The incidence of invasive pneumococcal disease (IPD) rises with age. Among adult IPD patients, the avidity of antipneumococcal polysaccharide antibodies against the infecting serotype increased with age and severity of disease, indicating that susceptibility to IPD in the elderly may rather be due to flaws in other aspects of opsonophagocytosis.
to infection or that antibodies against the infecting serotype had already been expended at the time of hospital admission. A preexisting deficit would be less likely if the avidity of these antibodies is similar to the avidity of those in healthy adults, indicating that the process from antigen presentation to affinity-maturated antibody production was not disturbed.

In IPD patients, the median IgG antibody avidity against their infecting serotypes was 0.19. For the control pool, a similar distribution of IgG antibody avidities was observed against the 11 serotypes considered (median, 0.12; Mann-Whitney U test, $P = 0.21$; Fig. 2). Notably, IgG antibody concentration and avidity were not inversely correlated in IPD patients ($r = -0.01$, $P = 0.2$). The similar antibody avidity against the infecting serotype in IPD patients compared with healthy controls differs from what was observed in a previous study in which a lower avidity of antibodies against the infecting serotype was observed (14). An important difference with our study is that in the previous study the healthy adult control group was a selection of highest responders after 23-valent pneumococcal polysaccharide vaccination, whereas our controls were unvaccinated like the IPD patients, which may be more informative on differences in susceptibility to pneumococcal disease.

More-severe bacteremic pneumococcal pneumonia according to pneumonia severity index (PSI) risk class was associated with increased IgG antibody avidities against the infecting serotype (Spearman $r = 0.59$, $P = 0.0016$; Fig. 3A). Furthermore, the IgG antibody avidity against the infecting serotype was positively correlated with age (Spearman $r = 0.42$, $P = 0.028$) in IPD patients (Fig. 3B). High-avidity antibodies result from the process of affinity maturation, which requires previous exposure to the pneumococcal polysaccharide involved. The higher avidity in older IPD patients than in younger IPD patients may be due to more extensive nasopharyngeal pneumococcal carriage. Although among the elderly pneumococcal carriage rates below 10% have been reported (15–17), other studies demonstrate increasing carriage rates with senior age (18, 19). Moreover, pneumococcal carriage was recently shown to be present in 33% of the Dutch elderly (20) and may still induce an anti-PPS memory response at this age (21). However, the higher avidity of anti-PPS antibodies in the elderly may also have been elicited in the initial phase of pneumococcal infection prior to disease.

Antibody avidity may serve as a surrogate measure for other, more elaborate functional antibody tests such as in vitro opsonophagocytic killing or passive protection in mice (8, 14, 22). However, it is unknown how each of these assays actually correlates with protection from pneumococcal disease in adults. In addition, if there were a relationship, it could be serotype specific. To understand whether high-avidity anti-PPS antibodies are desir-

FIG 1 Concentrations of IgG antibodies in IPD patients are lower against the PPS of the infecting serotype than against PPS 19A (two patients infected with serotype 19A excluded). Short horizontal lines, medians. Dashed line, protective antibody concentration in infants. ***, $P < 0.01$.

FIG 2 Similar avidities of anti-PPS IgG antibodies were measured in IPD patients against the infecting serotype compared to the healthy control pool. Black bars, median avidity of patients infected with a particular serotype.
able in the elderly, their functional consequences should be studied in more detail in relation to acquisition and severity of disease in IPD patients of different ages infected with different serotypes.

In adult IPD patients, we observed an age-related increase in avidity of antibodies against the infecting serotype, indicating that the rise in IPD incidence with aging is not caused by a lack of avidity in anti-PPS antibodies. Therefore, among the elderly, flaws in other aspects of opsonophagocytosis, such as complement activation or intracellular killing, may play a more important role in the increased susceptibility to pneumococcal disease.

ACKNOWLEDGMENTS

We acknowledge Mustafa Akkoynulu from the U.S. FDA for providing us with the U.S. Reference Pneumococcal antiserum (007sp). We thank the staff of the participating Canisius Wilhelmina Hospital for facilitating the clinical sample and data collection. Furthermore, we thank Elles Simonetti for laboratory consultation and all volunteers who participated in the study.

The authors declare no potential conflicts of interest.

FIG 3 Avidity of anti-PPS antibodies in IPD patients increases with PSI risk class (A) and with age (B). Short horizontal lines in panel A indicate medians. Infecting serotypes against which IgG avidity is measured are displayed next to the corresponding dot in panel B. **, P < 0.01.

REFERENCES

1. World Health Organization. 2003. Pneumococcal vaccines. Wkly. Epidemiol. Rec. 78(14):110–119.

2. Miller E, Andrews NJ, Waight PA, Slack MP, George RC. 2011. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect. Dis. 11:760–768. http://dx.doi.org/10.1016/S1473-3099(11)70090-7.

3. Netherlands Reference Laboratory for Bacterial Meningitis (AMC/RIVM). 2013. Bacterial meningitis in the Netherlands: annual report 2012. Netherlands Reference Laboratory for Bacterial Meningitis (AMC/RIVM), Amsterdam, The Netherlands.

4. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, Gesler PR, Pilishvili T, Jackson D, Facklam RR, Jorgensen JH, Schuchat A. Active Bacterial Core Surveillance of the Emerging Infections Program Network. 2003. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med. 348:1737–1746. http://dx.doi.org/10.1056/NEJMoa022823.

5. Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G, Malinowski F, Madore D, Chang I, Kohberger R, Watson W, Austrian R, Edwards K. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 19:187–195.

6. World Health Organization. 2005. Recommendations for the production and control of pneumococcal conjugate vaccines. WHO technical report series no. 927. World Health Organization, Geneva, Switzerland.

7. Elberse KEM, de Greeff SC, Wattimena N, Cheu W, Schot CS, van de Pol JE, van der Heide JGI, van der Ende A, van der Klis FRM, Berrens GAM, Schouls LM. 2011. Seroprevalence of IgG antibodies against 13 vaccine Streptococcus pneumoniae serotypes in the Netherlands. Vaccine 29:1029–1035. http://dx.doi.org/10.1016/j.vaccine.2010.11.054.

8. Usinger WR, Lucas AH. 1999. Avidity as a determinant of the protective efficacy of human antibodies to pneumococcal capsular polysaccharides. Infect. Immun. 67:2366–2370.

9. Simell B, Vuorela A, Ekstorn N, Palmu A, Reunanen A, Meri S, Kayhty H, Vakevainen M. 2011. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 29:1929–1934. http://dx.doi.org/10.1016/j.vaccine.2010.12.121.

10. Rubins JB, Puri AK, Loch J, Charboneau D, MacDonald R, Opstad N, Janoff EN. 1998. Magnitude, duration, quality, and function of pneumococcal vaccine responses in elderly adults. J. Infect. Dis. 178:431–440. http://dx.doi.org/10.1086/351564.

11. Romero-Steiner S, Mushier DM, Cetron MS, Pais LB, Groover JE, Fiore AE, Piklayits BD, Carlone GM. 1999. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin. Infect. Dis. 29:281–288. http://dx.doi.org/10.1086/320200.

12. WHO Pneumococcal Serology Training Laboratories. Training manual for enzyme-linked immunosorbent assay for decline in functional activity of Streptococcus pneumoniae serotype specific IgG (Pn PS ELISA) (007sp version). World Health Organization, Geneva, Switzerland. http://www.vaccine.uab.edu/.

13. Spijkerman J, van Gils EJM, Veenhoven RH, Hak E, Yzerman EPF, van der Ende A, Wijmenga-Monsuur AJ, van den Dobbelsteen GPJM, Sanders EAM. 2011. Carriage of Streptococcus pneumoniae 3 years after start of vaccination program in the Netherlands. Emerg. Infect. Dis. 17:584–591. http://dx.doi.org/10.3201/eid1704.101115.

14. Mushier DM, Phan HM, Watson DA, Baughn RE. 2000. Antibody to capsular polysaccharide of Streptococcus pneumoniae at the time of hospital admission for pneumococcal pneumonia. J. Infect. Dis. 182:158–167. http://dx.doi.org/10.1086/315697.

15. Ridda I, Macintyre CR, Lindley R, McIntyre PB, Brown M, Ofachade S, Sullivan J, Gilbert GL. 2010. Lack of pneumococcal carriage in the hospitalised elderly. Vaccine 28:3902–3904. http://dx.doi.org/10.1016/j.vaccine.2010.03.073.

16. Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, Keller N, Rubinstein E. 2004. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin. Infect. Dis. 38:632–639. http://dx.doi.org/10.1086/381547.
17. Konno M, Baba S, Mikawa H, Hara K, Matsumoto F, Kaga K, Nishimura T, Kobayashi T, Furuya N, Moriyama H, Okamoto Y, Furukawa M, Yamanaka N, Matsushima T, Yoshizawa Y, Kohno S, Kobayashi K, Morikawa A, Koizumi S, Sunakawa K, Inoue M, Ubukata K. 2006. Study of upper respiratory tract bacterial flora: first report. Variations in upper respiratory tract bacterial flora in patients with acute upper respiratory tract infection and healthy subjects and variations by subject age. J. Infect. Chemother. 12:83–96. http://dx.doi.org/10.1007/s10156-006-0433-3.

18. Mackenzie GA, Leach AJ, Carapetis JR, Fisher J, Morris PS. 2010. Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infect. Dis. 10:304. http://dx.doi.org/10.1186/1471-2334-10-304.

19. Scott JR, Millar EV, Lipsitch M, Moulton LH, Weatherholtz R, Perilla MJ, Jackson DM, Beall B, Craig MJ, Reid R, Santosham M, O’Brien KL. 2012. Impact of more than a decade of pneumococcal conjugate vaccine use on carriage and invasive potential in Native American communities. J. Infect. Dis. 205:280–288. http://dx.doi.org/10.1093/infdis/jir730.

20. Krone CL, Van Beek J, Wyllie AL, Rots NY, Oja A, Chu MLN, Bruin JP, Boegaert D, Sanders EAM, Trzcinski K. 2014. High rates of Streptococcus pneumoniae carriage in saliva of elderly detected using molecular methods, poster P-056. 9th Int. Symp. Pneumococci Pneumococcal Dis.

21. Baxendale HE, Davis Z, White Hun, Spellerberg MB, Stevenson FK, Goldblatt D. 2000. Immunogenetic analysis of the immune response to pneumococcal polysaccharide. Eur. J. Immunol. 30:1214–1223. http://dx.doi.org/10.1002/(SICI)1521-4141(200004)30:4<1214::AID-IMMU1214>3.0.CO;2-D.

22. Anttila M, Voutilainen M, Jantti V, Eskola J, Kayhty H. 1999. Contribution of serotype-specific IgG concentration, IgG subclasses and relative antibody avidity to opsonophagocytic activity against Streptococcus pneumoniae. Clin. Exp. Immunol. 118:402–407. http://dx.doi.org/10.1046/j.1365-2249.1999.01077.x.