Validation of a menstrual pictogram and a daily bleeding diary for assessment of uterine fibroid treatment efficacy in clinical studies

Claudia Haberland1,*, Anna Filonenko2, Christian Seitz3, Matthias Börner4, Christoph Gerlinger5,6, Helen Doll7,8 and Dorothea Wessiepe9

Abstract

Background: To evaluate the psychometric and measurement properties of two patient-reported outcome instruments, the menstrual pictogram superabsorbent polymer-containing version 3 (MP SAP-c v3) and Uterine Fibroid Daily Bleeding Diary (UF-DBD).

Test-retest reliability, criterion, construct validity, responsiveness, missingness and comparability of the MP SAP-c v3 and UF-DBD versus the alkaline hematin (AH) method and a patient global impression of severity (PGI-S) were analyzed in post hoc trial analyses.

Results: Analyses were based on data from up to 756 patients. The full range of MP SAP-c v3 and UF-DBD response options were used, with score distributions reflecting the cyclic character of the disease. Test-retest reliability of MP SAP-c v3 and UF-DBD scores was supported by acceptable intraclass correlation coefficients when stability was defined by the AH method and Patient Global Impression of Severity (PGI-S) scores (0.80–0.96 and 0.42–0.94, respectively). MP SAP-c v3 and UF-DBD scores demonstrated strong and moderate-to-strong correlations with menstrual blood loss assessed by the AH method. Scores increased in monotonic fashion, with greater disease severities, defined by the AH method and PGI-S scores; differences between groups were mostly statistically significant ($P < 0.05$). MP SAP-c v3 and UF-DBD were sensitive to changes in disease severity, defined by the AH method and PGI-S. MP SAP-c v3 and UF-DBD showed a lower frequency of missing patient data versus the AH method, and good agreement with the AH method.

Conclusions: This evidence supports the use of the MP SAP-c v3 and UF-DBD to assess clinical efficacy endpoints in UF phase III studies replacing the AH method.

Keywords: Uterine fibroids (UF), Menstrual pictogram (MP), Uterine fibroid daily bleeding diary (UF-DBD), Alkaline hematin method (AH), Patient-reported outcome (PRO) instruments, Women’s health

* Correspondence: claudia.haberland@bayer.com
1Market Access, Public Affairs & Sustainability, TA Pulmonology / Innovative WHC, Bayer AG, Building 5157, 3.315, 13342 Berlin, Germany
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Background

Uterine fibroids (UF) are commonly occurring benign tumors of the uterus that originate from smooth muscle cells of the myometrium [1]. The reported prevalence of UF varies from 4.5% to 68.6% across studies [2], thereby making it difficult to determine the true global prevalence of UF.

The majority of women with UF are asymptomatic and may be undiagnosed [1, 3]. Heavy menstrual bleeding (HMB) is commonly reported and, for some women, may lead to UF-related anemia [4–8]. HMB can be severe, has a considerable physical and emotional impact, and can limit women’s participation in professional, domestic, and social activities [9, 10].

In current clinical practice, a woman’s self-perception of her menstrual blood loss (MBL) and the impact of HMB on her health related quality of life (HRQoL) is used to guide the diagnostic and treatment process [11]. A number of daily bleeding diaries (DBDs) are available for use in a variety of gynecological conditions for the woman to rate the extent of blood loss (e.g., from ‘none’ to ‘severe’) but these do not allow assessment of the amount of blood lost. Self-assessment of MBL may not be accurate; quantitative evaluation of MBL in addition to perceived MBL by women may contribute to better clinical care and informed decision-making [12–14].

The alkaline hematin (AH) method is the established method for quantitative assessment of MBL and has traditionally been used to diagnose HMB within clinical trials in agreement with the US Food and Drug Administration (FDA); other regulatory authorities allow pictorial methods [13], which correlate the visual appearance of total menstrual fluid loss on standardized used sanitary products to an estimated MBL volume [15]. The AH method requires women to collect, date, store and send used sanitary products for laboratory analysis of actual blood volume loss (in mL) in a process that can be unfeasible and inconvenient for women, is expensive for laboratory testing and might also be a reason for patients’ non-adherence to the study protocol [15, 16]. Due to such practical limitations, its use has not extended to clinical practice [13]; and in clinical trials, it may be a source for patient non-compliance.

Given the above factors, it follows that there is a need for a semi-quantitative method of MBL assessment, which could serve as an accurate assessment of HMB in routine practice and a convenient, accurate tool in clinical trials. Pictorial blood loss assessment charts (PBACs) are simple semi-quantitative methods to determine MBL volume. Different PBACs have been developed and have shown variable sensitivity and specificity for detection of HMB, in comparison with the AH method [13, 17, 18]. The menstrual pictogram superabsorbent polymer-containing version 3 (MP SAP-c-v3) (hereafter referred to as the MP), is a PBAC that has been developed for the use with a range of modern sanitary products [15]. It allows the user to assess the visual appearance of blood-stained sanitary protection, using pictograms to provide an estimation of MBL [12]. The MP has been developed for use with the most widely used modern sanitary towels in the United Kingdom and United States [15] that contain superabsorbent polymer (SAP) granules, which can absorb fluid many times their own weight [12]. In a study assessing the validity of the MP, a sensitivity of 82% and a specificity of 92% was found for a diagnosis of HMB determined using the AH [15]. The Uterine Fibroid Daily Bleeding Diary (UF-DBD) has also been developed allowing a subjective assessment of bleeding severity in support of evaluation of treatment efficacy as it enables the subject’s self-assessment of bleeding events that cannot be captured by the AH or the MP methods (i.e., spotting, or any blood lost that is not collected on a sanitary product, and the perceived severity of bleeding). The MP method is nevertheless proposed as the semi-quantitative alternative to the AH method.

Vilaprisan is a novel medical treatment for UF that has been investigated in two phase II studies, ASTEROID 1 and 2. The efficacy of vilaprisan in improving HMB was evaluated via three bleeding assessment instruments: the AH method (ASTEROID 1), MP (ASTEROID 1 and 2), and UF-DBD (ASTEROID 1 and 2). This analysis aims to evaluate the psychometric and measurement properties of the MP and the UF-DBD using data from ASTEROID 1 and ASTEROID 2. Additional analyses include those of missingness and comparability of methods (MP and UF-DBD vs AH, respectively), using data from ASTEROID 1.

Methods

Trial designs

ASTEROID 1 (NCT02131662) and ASTEROID 2 (NCT02465814) were randomized, parallel-group, double-blind multicenter studies; full details of the study designs and results of the primary endpoints have been published elsewhere [19, 20]. Patient inclusion and exclusion criteria were the same for both ASTEROID 1 and 2. Women were eligible if aged 18–50 years, with UFs identified by transvaginal or abdominal ultrasound at screening with at least one UF with largest diameter ≥3.0 cm and HMB > 80 mL documented by MP during the bleeding episode following the screening visit. Women were excluded if they had one/multiple UF(s) with a diameter exceeding 10.0 cm. For the analyses presented here, all women with available data from the ASTEROID 1 and 2 studies were eligible, regardless of screening failure (for example <80 mL MBL), drop-out or protocol deviation.

The clinical studies met all local legal and regulatory requirements and were conducted in accordance with
the ethical principles that have their origin in the Declaration of Helsinki and the International Council for Harmonization (ICH) guideline E6: Good Clinical Practice (GCP). Analyses of psychometric and other measurement properties were conducted in line with scientific standards including the FDA PRO Guidance for Industry, 2009 [21].

In general, data for the analyses presented here were collected from screening and treatment periods. Objective data were collected using the biochemical AH method, which was the reference measure in blood volume analyses. Patient-reported outcomes (PROs) were collected via the MP, UF-DBD, Uterine Fibroid Daily Symptom Diary version 3 (UF-DSD v3), Uterine Fibroid Impact Scale version 3 (UF-IS v3), Uterine Fibroid Symptom and Quality of Life Questionnaire (UFS-QoL), Short-Form 36 Health Survey Version 2* (SF-36 v2*), and Patient Global Impression of Severity (PGI-S) (Table 1). The PGI-S asks the patient to rate the severity of her UF symptoms on a six-point Likert scale (from “None” to “Very severe”). The PGI-S used in Asteroid 1 and 2 has no recall period and was administered during the Asteroid 1 and 2 study visits.

Evaluation of psychometric and other measurement properties

This quantitative work aimed to evaluate the psychometric and other measurement properties of the newly developed PRO instruments with specific statistical analyses, including analyses of item performance/variability, test retest reliability, criterion, construct validity, and responsiveness (Table 1). In addition, missingness and the degree of comparability between the AH and both the MP and the UF-DBD were assessed as summarized in Table 1. Results presented are from ASTEROID 1 (where the AH method was used) and these are supported by data from ASTEROID 2, where indicated.

The MP is a PBAC used for the semi-quantitative evaluation of MBL. It comprises diagrams (icons) depicting a graded series of stained towels or tampons, and each icon is assigned a blood volume derived from measurements with the AH method. Patients respond to the MP whenever a sanitary product is changed, by choosing a pictogram icon and letter, based on the degree of staining of their sanitary products(s). Pictogram letters (a–f [towels] and a–d [tampons]) indicate staining intensity, with “a” the lowest intensity and “d” or “f” the highest intensity [15].

The UF-DBD is a single-item daily questionnaire, which assesses patient perceptions of vaginal bleeding severity on that day. Patients respond to the question ‘Rate the severity of any vaginal bleeding in the past 24 hours’ with “No vaginal bleeding,” “Spotting,” “Mild,” “Moderate,” “Severe,” or “Very severe.” The daily responses on the verbal rating scale were then assigned values of 0–10 (0=“No vaginal bleeding”, 1 = “Spotting”, 4 = “Mild”, 6 = “Moderate”, 8 = “Severe”, 10 = “Very Severe”), as informed by previous qualitative research involving the cognitive debriefing of the questionnaire in women with UF. Patient responses to the MP and the UF-DBD were collected on the same hand-held electronic device during ASTEROID 1 and 2 by the patients at home.

The other instruments referred to in this psychometric analysis have been described in the previous ASTEROID 1 and 2 publications [19, 20].

Statistical methodology

Psychometric and other measurement properties of the MP and UF-DBD were analyzed using descriptive statistics including histograms, scatterplots, Spearman rank correlation coefficients and intra-class correlation coefficients, as well as Wilcoxon signed rank tests and the Jonckheere-Terpstra and Kruskal-Wallis tests. To this purpose, daily sums of mL blood loss from the MP and AH measurements were added up to sums of mL blood loss over 28 days (monthly scores) or over the bleeding episode (bleeding episode scores) preceding and including the respective visit at the clinical study site (e.g., randomization (RND), end of treatment (EOT) visit) in Asteroid 1 and 2. Similarly, the daily responses to the UF-DBD were aggregated over 28 days (monthly scores)/bleeding episodes (bleeding episode scores) and also aggregated scores for the reference measures UF-DSD v3 and UF-IS v3 (which were administered either daily or weekly, respectively) were derived as needed.

Test-retest reliability was assessed by the intraclass correlation coefficient (ICC) using Shrout-Fleiss reliability single score statistic among patients classified as stable between two consecutive timepoints, during screening and treatment phases, with the AH (ASTEROID 1) and the PGI-S (ASTEROID 1 and 2) used to define stable patients. In this respect, stable patients were defined as either a < 10 mL, < 20 mL, < 10%, < 20% difference in AH score or no change in the PGI-S score between the two assessments. There are no widely agreed benchmarks which can be used in the interpretation of the ICC. For the assessment of ICCs of the continuous MP, the thresholds proposed by Cicchetti (1994) [22] and Fleiss (1986) [23] for scores from continuous multi-item instruments were used: < 0.40 poor; 0.40–0.59 moderate; 0.60–0.74 good; > 0.75 excellent. Other thresholds exist, however, such as < 0.5 poor, 0.5–0.75 moderate, 0.75–0.9 good, > 0.90 excellent [24]. Since the ordinal UF-DBD is a single item instrument, lower ICCs for this measure were expected and a threshold of ≥0.50 was considered to indicate at least moderate reliability [24, 25].

For assessment of criterion and convergent/divergent validity, Spearman rank correlation coefficients were...
Table 1 Methods used to investigate psychometric and other properties of the MP and UF-DBD

Statistical analysis	PRO scores	Time points	Reference measures	Population	Interpretation
Item performance/variability	• MP	• RND	NA	All patients, by study	• Distributional properties
– extent to which potential available response option for each item is selected by patients	• UF-DBD item level^a	• EOT			• Floor and ceiling effects
• Monthly and bleeding episode sum scores					
Reliability/Test-retest reliability	• MP	• SCG2, RND	• AH^b	Stable patients by study;	UF-DBD: ICC ≥ 0.50: moderate
– ability to give reproducible, consistent scores over a short time period in stable patients	• UF-DBD	• T2, EOT	• PGI-S	MP: ICC < 0.40: poor;	
• Monthly and bleeding episode sum scores				0.40 to 0.59: moderate;	
				0.60 to 0.74: good;	
				0.75+: excellent	
Construct validity	• MP	• RND	• AH^b	All patients, by study	Significance of ordered difference between known groups
– extent to which a scale measures the intended construct	• UF-DBD	• EOT	• PGI-S		
Known-groups validity	• MP	• SCG2, RND	• AH^b	All patients, by study	
– ability of measure to discriminate between patient groups differing in levels of condition severity	• UF-DBD	• T2, EOT	• PGI-S		
1. Jonckheere-Terpstra test					
2. Kruskal-Wallis test					
Convergent and divergent validity	• MP	• RND	• AH^b	All patients, by study	Strength of correlations
– extent of association between a measure and other measures or variables based on an expected relationship	• UF-DBD	• EOT	• PGI-S		0.10 to 0.29: weak;
1. Spearman rank correlation	• Monthly and bleeding episode sum scores	• pooled RND and EOT	• MP	0.30 to 0.49: moderate;	
2. Scatterplots			• UF-DBD	0.50 to 1.0: strong	
Criterion validity	• MP	• RND	• AH^b	All patients with AH measurements	Strength of correlations
– extent of relation between PRO instrument scores and a known gold standard measure of the same concept	• UF-DBD	• EOT	• PGI-S		0.10 to 0.29: weak;
1. Spearman rank correlation	• Monthly and bleeding episode sum scores	• pooled RND and EOT	• MP	0.30 to 0.49: moderate;	
2. Scatterplots			• UF-DBD v3^c	0.50 to 1.0: strong	
Responsiveness	• MP	• RND	• AH^b	All patients, by study	Strength of correlations
– ability to detect change when a change in the measured concept has occurred	• UF-DBD	• EOT	• PGI-S		0.10 to 0.29: weak;
1. Spearman rank correlation, Scatterplots					0.30 to 0.49: moderate;
2. Kruskal-Wallis test, Jonckheere-Terpstra test					0.50 to 1.0: strong
Correlation analysis	• MP	• RND	• AH^b	All patients, by study	Significant or significant ordered difference across the groups
• UF-DBD	• UF-DBD v3^c	• RND	• AH^b		
• UF-IS v3^c	• PGI-S	• RND	• AH^b		

^a MP and UF-DBD item level
^b AH method: MP and UF-DBD in ASTEROID 1^c
^c PGI-S scores: UF-DBD and MP in ASTEROID 1 and 2

^d AH method: MP and UF-DBD in ASTEROID 1 and 2
Table 1 Methods used to investigate psychometric and other properties of the MP and UF-DBD (Continued)

Statistical analysis	PRO scores	Time points	Reference measures	Population	Interpretation
Missing data					
Descriptive statistics; frequencies and percentages of missing data (daily scores over time)	• MP	• RND	AH	ASTEROID 1, patients with AH measurements: all patients except for Japanese centers and only US patients	
	• UF-DBD	• EOT			
Comparability of methods (AH, MP, UF-DBD)					
1. Cross-tabulation of benchmark scores (HMB eligibility, responder status and amenorrhea, calculation of sensitivity, specificity, PPV and NPV)	• MP	• RND	AH	ASTEROID 1, patients with AH measurements	
	• UF-DBD	• EOT			

AH Alkaline hematin method, EOT End of treatment, ICC Intraclass correlation coefficient, MP (MP SAP-cv3) Menstrual pictogram superabsorbent polymer-containing version 3, NA Not applicable/available, NPV Negative predictive value, PPV Positive predictive value, PGI-S Patient Global Impression of Severity, PRO Patient-reported outcomes, RND Randomization, SF-36 v2® Short-Form 36 Health Survey Version 2, SCR Screening, T Treatment, UF-DBD Uterine Fibroid Daily Bleeding Diary, UF-DSD v3b Uterine Fibroid Daily Symptom Diary version 3, UF-IS v3 Uterine Fibroid Impact Scale version 3, UFS-QoL Uterine Fibroid Symptom and Quality of Life Questionnaire

aMonthly sum scores were based on the 28 days prior to and including the visit date; bleeding episode sum scores were collected on or closest to the visit date within 27 days prior
bASTEROID 1 only
cFor analyses including the AH method, only data from patients with AH measurements in ASTEROID 1 were used
dUse of total instrument scores only
eAH measurements were not performed in patients from Japanese centers; therefore, these patients were excluded from analysis
calculated. Using commonly accepted conventions, correlation coefficients values ranging from 0.10 to 0.29 were classed as weak correlations, from 0.30 to 0.49 as moderate correlations, and from 0.5 to 1.0 as strong correlations [26, 27]. For assessment of known groups validity, mean sum scores were compared for patient groups differing by AH-defined bleeding severity (3 groups based on MBL severity thresholds of 2 mL and 80 mL and 3 groups by AH tertile scores, each for monthly and bleeding episode sum scores) (ASTEROID 1) and severity of the condition assessed by the PGI-S (5 groups from “none” to “very severe”), for monthly sum scores only (ASTEROID 1 and 2). Responsiveness was evaluated using Spearman Rank correlation coefficients between change in the MP and the UF-DBD monthly and bleeding episode scores and the changes in reference measures from RND to EOT. Additionally, the difference in change scores in the MP and the UF-DBD between and within groups of patients classified by the degree of change using AH (ASTEROID 1) and the UF-DBD and the PGI-S (ASTEROID 1 and 2) was assessed.

Analyses of missingness and degree of comparability between the AH and both the MP, and the UF-DBD were conducted using descriptive statistics, cross-tabulation of relevant benchmark scores, Kaplan-Meier curves, and histograms of difference.

Further details of all statistical methods are included in Table 1.

Neither instrument alone could distinguish between data that was truly “missing” (i.e. no data record existed) and patients who had “no bleeding”. Therefore, MP and AH values were independently compared with UF-DBD entries as a means for distinguishing between the two conditions.

Results
Sanitary item and pictogram distribution
In ASTEROID 1 and 2, a total of 101,717 sanitary items were assessed; 75,500 towels and 26,217 tampons. Of these, 70,063 sanitary items were collected from ASTEROID 1, including 53,142 towels and 16,921 tampons. The proportion of sanitary products with an unspecific brand (termed “other”) was low, constituting 5.9% of all towels and 2.4% of all tampons in ASTEROID 1.

Item performance/variability
In ASTEROID 1 and 2, all response options for the MP were used; MP response options for high staining intensity “e” and “d” were the most frequently reported by women during the 28 days prior to and including randomization, with 2498 (21.2%) reporting “e” and 2664 (63.9%) women reporting “d” using towels and tampons, respectively. During the last 4 weeks of treatment, including the EOT visit, low staining intensity was the most frequently reported response option in women using towels, with 556 (23.6%) reporting pictogram letter “a.” During the same time period, “d” was most frequently reported by 394 (62.2%) of women using tampons, indicating high staining intensity. Also, all response options of the UF-DBD were used.

Psychometric analyses
The psychometric analysis of the MP and the UF-DBD with the AH method as reference was based on data from all patients from ASTEROID 1 (N = 623). Analysis, including AH data, was based on 528 patients, excluding 95 patients without AH measurements. Data from all patients in ASTEROID 2 (N = 228) were used for the supportive psychometric analysis of the MP and the UF-DBD as feasible.

Test-retest reliability
In ASTEROID 1, the test-retest reliability ICC estimate (95% confidence interval [CI]) of the MP monthly scores was 0.93 (0.88–0.96) during screening (SCR2) and randomization periods and 0.96 (0.94–0.97) during treatment in AH-defined stable patients. The ICC estimate (95% CI) for the UF-DBD monthly scores was 0.88 (0.80–0.93) during screening and 0.88 (0.84–0.91) during treatment in AH-defined stable patients. Similarly, the ICC estimate was 0.86 (0.81–0.90) with MP monthly scores and 0.87 (0.82–0.91) with UF-DBD monthly scores during treatment in PGI-S-defined stable patients.

Observations in ASTEROID 2 using the PGI-S to define stable populations support the ASTEROID 1 results in general.

Criterion validity
Strong correlations between the monthly MP and AH sum scores were observed at randomization (r s = 0.72) and EOT (r s = 0.97). Similarly, strong correlations were observed between the monthly UF-DBD and AH sum scores at EOT (r s = 0.84) and moderate correlations at randomization (r s = 0.44).

Construct validity
Convergent and divergent validity
In ASTEROID 1, strong, positive correlations between the monthly MP and AH sum scores were observed at randomization (r s = 0.56) and EOT (r s = 0.89), thus supporting convergent validity.

Weak correlations were hypothesized and observed between the MP monthly sum scores and the UF-DSD v3 (bloating/swelling and pain domain scores and total scores) at randomization and EOT (all r s < 0.30). Furthermore, the MP demonstrated a largely weak-moderate correlation with other reference measures.
(UF-IS v3, UFS-QoL, and SF-36 v2) at randomization and EOT (Table 2).

Similarly, correlations of the monthly UF-DBD scores with reference measures other than the MP were weak at RND (all $|r_s| < 0.30$) and largely moderate at EOT in general (Table 3). Correlations were moderate at EOT with the UFS-QoL domains (symptom, health-related quality of life, and concerns related to soiling).

Overall, similar results from ASTEROID 2 (data not shown) confirm the convergent and divergent validity of the MP and the UF-DBD scores from ASTEROID 1 data.

Known-groups validity

Mean monthly and bleeding episode MP and UF-DBD sum scores increased in monotonic fashion with greater AH-defined and PGI-S-defined disease severity at randomization and EOT (Tables 4 and 5). The differences between the disease severity groups were substantial or statistically significant ($P < 0.05$).

Observations in ASTEROID 2 were similar for both the MP and UF-DBD for patients grouped according to PGI-S severity only (data not shown).

Responsiveness

As a priori hypothesized, strong association was observed between changes in MP monthly sum scores and UF-DBD monthly sum scores ($r_s = 0.75$) or changes in AH monthly sum scores ($r_s = 0.86$) from randomization to EOT. Moderate to weak associations between change scores were found with the UF-IS v3 monthly sum scores ($r_s = 0.35$), the UFS-QoL ($|r_s| < 0.40$), the UF-DSD v3 ($r_s < 0.25$) and the PGI-S ($r_s = 0.21$), from randomization to EOT. As expected, differences in the changes in MP monthly sum scores between groups defined by AH changes ($P < 0.0001$) and PGI-S change (improvement/no change/deterioration, $P = 0.0251$; and $P = 0.0040$ ordered differences) were large and statistically significant. Also, large and statistically significant differences between mean changes in monthly UF-DBD sum scores between groups defined by AH change categories ($P < 0.0001$) and PGI-S ($P < 0.01$) were identified.

Observations in ASTEROID 2 were similar for both the MP and UF-DBD for strengths of associations between changes in the MP or the UF-DBD and the reference measures from randomization to EOT and MP and UF-DBD score changes grouped according to PGI-S severity only (data not shown).

Analyses of missingness

Overall in ASTEROID 1, more sanitary protection items were evaluated by the MP compared with the AH method; 44,230 MP and 39,855 AH items. Of the total 241 patients in the screening period, the mean absolute (mean relative) frequency of missing data was 2.8 (9.9%) days for MP values, 2.8 (9.9%) days for UF-DBD entries, and 3.1 (11.2%) days for AH measurements (Table 6). Of all 223 patients during the 28 days prior to EOT, the mean absolute (mean relative) frequency of missing data was 3.0 (11.1%) days for MP values, 2.9 (10.6%) days for UF-DBD entries, and 3.2 (11.6%) days for AH measurements.

Table 2 Convergent and divergent validity analysis with MP and reference measures (monthly sum scores)

Spearman Rank Correlation Coefficient of MP monthly sum score to	RND	EOT
UF-DBD monthly sum score	283	263
UF-DSD v3 monthly average bloating and swelling domain score	283	263
UF-DSD v3 monthly average pain domain score	283	263
UF-DSD v3 monthly average total score*	283	263
UF-IS v3 monthly sum total score	263	247
UFS-QoL symptom domain score at visit	287	262
UFS-QoL HRQoL domain score at visit	282	255
UFS-QoL concerns related to soiling score at visit	282	257
SF-36 v2* physical component domain score at visit	278	258
SF-36 v2* mental-component domain score at visit	279	258
SF-36 v2* bodily pain subscale score at visit	286	262

Classification of Spearman rank correlation coefficient r_s: Weak correlation: $0.10 < |r_s| < 0.30$, Moderate correlation: $0.30 \leq |r_s| < 0.50$, Strong correlation: $0.50 \leq |r_s| < 1$

All patients analyzed here had been enrolled in the ASTEROID 1 study with an existing date of visit.

$*$Relative frequency of missing data at visit.

EOT: End of treatment; $HRQoL$: Health-related quality of life; MP: Menstrual pictogram superabsorbent polymer-containing version 3; N: Number of patients; RND: Randomization; r_s: Spearman rank correlation coefficient; $SF-36$ v2*: Short-Form 36 Health Survey Version 2; $UF-DBD$: Uterine Fibroid Daily Bleeding Diary; $UF-DSD$ v3: Uterine Fibroid Daily Symptom Diary version 3; $UF-IS$ v3: Uterine Fibroid Impact Scale version 3; $UFS-QoL$: Uterine Fibroid Symptom and Quality of Life Questionnaire

*UF-DSD v3 total score with exclusion of item 1 (UF-DBD)
Comparability of methods

Patient eligibility
HMB (MBL > 80 mL) was identified in 59.0% (181/307) and 75.2% (231/307) of women during the screening period using the AH method and MP, respectively. For assessing the presence of HMB, compared with the AH method, the MP presented a sensitivity of 96.7% (175/181) and specificity of 55.6% (70/126) in assessing HMB, and the positive predictive value (PPV) was 75.8% (175/231).

Amenorrhea
In ASTEROID 1, amenorrhea (MBL < 2 mL) was detected in 73.5% (144/196) and 70.4% (138/196) of women (with AH measurements and data to assess amenorrhea) using the AH method and MP, respectively. For assessing the presence of HMB, compared with the AH method, the MP presented a sensitivity of 96.7% (175/181) and specificity of 55.6% (70/126) in assessing HMB, and the positive predictive value (PPV) was 75.8% (175/231).

Heavy menstrual bleeding response
In ASTEROID 1, HMB response (MBL < 80 mL and > 50% reduction) during treatment, compared with baseline, was indicated in 76.2% (138/181) and 75.7% (137/181) of women (with data to assess HMB response) using the AH method and the MP, respectively. The PPV of the MP was 99.3%.

Time to onset of amenorrhea
Time to onset of amenorrhea was calculated with a mean (standard deviation) difference of −0.6 (6.3) days and the time to onset of controlled bleeding difference was −1.8 (10.7) days when the events were assessed using the AH method, compared with the MP. The onset of controlled bleeding and amenorrhea was detected slightly later with the MP, compared with the AH method, although the time course of the overall Kaplan-Meier curves for these two instruments appeared similar (data not shown).

Discussion
A large proportion of women clinically diagnosed with UF experience HMB, and severe cases of HMB can have a considerable impact on different aspects of women’s lives [9, 10, 28] and limit participation in daily activities [9]. The development of the semi-quantitative MP for assessment of MBL suitable for use with modern sanitary protection as well as the UF-DBD for assessment of subjective bleeding severity can facilitate both clinical research and practice.

In ASTEROID 1 and 2, in general, the full range of MP and UF-DBD response options were used. The score distributions reflect the cyclic character of the disease with symptoms being concentrated, but not limited to, the time of bleeding (typically to 5–10 days per month).

Overall, the psychometric and measurement properties of the MP and the UF-DBD were found to be appropriate.

The test-retest reliability of the MP and the UF-DBD was excellent and acceptable, respectively, in stable patients (defined by both the AH method and the PGI-S). However, this finding must be considered with caution, due to the potential limitations in establishing test-retest reliability in relapsing/episodic diseases (such as menstrual bleeding), as highlighted by the FDA [21].

Strong correlations observed between monthly MP and AH sum scores for MBL confirm the criterion

Table 3 Convergent and divergent validity analysis with UF-DBD and reference measures (monthly sum scores)

Spearman Rank Correlation Coefficient of UF-DBD monthly sum score to	RND N	rs	EOT N	rs
UF-DSD v3 monthly average total score⁴	286	0.19	266	0.29
UF-DSD v3 monthly average bloating and swelling domain score	286	0.19	266	0.25
UF-DSD v3 monthly average pain domain score	286	0.17	266	0.32
UF-IS v3 monthly sum total score	262	0.24	250	0.38
UFQ-QoL symptom domain score at visit	286	0.11	264	0.42
UFQ-QoL HRQoL domain score at visit	281	−0.08	257	−0.36
UFQ-QoL concerns related to soiling score at visit	281	0.12	259	0.46
SF-36 v2* physical component domain score at visit	277	−0.07	260	−0.29
SF-36 v2* mental component domain score at visit	278	−0.16	260	−0.24
SF-36 v2* bodily pain subscale score at visit	285	−0.19	264	−0.34

Classification of Spearman rank correlation coefficient rs: Weak correlation: 0.10 < |rs| < 0.30, Moderate correlation: 0.30 ≤ |rs| < 0.50, Strong correlation: 0.50 ≤ |rs| < 1

All patients analyzed here had been enrolled in the ASTEROID 1 study with an existing date of visit

EOT indicates end of treatment, HRQoL: Health-related quality of life, N: Number of patients, RND: Randomization, rs: Spearman rank correlation coefficient, SF-36 v2*: Short-Form 36 Health Survey Version 2, UF-DBD v3: Uterine Fibroid Daily Bleeding Diary, UF-DSD v3: Uterine Fibroid Daily Symptom Diary version 3, UF-IS v3: Uterine Fibroid Impact Scale version 3, UF-QoL: Uterine Fibroid Symptom and Quality of Life Questionnaire

⁴UF-DSD v3 total score with exclusion of item 1 (UF-DBD)
Table 4 Known groups validity analysis with MP and reference measures (monthly sum scores)

Time period	Groups	N	Mean (SD)	Test statistic/P value^a	Test statistic/P value^b
Differences in MP SAP-c v3 monthly sum scores between groups defined by AH method (MBL severity thresholds of 2 mL and 80 mL defined by clinical rationale)					
RND	Group 1	12	85.84 (102.89)	7374.0 / <.0001	46.5 / <.0001
	(AH monthly sum score < 2 mL)				
	Group 2	42	137.46 (142.08)		
	(2 ≤ AH monthly sum score < 80 mL)				
	Group 3	161	224.92 (130.08)		
	(AH monthly sum score ≥ 80 mL)				
EOT	Group 1	144	0.72 (6.38)	8078.0 / <.0001	167.0 / <.0001
	(AH monthly sum score < 2 mL)				
	Group 2	25	73.24 (45.53)		
	(2 ≤ AH monthly sum score < 80 mL)				
	Group 3	27	210.19 (158.00)		
	(AH monthly sum score ≥ 80 mL)				
Known groups validity: Differences in MP monthly sum scores between groups defined by AH method (thresholds defined by AH tertiles)					
RND	Group 1	72	129.19 (118.69)	12,791.0 / <.0001	98.6 / <.0001
	(AH monthly sum score Tertile 1)				
	Group 2	72	173.04 (72.45)		
	(AH monthly sum score Tertile 2)				
	Group 3	71	299.36 (150.48)		
	(AH monthly sum score Tertile 3)				
EOT	Group 1/2^c	136	0.61 (6.53)	8127.0 / <.0001	177.8 / <.0001
	(AH monthly sum score Tertile 1 + Tertile 2)				
	Group 3	60	125.44 (135.40)		
	(AH monthly sum score Tertile 3)				
Differences in MP monthly sum scores between groups defined by PGI-S					
RND	Group 1	15	159.40 (94.96)	17,216.5 / <.0001	19.2 / 0.0007
	(PGI-S = 1,2 [None/Very mild])				
	Group 2	24	169.23 (67.59)		
	(PGI-S = 3 [Mild])				
	Group 3	92	200.22 (130.95)		
	(PGI-S = 4 [Moderate])				
	Group 4	98	202.27 (136.39)		
	(PGI-S = 5 [Severe])				
	Group 5	52	287.05 (199.23)		
	(PGI-S = 6 [Very severe])				
EOT	Group 1	98	12.80 (45.40)	15,628.0 / <.0001	30.5 / <.0001
	(PGI-S = 1,2 [None/Very mild])				
	Group 2	56	28.30 (54.07)		
	(PGI-S = 3 [Mild])				
	Group 3	62	54.98 (97.59)		
	(PGI-S = 4 [Moderate])				
	Group 4	35	116.31 (186.47)		
	(PGI-S = 5 [Severe])				
	Group 5	9	54.13 (122.29)		
	(PGI-S = 6 [Very severe])				

*aJonckheere-Terpstra test
bKruskal-Wallis test
cAs the first and the second tertile are the same at EOT, only two groups based on tertiles were defined

All patients with AH measurements from ASTEROID 1 refers to all patients enrolled with an existing date of visit and AH or PGI-S measurements

RND Tertile 1: (0.00 to 101.24), Tertile 2: (> 101.24 to 203.73), Tertile 3: (> 203.73 to 1164.18)

EOT Tertile 1 and Tertile 2: (0.00 to 0.00), Tertile 3: (> 0.00 to 747.94)

AH Alkaline hematin method, EOT End of treatment, MBL Menstrual blood loss, MP (MP SAP-c v3) Menstrual pictogram superabsorbent polymer-containing version 3, N Number of patients, PGI-S Patient Global Impression of Severity, RND Randomization, SD Standard deviation

Haberland et al. Journal of Patient-Reported Outcomes (2020) 4:97 Page 9 of 13
Table 5: Known groups validity analysis with UF-DBD and reference measures (monthly sum scores)

Time period	Groups	N	Mean (SD)	Test statistic/P value^a	Test statistic/P value^b
Differences in UF-DBD monthly sum scores between groups defined by AH method (MBL severity thresholds of 2 mL and 80 mL defined by clinical rationale)					
RND	Group 1 (AH monthly sum score < 2 mL)	12	20.33 (14.37)	6464.0 / <.0001	21.7 / <.0001
	Group 2 (2 ≤ AH monthly sum score < 80 mL)	42	27.31 (11.50)		
	Group 3 (AH monthly sum score ≥ 80 mL)	161	36.10 (15.95)		
EOT	Group 1 (AH monthly sum score < 2 mL)	144	1.31 (3.81)	7847.5 / <.0001	133.5 / <.0001
	Group 2 (2 ≤ AH monthly sum score < 80 mL)	25	24.24 (19.75)		
	Group 3 (AH monthly sum score ≥ 80 mL)	27	33.11 (17.95)		
Differences in UF-DBD monthly sum scores between groups defined by AH method (thresholds defined by AH tertiles)					
RND	Group 1 (AH monthly sum score Tertile 1)	72	26.93 (13.15)	10,791.0 / <.0001	37.1 / <.0001
	Group 2 (AH monthly sum score Tertile 2)	73	31.78 (9.85)		
	Group 3 (AH monthly sum score Tertile 3)	70	42.06 (19.21)		
EOT	Group 1/2^c (AH monthly sum score Tertile 1 + Tertile 2)	136	1.20 (3.83)	7872.5 / <.0001	132.0 / <.0001
	Group 3 (AH monthly sum score Tertile 3)	60	25.42 (19.92)		
Differences in UF-DBD monthly sum scores between groups defined by PGI-S					
RND	Group 1 (PGI-S = 1,2 [None/Very mild])	15	28.00 (9.97)	16,584.0 / 0.0011	120.0 / 0.0171
	Group 2 (PGI-S = 3 [Mild])	24	30.50 (7.68)		
	Group 3 (PGI-S = 4 [Moderate])	90	33.71 (13.53)		
	Group 4 (PGI-S = 5 [Severe])	97	33.61 (13.84)		
	Group 5 (PGI-S = 6 [Very severe])	54	42.24 (21.02)		
EOT	Group 1 (PGI-S = 1,2 [None/Very mild])	99	4.18 (9.04)	15,835.5 / <.0001	28.8 / <.0001
	Group 2 (PGI-S = 3 [Mild])	56	8.82 (15.19)		
	Group 3 (PGI-S = 4 [Moderate])	62	10.02 (14.16)		
	Group 4 (PGI-S = 5 [Severe])	36	24.22 (29.52)		
	Group 5 (PGI-S = 6 [Very severe])	9	10.89 (20.51)		

^aJonckheere-Terpstra test

^bKruskal-Wallis test

^cAs the first and the second tertile are the same at EOT, only two groups based on tertiles are defined

"All patients with AH measurements from ASTEROID 1" refers to all patients enrolled with an existing date of visit and AH or PGI-S measurements

RND Tertile 1: (0.00 to 101.24), Tertile 2: (> 101.24 to 203.73), Tertile 3: (> 203.73 to 1164.18)

EOT Tertile 1 and Tertile 2: (0.00 to 0.00), Tertile 3: (> 0.00 to 747.94)

AH Alkaline hematin method, EOT End of treatment, MBL Menstrual blood loss, N Number of patients, PGI-S Patient Global Impression of Severity, RND Randomization, SD Standard deviation, UF-DBD Uterine Fibroid Daily Bleeding Diary

Haberland et al. Journal of Patient-Reported Outcomes (2020) 4:97 Page 10 of 13
validity of the MP. This was also shown for the UF-
DBD, which exhibited a lower correlation with the AH
sum scores; these results, however, were expected a
priori. The UF-DBD assesses women’s perception of va-
ginal bleeding severity. This may include aspects beyond
pure quantity and thus correlations with actual quantity
of blood volume may not be as strong as correlations
observed between measures of bleeding volume only.

Construct validity of both the MP and the UF-DBD was
determined via establishment of convergent, divergent
and known-groups validity. As expected, correlations of
the MP monthly and bleeding episode scores with the UF-
DBD scores were strong, supporting the convergent valid-
ity of both bleeding assessment instruments.

Correlations of both the MP and the UF-DBD with the
other instruments (UF-DSD v3 and UF-IS v3) were weak
to moderate in nature, as a priori hypothesized, likely due
to the differences in the different concepts and disease as-
pects covered by each of these instruments.

In general, the mean monthly MP and UF-DBD scores
increased with higher AH scores and bleeding volume
and PGI-S severity, with substantial and significant dif-
fferences seen between the known severity groups. Pro-
nounced group differences in MP and UF-DBD sum
scores well reflected the known-groups categories de-
efined by the AH method and PGI-S.

Responsiveness was supported by strong associations be-
tween changes in the monthly sum scores of MP and UF-
DBD respectively with those in AH, and those between
changes in the MP and in the UF-DBD. Furthermore, there
were large and significant differences in change in the MP
and UF-DBD monthly sum scores between the groups de-
efined by AH and PGI-S change categories.

The psychometric findings from the ASTEROID 2
largely confirm those from the ASTEROID 1 analyses;
however, as the AH method was not applied in ASTE-
ROID 2 analyses requiring the AH method as a reference
measure could not be conducted. Of note, approximately
70,000 sanitary products were used in ASTEROID 1, with
a higher number of sanitary products rated by the MP
than with the AH method. The small percentage of un-
known brands of sanitary products reported in the study
supports the compliance with the study protocol and the
reliability of the collected data, as unknown brands of
sanitary products may not contain SAP granules, which
could affect their absorbance and staining characteristics.

Missingness analysis demonstrates that evaluations
were more frequently made by the MP than the AH
method, with the AH method thus associated with a
higher frequency of missing data. Furthermore, analyses
indicated the mean absolute (relative) frequency of days
with missing values per patient, and of missing daily

| Table 6 Absolute frequency of missing daily AH, MP, values, and daily UF-DBD scores per patient |
|---------------------------------|------------------|------------------|------------------|------------------|
| Patient group | Number of patients | Average number of days in period | Mean | SD | Median | IQR (Q1-Q3) | Min-Max |
|---------------------------------|------------------|------------------|------------------|------------------|
| Screening period | | | | |
| Patients with AH measurements | | | | |
| Daily AH values | 241 | 28 | 3.1 | 3.7 | 2.0 | 0.0–5.0 | 0.0–21.0 |
| Daily MP values | 241 | 28 | 2.8 | 3.6 | 1.0 | 0.0–4.0 | 0.0–19.0 |
| Daily UF-DBD scores | 241 | 28 | 2.8 | 3.5 | 1.0 | 0.0–4.0 | 0.0–21.0 |
| US Patients with AH measurements| | | | |
| Daily AH values | 92 | 28 | 4.6 | 4.3 | 3.5 | 1.0–6.5 | 0.0–21.0 |
| Daily MP values | 92 | 28 | 4.1 | 4.2 | 3.0 | 1.0–6.0 | 0.0–19.0 |
| Daily UF-DBD scores | 92 | 28 | 4.3 | 4.2 | 3.5 | 1.0–6.0 | 0.0–21.0 |
| 28 days prior to and including EOT| | | | |
| Patients with AH measurements | | | | |
| Daily AH values | 223 | 28 | 3.2 | 4.1 | 2.0 | 0.0–4.0 | 0.0–21.0 |
| Daily MP values | 223 | 28 | 3.0 | 4.0 | 2.0 | 0.0–4.0 | 0.0–21.0 |
| Daily UF-DBD scores | 223 | 28 | 2.9 | 3.8 | 2.0 | 0.0–4.0 | 0.0–21.0 |
| US Patients with AH measurements| | | | |
| Daily AH values | 82 | 28 | 5.0 | 4.9 | 4.0 | 2.0–7.0 | 0.0–21.0 |
| Daily MP values | 82 | 28 | 4.8 | 4.7 | 4.0 | 1.0–7.0 | 0.0–21.0 |
| Daily UF-DBD scores | 82 | 28 | 4.6 | 4.4 | 4.0 | 1.0–6.0 | 0.0–21.0 |

The patient group analyzed here refers to those who had AH measurements from any study center. Patients from Japan were excluded as they were not asked to collect sanitary items for the AH method.

AH Alkaline hematin method, EOT End of treatment, IQR Interquartile range, Max Maximum, Min Minimum, MP (MP SAP-c v3) Menstrual pictogram superabsorbent polymer-containing version 3, N Number of patients, UF-DBD Uterine Fibroid Daily Bleeding Diary.
values per patient, was higher with the AH method than with the MP or the UF-DBD.

Comparability analysis of the MP, UF-DBD, and AH methods to identify treatment eligibility indicated that approximately 24% of women selected by the MP would not have been classed as eligible for study participation if assessed for HMB by the AH method. It is important to note, however, that women with an MBL volume slightly less than 80 mL as rated by the AH method may still suffer from a similar severity perception of the disease, compared with those with “HMB” of 80 mL or slightly above rating by the AH method. Regarding treatment response, the MP and the UF-DBD both offered greater than 90% sensitivity in detecting amenorrhea, and the MP was almost 99% sensitive in detecting HMB response.

There are several limitations to this study. First, analysis on psychometric and other measurement properties were conducted post hoc using datasets from ASTEROID 1 and 2 studies intended for assessment of efficacy and safety of the novel selective progesterone receptor modulator vilaprisan.

Therefore, although for the assessment of psychometric and other measurement properties the overall data handling process was in line with that employed in the ASTEROID 1 and 2 studies, some deviations were necessary including applying scoring for UF-DBD, score aggregation, biopsy-related handling of bleeding data, and limited missing data imputation. Therefore, deviations between the results presented and the ASTEROID 1 and 2 clinical efficacy and safety study results may exist. Bleeding episode data from the two interventional studies was also difficult to interpret due to the high number of patients during the study conduct without bleeding and with consequently undefined bleeding episodes as a consequence of positive treatment effect. In addition, determination of matching time points for assessment between the MP and the UF-DBD and the reference measures was difficult due to the post hoc study design. Finally, the AH method, as the most important reference measure, was not employed in ASTEROID 2; therefore, only limited data to confirm the analysis of ASTEROID 1 data were available. Therefore, these analyses should be replicated with MP and AH data collected from other clinical studies.

Conclusions
Overall, the analyses presented here demonstrate favorable psychometric and other measurement properties of the MP and UF-DBD. These instruments were associated with a lower frequency of missing patient data compared to the AH method. In general, however, a good agreement with the standard AH method could be shown. The results support the use of the MP and the UF-DBD to assess clinical efficacy endpoints in UF phase III studies, replacing the AH method.

Abbreviations
AH: Alkaline hematin; CI: Confidence interval; EOT: End of treatment; FDA: US Food and Drug Administration; GCP: Good Clinical Practice; HMB: Heavy menstrual bleeding; HRQoL: Health-related quality of life; ICC: Intra-class correlation coefficient; MBL: Menstrual blood loss; MP SAP-c-v3: Menstrual pictogram superabsorbent polymer-containing version 3; NA: Not applicable/available; PPV: Positive predictive value; PBC: Pictorial blood loss assessment charts; PGI-S: Patient Global Impression of Severity; PPV: Positive predictive value; PRO: Patient-reported outcomes; RND: Randomization; SAP: Superabsorbent polymer; SF-36 v2®: Short-Form 36 Health Survey Version 2; T: Treatment; UF: Uterine fibroids; UF-DBD: Uterine Fibroid Daily Bleeding Diary; UF-DSR v2: Uterine Fibroid Daily Symptom Diary version 3; UF-IF v3: Uterine Fibroid Impact Scale version 3; UFS QoL: Uterine Fibroid Symptom and Quality of Life Questionnaire

Acknowledgements
The authors wish to thank study investigators, coordinators and nurses, and the patients for their contributions. The Menstrual Pictogram was originally developed at Keele University, UK, and refined in cooperation between Keele University and Bayer AG, Germany. Intellectual property in the instrument is jointly owned by Keele University and Bayer.

Authors’ contributions
CH, AF, CS, MB, CG, HD, and DW made substantial contributions to the conception of the manuscript, generation, interpretation and analysis of data included, and drafting of the work. All authors read and approved the submitted manuscript. All authors have also agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Funding
Funding for this study was provided by Bayer AG and medical writing support was also funded by Bayer AG and provided by Afsaneh Khetrapal (Huntsworth Health).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The clinical studies met all local legal and regulatory requirements and were conducted in accordance with the ethical principles that have their origin in the Declaration of Helsinki and the International Council for Harmonization (ICH) guideline E6: Good Clinical Practice (GCP). Analyses of psychometric and other measurement properties were conducted in line with scientific standards including the FDA PRO Guidance for Industry, 2009.

Consent for publication
Not applicable.

Competing interests
CH, AF, CS, MB and CG are employees of Bayer AG. HD is an employee of Clinical Outcomes Solutions and formerly of ICON Patient Centered Outcomes. DW is an employee of Metronomia Clinical Research GmbH. Funding for this study was provided by Bayer AG and medical writing support was also funded by Bayer AG and provided by Afsaneh Khetrapal (Huntsworth Health).

Authors details
1Market Access, Public Affairs & Sustainability, TA Pulmonology / Innovative WHC, Bayer AG, Building S157, 3.315, 13342 Berlin, Germany. 2Market Access, Public Affairs & Sustainability, TA Pulmonology / Innovative WHC, Bayer AG, Building S157, R518, 13342 Berlin, Germany. 3Research & Development, Pharmaceuticals, CD Gynecological Therapies, Bayer AG, Building P300, A422, 13342 Berlin, Germany. 4Statistical Analytics, Bayer AG, Building P300, A138, 13342 Berlin, Germany. 5Statistics and Data Insights, Bayer AG, Building P300, A121, 13342 Berlin, Germany. 6Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg, Saar, Germany. 7ICON Patient Centered Outcomes, London, UK. 8Strategic
Lead, Quantitative Science, Clinical Outcomes Solutions, Folkestone, UK.
‡Metromnia Clinical Research GmbH, Muenchen, Germany.

Received: 30 April 2020 Accepted: 2 November 2020
Published online: 13 November 2020

References
1. Zimmermann, A., Bernurt, D., Gerlinger, C., Schaefers, M., & Geppert, K. (2012). Prevalence, symptoms and management of uterine fibroids: An international internet-based survey of 21,746 women. BMC Women's Health, 12, 6. https://doi.org/10.1186/1472-6874-12-6.

2. Stewart, E. A., Cookson, C. L., Gandolfo, R. A., & Schulze-Rath, R. (2017). The impact of uterine leiomyomas: A national survey of affected women. American Journal of Obstetrics and Gynecology, 209(4), S19.e311–S19.e320. https://doi.org/10.1016/j.ajog.2017.07.017.

3. Stewart, E. A., Nicholson, W. K., Bradley, L., & Borah, B. J. (2013). The burden of uterine fibroids for African-American women: Results of a national survey. Journal of Women’s Health (Larchmt), 22(10), 807–816. https://doi.org/10.1089/jwh.2013.4343.

4. Salehi, M., Jallian, N., Salehi, A., & Ayazi, M. (2015). Clinical efficacy and complications of uterine artery embolization in symptomatic uterine fibroids: Global Journal of Health Science, 8(7), 245–250. https://doi.org/10.5539/gjhs.v8n7p245.

5. Brito, L. G., Pombiobianco, M. S., Sabino-de-Freitas, M. M., Barbosa-Hde, F., de-Azevedo, G. D., Brito, L. M., et al. (2014). Uterine leiomyomas: Understanding the impact of symptoms on women’s lives. Reproductive Health, 11(10), 1. https://doi.org/10.1186/1742-7575-11-10.

6. Ghan, M. S., Sengoba, K. S., Recht, H., Cameron, K. A., Lawson, A. K., & Marsh, E. E. (2015). Beyond the physical: A qualitative assessment of the burden of symptomatic uterine fibroids on women’s emotional and psychosocial health. Journal of Psychosomatic Research, 78(5), 499–503. https://doi.org/10.1016/j.jpsychores.2014.12.016.

7. National Institute for Health and Care Excellence 2018 (2018) National evidence based clinical guidelines. Heavy menstrual bleeding. https://www.nice.org.uk/guidance/ng88. Accessed June 2019.

8. Magnay, J. L., Nevatte, T. M., Seitz, C., & O’Brien, S. (2013). A new menstrual pictogram for use with feminine products that contain superabsorbent polymers. Fertility and Sterility, 100(6), 1715–1721.e1711-1714. https://doi.org/10.1016/j.fertnstert.2013.08.028.

9. Magnay, J. L., O’Brien, S., Gerlinger, C., & Seitz, C. (2018). A systematic review of methods to measure menstrual blood loss. BMC Women's Health, 18(1), 142. https://doi.org/10.1186/s12905-018-0627-8.

10. Gannon, M. J., Day, P., Hammadi, N., & Johnson, N. (1996). A new method for measuring menstrual blood loss and its use in screening women before endometrial ablation. British Journal of Obstetrics and Gynaecology, 103(10), 1029–1033.

11. Magnay, J. L., Nevatte, T. M., O’Brien, S., Gerlinger, C., & Seitz, C. (2014). Validation of a new menstrual pictogram (superabsorbent polymer-c version) for use with ultra thin towels that contain superabsorbent polymers. Fertility and Sterility, 101(2), 515–522. https://doi.org/10.1016/j.fertnstert.2013.05.051.

12. Schumacher, U., Schumacher, J., Mellinger, U., Gerlinger, C., Winkel, A., & Endrikat, J. (2012). Estimation of menstrual blood loss volume based on menstrual diary and laboratory data. BMC Women's Health, 12, 24. https://doi.org/10.1186/1472-6874-12-24.