Candidemia due to *Candida guilliermondii* in an immunocompromised infant: a case report and review of literature

Fatemeh Ahangarkani, Hamid Badali, Mohammad Sadegh Rezai, Tahereh Shokohi, Zahra Abtahian, Hassan Mahmoodi Nesheli, Hossein Karami, Emmanuel Roilides, Ahmad Tamaddoni

ABSTRACT

Background and Purpose: Candidemia is a life-threatening fungal infection with significant mortality and morbidity in neutropenic individuals, immunosuppressive chemotherapy recipients, and broad-spectrum antibiotics consumers. The epidemiology and antifungal susceptibility testing of non-*albicans* *Candida* species have been poorly studied. These species are characterized by low susceptibility to azoles and echinocandins. Herein, we report the first pediatric case of candidemia due to *C. guilliermondii* in Iran and review the literature on fungemia caused by *C. guilliermondii*.

Case report: We presented the first candidemia case due to *C. guilliermondii* in a 4-month-old male infant with neuroblastoma in Iran. This study also involves a comprehensive literature review on fungemia caused by *C. guilliermondii* during a period of 18 years (i.e., 2000-2018) to discuss the epidemiology, clinical features, and treatment of this disease. The literature review resulted in the identification of 501 cases of candidemia caused by *C. guilliermondii*. Most of the patients were adults and had multiple risk factors. However, the main risk factors were significantly related to cancer chemotherapy, followed by central venous catheter use and Intensive Care Unit admission. Mortality rate due to this disease had a range of 3.4-66.6%, in this regard, the patients with cancer had the highest mortality rate.

Conclusion: Given the high mortality of candidemia, the early diagnosis of this infection and timely initiation of antifungal therapy significantly improve the patients’ survival rate and result in better outcomes. Consequently, it is highly recommended to monitor the local epidemiology of this life-threatening infection and raise awareness in this regard.

Keywords: Candida guilliermondii, Candidemia, Cancer, Pediatric

How to cite this paper

Ahangarkani F, Badali H, Rezai MS, Shokohi T, Abtahian Z, Mahmoodi Nesheli H, Karami H, Roilides E, Tamaddoni A. Candidemia due to *Candida guilliermondii* in an immunocompromised infant: a case report and review of literature. Curr Med Mycol. 2019; 5(1): 32-36. DOI: 10.18502/cmm.5.1.535

Introduction

Candidemia is a life-threatening fungal infection with significant morbidity and mortality among pediatric patients, especially among those subjected to intravenous catheters for a long time, hematopoietic stem cell transplantation, and immunosuppressive therapy or the patients with severe immunodeficiency and cancer [1]. Although *Candida albicans* is generally the most frequent cause of candidemia, *non-albicans Candida* species (i.e., *C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. auris*, and *C. guilliermondii*) have become more frequent and have been recognized as emerging pathogens in cancer patients [1, 2].

Accordingly, the incidence rate of candidemia due to *C. guilliermondii* ranges from 0.6% in North America to 3.7% in Latin America. In addition, the decreased susceptibility of this pathogenic yeast to fluconazole has been observed in different geographical areas [1-4]. However, the epidemiology of candidemia due to *C. guilliermondii* has been underestimated so far. Herein, we report the first pediatric case of candidemia due to *C. guilliermondii*...
in Iran and present a comprehensive literature review regarding fungemia caused by C. guilliermondii.

Case report

Our case was a 4-month-old male infant with neuroblastoma undergoing chemotherapy referred to the Oncology Department of Amirkola Children’s Hospital, Mazandaran, Iran, with fever and neutropenia, without any obvious source of infection. The patient had undergone surgery for neuroblastoma 2 months prior. Laboratory examinations showed the C-reactive protein level of 76 mg/L, white blood cell count of 1.8×10^{9}/μl (i.e., leukopenia), neutrophil count of <500 cell/μl, hemoglobin level of 6.5 g/dl, and platelet count of 134×10^{9}/μl. The blood samples were collected aseptically by arterial puncture in BD BACTEC Plus Aerobic/F culture bottles (Becton Dickinson and Company Spark, MD 21152, Shannon, County Clare, Ireland) and incubated in a BACTEC culture system (Becton Dickinson Microbiology Systems).

The patient was prescribed ciprofloxacin prophylaxis due to mucositis; in addition, empirical therapy with ceftazidime and vancomycin was instituted for up to 7 days; however, his condition deteriorated rapidly. Initial blood cultures were negative for bacteria, whereas two consecutive blood cultures were positive for yeast-like fungi. Positive blood cultures were subcultured on CHROMagar Candida (bioMe rieux) and resulted in the emergence of smooth colonies with white to cream colors after 24 h in dark. Candida species were initially identified based on conventional assays.

Voucher strains were deposited into the reference culture collection under the accession number IFRC2085. In addition, identification at the species level was performed by using DNA sequencing. Genomic DNA was extracted from 2 to 3-day-old Sabouraud dextrose agar cultures with an UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories) according to the manufacturer’s protocol, and then stored at -20°C prior to use. The internal transcribed spacer (ITS) was amplified and sequenced using primers ITS5 and ITS4 as previously described [5].

Briefly, the amplification of ITS rDNA was performed using a cycle of 5 min at 94°C for primary denaturation, followed by 40 cycles at 94°C for 30 sec, 52°C for 30 sec, and 72°C for 80 sec and a final 7-min extension step at 72°C. The sequence data were performed using a cycle of 5 min at 94°C for primary denaturation, followed by 40 cycles at 94°C for 30 sec, 52°C for 30 sec, and 72°C for 80 sec and a final 7-min extension step at 72°C. The sequence data were adjusted using Lasergene SeqMan software (version 9.0.4, DNASTAR) and compared with the data of GenBank through local BLAST with a molecular extension step at 72°C. The sequence data were adjusted using Lasergene SeqMan software (version 9.0.4, DNASTAR) and compared with the data of GenBank through local BLAST with a molecular extension step at 72°C. The sequence data were adjusted using Lasergene SeqMan software (version 9.0.4, DNASTAR) and compared with the data of GenBank through local BLAST with a molecular extension step at 72°C.

In vitro antifungal susceptibility test was also performed according to the documents M27-A3 and M27-S4 of the Clinical and Laboratories Standards Institute. For the preparation of the microdilution trays, amphotericin B (Sigma, St. Louis, MO, USA), fluconazole (Pfizer, Groton, CT, USA), itraconazole (Janssen research foundation, Beerse, Belgium), voriconazole (Pfizer), and caspofungin (Merck, Whitehouse Station, NJ, USA) were obtained from their respective manufacturers as reagent-grade powders. The minimum inhibitory concentrations for amphotericin B, fluconazole, itraconazole, voriconazole, and caspofungin were obtained as 0.063, 4, 2, 0.25, and 0.5 μg/ml, respectively.

The patient was empirically treated with 0.75 mg/kg/day amphotericin B deoxycholate intravenously, which is a regimen frequently used as standard therapy for candidemia in Iran. After treatment with amphotericin B for a week, two sequential blood cultures remained negative. The patient was successfully treated and showed no relapse during the two-week follow-up. This report was approved by the Ethics Committee of Mazandaran University of Medical Sciences, Mazandaran, Iran. In line with the principles of research ethics, written informed consent was obtained from the parents of the patient.

Discussion

Candida guilliermondii complex comprising several species, namely C. guilliermondii, C. fermentati, C. carpophila, and C. xestobii, is an uncommon, newly emerging, and rare agent of candidemia, with low incidence (1-3%), especially in immunocompromised hosts, transplant recipients, and critically ill patients [3].

Limited cases of invasive candidiasis caused by C. guilliermondii complex have been reported in the past because of its low pathogenicity. However, recently, there is an increasing number of reports regarding the bloodstream infections due to this complex [4]. In addition, due to resistance or decreased susceptibility to antifungal agents, C. guilliermondii complex has been proposed to be a re-emerging pathogen in high-risk patients.

Table 1 summarizes all reported cases of candidemia due to C. guilliermondii in English literature with the patients’ demographic characteristics (e.g., age, gender, source, and location) and clinical data (e.g., underlying condition, risk factors, and outcomes). Most of these patients were adults and had multiple risk factors. The main risk factors were significantly related to cancer patients undergoing chemotherapy, followed by central venous catheter users and ICU patients (Table 1). In the reviewed articles, the mortality rate had a range of 3.4-66.6%. In this regard, this infection had the mortality rates of 11.76-66.6%, 13.6-54%, 16.66-18.8%, 59.25%, and 3.4% in Japan, Spain, Taiwan, United States, and Italy, respectively (Table 1).

Cancer patients suffering from this infection had a high rate of mortality. While the majority of C. guilliermondii fungemia cases have been described in adults with cancer, few cases have been published in pediatric patients. Peman et al. reported seven cases of C. guilliermondii fungemia during a 12-year period,
Table 1. Cases of candidemia caused by *Candida guilliermondii* reported in the literature

Number	Year of evaluation	Country	Underlying condition and predisposing factors	Pediatric/ adult	Number \(^{1/total}\)	Resistant to azoles	Resistant to echinocandins	Mortality rate	Reference
1.	2018	Iran	- Cancer	Adult	17/121	17.6-13.3%	0	11.76%	[1]
2.	2007-2016	Japan	- Hematological disorder	Adult	141/NS	26.08%\(^{2}\)	NS	NS	[2]
3.	2008-2014\(^{2}\)	Japan	- Hematopoietic stem cell transplant recipients	Adult	3/22	NS	NS	66.6%	[8]
4.	2006-2015	Turkey	- Cancer	Both	141/NS	26.08%\(^{2}\)	NS	NS	[2]
5.	2007-2014	Spain	- Cancer	Both	22/NS	72%	0	13.6%	[4]
6.	2005-2014	USA	- Cancer	Pediatric	3/192	NS	NS	0	[9]
7.	2006-2012	Italy	- Cancer	Pediatric	1/28	NS	NS	NS	[10]
8.	2003-2015	Taiwan	- Cancer	Both	36\(^{+}\)	4.5-22.7%	16.66%		[11]
9.	2007-2014	Taiwan	- Cancer	Adult	11/21	81%	36%	18.18	[12]
10.	1998-2013	USA	- Neutropenia	Adult	28/79\(^{\circ}\)	17.24%	3.7%	59.25%	[7]
11.	2002-2007	Brazil	- Hematological disorder	Both	6/67	0	NS	NS	[13]
12.	March-April 2012	Spain	- TPN	Adult	4/13	0	54%		[14]
13.	2007-2013	Japan	- TPN	Both	16/66	12.5%	6.2%	18.75%	[15]
14.	2009-2012	Taiwan	- Elderly patients	Adult	2/181	NS	NS	NS	[16]
15.	2009-2012	Taiwan	- Cancer	Adult	2/209	NS	50%	NS	[17]
16.	2010-2011	Spain	- Neutropenia	Adult	3/17/81	0	0	NS	[18]
17.	2007-2013	Spain	- Cancer	Adult	7/593	42.85%	0	NS	[19]
18.	2009-2012	Brazil	- Patients with injuries	Pediatric	4/212	NS	NS	NS	[20]
19.	2007-2010	Brazil	- NS	Pediatric	5/104	NS	NS	NS	[21]
20.	2004-2008	USA	- Stem cell transplantation	Both	9/2496	0	0	NS	[22]
21.	2009-2011	China	- Preterm infants with low birth weight	Both	39/238	NS	NS	NS	[23]
22.	2009-2010	France	- Immunosuppressive drugs user	Both	1/189	NS	NS	NS	[24]
23.	2004-2006	Taiwan	- NS	Both	6/152	NS	0	NS	[25]
24.	2006-2007	Brazil	- Cancer	Pediatric	9/20	NS	NS	NS	[26]
25.	1995 to 2006	Spain	- CVC	Both	7/NS	42.85%	28.57%		[3]
26.	2003-2004	Brazil	- NS	Pediatric	64/149	NS	NS	NS	[27]
27.	2001-2006	Ireland	- NS	Both	4/151	25.75%	NS	NS	[28]
five cases of which occurred in children [3]. In contrast, in a meta-analysis on the epidemiology of candidemia in Iran, C. guilliermondii accounted for 2 (3.8%) cases of infection in adults [6].

Our patient was an infant and had a history of chemotherapy and surgery. The epidemiology and antifungal susceptibility testing of C. guilliermondii complex have been poorly studied. This complex is characterized by low susceptibility to azoles and echinocandins. In line with our study demonstrating the susceptibility of C. guilliermondii to amphotericin B and its resistance to fluconazole, numerous studies have demonstrated high MICs for azoles [3-10]. Our literature review showed that the rates of high MICs for azoles were 0-81% and 0-50%, respectively. Although echinocandins therapy is highly effective, emerging drug resistance is a growing threat to successful clinical management.

Conclusion
This is the first report describing candidemia due to C. guilliermondii in a pediatric patient in Iran. Given the high mortality rate of this infection, the early diagnosis and initiation of appropriate antifungal therapy for this infection significantly improve the patients’ survival rate and result in better outcomes. It is highly recommended to monitor the local epidemiology of this life-threatening infection and obtain awareness in this regard.

Acknowledgments
The authors thank the staff of Amir Kola Children’s Hospital, Babol, Iran, for their cooperation, and are indebted to Ms. Movaghar for sampling and technical assistance.

Author’s contribution
F. A., H. B., MS. R., and A. T. contributed to study concept and managed the project; in addition, F. A., H. B., E. R., and A. T. wrote the first draft of the manuscript. Furthermore, F. A., H.B., MS. R., A. T., T. S., H. M. CH, E. R., and H. K. provided practical support and performed the critical revision of the manuscript.

Conflicts of interest
The authors have declared no conflicts of interest.

Financial disclosure
This study was financially supported by the National Institutes for Medical Research Development (NIMAD), Grant/Award Number (942173), Mazandaran University of Medical Sciences (grants No. 1262), Sari, Iran.

References
1. Hirano R, Sakamoto Y, Kitazawa J, Yamamoto S, Kayaba H. Epidemiology, practice patterns, and prognostic factors for candidemia; and characteristics of fourteen patients with breakthrough Candida bloodstream infections: a single tertiary hospital experience in Japan. Infect Drug. 2018; 11:821-33.
2. Celebi Guler N, Tosun I, Aydin F. The identification of Meyerozyma guilliermondii from blood cultures and surveillance samples in a university hospital in Northeast Turkey: a ten-year survey. J Mycol Med. 2017; 27(4):506-13.
3. Pemán J, Bosch M, Cantón E, Viudés Á, Jarque I, Gómez-García M, et al. Fungemia due to Candida guilliermondii in a pediatric and adult population during a 12-year period. Diagn Microbiol Infect Dis. 2008; 60(1):109-12.
4. Marcos-Zambrano LJ, Puig-Asensio M, Perez-Garcia F, Escribano P, Sanchez-Carrillo C, Zaragoza O, et al. Candida guilliermondii complex is characterized by high antifungal resistance but low mortality in 22 cases of Candidemia. Antimicrob Agents Chemother. 2017; 61(7):17.
5. Fesharaki SH, Haghani I, Mousavi B, Kargar ML, Boroumand M, Anvari MS, et al. Endocarditis due to a co-infection of Candida albicans and Candida tropicalis in a drug abuser. J Med Microbiol. 2013; 62(Pt 1):763-7.
6. Vaezi A, Fakhim H, Khodavasy S, Alizadeh A, Nazeri M, Soleimanii A, et al. Epidemiological and mycological characteristics of candidemia in Iran: a systematic review and meta-analysis. J Mycol Med. 2017; 27(2):146-52.
7. Jung DS, Farmakiotis D, Jiang Y, Tarrand JJ, Kontoyiannis DP. Uncommon Candida species fungemia among cancer patients, Houston, Texas, USA. Emerg Infect Dis. 2015; 21(11):1942-50.
8. Kimura M, Araoka H, Yamamoto H, Asano-Mori Y, Nakamura S, Yamagoe S, et al. Clinical and microbiological characteristics of breakthrough Candida in allogeneic hematopoietic stem cell transplant recipients in a Japanese Hospital. Antimicrob Agents Chemother. 2017; 61(4):16.
9. Harrington R, Kindermann SL, Hou Q, Taylor RJ, Azie N, Horn DL. Candidemia and invasive candidiasis among hospitalized neonates and pediatric patients. Curr Med Res Opin. 2017, 33(10):1803-12.
10. Cesaro S, Tridello G, Castagnola E, Calore E, Carraro F, Mariotti I, et al. Retrospective study on the incidence and outcome of proven and probable invasive fungal infections in high-risk pediatric onco-hematological patients. Eur J Haematol. 2017; 99(3):240-8.
11. Tseng TY, Chen TC, Ho CM, Lin PC, Chou CH, Tsai CT, et al. Clinical features, antifungal susceptibility, and outcome of Candida guilliermondii fungemia: an experience in a tertiary hospital in mid-Taiwan. J Microbiol Immunol Infect. 2018; 51(4):552-8.
12. Liu WL, Lai CC, Li MC, Wu CJ, Ko WC, Hung YL, et al. Clinical manifestations of candidemia caused by uncommon Candida species and antifungal susceptibility of the isolates in a regional hospital in Taiwan, 2007-2014. J Microbiol Immunol Infect. 2017; 17:S1684.
13. Neufeld PM, Melhem Mde S, Szesz MW, Ribeiro MD, Amorim Ede L, da Silva M, et al. Nosocomial candidiasis in Rio de Janeiro State: distribution and fluconazole susceptibility profile. Braz J Microbiol. 2015; 46(2):477-84.
14. Asensio A, Munez E, Cantero M, Ramos A. Candida
Candidemia due to *Candida guilliermondii*

Ahangarkani F et al.

36 Curr Med Mycol, 2019, 5(1): 32-36