Escherichia coli O157:H7 Strains That Persist in Feedlot Cattle Are Genetically Related and Demonstrate an Enhanced Ability To Adhere to Intestinal Epithelial Cells

Brandon A. Carlson,1 Kendra K. Nightingale,1 Gary L. Mason,2 John R. Ruby,3 W. Travis Choat,4 Guy H. Lonergan,5 Gary C. Smith,1 John N. Sofos,1 and Keith E. Belk1*

Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1619; JBS Packerland Inc., Green Bay, Wisconsin 54311; Elanco Animal Health, Greenfield, Indiana 46140; and Feedlot Research Group, West Texas A&M University, Canyon, Texas 79016-0001

Received 28 April 2009/Accepted 10 July 2009

A longitudinal study was conducted to investigate the nature of Escherichia coli O157:H7 colonization of feedlot cattle over the final 100 to 110 days of finishing. Rectal fecal grab samples were collected from an initial sample population of 788 steers every 20 to 22 days and microbiologically analyzed to detect E. coli O157:H7. The identities of presumptive colonies were confirmed using a multiplex PCR assay that screened for gene fragments unique to E. coli O157:H7 (rfbE and fliC

It stands to reason that if the E. coli O157:H7 prevalence in...
cattle presented for harvest were reduced, there would be a decrease in the probability of beef product contamination, if good manufacturing procedures were used. Although there is consensus concerning the importance of preharvest pathogen mitigation and its role in minimizing entry of *E. coli* O157:H7 into harvest facilities, there is disagreement about the significance of “supershedders” (animals that excrete large quantities of a pathogen for various amounts of time) for *E. coli* O157:H7 transmission dynamics at the preharvest level (12, 34, 35, 39).

Utilizing statistical modeling, researchers have estimated that, on average, the prevalence of “supershedders” in a population is 4% and that these animals excrete 50 times more *E. coli* O157:H7 than other animals colonized by this organism (34). Additionally, the same researchers suggested that approximately 80% of *E. coli* O157:H7 transmission is generated by a few “supershedders” (35).

Research by our group discovered a unique association between *E. coli* O157:H7 prevalence in pen floor fecal pats and carcass contamination by this pathogen (57). When the prevalence in fecal pats from a pen floor exceeded 20%, carcasses of animals from the pen had *E. coli* O157:H7 prevalence values of 14.3, 2.9, and 0.7% before evisceration, after evisceration, and after final intervention, respectively. However, when the prevalence in pen floor fecal pats was less than 20%, the previscerated carcass prevalence value was 6.3%, and there was no detectable *E. coli* O157:H7 contamination of carcass samples after evisceration and after final intervention (57).

Thus, we hypothesize that animals which persistently excrete normal levels of *E. coli* O157:H7 over prolonged periods (persistent shedders [PS]) rather than animals that periodically shed abnormally high levels (supershedders) are the most significant source of *E. coli* O157:H7 contamination in the food continuum. Although previous studies suggested that cattle may be persistently colonized by *E. coli* O157:H7 and shed this organism in their feces for prolonged periods, molecular subtyping data are required to further investigate whether cattle are persistently colonized by the same strain (i.e., molecular subtype) or if they are repeatedly exposed to different strains through contaminated feedstuffs, water, or other environmental sources. Thus, the objectives of this study were to determine if naturally colonized feedlot cattle persistently shed *E. coli* O157:H7, using combined cultural microbiological analyses, molecular subtyping approaches, and in vitro virulence phenotype assays to probe the factors (agent, host, environment, or a combination of these factors) that contribute to the complex ecology of *E. coli* O157:H7 persistence at the preharvest level.

MATERIALS AND METHODS

Study design.
Holstein steers from different calf farms in Wisconsin (*n* = 788) consuming a high-concentrate finishing ration at a commercial feedlot in eastern Kansas (all research protocols were reviewed and approved by the Colorado State University Animal Care and Use Committee [approval 05-233A-01]) that had never been exposed to directly fed antimicrobials (e.g., Bovamine) were enrolled in the study. The steers were housed in five pens; three of the pens shared fence lines, and the two remaining pens were independently located in other areas of the feedlot. All animals were fed the same finishing diet during the sampling period. Animals were permanently removed from the study population following treatment for any clinical illness.

Rectal fecal grab samples were collected every 20 to 22 days during the final 100 to 110 days (June to October) of the finishing period. Every animal was sampled during the first two collection periods to establish its *E. coli* O157:H7 shedding status along with the prevalence of shedding in the population of feedlot cattle studied (Table 1). Animals whose *E. coli* O157:H7 shedding status varied during the first two sample collections were excluded from further sample collection as the focus of this study was to further investigate the PS status. The four remaining sample collections focused on identification of animals that were either consecutively *E. coli* O157:H7 positive or consecutively *E. coli* O157:H7 negative as determined using the results for each previous sample collection.

Additionally, a random subset of animals whose *E. coli* O157:H7 shedding status varied was included during each of the final four sample collections to determine if these animals reverted back to their original shedding patterns.

At every predetermined collection period, steers were processed through conventional processing facilities, where rectal fecal grab samples were collected from each targeted animal. Feces were transferred to a sterile Whirl-Pak bag (Nasco, Modesto, CA) and subsequently placed in a cooler with ice packs. Following sampling, the fecal samples were transported to the Pathogen Reduction Laboratory of the Center for Meat Safety & Quality at Colorado State University (Fort Collins, CO), where they were stored at 4°C until a microbiological analysis was performed (within 48 h after collection).

Analysis of fecal *E. coli* O157:H7.
Fecal samples (10 g) were enriched using procedures outlined by Barkocy-Gallagher et al. (5). Following incubation, fecal slurries were stored at 4°C until they were subjected to immunomagnetic bead separation. Immunomagnetic bead separation was performed as described by Barkocy-Gallagher et al. (3), and ultimately 50 μl of each sample was plated onto Rainbow agar (Biolog Inc., Hayward, CA) supplemented with 10 mg/liter of novobiocin (Sigma-Aldrich, St. Louis, MO) and 0.8 mg/liter of potassium tellurite (Sigma, as well as sorbital MacConkey agar (Becton, Dickinson and Company, Sparks, MD) supplemented with 20 mg/liter of novobiocin and 2.5 mg/liter of potassium tellurite (mSMAC). Rainbow plates were incubated for 24 ± 2 h at 37°C, and mSMAC plates were incubated for 36 ± 2 h at 37°C. After incubation, up to three colonies displaying *E. coli* O157:H7 morphology were selected from each medium and initially screened for the O157 antigen using the RIM *E. coli* O157:H7 latex agglutination test (Remel, Lenexa, KS). All agglutination-positive colonies were cultured in 5 ml of tryptic soy broth for 24 ± 2 h at 37°C, streaked onto mSMAC, and incubated for 36 ± 2 h at 37°C to determine purity.

Presumptive colonies were confirmed to be *E. coli* O157:H7 colonies by a multiplex PCR assay performed using a 96-well plate format and 25-μl reaction mixtures that included a primer master mixture containing forward and reverse primers at concentrations specified previously (25) to amplify *rfbE* (which encodes the O157 antigen), *fbCr7* (which encodes the H7 antigen), *eae* (which encodes intimin), *stx1* (which encodes Shiga toxin 1), and *stx2* (which encodes Shiga toxin 2).

Detection of *E. coli* O157:H7 virulence genes among animals during the first two antemortem collection periods.

Genotype	Collection 1	Collection 2		
rfb	No. of animals	% of animals	No. of animals	% of animals
rfb	314	39.8	265	33.6
rfb	32	4.1	156	19.8
rfb	3	0.4	0	0.0
rfb	32	4.1	42	5.3
rfb	1	0.1	0	0.0
Total	359	45.5	463	58.7

a *rfb* encodes the O157 antigen, *fbCr7* encodes the H7 antigen, *eae* encodes intimin, *stx1* encodes Shiga toxin 1, and *stx2* encodes Shiga toxin 2.

Statistical analysis.
All 788 animals were sampled during collections 1 and 2. Utilizing statistical modeling, researchers have estimated that, on average, the prevalence of “supershedders” in a population is 4% and that these animals excrete 50 times more *E. coli* O157:H7 than other animals colonized by this organism (34). Additionally, the same researchers suggested that approximately 80% of *E. coli* O157:H7 transmission is generated by a few “supershedders” (35).

Research by our group discovered a unique association between *E. coli* O157:H7 prevalence in pen floor fecal pats and carcass contamination by this pathogen (57). When the prevalence in fecal pats from a pen floor exceeded 20%, carcasses of animals from the pen had *E. coli* O157:H7 prevalence values of 14.3, 2.9, and 0.7% before evisceration, after evisceration, and after final intervention, respectively. However, when the prevalence in pen floor fecal pats was less than 20%, the previscerated carcass prevalence value was 6.3%, and there was no detectable *E. coli* O157:H7 contamination of carcass samples after evisceration and after final intervention (57).

Thus, we hypothesize that animals which persistently excrete normal levels of *E. coli* O157:H7 over prolonged periods (persistent shedders [PS]) rather than animals that periodically shed abnormally high levels (supershedders) are the most significant source of *E. coli* O157:H7 contamination in the food continuum. Although previous studies suggested that cattle may be persistently colonized by *E. coli* O157:H7 and shed this organism in their feces for prolonged periods, molecular subtyping data are required to further investigate whether cattle are persistently colonized by the same strain (i.e., molecular subtype) or if they are repeatedly exposed to different strains through contaminated feedstuffs, water, or other environmental sources. Thus, the objectives of this study were to determine if naturally colonized feedlot cattle persistently shed *E. coli* O157:H7, using combined cultural microbiological analyses, molecular subtyping approaches, and in vitro virulence phenotype assays to probe the factors (agent, host, environment, or a combination of these factors) that contribute to the complex ecology of *E. coli* O157:H7 persistence at the preharvest level.
collected from PS animals just before slaughter to determine whether these animals excreted elevated quantities of *E. coli* O157:H7 in the feces. A 10-g aliquot of each fecal sample was combined with 90 ml of Butteler’s phosphate buffer (BBP) (Becton) and pneumated in a stomacher for 2 min. Three 1:10 serial dilutions were prepared from each BBP sample. From each of a sample’s three serial BBP dilutions, 1 ml was removed and added to five different tubes of lauryl tryptose broth (LTB) (Becton), resulting in a total of 15 tubes for each sample. The inoculated LTB tubes were incubated for 24 h at 37°C. After incubation, the contents of all turbid LTB tubes were streaked on mSMAC and appropriately incubated, and the identities of morphologically typical colonies were confirmed by performing multiplex PCR as previously described.

GI tissue and content samples. All animals identified as PS (n = 8) and nonshedders (NS) (n = 11), as well as a subsample of animals identified as transient shedders (TS) (n = 18), were harvested at a commercial facility in the upper Midwest. The entire GI tract (esophagus, reticulum, rumen, omasum, abomasum, gall bladder, small intestine, large intestine, colon, and bung) was collected from each animal and transported to a vacant area of the facility to allow sample collection. Additionally, the liver of each animal was examined for the presence of abscesses. Samples of tissue and contents were collected aseptically from the reticulum, rumen, omasum, abomasum, duodenum (proximal to the anterior side of the first loop), ileocecal valve, distal colon (~60 cm proximal to the anus), RAJ, and two mesenteric lymph nodes (at a position ~30 cm proximal to the anterior root of the mesentery and the ileal-ecal colic node) (only tissue samples were collected from lymph nodes) for microbiological analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis. Tissue samples were washed with sterile phosphate-buffered saline (PBS) with 0.05% Tween 20 (Sigma) to remove visible organic matter before analysis.

Within-table independence (i.e., independence of the expected and observed counts) was considered significant at the empirical difference in standard errors. Differences between predicted probabilities were considered significant at P < 0.05 level.

The difference between the log-transformed value for cells inoculated into a well and the log-transformed counts for adherent cells recovered in the well was used as the dependent variable to compare Caco-2 attachment data. Analysis of variance techniques were employed to determine if there were differences (P < 0.05) among main effects, including GI tissue location and shedding status, as well as all appropriate interactions. The proportion of the study population expected to be classified as PS or NS animals by chance alone was calculated by multiplying the prevalence estimates of animals shedding and not shedding *E. coli* O157:H7 with the five-gene multiplex PCR profile at each of the six time points. These joint probabilities represented the expected frequency in each category, which was compared to the observed number in each category by using chi-square goodness-of-fit tests. Within-table independence (i.e., independence of the expected and observed outcomes) was determined using a P value of <0.05. Chi-square analysis was utilized to detect differences in subtype frequency between shedding status groups using the PROC FREQ procedure of SAS. Initially, data were collapsed to form three subtype categories: the dominant subtype, subtypes that differed from the dominant subtype by 1 to 3 bands, and subtypes that differed from the dominant subtype by 4 to >7 bands before analysis. The estimated probability of shedding a given PFGE subtype during antemortem collection was analyzed using a repeated-measures generalized estimating equations marginal logistic model with PROC GLIMMIX of SAS with the empirical difference in standard errors. Differences between predicted probabilities were considered significant at P values of <0.05. The difference between the log-transformed value for cells inoculated into a well and the log-transformed counts for adherent cells recovered in the well was used as the dependent variable to compare Caco-2 attachment data. Analysis of variance techniques were employed to determine if there was a difference between the attachment efficiencies of different PFGE subtype categories, as previously described. Differences in attachment efficiency were analyzed using the PROC MIXED of SAS with least-squares means generated for each PFGE subtype category. Ultimately, least-squares means were separated using pairwise *t* tests incorporating a Tukey adjustment, and significant inferences were noted when differences between means were detected at the P < 0.05 level.

RESULTS

E. coli O157:H7 carriage in feedlot steers. All animals enrolled in this study were sampled during the first two sample collections, which allowed us to determine the overall prevalence of *E. coli* O157:H7 in the study population. Presumptive *E. coli* O157:H7 isolates were characterized by using a five-gene multiplex PCR that detects gene fragments unique to serotype O157:H7 along with genes encoding three key virulence determinants (eae, stx1, and stx2). Overall, 45.5 and...
58.7% of the study population shed *E. coli* isolates belonging to serotype O157 and carrying at least one stx gene during collections 1 and 2, respectively (Table 1). Over the first two collection periods, animals shed *E. coli* O157 isolates with five virulence genotypes as determined by their multiplex PCR profiles (Table 1). During the first two collection periods, *E. coli* O157:H7 isolates possessing the eae, stx1, and stx2 virulence genes (five-gene multiplex PCR profile) were shed most frequently, as 39.8% and 33.6% of animals shed isolates with this genotype during the first and second collections, respectively (Table 1).

Since the purpose of this study was to determine if cattle become persistently colonized by *E. coli* O157:H7, which would imply that the same *E. coli* O157:H7 strain is able to persist in the GI tract of a given animal over time, our strategy for the remaining four sample collections was to target animals that consistently shed the predominant genotype (isolates with the five-gene multiplex PCR profile). As a result, the prevalence of less common genotypes could not be determined after the first two sample collections, and we focused on monitoring the persistence of the dominant genotype throughout the study (Table 2). Specifically, PS animals were defined as animals that shed an *E. coli* O157:H7 isolate carrying eae, stx1, and stx2 (five-gene-positive multiplex genotype) over the six collection periods. Animals that intermittently shed an *E. coli* O157:H7 isolate with a genotype that included all three virulence factors were classified as TS animals, while animals that never shed *E. coli* O157:H7 regardless of the previous shedding status were classified as NS animals. Overall, based on these criteria, 8 of 788 animals (1.0%) were classified as PS animals, while 11 of 788 animals (1.4%) never shed a detectable amount of morphologically typical *E. coli* O157 and were thus classified as NS animals. Chi-square goodness-of-fit tests revealed the independence of the observed and expected frequency of PS status (P < 0.001), while the number of animals classified as having NS status was similar to that expected by chance alone (P = 0.23). The remaining 769 animals were classified as TS animals since they shed an *E. coli* O157 isolate carrying at least one stx gene at least once during this study. The distribution of both PS and NS animals was balanced for the five pens, and each pen contained at least one animal with each *E. coli* O157:H7 shedding status. These results demonstrated that small subpopulations of cattle in a feedlot population appear to be persistently colonized by *E. coli* O157:H7 for extended periods of time during the final 100 to 110 days of finishing.

Feces from the eight animals classified as PS animals that were collected during the final antemortem sampling were examined using the five-tube MPN methodology. Only one PS animal (PS-7) shed *E. coli* O157:H7 at levels (46 MPN/g) detectable by our method. The remaining seven PS animals shed *E. coli* O157:H7 at levels below the detectable limit, 1.8 MPN/g (data not shown). Our results indicate that an animal that becomes persistently colonized by *E. coli* O157:H7 does not necessarily shed high levels of the organism in its feces.

GI tissue and GI content analysis. *E. coli* O157:H7 was detected in tissue and content samples collected from both upper and lower sites in the GI tracts of PS and TS animals (Table 3). Although the differences were not significant, more lower GI tissue and content samples from PS animals than from TS animals tested positive for *E. coli* O157:H7. An upper GI tissue sample (omasum) and an anterior root lymph node tissue sample from only one PS animal tested positive for *E. coli* O157:H7. Two upper GI tissue samples (reticulum and omasum) from two different TS animals tested positive for *E. coli* O157:H7. No gall bladder samples were positive for *E. coli* O157:H7 regardless of the previous shedding status (Table 3).

Histology and pathology. Histological analyses of tissue samples collected from PS and TS animals in this study did not reveal any notable differences between tissues of PS and NS animals. As expected, all tissue samples from PS and NS animals were normal or had minor lesions commonly found in GI tissues characteristic of fed cattle. In addition, the livers examined from animals representing the PS, TS, and NS groups had no visible surface lesions (data not shown). Thus, there do not appear to be significant physiological differences between animals that become persistently colonized by *E. coli* O157:H7 and animals that are not colonized by this organism.

Molecular characterization. At least one fecal isolate was selected to represent each antemortem collection period for each of the eight PS animals along with all postmortem isolates (for a total of 82 isolates), and a random representative set of fecal isolates was selected for 16 TS animals along with all postmortem isolates (for a total of 50 isolates), resulting in a set of 132 isolates that were characterized by PFGE typing.

TABLE 2. Prevalence of *E. coli* O157:H7 in feedlot cattle during the final phase of finishing

Collection	No. of animals sampled	No. of positive samples*
1	788	314
2	788	265
3	476	206
4	197	39
5	100	28
6	35	15

* Positive samples were samples that contained *E. coli* O157:H7 with the eae, stx1, and stx2 virulence genes. This *E. coli* O157:H7 genotype was targeted as it was the most common genotype identified during the first two sample collections and the purpose of this study was to gain insight into persistent shedding of *E. coli* O157:H7.

TABLE 3. Distribution of postmortem GI tissues and contents positive for *E. coli* O157:H7 among PS and TS animals

Location	Site	No. of positive samples			
	PS (n = 8)	TS (n = 18)			
	Tissue	Contents	Tissue	Contents	
Upper GI	Reticulum	0	0	1	0
tract	Omasum	1	0	1	0
Rumen	0	0	0	0	0
Abomasum	0	0	0	0	0
Duodenum	0	0	0	0	0
Lower GI	Ileal-cecal junction	1	1	1	0
tract	Colon	0	1	0	0
RAJ	1	1	1	2	
Ileal-cecal colic node	0	0	0	0	
Anterior root node	1	0	0	0	
Gall bladder	0	0	0	0	
The 132 *E. coli* O157:H7 isolates analyzed by PFGE typing were classified into 32 different subtypes (Fig. 1; Table 4). A single, predominant PFGE subtype (subtype F) (Fig. 1; Table 4) accounted for 53% of the 132 isolates characterized. A chi-square test of independence showed that subtype F was distributed similarly in the PS and TS animal populations (P = 0.05), and this subtype persisted throughout the study (Fig. 2). Twenty-two of the 32 unique PFGE subtypes were found in PS animals, and 17 of the 32 unique PFGE subtypes were found exclusively in PS animals. Interestingly, only five PFGE subtypes (subtypes E, F, H, I, and N) overlapped in the PS and TS animal populations (Table 4). All eight PS animals shed subtype F during the first sample collection, at least twice over the entire collection period, and in at least two consecutive sample collection periods (Table 5). One PS animal (PS-4) shed subtype F over the entire collection period, while two other PS animals (PS-1 and PS-7) shed subtype F consecutively over the first four sample collections (Table 5). During fecal sample collection, PS animals shed 15 PFGE subtypes in addition to subtype F, and 10 of these subtypes differed from subtype F by three or fewer bands (Table 4). Tenover et al. (53) concluded that strains with differences of three or fewer bands compared to a reference strain (subtype F was used as the reference strain) were closely related. The remaining five subtypes differed from subtype F by four or more bands and thus were not considered closely related to PFGE subtype F according to the criteria of Tenover et al. (53). The postmortem tissue and GI content sample collection yielded an additional 10 unique PFGE types for PS and TS animals that were not present during antemortem fecal sample collections, and 4 of these postmortem PFGE subtypes were closely related to the dominant antemortem subtype, subtype F.

The ability of the predominant *E. coli* O157:H7 subtype to persist in the GI tracts of feedlot cattle was indicated by the percentage of animals that shed this subtype in their feces. The predominant *E. coli* O157:H7 subtype was determined to have the same virulence genotype as the other *E. coli* O157:H7 isolates utilizing multiplex PCR before the PFGE analysis. The letters on the right correspond to the PFGE subtypes shown in Table 4.

TABLE 4. PFGE characterization of *E. coli* O157:H7 isolates from PS and TS animals collected ante- and postmortem

PFGE subtype	No. of isolates collected antemortem (no. of isolates collected postmortem)	No. of animals
PS	TS	
A	3 1 (0) 1 0 (0) 0	0
B	4 0 (0) 0 0 1	1
C	4 1 (0) 1 0 (0) 0	0
D	2 0 (3) 1 0 (0) 0	0
E	1 1 (0) 1 0 (0) 0	0
F	40 (0) 8 24 (6) 11	11
G	3 0 (5) 2 0 (0) 0	0
H	3 2 (0) 2 3 (0) 3	3
I	2 8 (0) 3 2 (0) 1	1
J	4 0 (4) 2 0 (0) 0	0
K	1 1 (0) 1 0 (0) 0	0
L	1 1 (0) 1 0 (0) 0	0
M	1 0 (0) 0 2 (0) 1	1
N	6 1 (0) 1 1 (0) 1	1
O	4 0 (0) 0 0 1 (0) 1	1
P	1 3 (0) 1 0 (0) 0	0
Q	2 0 (0) 0 0 1 (0) 1	1
R	3 1 (0) 1 0 (0) 0	0
S	2 0 (0) 0 3 (0) 1	1
T	1 1 (0) 1 0 (0) 0	0
U	1 1 (0) 1 0 (0) 0	0
V	2 0 (0) 0 1 (0) 1	1
W	1 1 (0) 1 0 (0) 0	0
X	3 0 (0) 0 0 1 (0) 1	1
Y	1 0 (0) 0 1 (0) 1	0
Z	4 1 (0) 1 0 (0) 0	0
AA	>7 2 (0) 1 0 (0) 0	0
AB	>7 1 (0) 1 0 (0) 0	0
AC	>7 0 (1) 1 0 (0) 0	0
AD	>7 0 (0) 0 0 1 (0) 1	1
AE	3 0 (1) 1 0 (0) 0	0
AF	>7 0 (0) 0 0 1 (0) 1	1
Total	66 (16) 39 (11)	
throughout the study. More specifically, the estimated probabilities of finding subtype F were 89.1, 77.0, 78.5, 59.3, 36.0, and 30.2% for sample collections 1, 2, 3, 4, 5, and 6, respectively (Fig. 2). Although there was a decrease (P < 0.05) in the probability of shedding the dominant subtype with time, the dominant subtype was still detected and actually accounted for 31.6% (6/19) of the isolates collected during the final antemortem collection. Interestingly, our results also suggest that the dominant E. coli O157:H7 molecular subtype (subtype F) underwent microevolutionary changes during the study, as shown by the emergence of molecular subtypes that were closely related to the dominant subtype and the decline in the presence of the dominant subtype as the study progressed (Fig. 2). These results indicate that a dominant E. coli O157:H7 strain (subtype F) and other closely related strains persisted in the population of feedlot cattle over a 100- to 110-day period.

In an effort to further investigate the ability of E. coli O157:H7 to persist in the feedlot environment, we molecularly characterized an additional E. coli O157:H7 isolate from a previous study performed by Childs et al. (11) that was collected from the environment of the same feedlot that was used in the current study more than 2 years before our cattle arrived. This E. coli O157:H7 isolate (designated the Kansas isolate) was analyzed first with multiplex PCR to determine its genotype. After it was determined that the Kansas isolate had the same genotype as the persistent E. coli O157:H7 strain obtained in the current study (based on a five-gene multiplex PCR profile), the Kansas isolate was characterized by PFGE typing and compared to isolates obtained in the current study (Fig. 1). The Kansas isolate differed by only a single band from the dominant subtype and exhibited 86% similarity (Fig. 1), supporting the hypothesis that there is long-term persistence of closely related E. coli O157:H7 strains in the feedlot environment.

Cell attachment. The abilities of E. coli O157:H7 isolates belonging to the dominant PFGE subtype (subtype F), closely related PFGE subtypes (<3-band difference from subtype F), possibly related subtypes (between 4- and 6-band difference from subtype F), and divergent subtypes (>7-band difference from subtype F) to adhere to the Caco-2 human intestinal epithelial cell line were compared. The attachment efficiency was expressed as the percentage of the initial inoculum that

TABLE 5. Distribution of PFGE subtypes for each PS animal during the antemortem collection period

Animal	PFGE subtype(s)	Collection 1	Collection 2	Collection 3	Collection 4	Collection 5	Collection 6
PS-1	F, F, F, F, F	F	F	I	AB	I	
PS-2	F, F, F, F, F	F	F	I	I	I	
PS-3	F, F, F, C	T, K	Z	N			
PS-4	F, F, F, U	F	F	F	F	F	
PS-5	F, F, F, H	I	I	A			
PS-6	F, F, F, L	R	H				
PS-7	F, F, W	F	F	A	P	F	
PS-8	F, F, F, A	F	A	F	AA		
adhered to host cells, and the mean attachment efficiencies for the strain categories described above ranged from 10.7 to 53.9% (Fig. 3). *E. coli* O157:H7 isolates belonging to the persistent PFGE subtype (subtype F) demonstrated an enhanced (P < 0.05) ability to adhere to human intestinal epithelial cells compared to isolates belonging to closely related, possibly related, and genetically divergent subtypes. A relationship was observed between genetic diversity and attachment efficacy; as the genetic difference from subtype F increased (based on the number of band differences), the ability to attach to Caco-2 cells decreased (Fig. 3). As a reference, an *E. coli* O157:H7 isolate obtained from a food sample associated with an outbreak of human illness (ATCC 43895) with the same genotype (five-gene multiplex PCR profile) was included in all cell attachment assays. The attachment efficiencies of the *E. coli* O157:H7 isolates representing the dominant subtype were more than threefold greater than that of the outbreak-associated isolate (Fig. 3). The results of the Caco-2 attachment assays suggest that *E. coli* O157:H7 subtypes that persist in cattle have an enhanced ability to adhere to human intestinal epithelial cells.

DISCUSSION

To date, there has not been an extensive investigation of the molecular ecology of *E. coli* O157:H7 persistence and shedding in naturally colonized feedlot cattle. Our results demonstrate that closely related *E. coli* O157:H7 strains may persist in the feedlot ecosystem (i.e., cattle and the feedlot environment) for extended periods, which may be explained in part by an enhanced ability of these persistent strains to adhere to intestinal epithelial cells. Additionally, we demonstrated that most (97.6%) feedlot steers shed Shiga toxin-encoding *E. coli* O157 during the final 100 to 110 days of the feeding period. Molecular characterization of *E. coli* O157:H7 isolates revealed that a predominant *E. coli* O157:H7 strain persisted throughout the study and that this persistent strain diversified during the study. Further phenotypic characterization of isolates belonging to the persistent subtype and closely related and more genetically divergent PFGE subtypes using a cell culture attachment assay revealed an increased attachment efficiency of the persistent *E. coli* O157:H7 strain found in the feedlot population. Our results illustrate that certain *E. coli* O157:H7 strains may persist in cattle populations and that, ultimately, these strains may represent an increased risk to human health due to the increased likelihood that they could enter the human food supply and due to their subsequent enhanced ability to attach to human intestinal epithelial cells.

Most feedlot cattle appear to shed Shiga toxin-encoding *E. coli* O157 at some point during the final phase of finishing. During collections 1 and 2, we detected an *E. coli* O157 isolate carrying at least one Shiga toxin-encoding gene in 45.5 and 58.7% of all animals, respectively. Before now, the point prevalence of Shiga toxin-encoding *E. coli* O157 was found in cattle at some point during the final phase of finishing. Moreover, we observed that 97.6% of steers shed a Shiga toxin-encoding *E. coli* O157 isolate at least once during the final 100 to 110 days of the feeding period, a level that had been reported previously. During the first two sample collection periods, 39.8 and 33.6% of the animals shed an *E. coli* O157:H7 isolate with the same genotype (i.e., carrying the *eae*, *str*1, and *str*2 genes), which are higher percentages than those previously reported (12, 18, 27, 45, 50, 55, 56).

Small subpopulations of feedlot cattle appear to become persistently colonized by *E. coli* O157:H7. Few studies have evaluated the persistence of *E. coli* O157:H7 fecal shedding in
large populations of feedlot cattle naturally colonized by this human pathogen. We found that 1% of feedlot steers persistently shed an E. coli O157:H7 isolate with the same genotype (i.e., a strain carrying eae, stx₁, and stx₂) during the final 100 days of the feeding period, a level that is significantly greater than expected by chance. Intensive fecal sampling (multiple samples collected each day) that was conducted with two different cohorts of 6- to 11-month-old dairy calves revealed two animals in each cohort (14 and 12.5% of the animals) that persistently shed E. coli O157:H7 for 4 and 15 days (43). Observation of E. coli O157:H7 fecal shedding in feedlot cattle determined that a small number of animals (n = 8) shed the organism for a maximum of 4.5 weeks, about three-quarters of the time that we found E. coli O157:H7 persistence to last, and the remaining animals in the sample population shed this bacterium for 2.5 weeks on average (30). For dairy cattle, the duration of E. coli O157:H7 shedding was estimated to be approximately 1 month (6). These previous studies of naturally colonized populations were limited by the lack of molecular subtyping to characterize isolates in order to determine if animals were persistently colonized by the same E. coli O157:H7 strain or if they were continuously exposed to, and subsequently shed, genetically diverse strains. Experimental inoculation of calves with E. coli O157:H7 established that shedding occurred for periods between 14 and 140 days long (7, 15, 39, 44). Alternatively, experimental inoculation of cattle that were >0.5 year old increased the minimum number of days of persistent fecal shedding to 29 days but reduced the maximum shedding time to only 98 days (15, 23, 46). Assessment of previously published data supported the hypothesis that there is a general trend of increased E. coli O157:H7 shedding duration for neonates and calves less than 1 year old. As the animal age increases, persistent shedding decreases and is increasingly intermittent.

It is plausible that the eight animals that we found to be colonized by the same E. coli O157:H7 strain throughout this study continued to be reexposed to the organism via animal-to-animal transmission or a contaminated pen environment, which resulted in the persistent E. coli O157:H7 shedding status. Animal-to-animal transmission was previously observed when uninoculated young calves (10 weeks old) that commingled with calves inoculated with E. coli O157:H7 began shedding the organism (7). However, animal-to-animal transmission of E. coli O157:H7 was found to be very inefficient and unlikely for a group of 5- to 8-month-old calves (46), further substantiating our conclusion that the animals were persistently colonized with E. coli O157:H7, particularly since the PS animals were fed and maintained in different pens. Additionally, it appears that observations from one time point to the next are not independent with regard to positive animals. Furthermore, previous literature suggests that while the microbiological assays are highly sensitive, the sampling methodology is quite insensitive (17a). Thus, the true PS population was likely underestimated and the true NS population overestimated; if so, there is even more true dependency from time point to time point than that observed herein.

E. coli O157:H7 may show specificity for colonization of the lower GI tract, and there do not appear to be notable histopathological differences between PS and NS animals. We did not obtain conclusive evidence regarding the preferential site of E. coli O157:H7 colonization due to the limited prevalence of this organism in the GI tract tissue and content samples collected postmortem, which was presumably a result of transportation stress (2) and extended lairage (38) at the plant. A comparable situation was reported for a population of sheep inoculated with E. coli O157:H7 that shed detectable amounts of the organism in their feces, but the organism could not be detected in any GI tract tissue or content samples following necropsy (23). Despite the limited E. coli O157:H7 prevalence, we found that at least one ileal-cecal sample and one RAJ tissue sample were positive for E. coli O157:H7 both in animals identified as PS animals and in animals identified as TS animals. We also obtained three positive tissue samples from the fore-stomach, the earliest GI site believed to be a site of E. coli O157:H7 propagation (8). Recent research has concluded that the colon (23, 52), specifically an area designated the RAJ, is the principal site of E. coli O157:H7 colonization (33, 39, 46), and this colonization site is particularly important for E. coli O157:H7 excretion in feces (12). In cattle naturally colonized by E. coli O157:H7, tissue samples obtained 1 cm from the RAJ contained larger quantities of E. coli O157:H7 than samples obtained 15 cm from the RAJ (33). A relationship between increased E. coli O157:H7 concentration and areas closest to the RAJ was observed with tissue samples obtained from experimentally infected animals, naturally colonized animals, and calves exposed to infected animals (39). It was concluded that animals are more likely to become consistent long-term shedders when they are infected with E. coli O157:H7 directly at the RAJ rather than through oral inoculation (46). While our findings do not confirm the preferential site of E. coli O157:H7 colonization in cattle, they corroborate the conclusion that the lower GI tract is the preferred site of colonization.

Histopathological evaluation of the all of the GI tracts obtained from PS, TS, and NS animals did not reveal any gross abnormalities or discernible lesions. More specifically, no attaching and effacing (A/E) lesions, which are characteristic of E. coli O157:H7 colonization, were identified in PS animal GI tissue samples. All animals enrolled in the study remained healthy throughout the entire time of sample collection, and cattle colonized with E. coli O157:H7 do not generally have clinical symptoms (15). There does, however, appear to be an association between animal age and susceptibility to clinical symptoms for animals exposed to very high levels of E. coli O157:H7. Experimental infection of young calves (<12 h old or 30 to 36 h old) with 10 logs of E. coli O157:H7 resulted in severe diarrhea and A/E lesions throughout the lower GI tract (16). In contrast, 1-day-old calves remained clinically normal after inoculation with 8 logs of E. coli O157:H7 (44), an inoculation level believed to encourage A/E lesion development (17). Once animals reach 3 weeks of age, their susceptibility to E. coli O157:H7 infection (10 logs) appears to diminish; E. coli O157:H7 infection results in slight increases in the body temperature and watery diarrhea, but these symptoms last for only a couple of days following inoculation and no A/E lesions are formed (8, 15). Still, infection of 3- to 4-month-old calves with 10 logs of E. coli O157:H7 caused watery diarrhea (17) and A/E lesion formation (17, 52) and in one case resulted in translocation of the bacteria to the gall bladder, where they were able to produce A/E lesions (52). The general consensus that E. coli O157:H7 colonization is not associated with clinical
symptoms in animals that are at least 1 year old (15, 23) is further validated by the lack of pathological symptoms observed for the animals enrolled in our study. Furthermore, histopathological comparisons between PS and NS animals support the conclusion that host-associated factors do not appear to be as significant as *E. coli* O157:H7’s ability to orchestrate persistent colonization in cattle more than 1 year old.

A single *E. coli* O157:H7 strain may persist in a population of feedlot cattle. We observed that a single predominant PFGE subtype accounted for 53% of all isolates characterized; furthermore, 87% of the isolates belonged to the predominant PFGE subtype or to PFGE subtypes that were closely related to the predominant subtype (only one to three bands were different [53]). Our data contribute to the growing body of evidence indicating that *E. coli* O157:H7 persists in cattle populations. More specifically, along with several previous studies (6, 43, 45, 48, 51), our study supports the conclusion that a given population of feedlot cattle appears to be colonized by a single predominant strain and a few closely related strains. The predominant PFGE subtype in our study was disseminated into each animal pen, was found on each sample collection date, and was shed by each PS animal on at least two consecutive sample collection dates. Similarly, in another study, all 54 *E. coli* O157 isolates obtained from two different dairies belonged to the same PFGE subtype (43). Analysis of the genetic diversity of *E. coli* O157:H7 collected from four dairies located in a 30-km area in southern Alberta also demonstrated that there was a highly clonal *E. coli* O157:H7 population, as three dominant subtypes, which were detected at every dairy, accounted for a majority of the isolates characterized (50). It can be argued that dairy farm environments have an increased likelihood of sustaining highly clonal *E. coli* O157:H7 populations because of reduced animal turnover compared to commercial feedlots, where new animals presumably are the main source of new *E. coli* O157:H7 subtypes. However, feedlots also appear to maintain highly related populations of *E. coli* O157:H7, even with their increased animal turnover rates. For example, PFGE analyses of 103 and 230 *E. coli* O157:H7 isolates obtained from two different commercial feedlots revealed that isolates clustered with 80% similarity (45) and that 60% of the isolates belonged to four closely related subtypes (32), respectively. Additionally, indistinguishable *E. coli* O157:H7 subtypes were recovered from two feedlots that were approximately 100 km apart and did not share any common source of animals that entered them (56). Previously, we demonstrated that transplant to, or holding at, the processing plant can introduce them (56). Previously, we demonstrated that transit to, apart and did not share any common source of animals that entered them (56).

The persistence of predominant *E. coli* O157:H7 subtypes in beef cattle feedlots was characterized and was determined to last for several years (32). Strains of *E. coli* O157:H7 persist in the environment (1) and can potentially be rapidly disseminated throughout a cattle population (45). We compared the PFGE banding pattern of the dominant PFGE subtype observed in the current study to that of an *E. coli* O157:H7 strain (with the same genotype) obtained from an environmental sample (11) from the same feedlot 2 years before the arrival of our cattle and determined that the two subtypes were highly related, with only one band difference and only 14% divergence from the dominant subtype (Fig. 1). Our findings provide further evidence that certain *E. coli* O157:H7 strains likely persist in the feedlot environment and subsequently colonize exposed animals.

E. coli O157:H7 strains that persist in cattle populations demonstrate an enhanced ability to adhere to intestinal epithelial cells. Based on our observations that a predominant PFGE subtype and other closely related PFGE subtypes accounted for the majority of *E. coli* O157:H7 isolates obtained from the population of feedlot cattle studied here and that these subtypes persisted in these cattle throughout the study, we hypothesized that these strains may represent an “ecotype” that adapted to colonize and persist in the GI tract. We explored this hypothesis by characterization of *E. coli* O157:H7 isolates representing the predominant and persistent PFGE subtype (subtype F), along with isolates representing PFGE subtypes that were closely related, possibly related, and distantly related to subtype F. Our investigation showed that *E. coli* O157:H7 isolates that represent the predominant PFGE subtype demonstrate an enhanced (*P < 0.05*) ability to adhere to the Caco-2 human intestinal epithelial cell line. Interestingly, as genetic diversity of the predominant PFGE subtype increases, attachment efficacy decreases. *E. coli* O157:H7 isolates representing the predominant subtype demonstrated an ability to attach to Caco-2 cells that was greater than that of a reference *E. coli* O157:H7 isolate from an outbreak of human illness, substantiating the human-pathogenic potential of *E. coli* O157:H7 strains that persist in feedlot cattle.

We characterized the attachment efficacies of *E. coli* O157:H7 isolates using a human intestinal epithelial cell line because of the lack of an immortal bovine intestinal epithelial cell line. Although our initial objectives were to elucidate the nature of *E. coli* O157:H7 colonization and persistence in the bovine GI tract, we discovered that *E. coli* O157:H7 strains that persist in feedlot cattle appear to have an accentuated ability to adhere to human intestinal epithelial cells, which is essential for disease manifestation. *E. coli* O157:H7 depends on intimin and the translocated intimin receptor (Tir) for intimate adherence to a host cell (29). The role of intimin and its importance in bacterial adherence have been investigated and validated using bovine models (14, 22, 47) and appear to be no different in human cell lines (13). We do not discount the significance of intimin in bacterial attachment, but taking into consideration the fact that all of the *E. coli* O157:H7 isolates screened during the attachment assay contained the gene responsible for intimin production, our results provide evidence that there are other influential mechanisms that are responsible for attachment efficacy. Further work is required to elucidate the molecular mechanisms responsible for the disparate attachment efficacies of diverse *E. coli* O157:H7 strains that encode the same virulence determinants.

Conclusions. We provide compelling evidence that in a population of healthy feedlot cattle, a small subpopulation of animals appears to become persistently colonized by closely related *E. coli* O157:H7 strains. We found no physiological differences between animals that we classified as PS, TS, and NS based on our observations of animal health status and postmortem histopathology. In addition, PS and TS animals appeared to become colonized by a single predominant *E. coli*
O157:H7 molecular subtype along with other closely related molecular types, supporting the hypothesis that new genotypes emerged. Finally, our findings provide evidence that cattle may be more likely to be colonized by E. coli O157:H7 molecular subtypes that demonstrate accentuated human-pathogenic potential, as shown by the enhanced ability of persistent strains to adhere to human intestinal epithelial cells. Additionally, it stands to reason that there is an increased likelihood that these E. coli O157:H7 subtypes are transferred through the production continuum and subsequently into the human population because of their increased prevalence in feedlot cattle. Our results highlight the importance of preharvest food safety in-

10. Centers for Disease Control and Prevention. 2001. One-day (24-28 h) standardized laboratory protocol for molecular subtyping of Escherichia coli O157:H7 by pulsed-field gel electrophoresis (PFGE). Centers for Disease Control and Prevention, Atlanta, GA.

11. Childs, K. D., C. A. Simpson, W. Warren-Serna, G. Bellinger, B. Centrella, R. A. Bowling, J. Ruby, J. Stefanek, D. J. Vote, T. Chot, J. A. Scanga, J. N.

Sofos, G. C. Smith, and K. E. Belk. 2000. Molecular characterization of Escherichia coli O157:H7 hide contamination routes: feedlot to harvest. J. Food Prot. 69:1240–1247.

12. Cobbold, R. N., D. D. Hancock, D. H. Rice, J. Berg, R. Stilborn, C. J. Howde, and V. E. Besser. 2007. Rectal colonization of feedlot cattle by Escherichia coli O157:H7 and its association with supershedders and excre-

tory dynamics. Appl. Environ. Microbiol. 73:1563–1568.

13. Cookson, A. L., and M. J. Woodward. 2003. The role of intimin in the adhesion of enterohemorrhagic Escherichia coli (EHEC) O157:H7 to HEp-2 tissue culture cells and to bovine gut explants tissues. Int. J. Med. Microbiol. 292:547–553.

14. Corinick, N. A., S. L. Booher, and H. W. Moon. 2002. Intimin facilitates colonisation by Escherichia coli O157:H7 in adult ruminants. Infect. Immun. 70:2704–2707.

15. Cray, Jr., W. C., and H. W. Moon. 1995. Experimental infection of calves and adult cattle with Escherichia coli O157:H7. Appl. Environ. Microbiol. 61:1586–1590.

16. Dean-Nystrom, E. A., B. T. Bosworth, W. C. Cray, Jr., and H. W. Moon. 1997. Pathogenesis of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect. Immun. 65:1842–1848.

17. Dean-Nystrom, E. A., B. T. Bosworth, and H. W. Moon. 1999. Pathogenesis of Escherichia coli O157:H7 in weaned calves. Adv. Exp. Med. Biol. 473:173–177.

17a. Echeverry, A. G., H. Loneragan, B. A. Wagner, and M. M. Brashears. 2005. Effect of intensity of fecal put sampling on estimates of E. coli O157 prev-

18. Elder, R. O., J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. A. Laegerd. 2000. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcass of beef cattle at processing. Proc. Natl. Acad. Sci. 97:3003–3008.

19. Food and Drug Administration, United States Department of Health and Human Services. 2001. Bacteriological analytical manual. http://vm.cfsan.dhhs.gov/~ebam/bam-toc.html. Accessed 20 September 2006.

20. Food Safety Inspection Service, United States Department of Agriculture. 2008. Detection, isolation and identification of Escherichia coli O157:H7 from meat products. http://www.fsis.usda.gov/PDF/MLG_5_04.pdf. Accessed 13 May 2008.

21. Galland, J. C., D. R. Hyatt, S. S. Crupper, and D. W. Acheson. 2001. Prevalence, antibiotic susceptibility, and diversity of Shiga toxin-producing Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl. Environ. Microbiol. 67:1619–1627.

22. Girard, F., F. Dziva, P. van Diemen, A. D. Phillips, M. P. Stevens, and G. Frankel. 2007. Adherence of enterohemorrhagic Escherichia coli O157, O126, and O111 strains to bovine intestinal ex vivo. Appl. Environ. Microbiol. 73:3084–3090.

23. Graue, L. J., H. G. Frederick, J. W. Yoon, K. C. Sun, D. E. Jones, and H. C. Williams. 2005. Establishment and spread of Escherichia coli O157:H7 in commercial beef processing plants. J. Food Prot. 68:2269–2277.

24. Gyles, C. L. 2007. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85:E65–E75.

25. Hu, Y., Z. Zhang, and J. C. Meitzler. 1999. Rapid and sensitive detection of Escherichia coli O157:H7 in bovine faeces by a multiplex PCR. J. Appl. Microbiol. 87:867–876.

26. Hunter, S. B., P. Vauterin, M. A. Lambert-Fair, M. S. Van Duyne, K. Hussein, H. S. 2007. Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J. Anim. Sci. 85(Suppl. 3):E63–E72.

27. Hussein, H. S. 2007. Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J. Anim. Sci. 85(Suppl. 3):E63–E72.

28. Khaita, M. L., D. R. Smith, J. A. Stoner, A. M. Parkhurst, S. Hinkley, T. J. Klopfenstein, and R. A. Moxley. 2003. Incidence, duration, and prevalence of Escherichia coli O157:H7 rectal carriage in feedlot cattle during the finishing period. J. Food Prot. 66:1972–1977.

29. Laven, R. A., A. Ashmore, and C. S. Stewart. 2003. Escherichia coli in the ruminant and colon of slaughter cattle, with particular reference to E. coli O157. Vet. J. 165:78–83.

30. LeJeune, J. T., T. E. Besser, D. H. Rice, J. L. Berg, R. F. Stillborn, and D. D. Hancock. 2004. Longitudinal study of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: predominance and persistence of specific clonal lineages. Appl. Environ. Microbiol. 70:377–384.

31. Low, J. C., I. J. Mckendrick, C. McKechnie, D. Fenlon, S. N. Naylor, C. Currie, D. G. E. Smith, L. Allison, and D. L. Gally. 2005. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughter cattle. J. Appl. Mi-

32. Matthews, L. J., I. J. Mckendrick, H. Ternent, G. J. Gunn, B. Synge, and M. E. J. Woolhouse. 2006. Super-shedding cattle and the transmission dy-

33. Nye. 2007. The effects of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers. J. Food Prot. 63:1467–1474.

34. P滥用. Microbiol. 5936 CARLSON ET AL. APPL. ENVIRON. MICROBIOL.
35. Matthews, L., J. C. Low, D. L. Gally, M. C. Pearce, D. J. Mellor, J. A. P. Heesterbeek, M. Chase-Topping, S. W. Naylor, D. J. Shaw, S. W. J. Reid, G. J. Gunn, and M. E. J. Woolhouse. 2006. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc. Natl. Acad. Sci. USA 103:547–552.
36. Mead, P. S., and P. M. Griffin. 1998. Escherichia coli O157:H7. Lancet 352:1207–1212.
37. Mead, P. S., L. Slutsker, V. Dietz, J. F. McCraig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food-related illnesses and death in the United States. Emerg. Infect. Dis. 5:607–625.
38. Minihan, D., M. O’Mahony, P. Whyte, and J. D. Collins. 2003. An investigation on the effect of transport and lairage on the faecal shedding prevalence of Escherichia coli O157 in cattle. J. Vet. Med. 50:375–382.
39. Naylor, S. W., J. C. Low, T. E. Besser, A. Mahajan, G. J. Gunn, M. C. Pearce, I. J. McKendrick, G. E. Smith, and D. L. Gally. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohaemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71:1505–1512.
40. Rasmussen, M. A., W. C. Cray, T. A. Casey, and S. C. Whipp. 1993. Rumen contents as a reservoir of enterohemorrhagic Escherichia coli serotype O157: H7. FEMS Microbiol. Lett. 114:331–336.
41. Ray, P. E., and X. H. Lui. 2001. Pathogenesis of Shiga toxin-induced hemorrhagic uremic syndrome. Pediatr. Nephrol. 16:823–839.
42. Riley, L. W., R. S. Remis, S. D. Helgerson, J. G. Wells, B. R. Davis, R. J. Hebert, E. S. Olcott, L. M. Johnson, N. T. Hargrett, P. A. Blake, and M. L. Cohen. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308:681–685.
43. Robinson, S. E., E. J. Wright, C. A. Hart, M. Bennett, and N. P. French. 2004. Intermittent and persistent shedding of Escherichia coli O157 in cohorts of naturally infected calves. J. Appl. Microbiol. 97:1045–1053.
44. Sandersen, M. W., T. E. Besser, J. M. Gay, C. C. Gay, and D. D. Hancock. 1999. Fecal Escherichia coli O157:H7 shedding patterns of orally inoculated calves. J. Food Prot. 62:547–552.
45. Scott, L., P. McGee, D. Minihan, J. J. Sheridan, B. Earley, and N. Leonard. 2006. The characterization of E. coli O157:H7 isolates from cattle faeces and feedlot environment using PFGE. Vet. Microbiol. 114:331–336.
46. Sheng, H., M. A. Davis, H. J. Knecht, and C. J. Hovde. 2004. Rectal administration of Escherichia coli O157:H7: novel model for colonization of rumen floras. Appl. Environ. Microbiol. 70:4588–4595.
47. Sheng, H., J. Y. Lim, H. J. Knecht, J. Li, and C. J. Hovde. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect. Immun. 74:4685–4693.
48. Shere, J. A., K. J. Bartlett, and C. W. Kaspar. 1998. Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Appl. Environ. Microbiol. 64:1390–1399.
49. Reference deleted.
50. Stanford, K., D. Croy, S. J. Bach, G. L. Williams, H. Zahriodini, and T. A. McAllister. 2005a. Ecology of Escherichia coli O157:H7 in commercial dairies in southern Alberta. J. Dairy Sci. 88:4441–4451.
51. Stanford, K., S. J. Bach, T. H. Marx, S. Jones, J. R. Hansen, G. L. Wallins, H. Zahriodini, and T. A. McAllister. 2005b. Monitoring Escherichia coli O157:H7 in inoculated and naturally colonized feedlot cattle and their environment. J. Food Prot. 68:26–33.
52. Stoffregen, W. C., J. F. L. Pohlenz, and E. A. Dean-Nystrom. 2004. Escherichia coli O157:H7 in the gall bladders of experimentally infected calves. J. Vet. Diagn. Invest. 16:79–84.
53. Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelson, B. A. Murray, D. A. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233–2239.
54. Tkačík, S., C. A. Brown, B. G. Harmon, A. V. Jain, E. P. Mueller, A. Parks, K. L. Jacobsen, S. A. Martin, T. Zhao, and M. P. Doyle. 2000. Effects of diet on rumen proliferation and fecal shedding of Escherichia coli O157:H7 in calves. J. Food Prot. 63:1630–1636.
55. Van Denker, J., T. Graham, and V. Gannon. 1999. The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. Can. Vet. J. 40:332–338.
56. Van Denker, J., J. Berg, A. Potter, D. Hancock, T. Besser, D. Rice, J. LeJeune, and S. Klashinsky. 2001. Environmental sources and transmission of Escherichia coli O157 in feedlot cattle. Can. Vet. J. 42:714–720.
57. Woerner, D. R., J. R. Ransom, J. N. Sofos, G. A. Dewell, G. C. Smith, M. D. Salman, and K. E. Belk. 2006. Determining the prevalence of Escherichia coli O157 in cattle and beef from the feedlot to the cooler. 2006. J. Food Prot. 69:2824–2827.