Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

K. Buakor and S. Rimjaem
Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand E-mail: sakhorn.rimjaem@cmu.ac.th

Abstract. Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

1. Introduction
The linac-based THz Free-electron laser is under the development at the Plasma and Beam Physics (PBP) Research Facility, Chiang Mai University. To improve the quality of produced THz radiation, the electron beam quality from the injector system is needed to be considered. Due to several advantages of a photocathode RF-gun, the plan to operate the present thermionic RF-gun via the photoelectric effect is ongoing. Unlike thermionic RF-guns, the electron emission of photocathode guns is controlled by a short-pulse laser system. Schematic picture of the photocathode RF-gun is shown in fig. 1. Moreover, the injected time of the laser can be adjusted such that electrons are not emitted when the RF phase is not suitable for electron acceleration. Thus, there is no electron back-bombardment effect, which can affect the electron beam loading and can damage the surface of the cathode as well as shorten its life time. In addition, the photocathode guns can generate an electron beam with smaller transverse beam emittance and higher bunch charge.

An S-band thermionic RF electron gun has been developed at the PBP-CMU Linac Laboratory. It was optimized to generate the electron beam with a short bunch length. The gun has one and a half cell standing-wave cavities, which were designed to resonate at 2856 MHz in π-mode. The RF wave from the klystron passes from the full-cell to the half-cell through a side-coupling cavity. Thus, the whole RF-gun is operated in π/2 mode. In order to generate the electron beam with a maximum kinetic energy of about 2-2.5 MeV, maximum electric fields in the full-cell and the half-cell have to be 64.29 and 31.91 MV/m, respectively [1]. In this research, we study on a possibility to adapt the thermionic RF gun for the photocathode operation via beam dynamics simulation with program ASTRA [2]. The electric
field distribution that we input in this simulation was obtained from SUPERFISH program [3]. The wavelength and time duration of laser pulses that we used in the simulation are 266 nm and 7.5 ps FWHM, respectively [4].

![Figure 1. Schematic picture of the photocathode RF gun.](image)

The performance of a photocathode RF gun depends greatly on the properties of cathode material especially the quantum efficiency (QE), which is defined as a ratio of the emitted electrons to the absorbed incident photons. For preliminary study, a copper (Cu) cathode was used in this study. The parameters of atomically clean copper for the simulation are listed in Table 1 [5]. Quantities ϕ_w, ϕ_{schottky} and E_{ph} are the work function of the material, the Schottky correction and the photon (laser) energy, respectively.

Parameter	Value
Work function, ϕ_w	4.31 eV
ϕ_{schottky} at 31.91 MV/m	0.214 eV
Photon energy (E_{ph}) at 266 nm	4.66 eV

2. Optimization of simulation setup
To obtain reliable beam parameters from beam dynamics simulation, we need to optimize the input parameters i.e. number of macro-particles and mesh sizes of space-charge calculation. Gaussian and radial uniform distributions were used for the transverse distributions of initial electron bunches. Both distributions were generated with program Generator [2]. Simulation with different bunch charges was performed to investigate the performance of the gun with different beam loadings. Thus, we studies and compared the results for the electron beam with charges of 100 and 400 pC per bunch.

To optimize the number of macro-particles, both longitudinal and transverse properties were considered. The space-charge calculation was switched off for this optimization. The laser spot size of 1 mm and the RF phase of 0 degree were used. Simulation results as shown fig. 2 reveal that the transverse and longitudinal beam properties are constant when the macro-particle number is larger than 200,000 for both radial uniform and Gaussian distributions as well as for the bunch charges of 100 pC and 400 pC.
In this study, we used a cylindrical grid algorithm for the space-charge calculation. Thus, three parameters including time steps of emitted electron, radial mesh number and longitudinal mesh number were considered. To optimize the time steps of emitted electrons, we only considered the longitudinal properties, which are an average kinetic energy, an energy spread and a bunch length. Results of simulation with the radial uniform distribution suggest that the longitudinal beam properties are constant when the time steps of emitted electrons are larger than 1,000 for the bunch charges of 100 and 400 pC. In addition, the simulation with Gaussian distribution was performed and the results show that the longitudinal beam parameters are constant when the time steps of emitted electron are more than 1,000 for the bunch charge of 100 pC, while the time steps should be larger than 2,500 for 400 pC bunch charge.

For the radial mesh size optimization, the transverse properties of the electron beam i.e. beam size, divergence and emittance were considered. The optimal radial mesh size of the electron bunch for both radial distributions are 0.7151 and 0.4767 mm, respectively. To optimize the longitudinal mesh size, we only consider the longitudinal properties i.e. average kinetic energy, energy spread and bunch length. From the results of simulation with 100 pC bunch charge, the optimum longitudinal mesh size for both radial uniform and Gaussian distributions is 1.480 mm. The simulation results of 400 pC bunch charge show that the optimal longitudinal mesh sizes for the radial uniform and Gaussian distributions are 0.9868 mm and 1.7762 mm, respectively.

3. Beam dynamics simulation

In this research, we firstly considered the transverse emittance, which relates to the transverse beam size and the divergence, of electron bunch after accelerating along the gun. A laser spot size and a solenoid magnetic field, which affect significantly on the beam emittance, were optimized. This was performed in order to obtain the smallest transverse beam emittance that can be achieved from this considered RF-gun. The simulation was done with transverse Gaussian and radial uniform distribution for the bunch charges of 100 pC and 400 pC.

Optimization of the laser transverse size with the initial radial uniform distribution was conducted for the bunch charges of 100 and 400 pC. The simulation results are shown in fig. 3. The minimum emittance values of 1.09 and 3.09 mm.mrad are achieved for the laser spot sizes in the ranges of 0.31-0.40 and 0.70-0.85 mm at the bunch charges of 100 and 400 pC, respectively.
Figure 3. Results of laser spot size optimization for the radial uniform distribution with a bunch charge of (a) 100 pC and (b) 400 pC.

The solenoid magnet is applied for beam focusing and transverse emittance conservation. In this research, a proper solenoid magnetic field was investigated in order to generate the electron bunch with a charge of 100 pC for the radial uniform distribution. The results are shown in fig. 4. The optimal solenoid magnetic field is 85 mT.

Figure 4. Simulated transverse emittance along the z-position for different solenoid magnetic fields with the bunch charge of 100 pC.

4. Conclusion

The thermionic RF electron gun at the PBP-CMU Linac Laboratory can be adapted to operate as a photocathode gun by using a laser system with a pulse duration of 7.5 ps (FWHM) and a laser wavelength of 266 nm. From simulation results, the emittance of an electron bunch with initial radial uniform distribution is smaller than the one with the Gaussian distribution. Therefore, the laser injection with an aperture much smaller than the rms transverse width of the laser pulse is chosen. The laser spot sizes of in the ranges of 0.31 - 0.40 mm and 0.70 - 0.85 mm are suitable for the bunch charge of 100 and 400 pC, respectively. Moreover, the emittance of the electron bunch is influenced from an applied solenoid magnetic field. This results in conservation of emittance after passing through the solenoid magnet. From the simulation with the bunch charge of 100 pC, the emittance of 2.2 mm.mrad can be obtained at 0.6 m downstream the cathode by applying the solenoid magnetic field of 85 mT.
5. Acknowledgements
The authors would like to acknowledge the support from the Thailand center of Excellent in Physics (ThEP) and the Development and Promotion of Science and Technology Talents projects (DPST).

References
[1] Rimjaem S et al. 2014 RF study and 3-D simulations of a side coupling thermionic RF-gun Nucl Instrum Methods A 736 10
[2] Flottmann K, ASTRA Particle Tracking Code < http://www.desy.de/~mpyflo/>
[3] Young L.M. and Billen J.H 1999 Los Alamos National Laboratory Technical Note LA-UR-96-1834
[4] Zen H et al. 2014 Proc of FEL2014 (Basel:Switzerland) p 828-831
[5] Dowell D and Schmerge J 2009 Quantum efficiency and thermal emittance of metal cathodes Phys. Rev. ST Accel. Beams 12 119901