Technological re-equipment of agricultural enterprises in Russia

A Goryacheva¹,² and V Kuzmin¹

¹Russian Research Institute of Information and Feasibility Study on Engineering Support of Agribusiness, the Federal State Budgetary Scientific Institution (Rosinformagrotekh FSBSI), 60, Lesnaya Str., Pravdinsky Township, Moscow Region 141261, the Russian Federation

E-mail: nastya040890@mail.ru

Abstract. The factors affecting the procurement of equipment in agricultural organizations in Russia are analyzed. They are tested for multicollinearity. The multiple correlation method allowed us to establish relationships between variables. As a result, regression equations with a sufficiently high coefficient of determination are formulated. The obtained dependencies can be used to predict the amount of procurement of equipment at the level of entities and at the federal level in the Russian Federation.

1. Introduction

Prediction of amount of the procurement of agricultural machinery at the regional and federal levels is of particular importance for the country's agrarian policy.

Agricultural activities in the Russian Federation are carried out by large and medium agricultural organizations, small business, peasant (farmer) economy, individual entrepreneurs, and subsidiary farming.

All-Russian agricultural censuses of 2006 and 2016 provide information of and make it possible to trace the dynamics of the availability of machinery in all categories of farms: 54% tractors of the total were in personal subsidiary plots and other individual farms of citizens in 2016 there were (37% in 2006) (table 1).

The Federal State Statistics Service of the Russian Federation (Rosstat) systematically monitors the availability of equipment in agricultural organizations. There were 206,700 tractors, 55,000 grain harvesters, 11,8 forage harvesters in the agricultural enterprises in 2019., the number of tractors decreased by 2%, the number of grain harvesters decreased by 3%, and the number of forage harvesters decreased by 4% in 2019 as compared to 2018.

According to the Strategy for the Development of Agricultural Engineering for the Period until 2020, for effective agricultural production, the tractor fleet should be about 610,000 units and the fleet of grain and forage harvesters should be 147,000 units [2].

According to the Ministry of Agriculture of Russia, in order to move on to increasing the fleet of agricultural machinery and to achieve the estimated provision in the near future, agricultural organizations need to annually purchase 45,000 tractors, 12,000 grain harvesters and 2,000 forage harvesters. The actual purchase size is less (table 2).
Table 1. Availability of agricultural machinery in various categories of farms in Russia.

Farm categories	Tractors 2006	Tractors 2016	Tractor mowers 2006	Tractor mowers 2016	Tractor plows 2006	Tractor plows 2016	Combine harvesters 2006	Combine harvesters 2016
	Unit % of total							
Agricultural organizations, total	530,808	49,222	205,846	28,367	60,834	28,367	38,731	45,166
Including:								
Large and medium agricultural organizations	437,752	40,521	133,679	15,428	49,434	18,927	17,807	21,341
Small business		7,341	12,283,327	15,444	9,144	22,274	16,971	34,392
Subsidiary farming of non-agricultural organizations			13,440	12,041	2,256	2,256	6,488	35,971
Peasant (farmer) economy and individual entrepreneurs		158,827	190,486	27,375	27,375	6,868	21,821	21,821
Personal subsidiary plots and other citizen personal farming		41,863	555,200	133,665	133,665	22,860	35,820	35,820
Total	1,101,512	1,040,732	1,040,732	1,040,732	1,040,732	1,040,732	1,040,732	1,040,732

Source: Calculated by the authors based on the data of the All-Russian agricultural censuses of 2006 and 2016 [1].
Table 2. Equipment to be purchased by agricultural producers in Russia.

Equipment type	2013	2014	2015	2016	2017	2018	2019	2013-2019
Tractors	15.265	14.120	10.832	11.287	11.035	10.472	10.714	83.725
Grain harvesters	5.502	5.336	5.375	6.193	6.221	5.221	4.627	38.475
Forage harvesters	824	835	670	718	694	650	624	5015

Source: compiled by the authors based on National Progress Reports on the progress and results of the implementation of the State Program for the Development of Agriculture and Regulation of Agricultural Products, Raw Materials and Food Markets for 2013-2019.

Among the most important factors affecting the volume of equipment purchased, the following is distinguished: area and yield of cultivated crops; amount of own funds (revenue, profit, depreciation); the possibility of obtaining borrowed funds, state support, etc. [3-5].

Various assessments are made of the amount of cash needed to upgrade our country's machinery fleet: at least 150 billion rubles annually [6], 500 billion rubles in all (including for the purchase of 56,000 tractors in the amount of 330 billion rubles, 16,000 forage harvesters in the amount of 135 billion rubles, and 2,400 grain harvesters in the amount of 10 billion rubles) [7].

The purpose of the research is to study the possibility of using multiple correlation to predict the procurement of agricultural machinery at the regional and federal levels.

2. Materials and research methods
This study used the statistical method, namely, multiple correlation method, and the expert method. Factors affecting the procurement of machines are selected by experts taking into account experience, analysis of the factors used in previous studies and the possibility of finding numerical values of factors.

In the absence or small amount of state support, the renewal of the equipment fleet becomes possible and directly depends on the amount of net profit received (which, in turn, depends on the volume of sales of products and other factors), borrowing, the pricing policy of agricultural machinery enterprises, and the market conditions for agricultural products [8]. Profitability index is a criterion by which the success of an organization is evaluated [9]. Features of agriculture are lower profitability in comparison with other sectors and, accordingly, attractiveness for external investors [10]. According to the data of the Federal State Budgetary Scientific Institution “Federal Research Center of Agrarian Economy and Social Development of Rural Areas – All-Russian Research Institute of Agricultural Economics” (FSBSIFRC AESDRA VNIIESH), purchasing power becomes a real production parameter with a profitability of at least 20 %. Agricultural enterprises are not able to fully update the machinery fleet, as the profitability is by 5-12 % lower than the level specified [11].

V M Korotchenya estimated technical efficiency of the use of agricultural resources using a model (in which the amount of agricultural products and resources, i.e. agricultural land, economically active population in the field of agriculture, agricultural machinery and equipment, livestock, poultry, fertilizers, etc., were assumed as an output). The Data Envelopment Analysis (DEA), a nonparametric method based on linear programming, was used. The essence of the DEA method is to evaluate the effectiveness of homogeneous decision-making units due to building of the common border of production capabilities based on real data (amount of resources and types of output). A version of the DEA model, the so-called CCR-I model, a DEA radial model with constant returns to scale and resource orientation, was used [12].

K Hill, among the factors that should be considered before procuring agricultural machinery, calls the compliance of a machine with process steps to be used by the agricultural producer, the potential amount of funds that the farmer can allocate for the procurement, local rules for registering and using
the machine, price-quality ratio of the machine, and options for procuring a new or a supported
machine (as an alternative to a new one) [13].

C A Bisschoff refers merchantability, serviceability, pre-order planning, after-sales service,
ergonomics, ease of use, cost of credit and potential savings to the factors affecting the buying
behavior of South African farmers with regard to new agricultural tractors.

A L Kehinde, when studying tractor rental in Nigeria, included area of cultivated land, crop yields,
membership in the ruling party to number of factors determining the use of a tractor [14].

Li Wei investigated the impact of the following factors on the agricultural equipment level (AEL),
agricultural mechanization level (AEM) in China: level of economic development; land resource
endowment, demographic factors; policy environmental factors; benefit factors. Each of the factors
included several indicators (Table 3).

Table 3. Factors and indicators affecting the level of agricultural machinery and the level of
mechanization of agriculture.

Factor	Indicators (measurable variables)	Variable codes
Level of economic development (ECON)	GDP per capita	AGDP
	Farmers’ net income per capita	INCO
	Primary industry GDP / regional GDP	FODP
Land resources (LAND)	Sown area per employee	CULT
	Hilly and mountainous area / agricultural land area	HILL
	Sown area of wheat / total sown area of crops	WHEA
Demographic factor (DEMO)	Number of agricultural workers / rural population	FEMP
	Labor movement	TLAB
	Rural level of education / year	EDUC
Political and environmental factors (POEN)	Average amount of subsidies per unit area of agricultural land	SUBS
	Number of workers associated with the use of agricultural machinery per 10,000 workers	TEMP
	Agricultural machinery price index	PRIC
Benefit factors (BENE)	Cost of agricultural products per employee	OUTV
	Grain production per employee	YIEL
Agricultural machinery level (AEL)	Total capacity of agricultural machinery	POWE
	Initial cost of agricultural machinery	VALU
	Total tractor power	TRAC
Agricultural mechanization level (AML)	Plow mechanization level	MCUL
	Sowing mechanization level	MSOW
	Harvest mechanization level	MHAR

Source: Li Wei, 2018.

The results of research (analysis) have showed that the level of economic development has the
greatest impact on the level of mechanization. Demographic factors and benefit factors affect the level
of mechanization not only directly but also indirectly through the level of economic development.
Land resources, political and environmental factors have only an indirect effect on the level of
economic development [15].
In Bangladesh, relatively few farms invest in their own agricultural machinery. A large number of smallholder farmers gain access to agricultural machinery services through special employment agreements. A M Khondoker researched agricultural mechanization in Bangladesh and factors influencing the acquisition of machinery. The results of the study showed that ownership of machinery is positively associated with household assets, availability of loans, electrification and road density [16].

In this study, the source of the procurement of equipment is the results achieved in the previous year; targets (dependent variables) are taken for the \(j \)-th year; factors (independent variables) are taken for the previous \((j-1)\) year. Thus, the initial data for the study are as follows.

- Units and planning period: constituent entity of the Russian Federation, year.
- Targets (dependent variables):
 - \(y_1 \) is a number of tractors purchased in the \(i \)-th constituent entity of the Russian Federation for the \(j \)-th year (for the years 2013-2017, they are taken from the relevant issues of the National report on the progress and results of the implementation of the State program for the development of agriculture and regulation of agricultural products, raw materials and food markets for 2013-2020), as well as information from the Ministry of Agriculture of the Russian Federation;
 - \(y_2 \) is a number of combine harvesters purchased in the \(i \)-th constituent entity of the Russian Federation for the \(j \)-th year;
 - \(y_3 \) is a number of forage harvesters purchased in the \(i \)-th constituent entity of the Russian Federation for the \(j \)-th year.
- Factors affecting the procurement of machines (independent variables) (taken from the collections “Agribusiness of Russia” for 2013-2017) [17-18]:
 - \(x_1 \) is agricultural production at farms of all categories at actual prices in the \((j-1)\)-th year, million rubles;
 - \(x_2 \) is investments in fixed assets aimed at the development of agriculture in the \((j-1)\)-th year, million rubles;
 - \(x_3 \) is availability of tractors (without tractors on which earthmoving, reclamation and other machines are mounted) in the \((j-1)\)-th year, units;
 - \(x_4 \) is availability of combine harvesters at the end of the year in the \((j-1)\)-th year, units;
 - \(x_5 \) is supply of plant protection agents in the \((i-1)\)-th year, metric tons;
 - \(x_6 \) is liming of acidic soils in the \((j-1)\) th year, thousand ha;
 - \(x_7 \) is soil phosphorization in the \((j-1)\) th year, thousand ha;
 - \(x_8 \) is the application of mineral fertilizers for crops in agricultural organizations \((j-1)\)-th year, thousand hundredweight in terms of active substance;
 - \(x_9 \) is the application of organic fertilizers for crops in agricultural organizations in the \((j-1)\)-th year, thousand metric tons;
 - \(x_{10} \) is an area of arable land used by enterprises, organizations and citizens in the \((j-1)\)-th year, thousand ha;
 - \(x_{11} \) is an area of forage land used by enterprises and citizens engaged in agriculture in the \((j-1)\)-th year, thousand ha;
 - \(x_{12} \) is a sown area of grain and leguminous crops in farms of all categories in the \((j-1)\)-th year, thousand ha;
 - \(x_{13} \) is gross harvest of grain and leguminous crops in farms of all categories in the \((j-1)\) th year, thousand tons;
 - \(x_{14} \) is a number of cattle in farms of all categories at the end of the year in the \((j-1)\)-th year, thousand heads;
 - \(x_{15} \) is a number of pigs in farms of all categories at the end of the year in the \((j-1)\)-th year, thousand heads;
 - \(x_{16} \) is a milk yield per cow in agricultural organizations in the \((j-1)\)-th year, kg;
x_{18} is a pre-tax profit for all activities of agricultural organizations, including subsidies from the budgets in the $(j-1)$-th year, million rubles;

x_{19} is budget subsidies attributable to the results of financial and economic activities of agricultural organizations in the $(j-1)$-th year, million rubles;

x_{20} is a profitability level for all activities of agricultural organizations, including subsidies from budgets in the $(j-1)$-th year.

The factors were tested for multicollinearity. High multicollinearity leads to instability of estimates, which is expressed in an increase in statistical uncertainty, i.e. the variance of estimates (specific results of the assessment can vary greatly for different samples, despite the fact that the samples are homogeneous).

As a criterion of high dependence, it was accepted that the pair correlation coefficient is $r > 0.7$. The analysis showed that there was a high interdependence between some factors. These factors were excluded from the multiple regression equations. Also, some factors were excluded using the preliminary logical analysis, for example, factors x_4 (availability of combine harvesters at the end of the year in the $(j-1)$-th year, units), x_5 (availability of forage harvesters at the end of the year in $(j-1)$-th year, units), etc. The remaining factors were once again tested for multicollinearity.

3. Results

As a result, the following multiple regression equations were finally obtained:

$y_1 = f(x_1, x_3, x_6, x_7, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{19})$,

$y_2 = f(x_1, x_2, x_4, x_7, x_8, x_9, x_{10}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{19}, x_{20})$,

$y_3 = f(x_1, x_2, x_5, x_8, x_{12}, x_{17}, x_{20})$.

The multiple regression coefficients were calculated using the "Regression" tool of the Excel "Data Analysis" add-in (Table 4).

Table 4. Coefficients of multiple correlation and determination between the procurement of tractors, grain and forage harvesters and factors.

Dependent variable	Independent variables	Multiple correlation coefficient [R]	Coefficient of determination [R^2]	Qualitative characteristic of communication tightness
y_1	$x_1, x_3, x_6, x_7, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{19}$	0.8273	0.6844	High
y_2	$x_1, x_2, x_4, x_7, x_8, x_9, x_{10}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{19}, x_{20}$	0.8147	0.6638	High
y_3	$x_1, x_2, x_5, x_8, x_{12}, x_{17}, x_{20}$	0.4655	0.2167	Low

The obtained equations of multiple regression between the number of tractors, combine harvesters and selected factors have a high communication tightness, those for forage harvesters have a low communication tightness.

4. Conclusion

The obtained dependencies can be used to predict the volume of procurement of equipment at the level of constituent entities of the Russian Federation and at the federal level.

Identification of factors influencing decision-making on the willingness of agricultural organizations to procure this or that equipment is important for foreign and Russian agricultural engineering enterprises in developing their development strategies.
References

[1] The Main Results of the 2016 All-Russian Agricultural Census Vol 1 Book 1 (Moscow: Federal State Statistics Service, Statistics of Russia Publishers, 2018).

[2] Order No. 1455-r of the Government of the Russian Federation dated July 7, 2017 On Approval of the Strategy for the Development of Agricultural Engineering in Russia for the Period until 2030 (Col. of the legislation of the Russian Federation, 2017) 29.

[3] Mazloev V Z 2018 Depreciation policy as a tool to stimulate investment in agriculture ed V Z Mazloev, O I Khayrullina Economics of agriculture of Russia Vol 1 pp 17-25

[4] Kuzmin V 2014 Development of Programs for Technical Equipment of Agriculture in a Market Economy ed. V N Kuzmin (Moscow: Rosinformagrotekh)

[5] Kuzmin V, Goryacheva A 2019 et al. An algorithm for developing subprograms of the Federal scientific and technical program for the development of agriculture for 2017-2025 Economics of agriculture and processing enterprises Vol 8 pp 68-72

[6] Modernization of agricultural machinery Rural life 51 p 4 (2018).

[7] Tarasov A N and Kholodova M A 2018 Technical modernization of agricultural production: problems and solutions Economics of agriculture and processing enterprises Vol 8 pp 38-45

[8] Basova A S 2017 On the problems of reproduction of the machine and tractor fleet of farms in the Oryol Region Economics of agriculture of Russia Vol 7 pp 31-38

[9] Priglmeyer R and Vashinger A 2017 Balance-Selfie New agriculture Vol 6 pp 46-47

[10] Eremeeva O A 2019 Influence of investments on the reproduction of the machine and tractor fleet in agriculture Bulletin of Goryachkin Moscow State Agroengineering University Vol 1 pp 55-59

[11] Kryazhkov V M 2015 Problems of forming an innovative fleet of agricultural tractors in Russia Agricultural machines and technologies Vol 3 pp 9-14 and No. 4 pp 5-10

[12] Korotchenya V M 2016 Technical efficiency of agricultural resources use in Russia Agricultural machines and technologies Vol 6 pp 33-39

[13] Hill K 5 things to consider before buying farming equipment

[14] KehindeFactors A L 2011 determining tractor use among arable crop farmers of the osun state govern-ment tractor hiring scheme, Nigeria Nigerian Journal of Agricultural Economics (NJAE) Vol 2 pp 17-27

[15] Wei L, Wei X, R Zhu R and Guo K 2019 Study on Factors Affecting the Agricultural Mechanization Level in China Based on Structural Equation Modeling Multidisciplinary Digital Publishing Institute (MDPI) Sustainability 2019, 11, 51; doi: 10.3390/su11010051, available at: https://www.mdpi.com.pdf.

[16] Khondoker A M, Timothy J, Krupnik B and Erenstein O 2016 Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings J Rural Stud 46 pp 155-168 doi: 10.1016/j.jrurstud.2016.06.012

[17] Agriculture of Russia (Moscow: Ministry of Agriculture of Russia, 2014; 2015; 2016; 2017; 2017; 2018).

[18] Kozlov G, et al 2019 Phenatrene biodestructors isolated from soils of large cities E3S Web of Conferences 135 01052 doi:10.1051/e3sconf/201913501052