Simple Agents Learn to Find Their Way:
An Introduction on Mapping Polygons

Jérémie Chalopina, Shantanu Dasb, Yann Disserc,*, Matúš Mihalákc, Peter Widmayerc

aLIF, CNRS & Aix-Marseille Université, France
bBGU & Technion – Israel Institute of Technology, Israel
cInstitute of Theoretical Computer Science, ETH Zürich, Switzerland

Abstract
This paper gives an introduction to the problem of mapping simple polygons with autonomous agents. We focus on minimalistic agents that move from vertex to vertex along straight lines inside a polygon, using their sensors to gather local observations at each vertex. Our attention revolves around the question whether a given configuration of sensors and movement capabilities of the agents allows them to capture enough data in order to draw conclusions regarding the global layout of the polygon.

In particular, we study the problem of reconstructing the visibility graph of a simple polygon by an agent moving either inside or on the boundary of the polygon. Our aim is to provide insight about the algorithmic challenges faced by an agent trying to map a polygon. We present an overview of techniques for solving this problem with agents that are equipped with simple sensorial capabilities. We illustrate these techniques on examples with sensors that measure angles between lines of sight or identify the previous location. We give an overview over related problems in combinatorial geometry as well as graph exploration.

Keywords: polygon mapping, map construction, autonomous agent, mobile robot, visibility graph reconstruction

1. Introduction

There is a continuing trend in robotics towards designing and building simple and cheap microrobots that collaborate to perform certain tasks, rather than using a single, expensive and complicated robot. Typical examples include
groups of microrobots (such as simple sensors and actuators, simple wireless sensors, simple “insect”-type microrobots) that are employed to collectively guard an area, or to collectively sweep an area in order to find a potential intruder. Reasons in favor of microrobots are not only cost savings, but also limitations imposed by the environment, conditions suggested by the task at hand (which restrict the usage of rather bulky robots), and, last but not least, robustness considerations: If a few microrobots in a swarm turn out not to be operational or get damaged over time, the rest of the crowd might still be able to complete the task successfully.

This microrobot design trend has inspired the question what a group of simple microrobotic agents or a single such agent can or cannot do, given limitations on the agents’ abilities. These limitations affect what a microrobot can sense, how a microrobot can move, and how microrobots can communicate, in addition to computational and memory limitations. We aim at understanding which abilities are indispensable for a microrobot to perform a given task. In other words, we aim to identify minimal sets of abilities such that these abilities allow the robot to perform the task at hand, but any weaker configuration is insufficient. This leads to very simple, abstract robots that we will call “agents” from now on. Just like Columbus could not identify what he saw when he landed in America, the agents we are going to use throughout the next sections have no way of directly identifying the objects they sense. They are worse off than Columbus in that they have no notion of coordinates or of distances. We pose the most basic questions in such a setting: What can our agents learn about their initially unknown environment? Can they navigate in it? Can they join forces to achieve a common goal? What goals are impossible for them to reach?

Over the past decade, a wealth of fundamental research results have identified a variety of very limited configurations of abilities that still allow interesting tasks to be performed. This paper aims to serve as an introduction for newcomers to this field. The exposition is guided by the authors’ own investigations, and in the core part of the paper it is limited to these. We describe an extremely simple kind of agents, working in a very simple environment, confronted with the task of inferring the layout of the environment. Specifically, most of the paper is concerned with a single agent that operates inside a polygon in the plane and needs to construct a “map” of the polygon. Our main goal is to understand for which settings a single agent can acquire enough pieces of local information to finally infer a global picture of its environment. We present how, in some cases, certain local geometric information alone can be used to obtain a global picture. In other, more involved cases, we learn how concepts from distributed computing theory (even for a single agent) help, and how ideas from the general graph-exploration setting carry over to the geometric setting of polygon exploration. We also show how the stronger geometrical structure helps to achieve goals that cannot be achieved in general graphs.

Rather than confronting the reader with an abstract top-down coverage of the field, we try to delve into the world of polygon exploration with as little ado as possible. To that end we focus on a few characteristic techniques for mapping polygons in detail, and explain them using many illustrations and examples.
Figure 1: Left: A simple polygon with embedded visibility graph. Right: The polygon as perceived locally by an agent located at \(v_0 \). All that the agent can observe is an order of the edges incident to its location. Except for the two boundary-edges, the agent does not know to which vertex, or in which direction, each edge leads.

Instead of a formal approach. A lightweight formal foundation is provided in Section 2. After that, we begin the tour in Section 3 considering agents that can measure angles induced by any two visible vertices. In Section 4, we shift our attention to agents that can move across the polygon along straight lines between vertices, but on the other hand have weaker sensors. With Section 5 we finish the discussion about polygon exploration by providing a list of other known results in the area, briefly illustrating the different agent models that have been studied. Finally, Section 6 offers a glimpse on related problems beyond mapping, beyond agents, and beyond polygonal environments.

More details on some of the results presented in this paper, can be found in [13].

2. The visibility graph reconstruction problem – model and notation

In the following, we consider a mobile agent exploring a simple polygon \(\mathcal{P} \) with \(n \) vertices (cf. Figure 1). The goal of the agent is to reconstruct the visibility graph \(G_{\text{vis}} \) of \(\mathcal{P} \), i.e., the graph having a node for every vertex of the polygon, and an edge connecting two nodes if the corresponding vertices see each other. Two vertices of \(\mathcal{P} \) are said to see each other if and only if the line segment connecting them lies in \(\mathcal{P} \) entirely. In that way, every edge of \(G_{\text{vis}} \) corresponds to a line segment in \(\mathcal{P} \), and we refer to edges and the corresponding line segments interchangeably. Similarly, we identify each vertex of \(\mathcal{P} \) with the corresponding node of \(G_{\text{vis}} \). We fix some vertex \(v_0 \) and write \(v_0, v_1, \ldots, v_{n-1} \) to denote the vertices of \(\mathcal{P} \) in the order that they are encountered along a tour of the boundary which starts at \(v_0 \) and locally has the interior of \(\mathcal{P} \) on its left. From now on, we refer to this order as the counter-clockwise order along the boundary of \(\mathcal{P} \). Finally, we write \(d_i, 0 \leq i < n \), to denote the degree of \(v_i \), i.e., the number of edges incident to \(v_i \) in \(G_{\text{vis}} \). For convenience, all operations on indices are understood modulo \(n \).

This paper is centered around the question how much local data has to be collected about \(\mathcal{P} \) in order to infer \(G_{\text{vis}} \). In order to capture the data collection in
formally, we introduce a very basic agent that moves inside \(P \) and makes local observations in the process. The idea is to keep the agent model as simplistic as possible and extend it later depending on what local data we are interested in. The agent is modeled as a point (a dimensionless object) moving from vertex to vertex along straight lines inside \(P \), i.e., along edges of \(G_{\text{vis}} \). In the beginning, the agent is located at \(v_0 \), and the only information it has about \(P \) is that \(P \) is a simple polygon. The agent does not know any information about \(n \), the number of vertices of \(P \). While located at a vertex \(v_i \), the agent perceives the edges of \(G_{\text{vis}} \) incident to \(v_i \) in counter-clockwise order, starting with the boundary edge \((v_i, v_{i+1})\) (cf. Figure 1). We choose \(v_0 \) to be the agent’s initial location, therefore the agent can keep track of its global position as long as it moves along the boundary only. However, it can neither perceive the global index \(i \) of its location \(v_i \) directly, nor the global indices of the vertices to which the edges from \(v_i \) lead. This means that once it moves along an edge through the inside of \(P \), in a way, the agent looses sense of its global position. The counter-clockwise ordering of the edges at a vertex is the only means of orientation that the agent has when deciding a move. The move itself is assumed to be instantaneous, i.e., the agent cannot make any observations while moving. Every movement decision of the agent and the conclusions it draws from local observations are based on all the information it has collected so far – a history of movement decisions and observed vertex degrees. Because our focus is to study the effect of movement and sensing capabilities, we do not restrict the agent computationally, and we assume that the agent has enough memory to store all the history of movements and observations. The question is whether the information collected this way is sufficient for the agent to infer \(G_{\text{vis}} \).

From now on, we will refer to an agent in the above model as the basic agent. In later sections, variants of the basic agent will be introduced, mainly extending its sensing capabilities. For a particular extension of the model, the central question is whether the agent can solve the visibility graph reconstruction problem, i.e., whether it can infer \(G_{\text{vis}} \) (up to renaming of the nodes) within a finite number of operations. If this is possible, we say that the agent can reconstruct \(G_{\text{vis}} \). We will sometimes use the expression of constructing a visibility graph \(G'_{\text{vis}} \) that fits the observations of the agent, in the sense that there is a polygon \(P' \) with visibility graph \(G'_{\text{vis}} \), such that the agent would make the same observations in \(P' \) as in \(P \). In contrast, the reconstruction problem requires the agent to be able to find \(G_{\text{vis}} \) itself. Our challenge is to obtain frugal models which already enable the agent to solve this visibility graph reconstruction problem in finite time.

In order to reconstruct the visibility graph, it is sufficient to decide for every vertex where the edges incident to this vertex lead in terms of global identities (i.e., global indices). This task becomes trivial if there is a vertex \(v^* \) with the property that the agent can distinguish at any time whether or not it is currently located at \(v^* \). In that case, the agent can decide where an edge leads simply by moving along the edge and then counting the number of moves along the boundary that it takes to get back to \(v^* \) (cf. Figure 2). Hence, the visibility graph reconstruction problem is non-trivial only if no individual vertex of \(P \) can
be recognized by the agent. In some sense, the problem is difficult only if P is symmetric with respect to the data which the agent is able to perceive.

In the next two sections we will demonstrate two main solution approaches that proved to be successful for analysing the visibility graph reconstruction problem. For the first approach, we show how arguments from computational geometry can be applied to our problem when the agent’s sensing capabilities provide enough geometric information about the polygon. In Section 3, we consider an agent which can measure the angles between the lines from its current location to all visible vertices. We will see that this ability provides enough geometric information to reconstruct the shape of the polygon (and thus also the visibility graph of the polygon). In this approach, the difficulty lies in using the geometric information the sensing provides. For the second approach, we show how ideas from distributed computing apply in the geometric setting. In Section 4 we will demonstrate an approach in which the movements of the agent play a key role. In that setting, the agent first obtains a rough map of the environment by moving around in a systematic fashion. Intuitively, the agent computes an arc-labeled directed graph in which a node represents a set of vertices of the polygon that appear indistinguishable to the agent, and the labels of the outgoing arcs encode the information that the robot senses at a vertex. This rough map and the specific geometric interpretation of the edge-labels is then used to reconstruct the visibility graph of the polygon.

3. Reconstruction from geometrical data

In this section we consider the angle agent that, roughly speaking, is able to measure the exact angle between any two lines to vertices visible from its current location. Based on the results in [15], we will show that an angle agent can reconstruct the visibility graph. To present the key ideas of the reconstruction method, we will assume that an angle agent knows n, the number of vertices of
the polygon. It can be shown, however, that the knowledge of n is not necessary, and that in fact the angle agent can infer $n [14]$.

Recall that the basic agent is allowed to freely move along the edges of G_{vis}. In constrast, it will turn out that the angle agent can reconstruct the visibility graph by moving along the edges of the boundary only. Because the agent does not need to use all of its movement capabilities, in a way, the ability to measure angles is a "strong" ability. In Section 4 we will see a “weaker” agent which extensively uses its movement capabilities in order to reconstruct the visibility graph. It is worth mentioning that the basic agent is not able to reconstruct the visibility graph by moving along the boundary only, as Figure 3 illustrates.

We now define the angle agent more precisely as an extension of the basic agent. In addition to the abilities of the basic agent, the angle agent can perform, before each move, an angle measurement at the vertex v_i of P that it is currently located at. For every two vertices u, w visible to v_i (in this order), the angle measurement returns the counter-clockwise angle formed by the line-segments vu and vw (in this order). We call this angle the angle at v_i between u and w, or simply the angle between u and w if the location of the agent is clear from the context. By $\angle_{v}(u, w)$ we denote the counter-clockwise angle between the line segments uv and vw in this order, even if the vertices involved do not see each other mutually. An angle measurement at vertex v_i can be represented by a list $(\alpha_1, \alpha_2, \ldots, \alpha_{d_i-1})$, where d_i is the degree of v_i, and α_j denotes the angle at v_i between the j-th and the $(j + 1)$-th vertex visible to v_i (cf. Figure 4). Observe that we can represent the angle measurement by this list of length $d_i - 1$, as the angle between any two vertices u, v visible to v_i is easy to infer by summing the enclosed angles (cf. Figure 4).

We note that if the angle agent can reconstruct the visibility graph of the underlying polygon P, then it can also reconstruct the geometry of the polygon up to similarity (translation, rotation, and scaling): From G_{vis}, the agent can compute a triangulation of P and fix the positions of v_0 and v_1 in the plane. As the angle agent can infer all three angles of each triangle in the triangulation from the angle measurements, the position of two vertices of a triangle in the
Figure 4: Left: An angle measurement at a vertex yields the list of angles between adjacent edges of G_{vis} in counter-clockwise order, here ($32^\circ, 66^\circ, 34^\circ$). Right: The angle between non-adjacent edges can easily be computed by summing the angles in between.

Figure 5: Given the angle measurement for each vertex in counter-clockwise order (left), the goal is to find the unique polygon that fits these angle measurements (right).

plane is sufficient to derive the position of the third. The agent can therefore gradually deduce the positions of all vertices by repeatedly considering triangles where exactly two positions are known, starting with the triangle containing both v_0 and v_1. As a consequence, the visibility graph reconstruction problem can equivalently be seen as the problem of reconstructing the geometry of P (up to similarity).

As we will see, the angle agent is able to solve the visibility graph reconstruction problem from the data collected during a single tour of the boundary [15]. In this case, the visibility graph reconstruction problem can be reformulated as a purely geometrical problem that does not involve a mobile agent at all: We can forget about the agent once it has moved once fully around P, gathering the angle measurements at every vertex. Note that here the agent needs its knowledge about n – without, it is not clear how far to move in order to have traveled once around the boundary. After its tour of the boundary, the agent has gathered a list of the angle measurements at every vertex, ordered as they appear along the boundary in counter-clockwise order. We call this the ordered list of angle measurements. The difficulty of the reconstruction problem entirely lies in how to use this data algorithmically. The reconstruction problem becomes (cf. Figure 5)
Given the ordered list of angle measurements of \mathcal{P}, find G_{vis}.

We note that with weaker sensors a single tour along the boundary does not suffice to reconstruct the visibility graph, and that a more involved movement and data collection strategy is necessary (as we will see in Section 4). In turn, the problem of reconstructing a visibility graph cannot in general be formulated as a purely geometrical problem.

It is worth stressing that the reconstruction problem asks for the unique visibility graph G_{vis} of \mathcal{P}, and hence the shape of \mathcal{P}. We are not content with just some polygon \mathcal{P}' that has the same ordered list of angle measurements. One can easily find some polygon that fits the angle measurements by trying all possible visibility graphs with n vertices, until a compatible one is found. On the other hand, it is not clear whether we can always deduce \mathcal{P} itself and guarantee that we really reconstructed the original polygon (up to similarity), and not some other polygon with the same ordered list of angle measurements. In other words: Does an ordered list of angle measurements uniquely determine a polygon? We will show that this is the case.

3.1. A reconstruction algorithm

We prove that G_{vis} can be reconstructed from the ordered list of angle measurements of \mathcal{P}. We do this by developing an iterative algorithm that constructs a compatible visibility graph. We will show that this algorithm is guaranteed to reconstruct the original visibility graph G_{vis}.

The algorithm gradually builds $G_{\text{vis}} = (V, E)$. In the beginning, we start with a graph $G^{(0)} = (V, E^{(0)})$ with an empty set of edges $E^{(0)} = \emptyset$. In step $k = 1, 2, \ldots, \lceil \frac{n}{2} \rceil$ we build $G^{(k)} = (V, E^{(k)})$ by identifying all edges of G_{vis} of the form $\{v_i, v_{i+k}\}$ and adding them to $E^{(k-1)}$ in order to obtain $E^{(k)}$. In other words, $G^{(k)}$ contains exactly the edges of G_{vis} that connect vertices which are at most k edges apart along the boundary (cf. Figure 6). By definition, every subgraph of $G^{(k)}$ induced by at most $k + 1$ consecutive vertices along the boundary is equal to the subgraph of G_{vis} induced by the same vertices. Observe that for $k \geq \lceil \frac{n}{2} \rceil$, we have $G^{(k)} = G_{\text{vis}}$ as no two vertices can be further apart than $\lceil \frac{n}{2} \rceil$ edges along the boundary. The only ingredient we are missing for a complete algorithm is a criterion to decide in step k, for each $v_i \in V$, whether $\{v_i, v_{i+k+1}\} \in E$. If we can find a criterion that is both necessary and sufficient, we obtain an algorithm that is guaranteed to reconstruct the visibility graph G_{vis}.

Clearly, for $k = 1$, the criterion is trivial: every vertex sees both its neighbors along the boundary, and thus every edge of the form $\{v_i, v_{i+1}\}$ is part of G_{vis} and needs to be added to $E^{(1)}$. By induction, it remains to be shown how to decide whether $\{v_i, v_{i+k+1}\} \in E$ in step $k + 1$ of the algorithm, assuming that $G^{(k)}$ has already been computed. As $G^{(k)}$ is known, we know for every vertex $v_i \in V$ which vertices in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ and in $\{v_{i-k}, v_{i-k+1}, \ldots, v_{i-1}\}$ are visible to v_i (cf. Figure 7). The remainder of this section shows how to use this information in order to decide whether $\{v_i, v_{i+k+1}\} \in E$ for any $v_i \in V$.

8
Figure 6: Progress of the reconstruction of a polygon \mathcal{P} after step $k = 4$. From left to right: the polygon \mathcal{P}, its visibility graph G_{vis}, and the subgraphs of G_{vis} that have fully been reconstructed after $k = 4$ steps (schematically depicted as shaded areas – no edges of the visibility graph are depicted). All subgraphs of G_{vis} induced by $k+1 = 5$ consecutive vertices (shaded areas) are already fully reconstructed. Edges between vertices that are more than k steps apart along the boundary have not been reconstructed yet.

Figure 7: State of the reconstruction of G_{vis} after step k of the algorithm. For every vertex v_i, the neighbors of v_i in $\{v_{i+1}, \ldots, v_{i+k}\}$ have already been identified. Hence, the subgraphs of G_{vis} depicted by the shaded areas have been fully reconstructed. In the next step, the algorithm has to decide whether v_i sees v_{i+k+1}, and thus whether $\{v_i, v_{i+k+1}\}$ is an edge of G_{vis}.

By $r_i^{(k)}$ we denote the number of vertices that v_i sees on its “right” among $\{v_{i+1}, \ldots, v_{i+k}\}$, i.e., $r_i^{(k)}$ is the degree of v_i in the subgraph of G_{vis} induced by the set of vertices $\{v_i, v_{i+1}, \ldots, v_{i+k}\}$. Similarly, $l_i^{(k)}$ is the degree of v_i in the subgraph of G_{vis} induced by the set of vertices $\{v_{i-k}, v_{i-k+1}, \ldots, v_i\}$. If v_i sees v_{i+k+1}, then the corresponding edge is the $(r_i^{(k)}+1)$-th edge of v_i and the $(d_{i+k+1} - l_i^{(k)})$-th edge of v_{i+k+1} (cf. Figure 8). Recall that the edges are locally ordered in counter-clockwise order.

Let us first consider the case in which v_i does see v_{i+k+1}. Then, we claim, there has to be a vertex in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ which sees both v_i and v_{i+k+1}. To see this, observe that there is a triangulation of \mathcal{P} which uses the edge $\{v_i, v_{i+k+1}\}$ in two triangles. As $k \geq 1$, there must be a vertex $v_j \in \{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ that forms a triangle in the triangulation with v_i and v_{i+k+1}. By
whether the neighbors in $\{v_{i+1}, \ldots, v_{i+k}\}$ have been identified. If v_i has $r_i^{(k)}$ neighbors in $\{v_{i+1}, \ldots, v_{i+k}\}$, then deciding whether v_i sees v_{i+k+1} is equivalent to deciding whether the $(r_i^{(k)} + 1)$-th edge of v_i leads to v_{i+k+1}. Right: If v_{i+k+1} has $l_i^{(k)}$ neighbors in $\{v_{i+1}, \ldots, v_{i+k}\}$, then deciding whether v_i sees v_{i+k+1} is equivalent to deciding whether the $(d_i + l_i^{(k)} + 1)-th$ edge of v_{i+k+1} leads to v_i.

![Figure 8: Knowledge about the edges of v_i and v_{i+k+1} after step k of the algorithm. Left: the edges from v_i to vertices in $\{v_{i+1}, \ldots, v_{i+k}\}$ and in $\{v_{i-1}, \ldots, v_{i-k}\}$ have been identified. If v_i has $r_i^{(k)}$ neighbors in $\{v_{i+1}, \ldots, v_{i+k}\}$, then deciding whether v_i sees v_{i+k+1} is equivalent to deciding whether the $(r_i^{(k)} + 1)$-th edge of v_i leads to v_{i+k+1}. Right: If v_{i+k+1} has $l_i^{(k)}$ neighbors in $\{v_{i+1}, \ldots, v_{i+k}\}$, then deciding whether v_i sees v_{i+k+1} is equivalent to deciding whether the $(d_i + l_i^{(k)} + 1)-th$ edge of v_{i+k+1} leads to v_i.]

![Figure 9: Schematic illustration of the induction step of the reconstruction of G_{vis}. Left: If v_i sees v_{i+k+1}, there has to be a vertex v_j in $\{v_{i+1}, \ldots, v_{i+k}\}$ which sees both v_i and v_{i+k+1}, and v_i, v_j, v_{i+k+1} form a triangle in G_{vis}. Right: If v_i does not see v_{i+k+1}, and v_i sees v_j and v_{i+k+1} at an angle $\gamma < \pi$, the boundary of \mathcal{P} between v_{i+k+1} and v_j (in this order) has to block the line of sight between v_i and v_{i+k+1}.]

Definition, v_j sees both v_i and v_{i+k+1} (cf. Figure 9), which proves our claim. Evidently, for every $v_j \in \{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ which sees both v_i and v_{i+k+1}, we have that $\angle_{v_i}(v_j, v_{i+k+1}) + \angle_{v_j}(v_i, v_{i+k+1}) + \angle_{v_{i+k+1}}(v_j, v_i) = \pi$.

Based on the above, we can derive a checkable necessary condition which has to hold if v_i sees v_{i+k+1}. First of all, in the set $\{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ there has to be a vertex which sees both v_i and v_{i+k+1}. By induction, $G^{(k)}$ has already been computed and therefore we can easily check whether such a vertex v_j exists. Now let x, y be such that v_j is the x-th vertex visible to v_i and the y-th vertex visible to v_{i+k+1}. We can look up the angle α at v_i between the x-th and the $(r_i^{(k)} + 1)$-th edge and the angle β at v_{i+k+1} between the $(d_i + l_i^{(k)} + 1)$-th and the y-th edge in the angle measurements at v_i and v_{i+k+1}, respectively. Similarly, we can look up the angle $\gamma = \angle_{v_j}(v_{i+k+1}, v_i)$ as we know which edges at v_j lead to v_i and to v_{i+k+1}. If v_i sees v_{i+k+1}, we must have $\alpha + \beta + \gamma = \pi$.
as then $\alpha = \angle_{v_i}(v_j, v_{i+k+1})$ and $\beta = \angle_{v_{i+k+1}}(v_i, v_j)$. In total, we get that if v_i sees v_{i+k+1}, we can find a vertex in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ seeing both v_i and v_{i+k+1}, and for each such vertex v_j we must have $\alpha + \beta + \gamma = \pi$. We will argue that this condition is also sufficient for v_i and v_{i+k+1} to see each other. As the condition is easy to check, this completes the inductive step of the algorithm.

In order to prove that our condition is sufficient, we need to show that if v_i does not see v_{i+k+1}, then for every vertex v_j in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\}$ that sees both v_i and v_{i+k+1}, we have $\alpha + \beta + \gamma \neq \pi$. This is immediate for all such v_j’s for which $\gamma > \pi$, so it remains to consider v_j’s for which $\gamma \leq \pi$. Observe that, as v_i and v_{i+k+1} do not see each other, we then have $\gamma < \pi$. Thus, v_i, v_j, and v_{i+k+1} are the vertices of a triangle in counter-clockwise order. The inner angles of this triangle must sum up to π, i.e., $\angle_{v_i}(v_j, v_{i+k+1}) + \angle_{v_j}(v_{i+k+1}, v_i) + \angle_{v_{i+k+1}}(v_i, v_j) = \pi$. As $\gamma = \angle_{v_j}(v_{i+k+1}, v_i)$, it is enough to show that $\alpha < \angle_{v_j}(v_j, v_{i+k+1})$ and $\beta < \angle_{v_{i+k+1}}(v_i, v_j)$ when v_i does not see v_{i+k+1}.

To see that this is the case, consider the right part of Figure 9. The part of the boundary of P between v_{i+k+1} and v_i (in counter-clockwise order) is the only part of the boundary that can block the line-of-sight between v_i and v_{i+k+1}. This is because the line-of-sight from v_j to v_i and from v_j to v_{i+k+1} must remain unblocked, and $\angle_{v_j}(v_{i+k+1}, v_i) < \pi$. But this means that there must be vertices from $\{v_{i+k+2}, v_{i+k+3}, \ldots, v_{i-1}\}$ inside the triangle v_i, v_j, v_{i+k+1}. The $(r^{(k)} + 1)$-th edge of v_i must lead to the “right-most” of these vertices. Hence $\alpha < \angle_{v_i}(v_j, v_{i+k+1})$. Similarly, it follows that $\beta < \angle_{v_{i+k+1}}(v_i, v_j)$, and thus $\alpha + \beta + \gamma < \pi$. This concludes the proof that $\alpha + \beta + \gamma = \pi$ if and only if v_i sees v_{i+k+1}.

As we derived a necessary and sufficient condition of when to add an edge $\{v_i, v_{i+k+1}\}$ to the visibility graph, the resulting algorithm computes the solution. A naïve implementation runs in time $O(n^3)$. We get the following theorem.

Theorem 1 (IL). A simple polygon P is uniquely determined by its ordered list of angle measurements. Moreover, there is a polynomial-time algorithm that, given this data, reconstructs G_{vis} and hence P.

Corollary 2. An angle agent can solve the visibility graph reconstruction problem, even if restricted to moving along the boundary only.

3.2. Weaker agent models

In the previous section we extended the basic agent model by a sensor that allows to measure the angle between any any two edges incident to the agent’s location. We have shown that the angle agent can always reconstruct P up to similarity (and thus G_{vis}). We actually weakened the model by restricting the agent to move along the boundary only. As we are interested in understanding how much information has to be gathered in order to reconstruct P, it is natural to ask whether our model is more powerful than actually needed for this task. We will now briefly look at different ways of weakening the angle agent further.
A key feature of our model is the assumption that both the list of measurements as well as the angles in each individual measurement are given in counter-clockwise order. This comes naturally in the context of our agent model. In terms of the geometrical formulation of the problem however, we can ask whether we really need this additional structure. Let us assume for a moment that each measurement is unordered, i.e., instead of yielding a list of angles, each measurement yields an unordered set of these same angles. Figure 10 gives an example of two different polygons with the same ordered list of unordered angle measurements. This means that if the measurements are unordered, the polygon cannot always be reconstructed. Similarly, Figure 11 gives an example of two different polygons with the same unordered set of ordered angle measurements, i.e., the same ordered measurements appear in both polygons, but not in the same order. This means that without knowing the order in which the measurements occur along the boundary, the polygon (or G_{vis}) cannot be reconstructed either.

Another feature of the model is that the angle agent is assumed to know the total number of vertices n. It has been shown, however, that the agent can even do without this prior knowledge of n \cite{14}. The difficulty in this case is that
the agent cannot collect all information in the beginning, as it would not know when it has completed its tour of the boundary. The reconstruction can still be done by adapting the algorithm we presented above. The main idea is to gradually identify the vertices visible to \(v_0 \) in steps \(k = 1, 2, \ldots \), by repeatedly answering the question whether \(v_0 \) sees \(v_k \). To answer this, similarly to the algorithm above, the agent only needs to know the subgraph of \(G_{\text{vis}} \) induced by \(\{v_0, \ldots, v_{k-1}\} \) and the subgraph of \(G_{\text{vis}} \) induced by \(\{v_1, \ldots, v_k\} \), as well as the angle measurements at vertices \(v_0, v_1, \ldots, v_k \). This fact immediately yields an inductive approach, in which the agent only needs to gather one new angle measurement in each step. After all edges incident to \(v_0 \) have been identified, the global index of the clockwise neighbor \(v_{n-1} \) of \(v_0 \) has been obtained, and thus \(n \). Afterwards, the agent can either continue to use the modified algorithm for all other vertices, or it can simply fall back to the algorithm for the case where \(n \) is known a priori.

Another way to reduce the amount of information available to the agent is to weaken the angle measurement at each vertex. For example, the agent might only be able to measure the inner angle of the polygon at each vertex, i.e., the angle inside the polygon formed by the two boundary edges adjacent to the vertex. It has been shown that in this case the agent cannot always reconstruct \(\mathcal{P} \) [4]. This remains true even if the agent can additionally decide which vertices, among those currently visible, are neighbors on the boundary (i.e., the agent can perceive the \textit{combinatorial visibility vector}, cf. Section 5).

Finally, we could ask what if the agent can measure all angles except for one angle (at any vertex). The missing angle can easily be computed as the sum of all inner angles of \(\mathcal{P} \) equals \((n - 2)\pi \). As soon as two angle values are missing, however, there can be more than one polygon consistent with the angle measurements made by the agent (cf. Figure 12).

4. Reconstruction by a freely moving agent

We approach the problem of reconstructing the visibility graph \(G_{\text{vis}} \) with an agent in the polygon \(\mathcal{P} \) by conceptually splitting it into a data collection phase...
and a computation phase. In the data collection phase, the agent gathers all the
information it can ever extract from P, i.e., the agent gathers information until
it does not need to move any further as it will not obtain new data that way.
The computation phase then consists of using the collected information to derive
G_{vis} computationally. Throughout this section, if not mentioned otherwise, we
will assume that the agent is an extension of the basic agent model and knows
the number n of vertices of G_{vis}. We will refer to such an agent as an agent with
knowledge of n.

In the previous section we have introduced the angle agent for which a single
tour along the boundary provides enough information about the polygon. In
that case, the interesting part of the reconstruction of G_{vis} is in the computation
phase entirely. The situation becomes more involved if a single tour around the
boundary does not suffice, and the agent thus needs to move across the polygon
as well. Recall that the basic agent model assumes the agent knows the counter-
clockwise order of all edges incident to its location, and thus has a way of locally
distinguishing them. This can be reflected in G_{vis} by replacing every undirected
dge by two directed arcs in opposite directions, labeling each outgoing arc of
a node by its position in the local counter-clockwise order (cf. Figure 13). The
resulting labeling is a local orientation in the sense that every arc emanating
from a node gets a label which is locally unique. Without extra capabilities,
this labeling is the only way that an agent with knowledge of n can distinguish
arcs. In particular the agent, in general, has no direct way of going back to
where it came from: after a move, it has no immediate way of distinguishing
the arc that leads back to its previous location.

As the agent is moving along arcs of G_{vis}, and as all the data it can perceive
is encoded in the labeling of G_{vis} (the knowledge of n can be encoded easily),
we can forget about the underlying polygon P for a while. Instead, we view our
setting as an exploration of the directed, strongly connected, and locally ori-
ented graph G_{vis}. Figure 14 shows that general locally oriented graphs cannot
be reconstructed by an agent with knowledge of n (the sensing of the agent in
this setting yields the labels of the arcs emanating from its location): The figure

Figure 13: A polygon with the corresponding directed and arc-labeled visibility graph. Every
bidirected edge represents two arcs of opposite orientation.
gives two different graphs which yield the same observations, no matter how the agent decides to move in each step. While this shows that the reconstruction of general directed graphs is impossible, the situation might be different for (directed and labeled) visibility graphs, as the agent might be able to exploit particular properties of the graph and its labeling in this case. The question whether this is possible has not been answered yet. In fact, the complete characterization of the properties of visibility graphs is still an open problem, even though it has received considerable attention in the past \cite{21, 22}.

The remainder of this section outlines a general method which an agent with knowledge of \(n \) and certain additional capabilities can employ to reconstruct \(G_{\text{vis}} \). First, Section 4.1 describes how an agent exploring any locally-oriented arc-labeled graph \(G \) (think of a graph with colored edges) can systematically gather all information it can ever encounter, i.e., how the agent can perform the data collection phase in general graphs. Section 4.2 then goes back to the exploration of \(G_{\text{vis}} \) and establishes the existence of certain structural properties in the collected data which can be used as a basis for the reconstruction of \(G_{\text{vis}} \). Finally, Section 4.3 sketches an application of the general method to a setting in which the agent is equipped with a look-back sensor, which enables the agent to retrace its movements.

While the general method as described here is constructive, its purpose is to prove that with certain additional capabilities the visibility graph reconstruction problem can be solved, albeit not necessarily in an efficient way. In fact, without additional considerations, the resulting algorithms will generally be very inefficient as they iterate over large sets of graphs.

4.1. Data collection phase

As we saw in Figure 14, distinct directed strongly connected arc-labeled (multi-) graphs can appear indistinguishable to an agent moving along arcs and sensing arc-labels. As another example consider an agent exploring graph \(A \) from Figure 15. Inspecting the figure carefully, it should become clear that the same sequences of labels appear along paths in each graph, and hence from its observations alone, the agent has no way of knowing which of the graphs it is exploring. As our agent has knowledge of the total number of vertices \(n \), it can exclude \(C \) and \(D \), but the agent is not able to decide whether it is exploring \(A \) or \(B \). So, what information can the agent infer? Observe that the graph \(D \) is the only graph of size at most three which yields the same observations.
as A, no matter how the agent decides to move in each step. If the agent knew this smallest indistinguishable graph D, it would not need to move at all anymore, as it could simulate all movements and sensing in D instead of executing both explicitly in the graph. In other words, the agent cannot obtain more information about A than the information encoded in D (apart from the size n of A, which it knows already initially).

An important result from the field of graph fibrations implies that the smallest graph indistinguishable in this way from some directed, strongly connected, arc-labeled graph G is always unique (up to isomorphism) [5]. This graph is called the minimum base graph of G, and we denote it by G^*. As a consequence we have that if an agent exploring G can extract G^*, this completes the data collection phase of the reconstruction problem.

It turns out that an agent with knowledge of n can extract G^* in every (directed, strongly connected, arc-labeled) graph G, given its number of vertices. The agent can employ the following strategy that was introduced and proved formally in [7]. The goal of the agent is to determine both G^* as well as the (unique) vertex v^* of G^* that appears indistinguishable from the agent’s starting location v_0 in G. The agent starts with the set \mathcal{C} of all candidate pairs (G', v') consisting of a graph G' of size at most n and a vertex v' of G'. Starting from this set, the agent removes more and more candidate pairs, until only (G^*, v^*) remains. Initially, since G^* is the minimum base graph of G, it is safe to eliminate all graphs from \mathcal{C} for which a smaller, indistinguishable graph exists.

The idea now is to repeatedly select two of the remaining pairs in \mathcal{C} and eliminate one, until eventually only (G^*, v^*) remains. Doing that requires the agent to physically move in G, keeping track of the sequence of labels σ of the edges traversed since the beginning of the execution. In order to conclude which one of two pairs $(G_1, v_1), (G_2, v_2) \in \mathcal{C}$ can be discarded, the agent first determines, for $i \in \{1, 2\}$, the vertex v_i' that would be reached when exploring graph G_i.
starting at v_i and following the label-sequence σ. It can be show that there is a label-sequence δ that appears along a path starting at v'_1 in G_1 but does not appear along any path in G_2 that starts at v'_2, or vice-versa. Without loss of generality, assume that δ appears along a path starting at v'_1 in G_1. The agent now attempts to execute physical moves according to δ. Either this fails because at some point there is no edge with the correct label at the agent’s location, or the agent successfully traces δ. In the former case, the agent can conclude that $(G_1, v_1) \neq (G^*, v^*)$ and may thus eliminate (G_1, v_1) from C. In the latter case, the agent may, similarly, eliminate (G_2, v_2) from C. After eliminating one of the pairs, the agent updates σ and removes all pairs (G', v') from C for which no walk in G' starting at v' has edge-labels σ. Overall, in each step, (G^*, v^*) will remain in C, but at least one other pair will be removed. This implies that, while the strategy may be laborious, it is guaranteed to terminate eventually. Note that the above can easily be adapted if only an upper bound on n is known.

So far we assumed G to be a general directed, strongly connected, and arc-labeled graph. This means that all of the above carries over to the exploration of visibility graphs, provided that the data that the agent is able to perceive can be encoded in an arc-labeling of the directed visibility graph G_{vis}. This is, for instance, the case for an agent that is able to measure angles as introduced in Section 3. If α_i is the counter-clockwise angle between the arcs i and $i+1$ at some node, this information can for example be encoded by extending the label of the i-th arc at the node from i to (i, α_i). The more sophisticated the sensors of the agent are, the more complex the arc-labels become, and hence the minimum base graph G^*_{vis} will generally be larger. Intuitively, observing more local data results in previously indistinguishable vertices becoming distinguishable. For an agent with powerful sensors, this might mean that $G^*_{\text{vis}} = G_{\text{vis}}$ and, consequently, the above strategy already yields the visibility graph itself. On the other hand $G^*_{\text{vis}} \neq G_{\text{vis}}$ means that the polygon has symmetries with respect to the agent’s perception, which make it impossible to derive G_{vis} without further exploiting the geometric meaning of the collected data.

4.2. Computation phase

In the following, we go back to the setting of an agent with knowledge of n that is exploring G_{vis}. We assume G_{vis} to be directed and labeled according to the data the agent can perceive, as described before. Since an agent exploring any labeled graph can always determine the minimum base graph if it knows (an upper bound on) the size n of G_{vis}, the computation phase reduces to: Given the minimum base graph G^*_{vis} of G_{vis} and (a bound on) the size n of G_{vis}, compute G_{vis}.

Let us start by analyzing the relation between G^*_{vis} and G_{vis}. Observe that the vertices of G^*_{vis} are pairwise distinguishable, i.e., the agent can distinguish which of two vertices of G^*_{vis} it is located at by making a finite number of moves. This is because G^*_{vis} is the smallest graph that is indistinguishable from G_{vis}: if two vertices of G^*_{vis} would be indistinguishable, a smaller graph could be obtained by merging the two vertices, i.e., by removing one of the vertices and connecting all of its incoming arcs to the other vertex instead (cf. the
transformation from B to C in Figure 15. Therefore, we naturally associate every vertex v of G_{vis} to the unique vertex of G^*_{vis} which is indistinguishable from v. With respect to indistinguishability, every vertex of G^*_{vis} represents an equivalence class of vertices in G_{vis}. In terms of the agent’s movements in G_{vis} this means that starting on two different vertices of the same class with identical movement decisions the agent will again end up in vertices of the same class. This is evident, as the movements can be simulated in G^*_{vis} and there they result in the exact same walk. Recall that the labeling of G_{vis} encodes the position of each outgoing arc at a node in counter-clockwise order. As the counter-clockwise ordering starts on the boundary of the polygon, boundary arcs can be distinguished from non-boundary arcs in G^*_{vis}. Both Hamiltonian cycles, one in clockwise and one in counter-clockwise direction, induced by the boundary of \mathcal{P} correspond to (possibly smaller) Hamiltonian cycles in G^*_{vis}, and thus the sequence of classes encountered along the boundary must repeat n/k times, where k is the number of vertices of G^*_{vis} (cf. Figure 16). Consequently, all classes must be of equal size.

Consider a node v_i of G_{vis} such that v_i’s neighbors on the boundary see each other, a so-called ear. In the underlying polygon, an ear is a vertex that does not obstruct any lines of sight, i.e., an ear is a vertex that can be “cut off” in order to obtain a smaller (but still simple) polygon (cf. Figure 16). As every polygon has at least one ear, this might suggest a recursive approach for the reconstruction: cut off an ear, recurse, and glue the ear back on. Recall however that we are operating on G^*_{vis}. Even if we had a way of finding an ear, it is not clear how to cut it off, i.e., how to obtain a graph indistinguishable to the visibility graph of the new polygon from G^*_{vis} (cf. Figure 16). Assume, however, that the following property holds.

Property (D): For every ear v_i of G_{vis}, all vertices in the same class as v_i are ears.
Figure 17: Cutting off an entire class of ears can easily be done in G_{vis}^* by removing the corresponding vertex entirely.

Then, of course, it is still not clear how to cut off a single ear in G_{vis}^*. Now, as all vertices in the same class are ears as well, we can simply cut off all of them at once by removing the corresponding vertex in G_{vis}^* entirely. The result is a graph which makes it possible to simulate an agent moving inside the subpolygon obtained by cutting off the ears from \mathcal{P} (cf. Figure 17). As mentioned above, every polygon has at least one ear. This means that, assuming we could find these ears, we could repeatedly cut off entire classes of ears, obtaining smaller and smaller polygons. At some point there would be only one class C^* left in G_{vis}^*. The corresponding polygon has to have at least one ear and by (D) all its vertices must hence be ears. This can only be true for a convex polygon. But that means that the vertices in C^* mutually see each other, or in other words C^* forms a clique in G_{vis}. The result is the following theorem.

Theorem 3 ([7, 8]). If (D) holds, then there is a class of vertices that forms a clique in G_{vis}.

Assume that (D) can be shown for an agent model. Even if the agent has no way of finding ears, and thus no way of constructing C^* as we did above, it can use the fact that there has to be at least one class that forms a clique in G_{vis}. Such a class can immediately be found if n is known, by inspecting G_{vis}^*, because a class that forms a clique appears as a vertex with $n/k - 1$ self-loops in G_{vis} (cf. Figure 17). Of course, no other vertex of G_{vis}^* can have more self-loops, and hence the total number of vertices n is encoded in G_{vis}^*. Because an upper bound on n is sufficient for finding G_{vis}^*, this means that n can always be inferred by an agent knowing only an upper bound at the start.

There is no general way how to use the existence of a class that forms a clique in the reconstruction of G_{vis}. In some cases its existence might make it easy to reconstruct G_{vis} directly. In other cases it might be possible to identify ears, and therefore it might be possible to explicitly construct C^* by repeatedly cutting off classes of vertices. Starting with the clique C^*, the visibility graph could then possibly be built by adding back the other classes one at a time.
4.3. Example: agent with look-back sensor

A natural way for an agent to systematically collect information in a graph-like environment is to traverse all possible walks in the order of their length. However, without additional capabilities, an agent with knowledge of \(n \) encounters a major difficulty when trying to perform a systematic search: after a move, the agent has no direct way to return to where it came from, unless the move was along the boundary. An way of avoiding this difficulty is to equip the agent with an additional sensor which perceives the label of the arc that leads back to the agent’s previous location (cf. Figure 18). We refer to an agent with this capability and knowledge of \(n \) as a *look-back agent*. As there is no restriction on the memory usage of even the basic agent, the look-back agent is able to backtrack along walks of arbitrary length and thus to systematically traverse all walks of a fixed length. But how much does this help for the reconstruction of the visibility graph of a polygon?

It turns out that, surprisingly, the capability of looking back alone already empowers the agent to solve the reconstruction problem. The general method that we have seen in the previous subsection is a generalization of the proof strategy used in [8] for a look-back agent. This section illustrates the general method by applying it back to this original setting. While some parts of the proof follow immediately from the general method, others have to be proved individually for the particular setting. This section aims to illustrate this interplay. In general, if the method is successful, it yields a constructive proof that the visibility graph reconstruction problem can be solved with a particular configuration of additional capabilities of the agent. The method provides an algorithm that can only guarantee an exponential running time. Making use of the particular nature of the data available to an agent, however, the algorithm can be sometimes improved to run in subexponential time (as discussed above).

Applying the general method involves the following three steps that are discussed in the following for the setting of a look-back agent:

1. Encoding the sensing of the agent in an arc-labeling of \(G_{\text{vis}} \);
2. Proving Property (\(\Diamond \));

Figure 18: The perception of the agent with look-back capability after its move from \(v_5 \) to \(v_0 \). The agent can distinguish the arc leading back to \(v_5 \), i.e., it knows its index “4” in the local ordering.
3. Using the existence of a class that forms a clique in G_{vis} for the reconstruction.

For the first step, we need to extend the label of each arc in such a way that the agent can identify which arc to use in order to back-track a move. A straightforward way of doing that is to take the standard labeling for the basic agent (cf. Figure 13) and extend the label of each arc (u,v) by appending the label of the arc (v,u) as depicted in Figure 19. After moving along an edge with label (a,b), a look-back agent can back-track its move by moving along the arc with label (b,a). Recall that the original labeling was already a local orientation, and thus the extended one is a local orientation as well.

The next step is to show Property (\bigcirc). One can (easily) show that a node v_i is an ear if and only if its counter-clockwise neighbor along the boundary, v_{i+1}, has an edge with label $(d_{i+1} - 1, 2)$, where d_{i+1} is the degree of v_{i+1}. In other words, there is a path of length two in G_{vis} which starts at v_i and is labeled $(1, d_{i+1}), (d_{i+1} - 1, 2)$ (or equivalently, there is a path labeled $(d_i, 1), (2, d_{i+1} - 1)$), cf. Figure 19. On the other hand, two nodes in the same class are indistinguishable, i.e., every sequence of labels that occurs along a path starting at one of them also occurs on a path starting at the other. In conclusion, if a node v_i is an ear, it has a path labeled $(1, d_{i+1}), (d_{i+1} - 1, 2)$. Hence all vertices in the class of v_i have such paths. And hence all these vertices are ears as well.

Let C_1, C_2, \ldots, C_k be the different classes of G_{vis} in the order in which they appear along the boundary, where k is the number of vertices of G_{vis}^\ast. At this point, by the general method, we know that there must be a class which forms a clique in G_{vis}. The look-back agent can easily find such a class C_x by counting the number of self-loops that every vertex in G_{vis}^\ast has – recall that a class is a clique if and only if its vertex in G_{vis}^\ast has the maximum number of $n/k - 1$ self-loops. Knowing C_x can help the agent in the reconstruction, as we will illustrate. Observe that G_{vis}^\ast encodes to which class every arc leads;
Figure 20: A vertex \(v_i \) in a class \(C_x \) that forms a clique in \(G_{\text{vis}} \) has an arc to every other vertex of \(C_x \). These arcs divide \(\mathcal{P} \) into sectors (depicted as the alternating shaded and white areas), such that each class appears exactly once in every sector. From \(G_{\text{vis}}^\star \), the agent knows to which class \(C_y \) an arc leads, and it also knows the sector into which the arc falls. This is enough to uniquely identify the exact target of the arc. Here, \(k = 5 \) and \(j = i + ((y - x) \mod k) \).

Reconstructing \(G_{\text{vis}} \) means identifying, for every arc, to which vertex of its class the arc leads. For a node \(v_i \in C_x \), this can be done quite easily. The agent knows that \(v_i \) sees all vertices in \(C_x \setminus \{v_i\} \), and that these vertices are distributed evenly along the boundary, so the arcs leading to \(C_x \) must lead to the vertices

\[
v_i + n/k, \ v_i + 2n/k, \ v_i + 3n/k, \ldots
\]

in that order. The arcs leading to \(C_x \) partition the boundary of \(\mathcal{P} \) into sectors, where each sector contains exactly one vertex of each class (cf. Figure 20). As the agent knows to which sector each arc at \(v_i \) leads, and every class occurs exactly once in this sector, it can immediately deduce to which vertex an arc leads. The strategy becomes much more involved if \(v_i \notin C_x \). We omit the discussion of this case here and refer to [8] for more details.

The general method gives an exponential time reconstruction algorithm for a look-back agent. In this instance, the general approach can be improved to yield a polynomial time reconstruction algorithm, as was shown in [8]. A key ingredient used in the proof is the fact that the information contained in the tree of all walks starting from a node, the so-called view of the node, is already encoded in a subtree of depth \(n - 1 \). Obtaining this finite subtree for every vertex is therefore enough in order to group the vertices into equivalence classes with respect to their view. As in the previous subsection, at least one of these classes forms a clique in the visibility graph. Starting from this clique, the entire visibility graph can be reconstructed. The straightforward algorithm using this technique has exponential running time, because it constructs all views up to depth \(n \) in order to partition vertices into equivalence classes. For this partitioning however, it is sufficient to be able to distinguish between pairs of classes, i.e., between every pair of distinct views. Thus, we can obtain a polynomial-time algorithm that exploits this fact by constructing a walk for every pair of classes, which it uses to distinguish between these two classes.

While instructive, it seems somewhat artificial to apply the general reconstruction method to agents with look-back capability, since a polynomial-time
reconstruction algorithm for that setting exists. The general method as described above was introduced in a different context, in which the agent cannot look-back, but instead can roughly measure angles. In that setting, for every pair of arcs emanating from its location, the agent is able to distinguish whether the counter-clockwise angle formed by these two arcs is convex ($\leq \pi$) or reflex ($> \pi$) (cf. Figure 21). It is easy to see how to encode this information in an arc-labeling: at every node v_i, every outgoing arc is labeled with its position in counter-clockwise order and, in addition, with a sequence $s \in \{0, 1\}^d$, such that $s_j = 0$ if and only if the arc forms a convex angle with the j-th arc at the node (setting $s_j = 0$ for the j-th arc). More surprisingly, the other steps of the method can also be completed [7], which shows that being able to distinguish the “type” of the angle between arcs already empowers an agent to reconstruct G_{vis}. Without the ability to backtrack movements, however, it seems doubtful that G_{vis}^* can be constructed in polynomial time.

5. Mapping polygons – known results

This section is centered around Table 1 which gives a summary of the known results for the visibility graph reconstruction problem. The underlying agent-models are modifications of the basic agent model and differ in the type of sensors the agent is equipped with additionally, the restrictions on the movements of the agent, and the prior knowledge about the size of polygon. In the following, the different components are explained briefly. For convenience, we repeat the definitions of the sensors introduced in Sections 3 and 4.

angle sensors The standard angle sensor (Section 3) measures all counter-clockwise angles between pairs of edges of G_{vis} which are incident to the agent’s current location (cf. Figure 22 (a)). The angle type sensor (Section 4.3) is the same as the standard angle sensor, except that angles are not measured exactly: for each angle, the angle type sensor only returns whether this angle is convex ($\leq \pi$) or reflex ($> \pi$) (cf. Figure 22 (b)).
inner angle sensor only measures the largest angle among all those measured by the standard angle sensor (i.e., the angle formed by the boundary edges of P) (cf. Figure 22(c)). This angle, however, is returned exactly.

compass A compass provides a global reference direction that is the same for every vertex. Also, the compass gives all the angles between the global reference direction and each edge incident to the current position (cf. Figure 22(d)). In particular, a compass yields all angle available with an angle sensor.

cvv sensor This sensor yields the combinatorial visibility vector of the agent’s current location v_i: a binary vector $\text{cvv}(v_i) \in \{0, 1\}^{d_i+1}$ with the property that $\text{cvv}_0(v_i) = \text{cvv}_{d_i}(v_i) = 1$, and $\text{cvv}_j(v_i) = 1$ for $0 < j < d_i$ if and only if the j-th and $(j+1)$-th vertices that v_i sees (in counter-clockwise order) are neighbors on the boundary (cf. Figure 23). Intuitively, the cvv sensor provides information between which of the visible vertices (in counter-clockwise order) there are other vertices which cannot be seen.

distance sensor The distance sensor simply measures the length of every edge incident to the agent’s current location, i.e., the Euclidean distance from every visible vertex.

initial info The basic model assumes that the agent has no knowledge about the number of vertices of the polygon n. The model can be altered further
Visibility Graph Reconstruction

sensors	initial	movement	solvable	time	source
angles, compass	–	boundary	yes	poly	4
angles	–	boundary	yes	poly	14,15
cvv, inner angles	n	boundary	no		4
angle types	boundary	open			
distances	boundary	open			
pebble	–	free	yes	poly	33
angle types, look-back	–	free	yes	poly	4
look-back	\bar{n}	free	yes	poly	8
angle types	\bar{n}	free	yes	exp	7
cvv, look-back	–	free	no		6
distances	free		open		
no sensors	n	free	open		

Table 1: Summary of the cases in which an agent is known to be able/not able to solve the visibility graph reconstruction problem. Note that a polynomial running time in a setting where only an upper bound $\bar{n} \geq n$ is known a priori means polynomial in \bar{n} rather than n.

by assuming that n is known, or that only an upper bound $\bar{n} \geq n$ is known.

look back If the previous move of the agent was from v_i to v_j, the look-back sensor (Section 4.3) returns the index of the edge (v_j, v_i) in the ordered list of edges that the agent perceives at v_j (cf. Figure 18). This enables the agent to undo past moves, as explained in Section 4.3.

movement We distinguish between two types of movement. One type allows the agent to move freely along any edge of the visibility graph which is incident to its current location. In the case of boundary movement, the agent is restricted to moving along boundary edges only. Section 3 introduces the case of boundary movement in more detail, while Section 4 studies the case of free movement.

pebble A pebble is an object used by the agent to mark vertices. The pebble can be dropped by the agent at its current location and can later be picked up again. The agent can distinguish the vertex holding the pebble both when seen from afar as well as when the agent reaches the vertex itself.
6. Related work

In the previous sections we investigated agents exploring polygons with the goal of reconstructing a map of their environment. We now extend our attention to related settings and point out some prominent results. We in turn consider variations on the task to be solved, the means by which data is acquired, and the nature of the environment.

6.1. Agents in polygons solving tasks other than mapping

So far, we focused on the mapping problem, but mobile agents can be used to perform a variety of other tasks in a polygon. One of the first problems that was considered for mobile agents was the art-gallery problem. We now exhibit this and a few other problems.

Art-gallery problem. The art-gallery problem asks to place guards at some vertices of a simple polygon with \(n \) vertices such that every point inside the polygon is visible to at least one of the guards. The famous art-gallery theorem asserts that every polygon can be guarded in this way by placing at most \(\lfloor n/3 \rfloor \) guards [10, 17]. While the theorem assumes full knowledge of the geometry of the polygon, Ganguli et al. [19] considered the art-gallery problem on an initially unknown polygon, where the guards are autonomous mobile agents. The guards were allowed to move freely inside the polygon and to communicate over a distance as long as they see each other. Ganguli et al. showed that \(\lfloor n/2 \rfloor \) such mobile guards can self-deploy at vertices such that the polygon is guarded. This result raises the question whether the gap between \(\lfloor n/2 \rfloor \) and \(\lfloor n/3 \rfloor \) is inherent, due to the fact that the global geometry of the polygon is initially unknown to the agents.

Suri et al. [33] showed that this is not the case, and in fact \(\lfloor n/3 \rfloor \) guards can self-deploy to guard the polygon. The authors considered the basic agent model of Section 2 and additionally equipped each agent with a pebble (cf. Section 5) and the capability to perceive the combinatorial visibility vector of a vertex (cf. Section 5). We note that this agent model is weaker than the one that Ganguli et al. employed. Suri et al. showed that their guards can compute the visibility graph of any simple polygon and thus also a triangulation of the visibility graph. This allows to use the result of Fisk [17], who showed that covering a triangulation requires at most \(\lfloor n/3 \rfloor \) vertices, and hence a polygon can be guarded with \(\lfloor n/3 \rfloor \) guards if its triangulation is known. The proof is by first 3-coloring the triangulation and then including the vertex of the least represented color of each triangle into the covering.

Inferring the number of vertices of a polygon. Any agent capable of reconstructing the visibility graph must implicitly be able to infer the number of vertices \(n \) of the polygon. Conversely, if we can show that an agent cannot infer \(n \), it follows that it cannot reconstruct the visibility graph.

Naturally, computing \(n \) is a trivial task for an agent with a pebble – an agent with a pebble can also infer the size of a polygon with holes [33]. Similarly, the
task is easy when some vertex is locally distinguishable from all other vertices and an upper bound on n is known to the agent. The upper bound is only needed in order for the agent to find such a vertex.

It has further been shown that without knowledge of n or of an upper bound on n, the agent can infer the size of a polygon in the following three cases: (a) the agent is restricted to moving along the boundary only and can perform angle measurements [13], (b) the agent can move freely along edges of the visibility graph, can look-back and has an angle-type sensor [4], (c) the agent can move freely along edges of the visibility graph, has an angle-type sensor and has a compass [4]. An agent with combinatorial visibility and look-back capability, on the other hand, cannot infer the size of a polygon in general [6].

While the sensing model introduced in Section 2 is very simple and hence inherently robust, it requires that all visible vertices can be perceived. Komuravelli and Mihalák [24] considered a faulty scenario in which it can happen that the agent perceives two distant vertices as a single virtual vertex (think of vertices that appear very close to each other). They studied whether an agent equipped with pebbles can infer the size of the polygon in this setting. They showed that with a single pebble this is not possible, conjectured that two pebbles are also still insufficient, and showed that three pebbles allow computing the size of the polygon.

The rendezvous problem. An important issue in distributed computing is how multiple autonomous agents can cooperate with each other. In our context, a fundamental question is whether $k > 1$ agents moving inside the same polygon and executing identical algorithms, can meet. Of course, the sensing of the agents has to be extended such that agents can perceive each other. A natural way of modeling this is to allow an agent to sense how many agents are located at its current location and on each of the vertices currently visible to the agent (this capability of the agent is sometimes called strong multiplicity detection). All agents are identical, which means that there is no way to distinguish them.

The strong rendezvous problem requires the agents to gather at an arbitrary vertex of the polygon after a finite number of steps. Obviously, this is not always possible: Consider a convex polygon with n agents that are initially distributed over all n vertices of the polygon. There can be executions in which all agents act simultaneously, and in which the distribution of the agents can therefore never change, as every agent observes the same and thus all agents decide for the same move at the same time.

The weak rendezvous problem requires the agents to position themselves such that all agents are mutually visible. In other words, the locations of the agents have to form a clique in the visibility graph. The weak rendezvous problem has been shown to be solvable for agents that can look-back [8] and for agents with angle-type sensor [7]. The main idea for both results is to use the fact that there is a class that forms a clique in the visibility graph. There is a unique ordering among all those classes, and each agent can simply move to a vertex of the first class of this ordering. We note that every agent which can reconstruct the visibility graph can also solve the weak rendezvous problem:
Since the visibility graph is known, it is then easy to simulate (on this graph) an agent with look-back capability (for which the weak rendezvous problem has been shown to be solvable). Notice that the agent that simulates the look-back agent only has to physically move once it knows its final destination – everything else can be executed in memory. In particular, this implies that the agents from Section 3, which move along the boundary and measure angles, can solve the weak rendezvous problem.

Counting points inside a polygon. Consider a simple polygon with n vertices and a set of k points inside the polygon. A natural task for an agent in this context is to count the number of points. Of course, we need to extend the sensing model of the agent to make it aware of the points first: At any vertex the agent now perceives the list of visible points and vertices ordered in counterclockwise order, rather than visible vertices only. The agent is assumed to be able to distinguish between vertices and points.

Gfeller et al. [20] showed that an agent with a pebble cannot approximate the number of points within a factor of $2 - \varepsilon$, for any $\varepsilon > 0$. In the following, a ρ-approximation of the number of points k is an upper bound z with $k \leq z \leq \rho k$. The results of Gfeller et al. imply that an agent knowing the vertex-edge visibility graph of the polygon (or being able to compute it), together with its initial position in it, can compute a 2-approximation of the number of points. The vertex-edge visibility graph is a bipartite graph with a node for every boundary edge and a node for every vertex of the polygon. There is an edge between a node corresponding to a boundary edge and a node corresponding to a vertex if at least part of the boundary edge is visible to the vertex. We note that the vertex-edge visibility graph induces the visibility graph [27].

It can be shown that the vertex-edge visibility graph is not needed to compute a 2-approximation – knowing the visibility graph instead is already sufficient, at the cost of an exponential running time. The idea is simply to iterate over all vertex-edge visibility graphs that are compatible with the given visibility graph and run the 2-approximation of Gfeller et al. on each of those. The output is the smallest estimation of the number of points encountered in the process.

6.2. Reconstruction not involving agents

In Section 3, we related the visibility graph reconstruction problem for an angle agent inside a polygon to a general problem from geometry which asks to reconstruct a simple polygon from certain measurement data. In our case, we showed that a simple polygon can be reconstructed, given its ordered list of angle measurements. The general problem of reconstructing geometrical objects from various kinds of measurement data has been studied in the past. We give a brief overview of the most prominent results concerning the reconstruction of polygons.

Constructing a consistent polygon. There are two main variants of the general problem of deriving a polygon from measurement data. The first variant asks
to construct some polygon P^* that is consistent with the data measured in the original polygon P (naturally, P is not part of the input). Being consistent means that this data could have originated from a series of measurements in P^* rather than in P. Studies that consider this variant of the reconstruction problem usually focus on the complexity of the problem rather than its feasibility.

The first problem that was studied in this context asked to construct a polygon which is consistent with a given visibility graph. This problem is only known to be in PSPACE - its complexity is still open [16]. A related problem is the characterization of visibility graphs, which as well is a long-standing open problem [21].

Jackson and Wismath [23] studied the problem of constructing an orthogonal simple polygon from the “stabbing information” at all vertices (cf. Figure 24 (left)). An orthogonal polygon is a polygon P for which every boundary edge is either horizontal or vertical. The to-be-found orthogonal polygon is assumed to have no three vertices lying on a vertical or horizontal line, i.e., in particular, every vertex has a horizontal and a vertical boundary edge adjacent to it. A horizontal stab of vertex v is the horizontal ray starting at v and going to the “opposite” side of v’s horizontal boundary edge. A vertical stab is defined analogously. The stabbing information of vertex v is the pair of boundary edges of P with which the horizontal and the vertical stab of v intersect first. If there is no intersection, a placeholder “phantom” line-segment is provided instead (denoted as ∞ in the figure). Jackson and Wismath presented an algorithm with a running time of $O(n \log n)$ that computes an orthogonal simple polygon P' of size n that is consistent with the given stabbing information at every vertex. We note that there can be more than one simple polygon consistent with this stabbing information.

Sidlesky et al. [31] considered a similar construction problem in which all intersections of P with a given set of lines L are given (cf. Figure 24 (middle)). One may assume that every boundary edge of P is intersected by at least two lines from L, as otherwise there are infinitely many polygons P' that intersect L in the same way that P does. The authors present an exponential-time algorithm that constructs all polygons P' that are consistent with the given intersections, including non-simple polygons.

Biedl et al. [3] considered various types of measurements in a simple polygon, and considered the complexity of the problem to decide whether or not there is a simple polygon that is consistent with the given data. Examples for the measurements considered are (1) a set of points on the boundary of the original simple polygon, such that every boundary edge contains at least one point, and (2) a set of visibility polygons, i.e., the regions of the polygon that are visible from certain points in the polygon (for the latter, cf. Figure 24 (right)). If no restriction on the shape of the polygon is enforced, the problem was shown to be NP-hard for each type of data considered in the study. Polynomial-time algorithms were given for special cases only, such as when the polygon is required to be orthogonal and monotone, or star-shaped. Other special cases remain NP-hard, such as when the polygon is required to be orthogonal but not
Rappaport [29] considered the orthogonal-connect-the-dots problem: Given a set of points in the plane, find an orthogonal simple polygon whose vertices coincide with these points (cf. Figure 25 (left)). Note that here the points are not given in a particular order. Rappaport was able to show that the problem is NP-complete, when 3 consecutive points on the boundary can lie on a horizontal or vertical line.

Reconstructing the polygon. The second variant of the construction problem asks to reconstruct the original polygon \(P \) from data measured in \(P \). Solving this problem not only involves constructing a consistent polygon, but also requires to show that among all polygons, \(P \) itself is the only polygon that is consistent with the data measured in \(P \). This type of reconstruction problem arises naturally in the context of autonomous agents mapping polygonal environments: It is not enough for an agent to construct some polygon which is consistent with its observations, the agent wants to find the exact polygon it is located in. Here the focus is on the question whether reconstruction is at all possible from the given data, finding efficient algorithms is only of secondary interest.

Recall the orthogonal-connect-the-dots problem mentioned above (cf. Figure 25 (left)). O’Rourke [26] considered the problem further and showed that if no three consecutive vertices on the boundary of the polygon lie on a vertical or horizontal line, then the coordinates of the vertices determine the polygon uniquely. What is more, he showed that in this case the problem is not NP-hard anymore, by providing an algorithm that solves the reconstruction problem in

\[
\begin{array}{|c|c|c|}
\hline
\text{Vertex} & \text{hstab} & \text{vstab} \\
\hline
v_0 & \infty & \infty \\
v_1 & \infty & \infty \\
v_2 & \infty & \infty \\
v_3 & v_7 & v_8 \\
v_4 & v_7 & v_8 \\
v_5 & \infty & v_2v_3 \\
v_6 & \infty & \infty \\
v_7 & \infty & \infty \\
v_8 & \infty & \infty \\
v_9 & v_1v_2 & v_2v_3 \\
\hline
\end{array}
\]
time $O(n \log n)$.

In Section 3.1 we focused on reconstructing a simple polygon P from its ordered list of angle measurements, and we showed that P is indeed the only polygon consistent with this data. Moreover we developed a polynomial-time algorithm that finds the original polygon P. These results appeared in [15].

Coullard and Lubiw [11] studied the problem of deciding whether a given edge-weighted graph is the distance visibility graph of a polygon, i.e., a visibility graph with edge-weights equal to the length of the corresponding line segments in the plane. Note that this question is easy to decide in exponential time, by trying out all Hamiltonian cycles and repeatedly triangulating the graph based on the current cycle. If one of these triangulations can be embedded in the plane as a simple polygon (and the other edge-weights not used in the triangulation are consistent with the embedding), then, and then only, the given graph is a distance visibility graph. Furthermore, the resulting polygon is uniquely defined by the distances. Coullard and Lubiw gave a necessary condition for a graph (without distances) to be the visibility graph of a polygon, and, based on this property, the authors proposed a polynomial-time algorithm that decides whether a given edge-weighted graph is the distance visibility graph of a simple polygon.

Snoeyink [32] showed that every simple polygon P on n vertices is uniquely determined by its triangulation given as a graph, its inner angles, and its $(n - 3)$
cross-ratios (cf. Figure 25 (right)). A cross-ratio of a non-boundary edge of a triangulation is defined in terms of quadrilaterals, i.e., pairs of triangles with a common edge in the triangulation. If \(a, b, c \) and \(a, d, e \) are the edges of both its triangles in counter-clockwise order, the cross-ratio of a quadrilateral is the product of the lengths of \(b \) and \(d \) divided by the product of the lengths of \(c \) and \(e \). An inner angle of a polygon at vertex \(v \) is the angle inside \(P \) which is enclosed by the two boundary edges adjacent to \(v \).

6.3. Agents exploring other environments

The basic agent as defined in Section 2 moves along the edges of the visibility graph of a simple polygon. We can readily generalize this model for an agent that moves inside arbitrary graph-like environments. In fact, some of the techniques that we introduced in the previous sections were originally developed for this more general setting. In the following, we mention some key results for the exploration of graph-like environments. Research has mostly focused on determining under which circumstances an agent can explore and reconstruct an arbitrary connected graph.

Intuitively, exploring a general graph-like environment is more difficult for the agent, since it cannot exploit the structure of the underlying geometry. For example, the visibility graph of a simple polygon always contains a Hamiltonian cycle (the boundary), and we have assumed in this paper that the agent is able to distinguish the edges of this cycle from other edges by their labels. In the general setting, there is no such assumption on the labeling, except that the edges incident to each vertex are assumed to be mutually distinguishable, i.e., the graph is assumed to be locally oriented. On the other hand, in the general setting, the agent is usually assumed to be able to look-back. We will see shortly that in contrast to the exploration of visibility graphs, in general graphs the ability to look-back alone does not empower the agent to reconstruct the graph. Because of the look-back ability, we can model the general setting as the exploration of an undirected, edge-labeled graph of \(n \) vertices and \(m \) edges.

The exploration becomes straightforward when the nodes of the graph are labeled by distinct identifiers. In this case, the map construction problem is equivalent to the traversal problem, since the map can easily be constructed as soon as the identifiers of the endpoints of every edge are known. As the agent is capable of looking back, it can retrace its movements and solve the traversal problem by employing a conventional depth-first search algorithm. In fact, the depth-first traversal is asymptotically optimal in terms of the number of required moves, as it needs \(\Theta(m) \) moves – obviously no other solution can do better as it has to travel along each edge at least once. A modified version of the algorithm which takes \(m + O(n) \) moves has been proposed by Panaite and Pelc [28]. Another variation of the traversal problem, the so-called piece-meal exploration, has been studied by Awerbuch et al. [11]. Here the agent can only execute a certain number of moves before it has to return to its home-base (e.g. for refueling).

The map construction problem becomes more challenging in an anonymous graph in which nodes are unlabeled. In this case, traversing the graph is not
equivalent to map construction except for some special classes of graphs such as trees. If an upper bound on the diameter of the graph (e.g. n or the diameter itself) is known, traversal can always be achieved by trying all possible walks up to a length equal to this bound. Note that the knowledge of an upper bound on the diameter is necessary for terminating the traversal, without this bound the agent can still travel all edges within a finite time, but it does not know when this point is reached and can thus not stop after any finite time. While we generally do not assume a bound on the memory of the agent, it was shown that it needs at least $\Omega(\log n)$ bits to traverse a graph of size n \cite{18}. The long standing open question about the space complexity of graph traversal was closed by Reingold \cite{30}, who showed a matching upper bound of $O(\log n)$ bits on the required memory.

Even though all (connected) graphs can be systematically traversed by an agent, the map construction problem cannot be solved in general. We have seen examples for indistinguishable non-isomorphic directed graphs in Section \ref{sec:indistinguishable} (cf. Figure \ref{fig:indistinguishable}). It turned out that in polygonal environments, the capability of “looking back” empowers the agent to distinguish any pair of visibility graphs. Intuitively, this does not carry over to general graphs due to symmetries that can occur. As an example for indistinguishable undirected graphs, consider the pair of graphs G, H shown in Figure \ref{fig:indistinguishable}. The two graphs are non-isomorphic, but an agent traversing graph G makes the exact same observations as an agent traversing graph H, provided that both agents start on corresponding vertices. Thus, both these graphs are non-recognizable, i.e., the map construction problem cannot be solved for either of them. The class of all recognizable graphs has been characterized by Yamashita and Kameda \cite{34}.

A main problem to tackle when constructing a map is how to deal with the observed symmetries. One way of breaking symmetries in a graph is to equip the agent with some means of marking a node, i.e., making a node locally distinguishable from all other nodes (cf. Section \ref{sec:marking}). For instance, the agent may have a pebble (cf. Section \ref{sec:pebble}) – a simple device that can be placed on a node such that the agent recognizes the node whenever it comes back to it. A stronger model assumes that there is a \emph{whiteboard} at each node, which allows the agent

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{indistinguishable.png}
\caption{Two non-isomorphic graphs G, H that are indistinguishable together with their minimum base graph B. The numbers on the nodes represent the equivalence classes with respect to symmetry. Edge labels are omitted to not clutter the figure.}
\end{figure}
to leave information that it can access and modify on subsequent visits of the
node. The simple model with a single pebble is already enough to fully break
all symmetries and enable the agent to construct a map of any graph: Starting
with a map containing just the initial node, the agent extends its map one
edge at a time by traversing an edge, marking the other end with the pebble,
and then backtracking and checking whether the now marked node was visited
before and thus already is part of the map. The model fails if there are multiple
identical and indistinguishable agents (with indistinguishable pebbles) working
in parallel. In this case not even a whiteboard at each node is sufficient.

In directed graphs, if agents cannot look-back, an agent can still always
systematically traverse the graph assuming an upper bound on its size is known,
by trying all possible graphs and starting locations and traversing all walks
for each choice, similar to the procedure in Section 4.1. However, such an
exploration algorithm generally requires exponential time. Bender et al. [2]
showed that if an upper bound on the size of the graph is known a priori, an
agent with a pebble can always construct a map of a directed, strongly connected
and locally oriented graph using a polynomial number of moves. Without prior
knowledge on the total number of vertices \(n \), they showed that \(\Theta(\log \log n) \)
pebbles are necessary and sufficient to solve the map construction problem.

We saw in Section 4 that an agent exploring any directed graph \(G \) can always
construct the minimum base graph of \(G \), provided that at least an upper bound
on the number of vertices is known. When operating in an undirected graph,
the same result of course carries over. The result was originally obtained by a
different proof though, using the fact that the information encoded in the view
of a node is already contained in its view up to level \((n − 1)\) [25]. The resulting
property is the same as in Section 4. Chalopin et al. [9] showed how to construct
the minimum-base graph of an undirected graph in polynomial time if an upper
bound on the number of vertices is known.

The initial knowledge of an agent does not necessarily have to be about the
number of vertices \(n \). An important question is how much prior information is
necessary for mapping a general (undirected) graph. It has recently been shown
that, in the worst case, solving the map construction problem for graphs of \(n \)
vertices and \(m \) edges can require initial knowledge of \(\Omega(m \log n) \) bits [12]. This
is as much information as it takes to store the graph itself, e.g. if we store a list
of edges.

References

[1] B. Awerbuch, M. Betke, M. Singh, Piecemeal graph learning by a mobile
robot, Information and Computation 152 (1999) 155–172.

[2] M. Bender, A. Fernandez, D. Ron, A. Sahai, S. Vadhan, The power of a
pebble: Exploring and mapping directed graphs, in: Proceedings of the
30th ACM Symposium on Theory of Computing, 1998, pp. 269–287.
[3] T. Biedl, S. Durocher, J. Snoeyink, Reconstructing polygons from scanner data, in: Proceedings of the 20th International Symposium on Algorithms and Computation, 2009, pp. 862–871.

[4] D. Bilò, Y. Disser, M. Mihalák, S. Suri, E. Vicari, P. Widmayer, Reconstructing visibility graphs with simple robots, in: Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity, 2009, pp. 87–99.

[5] P. Boldi, S. Vigna, Fibrations of graphs, Discrete Mathematics 243 (1–3) (2002) 21–66.

[6] J. Brunner, M. Mihalák, S. Suri, E. Vicari, P. Widmayer, Simple robots in polygonal environments: A hierarchy, in: Proceedings of the Fourth International Workshop on Algorithmic Aspects of Wireless Sensor Networks, 2008, pp. 111–124.

[7] J. Chalopin, S. Das, Y. Disser, M. Mihalák, P. Widmayer, Telling convex from reflex allows to map a polygon, in: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science, 2011, pp. 153–164.

[8] J. Chalopin, S. Das, Y. Disser, M. Mihalák, P. Widmayer, Mapping simple polygons: How robots benefit from looking back, Algorithmica (to appear).

[9] J. Chalopin, S. Das, A. Kosowski, Constructing a map of an anonymous graph: Applications of universal sequences, in: Proceedings of the 14th international conference on Principles of distributed systems, 2010, pp. 119–134.

[10] V. Chvátal, A combinatorial theorem in plane geometry, Journal of Combinatorial Theory (Series B) 18 (1) (1975) 39–41.

[11] C. Coullard, A. Lubiw, Distance visibility graphs, in: Proceedings of the 7th Annual Symposium on Computational Geometry, 1991, pp. 289–296.

[12] D. Dereniowski, A. Pelc, Drawing maps with advice, in: Proceedings of the 24th International Symposium on Distributed Computing, 2010, pp. 328–342.

[13] Y. Disser, Mapping polygons, Ph.D. thesis, ETH Zurich (2011).

[14] Y. Disser, M. Mihalák, P. Widmayer, Reconstruction of a polygon from angles without prior knowledge of the size, Tech. Rep. 700, ETH Zürich, Institute of Theoretical Computer Science (November 2010).

[15] Y. Disser, M. Mihalák, P. Widmayer, A polygon is determined by its angles, Computational Geometry: Theory and Applications 44 (2011) 418–426.

[16] H. Everett, Visibility graph recognition, Ph.D. thesis, University of Toronto, Department of Computer Science (January 1990).
[17] S. Fisk, A short proof of Chvatal’s watchman theorem, Journal of Combinatorial Theory (Series B) 24 (3) (1978) 374.

[18] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, Graph exploration by a finite automaton, in: Proceedings of the 29th Symposium on Mathematical Foundations of Computer Science, 2004, pp. 451–462.

[19] A. Ganguli, J. Cortés, F. Bullo, Distributed deployment of asynchronous guards in art galleries, in: Proceedings of the 2006 American Control Conference, 2006, pp. 1416–1421.

[20] B. Gfeller, M. Mihalak, S. Suri, E. Vicari, P. Widmayer, Counting targets with mobile sensors in an unknown environment, in: Proceedings of the 3rd International Workshop on Algorithmic Aspects of Wireless Sensor Networks, 2007, pp. 32–45.

[21] S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge University Press, 2007.

[22] S. K. Ghosh, P. P. Goswami, Unsolved problems in visibility graph theory, in: Proceedings of the India-Taiwan Conference on Discrete Mathematics, 2009, pp. 44–54.

[23] L. Jackson, S. Wismath, Orthogonal polygon reconstruction from stabbing information, Computational Geometry 23 (1) (2002) 69–83.

[24] A. Komuravelli, M. Mihalák, Exploring polygonal environments by simple robots with faulty combinatorial vision, in: Proceedings of the 11th International Symposium on Stabilization, Safety, and Security of Distributed Systems, 2009, pp. 458–471.

[25] N. Norris, Universal covers of graphs: isomorphism to depth $n - 1$ implies isomorphism to all depths, Discrete Applied Mathematics 56 (1) (1995) 61–74.

[26] J. O’Rourke, Uniqueness of orthogonal connect-the-dots, in: G. Toussaint (ed.), Computational Morphology, North-Holland, 1988, pp. 97–104.

[27] J. O’Rourke, I. Streinu, The vertex-edge visibility graph of a polygon, Computational Geometry 10 (2) (1998) 105–120.

[28] P. Panaite, A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms 33 (1999) 281–295.

[29] D. Rappaport, On the complexity of computing orthogonal polygons from a set of points, Tech. Rep. SOCS-86.9, McGill University, Montreal, Canada (1986).

[30] O. Reingold, Undirected st-connectivity in log-space, in: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005, pp. 376–385.
[31] A. Sidlesky, G. Barequet, C. Gotsman, Polygon reconstruction from line cross-sections, in: Proceedings of the 18th Annual Canadian Conference on Computational Geometry, 2006, pp. 81–84.

[32] J. Snoeyink, Cross-ratios and angles determine a polygon, Discrete and Computational Geometry 22 (4) (1999) 619–631.

[33] S. Suri, E. Vicari, P. Widmayer, Simple robots with minimal sensing: From local visibility to global geometry, International Journal of Robotics Research 27 (9) (2008) 1055–1067.

[34] M. Yamashita, T. Kameda, Computing on anonymous networks: Part I – characterizing the solvable cases, IEEE Transactions on Parallel and Distributed Systems 7 (1) (1996) 69–89.