Utility of Ferritin, Procalcitonin, and C-reactive Protein in Severe Patients with 2019 Novel Coronavirus Disease

CURRENT STATUS: POSTED

Bo Zhou
the First Affiliated Hospital of Medical School of Xi’an Jiaotong University
zb_bob@stu.xjtu.edu.cn Corresponding Author

Jianqing She
the First Affiliated Hospital of Xi’an Jiaotong University

Yadan Wang
the First Affiliated Hospital of Xi’an Jiaotong University

Xiancang Ma
the First Affiliated Hospital of Xi’an Jiaotong University

DOI: 10.21203/rs.3.rs-18079/v1

SUBJECT AREAS
Pulmonology Infectious Diseases

KEYWORDS
COVID-19, Biomarkers, C-reactive protein, Ferritin, Procalcitonin
Abstract

Objectives

It is of clinical significance to evaluate the disease severity and investigate possible biomarkers of 2019 Novel coronavirus disease (COVID-19). In this study, we aim to describe the clinical characteristics of infection makers in severe and very severe patients with COVID-19.

Methods

This is a single center, observational analysis. We enrolled 48 in-hospital severe patients with COVID-19 admitted to the West District of Union Hospital of Tongji Medical College and analyzed infection biomarkers in 20 patients who had been tested for ferritin, PCT, CRP, etc.

Results

The median age was 59yrd (inter quartile range [IQR]:46-61) among severe COVID-19 group and 57yrd (IQR:45-71.5) among very severe group. We noted significantly increased CRP (1.48mg/L [IQR: 16.69-2.74] vs. 57.98mg/L [IQR: 38.335-77.565], P<0.05), PCT(0.05ng/ml [IQR: 0.03-0.06] vs. 0.21ng/ml [IQR: 0.03-0.06], P<0.05) and ferritin (291.13ng/ml [IQR: 102.1-648.42] vs. 1006.16ng/ml [IQR: 408.265-1988.25]). For blood count, significant increase was noticed in neutrophil percentage (67.6% [IQR: 61.8-76.4] vs. 86.7% [IQR: 82-92.35], P<0.01) and neutrophil count (3.75*10^9/L [IQR: 3.42-4.93] vs. 8.11*10^9/L [IQR: 5.675-8.905], P<0.05); and decrease was seen in lymphocyte percentage (22.7% [IQR: 17.4-27.4] vs. 8% [IQR: 4.85-13], P<0.05), lymphocyte count (1.62*10^9/L [IQR: 0.7-1.73] vs. 0.68*10^9/L [IQR: 0.385-1.04], P<0.05), and platelet count (214*10^9/L [IQR: 184-247] vs. 147*10^9/L [IQR: 126-202.5], P<0.05).

Conclusions

The serum levels of CRP, PCT and ferritin are markedly increased in very severe compared with severe COVID-19. Increased CRP, PCT and ferritin level might correlate to secondary bacterial infection and associated with poor clinical prognosis.

Background

The outbreak of 2019 Novel coronavirus disease (COVID-19) has caused global attention^1−6. Up to 12th March, 80981 laboratory-confirmed cases in China and 46728 outside China have been
documented, with a total of 4734 deaths7. Due to its rapid spread worldwide8, COVID-19 was declared as a public health emergency by the World Health Organization9−13.

Although most patients have mild symptoms and good prognosis, severe COVID-19 cases may present with acute respiratory distress syndrome (ARDS) and systemic inflammation. Thus, it is urgent to evaluate the disease severity and investigate possible biomarkers so as to make fast and correct clinical decisions. One recent study has pointed out that the patients with COVID-19 usually have increased serum C-reactive protein (CRP) (58.3%), lactate dehydrogenase (LDH) (57.0%) and erythrocyte sedimentation rate (ESR) (41.8%)14. But more evidence regarding other infection markers in COVID-19 needs further study. Of note, previous studies have established ferritin as a possible inflammation marker in pneumonia, associating with the progression of bacterial and viral infection. However, no evidence has been released how ferritin is altered in COVID-19.

In the present single center, observational analysis, we explored the infection biomarkers, including ferritin, procalcitonin (PCT), and CRP in in-hospital patients with severe and very severe COVID-19. We aim to describe the clinical characteristics of infection makers in severe and very severe patients with COVID-19.

Methods
Study design and participants
This is a single center, observational analysis. We enrolled 48 in-hospital severe patients with COVID-19 admitted to the West District of Union Hospital of Tongji Medical College in the 7th floor ward from February 5th to February 25th, 2020, and analyzed infection biomarkers in 20 patients who had been tested for ferritin, PCT, CRP, etc. COVID-19 was diagnosed upon admission based on the New Coronavirus Pneumonia Prevention and Control Program (4th edition) published by the National Health Commission of China6. Severe COVID-19 was defined as having either one of the flowing criteria: 1) Respiratory distress with respiratory rate more than 30 times/min; 2) Oxygen saturation ≤ 93\% in resting state; 3) PaO2/FiO2 ≤ 300 mmHg (1mmHg = 0.133 kPa). And very severe COVID-19 was defined as having either one of the flowing criteria: 1) Respiratory failure in need of mechanical ventilation; 2) Shock; 3) Other organ dysfunction. Patients with previous medical history of acute
coronary syndrome were excluded. The study was approved by the ethics committee of the local hospital and data were collected retrospectively.

Data Collection And Infection Biomarker Measurement
Demographic and epidemiological data including age, sex, and disease history were collected upon admission. Real-time polymerase chain reaction testing was used to detect COVID-19 according to the recommended protocol in the laboratory department of the hospital\(^{15}\). Serum samples were collected from the patients upon admission, and blood count, CRP, PCT, and ferritin were tested by the laboratory department.

Statistical analysis
All statistical analyses were performed by SPSS for Windows 25.0 (SPSS Inc. Chicago, IL). Data were presented as percentages for categorical variables and median ± IQR (Inter Quartile Range) for continuous variables, unless otherwise indicated. Simple t test was used to compare continuous variables which are in normal distribution. Mann-Whitney U test was used to compare continuous variables which do not conform to the normal distribution. Fisher’s exact test was used to compare categorical variables. Fisher’s exact test was used to compare categorical variables. A value of \(p < 0.05 \) was considered statistically significant.

Results
9 patients with severe and 11 with very severe COVID-19 were included in this analysis. Baseline data for the cases enrolled were shown in Table 1. The median age was 59yrd (inter quartile range [IQR]:46–61) among severe COVID-19 group and 57yrd (IQR:45-71.5) among very severe group. The male percentage was much higher (3 [33.33%] of 9 vs. 8 [72.73%] of 11) in very severe group. Kidney and liver function showed no statistical significance with regards to creatine (59.9 µmol/L [IQR: 53.3–60.9] vs. 71.8 µmol/L [IQR: 61.85–89.2]), aspartate Aminotransferase (AST) (27 U/L [IQR: 18–30] vs. 45 U/L [IQR: 28.5–67]) and alanine aminotransferase (ALT) (36 U/L [IQR: 27–57] vs. 45 U/L [IQR: 27-97.5]).
Table 1
Baseline Information of the Patients Enrolled

Variable	Severe Median(IQR)	Very Severe Median(IQR)	P Value	Reference
Number	9	11		
Sex(Male%)	33.33%	72.73%	ns	
Age(yrs)	59(46-61)	57(45-71.5)	ns	
CRE(µmol/L)	59.9(53.3–60.9)	71.8(61.85–89.2)	ns	57.0-111.0
AST(U/L)	27(18–30)	45(28.5–67)	ns	8-40
ALT(U/L)	36(27-57)	45(27-97.5)	ns	5-40
CK(U/L)	98(90-112)	186(90.5-244.5)	ns	24-194
CKMB(U/L)	9(9–17)	18(10–19)	ns	0-25

Abbreviations: IQR: inter quartile range; CRE: Creatine; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; CK: Creatine Kinase; CKMB: Creatine kinase–MB.

All patients were tested for infection markers including LDH, CRP, PCT, ferritin and blood count (Table 2). We noted significantly increased LDH (195 U/L [IQR: 170–226] vs. 411 U/L [IQR: 346.5–578], P < 0.001), CRP (1.48 mg/L [IQR: 16.69–2.74] vs. 57.98 mg/L [IQR: 38.335–77.565], P < 0.05), PCT (0.05 ng/ml [IQR: 0.03–0.06] vs. 0.21 ng/ml [IQR: 0.11–0.42], P < 0.05) and ferritin (291.13 ng/ml [IQR: 102.1-648.42] vs. 1006.16 ng/ml [IQR: 408.265-1988.25]). For blood count, significant increase was noticed in neutrophil percentage (67.6% [IQR: 61.8–76.4] vs. 86.7% [IQR: 82-92.35], P < 0.01) and neutrophil count (3.75*10^9/L [IQR: 3.42–4.93] vs. 8.11*10^9/L [IQR: 5.675-8.905], P < 0.05); and decrease was seen in lymphocyte percentage (22.7% [IQR: 17.4–27.4] vs. 8% [IQR: 4.85-13], P < 0.05), lymphocyte count (1.62*10^9/L [IQR: 0.7–1.73] vs. 0.68*10^9/L [IQR: 0.385-1.04], P < 0.05), and platelet count (214*10^9/L [IQR: 184-247] vs. 147*10^9/L [IQR: 126-202.5], P < 0.05).

Table 2
LDH, CRP, PCT and Blood Count in Severe and Very Severe Patients with COVID-19

Variable	Severe Median(IQR)	Very Severe Median(IQR)	P Value	Reference
LDH(U/L)	195(170-226)	411(346.5–578)	< 0.001	109-245
CRP(mg/L)	1.48(16.69-2.74)	57.98(38.335–77.565)	< 0.05	0-8
PCT(nmol/l)	0.05(0.03–0.06)	0.21(0.11–0.42)	< 0.05	< 0.05
FERR(nmol/l)	291.13(102.1-648.42)	1006.16(408.265-1988.25)	< 0.05	4.62-204
WBC count(*10^9/L)	6.07(5.48-7.22)	8.94(6.46-10.525)	ns	3.5-9.5
NE%	67.6(61.8–76.4)	86.7(82-92.35)	< 0.01	40-75
LY%	22.7(17.4-27.4)	8(4.85-13)	< 0.05	20-50
NE count(*10^9/L)	3.75(3.42-4.93)	8.11(5.675-8.905)	< 0.05	1.8-6.3
LY count(*10^9/L)	1.62(0.7-1.73)	0.68(0.385-1.04)	< 0.05	1.1-3.2
PLT count(*10^9/L)	214(184-247)	147(126-202.5)	< 0.05	125-350

Abbreviations: IQR: inter quartile range; LDH: Lactate dehydrogenase; CRP: C reactive protein; PCT: Procalcitonin; FERR: Ferritin; WBC: White Blood Cell; NE%: Neutrophil percentage; LY%; Lymphocyte percentage; NE count: Neutrophil count; LY count: Lymphocyte count; PLT count: platelet count.

Fisher’s exact test was then applied to compare the rate with abnormal LDH, CRP, PCT, ferritin and
blood count between severe and very severe COVID-19, and relative risk was calculated. The results showed that PCT and PLT count had statistical significance (P < 0.05), and CRP, ferritin and LY% had towards statistical significance (P = 0.07) (Table 3), indicating that PCT, CRP, ferritin, LY% and PLT count might be possible markers for the progression of disease in severe and very severe COVID-19.

Table 3
Risk ratio for severity of COVID-19

Variable	Odds Ratio	95% Confidence Interval	P value
LDH(U/L)	21.33	1.81 ~ 251.26	0.65
CRP(mg/L)	6.67	0.61 ~ 73.03	0.07
PCT(ng/ml)	4.57	0.41 ~ 51.14	0.03
FERR(ng/ml)	2.00	0.27 ~ 14.70	0.07
NE%	9.60	0.88 ~ 105.17	0.18
LY%	0.45	0.24 ~ 0.87	0.07
NE count(*10^9/L)	3.50	0.55 ~ 22.30	1.00
LY count(*10^9/L)	6.13	0.83 ~ 45.02	0.65
PLT count(*10^9/L)	1.50	0.95 ~ 2.38	0.00

Abbreviations: IQR: inter quartile range; LDH: Lactate dehydrogenase; CRP: C reactive protein; PCT: Procalcitonin; FERR: Ferritin; NE%: Neutrophil percentage; LY%: Lymphocyte percentage; NE count: Neutrophil count; LY count: Lymphocyte count; PLT count: platelet count.

Discussion

In this observational study, we have focused on the infection markers in severe and very severe patients with COVID-19. The serum levels of LDH, CRP, PCT and ferritin are markedly increased in very severe patients compared with severe COVID-19, suggesting that increased LDH, CRP, PCT and ferritin level might stand for more severe secondary bacterial infection and exacerbated COVID-19. Moreover, lymphocyte count is decreased in very severe patients compared with severe COVID-19, indicating that lower lymphocyte count correlate to poor prognosis in COVID-19.

In the present analysis, we firstly evaluated serum ferritin levels in COVID-19, which are significantly elevated during critical infection. The function of ferritin including iron binding and storage is associated with the immune and inflammatory response. The reasons of increased ferritin include bacterial and/or viral infection, hemochromatosis and long-term transfusion. When bacterial and/or viral infection takes place, the increase of serum ferritin is related to the release of iron in the reticuloendothelial system, the decrease of the ability of transporting ferritin in liver and spleen, and increased synthesis and release of intracellular ferritin. Some studies showed that patients with bacterial infection had higher ferritin level compared to viral infection. Previous review has also
proposed a model that the inflammatory response to viral (IL-18/ferritin) presents as specific plasma patterns of immune biomarkers17. Moreover, elevation of serum ferritin levels predicts a poor outcome in hospitalized patients with influenza infection16. In the present study, the patients in severe and very severe COVID-19 both exhibits increase serum ferritin level, but the serum ferritin in very severe COVID-19 group is significantly higher than that of severe COVID-19 group. The increased ferritin might indicate severe secondary bacterial infection in COVID-19, and might be utilized as a marker of poor prognosis.

As we known, when inflammation or tissue damage happens, CRP can be significantly increased in serum, which is usually used as a unique inflammatory marker in the current clinical practice22. On the other hand, PCT, as the precursor of calcitonin, is a kind of glycoprotein without hormone activity, which is significantly higher in bacterial infection, but remain normal or slightly increased in viral infection22, 23. Consistently, our study shows that CRP and PCT are markedly increased in severe and very severe COVID-19, and significantly higher in very severe COVID-19. This further correlates to the implication of the serum ferritin alteration, that most of severe patients in COVID-19 have viral infection and secondary bacterial infection.

One important limitation of the present study is that we have only observed infection biomarkers in limited COVID-19 patients; the small sample size have prevented us from reaching diagnostic value of infection markers in very severe COVID-19. Secondly, the present study hasn’t evaluated the relationship between infection markers and prognosis of all the patients enrolled. With more clinical information acquired from COVID-19 patients, further large population-based prospective studies could provide further evidence how infection biomarkers are altered and what it indicate in COVID-19.

Conclusion
In the present study, we investigated the infection markers in patients with severe and very severe COVID-19, including serum levels of CRP, PCT and serum ferritin. Higher levels of CRP, PCT and serum ferritin in very severe COVID-19 as compared to severe COVID-19 might be correlated to secondary bacterial infection, protection from which could be of vital importance for reducing the mortality rate
in very severe COVID-19.

Abbreviations
ARDS Acute respiratory distress syndrome
ALT Alanine aminotransferase
AST Aspartate Aminotransferase
CDC Chinese Center for Disease Control and Prevention
CRP C-reactive protein
COVID-19 2019 Novel coronavirus disease
ESR Erythrocyte sedimentation rate
IQR Inter quartile range
LDH Lactate Dehydrogenase
PCT Procalcitonin

Declarations

Ethics approval and consent to participate
The study was approved by the ethics committee of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. Written informed consent was obtained from all participants.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Funding
This study was funded by the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University, China (No.XJTU1AF-CRF-2018-025).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BZ, XM and YW collected the clinical and laboratory data. JS processed statistical analysis. JS and BZ drafted the manuscript. BZ, XM and YW revised the final manuscript. BZ, XM and YW is responsible for
all clinical and laboratory data.

Acknowledgments

We thank all patients involved in the study.

References

1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X and Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *JAMA*. 2020.

2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC and Zhang YZ. A new coronavirus associated with human respiratory disease in China. *Nature*. 2020.

3. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine A. [An update on the epidemiological characteristics of novel coronavirus pneumoniaCOVID-19]. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2020;41:139-144.

4. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X and Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet*. 2020.

5. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM and Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *N Engl J Med*. 2020.

6. National Health Commission of China. New coronavirus pneumonia prevention and
control program (4th edn). Jan 22, 2020.

http://www.gov.cn/zhengce/zhengceku/2020-01/28/5472673/files/0f96c10cc09d4d36a6f9a9f0b42d972b.pdf (in Chinese).

7. National Health Commission of the People’s Republic of China.

http://www.nhc.gov.cn.

8. Liu Y, Gayle AA, Wilder-Smith A and Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. *J Travel Med.* 2020.

9. Thompson RN. Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. *J Clin Med.* 2020;9.

10. Du Z, Wang L, Cauchemez S, Xu X, Wang X, Cowling BJ and Meyers LA. Risk for Transportation of 2019 Novel Coronavirus Disease from Wuhan to Other Cities in China. *Emerg Infect Dis.* 2020;26.

11. Backer JA, Klinkenberg D and Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. *Euro Surveill.* 2020;25.

12. Liao X, Wang B and Kang Y. Novel coronavirus infection during the 2019-2020 epidemic: preparing intensive care units-the experience in Sichuan Province, China. *Intensive Care Med.* 2020.

13. Eurosurveillance Editorial T. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. *Euro Surveill.* 2020;25.

14. Rodriguez-Morales AJC-O, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Anteza, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; Paniz-Mondolfi, A.; Lagos-Grisales, G.J.; Ramírez-
Vallejo, E.; Suárez, J.A.; Zambrano, L.I.; Villamil-Gómez, W.E.; Balbin-Ramon, G.J.; Rabaan, A.A.; Harapan, H.; Dhama, K.; Nishiura, H.; Kataoka, H.; Ahmad, T.; Sah, R. . Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-analysis. Preprints 2020, 2020020378 (doi: 10.20944/preprints202002.0378.v3).

15. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brunink S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MP and Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Euro Surveill*. 2020;25.

16. Lalueza A, Ayuso B, Arrieta E, Trujillo H, Folgueira D, Cueto C, Serrano A, Laureiro J, Arevalo-Canas C, Castillo C, Diaz-Pedroche C, Lumbreras C and group I. Elevation of serum ferritin levels for predicting a poor outcome in hospitalized patients with influenza infection. *Clin Microbiol Infect*. 2020.

17. Slaats J, Ten Oever J, van de Veerdonk FL and Netea MG. IL-1beta/IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections. *PLoS Pathog*. 2016;12:e1005973.

18. Kernan KF and Carcillo JA. Hyperferritinemia and inflammation. *Int Immunol*. 2017;29:401-409.

19. Senjo H, Higuchi T, Okada S and Takahashi O. Hyperferritinemia: causes and significance in a general hospital. *Hematology*. 2018;23:817-822.

20. Sanaei Dashti A, Alizadeh S, Karimi A, Khalifeh M and Shoja SA. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study. *Medicine (Baltimore)*. 2017;96:e7637.
21. Kawamata R, Yokoyama K, Sato M, Goto M, Nozaki Y, Takagi T, Kumagai H and Yamagata T. Utility of serum ferritin and lactate dehydrogenase as surrogate markers for steroid therapy for Mycoplasma pneumoniae pneumonia. *J Infect Chemother*. 2015;21:783-9.

22. Choi YJ, Jeon JH and Oh JW. Critical combination of initial markers for predicting refractory Mycoplasma pneumoniae pneumonia in children: a case control study. *Respir Res*. 2019;20:193.

23. Memar MY, Varshochi M, Shokouhi B, Asgharzadeh M and Kafil HS. Procalcitonin: The marker of pediatric bacterial infection. *Biomed Pharmacother*. 2017;96:936-943.