A VALUATION CRITERION FOR NORMAL BASIS GENERATORS IN LOCAL FIELDS OF CHARACTERISTIC p

G. GRIFFITH ELDER

Abstract. Let K be a complete local field of characteristic p with perfect residue field. Let L/K be a finite, fully ramified, Galois p-extension. If $\pi_L \in L$ is a prime element, and $p'(x)$ is the derivative of π_L’s minimal polynomial over K, then the relative different $D_{L/K}$ is generated by $p'(\pi_L) \in L$. Let v_L be the normalized valuation normalized with $v_L(L) = \mathbb{Z}$. We show that any element $\rho \in L$ with $v_L(\rho) \equiv -v_L(p'(\pi_L)) - 1 \mod [L : K]$ generates a normal basis, $K[\text{Gal}(L/K)] \cdot \rho = L$. This criterion is tight: Given any integer i such that $i \not\equiv -v_L(p'(\pi_L)) - 1 \mod [L : K]$, there is a $\rho_i \in L$ with $v_L(\rho_i) = i$ such that $K[\text{Gal}(L/K)] \cdot \rho_i \not\subseteq L$.

The Normal Basis Theorem states that in a finite Galois extension L/K with $G = \text{Gal}(L/K)$, there is an element $\rho \in L$, called a normal basis generator, whose conjugates $\{\sigma \rho : \sigma \in G\}$ provide a basis for L over K. In the setting of local field extensions, the most important property of an element is its valuation, and so $[2]$ asked whether there is a valuation criterion: Is there a valuation (an integer certificate) that guarantees that any element bearing this valuation is a normal basis generator?

Let K be a complete local field with a perfect residue field of characteristic p. So the characteristic of K is 0 or p. It is not too hard to see that as a necessary condition, if a valuation criterion exists for a finite Galois extension L/K, then L/K must be fully ramified and have order a power of p. But are these necessary conditions also sufficient? In this paper we give an affirmative answer to this question in the case where K has characteristic p.

For K of characteristic 0 and regular (so K does not contain the pth roots of unity), a valuation criterion for fully ramified elementary abelian p-extensions is given in [2]. For K of characteristic p, a valuation criterion for fully ramified abelian p-extensions is given in [3]. In both cases, the valuation criterion is described in terms of the largest ramification break number associated with L/K. The main contribution of this paper is a restatement of that criterion in terms of the exponent of the relative different (see remark following proposition). The relative different satisfies $D_{L/K} = (p'(\pi_L))$ with π_L a prime element of L and $p(x)$ the minimal polynomial of π_L over K [4]. In both cases, the valuation criterion is described in terms of the exponent of the relative different (see remark following proposition). The relative different satisfies $D_{L/K} = (p'(\pi_L))$ with π_L a prime element of L and $p(x)$ the minimal polynomial of π_L over K [4].

This means that we can state our main result as follows:

Theorem 0.1. Let K be a complete local field of characteristic p with perfect residue field. Let L/K be a finite, Galois extension with $G = \text{Gal}(L/K)$, and let v_L be the valuation normalized so that $v_L(L) = \mathbb{Z}$. If L/K is fully ramified and $[L : K] = p^n$ for some integer n, there is a valuation criterion: Let $\pi_L \in L$ be a

Date: February 12, 2008.
1991 Mathematics Subject Classification. 11S15.
prime element and let \(p(x) \) be its minimal polynomial over \(K \). Then any element \(\rho \in L \) with \(v_L(\rho) \equiv -v_L(p'(\pi_L)) \equiv 1 \mod [L : K] \) generates a normal basis for \(L/K \). So \(L = K[G] \cdot \rho \).

Moreover the assumption that \(L/K \) is a fully ramified \(p \)-extension is necessary and the criterion under that assumption is tight: Outside of the assumption, given any \(i \in \mathbb{Z} \), or under the assumption, given any \(i \not\equiv -v_L(p'(\pi_L)) \equiv 1 \mod [L : K] \), there is a \(\rho_i \in L \) with \(v_L(\rho_i) = i \) such that \(L \supseteq K[G] \cdot \rho_i \).

Proof. Recall the definition of the ramification groups \(G_i \) [4, IV]. We begin by assuming that \(G = G_1 \), which is equivalent to the assumption that \(L/K \) is a fully ramified extension of degree \(p^n \) for some \(n \). Let \(d = v_L(p'(\pi_L)) \) and let \(\rho \in L \) with \(v_L(\rho) \equiv -d - 1 \mod p^n \). Express \(\rho \) in terms of the field basis \(B = \{ \pi_L/p'(\pi_L) : i = 0, \ldots, p^n - 2 \} \) for \(L/K \). It is a result of Euler that

\[
\text{Tr}_G \frac{\pi_i^j}{p'(\pi_L)} = \begin{cases}
0 & \text{for } 0 \leq i \leq p^n - 2 \\
1 & \text{for } i = p^n - 1
\end{cases}
\]

[4] III §6 Lemma 2. Since \(v_L(\rho) \equiv v_L(\pi_L^{p^n-1}/p'(\pi_L)) \mod p^n \), the coefficient of \(\pi_L^{p^n-1}/p'(\pi_L) \) in the expression for \(\rho \) must be nonzero. Therefore \(\text{Tr}_G \rho \not= 0 \). Moreover, we can replace \(B \) by the alternate basis \(\{ \rho, \pi_L/p'(\pi_L) : i = 0, \ldots, p^n - 2 \} \), and get

\[
L = K \cdot \rho + \sum_{i=0}^{p^n - 2} K \cdot \frac{\pi_i^j}{p'(\pi_L)}.
\]

The Normal Basis Theorem, stated in terms of Tate cohomology, says that \(\tilde{\text{H}}^{-1}(G, L) = 0 \) [4, VIII §1 & X §1 Proposition 1]. This means that any element \(\eta \in L \) with \(\text{Tr}_G \eta = 0 \) satisfies \(\eta \in \mathcal{I}_G \cdot L \), where \(\mathcal{I}_G = (\sigma - 1 : \sigma \in G) \) is the augmentation ideal of the group ring \(K[G] \). Therefore \(L = K \cdot \rho + \mathcal{I}_G \cdot L \), but also

\[
L = K[G] \cdot \rho + \mathcal{I}_G \cdot L.
\]

Now notice that because \(G \) is a \(p \)-group and \(K \) has characteristic \(p \), \(\mathcal{I}_G \) is also the Jacobson radical of \(K[G] \). Thus, by Nakayama’s Lemma, \(L = K[G] \cdot \rho \).

We have proven the criterion. The elements \(\pi_L^{p^n-1}/p'(\pi_L) \) for \(i \not= p^n - 1 \) show that the criterion is sharp. (All of this argument applies equally well in characteristic 0, except for one step: In characteristic 0, the augmentation ideal \(\mathcal{I}_G \) is not the Jacobson radical of \(K[G] \).)

Now we address \(G \supseteq G_1 \). Let \(L' = L^{G_1} \) and \(L'' = L^{G_0} \). So \(L''/K \) is unramified and \(L'/L'' \) is fully but tamely ramified. Replace \(K \) and \(G \), in our earlier argument with \(L' \) and \(G_1 \) respectively. So \(d \) is defined in terms of the relative different of the fully ramified \(p \)-part of the extension, \(\mathfrak{p}_L' = \mathfrak{D}_{L'/L} \) and \(p^n = [L : L'] \). From earlier work, given any integer \(i \not= -d - 1 \mod p^n \) there is a \(\rho \in L \) with \(v_L(\rho) = i \) such that \(\text{Tr}_{G_1} \rho = 0 \). So \(K[G] \rho \not\subseteq L \).

To consider the case \(i \equiv -d - 1 \mod p^n \), notice that the trace \(\text{Tr}_{G_1} \) maps fractional ideals of \(\mathfrak{D}_L \), the ring of integers of \(L \), to fractional ideals of \(\mathfrak{D}_{L''} \). Indeed, using basis \(B \) from above, \(\text{Tr}_{G_1} \mathfrak{P}_L = \mathfrak{P}_L^{p^n-d} \cdot \mathfrak{P}_L^{k-1} \). Moreover \(\text{Tr}_{G_1} \mathfrak{P}_L^{k-1} \subseteq \mathfrak{P}_L^{k-1} \), because of [4] III §3 Proposition 7]. Observe that this means that given any element \(\tau \in L' \) with \(v_L(\tau) = k - 1 \), there is a \(\rho_\tau \in L \) with \(v_L(\rho_\tau) = kp^n - d - 1 \) such that \(\text{Tr}_{G_1} \rho_\tau = \tau \).

To use this observation notice that because \(L'/L'' \) is tamely ramified, there is a prime element of \(L'' \), namely \(\pi_{L''} \), such that \(L' = L''(\sqrt[p^n]{\pi_{L''}}) \) with \(p \not\in [4, II \S 3.5.
Proposition]. So for \(k \neq 1 \mod e \), let \(\tau = \sqrt[p]{r_{L/F}}^{k-1} \). Since \(\text{Tr}_{G_0/G_1} \sqrt[p]{r_{L/F}}^{k-1} = 0 \), \(\text{Tr}_{G_0}\rho = 0 \) and \(K[G]\rho \subset L \). For \(k \equiv 1 \mod e \), let \(\tau = \sigma_{K}^{(k-1)/e} \) and let \(\sigma \) be any non-trivial element in \(G/G_1 \). Then \((\sigma - 1)\sigma_{K}^{k-1} = 0 \). Thus \((\sigma - 1)\text{Tr}_{G_1}\rho = 0 \) and \(K[G]\rho \subset L \).

Now we connect the valuation criterion of this paper with that of \[2\], \[5\].

Proposition 0.2. Let \(K \) be a complete local field (characteristic 0 or \(p \)) with perfect residue field of characteristic \(p \). Let \(L/K \) be a finite, fully ramified, Galois \(p \)-extension. Let \(\pi_L \in L \) be a prime element and let \(p(x) \) be its minimal polynomial over \(K \). Then

\[
\nu_L(p'(\pi_L)) + 1 \equiv p^n u_m - b_m \mod [L : K]
\]

where \(b_m, u_m \) are the largest ramification break numbers in lower and upper numbering respectively.

Remark 1. When \(L/K \) is abelian \(u_m \in \mathbb{Z} \) by the Hasse-Arf Theorem and so we get the valuation criterion of \[2\], \[5\], namely \(\nu_L(\rho) \equiv b_m \mod p^n \).

Proof. Let \(d = \nu_L(p'(\pi_L)) \) and recall that \(\mathcal{O}_{L/K} = (p'(\pi_L)) \). Let \(G = G_1 \) and \([L : K] = p^n \). Recall the ramification filtration \(G = G_1 \supset G_2 \supset \cdots \) where \(G_i = \{ \sigma \in G : \nu_L((\sigma - 1)\pi_L) \geq i + 1 \} \) \[3\] IV §1. The break numbers (in lower numbering) are those integers \(i \) such that \(G_i \supset G_{i+1} \). Let \(b_1 < b_2 < \cdots < b_m \) be the list of break numbers with \(b_m \) being the maximal break (again in lower numbering). Let \(g_i = |G_{b_i}| \), the number of elements in \(G_{b_i} \). Then by \[3\] IV §1 Proposition 4,

\[
d = (1 + b_1)(g_1 - 1) + \sum_{i=2}^{m} (b_i - b_{i-1})(g_i - 1) = (1 + b_1)g_1 - b_m - 1 + \sum_{i=2}^{m} (b_i - b_{i-1})g_i.
\]

Moreover, we can convert the lower numbering to upper numbering using the Herbrand function \(\varphi \) \[4\] IV §3. Be careful to notice a small difference in notation: We use \(g_i = |G_{b_i}| \) whereas \[4\] IV §3 uses \(g_{b_i} = |G_{b_i}| \). The largest break number in upper numbering is therefore

\[
u_m = \varphi(b_m) = \frac{1}{p^n} \left(b_1 g_1 + \sum_{i=2}^{m} (b_i - b_{i-1})g_i \right).
\]

Thus \(d + 1 = g_1 - b_m + p^n u_m \), where \(g_1 = p^n \).

We end the paper with a natural

Question 1. Does the statement of the Theorem (modified appropriately to address \[2\] Example 1) also hold in characteristic zero?

References

[1] B. de Smit and L. Thomas, ‘Local Galois module structure in positive characteristic and continued fractions’, *Arch. Math. (Basel)* 88 (2007), no. 3, 207–219.

[2] N. P. Byott and G. G. Elder, ‘A valuation criterion for normal bases in elementary abelian extensions’, *Bull. Lond. Math. Soc.* 39 (2007), no. 5, 705–708.

[3] I. B. Fesenko and S. V. Vostokov, ‘Local fields and their extensions’, (American Mathematical Society, Providence RI, 2002).

[4] J.-P. Serre, ‘Local fields’, (Springer-Verlag, New York, 1979).

[5] L. Thomas, ‘A valuation criterion for normal basis generators in equal positive characteristic’, preprint: August 9, 2007.
E-mail address: elder@unomaha.edu

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243 U.S.A.