Future Artificial Intelligence tools and perspectives in medicine

Ahmad Chaddada,*, Yousef Katibb, Lama Hassana

aSchool of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China

bDepartment of Radiology, Taibah University, Al-Madinah 42353, Saudi Arabia

*Correspondence to Ahmad Chaddad, PhD,
School of artificial Intelligence, Guilin University of Electronic technology,
Guilin, Guangxi 541004, China
Tel.: +1-514-619-0751 or +86-150-7730-5314;
Email: ahmadchaddad@guet.edu.cn or ahmad.chaddad@affiliate.mcgill.ca
Purpose of review

Artificial intelligence (AI) has become popular in medical applications, specifically as a clinical support tool for computer-aided diagnosis. These tools are typically employed on medical data (i.e., image, molecular data, clinical variables, etc.) and used the statistical and machine learning methods to measure the model performance. In this review, we summarized and discussed the most recent radiomic pipeline used for clinical analysis.

Recent findings

Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs. Most AI tools are based on imaging features, known as radiomic analysis that can be refined into predictive models in non-invasively acquired imaging data. This review explores the progress of AI-based radiomic tools for clinical applications with a brief description of necessary technical steps. Explaining new radiomic approaches based on deep learning techniques will explain how the new radiomic models (deep radiomic analysis) can benefit from deep convolutional neural networks and be applied on limited data sets.

Summary

To consider the radiomic algorithms, further investigations are recommended to involve deep learning in radiomic models with additional validation steps on various cancer types.

Keywords

AI, radiomic, deep learning, cancer
Introduction

Artificial intelligence (AI) is a popular term used in many fields for different goals. Currently, AI has potentially boosted health care in terms of clinical practices (1,2). These AI tools are mainly being used for many clinical tasks like diagnosis, treatment, and prognosis (3,4). For example, AI with radiomic models offers a non-invasive method to assess clinical predictions. Given cancer as an example, a standard radiomics is a quantitative technique that extracts features from medical data (i.e., image) and uses these features as input to conventional classifier models (5–10). However, the radiomic analysis can provide a wide range of features from labeled regions/areas that affect the classifier model and lead to model overfitting with a bias in results (11,12). This strategy is well performed on many cancer entities (13–16). Understanding informative features to be used as the input features to classifier models are still limited (17).

Many studies proposing computer-aided diagnostic (CAD) systems to detect and identify tumours on medical images using either radiomics and machine learning or deep learning methods have grown considerably due to increasing interest in AI techniques and their medical applications (1), like the detection (18,19), segmentation (20), classification (21–26) and survival analysis (27). Specifically, convolutional neural networks (CNNs) offer a dynamic model in which the predictive features are extracted directly from images (e.g., MRI, CT-scan, PET, etc.) in an iterative process and avoid the handcraft features. More precisely, the deep CNNs consist of convolutional and pooling layers representing feature extraction and feature selection, respectively. During the CNN training, these features changeable to find the highest informative features in a fully connected layer to then use as input to the classifier (i.e., Softmax) (28,29).

Moreover, CNN has revolutionized image analysis since its remarkable win in the image recognition contest ILSVRC (ImageNet Large Scale Visual Recognition Challenge) in 2012 (30) with many physicians and researchers who have attempted to harness the power of AI (or, more
precisely, CNN) for clinical applications. This happened because it avoids the need to generate detailed features by craftsmanship. One example of strong influence is the efficacious classification of dermoscopy images (31,32).

Nowadays, AI became as a key driver of the conversion of health care to precision medicine. For example, it has achieved a level of precision in interpreting mammograms for breast cancer screening (i.e., area under the ROC curve (AUC) for AI of 0.840, compared with 0.814 for physicians) (33). In 2018, the food and drug administration (FDA) approved the cloud-based Arteries imaging platform as a tool to help physicians track tumors base on computed tomography scans and MRI of lung and liver cancer patients. Also, it was designated as a breakthrough device by the FDA that uses deep learning-based AI algorithms to detect, diagnose and predict certain cancer types. Many examples have been demonstrated the usefulness of deep CNNs. For instance, CNNs have been able to detect colonic polyps or enlarged lymph nodes in computed tomography images (34). Likewise, a deep learning system has been used to detect cancer areas in whole slide images of radical prostatectomy specimens and automatically assign the Gleason score with an accuracy of 0.70 (which is superior to general pathologists) (35,36). Unfortunately, this process looks like a black-box and rarely offered an interpretation related to hidden/shallow layers (27,37). Despite the massive works involving the CNN models with radiomic analysis, overfitting results are still considered one of the deep learning and radiomic model challenges (38).

A combination approach of conventional radiomic and deep CNN is recently proposed to reduce the bias and overfitting (27,39). It approached the understanding ability of information flow through the hidden layers in CNN model. This is likely the term of explainability, which aims to show the most decision model’s informative features (40). This review paper describes the

1 https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
studies related to the AI with radiomic with the main steps of standard radiomic pipeline and deep radiomic models in clinical applications. Therefore, we will identify the most common radiomic model and determine the clinical practices’ advanced steps. To simplify the technical terms, we report the keywords in Table 1.

Table 1: Summary of keywords description

Keywords	Definitions
Deep learning	It can be considered a subset/type of machine learning that uses deep neural networks to train a computer to perform human tasks.
CNN	It is a type of deep learning technique known as deep convolutional neural networks (CNN). It is used for classification, automatic segmentation, detection, and feature generator. Usually, CNN is considered deep CNN since it has more than one layer. CNN architecture is a stack of convolutional and pooling layers, followed by a fully connected layer and classifier (i.e., Softmax).
Overfitting	If the predictive model does much better on the training set than on the validation set, we name it overfitting.
Convolutional layer	It uses filters that perform convolution operations. It is scanning the input image concerning its dimensions. The resulting output is called a feature map or activation map.
Pre-trained CNN network	Is a model trained by other dataset (created by someone else) to solve a problem (classification) that is similar to ours (normal versus cancer).
Entropy functions	It measures the disorder of the image texture.
Quantifiers functions	Use to measure the image feature (or texture) quantitatively.
Omics	Omics represent comprehensive approaches for molecular analysis from a biological sample.

AI-based radiomics

The basic of radiomic pipeline consists of the following steps: Image acquisition based on scanner machine (MRI, CT-Scan, PET, etc.), segmentation of abnormal tissues known as regions of interest (ROI) or gross tumor volume (GTV), and computation of features to build a predictive model (41–45). With deep learning, the radiomic model could be represented by a CNN model that does not need to make the labeling and feature selections. With the advantage of deep CNN, the current radiomic model is based on a hybrid CNN model and standard radiomic. Figure 1
illustrates the development procedure of radiomic pipelines with a large number of medical data. We grouped the radiomic pipelines in three categories as follows:

1. **Standard radiomic pipeline**

 It is the most popular radiomic model. It requires a semi- or fully automatic labeling/segmentation for ROI/GTV, computation of many image features (i.e., shape, histogram, texture; deep CNN features, etc.(46)) are derived from ROI/GTV images (47,48). Furthermore, essential features are selected based on their predictive impact (e.g., the importance of features, dominant features) or/and significance value (e.g., significant features). These features could be analyzed by significance test and/or Spearman correlation or combined to build predictive models. Such models were applied to many cancer types (13,15,43,46,49). This type of radiomic pipelines uses mainly the imaging features (e.g., shape, texture, deep features) with clinical variables (e.g., age, gender, treatment, survival, etc.).
In this context, radiomic features could be used to predict the molecular variable and/or combined to build a predictive model based on radiogenomics and multi-omics data (16,50–58). In such radiomic pipelines, should manage some communications and collaborations. For example, the clinicians must ensure that the appropriate ROIs are being labeled for radiomic (or radiogenomics) analysis. Biological scientists may transfer the molecular features (i.e., genetic and proteomic markers) that will impact the clinical course of a patient. Biomedical scientists
understand the scientific problem and decide what AI algorithm should be developed to make a consistent AI model for radiomics analysis. The discussion with statisticians would allow a quantitative approach to provide a theoretically and statistically significant solution.

2. *Radiomic based CNN*

In deep CNN, images are used as input to the CNN model to predict clinical tasks (e.g., survival, grade, treatment, etc.). Specifically, the CNN model looks like a “black-box” with complicated processing steps. For example, CNN consists of a frequent stack of convolution and pooling layers, followed by one or more fully-connected layers (59–61). Convolution layers generate spatial features from the image. These features represent the local image patterns and texture in initial and deep layers, respectively. For the radiomic model, two strategies could be considered, (a) deep CNN is used in transfer learning strategy (62–65). The basic idea of this strategy is to use a pre-trained CNN network and then use this network’s features as the representation for learning a new task without re-training from scratch. Transferred features can be used directly as input to the new model or adapted to the new task via fine-tuning, (b) Use the CNN for feature extraction, whereas classifications could be performed with conventional classifier models (SVM, Random forest, etc.) due to the small training available data images. The most appropriate features in this scenario are related to the fully connected layer features (66).

3. *Hybrid based radiomics - deep radiomic analysis*

The hybrid radiomic model is based on deep CNNs and a conventional classifier for clinical tasks. For example, CNN is used to generate multiscale textures that encoded via quantifier functions. These function values are then used in a vector features as input to the conventional classifier. A recent example of a new radiomic model (names as deep radiomic analysis) uses
popular deep CNNs to generate multi-scale texture encoded by entropy functions to predict the prostate cancer’s Gleason score (37,67). These texture features are extracted from the hidden (shallow) layers of pretrained CNNs. This model is also known as radiomic based on deep texture features (39). The first kind of such radiomic model was proposed by Chaddad et al. in (68) to predict Alzheimer’s disease. A similar pipeline model was also expanded to be adapted with 2D CNN models in generating deep texture features for predicting the GS of PCa patients (37). Such a radiomic model is proposed to avoid the problem of limited data to improve the model accuracy. This was proved also in recent work that uses the Gaussian Mixture Model (GMM) to encode the CNN features and generate a new radiomic signature to distinguish short-term from long-term survival of pancreatic ductal adenocarcinoma (27). Another example of radiomic model based on CNN and well-known quantifier functions was successfully applied to predict the survival outcome of recurrence brain tumor (69). One known problem is the lack of international collaboration to validate this type of radiomic models, then continuous collaboration and communication between institutions and involved the AI based radiomic approaches will be essential to groups studying deep radiomics analysis.

Explainable AI (XAI)

Explainability is a term used with AI systems related to experts (clinicians) in understanding the processing steps in the medical diagnosis system. More precisely, how the experts can involve in the AI systems and make the decisions. We limit the term of explainability in deep learning models that can be an open question for the future. Given CNN’s hidden layers as an example of explainability, the neurons with their weight are considered as a black-box (40,70,71). A massive effort is currently trying to clarify the concept of XAI in the medical field (72–74). One of the
efforts is represented by the recent works of Chaddad et al., which focus on understanding the flow of information in deep CNN during the training of data images for patients with a brain (69), prostate (37), and Alzheimer (39,68). Also, more details about deep learning with XAI methods are explained in (40,75).

Unfortunately, with these advanced algorithms, their clinical use in predicting individual risk is still limited (76). Unlike the current clinical settings, this perhaps is not a concern for manufacturing outlets, smart biomedical devices, a robot with surgical-aid workflow, etc. XAI with AI ethical standards lead to significant aspects in AI-based solutions.

Future AI and key challenges

AI with radiomic application is expected to follow the clinical demands closely and may require deep analysis to understand the underlying tissue characteristics and their relation with omics data (e.g., genomics, proteomics, DNA, RNA, etc.). Despite the advanced AI with radiomic models, unfortunately, a minority of the prior studies focus on AI-guided immunotherapy, which is recommended to be considered in further work. Also, the main challenge is how we validate the AI models for clinical practice with data derived from multi-center, large-sample, randomized-controlled clinical trials to achieve the goal of personalized medicine.

In this context, public datasets such as The Cancer Genome Atlas (TCGA) (77), The Cancer Imaging Archive (78), and The Quantitative Imaging Network (79) will boost the validation steps of the AI techniques to improve the radiomics stability. However, there is still the barrier of labeling the ROI that could be solved using the automatic mode based on deep learning (e.g., UNet, etc.) (80–83) and, recently, the application of domain adaptation (84). Moreover, deep
learning models could perfectly work with extensive data analysis and improve the performance metrics. Here the clinicians (e.g., radiologists) must be involved in the AI development models suggested in XAI. We have to note the information security, privacy, and ethical issues that put the AI-radiomics analysis front many administrative steps that request more time. In the future, we see the radiomic models based on AI will consider the combination of many modalities (MRI, PET, CT, etc.) with big data (e.g., multi-omics) and clinical information to implement AI models for precision medicine.

Conclusion

In the review, we provide a brief overview of AI with radiomics tool in clinical applications. Specifically, this survey clarified the algorithm types used in radiomic analysis. However, AI’s potential value with radiomics and explainability in clinical practice has not been fully investigated. For this reason, expanding the advanced AI tools and adjusting these techniques to be more clinically significant trends is recommended. With the progress of deep learning models applied to extensive public data, AI-based radiomics can facilitate clinical decision making non-invasively. Despite several AI scenarios with radiomic applications, the key challenge remains to ensure public access to comprehensive clinical and radiological related evidence leading to AI practice.
Key points

Artificial intelligence (AI) based radiomic is currently investigated to achieve the goal of personalized medicine.

Current studies showed that AI with radiomic analysis tools needs more validation steps to be involved in the clinical practice.

However, most of the available studies have a limited database, which is one of the most challenging for AI tools.

Further studies with a combination between standard radiomics and deep learning are needed to provide a generalizable AI tool.

Acknowledgements

None.

Financial support and sponsorship

Research supported by Foreign Young Talents Program (No. QN20200233001). The funding agency has no role in the conceptualization of the study, data collection and analysis, or the decision to publish these results.

Conflicts of interest

There are no conflicts of interest.
References

1. Szolovits P. Artificial intelligence in medicine. Routledge; 2019.

2. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020 May;111(5):1452–60.

3. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters. 2020;471:61–71.

4. Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and Structural Biotechnology Journal. 2020;

5. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. European journal of nuclear medicine and molecular imaging. 2019;1–17.

6. Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol. 2019 Nov;25(6):485–95.

7. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. Journal of radiation research. 2019;60(1):150–7.

8. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Computational and structural biotechnology journal. 2019;17:995.

9. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015;5:13087.

10. Park CM. Can Artificial Intelligence Fix the Reproducibility Problem of Radiomics? Radiological Society of North America; 2019.

11. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiel P, Gibbs P, et al. Introduction to Radiomics. Journal of Nuclear Medicine. 2020 Apr 1;61(4):488–95.

12. Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20:1–10.

13. Chaddad A, Kucharczyk MJ, Niazi T. Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer. Cancers (Basel). 2018 Jul 28;10(8).

** In this paper, the authors performed a new radiomic model based on a joint intensity matrix (JIM) to predict the Gleason score (GS) of prostate cancer (PCA). This study demonstrated that the features based on the Joint Intensity matrix are more significant than the classical features based on the Grey Level Co-occurrence Matrix (GLCM) in predicting the GS of PCA.

14. Chaddad A, Desrosiers C, Toews M, Abdulkarim B. Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget. 2017;8(61):104393.

* This study investigates the prediction of Non-small cell lung cancer (NSCLC) patient survival outcomes based on radiomic texture and shape features automatically extracted from tumor image data. This study demonstrate that quantitative lung CT imaging features can be used as indicators of survival, particularly for patients with large-cell carcinoma, primary-tumor-sizes, and no lymph-node-metastasis.

15. Chaddad A, Desrosiers C, Bouridane A, Toews M, Hassan L, Tanougast C. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery. PLOS ONE. 2016 Feb 22;11(2):e0149893.
16. Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B. Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers. 2019 Aug;11(8):1148.

* This study analyzed the impact of multi-omics (genetic, protein expressions, RNA) combined with radiomic features and clinical variables to predict the survival outcome of GBM with IDH1 wild type. On multivariable analysis, radiomic (sum of squares variance, large zone/low gray emphasis, autocorrelation), clinical (therapy type, age), genetic (CIC, PIK3R1, FUBP1), and protein expression (p53, vimentin) lead to significant AUC of 78.24% (p = 2.9 × 10−5). This study demonstrates that the combinations of radiomic with multi-omics can improve the capacity to predict IDH1 wild-type GBM patients' outcomes.

17. Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statitical Perspectives. Korean J Radiol. 2019 Jul;20(7):1124–37.

18. Brunese L, Mercaldo F, Reginelli A, Santone A. An ensemble learning approach for brain cancer detection exploiting radiomic features. Computer methods and programs in biomedicine. 2020;185:105134.

19. Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection. Cancer Epidemiology and Prevention Biomarkers. 2020;29(12):2556–67.

20. Feng X, Tustison NJ, Patel SH, Meyer CH. Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using radiomic features. Frontiers in Computational Neuroscience. 2020;14:25.

21. Bardis MD, Houshyar R, Chang PD, Ushinsky A, Glavis-Bloom J, Chahine C, et al. Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends. Cancers. 2020;12(5):1204.

22. Raciti P, Sue J, Ceballos R, Godrich R, Kunz JD, Kapur S, et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology. 2020;1–9.

23. Mortensen MA, Borrelli P, Poulsen MH, Enqvist O, Ulén J, et al. Artificial intelligence-based versus manual assessment of prostate cancer in the prostate gland: a method comparison study. Clinical physiology and functional imaging. 2019;39(6):399–406.

24. Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. The Lancet Oncology. 2020;21(2):222–32.

25. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology. 2019 May 15;1.

26. Eminaga O, Loening A, Lu A, Brooks JD, Rubin D. Detection of prostate cancer and determination of its significance using explainable artificial intelligence. American Society of Clinical Oncology; 2020.

27. Chaddad A, Sargos P, Desrosiers C. Modeling texture in deep 3D CNN for survival analysis. IEEE Journal of Biomedical and Health Informatics. 2020;1–1.

** This is an interesting study of survival analysis based on deep radiomic analysis. Texture features are extracted from deep convolutional neural networks and encoded by Gaussian Mixture Model (GMM). These new features (GMM-CNN) are used as input to random forest classifiers to predict pancreatic ductal adenocarcinoma (PDAC) survival groups. This radiomic model suggests that the proposed GMM-CNN features used with an RF classifier can significantly improve the prognosis of PDAC patients’ capacity.

28. Majid A, Khan MA, Yasmin M, Rehman A, Yousaftzai A, Tariq U. Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy research and technique. 2020;83(5):562–76.

29. Sharif MI, Li JP, Khan MA, Saleem MA. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters. 2020;129:181–9.
30. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May;521(7553):436–44.

31. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115–8.

32. Yu L, Chen H, Dou Q, Qin J, Heng P. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Transactions on Medical Imaging. 2017 Apr;36(4):994–1004.

33. Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst. 2019 Sep 1;111(9):916–22.

34. Wang K-W, Dong M. Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. World J Gastroenterol. 2020 Sep 14;26(34):5090–100.

35. Nagpal K, Foote D, Tan F, Liu Y, Chen P-HC, Steiner DF, et al. Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA oncology. 2020;6(9):1372–80.

36. Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. npj Digital Medicine. 2019 Jun 7;2(1):1–10.

37. Chaddad A, Kucharczyk MJ, Desrosiers C, Okuwobi IP, Katib Y, Zhang M, et al. Deep Radiomic Analysis to Predict Gleason Score in Prostate Cancer. IEEE Access. 2020;8:167767–78.

** This study proposes to use the deep entropy features (DEFs) that quantified CNN features to predict the GS of PCA. This approach performed using nine pre-trained CNN models. The results show that DEFs can differentiate GS of PCa lesions with the highest accuracy of GS ≥8 based on multi-parametric MRI.

38. Piccialli F, Somma VD, Giampaolo F, Cuomo S, Fortino G. A survey on deep learning in medicine: Why, how and when? Information Fusion. 2021 Feb 1;66:111–37.

39. Chaddad A, Toews M, Desrosiers C, Niazi T. Deep Radiomic Analysis Based on Modeling Information Flow in Convolutional Neural Networks. IEEE Access. 2019;7:97242–52.

** This paper proposed novel imaging features based on the conditional entropy (CENT) of filter outputs in a deep CNN. The results show that CENT features can lead to a higher classification performance than the CNN’s standard SoftMax output.

40. Singh A, Sengupta S, Lakshminarayanan V. Explainable Deep Learning Models in Medical Image Analysis. Journal of Imaging. 2020 Jun;6(6):52.

41. Merisaari H, Taimen P, Shiradkar R, Ettala O, Pesola M, Saunavaara J, et al. Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer. Magnetic Resonance in Medicine. 2020;83(6):2293–309.

42. Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C, et al. Repeatability of Multiparametric Prostate MRI Radiomics Features. Scientific Reports. 2019 Jul 1;9(1):9441.

43. Madabhushi A, Algohary A, Shiradkar R. Predicting prostate cancer risk of progression with multiparametric magnetic resonance imaging using machine learning and peritumoral radiomics [Internet]. US20200005931A1, 2020 [cited 2020 Sep 1]. Available from: https://patents.google.com/patent/US20200005931A1/en

44. Abdollahi H, Mofid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, et al. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med. 2019 Jun;124(6):555–67.
45. Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H, Yakar D. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol. 2020 Mar 1;30(3):1313–24.

46. Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, Niazi T, et al. Radiomics in glioblastoma: current status and challenges facing clinical implementation. Frontiers in oncology. 2019;9.

47. Song Y, Zhang J, Zhang Y, Hou Y, Yan X, Wang Y, et al. FeAture Explorer (FAE): A tool for developing and comparing radiomics models. Plos one. 2020;15(8):e0237587.

48. Bibault J-E, Xing L, Giraud P, El Ayachy R, Giraud N, Decazes P, et al. Radiomics: A primer for the radiation oncologist. Cancer/Radiothérapie. 2020 Aug 1;24(5):403–10.

49. Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting gleason score of prostate cancer patients using radiomic analysis. Frontiers in oncology. 2018;8:630.

50. Biswas N, Chakrabarti S. Artificial Intelligence (AI)-Based Systems Biology Approaches in Multi-Omics Data Analysis of Cancer. Frontiers in Oncology. 2020;10.

51. Visvikis D, Le Rest CC, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio (geno)mics: definitions and nuclear medicine imaging applications. European journal of nuclear medicine and molecular imaging. 2019;46(13):2630–7.

52. Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-based prediction of molecular therapy targets in NSCLC by radiogenomics and AI approaches: a systematic review. Diagnostics. 2020;10(6):359.

53. Trivizakis E, Papadakis GZ, Souglakos I, Papanikolaou N, Koumakis L, Spandidos DA, et al. Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care. International Journal of Oncology. 2020;57(1):43–53.

**This paper aimed to elucidate recent advances in radiogenomics research, focusing on deep learning with an emphasis on radiology and oncology applications. The main deep learning radiogenomics architectures, together with the clinical questions addressed and the achieved genetic or molecular correlations, were presented.

54. Wijethilake N, Islam M, Meedeniya D, Chitraranjan C, Perera I, Ren H. Radiogenomics of glioblastoma: Identification of radiomics associated with molecular subtypes. In: Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. Springer; 2020. p. 229–39.

55. Chaddad A, Daniel P, Desrosiers C, Toews M, Abdulkarim B. Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time. IEEE journal of biomedical and health informatics. 2018;23(2):795–804.

56. Chaddad A, Desrosiers C, Abdulkarim B, Niazi T. Predicting the Gene Status and Survival Outcome of Lower Grade Glioma Patients With Multimodal MRI Features. IEEE Access. 2019;7:75976–84.

57. Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, et al. Bringing radiomics into a multi-omics framework for a comprehensive genotype–phenotype characterization of oncological diseases. Journal of Translational Medicine. 2019 Oct 7;17(1):337.

58. Zanfardino M, Castaldo R, Pane K, Affinito O, Aiello M, Salvatore M, et al. MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies. Scientific Reports. 2021;11(1):1–13.
59. Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M. A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization. Academic Radiology [Internet]. 2020 Jul 10 [cited 2021 Jan 28]; Available from: http://www.sciencedirect.com/science/article/pii/S1076633220303664

60. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep Learning: A Primer for Radiologists. RadioGraphics. 2017 Nov 1;37(7):2113–31.

61. Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, et al. Deep Learning in Medical Imaging: General Overview. Korean J Radiol. 2017 Aug;18(4):570–84.

62. Han W, Qin L, Bay C, Chen X, Yu K-H, Miskin N, et al. Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. American Journal of Neuroradiology. 2020;41(1):40–8.

**This study reports the production of a combined deep learning and radiomics model to predict overall survival in a clinically heterogeneous cohort of patients with high-grade gliomas. It demonstrates that a deep learning model combining deep and radiomics features can dichotomize patients with high-grade gliomas into long- and short-term survivors.

63. Xue L-Y, Jiang Z-Y, Fu T-T, Wang Q-M, Zhu Y-L, Dai M, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. European radiology. 2020;1–11.

64. Abbasi AA, Hussain L, Awan IA, Abbasi I, Majid A, Nadeem MSA, et al. Detecting prostate cancer using deep learning convolutional neural network with transfer learning approach. Cognitive Neurodynamics. 2020;14(4):523–33.

65. Șerbănescu M-S, Manea NC, Streba L, Belciug S, Pleșea IE, Pirici I, et al. Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks. Romanian Journal of Morphology and Embryology. 2020;61(1):149.

66. Zhang X, Liang M, Yang Z, Zheng C, Wu J, Ou B, et al. Deep Learning-Based Radiomics of B-Mode Ultrasonography and Shear-Wave Elastography: Improved Performance in Breast Mass Classification. Front Oncol [Internet]. 2020 [cited 2021 Jan 28];10. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2020.01621/full?utm_source=S-TWT&utm_medium=SNET&utm_campaign=ECO_FONC_XXXXXXXX_auto-dlvrit

67. Chaddad A, Kucharczyk MJ, Cheddad A, Clarke SE, Hassan L, Ding S, et al. Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review. Cancers. 2021 Jan;13(3):552.

**This is a narrative review of artificial intelligence (AI) for personalized prostate cancer diagnosis. It described the potential power of AI-based approaches that can address the field of radiomics to undergo clinical translation in the near future.

68. Chaddad A, Desrosiers C, Niazi T. Deep Radiomic Analysis of MRI Related to Alzheimer’s Disease. IEEE Access. 2018;6:58213–21.

69. Chaddad A, Zhang M, Desrosiers C, Niazi T. Deep Radiomic Features from MRI Scans Predict Survival Outcome of Recurrent Glioblastoma. In: Radiomics and Radiogenomics in Neuro-oncology [Internet]. Springer, Cham; 2019 [cited 2020 Mar 6]. p. 36–43. Available from: https://link.springer.com/chapter/10.1007/978-3-030-40124-5_4

70. Meyes R, de Puiseau CW, Posada-Moreno A, Meisen T. Under the hood of neural networks: Characterizing learned representations by functional neuron populations and network ablations. arXiv preprint arXiv:200401254. 2020;
71. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 2020 Jun 1;58:82–115.

72. Ploug T, Holm S. The four dimensions of contestable AI diagnostics-A patient-centric approach to explainable AI. Artificial Intelligence in Medicine. 2020;101901.

73. Suh J, Yoo S, Park J, Cho SY, Cho MC, Son H, et al. Development and validation of an explainable artificial intelligence-based decision-supporting tool for prostate biopsy. BJU International. 2020;126(6):694–703.

74. Das A, Rad P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv:200611371 [cs] [Internet]. 2020 Jun 22 [cited 2021 Jan 6]; Available from: http://arxiv.org/abs/2006.11371

75. Alber M, Lapuschkin S, Seegerer P, Hägele M, Schütt KT, Montavon G, et al. iNNvestigate Neural Networks! Journal of Machine Learning Research. 2019;20(93):1–8.

76. Asan O, Bayrak AE, Choudhury A. Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. Journal of Medical Internet Research. 2020;22(6):e15154.

**This paper focuses on clinicians as the primary users of AI systems in health care and presents trust between clinicians and AI. They also highlight critical challenges related to trust that should be considered during the development of any AI system for clinical use.

77. The molecular taxonomy of primary prostate cancer. Cell. 2015 Nov 5;163(4):1011–25.

78. Zuley ML, Jarosz R, Drake BF, Rancilio D, Klim A, Rieger-Christ K, et al. Radiology Data from The Cancer Genome Atlas Prostate Adenocarcinoma [TCGA-PRAD] collection [Internet]. 2020 [cited 2020 Sep 15]. Available from: https://wiki.cancerimagingarchive.net/x/tgpp

79. Fedorov A, Tempany C, Mulkern R, Fennessy F. Data From QIN PROSTATE [Internet]. The Cancer Imaging Archive; 2016 [cited 2020 Sep 15]. Available from: https://wiki.cancerimagingarchive.net/x/QQATAQ

80. Rundo L, Han C, Zhang J, Hataya R, Nagano Y, Militello C, et al. CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. Neural Approaches to Dynamics of Signal Exchanges. 2020;269–80.

81. Yaniv O, Portnoy O, Talmon A, Kiyriati N, Konen E, Mayer A. V-Net Light - Parameter-Efficient 3-D Convolutional Neural Network for Prostate MRI Segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Iowa, IA, USA; 2020. p. 442–5.

82. Sultana S, Robinson A, Song DY, Lee J. CNN-based hierarchical coarse-to-fine segmentation of pelvic CT images for prostate cancer radiotherapy. In: Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling [Internet]. International Society for Optics and Photonics; 2020 [cited 2020 Sep 15]. p. 113151I. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11315/113151I/CNN-based-hierarchical-coarse-to-fine-segmentation-of-pelvic-CT/10.1117/12.2549979.short

83. Ushinsky A, Bardis M, Glavis-Bloom J, Uchio E, Chantaduly C, Nguyentat M, et al. A 3D/2D Hybrid U-Net CNN approach to prostate organ segmentation of mpMRI. American Journal of Roentgenology [Internet]. 2020 Aug 19 [cited 2020 Sep 15]; Available from: https://www.ajronline.org/doi/abs/10.2214/AJR.19.22168

84. Ren J, Hachalilloglu I, Singer EA, Foran DJ, Qi X. Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 [Internet]. Springer, Cham; 2018 [cited 2020 Sep 15]. p. 201–9. Available from: https://link.springer.com/chapter/10.1007/978-3-030-00934-2_23
