Supplementary material for:

Experimental and theoretical investigation of oxidative methane activation on Pt-Pt catalysts

Wenjie Qia,b,*, Zehao Huanga, Lijuan Fua, Hao Lic, Zhien Zhangb,1

a Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400050, China

b Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China

c Department of Chemistry and Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX 78712, USA

1. XRD and metal cluster dispersion \cite{1}
Fig. S1 XRD patterns of the catalysts samples (a) Pd\textsubscript{1.0}Pt\textsubscript{0}, (b) Pd\textsubscript{0.75}Pt\textsubscript{0.25}, (c) Pd\textsubscript{0.5}Pt\textsubscript{0.5}, (d) Pd\textsubscript{0.25}Pt\textsubscript{0.75}, (e) Pd\textsubscript{0}Pt\textsubscript{1.0}.

Table S1 Metal loading, CO uptake and metal cluster dispersion of the different catalysts

Sample	Composition	Pd loading (wt%)	Pt loading (wt%)	CO uptake (μmol (g-1 catalysts))	Pd-Pt dispersion (%) from CO uptake
Pd\textsubscript{1.0}Pt\textsubscript{0}	1:0	2.1	0	9.5	9.6
Pd\textsubscript{0.75}Pt\textsubscript{0.25}	0.75:0.25	1.6	0.9	11.3	9.3
Pd\textsubscript{0.5}Pt\textsubscript{0.5}	0.5:0.5	1.0	1.7	9.8	7.3
Pd\textsubscript{0.25}Pt\textsubscript{0.75}	0.25:0.75	0.6	2.6	10.0	6.2
Pd\textsubscript{0}Pt\textsubscript{1.0}	0:1	0	3.4	15.0	8.8

2. Kinetically relevant steps in CH\textsubscript{4}-O\textsubscript{2} reactions on surfaces of these catalysts.

Reaction orders for methane and oxygen can be calculated by fitting experimental data.
(1) On Pd catalyst.

\[r_{\text{II}, \text{Pd}} = k_{\text{II}, \text{app}} (O_2)^{0.15} (CH_4)^1 \quad P_{O_2} \leq 1.7 \text{kPa} \]

(2) On Pd\(_{0.75}\)Pt\(_{0.25}\) catalyst

\[r_{\text{I}, \text{Pd}_{0.75}} = k_{\text{I}, \text{app}} (O_2)^{0.1} (CH_4)^{0.1} \quad 0 < (O_2 / CH_4) < 0.08 \]

\[r_{\text{II}, \text{Pd}_{0.75}} = k_{\text{II}, \text{app}} (O_2)^{-0.82} (CH_4)^{1.82} \quad 0.08 < (O_2 / CH_4) < 1 \]

\[r_{\text{IV}, \text{Pd}_{0.75}} = k_{\text{IV}, \text{app}} (O_2)^{0} (CH_4)^1 \quad P_{O_2} > 3 \sim 5 \text{kPa} \]

Fig. S2 First-order constant (\(r_{\text{CH}_4}(\text{CH}_4)^{-1}\)) for methane oxidation as a single valued function of

\[\text{O}_2/\text{CH}_4 \text{ ratio on Pd}_{0.75}\text{Pt}_{0.25} \]

(3) On Pd\(_{0.5}\)Pt\(_{0.5}\) catalyst

\[r_{\text{I}, \text{Pd}_{0.5}} = k_{\text{I}, \text{app}} (O_2)^{1.0} \quad 0 < (O_2 / CH_4) < 0.1 \]

\[r_{\text{II}, \text{Pd}_{0.5}} = k_{\text{II}, \text{app}} (O_2)^{-0.72} (CH_4)^{1.72} \quad 0.1 < (O_2 / CH_4) < 1 \]

\[r_{\text{IV}, \text{Pd}_{0.5}} = k_{\text{IV}, \text{app}} (O_2)^{0} (CH_4)^1 \quad P_{O_2} > 4 \sim 6 \text{kPa} \]
Fig. S3 First-order constant \(r_{\text{CH}_4(\text{CH}_4)^{-1}} \) for methane oxidation as a single valued function of

\[\frac{\text{O}_2}{\text{CH}_4} \] on Pd\(_{0.5}\)Pt\(_{0.5}\)

(4) On Pd\(_{0.25}\)Pt\(_{0.75}\) catalyst

\[r_{\text{I,Pd}_{0.25}} = k_{\text{I,app}} \left(\frac{\text{O}_2}{\text{CH}_4} \right)^{1.0} \quad 0 < \left(\frac{\text{O}_2}{\text{CH}_4} \right) < 0.1 \] (10)

\[r_{\text{II,Pd}_{0.25}} = k_{\text{II,app}} \left(\frac{\text{O}_2}{\text{CH}_4} \right)^{0.72} \left(\text{CH}_4 \right)^{1.72} \quad 0.1 < \left(\frac{\text{O}_2}{\text{CH}_4} \right) < 1.1 \] (11)

\[r_{\text{IV,Pd}_{0.25}} = k_{\text{IV,app}} \left(\frac{\text{O}_2}{\text{CH}_4} \right)^{0.1} \left(\text{CH}_4 \right)^{1} \quad P_{\text{O}_2} > 5 \sim 7 \text{kPa} \] (12)

Fig. S4 First-order constant \(r_{\text{CH}_4(\text{CH}_4)^{-1}} \) for methane oxidation as a single valued function of

\[\frac{\text{O}_2}{\text{CH}_4} \] on Pd\(_{0.25}\)Pt\(_{0.75}\)

(5) On Pt catalyst
\[r_{1,\text{Pt}} = k_{1,\text{app}} \left(O_2 \right)^{1.1} \left(CH_4 \right)^{-0.1} \quad 0 < \left(O_2 / CH_4 \right) < 0.12 \quad (13) \]

\[r_{II,\text{Pt}} = k_{II,\text{app}} \left(O_2 \right)^{2.38} \left(CH_4 \right)^{-1.38} \quad 0.1 < \left(O_2 / CH_4 \right) < 2 \sim 3 \quad (14) \]

\[r_{III,\text{Pt}} = k_{III,\text{app}} \left(CH_4 \right)^1 \quad 2 \sim 3 < \left(O_2 / CH_4 \right) \quad (15) \]

Fig. S5 First-order constant \((r_{\text{CH}_4(\text{CH}_4)^{-1}})\) for methane oxidation as a single valued function of \(O_2/\text{CH}_4\) ratio on Pt

3. **Arrhenius plots of first order rate constants for methane combustion on Pd, Pt and Pd-Pt catalysts**
Fig. S6. Arrhenius plots of the methane first order rate coefficient versus 1000/T for methane combustion on different catalysts. (a) Oxygen pressure at 2 kPa for Pd\(_{0.75}\)Pt\(_{0.25}\), Pd\(_{0.5}\)Pt\(_{0.5}\), Pd\(_{0.25}\)Pt\(_{0.75}\), and Pt\(_{1.0}\); (b) Oxygen pressure at 20 kPa for all catalysts. R-square for these experimental data are larger than 0.93.

4. Binding energies of the adsorption O on different metal surface with different O coverage

Fig. S7 Binding energies of the adsorption O on different metal surface with different O coverage
5. Structures of reactant, transition states and product for O$_2$ dissociation on
the Pt(111) and Pd(111) covered with different O coverage.[2]

Fig. S8 (a) Reaction coordinate and structures of reactant, transition state, and product for O$_2$
dissociation on a bare Pt (111) facet. (b) Reaction coordinate and structures of reactant,
transition state, intermediate, and product for O$_2$ dissociation on the (111) facet of Pt nearly
saturated with chemisorbed oxygen atoms. a, b, and c are used to differentiate the O atoms
involved in the steps
Fig. S9 (a) Reaction coordinate and structures of reactant, transition state, and product for O$_2$ dissociation on a bare Pd (111) facet. (b) Reaction coordinate and structures of reactant, transition state, intermediate, and product for O$_2$ dissociation on the (111) facet of Pd nearly saturated with chemisorbed oxygen atoms. a,b, and c are used to differentiate the O atoms involved in the steps.

6. **Structures of reactant, transition states and product for CH$_4$ dissociation on**

(a) MeO(111), (b) 1/4 ML O, (c) 3/4 ML O and (d) 1 ML O coverage on Me(111) surfaces, (e) PdO(101)/Pt(100) and (f) PdO(101).
Fig. S10 Structures of reactant, transition states and product for CH$_4$ dissociation on (a) MeO(111), (b) 1/4 ML O, (c) 3/4 ML O and (d) 1 ML O coverage on Me(111) surfaces, (e) PdO(101)/Pt(100) and (f) PdO(101). (a), (d), (e), (f) were from our previous study[2].

Parameters include bond length of transition states, activation energies and binding energies for CH$_4$ dissociation on the different oxygen potential surfaces.
Catalyst	Bond length (Å)	Transition states	Activation energies (kJ mol\(^{-1}\))	Binding energies (eV) [Site]				
		C-	Me (H)	Me-H	H-O	CH₃	H	
		H (O) -C						
0 ML O	Pd(111)	1.607	2.233	1.665	83	-2.253	-3.812	
	Pt(111)	1.634	2.336	1.670	78	-2.435	-3.720	
	Pd/PtPd(111)	1.598	2.231	1.673	79	-2.319	-3.805	
	Pt/PtPd(111)	1.582	2.343	1.667	75	-2.513	-3.744	
1/4 ML O	Pd(111)	1.401	2.430	2.153	1.385	105	-2.314	-4.022
	Pt(111)	1.350	2.333	2.086	1.424	118	-2.586	-3.981
	Pd/PtPd(111)	1.289	2.413	2.231	1.483	152	-2.180	-4.395
	Pt/PtPd(111)	1.293	2.413	2.231	1.483	152	-2.180	-4.395
3/4 ML O	Pd(111)	1.601	2.730	2.553	1.029	135	-1.640	-4.381
	Pt(111)	1.312	2.352	2.123	1.521	147	-2.197	-4.628
	Pd/PtPd(111)	1.623	2.803	2.532	1.123	139	-1.562	-4.210
	Pt/PtPd(111)	1.289	2.413	2.231	1.483	152	-2.180	-4.395
1 ML O	Pd(111)	2.925	1.478	1.135	163	-1.164	-4.730	
	Pt(111)	3.251	1.574	1.423	175	-0.921	-4.656	
	Pd/PtPd(111)	2.932	1.468	1.186	159	-1.212	-4.742	
	Pt/PtPd(111)	3.158	1.564	1.398	178	-0.889	-4.642	
PdO (101) /Pt(100)		1.338	2.311	1.926	1.336	110	-2.451	-2.252
2 layer PdO (101) /Pt(100)		1.320	2.155	1.913	1.276	67	-2.688	-1.956
PdO(101)		1.331	2.241	1.852	1.284	61	-2.704	-1.942

108

8. Derivation of methane combustion rates limited by O₂ pressure on *-* site pairs

\[2r_i = k_{1,2} \theta_{O_2} \theta_* = 2k_{2,1} P_m \theta_*^2 \] \hspace{1cm} (16)

\[2r_i = k_{1,2} K_{1,1} P_0 \theta_*^2 = 2k_{2,1} P_m \theta_*^2 \] \hspace{1cm} (17)

\[\theta_* = 1 \] \hspace{1cm} (18)

\[r_i = 0.5 k_{1,2} K_{1,1} P_0 \] \hspace{1cm} (19)

9. Derivation of methane combustion rates limited by C-H bond activation on
116 O*-O* site pairs

\[2r_z = k_{12f} K_{11} P_O \theta_*^2 = 2k_{22f} P_m \theta \theta_O \] \hspace{1cm} (20)

\[\frac{\theta_*}{\theta_O} = \frac{2k_{22f} P_m}{k_{12f} K_{11} P_O} \] \hspace{1cm} (21)

\[\theta_* = \frac{1}{1 + \frac{\theta_O}{\theta_*}} = \frac{1}{1 + \frac{k_{12f} K_{11} P_O}{2k_{22f} P_m}} \] \hspace{1cm} (22)

\[r_z = \frac{2k_{22f}^2 P_m^2}{k_{12f} K_{11} P_O} \] \hspace{1cm} (23)

10. Derivation of methane combustion rates limited by C-H bond activation on O*-O* site pairs

\[r_z = k_{23f} P_m \theta_*^2 \] \hspace{1cm} (24)

\[\theta_O = 1 \] \hspace{1cm} (25)

\[r_z = k_{23f} P_m \] \hspace{1cm} (26)

11. Derivation of methane combustion rates limited by C-H bond activation on Pd-O site pairs

\[r_4 = k_{24f} P_m \theta \theta_O \theta_* \] \hspace{1cm} (27)

\[\theta_* \approx \theta_{\theta_O} = 1 \] \hspace{1cm} (28)

\[r_4 = k_{24f} P_m \] \hspace{1cm} (29)

References:

[1] W. Qi, J. Ran, X. Du, R. Wang, J. Shi, J. Niu, P. Zhang, M. Ran, Kinetics Consequences of Methane Combustion on Pd, Pt and Pd-Pt Catalysts, Rsc Advances, 6 (2016) 109834-109845.

[2] W. Qi, J. Ran, Z. Zhang, J. Niu, P. Zhang, L. Fu, B. Hu, Q. Li, Methane combustion reactivity during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure, Applied Surface Science, 435 (2017) 776-785.
