Endoscopic versus surgical therapy for early esophagogastric junction adenocarcinoma based on lymph node metastasis risk: a population-based analysis

Hua Ye
Zhejiang University School of Medicine

Ping Chen
University of Chinese Academy

yi-fan Wang
Zhejiang Chinese Medical University

Xiu-Jun Cai (✉ smsh_cxj@zju.edu.cn)
Zhejiang University School of Medicine

Research

Keywords: Endoscopic treatment, Surgery, esophagogastric junction adenocarcinoma, Lymph node metastasis, Survival

DOI: https://doi.org/10.21203/rs.3.rs-362161/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

In this study, we aimed to compare the prognosis and lymph node metastasis (LNM) risk in patients with early-stage esophagogastric junction (EGJ) adenocarcinoma after endoscopic treatment (ET) or radical surgery.

Methods

We collected data from eligible patients based on Surveillance, Epidemiology, and End Results database between 2004 and 2016. Logistic regression analysis was used to determine independent predictors of LNM (examination of at least 16 lymph nodes). Cox regression analysis and propensity score-matched (PSM) analysis were subsequently utilized to compare overall survival (OS) and cancer-specific survival (CSS) of patients treated with ET or radical surgery.

Results

In total, 5266 patients were identified. Among them, 856 patients had greater than or equal to 16 examined lymph nodes (LNs) (LNE ≥ 16). The LNM rates were 18.8% in all patients, 8.3% in T1a patients, and 24.6% in T1b patients. Independent predictors of LNM were submucosal invasion, tumor size ≥ 3cm, and decreasing differentiation (P < 0.05). The LNM rate decreased to approximately 5.3% in T1b tumors with well differentiation and tumor size < 3cm. However, the LNM incidence increased to 17.9% or 33.3% in T1a tumors with poor differentiation or with both tumor size ≥ 3cm and poor differentiation. Cox regression analysis demonstrated CSS was not significantly different in early-stage EGJ adenocarcinoma patients undergoing ET and those treated with radical surgery (HR = 0.830, P = 0.062), which were robustly validated after PSM analysis. Moreover, subgroup analysis stratified by T1a and T1b showed similar results.

Conclusions

Consequently, our findings indicated ET as an alternative to radical surgery in early EGJ adenocarcinoma.

Introduction

Nowadays, great changes have been made in the clinical intervention for early malignant and precancerous lesions of the upper gastrointestinal (GI) tract, from radical surgery to endoscopic treatment. The incidence of esophagogastric junction (EGJ) adenocarcinoma has been rapidly rising in Western countries in the last decades [1]. A similar trend has been observed in Asia, probably due to the available eradication therapy for Helicobacter pylori (H.pylori), a high prevalence of gastroesophageal reflux disease and obesity, and dietary factors [2], and partly shared with those of gastric adenocarcinoma, i.e. H.pylori infection and dietary factors [3]. As a minimally invasive approach, endoscopic submucosal dissection (ESD) or endoscopic mucosal resection (EMR) is also curative for superficial GI malignancies, including esophageal, gastric and colonic lesions [4]. Moreover, due to the varied incidence of lymph node metastasis (LNM) in esophageal and gastric cancer, there are also difference of the curative resection criteria of ESD / EMR between esophageal and gastric cancer [5, 6]. However, it is unknown which curative resection criteria are better for EGJ adenocarcinoma, since the incidence of metastatic EGJ adenocarcinoma remains unknown. Of note, inaccessible assessment of pathologic lymph node (LN) has been considered as the main drawback of endoscopic treatment (ET), which can significantly affect patients' survival in the case of metastatic LNs. Therefore, clinical decision-making in early-stage EGJ adenocarcinoma can be optimized by better pretreatment LNM risk stratification according to both patient and tumor features.

In this study, eligible patients from Surveillance, Epidemiology, and End Results (SEER) database were utilized to determine preoperative predictors of LNM, followed by comparison of the effects of radical surgery, ET, and radiotherapy (RT) on long-term survival in early-stage EGJ adenocarcinoma. Finally, an early-stage EGJ adenocarcinoma therapeutic algorithm was proposed for patients at acceptable risk for ET.
Materials And Methods

Origins of materials

The National Cancer Institute (NCI) supported SEER database, records data on tumor incidence and survival by covering almost 28% of population in the USA from diverse geographic regions (18 cancer registries) from 2004 to 2016. The collection and recoding of SEER data were performed using data items and codes on the basis of North American Association of Central Cancer Registries (NAACCR)[7]. Access to SEER database was obtained, and our study gained institutional approval.

Inclusion and exclusion criteria

In total, 5266 patients were enrolled. The inclusion criteria were as follows: (1) year of diagnosis (from 2004 to 2016); (2) patients were 18 years or older; (3) histological type included adenocarcinoma (8140), mucinous adenocarcinoma (MAC) (8480), and signet ring cell cancer (SRCC) (8490); (4) available active follow-up data. (5) patients with T1 EGJ adenocarcinoma (site codes, C15.5, C16.0, C16.1 and C16.2) and treated with either ET, radical surgery or RT. According to the records in SEER database, ET referred to endoscopic treatment for local tumor excision with pathology specimen. In addition, the definition of radical surgery was all forms of partial esophagus removal along with partial or total gastrectomy. RT was defined as ionizing radiation-based therapy. (6) At least 16 regional lymph nodes (LNs) were examined after surgical resection. The exclusion criteria were as follows: (1) distant metastasis; (2) patients who received neoadjuvant therapy (3) patients had more than one primary malignancies, except those with EGJ as the first diagnosed; (4) patients died within 1 month, which was mostly caused by surgical complications; (5) patients undergoing local tumor destruction without pathological specimen.

Statistical analysis

Age at diagnosis, race, year of diagnosis, marital status, gender, tumor size, differentiation grade, survival (months), number of examined LNs, LNM, histology and death cause were collected from SEER database. The main endpoints included overall survival (OS) and cancer-specific survival (CSS).

For comparisons among group, categorical variables were analyzed by Fisher's exact test or Pearson's test. Risk factors for LNM were determined by both univariate and multivariate logistic regression models, shown as odd ratios (ORs) along with 95% confidence intervals (CIs). Moreover, adjusted hazard ratios (HRs) along with 95% CIs were calculated by both univariate and multivariate Cox regression models. Additionally, PSM analysis was performed by using the 1:1 "nearest neighbor" match paradigm, aiming at further adjustment of variations in general data and bias minimization. The following covariates histology, grade, race, gender, age, T stage, tumor size, year of diagnosis, and marital status were used in PSM analysis. After matching, we compared two groups with control for covariate balance and similarity in baseline covariates between groups, and two matched groups were compared according to the study objectives. Statistical analysis was performed by R software version R-3.6.2 (The R Foundation for Statistical Computing, Vienna, Austria) as well as SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). GraphPad Prism 6.0 (GraphPad Software, San Diego, CA) was employed to plot survival curves. A two-sided P value < 0.05 suggested statistical significance.

Results

Patient Characteristics

In total, 5266 eligible patients were included (surgical therapy: n = 2418, 45.9%; ET: n = 1290, 24.5%; RT: n = 1558, 29.6%). Among them, 4389 patients were male and the remaining 877 were females. The median age at diagnosis was 68 years, ranging from 22 to 99 years (mean ± SD: 68.16 ± 11.24 years). The median follow-up was 32 months, ranging between 1 and 155 months. The detailed data on patient demographics as well as tumor characteristics were shown in Table 1.
Table 1
The characteristics of 5266 patients with early-stage esophagogastric junction cancer

Characteristic	Surgery	ET	RT	Statistic	p
Gender		N = 2418,%	N = 1290,%	N = 1558,%	
Female		376(15.6)	234(18.1)	267(17.1)	0.109
Male		2042(84.4)	1056(81.9)	1291(82.9)	
Age(years)					
Up to 49		170(7.0)	39(3.0)	49(3.1)	< 0.001
50–64		985(40.7)	360(27.9)	338(21.7)	
65–79		1114(46.1)	650(50.4)	664(42.6)	
80+		149(6.2)	241(18.7)	507(32.5)	
Race					0.046
White		2270(93.9)	1221(94.7)	1445(92.7)	
Black		56(2.3)	32(2.5)	58(3.7)	
Others*		92(3.8)	37(2.9)	55(3.5)	
T stage					< 0.001
T1a		979(40.5)	927(71.9)	336(21.6)	
T1b		1226(50.7)	226(17.5)	147(9.4)	
T1x		213(8.8)	137(10.6)	1075(69.0)	
Tumor size(cm)					< 0.001
< 1		511(21.1)	351(27.2)	30(1.9)	
1–2		571(23.6)	211(16.4)	96(6.2)	
2–3		420(17.4)	86(6.7)	111(7.1)	
3+		431(17.8)	70(5.4)	550(35.3)	
Not stated		485(20.1)	572(44.3)	771(49.5)	
Year of diagnosis					< 0.001
2004–2006		577(23.9)	116(9.0)	399(25.6)	
2007–2009		675(27.9)	189(14.7)	408(26.2)	
2010–2012		555(23.0)	315(24.4)	342(22.0)	
2013–2016		611(25.3)	670(51.9)	409(26.3)	
Marital status					< 0.001
Married		1687(69.8)	819(63.5)	884(56.7)	

Abbreviation: ET, Endoscopic therapy ; RT, Radiotherapy; pT, pathologic tumor; T1a ,tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.

*American Indian/Alaska Native, Asian/Pacific Islander.
LNM Risks in Early-Stage EGJ adenocarcinoma

In total, 856 patients with EGJ adenocarcinoma diagnosed between 2004 and 2016 with at least 16 LNs examined who received surgical resection were collected. The overall LNM rate was 18.8% (161/856). When stratified by pT stage, LNM rates were 8.3% (25/300) and 24.6% (122/496) in T1a and T1b patients, respectively. LNM rate decreased to 5.3% (2/38) in well-differentiated T1b tumors with tumor size < 3cm; while LNM incidence increased to 17.9% (12/67) in poorly-differentiated T1a tumors, and rose to as high as 33.3% (5/15) in poorly-differentiated tumors exceeding 3cm in size. We further employed univariate and multivariate logistic regression analyses to identify risk factors for LNM. Consequently, we robustly found that tumor size, tumor grade and pT stage were significant predictive indicators for LNM. LNM rate was significantly higher in T1b than T1a tumors (OR: 2.162, 95% CI: 1.311–3.565, P = 0.003). Compared with small tumors less than 1cm in size, the risk of LNM was increased in tumor sizes exceeding 3 cm (OR = 5.524, 95% CI: 2.716–11.234, P < 0.001). The incidence of LNM was also significantly higher in tumors with poor/moderate differentiation or undifferentiation than those with well differentiation (OR 4.325, 95% CI: 1.774–10.544, P = 0.001; OR 5.15, 95% CI 1.81–14.63, P = 0.002, respectively). The detailed patient characteristics were summarized in Table 2. According to the present NCCN guidelines, ET is recommended for T1a tumors but is less definitive for T1b tumors.
Characteristic	Univariate analysis	Multivariate analysis		
	OR (95% CI)	P	OR (95% CI)	P
Gender				
Female	Reference			
Male	1.216 (0.762–1.942)	0.412		
Age (years)				
Up to 49	Reference			
50–64	0.904 (0.455–1.794)	0.773		
65–79	0.946 (0.480–1.865)	0.872		
80+	1.910 (0.737–4.948)	0.183		
Race				
White	Reference			
Black	0.236 (0.031–1.785)	0.162		
Others*	1.135 (0.510–2.525)	0.756		
Tumor size (cm)				
< 1	Reference		Reference	
1–2	2.556 (1.256–5.201)	0.010	1.699 (0.813–3.554)	0.159
2–3	3.403 (1.638–7.070)	0.001	1.930 (0.896–4.156)	0.093
3+	8.868 (4.496–17.490)	<0.001	5.524 (2.716–11.234)	<0.001
Not stated	1.350 (0.576–3.166)	0.490	1.130 (0.466–2.738)	0.787
pT stage				
T1a	Reference		Reference	
T1b	3.588 (2.271–5.670)	<0.001	2.162 (1.311–3.565)	0.003
T1x	3.348 (1.622–6.912)	0.001	2.729 (1.234–6.035)	0.013
Year of diagnosis				
2004–2006	Reference			
2007–2009	1.410 (0.830–2.397)	0.204		
2010–2012	1.174 (0.690–1.998)	0.553		
2013–2016	0.986 (0.586–1.661)	0.959		
Marital status				
Married	Reference			
Single/widowed	1.258 (0.789–2.006)	0.335		

Abbreviation: LNE, Number of examined lymph nodes; OR, odd ratio; 95% CI, 95% confidence intervals; pT, pathologic tumor; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa.

* American Indian/Alaska Native, Asian/Pacific Islander.
| Characteristic | Univariate analysis | Multivariate analysis |
|------------------------|---------------------|-----------------------|
| Other/unknown | 0.881(0.517–1.501) | 0.640 |

Grade

Grade	Univariate analysis	Multivariate analysis
Well-differentiated	Reference	Reference
Moderately differentiated	3.614(1.518–8.602)	0.004
Poorly/Undifferentiated	7.558(3.202–17.840)	< 0.001
Unknown	1.158(0.341–3.932)	0.814

Histology

Histology	Univariate analysis	Multivariate analysis
Adenocarcinoma	Reference	Reference
Mucinous carcinoma	1.332(0.274–6.480)	0.723
Signet ring cell carcinoma	2.331(1.322–4.110)	0.003

Abbreviation: LNE, Number of examined lymph nodes; OR, odd ratio; 95% CI, 95% confidence intervals; pT, pathologic tumor; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa.

* American Indian/Alaska Native, Asian/Pacific Islander.

LNM Rates in T1a Tumors

The rate of LNM in T1a tumor sizes exceeding 3 cm was 23.8% (10/42) compared with 6.1% (12/197) in tumors < 3 cm in size. Compared with small tumors less than 1 cm in size, the risk of LNM was increased in tumor sizes exceeding 3 cm (OR = 4.673, 95% CI: 1.421–15.371, P = 0.011) in multivariate analysis. The presence of LNM was 4.8% (3/62), 7.0% (8/115) and 17.9% (12/67) in well-differentiated, moderately differentiated and poorly/undifferentiated T1a tumor, respectively. The incidence of LNM was higher in poorly differentiated T1a cancer than compared with well-differentiated one (OR4.291, 95% CI:1.149–16.021, P = 0.030) in univariate analysis. The details of other tumor features were shown in Table 3.
Table 3
Logistic regression analysis of the risk factors for lymph node metastasis in T1a esophagogastric junction cancer (LNE ≥ 16)

Characteristic	Univariate analysis	Multivariate analysis			
	OR (95% CI)	P	OR (95% CI)	P	
Gender	Reference		Reference		
Female			Male	1.710(0.493–5.930)	0.398
Age (years)	Reference		Reference		
Up to 49			50–64	0.687(0.207–2.276)	0.539
			65–79	0.433(0.121–1.548)	0.198
			80+	Omitted	
Race	Reference		Reference		
White			Black	Omitted	
	1.067(0.131–8.691)	0.952	Others*	Omitted	
Tumor size (cm)	Reference		Reference		
< 1			1.516(0.422–5.446)	0.524	
1–2	1.617(0.295–8.846)	0.580	1.342(0.364–4.943)	0.658	
2–3	6.062(1.928–19.060)	0.002	4.673(1.421–15.371)	0.011	
3+	1.003(0.231–4.355)	0.996	0.984(0.219–4.423)	0.983	
Year of diagnosis	Reference		Reference		
2004–2006			2007–2009	0.486(0.128–1.851)	0.290
2010–2012	0.736(0.254–2.132)	0.573	2013–2016	0.623 (0.216–1.796)	0.381
Marital status	Reference		Reference		
Married			Single/widowed	0.597(0.170–2.092)	0.420
	Other/unknown	0.531(0.119–2.370)	0.406		
Grade	Reference		Reference		
Well-differentiated			Moderately differentiated	1.470(0.376–5.754)	0.580
	1.543(0.380–6.259)	0.544			

Abbreviation: LNE, Number of examined lymph nodes; OR, odd ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa.

* American Indian/Alaska Native, Asian/Pacific Islander.
Characteristic

Characteristic	Univariate analysis	Multivariate analysis
Poorly/Undifferentiated	4.291(1.149–16.021)	0.030
	0.055	
Unknown	0.728(0.117–4.527)	0.734
	0.835	

Histology

Histology	Reference	Reference
Adenocarcinoma	Reference	Reference
Mucinous carcinoma	11.727(0.709-193.969)	0.085
	0.327	
Signet ring cell carcinoma	1.466(0.316–6.791)	0.625
	0.755	

Abbreviation: LNE, Number of examined lymph nodes; OR, odd ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa.

* American Indian/Alaska Native, Asian/Pacific Islander.

LNM Rates in T1b Tumors

We further compared the LNM rate in T1b tumors between tumor size exceeding 3 cm and tumors < 3 cm, which was 42.7% (56/131) versus 19.3% (61/316). The incidence of LNM was higher in poorly/undifferentiated tumors (OR 4.944, 95% CI: 1.440–16.970, P = 0.011) than well-differentiated tumors. Compared with small tumors less than 1 cm in size, the risk of LNM was increased in tumor sizes exceeding 3 cm (OR = 6.091, 95% CI: 2.239–16.570, P < 0.001). The presence of LNM was 6.4% (3/47), 21.4% (47/220) and 32.9% (70/213) in well-differentiated, moderately differentiated and poorly/undifferentiated T1b tumors, respectively. LNM incidence was higher in poorly-differentiated than well-differentiated T1b tumors (OR 4.944, 95% CI: 1.44–16.97, P = 0.011) in multivariate analysis. The details of other tumor features were shown in Table 4.
Table 4
Logistic regression analysis of the risk factors for lymph node metastasis in T1b esophagogastric junction cancer (LNE ≥ 16)

Characteristic	Univariate analysis			Multivariate analysis	
	OR (95% CI)	P	OR (95% CI)	P	
Gender					
Female	Reference				
Male	1.216 (0.706–2.095)	0.481			
Age (years)					
Up to 49	Reference				
50–64	1.029 (0.390–2.716)	0.954			
65–79	1.076 (0.413–2.801)	0.881			
80+	1.875 (0.551–6.379)	0.314			
Race					
White	Reference				
Black	1.053 (0.410–2.699)	0.915			
Others*	0.352 (0.037–3.374)	0.365			
Tumor size (cm)					
< 1	Reference				
1–2	2.410 (0.882–6.587)	0.086	2.036 (0.732–5.666)	0.173	
2–3	2.686 (0.969–7.447)	0.058	2.292 (0.809–6.490)	0.118	
3+	7.019 (2.622–18.791)	< 0.001	6.091 (2.239–16.570)	< 0.001	
Not stated	1.068 (0.289–3.943)	0.921	1.042 (0.277–3.921)	0.951	
Year of diagnosis					
2004–2006	Reference				
2007–2009	1.611 (0.850–3.053)	0.144			
2010–2012	1.239 (0.655–2.344)	0.511			
2013–2016	0.974 (0.526–1.806)	0.934			
Marital status					
Married	Reference				
Single/widowed	1.759 (1.012–3.055)	0.045	1.780 (0.981–3.232)	0.058	
Other/unknown	0.888 (0.469–1.681)	0.715	0.879 (0.448–1.724)	0.707	
Grade					
Well-differentiated	Reference				
Moderately differentiated	3.985 (1.184–13.404)	0.026	3.005 (0.872–10.359)	0.081	

Abbreviation: LNE, Number of examined lymph nodes; OR, odd ratio; 95% CI, 95% confidence intervals; T1b, tumor invades the submucosa.

* American Indian/Alaska Native, Asian/Pacific Islander.
Characteristic

Characteristic	Univariate analysis	Multivariate analysis
Poorly/Undifferentiated	7.179(2.154–23.931)	4.944(1.440–16.970)
Unknown	2.095(0.317–13.835)	1.496(0.207–10.794)

Histology

- **Adenocarcinoma**
 - Reference
- **Mucinous carcinoma**
 - 0.667(0.077–5.776)
 - 0.713
 - 0.497(0.053–4.627)
 - 0.539
- **Signet ring cell carcinoma**
 - 2.578(1.320–5.037)
 - 0.006
 - 2.025(0.980–4.184)
 - 0.057

American Indian/Alaska Native, Asian/Pacific Islander.

Patient survival

The mean OS in the surgical therapy, ET, and RT groups was 105 months (95% CI 103–108), 97 months (95% CI 93–102), and 27 months (95% CI 25–29), respectively. Log-rank test showed that survival was similar in patients treated by surgical therapy and ET ($p = 0.064$). The survival was significantly better in patients treated by surgical therapy than those treated by RT ($p < 0.001$). Survival curves of the three groups were displayed in Fig. 1a. The mean CSS was 121 months (95% CI 118–123), 126 months (95% CI 122–131), and 36 months (95% CI 33–39) in the surgical therapy, ET, and RT groups, respectively. Log-rank test revealed that the survival of patients treated by surgical therapy was significantly worse than those treated by ET ($p < 0.001$) and the survival of patients treated by surgical therapy was significantly better than those treated by RT ($p < 0.001$). The survival curves of the three groups were displayed in Fig. 1b. The multivariate Cox regression models showed that OS (ET: HR 1.220, 95% CI: 1.059–1.406, $p = 0.006$; RT: HR 3.700, 95% CI: 3.271–4.185, $p < 0.001$) and CSS (ET: HR 0.830, 95% CI: 0.682–1.010, $p = 0.062$; RT: HR 4.024, 95% CI: 3.483–4.649, $p < 0.001$) compare with surgical therapy group. The survival was significantly higher in ET and surgical therapy groups than RT group. Moreover, univariate and multivariate Cox regression models consistently revealed that tumor size ($\geq 2\text{cm}$), marital status, pT stage, LNM, Grade (Poorly/Undifferentiated), histology (Mucinous carcinoma) and old age ($\geq 65\text{years}$) were significant prognostic indicators for both OS and CSS (Table 5).
Table 5
Cox regression analysis of OS and CSS in patients with early-stage esophagogastric junction cancer.

Characteristic	OS	CSS							
	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis					
	HR (95% CI)	P							
Gender									
Female	Reference		Reference		Reference		Reference		
Male	0.998(0.896–1.112)	0.975	0.968(0.855–1.097)	0.612					
Race									
White	Reference		Reference		Reference		Reference		
Black	1.353(1.084–1.689)	0.007	1.187(0.949–1.484)	0.133	1.351(1.044–1.748)	0.022	1.104(0.851–1.431)	0.457	
Others*	0.830(0.656–1.049)	0.119	0.818(0.646–1.036)	0.095	0.918(0.705–1.195)	0.523	0.908(0.696–1.185)	0.477	
Tumor size(cm)									
< 1	Reference		Reference		Reference		Reference		
1–2	1.507(1.257–1.807)	< 0.001	1.144(0.952–1.375)	0.152	1.879(1.474–2.394)	< 0.001	1.284(1.004–1.641)	0.046	
2–3	2.115(1.762–2.538)	< 0.001	1.309(1.084–1.579)	0.005	2.778(2.183–3.537)	< 0.001	1.469(1.146–1.882)	0.002	
3+	4.139(3.531–4.851)	< 0.001	1.564(1.317–1.856)	< 0.001	6.456(5.224–7.979)	< 0.001	1.906(1.521–2.390)	< 0.001	
Not stated	2.943(2.525–3.430)	< 0.001	1.389(1.180–1.635)	< 0.001	4.176(3.392–5.141)	< 0.001	1.682(1.349–2.096)	< 0.001	
Year of diagnosis									
2004–2006	Reference		Reference		Reference		Reference		
2007–2009	0.868(0.784–0.962)	0.007	0.900(0.812–0.997)	0.044	0.887(0.786–1.001)	0.051	0.942(0.834–1.063)	0.333	
2010–2012	0.690(0.616–0.773)	< 0.001	0.741(0.660–0.831)	< 0.001	0.697(0.611–0.795)	< 0.001	0.793(0.694–0.907)	0.001	
2013–2016	0.659(0.582–0.747)	< 0.001	0.770(0.677–0.875)	< 0.001	0.630(0.545–0.727)	< 0.001	0.807(0.697–0.935)	0.004	
Marital status									
Married	Reference		Reference		Reference		Reference		
Single/widowed	1.436(1.306–1.578)	< 0.001	1.191(1.080–1.312)	< 0.001	1.530(1.371–1.707)	< 0.001	1.249(1.116–1.398)	< 0.001	
Other/unknown	1.142(1.016–1.284)	0.027	1.182(1.050–1.332)	0.006	1.232(1.077–1.409)	0.002	1.252(1.092–1.435)	0.001	

Abbreviation: ET, Endoscopic therapy; RT, Radiotherapy; LNM, lymph node metastasis; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a ,tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.

*American Indian/Alaska Native, Asian/Pacific Islander.
	OS		CSS		
T1a	Reference		Reference		
T1b	1.205(1.083– 1.340)	0.001	1.192(1.061– 1.340)	0.003	
			1.403(1.229– 1.601)	< 0.001	
				1.313(1.137– 1.517)	< 0.001
T1x	3.905(3.553– 4.292)	< 0.001	1.443(1.292– 1.612)	< 0.001	
			5.153(4.594– 5.779)	< 0.001	
				1.596(1.400– 1.818)	< 0.001
Treatment					
Surgery	Reference		Reference		
ET	1.092(0.960– 1.241)	0.180	1.220(1.059– 1.406)	0.006	
			0.693(0.578– 0.831)	< 0.001	
				0.830(0.682– 1.010)	0.062
RT	6.111(5.573– 6.702)	< 0.001	3.700(3.271– 4.185)	< 0.001	
			7.031(6.311– 7.834)	< 0.001	
				4.024(3.483– 4.649)	< 0.001
LNM					
No	Reference	Reference	Reference	Reference	
Yes	2.275(2.066– 2.504)	< 0.001	1.507(1.361– 1.668)	< 0.001	
			2.728(2.453– 3.035)	< 0.001	
				1.614(1.443– 1.805)	< 0.001
Grade					
Well-differentiated	Reference	Reference	Reference	Reference	
Moderately differentiated	1.573(1.349– 1.834)	< 0.001	1.084(0.928– 1.267)	0.310	
			1.780(1.466– 2.162)	< 0.001	
				1.097(0.900– 1.336)	0.358
Poorly/Undifferentiated	2.368(2.031– 2.761)	< 0.001	1.245(1.060– 1.461)	0.007	
			3.122(2.577– 3.783)	< 0.001	
				1.393(1.141– 1.700)	0.001
Unknown	1.216(1.026– 1.440)	0.024	0.873(0.734– 1.037)	0.121	
			1.325(1.069– 1.642)	0.010	
				0.898(0.722– 1.116)	0.332
Histology					
Adenocarcinoma	Reference	Reference	Reference	Reference	
Mucinous carcinoma	2.136(1.574– 2.899)	< 0.001	1.792(1.319– 2.435)	< 0.001	
			2.262(1.602– 3.194)	< 0.001	
				1.796(1.270– 2.540)	0.001
Signet ring cell carcinoma	1.779(1.531– 2.068)	< 0.001	1.191(1.018– 1.393)	0.029	
			1.960(1.657– 2.319)	< 0.001	
				1.184(0.994– 1.410)	0.059
Age(years)					
Up to 49	Reference		Reference		
50–64	1.192(0.943– 1.505)	0.141	1.161(0.918– 1.467)	0.213	
			1.038(0.803– 1.343)	0.774	
				1.006(0.776– 1.303)	0.966
65–79	1.908(1.521– 2.394)	< 0.001	1.659(1.320– 2.085)	< 0.001	
			1.514(1.180– 1.943)	0.001	
				1.298(1.009– 1.670)	0.043
80+	4.358(3.452– 5.502)	< 0.001	2.447(1.929– 3.106)	< 0.001	
			3.669(2.841– 4.737)	< 0.001	
				1.937(1.491– 2.518)	< 0.001

Abbreviation: ET, Endoscopic therapy; RT, Radiotherapy; LNM, lymph node metastasis; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.

*American Indian/Alaska Native, Asian/Pacific Islander.
In total, 920 patient pairs were included in the PSM analysis. Patient features and tumor characteristics of both surgical therapy and ET groups after propensity matching were displayed in Table 6. As a result, all matched variables were balanced between two groups (all P > 0.05). Survival analysis and log-rank test revealed worse OS in ET group than surgical therapy group (Fig. 1c). There was no significant difference in CSS (Fig. 1d). Moreover, Cox proportional hazards regression revealed significant differences in OS (HR = 1.488, 95% CI 1.240–1.786; P < 0.001) and no significant differences in CSS (HR = 1.112, 95% CI: 0.866–1.429; P = 0.405) between surgical therapy and ET groups. The details of other tumor features were shown in Table 7.
Table 6
Baseline characteristics of patients treated with ES and ET for early-stage esophageal cancer before and after the propensity score-matched (1:1 matching).

Characteristic	Before matched	After matched	Statistic	p	Statistic	p		
	ES	ET	Surgery	ES	ET	Surgery	ET	
	N=2418	N=1290	Statistic	p	N=920	N=920	Statistic	p
Gender								
Female	376(15.6)	234(18.1)	χ² = 4.104	0.043	χ² = 0.434	0.510		
Male	2042(84.4)	1056(81.9)						
Age(years)								
Up to 49	170(7.0)	39(3.0)	χ² = 190.802	< 0.001	χ² = 5.161	0.160		
50–64	985(40.7)	360(27.9)						
65–79	1114(46.1)	650(50.4)						
80+	149(6.2)	241(18.7)						
Race								
White	2270(93.9)	1221(94.7)	χ² = 2.270	0.321	χ² = 3.222	0.200		
Black	56(2.3)	32(2.5)						
Others*	92(3.8)	37(2.9)						
Tumor size(cm)								
< 1	511(21.1)	351(27.2)	χ² = 374.707	< 0.001	χ² = 4.393	0.355		
1–2	571(23.6)	211(16.4)						
2–3	420(17.4)	86(6.7)						
3+	431(17.8)	70(5.4)						
Not stated	485(20.1)	572(44.3)						
Year of diagnosis								
2004–2006	577(23.9)	116(9.0)	χ² = 337.009	< 0.001	χ² = 2.772	0.428		
2007–2009	675(27.9)	189(14.7)						
2010–2012	555(23.0)	315(24.4)						
2013–2016	611(25.3)	670(51.9)						
Marital status								
Married	1687(69.8)	819(63.5)	χ² = 15.807	< 0.001	χ² = 5.671	0.059		
Single/widowed	402(16.6)	270(20.9)						

Abbreviation: ET, Endoscopic therapy; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.*American Indian/Alaska Native, Asian/Pacific Islander.
	Before matched	After matched
Other/unknown	329(13.6)	201(15.6)
		138(15.0)
		157(17.1)
T stage		
T1a	979(40.5)	927(71.9)
	592(64.3)	595(64.7)
T1b	1226(50.7)	226(17.5)
	235(25.5)	217(23.6)
T1x	213(8.8)	137(10.6)
	93(10.1)	108(11.7)
Grade		
Well-differentiated	346(14.3)	210(16.3)
	160(17.4)	134(14.6)
Moderately differentiated	1019(42.1)	438(34.0)
	352(38.3)	338(36.7)
Poorly/Undifferentiated	726(30.0)	191(14.8)
	167(18.2)	182(19.8)
Unknown	327(13.5)	451(35.0)
	241(26.2)	266(28.9)
Histology		
Adenocarcinoma	2270(93.9)	1255(97.3)
	887(96.4)	887(96.4)
Mucinous carcinoma	25(1.0)	8(0.6)
	8(0.9)	8(0.9)
Signet ring cell cancer	123(5.1)	27(2.1)
	25(2.7)	25(2.7)

χ² = 400.549 < 0.001
χ² = 1.844 0.398
χ² = 279.570 < 0.001
χ² = 4.461 0.216
χ² = 21.284 < 0.001
χ² = 0 1.0

Abbreviation: ET, Endoscopic therapy; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.*American Indian/Alaska Native, Asian/Pacific Islander.
Table 7
Cox regression analysis of OS and CSS in patients with early-stage esophagogastric junction cancer after propensity score matching

Characteristic	OS			CSS				
	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis		
	HR (95% CI)	P	HR (95% CI)	P	HR (95% CI)	P		
Gender								
Female	Reference		Reference		Reference			
Male	1.029 (0.819–1.293)	0.807	1.031 (0.751–1.414)	0.851				
Race								
White	Reference		Reference		Reference			
Black	1.182 (0.667–2.098)	0.567	0.720 (0.268–1.934)	0.515				
Others*	0.901 (0.508–1.598)	0.722	0.693 (0.286–1.680)	0.417				
Tumor size(cm)								
< 1	Reference		Reference		Reference			
1–2	1.369 (1.028–1.822)	0.031	1.115 (0.833–1.491)	0.465	1.360 (0.908–2.038)	0.136	1.046 (0.692–1.581)	0.831
2–3	1.685 (1.190–2.386)	0.003	1.159 (0.811–1.657)	0.418	2.029 (1.277–3.223)	0.003	1.324 (0.822–2.134)	0.248
3+	2.157 (1.507–3.087)	< 0.001	1.489 (1.029–2.153)	0.035	2.658 (1.664–4.245)	< 0.001	1.652 (1.016–2.687)	0.043
Not stated	1.318 (1.033–1.681)	0.026	1.085 (0.841–1.400)	0.529	1.385 (0.982–1.955)	0.063	1.126 (0.785–1.614)	0.520
Year of diagnosis								
2004–2006	Reference		Reference		Reference			
2007–2009	0.780 (0.614–0.990)	0.041	0.733 (0.575–0.933)	0.012	0.785 (0.561–1.099)	0.158	0.705 (0.502–0.992)	0.045
2010–2012	0.578 (0.443–0.755)	< 0.001	0.564 (0.428–0.742)	< 0.001	0.560 (0.389–0.806)	< 0.001	0.517 (0.355–0.752)	0.001
2013–2016	0.615 (0.459–0.823)	0.001	0.558 (0.412–0.756)	< 0.001	0.560 (0.379–0.827)	< 0.001	0.476 (0.317–0.714)	< 0.001
Marital status								
Married	Reference		Reference		Reference			
Single/widowed	1.219 (0.986–1.508)	0.068	1.226 (0.914–1.645)	0.174				
Other/unknown	0.849 (0.644–1.119)	0.245	0.852 (0.583–1.244)	0.406				
T stage								

Abbreviation: ET, Endoscopic therapy; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.

*American Indian/Alaska Native, Asian/Pacific Islander.
	OS	CSS
T1a	Reference	Reference
T1b	1.920 (1.567−2.351)	< 0.001
	1.494 (1.203−1.857)	< 0.001
	2.310 (1.755−3.041)	< 0.001
	1.705 (1.270−2.289)	< 0.001
T1x	2.082 (1.618−2.680)	< 0.001
	1.784 (1.374−2.316)	< 0.001
	2.499 (1.778−3.512)	< 0.001
	2.087 (1.464−2.976)	< 0.001

Treatment

Variable	OS	CSS						
ES	Reference	Reference						
ET	1.599 (1.337−1.913)	< 0.001	1.488 (1.240−1.786)	< 0.001	1.229 (0.962−1.570)	0.099	1.112 (0.866−1.429)	0.405

Grade

Grade	OS	CSS						
Well-differentiated	Reference	Reference						
Moderately differentiated	1.246 (0.941−1.649)	0.124	1.148 (0.875−1.506)	0.822	1.251 (0.851−1.839)	0.254	1.025 (0.693−1.514)	0.903
Poorly/Undifferentiated	1.668 (1.233−2.258)	0.001	1.196 (0.874−1.636)	0.264	1.937 (1.292−2.903)	0.001	1.323 (0.868−2.017)	0.193
Unknown	0.788 (0.584−1.063)	0.118	0.752 (0.554−1.021)	0.067	0.664 (0.432−1.021)	0.062	0.621 (0.401−0.962)	0.033

Histology

Histology	OS	CSS						
Adenocarcinoma	Reference	Reference						
Mucinous carcinoma	1.855 (0.829−4.152)	0.133	1.116 (0.488−2.550)	0.795	3.031 (1.249−7.353)	0.014	1.810 (0.725−4.517)	0.204
Signet ring cell carcinoma	2.042 (1.304−3.199)	0.002	1.297 (0.808−2.082)	0.281	2.413 (1.379−4.220)	0.002	1.373 (0.759−2.486)	0.295

Age

Age (years)	OS	CSS						
Up to 49	Reference	Reference						
50−64	0.982 (0.526−1.834)	0.956	1.024 (0.547−1.916)	0.941	0.559 (0.283−1.105)	0.094	0.574 (0.289−1.141)	0.113
65−79	1.796 (0.982−3.286)	0.057	1.685 (0.918−3.095)	0.092	0.980 (0.514−1.868)	0.952	0.881 (0.459−1.692)	0.704
80+	4.969 (2.687−9.188)	< 0.001	3.821 (2.051−7.118)	< 0.001	3.078 (1.593−5.948)	0.001	2.158 (1.102−4.226)	0.025

Abbreviation: ET, Endoscopic therapy; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa; T1x, unknown T1a or T1b.

*American Indian/Alaska Native, Asian/Pacific Islander.

Subgroup Analysis

The 920 patient pairs were further categorized into T1a and T1b groups. After adjustment of both patient demographics and tumor variables, surgical therapy and ET related CSS (HR = 1.085, 95% CI 0.760−1.550; P = 0.653), (HR = 1.335, 95% CI: 0.856−2.083; P = 0.203) were not significantly different in T1a and T1b patients (shown in Table 8).
Table 8 Cox regression analysis of CSS in patients with T1a and T1b esophagogastric junction cancer after propensity score matching

Characteristic	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis
	HR (95% CI)	P	HR (95% CI)	P
Gender				
Female	Reference		Reference	
Male	1.005 (0.640–1.579)	0.982	1.252 (0.706–2.219)	0.442
Race				
White	Reference		Reference	
Black	Omitted		0.697 (0.097–5.011)	0.720
Others*	1.310 (0.536–3.205)	0.554	Omitted	
Tumor size(cm)				
< 1	Reference	0.680	Reference	
1–2	1.126 (0.642–1.975)	0.680	1.038 (0.589–1.829)	0.897
2–3	1.815 (0.912–3.612)	0.089	1.546 (0.767–3.115)	0.223
3+	2.167 (1.062–4.425)	0.034	2.184 (1.056–4.517)	0.035
Not stated	1.234 (0.792–1.921)	0.353	1.248 (0.788–1.976)	0.346
Year of diagnosis				
2004–2006	Reference	0.290	Reference	
2007–2009	0.781 (0.494–1.234)	0.290	0.835 (0.525–1.330)	0.448
2010–2012	0.611 (0.369–1.011)	0.055	0.615 (0.363–1.042)	0.070
2013–2016	0.458 (0.249–0.842)	0.012	0.449 (0.238–0.848)	0.014
Marital status				
Married	Reference	0.465	Reference	
Single/widowed	1.171 (0.767–1.790)	0.465	1.446 (0.897–2.331)	0.130
Other/unknown	0.916 (0.542–1.546)	0.741	0.798 (0.379–1.678)	0.551
Treatment				

Abbreviation: ET, Endoscopic therapy; RT, Radiotherapy; LNM, lymph node metastasis; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa;

*American Indian/Alaska Native, Asian/Pacific Islander.
	T1a	T1b
surgery	Reference	Reference
ET	1.083 (0.764–1.536)	1.085 (0.760–1.550)
	0.654	0.653
Grade	Reference	Reference
Moderately	1.059 (0.636–1.764)	1.072 (0.580–1.629)
differentialed	0.824	0.915
Poorly	1.505 (0.848–2.669)	1.117 (0.614–2.031)
/Undifferentiated	0.162	0.717
Unknown	0.627 (0.367–1.072)	0.536 (0.309–0.929)
Histology	Reference	Reference
Adenocarcinoma	Reference	Reference
Mucinous	3.494 (0.863–14.140)	4.054 (0.989–16.618)
carcinomama	0.079	0.052
Signet ring	2.826 (1.240–6.441)	1.876 (0.770–4.571)
cell carcinoma	0.013	0.166
Age (years)	Reference	Reference
Up to 49	Reference	Reference
50–64	0.858 (0.303–2.431)	0.801 (0.282–2.280)
65–79	1.270 (0.461–3.497)	1.050 (0.378–2.913)
80+	4.341 (1.537–12.257)	3.060 (1.061–8.827)

Abbreviation: ET, Endoscopic therapy; RT, Radiotherapy; LNM, lymph node metastasis; HR, Hazard ratio; 95% CI, 95% confidence intervals; T1a, tumor invades the lamina propria or muscularis mucosa; T1b, tumor invades the submucosa.

American Indian/Alaska Native, Asian/Pacific Islander.

Discussion

Accumulative studies have demonstrated EGJ adenocarcinoma as a separate entity from gastric or esophageal malignancies due to the unique clinicopathological characteristics and patient survival [8, 9]. The majority of EGJ carcinomas are handled by surgical intervention, including esophagectomy along with total or proximal gastrectomy, which, however, greatly attenuates postoperative living quality and is accompanied with high risk of complications. To be specific, the rate of postoperative complications is reported to be 33–39% according to a systematic review[10]. ESD is particularly suitable for patients with early-stage proximal gastric cancer, who, otherwise, are generally treated with total gastrectomy. If patients are managed with ESD, the whole stomach can be preserved, along with better life quality [11]. Due to the unknown incidence of LNM in EGJ adenocarcinoma, there is no consensus on the indication of endoscopic resection for superficial EGJ adenocarcinoma.

To our knowledge, our study is the largest one concerning LNM rates in early-stage EGJ adenocarcinoma after eliminating patients with less than 16 examined LNs. We found that the LNM rate in early-stage EGJ adenocarcinoma was as high as 18.8% (161/856). LNM rates stratified by pT stage were 8.3% (25/300) in T1a, and 24.6% (122/496) in T1b. Moreover, the rate of LNM decreased to 5.3% (2/38) in well-differentiated T1b tumors with tumor size < 3cm; and LNM rate increased to 17.9% (12/67) in poorly differentiated T1a tumors, and to 33.3% (5/15) in poorly differentiated T1a tumors with tumor size > 3cm. Overall, there is limited...
information concerning LNM rate in superficial EGJ adenocarcinoma. According to the study by Gertler, LNM was only detectable in pT1b tumors (18%) but not in pT1a among superficial EGJ adenocarcinoma[12], which was also similarly reported by Stein[13]. Moreover, Koufuji, et al. reported no LNM in T1 EGJ carcinoma [14]. Of the above studies, the relatively inadequate sample size might be the most significant drawbacks. Zhu, et al. reported that the overall LNM rate of superficial EGJ carcinoma was 21.75%, which is 11.41% and 26.50% in mucosal cancer and submucosal cancer, respectively. The results of the above study are consistent with our findings and another study concerning surgically resected pT1 EGJ carcinoma [15, 16].

Previous studies have shown that tumor size, pathological differentiation, lymphovascular invasion and infiltration depth are risk factors for LNM in gastric and esophageal cancer [12, 16]. In our study, similar predictors of LNM involvement were revealed, including tumor size, differentiation type, and depth of invasion. To be specific, poor tumor differentiation (including moderately/poorly differentiated and undifferentiated) and tumor sizes exceeding 3 cm increased LNM risk. It is clear that tumor differentiation is the most potent predictor. Therefore, endoscopic intervention might be proper for low-risk patients, while, high-risk patients should be managed by surgical resection in consideration of the high risk of LNM.

Previous researches have revealed that age, T stage and tumor differentiation are independently correlated with poor prognosis [17–19] Due to the bias caused these parameters which can interfere with the comparison of ET and surgical therapy, multivariate Cox regression analysis and PSM were performed. ET and surgical therapy were associated with similar CSS in patients with early-stage EGJ adenocarcinoma. Additionally, subgroup analysis stratified by T stage also showed similar outcomes. PSM analysis also revealed consistent outcomes, which could decrease selection bias associated with diverse clinical features of ET and surgical therapy. The authors found that patients with sm1 cancers, classified by submucosal invasion of < 500µm, and tumors smaller than 3 cm had no LNMs. Nevertheless, with deep submucosal invasion of ≥ 500µm stratified by sm2 and sm3, the incidence of LNM increased to 28.6%, irrespective of tumor size. The above outcomes suggest that ESD can be safely used to treat patients with sm1 and tumor size < 3 cm, which is beyond the proposed guidelines [6, 20]. Most patients with T1b tumors should be treated by surgical intervention in consideration of high LNM rate (24.6%). Nevertheless, LNM incidence in T1b cancer with all low-risk tumor characteristics was only 5.3%. Hence, definitive ET must be cautiously determined on submucosal cancers without other high-risk characteristics. The multivariate Cox regression models showed that CSS (ET: HR 0.830, 95% CI:0.682–1.010, P = 0.062; RT: HR 4.024, 95% CI: 3.483–4.649, P < 0.001) compared with surgical therapy group. Moreover, Cox proportional hazards regression revealed no significant differences in CSS (HR = 1.112, 95% CI: 0.866–1.429; P = 0.405) between surgical therapy and ET groups after PSM. Therefore, ET might be a valid alternative to surgical therapy to treat early EGJ adenocarcinoma, especially in elderly patients.

Diagnostic ER is considered as potentially curative and also has more accurate evaluation of invasion depth than endoscopic ultrasonography (EUS)[21], which is a feasible and reasonable final step in all early-stage EGJ adenocarcinoma. Pathologic assessment on ER samples could assist further therapeutic strategies, which should simultaneously consider patient-related parameters. Moreover, multidisciplinary team involving surgeons, medical oncologists and endoscopists is necessary for clinical decision-making. For patients with older age or multiple comorbidities, a higher probability of leaving positive LNs may be acceptable for a lower morbidity procedure. Conversely, aggressive surgical therapy should be considered among young patients even with low risks of LNM.

In this population-based study, our findings are mainly based on real-world outcomes. Nevertheless, certain limitations must be acknowledged, Firstly, relevant data on lymphovascular invasion, the deep distance of submucosal invasion and macroscopic type are inaccessible in SEER database, which are potential risk factors for LNM. The absence of these variables might affect the accurate assessment of LNM. Secondly, the applied models are simplified and only use available and accepted measures, which clearly do not adequately account for all variables associated with subject outcomes. Additionally, selection biases are unavoidable in the retrospective analysis. Finally, although PSM was further performed in this study, the results must be cautiously interpreted due to the fraction of unmatched patients.

Conclusion

This population-based study reveals that LNM risk is significantly increased in submucosal than intramucosal tumors. In subgroup analysis, patients with poorly-differentiated T1a cancers with size > 3 cm had an increased LNM rate than those with T1b cancers without other high-risk factors. These data suggest disease heterogeneity among patients with early-stage EGJ.
adenocarcinomawhich must be identified to select the optimal resection strategy. Therefore, we believe that national guidelines for management of early-stage EGJ adenocarcinoma should include all high risk-features for LNM and stage-specific surgery therapy mortality. Therefore, ET is a valid alternative to surgery for early EGJ adenocarcinoma.

Declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing Interests

The authors have declared that no competing interest exists.

Authors’ contributions: H.Y., Y.F.W, and X.J.C. participated in the design of this project, interpretation of data, and drafting and critical revision of the article and provided final approval of the version to be submitted. H.Y. and P.C. completed the data collection and analysis.

Acknowledgements

The authors acknowledge the efforts of the Surveillance, Epidemiology, and End Results (SEER) Program tumor registries in the creation of the SEER database. The interpretation and reporting of these data are the sole responsibility of the authors. This study was supported by Medical Scientific Research Foundation of Zhejiang Province, China (Grant No.2021KY1010). Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province (2019E10020).

Availability of data and materials

The datasets analyzed in this study are collected from SEER repository

(https://seer.cancer.gov/).

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

References

1. Buas MF, Vaughan TL. Epidemiology and risk factors for gastroesophageal junction tumors: understanding the rising incidence of this disease. Semin Radiat Oncol. 2013;23:3–9.

2. Kauppila JH, Lagergren J. The surgical management of esophago-gastric junctional cancer. Surg Oncol. 2016;25:394–400.

3. Derakhshan MH, Malekzadeh R, Watabe H, Yazdanbod A, Fyfe V, Kazemi A, Rakhshani N, Didevar R, Sotoudeh M, Zolfeghari AA, McColl KE. Combination of gastric atrophy, reflux symptoms and histological subtype indicates two distinct aetiologies of gastric cardia cancer. Gut. 2008;57:298–305.

4. Toyonaga T, Man-i M, East JE, Nishino E, Ono W, Hirooka T, Ueda C, Iwata Y, Sugiyama T, Dozaiku T, Hirooka T, Fujita T, Inokuchi H, Azuma T. 1,635 Endoscopic submucosal dissection cases in the esophagus, stomach, and colorectum: complication rates and long-term outcomes. Surgical endoscopy. 2013;27:1000–8.

5. Kuwano H, Nishimura Y, Oyama T, Kato H, Kitagawa Y, Kusano M, Shimada H, Takiuchi H, Toh Y, Doki Y, Naomoto Y, Matsubara H, Miyazaki T, Muto M, Yanagisawa A. Guidelines for Diagnosis and Treatment of Carcinoma of the Esophagus April 2012 edited by the Japan Esophageal Society. Esophagus: official journal of the Japan Esophageal Society. 2015;12:1–30.
6. (2020) Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association.

7. Wingo PA, Jamison PM, Hiatt RA, Weir HK, Gargiullo PM, Hutton M, Lee NC, Hall HI. Building the infrastructure for nationwide cancer surveillance and control— a comparison between the National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology, and End Results (SEER) Program (United States). Cancer causes control: CCC. 2003;14:175–93.

8. Hasegawa S, Yoshikawa T, Aoyama T, Hayashi T, Yamada T, Tsuchida K, Cho H, Oshima T, Yukawa N, Rino Y, Masuda M, Tsuburaya A. Esophagus or stomach? The seventh TNM classification for Siewert type II/III junctional adenocarcinoma. Ann Surg Oncol. 2013;20:773–9.

9. Ichihara S, Uedo N, Gotoda T. Considering the esophagogastric junction as a ‘zone’. Digestive endoscopy: official journal of the Japan Gastroenterological Endoscopy Society. 2017;29(Suppl 2):3–10.

10. Havercamp L, Ruurda JP, van Leeuwen MS, Siersema PD, van Hillegersberg R. Systematic review of the surgical strategies of adenocarcinomas of the gastroesophageal junction. Surg Oncol. 2014;23:222–8.

11. Yoshinaga S, Gotoda T, Kusano C, Oda I, Nakamura K, Takayanagi R. Clinical impact of endoscopic submucosal dissection for superficial adenocarcinoma located at the esophagogastric junction. Gastrointest Endosc. 2008;67:202–9.

12. Gertler R, Stein HJ, Schuster T, Rondak IC, Höfler H, Feith M. Prevalence and topography of lymph node metastases in early esophageal and gastric cancer. Annals of surgery. 2014;259:96–101.

13. Stein HJ, Feith M, Mueller J, Werner M, Siewert JR. Limited resection for early adenocarcinoma in Barrett's esophagus. Annals of surgery. 2000;232:733–42.

14. Koufuji K, Shirouzu K, Aoyagi K, Yano S, Miyagi M, Imaizumi T, Takeda J. Surgery and clinicopathological features of gastric adenocarcinoma involving the esophago-gastric junction. Kurume Med J. 2005;52:73–9.

15. Zhu M, Cao B, Li X, Li P, Wen Z, Ji J, Min L, Zhang S. (2020) Risk factors and a predictive nomogram for lymph node metastasis of superficial esophagogastric junction cancer. Journal of gastroenterology and hepatology. 2020;205:1879–85. discussion 1886.

16. Dubecz A, Kern M, Solymosi N, Schweigt M, Stein HJ. Predictors of Lymph Node Metastasis in Surgically Resected T1 Esophageal Cancer. Ann Thorac Surg. 2015;99:224–32.e221.

17. Wani S, Drahos J, Cook MB, Rastogi A, Bansal A, Yen R, Sharma P, Das A. Comparison of endoscopic therapies and surgical resection in patients with early esophageal cancer: a population-based study. Gastrointest Endosc. 2014;79:224–32.e221.

18. Njei B, McCarty TR, Birk JW. Trends in esophageal cancer survival in United States adults from 1973 to 2009: A SEER database analysis. Journal of gastroenterology hepatology. 2010;31:1141–6.

19. Ngamruengphong S, Wolfsen HC, Wallace MB. Survival of patients with superficial esophageal adenocarcinoma after endoscopic treatment vs surgery. Clinical gastroenterology hepatology: the official clinical practice journal of the American Gastroenterological Association. 2013;11:1424–9.e1422; quiz e1481.

20. Pyo JH, Lee H, Min YW, Min BH, Lee JH, Kim KM, Yoo H, Ahn S, Kim JJ. Indication for endoscopic treatment based on the risk of lymph node metastasis in patients with Siewert type II/III early gastric cancer. Gastric cancer: official journal of the International Gastric Cancer Association the Japanese Gastric Cancer Association. 2018;21:672–9.

21. Pouw RE, Heldoorn N, Alvarez Herrero L, ten Kate FJ, Visser M, Busch OR, van Berge Henegouwen MI, Krishnadath KK, Weusten BL, Fockens P, Bergman JJ. Do we still need EUS in the workup of patients with early esophageal neoplasia? A retrospective analysis of 131 cases. Gastrointest Endosc. 2011;73:662–8.

Figures
Figure 1
Kaplan-Meier curves for OS and CSS. Panels A and B depict the overall and CSS of the three groups in the original data set, and panels C and D depict the OS and CSS of the two group after propensity score matching.