The dominant origin of diffuse Ly\(\alpha\) halos around LAEs explored by SED fitting and clustering analysis

Haruka KUSAKABE\(^1\), Kazuhiro SHIMASAKU\(^{1,2}\), Rieko MOMOSE\(^{1,3}\), Masami OUCHI\(^{4,5}\), Kimihiko NAKAJIMA\(^{6,7,8}\), Takuya HASHIMOTO\(^{9,10}\), Yuichi HARIKANE\(^{5,11}\), John D. SILVERMAN\(^4\) and Peter L. CAPAK\(^{12,13}\)

\(^{1}\)Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
\(^{2}\)Research Center for the Early Universe, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
\(^{3}\)Department of Physics, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan
\(^{4}\)Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan
\(^{5}\)Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
\(^{6}\)Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
\(^{7}\)Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, 2100 Copenhagen Ø, Denmark
\(^{8}\)DTU-Space, Technical University of Denmark, Elektrovej 327, 2800 Kgs. Lyngby, Denmark
\(^{9}\)College of General Education, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530, Japan
\(^{10}\)National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
\(^{11}\)Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
\(^{12}\)California Institute of Technology, MC 105-24, 1200 East California Blvd., Pasadena, CA 91125, USA
\(^{13}\)Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 South Wilson Ave., Pasadena, CA 91125, USA

\(^{\ast}\)E-mail: kusakabe@astron.s.u-tokyo.ac.jp

Received \langle reception date \rangle; Accepted \langle acception date \rangle

Abstract

The physical origin of diffuse Ly\(\alpha\) halos (LAHs) around star-forming galaxies is still a matter of debate. We present the dependence of LAH luminosity \(L(Ly\alpha_H)\) on the stellar mass \((M_*)\), SFR, color excess \((E(B-V))\), and dark matter halo mass \((M_h)\) of the parent galaxy for \(\sim 900\) Ly\(\alpha\) emitters (LAEs) at \(z \sim 2\) divided into ten subsamples. We calculate \(L(Ly\alpha_H)\) using the stacked observational relation between \(L(Ly\alpha_H)\) and central Ly\(\alpha\) luminosity by Momose et al. (2016), which we find agrees with the average trend of VLT/MUSE-detected individual LAEs. We find that our LAEs have relatively high \(L(Ly\alpha_H)\) despite low \(M_*\) and \(M_h\), and that \(L(Ly\alpha_H)\) remains almost unchanged with \(M_*\) and perhaps with \(M_h\). These results are incompatible with
the cold stream (cooling radiation) scenario and the satellite-galaxy star-formation scenario, because the former predicts fainter $L(Ly\alpha)_H$ and both predict steeper $L(Ly\alpha)_H$ vs. M_* slopes. We argue that LAHs are mainly caused by Lyα photons escaping from the main body and then scattered in the circum-galactic medium. This argument is supported by LAH observations of Hα emitters (HAEs). When LAHs are taken into account, the Lyα escape fractions of our LAEs are about ten times higher than those of HAEs with similar M_* or $E(B-V)_*$, which may partly arise from lower HI gas masses implied from lower M_{HI} at fixed M_*, or from another Lyα source in the central part.

Key words: galaxies: high-redshift — galaxies: star formation — galaxies: halos — intergalactic medium

1 Introduction

A Lyα halo (LAH) is a diffuse, spatially extended structure of Lyα emission seen around star-forming galaxies. LAHs around local galaxies, as well as around active galactic nuclei (AGNs) and quasi-stellar objects (QSOs), can be detected individually because they are relatively bright (e.g., Keel et al. 1999; Kunth et al. 2003; Hayes et al. 2005; Goto et al. 2009; Östlin et al. 2009; Hayes et al. 2013; Matsuda et al. 2011, and reference therein). LAHs around high-redshift (z) galaxies are much fainter, but they have been detected in stacked narrow-band images (tuned to redshifted Lyα emission) of 100–4000 star-forming galaxies at $z \sim 2$–6 (e.g., Hayashino et al. 2004; Steidel et al. 2011; Matsuda et al. 2012; Feldmeier et al. 2013; Momose et al. 2014, 2016; Xue et al. 2017, see also a stacking study of spectra of ~ 80 LAEs at $z \sim 2$–4 by Guaita et al. (2017)). Very recently, LAHs around ~ 170 star forming galaxies at $z \sim 3$–6 have been detected individually by deep integral field spectroscopy with VLT/MUSE (Wisotzki et al. 2016; Leclercq et al. 2017; Wisotzki et al. 2018). Since the existence of LAHs has now been established, the next question is what is their physical origin(s).

Theoretical studies have proposed several physical origins of LAHs: resonant scattering in the CGM, cold streams (gravitational cooling radiation), star formation in satellite galaxies (one-halo term), fluorescence (photo-ionization), shock heating by gas outflows, and major mergers (e.g., Haiman et al. 2000; Taniguchi & Shioya 2000; Cantalupo et al. 2005; Mori & Umemura 2006; Laursen & Sommer-Larsen 2007; Zheng et al. 2011; Rosdahl & Blaizot 2012; Yajima et al. 2013; Lake et al. 2015; Mas-Ribas & Dijkstra 2016). The former three are generally considered for high-z star-forming galaxies (e.g., Lake et al. 2015), while the latter three are preferred for giant Lyα nebulae (Lyα blobs; LABs) and/or bright QSOs (e.g., Mori & Umemura 2006; Kollmeier et al. 2010; Yajima et al. 2013; Momose et al. 2018).

Understanding the origin of LAHs provides crucial information on the circum-galactic medium (CGM), which is closely linked to galaxy formation and evolution. It also enables us to estimate the escape fraction of Lyα emission from central galaxies correctly. If resonant scattering mainly drives LAHs, the Lyα luminosity of LAHs should be included in the calculation of the Lyα escape fraction. LAHs are also important for studies of cosmic reionization because their spatial extent can be used as a probe of the intergalactic medium (IGM) ionization fraction.

Lyman α emitters (LAEs) are suitable objects for studying the nature of LAHs because a large sample of LAEs at a fixed redshift as needed for a stacking analysis can be constructed relatively easily from a narrow-band imaging survey (Matsuda et al. 2012; Feldmeier et al. 2013; Momose et al. 2014, 2016; Xue et al. 2017). LAEs are typically low-stellar-mass young galaxies with low metallicities and low-dust contents hosted in low-mass dark matter halos (e.g., Pirzkal et al. 2007; Lai et al. 2008; Ono et al. 2010; Nakajima & Ouchi 2014; Kusakabe et al. 2015; Kojima et al. 2017; Ouchi et al. 2018, and reference therein). They are detected owing to efficient Lyα escapes, which are suggested to stem partly from these physical properties such as low-dust attenuation (e.g., Finkelstein et al. 2009).

Matsuda et al. (2012) have found that LAEs in a large-scale overdense region at $z = 3.1$ have large (~ 100–200 Å) EWs if LAH components are included. They suggest that these LAHs may partly originate from shock heating due to gas outflows or cold streams, although they have not ruled out other possibilities. On the other hand, Momose et al. (2016) have stacked ~ 3600 LAEs in field regions at $z \sim 2$ to find that some subsamples have relatively small Lyα EWs fully consistent with pop II star formation, suggesting that the cold stream scenario is not preferred. Finding no correlation between the spatial extent (the scale length, r_s) and the surface number density for LAEs at $z \sim 3$–4, Xue et al. (2017) have suggested that star formation in satellite galaxies is not the dominant contributor to LAHs (see however, Matsuda et al. 2012). They have also found that the radial profile of LAHs is very close to that predicted by models of resonant scattering in Dijkstra & Kramer (2012), leaving only little room for the contribution from satellites galaxies and cold streams modeled by Lake et al. (2015). Note, however, that Lake et al. (2015)’s model reproduces the radial profile of LAHs seen in LAEs at $z \sim 3$ in Momose et al. (2014). More recently,
Leclercq et al. (2017) have measured LAH properties of \(\sim 150 \) individual LAEs at \(z \sim 3-6 \) using VLT/MUSE. They argue that a significant contribution from star formation in satellite galaxies is somewhat unlikely since the UV component of LAEs is compact and not spatially offset from the center of their LAHs, while having not given a firm conclusion on other origins.

To summarize, although there are a number of observational studies on the origin of LAHs, their results are not very conclusive, nor consistent with each other (Matsuda et al. 2012; Feldmeier et al. 2013; Momose et al. 2016; Wisotzki et al. 2016; Xue et al. 2017; Leclercq et al. 2017, see also Steidel et al. (2011)). This is partly because correlations of LAH properties with properties of central galaxies have not been fully studied. Especially important may be correlations with the dark matter halo mass and stellar mass of central galaxies, because they can be directly compared with theoretical predictions (e.g., Rosdahl & Blaizot 2012). Although Leclercq et al. (2017) have discussed a correlation between the Ly\(\alpha \) luminosity of LAHs and the UV luminosity of central galaxies, they have not estimated those masses. SFRs and dust attenuation are also important quantities to discuss the scattering origin of LAHs.

Another problem is that \(r_s \), the scale-length of LAHs that is often used to discuss the origin of LAHs in previous studies, is not robust against measurement errors. Indeed, the dependence of \(r_s \) on Ly\(\alpha \) luminosity found in individually detected MUSE LAEs is not consistent with the average dependence obtained by Momose et al. (2016) from stacked images. In contrast, as we will see later, relations between the Ly\(\alpha \) luminosity of central galaxies and that of LAHs found in Momose et al. (2016) is in good agreement with those seen in individual MUSE-LAEs in Leclercq et al. (2017). This suggests that Ly\(\alpha \) luminosity is more robust against systematic errors from stacking.

In this paper, we study the dependence of LAH luminosity on stellar properties and dark matter halo mass using \(\sim 900 \) star-forming LAEs at \(z \sim 2 \) to identify the dominant origin of LAHs around LAEs. Section 2 summarizes the data and sample used in this study. In section 3, we construct subdivided samples based on UV, Ly\(\alpha \), and \(K \)-band properties. We present methods to derive the Ly\(\alpha \) luminosities of LAHs as well as the stellar properties and dark matter halo masses of subdivided LAEs in section 4. After showing results in section 5, we discuss the origin of LAHs and high Ly\(\alpha \) escape fractions in section 6. Conclusions are given in Section 7.

Throughout this paper, we adopt a flat cosmological model with the matter density \(\Omega_m = 0.3 \), the cosmological constant \(\Omega_k = 0.7 \), the baryon density \(\Omega_b = 0.045 \), the Hubble constant \(H_0 = 70 \text{ km} \text{s}^{-1} \text{Mpc}^{-1} \) (\(h_{100} = 0.7 \)), the power-law index of the primordial power spectrum \(n_s = 1 \), and the linear amplitude of mass fluctuations \(\sigma_8 = 0.8 \), which are consistent with the latest Planck results (Planck Collaboration 2016). We assume a Salpeter initial mass function (IMF: Salpeter 1955) with a mass range of \(0.1-100 \, M_{\odot} \). Magnitudes are given in the AB system (Oke & Gunn 1983) and coordinates are given in J2000. Distances are expressed in comoving units. We use “log” to denote a logarithm with a base 10 (\(\log_{10} \)).

2 Data and sample

2.1 Sample selection

Kusakabe et al. (2018) have constructed large samples of \(z = 2.2 \) LAEs in four deep fields: the Subaru/XMM-Newton Deep Survey (SXDS) field (Furusawa et al. 2008), the Cosmic Evolution Survey (COSMOS) field (Scoville et al. 2007), the Hubble Deep Field North (HDFN: Capak et al. 2004), and the Chandra Deep Field South (CDFS: Giacconi et al. 2001). In this study, we only use their SXDS and COSMOS samples. We do not use the HDFN sample because the \(R \)-band image of this field is not deep enough to derive the UV slope for faint LAEs.

We also do not use the CDFS sample because the \(i \), \(z \), and \(H \) data are too shallow to perform reliable SED fitting as has been pointed out by Kusakabe et al. (2018).

We summarize the sample selection and the estimation of the contamination fraction detailed in Kusakabe et al. (2018). LAEs at \(z = 2.14-2.22 \) are selected using the narrow band \(NB387 \) (Nakajima et al. 2012) as described in selection papers (Nakajima et al. 2012, 2013; Konno et al. 2016; Kusakabe et al. 2018). The threshold of the rest-frame equivalent width, \(EW_0 \), of Ly\(\alpha \) emission is \(EW_0(Ly\alpha) \geq 20-30 \text{Å} \) (see figure 1 in Konno et al. 2016). The \(NB387 \) limiting magnitude is 25.7 mag for the SXDS sample and 26.1 mag for the COSMOS sample (2\arcsec diameter aperture, 5\sigma). We only use LAEs with \(NB387 \) total (i.e., aperture-corrected; see table 1) magnitude brighter than 25.5 mag. All sources detected in either X-ray, UV, or radio have been removed since they are regarded as AGNs. Our entire sample consists of 897 LAEs from \(\sim 1980 \) square arcminutes. The survey area of each field is shown in table 1.

Kusakabe et al. (2018) have conservatively estimated the fraction of possible interlopers in their LAE samples to be \(10 \pm 10 \% \), where interlopers are categorized into spurious sources, AGNs without an X-ray, UV, or radio counterpart, foreground/background galaxies, and \(z = 2.2 \) LAEs with low \(EW_0(Ly\alpha) \) which happen to meet the color selection due to photometric errors. See sections 2.2 and 3.2 of Kusakabe et al. (2018) for details. We use this contamination fraction to obtain true clustering amplitudes from observed ones in section 4.3.1.

1. To rescale stellar masses in previous studies assuming a Chabrier or Kroupa IMF (Kroupa 2001; Chabrier & Chabrier 2003), we divide them by a constant factor of 0.61 or 0.66, respectively. Similarly, to convert SFRs in the literature with a Chabrier or Kroupa IMF, we divide them by a constant factor of 0.63 or 0.67, respectively.
2.2 Imaging data for SED fitting

Most of the data used in this work are the same as those used in Kusakabe et al. (2018), except that the NIR imaging data are replaced to new ones in this work. We overview the data used in SED fitting in the two fields below.

We use ten broadband images for SED fitting: five optical bands – B, V, R (or r), i (or i′), and z (or z′); three NIR bands – J, H, and K (or Ks); and two mid-infrared (MIR) bands – IRAC ch1 and ch2. The PSFs of the images are matched in each field. The aperture corrections to convert 3″ MIR aperture magnitudes to total magnitudes are taken from Ono et al. (2010, see table 1). For each field, a K-band or NIR detected catalog is used to obtain secure IRAC photometry in section 4.2.1 and to divide the LAEs into subsamples in section 3.2.

SXDS field The images used for SED fitting are as follows: B, V, r, i′, and z′ images with Subaru/Suprime-Cam from the Subaru/XMM-Newton Deep Survey project (Furusawa et al. 2008, SXDS); J, H, and K images from the data release 11 of the UKIRT/WFCAM UKIDSS/UDS project (Lawrence et al. 2007, Almaini et al. in prep.); Spitzer/IRAC 3.6 μm (ch1) and 4.5 μm (ch2) images from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) project (PI: P. Capak; Capak et al. in prep.; Mehta et al. 2018). All images are publicly available except the SPLASH data. The aperture corrections for optical and NIR images are given in Nakajima et al. (2013). The catalog used to clean IRAC photometry and to obtain K-band counterparts is constructed from the K-band image.

COSMOS field We use the publicly available B, V, r′, i′, and z′ images with Subaru/Suprime-Cam by the Cosmic Evolution Survey (COSMOS: Capak et al. 2007; Taniguchi et al. 2007) and J, H, and Ks images with the VISTA/VIRCAM from the third data release of the UltraVISTA survey (McCracken et al. 2012). We also use Spitzer/IRAC ch1 and ch2 images from the SPLASH project (Laigle et al. 2016). The aperture corrections for the optical images are taken from Nakajima et al. (2013) and those for the NIR images follow McCracken et al. (2012). The catalog used to clean IRAC photometry and to obtain K-band counterparts is the one given by Laigle et al. (2016), for which sources have been detected in a combined z′YJHKs image.

3 Subsamples

A vast majority of our LAEs are too faint to estimate stellar masses on individual basis. To study how LAH luminosity depends on stellar and dark matter halo masses, we therefore divide the entire sample into subsamples in accordance with the following five quantities which are expected to correlate with stellar mass, and perform a stacking analysis on each subsample. (i) K-band apparent magnitude, mK, known as a good tracer of stellar mass (e.g., Daddi et al. 2004). (ii) Rest-frame UV absolute magnitude, MV, which is related to SFR and hence expected to trace stellar mass through the star formation main sequence (e.g., Speagle et al. 2014). (iii) UV spectral slope β (fλ ∝ λ^β), an indicator of dust attenuation and may correlate with stellar mass (e.g., Reddy et al. 2010). (iv) Lyα luminosity L(Lyα) and (v) rest-frame Lyα equivalent width EW0(Lyα), both of which possibly anti-correlate with stellar mass according to Ando relation (Ando et al. 2006, 2007, see also Shimakawa et al. 2017).

While only 30–40% of our LAEs are detected in the K band with mK < 25.0 (see section 3.2), the other four quantities can be measured for almost all objects because they need only optical imaging data, which are deep enough as shown in table 1. We divide the whole sample of each field into two subsamples in accordance with each of mK, MV, β, L(Lyα), and EW0(Lyα); further division makes stacked SEDs too noisy to do reliable SED fitting. Among the five quantities, mK and MV are expected to correlate with Ms, most tightly. The subsamples by β, L(Lyα), and EW0(Lyα) are useful to check the results obtained for the mK and MV subsamples, because these three quantities are affected by the NB selection bias differently from mK and MV as discussed in appendix 1 (see figure 1). As shown later, all five subsample pairs give similar results.

3.1 UV and Lyα properties

For each object, we measure MV, β, L(Lyα), and EW0(Lyα) from NB387, B, V, and R magnitudes in the following manner. First, we approximate the UV SED of the object by a simple SED composed of a power-law continuum and a Lyα line centered at rest-frame 1216 Å:

\[f_\nu(\text{erg s}^{-1} \text{cm}^{-2} \text{Hz}^{-1}) = A 10^{-0.4(m_{\text{UV}(1+z)} + 48.60)} \left(\frac{\nu_{\lambda=1216(1+z)}}{\nu} \right)^{\beta+2} + F_{\text{Ly}\alpha} \delta(\nu - \nu_{\lambda=1216(1+z)}) \]

where A, m_{\text{UV}(1+z)} and F_{\text{Ly}\alpha} are the IGM attenuation factor from Madau (1995), the apparent UV magnitude (corresponding to MV), and the Lyα flux (ergs^{-1} cm^{-2}), respectively. The apparent magnitude of the model SED in a given band i is calculated from its transfer function Ti(λ) as below:

\[m_{i, \text{model}} = -2.5 \log_{10} \left(\int \frac{f_\nu c \lambda^2 T_i(\lambda) d\lambda}{c / \lambda^2 T_i(\lambda) d\lambda} \right) - 48.6, \]

where c is the speed of light.

We fit this model SED to the apparent magnitudes of the object with MV, β, and F_{\text{Ly}\alpha} as free parameters. We search for the best-fit parameter values that minimize...
\[\chi^2 = \sum_{i=NB,B,V,R} \left(\frac{m_i - m_{i,model}}{\sigma m_i} \right)^2, \]

where \(m_i \) and \(\sigma m_i \) are the \(i \)-th band apparent magnitude and its 1\(\sigma \) error, respectively. We calculate apparent magnitudes from 2\arcsec diameter aperture magnitudes (see Kusakabe et al. 2018) assuming that our LAEs are point sources in all four bands including \(NB387 \). We also assume that their \(Ly_{\alpha} \) lines are located at the peak of the response function of \(NB387 \) and do not correct for flux loss. The best-fit \(F_{Ly_{\alpha}} \) is obtained by solving \(\partial \frac{\chi^2}{\partial F_{Ly_{\alpha}}} = 0 \). Hereafter, we refer to the \(L(Ly_{\alpha}) \) and \(EW_0(Ly_{\alpha}) \) obtained with the assumption of point sources as \(L(Ly_{\alpha})_{ps} \) and \(EW_{0,ps}(Ly_{\alpha}) \). Since the best-fit \(EW_0(Ly_{\alpha}) \) is derived from the other three parameters, the degree of freedom is one.

Among the 897 LAEs, six sources are undetected in at least one of the three broad bands. We do not use these objects in the following analyses because the four quantities derived from the SED fitting are highly uncertain.

3.2 Subsample construction

Since we divide LAEs into two subsamples in accordance with each of the five quantities, we have a total of ten subsamples for each field. The boundaries of the subsamples are defined from the distribution of the five quantities, which is shown in figure 1.

Our LAEs are widely distributed over the four UV and \(Ly_{\alpha} \) properties as shown in figures 1 (a) – (d). The distribution of \(M_{UV} \), \(\beta \), \(L(Ly_{\alpha})_{ps} \), and \(EW_{0,ps}(Ly_{\alpha}) \) is different between the two fields. This is possibly because of systematic offsets of the zero-point magnitudes (ZPs) of the optical images adopted in the original papers\(^2\) as has been discussed in both the COSMOS (Capak et al. 2007; Ilbert et al. 2009; Skelton et al. 2014) and

Table 1. Details of the data.

band	SXDS (~ 1240arcmin\(^2\), 600\(^a\) LAEs)	COSMOS (~ 740arcmin\(^2\), 297\(^a\) LAEs)
	PSF aperture correction (mag)	PSF aperture correction (mag)
	(\(''\)) diameter (\(''\))	(\(''\)) diameter (\(''\))
	(1) (2) (3) (4)	(1) (2) (3) (4)
\(NB387 \)	0.88 2.0 0.17 25.7	0.95 2.0 0.25 26.1
\(B \)	0.84 2.0 0.17 27.5–27.8	0.95 2.0 0.12 27.5
\(V \)	0.8 2.0 0.15 27.1–27.2	1.32 2.0 0.33 26.8
\(R \)	0.82 2.0 0.16 27.0–27.2	1.04 2.0 0.19 26.8
\(i \)	0.8 2.0 0.16 26.9–27.1	0.95 2.0 0.12 26.3
\(z \)	0.81 2.0 0.16 25.8–26.1	1.14 2.0 0.25 25.4
\(J \)	0.85 2.0 0.15 25.6	0.79 2.0 0.3 24.6–24.8
\(H \)	0.85 2.0 0.15 25.1	0.76 2.0 0.2 24.3–24.4
\(K \)	0.85 2.0 0.16 25.3	0.75 2.0 0.2 23.9–24.6
IRAC ch1	1.7 3.0 0.52 24.9\(^b\)	1.7 3.0 0.52 25.4\(^b\)
IRAC ch2	1.7 3.0 0.55 24.9\(^b\)	1.7 3.0 0.55 25.1\(^b\)

Note. (1) The FWHM of the PSF, (2) aperture diameter in photometry, (3) aperture correction, and (4) 5\(\sigma \) limiting magnitude with a 2\arcsec diameter aperture are shown for each band. Values in parentheses show the area used in clustering analysis. (a) The number of LAEs in the SXDS field is slightly different from that in Kusakabe et al. (2018) since we use \(NB387 \) images before PSF matching to other selection-band images for photometry. (b) The limiting magnitude measured in areas with no sources (see Laigle et al. 2016; Mehta et al. 2018).

Table 2. Subsample definition.

subsample criteria	SXDS	COSMOS	total
bright UV (MuvB)	123 (123, 9)	293 (257, 52)	416 (380, 61)
faint UV (MuvF)	173 (173, 13)	302 (257, 47)	475 (430, 60)
blue \(\beta \) (betaB)	80 (80, 5)	389 (334, 74)	469 (414, 79)
red \(\beta \) (betaR)	216 (216, 17)	206 (180, 25)	422 (396, 42)
bright \(Ly_{\alpha} \) (lyaB)	211 (211, 14)	236 (218, 41)	447 (429, 55)
faint \(Ly_{\alpha} \) (lyaF)	85 (85, 8)	359 (296, 58)	444 (381, 66)
large EW (ewL)	222 (222, 16)	228 (205, 35)	450 (427, 51)
small EW (ewS)	74 (74, 6)	367 (309, 64)	441 (383, 70)
bright \(K \) (KB)	112 (112, 11)	178 (177, 35)	290 (144, 46)
faint \(K \) (KF)	184 (184, 11)	417 (337, 64)	601 (236, 75)

Note. The selection criterion and the numbers of objects for each subsample. The number outside the bracket indicates the number of objects for clustering analysis, while the numbers in the bracket are for SED fitting: the left one corresponds to objects with UV to NIR photometry and the right one to those with clean ch1 and ch2 photometry.
SXDS (Yagi et al. 2013; Skelton et al. 2014) fields. However, these papers often claim opposite error directions (see Appendix 2 for more details). Another possible reason for the different distribution is field-to-field variance from large scale structure (cosmic variance). In this paper, we use the original ZPs following Kusakabe et al. (2018) and include ZP uncertainties in the flux-density errors in the calculations given in sections 3.1 and 4.2. Although the causes of the different distributions and the correct ZPs remain to be unclear, a pair of subsamples (with the same definition) from the two fields give consistent SED fitting results and Lyα luminosities in most cases (see figure 5(b), figure 6(b), and Table 5 in Appendix 4).

We define the boundary for the four UV and Lyα quantities so that the two subsamples have roughly comparable sizes:

\[M_{UV} = -19.2 \text{mag}, \]
\[\beta = -1.6, \]
\[L(\text{Ly}\alpha)_{ps} = 1.2 \times 10^{52} \text{erg s}^{-1}, \]
\[\text{and} \]
\[EW_{0,ps}(\text{Ly}\alpha) = 34 \text{Å} \]

as indicated by black lines in figure 1(a)–(d). The numbers of the LAEs in the eight subsamples are shown in table 2.

For each field, we also construct two subsamples divided by \(m_K \). The K-band catalog mentioned in section 2.2 effectively include sources with \(m_K \lesssim 25 \text{mag} \). Indeed, the 5σ limiting magnitude of the SXDS K-band image is 25.3 mag and the detection image for the COSMOS catalog, a combined \(z'YJHKs \) image, reaches deeper than 25.3 mag (5σ). As a result, about 30–40% of the LAEs in each field have a K-band counterpart with \(m_K < 25.0 \) as shown in figure 1(e). Therefore, we define the K-magnitude boundary as:

\[m_K = 25.0 \text{mag}. \]

Note that the COSMOS K image is composed of Deep and Ultradeep stripes. Since this could add an artificial pattern in the sky distribution of K-divided subsamples, we do not use the K-divided subsamples for clustering analysis.

We derive the four UV and Lyα quantities for each subsample from a median-stacked SED (see section 4.2) in the same manner as in section 3.1. We then calculate average values over the two field, e.g., the average \(M_{UV} \) of the two faint-\(M_{UV} \) subsamples, as shown by red symbols in figures 1(f)–(k). They are located in the middle of the distribution of individual sources (orange and green points), implying that the average SEDs of the subsamples represent well individual LAEs. We find that the subsamples with red \(\beta \), faint \(L(\text{Ly}\alpha)_{ps} \), small \(EW_{0,ps}(\text{Ly}\alpha) \), and bright \(m_K \) as well as bright \(M_{UV} \) have bright \(M_{UV} \) as shown by red open symbols. Note that the lower left part in figures 1(g) and (h) and the upper left part in figure 1(k) show a selection bias: LAEs with faint \(M_{UV} \) can be detected only if they have bright \(L(\text{Ly}\alpha)_{ps} \).

4 Methods

The Lyα luminosities of LAHs are estimated from a stacked observational relation obtained by Momose et al. (2016). We do not perform a stacking analysis of LAHs on our own subsamples since their sample sizes, which are one ninth to one half of the subsample sizes (∼700 each) in Momose et al. (2016), are not large enough to obtain reliable results. Parameters that characterize stellar populations and the mass of dark matter halos are derived from SED fitting and clustering analysis, respectively, in the same manner as in Kusakabe et al. (2018).

4.1 LAH luminosities

The LAHs of LAEs have been studied either by a stacking analysis of large samples or using individually detected objects. Momose et al. (2016) have used stacked images of ∼700 LAEs in each subsample (in total ∼3600) at \(z \sim 2 \) to compare Lyα luminosities within \(r = 40 \text{ kpc} \) (∼5′) to those within \(r = 1'' \) (∼8 kpc). They have estimated an empirical relation between the two Lyα luminosities from ∼3000 LAEs that are the parent sample of our ∼900 LAEs. On the other hand, Leclercq et al. (2017) have measured Lyα luminosities for \(3 \leq z \leq 6 \) LAEs with an individually detected LAH by fitting a two component model consisting of halo and continuum-like components. We define three kinds of Lyα luminosities as below.

\[L(\text{Ly}\alpha)_{C} \] Lyα luminosity at the central part, i.e., the main body of the object where stars are being formed. In Leclercq et al. (2017), it corresponds to the continuum-like component of Lyα luminosities. We assume that the Lyα luminosities within \(r = 1'' \) in 2D images in Momose et al. (2016) are approximately equal to \(L(\text{Ly}\alpha)_{C} \). The aperture size \(r = 1'' \) (∼8 kpc) is often used in photometry with ground-based telescopes for point sources, since it is comparable to their typical PSF size and hence \(r = 1'' \) fluxes are nearly equal to total fluxes. Leclercq et al. (2017) show that the scale length (\(r_s \)) of the continuum-like component of LAEs is typically smaller than 1 kpc, ensuring our assumption that LAEs are point sources.

\[L(\text{Ly}\alpha)_{H} \] Lyα luminosity of the LAH. In Leclercq et al. (2017), it approximately corresponds to the halo component of Lyα luminosity. We assume that the Lyα luminosities falling in the annulus of \(8 \leq r \leq 40 \text{ kpc} \) in Momose et al. (2016) approximately equal to \(L(\text{Ly}\alpha)_{H} \). In Momose et al. (2016), the typical \(r_s \) of the stacked Lyα emission including the LAH component is ∼10 kpc, and LAHs are found to extend up to \(r \sim 40 \text{ kpc} \).
corresponds to a sum of $L(\text{Ly} \alpha)_C$ and $L(\text{Ly} \alpha)_H$. we assume that the Lyα luminosities within 40 kpc in Momose et al. (2016) approximately equal to $L(\text{Ly} \alpha)_{\text{tot}}$.

Momose et al. (2016) have found that LAEs with fainter $L(\text{Ly} \alpha)_C$ have a higher $L(\text{Ly} \alpha)_{\text{tot}}$ to $L(\text{Ly} \alpha)_C$ ratio, $X(L_{\text{Ly} \alpha})_{\text{tot}/C}$, as shown in their figure 14. This means that the relative contribution of the halo component to the total Lyα luminosity increases with decreasing $L(\text{Ly} \alpha)_C$. The best-fitting linear function between $X(L_{\text{Ly} \alpha})_{\text{tot}/C}$ and $L(\text{Ly} \alpha)_C$, shown as their equation 2 is:

$$X(L_{\text{Ly} \alpha})_{\text{tot}/C} = 103.6 - 2.4 \log_{10}[L(\text{Ly} \alpha)_C \text{ (erg/s)}].$$ \hspace{1cm} (9)

This equation is calculated over $41.5 < \log_{10}(L(\text{Ly} \alpha)_C) < 42.7$ and is shown in figure 2(b). They use images with the PSF matched to $1''.32$ in FWHM.
Leclercq et al. (2017) have used the MUSE Hubble Ultra Deep Field survey data to detect LAHs for 145 star forming galaxies (essentially all are LAEs) at $3 < z < 6$ individually. They have measured the size and $L(Ly\alpha)_{HI}$ of Ly\alpha halos as well as $L(Ly\alpha)_{C}$. They do not find a significant evolution of the LAH size with redshift. This result is consistent with that obtained by Momose et al. (2014) with stacked LAEs at $z \simeq 2.2$–6.6, implying that the difference in redshift can be ignored in a comparison of the two studies. Indeed, there is no clear redshift evolution in the relations of MUSE LAEs shown by gray filled circles ($z < 4.5$) and gray open circles ($z > 4.5$) in figure 2 described below.

In figure 2, we compare the stacked observational relation of LAEs at $z = 2.2$ in Momose et al. (2016) (black lines and red stars) with the individual results by Leclercq et al. (2017) (gray and black circles), where $X(Ly\alpha)_{x/y}$ indicates the Ly\alpha luminosity ratio of the component x to the component y. Figure 2(a) is originally discussed in Leclercq et al. (2017), while figure 2(b) is used to determine the best-fit linear relation (equation9) in Momose et al. (2016). Black lines in figures 2 (a), (c), and (d) are converted from one in figure 2(b). It is notable that the y-axis depends on the x-axis by construction \(^4\) in figures 2 (a), (b) and (d). We find that all five stacked data points (red stars) lie in the middle of the distribution of individual MUSE-LAEs (grey circles) over a range of $log_{10}[L(Ly\alpha)_{C}(erg/s)] \simeq 41.7$–42.6 or $log_{10}[L(Ly\alpha)_{tot}(erg/s)] \simeq 42.3$–42.8. It is also found that the median values of individual MUSE-LAEs (black filled circles in figures 2 [a] and [c]) are located near the stacked values. This means that the stacked results represent the average halo luminosities of LAEs despite the fact that there is a great variation in halo luminosity among objects. The best-fit relation shown by a black line traces well the stacked points except for the brightest one. This is because the brightest point already deviates from the best-fit linear relation determined in figure 2(b) while the other four are on the relation. Based on figure 2(a), Leclercq et al. (2017) have concluded that there is no significant correlation between $L(Ly\alpha)_{tot}$ and $X(Ly\alpha)_{HI/tot}$ on the basis of a Spearman rank correlation coefficient of -0.05 (see their figure 7 and their section 5.3.1). Although the existence of a correlation is not clear, and a further test is needed, figures 2 (a) and (c) indicate that the stacked results (red stars) also trace the median trend of individual MUSE LAEs (black filled circles).

In this work, we estimate average $L(Ly\alpha)_{HI}$ and $L(Ly\alpha)_{tot}$ for each subsample from the stacked relation (equation9) as well as average $L(Ly\alpha)_{C}$ by multiplying average $L(Ly\alpha)_{tot}$ (in section 3.1) by 0.77 as an inverse aperture correction of 1.0’’32 PSF (see table 5 in appendix). The $L(Ly\alpha)_{C}$ values of our subsamples are found to be within the range shown by skyline inverted triangles in figures 2 (c) and (d) where the stacked relation traces well the stacked points. The typical 1\sigma uncertainties in the individual data points in Momose et al. (2016) are propagated to uncertainties in $L(Ly\alpha)_{HI}$ and $L(Ly\alpha)_{tot}$ of $\sim 22\%$ and $\sim 16\%$, respectively. Momose et al. (2016) also present a stacked relation (anti-correlation) between $X(L(Ly\alpha)_{tot}/C$ and $EW_{0,ps}(L_{Ly\alpha})$. Using this relation instead of equation 9 gives nearly the same $L(Ly\alpha)_{HI}$ and $L(Ly\alpha)_{tot}$ values (see appendices 3 and 4).

4.2 SED fitting

We derive parameters that characterize the stellar populations of our subsamples in the two fields by fitting SEDs based on stacked multiband images. We use 810 LAEs ($\sim 91\%$ of the entire sample, 891) that have data in all ten broadband filters ($B, V, R, i, z, J, H, K, ch1, and ch2)$. To obtain secure IRAC photometry, some prescriptions are adopted in previous studies (e.g., Vargas et al. 2014; Kusakabe et al. 2018; Malkan et al. 2017). In this paper, we follow Kusakabe et al. (2018) and only use LAEs that are not contaminated by other objects in the ch1 and ch2 images. To do so, we exclude LAEs that have either one or more neighbors or a high sky background through a two-step cleaning process. We are thus left with 121 LAEs for stacking of ch1 and ch2 images (see section 4.1 in Kusakabe et al. 2018, for more detail). We briefly describe stacking analysis, photometry, and SED models below. A detailed description can be found in Kusakabe et al. (2018).

4.2.1 Stacking Analysis and Photometry

For each band, we use the task IRAF/imcombine to create a median-stacked image at the NB387 source positions from images of size 50’’ \times 50’’ that are cut out with IRAF/imcopy task. While a stacked SED is not necessarily a good representation of individual objects (Vargas et al. 2014), stacking is still useful for our faint objects to obtain a rest-frame UV to NIR SED.

An aperture flux is measured for each stacked image using the task PyRAF/phot with the same parameters in Kusakabe et al. (2018). We use an aperture diameter of 2’’ for the NB387, optical, and NIR band images and 3’’ for the MIR (IRAC) images following Ono et al. (2010). For each of the ch1 and ch2 images, we obtain the net 3’’-aperture flux density by subtracting an offset of the sky background as described in section 4.2 of Kusakabe et al. (2018). All aperture magnitudes are corrected for Galactic extinction, $E(B-V)_{0}$, of 0.020 and 0.018 for the SXDS and COSMOS fields, respectively (Schlegel et al. 1998).
The aperture magnitudes are converted into total magnitudes by using the aperture correction values summarized in Table 1. The 1σ uncertainty in the total magnitudes is the sum of the errors in photometry, aperture correction, and the ZP. For the ch1 and ch2 data, the errors in sky subtraction are also included. The photometric errors are determined in the same procedure as Kusakabe et al. (2015). The aperture correction errors in the $NB387$, optical, and NIR bands are estimated to be 0.03 mag, and those in the ch1 and ch2 bands are set to 0.05 mag. The ZP errors for all bands are set to be 0.1 mag. The stacked SEDs thus obtained for individual subsamples are shown in Figures 11 and 12 in appendix.

4.2.2 SED models

We perform SED fitting on the stacked SEDs with model SEDs in the same manner as in Kusakabe et al. (2018). The model SEDs are constructed by adding nebular emission (lines and continuum) to the stellar population synthesis model GALAXEV (Bruzual & Charlot 2003; Ono et al. 2010). We assume constant star formation history, 0.2Z_\odot stellar metallicity, and $E(B-V)_{gas} = E(B-V)_{stellar}$ (Erb et al. 2006) following previous SED studies of LAEs (e.g., Ono et al. 2010; Vargas et al. 2014). We also assume an SMC-like dust extinction model for the attenuation curve (hereafter an SMC-like attenuation curve; Gordon et al. 2003) since it is suggested to be more appropriate.
for LAEs at $z \sim 2$ and low-mass star forming galaxies at $z \geq 2$ than the Calzetti curve (Calzetti et al. 2000) in Kusakabe et al. (2015) and Reddy et al. (2018), respectively. The Lyman continuum escape fraction, f_{esc}, is fixed to 0.2 (Nestor et al. 2013). We also examine the case of the Calzetti attenuation curve for comparison with previous studies and conservative discussion. The case without nebular emission ($f_{\text{esc}} = 1$) has been examined and discussed in Kusakabe et al. (2018).

We search for the best-fitting model SED to the stacked SED of each subsample that minimizes χ^2 and derive the following stellar parameters: stellar mass (M_*), color excess ($E(B-V)_*$), age, and SFR. The stellar mass is calculated by solving $\partial M_*/\partial M_*) = 0$, while the SFR is determined from M_* and age. Thus, the degree of freedom is 7. The 1σ confidence interval in each stellar parameter is obtained from the range of the values giving $\chi^2 \leq \chi^2_{\text{min}} + 1$, where χ^2_{min} is the minimum χ^2 value. Figures 11 and 12 in appendix shows the best-fit SEDs and table 6 in appendix summarize the results of the best-fit parameters in the two fields. The field-average values are shown in table 3.

4.3 Clustering analysis

We derive the angular two-point correlation functions (ACFs) of our subsamples from clustering analysis and convert the correlation lengths into bias factors and then into dark matter halo masses in the same manner as in Kusakabe et al. (2018). We briefly describe our methods below.

4.3.1 Angular correlation function

The ACF, $\omega_{\text{obs}}(\theta)$, for a given subsample is measured by the calculator given in Landy & Szalay (1993):

$$\omega_{\text{obs}}(\theta) = \frac{DD(\theta) - 2DR(\theta) + RR(\theta)}{RR(\theta)},$$

where $DD(\theta)$, $RR(\theta)$, and $DR(\theta)$ are the normalized numbers of galaxy-galaxy, galaxy-random, and random-random pairs, respectively. We use a random sample composed of 100,000 sources with the same geometrical constraints as the data sample. The sky distributions of the LAEs and the random sources in the two fields are shown in figure 2 of Kusakabe et al. (2018). Following Guaita et al. (2010), the 1σ uncertainties in ACF measurements are estimated as:

$$\Delta \omega_{\text{obs}}(\theta) = \frac{1 + \omega(\theta)}{\sqrt{DD_0(\theta)}},$$

where $DD_0(\theta)$ is the raw number of galaxy-galaxy pairs.

We approximate the spatial correlation function of LAEs by a power law:

$$\xi(\theta) = \left(\frac{\theta}{r_0}\right)^{-\gamma},$$

where θ, r_0, and γ are the spatial separation between two objects in comoving scale, the correlation length, and the slope of the power law, respectively (Totani & Kihara 1969; Zehavi et al. 2004). We then convert $\xi(\theta)$ into the ACF, $\omega_{\text{model}}(\theta)$, following Simon (2007), and describe it as:

$$\omega_{\text{model}}(\theta) = \left(\frac{r_0}{h^{-1}_{100}\text{Mpc}}\right)^\gamma \omega_{\text{obs}}(\theta),$$

where $\omega_{\text{model}}(\theta)$ is the ACF in the case of $r_0 = 1 h^{-1}_{100}\text{Mpc}$. The correlation amplitude of the ACF at $\theta = 1''$, A_ω, is $\omega_{\text{model}}(\theta = 1'')$.

An observationally obtained ACF, $\omega_{\text{obs}}(\theta)$, includes an offset due to the fact that the measurements are made over a limited area. This offset is given by the integral constraint (IC),

$$\omega(\theta) = \omega_{\text{obs}}(\theta) + IC,$$

$$IC = \frac{\sum RR(\theta) \omega_{\text{model}}(\theta)}{\sum RR(\theta)} \left(\frac{r_0}{h^{-1}_{100}\text{Mpc}}\right)^\gamma,$$

where $\omega(\theta)$ is the true ACF. We fix γ to the fiducial value 1.8 following previous studies (e.g., Ouchi et al. 2003) and fit the $\omega_{\text{model}}(\theta)$ to this $\omega(\theta)$ by minimizing χ^2 over $\sim 40'' - 100''$, where we avoid the one-halo term at small scales and large sampling noise at large scales. The best-fit field-average correlation amplitude, A_ω, is calculated analytically by minimizing the summation of χ^2 over the two fields in the same manner as in Kusakabe et al. (2018). The 1σ fitting error in A_ω, ΔA_ω, is estimated from $\chi^2_{\text{min}} + 1$, where χ^2_{min} is the minimum χ^2 value.

The correlation amplitude corrected for randomly distributed foreground and background interlopers, $A_{\omega,\text{corr}}$, is given by

$$A_{\omega,\text{corr}} = \frac{A_\omega}{(1 - f_c)^2},$$

where f_c is the contamination fraction. The contamination fraction of our LAEs is estimated to be $10 \pm 10\%$ (0–20%) conservatively (see section 2.1) and the error range in $A_{\omega,\text{corr}}$ includes both the no correction case and the maximum correction case (e.g., Khostovan et al. 2018). The 1σ error in the contamination-corrected correlation amplitude, $\Delta A_{\omega,\text{corr}}$, is derived from error propagation of A_ω and f_c:

$$\frac{\Delta A_{\omega,\text{corr}}}{A_{\omega,\text{corr}}} \simeq \sqrt{\left(\frac{\Delta A_\omega}{A_\omega}\right)^2 + \left(\frac{2\Delta f_c}{f_c}\right)^2},$$

where $\Delta f_c (= 0.1)$ is the uncertainty in the contamination estimate. The value of the contamination-corrected correlation length, $r_{0,\text{corr}}$ and its 1σ error are calculated from $A_{\omega,\text{corr}}$ and $\Delta A_{\omega,\text{corr}}$. Figure 13 in appendix shows the best-fit ACFs and table 4 summarizes the results of the clustering analysis.

4.3.2 Bias factor and dark matter halo mass

The galaxy-matter bias, b_g, is defined as

$$b_g(r) = \frac{\xi(r)}{\xi_{DM}(r,z)},$$

where $\xi_{DM}(r,z)$ is the spatial correlation function of underlying
dark matter calculated with the linear dark matter power spectrum (Eisenstein & Hu 1998, 1999). We estimate the effective galaxy-matter bias, $b_{\text{g.eff}}$, at $r = 8 h_{100}^{-1}$ Mpc following previous clustering analyses (e.g., Ouchi et al. 2003) using a suite of cosmological codes called Colossus (Diemer & Kravtsov 2015). The obtained $b_{\text{g.eff}}$ is converted into the peak height in the linear density field, ν, by the formula given in Tinker et al. (2010). The effective dark matter halo mass is derived from ν with the top-hat window function and the linear dark matter power spectrum (Eisenstein & Hu 1998, 1999) using a cosmological package for Python called CosmoLoPy5. The effective bias and the effective halo mass of each subsample is listed in table 4.

5 Results

The field-average results of the SED fitting and clustering analysis are shown in tables 3 and 4, respectively. In sections 5.1 and 5.2, we focus on their LAH luminosities and Lyα escape fractions, respectively. In section 5.3, we compare the infrared excess (I_{IRX}) and star formation mode of our subsamples with the average relations of star forming galaxies and examine whether they are normal galaxies in terms of these two properties, which will be employed in the discussion of the origin of LAHs in section 6.1.

5.1 Halo and total Lyα luminosities

Figure 3 plots L(Lyα)$_H$ and L(Lyα)$_{tot}$ against SFR, $E(B-V)_*$, M_*, and M_h. The ten subsamples have similar L(Lyα)$_H$ of $\sim 2 \times 10^{42}$ erg s$^{-1}$, and similar L(Lyα)$_{tot}$ of $\sim 2 \times 10^{42} - 4 \times 10^{42}$ erg s$^{-1}$ within a factor of 1.5 (see also table 5 in appendix). This is expected from the small difference in L(Lyα)$_{ps}$ between the subsamples as described in the next paragraph. What we newly find is that L(Lyα)$_H$ and L(Lyα)$_{tot}$ remain almost unchanged when M_h increases by factor 2–5. This has not been confirmed with SED fitting (including nebular emission in models).

The nearly constant (or even slightly decreasing) L(Lyα)$_H$ against M_* is a result of two competing trends. One is that L(Lyα)$_C$ is constant or decreases with M_*, as expected from the L(Lyα)$_{ps}$ vs. M_{UV} plot (figure 1 [g]), and the other is that L(Lyα)$_H$/L(Lyα)$_C$ decreases with L(Lyα)$_C$ as found from equation (9). Let us take the $(L$(Lyα)–divided and K–divided subsamples as two examples. For the former subsamples, the L(Lyα)$_C$ of the massive subsample is factor 2.5 lower than that of the less massive one, but the difference is reduced to factor 1.5 in L(Lyα)$_H$ because objects with lower L(Lyα)$_C$ have higher L(Lyα)$_H$/L(Lyα)$_C$. For the latter, the two subsamples have almost the same L(Lyα)$_C$ and hence almost the same L(Lyα)$_H$. The slightly decreasing trend of L(Lyα)$_{tot}$

Table 3. The field-average values of stellar parameters, f_{esc}(Lyα)$_{tot}$, and the q-parameter.

subsample	M_*	$E(B-V)_*$	Age	SFR	f_{esc}(Lyα)$_{tot}$	q-parameter
(10$^8 M_\odot$)	(mag)	(Myr)	(M$_\odot$yr$^{-1}$)			
bright UV	14.1 ± 2.1	0.08 ± 0.01	240 ± 14	6.8 ± 1.3	0.37 ± 0.00	1.00 ± 0.11
faint UV	4.1 ± 0.1	0.03 ± 0.01	280 ± 46	1.7 ± 0.3	1.43 ± 0.17	0.80 ± 0.11
blue β	4.8 ± 2.4	0.02 ± 0.00	246 ± 14	2.1 ± 0.0	1.21 ± 0.10	0.80 ± 0.11
red β	14.0 ± 0.9	0.10 ± 0.01	286 ± 0	5.8 ± 0.4	0.43 ± 0.08	0.80 ± 0.11
bright Lyα	7.4 ± 0.8	0.04 ± 0.02	346 ± 80	2.2 ± 0.7	1.20 ± 0.35	0.80 ± 0.11
faint Lyα	12.3 ± 1.0	0.07 ± 0.01	360 ± 0	4.2 ± 0.3	0.49 ± 0.09	0.80 ± 0.11
large EW	5.4 ± 1.6	0.04 ± 0.02	338 ± 19	1.8 ± 0.6	1.34 ± 0.42	0.80 ± 0.11
small EW	13.7 ± 3.4	0.07 ± 0.01	353 ± 40	5.0 ± 0.7	0.42 ± 0.02	0.80 ± 0.11
bright K	18.3 ± 2.2	0.09 ± 0.01	265 ± 84	6.5 ± 1.2	0.36 ± 0.01	0.80 ± 0.11
faint K	3.6 ± 0.4	0.04 ± 0.01	160 ± 44	2.3 ± 0.2	1.03 ± 0.04	0.80 ± 0.11

Note: (1) Stellar mass, (2) color excess, (3) age, (4) SFR, (5) f_{esc}(Lyα)$_{tot}$ calculated from SFR and L(Lyα)$_{tot}$, and (6) q calculated from f_{esc}(Lyα)$_{tot}$ and $E(B-V)_*$.

5 http://roban.github.com/CosmoLoPy/
with mass is due to the fact that $L(L\alpha)_{tot}/L(L\alpha)_C$ decreases with $L(L\alpha)_C$ more mildly than $L(L\alpha)_H/L(L\alpha)_C$ does.

Figure 3 shows that $L(L\alpha)_H$ and $L(L\alpha)_{tot}$ are also nearly independent of SFR, $E(B−V)_*$, and M_h, although the uncertainties in M_h are relatively large. The fact that differently defined subsamples follow a common trend in each panel indicates that the nearly constant $L(L\alpha)_H$ and $L(L\alpha)_{tot}$ against M_* and the other three parameters are real; it is unlikely that grouping the LAEs into two by the five quantities has erased strong mass dependence which otherwise would be visible. We discuss the physical origins of diffuse $L\alpha$ halos from these results in section 6.1.

5.2 Escape fraction of $L\alpha$ photons

Following previous studies, we define the escape fraction of $L\alpha$ photons, $f_{esc}(L\alpha)$, as the ratio of observed $L\alpha$ luminosity, $L(L\alpha)_{obs}$, to intrinsic $L\alpha$ luminosity, $L(L\alpha)_{int}$, produced in the galaxy due to star formation (e.g., Atek et al. 2008; Kornei et al. 2010):

$$f_{esc}(L\alpha) = \frac{L(L\alpha)_{obs}}{L(L\alpha)_{int}} = \frac{SFR_{L\alpha}}{SFR_{tot}},$$

(19)

where SFR_{tot} is the total (i.e., dust-corrected) star formation rate and $SFR_{L\alpha}$ is the star formation rate converted from $L(L\alpha)_{obs}$ as below:

$$SFR_{L\alpha} (M_\odot \text{ yr}^{-1}) = 9.1 \times 10^{-43} L(L\alpha)_{obs} (\text{erg s}^{-1})$$

(20)

(Brocklehurst 1971; Kennicutt 1998). In this work, we derive $f_{esc}(L\alpha)$ from $L(L\alpha)_{tot}$ (total $L\alpha$ escape fraction, $f_{esc}(L\alpha)_{tot}$; see table 3) unlike previous studies which have ignored the contribution from the LAH (e.g., Blanc et al. 2011; Kusakabe et al. 2015; Oteo et al. 2015). For SFR_{tot}, we use the one obtained from the SED fitting. This definition of $f_{esc}(L\alpha)$ thus assumes that all $L\alpha$ photons including those of the LAH are produced from star formation in the central galaxy. We discuss the possibility of the existence of additional $L\alpha$ sources later.

Figure 4 shows $f_{esc}(L\alpha)_{tot}$ as a functions of M_*, SFR, and $E(B−V)$ for the ten subsamples. All values are field-average values. For a thorough discussion, results with a Calzetti curve are also shown (figures 4 [b], [d], and [f]) as well as those with an SMC curve (the other panels). Two interesting features are seen in these figures.

First, $f_{esc}(L\alpha)_{tot}$ anti-correlates with M_*, SFR, and $E(B−V)$ regardless of the assumed curve. Similar anti-correlations have been found for HAEs by Matthee et al. (2016) who have measured total $L\alpha$ luminosities on a $6''$ diameter aperture, corresponding to 24 kpc in radius (blue crosses in the Calzetti-curve panels; see also footnote 10). Any galaxy population may have such anti-correlations. Indeed, an anti-correlation between $f_{esc}(L\alpha)$ and $E(B−V)$ is found for star forming galaxies at $z \sim 0$–3 (e.g., Hayes et al. 2011; Blanc et al. 2011; Atek et al. 2014; Hayes et al. 2014). Although $L\alpha$ halos are not included in their calculations, these results imply an anti-correlation between $f_{esc}(L\alpha)_{tot}$ and $E(B−V)$ since $L(L\alpha)_{tot}$ increases with $L(L\alpha)_C$ as seen in figure 2(d).

Second, our LAEs have very high $f_{esc}(L\alpha)_{tot}$ values. For an SMC-like curve, they are higher than $\sim 30\%$, with some exceeding 100%. Using a Calzetti curve makes $f_{esc}(L\alpha)_{tot}$ lower but still in a range of ~ 10–100%. The typical $f_{esc}(L\alpha)_{tot}$ of the LAE sample is ~ 1 dex higher than that of the HAE sample, which is similar to the result obtained in Sobral et al. (2017). More importantly, a large $f_{esc}(L\alpha)_{tot}$ difference is found even in comparison at a fixed M_*, SFR, and $E(B−V)_*$. We discuss mechanisms by which LAEs can achieve such high escape fractions in section 6.2.

5.3 IRX and star formation mode

Star-forming galaxies have a positive correlation that more massive ones have higher IRX’s. The IRX $\equiv L_{IR}/L_{UV}$ is an indicator of dustiness, where L_{IR} and L_{UV} are IR (8–1000 μm) and UV (1530 Å) luminosities, respectively (e.g., Reddy et al. 2010; Whitaker et al. 2014; Alvarez-Márquez et al. 2016;
with SMC AC

\[\text{Fig. 3.} \quad L(L_{\text{Ly}\alpha})_H \text{ and } L(L_{\text{Ly}\alpha})_{\text{tot}} \text{ as a functions of stellar parameters} \]

- **(a)** \(L(L_{\text{Ly}\alpha})_H \) vs. \(\text{SFR}(M\odot \text{ yr}^{-1}) \)
- **(b)** \(E(B-V)_\star \)
- **(c)** \(L(L_{\text{Ly}\alpha})_{\text{tot}} \) vs. \(\text{SFR}(M\odot \text{ yr}^{-1}) \)
- **(d)** \(E(B-V)_\star \)

- **(e)** \(L(L_{\text{Ly}\alpha})_H \) vs. \(M_\star \)
- **(f)** \(M_h(M\odot) \)
- **(g)** \(L(L_{\text{Ly}\alpha})_{\text{tot}} \) vs. \(M_\star \)
- **(h)** \(L(L_{\text{Ly}\alpha})_{\text{tot}} \) vs. \(M_h(M\odot) \)

Different symbols indicate different subsamples: open (filled) circles for bright (faint) \(M_{UV} \), open (filled) triangles for red (blue) \(\beta \), open (filled) inverted triangles for faint (bright) \(L(L_{\text{Ly}\alpha})_{ps} \), open (filled) squares for small (large) \(E\text{W}_0(L_{\text{Ly}\alpha}) \), and open (filled) pentagons for bright (faint) \(m_K \).

The typical 1σ uncertainties in the individual data in Momose et al. (2016) are propagated to uncertainties in \(L(L_{\text{Ly}\alpha})_H \) and \(L(L_{\text{Ly}\alpha})_{\text{tot}} \) of \(\sim 22% \) and \(\sim 16% \), respectively. Gray error bars of black dots in panels (a)–(d) and (e)–(h) show those uncertainties at \(L(L_{\text{Ly}\alpha})_H = 2 \times 10^{42} \text{ erg s}^{-1} \) and \(L(L_{\text{Ly}\alpha})_{\text{tot}} = 3 \times 10^{42} \text{ erg s}^{-1} \), respectively. The vertical error bars of the red symbols are derived from the fitting errors in \(L(L_{\text{Ly}\alpha})_{ps} \).

The typical uncertainties in the individual data in Momose et al. (2016) are propagated to uncertainties in \(L(L_{\text{Ly}\alpha})_H \) and \(L(L_{\text{Ly}\alpha})_{\text{tot}} \) of \(\sim 22% \) and \(\sim 16% \), respectively. Gray error bars of black dots in panels (a)–(d) and (e)–(h) show those uncertainties at \(L(L_{\text{Ly}\alpha})_H = 2 \times 10^{42} \text{ erg s}^{-1} \) and \(L(L_{\text{Ly}\alpha})_{\text{tot}} = 3 \times 10^{42} \text{ erg s}^{-1} \), respectively. The vertical error bars of the red symbols are derived from the fitting errors in \(L(L_{\text{Ly}\alpha})_{ps} \).

Fudamoto et al. 2017; McLure et al. 2018; Koprowski et al. 2018). Average \(M_\star-\text{IRX} \) relations have been obtained by several studies at \(z \sim 2 \) (Heinis et al. 2014; Bouwens et al. 2016). Another important correlation seen in star-forming galaxies is that more massive galaxies have higher \(\text{SFRs} \), i.e., the star-formation main sequence (SFMS; e.g., Noeske et al. 2007; Elbaz et al. 2007; Speagle et al. 2014). Outliers above the SFMS are starburst galaxies (Rodighiero et al. 2011). We use these two correlations to test whether or not our subdivided LAEs are outliers in terms of dustiness and star-formation activity. Here, we include nebular emission in SED fitting unlike previous work for subdivided LAEs at \(z \sim 2 \) (Guaita et al. 2011) following our
previous work for whole LAE sample (Kusakabe et al. 2018).

5.3.1 IRX

The IRX can be calculated from the UV attenuation A_{1530} (e.g., Meurer et al. 1999). Buat et al. (2012) have found that high-z galaxies ($z \approx 0.95 – 2.2$) follow the relation given in Overzier et al. (2011):

$$\log_{10} IRX = \log_{10}(10^{0.4A_{1530}}) - \log_{10}(0.595),$$

as shown in their figure 14. We convert the $E(B-V)_*$ of

\[0.0, 0.5, 1.0, 2.0 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]

\[0.595 \]

\[0.0 \]
our subsamples into IRX and compare them with two average relations at $z \sim 2$ (Heinis et al. 2014; Bouwens et al. 2016)\footnote{Bouwens et al. (2016) have obtained a ‘consensus relation’ from previous analyses for galaxies at $z \sim 2–3$ (Reddy et al. 2010; Whitaker et al. 2014; Álvarez-Márquez et al. 2016), which is consistent with their result using ALMA data. On the other hand, Heinis et al. (2014) derives a relation for UV-selected galaxies at $z \sim 1.5$ giving higher IRXs than the ‘consensus relation’ at low-stellar masses regime, however it is consistent wit a new result of star forming galaxies at $2 < z < 3$ with ALMA data McLure et al. (2018).} as shown in figure 5. At low-stellar masses with $M_\star \lesssim 3–5 \times 10^9 M_\odot$, the average relation has not been defined well but it is probably located between the two.

Figure 5 (a) shows the field-average values of our subsamples with the assumption of an SMC-like attenuation curve (red symbols), which are calculated from the results for the two fields shown in figure 5 (b) (orange and green symbols). The field-average results lie on an extrapolation of the relation for UV-selected galaxies at $z \sim 1.5$ in Heinis et al. (2014) and the consensus relation of them determined by Bouwens et al. (2016). Dark and light gray dashed lines indicate extrapolations of gray solid lines. In panel (b), orange and green symbols indicate, respectively, the SXDS and COSMOS subsamples with an SMC-like attenuation curve (with SMC AC). All data are rescaled to a Salpeter IMF according to footnote 1. (Color online)

IRX vs. M_\star. (a) Field average values of our ten subsamples with an assumption of an SMC-like attenuation curve (red symbols), (b) results before averaging (green and orange symbols), and (c) field average values with an assumption of a Calzetti curve (pink symbols), plotted with some literature results. In panels (a) and (c), different subsamples are shown by different symbols: open (filled) circles for bright (faint) M_{UV}, open (filled) triangles for red (blue) β, open (filled) inverted triangles for faint (bright) $L_{\text{Ly}\alpha} \text{ps}$, open (filled) squares for small (large) $E\text{w}_{\text{ps}} \text{Ly}\alpha$, and open (filled) pentagons for bright (faint) m_K. Dark gray squares, dark gray circles, a black square, a dark gray solid line and a light gray solid line represent, respectively, 3D-HST galaxies at $z \sim 2$ in Whitaker et al. (2014), UV selected galaxies at $z \sim 2$ in Reddy et al. (2010), LBGs at $z \sim 2–3$ in Bouwens et al. (2016), UV-selected galaxies at $z \sim 1.5$ in Heinis et al. (2014) and the consensus relation of them determined by Bouwens et al. (2016). Dark and light gray dashed lines indicate extrapolations of gray solid lines. In panel (b), orange and green symbols indicate, respectively, the SXDS and COSMOS subsamples with an SMC-like attenuation curve (with SMC AC). All data are rescaled to a Salpeter IMF according to footnote 1. (Color online)
Fig. 6. SFR vs. M_\star. (a) Field average values of our ten subsamples with an SMC-like attenuation curve (red symbols), (b) results before averaging (green and orange symbols), and (c)–(e) field average values with a Calzetti curve (pink symbols), plotted with some literature results. In panels (a) and (c)–(e), different subsamples are shown by different symbols: open (filled) circles for bright (faint) M_{UV}, open (filled) triangles for red (blue) β, open (filled) inverted triangles for faint (bright) L(Lyα)$_{ps}$, open (filled) squares for small (large) $EW_{0,ps}$(Lyα), and open (filled) pentagons for bright (faint) m_K. In panel (b), orange and green symbols indicate, respectively, the SXDS and COSMOS subsamples with an SMC-like attenuation curve (with SMC AC). In panels (c)–(e), pink symbols show the average values of the subsamples over the two fields with a Calzetti attenuation curve (with Cal. AC). Dark gray squares, light gray dots, thick black solid lines, and thin black solid lines represent, respectively, 3D-HST galaxies at $z\sim2$ in Whitaker et al. (2014), BzK galaxies at $z\sim2$ in Rodighiero et al. (2011), the SFMS at $z\sim2$ in Tomczak et al. (2016), and the SFMS at $z\sim2$ in Shivaei et al. (2017). Thick and thin black dashed lines indicate extrapolations of the black solid lines. In panel (d), filled blue diamonds, open blue diamonds, filled cyan thin diamonds, and open cyan thin diamonds indicate LAEs at $z\sim2$–3 in Hagen et al. (2016); Shimakawa et al. (2017); Hashimoto et al. (2017) and Taniguchi et al. (2015), respectively. In panel (e), filled blue hexagons and open cyan hexagons show HAEs at $z\sim2$–3 in Matthee et al. (2016) and Tadaki et al. (2013). All data are rescaled to a Salpeter IMF according to footnote 1. (Color online)

masses as shown by pink symbols in figure 5 (c). In section 6.1.3, we use the relation in Heinis et al. (2014) for the discussion of the origin of LAHs.

5.3.2 Star formation mode

At $z\sim2$, the SFMS has been determined well down to $M_\star\sim10^{10} M_\odot$ (e.g., Rodighiero et al. 2011; Whitaker et al. 2014; Tomczak et al. 2016; Shivaei et al. 2017) since SFRs can be accurately measured from either rest-frame UV and FIR (or MIR) fluxes or Hα and Hβ emission-line fluxes. Although these results are not consistent with each other as shown in figure 6, the true SFMS probably lies somewhere between the Tomczak et al. (2016) and Shivaei et al. (2017)’s results. Below $M_\star\sim10^{10} M_\odot$, Santini et al. (2017) suggest that the SFMS continues down to $M_\star\sim10^{9} M_\odot$ without changing its power-law slope. We compare the results for our LAEs with the extrapolated SFMS shown in Tomczak et al. (2016) and Shivaei et al. (2017) below.

Figure 6 (a) shows the field-average values for the ten subsamples with an SMC-like attenuation curve (red symbols) while figure 6 (b) the separate results for the two fields (orange and green symbols). All the field-average data points lie on the
extrapolation of the SFMS in Tomczak et al. (2016), being only slightly above the Shivaei et al. relation. This result is also consistent with those obtained for all LAEs by Kusakabe et al. (2015) and Kusakabe et al. (2018). We conclude that the majority of our subdivided LAEs are in a moderate star formation mode even after divided into two subsamples by various properties. In section 6.1.3, we use the relation in Shivaei et al. (2017) for the discussion of the origin of LAHs.

We also compare our results to previous studies on individual LAEs and Hα emitters (HAEs) at similar redshifts. For this comparison, we use the results based on a Calzetti attenuation curve (figure 6 [c]) following these previous studies. We find in figure 6 (d) that our ten subsamples (pink symbols) are distributed in the middle of individual LAEs with \(M_\star \) and SFR measurements (Hagen et al. 2016; Shimakawa et al. 2017; Hashimoto et al. 2017; Taniguchi et al. 2015, \(z \approx 2–3 \)). In figure 6 (e), our LAEs are found to be located at the lower-mass regime of NB-detected HAES (Tadaki et al. 2013; Matthee et al. 2016). While the HAEs in Tadaki et al. (2013) (open cyan hexagons) \(^8\) lie on the SFMS, those in Matthee et al. (2016) (filled blue hexagons) \(^9\) are widely scattered along the horizontal direction around the SFMS because they are essentially Hα luminosity selected. Some HAEs in Matthee et al. (2016) have similarly low stellar masses to our LAEs but with higher SFRs due to this selection bias.

6 Discussion

6.1 The origin of LAHs

As described in section 1, theoretical studies have suggested three physical origins of LAHs around high-\(z \) star-forming galaxies: (a) cold streams (gravitational cooling), (b) star formation in satellite galaxies, and (c) resonant scattering of Ly\(\alpha \) photons. In sections 1.2.1 and 1.2.2, we assume the Calzetti curve to derive \(M_\star \) and assume \(E(B-V)_0 = E(B-V) \) to correct H\(\alpha \) luminosities (and hence SFRs) for dust extinction (see Sedov fitting paper of HIZELS for more details, Sobral et al. 2014). However, when stacking, they use \(A(H\alpha) = 1 \) mag to correct H\(\alpha \) luminosities for all subsamples.

In Momose et al. (2016), respectively. So far, observations have not yet identified the dominant origin(s) as explained below.

There are two observational studies on the origin of LAHs around star-forming galaxies. Leclercq et al. (2017) use 166 LAEs at \(z \approx 3–5 \) detected with the MUSE, while Momose et al. (2016) are based on a stacking analysis of \(\sim 3600 \) \(z \approx 2.2 \) LAEs from a narrow-band survey, the same parent sample as we use in this study. Leclercq et al. (2017) have argued that a significant contribution from (b) star formation in satellite galaxies is somewhat unlikely since the UV component of MUSE-LAEs is compact and not spatially offset from the center of their LAH. However, they have not given a firm conclusion on the contributions from the remaining two origins. This is because while they have found a scaling relation of \(L(Ly\alpha)_H \propto L_{UV}^{0.45} \) which is not dissimilar to the scaling predicted from hydrodynamical simulations of cold streams by Rosdahl & Blaizot (2012), resonant scattering also prefers such a positive scaling relation if \(f_{esc}(Ly\alpha)_{tot} \) is constant. Moreover, they have also found that \(\sim 80\% \) of their sample have a not-so-large total EW of Ly\(\alpha \) emission, \(EW_{0,tot}(Ly\alpha) \lesssim 200 \)\(\AA \), not exceeding the maximum dust-free \(EW_0(Ly\alpha) \) of population II star formation, \(\sim 50–240 \)\(\AA \), with a solar metallicity and a Salpeter IMF (e.g., Charlot & Fall 1993; Malhotra & Rhoads 2002). If \(EW_0(Ly\alpha) \) is larger than \(\sim 200 \)\(\AA \), Ly\(\alpha \) radiation from cold streams would be responsible for LAHs.

Momose et al. (2016) have also found relatively low \(EW_{0,tot}(Ly\alpha) \) and marginally ruled out the cold-stream origin based on a similar discussion to Leclercq et al. (2017)’s. In these two observational studies, \(EW_{0,tot}(Ly\alpha) \) are calculated by dividing the total Ly\(\alpha \) luminosity by the UV luminosity of the central part. Therefore, the relatively low \(EW_{0,tot}(Ly\alpha) \) values do not necessarily mean that the net \(EW_0 \) of LAHs are also low; they would even be extremely high if LAHs do not have UV emission. Thus, the cold-stream scenario cannot be ruled out from the low \(EW_{0,tot}(Ly\alpha) \) values alone. The discussion using the \(L(Ly\alpha)_H–L_{UV} \) relation assumes \(L_{UV} \propto M_\star^{0.5} \) because the simulations have calculated \(L(Ly\alpha)_H \) against \(M_\star \). Since \(L_{UV} \) may not be a perfect tracer of \(M_\star \), it is more desirable to use directly the \(L(Ly\alpha)_H–M_\star \) relation or the \(L(Ly\alpha)_H–M_\star \) relation as a better substitute. In addition, comparing the normalization of the relation as well as its power-law slope can better constrain this scenario. With regard to (b) satellite star formation, independent observations are desirable to strengthen the conclusion by Leclercq et al. (2017) since Momose et al. (2016) have not been able to rule out this origin. Finally, if resonant scattering is the dominant origin, LAH luminosities have to be explained by the properties of the main body of galaxies such as SFR and \(E(B-V) \).

In section 5.1, we find that the \(L(Ly\alpha)_H \) and \(L(Ly\alpha)_{tot} \) of our LAEs remain unchanged with increasing stellar mass. We also obtain a constant or increasing \(X(Ly\alpha)_H/tot \) with \(M_\star \) (see
In the following subsections, we use these relations to discuss the three origins with figure 7. We also briefly examine the fluorescence scenario in appendix 7, following the very recent study on fluorescence by theoretical models with a power law of $\alpha = 1.25$ (Rosdahl & Blaizot 2012) and $\alpha = 0.8$ (Goerdt et al. 2010), respectively. Gray shaded regions above the solid black lines roughly indicate the distribution of Rosdahl & Blaizot (2012)'s simulated galaxies above the solid line, whose $L_{\text{Ly}\alpha}$ reaches at most ~ 2.5 times higher than the line. A thin dashed black line indicates the mean $L_{\text{Ly}\alpha}$ luminosity from the star formation in satellite galaxies of $\nu^2\text{GC}$ (Makiya et al. 2016; Shirakata et al. 2018, Ogura et al. in prep.). A thick dashed black line indicates the mean of galaxies with the top 10% and 2% $L_{\text{Ly}\alpha}$ at similar M_*. We assume that all $L_{\text{Ly}\alpha}$ photons originate from star formation. Blue crosses indicate HAES in Matthee et al. (2016), whose $L_{\text{Ly}\alpha}$ luminosities are derived from $3''$ and $6''$-diameter aperture photometry. Field average values of our ten subsamples are shown by symbols below: open (filled) circles for bright (faint) M_{UV}, open (filled) triangles for red (blue) β, open (filled) inverted triangles for faint (bright) $L_{\text{Ly}\alpha}$, and open (filled) pentagons for bright (faint) $m_{\text{H}⋆}$.

Figure 7. Test of the three LAH scenarios against the observed $L_{\text{Ly}\alpha}$ and its mass dependence: (a) and (b) – cold streams (cooling flows); (c) and (d) – satellite star formation; (e) and (f) – resonant scattering. Thick and thin solid black lines in panels (a) and (b) show the $L_{\text{Ly}\alpha}$ luminosity of cold streams by theoretical models with a power law of $\alpha = 1.25$ (Rosdahl & Blaizot 2012) and $\alpha = 0.8$ (Goerdt et al. 2010), respectively. All data are rescaled to a Salpeter IMF according to footnote 1. (Color online)
emission for star-forming LAEs by Gallego et al. (2018).

6.1.1 (a) Cold streams

Theoretical studies and simulations suggest that high-\(z\) (\(z \gtrsim 2\)) galaxies obtain baryons through the accretion of relatively dense and cold (\(\sim 10^4\) K) gas known as cold streams (e.g., Fardal et al. 2001; Kereš et al. 2005; Dekel & Birnboim 2006). The accreting gas releases the gravitational energy and emits Ly\(\alpha\) photons, thus producing an extended Ly\(\alpha\) halo without (extended) UV continuum emission (e.g., Haiman et al. 2000; Furlanetto et al. 2005; Dijkstra & Loeb 2009; Lake et al. 2015).

The Ly\(\alpha\) luminosity due to cold streams is suggested to increase with the \(M_h\) of host galaxies. A scaling of \(L(\text{Ly}\alpha)_H \propto M_h^{-1.1} \times M_h^{1.25}\) at \(M = 10^{10} - 10^{13} M_\odot\) has been predicted by (zoom-in) cosmological hydrodynamical simulations in Faucher-Giguère et al. (2010) and Rosdahl & Blaizot (2012). Dijkstra & Loeb (2009) have obtained a similar correlation to Faucher-Giguère et al. (2010)’s from an analytic model which reproduces the Ly\(\alpha\) luminosities, Ly\(\alpha\) line widths, and number densities of observed LABs at \(M_h \gtrsim 10^{11} M_\odot\). On the other hand, Goerdt et al. (2010) have derived a shallower power law slope \(\sim 0.8\) for LAB-hosting massive (\(M_h \sim 10^{12} - 10^{13} M_\odot\)) halos from high-resolution cosmological hydrodynamical adaptive mesh refinement simulations.

We examine if our subsamples are consistent with these theoretical predictions by comparing the power-law slope and amplitude of the \(L(\text{Ly}\alpha)_H\) vs. \(M_h\) relation. For a conservative discussion, we use Rosdahl & Blaizot (2012)’s relation which gives the steepest slope and Goerdt et al. (2010)’s relation giving the shallowest slope as shown in figure 7(b)\(^{12}\):

\[
L(\text{Ly}\alpha)_H \sim 8 \times 10^{42} \left(\frac{M_h}{10^{12} M_\odot} \right)^{1.25} \left(\frac{1+z}{1+3} \right)^{1.3},
\]

\[
L(\text{Ly}\alpha)_H = 9.72 \times 10^{42} \left(\frac{M_h}{10^{12} M_\odot} \right)^{0.8} (1+z)^{1.3}.
\]

In figure 7(a), we convert \(M_h\) to \(M_\star\) using the average relation between \(M_\star\) and \(M_h\) at \(z \sim 2\) in Moster et al. (2013)\(^{13}\). The constant \(L(\text{Ly}\alpha)_H\) with \(M_\star\) and \(M_h\) seen in the LAEs is inconsistent with the increasing \(L(\text{Ly}\alpha)_H\) predicted by the theoretical models, although the uncertainties in our \(M_\star\) estimates are large. The HAEs have also non-increasing \(L(\text{Ly}\alpha)_H\) over two orders of magnitude in \(M_\star\), highlighting the inconsistency found for the LAEs. As for amplitude, the LAEs shown by red filled (open) symbols have \(\sim 2-4\) (\(\sim 1-2\)) times higher \(L(\text{Ly}\alpha)_H\) than the two model predictions at the same \(M_\star\) (figure 7[a]), and at least \(\sim 1-10\) (\(\sim 1-10\)) times higher at the same \(M_h\) (figure 7[b]). Even when the individual distribution of Rosdahl & Blaizot (2012)’s galaxies is considered, low-\(M_\star\) LAEs (red filled symbols) have more than 10\(\sigma\) brighter \(L(\text{Ly}\alpha)_H\) than the simulated galaxies with similar \(M_\star\) (a gray shaded region). In other words, cold streams cannot produce as many Ly\(\alpha\) photons in the CGM as observed.

Note that as mentioned in appendix 1, the \(L(\text{Ly}\alpha)_H\) values of the faint \(m_K\) and \(M_{\text{UV}}\) subsamples are possibly overestimated since they miss small \(EW(\text{Ly}\alpha)\) (faint \(L(\text{Ly}\alpha)_H\)) sources due to the NB-selection bias. If we derive \(L(\text{Ly}\alpha)_H\) conservatively from the \(M_{\text{UV}} - L(\text{Ly}\alpha)_H\) relation for individual MUSE-LAEs without such a selection bias in Leclercq et al. (2017), we obtain \(\sim 1.5\) times smaller \(L(\text{Ly}\alpha)_H\), which results in a slightly positive correlation between \(M_\star\) and \(L(\text{Ly}\alpha)_H\). However, the power law index and the amplitude of the \(M_\star - L(\text{Ly}\alpha)_H\) correlation of the \(m_K\) subsamples is still shallower and higher than theoretical results at more than the 2\(\sigma\) and 10\(\sigma\) confidence levels, respectively (see more details in appendix 3). Consequently, our study suggests that (a) cold streams are not the dominant origin of LAHs.

6.1.2 (b) Satellite star formation

Satellite galaxies emit Ly\(\alpha\) photons through star formation. If satellite star formation significantly contributes to LAHs, they will involve an extended UV emission from the star formation (e.g., Shimizu et al. 2011; Zheng et al. 2011; Lake et al. 2015; Mas-Ribas et al. 2017). Unfortunately, this emission is expected to be too diffuse to detect even by stacking of some \(10^3\) objects as mentioned in Momose et al. (2016).

The Ly\(\alpha\) luminosity from satellite star formation can be interpreted as a function of the \(M_\star\) and \(M_h\) of the central galaxy. In the local universe, the number of disk (i.e., star-forming) satellite galaxies is found to be described by a power law of the host halo mass of the central galaxy with a slope of \(0.91 \pm 0.11\) for galaxies with \(M_h \sim 10^{12} - 10^{14} M_\odot\) (see figure 14 and equation 6 in Tretham & Tully 2009, see also figure 2 in Wang et al. (2014)). At high redshifts, at least for massive central galaxies (\(M_\star \sim 10^{11} M_\odot\) at \(z \sim 1.4\)), the radial number density profile of satellite galaxies is not significantly different from that at \(z \sim 0\) (Tal et al. 2013). These local properties are reproduced by theoretical models (e.g., Nickerson et al. 2013; Sales et al. 2014; Okamoto et al. 2010). With an assumption that the total Ly\(\alpha\) luminosity from satellite galaxies is proportional to the sum of their SFRs of satellite galaxies, \(L(\text{Ly}\alpha)_H\) can be calculated from cosmological galaxy formation models.

The “New Numerical Galaxy Catalogue” (\(n^2\text{GC}\)) is a cosmological galaxy formation model with semi-analytic approach. It can reproduce not only the present-day luminosity functions (LF) and HI mass function but also the evolution of.
the LFs and the cosmic star formation history (Makiya et al. 2016; Shirakata et al. 2018, Ogura et al. in prep.). We use model galaxies at $z \sim 2.2$ in the ν^2GC-S with a box size of $280 h^{-1}$ cMpc (LAE NB selection is not applied). The number of central galaxies is $\sim 6 \times 10^6$. For each central galaxy, we calculate $L(\text{Ly} \alpha)_H$ by summing the SFRs of the satellites with an assumption of case B recombination. We find that the average $L(\text{Ly} \alpha)_H$ can be approximated as

$$L(\text{Ly} \alpha)_H \sim 8.3 \times 10^{42} \left(\frac{M_h}{10^{12} M_\odot} \right)^{2.58}$$

(24)

at $M_h \sim 10^{10} - 10^{12} M_\odot$ and

$$L(\text{Ly} \alpha)_H \sim 1.9 \times 10^{42} \left(\frac{M_*}{10^{10} M_\odot} \right)^{1.36}$$

(25)

at $M_* \sim 10^8 - 10^{10} M_\odot$ as shown with a thin black dashed line in figures 7 (c) and (d). The power law of M_h for $L(\text{Ly} \alpha)_H$ is steeper than that for the observed number of disk satellite galaxies.

We focus on the amplitude and slope of the $L(\text{Ly} \alpha)_H - $ mass relations. The LAEs shown by red symbols have more than ~ 1 dex higher $L(\text{Ly} \alpha)_H$ than the mean of the model galaxies at the same M_* and M_h. However, observations show that LAEs occupy only $\sim 10\%$ ($\sim 2\%$) of all galaxies with the same M_* (M_h) (Kusakabe et al. 2018). For a conservative comparison, we limit the model galaxies to those with the top 10\% (2\%) $L(\text{Ly} \alpha)_H$ at a fixed M_* (M_h). We find that the mean $L(\text{Ly} \alpha)_H$ of these $L(\text{Ly} \alpha)_H$-bright model galaxies (thick dashed lines in figures 7 [c] and [d]) is still about three times lower than the observed values. Moreover, the positive correlations of $L(\text{Ly} \alpha)_H$ with M_* and M_h seen for the model galaxies are incompatible with the constant $L(\text{Ly} \alpha)_H$ of our LAEs and with the decreasing $L(\text{Ly} \alpha)_H$ of the HAEs in Matthee et al. (2016). These LAEs and HAEs span two orders of magnitude in M_*. A non-increasing $L(\text{Ly} \alpha)_H$ over this wide mass range may be achieved if the Lyα photons from satellites of massive galaxies are heavily absorbed in the CGM, but the offset of $L(\text{Ly} \alpha)_H$ from our LAEs becomes larger. Such a heavy dust pollution in the CGM is probably unlikely.

As described in the previous subsection, using Leclercq et al. (2017)’s $M_{UV} - L(\text{Ly} \alpha)_H$ relation results in a slightly positive correlation. However, the power law index determined by the m_K subsamples is still shallower than that of the model (see appendix 3 for details). In addition, it remains difficult for the model to explain the results of LAEs and HAEs in a unified manner. From these results, we conclude that satellite star formation is unlikely to be the dominant origin.

6.1.3 (c) Resonant scattering of Lyα photons in the CGM which are produced in central galaxies

HI gas in the CGM can resonantly scatter Lyα photons which have escaped from the main body of the galaxy (e.g., Laursen & Sommer-Larsen 2007; Barnes & Haehnelt 2010; Zheng et al. 2011; Dijkstra & Kramer 2012; Verhamme et al. 2012). However, there is no theoretical study that predicts $L(\text{Ly} \alpha)_H$ and its dependence on galaxy properties by solving the radiative transfer of Lyα photons in the CGM. In this subsection, we first describe the LAH luminosity of a galaxy assuming that all Lyα photons come from the main body. To do so, we introduce two parameters: the escape fraction out to the CGM and the scattering efficiency in the CGM. Then, we examine if resonant scattering can explain reasonably well the behavior of LAEs and HAEs shown in the previous section. Let $L(\text{Ly} \alpha)_{\text{int}}$ be the total luminosity of Lyα photons produced in the main body. Some fraction of $L(\text{Ly} \alpha)_{\text{int}}$ is absorbed by dust in the interstellar medium (ISM) and the rest escapes out into the CGM.

With an assumption that dust absorption in the CGM is negligibly small, the escaping luminosity is equal to $L(\text{Ly} \alpha)_{\text{tot}} = L(\text{Ly} \alpha)_{\text{c}} + L(\text{Ly} \alpha)_H$, and the escape fraction into the CGM is calculated as $f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} = L(\text{Ly} \alpha)_{\text{esc}} / L(\text{Ly} \alpha)_{\text{tot}}$.

Then, a fraction, $X(\text{Ly} \alpha)_{\text{tot}}$, of the escaping photons are scattered in the CGM, being extended as a LAH with $L(\text{Ly} \alpha)_H$. Thus, $L(\text{Ly} \alpha)_H$ can be written as:

$$L(\text{Ly} \alpha)_H = L(\text{Ly} \alpha)_{\text{esc}} f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} X(\text{Ly} \alpha)_{\text{H}} / X(\text{Ly} \alpha)_{\text{tot}}$$

(26)

$$= L(\text{Ly} \alpha)_{\text{tot}} X(\text{Ly} \alpha)_{\text{H}} / X(\text{Ly} \alpha)_{\text{tot}}$$

(27)

In the following modeling, we assume that $L(\text{Ly} \alpha)_{\text{int}}$ originates only from star formation, and express it as a function of M_\star using the SFMS:

$$L(\text{Ly} \alpha)_{\text{tot}} \, (\text{erg s}^{-1}) = SFR_{\text{MS}} (M_\odot \text{yr}^{-1}) / 9.1 \times 10^{-43}$$

(28)

We then describe $f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}}$ as a function of M_\star using the $M_\star - IRX$ relation discussed in section 5.3. The dust attenuation for 1216 Å continuum, $A_{1216 con}$, at a fixed M_\star is calculated from $IRX(M_\star)$:

$$A_{1216 con}(M_\star) = 2.5 \log_{10} (0.595 IRX(M_\star) + 1.0) \left(\frac{\kappa_{1216}}{\kappa_{1500}} \right)$$

(29)

where κ_{1216} and κ_{1500} are the coefficients of the attenuation curve at $\lambda = 1216$ Å and 1500 Å, respectively. Introducing the relative efficiency of the attenuation of Lyα emission to the continuum at the same wavelength, $q = A_{\text{Ly}\alpha} / A_{1216 con}$ (e.g., Finkelstein et al. 2008), we can write $f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}}$ as:

$$f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} = 10^{-0.4q A_{1216 con}(M_\star)}$$

(30)

where $q = 0$ and $q = 1$ correspond to the case without attenuation of Lyα emission and with the same attenuation as that of continuum. We thus obtain:

$$L(\text{Ly} \alpha)_{\text{tot}}(M_\star) = \left(\frac{SFR_{\text{MS}}(M_\star)}{9.1 \times 10^{-43}} \right) 10^{-0.4q A_{1216}(M_\star)}$$

(31)

We use Shivaei et al. (2017)’s SFMS and Heinis et al. (2014)’s $IRX-M_\star$ relation because our LAEs are on these relations (see section 5.3). We also assume an SMC-like attenuation curve.

Shown in figure 7(e) are three calculations with $q = 0.0, 1.0,
and 1.3 (gray (thick), dark gray, and black (thin) dotted lines, respectively). The constant $L(\text{Ly}\alpha)_{\text{tot}}$ with increasing M_* seen in the LAEs is achieved if q increases with M_*. We note that all LAEs require $q < 1$, with the less massive subsamples suggesting $q = 0$, meaning that Lyα photons escape much more efficiently than UV photons. We do not compare the HAEs with these models since they do not follow well the SFMS and the $\text{IRX} - M_*$ relation (see section 5.3). As we show later, the HAEs can be explained by large q values. Further discussion of $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$ and q for our LAEs and the HAEs is given in section 6.2. We also find that this result is unchanged even if we instead use a Calzetti attenuation curve, Tomczak et al. (2016)’s SFMS, and/or Bouwens et al. (2016)’s IRX - M_* relation.

The term $X(\text{Ly}\alpha)_{\text{HI}}$ can be interpreted as the efficiency of resonant scattering in the CGM. More massive galaxies may have a larger amount of HI gas in the halo and thus have a higher $X(\text{Ly}\alpha)_{\text{HI}}/M_h$ value. Figure 7(g) shows that this picture is consistent with our LAEs and Matthee et al. (2016)’s HAEs, because these two populations appear to follow a common, positive (although very shallow) correlation between $X(\text{Ly}\alpha)_{\text{HI}}/M_h$ and M_*. This picture is also consistent with the $X(\text{Ly}\alpha)_{\text{HI}}/M_h$ plot for our LAEs (figure 7[h]) within the large uncertainties in M_h. In this case, the LAHs of our LAEs (< 40 kpc in radius) are caused by HI gas roughly within the virial radius of host dark matter halos, ~ 20–50 kpc, whose mass is estimated to be in the range $M_h \sim 10^{10}$–$10^{11} M_\odot$. This relative extent of LAHs is close to those inferred for the LAHs of MUSE-LAEs by Leclercq et al. (2017), typically 60–90% of the virial radius, where they predict M_h from observed UV luminosities using the semi-analytic model of Garel et al. (2015).

Thus, in the resonant scattering scenario, the constant (or decreasing) $L(\text{Ly}\alpha)_{\text{HI}}$ observed is achieved by a combination of increasing $L(\text{Ly}\alpha)_{\text{int}}$, decreasing $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$, and (slightly) increasing $X(\text{Ly}\alpha)_{\text{HI}}/M_h$ with mass, and all three trends are explained reasonably well. Our study suggests that (c) resonant scattering is the dominant origin of the LAHs.

6.1.4 Summary of the three comparisons

It is found that resonant scattering most naturally explains the $L(\text{Ly}\alpha)_{\text{HI}}$ and its dependence on galaxy properties seen in our LAEs and Matthee et al. (2016)’s HAEs. We, however, note that hydrodynamic cosmological simulations in Lake et al. (2015) show that scattered Lyα in the CGM can reach only out to ~ 15 kpc, suggesting that cold streams or satellite star formation are also needed, although they slightly overestimate the observed radial Lyα profile at 15 kpc (by a factor of 2). On the other hand, Xue et al. (2017) have found for LAEs at $z \sim 4$ that the radial profile of LAHs is very close to a predicted profile by Dijkstra & Kramer (2012) who have only considered resonant scattering. Theoretical models discussing the contribution of scattering to $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$ and $X(\text{Ly}\alpha)_{\text{HI}}/M_h$ as a function of M_* and M_h are needed for a more detailed comparison. Mas-Ribas et al. (2017) show that different origins give different spatial profiles of Lyα, UV, and Hα emission. According to the best-effort observations of Lyα and Hα emission of LAEs in Sobral et al. (2017), Lyα photons of LAEs at $z \sim 2$ are found to escape over two times larger radii than Hα photons, which implies (a) cold stream scenario or (c) resonant scattering scenario, although their results are based on images with the PSF as large as ~ 2 arcsecond (FWHM). Deep, spatially resolved observations of Hα emission with James Webb Space Telescope (JWST) would provide us with important clues to the origin of LAHs.

6.2 The origin high Lyα escape fractions

By including $L(\text{Ly}\alpha)_{\text{HI}}$ in the total Lyα luminosity, we obtain very high $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$ values for our LAEs as shown in section 5.2. These values are systematically higher than those obtained for LAEs in previous studies which have not considered $L(\text{Ly}\alpha)_{\text{HI}}$ (e.g., Song et al. 2014; Hayes et al. 2011). They are also about one order of magnitude higher than those of HAEs with the same M_* and $E(B-V)$ (figure 4), suggesting a large scatter in $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$ among galaxies.

It is helpful to discuss $f_{\text{esc}}(\text{Ly}\alpha)$ using $E(B-V)$, since additional mechanisms are needed to make $f_{\text{esc}}(\text{Ly}\alpha)$ higher or lower than that expected from $E(B-V)$. The attenuation of Lyα emission relative to that of continuum emission is evaluated by the q-parameter q (e.g., Finkelstein et al. 2008, 2009), as discussed in section 6.1.3. Figure 8 shows q as a function of $E(B-V)$ for our LAEs and Matthee et al. (2016)’s HAEs, which are divided into subsamples in accordance with $E(B-V)$. Regardless of the attenuation curve, the LAEs have small q less than unity, which increases with $E(B-V)$. Remarkably, about a half of the subsamples, shown by red filled symbols, have $q < 0$, meaning that the observed Lyα luminosity exceeds the one calculated from the SFR. On the other hand, the HAEs have larger q (> 1) decreasing with $E(B-V)$. The difference in q between these two galaxy populations becomes larger at smaller $E(B-V)$. Note that if we calculate q of our LAEs from $L(\text{Ly}\alpha)_{\text{PS}}$ instead of including $L(\text{Ly}\alpha)_{\text{HI}}$, we obtain higher values, $q \sim 1$, being closer to the values found in previous studies (e.g., Hayes et al. 2010; Nakajima et al. 2012).

The q-parameter can be rewritten as $\log q = \log(1 - f_{\text{esc}}(\text{Ly}\alpha)/L(\text{Ly}\alpha)_{\text{HI}}) = -1/2 \log \left(\frac{L(\text{Ly}\alpha)_{\text{HI}}}{L(\text{Ly}\alpha)}\right)$, where κ and C are two parameters of a commonly used fitting formula of $f_{\text{esc}}(\text{Ly}\alpha) = C10^{–0.4E(B-V)}$ (e.g., Hayes et al. 2011). The two parameters are difficult to interpret physically, especially for a case with $C < 1$. Hayes et al. (2011) and Atek et al. (2014) do not include $L(\text{Ly}\alpha)_{\text{HI}}$ to calculate the $f_{\text{esc}}(\text{Ly}\alpha)$ and obtain $C = 0.445$ with $\kappa = 3.6$ and $C = 0.22$ with $\kappa = 6.67$, respectively. Although Matthee et al. (2016) include $L(\text{Ly}\alpha)_{\text{HI}}$ to calculate $f_{\text{esc}}(\text{Ly}\alpha)_{\text{tot}}$, their C is less than 1 ($C = 0.08^{+0.02}_{-0.04}$ with $\kappa = 7.64^{+1.38}_{-1.2}$), which is slightly larger than the value derived without $L(\text{Ly}\alpha)_{\text{HI}}$ ($C = 0.03^{+0.01}_{-0.01}$ with $\kappa = 10.71^{+0.89}_{-0.84}$). Note that Atek et al. (2014) uses Balmer decrements to estimate $E(B-V)_{\text{PS},z}$, while other studies use SED fitting.
Below, we discuss how LAEs can have low q and hence high $f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}}$ than HAEs with the same $E(B-V)$, by grouping possible origins into three categories: (i) less efficient resonant scattering in a uniform ISM, (ii) less efficient resonant scattering in a clumpy ISM, and (iii) additional Lyα sources. We then discuss the difference in q and $f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}}$ between the LAEs and HAEs. In this discussion, we assume that the contribution from cold streams and satellite galaxies to $L(\text{Ly} \alpha)_H$ is negligible.

6.2.1 (i) Less efficient resonant scattering in a uniform ISM

In a uniform ISM where dust and gas are well mixed, Lyα photons have a higher chance of dust absorption than continuum photons because of resonant scattering. To reduce the efficiency of resonant scattering in a uniform ISM, one needs to reduce the column density of HI gas (N_{HI}) or the scattering cross section (σ_{Lya}) (e.g., Duval et al. 2014; Garel et al. 2015).

First, it appears that LAEs indeed have lower N_{HI} than average galaxies with the same M_* (and hence the same $E(B-V)$ since average galaxies are expected to follow a common IRX-M_* relation). This is because Kusakabe et al. (2018) suggest that LAEs at $z \sim 2$ have lower M_* than expected from the average M_*-M_{HI} relation. At a fixed M_*, a lower M_{HI} means a lower baryon mass and hence a lower gas mass, and it is reasonable to expect that galaxies with a lower gas mass have a lower N_{HI}. The N_{HI} of LAEs is further reduced if they have a high ionizing parameter as suggested by e.g., Nakajima & Ouchi (2014), Song et al. (2014), and Nakajima et al. (2018b) or have a relatively face-on inclination (e.g., Verhamme et al. 2012; Yajima et al. 2012; Behrens & Braun 2014; Shibuya et al. 2014a; Kobayashi et al. 2016; Paulino-Afonso et al. 2018).

The idea that LAEs have lower N_{HI} than average galaxies...
appears to be consistent with results based on observed Lyα profiles that LAEs have lower \(N_{\text{HI}} \) than LBGs (e.g., Hashimoto et al. 2015; Verhamme et al. 2006). This idea is also consistent with an anti-correlation between \(M_{\text{HI}} \) and \(f_{\text{esc}}(\text{Ly} \alpha) \) found for local galaxies, although their \(f_{\text{esc}}(\text{Ly} \alpha) \) values at a fixed \(E(B-V) \) are lower than those of our LAEs (Lyα Reference Sample Hayes et al. 2013; Östlin et al. 2014).

The probability of the resonant scattering of Lyα photons is also reduced if the ISM is outflowing, because the gas seen redshifted Lyα photons (e.g., Kunth et al. 1998; Verhamme et al. 2006). This mechanism should work in LAEs because most LAEs have outflows (e.g., Hashimoto et al. 2013; Shibuya et al. 2014b; Hashimoto et al. 2015; Guaita et al. 2017). Outflowing gas is also needed to reproduce observed Lyα profiles characterized by a relatively broad, asymmetric shape with a redshifted peak. Note, however, that it is not clear whether LAEs have higher outflow velocities than average galaxies with the same \(M_* \) and \(E(B-V) \).

To summarize, low HI column densities combined with some other mechanisms such as outflows appear to contribute to the high \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \) seen in LAEs. However, none of these mechanisms can reduce \(q \) below unity as long as a uniform ISM is assumed.

6.2.2 (ii) Less efficient resonant scattering in a clumpy ISM

Lyα photons are not attenuated by dust if dust is confined in HI clumps (the clumpy ISMs; Neufeld 1991; Hansen & Peng Oh 2006) because Lyα photons are scattered on the surface of clumps before being absorbed by dust. Scarlata et al. (2009) find that the clumpy dust screen (ISMs) can reproduce observed line ratios of Lyα to H\(\alpha \) (or \(f_{\text{esc}}(\text{Ly} \alpha) \)), and H\(\alpha \) to H\(\beta \) (or \(E(B-V) \)) of local LAEs (see also Bridge et al. 2017). It is, however, not clear what causes such a clumpy ISM geometry especially for LAEs. Indeed, Laursen et al. (2013) argue that any real ISM is unlikely to give \(q < 1 \). Duval et al. (2014) also find that the clumpy ISM model (Neufeld 1991) can achieve \(q < 1 \) only under unrealistic conditions: a large covering factor of clumps with high \(E(B-V) \), a low HI content in interclump regions, and a uniform, constant, and slow outflow.

6.2.3 (iii) Additional Lyα sources

If galaxies have other Lyα-photon sources in the main body besides star formation, the number of produced Lyα photons is larger than expected from the \(SFR \), resulting in underestimation of \(q \) and overestimation of \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \). We discuss three candidate sources: AGNs, cold streams, and hard ionizing spectra.

First, the contribution of AGNs should be modest. This is because we have removed all objects detected in either X-ray, UV, or radio regarding them as AGNs, and because the fraction of obscured AGNs (AGNs without detection in either X-ray, UV, or radio) in the remaining sample is estimated to be only 2% (see Kusakabe et al. 2018).

Second, Lake et al. (2015) have found from hydrodynamical simulations of galaxies with \(M_\odot = 10^{11.5} \) that the Lyα luminosity from cold streams in the central part of galaxies amounts to as high as \(\sim 45\% \) of that from star formation. This result may apply to our LAEs to some degree.

Third, if our LAEs have a hard ionizing spectrum (in other words, the production efficiency of ionizing photons compared to the UV luminosity, \(\xi_{\text{ion}} \), is large) as suggested in previous studies on higher-\(z \) LAEs (at \(z \sim 3-7 \); e.g., Nakajima et al. 2016; Harikane et al. 2018; Nakajima et al. 2018b) and brighter LAEs at \(z \sim 2.2 \) (Sobral & Matthee 2018), the intrinsic number of ionizing photons is larger than that assumed in equation 20. A hard ionizing spectrum arises from a young age, a low metallicity, a stellar population with a contribution of massive binary systems, an increasing star formation history, and/or a top-heavy IMF. If our LAEs have \(\sim 0.2 \) dex harder \(\xi_{\text{ion}} \) than the assumed fiducial value (\(\log_{10}(\xi_{\text{ion}}/\text{Hz} \text{erg}^{-1}) \sim 25.11 \), they have \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \) lower than unity even in the case of an SMC-like curve. A much harder \(\xi_{\text{ion}} \) would become smaller than unity even in the case of an SMC-like curve. To infer \(\xi_{\text{ion}} \) for our sample, we adopt an empirical relation presented by Sobral & Matthee (2018) in their figure 2.

This relation implies a higher \(f_{\text{esc}}(\text{Ly} \alpha) \) and a harder \(\xi_{\text{ion}} \) for LAEs with a larger \(E(W_{0,ps}(\text{Ly} \alpha)) \). Using this relation, we indeed obtain a harder \(\xi_{\text{ion}} \) of \(\log_{10}(\xi_{\text{ion}}/\text{Hz} \text{erg}^{-1}) \sim 25.3 \) for our large-EW LAE subsample whose typical \(E(W_{0,ps}(\text{Ly} \alpha)) \) is \(\sim 70\AA \). This value is also comparable to those found for \(z \sim 3 \) LAEs in Nakajima et al. (2018b). In this case, their total Lyα escape fraction, \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \), would become smaller than unity (\(\sim 0.6-0.8 \)) based on equation 9, suggesting that an additional Lyα source is not necessarily needed. However, the same relation gives a modest \(\xi_{\text{ion}} \) of \(\log_{10}(\xi_{\text{ion}}/\text{Hz} \text{erg}^{-1}) \sim 25.1 \) for the small-EW LAE subsample (\(E(W_{0,ps}(\text{Ly} \alpha)) \sim 25\AA \)), resulting in \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \sim 0.1-0.3 \) which remains significantly higher than those of HAEs with the same \(M_\star/SFR/E(B-V) \). These calculations imply that it remains uncertain whether or not LAEs, especially those with a small \(E(W_0(\text{Ly} \alpha)) \), typically have a hard ionizing spectrum. They also imply that another mechanism is possibly needed (in addition to hard ionizing spectra) to fully explain the large \(f_{\text{esc}}(\text{Ly} \alpha)_{\text{tot}} \) including the systematic difference from HAEs.

In any case, the very low \(q \) values (\(\lesssim 0 \)) seen in about half of our LAEs (red filled objects) indicate a non-negligible contribution from additional Lyα sources. Song et al. (2014) have also found several bright LAEs with \(q < 0 \) as shown in their figure

\footnote{Their \(f_{\text{esc}}(\text{Ly} \alpha) \) is derived from H\(\alpha \) luminosity with dust attenuation correction, 0.9 mag (see also Sobral et al. 2017), and Ly\(\alpha \) flux measured as a point source with a 3"-diameter aperture.}
14, where \(q \) would decrease more if they include \(L(L_{\text{Ly}\alpha})_\text{H} \) in the calculation of \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \).

6.2.4 Summary of the mechanisms affecting the \(q \)-parameter

The origin of very high \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) and very low \(q \) found for LAEs is a long-standing problem. This study makes this problem more serious by including \(L(L_{\text{Ly}\alpha})_\text{H} \) in the calculation of these parameters. Remarkably, all of our subsamples have \(q < 1 \) and a half of them reach \(q < 0 \).

Low \(N_{\text{HI}} \) and small \(\sigma_{\text{Ly}\alpha} \) should help to increase \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) and reduce \(q \) to some degree. However, additional mechanisms are needed to reduce \(q \) less than unity, as highlighted by the very low \(q \) values, with some being negative, found for our LAE subsamples. Cold streams in the main body of LAEs and hard ionizing spectra are candidate mechanisms while a clumpy ISM may be unlikely. The \(q \) value of galaxies is probably determined by the balance between the efficiency of resonant scattering and additional Ly-\(\alpha \)-photon sources. Spectroscopic observations of LAEs’ \(H\alpha \) luminosities would provide more accurate measurements of \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) (\(q \)-parameters). They will also enable us to evaluate the spectral hardness from the UV to \(H\alpha \) luminosity ratio and to constrain the contribution of cold streams from the \(\text{Ly}\alpha \) to \(\text{H}\alpha \) luminosity ratio.

Our LAEs have much lower \(q \) values than the HAES in the lowest-\(E(B-V) \) bin, which indicates that not all galaxies with small \(E(B-V) \) (or equivalently, small \(M_\star \)) can be LAEs. A possible reason for this large difference is that our LAEs have lower \(M_\text{BH} \) and hence lower \(M_{\text{HI}} \). Matthee et al. (2016)’s HAES in the lowest-\(M_\star \) bin \((M_\star \sim 3 \times 10^9–8 \times 10^9 M_\odot)\) used for clustering analysis by Cochrane et al. (2018) reside in massive dark matter halos of \(M_{\text{HI}} \sim 10^{11.9} \times 10^{12} M_\odot \) (Cochrane et al. 2018), which is one dex larger than the average \(M_\text{BH} \) of our LAEs 16. It would imply that the lowest-\(E(B-V) \) HAES in Matthee et al. (2016) have higher \(M_\text{BH} \) than our LAEs, since the lowest-\(E(B-V) \) HAES should largely overlap with the lowest-\(M_\star \) HAES. Furthermore, a large fraction of low-\(M_\star \) \((M_\star \lesssim 10^9 M_\odot)\) HAES are expected to be starburst galaxies as shown in figure 6, implying a large amount of gas (including HI) to fuel the starburst. However, the higher \(M_\text{BH} \) also imply that they have brighter \(L(L_{\text{Ly}\alpha})_\text{H} \) from cold streams (in the main body). If the higher \(M_{\text{HI}} \) can reduce the \(L(L_{\text{Ly}\alpha})_\text{H} \) produced from both star formation and cold streams sufficiently, the higher \(q \) values of the HAES can be reproduced.

16We calculate this \(M_\text{BH} \) value from the correlation length given in Cochrane et al. (2018) in the same manner as for our LAEs. Their \(r_9 \) and \(M_\text{BH} \) are higher than those averaged over all the LAEs \((r_9 = 2.39^{+0.36}_{-0.41} h^{-1} Mpc, \text{i.e., } M_\text{BH} = 3.2^{+0.7}_{-0.5} \times 10^{10} M_\odot)\), although their median \(M_\star \) \((\sim 6 \times 10^9 M_\odot)\) is slightly higher than our average value \((\sim 1 \times 10^9 M_\odot)\).

7 Conclusions

We have studied the dependence of LAH luminosity on stellar properties and dark matter halo mass using \(\sim 900 \) star forming LAEs at \(z \sim 2 \) to identify the dominant origin of LAHs. To do so, we have divided the whole sample into ten subsamples in accordance with five physical quantities \((m_\text{sc}, M_{UV}, \beta, L(L_{\text{Ly}\alpha}), \text{and } EW_0(L_{\text{Ly}\alpha}))\), some of which are expected to correlate with \(M_\star \) and \(M_\text{BH} \). We have estimated for each subsample the LAH luminosity from a stacked observational relation obtained by Monmose et al. (2016). We have used the obtained dependence of LAH luminosity to test three candidate origins: cold streams, satellite star formation, and resonant scattering. We have also derived total \(L_{\text{Ly}\alpha} \) escape fractions and \(q \) values by including the halo component, and discussed how LAEs can have high escape fractions. Our main results are as follows.

1. We compare Monmose et al. (2016)’s observational \(L(L_{\text{Ly}\alpha})_\text{H} \) relation obtained from stacking analysis of essentially the same sample as ours, with the distribution of individual LAEs by VLT/MUSE in Leclercq et al. (2017). We find that their observational relation agrees well with the average trend of individual LAEs as shown in figure 2, ensuring the use of the relation for our analysis.

2. Our LAEs are found to lie on an extrapolation of the \(M_\star–IRX \) relation at \(z \sim 1.5 \) in Heinis et al. (2014) and that of the SFMS at \(z \sim 2 \) in Shivaei et al. (2017) if an SMC-like attenuation curve is assumed (shown in figures 5 and 6). These results are used in the discussion of the origin of LAHs.

3. The ten subdivided LAE samples are found to have similar \(L(L_{\text{Ly}\alpha})_\text{H} \sim 2 \times 10^{42} \text{ergs}^{-1} \) and \(L(L_{\text{Ly}\alpha})_\text{tot} \sim 2 \times 10^{42}–4 \times 10^{42} \text{ergs}^{-1} \) (shown in figure 2). Their \(L(L_{\text{Ly}\alpha})_\text{H} \) and \(L(L_{\text{Ly}\alpha})_\text{tot} \) remain almost unchanged or even decrease when \(M_\star \) increases by factor 2–5. They are also nearly independent of \(SFR, E(B-V), \) and \(M_\text{BH}, \) although the uncertainties in \(M_\text{BH} \) are large. The HAES in Matthee et al. (2016) also have non-increasing \(L(L_{\text{Ly}\alpha})_\text{H} \) and \(L(L_{\text{Ly}\alpha})_\text{tot} \). These results are inconsistent with the cold stream scenario and the satellite star formation scenario both of which predict a nearly linear scaling of \(L(L_{\text{Ly}\alpha})_\text{H} \) with mass (figure 7). Specifically, the power law slope of the \(M_\star–L(L_{\text{Ly}\alpha})_\text{H} \) relation for the \(K \)-divided subsamples, the most stellar-mass sensitive subsamples, is shallower than predictions with more than the 2\(\sigma \) confidence level. The former scenario also fails to reproduce the bright \(L(L_{\text{Ly}\alpha})_\text{H} \) of low-mass subsamples at, e.g., a more than the 10\(\sigma \) level for the faint \(m_K \) subsample. The most likely is the resonant scattering scenario because it can naturally explain these results.

4. The \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) of all ten subsamples is higher than \(\sim 30\% \), with some exceeding 100\%, with very low \(q \) values of \(-1 \lesssim q \lesssim 1 \). Using the Calzetti curve instead of an SMC-like curve makes \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) lower but still in a range of 10–100\% with \(q \sim 0–1 \). The \(f_{\text{esc}}(L_{\text{Ly}\alpha})_\text{tot} \) of the LAEs anti-
correlates with M_*, SFR, and $E(B-V)$ regardless of the assumed attenuation curve (figure 4). Their $f_{esc}(\text{Ly}\alpha)_{\text{tot}}$ and q are higher and lower, respectively, than those of HAEs with similar M_* and $E(B-V)$. The very low q values of the LAEs suggest the existence of an additional Ly\alpha source in the main body; Ly\alpha emission from cold streams and hard ionizing spectra are possible candidates. The difference in q between the LAEs and HAEs is possibly caused by a different balance between resonant scattering and additional Ly\alpha-photon source(s).

In the near future, we will obtain much better M_h estimates for ~ 9000 LAEs with new NB387 data from $\simeq 25$ deg2 taken with Hyper Supreme-Cam (SILVERRUSH; Ouchi et al. 2018; Shibuya et al. 2018) as part of a large imaging survey program (Aihara et al. 2018). It will enable us to compare observed relations of $L(\text{Ly}\alpha)_{\text{tot}}$ with theoretical predictions more directly.

Acknowledgments

We thank the anonymous referee for constructive comments and suggestions. We are grateful to Kazuyuki Ogura and Masahiro Nagashima for kindly providing ν^2GC data and giving helpful comments. We are grateful to Yoshiaki Ono for giving insightful comments and suggestions on SED fitting. We would like to express our gratitude to Jorryt Matthee and Ken-ichi Tadaki for kindly providing their data plotted in figures 4, 6–8 and figure 6, respectively. We thank David Sobral for giving insightful comments and suggestions. We acknowledge Ryosuke Goto, Akira Konno, Ryota Kawamata, Taku Okamura, Kazushi Irikura, Ryota Kakuma, and Makoto Ando for constructive discussions at meetings. This work is based on observations taken by the Subaru Telescope which is operated by the National Astronomical Observatory of Japan. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. Based on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. This research made use of IRAF, which is distributed by NOAO, which is operated by AURA under a cooperative agreement with the National Science Foundation and of Python packages for Astronomy: Astropy (The Astropy Collaboration et al. 2013), Colossus, CosmolPy and PyRAF, which is produced by the Space Telescope Science Institute, which is operated by AURA for NASA. H.K acknowledges support from the JSPS through the JSPS Research Fellowship for Young Scientists. This work is supported in part by KAKENHI (16K05286) Grant-in-Aid for Scientific Research (C) through the JSPS.

Appendix 1 NB selection bias

In this Appendix, we first describe the NB-selection bias of our LAE sample, and then discuss the effect of this bias on the obtained $M_*-L(\text{Ly}\alpha)_{\text{H}}$ relations. As shown in figures 1 (g) and (h), our sample misses UV-faint LAEs ($M_{\text{UV}} \gtrsim -19$ mag) with faint $L(\text{Ly}\alpha)_{\text{ps}}$ and small $EW_{0,ps}(\text{Ly}\alpha)$. This selection bias has the following effects on subsample properties.

M_{UV} and m_K subsamples The UV-faint ($M_{\text{UV}} > -19.2$ mag) subsample is biased toward brighter $L(\text{Ly}\alpha)_{\text{ps}}$ and larger $EW_{0,ps}(\text{Ly}\alpha)$. The K-faint subsample ($m_K > 25.0$ mag) is probably biased similarly. Although the $L(\text{Ly}\alpha)_{\text{H}}$ of these subsamples is probably overestimated, we find in appendix 3 that it does not change our results. This selection bias probably does not change M_*, since m_K and M_{UV} are a good tracer of M_*. The bright m_K and M_{UV} subsamples are almost free from this bias.

β subsamples Galaxies with fainter UV luminosities generally have smaller β (e.g., Alavi et al. 2014). Although our β subsamples are probably biased to some degree, it is difficult to evaluate the effects on M_* and $L(\text{Ly}\alpha)_{\text{H}}$ estimates quantitatively. However, the effects should be smaller than those on the UV and K subsamples, since the $M_{\text{UV}}-\beta$ correlation has a large scatter (see figure 1[f]).

$L(\text{Ly}\alpha)_{\text{ps}}$ and $EW_{0,ps}(\text{Ly}\alpha)$ subsamples The faint $L(\text{Ly}\alpha)$ and small $EW(\text{Ly}\alpha)$ subsamples are biased toward bright UV magnitudes. Although their $L(\text{Ly}\alpha)_{\text{H}}$ values are probably not affected by the selection bias, their M_* values are expected to be overestimated to some degree. The bright $L(\text{Ly}\alpha)$ and large $EW(\text{Ly}\alpha)$ subsamples are not biased. If the M_* of the faint $L(\text{Ly}\alpha)$ and small $EW(\text{Ly}\alpha)$ subsamples decreases, the power-law slope of the $M_*-L(\text{Ly}\alpha)_{\text{H}}$ relation becomes shallower, enlarging the discrepancy from the models of cold streams and satellite star formation.

In appendix 3, we use the MUSE sample to evaluate the robustness of $L(\text{Ly}\alpha)_{\text{H}}$ estimates for our faint m_K and M_{UV} subsamples. The MUSE sample is complementary to our sample, because it is essentially UV-limited but contains much fewer objects than ours.

Appendix 2 Issues on ZP offsets of broadband images

In section 3.1, we find that the distribution of M_{UV}, β, $L(\text{Ly}\alpha)_{\text{ps}}$, and $EW_{0,ps}(\text{Ly}\alpha)$ is different between the SXDS and COSMOS fields. LAEs in the SXDS field tend to have bluer β, fainter $L(\text{Ly}\alpha)_{\text{ps}}$ and weaker $EW_{0,ps}(\text{Ly}\alpha)$ compared with those in the COSMOS fields. This is possibly because of systematic offsets of the ZP magnitudes of the optical broad-
and Skelton et al. (2014) suggest that the amount of ZP offsets of the B, V, and R images in the COSMOS field is ∼ 0.0–0.2 mag.

If the relative ZP offset of B to V images is 0.04 mag (as suggested for SXDS-North subfield in Yagi et al. 2013), the corresponding shift of β is 0.18. If the case with a larger relative offset of 0.148 mag (as suggested for COSMOS field in Ilbert et al. 2009), the corresponding shift of β is as large as 0.66.

More seriously, papers in a given field often claim opposite shift directions, and we can not give a firm conclusion. For instance, in SXDS field, the ZP corrections based on Yagi et al. (2013) make β redder, while those based on Skelton et al. (2014) make β bluer. In this paper, we use the original ZPs following Kusakabe et al. (2018) and include ZP uncertainties in the flux-density errors in the calculations given in sections 3.1 and 4.2. In the following paragraphs, we roughly estimate possible offsets of β, L(\text{Ly}_\alpha)_H, and EW_{0,ps}(\text{Ly}_\alpha) due to such ZP offsets.

The shifts of β have a larger effect on L(\text{Ly}_\alpha)_H and EW_{0,ps}(\text{Ly}_\alpha) for smaller-EW_{0,ps}(\text{Ly}_\alpha) objects, since the contribution of the continuum emission around rest-frame 1216Å in an NB387 image is larger than that for larger-EW_{0,ps}(\text{Ly}_\alpha) objects as shown in equations 1 and 2. To evaluate this effect quantitatively, we consider a simple case that the ZPs of the broadband images in one of the two fields are shifted resulting in a difference of ∼ 0.4 in β, which is found in figure 1.

For instance, a large-EW_{0,ps}(\text{Ly}_\alpha) object with \textit{M}_{UV} = −19 mag, \text{β} = −2.0, and EW_{0,ps}(\text{Ly}_\alpha) = 100 Å has NB387 = 24.38 mag. If the β is overestimated to be −1.6 due to ZP shifts of broad-bands images (with a correct \textit{M}_{UV} estimation at rest-frame 1600Å of −19 mag), the corresponding flux density at rest-frame 1216Å is underestimated. It results in relatively small shifts of \textit{L}(\text{Ly}_\alpha)_H and EW_{0,ps}(\text{Ly}_\alpha), ∼ 3 % and ∼ 15 % overestimation, respectively, for the same NB387 magnitude (24.38 mag). On the other hand, the same shift of β causes larger overestimation of \textit{L}(\text{Ly}_\alpha)_H and EW_{0,ps}(\text{Ly}_\alpha), ∼ 14 % and ∼ 28 %, respectively.

We first examine the robustness of the stacked relation (equation 9) in Momose et al. (2016). We then evaluate the effects of the NB-selection bias on the \textit{m}_K and \textit{M}_{UV} subsamples.

To test the robustness of \textit{L}(\text{Ly}_\alpha)_H values derived from equation 9, we calculate \textit{L}(\text{Ly}_\alpha)_H from EW_{0,ps}(\text{Ly}_\alpha) using another stacked relation presented in Momose et al. (2016), an anti-correlation between X(\text{Ly}_\alpha)_{tot/C} and EW_{0,ps}(\text{Ly}_\alpha). We find that using this relation gives nearly the same \textit{L}(\text{Ly}_\alpha)_H values as those derived from equation 9, with differences being at most 0.09 dex.

To evaluate the effects of the NB-selection bias on \textit{L}(\text{Ly}_\alpha)_H for the faint \textit{m}_K and \textit{M}_{UV} subsamples, we re-estimate \textit{L}(\text{Ly}_\alpha)_H with a complementary result of the MUSE-LAEs in Leclercq et al. (2017) which is essentially free from this kind of bias: the relation between \textit{M}_{UV} and \textit{L}(\text{Ly}_\alpha)_H. They have...
found $L(L_{\text{Ly}\alpha})_H$ anti-correlates with L_{UV} (see their figure 16). As shown in figure 9, our high-M_c LAEs (red filled objects), which are not affected by the NB-bias, are consistent with the best-fit relation of MUSE-LAEs (black solid line), while the faint M_{K} and M_{UV} subsamples are found to lie slightly above the relation. As a result, the power-law slopes of the M_{K} and M_{UV} subsamples become positive as shown in figure 10. However, they are still shallow. For example, the M_{K}-divided subsamples give a power-law index of 0.26 ± 0.05, which is more than 2σ shallower than those of the cold streams models in Goerdt et al. (2010) and Rosdahl & Blaizot (2012), ~ 0.38 and ~ 0.75, respectively. This slope is also more than 2σ shallower than that of the satellite star formation model, ~ 1.36. Moreover, the $L(L_{\text{Ly}\alpha})_H$ values of the faint M_{K} and M_{UV} subsamples also remain higher than predicted from the cold streams models at $a > 10\sigma$ level. We conclude that the conclusions obtained in section 6 are robust.

Table 5. Lyα luminosities for the subsamples.
Subsamples
(1)
bright UV
faint UV
blue β
red β
bright Lyα
faint Lyα
large EW
small EW
bright K
faint K

Note. (1) Lyα luminosity at the central part derived by multiplying $L(L_{\text{Ly}\alpha})_{sys}$ by 0.77; (2) Lyα luminosity of the LAH derived from equation 9; (3) total Lyα luminosity derived from equation 9.

Appendix 4 Estimated Lyα luminosities

In table 5, we show the three kinds of Lyα luminosities for individual subsamples. Note that the typical 1σ uncertainties in the individual data points in Momose et al. (2016)’s $L(L_{\text{Ly}\alpha})_C$ - $L(L_{\text{Ly}\alpha})_H$ relation are propagated to uncertainties in $L(L_{\text{Ly}\alpha})_H$ and $L(L_{\text{Ly}\alpha})_{tot}$ of ~ 22% and ~ 16%, respectively (see figure 3).

Appendix 5 Results of the SED fitting

Figures 11 and 12 show the best-fit SEDs for the ten subsamples for each field, and table 3 the best-fit stellar parameters.

Appendix 6 The best fit ACFs

We show the best-fit ACFs for the two fields and their field-average values in figure 13. We do not perform clustering analysis for the K-divided subsamples as described in section 3.2. We do not plot the M_{K} of the UV bright and blue β subsamples (figures 3 and 7), since they are not constrained well. This is partly because at small r_0 values like those of these two subsamples, M_{K} depends very sensitively on r_0 according to the bias model (see appendix B in Khostovan et al. 2018). The differences in the ACF measurement between the two fields have
been discussed in Kusakabe et al. (2018).

Appendix 7 The fluorescence scenario

Some of the ionizing photons produced in central galaxies are converted to fluorescence Lyα emission due to recombination of neutral hydrogen gas in the CGM. We do not include the fluorescence scenario in the discussion of LAHs (section 6.1), since this scenario has been favored for QSOs’ LAHs (e.g., Hennawi & Prochaska 2013; Cantalupo et al. 2014). Recently, however, the fluorescence emission of star forming LAEs has been discussed with MUSE data (Gallego et al. 2018; Leclercq et al. 2017). In this appendix, we briefly examine this scenario on the basis of the minimum amount of ionizing photons, N(ion) (photon s⁻¹), and hence ξion, required to maintain the LAH of LAEs with fluorescence while reproducing the nebular emission of the main bodies.

Our LAEs in a sub region in the SXDS field have been observed with a narrow band targeting Hα emission (Nakajima et al. 2012). The stacked Hα luminosity as a point source is L(Hα)_ps,tot = 8.4 × 10^{41} L_⊙ with dust attenuation correction (E(B − V) ≈ 0.1, Kusakabe et al. 2015). The number of ionizing photons that are produced by star formation and then converted to nebular emission in the LAEs is N(ion)_Hα,corr = L(Hα)_ps,tot / 1.36 × 10^{-12} – 6.1 × 10^{53} photon s⁻¹ following Kennicutt (1998).

The LAH luminosity is calculated as L(Lyα)_H ≈ 2.0 × 10^{42} L_⊙ from the stacked L(Lyα)_ps ≈ 1.8 × 10^{42} L_⊙. It is converted to the number of Lyα photons, N(Lyα)_LH = L(Lyα)_H / hν(lyα) ≈ 1.3 × 10^{53} photon s⁻¹ with the Planck constant (h) and the frequency of Lyα (ν(lyα)). The fraction of recombinations which results in Lyα photons in the op-

Table 6. Best-fit parameters of SED fitting for the two fields.

subsample	M_⊙ (10^8 M_⊙)	E(B − V)_α	Age (Myr)	SFR (M⊙ yr⁻¹)	χ²_n
SXDS field					
bright UV	12.0 ± 3.0	0.0 ± 0.3	143 ± 112	9.7 ± 4.5	0.902
faint UV	3.1 ± 2.4	0.0 ± 0.3	161 ± 154	2.3 ± 4.0	0.114
blue β	6.7 ± 2.8	0.0 ± 0.3	321 ± 274	2.5 ± 4.0	0.581
red β	16.0 ± 4.0	0.0 ± 0.3	161 ± 193	11.6 ± 4.0	2.978
bright Lyα	5.2 ± 1.2	0.0 ± 0.3	203 ± 174	3.0 ± 4.0	0.268
faint Lyα	10.9 ± 3.2	0.0 ± 0.3	203 ± 260	6.4 ± 4.0	1.550
large EW	2.8 ± 3.1	0.0 ± 0.3	102 ± 199	3.1 ± 4.0	0.212
small EW	11.1 ± 2.0	0.0 ± 0.3	181 ± 193	7.2 ± 4.0	1.016
bright K	16.1 ± 5.8	0.0 ± 0.3	143 ± 134	13.9 ± 4.0	1.012
faint K	3.6 ± 1.2	0.0 ± 0.3	143 ± 112	2.9 ± 4.0	0.673
COSMOS field					
bright UV	16.8 ± 5.9	0.0 ± 0.3	227 ± 177	8.8 ± 4.0	0.777
faint UV	4.2 ± 2.4	0.0 ± 0.3	227 ± 193	2.2 ± 4.0	0.244
blue β	2.3 ± 2.6	0.0 ± 0.3	114 ± 105	2.3 ± 4.0	0.458
red β	13.2 ± 4.8	0.0 ± 0.3	286 ± 123	5.5 ± 4.0	0.560
bright Lyα	8.2 ± 3.3	0.0 ± 0.3	286 ± 143	3.6 ± 4.0	0.257
faint Lyα	13.5 ± 3.8	0.0 ± 0.3	286 ± 143	4.6 ± 4.0	2.238
large EW	19.7 ± 9.3	0.0 ± 0.3	321 ± 188	3.1 ± 4.0	0.311
small EW	15.7 ± 3.3	0.0 ± 0.3	304 ± 118	5.9 ± 4.0	0.302
bright K	16.7 ± 3.5	0.0 ± 0.3	227 ± 193	8.7 ± 4.0	0.208
faint K	2.9 ± 2.4	0.0 ± 0.3	114 ± 112	3.0 ± 4.0	0.278
COSMOS field/ the Calzetti attenuation curve					
bright UV	15.8 ± 5.5	0.0 ± 0.3	102 ± 101	8.4 ± 4.0	1.185
faint UV	2.6 ± 2.0	0.0 ± 0.3	57 ± 32	5.1 ± 4.0	0.213
blue β	1.7 ± 2.6	0.0 ± 0.3	47 ± 30	3.9 ± 4.0	0.413
red β	10.9 ± 3.1	0.0 ± 0.3	102 ± 24	12.2 ± 4.2	1.305
bright Lyα	3.8 ± 1.0	0.0 ± 0.3	35 ± 12	11.8 ± 4.0	0.377
faint Lyα	13.4 ± 3.5	0.0 ± 0.3	181 ± 140	8.7 ± 4.0	2.069
large EW	19.3 ± 4.3	0.0 ± 0.3	57 ± 22	8.6 ± 4.0	0.368
small EW	20.3 ± 4.3	0.0 ± 0.3	203 ± 108	11.2 ± 4.0	3.367
bright K	9.7 ± 4.2	0.0 ± 0.3	40 ± 11	26.3 ± 4.0	1.057
faint K	1.7 ± 1.2	0.0 ± 0.3	267 ± 38	6.7 ± 4.0	0.279

Note. (1) Stellar mass; (2) color excess; (3) age; (4) SFR; and (5) reduced χ² value. Metallicity is fixed to 0.22Z⊙, redshift to 2.18, and f_{esc}^{ion} to 0.2.
Fig. 11. Best-fit SEDs for the ten subsamples of the SXDS field. Panels (a)–(j) show results with an assumption of SMC-like attenuation curve: (a) bright UV, (b) faint UV, (c) blue β, (d) red β, (e) bright Lyα, (f) faint Lyα, (g) large EW$_0$(Lyα), (h) small EW$_0$(Lyα), (i) bright K, and (j) faint K, while panels (k)–(t) show those with an assumption of Calzetti curve. For each panel, a gray solid line, a light gray solid line and a light gray dotted line show the best-fit model spectrum, its nebular continuum component and its stellar continuum component, respectively. Red filled circles and black filled triangles represent the observed flux densities and the flux densities calculated from the best-fit spectrum, respectively. (Color online)

tically thick case (case B) is $\eta_{\text{thick}} = 0.66$, which is larger than the fraction for the optically thin limit, $\eta_{\text{thin}} = 0.42$ (Osterbrock & Ferland 2006; Hennawi & Prochaska 2013). The minimum number of ionizing photons that escape from the ISM to the CGM required to maintain the observed LAHs is $N(\text{ion})_{\text{LAH}} = N(\text{Ly} \alpha)_{\text{LAH}}/\eta_{\text{thick}} \sim 1.8 \times 10^{53}$ photon s$^{-1}$. It is notable that the LAH luminosity (surface brightness, more accurately) is independent of the luminosity of ionizing radiation in the highly-ionized, optical thin regime (Hennawi & Prochaska 2013) which requires larger number of $N(\text{ion})_{\text{LAH}}$ than that in optically thick case at a fixed hydrogen gas distribution. Ionizing radiation is attenuated by dust in the ISM before escaping out to the CGM. The dust-attenuation corrected $N(\text{ion})_{\text{LAH}}$, $N(\text{ion})_{\text{LAH,corr}}$, is estimated roughly to be 1.1×10^{54} photon s$^{-1}$ with an underestimated correction with $\kappa \sim 20$ from an SMC-like attenuation curve at $\sim 1000\text{Å} (> 912$
This part gives the largest uncertainty in the whole calculation.

The minimum value of the intrinsic \(N(\text{ion}) \) produced in the galaxy is \(N(\text{ion})_{H\alpha,\text{corr}} + N(\text{ion})_{L\alpha,\text{corr}} \sim 1.8 \times 10^{54} \) photon s\(^{-1}\). Here, we do not consider ionizing photons escaping out to the IGM, although LAEs (at \(z \sim 3 \)) are found to have high escape fractions of \(\sim 10\% \)–\(30\% \) (e.g., Nestor et al. 2013; Fletcher et al. 2018).

Our LAEs are estimated to have the total \(SFR = 5.7 \ M_\odot \text{yr}^{-1} \) on average from SED fitting (Kusakabe et al. 2015). With the fiducial \(\xi_{\text{ion}} \) value of \(\sim 1.3 \times 10^{25} \) Hz erg\(^{-1}\) (Kennicutt 1998; Sobral & Matthee 2018), this SFR is converted into \(N(\text{ion}) \sim 5.3 \times 10^{53} \) photon s\(^{-1}\), which is three times lower than the minimum required value obtained above. In order for \(N(\text{ion}) \) to reach \(\sim 1.8 \times 10^{54} \) photon s\(^{-1}\), \(\xi_{\text{ion}} \) must be as high as \(\sim 4 \times 10^{25} \) Hz erg\(^{-1}\). The
Fig. 13. ACF measurements for the eight subsamples: (a) bright UV, (b) faint UV, (c) blue β, (d) red β, (e) bright Lyα, (f) faint Lyα, (g) large EW_0(Lyα), and (h) small EW_0(Lyα). For each panel, orange filled squares and green filled circles represent measurements in the SXDS and COSMOS fields. A black solid line and gray dotted line indicate the field-average best-fit ACFs with fixed $\beta = 0.8$, whose fitting range is 40–1000′′. We slightly shift all data points along the abscissa by a value depending on the field for presentation purpose. (Color online)

The fluorescence scenario requires a high ξ_{ion} and a high escape fraction of ionizing photons for the LAEs in subregion of SXDS field with Hα observation even without including ionizing photons escaping out to the IGM. However, we can not exclude the fluorescence scenario completely because of the lack of direct observations of ξ_{ion} and a high escape fraction of ionizing photons. Further observational and theoretical studies are required to examine the fluorescence scenario for star forming galaxies.

References

Aihara, H., Arimoto, N., Armstrong, R., et al. 2018, Publications of the Astronomical Society of Japan, 70, 1
Alavi, A., Siana, B., Richard, J., et al. 2014, The Astrophysical
Hashimoto, T., Ouchi, M., Shimasaku, K., et al. 2013, The Astrophysical Journal, 765, 70

Hashimoto, T., Verhamme, A., Ouchi, M., et al. 2015, The Astrophysical Journal, 812, 157

Hashimoto, T., Ouchi, M., Shimasaku, K., et al. 2017, MNRAS, 465, 1543

Hayashino, T., Matsuda, Y., Tamura, H., et al. 2004, The Astrophysical Journal Letters, 128, 2073

Hayes, M., Östlin, G., Mas-Hesse, J., et al. 2005, Astronomy and Astrophysics, 438, 71

Hayes, M., Schaefer, D., Östlin, G., et al. 2011, The Astrophysical Journal, 730, 8

Hayes, M., Östlin, G., Schaefer, D., et al. 2010, Nature, 464, 562

—. 2013, The Astrophysical Journal, 765, L27

Hayes, M., Östlin, G., Duval, F., et al. 2014, ApJ, 782, 6

Heinis, S., Buat, V., Béthermin, M., et al. 2014, Monthly Notices of the Royal Astronomical Society, 437, 1268

Hennawi, J. F., & Prochaska, J. X. 2013, The Astrophysical Journal, 766, 58

Ilbert, O., Capak, P., Salvato, M., et al. 2009, The Astrophysical Journal, 690, 1236

Keel, W. C., Cohen, S. H., Windhorst, R. A., & Waddington, I. 1999, The Astrophysical Journal Letters, 118, 2547

Kennicutt, R. C. 1998, STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE

Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, Monthly Notices of the Royal Astronomical Society, 363, 2

Khostovan, A. A., Sobral, D., Mobasher, B., et al. 2018, Monthly Notices of the Royal Astronomical Society, 478, 2999

Kobayashi, M. A. R., Murata, K. L., Koekemoer, A. M., et al. 2016, The Astrophysical Journal, 819, 0

Kojima, T., Ouchi, M., Nakajima, K., et al. 2017, PASJ, 69, 44

Kollmeier, J. A., Zheng, Z., Davé, R., et al. 2010, The Astrophysical Journal, 708, 1048

Konno, A., Ouchi, M., Nakajima, K., et al. 2016, The Astrophysical Journal, 823, 20

Koprowski, M. P., Coppin, K. E., Geach, J. E., et al. 2018, Monthly Notices of the Royal Astronomical Society, 479, 4355

Kornei, K. a., Shapley, A. E., Erb, D. K., et al. 2010, The Astrophysical Journal, 711, 693

Kroupa, P. 2001, Monthly Notices of the Royal Astronomical Society, 322, 231

Kunth, D., Leitherer, C., Mas-Hesse, J. M., Östlin, G., & Petrosian, A. 2003, The Astrophysical Journal, 597, 263

Kunth, D., Mas-Hesse, J. M., Terlevich, E., et al. 1998, Astronomy and Astrophysics, 334, 11

Kusakabe, H., Shimasaku, K., Nakajima, K., & Ouchi, M. 2015, The Astrophysical Journal, 800, L29

Kusakabe, H., Shimasaku, K., Ouchi, M., et al. 2018, Publications of the Astronomical Society of Japan, 70, 1

Lai, K., Huang, J.-s., Fazio, G., et al. 2008, ApJ, 674, 70

Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, The Astrophysical Journal Supplement Series, 224, 1

Lake, E., Zheng, Z., Cen, R., et al. 2015, The Astrophysical Journal, 806, 46

Landy, S. D., & Szalay, A. S. 1993, The Astrophysical Journal, 412, 64

Laursen, P., Duval, F., & Östlin, G. 2013, Astrophysical Journal, 766, 124

Laursen, P., & Sommer-Larsen, J. 2007, The Astrophysical Journal, 657, L69

Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, Monthly Notices of the Royal Astronomical Society, 379, 1599

Leclercq, F., Bacon, R., Wisotzki, L., et al. 2017, Astronomy & Astrophysics, 608, A8

Madau, P. 1995, The Astrophysical Journal, 441, 18

Makiya, R., Enoki, M., Ishiyama, T., et al. 2016, Publications of the Astronomical Society of Japan, 68, 25

Malhotra, S., & Rhoads, J. E. 2002, ApJ, 565, L71

Malkan, M. A., Cohen, D. P., Maruyama, M., et al. 2017, The Astrophysical Journal, 850, 5

Mas-Ribas, L., & Dijkstra, M. 2016, The Astrophysical Journal, 822, 84

Mas-Ribas, L., Dijkstra, M., Hennawi, J. F., et al. 2017, The Astrophysical Journal, 841, 19

Matsuda, Y., Yamada, T., Hayashino, T., et al. 2011, Monthly Notices of the Royal Astronomical Society: Letters, 410, 13

—. 2012, Monthly Notices of the Royal Astronomical Society, 425, 878

Matthee, J., Sobral, D., Oteo, I., et al. 2016, Monthly Notices of the Royal Astronomical Society, 458, 449

McCracken, H. J., Milvang-Jensen, B., Dunlop, J., et al. 2012, Astronomy & Astrophysics, 544, A156

McLure, R. J., Dunlop, J. S., Cullen, F., et al. 2018, Monthly Notices of the Royal Astronomical Society, 476, 3991

Mehta, V., Scarlata, C., Capak, P., et al. 2018, The Astrophysical Journal Supplement Series, 235, 36

Meurer, G. R., Heckman, T., & Calzetti, D. 1999, ApJ, 521, 64

Momose, R., Goto, T., Utsumi, Y., et al. 2018, arXiv:, 1809.10916

Momose, R., Ouchi, M., Nakajima, K., et al. 2014, MNRAS442, 442, 110

—. 2016, Monthly Notices of the Royal Astronomical Society, 457, 2318

Mori, M., & Umemura, M. 2006, Nature, 440, 644

Moster, B. P., Naab, T., & White, S. D. M. 2013, Monthly Notices of the Royal Astronomical Society, 428, 3121

Nakajima, K., Ellis, R. S., Iwata, I., et al. 2016, The Astrophysical Journal, 831, L9
Nakajima, K., Fletcher, T., Ellis, R. S., Robertson, B. E., & Iwata, I. 2018a, ArXiv:1801.03085, 13, 1
Nakajima, K., & Ouchi, M. 2014, Monthly Notices of the Royal Astronomical Society, 442, 900
Nakajima, K., Ouchi, M., Shimasaku, K., et al. 2013, The Astrophysical Journal, 769, 3
—. 2012, The Astrophysical Journal, 745, 12
Nakajima, K., Schaerer, D., Le Fèvre, O., et al. 2018b, Astronomy & Astrophysics, 612, A94
Nestor, D. B., Shapley, A. E., Kornei, K. a., Steidel, C. C., & Siana, B. 2013, The Astrophysical Journal, 765, 47
Neufeld, D. A. 1991, ApJ, 370, 85
Nickerson, S., Stinson, G., Couchman, H. M. P., Bailin, J., & Wadsley, J. 2013, Monthly Notices of the Royal Astronomical Society, 429, 452
Noeske, K. G., Kassin, S. a., Weiner, B. J., et al. 2007, ApJ, 10, 35
Okamoto, T., Frenk, C. S., Jenkins, A., & Theuns, T. 2010, Monthly Notices of the Royal Astronomical Society, 406, 208
Oke, J. B., & Gunn, J. E. 1983, The Astrophysical Journal, 266, 713
Ono, Y., Shimasaku, K., Dunlop, J., et al. 2010, The Astrophysical Journal, 724, 1524
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei
Östlin, G., Hayes, M., Kunth, D., et al. 2009, The Astronomical Journal, 138, 923
Östlin, G., Hayes, M., Duval, F., et al. 2014, The Astrophysical Journal, 797, 11
Oteo, I., Sobral, D., Ivison, R. J., et al. 2015, Monthly Notices of the Royal Astronomical Society, 452, 2018
Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2003, The Astrophysical Journal, 582, 60
Ouchi, M., Harikane, Y., Shibuya, T., et al. 2018, Publications of the Astronomical Society of Japan, 70, 1
Overzier, R. a., Heckman, T. M., Wang, J., et al. 2011, The Astrophysical Journal, 726, L7
Paulino-Afonso, A., Sobral, D., Ribeiro, B., et al. 2018, Monthly Notices of the Royal Astronomical Society, doi:10.1093/mnras/sty281
Pirzkal, N., Malhotra, S., Rhoads, J. E., & Xu, C. 2007, The Astrophysical Journal, 667, 49
Planck Collaboration. 2016, A&A, 594, 13
Reddy, N. a., Erb, D. K., Pettini, M., Steidel, C. C., & Shapley, A. E. 2010, The Astrophysical Journal, 712, 1070
Reddy, N. A., Oesch, P. A., Bouwens, R. J., et al. 2018, The Astrophysical Journal, 853, 56
Rodighiero, G., Daddi, E., Baronchelli, I., et al. 2011, The Astrophysical Journal, 739, L40
Rosdahl, J., & Blaizot, J. 2012, Monthly Notices of the Royal Astronomical Society, 423, 344
Sales, L. V., Vogelsberger, M., Genel, S., et al. 2014, Monthly Notices of the Royal Astronomical Society: Letters, 447, L6
Salpeter, E. E. 1955, Astrophysical Journal, 121, 161
Santini, P., Fontana, A., Castellano, M., et al. 2017, The Astrophysical Journal, 847, 76
Scarlata, C., Colbert, J., Teplitz, H. I., et al. 2009, The Astrophysical Journal, 704, L98
Schlegel, D. J. D. J., Finkbeiner, D. P. D. P., & Davis, M. 1998, The Astrophysical Journal, 500, 525
Scoville, N., Abraham, R. G., Aussel, H., et al. 2007, ApJs, 172, 38
Shibuya, T., Ouchi, M., Nakajima, K., et al. 2014a, The Astrophysical Journal, 785, 64
—. 2014b, The Astrophysical Journal, 788, 74
Shibuya, T., Ouchi, M., Konno, A., et al. 2018, Publications of the Astronomical Society of Japan, 70, 1
Shimakawa, R., Kodama, T., Shibuya, T., et al. 2017, MNRAS, 468, 1123
Shimizu, I., Yoshida, N., & Okamoto, T. 2011, Monthly Notices of the Royal Astronomical Society, 418, 2273
Shirakata, H., Okamoto, T., Kawaguchi, T., et al. 2018, Monthly Notices of the Royal Astronomical Society, doi:10.1093/mnras/sty2958
Shivaei, I., Reddy, N., Shapley, A., et al. 2017, The Astrophysical Journal, 837, 157
Simon, P. 2007, Astronomy & Astrophysics, 473, 711
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, The Astrophysical Journal Supplement Series, 214, 24
Sobral, D., Best, P. N., Smail, I., et al. 2014, Monthly Notices of the Royal Astronomical Society, 437, 3516
Sobral, D., & Matthee, J. 2018, ArXiv:, 1803.08923
Sobral, D., Matthee, J., Best, P., et al. 2017, Monthly Notices of the Royal Astronomical Society, 466, 1242
Song, M., Finkelstein, S. L., Gebhardt, K., et al. 2014, The Astrophysical Journal, 791, 3
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, The Astrophysical Journal Supplement Series, 214, 15
Steidel, C. C., Bogosavljević, M., Shapley, A. E., et al. 2011, The Astrophysical Journal, 736, 160
Tadaki, K.-i., Kodama, T., Tanaka, I., et al. 2013, The Astrophysical Journal, 778, 114
Tadaki, K. I., Kohno, K., Kodama, T., et al. 2015, Astrophysical Journal Letters, 811, L3
Tadaki, K.-i., Genzel, R., Kodama, T., et al. 2017, The Astrophysical Journal, 834, 135
Tal, T., van Dokkum, P. G., Franx, M., et al. 2013, The Astrophysical Journal, 769, 31
Taniguchi, Y., & Shioya, Y. 2000, Astrophysical Journal Letters v.489, 532, L13
Taniguchi, Y., Scoville, N., Murayama, T., et al. 2007, The Astrophysical Journal Supplement Series, 172, 9
Taniguchi, Y., Kajisawa, M., Kobayashi, M. A. R., et al. 2015, The Astrophysical Journal, 809, L7
The Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, Astronomy & Astrophysics, 558, A33
Tinker, J. L., Robertson, B. E., Kravtsov, A. V., et al. 2010, The Astrophysical Journal, 724, 878
Tomczak, A. R., Quadri, R. F., Tran, K.-V. H., et al. 2016, The Astrophysical Journal, 817, 118
Totsuji, H., & Kihara, T. 1969, Publications of the Astronomical Society of Japan, 21, 221
Trentham, N., & Tully, R. B. 2009, Monthly Notices of the Royal Astronomical Society, 398, 722
Vargas, C. J., Bish, H., Acquaviva, V., et al. 2014, The Astrophysical Journal, 783, 26
Verhamme, A., Dubois, Y., Blaizot, J., et al. 2012, A&A, 546, 111
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Wang, W., Sales, L. V., Henriques, B. M. B., & White, S. D. M. 2014, Monthly Notices of the Royal Astronomical Society, 442, 1363
Whitaker, K. E., Franx, M., Leja, J., et al. 2014, ApJ, 795, 104
Wisotzki, L., Bacon, R., Blaizot, J., et al. 2016, A&A, 587, 98
Wisotzki, L., Bacon, R., Brinchmann, J., et al. 2018, Nature, 562, 229
Xue, R., Lee, K.-S., Dey, A., et al. 2017, The Astrophysical Journal, 837, 172
Yagi, M., Suzuki, N., Yamanoi, H., et al. 2013, PASJ, 65, 22
Yajima, H., Li, Y., & Zhu, Q. 2013, The Astrophysical Journal, 773, 151
Yajima, H., Li, Y., Zhu, Q., et al. 2012, Astrophysical Journal, 754, 118
Zehavi, I., Weinberg, D. H., Zheng, Z., et al. 2004, The Astrophysical Journal, 608, 16
Zheng, Z., Cen, R., Weinberg, D., Trac, H., & Miralda-Escudé, J. 2011, The Astrophysical Journal, 739, 62