AT2R -1332 G:A polymorphism and diabetic nephropathy in type 2 diabetes mellitus patients

Zohreh Rahimi1,2,*, Omid Mansouri Zaveleh1, Ziba Rahimi1, Ardeshir Abbasi3
1Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
3Department of Biochemistry, Sanandaj Science and Research Branch, Islamic Azad University, Sanandaj, Iran

A B S T R A C T

Introduction: The rennin-angiotensin system (RAS) plays a central role in the regulation of sodium metabolism, vascular tone, blood pressure, renal hemodynamics, and vascular modeling and is activated by hyperglycemia.

Objectives: In the present study the influence of AT2R -1332 G:A polymorphism on the risk of T2DM and its complications in a population from Western Iran has been investigated.

Patients and Methods: In a case-control study, 70 individuals with type 2 diabetes mellitus (T2DM) including normo-, micro- and macro-albuminuric patients and 112 healthy subjects from the Kermanshah province were studied to investigate the association between the angiotensin type 2 receptor (AT2R) -1332 G:A variants with the risk of T2DM and diabetic nephropathy. The genotypes of the AT2R were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Analysis of AT2R -1332 G:A polymorphism indicated the absence of association between this polymorphism with T2DM and diabetic nephropathy.

Results: In females with diabetic nephropathy a significantly higher frequency of AA genotype (50%) was detected compared to those without nephropathy (13.3%, p=0.015). The presence of A allele of AT2R was associated with significantly (p=0.029) increased risk of coronary artery disease (CAD) in diabetic patients without nephropathy.

Conclusion: Our study indicated an association between the AT2R -1332 G:A polymorphism and the risk of diabetic nephropathy in females only. Also, the A allele was associated with the risk of CAD in those diabetic patients without nephropathy.

Implication for health policy/practice/research/medical education:
In a case-control study on 70 individuals with type 2 diabetes mellitus, we found that the presence of A allele of AT2R is associated with the risk of coronary artery disease in diabetic patients without nephropathy.

Please cite this paper as: Rahimi Z, Mansouri Zaveleh O, Rahimi Z, Abbasi A. AT2R -1332 G:A polymorphism and diabetic nephropathy in type 2 diabetes mellitus patients. J Renal Inj Prev 2013; 2(3): 97-101. DOI: 10.12861/jrip.2013.31

Introduction
The rennin-angiotensin system (RAS) plays a central role in the regulation of sodium metabolism, vascular tone, blood pressure, renal hemodynamics, and vascular modeling and is activated by hyperglycemia (1). In diabetic patients hyperglycemia increases tissue angiotensin II which induces oxidative stress, glomerular hyperfiltration, endothelial damage, thrombosis, inflammation and vascular remodeling (2). Angiotensin II binds to two main types of receptors. The angiotensin type 1 receptor (AT1R) mediates vasoconstriction and the proliferative action of angiotensin II, while the type 2 receptor (AT2R) inhibits cell proliferation and mediates apoptosis and works as a cardio protective agent against AT1R (1,3). Diabetic nephropathy (DN) starts with various renal functional changes including glomerular hyperfiltration and hyperperfusion, and is manifested with microalbuminuria that subsequently can progress to macroalbuminuria (4). Diabetic nephropathy and end-stage renal diseases are major causes of mortality in diabetes mellitus (1,5).

The AT2R gene is located on the chromosome X at the locus Xq23–26. The AT2R gene consists of three exons and two introns. A common AT2R polymorphism is located within intron 1, 29 bp before the start of exon 2, close to...
a region that is important for transcriptional activity. This polymorphism is designated as -1332 G:A according to the translation initiation site of the gene, although it has also been described as +1675 G:A (6).

The G allele of AT2R has already been associated with congenital anomalies of the kidney and urinary tract in men (7). However, the literature does not contain any information on the influence of AT2R -1332 G:A variants in the development of the risk of type 2 diabetes mellitus (T2DM) and its complications.

Objectives
In the present study the influence of AT2R -1332 G:A polymorphism on the risk of T2DM and its complications in a population from Western Iran has been investigated.

Materials and Methods

Sample
AT2R -1332 G:A genotypes were studied in 70 T2DM patients including 28 patients with micro-, 22 with macro- and 20 with normo-albuminuria and 112 healthy subjects. The patients had been admitted to the Taleghani Diabetes Research Center of Kermanshah University of Medical Sciences and all were from Kermanshah Province of Iran with Kurdish ethnic backgrounds. Type 2 diabetes mellitus was diagnosed according to WHO criteria (8).

The criteria for defining microalbuminuria and macroalbuminuria were albumin to creatinine ratio, (ACR) of 30–299 mg/g and ≥300 mg/g, respectively in a random spot collection of urine in three specimens collected within a 3–6 months period. To confirm the presence of micro- or macro-albuminuria in samples with ACR’s higher than 30 mg/g, ACR was measured in 24 h urine collection. Diabetic patients with ACR <30 mg/g made up the normoalbuminuric patients (9).

Genotype analysis
DNA was extracted from the leukocyte fraction of the EDTA-treated whole blood using the phenol-chloroform method (10). The AT2R -1332 G:A polymorphism was genotyped using the primers of 5’-GGA AGT AAC ATA CAT TAA ATG-3’ and 5’-AGA GAA ACA GCA GCT AAA GAA TT-3’. The PCR product with 120-bp was digested with EcoRI restriction enzyme. In the presence of G allele two fragments with 91- and 29-bp fragments were produced, while in the presence of A allele the 120-bp fragment remained intact (11).

Statistical analysis
The allelic frequencies were calculated by the chromosome counting method. The significance of differences in genotype and allele frequencies of AT2R -1332 G:A between patients and controls were calculated using χ² test. Odds ratios (OR) were calculated as estimates of relative risk for disease and 95% confidence intervals (CI) were obtained by SPSS logistic regression software. A two-tailed Student’s t-test was used to compare quantitative data. Statistical significance was assumed at p<0.05 level. The SPSS 16 (SPSS Inc., Chicago, IL, USA) was used for the statistical analysis.

Results
The demographic and biochemical characteristics of diabetic patients are depicted in Table 1. The mean age...
of normo-, micro- and macro-albuminuric patients were 53.1 ± 10.1, 52.4±6.5 and 53.9±9.3 years, respectively. Diastolic blood pressure was significantly higher in macroalbuminuric patients (87.3±7.2 mmHg, p=0.014) compared to normoalbuminuric ones (80.3±10.3 mmHg). The frequency of the AT2R alleles in patients and healthy individuals has been indicated in Table 2. As demonstrated in Table 2, the frequency of A allele in all diabetic patients was non significantly higher (34.3%, p=0.74) than that in healthy individuals (32.1%).

The frequencies of AT2R -1332 G:A genotypes and alleles in females and the frequency of alleles in hemizygous males are demonstrated in Table 3. A significantly higher frequency of AA genotype (50%, p=0.016) was observed in females with nephropathy compared to those without nephropathy (13.3%). However, no significant difference was detected between patients with and without nephropathy and also between patients with healthy individuals related to the frequency of AT2R genotypes and alleles.

In diabetic patients without nephropathy the A allele of AT2R was present in 60% of these patients with a history of coronary artery disease (CAD). However, in those patients without history of CAD the frequency of this allele reached to 25% (p=0.025). The presence of this allele was associated with a 4.5-fold (95%, CI= 1.16-1.37, p=0.029) increased risk of CAD in diabetic patients without nephropathy.

Table 2. The comparison of frequency of AT2R alleles between diabetic patients and the healthy controls.

AT2R alleles	Diabetic patients without nephropathy (n=60)	Diabetic patients with nephropathy (n=100)	All diabetic patients (n=140)	Healthy subjects (n=224)
G	23 (57.5%)	69 (69%)	92 (65.7%)	152 (67.9%)
A	17 (42.5%)	31 (31%)	48 (34.3%)	72 (32.1%)

\[\chi^2=1.89, df=1, p=0.16 \]

\[\chi^2=0.1, df=1, p=0.74 \]

*Comparison has been made with diabetic patients with nephropathy.
**Comparison has been made with healthy subjects.
Conflict of interest
The authors declare that, they have no conflict of interest.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the author.

Funding/Support
This work was financially supported by a grant from vice chancellor for research of Kermanshah University of Medical Sciences, Kermanshah, Iran.

References
1. Mehri S, Koubaa N, Hammami S, Mahjoub S, Chaaba R, Nakbi A, et al. Genotypic interactions of renin–angiotensin system genes with diabetes type 2 in a Tunisian population. Life Sci 2001; 87: 49–54.
2. Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin Am Soc Nephrol 2008; 3: 1511–25.
3. Abd El-Aziz TA, Hussein YM, Mohamed RH, Shalaby SM. Renin–angiotensin system genes polymorphism in Egyptians with premature coronary artery disease. Gene 2012; 498: 270–75.
4. Chawla T, Sharma D, Singh A. Role of the renin angiotensin system in diabetic nephropathy. World J diabetes 2010; 1: 141–5.
5. Rahimi Z. ACE insertion/deletion (I/D) polymorphism and diabetic nephropathy. J Nephropathol 2012; 1: 143–51.
6. Alfakih K, Lawrance RA, Maqbool A, Walters K, Ball SG, Balmforth AJ, Hall AS. The clinical significance of a common, functional, X-linked angiotensin II type 2-receptor gene polymorphism (−1332 G/A) in a cohort of 509 families with premature coronary artery disease. Eur Heart J 2005; 26, 584–9.
7. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999; 3: 1–10.
8. WHO Study Group Report of a WHO Consultation. Part 1. Diagnosis and Classification of Diabetes Mellitus. Geneva: World Health Organization; 1999
9. Jafari Y, Rahimi Z, Vaisi-Raygani A, Rezaei M. Interaction of eNOS polymorphism with MTHFR variants increase the risk of diabetic nephropathy and its progression in type 2 diabetes mellitus patients. Mol Cell Biochem 2011; 353: 23–34.
10. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A. The concomitant presence of eNOS 894T and ACE D alleles are associated with diabetic nephropathy in Kurdish population from Western Iran. Nephrology 2012; 17: 175-81.
11. Zivkovic M, Djuric T, Stancic O, Alavantic D, Stankovic A. X-linked angiotensin II type 2 receptor gene polymorphism -1332 A/G in male patients with essential hypertension. Clin Chim Acta 2007; 386: 110-3.
12. Yu-mei Z, Yuan W, Jian-ping L. Recent advances and

Table 3. The distribution of AT2R -1332 G:A genotypes and alleles in diabetic females and males with and without nephropathy and healthy individuals.

AT2R genotypes	T2DM without Nephropathy (n=21)	T2DM with Nephropathy (n=49)	All Diabetic Patients (n=70)	Healthy Individuals (n=112)
Females	n=15	n=32	n=47	n=92
GG	5 (33.3%)	2 (6.2%)	7 (14.9%)	9 (9.8%)
GA	8 (53.3%)	14 (43.8%)	22 (46.8%)	48 (52.2%)
AA	2 (13.3%)	16 (50%)	18 (38.3%)	35 (38%)
(χ²=8.81, df=2, p=0.012)*			(χ²=0.96, df=2, p=0.61)**	
GG+GA	13 (86.7%)	16 (50%)	29 (61.7%)	57 (62%)
AA	2 (13.3%)	16 (50%)	18 (38.3%)	35 (38%)
(χ²=5.81, df=1, p=0.016)*			(χ²=0.006, df=1, p=0.93)**	
Males	n=6	n=17	n=23	n=20
AT2R alleles				
G	0 (0%)	6 (35.3%)	6 (26.1%)	3 (15%)
A	6 (100%)	11 (64.7%)	17 (73.9%)	17 (85%)
(χ²=2.86, df=1, p=0.091)*			(χ²=0.79, df=1, p=0.37)**	

*Compared to nephropathy patients
**Compared to healthy individuals
findings of angiotensin type 2 receptor: a review. *Chin Med J* 2010; 123: 3462-6.

13. Herrmann SM, Nicaud V, Schmidt-Petersen K, Pfeifer J, Erdmann J, McDonagh T, *et al.* Angiotensin II type 2 receptor gene polymorphism and cardiovascular phenotypes: the GLAECO and GLAOLD studies. *Eur J Heart Failure* 2002; 4: 707–2.

14. Schmieder RE, Erdmann J, Delles C, Jacobi J, Fleck E, Hilgers K, *et al.* Effect of the angiotensin II type 2-receptor gene (1675 G/A) on left ventricular structure in humans. *J Am Coll Cardiol* 2001; 37: 175–82.

15. Balmforth AJ. Angiotensin II type 2 receptor gene polymorphisms in cardiovascular disease. *J Renin Angiotensin Aldosterone Syst* 2010; 11: 79-85.