Suppressed star formation by a merging cluster system

A. S. Mansheim,1 B. C. Lemaux,1* A. R. Tomczak,1 L. M. Lubin,1 N. Rumbaugh,2 P.-F. Wu,3 R. R. Gal,4 L. Shen,1 W. A. Dawson5 and G. K. Squires6

1Physics Department, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
2National Center for Supercomputing Applications, University of Illinois, 1205 West Clark St., Urbana, IL 61801, USA
3Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
4Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, HI 96822, USA
5Lawrence Livermore National Laboratory, 700 East Avenue, Livermore, CA 94550, USA
6California Institute of Technology/IPAC, M/S 314-6, 1200 E. California Blvd., Pasadena, CA 91125, USA

Accepted 2017 March 16. Received 2017 March 16; in original form 2016 September 14

ABSTRACT

We examine the effects of an impending cluster merger on galaxies in the large-scale structure (LSS) RX J0910 at z = 1.105. Using multiwavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the colour–magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest that gravitational tidal forces due to the potential of the merging haloes may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters.

Key words: techniques: spectroscopic – galaxies: clusters: general – galaxies: clusters: individual: J0910+5422 – galaxies: clusters: individual: J0910+5419 – galaxies: evolution.

1 INTRODUCTION

The environment in which a galaxy lives can strongly influence the pace and course of its evolution. By z ∼ 1, gravitational effects, driven largely by the presence of dark matter, have given rise to a spectrum of galaxy environments ranging in size from isolated galaxies to filaments and clusters. The dark matter halo exerts a differential gravitational (i.e. tidal) force over the length of a galaxy that can alter its internal processes and strip it of fuel for star formation. On a larger scale, gravity causes structures to merge and form increasingly complex large-scale structures (LSSs). Cluster mergers, in particular, are the most cataclysmic manifestation of hierarchical structure formation, releasing energy on scales second only to the big bang. Merging clusters play an increasing role at hierarchical structure formation, releasing energy on scales second only to the big bang. Merging clusters play an increasing role at high redshifts, and subsequently lead in part to the properties of systems and a variety of different metrics, we further minimize uncertainties as-

on star formation (Chung et al. 2009), though with a small number of systems and a variety of methods employed for analysing such effects. One of the greatest obstacles to studying these effects is that, in the diaspora after a first pass-through, all history of the clusters’ initial states is erased. Mansheim et al. (2017) found that, even with an exquisite, multiwavelength data set and a dynamical simulation to constrain an ideal merger timeline, having no knowledge of the prior states of the galaxies proved insurmountable to connecting star formation to the merger event.

In this study, we investigate the pre-merging RX J0910 LSS at z ∼ 1.10 and perform a direct comparison of regions more and less affected by the impending merger. In RX J0910, we have the opportunity to analyse in detail a system that has not been fully disrupted by an initial pass-through, which minimizes the difficulties of membership contamination. Additionally, by conducting internal comparisons within the LSS and by comparing results from a variety of different metrics, we further minimize uncertainties associated with differing observational conditions, redshift and the large variation of star formation rates observed at z ∼ 1 (e.g. Tresse et al. 2007).

In Section 2, we discuss observations, in Section 3, we explain the analysis methods and results, and in Section 4, we discuss possible scenarios to explain them. Equivalent widths are in rest-frame units and distances are given in proper units. Magnitudes are in AB. We assume a flat ΛCDM cosmology with H₀ = 70 km s⁻¹ Mpc⁻¹, ΩM = 0.3 and ΩΛ = 0.7.
2 OBSERVATIONS

2.1 Target

The supercluster RX J0910 at \(z \approx 1.10 \) was first identified in the ROSAT Deep Cluster Survey (Rosati et al. 1998; Stanford et al. 2002) by the X-ray emission of RX J0910+5422 (hereafter Cluster B). A spectroscopic campaign by Tanaka et al. (2008) identified the nearby RX J0910+5419 (hereafter Cluster A), as well as a larger network of filaments. The LSS was subsequently observed as part of the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey (Lubin et al. 2009), an ongoing multiwavelength campaign studying the environmental dependence of galaxies in 18 LSS fields in the redshift range \(0.6 \leq z \leq 1.3 \).

Details on previous multiwavelength observations and reductions for ORELSE are found in Gal et al. (2008), Lemaux et al. (2012) and Rumbaugh et al. (2013, 2016). In this study, we incorporate new photometric and spectroscopic observations, which will be described briefly in Sections 2.2 and 2.3 and in detail in Tomczak et al. (in preparation). With all spectral members (see Section 2.3), we calculated luminosity-weighted centroids, dynamical masses, virial radii, mean redshifts and velocity dispersions to be \([0.9^{+10^{-4}}_{-44}, 5.4^{+22}_{-21}] \) and \([0.9^{+10^{-3}}_{-43}, 5.4^{+18}_{-46}] \), \([2.7 \pm 2.0] \times 10^{12} \) and \([5.0 \pm 4.3] \times 10^{12} \) M\(_{\odot} \), 0.82 \pm 0.2 and 1.01 \pm 0.3 h\(_{70}^{-1} \) Mpc, 1.100 and 1.102, and 681 \pm 170 (ORELSE galaxies only) and 840 \pm 244 km s\(^{-1}\), for Clusters B and A, respectively. These quantities were calculated using methods described in Lemaux et al. (2012) and Rumbaugh et al. (2013, 2016). X-ray contours (Fig. 1) show no indication of dissociated gas in the wake of an initial pass-through, indicating that the clusters have not yet collided with each other. A dynamical simulation for merging clusters (Dawson 2013) adjusted for a pre-merger system according to Andrade-Santos et al. (2015) indicates that the clusters, whose centres are separated by 4.6 Mpc, have a Time-Till-Collision (TTC) of \(6.1_{-1.3}^{+5.6} \) Gyr (assuming an angle relative to the plane of the sky of \(\alpha \leq 70^\circ \)).

2.2 Imaging and photometry

Subaru/Suprime-Cam imaging of RX J0910 was performed in five optical bands: \(B, V, R_c, I_c \) and \(Z_c \). Near-infrared (near-IR) imaging in the \(J \) and \(K \) bands from WFCAM/UKIRT, 3.6 and 4.5 \(\mu \)m from Spitzer/IRAC and 24 \(\mu \)m from Spitzer/MIPS was additionally taken on the field. We perform spectral energy distribution (SED) fitting on observed-frame magnitudes to derive photometric redshifts (\(\Delta z_{\text{phot}} \)), stellar masses \(\{ \log (M_*/M_\odot) \} \), specific star formation rates (SSFR\(_{\text{SED}} \)), rest-frame magnitudes (\(M_{\text{AB}} \)), V-band dust attenuation (\(A_{\text{V}} \)) and rest-frame total IR luminosities (\(L_{\text{TIR}} \)). Details on reduction, photometry and SED fitting are found in Lemaux et al. (2016) and Tomczak et al. (in preparation). Spectroscopic redshifts were used to determine the \(\Delta z_{\text{phot}} \) scatter (Section 2.3). Details on this procedure are found in Lemaux et al. (2016). The 1\(\sigma _{\text{c}} \) cluster \(\Delta z_{\text{phot}} \) range is 1.02 \(\leq \Delta z_{\text{phot}} \leq 1.19 \), which is calculated by subtracting and adding 1\(\sigma _{\text{c}} \) to the minimum and maximum of the LSS spectroscopic redshift range (Section 2.3), respectively. We find that for \(Z_c \geq 23.25 \), all spectroscopic LSS members have a measured \(\Delta z_{\text{phot}} \) within this range.

2.3 Spectroscopy

In total, seven slitmasks were observed through the Keck II/Deep Imaging Multi-Object Spectrograph (DEIMOS; Faber et al. 2003) between 2009 and 2015, under seeing of 0.50–1.05 arcsec/with an average exposure time of 9704 s per mask. The 1200 l mm\(^{-1}\) grating was used with 1-arcsec-wide slits, resulting in a full width at half-maximum resolution of 1.7 Å. Central
wavelengths were set to 8000–8100 Å. These observations resulted in 750 high-quality spectral redshifts ($Q = -1, 3, 4$; Gal et al. 2008; Newman et al. 2013).

The spectroscopic redshift (z_{spec}) range for RX J0910 is determined off the clear peak in the redshift histogram near $z = 1.10$. The redshift range $1.09 \leq z \leq 1.12$ was adopted as it encompasses the true members of both clusters. This redshift range, along with a magnitude cut of $Z^+ \leq 23.25$ ($\sim 0.5L^*$ for a cluster galaxy at this redshift), defines the sample of z_{spec} member galaxies of RX J0910 and contains 102 galaxies, 100 from ORELSE and 2 additional members confirmed from Tanaka et al. (2008). The above magnitude limit was chosen to optimize completeness based on the number of targeted objects (63 per cent) brighter than this limit for which we attained high-quality spectra (84 per cent) within the photometric redshift range (see Section 2.2). The area of spectroscopic coverage includes all objects seen as black dots in the left-hand panel of Fig. 1. This boundary constrains the outermost grey border in the right-hand panel of Fig. 1, where it intersects our regions of special study defined in Section 3. As a result, only areas internal to the boundaries of spectral coverage contribute to the analysis presented in this study.

3 Results

We define regions in units of virial radii, R_{vir}, physically motivated by the radial dependence of the Navarro–Frenk–White (Navarro, Frenk & White 1996) profile and the tidal force this dark matter halo exerts on a galaxy (see discussion in Section 4). R_{vir}, as estimated from the velocity dispersion, is a reasonable metric due to the long TTC (Pinkney et al. 1996).

The member galaxies of clusters A and B, defined by core and infall regions around each centroid, $R_{\text{proj}} \leq 0.5R_{\text{vir}}$ and $0.5 < R_{\text{proj}} \leq 1.5R_{\text{vir}}$, respectively, are excluded from our analysis. The scale of each cluster is shown by the inner grey circles plotted in Fig. 1, where these circles correspond to $R_{\text{proj}} = 1.5R_{\text{vir}}$ for each cluster. EW(OIII), EW(Hβ) and D4000 measurements from composite spectra indicate that the galaxies in the cores of Clusters A and B are undergoing little star formation, which is consistent with the predicted cessation of star formation as galaxies reach the core of massive clusters (e.g. Butcher & Oemler 1978). Unlike Cluster A, the infall region of Cluster B is active, consistent with the results of Mei et al. (2006). The core (9 and 8) and infall (18 and 17) members of both clusters (A and B, respectively) are removed from our analysis to eliminate any confusion from effects related to secular cluster processes.

The Merger Front (MF) region, outlined in red in Fig. 1, is defined as the overlap between circles of $R_{\text{proj}} = 4R_{\text{vir}}$ centred on the luminosity-weighted centroid of each cluster and thus probes the galaxies most affected by the impending merger. The Merger Back (MB) is defined by the areas in the range $1.5 < R_{\text{proj}} \leq 4R_{\text{vir}}$ centred on each cluster that do not overlap, although it is constrained by the outer slitmask boundary, and is shown by the outermost grey border in Fig. 1. The MF and MB have 17 and 24 members, respectively, and are the focus of this Letter. Results in this Letter do not change meaningfully if the X-ray centroids are used instead.

3.1 Colour–magnitude properties

A colour–magnitude diagram (CMD) is a simple yet effective way to examine ensemble properties of a population. For this analysis, we use the I^+ and Z^+ observed-frame magnitudes as they are adjacent filters that capture either side of the 4000 Å break at $z \sim 1.1$ and are not model-dependent. The difference between the MF and MB distributions is apparent by eye in Fig. 2: The MB population defines as the overlap between circles of $R_{\text{proj}} = 4R_{\text{vir}}$ centred on the luminosity-weighted centroid of each cluster and thus probes the galaxies most affected by the impending merger. The Merger Back (MB) is defined by the areas in the range $1.5 < R_{\text{proj}} \leq 4R_{\text{vir}}$ centred on each cluster that do not overlap, although it is constrained by the outer slitmask boundary, and is shown by the outermost grey border in Fig. 1. The MF and MB have 17 and 24 members, respectively, and are the focus of this Letter. Results in this Letter do not change meaningfully if the X-ray centroids are used instead.
that the significance of these differences holds if we instead use model-dependent rest-frame magnitudes (i.e. $M_{NUV} - M_{r}$ versus M_r). Indeed, further underscoring the differences between the two populations, we classify galaxies in MF and MB into quiescent and star forming using the rest-frame NUV/r separations of Lemaux et al. (2014) and find quiescent fractions (f_q) of 55 per cent and 25 per cent, respectively.

We additionally include z_{phot} members using two methods in order to investigate whether spectroscopic completeness effects could be responsible for the observed differences. First, we include with the z_{spec} members all objects in the redshift range $1.13 < z_{LSS} (1 + z_{LSS})$ and $z_{LSS} > 1.13$. A KS test reveals that difference holds at ≥ 90 per cent level and at ≥ 65 per cent or better confidence for magnitude and colour, respectively. In our second approach, we integrate the probability distribution function of z_{phot} of each object over the z_{spec} range of the LSS (as in Rumbaugh et al. 2016). Adopting $P(1.09 < z_{phot} < 1.12) > 0.23$ as the criterion for z_{phot} membership as a balance between purity and completeness results in a ≥ 90 per cent and ≥ 80 per cent confidence in the difference in the combined $z_{phot} + z_{spec}$ magnitude and colour distributions. Similar tests are run on the stellar mass distributions of the MB and MF galaxies. No such differences exist between the stellar masses of the MB and MF galaxies [with median values of log(M_*/M_{\odot}) ~ 10.8 in both cases], and a KS test shows no significant difference between the distributions. These results preclude the possibility that any observed SFR regulation is driven by trends with stellar mass (e.g. Daddi et al. 2007).

We conclude that the difference between the colour–magnitude distributions for galaxies most and least likely to be affected by the merger is not due to poor completeness, nor due to biased sampling or stellar mass effects. We proceed under the assumption that our spectroscopic data are representative of the true population and continue to suspect that the preponderance of red and fainter blue galaxies in MF may be indicative of a lower average SFR due to a process related to the impending merger.

3.2 Extinction-corrected star formation rate

Encouraged by the suggestively distinct colour–magnitude properties of the MF and MB galaxies, we leverage our sample of high-quality spectra, along with multiband photometry fitted with stellar population synthesis models, to calculate extinction-corrected SFRs using two different methods.

First, we use the mean values of EW([O II]), M_*/A_V, and the distance modulus for z_{spec} members of each region to determine $L([O II])$ and thus an extinction-corrected SFR($L([O II])$). EW([O II]) can be used as a proxy for star formation when $H\alpha$ is not available (Poggianti et al. 1999). Though the use of [O II] introduces a risk of contamination from non-star-forming sources such as Seyferts/low-ionization nuclear emission-line regions (Lemaux et al. 2010, 2016), we mitigate this risk by removing a type 1 active galactic nucleus (AGN) from the sample and by using the additional metrics for star formation presented in this Letter that are not subject to the same impurity. We make inverse variance, unit-weighted composite spectra for each region, and then measure EW([O II]) using the bandpass method described in Lemaux et al. (2010). (M_*) is used because it provides a fair sampling of the rest-frame continuum surrounding [O II]. Extinction corrections are made using (A_V) and adopting the scheme of Wuyts et al. (2013) to minimize the scatter and offset between line-measured and SED-fitted SFRs, shown to work well with our method (Pelliccia et al. 2016). The extinction-corrected SFR($L([O II])$) is 2.64 ± 0.93 times higher for MB than MF, 2.98 \pm 0.75 and 1.13 \pm 0.28 M_\odot yr$^{-1}$, consistent with the larger fraction of fainter blue galaxies within the MF region. This decrease is also consistent with the elevated f_q within the MF region, though it is not possible to discern whether the fractional excess of quiescent galaxies is solely responsible for the observed decrease in the average SFR due to the small number of each galaxy type within each region.

In our second approach, we use L_{IR} for areas with MIPS coverage to calculate SFR(L_{IR}) (Table 1) and the surface density of signal-to-noise ratio >2 sources, a limit that corresponds to ≥ 6.5 M_\odot yr$^{-1}$ at the redshift of RX J0910. The results indicate that we are not differentially missing a population of dusty starbursting galaxies in MF. Further, we recalculate total SFRs of galaxies in the two regions by combining the extinction-uncorrected SFR($L([O II])$) with the SFR derived from the median L_{IR} value for all galaxies in each population. This exercise yields an SFR($L([O II])$) that is 2.21 ± 0.35 times higher in MB than in MF (Table 1).

3.3 Voronoi Monte Carlo tessellation

The Voronoi Monte Carlo (VMC) technique allows us to utilize both z_{spec} and z_{phot} to define a metric for the local environment, on to which we can map galaxy properties like SSFR SED (SFR/SED, Section 2.2). An MC approach to using the Voronoi tessellation method for reconstructing the galaxy density field is developed and extensively tested in Darvish et al. (2015a). A similar technique is developed for ORELSE data by Lemaux et al. (2016). We perform 100 MC iterations, each time resampling from a Gaussian constructed from their $P(z)$ for all galaxies without a secure z_{spec}. Confirmed members appear in all iterations. We require that all objects used to generate the maps satisfy $18 < z^* < 24.5$, SFR $> 10^{-3}$ M_\odot yr$^{-1}$ and log(M_*/M$_{\odot}$) $>$ 9, to minimize incompleteness with respect to faint, quiescent, low-mass galaxies.

Table 1. Comparison of properties of the MF and MB.

Region	Area [arcmin$^2 (h^{-1}$ Mpc$^2)$]	$\langle SFR(L([O II])) \rangle$ (M$_\odot$ yr$^{-1}$)	$\langle 1 + \delta_{adi/ps} \rangle$	$\langle Z^+ \rangle$	σ^a	$\langle I^+ - Z^+ \rangle$	σ^a	N_{spec}^b	$\langle R_{\text{tidal}} \rangle^c$ (kpc)	$\langle SFR_{([O II]) + IR} \rangle$ (M$_\odot$ yr$^{-1}$)
MF	25.37 (6.34)	1.13 \pm 0.28	0.20	22.73	0.16	0.98	0.08	17	102 \pm 20	2.53 \pm 0.29
MB	97.98 (24.49)	2.98 \pm 0.75	0.83	22.27	0.13	0.82	0.06	24	203 \pm 40	5.60 \pm 0.61

Notes. a Uncertainty on the median for magnitudes and colours (1.253σ/\sqrt{N}), plotted in Fig. 2 with large symbols and error bars (Section 3.1). b Number of galaxies with a high-quality z_{spec} in the LSS spectroscopic redshift range to a magnitude limit of $Z^+ \leq 23.25$. c Tidal radius for a test galaxy half the distance between the cluster centroids (MF) versus the same distance behind each cluster (MB) using the total and average velocity dispersions, respectively (Section 4). This value depends on the angle of the merger relative to the plane of the sky (α), where larger angles bring the ratio of the tidal radii for galaxies in the two regions closer to unity. d $SFR_{([O II]) + IR} = SFR(L([O II]),\text{uncorr}) + SFR_{IR}$ (see Section 3.2).
We calculate the VMC tessellation for both galaxy overdensity, in units of log$(1+\delta_{gal})$, and SSFR$_{SED}$ overdensity, in units of log$(1+\delta_{ssfr})$, within the LSS. The quantity log$(1+\delta_{ssfr})$ is inherently correlated with galaxy density as it is calculated from SSFR$_{SED}$ divided by the Voronoi area, so we decouple the measurements by subtracting the log$(1+\delta_{gal})$ map from its log$(1+\delta_{gal})$ equivalent (Fig. 1: left-hand panel), resulting in a differenced map (Fig. 1: right-hand panel). We define the log$(1+\delta_{ssfr})$ normalized by galaxy density as log$(1+\delta_{ssfr/gal})$, which is essentially a proxy of the overdensity of the SSFR$_{SED}$ per galaxy. The median (1+δssfr/gal) value in MF is 0.20, more than four times lower than the median in MB (0.83). This result is consistent with our additional star formation indicators from Sections 3.1 and 3.2, all suggesting a suppression of star formation in the region between the two merging clusters.

Cluster mergers are frequently housed in filaments, which can introduce quenching mechanisms (Darvish et al. 2015b). We examine the case of a filament as the source of suppression in MF by measuring the median (1+δssfr/gal) value in those areas of MB that are aligned with the merger axis, an axis defined by connecting the two cluster centres by a straight line (Dawson 2013). These regions were defined to have an equal extent in the dimension perpendicular to the merger axis as the MF region and to be situated on the opposite side of each cluster stretching to the edge of the MB region along the dimension oriented with the merger axis. We find the median log$(1+\delta_{ssfr/gal})$ in the region to be higher relative to MF by roughly the same factor (3.31) as in the original comparison. This result suggests that filamentary-dependent dynamics within a filament along the merger axis are not the predominant mechanism for suppression in MF.

4 DISCUSSION

Our results, summarized in Table 1, reveal a consistent series of measurements indicating a dearth of star formation in the region between Clusters A and B relative to the galaxies at the same cluster-centric distance on the leeward side of the impending merger. Why would a relative dearth of star formation occur in MF?

One explanation for this suppression may be the amplified tidal force experienced by galaxies in MF caught between two massive, approaching dark matter potentials. A galaxy inside a single cluster halo feels a stronger gravitational pull on one side than the other. The resulting differential force can remove loosely bound gas in the galaxy disc and halo, which could otherwise be used for star formation. Using the measured velocity dispersions of the two clusters (Section 2.1), we calculate the tidal radius (Moore, Lake & Katz 1998) for a test galaxy, outside which the binding force per unit mass is insufficient to retain material. Note that this calculation is necessarily conservative as we ignore the tidal effects of subhaloes as well as those of nearby galaxies. The tidal radius for galaxies in MF is found to be smaller by a factor of 2, on average, compared to a galaxy in MB (Table 1) assuming the merger is transverse to our line of sight. While the MF value exceeds the size of most observed H I discs in the local Universe (e.g. Wang et al. 2014), it is still small enough to allow for the stripping of the diffuse outer regions of the H I disc and gas associated with larger scale inflows.

An additional contribution to the suppression of star formation may be a changing cluster potential, effectively creating a tidal impulse in the frame of the galaxy. While such an impulse can be created by galaxies moving through the cluster potential, for galaxies in MF, the same conditions are amplified by the convergence of the two merging cluster potentials. As a result, the MF galaxies can experience tidal heating not experienced by the MB galaxies, estimated as the kinetic energy introduced to the system and resulting in increased velocity dispersion and mass-loss. In a changing tidal field, tidal heating can occur at any radius within a galaxy where a peak in the tidal force occurs. These phenomena are powerful enough to alter not only colours (blue to red) but also morphologies (disc to spheroid) (Gnedin 2003a,b; van den Bosch et al. 2008). The varying external tidal force in MF can result in the stripping of material that would otherwise fuel star formation (e.g. Larson, Tinsley & Caldwell 1980). Gnedin (2003b) through a variety of simulated clusters estimates the impact of tidal forces and tidal heating on a range of galaxies as they move through cluster potentials finding effects that can halt star formation in the discs of large spirals and completely destroy low-density galaxies like dwarf spheroidals, sending debris into the surrounding medium.

Clusters evolve in regions where there is a confluence of dark matter, gas and galaxies, so we must also consider the influence of the greater LSS. As discussed in Section 3.3, filaments may have an effect on star formation. Not only does preprocessing kickstart the depletion of star-forming resources before halo accretion, nuclear activity can heat gas, causing it to expand beyond the tidal radius. While a preliminary test suggests that the filament along the merger axis is not likely the cause of star formation suppression in MF, we cannot completely rule out such effects.

Ultimately, semi-analytical and hydrodynamical simulations are necessary to understand how, in an equal-mass merger, disc heating and tidal stripping affect star formation due to the non-linear nature of the galaxy and host halo interactions. Such simulations are also necessary to investigate filament dynamics. In addition, a larger number of pre-merger systems observed at different stages leading up to the first pass-through are necessary to fully assess the plausibility of the scenario proposed in this study. Such an ensemble would allow for the study of both short- and long-term effects on star formation without sacrificing the knowledge of the initial states of both clusters.

ACKNOWLEDGEMENTS

This study is based upon work supported by the NSF under Grant No. 1411943 and NASA Grant Number NNX15AK92G. This study is also based, in part, on data collected at the Subaru Telescope obtained from SMOKA, which is operated by the ADC at the NOAO. The spectrographic data presented were obtained at the W. M. Keck Observatory, operated as a scientific partnership among the CalTech, the UC system and NASA. We thank the hard-working staff at the facilities used in this Letter and the indigenous populations for allowing us to observe on their sacred land. We also thank Nathan Golovich for discussions helpful to this Letter.

REFERENCES

Andrade-Santos F. et al., 2015, ApJ, 803, 108
Butcher H., Oemler A., Jr, 1978, ApJ, 226, 559
Chung S. M., Gonzalez A. H., Clowe D., Zaritsky D., Markevitch M., Jones C., 2009, ApJ, 691, 963
Cohn J. D., White M., 2005, Astropart. Phys., 24, 316
Daddi E. et al., 2007, ApJ, 670, 156
Darvish B., Mobasher B., Sobral D., Scoville N., Aragon-Calvo M., 2015a, ApJ, 805, 121
Darvish B., Mobasher B., Sobral D., Hemmati S., Nayyeri H., Shivaei I., 2015b, ApJ, 814, 84
Dawson W. A., 2013, ApJ, 772, 131
Suppressed star formation in RX J0910

Pelliccia D., Tresse L., Epinat B., Ilbert O., Scoville N., Amram P., Lemaux B. C., Zamorani G., 2016, A&A, 599, A25
Pinkney J., Roettiger K., Burns J. O., Bird C. M., 1996, ApJS, 104, 1
Poggianti B. M., Smail I., Dressler A., Couch W. J., Barger A. J., Butcher H., Ellis R. S., Oemler A., Jr, 1999, ApJ, 518, 576
Poggianti B. M., Bridges T. J., Komiyama Y., Yagi M., Carter D., Mobasher B., Okamura S., Kashikawa N., 2004, ApJ, 601, 197
Rosati P., Della Ceca R., Norman C., Giacconi R., 1998, ApJ, 492, L21
Rumbaugh N., Kocevski D. D., Gal R. R., Lemaux B. C., Lubin L. M., Fassnacht C. D., Squires G. K., 2013, ApJ, 763, 124
Rumbaugh N. et al., 2016, MNRAS, 466, 496
Stanford S. A., Holden B., Rosati P., Eisenhardt P. R., Stern D., Squires G., Spinrad H., 2002, AJ, 123, 619
Tanaka M. et al., 2008, A&A, 489, 571
Tresse L. et al., 2007, A&A, 472, 403
van den Bosch F. C., Aquino D., Yang X., Mo H. J., Pasquali A., McIntosh D. H., Weinmann S. M., Kang X., 2008, MNRAS, 387, 79
Wang J. et al., 2014, MNRAS, 441, 2159
Wuyts S. et al., 2013, ApJ, 779, 135

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.