On the regularity of the solution map of the porous media equation

H. Inci

October 10, 2018

Abstract

In this paper we consider the incompressible porous media equation in the Sobolev spaces \(H^s(\mathbb{R}^2), s > 2 \). We prove that for \(T > 0 \) the time \(T \) solution map \(\rho_0 \mapsto \rho(T) \) is nowhere locally uniformly continuous. On the other hand we show that the particle trajectories are analytic curves in \(\mathbb{R}^2 \).

1 Introduction

The initial value problem for the incompressible porous media equation in the Sobolev space \(H^s(\mathbb{R}^2), s > 2 \) is given by

\[
\begin{align*}
\rho_t + (u \cdot \nabla)\rho &= 0 \\
\text{div} u &= 0 \\
u &= -\nabla p - \begin{pmatrix} 0 \\ \rho \end{pmatrix} \\
\rho(0) &= \rho_0
\end{align*}
\]

(1)

where \(\rho : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \) is the density, \(u : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2 \) the velocity of the flow, \(p : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \) the pressure. Local well-posedness for \(\rho \) lying in \(C^0([0, T]; H^s(\mathbb{R}^2)) \) is known – see [2]. For \(T > 0 \) we denote by \(U_T \subseteq H^s(\mathbb{R}^2) \) the set of initial values \(\rho_0 \) for which the solution of (1) exists longer than time \(T \). We can state our main theorem as
Theorem 1.1. Let $s > 2$ and $T > 0$. Then the time T solution map

$$U_T \to H^s(\mathbb{R}^2), \quad \rho_0 \mapsto \Phi_T(\rho_0) = \rho(T)$$

is nowhere locally uniformly continuous. Here $\rho(T)$ is the value of ρ at time T.

Our method relies on a geometric formulation of (1). This approach was made popular by the work of Arnold [1] for the incompressible Euler equations and subsequently by [3]. In the following we will work this out for (1). Taking the divergence in the third equation (Darcy’s law) in (1) we have

$$-\Delta p = \partial_2 \rho$$

Reexpressing ∇p gives

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -(-\Delta)^{-1} \partial_1 \partial_2 \rho \\ -(-\Delta)^{-1} \partial_2 \rho - \rho \end{pmatrix} = \begin{pmatrix} -(-\Delta)^{-1} \partial_1 \partial_2 \rho \\ (-\Delta)^{-1} \partial_2 \rho \end{pmatrix} = \begin{pmatrix} -R_1 R_2 \rho \\ R_2^2 \rho \end{pmatrix}$$

where

$$R_k = \partial_k (-\Delta)^{-\frac{1}{2}}, \quad k = 1, 2$$

are the Riesz operators. Applying $-R_1 R_2$ resp. R_2^2 to the first equation in (1) gives

$$u_t + (u \cdot \nabla) u = \begin{pmatrix} [u \cdot \nabla, -R_1 R_2] \rho \\ [u \cdot \nabla, R_2^2] \rho \end{pmatrix}$$

(2)

where we use $[A, B] = AB - BA$ for the commutator of operators. We will express (2) in Lagrangian coordinates, i.e. in terms of the flow map of u

$$\varphi_t = u \circ \varphi, \quad \varphi(0) = \text{id}$$

where id is the identity map in \mathbb{R}^2. The functional space for φ is for $s > 2$ the diffeomorphism group

$$D^s(\mathbb{R}^2) := \{ \varphi : \mathbb{R}^2 \to \mathbb{R}^2 \mid \varphi - \text{id} \in H^s(\mathbb{R}^2; \mathbb{R}^2) \text{ and } \det(d_x \varphi) > 0 \forall x \in \mathbb{R}^2 \}$$

where $H^s(\mathbb{R}^2; \mathbb{R}^2)$ denotes the vector valued Sobolev space. By the Sobolev imbedding theorem $D^s(\mathbb{R}^2)$ consists of C^1 diffeomorphisms. Regarding it as an open subset $D^s(\mathbb{R}^2) - \text{id} \subseteq H^s(\mathbb{R}^2; \mathbb{R}^2)$ it is a connected topological group under composition of maps – see [4]. The first equation in (1) in terms of φ reads as

$$\rho(t) = \rho_0 \circ \varphi(t)^{-1}$$
Taking the t derivative of $\varphi_t = u \circ \varphi$ is

$$\varphi_{tt} = (u_t + (u \cdot \nabla) u) \circ \varphi$$

Thus we can write (2) as

$$\varphi_{tt} = \left(\left([\varphi_t \circ \varphi^{-1} \cdot \nabla, -\mathcal{R}_1 \mathcal{R}_2] (\rho_0 \circ \varphi^{-1}) \right) \circ \varphi \right)$$

or as a first order equation in $\mathcal{D}^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2)$

$$\frac{d}{dt} \left(\begin{array}{c} \varphi \\ v \end{array} \right) = \left(\begin{array}{c} [v \circ \varphi^{-1} \cdot \nabla, -\mathcal{R}_1 \mathcal{R}_2] (\rho_0 \circ \varphi^{-1}) \end{array} \right) \circ \varphi = \left(\begin{array}{c} v \\ F(\varphi, v, \rho_0) \end{array} \right)$$

We claim that $F(\varphi, v, \rho_0)$ is analytic in its arguments

Lemma 1.1. The map

$$F: \mathcal{D}^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2) \to H^s(\mathbb{R}^2; \mathbb{R}^2)$$

$$(\varphi, v, \rho_0) \mapsto F(\varphi, v, \rho_0)$$

is analytic.

In the following we will use the notation $R_\varphi : g \mapsto g \circ \varphi$ for the composition from the right. Note that $R_\varphi^{-1} g = g \circ \varphi^{-1}$.

Proof of Lemma 1.1. In [6] it was shown that for $k = 1, 2$

$$\mathcal{D}^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2) \to H^s(\mathbb{R}^2), \quad (\varphi, f) \mapsto (\mathcal{R}_k (f \circ \varphi^{-1})) \circ \varphi = R_\varphi \mathcal{R}_k R_\varphi^{-1} f$$

is analytic and also that

$$\mathcal{D}^s(\mathbb{R}^2) \times \mathcal{D}^s(\mathbb{R}^2; \mathbb{R}^2) \times H^s(\mathbb{R}^2) \to H^s(\mathbb{R}^2)$$

$$(\varphi, w, f) \mapsto \left(\left([w \circ \varphi^{-1} \cdot \nabla, \mathcal{R}_k] (f \circ \varphi^{-1}) \right) \circ \varphi = R_\varphi [R_\varphi^{-1} w \cdot \nabla, \mathcal{R}_k] R_\varphi^{-1} f \right)$$

is analytic. Using these results we see by writing for $j, k = 1, 2$

$$R_\varphi [R_\varphi^{-1} v \cdot \nabla, \mathcal{R}_j \mathcal{R}_k] R_\varphi^{-1} \rho_0 =$$

$$R_\varphi [R_\varphi^{-1} v \cdot \nabla, \mathcal{R}_j] R_\varphi R_\varphi^{-1} \rho_0 + R_\varphi \mathcal{R}_j [R_\varphi^{-1} v \cdot \nabla, \mathcal{R}_k] R_\varphi^{-1} \rho_0 =$$

$$R_\varphi [R_\varphi^{-1} v \cdot \nabla, \mathcal{R}_j] R_\varphi^{-1} R_\varphi \mathcal{R}_k R_\varphi^{-1} \rho_0 + R_\varphi \mathcal{R}_j R_\varphi^{-1} R_\varphi [R_\varphi^{-1} v \cdot \nabla, \mathcal{R}_k] R_\varphi^{-1} \rho_0$$

that $F(\varphi, v, \rho_0)$ is analytic in its arguments. \qed
By Picard-Lindelöf we get for any \(\rho_0 \in H^s(\mathbb{R}^2) \) local solutions to

\[
\frac{d}{dt} \begin{pmatrix} \varphi \\ v \end{pmatrix} = \begin{pmatrix} v \\ F(\varphi, v, \rho_0) \end{pmatrix}, \quad \varphi(0) = \text{id}, \ v(0) = u_0
\]

(3)

By taking \(u_0 = (-\mathcal{R}_1 \mathcal{R}_2 \rho_0, \mathcal{R}_2^2 \rho_0) \) we claim that we get solutions to (1).

Proposition 1.2. Let \(\rho_0 \in H^s(\mathbb{R}^2) \) and let \((\varphi, v)\) be the solution to (3) with \(u_0 = (-\mathcal{R}_1 \mathcal{R}_2 \rho_0, \mathcal{R}_2^2 \rho_0) \) on some time interval \([0, T]\) with \(T > 0 \). Then

\[
u(t) = v(t) \circ \varphi(t)^{-1} \quad \text{and} \quad \rho(t) = \rho_0 \circ \varphi(t)^{-1}
\]

is a solution \((\rho, u)\) \(\in C^0([0, T]; H^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2))\) to (1).

Proof. By the properties of the composition we clearly have

\[(\rho, u) \in C^0([0, T]; H^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2))\]

Define

\[
w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} -\mathcal{R}_\varphi \mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_\varphi^{-1} \rho_0 \\ \mathcal{R}_\varphi \mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_\varphi^{-1} \rho_0 \end{pmatrix} \in C^\infty([0, T]; H^s(\mathbb{R}^2; \mathbb{R}^2))
\]

Calculating the \(t \) derivative of \(w_1 \) gives (note that by the Sobolev imbedding we have \(C^1 \) expressions)

\[
\frac{d}{dt}w_1 = -\frac{d}{dt}\mathcal{R}_\varphi \mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_\varphi^{-1} \rho_0 = -\mathcal{R}_\varphi \mathcal{R}_1 \mathcal{R}_2 \frac{d}{dt}\mathcal{R}_\varphi^{-1} \rho_0 - (\varphi_t \cdot \mathcal{R}_\varphi \nabla)\mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_\varphi^{-1} \rho_0
\]

\[
= \mathcal{R}_\varphi \mathcal{R}_1 \mathcal{R}_2 (\mathcal{R}_\varphi^{-1} \rho_0 \cdot \mathcal{R}_\varphi^{-1} \mathcal{R}_\varphi^{-1} \rho_0) - (\varphi_t \cdot \mathcal{R}_\varphi \nabla)\mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_\varphi^{-1} \rho_0
\]

\[
= \mathcal{R}_\varphi (\mathcal{R}_1 \mathcal{R}_2, (\mathcal{R}_\varphi^{-1} v \cdot \nabla))\mathcal{R}_\varphi^{-1} \rho_0
\]

showing that \(w_1(t) = v_1(t) \) for \(t \in [0, T] \) as \(w_1(0) = v_1(0) = -\mathcal{R}_1 \mathcal{R}_2 \rho_0 \).

Similarly we have \(w_2 = v_2 \). Thus

\[
u = w \circ \varphi^{-1} = \begin{pmatrix} -\mathcal{R}_1 \mathcal{R}_2 \rho_0 \\ \mathcal{R}_1^2 \rho_0 \end{pmatrix}
\]

showing the claim. \(\square \)
On the other hand consider a solution of (1) in
\((\rho, u) \in C^0([0, T]; H^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2; \mathbb{R}^2)) \cap C^1([0, T]; H^{s-1}(\mathbb{R}^2) \times H^{s-1}(\mathbb{R}^2; \mathbb{R}^2))\)

We know (see [5]) that there exists a unique \(\varphi \in C^1([0, T]; \mathcal{D}^s(\mathbb{R}^2))\) with

\[
\varphi_t = u \circ \varphi, \quad \varphi(0) = \text{id}
\]

We claim that \(\varphi\) and \(v = \varphi_t\) is a solution to (3). From (1) we get

\[
u = \begin{pmatrix}
-\mathcal{R}_1\mathcal{R}_2(\rho_0 \circ \varphi^{-1}) \\
\mathcal{R}_2^2(\rho_0 \circ \varphi^{-1})
\end{pmatrix}
\]

Consider \(u \circ \varphi\). Taking the \(t\) derivative we get pointwise

\[(u_t + (u \cdot \nabla) u) \circ \varphi = \begin{pmatrix}
[u \cdot \nabla, -\mathcal{R}_1\mathcal{R}_2](\rho_0 \circ \varphi^{-1}) \\
[u \cdot \nabla, \mathcal{R}_2^2](\rho_0 \circ \varphi^{-1})
\end{pmatrix} \circ \varphi
\]

with the righthandside continuous with values in \(H^s(\mathbb{R}^2; \mathbb{R}^2)\). Hence \(v \in C^1([0, T]; H^s(\mathbb{R}^2; \mathbb{R}^2))\) with derivative

\[
v_t = \begin{pmatrix}
[(v \circ \varphi^{-1}) \cdot \nabla, -\mathcal{R}_1\mathcal{R}_2]\rho_0 \circ \varphi^{-1} \\
[(v \circ \varphi^{-1}) \cdot \nabla, \mathcal{R}_2^2]\rho_0 \circ \varphi^{-1}
\end{pmatrix} \circ \varphi
\]

Hence \((\varphi, v)\) is a solution to (3) showing uniqueness of solutions for (1) by the uniqueness of solutions for ODEs. Together with Proposition 1.2 we get therefore the local well-posedness of (1).

From the ODE formulation (3) we immediately get

Theorem 1.2. The particle trajectories of the flow determined by (1) are analytic curves in \(\mathbb{R}^2\).

Proof. As (3) is analytic we get by ODE theory that

\([0, T] \to D^s(\mathbb{R}^2), \quad t \mapsto \varphi(t)\)

is analytic. Thus evaluation at \(x \in \mathbb{R}^2\), giving the trajectory of the particle which is located at \(x\) at time zero,

\([0, T] \to \mathbb{R}^2, \quad t \mapsto \varphi(t, x)\)

is also analytic.
2 Nonuniform dependence

The goal of this section is to prove Theorem 1.1. For the proof we need some preparation. Note that we have the following scaling property for (1):

Assume that \((\rho(t, x), u(t, x))\) is a solution to (1). Then a simple calculation shows that for \(\lambda > 0\)

\[
(\rho_\lambda(t, x), u_\lambda(t, x)) = (\lambda \rho(\lambda t, x), \lambda u(\lambda t, x))
\]

is also a solution to (1). Thus we have for the domain \(U_T \subseteq H^s(\mathbb{R}^2)\)

\[
U_{\lambda T} = \frac{1}{\lambda} \cdot U_T
\]

and for the solution map \(\Phi_T\)

\[
\Phi_{\lambda T}(\rho_0) = \frac{1}{\lambda} \cdot \Phi_T(\lambda \cdot \rho_0)
\]

Hence we have \(\Phi_T(\rho_0) = \frac{1}{T} \cdot \Phi_1(T \cdot \rho_0)\). Therefore it will be enough to prove Theorem 1.1 for the case \(T = 1\). For \(T = 1\) we introduce

\[
U := U_1 \quad \text{and} \quad \Phi := \Phi_1
\]

Similarly we denote by

\[
\Psi(\rho_0) := \varphi(1; \rho_0)
\]

where \(\varphi(1; \rho_0)\) is the value of the \(\varphi\) component at time 1 of the solution to (3) for the initial values

\[
\varphi(0) = \text{id}, \quad v(0) = (-R_1 R_2 \rho_0, R_2^2 \rho_0)
\]

Thus by analytic dependence on initial values and parameters we have that

\[
\Psi : U \subseteq H^s(\mathbb{R}^2) \rightarrow D^s(\mathbb{R}^2), \quad \rho_0 \mapsto \Psi(\rho_0)
\]

is analytic. For the proof of the main result we will need the following technical lemma

Lemma 2.1. There is a dense subset \(S \subseteq U(\subseteq H^s(\mathbb{R}^2))\) with the property that for each \(\rho_\bullet \in S\) we have: the support of \(\rho_\bullet\) is compact and there is \(\bar{\rho} \in H^s(\mathbb{R}^2)\) and \(x^* \in \mathbb{R}^2\) with \(\text{dist}(x^*, \text{supp} \rho_\bullet) > 2\) (i.e. the distance of \(x^*\) to the support of \(\rho_\bullet\) is bigger than 2) and

\[
(d_{\rho_\bullet} \Psi(\bar{\rho}))(x^*) \neq 0
\]

where \(d_{\rho_\bullet} \Psi\) is the differential of \(\Psi\) at \(\rho_\bullet\).
Proof. First note that
\[\Psi(t \cdot \bar{\rho}) = \varphi(1; t \cdot \bar{\rho}) = \varphi(t; \bar{\rho}) \]
where the last equality follows from the scaling property discussed above. Taking the \(t \) derivative at \(t = 0 \) gives
\[d_0 \Psi(\bar{\rho}) = \frac{d}{dt} \bigg|_{t=0} \Psi(t \cdot \bar{\rho}) = \frac{d}{dt} \bigg|_{t=0} \varphi(t; \bar{\rho}) = \varphi_t(0, \bar{\rho}) = (-\mathcal{R}_1 \mathcal{R}_2 \bar{\rho}, \mathcal{R}_2^2 \bar{\rho}) \]
Fix an arbitrary \(\rho_\bullet \in U \subseteq H^s(\mathbb{R}^2) \) with compact support. Take \(x^* \in \mathbb{R}^2 \) with \(\text{dist}(x^*, \text{supp}(\rho_\bullet)) > 2 \). Take a \(\tilde{\rho} \in H^s(\mathbb{R}^2) \) with \(-\mathcal{R}_1 \mathcal{R}_2 \tilde{\rho} \neq 0 \). The operator \(-\mathcal{R}_1 \mathcal{R}_2 \) is translation invariant as it is a Fourier multiplier operator. Therefore we can choose \(\tilde{\rho}(\cdot) = \tilde{\rho}(\cdot + \delta x) \) with
\[(-\mathcal{R}_1 \mathcal{R}_2 \tilde{\rho})(x^*) \neq 0 \]
Now consider the analytic curve
\[(d_{t \rho_\bullet} \Psi(\tilde{\rho}))(x^*) \]
which at \(t = 0 \) is different from zero. Therefore there exist \(t_n \uparrow 1 \) for \(n \geq 1 \) with
\[(d_{t_n \rho_\bullet} \Psi(\tilde{\rho}))(x^*) \neq 0 \]
So we can put all these \(t_n \rho_\bullet \) into \(S \). By this construction we see that \(S \) is dense in \(U \).

Theorem \(\boxed{1.1} \) will follow from

Proposition 2.2. The time \(T = 1 \) solution map
\[\Phi : U \subseteq H^s(\mathbb{R}^2) \to H^s(\mathbb{R}^2), \quad \rho_0 \mapsto \Phi(\rho_0) \]
is nowhere locally uniformly continuous.

Proof. Let \(S \subseteq U \) be as in Lemma \(\boxed{2.1} \). Take an arbitrary \(\rho_\bullet \in S \). In successive steps we will choose \(R_\bullet > 0 \) and prove that
\[\Phi : B_R(\rho_\bullet) \subseteq U \to H^s(\mathbb{R}^2) \]
is not uniformly continuous for any \(0 < R \leq R_\bullet \). Here we denote by \(B_R(\rho_\bullet) \subseteq H^s(\mathbb{R}^2) \) the ball of radius \(R \) around \(\rho_\bullet \). As \(S \) is dense this is clearly sufficient
to prove the proposition.

Fix $x^* \in \mathbb{R}^2$ and $\bar{\rho} \in H^s(\mathbb{R}^2)$ with

$$m := |(d_{\rho_\bullet} \Psi(\bar{\rho}))(x^*)| > 0$$

as guaranteed by Lemma 2.1. Here $| \cdot |$ is the Euclidean norm in \mathbb{R}^2. Define $\varphi_\bullet = \Phi(\rho_\bullet)$ and let

$$d := \text{dist}(\varphi_\bullet(\text{supp } \rho_\bullet), \varphi_\bullet(B_1(x^*))) > 0$$

where $B_1(x^*) \subseteq \mathbb{R}^2$. By the Sobolev imbedding we fix $\tilde{C} > 0$ with

$$||f||_{C^1} \leq \tilde{C}||f||_s$$

for all $f \in H^s(\mathbb{R}^2; \mathbb{R}^2)$. Choose $R_1 > 0$ and $C_1 > 0$ with

$$\frac{1}{C_1}||f||_s \leq ||f \circ \varphi_\bullet^{-1}||_s \leq C_1||f||_s$$

for all $f \in H^s(\mathbb{R}^2)$ and for all $\varphi \in \Psi(B_{R_1}(\rho_\bullet))$ which is possible due to the continuity of composition – see [4]. Using the Sobolev imbedding (4) we take

$$0 < R_2 \leq R_1$$

and $L > 0$ with

$$|\varphi(x) - \varphi(y)| < L|x - y| \text{ and } |\varphi(x) - \varphi_\bullet(x)| < d/4$$

for all $x, y \in \mathbb{R}^2$ and $\varphi \in \Psi(B_{R_2}(\rho_\bullet))$.

Consider the Taylor expansion of Ψ around ρ_\bullet

$$\Psi(\rho_\bullet + h) = \Psi(\rho_\bullet) + d_{\rho_\bullet} \Psi(h) + \int_0^1 (1-s)d_{\rho_\bullet + sh}^2 \Psi(h, h) \, ds$$

for $h \in H^s(\mathbb{R}^2)$. In order to estimate $d^2 \Psi$ we choose $0 < R_3 \leq R_2$ such that

$$||d^2_{\rho} \Psi(h_1, h_2)||_s \leq K||h_1||_s||h_2||_s$$

and

$$||d^2_{\rho_1} \Psi(h_1, h_2) - d^2_{\rho_2} \Psi(h_1, h_2)||_s \leq K||\rho_1 - \rho_2||_s||h_1||_s||h_2||_s$$

for all $\rho, \rho_1, \rho_2 \in B_{R_3}(\rho_\bullet)$ and for all $h_1, h_2 \in H^s(\mathbb{R}^2)$ which is possible due to the smoothness of Ψ. Finally we choose $0 < R_4 \leq R_3$ such that

$$\tilde{C}K||\bar{\rho}||_s R^2_4/4 + \tilde{C}K||\bar{\rho}||_s R_4 < m/4$$
Now fix $0 < R \leq R_\ast$. We will construct two sequences of initial values

$$(\rho^{(n)}_0)_{n \geq 1}, (\check{\rho}^{(n)}_0)_{n \geq 1} \subseteq B_R(\rho_\bullet)$$

with $\lim_{n \to \infty} \|\rho^{(n)}_0 - \check{\rho}^{(n)}_0\|_s = 0$ whereas

$$\limsup_{n \to \infty} \|\Phi(\rho^{(n)}_0) - \Phi(\check{\rho}^{(n)}_0)\|_s > 0$$

Define the radii $r_n = m/8nL$ and choose $w_n \in H^s(\mathbb{R}^2)$ with

$$\operatorname{supp} w_n \subseteq B_{r_n}(x^\ast) \quad \text{and} \quad \|w_n\|_s = R/2$$

We choose the initial values as

$$\rho^{(n)}_0 = \rho_\bullet + w_n \quad \text{and} \quad \check{\rho}^{(n)}_0 = \rho_\bullet + w_n + \frac{1}{n} \bar{\rho}$$

For some N we clearly have

$$(\rho^{(n)}_0)_{n \geq N}, (\check{\rho}^{(n)}_0)_{n \geq N} \subseteq B_R(\rho_\bullet)$$

and $\operatorname{supp} w_n \subseteq B_1(x^\ast)$ for $n \geq N$. By taking N large enough we can also ensure

$$\tilde{C}K \frac{1}{n} \|\rho\|_s < m/4, \quad \forall n \geq N \quad (7)$$

Furthermore

$$\|\rho^{(n)}_0 - \check{\rho}^{(n)}_0\|_s = \|\frac{1}{n} \bar{\rho}\|_s \to 0$$

as $n \to \infty$. We introduce

$$\varphi^{(n)} = \Psi(\rho^{(n)}_0) \quad \text{and} \quad \check{\varphi}^{(n)} = \Psi(\check{\rho}^{(n)}_0)$$

With this we have

$$\Phi(\rho^{(n)}_0) = \rho^{(n)}_0 \circ (\varphi^{(n)})^{-1} \quad \text{and} \quad \Phi(\check{\rho}^{(n)}_0) = \check{\rho}^{(n)}_0 \circ (\check{\varphi}^{(n)})^{-1}$$

Hence

$$\|\Phi(\rho^{(n)}_0) - \Phi(\check{\rho}^{(n)}_0)\|_s = \|\rho_\bullet + w_n \circ (\varphi^{(n)})^{-1} - (\rho_\bullet + w_n + \frac{1}{n} \bar{\rho}) \circ (\check{\varphi}^{(n)})^{-1}\|_s$$
From (5) we conclude
\[
\limsup_{n \to \infty} ||(\rho_\bullet + w_n) \circ (\varphi(n))^{-1} - (\rho_\bullet + w_n + \frac{1}{n} \rho) \circ (\tilde{\varphi}(n))^{-1}||_s = \\
\limsup_{n \to \infty} ||(\rho_\bullet + w_n) \circ (\varphi(n))^{-1} - (\rho_\bullet + w_n) \circ (\varphi(n))^{-1}||_s
\]

Note that by (6) we have for \(n \geq N \)
\[
supp(\rho_\bullet \circ (\varphi(n))^{-1}), supp(\rho_\bullet \circ (\tilde{\varphi}(n))^{-1}) \subseteq \varphi_\bullet(supp \rho_\bullet) + B_{d/4}(0)
\]
and
\[
supp(w_n \circ (\varphi(n))^{-1}), supp(w_n \circ (\tilde{\varphi}(n))^{-1}) \subseteq \varphi_\bullet(B_1(x^*)) + B_{d/4}(0)
\]
where we use \(A + B = \{ a + b \mid a \in A, b \in B \} \). So the \(\rho_\bullet \) and \(w_n \) terms are supported in disjoint sets. This allows us (see [6]) to estimate with a constant \(\bar{C} > 0 \)
\[
\limsup_{n \to \infty} ||(\rho_\bullet + w_n) \circ (\varphi(n))^{-1} - (\rho_\bullet + w_n) \circ (\tilde{\varphi}(n))^{-1}||_s \\
\limsup_{n \to \infty} \bar{C} ||w_n \circ (\varphi(n))^{-1} - w_n \circ (\tilde{\varphi}(n))^{-1}||_s
\]

The goal is to separate the two \(w_n \) expressions by showing that their supports are also disjoint in a suitable way. We have
\[
\varphi^{(n)} = \Psi(\rho_\bullet + w_n) = \Psi(\rho_\bullet) + d_{\rho_\bullet} \Psi(w_n) + \int_0^1 (1 - s) d^2_{\rho_\bullet + sw_n} \Psi(w_n, w_n) \, ds
\]
resp.
\[
\tilde{\varphi}^{(n)} = \Psi(\rho_\bullet + w_n + \frac{1}{n} \bar{\rho}) = \Psi(\rho_\bullet) + d_{\rho_\bullet} \Psi(w_n + \frac{1}{n} \bar{\rho}) \\
+ \int_0^1 (1 - s) d^2_{\rho_\bullet + s(w_n + \frac{1}{n} \bar{\rho})} \Psi(w_n + \frac{1}{n} \bar{\rho}, w_n + \frac{1}{n} \bar{\rho}) \, ds
\]
Thus
\[
\tilde{\varphi}^{(n)} - \varphi^{(n)} = d_{\rho_\bullet} \Psi(\frac{1}{n} \bar{\rho}) + I_1 + I_2 + I_3
\]
where
\[
I_1 = \int_0^1 (1 - s) \left(d^2_{\rho_\bullet + sw_n + \frac{1}{n} \bar{\rho}} \Psi(w_n, w_n) - d^2_{\rho_\bullet + sw_n} \Psi(w_n, w_n) \right) \, ds
\]
and
\[I_2 = 2 \int_0^1 (1 - s) d^2_{\rho + s(w_n + \frac{1}{n}\bar{\rho})} \Psi(w_n, \frac{1}{n}\bar{\rho}) \, ds \]
and
\[I_3 = \int_0^1 (1 - s) d^2_{\rho + s(w_n + \frac{1}{n}\bar{\rho})} \Psi(-\frac{1}{n}\bar{\rho}, -\frac{1}{n}\bar{\rho}) \, ds \]

Using the estimates for \(d^2_\Psi \) we have
\[||I_1||_s \leq K \frac{1}{n} ||\bar{\rho}||_s R^2 / 4, \quad ||I_2||_s \leq 2K \frac{1}{n} ||\bar{\rho}||_s R / 2, \quad ||I_3||_s \leq K \frac{1}{n^2} ||\bar{\rho}||_s^2 \]

Using (4), (7) and by the choice of \(R_* \) we have
\[|I_1(x^*)| + |I_2(x^*)| + |I_3(x^*)| < \frac{m}{2n} \]

Hence
\[|\tilde{\varphi}^{(n)}(x^*) - \varphi^{(n)}(x^*)| \geq |(d_{\rho^*} \Psi(\bar{\rho})) (x^*)| \frac{n}{n - \frac{m}{2n}} = \frac{m}{2n} \]

We have by (6) and the choice of \(r_n \)
\[\text{supp}(w_n \circ (\tilde{\varphi}^{(n)})^{-1}) \subseteq B_{L_{r_n}}(\tilde{\varphi}^{(n)}(x^*)) = B_{m/(8n)}(\tilde{\varphi}^{(n)}(x^*)) \]
resp.
\[\text{supp}(w_n \circ (\varphi^{(n)})^{-1}) \subseteq B_{L_{r_n}}(\varphi^{(n)}(x^*)) = B_{m/(8n)}(\varphi^{(n)}(x^*)) \]

which shows that the supports of the two \(w_n \) terms are in such a way disjoint that we can separate the \(H^s \) norms with a constant (see [6]) to get
\[||w_n \circ (\varphi^{(n)})^{-1} - w_n \circ (\tilde{\varphi}^{(n)})^{-1}||_s \geq \tilde{K} (||w_n \circ (\varphi^{(n)})^{-1}||_s + ||w_n \circ (\tilde{\varphi}^{(n)})^{-1}||_s) \]
\[\geq 2\tilde{K} \frac{1}{C_1} ||w_n||_s = \frac{\tilde{K} R}{C_1} \]

where we used (5). Therefore
\[\limsup_{n \to \infty} ||\Phi(\rho_0^{(n)}) - \Phi(\tilde{\rho}_0^{(n)})||_s \geq \frac{\tilde{K} C R}{C_1} \]

whereas
\[||\rho_0^{(n)} - \tilde{\rho}_0^{(n)}||_s \to 0 \quad \text{as} \quad n \to \infty \]
showing that \(\Phi \) is not uniformly continuous on \(B_R(\rho_\bullet) \). As \(0 < R \leq R_* \) is arbitrary the result follows.
References

[1] V. Arnold: *Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits*, Ann. Inst. Fourier, **16**, 1(1966), 319–361.

[2] D. Cordoba, F. Gancedo, R. Orive: *Analytical behavior of two-dimensional incompressible flow in porous media*, J. Math. Phys. 48 (2007), no. 6, 065206, 19 pp.

[3] D. Ebin, J. Marsden: *Groups of diffeomorphisms and the motion of an incompressible fluid*, Ann. Math., **92**(1970), 102–163.

[4] H. Inci, T. Kappeler, P. Topalov: *On the regularity of the composition of diffeomorphisms*, Mem. Amer. Math. Soc. 226 (2013), no. 1062

[5] H. Inci: *On a Lagrangian formulation of the incompressible Euler equation*, J. Partial Differ. Equ. 29 (2016), no. 4.

[6] H. Inci: *On the well-posedness of the inviscid SQG equation*, J. Differential Equations 264 (2018), no. 4, 26602683.

Hasan İnci
Koç Üniversitesi Fen Fakultesi
Rumelifeneri Yolu
34450 Sarıyer İstanbul Türkiye
email: hiinci@ku.edu.tr