Drinking Water Disinfection Byproducts, Ingested Nitrate, and Risk of Endometrial Cancer in Postmenopausal Women

Danielle N. Medgyesi, Britton Trabert, Joshua Sampson, Peter J. Weyer, Anna Prizment, Jared A. Fisher, Laura E. Beane Freeman, Mary H. Ward, and Rena R. Jones

1Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
2Metabolic Epidemiology Branch, DCEG, NCI, NIH, DHHS, Bethesda, Maryland, USA
3Biostatistics Branch, DCEG, NCI, NIH, DHHS, Bethesda, Maryland, USA
4Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa, USA
5Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA

BACKGROUND: Disinfection byproducts (DBPs) and N-nitroso compounds (NOC), formed endogenously after nitrate ingestion, are suspected endometrial carcinogens, but epidemiological studies are limited.

OBJECTIVES: We investigated the relationship of these exposures with endometrial cancer risk in a large prospective cohort.

METHODS: Among postmenopausal women in the Iowa Women’s Health Study cohort, we evaluated two major classes of DBPs, total trihalomethanes (TTHM) and five haloacetic acids (HAA5), and nitrate-nitrogen (NO3-N) in public water supplies (PWS) in relation to incident endometrial cancer (1986–2014). For women using their PWS >10 y at enrollment (n = 10,501; cases = 261), we computed historical averages of annual concentrations; exposures were categorized into quartiles and then possible >95th percentile. We also computed years of PWS use above one-half the U.S. maximum contaminant level (>½ MCL; 40 µg/L TTHM; 30 µg/L HAA5; 5 mg/L NO3-N). Dietary nitrate/nitrite intakes were estimated from a food frequency questionnaire. We estimated hazard ratios (HR) and 95% confidence intervals (CI) via Cox models adjusted for age, endometrial cancer risk factors [e.g., body mass index, hormone replacement therapy (HRT)], and mutually adjusted for DBPs or NO3-N. We evaluated associations for low-grade (cases = 99) vs. high-grade (cases = 114) type I tumors. We assessed interactions between exposures and endometrial cancer risk factors and dietary factors influencing NOC formation.

RESULTS: Higher average concentrations of DBPs (95th percentile: TTHM ≥93 µg/L, HAA5 ≥49 µg/L) were associated with endometrial cancer risk (TTHM: HR95q vs0y = 1.21, 95% CI: 1.41, 3.40; HAA5: HR95q vs0y = 1.84, 95% CI: 1.19, 2.83; ptrend <0.01). Associations were similarly observed for women greater than median years of PWS use with levels >½ MCL, in comparison with zero years (TTHM: HR95q vs0y = 1.61, 95% CI: 1.18, 2.21; HAA5: HR95q vs0y = 1.85, 95% CI: 1.31, 2.62). Associations with DBPs appeared stronger for low-grade tumors (TTHM: HR95q vs0y = 2.12, 95% CI: 1.17, 3.83; p-trend = 0.008) than for high-grade tumors (TTHM: HR95q vs0y = 1.40, 95% CI: 0.80, 2.44; p-trend = 0.339), but differences were not statistically significant (p-heterogeneity = 0.43). Associations with TTHM were stronger among ever HRT users than non-HRT users (p-interaction <0.01). We observed no associations with NO3-N in drinking water or diet.

DISCUSSION: We report novel associations between the highest DBP levels and endometrial cancer for our Iowa cohort that warrant future evaluation.

https://doi.org/10.1289/EHP10207

Introduction

Endometrial cancer is the most common gynecological cancer in the United States, with most cases occurring among postmenopausal women.1 Established risk factors include obesity, other components of metabolic syndrome, and certain types of hormone replacement therapy (HRT).2 The shared etiological pathway of such risk factors is thought to be increased levels of estrogen unopposed by progesterone,3 which can lead to endometrial cell proliferation and transformation.4 Decreased risk of endometrial cancer has been associated with reproductive factors related to fewer menstrual cycles, including oral contraceptive use, parity, and younger age at menopause.5,6 The role of drinking water contaminants in endometrial cancer risk is not well-characterized, despite evidence of carcinogenicity7–9 and demonstrated endocrine disrupting properties for certain chemicals.10,11 Trihalomethanes (THMs) and haloacetic acids (HAAs) are classes of disinfection byproducts (DBPs) frequently present in chlorinated water, a standard disinfection method for public drinking water supplies.12 Some of the common THMs (e.g., chloroform) and HAAs (e.g., bromochloroacetic) have been classified as probable human carcinogens based on animal studies demonstrating genotoxicity, mutagenicity, and cell proliferation.7,8 Animal studies have reported measures of infertility,13–17 disruption in estrous cycles,18 persistent elevated levels of serum estradiol levels19,20 and suppression of progesterone21 following ingestion of DBPs in drinking water. Although the toxicity of DBPs in the uterus has not been directly investigated, a growing body of literature suggest endocrine disruptors in the environment may play an important role in endometrial cancer.22 Epidemiological studies evaluating THMs have produced the strongest evidence for bladder cancer risk22–24 and some evidence for colorectal cancer,25,26 epidemiological evidence for HAAs and cancer is considerably more limited.7 To our knowledge, the only analysis of endometrial cancer and DBPs, which was conducted in the Iowa Women’s Health Study (IWHS), found a non-significant increased risk among postmenopausal women who used public supplies that were sourced from surface water vs. ground water, and for women using public water with the highest levels of chloroform.26 However, these results were limited by 8 y of follow-up time and measurements from two short-term statewide water monitoring efforts in 1979, 1986, and 1987.26

Nitrate (NO3-) is a common drinking water contaminant in agricultural areas and has been classified by the International
Agency for Research on Cancer (IARC) as a probable human carcinogen under conditions that increase endogenous formation of N-nitroso compounds (NOCs), such as low dietary antioxidant levels.\(^9,27\) Dietary intake of vegetables, particularly leafy greens, is also a source of nitrate, but NOC formation is unlikely due to the co-ingestion of antioxidants like vitamin C.\(^9\) Ingestion of nitrite (NO\(_2\)-), which is added to processed meats, is more likely to result in NOC formation.\(^9\) Bladder,\(^9\) kidney, stomach, and colorectal cancers have been associated with drinking water nitrate and dietary nitrate from red and processed meats.\(^9,27\) An analysis of drinking water nitrate in early follow-up of the IWHS found a statistically significant inverse association at the highest quartile of nitrate for endometrial cancer, but this analysis was based on 32 exposed cases, and authors noted possible chance findings.\(^29\)

One case–control study found a decreased risk of endometrial cancer and dietary nitrate mainly from vegetables, whereas nitrite from processed foods was not evaluated.\(^60\)

In the present study, we aimed to evaluate the relationship between drinking water contaminants and risk of endometrial cancer in the IWHS. Our analysis enhances the two previous investigations in this cohort\(^32,33\) and includes more than 15 y of additional follow-up and more than 90 additional endometrial cases (\(n = 261\)) among women who reported using the same public water supply for >10 y. We employed an exposure assessment that estimated levels of THMs, HAAs, and nitrate in public drinking water for several decades prior to enrollment, averaged for each participant.\(^\) We also considered the co-ingestion of antioxidants like vitamin C.\(^9\) Ingestion of nitrite (NO\(_2\)-), which is added to processed meats, is more likely to influence endogenous nitrosation.\(^3\)

Our study considered potential interactions between drinking water contaminants and dietary nitrate with respect to influence endogenous nitrosation.\(^3\)

Methods

Study Population

The IWHS is a cohort of postmenopausal women 55–69 y of age enrolled in 1986 and followed prospectively for cancer incidence and mortality.\(^31\)

Briefly, 98,030 women were randomly selected from Iowa driver’s license records and mailed a baseline survey that included questions about demographics, diet and lifestyle, reproductive and medical history, and family history of cancer. A total of 41,836 (42%) women responded and thereafter were enrolled.\(^31\) Additional questionnaires were mailed in 1987, 1989, 1992, 1997, and 2004 with high response rates (91%, 90%, 83%, 79%, and 70%, respectively among those alive at the time of each survey). Information about participants’ primary drinking water source (municipal water system, rural water system, private well, bottled water, other, do not know) and duration of use (<1 y, 1–5 y, 6–10 y, 11–20 y, >20 y, do not know) were collected in the 1989 survey (\(n = 36,127\)). The institutional review boards of the University of Minnesota, the University of Iowa, and the National Institutes of Health approved the study. Return of the baseline questionnaire was considered to indicate informed consent to participate.

We ascertained incident endometrial cancers diagnosed from 1986 through 31 December 2014 from the State Health Registry of Iowa, including morphology and stage. We identified primary epithelial endometrial cancer cases using ICD-O-3 morphology codes; nonepithelial cases were recoded as noncases. Subtypes of endometrial cancer were classified as follows: type I (endometrioid, tubular, adenoscarcoma not otherwise specified, adeno-carcoma with squamous differentiation, and mucinous), type II (serous carcinoma, clear cell, and mixed cell adenocarcinoma), or other epithelial. Among type I cases (over 80% of cases), we classified tumor grade 1 as “low grade” and tumor grades 2 and 3 as “high grade.”\(^7\)

Vital status was determined through linkages with the National Death Index and State Health Registry. Person-years of follow-up were calculated from enrollment date until the earliest date of the following events: endometrial cancer diagnosis, surgical removal of the uterus (self-reported in the 1992 and 2004 survey), death, loss to follow-up, or end of follow-up (2014). For those who emigrated or died outside of Iowa, the censored date was calculated as the midpoint between the last contact and the date of death.

Drinking Water Exposure Assessment

The exposure assessment approach used to estimate long-term levels of THMs, HAAs, and nitrate in public water supplies (municipal or rural water system, hereafter PWS) for the IWHS has been described, and key details are noted herein.\(^32,33\) Annual average concentrations were computed for the historical exposure period of 1955 to 1988, leveraging historical water characteristics data collected by the University of Iowa Center for Health Effects of Environmental Contamination (CHEEC). Annual nitrate measurements were available for each PWS starting after the promulgation of the U.S. Environmental Protection Agency (U.S. EPA) 1992 Phase II rule.\(^34\) Monitoring frequency prior to this rule depended on the size of the population served; therefore, our long-term average nitrate exposures were derived from a variable number of measurements per PWS. For some utilities, typically the larger PWS, multiple measurements were available per year, and we averaged these into annual values. Regulation of DBPs was not promulgated until the 1980s, and measurement data were limited prior to that time. Annual DBP concentrations for PWS with no data in earlier years were estimated based on available measurements and characteristics of supplies (e.g., water source and treatment).\(^35\) The approach for estimating these historical levels was based on case studies and an understanding of the water quality and operational parameters that impact DBP formation. Each utility treating surface or groundwater was evaluated on a case-by-case basis and considered multiple treatment/disinfection scenarios and water quality parameters along with actual DBP measurements leveraging from various water surveys conducted since the 1970s. The bulk of the data supporting this effort came from 34 Iowa utilities representing 9 surface water systems, 8 mixed surface/groundwater systems, and 17 groundwater systems with a range (high and low) of brominated THMs. The estimation also considered changes in disinfection practices over time (e.g., moving from chlorination of raw water to settled water).

For our analyses, we computed the sum of the four regulated THMs, hereafter referred to as total trihalomethanes (TTHM; \(\mu g/L\)), and the sum of the five regulated haloacetic acids (HAA5; \(\mu g/L\)). We evaluated these summated classes of DBPs because they are regulated as a group and because of the high correlation between individual estimates of the THMs (e.g., chloroform, bromodichloromethane; Spearman’s rho (\(\rho = 0.95\)), as well as the individual HAA5 chemicals (trichloroacetic, dichloroacetic, and bromochloroacetic acid; \(\rho = 0.69–0.82\); Table S12). Frequency of nitrate-nitrogen (NO\(_3\)-N; mg/L) measurements for each utility ranged from every several years to multiple samples per year prior to regulation beginning in 1993. For those who reported using a PWS in the 1989 survey (\(n = 25,251\); 60%), we linked annual average concentrations of TTHM, HAA5, and NO\(_3\)-N by matching the city name of the PWS and participant address. Some rural water supplies could not be matched by city name, and we received assistance in assigning participants to these sources from CHEEC, which has maintained water contaminant records in Iowa for decades.
Dietary Assessment

As previously described, estimates of dietary macro- and micro-nutrients were derived from a food frequency questionnaire administered at enrollment, and they have shown good reproducibility in later surveys. Total dietary nitrate (converted to NO3-N for comparison with drinking water) and nitrite (mg/day) were also included in the linkage, such as ever/never use of chloramination treatment. To investigate whether long-term exposure at levels one-half of the regulatory limit were associated with risk, we enumerated women based on the median number of years served by a PWS or greater. Characteristics of each participant’s PWS were also included in the linkage, such as ever/never use of chloramination and primary water source (e.g., ground or surface) during the historical time period.

Statistical Analysis

Based on self-reported data at enrollment, we excluded women from our analyses who were premenopausal (n = 547), diagnosed with cancer (except nonmelanoma skin cancer) prior to enrollment or received cancer chemotheraphy (n = 3,830), and those who reported unrealistic dietary information (<600 or >5,000 kcal/d) or left more than 30 dietary items blank (n = 2,751), leaving 34,708 women. We further excluded women who reported having their uterus removed (i.e., hysterectomy) at the time of enrollment (n = 11,694). The remaining 23,014 women eligible for analyses were similar to those excluded due to hysterectomy, except that the women who reported hysterectomies reported more HRT use and a younger age at menopause (2.6%), smoking status (1.1%), HRT use (0.26%), and oral contraceptive (OC) use (ever/never), HRT use (ever/never), parity (ever/never), smoking status (never, former, current), and female family (biological mother/sister/daughter) history of any cancer and specifically any reproductive cancer or endometrial cancer (yes/no).

In addition to including a priori selected covariates that are established endometrial cancer risk factors (e.g., BMI, age at menopause, HRT and OC use, parity) in models, we evaluated the importance of covariates with backward elimination and a 10% change in the effect estimate of the exposure. Final models were adjusted for age, BMI, age at menopause, OC use, HRT use, parity, and smoking status. We did not mutually adjust TTHM and HAA5 exposures because these DBPs are highly correlated (r = 0.90). However, we adjusted DBP models for the continuous natural logarithm average concentration of NO3-N and vice versa (r between TTHM and NO3-N = 0.24). Dietary intakes of nitrate and nitrite were not correlated with NO3-N in drinking water (r ≤ 0.01) and therefore were not included as covariates in the final models. We observed small percentages of missing data in our drinking water subgroup for the covariates parity (1%), age at menopause (2.6%), smoking status (1.1%), HRT use (0.26%), and oral contraceptive use (0.17%); proportions missing were similar in the dietary analysis group; Table S1). We found nonrandom patterns of missingness across exposure categories (Table 1) and prioritized the inclusion of as many participants and endometrial cancer cases by using a missing indicator category for parity, age at menopause, and smoking status variables. The small proportion of those with missing information for HRT use and OC use (<1%) were excluded from all analyses (n = 43 women; n = 1 case). Among the remaining 10,501 women in the drinking water analyses (Figure S1), there were 261 primary epithelial endometrial cancer cases, of which 223 were type I cases (Table S2).

In sensitivity analyses, we evaluated indicators of DBP exposure that have been used in previous IWHS analyses, including whether a participant’s PWS primarily used a surface water source (vs. ground) or used chloramination treatment (vs. never). Because domestic wells are not typically chlorinated and private well users were presumed to have no DBP exposure, we also compared quartiles of TTHM and HAA5 among PWS users to participants who reported using a private well in the 1989 survey for 10 or more years (n = 3,406) as the reference group. In contrast, private wells in Iowa have higher NO3-N levels in comparison to surface water sources.

There were 21,477 (51%) women who reported using their PWS for more than 10 y; these women selected the categorical survey responses of either 11–20 y or >20 y of PWS use. Because the questionnaire did not collect the exact years of PWS use, we estimated these years with data from a case–control study conducted in Iowa during a time period similar to that of IWHS enrollment in which complete drinking water histories were ascertained. Using information from the female controls in that study, we estimated a median duration of 16 y for IWHS participants who responded 11–20 y and a median of 40 y for those who reported >20 y. To investigate whether long-term exposure at levels one-half of the regulatory limit were associated with risk, we enumerated the number of years that annual concentrations were above half their respective U.S. EPA maximum contaminant levels (>1½ MCL: 40 μg/L TTHM; 30 mg/L HAA5; 5 mg/L NO3-N). We were not able to evaluate risk above the MCLs due to the few women exposed at these levels. Characteristics of each participant’s PWS were also included in the linkage, such as ever/never use of chloramination and primary water source (e.g., ground or surface) during the historical time period.

Environmental Health Perspectives 057012-3 130(5) May 2022
Table 1. Characteristics of IWHS participants eligible for the drinking water analysis (n = 10,544), by quartiles of TTHM and nitrate-nitrogen (NO3-N) in PWS.

Race [n (%)]	TTHM (μg/L)	HAA5 (μg/L)
Non-Hispanic White	2,511 (98.6)	2,523 (98.5)
Non-Hispanic Black	1 (0)	1 (0)
Hispanic	2 (0.1)	4 (0.2)
American Indian or Alaskan Native	4 (0.2)	5 (0.2)
Asian or Pacific Islander	0 (0)	0 (0)
Missing	29 (1.1)	29 (1.1)

Education [n (%)]		
Less than high school		
High school	1,333 (52.3)	1,339 (52.3)
Missing	5 (0.2)	5 (0.2)

Body mass index [n (%)]		
<25	1,077 (42.3)	1,059 (41.3)
≥30	545 (21.4)	533 (21.6)

Age at menopause [n (%)]		
<48	602 (23.6)	604 (23.6)
≥52	869 (34.1)	873 (34.1)

Oral contraceptive use [n (%)]		
Never	2,041 (80.1)	2,042 (79.7)
Ever	499 (19.6)	510 (19.9)

Smoking status [n (%)]		
Never	1,664 (64.5)	1,653 (64.5)
Former	666 (26.1)	674 (26.3)

Family history of endometrial cancer [n (%)]		
No	2,441 (95.8)	2,452 (95.7)
Yes	106 (4.2)	110 (4.3)

Family history of reproductive cancer [n (%)]		
No	2,053 (80.6)	2,066 (80.6)
Yes	494 (19.4)	496 (19.4)

| Vitamin C [mg/d (median)] | 105 109 | 104 106 |

PWS primary water source [n (%)]		
Ground	2,547 (100)	2,562 (100)
Surface	0 (0)	1 (0)

PWS chloraminated [n (%)]		
Never	2,470 (97)	2,553 (99.6)
Ever	77 (3)	94 (0.6)

Note: The IWHS is a cohort of postmenopausal women 55–69 y of age in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 (N = 41,836). n = 10,544 is the group of women restricted to those with >10 y at their drinking water source and with no hysterectomy reported at baseline. n = 43 women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from all subsequent drinking water analyses. HRT, hormone replacement therapy; IWHS, Iowa Women’s Health Study; PWS, public water supplies; TTHM, total trihalomethanes.

a Determined using information collected at baseline and follow-up surveys.

b Among biological mother, sister, and daughter.

Per 1,000 kcal per day of energy intake.

d During the study period.

with PWS42; therefore, we assessed risk for women on private wells in comparison with PWS users in the first quartile of average NO3-N concentrations (<0.48 mg/L). We also evaluated associations with quartiles of individual THMs (chloroform, bromochloromethane) and HAAs (dichloroacetic, trichloroacetic, and bromochloroacetic acid).

We used stratified models to explore differences in associations for drinking water contaminants by factors associated with...
endometrial cancer: HRT use, BMI, and smoking status. We also stratified NO$_3$-N quartiles by levels of dietary intake of vitamin C and red meat, both of which may influence endogenous nitrosation in the gastrointestinal tract (less than median or greater than or equal to median). We tested for multiplicative interaction (p-interaction) using likelihood ratio tests that compared nested and full models with and without an interaction term. Because we observed differences in associations for DBP classes when stratified by HRT use, we conducted a postest sensitivity analyses by individual THM and HAA compounds. We also further stratified HRT users by ≤1 y or >1 y of use prior to study enrollment.

Dietary analyses included the aforementioned 23,014 women satisfying inclusion criteria minus those with <1% missing covariate information (OC and HRT use; n = 117), leaving 22,897 women for analysis (Figure S1). We used Cox proportional hazards regression to evaluate quartiles of total dietary nitrate and nitrite; nitrite intakes from plant, animal, and processed meat sources; and risk of endometrial cancer. Models were adjusted for covariates included in the drinking water analyses and mutually adjusted for dietary nitrate or nitrite. We also evaluated dietary nitrate and nitrite stratified by low/high vitamin C intake (less than median or greater than or equal to median). All analyses were conducted in R (version 4.0.2; R Development Core Team). We considered results statistically significant at the p-value threshold of <0.05.

Results

Demographics, lifestyle characteristics, reproductive history, family history of cancer, and dietary intakes of micronutrients among the 10,544 women in the drinking water analyses were similar across quartiles of TTHM and HAA5 (Table 1). We observed a larger proportion of current and former smokers in the highest quartiles of TTHM and HAA5 levels. A greater proportion of women in the highest quartiles of TTHM and HAA5 had a PWS that used a surface water source. Women using a PWS that was ever chloraminated had higher TTHM and HAA5 levels. The mean total follow-up time was 21 y and included 221,036 total person-years at risk.

Crude models (adjusted only for age) for the drinking water analyses are presented in Tables S3–S5. In multivariable models, average concentrations of DBPs in drinking water ≥95th percentile in comparison with Q1 were significantly associated with endometrial cancer risk (TTHM: HR$_{95vsQ1} = 2.19$, 95% CI: 1.41, 3.40;

Table 2. Association between drinking water TTHM, HAA5, and NO$_3$-N and incident epithelial endometrial cancer overall and restricted to type I cases in the Iowa Women’s Health Study (n = 10,501).
Epithelial endometrial cancer cases
n
Average TTHM (μg/L)
<0.90
0.90–<4.77
4.77–<14.50
14.50–<93.2
≥95th (93.2–200.88)
p-trendc
Years >40 μg/L TTHM
<36
≥36
p-trendc
Average HAA5 (μg/L)
<1.87
1.87–<3.52
3.52–<8.17
8.17–<48.5
≥95th (48.5–118.15)
p-trendc
Years >30 μg/L HAA5
<38
≥38
p-trendc
Average NO$_3$-N (mg/L)
<0.48
0.48–<1.09
1.09–<2.98
2.98–<5.71
≥95th (5.71–25.34)
p-trendc
Years >5 mg/L NO$_3$-N
<4
≥4
p-trendc

Note: The IWHS is a cohort of postmenopausal women 55–69 y of age who lived in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 (N = 41,836). —, no data; CI, confidence interval; HR, hazard ratio; IWHS, Iowa Women’s Health Study; Ref, reference; TTHM, total trihalomethanes.

A total of n = 43 women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from analyses. Participants missing information for other covariates were included in models with missing coded as a separate category.

Adjusted for age, body mass index, menopause age, oral contraceptive use, hormone replacement therapy use, parity, smoking status, and mutually adjusted for ln-transformed concentrations of NO$_3$-N (for TTHM/HAA5 models) or TTHM (for NO$_3$-N models).

Modeled as a continuous variable derived from the median of each exposure category.
Table 3. Association between individual trihalomethane and haloacetic acid compounds and incident epithelial endometrial cancer in the Iowa Women’s Health Study (n = 10,501).

Individual haloacetic acids	Cases	HR (95% CI)	
Chloroform (µg/L)			
<0.6	2,610	54	Ref
0.6−<1.85	2,532	57	1.01 (0.75, 1.39)
1.85−<8.41	2,371	68	1.52 (1.06, 2.20)
8.41−18.85	2,988	82	1.50 (1.05, 2.15)
p-trend	—	0.081	
Bromodichloromethane (µg/L)			
<0.25	2,145	42	Ref
0.25−<1.16	2,981	75	1.35 (0.93, 1.98)
1.16−<3.78	2,730	61	1.26 (0.83, 1.89)
3.78−33.0	2,645	83	1.81 (1.24, 2.64)
p-trend	—	0.003	
Dichloroacetic (µg/L)			
<1.6	2,572	57	Ref
1.6−<2.27	2,651	63	1.04 (0.72, 1.49)
2.27−<5.24	2,570	55	1.02 (0.70, 1.48)
5.24−53.5	2,708	86	1.53 (1.09, 2.14)
p-trend	—	0.002	
Trichloroacetic (µg/L)			
<0.25	2,090	42	Ref
0.25−<0.63	2,327	54	1.22 (0.81, 1.82)
0.63−<1.69	3,448	82	1.32 (0.90, 1.94)
1.69−52.1	2,636	83	1.77 (1.22, 2.59)
p-trend	—	0.003	
Bromochloroacetic (µg/L)			
<0.88	5,231	118	Ref
0.88−<1.89	2,574	71	1.34 (0.98, 1.83)
1.89−10.4	2,696	72	1.24 (0.91, 1.67)
p-trend	—	0.237	

Note: The JWHS is a cohort of postmenopausal women 55–69 y of age who lived in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 (N = 41,836). a: no data; CI: confidence interval; HR, hazard ratio; JWHS, Iowa Women’s Health Study; Ref, reference.

* A total of n = 126 women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from analyses. Participants missing information for other covariates were included in models with missing coded as a separate category.

* Adjusted for age, body mass index, menopausal age, oral contraceptive use, hormone replacement therapy use, parity, smoking status, and ln-transformed concentrations of NO3-N.

* Modeled as a continuous variable derived from the median of each exposure category.

* Analyzed as tertiles, given the limited distribution.

Conclusions:

HAA5: HR95vsQ1 = 1.84, 95% CI: 1.19, 2.83, and trends across increasing categories were significant for both contaminants (TTHM: p-trend = 0.001; HAA5: p-trend = 0.002); Table 2. Cubic splines of continuous log-transformed average estimated concentrations illustrate this increased risk at the high exposure levels (Figure S2). Associations between DBP exposures and type I cases were similar (TTHM: HR95vsQ1 = 1.99, 95% CI: 1.22, 3.24; HAA5: HR95vsQ1 = 1.64, 95% CI: 1.02, 2.65). Women with TTHM and HAA5 levels ≥ median NO3-N in PWS (TTHM: HRlowgradeQ4 = 1.86, 95% CI: 1.03, 3.38) and trihalomethane (HRlowgradeQ4 = 1.84, 95% CI: 1.04, 3.38) but not for high-grade tumors (TTHM: HRhighgradeQ4 = 1.40, 95% CI: 0.80, 2.44; HAA5: HRhighgradeQ4 = 1.27, 95% CI: 0.77, 2.11); Table 4. However, the tests for heterogeneity were not statistically significant (TTHM: p-heterogeneity = 0.428; HAA5: p-heterogeneity = 0.507).

In stratified analyses, we observed greater risk of endometrial cancer in the highest quartile of TTHM exposure for women who had ever used HRT (HRQ4HRTusers = 2.16, 95% CI: 1.21, 3.84; p-trend = 0.005) vs. nonusers (HRQ4Nonusers = 1.40, 95% CI: 0.86, 2.27; p-trend = 0.262); p-interaction = 0.007; Table 5. Trends for HAA5 exposure were similar in both HRT groups (p-trends = 0.048 and 0.046 for never and ever, respectively) and no interaction was observed (p-interaction = 0.977). Results by duration of HRT use showed the risk estimate for highest TTHM quartile was stronger among HRT users > 1 y (HRQ4HRT>1y = 2.42, 95% CI: 1.26, 4.64; p-trend < 0.001) than HRT users ≤ 1 y (HRQ4HRT≤1y = 1.54, 95% CI: 0.40, 5.89; p-trend = 0.802); Table S8. In similarly stratified analyses for individual THMs and HAs, we observed significant trends for bromodichloromethane (p-trend = 0.002) and trichloroacetic acid (p-trend = 0.004) among participants who had ever used HRT, but not among those who had never used HRT (bromodichloromethane: p-trend = 0.250; trichloroacetic acid: p-trend = 0.194); however, interactions were not statistically significant (bromodichloromethane: p-interaction = 0.216; trichloroacetic acid: p-interaction = 0.375); Table 6.

Tests for interaction did not suggest differences in associations between DBPs and categories of BMI, although risk was significantly increased in the highest quartile of HAA5 for women who were obese (HRQ4BMIobese = 1.76, 95% CI: 1.04, 2.98), but not for those who were overweight or normal weight (Table S9). Stratified analyses and evaluation of interaction terms between DBPs and smoking status (less than median or greater than or equal to median) did not suggest differences in associations with endometrial cancer (Table S10).

Analyses of dietary intakes of nitrate and nitrite included 566 epithelial endometrial cancer cases among 22,897 women followed for a mean of 23 y and included 467,193 person-years at risk (Table 7). We did not observe any statistically significant associations or trends across quintiles of dietary nitrate (p-trend = 0.357) or nitrite (p-trend = 0.871). Associations with intakes of nitrate from plant or animal sources were similarly null, but we observed a nonstatistically significant increased risk in the fourth and fifth quintiles of nitrate intake from processed meats (HRQuintile4 = 1.19; 95% CI: 0.92, 1.55) and (HRQuintile5 = 1.11; 95% CI: 0.85, 1.45). In a stratified analysis, increased risk was observed for women with below median vitamin C intake in the fourth quintile of nitrate from processed meat (HRQuintile4 = 1.73; 95% CI: 1.14, 2.62).
and the interaction was borderline statistically significant (p-interaction $= 0.0465$); Table S11.

Discussion

In a cohort of postmenopausal women living in Iowa, we found a novel association between relatively high levels of TTHM and HAA5 in drinking water and endometrial cancer risk. We observed a suggestive stronger association between these contaminants and risk of low-grade in comparison with high-grade type I tumors. Stratified analyses suggested risk associated with TTHM may be greater for those who had ever used HRT. We did not observe associations with NO$_3$-N in drinking water or total intakes of dietary nitrate or nitrite.

To our knowledge, no other epidemiological studies besides the IWHS cohort have evaluated the association between exposure to DBPs and endometrial cancer risk. An IWHS analysis conducted in 1997 found a suggestive association with endometrial cancer among women using a surface in comparison with a ground-water drinking water source, and those with high levels of chloroform measured during a short-term campaign effort in 1979 and 1986–1987. Our study sought to reexamine this research question with additional follow-up time and ascertained cases and an improved exposure assessment estimating long-term historical concentrations of two regulated classes of DBPs. In doing so, we found a trend of elevated risk with increasing levels of average TTHM and HAA5 in PWS used by women in this cohort for more than $10\, y$. Some of the common chemicals in TTHM and HAA5 are probable human carcinogens based on animal studies demonstrating genotoxicity, mutagenicity, and cell proliferation at high levels of exposure. DBPs have been associated with several non-cancer reproductive outcomes in men and women, including infertility, which suggests they play a role in hormonal dysfunction. Animal studies suggest DBPs may increase estradiol levels and suppress progesterone levels; elevated levels of estrogen unopposed by progesterone is a known risk factor for endometrial cancer. However, we are not aware of any mechanistic studies specifically evaluating the toxicity or carcinogenicity of DBPs in the uterus.

Significant risks at the highest quartiles of exposure (e.g., TTHM $\geq 14.5\, \mu g/L$; HAA5 $\geq 8.17\, \mu g/L$), and even greater risk at the 95th percentile (TTHM ≥ 93.2; HAA5 ≥ 48.5), suggest associations are

Table 4. Association between TTHM and HAA5 and risk of low- and high-grade type I endometrial cancer in the Iowa Women’s Health Study ($n = 10,501$).
Low grade
n
Average TTHM (µg/L)
$<$0.90
0.90–4.77
4.77–14.50
14.50–<200.88
p-trend
Average HAA5 (µg/L)
$<$1.87
1.87–<3.52
3.52–<8.17
8.17–118.15
p-trend

Note: The IWHS is a cohort of postmenopausal women 55–69 y of age who lived in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 ($N = 41,836$). —, no data; BMI, body mass index; CI, confidence interval; HR, hazard ratio; IWHS, Iowa Women’s Health Study; Ref, reference; TTHM, total trihalomethanes.

aA total of $n = 43$ women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from analyses. Participants missing information for other covariates were included in models with missing coded as a separate category.

bAdjusted for age, BMI, menopause age, oral contraceptive use, parity, smoking status, and ln-transformed NO$_3$-N levels.

cModeled as a continuous variable derived from the median of each exposure category.

dModeled as a continuous variable derived from the median of each exposure category.

eModeled as a continuous variable derived from the median of each exposure category.

fAdjusted for age, BMI, menopause age, oral contraceptive use, parity, smoking status, and ln-transformed NO$_3$-N levels.

gInteraction terms: Exposure quartiles and never/ever HRT use.

hModeled as a continuous variable derived from the median of each exposure category.

Table 5. Association between drinking water TTHM and HAA5 and risk of endometrial cancer, stratified by HRT use in the Iowa Women’s Health Study ($n = 10,501$).

Average TTHM (µg/L)	**n**	**Cases**	**HR (95% CI)d,b**	**n**	**Cases**	**HR (95% CI)d,b**	**p-Interactionc**
$<$0.90	1,867	34	Ref	—	—	—	
0.90–4.77	1,977	28	0.86 (0.52, 1.42)	828	35	1.50 (0.84, 2.67)	0.26
4.77–14.50	2,051	53	1.79 (1.13, 2.86)	802	22	0.98 (0.51, 1.86)	0.73
14.50–<200.88	1,636	35	1.40 (0.86, 2.27)	670	36	2.16 (1.21, 3.84)	0.004
p-trend	—	—	0.262	—	—	0.007	
Average HAA5 (µg/L)							
$<$1.87	1,892	34	Ref	655	21	Ref	0.046
1.87–<3.52	1,819	33	1.04 (0.64, 1.67)	750	25	0.98 (0.54, 1.75)	0.997
3.52–<8.17	1,961	38	1.22 (0.76, 1.96)	766	27	1.10 (0.62, 1.97)	0.31
8.17–118.15	1,859	45	1.53 (0.98, 2.39)	799	38	1.50 (0.84, 2.67)	0.048
p-trend	—	—	0.048	—	—	0.046	

Note: The IWHS is a cohort of postmenopausal women 55–69 y of age who lived in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 ($N = 41,836$). —, no data; BMI, body mass index; CI, confidence interval; HR, hazard ratio; IWHS, Iowa Women’s Health Study; Ref, reference; TTHM, total trihalomethanes.

aA total of $n = 43$ women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from analyses. Participants missing information for other covariates were included in models with missing coded as a separate category.

bAdjusted for age, BMI, menopause age, oral contraceptive use, parity, smoking status, and ln-transformed NO$_3$-N levels.

cModeled as a continuous variable derived from the median of each exposure category.

dModeled as a continuous variable derived from the median of each exposure category.

eModeled as a continuous variable derived from the median of each exposure category.

fModeled as a continuous variable derived from the median of each exposure category.

gModeled as a continuous variable derived from the median of each exposure category.

hModeled as a continuous variable derived from the median of each exposure category.

iModeled as a continuous variable derived from the median of each exposure category.

jModeled as a continuous variable derived from the median of each exposure category.

kModeled as a continuous variable derived from the median of each exposure category.

lModeled as a continuous variable derived from the median of each exposure category.
driven by the highest levels in Iowa, despite some of these levels being below their U.S. EPA MCLs (TTHM = 80; HAA5 = 60).44 Risks at similar levels have been observed in this cohort for colon and rectal25 but not bladder33 or kidney32 cancers. Exposure to DBP compounds, we found trends were significant for bromodichloromethane and trichloroacetic acid among HRT users but not among nonusers. A new study has demonstrated that DBP chemicals exhibit estrogenic activity48 and affinity for the estrogen receptor.49 Unopposed estrogen therapy is associated with endometrial cancer risk, whereas continuous estrogen plus progestin formulations have been shown to be protective.50 Although detailed information about HRT formulation was not available for our study population, data collected around the time of enrollment estimated that ≤20% of users were prescribed combination HRT; therefore, most women were likely using unopposed estrogen.51 When further stratified by duration of HRT use, we found risk at the highest quartile of TTHM was strongest

Table 6. Association between individual trihalomethane and haloacetic acid compounds and risk of endometrial cancer, stratified by HRT use in the Iowa Women’s Health Study (n = 10,501).

Individual trihalomethanes	Never HRT use	Ever HRT use	p-Interaction				
	n	Cases	HR (95% CI)	n	Cases	HR (95% CI)	p-Interaction
Chloroform (µg/L)							
<0.6	1,921	36	Ref	689	18	Ref	—
0.6–<1.85	1,771	25	0.81 (0.48, 1.35)	761	32	1.60 (0.89, 2.86)	—
1.85–<8.41	1,708	44	1.68 (1.06, 2.66)	663	24	1.39 (0.75, 2.59)	—
8.41–<18.5	2,131	45	1.34 (0.85, 2.13)	857	37	1.84 (1.02, 3.31)	—
p-trend	—	—	0.316	—	—	0.131	0.105
Bromodichloromethane (µg/L)							
<0.25	1,595	28	Ref	550	14	Ref	—
0.25–<1.16	2,109	41	1.28 (0.79, 2.07)	872	34	1.54 (0.82, 2.89)	—
1.16–<3.78	1,926	39	1.39 (0.83, 2.30)	804	22	1.12 (0.56, 2.23)	—
3.78–5.3	1,901	42	1.48 (0.91, 2.41)	744	41	2.40 (1.29, 4.44)	—
p-trend	—	—	0.25	—	—	0.002	0.216
Individual haloacetic acids							
Dichloroacetic (µg/L)							
<1.6	1,920	37	Ref	652	20	Ref	—
1.6–<2.27	1,914	36	0.99 (0.62, 1.57)	737	27	1.14 (0.64, 2.03)	—
2.27–<5.24	1,804	31	1.00 (0.62, 1.62)	766	24	1.06 (0.58, 1.92)	—
5.24–<53.5	1,893	46	1.45 (0.94, 2.24)	815	40	1.69 (0.99, 2.91)	—
p-trend	—	—	0.037	—	—	0.021	0.961
Trichloroacetic (µg/L)							
<0.25	1,558	28	Ref	532	14	Ref	—
0.25–<0.63	1,665	29	1.09 (0.64, 1.83)	662	25	1.47 (0.76, 2.83)	—
0.63–<1.69	2,405	49	1.43 (0.88, 2.32)	1,043	33	1.26 (0.66, 2.39)	—
1.69–52.1	1,903	44	1.51 (0.93, 2.44)	733	39	2.25 (1.21, 4.18)	—
p-trend	—	—	0.194	—	—	0.004	0.375
Bromochloroacetic (µg/L)							
<0.88	3,847	72	Ref	1,384	46	Ref	—
0.88–<1.89	1,849	42	1.36 (0.90, 2.04)	725	29	1.29 (0.79, 2.11)	—
1.89–10.4	1,835	36	1.18 (0.78, 1.77)	861	36	1.31 (0.83, 2.06)	—
p-trend	—	—	0.515	—	—	0.291	0.846

Note: The IWHS is a cohort of postmenopausal women 55–69 y of age who lived in Iowa and were enrolled in 1986 by completing a mailed survey and followed for cancer incidence and mortality until 2014 (N = 41,836).43,44 —, no data; CI, confidence interval; HR, Hazard ratio; HRT, hormone replacement therapy; IWHS, Iowa Women’s Health Study; Ref, reference.

A total of n = 43 women were missing information on oral contraceptive or hormone replacement therapy use and were excluded from analyses. Participants missing information for other covariates were included in models with missing coded as a separate category.

Adjusted for age, body mass index, menopause age, oral contraceptive use, parity, smoking status, and ln-transformed NO3-N levels.

Interaction terms: Exposure quartiles and never/ever HRT use.

Modeled as a continuous variable derived from the median of each exposure category.

Comparison with high-grade cases. Previous studies have suggested differences in risk factors by endometrial cancer grade, such as stronger associations between unconjugated estradiol and low-grade tumors.

Stratified analyses showed modestly greater risk associated with the highest quartile of TTHM among women who had ever used HRT in comparison with those who had never used HRT. However, there was no evidence of an interaction between HRT use and HAA5, despite the high correlation between these two DBP classes in our data. The reduced number of cases when accounting for both DBP exposure and HRT use could have contributed to the inconsistent patterns we observed between DBP classes. When we repeated stratified analyses using individual DBP compounds, we found trends were significant for bromodichloromethane and trichloroacetic acid among HRT users but not among nonusers. A few studies have demonstrated that DBP chemicals exhibit some estrogenic activity and affinity for the estrogen receptor. Unopposed estrogen therapy is associated with endometrial cancer risk, whereas continuous estrogen plus progestin formulations have been shown to be protective. Although detailed information about HRT formulation was not available for our study population, data collected around the time of enrollment estimated that ≤20% of users were prescribed combination HRT; therefore, most women were likely using unopposed estrogen. When further stratified by duration of HRT use, we found risk at the highest quartile of TTHM was strongest.
null findings were reported in a Swedish cohort.53 Endogenous NOC formation, such as in the presence of low antioxidants, is thought to play a role in carcinogenesis.27,31 A meta-analysis found antioxidant vitamins, including vitamin C, were associated with a decreased risk of endometrial cancer.3 Whether risk is associated with processed meat intake and by what mechanism is not clear.

In our detailed evaluation between drinking water contaminants and endometrial cancer risk, we examined whether risk differed by etiological characteristics and established risk factors, afforded by available information on reproductive health and lifestyle factors collected at baseline. Although we tested for interaction between endometrial cancer risk factors and DBP exposures, mediation analyses were outside the scope of our study, given we report novel findings of uncertain mechanisms. We did not have prospective information about hysterectomies that occurred after enrollment; therefore, we were not able to censor women based on the date of surgery. Similarly, we did not evaluate changes in certain risk factors, like BMI, during the prospective period of follow-up. Although our exposure assessment entailed assigning participants long-term average exposures prior to follow-up, our approach was limited by reliance on estimated concentrations in earlier years. We used an ever/never indicator for use of chlorine or ammonia as disinfectant during the historical exposure period as a crude surrogate for the presence of chloraminated DBPs, which lacks temporal specificity; however, for most PWS, these treatments began in the 1980s or earlier and continued over time. Our exposure assessment did not capture potential variation in contaminant levels at the household level because we relied on samples collected at PWS distribution systems for compliance with the Safe Drinking Water Act rather than measurements taken directly from participants’ home taps. Information regarding tap water consumption habits, including quantity, temperature, filtration use, and showering habits, was not collected from participants, which limited our ability to account for individual factors that may influence exposure levels. The previously established residential stability of the IWHS participants before and after enrollment was a study strength56; therefore, exposure misclassification due to mobility was likely minimal and mitigated by the restriction to women living at their addresses for more than a decade.

Our study reports a novel association between relatively high levels of DBPs in drinking water and endometrial cancer risk among postmenopausal women living in Iowa. With extended follow-up time and improved long-term exposure assessment in comparison with an earlier analysis in this cohort, we did not observe associations with nitrate in drinking water. Likewise, total dietary nitrate/nitrite were not associated with this cancer type. Our findings add to the limited literature about drinking water contaminants and endometrial cancer risk. Future research is warranted to examine underlying mechanisms and replicate epidemiological studies in other populations.

References

1. American Cancer Society. Cancer Facts & Figures. 2021. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html [accessed 24 May 2021].

2. Cook LS, Meisner ALW, Weiss NS. 2017. Chapter 47: Endometrial Cancer. Schottenfeld and Fraumeni: Cancer Epidemiology and Prevention, Thun MJ, Linet MS, Cerhan JR, Haiman C, Schottenfeld D. 4th eds. New York, NY: Oxford University Press, 909-924.

3. Key TJ, Pike MC. 1988. The dose-effect relationship between unopposed oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer 57(2):205-212, PMID: 3358913, https://doi.org/10.1038/bjc.1988.44.

4. Akhmedkhanov A, Zelechikh-Jacquette A, Toniolo P. 2001. Role of exogenous and endogenous hormones in endometrial cancer: review of the evidence and research perspectives. Am NY Acad Sci 943:296-315, PMID: 11594550, https://doi.org/10.1111/j.1749-6632.2001.tb03811.x.
44. U.S. Environmental Protection Agency. National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations [accessed 29 September 2021].

45. Dodds L, King WD. 2001. Relation between trihalomethane compounds and birth defects. Occup Environ Med 58(7):443–446, PMID: 1140444, https://doi.org/10.1136/oem.58.7.443.

46. King WD, Dodds L, Allen AC. 2000. Relation between stillbirth and specific chlorination by-products in public water supplies. Environ Health Perspect 108(9):883–886, PMID: 11017894, https://doi.org/10.1289/ehp.00108883.

47. Brinton LA, Trabert B, Anderson GL, Falk RT, Felix AS, Fuhrman BJ, et al. 2016. Serum estrogens and estrogen metabolites and endometrial cancer risk among postmenopausal women. Cancer Epidemiol Biomarkers Prev 25(7):1081–1089, PMID: 27197275, https://doi.org/10.1158/1055-9965.EPI-16-0225.

48. Kim DH, Park CG, Kim YJ. 2020. Characterizing the potential estrogenic and androgenic activities of two disinfection byproducts, mono-haloacetic acids and haloacetamides, using in vitro bioassays. Chemosphere 242:125198, PMID: 31689635, https://doi.org/10.1016/j.chemosphere.2019.125198.

49. Holmes BE, Smeester L, Fry RC, Weinberg HS. 2019. Disinfection byproducts bind human estrogen receptor-α. Environ Toxicol Chem 38(5):956–964, PMID: 30698843, https://doi.org/10.1002/etc.4377.

50. Brinton LA, Felix AS. 2014. Menopausal hormone therapy and risk of endometrial cancer. J Steroid Biochem Mol Biol 142:83–89, PMID: 23680641, https://doi.org/10.1016/j.jsbmb.2013.05.001.

51. Folsom AR, Mink PJ, Sellers TA, Hong CP, Zheng W, Potter JD. 1995. Hormonal replacement therapy and morbidity and mortality in a prospective study of postmenopausal women. Am J Public Health 85(8 pt 1):1128–1132, PMID: 7625511, https://doi.org/10.2105/ajph.85.8_pt_1.1128.

52. Dunneram Y, Greenwood DC, Cade JE. 2019. Diet and risk of breast, endometrial and ovarian cancer: UK Women’s Cohort Study. Br J Nutr 122(5):564–574, PMID: 30526696, https://doi.org/10.1017/S0007114518003665.

53. Genkinger JM, Friberg E, Goldbohm RA, Wolk A. 2012. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk. Am J Clin Nutr 96(4):846–854, PMID: 22952183, https://doi.org/10.3945/ajcn.112.039537.

54. Bandera EV, GilKins DM, Moore DF, McCullough ML, Kushl LH. 2009. Antioxidant vitamins and the risk of endometrial cancer: a dose–response meta-analysis. Cancer Causes Control 20(5):699–711, PMID: 19083131, https://doi.org/10.1007/s10552-008-9283-x.

55. Medgyesi DN, Fisher JA, Cervi MM, Weyer PJ, Patel DM, Sampson JN, et al. 2020. Impact of residential mobility on estimated environmental exposures in a prospective cohort of older women. Environ Epidemiol 4(5):e110, PMID: 32154988, https://doi.org/10.1097/EDE.0000000000000110.