DYNAMICAL COMPLEXITY IN A DELAYED PLANKTON-FISH MODEL WITH ALTERNATIVE FOOD FOR PREDATORS

RAJINDER PAL KAUR*
Research scholar I.K. Gujral Punjab Technical University
Jalandhar, Punjab, India
and
P.G. Department of Mathematics
Khalsa College Amritsar, Punjab, India

AMIT SHARMA
Department of Applied Sciences
D.A.V. Institute of Engineering and Technology
Jalandhar, Punjab, India

ANUJ KUMAR SHARMA
Department of Mathematics
L.R.D.A.V. College, Jagraon, Punjab, India

Abstract. The present manuscript deals with a 3-D food chain ecological model incorporating three species phytoplankton, zooplankton, and fish. To make the model more realistic, we include predation delay in the fish population due to the vertical migration of zooplankton species. We have assumed that additional food is available for both the predator population, viz., zooplankton, and fish. The main motive of the present study is to analyze the impact of available additional food and predation delay on the plankton-fish dynamics. The positivity and boundedness (with and without delay) are proved to make the system biologically valid. The steady states are determined to discuss the stability behavior of non-delayed dynamics under certain conditions. Considering available additional food as a control parameter, we have estimated ranges of alternative food for maintaining the sustainability and stability of the plankton-fish ecosystem. The Hopf-bifurcation analysis is carried out by considering time delay as a bifurcation parameter. The predation delay includes complexity in the system dynamics as it passes through its critical value. The direction of Hopf-bifurcation and stability of bifurcating periodic orbits are also determined using the centre manifold theorem. Numerical simulation is executed to validate theoretical results.

1. Introduction. Theoretical ecology is a branch of science, which deeply studies ecological systems using mathematical models. The main work of ecologists is to unfold the novel and realistic insights about nature and make predictions about the diverse biological world. These predictions are helpful to understand various ecological phenomena, such as conservation of species, climate change, effects on...
the food chain, and the global carbon cycle. The marine ecosystem is a significant ecosystem that provides various biological, social, and economic services to humans. The phytoplankton and zooplankton species consist of small animals and the immature stages of larger animals in oceans. The plankton and fish biomass are the utmost essential components of marine life, as the extinction and survival of these species directly affect the ecological balance. Additional food or alternative food available for the zooplankton and fish population is a significant part of marine life due to its extensive utilization for the conservation and co-existence of plankton-fish species. The authors in [8] have explored the impact of available additional food on the prey-predator dynamics when the predation risk is low due to prey refuge. They have investigated that available alternative food can save the predator population from extinction in high prey refuge. Srinivasu et al. [27] have analyzed a mathematical model in which they have studied the global dynamics of the system when additional food is available for the predator, which is harvested at a constant rate. The biologists in [36, 37] have determined that the sufficient amount of available additional food to the predator population enhances their density and rate of predation, which reduces the density of target prey. But, [13] have investigated that the provision of alternative food to predators need not elevate the target predation. This conflict between empirical and recent theories led to a thorough study of the factor, viz., alternative food. Scientists in [35] have determined that the quality and quantity of additional food plays a vital role in the survival of plankton species. Extending the work of [35], Srinivasu et al. [33], have studied time-optimal control mechanisms to drive the state of the dynamics from a starting point to endpoint in minimum time using the quality of the alternative food as a control parameter. Scientists in [20,34] have studied the impacts of alternative food on their proposed system dynamics to understand the concepts of pest management and resource management. Researchers in [12, 26] have investigated that the natural supply of alternative food (non-prey) for predators is very significant for the survival of the predator when the preferred prey is infected. Many biologists, mathematician, and theoreticians [12,15,16,23,25,26,32] disclosed the consequences of providing alternate food to predators in a predator-prey dynamics and determined that almost all predators will divert to alternate prey when the preferred prey is infected or in limited numbers. Chakraborty et al. [2] have determined the role of available additional food for the co-existence of plankton species. They have observed that the extinction of the predator population reduces due to alternative food in the presence of toxicity.

In the real world, nothing is instantaneous as predator species not always successful in catching and killing prey. The delay-induced mathematical models have demonstrated more realistic but complex dynamics since a time delay can cause instability in the system by inducing various oscillations. and periodic solutions [4, 9, 18]. The impact of different types of time delays (maturation delay, predation delay, toxin liberation delay and, gestation delay, etc.) on various plankton dynamics has been studied by [3, 5, 7, 17, 21, 22, 24, 28, 31]. Mukhopadhyay and Bhattacharyya [19] have developed a stochastic extension of the plankton-fish dynamics to study the stability and bifurcation phenomena. The study [6] analyzed a plankton-fish model with digestion delay in the fish population to determine the threshold values of the bifurcation parameter to study the Hopf-bifurcation analysis. Sharma et al. [29] have demonstrated in their research that predation delay in fish species due to vertical migration of zooplankton species can induce excitability.
in the stable plankton-fish dynamics. Extensive work has been done to analyze the consequences of the availability of alternative food and predation delay on various prey-predator systems, separately. But, according to the best of our knowledge, the simultaneous effect of additional food and predation delay (in the fish population due to vertical migration of the zooplankton population) along with non-linear quadratic harvesting in the plankton-fish model is rarely seen. Motivated by [2,29], we present a delayed ecological model to study the significance of the availability of additional food sources to the zooplankton and fish population for the co-existence and survival of plankton-fish species. Here, we have proposed and analyzed plankton-fish dynamics consisting of the biomass of Phytoplankton $P(t)$, Zooplankton $Z(t)$, and Fish $F(t)$, respectively incorporating available additional food for both predator populations, viz., Zooplankton and Fish. We present our manuscript in the following sections.

We have proposed and analyzed the non-delayed dynamical system, its boundedness, positivity, stability analysis, and Hopf-bifurcation analysis in Section 2, Section 3, section 4, and Section 5, respectively. The non-delayed model, its positivity and boundedness, stability, Hopf-bifurcation, and direction of periodic solutions are discussed in Section 6 and Section 7. Numerical validation of analytical results is presented in Section 8 and the conclusion of the paper is given in Section 9.

Parameter	Biological interpretation
r_1	Growth rate of Phytoplankton.
α_1	Death rate phytoplankton.
β_1	Maximum capture rate of phytoplankton by zooplankton.
β_2	Maximum conversion rate of zooplankton.
γ_1	Half saturation constant.
γ_2	Half saturation constant.
r_5	Additional food available for zooplankton.
r_2	Death rate of zooplankton.
a_1	Maximum capture rate of zooplankton by fish.
a_2	Maximum conversion rate of fish.
θ	Rate of toxin produced by TPP.
r_3	Additional food available for fish.
α_2	Rate of quadratic harvesting.
r_4	Natural mortality rate of fish.

2. The mathematical model. Let $P(t)$, $Z(t)$, and $F(t)$ be the population densities of the toxin-producing phytoplankton (TPP), specialist predator zooplankton, and Fish. It is assumed that phytoplankton is predated by zooplankton, which is a favorite food for the generalist predator fish. Most of the zooplankton species graze phytoplankton as their prey. Still, some zooplankton like krill, jellyfish, shrimps, and crabs prefer additional food (small zooplankton, the dead mass of sea organisms, larvae, bacteria, eggs, worms, organic particles, etc.) for their growth like Similarly, most of the ocean fish species consume zooplankton as their prey but some fish species, e.g., piscivorous fish, apex fish predators, marine mammals, and reptiles, etc. prefer planktivorous fish as additional food. Thus, alternate food is
available for both the zooplankton and the fish population. The phytoplankton and zooplankton species are both predated by Holling type-II response function. The toxin-producing phytoplankton species are harmful to zooplankton. Its effect is modeled by P. It is assumed that the death rate of fish species depends on two factors, namely, quadratic harvesting (a_2) and natural mortality (r_4) ([1, 30]).

Apart from natural death, outbreaks of disease, mass starvation, harmful algal blooms, or extreme over-fishing, predation by other animals are the largest source of mortality of fishes in the oceans. This tri-trophic interaction system (with the biological interpretation of parameters given in table.1) is proposed by the following set of differential equations,

$$
\begin{align*}
\frac{dP}{dt} &= r_1 P - \alpha_1 P^2 - \beta_1 \frac{P}{\gamma_1 + P} Z, \\
\frac{dZ}{dt} &= r_3 Z + \beta_1 \beta_2 \frac{P}{\gamma_1 + P} Z - r_2 Z - a_1 \frac{Z}{\gamma_2 + Z} F - \theta \frac{P}{\gamma_1 + P} Z, \\
\frac{dF}{dt} &= r_3 F - \alpha_2 F^2 + a_1 a_2 \frac{Z}{\gamma_2 + Z} F - r_4 F.
\end{align*}
$$

(1)

3. Dynamical properties of the plankton system.

3.1. Positivity and boundedness.

Theorem 3.1. The dynamical system (1) has a unique and nonnegative solution with the initial values $(P(0), Z(0), F(0)) \in R^3_+$, where $R^3_+ = \{(x_1, x_2, x_3) : x_i \geq 0, i = 1, 2, 3\}$. Further, the set

$$
\Gamma = \{(P(t), Z(t), F(t)) \in R^3, U(t) \leq \frac{r_2^2}{\alpha_1} + \frac{\beta_1(r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)} + \epsilon, \forall \epsilon > 0 \}
$$

and $\beta_1 \beta_2 > \theta$ is invariant for all the solutions in the interior of the positive octant.

Proof. The dynamical system (1) in the form of matrix is as follows, $\frac{dH}{dt} = H(x)$, where

$$
x = (x_1, x_2, x_3)^T = (P, Z, F)^T \in R^3, \quad H(x) = \begin{pmatrix} H_1(x) \\ H_2(x) \\ H_3(x) \end{pmatrix}
$$

and

$$
H(x) = \begin{pmatrix} r_1 P - \alpha_1 P^2 - \beta_1 \frac{P}{\gamma_1 + P} Z \\ r_3 Z + \beta_1 \beta_2 \frac{P}{\gamma_1 + P} Z - r_2 Z - a_1 \frac{Z}{\gamma_2 + Z} F - \theta \frac{P}{\gamma_1 + P} Z \\ r_3 F - \alpha_2 F^2 + a_1 a_2 \frac{Z}{\gamma_2 + Z} F - r_4 F \end{pmatrix}.
$$

Since, $H : R^3 \rightarrow R^3$ is locally Lipschitz continuous in Γ along with $x(0) = x_0 \in R^3$, thus by fundamental theorem of ordinary differential equations, there must exist unique solution of (1). As, $H(x)|_{x_i(t)} = 0, x \in R^3 \geq 0$, then $[10, 11]$ ensures that $x(t) > 0$ for $t \geq 0$. From model system (1), $\frac{DP}{dt} F = 0, \frac{dF}{dt} z = 0$ and $\frac{dF}{dt} F = 0$. Therefore, the system (1) has unique +ve solution.

Next, we claim that all these solutions are uniformly bounded in the octant Γ.

Let

$$
U(t) = P(t) + \frac{\beta_1}{\beta_1 \beta_2 - \theta} Z(t) + \frac{\beta_1}{a_2 (\beta_1 \beta_2 - \theta)} F(t),
$$

(2)
The mathematical model (1) has the following steady states in the closed first octant around equilibrium states,

\[
\begin{align*}
\frac{dU}{dt} &\leq -\alpha_1(P(t) - \frac{r_1}{\alpha_1})^2 + \frac{r_1^2}{\alpha_1} - r_1 P(t) - \frac{r_2 \beta_1}{(\beta_1 \beta_2 - \theta)} Z(t) \\
&- \frac{a_2 \beta_1}{a_2 \beta_1} (F(t) - \frac{r_3 - r_4}{\alpha_2})^2 + \frac{\beta_1 (r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)} - \frac{\beta_1 (r_3 - r_4)}{a_2 (\beta_1 \beta_2 - \theta)} F(t) \\
&\leq \frac{r_1^2}{\alpha_1} + \frac{\beta_1 (r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)} - r_1 P(t) - \frac{r_2 \beta_1}{(\beta_1 \beta_2 - \theta)} Z(t) - \frac{\beta_1 (r_3 - r_4)}{a_2 (\beta_1 \beta_2 - \theta)} F(t),
\end{align*}
\]

where

\[
\eta = \min \{r_1, \frac{r_2 \beta_1}{(\beta_1 \beta_2 - \theta)} \}
\]

implies

\[
0 \leq U(t) \leq \frac{r_1^2}{\alpha_1} + \frac{\beta_1 (r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)} + \frac{U(P(0), Z(0), F(0))}{e^{\eta t}}
\]

(using comparison theorem of ODE [11]).

As \(t \to \infty \), we have

\[
U(t) \leq \frac{r_1^2}{\alpha_1} + \frac{\beta_1 (r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)},
\]

which implies that the solutions are bounded for

\[
0 \leq U(t) \leq \frac{r_1^2}{\alpha_1} + \frac{\beta_1 (r_3 - r_4)^2}{a_2 \alpha_2 (\beta_1 \beta_2 - \theta)}.
\]

Therefore, all the solutions of the given plankton system are lies in the octant,

\[
\Gamma = \{(P(t), Z(t), F(t)) \in R^{3+} : P \geq 0, Z \geq 0, F \geq 0\}
\]

\forall \epsilon > 0 and \(\beta_1 \beta_2 > \theta \). \hfill \Box

4. Stability analysis. In this section, we determine the stability of the dynamical system around equilibrium states.

The mathematical model (1) has the following steady states in the closed first octant \(R^{3+} = \{(P, Z, F) : P \geq 0, Z \geq 0, F \geq 0\} \).

- \(V_0(0, 0, 0) \), a trivial steady state always exist and unstable as \(r_1 \) is positive eigenvalue.

- \(V_1(\frac{r_4}{\alpha_1}, 0, 0) \), the zooplankton and fish free steady state exists and stable for \(r_4 > r_3 \) and \(r_2 (\gamma_1 \alpha_1 + r_1) + \theta_1 r_3 > \beta_1 \beta_2 \).

- \(V_2(\frac{r_4}{\alpha_1}, \frac{r_4 - r_3}{\alpha_1}, 0) \) exists if \(r_4 > r_3 \) means zooplankton free steady state exists if the quantity of available alternate food for fish is more than its natural death rate and stable for \(\beta_1 \beta_2 < \theta \).

- The fish free equilibrium \(V_3(P_3, Z_3, 0) \), where \(P_3 = \frac{(r_2 - r_5) \gamma_1}{\beta_1 \beta_2 - \theta + r_5 - r_2} \)

\[
Z_3 = r_1 \gamma_1 \beta_1 \beta_2 - \theta + r_5 - r_2)^2 + (r_2 - r_5) \gamma_1 (r_1 - \alpha_1 \gamma_1) (\beta_1 \beta_2 - \theta + r_5 - r_2) - \alpha_1 (r_2 - r_5)^2 \gamma_1^2 \beta_1 \beta_2 - \theta + r_5 - r_2)^2
\]
exists for \((r_1 - \alpha_1 \gamma_1)(\beta_1 \beta_2 - \theta + r_5 - r_2) > \alpha_1 (r_2 - r_5)\). The equilibrium state \(V_3\) is stable under the conditions \(r_1 < r_2, r_3 < r_4\) which conveys that the growth rate of phytoplankton should be less than mortality rate of zooplankton and availability of alternate food for fish should be less than its natural mortality rate and \((\beta_1 \gamma_1)(\gamma_2 + Z_3) > \alpha_1 a_2 (\gamma_1 + P_3)\).

- The positive interior equilibrium \(V_*(P_*, Z_*, F_*)\) exists, where
 \[
 Z_* = \frac{(r_1 - \alpha_1 P_*)(\gamma_1 + P_*)}{\beta_1}, \quad F_* = \frac{r_3 - r_4}{\alpha_2} + \frac{a_1 a_2 Z_*}{(\gamma_1 + Z_*) \alpha_2}
 \]
 and \(P_*\) is a positive zero of
 \[
 N(P_*) = N_1 P_*^5 + N_2 P_*^4 + N_3 P_*^3 + N_4 P_*^2 + N_5 P_* + N_6 = 0,
 \]
 where coefficients of \(N(P_*)\) are given in Appendix I.

The characteristic equation of above system at \(V_*\) is given by
\[
\lambda^3 + A_1 \lambda^2 + (A_2 + B_2) \lambda + (B_1 + A_3) = 0, \tag{2}
\]
where
\[
A_1 = -(a_{100} + b_{010} + c_{001}), \quad A_2 = a_{100} b_{010} - a_{010} b_{100} + a_{100} c_{001} + c_{001} b_{010},
\]
\[
A_3 = -a_{100} b_{010} c_{001} + a_{010} b_{010} c_{001}, \quad B_1 = a_{100} c_{010} b_{001}, \quad B_2 = -B_001 c_{010},
\]
\[
A_3 = -a_{100} b_{100} c_{001} + a_{100} b_{100} c_{001}, \quad B_1 = a_{100} c_{010} b_{001}, \quad B_2 = -B_001 c_{010},
\]
\[
a_{100} = r_1 - 2a_1 P_* - \frac{\beta_1 \gamma_1 Z_*}{(\gamma_1 + P_*)^2}, \quad a_{010} = -\frac{\beta_1 P_*}{(\gamma_1 + P_*)}, \quad a_{001} = 0,
\]
\[
b_{100} = \frac{(\beta_1 \beta_2 - \theta) \gamma_1 Z_*}{(\gamma_1 + P_*)^2}, \quad b_{010} = r_5 - r_2 + \frac{(\beta_1 \beta_2 - \theta) P_*}{(\gamma_1 + P_*)} - \frac{a_1 \gamma_1 F_*}{(\gamma_2 + Z_*)}.
\]
\[
B_{001} = -\frac{a_1 Z_*}{(\gamma_2 + Z_*)}, \quad c_{010} = \frac{a_1 a_2 \gamma_2 F_*}{(\gamma_2 + Z_*)^2}, \quad c_{001} = r_3 - 2a_2 F_* - r_4 + \frac{a_1 a_2 Z_*}{\gamma_2 + Z_*}.
\]

The equation (2) can be written as
\[
\lambda^3 + H_1 \lambda^2 + H_2 \lambda + H_3 = 0, \tag{3}
\]
where \(H_1 = A_1, H_2 = A_2 + B_2\) and \(H_3 = B_1 + A_3\). The Routh-Hurwitz criterion certifies that the zeros of (3) have \(-ve\) real parts, i.e. the \(+ve\) interior equilibrium \(V_*\) is LAS (Locally asymptotically stable) under the following condition, \((T_1) : H_i > 0, i = 1, 3\) and \(H_1 H_2 - H_3 > 0\).

5. Hopf-bifurcation Analysis.

Theorem 5.1. The system (1) enters into Hopf-bifurcation around the interior point \(V_*\) as \(r_5\) passes through its critical value \(r_5^*\) under the following conditions,
1. \(H_i(r_5^*) > 0, i=1,3; H_1(r_5^*) H_2(r_5^*) - H_3(r_5^*) = 0,\)
2. \((H_1(r_5^*) H_2(r_5^*))' \neq (H_3(r_5^*))'.\)

Proof. We consider \(r_5\) as a bifurcation parameter, the given plankton system shows excitability if there exists a critical value \(r_5^*\) of \(r_5\) such that \(H_1(r_5^*) H_2(r_5^*) - H_3(r_5^*) = 0\). Thus, the characteristic equation
\[
\lambda^3 + H_1 \lambda^2 + H_2 \lambda + H_3 = 0, \tag{4}
\]
must have of the following form at \(r_5 = r_5^*\)
\[
(\lambda^2 (r_5^*) + H_2(r_5^*) (\lambda (r_5^*) + H_1 (r_5^*)) = 0. \tag{5}
\]
which clearly have roots $-H_1(r_5^*)$ and $\pm i\sqrt{H_2(r_5^*)}$. But, in general, $\lambda_1(r_5) = u(r_5) + \nu v(r_5)$, $\lambda_2(r_5) = u(r_5) - \nu v(r_5)$, and $\lambda_3(r_5) = H_1(r_5)$. Substituting values of $\lambda_i, i = 1, 2$ in (4) and calculating the derivatives, we get
\[
\begin{cases}
M_1(r_5)u'(r_5) - M_2(r_5)v'(r_5) + M_3(r_5) = 0, \\
M_1(r_5)u'(r_5) + M_2(r_5)v'(r_5) + M_4(r_5) = 0,
\end{cases}
\]
where
\[
M_1(r_5) = 3u^2(r_5) + 2H_1(r_5)u(r_5) + H_2(r_5) - 3u^2(r_5),
M_2(r_5) = 6u(r_5)v(r_5) + 2H_1(r_5)v(r_5),
M_3(r_5) = u^2(r_5)H'_1(r_5) + H'_2(r_5)u(r_5) + H'_1(r_5) - H'_1'(r_5)v^2(r_5),
M_4(r_5) = 2u(r_5)v(r_5)H'_1(r_5) + H'_2(r_5)v(r_5).
\]
Taking $u(r_5^*) = 0$ and $v(r_5^*) = \sqrt{H_2(r_5^*)}$, we obtain
\[
M_1(r_5^*) = -2H_2(r_5^*), \quad M_2(r_5^*) = 2H_1(r_5^*)\sqrt{H_2(r_5^*)},
M_3(r_5^*) = H'_3(r_5^*) - H'_1(r_5^*)H_2(r_5^*), \quad M_4(r_5^*) = H'_2(r_5^*)\sqrt{H_2(r_5^*)},
\]
Solving (6) for $u'(r_5)$, we get
\[
(u'(r_5))_{r_5 = r_5^*} = \frac{-M_2(r_5^*)M_4(r_5^*) + M_1(r_5^*)M_3(r_5^*)}{M_1^2(r_5^*) + M_2^2(r_5^*)} = \frac{-(H_1(r_5^*)H_2(r_5^*))' - H'_1(r_5^*)}{2(H_1(r_5^*)^2 + H_2(r_5^*))} \neq 0
\]
(using given hypothesis).}

6. Delayed model system. In this section, we include predation delay in fish population and obtained the following set of differential equations,
\[
\begin{align*}
\frac{dP}{dt} &= r_1P - \alpha_1P^2 - \beta_1\frac{P}{\gamma_1 + P}Z, \\
\frac{dZ}{dt} &= r_5Z + \beta_1\beta_2\frac{P}{\gamma_1 + P}Z - r_2Z - a_1\frac{Z}{\gamma_2 + Z}F(t - \tau) - \theta\frac{P}{\gamma_1 + P}Z, \\
\frac{dF}{dt} &= -\alpha_2F^2 + a_1a_2\frac{Z}{\gamma_2 + Z}F - r_4F.
\end{align*}
\]

6.1. Positivity and boundedness.

Theorem 6.1. The positive interior equilibrium $V_*(P^*, Z^*, F^*)$ of the dynamical system (7) is invariant in $+ve$ quadrant.

Proof. We want to show that $\forall \, 0 \leq t < T^*$, $(P^*) > 0$, $P(t) > 0$, $Z(t) > 0$ and $F(t) > 0$ with the initial conditions $P(0) > 0$, $Z(0) > 0$ and $F(0) > 0$, otherwise, it can be assumed that K where $0 < K < T^*$ such that $\forall \, t \in [0, K)$, $P(t) > 0$, $Z(t) > 0$ and $F(t) > 0$ and one of $P(K)$, $Z(K)$ and $F(K)$ is zero for any $t \in [-\tau, K)$.

Integrating the given model system (7), we have
\[
\begin{align*}
P(K) &= P(0)e^{\int_0^K (r_1 - \alpha_1P - \beta_1\frac{P}{\gamma_1 + P})ds} \\
Z(K) &= Z(0)e^{\int_0^K (r_5 + \beta_1\beta_2\frac{P}{\gamma_1 + P} - r_2 - a_1\frac{Z}{\gamma_2 + Z}F(t - \tau) - \theta\frac{P}{\gamma_1 + P})ds} \\
F(K) &= F(0)e^{\int_0^K (r_3 - \alpha_2F + a_1a_2\frac{Z}{\gamma_2 + Z}F - r_4F)ds}.
\end{align*}
\]
Since $P(t)$, $Z(t)$ and $F(t)$ are all continuous functions in $[-\tau, K)$, there exist $S > 0$ such that $\forall t \in [-\tau, K)$

\[
P(K) = P(0)e^{\int_0^t (r_1 - \alpha_1 P - \beta_1 \frac{P}{1+P}) ds} > P(0)e^{-KS},
\]

\[
Z(K) = Z(0)e^{\int_0^t (r_5 + \beta_1 \frac{P}{1+P} - r_2 - a_1 \frac{1}{1+Z} + F(t-\tau) - \theta P) ds} > Z(0)e^{-KS},
\]

\[
F(K) = F(0)e^{\int_0^t (r_3 - \alpha_2 F + a_1 a_2 \frac{Z}{1+Z} - r_4) ds} > F(0)e^{-KS}.
\]

Taking $t \to K$, we get $P(K) > 0, Z(K) > 0$ and $F(K) > 0$, a contradiction. Thus $P(t) > 0, Z(t) > 0$ and $F(t) > 0$ for any $0 \leq t < T^*$.

6.2. Delayed stability analysis. Now, we are interested to observe the impact of time lag τ on the given dynamical system (7). So, initially we linearize the
The characteristic equation (15) can be written in an exponential polynomial in λ as,

$$L_1(\lambda, \tau) + L_2(\lambda, \tau)e^{-\lambda\tau} = 0,$$

where $L_1(\lambda, \tau) = \lambda^3 + A_1\lambda^2 + A_2\lambda + A_3$, $L_2(\lambda, \tau) = B_1 + B_2\lambda$.

Next, to apply the rules given in [18] we verify the following five properties.

(i) $L_1(0, \tau) + L_2(0, \tau) = A_3 + B_1 \neq 0$.

(ii) $L_1(\omega_1, \tau) + L_2(\omega_1, \tau) = -\omega_1^3 - A_1\omega_1^2 + \omega_2\omega_1 + A_3 + (B_1 + \omega B_2)e^{-\omega_1\tau} \neq 0$.

(iii) $\lim_{|\lambda| \to \infty} |L_1(\lambda, \tau)| = \lim_{|\lambda| \to \infty} \left| \frac{(B_1 + B_2\lambda)}{\lambda^3 + A_1\lambda^2 + A_2\lambda + A_3} \right| = 0 < 1,

(iv) $G_2(\omega) = |L_1(\omega, \tau)|^2 - |L_2(\omega, \tau)|^2$ is a polynomial of degree 6. Thus it has finite number of zeros.

(v) Every positive zero $\omega_1(\tau)$ of $G_2(\omega_1(\tau)) = 0$ is differentiable and continuous in τ whenever it exists (using implicit function theorem).

Therefore, we can check that for some $\tau > 0$, $\lambda = \omega_1(\omega_1 > 0)$ is a root of the characteristic equation (15) and by substituting $\lambda = \omega_1(\omega_1 > 0)$ in equation (15), we can get the equation given below,

$$-\omega_1^3 - A_1\omega_1^2 + A_2\omega_1 + A_3 = -(B_1 + \omega B_2)e^{-\omega_1\tau}.$$
Separating the real and imaginary parts, we get

\[\lambda \]

\[\rho \]

\[\omega \]

\[\tau \]

\[\omega_1^0 + (A_1^2 - 2A_2)\omega^4 + (A_2^2 - 2A_1A_3 - B_2^2)\omega_1^2 + (A_3^2 - B_1^2) = 0. \]

Put \(\omega = \rho \) in (19), we get a cubic equation.

\[Y(\rho) = \rho^3 + M_1 \rho^2 + M_2 \rho + M_3 = 0, \]

where

\[M_1 = (A_1^2 - 2A_2), \quad M_2 = (A_2^2 - 2A_1A_3 - B_2^2), \quad M_3 = A_3^2 - B_1^2. \]

Let us assume \(M_3 < 0 \) then this implies \(Y(0) < 0, \ Y(\infty) = \infty \) and equation (19) has at least single positive root \(\omega_0 \).

Now, the following theorem shows the existence of Hopf-bifurcation for \(\tau > 0 \) as bifurcation parameter.

Theorem 6.2. Suppose \(M_3 < 0 \) then there exists \(\tau_k \) such that \(V_\ast \) is LAS for \(\tau \in (0, \tau_k) \) and unstable when \(\tau > \tau_k \). Furthermore, system (1) undergoes a Hopf-bifurcation with the occurrence of periodic oscillation for \(\tau = \tau_k \) and the critical value of time delay (\(\tau \)) is given by,

\[\tau_k = \frac{1}{\omega_1^0} \arctan \frac{B_2\omega_1^0(A_1\omega_1^2 - A_3) + B_1(A_2\omega_1^0 - \omega_1^3)}{(A_1\omega_1^2 - A_3) - B_2\omega_1^0(A_2\omega_1^0 - \omega_1^3)} + \frac{2k\pi}{\omega_1^0} \]

for \(k = 0, 1, 2, ... \) provided \(B_1((A_2 - 3\omega_1^2)\sin \omega_1^0 \tau + 2\omega_1^0 A_1 \cos \omega_1^0 \tau) - \omega_1^3 B_2(\omega_1^0 A_1 A_2 - 3\omega_1^2) \cos \omega_1^0 \tau - 2\omega_1^0 A_1 \sin \omega_1^0 \tau + B_2) \neq 0 \).

Proof. Let the condition \(M_3 < 0 \) holds true then (19) has at least unique +ve zero. Thus equation (15) has pair of imaginary zeros \(\pm i\omega_1^0 \) (say).

After solving (17) and (18), we get,

\[\tau_k = \frac{1}{\omega_1^0} \arctan \frac{B_2\omega_1^0(A_1\omega_1^2 - A_3) + B_1(A_2\omega_1^0 - \omega_1^3)}{(A_1\omega_1^2 - A_3) - B_2\omega_1^0(A_2\omega_1^0 - \omega_1^3)} + \frac{2k\pi}{\omega_1^0} \]

for \(k = 0, 1, 2, ... \). Taking \(\lambda(\tau) = \sigma(\tau) + i\omega_1^0(\tau) \) in (15), we can observe that conjugate pair of imaginary zeros \(\lambda_{\pm}(\tau_0) = \pm i\omega_1^0(\tau_0) \) of (6.2) exists at \(\tau = \tau_0 \), which passes through imaginary axis from left to right if the transversality condition that is \(\sigma(\tau_0) > 0 \) or right to left if \(\sigma(\tau_0) < 0 \), where \(\sigma(\tau_0) = \text{sign}(\frac{d\Re(\lambda)}{d\tau})_{\lambda=i\omega_1^0} \), which can be obtained as

\[\left(\left(\frac{d\Re(\lambda)}{d\tau}\right)^{-1}\right)_{\sigma=0,\tau=\tau_0} = \frac{L}{\omega_1^0 (B_1^2 + \omega_1^0 B_2^2)} \neq 0, \]

where \(L = B_1((A_2 - 3\omega_1^2)\sin \omega_1^0 \tau + 2\omega_1^0 A_1 \cos \omega_1^0 \tau) - \omega_1^3 B_2((A_2 - 3\omega_1^2) \cos \omega_1^0 \tau - 2\omega_1^0 A_1 \sin \omega_1^0 \tau + B_2). \)
7. Direction of periodic solutions. After deriving the conditions for occurrence of Hopf-bifurcation. Now, we shall derive the direction of bifurcating equilibrium state V^*, (on the lines of Hassard et al. [14]).
For proof, See Appendix.2.

Theorem 7.1. (Using Hassard et al. [14]) The sign of μ_2 confirms about the direction of the Hopf bifurcation: if $\mu_2 > (\mu_2 < 0)$, then the Hopf bifurcation is supercritical (subcritical) and the stability and instability of bifurcating periodic solutions can be verified through $\beta_2 < 0 (\beta_2 > 0)$, the sign of T_2 tells us about the increase or decrease of bifurcating periodic solution by $T_2 > 0 (T_2 < 0)$.

8. Numerical simulation. In this section, we will observe the numerical validation of all the analytical findings with and without delay.

8.1. Simulation without Delay. In this subsection, we study the dynamics of a given plankton system (1) around multiple steady states. Firstly we consider a set of parameters $[K_1]$:
$$r_1 = 1.4, \alpha_1 = 0.05, \beta_1 = 2, \gamma_1 = 10, r_5 = 0.02, r_2 = 1, \beta_2 = 1, a_1 = 1.45, \gamma_2 = 20, \theta = 0.0126, r_4 = 0.6, r_3 = 0.1, \alpha_2 = 0.009, \text{and} \ a_2 = 0.689.$$

The trivial steady state $V_0(0,0,0)$ always exists and unstable as -0.9400, -0.0400, and 1.4000 are eigen values of the corresponding jacobian matrix. If we take $r_3 = 0.06$, $\beta_1 = 0.5$, $\beta_2 = 0.8$, and $\theta = 1$ in set $[K_1]$, we get the zooplankton and fish free
Figure 7. Bifurcation diagrams for $1 \leq \tau \leq 3$

Figure 8. Co-existence of all species according to table 2 with r_3 on x-axis and r_5, $P(t)$, $Z(t)$ and $F(t)$ on y-axis.

Table 2. Impact of additional food (r_3 and r_5) on the co-existence of species.

r_3	r_5	$P(t)$	$Z(t)$	$F(t)$
0.01	0.01	23.8297	3.5257	6.6514
0.05	0.01	25.1787	4.806	6.7049
0.08	0.01	26.0261	1.7771	6.8449
0.1	0.01	26.6036	1.2770	6.9687
0.2	0.01	27.9978	0.0000	11.1111
0.2	0.4	27.8282	0.1586	11.9851
0.2	0.9	26.0543	1.7483	20.0424
0.2	1	25.6022	2.1321	21.8148
0.2	1.1	25.0996	2.5444	23.6513

equilibrium point $V_1(27.9991, 0, 0)$ (Fig.1), which is LAS, as -1.3999, -0.6546, and -0.0400 are the eigen values of the corresponding jacobian matrix around V_1 and the stability conditions for V_1 given in Section 4 i.e. $r_4 > r_3(0.1 > 0.06)$ and $r_2(\gamma_1a_1 + r_1 + \theta r_1 > \beta_1\beta_2(1.91764 > 0.04)$ are satisfied. Taking $r_3 = 0.06$, $r_4 = 0.1$, and $\theta = 2.5$ in $[K_1]$, we obtain the zooplankton free equilibrium $V_2(28, 0, 55.5556)$
ues and the transversality condition, \((\pm i\omega_1, 0) \) with \(\omega_1 = 0.4200 \) of (20). The corresponding eigen values are -0.7727 and \(\pm 0.4200i \), the existence of negative or purely imaginary values and the transversality condition, \(\left(\frac{d\Re(\lambda)}{d\tau} \right)_{\tau = \tau_0} = 0.19664 \neq 0 \) confirm the existence of Hopf bifurcation with the existence of periodic solutions (Fig.6). The critical value of time delay for which stability exchanges takes place is \(\tau_0 = 1.5 \) such
that V_* remains stable in $[0,1.5)$ (Fig.5) and bifurcation occurs for $\tau_0 \geq 1.5$ (Fig.7). It implies that the interior equilibrium converges in the range, $0 \leq \tau < 1.5$, become unstable for $\tau \geq 1.5$, and limit cycles exists at $\tau = 1.6, 2, 3...$ (Fig.6). Thus, we can observe that the system loses its stability as τ crosses its critical value $\tau_0 = 1.5$. The stability determining quantities for direction of Hopf-bifurcation at $\tau = \tau_0$ are given by $c_1(0) = -0.087219057897901 - 0.129589891502112i$, $\mu_2 = 0.046641207432032$, $\beta_2 = -0.174438115795801$, and $T_2 = 0.152901502427691$. Thus, we have observed that the Hopf-bifurcation is supercritical, bifurcating periodic orbits are stable, and increases as τ passes through τ_0.

9. Conclusion. In this study, we have discussed the role of available additional food and time delay for the co-existence of all plankton fish species. The predation delay in the fish population due to the vertical migration of zooplankton is of great interest due to its possible detrimental impact on fisheries. The significance of the available additional food lies in the fact that it enhances the re-survival of extinct species, as shown in Table 2. It is also notable from Table 2 that if r_3 increases, the phytoplankton and fish population increases, and zooplankton decline. But as r_5 increases, phytoplankton and fish species decrease, and zooplankton grows. To capture the oscillatory co-existence, we have performed the Hopf-bifurcation analysis taking additional food (r_5) as a bifurcation parameter. It is determined that the dynamical system (1) remains stable for $0.1 \leq r_5 < 0.8$ and becomes unstable beyond it. We have determined that the model system (7) remains LAS for $\tau < \tau_0$ around V_* (Fig.5) and Hopf-bifurcation occurs when τ crosses its critical value $\tau_0 = 1.5$ and limit cycles occur at $\tau = 1.6, 2.3$ (Fig.6). It is observed that the Hopf-bifurcation is supercritical, the bifurcating periodic solutions are stable with increasing periods.

Acknowledgement. We are very grateful to the Editor and reviewers for their valuable suggestions which have immensely improved the content and presentation of this manuscript.

References

[1] K. M. Bailey and J. T. Duffy-Anderson, Fish Predation and Mortality, Encyclopedia of Ocean Sciences, (2001), 961–968.
[2] S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source-a mathematical study, Journal of Biological Systems, 16 (2008), 547–564.
[3] J. Chattopadhyay, R. R.Sarkar and A. Abdillaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA. J. Math. Appl. Med. Biol., 19 (2002), 137–161.
[4] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer-Verlag, Heidelberg, 1977.
[5] K. Das and S. Ray, Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system, Ecol. Model, 215 (2008), 69–76.
[6] J. Dhar, A. K. Sharma and S. Tegar, The role of delay in digestion of plankton by fish population: A fishary model, The Journal of Nonlinear Sciences and its Applications, 1 (2008), 13–19.
[7] B. Dubey and A. Kumar, Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays, Nonlinear Dynamics, 96 (2019), 2653–2679.
[8] J. Ghosh, B. Sahoo and S. Poria, Prey-predator dynamics with prey refuge providing additional food to predator, Chaos, Solitons and Fractals, 96 (2017), 110–119.
[9] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, 1992.
[10] J. K. Hale, *Ordinary Differential Equations*, Wiley, New York, 1969.
[11] J. K. Hale, *Theory of Functional Differential Equations*, Springer, Heidelberg, 1977.
[12] M. Haque and D. Greenhalgh, *When a predator avoids infected prey: a model-based theoretical study*, *Math. Mod. Biol.*, 27 (2010), 75–94.
[13] J. D. Harwood and J. J. Obrycki, *The role of alternative prey in sustaining predator population*, in *Proceedings of Second International Symposium on Biological Control of Arthropods* (ed. M.S. Hoddle), 2 (2005), 453–462.
[14] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, *Theory and Application of Hopf-Bifurcation*, Cambridge University Press, Cambridge, 1981.
[15] G. R. Huxel and K. McCann, Food web stability: the influence of trophic flows across habitats, *Am. Nat.*, 152 (1998), 460–469.
[16] G. R. Huxel, K. McCann and G. A. Polis, Effects of partitioning allochthonous and autochthonous resources on food web stability, *Ecol. Res.*, 17 (2002), 419–432.
[17] R. P. Kaur, A. Sharma and A. K. Sharma, Complex dynamics of phytoplankton-zooplankton interaction system with predation and toxin liberation delay, *International Journal of Grid and Distributed Computing*, 12 (2019), 23–50.
[18] Y. Kuang, *Delay Differential Equations with Applications in Population Dynamics*, Academic Press, New York, 1993.
[19] B. Mukhopadhyay and R. Bhattacharyya, *Role of gestation delay in a plankton-fish model under stochastic fluctuations*, *Mathematical Biosciences*, 215 (2008), 26–34.
[20] B. S. R. V. Prasad, M. Banerjee and P. D. N. Srinivasu, Dynamics of additional food provided predator-prey system with mutually interfering predators, *Math. Biosci.*, 246 (2013), 176–190.
[21] M. Rehim and M. Imran, Dynamical analysis of a delay model of phytoplankton-zooplankton interaction, *Applied Mathematical Modelling*, 36 (2002), 638–647.
[22] S. Ruan, *The effect of delays on stability and persistence in plankton models*, *Nonlinear Analysis*, 24 (1995), 575–585.
[23] M. W. Sabelis and P. C. J. V. Rijn, When does alternative food promote biological pest control? In *Proc. Second Int. Symp. Biol. Control of Arthropods* (ed. Hoddle MS), 2 (2005), 428–437.
[24] T. Saha and M. Banerjee, Dynamical analysis of toxin producing Phytoplankton-Zooplankton interactions, *Nonlinear Analysis: Real World Applications*, 10 (2009), 314–332.
[25] B. Sahoo, *Effects of Additional Foods to Predators on Nutrient-Consumer-Predator Food Chain Model*, Isrbiio Mathematics, 2012.
[26] B. Sahoo and S. Poria, Disease control in a food chain model supplying alternative food, *Appl. Math. Model.*, 37 (2013), 5653–5663.
[27] M. Sen, P. D. N. Srinivasu and M. Banerjee, Global dynamics of an additional food provided predator-prey system with constant harvest in predators, *Applied Mathematics and Computations*, 250 (2015), 193–211.
[28] A. Sharma, A. K. Sharma and K. Agnihotry, The dynamic of plankton-nutrien interaction with delay, *Applied Mathematics and Computation*, 231 (2014), 503–515.
[29] A. Sharma, A. K. Sharma and K. Agnihotri, Analysis of a toxin producing phytoplankton-zooplankton interaction with Holling IV type scheme and time delay, *Nonlinear Dynamics*, 81 (2015), 13–25.
[30] A. K. Sharma, A. Sharma and K. Agnihotry, Complex dynamic of plankton-fish interaction with quadratic harvesting and time delay, *Model Earth Syst. Envirn.*, 2 (2016), 1–17.
[31] A. K. Sharma, A. Sharma and K. Agnihotry, Bifurcation behaviors analysis of a plankton model with multiple delays, *International Journal of Biomathematics*, 9 (2016), 1650086 (25 pages).
[32] P. D. N Srinivasu, B. S. R. V. Prasad and M. Venkatesulu, Biological control through provision of additional food to predators: a theoretical study, *Theor. Popul. Biol.*, 72 (2007), 111–120.
[33] P. D. N Srinivasu and B. S. R. V. Prasad, Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation, *J. Math. Biol.*, 60 (2010), 591–613.
[34] P. D. N Srinivasu and B. S. R. V. Prasad, Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pestmanagement and biological conservation, *Bull. Math. Biol.*, 73 (2011), 2249–2276.
[35] D. Stiefs, G. A. K. van Voorn, B. W. Kool, U. Feudel and T. Gross, Food quality in producer-grazer models: A generalized analysis, *Am. Nat.*, 176 (2010), 367–380.
We shall numerically prove that there exist a positive root of the polynomial $N(P_1)$, namely, P_* and using this positive root we can easily find Z_* and F_*.

Appendix.2. Let $y_1 = P - P_*$, $y_2 = Z - Z_*$, $y_3 = F - F_*$ and using the Taylor theorem to expand given system (7) about $V_c(P_*, Z_*, F_*)$ we get,

\[
\begin{align*}
\frac{dy_1}{dt} & = a_{100}y_1(t) + a_{010}y_2(t) + a_{001}y_3(t) + \sum_{i+j+k \geq 2} a_{ijk}y_1^i(t)y_2^j(t)y_3^k(t) \\
& = F_1(y_1, y_2, y_3) \\
\frac{dy_2}{dt} & = b_{100}y_1 + b_{010}y_2(t) + b_{001}y_3(t - \tau) + \sum_{i+j+k \geq 2} b_{ijk}y_1^i(t)y_2^j(t)y_3^k(t) \\
& = F_2(y_1, y_2, y_3) \\
\frac{dy_3}{dt} & = c_{100}y_1 + c_{010}y_2(t) + c_{001}y_3(t) + \sum_{i+j+k \geq 2} c_{ijk}y_1^i(t)y_2^j(t)y_3^k(t - \tau) \\
& = F_3(y_1, y_2, y_3)
\end{align*}
\]
where
\[a_{ijk} = \frac{1}{\prod_{j} k_{j}} \frac{\partial^{i+j+k} F_1}{\partial P^i \partial Z^j \partial F^k}, \quad b_{ijk} = \frac{1}{\prod_{j} k_{j}} \frac{\partial^{i+j+k} F_2}{\partial P^i \partial Z^j \partial F^k}, \]
\[c_{ijk} = \frac{1}{\prod_{j} k_{j}} \frac{\partial^{i+j+k} F_3}{\partial P^i \partial Z^j \partial F^k}. \]

The coefficients of the linear and non-linear terms are
\[a_{100} = r_1 - 2\alpha_1 \beta_1 \gamma_1 - \frac{\beta_1 \gamma_1}{(\gamma_1 + p_s)^2}, \quad a_{010} = \frac{\beta_1 \gamma_1}{(\gamma_1 + p_s)^3}, \quad a_{001} = 0, \quad a_{200} = -2\alpha_1, \]
\[a_{110} = -\frac{\beta_1 \gamma_1}{(\gamma_1 + p_s)^2}, \quad a_{300} = 0, \quad a_{210} = \frac{2\beta_1 \gamma_1}{(\gamma_1 + p_s)^3}, \quad b_{100} = \frac{(\beta_1 \beta_2 - \theta) \gamma_1}{(\gamma_1 + p_s)^2}, \]
\[b_{010} = r_5 - r_2 + \frac{(\beta_1 \beta_2 - \theta) \gamma_1}{(\gamma_1 + p_s)^2}, \quad b_{210} = -\frac{2(\beta_1 \beta_2 - \theta) \gamma_1}{(\gamma_1 + p_s)^3}, \]
\[B_{001} = -\frac{a_1 z_s}{(\gamma_2 + z_s)}, \quad b_{200} = -\frac{2(\beta_1 \beta_2 - \theta) \gamma_1}{(\gamma_1 + p_s)^3}, \quad b_{020} = -\frac{2a_1 \gamma_2 F_z}{(\gamma_2 + z_s)^3}, \]
\[b_{030} = \frac{6a_1 \gamma_2 F_z}{(\gamma_2 + z_s)^4}, \quad b_{110} = \frac{(\beta_1 \beta_2 - \theta) \gamma_1}{(\gamma_1 + p_s)^2}, \quad B_{011} = -\frac{a_1 \gamma_2}{(\gamma_2 + z_s)^3}, \]
\[b_{001} = \frac{6(\beta_1 \beta_2 - \theta) \gamma_1 Z_s}{(\gamma_1 + p_s)^4}, \quad B_{021} = \frac{2a_1 \gamma_2}{(\gamma_2 + z_s)^3}, \quad c_{010} = \frac{a_1 a_2 \gamma_2 F_z}{(\gamma_2 + z_s)^2}, \]
\[c_{001} = r_3 - 2\alpha_2 F_z - r_4 + \frac{a_1 a_2 Z_s}{\gamma_2 + Z_s}, \quad c_{020} = -2\alpha_2, \quad c_{011} = \frac{a_1 a_2 \gamma_2}{(\gamma_2 + Z_s)^2}, \]
\[c_{021} = -\frac{2a_1 a_2 \gamma_2}{(\gamma_2 + Z_s)^3}. \]

Let \(\tau = \tau_k + \nu \), \(\bar{v}(t) = v(t) - v(t + \delta) \) for \(\delta \in [-1, 0] \) and after some simplification, system (24) becomes a functional differential equation in \(C = C([-1, 0], \mathbb{R}^3) \) as
\[\dot{v}(t) = L_\nu(v_t) + f(\nu, v_t) \] (25)
where \(v(t) = (v_1(t), v_2(t), v_3(t))^T \in \mathbb{R}^3 \) and \(L_\nu : C \rightarrow \mathbb{R}^3 \), \(f : \mathbb{R} \times C \rightarrow \mathbb{R}^3 \) are given, respectively, by
\[
L_\nu(\varsigma) = (\tau_k + \nu)[A_{11} \varsigma(0) + A_{22} \varsigma(-1)]
\]
(26)
\[
A_{11} = \begin{bmatrix}
a_{100} & a_{010} & 0 \\
b_{100} & b_{010} & 0 \\
0 & c_{100} & c_{001}
\end{bmatrix}, \quad A_{22} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & B_{001} \\
0 & 0 & 0
\end{bmatrix}
\]
and
\[
f(\nu, \varsigma) = (\tau_k + \nu) \begin{bmatrix}
b_{100} \varsigma_2(0) + b_{110} \varsigma_1(0) + b_{200} \varsigma_2(0) + b_{010} \varsigma_2(0) + b_{000} \varsigma_3(0) - a_{110} \varsigma_1(0) + a_{220} \varsigma_2(0) \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
(27)

By Riesz representation theorem, \(\exists \) a function \(\varsigma(\theta, \nu) \) of bounded variation for \(\theta \in [-1, 0] \) such that
\[L_\nu(\varsigma) = \int_{-1}^{0} d\varphi(\theta, \nu) \varsigma(\theta) \quad for \quad \varsigma \in C \] (28)
In fact, we can take
\[\varphi(\delta, \nu) = (\tau_k + \nu)[A_{11} \delta(\delta) - A_{22} \delta(\delta + 1)] \] (29)
where \(\delta \) denote the Dirac delta function.
For $\zeta \in C([-1, 0], \mathbb{R}^3)$, define

$$A(\nu)\zeta(\delta) = \begin{cases} \frac{d\zeta(\delta)}{d\delta} & \delta \in [-1, 0), \\
\int_{-1}^{\delta} d\varphi(s, \nu)\zeta(s) & \delta = 0 \end{cases}$$

and

$$R(\nu)\zeta(\delta) = \begin{cases} 0 & \delta \in [-1, 0), \\
\varphi(\nu) & \delta = 0 \end{cases}$$

Then system (25) is equivalent to

$$\dot{v}(t) = A(\nu)v + R(\nu)v,$$

For $\psi \in C^1([0, 1], (\mathbb{R}^3)^*)$, define

$$A^*\psi(s) = \begin{cases} -\frac{d\psi(s)}{ds} & s \in (0, 1], \\
\int_{-1}^{s} d\varphi(t, 0)\psi(-t) & s = 0 \end{cases}$$

and a bilinear inner product

$$<\psi(s), \zeta(\delta)> = \bar{\psi}(0)\zeta(0) - \int_{-1}^{0} \int_{\delta}^{0} \bar{\psi}(s)\zeta(s)ds
\int_{-1}^{\delta} \bar{\psi}(s)\zeta(s)ds$$

where $\varphi(\delta) = \varphi(\delta, 0)$. Then $A(0)$ and A^* are adjoint operators. From the results of last section, we know that $\pm i\omega_{10}\tau_k$ are the eigenvalues of $A(0)$ and $\mp i\omega_{10}\tau_k$ are the eigenvalues of A^*.

Theorem 7.2 Let $Q(\delta) = (1, q_1, q_2)^T e^{i\omega_{10}\tau_k\delta}$ be the eigenvector of $A(0)$ corresponding to the eigenvalue $i\omega_{10}\tau_k$ and $Q^*(s) = D(1, q_1^*, q_2^*) e^{i\omega_{10}\tau_k s}$ be the eigenvector of A^* corresponding to the eigenvalue $-i\omega_{10}\tau_k$.

Then

$$<Q^*, Q> = 1 \quad \text{and} \quad <Q^*, Q> = 0,$$

where

$$q_1 = \frac{-(a_{010} + \omega_{10})}{a_{010}} \quad q_2 = \frac{c_{010}(\omega_{10} - a_{010})}{(\omega_{10} - c_{001})a_{001}} \quad q_1^* = \frac{-a_{010} - \omega_{10}}{b_{100}}, \quad q_2^* = \frac{B_{001} e^{i\omega_{10}\tau_k} (a_{100} + \omega_{10})}{(c_{001} + \omega_{10})100} \quad D = \frac{1}{1 + q_1^* q_1 + q_2^* q_2 + B_{001} \tau_k e^{i\omega_{10}\tau_k} q_1^* q_1}.$$

Further, we shall calculate the coordinates to observe the center manifold C_0 at $\nu = 0$. Let us assumed that v_1 be the solution of (30) when $\nu = 0$.

Define

$$z(t) = <Q^*, v_1>, \quad W(t, \delta) = u_1(\delta) - 2Re\{z(t)Q(\delta)\}$$

for the center manifold C_0, we get

$$W(t, \delta) = W(z(t), \bar{z}(t), \delta)$$

where

$$W(z(t), \bar{z}(t), \delta) = W_{20}(\delta)\frac{\dot{z}^2}{2} + W_{11}(\delta)z\bar{z} + W_{02}(\delta)\frac{\bar{z}^2}{2} + \ldots$$

z and \bar{z} are local coordinates for center manifold C_0 in the direction of Q and Q^* respectively. Here we consider only real solutions as W is real if v_2 is real. For the solution $v_1 \in C_0$ of (30), since $\nu = 0$, we have

$$\dot{z}(t) = i\omega_{10}\tau_k z + Q^*(0)f(0, W(z, \bar{z}, 0) + 2Re(zq(\delta))) = i\omega_{10}\tau_k z + Q^*(0)f_0(z, \bar{z}).$$
This equation can be rewritten as

$$\dot{z}(t) = \omega_1 \tau_k z + g(z, \bar{z})$$

where

$$g(z, \bar{z}) = \tilde{Q}^*(0) f_0(z, \bar{z})$$

$$= g_{20}(\theta) \frac{z^2}{2} + g_{11}(\theta) z \bar{z} + g_{02}(\theta) \frac{\bar{z}^2}{2} + g_{21}(\theta) \frac{z^2 \bar{z}}{2} + \ldots$$ \hspace{1cm} (34)

From (32) and (33), we have

$$v_t(\theta) = W(t, \delta) + 2 \text{Re}\{z(t)q(\delta)\}$$

$$= W_{20}(\delta) \frac{z^2}{2} + W_{11}(\delta) z \bar{z} + W_{02}(\delta) \frac{\bar{z}^2}{2} + \frac{(1, q_1, q_2)^T e^{i \omega_1 t} \tau_k \delta z}{2}$$

$$+ \frac{(1, q_1, q_2)^T e^{-i \omega_1 t} \tau_k \delta \bar{z} + \ldots}{2}$$ \hspace{1cm} (35)

Now, from (27) and (34), it follows that

$$g(z, \bar{z}) = \tau_\delta \tilde{D}(1, q_1^*, q_2^*) \left[\begin{array}{c} a_{110} v_{11}(0) v_{22}(0) + a_{200} v_{12}(0) \\ b_{200} v_{12}^2(0) + b_{110} v_{11}(0) v_{22}(0) + b_{020} v_{22}^2(0) + B_{011} v_{22}(0) v_{12}(1) - 1 \\ c_{002} v_{22}(0) + c_{011} v_{12}(0) v_{22}(0) \end{array} \right]$$

or

$$g(z, \bar{z}) = \tilde{D}[g_{20} Z^2 + g_{11} Z \bar{Z} + g_{02} \bar{Z}^2 + g_{21} Z^2 \bar{Z}]$$ \hspace{1cm} (36)

Comparing its coefficients with (34), we find

$$g_{11} = D_{\tau_k} \left\{ (a_{110} + q_1^* b_{110}) 2 \text{Re} q_1 + 2 a_{200} + q_1^* ((2 b_{200} + 2 b_{020}) q_1 \bar{q}_2) + B_{011} (q_1 \bar{q}_2 e^{-i \omega_1} + q_2 \bar{q}_1 e^{-i \omega_1}) + q_2^* (2 q_2 \bar{q}_2 c_{002} + c_{011} 2 \text{Re} q_1 \bar{q}_2) \right\}$$

$$g_{20} = 2 \tilde{D}_{\tau_k} \left\{ q_1 a_{110} + a_{200} + q_1^* (b_{110} q_1 + b_{200} + b_{020} q_2^2 + B_{011} q_1 q_2 e^{-i \omega_1}) + q_2^* (c_{002} q_2^2 + c_{011} q_1 q_2) \right\}$$

$$g_{02} = 2 \tilde{D}_{\tau_k} \left\{ q_1 \bar{q}_2 a_{110} + a_{200} + q_1^* (b_{110} \bar{q}_1 + b_{200} + b_{020} \bar{q}_2 + B_{011} \bar{q}_1 \bar{q}_2 e^{i \omega_1}) + q_2^* (c_{002} q_2^2 + c_{011} q_1 q_2) \right\}$$

$$g_{21} = 2 \tilde{D}_{\tau_k} \left\{ (a_{110} + q_1(2W_{11}(3))) (2) q_1 + 2 q_1(2W_{20}(3)) + (W_{11}(2) q_2) + a_{200} ((2W_{11}(1)) + (W_{20}(1) q_1 + q_1^* (b_{110} W_{11}(3)) q_1 + q_1(2W_{20}(3))) + q_2(2W_{11}(3)) \right\}$$

$$+ (q_2(2W_{20}(3)) + B_{011} (q_1 W_{11}(3)) (1) + q_1^* (b_{110} W_{11}(3)) q_1 + q_1(2W_{20}(3)) + \frac{\tilde{D}(\omega_1 T) e^{i \omega_1 t} \tau_k \delta z}{2} + \frac{\tilde{D}(\omega_1 T) e^{-i \omega_1 t} \tau_k \delta \bar{z} + \ldots}{2} \right\}$$ \hspace{1cm} (37)

Since, components of W_{20} and W_{11} are in g_{21}, we still to compute them.

Now, from (30) and (32), we have

$$W = \hat{u}(t) - \dot{z} Q - \bar{z} \bar{Q}$$

$$\left\{ \begin{array}{l} A(0) W - 2 \text{Re} \{ \tilde{Q}^*(0) f_0 \} = \tilde{Q}(0) \delta \in [-1, 0] \\ A(0) W - 2 \text{Re} \{ \tilde{Q}^*(0) f_0 \} = 0 \end{array} \right. \hspace{1cm} (38)$$

where

$$H(z, \bar{z}, \delta) = H_{20}(\delta) \frac{z^2}{2} + H_{11}(\delta) z \bar{z} + H_{02}(\delta) \frac{\bar{z}^2}{2} + \ldots$$ \hspace{1cm} (39)

Substituting (39) into (38) and comparing the coefficients, we get

$$A(0) W - 2 \omega_1 \tau_k I W_{20}(\delta) = -H_{20}(\delta),$$

$$A(0) W_{11}(\delta) = -H_{11}(\delta)$$ \hspace{1cm} (40)
From (38) and for $\delta \in [-1, 0)$

$$H(z, \bar{z}, \delta) = -\bar{Q}^*(0)f_0Q(\delta) - Q^*(0)f_0\bar{Q}(\delta)$$
$$= -g(z, \bar{z})Q(\delta) - \bar{g}(z, \bar{z})\bar{Q}(\delta)$$

(41)

Using (34) in (41) and comparing coefficients with (39), we can obtain

$$H_{20}(\delta) = -g_{20}Q(\delta) - \bar{g}_{02}\bar{Q}(\delta)$$

(42)

and

$$H_{11}(\delta) = -g_{11}q(\delta) - \bar{g}_{11}\bar{q}(\delta)$$

(43)

From the definition of $A(0)$, (40) and (42), we obtain

$$\dot{W}_{20}(\delta) = 2\omega_{10}\tau_kW_{20}(\delta) + g_{20}Q(\delta) + \bar{g}_{02}\bar{Q}(\delta)$$

Solving it and for $Q(\delta) = (1, q_1, q_2)^T e^{i\omega_{10}\tau_k \delta}$, we have

$$W_{20}(\delta) = \frac{i g_{20}}{\omega_{10}\tau_k}Q(0)e^{i\omega_{10}\tau_k \delta} + \frac{i g_{02}}{3\omega_{10}\tau_k}\bar{Q}(0)e^{-i\omega_{10}\tau_k \delta} + E_1 e^{2i\omega_{10}\tau_k \delta}$$

(44)

Similarly, from (40) and (43) it follows that,

$$W_{11}(\delta) = -\frac{i g_{11}}{\omega_{10}\tau_k}Q(0)e^{i\omega_{10}\tau_k \delta} + \frac{i g_{11}}{\omega_{10}\tau_k}\bar{Q}(0)e^{-i\omega_{10}\tau_k \delta} + E_2$$

(45)

where $E_1 = (E_1^{(1)}, E_1^{(2)}, E_1^{(3)})^T$ and $E_2 = (E_2^{(1)}, E_2^{(2)}, E_2^{(3)})^T$ are three dimensional constant vectors, and can be determined by setting $\theta = 0$ in $H(z, \bar{z}, \theta)$.

Again, from the definition of $A(0)$ and (40), we have

$$\int_{-1}^{0} d\varphi(\delta) W_{20}(\delta) = 2i\omega_{10}\tau_kW_{20}(0) - H_{20}(0)$$

(46)

and

$$\int_{-1}^{0} d\varphi(\delta) W_{11}(\delta) = -H_{11}(0)$$

(47)

where $\varphi(\delta) = \varphi(0, \delta)$.

From (38), we know when $\delta = 0$,

$$H(z, \bar{z}, 0) = -2Re(\bar{Q}^*(0)f_0Q(0)) + f_0(z, \bar{z})$$
$$= -\bar{Q}^*(0)f_0Q(0) - Q^*(0)f_0\bar{Q}(0) + f_0(z, \bar{z})$$

That is,

$$H_{20}(\delta)\frac{\bar{z}^2}{2} + H_{11}(\delta)z\bar{z} + H_{02}(\delta)\frac{\bar{z}^2}{2} +$$
$$= -Q(0)\{g_{20}\frac{\bar{z}^2}{2} + g_{11}z\bar{z} + g_{02}\frac{\bar{z}^2}{2} +\}$$
$$-\bar{Q}(0)\{g_{20}\frac{\bar{z}^2}{2} + g_{11}z\bar{z} + g_{02}\frac{\bar{z}^2}{2} +\} + f_0(z, \bar{z})$$

(48)

By (27), we have

$$f_0 = \tau_k \left[\begin{array}{l} a_{110}v_{11}(0)v_{2t}(0) + a_{200}v_{11}^2(0) \\ b_{200}v_{11}^2(0) + b_{110}v_{11}(0)v_{2t}(0) + b_{020}v_{2t}^2(0) + B_{001}v_{2t}(0)v_{3z}(-1) \\ c_{002}v_{3z}^2(0) + c_{011}v_{2t}(0)v_{3z}(0) \end{array} \right]$$
From (32), we have
\[v_1(\delta) = W(t, \delta) + 2\text{Re}\{z(t)Q(\delta)\} = W(t, \delta) + z(t)Q(\delta) + \bar{z}(t)\bar{Q}(t) \]
\[= W_{20}(\delta)\frac{z^2}{2} + W_{11}(\delta)z\bar{z} + W_{02}(\delta)\frac{\bar{z}^2}{2} + \ldots. \]

Thus, we can obtain,
\[f_0 = 2\tau_k \left[\begin{array}{c} \xi_{11} \\ \xi_{21} \\ \xi_{31} \end{array} \right] \frac{z^2}{2} + \tau_k \left[\begin{array}{c} \xi_{12} \\ \xi_{22} \\ \xi_{32} \end{array} \right] z\bar{z} + \ldots \quad (49) \]

where
\[\xi_{11} = a_{110}q_1 + a_{200}, \quad \xi_{21} = b_{110}q_1 + b_{200} + b_{020}q_1^2 + B_{011}q_1q_2e^{-i\omega_1}, \]
\[\xi_{31} = c_{002}q_2^2 + c_{011}q_1q_2, \quad \xi_{12} = 2\text{Re}(q_1)a_{110} + 2a_{200}, \]
\[\xi_{22} = 2\text{Re}(q_1)b_{110} + 2b_{200} + 2b_{020}q_1q_2 + B_{011}(q_1q_1e^{i\omega_1} + q_1q_2e^{-i\omega_1}), \]
\[\xi_{32} = 2\text{Re}(q_1)b_{110} + 2c_{200}q_2q_2. \]

Comparing the coefficients in (48) and using (49), we get
\[H_{20}(0) = -g_{20}Q(0) - \bar{g}_{02}\bar{Q}(0) + 2\tau_k \left[\begin{array}{c} \xi_{11} \\ \xi_{21} \\ \xi_{31} \end{array} \right] \]
\[H_{11}(0) = -g_{11}Q(0) - \bar{g}_{11}\bar{Q}(0) + \tau_k \left[\begin{array}{c} \xi_{12} \\ \xi_{22} \\ \xi_{32} \end{array} \right] \quad (50, 51) \]

Since \(\omega_{10}\tau_k \) is the eigenvalue of \(A(0) \) corresponding to eigenvector \(Q(0) \), then
\[\{i\omega_{10}\tau_k I - \int_{-1}^{0} e^{i\omega_{10}\tau_\delta} d\varphi(\delta)\}Q(0) = 0 \quad \text{and} \]
\[\{-i\omega_{10}\tau_k I - \int_{-1}^{0} e^{-i\omega_{10}\tau_\delta} d\varphi(\delta)\}Q(0) = 0. \]

Substituting (44) and (50) into (46), we find
\[\{2i\omega_{10}\tau_k I - \int_{-1}^{0} e^{2i\omega_{10}\tau_\delta} d\varphi(\delta)\}E_1 = 2\tau_k \left[\begin{array}{c} \xi_{11} \\ \xi_{21} \\ \xi_{31} \end{array} \right] \]

or
\[\left[\begin{array}{ccc} 2\omega_{10} - a_{100} & -a_{010} & 0 \\ -b_{100} & 2\omega_{10} - b_{010} & -B_{001} \\ 0 & -c_{100} & 2i\omega_{10} - c_{001} \end{array} \right] E_1 = \left[\begin{array}{c} 2\xi_{11} \\ 2\xi_{21} \\ 2\xi_{31} \end{array} \right]. \]

Simplification gives,
\[E_1^{(1)} = \frac{2}{M}[[\xi_{11}(2\omega_{10} - b_{010})(2i\omega_{10} - c_{001}) - c_{010}B_{001}] \]
\[+ a_{010}(\xi_{21}(2i\omega_{10} - c_{001}) + c_{010}M), \]
\[E_1^{(2)} = \frac{2}{M}[[2\omega_{10} - a_{100}][\xi_{21}(2\omega_{10} - c_{001}) + c_{010}B_{001}] \]
\[+ \xi_{11}[2\omega_{10} - c_{001}]b_{100} - a_{010}[\xi_{31}(2\omega_{10} - c_{001}) + \xi_{21}c_{100}], \]
\[E_1^{(3)} = \frac{2}{M}[[2\omega_{10} - a_{100}][\xi_{31}(2\omega_{10} - b_{010}) + \xi_{21}c_{100}] + a_{010}[\xi_{31}(2\omega_{10} - c_{001}) + \xi_{21}c_{100}]. \]
and

\[
M = [(2\omega_{10} - a_{100})(2\omega_{10} - A_{010}c_{001}] - a_{010}[b_{100}(2\omega_{10} - c_{001})]
\]

Similarly, substituting (45) and (51) into (47), we obtain

\[
\begin{pmatrix}
a_{100} & a_{010} & a_{001}
b_{100} & b_{010} & b_{001}
c_{100} & c_{010} & c_{001}
\end{pmatrix}
\begin{pmatrix}
E_2
\end{pmatrix} =
\begin{pmatrix}
\xi_{21}
\xi_{22}
\xi_{23}
\end{pmatrix}
\]

On solving, we can obtain

\[
\begin{align*}
E_2^{(1)} &= \frac{1}{N}[\xi_{12}(b_{010}c_{001} - c_{010}B_{001}) - a_{010}(\xi_{22}c_{001} - B_{001}\xi_{32})] \\
E_2^{(2)} &= \frac{1}{N}[a_{100}(b_{001}\xi_{20} - \xi_{32}B_{001}) - \xi_{12}(b_{100}c_{001})] \\
E_2^{(3)} &= \frac{1}{N}[a_{100}(b_{010}\xi_{32} - c_{010}\xi_{22}) - a_{010}((b_{100})\xi_{32} + c_{100}b_{100}\xi_{12})]
\end{align*}
\]

and

\[
N = a_{100}[b_{010}c_{001} - b_{001}c_{010}] - a_{010}[(b_{100} + B_{100})c_{001} - c_{100}b_{001}] + a_{001}[(b_{100} + B_{100})c_{010} - c_{100}b_{101}]
\]

Thus, we can determine \(W_{20}(\theta), W_{11}(\theta)\) from (44), (45) and \(g_{21}\) can be computed from (37).

Finally, we can compute the following quantities:

\[
c_1(0) = \frac{t\{g_{20}g_{11} - 2|g_{11}|^2 - \frac{|g_{02}|^2}{3}\}}{2\omega_1 r_k} + \frac{g_{21}}{2} \mu_2 = -\frac{Re\{c_1(0)\}}{Re\{\frac{dx(r_k)}{dr}\}}, \quad \beta_2 = 2Re\{c_1(0)\},
\]

\[
T_2 = -\frac{\Im\{c_1(0)\} + \mu_2 \Im\{\frac{dx(r_k)}{dr}\}}{\omega_1 r_k}, \quad k=0,1,2,\ldots, \text{ where } g_{ij}\text{ are given by (37)}.
\]