Title
Differentially correlated genes in co-expression networks control phenotype transitions.

Permalink
https://escholarship.org/uc/item/57t3x17h

Journal
F1000Research, 5

ISSN
2046-1402

Authors
Thomas, Lina D
Vyshenska, Dariia
Shulzhenko, Natalia
et al.

Publication Date
2016

DOI
10.12688/f1000research.9708.1

Peer reviewed
Differentially correlated genes in co-expression networks control phenotype transitions [version 1; referees: 1 approved, 2 approved with reservations]

Lina D. Thomas¹, Dariia Vyshenska², Natalia Shulzhenko³, Anatoly Yambartsev¹, Andrey Morgun²

¹Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
²College of Pharmacy, Oregon State University, Corvallis, USA
³College of Veterinary Medicine, Oregon State University, Corvallis, USA

Abstract

Background: Co-expression networks are a tool widely used for analysis of “Big Data” in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer).

Methods: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.

Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as “bottlenecks” rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth.

Conclusion: Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype.
Introduction

Recent technological advances have moved the focus of biologists from how to measure biological parameters to how to analyze and interpret tens of thousands of measurements, frequently called omics data. The first solutions for such a problem were limited to hierarchical clustering\(^1\)--\(^3\) and simple comparisons between classes of data through the identification of differentially expressed genes (DEGs)\(^4\),\(^5\). Nowadays, reconstruction and interrogation of biological networks have become a widely used approach to get insights from different types of omics data\(^6\),\(^7\).

After establishing co-expression networks for different states of one biological system, differential co-expression analysis investigates their structural changes when a system goes through a state transition. This analysis, first proposed more than a decade ago\(^8\),\(^9\), identifies the pairs of genes that have their interaction changed during such transition. Several later publications have suggested different algorithms and statistics to determine differential gene co-expression\(^10\)--\(^27\). Fewer studies, however, attempted to evaluate the biological significance of these changes\(^18\),\(^21\). Also, to the best of our knowledge, there have been no studies that would investigate how this approach performs depending on the type and complexity of the biological system analyzed.

Commonly, a state transition of a biological system is related to perturbation of a set of genes, which propagates through network interactions and affects other genes. Thus, there is a possibility that differentially co-expressed (DC) genes (directly or indirectly) contribute to the propagation of perturbations. In order to investigate the role of DC genes in a state transition of a biological system, we considered two biological processes\(^28\),\(^29\) previously analyzed by our group. The first one (B cell deficiency in mice) is a homogenous, one-causal-factor process, while the second one (cervical cancer) represents a heterogeneous multi-causal system.

In this work, a co-expression network is an undirected graph, where the set of nodes consists of a set of DEGs, and a pair of nodes is connected if there is a significant correlation between them. Differential co-expression analysis is done by identifying the pairs of genes that suffer significant changes in correlation between two states. Throughout this paper such pairs are called differentially correlated pairs (DCPs) and the genes forming these pairs are considered DC genes.

Results

B cell deficiency

We started by analyzing the B cell knockout (BcKO) data\(^28\), which represents a relatively simple experimental model with only one causal factor (B lymphocytes) and homogenous subject groups since this experiment was performed in highly inbred strains of mice.

In order to select the nodes to reconstruct the co-expression networks (BcKO and Control) we compared gene expression in jejunum between BcKO and control mice and found 509 DEGs (Dataset 1). Next, the edges for each network were determined using significantly correlated pairs of DEGs (Figure 1). To identify DCPs we used the method introduced in\(^21\) which compares correlations in the BcKO group and in the Control group. Eighty DCPs were found (Dataset 2), of which 56 represent correlation gains (edges which were not present in Control network but showed up in BcKO) and 24 represent losses.

![BcKO correlation network](image)

Figure 1. Co-expression networks for BcKO data. The nodes are composed by DEGs and the edges represent significant correlations between nodes. The causal genes (immunoglobulin genes) and the DCP edges are concentrated in the high connectivity region with several causal genes forming DCPs.
Now we investigate whether network structural changes, herein represented by DCPs, are related to actual causes of global change in gene expression. In the previous study\cite{previous_study}, it was shown that intestinal gene expression alterations in BcKO mice are mostly dependent on the ability of B lymphocytes to produce antibodies. Therefore, we analyzed the presence of immunoglobulin coding genes (Ig genes, see Dataset 3) among differentially expressed genes (26 Ig genes among 509 DEGs) in DCPs. We observed that 72\% (39 out of 54) of correlation gain DCPs are formed by at least one Ig gene, (Figure 2A). Moreover, we found strong enrichment for Ig genes among DC genes in correlation gain (24\% (15 out of 63) of DC genes are Ig genes vs 2.7\% (11 out of 415) of other DEGs are Ig genes), while no enrichment was observed for correlation lost as a result of B cell deficiency (Figure 2B). Thus, these results support the idea that differentially expressed genes that acquire correlations during transition from one biological state to another have a high chance to play causal roles in such transition.

Dataset 1. Differentially expressed genes from BcKO study
http://dx.doi.org/10.5256/f1000research.9708.d142100
Contains p-values, ratios of expression means, combined Fisher's p-value, fdr, direction of regulation, whether it is Ig gene and whether it is DC gene.

Dataset 2. Differentially correlated pairs from BcKO study
http://dx.doi.org/10.5256/f1000research.9708.d142099
Contains information such as “change direction” (whether each pair gained or lost correlation/edge), “sign of local partial correlation” in BcKO data and control data, “regulation” (whether each gene of each pair is up- or down-regulated in BcKO), “number of Ig genes” in each pair.

Dataset 3. Causal genes from BcKO study
http://dx.doi.org/10.5256/f1000research.9708.d142097
Contains the Ig genes considered causal along with annotation and whether they are considered DC genes or not.

DCPs analysis in BcKO DEGs network.

Figure 2. A) 78 Differentially Correlated Pairs (DCPs) were found, of which 54 represent correlation gains (edges which were not present in Control network but showed up in BcKO) and 24 represent correlation losses. The table stratifies the set of pairs representing correlation gains and losses according to the amount of Ig genes (0, 1 or 2) present in a pair. Note that 39 out of 54 of correlation gain DCPs are formed by at least one Ig gene while only 2 out of 22 correlation losses have at least one Ig gene. B) The 78 DCPs are formed by a total of 94 Differentially Co-expressed genes (DC genes). 58 DC genes participate only in correlation gain DCPs, 31 only in correlation loss DCPs and 5 of them participate in both correlation gain and loss DCPs. The results show enrichment for Ig genes among DC genes in correlation gain: 24\% (15 out of 63 (=58+5)) of DC genes are Ig genes vs 2.7\% (11 out of 415) of other DEGs are Ig genes (p value < 0.001). Meanwhile no enrichment was observed for correlation loss as a result of B cell deficiency: 3\% (1 out of 36 (=31+5)) of DC genes are Ig genes vs 2.7\% (11 out of 415) of other DEGs are Ig genes.
Cervical cancer

Analysis of gene expression data. In order to study differentially co-expressed genes in a more complex biological model we turned to cancer. It is well known that cancers of the same clinically/morphological type can be very different on molecular levels. One of the most studied causes for such diversity is the different sets of chromosomal aberrations and mutations harbored by tumors otherwise defined as the same cancer. In previous study 29, we have found 36 cervical cancer driver genes located in multiple chromosomal aberrations (Dataset 4). Thus we decided to use cervical cancer data from 29 for investigation of the role of DCPs in complex biological processes due to its heterogeneity and previously acquired knowledge of essential causal genes.

We used the DEGs between tumor and normal tissue as the nodes of the co-expression networks. Since the number of samples (five datasets, 148 tumor samples and 67 normal samples) was larger than in BcKO study (two datasets, 22 paired samples), we used the partial correlation coefficient as a measure of co-expression (Figure 3). The potential advantage of using partial correlation is that it aims to infer edges that are a result of direct regulatory relations. Partial correlations were calculated through the Local Partial Correlation (LCP) method (Material and Methods).

In this study seven DCPs composed of 14 DC genes were found. Interestingly, all DCPs were differential correlations gained in tumors (Table 1). Only one of the 36 key drivers (CEP70) was identified among the 14 DC genes. Accordingly, no enrichment of key driver genes among DC genes was detected in this analysis.

Even though we observed that DCPs are not necessarily formed by key drivers, it is known from literature that most of the DC genes found play regulatory roles in other types of cancer. Thus we hypothesized that DCPs are located downstream of key drivers and can be responsible for changes of regulatory chain events coming from the key drivers and spreading throughout the network. In order to verify this hypothesis, we investigated how close DC genes are to key drivers and whether their “signal flow” in the tumor co-expression network is stronger than that of the other genes. In order to verify this hypothesis we investigated two network measures: Minimum Shortest Path and Bi-partite Betweenness Centrality.

First we compared the shortest paths from key driver genes to DC genes and to all other DEGs in the network. We found that DC genes are located statistically closer than the rest of genes in the network to key drivers (Figure 4A, Wilcoxon test < 0.014 and Permutation test < 0.021). Then we used Bi-partite Betweenness Centrality as a measure of the signal flow from key drivers to peripheral genes (genes with only one edge). We evaluated this measure for DC genes and remaining DEGs and observed that DC genes had much higher values than other genes in the network. Figure 4B illustrates a comparison of boxplots of bi-partite betweenness centrality between these two groups concerning DCPs and the rest (non DCPs, non-key drivers, non-peripheral). We can observe that the bi-partite betweenness
Table 1. DCPs – cancer (* key drivers).

Gene symbol 1	Gene symbol 2	Change direction	Sign of local partial correlation in tumor	Regulation 1	Regulation 2
ANP32E	CACYBP	Gained edge	> 0	UP	UP
CENPN	DHFR	Gained edge	> 0	UP	UP
C10orf68	FGFR2	Gained edge	> 0	DN	DN
AK2	HNRNPR	Gained edge	> 0	UP	UP
CEP70*	SEPHS1	Gained edge	> 0	UP	UP
NIPAL2	TRPM3	Gained edge	> 0	DN	DN
They stern	ZSCAN18	Gained edge	> 0	DN	DN
ARHGEF12					

Cervical cancer results

![Shortest path to key drivers](image1)

![Bi-partite betweenness centrality](image2)

centralities of DCPs are concentrated in higher values than the rest. Mann-Whitney test gave us a p-value of 7.868×10^{-5}, which gives us evidence that the distribution of Bi-Partite Betweenness Centrality in DCP genes is higher. For more details see Figure S2. Thus, altogether these results suggest that DC genes might be “bottlenecks”, that is, required to transmit a signal from key drivers to other genes in the network, therefore, supplement the hypothesis of a regulatory role of DC genes (Figure S1).

Knockdown experiments. In addition, data from other cancers provide indirect support for the idea of regulatory role of DC genes in cervical cancer. However, since a role of these DC genes in carcinogenesis was not as straightforward as for immunoglobulin genes in B cell deficiency, we decided to perform experimental tests. Among the DC genes found for cervical cancer, there were seven up-regulated and seven down-regulated in cancer. Therefore, for validation experiments we chose one down-regulated (FGFR2) and one up-regulated (CACYBP) gene that have not been previously studied in cervical cancer for regulatory properties, but have a potential connection with cell death or proliferation based on their Gene Ontology annotations. In order to test if FGFR2 and CACYBP play critical regulatory roles in cancer pathogenesis, we evaluated the effect on in vitro knockdown of these genes on cell proliferation in a cervical carcinoma cell line.

First, we tested two cervical cancer cell lines (Hela and ME180) and found that only ME180 had detectable expression levels of both genes. In order to perform these tests, we evaluated siRNAs and observed that they were able to knock down expression of both genes by at least 70% (Figure 5A). CACYBP is up-regulated in tumor tissue, as compared to normal tissue (Figure 5B). Consequently, if CACYBP has regulatory potential, as predicted by...
our analysis, it should function as an oncogene promoting cell proliferation. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene is expected to increase cell growth. The subsequent analysis of cell proliferation confirmed our predictions for both genes: knockdown of CACYBP led to a decrease of cell growth, while knockdown of FGFR2 induced higher cell proliferation (Figure 5C). Thus, these results provide additional support to our in silico prediction that DC genes may play a regulatory role in cell proliferation related to tumor growth.

Figure 5. Experimental evaluation of DCGs in cervical cancer. A) Efficacy of FGFR2 and CACYBP siRNA knockdown. qRT-PCR with primers for GAPDH as the internal control was used to determine expression and efficacy of FGFR2 and CACYBP specific siRNA knockdown in endothelial cells (ME180). ME180 cells were harvested 72 h after transfection with vehicle (Lipofectamine) and either scrambled control or targeting siRNA. B) Gene expression of FGFR2 and CACYBP (mean +/- standard deviation) for tumor and normal samples from five datasets used in the analysis. Since FGFR2 was found down-regulated in tumor tissue, its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival.
sis31, TRPM3 was observed to play a role in oncogenic autophagy. CACYBP has been shown to promote colorectal cancer metastasis, oncogenic autophagy and apoptosis. For example, cervical cancer have been previously implicated in processes such as metastasis, oncogenic autophagy and apoptosis. Indeed, those DCPs have been found closer to key regulators than other genes in the network, actually representing “bottlenecks” for communication between driver genes previously published in 29 and the rest of the network (Figure 4). Furthermore, some differentially co-expressed genes in cervical cancer have been previously implicated in processes such as metastasis, oncogenic autophagy and apoptosis. For example, CACYBP has been shown to promote colorectal cancer metastasis, TRPM3 was observed to play a role in oncogenic autophagy in clear cell renal cell carcinoma, and AK2 was reported to activate apoptotic pathway. Several genes are investigated for prognostic value for cancers such as myeloma, lymphoma, breast and gastrointestinal cancers. At least two genes were previously proposed as targets for anti-cancer agents: DHFR and FGFR2. Moreover, CACYBP and ZSCAN18 were also reported as putative tumor suppressor genes in renal cell carcinoma. In addition, we have tested two DC genes and confirmed their regulatory role (FGFR2 as a tumor suppressor and CACYBP as a potential oncogene in cervical cancer) by manipulating their regulatory role (FGFR2 as a tumor suppressor and CACYBP as a potential oncogene in cervical cancer) by manipulating their expression in vitro. Altogether, published observations and our experimental validation for these two genes support the idea that DC genes reveal in the current study play a regulatory role and can be candidate targets for cervical cancer treatment.

Interestingly, while in the model of B cell deficiency, the DC genes are highly enriched with causal regulatory genes, there was only one key driver in cervical cancer (CEP70), despite the DC genes in this system still seeming to play a regulatory role overall. Such a difference is potentially related to the fact that the mouse system studied in 28 is highly homogeneous (inbred mice) with only one cause of alterations (i.e. absence of B lymphocytes). Cervical cancer, however, is a heterogeneous system with different chromosomal aberrations and consequently turned-on expression of different driver genes in different patients. Therefore, we can speculate that differential correlations point to regulatory genes that are shared by majority of samples. This hypothesis warrants further investigation, especially considering that DCPs could represent common therapeutic targets for tumors that originated as a result of different genomic or epi-genomic events.

In conclusion, this study provided additional evidence for the previously suggested idea that genes presenting alterations in correlation patterns between different phenotypes (i.e. states of biological system) play a critical regulatory role in transitions from one state to another. Furthermore, although our results do not allow for full generalization, they indicate that gain and not loss of correlations connects critical genes involved in transitions to new phenotypes. However, further studies are required to understand how changes in correlation patterns can point to genes with critical capacity to guide a biological system into certain state/phenotype.

Material and methods

Preparation of microarray data

BcKO. All microarray data were analyzed using BRB Array-Tools developed by the Biometric Research Branch of the National Cancer Institute under the direction of R. Simon (http://linus.nci.nih.gov/BRB-ArrayTools.html). Array data were filtered to limit analysis to probes with greater than 50% of samples showing spot intensities of >10 and spot sizes >10 pixels, and a median normalization was applied.

Cervical cancer. Same as in cervical cancer. The data were analyzed using BRB Array-Tools using the original normalization used in three studies and median normalization over entire the array for the fourth study. For all studies, we only considered genes found in at least 70% of arrays.

Filtering and meta-analysis of microarray data

In every analysis (DEGs, DCPs and networks), filter of direction (same sign of correspondent parameter – difference of mean, difference of correlation, correlation and partial correlation) was required in a fixed number of datasets (2 out of 2 in BcKO and 3 out of 5 in cervical cancer). Then meta-analysis was done through Fisher combined probability test. Next, the pairs with false discovery rate (fdr) lower than a threshold are chosen. At last, only the pairs that pass PUC are considered correlated and therefore represent edges in the network.

Analysis of microarray data

BcKO. DEGs between groups of samples were identified by random variance paired t-test p-value lower than 5% with adjustment for multiple hypotheses by setting the fdr below 10% in BRB Array-Tools. Co-expression networks (BcKO and Control) were inferred through Pearson correlation with p-value < 20% and fdr adjustment below 2.5%. DCPs were calculated for pairs that were initially correlated (p-value < 20%) in at least one state. Then differences of Pearson correlation were tested following with a p-value below 10% and fdr < 2%. At last only the DCPs that showed up in one of the networks were selected.

Discussion

In the current study, the differential co-expression analysis was applied to two relatively well-investigated biological systems in order to evaluate the potential importance of genes found using differential correlation analyses. Overall, the obtained results support the idea that DC genes play a regulatory role. While in B cell deficiency DCPs were found highly enriched with immunoglobulin genes (i.e. causal genes for alterations in the gut) we did not observe enrichment for key driver genes in cervical cancers. Rather, DCPs of cervical cancer seem to be located downstream of causal genes. Indeed, those DCPs have been found closer to key regulators than other genes in the network, actually representing “bottlenecks” for communication between driver genes previously published in 29 and the rest of the network (Figure 4). Furthermore, some differentially co-expressed genes in cervical cancer have been previously implicated in processes such as metastasis, oncogenic autophagy and apoptosis. For example, CACYBP has been shown to promote colorectal cancer metastasis, TRPM3 was observed to play a role in oncogenic autophagy in clear cell renal cell carcinoma, and AK2 was reported to activate apoptotic pathway. Several genes are investigated for prognostic value for cancers such as myeloma, lymphoma, breast and gastrointestinal cancers. At least two genes were previously proposed as targets for anti-cancer agents: DHFR and FGFR2. Moreover, CACYBP and ZSCAN18 were also reported as putative tumor suppressor genes in renal cell carcinoma. In addition, we have tested two DC genes and confirmed their regulatory role (FGFR2 as a tumor suppressor and CACYBP as a potential oncogene in cervical cancer) by manipulating their expression in vitro. Altogether, published observations and our experimental validation for these two genes support the idea that DC genes reveal in the current study play a regulatory role and can be candidate targets for cervical cancer treatment.

Interestingly, while in the model of B cell deficiency, the DC genes are highly enriched with causal regulatory genes, there was only one key driver in cervical cancer (CEP70), despite the DC genes in this system still seeming to play a regulatory role overall. Such a difference is potentially related to the fact that the mouse system studied in 28 is highly homogeneous (inbred mice) with only one cause of alterations (i.e. absence of B lymphocytes). Cervical cancer, however, is a heterogeneous system with different chromosomal aberrations and consequently turned-on expression of different driver genes in different patients. Therefore, we can speculate that differential correlations point to regulatory genes that are shared by majority of samples. This hypothesis warrants further investigation, especially considering that DCPs could represent common therapeutic targets for tumors that originated as a result of different genomic or epi-genomic events.

In conclusion, this study provided additional evidence for the previously suggested idea that genes presenting alterations in correlation patterns between different phenotypes (i.e. states of biological system) play a critical regulatory role in transitions from one state to another. Furthermore, although our results do not allow for full generalization, they indicate that gain and not loss of correlations connects critical genes involved in transitions to new phenotypes. However, further studies are required to understand how changes in correlation patterns can point to genes with critical capacity to guide a biological system into certain state/phenotype.
Cervical cancer. DEGs were retrieved from a cervical cancer paper. Correlation networks and DCPs followed the same procedure and in BcKO but with different p-values (correlation p-value < 10% with fdr < 10⁻⁴ and difference of correlation p-value < 10% with fdr < 0.25%). Partial correlation was computed using local partial correlation method. The initial significance was p-value lower than 40% and then fdr < 5%.

For more details about the thresholds used, see Table S3 and Table S4.

Local partial correlation network

Two aspects of cervical cancer data motivated us to use local partial correlation for this system. First of all, we have more samples throughout five datasets (see Supplementary Table S1 and Supplementary Table S2) which allows us to have more confidence in our results and second we already know that tumors in general present heterogeneous causal factors. The partial correlation approach gives us the alternative to only consider edges that represent direct regulatory relations.

In this paper we used the new approach developed in called local partial correlation. This approach was elaborated specially for cases when there are more variables than samples, which happens regularly in genetics and is a serious problem in classical statistics. First we calculate the correlation network. Then for each significantly correlated pair the inverse method is applied exclusively to the correlation sub-matrix formed only by the closest neighbors of the pair along with the genes forming the pair, Figure 6. If the number of closest neighbors is still higher than the number of samples n, then we decreasingly rank the correlations of the neighbors to either genes in the pair and select the first n/2 neighbors. For each sub-matrix, we only keep the partial correlation value regarding the pair that formed that sub-matrix and then calculate its p-value also based on the sub-matrix. R script for calculation is available in Supplementary Material.

Partial correlations were estimated only for the significant (Pearson) correlations in co-expression network. Thus the same definition of DCPs (by Pearson correlation) can still represent structural changes as long as it remains present in one of the two networks.

Figure 3 illustrates the local partial correlation network for cervical cancer using only tumor data. It has 578 connected nodes and 824 edges.

Figure 6. Local partial correlation scheme: we calculate the LPC for pair X_2, X_5 (red nodes/edge). The neighborhood of this pair is the set of nodes X_3, X_6, X_7, X_8 (black nodes/edges). X_1, X_4, X_9 (blue nodes) are significantly correlated with the black nodes (blue edges), but not with the red nodes. Thus the inverse method is applied exclusively to the correlation sub-matrix formed only by the genes X_3, X_6, X_7, X_8, X_9, X_5. In correlation matrices the gray entries are statistically non-significant empirical correlations.
Minimum shortest path

The shortest path is a method that calculates distances between 2 nodes in a network. It consists of the minimum number of edges connecting 2 nodes. In this case we want to know the minimum number of edges connecting one node, either DCP gene or not, to a group of nodes: the key drivers Figure 7. For each gene we calculate the shortest path to all key drivers and get the minimum value. Then we compare the minimum shortest path to key drivers coming from DCP genes and the remaining genes. Figure 4A shows that the minimum shortest path to key drivers tend to be smaller when originated in DCP genes.

Bi-partite betweenness centrality

Betweenness Centrality measures the node’s centrality in a network by counting the number of shortest paths from all vertices to all other vertices that pass through that node. A gene with high betweenness centrality has a great influence on the transfer of signal through the network Figure 8.

However we are interested in the signal passing from key drivers throughout the network. For this reason we decided to apply the measure previously developed by our lab called Bi-partite Betweenness Centrality. It measures the amount of shortest path

Figure 7. In this example we show how to calculate the distance (length of shortest path) between the gene G_2 and group of genes D_1, D_2, D_3, D_4 (nodes in red).

Figure 8. Here we explain how to calculate bi-partite betweenness centrality (bc) between groups A and B. Note that the node D has bigger bc because all shortest paths connecting nodes in group A to nodes in group B pass through the node D.

going from all genes in one group of vertices to all genes in a different group of vertices. In our case, the groups of genes are the key drivers and the peripheral genes (genes connected to only one edge).

Experimental design

FGFR2 and CACYBP knockdown experiment

ME180 cells were transfected with FGFR2-, CACYBP-specific siRNA or control siRNA using Lipofectamine RNAiMAX Transfection Reagent. Cell growth rate during 72h after siRNA transfection was measured using xCelligence system as described below.

Evaluation of siRNA efficacy in knocking down the gene targets.

ME180 cell line was obtained from Dr. Pulivarthi H. Rao. It was cultured in RPMI medium with 10% FBS and 1% Penicillin-Streptomycin added. The cells were seeded at density 4000 cells per well in 96 F-bottom plates (seeding procedure was done according to ATCC protocol for ME180 cell line) and with cell culture media 200 ul per well. 24 hours after seeding, cells were transfected with one of the three siRNA, see Table 2.

Before transfection, 100 uL of media was taken from each well. Transfection procedure was done according to Lipofectamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per well were delivered in 20uL. 80 uL of fresh cell culture media was added to each well.

Cells were collected 72 h after transfection using Lysis buffer from RNeasy Mini Kit (QIAGEN). RNA extraction was done using RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol (no Dnase treatment step was done). Concentrations of RNA measured with Qubit RNA BR Assay Kit. cDNA was done using Bio-Rad iScript cDNA Kit according to the manufacturer’s protocol.

Quantitative Real-Time PCR was done for the samples using QuantiFast SYBR Green PCR Kit and GAPDH as a control gene. Primers for the targets you can see in the Table 3.

Evaluation of cell growth after knock down of gene targets.

CACYBP is up-regulated in tumor tissue, as compared to normal tissue (Figure 5B). Consequently, if CACYBP has regulatory potential, as predicted by our analysis, it should function as an oncogene promoting cell proliferation. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 5B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene is expected to increase cell growth.

Cell growth was evaluated using xCelligence system (The RTCA DP Instrument) using manufacturer’s protocol. ME180 was cultured in RPMI media with 10% FBS and 1% Penicillin-Streptomycin added. The cells were seeded at density 4000 cells per well (E-Plate 16) in 200 uL of cell culture media.

24 hours after seeding, the experiment was paused for transfection. Before transfection, 100 ul of media was taken from each well. Transfection procedure was done according to Lipofectamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per well were delivered in 20uL; 80 uL of fresh cell culture media was added to each well. Plate was placed back in the slot and cell growth was evaluated for another 72 h.

Cell index normalization. To evaluate cell growth rate cell index was transformed into Inhibition index in two steps:

1. Cell indexes for all wells were exported to the excel file. For each treatment (including non-targeting siRNA transfected wells) we extracted cell index average for all wells at 20 h after seeding (Cell Index Before Treatment) and at 96 h after seeding (Cell Index After Treatment). To normalize cell index to initial cell number differences for each of the treatments we used the following formula:

 \[
 \text{Normalized Cell Index (A/B Index)} = \frac{\text{Cell Index After Treatment}}{\text{Cell Index Before Treatment}}
 \]

2. In next step we normalized each treatment with targeting siRNA to treatment with non-targeting siRNA. For this purpose in each experiment A/B Index from treatment (siRNA targeting either FGFR2 or CACYBP) was normalized to A/B Index from control treatment using the following formula:

 \[
 \text{Inhibition Index} = \frac{\text{Control A/B Index} – \text{Treatment A/B Index}}{\text{Control A/B Index}}
 \]
Final evaluation of growth was done according to the value of Inhibition Index:

>0 – there is a decrease in growth;

0 – no difference between treated with targeting and treated with non-targeting siRNA;

<0 – there is a growth after treating with targeting siRNA.

Data availability

BcKO: Gene expression files containing array data from 28 are available under the GSE23934 superseries in the Gene Expression Omnibus (GEO) data repository. We worked with two groups of samples: B10.A littermates and BALB/C (Table S1).

Cervical cancer: We have used the same datasets as in previous study available at GEO: GSE7410, GSE6791, GSE7803, GSE9750, GSE26342 (Table S21).

F1000Research: Dataset 1. Differentially expressed genes from BcKO study, 10.5256/f1000research.9708.d14210057

F1000Research: Dataset 2. Differentially correlated pairs from BcKO study, 10.5256/f1000research.9708.d14209997

F1000Research: Dataset 3. Causal genes from BcKO study, 10.5256/f1000research.9708.d14209780

F1000Research: Dataset 4. Causal genes from cervical cancer study, 10.5256/f1000research.9708.d14209806

F1000Research: Dataset 5. Cytoscape Edges and Nodes tables from network in Figure 1, 10.5256/f1000research.9708.d14210161

F1000Research: Dataset 6. Cytoscape Edges and Nodes tables from network in Figure 3, 10.5256/f1000research.9708.d14210262

F1000Research: Dataset 7. Raw data for Figure 5A, C, 10.5256/f1000research.9708.d14210363

Supplementary material

Extra details, figures and tables
Click here to access the data.

References

1. Kaufman L, Rousseuw PJ: Finding Groups in Data: An Introduction to Cluster Analysis. (1 ed.). New York: John Wiley. ISBN 0-471-87876-6, 1990. Reference Source

2. Press WH, Teukolsky SA, Vetterling WT, et al.: Section 16.4. Hierarchical Clustering by Phylogenetic Trees. Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press, ISBN 978-0-521-88068-8, 2007. Reference Source

3. Hastie T, Tibshirani R, Friedman J: 14.3.12 Hierarchical clustering. The Elements of Statistical Learning (PDF) (2nd ed.). New York: Springer. 520–528, ISBN 0-387-84857-6, 2009.

4. Dudík S, Yang YH, Callow MJ, et al.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. *Stat Sin.* 2002; 12(1): 111–139. Reference Source

5. Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. *Bioinformatics.* 2003; 19(3): 368–375. PubMed Abstract | Publisher Full Text

6. Dong X, Yambartsev A, Ramsey SA, et al.: Reverse enGeneErating of Regulatory Networks from Big Data: A Roadmap for Biologists. *Bioinform Biol Insights.* 2015; 9: 61–74. PubMed Abstract | Publisher Full Text | Free Full Text

7. Morgan A, Dzotsev A, Dong X, et al.: Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. *Gut.* 2015; 64(11): 1732–43. PubMed Abstract | Publisher Full Text

8. Kostka D, Spang R: Finding disease specific alterations in the co-expression of genes. *Bioinformatics.* 2004; 20(Suppl 1): i194–9. PubMed Abstract | Publisher Full Text

9. Xiao Y, Frisina R, Gordon A, et al.: Multivariate search for differentially expressed gene combinations. *BMC bioinformatics.* 2004; 5(1): 164. PubMed Abstract | Publisher Full Text | Free Full Text

10. Shin E, Yoon Y, Ahn J, et al.: TC-VGC: a tumor classification system using variations in genes’ correlation. *Comput Methods Programs Biomed.* 2011; 104(3): e87–e101. PubMed Abstract | Publisher Full Text

11. Needham M, Hu R, Dwarkadas S, et al.: Hierarchical parallelization of gene differential association analysis. *BMC Bioinformatics.* 2011; 12: 374. PubMed Abstract | Publisher Full Text | Free Full Text

Author contributions

LDT ran the data analysis and DV ran the experimental analysis. LDT, DV, AY and AM conceived the analysis and wrote the paper. NS helped with discussions and revised the first manuscript.

Competing interests

No competing interests were disclosed.

Grant information

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grants 2013/06223-1, 2013/14722-8 and 2013/24516-6 and by NSF grant 1412557.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We thank Mark Ganon and Andre Belejo for the English review and editing, CGRB at OSU for the computational support. AY and LT thank AM’s lab at College of Pharmacy - OSU for their hospitality.
12. Amar D, Safer H, Shamir R: Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol. 2013; 9(3): e1002955. PubMed Abstract | Publisher Full Text | Free Full Text

13. de la Fuente A: From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010; 26(7): 326–333. PubMed Abstract | Publisher Full Text

14. Lai Y, Wu B, Chen L, et al: A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics. 2004; 20(17): 3146–3155. PubMed Abstract | Publisher Full Text

15. Li KC: Genome-wide coexpression dynamics: theory and application. Proc Natl Acad Sci U S A. 2002; 99(26): 16875–16880. PubMed Abstract | Publisher Full Text | Free Full Text

16. Dettling M, Gabrielson E, Parmigiani G: Searching for differentially expressed gene combinations. Genome Biol. 2005; 6(10): R88. PubMed Abstract | Publisher Full Text | Free Full Text

17. Watson M: CoXpress: differential co-expression in gene expression data. BMC Bioinformatics. 2006; 7: 509. PubMed Abstract | Publisher Full Text | Free Full Text

18. Mani KM, Letofsva C, Wang K, et al: A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol. 2008; 4: 169. PubMed Abstract | Publisher Full Text | Free Full Text

19. Hu R, Qiu X, Glazko G, et al: Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. Bioinformatics. 2009; 25(18): 2320–2327. PubMed Abstract | Publisher Full Text | Free Full Text

20. Cho SB, Kim J, Kim JH: Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics. 2009; 10: 109. PubMed Abstract | Publisher Full Text | Free Full Text

21. Skinner J, Kottiar Y, Varma S, et al: Construct and Compare Gene Coexpression Networks with DiffFinder and DAView. BMC Bioinformatics. 2011; 12: 286. PubMed Abstract | Publisher Full Text | Free Full Text

22. Dawson JA, Ye S, Kondziolka C: REBoxpress: an empirical Bayesian framework for discovering differential co-expression. Bioinformatics. 2012; 28(14): 1939–40. PubMed Abstract | Publisher Full Text | Free Full Text

23. Fukushima A: DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene. 2013; 518(1): 209–214. PubMed Abstract | Publisher Full Text | Free Full Text

24. Choi JK, Yu U, Ooi J, et al: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics. 2005; 21(24): 4348–4355. PubMed Abstract | Publisher Full Text

25. Pronk TE, van Someren EP, Stierum RH, et al: Choi JK, Yu U, Ooi J, et al: Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun. 2013; 4: 1806. PubMed Abstract | Publisher Full Text | Free Full Text

26. Thomas LD, Fossaaluza V, Yambartsev A: Building complex networks through classical and bayesian statistics - a comparison. In Xi Brazilian Meeting on Bayesian Statistics. APF Conf. Proc. 2012; 12490: 329–331.

27. Cost NG, Czyzyk-Krzeska MF: Regulation of autophagy by two products of one gene: TRPM3 and mir-204. Mol Cell Oncol. 2015; 2(4): e1002712, in press. PubMed Abstract | Publisher Full Text | Free Full Text

28. Hall DP, Cost NG, Hegde S, et al: TRPM3 and mir-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer cell. 2014; 26(5): 738–753. PubMed Abstract | Publisher Full Text | Free Full Text

29. Lee HJ, Pyo JO, Oh Y, et al: AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol. 2007; 9(11): 1303–1310. PubMed Abstract | Publisher Full Text

30. Walker BA, Leone PE, Cheeckio L, et al: A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010; 116(15): e56–e65. PubMed Abstract | Publisher Full Text

31. Cho DY, Kim YA, Przytycka TM, et al: High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma. Blood. 2005; 105(7): 2908–2915. PubMed Abstract | Publisher Full Text

32. Pronk TE, van Someren EP, Stierum R, et al: A six-gene signature predicting breast cancer lung metastasis. Cancer Res. 2008; 68(15): 6092–6099. PubMed Abstract | Publisher Full Text

33. Landerman T, Jackson A, Bellahcene A, et al: Down-regulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer. Int J Oncol. 2010; 37(5): 1261–1265. PubMed Abstract | Publisher Full Text

34. Horlings HM, Lai C, Nuyten DS, et al: Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res. 2010; 16(2): 651–663. PubMed Abstract | Publisher Full Text | Free Full Text

35. Hunter DJ, Kraft P, Jacobs KB, et al: A genome-wide association study identifies alleles in FGRFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007; 39(7): 870–874. PubMed Abstract | Publisher Full Text | Free Full Text

36. Catch M: Cancer genomics and genetics of FGRFR2 (Review). Int J Oncol. 2008; 33(2): 233–237. PubMed Abstract | Publisher Full Text

37. Jang JH, Shin KH, Park JG, et al: Antihormonal effects and mechanisms of AZD4547 on FGRFR2 deregulated endometrial cancer cells. Mol Cancer Ther. 2015; 14(10): 2292–2302. PubMed Abstract | Publisher Full Text

38. Veddidi HM, Andreassen K, Eftersi IA, et al: The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers. Int J Cancer. 2015; 136(4): 844–853. PubMed Abstract | Publisher Full Text | Free Full Text

39. Berman EM, Werbel LM: The renewed potential for folate antagonists in contemporary cancer chemotherapy. J Med Chem. 1991; 34(2): 479–485. PubMed Abstract | Publisher Full Text | Free Full Text

40. Keek Y, Cho H, Hur W, et al: Antihormonal effects and mechanisms of AZD4547 on FGRFR2 deregulated endometrial cancer cells. Mol Cancer Ther. 2015; 14(10): 2292–2302. PubMed Abstract | Publisher Full Text

41. Fang C, Chen X, Li F, et al: Deregulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer. Mol Cancer Ther. 2015; 14(10): 2292–2302. PubMed Abstract | Publisher Full Text

42. Sun S, Ning X, Liu J, et al: Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. Biochem Biophys Res Commun. 2007; 356(4): 864–871. PubMed Abstract | Publisher Full Text

43. Weng G, Bhalla US, Iyengar R: Complexity in biological signaling systems. Science. 1991; 253(5011): 92–96. PubMed Abstract | Publisher Full Text | Free Full Text

44. Morris MR, Ricketts CJ, Gentile D, et al: Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene. 2011; 30(12): 1390–1415. PubMed Abstract | Publisher Full Text | Free Full Text

45. Biwengwanga P, Biust MR, Moerland PD, et al: Gene expression in early stage cervical cancer. Gynecol Oncol. 2008; 108(3): 520–526. PubMed Abstract | Publisher Full Text

46. Ressing ME, Kettenbach J, et al: Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative headneck and cervical cancers. Cancer Res. 2007; 67(10): 4605–4619. PubMed Abstract | Publisher Full Text | Free Full Text

47. Zhang J, Wang XG, Nie F, et al: Complex network analysis of DNA methylation in human breast cancer lung metastasis. Cancer. 2010; 116(8): 2908–2915. PubMed Abstract | Publisher Full Text | Free Full Text

48. Yambartsev A, Perlin M, Kovchevich Y, et al: Unexpected links reflect the noise in networks. Biol Direct. 2016; 11(1): 52. PubMed Abstract | Publisher Full Text
57. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 1 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

58. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 2 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

59. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 3 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

60. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 4 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

61. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 5 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

62. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 6 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]

63. Thomas LD, Vyshenska D, Shulzenko N, et al.: Dataset 7 in: Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research. 2016. [Data Source]
Open Peer Review

Current Referee Status: ✔️ ❓ ❓

Version 1

Referee Report 16 January 2017
doi:10.5256/f1000research.10464.r17875

Fabrício Martins Lopes
Federal University of Technology – Paraná, Cornélio Procópio, Brazil

The manuscript “Differentially correlated genes in co-expression networks control phenotype transitions” investigates the differentially co-expressed genes in two biological processes, a homogeneous one-causal-factor process (B cell deficiency) and a heterogeneous multi-causal system (cervical cancer). The authors have adopted the Pearson correlation and partial correlation for the inference of networks.

Major revision:
• The networks were inferred from local partial correlation method, which is able to identify a linear relationship between two variables X and Y (genes), and this relationship may or may not be mediate by another gene Z. It is not clear why the authors have adopted the Pearson correlation for B cell deficiency analysis and the partial correlation for cervical cancer analysis. Moreover, it would be interesting to highlight the gain obtained by adopting the partial correlation. For instance, what were the relationships inferred with the partial correlation that would not be inferred using Pearson correlation?

• Another important issue is that even with partial correlation, only pairwise of relationships are identified. In the study presented at http://dx.doi.org/10.1109/JSTSP.2008.923841, it presents the Intrinsically Multivariate Predictive (IMP) Genes, which are genes that depend on a subset of predictors. How did the authors deal with these IMP genes?

• It is not clear how and why the microarray data was filtered. The authors could better describe how the data was filtered and how the parameters were adopted.

• The title “Differentially correlated genes in co-expression networks control phenotype transitions” is too rigid leading to the understanding that all correlated genes control the phenotype transitions. I believe that is not true. Authors could provide a more appropriate title.

Minor revisions:
• Page 3: “homogenous” → homogeneous

• Page 4: “correlation lost” → correlation loss;

References
1. Martins D, Braga-Neto U, Hashimoto R, Bittner M, Dougherty E: Intrinsically Multivariate Predictive Genes. *IEEE Journal of Selected Topics in Signal Processing*. 2008; 2 (3): 424-439 Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.

Andrei Zinovyev
Institut Curie, Paris, France

The manuscript "Differentially correlated genes in co-expression networks control phenotype transitions" by Lina Thomas *et al*, is devoted to describing a case study of two transcriptomic datasets with the focus on characterizing pairs of differentially correlated genes, with a limited experimental validation of the conclusions of the statistical analysis.

The manuscript is clear, technically sound and exploits an interesting approach for the analysis of expression data. The conclusions of the statistical analysis are sufficiently justified. I like the detailed and illustrated description of the novel methods exploited the paper. Experimental validation of several findings is a big plus. Therefore, I think the article deserves to be indexed.

I have several remarks for the manuscript which I think should be addressed before approval:

1. I am not completely comfortable with the title of the manuscript, which is quite conceptual, while the content of the paper remains descriptive and does not provide mechanistic insight on how DCG pairs can control the phenotype. I suggest to the authors to have some reflexion on how to make it more adequate.

2. Related to 1), in Introduction the decryption of the mechanisms by which DCG pairs can "contribute to propagation of perturbation" remain very illusive. I suggest to the authors to formulate more clearly at least several hypotheses or scenario by which DCG pairs might appear and play an important role. A figure illustrating such hypotheses would clarify what the authors mean.

3. Figures 1 and 3 are not very informative. Can authors make an effort to improve this aspect (at least, visualize some DC gene names?)

4. The authors do not discuss a possibility that appearance of DC pairs can be a result of differential sample tissue composition from several cell types (i.e., immune cells in jejunum or in a tumor tissue). Discussing this point would be an advantage.

5. In several places, the authors apply terms "upstream", "downstream" with respect to the network which is undirected by its nature. I suggest to underline that the nature of correlation networks does not allow distinguishing causality direction and considering genes "downstream" of the key drivers is only a hypothesis which can not be assessed from the data.
6. Description of the transcriptomic datasets in Materials and Methods is too brief, especially for the cervix dataset which seems to be quite composite. It would be appropriate to specify more clearly the dataset's composition (not simply referring to the original publications) directly in the paper text.

7. One thing which is confusing to me is that the correlation networks are constructed differently for two case studies (direct vs partial). I understood the reason why partial correlation was preferred for the cervical cancer study, however, the question is: can the conclusion about that DC pairs do not contain key drivers in the case of cervical cancer be affected by the difference in the methodology of correlation graph computation? It would be useful to clarify this aspect.

8. The section "Filtering and meta-analysis of microarray data" was not clear to me. I suggest to re-write it.

Minor remarks:

Page 4: "correlation lost" -> "correlation loss"

Description of the partial correlation method refers to a paper (30) which cannot be easily accessed. Direct reference to the arXiv preprint would be more appropriate in this case

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.

Referee Report 20 December 2016

doi: 10.5256/f1000research.10464.r17874

Thiago M. Venancio

Center for Bioscience and Biotechnology, State University of Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28035-200, Brazil

In the present work Thomas *et al.* employed method to find differentially co-expressed genes in co-expression networks of a B lymphocyte deficiency (largely mono-causal) and a complex cervical cancer (multi-causal) dataset. They used different graph-theoretical approaches to find relevant genes in this context.

Interestingly, the authors found that 72% (39/54) of the correlation gains involve at least one Ig gene, which is in agreement with the previously shown association between intestinal gene expression and B cells ability to produce antibodies. Is it possible that these "correlation gains" are merely a consequence of the general enrichment of Ig genes in the DC list?

In the cervical cancer analysis, the authors used shortest-path and betweenness centrality to argue for the regulatory relevance of DC genes. I think it would be great to supplement this finding with more biochemical information. For example, how many of these genes are transcription factors or protein kinases?
Overall, I think this study is technically sound and properly executed.

== Minor corrections
In the abstract, "mus musculus" should read "Mus musculus".

In Figure 2, Ig is underlined as if marked by a spellchecker.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.