When no news is bad news
Detection of negative events from news media content

Kristoffer L. Nielbo, Frida Haestrup, Kenneth C. Enevoldsen, Peter B. Vahlstrup, Rebekah B. Baglini, and Andreas Roepstorff

center for humanities computing aarhus|chcaa.io
aarhus university, denmark
1 introduction
 background
 news information decoupling
 when no news is bad news

2 methods
 data
 information dynamics
 change detection

3 results
 type-dependent support
 political dependency

4 discussion
background

how democracies cope with COVID-19 a data-driven approach is an national research project that is part of the (DK) national pandemic monitoring program.

research team interested in cultural dynamics, in particular how events impact cultural information systems

use news media coverage of COVID-19 as a proxy for how cultural information systems respond to unexpected and dangerous temporally extended events.
in response to unexpected and dangerous temporally extended events, the ordinary information dynamics of news media are (initially) decoupled such that the content novelty decreases as media focus monotonically on the catastrophic event, but the resonant property of said content increases as its continued relevance propagate throughout the news information system.
when no news is bad news

- validate NID observations with a more formal approach to change detection
- compare national newspapers
 np-type: broadsheet // tabloid
 np-political: left // right
- ultimate goal: media monitoring system

N x R baseline models for danish legacy media

K. L. Nielbo, F. Haestrup, K. C. Enevoldsen, P. B. Vahlstrup, R. B. Baglini, and A. Roepstorff, “When no news is bad news - Detection of negative events from news media content,” arXiv:2102.06505 [cs]
DATA
linguistic content (title and body text) from front pages of six DK national newspapers (2xtabloid, 4xbroadsheet). sampled during COVID-19 phase 1 (december 1, 2019 to july 1 2020)
NORMALIZATION
advertisements and metadata removed lemmatization, tf-idf weighting, casefolding
REPRESENTATION
bag-of-words model (LDA*) to generate low-rank representations of front pages variables were estimated for windows of one week (w = 7).
\(\mathbb{N} \): novelty as article \(s^{(j)} \)'s reliable difference from past articles \(s^{(j-1)}, s^{(j-2)}, \ldots, s^{(j-w)} \) in window \(w \):

\[
\mathbb{N}_w(j) = \frac{1}{w} \sum_{d=1}^{w} JSD(s^{(j)} \mid s^{(j-d)})
\]

\(\mathbb{R} \): resonance as the degree to which future articles \(s^{(j+1)}, s^{(j+2)}, \ldots, s^{(j+w)} \) conforms to article \(s^{(j)} \)'s novelty:

\[
\mathbb{R}_w(j) = \mathbb{N}_w(j) - \mathbb{T}_w(j)
\]

where \(\mathbb{T} \) is the transience of \(s^{(j)} \):

\[
\mathbb{T}_w(j) = \frac{1}{w} \sum_{d=1}^{w} JSD(s^{(j)} \mid s^{(j+d)})
\]

we propose a symmetrized and smooth version by using the Jensen–Shannon divergence (JSD):

\[
JSD(s^{(j)} \mid s^{(k)}) = \frac{1}{2} D(s^{(j)} \mid M) + \frac{1}{2} D(s^{(k)} \mid M)
\]

with \(M = \frac{1}{2}(s^{(j)} + s^{(k)}) \) and \(D \) is the Kullback-Leibler divergence:

\[
D(s^{(j)} \mid s^{(k)}) = \sum_{i=1}^{K} s_i^{(j)} \times \log_2 \frac{s_i^{(j)}}{s_i^{(k)}}
\]
Assume two change points, τ_1 and τ_2 and an otherwise stable series that follow a normal distribution with varied mean, μ_i, and singular variance, σ. This gives us the following model given the observed Novelty, N_j:

$$N_t = \begin{cases}
\mathcal{N}(\mu_1, \sigma) & \text{for } t < \tau_1 \\
\mathcal{N}(\mu_2, \sigma) & \text{for } \tau_1 \leq t < \tau_2 \\
\mathcal{N}(\mu_3, \sigma) & \text{for } t \geq \tau_2
\end{cases}$$

Estimate the location of τ_i, means μ_i and variance σ, i.e. the following posterior:

$$P(\mu_i, \sigma, \tau_i|N_t) = P(\mu_1, \mu_2, \mu_3, \sigma, \tau_1, \tau_2|N_t)$$

Estimation was carried out with NUTS and the assumptions were modelled using the following priors:

$$\mu_i \sim \mathcal{N}(0, 0.5)$$
$$\sigma \sim \text{Half Cauchy}(0.5)$$
$$\tau_1 \sim \text{Uniform}(0, \max(N_t))$$
$$\tau_2 \sim \text{Uniform}(\tau_1, \max(N_t))$$
Novelty (upper panel) and resonance (lower panel) for the center-left newspaper *Politiken* before and during Covid-19 phase 1.

Source	Class	NID Start	NID End	NID
Berlingske	B	03.07 [03.03, 03.09]	04.28 [04.09, 05.08]	True
BT	T	04.10 [12.30, 09.01]	07.25 [04.22, 09.03]	False
Ekstrabladet	T	01.28 [01.02, 03.17]	05.08 [01.16, 07.22]	False
Jyllands-Posten	B	03.10 [03.08, 03.14]	05.25 [05.21, 06.06]	True
Kristligt Dagblad	B	03.07 [03.05, 03.12]	04.15 [04.11, 04.17]	True
Politiken	B	03.13 [03.12, 03.13]	04.08 [04.05, 04.08]	True

Estimated temporal change points at 94% HDIs for novelty. Column one contains the name of the newspaper, columns two its class (*Broadsheet* or *Tabloid*).
Novelty (upper panel) and resonance (lower panel) for the center-right newspaper *Berlingske* before and during Covid-19 phase 1.

Source	N_{pre}	N_{NID}	N_{post}
Berlingske	0.36 [0.35, 0.37]	0.29 [0.27, 0.31]	0.34 [0.34, 0.35]
Jyllands-Posten	0.29 [0.28, 0.30]	0.23 [0.22, 0.24]	0.27 [0.26, 0.28]
Kristlignet Dagblad	0.27 [0.26, 0.28]	0.19 [0.18, 0.21]	0.26 [0.25, 0.27]
Politiken	0.27 [0.26, 0.28]	0.15 [0.14, 0.17]	0.26 [0.25, 0.26]

Novelty values at 94% HDIs before during and after the lockdown for the four broadsheet newspapers that supported the NID principle.
Figure: $N \times R$ slopes before during and after the lockdown for Berlingske (upper row), Ekstrabladet (middle row), and Politiken (lower row) during Covid-19 phase 1.
"Nothing travels faster than the speed of light with the possible exception of bad news, which obeys its own special laws." (D. Adams – Hitchhiker's Guide)

In conclusion...

In the case of pandemic information dynamics,

- variation in \mathbb{N} reliably detected lockdown and opening
- $\mathbb{N} \times \mathbb{R}$ slopes indicated a decoupling of resonance from novelty during the lockdown
- lockdown interval indicated that lockdown can be predicted from the first incident
- opening interval may reveal political observation
- tabloids follow different dynamics

No news is bad news, when the lack of novel content persists!
This research was supported the “HOPE - How Democracies Cope with COVID-19”-project funded by The Carlsberg Foundation with grant CF20-0044, NeiC’s Nordic Digital Humanities Laboratory project, and DeiC Type-1 HPC with project DeiC-AU1-L-000001. The authors would like to thank Berlingske Media, JP/Politkens Hus, and Kristeligt Dagblad for providing access to proprietary data.