Morphological and biochemical screening of upland cotton (Gossypium hirsutum L.) hybrids for jassid (Amrasca devastans Dist.) resistance

K Keerthivarman, S Subashnini and K Aravind

DOI: https://doi.org/10.22271/j.ento.2022.v10.i3b.9000

Abstract

The current experiment was carried out in the field in a Randomized Block Design (RBD) for parents viz., MCU5, MCU7, CO14, and CO17, which were utilized as lines (high yield) and KC2, KC3, NDLH1755 and NDLH1938, which were used as testers throughout the summer season of 2021. From the mean values among all parents calculated, KC 2 had lowest jassid population of mean 4.13 numbers per leaf, highest amount of phenol (3.72 mg/g), low amount of reducing sugars (1.22 mg/g) and high chlorophyll index (58.73). Among other hybrids the hybrid MCU 5 × KC 3 outperformed for highest phenol content (3.72 mg/g), highest chlorophyll index (58.73) with lowest Jassid count (4.13 numbers/plant). Hence from the correlation results, number of jassids per plant would be lower for high phenolic content, low reducing sugar, lower soluble proteins, higher chlorophyll index and higher trichome density. Hence breeding could be made for resistance to jassids by insight into this biochemical analysis and trichome density of the cultivar which would help reduce use of insecticides and pest load from the fields thereby enhancing the yield of the population.

Keywords: Jassid screening, biochemical, phenol, reducing sugar, trichome length, trichome density, soluble proteins

Introduction

Cotton (Gossypium hirsutum L.), a valuable crop is a major industrial commodity across the world. It is the second-oldest and most important commercial crop. India accounts for 33% (10.7 million hectares) of world cotton acreage and 22% (5.4 million tonnes) of global cotton production. The unsystematic application of chemical pesticides to control major pests on cotton led to development of pesticide resistance in both targeted and non-targeted pests, disruption of the natural balance of pests and their natural enemies, resurgence of minor pests, pollution of the crop ecosystem, health and economic risks and development of sucking pest resistance (Pawar and Kadam 1995) [17]. Furthermore, conventional pesticides do not provide the intended control of sucking pests and leafhoppers and whitely outbreaks on cotton are common (Ahmad et al. 2002) [13].

Eco-friendly pest management is required in an integrated approach to ensure a sustainable production. Despite the availability of effective insecticides and the drawbacks of chemical insecticide use, cultivating resistant cotton cultivars is the cheapest and most harmless strategy to managing sucking pest infestations in an integrated pest management programme. Breeders can use the resistant cultivar in their breeding programme to produce resistant genotypes that are environmentally sustainable, socially stable, and economically viable. As a result, resistant cotton cultivars play an important role in a long-term agricultural system. Expertise is required to collect data on specific biochemical features and their relationship to sucking pest infestation (Rizwan et al. 2021) [19]. The number of sucking pests varies from cultivar to cultivar due to physical characteristics of cotton plants, particularly on leaves. Biochemical components such as protein, nitrogen, phosphorus, potassium, phenol, and sugar are among the most well-known characteristics associated with resistance. Potential biotic stressors are expressed by insects to their host plants. Plants that are attacked by insects respond by changing the composition and characteristics of their cell walls, as well as the content of their nutrients (secondary metabolite biosynthesis) (Hopkins and Huner, 2004) [9]. Modifications in plant protein profiles and oxidative enzymes have been shown to be among a plant’s earliest responses to insect herbivores (Rafie et al. 1996; Chaman et al. 2001 and Ni et al. 2001) [8, 16].
As a result, the current research will focus on the many biochemical (phytochemical) compounds found in plants that are important for conferring resistance/susceptibility to sucking pest in chosen cotton cultivars.

Materials and Methods
The current experiment was carried out in the field in a Randomized Block Design (RBD) for parents, MCU5, MCU7, CO14, and CO17, which were utilized as lines (high yield) and KC2, KC3, NDLH1755 and NDLH1938, which were used as testers throughout the summer season of 2021 (testers parent for jassid resistance and lines selected had good quality for lint). Using Dock's method, each of the four lines was crossed with four testers individually utilizing manual emasculation and pollination (Doak, 1934) [6]. In 2021, 16 hybrid F1 seeds were raised, along with their 8 parents and a standard check (MCU 5). The genotypes were then raised in Department of cotton, Tamil Nadu Agricultural University, Coimbatore (2020-2021).

Total soluble proteins
Total soluble protein in cotton leaves was estimated using Lowrey et al. 1951 [13]. Using a known concentration of bovine serum albumin, a standard curve was created. Protein content in both types of samples was estimated using a standard calibrated curve with known bovine protein values.

Total reducing sugars: With a few adjustments, the total reducing sugars were computed using the Miller et al. (1972) approach. The total reducing sugars of the hybrids and parents were estimated using a standard graph of glucose created by known glucose concentrations (100-500 g).

Table 1: Show the symptoms

Grades	Symptoms
1.	Leaves free from crinkling or with no yellowing, bronzing and drying
2.	Few leaves on lower portions of the plant curling, crinkling and slight yellowing
3.	Crinkling and curling all over, yellowing, bronzing and browning in the middle and lower portion, plant growth hampered; and
4.	Extreme curling, yellowing, bronzing and browning, drying of leaves and defoliation, stunted growth

Where G represented the number of the grade of ICCC and P the number of plants under each entry. Grouping of injury index to categories of resistance was as follows.

Grade index	Category
0.0–1.0	Resistant
1.1–2.0	Moderately resistant
2.1–3.0	Susceptible
3.1–4.0	Highly susceptible

Trichome density and Trichome length analysis
The MI-DC1300, MI-DC3000, and MI-DC5000 are compound microscope digital cameras that provide crisp images with excellent contrast and colour. The photos for the leaf samples that were newly harvested at 50 DAS and sliced to the size of one centimetre square were presented on the slides using the Scope Photo software. Then still shots were taken, and the analysis performed.

Chlorophyll index
A KONICA MINOLTA SPAD – 502 machine was used to determine it. The SPAD metre is a useful tool for measuring chlorophyll index fast and non-destructively. The measurement was saved to memory automatically. The SPAD meter results were proportional to the quantity of chlorophyll in the leaf, and they were calculated by measuring the leaf absorbance in the red and near-infrared bands (Uddling et al., 2007) [24].

Result and Discussion
Mean performance of parents and hybrids
The parents MCU 5, MCU 7, CO 14 and CO 17 were used as lines with good fibre quality traits; KC 2 KC3, NDLH 1755 and NDLH 1938 were used as testers with resistance to Jassid. MCU 5 had highest yield of 117.69 g/plant among all parents. Among the lines, CO 17 had maximum mean jassid population per leaf (9.69) with lowest amount of phenol (1.25 mg/g), highest amount of reducing sugar (3.87 mg/g) and lowest chlorophyll index (22.43). KC 2 had lowest jassid population of mean 4.13 numbers per leaf, highest amount of phenol (3.72 mg/g), low amount of reducing sugars (1.22 mg/g) and high chlorophyll index (58.73). MCU 7 among the lines had maximum injury grade of 2.40 reported as moderately resistant and maximum trichome length of 1.70 mm per square centimetre. The tester NDLH 1938 had lowest injury grade of 0.36 with the lowest trichome length of 0.49 mm per square centimetre. The tester KC3 had highest trichome length of 1.73 mm per square centimetre and lowest
trichome density of 115.15 numbers per square centimeter. The hybrid MCU 5 X KC 2 noted for highest phenol content (3.47 mg/g) with resistant injury grade of less than one and highest seed cotton yield per plant (155.32 g/plant) indicating trichome density indirectly paves way for jassid resistance thereby increasing seed cotton yield of the plant. The hybrid MCU 7 X NDLH 1755 had lowest mean of seed cotton yield per plant (82.78 g/plant) among the hybrids with susceptible grade. Shinde et al. (2014) [22] also reported high phenolics provide resistance to plants from Jassids. Higher phenolic content along with higher trichome density in cotton plant would result in a highly resistant plant was also suggested by Rohini et al. (2011) [20]. As phenol content in cotton plants acts as the feeding deterrent the population of jassid feeding that respective plant would be lower. This result was in accordance with Manivannan et al. (2021) [19]. Similar result of higher protein favouring higher number of jassid population was also reported by him. Higher amount of reducing sugar would result in susceptible genotypes for jassid. Hence breeding could be made for resistance to jassids by insight into this biochemical analysis and trichome density of the cultivar which would help reduce use of insecticides and pest load from the fields thereby enhancing the yield of the population.

Correlation

Number of jassids per plants showed highly positive significance with amount of reducing sugars (0.914) but negatively correlated with trichome density (-0.835), amount of phenols (-0.857) present in the plant and chlorophyll index (-0.871). Ahmad et al. (2005), Ashfaq et al. (2010) [3], Rustamani et al. (2014) [21], Gonde et al. (2015) [8], Kanher et al. (2016) [12], Sankeshwar et al. (2016) [22] and Amin et al. (2017) [2] also reported negative correlation of number of jassids with trichome density. Trichome length was found to have non significant positive correlation with number of jassids which is not in agreement with Batti et al. (2015) [4]. Injury grade showed high negative correlation with amount of phenol (-0.652) and chlorophyll index of the plant (-0.490). The phenol content present in the plant was highly negatively correlated with amount of reducing sugars (-0.849), amount of soluble proteins present (-0.432). Amount of reducing sugar is highly negatively correlated with the chlorophyll index (-0.914). Seed cotton yield of the plant had non-significant correlation with number of jassids per plant (-0.021) and pest index score (-0.023).

Hence from the above results, number of jassids per plant would be lower for high phenolic content, low reducing sugar, lower soluble proteins, higher chlorophyll index and higher trichome density. The phenol content present in the plant was highly significantly correlated with amount of reducing sugars (0.914), amount of soluble proteins present (-0.432). Amount of reducing sugar is highly negatively correlated with the chlorophyll index (-0.914).

Table 2: Mean performance of parents for Jassid population biochemical and trichome studies along with the yield parameter

Crosses	Mean Jassid nymph/plan t (Nos.)	Jassid injury grade	Trichome length (mm/sq.cm)	Trichome density (nos./sq.cm)	Total phenol (mg/g)	Total reducing sugar (mg/g)	Total soluble protein (mg/g)	Chlorophyll index	Seed cotton yield per plant (g/plant)
Lines									
MUC5	9.28 ab	1.31 cde	1.58 defg	115.151	1.38 e	3.62 a	36.42 bcd	28.10 hij	102.83 ghf
MUC7	9.49 a	2.40 b	1.70 cdef	154.89 ijk	1.32 e	3.64 a	32.79 ef	25.78 ij	90.53 ghij
CO14	9.49 a	1.75 bc	1.44 efghi	148.91 jkl	1.32 e	3.79 a	35.51 cd	23.74 hjk	89.05 hjk
CO17	9.69 a	1.29 cde	1.23 hijk	145.60 jkl	1.25 e	3.87 a	30.15 gh	22.43 k	83.22 ij
Testers									
KC2	4.13 i	0.73 defg	0.92 kl	273.96 abc	3.72 a	1.22 g	32.71 ef	58.73 a	79.24 j
KC3	4.14 i	0.69 defg	1.73 bcde	262.31 bcd	3.65 a	1.30 g	27.46 i	57.47 a	94.67 fghi
NDLH 1755	4.14 i	0.74 defg	1.26 ghj	290.66 ab	3.47 a	1.42 g	37.32 abc	56.20 a	88.51 hj
NDLH 1938	4.54 hi	0.36 g	0.49 m	238.15 cde	3.45 a	1.43 g	32.12 fg	54.66 ab	90.17 ghj
Mean	6.86	1.16	1.30	203.70	2.45	2.54	33.06	40.89	103.42
Max	9.69	2.40	1.73	290.66	3.72	3.87	37.32	58.73	117.69
Min	4.13	0.36	0.49	115.15	1.25	1.22	27.46	22.43	89.82

* Same alphabetical letters indicate denotes they were non-significant.
Table 3: Mean performance of 16 hybrids for Jassid population, biochemical and trichome studies along with the yield parameter

Crosses	Mean Jassid nymph/ plant (Nos.)	Jassid injury grade	Trichome length (mm/sq.cm)	Trichome density (nos/sq.cm)	Total phenol (mg/g)	Total reducing sugar (mg/g)	Total soluble protein (mg/g)	Chlorophyll index	Seed cotton yield per plant (g/plant)
MCU5 X KC 3	4.65 h	1.63 e	1.38 fghi	304.80 a	3.42 a	1.50 g	30.45 fgh	52.53 abc	106.28 fg
MCU5 X NDLH 1755	5.15 h	1.16 cdef	0.54 m	262.10 bcd	3.39 a	1.76 fg	27.34 i	48.61 bc	144.56 ab
MCU5 X KC 2	7.85 cdef	3.85 a	1.17 hijkl	271.42 abc	1.68 e	2.30 de	31.19 fg	44.48 def	124.10 de
MCU5 X NDLH 1938	7.62 defg	3.52 a	2.16 a	200.94 fgh	1.50 e	2.31 de	36.89 bcd	39.88 hj	106.35 fg
MCU7 X KC 2	7.35 efg	3.37 a	1.28 ghij	183.38 ghij	1.59 e	3.32 ab	35.47 cd	30.10 hj	124.96 cde
MCU7 X KC 3	7.20 efgh	3.34 a	1.01 jkl	153.17 ijk	1.73 de	2.90 bc	39.56 a	32.72 gh	128.60 bcd
MCU7 X NDLH 1755	7.15 efgh	3.17 a	1.96 abc	184.88 ghij	1.77 cde	2.82 bcd	36.62 bcd	33.22 gh	82.78 ij
MCU7 X NDLH 1938	6.88 fg	3.12 a	1.92 abc	208.36 efgh	2.32 bc	2.66 cde	38.63 ab	39.13 efg	136.90 bcd
CO14 X KC 2	6.78 fg	1.77 bc	1.50 defgh	227.06 defgh	2.32 bc	2.66 cde	37.51 abc	38.59 fg	110.51 ef
CO14 X NDLH 1755	6.55 g	1.35 cde	2.03 ab	239.96 efgh	2.64 b	2.64 cde	28.66 hi	40.57 ef	152.90 a
CO14 X NDLH 1938	5.17 hij	0.27 g	1.23 hijk	204.55 efgh	3.38 a	1.77 fg	32.80 ef	46.49 cde	155.32 a
CO17 X KC 2	8.12 bede	0.61 efg	2.19 a	129.30 kl	2.69 a	2.60 cde	31.48 fg	40.79 ef	134.28 bcd
CO17 X NDLH 1938	8.56 abedc	0.40 fg	1.13 ijk	169.02 hjj	1.76 a	3.32 de	32.30 efg	41.52 def	97.14 fgh
CO17 X NDLH 1755	5.37 h	1.90 bc	0.87 i	275.35 abc	3.37 a	2.14 ef	27.46 i	45.70 cdef	92.44 ghij
Mean	6.88	1.95	1.51	212.66	2.43	2.49	33.66	40.47	123.11
Max	8.90	3.85	2.19	304.80	3.42	3.49	39.56	52.53	155.32
Min	4.65	0.27	0.54	129.30	1.38	1.50	27.34	29.88	82.78

Table 4: Simple correlation of Jassid population, biochemical and trichome analysis along with the yield parameter

	NJP	IG	TL	TD	P	RS	SP	CI	SCY
NJP	1								
IG	0.273	1							
TL	0.375	0.191	1						
TD	-0.835**	-0.069	-0.341	1					
P	-0.857**	-0.652**	-0.37	-0.799**	-0.849**	1			
RS	.914**	0.324	0.353	-0.799**	-0.849**	1			
SP	0.269	0.366	0.298	-0.374	-0.432	0.342	1		
CI	-0.871**	-0.490**	-0.353	-0.792**	-0.921**	-0.797	1		
SCY	-0.021	-0.023	0.181	-0.013	0.043	0.014	0.018	0.03	1

**Correlation is significant at the 0.01 level (2-tailed).
*Correlation is significant at the 0.05 level (2-tailed).

NJP - Mean number of Jassids per leaf, S - Amount of reducing sugars (mg/g), TL - Trichome length (mm), IG - Pest Injury Grade, SP - Total soluble proteins (mg/g), TD - Trichome Density (nos./cm²), P - Total amount of phenol (mg/g), CI - Chlorophyll index, SCY - Seed cotton yield per plant
References

1. Ahmad M, Arif MI, Ahmad Z, Denholm I. Cotton whitfly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Management Science. 2002;58:203-208.

2. Amin MR, Afrin R, Alam MZ, Hossain MM, Kwon YJ. Effect of leaf trichomes and meteorological parameters on population dynamics of aphid and jassid in cotton. Bangladesh Journal of Agricultural Research. 2017;42(1):13-25.

3. Ashfaq M, ul Ane MN, Zia K, Nasreen A. The correlation of abiotic factors and physico-morpho-characteristics of (Bacillus thuringiensis) Bt transgenic cotton with whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) and jassid, Amrasca devastans (Homoptera: Jassidae) populations. African Journal of Agricultural Research. 2010;5(22):3102-3107.

4. Bhatti JA, Suhail A, Khan MA, Javed N. The role of physico-morphic and chemical plant characters of different genotypes of Bt-cotton (Gossypium hirsutum L.) In the population fluctuation of jassid (Amrasca biguttula) (Ishida) (Homoptera: cicadellidae) in Punjab Pakistan. J Animal Plant Science. 2015;25(6):1626-1632.

5. Chaman ME, Corcuera LJ, Zuniga GE, Cardemill L, Argandona VH. Induction of soluble and cell wall peroxides by aphid infestation in barley. Journal of Agriculture and Food Chemistry. 2001;49:2249-2253.

6. Doak CC. A new technique in cotton hybridizing: Suggested changes in existing methods of emasculating and bagging cotton flowers. Journal of Heredity. 1934;25(5):201-204.

7. FeiBo W, Lianghuan W, Fuhua X. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.). Field crops research. 1998;56(3):309-314.

8. Gonde A, Chandele AG, Gurve SS, Wargantiwar RK. Study of Bio-physical characters of Bt hybrids for correlation with Cotton jassid. Annals of Plant Protection Sciences. 2015;23(2):241-245.

9. Hopkins WG, Huner NPA. Introduction to plant physiology, John Wiley and Sons Inc. USA, 2004, 479-481.

10. Indian Central Cotton Committee (ICCC). Cotton in India - a monograph Vol. II. ICCB, Bombay, 1960, 217-300.

11. Malick CP, Singh MB. Plant enzymology and histo enzymology. Kalyani Publishers, New Delhi, India, 1980, 286pp.

12. Kanher FM, Syed TS, Abro GH, Jahanigir TM, Tunio SA. Some physio morphological leaf characters of gamma irradiated cotton lines to resistance against jassid (Amrasca devastans Dist.). J Ent. Zool. Stud. 2016;4:80-85.

13. Lowry OH, Rosebrough NJ, Fair AL, Randall RJ. Protein measurement with the folin phenol reagent J. biol. Chem. 1951;193:265-275.

14. Lever M. A new reaction for colorimetric determination of carbohydrates, Analytical Biochemistry. 1972;47(1):273-279.

15. Manivannan A, Kanjana D, Dharajothi B, Meena B. Evaluation of resistance in cotton genotypes against leafhoppers Amrasca biguttula (Ishida), (Homoptera: Cicadellidae). International Journal of Tropical Insect Science. 2021;41(4):2409-2420.

16. Ni X, Quisenberry SS, Heng-Moss J, Markwell G, Sarath R Klucas, Baxendale. Oxidative Responses of resistant and susceptible cereal leaves to symptomatic and non-symptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ. Entomol. 2001;94:743-751.

17. Pawar UM, Kadam JR. Entomological aspects of IPM in important crop Maharashtra State. State level conference on IPM, 1995, 20-40.

18. Rafie MM, Zemetra RS, Quisenberry SS. Interaction between Russian wheat aphid (Hemiptera: Aphididae) and resistant and susceptible genotypes of wheat. J Econ. Entomol. 89, 239-246.

19. Rizwan M, Abro S, Asif MU, Hameed A, Mahboob W, Deho ZA, et al. Evaluation of cotton germplasm for morphological and biochemical host plant resistance traits against sucking insect pests complex. Journal of Cotton Research. 2021;4(1):1-8.

20. Rohini A, Prasad NVVSD, Chalam MSV, Veeraiah K. Identification of suitable resistant cotton genotypes against sucking pests. Journal of Entomological Research. 2011;35(3):197-202.

21. Rustamani MA, Khatri I, Leghari MH, Sultana R, Mandokhail AS. Trichomes of cotton leaf as an aspect of resistance to sucking insect pests. Sindh University Research Journal-SURJ (Science Series), 2014, 46(3).

22. Sankeshwar M, Patil RS. Effect of trichome density on the resistance to the jassids in inter-specific G. hirsutum x G. barbadense cotton recombinant inbred lines (RIL) population. Parameters, 2016, 2015, 16.

23. Shinde BA, Gurve SS, Gonde AD, Hole UB. Studies on resistance of cotton genotypes against jassids (Amrasca biguttula Ishida). BIOINFOLET-A Quarterly Journal of Life Sciences. 2014;11(3a):758-762.

24. Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis research. 2007;91(1):37-46.