Normal p-complements and irreducible character codegrees

Jiakuan Lu, Yu Li, Boru Zhang
School of Mathematics and Statistics, Guangxi Normal University,
Guilin 541006, Guangxi, P. R. China

Abstract

Let G be a finite group and $p \in \pi(G)$, and let $\text{Irr}(G)$ be the set of all irreducible complex characters of G. Let $\chi \in \text{Irr}(G)$, we write $\text{cod}(\chi) = |G : \ker \chi|/\chi(1)$, and called it the codegree of the irreducible character χ. Let $N \triangleleft G$, write $\text{Irr}(G|N) = \{ \chi \in \text{Irr}(G) \mid N \nsubseteq \ker \chi \}$, and $\text{cd}(G|N) = \{ \text{cod}(\chi) \mid \chi \in \text{Irr}(G|N) \}$. In this paper, we prove that if $N \triangleleft G$ and every member of $\text{cd}(G|N')$ is not divisible by some fixed prime $p \in \pi(G)$, then N has a normal p-complement and N is solvable.

Keywords: Finite groups; Codegree of a character; Normal p-complement.
MSC(2000): 20C20, 20C15

1 Introduction

Throughout this paper, G always denotes a finite group and, as usual, let $\text{Irr}(G)$ be the set of all irreducible complex characters of G and $\text{cd}(G) = \{ \chi(1) \mid \chi \in \text{Irr}(G) \}$. The structure of G is heavily determined by $\text{cd}(G)$, and there are a lot of classical theorems on this subject. For example, Thompson proved that if there is some prime p that divides every member of $\text{Irr}(G)$ exceeding 1, then G has a normal p-complement (See [10] or [4, Corollary 12.2]).

Given that $N \leq G$, we write $\text{Irr}(G|N) = \{ \chi \in \text{Irr}(G) \mid N \nsubseteq \ker \chi \}$ and $\text{cd}(G|N) = \{ \chi(1) \mid \chi \in \text{Irr}(G|N) \}$.

Berkovich [1] proved a analog of the theorem of Thompson. He showed that $N \leq G$ has a normal p-complement if all nonlinear members of $\text{Irr}(G|N)$ have degree divisible by some fixed prime p.

Isaacs and Knutson [5] proved a generalized version of Berkovich’s theorem. They proved that $N \leq G$ is solvable and has a normal p-complement if every member of $\text{cd}(G|N')$ is divisible by p.

Let $\chi \in \text{Irr}(G)$. In [8], the authors defined $\text{cod}(\chi) = |G : \ker \chi|/\chi(1)$, and called it the codegree of the irreducible character χ. Many facts about codegree of the irreducible characters in finite groups have been obtained. For
example, see [8] [6] [8] [11]. Recently, Chen and Yang [2] proved that if \(G \) is a \(p \)-solvable group and \(\text{cod}(\chi) \) is a \(p' \)-number for every monolithic, monomial \(\chi \in \text{Irr}(G) \), then \(G \) has a normal \(p \)-complement.

Let \(H \) be a maximal subgroup of \(G \) and let \(\chi \) be an irreducible constituent of \((1_H)^G\). Following [2], we call \(\chi \) a \(\mathcal{P} \)-character of \(G \) with respect to \(H \), and denote by \(\text{Irr}_\mathcal{P}(G) \) the set of \(\mathcal{P} \)-characters of \(G \). In [9], Qian and Yang showed many interesting facts about \(\mathcal{P} \)-characters in a finite solvable group. Lu, Wu and Meng [11] proved that if \(G \) is a \(p \)-solvable group and \(\text{cod}(\chi) \) is a \(p' \)-number for every \(\chi \in \text{Irr}_\mathcal{P}(G) \), then \(G \) is \(p \)-nilpotent.

In this paper, we may take one more step. We write

\[
\text{cod}(G|N) = \{ \text{cod}(\chi) \mid \chi \in \text{Irr}(G|N) \}.
\]

Our main result is the analog of the theorem of Isaacs and Knutson.

Theorem 1.1 Let \(N \trianglelefteq G \) and suppose that every member of \(\text{cod}(G|N) \) is not divisible by some fixed prime \(p \in \pi(G) \). Then \(N \) has a normal \(p \)-complement and \(N \) is solvable.

2 Proof

The following result is useful in the proof of the solvability in Theorem 1.1.

Lemma 2.1 ([4] Lemma 2.2) Suppose that \(A \) acts on \(G \) via automorphisms and that \((|A|, |G|) = 1 \). If \(C_G(A) = 1 \), then \(G \) is solvable.

Proof of the theorem We first prove that \(N \) has a normal \(p \)-complement. Write \(M = O^p(N) \), let \(P \in \text{Syl}_p(M) \). Assume that \(P > 1 \) and we work to obtain a contradiction.

Choose \(S \in \text{Syl}_p(G) \) such that \(P \leq S \). Then \(P = S \cap M \leq S \), and \(S \) permutes \(\text{Lin}(P) \), where \(\text{Lin}(P) = \{ \lambda \in \text{Irr}(P) \mid \lambda(1) = 1 \} \). Since \(|S| \) and \(|\text{Lin}(N)| \) are \(p \)-powers, we may choose a nonprincipal linear character \(\lambda \) of \(P \) such that \(\lambda \) is stabilized by \(S \).

Now \(S \) stabilizes \(\lambda^M \), and thus \(S \) permutes the irreducible constituents of \(\lambda^M \). Since \(\lambda^M(1) = |M : P| \) is not divisible by \(p \), \(\lambda^M \) must have some \(S \)-invariant irreducible constituent \(\alpha \in \text{Irr}(M) \) with degree not divisible by \(p \). Clearly, \(\alpha \) is stabilized by \(MS \), and \(|MS : S| \) is \(p \)-power and so is relatively prime to \(\alpha(1) \). Furthermore, the determinantal order \(o(\alpha) \) is not divisible by \(p \) since \(M = O^p(M) \). and thus \(o(\alpha) \) is also relatively prime to \(|MS : S| \). It follows from [4] Corollary 6.28 that \(\alpha \) extends to some irreducible character \(\beta \in \text{Irr}(MS) \).

Next, \(\beta^G(1) = \beta(1)|G : MS| = \alpha(1)|G : MS| \) is not divisible by \(p \), and hence it has some constituent \(\chi \in \text{Irr}(G) \) with degree not divisible by \(p \). Assume that \(\text{cod}(\chi) = |G : \ker \chi|/\chi(1) \) is not divisible by \(p \). Then we deduce that \(S \leq \ker \chi \), in particular, \(P \leq \ker \chi \). Thus, the irreducible constituents of \(\chi_P \) are trivial. By Frobenius Reciprocity, \(\beta \) is an irreducible constituent of \(\chi_{MS} \) and so \(\alpha \) is an
irreducible constituent of χ_M. Similarly, λ is an irreducible constituent of α_P. Thus, λ is an irreducible constituent of χ_P and is trivial, a contradiction.

Assume that $\text{cod}(\chi)$ is divisible by p. By hypothesis, χ is not a member of $\text{Irr}(G|N')$ and thus $N' \leq \ker \chi$, and so the irreducible constituents of χ_N are linear. The irreducible constituents of χ_M are therefore linear, and in particular, α is linear. Thus α is an extension of λ to M, and it follows that $o(\lambda)$ divides $o(\alpha)$, which is not divisible by p, and therefore $o(\lambda)$ is not divisible by p. This is a contradiction since λ is a nontrivial linear character of a p-group.

Now, we prove that N is solvable. By the above arguments, we know that N has a normal p-complement K, and we write $M = N' \cap K$. Then p does not divide $|M|$ and every member of $\text{cod}(G|M)$ is not divisible by p. Let $S \in \text{Syl}_p(G)$ and note that if $\theta \in \text{Irr}(M)$ is S-invariant, then θ is extendible to some character $\varphi \in \text{Irr}(MS)$. Since p does not divide $\varphi^G(1) = |G : MS|\varphi(1)$, we see that φ^G has an irreducible constituent χ with degree not divisible by p.

Assume that $\text{cod}(\chi) = |G : \ker \chi|/\chi(1)$ is not divisible by p. Then $S \leq \ker \chi$ and thus $S \leq \ker \varphi$. We deduce that $\varphi(ms) = \varphi(m)$ for all $m \in M$ and $s \in S$. So every $\theta \in \text{Irr}(M)$ is S-invariant. It follows from Glauberman’s theorem that $C_M(S) = M$. Thus $MS = M \times S$ and $\varphi = \theta \times 1_S$. Since $S \neq 1$, we may choose again $\varphi = \theta \times \xi \in \text{Irr}(MS)$ for some nonprincipal character $\xi \in \text{Irr}(S)$. So $S \nsubseteq \ker \varphi$, which is a contradiction.

Thus $\text{cod}(\chi)$ is divisible by p. It follows that $\chi \notin \text{cod}(G|N')$ and hence $M \leq \ker \chi$ and $\theta = 1_M$. It follows again from Glauberman’s theorem that $C_M(S) = 1$. By Lemma 2.1, M is solvable, and thus N is solvable, as claimed.

\begin{flushright} \Box \end{flushright}

Acknowledgements

J. Lu is supported by National Natural Science Foundation of China (1186-1015), Guangxi Natural Science Foundation Program (2020GXNSFAA238045), and Training Program for 1,000 Young and Middle-aged Cadre Teachers in Universities of Guangxi Province; B. Zhang is supported by Guangxi Basic Ability Promotion Project for Young and Middle-aged Teachers (2020KY02019).

References

[1] Y. G. Berkovich, Degrees of irreducible characters and normal p-complements, Proc. Amer. Math. Soc. 106(1989): 33-34.

[2] X. Chen and Y. Yang, Normal p-complements and monomial characters, Monatshefte fur Mathematik 193(2020): 807-810.

[3] N. Du and M. Lewis, Codegrees and nilpotence class of p-groups, J. Group Theory 19(2016): 561-567.
[4] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006.

[5] I. M. Isaacs and Greg Knutson, Irreducible Character Degrees and Normal Subgroups, J. Algebra 199(1998): 302-326.

[6] I. M. Isaacs, Element orders and character codegrees, Arch. Math. (Basel) 97 (2011): 499-501.

[7] J. Lu, K. Wu and W. Meng, P-characters and the structure of finite solvable groups, J. Group Theory, DOI 10.1515/jgth-2020-0087.

[8] G. Qian, Y. Wang and H. Wei, Co-degrees of irreducible characters in finite groups, J. Algebra 312(2007): 946-955.

[9] G. Qian and Y. Yang, Permutation characters in finite solvable groups, Commun. Algebra 46(1)(2018): 167-175.

[10] J. G. Thompson, Normal p-complements and irreducible characters, J. Algebra 14 (1970): 129-134.

[11] Y. Yang and G. Qian, The analog of Huppert’s conjecture on character codegrees, J. Algebra 478(2017): 215-219.