On the postulation of lines and a fat line

Justyna Szpond

Pedagogical University of Cracow

MEGA 2017
International conference On Effective Methods in Algebraic Geometry

Nice, June 12-16, 2017
This talk is based on joint work (arXiv: 1706.02350) with
Thomas Bauer (Marburg),
Sandra Di Rocco (KTH Stockholm),
David Schmitz (Marburg)
and
Tomasz Szemberg (PU Cracow).
The slides are available at:
http://szpond.up.krakow.pl/MEGA2017.pdf
Definition

Let \(I \subset R \) be a homogeneous ideal in a polynomial ring \(R = \mathbb{K}[x_0, \ldots, x_N] \). The *Hilbert function* of \(I \) is

\[
HF_{R/I}(d) = \dim(R/I)_d.
\]
Definition

Let $I \subset R$ be a homogeneous ideal in a polynomial ring $R = \mathbb{K}[x_0, \ldots, x_N]$. The *Hilbert function* of I is

$$HF_{R/I}(d) = \dim(R/I)_d.$$

Remark

It is well-known that the Hilbert function becomes polynomial, i.e., there is a polynomial $HP_{R/I}(d)$ such that

$$HF_{R/I}(d) = HP_{R/I}(d) \quad \text{for} \quad d \gg 0.$$
Remark

Ideals motivated geometrically are of particular interest.
Remark

Ideals motivated geometrically are of particular interest. If I is a saturated ideal defining a subscheme $V \subset \mathbb{P}^N(K)$, then we write

$$HF_V(d) = HF_{R/I}(d)$$

and

$$HP_V(d) = HP_{R/I}(d).$$
Hilbert polynomials can be computed algorithmically, symbolic algebra programs can handle this. Hilbert functions are much harder to compute.
MEGA (Meta) Problem

Remark

Hilbert polynomials can be computed algorithmically, symbolic algebra programs can handle this. Hilbert functions are much harder to compute.

Problem

Determine Hilbert functions of subschemes in $\mathbb{P}^N(K)$.

Justyna Szpond
On the postulation of lines and a fat line
MEGA (Meta) Problem

Remark

Hilbert polynomials can be computed algorithmically, symbolic algebra programs can handle this. Hilbert functions are much harder to compute.

Problem

Determine Hilbert functions of subschemes in $\mathbb{P}^N(K)$.

Remark

This problem is much too hard in this generality and beyond reach.
MEGA (Meta) Problem

Remark

Hilbert polynomials can be computed algorithmically, symbolic algebra programs can handle this. Hilbert functions are much harder to compute.

Problem

Determine Hilbert functions of subschemes in $\mathbb{P}^N(K)$.

Remark

This problem is much too hard in this generality and beyond reach.

The simplest Hilbert functions occur for subvarieties which impose independent (or predictable) conditions on forms of arbitrary degree.
Definition (Carlini, Catalisano, Geramita)

We say that a subscheme $V \subset \mathbb{P}^N(K)$ has a *bipolynomial Hilbert function* if

$$HF_V(d) = \min \{ HP_{\mathbb{P}^N}(d), \ HP_V(d) \}$$

for all d.

Remark: There is $HP_{\mathbb{P}^N}(d) = (N + d) d$ for all d.

Justyna Szpond
On the postulation of lines and a fat line
Definition (Carlini, Catalisano, Geramita)

We say that a subscheme $V \subset \mathbb{P}^N(K)$ has a *bipolynomial Hilbert function* if

$$HF_V(d) = \min \{ HP_{\mathbb{P}^N}(d), \ HP_V(d) \}$$

for all d.

Remark

There is

$$HP_{\mathbb{P}^N}(d) = \binom{N + d}{d}$$

*for all d.***
Example

Let V be a finite union of s general points in a projective space $\mathbb{P}^N(K)$. Then V has a bipolynomial Hilbert function.
Example

Let V be a finite union of s general points in a projective space $\mathbb{P}^N(K)$. Then V has a bipolynomial Hilbert function. More precisely we have

$$HF_V(d) = \min \left\{ \binom{N + d}{d}, s \right\}$$

for all d.
Theorem (Alexander-Hirschowitz 1995)

Let V be a general collection of s double points in $\mathbb{P}^N(K)$ (over an algebraically closed field of characteristic zero). Then

$$HF_V(d) = \min \left\{ \left(\begin{array}{c} N + d \\ d \end{array} \right), \ s(N + 1) \right\}$$

except in the following cases

- $d = 2$, $2 \leq s \leq N$;
- $N = 2$, $d = 4$, $s = 5$;
- $N = 3$, $d = 4$, $s = 9$;
- $N = 4$, $d = 4$, $s = 14$;
- $N = 4$, $d = 3$, $s = 7$.
Theorem (Alexander-Hirschowitz 1995)

Let V be a general collection of s double points in $\mathbb{P}^N(K)$ (over an algebraically closed field of characteristic zero). Then

$$HF_V(d) = \min \left\{ \binom{N + d}{d}, s(N + 1) \right\}$$

except in the following cases

- $d = 2, 2 \leq s \leq N$;
- $N = 2, d = 4, s = 5$;
- $N = 3, d = 4, s = 9$;
- $N = 4, d = 4, s = 14$;
- $N = 4, d = 3, s = 7$.

Remark

The authors worked on this problem for over 10 years.

Justyna Szpond
On the postulation of lines and a fat line
The proof of Alexander and Hirschowitz is rather involved. It has been simplified by several authors including:

- Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and Compositio Math. 134 (2002));

Remark:
All proofs are based on some degeneration, i.e., if the claim holds for points in special position, then it holds for points in general position (provided both positions belong to a flat family).
The proof of Alexander and Hirschowitz is rather involved. It has been simplified by several authors including:

- Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and Compositio Math. 134 (2002));
- Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212 (2008));

Remark

All proofs are based on some degeneration, i.e., if the claim holds for points in special position, then it holds for points in general position (provided both positions belong to a flat family).
The proof of Alexander and Hirschowitz is rather involved. It has been simplified by several authors including:

- Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and Compositio Math. 134 (2002));
- Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212 (2008));
- Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).
The proof of Alexander and Hirschowitz is rather involved. It has been simplified by several authors including:

- Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and Compositio Math. 134 (2002));
- Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212 (2008));
- Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).

Remark

All proofs are based on some **degeneration**, i.e., if the claim holds for points in **special** position, then it holds for points in **general** position (provided both positions belong to a flat family).
Several authors studied general points with higher multiplicity
Several authors studied general points with higher multiplicity a sample from a long list

- Ciro Ciliberto and Rick Miranda: \mathbb{P}^2, equal multiplicities $m \leq 12$ (Trans. Amer. Math. Soc. 352 (2000));
Several authors studied general points with higher multiplicity a sample from a long list

- Ciro Ciliberto and Rick Miranda: \mathbb{P}^2, equal multiplicities $m \leq 12$ (Trans. Amer. Math. Soc. 352 (2000));
- Stephanie Yang, \mathbb{P}^2, mixed multiplicities ≤ 7 (J. Algebraic Geom. 16 (2007));
Several authors studied general points with higher multiplicity a sample from a long list

- Ciro Ciliberto and Rick Miranda: \mathbb{P}^2, equal multiplicities $m \leq 12$ (Trans. Amer. Math. Soc. 352 (2000));
- Stephanie Yang, \mathbb{P}^2, mixed multiplicities ≤ 7 (J. Algebraic Geom. 16 (2007));
- Marcin Dumnicki and Witold Jarnicki, \mathbb{P}^2, equal multiplicities ≤ 42 (J. Symbolic Comput. 42 (2007));
Several authors studied general points with higher multiplicity a sample from a long list

- Ciro Ciliberto and Rick Miranda: \mathbb{P}^2, equal multiplicities $m \leq 12$ (Trans. Amer. Math. Soc. 352 (2000));
- Stephanie Yang, \mathbb{P}^2, mixed multiplicities ≤ 7 (J. Algebraic Geom. 16 (2007));
- Marcin Dumnicki and Witold Jarnicki, \mathbb{P}^2, equal multiplicities ≤ 42 (J. Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space (replace \mathbb{P}^2 by some other scheme) combined with the degeneration of points.
Passing from points to fat points, arbitrary m

Conjecture (SHGH, Segre-Harbourne-Gimigliano-Hirschowitz)

Let V be a collection of s general points of multiplicity m in $\mathbb{P}^2(\mathbb{K})$. Then either

$$\text{HF}_V(d) = \min \left\{ \binom{d+2}{2}, s \binom{m+1}{2} \right\}$$

or the linear system

$$|\mathcal{O}_{\mathbb{P}^2}(d) \otimes \mathcal{I}_V^{(m)}|$$

contains a fat (-1)-curve in its base locus.
Theorem (Hartshorne-Hirschowitz 1982)

Let V be a union of s general lines in the projective space $\mathbb{P}^N(K)$, with $N \geq 3$. Then the Hilbert function of V is bipolynomial.

More precisely we have $HF_V(d) = \min\{ (N+d) \cdot d, s \cdot (d+1) \}$. The hardest case is that of $N=3$. The proof in \mathbb{P}^3 is based on a careful specialization of some lines onto a smooth quadric accompanied by a careful collision of some pairs of lines in points on the quadric.
Theorem (Hartshorne-Hirschowitz 1982)

Let V be a union of s general lines in the projective space $\mathbb{P}^N(K)$, with $N \geq 3$. Then the Hilbert function of V is bipolynomial. More precisely we have

$$HF_V(d) = \min \left\{ \binom{N+d}{d}, s(d+1) \right\}.$$
Theorem (Hartshorne-Hirschowitz 1982)

Let V be a union of s general lines in the projective space $\mathbb{P}^N(K)$, with $N \geq 3$. Then the Hilbert function of V is bipolynomial. More precisely we have

$$\text{HF}_V(d) = \min \left\{ \binom{N + d}{d}, s(d + 1) \right\}.$$

The hardest case is that of $N = 3$. The proof in \mathbb{P}^3 is based on a careful specialization of some lines onto a smooth quadric accompanied by a careful collision of some pairs of lines in points on the quadric.
Theorem (Carlini, Catalisano, Geramita 2013, printed 2016)

Let V be a union of s general lines and a general point of multiplicity m in the projective space $\mathbb{P}^N(K)$, with $N \geq 4$. Then the Hilbert function of V is bipolynomial.

Remark
In the case $N = 3$ the picture is more complicated: The equality in (1) fails for $2 \leq s \leq m$ and $d = m$.
Theorem (Carlini, Catalisano, Geramita 2013, printed 2016)

Let V be a union of s general lines and a general point of multiplicity m in the projective space $\mathbb{P}^N(K)$, with $N \geq 4$. Then the Hilbert function of V is bipolynomial.
More precisely we have

$$\text{HF}_V(d) = \min \left\{ \binom{N + d}{d}, s(d + 1) + \binom{m + N - 1}{N} \right\}.$$ \hfill (1)
Theorem (Carlini, Catalisano, Geramita 2013, printed 2016)

Let V be a union of s general lines and a general point of multiplicity m in the projective space $\mathbb{P}^N(\mathbb{K})$, with $N \geq 4$. Then the Hilbert function of V is bipolynomial. More precisely we have

$$HF_V(d) = \min \left\{ \binom{N + d}{d}, s(d + 1) + \binom{m + N - 1}{N} \right\}.$$ \hspace{1cm} (1)

Remark

In the case $N = 3$ the picture is more complicated: The equality in (1) fails for

$$2 \leq s \leq m \text{ and } d = m.$$
Carlini, Catalisano and Geramita study again components of V is special position and introduce **sundials**. These are degenerations of a pair of lines into a pair of intersecting lines with an embedded component in the intersection point.
Carlini, Catalisano and Geramita study again components of V is special position and introduce **sundials**. These are degenerations of a pair of lines into a pair of intersecting lines with an embedded component in the intersection point.

The case $N = 3$ is solved by Aladpoosh-Ballico (Rend. Sem. Mat. Univ. Pol. Torino 2015) and Ballico (Mediterranean Journal of Mathematics (2016)).
Problem (Carlini, Catalisano, Geramita)

Identify Hilbert functions of subschemes in \mathbb{P}^N consisting of the union of general lines and one fat linear subspace of arbitrary dimension.
Problem (Carlini, Catalisano, Geramita)

Identify Hilbert functions of subschemes in \mathbb{P}^N consisting of the union of general lines and one fat linear subspace of arbitrary dimension.

Motivation: Determine the dimension of (higher) secant varieties to Segre embeddings of products of projective spaces.
Definition (Ballico)

A "double" line $Y \subset \mathbb{P}^3$ is a connected divisor of type $(2, 0)$ on a smooth quadric surface.
Definition (Ballico)

A "double" line $Y \subset \mathbb{P}^3$ is a connected divisor of type $(2, 0)$ on a smooth quadric surface.

Remark

This generalizes a zero-dimensional subscheme of length 2 rather than a double point (which has length 3).
Definition (Ballico)
A "double" line $Y \subset \mathbb{P}^3$ is a connected divisor of type $(2, 0)$ on a smooth quadric surface.

Remark
This generalizes a zero-dimensional subscheme of length 2 rather than a double point (which has length 3).

Theorem (Ballico 2012)
Let V be a union of s general lines and t general "double" lines in \mathbb{P}^3. Then V has a bipolynomial Hilbert function.
Definition

A double line $X \subset \mathbb{P}^3$ is a subscheme supported on a line L whose structure is determined by the square of the saturated ideal I_L defining L.

Theorem (Aladpoosh 2016)

Let V be a union of s general lines and one general double line in \mathbb{P}^N, with $N \geq 3$. Then

$$HF_V(d) = \min \left\{ \left(N+d \right), s(d+1) + (Nd+1) \right\}$$

except in the case $N=4$, $s=2$, $d=2$.

Justyna Szpond

On the postulation of lines and a fat line
Definition

A double line $X \subset \mathbb{P}^3$ is a subscheme supported on a line L whose structure is determined by the square of the saturated ideal I_L defining L.

Theorem (Aladpoosh 2016)

Let V be a union of s general lines and one general double line in \mathbb{P}^N, with $N \geq 3$. Then

$$HF_V(d) = \min \left\{ \binom{N+d}{d}, s(d+1) + (Nd + 1) \right\}$$

except in the case

- $N = 4$, $s = 2$, $d = 2$.

Justyna Szpond
On the postulation of lines and a fat line
One fat line in \mathbb{P}^3: the main Theorem of this talk

Theorem (Bauer, Di Rocco, Schmitz, Szemberg, Sz.)

Let V be a union of s general lines and one general line of multiplicity m (i.e. defined by l^m_i) in \mathbb{P}^3. Then

$$\text{HF}_V(d) = \min \left\{ \binom{d+3}{d}, \ s(d+1) + \frac{1}{6}m(m+1)(3d+5-2m) \right\}$$

for all $d \geq 3\binom{m+1}{3}$.
Definition (Zig-zag)

A zig-zag of length z is the limiting subscheme obtained by a collision of an ordered set of z general lines L_1, L_2, \ldots, L_z in such a way, that the line L_1 intersects L_2, the line L_2 intersects L_1 and L_3 and the intersection points are distinct, L_3 intersects L_2 and L_4 and the intersection points are again distinct, and so on, finally L_{z-1} intersects L_{z-2} and L_z in two distinct points. The structure in the intersection points is the same as the structure of a sundial in the intersection point of its lines.
Definition (Zig-zag)

A zig-zag of length z is the limiting subscheme obtained by a collision of an ordered set of z general lines L_1, L_2, \ldots, L_z in such a way, that the line L_1 intersects L_2, the line L_2 intersects L_1 and L_3 and the intersection points are distinct, L_3 intersects L_2 and L_4 and the intersection points are again distinct, and so on, finally L_{z-1} intersects L_{z-2} and L_z in two distinct points. The structure in the intersection points is the same as the structure of a sundial in the intersection point of its lines.
A zig-zag of length z has thus $(z - 1)$ singular points.
Definition (Zig-zag)

A zig-zag of length \(z \) is the limiting subscheme obtained by a collision of an ordered set of \(z \) general lines \(L_1, L_2, \ldots, L_z \) in such a way, that the line \(L_1 \) intersects \(L_2 \), the line \(L_2 \) intersects \(L_1 \) and \(L_3 \) and the intersection points are distinct, \(L_3 \) intersects \(L_2 \) and \(L_4 \) and the intersection points are again distinct, and so on, finally \(L_{z-1} \) intersects \(L_{z-2} \) and \(L_z \) in two distinct points. The structure in the intersection points is the same as the structure of a sundial in the intersection point of its lines.

A zig-zag of length \(z \) has thus \((z - 1) \) singular points.

A sundial is a zig-zag of length 2.
Phase 1

The singular points of the zig-zag are specialized onto a general smooth quadric in \mathbb{P}^3.

Phase 2

Every second line of the reduced zig-zag is specialized on a smooth quadric as a general line, all in the same ruling. This quadric is also exhibited as a base component of the studied linear system. Removing it from the system decreases the degree again by 2. The residue of the reduced zig-zag is a collection of disjoint (general) lines.
Phase 1

The singular points of the zig-zag are specialized onto a general smooth quadric in \mathbb{P}^3. The quadric is exhibited as a base component of the studied linear system, hence removed from the system (this decreases its degree d by 2). The residue of the zig-zag is a reduced zig-zig.
Phase 1

The singular points of the zig-zag are specialized onto a general smooth quadric in \mathbb{P}^3. The quadric is exhibited as a base component of the studied linear system, hence removed from the system (this decreases its degree d by 2). The residue of the zig-zag is a reduced zig-zig.

Phase 2

Every second line of the reduced zig-zag is specialized on a smooth quadric as a general line, all in the same ruling.
How is a zig-zag applied in the proof

Phase 1
The singular points of the zig-zag are specialized onto a general smooth quadric in \mathbb{P}^3. The quadric is exhibited as a base component of the studied linear system, hence removed from the system (this decreases its degree d by 2). The residue of the zig-zag is a reduced zig-zig.

Phase 2
Every second line of the reduced zig-zag is specialized on a smooth quadric as a general line, all in the same ruling. This quadric is also exhibited as a base component of the studied linear system. Removing it from the system decreases the degree again by 2. The residue of the reduced zig-zag is a collection of disjoint (general) lines.
Definition (Trace and residual scheme)

Let Y be a smooth divisor in \mathbb{P}^N and let $Z \subset \mathbb{P}^N$ be a closed subscheme. Then the subscheme $Z'' = \text{Tr}_Y(Z)$ defined in Y by the ideal

$$I_{Z''}/Y = (I_Y + I_Z)/I_Y \subset O_Y$$

is the trace of Z on Y.

The colon ideal $I_{Z'} = (I_Z : I_Y) \subset O_{\mathbb{P}^N}$ defines $Z' = \text{Res}_Y(Z)$, the residual scheme of Z with respect to Y.

The residual sequence

$$0 \to I_{Z'}(-Y) \to I_Z \to I_{Z''}/Y \to 0$$
Definition (Trace and residual scheme)

Let Y be a smooth divisor in \mathbb{P}^N and let $Z \subset \mathbb{P}^N$ be a closed subscheme. Then the subscheme $Z'' = \text{Tr}_Y(Z)$ defined in Y by the ideal

$$l_{Z''/Y} = (l_Y + l_Z)/l_Y \subset O_Y$$

is the trace of Z on Y.

The colon ideal $l_{Z'} = (l_Z : l_Y) \subset O_{\mathbb{P}^N}$ defines $Z' = \text{Res}_Y(Z)$, the residual scheme of Z with respect to Y.

Residual sequence

$$0 \longrightarrow I_{Z'}(-Y) \longrightarrow I_Z \longrightarrow I_{Z''/Y} \longrightarrow 0$$
The trace and residual schemes

Definition (Trace and residual scheme)

Let Y be a smooth divisor in \mathbb{P}^N and let $Z \subset \mathbb{P}^N$ be a closed subscheme. Then the subscheme $Z'' = \text{Tr}_Y(Z)$ defined in Y by the ideal

$$I_{Z''}/Y = (I_Y + I_Z)/I_Y \subset \mathcal{O}_Y$$

is the *trace of Z on Y*.

The colon ideal $I_{Z'} = (I_Z : I_Y) \subset \mathcal{O}_{\mathbb{P}^N}$ defines $Z' = \text{Res}_Y(Z)$, the *residual scheme of Z with respect to Y*.

Residual sequence

$$0 \longrightarrow I_{Z'}(-Y) \longrightarrow I_Z \longrightarrow I_{Z''}/Y \longrightarrow 0$$

We apply this sequence with Y a smooth quadric in \mathbb{P}^3 and all terms twisted by $\mathcal{O}_{\mathbb{P}^3}(d)$.
Lemma

Let $Y \subset \mathbb{P}^N$ be a divisor of degree e and let $d \geq e$ be an integer. Let $Z \subset \mathbb{P}^N$ be a closed subscheme. Then

$$h^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d) \otimes \mathcal{I}_Z) \leq h^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d - e) \otimes \mathcal{I}_{\text{Res}_Y(Z)}) +$$

$$+ h^0(Y, \mathcal{O}_Y(d) \otimes \mathcal{I}_{\text{Tr}_Y(Z)/Y}).$$
Lemma

Let \(Y \subset \mathbb{P}^N \) be a divisor of degree \(e \) and let \(d \geq e \) be an integer. Let \(Z \subset \mathbb{P}^N \) be a closed subscheme. Then

\[
\begin{align*}
 h^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d) \otimes \mathcal{I}_Z) & \leq h^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d - e) \otimes \mathcal{I}_{\text{Res}_Y(Z)}) + \\
 & + h^0(Y, \mathcal{O}_Y(d) \otimes \mathcal{I}_{\text{Tr}_Y(Z)/Y}).
\end{align*}
\]

We call the space \(H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d - e) \otimes \mathcal{I}_{\text{Res}_Y(Z)}) \) the residual linear system of \(H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d) \otimes \mathcal{I}_Z) \) with respect to \(Y \) and \(H^0(Y, \mathcal{O}_Y(d) \otimes \mathcal{I}_{\text{Tr}_Y(Z)/Y}) \) the trace linear system of \(H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(d) \otimes \mathcal{I}_Z) \) on \(Y \).
Outline of the proof

The proof of the Main Theorem consists of

- specializing lines and collision points of lines onto a smooth quadric;

Remark
We have developed a computer software to make correct guesses on the bound on d; test various reduction steps.
Outline of the proof

The proof of the Main Theorem consists of

- specializing lines and collision points of lines onto a smooth quadric;
- checking that the trace system on the quadric is empty (uses Tomasz Lenarcik (Ann. Polon. Math. 101 (2011)));

Remark

We have developed a computer software to make correct guesses on the bound on d; test various reduction steps.
Outline of the proof

The proof of the Main Theorem consists of

- specializing lines and collision points of lines onto a smooth quadric;
- checking that the trace system on the quadric is empty (uses Tomasz Lenarcik (Ann. Polon. Math. 101 (2011)));
- removing the quadric and studying the residual system;
Outline of the proof

The proof of the Main Theorem consists of

- specializing lines and collision points of lines onto a smooth quadric;
- checking that the trace system on the quadric is empty (uses Tomasz Lenarcik (Ann. Polon. Math. 101 (2011)));
- removing the quadric and studying the residual system;
- book-keeping!

Remark

We have developed a computer software to make correct guesses on the bound on d; test various reduction steps.
Outline of the proof

The proof of the Main Theorem consists of

- specializing lines and collision points of lines onto a smooth quadric;
- checking that the trace system on the quadric is empty (uses Tomasz Lenarcik (Ann. Polon. Math. 101 (2011)))
- removing the quadric and studying the residual system;
- **book-keeping!**

Remark

We have developed a computer software to

- *make correct guesses on the bound on d;*
Outline of the proof

The proof of the Main Theorem consists of
- specializing lines and collision points of lines onto a smooth quadric;
- checking that the trace system on the quadric is empty (uses Tomasz Lenarcik (Ann. Polon. Math. 101 (2011)));
- removing the quadric and studying the residual system;
- **book-keeping!**

Remark

We have developed a computer software to
- *make correct guesses on the bound on d;*
- *test various reduction steps.*
And that’s it.

thank you!
Remark

The bound on d given in the Main Theorem is due to the fact, that for d big enough certain invariants of the ideal of Z can be described by an explicit function. This makes the induction possible.
The Hilbert function in \mathbb{P}^3 is bipolynomial.

Remark

The bound on d given in the Main Theorem is due to the fact, that for d big enough certain invariants of the ideal of Z can be described by an explicit function. This makes the induction possible.

Remark

We have checked by computer hundreds of cases and have found no irregularities in the Hilbert function.
Example

Already in \mathbb{P}^4 some special cases come up. The easiest one is 1 double line L and 2 ordinary lines L_1 and L_2. The union of two hypersurfaces generated by L and L_i vanishes double along L and once along each L_i, whereas it is unexpected from the naive dimension count.
Example

Already in \mathbb{P}^4 some special cases come up. The easiest one is 1 double line L and 2 ordinary lines L_1 and L_2. The union of two hypersurfaces generated by L and L_i vanishes double along L and once along each L_i, whereas it is unexpected from the naive dimension count.

Remark

We expect however, that with a similar bound as in \mathbb{P}^3, the values of the Hilbert function in \mathbb{P}^N can be computed by the bipolynomial formula.
Very rough outline of induction procedure

For	a sequence of length	yields
$B(k,0,m)$	1	$B(k-1,1,m-1)$
$B(k,1,m)$	2	$B(k-1,0,m-1)$
$B(k,2,m)$	1	$B(k,0,m-1)$
$I(k,0,m)$	2	$I(k-2,2,m-2)$
$I(k,1,m)$	1	$I(k-1,2,m-1)$
$I(k,2,3\ell)$	$3\ell - 1$	$B(k-2\ell+1,1,1)$
$I(k,2,3\ell+1)$	$3\ell + 1$	$B(k-2\ell,0,0)$
$I(k,2,3\ell+2)$	$3\ell + 1$	$B(k-2\ell,0,1)$