Characterizations of some classes of finite σ-soluble $P\sigma T$-groups

-Dedicated to Professor J.C. Beidleman on the occasion of his 80-th birthday

Alexander N. Skiba
Department of Mathematics and Technologies of Programming,
Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i|i \in I\}$ be some partition of the set of all primes \mathbb{P} and G a finite group. G is said to be σ-soluble if every chief factor H/K of G is a σ_i-group for some $i = i(H/K)$.

A set \mathcal{H} of subgroups of G is said to be a complete Hall σ-set of G if every member $H \neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every $i \in I$ such that $\sigma_i \cap \pi(G) \neq \emptyset$. A subgroup A of G is said to be σ-permutable in G if G has a complete Hall σ-set \mathcal{H} such that $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$.

We obtain characterizations of finite σ-soluble groups G in which σ-permutability is a transitive relation in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, \ldots, p_n\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. G is said to be a D_π-group if G possesses a Hall π-subgroup E and every π-subgroup of G is contained in some conjugate of E.

In what follows, σ is some partition of \mathbb{P}, that is, $\sigma = \{\sigma_i|i \in I\}$, where $\mathbb{P} = \cup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; Π is always supposed to be a subset of the set σ and $\Pi' = \sigma \setminus \Pi$.

By the analogy with the notation $\pi(n)$, we write $\sigma(n)$ to denote the set $\{\sigma_i|\sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$. G is said to be: σ-primary [1] if G is a σ_i-group for some i; σ-decomposable [2] or σ-nilpotent [3] if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \ldots, G_n; σ-soluble [1] if every chief factor of G is σ-primary; a σ-full group of Sylow type [1] if every subgroup E of G is a D_{σ_i}-group for every $\sigma_i \in \sigma(E)$. Note in passing, that every σ-soluble group is a σ-full group of Sylow type [4].

Keywords: finite group, σ-permutable subgroup, $P\sigma T$-group, σ-soluble group, σ-nilpotent group.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30
A set \(\mathcal{H} \) of subgroups of \(G \) is a **complete Hall \(\sigma \)-set** of \(G \) \([\mathbb{I}, \mathbb{J}]\) if every member \(\neq 1 \) of \(\mathcal{H} \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(\sigma_i \in \sigma \) and \(\mathcal{H} \) contains exactly one Hall \(\sigma_i \)-subgroup of \(G \) for every \(\sigma_i \in \sigma(G) \).

Recall also that a subgroup \(A \) of \(G \) is said to be **\(\sigma \)-subnormal** in \(G \) \([\mathbb{I}]\) if there is a subgroup chain

\[
A = A_0 \leq A_1 \leq \cdots \leq A_n = G
\]
such that either \(A_{i-1} \trianglelefteq A_i \) or \(A_i/(A_{i-1})_{A_i} \) is \(\sigma \)-primary for all \(i = 1, \ldots, n \).

Definition 1.1. We say that a subgroup \(A \) of \(G \) is said to be **\(\sigma \)-quasinormal** or **\(\sigma \)-permutable** in \(G \) if \(G \) possesses a complete Hall \(\sigma \)-set and \(A \) permutes with each Hall \(\sigma_i \)-subgroup \(H \) of \(G \), that is, \(AH = HA \) for all \(i \in I \).

Remark 1.2. Using Theorem B in \([\mathbb{I}]\), it is not difficult to show that if \(G \) possesses a complete Hall \(\sigma \)-set \(\mathcal{H} \) such that \(AH^x = H^xA \) for all \(H \in \mathcal{H} \) and all \(x \in G \), then \(A \) is \(\sigma \)-permutable in \(G \).

Remark 1.3. (i) In the classical case when \(\sigma = \sigma^0 = \{2, 3, \ldots\} \): \(G \) is \(\sigma^0 \)-soluble (respectively \(\sigma^0 \)-nilpotent) if and only if \(G \) possesses a complete Hall \(\sigma \)-set and \(A \) permutes with each Hall \(\sigma_i \)-subgroup \(H \) of \(G \), that is, \(AH = HA \) for all \(i \in I \).

(ii) In the other classical case when \(\sigma = \sigma^\pi = \{\pi, \pi'\} \): \(G \) is \(\sigma^\pi \)-soluble (respectively \(\sigma^\pi \)-nilpotent) if and only if \(G \) possesses a complete Hall \(\pi \)-set and \(A \) permutes with each Hall \(\pi_i \)-subgroup \(H \) of \(G \), that is, \(AH = HA \) for all \(i \in I \).

(iii) In fact, in the theory of \(\pi \)-soluble groups (\(\pi = \{p_1, \ldots, p_n\} \)) we deal with the partition \(\sigma = \sigma^{0\pi} = \{\pi_1, \ldots, \pi_n, \pi'\} \) of \(\mathbb{P} \). Note that \(G \) is \(\sigma^{0\pi} \)-soluble (respectively \(\sigma^{0\pi} \)-nilpotent) if and only if \(G \) is \(\pi \)-soluble (respectively \(G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G) \)). A subgroup \(A \) of a \(\pi \)-soluble group \(G \) is \(\sigma^{0\pi} \)-permutable in \(G \) if and only if \(A \) permutes with all Hall \(\pi' \)-subgroups and with all Sylow \(p \)-subgroups of \(G \) for all \(p \in \pi \). Note also that a subgroup \(A \) of \(G \) is \(\sigma^{0\pi} \)-subnormal in \(G \) if and only if it is **\(\mathfrak{S} \)-subnormal** in \(G \) in the sense of Kegel \([\mathbb{J}]\), where \(\mathfrak{S} \) is the class of all \(\pi' \)-groups.

We say that \(G \) is a **\(P\sigma T \)-group** \([\mathbb{I}]\) if \(\sigma \)-permutability is a transitive relation in \(G \), that is, if \(K \) is a \(\sigma \)-permutable subgroup of \(H \) and \(H \) is a \(\sigma \)-permutable subgroup of \(G \), then \(K \) is a \(\sigma \)-permutable subgroup of \(G \). In the case when \(\sigma = \sigma^0 \), a \(P\sigma T \)-group is also called a **\(PST \)-group** \([\mathbb{J}]\). Note that if \(G = (Q_8 \times C_3) \wr (C_7 \times C_3) \) (see \([\mathbb{J}] \text{ p. 50}\)), where \(Q_8 \times C_3 = SL(2, 3) \) and \(C_7 \times C_3 \) is a non-abelian group of order 21, then \(G \) is not \(PST \)-group but \(G \) is a \(P\sigma T \)-group, where \(\sigma = \{\{2, 3\}, \{2, 3\}'\} \).

The description of \(PST \)-groups was first obtained by Agrawal \([\mathbb{I}0]\), for the soluble case, and by Robinson in \([\mathbb{I}I]\), for the general case. In the further publications, authors (see, for example, the
recent papers [12]–[22] and Chapter 2 in [6]) have found out and described many other interesting characterizations of soluble \mathcal{PST}-groups.

The purpose of this paper is to study σ-soluble \mathcal{PST}-groups in the most general case (i.e., without any restrictions on σ). In view of Theorem B in [1], G is a \mathcal{PST}-group if and only if every σ-subnormal subgroup of G is σ-permutable. Being based on this result, here we prove the following revised version of Theorem A in [1].

Theorem A. Let $D = G^{\mathcal{N}_\sigma}$. If G is a σ-soluble \mathcal{PST}-group, then the following conditions hold:

(i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent and every element of G induces a power automorphism in D;

(ii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i-subgroup of G for all i.

Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, then G is a \mathcal{PST}-group.

In this theorem, $G^{\mathcal{N}_\sigma}$ denotes the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N.

Corollary 1.4. If G is a σ-soluble \mathcal{PST}-group, then every quotient and every subgroup of G are \mathcal{PST}-groups.

In the case when $\sigma = \sigma^0$, we get from Theorem A the following

Corollary 1.5. Let $D = G^{\mathcal{N}_\sigma}$ be the nilpotent residual of G. If G is a soluble \mathcal{PST}-group, then D is an abelian Hall subgroup of G of odd order and every element of G induces a power automorphism in D.

In the case when $\sigma = \sigma^\pi$, we get from Theorem A the following

Corollary 1.6. G is a π-separable \mathcal{PST}-group if and only if the following conditions hold:

(i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is π-decomposable and every element of G induces a power automorphism in D;

(ii) $O_\pi(D)$ has a normal complement in a Hall π-subgroup of G;

(iii) $O_{\pi'}(D)$ has a normal complement in a Hall π'-subgroup of G.

In the case when $\sigma = \sigma^{0\pi}$, we get from Theorem A the following

Corollary 1.7. G is a π-soluble \mathcal{PST}-group if and only if the following conditions hold:

(i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, $M = O_{p_1}(M) \times \cdots \times O_{p_n}(M) \times O_{\pi'}(M)$ and every element of G induces a power automorphism in D;

(ii) $O_{\pi'}(D)$ has a normal complement in a Hall π'-subgroup of G.

A natural number n is said to be a Π-number if $\sigma(n) \subseteq \Pi$. A subgroup A of G is said to be: a Hall Π-subgroup of G [1] if $|A|$ is a Π-number and $|G : A|$ is a Π'-number; a σ-Hall subgroup of G if A is a Hall Π-subgroup of G for some $\Pi \subseteq \sigma$.

3
The proof of Theorem A is based on many results and observations of the paper [1]. We use also the remarkable result of the paper by Alejandre, Ballester-Bolinches and Pedraza-Aguilera [14] (see also Theorem 2.1.8 in [6]) that in a soluble PST-group G any two isomorphic chief factors are G-isomorphic. Finally, in the proof of Theorem A, the following fact is useful, which is possibly independently interesting.

Theorem B. Let G have a normal σ-Hall subgroup D such that: (i) G/D is a $P\sigma T$-group, and (ii) every σ-subnormal subgroup of D is normal in G. If G is a σ-full group of Sylow type, then G is a $P\sigma T$-group.

Corollary 1.8 (See Theorem A in [1]). Let G have a normal σ-Hall subgroup D such that: (i) G/D is σ-nilpotent, and (ii) every subgroup of D is normal in G. Then G is a $P\sigma T$-group.

In the case when $\sigma = \sigma^0$, we get from Theorem B the following

Corollary 1.9 (Agrawal [10, Theorem 2.4]). Let G have a normal Hall subgroup D such that: (i) G/D is a PST-group, and (ii) every subnormal subgroup of D is normal in G. Then G is a PST-group.

Some other applications of Theorems A and B and some other characterizations of σ-soluble $P\sigma T$-groups we discuss in Section 4.

2 Some preliminary results

In view of Theorem B in [4], the following fact is true.

Lemma 2.1. If G is σ-soluble, then G is a σ-full group of Sylow type.

Lemma 2.2 (See Corollary 2.4 and Lemma 2.5 in [1]). The class of all σ-nilpotent groups \mathfrak{N}_σ is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if E is a normal subgroup of G and $E/E \cap \Phi(G)$ is σ-nilpotent, then E is σ-nilpotent.

Lemma 2.3 (See Proposition 2.2.8 in [23]). If N is a normal subgroup of G, then $(G/N)^{\mathfrak{N}_\sigma} = G^{\mathfrak{N}_\sigma} N/N$.

Lemma 2.4 (See Knyagina and Monakhov [24]). Let H, K and N be pairwise permutable subgroups of G and H be a Hall subgroup of G. Then $N \cap HK = (N \cap H)(N \cap K)$.

Lemma 2.5 (See Lemma 2.8 in [1]). Let A, K and N be subgroups of G. Suppose that A is σ-subnormal in G and N is normal in G.

1. If $N \leq K$ and K/N is σ-subnormal in G/N, then K is σ-subnormal in G.
2. $A \cap K$ is σ-subnormal in K.
3. If A is a σ-Hall subgroup of G, then A is normal in G.
4. If $H \neq 1$ is a Hall Π-subgroup of G and A is not a Π'-group, then $A \cap H \neq 1$ is a Hall Π-subgroup of A.

4
(5) \(AN/N \) is \(\sigma \)-subnormal in \(G/N \).

(6) If \(K \) is a \(\sigma \)-subnormal subgroup of \(A \), then \(K \) is \(\sigma \)-subnormal in \(G \).

Lemma 2.6 (See Lemmas 2.8, 3.1 and Theorem B in [1]). Let \(H, K \) and \(R \) be subgroups of \(G \). Suppose that \(H \) is \(\sigma \)-permutable in \(G \) and \(R \) is normal in \(G \). Then:

(1) \(H \) is \(\sigma \)-subnormal in \(G \).

(2) The subgroup \(HR/R \) is \(\sigma \)-permutable in \(G/R \).

(3) If \(K \) is a \(\sigma_i \)-group, then \(K \) is \(\sigma \)-permutable in \(G \) if and only if \(O^{\sigma_i}(G) \leq N_G(K) \).

(4) If \(G \) is a \(\sigma \)-full group of Sylow type and \(H \leq K \), then \(H \) is \(\sigma \)-permutable in \(K \).

(5) If \(G \) is a \(\sigma \)-full group of Sylow type, \(R \leq K \) and \(K/R \) is \(\sigma \)-permutable in \(G/R \), then \(K \) is \(\sigma \)-permutable in \(G \).

(6) \(H/H_G \) is \(\sigma \)-nilpotent.

Lemma 2.7. The following statements hold:

(i) \(G \) is a \(P\sigma T \)-group if and only if every \(\sigma \)-subnormal subgroup of \(G \) is \(\sigma \)-permutable in \(G \).

(ii) If \(G \) is a \(P\sigma T \)-group, then every quotient \(G/N \) of \(G \) is also a \(P\sigma T \)-group.

Proof. (i) This follows from Lemmas 2.5(6) and 2.6(1).

(ii) Let \(H/N \) be a \(\sigma \)-subnormal subgroup of \(G/N \). Then \(H \) is a \(\sigma \)-subnormal subgroup of \(G \) by Lemma 2.5(1), so \(H \) is \(\sigma \)-permutable in \(G \) by hypothesis and Part (i). Hence \(H/N \) is \(\sigma \)-permutable in \(G/N \) by Lemma 2.6(2). Hence \(G/N \) is a \(P\sigma T \)-group by Part (i).

The lemma is proved.

3 Proofs of Theorems A and B

Proof of Theorem B. Since \(G \) is a \(\sigma \)-full group of Sylow type by hypothesis, it possesses a complete Hall \(\sigma \)-set \(\mathcal{H} = \{H_1, \ldots, H_t\} \) and a subgroup \(H \) of \(G \) is \(\sigma \)-permutable in \(G \) if and only if \(HH_i^x = H_i^x H \) for all \(H_i \in \mathcal{H} \) and \(x \in G \). We can assume without loss of generality that \(H_i \) is a \(\sigma_i \)-group for all \(i = 1, \ldots, t \).

Assume that this theorem is false and let \(G \) be a counterexample of minimal order. Then \(D \neq 1 \) and for some \(\sigma \)-subnormal subgroup \(H \) of \(G \) and for some \(x \in G \) and \(k \in I \) we have \(HH_k^x \neq H_k^x H \) by Lemma 2.7(i). Let \(E = H_k^x \).

(1) The hypothesis holds for every quotient \(G/N \) of \(G \).

It is clear that \(G/N \) is a \(\sigma \)-full group of Sylow type and \(DN/N \) is a normal \(\sigma \)-Hall subgroup of \(G/N \). On the other hand,

\[
(G/N)/(DN/N) \cong G/DN \cong (G/D)/(DN/D),
\]
so \((G/N)/(DN/N)\) is a \(P\sigma T\)-group by Lemma 2.7(ii). Finally, let \(H/N\) be a \(\sigma\)-subnormal subgroup of \(DN/N\). Then \(H = N(H \cap D)\) and, by Lemma 2.5(1), \(H\) is \(\sigma\)-subnormal in \(G\). Hence \(H \cap D\) is \(\sigma\)-subnormal in \(D\) by Lemma 2.5(2), so \(H \cap D\) is normal in \(G\) by hypothesis. Thus \(H/N = N(H \cap D)/N\) is normal in \(G/N\). Therefore the hypothesis holds for \(G/N\).

(2) \(H_G = 1\).

Assume that \(H_G \neq 1\). Clearly, \(H/H_G\) is \(\sigma\)-subnormal in \(G/H_G\). Claim (1) implies that the hypothesis holds for \(G/H_G\), so the choice of \(G\) implies that \(G/H_G\) is a \(P\sigma T\)-group. Hence

\[(H/H_G)(EH_G/H_G) = (EH_G/H_G)(H/H_G)\]

by Lemma 2.7(i). Therefore \(HE = EH\), a contradiction. Hence \(H_G = 1\).

(3) \(DH = D \times H\).

By Lemma 2.5(2), \(H \cap D\) is \(\sigma\)-subnormal in \(D\). Hence \(H \cap D\) is normal in \(G\) by hypothesis, which implies that \(H \cap D = 1\) by Claim (2). Lemma 2.5(2) implies also that \(H\) is \(\sigma\)-subnormal in \(DH\). But \(H\) is a \(\sigma\)-Hall subgroup of \(DH\) since \(D\) is a \(\sigma\)-Hall subgroup of \(G\) and \(H \cap D = 1\). Therefore \(H\) is normal in \(DH\) by Lemma 2.5(3), so \(DH = D \times H\).

Final contradiction. Since \(D\) is a \(\sigma\)-Hall subgroup of \(G\), then either \(E \leq D\) or \(E \cap D = 1\). But the former case is impossible by Claim (3) since \(HE \neq EH\), so \(E \cap D = 1\). Therefore \(E\) is a \(\Pi^i\)-subgroup of \(G\), where \(\Pi = \sigma(D)\). By the Schur-Zassenhaus theorem, \(D\) has a complement \(M\) in \(G\). Then \(M\) is a Hall \(\Pi^i\)-subgroup of \(G\) and so for some \(x \in G\) we have \(E \leq M^x\) since \(G\) is a \(\sigma\)-full group of Sylow type. On the other hand, \(H \cap M^x\) is a Hall \(\Pi^i\)-subgroup of \(H\) by Lemma 2.5(4) and hence \(H \cap M^x = H \leq M^x\). Lemma 2.5(2) implies that \(H\) is \(\sigma\)-subnormal in \(M^x\). But \(M^x \simeq G/D\) is a \(P\sigma T\)-group by hypothesis, so \(HE = EH\) by Lemma 2.7(i). This contradiction completes the proof of the theorem.

Sketch of the proof of Theorem A. Since \(G\) is \(\sigma\)-soluble by hypothesis, \(G\) is a \(\sigma\)-full group of Sylow type by Lemma 2.1. Let \(\mathcal{H} = \{H_1, \ldots, H_n\}\) be a complete Hall \(\sigma\)-set of \(G\). We can assume without loss of generality that \(H_i\) is a \(\sigma_i\)-group for all \(i = 1, \ldots, n\).

First suppose that \(G\) is a \(P\sigma T\)-group. We show that Conditions (i) and (ii) hold for \(G\) in this case. Assume that this is false and let \(G\) be a counterexample of minimal order. Then \(D \neq 1\).

(1) If \(R\) is a non-identity normal subgroup of \(G\), then Conditions (i) and (ii) hold for \(G/R\) (Since the hypothesis holds for \(G/R\) by Lemma 2.7(ii), this follows from the choice of \(G\)).

(2) If \(E\) is a proper \(\sigma\)-subnormal subgroup of \(G\), then \(E^{\mathfrak{H}_\sigma} \leq D\) and Conditions (i) and (ii) hold for \(E\).

Every \(\sigma\)-subnormal subgroup \(H\) of \(E\) is \(\sigma\)-subnormal in \(G\) by Lemma 2.5(6), so \(H\) is \(\sigma\)-permutable in \(G\) by Lemma 2.7(i). Thus \(H\) is \(\sigma\)-permutable in \(E\) by Lemma 2.6(4). Therefore \(E\) is a \(\sigma\)-soluble \(P\sigma T\)-group by Lemma 2.7(i), so Conditions (i) and (ii) hold for \(E\) by the choice of \(G\). Moreover, since \(G/D \in \mathfrak{H}_\sigma\) and \(\mathfrak{H}_\sigma\) is a hereditary class by Lemma 2.2, \(E/E \cap D \simeq ED/D \in \mathfrak{H}_\sigma\) and so
$E^{\Omega_p} \leq E \cap D \leq D$.

(3) D is nilpotent.

(4) D is a Hall subgroup of G. Hence D has a σ-nilpotent complement M in G.

Suppose that this is false and let P be a Sylow p-subgroup of D such that $1 < P < G_p$, where $G_p \in \text{Syl}_p(G)$. We can assume without loss of generality that $G_p \leq H_1$.

(a^0) $D = P$ is a minimal normal subgroup of G.

Let R be a minimal normal subgroup of G contained in D. Since D is nilpotent by Claim (3), R is a q-group for some prime q. Moreover, $D/R = (G/R)^{\Omega_q}$ is a Hall subgroup of G/R by Claim (1) and Lemma 2.3. Suppose that $PR/R \neq 1$. Then $PR/R \in \text{Syl}_p(G/R)$. If $q \neq p$, then $P \in \text{Syl}_p(G)$. This contradicts the fact that $P < G_p$. Hence $q = p$, so $R \leq P$ and therefore $P/R \in \text{Syl}_p(G/R)$ and we again get that $P \in \text{Syl}_p(G)$. This contradiction shows that $PR/R = 1$, which implies that $R = P$ is the unique minimal normal subgroup of G contained in D. Since D is nilpotent, a p-complement E of D is characteristic in D and so it is normal in G. Hence $E = 1$, which implies that $R = D = P$.

(b^0) $D \notin \Phi(G)$. Hence for some maximal subgroup M of G we have $G = D \times M$ (This follows from (a^0) and Lemma 2.2 since G is not σ-nilpotent).

(c^0) If G has a minimal normal subgroup $L \neq D$, then $G_p = D \times (L \cap G_p)$. Hence $O_{pq}(G) = 1$.

Indeed, $DL/L \simeq D$ is a Hall subgroup of G/L by Claim (1) and lemma 2.3. Hence $G_pL/L = DL/L$, so $G_p = D \times (L \cap G_p)$. Thus $O_{pq}(G) = 1$ since $D < G_p$ by Claim (a^0).

(d^0) $V = C_G(D) \cap M$ is a normal subgroup of G and $C_G(D) = D \times V \leq H_1$.

In view of Claims (a^0) and (b^0), $C_G(D) = D \times V$, where $V = C_G(D) \cap M$ is a normal subgroup of G. Moreover, $V \simeq DV/D$ is σ-nilpotent by Lemma 2.2. Let W be a σ_1-complement of V. Then W is characteristic in V and so it is normal in G. Therefore we have (d^0) by Claim (c^0).

(e^0) $G_p \neq H_1$.

Assume that $G_p = H_1$. Let Z be a subgroup of order p in $Z(G_p) \cap D$. Then, since $O^{q_1}(G) = O^q(G)$, Z is normal in G by Lemmas 2.6(3) and 2.7(i). Hence $D = Z < G_p$ by Claim (a^0) and so $D < C_G(D)$. Then $V = C_G(D) \cap M \neq 1$ is a normal subgroup of G and $V \leq H_1 = G_p$ by Claim (d^0). Let L be a minimal normal subgroup of G contained in V. Then $G_p = D \times L$ is a normal elementary abelian subgroup of G by Claim (e^0). Therefore every subgroup of G_p is normal in G by Lemma 2.6(3). Hence $|D| = |L| = p$. Let $D = \langle a \rangle$, $L = \langle b \rangle$ and $N = \langle ab \rangle$. Then $N \not\leq D$, so in view of the G-isomorphisms

$$DN/D \simeq N \simeq NL/L = G_p/L = DL/L \simeq D$$

we get that $G/C_G(D) = G/C_G(N)$ is a p-group since G/D is σ-nilpotent by Lemma 2.2. But then Claim (e^0) implies that G is a p-group. This contradiction shows that we have (e^0).

Final contradiction for (4). In view of Theorem A in [3], G has a σ_1-complement E such that $EG_p = G_pE$. Let $V = (EG_p)^{\Omega_p}$. By Claim (e^0), $EG_p \neq G$. On the other hand, since $D \leq EG_p$ by
Claim (a^0), EG_p is σ-subnormal in G by Lemma 2.5(1). Therefore Claim (2) implies that V is a Hall subgroup of EG_p and $V \leq D$, so for a Sylow p-subgroup V_p of V we have $|V_p| \leq |P| < |G_p|$. Hence V is a p'-group and so $V \leq C_G(D) \leq H_1 = G_p$ by Claim (a^0). Thus $V = 1$. Therefore $EG_p = E \times G_p$ is σ-nilpotent and so $E \leq C_G(D) \leq H_1$. Hence $E = 1$ and so $D = 1$, a contradiction. Thus, D is a Hall subgroup of G. Hence D has a complement M in G by the Schur-Zassenhaus theorem and $M \cong G/D$ is σ-nilpotent by Lemma 2.2.

(5) $H_i = O_{\sigma_i}(D) \times S$ for each $\sigma_i \in \sigma(D)$.

First assume that $N = O^{\pi_i}(D) \neq 1$. Since D is nilpotent by Claim (3), N is a σ'_i-group. Moreover, G/N is a $P\sigma T$-group by Lemma 2.7(ii) and so the choice of G implies that

$$H_i \cong H_iN/N = (O_{\sigma_i}(D/N)) \times (V/N) = (O_{\sigma_i}(D)N/N) \times (V/N).$$

Since D is a Hall subgroup of H_i by Claim (4), DN/N is a Hall subgroup of H_iN/N and so V/N is a Hall subgroup of H_iN/N. Hence V/N is characteristic in H_iN/N. On the other hand, since $D/N = (G/N)^{\pi_i}$ is σ-nilpotent by Lemma 2.2, H_iN/N is normal in G/N and so V/N is normal in G/N. The subgroup N has a complement S in V by the Schur-Zassenhaus theorem. Thus $H_i \cap V = H_i \cap NS = S(H_i \cap N) = S$ is normal in H_i.

Now assume that $O^{\pi_i}(D) = 1$, that is, D is a σ_i-group. Then H_i is normal in G, so all subgroups of H_i are σ-permutably in G by Lemmas 2.5(6), 2.7(i) and hypothesis. Since D is a normal Hall subgroup of H_i, it has a complement S in H_i. Lemma 2.6(3) implies that $D \leq O^{\pi_i}(G) \leq N_G(S)$. Hence $H_i = D \times S$.

(6) Every subgroup H of D is normal in G. Hence every element of G induces a power automorphism in D.

Since D is nilpotent by Claim (3), it is enough to consider the case when $H \leq O_{\sigma_i}(D) = H_i \cap D$ for some $\sigma_i \in \sigma(D)$. Claim (5) implies that $H_i = O_{\sigma_i}(D) \times S$. It is clear that H is subnormal in G, so H is σ-permutably in G. Therefore

$$G = H_iO^{\pi_i}(G) = (O_{\sigma_i}(D) \times S)O^{\pi_i}(G) = SO^{\pi_i}(G) \leq N_G(H)$$

by Lemma 2.6(3).

(7) If p is a prime such that $(p - 1, |G|) = 1$, then p does not divide $|D|$. Hence the smallest prime in $\pi(G)$ belongs to $\pi(|G : D|)$. In particular, $|D|$ is odd.

Assume that this is false. Then, by Claim (6), D has a maximal subgroup E such that $|D : E| = p$ and E is normal in G. It follows that $C_G(D/E) = G$ since $(p - 1, |G|) = 1$. Hence $G/E = (D/E) \times (ME/E)$, where $ME/E \cong M \cong G/D$ is σ-nilpotent. Therefore G/E is σ-nilpotent. But then $D \leq E$, a contradiction. Hence we have (7).

(8) D is abelian.

In view of Claim (6), D is a Dedekind group. Hence D is abelian since $|D|$ is odd by Claim (7).
From Claims (4)–(8) we get that Conditions (i) and (ii) hold for G.

Now we show that if Conditions (i) and (ii) hold for G, then G is a $P\sigma T$-group. Assume that this is false and let G be a counterexample of minimal order. Then $D \neq 1$ and, by Lemma 2.7(i), for some σ-subnormal subgroup H of G and for some $x \in G$ and $k \in I$ we have $HH^x_k \neq H^x_k H$. Let $E = H^x_k$.

(10) If N is a minimal normal subgroup of G, then G/N is a $P\sigma T$-group (Since the hypothesis holds for G/N, this follows from the choice of G).

(20) If N is a minimal normal subgroup of G, then EHN is a subgroup of G. Hence $E \cap N = 1$.

Claim (10) implies that G/N is a $P\sigma T$-group. On the other hand, EN/N is a Hall σ_k-subgroup of G/N and, by Lemma 2.5(5), HN/N is a σ-subnormal subgroup of G/N. Note also that G/N is σ-soluble, so every two Hall σ_k-subgroups of G/N are conjugate by Lemma 2.1. Thus,

$$(HN/N)(EN/N) = (EN/N)(HN/N) = EHN/N$$

by Lemma 2.7(i). Hence EHN is a subgroup of G. Since G is σ-soluble, N is a σ_j-group for some j. Hence in the case $E \cap N \neq 1$ we have $j = k$, so $N \leq E$. But then $EHN = EH = HE$, a contradiction. Thus $E \cap N = 1$.

(30) $|\sigma(D)| > 1$.

Indeed, suppose that $\sigma(D) = \{\sigma_1\}$. Then H_i/D is normal in G/D since $G/D \simeq M$ is σ-nilpotent by hypothesis, so $H_i = D \times S$ is normal in G. The subgroup S is also normal in G since it is characteristic in H_i. On the other hand, Theorem B and the choice of G imply that $S \neq 1$.

Let R and N be minimal normal subgroups of G such that $R \leq D$ and $N \leq S$. Then R is a group of order p for some prime p and N is a p'-group since D is a Hall subgroup of H_i. Hence $R \cap HN \leq O_p(HN) \leq P$, where P is a Sylow p-subgroup of H, so $R \cap HN = R \cap H$. Claim (20) implies that EHR and EHN are subgroups of G. Therefore from Lemma 2.4 and Claim (20) we get that $R \cap EHN = R \cap E(HN) = (R \cap E)(R \cap HN) = R \cap H$. Hence

$$EHR \cap EHN = E(HR \cap EHN) = EH(R \cap EHN) = EH(R \cap H) = EH$$

is a subgroup of G. Thus $HE = EH$, a contradiction. Hence we have (30).

Final contradiction. Since $|\sigma(D)| > 1$ by Claim (30) and D is nilpotent, G has at least two minimal normal subgroups R and N such that $R, N \leq D$ and $\sigma(R) \neq \sigma(N)$. Then at least one of the subgroups R or N, R say, is a σ_i-group for some $i \neq k$. Hence $R \cap HN \leq O_{\sigma_i}(HN) \leq V$, where V is a Hall σ_i-subgroup of H, since N is a σ_i-group and G is a σ-full group of Sylow type. Hence $R \cap HN = R \cap H$. Claim (20) implies that EHR and EHN are subgroups of G. Now, arguing similarly as in the proof of (30), one can show that $EHR \cap EHN = EH = HE$. This contradiction completes the proof of the fact that G is a $P\sigma T$-group.

The theorem is proved.
4 Some other characterizations of σ-soluble $P\sigma T$-groups

Theorem A and Theorem B in [1] are basic in the sense that many other characterizations of σ-soluble $P\sigma T$-groups can be obtained by using these two results. As a partial illustration to this, we give in this section our next three characterizations of σ-soluble $P\sigma T$-groups.

1. Recall that $Z_\sigma(G)$ denotes the σ-hypercentre of G [20], that is, the largest normal subgroup of G such that for every chief factor H/K of G below $Z_\sigma(G)$ the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ-primary.

We say, following [6, p. 20], that a subgroup H of G is σ-hypercentrally embedded in G, if $H/H_G \leq Z_\sigma(G/H_G)$.

Theorem 4.1. Let G be σ-soluble. Then G is a $P\sigma T$-group if and only if every σ-subnormal subgroup of G is σ-hypercentrally embedded in G.

Proof. Let $D = G^{\sigma_\sigma}$. First we show that if G is a $P\sigma T$-group, then every σ-subnormal subgroup H of G is σ-hypercentrally embedded in G. Assume that this is false and let G be a counterexample with $|G| + |H|$ minimal. Then G/H_G is a σ-soluble $P\sigma T$-group by Lemma 2.7(ii) and H/H_G is σ-subnormal in G/H_G by Lemma 2.5(5). Hence the choice of G implies that $H_G = 1$, so H is σ-nilpotent by Lemma 2.6(6). Therefore every subgroup of H is σ-subnormal in G by Proposition 2.3 in [1] and Lemma 2.5(6). Assume that H possesses two distinct maximal subgroups V and W. Then $V, W \leq Z_\sigma(G)$ by minimality of $|G| + |H|$ since $V_G = 1 = W_G$, which implies that $H \leq Z_\sigma(G)$. Hence H is a cyclic p-group for some $p \in \sigma_i$.

By Theorem A, $G = D \rtimes M$, where D is a Hall subgroup of G, M is σ-nilpotent and every subgroup of D is normal in G. Then $H \cap D = 1$ and so, in view of Lemma 2.1, we can assume without loss of generality that $H \leq M$. Lemma 2.7(i) implies that H is σ-permutable in G, so

$$H^G = H^{DM} = H^{G^{\sigma_\sigma}(G)M} = H^M \leq M$$

by Lemma 2.6(3). Hence $H^G \cap D = 1$ and then, from the G-isomorphism $H^G D/D \simeq H^G$, we deduce that $H \leq H^G \leq Z_\sigma(G)$. Therefore H is σ-hypercentrally embedded in G. This contradiction completes the proof of the necessity of the condition of the theorem.

Sufficiency. It is enough to show that if a σ-subnormal subgroup H of a σ-soluble group G is σ-hypercentrally embedded in G, then H is σ-permutable in G. Assume that this is false and let G be a counterexample with $|G| + |H|$ minimal. Since G is σ-soluble, it is a σ-full group of Sylow type by Lemma 2.1. Therefore, in view of Lemma 2.6(5), $H_G = 1$ and so $H \leq Z_\sigma(G)$. It is clear that $Z_\sigma(G)$ is σ-nilpotent, so $H = H_1 \times \cdots \times H_t$ for some σ-primary groups H_1, \ldots, H_t. Moreover, the minimality of $|G| + |H|$ implies that $H = H_1$ is a σ_i-group for some i. Hence $H \leq N$, where N is a Hall σ_i-subgroup of $Z_\sigma(G)$. Since $Z_\sigma(G)$ is σ-nilpotent, N is characteristic in $Z_\sigma(G)$ and so N is normal in G.

Let $1 = Z_0 < Z_1 < \cdots < Z_t = N$ be a chief series of G below N and $C_i = C_G(Z_i/Z_{i-1})$. Let
\(C = C_1 \cap \cdots \cap C_t \). Then \(G/C \) is a \(\sigma_i \)-group. On the other hand, \(C/C_G(N) \cong A \leq \text{Aut}(N) \) stabilizes the series \(1 = Z_0 < Z_1 < \cdots < Z_t = N \), so \(C/C_G(N) \) is a \(\pi(N) \)-group by [25, Ch. A, 12.4(a)]. Hence \(G/C_G(N) \) is a \(\sigma_i \)-group and so \(O^{\sigma_i}(G) \leq C_G(N) \). But then \(O^{\sigma_i}(G) \leq C_G(H) \), so \(H \) is \(\sigma \)-permutable in \(G \) by Lemma 2.6(3). This contradiction completes the proof of the sufficiency of the condition of the theorem.

The theorem is proved.

In the case when \(\sigma = \sigma^0 \), we have \(Z_\sigma(G) = Z_\infty(G) \). Hence from Theorem 4.1 we get

Corollary 4.2 (See Theorem 2.4.4 in [6]). Let \(G \) be soluble. Then \(G \) is a PST-group if and only if every subnormal subgroup \(H \) of \(G \) is hypercentrally embedded in \(G \) (that is, \(H/H_G \leq Z_\infty(G/H_G) \)).

2. We say, following [6, p. 68], that \(G \) satisfies property \(\mathcal{Y}_{\sigma_i} \) if whenever \(H \leq K \) are two \(\sigma_i \)-subgroups of \(G \), \(H \) is \(\sigma \)-permutable in \(N_G(K) \).

The idea of the next theorem goes back to the paper [15].

Theorem 4.3. Let \(G \) be \(\sigma \)-soluble. Then \(G \) is a \(P\sigma T \)-group if and only if \(G \) satisfies \(\mathcal{Y}_{\sigma_i} \) for all primes \(i \).

Lemma 4.4. Let \(K \leq H \) and \(N \) be subgroups of \(G \). Suppose that \(K \) is \(\sigma \)-permutable in \(H \) and \(N \) is normal in \(G \). Then \(KN/N \) is \(\sigma \)-permutable in \(HN/N \).

Proof. Let \(f : H/H \cap N \rightarrow HN/N \) be the canonical isomorphism from \(H/H \cap N \) onto \(HN/N \). Then \(f(K(H \cap N)/(H \cap N)) = KN/N \), so \(KN/N \) is \(\sigma \)-permutable in \(HN/N \) by Lemma 2.6(2).

The lemma is proved.

Sketch of the proof of Theorem 4.3. Necessity. Let \(H \leq K \) be two \(\sigma_i \)-subgroups of \(G \) and \(N = N_G(K) \). Then \(H \) is \(\sigma \)-subnormal in \(N \) by Lemma 2.5(6). On the other hand, Corollary 1.2 implies that \(N \) is a \(\sigma \)-soluble \(P\sigma T \)-group. Therefore \(H \) is \(\sigma \)-permutable in \(N \) by Lemma 2.7(i).

Sufficiency. It is enough to show that Conditions (i) and (ii) of Theorem A hold for \(G \). Assume that this is false and let \(G \) be a counterexample of minimal order. Since \(G \) is \(\sigma \)-soluble, it is a \(\sigma \)-full group of Sylow type by Lemma 2.1. Let \(D = G^{\text{sol}} \).

(1) Every proper subgroup \(E \) of \(G \) is a \(\sigma \)-soluble \(P\sigma T \)-group and \(E^{\text{sol}} \leq D \) (This follows from Lemmas 2.2, 2.3, 2.6(4) and the choice of \(G \)).

(2) \(G/N \) is a \(\sigma \)-soluble \(P\sigma T \)-group for every minimal normal subgroup \(N \) of \(G \).

Let \(H/N \leq K/N \) be two \(\sigma_i \)-subgroups of \(G/N \). Since \(G \) is \(\sigma \)-soluble, \(N \) is a \(\sigma_j \)-subgroup for some \(j \). Assume that \(j \neq i \). Then there are a Hall \(\sigma_i \)-subgroup \(V \) of \(H \) and a Hall \(\sigma_j \)-subgroup \(W \) of \(K \) such that \(V \leq W \) since \(G \) is a \(\sigma \)-full group of Sylow type. Then \(V \) is \(\sigma \)-permutable in \(N_G(W) \) by hypothesis, so \(H/N = VN/N \) is \(\sigma \)-permutable in \(N_G(W)N/N = N_G(WN/N) = N_G(NK/N) \) by Lemma 4.4. Similarly we get that \(H/N \) is \(\sigma \)-permutable in \(N_{G/N}(K/N) \) in the case when \(j = i \).

(3) \(D \) is nilpotent.
(4) D is a Hall subgroup of G and $H_i = O_{\sigma_i}(D) \times S$ for each $\sigma_i \in \sigma(D)$ (See Claims (4) and (5) in the proof of Theorem A and use Claims (1), (2) and (3)).

(5) Every subgroup H of D is normal in G. Hence every element of G induces a power automorphism in D.

Since D is nilpotent by Claim (3), it is enough to consider the case when $H \leq O_{\sigma_i}(D) = H_i \cap D$ for some $\sigma_i \in \sigma(D)$. Hence H is σ-permutable in G by hypothesis. Claim (4) implies that $H_i = O_{\sigma_i}(D) \times S$. Therefore $G = H_i\sigma^\alpha(G) = SO^\alpha(G) \leq N_G(H)$ by Lemma 2.6(3).

(6) D is abelian of odd order (See Claims (7) and (8) in the proof of Theorem A and use Claim (5)).

The theorem is proved.

Corollary 4.5 (Ballester-Bolinches and Esteban-Romero [15], see also Theorem 2.2.9 in [6]). G is a soluble PST-group if and only if G satisfies $\not\approx_p$ for all primes p.

Proof. It is enough to note that, as it was remarked at the beginning of the proof of Theorem 2.2.9 in [6], every group which satisfies $\not\approx_p$ for all primes p is soluble.

3. We say that a subgroup A of G is σ-modular (S-modular in the case $\sigma = \sigma^0$) provided G possesses a complete Hall σ-set and $\langle A, H \cap C \rangle = \langle A, H \rangle \cap C$ for every Hall σ_i-subgroup H of G and all $i \in I$ and $A \leq C \leq G$.

Theorem 4.6. Let G be σ-soluble. Then G is a $P\sigma T$-group if and only if every σ-subnormal subgroup A of G is σ-modular in every subgroup of G containing A.

Proof. Since G is σ-soluble, G is a σ-full group of Sylow type by Lemma 2.1. Hence G possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ and, for each $\sigma_i \in \sigma(G)$, a subgroup H of G is a Hall σ_i-subgroup of G if and only if $H = H_k^x$ for some $x \in G$ and $H_k \in \mathcal{H}$.

Sufficiency. Assume that this is false and let G be a counterexample of minimal order. Then, in view of Lemma 2.7(i), G has a σ-subnormal subgroup A which is not σ-permutable in G. Hence, for some $H_i \in \mathcal{H}$ and $x \in G$, we have $AH_i^x \neq H_i^x A$. Note also that every proper σ-subnormal subgroup E of G is a $P\sigma T$-group. Indeed, E is clearly σ-soluble and if H is a σ-subnormal subgroup of E, then H is σ-subnormal in G by Lemma 2.6(6). Hence H is σ-modular in every subgroup of E containing H by hypothesis. Thus the hypothesis holds for E and so E is a $P\sigma T$-group by the choice of G.

By definition, there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \triangleright A_i$ or $A_i/(A_{i-1})A_i$ is σ-primary for all $i = 1, \ldots, n$. We can assume without loss of generality that $M = A_n < G$. Then M is a $P\sigma T$-group since M is clearly σ-subnormal in G, so A is σ-permutable in M by Lemma 2.7(i). Moreover, the σ-modularity of A in G implies that

$$M = M \cap \langle A, H_i^x \rangle = \langle A, (M \cap H_i^x) \rangle.$$

On the other hand, by Lemma 2.5(4), $M \cap H_i^x$ is a Hall σ_i-subgroup of M, where $\{\sigma_i\} = \sigma(H_i)$. Hence $M = A(M \cap H_i^x) = (M \cap H_i^x)A$. If $H_i^x \leq M_G$, then $A(M \cap H_i^x) = AH_i^x = H_i^x A$ and so
\[H_i^x \notin M_G. \]

Now note that \(H_i^x M = MH_i^x \). Indeed, if \(M \) is normal in \(G \), it is clear. Otherwise, \(G/M_G \) is \(\sigma \)-primary and so \(G = MH_i^x = H_i^x M \) since \(H_i^x \notin M_G \) and \(H_i \in \mathcal{H} \). Therefore

\[H_i^x A = H_i^x (M \cap H_i^x) A = H_i^x M = MH_i^x = H_i^x (M \cap H_i^x) A = H_i^x A. \]

This contradiction completes the proof of the sufficiency of the condition of the theorem.

Necessity. In view of Lemma 2.6(4), it is enough to show that if \(A \) is a \(\sigma \)-subnormal subgroup of \(G \), then \(A \) is \(\sigma \)-modular in \(G \). First note that \(A \) is \(\sigma \)-permutable in \(G \) by Lemma 2.7(i). Therefore for every subgroup \(C \) of \(G \) containing \(A \), for every \(i \in I \), and for all Hall \(\sigma_i \)-subgroup \(H \) of \(G \) we have

\[\langle A, H \cap C \rangle = A(H \cap C) = AH \cap C = \langle A, H \rangle \cap C, \]

so \(A \) is \(\sigma \)-modular in \(G \).

The theorem is proved.

From Theorem 4.6 we get the following characterization of soluble PST-groups.

Corollary 4.7. Let \(G \) be soluble. Then \(G \) is a PST-group if and only if every subnormal subgroup \(A \) of \(G \) is \(S \)-modular in every subgroup of \(G \) containing \(A \).

References

[1] A.N. Skiba, On \(\sigma \)-subnormal and \(\sigma \)-permutable subgroups of finite groups, *J. Algebra*, 436 (2015), 1–16.

[2] L.A. Shemetkov, *Formations of finite groups*, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

[3] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, *J. Group Theory*, 18 (2015), 191–200.

[4] A.N. Skiba, A generalization of a Hall theorem, *J. Algebra and its Application*, 15(5) (2016), DOI: 10.1142/S0219498816500857.

[5] A.N. Skiba, On some results in the theory of finite partially soluble groups, *Commun. Math. Stat.*, 4(3) (2016), 281–309.

[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.

[7] W. Guo, *Structure Theory for Canonical Classes of Finite Groups*, Springer, Heidelberg-New York-Dordrecht-London, 2015.
[8] O.H. Kegel, Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each
nehmen, Arch. Math., 30(3) (1978), 225–228.
[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
[10] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups,
Proc. Amer. Math. Soc., 47 (1975), 77–83.
[11] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation,
J. Austral. Math. Soc., 70 (2001), 143–159.
[12] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, J. London Math. Soc.,
40 (1989), 244–256.
[13] J.C. Beidleman, B. Brewster, D.J.S. Robinson, Criteria for permutability to be transitive in
finite groups, J. Algebra, 222 (1999), 400–412.
[14] M.J. Alejandre, A. Ballester-Bolinches, M.C. Pedraza-Aguilera, Finite soluble group with per-
mutable subnormal subgroups, J. Algebra, 240 (2001), 705–722.
[15] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutabel subnormal subgroups of finite
groups, J. Algebra, 251 (2002), 727–738.
[16] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, Groups in which Sylow subgroups and
subnormal subgroups permute, Illinois J. Math., 47 (2003), 63–69.
[17] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, A local approach to certain classes of finite
groups, Comm. Algebra, 31 (2003), 5931–5942.
[18] M. Asaad, Finite groups in which normality or quasinormality is transitive, Arch. Math., 83 (4)
(2004), 289–296.
[19] A. Ballester-Bolinches, J. Cossey, Totally permutabel products of finite groups satisfying SC or
PST, Monatsh. Math., 145 (2005), 89–93.
[20] K. Al-Sharo, J.C. Beidleman, H. Heineken, et al. Some characterizations of finite groups in
which semipermutability is a transitive relation, Forum Math., 22 (2010), 855–862.
[21] J.C. Beidleman, M.F. Ragland, Subnormal, permutabel, and embedded subgroups in finite
groups, Central Eur. J. Math., 9(4) (2011), 915–921.
[22] X. Yi, A.N. Skiba, Some new characterizations of PST-groups, J. Algebra, 399 (2014), 39–54.
[23] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006.
[24] B.N. Knyagina, V.S. Monakhov, On π*-properties of finite groups having a Hall π-subgroup,
Siberian Math. J., 522 (2011), 398–309.
[25] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.

[26] A.N. Skiba, On σ-properties of finite groups II, *Problems of Physics, Mathematics and Technics*, 3(24) (2015), 67–81.