Relational Effects of Land Resource Degradation and Rural Poverty Levels in Busoga Region, Eastern Uganda

Mukadasi Buyinza

Department of Agribusiness and Natural Resource Economics, College of Agriculture and Environmental Sciences, Makerere University, P.O.BOX 7062 Kampala, UGANDA.
Corresponding author: buyinza@caes.mak.ac.ug

Abstract—Land degradation in southeastern Uganda is a recent phenomenon driven by population pressure and scarcity of extra fertile land. This paper explores the economic relations of soil conservation practices to rural poverty levels among the farming communities in southeastern Uganda. Using random sampling methods, 120 respondents from the districts of Kamuli, Iganga and Jinja were selected and interviewed. The results showed that about 42% of the farmers were poor. The Logistic regression reveals that farmers geographical location and being educated significantly reduced poverty, while household size increased it (p<0.05). Increasing the number of fertile land areas under fallow significantly reduces probability of being poor (p<0.01). Farmers that use crop rotation, vegetative cover crops and organic manure have significantly lower probability of being poor compared to those using zero tillage (p<0.05). Adoption of improved soil conservation practices will assist farmers to increase agricultural outputs and reduce their poverty levels, while fertilizers should be made available at affordable prices. Site-specific research, to address soil-related constraints and socio-economic and political issues, is needed to enhance and sustain production.

Keywords—Agriculture, environmental degradation, poverty, Busoga region.

I. INTRODUCTION

Agriculture is the largest sector of the Ugandan economy. About 80 percent of the population depends on it as the main source of income and livelihood. The agriculture resource base has been both shrinking and degrading with the increasing population pressure and marginal land with steep and very steep slopes increasingly being brought under cultivation. This has led to intense land degradation due to soil erosion in the hills and mountains (Bagoora, 1988).

The problems of poverty and environmental degradation in many developing countries are closely related (WCED, 1987). Because of increased population pressure, the long time needed for regenerating natural resources once degraded and persistent economic hardship in many African nations, natural resource degradation is a common phenomenon among the poor, as they try to escape the scourge of poverty (Maxwell, 1995). No doubt, poor farmers face the consequences of land degradation and are implicated in some of its processes. Specifically, rich farmers own more land than the poor arid are able to clear large expanse of forests, use large quantities of agrochemicals and open up/expose soils to erosion through agricultural mechanization. In like manner, poor farmers play some important role in unsustainable agricultural intensification, expansion of farming into marginal lands and overexploitation of forest resources. However, because they lack sufficient asset base to buffer its effects, the poor are more seriously affected by the consequences of environmental degradation (Wortmann and Kaizzi, 1989).

In Uganda, increasing poverty level despite several past policy interventions, is a matter of serious concern. For instance, analysis of 2003/2004 data revealed that national poverty incidence is 58%, with rural area having 64%, while urban has 35% (UBOS, 2005). This situation poses a daunting challenge to the achievement of the Millennium Development Goals (MDGs) Therefore, given the several forms of environmental degradation, the general consensus is that for any meaningful economic growth and development to be experienced, Uganda needs to first and
foremost address widespread poverty, especially among its rural populace.

Moreover, Ugandan small-scale farmers largely depend on traditional methods of farming. These farmers are facing various land use constraints, which is one of the major sources of decline in agricultural productivity. Suppose rural households choose to stay on degraded land, without appropriate soil conservation practices, its declining productivity will not be able to support growing rural populations, not to consider the nation as a whole. Therefore, shortage of good quality agricultural land for smallholders is a major problem (UNDP, 2005). Consequently, some households are forced to abandon existing agricultural areas in search of new forest land. Where land is scarce, land fragmentation and continuous cropping persist with little or no soil conservation investments (Nabalegwa et al., 2007).

It should be stressed that poverty influences households’ decisions for any investment in soil conservation practices (Barbier, 2001). Therefore, decline in the welfare of people could degenerate into serious ecological crises, with serious implications on the environment (WCED, 1987). An attempt was made in this study, to determine the effect of land degradation and use of soil conservation approaches on the poverty level of rural households in southeastern Uganda. The key study questions included: How does ownership of land affect the poverty level of the farmers? What influence does use of soil conservation have on poverty level across the different socio-economic groups?

II. MATERIALS AND METHODS

Study area and sampling procedures: The study was carried out in southeastern part of Uganda. The study districts were Jinja, Kamuli and Iganga. Climatically, these districts enjoy tropical climate with two distinct seasons; rainy season from April to October and dry season from November to March. The traditional practice of slash and burn agriculture predominates and this is expected to be followed by a period of fallow for the soil to regain the lost fertility. However, with growing population and scarcity of land, the practice of fallowing is gradually being phased out and this aggravates land degradation.

Multi-stage sampling method was used to select the households for the survey. At the 1st stage, 3 districts were randomly selected from the seven districts that form eastern Uganda region. The 2nd stage involved selection of 2 sub-counties from each district and from these sub-counties we selected 2 villages from each. In Jinja district, data were collected from 4 villages of Buwenge sub-county. A total of 100 households were sampled from the 4 villages of Jinja. In Iganga district, a total 100 farming households were sampled from 4 villages of Nakalama sub-county. Finally, in Kamuli district, a total of 103 farming households were sampled from 4 villages of Bugulumbya sub-county. Agricultural data were obtained for the 2005 cropping season.

Econometric analysis and model description

Effect of land on income inequality: The study used descriptive analytical methods like percentage, mean and frequency. The Gini-coefficient was used to analyze the distribution of the different categories of land owned by farmers. To calculate Gini-coefficient, Buyinza and Lusibila (2008) noted that where items are ordered so that \(Y_1 \leq Y_2 \leq Y_3 \leq \ldots \leq Y_n \) the Gini-coefficient can be computed as:

\[
I_{\text{Gini}}(Y) = \frac{1}{2n^2\mu} \left[\sum_{i=1}^{n} a_i(Y) Y_i \right] and \ a_i(Y) = \frac{2}{n} \left(i - \frac{n+1}{2} \right)
\]

where,
- \(n \) = the number of items
- \(I \) = the rank (1...n).
- \(\mu \) = the mean of the items. The closer this value is to 1, the higher the inequality.

Description of econometric analysis: In order to analyze the land ownership/use, socio-economic and soil conservation factors that explain poverty among the farmers, Descriptive statistics were run to describe the farmers’ socio-economic characteristics, while logistic models were used to estimate the intensity of effect between size of landholding, application of land management practices and poverty levels. Following Foster et al. (1984), poverty line was computed as the 2/3rd of the mean per capita monthly expenditure of all the members of the sampled households. The FGT index allows for the quantitative measurement of poverty status among sub-groups of population (i.e., incorporating any degree of concern about poverty) and has been widely used (Kakwani, 1977). Preferring higher status, humans dislike inequality and household intolerance to inequality increases with inequality (Bolton and Ockenfels, 2000). The Atkinson inequality aversion parameter (Atkinson, 1970) is...
incorporated in the estimation of income inequality to measure this intolerance. The measure takes values ranging from zero to infinity. Increases in the parameter signal increased household intolerance to inequality and that the households attach more weight to income transfers at the lower end of the distribution and less weight to transfers at the top.

The headcount ratio measures the ratio of the number of poor individuals or simply measures the poverty incidence (i.e., the percent of the poor in the total sample). The analysis of poverty incidence using FGT measure usually starts with ranking of expenditures in ascending order \(Y_1 \leq Y_2 \leq \ldots \leq Y_n \):

\[
P_a = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{z - y_i}{z} \right]^a \hspace{1cm} \text{..................... (2)}
\]

where, \(P_a = \) Non negative poverty a version parameter,

\[
p_i = \beta_1 + \beta_2 \text{DST}_i + \beta_3 \text{GND}_i + \beta_4 \text{MRG}_i + \beta_5 \text{HHS}_i + \beta_6 \text{EDU}_i,
+ \beta_7 \text{ANM}_i + \beta_8 \text{VEG}_i + \beta_9 \text{PCL}_i + \beta_{10} \text{PFL}_i + \beta_{11} \text{EDC}_i + \beta_{12} \text{EDF}_i,
+ \beta_{13} \text{TRC}_i + \beta_{14} \text{MLC}_i + \beta_{15} \text{CLA}_i + \beta_{16} \text{CRT}_i + \beta_{17} \text{ORG}_i,
+ \beta_{18} \text{ZRO}_i + \beta_{19} \text{FRT}_i + \beta_{20} \text{CVC}_i + \beta_{21} \text{SPD}_i + \ell_i
\]

\(\text{P}_1 = \) Poverty status dummy (poor = 1, 0 otherwise)
\(\text{DST}_1 = \) district dummy variable (Jinja =1, 0 otherwise)
\(\text{GND}_1 = \) Sex (Male = 1, 0 otherwise)
\(\text{MRG} = \) Marital status dummy (married = 1, 0 otherwise)
\(\text{HHS} = \) Size of the household
\(\text{EDU} = \) Education dummy (formal education n = 1, 0 otherwise)
\(\text{ANM} = \) Land area under livestock farming (ha)
\(\text{VEG} = \) Land area under vegetable production (ha)
\(\text{PFC} = \) Productive food cropland area (ha)
\(\text{PFL} = \) Productive fallow cropland area (ha)
\(\text{EDC} = \) Eroded coffee cropland area (ha)
\(\text{EDF} = \) Eroded food crop land area (ha)
\(\text{TRC} = \) Tractor / Harrowing (yes = 1, 0 otherwise)
\(\text{MLC} = \) Mulching (yes = 1, otherwise = 0)
\(\text{CLA} = \) Cleaning clearing (yes = 1, 0 otherwise)
\(\text{CRT} = \) Crop rotation (yes = 1, 0 otherwise)
\(\text{ORG} = \) Organic manure (yes = 1, 0 otherwise)
\(\text{ZRO} = \) Zero tillage (yes = 1, 0 otherwise)
\(\text{FRT} = \) Fertilizer application (yes = 1, 0 otherwise)
\(\text{CVC} = \) Cover crop (yes = 1, 0 otherwise)
\(\text{SPD} = \) Frequency of social-psychological disorder during cropping season
\(\ell_i = \) Error term

We tested the hypothesis that “number of fertile land under fallow does not significantly reduce poverty”.

It should be noted that also, many independent variables were initially proposed, but some collinear’ ones were later removed. We determined the level of variable collinearity using the SPSS 100 statistical package. With these, the tolerance levels of the variables were determined using the variance inflating factors (Kakwani, 1990). Variables with low tolerance were therefore removed.
III. RESULTS AND DISCUSSION

Demographic and household socio-economic characteristics. Descriptive analysis of the household demographic attributes shows the following: 84% are males, 38% are married, 52% acquired formal education, 38% are engaged in agroforestry farming. The average age is 56 years and average household size is 7 (Table 1). The farming households reported an average of 24 years of farming experience. As reflected by the standard deviation and coefficient of variation, wide variations exist among these data.

Table I. Farmers’ household demographic attributes

Socio-economic characteristics	Mean	SD	Coefficient of variation
Age	56	13.1	309.14
Household size	7.04	2.32	301.44
Farming experience	23.58	11.24	189.22
Per capita expenditure	33,235	24,975	1,729
Social- Psychological disorder days	3.42	3.01	89.17
Agroforestry rotation cycles	4.02	1.08	280.42

The farmers’ awareness of the agricultural technologies varied. Table 2 shows that the most popular technologies were: improved fallows (92%); hedgerow intercropping (87%), vegetative practices (84%), use of improved simsim varieties (85%), and poultry management technology (80%). The results further show that farmers had little or no information with regard to improved clonal coffee varieties (30%), multi-storey (42%) and fish pond management (45%) technologies.

Table 2. Farmers’ awareness of selected agricultural technologies (n = 120)

Technologies	Awareness Aware (%)	Perception Relevance (%)	Relevance index
Agroforestry technologies (0.82)			
Improved fallow **	92	87	0.95
Hedgerow intercropping*	87	53	0.61
Multistore	42	25	0.60
Homegarden **	50	60	1.20
Clonal coffee ns	30	12	0.40
Soil and water conservation (0.44)			
Contour ploughing*	76	12	0.16
Trash lines ns	66	18	0.27
Terraces*	78	58	0.74
Vegetative practices	84	12	0.14
Compost and green manure ns	60	53	0.88
Improved crop varieties (0.98)			
Banana**	80	73	0.91
Cassava**	75	82	1.09
Beans**	76	75	0.99
Simsim*	85	70	0.82
Maize**	74	83	1.12
Livestock technologies (0.92)

Multiplication of goats* 74 58 0.78
Cattle cross-breeding* 68 63 0.93
Fish ponds management ns 45 42 0.93
Poultry management** 80 87 1.09
Feed grinder (350 kg per hour) 76 67 0.88

** = 0.01 level of significance, * = 0.05 level of significance, ns = not significant

Table 3. Zero-order correlation between farmers’ awareness and perception of agricultural technologies

Technologies	Correlation coefficient (r)	P - Value
Agroforestry technologies	0.58	p < 0.05
Soil and water conservation technologies	0.02	p >0.05
Improved crop varieties	0.44	p<0.05
Livestock technologies	0.42	p<0.05

S = Significant at p<0.05; NS = Not significant

The farmers were asked about the local community’s indicator of soil resource quality. The results presented in Table 2 shows that based on the agroforestry farming component, most of the farmers (57%) judge soil fertility status using the previous agroforestry yields (forestry and agricultural crop yields). However, 42% consider the colour of the soil, while only 12% would judge fertility based on intensity of weed growth. With regard to food crops, 86% of the farmers judge fertility levels with the performance of cassava crop, while 76% used the easiness to tillage. Similarly, 72% considered the number of years the land has been continuously used for crop cultivation without fallowing (Table 4).

Our findings concur with Greenland (1997) and Wild (2003) who identified four systems to enhance productivity of small landholders of the sub-tropics. These include: mixed farming systems that provide animal manure to recycle nutrients and enhance soil fertility through integrated nutrient management, agro-forestry systems that create diverse farming systems, conserve soil and water resources, and recycle nutrients from sub-soil to the surface, water-based systems, mostly for cultivation of rice and associated crops, that renew soil fertility through supply of silt and alluvial material carried in irrigation canal, and water harvesting and recycling in dryland systems, and fertilizer-based systems that enhance soil fertility through judicious use of chemical fertilizers.

Table 4. Farmers indicators for perceiving degraded cash and food crop farms

Characteristics	Agroforestry	Food crop
Porosity and drainage	34.32	50.17
Type of soil	37.29	67.00
Continuous farming (years)	33.33	72.01
Soil color	42.34	48.24
Soil depth	33.99	32.67
Tillage	12.09	76.61
Intensity of weed growth	15.51	29.70
Common weeds	21.45	37.62
Last cereals yields	26.73	81.67
Last cassava yields	30.69	86.22
Last coffee yields	57.02	-
Soil texture	35.97	46.20
The categories of different uses to which farmers subject their land and their distribution (measured by Gini-coefficient) is presented in Table 5. Average coffee cropland is 125 ha with variability index of 69%. However, because the farmers were mainly pre-occupied with food production, average land areas devoted to food production is 1.8 ha. Other uses of land for vegetable cultivation and livestock husbandry take an average of 0.15 and 0.07 ha, respectively. An average of 1.12 ha of the farmers land is kept under fallowing. Similarly, from farmers’ perception of fertility, 72 and 79% of the farmers’ coffee cropland and food cropland, respectively, are considered to be fertile. Similarly, 78% of the land under fallow is fertile.

Food cropland has the lowest Gini-coefficient (0.39). This shows that they are more equitably distributed. However, land use categories like fallow land, mined coffee cropland, mined food cropland are distributed more unequally due to the largeness of their Gini-coefficient values.

Land use category (ha)	Mean	S.D.	Coefficient of variation	Gini coefficient
Coffee cropland	1.34	1.82	6883	0.67
Fallowing land	1.12	330	3116	0.85
Food cropland	1.85	1.70	101.19	0.39
Livestock land area	0.05	0.24	2879	0.88
Vegetable land area	0.18	0.34	44.38	0.84
Productive coffee cropland	1.00	1.56	63.93	0.73
Productive food cropland	1.54	1.48	95.71	0.48
Eroded coffee cropland	0.83	3.08	26.81	0.80
Eroded fallow cropland	0.20	0.68	23.01	0.86
Eroded food cropland	0.25	0.73	33.36	0.89

Table 5 presents poverty analysis using the conventional Foster et al. (1984) approach. The poverty line based on Mean per Capita Household Expenditure (MPCHE) is UGX 20,234/= With this, 42% of the farmers were moderately poor (falling below the 2/3rd MPCIHE). However, 3% are severely poor (falling below 2/3rd MPCIHE). Of the 36 poverty incidence, we proceeded to calculate the contributions of each group of soil conservation users and non-users to this value. It shows 88% used clean clearing, this group contribute 30% to poverty. Clean clearing is a method whereby farmers do not allow crop residues and plants cleared from a farm to decompose on the farm. In this case, these are either gathered at some point outside the farm for decomposition or burning. While, only 12 and 15% of farmers could afford the use of tractor and ploughing, respectively, the group contributed 5 and 2% to poverty, respectively. Soil nutrient enhancing management practices like mulching, crop rotation, use of organic manure, planting of cover crops and application of fertilizers are not so widely used by the farmers. Specifically, the contributions to poverty were 6 and 7% for those using cover crops and organic manure, respectively. However, those using bush burning contributed 28% to poverty (Table 6).

Cultural/soil conservation practice	Users (%)	Poverty contribution by Non-users	Poverty contribution by Users
Use cow dung	14.52	29.04	06.60
Burning bush	78.85	12.34	28.37
Tractor farming	12.11	33.33	02.31
Use ploughing	15.17	3102	04.62
Use mulching	58.75	17.49	18.15
Factors explaining rural poverty: The results of the Probit regression are presented in Table 7. It shows that the data presented a good fit as reflected by the statistical significance (p<0.01) of the chi-square (χ^2) of the Maximum Likelihood Estimate (MLE). This shows that farmers from Jinja district have lower probability of being poor. Proximity to urban area (Jinja town) may be responsible for this occurrence due to direct market outlets and opportunities for off-farm activities. Similarly, household size is statistically significant (p<0.01). This shows that increasing household size will increase the probability of the households becoming poor. This is expected because desire to have many children lies largely with poor households and it is generally the cause of poverty. Buyinza and Lusiba (2008) noted that in rural parts of Uganda, the net effect of high family size is lower income, little savings and increased poverty. Also, marital status variable is statistically significant (p<0.01). This shows that those married farmers have lower probability of being poor.

Table 7: Probit regression of the determinant of poverty in Busoga region, eastern Uganda

Factor	Coefficient	t -statistics
Constant	-1.519	-2.620
District	-0.662	-2.901
Sex	0.466	1090
House size	0.319	7.082
Marital Status	-1.608	-4.378
Formal education	-0.196	-0.843
Livestock land area	1.202	2.128
Vegetable land area	0.019	0.056
Fertile food cropland	-0.089	-1.056
Fertile fallow land	-0.498	-3.503
Degraded coffee cropland	-0.426	-1.240
Degraded food cropland	-0.768	-0.321
Tractor / Ploughing	-0.936	-2.750
Mulching	0.071	0.303
Clean clearing	0.078	0.224
Crop rotation	-0.493	-1.980
Organic manure	-0.542	-2.010
Zero tillage	0.686	2.732
Fertilizer.	-0.168	-0.708
Cover crop	-0.524	-2.124
Time sick	-0.013	-0.893

Increasing land areas devoted to livestock production increases the probability of being poor significantly (p<0.05). Similarly, the number of fertile land area under fallow variable is statistically significant (p<0.01). This implies that probability of being poor reduces as farmers have enough fertile lands under fallow. The hypothesis that “the size of fertile land under fallow does not significantly reduce poverty” is therefore rejected.

Those farmers that were using harrowing for land preparation have lower probability of being poor. This is
expected because usage of harrowing/tractor for land preparation shows that the farmer has large number of hectares. Cultivation of large number of hectares can lead to higher income if the farms are well managed. The farmers that were using crop rotation have lower probability of being poor and the parameter is statistically significant (p<0.05). Theoretically, crop rotation enhances soil nutrients if the pattern of the rotation is well selected. With this, farmers output may increase with consequential reduction in the level of poverty. Also, those using organic manure have lower probability of being poor. In absence of inorganic fertilizers, the only options available to farmers for enhancing the nutrient contents of their farms is to use organic manure. Those farmers were also using zero tillage have significantly higher probability of being poor. This shows that use of zero tillage may lead to higher level of poverty as farm profit decreases. Ideally, in southeastern part of Uganda, use of zero tillage on already degraded land may lead to reduction in farm profit as more labour is being engaged for weed control. Similarly, zero tillage exposes the plot to direct soil erosion. Where ridges are made, it is possible to control erosion by construction of bunds (Maxwell, 1995). However, those farmers that were using planting cover crops have significantly lower probability of being poor (p<0.05). Cover crops rejuvenate the soil nutrients and prevent excessive soil erosion. These may result into increased productivity and poverty reduction.

IV. CONCLUSION AND POLICY IMPLICATIONS

The 21st century has brought numerous and varied demands on limited soil resources. The conventional soil functions included: soil as a medium for crop growth. Managing soils for achieving food security, for present and future generations, is the primary function of soils especially of those in densely populated countries of Africa. Applying the knowledge of soil science can improve agronomic production and supply of food to rural and urban poor. There exists a vast potential to increase crop yields per unit area, by vertical expansion of agriculture, through adoption of sustainable soil and water resources management approaches. Site-specific research, to address soil-related constraints and socio-economic and political issues, is needed to enhance and sustain production.

Farmers in the districts of southeastern Uganda are seriously concerned about the dwindling status of their land. Any negligence in land management would make them vulnerable to food security under the situation of shrinking landholding size and undergoing process of land degradation due to interactive natural and cultural factors. Farmers, therefore, have increasingly employed different land conservation strategies to maintain the fertility of their land. Increasingly they have adopted different structural and biological land conservation strategies developed by their forefathers and consolidated by line agencies and NGOs; and used different organic and inorganic fertilizers to maintain soil fertility.

Land degradation in southeastern Uganda is recently phenomenon driven by population pressure and scarcity of extra fertile land. As the ultimate goal of policy makers is to reduce poverty, this study investigates the effect of several land ownership and use patterns on the poverty levels of the farmer. The policies implications are that household size increases poverty, therefore efforts to sensitize rural population on the need and way of population control for poverty reduction will yield positive results. Secondly, use of soil conservation practices like crop rotation, planting of cover crops, addition of organic manure hold great potential for poverty reduction. Natural resource managers and technical service providers therefore, need to liaise with research institutes in order to disseminate evidence-based soil management techniques to farmers.

Finally, despite the fact that farm land are degrading, not many farmers applied fertilizers on their farms due to its high prices and scarcity. The onus therefore, rests on the government to implement a workable and efficient plan for fertilizer production and distribution. Also, efforts by researchers should be directed at developing crop hybrids that can withstand environmental stress. The farmers’ awareness and perception of the relevance of agricultural technologies has a significant impact on the rate of adoption of technologies promoted under the PMA. According to the survey results, most of the agroforestry technologies were perceived to be relevant by the farmers except the clonal coffee this is because compared to traditional coffee, clonal coffee is a high cost technology, hence unaffordable to most farmers.

REFERENCES

[1] Atkinson, A.B. 1970. On the Measurement of Inequality. *J. Economic Theory*, 2, 244-63.

[2] Bolton, G.E. and A. Ockenfels. 2000. ERC: A theory of equity, reciprocity, and competition. *American Economic Review*. 90(1), 166-93.
[3] Bagoora, F. D. K. 1988. Soil Erosion Mass-wasting Risk. In: The Highlands areas of Uganda. Mountain Research and Development 8(2/3): 173-182.

[4] Barbier, E. B. 2001. The economics of tropical deforestation and land use: An Introduction to the Special Issue. Land Econ. 77 (2): 155-171.

[5] Boardman AE, Greenberg D.H, Vining AR, and D.L. Weimer 2001. Cost benefit analysis: Concepts and practice. Prentice Hall, Inc., Upper Saddle River, second edition. New Jersey 07458. 526pp.

[6] Boffa, J.M, L. Turomurugye ug, L. Barnekow and R. Kindt 2005. Enhancing farm tree diversity as a means of conserving landscape-based biodiversity: Insights from Kigezi highlands Southwest Uganda. Mountain Res. Development 25: 212 – 217.

[7] Buyinza M. 2007. Farmers perception of the relevance of agricultural technologies under Plan for Modernization of Agriculture in Uganda. Agric. J. 2 (5): 544 – 549.

[8] Buyinza M. 2008. Financial Efficiency of Improved Fallow Agroforestry Technology for Bean Production in Kakoonge Sub-county, Nakasongola District, Uganda. Nepalese J. Development and Rural Studies. 4(2): 68 -79.

[9] Buyinza, M. and B. Lusiba 2008. An Economic Inequality Decomposition Analysis of Rural Poverty in Mbale District, Eastern Uganda. J. Economic Theory 2(2): 33 - 42.

[10] Buyinza, M. and M. Nabalegwa. 2008. Socio-economic Impacts of Land Degradation in the Mid-Hills of Uganda: A Case study of Mt. Elgon Catchments, Eastern Uganda. Env. Res. J. 2(5): 226 – 231.

[11] Foster, IE, J. Greer and E. Thorbecke 1984. A class of decomposable poverty measure. Econometrica 52(J): 761-766.

[12] Kakwani, N. C. (1977). Applications of Lorenz Curves in Economic Analysis. Econometrica 45:3, pp 719-728.

[13] Kanbur, R., (2001), Economic Policy, Distribution and Poverty. The Nature of Disagreements, World Development 29(6): 1083-1094

[14] Maxwell, D. 1995. Alternative Food Security Strategy: A Household Analysis of Urban Agriculture in Kampala. World Development. 23(10): 1669-1681.

[15] Nabalegwa M., M. Buyinza and B. Lusiba 2007. Changes in soil chemical and physical properties due to land use conversion in Nakasongola district, Uganda. Indonesian J. Geography 38 (2) 1: 154-165.

[16] Nyirenda, M., G. Kanyama-Phiri, A. Bohringer and C. Haule 2001. Economic performance of improved fallow agroforestry technology for smallholder maize production in Central Malawi. J. Crop Sc. 5: 638 - 687.

[17] Scherr, S. J. 1997. People and environment: What is the relationship between exploitation of natural resources and population growth in the South? Forum for Development Studies: 1: 33-58

[18] UBOS 2002. Provisional Population Census Results. Uganda Bureau of Statistics. Ministry of Finance, Economic Planning and Development. Entebbe, Uganda.

[19] UNDP 2005. Millennium Development Goals (MDGs). Progress Report, 2005. Kampala: United Nations Development Program.

[20] WCED 1987. Our Common Future - The Brandtland Report Oxford. World Commission on Environment and Development. Oxford University Press.

[21] Wortmann, C.S. and C.K. Kaizzi 1998. Nutrient balances and expressed effects of alternative practices in farming systems of Uganda. Agric. Ecosystem and Environment 71: 115 – 130.