Gravitational deflection of light by rotating black holes in Horndeski gravity

Rahul Kumar Walia,1,* Sunil D. Maharaj,1,† and Sushant G. Ghosh1,2,‡

1Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 34001, Durban 4000, South Africa
2Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, India

(Dated: September 17, 2021)

With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Horndeski theory with parameter Q, which encompasses the Schwarzschild black hole ($Q = 0$). We obtain the axially symmetric counterpart of this hairy solution, namely the rotating Horndeski black hole, which contains as a special case the Kerr black hole ($Q = 0$). Interestingly, for a set of parameters ($M, a,$ and Q), there exists an extremal value of the parameter $Q = Q_c$, which corresponds to an extremal black hole with degenerate horizons, while for $Q < Q_c$, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for $Q > Q_c$. We investigate the effect of the Q on the rotating black hole spacetime geometry, and analytically deduce corrections to the light deflection angle from the Kerr and nonrotating Horndeski gravity black hole values. For the S2 source star, we calculate the deflection angle for the Sgr A* model of rotating Horndeski gravity black hole for both prograde and retrograde photons and show that it is larger than the Kerr black hole value.

PACS numbers: 04.50.Kd, 04.20.Jb, 04.40.Nr, 04.70.Bw

I. INTRODUCTION

The first exact solution to Einstein’s general relativity (GR) was found by Schwarzschild [1], describing a static spherically symmetric black hole. However, the rotating Kerr [2], and Kerr-Newman metrics [3], which are astrophysically more relevant, represent rotating black holes that arise as the final state in gravitational collapse. As predicted by GR, black holes have direct observational evidence of their existence after the Event Horizon Telescope (EHT) collaboration released the first image of the supermassive black hole M87* [4, 5]. The EHT observation of M87* is consistent with the Kerr black hole’s image as predicted by GR, but the observation did not say anything about most modified gravity theories or alternatives to the Kerr black hole. Using the M87* shadow angular size, constraints are placed on the second post-Newtonian metric coefficients, which were inaccessible in the earlier weak field tests at the solar scale [6], and on the physical charges of a large variety of modified gravity black holes [9].

Also, the recent cosmological observations are consistent with standard cosmological models built on GR but imply a mysterious late-time acceleration phase. Although the cosmological constant is the most straightforward candidate to drive the late-time acceleration, it poses an insurmountable problem to quantum field theory, since it is difficult to accommodate its observed value with vacuum energy calculations [10]. The modification of GR on cosmological scales can explain the late-time acceleration. Several modified gravity models can be reformulated in terms of scalar-tensor theories of gravitation; i.e., they are mathematically equivalent to a gravitational theory whose degrees of freedom are the metric $g_{\mu\nu}$ and one or more scalar fields ϕ. Scalar-tensor theories are probably the simplest, consistent and non-trivial modification of GR [11]. One of the most famous theories of the scalar-tensor family is Horndeski gravity [12], which is probably the most general four-dimensional scalar-tensor theory with equations of motion containing second order derivatives of the dynamical fields. Horndeski theories have been playing a significant role [13] in describing the accelerated expansion (see [14] for a review). Horndeski required a theory with second order field equations [12]. His proposed approach results in a theory that avoids Ostrogradski instabilities [15], and it is a priori eligible to have ghost-free vacua. Further physical relevance of such models could be tested, particularly in the strong field regime, namely black holes. The Horndeski theory of gravity in four dimensions have similar features of GR, namely diffeomorphism invariance and second order field equations. Its space of solutions is endowed with hairy black holes [16–21]. Stationary black hole solutions with new global charges, which are not associated with the Gauss law [22], are called hairy black holes, e.g., black holes with scalar hair [23, 24], or proca hair [25]. See Ref. [22] for a recent review on black holes with hair due to global charge.
Hui and Nicolis [26] demonstrated that the no-hair theorems do not apply when a Galileon field is coupled to gravity because of Galileon’s peculiar derivative interactions. Nonetheless, they showed that static spherically symmetric black holes could not sustain nontrivial Galileon profiles. The authors [18] further examined the no-hair theorem in [26] considering Horndeski theories and beyond. They demonstrated that shift-symmetric Horndeski and beyond Horndeski theories allow for static and asymptotically flat black holes with a static scalar field such that the Noether current associated with the shift symmetry vanishes, while the scalar field cannot be trivial; it leads to hairy black hole solutions in quartic Horndeski gravity [18]. They considered the Lagrangian of Horndeski theory which can be written as a generalized Galileon Lagrangian, and the corresponding action [18] reads

\[S = \int \sqrt{-g} \left\{ Q_2(\chi) + Q_3(\chi)\nabla^2 + Q_4(\chi)R + Q_4_\chi \left[(\nabla^2) - (\nabla^\mu \nabla^\nu \phi)(\nabla_\mu \nabla_\nu \phi) \right] \right\} d^4x. \]

(1)

where \(Q_2, Q_3, Q_4, Q_5 \) are arbitrary functions of the scalar field \(\phi \) and \(\chi = -\partial^\mu \phi \partial_\mu \phi/2 \) is the canonical kinetic term. Additionally, in our notation, \(f_\chi \) stands for \(\partial f(\chi)/\partial \chi \), \(R \) is the Ricci scalar, \(G_{\mu\nu} \) is the Einstein tensor, and

\[
\begin{align*}
(\nabla_\mu \nabla_\nu \phi)^2 &\equiv \nabla_\mu \nabla_\nu \phi \nabla^\mu \nabla^\nu \phi, \\
(\nabla_\mu \nabla_\nu \phi)^3 &\equiv \nabla_\mu \nabla_\nu \phi \nabla^\rho \phi \nabla_\rho \nabla^\mu \phi.
\end{align*}
\]

(2)

The scalar field (or Galileon) has the property of admitting a special symmetry in flat spacetime for \(q_1 = \phi(r) \), which will be the source of a static and spherically symmetric spacetime. Recently, the authors considered the particular case of quartic Horndeski scalar field [28], i.e., \(Q_5 \) is absent in the action (1) to obtain hairy black holes given by

\[ds^2 = -A(r)dt^2 + \frac{1}{B(r)}dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2), \]

(3)

with

\[A(r) = B(r) = 1 - \frac{2M}{r} + \frac{Q}{r} \ln \left(\frac{r}{r_0} \right). \]

(4)

Here, \(M \) is the constant related to the black hole mass, and \(Q \) is the hairy parameter coming from the Horndeski theory. The solution (3) is a class of a hairy black holes which encompasses the Schwarzschild solution when \(Q \to 0 \), and is in fact asymptotically flat since \(\lim_{r \to \infty} A(r) = B(r) = 1 \). The strong gravitational lensing of the spherically symmetric black hole in Horndeski gravity is investigate in Ref. [29]. However, we are aware that nonrotating black holes are not suitable for observations, as black hole spin is crucial for the astrophysical processes. The lack of rotating black hole models in modified gravity theories, which are typically helpful for astrophysical observation, substantially hinders testing modified gravity theories from observations. This motivated us to seek an axisymmetric generalization of the metric (3) or finding a Kerr-like metric, namely, a rotating Horndesky hairy black hole metric, and to test it with astrophysical observations through gravitational lensing. The Kerr metric [2] is the essential general relativity solution representing a rotating black hole resulting from gravitational collapse. We discuss the causal structure of the rotating black hole, including the horizon structure and energy conditions, also obtaining the associated conserved quantities. Furthermore, using the Gauss-Bonnet theorem, we analytically derive the deflection angle in the weak field limit caused by the rotating black holes. We also estimate the correction in the deflection angle due to the hairy parameter \(Q \) from Horndeski gravity. Finally, we summarize our main findings in Sec. V.

II. ROTATING METRIC

The Newman–Janis algorithm generates rotating black hole solutions from their spherical counterparts [30]. The algorithm was originally used to generate rotating black holes in GR. It has been applied to generate rotating solutions
in modified gravity theories [31–37]. The modified form of the algorithm is the Azreg-Aïnou’s non-complexification procedure [38, 39] for generating rotating solutions in the Boyer–Lindquist coordinates from spherically symmetric static solutions. When applied to the static and spherically symmetric solution (3), one obtains the rotating spacetime – the resulting rotating metrics apart from the mass \((M)\) and spin \((a)\) also depend on the hair parameter \((Q)\) which also gives potential deviation from the Kerr solution [2]. The metric of the rotating hairy black holes spacetime in the Boyer-Lindquist coordinates reads

\[
\begin{align*}
 ds^2 &= -\left(1 - \frac{2M(r)r}{\Sigma}\right)dt^2 + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2 - \frac{4aM(r)r}{\Sigma} \sin^2 \theta dt d\phi + \frac{A}{\Sigma} \sin^2 \theta d\phi^2,
\end{align*}
\]

(5)

with

\[
\begin{align*}
 \Sigma &= r^2 + a^2 \cos^2 \theta, \quad \Delta = r^2 + a^2 - 2rM(r), \\
 M(r) &= M - \frac{Q}{2} \ln \left(\frac{r}{r_0}\right), \\
 A &= (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta.
\end{align*}
\]

Moreover, we shall demonstrate that the metric (5), for some values of \(Q\), can describe rotating black holes up to certain values of the spin parameter \(a\) (cf. Fig. 1) and has a rich structure. The metric (5), in the limit \(Q \to 0\), goes over to the Kerr black hole [2] and also to the spherically symmetric hairy black hole solution (3) when only \(a = 0\), and the Schwarzschild solution for \(Q = a = 0\). It is not difficult to find a range of \(M\) and \(Q\) for which the solution (5) is a black hole, as shown in Fig. 1. Henceforth, for definiteness, we shall address the solution (5) as the rotating hairy black holes. The rotating hairy black hole metric (5), like the Kerr black hole, is independent of \(\phi\) and \(t\) coordinates, and hence admit two Killing vectors, respectively, \(\eta_{(t)}^\mu = \delta^\mu_t\) and \(\eta_{(\phi)}^\mu = \delta^\mu_\phi\) with \(\delta^\mu_\mu\) the Kronecker delta. Thus, by the definition of Killing vectors, four-momentum components associated with translation along \(t\) and \(\phi\) coordinates are constants of motion for free particle geodesics. The solution (5), like the Kerr black hole, is singular at \(\Sigma = 0\) and at \(\Delta = 0\). The surface \(\Sigma = 0\) is a ring shape curvature singularity and \(\Delta = 0\) is a coordinate singularity which determines the horizon – the horizons of the rotating hairy black hole metric (5) are thus solution of

\[
\begin{align*}
 g^{\mu\nu} \partial_\mu r \partial_\nu r = 0 \quad \text{or} \quad g^{rr} = \Delta = 0,
\end{align*}
\]

(6)

where \(\partial_\mu r\) is the normal to the said hypersurface. The event horizon is a null stationary surface representing the locus of outgoing future-directed null geodesic rays that never manage to reach arbitrarily large distances from the black hole [41, 45, 46]. There exist non-vanishing values of parameters \(a\) and \(Q\) for which \(\Delta\) has a minimum, and it admits two positive roots \(r_+\) (with \(r_+ \geq r_-\)) corresponding to Cauchy \((r_-)\) and event \((r_+)\) horizons. Further, analysis of the zeros of \(\Delta = 0\) reveals, for a given \(a\) and \(M\), there exists a critical value of \(Q, Q_E\), such that \(\Delta = 0\) has two equal roots corresponding to an extremal black hole with degenerate horizons \((r_- = r_+ = r_E)\). When \(Q < Q_E\), \(\Delta = 0\) has two simple zeros, and has no zeros for \(Q > Q_E\) (cf. Fig. 4 (left)). They, respectively, correspond to a non-extremal black hole with a Cauchy horizon and an event horizon, with the a geometry of naked singularity.
The timelike Killing vector $\xi^a = (\frac{\partial}{\partial t})^a$ of the solution has norm

$$\eta_{\mu\nu} = g_{tt} = -\frac{\Delta - a^2 \sin^2 \theta}{\Sigma},$$ \hspace{1cm} (7)$$

which is null at the static limit surface (SLS). The time Killing vector matches with the time coordinate in the asymptotically large-r limit. The region between $r_H < r < r_{\text{SLS}}$ is called the ergosphere, where the asymptotic time translation Killing field $\xi^a = (\frac{\partial}{\partial t})^a$ becomes spacelike and an observer follows an orbit of χ^a. Thus, the dependence of ergosphere on the hairy parameter Q, in turn, is likely to have an impact on energy extraction by the Penrose process.

Next, we investigate the weak energy condition for the source associated with the rotating hairy black hole metric (5). We use orthonormal basis in which energy momentum tensor is diagonal $\begin{pmatrix} \rho & P_1 & P_2 & P_3 \end{pmatrix}$ with

$$\rho = -P_1 = \frac{2r^2 M'}{(r^2 + a^2)^2} = -\frac{-rQ}{(r^2 + a^2)^2},$$

$$P_2 = P_3 = -\frac{r(r^2 + a^2)M'' + 2a^2 M'}{(r^2 + a^2)^2} = \frac{Q(a^2 - r^2)}{2r(a^2 + r^2)^2},$$ \hspace{1cm} (9)$$

where, for brevity, we have used $M(r)$ defined in metric (5). These stresses fall off rapidly at large r for $M \neq 0$. The weak energy condition requires $\rho \geq 0$ (as $Q < 0$) and $\rho + P_i \geq 0$ ($i = 1, 2, 3$) [41]. Clearly $\rho > 0$ and the behaviour of $\rho + P_2 = \rho + P_3$ is depicted in Fig. 2, which shows the weak energy conditions for a black hole are respected for the spherical case ($a = 0$) when $\rho + P_2$ becomes $-Q(1 + 2r^2)/(2r^3)$, but may not be prevented when $a \neq 0$ (cf. Fig. 2). The weak energy condition is not satisfied for rotating black holes, but the violation can be very small, depending on the value of Q, as shown in the Fig. 2. However, this happens for several rotating black holes [32, 33, 37] and, such solutions are important phenomenologically and also they are important from astrophysical point of view being rotating. Furthermore, the nonminimally coupled scalar field models also show the energy condition violation [42–44].

FIG. 2: Plots of $\rho + P_2$ vs radius r and hair Q for $a = 0$ (left) and $a = 0.8$ (right).
FIG. 3: Plot showing the ergoregion of rotating hairy black holes. The coordinate transformation from Boyer–Lindquist coordinates \((\lim_{M \to 0}) r, \theta, \phi\) to Cartesian coordinates \(x, y, z\) is given by \(x = \sqrt{r^2 + a^2 \sin \theta \cos \phi}\), \(y = \sqrt{r^2 + a^2 \sin \theta \sin \phi}\), \(z = r \cos \theta\). Top: \((a = 0.7, Q=-0.3)\) and \((a = 0.7, Q=-0.35)\); Bottom: \((a = 0.8, Q=-0.2)\) and \((a = 0.8, Q=-0.25)\)

III. KOMAR CONSERVED QUANTITIES AND BLACK HOLE THERMODYNAMICS

Consider an observer moving with timelike four-velocity in a stationary axisymmetric spacetime; the zero angular momentum observers (ZAMO) are a special class of such observers whose angular momentum vanishes. ZAMO are the stationary observers relative to spatial infinity, but due to frame dragging gain non-zero angular velocity \(\omega = d\phi/dt\). The \(\omega\) vanishes for ZAMO at infinity, but in the general case, it is non-zero, and position-dependent [37, 46]. For the rotating hairy black hole, a stationary observer outside the event horizon, moving with zero angular momentum for
FIG. 4: Plot showing the variation of Δ with r for different values of parameters Q for $a = 0.7$ (left) and $a = 0.8$ (right). The blue surface correspond to $\Delta = 0$ and values at the intersection points between two surfaces are the radii of horizons.

FIG. 5: Plot of temperature T_+ vs horizon radius r_+ for $a = 0.7, 0.8$.

An observer at spatial infinity, can rotate with the black hole with an angular velocity given by

$$\omega = -\frac{g_{t\phi}}{g_{\phi\phi}} = a \frac{\left(r^2 + a^2 - \Delta \right)}{a^4 \sin^4 \theta - a^2 \left(\Delta - 2 \Sigma \right) \sin^2 \theta + \Sigma^2},$$

(10)

which at the horizon becomes $\omega_+ = a/(r_+^2 + a^2)$, i.e., every point of the horizon has the same angular velocity (as measured at infinity). The linear combination of Killing vectors $\eta_{(t)}^\mu$ or $\eta_{(\phi)}^\mu$ is the generator of the stationary black hole horizon [48] given by

$$\chi^\mu = \eta_{(t)}^\mu + \Omega \eta_{(\phi)}^\mu.$$

(11)

The vector χ^μ is globally time like outside the event horizon, but on the horizon it is a Killing vector [48]. The
FIG. 6: Plots of G_+ vs radius r_+ and hair Q for $a = 0.7, 0.8$.

FIG. 7: Plots of C_+ vs radius r_+ and hair Q for $a = 0.7, 0.8$.

Killing vector $\chi^\mu = \eta^\mu_{(t)} + \Omega \eta^\mu_{(\phi)}$ at the event horizon [37], satisfies $\chi^\mu \chi_\mu = 0$, which leads to the rotational velocity

$$\Omega = \frac{\pm \Sigma \sqrt{\Delta} + a \sin \theta (r^2 + a^2 - \Delta)}{a^2 \sin^4 \theta - a^2 (-2 \Sigma + \Delta) \sin^2 \theta + \Sigma^2} \sin \theta$$

Clearly the angular velocity (Ω), even for a fixed r, depends on the polar angle θ and hence χ^μ is not a Killing vector for arbitrary r. At horizon $\Delta = 0$, we get the black hole rotational velocity

$$\Omega_+ = \frac{a}{r_+^2 + a^2},$$

which corresponds to the Kerr black hole value [46, 48], and at the horizon $\omega_+ = \Omega_+$.

The black hole mass and angular momentum can be identified as the conserved quantities associated with, respectively, $\eta^\mu_{(t)}$ and $\eta^\mu_{(\phi)}$. Let us consider a spacelike hypersurface Σ_t, extending from the event horizon to spatial infinity, which is a surface of constant t with unit normal vector n_μ [48, 49]. The effective mass reads [50]

$$M_{\text{eff}} = \frac{1}{8\pi} \int_{S_t} \nabla^\mu \eta^\mu_{(t)} dS_{\mu\nu},$$

where S_t is the two-boundary of the hypersurface Σ_t and is a constant-t and constant-r surface with unit outward normal vector σ_μ, $dS_{\mu\nu} = -2n_{(\mu} \sigma_{\nu)} \sqrt{h} d^2 \theta$ is the surface element of S_t, h is the determinant of (2×2) metric on S_t.

\[
\int_{S_t} \nabla^\mu \eta^\mu_{(t)} dS_{\mu\nu},
\]
and
\[n_\mu = -\frac{\delta^t_\mu}{|g^{tt}|^{1/2}}, \quad \sigma_\mu = \frac{\delta^r_\mu}{|g^{rr}|^{1/2}}, \quad (15) \]
are, respectively, timelike and spacelike unit outward normal vectors. Thus, the mass integral (14) becomes an integral over closed 2-surface, that is extendable up to the spatial infinity
\[M_{\text{eff}} = \frac{1}{4\pi} \int_0^{2\phi} \int_0^{r_0} \sqrt{g_{tt} g_{rr}} \left(g^{tt} \Gamma^r_t + g^{rr} \Gamma^r_\phi \right) d\theta d\phi. \quad (16) \]

Using the metric (5), the effective mass of the rotating hairy black hole inside a 2-sphere of radius \(r \) is
\[M_{\text{eff}} = \frac{1}{2ar} \left[Q \left(a^2 + r^2 \right) \arctan \left(\frac{a}{r} \right) + 2 \left(M - \frac{Q}{r_0} \ln \left(\frac{r}{r_0} \right) \right) a \right], \quad (17) \]
which is corrected due to the hair parameter \(Q \), and in the absence of hair \((Q = 0) \), reduces to the mass of the Kerr black hole value that is \(M_{\text{eff}} = M \). Next, we utilize the spacelike Killing vector \(\eta^\mu_{(\phi)} \) to calculate the effective angular momentum [37, 50]
\[J_{\text{eff}} = \frac{1}{16\pi} \int_{S_t} \nabla^\mu \eta^\nu_{(\phi)} dS_{\mu\nu}, \quad (18) \]
using the definitions of surface area element, Eq. (18) is recast as
\[J_{\text{eff}} = -\frac{1}{8\pi} \int_0^{2\phi} \int_0^{r_0} \nabla^\mu \eta^\nu_{(\phi)} n_\mu \sigma_\nu \sqrt{h \delta \theta \delta \phi}, \]
\[= \frac{1}{8\pi} \int_0^{2\phi} \int_0^{r_0} \sqrt{g_{tt} g_{rr}} \left(g^{tt} \Gamma^r_t + g^{rr} \Gamma^r_\phi \right) d\theta d\phi. \quad (19) \]

Upon using the rotating hairy black hole metric (5) and integrating, the effective angular momentum becomes
\[J_{\text{eff}} = \frac{1}{4a^2r} \left[Q \left(a^2 + r^2 \right)^2 \arctan \left(\frac{a}{r} \right) + 4ar \left(M - \frac{Q}{r_0} \ln \left(\frac{r}{r_0} \right) + \left(M - \frac{Q}{4} \right) a^2 - \frac{Qr^2}{4} \right) \right]. \quad (20) \]

In the absence of hair, \(Q \to 0 \), the effective angular momentum Eq. (20) gives the Kerr black hole value \(J_{\text{eff}} = Ma \). The Killing vector \(\chi^\mu = \eta^\mu_{(t)} + \Omega \eta^\mu_{(\phi)} \) is the generator of the rotating black hole Killing horizon, the corresponding Komar conserved quantity reads as [50]
\[K_\chi = -\frac{1}{8\pi} \int_{S_t} \nabla^\mu \chi^\nu dS_{\mu\nu}, \]
\[= -\frac{1}{8\pi} \int_{S_t} \nabla^\mu \left(\eta^\mu_{(t)} + \Omega \eta^\mu_{(\phi)} \right) dS_{\mu\nu}. \quad (21) \]

Using Eqs. (17) and (20), we obtain
\[K_\chi = \frac{1}{2r_+} \left[r_+^2 + Qr_+ - a^2 \right]. \quad (22) \]

Next, we analyse the thermodynamical quantities associated with the rotating hairy black hole metric (5). The surface gravity \(\kappa \), the angular velocity \(\Omega \) and the electrostatic potential are all locally defined on the horizon and they are always constant over the horizon of any stationary black hole [37] because of an extended form of the zeroth law of black hole mechanics. The area of the black hole horizon is give by [37, 46]
\[A_H = \int_0^{2\pi} d\phi \int_0^\pi \sqrt{g_{tt} g_{rr}} d\theta, \]
which upon integration leads to \(A_H = 4\pi(r_+^2 + a^2) \), \(r_+ \) is outer horizon radius. The entropy of the black hole can be calculated using Hawking’s area law of black hole as
\[S_+ = \frac{A_H}{4} = \pi(r_+^2 + a^2). \quad (24) \]
The black holes are characterized by their mass \(M_+\). From \(\Delta(r_+) = 0\), the mass of the black hole can be expressed in terms of its horizon radius \(r_+\) by

\[
M_+ = \frac{1}{2r_+} \left[r^2_+ + a^2 + r_+ Q \ln \left(\frac{r_+}{r_0} \right) \right],
\]

(25)

which in the special case \(Q = 0\), reduces to \(M_+ = (a^2 + r^2_+)/(2r_+)\), corresponding to the Kerr black hole mass [46]. Black holes behave as a thermodynamical entity whose temperature \(T\) can be calculated from surface gravity \(\kappa\) evaluated at Killing horizon through \(\kappa^2 = -\frac{1}{2} \epsilon^{\mu\nu} \chi_{\mu\nu}\). Hawking showed that the black hole temperature is determined by

\[
T_+ = \frac{\kappa}{2\pi} = \frac{\Delta'(r_+)}{4\pi(r^2_+ + a^2)},
\]

(26)

\[
= \frac{r^2_+ - a^2 + Qr_+}{4\pi r_+ (r^2_+ + a^2)},
\]

which in the absence of hair \((Q = 0)\), yields

\[
T^K_+ = \frac{r^2_+ - a^2}{4\pi r_+ (r^2_+ + a^2)},
\]

(27)

the temperature of the Kerr black hole [36, 37]. It is evident from Fig. 5 that, with decreasing \(r_+\), the Hawking temperature of the rotating hairy black holes increases to a maximum \(T^\text{max}_+\) at the critical radius \(r_c\), then drops to zero temperature and then becomes negative at a small horizon radius. The maximum Hawking temperature \(T^\text{max}_+\) decreases with an increase in the values of the hairy parameter \(Q\). The Hawking temperature of the rotating hairy black hole spacetime increases with the horizon radius (or with the mass) (cf. Fig. 5) when horizon radii in the range \(r_E \leq r_+ \leq r_C\).

From classical electrodynamics we can calculate the potential \(\Phi\) associated with black hole charge \(Q\) [51, 52]. Therefore, the differential form of the first law of black hole thermodynamics can be written as

\[
dM = T dS + \Omega dJ + \Phi dQ.
\]

(28)

Furthermore, using this we can calculate the extensive quantity associated with black hole, i.e., temperature, angular velocity and electrostatic potential, through

\[
T = \left(\frac{dM}{dS} \right)_{(J,Q)}, \quad \Omega = \left(\frac{dM}{dJ} \right)_{(S,Q)}, \quad \Phi = \left(\frac{dM}{dQ} \right)_{(S,J)}.
\]

(29)

Lastly, Eqs (22), (26) and (24), lead to

\[
\mathcal{K}_\chi = M_{\text{eff}} - 2\Omega J_{\text{eff}} = 2S_+ T_+.
\]

(30)

Therefore, the Komar conserved quantity corresponding to the null Killing vector at the event horizon \(\chi^\nu\) is twice the product of the black hole entropy and the horizon temperature and hence satisfies the Smarr formula [37, 53, 54]. It is worthwhile to notice that Eq. (28) is in terms of ADM quantities whereas Eq. (30) is in terms of the Komar quantity, which does not have an explicit contribution from the charge \(Q\).

Finally, we analyse the thermodynamic stability of the rotating black hole, which requires the study of its heat capacity that is defined as [55, 56]

\[
C_+ = \frac{\partial M_+}{\partial T_+} = \left(\frac{\partial M_+}{\partial r_+} \right) \left(\frac{\partial T_+}{\partial r_+} \right)^{-1}.
\]

(31)

The global thermodynamical stability of the black hole can be deduced from the behaviour of its free energy. The Gibb’s free energy of the black hole in the canonical ensemble is obtained as [57, 58]

\[
G_+ = M_+ - T_+ S_+.
\]

(32)

On using Eqs. (24), (25) and (26) in Eqs. (31) and (32), we get expressions, respectively, for heat capacity and Gibb’s free energy. The graphic results, depicted in Fig. 7, might be more enlightening than the analytical expressions given
by

\[C_+ = -\frac{2\pi \left(r_+ Q - a^2 + r_+^2\right) \left(r_+^2 + a^2\right)^2}{2Q r_+^4 - a^4 - 4a^2r_+^2 + r_+^4}, \]

\[G_+ = \frac{1}{4r_+} \left[r_+^2 + 3a^2 + 2r_+ Q \ln \left(\frac{r_+}{r_0}\right) - r_+ Q\right]. \]

However, as a consistency check, the expression for heat capacity and Gibbs’s free energy for the Kerr black hole recovered when \(Q = 0 \) [36, 37, 57]. The positivity of black hole’s heat capacity \(C_+ > 0 \) is sufficient to state that the black hole is thermodynamically stable to local thermal fluctuation; black hole temperature increases with its mass. When the specific heat is positive, an increase in the black hole temperature will increase the entropy, thereby giving a stable thermodynamic configuration. Fig. 7 shows that heat capacity, for a given value of \(Q \) and \(a \), is discontinuous at a critical radius \(r_+ C \). Further, we notice that the heat capacity flips its sign around \(r_+ C \). Thus, we can say the black hole is thermodynamically stable for \(r_1 < r_+ < r_+ C \) where \(C_+ > 0 \), whereas it is thermodynamically unstable for \(r_+ > r_+ C \) region wherein \(C_+ < 0 \), and there is a second order phase transition at \(r_+ = r_+ C \). Thus, we can say that the heat capacity is negative for a larger black hole with \(r_+ > r_+ C \), positive for the black hole in the region \(r_1 < r_+ < r_+ C \) and again negative for minimal radius \(r < r_1 \). It means that the smaller size black holes are thermodynamically stable locally [55, 56, 59]. One can notice that the black hole temperature decreases with the increasing \(r_+ \) for \(r_+ > r_c \), thus leaving a thermodynamically unstable black hole with \(C_+ < 0 \). Whereas at the critical radius \(r_c \), the black hole temperature is maximum and the specific heat is discontinuous.

One can analyze the free energy to discuss the global thermodynamical stability of black holes [37, 57]. If we consider that the black hole is in thermal equilibrium with the surrounding radiation, such that it exchanges only energy, then in the preferred phase, free energy will be minimum. A black hole, at some stage, due to Hawking evaporation, absorbs more radiation than it emits, which leads to global stability [55, 56, 59]. As we all know, thermodynamic state with lower Gibbs free energy is more stable. We depict the Gibbs free energy for various values of parameter \(Q \) and \(a \) in Fig. 7. We note that the free energy has a positive value for the entire parameter space \((r_+, Q)\). Thus rotating Horndeski gravity black holes are globally thermodynamically unstable. However, the black holes with large \(r_+ \) have smaller Gibbs free energy. The Hawking-Page-type phase transition is not possible as the free \(G_+ > 0 \) for all \(r_+ \) as depicted in Fig. 7.

IV. GRAVITATIONAL DEFLECTION OF LIGHT

It is a well established fact now that the light rays get deflected when they propagate through an inhomogeneous gravitational field, such as near the black hole, and the phenomenon is known as gravitational lensing. Here, we focus on weak gravitational lensing by the rotating Horndeski black hole for a source, and observer at a finite distance from the black hole. In particular, to calculate the deflection angle, we use the Gauss-Bonnet theorem that connects the differential geometry of the surface of light propagation with its topology or commonly known as the Gibbons-Werner method [62]. In the geometrical approach to gravitational lensing theory, Gibbon and Werner [62] devised an elegant technique to calculate the deflection angle of light in a static and spherically symmetric black hole spacetime in the context of optical geometry. They reported that the focusing of light rays emerges as a global topological effect, and consequently, the deflection angle can be calculated by integrating the Gaussian curvature of the optical metric outwards from the light ray [63]. Their method was extended to take account of the finite distance from a black hole to a light source and a receiver by Ishihara et al. [64], who calculated the light deflection angle for static and spherically symmetric black holes (including the presence of the cosmological constant). Later, Ono, Ishihara, and Asada [65] used this method to calculate the finite-distance correction for stationary and axisymmetric spacetimes. For both finite or infinite distant sources and observers, the Gauss-Bonnet theorem is often applied to an infinite region outside the light ray. This method has gained popularity over time and has been extensively used for varieties of black hole spacetimes [66].

We begin by determining the photon orbits equation of motion at the equatorial plane \((\theta = \pi/2)\) for the rotating Horndeski gravity black hole. Because the rotating metric is isometric under time translation and rotational transformation along the \(\phi \) axis, this yields two constants of motion for photons, namely energy \(E \) and axial angular momentum \(L \),

\[
E = \left(1 - \frac{2m(r)}{r}\right) \hat{t} + \frac{2m(r)a}{r} \hat{\phi},
\]

\[
L = -\frac{2m(r)a}{r} \hat{t} + \left(r^2 + a^2 + \frac{2m(r)a^2}{r}\right) \hat{\phi},
\]

(33)
where “˙” denotes the derivative with respect to the affine parameter along geodesics. The impact parameter b for the photon trajectories is defined as

$$b = \frac{L}{E}. \quad (34)$$

In terms of the impact parameter the light orbit equation ($ds^2 = 0$) takes the following simpler form

$$\left(\frac{du}{d\phi}\right)^2 = \frac{\left(1 + a^2u^2 - 2Mu + Qu \ln\left(\frac{1}{ur_0}\right)\right)^2}{\left(b + (a - b)u(2M - Q \ln(\frac{1}{ur_0}))\right)^2} = F[u], \quad (35)$$

where $u = 1/r$.

For a compact and oriented two-dimensional surface T with boundary curves ∂T_p, such that the exterior jump angle between the curves ∂T_p and ∂T_{p+1} along the boundary is θ_p, the Gauss-Bonnet theorem can be mathematically expressed as [62]

$$\int \int_T KdS + \sum_{p=1}^N \int_{\partial T} k_g d\ell + \sum_{p=1}^N \theta_p = 2\pi \chi(T), \quad (36)$$

where K is the Gaussian curvature at any point on the surface, dS and $d\ell$ are the infinitesimal surface area element and line element, k_g is the curvature of boundary curve T_p and $\chi(T)$ is the Euler characteristic of the surface. For the gravitational lensing setup, by construction, both the source (S) and observer (O) are considered at a finite distance from the black hole (L) (cf. Fig. 8), and the deflection angle of light is defined as [65]

$$\alpha_D = \Psi_O - \Psi_S + \Phi_{OS}. \quad (37)$$

Here, Ψ_S and Ψ_O, respectively, are angles made by light rays tangent and the radial direction from the lens object at the source and observer, and Φ_{OS} is the source-observer angular coordinate separation that is associated with the rotational Killing vector ϕ (cf. Fig. 8). On using Eq. (35)

$$\alpha_D = \Psi_O - \Psi_S + \int_{u_s}^{u_m} \frac{du}{\sqrt{F(u)}} + \int_{u_s}^{u_m} \frac{du}{\sqrt{F(u)}}, \quad (38)$$

where $u_{s,o}$ are the inverse of the distance of source and observer from the black hole $r_{s,o}$ and u_m is the inverse of distance of closest approach to the black hole r_m. In the far limit of source and observer, i.e., $u_{s,o} = 0$, $\Psi_O \to 0$ and $\Psi_s \to \pi$, Eq. (38) yields

$$\alpha_D = 2\int_{0}^{u_m} \frac{du}{\sqrt{F(u)}} - \pi. \quad (39)$$

FIG. 8: a: A schematic for the Gauss-Bonnet theorem [62]. b: Geometrical setup for weak-gravitational lensing. Note that the inner angle at the source and observer are Ψ_S and $\pi - \Psi_O$.
It comes as a great surprise that Eqs. (37) and (38) are valid for any winding number of photon orbits around the black hole [67]. To use the Gauss-Bonnet theorem [62], we take into account a domain $\mathcal{O} \cap \mathcal{S}$ constructed by a spatial light ray curve from S to O, two outward straight lines from O and S to O_{∞} and S_{∞}, and a circular arc segment C_r of coordinate radius r_C ($r_C \to \infty$) (cf. Fig. 8). The outward radial lines LO_{∞} and LS_{∞} meets the circular arc at the right angle. This domain $\mathcal{O} \cap \mathcal{S}$ is defined by a three-dimensional spatial metric σ_{ij}, in which photon trajectories are described as spatial curves [62]. To determine the spatial metric, we solve the null geodesics equation $ds^2 = 0$ in four-dimensional spacetime, this reads as

$$dt = \pm \sqrt{\sigma_{ij} dx^i dx^j + \beta_i dx^i},$$

with $i, j = 1, 2, 3$ and

$$\sigma_{ij} dx^i dx^j = \frac{\Sigma^2}{\Delta} dr^2 + \frac{\Sigma^2}{\Delta} d\theta^2 + \left(r^2 + a^2 + \frac{2m(r)a^2 \sin^2 \theta}{\Delta - a^2 \sin^2 \theta} \right) \Sigma \sin^2 \theta d\phi^2,$$

$$\beta_i dx^i = -\frac{2m(r)a \sin^2 \theta}{\Delta - a^2 \sin^2 \theta} d\phi.$$

The advantage of the spatial metric σ_{ij} is that the null arc length $d\ell$ is directly related with the time associated with the timelike Killing vector. At the equatorial plane, the two-dimensional metric $\sigma^{(2)}_{ij}$ defines the surface of light propagation with Gaussian curvature K and infinitesimal area element dS. The arc-length along the null ray at $\theta = \pi/2$ reads as

$$d\ell^2 = \frac{r^4}{\Delta} dr^2 + \left(r^2 + a^2 + \frac{2m(r)a^2 \sin^2 \theta}{\Delta - a^2 \sin^2 \theta} \right) \Sigma d\phi^2.$$

Because of the gravitomagnetic effect in rotating black holes, the null geodesics of $g_{\mu\nu}$ are no longer the geodesics of σ_{ij} and rather are just the spatial curves.

As depicted in Fig. 8 the two outgoing radial lines LO_{∞} and LS_{∞} have zero geodesic curvature. Furthermore, in the asymptotically flat spacetime, the curvature of circular arc C_r is $k_g = 1/r_c$ with $d\ell = r_c d\phi$, this yields

$$\int_{C_r} k_g d\ell = \int_{C_r} d\phi = \Phi_{OS}.$$

(43)

For the domain $\mathcal{O} \cap \mathcal{S}$ shown in Fig. 8 and $\chi(T) = 1$, the Gauss-Bonnet equation (36) can be simplify as

$$\int \int_{T} K dS + \int_{O} k_g d\ell + \Phi_{OS} + \frac{\pi}{2} + \frac{\pi}{2} + \Psi_{O} + (\pi - \Psi_{S}) = 2\pi,$$

$$\Rightarrow \int \int_{T} K dS + \int_{O} k_g d\ell + \Psi_{O} - \Psi_{S} + \Phi_{OS} = 0,$$

(44)

which on using Eq. (37) yields the geometrically invariant definition of deflection angle as follows [65]

$$\alpha_D = -\int_{\mathcal{O} \cap \mathcal{S}} K dS + \int_{S} k_g d\ell.$$

(45)

Here, k_g denotes the geodesic curvature of light curves from S to O, which is the surface-tangential component of the acceleration of the curve [65] and reads as

$$k_g = -\frac{1}{\sqrt{\sigma_{\theta\theta} \sigma_{\phi\phi}}} \beta_{\phi, r}.$$

(46)

Therefore, for a stationary spacetime, both the Gaussian curvature of the surface of light propagation defined by spatial metric σ_{ij} and the geodesics curvature of light curves contribute to the light deflection angle α_D. However, for a static spacetime, the geodesics curvature contribution vanishes. We calculate both contributions. We begin with the Gaussian curvature of the two-dimensional surface, which is defined as [68]

$$K = \frac{3R_{\rho\phi\rho\phi}}{\sigma},$$

$$= \frac{1}{\sqrt{\sigma}} \left(\frac{\partial}{\partial \phi} \left(\frac{\sqrt{\sigma}}{\sigma_{\rho\rho}} \Gamma_{\rho\phi}^{\phi} \right) - \frac{\partial}{\partial r} \left(\frac{\sqrt{\sigma}}{\sigma_{rr}} \Gamma_{r\phi}^{\phi} \right) \right),$$

(47)
where $\sigma = \det(\sigma_{ij})$. For the rotating Horndeski black hole, this reads as
\[
K = \frac{-1}{6r^5(r - 2m(r))} \left(6r^2 (r - 2m(r)) (\Delta + a^2)m''(r) + 6rm'(r)(rm'(r) - m(r)) (\Delta + 5a^2) + 6rm(r)^2 - (7r^2 + a^2)m(r) + 2r^2(a^2 + 3a^2) \right),
\] (48)
on using the black hole mass function and using the weak-field approximation, this reduces to
\[
K = -\frac{3Q}{2r^3} - \frac{Q^2}{4r^4} - \frac{4a^2Q}{r^5} + \frac{Q \ln(r/r_0)}{r^4} - \frac{Q^2 \ln(r/r_0)}{r^4} - \left(\frac{r^3}{2} + \frac{3Q \ln(\ln(r/r_0))}{r^4} \right) + \frac{3Q}{2r^3} + \frac{6a^2}{r^5} + \frac{6aQ \ln(r/r_0)}{r^5} \right)
\] (49)
This captures only the leading order contributing terms. To perform the surface integral of Gaussian curvature over the closed quadrilateral $\mathcal{C} \mathcal{D} \mathcal{S}$, we have to identify the boundary of the integration domain, i.e., the curve from S to O. In the weak field approximation, we can use the light orbit solution from Eq. (35) [69]:
\[
u = \frac{\sin \phi}{b} + \frac{M(1 - \cos \phi)}{b^2} - \frac{2Ma(1 - \cos \phi)}{b^3} + O \left(\frac{M^2}{b^3} \right).
\] (50)
The surface integral yields
\[
\int \int_{\mathcal{C} \mathcal{D} \mathcal{S}} K dS = \int_{\phi_S}^{\phi_0} \int_{\infty}^{r} K \sqrt{\sigma} d\rho d\phi = \int_{\phi_S}^{\phi_0} \int_{0}^{u} - \frac{K}{u^2} d\phi d\phi.
\] (51)
On evaluating Eq. (51), we get
\[
\int \int K dS = \int_{\phi_S}^{\phi_0} \int_{0}^{u} - \frac{K}{u^2} d\phi d\phi
\]
\[
= -\frac{1}{2b} \left(\sqrt{1 - b^2u_s^2} - \sqrt{1 - b^2u_o^2} \right) \left(-4M + Q - \frac{8Ma^2}{3b^2} - \frac{2a^2Q}{9b^2} - \frac{37M^2Q}{3b^2} \right)
\]
\[
- \frac{1}{2b} \sqrt{1 - b^2u_o^2} \left(MQ u_o - \frac{4a^2Q u_o^2}{9} - \frac{M^2(6u_o + Q u_o^2)}{12} + (2Q + \frac{4a^2Q}{3b^2}) \ln \left(\frac{1}{u_o r_0} \right) \right)
\]
\[
- \frac{1}{2b} \sqrt{1 - b^2u_o^2} \left(MQ u_o - \frac{4a^2Q u_o^2}{9} - \frac{M^2(6u_o + Q u_o^2)}{12} + (2Q + \frac{4a^2Q}{3b^2}) \ln \left(\frac{1}{u_o r_0} \right) \right)
\]
\[
+ M \left(\frac{21\pi Q b^2}{8a} - \frac{3\pi a Q}{b^3} \right) + \frac{M(6 - a)}{2b} (u_o - u_s) + \frac{MQ(6a - 5b)}{2b^3} (\sin^{-1} b u_s - \sin^{-1} b u_o)
\]
\[
+ \frac{Q}{b} \left(\ln \left(\frac{b u_o}{1 - \sqrt{1 - b^2u_o^2}} \right) - \ln \left(\frac{b u_o}{1 - \sqrt{1 - b^2u_o^2}} \right) \right)
\]
\[
+ M^2 \left(\frac{15\pi}{4b^3} - \frac{4a}{b^3} - \frac{4a}{b^3} + \frac{45\pi Q}{8b^2} + \frac{3Q(6u_o + Q u_o^2)}{2b} (u_o - u_s) \right)
\]
\[
+ M^2 \frac{16a - 15b}{4b^3} \sin^{-1}(b u_s) + \sin^{-1}(b u_o) + O \left(\frac{M^2 a^2}{b^4}, \frac{M^2 a^2 Q}{b^5} \right).
\] (52)
Because we considered the source and the observer at the opposite sides to the black hole, we have used $\sin \phi_o = b u_o$, $\cos \phi_o = -\sqrt{1 - b^2u_o^2}$, $\sin \phi_s = b u_s$, $\cos \phi_s = \sqrt{1 - b^2u_s^2}$.

We now calculate the contribution from the geodesic curvature k_g, which reads as
\[
k_g = -\frac{aQ}{r^3} + \frac{aQ \ln \left(\frac{r}{r_0} \right)}{r^3} + \left(-\frac{2a}{r^3} + \frac{3aQ}{r^4} + \frac{6aQ \ln \left(\frac{r}{r_0} \right)}{r^4} \right) M + O \left(\frac{M^2 a}{r^4} \right).
\] (53)
It is worth noticing that k_g vanishes for the $a = 0$. The contribution from k_g is the path integral along the light curve (from S to O), whereas straight lines joining S to S_o and O to O_o both have zero geodesic curvature. The line element along the photon orbit is computed from Eqs. (42) and (35) and reads as
\[
d\ell = \frac{1 - 2Mu + Q u \ln \left(\frac{r}{r_0} \right)}{u^2(1 - 2Mu + Q u \ln \left(\frac{r}{r_0} \right))} (b + u(a - b)(2M - Q \ln \left[\frac{r}{r_0} \right])),
\] (54)
using the orbits equation from Eq. (50), the path integral reads as

\[
\int_\mathcal{S} k_y d\ell = -\frac{3M aQ}{2b^3} \left(\cos^{-1} b u_s - \cos^{-1} b u_o \right) + \frac{2M aQ}{b^2} (u_o - u_s) - \frac{a}{2b^2} \sqrt{1 - b^2 u_s^2} \left(4M - \frac{3MQ}{2b} u_o - 2Q \ln \frac{1}{r_0 u_o} \right) - \frac{a}{2b^2} \sqrt{1 - b^2 u_s^2} \left(4M - \frac{3MQ}{2b} u_s - 2Q \ln \frac{1}{r_0 u_s} \right) + Q \frac{a}{b^2} \ln \left[\frac{b u_o (1 - \sqrt{1 - b^2 u_s^2})}{b u_s (1 + \sqrt{1 - b^2 u_s^2})} \right].
\]

(55)

Here, we have adopted the sign convention such that for the prograde (retrograde) photons \(d\ell > 0 \) \((d\ell < 0) \). The analytical expression for the gravitational deflection angle of light in the weak field limit for the rotating Horndeski black hole can be obtained by using Eqs. (52) and (55) in Eq. (45). For the infinitely distant source and observer, \(u_s \to 0 \) and \(u_o \to 0 \), the deflection angle for prograde photons reads as

\[
\alpha_D = \frac{4M}{b} - \frac{Q}{b} - \frac{4Ma}{b^2} + \frac{21\piMQ}{8b^2} + \frac{15\piM^2}{3b^3} - \frac{8Ma^2}{b^5} - \frac{4\piM^2a}{b^7} + \frac{2a^2Q}{9b^9} + \frac{37M^2Q}{3b^1} - \frac{43M^3aQ}{4b^3} + \frac{Qa}{b^2} \ln \left[\frac{b}{r_0} \right] + \frac{9\piMQ}{4b^2} \ln \left[\frac{b^2}{r_0^2} \right] + \frac{13\piMaQ}{2b^3} \ln \left[\frac{b}{r_0} \right] + \mathcal{O} \left(\frac{M^2aQ}{b^4}, \frac{Ma^2Q^2}{b^5} \right),
\]

(56)

and for retrograde photons

\[
\alpha_D = \frac{4M}{b} - \frac{Q}{b} + \frac{4Ma}{b^2} + \frac{21\piMQ}{8b^2} + \frac{15\piM^2}{3b^3} - \frac{8Ma^2}{b^5} - \frac{4\piM^2a}{b^7} + \frac{2a^2Q}{9b^9} + \frac{37M^2Q}{3b^1} - \frac{19MaQ}{4b^3} + \frac{Qa}{b^2} \ln \left[\frac{b}{r_0} \right] - \frac{9\piMQ}{4b^2} \ln \left[\frac{b^2}{r_0^2} \right] - \frac{13\piMaQ}{2b^3} \ln \left[\frac{b}{r_0} \right] + \mathcal{O} \left(\frac{M^2aQ}{b^4}, \frac{Ma^2Q^2}{b^5} \right),
\]

(57)

which in the limit \(Q = 0 \) reduce to the Kerr deflection angle \(\alpha_D|_{\text{Kerr}} \). Furthermore, for \(a = 0 \), Eqs. (56) and (57) define the deflection angle for the nonrotating Horndeski black hole. The black hole rotation breaks the degeneracy in deflection angle, and the prograde and retrograde photons lead to a distinct deflection angle for the same values of parameters, such that the deflection angle for prograde (retrograde) photons monotonically decrease (increase) with increasing black hole spin. Therefore, the deflection angle around rotating black holes is smaller (larger) than the nonrotating black hole for prograde (retrograde) photons.

Next, we will discuss the astrophysical implication of the rotating Horndeski gravity black hole by calculating the weak gravitational deflection angle. We will model the Sgr A* black hole (\(M = 4.0 \times 10^6 M_\odot, r_o = d = 8.3 \text{ kpc} \)) as the rotating Horndeski gravity black hole and numerically compute the deflection angle and estimate the corrections from the Kerr and nonrotating Horndeski gravity black hole models. In Tables I & II, and III & IV we depicted the calculated corrections in deflection angles \(\delta \alpha_D \) for the rotating Horndeski gravity black hole, respectively, from the Kerr and nonrotating Horndeski gravity black holes. Considering the light source at a large distance \(r_s = 10^5 M \) from the black hole and observer at the Earth, the corrections \(\delta \alpha_D \) for both prograde and retrograde photons are shown in Tables I and III. It is clear from Table I that rotating black holes in the Horndeski gravity cause larger deflection angle than that for the Kerr black hole, and the deflection angle correction \(\delta \alpha_D = \alpha_D - \alpha_D|_{\text{Kerr}} \) increases with \(Q \) for both prograde and retrograde photons, whereas \(\delta \alpha_D \) decrease (increase) with \(a \) for prograde (retrograde) photons; the \(\delta \alpha_D \) are \(\mathcal{O} \) units.

\(a/M \)	\(Q = -0.1M \)	\(Q = -0.3M \)	\(Q = -0.5M \)	\(Q = -0.7M \)	\(Q = -0.9M \)
0.1	34.2133	102.64	171.061	239.493	307.92
(34.211)	(102.642)	(171.07)	(239.498)	(307.926)	
0.3	34.2127	102.638	171.063	239.489	307.914
(34.2146)	(102.644)	(171.073)	(239.502)	(307.931)	
0.5	34.212	102.636	171.06	239.484	307.908
(34.2153)	(102.646)	(171.076)	(239.507)	(307.937)	
0.7	34.2114	102.634	171.057	239.48	—
(34.2150)	(102.648)	(171.079)	(239.511)	—	
0.9	34.2107	—	—	—	—
(34.2165)	—	—	—	—	

Table I: The corrections in the deflection angle \(\delta \alpha_D = \alpha_D - \alpha_D|_{\text{Kerr}} \) for Sgr A* with \(b = 10^4 M \), source at \(r_s = 10^5 M \), \(r_o = 2M \), and varying \(Q \) and \(a \); \(\delta \alpha_D \) is in units of arcsec for prograde (retrograde) photons.
the retrograde photons experience larger deflection angle compared to the prograde photons (cf. Table I). Interestingly, the black hole rotation weakens the gravitational field as the rotating black holes lead to smaller deflection angle compared to the nonrotating black holes for the prograde (retrograde) photons. On the other hand, the retrograde photons experience larger deflection angle around the rotating black hole in comparison with the nonrotating black holes for the prograde photons (cf. Table II). The absolute correction \(|δα_D| = |∈\alpha_D| \) from the nonrotating Horndeski gravity black holes monotonically increases with \(a \) and \(Q \) for the both prograde and retrograde photon; and are of \(O(\text{mas}) \) for \(b = 10^4 M \) (cf. Table III).

Next, we consider the S2 star as the source star that lives in the bulge of the Milky Way Galaxy, and in May 2018 that approached the closest distance to Sgr A*, \(r_s = 1400 M, r_0 = 2 M \), therefore, the finite-distance corrections to the deflection angle cannot be neglected. We calculate the light deflection angle and estimate the corrections \(δα_D \), which are summarized in Tables II and IV. The order of correction is arcsec, which is well within the resolution of today’s observational facilities. It can be inferred from Table II that both the charge \(Q \) and spin \(a \) increase the correction in the

\(a/M \)	\(Q = -0.1M \)	\(Q = -0.3M \)	\(Q = -0.5M \)	\(Q = -0.7M \)	\(Q = -0.9M \)
0.1	134.952	404.855	674.759	944.662	1214.57
	(134.971)	(404.913)	(674.855)	(944.797)	(1214.74)
0.3	134.933	404.798	674.663	944.528	1214.39
	(134.99)	(404.97)	(674.951)	(944.931)	(1214.91)
0.5	134.913	404.74	674.566	944.393	1214.22
	(135.009)	(405.028)	(675.046)	(945.065)	(1215.08)
0.7	134.894	404.682	674.47	944.258	—
	(135.028)	(405.085)	(675.142)	(945.199)	—
0.9	134.875	—	—	—	—
	(135.048)				

TABLE II: The corrections in the deflection angle \(δα_D = α_D - α_{D|KR} \) for Sgr A* with \(b = 10^4 M \), source star S2 at \(r_s = 1400 M, r_0 = 2 M \), and varying \(Q \) and \(a \); \(δα_D \) is in units of arcsec for prograde (retrograde) photons.

\(a/M \)	\(Q = -0.1M \)	\(Q = -0.3M \)	\(Q = -0.5M \)	\(Q = -0.7M \)	\(Q = -0.9M \)
0.1	1.14378	1.7873	2.43082	3.07435	3.71787
	(-1.14331)	(-1.78692)	(-2.43053)	(-3.07414)	(-3.71775)
0.3	3.43129	5.36183	7.29237	9.22291	11.1535
	(-3.42999)	(-5.36084)	(-7.29169)	(-9.22254)	(-11.1534)
0.5	5.71873	8.93626	12.1538	15.3713	18.5899
	(-5.71672)	(-8.93485)	(-12.153)	(-15.3711)	(-18.5892)
0.7	8.00612	12.5106	17.0151	21.5196	—
	(-8.00352)	(-12.509)	(-17.0144)	(-21.5198)	—
0.9	10.2934	—	—	—	—
	(-10.290)				

TABLE III: The corrections in the deflection angle \(δα_D \) from the nonrotating Horndeski gravity black hole \(δα_D = α_D|_{\text{NR}} - α_D \) for Sgr A* with \(b = 10^4 M \) and source at \(r_s = 10^4 M, r_0 = 2 M \); \(δα_D \) is in units of mas for prograde (retrograde) photons.

\(a/M \)	\(Q = -0.1M \)	\(Q = -0.3M \)	\(Q = -0.5M \)	\(Q = -0.7M \)	\(Q = -0.9M \)
0.1	0.943078	0.0623374	0.0816011	0.100865	0.120128
	(-0.0428018)	(-0.0619447)	(-0.0810876)	(-0.100231)	(-0.119373)
0.3	0.129207	0.186991	0.244776	0.30256	0.360454
	(-0.12842)	(-0.185555)	(-0.24329)	(-0.300726)	(-0.358161)
0.5	0.21552	0.311617	0.407914	0.50421	0.600507
	(-0.217668)	(-0.309794)	(-0.40553)	(-0.501266)	(-0.597002)
0.7	0.301414	0.436214	0.571015	0.705815	—
	(-0.299716)	(-0.433761)	(-0.567806)	(-0.701851)	—
0.9	0.387488	—	—	—	—
	(-0.385393)				

TABLE IV: The corrections in the deflection angle \(δα_D \) from the nonrotating Horndeski gravity black hole \(δα_D = α_D|_{\text{NR}} - α_D \) for Sgr A* with \(b = 10^4 M \) and source at \(r_s = 1400 M, r_0 = 2 M \); \(δα_D \) is in units of arcsec for prograde (retrograde) photons.
The alternative theories of gravity enrich the dynamical field content of general relativity by including scalar fields in the later, which constitute additional degrees of freedom. One of the most renowned scalar-tensor theories is Horndeski gravity. It is the most general four-dimensional scalar-tensor theory with equations of motion containing second order derivatives of the dynamical fields. The Horndeski action involves four arbitrary functions of the canonical kinetic term \(\chi \), denoted by \(G_i, i = 2, \ldots, 5 \). Recently, it was shown that when \(Q_5 = 0 \), the resulting quartic Horndeski theory of gravity admits spherically symmetric hairy black holes [28]. We derived the rotating counterpart of this solution, i.e., a rotating hairy black hole. The derived Kerr-like black hole has an additional Horndeski charge parameter \(Q \) besides mass \(M \) and spin parameter \(a \). The scalar field produces a hair that changes the structure of the rotating black hole through an additional term \(Q \) in the metric (5), which is asymptotically flat and encompasses Kerr (\(Q = 0 \)) and Schwarzschild black holes (\(Q = 0, a = 0 \)). The rotating hairy black hole metric (5) can represent black holes with Cauchy and event horizons, an extreme black hole or naked singularity, depending on the choice of the parameters. Constraints on the value of \(Q \) are derived for which rotating Horndeski gravity black holes with a given value of spin \(a \) possess two distinct horizons. Despite the complicated rotating hairy black hole metric (5), using the Komar prescription, we found exact expressions for conserved mass \(M_{\text{eff}} \) and angular momentum \(J_{\text{eff}} \), valid at any radial distance. Furthermore, the hair parameter \(Q \) significantly altered these conserved quantities compared with those for the Kerr black hole discovered in the limit \(Q = 0 \). The null Killing vector \(\chi^\mu \) at the event horizon leads to the corresponding Komar conserved quantity \(K_\chi \), which is twice the product of entropy and temperature of the black hole \(K_\chi = 2S_\star T_\star \) and hence satisfies the Smarr formula.

Using the Gauss-Bonnet theorem and considering the source and observer at finite distances from the black hole, we calculate the light deflection angle in the weak field limit. The corrections in the deflection angle from the Kerr black holes and the nonrotating Horndeski gravity black holes are calculated, which are explicit function of distance of source and observer distances. We have modelled the Sgr A* black hole with the rotating Horndeski gravity black hole and shown that the deflection angle increases with \(|Q| \) for both prograde and retrograde photons. To conclude, a rotating hairy solution is Horndeski theories may give new opportunities for finding ways to test these theories against astrophysical observations. It would also be interesting to consider the M87* black hole’s shadow observational results by EHT to put constraints on the parameter \(Q \). Further, the AdS background for these rotating hairy black holes

FIG. 9: a: Correction in the light deflection angle \(\delta\alpha_D \) from Kerr black holes \(\delta\alpha_D = \alpha_D - \alpha_D|_{\text{Kerr}} \) with \(a = 0.50M \), and varying \(b; \delta\alpha_D \) is in units of arcsec. b: Correction in the light deflection angle \(\delta\alpha_D \) from nonrotating Horndeski black holes \(\delta\alpha_D = \alpha_D|_{\text{NR}} - \alpha_D \) with \(a = 0.50M \), and varying \(b; \delta\alpha_D \) is in units of mas.

light deflection angle for retrograde photons. Whereas, \(\delta\alpha_D \) decreases with \(a \) for prograde photons. The qualitative behavior is exactly same as in Table I. It is worth mentioning here that for the fixed value of impact parameter, the \(\delta\alpha_D \) is smaller for a finite distant source \(r_s = 1400M \) in comparison to a infinite distant source \(r_s \to \infty \). In Fig. 9, we have depicted how the correction in the deflection angle \(\delta\alpha_D \) from the Kerr black hole and nonrotating Horndeski gravity black hole vary with dimensionless impact parameter \(b/M \) for different values of \(Q \). With the increasing impact parameter \(b \), the \(\delta\alpha_D \) decreases.

V. CONCLUSIONS
should provide exciting phase structure and critical phenomena. More severe constraints are likely to be expected by taking into account the surrounding accretion disk. The stability of the obtained rotating solution against the scalar perturbations in the gravitational wave observational data may be helpful. Such investigations have a clear astrophysical relevance; we hope to report on these issues in the future.

ACKNOWLEDGMENTS

R.K.W. and S.D.M. thank the NRF and the University of KwaZulu-Natal for continued support. S.D.M acknowledges that this work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation. S.G.G. would like to thank the Science and Engineering Research Board, Department of Science and Technology for the ASEAN project IMRC/AISTDF/CRD/2018/000042, and Shaqat Ul Islam for help in plots.

[1] K. Schwarzschild, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189 (1916).
[2] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[3] E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).
[4] K. Akiyama et al. [Event Horizon Telescope], Astrophys. J. Lett. 875, L1 (2019).
[5] E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).
[6] D. Psaltis et al. [Event Horizon Telescope], Phys. Rev. Lett. 125, no.14, 141104 (2020).
[7] C. Bambi, K. Freese, S. Vagnozzi and L. Visinelli, Phys. Rev. D 100, 044057 (2019); S. Vagnozzi and L. Visinelli, Phys. Rev. D 100, 104020 (2019); R. Kumar, S. G. Ghosh and A. Wang, Phys. Rev. D 100, 124024 (2019); P. V. P. Cunha, C. A. R. Herdeiro and E. Radu, Universe 5, 220 (2019); R. Kumar, B. P. Singh and S. G. Ghosh, Annals Phys. 420, 168252 (2020); I. Banerjee, S. Chakraborty and S. SenGupta, Phys. Rev. D 101, 041301 (2020); M. Wielgus et al., Astrophys. J. 901, 67 (2020); T. Johannsen and D. Psaltis, Phys. Rev. D 86, 084048 (2012).
[8] L. Medeiros, D. Psaltis and F. Özel, Astrophys. J. 896, 7 (2020).
[9] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[10] T. Damour and G. Esposito-Farese, Class. Quant. Grav. 9, 2093 (1992).
[11] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[12] W. W. Horndeski, Int. J. Mod. Phys. D 28, 1942005 (2019).
[13] T. Kobayashi, Rept. Prog. Phys. 82, 086901 (2019).
[14] M. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4 385 (1850).
[15] M. Rinaldi, Phys. Rev. D 86, 084038 (2014).
[16] M. Bravo-Gaete and M. Hassaine, Phys. Rev. D 90, 024008 (2014).
[17] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24, 1542014 (2015).
[18] C. Bambi and L. Modesto, Phys. Lett. B 721, 329 (2013).
[19] S. G. Ghosh, Eur. Phys. J. C 75, 532 (2015).
[20] J. W. Moffat, Eur. Phys. J. C 75, 175 (2015).
[21] R. Kumar and S. G. Ghosh, JCAP 07, 053 (2020).
[22] R. Kumar, S. G. Ghosh and A. Wang, Phys. Rev. D 101, 104001 (2020).
[23] R. Kumar and S. G. Ghosh, Eur. Phys. J. C 78, 750 (2018).
