DISPERSE ESTIMATES FOR LINEARIZED WATER WAVE TYPE EQUATIONS IN \mathbb{R}^d

TILAHUN DENEKE, TAMIRAT T. DUFERA, AND ACHENEF TESFAHUN

Abstract. We derive a $L^1_\mathcal{X}(\mathbb{R}^d) - L^\infty_\mathcal{X}(\mathbb{R}^d)$ decay estimate of order $O\left(t^{-d/2}\right)$ for the linear propagators

$$\exp\left(\pm it\sqrt{|D|(1+\beta|D|^2)\tanh|D|}\right), \quad \beta \in \{0,1\}. \quad D = -i\nabla,$$

with a loss of $3d/4$ or $d/4$ derivatives in the case $\beta = 0$ or $\beta = 1$, respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter β measures surface tension effects. As an application we prove low regularity well-posedness for a Whitham–Boussinesq type system in \mathbb{R}^d, $d \geq 2$. This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in \mathbb{R} and \mathbb{R}^2.

1. Introduction

In this paper, we derive a $L^1_\mathcal{X}(\mathbb{R}^d) - L^\infty_\mathcal{X}(\mathbb{R}^d)$ time-decay estimate for the linear propagators

$$S_{m_\beta}(\pm t) := \exp (\mp it m_\beta(D)),$$

where

$$m_\beta(D) = \sqrt{|D|(1+\beta|D|^2)\tanh|D|}$$

with $\beta \in \{0,1\}$ and $D = -i\nabla$. The pseudo-differential operator $m_\beta(D)$ appears in linearized water wave type equations. The cases $\beta = 0$ and $\beta = 1$ correspond respectively to purely gravity waves and capillary-gravity waves.

For instance, consider the Whitham equation without or with surface tension (see e.g., [9, 12])

$$u_t + L_\beta u_x + u u_x = 0, \quad (\beta \geq 0), \quad (1.1)$$

where $u : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, and the non-local operator L_β is related to the dispersion relation of the (linearized) water waves system and is defined by

$$L_\beta := L_\beta(D) = \sqrt{(1+\beta|D|^2) K(D)}$$

with

$$K(D) = \frac{\tanh|D|}{|D|} \quad (D = -i\nabla = -i\partial_x).$$

The linear part of (1.1) can be written as

$$i u_t - m_\beta(D) u = 0, \quad (1.2)$$

2010 Mathematics Subject Classification. 58Q53, 35Q35, 76B15, 35A01, 76B03.

Key words and phrases. Water waves, Whitham-Boussinesq systems, Dispersive estimates, Well-posedness.
where
\[\tilde{m}_\beta(D) = DL_\beta(D) = \frac{D}{|D|} m_\beta(D). \]

In terms of Fourier symbols we have \(\tilde{m}_\beta(\xi) = \text{sgn}(\xi) m_\beta(\xi) \). So the solution propagator for (1.2) is given by \(\delta_{\tilde{m}_\beta}(t) = \exp \left(-it\tilde{m}_\beta(D) \right) \). In fact, both \(\delta_{\tilde{m}_\beta}(t) \) and \(\delta_{m_\beta}(t) \) satisfy the same \(L^1_x(\mathbb{R}) - L^\infty_x(\mathbb{R}) \) time-decay estimate.

As another example, consider the full dispersion Boussinesq system (see e.g., [8, 10])
\[
\begin{align*}
\eta_t + L^2_\beta \nabla \cdot v + \nabla \cdot (\eta v) &= 0 \\
v_t + \nabla \eta + \nabla |v|^2 &= 0,
\end{align*}
\]
where \(\eta, v : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \; v : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d \).

This system describes the evolution with time of surface waves of a liquid layer, where \(\eta \) and \(v \) denote the surface elevation and the fluid velocity, respectively. One can derive an equivalent system of (1.3), by diagonalizing its linear part. Indeed, define
\[
w_\pm = \eta \mp iL_\beta \mathcal{R} \cdot v, \quad 2L_\beta,
\]
where \((\eta, v)\) is a solution to (1.3), and \(\mathcal{R} = |D|^{-1}\nabla \) is the Riesz transform. Then the linear part of the system (1.3) transforms to
\[
 i\partial_t w_\pm \mp m_\beta(D)w_\pm = 0 \tag{1.4}
\]
whose corresponding solution propagators are \(\delta_{m_\beta}(\pm t) = \exp \left(\mp itm_\beta(D) \right) \).

As a third example, consider the Whitham–Boussinesq type system (see e.g., [1, 2, 3, 4])
\[
\begin{align*}
\partial_t \eta + \nabla \cdot v &= -K \nabla \cdot (\eta v), \\
\partial_t v + L^2_\beta \nabla \eta &= -K \nabla (|v|^2/2).
\end{align*}
\]
Again, by defining the new variables
\[
u_\pm = \frac{L_\beta \eta \mp i\mathcal{R} \cdot v}{2L_\beta}, \tag{1.6}
\]
we see that the linear part of (1.5) transforms to
\[
 i\partial_t u_\pm \mp m_\beta(D)u_\pm = 0 \tag{1.7}
\]
whose solution propagators are again \(\delta_{m_\beta}(\pm t) = \exp \left(\mp itm_\beta(D) \right) \).

So the linear propagators \(\delta_{m_\beta}(\pm t) \) appear in all of the equations (1.1), (1.3) and (1.5). Since the symbol \(m_\beta \) is non-homogeneous, we will derive a time-decay estimate from
\[
\delta_{m_\beta}(\pm t) : L^1_x(\mathbb{R}^d) \to L^\infty_x(\mathbb{R}^d)
\]
for frequency localised functions. To this end, we fix a smooth cutoff function \(\chi \) such that
\[
\chi \in C^\infty_0(\mathbb{R}), \quad 0 \leq \chi \leq 1, \quad \chi_{[-1,1]} = 1 \quad \text{and} \quad \text{supp}(\chi) \subset [-2,2].
\]
Set
\[
\rho(s) = \chi(s) - \chi(2s).
\]
Thus, supp $\rho = \{s \in \mathbb{R} : 1/2 < |s| < 2\}$. For $\lambda \in 2\mathbb{Z}$ we set $\rho_\lambda (s) := \rho (s/\lambda)$ and define the frequency projection P_λ by

$$P_\lambda \tilde{f} (\xi) = \rho_\lambda (|\xi|) \tilde{f} (\xi).$$

Sometimes, we write $f_\lambda := P_\lambda f$.

Notation. For any positive numbers a and b, the notation $a \lesssim b$ stands for $a \leq c b$, where c is a positive constant that may change from line to line. Moreover, we denote $a \sim b$ when $a \lesssim b$ and $b \lesssim a$. We also set $\langle x \rangle := (1 + |x|^2)^{1/2}$.

For $1 < p < \infty$, $L^p_\beta (\mathbb{R}^d)$ denotes the usual Lebesgue space and for $s \in \mathbb{R}$, $H^s (\mathbb{R}^d)$ is the L^2-based Sobolev space with norm $\|f\|_{H^s} = \|\langle D\rangle^s f\|_{L^2}$. If $T > 0$ and $1 \leq q < \infty$, we define the spaces $L^q ([0, T) : L^r (\mathbb{R}^d))$ and $L^q (\mathbb{R} : L^r (\mathbb{R}^d))$ respectively through the norms

$$\|f\|_{L^q_1 L^r_T} = \left(\int_0^T \|f(\cdot, t)\|_{L^r_T}^q \, dt \right)^{1/q} \quad \text{and} \quad \|f\|_{L^q L^r_T} = \left(\int_{\mathbb{R}} \|f(\cdot, t)\|_{L^r_T}^p \, dt \right)^{1/q},$$

when $1 \leq q < \infty$, with the usual modifications when $q = +\infty$.

Our first result is as follows:

Theorem 1 (Localised dispersive estimate). Let $\beta \in \{0, 1\}$, $d \geq 1$ and $\lambda \in 2\mathbb{Z}$. Then

$$\|S_{m_\beta} (\pm t) f_\lambda\|_{L^q_1 L^r_T (\mathbb{R}^d)} \lesssim c_{\beta, d}(\lambda) |t|^{-\frac{d}{r}} \|f\|_{L^1_1 (\mathbb{R}^d)}$$

(1.8)

for all $f \in S(\mathbb{R}^d)$, where

$$c_{\beta, d}(\lambda) = \lambda^{\frac{d}{r}} - 1 \langle \sqrt{\beta} \lambda \rangle^{-\frac{d}{r}} (\lambda)^{\frac{d}{r} + 1}.$$

(1.9)

Remark 1. In view of (1.9) the loss of derivatives (this corresponds to the exponent of λ) is $3d/4$ in the case $\beta = 0$, whereas the loss is $d/4$ when $\beta = 1$.

Once Theorem 1 is proved, the corresponding Strichartz estimates are deduced from a classical TT* argument.

Theorem 2 (Localised Strichartz estimate). Let $\beta \in \{0, 1\}$, $d \geq 1$ and $\lambda \in 2\mathbb{Z}$. Assume that the pair (q, r) satisfies the following conditions:

$$2 < q \leq \infty, \quad 2 \leq r \leq \infty, \quad \frac{2}{q} + \frac{d}{r} = \frac{d}{2}.$$

(1.10)

Then

$$\left\| S_{m_\beta} (\pm t) f_\lambda \right\|_{L^q_1 L^r_T (\mathbb{R}^{d+1})} \lesssim \left[c_{\beta, d}(\lambda) \right]^{\frac{d}{r}} \| f_\lambda \|_{L^1_1 (\mathbb{R}^d)},$$

(1.11)

$$\int_0^t \left\| S_{m_\beta} (\pm (t - s)) F_\lambda (s) ds \right\|_{L^q_1 L^r_T (\mathbb{R}^{d+1})} \lesssim \left[c_{\beta, d}(\lambda) \right]^{\frac{d}{r}} \| F_\lambda \|_{L^1_1 L^r_T (\mathbb{R}^{d+1})},$$

(1.12)

for all $f \in S(\mathbb{R}^d)$ and $F \in S(\mathbb{R}^{d+1})$, where $c_{\beta, d}(\lambda)$ is as in (1.9).

As an application of Theorem 2 we prove low regularity well-posedness for the system (1.5) with $\beta = 0$ (i.e., for purely gravity waves) in \mathbb{R}^d, $d \geq 2$. To this end, we complement the system (1.5) with initial data

$$\eta(0) = \eta_0 \in H^s (\mathbb{R}^d), \quad v(0) = v_0 \in \left(H^{s+1/2} \left(\mathbb{R}^d \right) \right)^d.$$

(1.13)
Theorem 3. Let $\beta = 0$, $d \geq 2$ and $s > \frac{d}{2} - \frac{3}{4}$. Suppose that \mathbf{v}_0 is a curl-free vector field, i.e., $\nabla \times \mathbf{v}_0 = 0$, and
\[\left\| \eta_0 \right\|_{H^s(\mathbb{R}^d)} + \left\| \mathbf{v}_0 \right\|_{(H^{s+1/2}(\mathbb{R}^d))} \leq D_0. \]
Then there exists a solution
\[(\eta, \mathbf{v}) \in C\left([0, T]; H^s(\mathbb{R}^d) \times \left(H^{s+1/2}(\mathbb{R}^d)\right)^d\right)\]
of the Cauchy problem (1.5), (1.13), with existence time $1 \leq D^{-2}$.
Moreover, the solution is unique in some subspace of the above solution space and the solution depends continuously on the initial data.

Remark 2. The following are known results:
(i) Theorem 1 and Theorem 2 are proved in [5] when $\beta = 0$, $d \in \{1, 2\}$ and $\lambda \geq 1$.
(ii) Theorem 3 is proved in [5] when $d = 2$. In the case $d = 1$ local well-posedness for $s > -1/10$ and global well-posedness for small initial data in $L^2(\mathbb{R})$ is also established in [5]. Long-time existence of solution in the case $d = 2$ is also obtained in [14].

Van der Corput’s Lemma will be useful in the proof of Theorem 1.

Lemma 1 (Van der Corput’s Lemma, [13]). Assume $g \in C^1(\alpha, b)$, $\psi \in C^2(\alpha, b)$ and $|\psi''(r)| \geq A$ for all $r \in (\alpha, b)$. Then
\[\left| \int_{\alpha}^{b} e^{it\psi(r)} g(r) \, dr \right| \leq C(At)^{-1/2} \left[|g(b)| + \int_{\alpha}^{b} |g'(r)| \, dr \right], \tag{1.14} \]
for some constant $C > 0$ that is independent of a, b and t.

Lemma 1 holds even if $\psi'(r) = 0$ for some $r \in (\alpha, b)$. However, if $|\psi'(r)| > 0$ for all $r \in (\alpha, b)$, one can use integration by parts to obtain the following Lemma. The proof may be found elsewhere but we include it here for the reader’s convenience.

Lemma 2. Suppose that $g \in C^\infty(\alpha, b)$ and $\psi \in C^\infty(\alpha, b)$ with $|\psi'(r)| > 0$ for all $r \in (\alpha, b)$. If
\[\max_{\alpha \leq r \leq b} |\partial^j_r g(r)| \leq A, \quad \max_{\alpha \leq r \leq b} \left| |\frac{1}{\psi'(r)}\right| \leq B \tag{1.15} \]
for all $0 \leq j \leq N \in \mathbb{N}_0$, then
\[\left| \int_{\alpha}^{b} e^{it\psi(r)} g(r) \, dr \right| \lesssim ABN|t|^{-N}. \tag{1.16} \]

Proof. Let
\[I(t) = \int_{\alpha}^{b} e^{it\psi(r)} g(r) \, dr. \]
For $m, N \in \mathbb{N}_0$, define
\[S_{m,N} := \{(k_1, \ldots, k_N) \in \mathbb{N}_0 : k_1 < \cdots < k_N \leq N \land k_1 + \ldots + k_N = m\}. \]
\[^1 \text{Here we used the notation } a \pm \varepsilon := a \pm \varepsilon \text{ for sufficiently small } \varepsilon > 0. \]
Integration by parts yields
\[
I(t) = I_1(t) = -it^{-1} \int_a^b \partial_r \left(e^{it\psi(r)} \right) \frac{1}{\psi'(r)} g(r) \, dr
\]
\[
= (-it)^{-1} \int_a^b e^{it\psi(r)} \left\{ \frac{1}{\psi'(r)} g'(r) + \partial_r \left(\frac{1}{\psi'(r)} \right) g(r) \right\} \, dr.
\]
Repeating the integration by parts \(N\)-times we get
\[
I(t) = I_N(t) = (-it)^{-N} \sum_{m=0}^N \sum_{(k_1, \ldots, k_N) \in S_{m,N}} C_{k,m,N} \int_a^b e^{it\psi(r)} E_{k,m,N}(r) \, dr,
\]
where \(C_{k,m,N}\) are constants and
\[
E_{k,m,N}(r) = \prod_{j=1}^N \partial_r^{k_j} \left(\frac{1}{\psi'(r)} \right) g^{(N-m)}(r).
\]
Applying (1.15) we obtain
\[
|E_{k,m,N}| \leq \left(\prod_{j=1}^N B \right) A = AB^N
\]
and hence
\[
|I(t)| = |I_N(t)| \lesssim AB^N |t|^{-N}
\]
as desired. \(\square\)

2. Proof of Theorem 1
Without loss of generality we may assume \(\pm = -\) and \(t > 0\). Now we can write
\[
\left[S_{m,\beta} (-t) f_{\lambda} \right](x) = (I_{\lambda}(\cdot, t) * f)(x),
\]
where
\[
I_{\lambda}(x, t) = \lambda^d \int_{\mathbb{R}^d} e^{i\lambda x \cdot \xi + it m_\beta(\lambda \xi)} \rho(|\xi|) \, d\xi.
\]
By Young’s inequality
\[
\|S_{m,\beta} (-t) f_{\lambda}\|_{L^\infty(\mathbb{R}^d)} \leq \|I_{\lambda}(\cdot, t)\|_{L^1(\mathbb{R}^d)} \|f\|_{L^\infty(\mathbb{R}^d)},
\]
and therefore, (1.8) reduces to proving
\[
\|I_{\lambda}(\cdot, t)\|_{L^\infty(\mathbb{R}^d)} \lesssim c_{\beta,d}(\lambda) t^{-d/4}.
\]
Observe that
\[
t \lesssim \lambda^{-1/2} (\sqrt{\beta} \lambda)^{-1} \quad \Rightarrow \quad c_{\beta,d}(\lambda) t^{-d/4} \gtrsim \lambda^d
\]
in which case (2.3) follows from the simple estimate
\[
\|I_{\lambda}(\cdot, t)\|_{L^\infty(\mathbb{R}^d)} \lesssim \lambda^d.
\]
We may therefore assume from now on
\[
t \gg \lambda^{-1/2} (\sqrt{\beta} \lambda)^{-1}.
\]
2.1. **Proof of (2.3) when** \(d = 1\). In the case \(d = 1\) we have

\[
I_\lambda(x,t) = \lambda \int_\mathbb{R} e^{it\phi_\lambda(\xi)} \rho(|\xi|) \, d\xi,
\]

where

\[
\phi_\lambda(\xi) := \lambda \xi x/t + m_\beta(\lambda \xi).
\]

We want to prove

\[
\|I_\lambda(\cdot,t)\|_{L^\infty_\mathbb{R}} \lesssim \lambda^{-1/2} \langle \sqrt{\beta \lambda} \rangle^{-1/2} \langle \lambda \rangle^{-5/4} t^{-1/2} \tag{2.5}
\]

under condition (2.4).

Since \(\text{supp } \rho = \{ \xi \in \mathbb{R} : 1/2 \leq |\xi| \leq 2 \}\), we can write

\[
I_\lambda(x,t) = \lambda \int_{1/2}^{2} e^{it\phi_\lambda(\xi)} \rho(\xi) \, d\xi + \lambda \int_{1/2}^{2} e^{it\phi_\lambda(-\xi)} \rho(\xi) \, d\xi.
\]

We estimate only \(I_\lambda^{+}(x,t)\) as the estimate for \(I_\lambda^{-}(x,t)\) can be derived in exactly the same way. Since

\[
\phi_\lambda'(\xi) = \lambda \left[x/t + m_\beta'(\lambda \xi) \right], \quad \phi_\lambda''(\xi) = \lambda^2 m_\beta''(\lambda \xi) \tag{2.6}
\]

it follows from Lemma 5 that

\[
|\phi_\lambda''(\xi)| \sim \lambda^3 \langle \sqrt{\beta \lambda} \rangle^{-1} \langle \lambda \rangle^{-5/2} \quad \text{for all } \xi \in [1/2, 2]. \tag{2.7}
\]

Now we prove (2.5) by dividing the region of integration into sets of non-stationary contribution: \(\{ \xi : \phi_\lambda'(\xi) \neq 0 \}\) and stationary contribution: \(\{ \xi : \phi_\lambda'(\xi) = 0 \}\).

2.1.1. **Non-stationary contribution.** Since \(m_\beta'\) is positive, the non-stationary contribution occurs if either

\[
x \geq 0 \quad \text{or} \quad 0 < -x \ll \langle \sqrt{\beta \lambda} \rangle \langle \lambda \rangle^{-1/2} t \quad \text{or} \quad -x \gg \langle \sqrt{\beta \lambda} \rangle \langle \lambda \rangle^{-1/2} t.
\]

In this case we have

\[
|\phi_\lambda'(\xi)| \gtrsim \lambda \langle \sqrt{\beta \lambda} \rangle \langle \lambda \rangle^{-1/2} \quad \text{for all } \xi \in [1/2, 2],
\]

where Lemma 5 is also used. Combining this estimate with (2.7) we get

\[
\max_{1/2 \leq \xi \leq 1} \left| \frac{1}{\phi_\lambda'(\xi)} \right| \lesssim \lambda \langle \sqrt{\beta \lambda} \rangle^{-1} \langle \lambda \rangle^{-3/2}.
\]

Now this estimate can be combined with Lemma 2 for \(N = 1\) to estimate \(I_\lambda(x,t)\) as

\[
|I_\lambda^{+}(x,t)| \lesssim \lambda \cdot \lambda \langle \sqrt{\beta \lambda} \rangle^{-1} \langle \lambda \rangle^{-3/2} t^{-1/2} \lesssim \lambda^{-1/2} \langle \sqrt{\beta \lambda} \rangle^{-1/2} \langle \lambda \rangle^{3/2} t^{-1/2} \tag{2.8}
\]

where to get the second line we used (2.4).
2.1.2. Stationary contribution. This occurs if
\[0 < -x \sim (\sqrt{\beta \lambda})^{-\frac{1}{2}} t. \]
In this case we use Lemma 1 and (2.7) to obtain
\[|I^\dagger_\lambda(x, t)| \lesssim \lambda \cdot \left(\lambda^{3/2} (\sqrt{\beta \lambda})^{\frac{5}{2}} \right)^{\frac{1}{2}} \left[|p(2)| + \int_{1/2}^{2} |\rho(\xi)| d\xi \right] \]
\[\lesssim \lambda^{\frac{1}{2}} (\sqrt{\beta \lambda})^{\frac{3}{2}} t^{-\frac{3}{2}}. \]

2.2. Proof of (2.3) when \(d \geq 2 \). To prove (2.3) first observe that \(I_\lambda(x, t) \) is radially symmetric w.r.t \(x \), as it is the inverse Fourier transform of the radial function \(e^{i t m_\beta(\lambda \xi)} \rho(\xi) \). So we can write (see [6, B.5])
\[I_\lambda(x, t) = \lambda^d \int_{1/2}^{2} e^{i t m_\beta(\lambda \xi)} \left(\frac{\xi}{\lambda^{d-1}} \right) d\xi. \]
where \(J_\alpha(r) \) is the Bessel function:
\[J_\alpha(r) = \frac{(r/2)^\alpha}{\Gamma(\alpha + 1/2) \sqrt{\pi}} \int_{-1}^{1} e^{irs} (1 - s^2)^{\alpha-1/2} ds \quad \text{for } \alpha > -1/2. \]
The Bessel function \(J_\alpha(r) \) satisfies the following properties for \(\alpha > -1/2 \) and \(r > 0 \) (see [6, Appendix B] and [13]):
\[J_\alpha(r) \leq C r^\alpha, \quad J_\alpha(r) \leq C r^{-1/2}, \] \[\partial_r [r^{-\alpha} J_\alpha(r)] = -r^{-\alpha} J_{\alpha + 1}(r). \]
Moreover, it is known that (see [7, Chapter 1, Eq. (1.5)]),
\[r^{-\frac{d-2}{2}} J_{\frac{d-2}{2}}(s) = e^{is h(s)} + e^{-is \tilde{h}(s)} \]
for some function \(h \) satisfying the decay estimate
\[|\partial_k^k h(r)| \leq C_k(r)^{-\frac{d-k}{2}} \quad (k \geq 0). \]
We use the short hand
\[m_\beta(\lambda \xi) = m_\beta(\lambda r), \quad \tilde{J}_\alpha(r) = r^{-\alpha} J_\alpha(r), \quad \tilde{\rho}(r) = r^{d-1} \rho(r). \]
Hence
\[I_\lambda(x, t) = \lambda^d \int_{1/2}^{2} e^{i t m_\beta(\lambda r)} \tilde{J}_{d-2}(\lambda r) \tilde{\rho}(r) dr, \]
We prove (2.3) by treating the cases \(|x| \lesssim \lambda^{-1}\) and \(|x| \gg \lambda^{-1}\) separately.

2.2.1. Case 1: \(|x| \lesssim \lambda^{-1}\). By (2.11) and (2.13) we have for all \(r \in (1/2, 2) \) the estimate
\[\left| \partial_k^k \left[\tilde{J}_{d-2}(\lambda r) \tilde{\rho}(r) \right] \right| \lesssim 1 \quad (k \geq 0). \]
From Corollary 2 we have
\[\max_{1/2 < r \leq 1} \left| \partial_k^k \left(\frac{1}{m_{\beta, \lambda}(r)} \right) \right| \lesssim \lambda^{-1} (\sqrt{\beta \lambda})^{-1} (\lambda)^{\frac{1}{2}} \quad (k \geq 0). \]
Applying Lemma 2 with (2.17)-(2.18) and $N = d/2$ to (2.16) we obtain

$$|I_\lambda(x, t)| \lesssim \lambda^d \cdot \left(\lambda^{-1}(\sqrt{\beta}\lambda)^{-1}\langle \lambda \rangle^{d/2}\right) t^{-d/2} \lesssim c_{\beta,d}(\lambda) t^{-4},$$

where to get the second line we used (2.4).

2.2.2. Case 2: $|x| \gg \lambda^{-1}$. Using (2.14) in (2.16) we write

$$I_\lambda(x, t) = \lambda^d \left[\int_{1/2}^2 e^{it\Phi_\lambda^+(r)} h(\lambda r|x|) \bar{\rho}(r) \, dr \right] + \left[\int_{1/2}^2 e^{-it\Phi_\lambda^-(r)} h(\lambda r|x|) \bar{\rho}(r) \, dr \right],$$

where

$$\Phi_\lambda^\pm(r) = \lambda r|x|/t \pm m_{\beta,\lambda}(r).$$

Set $H_\lambda(|x|, r) := h(\lambda r|x|) \bar{\rho}(r)$. In view of (2.15) we have

$$\max_{1/2 \leq r \leq 2} \left| \partial_r^k H_\lambda(|x|, r) \right| \lesssim (\lambda|x|)^{-\frac{d-k}{2}} \quad (k \geq 0),$$

where we also used the fact $\lambda|x| \gg 1$.

Now we write

$$I_\lambda(x, t) = I_\lambda^+(x, t) + I_\lambda^-(x, t),$$

where

$$I_\lambda^+(x, t) = \lambda^d \int_{1/2}^2 e^{it\Phi_\lambda^+(r)} H_\lambda(|x|, r) \, dr,$$

$$I_\lambda^-(x, t) = \lambda^d \int_{1/2}^2 e^{-it\Phi_\lambda^-(r)} H_\lambda(|x|, r) \, dr.$$

Observe that

$$\partial_r \Phi_\lambda^+(r) = \lambda \left[|x|/t \pm m_{\beta}(\lambda r) \right],$$

$$\partial_r^2 \Phi_\lambda^\pm(r) = \pm \lambda^2 m_{\beta}'(\lambda r),$$

and hence by Lemma 5,

$$|\partial_r \Phi_\lambda^+(r)| \gtrsim \lambda(\sqrt{\beta}\lambda)^{-1/2}, \quad |\partial_r^2 \Phi_\lambda^\pm(r)| \sim \lambda^3(\sqrt{\beta}\lambda)^{-5/2}$$

for all $r \in (1/2, 2)$, where we also used the fact that m_{β}' is positive.

Estimate for $I_\lambda^+(x, t)$. Following as in the proof of Corollary 2, we have

$$\max_{1/2 \leq r \leq 2} \left| \partial_r^k \left(\partial_r \Phi_\lambda^+(r) \right)^{-1} \right| \lesssim \lambda^{-1}(\sqrt{\beta}\lambda)^{-1}\langle \lambda \rangle^{d/2} \quad (k \geq 0).$$

Applying Lemma 2 with (2.20), (2.22) and $N = d/2$ to $I_\lambda^+(x, t)$ we obtain

$$|I_\lambda^+(x, t)| \lesssim \lambda^d \cdot \lambda|x|^{-\frac{d-1}{2}} \cdot \left(\lambda^{-1}(\sqrt{\beta}\lambda)^{-1}\langle \lambda \rangle^{d/2}\right)t^{-d/2} \lesssim c_{\beta,d}(\lambda) t^{-\frac{4}{d}},$$

where to get the second line we used the fact that $\lambda|x| \gg 1$, and the condition in (2.4).
Estimate for $I_\lambda^-(x,t)$. We treat the the non-stationary and stationary cases separately. In the non-stationary case, where
\[|x| \ll \langle \beta \lambda \rangle \langle \lambda \rangle^{-1/2} t \quad \text{or} \quad |x| \gg \langle \beta \lambda \rangle \langle \lambda \rangle^{-1/2} t, \]
we have
\[|\partial_x \phi_\lambda^-(r)| \gtrsim \lambda \langle \beta \lambda \rangle \langle \lambda \rangle^{-1/2}, \]
and hence $I_\lambda^-(x,t)$ can be estimated in exactly the same way as $I_\lambda^+(x,t)$ above, and satisfies the same bound as in (2.23).

In this case, we use Lemma 1, (2.21) and (2.20) to obtain
\[
|I_\lambda^-(x,t)| \lesssim \lambda^d \cdot \left(\lambda^3 \langle \beta \lambda \rangle \langle \lambda \rangle^{-5/2} t \right)^{-\frac{1}{2}} \left[\|H_\lambda^-(x,2)\| + \int_{1/2}^{2} |\partial_x H_\lambda^-(x,r)| \, dr \right]
\lesssim \lambda^d \cdot \left(\lambda^3 \langle \beta \lambda \rangle \langle \lambda \rangle^{-5/2} t \right)^{-\frac{1}{2}} \cdot (\lambda|x|)^{-\frac{d-1}{2}}
\lesssim c_{\beta,d}(\lambda) t^{-\frac{d}{2}},
\]
where we also used the fact that $H_\lambda^-(x,2) = 0$ and $|x| \sim \langle \beta \lambda \rangle \langle \lambda \rangle^{-1/2} t$.

3. Proof of Theorem 2

We shall use the Hardy-Littlewood-Sobolev inequality which asserts that
\[\|1 \cdot |\cdot|^{-\gamma} f\|_{L^a(\mathbb{R})} \lesssim \|f\|_{L^b(\mathbb{R})} \tag{3.1} \]
whenever $1 < b < a < \infty$ and $0 < \gamma < 1$ obey the scaling condition
\[\frac{1}{b} = \frac{1}{a} + 1 - \gamma. \]

We prove only (1.11) since (1.12) follows from (1.11) by the standard TT*-argument. First note that (1.11) holds true for the pair $(q,r) = (\infty,2)$ as this is just the energy inequality. So we may assume $2 < q < \infty$ and $r > 2$.

Let q' and r' be the conjugates of q and r, respectively, i.e., $q' = \frac{q}{q-1}$ and $r' = \frac{r}{r-1}$. By the standard TT*-argument, (1.11) is equivalent to the estimate
\[
\|TT^*F\|_{L^{q'}_L L^r_x(\mathbb{R}^{d+1})} \lesssim \left[c_{\beta,d}(\lambda) \right]^{1-\frac{2}{q}} \|F\|_{L^q_\lambda L^{r'}_x(\mathbb{R}^{d+1})},
\]
where
\[
TT^*F(x,t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}} e^{ix\xi - i(t-s)m(\xi)} p_\lambda^2(\xi) \hat{F}(\xi,s) \, d\xi d\xi
= \int_{\mathbb{R}} K_{\lambda,t-s} * F(\cdot,s) \, ds
\]
with
\[
K_{\lambda,t}(x) = \int_{\mathbb{R}^d} e^{ix\xi - itm(\xi)} p_\lambda^2(\xi) \, d\xi.
\]

Since
\[
K_{\lambda,t} * g(x) = e^{itm(D)} p_A g_\lambda(x)
\]
it follows from (1.8) that
\[\|K_{\lambda,t} \ast g\|_{L^q\mathbb{R}^d} \lesssim c_{\beta,d}(\lambda)|t|^{-\frac{d}{2}}\|g\|_{L^q_2(\mathbb{R}^d)}. \]

(3.4)

On the other hand, we have by Plancherel
\[\|K_{\lambda,t} \ast g\|_{L^r\mathbb{R}^d} \lesssim \|g\|_{L^r_2(\mathbb{R}^d)}. \]

(3.5)

So interpolation between (3.4) and (3.5) yields
\[\|K_{\lambda,t} \ast g\|_{L^r_2(\mathbb{R}^d)} \lesssim \left[c_{\beta,d}(\lambda)^{1-\frac{1}{2}}|t|^{-d\left(\frac{1}{r}-\frac{1}{q}\right)}\right]\|g\|_{L^{q'}_r(\mathbb{R}^d)} \]

(3.6)

for all \(r \in [2,\infty) \).

Applying Minkowski’s inequality to (3.3), and then use (3.6) and (3.1) with
\[(a,b) = (q,q'), \quad \gamma = \frac{d}{2} - \frac{d}{r} = \frac{2}{q} \]

we obtain
\[\|TT^* F\|_{L^q_1L^q_{2\nu+1}(\mathbb{R}^d)} \lesssim \left[\int_{\mathbb{R}} \|K_{\lambda,t-s} \ast F(s,\cdot)\|_{L^q_1(\mathbb{R}^d)} \, ds\right]_{L^q(\mathbb{R})} \lesssim \left[c_{\beta,d}(\lambda)^{1-\frac{1}{2}}\left\|\int_{\mathbb{R}} |t-s|^{-d\left(\frac{1}{r}-\frac{1}{q}\right)}\|F(s,\cdot)\|_{L^{q'}_r(\mathbb{R}^d)} \, ds\right\|_{L^q(\mathbb{R})} \lesssim \left[c_{\beta,d}(\lambda)^{1-\frac{1}{2}}\|F\|_{L^{q'}_r(\mathbb{R}^d)}\|_{L^q_1(\mathbb{R})} \right] \]

(3.7)

which is the desired estimate (3.2).

4. Proof of Theorem 3

We consider the system (1.5) with \(\beta = 0 \) and a curl-free vector field \(\mathbf{v} \), i.e.,
\[\nabla \times \mathbf{v} = 0. \]

Observe that
\[L_0(D) = \sqrt{K(D)}, \quad m_0(D) = |D|\sqrt{K(D)}. \]

The transformation (1.6) (with \(\beta = 0 \)) yields
\[\eta = u_+ + u_-, \quad \mathbf{v} = -i\sqrt{K}\mathbb{R}(u_+ - u_-), \]

where we have used the fact that \(\mathbf{v} \) is curl-free, in which case,
\[\nabla(\nabla \cdot \mathbf{v}) = \Delta \mathbf{v} = -|D|^2\mathbf{v} \quad \Rightarrow \quad \mathbf{v} = -\mathbb{R}(\mathbb{R} \cdot \mathbf{v}). \]

Consequently, the Cauchy problem (1.5), (1.13) transforms to
\[\begin{cases} (i\partial_t + m_0(D))u_\pm = \mathcal{B}_\pm(u_+, u_-), \\ u_\pm(0) = f_\pm, \end{cases} \]

(4.1)

where
\[\mathcal{B}_\pm(u_+, u_-) = 2^{-1}|D|K\mathbb{R} \cdot \left\{ (u_+ + u_-)\mathbb{R}\sqrt{K}(u_+ - u_-) \right\} \pm 4^{-1}|D|\sqrt{K} \left|\mathbb{R}\sqrt{K}(u_+ - u_-)\right|^2 \]

(4.2)

and
\[f_\pm = \frac{\sqrt{Km_0} + i\mathbb{R} \cdot \mathbf{v}_0}{2\sqrt{K}} \in H^\delta(\mathbb{R}^d). \]

(4.3)
Thus, Theorem 3 reduces to the following:

Theorem 4. Let $d \geq 3$ and $s > \frac{d - 2}{2}$. If the initial data has size

$$
\sum_{\pm} \| f_{\pm} \|_{H^s} \leq D_0,
$$

then there exists a solution

$$
u_{\pm} \in C \left([0,T]; H^s(\mathbb{R}^d) \times H^s(\mathbb{R}^d) \right)
$$

of the Cauchy problem (4.1)–(4.3) with existence time $T \sim D_0^{-2}$.
Moreover, the solution is unique in some subspace of $C \left([0,T]; H^s(\mathbb{R}^d) \times H^s(\mathbb{R}^d) \right)$ and the solution depends continuously on the initial data.

4.1. **Reduction of Theorem 4 to bilinear estimates.** The bilinear terms in (4.2) can be written as

$$
\mathcal{B}^\pm(u_+, u_-) = \frac{1}{2} \sum_{\pm_1, \pm_2} \pm_2 \partial_x \partial_y \left(u_{\pm_1} \partial_x \partial_y u_{\pm_2} \right)
$$

where \pm_1 and \pm_2 are independent signs. Then the Duhamel’s representation of (4.1) is given by

$$
u_\pm(t) = S_{m_0}(\pm t)^f \mp \frac{i}{2} \sum_{\pm_1, \pm_2} (\pm_2) \mathcal{B}^\pm_1(u_{\pm_1}, u_{\pm_2})(t)
$$

$$
\mp \frac{i}{4} \sum_{\pm_1, \pm_2} (\pm_1)(\pm_2) \mathcal{B}^\pm_2(u_{\pm_1}, u_{\pm_2})(t),
$$

where $S_{m_0}(t) = e^{it \partial_x m_0(D)}$ and

$$
\mathcal{B}^\pm_1(u, v)(t) := \int_0^t S_{m_0}(\pm(t - t')) D \partial_x \partial_y \left(u \partial_x \partial_y v \right)(t') \, dt',
$$

$$
\mathcal{B}^\pm_2(u, v)(t) := \int_0^t S_{m_0}(\pm(t - t')) \partial_x \partial_y \left(\partial_x v \cdot \partial_x \partial_y u \right)(t') \, dt'.
$$

Setting $\beta = 0$ in Theorem 2 we obtain the following.

Corollary 1. Let $\lambda \in \mathcal{D}$ and $d \geq 2$. Assume that the pair (q, r) satisfies

$$
2 < q \leq \infty, \quad 2 \leq r \leq \infty, \quad \frac{2}{q} + \frac{d}{r} = \frac{d}{2}.
$$

Then

$$
\left\| \int_0^t S_{m_0}(\pm(t - s)) F_\lambda(s) \, ds \right\|_{L^q_t L^r_x(\mathbb{R}^{d+1})} \lesssim \langle \lambda \rangle^\frac{d}{2r} \left\| F_\lambda \right\|_{L^1_t L^2_x(\mathbb{R}^{d+1})},
$$

for all $f \in S(\mathbb{R}^d)$ and $F \in S(\mathbb{R}^d)$.

Now, define the contraction space, \(X^s_T \), via the norm
\[
\|u\|_{X^s_T} = \left[\sum_\lambda (\lambda)^{2s} \|u\|_{X_\lambda}^2 \right]^{\frac{1}{2}},
\]
where
\[
\|u\|_{X_\lambda} = \left[\|P_\lambda u\|_{L^2_T L^2_x}^2 + (\lambda)^{-\frac{3}{2}} \|P_\lambda u\|_{L^q_T L^r_x}^2 \right]^{\frac{1}{2}}
\]
with
\[
2 < q < \infty, \quad r = \frac{2qd}{qd - 4}, \quad d \geq 2. \tag{4.8}
\]

In view of Corollary 1 the pair \((q, r)\) satisfying (4.8) is an admissible pair.

Observe that
\[
\|P_\lambda u\|_{L^\infty_T L^2_x} \leq \|u\|_{X^s_T}, \quad \|P_\lambda u\|_{L^q_T L^r_x} \leq (\lambda)^{\frac{3}{q}} \|u\|_{X^s_T}. \tag{4.9}
\]

Moreover,
\[
X^s_T \subset L^\infty_T H^s.
\]

We estimate the linear part of (4.4) using (4.6) as
\[
\|S_{m_0}(\pm t)f_\pm\|_{X^s_T} = \left[\sum_\lambda (\lambda)^{2s} \|S_{m_0}(\pm t)f_\pm\|_{X_\lambda}^2 \right]^{\frac{1}{2}} \leq \left[\sum_\lambda (\lambda)^{2s} \|P_\lambda f_\pm\|_{L^2_x}^2 \right]^{\frac{1}{2}} \sim \|f_\pm\|_{H^s}. \tag{4.10}
\]

So Theorem 4 reduces to proving bilinear estimates on the terms \(B^+_1(u, v) \) and \(B^+_2(u, v) \) that are defined in (4.5). The proof of the following Lemma will be given in the next section.

Lemma 3. Let \(d \geq 2, \ s > d - \frac{3}{2} - \frac{\varepsilon}{4} \) for \(q > 2 \), and \(T > 0 \). Then
\[
\|B^+_1(u, v)\|_{X^s_T} \lesssim T^{1 - \frac{d}{2}} \|u\|_{X^s_T} \|v\|_{X^s_T}, \tag{4.11}
\]
\[
\|B^+_2(u, v)\|_{X^s_T} \lesssim T^{1 - \frac{d}{2}} \|u\|_{X^s_T} \|v\|_{X^s_T}. \tag{4.12}
\]

for all \(u, v \in X^s_T \), where \(B^+_1 \) and \(B^+_2 \) are as in (4.5).

4.2. Proof of Theorem 4. Given that Lemma 3 holds, we solve the integral equations (4.4) by contraction mapping techniques. We shall apply Lemma 3 with
\[
q = \frac{2}{1 - 2\varepsilon} \quad \text{for} \quad 0 < \varepsilon \ll 1.
\]

Consequently, the exponent \(s \) will be restricted to
\[
s > \frac{d}{2} - \frac{3}{4} + \frac{\varepsilon}{2}.
\]

Define the mapping
\[
(u_+, u_-) \mapsto \left(\Phi^+(u_+, u_-), \ \Phi^-(u_+, u_-) \right),
\]
where $\Phi^\pm(u_+, u_-)$ is given by the right hand side of (4.4). Now given initial data with norm
\[
\sum_\pm \|f_\pm\|_{H^s} \leq D_0,
\]
we look for a solution in the set
\[
E_T = \left\{ (u_\pm \in X^s_T : \sum_\pm \|u_\pm\|_{X^s_T} \leq 2CD_0) \right\}.
\]

By (4.10) and Lemma 3 we have
\[
\sum_\pm \|\Phi^\pm(u_+, u_-)\|_{X^s_T} \leq C \sum_\pm \|f_\pm\|_{H^s} + CT^{1+\varepsilon} \left(\sum_\pm \|u_\pm\|_{X^s_T} \right)^2 \\
\leq CD_0 + CT^{1+\varepsilon} (2CD_0)^2 \\
\leq 2CD_0,
\]
provided that
\[
T \leq \left(8C^2D_0 \right)^{-\frac{2}{1+\varepsilon}}. \tag{4.13}
\]

Similarly, for two pair of solutions (u_+, u_-) and (v_+, v_-) in E_T with the same data, one can derive the difference estimate
\[
\sum_\pm \|\Phi^\pm(u_+, u_-) - \Phi^\pm(v_+, v_-)\|_{X^s_T} \\
\leq CT^{1+\varepsilon} \left(\sum_\pm \|u_\pm\|_{X^s_T} + \|v_\pm\|_{X^s_T} \right) \left(\sum_\pm \|u_\pm - v_\pm\|_{X^s_T} \right) \\
\leq 4C^2T^{1+\varepsilon}D_0 \left(\sum_\pm \|u_\pm - v_\pm\|_{X^s_T} \right) \\
\leq \frac{1}{2} \left(\sum_\pm \|u_\pm - v_\pm\|_{X^s_T} \right),
\]
where in the last inequality we used (4.13).

Therefore, (Φ^+, Φ^-) is a contraction on E_T and therefore it has a unique fixed point $(u_+, u_-) \in E_T$ solving the integral equation (4.4)–(4.5) on $\mathbb{R}^d \times [0, T]$, where $T \sim D_0^{-2-\varepsilon}$. Uniqueness in the space $X^s_T \times X^s_T$ and continuous dependence on the initial data can be shown in a similar way, by the difference estimates. This concludes the proof of Theorems 4.

5. Proof of Lemma 3

First we prove some bilinear estimates in Lemma 4 below that will be crucial in the proof of Lemma 3. To do so, we need the following Bernstein inequality, which is valid for $1 \leq a \leq b \leq \infty$ (see, for instance, [15, Appendix A]).
\[
\|f_\lambda\|_{L^b_x} \lesssim \lambda^{\frac{a}{b} - \frac{d}{b}} \|f_\lambda\|_{L^a_x}, \tag{5.1}
\]
Moreover, we have for all $s_1, s_2 \in \mathbb{R}$ and $p \geq 1$,
\[
\|D^{s_1}K^{s_2}f_\lambda\|_{L^p_x} \lesssim \lambda^{s_1} (\lambda)^{-s_2} \|f_\lambda\|_{L^p_x}, \tag{5.2}
\]
where we used \(K(\xi) \sim (\xi)^{-1} \).

Lemma 4. Let \(d \geq 2, q > 2, T > 0 \) and \(\lambda_j \in 2^Z \) \((j = 0, 1, 2)\). Then

\[
\left\| \mathcal{D}|KP_{\lambda_0}| \mathcal{R} \cdot \left(u_{\lambda_1} \mathcal{R} \sqrt{K} v_{\lambda_2} \right) \right\|_{L^1 T L^2} \lesssim \frac{T^{1 - \frac{4}{q} \min (\langle \lambda_1 \rangle, \langle \lambda_2 \rangle)^{\frac{4}{q} - \frac{2}{q}}} \langle \lambda_2 \rangle^\frac{1}{q}}{\langle \lambda_1 \rangle^\frac{1}{q}} \| u \|_{X_{\lambda_1}} \| v \|_{X_{\lambda_2}},
\]

(5.3)

\[
\left\| \mathcal{D}|\sqrt{KP_{\lambda_0}} \left(\mathcal{R} \sqrt{K} u_{\lambda_1} \cdot \mathcal{R} \sqrt{K} v_{\lambda_2} \right) \right\|_{L^1 T L^2} \lesssim \frac{T^{1 - \frac{4}{q} \min (\langle \lambda_1 \rangle, \langle \lambda_2 \rangle)^{\frac{4}{q} - \frac{2}{q}}} \langle \lambda_2 \rangle^\frac{1}{q}}{\langle \lambda_1 \rangle^\frac{1}{q}} \| u \|_{X_{\lambda_1}} \| v \|_{X_{\lambda_2}}
\]

(5.4)

for all \(u \in X_{\lambda_1} \) and \(v \in X_{\lambda_2} \).

Proof. We only prove (5.3) since the proof for (5.4) is similar. To prove (5.3), by symmetry, we may assume \(\lambda_1 \lesssim \lambda_2 \). Let

\[
q = 2^+, \quad r = \frac{2q d}{q d - 4}, \quad d \geq 2
\]

Then by Hölder, (5.2), (5.1) and (4.9) we obtain

\[
\text{LHS } (5.3) \lesssim \frac{T^{\frac{1}{2} \lambda_0 (\lambda_0)^{-1}}}{\| \mathcal{R} \cdot (u_{\lambda_1} \mathcal{R} \sqrt{K} v_{\lambda_2}) \|_{L_1 T X}}
\]

\[
\lesssim T^{\frac{1}{2} \langle \lambda_2 \rangle^{-\frac{1}{2}} \| u_{\lambda_1} \|_{L^\infty T L^\infty} \| v_{\lambda_2} \|_{L^\infty T L^2}}
\]

\[
\lesssim T^{1 - \frac{4}{q} \langle \lambda_2 \rangle^{-\frac{1}{2}} \lambda_1^{\frac{4}{q} - \frac{2}{q}} \| u_{\lambda_1} \|_{L^2 T L^2} \| v_{\lambda_2} \|_{L^2 T L^2}}
\]

\[
\lesssim T^{1 - \frac{4}{q} \langle \lambda_2 \rangle^{-\frac{1}{2}} \lambda_1^{\frac{4}{q} - \frac{2}{q}} \langle \lambda_1 \rangle^{\frac{2}{q} - \frac{q}{2}} \| u \|_{X_{\lambda_1}} \| v \|_{X_{\lambda_2}}
\]

\[
\lesssim T^{\frac{1}{2} \langle \lambda_2 \rangle^{-\frac{1}{2}} \langle \lambda_1 \rangle^{\frac{4}{q} - \frac{2}{q}} \| u \|_{X_{\lambda_1}} \| v \|_{X_{\lambda_2}}}
\]

which proves (5.3). \(\square \)

Now we are ready to prove Lemma 3. To this end, we decompose \(u = \sum_{\lambda} u_{\lambda} \) and \(v = \sum_{\lambda} v_{\lambda} \). Note that by denoting

\[
a_{\lambda} := \| u \|_{X_{\lambda}}, \quad b_{\lambda} := \| v \|_{X_{\lambda}}
\]

we can write

\[
\| u \|_{X_{\lambda}} = \| (\langle \lambda \rangle^s a_{\lambda}) \|_{L^2}, \quad \| v \|_{X_{\lambda}} = \| (\langle \lambda \rangle^s b_{\lambda}) \|_{L^2}.
\]

(5.5)

We shall make a frequent use of of the following dyadic summation estimate, for \(\mu, \lambda \in 2^Z \) and \(c_1, c_2, p > 0 \):

\[
\sum_{\mu \sim \lambda} a_{\mu} \sim a_{\lambda}, \quad \sum_{c_1 \leq \lambda \leq c_2} \lambda^p \lesssim \begin{cases}
 c_2^p & \text{if } p > 0, \\
 c_1^p & \text{if } p < 0.
\end{cases}
\]

5.1. **Proof of (4.11).** Applying (4.7) to \(B_{1}^\dagger(u, v) \) in (4.5) we get

\[
\| B_{1}^\dagger(u, v) \|_{X_{\lambda}}^2 \lesssim \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} \left\| \mathcal{D}|K \mathcal{R} \cdot P_{\lambda_0} \left(u \mathcal{R} \sqrt{K} v \right) \right\|_{L^1 T L^2}^2,
\]
where (4.9) is also used. By the dyadic decomposition

$$\left\| D[\mathcal{K} \cdot \mathcal{R} \cdot P_{\lambda_0} (u \mathcal{R} \sqrt{K} v)] \right\|_{L^1_{t} L^2_{x}} \lesssim \sum_{\lambda_1, \lambda_2} \left\| D[\mathcal{K} \cdot \mathcal{R} \cdot P_{\lambda_0} (u_{\lambda_1} \mathcal{R} \sqrt{K} v_{\lambda_2})] \right\|_{L^1_{t} L^2_{x}}. \quad (5.6)$$

Now let $\lambda_{\min}, \lambda_{\med} \text{ and } \lambda_{\max}$ denote the minimum, median and the maximum of $\{\lambda_0, \lambda_1, \lambda_2\}$, respectively. By checking the support properties in Fourier space of the bilinear term on the right hand side of (5.6) one can see that this term vanishes unless $\lambda = (\lambda_0, \lambda_1, \lambda_2) \in \Lambda$, where

$$\Lambda = \{\lambda : \lambda_{\med} \sim \lambda_{\max}\}.$$

Thus, we have a non-trivial contribution in (5.6) only if $\lambda \in \cup_{j=0}^{2} \Lambda_j$, where

$$\Lambda_0 = \{\lambda : \lambda_0 \lesssim \lambda_1 \sim \lambda_2\},$$
$$\Lambda_1 = \{\lambda : \lambda_2 \ll \lambda_1 \sim \lambda_0\},$$
$$\Lambda_2 = \{\lambda : \lambda_1 \ll \lambda_2 \sim \lambda_0\}.$$

By using these facts, and applying (5.3) to the right hand side of (5.6), we get

$$\left\| B_1^{\pm} (u, v) \right\|_{X^s T} \lesssim T^{2 - \frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} \sum_{j=0}^{2} J_j$$

where

$$J_j = \sum_{\lambda_0} (\lambda_0)^{2s} \left[\sum_{\lambda_1, \lambda_2 : \lambda \in \Lambda_j} \min ((\lambda_1), (\lambda_2)) \frac{4 - \frac{d}{2} + \frac{1}{2}}{\langle \lambda_2 \rangle} a_{\lambda_1} b_{\lambda_2} \right]^2 \quad (5.7)$$

So (4.11) reduces to proving

$$J_j \lesssim \|u\|_{X^s_t}^2 \|v\|_{X^s_t}^2 \quad \text{if} \quad s > \frac{d}{2} - \frac{1}{2} - \frac{1}{2q} \quad (5.8)$$

for $j = 0, 1, 2$.

These are shown to hold as follows:

$$J_0 \lesssim \sum_{\lambda_0} (\lambda_0)^{2s} \left(\sum_{\lambda_1 \sim \lambda_2 \gtrsim \lambda_0} a_{\lambda_1} \cdot \langle \lambda_2 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{4q}} b_{\lambda_2} \right)^2$$

$$\lesssim \sum_{\lambda_0} (\lambda_0)^{2s} \left(\sum_{\lambda_1 \sim \lambda_2 \gtrsim \lambda_0} \langle \lambda_1 \rangle^s a_{\lambda_1} \cdot \langle \lambda_2 \rangle^s b_{\lambda_2} \right)^2$$

$$\lesssim \|u\|_{X^s_t}^2 \|v\|_{X^s_t}^2,$$

where to obtain the last line we used Cauchy Schwarz inequality in $\lambda_1 \sim \lambda_2$ and (5.5).
Similarly,
\[
J_1 \lesssim \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} \left(\sum_{\lambda_1 \ll \lambda_0} a_{\lambda_1} \cdot \langle \lambda_2 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} b_{\lambda_2} \right)^2
\]
\[
\lesssim \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} a_{\lambda_0}^2 \left(\sum_{\lambda_2} \langle \lambda_2 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} b_{\lambda_2} \right)^2
\]
\[
\lesssim \|u\|_{X_s^T}^2 \|v\|_{X_s^T}^2,
\]
where to get the last two inequalities we used \(\sum_{\lambda_1 \sim \lambda_0} a_{\lambda_1} \sim a_{\lambda_0}\) and by Cauchy Schwarz
\[
\sum_{\lambda_2} \langle \lambda_2 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} b_{\lambda_2} = \sum_{\lambda_2} \langle \lambda_2 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q} - s} \cdot \langle \lambda_2 \rangle^s b_{\lambda_2} \lesssim \|\langle \lambda_2 \rangle^s b_{\lambda_2}\|_{l_2^s} \lesssim \|v\|_{X_s^T}.
\]
Finally,
\[
J_2 \lesssim \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} \left(\sum_{\lambda_1 \ll \lambda_0} \langle \lambda_1 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} a_{\lambda_1} \cdot b_{\lambda_2} \right)^2
\]
\[
\lesssim \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} b_{\lambda_0}^2 \left(\sum_{\lambda_1} \langle \lambda_1 \rangle^{\frac{d}{2} - \frac{1}{2} - \frac{1}{2q}} a_{\lambda_1} \right)^2
\]
\[
\lesssim \|u\|_{X_s^T}^2 \|v\|_{X_s^T}^2.
\]

5.2. **Proof of (4.12).** Arguing as in the preceding subsection we apply (4.7) to \(B_{\frac{d}{2}}^s(u,v)\) in (4.5) and then use (5.4) to obtain
\[
\|B_{\frac{d}{2}}^s(u,v)\|_{X_s^T}^2 \lesssim T^{2 - \frac{2}{q}} \sum_{j=0}^2 \overline{J}_j
\]
where
\[
\overline{J}_j = \sum_{\lambda_0} \langle \lambda_0 \rangle^{2s} \left[\sum_{\lambda_1, \lambda_2 \in \Lambda_j} C(\lambda_0, \lambda_1, \lambda_2) a_{\lambda_1} b_{\lambda_2} \right]^2
\]
with
\[
C(\lambda_0, \lambda_1, \lambda_2) = \frac{\langle \lambda_0 \rangle^{\frac{d}{2}} \min (\langle \lambda_1 \rangle, \langle \lambda_2 \rangle) \langle \lambda_1 \rangle^{\frac{d}{2} - \frac{1}{2q}}}{\langle \lambda_1 \rangle^{\frac{d}{2}} (\lambda_2)^{\frac{d}{2} + \frac{1}{2q}}}
\]
So (4.12) reduces to proving
\[
\overline{J}_j \lesssim \|u\|_{X_s^T}^2 \|v\|_{X_s^T}^2 \quad (j = 0, 1, 2).
\]
These can be proved following the argument of the preceding subsection by using the fact that
\[
C(\lambda_0, \lambda_1, \lambda_2) \lesssim \min (\langle \lambda_1 \rangle, \langle \lambda_2 \rangle) \langle \lambda_1 \rangle^{\frac{d}{2} - \frac{1}{2q} - \frac{1}{2q}}
\]
for all \(\lambda_0, \lambda_1, \lambda_2 \in \Lambda\).
6. Appendix

In this appendix, we derive some useful estimates on the derivatives of all order for the function
\[m_\beta(r) = \sqrt{r \left(1 + \beta r^2 \right) \tanh(r)}, \quad \beta \in \{0, 1\}. \]

Estimates for the first and second order derivatives of this function is derived recently in [11].

Clearly,
\[m_\beta(r) \sim r \langle \sqrt{\beta r} \rangle \langle r \rangle^{-1/2}. \]
(6.1)

Lemma 5. Let \(\beta \in \{0, 1\} \) and \(r > 0 \). Then
\[m_\beta'(r) \sim \langle \sqrt{\beta r} \rangle \langle r \rangle^{-1/2}, \]
(6.2)
\[|m_\beta''(r)| \sim r \langle \sqrt{\beta r} \rangle \langle r \rangle^{-5/2}. \]
(6.3)

Moreover,
\[|m_\beta^{(k)}(r)| \lesssim r^{1-k} \langle \sqrt{\beta r} \rangle \langle r \rangle^{-1/2} \quad (k \geq 3). \]
(6.4)

Proof. The estimates (6.2) and (6.3) are proved in [11, Lemma 3.2, see its proof in Section 5]. So we only prove (6.4).

Let
\[T(r) = \tanh r, \quad S(r) = \operatorname{sech} r. \]

Then
\[T' = S^2, \quad S' = -TS, \quad T'' = -2TS^2. \]

In general, we have
\[T^{(j)}(r) = S^2 \cdot P_{j-1}(S, T) \quad (j \geq 1) \]
for some polynomial \(P_{j-1} \) of degree \(j - 1 \).

Clearly,
\[T(r) \sim r \langle r \rangle^{-1} \quad \text{and} \quad S(r) \sim e^{-r}. \]

So \(|P_{j-1}(S, T)| \lesssim 1 \), and hence
\[|T^{(j)}(r)| \lesssim e^{-2r} \quad (j \geq 1). \]
(6.5)

Write
\[m_\beta(r) = f_\beta(r) \cdot T_0(r), \]
where \(f_\beta(r) = \sqrt{r \langle \sqrt{\beta r} \rangle} \) and \(T_0(r) = \langle T(r) \rangle \). One can show that
\[|f_\beta^{(j)}(r)| \lesssim r^{1-j} \langle \sqrt{\beta r} \rangle \quad (j \geq 0). \]
(6.6)

Combining (6.5) with \(T(r) \sim r \langle r \rangle^{-1} \) we obtain
\[T_0(r) \sim r^{1/2} \langle r \rangle^{-1/2}, \quad |T^{(j)}_0(r)| \lesssim r^{1-j} \langle r \rangle^{j-1/2} e^{-2r} \quad (j \geq 1). \]
(6.7)
Finally, we use (6.6) and (6.7) to obtain for all \(k \geq 3, \)
\[
\left| m_{\beta}^{(k)}(r) \right| = \left| f_{\beta}^{(k)}(r) T_0(r) + \sum_{j=1}^{k} \binom{k}{j} f_{\beta}^{(k-j)}(r) T_0^{(j)}(r) \right|
\leq r^{1-k} (\sqrt{\beta r})^{-\frac{1}{2}} + \sum_{j=1}^{k} \binom{k}{j} r^\frac{j}{2} (k-j) (\sqrt{\beta r})^{-\frac{1}{2}} - \frac{1}{2} e^{2r}
\leq r^{1-k} (\sqrt{\beta r})^{-\frac{1}{2}}.
\]

\(\square \)

Corollary 2. For \(\lambda, r > 0, \) define \(m_{\beta, \lambda}(r) = m_{\beta}(\lambda r) \). Then
\[
\max_{r \sim 1} \left| \frac{\partial^k}{r} \left(\frac{1}{m_{\beta, \lambda}^{'}} \right) \right| \leq \lambda^{-1} (\sqrt{\beta \lambda})^{-\frac{1}{2}} \left(\frac{1}{2} \right) (k \geq 0). \tag{6.8}
\]

Proof. Observe that
\[
m_{\beta, \lambda}^{(k)}(r) = \lambda^k m_{\beta}^{(k)}(\lambda r) \quad (k \geq 1).
\]

By (6.2) we have, for \(r \sim 1, \)
\[
|m_{\beta, \lambda}^{'}(r)| = \lambda (\sqrt{\beta \lambda})^{-\frac{1}{2}}
\]
and by (6.3)–(6.4)
\[
|m_{\beta, \lambda}^{(k)}(r)| \leq \lambda (\sqrt{\beta \lambda})^{-\frac{1}{2}} \quad (k \geq 2).
\]

Finally, one can combine these two estimates with the differentiation formula
\[
\partial^k \left(\frac{1}{r} \right) = \sum_{p=1}^{k} \sum_{k_1, \ldots, k_p \in \mathbb{N}} c_{p, k_1, \ldots, k_p} \frac{\partial^{k_1} f \cdots \partial^{k_p} f}{f^{p+1}}
\]
to obtain the desired estimate (6.8). \(\square \)

Acknowledgments The authors would like to thank the anonymous referee for useful comments on an earlier version of this article.

References

[1] J. D. Carter, *Bi-directional Whitham equations as models of waves on shallow water*, Wave Motion 82 (2018), 51–61.

[2] T. Deneke, T. T. Dufera and A. Tesfahun: *Comparison between Boussinesq and Whitham-Boussinesq type systems*. Mathematical Methods in the Applied Sciences (2022): https://doi.org/10.1002/mma.8304.

[3] E. Dinvay, *On well-posedness of a dispersive system of the Whitham-Boussinesq type*, Appl. Math. Lett. 88 (2019), 13–20.

[4] E. Dinvay, D. Dutykh, and H. Kalisch, *A comparative study of bi-directional Whitham systems*, Appl. Numer. Math. 141 (2019), 248–262.

[5] E. Dinvay, S. Selberg and A. Tesfahun *Well-posedness for a dispersive system of the Whitham-Boussinesq type*, SIAM J. Math. Anal. 52 (3), pp. 2353–2382

[6] L. Grafakos, *Classical Fourier analysis*, third ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734

[7] F. John, *Plane Waves and Spherical Means, Applied to Partial Differential Equations*, Springer, 1981.
[8] C. Klein, F. Linares, D. Pilod and J.-C. Saut, *On Whitham and related equations*, Studies in Appl. Math. 140 (2018), pp. 133–177

[9] E. Dinvay, D. Moldabayev, D. Dutykh and H. Kalisch, *The Whitham equation with surface tension*, Nonlinear Dyn (2017) 88:1125–1138.

[10] D. Lannes, *Water waves: mathematical theory and asymptotics*, Mathematical Surveys and Monographs, vol 188 (2013), AMS, Providence.

[11] D. Pilod, J-C Saut, S. Selberg and A. Tesfahun *Dispersive Estimates for Full Dispersion KP Equations*. J. Math. Fluid Mech. (2021) 23:25, https://doi.org/10.1007/s00021-021-00557-3.

[12] F. Remonato and H. Kalisch, *Numerical bifurcation for the capillary Whitham equation*, Physica D, 343 (2017), 51–62.

[13] Elias M. Stein, *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993.

[14] A. Tesfahun, *Long-time existence for Whitham-Boussinesq system in two dimensions*. Preprint: https://arxiv.org/abs/2201.03628.

[15] T. Tao, *Nonlinear Dispersive Equations*, CBMS Reg. Conf. Ser. Math. 106, AMS, Providence, RI, 2006.

Department of Mathematics, Nazarbayev University, Qabanbai Batyr Avenue 53, 010000 Nur-Sultan, Republic of Kazakhstan

Email address: achene@gmail.com

Department of Mathematics, Adama University of Science and Technology, Ethiopia

Email address: tamirat.temesgen@astu.edu.et, tilahundeneke@yahoo.com