As arbovírus constituem um importante problema de saúde pública especialmente em países de regiões tropical e subtropical, como o Brasil. Nesses locais, predominam os vírus das famílias Flaviviridae, responsáveis pela Dengue, Zika e Febre Amarela (FA), e Togaviridae, causador da Chikungunya.

Nos anos mais recentes, o número de casos aumentou devido a diversos fatores, dentre os quais destacam-se as modificações ocorridas no meio ambiente, tais como desmatamento e mudanças climáticas, ocupação desordenada das cidades com baixas condições higiênico-sanitárias, além do aumento da mobilidade de viajantes internacionais. Essas ocorrências possibilitaram a colonização de novas áreas pelos vetores, especialmente o Aedes aegypti, que pode ser encontrado em cerca de 80% do território brasileiro.1,2

Os vírus da Dengue, que apresentam quatro sorotipos distintos, foram responsáveis por epidemias isoladamente ou em co-infeção em 1984–1985, 1997–1999, 2004–2007. O vírus da Chikungunya, originário do território africano, sucedeu a Dengue no Brasil em 2014, com apresentação clínica e laboratorial semelhante, dificultando o diagnóstico diferencial. Em 2015, os primeiros casos de Zika foram relatados no Brasil. As manifestações clínicas dessas arbovírus estão sumarizadas na Tabela 1.1-4

Segundo a Organização Mundial da Saúde, a FA é endêmica no Brasil desde os anos de 1900, com ciclos silvestre e urbano, amplificados pela presença do Aedes aegypti nas cidades. Nas últimas décadas, houve importante redução do número de casos por meio da cobertura vacinal. Por outro lado, a expansão da doença de áreas endêmicas, as vizinhanças com características ecológicas semelhantes permitiu o aparecimento da epidemia recente nos estados de Minas Gerais, Rio de Janeiro e São Paulo.3 Os sinais e sintomas da FA podem ser vistos na Tabela 2, ressaltando-se as falências hepática e renal, especialmente o A. aegypti ssp, que serve como sentinela para o vírus da FA. A FA nesses modelos animais é caracterizada por virose hemorrágica com falências orgânicas múltiplas e choque cardiovascular, semelhante ao que ocorre em humanos. Em macacos Rhesus, foi descrita linfopenia acentuada precedendo os danos esplênicos, hepáticos, renais e do tecido linfóide. Esses achados são provavelmente decorrentes da replicação viral, liberação de citocinas, IL-4, IL-5, IL-6, IL-8, IL-12/23p40, IL-15, IL-17, G-CSF, GM-CSF, sCD40, RANTES, MCP-1 e INFV, e expressão gênica associadas com a resposta imune, o metabolismo iônico e a apoptose.6,7

O acometimento cardiovascular nas arbovírus foi descrito em 1822 na FA, com comprometimento miocárdico caracterizado por bradicardia. Posteriormente Lloyd8 relatou prolongamento da condução atrioventricular e alterações da repolarização ventricular. Em 1965, foram referidas também bradicardia e hipotensão na Chikungunya, e, em 1973, observou-se miocardite, pericardite e fibrilação atrial na Dengue.9,10 Revisão sistemática recente reportou que as manifestações cardiovasculares são comuns na Chikungunya, especialmente hipotensão, choque, arritmias, miocardite, cardiomiopatia dilatada e insuficiência cardíaca congestiva com elevação de troponina.11 A avaliação histopatológica de tecido cardíaco de um caso fatal de miocardite e choque cardiogênico por Dengue no Brasil demonstrou necrose muscular e edema intersticial com partículas virais nos cardiomiócitos e no espaço intersticial, sugerindo a ação direta do vírus no miocárdio.12 Foram relatados casos de miocardite, insuficiência cardíaca, arritmia, fibrilação atrial e taquicardia ventricular e supraventricular na Zika.13

A variabilidade de apresentação clínica da FA desde formas assintomáticas até quadros graves afeta diretamente a estratégia de abordagem terapêutica da doença. As manifestações malignas estão associadas a taxas de letalidade de até 50%, requerendo, por isso, atenção e cuidados diferenciados.14 Embora a doença não apresente um tratamento específico que seja comprovadamente eficaz, os suportes respiratório, hemodinâmico, metabólico e hemostático, além do controle adequado de eventuais comorbidades, são fundamentais para estabelecer um meio propício no qual o paciente possa se recuperar. Nesse contexto, os critérios estabelecidos pelo Ministério da Saúde para acompanhamento ambulatorial ou internação hospitalar também devem ser aplicados a pacientes cardiopatas (Tabela 2).14 Entretanto, algumas particularidades do manejo clínico devem ser lembradas nesse grupo de pacientes.

Não existem trabalhos na literatura que tenham descrito a forma mais segura de manusear pacientes portadores de doença arterial coronariana (DAC) durante um quadro de FA. A experiência na abordagem de epidemias relacionadas a outras arbovírus no Brasil, porém, poderia servir como
uma referência nessa situação. Em 2013, o Instituto Nacional de Cardiologia elaborou recomendações para o uso de antiplaquetários em pacientes com DAC e Dengue, que foram incorporadas ao manual de diagnóstico e manejo clínico do Ministério da Saúde relacionado à doença. Nesse documento, as recomendações para a suspensão dos antiplaquetários valorizavam níveis diferentes de plaquetometria essencialmente em pacientes com stents convencionais ou farmacológicos de primeira geração, que demandavam no mínimo 6 meses de dupla antiagregação plaquetária para minimizar o risco de trombose. Desde então, o uso mais frequente de stents farmacológicos de segunda geração compostos por everolimus ou zotarolimus permitiu períodos mais curtos de cura antiplaquetária dupla com o mesmo grau de segurança. Considerando que a plaquetopenia é uma das características mais marcantes de todas as doenças conhecidas como febres hemorrágicas virais, essas diretrizes também poderiam servir como um modelo a partir do qual novas recomendações seriam incorporadas para casos de FA.

Dessa forma, a consideração de ferramentas validadas na avaliação dos riscos hemorrágico e trombótico após o implante de stents coronarianos é uma estratégia promissora. Um exemplo é o escore PRECISE-DAPT, que utiliza hemoglobina, leucocitose, idade, clearance de creatinina e história de sangramento como variáveis para tal estimativa. Pontuações < 25 são preditivas de um baixo risco de sangramento e poderiam identificar pacientes que se beneficiariam de períodos mais prolongados de dupla antiagregação (6-12 meses). Por outro lado, valores ≥ 25 estão associados a elevadas taxas de hemorragia, direcionando para um menor tempo de terapia dupla (3-6 meses). A diretriz da Sociedade Europeia de Cardiologia de 2017 considera esse escore em algumas de suas recomendações, e ainda levanta a possibilidade de apenas 1 mês de dupla antiagregação em pacientes com alto risco de sangramento (PRECISE-DAPT ≥ 25), que poderiam não tolerar 3 meses de utilização. Essas recomendações e a aplicação do escore independem do tipo de stent implantado. Embora a incorporação dessa estratégia no manejo de pacientes com FA nunca tenha sido estudada ou validada, ela permitiria um refinamento adicional à plaquetometria isolada para estimar o risco trombótico e hemorrágico após intervenções coronarianas percutâneas. Tal avaliação seria fundamental para a definição da conduta nesse contexto, principalmente porque as variáveis modificáveis utilizadas no escore PRECISE-DAPT são potencialmente afetadas pela FA. A Figura 1 demonstra um algoritmo sugerido para o manejo de antiplaquetários em pacientes portadores de stents coronarianos implantados há menos de 12 meses e FA.

Vale ressaltar que, na presença de sangramento ativo ou dissecção sanguínea significativa secundária à insuficiência hepática (INR > 1,5 ou tempo de coagulação > 20 minutos), a terapia antiplaquetária deverá ser suspensa independentemente de qualquer outro critério. Da mesma forma, a suspensão dos antiplaquetários em pacientes com DAC sem stents, ou com intervenções percutâneas coronarianas há mais de 12 meses, também é recomendada, mesmo em casos moderados e sem plaquetopenia significativa, uma vez que o risco trombótico desses pacientes a curto prazo é menor. Anticoagulantes orais também devem ser evitados já em casos de moderada gravidade, podendo ser considerada a anticoagulação parenteral em ambiente hospitalar de pacientes com próteses valvares mecânicas sem sangramento ativo, evidências de disfunção hepática ou outros critérios de maior gravidade.
Pacientes com insuficiência cardíaca constituem outro grupo cuja abordagem poderá necessitar de condutas diferenciadas no contexto da FA. A terapia de suporte em pacientes com quadros moderados a graves depende em grande parte da manutenção de um estado hemodinâmico adequado através de hidratação oral ou venosa, eventuais transfusões de hemoderivados e até mesmo o uso de aminas vasoativas. Nesse cenário, o equilíbrio hemodinâmico deverá ser constantemente reavaliado e ajustado de forma criteriosa, com eventual monitorização invasiva em quadros mais extremos, pois são pacientes com grande sensibilidade a pequenas variações de volemia.

Além disso, a manutenção de medicamentos frequentemente utilizados no tratamento crônico da insuficiência cardíaca, como diuréticos, inibidores da enzima conversora da angiotensina (ECA) e betabloqueadores, também poderá dificultar o manejo clínico. Assim, em quadros de moderada gravidade, sem hemorragias, comprometimento hemodinâmico, renal ou respiratório, sugerimos a manutenção apenas dos betabloqueadores, preferencialmente na mesma dose habitual. Esses deverão ser evitados inteiramente no contexto de outras situações de agudização clínica. Assim como os diuréticos e inibidores da ECA, as estatinas também deverão ser evitadas mesmo em quadros moderados, principalmente devido ao seu potencial efeito hepatotóxico.

Por último, a vacinação para FA não deve ser contraindicada isoladamente pela presença de uma cardiopatia de base, mesmo em pacientes com infarto prévio e/ou insuficiência cardíaca. Os critérios nesse grupo de pacientes seguem os mesmos padrões já recomendados pelo Ministério da Saúde, indicando-se a vacinação preferencialmente quando há uma alta probabilidade de exposição ao vírus e um baixo risco de efeitos adversos. No contexto de doenças cardíacas, apenas pacientes já submetidos a transplante não devem ser vacinados, por utilizarem cronicamente medicações imunossupressoras.

Existe uma necessidade crescente de estudos mais detalhados que avaliem como as arboviroses e doenças cardiovasculares interagem tanto do ponto de vista individual quanto epidemiológico. Ainda assim, o controle ineficaz dessas epidemias está claramente relacionado a deficiências socioeconômicas e carências no processo de planejamento ambiental e urbano, sobretudo em países em desenvolvimento. Talvez a combinação desses fatores constitua o ponto de interseção para onde os investimentos e as pesquisas devam ser priorizados.
Referências

1. Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Leger C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors. 2018;11(1):29.

2. Mota MT, Tetzian AC, Silva ML, Estofelete C, Nogueira ML. Mosquito-transmitted viruses—the great Brazilian challenge. Braz J Microbiol. 2016;47 Suppl 1:38-50.

3. Colon-Gonzalez FJ, Peres CA, Steiner São Bernardo C, Hunter PR, Lake IR. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl Trop Dis. 2017;11(11):e0006007.

4. Azevedo Rdo S, Oliveira CS, Vasconcelos PF. Chikungunya risk for Brazil. Rev Saude Publica. 2015;49:58.

5. Hamrick PN, Aldighieri S, Machado G, Leonel DG, Vilca LM, Uriona S, et al. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl Trop Dis. 2017;11(9):e0005897.

6. Engelmann F, Josset L, Girke T, Park B, Barron A, Dewane J, et al. Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model. PLoS Negl Trop Dis. 2014;8(11):e3295.

7. Cong Y, McArthur MA, Cohen M, Jahrling PB, Janosko KB, Josleyn N, et al. Characterization of yellow fever virus infection of human and non-human primate antigen presenting cells and their interaction with CD4+ T cells. PLoS Negl Trop Dis. 2016;10(5):e0004709.

8. Lloyd W. The myocardium in yellow fever. Science. 1930;72(1853):18.

9. Thiruvengadam K, Kalyanasunderam V, Rajgopal J. Clinical and pathological studies on chikungunya fever in Madras City. Indian J Med Res. 1965;53(8):729-44.

10. Nagaratnam N, Siripala K, de Silva N. Arbovirus (dengue type) as a cause of acute myocarditis and pericarditis. Br Heart J. 1973;35(2):204-6.

11. Alvarez MF, Bolívar-Mejía A, Rodríguez-Morales AJ, Ramirez-Vallejo E. Cardiovascular involvement and manifestations of systemic Chikungunya virus infection: a systematic review. Version 2. F1000Res. 2017 Mar 29 [revised 2017 May 2]:6.390.

12. Miranda CH, Borges Mde C, Schmidt A, Pazin-Filho A, Rosi MA, Ramos SG, et al. A case presentation of a fatal dengue myocarditis showing evidence for dengue virus-induced lesion. Eur Heart J Acute Cardiovasc Care. 2013;2(2):127-30.

13. Minhas AM, Nayab A, Iyer S, Narmeen M, Fatima K, Muhammad MS, et al. Association of Zika virus with myocarditis, heart failure, and arrhythmias: a literature review. Cureus. 2017;9(6):e1399.

14. Brasil. Ministério da Saúde. Febre amarela: guia para profissionais de saúde. Secretaria de Atenção a Saúde. Brasília; 2017. 67 p.

15. Brasil. Ministério da Saúde. Dengue: Secretaria de Vigilância em Saúde, Diretoria Técnica de Gestão. 4ª. ed. Brasília; 2013. 80 p.

16. Zapata JC, Cox D, Salvato MS. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Negl Trop Dis. 2014;8(6):e2858.

17. Valgimigli M, Bueno H, Byrne R, Collet JP, Costa F, Jeppsson A, et al; ESC Scientific Document Group ; ESC Committee for Practice Guidelines (CPG) ; ESC National Cardiac Societies. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39(3):213-60.

18. Jondeau G, Milleron O. Beta-blockers in acute heart failure: do they cause harm? JACC Heart Fail. 2015;3(8):654-6.

Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons