Candidate Isolated Neutron Stars and Other Optically Blank X-ray Fields Identified from the \textit{ROSAT} All-Sky and Sloan Digital Sky Surveys1

Marcel A. Agüeros2,3, Scott F. Anderson2, Bruce Margon4, Bettina Posselt5, Frank Haberl5, Wolfgang Voges5, James Annis6, Donald P. Schneider7, Jonathan Brinkmann8

\textbf{ABSTRACT}

Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays are known, a sample that has yet to definitively address such fundamental issues as the equation of state of degenerate neutron matter. We describe a selection algorithm based on a cross-correlation of the \textit{ROSAT} All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error circles devoid of plausible optical counterparts to the SDSS $g \sim 22$ magnitudes limit. We quantitatively characterize these error circles as optically blank; they may host INSs or other similarly exotic X-ray sources such as radio-quiet BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective than previous searches for optically blank RASS error circles, and excludes the 99.9\% of error circles that contain more common X-ray-emitting subclasses. We find 11 candidates, nine of which are new. While our search is designed to find the best INS candidates and not to produce a complete list of INSs in the RASS, it is reassuring that our number of candidates is consistent with predictions from INS population models. Further X-ray observations will obtain pinpoint positions and determine whether these sources are entirely optically blank at $g \sim 22$, supporting the presence of likely isolated neutron stars and perhaps enabling detailed follow-up studies of neutron star physics.

1Includes observations obtained with the Apache Point Observatory 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium.

2Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195; agueros@astro.washington.edu

3NASA Harriett G. Jenkins Fellow

4Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

5Max-Planck-Institut für extraterrestrische Physik, Geissenbachstrasse 1, D-85741 Garching, Germany

6Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510

7Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802

8Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349
Subject headings: stars: neutron

1. Introduction

Neutron stars were empirically confirmed first as radio pulsars (Hewish et al. 1968), and these objects continue to dominate neutron star (NS) statistics. Currently there are over 1500 pulsars cataloged, and the number grows steadily\(^1\). If one includes the number of observed X-ray binary systems (e.g., Liu et al. 2000, 2001), most of which are thought to contain a neutron star, \(\lesssim 2000\) NSs are known. Yet a neutron star is born in the Milky Way every 30 to 100 years, suggesting that the total population is \(10^8 - 10^9\) objects (or roughly 1% of the stars), depending on the Galaxy’s star formation history (Neuhäuser & Trümper 1999). Of these neutron stars, only the youngest will be detected as radio pulsars, provided they are aligned favorably; after a few million years, the pulsar will have radiated away its rotational and internal energy, and the pulses will cease (Treves et al. 2000). As a result, the total number of pulsars in the Milky Way is only a few times \(10^5\); for every active pulsar there are \(\sim 1000\) radio-quiet neutron stars (Kulkarni & van Kerkwijk 1998).

Ostriker et al. (1970) proposed that some of these defunct pulsars could reheat by accreting matter from the surrounding interstellar medium (ISM) through Bondi-Hoyle accretion. The ISM would need to be relatively dense, the NS velocity relatively low, and the NS magnetic field somewhat decayed to allow accreting matter to reach the star’s surface (see also Treves & Colpi 1991). If these conditions are met, the neutron star might emit approximately as a blackbody with a peak in the extreme ultraviolet/soft X-ray energy band (Treves et al. 2000). For nearby NSs, this thermal emission is observable, and it was thought that \(ROSAT\) would detect \(10^2\) to \(10^3\) reheated isolated neutron stars (INSs), thereby potentially providing strong constraints on the neutron star equation of state (EOS) (see, for example, Treves & Colpi 1991; Blaes & Madau 1993).

Yet today the list of \(ROSAT\)-detected radio-quiet isolated neutron stars contains just seven entries (for a recent review of the so-called Magnificent Seven, see Haberl 2004). Recent work has suggested at least one plausible explanation for this discrepancy between the predicted and the observed numbers of INSs: Bondi-Hoyle accretion may not be an adequate mechanism for reheating large numbers of INSs, in part because the conditions described above are unrealistic (particularly if one considers the observed pulsar velocity distribution; e.g., Perna et al. 2003). Indeed, Popov et al. (2000) have suggested instead that at the bright end of the X-ray log N-log S distribution, where most INS searches have taken place, the current number of known INSs is compatible with population models for

\(^{1}\)For an up-to-date catalog of known pulsars, see the Australia Telescope National Facility’s database: http://www.atnf.csiro.au/research/pulsar/psrcat/.
young, cooling neutron stars. This is consistent with observations of the Magnificent Seven suggesting they may have magnetic fields and velocities too large for Bondi-Hoyle accretion.

While the X-ray characteristics of the Magnificent Seven are broadly consistent with thermal emission, the current sample has managed to be both too small and too diverse in detail to definitively address the neutron star EOS. For example, while at least five of the Seven are X-ray pulsars (Zane et al. 2005), the upper limit for the amplitude of X-ray pulsations in RX J1856.5−3754, the brightest known INS, is $\leq 1.3\%$ (Burwitz et al. 2003). In addition, rather than bland blackbody spectra, X-ray spectroscopy of four of the Seven has revealed unexpected broad absorption features (Trümper 2005). The nature and significance of each of these differences are also topics of current debate (e.g., Burwitz et al. 2003; Trümper 2005; Zane et al. 2005), although some have argued that all the observational evidence is consistent with blackbody emission altered by the presence of a hydrogen atmosphere and magnetic fields of differing intensities (van Kerkwijk et al. 2004). Clearly, if we are to find unifying patterns by which to disentangle the various possible roles of magnetic fields, geometry, and atmospheres, obtaining a larger sample of INSs is required, especially to make eventual progress towards understanding the fundamental questions of the neutron star EOS.

In the past, a major obstacle to finding isolated neutron stars was the absence of a large-area optical survey of equivalent sensitivity with which to identify the > 124000 X-ray sources cataloged in the $ROSAT$ All-Sky Survey (RASS, Voges et al. 1999). The availability of a suitable companion optical survey would allow removal of “contaminants” to INS searches (i.e., the bulk of more common X-ray-emitting subclasses: quasars, bright stars, clusters of galaxies, etc.), thereby narrowing the list of RASS error circles in which to search for new INSs. Rutledge et al. (2003) attempted to identify candidate INSs from among the 19000 RASS sources in the Bright Source Catalog (BSC, Voges et al. 1999) by eliminating matches to the United States Naval Observatory (USNO) A2.0 optical catalog, but in the interim the Sloan Digital Sky Survey (SDSS; York et al. 2000) has emerged as a more powerful companion optical survey to RASS, especially for extending the search for new INSs to the RASS Faint Source Catalog (FSC, Voges et al. 2000).

Here we describe a program to identify the best candidate isolated neutron stars from correlations of the RASS Bright and Faint Source Catalogs and an early version of the SDSS Data Release 4 (DR4; Adelman-McCarthy et al. 2005). In the following section we outline the properties of the two surveys. Section 3 describes the method used to select our candidate fields, and in section 4 we describe the properties of the individual candidate fields identified by this program. Section 5 is a discussion of our results and includes a comparison of our method and that of Rutledge et al. (2003), an earlier search for INSs that also used the RASS.\(^2\) We conclude in section 6.

\(^2\)Chieregato et al. (2005) have recently published four $ROSAT$-detected X-ray sources without optical counterparts to the Guide Star Catalog faint limit of $19 - 23$ mag (depending on the optical band and the
2. RASS and SDSS: A Match Made in the Heavens

The ROSAT All-Sky Survey (RASS) was the first of its kind in soft X rays ($\sim 0.1 - 2.4$ keV). Using the Position Sensitive Proportional Counter, ROSAT imaged the sky with exposures of lengths ranging from ~ 400 to ~ 40000 s at the ecliptic equator and poles, respectively, with 99.7% of the sky observed in exposures at least 50 seconds long (Voges et al. 1999). The typical limiting sensitivity of the resulting RASS catalog is a few times 10^{-13} ergs cm$^{-2}$ s$^{-1}$, and more than 124000 sources are included when one merges the RASS Bright and Faint Source Catalogs (Voges et al. 1999, 2000).

The Sloan Digital Sky Survey provides a uniform optical photometric and spectroscopic dataset with which to correlate the RASS catalog. SDSS is currently mapping the sky at optical wavelengths using a dedicated 2.5 m telescope at the Apache Point Observatory, New Mexico, and producing homogeneous five color u,g,r,i,z CCD images to a depth of $r \sim 22.5$ (Fukugita et al. 1996; Gunn et al. 1998; Hogg et al. 2001; Smith et al. 2002; Gunn et al. 2005), with associated photometry accurate to 0.02 magnitudes (Ivezić et al. 2004). Astrometric accuracy is better than 0.1" per coordinate (rms) for sources with $r < 20.5$ (Pier et al. 2003); morphological information drawn from SDSS images allows for reliable star/galaxy separation to $r \sim 21.5$ (Lupton et al. 2002). The survey’s coverage of $\sim 10^4$ deg2 around the north Galactic cap and of ~ 200 deg2 in the southern Galactic hemisphere will result in photometric measurements for over 10^8 stars and a similar number of galaxies. SDSS will also obtain spectra for 10^6 galaxies and 10^5 quasars. The fourth public Data Release (DR4) includes photometric data for 6670 deg2 of sky, and catalogs 1.8×10^8 objects (Adelman-McCarthy et al. 2005).

Largely by coincidence, the RASS and SDSS are extremely well-matched, making SDSS an ideal tool for identifying large numbers of ROSAT sources (e.g., Anderson et al. 2003). In particular, if one considers the known range of f_x/f_{opt} for common X-ray emitters, even the faintest optical counterparts to typical RASS sources are bright enough to be detected in the SDSS photometric survey and targeted for SDSS spectroscopy. For the typical classes of X-ray emitters, including normal stars, normal galaxies, quasars, and BL Lacs, the highest X-ray-to-optical flux ratios have log (f_x/f_{opt}) values of about $-1, 0, +1,$ and $+1.5$, respectively (e.g., Stocke et al. 1991; Zickgraf et al. 2003). Given the RASS flux limit quoted above, this implies that a faint optical counterpart in each of these categories of typical X-ray counterparts will have $m \lesssim 15, 17, 20,$ and 21, respectively, and therefore that SDSS will obtain accurate photometry for the vast majority of RASS counterparts within its footprint. (We use the Maccacaro et al. (1988) formula for calculations of log (f_x/f_{opt}), and substitute g source position on the sky). These are High Resolution Imager observations, and the area of sky covered and the X-ray error circles are both much smaller than for the RASS.
magnitudes for \(m_V \)). Furthermore, at these magnitudes the SDSS spectroscopic survey will frequently obtain good signal-to-noise spectra for targeted suspected counterparts, allowing for confident identifications.

3. Using SDSS to Identify Optically Blank RASS Fields

Isolated neutron stars, however, are not among the typical classes of X-ray emitters, and have anomalously large \(\log (f_x/f_{opt}) \) values compared to other X-ray sources due to their optical faintness. Of the Magnificent Seven, four have suggested optical counterparts with \(m_V \) between 25.8 and 28.7 and associated \(\log (f_x/f_V) \) values between 4.4 and 5.0 (Kaplan et al. 2003). Clearly, an optical counterpart to an INS is unlikely to be found using SDSS. Rather, we use SDSS to search for RASS fields devoid of plausible optical counterparts to the SDSS \(m \sim 22 \) limit. Such error circles host X-ray sources with such extreme \(f_x/f_{opt} \) ratios that an INS becomes a plausible identification.

We select the RASS BSC and FSC objects within the SDSS DR4 footprint by querying the DR4 database for a complete list of SDSS field positions. SDSS fields are \(2048 \times 1489 \) pixels and consist of the frames in the five SDSS filters for the same part of the sky. An SDSS field is in some sense the survey’s smallest imaging unit, in that all elements of a given field are processed by the photometric pipeline at one time. Matching the RASS positions with those of the ~250000 DR4 fields obtained, we find that ~22700 RASS sources are within the area defined by the DR4 fields, which covers 6670 deg\(^2\). Since there are roughly three RASS sources per deg\(^2\), this number of X-ray sources in the DR4 footprint is consistent with the number of RASS sources expected from a simple surface density argument. Unlike other INS candidate searches (e.g, Rutledge et al. 2003), we do not apply a cut based on the measured X-ray hardness ratios (HR1 and HR2; see Voges et al. 1999). The Magnificent Seven have HR1 ratios that range from \(-1\) to 0, not a strong constraint when the possible range is \(-1\) to 1. While the HR2 ratio may provide a better tool with which to identify soft X-ray emitters, the uncertainties associated with the count rates for RASS faint X-ray sources make this ratio practically undetermined for many of the sources we consider here.

To find the best isolated neutron star candidate fields, we search the 22700 RASS sources for those with small X-ray positional uncertainties and select the ~9500 with quoted positional errors (1\(\sigma \)) smaller than 15\(\arcsec \) (the median RASS positional error for this sample is 13\(\arcsec \)). In identifying counterparts to these sources in SDSS and other catalogs (and thereby eliminating them), we generally restrict our search to objects within a disk centered on the RASS position and of radius either 1\(\prime \) or 4 times the quoted X-ray positional error. Voges

\(^3\)While \(g \) and \(m_V \) are not equal, the color-dependent difference between the two is relatively small (\(g = m_V + 0.05 \) for a typical low-redshift quasar with (B–V) = 0.3; Fukugita et al. 1996).
et al. (1999) provide one empirical distribution of the positional offsets of optical counterparts relative to the quoted BSC positional errors (see their Fig. 8, compiled from correlations with the TYCHO catalog; Hog et al. 1998). An examination of their most reliable matches indicates that this distribution is not adequately described overall by a two-dimensional Gaussian, and that a one-dimensional Gaussian may be a better fit at larger multiples of the quoted positional error. We therefore estimate that among the 9500 sources we consider further, fewer than 1 is expected to have a counterpart with a positional offset larger than 4 times the ROSAT X-ray positional error. For simplicity, we describe this search radius in the rest of the text as equal to 4 p.e. (for positional error), and the associated error circle as the 4 p.e. error circle.

Previous work suggests that roughly one third of the ∼9500 sources with small positional errors are quasars and that another third are bright stars (e.g., Zickgraf et al. 2003). We therefore match the 9500 sources with small positional errors to the most recent SDSS catalog of >4000 spectroscopically identified RASS quasars (e.g., Anderson et al. 2003). We take 1′ as our matching radius, meaning that any X-ray source with a spectroscopically confirmed quasar within an error circle of radius ≥4 p.e. is eliminated from further consideration. Similarly, we use the SDSS DR4 photometric catalog to eliminate RASS fields with a $g < 15$ mag object4 within 1′. When querying the DR4 database, we request “primary” photometry, which requires that objects have a single entry in the database, that they not be deblended, and that they fall within the survey boundaries (for details, see Stoughton et al. 2002). The median count rate for our sample of RASS sources with small positional errors is 0.034 counts s$^{-1}$, so that $g < 15$ objects have $\log \left(\frac{f_x}{f_{gy}} \right) \lesssim -1.1$ and are most probably the X-ray source counterparts (see Table 1 in Stocke et al. 1991). Both of these cuts are extremely conservative, as they are applied without specific f_x/f_{opt} restrictions and extend to a large positional offset for each source. Still, a confirmed quasar, or a bright star or galaxy, even with an atypical f_x/f_{opt} and at a large positional offset, might be a more plausible identification than an INS. Roughly half of the 9500 originally selected sources with small positional errors remain at the end of this stage of our algorithm.

To reduce the number further, we use the DR4 database to eliminate X-ray error circles with any UV-excess objects. These are objects satisfying $u - g < 0.6$ and $u \leq 22.0$, the SDSS 95% completeness limit (Stoughton et al. 2002); for the most part, these are candidate (photometric) quasars (e.g., Richards et al. 2002), but this cut also identifies and removes white dwarfs and cataclysmic variables/X-ray binaries. Here we calculate the separation between each such object and the RASS source, and eliminate those fields where a UV-excess object falls within the 4 p.e. error circle of the associated X-ray source. Finally, because the occasional pathologically bland quasar (a few percent of all cases; Vanden Berk

4In querying the database for photometry, we request both PSF and model magnitudes, and make our cuts based on both. Typically, PSF fitting provides better estimates of isolated star magnitudes, while model fitting is best for galaxies. See Stoughton et al. (2002).
et al. 2001) or a quasar in a selected redshift range can have colors consistent with those of normal stars and cannot easily be identified using SDSS-color cuts, we remove fields with objects that have quasar-like X-ray-to-optical flux ratios (defined as log \((f_x/f_g) \) \(\leq 1.2 \), the typical upper limit for AGN given by Stocke et al. 1991) regardless of their optical colors. We eliminate all fields where such an object with \(g \leq 22.2 \) (the 95% completeness limit in that band) is cataloged within 4 p.e. of the X-ray position. This removes about four-fifths of the remaining sources, leaving us with 410 X-ray sources, about 4% of our initial sample of RASS sources with small positional errors.\(^5\)

We then require, when matching these sources to the SDSS catalog, that SDSS primary photometry within the 4 p.e. error circle be available, thereby eliminating false positives—fields that would otherwise be defined as optically blank at this stage of the algorithm only because there is no reliable SDSS photometry for them. Over 80% of the 410 fields lack SDSS photometry; this is frequently because of the presence of a saturating star or because the RASS source falls on the edge of the DR4 footprint. The remaining 74 RASS sources are then fed to SIMBAD and NED, with which we eliminate 19. Roughly half of these sources are cataloged clusters within 1', while the rest include known BL Lacs or bright 2MASS galaxies within the 4 p.e. error circle. We also eliminate the 22 X-ray error circles with a cataloged National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) Sky Survey (NVSS; Condon et al. 1998) or VLA Faint Images of the Radio Sky at Twenty-Centimeters (FIRST; Becker et al. 1995) source within 4 p.e. of the associated X-ray position; this is intended especially to eliminate uncataloged BL Lac candidates. These steps reduce the list of candidates to 33 RASS X-ray error circles.

Visual inspection of the SDSS images of these remaining 33 fields finds three cases with an obvious candidate optical counterpart to the X-ray source that has somehow evaded our algorithm. In two cases the most likely explanation is the absence of primary SDSS photometry for a bright star present in the center of one field and for a galaxy in the center of the other. In the third case SDSS spectroscopy of a \(g = 20.44 \) object reveals it to be an emission line galaxy and therefore a conceivable (though unusual) X-ray source. We eliminate these fields and are left with a list of 30 X-ray error circles that are optically blank (devoid of plausible optical counterparts) at the SDSS catalog level as defined by our algorithm.

Visual inspection of the \textit{ROSAT} hard and soft band images of these 30 fields allows us to eliminate nine RASS sources from further consideration. These eliminated sources include possible artifacts and extended or very uncertain X-ray detections. Among the RASS sources eliminated at this stage is 1RXS J115309.7+545636, one of the sources observed with the

\(^5\)This cut is sufficiently stringent that it may render some of the previous steps unnecessary. However, it would not alone eliminate spectroscopically confirmed SDSS BL Lacs, for example, a significant fraction of which do have log \((f_x/f_g) > 1.2 \) (Anderson et al. 2003).
Chandra X-ray Observatory as a candidate INS by Rutledge et al. (2003). Their observations confirmed that 1RXS J115309.7+545636 is in fact not an INS (see §5.1).

Three additional RASS sources were set aside at this stage. Their quoted positional error of 6″ appears to be an underestimate if one considers the count rates and exposure lengths for these sources (see Appendix for further discussion).

Some fraction of the remaining X-ray sources are likely to be associated with optically faint clusters of galaxies. We therefore correlate our remaining X-ray positions with a catalog of optically selected SDSS clusters (J. Annis 2005, private communication). Two of our X-ray sources fall outside of the cluster catalog’s footprint, and were therefore not subject to this cluster analysis; see Table 1. The optical clusters are described in part by their \(n_{\text{gal}} \), the number of red sequence galaxies brighter than 0.5\(L_\star \) within a 1 Mpc radius volume, with SDSS colors providing a photometric estimate of the redshifts. If there is a candidate cluster with \(n_{\text{gal}} \geq 3 \) with an offset \(\leq 1' \) from the X-ray position, we eliminate the X-ray source as a candidate INS. This removes two RASS sources from consideration and is consistent with our elimination, earlier in our algorithm, of cases with a cataloged NED/SIMBAD cluster within 1’.

In identifying clusters at larger angular separations as the likely RASS X-ray source, we take 5′ as our maximum separation for considering matches. There is a drop off in the surface density of candidate SDSS optical clusters at that separation. We choose \(n_{\text{gal}} \geq 6 \) as our richness criterion for considering a cluster to be the likely X-ray source, in these high positional offset cases, and thereby eliminate another five RASS error circles as candidate clusters (see Appendix for further discussion of these candidate clusters).

These steps winnowed the original list of 9500 RASS sources in the SDSS DR4 footprint to 11 X-ray sources that are bereft of plausible counterparts and are therefore candidate blank field X-ray sources. It is highly reassuring that among these surviving blank field X-ray sources is the field containing RX J1605.3 + 3249, the only previously known isolated neutron star in the SDSS DR4 footprint. We argue in §5.1 that our selection using SDSS is an order of magnitude more stringent than the Rutledge et al. (2003) hallmark blank field search for INSs.

4. Properties of the Candidate Isolated Neutron Star Fields

The 11 fields discussed in this section are those which survived our winnowing algorithm and are most likely to harbor either isolated neutron stars or some other rare and exotic X-ray emitter such as radio-quiet BL Lacs, obscured AGN, dark clusters, etc. They include one previously rejected candidate INS field (Rutledge et al. 2003), as well as the field of RX J1605.3 + 3249, the only known INS falling within the SDSS DR4 footprint. Fig. 1 is a mosaic of the SDSS composite \(g, r, i \) images of all 11 of the candidate fields with the RASS
4 p.e. error circles superimposed. Table 1 includes the ROSAT parameters for all of these RASS sources (counts s$^{-1}$, detection likelihood, and exposure time; see Voges et al. 1999), as well as the g magnitude of the brightest SDSS object within the 4 p.e. RASS error circle and the corresponding minimum log (f_x/f_g) for the optical counterpart to the X-ray source.

Below we provide additional information about several of these X-ray sources: those that might have viable optical counterparts at unexpectedly large positional offsets, and those previously identified in the literature as INS candidates.

Source name	ROSAT	SDSS						
1RXS J003413.7−010134a	14$''$	1.3 ± 0.6	10	1.3 ± 0.6	10	630	23.22	1.8
1RXS J013630.4+004226a	13$''$	2.5 ± 1.0	16	283	21.82	1.5		
092310.1+275448	14$''$	2.5 ± 1.0	14	407	21.74	1.5		
103415.1+435402	14$''$	1.7 ± 0.8	9	502	21.66	1.3		
110219.6+022836	15$''$	1.8 ± 0.8	11	423	21.80	1.3		
122344.6+373015	15$''$	2.8 ± 1.1	11	490	21.97	1.6		
130547.2+641252b	9$''$	16.7 ± 2.1	122	544	22.05	2.4		
131400.1+072312	15$''$	1.8 ± 1.0	8	333	21.69	1.3		
141428.5+601707	14$''$	1.4 ± 0.7	9	630	21.99	1.3		
151855.1+35543	9$''$	3.3 ± 0.9	32	518	21.04	1.3		
160518.8+324907c	7$''$	87.5 ± 4.1	1140	566	22.80	3.4		

Table 1: X-ray and optical data for the 11 candidate isolated neutron star fields.

aOutside of optical cluster catalog footprint

bRejected as an INS by Rutledge et al. (2003)

cKnown INS

4.1. New candidate INS fields with other possible counterparts at large offsets

There are two candidate INS fields in which a known quasar or a bright star lies just outside the 4 p.e. RASS error circle. Although we expect < 1 case of an optical counterpart being found at such large positional offsets from our entire starting set of 9500 RASS X-ray sources, in this section we call special cautionary attention to these cases. Good angular resolution X-ray images would quickly resolve such issues definitively. These two cases are:

- **1RXS J003413.7−010134** The 4 p.e. error circle just barely excludes a $g = 16.75$ star for which we obtained a spectrum with the 3.5-m telescope at Apache Point Observatory (APO), New Mexico. This spectrum is of that of a G star with no emission;
Fig. 1.— SDSS composite g, r, i images of our best isolated neutron star candidate fields, with the stretch being the same for all. The 4 p.e. RASS positional error circle is shown in each image. The brightest SDSS object seen within any of the error circles is $g = 21.66$ mag. North is up and East is to the left and the images are roughly 3.5′ on a side.

the star’s log (f_x/f_g) of -0.8 is unlikely for G stars, whose (log) flux ratios are typically between -4.3 and -2.4 (see Table 1 of Stocke et al. 1991), suggesting that it is probably not the X-ray source.

In addition, we note the presence of a spectroscopically confirmed quasar, SDSS J003413.04−010026.8, 1.13′ (4.8× the quoted RASS positional error) from this source. This $g = 17.20$ quasar has a log $(f_x/f_g) = -0.63$, within the range for AGN given by Stocke et al. (1991) of -1 to 1.2.

• 1RXS J141428.5+601707 A spectroscopically confirmed quasar, SDSS J141431.67+601807.2, lies 1.09′ (4.7× the quoted RASS positional error) from this source. This quasar has $g = 17.82$ mag, so that its log $(f_x/f_g) = -0.36$, within the range for AGN given by Stocke et al. (1991).
J130547.2+641252 was rejected as an INS by Rutledge et al. (2003). J160518.8+324907 is a known INS. The brightest SDSS object within any of the 4 p.e. error circles is $g = 21.04$ mag.

4.2. Previously known candidate INS fields

There are two previously suggested candidate isolated neutron stars that are also included among our 11 candidates. One is a confirmed INS, while the other was later refuted as an INS:

- **1RXS J130547.2+641252** This source was proposed and rejected as a candidate INS by Rutledge et al. (2003) because of its X-ray variability (see §5.1.1 for further discussion).

- **1RXS J160518.8+324907** This is the only previously known INS in the SDSS DR4 footprint. It is very reassuring that this confirmed case is recovered by our algorithm.
5. Discussion

5.1. Comparison with Previous Work

An important effort involving RASS/optical selection of candidate isolated neutron stars was that of Rutledge et al. (2003). Rutledge et al. (2003) identified candidate INS fields by correlating the RASS Bright Source Catalog with NVSS, the Infrared Astronomical Satellite Point Source Catalog, and the United States Naval Observatory A2.0 optical catalog. They obtained a list of 32 candidate blank field RASS sources (including two known INSs), from which they selected eight for Chandra X-ray Observatory observations. None of these eight sources was found to be an INS (Rutledge et al. 2003).

The current availability of both SDSS spectroscopy and much deeper SDSS photometric data—two or three magnitudes fainter than USNO A2.0—permits us to invoke a much more stringent set of selection criteria. To compare our method and that of Rutledge et al., we discuss the properties of the 11 candidate fields from their original list of 32 that fall within the SDSS DR4 footprint, as well as those of the six of their eight Chandra targets that do not fall within the SDSS footprint, but for which Rutledge et al. (2003) provide Digitized Sky Survey (DSS) data. Finally, we speculate on how the remaining 15 Rutledge et al. blank field candidates would fare at the hands of our algorithm if they were in the SDSS DR4 footprint.

5.1.1. Rutledge et al. (2003) sources within SDSS DR4

Of the initial 32 Rutledge et al. candidate sources, 11 fall within the DR4 footprint, including the previously known INS, RX J1605.3+3249. All 11 candidates were processed by our winnowing algorithm in a double-blind, end-to-end fashion. Reassuringly, RX J1605.3 + 3249 survives our algorithmic selection, and is among our 11 INS candidates.

Six of the remaining 10 Rutledge et al. (2003) sources, for which they identified “ordinary” optical counterparts, were eliminated early on by our algorithm. One (1RXS J091010.2+481317) disappears from our list of candidate sources when matched against spectroscopically confirmed SDSS quasars, three (1RXS J104710.3+633522, J130402.8+353316, J130753.6+535137) are eliminated because of the presence of candidate photometric SDSS quasars\(^6\), and two (1RXS J123319.0+090110, J130034.2+054111) fail our test for sources with no objects brighter than \(g = 15\) within 1’. A seventh source, 1RXS J094432.8+573544 is eliminated when our X-ray sources are matched to the radio catalogs; it also has an SDSS spectrum, which suggests that it is a BL Lac.

\(^6\)This eliminates the fields with known cataclysmic variables (1RXS J104710.3+633522 and J130753.6+535137), as these also have \(u - g \leq 0.6\).
Two of the three other sources survive to the last stages of our algorithm before being eliminated. Visual inspection of the RASS images of 1RXS 115309.7+545636 reveals it to be an extended source, and it is therefore eliminated as a candidate INS by our algorithm. 1RXS J145234.9+323536 is identified as a candidate optical cluster and also removed from our list of INS candidates (see Appendix). Rutledge et al. (2003) obtained Chandra observations of both of these sources and did not detect an X-ray source in either case.

Only one of the remaining 10 Rutledge et al. sources, 1RXS J130547.2 +641252, survives to make our list of the best candidate isolated neutron stars. Rutledge et al. (2003) rejected this source as a candidate based on its X-ray variability, measured by comparing its RASS data to observations of the same source with the High Resolution Imager on ROSAT. We queried the Chandra and XMM-Newton X-ray Observatory lists of observed targets as well as the various ROSAT catalogs and found that none of our other INS candidates has the complementary X-ray observations required for the detection of such variable or transient sources. We therefore cannot discount the possible contamination of our candidate list by such sources.

In summary, of the 11 Rutledge et al. candidate isolated neutron star fields that fall within the DR4 footprint, only two survive our winnowing process. One is a likely transient or variable source, previously discounted as an INS via Chandra observations by Rutledge et al. (2003). The other is a successful recovery of the one previously confirmed INS in the SDSS DR4 imaging area, RX J1605.3 + 3249. Our algorithm is therefore significantly more efficient at removing contaminants from our candidate list while simultaneously recovering the only previously confirmed INS in the SDSS DR4 footprint.

5.1.2. Sources for which Rutledge et al. (2003) provide DSS data

Rutledge et al. (2003) also obtained Chandra observations for six sources that do not fall within the SDSS DR4 footprint. However, Rutledge et al. do discuss the DSS photometric properties of these six sources: for three they find fairly bright likely optical counterparts, and for three they find counterparts near the DSS faint limit, all offset from the RASS source by less than 3 times the quoted positional error. While these six sources are not in the DR4 footprint, it is almost certain that had they been, none would have made our list of candidate isolated neutron stars.

In three of the X-ray error circles (1RXS J024528.9+262039, J132833.1−365425, and J163910.7+565637), Rutledge et al. (2003) identify the likely optical counterparts as two B ∼ 15 late type stars and a B = 17.8, z = 1.65 quasar, respectively. With SDSS data, the magnitudes of the late type stars and/or their f_x/f_{opt} ratios (∼ −0.5 and ∼ −0.9, respectively, within the range for M stars in Stocke et al. 1991) would very likely have caused our algorithm to eliminate these error circles, and perhaps even suggested the proper identifica-
tions. The low redshift quasar’s colors might have been unusual, causing our algorithm to remove it from our candidate list early on; if not, its \(f_x/f_{\text{opt}} \) ratio (\(\sim 0.2 \)) likely would also have caused it to be eliminated by our algorithm (an SDSS spectrum might also have been available).

In the other three cases (1RXS J020317.5-243832, 145010.6+655944, and 122940.6+181645), SDSS photometry would be available, as the SDSS faintness limit is \(\sim 2 - 3 \) magnitudes deeper than the DSS limit, depending on the band. Rutledge et al. suggest a faint cataclysmic variable (CV) and two faint AGNs as the optical counterparts to these X-ray sources. The colors of the objects, again along with their \(f_x/f_{\text{opt}} \) ratios, would probably have disqualified these fields from further consideration.

Our algorithm therefore would probably have eliminated all six of these additional sources observed with Chandra by Rutledge et al. (2003), none of which were confirmed as an INS.

5.1.3. Other Rutledge et al. (2003) sources

There remain 15 sources that Rutledge et al. (2003) initially considered as candidate isolated neutron stars, but ultimately rejected in post-algorithmic screening. The optical content of these RASS error circles as described by Rutledge et al., or as directly determined from DSS images by us, is such as to virtually guarantee that 14 would be rejected by our algorithm if they fell within the SDSS footprint. These fields include 12 with bright stars, a CV in the globular cluster M3, and a known Seyfert 1 galaxy. The 15th source is another known INS, RX J1308.6+2127.

In summary, these comparisons verify that our algorithm, relying especially on the greater optical photometric depth of SDSS, successfully recovers the only previously known INS in our survey area, and also rejects an order of magnitude more contaminating RASS error circles than the Rutledge et al. (2003) search for isolated neutron stars.

5.2. Comparison With Galactic INS Population Models

The current dearth of candidate isolated neutron stars beyond the Magnificent Seven has led to several efforts to rethink the expected population of INSs within the Galaxy. In particular, Popov et al. (2000) compared the space density of accreting (i.e., reheated and old) isolated neutron stars to that of cooling (i.e., young) neutron stars, using a number of assumptions about the Galactic neutron star birth rate, the large-scale distribution of gas in the interstellar medium, the cooling time for a newborn neutron star, etc.
Popov et al. (2000) find that at the bright end (\textit{ROSAT} count rates ≥ 0.1 counts s$^{-1}$, $L_x \sim 10^{29} - 10^{30}$ ergs s$^{-1}$), the predicted population of INSs is essentially just the small number of young neutron stars seen at an early enough evolutionary stage—the first 10^6 years of their lives—to still be quite hot. They also find that these coolers are typically three orders of magnitude brighter than accreting, older isolated neutron stars. However, the total number of predicted accretors is about two orders of magnitude larger than that of coolers, so that at lower count rates/X-ray fluxes, the number of accretors is comparable to that of coolers. Indeed, Popov et al. (2000) predict that at fluxes below $\sim 10^{-13}$ ergs cm$^{-2}$ s$^{-1}$, the number of accretors exceeds the number of coolers. The overall Popov et al. (2000) prediction for the Galactic INS population is consistent with current observations, if one assumes that the Magnificent Seven are indeed all young, bright coolers. Interestingly, it also suggests that at the fainter flux limits of the RASS Faint Source Catalog, there are a significant number of as-of-yet undetected isolated neutron stars.

Of the ~ 9500 RASS X-ray sources with small positional errors from which we selected our candidate INSs, 80\% have count rates ≥ 0.017 counts s$^{-1}$, and we adopt this value as a rough lower limit to our search sensitivity. This corresponds to the peak in the cumulative distribution of count rates for our sample, and is also consistent with the value of the flux for which Shen et al. (2005, in preparation) quote a 50\% completeness level for RASS detections in the SDSS Data Release 1 area. Popov et al. (2000) predict that the total number of isolated neutron stars with count rates greater than this limit should be $3 - 10$ steradian$^{-1}$, or $40 - 125$ over the entire sky. Based on their models, a naive prediction is that the SDSS DR4 area contains $5 - 20$ isolated neutron stars, a range consistent with the number of new candidates we identify here. We note, however, that our list is not complete: it is very likely that good INS candidates were lost because of their chance proximity to unrelated SDSS objects that caused our algorithm to eliminate those RASS error circles from consideration.

6. Conclusion

In an effort to expand the sample of known isolated neutron stars, we have developed a selection algorithm based on a cross-correlation of the RASS and SDSS data to identify X-ray error circles devoid of plausible optical counterparts. We use SDSS spectroscopy and, especially, deep SDSS DR4 photometric data to quantitatively characterize the 11 RASS fields that survive our winnowing algorithm as optically blank to the SDSS $g \sim 22$ mag faint limit. Our search is an order of magnitude more selective than similar previous searches for optically blank RASS error circles; in selecting our INS candidates, we have excluded 99.9\% of the RASS error circles in our initial sample.

The 11 RASS fields we identify as potentially hosting an INS include the only confirmed INS in the DR4 footprint, RX J1605.3 + 3249, along with 1RXS J130547.2+641252, previously considered as an INS candidate and rejected on the basis of \textit{Chandra} observations.
The remaining nine new candidates may host INSs or other similarly exotic X-ray sources, such as unusual X-ray binaries, high-redshift quasars, dark clusters of galaxies, type 2 quasars, or extreme BL Lacs (e.g., Chieregato et al. 2005).

We note that the number of candidates we find is consistent with the predictions from recent INS population models for the number expected in the SDSS DR4 footprint. Planned Chandra follow-up observations of these candidate fields will help confirm whether they contain isolated neutron stars or some alternate exotic X-ray emitters. At the minimum, our sample may help increase the diversity of neutron stars available for study.

We thank Kevin Covey, Anil Seth, and the observing specialists at the telescope for their assistance with the APO observations. We thank the referee, Marten van Kerkwijk, for suggestions that improved the manuscript.

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Korean Scientist Group, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, the University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

PyRAF and TABLES are products of the Space Telescope Science Institute, which is operated by AURA for NASA.

The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.
Appendix: Additional Interesting Fields

In addition to the candidate fields listed in Table 1 and discussed in §4, we present a number of interesting X-ray fields identified in the process of developing the algorithm described above. These fields can be divided into two groups. The first seven are candidate faint optical clusters, which failed the last step in our algorithm (see Fig. 2). The other group is of six fields that barely fail the final version of the algorithm (all but one were correlated with the cluster catalog without being eliminated, however; see Fig. 3). While this is not a complete list of either potential new RASS/SDSS clusters, or of interesting fields not quite good enough to make our final list, it does provide a sense of the properties of X-ray fields considered borderline optically blank by our algorithm.

Table 2: X-ray and optical data for seven cluster candidates. Six other interesting fields are listed below the horizontal line.

Source name	ROSAT	SDSS															
1RXS J																	
Count rate	1σ	g	Min.														
12″	6.1 ± 1.6																
13″	3.0 ± 1.1																
14″	2.8 ± 1.1																
15″	2.9 ± 1.2																
13″	14.2 ± 2.6																
8″	8.0 ± 1.3																
15″	3.0 ± 1.4																
6″	1.6 ± 0.7																
12″	1.3 ± 0.6																
6″	2.2 ± 1.1																
6″	2.6 ± 1.1																
6″	1.4 ± 0.6																
6″	2.1 ± 0.8																
Detection likelihood	7	10	13	11	47	74	9	8	7	7	8	7	6	9	322	572	434
Exp. s	371	384	433	410	303	614	272	413	617	288	322	572	434				
g mag	20.43	21.05	21.51	21.50	19.35	21.52	21.12										
log (fx/fg)	1.3	1.3	1.4	1.4	1.3	1.9	1.3										

Table 2 includes the main ROSAT parameters for these RASS sources, and the g magnitude of the brightest SDSS object within the 4 p.e. RASS error circle and the corresponding minimum log (fx/fg) for the optical counterpart. Below we give additional information about a number of these fields.

*a*Identified as a candidate INS by Rutledge et al. (2003). No source detected by Chandra (Rutledge et al. 2003).

*b*Cataloged X-ray positional error appears to be an underestimate

*c*Outside of optical cluster catalog footprint
Fig. 2.— SDSS composite g, r, i images of candidate fields that did not survive the cluster-detecting stage of our algorithm. The orientation and scale are as in Fig. 1. The brightest object in any of the 4 p.e. error circles is $g = 19.35$ mag; for most fields the brightest object is $g > 21.0$. 1RXS J145234.9+323536 was identified as a candidate INS by Rutledge et al. (2003), but no X-ray source was detected by their follow-up Chandra observations.
A1. Candidate clusters with other possible optical counterparts

In this section we list candidate clusters identified by our program where another plausible optical counterpart to the X–ray source is also present (see §3 for a discussion of the cluster identification stage of our algorithm).

- **1RXS J102659.6+364039** Two potential optical counterparts to this X-ray source are cataloged by Zickgraf et al. (2003). However, both are too faint (B > 20) to be unambiguously identified by Zickgraf et al. as the X-ray source. To our knowledge no spectrum of either of these potential counterparts has been taken.

- **1RXS J130723.7+095801** Three optical objects within 1′ of this X-ray source are cataloged by Zickgraf et al. (2003). Again, however, these are too faint (B > 19) to be unambiguously identified by Zickgraf et al. as the X-ray source; no spectrum of these potential counterparts exist to our knowledge.

- **1RXS J155705.0+383509** This is a source with a bright (g = 15.10) star near the edge of its 4 p.e. error circle. We obtained a spectrum for this star with the APO 3.5-m telescope; it appears to be a late G/early K star with no emission. G/K stars typically have (log) flux ratios between −4.3 and −1.5 (Stocke et al. 1991), while this star has log (f_x/f_g) = −1.11, and is therefore unlikely to be the X-ray source.

A2. Other interesting fields

Three of these six fields meet all of our selection criteria (1RXS J105648.6+413833, 1RXS 162526.9+455750, and 1RXS J205334.0−063617). However, the RASS images of these fields, along with their count rates and exposure times, suggest that their cataloged positional error of 6″ is an underestimate. They cannot therefore be considered among our best INS candidates. The other three fields were identified in preliminary work as possibly hosting interesting X-ray sources. Below we provide additional information about one of the 6″ fields, and we describe why the three “early” fields were eliminated but remain interesting.

- **1RXS J105648.6+413833** A known g = 19.86 quasar, QORG J105651.3+413809, is 39″ (6.4× the quoted RASS positional error) from the X-ray position (Flesch & Hardcastle 2004); it is also the radio source FIRST J105651.2+413809. While this quasar has log (f_x/f_g) = 0.53, within the range for AGN (Stocke et al. 1991), such a large positional offset relative to the quoted positional error means this quasar is unlikely to be the RASS source, unless the quoted X-ray positional error is underestimated.

A *GALEX* (Martin et al. 2005; Morrissey et al. 2005) source with a near-ultraviolet magnitude of 21.85 ± 0.29 is positionally coincident (1″) with a g = 22.67 SDSS source
Fig. 3.— SDSS composite g, r, i images of six fields that did not survive our final version of the algorithm but may host interesting X-ray emitters. The orientation and scale are as in the previous figures. The brightest object in any of the 4 p.e. error circles is $g = 22.08$ mag. within the 4 p.e. error circle. The nature of this object, SDSS J105649.58+413837, is difficult to determine from its SDSS photometry because of its faintness ($u = 23.9, g = 22.7$) and resulting uncertainties in its optical colors.

- **1RXS J140654.5+525316** This field was eliminated because of a $g = 21.70$, log $(f_x/f_g) = 1.16$ object offset from the RASS source by between 3 and 4× the quoted positional error. However, this object’s photometry is suspect and its colors are inconsistent ($u - g = 3.5 \pm 2.5$) with that of a typical AGN.

- **1RXS J141944.5+113222** This field was eliminated when the X-ray images of our fields were examined: it cannot be completely ruled out that this X-ray source and its neighbor, the bright star 1RXS J141949.0+113619, are actually the same source. While it meets all of our algorithm’s other criteria, we therefore include it in this list rather than among our INS candidates.

- **1RXS J142423.3–020201** This field was eliminated by our algorithm because of the presence of a $g = 20.65$ object with log $(f_x/f_g) = 1.05$ about 4 p.e. from the RASS position. We obtained several spectra of this object with the 3.5-m telescope at APO.
These spectra indicate that the object is most likely an ordinary G star with no signs of emission, and that it is therefore unlikely to be the X-ray source. The next brightest SDSS object within the 4 p.e. error circle is $g = 22.08$, so that the counterpart to the X-ray source would then have $\log (f_x/f_g) \geq 1.6$.
REFERENCES

Adelman-McCarthy, J. K., et al. 2005, to appear in ApJS
Anderson, S. F., et al. 2003, AJ, 126, 2209
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Blaes, O., & Madau, P. 1993, ApJ, 403, 690
Burwitz, V., et al. 2003, A&A, 399, 1109
Chieregato, M., et al. 2005, astro-ph/0505292
Condon, J. J., et al. 1998, AJ, 115, 1693
Flesch, E., & Hardcastle, M. J. 2004, A&A, 427, 387
Fukugita, M., et al. 1996, AJ, 111, 1748
Gunn, J. E., et al. 1998, AJ, 116, 3040
Gunn, J. E., et al. 2005, submitted to AJ
Haberl, F. 2004, Advances in Space Research, 33, 638
Hewish, A., et al. 1968, Nature, 217, 709
Hog, E., et al. 1998, A&A, 335, L65
Hogg, D. W., et al. 2001, AJ, 122, 2129
Ivezić, Ž., et al. 2004, Astronomische Nachrichten, 325, 583
Kaplan, D. L., Kulkarni, S. R., & van Kerkwijk, M. H. 2003, ApJ, 588, L33
Kulkarni, S. R., & van Kerkwijk, M. H. 1998, ApJ, 507, L49
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2000, A&AS, 147, 25
—. 2001, A&A, 368, 1021
Lupton, R. H., et al. 2002, in Survey and Other Telescope Technologies and Discoveries. Edited by Tyson, J. Anthony; Wolff, Sidney. Proceedings of the SPIE, Volume 4836, pp. 350-356 (2002), 350–356
Maccacaro, T., et al. 1988, ApJ, 326, 680
Martin, D. C., et al. 2005, ApJ, 619, L1
Morrissey, P., et al. 2005, ApJ, 619, L7
Neuhäuser, R., & Trümper, J. E. 1999, A&A, 343, 151
Ostriker, J. P., Rees, M. J., & Silk, J. 1970, Astrophys. Lett., 6, 179
Perna, R., et al. 2003, ApJ, 594, 936
Pier, J. R., et al. 2003, AJ, 125, 1559
Popov, S. B., et al. 2000, ApJ, 544, L53
Richards, G. T., et al. 2002, AJ, 123, 2945
Rutledge, R. E., et al. 2003, ApJ, 598, 458
Shen, S., et al. 2005, in preparation
Smith, J. A., et al. 2002, AJ, 123, 2121
Stocke, J. T., et al. 1991, ApJS, 76, 813
Stoughton, C., et al. 2002, AJ, 123, 485
Treves, A., & Colpi, M. 1991, A&A, 241, 107
Treves, A., et al. 2000, PASP, 112, 297
Trümper, J. E. 2005, astro-ph/0502457
Vanden Berk, D. E., et al. 2001, AJ, 122, 549
van Kerkwijk, M. H., et al. 2004, ApJ, 608, 432
Voges, W., et al. 1999, A&A, 349, 389
—. 2000, VizieR Online Data Catalog, 9029, 0
York, D. G., et al. 2000, AJ, 120, 1579
Zane, S., et al. 2005, ApJ, 627, 397
Zickgraf, F.-J., et al. 2003, A&A, 406, 535

This preprint was prepared with the AAS LATEX macros v5.2.