TRANSFER OF CHARACTERS FOR DISCRETE SERIES REPRESENTATIONS OF THE UNITARY GROUPS IN THE EQUAL RANK CASE VIA THE CAUCHY-HARISH-CHANDRA INTEGRAL

ALLAN MERINO

Abstract. As conjectured by T. Przebinda, the transfer of characters in the Howe’s correspondence should be obtained via the Cauchy-Harish-Chandra integral. In this paper, we prove that the conjecture holds for the dual pair \((G = U(p, q), G' = U(r, s))\), \(p + q = r + s\), starting with a discrete series representation \(\Pi\) of \(\tilde{U}(p, q)\).

Contents

1. Introduction 1
2. Howe correspondence and Cauchy-Harish-Chandra integral 3
3. Explicit formulas of Chc for unitary groups 5
4. Transfer of invariant eigendistributions 11
5. Discrete series representations and a result of A. Paul 13
6. Proof of Conjecture 4.7 for discrete series representations in the equal rank case 15
7. A commutative diagram and a remark on the distribution \(\Theta_{\Pi}\) 25
Appendix A. Some standard isomorphisms 27
Appendix B. A general lemma for unitary groups 29
References 31

1. Introduction

Let \(W\) be a finite dimensional vector space over \(\mathbb{R}\) endowed with a non-degenerate, skew-symmetric, bilinear form \(\langle \cdot, \cdot \rangle\), \(\text{Sp}(W)\) be the corresponding group of isometries, \(\tilde{\text{Sp}}(W)\) be the metaplectic cover of \(\text{Sp}(W)\) (see [1, Definition 4.18]) and \((\omega, \mathcal{H})\) be the corresponding Weil representation (see [1, Section 4.8]). For every irreducible reductive dual pair \((G, G')\) in \(\text{Sp}(W)\), R. Howe proved (see [14, Theorem 1]) that there is a bijection between \(\mathcal{R}(\tilde{G}, \omega)\) and \(\mathcal{R}(\tilde{G'}, \omega)\) whose graph is \(\mathcal{R}(\tilde{G} \cdot \tilde{G'}, \omega)\) (where \(\mathcal{R}(\tilde{G}, \omega)\) is defined in Section 2). More precisely, to every \(\Pi \in \mathcal{R}(\tilde{G}, \omega)\), we associate a representation finitely generated admissible representation \(\Pi'\) of \(\tilde{G'}\) which has a unique irreducible quotient \(\Pi'\) such that \(\Pi \otimes \Pi' \in \mathcal{R}(\tilde{G} \cdot \tilde{G'}, \omega)\). We denote by \(\theta : \mathcal{R}(\tilde{G}, \omega) \ni \Pi \to \Pi' = \theta(\Pi) \in \mathcal{R}(\tilde{G'}, \omega)\) the corresponding bijection.

As proved by Harish-Chandra (see [7, Section 5] or Section 3), all the representations \(\Pi\) of \(\tilde{G}\) (resp. \(\Pi'\) of \(\tilde{G'}\)) appearing in the correspondence admit a character, i.e. a \(\tilde{G}\)-invariant distribution \(\Theta_{\Pi}\) on \(\tilde{G}\) (in the sense of Laurent Schwartz) given by a locally integrable function \(\Theta_{\Pi}\) on \(\tilde{G}\) which is analytic on \(\tilde{G}_{\mathbb{R}}\) (the set of regular elements of \(G_{\mathbb{R}}\)).

2010 Mathematics Subject Classification. Primary: 22E45; Secondary: 22E46, 22E30.

Key words and phrases. Howe correspondence, Characters, Cauchy–Harish-Chandra integral, Orbital Integrals, Discrete Series Representations.
The character Θ_{Π} determines the representation Π. In particular, one way to understand the Howe correspondence, i.e. to make the map θ explicit, is to understand the transfer of characters.

In his paper [23], T. Przebinda conjectured that the correspondence of characters should be obtained via the so-called Cauchy-Harish-Chandra integral that he introduced in [23]. We recall briefly the construction of this integral. Let $T : \tilde{Sp}(W) \to S'(W)$ be the embedding of the metaplectic group inside the space of tempered distributions on W as in [1] Definition 4.23] (see also Remark 2.2) and H_1, \ldots, H_n be a maximal set of non-conjugate Cartan subgroups of G which are i-invariant, where i is a Cartan involution on G. Every Cartan subgroup H_i can be decomposed as $H_i = T_iA_i$, with T_i maximal compact in H_i. Let A'_1 and A''_1 be the subgroups of $Sp(W)$ defined by $A'_1 = C_{Sp(W)}(A_1)$ and $A''_1 = C_{Sp(W)}(A'_1)$. One can easily check that (A'_1, A''_1) form a dual pair in $Sp(W)$, which is not irreducible in general. For every function $\varphi \in \mathcal{C}^\infty_c(\hat{A}'_1)$, we define $\text{Chc}(\varphi)$ by

$$\text{Chc}(\varphi) = \int_{A'_1 \backslash W_{A''_1}} T(\varphi)(w)dw,$$

where dw is a measure on the manifold $A'_1 \backslash W_{A''_1}$ defined in [23] Section 1. As mentioned in [23] Section 2] (see also Section 3), $\text{Chc}(\varphi)$ are well-defined and the corresponding map $\text{Chc} : \mathcal{C}^\infty_c(\hat{A}'_1) \to C$ is a distribution on \hat{A}'_1. For every regular element $h_i \in \hat{A}'_1$, we denote by Chc_h the pull-back of Chc through the map $\hat{G}' \ni \tilde{h} \mapsto \tilde{h} \in \hat{A}'_1$. Assume now that $\text{rk}(G) \leq \text{rk}(G')$. In [3] (see also Section 3, F. Bernon and T. Przebinda defined a map:

$$\text{Chc}^* : \mathcal{D}'(\hat{G}) \to \mathcal{D}'(\hat{G}')$$

where $\mathcal{D}'(\hat{G})$ is the set of \hat{G}-invariant distributions on \hat{G}. More precisely, if Θ is a \hat{G}-invariant distribution given by a locally integrable function Θ on \hat{G}, then, for every $\varphi \in \mathcal{C}^\infty_c(\hat{G}')$, we get:

$$\text{Chc}^*(\Theta)(\varphi) = \sum_{i=1}^n \frac{1}{|W(H_i)|} \int_{H_i}^{reg} \Theta(h_i) |\det(1 - \text{Ad}(h_i^{-1}))|_{\tilde{h}_i/\text{Chc}_{\tilde{h}_i}}(\varphi) d\tilde{h}_i.$$

The conjecture can be stated as follows:

Conjecture 1.1. Let G_1 and G'_1 be the Zariski identity components of G and G' respectively. Let $\Pi_1 \in \mathcal{A}(\hat{G}, \omega)$ satisfying $\Theta_{\Pi_1} = 0$ if $G = O(V)$, where V is an even dimensional vector space over \mathbb{R} or \mathbb{C}. Then, up to a constant, $\text{Chc}^*(\Theta_{\Pi_1}) = \Theta_{\Pi'}$ on \hat{G}'. This result is well-known if the group G is compact and had been proved recently in [24] in the stable range. In this paper, we investigate the case $(G, G') = (U(p, q), U(r, s))$, $p + q = r + s$ (p will always be assumed to be smaller or equal than q), in particular, the number of non-conjugate Cartan subgroups of G is $p + 1$ (see Remark 2) and $\Pi_1 \in \mathcal{A}(\hat{G}, \omega)$ a discrete series representation of G. Let λ be the Harish-Chandra parameter of Π_1. In this case, using Li’s result (see [17] Proposition 2.4] or Section 7, we get that $\Pi'_1 = \Pi'$ and using [20], we know that Π' is a discrete series representations of \hat{G}' (with Harish-Chandra parameter λ'), and the correspondence $\lambda \to \lambda'$ is known and explicit (see [20] Theorem 2.7). In order to prove that, up to a constant, $\text{Chc}^*(\Theta_{\Pi_1}) = \Theta_{\Pi'_1} = \Theta_{\Pi}$, we use a parametrisation of discrete series characters provided by Harish-Chandra (see [8] Lemma 44). More precisely, it follows from [3] and a result of Harish-Chandra (see [9] Theorem 2]) that the distribution $\text{Chc}^*(\Theta_{\Pi_1})$ is given by locally integrable function $\Theta_{\Pi'_1}$ analytic on \hat{G}'^{reg}. Using [3] Theorem 2.2], we proved in Proposition 4.1 that the value of $\Theta_{\Pi'_1}$ on \hat{H}'^{reg}, where H' is the compact Cartan subgroup of G', is of the form:

$$\Delta(h')\Theta_{\Pi'_1}(\tilde{h}') = C \sum_{c \in \mathcal{PC}(\gamma)} \sigma(\alpha)(c \hat{h}')^\gamma, \quad (\tilde{h}' \in \hat{H}'^{reg}).$$

where $C \in \mathbb{R}$, \tilde{H}' is a double cover of H' (see Section 5), chosen such that $\rho' = \frac{1}{2} \sum_{\alpha > 0} \alpha$ is analytic integral, $\hat{\rho}$ is a map from \tilde{H}' into H' (which is not an isomorphism of double covers in general), and λ_{I_1} is a linear form on \tilde{h}' depending on Π which is conjugated to λ under \mathcal{H}_{R+. Moreover, using results of \cite{5}, we proved in Proposition 5.7 that

$$\sup_{\tilde{g}'} \left| D(\tilde{g}')^{\chi}(\tilde{g}') \right| < \infty,$$

where D is the Weyl denominator defined in Notations 5.3. Finally, applying \cite{5} Theorem 1.3 to our particular dual pair, it follows that $\varepsilon \text{Chc}^*(\Theta_{I_1}) = \chi_{\lambda_{I_1}}(\varepsilon) \text{Chc}^*(\Theta_{I_1})$ for every $\varepsilon \in \mathbb{Z}(\mathbb{H}(\mathfrak{g}'_{C_{I_1}}))$, where $\chi_{\lambda_{I_1}}$ is the character of $Z(\mathbb{H}(\mathfrak{g}'_{C_{I_1}}))$ obtained via the linear form λ_{I_1} as in Remark 5.3 and then, using a result of Harish-Chandra (see \cite{5} Lemma 44) we get that $\text{Chc}^*(\Theta_{I_1})$ is the character of a discrete series representations of \tilde{G} with Harish-Chandra parameter λ_{I_1}.

In Section 7 we prove, by using results of \cite{22} (see also \cite{17}), that $T(\Theta_{I_1})$ is a well-defined $\tilde{G} \cdot \tilde{G}'$-invariant distribution on $S^*(W)$ and we get in Corollary 7.4 the following equality:

$$T(\tilde{\Theta}_{I_1}) = C_{I_1 \tilde{H}'_I} T(\text{Chc}^*(\Theta_{I_1})),$$

where $C_{I_1 \tilde{H}'_I}$ is a constant depending on Π and Π'. In particular, we can hope that the following diagram often commutes (up to a constant):

$$\xymatrix{ \mathcal{H}(G) \ar[d]_{T} \ar[r]^{\text{Chc}^*} & \mathcal{H}(G') \ar[d]_{T} \ar@<1ex>[l]^G \ar@<-1ex>[l]^{G'} \ar[d]_{\Theta} \ar[l]_{\Theta} \ar@<1ex>[l]^S \ar@<-1ex>[l]^{S'} \ar[r]_{\text{Chc}^*} & \mathcal{H}(G') \ar[d]_{T} \ar@<1ex>[l]^G \ar@<-1ex>[l]^{G'} \ar@<1ex>[l]^S \ar@<-1ex>[l]^{S'} \ar[r]_{\Theta} & \mathcal{H}(G') \ar[l]^G \ar[l]^{G'} \ar[l]^S \ar[l]^{S'} \ar@<1ex>[l]^G \ar@<-1ex>[l]^{G'} \ar@<1ex>[l]^S \ar@<-1ex>[l]^{S'} }$$

Moreover, according to Li’s result (see \cite{17} or Section 7), Π can be embedded in ω as a subrepresentation, and by projecting onto the $\nu \otimes \Pi'$-isotypic component (where ν is the lowest K-type of Π as in Theorem 5.4), we get (see Equation 12) the following equality:

$$\text{Chc}^*(\Theta_{I_1})(\varphi) = d_{I_1 \Theta} \int_{\tilde{K}} \int_{\tilde{G}} \Theta_{I_1}(k) \Theta_{I_1}(\tilde{g}) \varphi(\tilde{g}') \omega(k \tilde{g} \tilde{g}') d\tilde{g}' d\tilde{g} dk,$$

where $\varphi \in C_c^\infty(\tilde{G}')$ and d_{I_1} is the formal degree of Π (see Remark 5.2).

Acknowledgements: The motivation of this paper comes from a talk given by Wee Teck Gan at the Representation Theory and Number theory seminar at NUS in 2019. I would like to thank Tomasz Przebinda for the many useful discussions during the preparation of this paper. This research was supported by the MOE-NUS AcRF Tier 1 grants R-146-000-261-114 and R-146-000-302-114.

2. **Howe correspondence and Cauchy-Harish-Chandra integral**

Let W be a finite dimensional vector space over \mathbb{R} endowed with a non-degenerate, skew-symmetric, bilinear form (\cdot, \cdot). We denote by $\text{Sp}(W)$ the corresponding group of isometries, i.e.

$$\text{Sp}(W) = \{ g \in \text{GL}(W), (g(w), g(w')) = (w, w'), (\forall w, w' \in W) \},$$

and by $\tilde{\text{Sp}}(W)$ the metaplectic group as in [11] Definition 4.18: it’s a connected two-fold cover of $\text{Sp}(W)$. We will denote by $\pi : \tilde{\text{Sp}}(W) \to \text{Sp}(W)$ the corresponding covering map.
We say that a pair of subgroup \((G, G')\) of \(\text{Sp}(W)\) is a dual pair if \(G\) is the centralizer of \(G'\) in \(\text{Sp}(W)\) and vice-versa. The dual pair is said to be reductive if both \(G\) and \(G'\) act reductively on \(W\) and irreducible if we cannot find an orthogonal decomposition of \(W = W_1 \oplus W_2\) where both \(W_1\) and \(W_2\) are \(G \cdot G'\)-invariant. One can easily prove that the preimages \(G = \pi^{-1}(G)\) and \(G' = \pi^{-1}(G')\) in \(\widetilde{\text{Sp}}(W)\) form a dual pair in \(\widetilde{\text{Sp}}(W)\).

Let \((\omega, \mathcal{H})\) be the Weil representation of \(\widetilde{\text{Sp}}(W)\) corresponding to a fixed unitary character of \(\mathbb{R}\) and \((\omega^\infty, \mathcal{H}^\infty)\) be the corresponding smooth representation (see \([1, \text{Section 4.8}]\)). For a subgroup \(\tilde{\Pi}\), we denote by \(\text{N}(\tilde{\Pi})\), for every \(\tilde{\Pi} \leq \Pi\), the preimages \(\tilde{H}\) the set of conjugacy classes of irreducible admissible representations \((\tilde{\Pi}, \mathcal{H}_{\tilde{\Pi}})\) of \(\tilde{H}\) which can be realized as a quotient of \(\mathcal{H}^\infty\) by a closed \(\omega^\infty(\tilde{H})\)-invariant subspace.

As proved by R. Howe (see \([14, \text{Theorem 1}]\)), for every reductive dual pair \((G, G')\) of \(\text{Sp}(W)\), we have a one-to-one correspondence between \(\mathcal{H}(G, \omega)\) and \(\mathcal{H}(G', \omega)\) whose graph is \(\mathcal{H}(G \cdot G', \omega)\). More precisely, if \(\Pi \in \mathcal{H}(G, \omega)\), we denote by \(\text{N}(\Pi)\) the intersection of all the closed \(G\)-invariant subspaces \(\mathcal{N}\) such that \(\Pi \approx \mathcal{H}^\infty / \mathcal{N}\). Then, the space \(\mathcal{H}(\Pi) = \mathcal{H}^\infty / \text{N}(\Pi)\) is a \(G \cdot G'\)-module; more precisely, \(\mathcal{H}(\Pi) = \Pi \otimes \Pi'\), where \(\Pi'\) is a \(G'\)-module, not irreducible in general, but Howe’s duality theorem says that there exists a unique irreducible quotient \(\Pi'\) of \(\Pi'\) with \(\Pi' \in \mathcal{H}(G', \omega)\) and \(\Pi \otimes \Pi' \in \mathcal{H}(G \cdot G', \omega)\).

We will denote by \(\theta : \mathcal{H}(G, \omega) \rightarrow \mathcal{H}(G', \omega)\) the corresponding bijection.

Notation 2.1. We use here the notations of \([1]\). We denote by \(S'(W)\) the space of tempered distributions on \(W\) and by

\[
T : \widetilde{\text{Sp}}(W) \rightarrow S'(W)
\]

the injection of \(\widetilde{\text{Sp}}(W)\) into \(S'(W)\) (see \([1, \text{Definition 4.23}]\)). We denote by \(S'(W)\) the subset of \(\text{Sp}(W)\) given by

\[
\{g \in \text{Sp}(W), \det(g - 1) \neq 0\}
\]

and by \(\widetilde{S}'(W)\) its preimage in \(\widetilde{\text{Sp}}(W)\).

Remark 2.2. As explained in \([1]\), for every \(\tilde{\varphi} \in \widetilde{S}'(W)\), the distribution \(T(\tilde{\varphi})\) is defined by \(T(\tilde{\varphi}) = \Theta(\tilde{\varphi}) \chi_{c_{\omega}(\mu_{\tilde{\varphi}})}\), where \(\Theta\) is the character of the Weil representation \((\omega, \mathcal{H})\) defined in \([1, \text{Definition 4.23}]\), \(\chi_{c_{\omega}} : W \rightarrow \mathbb{C}\) is the function on \(W\) given by \(\chi_{c_{\omega}}(w) = \chi \left(\frac{1}{2}((g + 1)(g - 1)^{-1}w, w)\right)\) with \(g = \pi(\tilde{\varphi})\) and \(\mu_{\tilde{\varphi}}\) is the appropriately normalized Lebesgue measure on \(W\).

The map \(T\) can be extended to \(\widetilde{\text{Sp}}(W)\) and to \(\mathcal{E}_c^\infty(\widetilde{\text{Sp}}(W))\) by

\[
T(\varphi) = \int_{\widetilde{\text{Sp}}(W)} \varphi(\tilde{g}) T(\tilde{g}) d\tilde{g}, \quad (\varphi \in \mathcal{E}_c^\infty(\widetilde{\text{Sp}}(W))),
\]

where \(d\tilde{g}\) is the Haar measure on \(\widetilde{\text{Sp}}(W)\). As proved in \([1, \text{Section 4.8}]\), for every \(\varphi \in \mathcal{E}_c^\infty(\widetilde{\text{Sp}}(W))\), the distribution \(T(\varphi)\) on \(W\) is given by a Schwartz function on \(W\) still denoted by \(T(\varphi)\), i.e.

\[
T(\varphi)(\phi) = \int_{W} T(\varphi)(w) \phi(w) d\mu_{\tilde{\varphi}}(w), \quad (\phi \in S(W)).
\]
subset $W_{\Lambda'}$, which is Λ'_i-invariant and such that $\Lambda'_i \setminus W_{\Lambda'}$ is a manifold, endowed with a measure $d\omega$ such that for every $\phi \in C_c^\infty(W)$ such that $\text{supp}(\phi) \subseteq W_{\Lambda'}$,

$$\int_{W_{\Lambda'}} \phi(w)d\mu_{\Lambda'}(w) = \int_{\Lambda'_i \setminus W_{\Lambda'}} \int_{\Lambda'_i} \phi(aw)dad\omega.$$

For every $\varphi \in C_c^\infty(\Lambda'_i)$, we denote by $\text{Chc}(\varphi)$ the following integral:

$$\text{Chc}(\varphi) = \int_{\Lambda'_i \setminus W_{\Lambda'}} T(\varphi)(d\omega).$$

According to Remark 2.2, the previous integral is well-defined and as proved in [23] Lemma 2.9], the corresponding map $\text{Chc} : C_c^\infty(\Lambda'_i) \to \mathbb{C}$ defines a distribution on Λ'_i.

For every $\tilde{h}_i \in \hat{H}_i$, we denote by $\tau_{\tilde{h}_i}$ the map:

$$\tau_{\tilde{h}_i} : \tilde{G}' \ni \tilde{g}' \mapsto \tilde{h}\tilde{g}' \in \tilde{\Lambda}'_i$$

and, for \tilde{h}_i regular, by $\text{Chc}_{\tilde{h}_i} = \tau_{\tilde{h}_i}^* (\text{Chc})$, where $\tau_{\tilde{h}_i}^*$ is the pull-back of $\tau_{\tilde{h}_i}$ as defined in [13] Theorem 8.2.4]. In particular, for every $\tilde{h}_i \in \hat{H}_i^{\text{reg}}$, $\text{Chc}_{\tilde{h}_i}$ is a well-defined distribution on \tilde{G}'.

3. Explicit formulas of Chc for unitary groups

Let $V = \mathbb{C}^{n+q}$ and $V' = \mathbb{C}^{r+s}$ be two complex vector spaces endowed with non-degenerate bilinear forms (\cdot, \cdot) and $(\cdot, \cdot)'$ respectively, with (\cdot, \cdot) hermitian and $(\cdot, \cdot)'$ skew-hermitian, and let (p, q) (resp. (r, s)) be the signature of (\cdot, \cdot) (resp. $(\cdot, \cdot)'$). We assume that $p + q \leq r + s$. Let $\mathcal{B}_V = \{e_1, \ldots, e_n\}$, $n = p + q$ (resp. $\mathcal{B}_V' = \{e'_1, \ldots, e'_n\}$, $n' = r + s$) be a basis of V (resp. V') such that $\text{Mat}(\cdot, \cdot, \mathcal{B}_V) = \text{Id}_{p,q}$ (resp. $\text{Mat}(\cdot, \cdot, \mathcal{B}_V') = \text{Id}_{r,s}$). Let G and G' be the corresponding group of isometries, i.e.

$$G = G(V, (\cdot, \cdot)) \approx \left\{ g \in \text{GL}(n, \mathbb{C}), \mathcal{B}_V \right\} \right\}, \quad G' = G(V', (\cdot, \cdot)') \approx \left\{ g \in \text{GL}(n', \mathbb{C}), \mathcal{B}_V' \right\} \right\},$$

where \approx is a Lie group isomorphism.

Let H and H' be the diagonal compact Cartan subgroups of G and G' respectively. By looking at the action of H on the space V, we get a decomposition of V of the form:

$$V = V_1 \oplus \ldots \oplus V_n,$$

where the spaces V_a given by $V_a = \mathbb{C}e_a$ are irreducible H-modules. We denote by J the element of \mathfrak{h} such that $J = i\text{Id}_V$ and let $J_j = iE_{j,j}$. Similarly, we write

$$V' = V'_1 \oplus \ldots \oplus V'_{n'}$$

with $V'_a = \mathbb{C}e'_a$, J' the element of \mathfrak{h}' given by $J' = i\text{Id}_{V'}$ and $J'_j = iE_{j,j}$. Let $W = \text{Hom}_\mathbb{C}(V', V)$ endowed with the symplectic form (\cdot, \cdot) given by:

$$\langle w_1, w_2 \rangle = \text{tr}_{\mathcal{B}_V}(w^*_2 w_1), \quad (w_1, w_2 \in W),$$

where w^*_2 is the element of $\text{Hom}(V, V')$ satisfying:

$$\langle w^*_2(v'), v \rangle = (v', w_2(v))' \quad (v \in V, v' \in V').$$

The space W can be seen as a complex vector space by

$$(1) \quad iw = J \circ w \quad (w \in W).$$
We define a double cover \(\tilde{\text{GL}}_C(W) \) of the complex group \(\text{GL}_C(W) \) by:

\[
\tilde{\text{GL}}_C(W) = \left\{ \tilde{g} = (g, \xi) \in \text{GL}_C(W) \times C^\times, \xi^2 = \det(g) \right\}.
\]

Because \(p + q \leq r + s \), we get a natural embedding of \(\mathfrak{b}_C \) into \(\mathfrak{b}_C' \) and we denote by \(Z' = G' \) the centralizer of \(\mathfrak{h} \) in \(G' \). Let \(\tilde{H}' \) be the complexification of \(H' \) in \(\tilde{\text{GL}}_C(W) \). In particular, \(\tilde{H}' \) is isomorphic to

\[
\mathfrak{h}_C'/\left\{ \sum_{j=1}^q 2\pi i x_j, x_j \in \mathbb{Z} \right\}.
\]

We denote by \(\tilde{H}' \) the connected two-fold cover of \(H_C \) isomorphic to

\[
\mathfrak{h}_C'/\left\{ \sum_{j=1}^q 2\pi i x_j, \sum_{j=1}^q x_j \in 2\mathbb{Z}, x_j \in \mathbb{Z} \right\}.
\]

Let \(p : \tilde{H}' \rightarrow H_C \) the corresponding covering map. If \(\tilde{H}'_C \) is isomorphic to \(H_C \), we may choose an isomorphism \(\tilde{p} : \tilde{H}'_C \rightarrow H_C \) so that \(p = \tilde{p} \circ \tilde{p} \). Otherwise, \(\tilde{H}'_C \) coincides with the direct product \(H_C \times \{ \pm 1 \} \). In this case, we can define \(\tilde{p} : \tilde{H}'_C \rightarrow H_C \) to be the composition of \(p \) with the inclusion \(H_C \rightarrow H_C \times \{ \pm 1 \} \). Then, again \(p = \tilde{p} \circ \tilde{p} \).

Remark 3.1. (1) Let \(\Psi' := \Psi'((g_C', b_C'), \Psi'(t')) \) be a set of positive roots corresponding to \((1_C', b_C'), \Psi'(t') \) be a set of compact roots in \(\Psi' \), where \(t \) is the Lie algebra of \(K = U(r) \times U(s) \), and \(\Psi'_n \) be the set of non-compact roots of \(\Psi' \), i.e. \(\Psi'_n = \Psi' \setminus \Psi' \). The reason why we are considering the double cover \(\tilde{H}'_C \) of \(H'_C \) is to make the form \(\rho' = \frac{1}{4} \sum_{\alpha \in \Psi'_{\text{aff}}} \alpha \) analytic integral. For every analytic integral form \(\gamma \) on \(b'_C \), we will denote by \(h' \rightarrow h' \gamma \) the corresponding character on \(H'_C \).

(2) We know that, up to conjugation, the number of Cartan subgroups in \(U(r, s) \) is \(\min(r, s) + 1 \). Those Cartan subgroups can be parametrized by some particular subsets of \(\Psi'_n \). Let \(\Psi'_{\text{aff}} \) be the set of strongly orthogonal roots in \(\Psi' \) (see \([25, \text{Section 2}] \)).

For every \(\alpha \in \Psi'_{\text{aff}} \), we denote by \(c(\alpha) \) the element of \(G'_C \) given by:

\[
c(\alpha) = \exp \left(\frac{\pi}{4} (X_\alpha - X_{-\alpha}) \right),
\]

where \(X_\alpha \) (resp. \(X_{-\alpha} \)) is in \(g'_{C,\alpha} \) (resp. \(g'_{C,-\alpha} \)) and normalized as in \([25, \text{Equation 2.7}] \). For every subset \(S \) of \(\Psi'_{\text{aff}} \), we denote by \(c(S) \) the following element of \(G'_C \), defined by

\[
c(S) = \prod_{\alpha \in S} c(\alpha),
\]

and let

\[
b'(S) = g' \cap \text{Ad}(c(S))(b'_C).
\]

We denote by \(H'(S) \) the analytic subgroup of \(G' \) whose Lie algebra is \(b'(S) \). Then, \(H'(S) \) is a Cartan subgroup of \(G' \) and one can prove that all the Cartan subgroups are of this form (up to conjugation).

For every \(S \subseteq \Psi'_{\text{aff}} \), we will denote by \(H'_S \) the subgroup of \(H'_C \) given by:

\[
H'_S = c(S)^{-1} H'(S)c(S).
\]

Assume that \(r \leq s \). Then, we define \(\Psi'' = \left\{ e_i - e_j, 1 \leq i < j \leq r + s \right\} \), where \(e_i \) is the linear form on \(b'_C = C^{r+s} \) given by \(e_i(\lambda_1, \ldots, \lambda_{r+s}) = \lambda_i \). In this case, the set \(\Psi'' \) is equal to \(\left\{ e_i - e_{i+1}, 1 \leq t \leq r \right\} \). In particular, \(H''(0) = H' \) and if \(S_t = \{ e_1 - e_{r+1}, \ldots, e_t - e_{r+t} \} \), we get:

(2) \(H''_S = \left\{ h = \text{diag}(e^{X_1-Z_{r+1}}, \ldots, e^{X_1-Z_{r+s}}, e^{X_{r+1}}, \ldots, e^{X_r+X_{r+1}}, \ldots, e^{X_r+X_{r+s}}, e^{X_{r+s}}, \ldots, e^{X_{r+s}}), X_j \in \mathbb{R} \right\} \).
Fix a subset $S \in \Psi_n^{\text{reg}}$. We denote by \tilde{H}_S the preimage of H_S in $\tilde{H}_\mathbb{C}$. For every $\varphi \in \mathcal{C}_c^\infty(\tilde{G}')$, we denote by $\mathcal{H}_S \varphi$ the function of \tilde{H}_S defined by:

$$\mathcal{H}_S \varphi(\tilde{h}') = \psi_{\Psi, \varphi}(\tilde{h}') \tilde{h}' \frac{\sum_{\alpha \in \Psi} (1 - \tilde{h}'^{-\alpha})}{\int_{G'/H(S)} \varphi(g' \cdot \tilde{h}') \tilde{h}' \cdot c(S)^{-1} g^{-1}) dg'}(\tilde{h}') \quad (\tilde{h}' \in \tilde{H}_S),$$

where $\Psi_{S, \varphi}$ is the subset of Ψ' consisting of real roots for H_S and $\psi_{\Psi, \varphi}$ is the function defined on \tilde{H}_S^{reg} by

$$\psi_{\Psi, \varphi}(\tilde{h}') = \left(\prod_{\alpha \in \Psi} (1 - \tilde{h}'^{-\alpha}) \right).$$

To simplify the notations, we denote by $\Delta_{\varphi}(\tilde{h}')$ the quantity

$$\Delta_{\varphi}(\tilde{h}') = \frac{\tilde{h}'^{-1} \sum_{\alpha \in \Psi} (1 - \tilde{h}'^{-\alpha})}{(\tilde{h}')^{1 - \alpha}} \quad (\tilde{h}' \in \tilde{H}_S).$$

We define Δ_{φ} similarly, where $\Phi' = -\Psi'$.

Remark 3.2.
1. For every $\tilde{h}' \in \tilde{H}_S^{\text{reg}}$,

$$\Delta_{\varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}') = \prod_{\alpha \in \Psi} (1 - \tilde{h}'^{-\alpha})(1 - \tilde{h}'^{-\alpha}).$$

Note that if $S = \emptyset$, we get for every $\alpha \in \Psi'$ and $\tilde{h}' \in \tilde{H}$ that $\tilde{h}'^{-\alpha} = \tilde{h}'^{\alpha}$. In particular, $\Delta_{\varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}') = \prod_{\alpha \in \Psi} (1 - \tilde{h}'^{-\alpha})(1 - \tilde{h}'^{\alpha}) = \prod_{\alpha \in \Psi} [1 - \tilde{h}'^{-\alpha}]^2 = |\det(\text{Id} - \text{Ad}(\tilde{h}'))_g|$. Similarly, if $S \neq \emptyset$, we get for every $\alpha \in \Psi'$ and $\tilde{h}' \in \tilde{H}'$, there exists $\beta \in \Phi'$, independant on \tilde{h}', such that $\tilde{h}'^{\alpha} = \tilde{h}'^{\beta}$. In particular, we get $\Delta_{\varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}') = \prod_{\alpha \in \Psi} [1 - \tilde{h}'^{-\alpha}]^2$.

For every $\tilde{h}' \in \tilde{H}_S$, we denote by $|\Delta_{\varphi}(\tilde{h}')|^2 = \Delta_{\varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}')$.

2. One can easily check that two Cartan subalgebras $\mathfrak{h}'(S_1)$ and $\mathfrak{h}'(S_2)$, with $S_1, S_2 \subseteq \Psi_n^{\text{reg}}$, are conjugate if and only if there exists an element of $\sigma \in \mathcal{W}$ sending $S_1 \cup (-S_1)$ onto $S_2 \cup (-S_2)$ (see [25 Proposition 2.16]).

The Weyl’s integration formula can be written with the previous notations as follows:

Proposition 3.3 (Weyl’s Integration Formula). For every $\varphi \in \mathcal{C}_c^\infty(\tilde{G}')$, we get:

$$\int_{\tilde{G}'} \varphi(\tilde{g}') d\tilde{g}' = \sum_{S \subseteq \Psi_n^{\text{reg}}} m_S \int_{\tilde{H}_S} \psi_{\Psi, \varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}') \mathcal{H}_S \varphi(\tilde{h}') d\tilde{h}' .$$

where m_S are complex numbers. Here, the subsets S of Ψ_n^{reg} are defined up to equivalence (see Remark 3.2).

Proof. See [3] Section 2, Page 3830].

Remark 3.4. In particular, if we fix $S \subseteq \Psi_n^{\text{reg}}$ and $\varphi \in \mathcal{C}_c^\infty(\tilde{G}')$ such that $\text{supp}(\varphi) \subseteq \tilde{G}' \cdot H(S)^{\text{reg}}$, the previous formula can be written as follow:

$$\int_{\tilde{G}'} \varphi(\tilde{g}') d\tilde{g}' = m_S \int_{\tilde{H}_S} \psi_{\Psi, \varphi}(\tilde{h}') \Delta_{\varphi}(\tilde{h}') \mathcal{H}_S \varphi(\tilde{h}') d\tilde{h}' .$$
Let $H_C, G_C \subseteq GL_C(W)$ the complexifications of H and G'. We denote by G_C^0 the subgroup of G_C consisting of elements commuting with the element i introduced in Equation (1).

As proved in [3, Section 2], the character Θ defined in [11, Definition 4.23] extends to a rational function on $\tilde{H}_C \cdot \tilde{G}_C^0$ given by

$$\Theta(\tilde{h}\tilde{g'}) = (-1)^{2\epsilon} \frac{\det^\ast(\tilde{h}\tilde{g'})}{\det(1 - \tilde{h}\tilde{g'})}, \quad (\tilde{h} \in \tilde{H}_C, \tilde{g'} \in \tilde{G}_C^0),$$

where 2ϵ is the maximal dimension of a real subspace of W on which the symmetric form (J, \cdot) is negative definite. More precisely, according to [3, Proposition 2.1], we get:

Proposition 3.5. For every $\tilde{h} \in \tilde{H}_C$ and $\tilde{h'} \in \tilde{H}_C'$, we get:

$$\det^\ast(\tilde{h})\omega_0 \Delta_\varphi(\tilde{h})\Theta(\tilde{h}\tilde{g'})\Delta_\Phi(\tilde{h'}) = \sum_{\sigma \in \Psi(\tilde{H}_C)} (-1)^{\nu_0} \frac{\sign(\sigma) \det^\ast(\sigma^{-1}(\tilde{h'}))_{\Psi(\tilde{Z})} \Delta_{\Phi}(\sigma^{-1}(\tilde{h'}))}{\det(1 - p(h)p(h'))_{\epsilon\omega_0}}.$$

where $\alpha \in (0, -1)$ depends only on the choice of the positive roots Ψ and Φ', $k \in \{0, 1\}$ is defined by

$$k = \begin{cases} -1 & \text{if } n' - n \in 2\mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

and ω^b is the set of elements of W commuting with b.

Remark 3.6. One can easily check that the space ω^b is given by

$$\omega^b = \sum_{i=1}^{n} \text{Hom}(V'_i, V_i).$$

For every $S \subseteq \Psi'_n$, we denote by S the subset of $\{1, \ldots, r + s\}$ given by $S = \{j : \exists \alpha \in S \text{ such that } \alpha(J'_j) \neq 0\}$. Let $\sigma \in \mathcal{J}_n$ and $S \subseteq \Psi'_n$, we denote by $\Gamma_{\sigma, S}$ the subset of b' defined as

$$\Gamma_{\sigma, S} = \left\{ Y \in b', (\langle \cdot, \cdot \rangle_{\epsilon\omega_0})_{\Sigma} \text{Hom}(V'_i, V_i) > 0 \right\},$$

and let $E_{\sigma, S} = \exp(\Gamma_{\sigma, S})$ the corresponding subset of \tilde{H}_C', where \exp is a choice of exponential map $\exp : \tilde{h}_C' \to \tilde{H}_C'$ obtained by choosing an element 1 in $\pi^{-1}(1)$.

Theorem 3.7. For every $\tilde{h} \in \tilde{H} = \tilde{H}_0$ and $\varphi \in \mathcal{C}(\tilde{G})$, we get:

$$\det^\ast(\tilde{h})\omega_0 \Delta_\varphi(\tilde{h})\int_{\tilde{G}} \Theta(\tilde{h}\tilde{g'})\varphi(\tilde{g'})d\tilde{g'} = \sum_{\sigma \in \Psi'_{n, S}} \sum_{\mathcal{M}_S(\sigma)} \lim_{r \to 1} \int_{\tilde{H}_C'} \frac{\det^\ast(\sigma^{-1}(\tilde{h}'))_{\omega_0} \Delta_\Phi(\sigma^{-1}(\tilde{h}'))}{\det(1 - p(h)p(h'))_{\epsilon\omega_0}} e_{\Phi_S}(\tilde{h}')(\varphi(\tilde{h}'))d\tilde{h'},$$

where $\mathcal{M}_S(\sigma) = \frac{(-1)^{\nu_0} \varphi(\sigma)m_S}{\omega'(\tilde{Z}^r_C', H_C')}$.

The theorem 3.7 tells us how to compute Ch_C for an element \tilde{h} in the compact Cartan $H = H(0)$. Using [2], it follows that the value of Ch on the other Cartan subgroups can be computed explicitly by knowing how to do it for the compact Cartan (we will assume, without loss of generality, that $p \leq q$, in particular, the number of Cartan subgroups of G, up to conjugation, is $p + 1$).
To simplify, we assume that \(r \in [26, \text{Section 2.3.6}] \). In particular, \(H(S_k) \) such that \(T(S_k) \) respectively and let \(H(S_i) \) denote by \(T \).

For every \(\alpha \) where \(C \) is a constant defined in \([2, \text{Theorem 0.9}]\), \(\epsilon \) and \(d \)

\[S_i = \begin{cases} \{e_1 - e_{a+1}, \ldots, e_i - e_{a+1}\} & \text{if } r \leq s, \\ \{e_1 - e_{\beta+1}, \ldots, e_i - e_{\beta+1}\} & \text{otherwise} \end{cases} \]

where \(\alpha = \begin{cases} p & \text{if } r \leq p \\ r & \text{otherwise} \end{cases} \) and \(\beta = \begin{cases} p & \text{if } s \leq p \\ s & \text{otherwise} \end{cases} \).

For every \(i \in [0, p] \) and \(j \in [0, \min(r, s)] \), we denote by \(H(S_i) \) and \(H'(S_j) \) the Cartan subgroups of \(G \) and \(G' \) respectively and let \(H(S_i) = T(S_i)A(S_i) \) and \(H'(S_j) = T'(S_j)A'(S_j) \) be the decompositions of \(H(S_i) \) and \(H'(S_j) \) as in \([26, \text{Section 2.3.6}]\). In particular, \(H(S_k) = H'(S_k) \) for every \(k \in [0, \min(p, \min(r, s))] \).

To simplify, we assume that \(r \leq s \). We denote by \(V_{U,j} \) the subspace of \(V \) on which \(A(S_i) \) acts trivially and by \(V_{U,j} \) the orthogonal complement of \(V_{U,j} \) in \(V \). Let \(V_{U,j} = X_i \oplus Y_i \) be a complete polarization of \(V_{U,j} \). We assume that we have a natural embedding of \(V_{U,j} \) into \(V' \) such that \(X_i \oplus Y_i \) is a complete polarization with respect to \((\cdot, \cdot) \) (i.e., \(i \leq r \)). Let \(U_j \) be the orthogonal complement of \(V_{U,j} \) in \(V' \); in particular, we get a natural embedding:

\[\text{GL}(X_i) \times \text{G}(U_j) \subseteq G' = U(r, s). \]

We denote by \(T_1(S_i) \) the maximal subgroup of \(T(S_i) \) which acts trivially on \(V_{U,j} \) and let \(T_2(S_i) \) the subgroup of \(T(S_i) \) such that \(T(S_i) = T_1(S_i) \times T_2(S_i) \) with \(T_2(S_i) \subseteq G(V_{U,j}) \). In particular,

\[H(S_i) = T_1(S_i) \times A(S_i) \times T_2(S_i). \]

Similarly, we get a decomposition of \(H'(S_i) \) as the form:

\[H'(S_i) = T_1'(S_i) \times A'(S_i) \times T_2'(S_i). \]

Let \(\eta(S_i) \) and \(\eta'(S_i) \) be the nilpotent Lie subalgebras of \(u(p, q) \) and \(u(r, s) \) respectively given by

\[\eta(S_i) = \text{Hom}(X_i, V_{U,j}) \oplus \text{Hom}(X_i, Y_i) \cap u(p, q), \quad \eta'(S_i) = \text{Hom}(U_j, X_i) \oplus \text{Hom}(X_i, Y_i) \cap u(r, s). \]

We will denote by \(W_{U,j} \) the subspace of \(W \) defined by \(\text{Hom}(U_i, V_{U,j}) \) and by \(P(S_i) \) and \(P'(S_i) \) the parabolic subgroups of \(G \) and \(G' \) respectively whose Levi factors \(L(S_i) \) and \(L'(S_i) \) are given by

\[L(S_i) = \text{GL}(X_i) \times \text{G}(V_{U,j}), \quad L'(S_i) = \text{GL}(X_i) \times \text{G}(U_j), \]

and by \(N(S_i) := \exp(\eta(S_i)) \) and \(N'(S_i) := \exp(\eta'(S_i)) \) the unipotent radicals of \(P(S_i) \) and \(P'(S_i) \) respectively.

Remark 3.9. One can easily check that the forms on \(V_{U,j} \) and \(U_j \) have signature \((p - i, q - i) \) and \((r - i, s - i) \) respectively.

As proved in \([2, \text{Theorem 0.9}]\), for every \(\bar{h} = \tilde{t}_1 \tilde{a}_2 \in \bar{H}(S_i)^{\text{reg}} \) (using the decomposition of \(H(S_i) \) given in Equation (5)) and \(\varphi \in \mathfrak{g}'^\circ(G') \), we get:

\[| \det(\text{Ad}(\bar{h}) - \text{Id})_{\eta(S_i)}|_{\text{Chc}(\varphi)} = \int_{\text{GL}(X_i)/T_1(S_i)A(S_i)} \int_{\text{G}(U_j)} \sigma(\tilde{t}_1 \tilde{a}_2 \tilde{y}) \text{Chc}_{w_0}(\tilde{t}_2 \tilde{y}) d'_{S_i}((\tilde{g}, \tilde{a}^{-1} \tilde{g}^{-1})) d'_{N(S_i)}((\tilde{g}, \tilde{a}^{-1} \tilde{g}^{-1})) d' \tilde{y} d' \tilde{g}, \]

where \(C \) is a constant defined in \([2, \text{Theorem 0.9}]\), \(\sigma \) is the character defined in \([2, \text{Lemma 6.3}]\), \(d_{S_i} : L(S_i) \to \mathbb{R} \) and \(d'_{S_i} : L'(S_i) \to \mathbb{R} \) are given by

\[d_{S_i}(\bar{t}) = |\det(\text{Ad}(\tilde{t})_{\eta(S_i)})|^4, \quad d'_{S_i}(\bar{t}') = |\det(\text{Ad}(\tilde{t}')_{\eta'(S_i)})|^4, \quad (\tilde{t} \in \bar{L}(S_i), \tilde{t}' \in \bar{L}'(S_i)). \]
and \(\varphi_{N(S_i)}^{\widetilde{K}} \) is the Harish-Chandra transform of \(\varphi \), i.e. the function on \(\widetilde{L}(S_i) \) defined by:

\[
\varphi_{N(S_i)}^{\widetilde{K}}(P) = \int_{N(S_i)} \int_{\widetilde{K}} \varphi(k \tilde{n} h) dk dh, \quad (P \in \widetilde{L}(S_i)).
\]

One can easily check that \((G(V_{0,i}), G(U_i))\) is an irreducible dual pair in \(\text{Sp}(W_{0,i}) \) of the same type of \(G, G' \). Moreover, the element \(\tilde{t}_2 \) is contained in the compact Cartan of \(G(V_{0,i}) \). In particular, it follows from Theorem 3.17 that the integral

\[
\int_{G(U_i)} \varepsilon(\tilde{t}_2 \tilde{\gamma}) \text{Ch}_{\omega_g}(\tilde{t}_2 \tilde{\gamma}) d\tilde{\gamma} = \int_{N(S_i)} \int_{\widetilde{K}} \varphi(k \tilde{h} \tilde{\gamma}) g \tilde{h}^{-1} \tilde{\gamma} d\tilde{h} \tilde{\gamma}, \quad (P \in \widetilde{L}(S_i)).
\]

can be seen as a finite sum of integrals, where the test function \(\varphi \) is replaced by \(\varepsilon(\tilde{\gamma}) g \tilde{h}^{-1} \tilde{\gamma} \).

\[\text{Remark 3.11.} \quad \text{Assume that } j \in \{1, \ldots, n \} \text{ and } k \in \{0, \ldots, p - j \} \text{, we denote by } S^k_j = [e_{jr} - e_{pr} - e_{rj}] \text{ the subset of } \Psi^e_0(G(V_{0,i}), \tau_2(S_i)_{C}) \text{ and by } H(S^k_j) \text{ the corresponding Cartan subgroup of } G(V_{0,i}). \text{ By convention, } H(S^0_j) = T_2(S_i) \text{ is the compact Cartan subgroup of } G(U_i). \]

Assume that \(r \leq s \). For \(j \in \{1, \ldots, r \} \text{ and } k \in \{0, \ldots, r - j \} \text{, we denote by } S^k_j = [e_{jr} - e_{pr} - e_{rj}] \text{ the subset of } \Psi^e_0(g(U_{i}), \tau_2(S_i)_{C}) \text{ and by } H(S^k_j) \text{ the corresponding Cartan subgroup of } G(U_i). \text{ By convention, } H(S^k_j) = T_2(S_i) \text{ is the compact Cartan subgroup of } G(U_i).

\[\text{Notation 3.10.} \quad \text{For every } j \in \{1, \ldots, p \} \text{ and } k \in \{0, \ldots, p - j \}, \text{ we denote by } S^k_j = [e_{jr} - e_{pr} - e_{rj}] \text{ the subset of } \Psi^e_0(g(V_{0,i}), \tau_2(S_i)_{C}) \text{ and by } H(S^k_j) \text{ the corresponding Cartan subgroup of } G(V_{0,i}). \text{ By convention, } H(S^0_j) = T_2(S_i) \text{ is the compact Cartan subgroup of } G(U_i).
\]

We finish this section with a technical lemma which will be useful in Section 6.

Lemma 3.12. For every \(f \in \mathcal{E}_c(G'') \), we get:

\[
\int_{GL(X_j)/T(S_i) \times A'(S_j)} f_{N(S_j)}^{\widetilde{K}}(g_1 g_2 h g_2^{-1} g_1^{-1}) dg_2 dg_1 = \frac{D_{L(S_j)}(h)}{D_{L(S_j)}(\tilde{h})} \int_{GL(X_j)/T(S_i) \times A'(S_j)} \int_{G(U_i)/T(S_i)} f_{N(S_j)}^{\widetilde{K}}(g_1 g_2 h g_2^{-1} g_1^{-1}) dg_2 dg_1,
\]

\[\text{and } \varphi_{N(S_j)}^{\widetilde{K}} \text{ is the Harish-Chandra transform of } \varphi \text{, i.e. the function on } \widetilde{L}(S_j) \text{ defined by:}
\]

\[
\varphi_{N(S_j)}^{\widetilde{K}}(P) = \int_{N(S_j)} \int_{\widetilde{K}} \varphi(k \tilde{n} h) dk dh, \quad (P \in \widetilde{L}(S_j)).
\]
where $D_{L(S)}$ and $D_{L'(S)}$ are given by:

$$D_{L(S)}(\tilde{h'}) = |\det(\text{Id} - \text{Ad}(\tilde{h'})^{-1})|_{H'/V(S)}|^{\frac{1}{2}}, \quad D_{L'(S)}(\tilde{h'}) = |\det(\text{Id} - \text{Ad}(\tilde{h'})^{-1})|_{V(S)/V(S')}|^{\frac{1}{2}}.$$

Proof. As explained in [2, Appendix A], we have:

$$\int_{G/H(S)} f(\tilde{g}\tilde{h}^{-1})dg = \frac{D_{L(S)}(\tilde{h})}{D_{L'(S)}(\tilde{h})} \int_{H'/V(S)} f^{K}_{N(S)}(f\tilde{h}^{-1})df'$$

$$= \frac{D_{L(S)}(\tilde{h})}{D_{L'(S)}(\tilde{h})} \int_{\text{GL}(X)/T_{1}(S)\times \text{A}(S)} \int_{G(U)/H(S)} f^{K}_{N(S)}(g_{1}g_{2}\tilde{g}\tilde{h}^{-1}g_{1}^{-1})dg_{2}dg_{1},$$

where $D_{L(S)}(\tilde{h}) = D_{G}(\tilde{h'}) = |\det(\text{Ad}(\tilde{h'})^{-1} - \text{Id})|_{H'/V(S)}|^{\frac{1}{2}}$. Similarly, using that $H'(S_{i}) \subseteq P'(S_{j})$, we get:

$$\int_{G/H'(S_{j})} f(\tilde{g}\tilde{h}^{-1})dg = \frac{D_{L'(S)}(\tilde{h})}{D_{L'(S)}(\tilde{h})} \int_{H'/V(S)} f^{K}_{N(S)}(f\tilde{h}^{-1})df'$$

$$= \frac{D_{L'(S)}(\tilde{h})}{D_{L'(S)}(\tilde{h})} \int_{\text{GL}(X)/T_{1}(S)\times \text{A}(S)} \int_{G(U)/H(S)} f^{K}_{N(S)}(g_{1}g_{2}\tilde{g}\tilde{h}^{-1}g_{1}^{-1})dg_{2}dg_{1},$$

and the lemma follows.

\[\square \]

4. Transfer of invariant eigendistributions

We start this section by recalling the notion of invariant eigendistributions. We keep the notations of Appendix A. Let G be a connected real reductive Lie group, $\mathcal{D}'(G)$ be the space of distributions of G, i.e., the continuous linear forms on $\mathcal{C}^\infty_c(G)$ and $D^0_G(G)$ the space of bi-invariant differential operators on G as in Notations A.3. For every $f \in \mathcal{C}^\infty_c(G)$ and $g \in G$, we denote by f^g the function of $\mathcal{C}^\infty_c(G)$ defined by $f^g(x) = f(g^{-1}x), x \in G$. We say that $T \in \mathcal{D}'(G)$ is a G-invariant distribution if $T(f^g) = T(f)$ for every $f \in \mathcal{C}^\infty_c(G)$ and $g \in G$.

Definition 4.1. A distribution T on G is an eigendistribution if there exists an algebra homomorphism $\chi_T : D^0_G(G) \rightarrow \mathbb{C}$ such that $D(T) = \chi_T(D)T$ for every $D \in D^0_G(G)$.

As proved by Harish-Chandra (see [9, Theorem 2]), for every invariant eigendistribution T on G, there exists a locally integrable function f_T on G which is analytic on G^reg such that $T = f_T$, i.e., for every $\varphi \in \mathcal{C}^\infty_c(G)$,

$$T(\varphi) = \int_G f_T(g)\varphi(g)dg.$$

Remark 4.2. (1) Using the isomorphism defined in Appendix A, Theorem A.6, an eigendistribution T is an invariant distribution such that there exists a character χ_T of $Z(\mathfrak{g}(\mathfrak{g}))$ such that $T = \chi_T(z)T$ for every $z \in Z(\mathfrak{g}(\mathfrak{g}))$.

(2) Let (Π, \mathcal{H}) be a representation of G. Following [6], we say that the representation Π is permissible if $\Pi(z)$ is a scalar multiple of the unit operator for every $z \in Z(G) \cap D$, where D is the analytic subgroup of G corresponding to $Z(l)$ (l being the Lie algebra of a maximal compact subgroup \mathbf{K} of G). A permissible representation is said quasi-simple if there exists an homomorphism χ of $Z(\mathfrak{g}(\mathfrak{g}))$ into \mathbb{C} such that $d\Pi(z)(\eta) = \chi(z)\eta$ for every $z \in Z(\mathfrak{g}(\mathfrak{g}))$ and η in the Garding space $\text{Gar}(\Pi, \mathcal{H})$ (for the definition of $\text{Gar}(\Pi, \mathcal{H})$, see [6, Part II]). In particular, for such representations, Harish-Chandra proved that for every $\varphi \in \mathcal{C}^\infty_c(G)$, the operator $\Pi(\varphi)$ is a trace class operator (see [7, Section 5]) and the corresponding map
For every reductive group G, we denote by $C_{\infty}^0(H(G))$. This space is endowed with a natural topology (see [4, Section 3.3]). We denote by J_{∞}. As proved in [4, Theorem 3.2.1], the map:

$$J_{\infty}: C_{\infty}^0(G) \to \mathcal{I}(G)$$

is well-defined and surjective. We denote by $\mathcal{I}^t(G)$ the transpose of J_{∞} defined by

$$J_{\infty}^t(T)(\varphi) = T(J_{\infty}(\varphi)), \quad (T \in \mathcal{I}^t(G), \varphi \in C_{\infty}^0(G)).$$

As proved in [4, Theorem 3.2.1], $J_{\infty}^t(T)$ is a G-invariant distribution on G and the corresponding map:

$$J_{\infty}^t: \mathcal{I}^t(G) \to \mathcal{I}^t(G)^G$$

is bijective.

Let (G, G') be an irreducible dual pair in $\text{Sp}(W)$ such that $\text{rk}(G) \leq \text{rk}(G')$ and $(\mathcal{I}(\tilde{G}), J_{\infty}(G))$, $(\mathcal{I}(\tilde{G}'), J_{\infty}(G'))$ be the corresponding space of orbital integrals on \tilde{G} and \tilde{G}' respectively. To simplify, we assume that both G and G' are connected. For every function $\varphi \in C_{\infty}^0(\tilde{G}')$, we denote by $\text{Chc}(\varphi)$ the \tilde{G}-invariant function on \tilde{G}' given by:

$$\text{Chc}(\varphi)(\tilde{h}) = \text{Chc}_{\tilde{h}}(\varphi), \quad (\tilde{h} \in H_{\tilde{h}}^{\text{reg}}).$$

In [3], the authors proved the following results:

Theorem 4.4. For every $\varphi \in C_{\infty}^0(\tilde{G}')$, $\text{Chc}(\varphi) \in \mathcal{I}(\tilde{G})$ and the corresponding map

$$\text{Chc}: C_{\infty}^0(\tilde{G}') \to \mathcal{I}(\tilde{G})$$

is continuous. Moreover, if $J_{\infty}(\varphi) = 0$, we get that $\text{Chc}(\varphi) = 0$, i.e. the map $\text{Chc}: C_{\infty}^0(\tilde{G}') \to \mathcal{I}(\tilde{G})$ factors through $\mathcal{I}(\tilde{G}')$ and we get a transfer of orbital integrals:

$$\text{Chc}: \mathcal{I}(\tilde{G}') \to \mathcal{I}(\tilde{G}).$$
By dualizing the previous map, we get \(\text{Chc}' : \mathcal{S}'(\widetilde{G}) \rightarrow \mathcal{S}'(\widetilde{G}) \) given by
\[
\text{Chc}'(\tau)(\phi) = \tau(\text{Chc}(\phi)) \quad (\tau \in \mathcal{S}'(\widetilde{G}), \phi \in \mathcal{S}(\widetilde{G})).
\]

By using the isomorphisms \(J'_G \) and \(J''_G \), we get a map \(\text{Chc}^* : \mathcal{S}'(\widetilde{G})^{\circ} \rightarrow \mathcal{S}'(\widetilde{G})^{\circ} \) given by \(\text{Chc}^* = J'_G \circ \text{Chc}' \circ (J''_G)^{-1} \).

We denote by \(\text{Eigen}(\widetilde{G}) \) (resp. \(\text{Eigen}(\widetilde{G}') \)) the set of invariant eigendistributions on \(\widetilde{G} \) (resp. \(\widetilde{G}' \)).

Theorem 4.5. The map \(\text{Chc}^* : \mathcal{S}'(\widetilde{G})^{\circ} \rightarrow \mathcal{S}'(\widetilde{G}')^{\circ} \) sends \(\text{Eigen}(\widetilde{G})^{\circ} \) into \(\text{Eigen}(\widetilde{G}')^{\circ} \).

Remark 4.6. If \(\Theta \) is a distribution on \(\widetilde{G} \) given by a locally integrable function \(\Theta \) on \(\widetilde{G} \), we get for every \(\varphi \in \mathcal{C}_c^{\infty}(\widetilde{G}) \) the following equality:
\[
\text{Chc}^*(\Theta)(\varphi) = \sum_{i=1}^n \frac{1}{|W(H_i)|} \int_{H_i} \Theta(h) \det(1 - \text{Ad}(h^{-1}))_{h|_{h_i}} \text{Chc}(\varphi)(h) \, dh,
\]
where \(H_1, \ldots, H_n \) is a maximal set of non-conjugate Cartan subgroups of \(G \).

We recall the following conjecture.

Conjecture 4.7. Let \(G_1 \) and \(G'_1 \) be the Zariski identity components of \(G \) and \(G' \) respectively. Let \(\Pi \in \mathcal{A}(\widetilde{G}, \omega) \) satisfying \(\Theta_{\Pi, G} = 0 \) if \(G = O(V) \), where \(V \) is an even dimensional vector space over \(\mathbb{R} \) or \(\mathbb{C} \). Then, up to a constant, \(\text{Chc}^*(\Theta_{\Pi}) = \Theta_{\Pi, G} \) on \(\widetilde{G}' \).

In few cases, the conjecture is well-known: if \(G \) is compact (see [23]) and if \((G, G') \) is in the stable range (see [24]). In this paper, we are investigating the case \(\text{rk}(G) = \text{rk}(G') \), with \(\Pi \) a discrete series representation of \(G \). We will focus our attention on the dual pair of unitary groups satisfying \(\text{rk}(G) = \text{rk}(G') \), using some results of A. Paul that we recall in the next section.

5. Discrete series representations and a result of A. Paul

Let \(G \) be a connected real reductive Lie group.

Definition 5.1. We say that an irreducible representation \((\Pi, (\mathcal{H}, <\cdot, \cdot>)) \) is a discrete series representation if all the functions \(\tau_{u,v} : g \mapsto <g(u), v> \in \mathbb{C} \), are in \(L^2(G) \), where
\[
\tau_{u,v} : G \ni g \rightarrow <g(u), v> \in \mathbb{C}.
\]

Remark 5.2. One can prove that the condition given in the previous definition is equivalent to say that the representation \((\Pi, \mathcal{H}) \) is equivalent with a direct summand of the right regular representation of \(G \) on \(L^2(G) \).

Moreover, as recalled in [13] Section 9.3, for such a representation \((\Pi, \mathcal{H}) \), there exists a positive number \(d_{\Pi} \) (depending on the Haar measure \(d_{G} \) on \(G \)), called the formal degree of \(\Pi \), such that for every \(u_1, u_2, v_1, v_2 \in \mathcal{H} \),
\[
\int_{G} \langle \Pi(g)u_1, v_1 \rangle \overline{\langle \Pi(g)u_2, v_2 \rangle} \, d_{G} = \frac{\langle u_1, u_2 \rangle \langle v_1, v_2 \rangle}{d_{\Pi}}.
\]

In his papers [8] and [10], Harish-Chandra gave a classification of the discrete series representations of \(G \). First of all, he proved that \(G \) has discrete series if and only if \(G \) has a compact Cartan subgroup (see [10] Theorem 13]). Let \(K \) be a maximal compact subgroup of \(G \) and \(H \) a Cartan subgroup of \(K \). He also proved that the set of discrete series is indexed by a lattice of \(ib' \). We say few words about this now. Let \(\Psi = \Psi(g_c, b_c) \) be the set of roots of \(g \), \(\Psi(t) = \Psi(t_c, b_c) \) be the set of compact roots of \(g, \rho = \frac{1}{4} \sum_{\alpha \in \Phi^r} \alpha \) and \(\rho(t) = \frac{1}{4} \sum_{\alpha \in \Phi^r(t)} \alpha \).
Theorem 5.6. Let G be a dual pair of unitary groups in $\text{Sp}(2(p,q),\mathbb{R})$. More precisely, as proved in [8, Lemma 44], we have the following result.

Notation 5.3. For every $g \in G$, we denote by D_g the function on \mathbb{R} given by

$$D_g(t) = \det((t + 1)\text{Id}_g - \text{Ad}(g)) \quad (t \in \mathbb{R}).$$

In particular, $D_g(t) = \sum_{i=0}^n t^i D_i(g)$, with $n = \dim(G)$. The D_i's are analytic on G and let l be the least integer such that $D_l \neq 0$. The integer l is the rank of g. We denote by $D(g)$ the coefficient of t^l in the previous polynomial and by G^{reg} the set of $g \in G$ such that $D(g) \neq 0$.

Theorem 5.4. Let λ be an element of \mathfrak{h}^\ast such that $\lambda + \rho$ is analytic integral. Then, there exists a discrete series representation $(\Pi_\lambda, \mathcal{H}_\lambda)$ of G such that:

1. The representation Π_λ has infinitesimal character χ_λ as in Remark [4,9].
2. The linear form $\nu = \lambda + \rho - 2\rho(\mathfrak{t})$ is the highest weight of the lowest \mathfrak{k}-type for Π_{λ_0} and the multiplicity of the corresponding representation Π_ν in Π_{λ_0} is one.

The parameter λ is called the Harish-Chandra parameter of Π_λ. Moreover, if we denote by Θ_λ the distribution character of Π and by Θ_λ the corresponding locally integrable function on G^{reg}, we get that the restriction of Θ_λ of Π to H^{reg} is given by the following formula

$$\Theta_\lambda(\exp(X)) = (-1)^{\frac{\dim(G) - \dim(K)}{2}} \sum_{w \in W(\mathfrak{l})} s(w) \frac{e^{iW(X)\theta}}{\prod_{\alpha > 0} (e^{\alpha(X)} - e^{-\alpha(X)})}, \quad (X \in \mathfrak{h}^{\text{reg}}).$$

Remark 5.5. As proved in [8], for every discrete series Π of G with Harish-Chandra parameter λ, we get:

$$\sup_{g \in G^{\text{reg}}} |D(g)|^\frac{1}{2} |\Theta_\lambda(g)| < \infty.$$

The previous properties of Θ_λ characterize the discrete series characters inside the space of invariant distributions of G. More precisely, as proved in [8 Lemma 44], we have the following result.

Theorem 5.6. Let Θ_λ be G-invariant distribution on G such that:

1. $\gamma(\lambda)(z)\Theta_\lambda, z \in Z(\mathfrak{h}(g_c))$.
2. $\sup_{g \in G^{\text{reg}}} |D(g)|^\frac{1}{2} |\Theta_\lambda(g)| < \infty$.
3. $\Theta_\lambda = 0$ pointwise on H^{reg}.

Then, $\Theta_\lambda = 0$.

The previous theorem will be central for us in Section 6 to prove the conjecture [4,7] for discrete series representations in the equal rank case. We now recall a key result of A. Paul for unitary groups. Let $(G, G') = (\text{U}(p, q), \text{U}(r, s))$ be a dual pair of unitary groups in $\text{Sp}(2(p + q)(r + s), \mathbb{R})$. As explained in [19, Section 1.2], the double cover of $\bar{U}(p, q)$ is isomorphic to

$$\bar{U}(p, q) \approx \{(g, \xi) \in \text{U}(p, q) \times \mathbb{C}^\ast, \xi^2 = \det(g)^{r-s}\}.$$

In particular, all the genuine admissible representations of $\bar{U}(p, q)$ are the form $\Pi \otimes \det^{\frac{r-s}{2}}$, where $\det^{\frac{r-s}{2}}$ is the genuine character of $\bar{U}(p, q)$ given by $\det^{\frac{r-s}{2}}(g, \xi) = \xi$ and Π is an admissible representation of $\text{U}(p, q)$. From now on, we fix p and q and let r and s vary under the condition that $p + q = r + s$. In particular, under this condition, it follows from Equation (9) that the double cover of $\text{U}(p, q)$ stays the same when r and s vary.

In [19, Section 6], A. Paul proved the following theorem:
Theorem 5.7. For every genuine irreducible admissible representation \((\mathcal{H}_0, \pi)\) of \(\tilde{\mathbb{U}}(p, q)\), there exists a unique pair of integers \((r, s) = (r_1, s_1)\) such that \(p + q = r + s\) with \(\theta_{reg}(\pi) \neq 0\).

She also obtained more precise results for discrete series representations (see [19, Theorem 6.1] or [20, Theorem 2.7]).

Notation 5.8. We fix a basis \(\{e_1, \ldots, e_n\}\) of \(\mathfrak{h}^*\). In particular, every linear form \(\lambda\) on \(\mathfrak{h}\) can be written as \(\lambda = \sum_{i=1}^{n} \lambda_i e_i\) or also as \(\lambda = (\lambda_1, \ldots, \lambda_n)\).

Theorem 5.9. Let \(\Pi\) be a discrete series representation of \(\tilde{\mathbb{U}}(p, q)\), the corresponding representation \(\theta_{reg}(\Pi)\) is a discrete series representation of \(\tilde{\mathbb{U}}(r_1, s_1)\).

More precisely, if the Harish-Chandra parameter of \(\Pi\) is of the form

\[
\lambda = \lambda_{a,b} = (a_1, \ldots, a_d, b_1, \ldots, b_{p-a}, \gamma_1, \ldots, \gamma_b, \delta_1, \ldots, \delta_{q-b}),
\]

with \(a_i, b_j, \gamma_k, \delta_l \in \mathbb{Z} + \frac{1}{2}\) such that \(a_1 > \ldots > a_d > 0 > b_1 > \ldots > b_{p-a} > \gamma_1 > \ldots > \gamma_b > 0 > \delta_1 > \ldots > \delta_{q-b}\),

then \((r_1, s_1) = (a + q - b, b + p - a)\) and the corresponding Harish-Chandra parameter \(\lambda' = \lambda_{a,b}'\) of \(\theta_{reg}(\Pi)\) is of the form:

\[
\lambda'_{a,b} = (a_1, \ldots, a_d, \delta_1, \ldots, \delta_{q-b}, \gamma_1, \ldots, \gamma_b, b_1, \ldots, b_{p-a}).
\]

6. Proof of Conjecture 4.7 for discrete series representations in the equal rank case

In this section, we are interested in the dual pair \((G, G') = (U(p, q), U(r, s))\) such that \(p + q = r + s\). Without loss of generality, we assume that \(p \leq q\). In particular, the number of Cartan subgroups of \(G\), up to conjugation, is \(p + 1\). We denote by \(n = p + q\). Let \((V = \mathcal{C}^{p+q}, \langle \cdot, \cdot \rangle)\) and \((V' = \mathcal{C}^{rs'}, \langle \cdot, \cdot \rangle')\) be the hermitian and skew-hermitian spaces corresponding to \(G\) and \(G'\) respectively. In this case, the space \(W = \text{Hom}(V', V) = M((r + s) \times (p + q), \mathbb{C})\) and for every \(v \in W\), there exists a unique element \(w^* \in \text{Hom}(V, V') = M((p + q) \times (r + s), \mathbb{C})\) such that:

\[
(w(v'), v) = (v', w^*(v)), \quad (v \in V, v' \in V').
\]

One can prove that \(w^* = \text{Id}_{p+q} \mathcal{C} \text{Id}_{r+s}\) and the symplectic form \(\langle \cdot, \cdot \rangle\) on \(W\)

\[
\langle w, w' \rangle = \text{Re}(\text{tr}(w^* w)) = -\text{Im}(\text{tr}(\text{Id}_{p+q} \mathcal{C} \text{Id}_{r+s} w)) \quad (w, w' \in W).
\]

Let \(V_i = V'_i = \mathcal{C} e_i\). The subspaces \(\mathfrak{b}\) and \(\mathfrak{b}'\) of \(g\) and \(g'\) respectively given by:

\[
\mathfrak{b} = \mathfrak{b}' = \{y = (iX_1, \ldots, iX_n), X_i \in \mathbb{R}\}
\]

are Cartan subalgebras. Moreover, we get:

\[
W^\mathfrak{b} = \bigoplus_{i=1}^{n} \text{Hom}(V_i, V'_i) = \bigoplus_{i=1}^{n} \mathcal{C} \mathbb{R} E_{n,i}.
\]

Let \(\Pi\) be a discrete series of \(\tilde{\mathbb{U}}(p, q)\), \(\Theta_\Pi\) be the corresponding element of \(\mathcal{D}'(\mathcal{G})\), \(\Theta_\Pi\) the corresponding locally integrable function on \(\mathcal{G}\) such that \(\Theta_\Pi = T_{\theta_\Pi}\) and \(\chi_\Pi\) the infinitesimal character of \(\Pi\).

As recalled in Theorem 5.5, \(\text{Chc}'(\Theta_\Pi)\) is an element of \(\text{Eigen}(\mathcal{G})\). According to [9, Theorem 2], the distribution \(\Theta_\Pi' = \text{Chc}'(\Theta_\Pi)\) is given by a locally integrable function \(\Theta_\Pi'\) on \(\mathcal{G}\), analytic on \(\mathcal{G}^{\text{reg}}\).

Notation 6.1. From now on, we fix an element \(\tilde{\Pi}\) be an element of \(\pi^{-1}([-1])\). Let \(c : g^r \to G'\) the Cayley transform, where \(g^r\) and \(G'\) are defined in Section 2. As explained in [21, Lemma 3.5], there exists a unique smooth map \(\tilde{c} : g^r \to G'\) such that \(\pi \circ \tilde{c} = c\) and \(\tilde{c}(0) = -\tilde{1}\).
Theorem 6.2. The value of Θ_1^H on the compact Cartan $\tilde{H} = H(\emptyset)$ is given by the following formula:

$$\Delta_{\psi}(\tilde{h}')\Theta_1^H(\tilde{p}(\tilde{h}')) = \frac{C}{|\mathcal{W}(H)|} \sum_{\sigma \in \mathcal{P}_H} \varepsilon(\sigma)\det^* (\sigma(\tilde{h}')) \mathcal{W} \lim_{r \to \infty} \int_{\tilde{H}/\tilde{W}} \frac{\Theta_1^H(\tilde{p}(\tilde{h}))\Delta_{\psi}(\tilde{h}')}{\det(1 - p(\tilde{h})r\tilde{h}')} d\tilde{h}' \quad (\tilde{h}' \in \tilde{H})$$

where $H = H(\emptyset)$ is the compact Cartan of G and $C = \chi_H(-1)\Theta(\tilde{h})C(1)\Phi$.

Proof. Let φ be a function in $\mathcal{C}_c^{\infty}(G')$. According to Remark 2, we get that

$$\Theta_1^H(\varphi) = \frac{1}{|\mathcal{W}(H)|} \int_{\tilde{H}/\tilde{W}} \Theta_1^H(\tilde{h})\det(1 - Ad(\tilde{h}^{-1}))_{\tilde{h}}\varphi(\tilde{h})d\tilde{h},$$

where $H(S_t)$ is a set of Cartan subgroups as in Remark 2 and let $H = H(\emptyset)$ the compact Cartan of G. Now, if we assume that supp(φ) $\subseteq G' \cdot \tilde{H}$, then

$$\Theta_1^H(\varphi) = \frac{1}{|\mathcal{W}(H)|} \int_{\tilde{H}/\tilde{W}} \Theta_1^H(\tilde{h})\det(1 - Ad(\tilde{h}^{-1}))_{\tilde{h}}\varphi(\tilde{h})d\tilde{h}$$

According to Equation 8 and Theorem 3.7, we get:

$$\Theta_1^H(\varphi) = \frac{(-1)^{\mu}C}{|\mathcal{W}(H)|} \int_{\tilde{H}/\tilde{W}} \Theta_1^H(\tilde{h})\Delta_{\psi}(\tilde{h}) \left(\int_{G'} \Theta(\tilde{h}\tilde{g}')\varphi(\tilde{g}')d\tilde{g}' \right) d\tilde{h}$$

$$= \frac{(-1)^{\mu+1}C}{|\mathcal{W}(H)|} \int_{\tilde{H}/\tilde{W}} \Theta_1^H(\tilde{h})\Delta_{\psi}(\tilde{h})\det^* (\tilde{h}) \left(\int_{G'} \Theta(\tilde{h}\tilde{g}')\varphi(\tilde{g}')d\tilde{g}' \right) d\tilde{h}$$

$$= -\frac{Cm_0}{|\mathcal{W}(H)|} \sum_{\sigma \in \mathcal{P}_H} \varepsilon(\sigma) \lim_{r \to \infty} \int_{\tilde{H}/\tilde{W}} \Theta_1^H(\tilde{h})\Delta_{\psi}(\tilde{h})\det^* (\tilde{h}) \int_{G'} \frac{\det^* (\sigma^{-1}(\tilde{h}'))_{\tilde{w}}}{\det(1 - p(\tilde{h})r(\tilde{h}'))_{\tilde{w}}\mathcal{W}} \mathcal{W}(\varphi)(\tilde{h}')d\tilde{h}'$$

With such assumptions on the support of φ, we get using Equation 3:

$$\Theta_1^H(\varphi) = \int_{G'} \Theta_1^H(\tilde{g}')\varphi(\tilde{g}')d\tilde{g}' = m_0 \int_{G'} \Delta_{\psi}(\tilde{h}').\mathcal{W}(\Theta_1^H(\varphi)(\tilde{h}'))d\tilde{h}'$$

$$= -m_0 \int_{G'} \Theta_1^H(\tilde{h}').\Delta_{\psi}(\tilde{h}').\mathcal{W}(\varphi)(\tilde{h}')d\tilde{h}'$$

By identifications, we get, up to a constant, that:

$$\Delta_{\psi}(\tilde{h}')\Theta_1^H(\tilde{p}(\tilde{h}')) = \frac{C}{|\mathcal{W}(H)|} \sum_{\sigma \in \mathcal{P}_H} \varepsilon(\sigma)\det^* (\sigma^{-1}(\tilde{h}')) \mathcal{W} \lim_{r \to \infty} \int_{\tilde{H}/\tilde{W}} \frac{\Theta_1^H(\tilde{p}(\tilde{h}))\Delta_{\psi}(\tilde{h})\det^* (\tilde{h})}{\det(1 - p(\tilde{h})r(\tilde{h}'))_{\tilde{w}} \mathcal{W}} d\tilde{h}$$

and the theorem follows. □

We know that the set of roots for (φ, b) is given by

$$\{\pm(e_i - e_j), 1 \leq i < j \leq n\}.$$

Let $K = U(p) \times U(q)$ be a maximal compact subgroup of G. Let $\Psi(t) = \Psi(t_c, b_c)$ be a set of compact positive roots given by:

$$\Psi(t) = \{e_i - e_j, 1 \leq i < j \leq p\} \cup \{e_i - e_j, p + 1 \leq i < j \leq n\}.$$
The compact Weyl group \(W' = W(K, H) \) is \(\mathcal{P} \times \mathcal{Q} \). Let \(\lambda = \sum_{i=1}^{p+q} \lambda_i e_i \) be the Harish-Chandra parameter of \(\Pi \).

Using Theorem 5.4 the value of \(\Theta_{\Pi} \) on \(\mathcal{H}^{\text{reg}} \) is given by:

\[
\Theta_{\Pi}(\hat{\rho}(\hat{h})) = (-1)^{p+q} \sum_{\beta \in \mathcal{P} \times \mathcal{Q}} \epsilon(\beta) \prod_{h>0} \left(\frac{(\beta \hat{h})^4}{(h^2 - h^{-2})} \right) \quad (\hat{h} \in \mathcal{H}^{\text{reg}}),
\]

with \(\alpha_{p,q} = \frac{\dim(G) - \dim(K)}{2} = pq \). Using that \(W = \bigoplus_{i=1}^{n} \text{Hom}(V_i, V_i) \), we get:

\[
\det(1 - p(h) \rho(h'), \pi) = \prod_{i=1}^{n} \left(1 - h_i (r h')^{-1}_{\sigma(i)}\right) = (-1)^n \prod_{i=1}^{n} \left(r h' \right)^{-1}_{\sigma(i)} \prod_{i=1}^{n} \left(h_i - (r h')_{\sigma(i)}\right),
\]

and

\[
\det^{\frac{1}{2}}(\sigma^{-1}(\hat{h}'))_{W} = \prod_{i=1}^{n} h_i^{\frac{1}{2}} \quad \det^{\frac{1}{2}}(\hat{h})_{W} = \prod_{i=1}^{n} h_i^{\frac{1}{2}}.
\]

To simplify the notations, we will denote by \(\xi \) the element of \(\mathfrak{h}_C^{\circ} \) given by \(\xi = \sum_{i=1}^{n} \frac{1}{2} e_i \). We recall a basic Cauchy integral formula.

Lemma 6.3. Let \(k \in \mathbb{Z} \) and \(a \in \mathbb{C} \setminus S^1 \). Then,

\[
\frac{1}{2i\pi} \int_{S^1} \frac{e^{az}}{z-a} \, dz = \begin{cases} a^k & \text{if } k \geq 0 \text{ and } |a| < 1 \\ -a^k & \text{if } k < 0 \text{ and } |a| > 1 \\ 0 & \text{otherwise} \end{cases}
\]

For every \(\hat{h} \in \mathcal{H}^{\text{reg}} \), we get from Theorem 6.2:

\[
\Delta_{\mathcal{W}}(\hat{h}') \Theta_{\Pi}'(\hat{\rho}(\hat{h}')) = C \sum_{\sigma \in \mathcal{P} \times \mathcal{Q}} \sum_{n, \rho(\hat{h})} \epsilon(\sigma) \epsilon(\beta) \prod_{i=1}^{n} h_i^{\frac{1}{2}} \lim_{\rho(\hat{h}) \to \infty} \int_{\mathcal{H}} \frac{(\beta \hat{h})^4}{\prod_{i=1}^{n} (h_i - (r h')_{\sigma(i)})} \, dh
\]

\[
= C \sum_{\sigma \in \mathcal{P} \times \mathcal{Q}} \sum_{n, \rho(\hat{h})} \epsilon(\sigma) \epsilon(\beta) \prod_{i=1}^{n} h_i^{\frac{1}{2}} \lim_{\rho(\hat{h}) \to \infty} \int_{\mathcal{H}} \frac{(\beta \hat{h})^{4 + \xi}}{\prod_{i=1}^{n} (h_i - (r h')_{\sigma(i)})} \, dh
\]

\[
= 2C \sum_{\sigma \in \mathcal{P} \times \mathcal{Q}} \sum_{n, \rho(\hat{h})} \epsilon(\sigma) \epsilon(\beta) \prod_{i=1}^{n} h_i^{\frac{1}{2}} \lim_{\rho(\hat{h}) \to \infty} \int_{\mathcal{H}} \frac{h_i^{\beta + \frac{1}{2}}}{\prod_{i=1}^{n} (h_i - (r h')_{\sigma(i)})} \, dh
\]

\[
= \frac{2C \prod_{i=1}^{n} h_i^{\frac{1}{2}}}{(2i\pi)^n} \sum_{\sigma \in \mathcal{P} \times \mathcal{Q}} \sum_{n, \rho(\hat{h})} \epsilon(\sigma) \epsilon(\beta) \lim_{\rho(\hat{h}) \to \infty} \int_{S^1} \frac{z^{\beta - \frac{1}{2}}}{z - (r h')_{\sigma \beta^{-1}(i)}} \, dz,
\]

where \(C = \frac{(-1)^{pq} C}{\mathcal{W}(H)} \).
Lemma 6.4. For every \(\sigma \in \mathcal{S}_{r+1} \), the space \(E_{\sigma,0} \) is given by

\[
E_{\sigma,0} = \left\{ h' = (e^{-X_1}, \ldots, e^{-X_r}) \in H^r_{\mathbb{C}} \mid \begin{cases}
X_{\sigma(i)} > 0 & \text{if } i \in \{1, \ldots, p\} \text{ and } \sigma(i) \in \{1, \ldots, r\} \\
X_{\sigma(i)} < 0 & \text{if } i \in \{1, \ldots, p\} \text{ and } \sigma(i) \in \{r + 1, \ldots, r + s\} \\
X_{\sigma(i)} < 0 & \text{if } i \in \{p + 1, \ldots, p + q\} \text{ and } \sigma(i) \in \{1, \ldots, r\} \\
X_{\sigma(i)} > 0 & \text{if } i \in \{p + 1, \ldots, p + q\} \text{ and } \sigma(i) \in \{r + 1, \ldots, r + s\}
\end{cases} \right\}
\]

Proof. Let \(w = \sum_{i=1}^{n} w_i E_{i,\sigma(i)} \in H^r_{\mathbb{C}}, \sigma \in \mathcal{S}_{r+1} \) and \(y = (iX_1, \ldots, iX_n) \in b' \), with \(X_j \in \mathbb{R} \). Then,

\[
\langle y(\sigma(w)), \sigma(w) \rangle = \langle y\left(\sum_{i=1}^{n} w_i E_{i,\sigma(i)}\right), \sum_{i=1}^{n} w_i E_{i,\sigma(i)}\rangle = -\langle \sum_{i=1}^{n} w_i y_{\sigma(i)} E_{i,\sigma(i)}, \sum_{i=1}^{n} w_i E_{i,\sigma(i)}\rangle
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Im}(\text{tr}(\overline{w_i} E_{i,\sigma(i)} E_j E_{i,\sigma(i)}))
\]

\[
= \sum_{i=1}^{n} \text{Im}(\text{tr}(\overline{w_i} E_{i,\sigma(i)} E_{i,\sigma(i)}))
\]

\[
= \sum_{i=1}^{n} |w_i|^2 X_{\sigma(i)} - \sum_{i=p+1}^{n} |w_i|^2 X_{\sigma(i)} = \sum_{i=p+1}^{n} |w_i|^2 X_{\sigma(i)} + \sum_{i=p+1}^{n} |w_i|^2 X_{\sigma(i)}
\]

In particular, using Equation (4), we get:

\[
\Gamma_{\sigma,0} = \left\{ y = (iX_1, \ldots, iX_n) \in b' \mid \begin{cases}
X_{\sigma(i)} > 0 & \text{if } i \in \{1, \ldots, p\} \text{ and } \sigma(i) \in \{1, \ldots, r\} \\
X_{\sigma(i)} < 0 & \text{if } i \in \{1, \ldots, p\} \text{ and } \sigma(i) \in \{r + 1, \ldots, n\} \\
X_{\sigma(i)} < 0 & \text{if } i \in \{p + 1, \ldots, n\} \text{ and } \sigma(i) \in \{1, \ldots, r\} \\
X_{\sigma(i)} > 0 & \text{if } i \in \{p + 1, \ldots, n\} \text{ and } \sigma(i) \in \{r + 1, \ldots, n\}
\end{cases} \right\}
\]

The result follows using that \(E_{\sigma,0} = \exp(\Gamma_{\sigma,0}) \).

\[\square\]

Proposition 6.5. Let \(\Pi \in \mathcal{R}(\mathbb{U}(p, q), \omega) \) be a discrete series representation of Harish-Chandra parameter \(\lambda_{a,b} \), as in Theorem 5.3 and let \((r, s) = (\tau_{\Pi}, s_{\Pi}) \) the unique integers such that \(\theta_{a,b}(\Pi) \neq 0 \). The value of \(\theta_{0}^\Pi \) on \(H^r_{\mathbb{C}} \) is given by

\[
\Delta_{\psi}(\tilde{h}^r) \Theta_{0}^\Pi(\tilde{h}^r) = 2(-1)^{p-r-b} \xi(\tau_{a,b}) C \sum_{\sigma \in \mathcal{S}_{r+1}} \mathcal{E}(\sigma, \tau_{a,b}^r) C \xi(\sigma(\tilde{h}^r)^{\tau_{a,b}^r})
\]

where \(\tau_{a,b} \in \mathcal{S}_{r+1} \) is defined by:

- If \(r \leq p \), \(\tau_{a,b} = (a + 1, p + b + 1)(a + 2, p + b + 2) \ldots (r, p + q) \),
- If \(p + 1 \leq r \leq p + b \), \(\tau_{a,b} \in \text{Stab}_{\mathcal{S}_{r+1}} \{(a, 1, \ldots, a) \cup \{r + 1, \ldots, p + b\}\} \) and satisfies:

\[
\tau_{a,b}(a + 1) = p + b + 1, \ldots, \tau_{a,b}(r) = r + s, \tau_{a,b}(p + b + 1) = a + 1, \ldots, \tau_{a,b}(p + q) = r.
\]
If $r \geq p + b + 1$, $\tau_{a,b} \in \text{Stab}_{\mathcal{F}_r}((1, \ldots, a) \cup \{p + b + 1, \ldots, r\})$ and satisfies

$$\tau_{a,b}(a + 1) = r + 1, \quad \tau_{a,b}(p + b) = r + s, \quad \tau_{a,b}(r + 1) = a + 1, \quad \tau_{a,b}(r + s) = p + b + 1.$$

Notation 6.6. For every subset $[i_1, \ldots, i_k]$ of $\{1, \ldots, p\}$ (resp. $[p + 1, \ldots, p + q]$, $[1, \ldots, r]$ or $[r + 1, \ldots, r + s]$), we denote by $[i_1, \ldots, i_k]^c$ the set $\{1, \ldots, p\} \setminus [i_1, \ldots, i_k]$ (resp. $[p + 1, \ldots, p + q] \setminus [i_1, \ldots, i_k]$, $[1, \ldots, r] \setminus [i_1, \ldots, i_k]$ or $[r + 1, \ldots, r + s] \setminus [i_1, \ldots, i_k]$).

For two subsets $[a_1, \ldots, a_m]$ and $[b_1, \ldots, b_n]$ of $\{1, \ldots, p + q\}$, we denote by $\mathcal{S}^{[b_1, \ldots, b_n]}_{[a_1, \ldots, a_m]}$ the groups of bijections between $[a_1, \ldots, a_m]$ and $[b_1, \ldots, b_n]$.

Similarly, for every $\beta \in \mathcal{F}_p \times \mathcal{F}_q$, we denote by $\mathcal{S}^{[\beta]}_{[\beta]}$ the groups of bijections between $\{\beta(a_1), \ldots, \beta(a_m)\}$ and $[b_1, \ldots, b_n]$.

Obviously,

$$\mathcal{F}_p \times \mathcal{F}_q = \bigcup_{[i_1, \ldots, i_k] \subseteq \{1, \ldots, p\}} \bigcup_{[j_1, \ldots, j_l] \subseteq \{1, \ldots, p + q\}} \mathcal{S}^{[j_1, \ldots, j_l]}_{[i_1, \ldots, i_k]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[j_1, \ldots, j_l]}_{[p + 1, \ldots, p + q] \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\}}$$

for every $1 \leq t \leq p$.

Proof. To simplify the notations, we will denote by $R(\sigma, \lambda_{a,b}, \beta, \sigma) \in \mathcal{F}_p \times \mathcal{F}_q$, the following term:

$$R(\sigma, \lambda_{a,b}, \beta) = \lim_{r \to \infty} \prod_{i=1}^{n} \int_{S^1} z^{(r \sigma)^{(i)}} dz$$

According to Lemmas 6.3 and 6.4, we get that $R(\sigma, \lambda_{a,b}, \beta) \neq 0$ if and only if

$$\sigma \circ \beta^{-1} \in \bigcup_{[i_1, \ldots, i_k] \subseteq \{1, \ldots, p\}} \bigcup_{[j_1, \ldots, j_l] \subseteq \{1, \ldots, r\}} \mathcal{S}^{[j_1, \ldots, j_l]}_{[i_1, \ldots, i_k]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[j_1, \ldots, j_l]}_{[p + 1, \ldots, p + q] \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\}}$$

We first assume that $r \leq p$. In this case, using that $[a + 1, \ldots, p] = [a + 1, \ldots, r] \cup \{r + 1, \ldots, p\}$, we get

$$\mathcal{F}_p \times \mathcal{F}_q = \left(\bigcup_{[i_1, \ldots, i_k] \subseteq \{1, \ldots, p\}} \bigcup_{[j_1, \ldots, j_l] \subseteq \{1, \ldots, r\}} \mathcal{S}^{[j_1, \ldots, j_l]}_{[i_1, \ldots, i_k]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[j_1, \ldots, j_l]}_{[p + 1, \ldots, p + q] \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\}} \circ \sigma_1 \right)$$

where $\sigma_1 = (a + 1, p + b + 1)(a + 2, p + b + 2) \cdots (r, p + q)$. For every $\beta \in \mathcal{F}_p \times \mathcal{F}_q$, there exists exactly $r!$ elements in $\sigma \in \mathcal{F}_p \times \mathcal{F}_q$ such that $\sigma \circ \beta^{-1} \in \mathcal{F}_p \times \mathcal{F}_q \circ \sigma_1$. Then,

$$\sum_{\sigma \in \mathcal{F}_p \times \mathcal{F}_q} \sum_{\beta \in \mathcal{S}^{[\beta]}_{[\beta]}} \epsilon(\sigma \beta) \lim_{r \to \infty} \prod_{i=1}^{n} \int_{S^1} z^{(r \sigma)^{(i)}} dz = (-1)^{p + q - a - b} (2i\pi)^{p + q} \sum_{\tau \in \mathcal{F}_p \times \mathcal{F}_q} \epsilon(\tau) \prod_{i=1}^{n} \int_{S^1} h^{(i \tau)^{(i)}} dz = (-1)^{p + q - a - b} (2i\pi)^{p + q} \sum_{\tau \in \mathcal{F}_p \times \mathcal{F}_q} \epsilon(\tau (1 \theta)^{(1 \theta)} \tau^{-1}) \sum_{i=1}^{n} \epsilon(\tau (1 \theta)^{(1 \theta)} \tau^{-1})^{(i \theta)}$$

where $\xi = \frac{n}{2} \theta$, i.e.

$$\Delta (1 \theta)^{(1 \theta)} = 2(1 \theta)^{p + q - a - b} \epsilon(\sigma_1) \sum_{\tau \in \mathcal{F}_p \times \mathcal{F}_q} \epsilon(\tau (1 \theta)^{(1 \theta)}) \tau^{-1}(1 \theta).$$

Now assume that $r > p$. We distinguish two cases. If $p + 1 \leq r \leq p + b$, then,

$$\mathcal{F}_p \times \mathcal{F}_q = \left(\bigcup_{[i_1, \ldots, i_k] \subseteq \{1, \ldots, p\}} \bigcup_{[j_1, \ldots, j_l] \subseteq \{1, \ldots, r\}} \mathcal{S}^{[j_1, \ldots, j_l]}_{[i_1, \ldots, i_k]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[\beta]}_{[\beta]} \times \mathcal{S}^{[j_1, \ldots, j_l]}_{[p + 1, \ldots, p + q] \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\} \cup \{p + 1, \ldots, p + q\}} \circ \sigma_2 \right)$$

where $\sigma_2 = (a + 1, p + b + 1)(a + 2, p + b + 2) \cdots (r, p + q)$.
for every $\eta \in \mathcal{S}_{p+b}$ satisfying $\eta[1, \ldots, a] = [1, \ldots, a]$, $\eta[r+1, \ldots, p+b] = [r+1, \ldots, p+b]$, $\eta[a+1, \ldots, r] \subseteq [p+b+1, \ldots, r+s]$ and $\eta[p+b+1, \ldots, p+q] \subseteq [a+1, \ldots, r]$. Let σ_2 be the element of $\text{Stab}_{\mathcal{S}_{p+b}}([1, \ldots, a] \cup [r+1, \ldots, p+b])$ given by

$$\sigma_2(a+1) = p + b + 1, \ldots, \sigma_2(r) = r + s, \sigma_2(p + b + 1) = a + 1, \ldots, \sigma_2(p + q) = r.$$

This element satisfy the previous conditions and we get:

$$\Delta_{\Psi}(\hat{h}')\Theta_1'(\hat{p}(\hat{h}')) = 2(-1)^{p+q-a-b}\epsilon(\sigma_2)\sum_{\tau \in \mathcal{S}_{p+b}} e(\tau)(\tau\hat{h}')^{\tau\sigma_2(a)}.$$

Similarly, $r \geq p + b + 1,$

$$\mathcal{S}_{r} \times \mathcal{S}_{r} = \left(\bigcup_{(1 \ldots, a) \in [1 \ldots, r]} \bigcup_{(p + 1 \ldots, p + b) \in [r + 1 \ldots, r + s]} \mathcal{S}_{(1 \ldots, a)} \times \mathcal{S}_{(p + 1 \ldots, p + b)} \times \mathcal{S}_{(r + 1 \ldots, r + s)} \right) \circ \eta,$$

for every $\eta \in \mathcal{S}_{r+2}$ satisfying $\eta[1, \ldots, a] = [1, \ldots, a]$, $\eta[p+b+1, \ldots, r] = [p+b+1, \ldots, r]$, $\eta[a+1, \ldots, p+b] \subseteq [r+1, \ldots, r+s]$ and $\eta[r+1, \ldots, r+s] \subseteq [a+1, \ldots, p+b+1]$. Let σ_3 be the element of $\text{Stab}_{\mathcal{S}_{p+b}}([1, \ldots, a] \cup [p + b + 1, \ldots, r])$ given by

$$\sigma_3(a + 1) = r + 1, \ldots, \sigma_3(p + b) = r + s, \sigma_3(r + 1) = a + 1, \ldots, \sigma_3(s + r) = p + b + 1.$$

This element satisfies the previous conditions and we get:

$$\Delta_{\Psi}(\hat{h}')\Theta_1'(\hat{p}(\hat{h}')) = 2(-1)^{p+q-a-b}\epsilon(\sigma_3)\sum_{\tau \in \mathcal{S}_{p+b}} e(\tau)(\tau\hat{h}')^{\tau\sigma_3(a)}.$$

\[\square\]

Proposition 6.7. For every $\Pi \in \mathcal{R}(\tilde{U}(p, q), \omega)$, we get

$$\sup_{\tilde{\eta} \in \mathcal{G}_{\Psi}} |D(\tilde{\eta})|^2 |\Theta_1'(\tilde{\eta})| < \infty.$$

We first need to introduce some notations.

Notation 6.8. Let $k \in \left[1, \min(r, s)\right]$, we denote by $\eta^+_{\mathcal{S}_{k}} = \text{Ad}(c_{\Pi}(S_k))^{-1}(\eta'(S_k)) \subseteq \eta^+_\Pi$, where $\eta^+_\Pi = \bigoplus_{\alpha \in \Psi} \eta^+_{\mathcal{S}_{\alpha}}$ where $\eta^+_{\mathcal{S}_{\alpha}}$ is the eigenspace corresponding to $\alpha \in \Psi$.

By keeping the notations of Section 3 we get that Ψ' can be decomposed as follow:

\[\Psi' = \Psi'((g(U_k)) \times \Psi'((u(U_k))) \cup \Psi'((\eta'(S_k))), \quad (k \in \left[1, \min(p, \min(r, s))\right]).\]

Finally, we denote by $\Psi'((g(U_k)))$ the Weyl group corresponding to $(g(U_k)_{\mathcal{S}_{k}} \cup l_2(S_k))_{\mathcal{S}_{k}}$.

Lemma 6.9. For every $\hat{h}' \in \tilde{H}(S_k)^{\text{reg}}$, $\det(\text{Id} - \text{Ad}(\hat{h}'))_{\eta'(S_k)} \in \mathbb{R}_+^*.$

Proof. To make things easier, we will consider $S_k = \{e_1 - e_{r+s-1}, \ldots, e_k - e_{r+s}\}$. As in Equation (2), we have:

$$H_{S_k} = c(S_k)^{-1} H(S_k) c(S_k) = \left\{ h' = (e^{q_0 + x_1}, \ldots, e^{q_0 + x_t}, t_1, \ldots, t_{r+s-2k}, e^{q_0 + x_1}, \ldots, e^{q_0 + x_t}, t) \in U(1), q_0, x \in \mathbb{R} \right\}.$$

We denote by $h'_1 = c(S_k)^{-1} H(S_k)$. Obviously, we get:

$$\det(\text{Id} - \text{Ad}(\hat{h}'))_{\eta'(S_k)} = \det(\text{Id} - \text{Ad}(h'_1))_{\eta'(S_k)} = \det(\text{Id} - \text{Ad}(h'_1))_{\eta'(S_k)} = \det(\text{Id} - \text{Ad}(h'_1))_{\eta'(S_k)}.$$

We know that

$$\det(\text{Id} - \text{Ad}(h'_1))_{\eta'(S_k)} = \prod_{\alpha \in \Psi'(\eta'(S_k))} (1 - h''_{\eta'(S_k)}),$$
and that
\[\Psi'(\eta'(S_2)) = \{e_i - e_j, 1 \leq i \leq k, k + 1 \leq j \leq r + s - k\} \cup \{e_i - e_j, k + 1 \leq i \leq r + s - k, r + s - k + 1 \leq j \leq r + s\}.
\]
Let \(\alpha_1 = e_i - e_j\), with \(1 \leq i \leq k, k + 1 \leq j \leq r + s - k\) and let \(\alpha_2 = e_{j+s-r+1}\). Then,
\[
(1 - \hat{h}_1^m)(1 - \hat{h}_1^{m_2}) = (1 - e^{i \hat{h}_1 \hat{t}_{j-k}})(1 - \hat{t}_{j-k} e^{-i \hat{h}_1 \hat{t}_{j-k}}) = |1 - e^{i \hat{h}_1 \hat{t}_{j-k}}|^2,
\]
and the result follows.

\[
\square
\]

Proof of Proposition 4.7 Without loss of generality, we can assume that \(r \leq s\). We distinguish two cases. We first start with \(p \leq r\). Note that in this case, \(H_\alpha = H_\alpha^\prime\) (resp. \(H(S_i) = H'(S_i)\)) for every \(0 \leq i \leq p\), with \(S_i = \{e_{i-1} - e_{i+1}, \ldots, e_i - e_{i+r}\}\) as in Notation [2.3.3.6.2].

In this case, we get, using [2.3.3.6.4], that for every \(\varphi \in \mathcal{C}_c(\hat{G}')\):
\[
\Theta_{\tilde{H}}(\varphi) = \int_{\hat{G}'} \Theta_{\tilde{H}}(\tilde{g}) \varphi(\tilde{g}) d\tilde{g} = \sum_{i=0}^\infty \int_{\mathcal{L}_0} \mathcal{E}_{\mathcal{L}_{0}}(\hat{h}) \mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h})) d\hat{h}
\]
\[
= \sum_{i=0}^\infty \int_{\mathcal{L}_0} \mathcal{E}_{\mathcal{L}_{0}}(\hat{h}) \mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h})) d\hat{h} = e^{-i \hat{h}_1 \hat{t}_0} \int_{\mathcal{L}_0} \mathcal{E}_{\mathcal{L}_{0}}(\hat{h}) \mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h})) d\hat{h}
\]
\[
= e^{-i \hat{h}_1 \hat{t}_0} \int_{\mathcal{L}_0} \Theta_{\tilde{H}}(\hat{h}) d\hat{h} = e^{-i \hat{h}_1 \hat{t}_0} \int_{\mathcal{L}_0} \varphi(\hat{g}) \hat{g}^{-1} d\hat{g}
\]
\[
(11) + \sum_{i=1}^p m_i \int_{\mathcal{L}_0} \mathcal{E}_{\mathcal{L}_{0}}(\hat{h}) \mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h})) d\hat{h} = e^{-i \hat{h}_1 \hat{t}_0} \int_{\mathcal{L}_0} \varphi(\hat{g}) \hat{g}^{-1} d\hat{g}
\]

where \(\mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h})) = \mathcal{H}_0(\hat{h}) \mathcal{H}_0(\Theta_{\tilde{H}}(\hat{h}))\) as in Remark [2.3.3.6.2]. \(L'(S_i)\) is defined in Section [2.3.3.6.1] and \(\Lambda(c(S_i), \hat{h})\) is given by:
\[
\Lambda(c(S_i), \hat{h}) = \frac{D_{L'(S_i)}(c(S_i), \hat{h})}{D_{L'(S_i)}(c(S_i), \hat{h})} = \frac{\det(\text{Id} - Ad(c(S_i), \hat{h})(c(S_i))^{-1})}{\det(\text{Id} - Ad(c(S_i), \hat{h})(c(S_i))^{-1})}
\]

Using that \(\Theta_{\tilde{H}} = \text{Chc}^\ast(\Theta_{\tilde{H}})\), we get:
\[
\Theta_{\tilde{H}}(\varphi) = \sum_{i=0}^\infty \int_{\mathcal{L}_0} \Theta_{\tilde{H}}(\hat{h}) d(\text{Id} - Ad(\hat{h})^{-1})_{S_i} \varphi(\hat{h}) d\hat{h}
\]
Using Equation [7.1], we get that:
\[
\Theta_{\tilde{H}}(\varphi) = \sum_{i=0}^p \int_{\mathcal{L}_0} \int_{\mathcal{L}_0} \int_{\mathcal{L}_0} \Theta_{\tilde{H}}(\tilde{g}) d(\text{Id} - Ad(\tilde{g})^{-1})_{S_i} \varphi(\tilde{g}) d\tilde{g}
\]
\[
(12) = \sum_{i=0}^p \int_{\mathcal{L}_0} \int_{\mathcal{L}_0} \int_{\mathcal{L}_0} \Theta_{\tilde{H}}(\tilde{g}) d(\text{Id} - Ad(\tilde{g})^{-1})_{S_i} \varphi(\tilde{g}) d\tilde{g}
\]

\[
\int_{\mathcal{L}_0} \varphi(\tilde{g}) d\tilde{g} = \int_{\mathcal{L}_0} \varphi(\tilde{g}) d\tilde{g}
\]

\[
21
\]
Let \(i \in [1, r] \) and \(\varphi \in \mathcal{C}_c^\infty(\overline{G}) \) such that \(\text{supp}(\varphi) \subseteq \overline{G} \cdot \overline{\text{R}(S_j)} \). On one hand, using Equation (11), we get:

\[
\Theta_i(\varphi) = m \int_{\mathcal{T}_j(S_j)} \Theta_i(\varphi_{i^*}(\cdot, \cdot)^{-1}) \Delta G_i(\cdot)^{-1} \Delta G_i(\cdot)^{-1} \lambda(\cdot) \int_{U(S_j)/H(S_j)} \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) d\lambda_{(\cdot)}
\]

\[
= m \int_{\mathcal{T}_j(S_j)} \int_{\mathcal{T}_j(S_j)} \epsilon(\cdot, \cdot) \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \int_{U(S_j)/H(S_j)} \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) d\lambda_{(\cdot)}
\]

In particular, for every \(j < i \), we get from Equation (3):

\[
\Theta_j(\varphi) = m \int_{\mathcal{T}_j(S_j)} \int_{\mathcal{T}_j(S_j)} \epsilon(\cdot, \cdot) \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \int_{U(S_j)/H(S_j)} \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) d\lambda_{(\cdot)}
\]

On the other hand, it follows from Equation (12) that

\[
\Theta_i(\varphi) = \sum_{j=0}^{\min(m, r)} C_j \int_{\mathcal{T}_j(S_j)} \gamma_{N(S_j)} \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \int_{U(S_j)/H(S_j)} \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) d\lambda_{(\cdot)}
\]

Using Lemma [5,12] and the equality \(c(S_j)c_i^j = c(S_j) \), we get:

\[
\Theta_i(\varphi) = \sum_{j=0}^{\min(m, r)} C_j \int_{\mathcal{T}_j(S_j)} \gamma_{N(S_j)} \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \int_{U(S_j)/H(S_j)} \varphi_{N(S_j)}(\cdot) \left(\lambda(\cdot) \right)^{-1} \epsilon(\cdot, \cdot) d\lambda_{(\cdot)}
\]
As explained in Remark 3.11, for every $0 \leq j \leq i$, we have the following decomposition $H'(S_i) = T'_1(S_i) \times \pi'(S_j) \times T'_1(S_{i+j}) \times \pi'(S_{i+j})$. In particular, every element $h \in H'(S_i)$ can be written as $h = t_{ij, \alpha} h_j t_{i, \alpha}$. We get similar results for H'_S. In particular, we get that the value of Θ'_{ij} on $H'(S_i)$ is given by:

$$\Theta'_{ij}(c(S_i)\hat{p}(\hat{h})c(S_i)^{-1})|\Delta_G(\hat{h})|^{2} \Lambda(c(S_i)\hat{p}(\hat{h})c(S_i)^{-1}) = \sum_{j=0}^{\min(i,p)} C_j \sum_{\sigma \in W(U_{ij})} \varepsilon(\sigma)$$

$$\Delta_{\Psi'_{ij}(U_{ij})}(\hat{h}t_{ij}) \det^{-2}(\sigma^{-1}(\hat{h}t_{ij})) W_{ij}^{2, \sigma} \Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})$$

$$\lim_{\sigma \to 1} \int_{T_{x,y}} \frac{\Delta_{\Psi'_{ij}(U_{ij})}(\hat{h}t_{ij}) \det(\sigma^{-1}(\hat{h}t_{ij})) W_{ij}^{2, \sigma} \Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1}) \det(Id - \Ad(c(S_j)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_j)^{-1}))_{\pi(S_j)} \det(1 - p(\hat{h}t_{ij}))_{\pi(S_j)} d\hat{h}}{\Delta_{\Psi'_{ij}(U_{ij})}(\hat{h}) \det(Id - \Ad(c(S_j)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_j)^{-1}))_{\pi(S_j)} \det(1 - (\hat{h}t_{ij}))_{\pi(S_j)}}$$

Using Equation 10, we get

$$\frac{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}|\Delta_G(\hat{h}t_{ij})|^{2} \Lambda(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1}) = \prod_{\sigma \in \Psi'_{ij}(U_{ij})} |1 - (\hat{h}t_{ij})_{\pi(S_j)}(\hat{h}t_{ij})_{\pi(S_j)}|$$

and

$$\frac{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}|\Delta_G(\hat{h}t_{ij})|^{2} \Lambda(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1}) = \prod_{\sigma \in \Psi'_{ij}(U_{ij})} |1 - (\hat{h}t_{ij})_{\pi(S_j)}(\hat{h}t_{ij})_{\pi(S_j)}|$$

so in particular

$$\frac{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}{\Delta_{\Psi'_{ij}(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1})}|\Delta_G(\hat{h}t_{ij})|^{2} \Lambda(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1}) = 1$$

Finally,

$$\Delta_{\Psi'(U_{ij})}(c(S_i)\hat{p}(\hat{h})c(S_i)^{-1}) = \sum_{j=0}^{\min(i,p)} C_j \sum_{\sigma \in W(U_{ij})} \varepsilon(\sigma) \prod_{\sigma \in \Psi'(U_{ij})} |1 - (\hat{h})_{\pi(S_j)}(\hat{h})_{\pi(S_j)}|$$

$$\lim_{\sigma \to 1} \int_{T_{x,y}} \frac{\Theta_{ij}(c(S_j)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_j)^{-1}) \Delta_{\Psi'(U_{ij})}(c(S_i)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_i)^{-1}) \det(Id - \Ad(c(S_j)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_j)^{-1}))_{\pi(S_j)} \det(1 - p(\hat{h}t_{ij}))_{\pi(S_j)} d\hat{h}}{\Delta_{\Psi'(U_{ij})}(\hat{h}) \det(Id - \Ad(c(S_j)\hat{p}(t_{ij}\hat{h}t_{ij})c(S_j)^{-1}))_{\pi(S_j)} \det(1 - (\hat{h}t_{ij}))_{\pi(S_j)}}$$

Again, we get from Equation 10 that

$$\Delta_{\Psi'}(t_{ij} \hat{h}) = \prod_{\sigma \in \Psi'(U_{ij})} \Delta_{\Psi'(U_{ij})}(\hat{h}) \Delta_{\Psi'(U_{ij})}(t_{ij} \hat{h})$$

$$= \prod_{\sigma \in \Psi'(U_{ij})} \Delta_{\Psi'(U_{ij})}(\hat{h}) \prod_{\sigma \in \Psi'(U_{ij})} (1 - (t_{ij} \hat{h}))^{\alpha}$$

then,

$$\Delta_{\Psi'}(\hat{h}) \Theta'_{ij}(c(S_i)\hat{p}(\hat{h})c(S_i)^{-1}) = \sum_{j=0}^{\min(i,p)} C_j \sum_{\sigma \in W(U_{ij})} \varepsilon(\sigma) \det^{-2}(\sigma^{-1}(\hat{h}t_{ij})) W_{ij}^{2, \sigma} \varepsilon(c(S_i)\hat{p}(\hat{h}t_{ij})c(S_i)^{-1})$$
with Harish-Chandra parameter $\lambda_{a,b}$ as in Theorem 5.9. For every $z \in \mathbb{Z}(\mathbb{W}(q(r + s, \mathbb{C})))$, we get:

$$z\Theta^r_{\Pi} = \chi'_{\lambda_{a,b}}(z)\Theta^r_{\Pi},$$

where $\chi'_{\lambda_{a,b}} = \lambda'_{a,b}(\gamma(z))$ as in Appendix A Remark A.9.

Proof. Obviously, in the equal rank case, $\mathbb{W}(\mathbb{G}_{\Pi}) = \mathbb{W}(\mathbb{G}_{\Pi}^*)$. It follows from [13] Theorem 1.4] that $\text{Chc}^*(z\Theta_{\Pi}) = z\text{Chc}(\Theta_{\Pi})$. Because $\lambda_{a,b}$ and $\lambda'_{a,b}$ are conjugated under \mathcal{F}_{r+s}, the result follows from Theorem 5.10.

Corollary 6.11. For every discrete series representation Π of $\mathbb{U}(p, q)$, we get

$$\text{Chc}^*(\Theta_{\Pi}) = C\Theta_{\Pi,c}(\Pi),$$

with $C \in \mathbb{C}$.

Proof. Using Theorem 5.6 it follows from Propositions 6.3 and 6.7 and Lemma 6.10 that, up to a scalar, $\Theta_{\Pi}^r = \text{Chc}^*(\Theta_{\Pi})$ is either the character of a discrete series representations of $\mathbb{U}(r, s)$ with Harish-Chandra parameter $\tau_{a,b}(\lambda_{a,b})$ if $(r, s) = (r_1, s_1)$ or 0 if $(r, s) \neq (r_1, s_1)$. The result follows from Theorem 5.4 because $\tau_{a,b}(\lambda_{a,b})$ and $\lambda'_{a,b}$ (as in Theorem 5.9) are conjugated under $\mathcal{F}_r \times \mathcal{F}_s$.
Corollary 6.12. If \((G, G') = (U(p, q), U(r, s)), p + q = r + s\) and \(\Pi \in \hat{\mathcal{R}}(\tilde{G}, \omega)\) a discrete series representation of \(\tilde{G}\). Then, the conjecture \(\ref{conjecture2.7}\) holds.

Proof. It follows from Theorem \(\ref{theorem2.2}\) because \(\Pi' = \Pi'_1\).

\(\square\)

7. A commutative diagram and a remark on the distribution \(\Theta_{\Pi'}\)

We start this section by recalling a result of T. Przebinda (see \(\ref{przebinda22}\)). Let \((G, G') = (G(V, (\cdot, \cdot), G(V', (\cdot, \cdot))))\) be an irreducible reductive dual pair in \(\text{Sp}(W)\). As proved in \(\ref{przebinda14}\) (see also Section \(\ref{section2}\)), the representations appearing in the correspondence are realized as quotients of \(\mathcal{H}^\infty\), the set of smooths vectors of the metaplectic representation \((\omega, \mathcal{H})\). Let \(\Pi \in \hat{\mathcal{R}}(\tilde{G}, \omega), \Pi'\) the corresponding element of \(\hat{\mathcal{R}}(G, \omega)\) and \(N(\Pi \otimes \Pi')\) the \(\omega^\infty(\tilde{G} \cdot \tilde{G}')\)-equivariant subspace of \(\mathcal{H}^\infty\) such that \(\Pi \otimes \Pi' \approx \mathcal{H}^\infty/N(\Pi \otimes \Pi')\) as in Section \(\ref{section2}\).

In particular,

\[(\Pi \otimes \Pi')^* \approx (\mathcal{H}^\infty/N(\Pi \otimes \Pi'))^* \approx \text{Ann}(N(\Pi \otimes \Pi')) = \{\alpha \in \mathcal{H}^\infty^*, \alpha(X) = 0, (\forall X \in N(\Pi \otimes \Pi'))\} \subseteq \mathcal{H}^\infty^*\],

i.e. there exists a unique element, up to a constant, \(\Gamma_{\Pi \otimes \Pi'} \in \text{Hom}(\mathcal{H}^\infty^*, \mathcal{H}^\infty^*)\) such that \(\text{Hom}_{G, G'}(\omega, \Pi \otimes \Pi') = \mathbb{C} \cdot \Gamma_{\Pi \otimes \Pi'}\).

Remark 7.1. Let \(W = X \otimes Y\) be a complete polarization of \(W\). It is well-known that we can realize the representation \(\omega\) on \(\mathcal{H} = L^2(X)\): this is the Schrödinger model. Moreover, the space of smooth vectors of \(\omega\) is the Schwartz space \(S(X)\) of \(X\).

Using the isomorphisms \(\mathcal{H} : S^*(W) \rightarrow S^*(X \times X)\) and \(\text{Op} : S^*(X \times X) \rightarrow \text{Hom}(S(X), S^*(X))\) (see \(\ref{halb12}\) Equations \(\ref{equation143}\) and \(\ref{equation146}\)), there exists a unique distribution \(f_{\Pi \otimes \Pi'} \in S^*(W)\) such that \(\Gamma_{\Pi \otimes \Pi'} = \text{Op} \circ \mathcal{H}(f_{\Pi \otimes \Pi'})\). The distribution \(f_{\Pi \otimes \Pi'}\) is called the intertwining distribution corresponding to \(\Pi \otimes \Pi'\).

As explained in \(\ref{halb17}\) Section \(\ref{section2}\), the situation turns out to be slightly easier when \(\text{dim}(V) \leq \text{dim}(V')\) and \((\Pi, \mathcal{H}_{\Pi})\) a discrete series representation of \(\tilde{G}\). Under those hypothesis, the space \(\mathcal{H}_{\Pi}^\infty \otimes \mathcal{H}_{\Pi'}^\infty\) has a natural structure of \(\tilde{G}\)-modules. Using the scalar products on \(\mathcal{H}\) and \(\mathcal{H}_{\Pi}\), we get a natural inner product \(\langle \cdot, \cdot \rangle\) on \(\mathcal{H}_{\Pi}^\infty \otimes \mathcal{H}_{\Pi'}^\infty\). We denote by \(\langle \cdot, \cdot \rangle_{\Pi}\) the following form on \(\mathcal{H}_{\Pi}^\infty \otimes \mathcal{H}_{\Pi'}^\infty\):

\[\langle \Phi, \Phi' \rangle_{\Pi} = \int_{\tilde{G}} \langle \Phi, (\omega \otimes \Pi)(g) \Phi' \rangle dg, \quad (\Phi, \Phi' \in \mathcal{H}_{\Pi}^\infty \otimes \mathcal{H}_{\Pi'}^\infty).\]

One can easily prove that in this context, the previous integral converges absolutely. We denote by \(R(\Pi)\) the radical of the form \(\langle \cdot, \cdot \rangle_{\Pi}\) and we still denote by \(\langle \cdot, \cdot \rangle_{\Pi}\) the non-degenerate form we got on \(H(\Pi) = \mathcal{H}_{\Pi}^\infty \otimes \mathcal{H}_{\Pi'}^\infty/R(\Pi)\). The group \(\tilde{G}\) acts naturally on \(\Pi(\Pi)\) and we denote by \(\theta_0(\Pi)\) the corresponding \(\tilde{G}\)-module.

Theorem 7.2 (\(\ref{halb17}\) Section \(\ref{section2}\)).

1. There exists \(u_0, v_0 \in \mathcal{H}_{\Pi}^\infty\) and \(x, y \in \mathcal{H}_{\Pi'}^\infty\) such that

\[\int_{\tilde{G}} \langle u_0 \otimes x, (\omega \otimes \Pi)(g)(v_0 \otimes y) \rangle_{\Pi} \neq 0.\]

Moreover, we get

\[\int_{\tilde{G}} |(\omega(g)u, v)|^2 dg < +\infty, \quad (u, v \in \mathcal{H}_{\Pi}^\infty).\]

2. The representation \(\Pi\) can be embedded in \(\omega\) as an irreducible subrepresentation and \(\theta_0(\Pi)\) defines an irreducible unitary representation on the completion of \(H(\Pi)\) (completion with respect to \(\langle \cdot, \cdot \rangle_{\Pi}\)).

3. The map \(\Pi \rightarrow \theta_0(\Pi')\) coincide with Howe’s duality correspondence.
We get the following proposition.

Proposition 7.3. Let \((G, G') = (U(V), U(V'))\) with \(\dim(V) \leq \dim(V')\) and \(Π\) be a discrete series representation of \(G\). The intertwining distribution is given by \(T(\Theta_{Π}) = \int_{G} \Theta_{Π}(g) T(\tilde{g}) dg\).

Proof. As explained in [22, Theorem 3.1], the previous Lemma follows if the following condition

\[
\int_{G} |\Omega(\tilde{g})||\Theta_{Π}(\tilde{g})| |dg| < \infty
\]

is satisfied, where \(Ω\) is defined in Appendix B. Using Lemma B.1, it follows that there exists \(C_Ω > 0\) such that

\[
\int_{G} |\Omega(\tilde{g})||\Theta_{Π}(\tilde{g})| |dg| \leq C_Ω \int_{G} \Xi(\tilde{g}) |\Theta_{Π}(\tilde{g})| |dg|.
\]

Using the fact that every discrete series satisfies the strong inequality (see [26, Section 5.1]), it follows from [26, Lemma 5.1.3] that

\[
\int_{G} \Xi(\tilde{g}) |\Theta_{Π}(\tilde{g})| |dg| < \infty,
\]

and the proposition follows.

Corollary 7.4. Assume that \((G, G') = (U(p,q), U(r,s))\), with \(p + q = r + s\), and let \(Π\) be a discrete series representation of \(G\). Then, there exists a constant \(C_{Π(Π)} \in C\) such that \(T(\Theta_{Π}) = C_{Π(Π)} T(\chi C(\Theta_{Π}))\).

Proof. The proof of this corollary follows from Corollary 6.11 and Proposition 7.3.

We finish this section with a remark concerning the global character \(Θ_{Π'}\). \(Π' = θ(Π)\) and \(Π \in \mathcal{H}(G, Ω)\) a discrete series representation. We proved in Corollary 6.11 that \(\chi C(Θ_{Π}) = Θ_{Π'}\) if \(rk(G) = rk(G')\). But the global character \(Θ_{Π'}\) can be obtained via \(Θ_{Π}\) in a different way.

As before, we assume that \(rk(G) \leq rk(G')\). In particular, every discrete series representation \(Π \in \mathcal{H}(G, Ω)\) is a sub-representation of \(ω\) and let \(\mathcal{H}(Π)\) be the \(Π\)-isotypic component of \(\mathcal{H}\). As explained in Proposition 7.3, \(T(\Theta_{Π})\) is well-defined. Moreover, using [11, Section 4.8], the operator \(ω(\Theta_{Π})\) is a well-defined operator of \(\mathcal{H}\) and one can check that \(\mathcal{H}(Π) := ω(\Theta_{Π})\) is a projection operator onto \(\mathcal{H}(Π)\). As a \(G \times G'\)-modules, we get \(\mathcal{H}(Π) = Π \otimes Π'\).

Let \(l\) be the Harish-Chandra parameter of \(Π\) and \(ν\) the lowest \(K\)-type of \(Π\). In particular, according to Theorem 5.4 as a \(K \times G'\), we get:

\[
\mathcal{H}(Π) = \bigoplus_{ξ \in K_Π} m_ξ Π_ξ \otimes Π' = Π_ν \otimes Π' \oplus \bigoplus_{ξ \neq ν \in K_Π} m_ξ Π_ξ \otimes Π',
\]

where \(Π_ξ\) is a \(K\)-module of highest weight \(ξ\) and \(K_{Π}\) is the set of irreducible representations of \(K\) such that \(Hom_K(\mathcal{H}_ξ, \mathcal{H}) \neq \{0\}\). We denote by \(\mathcal{H}(Π)(ν)\) the \(ν\)-isotypic component of \(\mathcal{H}(Π)\). We denote by \(\mathcal{P}_ν : \mathcal{H}(Π) \rightarrow \mathcal{H}(Π)(ν)\) the corresponding projection operator and let \(\mathcal{P}_{Π,ν} = \mathcal{P}_ν \circ Π_ν\). Clearly, \(\mathcal{P}_{Π,ν} = Π(\mathcal{P}_{Π,ν}) \circ ω(\Theta_{Π})\). In particular, for every \(φ \in \mathcal{H}(G)\), we get:

\[
Θ_{Π}(φ) = \frac{1}{d_ν} \text{tr}(\mathcal{P}_{Π,ν} \circ ω(φ)) = \frac{1}{d_ν} \text{tr}(\mathcal{P}_{Π,ν} \circ ω(φ)).
\]
In particular, if \(\text{rk}(G) = \text{rk}(G') \), we get using Corollary [6,11] that:

\[
\sum_{r=0}^{p} \frac{1}{|W(H_i)|} \int_{H_i} \Theta_{1}(h_i) |\det(\text{Ad}(h_i)^{-1})| C_{\hbar/|h_i|} \psi(h_i) dh_i = d_{1,\tr} \left(\int_{K} \int_{G} \int_{G'} \Theta_{1}(k) \Theta_{1}(g) \psi(g') \omega(kgg') dg' dg dk \right).
\]

Appendix A. Some standard isomorphisms

A.0.1. Universal envelopping algebra of \(\mathfrak{g} \) as differential operators on \(G \). Let \(M \) be a real connected manifold of dimension \(n \). We denote by \(\mathcal{C}^\infty(M) \) the space of smooth functions and \(\mathcal{C}^\infty_c(M) \) the space of compactly supported function on \(\mathcal{C}^\infty(M) \).

We denote by \(\mathcal{D}(M) \) the set of derivations of \(\mathcal{C}^\infty(M) \), i.e.

\[\mathcal{D}(M) = \{ X : \mathcal{C}^\infty(M) \rightarrow \mathcal{C}^\infty(M), X(fg) = X(f)g + fX(g) \}. \]

The space \(\mathcal{D}(M) \) is the set of \(\mathcal{C}^\infty \)-vectors fields of \(M \).

Definition A.1. A continuous endomorphism \(D \) of \(\mathcal{C}^\infty_c(M) \) is called a differential operator if whenever \(U \) is an open set in \(M \) and \(f \) a function of \(\mathcal{C}^\infty_c(M) \), vanishing on \(U \), then \(Df \) vanishes on \(U \).

Proposition A.2. Let \(D \) be a differential operator on \(M \). For each \(p \in M \) and each open connected neighbourhood \(U \) of \(p \) on which the local coordinates system \(\Psi : x \rightarrow (x_1, \ldots, x_n) \) is valid, there exists a finite set of functions \(a_a \) of class \(\mathcal{C}^\infty \) such that for each \(f \in \mathcal{C}^\infty_c(M) \) with support contained in \(U \),

\[
Df(x) = \begin{cases}
\sum_{a=a_1, \ldots, a_n} a_a(x) D^a f \circ \Psi^{-1}(x) & \text{if } x \in U \\
0 & \text{otherwise}
\end{cases}
\]

Proof. The proof of this result can be found in [11, Proposition 1].

Notation A.3. We denote by \(\text{D}(M) \) the set of differential operators.

From now on, we assume that \(G = M \) is a connected Lie group. We denote by \((L, \mathcal{L}^2(G, dg)) \) the left regular representation. Obviously, the space \(\mathcal{C}^\infty_c(G) \) is \(G \)-invariant.

We define an action of \(G \) on \(\text{D}(G) \) by

\[
\tau(g) \text{D}(f) = L_g \circ \text{D}(f \circ L_{g^{-1}}) \quad (g \in G, f \in \mathcal{C}^\infty_c(G), \text{D} \in \text{D}(G)).
\]

Definition A.4. We say that \(\text{D} \in \text{D}(G) \) is left-invariant if \(\tau(g) \text{D} = \text{D} \) for all \(g \in G \), i.e. \(L_g \circ \text{D}(f) = \text{D}(f \circ L_{g}^{-1}) \).

We denote by \(\text{D}_L(G) \) the set of left-invariant differential operators of \(G \). Similarly, we say that \(\text{D} \) is right invariant if \(\tau_1(g)\text{D} = \text{D} \) for every \(g \in G \), where

\[
\tau_1(g) \text{D}(f) = R_{g^{-1}} \circ \text{D}(f \circ R_g) \quad (f \in \mathcal{C}^\infty_c(G)).
\]

The operator \(\text{D} \) is said to be bi-invariant if \(\tau(g) \tau_1(h) \text{D} = \text{D} \) for every \(g, h \in G \), i.e. \(R_h^{-1} \circ L_g \circ \text{D}(L_{g^{-1}} \circ f \circ R_h) = \text{D}(f) \) for every \(f \in \mathcal{C}^\infty_c(G) \).
Notation A.5. We denote by $D^G(G)$ the set of right-invariant differential operators and by $D^G_G(G)$ the set of bi-invariant differential operators.

We recall the following result.

Theorem A.6. The natural embedding $\mathfrak{g} \to D^G(G)$ extends to an algebra isomorphism $U(\mathfrak{g}) \to D^G_G(G)$.

Moreover, its restriction to $Z(U(\mathfrak{g}))$ is isomorphic $D^G_G(G)$.

Proof. The proof of this result can be found in [12]. □

A.0.2. Harish-Chandra isomorphism. Let \mathfrak{g} be a complex reductive Lie algebra and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. We denote by $W = W(\mathfrak{g}, \mathfrak{h})$ the corresponding Weyl group. We denote by η^+ the subalgebra of \mathfrak{g} given by $\eta^+ = \sum_{\alpha \in \Phi^+(\mathfrak{g}, \mathfrak{h})} \mathbb{C}X_\alpha$, where $\mathfrak{g}_\alpha = \mathbb{C}X_\alpha$. Similarly, we denote by \mathcal{N} and \mathcal{P} the following subspaces of $\mathcal{U}(\mathfrak{g})$ given by:

$$
\mathcal{N} = \sum_{\alpha \in \Phi^+(\mathfrak{g}, \mathfrak{h})} Y_\alpha \mathcal{U}(\mathfrak{g}) \quad \mathcal{P} = \sum_{\alpha \in \Phi^+(\mathfrak{g}, \mathfrak{h})} X_\alpha \mathcal{U}(\mathfrak{g}),
$$

where Y_α is a basis of $\mathfrak{g}_{-\alpha}$.

Lemma A.7. We get the following decomposition:

$$
\mathcal{U}(\mathfrak{g}) = \mathcal{U}(\mathfrak{h}) \oplus (\mathcal{P} + \mathcal{N}).
$$

We denote by $p_1 : \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{h})$ the natural projection corresponding to Equation (14). We restrict this map to $Z(\mathcal{U}(\mathfrak{g}))$. We denote by ξ_1 the map:

$$
\xi_1 : \mathfrak{h} \ni h \to \xi_1(h) = h - \rho(h).1 \in S(\mathfrak{h}),
$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+(\mathfrak{g}, \mathfrak{h})} \alpha \in \mathfrak{h}^*$. Using the universal property, we can extend the map ξ_1 to $S(\mathfrak{h})$. We denote by γ the map:

$$
\gamma = \xi_1 \circ p_1 : Z(\mathcal{U}(\mathfrak{g})) \to S(\mathfrak{h})^W.
$$

Theorem A.8. The map γ is an algebra homomorphism which is injective. Moreover, $\text{Im}(\gamma) = S(\mathfrak{h})^W$ and then:

$$
\gamma : Z(\mathcal{U}(\mathfrak{g})) \to S(\mathfrak{h})^W.
$$

is a bijection.

Remark A.9. Harish-Chandra’s isomorphism classify all the possible infinitesimal character. Indeed, let $\lambda : \mathfrak{h} \to \mathbb{C}$ be a linear map. Using the universal property of the symmetric algebra, the linear form λ can be extended to a linear map $\lambda : S(\mathfrak{h}) \to \mathbb{C}$ and by using the map λ, we get a map $\chi_\lambda : Z(\mathcal{U}(\mathfrak{g})) \to \mathbb{C}$ given by:

$$
\chi_\lambda(z) = \lambda(\gamma(z)) \quad (z \in Z(\mathcal{U}(\mathfrak{g}))).
$$
We recall the following theorem.

Theorem A.10. Let \(g \) be a complex reductive Lie algebra and \(\mathfrak{h} \) a Cartan subalgebra of \(g \). Then every homomorphism of \(Z(\mathbb{U}(g)) \) into \(\mathbb{C} \) sending 1 to 1 is of the form \(\chi_A, \lambda \in \mathfrak{h}^* \). If \(\lambda \) and \(\lambda' \) are in \(\mathfrak{h}^* \), then \(\chi_A = \chi_A' \) if and only if \(\lambda \) and \(\lambda' \) are in the same \(\mathfrak{u} \)-orbit.

In particular, \(\text{Spec}(Z(\mathbb{G}(g))) = \mathfrak{b}' \backslash \mathfrak{u}' \).

The proof of this result can be found in [16].

Appendix B. A general lemma for unitary groups

Let \(U \) be a maximal compact subgroup of \(\text{Sp}(W) \). It is well-known that the restriction of \(\omega \) to \(\widetilde{U} \) is a direct sum of irreducible representations whose multiplicity is one. Moreover, the lowest \(\widetilde{U} \)-type \(V_\omega \) is one-dimensional. Let \(x \) be a non-zero vector in \(V_\omega \) and let \(\Omega \) be the function on \(\text{Sp}(W) \) given by

\[
\Omega(\tilde{g}) = \langle \omega(\tilde{g})x, x \rangle, \quad (\tilde{g} \in \text{Sp}(W)).
\]

We denote by \(\xi_\omega \) the (unitary) character of \(\widetilde{K} \) such that \(\omega(\tilde{k})x = \xi_\omega(\tilde{k})x, \tilde{k} \in \widetilde{K} \). One can check that for every \(\tilde{k}_1, \tilde{k}_2 \in \widetilde{K} \) and \(\tilde{g} \in \widetilde{G} \),

\[
\Omega(\tilde{k}_1\tilde{k}_2) = \langle \omega(\tilde{k}_1\tilde{k}_2)x, x \rangle = \langle \omega(\tilde{k}_2)x, \omega(\tilde{k}_1^{-1})x \rangle = \xi_\omega(\tilde{k}_2k_1^{-1})(\langle \omega(\tilde{g})x, x \rangle) = \xi_\omega(\tilde{k}_2k_1^{-1})\Omega(\tilde{g}).
\]

In particular, the map \(\tilde{G} \ni \tilde{g} \rightarrow |\Omega(\tilde{g})| \in \mathbb{C} \) is \(\widetilde{K} \)-bi-invariant. In particular, using the decomposition \(\text{Sp}(W) = \widetilde{K}\widetilde{A}\widetilde{K} \) as in [26] Section 3.6.7, with \(A = \text{Cl}(A^\times), A^\times = \exp(a^\times) \), \(a \) the maximal split Cartan subalgebra of \(\text{sp}(W) \) and \(a^\times = \{ H \in a, a(H) > 0, a \in a^* \} \), we get for every \(\tilde{g} = \tilde{k}_1\tilde{a}\tilde{k}_2 \in \widetilde{K}\widetilde{A}\widetilde{K} \) that \(|\Omega(\tilde{g})| = |\Omega(\tilde{a})| \).

We denote by \(\Xi \) the \(\widetilde{K} \)-bi-invariant function defined in [26] Section 4.5.3.

Lemma B.1. Let \((G, G') = (U(V), U(V')) \subseteq \text{Sp}(V \otimes V'_{\mathbb{H}}) \) be a dual pairs of unitary groups such that \(\dim_{\mathbb{C}}(V) \leq \dim_{\mathbb{C}}(V') \). Then, there exists a constant \(C_{\Omega} > 0 \) such that

\[
|\Omega(\tilde{g})| \leq C_{\Omega}\Xi(\tilde{g}), \quad (\tilde{g} \in \widetilde{G}).
\]

Remark B.2. As explained in [22] Section 6.4.1, for an irreducible reductive dual pair \((G, G') \), there exist a constant \(C = C_{d,d'} > 0 \) such that

\[
|\Omega(\tilde{c}(X))| = C|\det(\tilde{c}(\text{Id} - X))|^{\frac{d}{2}}|\det(\text{Id} - JX)|^{-\frac{d'}{2}}, \quad (X \in \mathfrak{g}'),
\]

where \(d = \dim_{\mathbb{C}}(V) \) and \(d' = \dim_{\mathbb{C}}(V') \).

Proof. We start by determining the value of \(\Omega \) for the dual pair \((G, G') = (U(1, 1), U(1)) \). Let \(G = \text{KAK} \) be the decomposition of \(G \) as in [26] Section 3.6.7. In this case,

\[
A = \left\{ \begin{pmatrix} \text{ch}(X) & \text{sh}(X) \\ \text{sh}(X) & \text{ch}(X) \end{pmatrix}, X \in \mathbb{R}^*_+ \right\}.
\]

Let \(a(X) \in \mathfrak{a}^\times \) and \(b(X) \in \mathfrak{a}^\times \) such that \(a(X) = c(b(X)) \). One can easily check that

\[
b(X) = \begin{pmatrix} 0 & a(X) \\ a(X) & 0 \end{pmatrix},
\]

where \(a(X) = \frac{\text{sh}(X)}{\text{ch}(X) - 1} \). Note that \(a(X) = \frac{1}{\text{th}(\frac{X}{2})} \).
Let $\mathcal{B} = \{e_1, e_2\}$ be a basis of V such that $\text{Mat}_{\mathcal{B}}(\cdot, \cdot) = \text{Id}_{1,1}$. Then, using that $\mathcal{B}_R = \{e_1, e_2, ie_1, ie_2\}$ is a basis of the real vector space V_R, it follows that:

$$\det_{\mathcal{B}}(\text{Id} - b(X)) = \det \begin{pmatrix} 1 & -\alpha(X) & 0 & 0 \\ -\alpha(X) & 1 & 0 & 0 \\ 0 & 0 & 1 & -\alpha(X) \\ 0 & 0 & -\alpha(X) & 1 \end{pmatrix} = (1 - \alpha(X)^2)^2.$$

Similarly, using that

$$J = \text{Mat}_{\mathcal{B}_R}(\cdot, \cdot)_R = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

we get:

$$\det(i\text{Id} - Jb(X)) = \det \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} - \det \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \det \begin{pmatrix} 0 & 0 & -1 & -\alpha(X) \\ 0 & 0 & \alpha(X) & 0 \\ 0 & 0 & \alpha(X) & 0 \\ 1 & \alpha(X) & 0 & 0 \end{pmatrix} = (1 + \alpha(X)^2)^2.$$

Using that

$$\frac{\text{th}(X)^2 - 1}{\text{th}(X)^2 - 1} = \frac{-1}{\text{ch}(X)},$$

it follows from Remark 4.2 that there exists $C > 0$ such that:

$$|\Omega(\tilde{c}(b(X)))| = C \frac{1 - \alpha(X)^2}{1 + \alpha(X)^2} = C \frac{\text{ch}(X)}{\text{ch}(X)^2}.$$

In particular, for the dual pair $(G, G') = (U(1, 1), U(n))$, we get for every $a(X) = c(b(X)) \in \Lambda^c \subseteq G$ that:

$$|\Omega(\tilde{c}(b(X)))| = C \frac{\text{ch}(X)}{\text{ch}(X)^n}.$$

From [26] Theorem 4.5.3, we know that $\tilde{a}(X)^{-p} \leq \Xi(\tilde{a}(X))$, with $\tilde{a}(X) = \tilde{c}(b(X))$. In our case, we get that $\tilde{a}(X)^{-p} = e^{-X}$ and using that for every $n \geq 1, \text{ch}(X)^n \geq \text{ch}(X) \geq e^X$, it follows that:

$$|\Omega(\tilde{c}(b(X)))| = \frac{C}{\text{ch}(X)^n} \leq \frac{C}{\text{ch}(X)} \leq C e^{-X} \leq C \Xi(\tilde{a}(X)).$$

In particular, using the \tilde{K}-bi-invariance of Ω and Ξ, we get that $\Omega(\tilde{g}) \leq C \Xi(\tilde{g})$ for every $\tilde{g} \in \tilde{G}$ for $(G, G') = (U(1, 1), U(n))$. One can easily check that G' can be replaced by $U(r, s)$ and the computations are similar.
We can now extend it to \((G, G') = (U(p, p), U(n))\). In this case,
\[
A = \left\{ D = \begin{pmatrix} D_1(X) & D_2(X) \\ D_2(X) & D_1(X) \end{pmatrix}, X \in \mathbb{R}^{+}_{p} \right\}
\]
where for \(X = (X_1, \ldots, X_p)\), \(D_1(X) = \text{diag}(\text{ch}(X_1), \ldots, \text{ch}(X_p))\) and \(D_2(X) = \text{diag}(\text{sh}(X_1), \ldots, \text{sh}(X_p))\). One can easily check that there exists \(C > 0\) such that
\[
|\Omega(\tilde{c}(b(X)))| = \frac{C}{\prod_{i=1}^{p} \text{ch}(X_i)^p}.
\]
In this case, \(\rho = \sum_{i=1}^{2p} \frac{2p - 2i + 1}{2} e_i\), and from Equation 2, we get
\[
\tilde{a}(X)^{-\rho} = \text{diag}(e^{-X_1}, \ldots, e^{-X_p}, e^{X_1}, \ldots, e^{X_p})^{-\rho} = \prod_{k=1}^{p} e^{-2pX_k}
\]
If \(n \geq 2p\), it follows that \(\text{ch}(X_k)^{\rho} \geq \text{ch}(X_k)^{2p} \geq e^{2pX_k}\) for every \(k \in \{1, p\}\) and then,
\[
|\Omega(\tilde{c}(b(X)))| = \frac{C}{\prod_{i=1}^{p} \text{ch}(X_i)^{\rho}} \leq C \prod_{k=1}^{p} e^{-2pX_k} \leq \Xi(\tilde{a}(X)).
\]
Again, \(U(n)\) can be replaced by \(U(r, s)\) as long as \(r + s \geq 2p\). Finally, it \(G = U(p, q)\), with \(p \leq q\), we get that:
\[
A = \left\{ D = \begin{pmatrix} D_1(X) & D_2(X) \\ D_2(X) & D_1(X) \end{pmatrix}, X \in \mathbb{R}^{+}_{p} \right\}
\]
where \(D_1(X) = \text{diag}(\text{ch}(X_1), \ldots, \text{ch}(X_p))\), \(D_2(X) = \text{diag}(\text{sh}(X_1), \ldots, \text{sh}(X_p)), 0_{p,q}\), where \(0_{p,q}\) is the zero matrix of \(\text{Mat}(p, q - p)\), and
\[
D_3(X) = \begin{pmatrix} \text{diag}(\text{ch}(X_1), \ldots, \text{ch}(X_p)) & 0_{p,q-p} \\ 0_{q-p,p} & 0_{q-p,q-p} \end{pmatrix},
\]
and one can check that the computations done for \(U(p, p)\) extends easily to \(U(p, q)\). The lemma follows.

\[\square\]

Remark B.3. One can easily see that the condition \(\dim_{C}(V) \leq \dim_{C}(V')\) of Lemma B.1 does not mean that similar estimates cannot be obtained in some cases if \(\dim_{C}(V) > \dim_{C}(V')\). Indeed, it follows from the proof of Lemma B.1 that the inequality (15) can be obtained for \((G, G') = (U(1, 1), U(1))\).

References

[1] Anne-Marie Aubert and Tomasz Przebinda. A reverse engineering approach to the Weil representation. Cent. Eur. J. Math., 12(10):1500–1585, 2014.
[2] Florent Bernon and Tomasz Przebinda. Normalization of the Cauchy Harish-Chandra integral. J. Lie Theory, 21(3):615–702, 2011.
[3] Florent Bernon and Tomasz Przebinda. The Cauchy Harish-Chandra integral and the invariant eigendistributions. Int. Math. Res. Not. IMRN, (14):3818–3862, 2014.
[4] Abderrazak Bouaziz. Intégrales orbitales sur les groupes de Lie réductifs. Ann. Sci. École Norm. Sup. (4), 27(5):573–609, 1994.
[5] Roe Goodman and Nolan R. Wallach. Symmetry, representations, and invariants, volume 255 of Graduate Texts in Mathematics. Springer, Dordrecht, 2009.
[6] Harish-Chandra. Representations of a semisimple Lie group on a Banach space. I. Trans. Amer. Math. Soc., 75:185–243, 1953.
[7] Harish-Chandra. Representations of semisimple Lie groups. III. Trans. Amer. Math. Soc., 76:234–253, 1954.
[8] Harish-Chandra. Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions. *Acta Math.*, 113:241–318, 1965.

[9] Harish-Chandra. Invariant eigendistributions on a semisimple Lie group. *Trans. Amer. Math. Soc.*, 119:457–508, 1965.

[10] Harish-Chandra. Discrete series for semisimple Lie groups. II. Explicit determination of the characters. *Acta Math.*, 116:1–111, 1966.

[11] Sigurdur Helgason. Differential operators on homogeneous spaces. *Acta Math.*, 102:239–299, 1959.

[12] Sigurdur Helgason. *Differential geometry, Lie groups, and symmetric spaces*. volume 34 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.

[13] Lars Hörmander. *The analysis of linear partial differential operators. I*. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

[14] Roger Howe. Transcending classical invariant theory. *J. Amer. Math. Soc.*, 2(3):535–552, 1989.

[15] Anthony W. Knapp. *Representation theory of semisimple groups*. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. An overview based on examples, Reprint of the 1986 original.

[16] Anthony W. Knapp and David A. Vogan, Jr. *Cohomological induction and unitary representations*, volume 45 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1995.

[17] Jian-Shu Li. Theta lifting for unitary representations with nonzero cohomology. *Duke Math. J.*, 61(3):913–937, 1990.

[18] F. I. Mautner. Unitary representations of locally compact groups. II. *Ann. of Math. (2)*, 52:528–556, 1950.

[19] Annegret Paul. Howe correspondence for real unitary groups. *J. Funct. Anal.*, 159(2):384–431, 1998.

[20] Annegret Paul. First occurrence for the dual pairs $(U(p,q),U(r,s))$. *Canad. J. Math.*, 51(3):636–657, 1999.

[21] Tomasz Przebinda. Characters, dual pairs, and unipotent representations. *J. Funct. Anal.*, 98(1):59–96, 1991.

[22] Tomasz Przebinda. Characters, dual pairs, and unitary representations. *Duke Math. J.*, 69(3):547–592, 1993.

[23] Tomasz Przebinda. A Cauchy Harish-Chandra integral, for a real reductive dual pair. *Invent. Math.*, 141(2):299–363, 2000.

[24] Tomasz Przebinda. The character and the wave front set correspondence in the stable range. *J. Funct. Anal.*, 274(5):1284–1305, 2018.

[25] Wilfried Schmid. On the characters of the discrete series. The Hermitian symmetric case. *Invent. Math.*, 30(1):47–144, 1975.

[26] Nolan R. Wallach. *Real reductive groups. I*, volume 132 of *Pure and Applied Mathematics*. Academic Press, Inc., Boston, MA, 1988.

Department of Mathematics, National University of Singapore, Block S17, 10, Lower Kent Ridge Road, Singapore 119076, Republic of Singapore

Email address: matafm@nus.edu.sg

32