UHPLC-Q-TOF-MS/MS-based Metabolite Profiling of Ganpu Tea in Rat Urine and Feces

Yuying Zheng, Xuan Zeng, Minyi Guan, Shiting Xie, Wei Peng and Weiwei Su

Abstract
Ganpu tea is a novel type of beverage produced from Pu-erh tea stuffed in the pericarp of Citrus reticulata “Chachi”. It has gained considerable popularity in China owing to its inviting flavor and health effects. However, the in vitro metabolites of Ganpu tea, which may contribute to its overall health effects, are still unclear. In the present work, rat urine and feces samples were collected after oral administration of Ganpu tea extract (GTE), and then subjected to ultra-high-performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS)-based metabolite profiling. As a result, 27 prototype compounds and 41 metabolites derived from caffic acid, gallic acid, p-coumaric acid, xanthine, catechin, polymethoxyflavone, (PMF) flavanone, and flavone were identified in rat urine and feces. Based on the detected metabolites, the ingested prototype compounds derived from Ganpu tea were found to undergo extensive phase II metabolism in rats, especially and sulfation. These results will be valuable for interpreting the health effects of Ganpu tea.

Keywords
Ganpu tea, metabolite, rat, excreta, LC-MS/MS

Received: November 25th, 2021; Accepted: February 15th, 2022.

Introduction
Pu-erh tea is a variety of fermented tea made from the leaves of a large leaf tea species (Camellia sinensis Linn. var. assamica [Masters] Kitamura) in Yunnan Province of China. After sufficient sun drying and being rolled, the leaves further undergo controlled microbial fermentation and accompanying oxidation, until the desired flavors are reached. A No. of studies have documented that Pu-erh tea could exert multiple health-promoting effects, such as anti-oxidative, anti-inflammatory, anti-hyperlipidemic, and anti-diabetic activities. Owing to its unique flavor, Pu-erh tea is hugely popular among consumers in China and Southeast Asia, with an annual output of more than 150,000 tons. In recent years, a novel type of tea beverage derived from Pu-erh tea, named Ganpu tea, has appeared on the market and gained considerable popularity in China and Southeast Asia, with an annual output of more than 150,000 tons. In recent years, a novel type of tea beverage derived from Pu-erh tea, named Ganpu tea, has appeared on the market and gained considerable popularity in China. Ganpu tea could be defined as Pu-erh tea stuffed in the pericarp of Citrus reticulata “Chachi” from Xinhui County in Guangdong Province of China. The pericarp of C. reticulata “Chachi”, called “Guangchenpi” in Chinese, is a widely used cooking spice and traditional herb in China due to its special flavor and beneficial health effects. According to the literature, the combination of tea leaves and citrus peel as a brewed tea has a history of thousands of years. The tangy aromas of the pericarp of C. reticulata “Chachi” is a perfect match for the mellow earthiness of Pu-erh tea, leading to its inviting flavor. Moreover, several studies have revealed the health effects of Ganpu tea, such as antioxidation, anti-proliferation, anti-depression, α-amylase inhibition, and modulating gut microbiota. Nowadays, the consumption of Ganpu tea is increasing rapidly, and thousands of enterprises are involved in its production.

In a previous study, we investigated the chemical profiles of Ganpu tea using ultra-high-performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). A total of 92 compounds were detected, including flavonoids, organic acids, alkaloids, and limonin. In addition, several other studies have investigated

1Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People’s Republic of China

Corresponding Author:
Weiwei Su, Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, 510275, Guangzhou, People’s Republic of China.

Email: lsssww@126.com
the volatile components, tea polyphenols, and rare earth elements of Ganpu tea.13–15 However, the \textit{in vivo} metabolite profiles of Ganpu tea have not yet been investigated. During \textit{in vivo} digestion and metabolism, phytochemicals would undergo structure modifications to generate a range of metabolites, which might have different biological activities from their initial compounds.16 More and more studies have shown that derived metabolites are not negligible contributors to the health effects of dietary phytochemicals.17–19 Therefore, clarification of the \textit{in vivo} metabolite profiles of Ganpu tea is a worthwhile study. In the present work, UHPLC-Q-TOF-MS/MS-based metabolite profiling was performed on rat urine and feces samples collected after the oral administration of Ganpu tea extract (GTE). The obtained results should be valuable for further study of interpreting the health effects of Ganpu tea.

\section*{Materials and Methods}

\subsection*{Chemicals and Materials}

The reference standards of caffeic acid, gallic acid, caffeine, catechin, quercetin, and kaempferol were obtained from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China). Naringenin, nobiletin, hesperetin, \textit{p}-coumaric acid, and formic acid of mass spectrometry (MS) grade were acquired from Sigma-Aldrich (St. Louis, USA), apigenin from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China), homoeriodictyol from Extrasynthese Chemical (Genay Cedex, France), and the stable isotope-labeled internal standard (IS) [\textit{2',3',5',6'-D}_{4}]-naringenin from Artis-chem Co., Ltd (Shanghai, China).

Acetonitrile of LC-MS and HPLC grade were purchased from Fisher Scientific Inc. (Fair Lawn, USA) and Honeywell B&J Chemicals Inc. (New Jersey, USA), respectively. Water was prepared with a Milli-Q Plus system (specific electric conductivity = 18.2 M\(\Omega\)) and filtered through a 0.22 \(\mu\)m membrane filter before use.

\subsection*{Preparation of Ganpu tea Extract}

One hundred g of pulverized Ganpu tea sample was soaked in 1.5 L of boiling water for 15 min, and filtered to obtain the tea infusion. This extraction process was repeated twice and the tea infusions were mixed together. The mixed tea infusion was evaporated to 500 mL in a rotary evaporator (Eyela, Tokyo, Japan) to afford GTE with a concentration of 0.2 g/mL.

\subsection*{Sample Collection}

Ten male Sprague-Dawley rats (weighing 180-220 g) were acquired from Guangdong Medical Laboratory Animal Center. The animals were housed in a standard environment at 20 to 25\(^\circ\)C, with a light-dark cycle of 12/12 h; food and water were supplied \textit{ad libitum}. All experimental processes were approved by the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-Sen University, and conducted in accordance with the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978).

After 1 week of adaptive feeding, rats were intragastrically given Ganpu tea extract (15 mL/kg, calculated as 3 g/kg of raw Ganpu tea), a dosage equivalent to 33 g/70 kg for an adult human. After administration, the rats were kept together in a metabolic cage, with free access to water, but no food. Urine and feces samples were collected within 12 h after the intervention. Feces sample was lyophilized, pulverized, and then mixed with saline (20 mL/1 g feces). After vortexing for 1 min, the mixtures underwent ultrasonic-assisted extraction for 15 min, and then centrifuged at 2348 \(\times\)g for 1 min, so as to obtain the supernatant for further analysis. All biological samples were stored at \(-70\)\(^\circ\)C until analysis.

\subsection*{Sample Preparation and Detection}

For metabolite identification, an aliquot of 200 \(\mu\)L acetonitrile (containing IS at a concentration of 15 \(\mu\)g/mL) was added to 100 \(\mu\)L of either urine or feces extract, vortex-mixed for 3 min, and then centrifuged at 15,871 \(\times\)g for 30 min to acquire the supernatant for UHPLC-Q-TOF-MS/MS analysis. The injection volume was set to 10 \(\mu\)L.

Sample detection was performed on a Shimadzu ultra-high-performance liquid chromatography system (UHPLC; 20ADXR; Shimadzu) in tandem with a hybrid triple quadrupole time-of-flight mass spectrometer (Q-TOF-MS/MS; Triple TOF 5600 plus, Sciex), equipped with an electrospray ionization (ESI) source. The chromatographic separation system and mass spectrometer detector were operated under the same parameters as our reported studies.20,21

\subsection*{Data Analysis}

Raw data were acquired using Analyst\textregistered TF 1.6 software (AB Sciex) in information-dependent acquisition mode. Potential metabolites were characterized on the basis of chromatographic elution time, exact molecular mass, chemical formula, and MS/MS fragmentation pattern, as well as by comparison with available reference standards and published literature.

\section*{Results and Discussion}

In a previous study, we investigated the chemical composition of GTE and finally identified 92 compounds, including 71 flavonoids (comprising 33 polymethoxyflavones [PMFs] and 8 catechins), 14 organic acids, 6 alkaloids, and limonin.12 However, information concerning the \textit{in vivo} metabolism of Ganpu tea is still scarce. In this work, GTE was orally administrated to rats to collect urine and feces samples for UHPLC-Q-TOF-MS/MS-based metabolite profiling. The typical basic peak chromatograms of rat urine collected after the intervention of Ganpu tea are shown in Figure 1, while the compound name, chemical formula, retention
time (RT), exact molecular weight, and MS/MS fragment ions of the identified metabolites are listed in Table 1.

Herein, a total of 27 prototype compounds and 41 metabolites derived from caffeic acid, gallic acid, \(p \)-coumaric acid, xanthine, catechin, PMF, flavanone, and flavone were detected. These derivative metabolites included 21 glucuronides and 14 sulfates, revealing that ingested prototype compounds derived from Ganpu tea underwent extensive phase II metabolism in rats. Specifically, the hydroxyl groups in caffeic acid, gallic acid, \(p \)-coumaric acid, catechin, and flavonoids could conjugate with glucuronic or sulfuric acid moieties, giving rise to a No. of phase II metabolites.

Identification of Caffeic Acid Derivatives

Caffeic acid (3,4-dihydroxycinnamic acid) is widely distributed in plants and their products owing to its intermediate role in the biosynthesis of lignin.\(^{22,23}\) It was also detected in GCP and Puerh tea, the raw materials of Ganpu tea.\(^{12,24}\) As shown in Figure 2, caffeic acid has 3 hydroxyl sites, which can be combined with glucuronide, sulfate, and other groups. The caffeic acid reference standard gave a deprotonated quasi-molecular ion ([M-H]\(^-\)) at \(m/z \) 179 (C\(_9\)H\(_8\)O\(_4\)) and a characteristic fragment ion at \(m/z \) 135 by the loss of one CO\(_2\) molecule. In this work, compounds 1, 2, and 3 all displayed a [M-H]\(^-\) ion at \(m/z \) 355 (C\(_{13}\)H\(_{16}\)O\(_{10}\)), 176 Da (C\(_8\)H\(_6\)O\(_4\)) more than that of caffeic acid. They also showed product ions at \(m/z \) 179 and \(m/z \) 135, which were consistent with the fragmentation pattern of caffeic acid. Hence, compounds 1, 2, and 3 were tentatively characterized as caffeic acid-O-glucuronide. Similarly, compounds 4, 5, and 6 were assigned as caffeic acid-O-sulfate. However, due to the unavailability of corresponding commercial standards, the exact binding sites of the mentioned glucuronides and sulfates have yet to be determined.

Identification of Gallic Acid Derivatives

Gallic acid is a trihydroxybenzoic acid with the formula C\(_7\)H\(_6\)O\(_5\). In negative ion mode, it exhibited a main product ion at \(m/z \) 125 by losing a CO\(_2\) molecule. Herein, compound 7 showed an [M-H]\(^-\) ion at \(m/z \) 249 (C\(_7\)H\(_6\)O\(_8\)S), 80 Da (SO\(_3\)) more than that of gallic acid, and yielded similar ion signals at \(m/z \) 169 and \(m/z \) 125. By comparison with reported data,\(^{25}\) compound 7 was tentatively identified as gallic acid-O-sulfate.

Identification of \(p \)-Coumaric Acid Derivatives

Similar to caffeic acid, \(p \)-coumaric acid is also a hydroxy derivative of cinnamic acid. Compound 8 was unequivocally identified as \(p \)-coumaric acid. It eluted at 10.5 min and gave an [M-H]\(^-\) ion at \(m/z \) 163 (C\(_9\)H\(_8\)O\(_3\)), as well as a fragment ion at \(m/z \) 119 by the loss of one CO\(_2\) molecule. Compounds 9 and 10 had the same [M-H]\(^-\) ion at \(m/z \) 243 (C\(_{13}\)H\(_{16}\)O\(_{10}\)S), 80 Da (SO\(_3\)) more than that of \(p \)-coumaric acid. Both of them produced product ion signals at \(m/z \) 163 and \(m/z \) 119.
Table 1. Identification of Metabolites in rat Urine and Feces Samples After Oral Administration of Ganpu tea Extract (GTE).

No.	Compound description	Formula	RT (min)	[M + H]^+ (Error, ppm)	[M - H]^− (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source	
	Caffeic acid derivatives								
1	Caffeic acid-O-glucuronide	C_{15}H_{16}O_{10}	4.6	ND	355.0669 (<0.6)	ND	283.0873, 179.0369 [M-H-GlcUA]^−, 107.0499	Urine	
2	Caffeic acid-O-glucuronide	C_{15}H_{16}O_{10}	7.5	ND	355.0674 (1.0)	ND	311.0800 [M-H-CO_2]^−, 179.0338 [M-H-GlcUA]^−, 135.0434 [M-H-GlcUA-CO_2]^−, 113.0270	Urine	
3	Caffeic acid-O-glucuronide	C_{15}H_{16}O_{10}	7.7	ND	355.0668 (<0.7)	ND	311.0793 [M-H-CO_2]^−, 179.0339 [M-H-GlcUA]^−, 135.0450 [M-H-GlcUA-CO_2]^−, 113.0237	Urine	
	Gallic acid derivative								
4	Gallic acid-O-sulfate	C_{7}H_{6}O_{8}S	5.1	ND	248.9712 (0.4)	ND	211.0836, 169.0147 [M-H-SO_3]^−, 97.0369	Urine	
	p-Coumaric acid derivatives								
8	p-Coumaric acid	C_{9}H_{8}O_{3}	10.5	ND	163.0405 (2.8)	ND	119.0510 [M-H-CO_2]^−, 93.0372	Urine	
9	p-Coumaric acid-O-sulfate	C_{9}H_{8}O_{6}S	8.2	ND	242.9972 (1.2)	ND	163.0398 [M-H-SO_3]^−, 119.0507	Urine	
10	p-Coumaric acid-O-sulfate	C_{9}H_{8}O_{6}S	8.8	ND	242.9971 (1.0)	ND	163.0405 [M-H-SO_3]^−, 119.0510	Urine	
	Xanthine derivatives								
11	Theobromine (3,7-dimethylxanthine)	C_{7}H_{8}N_{4}O_{2}	6.1	181.0718 (<1.3)	ND	163.0627 [M + H-H_2O]^+, 138.0665, 122.0578	ND	Urine, Feces	
12	Theophylline (1,3-dimethylxanthine)	C_{7}H_{8}N_{4}O_{2}	6.8	181.0724 (2.4)	179.0581 (3.7)	163.0607 [M + H-C_2H_3NO]^+, 124.0713 [M + H-C_2H_3NO-CO]^+	164.0327 [M-H-CH_3]^−, 135.0307	Urine, Feces	
13	Oxytheobromine (1,3-dimethyluric acid)	C_{7}H_{8}N_{4}O_{3}	5.8	197.0675 (3.1)	195.0533 (4.8)	182.0444 [M + H-CH_3]^+ 169.0725 [M + H-CO]^+, 140.0460 [M + H-C_2H_3NO]^+, 112.0515 [M + H-C_2H_3NO-CO]^+	180.0289 [M-H-CH_3]^−, 137.0234	Urine, Feces	
14		C_{7}H_{8}N_{4}O_{3}	6.4		182.0443 [M + H-CH_3]^+	140.0457	ND		

(Continued)
No.	Compound description	Formula	RT (min)	[M+H]^+ (Error, ppm)	[M-H]^− (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
15	Oxytheophylline (3,7-dimethyluric acid)	C₂₇H₃₇NO₉	197.0672 (1.2)	195.0531 (3.5)	[M+H-C₆H₃NO]⁺, 112.0510 [M+H-C₆H₃NO-CO]⁺	ND	Urine, Feces	
16	Methylxanthine	C₆H₆N₄O₂	167.0566 (1.4)	165.0428 (6.2)	149.0430 [M+H-C₆H₃NO]⁺, 136.0123, 110.0352 [M+C₆H₆N₄O₂]⁺, 82.0424 [M+H-C₆H₃NO-CO]⁺	ND	Urine	
17	Caffeine (1,3,7-trimethylxanthine)	C₈H₁₀N₄O₂	195.0597 (0.3)	ND	136.0133, 124.0492 [M+H-C₆H₃NO]⁺, 96.0568 [M+H-C₆H₃NO-CO]⁺	ND	Urine, Feces	
18	8-Oxocaffeine (1,3,7-trimethyluric acid)	C₈H₁₀N₄O₃	291.0871 (1.9)	290.0690 (3.7)	289.0721 [M+H-C₆H₃NO]⁺, 245.0855 [M+H-GlcUA-C₆H₄O₂]⁺, 179.0525 [M+H-GlcUA-C₆H₄O₃]⁺, 109.0263 [M+H-GlcUA-C₆H₄O₄]⁺	ND	Urine, Feces	
19	Catechin derivatives	C₂₁H₂₂O₁₂	467.1184 (0.1)	465.1033 (0.1)	312.0654 [M+H-C₆H₃NO-CH₃-2CO]⁺	289.0721 [M+H-GlcUA]⁺, 245.0855 [M+H-GlcUA-C₆H₄O₂]⁺, 179.0525 [M+H-GlcUA-C₆H₄O₃]⁺, 109.0263 [M+H-GlcUA-C₆H₄O₄]⁺	Urine	
20	Polymethoxyflavone (PMF) derivatives	C₁₈H₁₆O₆	329.1023 (1.1)	327.0871 (1.0)	312.0654 [M+H-C₆H₃NO]⁺, 295.0358, 282.2458 [M+H-3CH₃]⁺, 190.9289, 146.9383, 102.9489	312.0654 [M+H-C₆H₃NO]⁺, 295.0358, 282.2458 [M+H-3CH₃]⁺, 190.9289, 146.9383, 102.9489	Urine	

(Continued)
No.	Compound description	Formula	RT (min)	\([M + H]^+\) (Error, ppm)	\([M - H]^-\) (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
22	Dihydroxy-trimethoxyflavone	C_{18}H_{16}O_{7}	13.5	345.0979 (3.0)	343.0850 (7.7)	H-2CH_{3}-CH_{3}O, 239.0633, 153.0190	ND	Urine, Feces
23	Trimethoxyflavone-O-glucuronide	C_{24}H_{24}O_{12}	11.0	505.1345 (0.8)	503.1148 (−9.4)	329.1011 [M+H-CH_{3}]^+, 314.0777 [M+H-GlcUA-CH_{3}]^+, 299.0526 [M+H-GlcUA-2CH_{3}]^+, 249.0618	ND	Urine
24	Trimethoxyflavone-O-glucuronide	C_{24}H_{24}O_{12}	11.9	505.1340 (−0.1)	503.1178 (−3.5)	487.1833 [M+H-H_{2}O]^+, 462.1495, 344.0835 [M+H-CH_{3}]^+, 329.0656 [M+H-2CH_{3}]^+, 283.0562 [M+H-3CH_{3}]^+, 301.0643 [M+H-2CH_{3}-CO]^-, 269.0788 [M+H-3CH_{3}-CO]^-, 257.0597	ND	Urine
25	Trimethoxyflavone-O-sulfate	C_{18}H_{16}O_{9}S	12.6	409.0590 (0.5)	407.0443 (0.1)	329.1007 [M+H-SO_{3}]^+, 314.0828 [M+H-SO_{3}-CH_{3}]^+, 299.0539 [M+H-SO_{3}-2CH_{3}]^+, 271.0567 [M+H-SO_{3}-2CH_{3}-CO]^-, 268.0720 [M+H-GlcUA-2CH_{3}-CH_{3}O]^-	ND	Urine
26	Monohydroxy-tetramethoxyflavone	C_{19}H_{18}O_{7}	15.0	359.1129 (1.0)	357.0979 (−0.3)	344.0900 [M+H-CH_{3}]^+, 329.0652 [M+H-2CH_{3}]^+, 314.0402 [M+H-3CH_{3}]^+, 301.0643 [M+H-2CH_{3}-CO]^-, 286.0470 [M+H-3CH_{3}-CO]^-, 181.0131	ND	Urine
27	Monohydroxy-tetramethoxyflavone	C_{19}H_{18}O_{7}	15.4	359.1128 (0.7)	ND	344.0835 [M+H-CH_{3}]^+, 326.0794 [M+H-2CH_{3}]^+, 298.0808, 162.0714	ND	Urine
28	Monohydroxy-tetramethoxyflavone	C_{19}H_{18}O_{7}	16.1	359.1134 (2.3)	357.0970 (−2.8)	344.0901 [M+H-CH_{3}]^+, 329.0656 [M+H-2CH_{3}]^+, 314.0402 [M+H-3CH_{3}]^+, 301.0643 [M+H-2CH_{3}-CO]^-, 283.0612 [M+H-3CH_{3}-CO]^-, 269.0788 [M+H-2CH_{3}-CH_{3}O-HCO]^-, 255.0665 [M+H-3CH_{3}-CH_{3}O-CO]^-, 227.0801, 153.0187	342.0742 [M-H-CH_{3}]^−, 327.0528	Urine, Feces
29	Monohydroxy-tetramethoxyflavone	C_{19}H_{18}O_{7}	16.7	359.1134 (2.4)	357.0976 (−0.9)	344.0884 [M+H-CH_{3}]^+, 329.0654 [M+H-2CH_{3}]^+, 314.0420 [M+H-3CH_{3}]^+, 301.0695 [M+H-2CH_{3}-CO]^-, 283.0597	342.0750 [M-H-CH_{3}]^−, 327.0590	Urine, Feces

(Continued)
No.	Compound description	Formula	RT	[M + H]^+ (Error, ppm)	[M - H]^− (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
30	Tetramethoxyflavone-O-glucuronide	C_{25}H_{30}O_{13}	11.7	535.1441 (−0.9)	533.1297 (−0.7)	H-3CH3-CH3O]^+*, 257.0451, 211.0248, 183.0298, 127.0411	[M-H4CH3-CO]^−, 207.0281, 192.0069, 117.0339	ND Urine
31	Tetramethoxyflavone-O-glucuronide	C_{25}H_{30}O_{13}	12.1	535.1447 (0.1)	533.1249 (−4.8)			ND Urine
32	Tetramethoxyflavone-O-glucuronide	C_{25}H_{30}O_{13}	12.3	535.1442 (−0.8)	533.1295 (−1.1)			ND Urine
33	Tetramethoxyflavone-O-glucuronide	C_{25}H_{30}O_{13}	12.6	535.1442 (−0.9)	533.1292 (−1.6)	359.1140 [M+H-GlcUA]^+*, 344.0913 [M+H-SO3-CH3]^+*, 329.0677 [M+H-GlcUA-2CH3]^+, 311.0570, 298.0848 [M+H-GlcUA-2CH3-CH3O]^+*, 283.0539 [M+H-GlcUA-3CH3-CH3O]^+*, 357.0985	357.0985 [M-H-GlcUA]^−, 342.0723 [M-H-GlcUA-CH3]^−, 327.0588 [M-H-GlcUA-2CH3]^−, 175.0246, 113.0252, 85.0297	
34	Tetramethoxyflavone-O-sulfate	C_{19}H_{18}O_{10}S	12.7	439.0707 (3.1)	437.0544 (−0.8)	359.1130 [M+H-SO3]^+*, 344.0928 [M+H-2CH3]^+, 329.0689 [M+H-SO3-2CH3]^+, 271.0584, 181.0103	357.1045 [M-H-SO3]^−, 342.0794 [M-H-SO3-CH3]^−, 327.0510 [M-H-SO3-2CH3]^−, 257.0455	
35	Tetramethoxyflavone-O-sulfate	C_{19}H_{18}O_{10}S	14.7	439.0696 (0.5)	437.0539 (−2.0)	359.1140 [M+H-SO3]^+*, 344.0833 [M+H-2CH3]^+, 329.0659 [M+H-SO3-2CH3]^+, 311.0536, 283.0539 [M+H-SO3-3CH3-CH3O]^+*, 257.0455	357.0965 [M-H-SO3]^−, 327.0510 [M-H-SO3-2CH3]^−, 257.0455	
36	Dihydroxy-tetramethoxyflavone	C_{19}H_{16}O_{8}	14.5	375.1075 (0.1)	373.0946 (4.7)	360.0832 [M+H-CH3]^+, 345.0598 [M+H-2CH3]^+, 327.0454 [M+H-2CH3-H2O]^+, 317.0653 [M+H-2CH3-CHO]^+, 302.0419 [M+H-3CH3-CO]^+, 197.0067, 169.0098		ND Urine, Feces
37	Dihydroxy-tetramethoxyflavone	C_{19}H_{16}O_{8}	15.1	375.1079 (1.2)	373.0925 (−1.0)	360.0833 [M+H-CH3]^+, 345.0607 [M+H-2CH3]^+, 334.0368, 269.0473, 216.0473	327.1683 [M-H-CH3-CH2O]^−, 304.9143	Urine, Feces

(Continued)
No.	Compound description	Formula	RT (min)	[M + H]\(^+\) (Error, ppm)	[M - H]\(^-\) (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
38	Dihydroxy-tetramethoxyflavone	C\(_{19}\)H\(_{18}\)O\(_{8}\)	19.4	375.1076 (0.5)	373.0920 (2.4)	360.0827 [M + H-CH\(_3\)]\(^+\), 345.0590 [M + H-2CH\(_2\)-H\(_2\)O]\(^+\), 313.0675, 197.0106, 169.0146	358.0671 [M-H-CH\(_3\)]\(^-\), 343.0456 [M-H-2CH\(_2\)-H\(_2\)O]\(^-\), 304.9165, 285.0090	Urine
39	Nobiletin \(^a\)	C\(_{21}\)H\(_{22}\)O\(_{8}\)	19.3	403.1391 (0.8)	ND	388.1159[M + H-CH\(_3\)]\(^+\), 373.0890[M + H-2CH\(_2\)]\(^+\), 345.0968[M + H-2CH\(_2\)-CO]\(^+\), 301.0776, 183.0371	ND	Urine, Feces
40	Monohydroxy-pentamethoxyflavone	C\(_{20}\)H\(_{20}\)O\(_{8}\)	15.8	389.1237 (1.5)	387.1077 (2.1)	374.1001[M + H-CH\(_3\)]\(^+\), 359.0762[M + H-2CH\(_2\)]\(^+\), 341.0638[M + H-2CH\(_2\)-H\(_2\)O]\(^+\), 331.0806[M + H-2CH\(_2\)-CO]\(^+\), 316.0548[M + H-3CH\(_2\)-CO]\(^+\), 285.0752[M + H-3CH\(_2\)-CO-CH\(_3\)]\(^+\), 232.0686, 197.0092, 169.0152	372.0755[M-H-CH\(_3\)]\(^-\), 357.0681[M-H-2CH\(_2\)]\(^-\), 342.0428[M-H-3CH\(_2\)]\(^-\), 299.0171[M-H-4CH\(_2\)-CO]\(^-\), 234.0392[M-H-4CH\(_2\)-CO-CH\(_3\)]\(^-\), 205.0108[M-H-5CH\(_2\)-CO]\(^-\), 183.0289, 151.0390	Urine
41	Monohydroxy-pentamethoxyflavone	C\(_{20}\)H\(_{20}\)O\(_{8}\)	16.5	389.1233 (0.5)	ND	374.0985[M + H-CH\(_3\)]\(^+\), 359.0756[M + H-2CH\(_2\)]\(^+\), 344.0652[M + H-3CH\(_2\)]\(^+\), 341.0635[M + H-2CH\(_2\)-H\(_2\)O]\(^+\), 331.0853[M + H-2CH\(_2\)-CO]\(^+\), 316.0572[M + H-3CH\(_2\)-CO]\(^+\), 197.0063, 169.0139	ND	Urine
42	Monohydroxy-pentamethoxyflavone	C\(_{20}\)H\(_{20}\)O\(_{8}\)	17.1	389.1237 (1.5)	387.1083 (0.7)	374.1003[M + H-CH\(_3\)]\(^+\), 359.0762[M + H-2CH\(_2\)]\(^+\), 344.0623[M + H-3CH\(_2\)]\(^+\), 341.0630[M + H-2CH\(_2\)-H\(_2\)O]\(^+\), 313.0710[M + H-3CH\(_2\)-H\(_2\)O-CO]\(^+\), 287.0547, 211.0238, 183.0289, 151.0392	372.0847[M-H-CH\(_3\)]\(^-\), 357.0615[M-H-2CH\(_2\)]\(^-\), 342.0392[M-H-3CH\(_2\)]\(^-\), 327.0139[M-H-4CH\(_2\)]\(^-\), 314.0377[M-H-3CH\(_2\)-CO]\(^-\), 299.0171[M-H-4CH\(_2\)-CO]\(^-\), 234.0392[M-H-4CH\(_2\)-CO-CH\(_3\)]\(^-\), 205.0108[M-H-5CH\(_2\)-CO]\(^-\), 183.0289, 151.0392	Urine, Feces
43	Pentamethoxyflavone-O-glucuronide	C\(_{26}\)H\(_{28}\)O\(_{14}\)	12.1	565.1550 (0.4)	563.1405 (0.3)	389.1216[M + H-GkUA]\(^+\), 374.0972[M + H-GkUA-2CH\(_3\)]\(^+\), 359.0755[M + H-GlCUA-2CH\(_3\)]\(^+\), 341.0633[M + H-GkUA-2CH\(_2\)-H\(_2\)O]\(^+\), 328.0976[M + H-GkUA-2CH\(_3\)-CH\(_2\)]\(^+\), 299.0171[M-H-4CH\(_2\)-CO]\(^-\), 234.0392[M-H-4CH\(_2\)-CO-CH\(_3\)]\(^-\), 205.0108[M-H-5CH\(_2\)-CO]\(^-\), 183.0289, 151.0392	ND	Urine
44	Pentamethoxyflavone-O-glucuronide	C\(_{26}\)H\(_{28}\)O\(_{14}\)	12.8	565.1556 (0.7)	563.1391 (2.8)	389.1232[M + H-GkUA]\(^+\), 374.0992[M + H-GkUA-2CH\(_3\)]\(^+\), 359.0762[M + H-GlCUA-2CH\(_3\)]\(^+\), 518.3591[M-H-3CH\(_2\)]\(^-\), 387.1110[M-H-GkUA]\(^-\), 342.0392[M-H-3CH\(_2\)-CO]\(^-\), 327.0139[M-H-4CH\(_2\)-CO]\(^-\), 299.0171[M-H-4CH\(_2\)-CO-CH\(_3\)]\(^-\), 205.0108[M-H-5CH\(_2\)-CO]\(^-\), 183.0289, 151.0392	ND	Urine

(Continued)
No.	Compound description	Formula	RT (min)	[M + H]^+ (Error, ppm)	[M - H]^− (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
45	Pentamethoxyflavone-O-glucuronide	C_{26}H_{28}O_{14}	13.1	565.1554 (0.4)	563.1405 (−0.3)	[M + H-GlcUA-2CH₃-H₂O]^+	341.0619[M + H-GlcUA-2CH₃-H₂O]^+, 313.0711[M + H-GlcUA-2CH₃-H₂O]^+	372.0837[M-H-GlcUA-CH₃]^−, 175.0269, 113.0258
46	Pentamethoxyflavone-O-sulfate	C_{20}H_{20}O_{11}S	14.5	469.0803 (0.9)	467.0640 (−2.9)	387.1027[M-H-SO₃]^−, 372.0839[M-H-SO₃-CH₃]^−, 357.0615[M-H-SO₃-2CH₃]^−, 311.1509[M-H-SO₃-3CH₃-CH₃O]^−	518.3496[M-H-3CH₃]^−, 387.1180[M-H-GlcUA]^+, 372.0838[M-H-GlcUA-CH₃]^+, 357.0629[M-H-GlcUA-2CH₃]^+, 342.0385[M-H-GlcUA-3CH₂]^+, 175.0239, 113.0260	
47	Pentamethoxyflavone-O-sulfate	C_{20}H_{20}O_{11}S	14.8	469.0800 (0.1)	467.0645 (−1.9)	387.1085[M-H-SO₃]^−, 372.0839[M-H-SO₃-CH₃]^−, 342.0377[M-H-SO₃-2CH₃]^−, 320.8854	387.1027[M-H-SO₃]^−, 372.0839[M-H-SO₃-CH₃]^−, 342.0377[M-H-SO₃-2CH₃]^−, 320.8854	
48	Monohydroxy-hexamethoxyflavone	C_{21}H_{22}O_{9}	16.5	419.1338 (0.3)	417.1186 (−1.2)	401.0135[M + H-H₂O]^+, 389.0865[M + H-2CH₃]^+, 374.3167[M + H-3CH₃]^+, 371.0825[M + H-2CH₃-H₂O]^+, 346.0558[M + H-3CH₃-CO]^+, 311.0623[M + H-SO₃-2CH₃-H₂O-CO]^+	ND	
49	Monohydroxy-hexamethoxyflavone	C_{21}H_{22}O_{9}	17.1	419.1343 (1.4)	ND	404.1137[M + H-CH₃]^+, 389.0853[M + H-2CH₃]^+, 371.0754[M + H-2CH₃-H₂O]^+, 328.0595, 230.0579, 197.0184, 149.0183	ND	
50	Monohydroxy-hexamethoxyflavone	C_{21}H_{22}O_{9}	17.8	419.1341 (1.0)	417.1173 (−4.2)	404.1099[M + H-CH₃]^+, 389.0867[M + H-2CH₃]^+, 371.0779[M + H-2CH₃-H₂O]^+, 331.0447, 311.0495[M + H-6CH₃-H₂O]^+, 285.0577, 211.0391, 151.0410	ND	
51	Hexamethoxyflavone-O-glucuronide	C_{27}H_{30}O_{15}	12.7	595.1677 (3.3)	ND	419.1346[M + H-GlcUA]^+, 404.1102[M + H-GlcUA-CH₃]^+, 389.0918[M + H-GlcUA-2CH₃]^+	ND	

(Continued)
No.	Compound description	Formula	RT (min)	[M + H]^+ (Error, ppm)	[M - H]^- (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source	
52	Hexamethoxyflavone-O-glucuronide	C_{27}H_{30}O_{15}	13.2	595.1640 (-1.4)	593.1476 (-6.0)	371.0843[M + H-GlcUA-2CH_3-H_2O]^+, 315.0826 419.1335[M + H-GlcUA]^+, 404.1085[M + H-GlcUA-CH_3]^+, 389.0860[M + H-GlcUA-3CH_3]^+, 371.0775[M + H-GlcUA-2CH_3-H_2O]^+, 355.0564, 331.0384	ND	Urine	
53	Flavanone derivatives	Homoeriodictyol	C_{16}H_{14}O_{6}	12.2	303.0869 (2.0)	301.0663 (2.0)	285.0762[M + H-GlcUA-H_2O]^+, 257.0798[M + H-GlcUA-H_2O-CO]^+, 229.0855, 209.0459, 167.0335, 135.0409, 117.0351	ND	Urine
54	Hesperetin	C_{16}H_{14}O_{6}	16.0	303.0874 (3.5)	301.0718 (0.2)	285.0802[M + H-H_2O]^+, 269.0752[M + H-C_9H_10O_2]^+, 229.0855, 209.0459, 167.0335, 135.0409, 125.0248	286.0483[M-CH_3]^-, 242.0572[M-H-CH_2O-HCO]^-, 199.0378, 164.0092[M-H-C_9H_10O_2]^-, 353.0780, 301.0721[M-H-GlcUA]^-, 286.0483[M-H-GlcUA-CO]^-, 242.0572[M-H-GlcUA-CH_2O-HCO]^-, 199.0378, 164.0092[M-H-GlcUA-CO]^-, 151.0037[M-H-C_9H_10O_2]^-, 125.0248	Urine, Feces	
55	Hesperetin-O-glucuronide/ Homoeriodictyol-O-glucuronide	C_{22}H_{22}O_{12}	10.6	479.1185 (0.3)	477.1038 (-0.1)	303.0872[M + H-GlcUA]^+, 285.0762[M + H-GlcUA-H_2O]^+, 257.0798[M + H-GlcUA-H_2O-CO]^+, 229.0855, 209.0459, 167.0335, 135.0409, 117.0351, 107.0481	ND	Urine	
56	Hesperetin-O-glucuronide/ Homoeriodictyol-O-glucuronide	C_{22}H_{22}O_{12}	12.2	479.1188 (0.7)	477.1031 (-1.5)	461.1041[M + H-H_2O]^+, 303.0875[M + H-GlcUA]^+, 285.0758[M + H-GlcUA-H_2O]^+, 231.0253, 177.0545, 153.0184[M + H-GlcUA-C_9H_10O_2]^+, 113.0246	431.0865[M-H-HCOOH]^-, 242.0595[M-H-GlcUA-CH_2O-HCO]^-, 175.0237, 113.0240	Urine	
57	Hesperetin-O-glucuronide/ Homoeriodictyol-O-glucuronide	C_{22}H_{22}O_{12}	14.1	479.1181 (-0.7)	477.1023 (-3.3)	303.0857[M + H-GlcUA]^+, 285.0784[M + H-GlcUA-C_9H_10O_2]^+, 256.9755, 165.0219, 153.0259[M + H-GlcUA-C_9H_10O_2]^+, 113.0246	ND	Urine	
58	Hesperetin-O-sulfate/ Homoeoridictyol-O-sulfate	C_{16}H_{14}O_{8}S	13.0	383.0483 (3.6)	ND	303.0913[M + H-SO_3]^+, 285.0784[M + H-SO_3-C_9H_10O_2]^+, 256.9755, 165.0219, 153.0259[M + H-SO_3-C_9H_10O_2]^+, 113.0246	ND	Urine	
59	Naringenin	C_{15}H_{12}O_{5}	15.4	273.0761 (1.4)	271.0612 (-0.1)	153.0181[M + H-C_9H_4O_2]^+, 119.0500, 91.0590	227.0695, 177.0237[M-H-C_9H_4O_2]^-, 151.0020[M-H-C_9H_4O_2]^-, 119.0504[M-H-C_9H_4O_2]^-, 107.0121[M-H-C_9H_4O_2]^-, 93.0378[M-H-C_9H_4O_2]^-, 271.0618[M-H-SO_3]^-, 199.0041, 151.0028[M-H-SO_3-C_9H_10O_2]^-, 107.0499[M-H-SO_3-C_9H_10O_2]^-, 113.0240	Urine, Feces	
60	Naringenin-O-sulfate	C_{15}H_{12}SO_{8}	13.4	353.0324 (-0.5)	351.0169 (-3.2)	ND		Urine	

(Continued)
No.	Compound description	Formula	RT (min)	\([M + H]^+\) (Error, ppm)	\([M-H]^−\) (Error, ppm)	Fragment ions in positive mode	Fragment ions in negative mode	Source
61	Isosakuranetin	C₁⁶H₁₄O₅	19.1	287.0918 (1.4)	285.0768 (−0.1)	167.0347[M + H-C₆H₄O]⁺, 147.0440, 119.0511, 91.0567	165.0178[M-H-C₆H₄O]⁻, 119.0498, 93.0350	Urine
	Flavone derivatives							
62	Quercetin[^a]	C₁₅H₁₀O₇	14.1	303.0514 (4.7)	301.0359 (1.6)	285.1568[M + H-H₂O]⁺, 257.0389[M + H-H₂O-CO]⁺, 217.9552, 176.9308, 130.9229	257.1219, 173.0636, 151.0054[M-H-C₆H₆O₃]⁻, 129.0735	Urine
63	Luteolin[^c]	C₁₅H₁₀O₆	14.4	287.0527 (−8.1)	285.0385 (−6.9)	153.0178[M + H-C₆H₆O₂]⁺		Urine
64	Kaempferol[^b]	C₁₅H₁₀O₆	15.9	287.0555 (1.5)	285.0409 (1.6)	153.0162[M + H-C₆H₆O₂]⁺		Urine
65	Kaempferol-O-glucuronide/	C₂₂H₂₂O₁₁	14.6	463.1235 (0.1)	461.1082 (−1.7)	445.1140[M + H-H₂O]⁺, 287.0918[M + H-GlcUA]⁺, 269.0918[M + H-GlcUA-H₂O]⁺, 167.0395, 147.0456, 119.0516	285.0796[M-H-GlcUA]⁻, 175.0226, 113.0241	Urine
	Luteolin-O-glucuronide							
66	Apigenin[^a]	C₁₅H₁₀O₅	15.5	271.0608 (2.7)	269.0458 (0.9)	241.0516[M-H-C₆H₄O]⁻, 181.0464, 159.0444, 133.0296		Urine, Feces
67	Apigenin-O-glucuronide	C₂₁H₁₈O₁₁	10.8	447.0925 (0.7)	445.0763 (−2.9)	269.0447[M-H-GlcUA]⁻, 113.0244		
68	Apigenin-O-Sulfate	C₁₃H₁₀O₈S	13.0	351.0177 (2.2)	349.0020 (−1.0)	269.054[M-H-SO₃]⁻, 225.0516, 151.0055[M-H-SO₃-C₆H₄O]⁻, 117.0341[M-H-SO₃-C₆H₆O₃]⁻		Urine, Feces

[^a]: Confirmation in comparison with authentic standards.
[^b]: The losses are Glc = glucose moiety, Rha = rhamnose moiety and, ND = not detect.
[^c]: Confirmation in comparison with mass spectral library (Natural Products HR-MS/MS Spectral Library, Version 1.0; AB Sciex).

Abbreviation: RT: retention time.
By comparison with the literature, compounds 9 and 10 were presumed to be \(\rho \)-coumaric acid-O-sulfate.

Identification of Xanthine Derivatives

Xanthine is a common alkaloid encountered in tea and coffee. It is an intermediate product of purine degradation, subsequently converted to methylxanthine and uric acid by the action of corresponding enzymes. In this work, 8 xanthine derivatives were characterized. Compounds 11 and 12 both exhibited protonated quasi-molecular ions \([M+H]^+\) at \(m/\chi \) 181 (C\(_7\)H\(_8\)N\(_4\)O\(_2\)) and a characteristic product ion at \(m/\chi \) 163. Based on the obtained exact molecular mass and formula, these two compounds were proposed as dimethylxanthine. With reference to chromatographic RT and other information in the literature, compounds 11 and 12 were tentatively identified as theobromine and theophylline, respectively. Compounds 13 and 14 gave the same \([M+H]^+\) ion at \(m/\chi \) 197, 16 Da (O) more than that of dimethylxanthine, and were presumed to be oxytheobromine and oxytheophylline, respectively. Similarly,
compounds 15 and 16 were assigned as methylxanthine, the demethylated metabolite of theobromine or theophylline. Compared with the corresponding reference standard, compound 17 was explicitly identified as caffeine. It showed an [M + H]⁺ ion at m/z 195 and fragment ions at m/z 138, 123, and 110 by the successive losses of C₂H₃NO, CH₃, and CO. Given the reported results, compound 18 was plausibly identified as 8-oxocaffeine, the oxidative product of compound 17.

Theobromine and theophylline are isomers with the formula C₇H₇N₂O₂, both of which are dimethylated derivatives of xanthine. They can be further oxidized or demethylated, yielding the corresponding dimethylic acid and monomethyloxanthine. Moreover, methylation at either position N-1 of theobromine or position N-7 of theophylline would generate caffeine (1,3,7-trimethylxanthine). Therefore, it can be seen from Table 1 that theobromine and theophylline mainly underwent oxidation, methylation, and demethylation in rats.

Identification of Catechin Derivatives

Catechin is an abundant secondary metabolite in tea. It belongs to the group of flavan-3-ols, a type of natural phenol and antioxidant.³³ In our preliminary study, 8 flavan-3-ols (including catechin) were detected in Ganpu tea.¹² Herein, compounds 19 and 20 both showed an [M + H]⁺ ion at m/z 467, 176 Da (C₆H₈O₆) more than that of catechin, and gave similar ion signals at m/z 291, 139, and 123 in positive ion mode. Referring to reported results,³²,³³ compounds 19 and 20 were tentatively identified as catechin-O-glucuronide. Retro-Diels–Alder (RDA) reactions were observed in the MS/MS fragmentation of these two compounds. Taking compound 19 as an example, after the neutral loss of a glucuronyl moiety (GlUA), a characteristic ion signal at m/z 291 was observed, which was presumed to be protonated catechin. Subsequently, protonated catechin gave a product ion at m/z 139 through an RDA reaction involving the cleavage of bonds 1 and 3 of C ring (Figure 2), while the signal at m/z 123 could be explained by cleavage of bonds 0 and 3. Besides, protonated catechin also yielded a fragment ion at m/z 181 in consequence of the cleavage of bond 5.

Identification of PMF Derivatives

PMFs are kinds of flavonoids bearing two or more methoxy groups on their basic C₆-C₃-C₆ skeleton, with a carbonyl group at position C-4.³⁴ They vary in the number and position of the hydroxyl groups (–OH) and/or methoxyl groups (–OCH₃) on the basic skeleton. PMFs exist almost exclusively in citrus plants, especially in the peels.³⁵ In fact, we have identified a series of PMFs in CRP and Ganpu tea, such as nobiletin, tangeretin, sinensetin, and natsudaidain.¹²,²⁴ In this work, 32 PMFs and derived metabolites were detected. As shown in Table 1, these PMFs basically generated the diagnostic fragment ions of [M + H-nCH₃]⁺, [M + H-nCH₃-H₂O]⁺, [M + H-nCH₃-CO]⁺, and [M + H-nCH₃-H₂O-CO]⁺ in positive ion mode, aligned with reported studies.³⁶,³⁷ Similar MS/MS fragmentation patterns were observed in negative ion mode. For example, compound 39 was assuredly identified as nobiletin by comparison with the corresponding reference standard. Protonated nobiletin displayed its ion signal at m/z 403, and yielded characteristic product ions at m/z 388, 373, 345, and 330 with the successive loss of CH₃ and CO.

Based on previous studies, demethylation or hydroxylation is considered to be the major in vivo metabolic pathway of PMFs.³⁸,³⁹ Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) is a primary PMF in CPR and has been shown to exert antioxidative, anti-inflammatory, anti-tumor, and neuroprotective properties.⁶,⁴⁰ Herein, compounds 40, 41, and 42 all gave [M + H]⁺ ions at m/z 389, 14 Da (CH₃) less than that of protonated nobiletin, and therefore they were proposed as the mono-demethylated metabolite of nobiletin. Based on the RT reported in literature,⁴¹ compounds 40, 41, and 42 were tentatively assigned as 6-demethylnobiletin, 7-demethylnobiletin, and 4′-demethylnobiletin, respectively. These metabolites could be further demethylated into several dihydroxymethoxyflavones (compounds 36, 37, and 38). To date, a No. of in vivo biotransformation studies have shown that the number and location of -OCH₃ and -OH in PMFs have important effects on their bioactivity. For example, some hydroxylated PMFs were found to exert better anticancer and anti-inflammatory activities than that of their corresponding PMFs.⁴²,⁴³ Therefore, metabolites probably play an indispensable role in the overall bioactivity of phytochemicals. It is important to take corresponding metabolites into consideration when investigating the biological activities of phytochemicals. In addition, these hydroxylated PMFs could further conjugate with either glucuronic acid or sulfuric acid, leading to the corresponding phase II metabolites.

Identification of Flavanone and Flavone Derivatives

Flavanones and flavones are both abundant in citrus fruits.⁴⁴ Flavanones are regarded as the first intermediate products of the flavonoid biosynthetic pathway, and are characterized by the presence of a chiral center at C2 and a notable absence of the C2-C3 double bond.⁴⁵ The flavone structure is highly reactive, and is prone to undergo dehydrogenation, yielding corresponding flavones. Flavones are another class of flavonoids based on the backbone of 2-phenylchromen-4-one, with the presence of a C2-C3 double bond.⁴⁶ Compared with corresponding reference standards, compounds 53, 54, 59, 62, 64, and 66 were undoubtedly identified as homoeriodictyol, hesperetin, naringenin, quercetin, kaempferol, and apigenin. Compounds 61 and 63 were assigned as isosakuranetin and luteolin, respectively, by comparison with the Natural Products HR-MS/MS Spectral Library (Version 1.0; AB Scienx). Compounds 55 and 56 produced the same [M + H]⁺ ion at m/z 479, and gave characteristic fragment ions at m/z 303, 285, and 153. Based on reported results, compounds 55 and 56 could be tentatively identified as either...
Four flavanone aglycones (e.g., homoeodictyol, hesperetin, naringenin, and isosakuranetin) and 4 flavone aglycones (e.g., quercetin, luteolin, kaempferol, and apigenin) were screened in rat urine and feces samples. These aglycones were further engaged in glucuronidation and sulfation, giving rise to several conjugates. Typical RDA reactions were found in the MS/MS fragmentation of these flavanone and flavone derivatives, which were consistent with published results.48,49 For instance, the characteristic ion at \(m/z\) 153 in positive ion mode \((m/z\) 151 in negative ion mode) could be defined as the product of RDA reaction by cleavage of bonds 1 and 3 of the C ring in homoeodictyol, homoseretin, naringenin, quercetin, luteolin, kaempferol, apigenin, and their derivatives.

Conclusions

In this work, the in vivo metabolite profiles of Ganpu tea were investigated for the first time. Ganpu tea was extracted with boiling water and then orally administered to rats in a dosage of 3 g/kg. Urine and feces samples were collected and analyzed by high-resolution UHPLC-Q-TOF-MS/MS. As a result, 68 compounds, including 6 caffeic acid derivatives, 1 gallic acid derivative, 3 p-coumaric acid derivatives, 8 xanthine derivatives, 2 catechin derivatives, 32 PMF derivatives, 9 flavanone derivatives, and 7 flavone derivatives, were either identified or tentatively characterized in rat urine and feces. Based on the detected metabolites, prototype compounds derived from GTE were found to undergo extensive phase II metabolism in rats, especially glucuronidation and sulfation. The obtained results should be helpful for further study of the health values of Ganpu tea.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2022).

Ethical Approval

Not applicable, because this article does not contain any studies with human or animal subjects.

Informed Consent

Not applicable, because this article does not contain any studies with human or animal subjects.

Trial Registration

Not applicable, because this article does not contain any clinical trials.

ORCID iD

Xuan Zeng https://orcid.org/0000-0001-8644-0039

References

1. Lv H, Zhang Y, Lin Z, Liang Y. Processing and chemical constituents of Pu-erh tea: a review. Food Res Int. 2013;53(2):608-618.
2. Zhu M, Li N, Zhou F, et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2020;312:126043.
3. Gu X, Pan B, Wu Z, et al. Progress in research for pharmacological effects of Pu-erh tea. China J Chin Mater Med. 2017;42(11):2038-2041.
4. He Q, Shen Y, Huang B, et al. Technology and antioxidant activities evaluation of ganpu tea beverage. Food Ind. 2020;41(8):18-21.
5. Zheng Y, Guo F, Peng W, Su W. HPLC Fingerprints of ganpu tea from Xinhui. Cent South Pharm. 2018;16(3):721-725.
6. Yu X, Sun S, Guo Y, et al. Citri reticulatae pericarpium (chenpi): botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. J Ethnopharmacol. 2018;220:265-282.
7. Zheng Y, Zeng X, Peng W, Wu Z, Su W. Study on the discrimination between Citri reticulatae pericarpium varieties based on HS-SPME-GC-MS combined with multivariate statistical analyses. Molecules. 2018;23(5):1235.
8. Qi H, Ding S, Pan Z, Li X, Fu F. Characteristic volatile fingerprints and odor activity values in different citrus-tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules. 2020;25(24):6027.
9. Zhang Y, Yu G, Gao M, et al. Polyphenol content, antioxidative and anti-α-amylase activities of four tea extracts. J Henan Univ Sci Technol. 2019;40(1):85-89.
10. Xiao S, Huang J, Huang Y, et al. Flavor characteristics of ganpu Tea formed during the sun-drying processing and its antidepressant-like effects. Front Nutr. 2021;8:647537.
11. Yu L, Xiao S, Huang Y, et al. The antiproliferative activities in ganpu tea on HepG2 and SGC-7901 tumor cell lines. Mod Food Sci Technol. 2020;36(7):42-49.
12. Zheng Y, Zeng X, Chen T, Peng W, Su W. Chemical profile, antioxidative, and gut microbiota modulatory properties of ganpu Tea: a derivative of Pu-erh tea. Nutrients. 2020;12(1):224.
13. Zheng M, Huang X, Peng Z, Li J, Lin L. Analysis of volatile components in Gan-pu tea. Chin J Trop Crops. 2017;38(4):758-762.
48. Zeng X, Su W, Bai Y, et al. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2017;1061–1062:79-88.

49. He M, Wu H, Nie J, et al. Accurate recognition and feature qualify for flavonoid extracts from liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation. *J Pharm Biomed Anal*. 2017;146:37-47.