, E., Nikolaev, E., Boguszewski, P, Walasek, G., Blaszczyk, J., Kaczmarek, L., Werka, T. (2006). Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc. Natl. Acad. Sci. USA. 103, 3858-3862. https://doi.org/10.1073/pnas.0511302103.

39. Kochi, C., Liu, H., Zaidi, S., Atrooz, F., Dantoin, P., Salim, S. (2017). Prior treadmill exercise promotes resilience to vicarious trauma in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry. 77, 216–221. https://doi.org/10.1016/j.pnpbp.2017.04.018.

40. Koob, G.F., Buck, C.L., Cohen, A., Edwards, S., Park, P.E., Schlosburg, J.E., Schmeichel, B., Vendruscolo, L.F., Wade, C.L., Whitfield, T.W. Jr., George, O. (2014). Addiction as a stress surfeit disorder. Neuropharmacology. 76, 370–382. https://doi.org/10.1016/j.neuropharm.2013.05.024.
41. Lamm, C., Decety, J., Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage. 54, 2492–2502. https://doi.org/10.1016/j.neuroimage.2010.10.014.

42. Langeland, W., Draijer, N., van den Brink, W. (2004). Psychiatric comorbidity in treatment-seeking alcoholics: the role of childhood trauma and perceived parental dysfunction. Alcohol. Clin. Exp. Res. 28, 441–447. https://doi.org/10.1097/01.alc.0000117831.17383.72.

43. Langford, D.J., Crager, S.E., Shehzad, Z., Smith, S.B., Sotocinal, S.G., Levenstadt, J.S., Chanda, M.L., Levitin, D.J., Mogil, J.S. (2006). Social modulation of pain as evidence for empathy in mice. Science. 312, 1967-1970.

44. Leão, R.M., Cruz, F.C., Carneiro-de-Oliveira, PE., Rossetto, D.B., Valentini, S.R., Zanelli, C.F., Planeta, C.S. (2013). Enhanced nicotine-seeking behavior following pre-exposure to repeated cocaine is accompanied by changes in BDNF in the nucleus accumbens of rats. Pharmacol. Biochem. Behav. 104, 169–176. https://doi.org/10.1016/j.pbb.2013.01.007.

45. Lepsch, L.B., Gonzalo, L.A., Magro, F.J., Delucia, R., Scavone, C., Planeta, C.S. (2005). Exposure to chronic stress increases the locomotor response to cocaine and the basal levels of corticosterone in adolescent rats. Addict. Biol. 10, 251–256. https://doi.org/10.1080/13556210500269366.

46. Li, C-L., Yu, Y., He, T., Wang, R-R., Geng, K-W., Du, R., Luo, W-J., Wei, N., Wang, X-L., Wang, Y., Yang, Y., Yu, Y-Q., Chen, J. (2018). Validating rat model of empathy for pain: effects of pain expressions in social partners. Front. Behav. Neurosci. 12, 242. https://doi.org/10.3389/fnbeh.2018.00242.

47. Lu, Y-F., Ren, B., Ling, B-F., Zhang, J., Xu, C., Li, Z. (2018). Social interaction with a cagemate in pain increases allogrooming and induces pain hypersensitivity in the observer rats. Neurosci. Lett. 662, 385–388. https://doi.org/10.1016/j.neulet.2017.10.063.

48. Martin, L.J., Hathaway, G., Isbester, K., Mirali, S., Acland, E.L., Niederstrasser, N., Slepian, P.M., Trost, Z., Bartz, J.A., Sapolsky, R.M., Sternberg, W.F., Levitin, D.J., Mogil, J.S. (2015). Reducing social stress elicits emotional contagion of pain in mouse and human strangers. Curr. Biol. 25, 326–332. https://doi.org/10.1016/j.cub.2014.11.028.

49. Miao, Z., Mao, F., Liang, J., Szyf, M., Wang, Y., Sun, Z.S. (2018). Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Mol. Neurobiol. 55, 1097–1111. https://doi.org/10.1007/s12035-016-0378-1.

50. Moal, M.L. (2016). Individual vulnerabilities relative for potential pathological conditions. Brain Res. 1645, 65–67. https://doi.org/10.1016/j.brainres.2015.12.037.

51. Mogil, J.S. (2015). Social modulation of and by pain in humans and rodents. Pain. 156, S35-S41. https://doi.org/10.1097/j.pain.0000460341.62094.77.
56. Mohammadi, F., Ahmadi-Zeidabadi, M., Nazeri, M., Ghasemi, A., Shabani, M. (2019). Nitric oxide modulates cognitive, nociceptive and motor functions in a rat model of empathy. Int. J. Neurosci. https://doi.org/10.1080/00207454.2019.1707823.

57. Morais-Silva, G., Alves, G.C., Marin, M.T. (2016a). N-acetylcysteine treatment blocks the development of ethanol induced behavioural sensitization and related deltaFosB alterations. Neuropharmacology. 110, 135–142. https://doi.org/10.1016/j.neuropharm.2016.07.009.

58. Morais-Silva, G., Ferreira-Santos, M., Marin, M.T. (2016b). Conessine, an H3 receptor antagonist, alters behavioral and neurochemical effects of ethanol in mice. Behav. Brain Res. 305, 100–107. https://doi.org/10.1016/j.bbr.2016.02.025.

59. Nazeri, M., Nezhadi, A., Shabani, M. (2019). Role of opioid system in empathy-like behaviours in rats. Addict Health. 11, 216–222. https://doi.org/10.22122/ahj.v11i4.243.

60. Nikulina, E.M., Covington 3rd, H.E., Ganschow, L., Hammer Jr, R.P., Miczek, K.A. (2004). Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience. 123, 857–865. https://doi.org/10.1016/j.neuroscience.2003.10.029.

61. Nikulina, E.M., Lacagnina, M.J., Fanous, S., Wang, J., Hammer Jr, R.P. (2012). Intermittent social defeat stress enhances mesocorticolimbic ΔFosB/BDNF co-expression and persistently activates corticotegmental neurons: implication for vulnerability to psychostimulants. Neuroscience. 212, 38–48. https://doi.org/10.1016/j.neuroscience.2012.04.012.

62. Panksepp, J.B., Lahvis, G.P. (2011). Rodent empathy and affective neuroscience. Neurosci. Biobehav. Rev. 35, 1864–1875. https://doi.org/10.1016/j.neubiorev.2011.05.013.

63. Parent, A.J., Beaudet, N., Beaudry, H., Bergeron, J., Bérubé, P., Drolet, G., Sarret, P., Gendron, L. (2012). Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behav. Brain Res. 229, 160–167. https://doi.org/10.1016/j.bbr.2012.01.001.

64. Patki, G., Salvi, A., Liu, H., Salim, S. (2015). Witnessing traumatic events causes severe behavioral impairments in rats. Int. J. Neuropsychopharmacol. 17, 2017–2029. https://doi.org/10.1017/S1461145714000923.

65. Patki, G., Solanki, N., Salim, S. (2014). Witnessing traumatic events causes severe behavioral impairments in rats. Int. J. Neuropsychopharmacol. 17, 2017–2029. https://doi.org/10.1017/S1461145714000923.

66. Piazza, P.V., Deminiere, J.M., Le Moal, M., Simon, H. (1990). Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res. 514, 22–26. https://doi.org/10.1016/0006-8993(90)90431-a.

67. Pisansky, M.T., Hanson, L.R., Gottesman, I.I., Gewirtz, J.C. (2017). Oxytocin enhances observational fear in mice. Nat. Commun. 8, 2102. https://doi.org/10.1038/s41467-017-02279-5.

68. Preston, S.D., de Waal, F.B. (2008). Empathy: its ultimate and proximate bases. Behav. Brain Sci. 25, 1-20. https://doi.org/10.1017/s0140525x02000018.

69. Rodgers, R.J., Johnson, N.J.T. (1995). Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety, Pharm. Bioch. Behav. 52, 297–303.

70. Rodrigues Tavares, L.R., Pelarin, V., Baptista-de-Souza, D., Ferrari, D.P., Nunes-de-Souza, R.L., Canto-de-Souza, A. (2021). 5-HT 3 receptor within the amygdaloid complex modulates pain hypersensitivity induced by empathy model of cohabitation with a partner in chronic pain condition in mice. Soc. Neurosci. 16,534–548. https://doi.org/10.1080/17470919.2021.1954083.
74. Rudolph, M.L., Neve, R.L., Hammer Jr, R.P., Nikulina, E.M. (2020). Enhanced psychostimulant response, but not social avoidance, depends on GluA1 AMPA receptors in VTA dopamine neurons following intermittent social defeat stress in rats. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14884.
75. Rumpold, T., Schur, S., Amering, M., Kirchheiner, K., Masel, E.K., Watzke, H., Schrank, B. (2016). Informal caregivers of advanced-stage cancer patients: Every second is at risk for psychiatric morbidity. Support Care Cancer. 24, 1975–1982. https://doi.org/10.1007/s00520-015-2987-z.
76. Sial, O.K., Warren, B.L., Alcantara, L.F., Parise, E.M., Bolaños-Guzmán, C.A. (2016). Vicarious social defeat stress: Bridging the gap between physical and emotional stress. J. Neurosci. Methods. 258, 94–103. https://doi.org/10.1016/j.jneumeth.2015.10.012.
77. Song, C., Berridge, K.C., Kalueff, A.V. (2016). 'Stressing' rodent self-grooming for neuroscience research. Nat. Rev. Neurosci. 17, 591. https://doi.org/10.1038/nrn.2016.103.
78. Tejada, J., Chaim, K.T., Morato, S. (2017). X-PloRat: a software for scoring animal behavior in enclosed spaces. Psic. Teor. Pesq. 33, 1–4. https://doi.org/10.1590/0102.3772e3322.
79. Tomiyoshi, M.Y., Sakai, M., Baleeiro, R.B., Stankevicius, D., Massoco, C.O., Palermo-Neto, J., Barbuto, J.A.M. (2009). Cohabitation with a B16F10 melanoma-bearer cagemate influences behavior and dendritic cell phenotype in mice. Brain Behav. Immun. 23, 558–567.
80. Treit, D., Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats.
81. Pharmacol. Biochem. Behav. 31, 959-962. https://doi.org/10.1016/0091-3057(88)90413-3.
82. Wallace, V.C., Segerdahl, A.R., Blackbeard, J., Pheby, T., Rice, A.S. (2008). Anxiety-like behaviour is attenuated by gabapentin, morphine and diazepam in a rodent model of HIV anti-retroviral-associated neuropathic pain. Neurosci. Lett. 448, 153–156.
83. Warren, B.L., Vialou, V.F., Iñiguez, S.D., Alcantara, L.F., Wright, K.N., Feng, J., Kennedy, P.J., Laplant, Q., Shen, L., Nestler, E.J., Bolaños-Guzmán, C.A. (2013). Neurobiological sequelae of witnessing stressful events in adult mice. Biol. Psychiatry. 73, 7–14. https://doi.org/10.1016/j.biopsych.2012.06.006.
84. Webber, K., Davies, A.N., Leach, C., Bradley, A. (2020). Alcohol and drug use disorders in patients with cancer and caregivers: effects on caregiver burden. BMJ Support Palliat. Care. 10, 242–247. https://doi.org/10.1136/bmjspcare-2019-002127.
85. Whitaker, L.R., Carneiro de Oliveira, P.E., McPherson, K.B., Fallon, R.V., Planeta, C.S., Bonci, A., Hope, B.T. (2016). Associative learning drives the formation of silent synapses in neuronal ensembles of the nucleus accumbens. Biol. Psychiatry. 80, 246–256. https://doi.org/10.1016/j.biopsych.2015.08.006.
86. Yap, J.J., Covington 3rd, H.E., Gale, M.C., Datta, R., Miczek, K.A. (2005). Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl). 179, 230–239. https://doi.org/10.1007/s00213-004-2023-3.
87. Zaniboni, C.R., Pelarin, V., Baptista-de-Souza, D., Canto-de-Souza, A. (2018). Empathy for pain: insula inactivation and systemic treatment with midazolam reverses the hyperalgesia induced by cohabitation with a pair in chronic pain condition. Front. Behav. Neurosci. 12, 278.

Tables
Table 1. Anxiety-like behavior evaluated in the elevated plus maze test.

Behavior	Protocol period	14:7-7	21:7-14	21:14-7	28:14-14
	control cagemate				
Open arm entries (%)		29.7±	30.4±	29.6±	30.4±
		3.0±	5.1±	3.2±	5.1±
		-0.14	6.6±	-1.01	6.2±
		p=0.89	p=0.32	p=0.32	p=0.32
Open arm time (%)		18.7±	23.6±	18.7±	23.6±
		2.3±	4.7±	2.2±	4.7±
		-1.01	6.2±	-1.82	6.2±
		p=0.32	p=0.08	p=0.08	p=0.08
Closed arm entries (frequency)		9.1±	10.9±	9.1±	10.9±
		0.7±	0.8±	0.7±	0.8±
		-1.82	6.2±	-1.82	6.2±
		p=0.08	p=0.08	p=0.08	p=0.08
Center time (%)		37.3±	31.9±	37.3±	31.9±
		2.2±	2.2±	2.2±	2.2±
		1.56±	4.8±	1.56±	4.8±
		p=0.13	p=0.13	p=0.13	p=0.13
SAP (frequency)		50.2±	17.2±	50.2±	17.2±
		2.6±	2.0±	2.6±	2.0±
		9.19±	45.4±	9.19±	45.4±
		p<0.05	p<0.05	p<0.05	p<0.05
Protected SAP (%)		78.3±	89.2±	78.3±	89.2±
		2.6±	2.8±	2.6±	2.8±
		-2.75	6.5±	-2.75	6.5±
		p<0.05	p<0.05	p<0.05	p<0.05
Head-dipping (frequency)		24.7±	34.4±	24.7±	34.4±
		2.4±	1.9±	2.4±	1.9±
		-2.94	2.4±	-2.94	2.4±
		p<0.05	p<0.05	p<0.05	p<0.05
Protected head-dipping (%)		69.9±	63.1±	69.9±	63.1±
		4.6±	6.1±	4.6±	6.1±
		0.90±	8.3±	0.90±	8.3±
		p=0.38	p=0.38	p=0.38	p=0.38

p<0.05 vs. respective control group

§ p=0.052 vs. respective control group

Table 2. Body weight gain during 14 of restraint stress

Group	15th weight gain (g)	28th weight gain (g)	
Control	38.35 ± 0.53	47.28 ± 0.67	8.93 ± 0.42
Stress	36.86 ± 0.62	39.86 ± 0.56	3.00 ± 0.31*
Cagemate	36.79 ± 0.68	45.44 ± 0.66	8.65 ± 0.37

Data are presented as mean ± SEM. Control (n=44), stress (n=42) and cagemate (n=42). One-way ANOVA.*p<0.05 vs. control and cagemate groups
Table 3. Behaviors evaluated in the open field test

Group	EC (m) ± SEM	DC (m) ± SEM	TC (s) ± SEM
Control	47.55 ± 1.77	6.40 ± 0.24	72.82 ± 3.91
Stress	44.48 ± 2.03	5.96 ± 0.26	61.93 ± 3.08*
Cagemate	42.26 ± 1.99	5.76 ± 0.30	59.60 ± 3.63*

Data are presented as mean ± SEM. Control (n=44), stress (n=42) and cagemate (n=42). *p<0.05 vs. control group. One-way ANOVA. EC: number of entries in the center; DC: distance travelled in the center; TC: time spent in the center.

Table 4. One-way ANOVA for locomotor cross-sensitization behavior

Locomotor activity period	Meth response		
	High responsive	Mid responsive	Low responsive
Habituation	F(2,40)=0.66; p=0.53	F(2,39)=0.54; p=0.59	F(2,40)=0.46; p=0.64
5	F(2,40)=0.31; p=0.74	F(2,39)=0.10; p=0.91	F(2,40)=0.35; p=0.71
Saline	F(2,40)=0.22; p=0.80	F(2,39)=0.99; p=0.40	F(2,40)=0.42; p=0.66
15	F(2,40)=1.91; p=0.16	F(2,39)=0.06; p=0.94	F(2,40)=0.06; p=0.94
20	F(2,40)=1.23; p=0.30	F(2,39)=0.29; p=0.75	F(2,40)=0.19; p=0.83
25	F(2,40)=0.54; p=0.59	F(2,39)=1.92; p=0.16	F(2,40)=0.99; p=0.38
30	F(2,40)=1.01; p=0.37	F(2,39)=1.32; p=0.28	F(2,40)=0.09; p=0.91
35	F(2,40)=0.14; p=0.87	F(2,39)=1.79; p=0.18	F(2,40)=0.10; p=0.91
40	F(2,40)=0.51; p=0.61	F(2,39)=1.17; p=0.32	F(2,40)=0.36; p=0.70
Methamphetamine	F(2,40)=1.63; p=0.21	F(2,39)=1.13; p=0.33	F(2,40)=0.05; p=0.95
45	F(2,40)=2.42; p=0.10	F(2,39)=1.97; p=0.15	F(2,40)=0.16; p=0.85
50	F(2,40)=2.39; p=0.11	F(2,39)=2.27; p=0.12	F(2,40)=0.94; p=0.40
55	F(2,40)=5.35; p<0.05	F(2,39)=5.05; p<0.05	F(2,40)=1.39; p=0.26
60	F(2,40)=3.87; p<0.05	F(2,39)=5.36; p<0.05	F(2,40)=1.14; p=0.33
65	F(2,40)=2.73; p=0.077	F(2,39)=8.49; p<0.05	F(2,40)=0.50; p=0.61
70	F(2,40)=2.98; p=0.062	F(2,39)=8.87; p<0.05	F(2,40)=0.86; p=0.43
75	F(2,40)=1.77; p=0.18	F(2,39)=5.98; p<0.05	F(2,40)=2.75; p=0.076
80	F(2,40)=3.48; p<0.05	F(2,39)=1.22; p=0.31	F(2,40)=1.34; p=0.27
85	F(2,40)=1.40; p=0.26	F(2,39)=0.65; p=0.53	F(2,40)=0.85; p=0.44
90	F(2,40)=2.00; p=0.062	F(2,39)=8.87; p<0.05	F(2,40)=0.86; p=0.43
95	F(2,40)=1.41; p=0.26	F(2,39)=1.41; p=0.26	F(2,40)=0.40; p=0.67

The difference was significant for p value less than 0.05 (p<0.05).

Table 5. Self-grooming measured in three days during post-stress period

Self-grooming (s)	15th day	21st day	28th day
Control	46.80 ± 13.48	35.70 ± 7.16	38.00 ± 4.53
Cagemate	161.38 ± 28.25**	103.86 ± 24.08abc	66.57 ± 13.80

Data are presented as mean ± SEM. Control (n=20) and cagemate (n=21). One-way ANOVA. *p<0.05 vs. respective control group. *p<0.05 vs. control in any day. *p=0.064 vs. control group on the 15th day. b p=0.057 vs. control group on the 21st day. c p<0.05 vs. control group on the 28th day.

Figures
Experiments

A
14:7-7
1st
Housed in pairs
Stress period
7th
15th
Epm (5min)
21:7-14
1st
Housed in pairs
Stress period
7th
22nd
Epm (5min)

21:14-7
1st
14th
22nd
Housed in pairs
Stress period
15th
21st
Epm (5min)
28:14-14
1st
14th
29th
Housed in pairs
Stress period
15th
28th
Epm (5min)

B
1st
Weight gain
14th
(tested)
Housed in pairs
Stress period
weaning
15th
21st
28th
35th
Consolation-like behavior test
Open field (Oft) and Locomotor cross-sensitization tests
(tested)

C
OfT	hab	saline	methamphetamine
5min	10min	30min	60min
(tested)

Figure 1

Schematic representation of the experimental protocol. (A) Procedure performed for the test of the time period required to establish the familiarity and to induce anxiety through chronic stress (tested groups: control and cagemate); (B) timeline regarding the procedure used to evaluate consolation-like behavior (tested groups: control and cagemate), weight gain (tested groups: control, stress and cagemate), anxiety-like behavior in the OFt and locomotor cross-sensitization induced by methamphetamine; (C) timeline referring to open field and cross-sensitization in the test-day (tested groups: control, stress and cagemate).
Figure 2

All data are presented as mean ± SEM. (A) Percentage of distance travelled and (B) percentage of time spent in the center of the open field (n=42-44 per group) during five minutes test. *p<0.05 vs. control group. One-way ANOVA followed by Newman-Keuls post-hoc test.
Figure 3

All data are presented as mean ± SEM. (A) Total distance travelled during 60 minutes test by high responsive mice after methamphetamine challenge (1.5 mg/Kg) (n=14-15 per group); (B) distance travelled by high responsive mice during each five minutes block during habituation, saline challenge (1 mL/Kg) and methamphetamine challenge (1.5 mg/Kg) (n=14-15 per group); (C) Total distance travelled during 60 minutes test by mid responsive mice after methamphetamine challenge (1.5 mg/Kg) (n=14 per group); (D) distance travelled by mid responsive mice during each five minutes block during habituation, saline challenge (1 mL/Kg) and methamphetamine challenge (1.5 mg/Kg) (n=14 per group); (E) Total distance travelled during 60 minutes test by low responsive mice after methamphetamine challenge (1.5 mg/Kg) (n=14-15 per group); (F) distance travelled by low responsive mice during each five minutes block during habituation, saline challenge (1 mL/Kg) and methamphetamine challenge (1.5 mg/Kg) (n=14-15 per group); *p <0.05 stress and cagemate vs. control group. #p<0.05 cagemate vs. control group. &p<0.05 stress vs. control group. One-way ANOVA
followed by Newman-Keuls post-hoc test. Differences between the groups were evaluated by planned comparisons in each five minutes block.

All data are presented as mean ± SEM. (A) Percentage of subjects that exhibited consolation-like behavior in the 15th, 21st and 28th experimental days in control and cagemate groups; (B) latency to start and (C) time spent in allogrooming behavior during fifteen minutes. $p<0.05$ vs. respective control group. *$p<0.05$ vs. control group. Two-way ANOVA followed by Newman-Keuls post-hoc test.