Glu227→Lys Substitution in the Acidic Loop of Major Histocompatibility Complex Class I α3 Domain Distinguishes Low Avidity CD8 Coreceptor and Avidity-enhanced CD8 Accessory Functions

By Lianjun Shen,* Terry A. Potter,‡ and Kevin R. Kane*

Summary

Cytotoxic T lymphocyte (CTL) activation requires specific T cell receptor (TCR)-class I major histocompatibility complex (MHC) antigen complex interactions as well as the participation of coreceptor or accessory molecules on the surface of CTL. CD8 can serve as a coreceptor in that it binds to the same MHC class I molecules as the TCR to facilitate efficient TCR signaling. In addition, CD8 can be “activated” by TCR stimulation to bind to class I molecules with high avidity, including class I not recognized by the TCR as antigenic complexes (non-antigen [Ag] class I), to augment CTL responses and thus serve an accessory molecule function. A Glu/Asp227→Lys substitution in the class I α3 domain acidic loop abrogates lysis of target cells expressing these mutant molecules by alloreactive CD8-dependent CTL. Lack of response is attributed to the destruction of the CD8 binding site in the α3 domain which is likely to disrupt CD8 coreceptor function. The relative importance of the class I α3 domain acidic loop Glu227 in coreceptor as opposed to accessory functions of CD8 is unclear. To address this issue, we examined CTL adhesion and degranulation in response to immobilized class I-peptide complexes formed in vitro from antigenic peptides and purified class I molecules containing wild-type or Glu227→Lys substituted α3 domains. The α3 domain mutant class I-peptide complexes were bound by CTL and triggered degranulation, however to much lower levels than wild-type class I–peptide complexes. In further experiments, it is directly demonstrated that the α3 domain mutant class I molecules, which lack the Glu227 CD8 binding site, still serve as CD8 coreceptor ligands. However, mutant class I–peptide Ag complexes failed to effectively serve as CD8 coreceptor ligands to initiate TCR-dependent signals required to induce avidity-enhanced CD8 binding to coimmobilized non-Ag class I molecules. Thus the Glu227→Lys mutation effectively distinguishes CD8 coreceptor and avidity-enhanced CD8 accessory functions.

Cytotoxic T lymphocyte activation is a process that involves multiple cell surface protein interactions with antigen-bearing target cells and a cascade of signal transduction events which lead to proliferation and effector functions (1, 2). T cell receptor interaction with MHC class I molecules bound with antigenic peptides on target cells is responsible for the specificity of CD8+ CTL recognition. So-called coreceptors and accessory molecules on the surface of CTL interact with their respective ligands on target cells and also contribute to T cell activation by increasing the avidity between CTL and targets, amplifying TCR-initiated signals, transducing distinct signals, or a combination of these mechanisms (1, 2).

The CD8 molecule is typically expressed as a disulfide-linked α/β heterodimer on the mature murine CD8+ T cell subset and plays a critical role in CD8-dependent CTL recognition and activation (3). In CTL recognition, CD8 can function as a coreceptor by binding to the same MHC class I molecules as the TCR (3–5), as well as an accessory molecule by binding to any class I molecules, including those which do not interact with the TCR (non-Ag class I) (6–10). The relative importance of CD8 coreceptor or accessory interactions with class I molecules toward T cell activation may depend on the density of specific MHC class I–peptide complexes on the target cells as well as the affinity of the interaction between the MHC–peptide complexes and the...
When the TCR is triggered, signals are generated which activate CD8 to a state of higher avidity, and consequently, the "activated," avidity-enhanced CD8 binds MHC class I molecules and facilitates CTL activation either by strengthening the interactions between CTL receptors and their ligands, or transducing additional signals for T cell activation (6–10).

It has been shown by site-directed mutagenesis that the negatively charged loop (residues 222–229) in the highly conserved α3 domain of MHC class I molecules plays an important role in CD8-dependent CTL recognition and activation (4, 13–15). For instance, the Glu227→Lys substitution in the Dαα3 domain abrogates the CD8-dependent, allospecific CTL killing of target cells expressing these mutant molecules (4, 13, 14). The inability of murine CD8-dependent CTL to lyse targets bearing the α3 mutated class I molecules was attributed to the disruption of CD8 interaction with class I (13–15). Consistent with these results, mutational analysis and adhesion assays using CD8α-transfected Chinese hamster ovary cells, demonstrate that the acidic loop in α3 domain of HLA class I molecules is a binding site for human CD8α/α homodimers (15). The site(s) on the MHC class I molecules that participate in high avidity TCR-activated CD8 binding has not been identified. Whether the α3 domain acidic loop is essential for TCR-activated CD8α/β heterodimer binding to class I is unknown. That mutations in the α3 domain of HLA class I molecules can also interfere with CD8α/α binding suggest the possibility that other sites in addition to the α3 domain on class I may be involved in CD8 interaction(s) (16, 17), perhaps including activated CD8 binding.

Using immobilized purified chimeric class I molecules consisting of Dαα1α2 or Kαα1α2 and Dαα3 domains, in which the Dαα3 domain is either the wild-type or the mutant with a Glu227→Lys substitution, the role of Glu227 in the α3 domain acidic loop of class I in CD8 co-receptor and TCR-triggered avidity-enhanced CD8 accessory functions of cloned CTL was assessed. The mutant class I effectively serves as an activated CD8 accessory ligand, indicating that Glu227 is not required for this type of CD8 interaction. In contrast, the purified mutant class I molecules were unable to effectively coengage TCR and CD8 to initiate TCR-dependent activation events.

Materials and Methods

mAbs. A murine hybridoma that secretes an IgG2a, mAb recognizing H-2 Dα molecules, B2.249 (18), was a gift from Dr. U. Hammerling (Memorial Sloan-Kettering Cancer Center, New York). The Kβ2-specific mAb, Y3 (IgG2a) (19), and Dγ4-specific mAbs, 34-5-8s (IgG2a) (20) and 34-2-12s (IgG2a) (20) were produced from their respective hybridomas obtained from American Type Culture Collection (ATCC; Rockville, MD). The rat anti-mouse TCRα/β mAb, H57-597 (23), was purchased from Pharmingen (San Diego, CA).

Transfectant Cell Lines Expressing Chimeric H-2 Class I with Wild-Type or Mutant α3 Domains. M12 (H-2Kb) is a B lymphoma cell line, was transfected with chimeric class I genes as described (13, 24, 25). Exon shuffled genes consisting of the α1 and α2 domain of the H-2 Dα or Kβ genes and either the wild-type or Glu227→Lys substituted α3 domain of the H-2 Dα (13) were transfected into the M12 cell line by electroporation, and are referred to herein as M12.Dα/Dαwt, M12.Dα/DαLys, M12.Kβ/Dαwt, and M12.Kβ/DαLys, respectively.

Cloned CTLs. Clone 3/4 is specific for H-2 Dα and the influenza nucleoprotein (NP) (363–380) of A/PR/8/34 influenza virus and was maintained as described previously (7). The NP peptide used in this study is a 10-mer (NP366–374) with a tyrosine at the NH2 terminus (Y-ASNENMETM) that was synthesized and purified at Multiple Peptide Systems (San Diego, CA). The Kβ-allospecific CTL clone 11, was described previously (26, 27).

Purification of Chimeric Murine MHC Class I Molecules Bearing Wild-Type or Mutant α3 Domains. The chimeric H-2 class I molecules, Dα/Dαwt, Dα/DαLys, Kβ/Dαwt, and Kβ/DαLys were purified from 0.5–1.0 × 106 transfectant cells by immunoaffinity chromatography as described (27, 28) with modifications. B2.249 (Dα; 1/29) and Y3 (Kβ α2; 30) mAb columns were used for immunoaffinity purification of Dα/Dα and Kβ/Dα chimeric molecules, respectively. To avoid cross contamination, separate columns were used for the wild-type and the mutant class I molecules. Detergent lysates of the transfectant cells were passed over the B2.249 or Y3 columns. Columns were washed with 0.1% deoxy cholate (DOC), 40 mM NaCl, 10 mM Tris, pH 8.2, and 0.5% DOC, 0.65 M NaCl, 10 mM Tris, pH 8.5. The chimeric molecules were then eluted from the columns using 0.5% DOC, 0.15 M NaCl, 15 mM Na2CO3, pH 10.5 (27). Solid-phase ELISA of purified class I chimeric molecules was performed with various mAbs as described previously (28). Peak fractions showing strong ELISA reactivities were pooled and used as described (27, 28). Protein quantitation was determined by Micro-BCA assay (Pierce Chemical Co., Rockford, IL). Other immunoaffinity-purified H-2 class I molecules used in this study, including Kβ and Dα isolated from EL4 cells and Kβ isolated from RDJ-4, as well as I-Eα class II molecules isolated from A20.Cy, were purified as described previously (28, 31).

Assay for CTL Binding and Degranulation. CTL degranulation was assessed by measuring the serine esterase (SE) activity released into the medium with the N'-benzoylcarbonyl-L-lysine thioheryl ester (BLT) assay as described (32). Stimulator cells were pulsed with the NP peptide for 30 min at R.T. washed three times with 2% FCS-RPMI, and 3 × 105 stimulator cells were incubated with 103 cloned CTL for 4 h. 20 μl of supernatant was recovered and the BLT reactions proceeded for 20 min, whereupon the OD405nm was determined. SE release is calculated as ∆OD405nm = OD405nm (CTL + stimulators) – OD405nm (CTL alone).

CTL adhesion and degranulation responses to purified class I and coimmobilized proteins have been described previously in

Abbreviations used in this paper: NP, influenza nucleoprotein; pDγ, Dγ molecules purified from EL4 cells; pDγ/Dγlys, purified chimeric Dγ (α1α2) and Dγ (α3 with Glu227→Lys substitution); pDγ/Dγwt, purified chimeric Dγ (α1α2) and Dγ (α3 wild type) molecules; pKβ/Dγlys, purified chimeric Kβ (α1α2) and Dγ (α3 with Glu227→Lys substitution) molecules; pKβ/Dγwt, purified chimeric Kβ (α1α2) and Dγ (α3 wild type) molecules; pKβ, Kβ molecules purified from EL4 cells; SE, serine esterase.
detail (7, 27, 32). In experiments involving peptide pulsing of purified class I molecules, the class I-bearing wells were incubated with NP peptide resuspended in 2% FCS-PBS at 37°C for 18 h to form peptide–antigen complexes as previously described (7, 32). Either 1 or 2 x 10⁶ ⁵¹Cr-labeled CTL were incubated for 4 h at 37°C on protein-bearing plate wells, and unbound cells were then removed. In experiments using fluid phase anti-TCR-α/β mAb, the antibody was added to CTL in suspension and the cells immediately placed into class I-bearing wells. Cell binding was calculated as percent specific cell bound = 100 × [(cpm bound)/(total cpm spontaneous cpm)]. Degranulation by CTL was determined simultaneously with CTL binding from the same wells. SE release is expressed as ΔOD₄⁰₅₉₉ = OD₄⁰₅₉₉CTL (immobilized class I) - OD₄⁰₅₉₉CTL + wells blocked with 2% FCS in PBS. All determinations were done in triplicate for each condition unless specified.

Cytotoxicity Assay. Target cells were labeled with ⁵¹Cr and then pulsed with NP peptide at the concentrations indicated. After washing, 10⁵ target cells were incubated with the CD8-dependent, NP-specific CTL clone 3/4 at 5:1 E/T ratio for 4 h in V-bottom microtiter plates in triplicate. Percent specific ⁵¹Cr release was calculated as: [experimental release - spontaneous release]/[maximum release - spontaneous release] x 100. Results are expressed as mean percent specific ⁵¹Cr release. In all experiments, the spontaneous ⁵¹Cr release was <7.5% of the total.

Anti-CD8 mAb-Blocking Experiments. For anti-CD8 mAb-blocking experiments, the cloned CTL were incubated with the indicated CD8-specific antibodies at room temperature for 30 min before carrying out the assays. Anti-CD8 mAb, 2.43 was used at dilution 1:4 of the culture supernatant and purified YTS169.4 was used at 5 μg/ml.

Results

Antigen-specific, CD8+ CTL Recognition and Lysis of Target Cells Bearing MHC Class I with Wild-Type or Mutant α3 Domains. It has been shown that CD8-dependent CTL either failed or had greatly reduced ability, to lyse target cells with amino acid substitutions in residues 222-229 of the α3 domain of MHC class I molecules (4, 13-15, 24, 33). The inability or reduced ability of CD8-dependent CTL to lyse these targets was attributed to failure of CD8 to bind the mutated MHC class I molecules on the target cells. In the present study, we examined the ability of an H-2 Dα-restricted, influenza NP-specific CTL, clone 3/4, to lyse, or degranulate in response to target cells transfected with a chimeric cDNA encoding the Dα α1α2 domain and Dβ α3 domain. The Dβ α3 domain is either the wild-type or mutant with a Glu227→Lys substitution (13, 24, 25). Both the transfectants, M12.Dβ/Dβwt or M12.Dβ/DβLys, express comparable levels of the hybrid Dβ molecules as detected by FACS® analysis using a Dβ-specific mAb, B22.249 (data not shown). The target cells were pulsed with NP peptide at different concentrations, and cytolyis was measured by ⁵¹Cr release. As expected, and similar to our previous report (24), M12.Dβ/Dβwt target cells were killed by clone 3/4 to a level comparable to EL4 (H-2), which expresses natural Dβ molecules (Fig. 1 A). Clone 3/4 also lysed M12.Dβ/DβLys, with two significant differences compared to M12.Dβ/Dβwt lysis (Fig. 1 A). First, the maximal levels of lysis of M12.Dβ/DβLys (20%) were only one-third to one-half of that of M12.Dβ/Dβwt (40-50%). Second, the concentration of peptide required to obtain significant lysis was >100-fold higher in M12.Dβ/DβLys than in M12.Dβ/Dβwt. These results are consistent with our previous report in which lysis by a Kβ-restricted, OVA-specific CTL clone of M12 cells transfected with Kβ/DβLys gene was substantially lower and required higher concentrations of OVA

![Figure 1](image-url)
to peptide than target cells transfected with the K\(^*\)/D\(^b\)wt gene (24). M12.D\(^b\)/D\(^d\)wt cell lysis by clone 3/4 CTL was almost completely blocked by CD8\(\alpha\)-specific mAbs 2.43 and YTS169.4 at lower peptide concentrations, while partially inhibited when peptide concentrations were high (Fig. 1 B). This confirmed that the clone 3/4 killing is CD8 dependent, and also showed that CD8 dependency is related to the numbers of MHC class I–peptide complexes involved in the CTL–target interactions (11, 12). Interestingly, even the cytolysis of M12.D\(^b\)/D\(^d\)lys was partially blockable by anti-CD8 mAbs (Fig. 1 C) suggesting that CD8 may still participate to some extent in CTL recognition of mutant class I–peptide complexes. Similar to the cytolysis results, M12.D\(^b\)/D\(^d\)wt cells triggered a substantially stronger SE release than M12.D\(^b\)/D\(^d\)lys cells, and these responses were peptide dose dependent (Fig. 2 A). Clone 3/4 degranulation responses triggered by both M12.D\(^b\)/D\(^d\)wt and M12.D\(^b\)/D\(^d\)lys cells were CD8 dependent, as the anti-CD8 mAbs effectively inhibited the degranulation responses (Fig. 2, B and C).

Table 1. ELISA Reactivity of pD\(^b\)/D\(^d\)wt and pD\(^b\)/D\(^d\)lys determined with various mAbs.

mAbs\(^*\)	Specificity	pD\(^b\)/D\(^d\)wt	pD\(^b\)/D\(^d\)lys
B22.249	D\(^b\)\(\alpha\)1	1.062 ± 0.052\(^2\)	1.092 ± 0.048
34-5-8s	D\(^d\)\(\alpha\)1\(\alpha\)2	0.003 ± 0.001	0.013 ± 0.002
34-2-12s	D\(^d\)\(\alpha\)3	0.347 ± 0.032	0.009 ± 0.002
Y3 \(\alpha\)	K\(^b\)\(\alpha\)2	0.005 ± 0.001	0.017 ± 0.001

ELISA reactivity of pD\(^b\)/D\(^d\)wt and pD\(^b\)/D\(^d\)lys determined with various mAbs.

\(^*\)First antibody used in solid-phase ELISA assay: purified B22.249 and Y3 were diluted into 2% FCS-PBS and used at 2.5 \(\mu\)g/ml; 34-5-8s and 34-2-12s were used as culture supernatants in 10% FCS-RPMI at 1:4 dilution.

\(^2\)Results were expressed as mean OD\(_{490nm}\) ± SD of triplicate wells. Direct Comparison of CTL Adhesion and Response to Purified D\(^b\)/D\(^d\)wt and D\(^b\)/D\(^d\)lys Pulsed with NP Peptide Ag. FACS\(^\text{®}\) analysis showed that both M12.D\(^b\)/D\(^d\)wt and M12.D\(^b\)/D\(^d\)lys transfectant cells expressed other class I molecules, e.g., D\(^d\) (data not shown), and may express other cell surface accessory molecule ligands. To directly compare D\(^b\)/D\(^d\)wt– and D\(^b\)/D\(^d\)lys–peptide complexes in CTL recognition and activation, we purified D\(^b\)/D\(^d\)wt and D\(^b\)/D\(^d\)lys molecules for use in solid-phase CTL recognition assays (7, 27, 32). Since B22.249 mAb recognizes an \(\alpha\)1 domain epitope of D\(^b\), independent of the \(\alpha\)3 domain (29), it was used for immunosaffinity purifications of D\(^b\)/D\(^d\)wt and D\(^b\)/D\(^d\)lys chimeric molecules. The purified D\(^b\)/D\(^d\)wt (pD\(^b\)/D\(^d\)wt) and D\(^b\)/D\(^d\)lys (pD\(^b\)/D\(^d\)lys) were analyzed using solid-phase ELISA (28) (Table 1). Both pD\(^b\)/D\(^d\)wt and pD\(^b\)/D\(^d\)lys molecules for use in solid-phase CTL recognition assays (7, 27, 32). Since B22.249 mAb recognizes an \(\alpha\)1 domain epitope of D\(^b\), independent of the \(\alpha\)3 domain (29), it was used for immunosaffinity purifications of D\(^b\)/D\(^d\)wt and D\(^b\)/D\(^d\)lys chimeric molecules. The purified D\(^b\)/D\(^d\)wt (pD\(^b\)/D\(^d\)wt) and D\(^b\)/D\(^d\)lys (pD\(^b\)/D\(^d\)lys) were analyzed using solid-phase ELISA (28) (Table 1). Both pD\(^b\)/D\(^d\)wt and pD\(^b\)/D\(^d\)lys were strongly positive for the B22.249 (D\(^b\) \(\alpha\)1) epitope; while negative for the 34-5-8s epitope (D\(^d\) \(\alpha\)1\(\alpha\)2). As expected, the pD\(^b\)/D\(^d\)wt, but not the pD\(^b\)/D\(^d\)lys, was reactive with 34-2-12s (D\(^d\) \(\alpha\)3) since the D\(^d\) Glu227→Lys substitution abrogates recognition by 34-2-12s (13, 14). All preparations were standardized by protein and ELISA assays.

The pD\(^b\)/D\(^d\)wt, pD\(^b\)/D\(^d\)lys, and pD\(^b\) (isolated from EL4 cells) were immobilized separately on microtiter plate wells, pulsed with NP peptide at the concentrations indicated, and tested for their abilities to trigger H-2 D\(^d\)-restricted, NP-specific CTL (Fig. 3). As we have shown previously (7, 32), the NP-specific CTL clone 3/4 bound, but not the pD\(^b\)/D\(^d\)lys, was reactive with 34-2-12s (D\(^d\) \(\alpha\)3) since the D\(^d\) Glu227→Lys substitution abrogates recognition by 34-2-12s (13, 14). All preparations were standardized by protein and ELISA assays.

The pD\(^b\)/D\(^d\)wt, pD\(^b\)/D\(^d\)lys, and pD\(^b\) (isolated from EL4 cells) were immobilized separately on microtiter plate wells, pulsed with NP peptide at the concentrations indicated, and tested for their abilities to trigger H-2 D\(^d\)-restricted, NP-specific CTL (Fig. 3). As we have shown previously (7, 32), the NP-specific CTL clone 3/4 bound, and degranulated in response to, the immobilized pD\(^b\)-NP peptide complexes (Fig. 3). Clone 3/4 cells also bound to both pD\(^b\)/D\(^d\)wt and pD\(^b\)/D\(^d\)lys, but the levels of binding and response are dramatically different (Fig. 3 A). We consistently observed that the maximal percentage of clone 3/4
Both pDb/Ddwt and pDb/DdLys were coated separately at saturating concentrations indicated. Clone 3/4 CTL were loaded at 2 × 10^6/well, and pulsed with NP peptide at the concentrations indicated. Clone 3/4 CTL were loaded at 2 × 10^6/well, and incubated at 37°C for 4 h. The CTL adhesion (A) and degranulation as measured by SE release (B) were determined simultaneously. Nonspecific binding (3.4%) was subtracted. Results are expressed as the mean of triplicate wells and variation is <10% of the mean. \(\square \), pDb/Dawt; \(\triangle \), pDb/D%ys; \(\diamond \), pDb/DdLys; \(\bullet \), pDb/DLys.

Figure 3. Comparison of influenza NP-specific CTL clone adhesion and SE release to immobilized pDb/Dawt and pDb/D%ys complexed with NP peptide. The pDb/Dawt, pDb/D%ys, and pDb/DLys were immobilized at a density of 0.1 μg/well, and pulsed with NP peptide at the concentrations indicated. Clone 3/4 CTL were loaded at 2 × 10^6/well, and incubated at 37°C for 4 h. The CTL adhesion (A) and degranulation as measured by SE release (B) were determined simultaneously. Nonspecific binding (3.4%) was subtracted. Results are expressed as the mean of triplicate wells and variation is <10% of the mean. \(\square \), pDb/Dawt; \(\triangle \), pDb/D%ys; \(\diamond \), pDb/DlLys; \(\bullet \), pDb/DLys.

CTL cells adhered to immobilized pDb/Dawt was more than threefold greater than to pDb/D%ys (38% compared with 10%). CTL binding to both pDb/Dawt and pDb/D%ys was peptide dose dependent and reached plateau at 10 μM NP peptide, which probably represents a peptide concentration resulting in saturation of peptide binding by the immobilized class I molecules. CTL SE release response showed very similar results (Fig. 3 B), and was also peptide dose dependent with maximal degranulation a minimum of three to five times stronger to pDb/Dawt than pDb/D%ys.

The pDb/Dawt and pDb/D%ys density dependence for CTL binding and degranulation was also investigated (Fig. 4). Both pDb/Dawt and pDb/D%ys were coated separately at several densities and pulsed with a saturating concentration of NP peptide. CTL adhesion (Fig. 4 A) and degranulation response (Fig. 4 B) was density dependent for pDb/Dawt and pDb/D%ys, with pDb/Dawt supporting a threefold greater maximal CTL binding (Fig. 4 A) and triggering a fivefold stronger maximal degranulation response (Fig. 4 B) than pDb/D%ys. When a saturating amount of peptide was used to pulse both the pDb/Dawt and pDb/D%ys at or below saturating densities (0.025 μg/well or less), 8–16-fold more pDb/D%ys molecules were required to reach the same level of CTL binding to pDb/Dawt pulsed with peptide (Fig. 4 A). About a 10-fold higher density of pDb/Dawt was needed to induce a similar level of clone 3/4 SE release as needed for pDb/D%ys, with saturating peptide (Fig. 4 B). An ELISA of immobilized pDb/Dawt and pDb/D%ys done in parallel using Dα-specific mAb, B22.249, confirmed that at the same input of purified class I protein, the immunoreactive Dα epitopes for both pDb/Dawt and pDb/D%ys were at comparable density (Fig. 4 C). Clone 3/4 adhesion (Fig. 5, A and B) and SE release (Fig. 5, C and D) to both NP-pulsed pDb/Dawt and pDb/D%ys were significantly inhibited by anti-CD8 mAb, 2.43 and YTS169.4, suggesting that not only the pDb/Dawt, but also the low level pDb/D%ys-triggered responses are CD8 dependent, thus the pDb/D%ys may still interact to some extent with CD8 molecules despite the Glu 227→Lys substitution in the α3 domain.

In summary, these results indicate that the Glu227→Lys mutation in the α3 domain of class I raises the threshold of class I density required for CD8-dependent Ag-specific CTL binding and response severalfold, and substantially lowers the maximal response achieved. This provides the first direct quantitative comparison of the ability of wild-type and α3 mutant class I molecules to serve as Ag-presenting molecules, since it excludes the potential participation of both defined and undefined non-class I accessory molecule interactions.

Both the pDb/Dawt and pDb/D%ys Serve as Effective Ligands for TCR-triggered CD8 Adhesion and CTL Response. CD8 can function both as a "coreceptor" and as an "accessory molecule" during CTL recognition (5–10, 24). Evidence suggests that when TCR is triggered, signals are generated which activate CD8 to a state of higher avidity, and consequently, the activated avidity-enhanced CD8 binds MHC class I molecules and facilitates CTL activation (6–10). For instance, soluble Ab to TCR alone is not a sufficient stimulus for CTL degranulation, however it can trigger avidity-enhanced CD8 accessory-type binding to non-Ag class I molecules to serve as Ag-presenting molecules, since it excludes the potential participation of both defined and undefined non-class I accessory molecule interactions.
We have demonstrated previously that a suboptimal CTL adhesion and response to specific Ag class I can be augmented when non–Ag class I is coimmobilized (7, 27). We examined whether pDDDwt or pDDDLys can serve as non–Ag CD8 accessory ligands to enhance CTL binding and degranulation. Both pDDDwt and pDDDLys were titrated and coimmobilized with a suboptimal density of purified Kb alloantigen on the wells. The binding and SE release of the Kb allo-specific clone 11 in response to suboptimal Kb and coimmobilized pDDDwt or pDDDLys were determined (Fig. 7). Augmentation of clone 11 binding (Fig. 7 A) and triggering of degranulation (Fig. 7 B) facilitated by the coimmobilized pDDDwt or pDDDLys was to very similar levels throughout the class I density curves. As expected, the enhanced binding and augmented SE release facilitated by both pDDDwt and pDDDLys were mediated by CD8, as anti-CD8 mAbs significantly blocked clone 11 binding and response (Fig. 7, A and B). We also found that the coimmobilized pKKDwt or pKKDLys molecules are equally effective as avidity-enhanced CD8 ligands to enhance CTL binding and degranulation when the DK-restricted, NP-specific CTL clone 3/4 is triggered by suboptimal DK-NP peptide complexes (data not shown). Taken together, these results show that the Glu227→Lys substitution in the \(\alpha_3\) domain of class I molecules does not abrogate the ability of class I to serve as a ligand for activated CD8 accessory interactions. This indicates that the Glu227 in murine class I molecules is not required for TCR-triggered CD8 binding. Since the class I \(\alpha_3\) domain mutants can still effectively serve as avidity-enhanced CD8 ligands, the poor ability of
The a3 Glu227→Lys Substituted H-2 Class I-Peptide Complexes Are Defective in Initiating TCR Signals for Avidity-enhanced CD8 Binding to Non-Ag Class I and CTL Response. Since the Dp/DdLys molecules can serve as effective non-Ag class I ligands for TCR-activated, avidity-enhanced CD8 (Figs. 6 and 7), we investigated whether Dp/DdLys-peptide complexes are defective in initiating TCR signals for avidity-enhanced, CD8-dependent CTL adhesion and response. We and others have shown that a suboptimal density of class I or soluble anti-TCR mAb, which is not sufficient to fully activate CTL, can initiate TCR signaling which in turn enhances CD8 binding to non-Ag MHC class I and augments CTL adhesion and responses (6, 7, 9, 10). To test their effectiveness in initiating early TCR-dependent events in T cell activation, both the pDp/Ddwt and pDp/DdLys were titrated and coated on plastic with or without coimmobilization of a non–Ag class I molecule, Kk. After pulsing the immobilized class I with NP peptide, clone 3/4 CTL were added to the wells and their enhanced binding and SE release to coimmobilized non–Ag class I were determined (Fig. 8). Coimmobilized Kk greatly augmented clone 3/4 adhesion (Fig. 8A) and SE release (Fig. 8B).
Figure 6. Soluble anti-TCR-α/β mAb triggers CD8-dependent CTL binding and response to pD/Dwt and the α3 domain mutant, pD/Dlys. The pD/Dwt and pD/Dlys were separately immobilized on the wells at the indicated densities. The Kb alloreactive clone 11 CTL were resuspended with the anti-TCR-α/β mAb, HS7.597, at a concentration of 0.5 µg/mI immediately before loading into wells. For anti-CD8 mAb blocking, clone 11 cells were incubated at room temperature for 30 min with 2.43 mAb (1:4 dilution of culture supernatant) before the addition of anti-TCR mAb. 1.5 × 10⁶ clone 11 cells were loaded into wells and incubated at 37°C for 4 h. Clone 11 binding (A) and SE release (B) of clone 11 cells were determined. Results were expressed as the mean ± SD. Clone 11 binding to BSA (3.9%) was treated as background and subtracted. Clone 11 without soluble anti-TCR-α/β stimulation bound to 0.15 µg/well input of both pD/Dwt and pD/Dlys to similar background level as clone 11 binding to BSA (data not shown). O, pD/Dwt; ■, pD/Dlys; ◆, pD/Dlys + 2.43.

Discussion

In the present report, we describe the direct comparison of wild-type MHC class I molecules with those bearing a Glu227→Lys α3 domain mutation previously shown to substantially diminish or abrogate CD8-dependent CTL lysis (4, 13, 14, 24), in mediating Ag-specific, CD8-dependent CTL clone adhesion and response. This was explored using purified MHC molecules on solid phase, where the density of class I and the number of peptide antigen–class I complexes were varied in a controlled manner. The number of peptide–class I complexes formed on solid phase with the immobilized wild-type and mutant class I by addition of exogenous peptide antigen are likely to be very similar, if not identical, since the addition of exogenous peptide antigen induces peptide-dependent conformational epitopes to an equivalent extent on wild-type and α3 domain mutated class I molecules expressed on endogenous peptide loading defective T2 cells (24). Furthermore, the acid-eluted endogenous peptides of Kb and Db molecules...
with their respective α3 mutant counterparts appear identical, suggesting that the point mutation in the α3 domain does not affect peptide binding (24, 34), despite the observation that the Asp227→Lys substitution in another class I, L1, diminishes the interaction of this class I molecule with the endoplasmic reticulum peptide transporter, TAP, during biosynthesis (35).

We found the maximal CTL adhesion and degranulation response to be at least threefold greater to immobilized purified wild-type as opposed to mutant class I–presenting molecules pulsed with peptide. The mutant class I molecules did not achieve >10% of input CTL binding, which was only observed at high concentrations of antigenic peptide. These results are consistent with the differences in target cell lysis and degranulation responses we found with the same CTL clone in response to wild-type and mutant class I-bearing target cells. In experiments not easily approached using target cells, we show that in the presence of saturating peptide antigen, it requires an 8–16-fold higher density of immobilized mutant class I molecules to achieve the same level of CTL adhesion and response as with molecules bearing a wild-type α3 domain. Surprisingly, we observed CTL avidity-enhanced CD8 binding induced by soluble anti-TCR mAb or alloantigen not only to class I bearing a wild-type α3 domain but also to class I α3 mutants which lack a critical CD8 binding site. Furthermore, additional signaling associated with avidity-enhanced CD8 binding was only modestly reduced or undiminished with the α3 domain mutant class I relative to wild-type molecules in the two experimental systems used. In contrast, when incubated with peptide antigen, the mutant class I molecules were unable to trigger TCR-dependent signals necessary for the induction of avidity-enhanced CD8 binding to coimmobilized non–antigen class I.

Several amino acid substitutions in the acidic loop of the conserved α3 domain of class I disrupt CD8-dependent CTL antigen recognition (4, 13–15, 33). This is likely to be due to interference with CD8 coreceptor function since the mutagenesis of the antigen–presenting class I, the ligand for the TCR, blocks response despite the presence of non–Ag class I on the same cell membrane, which in theory could serve as accessory ligands for CD8. More direct evidence for CD8 serving a coreceptor adhesive role has been provided recently by Luescher et al. (10) who examined CTL interactions with soluble wild-type and α3 mutant Kd class I molecules. Using photoaffinity labeling techniques they directly demonstrated that CD8 can serve as a coreceptor by significantly strengthening cell surface TCR binding to soluble Kd on an allo-specific CTL clone and this interaction was shown to be inhibited by a Lys substitution for the Asp227 in Kd. However, there was no analysis of functional responses possible in this system to determine the relationship of binding to response, since class I in soluble monomeric form is not a stimulus for T cell responses. Our studies with solid phase class I provide a quantitative comparison of class I molecules bearing wild-type or the α3 domain mutation for CTL adhesion and response. Our data are consistent with and strengthen the conclusions of previous reports suggesting that the Glu227 mutation disrupts CD8 coreceptor interactions, as our results reveal that CD8 coreceptor engagement with peptide antigen–class I complexes is necessary for the TCR-dependent expression of avidity-enhanced CD8 binding to non–Ag class I and CD8 accessory function by CTL.

Binding and response to class I–bearing cells or surfaces by CTL appears to be a dynamic multistep process controlled by the TCR (8). For example, no detectable CTL binding is observed to immobilized non–Ag class I in the absence of a TCR stimulus (6, 7), thus CD8 interaction with class I is likely to be minimal in the absence of TCR triggering. However, if the TCR is engaged with immobilized specific antigenic class I, high avidity CD8 accessory interaction with coimmobilized non–Ag class I is observed and this results in the delivery of additional signals leading to phosphatidylinositol hydrolysis and degranulation of CTL (6, 7, 36). That this process is likely to be sequential is supported by the observation that pretreatment of CTL with low concentrations of soluble antibodies to the TCR used...
to mimic antigen recognition, triggers subsequent high avidity CD8 binding to class I (6, 7). The CD8 avidity enhancement is blocked by inhibitors of tyrosine phosphorylation suggesting that this process is dependent on intracellular signaling (6, 36). Since the α3 domain mutant class I is defective in supporting appropriate triggering through the TCR, for CD8 binding in the presence of an excess of coimmobilized non–Ag class I (Fig. 8), our results suggest a sequential model of CD8 receptor functions. In this model, the Glu227 of H-2 class I is essential for early low avidity CD8 coreceptor function in stabilizing TCR engagement with class I and facilitating initial TCR activation signals, but not for subsequent avidity-enhanced CD8 accessory molecule recognition and function which may involve additional binding sites on class I molecules. We do not exclude the possibility that when CD8 undergoes avidity enhancement it may also augment CD8 coreceptor function, but the expression of activated CD8 binding, regardless of whether the class I ligand is presenting the peptide antigen or not, would still be dependent on initial low avidity CD8 interactions.

It has been difficult to determine the relative contributions of CD8 coreceptor and accessory functions to CTL activation. However, since mutagenesis of the α3 domain of the specific Ag-presenting class I molecule (potential CD8 coreceptor ligand) can ablate CD8-dependent CTL reactivity even in the presence of endogenous non–Ag class I (potential CD8 accessory ligand), it has been suggested that CD8 functions much more efficiently as a coreceptor than an accessory molecule (15, 24). Results in the present report indicate that this simple interpretation can be significantly revised and clarified. Our data support the conclusion that the induction and expression of avidity-enhanced CD8 accessory function is simply dependent on an initial CD8 coreceptor priming function and CD8 accessory interactions can be critical for CTL responsiveness at low antigen density. Thus both CD8 coreceptor and accessory functions are important for CTL activation. Without the initiating TCR-dependent CD8 coreceptor activity which is prevented or greatly diminished by the Glu227→Lys mutation, however, no avidity enhancement of CD8 occurs in response to α3 mutant class I–peptide antigen complexes and no subsequent CD8 accessory function can be observed. Therefore, our results provide an explanation for why little or no response is observed when peptide antigen is presented by the α3 domain mutant class I, despite the presence of non–Ag class I that in principle might be expected to compensate as CD8 accessory ligands for deficiencies in the α3 mutated class I presenting molecules.

Interestingly, we found that the α3 domain mutant class I molecule is still an effective ligand for avidity-enhanced CD8 binding, however it is unclear at present how CD8 binds the mutant molecules. This is hampered by the lack of understanding regarding how the avidity of CD8 is modulated by TCR triggering. It is clear from cell transfection and adhesion assays that the conserved α3 domain residues 222–229 acidic loop that includes Glu/Asp227 is a binding site for CD8α homodimers when CD8α is overexpressed (15). Independent confirmation of an α3 binding site for CD8α was provided by Fayen et al. (37) who showed that the human CD8α IgV domain and the α3 domain of HLA-A2.1 can interact in soluble and immobilized forms and thus these domains of CD8 and class I, respectively, are sufficient for binding in vitro. It is possible that avidity-enhanced CD8 binding to mutant class I is still to the acidic loop of class I α3 domain, however its binding may be less dependent than CD8 in its low avidity state on the presence of Glu227. We have reported previously that avidity-enhanced CD8 binding is diminished by agents that inhibit cytoskeletal modifications (38). A consequence of cytoskeletal changes in response to TCR triggering may be an increase in cell spreading resulting in an increased surface area of contact. By increasing the area of contact, CTL would increase the quantity of CD8 that might engage class I on a target cell surface or on solid phase and the increased number of interactions of CD8 with class I between the two surfaces may be sufficient to support stable binding. A second consequence of cytoskeletal rearrangements induced by TCR triggering may be CD8 microclustering as found with the C3bi receptor (39), increasing the multivalency of CD8 and in turn increasing the avidity but not necessarily the affinity of CD8 for class I. In both of these scenarios, avidity increases between the CD8 and class I–bearing surfaces may compensate for reductions in CD8 affinity from the Glu227→Lys mutation without a change in CD8 binding site on class I.

It has recently been reported by Sun et al. (17) using transfection and overexpression systems that substitutions in the α2 domain of HLA class I can disrupt cell–cell adhesion mediated by human CD8αα, suggesting that CD8 may have additional contact or binding sites on class I outside the α3 domain. Furthermore, recent studies using exon shuffling of domains between human and mouse class I genes, have provided evidence to suggest that the α2 domain is likely to influence CD8 interactions with class I in T cell development and mature CD8+ T cell reactivity (40, 41). Although additional CD8 binding sites on class I may be involved in basal or low avidity CD8 binding, CD8 interaction with these additional sites may be enhanced upon TCR triggering and support activated CD8 binding despite the Glu227→Lys mutation.

The preceding discussion has not considered structural changes of CD8 that may result from TCR triggering. It is conceivable that the CD8 heterodimer undergoes a conformational change resulting from TCR–triggered intracellular signals, which enhance CD8 affinity for the α3 acidic loop or alternatively allows CD8 to bind additional sites on class I. This may provide an explanation for our observation of activated CD8 adhesion to the mutant molecules. In this context, Meyerson et al. (42) have found that the presence of the membrane proximal connecting peptide or stalk of CD8 reduces NH2-terminal CD8α IgV domain binding to the α3 domain and the binding of purified CD8α in soluble form to class I is temperature sensitive.
These results could suggest that a specific or preferred conformation of CD8 or class I may be necessary for binding. Perhaps TCR-triggered changes in CD8 lead to the induction or stabilization of appropriate CD8 conformation(s) for class I binding. In contrast to the report of Meyerson et al. and others involving CD8α/α homodimers, our study examines class I adhesion by CD8α/β heterodimers which are typically expressed on mature murine CD8+ T cells. Expression or lack thereof, of the CD8 β chain has been shown to substantially influence T cell thymic maturation (43-45) and CD8 β undergoes structural changes depending on T cell differentiation and activation state (46). It is less clear whether the CD8 β chain directly participates in mature T cell recognition of class I (47-49), however it remains to be determined whether the CD8 β chain may influence or possibly regulate basal or avidity-enhanced CD8 binding to class I.

We show that the purified Glu227-->Lys α3 mutant molecules bound with peptide antigen are very poor ligands for CTL adhesion and response, yet there is still some low level CTL reactivity to these mutant class I–antigen complexes. It is not clear how the CD8–dependent CTL clone has been shown to substantially influence T cell thymic maturation (43-45) and CD8 β undergoes structural changes depending on T cell differentiation and activation state (46). It is less clear whether the CD8 β chain directly participates in mature T cell recognition of class I (47-49), however it remains to be determined whether the CD8 β chain may influence or possibly regulate basal or avidity-enhanced CD8 binding to class I.

The authors thank Dr. U. Hammerling for providing hybridomas for these studies. We are grateful to Dr. H. Ostergaard for critical review of the manuscript. The authors also thank D.-E. Gong and D. McDonald for expert technical assistance.

This work was supported by funds from a Medical Research Council (MRC) operating grant. L. Shen is supported by an Alberta Heritage Foundation for Medical Research (AHFMR) studentship. T.A. Potter is a Scholar of the Leukemia Society of America. K.P. Kane is a Cancer Research Institute Investigator and an AHFMR and MRC scholar.

Address correspondence to Dr. Kevin P. Kane, Department of Medical Microbiology and Immunology, Faculty of Medicine, 860 MSB, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.

Received for publication 13 May 1996 and in revised form 8 August 1996.

References
1. Springer, T.A. 1990. Adhesion receptors of the immune system. Nature (Lond.). 346:425-433.
2. Collins, T.L., P.D. Kassner, B.E. Bierer, and S.J. Burakoff. 1994. Adhesion receptors in lymphocyte activation. Curr. Opin. Immunol. 6:385-393.
3. Miceli, M.C., and J.R. Paras. 1993. Role of CD4 and CD8 in T cell activation and differentiation. Adv. Immunol. 53:59-122.
4. Porter, T.A., J.A. Bluestone, and T.V. Rajan. 1987. A single amino acid substitution in the α3 domain of an H-2 class I molecule abrogates reactivity with CTL. J. Exp. Med. 166:956-966.
5. Julius, M., C. R. Maroun, and L. Haughn. 1993. Distinct roles for CD4 and CD8 as co-receptors in antigen receptor signalling. Immunol. Today. 14:177-183.
6. O'Rourke, A.M., J. Rogers, and M.F. Mescher. 1990. Activated CD8 binding to class I protein mediated by the T-cell receptor results in signalling. Nature (Lond.) 346:187-189.
7. Kane, K.P., and M.F. Mescher. 1993. Activation of CD8-dependent cytotoxic T lymphocyte adhesion and degranulation by peptide class I antigen complexes. J. Immunol. 150:4788-4797.
8. O'Rourke, A.M., and M.F. Mescher. 1993. The roles of CD8 in cytotoxic T lymphocyte function. Immunol. Today.
14:183–188.
9. Takeshita, T., S. Kozlowski, R.D. England, R. Brower, J. Schneck, H. Takahashi, C. DeLisi, D.H. Margulies, and J.A. Berzofsky. 1993. Role of conserved regions of class I MHC molecules in the activation of CD8+ cytotoxic T lymphocytes by peptide and purified cell-free class I molecules. *Int. Immunol.* 5:1129–1138.
10. Luescher, I.F., E. Viver, A. Layer, J. Mahiou, F. Godeau, B. Malissen, and P. Romero. 1995. CD8 modulation of T-cell antigen receptor ligand interactions on living cytotoxic T lymphocytes. *Nature (Lond.)* 373:353–357.
11. Alexander, M.A., C.A. Danico, K.M. Wiettie, T.H. Hansen, and J.M. Connolly. 1991. Correlation between CD8 dependence and determinant density using peptide-induced, L2-restricted cytotoxic T lymphocytes. *J. Exp. Med.* 173:849–858.
12. Al-Ramadi, B.K., M.T. Jelonek, L.F. Boyd, D.H. Margulies, and A.L.M. Bothwell. 1995. Lack of strict correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR. *J. Immunol.* 155:662–673.
13. Potter, T.A., T.V. Rajan, R.F. Dick, II, and J.A. Bluestone. 1989. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. *Nature (Lond.)* 337:73–75.
14. Connolly, J.M., T.H. Hansen, A.L. Ingold, and T.A. Potter. 1990. Recognition by CD8 on cytotoxic T lymphocytes is ablated by several substitutions in the class I a3 domain: CD8+ and the T cell receptor recognize the same class I molecule. *Proc. Natl. Acad. Sci. USA.* 87:2137–2141.
15. Salter, R.D., R.J. Benjamin, P.K. Wesley, S.E. Buxton, T.P.J. Garrett, C. Clayberger, A.M. Krensky, A.M. Norment, D.R. Littman, and P. Parham. 1990. A binding site for the T-cell co-receptor CD8 on the a3 domain of HLA-A2. *Nature (Lond.)* 345:41–46.
16. Giblin, P.A., D.J. Leahy, J. Memnone, and P.B. Kavathas. 1994. The role of charge and multiple faces of the CD8a/a homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model. *Proc. Natl. Acad. Sci. USA.* 91:1716–1720.
17. Sun, J., D.J. Leahy, and P.B. Kavathas. 1995. Interaction between CD8 and major histocompatibility complex (MHC) class I mediated by multiple contact surfaces that include the a2 and a3 domains of MHC class I. *J. Exp. Med.* 182:1275–1280.
18. Lemke, H., G.J. Hammerling, and U. Hammerling. 1979. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. *Immunol. Rev.* 47:175–206.
19. Hammerling, G.J., E. Rusch, N. Tada, S. Kimura, and U. Hammerling. 1982. Localization of allodeterminants on H-2Kb antigens determined with monoclonal antibodies and H-2 mutant mice. *Proc. Natl. Acad. Sci. USA.* 79:4737–4741.
20. Ozato, K., N.M. Mayer, and D.H. Sachs. 1982. Monoclonal antibodies to mouse major histocompatibility complex antigens. *Transplantation.* 34:113–120.
21. Sarmiento, M., A.L. Glassbrook, and F.W. Fitch. 1980. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing L2 antigen block T cell-mediated cytolyis in the absence of complement. *J. Immunol.* 125:2565–2567.
22. Cobbald, S.P., A. Jayaram, A. Nash, and H. Waldmann. 1984. Therapy with monoclonal antibodies by elimination of T cell subsets in vivo. *Nature (Lond.)* 312:548–551.
23. Kubo, R.T., W. Born, J.W. Kappler, P. Marrack, and M. Pigeon. 1989. Characterization of a monoclonal antibody which detects all murine CD8 T cell receptors. *J. Immunol.* 142:2736–2742.
24. Knall, C., A. Ingold, and T.A. Potter. 1994. Analysis of co-receptor versus accessory molecule function of CD8 as a correlate of exogenous peptide concentration. *Mol. Immunol.* 31:875–883.
25. Knall, C., P.A. Smith, and T.A. Potter. 1995. CD8-dependent CTL require co-engagement of CD8 and the TCR for phosphatidylinositol hydrolysis, but CD8-independent CTL do not and can kill in the absence of phosphatidylinositol hydrolysis. *Int. Immunol.* 7:995–1004.
26. Kane, K.P., L.A. Sherman, and M.F. Mescher. 1989. Molecular interactions required for triggering alloantigen-specific cytokine T lymphocytes. *J. Immunol.* 142:4153–4160.
27. Shen, L., and K.P. Kane. 1995. Differential ability of isolated H-2Kb subsets to serve as TCR ligands for allo-specific CTL clones: potential role for N-linked glycosylation. *J. Exp. Med.* 181:1773–1783.
28. Kane, K.P., P. Champoux, and M.F. Mescher. 1989. Solid-phase binding of class I and II MHC proteins: immunosassay and T cell recognition. *Mol. Immunol.* 26:759–768.
29. Allen, H., D. Wraith, P. Palo, B. Askonas, and R.A. Flavell. 1984. Domain interactions of H-2 class I antigens alter cytokine T-cell recognition sites. *Nature (Lond.)* 310:279–281.
30. Ajikumar, P., S.S. Geier, K.V. Kesari, F. Bornilo, M. Nakagawa, J.A. Bluestone, M.A. Saper, D.C. Wiley, and S.G. Nathenson. 1988. Evidence that multiple residues on both the alpha-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. *Cell.* 54:47–56.
31. Kane, K.P. 1994. Ly-49 mediates EI-4 lymphoma adhesion to isolated class I major histocompatibility complex molecules. *J. Exp. Med.* 179:1011–1015.
32. Kane, K.P., A. Vitello, L.A. Sherman, and M.F. Mescher. 1989. Cytolytic T lymphocyte response to isolated class I H-2 protein and influenza peptides. *Nature (Lond.)* 340:157–159.
33. Sekimata, M., M. Tanabe, A. Sarai, J. Yamamoto, A. Karyono, H. Nakachi, K. Egawa, and M. Takiguchi. 1993. Differences effects of substitutions at residues 224 and 228 of MHC class I on the recognition of CD8. *J. Immunol.* 150:4416–4426.
34. Dutz, J.P., S.-J. Teh, N. Killeen, and H.-S. Teh. 1995. A mutation in the a3 domain of Dd that abrogates CD8 binding does not affect presentation of an immunodominant H-Y peptide. *Immunology.* 85:74–81.
35. Carreno, B.M., J.C. Solheim, M. Harris, I. Stroynowski, J.M. Connolly, and T.H. Hansen. 1995. TAP associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man. *J. Immunol.* 155:4726–4733.
36. O’Rourke, A.M., and M.F. Mescher. 1994. Signals for activation of CD8-dependent adhesion and costimulation in CTLs. *J. Immunol.* 152:4358–4367.
37. Fayen, J., J.-H. Huang, H. Meyerson, D. Zhang, R. Getty, N. Greenspan, and M. Tykocinski. 1995. Class I MHC alpha 3 domain can function as an independent structural unit to bind CD8a. *Mol. Immunol.* 32:267–275.
38. O’Rourke, A.M., J.R. Appar, K.P. Kane, F. Mertz, and M.F. Mescher. 1991. Cytoskeletal function in CD8+ T cells in CD8 receiver-mediated interaction of cytotoxic T lymphocytes with class I protein. *J. Exp. Med.* 173:241–249.
39. Detmers, P.A., S.D. Wright, E. Olsen, B. Kimball, and Z.A.
Cohen. 1987. Aggregation of complement receptors on hu-
man neutrophils in the absence of ligand. J. Cell Biol. 105:
1137–1145.

40. LaFace, D.M., M. Vestberg, Y. Yang, R. Srivastava, J. DiSanto,
N. Flomenberg, S. Brown, L.A. Sherman, and P.A. Peterson.
1995. Human CD8 transgene regulation of HLA recognition
by murine T cells. J. Exp. Med. 182:1315–1325.

41. Newberg, M.H., D.H. Smith, S.B. Haertel, D.R. Vining, E.
Lacy, and V.H. Engelhard. 1996. Importance of MHC class I
α2 and α3 domains in the recognition of self and non-self
MHC molecules. J. Immunol. 156:2473–2480.

42. Meyerson, H.J., J.-H. Huang, J.D. Fayen, H.-M. Tsao, R.R.
Getty, N.S. Greenspan, and M. Tykocinski. 1996. Functional
dissociation of CD8α's Ig homologue and connecting pep-
tide domains. J. Immunol. 156:574–584.

43. Nakayama, K., K. Nakayama, I. Negishi, K. Kuida, M.C.
Louie, O. Kanagawa, H. Nakauchi, and D.Y. Loh. 1994.
Requirement for CD8 β chain in positive selection of CD8-
lineage T cells. Science (Wash. DC). 263:1131–1133.

44. Fung-Leung, W.-P., T.M. Kundig, K. Ngo, J. Panakos, J. De
Sousa-Hitzler, E. Wang, P.S. Ohashi, T.W. Mak, and C.Y.
Lau. 1994. Reduced thymic maturation but normal effector
function of CD8⁺ T cells in CD8 beta gene-targeted mice. J.
Exp. Med. 180:959–967.

45. Crooks, M.E.C., and D.B. Littman. 1994. Disruption of T
lymphocyte positive and negative selection in mice lacking
the CD8 β chain. Immunity. 1:277–285.

46. Casabo, L.G., C. Mamalaki, D. Kioussis, and R. Zamoyska.
1994. T cell activation results in physical modification of the
mouse CD8β chain. J. Exp. Med. 180:959–967.

47. Wheeler, C.J., P. von Hoeegen, and J.R. Parnes. 1992. An
immunological role for the CD8 β-chain. Nature (Lond.).
357:247–249.

48. Karaki, S., M. Tanabe, H. Nakauchi, and M. Tanaguchi.
1992. β-chain broadens range of CD8 recognition for MHC
class I molecule. J. Immunol. 149:1613–1618.

49. Letourneur, F., J. Gabert, P. Cosson, D. Blanc, J. Davoust,
and B. Malissen. 1990. A signaling role for the cytoplasmic
segment of the CD8 α chain detected under limiting stimula-
tory conditions. Proc. Natl. Acad. Sci. USA. 87:2339–2343.