Asymptotic behaviour of the S-stopped branching processes with countable state space

Iryna Kyrychynska∗, Ostap Okhrin†, Yaroslav Yeleyko‡

April 28, 2013

This paper was published in Visn. Lviv. Univ., Ser. Mekh.-Mat. (Bulletin of the Lviv University, Series in Mechanics and Mathematics) Vol.67, pp.119-129 (2007).

Reviewed in Zentralblatt für Mathematik Zbl 1164.60418.

Abstract: The starting process with countable number of types $\mu(t)$ generates a stopped branching process $\xi(t)$. The starting process stops, by falling into the nonempty set S. It is assumed, that the starting process is subcritical, indecomposable and noncyclic. It is proved, that the extinction probability converges to the cyclic function with period 1.

Keywords: branching processes; Markov chain; extinction probability; asymptotic behavior.

Subject Classification: 60J80.

1. Let us consider a measured state space (X, \mathcal{A}), where \mathcal{A} is the σ-algebra on X. On this space we consider unbreakable homogenous Markov process with transition probability $P(t, x, A)$, where t denotes time, $x \in X$ and $A \in \mathcal{A}$. Considering every trajectory of the given process as an evolution of the motion of a particle, $P(t, x, A)$ can be interpreted as a probability that a particle, which starts its motion from $x \in X$, falls into the set $A \in \mathcal{A}$ till the time t. It is assumed, that the time is discrete and the lifetime of a particle is equal to 1. At the end of its life the particle promptly gives rise to a number of offsprings, starting position of which are randomly distributed on the space X. The number and the position of these offsprings depends only on

*Chair of Theoretical and Applied Statistics, Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska Str. 1, Lviv, 79000, Ukraine.
†C.A.S.E. - Center for Applied Statistics and Economics, Ladislaus von Bortkiewicz Chair of Statistics of Humboldt-Universität zu Berlin, Spandauer Straße 1, D-10178 Berlin, Germany. Email: ostap.okhrin@wiwi.hu-berlin.de.
‡Chair of Theoretical and Applied Statistics, Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska Str. 1, Lviv, 79000, Ukraine.
the position of the particle-ancestor at the transformation time point. Further every
offspring evolutes analogously and independently of other particles.

Let $\mu_{xt}(A)$ be a random measure, which for every $A \in \mathcal{A}$ is equal to the number of the
particles at time point t, types of which fall into set A, under condition that the process
started with one particle $x \in X$. $\mu_t(A)$ is a random measure equal to the number of
particles at the time t, which types are from the set A, but without any knowledge
about starting group of particles.

Further we assume, that the space X consists of a countable number of elements
x_1, \ldots, x_n, \ldots. This means that the set of types of particles $\{T_1, \ldots, T_n, \ldots\}$ is count-
able.

Based on the measure $\mu_{xt}(A)$ we introduce the multivariate measure $\mu_{xt}(A)$

$$
\mu_{xt}(A) = \begin{cases}
\sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \mu_{x_{ij}}(x_m), & \text{if } x_m \in A \\
0, & \text{else}
\end{cases}
$$

where $x = \{x_{11}, \ldots, x_{1n_1}, x_{21}, \ldots, x_{2n_2}, \ldots\}$, $x_{ij} \in X$ is the j-th element i-th type.

Let us denote $\mathcal{N}_0 = \{0, 1, 2, \ldots\}$, and respectively \mathcal{N}_0^∞ is an infinite dimensional mea-
sured space with elements $x_i \in \mathcal{N}_0$.

Having $P(t, x, A)$ let us introduce $\hat{P}(t, x, y)$, $(x, y \in \mathcal{N}_0^\infty)$, where \hat{P} is a probability
that we obtain vector y till time t, assuming that we started from x. \hat{P} could be rewriten in terms of μ_{xt} as

$$
\hat{P}(t, x, y) = P\{\mu_{xt}(X) = y\}.
$$

Let $E(i) = (\delta_{i1}, \ldots, \delta_{im}, \ldots)$, where δ_{ij} is the Kronecker symbol, $\delta_{xy} = \prod_{i=1}^{\infty} \delta_{x_{ij}}$, $E(i)$
is the particle of the i-th type. We also assume, that $a^b = a_1^b a_2^b \cdots a_n^b \cdots$, $a! = a_1 a_2 \cdots a_n ! \cdots$, $\overline{a} = a_1 + \cdots + a_n + \cdots$, $a_i^{[b]} = a_i(a_i - 1) \cdots (a_i - b_i + 1)$.

Definition 1. Functional

$$
F(s(\cdot)) = F(s) = \mathbb{E} \exp \left\{ \int \ln s(x) \mu(dx) \right\}
$$
is called a generated functional of the random measure μ, where $s(x)$ is a measured
bounded function.

Generated functional $F(s)$ is always defined, when $0 < |s(x)| \leq 1$ and integral $\int \ln s(x) \mu(dx)$
exists.

For our process the generated functional is given as

$$
h(t, s(\cdot)) = \mathbb{E} \exp \left\{ \int_X \ln s(z) \mu_t(dz) \right\}.
$$
where μ_t is the same multivariate measure as μ_{xt} but not taking into account any combination of the starting position of the process. Further we will consider the case $s(\cdot) = \text{const} = s = (s_1, s_2, \ldots)$. It is easy to check whether the introduced generated functional is generated, as in the case of finite number of types (in that case it is not a functional but a function).

Let us denote

$$
\begin{align*}
 h^i(t, s) &= h^{E(i)}(t, s), \\
 h^{\beta}(t, s) &= ((h^{E(1)}(t, s))^\beta_1, (h^{E(2)}(t, s))^\beta_2, \ldots), \\
 h(t, s) &= (h^{E(1)}(t, s), h^{E(2)}(t, s), \ldots).
\end{align*}
$$

It is proved in [3], that the introduced generated function follows the main functional equation ($\forall t, \tau = 0, 1, 2, \ldots$)

$$
 h(t + \tau, s) = h(t, h(\tau, s)).
$$

Let us fix the finite subset $S \subset \mathbb{N}_0^\infty$, $0 \notin S$. *Stopped* or S-stopped multitype branching process is the process $\xi_{xt}(X)$, defined for $t = 1, 2, \ldots$ and $x \in \mathbb{N}_0^\infty$ by equations

$$
\xi_{xt}(X) = \begin{cases}
 \mu_{xt}(X), & \text{if } \forall v, 0 \leq v < t, \mu_{xe}(X) \notin S \\
 \mu_{xu}(X), & \text{if } \forall v, 0 \leq v < u, \mu_{xe}(X) \notin S, \mu_{xu}(X) \in S, u < t.
\end{cases}
$$

From this, for the S-stopped process $\xi_{xt}(X)$, points of the set S are additional states of absorption compared to the process $\mu_{xt}(X)$. The latter had only one point of absorption 0. In contrast to the process $\mu_{xt}(X)$, in the S-stopped branching process $\xi_{xt}(X)$ single particles in generation t multiplies independently following probability law defined by the generated functional $h(\cdot)$, only if $\xi_{xt}(X) \notin S$. If the random vector $\xi_{xt}(X)$ falls into the set S, the evolution of the process stops.

Since the process $\mu_{xt}(X)$ is a Markov chain, then

$$
\tilde{P}(t_1 + t_2, \alpha, \beta) = \sum_{\gamma \in \mathbb{N}_0^\infty} \tilde{P}(t_1, \alpha, \gamma) \tilde{P}(t_2, \gamma, \beta).
$$

For further needs, we also consider probabilities $\tilde{P}(t, \alpha, r)$, defined as

$$
\tilde{P}(t, \alpha, r) = \begin{cases}
 \tilde{P}(1, \alpha, r), & t = 1; \\
 \sum_{\beta \notin S} \tilde{P}(1, \alpha, \beta) \tilde{P}(t - 1, \beta, r), & t \geq 2.
\end{cases}
$$

(1)

It is easy to see, that $\tilde{P}(l, \alpha, r)$ is a conditional probability of the event

$$
\{\mu_{\alpha l}(X) = r\} \cap \left(\bigcap_{l' = 1}^{l-1} \{\mu_{\alpha l'}(X) \notin S\} \right).
$$
Let

\[q^n_r(t) = P\{ \xi_{nt}(X) = r \} \]

be the probability of an extinction of the \(S \)-stopped branching process \(\xi_{xt}(X) \) into state \(r \in S \) till time \(t \), starting from state \(n \in \mathbb{N}_0 \).

2. Main facts.

Theorem 1. For any \(n \not\in S, n \neq 0, r \in S, t \geq 1 \) holds

\[q^n_r(t) = \sum_{\alpha \in S} \sum_{l=1}^t c_{\alpha r}(t, l) \tilde{P}(l, n, \alpha), \tag{2} \]

where coefficients \(c_{\alpha r}(t, l) \) can be found from

\[c_{\alpha r}(t + 1, l + 1) = c_{\alpha r}(t, l), \tag{3} \]
\[c_{\alpha r}(t + 1, 1) = \delta_{\alpha r} - \sum_{l=1}^{t-1} \tilde{P}(l, \alpha, r), \tag{4} \]
\[c_{\alpha r}(1, 1) = \delta_{\alpha r}. \tag{5} \]

Proof. Let

\[\tau = \min \{ t : \mu_{nt}(X) \in S \} \]

be the moment of the first fall into \(S \), then for \(t \geq l \)

\[P\{ \xi_{nt}(X) = r, \tau = l \} = P\{ \xi_{nt}(X) = r \} = \tilde{P}(l, n, r). \]

Applying (1) to \(\tilde{P}(l, n, r) \), \(l \geq 2 \), we get

\[\tilde{P}(l, n, r) = \sum_{\alpha \in S} \tilde{P}(1, n, \alpha) \tilde{P}(l - 1, \alpha, r) = \sum_{\alpha \in S} \tilde{P}(2, n, \alpha) \tilde{P}(l - 2, \alpha, r) - \sum_{\alpha \in S} \tilde{P}(1, n, \alpha) \tilde{P}(l - 1, \alpha, r). \]

The first sum on the right hand side of this formula can be transformed similarly

\[\sum_{\alpha \in S} \tilde{P}(2, n, \alpha) \tilde{P}(l - 2, \alpha, r) = \sum_{\alpha \in S} \tilde{P}(3, n, \alpha) \tilde{P}(l - 3, \alpha, r) - \sum_{\alpha \in S} \tilde{P}(2, n, \alpha) \tilde{P}(l - 2, \alpha, r). \]

Making the same transformations in the sum \(\sum_{\alpha \in S} \tilde{P}(i, n, \alpha) \tilde{P}(l - i, \alpha, r) \), we get

\[\tilde{P}(l, n, r) = \tilde{P}(l, n, r) - \sum_{\alpha \in S} \sum_{i=1}^{l-1} \tilde{P}(l - i, n, \alpha) \tilde{P}(i, \alpha, r), \tag{6} \]
\[l = 2, \ldots, t, \quad \tilde{P}(l, n, r) = \tilde{P}(1, n, r). \tag{7} \]

As \(q^n_r(t) = \sum_{l=1}^t \tilde{P}(l, n, r) \), from formulas (6), (7) we get (3), (4), (5).

\[\square \]
Late on we will consider the process similarly to [1]. Let

\[A_1(x, D) = E\{\xi_{x1}(D)\} \]

be the first factorial moment, where \(\xi_{x1}(D) \) is such a random measure, which for each \(D \in \mathcal{A} \) is equal to the number of particles at time point 1, which types belong to set \(D \), conditional on \(S \)-stopped process. It also taken into account that at the beginning there was only one particle of the type \(x \in X \), what means \(\xi_{x1}(D) = \sum_{i=1}^{\infty} \xi_{x1}(D) \). From the linearity of \(E \) we have \(A_1(x, D) = E\{\xi_{x1}(D)\} = \sum_{i=1}^{\infty} A_1(x_i, D) \). It is important that \(D \) could be a vector or a set.

Definition 2. Let \(A_1(x, D) = A(x, D) \) and

\[A_{n+1}(x, D) = \int_X A_n(y, D) dA(x, y) = \int_X A(y, D) dA_n(x, y). \]

It is assumed, that \(A_0(x, D) = 1 \), if \(x \in D \) and \(A_0(x, D) = 0 \) else.

In [4] it is proved, that iterations of the operator \(A \) coincide with the first moments of \(\xi \). This means, that for matrix of the linear operator \(A(t) \), with \(A_{ij}(t) = A_t(x_i, x_j) \), it holds that \(A(t) = A^t \) will take place, where \(A = A(1) \).

Let

\[B_t(x, D_1, D_2) = E\{\xi_{xt}(D_1) \cdot \xi_{xt}(D_2) - \xi_{xt}(D_1 \cap D_2)\} \]

be the second factorial moment.

For further work we have to introduce some definitions, describing classes of branching processes (see [3]).

Definition 3. Branching process in which all types form a single class of equivalent types is called indecomposable. All other processes are called decomposable. Branching process is called fully indecomposable if the set of types could be split-up into two nonempty closed sets.

Definition 4. An indecomposable discrete time branching process is called cyclic with period \(d \), if the greatest divisor for all \(t \), such that \(\langle A_t(x_i, x_i) \rangle > 0 \), is equal to \(d \). If \(d = 1 \) then the process is called noncyclic.

Definition 5. An indecomposable discrete time branching process is called subcritical, if the largest eigenvalue (Perron’s root) \(\delta \) of the matrix \(A \) is smaller than 1, supercritical, if \(\delta > 1 \) and critical if \(\delta = 1 \) and \(f(x_i)B^i_{jk} \nu(x_j)\nu(x_k) > 0 \), where \(B^i_{jk} \) is the matrix of the operator \(B \), and \(f \) and \(\nu \) eigenfunction and invariant measure respectively which correspond to the Perron’s root \(\delta \).

Assumption 1. The kernel \(E\xi_{xt}(S) \) is assumed to be indecomposable, noncyclic and subcritical.
Correspondingly to the assumption \(\text{1} \) the operator \(A \), which is defined by the kernel \(E \{ \xi \} \) in the space of measurable functions and in the space of measures, has the eigenfunction \(f(\cdot) \) and the invariant measure \(\nu(\cdot) \), such that

\[
\int_X f(y) A_t(x, dy) = f(x) = \sum_{i=1}^{\infty} f(y_i) A_t(x, y_i),
\]

\[
\int_X A_t(x, Y) \nu(dx) = \nu(Y) = \sum_{i=1}^{\infty} A_t(x_i, Y) \nu(x_i).
\]

Further we assume, that \(0 < x_1 < f(x) < x_2 < \infty, \nu(X) < \infty \) and

\[
\int_X f(y) \nu(dy) = 1 = \sum_{i=1}^{\infty} f(y_i) \nu(y_i). \tag{8}
\]

The operator induced by the above defined kernel in the space of bounded functions has \(\{1\} \) as an isolated point of the spectrum.

Assumption 2. We assume \(E\{\mu_{E(j)}(x_i) \log \mu_{E(j)}(x_i)\} \) is finite for \(\forall i, j = 1, 2, \ldots \).

Assumption 3. The expansion \(A_t(x, y) = \sum_k f(x_k) \delta^k_t \nu(y_k) \) exists.

As in indecomposable, noncyclic, subcritical processes with discrete time all absolute values of eigenvalues are less than one, then based on the assumption \(\text{3} \) we can conclude, that when \(t \to \infty \)

\[
A_t(x_i, y_j) = f(x_i) \delta^t \nu(y_j) + o(\delta^t),
\]

where \(\delta \) is the largest eigenvalue. Thus

\[
\lim_{t \to \infty} A_t(x_i, y_j) \delta^{-t} = f(x_i) \nu(y_j). \tag{9}
\]

Let us denote

\[
R^i(t, s) = 1 - h^i(t, s),
\]

\[
R(t, s) = (R^1(t, s), \ldots, R^n(t, s), \ldots),
\]

\[
R(t, 0) = Q(t) = (Q^1(t), \ldots, Q^n(t), \ldots) = \lim_{s \to 0} R(t, s).
\]

As in the case with the finite number of types, the following inequalities could be easily proved (see [3])

\[
0 \leq R^i(t, s) \leq Q^i(t) \quad 0 < |s| \leq 1,
\]

\[
|R^i(t, s)| \leq 2Q^i(t) \quad 0 < |s| \leq 1. \tag{11}
\]

(11) implies that for the degenerating branching processes \(R^i(t, s) \) converges uniformly to zero on \(0 < |s| \leq 1 \).

We need following technical assumption on the process
Assumption 4. Let $A^t > 0$ for some $t > 0$ in the sense $\forall i, j \ a_{ij} > 0$ and $h^t(t, s) \neq A_{ij}(t)$.

Hereafter the notation $A = \{a_{ij}\} > 0$, means that $a_{ij} > 0 \ \forall i, j$, and the notation $A > B$, where $A = \{a_{ij}\}, B = \{b_{ij}\}$ are matrices, means that $a_{ij} > b_{ij} \ \forall i, j$.

Let $h(s) = h(1, s)$.

Assumption 5. Following the above defined assumptions for this process, it holds that

$$1 - h(s) = [A - E(s)](1 - s), \quad (12)$$

where matrix $E(s)$ with $0 \leq s \leq s' \leq 1$ satisfies conditions $0 \leq E(s') \leq E(s) \leq A$ and $\lim_{s \to 1} E(s) = 0$.

Theorem 2. With Assumptions 3-5

$$\lim_{t \to \infty} \frac{R^i(t, s)}{f(x_k)R^k(t, s)} = \nu(x_i)$$

uniformly on all $s \neq 1, 0 \leq s \leq 1$.

This theorem is proved analogically to theorem 1 on page 192 in [3], by replacing the right and left eigenvectors by eigenfunction and invariant measure respectively. Matrices are from the class of matrices of infinite measurable linear operator.

Theorem 3. By assumptions 1-5 for any $i, j = 1, 2, \ldots$ and for $l \to \infty$ probability that the process extinct to 0 from one particle of type j over l is

$$1 - \hat{P}(l, \mathcal{E}(j), 0) = K(S_j)\delta(1 + o(1)), \quad K(S_j) > 0; \quad (13)$$

a) the limit of the conditional probabilities exists

$$\lim_{l \to \infty} P\{\mu_n(X) = k| n \neq 0\} = p^*_k, \quad (14)$$

and the generating function $h^*(s) = \sum_{k \in \mathbb{N}^\infty} p^*_k s^k$ is not depending on n and satisfies the relationships

$$1 - h^*(h(\cdot)) = \delta(1 - h^*(s)),$$

$$h^*(0, \ldots, 0, \ldots) = 0, \quad h^*(1, \ldots, 1, \ldots) = 1; \quad (15)$$

b) distribution p^*_k has positive expectation

$$h^*_j(1) = \lim_{s \to 1} h^*_i(s) = \sum_{k \in \mathbb{N}^\infty} k_j p^*_k,$$

where $h^*_j(s) = \frac{\partial h^*_i(s)}{\partial s_j}.$
It is proved by mimicking the theorem 3 on page 198 from [3] with the use of theorem 2 for the representation of the limit of the generating function of the conditional distribution by getting result similar to one in [2].

Let us fix one more assumption

Assumption 6. Let \(h_{ij}(s) = \frac{\partial h_i(s)}{\partial s_j} \), then for all \(j, \ 1 \leq j < \infty \) there exists such \(i, \ 1 \leq i < \infty \), that \(h_{ij}(0) \) are positive.

From the equality
\[
h_{ij}(0) = \hat{P}(0, \mathcal{E}(i), \mathcal{E}(j)) = P\{ \mu_{\mathcal{E}(i)}(X) = \mathcal{E}(j) \}
\]
this means, that the corresponding probabilities \(\hat{P}(0, \mathcal{E}(i), \mathcal{E}(j)) \) are positive.

To proceed further we need following lemma

Lemma 1. Under the assumptions 1-6, the limit of conditional probabilities is positive, for all \(i = 1, 2, \ldots \)
\[
\lim_{t \to \infty} P\{ \mu_n(X) = \mathcal{E}(i) | n \neq 0 \} = p_{\mathcal{E}(i)}^* > 0,
\]

Proof. The generating function \(h^*(s) = \sum_k p_k^* s^k \) in Theorem 3 satisfies the equation (15). If we replace in this equation \(s \) by \(h(s) \), and repeat this replacement \(t \) times, we get the equality
\[
1 - h^*(h(t, s)) = \delta^t(1 - h^*(s)),
\]
where \(h(t, s) \) is \(t \)-th iteration of the function implied by the main differential equation. By differentiating (16) with respect to \(s_j \) at \(s = 0 \), we obtain
\[
\sum_{i=1}^{\infty} h_i^*(h(t, 0)) h_{ij}(t, 0) = \delta^t h_j^*(0) = \delta^t p_{\mathcal{E}(j)}^*.
\]

As all coordinates of \(h(t, 0) \) converge to 1, for \(t \to \infty \), then by the theorem 8 we can find such \(T \) and \(C_1 \), that \(h_i^*(h(t, 0)) \geq C_1 > 0 \) for \(t > T \). According to the assumption 6 this implies that for all \(1 \leq j \leq \infty \) we can found such \(i \), that \(h_{ij}(t, 0) > 0 \). For all \(i_1, i_2, \ldots, i_{t+1} \) holds
\[
h_{i_1 i_2 + 1}(t, 0) \geq \prod_{l=1}^{t} h_{i_1 i_{l+1}}(0).
\]

Thus (17) implies
\[
\delta^t p_{\mathcal{E}(j)}^* \geq C_1 \sum_{i=1}^{t} h_{ij}(t, 0) > 0, \forall 1 \leq j \leq \infty.
\]

\[\square \]
Theorem 4. By the assumption the limiting extinction probabilities \(q^n_r(t) = \lim_{t \to \infty} q^n_r(t), \forall n \not\in S, r \in S \), can be written in the series representation

\[
q^n_r = \sum_{l=1}^{\infty} \sum_{\alpha \in S} c_{\alpha r} \tilde{P}(l, n, \alpha),
\]

where \(c_{\alpha r} = \lim_{t \to \infty} c_{\alpha r}(t, l) = \delta_{\alpha r} - \sum_{u=1}^{\infty} \tilde{P}(u, \alpha r). \)

Proof. Probabilities \(q^n_r(t) \) increase with \(t \) and are bounded above by 1. Then the limit \(q^n_r = \lim_{t \to \infty} q^n_r(t) \) exists.

We can pass to the limits on the left and on the right hand sides of the formula (2), when \(t \to \infty \), as for all \(\alpha, r \in S \) holds that \(\tilde{P}(l, \alpha, r) \leq \hat{P}(l, \alpha, r) \) and Chebyshev inequality and assumption 3 imply that

\[
\hat{P}(l, \alpha, r) \leq P\left\{ \sum_{j=1}^{\infty} \mu_{\alpha l}(\mathcal{E}(j)) \geq 1 \right\} \\
\leq \sum_{j=1}^{\infty} E\{\mu_{\alpha l}(\mathcal{E}(j))\} \\
= \sum_{i=1}^{\infty} \alpha_i \sum_{j=1}^{\infty} d_{ij} \delta^i (1 + o(1)).
\]

This means that series \(\sum_l \tilde{P}(l, \alpha, r) \) and \(\sum_l \hat{P}(l, \alpha, r) \) converge to each other. This implies (18).

As in [2] let us consider the asymptotic behavior of \(q^n_r \) for \(\pi \to \infty \).

Theorem 5. Let assumptions are fulfilled and \(\lim_{\pi \to \infty}(n_i/\pi) = a_i \), where \(a = (a_1, a_2, \ldots) \). In this case for \(r \in S \) and \(\pi \to \infty \)

\[
q^n_r - H(\log_\delta \pi) \to 0,
\]

where \(H(x) \) is a cyclic function with period 1, defined through the following equalities

\[
H(x) = \sum_{j=1}^{r_0} c_j H_j(x),
\]

\[
H_j(x) = \sum_{L=-\infty}^{\infty} \delta^{j(L+x)} e^{-\langle a, K \rangle \delta^{L+x}},
\]

where \(\langle a, K \rangle = \sum_{i=1}^{\infty} a_i K_i, K_i \) as in [12], \(r_0 = \max\{r \mid r = r_1 + r_2 + \ldots : r \in S\} \). Constants \(c_j = c_j(r, a, p^*) \) depend on \(r, a \) and the limit distribution \(p^* = \{p^*_r\} \) which is defined in lemma [7].
Proof. Let \(\theta(l) = (\theta_1(l), \theta_2(l), \ldots) \) be a random vector, which components \(\theta_i(l) \) are equal to the number of particles of type \(i \) which give an offspring to the \(l \)-th generation. Thus we can write, that for all \(\alpha \in S, \ l \geq 1 \ \ \ n \notin S \), we have

\[
\hat{P}(l, n, \alpha) = \sum_{\{\beta: 1 \leq \beta \leq \alpha\}} P\{\mu_{n,l}(X) = \alpha, \ \theta(0, l) = \beta\} = \sum_{\{\beta: 1 \leq \beta \leq \alpha\}} P\{\theta(0, l) = \beta\} P\{\mu_{\beta l}(X) = \alpha | \theta(0, l) = \beta\}.
\]

Under the assumptions of the theorem 5

\[
P\{\theta(0, l) = \beta\} = \prod_{i=1}^{\infty} \left(\frac{n_i}{\beta_i} \right) \left(\hat{P}(l, \mathcal{E}(i), 0) \right)^{n_i - \beta_i} (1 - \hat{P}(l, \mathcal{E}(i), 0))^{\beta_i} = \frac{\alpha^{l\beta}}{\beta!} K^\beta \delta(l\beta) e^{-(a,K)\overline{m}^{l+1/o(1)}} (1 + o(1)),
\]

and the probability, not depending on \(n \)

\[
P\{\mu_{\beta l}(X) = \alpha | \theta(0, l) = \beta\}
\]

\[
= \sum_{\{\alpha^{(j)}\}} \prod_{k=1}^{\infty} \prod_{j=1}^{\beta_k} P\{\mu_{\mathcal{E}(k), l}(X) = \alpha^{(j)} | \mathcal{E}(k) \neq 0\}
\]

\[
\rightarrow \sum_{\{\alpha^{(j)}\}} \prod_{k=1}^{\infty} \prod_{j=1}^{\beta_k} p^{*}_{\alpha^{(j)}} \ l \rightarrow \infty,
\]

where \(\mu_{\mathcal{E}(k), l}(X) \) are branching processes, whith the same distribution as \(\mu_{\mathcal{E}(k), l}(X) \).

The summation in \(\sum_{\{\alpha^{(j)}\}} \) is done over all such \(\alpha^{(j)} \), which \(\sum_{k=1}^{\infty} \sum_{j=1}^{\beta_k} \alpha^{(j)} = \alpha \).

The statements in (20)-(22) imply, that the general component of the series (18) for \(\overline{\pi} \rightarrow \infty, \ l \rightarrow \infty \) can be written in the form

\[
(1 + o(1)) \sum_{\alpha \in S} \sum_{\{\beta: 1 \leq \beta \leq \alpha\}} g(\alpha, \beta) \sum_{l=0}^{r_0} \delta(l + \log_2 \overline{\pi}) \beta \times \exp \left\{ -(a, K)\delta^{l+\log_2 \overline{\pi}} (1 + o(1)) \right\},
\]

where \(g(\alpha, \beta) \) is an independent of \(n \) and \(l \) function. It is easy to see that in formula (18) for \(\overline{\pi} \rightarrow \infty \) each component of series with any \(l \geq 1 \) converges to zero.

Let us choose \(L_1 < L_2 \) in such way that sums

\[
\sum_{L_1}^{L_2} \delta L e^{-(a,K)\delta x} \quad \text{and} \quad \sum_{L=-\infty}^{L_2} \delta L e^{-(a,K)\delta x}
\]

are small. We set \(l_i + \log_2 \overline{\pi} = l_i + x_i \overline{\pi} \), for \(i = 1, 2 \), where \(0 \leq x_i \overline{\pi} \leq 1 \). (23) and (24) imply, that we can choose such \(L_1, L_2 \) and \(n_0 \), that tails of the sum in (18), bounded
from 1 to \(t_1 \) and from \(t_2 \) to infinity, are less then \(\varepsilon/2 \), where \(\varepsilon > 0 \) is small. Elements of the series \(\sum_{k=1}^{l_2} \) with \(l_1 < l < l_2 \) can be replaced by a limited expressions \(\sum_{k=1}^{l_2-1} \) for \(\alpha \rightarrow \infty \) as well as for \(l \rightarrow \infty \). The number of summands in the sum \(\sum_{k=1}^{l_2-1} \) in expression \(\sum_{k=1}^{l_2} \) is finite \(l_2 - l_1 - 1 = L_2 - L_1 - 1 \). This means that \(n_0 \) can be chosen in such a way, that for all \(n > n_0 \) the approximation error will be also less than \(\varepsilon/2 \). This implies the statement of the theorem, while \(\varepsilon > 0 \) is any real number.

From the theorem it cannot be concluded directly, whether the coefficients \(c_j \) in the formula \(\sum_{k=1}^{l_2} \) are such, that \(H(x) > 0 \). For this we introduce the next lemma.

Lemma 2. Under assumptions \(\sum_{k=1}^{l_2} \), there exists such a constant \(\Theta > 0 \), that for some number \(n_0 \)

\[
q^n_t > \Theta, \text{ for } \forall n \text{ with } n \geq n_0 \text{ and } \forall r \in S.
\]

Proof. As for any \(t, q^n(t) = \lim_{t \rightarrow \infty} q^n(t) \geq q^n_t(t) \), it is enough to prove, that the inequality \(q^n(t) \geq \Theta > 0 \) holds for any large enough \(t \), for all \(r \in S \) and \(n \) from \(\alpha \geq n_0 \). Let us use the upper defined random vector \(\theta(0, t) \) and introduce one more random vector \(\theta'_1(t-1) = (\theta'_1(0), \theta'_2(0), \ldots) \), where \(\theta'_1(t) \) is the number of starting particles of \(i \)-th type, from \(\alpha \)-th generation. For \(n = (n_1, n_2, \ldots) \), \(n_1 \geq r_0 + 1 \), where \(r_0 = \max_{r \in S} r \), we use the inequality

\[
q^n_t \geq P\{\mu_n(X) = r, \theta'(t) = (r_0 + 1 - r), \theta(0, t) = rE(1)\}. \tag{25}
\]

The right side of \(\sum_{k=1}^{l_2} \) we write as a product of \(P_1(n, t)P_2(t) \), where \(P_1(n, t) = \sum_{k=1}^{l_2} \) and depends on \(n \) and \(t \), but \(P_2(t) = \sum_{k=1}^{l_2} \) depends only on \(t \). From the definition of the random vectors \(\theta(0, t) \) and \(\theta'(t-1) \) we have, that

\[
P_1(n, t) = \left(\frac{n_1}{n_1 - r_0 - 1}\right)^{n_1 - r_0 - 1}\left(1 - \hat{P}(t-1, \mathcal{E}(1), 0)\right)^r \times \prod_{i=1}^{\infty} \hat{P}(1, \mathcal{E}(1), 0)^{n_1} \sum_{k=1}^{l_2} P\{\mu'_r(X) = 0 \mid r_0 + 1 - r \neq 0\}; \tag{26}
\]

\[
P_2(t) = \prod_{k=1}^{l_2} \prod_{j=1}^{r_k} P\{\mu^{(jk)}_{\mathcal{E}(1), t}(X) = \mathcal{E}(k) \mid \mathcal{E}(k) \neq 0\}. \tag{27}
\]

Here \(\mu, \mu', \mu^{(jk)} \) are branching processes, whose evolution is defined by a generating function \(h(s) = (h_1(s), h_2(s), \ldots) \). Setting \(t \rightarrow \infty \), in such a way, that \(\alpha \rightarrow 0 \), for \(\alpha \rightarrow 0 \), we get in the right side of the equality \(\sum_{k=1}^{l_2} \) a positive constant multiplied
by a conditional probability, which stays at the end of formula. Using the limiting relationship $P\{\mu'(X) = k | k \neq 0\} \to p^*_k$, of the theorem 3 and the equality

$$\sum_{k \in \mathbb{N}_0} p^*_k(\hat{P}^{k_1}(1, \mathcal{E}(1), 0)\hat{P}^{k_2}(1, \mathcal{E}(2), 0) \cdots) = h^*(h(0))$$

we have that this conditional probability is equal in limit to $h^*(h(0))$. Expression (27) does not depend on n and is equal to the product $\prod_{i=1}^{\infty}[p^*_{\mathcal{E}(i)}]^{r_i}$, for $t \to \infty$. From lemma 1 this product is positive. That completes the proof.

References

[1] Yeleyko Ya. I. (1994). Asymptotic Analysis and transition events in the matrix-valued random evolutions, branching processes and processeses with the Markov properties, Habilitation, Lviv, (in Ukrainian).

[2] Sevastyanov B. A. (1999). Asymptotic Behavior of the Extinction Probabilities for Stopped Branching Processes // Theory of Probability and its Applications 43, pp. 315-322.

[3] Sevastyanov B. A. (1971). Branching Processes. Moscow, Nauka.

[4] Harris T. E. (2002). The Theory of Branching Processes. Courier Dover Publications.