ON DEEP HOLES OF GENERALIZED REED-SOLOMON CODES

SHAOFANG HONG AND RONGJUN WU

Abstract. Determining deep holes is an important topic in decoding Reed-Solomon codes. In a previous paper [8], we showed that the received word \(u \) is a deep hole of the standard Reed-Solomon codes \([q-1, k]_q\) if its Lagrange interpolation polynomial is the sum of monomial of degree \(q-2 \) and a polynomial of degree at most \(k-1 \). In this paper, we extend this result by giving a new class of deep holes of the generalized Reed-Solomon codes.

1. Introduction and the statement of the main result

Let \(\mathbb{F}_q \) be the finite field of \(q \) elements with characteristic \(p \). Let \(n \) and \(k \) be positive integers. Let \(D = \{x_1, ..., x_n\} \) be a subset of \(\mathbb{F}_q \), which is called the evaluation set. The generalized Reed-Solomon code \(C_q(D, k) \) of length \(n \) and dimension \(k \) over \(\mathbb{F}_q \) is defined as follows:

\[
C_q(D, k) = \{(f(x_1), ..., f(x_n)) \in \mathbb{F}_q^n | f(x) \in \mathbb{F}_q[x], \deg(f(x)) \leq k-1\}.
\]

If \(D = \mathbb{F}_q^* \), then it is called standard Reed-Solomon code. If \(D = \mathbb{F}_q \), then it is called extended Reed-Solomon code. For any \([n, k]_q\) linear code \(C \), the minimum distance \(d(C) \) is defined by

\[
d(C) := \min\{d(x, y) | x \in C, y \in C, x \neq y\},
\]

where \(d(\cdot, \cdot) \) denotes the Hamming distance of two words which is the number of different entries of them and \(w(\cdot) \) denotes the Hamming weight of a word which is the number of its nonzero entries. Thus we have

\[
d(C) = \min\{d(x, 0) | 0 \neq x \in C\} = \min\{w(x) | 0 \neq x \in C\}.
\]

The error distance to code \(C \) of a received word \(u \in \mathbb{F}_q^n \) is defined by

\[
d(u, C) := \min\{d(u, v) | v \in C\}.
\]

Clearly \(d(u, C) = 0 \) if and only if \(u \in C \). The covering radius \(\rho(C) \) of code \(C \) is defined to be \(\max\{d(u, C) | u \in \mathbb{F}_q^n\} \). For the generalized Reed-Solomon code \(C = C_q(D, k) \), we have that the minimum distance \(d(C) = n - k + 1 \) and the covering radius \(\rho(C) = n - k \). The most important algorithmic problem in coding theory is the maximum likelihood decoding (MLD): Given a received word, find a word \(v \in C \) such that \(d(u, v) = d(u, C) \) [5]. Therefore, it is very crucial to decide \(d(u, C) \) for the word \(u \). Sudan [6] and Guruswami-Sudan [2] provided a polynomial time list decoding algorithm for the decoding of \(u \).
when \(d(u, \mathcal{C}) \leq n - \sqrt{n} k \). When the error distance increases, the decoding becomes NP-complete for the generalized Reed-Solomon codes [3].

When decoding the generalized Reed-Solomon code \(\mathcal{C} \), for a received word \(u = (u_1, ..., u_n) \in \mathbb{F}_q^n \), we define the Lagrange interpolation polynomial \(u(x) \) of \(u \) by

\[
 u(x) := \sum_{i=1}^{n} u_i \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j} \in \mathbb{F}_q[x],
\]

i.e., \(u(x) \) is the unique polynomial of degree at most \(n - 1 \) such that \(u(x_i) = u_i \) for \(1 \leq i \leq n \). For \(u \in \mathbb{F}_q^n \), we define the degree of \(u(x) \) to be the degree of \(u \), i.e., \(\deg(u) = \deg(u(x)) \). It is clear that \(d(u, \mathcal{C}) = 0 \) if and only if \(\deg(u) \leq k - 1 \). Evidently, we have the following simple bounds.

Lemma 1.1. [4] For \(k \leq \deg(u) \leq n - 1 \), we have the inequality

\[
 n - \deg(u) \leq d(u, \mathcal{C}) \leq n - k = \rho.
\]

Let \(u \in \mathbb{F}_q^n \). If \(d(u, \mathcal{C}) = n - k \), then the word \(u \) is called a deep hole. If \(\deg(u) = k \), then the upper bound is equal to the lower bound, and so \(d(u, \mathcal{C}) = n - k \) which implies that \(u \) is a deep hole. This gives immediately \((q-1)q^k \) deep holes. We call these deep holes the trivial deep holes. It is an interesting open problem to determine all deep holes.

Cheng and Murray [1] showed that for the standard Reed-Solomon code \([p - 1, k]_p\) with \(k < p^{1/4-\epsilon} \), the received vector \((f(\alpha))_{\alpha \in \mathbb{F}_p^*}\) cannot be a deep hole if \(f(x) \) is a polynomial of degree \(k + d \) for \(1 \leq d < p^{3/13-\epsilon} \). Based on this result, they conjectured that there is no other deep holes except the trivial ones mentioned above. Li and Wan [5] used the method of character sums to obtain a bound on the non-existence of deep holes for the extended Reed-Solomon code \(\mathcal{C}_q(\mathbb{F}_q, k) \). Wu and Hong [8] found a counterexample to the Cheng-Murray conjecture [1] about the standard Reed-Solomon codes.

Let \(l \) be a positive integer. In this paper, we investigate the deep holes of the generalized Reed-Solomon codes with the evaluation set \(D := \mathbb{F}_q \setminus \{a_1, ..., a_l\} \), where \(a_1, ..., a_l \) are any fixed \(l \) distinct elements of \(\mathbb{F}_q \). Our method here is different from that of [8]. Write \(D = \{x_1, ..., x_{q-l}\} \) and for any \(f(x) \in \mathbb{F}_q[x] \), let

\[
 f(D) := (f(x_1), ..., f(x_{q-l})).
\]

Then we can rewrite the generalized Reed-Solomon code \(\mathcal{C}_q(D, k) \) with evaluation set \(D \) as

\[
 \mathcal{C}_q(D, k) = \{ f(D) \in \mathbb{F}_q^{q-l} | f(x) \in \mathbb{F}_q[x], \deg(f(x)) \leq k - 1 \}.
\]

Actually, by constructing some suitable auxiliary polynomials, we find a new class of deep holes for the generalized Reed-Solomon codes. That is, we have the following result.

Theorem 1.2. Let \(q \geq 4 \) and \(2 \leq k \leq q - l - 1 \). For \(1 \leq j \leq l \), we define

\[
 u_j(x) := \lambda_j(x - a_j)^{q-2} + r_j(x),
\]

where \(\lambda_j \in \mathbb{F}_q^* \) and \(r_j(x) \in \mathbb{F}_q[x] \) is a polynomial of degree at most \(k - 1 \). Then the received words \(u_1(D), ..., u_l(D) \) are deep holes of the generalized Reed-Solomon code \(\mathcal{C}_q(D, k) \).

The proof of Theorem 1.2 will be given in Section 2.

The materials presented here form part of the second author’s PhD thesis [7], which was finished on April 15, 2012.
2. Proof of Theorem 1.2

Evidently, for any \(a \in \mathbb{F}_q\), we have

\[
\left(\prod_{i=1}^{q-l} (a - x_i) \right) \prod_{j=1}^{l} (a - a_j) = a^q - a = 0,
\]

and for any \(a \in D\), we have \(N(a) = 0\), where

\[
N(x) := \prod_{i=1}^{q-l} (x - x_i).
\]

For \(f(x) \in \mathbb{F}_q[x]\), by \(\overline{f}(x) \in \mathbb{F}_q[x]\) we denote the reduction of \(f(x) \mod N(x)\). Therefore, for any \(x_i \in D\), we have \(f(x_i) = \overline{f}(x_i)\).

First of all, we give a lemma about error distance. In what follows, we let \(G_k\) denote the set of all the polynomials in \(\mathbb{F}_q[x]\) of degree at most \(k - 1\).

Lemma 2.1. Let \(#(D) = n\) and let \(u, v \in \mathbb{F}_q^n\) be two words. If \(u = \lambda v + f_{\leq k-1}(D)\), where \(\lambda \in \mathbb{F}_q^*\) and \(f_{\leq k-1}(x) \in \mathbb{F}_q[x]\) is a polynomial of degree at most \(k - 1\), then

\[
d(u, C_q(D, k)) = d(v, C_q(D, k)).
\]

Furthermore, \(u\) is a deep hole of \(C_q(D, k)\) if and only if \(v\) is a deep hole of \(C_q(D, k)\).

Proof. From the definition of error distance and noting that \(f_{\leq k-1}(x) \in G_k\), we get immediately that

\[
d(u, C_q(D, k)) = \min_{g(x) \in G_k} \{d(u, g(D))\}
= \min_{g(x) \in G_k} d(\lambda v + f_{\leq k-1}(D), g(D))
= \min_{g(x) \in G_k} d(\lambda v + f_{\leq k-1}(D), g(D) + f_{\leq k-1}(D))
= \min_{g(x) \in G_k} d(\lambda v, g(D))
= \min_{g(x) \in G_k} d(\lambda v, \lambda g(D)) \quad \text{(since } \lambda \neq 0\text{)}
= \min_{g(x) \in G_k} d(v, g(D))
= d(v, C_q(D, k))
\]
as one desires. So Lemma 2.1 is proved.

Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Let \(f(x), g(x) \in \mathbb{F}_q[x]\). One can deduce that

\[
d(f(D), g(D)) = \# \{ x_i \in D \mid f(x_i) \neq g(x_i) \}
= \# \{ x_i \in D \mid f(x_i) - g(x_i) \neq 0 \}
= \#(D) - \# \{ x_i \in D \mid f(x_i) - g(x_i) = 0 \}.
\]
Then by (2.1), we infer that
\[
d(f(D), C_q(D, k)) = \min_{h(x) \in G_k} d(f(D), h(D)) = \min_{h(x) \in G_k} \{\#(D) - \#\{x_i \in D \mid f(x_i) - h(x_i) = 0\}\}
\]
(2.2)
\[= q - l - \max_{h(x) \in G_k} \#\{x_i \in D \mid f(x_i) - h(x_i) = 0\}.\]

For any integer \(j\) with \(1 \leq j \leq l\), we let
\[
f_j(x) := (x - a_j)^{q-2} \in \mathbb{F}_q[x].
\]
For any \(y \in D\), we have \(y - a_j \neq 0\), and so \(f_j(y) = \frac{1}{y - a_j}\). We claim that
\[
\max_{h(x) \in G_k} \#\{y \in D \mid f_j(y) - h(y) = 0\} = k.
\]

In order to prove this claim, we pick \(k\) distinct nonzero elements \(c_1, \ldots, c_k\) of \(\mathbb{F}_q \setminus \{a_i - a_j\}_{i=1}^{l-1}\) (since \(k \leq q - l - 1\)). Now we introduce the auxiliary polynomial \(g_j(x)\) as follows:
\[
g_j(x) = \frac{1}{x} \left(1 - \prod_{i=1}^{k} (1 - c_j^{-1}x)\right) \in \mathbb{F}_q[x].
\]
Then \(\deg(g_j(x)) = k - 1\), and so \(g_j(x) \in G_k\). Since for any \(y \in D\), we have
\[
f_j(y) - g_j(y - a_j)
= \frac{1}{y - a_j} - g_j(y - a_j)
= \frac{1}{y - a_j} (1 - (y - a_j)g_j(y - a_j))
= \frac{1}{y - a_j} \prod_{i=1}^{k} (1 - c_j^{-1}(y - a_j)).
\]
It then follows that \(c_j, a_j, \ldots, c_k + a_j\) are the all roots of \(f_j(x) - g_j(x - a_j) = 0\) over \(\mathbb{F}_q\). Noticing that \(c_j, a_j, \ldots, c_k \in \mathbb{F}_q \setminus \{a_1 - a_j, \ldots, a_l - a_j\}\), we have \(c_j, a_j, \ldots, c_k + a_j \in D\). Also \(D \subseteq \mathbb{F}_q\). Therefore \(c_j + a_j, \ldots, c_k + a_j\) are the all roots of \(f_j(x) - g_j(x - a_j) = 0\) over \(D\). Hence
\[
\#\{y \in D \mid f_j(y) - g_j(y - a_j) = 0\} = k.
\]

On the other hand, for any \(h(x) \in G_k\), the equation \(1 - (x - a_j)h(x) = 0\) has at most \(k\) roots over \(\mathbb{F}_q\), and so it has at most \(k\) roots over \(D\). But \(\frac{1}{y - a_j} \neq 0\) for any \(y \in D\). Thus
\[
f_j(y) - h(y - a_j)
= \frac{1}{y - a_j} - h(y - a_j)
= \frac{1}{y - a_j} (1 - (y - a_j)h(y - a_j)).
\]
Hence for any \(h(x) \in G_k\), we have
\[
\#\{y \in D \mid f_j(y) - h(y) = 0\} \leq k
\]
which implies that
\[
\max_{h(x) \in G_k} \{y \in D \mid f_j(y) - h(y) = 0\} \leq k.
\]
From (2.4) and (2.5), we arrive at the desired result (2.3). The claim (2.3) is proved.

Now from (2.2) and (2.3), we derive immediately that
\[
d(f_j(D), C_q(D, k)) = q - l - k.
\]
In other words, \(f_j(D)\) is a deep hole of the generalized Reed-Solomon \(C_q(D, k)\).

Finally, from (1.1) one can deduce that
\[
u_j(D) = \lambda_j f_j(D) + r_j(D).
\]
Since \(\deg r_j(x) \leq k - 1\), it then follows from (2.4) and Lemma 2.1 that \(u_j(D)\) is a deep hole of \(C_q(D, k)\) as required.

This completes the proof of Theorem 1.2. \(\square\)

Acknowledgement The authors would like to thank the anonymous referee for very careful reading of the manuscript and helpful comments.

References

[1] Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, Proceedings of TAMC 2007, LNCS 4484, Berlin: Springer, 296-305.
[2] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE Trans. Inform. Theory 45 (1999), 1757-1767.
[3] V. Guruswami and A. Vardy, Maximum-likelihood decoding of Reed-Solomon codes is NP-hard, IEEE Trans. Inform. Theory 51 (2005), 2249-2256.
[4] J. Li and D. Wan, On the subset sum problem over finite fields, Finite Fields Appl. 14 (2008), 911-929.
[5] Y. Li and D. Wan, On error distance of Reed-Solomon codes, Science in China Series A: Mathematics 51 (2008), 1982-1988.
[6] M. Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound, J. Complexity 13 (1997), 180-193.
[7] R. Wu, On deep holes of Reed-Solomon codes and nonlinearity of rotation symmetric Boolean functions, PhD. Thesis, Sichuan University, April, 2012.
[8] R. Wu and S. Hong, On deep holes of standard Reed-Solomon codes, Sci. Math. China 55 (2012), 2447-2455.