NUCLEOSYNTHESIS IN O-Ne-Mg SUPERNOVAE

R. D. HOFFMAN,1 B. MÜLLER,2 and H.-T. JANKA2

Received 2007 December 21; accepted 2008 February 18; published 2008 March 7

ABSTRACT

We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core-collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of $N > 50$ nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.

Subject headings: nuclear reactions, nucleosynthesis, abundances — supernovae: general

1. INTRODUCTION

The site of the r-process has been the most enduring mystery in nucleosynthesis theory since the publication of the seminal papers in this field (Cameron 1957; Burbidge et al. 1957). Of particular promise (in their times and for some even today) have been the many efforts suggesting Type II supernovae as the site with the relevant conditions arising either in or near the exploding core (initially championed by Burbidge et al. 1957), with recent attention focused on aspects of neutrino interactions (Woosley & Hoffman 1992; Woosley et al. 1994), or in the outer layers (Thielemann et al. 1979; Cowan et al. 1982; Epstein et al. 1988).

The requisite conditions for r-process nucleosynthesis in explosive scenarios with material freezing out from nuclear statistical equilibrium (NSE) have been derived with the general understanding that particular combinations of three parameters, the entropy, electron fraction (Y_e), and expansion timescale, give rise to specific features of the solar r-abundance pattern (Qian & Woosley 1996). As the wind evolves these parameters must sweep out a range of conditions that produce the many features of the solar r-process abundances, particularly the relative heights of the second and third peaks (Woosley et al. 1994). Recent models of core collapse still fall short of the necessary conditions to explain all the abundance features of the solar r-process, especially the high-mass ($A \geq 130$) component (Hoffman et al. 1997).

A site that has received recent interest involves explosions of O-Ne-Mg cores in $8-10 M_\odot$ supernovae. Successful SN explosions from such systems have been the subject of much debate (Wheeler et al. 1998); some efforts found prompt explosions (Hillebrant et al. 1984; Nomoto 1984), others did not (Burrows & Lattimer 1985), with the former now being completely ruled out with the advent of modern treatments of neutrino transport. Appeals to late-time neutrino heating have also been suggested (Mayle & Wilson 1988). It should be noted that nearly every attempt has used a common progenitor model (Nomoto 1984).

Recent efforts to revive the idea of a low-Y_e, low-entropy scenario for r-processing have included detailed nucleosynthesis calculations (Wanajo et al. 2003; Ning et al. 2007). In the former case, an unmodified SN model (computed without neutrino transport) provides a very low explosion energy ($E_{\exp} \sim 0.02 B$), with modestly neutron-rich conditions ($Y_{e,\min} = 0.45$) and no r-process. To obtain it they artificially increased the shock heating term to obtain larger explosions ($\sim 1 B$) and lower electron fractions ($0.14 \leq Y_{e,\min} \leq 0.36$) and suggest material experiencing these conditions must be ejected to explain the principle r-process features.

By contrast, Ning et al. (2007) propose that the necessary conditions arise in the shocked C-O layers above the O-Ne-Mg core at the location of a very steep density gradient near the edge of the mass cut in these compact stars. This allows for rapid shock wave passage accompanied by high peak temperatures, giving rise to a short expansion timescale. Such a combination has been suggested as a viable r-process scenario even at modest entropy with a neutron excess near zero (Jordan & Meyer 2004). As with the neutrino wind scenario, this production would be primary. Ning et al. appeal to this scenario to help bolster observational suggestions that r-process nuclei with $A \geq 130$ are preferentially associated with a low-mass SN component (Ishimaru et al. 2004; Qian & Wasserburg 2007).

Although the initial conditions of Ning et al. (2007) were taken from a stellar evolution model (Nomoto 1984, 1987), the evolution of temperature and density in the mass-shell trajectories was derived in a semianalytical fashion assuming a shock speed in the region of interest approaching 10^{10}cm s^{-1}. Using shock jump relations (Matzner & McKee 1999), they derived the entropy and expansion timescale and obtained resulting nucleosynthesis that did exhibit characteristics reminiscent of r-process abundances. The authors conclude by imploring further research to test their assertions in modern finely zoned supernova explosion simulations of progenitors in the same mass range.

Recently, Kitaura et al. (2006) have calculated supernovae explosions in this mass range, considering an $8.8 M_\odot$ progenitor star with an O-Ne-Mg core (Nomoto 1984) and using a sophisticated treatment of neutrino transport. The nucleosynthesis studies presented here are based on an update of these (spherically symmetric) simulations for a revised progenitor model, in which the outer layers of the helium shell and a dilute hydrogen envelope were added (K. Nomoto 2006, private communication). The new simulations also include an improved treatment of electron captures and inelastic neutrino scattering by nuclei in NSE (Langanke et al. 2003, 2008). The principle results of these simulations are discussed in Janka et al. (2007), where some relevant information about the explosion dynamics can also be found.
2. NUCLEOSYNTHESIS IN AN EXPLODING 8.8 M_\odot STAR

Our results survey explosive nucleosynthesis in 32 zones extracted from an 8.8 M_\odot SN model starting at the edge of the O-Ne-Mg core and extending through the C-O and He layers. The mass cut that defined our inner most zone had an initial (precollapse) radius of 7.717 × 107 cm with an enclosed mass of 1.363 M_\odot. The last zone studied had a radius at the onset of core collapse of 1.1306 × 108 cm with an enclosed mass of 1.376 M_\odot. The amount of processed ejecta is 0.013 M_\odot. Exterior to this was a hydrogen envelope (70% H, 30% He) whose outermost zone at core collapse was at radius 6.414 × 107 cm with an enclosed mass of 2.626 M_\odot. The amount to total ejecta is the difference, 1.263 M_\odot.

During shock wave passage, the temperature increased dramatically and in most of the zones exceeded $T_0 = 7$. As such, photodisintegration will disassemble any C or O into α-particles and nucleons. Each nucleosynthesis calculation started at a point in the expansion when the temperature had declined to $T_0 = 9.0$ (or its maximum value if it never achieved this), with the starting values of density and Y_e also taken from the SN model, and followed until the temperature declined to $T_0 = 0.1$ (or the minimum value achieved in the SN model trajectory, in a few cases as high as $T_0 = 0.5$). Initial compositions for zones with an initial $Y_e \leq 0.5$ were assumed to be α-particles and free neutrons, otherwise free neutrons and protons. Since nucleosynthesis beyond the iron group requires particle capture on seed nuclei that here must be built up by NSE, we define a simple expansion timescale (in seconds) as the time for the temperature to decline from $T_0 = 5.0$ (or its highest value attained) to 1/e of this value. See Table 1 for the initial conditions.

Neutrino induced reactions for free nucleons and α-particles were included in all calculations (McLaughlin & Fuller 1995). As reported by Ning et al. (2007) the inclusion of neutrino reactions was not crucial to the final results of what is here essentially explosive nucleosynthesis.

2.1. Results

Figure 1 shows the mass-weighted production factors normalized to the total amount of ejecta given by

$$P(i) = \sum_j \frac{M_j X_{ij}}{M_i X_{ij}}. \quad (1)$$

In this equation, the sum is over all 32 trajectories, X_{ij} is the mass fraction of nuclide j in the ith trajectory, X_{ij} is the mass fraction of nuclide j in the Sun (Lodders 2003), M_j is the mass of the jth trajectory, and $M_i = 1.263 M_\odot$ is the total mass ejected in the SN explosion whose energy was ~0.1 B (~0.2 B in a corresponding 2D simulation).

We see no evidence of an r-process for the starting entropy and Y_e conditions given in the model of Janka et al. (2007) principally because the expansion timescales of the trajectories containing the most mass are long (~0.01 s) and the entropies are small (~10–20; see Table 1). By contrast the same quantities derived by Ning et al. (2007) were entropy $= 139 k_B$ nucleon$^{-1}$, and an expansion timescale to e-fold from $T_0 = 5.0$ of 0.0013 s. The explosion energy agrees with model Q3 of Wanajo et al. (2003) but the Y_e range is more neutron-rich in the zones that dominated the nucleosynthesis.

We do note production of species above the iron group, but they terminate for nuclei in the $N = 50$ closed shell. Attractive combinations of expansion timescale and entropy (for the given Y_e) do appear to be achieved for the trajectories farthest out, but these exhibit a rapidly diminishing drop in the peak shock temperature and density (the last two trajectories are in the extended hydrogen envelope; hence they have $Y_e > 0.5$, and they never reach NSE). In every calculation the free nucleons...
were all consumed in the build up of intermediate-mass nuclei during the α-rich freezeout. See Table 1 for the final α-particle mass fraction in each zone and the largest mass-weighted production factor.

Indeed, the nucleosynthesis here is dominated by trajectories 7–12 which all exhibit fairly long expansion timescales, entropies near 18, and initial values of \(Y_e \leq 0.48 \). Between them they constitute 40% of the total ejecta studied. The production of the dominant \(N = 50 \) isotopes (\(^{90}\)Zr in particular) is most pronounced in zones 9 and 10. All of the coproduced species (those made within a factor of \(~\sim 4\) of the largest production factor) are made as themselves with the dominant reaction flows occurring in the valley of stability.

This result is reminiscent of nucleosynthesis seen at early times in the neutrino-driven wind of more traditional SNe II (Witti et al. 1994; Woosley et al. 1994), where an overproduction of \(N = 50 \) isotopes presented problems for a model that at late times produced a high-entropy solution favorable to the \(r \)-process. The problem here may not appear so striking, in that \(^{90}\)Zr is also made with \(^{74}\)Se, but both are made at a very high production factor. Both \(^{69}\)Ge and \(^{90}\)Zr anchor two quasi-equilibrium clusters near the iron group and \(N = 50 \), and their abundances determine the production of \(^{73}\)Se and \(^{92}\)Mo, respectively. The other two light \(p \)-nuclei in between, \(^{78}\)Kr and \(^{80}\)Sr, are not members of these quasi-equilibrium clusters and owe their production to nuclear flows between them (Hoffman et al. 1996). The dominant species (by mass fraction) for trajectory 7 (\(Y_e = 0.47 \), which made the most \(^{92}\)Mo) are \(^{66}\)Zn and \(^{66}\)Ni (all at 20\% by mass fraction), and \(^{90}\)Zr, \(^{64}\)Zn, and \(^{70}\)Ge (all \(~\sim 5\%)\). As here, Hoffman et al. (1996) also saw limited production of the heavier \(p \)-nuclei \(^{90}\)Mo, \(^{92}\)Ru, and \(^{90}\)Ru, which are made in equilibrium with \(^{90}\)Zr but always at a level smaller than that for \(^{92}\)Mo. The \(N = 50 \) nucleosynthesis can be eliminated in preference to light-\(p \)-nuclei if \(Y_e \) is constrained to be in a narrow range (\(~\sim 0.485\)). In the SN model of Woosley et al. (1994) the \(N = 50 \) overproduction problem persisted if the amount of material that experienced \(Y_e \leq 0.47 \) was greater than \(~\sim 10^{-4} M_\odot\). Here it is even worse (see below).

Interestingly, the recently developed \(np \)-process does coproduce the full range of light \(p \)-nuclei from \(^{74}\)Se to \(^{90}\)Pd, especially \(^{80}\)Mo, \(^{92}\)Ru, and \(^{90}\)Ru, in quantities that could for the first time explain their solar abundances in early proton-rich neutrino wind models (Pruet et al. 2006; Fröhlich et al. 2006), but they fail to adequately coproduce \(^{90}\)Mo. Details of the nuclear physics uncertainties affecting the reaction flows that determine the solar ratio for \(^{90}\)Mo and \(^{92}\)Mo have recently been explored (Fisker et al. 2007). Within current uncertainties in the proton-separation energies of \(^{91}\)-\(^{92}\)Rh, they suggest this ratio could be achieved along with coproduction of all the light \(p \)-nuclei between Sr and Pd in the \(np \)-process if \(S_p(\text{\(^{90}\)Rh}) = 1.64 \pm 0.1 \text{ MeV} \).

2.2. Discussion

If ejected, the values of the largest normalized production factors in these zones (\(~\sim 1000\) would cause serious problems for Galactic chemical evolution. Considering the largest production factor (\(^{90}\)Zr), the enrichment by a single event relative to solar would be

\[
\left[\frac{Zr}{H} \right]_{\text{single}} = \log \left(\frac{Y_e/M_{\text{max}}}{X_{\odot}(Zr)} \right),
\]

where \(Y_e = \Sigma_j X_j(Zr) \times M_j \) is the mass yield of \(^{90}\)Zr (\(1.75 \times 10^{-4} M_\odot \) for the sum of zones 7–12 where \(^{90}\)Zr is produced with a mass fraction greater than \(10^{-4}\)), \(M_{\text{max}} \) is the mass of ISM into which the ejecta of this single event mixes (\(~\sim 3000 M_\odot\), Thornton et al. 1998), and \(X_{\odot} \) is the mass fraction of \(^{90}\)Zr in the Sun (\(1.53 \times 10^{-5}\); Lodders 2003). This is equivalent to the definition of the production factor (eq. [1]) with \(M^p \) replaced by \(M_{\text{max}} \). For \(^{90}\)Zr, the enrichment is 3.8, i.e., nearly 4 times solar, implying a very rare event.

If \(M_{\text{max}} \) is typical of the mass that can be contaminated by such an SN and assuming one occurred at most once at some average location over the age of the Galaxy then the frequency \(f_{\text{SN}} \) for it to occur is given by

\[
N_{\text{expected}} \approx \frac{Y_e M_{\text{max}} f_{\text{Gal}}}{f_{\text{SN}} M_{\text{gas}}} = 1,
\]

where \(M_{\text{gas}} \sim 10^{10} M_\odot \) is the mass of the gas in the Galaxy, and \(t_{\text{Gal}} \sim 10^{10} \text{ yr} \) its age, giving a frequency of once every 3000 years. This is in disagreement with recent best estimates that suggest explosions of O-Ne-Mg cores comprise 4\% of all core-collapse events (Poelarends et al. 2007), which translates (assuming a present-day upper limit of two SNe II per century) to 0.0008 yr \(^{-1}\). If one appeals to their firm upper limit of 20\% (based on the many uncertainties in modeling the progenitors), then this rate could rise to 0.004 yr \(^{-1}\).

Over the history of the Galaxy, this enrichment is

\[
\left[\frac{Zr}{H} \right]_{\text{all}} = \log \left(\frac{Y_e f_{\text{SN}} f_{\text{Gal}}}{M_{\text{gas}} X_{\odot}(Zr)} \right),
\]

which gives 10–50 times the solar value. We note that both \(M_{\text{gas}} \) and \(f_{\text{SN}} \) may have been different in the past, but the ratio of the two which is the rate of SN per unit mass of gas may vary much less as the SN progenitor formation rate is proportional to the gas available.

3. Conclusions

We have studied in detail the nucleosynthesis in the shocked outer layers of an O-Ne-Mg Type II SN to test the assertion that this might be a viable site for the \(r \)-process. While Ning et al. (2007) derived shock conditions from the same progenitor model we use (Nomoto [1984] plus the recent supplementation with a H envelope) in a semianalytic manner with an assumed shock velocity, our conditions arise from a detailed explosion simulation (Janka et al. 2007). We find conditions for nucleosynthesis that are very different from those of Ning et al. (2007), especially in regards to peak temperatures and expansion timescales. Consequently we cannot support their assertion that this is a potential site for the \(r \)-process as we see neither the requisite conditions nor products. Our results are however very reminiscent of previous calculations studying nucleosynthesis in the neutrino-driven wind (Woosley et al. 1994; Hoffman et al. 1996).

The combination of low entropies (\(~\sim 20\) and electron fractions (\(Y_e \leq 0.47 \)) in \(5.5 \times 10^{-3} M_\odot \) of ejecta from our model suggest that this one event would produce nearly 4 times the solar abundance of \(^{90}\)Zr. This is unlikely, as observations of \(Zr \) are well established in metal-poor stars where enrichment to this level has not been seen. If this represents a very rare event, it leaves little room for the production of \(Zr \) from other sources (such as the neutrino winds of ordinary SNe II, and still less for the \(s \)-process). But the initial mass function suggests there are many stars with masses between 8 and 10 \(M_\odot \), and recent
studies indicate that 4% of these should end their lives as SNe II (Poelarends et al. 2007). We are therefore forced to consider that this is not a typical event (or even a very rare one) and that some aspect of the progenitor model, the explosion model, or the nuclear physics used in determining the nucleosynthesis is grossly in error.

On the later point, since the reaction flows producing the abundant species move along the valley of stability, we feel confident that the ingredients that went into the calculation of the nuclear reaction cross sections and the particle separation energies (so important in QSE) are on firm ground (Rauscher & Thielemann 2000). There is no complication due to neutrino nucleosynthesis as the radii of the zones considered, hundreds of kilometers, are too large for a substantial neutrino fluence.

On the stellar modeling side our explosion model is based on a very modern treatment (Kitaura et al. 2006; Janka et al. 2007), with issues of fallback being negligible. The explosion simulation employed here was spherically symmetric, but a corresponding two-dimensional (axisymmetric) model including the effects of convection shows the same nucleosynthesis-relevant features (for details, see Janka et al. 2007). This leaves the pre-SN model, which was originally calculated as a He core with a H envelope subsequently added to it. There are numerous difficulties in accurately calculating the pre-SN structure, including thermal pulses of the unstable He shell source, mass loss, and dredge-up, to name a few (Poelarends et al. 2007). The effects of rotation and magnetic fields might also play a nonnegligible role during stellar evolution and collapse. We therefore view the pre-SN model as the most pertinent area where research should be focused toward understanding this important class of stars and consider such investigations necessary to address the assertion that they can serve as crucibles for half the species above iron.

We appreciate many valuable conversations with Yong-Zhong Qian and S. E. Woosley. We also thank K. Nomoto for providing us with his progenitor data and R. Buras, F. Kitaura, and A. Marek for their input to the SN modeling project. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52-07NA27344. It was also supported, in part, by the SciDAC Program of the US Department of Energy (DC-FC02-01ER41176). The project in Garching was supported by the Deutsche Forschungsgemeinschaft through the grants SFB/TR 27 “Neutrinos and Beyond” and SFB/TR 7 “Gravitational Wave Astronomy,” and the Cluster of Excellence EXC 153. The SN simulations were performed on the national supercomputer NEC SX-8 at the High Performance Computing Center Stuttgart (HLRS) under grant number SuperN/12758.

REFERENCES

Burbidge, M., Burbidge, G., Fowler, W. A., & Hoyle, F. 1957, Rev. Mod. Phys., 29, 547
Burrows, A., & Lattimer, J. M. 1985, ApJ, 299, L19
Cameron, A. G. W. 1957, PASP , 69, 201
Cowan, J., et al. 1982, ApJ, 252, 348
Epstein, R., Colgate, S. A., & Haxton, W. C. 1988, Phys. Rev. Lett., 61, 2038
Fisker, J., Hoffman, R. D., & Pruet, J. 2007, Phys. Rev. Lett., submitted
Fröhlich, C., et. al. 2006, Phys. Rev. Lett., 96, 142502
Hillebrandt, W., Nomoto, K., & Wolff, G. 1984, A&A, 133, 175
Hoffman, R. D., Woosley, S. E., Fuller, G. M., & Meyer, B. S. 1996, ApJ, 460, 478
Hoffman, R. D., Woosley, S. E., & Qian, Y.-Z. 1997, ApJ, 482, 951
Ishimaru, Y., Wanajo, S., Aoki, W., & Ryan, S. G. 2004, ApJ, 600, L47
Janka, H.-Th., Müller, B., Kitaura, F. S., & Buras, R. 2007, A&A, submitted (arXiv:0712.4237)
Jordan, G. C., & Meyer, B. S. 2004, ApJ, 617, L131
Kitaura, F.-S., Janka, H.-T., & Hillebrandt, W. 2006, A&A, 450, 345
Langanke, K., et. al. 2003, Phys. Rev. Lett., 90, 241102
———. 2008, Phys. Rev. Lett., 100, 011101
Ludders, K. 2003, ApJ, 591, 1220
Matzner, C. D., & McKee, C. F. 1999, ApJ, 510, 379
Mayle, R., & Wilson, J. R. 1988, ApJ, 334, 909
McLaughlin, G. C., & Fuller, G. M. 1995, ApJ, 455, 202 (erratum 466, 1100 [1996])
Ning, H., Qian, Y.-Z., & Meyer, B. S. 2007, ApJ, 667, L159
Nomoto, K. 1984, ApJ, 277, 791
———. 1987, ApJ, 322, 206
Poelarends, A. J., Herwig, F., Langer, N., & Heger, A. 2008, ApJ, 675, 614
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H.-T., & Buras, R. 2006, ApJ, 644, 1028
Qian, Y.-Z., & Wasserburg, G. J. 2007, Phys. Rep., 442, 237
Qian, Y.-Z., & Woosley, S. E. 1996, ApJ, 471, 331
Rauscher, T., & Thielemann, F.-K. 2000, At. Data Nucl. Data Tables, 75, 1
Thielemann, F.-K., et. al. 1979, A&A, 74, 175
Thornton, K., Gaudlitz, M., Janka, H.-T., & Steinmetz, M. 1998, ApJ, 500, 95
Wanajo, S., Itoh, N., Nomoto, K., Ishimaru, Y., & Beers, T. C. 2003, ApJ, 593, 968
Wheeler, J. C., Cowan, J. J., & Hillebrandt, W. 1998, ApJ, 493, L101
Witti, J., Janka, H.-T., & Takahashi, K. 1994, A&A, 286, 841
Woosley, S. E., & Hoffman, R. D. 1992, ApJ, 395, 202
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D., & Meyer, B. S. 1994, ApJ, 433, 229